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Preface
A fashionable curriculum proposition is that students should

be given what they need and no more. It often comes bun-

dled with language like “efficient” and “lean.” Followers

are quick to enumerate a number of topics they learned as

students, which remained unused in their subsequent lives.

What could they have accomplished, they muse, if they could

have back the time lost studying such retrospectively un-

used topics? But many go further—they conflate unused

with useless and then advocate that students should therefore

have lean and efficient curricula, teaching only what students

need. It has a convincing ring to it. Who wants to spend time

on courses in “useless studies?”

When confronted with this compelling position, an even

more compelling reply is to look the protagonist in the eye

and ask, “How do you know what students need?” That’s the

trick, isn’t it? If you could answer questions like that, you

could become rich by making only those lean and efficient

investments and bets that make money. It’s more than that

though. Knowledge of the fundamentals, unlike old lottery

tickets, retains value. Few forms of human knowledge can

beat mathematics in terms of enduring value and raw utility.

Mathematics learned that you have not yet used retains value

into an uncertain future.

It is thus ironic that the mathematics curriculum is one

of the first topics that terms like lean and efficient get applied

to. While there is much to discuss about this paradox, it is

safe to say that it has little to do with what students actually

need. If anything, people need more mathematics than ever

as the arcane abstractions of yesteryear become the consumer

products of today. Can one understand how web search en-

gines work without knowing what an eigenvector is? Can

one understand how banks try to keep your accounts safe on

the web without understanding polynomials, or grasping how

GPS works without understanding differentials?

All of this knowledge, seemingly remote from our every-

day lives, is actually at the core of the modern world. With-

out mathematics you are estranged from it, and everything

descends into rumour, superstition, and magic. The best les-

son one can teach students about what to apply themselves

to is that the future is uncertain, and it is a gamble how one

chooses to spend one’s efforts. But a sound grounding in

mathematics is always a good first option. One of the most

common educational regrets of many adults is that they did

not spend enough time on mathematics in school, which is

quite the opposite of the efficiency regrets of spending too

much time on things unused.

A good mathematics textbook cannot be about a con-

trived minimal necessity. It has to be more than crib notes for

a lean and diminished course in what students are deemed to

need, only to be tossed away after the final exam. It must be

more than a website or a blog. It should be something that

stays with you, giving help in a familiar voice when you need

to remember mathematics you will have forgotten over the

years. Moreover, it should be something that one can grow

into. People mature mathematically. As one does, concepts

that seemed incomprehensible eventually become obvious.

When that happens, new questions emerge that were previ-

ously inconceivable. This text has answers to many of those

questions too.

Such a textbook must not only take into account the na-

ture of the current audience, it must also be open to how well

it bridges to other fields and introduces ideas new to the con-

ventional curriculum. In this regard, this textbook is like no

other. Topics not available in any other text are bravely in-

troduced through the thematic concept of gateway applica-

tions. Applications of calculus have always been an impor-

tant feature of earlier editions of this book. But the agenda

of introducing gateway applications was introduced in the

8th edition. Rather than shrinking to what is merely needed,

this 9th edition is still more comprehensive than the 8th edi-

tion. Of course, it remains possible to do a light and minimal

treatment of the subject with this book, but the decision as to

what that might mean precisely becomes the responsibility

of a skilled instructor, and not the result of the limitations of

some text. Correspondingly, a richer treatment is also an op-

tion. Flexibility in terms of emphasis, exercises, and projects

is made easily possible with a larger span of subject material.

Some of the unique topics naturally addressed in the

gateway applications, which may be added or omitted, in-

clude Liapunov functions, and Legendre transformations, not

to mention exterior calculus. Exterior calculus is a powerful

refinement of the calculus of a century ago, which is often

overlooked. This text has a complete chapter on it, written

accessibly in classical textbook style rather than as an ad-

vanced monograph. Other gateway applications are easy to

cover in passing, but they are too often overlooked in terms of

their importance to modern science. Liapunov functions are

often squeezed into advanced books because they are left out

of classical curricula, even though they are an easy addition

to the discussion of vector fields, where their importance to

stability theory and modern biomathematics can be usefully

noted. Legendre transformations, which are so important to

modern physics and thermodynamics, are a natural and easy

topic to add to the discussion of differentials in more than

one variable.

There are rich opportunities that this textbook captures.

For example, it is the only mainstream textbook that covers

sufficient conditions for maxima and minima in higher di-

mensions, providing answers to questions that most books

gloss over. None of these are inaccessible. They are rich op-

portunities missed because many instructors are simply unfa-

miliar with their importance to other fields. The 9th edition

continues in this tradition. For example, in the existing sec-
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ously inconceivable. This text has answers to many of those

questions too.
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it bridges to other fields and introduces ideas new to the con-
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tion on probability there is a new gateway application added

that treats heavy-tailed distributions and their consequences

for real-world applications.

The 9th edition, in addition to various corrections and

refinements, fills in gaps in the treatment of differential equa-

tions from the 8th edition, with entirely new material. A

linear operator approach to understanding differential equa-

tions is added. Also added is a refinement of the existing

material on the Dirac delta function, and a full treatment of

Laplace transforms. In addition, there is an entirely new sec-

tion on phase plane analysis. The new phase plane section

covers the classical treatment, if that is all one wants, but it

goes much further for those who want more, now or later. It

can set the reader up for dynamical systems in higher dimen-

sions in a unique, lucid, and compact exposition. With ex-

isting treatments of various aspects of differential equations

throughout the existing text, the 9th edition becomes suitable

for a semester course in differential equations, in addition to

the existing standard material suitable for four semesters of

calculus.

Not only can the 9th edition be used to deliver five stan-

dard courses of conventional material, it can do much more

through some of the unique topics and approaches mentioned

above, which can be added or overlooked by the instruc-

tor without penalty. There is no other calculus book that

deals better with computers and mathematics through Maple,

in addition to unique but important applications from infor-

mation theory to Lévy distributions, and does all of these

things fearlessly. This 9th edition is the first one to be pro-

duced in full colour, and it continues to aspire to its subtitle:

“A Complete Course.” It is like no other.

About the Cover

The fall of rainwater droplets in a forest is frozen in an instant of time. For any small

droplet of water, surface tension causes minimum energy to correspond to minimum

surface area. Thus, small amounts of falling water are enveloped by nearly perfect

minimal spheres, which act like lenses that image the forest background. The forest

image is inverted because of the geometry of ray paths of light through a sphere. Close

examination reveals that other droplets are also imaged, appearing almost like bubbles

in glass. Still closer examination shows that the forest is right side up in the droplet

images of the other droplets—transformation and inverse in one picture. If the droplets

were much smaller, simple geometry of ray paths through a sphere would fail, because

the wave nature of light would dominate. Interactions with the spherical droplets are

then governed by Maxwell’s equations instead of simple geometry. Tiny spheres ex-

hibit Mie scattering of light instead, making a large collection of minute droplets, as in

a cloud, seem brilliant white on a sunny day. The story of clouds, waves, rays, inverses,

and minima are all contained in this instant of time in a forest.
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To the Student
You are holding what has become known as a “high-end”

calculus text in the book trade. You are lucky. Think of it as

having a high-end touring car instead of a compact economy

car. But, even though this is the first edition to be published

in full colour, it is not high end in the material sense. It

does not have scratch-and-sniff pages, sparkling radioactive

ink, or anything else like that. It’s the content that sets it

apart. Unlike the car business, “high-end” book content is

not priced any higher than that of any other book. It is one

of the few consumer items where anyone can afford to buy

into the high end. But there is a catch. Unlike cars, you have

to do the work to achieve the promise of the book. So in

that sense “high end” is more like a form of “secret” martial

arts for your mind that the economy version cannot deliver.

If you practise, your mind will become stronger. You will

become more confident and disciplined. Secrets of the ages

will become open to you. You will become fearless, as your

mind longs to tackle any new mathematical challenge.

But hard work is the watchword. Practise, practise, prac-

tise. It is exhilarating when you finally get a new idea that

you did not understand before. There are few experiences as

great as figuring things out. Doing exercises and checking

your answers against those in the back of the book are how

you practise mathematics with a text. You can do essentially

the same thing on a computer; you still do the problems and

check the answers. However you do it, more exercises mean

more practice and better performance.

There are numerous exercises in this text—too many for

you to try them all perhaps, but be ambitious. Some are

“drill” exercises to help you develop your skills in calcula-

tion. More important, however, are the problems that develop

reasoning skills and your ability to apply the techniques you

have learned to concrete situations. In some cases, you will

have to plan your way through a problem that requires sev-

eral different “steps” before you can get to the answer. Other

exercises are designed to extend the theory developed in the

text and therefore enhance your understanding of the con-

cepts of calculus. Think of the problems as a tool to help you

correctly wire your mind. You may have a lot of great com-

ponents in your head, but if you don’t wire the components

together properly, your “home theatre” won’t work.

The exercises vary greatly in difficulty. Usually, the

more difficult ones occur toward the end of exercise sets, but

these sets are not strictly graded in this way because exercises

on a specific topic tend to be grouped together. Also, “dif-

ficulty” can be subjective. For some students, exercises des-

ignated difficult may seem easy, while exercises designated

easy may seem difficult. Nonetheless, some exercises in the

regular sets are marked with the symbolsI, which indicates

that the exercise is somewhat more difficult than most, orA,

which indicates a more theoretical exercise. The theoretical

ones need not be difficult; sometimes they are quite easy.

Most of the problems in the Challenging Problems section

forming part of the Chapter Review at the end of most chap-

ters are also on the difficult side.

It is not a bad idea to review the background material

in Chapter P (Preliminaries), even if your instructor does not

refer to it in class.

If you find some of the concepts in the book difficult

to understand, re-read the material slowly, if necessary sev-

eral times; think about it; formulate questions to ask fellow

students, your TA, or your instructor. Don’t delay. It is im-

portant to resolve your problems as soon as possible. If you

don’t understand today’s topic, you may not understand how

it applies to tomorrow’s either. Mathematics builds from one

idea to the next. Testing your understanding of the later top-

ics also tests your understanding of the earlier ones. Do not

be discouraged if you can’t do all the exercises. Some are

very difficult indeed. The range of exercises ensures that

nearly all students can find a comfortable level to practise

at, while allowing for greater challenges as skill grows.

Answers for most of the odd-numbered exercises are

provided at the back of the book. Exceptions are exercises

that don’t have short answers: for example, “Prove that : : : ”

or “Show that : : : ” problems where the answer is the whole

solution. A Student Solutions Manual that contains detailed

solutions to even-numbered exercises is available.

BesidesI andA used to mark more difficult and the-

oretical problems, the following symbols are used to mark

exercises of special types:

P Exercises pertaining to differential equations and initial-

value problems. (It is not used in sections that are

wholly concerned with DEs.)

C Problems requiring the use of a calculator. Often a sci-

entific calculator is needed. Some such problems may

require a programmable calculator.

G Problems requiring the use of either a graphing calcu-

lator or mathematical graphing software on a personal

computer.

M Problems requiring the use of a computer. Typically,

these will require either computer algebra software (e.g.,

Maple, Mathematica) or a spreadsheet program such as

Microsoft Excel.
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To the Instructor
Calculus: a Complete Course, 9th Edition contains 19 chap-

ters, P and 1–18, plus 5 Appendices. It covers the material

usually encountered in a three- to five-semester real-variable

calculus program, involving real-valued functions of a sin-

gle real variable (differential calculus in Chapters 1–4 and

integral calculus in Chapters 5–8), as well as vector-valued

functions of a single real variable (covered in Chapter 11),

real-valued functions of several real variables (in Chapters

12–14), and vector-valued functions of several real variables

(in Chapters 15–17). Chapter 9 concerns sequences and se-

ries, and its position is rather arbitrary.

Most of the material requires only a reasonable back-

ground in high school algebra and analytic geometry. (See

Chapter P—Preliminaries for a review of this material.)

However, some optional material is more subtle and/or the-

oretical and is intended for stronger students, special topics,

and reference purposes. It also allows instructors consider-

able flexibility in making points, answering questions, and

selective enrichment of a course.

Chapter 10 contains necessary background on vectors

and geometry in 3-dimensional space as well as some lin-

ear algebra that is useful, although not absolutely essential,

for the understanding of subsequent multivariable material.

Material on differential equations is scattered throughout the

book, but Chapter 18 provides a compact treatment of or-

dinary differential equations (ODEs), which may provide

enough material for a one-semester course on the subject.

There are two split versions of the complete book.

Single-Variable Calculus, 9th Edition covers Chapters P,

1–9, 18 and all five appendices. Calculus of Several Vari-

ables, 9th Edition covers Chapters 9–18 and all five appen-

dices. It also begins with a brief review of Single-Variable

Calculus.

Besides numerous improvements and clarifications

throughout the book and tweakings of existing material such

as consideration of probability densities with heavy tails in

Section 7.8, and a less restrictive definition of the Dirac delta

function in Section 16.1, there are two new sections in Chap-

ter 18, one on Laplace Transforms (Section 18.7) and one on

Phase Plane Analysis of Dynamical Systems (Section 18.9).

There is a wealth of material here—too much to include

in any one course. It was never intended to be otherwise. You

must select what material to include and what to omit, taking

into account the background and needs of your students. At

the University of British Columbia, where one author taught

for 34 years, and at the University of Western Ontario, where

the other author continues to teach, calculus is divided into

four semesters, the first two covering single-variable calcu-

lus, the third covering functions of several variables, and the

fourth covering vector calculus. In none of these courses

was there enough time to cover all the material in the appro-

priate chapters; some sections are always omitted. The text

is designed to allow students and instructors to conveniently

find their own level while enhancing any course from gen-

eral calculus to courses focused on science and engineering

students.

Several supplements are available for use with Calculus:

A Complete Course, 9th Edition. Available to students is the

Student Solutions Manual (ISBN: 9780134491073): This

manual contains detailed solutions to all the even-numbered

exercises, prepared by the authors. There are also such

Manuals for the split volumes, for Single Variable Calculus

(ISBN: 9780134579863), and for Calculus of Several Vari-

ables (ISBN: 9780134579856).

Available to instructors are the following resources:

� Instructor’s Solutions Manual

� Computerized Test Bank Pearson’s computerized test

bank allows instructors to filter and select questions to

create quizzes, tests, or homework (over 1,500 test ques-

tions)

� Image Library, which contains all of the figures in the

text provided as individual enlarged .pdf files suitable

for printing to transparencies.

These supplements are available for download from a

password-protected section of Pearson Canada’s online cata-

logue (catalogue.pearsoned.ca). Navigate to this book’s cata-

logue page to view a list of those supplements that are avail-

able. Speak to your local Pearson sales representative for

details and access.

Also available to qualified instructors are MyMathLab

and MathXL Online Courses for which access codes are

required.

MyMathLab helps improve individual students’ perfor-

mance. It has a consistently positive impact on the qual-

ity of learning in higher-education math instruction. My-

MathLab’s comprehensive online gradebook automatically

tracks your students’ results on tests, quizzes, homework,

and in the study plan. MyMathLab provides engaging ex-

periences that personalize, stimulate, and measure learning

for each student. The homework and practice exercises in

MyMathLab are correlated to the exercises in the textbook.

The software offers immediate, helpful feedback when stu-

dents enter incorrect answers. Exercises include guided so-

lutions, sample problems, animations, and eText clips for ex-

tra help. MyMathLab comes from an experienced partner

with educational expertise and an eye on the future. Know-

ing that you are using a Pearson product means knowing that

you are using quality content. That means that our eTexts

are accurate and our assessment tools work. To learn more

about how MyMathLab combines proven learning applica-

tions with powerful assessment, visit www.mymathlab.com

or contact your Pearson representative.
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MathXL is the homework and assessment engine that

runs MyMathLab. (MyMathLab is MathXL plus a learn-

ing management system.) MathXL is available to quali-

fied adopters. For more information, visit our website at

www.mathxl.com, or contact your Pearson representative.

In addition, there is an eText available. Pearson eText

gives students access to the text whenever and wherever they

have online access to the Internet. eText pages look exactly

like the printed text, offering powerful new functionality for

students and instructors. Users can create notes, highlight

text in different colours, create bookmarks, zoom, click hy-

perlinked words and phrases to view definitions, and view in

single-page or two-page view.

Learning Solutions Managers. Pearson’s Learning So-

lutions Managers work with faculty and campus course de-

signers to ensure that Pearson technology products, assess-

ment tools, and online course materials are tailored to meet

your specific needs. This highly qualified team is dedicated

to helping schools take full advantage of a wide range of ed-

ucational resources by assisting in the integration of a vari-

ety of instructional materials and media formats. Your local

Pearson Canada sales representative can provide you with

more details on this service program.

Acknowledgments
The authors are grateful to many colleagues and students at the University of British

Columbia and Western University, and at many other institutions worldwide where

previous editions of these books have been used, for their encouragement and useful

comments and suggestions.

We also wish to thank the sales and marketing staff of all Addison-Wesley (now

Pearson) divisions around the world for making the previous editions so successful,

and the editorial and production staff in Toronto, in particular,

Acquisitions Editor: Jennifer Sutton

Program Manager: Emily Dill

Developmental Editor: Charlotte Morrison-Reed

Production Manager: Susan Johnson

Copy Editor: Valerie Adams

Production Editor/Proofreader: Leanne Rancourt

Designer: Anthony Leung

for their assistance and encouragement.

This volume was typeset by Robert Adams using TEX on an iMac computer run-

ning OSX version 10.10. Most of the figures were generated using the mathematical

graphics software package MG developed by Robert Israel and Robert Adams. Some

were produced with Maple 10.

The expunging of errors and obscurities in a text is an ongoing and asymptotic

process; hopefully each edition is better than the previous one. Nevertheless, some

such imperfections always remain, and we will be grateful to any readers who call

them to our attention, or give us other suggestions for future improvements.

May 2016 R.A.A.

Vancouver, Canada

adms@math.ubc.ca

C.E.

London, Canada

essex@uwo.ca

9780134154367_Calculus   18 05/12/16   3:09 pm

http://www.mymathlab.com


ADAMS & ESSEX: Calculus: a Complete Course, 8th Edition. Front – page xviii October 14, 2016

xviii
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exercises, prepared by the authors. There are also such
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(ISBN: 9780134579863), and for Calculus of Several Vari-

ables (ISBN: 9780134579856).
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text provided as individual enlarged .pdf files suitable
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What Is Calculus?
Early in the seventeenth century, the German mathematician Johannes Kepler analyzed

a vast number of astronomical observations made by Danish astronomer Tycho Brahe

and concluded that the planets must move around the sun in elliptical orbits. He didn’t

know why. Fifty years later, the English mathematician and physicist Isaac Newton

answered that question.

Why do the planets move in elliptical orbits around the sun? Why do hurricane

winds spiral counterclockwise in the northern hemisphere? How can one predict the

effects of interest rate changes on economies and stock markets? When will radioactive

material be sufficiently decayed to enable safe handling? How do warm ocean currents

in the equatorial Pacific affect the climate of eastern North America? How long will

the concentration of a drug in the bloodstream remain at effective levels? How do

radio waves propagate through space? Why does an epidemic spread faster and faster

and then slow down? How can I be sure the bridge I designed won’t be destroyed in a

windstorm?

These and many other questions of interest and importance in our world relate di-

rectly to our ability to analyze motion and how quantities change with respect to time

or each other. Algebra and geometry are useful tools for describing relationships be-

tween static quantities, but they do not involve concepts appropriate for describing how

a quantity changes. For this we need new mathematical operations that go beyond the

algebraic operations of addition, subtraction, multiplication, division, and the taking

of powers and roots. We require operations that measure the way related quantities

change.

Calculus provides the tools for describing motion quantitatively. It introduces

two new operations called differentiation and integration, which, like addition and

subtraction, are opposites of one another; what differentiation does, integration undoes.

For example, consider the motion of a falling rock. The height (in metres) of the

rock t seconds after it is dropped from a height of h0 m is a function h.t/ given by

h.t/ D h0 � 4:9t
2
:

The graph of y D h.t/ is shown in the figure below:

y

t

y D h.t/

h0

The process of differentiation enables us to find a new function, which we denote h0.t/

and call the derivative of h with respect to t , which represents the rate of change of the

height of the rock, that is, its velocity in metres/second:

h
0
.t/ D �9:8t:

Conversely, if we know the velocity of the falling rock as a function of time, integration

enables us to find the height function h.t/.

Calculus was invented independently and in somewhat different ways by two seven-

teenth-century mathematicians: Isaac Newton and Gottfried Wilhelm Leibniz. New-

ton’s motivation was a desire to analyze the motion of moving objects. Using his

calculus, he was able to formulate his laws of motion and gravitation and conclude

from them that the planets must move around the sun in elliptical orbits.

9780134154367_Calculus   21 05/12/16   3:09 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter – page 2 October 15, 2016

2

Many of the most fundamental and important “laws of nature” are conveniently

expressed as equations involving rates of change of quantities. Such equations are

called differential equations, and techniques for their study and solution are at the

heart of calculus. In the falling rock example, the appropriate law is Newton’s Second

Law of Motion:

force D mass � acceleration:

The acceleration, �9:8 m/s2, is the rate of change (the derivative) of the velocity,

which is in turn the rate of change (the derivative) of the height function.

Much of mathematics is related indirectly to the study of motion. We regard lines,

or curves, as geometric objects, but the ancient Greeks thought of them as paths traced

out by moving points. Nevertheless, the study of curves also involves geometric con-

cepts such as tangency and area. The process of differentiation is closely tied to the

geometric problem of finding tangent lines; similarly, integration is related to the geo-

metric problem of finding areas of regions with curved boundaries.

Both differentiation and integration are defined in terms of a new mathematical

operation called a limit. The concept of the limit of a function will be developed in

Chapter 1. That will be the real beginning of our study of calculus. In the chapter called

“Preliminaries” we will review some of the background from algebra and geometry

needed for the development of calculus.
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C H A P T E R P

Preliminaries

“
‘Reeling and Writhing, of course, to begin with,’

the Mock Turtle replied, ‘and the different branches

of Arithmetic—Ambition, Distraction, Uglification,

and Derision.’

”Lewis Carroll (Charles Lutwidge Dodgson) 1832–1898

from Alice’s Adventures in Wonderland

Introduction This preliminary chapter reviews the most important

things you should know before beginning calculus.

Topics include the real number system; Cartesian coordinates in the plane; equations

representing straight lines, circles, and parabolas; functions and their graphs; and, in

particular, polynomials and trigonometric functions.

Depending on your precalculus background, you may or may not be familiar with

these topics. If you are, you may want to skim over this material to refresh your under-

standing of the terms used; if not, you should study this chapter in detail.

P.1 Real Numbers and the Real Line
Calculus depends on properties of the real number system. Real numbers are numbers

that can be expressed as decimals, for example,

5 D 5:00000 : : :

�
3
4
D �0:750000 : : :

1
3
D 0:3333 : : :

p

2 D 1:4142 : : :

� D 3:14159 : : :

In each case the three dots (: : :) indicate that the sequence of decimal digits goes on

forever. For the first three numbers above, the patterns of the digits are obvious; we

know what all the subsequent digits are. For
p

2 and � there are no obvious patterns.

The real numbers can be represented geometrically as points on a number line,

which we call the real line, shown in Figure P.1. The symbol R is used to denote either

the real number system or, equivalently, the real line.

Figure P.1 The real line
�2 �1

�
3
4

0 1
3

1
p

2 2 3 � 4

The properties of the real number system fall into three categories: algebraic prop-

erties, order properties, and completeness. You are already familiar with the algebraic

properties; roughly speaking, they assert that real numbers can be added, subtracted,

multiplied, and divided (except by zero) to produce more real numbers and that the

usual rules of arithmetic are valid.
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4 PRELIMINARIES

The order properties of the real numbers refer to the order in which the numbers

appear on the real line. If x lies to the left of y, then we say that “x is less than y” or

“y is greater than x.” These statements are written symbolically as x < y and y > x,

respectively. The inequality x � y means that either x < y or x D y. The order

properties of the real numbers are summarized in the following rules for inequalities:

Rules for inequalities

If a, b, and c are real numbers, then:
The symbol÷ means

“implies.”
1. a < b ÷ aC c < b C c

2. a < b ÷ a � c < b � c

3. a < b and c > 0 ÷ ac < bc

4. a < b and c < 0 ÷ ac > bc; in particular, �a > �b

5. a > 0 ÷

1

a
> 0

6. 0 < a < b ÷

1

b
<
1

a

Rules 1–4 and 6 (for a > 0) also hold if < and > are replaced by � and �.

Note especially the rules for multiplying (or dividing) an inequality by a number. If the

number is positive, the inequality is preserved; if the number is negative, the inequality

is reversed.

The completeness property of the real number system is more subtle and difficult

to understand. One way to state it is as follows: ifA is any set of real numbers having at

least one number in it, and if there exists a real number y with the property that x � y

for every x in A (such a number y is called an upper bound for A), then there exists a

smallest such number, called the least upper bound or supremum of A, and denoted

sup.A/. Roughly speaking, this says that there can be no holes or gaps on the real

line—every point corresponds to a real number. We will not need to deal much with

completeness in our study of calculus. It is typically used to prove certain important

results—in particular, Theorems 8 and 9 in Chapter 1. (These proofs are given in

Appendix III but are not usually included in elementary calculus courses; they are

studied in more advanced courses in mathematical analysis.) However, when we study

infinite sequences and series in Chapter 9, we will make direct use of completeness.

The set of real numbers has some important special subsets:

(i) the natural numbers or positive integers, namely, the numbers 1; 2; 3; 4; : : :

(ii) the integers, namely, the numbers 0; ˙1; ˙2; ˙3; : : :

(iii) the rational numbers, that is, numbers that can be expressed in the form of a

fraction m=n, where m and n are integers, and n ¤ 0.

The rational numbers are precisely those real numbers with decimal expansions

that are either:

(a) terminating, that is, ending with an infinite string of zeros, for example,

3=4 D 0:750000 : : :, or

(b) repeating, that is, ending with a string of digits that repeats over and over, for ex-

ample, 23=11 D 2:090909 : : : D 2:09. (The bar indicates the pattern of repeating

digits.)

Real numbers that are not rational are called irrational numbers.
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E X A M P L E 1
Show that each of the numbers (a) 1:323232 � � � D 1:32 and

(b) 0:3405405405 : : : D 0:3405 is a rational number by ex-

pressing it as a quotient of two integers.

Solution

(a) Let x D 1:323232 : : : Then x � 1 D 0:323232 : : : and

100x D 132:323232 : : : D 132C 0:323232 : : : D 132C x � 1:

Therefore, 99x D 131 and x D 131=99.

(b) Let y D 0:3405405405 : : : Then 10y D 3:405405405 : : : and

10y � 3 D 0:405405405 : : : Also,

10; 000y D 3; 405:405405405 : : : D 3; 405C 10y � 3:

Therefore, 9; 990y D 3; 402 and y D 3; 402=9; 990 D 63=185.

The set of rational numbers possesses all the algebraic and order properties of the real

numbers but not the completeness property. There is, for example, no rational number

whose square is 2. Hence, there is a “hole” on the “rational line” where
p

2 should

be.1 Because the real line has no such “holes,” it is the appropriate setting for studying

limits and therefore calculus.

Intervals
A subset of the real line is called an interval if it contains at least two numbers and

also contains all real numbers between any two of its elements. For example, the set of

real numbers x such that x > 6 is an interval, but the set of real numbers y such that

y ¤ 0 is not an interval. (Why?) It consists of two intervals.

If a and b are real numbers and a < b, we often refer to

(i) the open interval from a to b, denoted by .a; b/, consisting of all real numbers x

satisfying a < x < b.

(ii) the closed interval from a to b, denoted by Œa; b�, consisting of all real numbers

x satisfying a � x � b.

(iii) the half-open interval Œa; b/, consisting of all real numbers x satisfying the in-

equalities a � x < b.

open interval .a; b/ b

b

b

ba

a

a

a

closed interval Œa; b�

half-open interval Œa; b/

half-open interval .a; b�

Figure P.2 Finite intervals

(iv) the half-open interval .a; b�, consisting of all real numbers x satisfying the in-

equalities a < x � b.

These are illustrated in Figure P.2. Note the use of hollow dots to indicate endpoints of

intervals that are not included in the intervals, and solid dots to indicate endpoints that

are included. The endpoints of an interval are also called boundary points.

The intervals in Figure P.2 are finite intervals; each of them has finite length b�a.

Intervals can also have infinite length, in which case they are called infinite intervals.

Figure P.3 shows some examples of infinite intervals. Note that the whole real line R

is an interval, denoted by .�1;1/. The symbol1 (“infinity”) does not denote a real

number, so we never allow1 to belong to an interval.

a

a
the interval .�1; a�

the interval .a;1/

interval .�1;1/ is the real line

Figure P.3 Infinite intervals

1 How do we know that
p

2 is an irrational number? Suppose, to the contrary, that
p

2 is rational. Then
p

2 D m=n, wherem and n are integers and n ¤ 0. We can assume that the fractionm=n has been “reduced

to lowest terms”; any common factors have been cancelled out. Now m2=n2
D 2, so m2

D 2n2, which is

an even integer. Hence, m must also be even. (The square of an odd integer is always odd.) Since m is even,

we can write m D 2k, where k is an integer. Thus 4k2
D 2n

2 and n2
D 2k

2 , which is even. Thus n is also

even. This contradicts the assumption that
p

2 could be written as a fraction m=n in lowest terms; m and n

cannot both be even. Accordingly, there can be no rational number whose square is 2.

9780134154367_Calculus   24 05/12/16   3:09 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter P – page 4 October 15, 2016

4 PRELIMINARIES

The order properties of the real numbers refer to the order in which the numbers

appear on the real line. If x lies to the left of y, then we say that “x is less than y” or

“y is greater than x.” These statements are written symbolically as x < y and y > x,

respectively. The inequality x � y means that either x < y or x D y. The order

properties of the real numbers are summarized in the following rules for inequalities:

Rules for inequalities

If a, b, and c are real numbers, then:
The symbol÷ means

“implies.”
1. a < b ÷ aC c < b C c

2. a < b ÷ a � c < b � c

3. a < b and c > 0 ÷ ac < bc

4. a < b and c < 0 ÷ ac > bc; in particular, �a > �b

5. a > 0 ÷

1

a
> 0

6. 0 < a < b ÷

1

b
<
1

a

Rules 1–4 and 6 (for a > 0) also hold if < and > are replaced by � and �.

Note especially the rules for multiplying (or dividing) an inequality by a number. If the

number is positive, the inequality is preserved; if the number is negative, the inequality

is reversed.

The completeness property of the real number system is more subtle and difficult

to understand. One way to state it is as follows: ifA is any set of real numbers having at

least one number in it, and if there exists a real number y with the property that x � y

for every x in A (such a number y is called an upper bound for A), then there exists a

smallest such number, called the least upper bound or supremum of A, and denoted

sup.A/. Roughly speaking, this says that there can be no holes or gaps on the real

line—every point corresponds to a real number. We will not need to deal much with

completeness in our study of calculus. It is typically used to prove certain important

results—in particular, Theorems 8 and 9 in Chapter 1. (These proofs are given in

Appendix III but are not usually included in elementary calculus courses; they are

studied in more advanced courses in mathematical analysis.) However, when we study

infinite sequences and series in Chapter 9, we will make direct use of completeness.

The set of real numbers has some important special subsets:

(i) the natural numbers or positive integers, namely, the numbers 1; 2; 3; 4; : : :

(ii) the integers, namely, the numbers 0; ˙1; ˙2; ˙3; : : :

(iii) the rational numbers, that is, numbers that can be expressed in the form of a

fraction m=n, where m and n are integers, and n ¤ 0.

The rational numbers are precisely those real numbers with decimal expansions

that are either:

(a) terminating, that is, ending with an infinite string of zeros, for example,

3=4 D 0:750000 : : :, or

(b) repeating, that is, ending with a string of digits that repeats over and over, for ex-

ample, 23=11 D 2:090909 : : : D 2:09. (The bar indicates the pattern of repeating

digits.)

Real numbers that are not rational are called irrational numbers.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter P – page 5 October 15, 2016

SECTION P.1: Real Numbers and the Real Line 5

E X A M P L E 1
Show that each of the numbers (a) 1:323232 � � � D 1:32 and

(b) 0:3405405405 : : : D 0:3405 is a rational number by ex-

pressing it as a quotient of two integers.

Solution

(a) Let x D 1:323232 : : : Then x � 1 D 0:323232 : : : and

100x D 132:323232 : : : D 132C 0:323232 : : : D 132C x � 1:

Therefore, 99x D 131 and x D 131=99.

(b) Let y D 0:3405405405 : : : Then 10y D 3:405405405 : : : and

10y � 3 D 0:405405405 : : : Also,

10; 000y D 3; 405:405405405 : : : D 3; 405C 10y � 3:

Therefore, 9; 990y D 3; 402 and y D 3; 402=9; 990 D 63=185.

The set of rational numbers possesses all the algebraic and order properties of the real

numbers but not the completeness property. There is, for example, no rational number

whose square is 2. Hence, there is a “hole” on the “rational line” where
p

2 should

be.1 Because the real line has no such “holes,” it is the appropriate setting for studying

limits and therefore calculus.

Intervals
A subset of the real line is called an interval if it contains at least two numbers and

also contains all real numbers between any two of its elements. For example, the set of

real numbers x such that x > 6 is an interval, but the set of real numbers y such that

y ¤ 0 is not an interval. (Why?) It consists of two intervals.

If a and b are real numbers and a < b, we often refer to

(i) the open interval from a to b, denoted by .a; b/, consisting of all real numbers x

satisfying a < x < b.

(ii) the closed interval from a to b, denoted by Œa; b�, consisting of all real numbers

x satisfying a � x � b.

(iii) the half-open interval Œa; b/, consisting of all real numbers x satisfying the in-

equalities a � x < b.

open interval .a; b/ b

b

b

ba

a

a

a

closed interval Œa; b�

half-open interval Œa; b/

half-open interval .a; b�

Figure P.2 Finite intervals

(iv) the half-open interval .a; b�, consisting of all real numbers x satisfying the in-

equalities a < x � b.

These are illustrated in Figure P.2. Note the use of hollow dots to indicate endpoints of

intervals that are not included in the intervals, and solid dots to indicate endpoints that

are included. The endpoints of an interval are also called boundary points.

The intervals in Figure P.2 are finite intervals; each of them has finite length b�a.

Intervals can also have infinite length, in which case they are called infinite intervals.

Figure P.3 shows some examples of infinite intervals. Note that the whole real line R

is an interval, denoted by .�1;1/. The symbol1 (“infinity”) does not denote a real

number, so we never allow1 to belong to an interval.

a

a
the interval .�1; a�

the interval .a;1/

interval .�1;1/ is the real line

Figure P.3 Infinite intervals

1 How do we know that
p

2 is an irrational number? Suppose, to the contrary, that
p

2 is rational. Then
p

2 D m=n, wherem and n are integers and n ¤ 0. We can assume that the fractionm=n has been “reduced

to lowest terms”; any common factors have been cancelled out. Now m2=n2
D 2, so m2

D 2n2, which is

an even integer. Hence, m must also be even. (The square of an odd integer is always odd.) Since m is even,

we can write m D 2k, where k is an integer. Thus 4k2
D 2n

2 and n2
D 2k

2 , which is even. Thus n is also

even. This contradicts the assumption that
p

2 could be written as a fraction m=n in lowest terms; m and n
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E X A M P L E 2
Solve the following inequalities. Express the solution sets in terms

of intervals and graph them.

(a) 2x � 1 > x C 3 (b) �
x

3
� 2x � 1 (c)

2

x � 1
� 5

Solution

(a) 2x � 1 > x C 3 Add 1 to both sides.

2x > x C 4 Subtract x from both sides.

x > 4 The solution set is the interval .4;1/.

(b) �
x

3
� 2x � 1 Multiply both sides by �3.

x � �6x C 3 Add 6x to both sides.

7x � 3 Divide both sides by 7.

x �
3

7
The solution set is the interval .�1; 3=7�.

(c) We transpose the 5 to the left side and simplify to rewrite the given inequality in

an equivalent form:

The symbol ” means “if and

only if” or “is equivalent to.” If

A and B are two statements, then

A ” B means that the truth

of either statement implies the

truth of the other, so either both

must be true or both must be

false.

2

x � 1
� 5 � 0 ”

2 � 5.x � 1/

x � 1
� 0 ”

7� 5x

x � 1
� 0:

The fraction
7 � 5x

x � 1
is undefined at x D 1 and is 0 at x D 7=5. Between these

numbers it is positive if the numerator and denominator have the same sign, and

negative if they have opposite sign. It is easiest to organize this sign information

in a chart:

x 1 7=5
��������������������������������������������������������!

7 � 5x C C C 0 �

x � 1 � 0 C C C

.7 � 5x/=.x � 1/ � undef C 0 �

Thus the solution set of the given inequality is the interval .1; 7=5�.

4

3=70

0

0 1 7=5 2

.�1; 3=7�

.4;1/

.1; 7=5�

Figure P.4 The intervals for Example 2

See Figure P.4 for graphs of the solutions.

Sometimes we will need to solve systems of two or more inequalities that must be sat-

isfied simultaneously. We still solve the inequalities individually and look for numbers

in the intersection of the solution sets.

E X A M P L E 3
Solve the systems of inequalities:

(a) 3 � 2x C 1 � 5 (b) 3x � 1 < 5x C 3 � 2x C 15.

Solution

(a) Using the technique of Example 2, we can solve the inequality 3 � 2x C 1 to get

2 � 2x, so x � 1. Similarly, the inequality 2xC 1 � 5 leads to 2x � 4, so x � 2.

The solution set of system (a) is therefore the closed interval Œ1; 2�.

(b) We solve both inequalities as follows:

3x � 1 < 5x C 3

�1 � 3 < 5x � 3x

�4 < 2x

�2 < x

9

>

>

>

=

>

>

>

;

and

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

5x C 3 � 2x C 15

5x � 2x � 15 � 3

3x � 12

x � 4
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The solution set is the interval .�2; 4�.

Solving quadratic inequalities depends on solving the corresponding quadratic equa-

tions.

E X A M P L E 4
Quadratic inequalities

Solve: (a) x2
� 5x C 6 < 0 (b) 2x2

C 1 > 4x.

Solution

(a) The trinomial x2
� 5x C 6 factors into the product .x � 2/.x � 3/, which is

negative if and only if exactly one of the factors is negative. Since x � 3 < x � 2,

this happens when x � 3 < 0 and x � 2 > 0. Thus we need x < 3 and x > 2; the

solution set is the open interval .2; 3/.

(b) The inequality 2x2
C1 > 4x is equivalent to 2x2

�4xC1 > 0. The corresponding

quadratic equation 2x2
� 4x C 1 D 0, which is of the form Ax2

CBx CC D 0,

can be solved by the quadratic formula (see Section P.6):

x D
�B ˙

p

B2
� 4AC

2A
D

4˙
p

16 � 8

4
D 1˙

p

2

2
;

so the given inequality can be expressed in the form
�

x � 1C
1
2

p

2

� �

x � 1 �
1
2

p

2

�

> 0:

This is satisfied if both factors on the left side are positive or if both are negative.

Therefore, we require that either x < 1� 1
2

p

2 or x > 1C 1
2

p

2. The solution set

is the union of intervals
�

�1; 1 �
1
2

p

2

�

[

�

1C
1
2

p

2;1

�

.

Note the use of the symbol [ to denote the union of intervals. A real number is in

the union of intervals if it is in at least one of the intervals. We will also need to

consider the intersection of intervals from time to time. A real number belongs to the

intersection of intervals if it belongs to every one of the intervals. We will use \ to

denote intersection. For example,

Œ1; 3/ \ Œ2; 4� D Œ2; 3/ while Œ1; 3/ [ Œ2; 4� D Œ1; 4�:

E X A M P L E 5 Solve the inequality
3

x � 1
< �

2

x
and graph the solution set.

Solution We would like to multiply by x.x � 1/ to clear the inequality of fractions,

but this would require considering three cases separately. (What are they?) Instead, we

will transpose and combine the two fractions into a single one:

3

x � 1
< �

2

x
”

3

x � 1
C

2

x
< 0 ”

5x � 2

x.x � 1/
< 0:

We examine the signs of the three factors in the left fraction to determine where that

fraction is negative:

0 2=5 1

the union .�1; 0/ [ .2=5; 1/

Figure P.5 The solution set for

Example 5

x 0 2=5 1
���������������������������������������������������������������!

5x � 2 � � � 0 C C C

x � 0 C C C C C

x � 1 � � � � � 0 C

5x � 2

x.x � 1/
� undef C 0 � undef C

The solution set of the given inequality is the union of these two intervals, namely,

.�1; 0/ [ .2=5; 1/. See Figure P.5.
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See Figure P.4 for graphs of the solutions.

Sometimes we will need to solve systems of two or more inequalities that must be sat-

isfied simultaneously. We still solve the inequalities individually and look for numbers

in the intersection of the solution sets.
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Solve the systems of inequalities:

(a) 3 � 2x C 1 � 5 (b) 3x � 1 < 5x C 3 � 2x C 15.

Solution

(a) Using the technique of Example 2, we can solve the inequality 3 � 2x C 1 to get

2 � 2x, so x � 1. Similarly, the inequality 2xC 1 � 5 leads to 2x � 4, so x � 2.

The solution set of system (a) is therefore the closed interval Œ1; 2�.

(b) We solve both inequalities as follows:
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ˆ

ˆ

:

5x C 3 � 2x C 15

5x � 2x � 15 � 3

3x � 12

x � 4
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The solution set is the interval .�2; 4�.

Solving quadratic inequalities depends on solving the corresponding quadratic equa-

tions.
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Quadratic inequalities

Solve: (a) x2
� 5x C 6 < 0 (b) 2x2

C 1 > 4x.

Solution

(a) The trinomial x2
� 5x C 6 factors into the product .x � 2/.x � 3/, which is

negative if and only if exactly one of the factors is negative. Since x � 3 < x � 2,

this happens when x � 3 < 0 and x � 2 > 0. Thus we need x < 3 and x > 2; the

solution set is the open interval .2; 3/.
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C1 > 4x is equivalent to 2x2

�4xC1 > 0. The corresponding

quadratic equation 2x2
� 4x C 1 D 0, which is of the form Ax2

CBx CC D 0,

can be solved by the quadratic formula (see Section P.6):
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D
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4
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2
;

so the given inequality can be expressed in the form
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�
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Therefore, we require that either x < 1� 1
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2. The solution set
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Note the use of the symbol [ to denote the union of intervals. A real number is in

the union of intervals if it is in at least one of the intervals. We will also need to

consider the intersection of intervals from time to time. A real number belongs to the

intersection of intervals if it belongs to every one of the intervals. We will use \ to

denote intersection. For example,

Œ1; 3/ \ Œ2; 4� D Œ2; 3/ while Œ1; 3/ [ Œ2; 4� D Œ1; 4�:

E X A M P L E 5 Solve the inequality
3

x � 1
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2

x
and graph the solution set.

Solution We would like to multiply by x.x � 1/ to clear the inequality of fractions,

but this would require considering three cases separately. (What are they?) Instead, we

will transpose and combine the two fractions into a single one:

3

x � 1
< �

2

x
”

3

x � 1
C

2

x
< 0 ”

5x � 2

x.x � 1/
< 0:

We examine the signs of the three factors in the left fraction to determine where that

fraction is negative:

0 2=5 1

the union .�1; 0/ [ .2=5; 1/

Figure P.5 The solution set for

Example 5

x 0 2=5 1
���������������������������������������������������������������!

5x � 2 � � � 0 C C C

x � 0 C C C C C

x � 1 � � � � � 0 C

5x � 2

x.x � 1/
� undef C 0 � undef C

The solution set of the given inequality is the union of these two intervals, namely,

.�1; 0/ [ .2=5; 1/. See Figure P.5.
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The Absolute Value
The absolute value, or magnitude, of a number x, denoted jxj (read “the absolute

value of x”), is defined by the formula

jxj D

n

x if x � 0

�x if x < 0

The vertical lines in the symbol jxj are called absolute value bars.

E X A M P L E 6
j3j D 3, j0j D 0, j � 5j D 5.

Note that jxj � 0 for every real number x, and jxj D 0 only if x D 0. People

sometimes find it confusing to say that jxj D �x when x is negative, but this is correct

since �x is positive in that case. The symbol
p

a always denotes the nonnegative

It is important to remember that
p

a2
D jaj. Do not write

p

a2
D a unless you already

know that a � 0.

square root of a, so an alternative definition of jxj is jxj D
p

x2.

Geometrically, jxj represents the (nonnegative) distance from x to 0 on the real

line. More generally, jx � yj represents the (nonnegative) distance between the points

x and y on the real line, since this distance is the same as that from the point x � y to

0 (see Figure P.6):

jx � yj D

�

x � y; if x � y

y � x; if x < y.

Figure P.6

jx � yj = distance from x to y

jx � yj jx � yj

0 x � y y x

The absolute value function has the following properties:

Properties of absolute values

1. j � aj D jaj. A number and its negative have the same absolute value.

2. jabj D jajjbj and

ˇ

ˇ

ˇ

a

b

ˇ

ˇ

ˇ D

jaj

jbj
. The absolute value of a product (or quo-

tient) of two numbers is the product (or quotient) of their absolute values.

3. ja ˙ bj � jaj C jbj (the triangle inequality). The absolute value of a

sum of or difference between numbers is less than or equal to the sum of

their absolute values.

The first two of these properties can be checked by considering the cases where either

of a or b is either positive or negative. The third property follows from the first two

because ˙2ab � j2abj D 2jajjbj. Therefore, we have

ja˙ bj
2
D .a˙ b/

2
D a

2
˙ 2ab C b

2

� jaj
2
C 2jajjbj C jbj

2
D .jaj C jbj/

2
;

and taking the (positive) square roots of both sides, we obtain ja˙bj � jajC jbj: This

result is called the “triangle inequality” because it follows from the geometric fact that

the length of any side of a triangle cannot exceed the sum of the lengths of the other

two sides. For instance, if we regard the points 0, a, and b on the number line as the

vertices of a degenerate “triangle,” then the sides of the triangle have lengths jaj, jbj,

and ja � bj. The triangle is degenerate since all three of its vertices lie on a straight

line.
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Equations and Inequalities Involving Absolute Values
The equation jxj D D (where D > 0) has two solutions, x D D and x D �D:

the two points on the real line that lie at distance D from the origin. Equations and

inequalities involving absolute values can be solved algebraically by breaking them into

cases according to the definition of absolute value, but often they can also be solved

geometrically by interpreting absolute values as distances. For example, the inequality

jx � aj < D says that the distance from x to a is less than D, so x must lie between

a �D and aCD. (Or, equivalently, a must lie between x �D and x CD.) If D is a

positive number, then

jxj D D ” either x D �D or x D D

jxj < D ” �D < x < D

jxj � D ” �D � x � D

jxj > D ” either x < �D or x > D

More generally,

jx � aj D D ” either x D a �D or x D aCD

jx � aj < D ” a �D < x < aCD

jx � aj � D ” a �D � x � aCD

jx � aj > D ” either x < a �D or x > aCD

E X A M P L E 7
Solve: (a) j2x C 5j D 3 (b) j3x � 2j � 1.

Solution

(a) j2x C 5j D 3 ” 2x C 5 D ˙3. Thus, either 2x D �3 � 5 D �8 or

2x D 3 � 5 D �2. The solutions are x D �4 and x D �1.

(b) j3x � 2j � 1 ” �1 � 3x � 2 � 1. We solve this pair of inequalities:

8

ˆ

<

ˆ

:

�1 � 3x � 2

�1C 2 � 3x

1=3 � x

9

>

=

>

;

and

8

ˆ

<

ˆ

:

3x � 2 � 1

3x � 1C 2

x � 1

9

>

=

>

;

:

Thus the solutions lie in the interval Œ1=3; 1�.

Remark Here is how part (b) of Example 7 could have been solved geometrically, by

interpreting the absolute value as a distance:

j3x � 2j D

ˇ

ˇ

ˇ

ˇ

3

�

x �
2

3

�
ˇ

ˇ

ˇ

ˇ

D 3

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

:

Thus, the given inequality says that

3

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

� 1 or

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

�

1

3
:

This says that the distance from x to 2=3 does not exceed 1=3. The solutions for x

therefore lie between 1=3 and 1, including both of these endpoints. (See Figure P.7.)

x

1
3

1
3

0 1
3

2
3

1

Figure P.7 The solution set for

Example 7(b)
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and taking the (positive) square roots of both sides, we obtain ja˙bj � jajC jbj: This
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Remark Here is how part (b) of Example 7 could have been solved geometrically, by

interpreting the absolute value as a distance:

j3x � 2j D

ˇ

ˇ

ˇ

ˇ

3

�

x �
2

3

�
ˇ

ˇ

ˇ

ˇ

D 3

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

:

Thus, the given inequality says that

3

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

� 1 or

ˇ

ˇ

ˇ

ˇ

x �
2

3

ˇ

ˇ

ˇ

ˇ

�

1

3
:

This says that the distance from x to 2=3 does not exceed 1=3. The solutions for x

therefore lie between 1=3 and 1, including both of these endpoints. (See Figure P.7.)

x

1
3

1
3

0 1
3

2
3

1

Figure P.7 The solution set for

Example 7(b)
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E X A M P L E 8
Solve the equation jx C 1j D jx � 3j.

Solution The equation says that x is equidistant from �1 and 3. Therefore, x is the

point halfway between �1 and 3; x D .�1 C 3/=2 D 1. Alternatively, the given

equation says that either x C 1 D x � 3 or x C 1 D �.x � 3/. The first of these

equations has no solutions; the second has the solution x D 1.

E X A M P L E 9 What values of x satisfy the inequality

ˇ

ˇ

ˇ

ˇ

5 �
2

x

ˇ

ˇ

ˇ

ˇ

< 3?

Solution We have

ˇ

ˇ

ˇ

ˇ

5 �
2

x

ˇ

ˇ

ˇ

ˇ

< 3 ” �3 < 5 �
2

x
< 3 Subtract 5 from each member.

�8 < �
2

x
< �2 Divide each member by �2.

4 >
1

x
> 1 Take reciprocals.

1

4
< x < 1.

In this calculation we manipulated a system of two inequalities simultaneously, rather

than split it up into separate inequalities as we have done in previous examples. Note

how the various rules for inequalities were used here. Multiplying an inequality by a

negative number reverses the inequality. So does taking reciprocals of an inequality in

which both sides are positive. The given inequality holds for all x in the open interval

.1=4; 1/.

E X E R C I S E S P.1

In Exercises 1–2, express the given rational number as a repeating

decimal. Use a bar to indicate the repeating digits.

1.
2

9
2.

1

11

In Exercises 3–4, express the given repeating decimal as a quotient

of integers in lowest terms.

3. 0:12 4. 3:27

C 5. Express the rational numbers 1=7, 2=7, 3=7, and 4=7 as

repeating decimals. (Use a calculator to give as many decimal

digits as possible.) Do you see a pattern? Guess the decimal

expansions of 5=7 and 6=7 and check your guesses.

6.A Can two different decimals represent the same number? What

number is represented by 0:999 : : : D 0:9?

In Exercises 7–12, express the set of all real numbers x satisfying

the given conditions as an interval or a union of intervals.

7. x � 0 and x � 5 8. x < 2 and x � �3

9. x > �5 or x < �6 10. x � �1

11. x > �2 12. x < 4 or x � 2

In Exercises 13–26, solve the given inequality, giving the solution

set as an interval or union of intervals.

13. �2x > 4 14. 3x C 5 � 8

15. 5x � 3 � 7 � 3x 16.
6 � x

4
�

3x � 4

2

17. 3.2 � x/ < 2.3C x/ 18. x2
< 9

19.
1

2 � x
< 3 20.

x C 1

x
� 2

21. x2
� 2x � 0 22. 6x2

� 5x � �1

23. x3
> 4x 24. x2

� x � 2

25.
x

2
� 1C

4

x
26.

3

x � 1
<

2

x C 1

Solve the equations in Exercises 27–32.

27. jxj D 3 28. jx � 3j D 7

29. j2t C 5j D 4 30. j1 � t j D 1

31. j8 � 3sj D 9 32.

ˇ

ˇ

ˇ

s

2
� 1

ˇ

ˇ

ˇ
D 1

In Exercises 33–40, write the interval defined by the given

inequality.

33. jxj < 2 34. jxj � 2

35. js � 1j � 2 36. jt C 2j < 1
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37. j3x � 7j < 2 38. j2x C 5j < 1

39.

ˇ

ˇ

ˇ

x

2
� 1

ˇ

ˇ

ˇ
� 1 40.

ˇ

ˇ

ˇ
2 �

x

2

ˇ

ˇ

ˇ
<
1

2

In Exercises 41–42, solve the given inequality by interpreting it as

a statement about distances on the real line.

41. jx C 1j > jx � 3j 42. jx � 3j < 2jxj

43.A Do not fall into the trap j � aj D a. For what real numbers a is

this equation true? For what numbers is it false?

44. Solve the equation jx � 1j D 1 � x.

45.A Show that the inequality

ja � bj �

ˇ

ˇ

ˇjaj � jbj

ˇ

ˇ

ˇ

holds for all real numbers a and b.

P.2 Cartesian Coordinates in the Plane
The positions of all points in a plane can be measured with respect to two perpendic-

ular real lines in the plane intersecting at the 0-point of each. These lines are called

coordinate axes in the plane. Usually (but not always) we call one of these axes the

x-axis and draw it horizontally with numbers x on it increasing to the right; then we

call the other the y-axis, and draw it vertically with numbers y on it increasing upward.

The point of intersection of the coordinate axes (the point where x and y are both zero)

is called the origin and is often denoted by the letter O .

If P is any point in the plane, we can draw a line through P perpendicular to

the x-axis. If a is the value of x where that line intersects the x-axis, we call a the

x-coordinate of P . Similarly, the y-coordinate of P is the value of y where a line

through P perpendicular to the y-axis meets the y-axis. The ordered pair .a; b/ is

called the coordinate pair, or the Cartesian coordinates, of the point P: We refer

y

�3

�2

�1

1

2

3

x
�4 �3 �2 �1 1 2 3 4

b

a

P.a; b/

O

Figure P.8 The coordinate axes and the

point P with coordinates .a; b/

to the point as P.a; b/ to indicate both the name P of the point and its coordinates

.a; b/. (See Figure P.8.) Note that the x-coordinate appears first in a coordinate pair.

Coordinate pairs are in one-to-one correspondence with points in the plane; each point

has a unique coordinate pair, and each coordinate pair determines a unique point. We

call such a set of coordinate axes and the coordinate pairs they determine a Carte-

sian coordinate system in the plane, after the seventeenth-century philosopher René

Descartes, who created analytic (coordinate) geometry. When equipped with such a

coordinate system, a plane is called a Cartesian plane. Note that we are using the

same notation .a; b/ for the Cartesian coordinates of a point in the plane as we use for

an open interval on the real line. However, this should not cause any confusion because

the intended meaning will be clear from the context.

Figure P.9 shows the coordinates of some points in the plane. Note that all points

on the x-axis have y-coordinate 0. We usually just write the x-coordinates to label

such points. Similarly, points on the y-axis have x D 0, and we can label such points

using their y-coordinates only.

The coordinate axes divide the plane into four regions called quadrants. These

quadrants are numbered I to IV, as shown in Figure P.10. The first quadrant is the

upper right one; both coordinates of any point in that quadrant are positive numbers.

y

�2

�1

1

2

3

x�3 �2 �1 1 2 3 4

.0:5;1:5/

.2;3/

.3;1/

.2;�1/

�1:5

.�3;�1/

.�2;2/

�2:3 O

Figure P.9 Some points with their

coordinates
Both coordinates are negative in quadrant III; only y is positive in quadrant II; only x

is positive in quadrant IV.
y

x

II I

IVIII

Figure P.10 The four quadrants

Axis Scales
When we plot data in the coordinate plane or graph formulas whose variables have

different units of measure, we do not need to use the same scale on the two axes. If, for

example, we plot height versus time for a falling rock, there is no reason to place the

mark that shows 1 m on the height axis the same distance from the origin as the mark

that shows 1 s on the time axis.

When we graph functions whose variables do not represent physical measure-

ments and when we draw figures in the coordinate plane to study their geometry or
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E X A M P L E 8
Solve the equation jx C 1j D jx � 3j.

Solution The equation says that x is equidistant from �1 and 3. Therefore, x is the

point halfway between �1 and 3; x D .�1 C 3/=2 D 1. Alternatively, the given

equation says that either x C 1 D x � 3 or x C 1 D �.x � 3/. The first of these

equations has no solutions; the second has the solution x D 1.

E X A M P L E 9 What values of x satisfy the inequality

ˇ

ˇ

ˇ

ˇ

5 �
2

x

ˇ

ˇ

ˇ

ˇ

< 3?

Solution We have

ˇ

ˇ

ˇ

ˇ

5 �
2

x

ˇ

ˇ

ˇ

ˇ

< 3 ” �3 < 5 �
2

x
< 3 Subtract 5 from each member.

�8 < �
2

x
< �2 Divide each member by �2.

4 >
1

x
> 1 Take reciprocals.

1

4
< x < 1.

In this calculation we manipulated a system of two inequalities simultaneously, rather

than split it up into separate inequalities as we have done in previous examples. Note

how the various rules for inequalities were used here. Multiplying an inequality by a

negative number reverses the inequality. So does taking reciprocals of an inequality in

which both sides are positive. The given inequality holds for all x in the open interval

.1=4; 1/.

E X E R C I S E S P.1

In Exercises 1–2, express the given rational number as a repeating

decimal. Use a bar to indicate the repeating digits.

1.
2

9
2.

1

11

In Exercises 3–4, express the given repeating decimal as a quotient

of integers in lowest terms.

3. 0:12 4. 3:27

C 5. Express the rational numbers 1=7, 2=7, 3=7, and 4=7 as

repeating decimals. (Use a calculator to give as many decimal

digits as possible.) Do you see a pattern? Guess the decimal

expansions of 5=7 and 6=7 and check your guesses.

6.A Can two different decimals represent the same number? What

number is represented by 0:999 : : : D 0:9?

In Exercises 7–12, express the set of all real numbers x satisfying

the given conditions as an interval or a union of intervals.

7. x � 0 and x � 5 8. x < 2 and x � �3

9. x > �5 or x < �6 10. x � �1

11. x > �2 12. x < 4 or x � 2

In Exercises 13–26, solve the given inequality, giving the solution

set as an interval or union of intervals.

13. �2x > 4 14. 3x C 5 � 8

15. 5x � 3 � 7 � 3x 16.
6 � x

4
�

3x � 4

2

17. 3.2 � x/ < 2.3C x/ 18. x2
< 9

19.
1

2 � x
< 3 20.

x C 1

x
� 2

21. x2
� 2x � 0 22. 6x2

� 5x � �1

23. x3
> 4x 24. x2

� x � 2

25.
x

2
� 1C

4

x
26.

3

x � 1
<

2

x C 1

Solve the equations in Exercises 27–32.

27. jxj D 3 28. jx � 3j D 7

29. j2t C 5j D 4 30. j1 � t j D 1

31. j8 � 3sj D 9 32.

ˇ

ˇ

ˇ

s

2
� 1

ˇ

ˇ

ˇ
D 1

In Exercises 33–40, write the interval defined by the given

inequality.

33. jxj < 2 34. jxj � 2

35. js � 1j � 2 36. jt C 2j < 1
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37. j3x � 7j < 2 38. j2x C 5j < 1

39.

ˇ

ˇ

ˇ

x

2
� 1

ˇ

ˇ

ˇ
� 1 40.

ˇ

ˇ

ˇ
2 �

x

2

ˇ

ˇ

ˇ
<
1

2

In Exercises 41–42, solve the given inequality by interpreting it as

a statement about distances on the real line.

41. jx C 1j > jx � 3j 42. jx � 3j < 2jxj

43.A Do not fall into the trap j � aj D a. For what real numbers a is

this equation true? For what numbers is it false?

44. Solve the equation jx � 1j D 1 � x.

45.A Show that the inequality

ja � bj �

ˇ

ˇ

ˇjaj � jbj

ˇ

ˇ

ˇ

holds for all real numbers a and b.

P.2 Cartesian Coordinates in the Plane
The positions of all points in a plane can be measured with respect to two perpendic-

ular real lines in the plane intersecting at the 0-point of each. These lines are called

coordinate axes in the plane. Usually (but not always) we call one of these axes the

x-axis and draw it horizontally with numbers x on it increasing to the right; then we

call the other the y-axis, and draw it vertically with numbers y on it increasing upward.

The point of intersection of the coordinate axes (the point where x and y are both zero)

is called the origin and is often denoted by the letter O .

If P is any point in the plane, we can draw a line through P perpendicular to

the x-axis. If a is the value of x where that line intersects the x-axis, we call a the

x-coordinate of P . Similarly, the y-coordinate of P is the value of y where a line

through P perpendicular to the y-axis meets the y-axis. The ordered pair .a; b/ is

called the coordinate pair, or the Cartesian coordinates, of the point P: We refer

y

�3

�2

�1

1

2

3

x
�4 �3 �2 �1 1 2 3 4

b

a

P.a; b/

O

Figure P.8 The coordinate axes and the

point P with coordinates .a; b/

to the point as P.a; b/ to indicate both the name P of the point and its coordinates

.a; b/. (See Figure P.8.) Note that the x-coordinate appears first in a coordinate pair.

Coordinate pairs are in one-to-one correspondence with points in the plane; each point

has a unique coordinate pair, and each coordinate pair determines a unique point. We

call such a set of coordinate axes and the coordinate pairs they determine a Carte-

sian coordinate system in the plane, after the seventeenth-century philosopher René

Descartes, who created analytic (coordinate) geometry. When equipped with such a

coordinate system, a plane is called a Cartesian plane. Note that we are using the

same notation .a; b/ for the Cartesian coordinates of a point in the plane as we use for

an open interval on the real line. However, this should not cause any confusion because

the intended meaning will be clear from the context.

Figure P.9 shows the coordinates of some points in the plane. Note that all points

on the x-axis have y-coordinate 0. We usually just write the x-coordinates to label

such points. Similarly, points on the y-axis have x D 0, and we can label such points

using their y-coordinates only.

The coordinate axes divide the plane into four regions called quadrants. These

quadrants are numbered I to IV, as shown in Figure P.10. The first quadrant is the

upper right one; both coordinates of any point in that quadrant are positive numbers.

y

�2

�1

1

2

3

x�3 �2 �1 1 2 3 4

.0:5;1:5/

.2;3/

.3;1/

.2;�1/

�1:5

.�3;�1/

.�2;2/

�2:3 O

Figure P.9 Some points with their

coordinates
Both coordinates are negative in quadrant III; only y is positive in quadrant II; only x

is positive in quadrant IV.
y

x

II I

IVIII

Figure P.10 The four quadrants

Axis Scales
When we plot data in the coordinate plane or graph formulas whose variables have

different units of measure, we do not need to use the same scale on the two axes. If, for

example, we plot height versus time for a falling rock, there is no reason to place the

mark that shows 1 m on the height axis the same distance from the origin as the mark

that shows 1 s on the time axis.

When we graph functions whose variables do not represent physical measure-

ments and when we draw figures in the coordinate plane to study their geometry or
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trigonometry, we usually make the scales identical. A vertical unit of distance then

looks the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line

segments that are supposed to have the same length will look as if they do, and angles

that are supposed to be equal will look equal. Some of the geometric results we obtain

later, such as the relationship between the slopes of perpendicular lines, are valid only

if equal scales are used on the two axes.

Computer and calculator displays are another matter. The vertical and horizontal

scales on machine-generated graphs usually differ, with resulting distortions in dis-

tances, slopes, and angles. Circles may appear elliptical, and squares may appear

rectangular or even as parallelograms. Right angles may appear as acute or obtuse.

Circumstances like these require us to take extra care in interpreting what we see.

High-quality computer software for drawing Cartesian graphs usually allows the user

to compensate for such scale problems by adjusting the aspect ratio (the ratio of verti-

cal to horizontal scale). Some computer screens also allow adjustment within a narrow

range. When using graphing software, try to adjust your particular software/hardware

configuration so that the horizontal and vertical diameters of a drawn circle appear to

be equal.

Increments and Distances
When a particle moves from one point to another, the net changes in its coordinates are

called increments. They are calculated by subtracting the coordinates of the starting

point from the coordinates of the ending point. An increment in a variable is the net

change in the value of the variable. If x changes from x1 to x2, then the increment in

x is �x D x2 � x1. (Here � is the upper case Greek letter delta.)

E X A M P L E 1
Find the increments in the coordinates of a particle that moves

from A.3;�3/ to B.�1; 2/.

Solution The increments (see Figure P.11) are:

y

x

A.3;�3/

B.�1; 2/

�y D 5

�x D �4

Figure P.11 Increments in x and y

�x D �1 � 3 D �4 and �y D 2� .�3/ D 5:

If P.x1; y1/ and Q.x2; y2/ are two points in the plane, the straight line segment PQ

is the hypotenuse of a right triangle PCQ, as shown in Figure P.12. The sides PC and

CQ of the triangle have lengths

j�xj D jx2 � x1j and j�yj D jy2 � y1j:

These are the horizontal distance and vertical distance between P and Q. By the

Pythagorean Theorem, the length of PQ is the square root of the sum of the squares

of these lengths.

Distance formula for points in the plane

The distance D between P.x1; y1/ and Q.x2; y2/ is

D D

p

.�x/2 C .�y/2 D

p

.x2 � x1/
2
C .y2 � y1/

2:

E X A M P L E 2
The distance between A.3;�3/ and B.�1; 2/ in Figure P.11 is

y

x

P.x1;y1/

Q.x2 ;y2/

C.x2 ;y1/�xDx2�x1

�yDy2�y1
D

Figure P.12 The distance from P to Q is

D D
p

.x2 � x1/
2
C .y2 � y1/

2

p

.�1 � 3/2 C .2 � .�3//2 D

p

.�4/2 C 52
D

p

41 units:
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E X A M P L E 3
The distance from the origin O.0; 0/ to a point P.x; y/ is

p

.x � 0/2 C .y � 0/2 D

p

x2
C y2:

Graphs
The graph of an equation (or inequality) involving the variables x and y is the set of

all points P.x; y/ whose coordinates satisfy the equation (or inequality).

Figure P.13

(a) The circle x2
C y2

D 4

(b) The disk x2
C y2

� 4

y

x

�2

2

2

�2

O

y

x

�2

2

2

�2

O

(a) (b)

E X A M P L E 4
The equation x2

C y2
D 4 represents all points P.x; y/ whose

distance from the origin is
p

x2
C y2

D

p

4 D 2. These points

lie on the circle of radius 2 centred at the origin. This circle is the graph of the equation

x2
C y2

D 4. (See Figure P.13(a).)

E X A M P L E 5
Points .x; y/whose coordinates satisfy the inequality x2

Cy2
� 4

all have distance � 2 from the origin. The graph of the inequality

is therefore the disk of radius 2 centred at the origin. (See Figure P.13(b).)

E X A M P L E 6
Consider the equation y D x

2. Some points whose coordinates

satisfy this equation are .0; 0/, .1; 1/, .�1; 1/, .2; 4/, and .�2; 4/.

These points (and all others satisfying the equation) lie on a smooth curve called a

parabola. (See Figure P.14.)

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

Figure P.14 The parabola y D x2

Straight Lines
Given two points P1.x1; y1/ and P2.x2; y2/ in the plane, we call the increments�x D

x2 � x1 and �y D y2 � y1, respectively, the run and the rise between P1 and P2.

Two such points always determine a unique straight line (usually called simply a line)

passing through them both. We call the line P1P2.

Any nonvertical line in the plane has the property that the ratio

m D
rise

run
D

�y

�x
D

y2 � y1

x2 � x1

has the same value for every choice of two distinct points P1.x1; y1/ and P2.x2; y2/

on the line. (See Figure P.15.) The constant m D �y=�x is called the slope of the

nonvertical line.
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trigonometry, we usually make the scales identical. A vertical unit of distance then

looks the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line

segments that are supposed to have the same length will look as if they do, and angles

that are supposed to be equal will look equal. Some of the geometric results we obtain

later, such as the relationship between the slopes of perpendicular lines, are valid only

if equal scales are used on the two axes.

Computer and calculator displays are another matter. The vertical and horizontal

scales on machine-generated graphs usually differ, with resulting distortions in dis-

tances, slopes, and angles. Circles may appear elliptical, and squares may appear

rectangular or even as parallelograms. Right angles may appear as acute or obtuse.

Circumstances like these require us to take extra care in interpreting what we see.

High-quality computer software for drawing Cartesian graphs usually allows the user

to compensate for such scale problems by adjusting the aspect ratio (the ratio of verti-

cal to horizontal scale). Some computer screens also allow adjustment within a narrow

range. When using graphing software, try to adjust your particular software/hardware

configuration so that the horizontal and vertical diameters of a drawn circle appear to

be equal.

Increments and Distances
When a particle moves from one point to another, the net changes in its coordinates are

called increments. They are calculated by subtracting the coordinates of the starting

point from the coordinates of the ending point. An increment in a variable is the net

change in the value of the variable. If x changes from x1 to x2, then the increment in

x is �x D x2 � x1. (Here � is the upper case Greek letter delta.)

E X A M P L E 1
Find the increments in the coordinates of a particle that moves

from A.3;�3/ to B.�1; 2/.

Solution The increments (see Figure P.11) are:

y

x

A.3;�3/

B.�1; 2/

�y D 5

�x D �4

Figure P.11 Increments in x and y

�x D �1 � 3 D �4 and �y D 2� .�3/ D 5:

If P.x1; y1/ and Q.x2; y2/ are two points in the plane, the straight line segment PQ

is the hypotenuse of a right triangle PCQ, as shown in Figure P.12. The sides PC and

CQ of the triangle have lengths

j�xj D jx2 � x1j and j�yj D jy2 � y1j:

These are the horizontal distance and vertical distance between P and Q. By the

Pythagorean Theorem, the length of PQ is the square root of the sum of the squares

of these lengths.

Distance formula for points in the plane

The distance D between P.x1; y1/ and Q.x2; y2/ is

D D

p

.�x/2 C .�y/2 D

p

.x2 � x1/
2
C .y2 � y1/

2:

E X A M P L E 2
The distance between A.3;�3/ and B.�1; 2/ in Figure P.11 is

y

x

P.x1;y1/

Q.x2 ;y2/

C.x2 ;y1/�xDx2�x1

�yDy2�y1
D

Figure P.12 The distance from P to Q is

D D
p

.x2 � x1/
2
C .y2 � y1/

2

p

.�1 � 3/2 C .2 � .�3//2 D

p

.�4/2 C 52
D

p

41 units:
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E X A M P L E 3
The distance from the origin O.0; 0/ to a point P.x; y/ is

p

.x � 0/2 C .y � 0/2 D

p

x2
C y2:

Graphs
The graph of an equation (or inequality) involving the variables x and y is the set of

all points P.x; y/ whose coordinates satisfy the equation (or inequality).

Figure P.13

(a) The circle x2
C y2

D 4

(b) The disk x2
C y2

� 4

y

x

�2

2

2

�2

O

y

x

�2

2

2

�2

O

(a) (b)

E X A M P L E 4
The equation x2

C y2
D 4 represents all points P.x; y/ whose

distance from the origin is
p

x2
C y2

D

p

4 D 2. These points

lie on the circle of radius 2 centred at the origin. This circle is the graph of the equation

x2
C y2

D 4. (See Figure P.13(a).)

E X A M P L E 5
Points .x; y/whose coordinates satisfy the inequality x2

Cy2
� 4

all have distance � 2 from the origin. The graph of the inequality

is therefore the disk of radius 2 centred at the origin. (See Figure P.13(b).)

E X A M P L E 6
Consider the equation y D x

2. Some points whose coordinates

satisfy this equation are .0; 0/, .1; 1/, .�1; 1/, .2; 4/, and .�2; 4/.

These points (and all others satisfying the equation) lie on a smooth curve called a

parabola. (See Figure P.14.)

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

Figure P.14 The parabola y D x2

Straight Lines
Given two points P1.x1; y1/ and P2.x2; y2/ in the plane, we call the increments�x D

x2 � x1 and �y D y2 � y1, respectively, the run and the rise between P1 and P2.

Two such points always determine a unique straight line (usually called simply a line)

passing through them both. We call the line P1P2.

Any nonvertical line in the plane has the property that the ratio

m D
rise

run
D

�y

�x
D

y2 � y1

x2 � x1

has the same value for every choice of two distinct points P1.x1; y1/ and P2.x2; y2/

on the line. (See Figure P.15.) The constant m D �y=�x is called the slope of the

nonvertical line.
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Figure P.15 �y=�x D �y 0=�x 0

because triangles P1QP2 and P 0
1Q

0P 0
2 are

similar

y

x

P1

P2

P
0
1

P 0
2

Q

Q0

�x

�x
0

�y 0

�y

E X A M P L E 7
The slope of the line joining A.3;�3/ and B .�1; 2/ is

m D
�y

�x
D

2 � .�3/

�1 � 3
D

5

�4
D �

5

4
:

The slope tells us the direction and steepness of a line. A line with positive slope rises

uphill to the right; one with negative slope falls downhill to the right. The greater the

absolute value of the slope, the steeper the rise or fall. Since the run �x is zero for a

vertical line, we cannot form the ratio m; the slope of a vertical line is undefined.

The direction of a line can also be measured by an angle. The inclination of a line

is the smallest counterclockwise angle from the positive direction of the x-axis to the

line. In Figure P.16 the angle � (the Greek letter “phi”) is the inclination of the line L.

The inclination � of any line satisfies 0ı
� � < 180

ı. The inclination of a horizontal

line is 0ı and that of a vertical line is 90ı.

y

x

�
�y

�x

L

Figure P.16 Line L has inclination �

Provided equal scales are used on the coordinate axes, the relationship between

the slope m of a nonvertical line and its inclination � is shown in Figure P.16:

m D
�y

�x
D tan�:

(The trigonometric function tan is defined in Section P.7.)

Parallel lines have the same inclination. If they are not vertical, they must therefore

have the same slope. Conversely, lines with equal slopes have the same inclination and

so are parallel.

If two nonvertical lines, L1 and L2, are perpendicular, their slopes m1 and m2

satisfy m1m2 D �1; so each slope is the negative reciprocal of the other:

m1 D �
1

m2

and m2 D �
1

m1

:

(This result also assumes equal scales on the two coordinate axes.) To see this, observe

y

x

L2
L1

CB

D

A

slope m2slope m1

Figure P.17 4ABD is similar to4CAD

in Figure P.17 that

m1 D
AD

BD
and m2 D �

AD

DC
:

Since4ABD is similar to4CAD, we have
AD

BD
D

DC

AD
, and so

m1m2 D

�

DC

AD

��

�

AD

DC

�

D �1:
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Equations of Lines
Straight lines are particularly simple graphs, and their corresponding equations are

also simple. All points on the vertical line through the point a on the x-axis have their

x-coordinates equal to a. Thus x D a is the equation of the line. Similarly, y D b is

the equation of the horizontal line meeting the y-axis at b.

E X A M P L E 8
The horizontal and vertical lines passing through the point .3; 1/

(Figure P.18) have equations y D 1 and x D 3, respectively.

y

x

.3; 1/

line x D 3

line y D 1

3

1

Figure P.18 The lines y D 1 and x D 3

To write an equation for a nonvertical straight line L, it is enough to know its slope m

and the coordinates of one point P1.x1; y1/ on it. If P.x; y/ is any other point on L,

then

y � y1

x � x1

D m;

so that

y � y1 D m.x � x1/ or y D m.x � x1/C y1:

The equation

y D m.x � x1/C y1

is the point-slope equation of the line that passes through the point .x1; y1/

and has slope m.

E X A M P L E 9
Find an equation of the line that has slope �2 and passes through

the point .1; 4/ .

Solution We substitute x1 D 1, y1 D 4, and m D �2 into the point-slope form of

the equation and obtain

y D �2.x � 1/C 4 or y D �2x C 6:

E X A M P L E 10
Find an equation of the line through the points .1;�1/ and .3; 5/.

Solution The slope of the line is m D
5� .�1/

3 � 1
D 3. We can use this slope with

either of the two points to write an equation of the line. If we use .1;�1/ we get

y D 3.x � 1/ � 1; which simplifies to y D 3x � 4:

If we use .3; 5/ we get

y D 3.x � 3/C 5; which also simplifies to y D 3x � 4:

Either way, y D 3x � 4 is an equation of the line.

The y-coordinate of the point where a nonvertical line intersects the y-axis is called

y

x

b
.0; b/

.a; 0/

a

L

Figure P.19 Line L has x-intercept a and

y-intercept b

the y-intercept of the line. (See Figure P.19.) Similarly, the x-intercept of a non-

horizontal line is the x-coordinate of the point where it crosses the x-axis. A line with

slope m and y-intercept b passes through the point .0; b/, so its equation is

y D m.x � 0/C b or; more simply; y D mx C b:
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Figure P.15 �y=�x D �y 0=�x 0

because triangles P1QP2 and P 0
1Q

0P 0
2 are

similar

y

x

P1

P2

P
0
1

P 0
2

Q

Q0

�x

�x
0

�y 0

�y

E X A M P L E 7
The slope of the line joining A.3;�3/ and B .�1; 2/ is

m D
�y

�x
D

2 � .�3/

�1 � 3
D

5

�4
D �

5

4
:

The slope tells us the direction and steepness of a line. A line with positive slope rises

uphill to the right; one with negative slope falls downhill to the right. The greater the

absolute value of the slope, the steeper the rise or fall. Since the run �x is zero for a

vertical line, we cannot form the ratio m; the slope of a vertical line is undefined.

The direction of a line can also be measured by an angle. The inclination of a line

is the smallest counterclockwise angle from the positive direction of the x-axis to the

line. In Figure P.16 the angle � (the Greek letter “phi”) is the inclination of the line L.

The inclination � of any line satisfies 0ı
� � < 180

ı. The inclination of a horizontal

line is 0ı and that of a vertical line is 90ı.

y

x

�
�y

�x

L

Figure P.16 Line L has inclination �

Provided equal scales are used on the coordinate axes, the relationship between

the slope m of a nonvertical line and its inclination � is shown in Figure P.16:

m D
�y

�x
D tan�:

(The trigonometric function tan is defined in Section P.7.)

Parallel lines have the same inclination. If they are not vertical, they must therefore

have the same slope. Conversely, lines with equal slopes have the same inclination and

so are parallel.

If two nonvertical lines, L1 and L2, are perpendicular, their slopes m1 and m2

satisfy m1m2 D �1; so each slope is the negative reciprocal of the other:

m1 D �
1

m2

and m2 D �
1

m1

:

(This result also assumes equal scales on the two coordinate axes.) To see this, observe

y

x

L2
L1

CB

D

A

slope m2slope m1

Figure P.17 4ABD is similar to4CAD

in Figure P.17 that

m1 D
AD

BD
and m2 D �

AD

DC
:

Since4ABD is similar to4CAD, we have
AD

BD
D

DC

AD
, and so

m1m2 D

�

DC

AD

��

�

AD

DC

�

D �1:
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Equations of Lines
Straight lines are particularly simple graphs, and their corresponding equations are

also simple. All points on the vertical line through the point a on the x-axis have their

x-coordinates equal to a. Thus x D a is the equation of the line. Similarly, y D b is

the equation of the horizontal line meeting the y-axis at b.

E X A M P L E 8
The horizontal and vertical lines passing through the point .3; 1/

(Figure P.18) have equations y D 1 and x D 3, respectively.

y

x

.3; 1/

line x D 3

line y D 1

3

1

Figure P.18 The lines y D 1 and x D 3

To write an equation for a nonvertical straight line L, it is enough to know its slope m

and the coordinates of one point P1.x1; y1/ on it. If P.x; y/ is any other point on L,

then

y � y1

x � x1

D m;

so that

y � y1 D m.x � x1/ or y D m.x � x1/C y1:

The equation

y D m.x � x1/C y1

is the point-slope equation of the line that passes through the point .x1; y1/

and has slope m.

E X A M P L E 9
Find an equation of the line that has slope �2 and passes through

the point .1; 4/ .

Solution We substitute x1 D 1, y1 D 4, and m D �2 into the point-slope form of

the equation and obtain

y D �2.x � 1/C 4 or y D �2x C 6:

E X A M P L E 10
Find an equation of the line through the points .1;�1/ and .3; 5/.

Solution The slope of the line is m D
5� .�1/

3 � 1
D 3. We can use this slope with

either of the two points to write an equation of the line. If we use .1;�1/ we get

y D 3.x � 1/ � 1; which simplifies to y D 3x � 4:

If we use .3; 5/ we get

y D 3.x � 3/C 5; which also simplifies to y D 3x � 4:

Either way, y D 3x � 4 is an equation of the line.

The y-coordinate of the point where a nonvertical line intersects the y-axis is called

y

x

b
.0; b/

.a; 0/

a

L

Figure P.19 Line L has x-intercept a and

y-intercept b

the y-intercept of the line. (See Figure P.19.) Similarly, the x-intercept of a non-

horizontal line is the x-coordinate of the point where it crosses the x-axis. A line with

slope m and y-intercept b passes through the point .0; b/, so its equation is

y D m.x � 0/C b or; more simply; y D mx C b:
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A line with slope m and x-intercept a passes through .a; 0/, and so its equation is

y D m.x � a/:

The equation y D mx C b is called the slope–y-intercept equation of the

line with slope m and y-intercept b.

The equation y D m.x � a/ is called the slope–x-intercept equation of the

line with slope m and x-intercept a.

E X A M P L E 11
Find the slope and the two intercepts of the line with equation

8x C 5y D 20.

Solution Solving the equation for y we get

y D
20 � 8x

5
D �

8

5
x C 4:

Comparing this with the general form y D mx C b of the slope–y-intercept equation,

we see that the slope of the line is m D �8=5, and the y-intercept is b D 4. To find

the x-intercept, put y D 0 and solve for x, obtaining 8x D 20, or x D 5=2. The

x-intercept is a D 5=2.

The equation Ax C By D C (where A and B are not both zero) is called the general

linear equation in x and y because its graph always represents a straight line, and

every line has an equation in this form.

Many important quantities are related by linear equations. Once we know that

a relationship between two variables is linear, we can find it from any two pairs of

corresponding values, just as we find the equation of a line from the coordinates of two

points.

E X A M P L E 12
The relationship between Fahrenheit temperature (F ) and Celsius

temperature (C ) is given by a linear equation of the form F D

mC C b. The freezing point of water is F D 32ı or C D 0ı, while the boiling point

is F D 212ı or C D 100ı. Thus,

32 D 0mC b and 212 D 100mC b;

so b D 32 and m D .212 � 32/=100 D 9=5. The relationship is given by the linear

equation

F D
9

5
C C 32 or C D

5

9
.F � 32/:

E X E R C I S E S P.2

In Exercises 1–4, a particle moves from A to B . Find the net

increments �x and �y in the particle’s coordinates. Also find the

distance from A to B .

1. A.0; 3/; B.4; 0/ 2. A.�1; 2/; B.4;�10/

3. A.3; 2/; B.�1;�2/ 4. A.0:5; 3/; B.2; 3/

5. A particle starts at A.�2; 3/ and its coordinates change by

�x D 4 and �y D �7. Find its new position.

6. A particle arrives at the point .�2;�2/ after its coordinates

experience increments �x D �5 and �y D 1. From where

did it start?

Describe the graphs of the equations and inequalities in Exercises

7–12.

7. x2
C y

2
D 1 8. x2

C y
2
D 2

9. x2
C y

2
� 1 10. x2

C y
2
D 0

11. y � x2 12. y < x2
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In Exercises 13–14, find an equation for (a) the vertical line and

(b) the horizontal line through the given point.

13. .�2; 5=3/ 14. .
p

2;�1:3/

In Exercises 15–18, write an equation for the line through P with

slope m.

15. P.�1; 1/; m D 1 16. P.�2; 2/; m D 1=2

17. P.0; b/; m D 2 18. P.a; 0/; m D �2

In Exercises 19–20, does the given point P lie on, above, or below

the given line?

19. P.2; 1/; 2x C 3y D 6 20. P.3;�1/; x � 4y D 7

In Exercises 21–24, write an equation for the line through the two

points.

21. .0; 0/; .2; 3/ 22. .�2; 1/; .2;�2/

23. .4; 1/; .�2; 3/ 24. .�2; 0/; .0; 2/

In Exercises 25–26, write an equation for the line with slopem and

y-intercept b.

25. m D �2; b D
p

2 26. m D �1=2; b D �3

In Exercises 27–30, determine the x- and y-intercepts and the

slope of the given lines, and sketch their graphs.

27. 3x C 4y D 12 28. x C 2y D �4

29.
p

2x �
p

3y D 2 30. 1:5x � 2y D �3

In Exercises 31–32, find equations for the lines through P that are

(a) parallel to and (b) perpendicular to the given line.

31. P.2; 1/; y D x C 2 32. P.�2; 2/; 2x C y D 4

33. Find the point of intersection of the lines 3x C 4y D �6 and

2x � 3y D 13.

34. Find the point of intersection of the lines 2x C y D 8 and

5x � 7y D 1.

35. (Two-intercept equations) If a line is neither horizontal nor

vertical and does not pass through the origin, show that its

equation can be written in the form
x

a
C

y

b
D 1, where a is its

x-intercept and b is its y-intercept.

36. Determine the intercepts and sketch the graph of the line
x

2
�

y

3
D 1:

37. Find the y-intercept of the line through the points .2; 1/ and

.3;�1/.

38. A line passes through .�2; 5/ and .k; 1/ and has x-intercept 3.

Find k.

39. The cost of printing x copies of a pamphlet is $C , where

C D Ax C B for certain constants A and B . If it costs $5,000

to print 10,000 copies and $6,000 to print 15,000 copies, how

much will it cost to print 100,000 copies?

40. (Fahrenheit versus Celsius) In the FC -plane, sketch the

graph of the equation C D
5

9
.F � 32/ linking Fahrenheit and

Celsius temperatures found in Example 12. On the same graph

sketch the line with equation C D F . Is there a temperature at

which a Celsius thermometer gives the same numerical

reading as a Fahrenheit thermometer? If so, find that

temperature.

Geometry

41. By calculating the lengths of its three sides, show that the

triangle with vertices at the points A.2; 1/, B.6; 4/, and

C.5;�3/ is isosceles.

42. Show that the triangle with vertices A.0; 0/, B.1;
p

3/, and

C.2; 0/ is equilateral.

43. Show that the points A.2;�1/, B.1; 3/, and C.�3; 2/ are

three vertices of a square and find the fourth vertex.

44. Find the coordinates of the midpoint on the line segment

P1P2 joining the points P1.x1; y1/ and P2.x2; y2/.

45. Find the coordinates of the point of the line segment joining

the points P1.x1; y1/ and P2.x2; y2/ that is two-thirds of the

way from P1 to P2.

46. The point P lies on the x-axis and the point Q lies on the line

y D �2x. The point .2; 1/ is the midpoint of PQ. Find the

coordinates of P .

In Exercises 47–48, interpret the equation as a statement about

distances, and hence determine the graph of the equation.

47.
p

.x � 2/2 C y2
D 4

48.
p

.x � 2/2 C y2
D

p

x2
C .y � 2/2

49. For what value of k is the line 2x C ky D 3 perpendicular to

the line 4x C y D 1? For what value of k are the lines

parallel?

50. Find the line that passes through the point .1; 2/ and through

the point of intersection of the two lines x C 2y D 3 and

2x � 3y D �1.

P.3 Graphs of Quadratic Equations

This section reviews circles, parabolas, ellipses, and hyperbolas, the graphs that are

represented by quadratic equations in two variables.

Circles and Disks
The circle having centre C and radius a is the set of all points in the plane that are at

distance a from the point C .

The distance from P.x; y/ to the point C.h; k/ is
p

.x � h/2 C .y � k/2, so that
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A line with slope m and x-intercept a passes through .a; 0/, and so its equation is

y D m.x � a/:

The equation y D mx C b is called the slope–y-intercept equation of the

line with slope m and y-intercept b.

The equation y D m.x � a/ is called the slope–x-intercept equation of the

line with slope m and x-intercept a.

E X A M P L E 11
Find the slope and the two intercepts of the line with equation

8x C 5y D 20.

Solution Solving the equation for y we get

y D
20 � 8x

5
D �

8

5
x C 4:

Comparing this with the general form y D mx C b of the slope–y-intercept equation,

we see that the slope of the line is m D �8=5, and the y-intercept is b D 4. To find

the x-intercept, put y D 0 and solve for x, obtaining 8x D 20, or x D 5=2. The

x-intercept is a D 5=2.

The equation Ax C By D C (where A and B are not both zero) is called the general

linear equation in x and y because its graph always represents a straight line, and

every line has an equation in this form.

Many important quantities are related by linear equations. Once we know that

a relationship between two variables is linear, we can find it from any two pairs of

corresponding values, just as we find the equation of a line from the coordinates of two

points.

E X A M P L E 12
The relationship between Fahrenheit temperature (F ) and Celsius

temperature (C ) is given by a linear equation of the form F D

mC C b. The freezing point of water is F D 32ı or C D 0ı, while the boiling point

is F D 212ı or C D 100ı. Thus,

32 D 0mC b and 212 D 100mC b;

so b D 32 and m D .212 � 32/=100 D 9=5. The relationship is given by the linear

equation

F D
9

5
C C 32 or C D

5

9
.F � 32/:

E X E R C I S E S P.2

In Exercises 1–4, a particle moves from A to B . Find the net

increments �x and �y in the particle’s coordinates. Also find the

distance from A to B .

1. A.0; 3/; B.4; 0/ 2. A.�1; 2/; B.4;�10/

3. A.3; 2/; B.�1;�2/ 4. A.0:5; 3/; B.2; 3/

5. A particle starts at A.�2; 3/ and its coordinates change by

�x D 4 and �y D �7. Find its new position.

6. A particle arrives at the point .�2;�2/ after its coordinates

experience increments �x D �5 and �y D 1. From where

did it start?

Describe the graphs of the equations and inequalities in Exercises

7–12.

7. x2
C y

2
D 1 8. x2

C y
2
D 2

9. x2
C y

2
� 1 10. x2

C y
2
D 0

11. y � x2 12. y < x2
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In Exercises 13–14, find an equation for (a) the vertical line and

(b) the horizontal line through the given point.

13. .�2; 5=3/ 14. .
p

2;�1:3/

In Exercises 15–18, write an equation for the line through P with

slope m.

15. P.�1; 1/; m D 1 16. P.�2; 2/; m D 1=2

17. P.0; b/; m D 2 18. P.a; 0/; m D �2

In Exercises 19–20, does the given point P lie on, above, or below

the given line?

19. P.2; 1/; 2x C 3y D 6 20. P.3;�1/; x � 4y D 7

In Exercises 21–24, write an equation for the line through the two

points.

21. .0; 0/; .2; 3/ 22. .�2; 1/; .2;�2/

23. .4; 1/; .�2; 3/ 24. .�2; 0/; .0; 2/

In Exercises 25–26, write an equation for the line with slopem and

y-intercept b.

25. m D �2; b D
p

2 26. m D �1=2; b D �3

In Exercises 27–30, determine the x- and y-intercepts and the

slope of the given lines, and sketch their graphs.

27. 3x C 4y D 12 28. x C 2y D �4

29.
p

2x �
p

3y D 2 30. 1:5x � 2y D �3

In Exercises 31–32, find equations for the lines through P that are

(a) parallel to and (b) perpendicular to the given line.

31. P.2; 1/; y D x C 2 32. P.�2; 2/; 2x C y D 4

33. Find the point of intersection of the lines 3x C 4y D �6 and

2x � 3y D 13.

34. Find the point of intersection of the lines 2x C y D 8 and

5x � 7y D 1.

35. (Two-intercept equations) If a line is neither horizontal nor

vertical and does not pass through the origin, show that its

equation can be written in the form
x

a
C

y

b
D 1, where a is its

x-intercept and b is its y-intercept.

36. Determine the intercepts and sketch the graph of the line
x

2
�

y

3
D 1:

37. Find the y-intercept of the line through the points .2; 1/ and

.3;�1/.

38. A line passes through .�2; 5/ and .k; 1/ and has x-intercept 3.

Find k.

39. The cost of printing x copies of a pamphlet is $C , where

C D Ax C B for certain constants A and B . If it costs $5,000

to print 10,000 copies and $6,000 to print 15,000 copies, how

much will it cost to print 100,000 copies?

40. (Fahrenheit versus Celsius) In the FC -plane, sketch the

graph of the equation C D
5

9
.F � 32/ linking Fahrenheit and

Celsius temperatures found in Example 12. On the same graph

sketch the line with equation C D F . Is there a temperature at

which a Celsius thermometer gives the same numerical

reading as a Fahrenheit thermometer? If so, find that

temperature.

Geometry

41. By calculating the lengths of its three sides, show that the

triangle with vertices at the points A.2; 1/, B.6; 4/, and

C.5;�3/ is isosceles.

42. Show that the triangle with vertices A.0; 0/, B.1;
p

3/, and

C.2; 0/ is equilateral.

43. Show that the points A.2;�1/, B.1; 3/, and C.�3; 2/ are

three vertices of a square and find the fourth vertex.

44. Find the coordinates of the midpoint on the line segment

P1P2 joining the points P1.x1; y1/ and P2.x2; y2/.

45. Find the coordinates of the point of the line segment joining

the points P1.x1; y1/ and P2.x2; y2/ that is two-thirds of the

way from P1 to P2.

46. The point P lies on the x-axis and the point Q lies on the line

y D �2x. The point .2; 1/ is the midpoint of PQ. Find the

coordinates of P .

In Exercises 47–48, interpret the equation as a statement about

distances, and hence determine the graph of the equation.

47.
p

.x � 2/2 C y2
D 4

48.
p

.x � 2/2 C y2
D

p

x2
C .y � 2/2

49. For what value of k is the line 2x C ky D 3 perpendicular to

the line 4x C y D 1? For what value of k are the lines

parallel?

50. Find the line that passes through the point .1; 2/ and through

the point of intersection of the two lines x C 2y D 3 and

2x � 3y D �1.

P.3 Graphs of Quadratic Equations

This section reviews circles, parabolas, ellipses, and hyperbolas, the graphs that are

represented by quadratic equations in two variables.

Circles and Disks
The circle having centre C and radius a is the set of all points in the plane that are at

distance a from the point C .

The distance from P.x; y/ to the point C.h; k/ is
p

.x � h/2 C .y � k/2, so that
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the equation of the circle of radius a > 0 with centre at C.h; k/ is
p

.x � h/2 C .y � k/2 D a:

A simpler form of this equation is obtained by squaring both sides.

Standard equation of a circle

The circle with centre .h; k/ and radius a � 0 has equation

.x � h/
2
C .y � k/

2
D a

2
:

In particular, the circle with centre at the origin .0; 0/ and radius a has equation

x
2
C y

2
D a

2
:

E X A M P L E 1
The circle with radius 2 and centre .1; 3/ (Figure P.20) has

equation .x � 1/2 C .y � 3/2 D 4.

E X A M P L E 2
The circle having equation .x C 2/2 C .y � 1/2 D 7 has centre at

y

x

.1; 3/

2

Figure P.20 Circle

.x � 1/2 C .y � 3/2 D 4

the point .�2; 1/ and radius
p

7. (See Figure P.21.)

If the squares in the standard equation .x � h/2 C .y � k/2 D a2 are multiplied out,

and all constant terms collected on the right-hand side, the equation becomesy

x

.�2; 1/

p

7

Figure P.21 Circle

.x C 2/2 C .y � 1/2 D 7

x
2
� 2hx C y

2
� 2ky D a

2
� h

2
� k

2
:

A quadratic equation of the form

x
2
C y

2
C 2ax C 2by D c

must represent a circle, which can be a single point if the radius is 0, or no points at all.

To identify the graph, we complete the squares on the left side of the equation. Since

x
2
C 2ax are the first two terms of the square .x C a/2 D x

2
C 2ax C a

2, we add

a2 to both sides to complete the square of the x terms. (Note that a2 is the square of

half the coefficient of x.) Similarly, add b2 to both sides to complete the square of the

y terms. The equation then becomes

.x C a/
2
C .y C b/

2
D c C a

2
C b

2
:

If cCa2
Cb2 > 0, the graph is a circle with centre .�a;�b/ and radius

p

c C a2
C b2.

If cCa2
Cb

2
D 0, the graph consists of the single point .�a;�b/. If cCa2

Cb
2
< 0,

no points lie on the graph.

E X A M P L E 3
Find the centre and radius of the circle x2

C y2
� 4x C 6y D 3.

Solution Observe that x
2
� 4x are the first two terms of the binomial square .x �

2/
2
D x

2
� 4x C 4, and y2

C 6y are the first two terms of the square .y C 3/2 D

y2
C 6y C 9. Hence, we add 4C 9 to both sides of the given equation and obtain

x
2
� 4x C 4C y

2
C 6y C 9 D 3C 4C 9 or .x � 2/

2
C .y C 3/

2
D 16:

This is the equation of a circle with centre .2;�3/ and radius 4.

The set of all points inside a circle is called the interior of the circle; it is also called

an open disk. The set of all points outside the circle is called the exterior of the circle.

(See Figure P.22.) The interior of a circle together with the circle itself is called a

closed disk, or simply a disk. The inequality

.x � h/
2
C .y � k/

2
� a

2

represents the disk of radius jaj centred at .h; k/.

y

x

interior

exterior

Figure P.22 The interior (green) of a

circle (red) and the exterior (blue)
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E X A M P L E 4
Identify the graphs of

(a) x2
C 2x C y2

� 8 (b) x2
C 2x C y2 < 8 (c) x2

C 2x C y2 > 8.

Solution We can complete the square in the equation x2
C y

2
C 2x D 8 as follows:

x
2
C 2x C 1C y

2
D 8C 1

.x C 1/
2
C y

2
D 9:

Thus the equation represents the circle of radius 3 with centre at .�1; 0/. Inequality

(a) represents the (closed) disk with the same radius and centre. (See Figure P.23.)

Inequality (b) represents the interior of the circle (or the open disk). Inequality (c)

represents the exterior of the circle.

y

x

3

�1

Figure P.23 The disk x2
C y

2
C 2x � 8

Equations of Parabolas

A parabola is a plane curve whose points are equidistant from a fixed point

F and a fixed straight line L that does not pass through F . The point F is the

focus of the parabola; the line L is the parabola’s directrix. The line through

F perpendicular toL is the parabola’s axis. The point V where the axis meets

the parabola is the parabola’s vertex.

Observe that the vertex V of a parabola is halfway between the focus F and the point

on the directrixL that is closest toF . If the directrix is either horizontal or vertical, and

the vertex is at the origin, then the parabola will have a particularly simple equation.

E X A M P L E 5
Find an equation of the parabola having the point F.0; p/ as focus

and the line L with equation y D �p as directrix.

Solution If P.x; y/ is any point on the parabola, then (see Figure P.24) the distances

from P to F and to (the closest point Q on) the line L are given by

y

x

P.x; y/

Q.x;�p/

F .0; p/

V .0; 0/.0;�p/

y D �p L

Figure P.24 The parabola 4py D x2 with

focus F.0; p/ and directrix y D �p

PF D

p

.x � 0/2 C .y � p/2 D

p

x2
C y2

� 2py C p2

PQ D

p

.x � x/2 C .y � .�p//2 D

p

y2
C 2py C p2:

Since P is on the parabola, PF D PQ and so the squares of these distances are also

equal:

x
2
C y

2
� 2py C p

2
D y

2
C 2py C p

2
;

or, after simplifying,

x
2
D 4py or y D

x2

4p
(called standard forms):

Figure P.24 shows the situation for p > 0; the parabola opens upward and is symmetric

about its axis, the y-axis. If p < 0, the focus .0; p/ will lie below the origin and

the directrix y D �p will lie above the origin. In this case the parabola will open

downward instead of upward.

Figure P.25 shows several parabolas with equations of the form y D ax2 for positive

and negative values of a.

y

x

yDx2

yD3x2

yD0:5x2

yD�x2

yD�4x2

Figure P.25 Some parabolas y D ax2

E X A M P L E 6
An equation for the parabola with focus .0; 1/ and directrix y D

�1 is y D x2=4, or x2
D 4y. (We took p D 1 in the standard

equation.)
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the equation of the circle of radius a > 0 with centre at C.h; k/ is
p

.x � h/2 C .y � k/2 D a:

A simpler form of this equation is obtained by squaring both sides.

Standard equation of a circle

The circle with centre .h; k/ and radius a � 0 has equation

.x � h/
2
C .y � k/

2
D a

2
:

In particular, the circle with centre at the origin .0; 0/ and radius a has equation

x
2
C y

2
D a

2
:

E X A M P L E 1
The circle with radius 2 and centre .1; 3/ (Figure P.20) has

equation .x � 1/2 C .y � 3/2 D 4.

E X A M P L E 2
The circle having equation .x C 2/2 C .y � 1/2 D 7 has centre at

y

x

.1; 3/

2

Figure P.20 Circle

.x � 1/2 C .y � 3/2 D 4

the point .�2; 1/ and radius
p

7. (See Figure P.21.)

If the squares in the standard equation .x � h/2 C .y � k/2 D a2 are multiplied out,

and all constant terms collected on the right-hand side, the equation becomesy

x

.�2; 1/

p

7

Figure P.21 Circle

.x C 2/2 C .y � 1/2 D 7

x
2
� 2hx C y

2
� 2ky D a

2
� h

2
� k

2
:

A quadratic equation of the form

x
2
C y

2
C 2ax C 2by D c

must represent a circle, which can be a single point if the radius is 0, or no points at all.

To identify the graph, we complete the squares on the left side of the equation. Since

x
2
C 2ax are the first two terms of the square .x C a/2 D x

2
C 2ax C a

2, we add

a2 to both sides to complete the square of the x terms. (Note that a2 is the square of

half the coefficient of x.) Similarly, add b2 to both sides to complete the square of the

y terms. The equation then becomes

.x C a/
2
C .y C b/

2
D c C a

2
C b

2
:

If cCa2
Cb2 > 0, the graph is a circle with centre .�a;�b/ and radius

p

c C a2
C b2.

If cCa2
Cb

2
D 0, the graph consists of the single point .�a;�b/. If cCa2

Cb
2
< 0,

no points lie on the graph.

E X A M P L E 3
Find the centre and radius of the circle x2

C y2
� 4x C 6y D 3.

Solution Observe that x
2
� 4x are the first two terms of the binomial square .x �

2/
2
D x

2
� 4x C 4, and y2

C 6y are the first two terms of the square .y C 3/2 D

y2
C 6y C 9. Hence, we add 4C 9 to both sides of the given equation and obtain

x
2
� 4x C 4C y

2
C 6y C 9 D 3C 4C 9 or .x � 2/

2
C .y C 3/

2
D 16:

This is the equation of a circle with centre .2;�3/ and radius 4.

The set of all points inside a circle is called the interior of the circle; it is also called

an open disk. The set of all points outside the circle is called the exterior of the circle.

(See Figure P.22.) The interior of a circle together with the circle itself is called a

closed disk, or simply a disk. The inequality

.x � h/
2
C .y � k/

2
� a

2

represents the disk of radius jaj centred at .h; k/.

y

x

interior

exterior

Figure P.22 The interior (green) of a

circle (red) and the exterior (blue)
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E X A M P L E 4
Identify the graphs of

(a) x2
C 2x C y2

� 8 (b) x2
C 2x C y2 < 8 (c) x2

C 2x C y2 > 8.

Solution We can complete the square in the equation x2
C y

2
C 2x D 8 as follows:

x
2
C 2x C 1C y

2
D 8C 1

.x C 1/
2
C y

2
D 9:

Thus the equation represents the circle of radius 3 with centre at .�1; 0/. Inequality

(a) represents the (closed) disk with the same radius and centre. (See Figure P.23.)

Inequality (b) represents the interior of the circle (or the open disk). Inequality (c)

represents the exterior of the circle.

y

x

3

�1

Figure P.23 The disk x2
C y

2
C 2x � 8

Equations of Parabolas

A parabola is a plane curve whose points are equidistant from a fixed point

F and a fixed straight line L that does not pass through F . The point F is the

focus of the parabola; the line L is the parabola’s directrix. The line through

F perpendicular toL is the parabola’s axis. The point V where the axis meets

the parabola is the parabola’s vertex.

Observe that the vertex V of a parabola is halfway between the focus F and the point

on the directrixL that is closest toF . If the directrix is either horizontal or vertical, and

the vertex is at the origin, then the parabola will have a particularly simple equation.

E X A M P L E 5
Find an equation of the parabola having the point F.0; p/ as focus

and the line L with equation y D �p as directrix.

Solution If P.x; y/ is any point on the parabola, then (see Figure P.24) the distances

from P to F and to (the closest point Q on) the line L are given by

y

x

P.x; y/

Q.x;�p/

F .0; p/

V .0; 0/.0;�p/

y D �p L

Figure P.24 The parabola 4py D x2 with

focus F.0; p/ and directrix y D �p

PF D

p

.x � 0/2 C .y � p/2 D

p

x2
C y2

� 2py C p2

PQ D

p

.x � x/2 C .y � .�p//2 D

p

y2
C 2py C p2:

Since P is on the parabola, PF D PQ and so the squares of these distances are also

equal:

x
2
C y

2
� 2py C p

2
D y

2
C 2py C p

2
;

or, after simplifying,

x
2
D 4py or y D

x2

4p
(called standard forms):

Figure P.24 shows the situation for p > 0; the parabola opens upward and is symmetric

about its axis, the y-axis. If p < 0, the focus .0; p/ will lie below the origin and

the directrix y D �p will lie above the origin. In this case the parabola will open

downward instead of upward.

Figure P.25 shows several parabolas with equations of the form y D ax2 for positive

and negative values of a.

y

x

yDx2

yD3x2

yD0:5x2

yD�x2

yD�4x2

Figure P.25 Some parabolas y D ax2

E X A M P L E 6
An equation for the parabola with focus .0; 1/ and directrix y D

�1 is y D x2=4, or x2
D 4y. (We took p D 1 in the standard

equation.)
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E X A M P L E 7
Find the focus and directrix of the parabola y D �x2.

Solution The given equation matches the standard form y D x
2
=.4p/ provided

4p D �1. Thus p D �1=4. The focus is .0;�1=4/, and the directrix is the line

y D 1=4.

Interchanging the roles of x and y in the derivation of the standard equation above

shows that the equation

y
2
D 4px or x D

y2

4p
(standard equation)

represents a parabola with focus at .p; 0/ and vertical directrix x D �p. The axis is

the x-axis.

Reflective Properties of Parabolas
One of the chief applications of parabolas is their use as reflectors of light and radio

waves. Rays originating from the focus of a parabola will be reflected in a beam parallel

to the axis, as shown in Figure P.26. Similarly, all the rays in a beam striking a parabola

parallel to its axis will reflect through the focus. This property is the reason why

telescopes and spotlights use parabolic mirrors and radio telescopes and microwave

antennas are parabolic in shape. We will examine this property of parabolas more

carefully in Section 8.1.

F

axis

Figure P.26 Reflection by a parabola

Figure P.27 Horizontal scaling:

(a) the graph y D 1 � x2

(b) graph of (a) compressed horizontally

(c) graph of (a) expanded horizontally

y

x

y

x

y

x

y D 1 � x2 y D 1 � .2x/2
y D 1 � .x=2/2

�1 �2 21

� 1
2

1
2

(a) (b) (c)

�1 1

Scaling a Graph
The graph of an equation can be compressed or expanded horizontally by replacing x

with a multiple of x. If a is a positive number, replacing x with ax in an equation

multiplies horizontal distances in the graph of the equation by a factor 1=a. (See

Figure P.27.) Replacing y with ay will multiply vertical distances in a similar way.

You may find it surprising that, like circles, all parabolas are similar geometric

figures; they may have different sizes, but they all have the same shape. We can change

the size while preserving the shape of a curve represented by an equation in x and y by

scaling both the coordinates by the same amount. If we scale the equation 4py D x
2

by replacing x and y with 4px and 4py, respectively, we get 4p.4py/ D .4px/2, or

y D x2. Thus, the general parabola 4py D x2 has the same shape as the specific

y

x

y

x

4py D x2

y D x2

Figure P.28 The two parabolas are

similar. Compare the parts inside the

rectangles

parabola y D x2; as shown in Figure P.28.

Shifting a Graph
The graph of an equation (or inequality) can be shifted c units horizontally by replacing

x with x � c or vertically by replacing y with y � c.

Shifts

To shift a graph c units to the right, replace x in its equation or inequality

with x � c. (If c < 0, the shift will be to the left.)

To shift a graph c units upward, replace y in its equation or inequality with

y � c. (If c < 0, the shift will be downward.)
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E X A M P L E 8
The graph of y D .x � 3/2 (blue) is the parabola y D x2 (red)

shifted 3 units to the right. The graph of y D .x C 1/
2 (green) is

the parabola y D x2 shifted 1 unit to the left. (See Figure P.29(a).)

Figure P.29

(a) Horizontal shifts of y D x2

(b) Vertical shifts of y D x2

y

x�1 3

yD.xC1/2

yDx2

yD.x�3/2

y

x

1

�3

yDx2�3

yDx2

yDx2C1

(a) (b)

E X A M P L E 9
The graph of y D x2

C1 (or y�1 D x2) (green in Figure P.29(b))

is the parabola y D x2 (red) shifted up 1 unit. The graph of

y D x2
� 3 (or y � .�3/ D x2/ (blue) is the parabola y D x2 shifted down 3 units.

E X A M P L E 10
The circle with equation .x � h/2 C .y � k/2 D a2 having centre

.h; k/ and radius a can be obtained by shifting the circle x2
Cy2

D

a2 of radius a centred at the origin h units to the right and k units upward. These shifts

correspond to replacing x with x � h and y with y � k.

The graph of y D ax2
C bxC c is a parabola whose axis is parallel to the y-axis. The

parabola opens upward if a > 0 and downward if a < 0. We can complete the square

and write the equation in the form y D a.x � h/2 C k to find the vertex .h; k/.

E X A M P L E 11
Describe the graph of y D x2

� 4x C 3.

Solution The equation y D x
2
� 4x C 3 represents a parabola, opening upward. To

find its vertex and axis we can complete the square:

y D x
2
� 4x C 4 � 1 D .x � 2/

2
� 1; so y � .�1/ D .x � 2/

2
:

This curve is the parabola y D x2 shifted to the right 2 units and down 1 unit. There-

fore, its vertex is .2;�1/, and its axis is the line x D 2. Since y D x2 has focus

.0; 1=4/, the focus of this parabola is .0C2; .1=4/�1/, or .2;�3=4/. (See Figure P.30.)

y

x

.2;�1/

axis
x D 2

focus .2;�3=4/

Figure P.30 The parabola

y D x
2
� 4x C 3

Ellipses and Hyperbolas
If a and b are positive numbers, the equation

x2

a2
C

y2

b2
D 1

represents a curve called an ellipse that lies wholly within the rectangle �a � x � a,

�b � y � b. (Why?) If a D b, the ellipse is just the circle of radius a centred at the

origin. If a ¤ b, the ellipse is a circle that has been squashed by scaling it by different

amounts in the two coordinate directions.
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E X A M P L E 7
Find the focus and directrix of the parabola y D �x2.

Solution The given equation matches the standard form y D x
2
=.4p/ provided

4p D �1. Thus p D �1=4. The focus is .0;�1=4/, and the directrix is the line

y D 1=4.

Interchanging the roles of x and y in the derivation of the standard equation above

shows that the equation

y
2
D 4px or x D

y2

4p
(standard equation)

represents a parabola with focus at .p; 0/ and vertical directrix x D �p. The axis is

the x-axis.

Reflective Properties of Parabolas
One of the chief applications of parabolas is their use as reflectors of light and radio

waves. Rays originating from the focus of a parabola will be reflected in a beam parallel

to the axis, as shown in Figure P.26. Similarly, all the rays in a beam striking a parabola

parallel to its axis will reflect through the focus. This property is the reason why

telescopes and spotlights use parabolic mirrors and radio telescopes and microwave

antennas are parabolic in shape. We will examine this property of parabolas more

carefully in Section 8.1.

F

axis

Figure P.26 Reflection by a parabola

Figure P.27 Horizontal scaling:

(a) the graph y D 1 � x2

(b) graph of (a) compressed horizontally

(c) graph of (a) expanded horizontally

y

x

y

x

y

x

y D 1 � x2 y D 1 � .2x/2
y D 1 � .x=2/2

�1 �2 21

� 1
2

1
2

(a) (b) (c)

�1 1

Scaling a Graph
The graph of an equation can be compressed or expanded horizontally by replacing x

with a multiple of x. If a is a positive number, replacing x with ax in an equation

multiplies horizontal distances in the graph of the equation by a factor 1=a. (See

Figure P.27.) Replacing y with ay will multiply vertical distances in a similar way.

You may find it surprising that, like circles, all parabolas are similar geometric

figures; they may have different sizes, but they all have the same shape. We can change

the size while preserving the shape of a curve represented by an equation in x and y by

scaling both the coordinates by the same amount. If we scale the equation 4py D x
2

by replacing x and y with 4px and 4py, respectively, we get 4p.4py/ D .4px/2, or

y D x2. Thus, the general parabola 4py D x2 has the same shape as the specific

y

x

y

x

4py D x2

y D x2

Figure P.28 The two parabolas are

similar. Compare the parts inside the

rectangles

parabola y D x2; as shown in Figure P.28.

Shifting a Graph
The graph of an equation (or inequality) can be shifted c units horizontally by replacing

x with x � c or vertically by replacing y with y � c.

Shifts

To shift a graph c units to the right, replace x in its equation or inequality

with x � c. (If c < 0, the shift will be to the left.)

To shift a graph c units upward, replace y in its equation or inequality with

y � c. (If c < 0, the shift will be downward.)
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E X A M P L E 8
The graph of y D .x � 3/2 (blue) is the parabola y D x2 (red)

shifted 3 units to the right. The graph of y D .x C 1/
2 (green) is

the parabola y D x2 shifted 1 unit to the left. (See Figure P.29(a).)

Figure P.29

(a) Horizontal shifts of y D x2

(b) Vertical shifts of y D x2

y

x�1 3

yD.xC1/2

yDx2

yD.x�3/2

y

x

1

�3

yDx2�3

yDx2

yDx2C1

(a) (b)

E X A M P L E 9
The graph of y D x2

C1 (or y�1 D x2) (green in Figure P.29(b))

is the parabola y D x2 (red) shifted up 1 unit. The graph of

y D x2
� 3 (or y � .�3/ D x2/ (blue) is the parabola y D x2 shifted down 3 units.

E X A M P L E 10
The circle with equation .x � h/2 C .y � k/2 D a2 having centre

.h; k/ and radius a can be obtained by shifting the circle x2
Cy2

D

a2 of radius a centred at the origin h units to the right and k units upward. These shifts

correspond to replacing x with x � h and y with y � k.

The graph of y D ax2
C bxC c is a parabola whose axis is parallel to the y-axis. The

parabola opens upward if a > 0 and downward if a < 0. We can complete the square

and write the equation in the form y D a.x � h/2 C k to find the vertex .h; k/.

E X A M P L E 11
Describe the graph of y D x2

� 4x C 3.

Solution The equation y D x
2
� 4x C 3 represents a parabola, opening upward. To

find its vertex and axis we can complete the square:

y D x
2
� 4x C 4 � 1 D .x � 2/

2
� 1; so y � .�1/ D .x � 2/

2
:

This curve is the parabola y D x2 shifted to the right 2 units and down 1 unit. There-

fore, its vertex is .2;�1/, and its axis is the line x D 2. Since y D x2 has focus

.0; 1=4/, the focus of this parabola is .0C2; .1=4/�1/, or .2;�3=4/. (See Figure P.30.)

y

x

.2;�1/

axis
x D 2

focus .2;�3=4/

Figure P.30 The parabola

y D x
2
� 4x C 3

Ellipses and Hyperbolas
If a and b are positive numbers, the equation

x2

a2
C

y2

b2
D 1

represents a curve called an ellipse that lies wholly within the rectangle �a � x � a,

�b � y � b. (Why?) If a D b, the ellipse is just the circle of radius a centred at the

origin. If a ¤ b, the ellipse is a circle that has been squashed by scaling it by different

amounts in the two coordinate directions.
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The ellipse has centre at the origin, and it passes through the four points .a; 0/,

.0; b/, .�a; 0/, and .0;�b/. (See Figure P.31.) The line segments from .�a; 0/ to

.a; 0/ and from .0;�b/ to .0; b/ are called the principal axes of the ellipse; the longer

of the two is the major axis, and the shorter is the minor axis.

E X A M P L E 12 The equation
x2

9
C

y2

4
D 1 represents an ellipse with major axis

from .�3; 0/ to .3; 0/ and minor axis from .0;�2/ to .0; 2/.

y

x
a�a

b

�b

major axis

minor axis

Figure P.31 The ellipse
x2

a2
C

y2

b2
D 1

y

x

x

a
C

y

b
D 0

a

x

a
�

y

b
D 0

�a

b

�b

Figure P.32 The hyperbola
x2

a2
�

y2

b2
D 1 and its

asymptotes

The equation

x
2

a2
�

y
2

b2
D 1

represents a curve called a hyperbola that has centre at the origin and passes through

the points .�a; 0/ and .a; 0/. (See Figure P.32.) The curve is in two parts (called

branches). Each branch approaches two straight lines (called asymptotes) as it recedes

far away from the origin. The asymptotes have equations

x

a
�

y

b
D 0 and

x

a
C

y

b
D 0:

The equation xy D 1 also represents a hyperbola. This one passes through the

points .�1;�1/ and .1; 1/ and has the coordinate axes as its asymptotes. It is, in

fact, the hyperbola x2
� y2

D 2 rotated 45ı counterclockwise about the origin. (See

Figure P.33.) These hyperbolas are called rectangular hyperbolas, since their asymp-

totes intersect at right angles.

y

x

xy D 1

x
2
� y

2
D 2

.1;1/

.�1;�1/

�
p

2
p

2

Figure P.33 Two rectangular hyperbolas

We will study ellipses and hyperbolas in more detail in Chapter 8.

E X E R C I S E S P.3

In Exercises 1–4, write an equation for the circle with centre C

and radius r .

1. C.0; 0/; r D 4 2. C.0; 2/; r D 2

3. C.�2; 0/; r D 3 4. C.3;�4/; r D 5

In Exercises 5–8, find the centre and radius of the circle having the

given equation.

5. x2
C y

2
� 2x D 3 6. x2

C y
2
C 4y D 0

7. x2
C y

2
� 2x C 4y D 4 8. x2

C y
2
� 2x � y C 1 D 0

Describe the regions defined by the inequalities and pairs of

inequalities in Exercises 9–16.

9. x2
C y

2
> 1 10. x2

C y
2
< 4

11. .x C 1/2 C y2
� 4 12. x2

C .y � 2/
2
� 4

13. x2
C y

2
> 1; x

2
C y

2
< 4

14. x2
C y

2
� 4; .x C 2/

2
C y

2
� 4

15. x2
C y

2
< 2x; x

2
C y

2
< 2y

16. x2
C y

2
� 4x C 2y > 4; x C y > 1
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17. Write an inequality that describes the interior of the circle

with centre .�1; 2/ and radius
p

6.

18. Write an inequality that describes the exterior of the circle

with centre .2;�3/ and radius 4.

19. Write a pair of inequalities that describe that part of the

interior of the circle with centre .0; 0/ and radius
p

2 lying on

or to the right of the vertical line through .1; 0/.

20. Write a pair of inequalities that describe the points that lie

outside the circle with centre .0; 0/ and radius 2, and inside

the circle with centre .1; 3/ that passes through the origin.

In Exercises 21–24, write an equation of the parabola having the

given focus and directrix.

21. Focus: .0; 4/ Directrix: y D �4

22. Focus: .0;�1=2/ Directrix: y D 1=2

23. Focus: .2; 0/ Directrix: x D �2

24. Focus: .�1; 0/ Directrix: x D 1

In Exercises 25–28, find the parabola’s focus and directrix, and

make a sketch showing the parabola, focus, and directrix.

25. y D x2
=2 26. y D �x2

27. x D �y2
=4 28. x D y2

=16

29. Figure P.34 shows the graph y D x2 and four shifted versions

of it. Write equations for the shifted versions.
y

x

.3; 3/

4

.4;�2/

�3

y D x2

Version (b)

Version (c)

Version (d)

Version (a)

Figure P.34

30. What equations result from shifting the line y D mx

(a) horizontally to make it pass through the point .a; b/

(b) vertically to make it pass through .a; b/?

In Exercises 31–34, the graph of y D
p

x C 1 is to be scaled in the

indicated way. Give the equation of the graph that results from the

scaling where

31. horizontal distances are multiplied by 3.

32. vertical distances are divided by 4.

33. horizontal distances are multiplied by 2/3.

34. horizontal distances are divided by 4 and vertical distances are

multiplied by 2.

In Exercises 35–38, write an equation for the graph obtained by

shifting the graph of the given equation as indicated.

35. y D 1 � x2 down 1, left 1

36. x2
C y2

D 5 up 2, left 4

37. y D .x � 1/2 � 1 down 1, right 1

38. y D
p

x down 2, left 4

Find the points of intersection of the pairs of curves in Exercises

39–42.

39. y D x2
C 3; y D 3x C 1

40. y D x2
� 6; y D 4x � x

2

41. x2
C y

2
D 25; 3x C 4y D 0

42. 2x2
C 2y

2
D 5; xy D 1

In Exercises 43–50, identify and sketch the curve represented by

the given equation.

43.
x2

4
C y

2
D 1 44. 9x2

C 16y
2
D 144

45.
.x � 3/2

9
C

.y C 2/2

4
D 1 46. .x � 1/2 C

.y C 1/2

4
D 4

47.
x

2

4
� y

2
D 1 48. x2

� y
2
D �1

49. xy D �4 50. .x � 1/.y C 2/ D 1

51. What is the effect on the graph of an equation in x and y of

(a) replacing x with �x?

(b) replacing y with �y?

52. What is the effect on the graph of an equation in x and y of

replacing x with �x and y with �y simultaneously?

53. Sketch the graph of jxj C jyj D 1.

P.4 Functions and Their Graphs

The area of a circle depends on its radius. The temperature at which water boils de-

pends on the altitude above sea level. The interest paid on a cash investment depends

on the length of time for which the investment is made.

Whenever one quantity depends on another quantity, we say that the former quan-

tity is a function of the latter. For instance, the area A of a circle depends on the radius

r according to the formula

A D �r
2
;
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The ellipse has centre at the origin, and it passes through the four points .a; 0/,

.0; b/, .�a; 0/, and .0;�b/. (See Figure P.31.) The line segments from .�a; 0/ to

.a; 0/ and from .0;�b/ to .0; b/ are called the principal axes of the ellipse; the longer

of the two is the major axis, and the shorter is the minor axis.

E X A M P L E 12 The equation
x2

9
C

y2

4
D 1 represents an ellipse with major axis

from .�3; 0/ to .3; 0/ and minor axis from .0;�2/ to .0; 2/.

y

x
a�a

b

�b

major axis

minor axis

Figure P.31 The ellipse
x2

a2
C

y2

b2
D 1

y

x

x

a
C

y

b
D 0

a

x

a
�

y

b
D 0

�a

b

�b

Figure P.32 The hyperbola
x2

a2
�

y2

b2
D 1 and its

asymptotes

The equation

x
2

a2
�

y
2

b2
D 1

represents a curve called a hyperbola that has centre at the origin and passes through

the points .�a; 0/ and .a; 0/. (See Figure P.32.) The curve is in two parts (called

branches). Each branch approaches two straight lines (called asymptotes) as it recedes

far away from the origin. The asymptotes have equations

x

a
�

y

b
D 0 and

x

a
C

y

b
D 0:

The equation xy D 1 also represents a hyperbola. This one passes through the

points .�1;�1/ and .1; 1/ and has the coordinate axes as its asymptotes. It is, in

fact, the hyperbola x2
� y2

D 2 rotated 45ı counterclockwise about the origin. (See

Figure P.33.) These hyperbolas are called rectangular hyperbolas, since their asymp-

totes intersect at right angles.

y

x

xy D 1

x
2
� y

2
D 2

.1;1/

.�1;�1/

�
p

2
p

2

Figure P.33 Two rectangular hyperbolas

We will study ellipses and hyperbolas in more detail in Chapter 8.

E X E R C I S E S P.3

In Exercises 1–4, write an equation for the circle with centre C

and radius r .

1. C.0; 0/; r D 4 2. C.0; 2/; r D 2

3. C.�2; 0/; r D 3 4. C.3;�4/; r D 5

In Exercises 5–8, find the centre and radius of the circle having the

given equation.

5. x2
C y

2
� 2x D 3 6. x2

C y
2
C 4y D 0

7. x2
C y

2
� 2x C 4y D 4 8. x2

C y
2
� 2x � y C 1 D 0

Describe the regions defined by the inequalities and pairs of

inequalities in Exercises 9–16.

9. x2
C y

2
> 1 10. x2

C y
2
< 4

11. .x C 1/2 C y2
� 4 12. x2

C .y � 2/
2
� 4

13. x2
C y

2
> 1; x

2
C y

2
< 4

14. x2
C y

2
� 4; .x C 2/

2
C y

2
� 4

15. x2
C y

2
< 2x; x

2
C y

2
< 2y

16. x2
C y

2
� 4x C 2y > 4; x C y > 1
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17. Write an inequality that describes the interior of the circle

with centre .�1; 2/ and radius
p

6.

18. Write an inequality that describes the exterior of the circle

with centre .2;�3/ and radius 4.

19. Write a pair of inequalities that describe that part of the

interior of the circle with centre .0; 0/ and radius
p

2 lying on

or to the right of the vertical line through .1; 0/.

20. Write a pair of inequalities that describe the points that lie

outside the circle with centre .0; 0/ and radius 2, and inside

the circle with centre .1; 3/ that passes through the origin.

In Exercises 21–24, write an equation of the parabola having the

given focus and directrix.

21. Focus: .0; 4/ Directrix: y D �4

22. Focus: .0;�1=2/ Directrix: y D 1=2

23. Focus: .2; 0/ Directrix: x D �2

24. Focus: .�1; 0/ Directrix: x D 1

In Exercises 25–28, find the parabola’s focus and directrix, and

make a sketch showing the parabola, focus, and directrix.

25. y D x2
=2 26. y D �x2

27. x D �y2
=4 28. x D y2

=16

29. Figure P.34 shows the graph y D x2 and four shifted versions

of it. Write equations for the shifted versions.
y

x

.3; 3/

4

.4;�2/

�3

y D x2

Version (b)

Version (c)

Version (d)

Version (a)

Figure P.34

30. What equations result from shifting the line y D mx

(a) horizontally to make it pass through the point .a; b/

(b) vertically to make it pass through .a; b/?

In Exercises 31–34, the graph of y D
p

x C 1 is to be scaled in the

indicated way. Give the equation of the graph that results from the

scaling where

31. horizontal distances are multiplied by 3.

32. vertical distances are divided by 4.

33. horizontal distances are multiplied by 2/3.

34. horizontal distances are divided by 4 and vertical distances are

multiplied by 2.

In Exercises 35–38, write an equation for the graph obtained by

shifting the graph of the given equation as indicated.

35. y D 1 � x2 down 1, left 1

36. x2
C y2

D 5 up 2, left 4

37. y D .x � 1/2 � 1 down 1, right 1

38. y D
p

x down 2, left 4

Find the points of intersection of the pairs of curves in Exercises

39–42.

39. y D x2
C 3; y D 3x C 1

40. y D x2
� 6; y D 4x � x

2

41. x2
C y

2
D 25; 3x C 4y D 0

42. 2x2
C 2y

2
D 5; xy D 1

In Exercises 43–50, identify and sketch the curve represented by

the given equation.

43.
x2

4
C y

2
D 1 44. 9x2

C 16y
2
D 144

45.
.x � 3/2

9
C

.y C 2/2

4
D 1 46. .x � 1/2 C

.y C 1/2

4
D 4

47.
x

2

4
� y

2
D 1 48. x2

� y
2
D �1

49. xy D �4 50. .x � 1/.y C 2/ D 1

51. What is the effect on the graph of an equation in x and y of

(a) replacing x with �x?

(b) replacing y with �y?

52. What is the effect on the graph of an equation in x and y of

replacing x with �x and y with �y simultaneously?

53. Sketch the graph of jxj C jyj D 1.

P.4 Functions and Their Graphs

The area of a circle depends on its radius. The temperature at which water boils de-

pends on the altitude above sea level. The interest paid on a cash investment depends

on the length of time for which the investment is made.

Whenever one quantity depends on another quantity, we say that the former quan-

tity is a function of the latter. For instance, the area A of a circle depends on the radius

r according to the formula

A D �r
2
;
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so we say that the area is a function of the radius. The formula is a rule that tells us

how to calculate a unique (single) output value of the area A for each possible input

value of the radius r .

The set of all possible input values for the radius is called the domain of the

function. The set of all output values of the area is the range of the function. Since

circles cannot have negative radii or areas, the domain and range of the circular area

function are both the interval Œ0;1/ consisting of all nonnegative real numbers.

The domain and range of a mathematical function can be any sets of objects;

they do not have to consist of numbers. Throughout much of this book, however, the

domains and ranges of functions we consider will be sets of real numbers.

In calculus we often want to refer to a generic function without having any partic-

ular formula in mind. To denote that y is a function of x we write

y D f .x/;

which we read as “y equals f of x.” In this notation, due to the eighteenth-century

mathematician Leonhard Euler, the function is represented by the symbol f: Also,

x, called the independent variable, represents an input value from the domain of f;

and y, the dependent variable, represents the corresponding output value f .x/ in the

range of f:

D E F I N I T I O N

1

A function f on a set D into a set S is a rule that assigns a unique element

f .x/ in S to each element x in D.

In this definition D D D.f / (read “D of f ”) is the domain of the function f: The

range R.f / of f is the subset of S consisting of all values f .x/ of the function. Think

of a function f as a kind of machine (Figure P.35) that produces an output value f .x/

in its range whenever we feed it an input value x from its domain.

There are several ways to represent a function symbolically. The squaring function

that converts any input real number x into its square x2 can be denoted:

(a) by a formula such as y D x
2, which uses a dependent variable y to denote the

value of the function;

(b) by a formula such as f .x/ D x2, which defines a function symbol f to name the

function; or

f .x/

Range R.f /

x

Domain D.f /

f

Figure P.35 A function machine

(c) by a mapping rule such as x� x2. (Read this as “x goes to x2.”)

In this book we will usually use either (a) or (b) to define functions. Strictly speaking,

we should call a function f and not f .x/, since the latter denotes the value of the func-

tion at the point x. However, as is common usage, we will often refer to the function

as f .x/ in order to name the variable on which f depends. Sometimes it is convenient

to use the same letter to denote both a dependent variable and a function symbol; the

circular area function can be written A D f .r/ D �r
2 or as A D A.r/ D �r

2. In

the latter case we are using A to denote both the dependent variable and the name of

the function.

E X A M P L E 1
The volume of a ball of radius r is given by the function

V.r/ D
4

3
�r

3

for r � 0. Thus the volume of a ball of radius 3 ft is

V.3/ D
4

3
�.3/

3
D 36� ft3:

Note how the variable r is replaced by the special value 3 in the formula defining the

function to obtain the value of the function at r D 3.
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E X A M P L E 2
A function F is defined for all real numbers t by

F.t/ D 2t C 3:

Find the output values of F that correspond to the input values 0, 2, x C 2, and F.2/.

Solution In each case we substitute the given input for t in the definition of F :

F.0/ D 2.0/C 3 D 0C 3 D 3

F.2/ D 2.2/C 3 D 4C 3 D 7

F.x C 2/ D 2.x C 2/C 3 D 2x C 7

F.F.2// D F.7/ D 2.7/C 3 D 17:

The Domain Convention
A function is not properly defined until its domain is specified. For instance, the func-

tion f .x/ D x
2 defined for all real numbers x � 0 is different from the function

g.x/ D x2 defined for all real x because they have different domains, even though

they have the same values at every point where both are defined. In Chapters 1–9 we

will be dealing with real functions (functions whose input and output values are real

numbers). When the domain of such a function is not specified explicitly, we will as-

sume that the domain is the largest set of real numbers to which the function assigns

real values. Thus, if we talk about the function x2 without specifying a domain, we

mean the function g.x/ above.

The domain convention

When a function f is defined without specifying its domain, we assume that

the domain consists of all real numbers x for which the value f .x/ of the

function is a real number.

In practice, it is often easy to determine the domain of a function f .x/ given by an

explicit formula. We just have to exclude those values of x that would result in dividing

by 0 or taking even roots of negative numbers.

E X A M P L E 3
The square root function. The domain of f .x/ D

p

x is the

interval Œ0;1/, since negative numbers do not have real square

roots. We have f .0/ D 0, f .4/ D 2, f .10/ � 3:16228. Note that, although there are

two numbers whose square is 4, namely, �2 and 2, only one of these numbers, 2, is the

square root of 4. (Remember that a function assigns a unique value to each element in

its domain; it cannot assign two different values to the same input.) The square root

function
p

x always denotes the nonnegative square root of x. The two solutions of

the equation x2
D 4 are x D

p

4 D 2 and x D �
p

4 D �2.

E X A M P L E 4 The domain of the function h.x/ D
x

x2
� 4

consists of all real

numbers except x D �2 and x D 2. Expressed in terms of inter-

vals,

D.h/ D .�1;�2/ [ .�2; 2/ [ .2;1/:

Most of the functions we encounter will have domains that are either intervals or unions

of intervals.
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so we say that the area is a function of the radius. The formula is a rule that tells us

how to calculate a unique (single) output value of the area A for each possible input

value of the radius r .

The set of all possible input values for the radius is called the domain of the

function. The set of all output values of the area is the range of the function. Since

circles cannot have negative radii or areas, the domain and range of the circular area

function are both the interval Œ0;1/ consisting of all nonnegative real numbers.

The domain and range of a mathematical function can be any sets of objects;

they do not have to consist of numbers. Throughout much of this book, however, the

domains and ranges of functions we consider will be sets of real numbers.

In calculus we often want to refer to a generic function without having any partic-

ular formula in mind. To denote that y is a function of x we write

y D f .x/;

which we read as “y equals f of x.” In this notation, due to the eighteenth-century

mathematician Leonhard Euler, the function is represented by the symbol f: Also,

x, called the independent variable, represents an input value from the domain of f;

and y, the dependent variable, represents the corresponding output value f .x/ in the

range of f:

D E F I N I T I O N

1

A function f on a set D into a set S is a rule that assigns a unique element

f .x/ in S to each element x in D.

In this definition D D D.f / (read “D of f ”) is the domain of the function f: The

range R.f / of f is the subset of S consisting of all values f .x/ of the function. Think

of a function f as a kind of machine (Figure P.35) that produces an output value f .x/

in its range whenever we feed it an input value x from its domain.

There are several ways to represent a function symbolically. The squaring function

that converts any input real number x into its square x2 can be denoted:

(a) by a formula such as y D x
2, which uses a dependent variable y to denote the

value of the function;

(b) by a formula such as f .x/ D x2, which defines a function symbol f to name the

function; or

f .x/

Range R.f /

x

Domain D.f /

f

Figure P.35 A function machine

(c) by a mapping rule such as x� x2. (Read this as “x goes to x2.”)

In this book we will usually use either (a) or (b) to define functions. Strictly speaking,

we should call a function f and not f .x/, since the latter denotes the value of the func-

tion at the point x. However, as is common usage, we will often refer to the function

as f .x/ in order to name the variable on which f depends. Sometimes it is convenient

to use the same letter to denote both a dependent variable and a function symbol; the

circular area function can be written A D f .r/ D �r
2 or as A D A.r/ D �r

2. In

the latter case we are using A to denote both the dependent variable and the name of

the function.

E X A M P L E 1
The volume of a ball of radius r is given by the function

V.r/ D
4

3
�r

3

for r � 0. Thus the volume of a ball of radius 3 ft is

V.3/ D
4

3
�.3/

3
D 36� ft3:

Note how the variable r is replaced by the special value 3 in the formula defining the

function to obtain the value of the function at r D 3.
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E X A M P L E 2
A function F is defined for all real numbers t by

F.t/ D 2t C 3:

Find the output values of F that correspond to the input values 0, 2, x C 2, and F.2/.

Solution In each case we substitute the given input for t in the definition of F :

F.0/ D 2.0/C 3 D 0C 3 D 3

F.2/ D 2.2/C 3 D 4C 3 D 7

F.x C 2/ D 2.x C 2/C 3 D 2x C 7

F.F.2// D F.7/ D 2.7/C 3 D 17:

The Domain Convention
A function is not properly defined until its domain is specified. For instance, the func-

tion f .x/ D x
2 defined for all real numbers x � 0 is different from the function

g.x/ D x2 defined for all real x because they have different domains, even though

they have the same values at every point where both are defined. In Chapters 1–9 we

will be dealing with real functions (functions whose input and output values are real

numbers). When the domain of such a function is not specified explicitly, we will as-

sume that the domain is the largest set of real numbers to which the function assigns

real values. Thus, if we talk about the function x2 without specifying a domain, we

mean the function g.x/ above.

The domain convention

When a function f is defined without specifying its domain, we assume that

the domain consists of all real numbers x for which the value f .x/ of the

function is a real number.

In practice, it is often easy to determine the domain of a function f .x/ given by an

explicit formula. We just have to exclude those values of x that would result in dividing

by 0 or taking even roots of negative numbers.

E X A M P L E 3
The square root function. The domain of f .x/ D

p

x is the

interval Œ0;1/, since negative numbers do not have real square

roots. We have f .0/ D 0, f .4/ D 2, f .10/ � 3:16228. Note that, although there are

two numbers whose square is 4, namely, �2 and 2, only one of these numbers, 2, is the

square root of 4. (Remember that a function assigns a unique value to each element in

its domain; it cannot assign two different values to the same input.) The square root

function
p

x always denotes the nonnegative square root of x. The two solutions of

the equation x2
D 4 are x D

p

4 D 2 and x D �
p

4 D �2.

E X A M P L E 4 The domain of the function h.x/ D
x

x2
� 4

consists of all real

numbers except x D �2 and x D 2. Expressed in terms of inter-

vals,

D.h/ D .�1;�2/ [ .�2; 2/ [ .2;1/:

Most of the functions we encounter will have domains that are either intervals or unions

of intervals.
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E X A M P L E 5
The domain of S.t/ D

p

1 � t2 consists of all real numbers t for

which 1 � t2 � 0. Thus we require that t2 � 1, or �1 � t � 1.

The domain is the closed interval Œ�1; 1�.

Graphs of Functions
An old maxim states that “a picture is worth a thousand words.” This is certainly true

in mathematics; the behaviour of a function is best described by drawing its graph.

The graph of a function f is just the graph of the equation y D f .x/. It consists

of those points in the Cartesian plane whose coordinates .x; y/ are pairs of input–

output values for f: Thus .x; y/ lies on the graph of f provided x is in the domain of

f and y D f .x/.

Drawing the graph of a function f sometimes involves making a table of coor-

dinate pairs .x; f .x// for various values of x in the domain of f, then plotting these

points and connecting them with a “smooth curve.”

E X A M P L E 6
Graph the function f .x/ D x2.

Table 1.

x y D f .x/

�2 4

�1 1

0 0

1 1

2 4

Solution Make a table of .x; y/ pairs that satisfy y D x2. (See Table 1.) Now plot

the points and join them with a smooth curve. (See Figure P.36(a).)

Figure P.36

(a) Correct graph of f .x/ D x2

(b) Incorrect graph of f .x/ D x2

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

(a) (b)

How do we know the graph is smooth and doesn’t do weird things between the

points we have calculated, for example, as shown in Figure P.36(b)? We could, of

course, plot more points, spaced more closely together, but how do we know how the

graph behaves between the points we have plotted? In Chapter 4, calculus will provide

useful tools for answering these questions.

Some functions occur often enough in applications that you should be familiar

with their graphs. Some of these are shown in Figures P.37–P.46. Study them for a

while; they are worth remembering. Note, in particular, the graph of the absolute

value function, f .x/ D jxj, shown in Figure P.46. It is made up of the two half-lines

y D �x for x < 0 and y D x for x � 0.

If you know the effects of vertical and horizontal shifts on the equations repre-

senting graphs (see Section P.3), you can easily sketch some graphs that are shifted

versions of the ones in Figures P.37–P.46.

E X A M P L E 7
Sketch the graph of y D 1C

p

x � 4.

Solution This is just the graph of y D
p

x in Figure P.40 shifted to the right 4 units

(because x is replaced by x � 4) and up 1 unit. See Figure P.47.
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y

x

c y D c

Figure P.37 The graph of a

constant function f .x/ D c

y

x

y D x

.1; 1/

Figure P.38 The graph of

f .x/ D x

y

x

.1; 1/

y D x
2

.�1; 1/

Figure P.39 The graph of

f .x/ D x2

y

x

.1; 1/

y D
p

x

Figure P.40 The graph of

f .x/ D
p

x

y

x

.1; 1/

y D x3

.�1;�1/

Figure P.41 The graph of

f .x/ D x3

y

x

.1; 1/

y D x1=3

.�1;�1/

Figure P.42 The graph of

f .x/ D x1=3

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure P.43 The graph of

f .x/ D 1=x

y

x

y D
1

x2

.1; 1/.�1; 1/

Figure P.44 The graph of

f .x/ D 1=x2

y

x

1 y D
p

1 � x2

�1 1

Figure P.45 The graph of

f .x/ D
p

1 � x2

y

x

.1; 1/.�1; 1/

y D x
y D �x

Figure P.46 The graph of

f .x/ D jxj

y

x

.4; 1/

.5; 2/

y D 1C
p

x � 4

Figure P.47 The graph of y D
p

x

shifted right 4 units and up 1 unit

y

x

2

y D �1

�2

x D 1

y D
2 � x

x � 1

Figure P.48 The graph of
2 � x

x � 1
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E X A M P L E 5
The domain of S.t/ D

p

1 � t2 consists of all real numbers t for

which 1 � t2 � 0. Thus we require that t2 � 1, or �1 � t � 1.

The domain is the closed interval Œ�1; 1�.

Graphs of Functions
An old maxim states that “a picture is worth a thousand words.” This is certainly true

in mathematics; the behaviour of a function is best described by drawing its graph.

The graph of a function f is just the graph of the equation y D f .x/. It consists

of those points in the Cartesian plane whose coordinates .x; y/ are pairs of input–

output values for f: Thus .x; y/ lies on the graph of f provided x is in the domain of

f and y D f .x/.

Drawing the graph of a function f sometimes involves making a table of coor-

dinate pairs .x; f .x// for various values of x in the domain of f, then plotting these

points and connecting them with a “smooth curve.”

E X A M P L E 6
Graph the function f .x/ D x2.

Table 1.

x y D f .x/

�2 4

�1 1

0 0

1 1

2 4

Solution Make a table of .x; y/ pairs that satisfy y D x2. (See Table 1.) Now plot

the points and join them with a smooth curve. (See Figure P.36(a).)

Figure P.36

(a) Correct graph of f .x/ D x2

(b) Incorrect graph of f .x/ D x2

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

y

x

.1; 1/

.2; 4/.�2; 4/

.�1; 1/

(a) (b)

How do we know the graph is smooth and doesn’t do weird things between the

points we have calculated, for example, as shown in Figure P.36(b)? We could, of

course, plot more points, spaced more closely together, but how do we know how the

graph behaves between the points we have plotted? In Chapter 4, calculus will provide

useful tools for answering these questions.

Some functions occur often enough in applications that you should be familiar

with their graphs. Some of these are shown in Figures P.37–P.46. Study them for a

while; they are worth remembering. Note, in particular, the graph of the absolute

value function, f .x/ D jxj, shown in Figure P.46. It is made up of the two half-lines

y D �x for x < 0 and y D x for x � 0.

If you know the effects of vertical and horizontal shifts on the equations repre-

senting graphs (see Section P.3), you can easily sketch some graphs that are shifted

versions of the ones in Figures P.37–P.46.

E X A M P L E 7
Sketch the graph of y D 1C

p

x � 4.

Solution This is just the graph of y D
p

x in Figure P.40 shifted to the right 4 units

(because x is replaced by x � 4) and up 1 unit. See Figure P.47.
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y

x

c y D c

Figure P.37 The graph of a

constant function f .x/ D c

y

x

y D x

.1; 1/

Figure P.38 The graph of

f .x/ D x

y

x

.1; 1/

y D x
2

.�1; 1/

Figure P.39 The graph of

f .x/ D x2

y

x

.1; 1/

y D
p

x

Figure P.40 The graph of

f .x/ D
p

x

y

x

.1; 1/

y D x3

.�1;�1/

Figure P.41 The graph of

f .x/ D x3

y

x

.1; 1/

y D x1=3

.�1;�1/

Figure P.42 The graph of

f .x/ D x1=3

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure P.43 The graph of

f .x/ D 1=x

y

x

y D
1

x2

.1; 1/.�1; 1/

Figure P.44 The graph of

f .x/ D 1=x2

y

x

1 y D
p

1 � x2

�1 1

Figure P.45 The graph of

f .x/ D
p

1 � x2

y

x

.1; 1/.�1; 1/

y D x
y D �x

Figure P.46 The graph of

f .x/ D jxj

y

x

.4; 1/

.5; 2/

y D 1C
p

x � 4

Figure P.47 The graph of y D
p

x

shifted right 4 units and up 1 unit

y

x

2

y D �1

�2

x D 1

y D
2 � x

x � 1

Figure P.48 The graph of
2 � x

x � 1
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E X A M P L E 8 Sketch the graph of the function f .x/ D
2 � x

x � 1
.

Solution It is not immediately obvious that this graph is a shifted version of a known

graph. To see that it is, we can divide x � 1 into 2 � x to get a quotient of �1 and a

remainder of 1:

2 � x

x � 1
D

�x C 1C 1

x � 1
D

�.x � 1/C 1

x � 1
D �1C

1

x � 1
:

Thus, the graph is that of 1=x from Figure P.43 shifted to the right 1 unit and down 1

unit. See Figure P.48.

Not every curve you can draw is the graph of a function. A function f can have

only one value f .x/ for each x in its domain, so no vertical line can intersect the

graph of a function at more than one point. If a is in the domain of function f, then

the vertical line x D a will intersect the graph of f at the single point .a; f .a//. The

circle x2
Cy

2
D 1 in Figure P.49 cannot be the graph of a function since some vertical

lines intersect it twice. It is, however, the union of the graphs of two functions, namely,

y

x

y D
p

1 � x2

y D �
p

1 � x2

1�1

Figure P.49 The circle x2
C y2

D 1 is

not the graph of a function

y D

p

1 � x2 and y D �

p

1 � x2;

which are, respectively, the upper and lower halves (semicircles) of the given circle.

Even and Odd Functions; Symmetry and Reflections
It often happens that the graph of a function will have certain kinds of symmetry. The

simplest kinds of symmetry relate the values of a function at x and �x.

D E F I N I T I O N

2

Even and odd functions

Suppose that �x belongs to the domain of f whenever x does. We say that

f is an even function if

f .�x/ D f .x/ for every x in the domain of f:

We say that f is an odd function if

f .�x/ D �f .x/ for every x in the domain of f:

The names even and odd come from the fact that even powers such as x0
D 1, x2, x4,

: : : , x�2, x�4, : : : are even functions, and odd powers such as x1
D x, x3, : : : , x�1,

x�3, : : : are odd functions. For example, .�x/4 D x4 and .�x/�3
D �x�3.

Since .�x/2 D x2, any function that depends only on x2 is even. For instance,

the absolute value function y D jxj D
p

x2 is even.

The graph of an even function is symmetric about the y-axis. A horizontal straight

line drawn from a point on the graph to the y-axis and continued an equal distance on

the other side of the y-axis comes to another point on the graph. (See Figure P.50(a).)

The graph of an odd function is symmetric about the origin. A straight line drawn

from a point on the graph to the origin will, if continued an equal distance on the other

side of the origin, come to another point on the graph. If an odd function f is defined

at x D 0, then its value must be zero there: f .0/ D 0. (See Figure P.50(b).)

If f .x/ is even (or odd), then so is any constant multiple of f .x/, such as 2f .x/

or �5f .x/. Sums and differences of even (or odd) functions are even (or odd). For

example, f .x/ D 3x4
�5x

2
�1 is even, since it is the sum of three even functions: 3x4,

�5x2, and �1 D �x0. Similarly, 4x3
� .2=x/ is odd. The function g.x/ D x2

� 2x

is the sum of an even function and an odd function and is itself neither even nor odd.
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Figure P.50

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Other kinds of symmetry are also possible. For example, consider the function

g.x/ D x2
� 2x, which can be written in the form g.x/ D .x � 1/2 � 1. This shows

that the values of g.1˙ u/ are equal, so the graph (Figure P.51(a)) is symmetric about

the vertical line x D 1; it is the parabola y D x2 shifted 1 unit to the right and 1

unit down. Similarly, the graph of h.x/ D x3
C 1 is symmetric about the point .0; 1/

(Figure P.51(b)).

Figure P.51

(a) The graph of g.x/ D x2
� 2x is

symmetric about x D 1

(b) The graph of y D h.x/ D x3
C 1 is

symmetric about .0; 1/

y

x

x D 1

2

y

x

.0; 1/

(a) (b)

Reflections in Straight Lines
The image of an object reflected in a plane mirror appears to be as far behind the mirror

as the object is in front of it. Thus, the mirror bisects at right angles the line from a

point in the object to the corresponding point in the image. Given a line L and a point

P not on L, we call a point Q the reflection, or the mirror image, of P in L if L is

the right bisector of the line segment PQ. The reflection of any graph G in L is the

graph consisting of the reflections of all the points of G.

Some reflections of graphs are easily described in terms of the equations of the

graphs:

Reflections in special lines

1. Substituting �x in place of x in an equation in x and y corresponds to

reflecting the graph of the equation in the y-axis.

2. Substituting �y in place of y in an equation in x and y corresponds to

reflecting the graph of the equation in the x-axis.

3. Substituting a� x in place of x in an equation in x and y corresponds to

reflecting the graph of the equation in the line x D a=2.

4. Substituting b � y in place of y in an equation in x and y corresponds to

reflecting the graph of the equation in the line y D b=2.

5. Interchanging x and y in an equation in x and y corresponds to reflecting

the graph of the equation in the line y D x.

E X A M P L E 9
Describe and sketch the graph of y D

p

2� x � 3.

Solution The graph of y D
p

2 � x (green in Figure P.52(a)) is the reflection of the
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E X A M P L E 8 Sketch the graph of the function f .x/ D
2 � x

x � 1
.

Solution It is not immediately obvious that this graph is a shifted version of a known

graph. To see that it is, we can divide x � 1 into 2 � x to get a quotient of �1 and a

remainder of 1:

2 � x

x � 1
D

�x C 1C 1

x � 1
D

�.x � 1/C 1

x � 1
D �1C

1

x � 1
:

Thus, the graph is that of 1=x from Figure P.43 shifted to the right 1 unit and down 1

unit. See Figure P.48.

Not every curve you can draw is the graph of a function. A function f can have

only one value f .x/ for each x in its domain, so no vertical line can intersect the

graph of a function at more than one point. If a is in the domain of function f, then

the vertical line x D a will intersect the graph of f at the single point .a; f .a//. The

circle x2
Cy

2
D 1 in Figure P.49 cannot be the graph of a function since some vertical

lines intersect it twice. It is, however, the union of the graphs of two functions, namely,
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1�1

Figure P.49 The circle x2
C y2

D 1 is

not the graph of a function

y D

p

1 � x2 and y D �

p

1 � x2;

which are, respectively, the upper and lower halves (semicircles) of the given circle.

Even and Odd Functions; Symmetry and Reflections
It often happens that the graph of a function will have certain kinds of symmetry. The

simplest kinds of symmetry relate the values of a function at x and �x.

D E F I N I T I O N

2

Even and odd functions

Suppose that �x belongs to the domain of f whenever x does. We say that

f is an even function if

f .�x/ D f .x/ for every x in the domain of f:

We say that f is an odd function if

f .�x/ D �f .x/ for every x in the domain of f:

The names even and odd come from the fact that even powers such as x0
D 1, x2, x4,

: : : , x�2, x�4, : : : are even functions, and odd powers such as x1
D x, x3, : : : , x�1,

x�3, : : : are odd functions. For example, .�x/4 D x4 and .�x/�3
D �x�3.

Since .�x/2 D x2, any function that depends only on x2 is even. For instance,

the absolute value function y D jxj D
p

x2 is even.

The graph of an even function is symmetric about the y-axis. A horizontal straight

line drawn from a point on the graph to the y-axis and continued an equal distance on

the other side of the y-axis comes to another point on the graph. (See Figure P.50(a).)

The graph of an odd function is symmetric about the origin. A straight line drawn

from a point on the graph to the origin will, if continued an equal distance on the other

side of the origin, come to another point on the graph. If an odd function f is defined

at x D 0, then its value must be zero there: f .0/ D 0. (See Figure P.50(b).)

If f .x/ is even (or odd), then so is any constant multiple of f .x/, such as 2f .x/

or �5f .x/. Sums and differences of even (or odd) functions are even (or odd). For

example, f .x/ D 3x4
�5x

2
�1 is even, since it is the sum of three even functions: 3x4,

�5x2, and �1 D �x0. Similarly, 4x3
� .2=x/ is odd. The function g.x/ D x2

� 2x

is the sum of an even function and an odd function and is itself neither even nor odd.
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Figure P.50

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Other kinds of symmetry are also possible. For example, consider the function

g.x/ D x2
� 2x, which can be written in the form g.x/ D .x � 1/2 � 1. This shows

that the values of g.1˙ u/ are equal, so the graph (Figure P.51(a)) is symmetric about

the vertical line x D 1; it is the parabola y D x2 shifted 1 unit to the right and 1

unit down. Similarly, the graph of h.x/ D x3
C 1 is symmetric about the point .0; 1/

(Figure P.51(b)).

Figure P.51

(a) The graph of g.x/ D x2
� 2x is

symmetric about x D 1

(b) The graph of y D h.x/ D x3
C 1 is

symmetric about .0; 1/

y

x

x D 1

2

y

x

.0; 1/

(a) (b)

Reflections in Straight Lines
The image of an object reflected in a plane mirror appears to be as far behind the mirror

as the object is in front of it. Thus, the mirror bisects at right angles the line from a

point in the object to the corresponding point in the image. Given a line L and a point

P not on L, we call a point Q the reflection, or the mirror image, of P in L if L is

the right bisector of the line segment PQ. The reflection of any graph G in L is the

graph consisting of the reflections of all the points of G.

Some reflections of graphs are easily described in terms of the equations of the

graphs:

Reflections in special lines

1. Substituting �x in place of x in an equation in x and y corresponds to

reflecting the graph of the equation in the y-axis.

2. Substituting �y in place of y in an equation in x and y corresponds to

reflecting the graph of the equation in the x-axis.

3. Substituting a� x in place of x in an equation in x and y corresponds to

reflecting the graph of the equation in the line x D a=2.

4. Substituting b � y in place of y in an equation in x and y corresponds to

reflecting the graph of the equation in the line y D b=2.

5. Interchanging x and y in an equation in x and y corresponds to reflecting

the graph of the equation in the line y D x.

E X A M P L E 9
Describe and sketch the graph of y D

p

2� x � 3.

Solution The graph of y D
p

2 � x (green in Figure P.52(a)) is the reflection of the
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graph of y D
p

x (blue) in the vertical line x D 1. The graph of y D
p

2 � x � 3

(red) is the result of lowering this reflection by 3 units.

Figure P.52

(a) Constructing the graph of

y D
p

2 � x � 3

(b) Transforming y D jxj to produce the

coloured graph

y

x

x D 1

y D
p

2 � x � 3

y D
p

2 � x

y D
p

x

y

x

�3

.�3; 2/

y D 2 � jx C 3j

y D jxj

y D �jxj

y D �jx C 3j

(a) (b)

E X A M P L E 10
Express the equation of the red graph in Figure P.52(b) in terms of

the absolute value function jxj.

Solution We can get the red graph by first reflecting the graph of jxj (black in

Figure P.52(b)) in the x-axis to get the blue graph and then shifting that reflection

left 3 units to get the green graph, and then shifting that graph up 2 units. The reflec-

tion of y D jxj in the x-axis has equation �y D jxj, or y D �jxj. Shifting this left 3

units gives y D �jx C 3j. Finally, shifting up 2 units gives y D 2 � jx C 3j, which is

the desired equation.

Defining and Graphing Functions with Maple
Many of the calculations and graphs encountered in studying calculus can be produced

using a computer algebra system such as Maple or Mathematica. Here and there,

throughout this book, we will include examples illustrating how to get Maple to per-

form such tasks. (The examples were done with Maple 10, but most of them will work

with earlier or later versions of Maple as well.)

We begin with an example showing how to define a function in Maple and then

plot its graph. We show in magenta the input you type into Maple and in cyan Maple’s

response. Let us define the function f .x/ D x3
� 2x2

� 12x C 1.

> f := x -> x^3-2*x^2-12*x+1; <enter>

f WD x� x3
� 2x2

� 12x C 1

Note the use of := to indicate the symbol to the left is being defined and the use of ->

to indicate the rule for the construction of f .x/ from x. Also note that Maple uses the

asterisk * to indicate multiplication and the caret ^ to indicate an exponent. A Maple

instruction should end with a semicolon ; (or a colon : if no output is desired) before

the Enter key is pressed. Hereafter we will not show the <enter> in our input.

We can now use f as an ordinary function:

> f(t)+f(1);

t3 � 2t2 � 12t � 11

The following command results in a plot of the graph of f on the interval Œ�4; 5�

shown in Figure P.53.

> plot(f(x), x=-4..5);

We could have specified the expression x^3-2*x^2-12*x+1 directly in the plot

command instead of first defining the function f .x/. Note the use of two dots .. to

separate the left and right endpoints of the plot interval. Other options can be included
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in the plot command; all such options are separated with commas. You can specify the

range of values of y in addition to that for x (which is required), and you can specify

scaling=CONSTRAINED if you want equal unit distances on both axes. (This would

be a bad idea for the graph of our f .x/. Why?)

Figure P.53 A Maple plot
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x

K When using a graphing calculator or computer graphing software, things can go hor-

ribly wrong in some circumstances. The following example illustrates the catastrophic

effects that round-off error can have.

E X A M P L E 11 Consider the function g.x/ D
j1C xj � 1

x
.

If x > �1, then j1 C xj D 1 C x, so the formula for g.x/ simplifies to g.x/ D
.1C x/� 1

x
D

x

x
D 1, at least provided x ¤ 0. Thus the graph of g on an interval

lying to the right of x D �1 should be the horizontal line y D 1, possibly with a hole

in it at x D 0. The Maple commands

> g := x -> (abs(1+x)-1)/x: plot(g(x), x=-0.5..0.5);

lead, as expected, to the graph in Figure P.54. But plotting the same function on a very

tiny interval near x D 0 leads to quite a different graph. The command

> plot([g(x),1],x=-7*10^(-16)..5*10^(-16),

style=[point,line],numpoints=4000);

produces the graph in Figure P.55.

0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8
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y

–0.4 –0.2 0.2 0.4
x

Figure P.54 The graph of

y D g.x/ on the interval Œ�0:5; 0:5�

0
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1

1.5

2

–6e–16 –4e–16 –2e–16 2e–16 4e–16
x

Figure P.55 The graphs of y D g.x/ (colour) and y D 1 (black) on the

interval Œ�7 � 10�16; 5 � 10�16�

The coloured arcs and short line through the origin are the graph of y D g.x/ plotted

as 4,000 individual points over the interval from �7 � 10�16 to 5 � 10�16. For com-

parison sake, the black horizontal line y D 1 is also plotted. What makes the graph

of g so strange on this interval is the fact that Maple can only represent finitely many

real numbers in its finite memory. If the number x is too close to zero, Maple cannot

tell the difference between 1C x and 1, so it calculates 1 � 1 D 0 for the numerator

and uses g.x/ D 0 in the plot. This seems to happen between about �0:5� 10�16 and
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graph of y D
p

x (blue) in the vertical line x D 1. The graph of y D
p

2 � x � 3

(red) is the result of lowering this reflection by 3 units.

Figure P.52

(a) Constructing the graph of

y D
p

2 � x � 3

(b) Transforming y D jxj to produce the

coloured graph

y

x

x D 1

y D
p

2 � x � 3

y D
p

2 � x

y D
p

x

y

x

�3

.�3; 2/

y D 2 � jx C 3j

y D jxj

y D �jxj

y D �jx C 3j
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E X A M P L E 10
Express the equation of the red graph in Figure P.52(b) in terms of

the absolute value function jxj.

Solution We can get the red graph by first reflecting the graph of jxj (black in

Figure P.52(b)) in the x-axis to get the blue graph and then shifting that reflection

left 3 units to get the green graph, and then shifting that graph up 2 units. The reflec-

tion of y D jxj in the x-axis has equation �y D jxj, or y D �jxj. Shifting this left 3

units gives y D �jx C 3j. Finally, shifting up 2 units gives y D 2 � jx C 3j, which is

the desired equation.

Defining and Graphing Functions with Maple
Many of the calculations and graphs encountered in studying calculus can be produced

using a computer algebra system such as Maple or Mathematica. Here and there,

throughout this book, we will include examples illustrating how to get Maple to per-

form such tasks. (The examples were done with Maple 10, but most of them will work

with earlier or later versions of Maple as well.)

We begin with an example showing how to define a function in Maple and then

plot its graph. We show in magenta the input you type into Maple and in cyan Maple’s

response. Let us define the function f .x/ D x3
� 2x2

� 12x C 1.

> f := x -> x^3-2*x^2-12*x+1; <enter>

f WD x� x3
� 2x2

� 12x C 1

Note the use of := to indicate the symbol to the left is being defined and the use of ->

to indicate the rule for the construction of f .x/ from x. Also note that Maple uses the

asterisk * to indicate multiplication and the caret ^ to indicate an exponent. A Maple

instruction should end with a semicolon ; (or a colon : if no output is desired) before

the Enter key is pressed. Hereafter we will not show the <enter> in our input.

We can now use f as an ordinary function:

> f(t)+f(1);

t3 � 2t2 � 12t � 11

The following command results in a plot of the graph of f on the interval Œ�4; 5�

shown in Figure P.53.

> plot(f(x), x=-4..5);

We could have specified the expression x^3-2*x^2-12*x+1 directly in the plot

command instead of first defining the function f .x/. Note the use of two dots .. to

separate the left and right endpoints of the plot interval. Other options can be included
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in the plot command; all such options are separated with commas. You can specify the

range of values of y in addition to that for x (which is required), and you can specify

scaling=CONSTRAINED if you want equal unit distances on both axes. (This would

be a bad idea for the graph of our f .x/. Why?)

Figure P.53 A Maple plot
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K When using a graphing calculator or computer graphing software, things can go hor-

ribly wrong in some circumstances. The following example illustrates the catastrophic

effects that round-off error can have.

E X A M P L E 11 Consider the function g.x/ D
j1C xj � 1

x
.

If x > �1, then j1 C xj D 1 C x, so the formula for g.x/ simplifies to g.x/ D
.1C x/� 1

x
D

x

x
D 1, at least provided x ¤ 0. Thus the graph of g on an interval

lying to the right of x D �1 should be the horizontal line y D 1, possibly with a hole

in it at x D 0. The Maple commands

> g := x -> (abs(1+x)-1)/x: plot(g(x), x=-0.5..0.5);

lead, as expected, to the graph in Figure P.54. But plotting the same function on a very

tiny interval near x D 0 leads to quite a different graph. The command

> plot([g(x),1],x=-7*10^(-16)..5*10^(-16),

style=[point,line],numpoints=4000);

produces the graph in Figure P.55.
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Figure P.54 The graph of

y D g.x/ on the interval Œ�0:5; 0:5�
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Figure P.55 The graphs of y D g.x/ (colour) and y D 1 (black) on the

interval Œ�7 � 10�16; 5 � 10�16�

The coloured arcs and short line through the origin are the graph of y D g.x/ plotted

as 4,000 individual points over the interval from �7 � 10�16 to 5 � 10�16. For com-

parison sake, the black horizontal line y D 1 is also plotted. What makes the graph

of g so strange on this interval is the fact that Maple can only represent finitely many

real numbers in its finite memory. If the number x is too close to zero, Maple cannot

tell the difference between 1C x and 1, so it calculates 1 � 1 D 0 for the numerator

and uses g.x/ D 0 in the plot. This seems to happen between about �0:5� 10�16 and
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0:8 � 10�16 (the coloured horizontal line). As we move further away from the origin,

Maple can tell the difference between 1Cx and 1, but loses most of the significant fig-

ures in the representation of x when it adds 1, and these remain lost when it subtracts

1 again. Thus the numerator remains constant over short intervals while the denomi-

nator increases as x moves away from 0. In those intervals the fraction behaves like

constant/x, so the arcs are hyperbolas, sloping downward away from the origin. The

effect diminishes the farther x moves away from 0, as more of its significant figures

are retained by Maple. It should be noted that the reason we used the absolute value

of 1 C x instead of just 1 C x is that this forced Maple to add the x to the 1 before

subtracting the second 1. (If we had used .1Cx/�1 as the numerator for g.x/, Maple

would have simplified it algebraically and obtained g.x/ D 1 before using any values

of x for plotting.)

In later chapters we will encounter more such strange behaviour (which we call

numerical monsters and denote by the symbol K ) in the context of calculator and

computer calculations with floating point (i.e., real) numbers. They are a necessary

consequence of the limitations of such hardware and software and are not restricted

to Maple, though they may show up somewhat differently with other software. It is

necessary to be aware of how calculators and computers do arithmetic in order to be

able to use them effectively without falling into errors that you do not recognize as

such.

One final comment about Figure P.55: the graph of y D g.x/ was plotted as

individual points, rather than a line, as was y D 1, in order to make the jumps between

consecutive arcs more obvious. Had we omitted the style=[point,line] option

in the plot command, the default line style would have been used for both graphs and

the arcs in the graph of g would have been connected with vertical line segments. Note

how the command called for the plotting of two different functions by listing them

within square brackets, and how the corresponding styles were correspondingly listed.

E X E R C I S E S P.4

In Exercises 1–6, find the domain and range of each function.

1. f .x/ D 1C x2 2. f .x/ D 1 �
p

x

3. G.x/ D
p

8 � 2x 4. F.x/ D 1=.x � 1/

5. h.t/ D
t

p

2 � t
6. g.x/ D

1

1 �
p

x � 2

7. Which of the graphs in Figure P.56 are graphs of functions

y D f .x/? Why?

y

x

y

x

y

x

y

x

graph (a)

graph (c) graph (d)

graph (b)

Figure P.56

y

x

y

x

y

x

y

x

graph (a) graph (b)

graph (d)graph (c)

Figure P.57

8. Figure P.57 shows the graphs of the functions: (i) x � x4,

(ii) x3
� x

4, (iii) x.1 � x/2, (iv) x2
� x

3. Which graph

corresponds to which function?

In Exercises 9–10, sketch the graph of the function f by first

making a table of values of f .x/ at x D 0, x D ˙1=2, x D ˙1,

x D ˙3=2, and x D ˙2.

9. f .x/ D x4 10. f .x/ D x2=3
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In Exercises 11–22, what (if any) symmetry does the graph of f

possess? In particular, is f even or odd?

11. f .x/ D x2
C 1 12. f .x/ D x3

C x

13. f .x/ D
x

x2
� 1

14. f .x/ D
1

x2
� 1

15. f .x/ D
1

x � 2
16. f .x/ D

1

x C 4

17. f .x/ D x2
� 6x 18. f .x/ D x3

� 2

19. f .x/ D jx3
j 20. f .x/ D jx C 1j

21. f .x/ D
p

2x 22. f .x/ D
p

.x � 1/2

Sketch the graphs of the functions in Exercises 23–38.

23. f .x/ D �x2 24. f .x/ D 1 � x2

25. f .x/ D .x � 1/2 26. f .x/ D .x � 1/2 C 1

27. f .x/ D 1 � x3 28. f .x/ D .x C 2/3

29. f .x/ D
p

x C 1 30. f .x/ D
p

x C 1

31. f .x/ D �jxj 32. f .x/ D jxj � 1

33. f .x/ D jx � 2j 34. f .x/ D 1C jx � 2j

35. f .x/ D
2

x C 2
36. f .x/ D

1

2 � x

37. f .x/ D
x

x C 1
38. f .x/ D

x

1 � x

In Exercises 39–46, f refers to the function with domain Œ0; 2� and

range Œ0; 1�, whose graph is shown in Figure P.58. Sketch the

graphs of the indicated functions and specify their domains and

ranges.

39. f .x/C 2 40. f .x/ � 1

41. f .x C 2/ 42. f .x � 1/

43. �f .x/ 44. f .�x/

45. f .4 � x/ 46. 1 � f .1 � x/
y

x

.1; 1/

2

y D f .x/

Figure P.58

It is often quite difficult to determine the range of a function

exactly. In Exercises 47–48, use a graphing utility (calculator or

computer) to graph the function f, and by zooming in on the

graph, determine the range of f with accuracy of 2 decimal places.

G 47. f .x/ D
x C 2

x2
C 2x C 3

G 48. f .x/ D
x � 1

x2
C x

In Exercises 49–52, use a graphing utility to plot the graph of the

given function. Examine the graph (zooming in or out as

necessary) for symmetries. About what lines and/or points are the

graphs symmetric? Try to verify your conclusions algebraically.

G 49. f .x/ D x4
� 6x

3
C 9x

2
� 1

G 50. f .x/ D
3 � 2x C x2

2 � 2x C x2

G 51. f .x/ D
x � 1

x � 2
G 52. f .x/ D

2x
2
C 3x

x2
C 4x C 5

53.A What function f .x/, defined on the real line R, is both even

and odd?

P.5 Combining Functions to Make New Functions

Functions can be combined in a variety of ways to produce new functions. We begin

by examining algebraic means of combining functions, that is, addition, subtraction,

multiplication, and division.

Sums, Differences, Products, Quotients, and Multiples
Like numbers, functions can be added, subtracted, multiplied, and divided (except

where the denominator is zero) to produce new functions.

D E F I N I T I O N

3

If f and g are functions, then for every x that belongs to the domains of both

f and g we define functions f C g, f � g, fg, and f=g by the formulas:

.f C g/.x/ D f .x/C g.x/

.f � g/.x/ D f .x/� g.x/

.fg/.x/ D f .x/g.x/
�

f

g

�

.x/ D
f .x/

g.x/
; where g.x/ ¤ 0:

A special case of the rule for multiplying functions shows how functions can be

multiplied by constants. If c is a real number, then the function cf is defined for all x
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0:8 � 10�16 (the coloured horizontal line). As we move further away from the origin,

Maple can tell the difference between 1Cx and 1, but loses most of the significant fig-

ures in the representation of x when it adds 1, and these remain lost when it subtracts

1 again. Thus the numerator remains constant over short intervals while the denomi-

nator increases as x moves away from 0. In those intervals the fraction behaves like

constant/x, so the arcs are hyperbolas, sloping downward away from the origin. The

effect diminishes the farther x moves away from 0, as more of its significant figures

are retained by Maple. It should be noted that the reason we used the absolute value

of 1 C x instead of just 1 C x is that this forced Maple to add the x to the 1 before

subtracting the second 1. (If we had used .1Cx/�1 as the numerator for g.x/, Maple

would have simplified it algebraically and obtained g.x/ D 1 before using any values

of x for plotting.)

In later chapters we will encounter more such strange behaviour (which we call

numerical monsters and denote by the symbol K ) in the context of calculator and

computer calculations with floating point (i.e., real) numbers. They are a necessary

consequence of the limitations of such hardware and software and are not restricted

to Maple, though they may show up somewhat differently with other software. It is

necessary to be aware of how calculators and computers do arithmetic in order to be

able to use them effectively without falling into errors that you do not recognize as

such.

One final comment about Figure P.55: the graph of y D g.x/ was plotted as

individual points, rather than a line, as was y D 1, in order to make the jumps between

consecutive arcs more obvious. Had we omitted the style=[point,line] option

in the plot command, the default line style would have been used for both graphs and

the arcs in the graph of g would have been connected with vertical line segments. Note

how the command called for the plotting of two different functions by listing them

within square brackets, and how the corresponding styles were correspondingly listed.

E X E R C I S E S P.4

In Exercises 1–6, find the domain and range of each function.

1. f .x/ D 1C x2 2. f .x/ D 1 �
p

x

3. G.x/ D
p

8 � 2x 4. F.x/ D 1=.x � 1/

5. h.t/ D
t

p

2 � t
6. g.x/ D

1

1 �
p

x � 2

7. Which of the graphs in Figure P.56 are graphs of functions

y D f .x/? Why?

y

x

y

x

y

x

y

x

graph (a)

graph (c) graph (d)

graph (b)

Figure P.56
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y

x

graph (a) graph (b)
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Figure P.57

8. Figure P.57 shows the graphs of the functions: (i) x � x4,

(ii) x3
� x

4, (iii) x.1 � x/2, (iv) x2
� x

3. Which graph

corresponds to which function?

In Exercises 9–10, sketch the graph of the function f by first

making a table of values of f .x/ at x D 0, x D ˙1=2, x D ˙1,

x D ˙3=2, and x D ˙2.

9. f .x/ D x4 10. f .x/ D x2=3
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In Exercises 11–22, what (if any) symmetry does the graph of f

possess? In particular, is f even or odd?

11. f .x/ D x2
C 1 12. f .x/ D x3

C x

13. f .x/ D
x

x2
� 1

14. f .x/ D
1

x2
� 1

15. f .x/ D
1

x � 2
16. f .x/ D

1

x C 4

17. f .x/ D x2
� 6x 18. f .x/ D x3

� 2

19. f .x/ D jx3
j 20. f .x/ D jx C 1j

21. f .x/ D
p

2x 22. f .x/ D
p

.x � 1/2

Sketch the graphs of the functions in Exercises 23–38.

23. f .x/ D �x2 24. f .x/ D 1 � x2

25. f .x/ D .x � 1/2 26. f .x/ D .x � 1/2 C 1

27. f .x/ D 1 � x3 28. f .x/ D .x C 2/3

29. f .x/ D
p

x C 1 30. f .x/ D
p

x C 1

31. f .x/ D �jxj 32. f .x/ D jxj � 1

33. f .x/ D jx � 2j 34. f .x/ D 1C jx � 2j

35. f .x/ D
2

x C 2
36. f .x/ D

1

2 � x

37. f .x/ D
x

x C 1
38. f .x/ D

x

1 � x

In Exercises 39–46, f refers to the function with domain Œ0; 2� and

range Œ0; 1�, whose graph is shown in Figure P.58. Sketch the

graphs of the indicated functions and specify their domains and

ranges.

39. f .x/C 2 40. f .x/ � 1

41. f .x C 2/ 42. f .x � 1/

43. �f .x/ 44. f .�x/

45. f .4 � x/ 46. 1 � f .1 � x/
y

x

.1; 1/

2

y D f .x/

Figure P.58

It is often quite difficult to determine the range of a function

exactly. In Exercises 47–48, use a graphing utility (calculator or

computer) to graph the function f, and by zooming in on the

graph, determine the range of f with accuracy of 2 decimal places.

G 47. f .x/ D
x C 2

x2
C 2x C 3

G 48. f .x/ D
x � 1

x2
C x

In Exercises 49–52, use a graphing utility to plot the graph of the

given function. Examine the graph (zooming in or out as

necessary) for symmetries. About what lines and/or points are the

graphs symmetric? Try to verify your conclusions algebraically.

G 49. f .x/ D x4
� 6x

3
C 9x

2
� 1

G 50. f .x/ D
3 � 2x C x2

2 � 2x C x2

G 51. f .x/ D
x � 1

x � 2
G 52. f .x/ D

2x
2
C 3x

x2
C 4x C 5

53.A What function f .x/, defined on the real line R, is both even

and odd?

P.5 Combining Functions to Make New Functions

Functions can be combined in a variety of ways to produce new functions. We begin

by examining algebraic means of combining functions, that is, addition, subtraction,

multiplication, and division.

Sums, Differences, Products, Quotients, and Multiples
Like numbers, functions can be added, subtracted, multiplied, and divided (except

where the denominator is zero) to produce new functions.

D E F I N I T I O N

3

If f and g are functions, then for every x that belongs to the domains of both

f and g we define functions f C g, f � g, fg, and f=g by the formulas:

.f C g/.x/ D f .x/C g.x/

.f � g/.x/ D f .x/� g.x/

.fg/.x/ D f .x/g.x/
�

f

g

�

.x/ D
f .x/

g.x/
; where g.x/ ¤ 0:

A special case of the rule for multiplying functions shows how functions can be

multiplied by constants. If c is a real number, then the function cf is defined for all x
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in the domain of f by

.cf /.x/ D c � f .x/:

E X A M P L E 1
Figure P.59(a) shows the graphs of f .x/ D x

2, g.x/ D x � 1,

and their sum .f C g/.x/ D x2
C x � 1. Observe that the height

of the graph of f C g at any point x is the sum of the heights of the graphs of f and

g at that point.

Figure P.59

(a) .f C g/.x/ D f .x/C g.x/

(b) g.x/ D .0:5/f .x/

y

x

y D f .x/

y D g.x/

y D .f C g/.x/

x

y

x

y D f .x/

y D 0:5f .x/

(a) (b)

E X A M P L E 2
Figure P.59(b) shows the graphs of f .x/ D 2�x2 and the multiple

g.x/ D .0:5/f .x/. Note how the height of the graph of g at any

point x is half the height of the graph of f there.

E X A M P L E 3
The functions f and g are defined by the formulas

f .x/ D
p

x and g.x/ D
p

1 � x:

Find formulas for the values of 3f , f Cg, f �g, fg, f=g, and g=f at x, and specify

the domains of each of these functions.

Solution The information is collected in Table 2:

Table 2. Combinations of f and g and their domains

Function Formula Domain

f f .x/ D
p

x Œ0;1/

g g.x/ D
p

1 � x .�1; 1�

3f .3f /.x/ D 3
p

x Œ0;1/

f C g .f C g/.x/ D f .x/C g.x/ D
p

x C
p

1 � x Œ0; 1�

f � g .f � g/.x/ D f .x/� g.x/ D
p

x �
p

1 � x Œ0; 1�

fg .fg/.x/ D f .x/g.x/ D
p

x.1 � x/ Œ0; 1�

f =g
f

g
.x/ D

f .x/

g.x/
D

r

x

1 � x
Œ0; 1/

g=f
g

f
.x/ D

g.x/

f .x/
D

r

1 � x

x
.0; 1�

Note that most of the combinations of f and g have domains

Œ0;1/ \ .�1; 1� D Œ0; 1�;

the intersection of the domains of f and g. However, the domains of the two quotients

f=g and g=f had to be restricted further to remove points where the denominator was

zero.
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Composite Functions
There is another method, called composition, by which two functions can be combined

to form a new function.

D E F I N I T I O N

4

Composite functions

If f and g are two functions, the composite function f ı g is defined by

f ı g.x/ D f .g.x//:

The domain of f ıg consists of those numbers x in the domain of g for which

g.x/ is in the domain of f: In particular, if the range of g is contained in the

domain of f, then the domain of f ı g is just the domain of g.

As shown in Figure P.60, forming f ıg is equivalent to arranging “function machines”

x

g.x/

f .g.x//

g

f

D.g/

D.f ı g/

R.g/

D.f /

R.f /

R.f ı g/

Figure P.60 f ı g.x/ D f .g.x//

g and f in an “assembly line” so that the output of g becomes the input of f:

In calculating f ı g.x/ D f .g.x//, we first calculate g.x/ and then calculate f

of the result. We call g the inner function and f the outer function of the composition.

We can, of course, also calculate the composition g ı f .x/ D g.f .x//, where f is

the inner function, the one that gets calculated first, and g is the outer function, which

gets calculated last. The functions f ı g and g ı f are usually quite different, as the

following example shows.

E X A M P L E 4
Given f .x/ D

p

x and g.x/ D xC1, calculate the four composite

functions f ı g.x/, g ı f .x/, f ı f .x/, and g ı g.x/, and specify

the domain of each.

Solution Again, we collect the results in a table. (See Table 3.)

Table 3. Composites of f and g and their domains

Function Formula Domain

f f .x/ D
p

x Œ0;1/

g g.x/ D x C 1 R

f ı g f ı g.x/ D f .g.x// D f .x C 1/ D
p

x C 1 Œ�1;1/

g ı f g ı f .x/ D g.f .x// D g.
p

x/ D
p

x C 1 Œ0;1/

f ı f f ı f .x/ D f .f .x// D f .
p

x/ D
pp

x D x1=4 Œ0;1/

g ı g g ı g.x/ D g.g.x// D g.x C 1/ D .x C 1/C 1 D x C 2 R

To see why, for example, the domain of f ı g is Œ�1;1/, observe that g.x/ D x C 1

is defined for all real x but belongs to the domain of f only if x C 1 � 0, that is, if

x � �1.

E X A M P L E 5 If G.x/ D
1 � x

1C x
, calculate G ıG.x/ and specify its domain.

Solution We calculate

G ıG.x/ D G.G.x// D G

�

1 � x

1C x

�

D

1 �
1 � x

1C x

1C
1 � x

1C x

D

1C x � 1C x

1C x C 1 � x
D x:

Because the resulting function, x, is defined for all real x, we might be tempted to say

that the domain of G ı G is R. This is wrong! To belong to the domain of G ı G, x

must satisfy two conditions:

(i) x must belong to the domain of G, and
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in the domain of f by

.cf /.x/ D c � f .x/:

E X A M P L E 1
Figure P.59(a) shows the graphs of f .x/ D x

2, g.x/ D x � 1,

and their sum .f C g/.x/ D x2
C x � 1. Observe that the height

of the graph of f C g at any point x is the sum of the heights of the graphs of f and

g at that point.

Figure P.59

(a) .f C g/.x/ D f .x/C g.x/

(b) g.x/ D .0:5/f .x/

y

x

y D f .x/

y D g.x/

y D .f C g/.x/

x

y

x

y D f .x/

y D 0:5f .x/

(a) (b)

E X A M P L E 2
Figure P.59(b) shows the graphs of f .x/ D 2�x2 and the multiple

g.x/ D .0:5/f .x/. Note how the height of the graph of g at any

point x is half the height of the graph of f there.

E X A M P L E 3
The functions f and g are defined by the formulas

f .x/ D
p

x and g.x/ D
p

1 � x:

Find formulas for the values of 3f , f Cg, f �g, fg, f=g, and g=f at x, and specify

the domains of each of these functions.

Solution The information is collected in Table 2:

Table 2. Combinations of f and g and their domains

Function Formula Domain

f f .x/ D
p

x Œ0;1/

g g.x/ D
p

1 � x .�1; 1�

3f .3f /.x/ D 3
p

x Œ0;1/

f C g .f C g/.x/ D f .x/C g.x/ D
p

x C
p

1 � x Œ0; 1�

f � g .f � g/.x/ D f .x/� g.x/ D
p

x �
p

1 � x Œ0; 1�

fg .fg/.x/ D f .x/g.x/ D
p

x.1 � x/ Œ0; 1�

f =g
f

g
.x/ D

f .x/

g.x/
D

r

x

1 � x
Œ0; 1/

g=f
g

f
.x/ D

g.x/

f .x/
D

r

1 � x

x
.0; 1�

Note that most of the combinations of f and g have domains

Œ0;1/ \ .�1; 1� D Œ0; 1�;

the intersection of the domains of f and g. However, the domains of the two quotients

f=g and g=f had to be restricted further to remove points where the denominator was

zero.
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Composite Functions
There is another method, called composition, by which two functions can be combined

to form a new function.

D E F I N I T I O N

4

Composite functions

If f and g are two functions, the composite function f ı g is defined by

f ı g.x/ D f .g.x//:

The domain of f ıg consists of those numbers x in the domain of g for which

g.x/ is in the domain of f: In particular, if the range of g is contained in the

domain of f, then the domain of f ı g is just the domain of g.

As shown in Figure P.60, forming f ıg is equivalent to arranging “function machines”

x

g.x/

f .g.x//

g

f

D.g/

D.f ı g/

R.g/

D.f /

R.f /

R.f ı g/

Figure P.60 f ı g.x/ D f .g.x//

g and f in an “assembly line” so that the output of g becomes the input of f:

In calculating f ı g.x/ D f .g.x//, we first calculate g.x/ and then calculate f

of the result. We call g the inner function and f the outer function of the composition.

We can, of course, also calculate the composition g ı f .x/ D g.f .x//, where f is

the inner function, the one that gets calculated first, and g is the outer function, which

gets calculated last. The functions f ı g and g ı f are usually quite different, as the

following example shows.

E X A M P L E 4
Given f .x/ D

p

x and g.x/ D xC1, calculate the four composite

functions f ı g.x/, g ı f .x/, f ı f .x/, and g ı g.x/, and specify

the domain of each.

Solution Again, we collect the results in a table. (See Table 3.)

Table 3. Composites of f and g and their domains

Function Formula Domain

f f .x/ D
p

x Œ0;1/

g g.x/ D x C 1 R

f ı g f ı g.x/ D f .g.x// D f .x C 1/ D
p

x C 1 Œ�1;1/

g ı f g ı f .x/ D g.f .x// D g.
p

x/ D
p

x C 1 Œ0;1/

f ı f f ı f .x/ D f .f .x// D f .
p

x/ D
pp

x D x1=4 Œ0;1/

g ı g g ı g.x/ D g.g.x// D g.x C 1/ D .x C 1/C 1 D x C 2 R

To see why, for example, the domain of f ı g is Œ�1;1/, observe that g.x/ D x C 1

is defined for all real x but belongs to the domain of f only if x C 1 � 0, that is, if

x � �1.

E X A M P L E 5 If G.x/ D
1 � x

1C x
, calculate G ıG.x/ and specify its domain.

Solution We calculate

G ıG.x/ D G.G.x// D G

�

1 � x

1C x

�

D

1 �
1 � x

1C x

1C
1 � x

1C x

D

1C x � 1C x

1C x C 1 � x
D x:

Because the resulting function, x, is defined for all real x, we might be tempted to say

that the domain of G ı G is R. This is wrong! To belong to the domain of G ı G, x

must satisfy two conditions:

(i) x must belong to the domain of G, and
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(ii) G.x/ must belong to the domain of G.

The domain of G consists of all real numbers except x D �1. If we exclude x D �1

from the domain ofGıG, condition (i) will be satisfied. Now observe that the equation

G.x/ D �1 has no solution x, since it can be rewritten in the form 1� x D �.1C x/,

or 1 D �1. Therefore, all numbers G.x/ belong to the domain of G, and condition

(ii) is satisfied with no further restrictions on x. The domain of G ıG is .�1;�1/ [

.�1;1/, that is, all real numbers except �1.

Piecewise Defined Functions
Sometimes it is necessary to define a function by using different formulas on different

parts of its domain. One example is the absolute value function

jxj D

n

x if x � 0

�x if x < 0.

Another would be the tax rates applied to various levels of income. Here are some

other examples. (Note how we use solid and hollow dots in the graphs to indicate,

respectively, which endpoints do or do not lie on various parts of the graph.)

E X A M P L E 6
The Heaviside function. The Heaviside function (or unit step

y

x

1

y D 1

y D 0

y D H.x/

Figure P.61 The Heaviside function

function) (Figure P.61) is defined by

H.x/ D

n

1 if x � 0

0 if x < 0.

For instance, if t represents time, the function 6H.t/ can model the voltage applied

to an electric circuit by a 6-volt battery if a switch in the circuit is turned on at time

t D 0.

E X A M P L E 7
The signum function. The signum function (Figure P.62) is de-

fined as follows:

sgn .x/ D
x

jxj
D

(

1 if x > 0,

�1 if x < 0,

undefined if x D 0.

The name signum is the Latin word meaning “sign.” The value of the sgn.x/ tells

whether x is positive or negative. Since 0 is neither positive nor negative, sgn .0/ is

not defined. The signum function is an odd function.

y

x

�1

y D sgn .x/

1
y D 1

y D �1

Figure P.62 The signum function

E X A M P L E 8
The function

f .x/ D

8

<

:

.x C 1/2 if x < �1,

�x if �1 � x < 1,
p

x � 1 if x � 1,

is defined on the whole real line but has values given by three different formulas de-

pending on the position of x. Its graph is shown in Figure P.63(a).
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Figure P.63 Piecewise defined functions

y

x

y D .x C 1/2

y D �x

y D
p

x � 1.�1; 1/

�1 1

.1;�1/

y

x

.�1;�1/

.2; 2/

�2

(a) (b)

E X A M P L E 9
Find a formula for function g.x/ graphed in Figure P.63(b).

Solution The graph consists of parts of three lines. For the part x < �1, the line has

slope �1 and x-intercept �2, so its equation is y D �.x C 2/. The middle section is

the line y D x for �1 � x � 2. The right section is y D 2 for x > 2. Combining

these formulas, we write

g.x/ D

(

�.x C 2/ if x < �1

x if �1 � x � 2

2 if x > 2.

Unlike the previous example, it does not matter here which of the two possible formulas

we use to define g.�1/, since both give the same value. The same is true for g.2/.

The following two functions could be defined by different formulas on every interval

between consecutive integers, but we will use an easier way to define them.

E X A M P L E 10
The greatest integer function. The function whose value at any

number x is the greatest integer less than or equal to x is called

the greatest integer function, or the integer floor function. It is denoted bxc, or, in

some books, Œx� or ŒŒx��. The graph of y D bxc is given in Figure P.64(a). Observe

that

b2:4c D 2;

b2c D 2;

b1:9c D 1;

b0:2c D 0;

b0c D 0;

b�0:3c D �1;

b�1:2c D �2;

b�2c D �2:

Figure P.64

(a) The greatest integer function bxc

(b) The least integer function dxe

y

x

y D bxc

1

1

y

x

y D dxe

1

1

(a) (b)
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(ii) G.x/ must belong to the domain of G.

The domain of G consists of all real numbers except x D �1. If we exclude x D �1

from the domain ofGıG, condition (i) will be satisfied. Now observe that the equation

G.x/ D �1 has no solution x, since it can be rewritten in the form 1� x D �.1C x/,

or 1 D �1. Therefore, all numbers G.x/ belong to the domain of G, and condition

(ii) is satisfied with no further restrictions on x. The domain of G ıG is .�1;�1/ [

.�1;1/, that is, all real numbers except �1.

Piecewise Defined Functions
Sometimes it is necessary to define a function by using different formulas on different

parts of its domain. One example is the absolute value function

jxj D

n

x if x � 0

�x if x < 0.

Another would be the tax rates applied to various levels of income. Here are some

other examples. (Note how we use solid and hollow dots in the graphs to indicate,

respectively, which endpoints do or do not lie on various parts of the graph.)
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The Heaviside function. The Heaviside function (or unit step

y
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y D 1

y D 0

y D H.x/

Figure P.61 The Heaviside function

function) (Figure P.61) is defined by

H.x/ D

n

1 if x � 0

0 if x < 0.

For instance, if t represents time, the function 6H.t/ can model the voltage applied

to an electric circuit by a 6-volt battery if a switch in the circuit is turned on at time

t D 0.
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The signum function. The signum function (Figure P.62) is de-

fined as follows:

sgn .x/ D
x

jxj
D

(

1 if x > 0,

�1 if x < 0,

undefined if x D 0.

The name signum is the Latin word meaning “sign.” The value of the sgn.x/ tells

whether x is positive or negative. Since 0 is neither positive nor negative, sgn .0/ is

not defined. The signum function is an odd function.
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The function

f .x/ D

8

<

:

.x C 1/2 if x < �1,

�x if �1 � x < 1,
p

x � 1 if x � 1,

is defined on the whole real line but has values given by three different formulas de-

pending on the position of x. Its graph is shown in Figure P.63(a).
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Figure P.63 Piecewise defined functions

y

x
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y D �x

y D
p

x � 1.�1; 1/

�1 1

.1;�1/

y

x

.�1;�1/

.2; 2/

�2

(a) (b)
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Find a formula for function g.x/ graphed in Figure P.63(b).

Solution The graph consists of parts of three lines. For the part x < �1, the line has

slope �1 and x-intercept �2, so its equation is y D �.x C 2/. The middle section is

the line y D x for �1 � x � 2. The right section is y D 2 for x > 2. Combining

these formulas, we write

g.x/ D

(

�.x C 2/ if x < �1

x if �1 � x � 2

2 if x > 2.

Unlike the previous example, it does not matter here which of the two possible formulas

we use to define g.�1/, since both give the same value. The same is true for g.2/.

The following two functions could be defined by different formulas on every interval

between consecutive integers, but we will use an easier way to define them.

E X A M P L E 10
The greatest integer function. The function whose value at any

number x is the greatest integer less than or equal to x is called

the greatest integer function, or the integer floor function. It is denoted bxc, or, in

some books, Œx� or ŒŒx��. The graph of y D bxc is given in Figure P.64(a). Observe

that

b2:4c D 2;

b2c D 2;
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b0c D 0;

b�0:3c D �1;

b�1:2c D �2;

b�2c D �2:

Figure P.64

(a) The greatest integer function bxc

(b) The least integer function dxe

y

x

y D bxc

1

1

y

x

y D dxe

1

1

(a) (b)
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E X A M P L E 11
The least integer function. The function whose value at any num-

ber x is the smallest integer greater than or equal to x is called the

least integer function, or the integer ceiling function. It is denoted dxe. Its graph

is given in Figure P.64(b). For positive values of x, this function might represent, for

example, the cost of parking x hours in a parking lot that charges $1 for each hour or

part of an hour.

E X E R C I S E S P.5

In Exercises 1–2, find the domains of the functions f C g, f � g,

fg, f=g, and g=f , and give formulas for their values.

1. f .x/ D x; g.x/ D
p

x � 1

2. f .x/ D
p

1 � x; g.x/ D
p

1C x

Sketch the graphs of the functions in Exercises 3–6 by combining

the graphs of simpler functions from which they are built up.

3. x � x2 4. x3
� x

5. x C jxj 6. jxj C jx � 2j

7. If f .x/ D x C 5 and g.x/ D x2
� 3, find the following:

(a) f ı g.0/ (b) g.f .0//

(c) f .g.x// (d) g ı f .x/

(e) f ı f .�5/ (f) g.g.2//

(g) f .f .x// (h) g ı g.x/

In Exercises 8–10, construct the following composite functions and

specify the domain of each.

(a) f ı f .x/ (b) f ı g.x/

(c) g ı f .x/ (d) g ı g.x/

8. f .x/ D 2=x; g.x/ D x=.1 � x/

9. f .x/ D 1=.1 � x/; g.x/ D
p

x � 1

10. f .x/ D .x C 1/=.x � 1/; g.x/ D sgn .x/

Find the missing entries in Table 4 (Exercises 11–16).

Table 4.

f .x/ g.x/ f ı g.x/

11. x2 x C 1

12. x C 4 x

13.
p

x jxj

14. x1=3 2x C 3

15. .x C 1/=x x

16. x � 1 1=x2

G 17. Use a graphing utility to examine in order the graphs of the

functions

y D
p

x;

y D 2C
p

3C x;

y D 2C
p

x;

y D 1=.2C
p

3C x/:

Describe the effect on the graph of the change made in the

function at each stage.

G 18. Repeat the previous exercise for the functions

y D 2x;

y D
p

1 � 2x;

y D 2x � 1;

y D
1

p

1 � 2x
;

y D 1 � 2x;

y D
1

p

1 � 2x
� 1:

In Exercises 19–24, f refers to the function with domain Œ0; 2� and

range Œ0; 1�, whose graph is shown in Figure P.65. Sketch the

graphs of the indicated functions, and specify their domains and

ranges.

19. 2f .x/ 20. �.1=2/f .x/

21. f .2x/ 22. f .x=3/

23. 1C f .�x=2/ 24. 2f ..x � 1/=2/
y

x

.1; 1/

2

y D f .x/

Figure P.65

In Exercises 25–26, sketch the graphs of the given functions.

25. f .x/ D

�

x if 0 � x � 1

2 � x if 1 < x � 2

26. g.x/ D

�p

x if 0 � x � 1

2 � x if 1 < x � 2

27. Find all real values of the constants A and B for which the

function F.x/ D Ax C B satisfies:

(a) F ı F.x/ D F.x/ for all x.

(b) F ı F.x/ D x for all x.

Greatest and least integer functions

28. For what values of x is (a) bxc D 0? (b) dxe D 0?

29. What real numbers x satisfy the equation bxc D dxe?

30. True or false: d�xe D �bxc for all real x?

31. Sketch the graph of y D x � bxc.

32. Sketch the graph of the function

f .x/ D

�

bxc if x � 0

dxe if x < 0.

Why is f .x/ called the integer part of x?
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Even and odd functions

33.A Assume that f is an even function, g is an odd function, and

both f and g are defined on the whole real line R. Is each of

the following functions even, odd, or neither?

f C g; fg; f=g; g=f; f
2
D ff; g

2
D gg

f ı g; g ı f; f ı f; g ı g

34.A If f is both an even and an odd function, show that f .x/ D 0

at every point of its domain.

35.A Let f be a function whose domain is symmetric about the

origin, that is, �x belongs to the domain whenever x does.

(a) Show that f is the sum of an even function and an odd

function:

f .x/ D E.x/CO.x/;

where E is an even function and O is an odd function.

Hint: Let E.x/ D .f .x/C f .�x//=2. Show that

E.�x/ D E.x/, so that E is even. Then show that

O.x/ D f .x/ �E.x/ is odd.

(b) Show that there is only one way to write f as the sum of

an even and an odd function. Hint: One way is given in

part (a). If also f .x/ D E1.x/CO1.x/, where E1 is

even and O1 is odd, show that E � E1 D O1 �O and

then use Exercise 34 to show that E D E1 andO D O1.

P.6 Polynomials and Rational Functions

Among the easiest functions to deal with in calculus are polynomials. These are sums

of terms each of which is a constant multiple of a nonnegative integer power of the

variable of the function.

D E F I N I T I O N

5

A polynomial is a function P whose value at x is

P.x/ D anx
n
C an�1x

n�1
C � � � C a2x

2
C a1x C a0;

where an; an�1; : : : ; a2; a1, and a0, called the coefficients of the polynomial,

are constants and, if n > 0, then an ¤ 0. The number n, the degree of the

highest power of x in the polynomial, is called the degree of the polynomial.

(The degree of the zero polynomial is not defined.)

For example,

3 is a polynomial of degree 0:

2 � x is a polynomial of degree 1:

2x
3
� 17x C 1 is a polynomial of degree 3:

Generally, we assume that the polynomials we deal with are real polynomials; that is,

their coefficients are real numbers rather than more general complex numbers. Often

the coefficients will be integers or rational numbers. Polynomials play a role in the

study of functions somewhat analogous to the role played by integers in the study of

numbers. For instance, just as we always get an integer result if we add, subtract, or

multiply two integers, we always get a polynomial result if we add, subtract, or multiply

two polynomials. Adding or subtracting polynomials produces a polynomial whose de-

gree does not exceed the larger of the two degrees of the polynomials being combined.

Multiplying two polynomials of degrees m and n produces a product polynomial of

degree mC n. For instance, for the product

.x
2
C 1/.x

3
� x � 2/ D x

5
� 2x

2
� x � 2;

the two factors have degrees 2 and 3, so the result has degree 5.

The following definition is analogous to the definition of a rational number as the

quotient of two integers.
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E X A M P L E 11
The least integer function. The function whose value at any num-

ber x is the smallest integer greater than or equal to x is called the

least integer function, or the integer ceiling function. It is denoted dxe. Its graph

is given in Figure P.64(b). For positive values of x, this function might represent, for

example, the cost of parking x hours in a parking lot that charges $1 for each hour or

part of an hour.

E X E R C I S E S P.5

In Exercises 1–2, find the domains of the functions f C g, f � g,

fg, f=g, and g=f , and give formulas for their values.

1. f .x/ D x; g.x/ D
p

x � 1

2. f .x/ D
p

1 � x; g.x/ D
p

1C x

Sketch the graphs of the functions in Exercises 3–6 by combining

the graphs of simpler functions from which they are built up.

3. x � x2 4. x3
� x

5. x C jxj 6. jxj C jx � 2j

7. If f .x/ D x C 5 and g.x/ D x2
� 3, find the following:

(a) f ı g.0/ (b) g.f .0//

(c) f .g.x// (d) g ı f .x/

(e) f ı f .�5/ (f) g.g.2//

(g) f .f .x// (h) g ı g.x/

In Exercises 8–10, construct the following composite functions and

specify the domain of each.

(a) f ı f .x/ (b) f ı g.x/

(c) g ı f .x/ (d) g ı g.x/

8. f .x/ D 2=x; g.x/ D x=.1 � x/

9. f .x/ D 1=.1 � x/; g.x/ D
p

x � 1

10. f .x/ D .x C 1/=.x � 1/; g.x/ D sgn .x/

Find the missing entries in Table 4 (Exercises 11–16).

Table 4.

f .x/ g.x/ f ı g.x/

11. x2 x C 1

12. x C 4 x

13.
p

x jxj

14. x1=3 2x C 3

15. .x C 1/=x x

16. x � 1 1=x2

G 17. Use a graphing utility to examine in order the graphs of the

functions

y D
p

x;

y D 2C
p

3C x;

y D 2C
p

x;

y D 1=.2C
p

3C x/:

Describe the effect on the graph of the change made in the

function at each stage.

G 18. Repeat the previous exercise for the functions

y D 2x;

y D
p

1 � 2x;

y D 2x � 1;

y D
1

p

1 � 2x
;

y D 1 � 2x;

y D
1

p

1 � 2x
� 1:

In Exercises 19–24, f refers to the function with domain Œ0; 2� and

range Œ0; 1�, whose graph is shown in Figure P.65. Sketch the

graphs of the indicated functions, and specify their domains and

ranges.

19. 2f .x/ 20. �.1=2/f .x/

21. f .2x/ 22. f .x=3/

23. 1C f .�x=2/ 24. 2f ..x � 1/=2/
y

x

.1; 1/

2

y D f .x/

Figure P.65

In Exercises 25–26, sketch the graphs of the given functions.

25. f .x/ D

�

x if 0 � x � 1

2 � x if 1 < x � 2

26. g.x/ D

�p

x if 0 � x � 1

2 � x if 1 < x � 2

27. Find all real values of the constants A and B for which the

function F.x/ D Ax C B satisfies:

(a) F ı F.x/ D F.x/ for all x.

(b) F ı F.x/ D x for all x.

Greatest and least integer functions

28. For what values of x is (a) bxc D 0? (b) dxe D 0?

29. What real numbers x satisfy the equation bxc D dxe?

30. True or false: d�xe D �bxc for all real x?

31. Sketch the graph of y D x � bxc.

32. Sketch the graph of the function

f .x/ D

�

bxc if x � 0

dxe if x < 0.

Why is f .x/ called the integer part of x?
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Even and odd functions

33.A Assume that f is an even function, g is an odd function, and

both f and g are defined on the whole real line R. Is each of

the following functions even, odd, or neither?

f C g; fg; f=g; g=f; f
2
D ff; g

2
D gg

f ı g; g ı f; f ı f; g ı g

34.A If f is both an even and an odd function, show that f .x/ D 0

at every point of its domain.

35.A Let f be a function whose domain is symmetric about the

origin, that is, �x belongs to the domain whenever x does.

(a) Show that f is the sum of an even function and an odd

function:

f .x/ D E.x/CO.x/;

where E is an even function and O is an odd function.

Hint: Let E.x/ D .f .x/C f .�x//=2. Show that

E.�x/ D E.x/, so that E is even. Then show that

O.x/ D f .x/ �E.x/ is odd.

(b) Show that there is only one way to write f as the sum of

an even and an odd function. Hint: One way is given in

part (a). If also f .x/ D E1.x/CO1.x/, where E1 is

even and O1 is odd, show that E � E1 D O1 �O and

then use Exercise 34 to show that E D E1 andO D O1.

P.6 Polynomials and Rational Functions

Among the easiest functions to deal with in calculus are polynomials. These are sums

of terms each of which is a constant multiple of a nonnegative integer power of the

variable of the function.

D E F I N I T I O N

5

A polynomial is a function P whose value at x is

P.x/ D anx
n
C an�1x

n�1
C � � � C a2x

2
C a1x C a0;

where an; an�1; : : : ; a2; a1, and a0, called the coefficients of the polynomial,

are constants and, if n > 0, then an ¤ 0. The number n, the degree of the

highest power of x in the polynomial, is called the degree of the polynomial.

(The degree of the zero polynomial is not defined.)

For example,

3 is a polynomial of degree 0:

2 � x is a polynomial of degree 1:

2x
3
� 17x C 1 is a polynomial of degree 3:

Generally, we assume that the polynomials we deal with are real polynomials; that is,

their coefficients are real numbers rather than more general complex numbers. Often

the coefficients will be integers or rational numbers. Polynomials play a role in the

study of functions somewhat analogous to the role played by integers in the study of

numbers. For instance, just as we always get an integer result if we add, subtract, or

multiply two integers, we always get a polynomial result if we add, subtract, or multiply

two polynomials. Adding or subtracting polynomials produces a polynomial whose de-

gree does not exceed the larger of the two degrees of the polynomials being combined.

Multiplying two polynomials of degrees m and n produces a product polynomial of

degree mC n. For instance, for the product

.x
2
C 1/.x

3
� x � 2/ D x

5
� 2x

2
� x � 2;

the two factors have degrees 2 and 3, so the result has degree 5.

The following definition is analogous to the definition of a rational number as the

quotient of two integers.
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D E F I N I T I O N

6

If P.x/ and Q.x/ are two polynomials and Q.x/ is not the zero polynomial,

then the function

R.x/ D
P.x/

Q.x/

is called a rational function. By the domain convention, the domain of R.x/

consists of all real numbers x except those for which Q.x/ D 0.

Two examples of rational functions and their domains are

R.x/ D
2x3
� 3x2

C 3x C 4

x2
C 1

with domain R, all real numbers.

S.x/ D
1

x2
� 4

with domain all real numbers except ˙2:

Remark If the numerator and denominator of a rational function have a common

factor, that factor can be cancelled out just as with integers. However, the resulting

simpler rational function may not have the same domain as the original one, so it should

be regarded as a different rational function even though it is equal to the original one

at all points of the original domain. For instance,

x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
only if x ¤ ˙1,

even though x D 1 is in the domain of x=.x C 1/.

When we divide a positive integer a by a smaller positive integer b, we can obtain

an integer quotient q and an integer remainder r satisfying 0 � r < b and hence write

the fraction a=b (in a unique way) as the sum of the integer q and another fraction

whose numerator (the remainder r) is smaller than its denominator b. For instance,

7

3
D 2C

1

3
I the quotient is 2, the remainder is 1.

Similarly, if Am and Bn are polynomials having degrees m and n, respectively, and if

m > n, then we can express the rational function Am=Bn (in a unique way) as the sum

of a quotient polynomial Qm�n of degree m� n and another rational function Rk=Bn

where the numerator polynomial Rk (the remainder in the division) is either zero or

has degree k < n:

Am.x/

Bn.x/
D Qm�n.x/C

Rk.x/

Bn.x/
: (The Division Algorithm)

We calculate the quotient and remainder polynomials by using long division or an

equivalent method.

E X A M P L E 1 Write the division algorithm for
2x3
� 3x2

C 3x C 4

x2
C 1

.

Solution METHOD I. Use long division:

2x � 3

x2
C 1 2x

3
� 3x2

C 3x C 4

2x
3

C 2x

�3x
2
C x C 4

�3x
2

� 3

x C 7
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Thus,

2x
3
� 3x

2
C 3x C 4

x2
C 1

D 2x � 3C
x C 7

x2
C 1

:

The quotient is 2x � 3, and the remainder is x C 7.

METHOD II. Use short division; add appropriate lower-degree terms to the terms of

the numerator that have degrees not less than the degree of the denominator to enable

factoring out the denominator, and then subtract those terms off again.

2x
3
� 3x

2
C 3x C 4

D 2x
3
C 2x � 3x

2
� 3C 3x C 4 � 2x C 3

D 2x.x
2
C 1/ � 3.x

2
C 1/C x C 7;

from which it follows at once that

2x3
� 3x2

C 3x C 4

x2
C 1

D 2x � 3C
x C 7

x2
C 1

:

Roots, Zeros, and Factors
A number r is called a root or zero of the polynomial P if P.r/ D 0. For example,

P.x/ D x3
� 4x has three roots: 0, 2, and �2; substituting any of these numbers

for x makes P.x/ D 0. In this context the terms “root” and “zero” are often used

interchangeably. It is technically more correct to call a number r satisfying P.r/ D 0 a

zero of the polynomial functionP and a root of the equationP.x/ D 0, and later in this

book we will follow this convention more closely. But for now, to avoid confusion with

the number zero, we will prefer to use “root” rather than “zero” even when referring to

the polynomial P rather than the equation P.x/ D 0.

The Fundamental Theorem of Algebra (see Appendix II) states that every poly-

nomial of degree at least 1 has a root (although the root might be a complex num-

ber). For example, the linear (degree 1) polynomial ax C b has the root �b=a since

a.�b=a/C b D 0. A constant polynomial (one of degree zero) cannot have any roots

unless it is the zero polynomial, in which case every number is a root.

Real polynomials do not always have real roots; the polynomial x2
C4 is never zero

for any real number x, but it is zero if x is either of the two complex numbers 2i and

�2i , where i is the so-called imaginary unit satisfying i2 D �1. (See Appendix I for

a discussion of complex numbers.) The numbers 2i and �2i are complex conjugates

of each other. Any complex roots of a real polynomial must occur in conjugate pairs.

(See Appendix II for a proof of this fact.)

In our study of calculus we will often find it useful to factor polynomials into

products of polynomials of lower degree, especially degree 1 or 2 (linear or quadratic

polynomials). The following theorem shows the connection between linear factors and

roots.

T H E O R E M

1

The Factor Theorem

The number r is a root of the polynomial P of degree not less than 1 if and only if

x � r is a factor of P.x/.

PROOF By the division algorithm there exists a quotient polynomialQ having degree

one less than that of P and a remainder polynomial of degree 0 (i.e., a constant c) such

that

P.x/

x � r
D Q.x/C

c

x � r
:
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D E F I N I T I O N

6

If P.x/ and Q.x/ are two polynomials and Q.x/ is not the zero polynomial,

then the function

R.x/ D
P.x/

Q.x/

is called a rational function. By the domain convention, the domain of R.x/

consists of all real numbers x except those for which Q.x/ D 0.

Two examples of rational functions and their domains are

R.x/ D
2x3
� 3x2

C 3x C 4

x2
C 1

with domain R, all real numbers.

S.x/ D
1

x2
� 4

with domain all real numbers except ˙2:

Remark If the numerator and denominator of a rational function have a common

factor, that factor can be cancelled out just as with integers. However, the resulting

simpler rational function may not have the same domain as the original one, so it should

be regarded as a different rational function even though it is equal to the original one

at all points of the original domain. For instance,

x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
only if x ¤ ˙1,

even though x D 1 is in the domain of x=.x C 1/.

When we divide a positive integer a by a smaller positive integer b, we can obtain

an integer quotient q and an integer remainder r satisfying 0 � r < b and hence write

the fraction a=b (in a unique way) as the sum of the integer q and another fraction

whose numerator (the remainder r) is smaller than its denominator b. For instance,

7

3
D 2C

1

3
I the quotient is 2, the remainder is 1.

Similarly, if Am and Bn are polynomials having degrees m and n, respectively, and if

m > n, then we can express the rational function Am=Bn (in a unique way) as the sum

of a quotient polynomial Qm�n of degree m� n and another rational function Rk=Bn

where the numerator polynomial Rk (the remainder in the division) is either zero or

has degree k < n:

Am.x/

Bn.x/
D Qm�n.x/C

Rk.x/

Bn.x/
: (The Division Algorithm)

We calculate the quotient and remainder polynomials by using long division or an

equivalent method.

E X A M P L E 1 Write the division algorithm for
2x3
� 3x2

C 3x C 4

x2
C 1

.

Solution METHOD I. Use long division:

2x � 3

x2
C 1 2x

3
� 3x2

C 3x C 4

2x
3

C 2x

�3x
2
C x C 4

�3x
2

� 3

x C 7
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Thus,

2x
3
� 3x

2
C 3x C 4

x2
C 1

D 2x � 3C
x C 7

x2
C 1

:

The quotient is 2x � 3, and the remainder is x C 7.

METHOD II. Use short division; add appropriate lower-degree terms to the terms of

the numerator that have degrees not less than the degree of the denominator to enable

factoring out the denominator, and then subtract those terms off again.

2x
3
� 3x

2
C 3x C 4

D 2x
3
C 2x � 3x

2
� 3C 3x C 4 � 2x C 3

D 2x.x
2
C 1/ � 3.x

2
C 1/C x C 7;

from which it follows at once that

2x3
� 3x2

C 3x C 4

x2
C 1

D 2x � 3C
x C 7

x2
C 1

:

Roots, Zeros, and Factors
A number r is called a root or zero of the polynomial P if P.r/ D 0. For example,

P.x/ D x3
� 4x has three roots: 0, 2, and �2; substituting any of these numbers

for x makes P.x/ D 0. In this context the terms “root” and “zero” are often used

interchangeably. It is technically more correct to call a number r satisfying P.r/ D 0 a

zero of the polynomial functionP and a root of the equationP.x/ D 0, and later in this

book we will follow this convention more closely. But for now, to avoid confusion with

the number zero, we will prefer to use “root” rather than “zero” even when referring to

the polynomial P rather than the equation P.x/ D 0.

The Fundamental Theorem of Algebra (see Appendix II) states that every poly-

nomial of degree at least 1 has a root (although the root might be a complex num-

ber). For example, the linear (degree 1) polynomial ax C b has the root �b=a since

a.�b=a/C b D 0. A constant polynomial (one of degree zero) cannot have any roots

unless it is the zero polynomial, in which case every number is a root.

Real polynomials do not always have real roots; the polynomial x2
C4 is never zero

for any real number x, but it is zero if x is either of the two complex numbers 2i and

�2i , where i is the so-called imaginary unit satisfying i2 D �1. (See Appendix I for

a discussion of complex numbers.) The numbers 2i and �2i are complex conjugates

of each other. Any complex roots of a real polynomial must occur in conjugate pairs.

(See Appendix II for a proof of this fact.)

In our study of calculus we will often find it useful to factor polynomials into

products of polynomials of lower degree, especially degree 1 or 2 (linear or quadratic

polynomials). The following theorem shows the connection between linear factors and

roots.

T H E O R E M

1

The Factor Theorem

The number r is a root of the polynomial P of degree not less than 1 if and only if

x � r is a factor of P.x/.

PROOF By the division algorithm there exists a quotient polynomialQ having degree

one less than that of P and a remainder polynomial of degree 0 (i.e., a constant c) such

that

P.x/

x � r
D Q.x/C

c

x � r
:
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Thus P.x/ D .x � r/Q.x/ C c, and P.r/ D 0 if and only if c D 0, in which case

P.x/ D .x � r/Q.x/ and x � r is a factor of P.x/.

It follows from Theorem 1 and the Fundamental Theorem of Algebra that every

polynomial of degree n � 1 has n roots. (If P has degree n � 2, then P has a zero

r and P.x/ D .x � r/Q.x/, where Q is a polynomial of degree n � 1 � 1, which in

turn has a root, etc.) Of course, the roots of a polynomial need not all be different. The

4th-degree polynomial P.x/ D x4
� 3x3

C 3x2
� x D x.x � 1/3 has four roots; one

is 0 and the other three are each equal to 1. We say that the root 1 has multiplicity 3

because we can divide P.x/ by .x � 1/3 and still get zero remainder.

IfP is a real polynomial having a complex root r1 D uCiv, where u and v are real

and v ¤ 0, then, as asserted above, the complex conjugate of r1, namely, r2 D u� iv,

will also be a root of P . (Moreover, r1 and r2 will have the same multiplicity.) Thus,

both x � u� iv and x � uC iv are factors of P.x/, and so, therefore, is their product

.x � u � iv/.x � uC iv/ D .x � u/
2
C v

2
D x

2
� 2ux C u

2
C v

2
;

which is a quadratic polynomial having no real roots. It follows that every real poly-

nomial can be factored into a product of real (possibly repeated) linear factors and real

(also possibly repeated) quadratic factors having no real zeros.

E X A M P L E 2
What is the degree of P.x/ D x3.x2

C 2x C 5/2? What are the

roots of P; and what is the multiplicity of each root?

Solution IfP is expanded, the highest power of x present in the expansion is x3.x2/2 D

x7, so P has degree 7. The factor x3
D .x � 0/3 indicates that 0 is a root of P having

multiplicity 3. The remaining four roots will be the two roots of x2
C 2x C 5, each

having multiplicity 2. Now

�

x
2
C 2x C 5

�2
D

�

.x C 1/
2
C 4

�2

D

�

.x C 1C 2i/.x C 1 � 2i/
�2
:

Hence the seven roots of P are:

(

0; 0; 0 0 has multiplicity 3,

�1 � 2i; �1 � 2i �1 � 2i has multiplicity 2,

�1C 2i; �1C 2i �1C 2i has multiplicity 2.

Roots and Factors of Quadratic Polynomials
There is a well-known formula for finding the roots of a quadratic polynomial.

The Quadratic Formula

The two solutions of the quadratic equation

Ax
2
C Bx C C D 0;

where A, B , and C are constants and A ¤ 0, are given by

x D
�B ˙

p

B2
� 4AC

2A
:
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To see this, just divide the equation by A and complete the square for the terms in x:

x
2
C

B

A
x C

C

A
D 0

x
2
C

2B

2A
x C

B2

4A2
D

B2

4A2
�

C

A
�

x C
B

2A

�2

D

B
2
� 4AC

4A2

x C
B

2A
D ˙

p

B2
� 4AC

2A
:

The quantity D D B2
� 4AC that appears under the square root in the quadratic

formula is called the discriminant of the quadratic equation or polynomial. The nature

of the roots of the quadratic depends on the sign of this discriminant.

(a) IfD > 0, thenD D k2 for some real constant k, and the quadratic has two distinct

roots, .�B C k/=.2A/ and .�B � k/=.2A/.

(b) If D D 0, then the quadratic has only the root �B=.2A/, and this root has multi-

plicity 2. (It is called a double root.)

(c) If D < 0, then D D �k2 for some real constant k, and the quadratic has two

complex conjugate roots, .�B C ki/=.2A/ and .�B � ki/=.2A/.

E X A M P L E 3
Find the roots of these quadratic polynomials and thereby factor

the polynomials into linear factors:

(a) x2
C x � 1 (b) 9x2

� 6x C 1 (c) 2x2
C x C 1.

Solution We use the quadratic formula to solve the corresponding quadratic equa-

tions to find the roots of the three polynomials.

(a) A D 1; B D 1; C D �1

x D
�1˙

p

1C 4

2
D �

1

2
˙

p

5

2

x
2
C x � 1 D

 

x C
1

2
�

p

5

2

! 

x C
1

2
C

p

5

2

!

:

(b) A D 9; B D �6; C D 1

x D
6˙
p

36 � 36

18
D

1

3
(double root)

9x
2
� 6x C 1 D 9

�

x �
1

3

�2

D .3x � 1/
2
:

(c) A D 2; B D 1; C D 1

x D
�1˙

p

1 � 8

4
D �

1

4
˙

p

7

4
i

2x
2
C x C 1 D 2

 

x C
1

4
�

p

7

4
i

! 

x C
1

4
C

p

7

4
i

!

:

Remark There exist formulas for calculating exact roots of cubic (degree 3) and

quartic (degree 4) polynomials, but, unlike the quadratic formula above, they are very

complicated and almost never used. Instead, calculus will provide us with very pow-

erful and easily used tools for approximating roots of polynomials (and solutions of

much more general equations) to any desired degree of accuracy.
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Thus P.x/ D .x � r/Q.x/ C c, and P.r/ D 0 if and only if c D 0, in which case

P.x/ D .x � r/Q.x/ and x � r is a factor of P.x/.

It follows from Theorem 1 and the Fundamental Theorem of Algebra that every

polynomial of degree n � 1 has n roots. (If P has degree n � 2, then P has a zero

r and P.x/ D .x � r/Q.x/, where Q is a polynomial of degree n � 1 � 1, which in

turn has a root, etc.) Of course, the roots of a polynomial need not all be different. The

4th-degree polynomial P.x/ D x4
� 3x3

C 3x2
� x D x.x � 1/3 has four roots; one

is 0 and the other three are each equal to 1. We say that the root 1 has multiplicity 3

because we can divide P.x/ by .x � 1/3 and still get zero remainder.

IfP is a real polynomial having a complex root r1 D uCiv, where u and v are real

and v ¤ 0, then, as asserted above, the complex conjugate of r1, namely, r2 D u� iv,

will also be a root of P . (Moreover, r1 and r2 will have the same multiplicity.) Thus,

both x � u� iv and x � uC iv are factors of P.x/, and so, therefore, is their product

.x � u � iv/.x � uC iv/ D .x � u/
2
C v

2
D x

2
� 2ux C u

2
C v

2
;

which is a quadratic polynomial having no real roots. It follows that every real poly-

nomial can be factored into a product of real (possibly repeated) linear factors and real

(also possibly repeated) quadratic factors having no real zeros.

E X A M P L E 2
What is the degree of P.x/ D x3.x2

C 2x C 5/2? What are the

roots of P; and what is the multiplicity of each root?

Solution IfP is expanded, the highest power of x present in the expansion is x3.x2/2 D

x7, so P has degree 7. The factor x3
D .x � 0/3 indicates that 0 is a root of P having

multiplicity 3. The remaining four roots will be the two roots of x2
C 2x C 5, each

having multiplicity 2. Now

�

x
2
C 2x C 5

�2
D

�

.x C 1/
2
C 4

�2

D

�

.x C 1C 2i/.x C 1 � 2i/
�2
:

Hence the seven roots of P are:

(

0; 0; 0 0 has multiplicity 3,

�1 � 2i; �1 � 2i �1 � 2i has multiplicity 2,

�1C 2i; �1C 2i �1C 2i has multiplicity 2.

Roots and Factors of Quadratic Polynomials
There is a well-known formula for finding the roots of a quadratic polynomial.

The Quadratic Formula

The two solutions of the quadratic equation

Ax
2
C Bx C C D 0;

where A, B , and C are constants and A ¤ 0, are given by

x D
�B ˙

p

B2
� 4AC

2A
:
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To see this, just divide the equation by A and complete the square for the terms in x:

x
2
C

B

A
x C

C

A
D 0

x
2
C

2B

2A
x C

B2

4A2
D

B2

4A2
�

C

A
�

x C
B

2A

�2

D

B
2
� 4AC

4A2

x C
B

2A
D ˙

p

B2
� 4AC

2A
:

The quantity D D B2
� 4AC that appears under the square root in the quadratic

formula is called the discriminant of the quadratic equation or polynomial. The nature

of the roots of the quadratic depends on the sign of this discriminant.

(a) IfD > 0, thenD D k2 for some real constant k, and the quadratic has two distinct

roots, .�B C k/=.2A/ and .�B � k/=.2A/.

(b) If D D 0, then the quadratic has only the root �B=.2A/, and this root has multi-

plicity 2. (It is called a double root.)

(c) If D < 0, then D D �k2 for some real constant k, and the quadratic has two

complex conjugate roots, .�B C ki/=.2A/ and .�B � ki/=.2A/.

E X A M P L E 3
Find the roots of these quadratic polynomials and thereby factor

the polynomials into linear factors:

(a) x2
C x � 1 (b) 9x2

� 6x C 1 (c) 2x2
C x C 1.

Solution We use the quadratic formula to solve the corresponding quadratic equa-

tions to find the roots of the three polynomials.

(a) A D 1; B D 1; C D �1

x D
�1˙

p

1C 4

2
D �

1

2
˙

p

5

2

x
2
C x � 1 D

 

x C
1

2
�

p

5

2

! 

x C
1

2
C

p

5

2

!

:

(b) A D 9; B D �6; C D 1

x D
6˙
p

36 � 36

18
D

1

3
(double root)

9x
2
� 6x C 1 D 9

�

x �
1

3

�2

D .3x � 1/
2
:

(c) A D 2; B D 1; C D 1

x D
�1˙

p

1 � 8

4
D �

1

4
˙

p

7

4
i

2x
2
C x C 1 D 2

 

x C
1

4
�

p

7

4
i

! 

x C
1

4
C

p

7

4
i

!

:

Remark There exist formulas for calculating exact roots of cubic (degree 3) and

quartic (degree 4) polynomials, but, unlike the quadratic formula above, they are very

complicated and almost never used. Instead, calculus will provide us with very pow-

erful and easily used tools for approximating roots of polynomials (and solutions of

much more general equations) to any desired degree of accuracy.
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Miscellaneous Factorings
Some quadratic and higher-degree polynomials can be (at least partially) factored by

inspection. Some simple examples include:

(a) Common Factor: ax2
C bx D x.ax C b/.

(b) Difference of Squares: x2
� a2

D .x � a/.x C a/.

(c) Difference of Cubes: x3
� a3

D .x � a/.x2
C ax C a2/.

(d) More generally, a difference of nth powers for any positive integer n:

x
n
� a

n
D .x � a/.x

n�1
C ax

n�2
C a

2
x

n�3
C � � � C a

n�2
x C a

n�1
/:

Note that x � a is a factor of xn
� an for any positive integer n.

(e) It is also true that if n is an odd positive integer, then xC a is a factor of xn
C an.

For example,

x
3
C a

3
D .x C a/.x

2
� ax C a

2
/

x
5
C a

5
D .x C a/.x

4
� ax

3
C a

2
x

2
� a

3
x C a

4
/:

Finally, we mention a trial-and-error method of factoring quadratic polynomials some-

times called trinomial factoring. Since

.x C p/.x C q/ D x
2
C .p C q/x C pq;

.x � p/.x � q/ D x
2
� .p C q/x C pq; and

.x C p/.x � q/ D x
2
C .p � q/x � pq;

we can sometimes spot the factors of x2
C Bx C C by looking for factors of jC j for

which the sum or difference is B . More generally, we can sometimes factor

Ax
2
C Bx C C D .ax C b/.cx C d/

by looking for factors a and c of A and factors b and d of C for which ad C bc D B .

Of course, if this fails you can always resort to the quadratic formula to find the roots

and, therefore, the factors, of the quadratic polynomial.

E X A M P L E 4

x
2
� 5x C 6 D .x � 3/.x � 2/ p D 3; q D 2; pq D 6; p C q D 5

x
2
C 7x C 6 D .x C 6/.x C 1/ p D 6; q D 1; pq D 6; p C q D 7

x
2
C x � 6 D .x C 3/.x � 2/ p D 3; q D �2; pq D �6; p C q D 1

2x
2
C x � 10 D .2x C 5/.x � 2/ a D 2; b D 5; c D 1; d D �2

ac D 2; bd D �10; ad C bc D 1:

E X A M P L E 5
Find the roots of the following polynomials:

(a) x3
� x2

� 4x C 4, (b) x4
C 3x2

� 4, (c) x5
� x4

� x2
C x.

Solution (a) There is an obvious common factor:

x
3
� x

2
� 4x C 4 D .x � 1/.x

2
� 4/ D .x � 1/.x � 2/.x C 2/:

The roots are 1, 2, and �2.

(b) This is a trinomial in x2 for which there is an easy factoring:

x
4
C 3x

2
� 4 D .x

2
C 4/.x

2
� 1/ D .x C 2i/.x � 2i/.x C 1/.x � 1/:
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The roots are 1, �1, 2i , and �2i .

(c) We start with some obvious factorings:

x
5
� x

4
� x

2
C x D x.x

4
� x

3
� x C 1/ D x.x � 1/.x

3
� 1/

D x.x � 1/
2
.x

2
C x C 1/:

Thus 0 is a root, and 1 is a double root. The remaining two roots must come from

the quadratic factor x2
C xC 1, which cannot be factored easily by inspection, so

we use the formula:

x D
�1˙

p

1 � 4

2
D �

1

2
˙

p

3

2
i:

E X A M P L E 6
For what values of the real constant b will the product of the real

polynomials x2
�bxCa2 and x2

CbxCa2 be equal to x4
Ca4?

Use your answer to express x4
C1 as a product of two real quadratic polynomials each

having no real roots.

Solution We have

.x
2
� bx C a

2
/.x

2
C bx C a

2
/ D

�

x
2
C a

2
�2
� b

2
x

2

D x
4
C 2a

2
x

2
C a

4
� b

2
x

2
D x

4
C a

4
;

provided that b2
D 2a2, that is, b D ˙

p

2a.

If a D 1, then b D ˙
p

2, and we have

x
4
C 1 D .x

2
�

p

2x C 1/.x
2
C

p

2x C 1/:

E X E R C I S E S P.6

Find the roots of the polynomials in Exercises 1–12. If a root is

repeated, give its multiplicity. Also, write each polynomial as a

product of linear factors.

1. x2
C 7x C 10 2. x2

� 3x � 10

3. x2
C 2x C 2 4. x2

� 6x C 13

5. 16x4
� 8x

2
C 1 6. x4

C 6x
3
C 9x

2

7. x3
C 1 8. x4

� 1

9. x6
� 3x

4
C 3x

2
� 1 10. x5

� x
4
� 16x C 16

11. x5
C x

3
C 8x

2
C 8 12. x9

� 4x
7
� x

6
C 4x

4

In Exercises 13–16, determine the domains of the given rational

functions.

13.
3x C 2

x2
C 2x C 2

14.
x2
� 9

x3
� x

15.
4

x3
C x2

16.
x3
C 3x2

C 6

x2
C x � 1

In Exercises 17–20, express the given rational function as the sum

of a polynomial and another rational function whose numerator is

either zero or has smaller degree than the denominator.

17.
x3
� 1

x2
� 2

18.
x2

x2
C 5x C 3

19.
x3

x2
C 2x C 3

20.
x4
C x2

x3
C x2

C 1

In Exercises 21–22, express the given polynomial as a product of

real quadratic polynomials with no real roots.

21. P.x/ D x4
C 4 22. P.x/ D x4

C x
2
C 1

23.A Show that x � 1 is a factor of a polynomial P of positive

degree if and only if the sum of the coefficients of P is zero.

24.A What condition should the coefficients of a polynomial satsify

to ensure that x C 1 is a factor of that polynomial?

25.A The complex conjugate of a complex number z D uC iv

(where u and v are real numbers) is the complex number

Nz D u � iv. It is shown in Appendix I that the complex

conjugate of a sum (or product) of complex numbers is the

sum (or product) of the complex conjugates of those numbers.

Use this fact to verify that if z D uC iv is a complex root of a

polynomial P having real coefficients, then its conjugate Nz is

also a root of P .
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Miscellaneous Factorings
Some quadratic and higher-degree polynomials can be (at least partially) factored by

inspection. Some simple examples include:

(a) Common Factor: ax2
C bx D x.ax C b/.

(b) Difference of Squares: x2
� a2

D .x � a/.x C a/.

(c) Difference of Cubes: x3
� a3

D .x � a/.x2
C ax C a2/.

(d) More generally, a difference of nth powers for any positive integer n:

x
n
� a

n
D .x � a/.x

n�1
C ax

n�2
C a

2
x

n�3
C � � � C a

n�2
x C a

n�1
/:

Note that x � a is a factor of xn
� an for any positive integer n.

(e) It is also true that if n is an odd positive integer, then xC a is a factor of xn
C an.

For example,

x
3
C a

3
D .x C a/.x

2
� ax C a

2
/

x
5
C a

5
D .x C a/.x

4
� ax

3
C a

2
x

2
� a

3
x C a

4
/:

Finally, we mention a trial-and-error method of factoring quadratic polynomials some-

times called trinomial factoring. Since

.x C p/.x C q/ D x
2
C .p C q/x C pq;

.x � p/.x � q/ D x
2
� .p C q/x C pq; and

.x C p/.x � q/ D x
2
C .p � q/x � pq;

we can sometimes spot the factors of x2
C Bx C C by looking for factors of jC j for

which the sum or difference is B . More generally, we can sometimes factor

Ax
2
C Bx C C D .ax C b/.cx C d/

by looking for factors a and c of A and factors b and d of C for which ad C bc D B .

Of course, if this fails you can always resort to the quadratic formula to find the roots

and, therefore, the factors, of the quadratic polynomial.

E X A M P L E 4

x
2
� 5x C 6 D .x � 3/.x � 2/ p D 3; q D 2; pq D 6; p C q D 5

x
2
C 7x C 6 D .x C 6/.x C 1/ p D 6; q D 1; pq D 6; p C q D 7

x
2
C x � 6 D .x C 3/.x � 2/ p D 3; q D �2; pq D �6; p C q D 1

2x
2
C x � 10 D .2x C 5/.x � 2/ a D 2; b D 5; c D 1; d D �2

ac D 2; bd D �10; ad C bc D 1:

E X A M P L E 5
Find the roots of the following polynomials:

(a) x3
� x2

� 4x C 4, (b) x4
C 3x2

� 4, (c) x5
� x4

� x2
C x.

Solution (a) There is an obvious common factor:

x
3
� x

2
� 4x C 4 D .x � 1/.x

2
� 4/ D .x � 1/.x � 2/.x C 2/:

The roots are 1, 2, and �2.

(b) This is a trinomial in x2 for which there is an easy factoring:

x
4
C 3x

2
� 4 D .x

2
C 4/.x

2
� 1/ D .x C 2i/.x � 2i/.x C 1/.x � 1/:
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The roots are 1, �1, 2i , and �2i .

(c) We start with some obvious factorings:

x
5
� x

4
� x

2
C x D x.x

4
� x

3
� x C 1/ D x.x � 1/.x

3
� 1/

D x.x � 1/
2
.x

2
C x C 1/:

Thus 0 is a root, and 1 is a double root. The remaining two roots must come from

the quadratic factor x2
C xC 1, which cannot be factored easily by inspection, so

we use the formula:

x D
�1˙

p

1 � 4

2
D �

1

2
˙

p

3

2
i:

E X A M P L E 6
For what values of the real constant b will the product of the real

polynomials x2
�bxCa2 and x2

CbxCa2 be equal to x4
Ca4?

Use your answer to express x4
C1 as a product of two real quadratic polynomials each

having no real roots.

Solution We have

.x
2
� bx C a

2
/.x

2
C bx C a

2
/ D

�

x
2
C a

2
�2
� b

2
x

2

D x
4
C 2a

2
x

2
C a

4
� b

2
x

2
D x

4
C a

4
;

provided that b2
D 2a2, that is, b D ˙

p

2a.

If a D 1, then b D ˙
p

2, and we have

x
4
C 1 D .x

2
�

p

2x C 1/.x
2
C

p

2x C 1/:

E X E R C I S E S P.6

Find the roots of the polynomials in Exercises 1–12. If a root is

repeated, give its multiplicity. Also, write each polynomial as a

product of linear factors.

1. x2
C 7x C 10 2. x2

� 3x � 10

3. x2
C 2x C 2 4. x2

� 6x C 13

5. 16x4
� 8x

2
C 1 6. x4

C 6x
3
C 9x

2

7. x3
C 1 8. x4

� 1

9. x6
� 3x

4
C 3x

2
� 1 10. x5

� x
4
� 16x C 16

11. x5
C x

3
C 8x

2
C 8 12. x9

� 4x
7
� x

6
C 4x

4

In Exercises 13–16, determine the domains of the given rational

functions.

13.
3x C 2

x2
C 2x C 2

14.
x2
� 9

x3
� x

15.
4

x3
C x2

16.
x3
C 3x2

C 6

x2
C x � 1

In Exercises 17–20, express the given rational function as the sum

of a polynomial and another rational function whose numerator is

either zero or has smaller degree than the denominator.

17.
x3
� 1

x2
� 2

18.
x2

x2
C 5x C 3

19.
x3

x2
C 2x C 3

20.
x4
C x2

x3
C x2

C 1

In Exercises 21–22, express the given polynomial as a product of

real quadratic polynomials with no real roots.

21. P.x/ D x4
C 4 22. P.x/ D x4

C x
2
C 1

23.A Show that x � 1 is a factor of a polynomial P of positive

degree if and only if the sum of the coefficients of P is zero.

24.A What condition should the coefficients of a polynomial satsify

to ensure that x C 1 is a factor of that polynomial?

25.A The complex conjugate of a complex number z D uC iv

(where u and v are real numbers) is the complex number

Nz D u � iv. It is shown in Appendix I that the complex

conjugate of a sum (or product) of complex numbers is the

sum (or product) of the complex conjugates of those numbers.

Use this fact to verify that if z D uC iv is a complex root of a

polynomial P having real coefficients, then its conjugate Nz is

also a root of P .
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26.A Continuing the previous exercise, show that if z D uC iv

(where u and v are real numbers) is a complex root of a

polynomial P with real coefficients, then P must have the real

quadratic factor x2
� 2ux C u2

C v2.

27.A Use the result of Exercise 26 to show that if z D uC iv

(where u and v are real numbers) is a complex root of a

polynomial P with real coefficients, then z and Nz are roots of

P having the same multiplicity.

P.7 The Trigonometric Functions

Most people first encounter the quantities cos t and sin t as ratios of sides in a right-

angled triangle having t as one of the acute angles. If the sides of the triangle are

labelled “hyp” for hypotenuse, “adj” for the side adjacent to angle t; and “opp” for the

side opposite angle t (see Figure P.66), then

cos t D
adj

hyp
and sin t D

opp

hyp
: .�/

These ratios depend only on the angle t , not on the particular triangle, since all right-

angled triangles having an acute angle t are similar.

In calculus we need more general definitions of cos t and sin t as functions defined

for all real numbers t , not just acute angles. Such definitions are phrased in terms of a

circle rather than a triangle.

t

opp

adj

hyp

Figure P.66 cos t D adj=hyp

sin t D opp=hyp

Let C be the circle with centre at the origin O and radius 1; its equation is x2
C

y2
D 1. Let A be the point .1; 0/ on C . For any real number t; let Pt be the point on

C at distance jt j from A, measured along C in the counterclockwise direction if t > 0,

and the clockwise direction if t < 0. For example, since C has circumference 2� , the

point P�=2 is one-quarter of the way counterclockwise around C from A; it is the point

.0; 1/.

We will use the arc length t as a measure of the size of the angle AOPt . See

Figure P.67.

Figure P.67 If the length of arc APt is t

units, then angle AOPt = t radians

y

x

x2
C y2

D 1

C

A D .1; 0/

arc length t

Pt D .cos t; sin t /

t (radians)

O

1

P�

P��=2

P�=2

D E F I N I T I O N

7

The radian measure of angle AOPt is t radians:

†AOPt D t radians:

We are more used to measuring angles in degrees. Since P� is the point .�1; 0/,

halfway (� units of distance) around C from A, we have
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� radians D 180ı
:

To convert degrees to radians, multiply by �=180; to convert radians to degrees, mul-

tiply by 180=� .

Angle convention

In calculus it is assumed that all angles are measured in radians unless degrees

or other units are stated explicitly. When we talk about the angle �=3, we

mean �=3 radians (which is 60ı), not �=3 degrees.

E X A M P L E 1
Arc length and sector area. An arc of a circle of radius r subtends

an angle t at the centre of the circle. Find the length s of the arc

and the area A of the sector lying between the arc and the centre of the circle.

t

A

s

r

r

Figure P.68 Arc length s D rt

Sector area A D r2t=2

Solution The length s of the arc is the same fraction of the circumference 2�r of the

circle that the angle t is of a complete revolution 2� radians (or 360ı). Thus,

s D
t

2�
.2�r/ D rt units:

Similarly, the area A of the circular sector (Figure P.68) is the same fraction of the area

�r
2 of the whole circle:

A D
t

2�
.�r

2
/ D

r2t

2
units2

:

(We will show that the area of a circle of radius r is �r2 in Section 1.1.)

Using the procedure described above, we can find the point Pt corresponding to any

real number t , positive or negative. We define cos t and sin t to be the coordinates of

Pt . (See Figure P.69.)

D E F I N I T I O N

8

Cosine and sine

For any real t , the cosine of t (abbreviated cos t) and the sine of t (abbreviated

sin t) are the x- and y-coordinates of the point Pt .

cos t D the x-coordinate of Pt

sin t D the y-coordinate of Pt

Because they are defined this way, cosine and sine are often called the circular func-

tions. Note that these definitions agree with the ones given earlier for an acute angle.

(See formulas .�/ at the beginning of this section.) The triangle involved is PtOQt in

Figure P.69.
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26.A Continuing the previous exercise, show that if z D uC iv

(where u and v are real numbers) is a complex root of a

polynomial P with real coefficients, then P must have the real

quadratic factor x2
� 2ux C u2

C v2.

27.A Use the result of Exercise 26 to show that if z D uC iv

(where u and v are real numbers) is a complex root of a

polynomial P with real coefficients, then z and Nz are roots of

P having the same multiplicity.

P.7 The Trigonometric Functions

Most people first encounter the quantities cos t and sin t as ratios of sides in a right-

angled triangle having t as one of the acute angles. If the sides of the triangle are

labelled “hyp” for hypotenuse, “adj” for the side adjacent to angle t; and “opp” for the

side opposite angle t (see Figure P.66), then

cos t D
adj

hyp
and sin t D

opp

hyp
: .�/

These ratios depend only on the angle t , not on the particular triangle, since all right-

angled triangles having an acute angle t are similar.

In calculus we need more general definitions of cos t and sin t as functions defined

for all real numbers t , not just acute angles. Such definitions are phrased in terms of a

circle rather than a triangle.

t

opp

adj

hyp

Figure P.66 cos t D adj=hyp

sin t D opp=hyp

Let C be the circle with centre at the origin O and radius 1; its equation is x2
C

y2
D 1. Let A be the point .1; 0/ on C . For any real number t; let Pt be the point on

C at distance jt j from A, measured along C in the counterclockwise direction if t > 0,

and the clockwise direction if t < 0. For example, since C has circumference 2� , the

point P�=2 is one-quarter of the way counterclockwise around C from A; it is the point

.0; 1/.

We will use the arc length t as a measure of the size of the angle AOPt . See

Figure P.67.

Figure P.67 If the length of arc APt is t

units, then angle AOPt = t radians

y

x

x2
C y2

D 1

C

A D .1; 0/

arc length t

Pt D .cos t; sin t /

t (radians)

O

1

P�

P��=2

P�=2

D E F I N I T I O N

7

The radian measure of angle AOPt is t radians:

†AOPt D t radians:

We are more used to measuring angles in degrees. Since P� is the point .�1; 0/,

halfway (� units of distance) around C from A, we have
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� radians D 180ı
:

To convert degrees to radians, multiply by �=180; to convert radians to degrees, mul-

tiply by 180=� .

Angle convention

In calculus it is assumed that all angles are measured in radians unless degrees

or other units are stated explicitly. When we talk about the angle �=3, we

mean �=3 radians (which is 60ı), not �=3 degrees.

E X A M P L E 1
Arc length and sector area. An arc of a circle of radius r subtends

an angle t at the centre of the circle. Find the length s of the arc

and the area A of the sector lying between the arc and the centre of the circle.

t

A

s

r

r

Figure P.68 Arc length s D rt

Sector area A D r2t=2

Solution The length s of the arc is the same fraction of the circumference 2�r of the

circle that the angle t is of a complete revolution 2� radians (or 360ı). Thus,

s D
t

2�
.2�r/ D rt units:

Similarly, the area A of the circular sector (Figure P.68) is the same fraction of the area

�r
2 of the whole circle:

A D
t

2�
.�r

2
/ D

r2t

2
units2

:

(We will show that the area of a circle of radius r is �r2 in Section 1.1.)

Using the procedure described above, we can find the point Pt corresponding to any

real number t , positive or negative. We define cos t and sin t to be the coordinates of

Pt . (See Figure P.69.)

D E F I N I T I O N

8

Cosine and sine

For any real t , the cosine of t (abbreviated cos t) and the sine of t (abbreviated

sin t) are the x- and y-coordinates of the point Pt .

cos t D the x-coordinate of Pt

sin t D the y-coordinate of Pt

Because they are defined this way, cosine and sine are often called the circular func-

tions. Note that these definitions agree with the ones given earlier for an acute angle.

(See formulas .�/ at the beginning of this section.) The triangle involved is PtOQt in

Figure P.69.

9780134154367_Calculus   67 05/12/16   3:09 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter P – page 48 October 15, 2016

48 PRELIMINARIES

Figure P.69 The coordinates of Pt are

.cos t; sin t /

y

x

x2
C y2

D 1

C

A D .1; 0/

Arc length t

Pt D .cos t; sin t /

t (rad)

O

sin t

cos t Qt

Figure P.70 Some special angles

y

x
�=2

�

��=2

P
��=2DP3�=2D.0;�1/

P0DAD.1;0/

P�=2D.0;1/

P� D.�1;0/

E X A M P L E 2
Examining the coordinates of P0 D A, P�=2, P� , and

P��=2 D P3�=2 in Figure P.70, we obtain the following values:

cos 0 D 1

sin 0 D 0

cos
�

2
D 0

sin
�

2
D 1

cos� D � 1

sin� D 0

cos
�

�

�

2

�

D cos
3�

2
D 0

sin
�

�

�

2

�

D sin
3�

2
D � 1

Some Useful Identities
Many important properties of cos t and sin t follow from the fact that they are coordi-

nates of the point Pt on the circle C with equation x2
C y2

D 1.

The range of cosine and sine. For every real number t ,

�1 � cos t � 1 and � 1 � sin t � 1:

The Pythagorean identity. The coordinates x D cos t and y D sin t of Pt must

satisfy the equation of the circle. Therefore, for every real number t ,

cos2
t C sin2

t D 1:

(Note that cos2 t means .cos t/2, not cos.cos t/. This is an unfortunate notation, but it

is used everywhere in technical literature, so you have to get used to it!)

Periodicity. Since C has circumference 2� , adding 2� to t causes the point Pt to

go one extra complete revolution aroundC and end up in the same place: PtC2� D Pt .

Thus, for every t ,
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cos.t C 2�/ D cos t and sin.t C 2�/ D sin t:

This says that cosine and sine are periodic with period 2� .

Cosine is an even function. Sine is an odd function. Since the circle x2
Cy2

D 1

is symmetric about the x-axis, the points P�t and Pt have the same x-coordinates and

opposite y-coordinates (Figure P.71),

cos.�t/ D cos t and sin.�t/ D � sin t:

Complementary angle identities. Two angles are complementary if their sum

is �=2 (or 90ı). The points P.�=2/�t and Pt are reflections of each other in the line

y D x (Figure P.72), so the x-coordinate of one is the y-coordinate of the other and

vice versa. Thus,

cos
�

�

2
� t

�

D sin t and sin
�

�

2
� t

�

D cos t:

Supplementary angle identities. Two angles are supplementary if their sum is �

(or 180ı). Since the circle is symmetric about the y-axis, P��t and Pt have the same

y-coordinates and opposite x-coordinates (Figure P.73). Thus,

cos.� � t/ D � cos t and sin.� � t/ D sin t:

y

x

t
1

Pt D .cos t; sin t /

�t

P�t D .cos.�t /; sin.�t //

Figure P.71 cos.�t / D cos t

sin.�t / D � sin t

y

x

Pt

1

P.�=2/�t

y D x

Figure P.72 cos..�=2/ � t / D sin t

sin..�=2/ � t / D cos t

y

x

t

� � t

Pt

1

P��t

Figure P.73 cos.� � t / D � cos t

sin.� � t / D sin t

Some Special Angles

E X A M P L E 3
Find the sine and cosine of �=4 (i.e., 45ı).

Solution The point P�=4 lies in the first quadrant on the line x D y. To find its

coordinates, substitute y D x into the equation x2
C y2

D 1 of the circle, obtaining

2x2
D 1. Thus x D y D 1=

p

2 (see Figure P.74), and

y

x

�
4

1p
2

x2
C y2

D 1

1p
2

y D x

P�=4

Figure P.74 sin
�

4
D cos

�

4
D

1
p

2

cos.45ı/ D cos
�

4
D

1
p

2
; sin.45ı/ D sin

�

4
D

1
p

2
:

E X A M P L E 4
Find the values of sine and cosine of the angles �=3 (or 60ı) and

�=6 (or 30ı).

9780134154367_Calculus   68 05/12/16   3:09 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter P – page 48 October 15, 2016

48 PRELIMINARIES

Figure P.69 The coordinates of Pt are

.cos t; sin t /

y

x

x2
C y2

D 1

C

A D .1; 0/

Arc length t

Pt D .cos t; sin t /

t (rad)

O

sin t

cos t Qt

Figure P.70 Some special angles

y

x
�=2

�

��=2

P
��=2DP3�=2D.0;�1/

P0DAD.1;0/

P�=2D.0;1/

P� D.�1;0/

E X A M P L E 2
Examining the coordinates of P0 D A, P�=2, P� , and

P��=2 D P3�=2 in Figure P.70, we obtain the following values:

cos 0 D 1

sin 0 D 0

cos
�

2
D 0

sin
�

2
D 1

cos� D � 1

sin� D 0

cos
�

�

�

2

�

D cos
3�

2
D 0

sin
�

�

�

2

�

D sin
3�

2
D � 1

Some Useful Identities
Many important properties of cos t and sin t follow from the fact that they are coordi-

nates of the point Pt on the circle C with equation x2
C y2

D 1.

The range of cosine and sine. For every real number t ,

�1 � cos t � 1 and � 1 � sin t � 1:

The Pythagorean identity. The coordinates x D cos t and y D sin t of Pt must

satisfy the equation of the circle. Therefore, for every real number t ,

cos2
t C sin2

t D 1:

(Note that cos2 t means .cos t/2, not cos.cos t/. This is an unfortunate notation, but it

is used everywhere in technical literature, so you have to get used to it!)

Periodicity. Since C has circumference 2� , adding 2� to t causes the point Pt to

go one extra complete revolution aroundC and end up in the same place: PtC2� D Pt .

Thus, for every t ,
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cos.t C 2�/ D cos t and sin.t C 2�/ D sin t:

This says that cosine and sine are periodic with period 2� .

Cosine is an even function. Sine is an odd function. Since the circle x2
Cy2

D 1

is symmetric about the x-axis, the points P�t and Pt have the same x-coordinates and

opposite y-coordinates (Figure P.71),

cos.�t/ D cos t and sin.�t/ D � sin t:

Complementary angle identities. Two angles are complementary if their sum

is �=2 (or 90ı). The points P.�=2/�t and Pt are reflections of each other in the line

y D x (Figure P.72), so the x-coordinate of one is the y-coordinate of the other and

vice versa. Thus,

cos
�

�

2
� t

�

D sin t and sin
�

�

2
� t

�

D cos t:

Supplementary angle identities. Two angles are supplementary if their sum is �

(or 180ı). Since the circle is symmetric about the y-axis, P��t and Pt have the same

y-coordinates and opposite x-coordinates (Figure P.73). Thus,

cos.� � t/ D � cos t and sin.� � t/ D sin t:

y

x

t
1

Pt D .cos t; sin t /

�t

P�t D .cos.�t /; sin.�t //

Figure P.71 cos.�t / D cos t

sin.�t / D � sin t

y

x

Pt

1

P.�=2/�t

y D x

Figure P.72 cos..�=2/ � t / D sin t

sin..�=2/ � t / D cos t

y

x

t

� � t

Pt

1

P��t

Figure P.73 cos.� � t / D � cos t

sin.� � t / D sin t

Some Special Angles

E X A M P L E 3
Find the sine and cosine of �=4 (i.e., 45ı).

Solution The point P�=4 lies in the first quadrant on the line x D y. To find its

coordinates, substitute y D x into the equation x2
C y2

D 1 of the circle, obtaining

2x2
D 1. Thus x D y D 1=

p

2 (see Figure P.74), and

y

x

�
4

1p
2

x2
C y2

D 1

1p
2

y D x

P�=4

Figure P.74 sin
�

4
D cos

�

4
D

1
p

2

cos.45ı/ D cos
�

4
D

1
p

2
; sin.45ı/ D sin

�

4
D

1
p

2
:

E X A M P L E 4
Find the values of sine and cosine of the angles �=3 (or 60ı) and

�=6 (or 30ı).
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Solution The point P�=3 and the points O.0; 0/ and A.1; 0/ are the vertices of an

equilateral triangle with edge length 1 (see Figure P.75). Thus, P�=3 has x-coordinate

1/2 and y-coordinate
p

1 � .1=2/2 D
p

3=2, and

cos.60ı/ D cos
�

3
D

1

2
; sin.60ı/ D sin

�

3
D

p

3

2
:

Since
�

6
D

�

2
�

�

3
, the complementary angle identities now tell us that

cos.30ı/ D cos
�

6
D sin

�

3
D

p

3

2
; sin.30ı/ D sin

�

6
D cos

�

3
D

1

2
:

y

x

�
3

p
3

2

P�=3 D

�

1
2
;

p
3

2

�

1
2

1
2

1 1

A

x2
C y2

D 1

O

Figure P.75 cos�=3 D 1=2

sin�=3 D
p

3=2

Table 5 summarizes the values of cosine and sine at multiples of 30ı and 45ı between

0ı and 180ı. The values for 120ı, 135ı, and 150ı were determined by using the

supplementary angle identities; for example,

cos.120ı/ D cos

�

2�

3

�

D cos
�

� �
�

3

�

D � cos
�

�

3

�

D � cos.60ı/ D �
1

2
:

Table 5. Cosines and sines of special angles

Degrees 0ı 30ı 45ı 60ı 90ı 120ı 135ı 150ı 180ı

Radians 0
�

6

�

4

�

3

�

2

2�

3

3�

4

5�

6
�

Cosine 1

p

3

2

1
p

2

1

2
0 �

1

2
�

1
p

2
�

p

3

2
�1

Sine 0
1

2

1
p

2

p

3

2
1

p

3

2

1
p

2

1

2
0

E X A M P L E 5 Find: (a) sin.3�=4/ and (b) cos.4�=3/.

Solution We can draw appropriate triangles in the quadrants where the angles lie to

determine the required values. See Figure P.76.

(a) sin.3�=4/ D sin.� � .�=4// D 1=
p

2.

(b) cos.4�=3/ D cos.� C .�=3// D �1=2.

While decimal approximations to the values of sine and cosine can be found using a

scientific calculator or mathematical tables, it is useful to remember the exact values in

y

x

y

x

1

3�=4

4�=3

1

� 1
2

� 1p
2

�=3

�=4

1p
2

�
p

3
2

Figure P.76 Using suitably placed

triangles to find trigonometric functions of

special angles

Table 5 for angles 0, �=6, �=4, �=3, and �=2. They occur frequently in applications.

When we treat sine and cosine as functions, we can call the variable they depend

on anything we want (e.g., x, as we do with other functions), rather than t . The graphs

of cos x and sinx are shown in Figures P.77 and P.78. In both graphs the pattern

between x D 0 and x D 2� repeats over and over to the left and right. Observe that

the graph of sin x is the graph of cos x shifted to the right a distance �=2.

Figure P.77 The graph of cosx

y

x

1

�=2 ���

��=2

�1

2�

y D cos x
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Figure P.78 The graph of sinx

y

x
�3�=2 �=2

3�=2��=2�� � 2�

1

�1

y D sin x

Remember this!

When using a scientific calculator to calculate any trigonometric functions,

be sure you have selected the proper angular mode: degrees or radians.

The Addition Formulas
The following formulas enable us to determine the cosine and sine of a sum or differ-

ence of two angles in terms of the cosines and sines of those angles.

T H E O R E M

2

Addition Formulas for Cosine and Sine

cos.s C t/ D cos s cos t � sin s sin t

sin.s C t/ D sin s cos t C cos s sin t

cos.s � t/ D cos s cos t C sin s sin t

sin.s � t/ D sin s cos t � cos s sin t

Figure P.79 PsPt D Ps�tA

y

x

t

s

s � t

A

Ps�t

Pt

Ps

x2
C y2

D 1

O

PROOF We prove the third of these formulas as follows: Let s and t be real numbers

and consider the points

Pt D .cos t; sin t/

Ps D .cos s; sin s/

Ps�t D .cos.s � t/; sin.s � t//

A D .1; 0/;

as shown in Figure P.79.

The angle PtOPs D s � t radians = angle AOPs�t , so the distance PsPt is equal

to the distance Ps�tA. Therefore, .PsPt /
2
D .Ps�tA/

2. We express these squared

distances in terms of coordinates and expand the resulting squares of binomials:

.cos s � cos t/2 C .sin s � sin t/2 D .cos.s � t/ � 1/2 C sin2
.s � t/;
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Solution The point P�=3 and the points O.0; 0/ and A.1; 0/ are the vertices of an

equilateral triangle with edge length 1 (see Figure P.75). Thus, P�=3 has x-coordinate

1/2 and y-coordinate
p

1 � .1=2/2 D
p

3=2, and

cos.60ı/ D cos
�

3
D

1

2
; sin.60ı/ D sin

�

3
D

p

3

2
:

Since
�

6
D

�

2
�

�

3
, the complementary angle identities now tell us that

cos.30ı/ D cos
�

6
D sin

�

3
D

p

3

2
; sin.30ı/ D sin

�

6
D cos

�

3
D

1

2
:

y

x

�
3

p
3

2

P�=3 D

�

1
2
;

p
3

2

�

1
2

1
2

1 1

A

x2
C y2

D 1

O

Figure P.75 cos�=3 D 1=2

sin�=3 D
p

3=2

Table 5 summarizes the values of cosine and sine at multiples of 30ı and 45ı between

0ı and 180ı. The values for 120ı, 135ı, and 150ı were determined by using the

supplementary angle identities; for example,

cos.120ı/ D cos

�

2�

3

�

D cos
�

� �
�

3

�

D � cos
�

�

3

�

D � cos.60ı/ D �
1

2
:

Table 5. Cosines and sines of special angles

Degrees 0ı 30ı 45ı 60ı 90ı 120ı 135ı 150ı 180ı

Radians 0
�

6

�

4

�

3

�

2

2�

3

3�

4

5�

6
�

Cosine 1

p

3

2

1
p

2

1

2
0 �

1

2
�

1
p

2
�

p

3

2
�1

Sine 0
1

2

1
p

2

p

3

2
1

p

3

2

1
p

2

1

2
0

E X A M P L E 5 Find: (a) sin.3�=4/ and (b) cos.4�=3/.

Solution We can draw appropriate triangles in the quadrants where the angles lie to

determine the required values. See Figure P.76.

(a) sin.3�=4/ D sin.� � .�=4// D 1=
p

2.

(b) cos.4�=3/ D cos.� C .�=3// D �1=2.

While decimal approximations to the values of sine and cosine can be found using a

scientific calculator or mathematical tables, it is useful to remember the exact values in

y

x

y

x

1

3�=4

4�=3

1

� 1
2

� 1p
2

�=3

�=4

1p
2

�
p

3
2

Figure P.76 Using suitably placed

triangles to find trigonometric functions of

special angles

Table 5 for angles 0, �=6, �=4, �=3, and �=2. They occur frequently in applications.

When we treat sine and cosine as functions, we can call the variable they depend

on anything we want (e.g., x, as we do with other functions), rather than t . The graphs

of cos x and sinx are shown in Figures P.77 and P.78. In both graphs the pattern

between x D 0 and x D 2� repeats over and over to the left and right. Observe that

the graph of sin x is the graph of cos x shifted to the right a distance �=2.

Figure P.77 The graph of cosx

y

x

1

�=2 ���

��=2

�1

2�

y D cos x
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Figure P.78 The graph of sinx

y

x
�3�=2 �=2

3�=2��=2�� � 2�

1

�1

y D sin x

Remember this!

When using a scientific calculator to calculate any trigonometric functions,

be sure you have selected the proper angular mode: degrees or radians.

The Addition Formulas
The following formulas enable us to determine the cosine and sine of a sum or differ-

ence of two angles in terms of the cosines and sines of those angles.

T H E O R E M

2

Addition Formulas for Cosine and Sine

cos.s C t/ D cos s cos t � sin s sin t

sin.s C t/ D sin s cos t C cos s sin t

cos.s � t/ D cos s cos t C sin s sin t

sin.s � t/ D sin s cos t � cos s sin t

Figure P.79 PsPt D Ps�tA

y

x

t

s

s � t

A

Ps�t

Pt

Ps

x2
C y2

D 1

O

PROOF We prove the third of these formulas as follows: Let s and t be real numbers

and consider the points

Pt D .cos t; sin t/

Ps D .cos s; sin s/

Ps�t D .cos.s � t/; sin.s � t//

A D .1; 0/;

as shown in Figure P.79.

The angle PtOPs D s � t radians = angle AOPs�t , so the distance PsPt is equal

to the distance Ps�tA. Therefore, .PsPt /
2
D .Ps�tA/

2. We express these squared

distances in terms of coordinates and expand the resulting squares of binomials:

.cos s � cos t/2 C .sin s � sin t/2 D .cos.s � t/ � 1/2 C sin2
.s � t/;
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cos2
s � 2 cos s cos t C cos2

t C sin2
s � 2 sin s sin t C sin2

t

D cos2
.s � t/ � 2 cos.s � t/C 1C sin2

.s � t/:

Since cos2 x C sin2
x D 1 for every x, this reduces to

cos.s � t/ D cos s cos t C sin s sin t:

Replacing t with �t in the formula above, and recalling that cos.�t/ D cos t and

sin.�t/ D � sin t , we have

cos.s C t/ D cos s cos t � sin s sin t:

The complementary angle formulas can be used to obtain either of the addition formu-

las for sine:

sin.s C t/ D cos
�

�

2
� .s C t/

�

D cos
��

�

2
� s

�

� t

�

D cos
�

�

2
� s

�

cos t C sin
�

�

2
� s

�

sin t

D sin s cos t C cos s sin t;

and the other formula again follows if we replace t with �t .

E X A M P L E 6
Find the value of cos.�=12/ D cos 15ı.

Solution

cos
�

12
D cos

�

�

3
�

�

4

�

D cos
�

3
cos

�

4
C sin

�

3
sin

�

4

D

�

1

2

��

1
p

2

�

C

 p

3

2

!

�

1
p

2

�

D

1C
p

3

2
p

2

From the addition formulas, we obtain as special cases certain useful formulas called

double-angle formulas. Put s D t in the addition formulas for sin.sCt/ and cos.sCt/

to get

sin 2t D 2 sin t cos t and

cos 2t D cos2
t � sin2

t

D 2 cos2
t � 1 .using sin2

t C cos2
t D 1/

D 1 � 2 sin2
t

Solving the last two formulas for cos2 t and sin2
t , we obtain

cos2
t D

1C cos 2t

2
and sin2

t D
1 � cos 2t

2
;

which are sometimes called half-angle formulas because they are used to express

trigonometric functions of half of the angle 2t . Later we will find these formulas

useful when we have to integrate powers of cos x and sin x.
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Other Trigonometric Functions
There are four other trigonometric functions—tangent (tan), cotangent (cot), secant

(sec), and cosecant (csc)—each defined in terms of cosine and sine. Their graphs are

shown in Figures P.80–P.83.

D E F I N I T I O N

9

Tangent, cotangent, secant, and cosecant

tan t D
sin t

cos t

cot t D
cos t

sin t
D

1

tan t

sec t D
1

cos t

csc t D
1

sin t

y

x�� ��
4

�
2

� �
2

1

y D tan x

Figure P.80 The graph of tanx

y

x

� �
2

�
2

y D cot x

�
4

���

1

Figure P.81 The graph of cotx

y

x

�� �
�
2� �

2

�1

1

y D sec x

Figure P.82 The graph of sec x

y

x

�� �

y D csc x

�
2

� �
2

1

�1

Figure P.83 The graph of cscx

Observe that each of these functions is undefined (and its graph approaches verti-

cal asymptotes) at points where the function in the denominator of its defining fraction

has value 0. Observe also that tangent, cotangent, and cosecant are odd functions and

secant is an even function. Since j sinxj � 1 and j cos xj � 1 for all x, j csc xj � 1

and j sec xj � 1 for all x where they are defined.
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cos2
s � 2 cos s cos t C cos2

t C sin2
s � 2 sin s sin t C sin2

t

D cos2
.s � t/ � 2 cos.s � t/C 1C sin2

.s � t/:

Since cos2 x C sin2
x D 1 for every x, this reduces to

cos.s � t/ D cos s cos t C sin s sin t:

Replacing t with �t in the formula above, and recalling that cos.�t/ D cos t and

sin.�t/ D � sin t , we have

cos.s C t/ D cos s cos t � sin s sin t:

The complementary angle formulas can be used to obtain either of the addition formu-

las for sine:

sin.s C t/ D cos
�

�

2
� .s C t/

�

D cos
��

�

2
� s

�

� t

�

D cos
�

�

2
� s

�

cos t C sin
�

�

2
� s

�

sin t

D sin s cos t C cos s sin t;

and the other formula again follows if we replace t with �t .

E X A M P L E 6
Find the value of cos.�=12/ D cos 15ı.

Solution

cos
�

12
D cos

�

�

3
�

�

4

�

D cos
�

3
cos

�

4
C sin

�

3
sin

�

4

D

�

1

2

��

1
p

2

�

C

 p

3

2

!

�

1
p

2

�

D

1C
p

3

2
p

2

From the addition formulas, we obtain as special cases certain useful formulas called

double-angle formulas. Put s D t in the addition formulas for sin.sCt/ and cos.sCt/

to get

sin 2t D 2 sin t cos t and

cos 2t D cos2
t � sin2

t

D 2 cos2
t � 1 .using sin2

t C cos2
t D 1/

D 1 � 2 sin2
t

Solving the last two formulas for cos2 t and sin2
t , we obtain

cos2
t D

1C cos 2t

2
and sin2

t D
1 � cos 2t

2
;

which are sometimes called half-angle formulas because they are used to express

trigonometric functions of half of the angle 2t . Later we will find these formulas

useful when we have to integrate powers of cos x and sin x.
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Other Trigonometric Functions
There are four other trigonometric functions—tangent (tan), cotangent (cot), secant

(sec), and cosecant (csc)—each defined in terms of cosine and sine. Their graphs are

shown in Figures P.80–P.83.

D E F I N I T I O N

9

Tangent, cotangent, secant, and cosecant

tan t D
sin t

cos t

cot t D
cos t

sin t
D

1

tan t

sec t D
1

cos t

csc t D
1

sin t

y

x�� ��
4

�
2

� �
2

1

y D tan x

Figure P.80 The graph of tanx

y

x

� �
2

�
2

y D cot x

�
4

���

1

Figure P.81 The graph of cotx

y

x

�� �
�
2� �

2

�1

1

y D sec x

Figure P.82 The graph of sec x

y

x

�� �

y D csc x

�
2

� �
2

1

�1

Figure P.83 The graph of cscx

Observe that each of these functions is undefined (and its graph approaches verti-

cal asymptotes) at points where the function in the denominator of its defining fraction

has value 0. Observe also that tangent, cotangent, and cosecant are odd functions and

secant is an even function. Since j sinxj � 1 and j cos xj � 1 for all x, j csc xj � 1

and j sec xj � 1 for all x where they are defined.
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The three functions sine, cosine, and tangent are called primary trigonometric

functions, while their reciprocals cosecant, secant, and cotangent are called secondary

trigonometric functions. Scientific calculators usually just implement the primary

functions; you can use the reciprocal key to find values of the corresponding secondary

functions. Figure P.84 shows a useful pattern called the “CAST rule” to help you

remember where the primary functions are positive. All three are positive in the first

quadrant, marked A. Of the three, only sine is positive in the second quadrant S, only

tangent in the third quadrant T, and only cosine in the fourth quadrant C.

y

x

S A

CT

Figure P.84 The CAST rule

E X A M P L E 7 Find the sine and tangent of the angle � in

�

�;
3�

2

�

for which we

have cos � D �
1

3
.

Solution From the Pythagorean identity sin2
� C cos2 � D 1, we get

sin2
� D 1 �

1

9
D

8

9
; so sin � D ˙

r

8

9
D ˙

2
p

2

3
:

The requirement that � should lie in Œ�; 3�=2� makes � a third quadrant angle. Its sine

is therefore negative. We have

sin � D �
2
p

2

3
and tan � D

sin �

cos �
D

�2
p

2=3

�1=3
D 2
p

2:

Like their reciprocals cosine and sine, the functions secant and cosecant are periodic

with period 2� . Tangent and cotangent, however, have period � because

tan.x C �/ D
sin.x C �/

cos.x C �/
D

sinx cos� C cos x sin�

cos x cos� � sinx sin�
D

� sin x

� cos x
D tan x:

Dividing the Pythagorean identity sin2
x C cos2 x D 1 by cos2 x and sin2

x, respec-

tively, leads to two useful alternative versions of that identity:

1C tan2
x D sec2

x and 1C cot2 x D csc2
x:

Addition formulas for tangent and cotangent can be obtained from those for sine and

cosine. For example,

tan.s C t/ D
sin.s C t/

cos.s C t/
D

sin s cos t C cos s sin t

cos s cos t � sin s sin t
:

Now divide the numerator and denominator of the fraction on the right by cos s cos t

to get

tan.s C t/ D
tan s C tan t

1 � tan s tan t
:

Replacing t by �t leads to

tan.s � t/ D
tan s � tan t

1C tan s tan t
:

Maple Calculations
Maple knows all six trigonometric functions and can calculate their values and manip-

ulate them in other ways. It assumes the arguments of the trigonometric functions are

in radians.
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> evalf(sin(30)); evalf(sin(Pi/6));

�:9880316241

:5000000000

Note that the constant Pi (with an uppercase P) is known to Maple. The evalf()

function converts its argument to a number expressed as a floating point decimal with

10 significant digits. (This precision can be changed by defining a new value for the

variable Digits.) Without it, the sine of 30 radians would have been left unexpanded

because it is not an integer.

> Digits := 20; evalf(100*Pi); sin(30);

Digits WD 20

314:15926535897932385

sin.30/

It is often useful to expand trigonometric functions of multiple angles to powers

of sine and cosine, and vice versa.

> expand(sin(5*x));

16 sin.x/ cos.x/4 � 12 sin.x/ cos.x/2 C sin.x/

> combine((cos(x))^5, trig);

1

16
cos.5x/C

5

16
cos.3x/C

5

8
cos.x/

Other trigonometric functions can be converted to expressions involving sine and

cosine.

> convert(tan(4*x)*(sec(4*x))^2, sincos); combine(%,trig);

sin.4x/

cos.4x/3

4
sin.4x/

cos.12x/C 3 cos.4x/

The % in the last command refers to the result of the previous calculation.

Trigonometry Review
The trigonometric functions are so called because they are often used to express the

relationships between the sides and angles of a triangle. As we observed at the begin-

ning of this section, if � is one of the acute angles in a right-angled triangle, we can

refer to the three sides of the triangle as adj (side adjacent �), opp (side opposite �),

and hyp (hypotenuse). (See Figure P.85.) The trigonometric functions of � can then

be expressed as ratios of these sides, in particular:

�

opp

adj

hyp

Figure P.85

sin � D
opp

hyp
; cos � D

adj

hyp
; tan � D

opp

adj
:

E X A M P L E 8
Find the unknown sides x and y of the triangle in Figure P.86.

Solution Here, x is the side opposite and y is the side adjacent the 30ı angle. The

hypotenuse of the triangle is 5 units. Thus,

x

5
D sin 30ı

D

1

2
and

y

5
D cos 30ı

D

p

3

2
;

so x D
5

2
units and y D

5
p

3

2
units.

x

5

30
ı

y

Figure P.86
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The three functions sine, cosine, and tangent are called primary trigonometric

functions, while their reciprocals cosecant, secant, and cotangent are called secondary

trigonometric functions. Scientific calculators usually just implement the primary

functions; you can use the reciprocal key to find values of the corresponding secondary

functions. Figure P.84 shows a useful pattern called the “CAST rule” to help you

remember where the primary functions are positive. All three are positive in the first

quadrant, marked A. Of the three, only sine is positive in the second quadrant S, only

tangent in the third quadrant T, and only cosine in the fourth quadrant C.

y

x

S A

CT

Figure P.84 The CAST rule

E X A M P L E 7 Find the sine and tangent of the angle � in

�

�;
3�

2

�

for which we

have cos � D �
1

3
.

Solution From the Pythagorean identity sin2
� C cos2 � D 1, we get

sin2
� D 1 �

1

9
D

8

9
; so sin � D ˙

r

8

9
D ˙

2
p

2

3
:

The requirement that � should lie in Œ�; 3�=2� makes � a third quadrant angle. Its sine

is therefore negative. We have

sin � D �
2
p

2

3
and tan � D

sin �

cos �
D

�2
p

2=3

�1=3
D 2
p

2:

Like their reciprocals cosine and sine, the functions secant and cosecant are periodic

with period 2� . Tangent and cotangent, however, have period � because

tan.x C �/ D
sin.x C �/

cos.x C �/
D

sinx cos� C cos x sin�

cos x cos� � sinx sin�
D

� sin x

� cos x
D tan x:

Dividing the Pythagorean identity sin2
x C cos2 x D 1 by cos2 x and sin2

x, respec-

tively, leads to two useful alternative versions of that identity:

1C tan2
x D sec2

x and 1C cot2 x D csc2
x:

Addition formulas for tangent and cotangent can be obtained from those for sine and

cosine. For example,

tan.s C t/ D
sin.s C t/

cos.s C t/
D

sin s cos t C cos s sin t

cos s cos t � sin s sin t
:

Now divide the numerator and denominator of the fraction on the right by cos s cos t

to get

tan.s C t/ D
tan s C tan t

1 � tan s tan t
:

Replacing t by �t leads to

tan.s � t/ D
tan s � tan t

1C tan s tan t
:

Maple Calculations
Maple knows all six trigonometric functions and can calculate their values and manip-

ulate them in other ways. It assumes the arguments of the trigonometric functions are

in radians.
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> evalf(sin(30)); evalf(sin(Pi/6));

�:9880316241

:5000000000

Note that the constant Pi (with an uppercase P) is known to Maple. The evalf()

function converts its argument to a number expressed as a floating point decimal with

10 significant digits. (This precision can be changed by defining a new value for the

variable Digits.) Without it, the sine of 30 radians would have been left unexpanded

because it is not an integer.

> Digits := 20; evalf(100*Pi); sin(30);

Digits WD 20

314:15926535897932385

sin.30/

It is often useful to expand trigonometric functions of multiple angles to powers

of sine and cosine, and vice versa.

> expand(sin(5*x));

16 sin.x/ cos.x/4 � 12 sin.x/ cos.x/2 C sin.x/

> combine((cos(x))^5, trig);

1

16
cos.5x/C

5

16
cos.3x/C

5

8
cos.x/

Other trigonometric functions can be converted to expressions involving sine and

cosine.

> convert(tan(4*x)*(sec(4*x))^2, sincos); combine(%,trig);

sin.4x/

cos.4x/3

4
sin.4x/

cos.12x/C 3 cos.4x/

The % in the last command refers to the result of the previous calculation.

Trigonometry Review
The trigonometric functions are so called because they are often used to express the

relationships between the sides and angles of a triangle. As we observed at the begin-

ning of this section, if � is one of the acute angles in a right-angled triangle, we can

refer to the three sides of the triangle as adj (side adjacent �), opp (side opposite �),

and hyp (hypotenuse). (See Figure P.85.) The trigonometric functions of � can then

be expressed as ratios of these sides, in particular:

�

opp

adj

hyp

Figure P.85

sin � D
opp

hyp
; cos � D

adj

hyp
; tan � D

opp

adj
:

E X A M P L E 8
Find the unknown sides x and y of the triangle in Figure P.86.

Solution Here, x is the side opposite and y is the side adjacent the 30ı angle. The

hypotenuse of the triangle is 5 units. Thus,

x

5
D sin 30ı

D

1

2
and

y

5
D cos 30ı

D

p

3

2
;

so x D
5

2
units and y D

5
p

3

2
units.

x

5

30
ı

y

Figure P.86
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E X A M P L E 9
For the triangle in Figure P.87, express sides x and y in terms of

side a and angle � .

Solution The side x is opposite the angle � , and the side y is the hypotenuse. The

side adjacent to � is a. Thus,�

x
a

y

Figure P.87

x

a
D tan � and

a

y
D cos �:

Hence, x D a tan � and y D
a

cos �
D a sec � .

When dealing with general (not necessarily right-angled) triangles, it is often conve-

nient to label the vertices with capital letters, which also denote the angles at those

vertices, and refer to the sides opposite those vertices by the corresponding lowercase

letters. See Figure P.88. Relationships between the sides a, b, and c and opposite an-

gles A, B , and C of an arbitrary triangle ABC are given by the following formulas,

called the Sine Law and the Cosine Law.

T H E O R E M

3
Sine Law:

sinA

a
D

sinB

b
D

sinC

c

Cosine Law: a
2
D b

2
C c

2
� 2bc cosA

b
2
D a

2
C c

2
� 2ac cosB

c
2
D a

2
C b

2
� 2ab cosC

PROOF See Figure P.89. Let h be the length of the perpendicular from A to the

side BC . From right-angled triangles (and using sin.� � t/ D sin t if required),

we get c sinB D h D b sinC . Thus .sinB/=b D .sinC/=c. By the symmetry of the

formulas (or by dropping a perpendicular to another side), both fractions must be equal

C

a

b

A

c

B

Figure P.88 In this triangle the sides are

named to correspond to the opposite angles

to .sinA/=a, so the Sine Law is proved. For the Cosine Law, observe that

c
2
D

8

ˆ

ˆ

<

ˆ

ˆ

:

h2
C .a � b cosC/2 if C �

�

2

h2
C .aC b cos.� � C//2 if C >

�

2

D h
2
C .a � b cosC/2 .since cos.� � C/ D � cosC/

D b
2 sin2

C C a
2
� 2ab cosC C b2 cos2

C

D a
2
C b

2
� 2ab cosC:

The other versions of the Cosine Law can be proved in a similar way.

E X A M P L E 10
A triangle has sides a D 2 and b D 3 and angle C D 40ı. Find

side c and the sine of angle B .

Solution From the third version of the Cosine Law:

c
2
D a

2
C b

2
� 2ab cosC D 4C 9 � 12 cos 40ı

� 13 � 12 � 0:766 D 3:808:

Side c is about
p

3:808 D 1:951 units in length. Now using Sine Law we get

A

A

h
b

C

h

C
B

B
a

a

c

c

b

Figure P.89

sinB D b
sinC

c
� 3 �

sin 40ı

1:951
�

3 � 0:6428

1:951
� 0:988:
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A triangle is uniquely determined by any one of the following sets of data (which

correspond to the known cases of congruency of triangles in classical geometry):

1. two sides and the angle contained between them (e.g., Example 10);

2. three sides, no one of which exceeds the sum of the other two in length;

3. two angles and one side; or

4. the hypotenuse and one other side of a right-angled triangle.

In such cases you can always find the unknown sides and angles by using the Pythagorean

Theorem or the Sine and Cosine Laws, and the fact that the sum of the three angles of

a triangle is 180ı (or � radians).

A triangle is not determined uniquely by two sides and a noncontained angle; there

may exist no triangle, one right-angled triangle, or two triangles having such data.

E X A M P L E 11
In triangle ABC , angle B D 30ı, b D 2, and c D 3. Find a.

Solution This is one of the ambiguous cases. By the Cosine Law,

b
2
D a

2
C c

2
� 2ac cosB

4 D a
2
C 9 � 6a.

p

3=2/:

Therefore, amust satisfy the equation a2
�3
p

3aC5 D 0. Solving this equation using

the quadratic formula, we obtain

a D
3
p

3˙
p

27 � 20

2

� 1:275 or 3:921

There are two triangles with the given data, as shown in Figure P.90.

Figure P.90 Two triangles with b D 2,

c D 3, B D 30ı

30ı 30ı

233

B BC Ca � 3:921a � 1:275

A A

2

E X E R C I S E S P.7

Find the values of the quantities in Exercises 1–6 using various

formulas presented in this section. Do not use tables or a

calculator.

1. cos
3�

4
2. tan �

3�

4
3. sin

2�

3

4. sin
7�

12
5. cos

5�

12
6. sin

11�

12

In Exercises 7–12, express the given quantity in terms of sinx and

cosx.

7. cos.� C x/ 8. sin.2� � x/ 9. sin

�

3�

2
� x

�

10. cos

�

3�

2
C x

�

11. tanx C cot x 12.
tanx � cotx

tan x C cotx

In Exercises 13–16, prove the given identities.

13. cos4
x � sin4

x D cos.2x/

14.
1 � cosx

sinx
D

sinx

1C cosx
D tan

x

2

15.
1 � cos x

1C cosx
D tan2 x

2

16.
cosx � sinx

cos x C sinx
D sec 2x � tan 2x

17. Express sin 3x in terms of sinx and cosx.

18. Express cos 3x in terms of sinx and cos x.

In Exercises 19–22, sketch the graph of the given function. What is

the period of the function?
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E X A M P L E 9
For the triangle in Figure P.87, express sides x and y in terms of

side a and angle � .

Solution The side x is opposite the angle � , and the side y is the hypotenuse. The

side adjacent to � is a. Thus,�

x
a

y

Figure P.87

x

a
D tan � and

a

y
D cos �:

Hence, x D a tan � and y D
a

cos �
D a sec � .

When dealing with general (not necessarily right-angled) triangles, it is often conve-

nient to label the vertices with capital letters, which also denote the angles at those

vertices, and refer to the sides opposite those vertices by the corresponding lowercase

letters. See Figure P.88. Relationships between the sides a, b, and c and opposite an-

gles A, B , and C of an arbitrary triangle ABC are given by the following formulas,

called the Sine Law and the Cosine Law.

T H E O R E M

3
Sine Law:

sinA

a
D

sinB

b
D

sinC

c

Cosine Law: a
2
D b

2
C c

2
� 2bc cosA

b
2
D a

2
C c

2
� 2ac cosB

c
2
D a

2
C b

2
� 2ab cosC

PROOF See Figure P.89. Let h be the length of the perpendicular from A to the

side BC . From right-angled triangles (and using sin.� � t/ D sin t if required),

we get c sinB D h D b sinC . Thus .sinB/=b D .sinC/=c. By the symmetry of the

formulas (or by dropping a perpendicular to another side), both fractions must be equal

C

a

b

A

c

B

Figure P.88 In this triangle the sides are

named to correspond to the opposite angles

to .sinA/=a, so the Sine Law is proved. For the Cosine Law, observe that

c
2
D

8

ˆ

ˆ

<

ˆ

ˆ

:

h2
C .a � b cosC/2 if C �

�

2

h2
C .aC b cos.� � C//2 if C >

�

2

D h
2
C .a � b cosC/2 .since cos.� � C/ D � cosC/

D b
2 sin2

C C a
2
� 2ab cosC C b2 cos2

C

D a
2
C b

2
� 2ab cosC:

The other versions of the Cosine Law can be proved in a similar way.

E X A M P L E 10
A triangle has sides a D 2 and b D 3 and angle C D 40ı. Find

side c and the sine of angle B .

Solution From the third version of the Cosine Law:

c
2
D a

2
C b

2
� 2ab cosC D 4C 9 � 12 cos 40ı

� 13 � 12 � 0:766 D 3:808:

Side c is about
p

3:808 D 1:951 units in length. Now using Sine Law we get

A

A

h
b

C

h

C
B

B
a

a

c

c

b

Figure P.89

sinB D b
sinC

c
� 3 �

sin 40ı

1:951
�

3 � 0:6428

1:951
� 0:988:
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A triangle is uniquely determined by any one of the following sets of data (which

correspond to the known cases of congruency of triangles in classical geometry):

1. two sides and the angle contained between them (e.g., Example 10);

2. three sides, no one of which exceeds the sum of the other two in length;

3. two angles and one side; or

4. the hypotenuse and one other side of a right-angled triangle.

In such cases you can always find the unknown sides and angles by using the Pythagorean

Theorem or the Sine and Cosine Laws, and the fact that the sum of the three angles of

a triangle is 180ı (or � radians).

A triangle is not determined uniquely by two sides and a noncontained angle; there

may exist no triangle, one right-angled triangle, or two triangles having such data.

E X A M P L E 11
In triangle ABC , angle B D 30ı, b D 2, and c D 3. Find a.

Solution This is one of the ambiguous cases. By the Cosine Law,

b
2
D a

2
C c

2
� 2ac cosB

4 D a
2
C 9 � 6a.

p

3=2/:

Therefore, amust satisfy the equation a2
�3
p

3aC5 D 0. Solving this equation using

the quadratic formula, we obtain

a D
3
p

3˙
p

27 � 20

2

� 1:275 or 3:921

There are two triangles with the given data, as shown in Figure P.90.

Figure P.90 Two triangles with b D 2,

c D 3, B D 30ı

30ı 30ı

233

B BC Ca � 3:921a � 1:275

A A

2

E X E R C I S E S P.7

Find the values of the quantities in Exercises 1–6 using various

formulas presented in this section. Do not use tables or a

calculator.

1. cos
3�

4
2. tan �

3�

4
3. sin

2�

3

4. sin
7�

12
5. cos

5�

12
6. sin

11�

12

In Exercises 7–12, express the given quantity in terms of sinx and

cosx.

7. cos.� C x/ 8. sin.2� � x/ 9. sin

�

3�

2
� x

�

10. cos

�

3�

2
C x

�

11. tanx C cot x 12.
tanx � cotx

tan x C cotx

In Exercises 13–16, prove the given identities.

13. cos4
x � sin4

x D cos.2x/

14.
1 � cosx

sinx
D

sinx

1C cosx
D tan

x

2

15.
1 � cos x

1C cosx
D tan2 x

2

16.
cosx � sinx

cos x C sinx
D sec 2x � tan 2x

17. Express sin 3x in terms of sinx and cosx.

18. Express cos 3x in terms of sinx and cos x.

In Exercises 19–22, sketch the graph of the given function. What is

the period of the function?
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19. f .x/ D cos 2x 20. f .x/ D sin
x

2

21. f .x/ D sin�x 22. f .x/ D cos
�x

2

23. Sketch the graph of y D 2 cos
�

x �
�

3

�

.

24. Sketch the graph of y D 1C sin
�

x C
�

4

�

.

In Exercises 25–30, one of sin � , cos � , and tan � is given. Find the

other two if � lies in the specified interval.

25. sin � D
3

5
; � in

h

�

2
; �

i

26. tan � D 2; � in
h

0;
�

2

i

27. cos � D
1

3
; � in

h

�

�

2
; 0

i

28. cos � D �
5

13
; � in

h

�

2
; �

i

29. sin � D
�1

2
; � in

�

�;
3�

2

�

30. tan � D
1

2
; � in

�

�;
3�

2

�

Trigonometry Review

In Exercises 31–42, ABC is a triangle with a right angle at C . The

sides opposite angles A;B , and C are a, b, and c, respectively.

(See Figure P.91.)

A

CB a

b
c

Figure P.91

31. Find a and b if c D 2, B D
�

3
.

32. Find a and c if b D 2, B D
�

3
.

33. Find b and c if a D 5, B D
�

6
.

34. Express a in terms of A and c.

35. Express a in terms of A and b.

36. Express a in terms of B and c.

37. Express a in terms of B and b.

38. Express c in terms of A and a.

39. Express c in terms of A and b.

40. Express sinA in terms of a and c.

41. Express sinA in terms of b and c.

42. Express sinA in terms of a and b.

In Exercises 43–50, ABC is an arbitrary triangle with sides a, b,

and c, opposite to angles A, B , and C , respectively. (See

Figure P.92.) Find the indicated quantities. Use tables or a

scientific calculator if necessary.

A

b

CaB

c

Figure P.92

43. Find sinB if a D 4, b D 3, A D
�

4
.

44. Find cosA if a D 2, b D 2, c D 3.

45. Find sinB if a D 2, b D 3, c D 4.

46. Find c if a D 2, b D 3, C D
�

4
.

47. Find a if c D 3, A D
�

4
, B D

�

3
.

48. Find c if a D 2, b D 3, C D 35ı.

49. Find b if a D 4, B D 40ı, C D 70ı.

50. Find c if a D 1, b D
p

2, A D 30ı. (There are two possible

answers.)

51. Two guy wires stretch from the top T of a vertical pole to

points B and C on the ground, where C is 10 m closer to the

base of the pole than is B . If wire BT makes an angle of 35ı

with the horizontal, and wire CT makes an angle of 50ı with

the horizontal, how high is the pole?

52. Observers at positions A and B 2 km apart simultaneously

measure the angle of elevation of a weather balloon to be 40ı

and 70ı, respectively. If the balloon is directly above a point

on the line segment between A and B , find the height of the

balloon.

53. Show that the area of triangle ABC is given by

.1=2/ab sinC D .1=2/bc sinA D .1=2/ca sinB .

54.I Show that the area of triangle ABC is given by
p

s.s � a/.s � b/.s � c/, where s D .aC b C c/=2 is the

semi-perimeter of the triangle.

ThisI symbol is used throughout the book to indicate an exercise

that is somewhat more difficult than most exercises.

ThisA symbol is used throughout the book to indicate an exercise

that is somewhat theoretical in nature. It does not imply difficulty.
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C H A P T E R 1

Limits and
Continuity

“
Every body continues in its state of rest, or of uniform motion in a right

line, unless it is compelled to change that state by forces impressed

upon it.

”Isaac Newton 1642–1727

from Principia Mathematica, 1687

“
It was not until Leibniz and Newton, by the discovery of the differential

calculus, had dispelled the ancient darkness which enveloped the

conception of the infinite, and had clearly established the conception

of the continuous and continuous change, that a full productive

application of the newly found mechanical conceptions made any

progress.

”Hermann von Helmholtz 1821–1894

Introduction Calculus was created to describe how quantities change.

It has two basic procedures that are opposites of one an-

other, namely:

� differentiation, for finding the rate of change of a given function, and

� integration, for finding a function having a given rate of change.

Both of these procedures are based on the fundamental concept of the limit of a func-

tion. It is this idea of limit that distinguishes calculus from algebra, geometry, and

trigonometry, which are useful for describing static situations.

In this chapter we will introduce the limit concept and develop some of its proper-

ties. We begin by considering how limits arise in some basic problems.

1.1 Examples of Velocity, Growth Rate, and Area

In this section we consider some examples of phenomena where limits arise in a natural

way.

Average Velocity and Instantaneous Velocity
The position of a moving object is a function of time. The average velocity of the

object over a time interval is found by dividing the change in the object’s position by

the length of the time interval.
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19. f .x/ D cos 2x 20. f .x/ D sin
x

2

21. f .x/ D sin�x 22. f .x/ D cos
�x

2

23. Sketch the graph of y D 2 cos
�

x �
�

3

�

.

24. Sketch the graph of y D 1C sin
�

x C
�

4

�

.

In Exercises 25–30, one of sin � , cos � , and tan � is given. Find the

other two if � lies in the specified interval.

25. sin � D
3

5
; � in

h

�

2
; �

i

26. tan � D 2; � in
h

0;
�

2

i

27. cos � D
1

3
; � in

h

�

�

2
; 0

i

28. cos � D �
5

13
; � in

h

�

2
; �

i

29. sin � D
�1

2
; � in

�

�;
3�

2

�

30. tan � D
1

2
; � in

�

�;
3�

2

�

Trigonometry Review

In Exercises 31–42, ABC is a triangle with a right angle at C . The

sides opposite angles A;B , and C are a, b, and c, respectively.

(See Figure P.91.)

A

CB a

b
c

Figure P.91

31. Find a and b if c D 2, B D
�

3
.

32. Find a and c if b D 2, B D
�

3
.

33. Find b and c if a D 5, B D
�

6
.

34. Express a in terms of A and c.

35. Express a in terms of A and b.

36. Express a in terms of B and c.

37. Express a in terms of B and b.

38. Express c in terms of A and a.

39. Express c in terms of A and b.

40. Express sinA in terms of a and c.

41. Express sinA in terms of b and c.

42. Express sinA in terms of a and b.

In Exercises 43–50, ABC is an arbitrary triangle with sides a, b,

and c, opposite to angles A, B , and C , respectively. (See

Figure P.92.) Find the indicated quantities. Use tables or a

scientific calculator if necessary.

A

b

CaB

c

Figure P.92

43. Find sinB if a D 4, b D 3, A D
�

4
.

44. Find cosA if a D 2, b D 2, c D 3.

45. Find sinB if a D 2, b D 3, c D 4.

46. Find c if a D 2, b D 3, C D
�

4
.

47. Find a if c D 3, A D
�

4
, B D

�

3
.

48. Find c if a D 2, b D 3, C D 35ı.

49. Find b if a D 4, B D 40ı, C D 70ı.

50. Find c if a D 1, b D
p

2, A D 30ı. (There are two possible

answers.)

51. Two guy wires stretch from the top T of a vertical pole to

points B and C on the ground, where C is 10 m closer to the

base of the pole than is B . If wire BT makes an angle of 35ı

with the horizontal, and wire CT makes an angle of 50ı with

the horizontal, how high is the pole?

52. Observers at positions A and B 2 km apart simultaneously

measure the angle of elevation of a weather balloon to be 40ı

and 70ı, respectively. If the balloon is directly above a point

on the line segment between A and B , find the height of the

balloon.

53. Show that the area of triangle ABC is given by

.1=2/ab sinC D .1=2/bc sinA D .1=2/ca sinB .

54.I Show that the area of triangle ABC is given by
p

s.s � a/.s � b/.s � c/, where s D .aC b C c/=2 is the

semi-perimeter of the triangle.

ThisI symbol is used throughout the book to indicate an exercise

that is somewhat more difficult than most exercises.

ThisA symbol is used throughout the book to indicate an exercise

that is somewhat theoretical in nature. It does not imply difficulty.
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C H A P T E R 1

Limits and
Continuity

“
Every body continues in its state of rest, or of uniform motion in a right

line, unless it is compelled to change that state by forces impressed

upon it.

”Isaac Newton 1642–1727

from Principia Mathematica, 1687

“
It was not until Leibniz and Newton, by the discovery of the differential

calculus, had dispelled the ancient darkness which enveloped the

conception of the infinite, and had clearly established the conception

of the continuous and continuous change, that a full productive

application of the newly found mechanical conceptions made any

progress.

”Hermann von Helmholtz 1821–1894

Introduction Calculus was created to describe how quantities change.

It has two basic procedures that are opposites of one an-

other, namely:

� differentiation, for finding the rate of change of a given function, and

� integration, for finding a function having a given rate of change.

Both of these procedures are based on the fundamental concept of the limit of a func-

tion. It is this idea of limit that distinguishes calculus from algebra, geometry, and

trigonometry, which are useful for describing static situations.

In this chapter we will introduce the limit concept and develop some of its proper-

ties. We begin by considering how limits arise in some basic problems.

1.1 Examples of Velocity, Growth Rate, and Area

In this section we consider some examples of phenomena where limits arise in a natural

way.

Average Velocity and Instantaneous Velocity
The position of a moving object is a function of time. The average velocity of the

object over a time interval is found by dividing the change in the object’s position by

the length of the time interval.
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E X A M P L E 1
(The average velocity of a falling rock) Physical experiments

show that if a rock is dropped from rest near the surface of the

earth, in the first t s it will fall a distance

y D 4:9t
2 m:

(a) What is the average velocity of the falling rock during the first 2 s?

(b) What is its average velocity from t D 1 to t D 2?

Solution The average velocity of the falling rock over any time interval Œt1; t2� is the

change �y in the distance fallen divided by the length �t of the time interval:

average velocity over Œt1; t2� D
�y

�t
D

4:9t22 � 4:9t
2
1

t2 � t1
:

(a) In the first 2 s (time interval Œ0; 2�), the average velocity is

�y

�t
D

4:9.22/ � 4:9.02/

2 � 0
D 9:8 m/s:

(b) In the time interval Œ1; 2�, the average velocity is

�y

�t
D

4:9.22/ � 4:9.12/

2 � 1
D 14:7 m/s:

E X A M P L E 2
How fast is the rock in Example 1 falling (a) at time t D 1?

(b) at time t D 2?
Table 1. Average velocity over

Œ1; 1C h�

h �y=�t

1 14:7000

0:1 10:2900

0:01 9:8490

0:001 9:8049

0:0001 9:8005

Solution We can calculate the average velocity over any time interval, but this ques-

tion asks for the instantaneous velocity at a given time. If the falling rock had a

speedometer, what would it show at time t D 1? To answer this, we first write the

average velocity over the time interval Œ1; 1C h� starting at t D 1 and having length h:

Average velocity over Œ1; 1C h� D
�y

�t
D

4:9.1C h/2 � 4:9.12/

h
:

We can’t calculate the instantaneous velocity at t D 1 by substituting h D 0 in this ex-

pression, because we can’t divide by zero. But we can calculate the average velocities
Table 2. Average velocity over

Œ2; 2C h�

h �y=�t

1 24:5000

0:1 20:0900

0:01 19:6490

0:001 19:6049

0:0001 19:6005

over shorter and shorter time intervals and see whether they seem to get close to a par-

ticular number. Table 1 shows the values of �y=�t for some values of h approaching

zero. Indeed, it appears that these average velocities get closer and closer to 9:8 m/s

as the length of the time interval gets closer and closer to zero. This suggests that the

rock is falling at a rate of 9.8 m/s one second after it is dropped.

Similarly, Table 2 shows values of the average velocities over shorter and shorter

time intervals Œ2; 2C h� starting at t D 2. The values suggest that the rock is falling at

19.6 m/s two seconds after it is dropped.

In Example 2 the average velocity of the falling rock over the time interval Œt; t C h� is

�y

�t
D

4:9.t C h/
2
� 4:9t

2

h
:

To find the instantaneous velocity (usually just called the velocity) at the instants t D 1

and t D 2, we examined the values of this average velocity for time intervals whose

lengths h became smaller and smaller. We were, in fact, finding the limit of the average

velocity as h approaches zero. This is expressed symbolically in the form

velocity at time t D lim
h!0

�y

�t
D lim

h!0

4:9.t C h/2 � 4:9t2

h
:

Read “limh!0 : : : ” as “the limit as h approaches zero of : : : ” We can’t find the limit

of the fraction by just substituting h D 0 because that would involve dividing by zero.

However, we can calculate the limit by first performing some algebraic simplifications

on the expression for the average velocity.
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E X A M P L E 3
Simplify the expression for the average velocity of the rock over

Œt; t C h� by first expanding .t C h/2. Hence, find the velocity v.t/

of the falling rock at time t directly, without making a table of values.

Solution The average velocity of the rock over time interval Œt; t C h� is

4:9.t C h/2 � 4:9t2

h
D

4:9.t2 C 2thC h2
� t2/

h

D

4:9.2thC h2/

h

D 9:8t C 4:9h:

The final form of the expression no longer involves division by h. It approaches 9:8tC

4:9.0/ D 9:8t as h approaches 0. Thus, t s after the rock is dropped, its velocity is

v.t/ D 9:8t m/s. In particular, at t D 1 and t D 2 the velocities are v.1/ D 9:8 m/s

and v.2/ D 19:6 m/s, respectively.

The Growth of an Algal Culture
In a laboratory experiment, the biomass of an algal culture was measured over a

74-day period by measuring the area in square millimetres occupied by the culture on a

microscope slide. These measurements m were plotted against the time t in days and

the points joined by a smooth curve m D f .t/, as shown in red in Figure 1.1.

Figure 1.1 The biomass m of an algal

culture after t days

m

1

2

3

4

5

t10 20 30 40 50 60 70

m

t

Observe that the biomass was about 0.1 mm2 on day 10 and had grown to about

1.7 mm2 on day 40, an increase of 1:7 � 0:1 D 1:6 mm2 in a time interval of

40 � 10 D 30 days. The average rate of growth over the time interval from day 10

to day 40 was therefore

1:7 � 0:1

40 � 10
D

1:6

30
� 0:053 mm2/d:

This average rate is just the slope of the green line joining the points on the graph of

m D f .t/ corresponding to t D 10 and t D 40. Similarly, the average rate of growth

of the algal biomass over any time interval can be determined by measuring the slope

of the line joining the points on the curve corresponding to that time interval. Such

lines are called secant lines to the curve.

E X A M P L E 4
How fast is the biomass growing on day 60?
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E X A M P L E 1
(The average velocity of a falling rock) Physical experiments

show that if a rock is dropped from rest near the surface of the

earth, in the first t s it will fall a distance

y D 4:9t
2 m:

(a) What is the average velocity of the falling rock during the first 2 s?

(b) What is its average velocity from t D 1 to t D 2?

Solution The average velocity of the falling rock over any time interval Œt1; t2� is the

change �y in the distance fallen divided by the length �t of the time interval:

average velocity over Œt1; t2� D
�y

�t
D

4:9t22 � 4:9t
2
1

t2 � t1
:

(a) In the first 2 s (time interval Œ0; 2�), the average velocity is

�y

�t
D

4:9.22/ � 4:9.02/

2 � 0
D 9:8 m/s:

(b) In the time interval Œ1; 2�, the average velocity is

�y

�t
D

4:9.22/ � 4:9.12/

2 � 1
D 14:7 m/s:

E X A M P L E 2
How fast is the rock in Example 1 falling (a) at time t D 1?

(b) at time t D 2?
Table 1. Average velocity over

Œ1; 1C h�

h �y=�t

1 14:7000

0:1 10:2900

0:01 9:8490

0:001 9:8049

0:0001 9:8005

Solution We can calculate the average velocity over any time interval, but this ques-

tion asks for the instantaneous velocity at a given time. If the falling rock had a

speedometer, what would it show at time t D 1? To answer this, we first write the

average velocity over the time interval Œ1; 1C h� starting at t D 1 and having length h:

Average velocity over Œ1; 1C h� D
�y

�t
D

4:9.1C h/2 � 4:9.12/

h
:

We can’t calculate the instantaneous velocity at t D 1 by substituting h D 0 in this ex-

pression, because we can’t divide by zero. But we can calculate the average velocities
Table 2. Average velocity over

Œ2; 2C h�

h �y=�t

1 24:5000

0:1 20:0900

0:01 19:6490

0:001 19:6049

0:0001 19:6005

over shorter and shorter time intervals and see whether they seem to get close to a par-

ticular number. Table 1 shows the values of �y=�t for some values of h approaching

zero. Indeed, it appears that these average velocities get closer and closer to 9:8 m/s

as the length of the time interval gets closer and closer to zero. This suggests that the

rock is falling at a rate of 9.8 m/s one second after it is dropped.

Similarly, Table 2 shows values of the average velocities over shorter and shorter

time intervals Œ2; 2C h� starting at t D 2. The values suggest that the rock is falling at

19.6 m/s two seconds after it is dropped.

In Example 2 the average velocity of the falling rock over the time interval Œt; t C h� is

�y

�t
D

4:9.t C h/
2
� 4:9t

2

h
:

To find the instantaneous velocity (usually just called the velocity) at the instants t D 1

and t D 2, we examined the values of this average velocity for time intervals whose

lengths h became smaller and smaller. We were, in fact, finding the limit of the average

velocity as h approaches zero. This is expressed symbolically in the form

velocity at time t D lim
h!0

�y

�t
D lim

h!0

4:9.t C h/2 � 4:9t2

h
:

Read “limh!0 : : : ” as “the limit as h approaches zero of : : : ” We can’t find the limit

of the fraction by just substituting h D 0 because that would involve dividing by zero.

However, we can calculate the limit by first performing some algebraic simplifications

on the expression for the average velocity.
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E X A M P L E 3
Simplify the expression for the average velocity of the rock over

Œt; t C h� by first expanding .t C h/2. Hence, find the velocity v.t/

of the falling rock at time t directly, without making a table of values.

Solution The average velocity of the rock over time interval Œt; t C h� is

4:9.t C h/2 � 4:9t2

h
D

4:9.t2 C 2thC h2
� t2/

h

D

4:9.2thC h2/

h

D 9:8t C 4:9h:

The final form of the expression no longer involves division by h. It approaches 9:8tC

4:9.0/ D 9:8t as h approaches 0. Thus, t s after the rock is dropped, its velocity is

v.t/ D 9:8t m/s. In particular, at t D 1 and t D 2 the velocities are v.1/ D 9:8 m/s

and v.2/ D 19:6 m/s, respectively.

The Growth of an Algal Culture
In a laboratory experiment, the biomass of an algal culture was measured over a

74-day period by measuring the area in square millimetres occupied by the culture on a

microscope slide. These measurements m were plotted against the time t in days and

the points joined by a smooth curve m D f .t/, as shown in red in Figure 1.1.

Figure 1.1 The biomass m of an algal

culture after t days

m

1

2

3

4

5

t10 20 30 40 50 60 70

m

t

Observe that the biomass was about 0.1 mm2 on day 10 and had grown to about

1.7 mm2 on day 40, an increase of 1:7 � 0:1 D 1:6 mm2 in a time interval of

40 � 10 D 30 days. The average rate of growth over the time interval from day 10

to day 40 was therefore

1:7 � 0:1

40 � 10
D

1:6

30
� 0:053 mm2/d:

This average rate is just the slope of the green line joining the points on the graph of

m D f .t/ corresponding to t D 10 and t D 40. Similarly, the average rate of growth

of the algal biomass over any time interval can be determined by measuring the slope

of the line joining the points on the curve corresponding to that time interval. Such

lines are called secant lines to the curve.

E X A M P L E 4
How fast is the biomass growing on day 60?
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Solution To answer this question, we could measure the average rates of change over

shorter and shorter times around day 60. The corresponding secant lines become

shorter and shorter, but their slopes approach a limit, namely, the slope of the tan-

gent line to the graph of m D f .t/ at the point where t D 60. This tangent line is

sketched in blue in Figure 1.1; it seems to go through the points .2; 0/ and .69; 5/, so

that its slope is

5 � 0

69 � 2
� 0:0746 mm2/d:

This is the rate at which the biomass was growing on day 60.

The Area of a Circle
All circles are similar geometric figures; they all have the same shape and differ only

in size. The ratio of the circumference C to the diameter 2r (twice the radius) has the

same value for all circles. The number � is defined to be this common ratio:

C

2r
D � or C D 2�r:

In school we are taught that the area A of a circle is this same number � times the

square of the radius:

A D �r
2
:

How can we deduce this area formula from the formula for the circumference that is

the definition of �?

The answer to this question lies in regarding the circle as a “limit” of regular

polygons, which are in turn made up of triangles, figures about whose geometry we

know a great deal.

Suppose a regular polygon having n sides is inscribed in a circle of radius r . (See

Figure 1.2.) The perimeter Pn and the area An of the polygon are, respectively, less

than the circumference C and the area A of the circle, but if n is large, Pn is close to

C and An is close to A. (In fact, the “circle” in Figure 1.2 was drawn by a computer

as a regular polygon having 180 sides, each subtending a 2ı angle at the centre of the

circle. It is very difficult to distinguish this 180-sided polygon from a real circle.) We

would expect Pn to approach the limit C and An to approach the limit A as n grows

larger and larger and approaches infinity.

Figure 1.2 A regular polygon (green) of n

sides inscribed in a red circle. Here n D 9

�=n

�=n

r

r

O A

B

M

Pn

C
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A regular polygon of n sides is the union of n nonoverlapping, congruent, isosce-

les triangles having a common vertex at O , the centre of the polygon. One of these

triangles, 4OAB , is shown in Figure 1.2. Since the total angle around the point O is

2� radians (we are assuming that a circle of radius 1 has circumference 2�), the angle

AOB is 2�=n radians. If M is the midpoint of AB , then OM bisects angle AOB .

Using elementary trigonometry, we can write the length of AB and the area of triangle

OAB in terms of the radius r of the circle:

jABj D 2jAM j D 2r sin
�

n

area OAB D
1

2
jABjjOM j D

1

2

�

2r sin
�

n

� �

r cos
�

n

�

D r
2 sin

�

n
cos

�

n
:

The perimeter Pn and area An of the polygon are n times these expressions:

Pn D 2rn sin
�

n

An D r
2
n sin

�

n
cos

�

n
:

Solving the first equation for rn sin.�=n/ D Pn=2 and substituting into the second

equation, we get

An D

�

Pn

2

�

r cos
�

n
:

Now the angleAOM D �=n approaches 0 as n grows large, so its cosine, cos.�=n/ D

jOM j=jOAj, approaches 1. Since Pn approaches C D 2�r as n grows large, the

expression for An approaches .2�r=2/r.1/ D �r
2, which must therefore be the area

of the circle.

Remark There is a fundamental relationship between the problem of finding the area

under the graph of a function f and the problem of finding another function g whose
v

t

v D 9:8t

t

A

Figure 1.3 A D
1

2
t .9:8t/ D 4:9t

2

rate of change is f: It will be explored fully beginning in Chapter 5. As an example,

for the falling rock of Example 1–Example 3, the green area A under the graph of the

velocity function v D 9:8t m/s and above the interval Œ0; t � on the t-axis is the area of

a triangle of base length t s and height 9:8t m/s, and so (see Figure 1.3) is

A D
1

2
.t/.9:8t/ D 4:9t

2 m;

which is exactly the distance y that the rock falls during the first t seconds. The rate

of change of the area function A.t/ (that is, of the distance function y) is the velocity

function v.t/.

E X E R C I S E S 1.1

Exercises 1–4 refer to an object moving along the x-axis in such a

way that at time t s its position is x D t2 m to the right of the

origin.

1. Find the average velocity of the object over the time interval

Œt; t C h�.

2. Make a table giving the average velocities of the object over

time intervals Œ2; 2C h�, for h D 1, 0.1, 0.01, 0.001, and

0.0001 s.

3. Use the results from Exercise 2 to guess the instantaneous

velocity of the object at t D 2 s.

4. Confirm your guess in Exercise 3 by calculating the limit of

the average velocity over Œ2; 2C h� as h approaches zero,
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Solution To answer this question, we could measure the average rates of change over

shorter and shorter times around day 60. The corresponding secant lines become

shorter and shorter, but their slopes approach a limit, namely, the slope of the tan-

gent line to the graph of m D f .t/ at the point where t D 60. This tangent line is

sketched in blue in Figure 1.1; it seems to go through the points .2; 0/ and .69; 5/, so

that its slope is

5 � 0

69 � 2
� 0:0746 mm2/d:

This is the rate at which the biomass was growing on day 60.

The Area of a Circle
All circles are similar geometric figures; they all have the same shape and differ only

in size. The ratio of the circumference C to the diameter 2r (twice the radius) has the

same value for all circles. The number � is defined to be this common ratio:

C

2r
D � or C D 2�r:

In school we are taught that the area A of a circle is this same number � times the

square of the radius:

A D �r
2
:

How can we deduce this area formula from the formula for the circumference that is

the definition of �?

The answer to this question lies in regarding the circle as a “limit” of regular

polygons, which are in turn made up of triangles, figures about whose geometry we

know a great deal.

Suppose a regular polygon having n sides is inscribed in a circle of radius r . (See

Figure 1.2.) The perimeter Pn and the area An of the polygon are, respectively, less

than the circumference C and the area A of the circle, but if n is large, Pn is close to

C and An is close to A. (In fact, the “circle” in Figure 1.2 was drawn by a computer

as a regular polygon having 180 sides, each subtending a 2ı angle at the centre of the

circle. It is very difficult to distinguish this 180-sided polygon from a real circle.) We

would expect Pn to approach the limit C and An to approach the limit A as n grows

larger and larger and approaches infinity.

Figure 1.2 A regular polygon (green) of n

sides inscribed in a red circle. Here n D 9

�=n

�=n

r

r

O A

B

M

Pn

C
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A regular polygon of n sides is the union of n nonoverlapping, congruent, isosce-

les triangles having a common vertex at O , the centre of the polygon. One of these

triangles, 4OAB , is shown in Figure 1.2. Since the total angle around the point O is

2� radians (we are assuming that a circle of radius 1 has circumference 2�), the angle

AOB is 2�=n radians. If M is the midpoint of AB , then OM bisects angle AOB .

Using elementary trigonometry, we can write the length of AB and the area of triangle

OAB in terms of the radius r of the circle:

jABj D 2jAM j D 2r sin
�

n

area OAB D
1

2
jABjjOM j D

1

2

�

2r sin
�

n

� �

r cos
�

n

�

D r
2 sin

�

n
cos

�

n
:

The perimeter Pn and area An of the polygon are n times these expressions:

Pn D 2rn sin
�

n

An D r
2
n sin

�

n
cos

�

n
:

Solving the first equation for rn sin.�=n/ D Pn=2 and substituting into the second

equation, we get

An D

�

Pn

2

�

r cos
�

n
:

Now the angleAOM D �=n approaches 0 as n grows large, so its cosine, cos.�=n/ D

jOM j=jOAj, approaches 1. Since Pn approaches C D 2�r as n grows large, the

expression for An approaches .2�r=2/r.1/ D �r
2, which must therefore be the area

of the circle.

Remark There is a fundamental relationship between the problem of finding the area

under the graph of a function f and the problem of finding another function g whose
v

t

v D 9:8t

t

A

Figure 1.3 A D
1

2
t .9:8t/ D 4:9t

2

rate of change is f: It will be explored fully beginning in Chapter 5. As an example,

for the falling rock of Example 1–Example 3, the green area A under the graph of the

velocity function v D 9:8t m/s and above the interval Œ0; t � on the t-axis is the area of

a triangle of base length t s and height 9:8t m/s, and so (see Figure 1.3) is

A D
1

2
.t/.9:8t/ D 4:9t

2 m;

which is exactly the distance y that the rock falls during the first t seconds. The rate

of change of the area function A.t/ (that is, of the distance function y) is the velocity

function v.t/.

E X E R C I S E S 1.1

Exercises 1–4 refer to an object moving along the x-axis in such a

way that at time t s its position is x D t2 m to the right of the

origin.

1. Find the average velocity of the object over the time interval

Œt; t C h�.

2. Make a table giving the average velocities of the object over

time intervals Œ2; 2C h�, for h D 1, 0.1, 0.01, 0.001, and

0.0001 s.

3. Use the results from Exercise 2 to guess the instantaneous

velocity of the object at t D 2 s.

4. Confirm your guess in Exercise 3 by calculating the limit of

the average velocity over Œ2; 2C h� as h approaches zero,
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using the method of Example 3.

Exercises 5–8 refer to the motion of a particle moving along the

x-axis so that at time t s it is at position x D 3t2 � 12t C 1 m.

5. Find the average velocity of the particle over the time intervals

Œ1; 2�, Œ2; 3�, and Œ1; 3�.

6. Use the method of Example 3 to find the velocity of the

particle at t D 1, t D 2, and t D 3.

7. In what direction is the particle moving at t D 1? t D 2?

t D 3?

8. Show that for any positive number k, the average velocity of

the particle over the time interval Œt � k; t C k� is equal to its

velocity at time t .

In Exercises 9–11, a weight that is suspended by a spring bobs up

and down so that its height above the floor at time t s is y ft, where

y D 2C
1

�
sin.�t/:

9. Sketch the graph of y as a function of t . How high is the

weight at t D 1 s? In what direction is it moving at that time?

C 10. What is the average velocity of the weight over the time

intervals Œ1; 2�, Œ1; 1:1�, Œ1; 1:01�, and Œ1; 1:001�?

11. Using the results of Exercise 10, estimate the velocity of the

weight at time t D 1. What is the significance of the sign of

your answer?

Exercises 12–13 refer to the algal biomass graphed in Figure 1.1.

12. Approximately how fast is the biomass growing on day 20?

13. On about what day is the biomass growing fastest?

14. The annual profits of a small company for each of the first five

years of its operation are given in Table 3.

Table 3.

Year Profit ($1,000s)

2011 6

2012 27

2013 62

2014 111

2015 174

(a) Plot points representing the profits as a function of year

on graph paper, and join them by a smooth curve.

(b) What is the average rate of increase of the annual profits

between 2013 and 2015?

(c) Use your graph to estimate the rate of increase of the

profits in 2013.

1.2 Limits of Functions
In order to speak meaningfully about rates of change, tangent lines, and areas bounded

by curves, we have to investigate the process of finding limits. Indeed, the concept of

limit is the cornerstone on which the development of calculus rests. Before we try to

give a definition of a limit, let us look at more examples.

E X A M P L E 1 Describe the behaviour of the function f .x/ D
x2
� 1

x � 1
near

x D 1.

Solution Note that f .x/ is defined for all real numbers x except x D 1. (We can’t

divide by zero.) For any x ¤ 1 we can simplify the expression for f .x/ by factoring

the numerator and cancelling common factors:

f .x/ D
.x � 1/.x C 1/

x � 1
D x C 1 for x ¤ 1:

The graph of f is the line y D xC1 with one point removed, namely, the point .1; 2/.

This removed point is shown as a “hole” in the graph in Figure 1.4. Even though f .1/

is not defined, it is clear that we can make the value of f .x/ as close as we want to 2 by

choosing x close enough to 1. Therefore, we say that f .x/ approaches arbitrarily close

to 2 as x approaches 1, or, more simply, f .x/ approaches the limit 2 as x approaches

1. We write this as

y

x

y D f .x/

.1; 2/

1

2

Figure 1.4 The graph of f .x/ D
x2
� 1

x � 1

lim
x!1

f .x/ D 2 or lim
x!1

x2
� 1

x � 1
D 2:
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E X A M P L E 2
What happens to the function g.x/ D .1 C x2/1=x2

as x ap-

proaches zero?

Solution Note that g.x/ is not defined at x D 0. In fact, for the moment it does not
Table 4.

x g.x/

˙1:0 2:0000 00000

˙0:1 2:7048 13829

˙0:01 2:7181 45927

˙0:001 2:7182 80469

˙0:0001 2:7182 81815

˙0:00001 1:0000 00000

appear to be defined for any x whose square x2 is not a rational number. (Recall that if

r D m=n, where m and n are integers and n > 0, then xr means the nth root of xm.)

Let us ignore for now the problem of deciding what g.x/ means if x2 is irrational and

consider only rational values of x. There is no obvious way to simplify the expression

for g.x/ as we did in Example 1. However, we can use a scientific calculator to obtain

approximate values of g.x/ for some rational values of x approaching 0. (The values

in Table 4 were obtained with such a calculator.)

Except for the last value in the table, the values of g.x/ seem to be approaching a

certain number, 2:71828 : : : , as x gets closer and closer to 0. We will show in Section

3.4 that

lim
x!0

g.x/ D lim
x!0

.1C x
2
/
1=x2

D e D 2:7 1828 1828 45 90 45 : : : :

The number e turns out to be very important in mathematics.

K Observe that the last entry in the table appears to be wrong. This is important. It is

because the calculator can only represent a finite number of numbers. The calculator

was unable to distinguish 1 C .0:00001/2 D 1:0000000001 from 1, and it therefore

calculated 110;000;000;000
D 1. While for many calculations on computers this reality

can be minimized, it cannot be eliminated. The wrong value warns us of something

called round-off error. We can explore with computer graphics what this means for

g near 0. As was the case for the numerical monster encountered in Section P.4, the

computer can produce rich and beautiful behaviour in its failed attempt to represent g,

which is very different from what g actually does. While it is possible to get computer

algebra software like Maple to evaluate limits correctly (as we will see in the next

section), we cannot use computer graphics or floating-point arithmetic to study many

mathematical notions such as limits. In fact, we will need mathematics to understand

what the computer actually does so that we can be the master of our tools.
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Figure 1.5 The graph of

y D g.x/ on the interval Œ�1; 1�
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Figure 1.6 The graphs of y D g.x/

(colour) and y D e � 2:718 (black) on

the interval Œ�5 � 10�8; 5 � 10�8�
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1e–08 2e–08 x

Figure 1.7 The graphs of y D g.x/

(colour) and y D .1C 2 � 10�16/1=x2

(black) on the interval Œ10�9; 2:5 � 10�8�

Figures 1.5–1.7 illustrate this fascinating behaviour of g with three plots made with

Maple using its default 10-significant-figure precision in representing floating-point

(i.e., real) numbers. Figure 1.5 is a plot of the graph of g on the interval Œ�1; 1�. The

graph starts out at height 2 at either endpoint x D ˙1 and rises to height approximately

2:718 � � � as x decreases in absolute value, as we would expect from Table 4. Figure 1.6

shows the graph of g restricted to the tiny interval Œ�5 � 10�8; 5 � 10�8�. It consists

of many short arcs decreasing in height as jxj increases, and clustering around the

line y D 2:718 � � �, and a horizontal part at height 1 between approximately �10�8

and 10�8. Figure 1.7 zooms in on the part of the graph to the right of the origin

up to x D 2:5 � 10�8. Note how the arc closest to 0 coincides with the graph of
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using the method of Example 3.

Exercises 5–8 refer to the motion of a particle moving along the

x-axis so that at time t s it is at position x D 3t2 � 12t C 1 m.

5. Find the average velocity of the particle over the time intervals

Œ1; 2�, Œ2; 3�, and Œ1; 3�.

6. Use the method of Example 3 to find the velocity of the

particle at t D 1, t D 2, and t D 3.

7. In what direction is the particle moving at t D 1? t D 2?

t D 3?

8. Show that for any positive number k, the average velocity of

the particle over the time interval Œt � k; t C k� is equal to its

velocity at time t .

In Exercises 9–11, a weight that is suspended by a spring bobs up

and down so that its height above the floor at time t s is y ft, where

y D 2C
1

�
sin.�t/:

9. Sketch the graph of y as a function of t . How high is the

weight at t D 1 s? In what direction is it moving at that time?

C 10. What is the average velocity of the weight over the time

intervals Œ1; 2�, Œ1; 1:1�, Œ1; 1:01�, and Œ1; 1:001�?

11. Using the results of Exercise 10, estimate the velocity of the

weight at time t D 1. What is the significance of the sign of

your answer?

Exercises 12–13 refer to the algal biomass graphed in Figure 1.1.

12. Approximately how fast is the biomass growing on day 20?

13. On about what day is the biomass growing fastest?

14. The annual profits of a small company for each of the first five

years of its operation are given in Table 3.

Table 3.

Year Profit ($1,000s)

2011 6

2012 27

2013 62

2014 111

2015 174

(a) Plot points representing the profits as a function of year

on graph paper, and join them by a smooth curve.

(b) What is the average rate of increase of the annual profits

between 2013 and 2015?

(c) Use your graph to estimate the rate of increase of the

profits in 2013.

1.2 Limits of Functions
In order to speak meaningfully about rates of change, tangent lines, and areas bounded

by curves, we have to investigate the process of finding limits. Indeed, the concept of

limit is the cornerstone on which the development of calculus rests. Before we try to

give a definition of a limit, let us look at more examples.

E X A M P L E 1 Describe the behaviour of the function f .x/ D
x2
� 1

x � 1
near

x D 1.

Solution Note that f .x/ is defined for all real numbers x except x D 1. (We can’t

divide by zero.) For any x ¤ 1 we can simplify the expression for f .x/ by factoring

the numerator and cancelling common factors:

f .x/ D
.x � 1/.x C 1/

x � 1
D x C 1 for x ¤ 1:

The graph of f is the line y D xC1 with one point removed, namely, the point .1; 2/.

This removed point is shown as a “hole” in the graph in Figure 1.4. Even though f .1/

is not defined, it is clear that we can make the value of f .x/ as close as we want to 2 by

choosing x close enough to 1. Therefore, we say that f .x/ approaches arbitrarily close

to 2 as x approaches 1, or, more simply, f .x/ approaches the limit 2 as x approaches

1. We write this as

y

x

y D f .x/

.1; 2/

1

2

Figure 1.4 The graph of f .x/ D
x2
� 1

x � 1

lim
x!1

f .x/ D 2 or lim
x!1

x2
� 1

x � 1
D 2:
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E X A M P L E 2
What happens to the function g.x/ D .1 C x2/1=x2

as x ap-

proaches zero?

Solution Note that g.x/ is not defined at x D 0. In fact, for the moment it does not
Table 4.

x g.x/

˙1:0 2:0000 00000

˙0:1 2:7048 13829

˙0:01 2:7181 45927

˙0:001 2:7182 80469

˙0:0001 2:7182 81815

˙0:00001 1:0000 00000

appear to be defined for any x whose square x2 is not a rational number. (Recall that if

r D m=n, where m and n are integers and n > 0, then xr means the nth root of xm.)

Let us ignore for now the problem of deciding what g.x/ means if x2 is irrational and

consider only rational values of x. There is no obvious way to simplify the expression

for g.x/ as we did in Example 1. However, we can use a scientific calculator to obtain

approximate values of g.x/ for some rational values of x approaching 0. (The values

in Table 4 were obtained with such a calculator.)

Except for the last value in the table, the values of g.x/ seem to be approaching a

certain number, 2:71828 : : : , as x gets closer and closer to 0. We will show in Section

3.4 that

lim
x!0

g.x/ D lim
x!0

.1C x
2
/
1=x2

D e D 2:7 1828 1828 45 90 45 : : : :

The number e turns out to be very important in mathematics.

K Observe that the last entry in the table appears to be wrong. This is important. It is

because the calculator can only represent a finite number of numbers. The calculator

was unable to distinguish 1 C .0:00001/2 D 1:0000000001 from 1, and it therefore

calculated 110;000;000;000
D 1. While for many calculations on computers this reality

can be minimized, it cannot be eliminated. The wrong value warns us of something

called round-off error. We can explore with computer graphics what this means for

g near 0. As was the case for the numerical monster encountered in Section P.4, the

computer can produce rich and beautiful behaviour in its failed attempt to represent g,

which is very different from what g actually does. While it is possible to get computer

algebra software like Maple to evaluate limits correctly (as we will see in the next

section), we cannot use computer graphics or floating-point arithmetic to study many

mathematical notions such as limits. In fact, we will need mathematics to understand

what the computer actually does so that we can be the master of our tools.
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Figure 1.5 The graph of

y D g.x/ on the interval Œ�1; 1�
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Figure 1.6 The graphs of y D g.x/

(colour) and y D e � 2:718 (black) on

the interval Œ�5 � 10�8; 5 � 10�8�
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Figure 1.7 The graphs of y D g.x/

(colour) and y D .1C 2 � 10�16/1=x2

(black) on the interval Œ10�9; 2:5 � 10�8�

Figures 1.5–1.7 illustrate this fascinating behaviour of g with three plots made with

Maple using its default 10-significant-figure precision in representing floating-point

(i.e., real) numbers. Figure 1.5 is a plot of the graph of g on the interval Œ�1; 1�. The

graph starts out at height 2 at either endpoint x D ˙1 and rises to height approximately

2:718 � � � as x decreases in absolute value, as we would expect from Table 4. Figure 1.6

shows the graph of g restricted to the tiny interval Œ�5 � 10�8; 5 � 10�8�. It consists

of many short arcs decreasing in height as jxj increases, and clustering around the

line y D 2:718 � � �, and a horizontal part at height 1 between approximately �10�8

and 10�8. Figure 1.7 zooms in on the part of the graph to the right of the origin

up to x D 2:5 � 10�8. Note how the arc closest to 0 coincides with the graph of
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y D
�

1 C 2 � 10�16
�1=x2

(shown in black), indicating that 1 C 2 � 10�16 may be

the smallest number greater than 1 that Maple can distinguish from 1. Both figures

show that the breakdown in the graph of g is not sudden, but becomes more and more

pronounced as jxj decreases until the breakdown is complete near˙10�8.

The examples above and those in Section 1.1 suggest the following informal definition

of limit.

D E F I N I T I O N

1

An informal definition of limit

If f .x/ is defined for all x near a, except possibly at a itself, and if we can

ensure that f .x/ is as close as we want to L by taking x close enough to a,

but not equal to a, we say that the function f approaches the limit L as x

approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L:

This definition is informal because phrases such as close as we want and close enough

are imprecise; their meaning depends on the context. To a machinist manufacturing a

piston, close enough may mean within a few thousandths of an inch. To an astronomer

studying distant galaxies, close enough may mean within a few thousand light-years.

The definition should be clear enough, however, to enable us to recognize and evaluate

limits of specific functions. A more precise “formal” definition, given in Section 1.5,

is needed if we want to prove theorems about limits like Theorems 2–4, stated later in

this section.

E X A M P L E 3
Find (a) lim

x!a
x and (b) lim

x!a
c (where c is a constant).

Solution In words, part (a) asks: “What does x approach as x approaches a?” The

answer is surely a.

lim
x!a

x D a:

Similarly, part (b) asks: “What does c approach as x approaches a?” The answer here

is that c approaches c; you can’t get any closer to c than by being c.

lim
x!a

c D c:

Example 3 shows that limx!a f .x/ can sometimes be evaluated by just calculating

f .a/. This will be the case if f .x/ is defined in an open interval containing x D a

and the graph of f passes unbroken through the point .a; f .a//. The next example

shows various ways algebraic manipulations can be used to evaluate limx!a f .x/ in

situations where f .a/ is undefined. This usually happens when f .x/ is a fraction with

denominator equal to 0 at x D a.

E X A M P L E 4
Evaluate:

(a) lim
x!�2

x
2
C x � 2

x2
C 5x C 6

, (b) lim
x!a

1

x
�

1

a

x � a
, and (c) lim

x!4

p

x � 2

x2
� 16

.

Solution Each of these limits involves a fraction whose numerator and denominator

are both 0 at the point where the limit is taken.
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(a) lim
x!�2

x2
C x � 2

x2
C 5x C 6

fraction undefined at x D �2

Factor numerator and denominator.

(See Section P.6.)

D lim
x!�2

.x C 2/.x � 1/

.x C 2/.x C 3/
Cancel common factors.

D lim
x!�2

x � 1

x C 3
Evaluate this limit by

substituting x D �2.

D

�2 � 1

�2C 3
D �3:

(b) lim
x!a

1

x
�

1

a

x � a
fraction undefined at x D a

Simplify the numerator.

D lim
x!a

a � x

ax

x � a

D lim
x!a

�.x � a/

ax.x � a/
Cancel the common factor.

D lim
x!a

�1

ax
D �

1

a2
:

(c) lim
x!4

p

x � 2

x2
� 16

fraction undefined at x D 4

Multiply numerator and denominator

by the conjugate of the expression

in the numerator.
D lim

x!4

.
p

x � 2/.
p

x C 2/

.x2
� 16/.

p

x C 2/

D lim
x!4

x � 4

.x � 4/.x C 4/.
p

x C 2/

D lim
x!4

1

.x C 4/.
p

x C 2/
D

1

.4C 4/.2C 2/
D

1

32
:

Figure 1.8

(a) lim
x!0

1

x
does not exist

(b) lim
x!2

g.x/ D 2, but g.2/ D 1

y

x

.1; 1/

y D
1

x

.�1;�1/

y

x

.2; 1/

.2; 2/

y D g.x/

(a) (b)

BEWARE! Always be aware

that the existence of limx!a f .x/

does not require that f .a/ exist and

does not depend on f .a/ even if

f .a/ does exist. It depends only on

the values of f .x/ for x near but

not equal to a.

A function f may be defined on both sides of x D a but still not have a limit at x D a.

For example, the function f .x/ D 1=x has no limit as x approaches 0. As can be seen

in Figure 1.8(a), the values 1=x grow ever larger in absolute value as x approaches 0;

there is no single number L that they approach.

The following example shows that even if f .x/ is defined at x D a, the limit of

f .x/ as x approaches a may not be equal to f .a/.
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y D
�

1 C 2 � 10�16
�1=x2

(shown in black), indicating that 1 C 2 � 10�16 may be

the smallest number greater than 1 that Maple can distinguish from 1. Both figures

show that the breakdown in the graph of g is not sudden, but becomes more and more

pronounced as jxj decreases until the breakdown is complete near˙10�8.

The examples above and those in Section 1.1 suggest the following informal definition

of limit.

D E F I N I T I O N

1

An informal definition of limit

If f .x/ is defined for all x near a, except possibly at a itself, and if we can

ensure that f .x/ is as close as we want to L by taking x close enough to a,

but not equal to a, we say that the function f approaches the limit L as x

approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L:

This definition is informal because phrases such as close as we want and close enough

are imprecise; their meaning depends on the context. To a machinist manufacturing a

piston, close enough may mean within a few thousandths of an inch. To an astronomer

studying distant galaxies, close enough may mean within a few thousand light-years.

The definition should be clear enough, however, to enable us to recognize and evaluate

limits of specific functions. A more precise “formal” definition, given in Section 1.5,

is needed if we want to prove theorems about limits like Theorems 2–4, stated later in

this section.

E X A M P L E 3
Find (a) lim

x!a
x and (b) lim

x!a
c (where c is a constant).

Solution In words, part (a) asks: “What does x approach as x approaches a?” The

answer is surely a.

lim
x!a

x D a:

Similarly, part (b) asks: “What does c approach as x approaches a?” The answer here

is that c approaches c; you can’t get any closer to c than by being c.

lim
x!a

c D c:

Example 3 shows that limx!a f .x/ can sometimes be evaluated by just calculating

f .a/. This will be the case if f .x/ is defined in an open interval containing x D a

and the graph of f passes unbroken through the point .a; f .a//. The next example

shows various ways algebraic manipulations can be used to evaluate limx!a f .x/ in

situations where f .a/ is undefined. This usually happens when f .x/ is a fraction with

denominator equal to 0 at x D a.

E X A M P L E 4
Evaluate:

(a) lim
x!�2

x
2
C x � 2

x2
C 5x C 6

, (b) lim
x!a

1

x
�

1

a

x � a
, and (c) lim

x!4

p

x � 2

x2
� 16

.

Solution Each of these limits involves a fraction whose numerator and denominator

are both 0 at the point where the limit is taken.
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(a) lim
x!�2

x2
C x � 2

x2
C 5x C 6

fraction undefined at x D �2

Factor numerator and denominator.

(See Section P.6.)

D lim
x!�2

.x C 2/.x � 1/

.x C 2/.x C 3/
Cancel common factors.

D lim
x!�2

x � 1

x C 3
Evaluate this limit by

substituting x D �2.

D

�2 � 1

�2C 3
D �3:

(b) lim
x!a

1

x
�

1

a

x � a
fraction undefined at x D a

Simplify the numerator.

D lim
x!a

a � x

ax

x � a

D lim
x!a

�.x � a/

ax.x � a/
Cancel the common factor.

D lim
x!a

�1

ax
D �

1

a2
:

(c) lim
x!4

p

x � 2

x2
� 16

fraction undefined at x D 4

Multiply numerator and denominator

by the conjugate of the expression

in the numerator.
D lim

x!4

.
p

x � 2/.
p

x C 2/

.x2
� 16/.

p

x C 2/

D lim
x!4

x � 4

.x � 4/.x C 4/.
p

x C 2/

D lim
x!4

1

.x C 4/.
p

x C 2/
D

1

.4C 4/.2C 2/
D

1

32
:

Figure 1.8

(a) lim
x!0

1

x
does not exist

(b) lim
x!2

g.x/ D 2, but g.2/ D 1

y

x

.1; 1/

y D
1

x

.�1;�1/

y

x

.2; 1/

.2; 2/

y D g.x/

(a) (b)

BEWARE! Always be aware

that the existence of limx!a f .x/

does not require that f .a/ exist and

does not depend on f .a/ even if

f .a/ does exist. It depends only on

the values of f .x/ for x near but

not equal to a.

A function f may be defined on both sides of x D a but still not have a limit at x D a.

For example, the function f .x/ D 1=x has no limit as x approaches 0. As can be seen

in Figure 1.8(a), the values 1=x grow ever larger in absolute value as x approaches 0;

there is no single number L that they approach.

The following example shows that even if f .x/ is defined at x D a, the limit of

f .x/ as x approaches a may not be equal to f .a/.
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E X A M P L E 5 Let g.x/ D
n

x if x ¤ 2

1 if x D 2.
(See Figure 1.8(b).) Then

lim
x!2

g.x/ D lim
x!2

x D 2; although g.2/ D 1:

One-Sided Limits
Limits are unique; if limx!a f .x/ D L and limx!a f .x/ D M , then L D M .

(See Exercise 31 in Section 1.5.) Although a function f can only have one limit at

any particular point, it is, nevertheless, useful to be able to describe the behaviour of

functions that approach different numbers as x approaches a from one side or the other.

(See Figure 1.9.)

ax

a x

negative side of a
= left-hand side of a

x ! a� means x approaches a from the left

x ! aC means x approaches a from the right

positive side of a
= right-hand side of a

Figure 1.9 One-sided approach

D E F I N I T I O N

2

Informal definition of left and right limits

If f .x/ is defined on some interval .b; a/ extending to the left of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the left

of a and close enough to a, then we say f .x/ has left limit L at x D a, and

we write

lim
x!a�

f .x/ D L:

If f .x/ is defined on some interval .a; b/ extending to the right of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the right

of a and close enough to a, then we say f .x/ has right limit L at x D a, and

we write

lim
x!aC

f .x/ D L:

Note the use of the suffix C to denote approach from the right (the positive side) and

the suffix � to denote approach from the left (the negative side).

E X A M P L E 6
The signum function sgn .x/ D x=jxj (see Figure 1.10) has left

limit �1 and right limit 1 at x D 0:

lim
x!0�

sgn .x/ D �1 and lim
x!0C

sgn .x/ D 1

because the values of sgn .x/ approach �1 (they are �1) if x is negative and ap-

proaches 0, and they approach 1 if x is positive and approaches 0. Since these left and

right limits are not equal, limx!0 sgn .x/ does not exist.

y

x

�1

y D sgn .x/

1
y D 1

y D �1

Figure 1.10

lim
x!0

sgn .x/ does not exist, because

lim
x!0�

sgn .x/ D �1, lim
x!0C

sgn .x/ D 1

As suggested in Example 6, the relationship between ordinary (two-sided) limits and

one-sided limits can be stated as follows:

T H E O R E M

1

Relationship between one-sided and two-sided limits

A function f .x/ has limit L at x D a if and only if it has both left and right limits

there and these one-sided limits are both equal to L:

lim
x!a

f .x/ D L ” lim
x!a�

f .x/ D lim
x!aC

f .x/ D L:

E X A M P L E 7 If f .x/ D
jx � 2j

x2
C x � 6

, find: lim
x!2C

f .x/, lim
x!2�

f .x/, and lim
x!2

f .x/.
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Solution Observe that jx � 2j D x � 2 if x > 2, and jx � 2j D �.x � 2/ if x < 2.

Therefore,

lim
x!2C

f .x/ D lim
x!2C

x � 2

x2
C x � 6

D lim
x!2C

x � 2

.x � 2/.x C 3/

D lim
x!2C

1

x C 3
D

1

5
;

lim
x!2�

f .x/ D lim
x!2�

�.x � 2/

x2
C x � 6

D lim
x!2�

�.x � 2/

.x � 2/.x C 3/

D lim
x!2�

�1

x C 3
D �

1

5
:

Since limx!2� f .x/ ¤ limx!2C f .x/, the limit limx!2 f .x/ does not exist.

E X A M P L E 8
What one-sided limits does g.x/ D

p

1 � x2 have at x D �1 and

x D 1?

Solution The domain of g is Œ�1; 1�, so g.x/ is defined only to the right of x D �1

and only to the left of x D 1. As can be seen in Figure 1.11,

lim
x!�1C

g.x/ D 0 and lim
x!1�

g.x/ D 0:

g.x/ has no left limit or limit at x D �1 and no right limit or limit at x D 1.

y

x�1 1

y D
p

1 � x2

Figure 1.11
p

1 � x2 has right limit 0 at

�1 and left limit 0 at 1

Rules for Calculating Limits
The following theorems make it easy to calculate limits and one-sided limits of many

kinds of functions when we know some elementary limits. We will not prove the

theorems here. (See Section 1.5.)

T H E O R E M

2

Limit Rules

If limx!a f .x/ D L, limx!a g.x/ DM , and k is a constant, then

1. Limit of a sum: lim
x!a

Œf .x/C g.x/� D LCM

2. Limit of a difference: lim
x!a

Œf .x/� g.x/� D L �M

3. Limit of a product: lim
x!a

f .x/g.x/ D LM

4. Limit of a multiple: lim
x!a

kf .x/ D kL

5. Limit of a quotient: lim
x!a

f .x/

g.x/
D

L

M
; if M ¤ 0:

If m is an integer and n is a positive integer, then

6. Limit of a power: lim
x!a

�

f .x/
�m=n

D L
m=n

; providedL > 0 if n is even,

and L ¤ 0 if m < 0.

If f .x/ � g.x/ on an interval containing a in its interior, then

7. Order is preserved: L �M

Rules 1–6 are also valid for right limits and left limits. So is Rule 7, under the as-

sumption that f .x/ � g.x/ on an open interval extending from a in the appropriate

direction.

In words, rule 1 of Theorem 2 says that the limit of a sum of functions is the sum of

their limits. Similarly, rule 5 says that the limit of a quotient of two functions is the

quotient of their limits, provided that the limit of the denominator is not zero. Try to

state the other rules in words.

We can make use of the limits (a) limx!a c D c (where c is a constant) and (b)

limx!a x D a, from Example 3, together with parts of Theorem 2 to calculate limits

of many combinations of functions.
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E X A M P L E 5 Let g.x/ D
n

x if x ¤ 2

1 if x D 2.
(See Figure 1.8(b).) Then

lim
x!2

g.x/ D lim
x!2

x D 2; although g.2/ D 1:

One-Sided Limits
Limits are unique; if limx!a f .x/ D L and limx!a f .x/ D M , then L D M .

(See Exercise 31 in Section 1.5.) Although a function f can only have one limit at

any particular point, it is, nevertheless, useful to be able to describe the behaviour of

functions that approach different numbers as x approaches a from one side or the other.

(See Figure 1.9.)

ax

a x

negative side of a
= left-hand side of a

x ! a� means x approaches a from the left

x ! aC means x approaches a from the right

positive side of a
= right-hand side of a

Figure 1.9 One-sided approach

D E F I N I T I O N

2

Informal definition of left and right limits

If f .x/ is defined on some interval .b; a/ extending to the left of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the left

of a and close enough to a, then we say f .x/ has left limit L at x D a, and

we write

lim
x!a�

f .x/ D L:

If f .x/ is defined on some interval .a; b/ extending to the right of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the right

of a and close enough to a, then we say f .x/ has right limit L at x D a, and

we write

lim
x!aC

f .x/ D L:

Note the use of the suffix C to denote approach from the right (the positive side) and

the suffix � to denote approach from the left (the negative side).

E X A M P L E 6
The signum function sgn .x/ D x=jxj (see Figure 1.10) has left

limit �1 and right limit 1 at x D 0:

lim
x!0�

sgn .x/ D �1 and lim
x!0C

sgn .x/ D 1

because the values of sgn .x/ approach �1 (they are �1) if x is negative and ap-

proaches 0, and they approach 1 if x is positive and approaches 0. Since these left and

right limits are not equal, limx!0 sgn .x/ does not exist.

y

x

�1

y D sgn .x/

1
y D 1

y D �1

Figure 1.10

lim
x!0

sgn .x/ does not exist, because

lim
x!0�

sgn .x/ D �1, lim
x!0C

sgn .x/ D 1

As suggested in Example 6, the relationship between ordinary (two-sided) limits and

one-sided limits can be stated as follows:

T H E O R E M

1

Relationship between one-sided and two-sided limits

A function f .x/ has limit L at x D a if and only if it has both left and right limits

there and these one-sided limits are both equal to L:

lim
x!a

f .x/ D L ” lim
x!a�

f .x/ D lim
x!aC

f .x/ D L:

E X A M P L E 7 If f .x/ D
jx � 2j

x2
C x � 6

, find: lim
x!2C

f .x/, lim
x!2�

f .x/, and lim
x!2

f .x/.
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Solution Observe that jx � 2j D x � 2 if x > 2, and jx � 2j D �.x � 2/ if x < 2.

Therefore,

lim
x!2C

f .x/ D lim
x!2C

x � 2

x2
C x � 6

D lim
x!2C

x � 2

.x � 2/.x C 3/

D lim
x!2C

1

x C 3
D

1

5
;

lim
x!2�

f .x/ D lim
x!2�

�.x � 2/

x2
C x � 6

D lim
x!2�

�.x � 2/

.x � 2/.x C 3/

D lim
x!2�

�1

x C 3
D �

1

5
:

Since limx!2� f .x/ ¤ limx!2C f .x/, the limit limx!2 f .x/ does not exist.

E X A M P L E 8
What one-sided limits does g.x/ D

p

1 � x2 have at x D �1 and

x D 1?

Solution The domain of g is Œ�1; 1�, so g.x/ is defined only to the right of x D �1

and only to the left of x D 1. As can be seen in Figure 1.11,

lim
x!�1C

g.x/ D 0 and lim
x!1�

g.x/ D 0:

g.x/ has no left limit or limit at x D �1 and no right limit or limit at x D 1.

y

x�1 1

y D
p

1 � x2

Figure 1.11
p

1 � x2 has right limit 0 at

�1 and left limit 0 at 1

Rules for Calculating Limits
The following theorems make it easy to calculate limits and one-sided limits of many

kinds of functions when we know some elementary limits. We will not prove the

theorems here. (See Section 1.5.)

T H E O R E M

2

Limit Rules

If limx!a f .x/ D L, limx!a g.x/ DM , and k is a constant, then

1. Limit of a sum: lim
x!a

Œf .x/C g.x/� D LCM

2. Limit of a difference: lim
x!a

Œf .x/� g.x/� D L �M

3. Limit of a product: lim
x!a

f .x/g.x/ D LM

4. Limit of a multiple: lim
x!a

kf .x/ D kL

5. Limit of a quotient: lim
x!a

f .x/

g.x/
D

L

M
; if M ¤ 0:

If m is an integer and n is a positive integer, then

6. Limit of a power: lim
x!a

�

f .x/
�m=n

D L
m=n

; providedL > 0 if n is even,

and L ¤ 0 if m < 0.

If f .x/ � g.x/ on an interval containing a in its interior, then

7. Order is preserved: L �M

Rules 1–6 are also valid for right limits and left limits. So is Rule 7, under the as-

sumption that f .x/ � g.x/ on an open interval extending from a in the appropriate

direction.

In words, rule 1 of Theorem 2 says that the limit of a sum of functions is the sum of

their limits. Similarly, rule 5 says that the limit of a quotient of two functions is the

quotient of their limits, provided that the limit of the denominator is not zero. Try to

state the other rules in words.

We can make use of the limits (a) limx!a c D c (where c is a constant) and (b)

limx!a x D a, from Example 3, together with parts of Theorem 2 to calculate limits

of many combinations of functions.
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E X A M P L E 9 Find: (a) lim
x!a

x2
C x C 4

x3
� 2x2

C 7
and (b) lim

x!2

p

2x C 1.

Solution

(a) The expression
x

2
C x C 4

x3
� 2x2

C 7
is formed by combining the basic functions x and

c (constant) using addition, subtraction, multiplication, and division. Theorem 2

assures us that the limit of such a combination is the same combination of the

limits a and c of the basic functions, provided the denominator does not have

limit zero. Thus,

lim
x!a

x
2
C x C 4

x3
� 2x2

C 7
D

a
2
C aC 4

a3
� 2a2

C 7
provided a3

� 2a2
C 7 ¤ 0.

(b) The same argument as in (a) shows that limx!2 .2x C 1/ D 2.2/C 1 D 5. Then

the Power Rule (rule 6 of Theorem 2) assures us that

lim
x!2

p

2x C 1 D
p

5:

The following result is an immediate corollary of Theorem 2. (See Section P.6 for a

discussion of polynomials and rational functions.)

T H E O R E M

3

Limits of Polynomials and Rational Functions

1. If P.x/ is a polynomial and a is any real number, then

lim
x!a

P.x/ D P.a/:

2. If P.x/ and Q.x/ are polynomials and Q.a/ ¤ 0, then

lim
x!a

P.x/

Q.x/
D

P.a/

Q.a/
:

The Squeeze Theorem
The following theorem will enable us to calculate some very important limits in sub-

sequent chapters. It is called the Squeeze Theorem because it refers to a function g

whose values are squeezed between the values of two other functions f and h that

have the same limit L at a point a. Being trapped between the values of two functions

that approach L, the values of g must also approach L. (See Figure 1.12.)

Figure 1.12 The graph of g is squeezed

between those of f (blue) and h (green)

y

x

y D h.x/

y D f .x/

y D g.x/

y D g.x/

L

a
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T H E O R E M

4

The Squeeze Theorem

Suppose that f .x/ � g.x/ � h.x/ holds for all x in some open interval containing a,

except possibly at x D a itself. Suppose also that

lim
x!a

f .x/ D lim
x!a

h.x/ D L:

Then lim
x!a

g.x/ D L also. Similar statements hold for left and right limits.

E X A M P L E 10
Given that 3�x2

� u.x/ � 3Cx2 for all x ¤ 0, find limx!0 u.x/.

Solution Since limx!0.3�x
2
/ D 3 and limx!0.3Cx

2/ D 3, the Squeeze Theorem

implies that limx!0 u.x/ D 3.

E X A M P L E 11
Show that if limx!a jf .x/j D 0, then limx!a f .x/ D 0.

Solution Since �jf .x/j � f .x/ � jf .x/j, and �jf .x/j and jf .x/j both have limit

0 as x approaches a, so does f .x/ by the Squeeze Theorem.

E X E R C I S E S 1.2

1. Find: (a) lim
x!�1

f .x/, (b) lim
x!0

f .x/, and (c) lim
x!1

f .x/, for

the function f whose graph is shown in Figure 1.13.

y

x

�1 1

1

y D f .x/

Figure 1.13

2. For the function y D g.x/ graphed in Figure 1.14, find each of

the following limits or explain why it does not exist.

(a) lim
x!1

g.x/, (b) lim
x!2

g.x/, (c) lim
x!3

g.x/

y

x

1 2 3

1

y D g.x/

Figure 1.14

In Exercises 3–6, find the indicated one-sided limit of the function

g whose graph is given in Figure 1.14.

3. lim
x!1�

g.x/ 4. lim
x!1C

g.x/

5. lim
x!3C

g.x/ 6. lim
x!3�

g.x/

In Exercises 7–36, evaluate the limit or explain why it does not

exist.

7. lim
x!4

.x
2
� 4x C 1/ 8. lim

x!2
3.1 � x/.2 � x/

9. lim
x!3

x C 3

x C 6
10. lim

t!�4

t2

4 � t

11. lim
x!1

x2
� 1

x C 1
12. lim

x!�1

x2
� 1

x C 1

13. lim
x!3

x2
� 6x C 9

x2
� 9

14. lim
x!�2

x2
C 2x

x2
� 4

15. lim
h!2

1

4 � h2
16. lim

h!0

3hC 4h2

h2
� h3

17. lim
x!9

p

x � 3

x � 9
18. lim

h!0

p

4C h � 2

h

19. lim
x!�

.x � �/2

�x
20. lim

x!�2
jx � 2j

21. lim
x!0

jx � 2j

x � 2
22. lim

x!2

jx � 2j

x � 2

23. lim
t!1

t
2
� 1

t2 � 2t C 1
24. lim

x!2

p

4 � 4x C x2

x � 2

25. lim
t!0

t
p

4C t �
p

4 � t
26. lim

x!1

x
2
� 1

p

x C 3 � 2

27. lim
t!0

t2 C 3t

.t C 2/2 � .t � 2/2
28. lim

s!0

.s C 1/2 � .s � 1/2

s

29. lim
y!1

y � 4
p

y C 3

y2
� 1

30. lim
x!�1

x3
C 1

x C 1
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E X A M P L E 9 Find: (a) lim
x!a

x2
C x C 4

x3
� 2x2

C 7
and (b) lim

x!2

p

2x C 1.

Solution

(a) The expression
x

2
C x C 4

x3
� 2x2

C 7
is formed by combining the basic functions x and

c (constant) using addition, subtraction, multiplication, and division. Theorem 2

assures us that the limit of such a combination is the same combination of the

limits a and c of the basic functions, provided the denominator does not have

limit zero. Thus,

lim
x!a

x
2
C x C 4

x3
� 2x2

C 7
D

a
2
C aC 4

a3
� 2a2

C 7
provided a3

� 2a2
C 7 ¤ 0.

(b) The same argument as in (a) shows that limx!2 .2x C 1/ D 2.2/C 1 D 5. Then

the Power Rule (rule 6 of Theorem 2) assures us that

lim
x!2

p

2x C 1 D
p

5:

The following result is an immediate corollary of Theorem 2. (See Section P.6 for a

discussion of polynomials and rational functions.)

T H E O R E M

3

Limits of Polynomials and Rational Functions

1. If P.x/ is a polynomial and a is any real number, then

lim
x!a

P.x/ D P.a/:

2. If P.x/ and Q.x/ are polynomials and Q.a/ ¤ 0, then

lim
x!a

P.x/

Q.x/
D

P.a/

Q.a/
:

The Squeeze Theorem
The following theorem will enable us to calculate some very important limits in sub-

sequent chapters. It is called the Squeeze Theorem because it refers to a function g

whose values are squeezed between the values of two other functions f and h that

have the same limit L at a point a. Being trapped between the values of two functions

that approach L, the values of g must also approach L. (See Figure 1.12.)

Figure 1.12 The graph of g is squeezed

between those of f (blue) and h (green)

y

x

y D h.x/

y D f .x/

y D g.x/

y D g.x/

L

a
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T H E O R E M

4

The Squeeze Theorem

Suppose that f .x/ � g.x/ � h.x/ holds for all x in some open interval containing a,

except possibly at x D a itself. Suppose also that

lim
x!a

f .x/ D lim
x!a

h.x/ D L:

Then lim
x!a

g.x/ D L also. Similar statements hold for left and right limits.

E X A M P L E 10
Given that 3�x2

� u.x/ � 3Cx2 for all x ¤ 0, find limx!0 u.x/.

Solution Since limx!0.3�x
2
/ D 3 and limx!0.3Cx

2/ D 3, the Squeeze Theorem

implies that limx!0 u.x/ D 3.

E X A M P L E 11
Show that if limx!a jf .x/j D 0, then limx!a f .x/ D 0.

Solution Since �jf .x/j � f .x/ � jf .x/j, and �jf .x/j and jf .x/j both have limit

0 as x approaches a, so does f .x/ by the Squeeze Theorem.

E X E R C I S E S 1.2

1. Find: (a) lim
x!�1

f .x/, (b) lim
x!0

f .x/, and (c) lim
x!1

f .x/, for

the function f whose graph is shown in Figure 1.13.

y

x

�1 1

1

y D f .x/

Figure 1.13

2. For the function y D g.x/ graphed in Figure 1.14, find each of

the following limits or explain why it does not exist.

(a) lim
x!1

g.x/, (b) lim
x!2

g.x/, (c) lim
x!3

g.x/

y

x

1 2 3

1

y D g.x/

Figure 1.14

In Exercises 3–6, find the indicated one-sided limit of the function

g whose graph is given in Figure 1.14.

3. lim
x!1�

g.x/ 4. lim
x!1C

g.x/

5. lim
x!3C

g.x/ 6. lim
x!3�

g.x/

In Exercises 7–36, evaluate the limit or explain why it does not

exist.

7. lim
x!4

.x
2
� 4x C 1/ 8. lim

x!2
3.1 � x/.2 � x/

9. lim
x!3

x C 3

x C 6
10. lim

t!�4

t2

4 � t

11. lim
x!1

x2
� 1

x C 1
12. lim

x!�1

x2
� 1

x C 1

13. lim
x!3

x2
� 6x C 9

x2
� 9

14. lim
x!�2

x2
C 2x

x2
� 4

15. lim
h!2

1

4 � h2
16. lim

h!0

3hC 4h2

h2
� h3

17. lim
x!9

p

x � 3

x � 9
18. lim

h!0

p

4C h � 2

h

19. lim
x!�

.x � �/2

�x
20. lim

x!�2
jx � 2j

21. lim
x!0

jx � 2j

x � 2
22. lim

x!2

jx � 2j

x � 2

23. lim
t!1

t
2
� 1

t2 � 2t C 1
24. lim

x!2

p

4 � 4x C x2

x � 2

25. lim
t!0

t
p

4C t �
p

4 � t
26. lim

x!1

x
2
� 1

p

x C 3 � 2

27. lim
t!0

t2 C 3t

.t C 2/2 � .t � 2/2
28. lim

s!0

.s C 1/2 � .s � 1/2

s

29. lim
y!1

y � 4
p

y C 3

y2
� 1

30. lim
x!�1

x3
C 1

x C 1
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31. lim
x!2

x4
� 16

x3
� 8

32. lim
x!8

x2=3
� 4

x1=3
� 2

33. lim
x!2

�

1

x � 2
�

4

x2
� 4

�

34. lim
x!2

�

1

x � 2
�

1

x2
� 4

�

35. lim
x!0

p

2C x2
�

p

2 � x2

x2
36. lim

x!0

j3x � 1j � j3x C 1j

x

The limit lim
h!0

f .x C h/ � f .x/

h
occurs frequently in the study of

calculus. (Can you guess why?) Evaluate this limit for the

functions f in Exercises 37–42.

37. f .x/ D x2 38. f .x/ D x3

39. f .x/ D
1

x
40. f .x/ D

1

x2

41. f .x/ D
p

x 42. f .x/ D 1=
p

x

Examine the graphs of sinx and cosx in Section P.7 to determine

the limits in Exercises 43–46.

43. lim
x!�=2

sinx 44. lim
x!�=4

cosx

45. lim
x!�=3

cos x 46. lim
x!2�=3

sinx

C 47. Make a table of values of f .x/ D .sinx/=x for a sequence of

values of x approaching 0, say ˙1:0,˙0:1, ˙0:01, ˙0:001,

˙0:0001, and ˙0:00001. Make sure your calculator is set in

radian mode rather than degree mode. Guess the value of

lim
x!0

f .x/.

C 48. Repeat Exercise 47 for f .x/ D
1 � cos x

x2
.

In Exercises 49–60, find the indicated one-sided limit or explain

why it does not exist.

49. lim
x!2�

p

2 � x 50. lim
x!2C

p

2 � x

51. lim
x!�2�

p

2 � x 52. lim
x!�2C

p

2 � x

53. lim
x!0

p

x3
� x 54. lim

x!0�

p

x3
� x

55. lim
x!0C

p

x3
� x 56. lim

x!0C

p

x2
� x4

57. lim
x!a�

jx � aj

x2
� a2

58. lim
x!aC

jx � aj

x2
� a2

59. lim
x!2�

x
2
� 4

jx C 2j
60. lim

x!2C

x
2
� 4

jx C 2j

Exercises 61–64 refer to the function

f .x/ D

8

<

:

x � 1 if x � �1

x2
C 1 if �1 < x � 0

.x C �/2 if x > 0.

Find the indicated limits.

61. lim
x!�1�

f .x/ 62. lim
x!�1C

f .x/

63. lim
x!0C

f .x/ 64. lim
x!0�

f .x/

65. Suppose limx!4 f .x/ D 2 and limx!4 g.x/ D �3. Find:

(a) lim
x!4

�

g.x/C 3

�

(b) lim
x!4

xf .x/

(c) lim
x!4

�

g.x/

�2

(d) lim
x!4

g.x/

f .x/ � 1
.

66. Suppose limx!a f .x/ D 4 and limx!a g.x/ D �2. Find:

(a) lim
x!a

�

f .x/C g.x/

�

(b) lim
x!a

f .x/ � g.x/

(c) lim
x!a

4g.x/ (d) lim
x!a

f .x/=g.x/.

67. If lim
x!2

f .x/ � 5

x � 2
D 3, find lim

x!2
f .x/.

68. If lim
x!0

f .x/

x2
D �2, find lim

x!0
f .x/ and lim

x!0

f .x/

x
.

Using Graphing Utilities to Find Limits

Graphing calculators or computer software can be used to evaluate

limits at least approximately. Simply “zoom” the plot window to

show smaller and smaller parts of the graph near the point where

the limit is to be found. Find the following limits by graphical

techniques. Where you think it justified, give an exact answer.

Otherwise, give the answer correct to 4 decimal places. Remember

to ensure that your calculator or software is set for radian mode

when using trigonometric functions.

G 69. lim
x!0

sinx

x
G 70. lim

x!0

sin.2�x/

sin.3�x/

G 71. lim
x!1�

sin
p

1 � x
p

1 � x2
G 72. lim

x!0C

x �
p

x
p

sinx

G 73. On the same graph, plot the three functions y D x sin.1=x/,

y D x, and y D �x for �0:2 � x � 0:2, �0:2 � y � 0:2.

Describe the behaviour of f .x/ D x sin.1=x/ near x D 0.

Does limx!0 f .x/ exist, and if so, what is its value? Could

you have predicted this before drawing the graph? Why?

Using the Squeeze Theorem

74. If
p

5 � 2x2
� f .x/ �

p

5 � x2 for �1 � x � 1, find

lim
x!0

f .x/.

75. If 2 � x2
� g.x/ � 2 cos x for all x, find lim

x!0
g.x/.

76. (a) Sketch the curves y D x2 and y D x4 on the same graph.

Where do they intersect?

(b) The function f .x/ satisfies:

�

x2
� f .x/ � x4 if x < �1 or x > 1

x4
� f .x/ � x2 if �1 � x � 1

Find (i) lim
x!�1

f .x/, (ii) lim
x!0

f .x/, (iii) lim
x!1

f .x/.

77. On what intervals is x1=3 < x3? On what intervals is

x1=3 > x3? If the graph of y D h.x/ always lies between the

graphs of y D x1=3 and y D x3, for what real numbers a can

you determine the value of limx!a h.x/? Find the limit for

each of these values of a.

78.I What is the domain of x sin
1

x
? Evaluate lim

x!0
x sin

1

x
.

79.I Suppose jf .x/j � g.x/ for all x. What can you conclude

about limx!a f .x/ if limx!a g.x/ D 0? What if

limx!a g.x/ D 3?
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1.3 Limits at Infinity and Infinite Limits

In this section we will extend the concept of limit to allow for two situations not covered

by the definitions of limit and one-sided limit in the previous section:

(i) limits at infinity, where x becomes arbitrarily large, positive or negative;

(ii) infinite limits, which are not really limits at all but provide useful symbolism for

describing the behaviour of functions whose values become arbitrarily large, pos-

itive or negative.

Figure 1.15 The graph of x=
p

x2
C 1

y

x

1

�1

Limits at Infinity
Consider the functionTable 5.

x f .x/ D x=
p

x2
C 1

�1;000 �0:9999995

�100 �0:9999500

�10 �0:9950372

�1 �0:7071068

0 0:0000000

1 0:7071068

10 0:9950372

100 0:9999500

1;000 0:9999995

f .x/ D
x

p

x2
C 1

whose graph is shown in Figure 1.15 and for which some values (rounded to 7 decimal

places) are given in Table 5. The values of f .x/ seem to approach 1 as x takes on

larger and larger positive values, and �1 as x takes on negative values that get larger

and larger in absolute value. (See Example 2 below for confirmation.) We express this

behaviour by writing

lim
x!1

f .x/ D 1 “f .x/ approaches 1 as x approaches infinity.”

lim
x!�1

f .x/ D �1 “f .x/ approaches �1 as x approaches negative infinity.”

The graph of f conveys this limiting behaviour by approaching the horizontal lines

y D 1 as x moves far to the right and y D �1 as x moves far to the left. These lines are

called horizontal asymptotes of the graph. In general, if a curve approaches a straight

line as it recedes very far away from the origin, that line is called an asymptote of the

curve.

D E F I N I T I O N

3

Limits at infinity and negative infinity (informal definition)

If the function f is defined on an interval .a;1/ and if we can ensure that

f .x/ is as close as we want to the number L by taking x large enough, then

we say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L:

If f is defined on an interval .�1; b/ and if we can ensure that f .x/ is as

close as we want to the number M by taking x negative and large enough

in absolute value, then we say that f .x/ approaches the limit M as x ap-

proaches negative infinity, and we write

lim
x!�1

f .x/ DM:

Recall that the symbol1, called infinity, does not represent a real number. We cannot

use 1 in arithmetic in the usual way, but we can use the phrase “approaches 1” to

mean “becomes arbitrarily large positive” and the phrase “approaches �1” to mean

“becomes arbitrarily large negative.”
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31. lim
x!2

x4
� 16

x3
� 8

32. lim
x!8

x2=3
� 4

x1=3
� 2

33. lim
x!2

�

1

x � 2
�

4

x2
� 4

�

34. lim
x!2

�

1

x � 2
�

1

x2
� 4

�

35. lim
x!0

p

2C x2
�

p

2 � x2

x2
36. lim

x!0

j3x � 1j � j3x C 1j

x

The limit lim
h!0

f .x C h/ � f .x/

h
occurs frequently in the study of

calculus. (Can you guess why?) Evaluate this limit for the

functions f in Exercises 37–42.

37. f .x/ D x2 38. f .x/ D x3

39. f .x/ D
1

x
40. f .x/ D

1

x2

41. f .x/ D
p

x 42. f .x/ D 1=
p

x

Examine the graphs of sinx and cosx in Section P.7 to determine

the limits in Exercises 43–46.

43. lim
x!�=2

sinx 44. lim
x!�=4

cosx

45. lim
x!�=3

cos x 46. lim
x!2�=3

sinx

C 47. Make a table of values of f .x/ D .sinx/=x for a sequence of

values of x approaching 0, say ˙1:0,˙0:1, ˙0:01, ˙0:001,

˙0:0001, and ˙0:00001. Make sure your calculator is set in

radian mode rather than degree mode. Guess the value of

lim
x!0

f .x/.

C 48. Repeat Exercise 47 for f .x/ D
1 � cos x

x2
.

In Exercises 49–60, find the indicated one-sided limit or explain

why it does not exist.

49. lim
x!2�

p

2 � x 50. lim
x!2C

p

2 � x

51. lim
x!�2�

p

2 � x 52. lim
x!�2C

p

2 � x

53. lim
x!0

p

x3
� x 54. lim

x!0�

p

x3
� x

55. lim
x!0C

p

x3
� x 56. lim

x!0C

p

x2
� x4

57. lim
x!a�

jx � aj

x2
� a2

58. lim
x!aC

jx � aj

x2
� a2

59. lim
x!2�

x
2
� 4

jx C 2j
60. lim

x!2C

x
2
� 4

jx C 2j

Exercises 61–64 refer to the function

f .x/ D

8

<

:

x � 1 if x � �1

x2
C 1 if �1 < x � 0

.x C �/2 if x > 0.

Find the indicated limits.

61. lim
x!�1�

f .x/ 62. lim
x!�1C

f .x/

63. lim
x!0C

f .x/ 64. lim
x!0�

f .x/

65. Suppose limx!4 f .x/ D 2 and limx!4 g.x/ D �3. Find:

(a) lim
x!4

�

g.x/C 3

�

(b) lim
x!4

xf .x/

(c) lim
x!4

�

g.x/

�2

(d) lim
x!4

g.x/

f .x/ � 1
.

66. Suppose limx!a f .x/ D 4 and limx!a g.x/ D �2. Find:

(a) lim
x!a

�

f .x/C g.x/

�

(b) lim
x!a

f .x/ � g.x/

(c) lim
x!a

4g.x/ (d) lim
x!a

f .x/=g.x/.

67. If lim
x!2

f .x/ � 5

x � 2
D 3, find lim

x!2
f .x/.

68. If lim
x!0

f .x/

x2
D �2, find lim

x!0
f .x/ and lim

x!0

f .x/

x
.

Using Graphing Utilities to Find Limits

Graphing calculators or computer software can be used to evaluate

limits at least approximately. Simply “zoom” the plot window to

show smaller and smaller parts of the graph near the point where

the limit is to be found. Find the following limits by graphical

techniques. Where you think it justified, give an exact answer.

Otherwise, give the answer correct to 4 decimal places. Remember

to ensure that your calculator or software is set for radian mode

when using trigonometric functions.

G 69. lim
x!0

sinx

x
G 70. lim

x!0

sin.2�x/

sin.3�x/

G 71. lim
x!1�

sin
p

1 � x
p

1 � x2
G 72. lim

x!0C

x �
p

x
p

sinx

G 73. On the same graph, plot the three functions y D x sin.1=x/,

y D x, and y D �x for �0:2 � x � 0:2, �0:2 � y � 0:2.

Describe the behaviour of f .x/ D x sin.1=x/ near x D 0.

Does limx!0 f .x/ exist, and if so, what is its value? Could

you have predicted this before drawing the graph? Why?

Using the Squeeze Theorem

74. If
p

5 � 2x2
� f .x/ �

p

5 � x2 for �1 � x � 1, find

lim
x!0

f .x/.

75. If 2 � x2
� g.x/ � 2 cos x for all x, find lim

x!0
g.x/.

76. (a) Sketch the curves y D x2 and y D x4 on the same graph.

Where do they intersect?

(b) The function f .x/ satisfies:

�

x2
� f .x/ � x4 if x < �1 or x > 1

x4
� f .x/ � x2 if �1 � x � 1

Find (i) lim
x!�1

f .x/, (ii) lim
x!0

f .x/, (iii) lim
x!1

f .x/.

77. On what intervals is x1=3 < x3? On what intervals is

x1=3 > x3? If the graph of y D h.x/ always lies between the

graphs of y D x1=3 and y D x3, for what real numbers a can

you determine the value of limx!a h.x/? Find the limit for

each of these values of a.

78.I What is the domain of x sin
1

x
? Evaluate lim

x!0
x sin

1

x
.

79.I Suppose jf .x/j � g.x/ for all x. What can you conclude

about limx!a f .x/ if limx!a g.x/ D 0? What if

limx!a g.x/ D 3?
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1.3 Limits at Infinity and Infinite Limits

In this section we will extend the concept of limit to allow for two situations not covered

by the definitions of limit and one-sided limit in the previous section:

(i) limits at infinity, where x becomes arbitrarily large, positive or negative;

(ii) infinite limits, which are not really limits at all but provide useful symbolism for

describing the behaviour of functions whose values become arbitrarily large, pos-

itive or negative.

Figure 1.15 The graph of x=
p

x2
C 1

y

x

1

�1

Limits at Infinity
Consider the functionTable 5.

x f .x/ D x=
p

x2
C 1

�1;000 �0:9999995

�100 �0:9999500

�10 �0:9950372

�1 �0:7071068

0 0:0000000

1 0:7071068

10 0:9950372

100 0:9999500

1;000 0:9999995

f .x/ D
x

p

x2
C 1

whose graph is shown in Figure 1.15 and for which some values (rounded to 7 decimal

places) are given in Table 5. The values of f .x/ seem to approach 1 as x takes on

larger and larger positive values, and �1 as x takes on negative values that get larger

and larger in absolute value. (See Example 2 below for confirmation.) We express this

behaviour by writing

lim
x!1

f .x/ D 1 “f .x/ approaches 1 as x approaches infinity.”

lim
x!�1

f .x/ D �1 “f .x/ approaches �1 as x approaches negative infinity.”

The graph of f conveys this limiting behaviour by approaching the horizontal lines

y D 1 as x moves far to the right and y D �1 as x moves far to the left. These lines are

called horizontal asymptotes of the graph. In general, if a curve approaches a straight

line as it recedes very far away from the origin, that line is called an asymptote of the

curve.

D E F I N I T I O N

3

Limits at infinity and negative infinity (informal definition)

If the function f is defined on an interval .a;1/ and if we can ensure that

f .x/ is as close as we want to the number L by taking x large enough, then

we say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L:

If f is defined on an interval .�1; b/ and if we can ensure that f .x/ is as

close as we want to the number M by taking x negative and large enough

in absolute value, then we say that f .x/ approaches the limit M as x ap-

proaches negative infinity, and we write

lim
x!�1

f .x/ DM:

Recall that the symbol1, called infinity, does not represent a real number. We cannot

use 1 in arithmetic in the usual way, but we can use the phrase “approaches 1” to

mean “becomes arbitrarily large positive” and the phrase “approaches �1” to mean

“becomes arbitrarily large negative.”
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E X A M P L E 1
In Figure 1.16, we can see that limx!1 1=x D limx!�1 1=x D

0. The x-axis is a horizontal asymptote of the graph y D 1=x.

The theorems of Section 1.2 have suitable counterparts for limits at infinity or

negative infinity. In particular, it follows from the example above and from the Product

Rule for limits that limx!˙1 1=xn
D 0 for any positive integer n. We will use this

fact in the following examples. Example 2 shows how to obtain the limits at ˙1 for

the function x=
p

x2
C 1 by algebraic means, without resorting to making a table of

values or drawing a graph, as we did above.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.16 lim
x!˙1

1

x
D 0

E X A M P L E 2 Evaluate lim
x!1

f .x/ and lim
x!�1

f .x/ for f .x/ D
x

p

x2
C 1

.

Solution Rewrite the expression for f .x/ as follows:

f .x/ D
x

s

x2

�

1C
1

x2

�

D

x

p

x2

r

1C
1

x2

Remember
p

x2
D jxj.

D

x

jxj

r

1C
1

x2

D

sgn x
r

1C
1

x2

; where sgn x D
x

jxj
D

n

1 if x > 0

�1 if x < 0.

The factor
p

1C .1=x2/ approaches 1 as x approaches1 or �1, so f .x/ must have

the same limits as x !˙1 as does sgn .x/. Therefore (see Figure 1.15),

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D �1:

Limits at Infinity for Rational Functions
The only polynomials that have limits at ˙1 are constant ones, P.x/ D c. The

situation is more interesting for rational functions. Recall that a rational function is

a quotient of two polynomials. The following examples show how to render such a

function in a form where its limits at infinity and negative infinity (if they exist) are

apparent. The way to do this is to divide the numerator and denominator by the highest

power of x appearing in the denominator. The limits of a rational function at infinity

and negative infinity either both fail to exist or both exist and are equal.

E X A M P L E 3
(Numerator and denominator of the same degree) Evaluate

limx!˙1
2x2
� x C 3

3x2
C 5

.

Solution Divide the numerator and the denominator by x2, the highest power of x

appearing in the denominator:

lim
x!˙1

2x2
� x C 3

3x2
C 5

D lim
x!˙1

2 � .1=x/C .3=x2/

3C .5=x2/
D

2 � 0C 0

3C 0
D

2

3
:

E X A M P L E 4
(Degree of numerator less than degree of denominator) Eval-

uate limx!˙1
5x C 2

2x3
� 1

.
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Solution Divide the numerator and the denominator by the largest power of x in the

denominator, namely, x3:

lim
x!˙1

5x C 2

2x3
� 1
D lim

x!˙1

.5=x2/C .2=x3/

2 � .1=x3/
D

0C 0

2 � 0
D 0:

The limiting behaviour of rational functions at infinity and negative infinity is summa-

Summary of limits at˙1

for rational functions

Let Pm.x/ D amx
m
C � � � C a0

and Qn.x/ D bnx
n
C � � � C b0

be polynomials of degree m and

n, respectively, so that am ¤ 0

and bn ¤ 0. Then

lim
x!˙1

Pm.x/

Qn.x/

(a) equals zero if m < n,

(b) equals
am

bn

if m D n,

(c) does not exist if m > n.

rized at the left.

The technique used in the previous examples can also be applied to more general

kinds of functions. The function in the following example is not rational, and the limit

seems to produce a meaningless1�1 until we resolve matters by rationalizing the

numerator.

E X A M P L E 5 Find limx!1

�

p

x2
C x � x

�

:

Solution We are trying to find the limit of the difference of two functions, each of

which becomes arbitrarily large as x increases to infinity. We rationalize the expres-

sion by multiplying the numerator and the denominator (which is 1) by the conjugate

expression
p

x2
C x C x:

lim
x!1

�
p

x2
C x � x

�

D lim
x!1

�

p

x2
C x � x

��

p

x2
C x C x

�

p

x2
C x C x

D lim
x!1

x2
C x � x2

s

x2

�

1C
1

x

�

C x

D lim
x!1

x

x

r

1C
1

x
C x

D lim
x!1

1
r

1C
1

x
C 1

D

1

2
:

(Here,
p

x2
D x because x > 0 as x !1.)

Remark The limit limx!�1.
p

x2
C x � x/ is not nearly so subtle. Since �x > 0

as x ! �1, we have
p

x2
C x � x >

p

x2
C x, which grows arbitrarily large as

x ! �1. The limit does not exist.

Infinite Limits
A function whose values grow arbitrarily large can sometimes be said to have an infi-

nite limit. Since infinity is not a number, infinite limits are not really limits at all, but

they provide a way of describing the behaviour of functions that grow arbitrarily large

positive or negative. A few examples will make the terminology clear.

E X A M P L E 6
(A two-sided infinite limit) Describe the behaviour of the func-

tion f .x/ D 1=x2 near x D 0.

Solution As x approaches 0 from either side, the values of f .x/ are positive and

grow larger and larger (see Figure 1.17), so the limit of f .x/ as x approaches 0 does

not exist. It is nevertheless convenient to describe the behaviour of f near 0 by saying

that f .x/ approaches1 as x approaches zero. We write

lim
x!0

f .x/ D lim
x!0

1

x2
D 1:

Note that in writing this we are not saying that limx!0 1=x
2 exists. Rather, we are

saying that that limit does not exist because 1=x2 becomes arbitrarily large near x D

0. Observe how the graph of f approaches the y-axis as x approaches 0. The y-axis

is a vertical asymptote of the graph.

y

x

y D
1

x2

Figure 1.17 The graph of y D 1=x2

(not to scale)
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E X A M P L E 1
In Figure 1.16, we can see that limx!1 1=x D limx!�1 1=x D

0. The x-axis is a horizontal asymptote of the graph y D 1=x.

The theorems of Section 1.2 have suitable counterparts for limits at infinity or

negative infinity. In particular, it follows from the example above and from the Product

Rule for limits that limx!˙1 1=xn
D 0 for any positive integer n. We will use this

fact in the following examples. Example 2 shows how to obtain the limits at ˙1 for

the function x=
p

x2
C 1 by algebraic means, without resorting to making a table of

values or drawing a graph, as we did above.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.16 lim
x!˙1

1

x
D 0

E X A M P L E 2 Evaluate lim
x!1

f .x/ and lim
x!�1

f .x/ for f .x/ D
x

p

x2
C 1

.

Solution Rewrite the expression for f .x/ as follows:

f .x/ D
x

s

x2

�

1C
1

x2

�

D

x

p

x2

r

1C
1

x2

Remember
p

x2
D jxj.

D

x

jxj

r

1C
1

x2

D

sgn x
r

1C
1

x2

; where sgn x D
x

jxj
D

n

1 if x > 0

�1 if x < 0.

The factor
p

1C .1=x2/ approaches 1 as x approaches1 or �1, so f .x/ must have

the same limits as x !˙1 as does sgn .x/. Therefore (see Figure 1.15),

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D �1:

Limits at Infinity for Rational Functions
The only polynomials that have limits at ˙1 are constant ones, P.x/ D c. The

situation is more interesting for rational functions. Recall that a rational function is

a quotient of two polynomials. The following examples show how to render such a

function in a form where its limits at infinity and negative infinity (if they exist) are

apparent. The way to do this is to divide the numerator and denominator by the highest

power of x appearing in the denominator. The limits of a rational function at infinity

and negative infinity either both fail to exist or both exist and are equal.

E X A M P L E 3
(Numerator and denominator of the same degree) Evaluate

limx!˙1
2x2
� x C 3

3x2
C 5

.

Solution Divide the numerator and the denominator by x2, the highest power of x

appearing in the denominator:

lim
x!˙1

2x2
� x C 3

3x2
C 5

D lim
x!˙1

2 � .1=x/C .3=x2/

3C .5=x2/
D

2 � 0C 0

3C 0
D

2

3
:

E X A M P L E 4
(Degree of numerator less than degree of denominator) Eval-

uate limx!˙1
5x C 2

2x3
� 1

.
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Solution Divide the numerator and the denominator by the largest power of x in the

denominator, namely, x3:

lim
x!˙1

5x C 2

2x3
� 1
D lim

x!˙1

.5=x2/C .2=x3/

2 � .1=x3/
D

0C 0

2 � 0
D 0:

The limiting behaviour of rational functions at infinity and negative infinity is summa-

Summary of limits at˙1

for rational functions

Let Pm.x/ D amx
m
C � � � C a0

and Qn.x/ D bnx
n
C � � � C b0

be polynomials of degree m and

n, respectively, so that am ¤ 0

and bn ¤ 0. Then

lim
x!˙1

Pm.x/

Qn.x/

(a) equals zero if m < n,

(b) equals
am

bn

if m D n,

(c) does not exist if m > n.

rized at the left.

The technique used in the previous examples can also be applied to more general

kinds of functions. The function in the following example is not rational, and the limit

seems to produce a meaningless1�1 until we resolve matters by rationalizing the

numerator.

E X A M P L E 5 Find limx!1

�

p

x2
C x � x

�

:

Solution We are trying to find the limit of the difference of two functions, each of

which becomes arbitrarily large as x increases to infinity. We rationalize the expres-

sion by multiplying the numerator and the denominator (which is 1) by the conjugate

expression
p

x2
C x C x:

lim
x!1

�
p

x2
C x � x

�

D lim
x!1

�

p

x2
C x � x

��

p

x2
C x C x

�

p

x2
C x C x

D lim
x!1

x2
C x � x2

s

x2

�

1C
1

x

�

C x

D lim
x!1

x

x

r

1C
1

x
C x

D lim
x!1

1
r

1C
1

x
C 1

D

1

2
:

(Here,
p

x2
D x because x > 0 as x !1.)

Remark The limit limx!�1.
p

x2
C x � x/ is not nearly so subtle. Since �x > 0

as x ! �1, we have
p

x2
C x � x >

p

x2
C x, which grows arbitrarily large as

x ! �1. The limit does not exist.

Infinite Limits
A function whose values grow arbitrarily large can sometimes be said to have an infi-

nite limit. Since infinity is not a number, infinite limits are not really limits at all, but

they provide a way of describing the behaviour of functions that grow arbitrarily large

positive or negative. A few examples will make the terminology clear.

E X A M P L E 6
(A two-sided infinite limit) Describe the behaviour of the func-

tion f .x/ D 1=x2 near x D 0.

Solution As x approaches 0 from either side, the values of f .x/ are positive and

grow larger and larger (see Figure 1.17), so the limit of f .x/ as x approaches 0 does

not exist. It is nevertheless convenient to describe the behaviour of f near 0 by saying

that f .x/ approaches1 as x approaches zero. We write

lim
x!0

f .x/ D lim
x!0

1

x2
D 1:

Note that in writing this we are not saying that limx!0 1=x
2 exists. Rather, we are

saying that that limit does not exist because 1=x2 becomes arbitrarily large near x D

0. Observe how the graph of f approaches the y-axis as x approaches 0. The y-axis

is a vertical asymptote of the graph.

y

x

y D
1

x2

Figure 1.17 The graph of y D 1=x2

(not to scale)
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E X A M P L E 7
(One-sided infinite limits) Describe the behaviour of the function

f .x/ D 1=x near x D 0. (See Figure 1.18.)

Solution As x approaches 0 from the right, the values of f .x/ become larger and

larger positive numbers, and we say that f has right-hand limit infinity at x D 0:

lim
x!0C

f .x/ D1:

Similarly, the values of f .x/ become larger and larger negative numbers as x ap-

proaches 0 from the left, so f has left-hand limit �1 at x D 0:

lim
x!0�

f .x/ D �1:

These statements do not say that the one-sided limits exist; they do not exist because

1 and �1 are not numbers. Since the one-sided limits are not equal even as infinite

symbols, all we can say about the two-sided limx!0 f .x/ is that it does not exist.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.18 limx!0� 1=x D �1;

limx!0C 1=x D1

E X A M P L E 8
(Polynomial behaviour at infinity)

(a) limx!1 .3x3
� x2

C 2/ D1 (b) limx!�1 .3x3
� x2

C 2/ D �1

(c) limx!1 .x4
� 5x3

� x/ D1 (d) limx!�1 .x4
� 5x3

� x/ D1

The highest-degree term of a polynomial dominates the other terms as jxj grows large,

so the limits of this term at1 and �1 determine the limits of the whole polynomial.

For the polynomial in parts (a) and (b) we have

3x
3
� x

2
C 2 D 3x

3

�

1 �
1

3x
C

2

3x3

�

:

The factor in the large parentheses approaches 1 as x approaches˙1, so the behaviour

of the polynomial is just that of its highest-degree term 3x3.

We can now say a bit more about the limits at infinity and negative infinity of a rational

function whose numerator has higher degree than the denominator. Earlier in this

section we said that such a limit does not exist. This is true, but we can assign1 or

�1 to such limits, as the following example shows.

E X A M P L E 9
(Rational functions with numerator of higher degree) Evaluate

lim
x!1

x3
C 1

x2
C 1

.

Solution Divide the numerator and the denominator by x2, the largest power of x in

the denominator:

lim
x!1

x
3
C 1

x2
C 1
D lim

x!1

x C
1

x2

1C
1

x2

D

limx!1

�

x C
1

x2

�

1
D 1:

A polynomial Q.x/ of degree n > 0 can have at most n zeros; that is, there are at

most n different real numbers r for which Q.r/ D 0. If Q.x/ is the denominator of

a rational function R.x/ D P.x/=Q.x/, that function will be defined for all x except

those finitely many zeros of Q. At each of those zeros, R.x/ may have limits, infinite

limits, or one-sided infinite limits. Here are some examples.
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E X A M P L E 10

(a) lim
x!2

.x � 2/2

x2
� 4

D lim
x!2

.x � 2/2

.x � 2/.x C 2/
D lim

x!2

x � 2

x C 2
D 0:

(b) lim
x!2

x � 2

x2
� 4
D lim

x!2

x � 2

.x � 2/.x C 2/
D lim

x!2

1

x C 2
D

1

4
:

(c) lim
x!2C

x � 3

x2
� 4
D lim

x!2C

x � 3

.x � 2/.x C 2/
D �1. (The values are negative for

x > 2, x near 2.)

(d) lim
x!2�

x � 3

x2
� 4
D lim

x!2�

x � 3

.x � 2/.x C 2/
D1. (The values are positive for

x < 2, x near 2.)

(e) lim
x!2

x � 3

x2
� 4
D lim

x!2

x � 3

.x � 2/.x C 2/
does not exist.

(f) lim
x!2

2� x

.x � 2/3
D lim

x!2

�.x � 2/

.x � 2/3
D lim

x!2

�1

.x � 2/2
D �1:

In parts (a) and (b) the effect of the zero in the denominator at x D 2 is cancelled

because the numerator is zero there also. Thus a finite limit exists. This is not true in

part (f) because the numerator only vanishes once at x D 2, while the denominator

vanishes three times there.

Using Maple to Calculate Limits
Maple’s limit procedure can be easily used to calculate limits, one-sided limits,

limits at infinity, and infinite limits. Here is the syntax for calculating

lim
x!2

x
2
� 4

x2
� 5x C 6

; lim
x!0

x sinx

1 � cos x
; lim

x!�1

x
p

x2
C 1

; lim
x!1

x
p

x2
C 1

;

lim
x!0

1

x
; lim

x!0�

1

x
; lim

x!a�

x
2
� a

2

jx � aj
; and lim

x!aC

x
2
� a

2

jx � aj
:

> limit((x^2-4)/(x^2-5*x+6),x=2);

�4

> limit(x*sin(x)/(1-cos(x)),x=0);

2

> limit(x/sqrt(x^2+1),x=-infinity);

�1

> limit(x/sqrt(x^2+1),x=infinity);

1

> limit(1/x,x=0); limit(1/x,x=0,left);

undefined

�1

> limit((x^2-a^2)/(abs(x-a)),x=a,left);

�2 a
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E X A M P L E 7
(One-sided infinite limits) Describe the behaviour of the function

f .x/ D 1=x near x D 0. (See Figure 1.18.)

Solution As x approaches 0 from the right, the values of f .x/ become larger and

larger positive numbers, and we say that f has right-hand limit infinity at x D 0:

lim
x!0C

f .x/ D1:

Similarly, the values of f .x/ become larger and larger negative numbers as x ap-

proaches 0 from the left, so f has left-hand limit �1 at x D 0:

lim
x!0�

f .x/ D �1:

These statements do not say that the one-sided limits exist; they do not exist because

1 and �1 are not numbers. Since the one-sided limits are not equal even as infinite

symbols, all we can say about the two-sided limx!0 f .x/ is that it does not exist.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.18 limx!0� 1=x D �1;

limx!0C 1=x D1

E X A M P L E 8
(Polynomial behaviour at infinity)

(a) limx!1 .3x3
� x2

C 2/ D1 (b) limx!�1 .3x3
� x2

C 2/ D �1

(c) limx!1 .x4
� 5x3

� x/ D1 (d) limx!�1 .x4
� 5x3

� x/ D1

The highest-degree term of a polynomial dominates the other terms as jxj grows large,

so the limits of this term at1 and �1 determine the limits of the whole polynomial.

For the polynomial in parts (a) and (b) we have

3x
3
� x

2
C 2 D 3x

3

�

1 �
1

3x
C

2

3x3

�

:

The factor in the large parentheses approaches 1 as x approaches˙1, so the behaviour

of the polynomial is just that of its highest-degree term 3x3.

We can now say a bit more about the limits at infinity and negative infinity of a rational

function whose numerator has higher degree than the denominator. Earlier in this

section we said that such a limit does not exist. This is true, but we can assign1 or

�1 to such limits, as the following example shows.

E X A M P L E 9
(Rational functions with numerator of higher degree) Evaluate

lim
x!1

x3
C 1

x2
C 1

.

Solution Divide the numerator and the denominator by x2, the largest power of x in

the denominator:

lim
x!1

x
3
C 1

x2
C 1
D lim

x!1

x C
1

x2

1C
1

x2

D

limx!1

�

x C
1

x2

�

1
D 1:

A polynomial Q.x/ of degree n > 0 can have at most n zeros; that is, there are at

most n different real numbers r for which Q.r/ D 0. If Q.x/ is the denominator of

a rational function R.x/ D P.x/=Q.x/, that function will be defined for all x except

those finitely many zeros of Q. At each of those zeros, R.x/ may have limits, infinite

limits, or one-sided infinite limits. Here are some examples.
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E X A M P L E 10

(a) lim
x!2

.x � 2/2

x2
� 4

D lim
x!2

.x � 2/2

.x � 2/.x C 2/
D lim

x!2

x � 2

x C 2
D 0:

(b) lim
x!2

x � 2

x2
� 4
D lim

x!2

x � 2

.x � 2/.x C 2/
D lim

x!2

1

x C 2
D

1

4
:

(c) lim
x!2C

x � 3

x2
� 4
D lim

x!2C

x � 3

.x � 2/.x C 2/
D �1. (The values are negative for

x > 2, x near 2.)

(d) lim
x!2�

x � 3

x2
� 4
D lim

x!2�

x � 3

.x � 2/.x C 2/
D1. (The values are positive for

x < 2, x near 2.)

(e) lim
x!2

x � 3

x2
� 4
D lim

x!2

x � 3

.x � 2/.x C 2/
does not exist.

(f) lim
x!2

2� x

.x � 2/3
D lim

x!2

�.x � 2/

.x � 2/3
D lim

x!2

�1

.x � 2/2
D �1:

In parts (a) and (b) the effect of the zero in the denominator at x D 2 is cancelled

because the numerator is zero there also. Thus a finite limit exists. This is not true in

part (f) because the numerator only vanishes once at x D 2, while the denominator

vanishes three times there.

Using Maple to Calculate Limits
Maple’s limit procedure can be easily used to calculate limits, one-sided limits,

limits at infinity, and infinite limits. Here is the syntax for calculating

lim
x!2

x
2
� 4

x2
� 5x C 6

; lim
x!0

x sinx

1 � cos x
; lim

x!�1

x
p

x2
C 1

; lim
x!1

x
p

x2
C 1

;

lim
x!0

1

x
; lim

x!0�

1

x
; lim

x!a�

x
2
� a

2

jx � aj
; and lim

x!aC

x
2
� a

2

jx � aj
:

> limit((x^2-4)/(x^2-5*x+6),x=2);

�4

> limit(x*sin(x)/(1-cos(x)),x=0);

2

> limit(x/sqrt(x^2+1),x=-infinity);

�1

> limit(x/sqrt(x^2+1),x=infinity);

1

> limit(1/x,x=0); limit(1/x,x=0,left);

undefined

�1

> limit((x^2-a^2)/(abs(x-a)),x=a,left);

�2 a
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> limit((x^2-a^2)/(abs(x-a)),x=a,right);

2 a

Finally, we use Maple to confirm the limit discussed in Example 2 in Section 1.2.

> limit((1+x^2)^(1/x^2), x=0); evalf(%);

e

2:718281828

We will learn a great deal about this very important number in Chapter 3.

E X E R C I S E S 1.3

Find the limits in Exercises 1–10.

1. lim
x!1

x

2x � 3
2. lim

x!1

x

x2
� 4

3. lim
x!1

3x3
� 5x2

C 7

8C 2x � 5x3
4. lim

x!�1

x2
� 2

x � x2

5. lim
x!�1

x2
C 3

x3
C 2

6. lim
x!1

x2
C sinx

x2
C cos x

7. lim
x!1

3x C 2
p

x

1 � x
8. lim

x!1

2x � 1
p

3x2
C x C 1

9. lim
x!�1

2x � 1
p

3x2
C x C 1

10. lim
x!�1

2x � 5

j3x C 2j

In Exercises 11–32 evaluate the indicated limit. If it does not exist,

is the limit1, �1, or neither?

11. lim
x!3

1

3 � x
12. lim

x!3

1

.3 � x/2

13. lim
x!3�

1

3 � x
14. lim

x!3C

1

3� x

15. lim
x!�5=2

2x C 5

5x C 2
16. lim

x!�2=5

2x C 5

5x C 2

17. lim
x!�.2=5/�

2x C 5

5x C 2
18. lim

x!�.2=5/C

2x C 5

5x C 2

19. lim
x!2C

x

.2 � x/3
20. lim

x!1�

x
p

1 � x2

21. lim
x!1C

1

jx � 1j
22. lim

x!1�

1

jx � 1j

23. lim
x!2

x � 3

x2
� 4x C 4

24. lim
x!1C

p

x2
� x

x � x2

25. lim
x!1

x C x3
C x5

1C x2
C x3

26. lim
x!1

x3
C 3

x2
C 2

27.I lim
x!1

x
p

x C 1
�

1 �
p

2x C 3
�

7 � 6x C 4x2

28. lim
x!1

�

x2

x C 1
�

x2

x � 1

�

29.I lim
x!�1

�
p

x2
C 2x �

p

x2
� 2x

�

30.I lim
x!1

.

p

x2
C 2x �

p

x2
� 2x/

31. lim
x!1

1
p

x2
� 2x � x

32. lim
x!�1

1
p

x2
C 2x � x

33. What are the horizontal asymptotes of y D
1

p

x2
� 2x � x

?

What are its vertical asymptotes?

34. What are the horizontal and vertical asymptotes of

y D
2x � 5

j3x C 2j
?

y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.19

The function f whose graph is shown in Figure 1.19 has domain

Œ0;1/. Find the limits of f indicated in Exercises 35–45.

35. lim
x!0C

f .x/ 36. lim
x!1

f .x/

37. lim
x!2C

f .x/ 38. lim
x!2�

f .x/

39. lim
x!3�

f .x/ 40. lim
x!3C

f .x/

41. lim
x!4C

f .x/ 42. lim
x!4�

f .x/

43. lim
x!5�

f .x/ 44. lim
x!5C

f .x/

45. lim
x!1

f .x/

46. What asymptotes does the graph in Figure 1.19 have?

Exercises 47–52 refer to the greatest integer function bxc

graphed in Figure 1.20. Find the indicated limit or explain why it

does not exist.
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y

x

y D bxc

1

1

Figure 1.20

47. lim
x!3C

bxc 48. lim
x!3�

bxc

49. lim
x!3
bxc 50. lim

x!2:5
bxc

51. lim
x!0C

b2 � xc 52. lim
x!�3�

bxc

53. Parking in a certain parking lot costs $1.50 for each hour or

part of an hour. Sketch the graph of the function C.t/

representing the cost of parking for t hours. At what values of

t does C.t/ have a limit? Evaluate limt!t0� C.t/ and

limt!t0C C.t/ for an arbitrary number t0 > 0.

54. If limx!0C f .x/ D L, find limx!0� f .x/ if (a) f is even,

(b) f is odd.

55. If limx!0C f .x/ D A and limx!0� f .x/ D B , find

(a) lim
x!0C

f .x
3
� x/ (b) lim

x!0�
f .x

3
� x/

(c) lim
x!0�

f .x
2
� x

4
/ (d) lim

x!0C
f .x

2
� x

4
/:

1.4 Continuity

When a car is driven along a highway, its distance from its starting point depends on

time in a continuous way, changing by small amounts over short intervals of time. But

not all quantities change in this way. When the car is parked in a parking lot where

the rate is quoted as “$2.00 per hour or portion,” the parking charges remain at $2.00

for the first hour and then suddenly jump to $4.00 as soon as the first hour has passed.

The function relating parking charges to parking time will be called discontinuous at

each hour. In this section we will define continuity and show how to tell whether a

function is continuous. We will also examine some important properties possessed by

continuous functions.

Continuity at a Point
Most functions that we encounter have domains that are intervals, or unions of separate

intervals. A point P in the domain of such a function is called an interior point of

the domain if it belongs to some open interval contained in the domain. If it is not an

interior point, then P is called an endpoint of the domain. For example, the domain of

the function f .x/ D
p

4 � x2 is the closed interval Œ�2; 2�, which consists of interior

points in the interval .�2; 2/, a left endpoint �2, and a right endpoint 2. The domain

of the function g.x/ D 1=x is the union of open intervals .�1; 0/ [ .0;1/ and

consists entirely of interior points. Note that although 0 is an endpoint of each of

those intervals, it does not belong to the domain of g and so is not an endpoint of that

domain.

D E F I N I T I O N

4

Continuity at an interior point

We say that a function f is continuous at an interior point c of its domain if

lim
x!c

f .x/ D f .c/:

If either limx!c f .x/ fails to exist or it exists but is not equal to f .c/, then

we will say that f is discontinuous at c.

In graphical terms, f is continuous at an interior point c of its domain if its graph has

no break in it at the point .c; f .c//; in other words, if you can draw the graph through

that point without lifting your pen from the paper. Consider Figure 1.21. In (a), f is

continuous at c. In (b), f is discontinuous at c because limx!c f .x/ ¤ f .c/. In (c),
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> limit((x^2-a^2)/(abs(x-a)),x=a,right);

2 a

Finally, we use Maple to confirm the limit discussed in Example 2 in Section 1.2.

> limit((1+x^2)^(1/x^2), x=0); evalf(%);

e

2:718281828

We will learn a great deal about this very important number in Chapter 3.

E X E R C I S E S 1.3

Find the limits in Exercises 1–10.

1. lim
x!1

x

2x � 3
2. lim

x!1

x

x2
� 4

3. lim
x!1

3x3
� 5x2

C 7

8C 2x � 5x3
4. lim

x!�1

x2
� 2

x � x2

5. lim
x!�1

x2
C 3

x3
C 2

6. lim
x!1

x2
C sinx

x2
C cos x

7. lim
x!1

3x C 2
p

x

1 � x
8. lim

x!1

2x � 1
p

3x2
C x C 1

9. lim
x!�1

2x � 1
p

3x2
C x C 1

10. lim
x!�1

2x � 5

j3x C 2j

In Exercises 11–32 evaluate the indicated limit. If it does not exist,

is the limit1, �1, or neither?

11. lim
x!3

1

3 � x
12. lim

x!3

1

.3 � x/2

13. lim
x!3�

1

3 � x
14. lim

x!3C

1

3� x

15. lim
x!�5=2

2x C 5

5x C 2
16. lim

x!�2=5

2x C 5

5x C 2

17. lim
x!�.2=5/�

2x C 5

5x C 2
18. lim

x!�.2=5/C

2x C 5

5x C 2

19. lim
x!2C

x

.2 � x/3
20. lim

x!1�

x
p

1 � x2

21. lim
x!1C

1

jx � 1j
22. lim

x!1�

1

jx � 1j

23. lim
x!2

x � 3

x2
� 4x C 4

24. lim
x!1C

p

x2
� x

x � x2

25. lim
x!1

x C x3
C x5

1C x2
C x3

26. lim
x!1

x3
C 3

x2
C 2

27.I lim
x!1

x
p

x C 1
�

1 �
p

2x C 3
�

7 � 6x C 4x2

28. lim
x!1

�

x2

x C 1
�

x2

x � 1

�

29.I lim
x!�1

�
p

x2
C 2x �

p

x2
� 2x

�

30.I lim
x!1

.

p

x2
C 2x �

p

x2
� 2x/

31. lim
x!1

1
p

x2
� 2x � x

32. lim
x!�1

1
p

x2
C 2x � x

33. What are the horizontal asymptotes of y D
1

p

x2
� 2x � x

?

What are its vertical asymptotes?

34. What are the horizontal and vertical asymptotes of

y D
2x � 5

j3x C 2j
?

y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.19

The function f whose graph is shown in Figure 1.19 has domain

Œ0;1/. Find the limits of f indicated in Exercises 35–45.

35. lim
x!0C

f .x/ 36. lim
x!1

f .x/

37. lim
x!2C

f .x/ 38. lim
x!2�

f .x/

39. lim
x!3�

f .x/ 40. lim
x!3C

f .x/

41. lim
x!4C

f .x/ 42. lim
x!4�

f .x/

43. lim
x!5�

f .x/ 44. lim
x!5C

f .x/

45. lim
x!1

f .x/

46. What asymptotes does the graph in Figure 1.19 have?

Exercises 47–52 refer to the greatest integer function bxc

graphed in Figure 1.20. Find the indicated limit or explain why it

does not exist.
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y

x

y D bxc

1

1

Figure 1.20

47. lim
x!3C

bxc 48. lim
x!3�

bxc

49. lim
x!3
bxc 50. lim

x!2:5
bxc

51. lim
x!0C

b2 � xc 52. lim
x!�3�

bxc

53. Parking in a certain parking lot costs $1.50 for each hour or

part of an hour. Sketch the graph of the function C.t/

representing the cost of parking for t hours. At what values of

t does C.t/ have a limit? Evaluate limt!t0� C.t/ and

limt!t0C C.t/ for an arbitrary number t0 > 0.

54. If limx!0C f .x/ D L, find limx!0� f .x/ if (a) f is even,

(b) f is odd.

55. If limx!0C f .x/ D A and limx!0� f .x/ D B , find

(a) lim
x!0C

f .x
3
� x/ (b) lim

x!0�
f .x

3
� x/

(c) lim
x!0�

f .x
2
� x

4
/ (d) lim

x!0C
f .x

2
� x

4
/:

1.4 Continuity

When a car is driven along a highway, its distance from its starting point depends on

time in a continuous way, changing by small amounts over short intervals of time. But

not all quantities change in this way. When the car is parked in a parking lot where

the rate is quoted as “$2.00 per hour or portion,” the parking charges remain at $2.00

for the first hour and then suddenly jump to $4.00 as soon as the first hour has passed.

The function relating parking charges to parking time will be called discontinuous at

each hour. In this section we will define continuity and show how to tell whether a

function is continuous. We will also examine some important properties possessed by

continuous functions.

Continuity at a Point
Most functions that we encounter have domains that are intervals, or unions of separate

intervals. A point P in the domain of such a function is called an interior point of

the domain if it belongs to some open interval contained in the domain. If it is not an

interior point, then P is called an endpoint of the domain. For example, the domain of

the function f .x/ D
p

4 � x2 is the closed interval Œ�2; 2�, which consists of interior

points in the interval .�2; 2/, a left endpoint �2, and a right endpoint 2. The domain

of the function g.x/ D 1=x is the union of open intervals .�1; 0/ [ .0;1/ and

consists entirely of interior points. Note that although 0 is an endpoint of each of

those intervals, it does not belong to the domain of g and so is not an endpoint of that

domain.

D E F I N I T I O N

4

Continuity at an interior point

We say that a function f is continuous at an interior point c of its domain if

lim
x!c

f .x/ D f .c/:

If either limx!c f .x/ fails to exist or it exists but is not equal to f .c/, then

we will say that f is discontinuous at c.

In graphical terms, f is continuous at an interior point c of its domain if its graph has

no break in it at the point .c; f .c//; in other words, if you can draw the graph through

that point without lifting your pen from the paper. Consider Figure 1.21. In (a), f is

continuous at c. In (b), f is discontinuous at c because limx!c f .x/ ¤ f .c/. In (c),
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f is discontinuous at c because limx!c f .x/ does not exist. In both (b) and (c) the

graph of f has a break at x D c.

Figure 1.21

(a) f is continuous at c

(b) lim
x!c

f .x/ ¤ f .c/

(c) lim
x!c

f .x/ does not exist

y

x

y

x

y

xc c c

y D f .x/

y D f .x/

y D f .x/

(a) (b) (c)

Although a function cannot have a limit at an endpoint of its domain, it can still

have a one-sided limit there. We extend the definition of continuity to provide for such

situations.

D E F I N I T I O N

5

Right and left continuity

We say that f is right continuous at c if lim
x!cC

f .x/ D f .c/.

We say that f is left continuous at c if lim
x!c�

f .x/ D f .c/.

E X A M P L E 1
The Heaviside functionH.x/, whose graph is shown in Figure 1.22,

is continuous at every number x except 0. It is right continuous at

y

x

y D H.x/

y D 1

y D 0

1

Figure 1.22 The Heaviside function

0 but is not left continuous or continuous there.

The relationship between continuity and one-sided continuity is summarized in the

following theorem.

T H E O R E M

5

Function f is continuous at c if and only if it is both right continuous and left contin-

uous at c.

D E F I N I T I O N

6

Continuity at an endpoint

We say that f is continuous at a left endpoint c of its domain if it is right

continuous there.

We say that f is continuous at a right endpoint c of its domain if it is left

continuous there.

E X A M P L E 2
The function f .x/ D

p

4 � x2 has domain Œ�2; 2�. It is contin-

uous at the right endpoint 2 because it is left continuous there,

that is, because limx!2� f .x/ D 0 D f .2/. It is continuous at the left endpoint

�2 because it is right continuous there: limx!�2C f .x/ D 0 D f .�2/. Of course,

f is also continuous at every interior point of its domain. If �2 < c < 2, then

limx!c f .x/ D
p

4 � c2
D f .c/. (See Figure 1.23.)

y

x�2 2

y D f .x/

Figure 1.23 f .x/ D
p

4 � x2 is

continuous at every point of its domain
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Continuity on an Interval
We have defined the concept of continuity at a point. Of greater importance is the

concept of continuity on an interval.

D E F I N I T I O N

7

Continuity on an interval

We say that function f is continuous on the interval I if it is continuous at

each point of I . In particular, we will say that f is a continuous function if

f is continuous at every point of its domain.

E X A M P L E 3
The function f .x/ D

p

x is a continuous function. Its domain is

Œ0;1/. It is continuous at the left endpoint 0 because it is right

continuous there. Also, f is continuous at every number c > 0 since limx!c

p

x D
p

c.

E X A M P L E 4
The function g.x/ D 1=x is also a continuous function. This may

seem wrong to you at first glance because its graph is broken at

x D 0. (See Figure 1.24.) However, the number 0 is not in the domain of g, so we will

prefer to say that g is undefined rather than discontinuous there. (Some authors would

say that g is discontinuous at x D 0.) If we were to define g.0/ to be some number,

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.24 1=x is continuous on its

domain

say 0, then we would say that g.x/ is discontinuous at 0. There is no way of defining

g.0/ so that g becomes continuous at 0.

E X A M P L E 5
The greatest integer function bxc (see Figure 1.20) is continuous

on every interval Œn; nC 1/, where n is an integer. It is right con-

tinuous at each integer n but is not left continuous there, so it is discontinuous at the

integers.

lim
x!nC

bxc D n D bnc; lim
x!n�

bxc D n� 1 ¤ n D bnc:

There Are Lots of Continuous Functions

The following functions are continuous wherever they are defined:

(a) all polynomials;

(b) all rational functions;

(c) all rational powers xm=n
D

n
p

xm;

(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions defined in Sec-

tion P.7; and

(e) the absolute value function jxj.

Theorem 3 of Section 1.2 assures us that every polynomial is continuous everywhere

on the real line, and every rational function is continuous everywhere on its domain

(which consists of all real numbers except the finitely many where its denominator is

zero). If m and n are integers and n ¤ 0, the rational power function xm=n is defined

for all positive numbers x, and also for all negative numbers x if n is odd. The domain

includes 0 if and only if m=n � 0.

The following theorems show that if we combine continuous functions in various

ways, the results will be continuous.
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f is discontinuous at c because limx!c f .x/ does not exist. In both (b) and (c) the

graph of f has a break at x D c.

Figure 1.21

(a) f is continuous at c

(b) lim
x!c

f .x/ ¤ f .c/

(c) lim
x!c

f .x/ does not exist

y

x

y

x

y

xc c c

y D f .x/

y D f .x/

y D f .x/

(a) (b) (c)

Although a function cannot have a limit at an endpoint of its domain, it can still

have a one-sided limit there. We extend the definition of continuity to provide for such

situations.

D E F I N I T I O N

5

Right and left continuity

We say that f is right continuous at c if lim
x!cC

f .x/ D f .c/.

We say that f is left continuous at c if lim
x!c�

f .x/ D f .c/.

E X A M P L E 1
The Heaviside functionH.x/, whose graph is shown in Figure 1.22,

is continuous at every number x except 0. It is right continuous at

y

x

y D H.x/

y D 1

y D 0

1

Figure 1.22 The Heaviside function

0 but is not left continuous or continuous there.

The relationship between continuity and one-sided continuity is summarized in the

following theorem.

T H E O R E M

5

Function f is continuous at c if and only if it is both right continuous and left contin-

uous at c.

D E F I N I T I O N

6

Continuity at an endpoint

We say that f is continuous at a left endpoint c of its domain if it is right

continuous there.

We say that f is continuous at a right endpoint c of its domain if it is left

continuous there.

E X A M P L E 2
The function f .x/ D

p

4 � x2 has domain Œ�2; 2�. It is contin-

uous at the right endpoint 2 because it is left continuous there,

that is, because limx!2� f .x/ D 0 D f .2/. It is continuous at the left endpoint

�2 because it is right continuous there: limx!�2C f .x/ D 0 D f .�2/. Of course,

f is also continuous at every interior point of its domain. If �2 < c < 2, then

limx!c f .x/ D
p

4 � c2
D f .c/. (See Figure 1.23.)

y

x�2 2

y D f .x/

Figure 1.23 f .x/ D
p

4 � x2 is

continuous at every point of its domain
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Continuity on an Interval
We have defined the concept of continuity at a point. Of greater importance is the

concept of continuity on an interval.

D E F I N I T I O N

7

Continuity on an interval

We say that function f is continuous on the interval I if it is continuous at

each point of I . In particular, we will say that f is a continuous function if

f is continuous at every point of its domain.

E X A M P L E 3
The function f .x/ D

p

x is a continuous function. Its domain is

Œ0;1/. It is continuous at the left endpoint 0 because it is right

continuous there. Also, f is continuous at every number c > 0 since limx!c

p

x D
p

c.

E X A M P L E 4
The function g.x/ D 1=x is also a continuous function. This may

seem wrong to you at first glance because its graph is broken at

x D 0. (See Figure 1.24.) However, the number 0 is not in the domain of g, so we will

prefer to say that g is undefined rather than discontinuous there. (Some authors would

say that g is discontinuous at x D 0.) If we were to define g.0/ to be some number,

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.24 1=x is continuous on its

domain

say 0, then we would say that g.x/ is discontinuous at 0. There is no way of defining

g.0/ so that g becomes continuous at 0.

E X A M P L E 5
The greatest integer function bxc (see Figure 1.20) is continuous

on every interval Œn; nC 1/, where n is an integer. It is right con-

tinuous at each integer n but is not left continuous there, so it is discontinuous at the

integers.

lim
x!nC

bxc D n D bnc; lim
x!n�

bxc D n� 1 ¤ n D bnc:

There Are Lots of Continuous Functions

The following functions are continuous wherever they are defined:

(a) all polynomials;

(b) all rational functions;

(c) all rational powers xm=n
D

n
p

xm;

(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions defined in Sec-

tion P.7; and

(e) the absolute value function jxj.

Theorem 3 of Section 1.2 assures us that every polynomial is continuous everywhere

on the real line, and every rational function is continuous everywhere on its domain

(which consists of all real numbers except the finitely many where its denominator is

zero). If m and n are integers and n ¤ 0, the rational power function xm=n is defined

for all positive numbers x, and also for all negative numbers x if n is odd. The domain

includes 0 if and only if m=n � 0.

The following theorems show that if we combine continuous functions in various

ways, the results will be continuous.
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T H E O R E M

6

Combining continuous functions

If the functions f and g are both defined on an interval containing c and both are

continuous at c, then the following functions are also continuous at c:

1. the sum f C g and the difference f � g;

2. the product fg;

3. the constant multiple kf , where k is any number;

4. the quotient f=g (provided g.c/ ¤ 0); and

5. the nth root .f .x//1=n, provided f .c/ > 0 if n is even.

The proof involves using the various limit rules in Theorem 2 of Section 1.2. For

example,

lim
x!c

�

f .x/C g.x/
�

D lim
x!c

f .x/C lim
x!c

g.x/ D f .c/C g.c/;

so f C g is continuous.

T H E O R E M

7

Composites of continuous functions are continuous

If f .g.x// is defined on an interval containing c, and if f is continuous at L and

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

In particular, if g is continuous at c (so L D g.c/), then the composition f ı g is

continuous at c:

lim
x!c

f .g.x// D f .g.c//:

(See Exercise 37 in Section 1.5.)

E X A M P L E 6
The following functions are continuous everywhere on their re-

spective domains:

(a) 3x2
� 2x (b)

x � 2

x2
� 4

(c) jx2
� 1j

(d)
p

x (e)
p

x2
� 2x � 5 (f)

jxj
p

jx C 2j
.

Continuous Extensions and Removable Discontinuities
As we have seen in Section 1.2, a rational function may have a limit even at a point

where its denominator is zero. If f .c/ is not defined, but limx!c f .x/ D L exists, we

can define a new function F.x/ by

F.x/ D

n

f .x/ if x is in the domain of f

L if x D c.

F.x/ is continuous at x D c. It is called the continuous extension of f .x/ to x D

c. For rational functions f, continuous extensions are usually found by cancelling

common factors.

E X A M P L E 7 Show that f .x/ D
x2
� x

x2
� 1

has a continuous extension to x D 1,

and find that extension.
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Solution Although f .1/ is not defined, if x ¤ 1 we have
y

x

.1;1=2/

y D
x2
� x

x2
� 1

Figure 1.25 This function has a

continuous extension to x D 1

f .x/ D
x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
:

The function

F.x/ D
x

x C 1

is equal to f .x/ for x ¤ 1 but is also continuous at x D 1, having there the value 1=2.

The graph of f is shown in Figure 1.25. The continuous extension of f .x/ to x D 1

is F.x/. It has the same graph as f .x/ except with no hole at .1; 1=2/.

If a function f is undefined or discontinuous at a point a but can be (re)defined at that

single point so that it becomes continuous there, then we say that f has a removable

discontinuity at a. The function f in the above example has a removable discontinuity

at x D 1. To remove it, define f .1/ D 1=2.

E X A M P L E 8 The function g.x/ D
n

x if x ¤ 2

1 if x D 2
has a removable discontinuity

at x D 2. To remove it, redefine g.2/ D 2. (See Figure 1.26.)

Continuous Functions on Closed, Finite Intervals
Continuous functions that are defined on closed, finite intervals have special properties

that make them particularly useful in mathematics and its applications. We will dis-

y

x

.2; 1/

.2; 2/

y D g.x/

Figure 1.26 g has a removable

discontinuity at 2

cuss two of these properties here. Although they may appear obvious, these properties

are much more subtle than the results about limits stated earlier in this chapter; their

proofs (see Appendix III) require a careful study of the implications of the complete-

ness property of the real numbers.

The first of the properties states that a function f .x/ that is continuous on a closed,

finite interval Œa; b� must have an absolute maximum value and an absolute mini-

mum value. This means that the values of f .x/ at all points of the interval lie between

the values of f .x/ at two particular points in the interval; the graph of f has a highest

point and a lowest point.

T H E O R E M

8

The Max-Min Theorem

If f .x/ is continuous on the closed, finite interval Œa; b�, then there exist numbers p

and q in Œa; b� such that for all x in Œa; b�,

f .p/ � f .x/ � f .q/:

Thus, f has the absolute minimum value m D f .p/, taken on at the point p, and the

absolute maximum value M D f .q/, taken on at the point q.

Many important problems in mathematics and its applications come down to having to

find maximum and minimum values of functions. Calculus provides some very useful

tools for solving such problems. Observe, however, that the theorem above merely

asserts that minimum and maximum values exist; it doesn’t tell us how to find them. In

Chapter 4 we will develop techniques for calculating maximum and minimum values of

functions. For now, we can solve some simple maximum and minimum value problems

involving quadratic functions by completing the square without using any calculus.

E X A M P L E 9
What is the largest possible area of a rectangular field that can be

enclosed by 200 m of fencing?
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T H E O R E M

6

Combining continuous functions

If the functions f and g are both defined on an interval containing c and both are

continuous at c, then the following functions are also continuous at c:

1. the sum f C g and the difference f � g;

2. the product fg;

3. the constant multiple kf , where k is any number;

4. the quotient f=g (provided g.c/ ¤ 0); and

5. the nth root .f .x//1=n, provided f .c/ > 0 if n is even.

The proof involves using the various limit rules in Theorem 2 of Section 1.2. For

example,

lim
x!c

�

f .x/C g.x/
�

D lim
x!c

f .x/C lim
x!c

g.x/ D f .c/C g.c/;

so f C g is continuous.

T H E O R E M

7

Composites of continuous functions are continuous

If f .g.x// is defined on an interval containing c, and if f is continuous at L and

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

In particular, if g is continuous at c (so L D g.c/), then the composition f ı g is

continuous at c:

lim
x!c

f .g.x// D f .g.c//:

(See Exercise 37 in Section 1.5.)

E X A M P L E 6
The following functions are continuous everywhere on their re-

spective domains:

(a) 3x2
� 2x (b)

x � 2

x2
� 4

(c) jx2
� 1j

(d)
p

x (e)
p

x2
� 2x � 5 (f)

jxj
p

jx C 2j
.

Continuous Extensions and Removable Discontinuities
As we have seen in Section 1.2, a rational function may have a limit even at a point

where its denominator is zero. If f .c/ is not defined, but limx!c f .x/ D L exists, we

can define a new function F.x/ by

F.x/ D

n

f .x/ if x is in the domain of f

L if x D c.

F.x/ is continuous at x D c. It is called the continuous extension of f .x/ to x D

c. For rational functions f, continuous extensions are usually found by cancelling

common factors.

E X A M P L E 7 Show that f .x/ D
x2
� x

x2
� 1

has a continuous extension to x D 1,

and find that extension.
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Solution Although f .1/ is not defined, if x ¤ 1 we have
y

x

.1;1=2/

y D
x2
� x

x2
� 1

Figure 1.25 This function has a

continuous extension to x D 1

f .x/ D
x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
:

The function

F.x/ D
x

x C 1

is equal to f .x/ for x ¤ 1 but is also continuous at x D 1, having there the value 1=2.

The graph of f is shown in Figure 1.25. The continuous extension of f .x/ to x D 1

is F.x/. It has the same graph as f .x/ except with no hole at .1; 1=2/.

If a function f is undefined or discontinuous at a point a but can be (re)defined at that

single point so that it becomes continuous there, then we say that f has a removable

discontinuity at a. The function f in the above example has a removable discontinuity

at x D 1. To remove it, define f .1/ D 1=2.

E X A M P L E 8 The function g.x/ D
n

x if x ¤ 2

1 if x D 2
has a removable discontinuity

at x D 2. To remove it, redefine g.2/ D 2. (See Figure 1.26.)

Continuous Functions on Closed, Finite Intervals
Continuous functions that are defined on closed, finite intervals have special properties

that make them particularly useful in mathematics and its applications. We will dis-

y

x

.2; 1/

.2; 2/

y D g.x/

Figure 1.26 g has a removable

discontinuity at 2

cuss two of these properties here. Although they may appear obvious, these properties

are much more subtle than the results about limits stated earlier in this chapter; their

proofs (see Appendix III) require a careful study of the implications of the complete-

ness property of the real numbers.

The first of the properties states that a function f .x/ that is continuous on a closed,

finite interval Œa; b� must have an absolute maximum value and an absolute mini-

mum value. This means that the values of f .x/ at all points of the interval lie between

the values of f .x/ at two particular points in the interval; the graph of f has a highest

point and a lowest point.

T H E O R E M

8

The Max-Min Theorem

If f .x/ is continuous on the closed, finite interval Œa; b�, then there exist numbers p

and q in Œa; b� such that for all x in Œa; b�,

f .p/ � f .x/ � f .q/:

Thus, f has the absolute minimum value m D f .p/, taken on at the point p, and the

absolute maximum value M D f .q/, taken on at the point q.

Many important problems in mathematics and its applications come down to having to

find maximum and minimum values of functions. Calculus provides some very useful

tools for solving such problems. Observe, however, that the theorem above merely

asserts that minimum and maximum values exist; it doesn’t tell us how to find them. In

Chapter 4 we will develop techniques for calculating maximum and minimum values of

functions. For now, we can solve some simple maximum and minimum value problems

involving quadratic functions by completing the square without using any calculus.

E X A M P L E 9
What is the largest possible area of a rectangular field that can be

enclosed by 200 m of fencing?
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Solution If the sides of the field are x m and y m (Figure 1.27), then its perimeter

is P D 2x C 2y m, and its area is A D xy m2. We are given that P D 200, so

x C y D 100, and y D 100 � x. Neither side can be negative, so x must belong to

the closed interval Œ0; 100�. The area of the field can be expressed as a function of x

by substituting 100 � x for y:

A D x.100 � x/ D 100x � x
2
:

We want to find the maximum value of the quadratic function A.x/ D 100x � x2 on

the interval Œ0; 100�. Theorem 8 assures us that such a maximum exists.

x

y

Figure 1.27 Rectangular field:

perimeter D 2x C 2y, area D xy

To find the maximum, we complete the square of the function A.x/. Note that

x2
� 100x are the first two terms of the square .x� 50/2 D x2

� 100xC 2;500. Thus,

A.x/ D 2;500 � .x � 50/
2
:

Observe that A.50/ D 2; 500 and A.x/ < 2;500 if x ¤ 50, because we are subtracting

a positive number .x � 50/2 from 2;500 in this case. Therefore, the maximum value

of A.x/ is 2;500. The largest field has area 2;500 m2 and is actually a square with

dimensions x D y D 50 m.

Theorem 8 implies that a function that is continuous on a closed, finite interval is

bounded. This means that it cannot take on arbitrarily large positive or negative values;

there must exist a number K such that

jf .x/j � KI that is, �K � f .x/ � K:

In fact, for K we can use the larger of the numbers jf .p/j and jf .q/j in the theorem.

The conclusions of Theorem 8 may fail if the function f is not continuous or if

the interval is not closed. See Figures 1.28–1.31 for examples of how such failure can

occur.

y

x1

y D f .x/

Figure 1.28 f .x/ D 1=x is

continuous on the open

interval .0; 1/. It is not

bounded and has neither a

maximum nor a minimum

value

y

x1

y D f .x/

Figure 1.29 f .x/ D x is

continuous on the open

interval .0; 1/. It is bounded

but has neither a maximum

nor a minimum value

y

x1

y D f .x/

Figure 1.30 This function is

defined on the closed interval

Œ0; 1� but is discontinuous at

the endpoint x D 1. It has a

minimum value but no

maximum value

y

x1

y D f .x/

Figure 1.31 This function is

discontinuous at an interior

point of its domain, the closed

interval Œ0; 1�. It is bounded

but has neither maximum nor

minimum values

The second property of a continuous function defined on a closed, finite interval

is that the function takes on all real values between any two of its values. This property

is called the intermediate-value property.
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T H E O R E M

9

The Intermediate-Value Theorem

If f .x/ is continuous on the interval Œa; b� and if s is a number between f .a/ and

f .b/, then there exists a number c in Œa; b� such that f .c/ D s.

In particular, a continuous function defined on a closed interval takes on all values

between its minimum value m and its maximum value M , so its range is also a closed

interval, Œm;M�.

Figure 1.32 shows a typical situation. The points .a; f .a// and .b; f .b// are on

opposite sides of the horizontal line y D s. Being unbroken, the graph y D f .x/

must cross this line in order to go from one point to the other. In the figure, it crosses

the line only once, at x D c. If the line y D s were somewhat higher, there might have

been three crossings and three possible values for c.

Theorem 9 is the reason why the graph of a function that is continuous on an

interval I cannot have any breaks. It must be connected, a single, unbroken curve

with no jumps.

y

xa c b

f .a/

s

f .b/

y D f .x/

Figure 1.32 The continuous function f

takes on the value s at some point c

between a and b

E X A M P L E 10
Determine the intervals on which f .x/ D x3

� 4x is positive and

negative.

Solution Since f .x/ D x.x2
� 4/ D x.x � 2/.x C 2/, f .x/ D 0 only at x D 0; 2;

and �2. Because f is continuous on the whole real line, it must have constant sign

on each of the intervals .�1;�2/, .�2; 0/, .0; 2/, and .2;1/. (If there were points a

and b in one of those intervals, say in .0; 2/, such that f .a/ < 0 and f .b/ > 0, then

by the Intermediate-Value Theorem there would exist c between a and b, and therefore

between 0 and 2, such that f .c/ D 0. But we know f has no such zero in .0; 2/.)

To find whether f .x/ is positive or negative throughout each interval, pick a point

in the interval and evaluate f at that point:

Since f .�3/ D �15 < 0, f .x/ is negative on .�1;�2/.

Since f .�1/ D 3 > 0, f .x/ is positive on .�2; 0/.

Since f .1/ D �3 < 0, f .x/ is negative on .0; 2/.

Since f .3/ D 15 > 0, f .x/ is positive on .2;1/.

Finding Roots of Equations
Among the many useful tools that calculus will provide are ones that enable us to cal-

culate solutions to equations of the form f .x/ D 0 to any desired degree of accuracy.

Such a solution is called a root of the equation, or a zero of the function f . Using

these tools usually requires previous knowledge that the equation has a solution in

some interval. The Intermediate-Value Theorem can provide this information.

E X A M P L E 11
Show that the equation x3

�x�1 D 0 has a solution in the interval

Œ1; 2�.

Solution The function f .x/ D x3
�x�1 is a polynomial and is therefore continuous

everywhere. Now f .1/ D �1 and f .2/ D 5. Since 0 lies between �1 and 5, the

Intermediate-Value Theorem assures us that there must be a number c in Œ1; 2� such

that f .c/ D 0.

One method for finding a zero of a function that is continuous and changes sign on an

interval involves bisecting the interval many times, each time determining which half

of the previous interval must contain the root, because the function has opposite signs

at the two ends of that half. This method is slow. For example, if the original interval
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Solution If the sides of the field are x m and y m (Figure 1.27), then its perimeter

is P D 2x C 2y m, and its area is A D xy m2. We are given that P D 200, so

x C y D 100, and y D 100 � x. Neither side can be negative, so x must belong to

the closed interval Œ0; 100�. The area of the field can be expressed as a function of x

by substituting 100 � x for y:

A D x.100 � x/ D 100x � x
2
:

We want to find the maximum value of the quadratic function A.x/ D 100x � x2 on

the interval Œ0; 100�. Theorem 8 assures us that such a maximum exists.

x

y

Figure 1.27 Rectangular field:

perimeter D 2x C 2y, area D xy

To find the maximum, we complete the square of the function A.x/. Note that

x2
� 100x are the first two terms of the square .x� 50/2 D x2

� 100xC 2;500. Thus,

A.x/ D 2;500 � .x � 50/
2
:

Observe that A.50/ D 2; 500 and A.x/ < 2;500 if x ¤ 50, because we are subtracting

a positive number .x � 50/2 from 2;500 in this case. Therefore, the maximum value

of A.x/ is 2;500. The largest field has area 2;500 m2 and is actually a square with

dimensions x D y D 50 m.

Theorem 8 implies that a function that is continuous on a closed, finite interval is

bounded. This means that it cannot take on arbitrarily large positive or negative values;

there must exist a number K such that

jf .x/j � KI that is, �K � f .x/ � K:

In fact, for K we can use the larger of the numbers jf .p/j and jf .q/j in the theorem.

The conclusions of Theorem 8 may fail if the function f is not continuous or if

the interval is not closed. See Figures 1.28–1.31 for examples of how such failure can

occur.

y

x1

y D f .x/

Figure 1.28 f .x/ D 1=x is

continuous on the open

interval .0; 1/. It is not

bounded and has neither a

maximum nor a minimum

value

y

x1

y D f .x/

Figure 1.29 f .x/ D x is

continuous on the open

interval .0; 1/. It is bounded

but has neither a maximum

nor a minimum value

y

x1

y D f .x/

Figure 1.30 This function is

defined on the closed interval

Œ0; 1� but is discontinuous at

the endpoint x D 1. It has a

minimum value but no

maximum value

y

x1

y D f .x/

Figure 1.31 This function is

discontinuous at an interior

point of its domain, the closed

interval Œ0; 1�. It is bounded

but has neither maximum nor

minimum values

The second property of a continuous function defined on a closed, finite interval

is that the function takes on all real values between any two of its values. This property

is called the intermediate-value property.
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T H E O R E M

9

The Intermediate-Value Theorem

If f .x/ is continuous on the interval Œa; b� and if s is a number between f .a/ and

f .b/, then there exists a number c in Œa; b� such that f .c/ D s.

In particular, a continuous function defined on a closed interval takes on all values

between its minimum value m and its maximum value M , so its range is also a closed

interval, Œm;M�.

Figure 1.32 shows a typical situation. The points .a; f .a// and .b; f .b// are on

opposite sides of the horizontal line y D s. Being unbroken, the graph y D f .x/

must cross this line in order to go from one point to the other. In the figure, it crosses

the line only once, at x D c. If the line y D s were somewhat higher, there might have

been three crossings and three possible values for c.

Theorem 9 is the reason why the graph of a function that is continuous on an

interval I cannot have any breaks. It must be connected, a single, unbroken curve

with no jumps.

y

xa c b

f .a/

s

f .b/

y D f .x/

Figure 1.32 The continuous function f

takes on the value s at some point c

between a and b

E X A M P L E 10
Determine the intervals on which f .x/ D x3

� 4x is positive and

negative.

Solution Since f .x/ D x.x2
� 4/ D x.x � 2/.x C 2/, f .x/ D 0 only at x D 0; 2;

and �2. Because f is continuous on the whole real line, it must have constant sign

on each of the intervals .�1;�2/, .�2; 0/, .0; 2/, and .2;1/. (If there were points a

and b in one of those intervals, say in .0; 2/, such that f .a/ < 0 and f .b/ > 0, then

by the Intermediate-Value Theorem there would exist c between a and b, and therefore

between 0 and 2, such that f .c/ D 0. But we know f has no such zero in .0; 2/.)

To find whether f .x/ is positive or negative throughout each interval, pick a point

in the interval and evaluate f at that point:

Since f .�3/ D �15 < 0, f .x/ is negative on .�1;�2/.

Since f .�1/ D 3 > 0, f .x/ is positive on .�2; 0/.

Since f .1/ D �3 < 0, f .x/ is negative on .0; 2/.

Since f .3/ D 15 > 0, f .x/ is positive on .2;1/.

Finding Roots of Equations
Among the many useful tools that calculus will provide are ones that enable us to cal-

culate solutions to equations of the form f .x/ D 0 to any desired degree of accuracy.

Such a solution is called a root of the equation, or a zero of the function f . Using

these tools usually requires previous knowledge that the equation has a solution in

some interval. The Intermediate-Value Theorem can provide this information.

E X A M P L E 11
Show that the equation x3

�x�1 D 0 has a solution in the interval

Œ1; 2�.

Solution The function f .x/ D x3
�x�1 is a polynomial and is therefore continuous

everywhere. Now f .1/ D �1 and f .2/ D 5. Since 0 lies between �1 and 5, the

Intermediate-Value Theorem assures us that there must be a number c in Œ1; 2� such

that f .c/ D 0.

One method for finding a zero of a function that is continuous and changes sign on an

interval involves bisecting the interval many times, each time determining which half

of the previous interval must contain the root, because the function has opposite signs

at the two ends of that half. This method is slow. For example, if the original interval
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has length 1, it will take 11 bisections to cut down to an interval of length less than

0.0005 (because 211
> 2;000 D 1=.0:0005/), and thus to ensure that we have found

the root correct to 3 decimal places.

E X A M P L E 12
(The Bisection Method) Solve the equation x3

� x � 1 D 0 of

Example 11 correct to 3 decimal places by successive bisections.

Solution We start out knowing that there is a root in Œ1; 2�. Table 6 shows the results

of the bisections.

Table 6. The Bisection Method for f .x/ D x3
� x � 1 D 0

Bisection
Number x f .x/

Root in
Interval Midpoint

1 �1

2 5 Œ1; 2� 1:5

1 1:5 0:8750 Œ1; 1:5� 1:25

2 1:25 �0:2969 Œ1:25; 1:5� 1:375

3 1:375 0:2246 Œ1:25; 1:375� 1:3125

4 1:3125 �0:0515 Œ1:3125; 1:375� 1:3438

5 1:3438 0:0826 Œ1:3125; 1:3438� 1:3282

6 1:3282 0:0147 Œ1:3125; 1:3282� 1:3204

7 1:3204 �0:0186 Œ1:3204; 1:3282� 1:3243

8 1:3243 �0:0018 Œ1:3243; 1:3282� 1:3263

9 1:3263 0:0065 Œ1:3243; 1:3263� 1:3253

10 1:3253 0:0025 Œ1:3243; 1:3253� 1:3248

11 1:3248 0:0003 Œ1:3243; 1:3248� 1:3246

12 1:3246 �0:0007 Œ1:3246; 1:3248�

The root is 1:325, rounded to 3 decimal places.

In Section 4.2, calculus will provide us with much faster methods of solving equa-

tions such as the one in the example above. Many programmable calculators and com-

puter algebra software packages have built-in routines for solving equations. For ex-

ample, Maple’s fsolve routine can be used to find the real solution of x3
�x�1 D 0

in Œ1; 2� in Example 11:

> fsolve(x^3-x-1=0,x=1..2);

1:324717957

Remark The Max-Min Theorem and the Intermediate-Value Theorem are examples

of what mathematicians call existence theorems. Such theorems assert that something

exists without telling you how to find it. Students sometimes complain that mathemati-

cians worry too much about proving that a problem has a solution and not enough about

how to find that solution. They argue: “If I can calculate a solution to a problem, then

surely I do not need to worry about whether a solution exists.” This is, however, false

logic. Suppose we pose the problem: “Find the largest positive integer.” Of course,

this problem has no solution; there is no largest positive integer because we can add 1

to any integer and get a larger integer. Suppose, however, that we forget this and try to

calculate a solution. We could proceed as follows:

Let N be the largest positive integer.

Since 1 is a positive integer, we must have N � 1.

Since N 2 is a positive integer, it cannot exceed the largest positive integer.

Therefore, N 2
� N and so N 2

�N � 0.

Thus, N.N � 1/ � 0 and we must have N � 1 � 0.

Therefore, N � 1. Since also N � 1, we have N D 1.

Therefore, 1 is the largest positive integer.
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The only error we have made here is in the assumption (in the first line) that the prob-

lem has a solution. It is partly to avoid logical pitfalls like this that mathematicians

prove existence theorems.

E X E R C I S E S 1.4

Exercises 1–3 refer to the function g defined on Œ�2; 2�, whose

graph is shown in Figure 1.33.
y

1

2

x�2 �1 1 2

.1; 2/

.�1; 1/

y D g.x/

Figure 1.33

1. State whether g is (a) continuous, (b) left continuous,

(c) right continuous, and (d) discontinuous at each of the

points �2, �1, 0, 1, and 2.

2. At what points in its domain does g have a removable

discontinuity, and how should g be redefined at each of those

points so as to be continuous there?

3. Does g have an absolute maximum value on Œ�2; 2�? an

absolute minimum value?
y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.34

4. At what points is the function f , whose graph is shown in

Figure 1.34, discontinuous? At which of those points is it left

continuous? right continuous?

5. Can the function f graphed in Figure 1.34 be redefined at the

single point x D 1 so that it becomes continuous there?

6. The function sgn .x/ D x=jxj is neither continuous nor

discontinuous at x D 0. How is this possible?

In Exercises 7–12, state where in its domain the given function is

continuous, where it is left or right continuous, and where it is just

discontinuous.

7. f .x/ D

�

x if x < 0

x2 if x � 0
8. f .x/ D

�

x if x < �1

x2 if x � �1

9. f .x/ D

�

1=x2 if x ¤ 0

0 if x D 0
10. f .x/ D

�

x2 if x � 1

0:987 if x > 1

11. The least integer function dxe of Example 11 in Section P.5.

12. The cost function C.t/ of Exercise 53 in Section 1.3.

In Exercises 13–16, how should the given function be defined at

the given point to be continuous there? Give a formula for the

continuous extension to that point.

13.
x2
� 4

x � 2
at x D 2 14.

1C t3

1� t2
at t D �1

15.
t2 � 5t C 6

t2 � t � 6
at 3 16.

x2
� 2

x4
� 4

at
p

2

17. Find k so that f .x/ D

�

x2 if x � 2

k � x2 if x > 2
is a continuous

function.

18. Find m so that g.x/ D

�

x �m if x < 3

1 �mx if x � 3
is continuous for

all x.

19. Does the function x2 have a maximum value on the open

interval �1 < x < 1? a minimum value? Explain.

20. The Heaviside function of Example 1 has both absolute

maximum and minimum values on the interval Œ�1; 1�, but it

is not continuous on that interval. Does this violate the

Max-Min Theorem? Why?

Exercises 21–24 ask for maximum and minimum values of

functions. They can all be done by the method of Example 9.

21. The sum of two nonnegative numbers is 8. What is the largest

possible value of their product?

22. The sum of two nonnegative numbers is 8. What is (a) the

smallest and (b) the largest possible value for the sum of their

squares?

23. A software company estimates that if it assigns x

programmers to work on the project, it can develop a new

product in T days, where

T D 100 � 30x C 3x
2
:

How many programmers should the company assign in order

to complete the development as quickly as possible?

24. It costs a desk manufacturer $.245x � 30x2
C x

3
/ to send a

shipment of x desks to its warehouse. How many desks

should it include in each shipment to minimize the average

shipping cost per desk?

Find the intervals on which the functions f .x/ in Exercises 25–28

are positive and negative.

25. f .x/ D
x2
� 1

x
26. f .x/ D x2

C 4x C 3

27. f .x/ D
x

2
� 1

x2
� 4

28. f .x/ D
x

2
C x � 2

x3

29. Show that f .x/ D x3
C x � 1 has a zero between x D 0 and

x D 1.

30. Show that the equation x3
� 15x C 1 D 0 has three solutions

in the interval Œ�4; 4�.
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has length 1, it will take 11 bisections to cut down to an interval of length less than

0.0005 (because 211
> 2;000 D 1=.0:0005/), and thus to ensure that we have found

the root correct to 3 decimal places.

E X A M P L E 12
(The Bisection Method) Solve the equation x3

� x � 1 D 0 of

Example 11 correct to 3 decimal places by successive bisections.

Solution We start out knowing that there is a root in Œ1; 2�. Table 6 shows the results

of the bisections.

Table 6. The Bisection Method for f .x/ D x3
� x � 1 D 0

Bisection
Number x f .x/

Root in
Interval Midpoint

1 �1

2 5 Œ1; 2� 1:5

1 1:5 0:8750 Œ1; 1:5� 1:25

2 1:25 �0:2969 Œ1:25; 1:5� 1:375

3 1:375 0:2246 Œ1:25; 1:375� 1:3125

4 1:3125 �0:0515 Œ1:3125; 1:375� 1:3438

5 1:3438 0:0826 Œ1:3125; 1:3438� 1:3282

6 1:3282 0:0147 Œ1:3125; 1:3282� 1:3204

7 1:3204 �0:0186 Œ1:3204; 1:3282� 1:3243

8 1:3243 �0:0018 Œ1:3243; 1:3282� 1:3263

9 1:3263 0:0065 Œ1:3243; 1:3263� 1:3253

10 1:3253 0:0025 Œ1:3243; 1:3253� 1:3248

11 1:3248 0:0003 Œ1:3243; 1:3248� 1:3246

12 1:3246 �0:0007 Œ1:3246; 1:3248�

The root is 1:325, rounded to 3 decimal places.

In Section 4.2, calculus will provide us with much faster methods of solving equa-

tions such as the one in the example above. Many programmable calculators and com-

puter algebra software packages have built-in routines for solving equations. For ex-

ample, Maple’s fsolve routine can be used to find the real solution of x3
�x�1 D 0

in Œ1; 2� in Example 11:

> fsolve(x^3-x-1=0,x=1..2);

1:324717957

Remark The Max-Min Theorem and the Intermediate-Value Theorem are examples

of what mathematicians call existence theorems. Such theorems assert that something

exists without telling you how to find it. Students sometimes complain that mathemati-

cians worry too much about proving that a problem has a solution and not enough about

how to find that solution. They argue: “If I can calculate a solution to a problem, then

surely I do not need to worry about whether a solution exists.” This is, however, false

logic. Suppose we pose the problem: “Find the largest positive integer.” Of course,

this problem has no solution; there is no largest positive integer because we can add 1

to any integer and get a larger integer. Suppose, however, that we forget this and try to

calculate a solution. We could proceed as follows:

Let N be the largest positive integer.

Since 1 is a positive integer, we must have N � 1.

Since N 2 is a positive integer, it cannot exceed the largest positive integer.

Therefore, N 2
� N and so N 2

�N � 0.

Thus, N.N � 1/ � 0 and we must have N � 1 � 0.

Therefore, N � 1. Since also N � 1, we have N D 1.

Therefore, 1 is the largest positive integer.
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The only error we have made here is in the assumption (in the first line) that the prob-

lem has a solution. It is partly to avoid logical pitfalls like this that mathematicians

prove existence theorems.

E X E R C I S E S 1.4

Exercises 1–3 refer to the function g defined on Œ�2; 2�, whose

graph is shown in Figure 1.33.
y

1

2

x�2 �1 1 2

.1; 2/

.�1; 1/

y D g.x/

Figure 1.33

1. State whether g is (a) continuous, (b) left continuous,

(c) right continuous, and (d) discontinuous at each of the

points �2, �1, 0, 1, and 2.

2. At what points in its domain does g have a removable

discontinuity, and how should g be redefined at each of those

points so as to be continuous there?

3. Does g have an absolute maximum value on Œ�2; 2�? an

absolute minimum value?
y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.34

4. At what points is the function f , whose graph is shown in

Figure 1.34, discontinuous? At which of those points is it left

continuous? right continuous?

5. Can the function f graphed in Figure 1.34 be redefined at the

single point x D 1 so that it becomes continuous there?

6. The function sgn .x/ D x=jxj is neither continuous nor

discontinuous at x D 0. How is this possible?

In Exercises 7–12, state where in its domain the given function is

continuous, where it is left or right continuous, and where it is just

discontinuous.

7. f .x/ D

�

x if x < 0

x2 if x � 0
8. f .x/ D

�

x if x < �1

x2 if x � �1

9. f .x/ D

�

1=x2 if x ¤ 0

0 if x D 0
10. f .x/ D

�

x2 if x � 1

0:987 if x > 1

11. The least integer function dxe of Example 11 in Section P.5.

12. The cost function C.t/ of Exercise 53 in Section 1.3.

In Exercises 13–16, how should the given function be defined at

the given point to be continuous there? Give a formula for the

continuous extension to that point.

13.
x2
� 4

x � 2
at x D 2 14.

1C t3

1� t2
at t D �1

15.
t2 � 5t C 6

t2 � t � 6
at 3 16.

x2
� 2

x4
� 4

at
p

2

17. Find k so that f .x/ D

�

x2 if x � 2

k � x2 if x > 2
is a continuous

function.

18. Find m so that g.x/ D

�

x �m if x < 3

1 �mx if x � 3
is continuous for

all x.

19. Does the function x2 have a maximum value on the open

interval �1 < x < 1? a minimum value? Explain.

20. The Heaviside function of Example 1 has both absolute

maximum and minimum values on the interval Œ�1; 1�, but it

is not continuous on that interval. Does this violate the

Max-Min Theorem? Why?

Exercises 21–24 ask for maximum and minimum values of

functions. They can all be done by the method of Example 9.

21. The sum of two nonnegative numbers is 8. What is the largest

possible value of their product?

22. The sum of two nonnegative numbers is 8. What is (a) the

smallest and (b) the largest possible value for the sum of their

squares?

23. A software company estimates that if it assigns x

programmers to work on the project, it can develop a new

product in T days, where

T D 100 � 30x C 3x
2
:

How many programmers should the company assign in order

to complete the development as quickly as possible?

24. It costs a desk manufacturer $.245x � 30x2
C x

3
/ to send a

shipment of x desks to its warehouse. How many desks

should it include in each shipment to minimize the average

shipping cost per desk?

Find the intervals on which the functions f .x/ in Exercises 25–28

are positive and negative.

25. f .x/ D
x2
� 1

x
26. f .x/ D x2

C 4x C 3

27. f .x/ D
x

2
� 1

x2
� 4

28. f .x/ D
x

2
C x � 2

x3

29. Show that f .x/ D x3
C x � 1 has a zero between x D 0 and

x D 1.

30. Show that the equation x3
� 15x C 1 D 0 has three solutions

in the interval Œ�4; 4�.
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31. Show that the function F.x/ D .x � a/2.x � b/2 C x has the

value .aC b/=2 at some point x.

32.A (A fixed-point theorem) Suppose that f is continuous on the

closed interval Œ0; 1� and that 0 � f .x/ � 1 for every x in

Œ0; 1�. Show that there must exist a number c in Œ0; 1� such that

f .c/ D c. (c is called a fixed point of the function f .) Hint:

If f .0/ D 0 or f .1/ D 1, you are done. If not, apply the

Intermediate-Value Theorem to g.x/ D f .x/ � x.

33.A If an even function f is right continuous at x D 0, show that

it is continuous at x D 0.

34.A If an odd function f is right continuous at x D 0, show that it

is continuous at x D 0 and that it satisfies f .0/ D 0.

Use a graphing utility to find maximum and minimum values of

the functions in Exercises 35–38 and the points x where they

occur. Obtain 3-decimal-place accuracy for all answers.

G 35. f .x/ D
x2
� 2x

x4
C 1

on Œ�5; 5�

G 36. f .x/ D
sinx

6C x
on Œ��; ��

G 37. f .x/ D x2
C

4

x
on Œ1; 3�

G 38. f .x/ D sin.�x/C x.cos.�x/C 1/ on Œ0; 1�

Use a graphing utility or a programmable calculator and the

Bisection Method to solve the equations in Exercises 39–40 to 3

decimal places. As a first step, try to guess a small interval that

you can be sure contains a root.

G 39. x3
C x � 1 D 0 G 40. cos x � x D 0

Use Maple’s fsolve routine to solve the equations in Exercises

41–42.

M 41. sinx C 1 � x2
D 0 (two roots)

M 42. x4
� x � 1 D 0 (two roots)

M 43. Investigate the difference between the Maple routines

fsolve(f,x), solve(f,x), and

evalf(solve(f,x)), where

f := x^3-x-1=0.

Note that no interval is specified for x here.

1.5 The Formal Definition of Limit
The informal definition of limit given in Section 1.2 is not precise enough to enable

The material in this section is

optional.

us to prove results about limits such as those given in Theorems 2–4 of Section 1.2.

A more precise formal definition is based on the idea of controlling the input x of a

function f so that the output f .x/ will lie in a specific interval.

E X A M P L E 1
The area of a circular disk of radius r cm is A D �r

2 cm2. A

machinist is required to manufacture a circular metal disk having

area 400� cm2 within an error tolerance of ˙5 cm2. How close to 20 cm must the

machinist control the radius of the disk to achieve this?

Solution The machinist wants j�r2
� 400�j < 5, that is,

400� � 5 < �r
2
< 400� C 5;

or, equivalently,

p

400 � .5=�/ < r <
p

400C .5=�/

19:96017 < r < 20:03975:

Thus, the machinist needs jr � 20j < 0:03975; she must ensure that the radius of the

disk differs from 20 cm by less than 0:4 mm so that the area of the disk will lie within

the required error tolerance.

When we say that f .x/ has limit L as x approaches a, we are really saying that we

can ensure that the error jf .x/�Lj will be less than any allowed tolerance, no matter

how small, by taking x close enough to a (but not equal to a). It is traditional to use

�, the Greek letter “epsilon,” for the size of the allowable error and ı, the Greek letter

“delta,” for the difference x � a that measures how close x must be to a to ensure that

the error is within that tolerance. These are the letters that Cauchy and Weierstrass

used in their pioneering work on limits and continuity in the nineteenth century.

y

x

L

a

y D f .x/

a � ı aC ı

L� �

LC �

Figure 1.35 If x ¤ a and jx � aj < ı,

then jf .x/ � Lj < �
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If � is any positive number, no matter how small, we must be able to ensure that

jf .x/� Lj < � by restricting x to be close enough to (but not equal to) a. How close

is close enough? It is sufficient that the distance jx � aj from x to a be less than a

positive number ı that depends on �. (See Figure 1.35.) If we can find such a ı for any

positive �, we are entitled to conclude that lim
x!a

f .x/ D L.

D E F I N I T I O N

8

A formal definition of limit

We say that f .x/ approaches the limit L as x approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if 0 < jx � aj < ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Though precise, the above

definition is more restrictive than

it needs to be. It requires that the

domain of f must contain open

intervals with right and left

endpoints at a. In Section 12.2 of

Chapter 12 we will give a new,

more general definition of limit

for functions of any number of

variables. For functions of one

variable, it replaces the

requirement that f be defined on

open intervals with right and left

endpoints at a with the weaker

requirement that every open

interval containing a must

contain a point of the domain of

f different from a. For now, we

prefer the simpler but more

restrictive definition given above.

The formal definition of limit does not tell you how to find the limit of a function, but

it does enable you to verify that a suspected limit is correct. The following examples

show how it can be used to verify limit statements for specific functions. The first of

these gives a formal verification of the two limits found in Example 3 of Section 1.2.

E X A M P L E 2
(Two important limits) Verify that:

(a) lim
x!a

x D a and (b) lim
x!a

k D k (k = constant).

Solution

(a) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jx � aj < �:

Clearly, we can take ı D � and the implication above will be true. This proves that

lim
x!a

x D a.

(b) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jk � kj < �:

Since k � k D 0, we can use any positive number for ı and the implication above

will be true. This proves that lim
x!a

k D k.

E X A M P L E 3
Verify that lim

x!2
x

2
D 4.

Solution Here a D 2 and L D 4. Let � be a given positive number. We want to find

ı > 0 so that if 0 < jx � 2j < ı, then jf .x/� 4j < �. Now

jf .x/� 4j D jx
2
� 4j D j.x C 2/.x � 2/j D jx C 2jjx � 2j:

We want the expression above to be less than �. We can make the factor jx � 2j as

small as we wish by choosing ı properly, but we need to control the factor jx C 2j so

that it does not become too large. If we first assume ı � 1 and require that jx�2j < ı,

then we have

jx � 2j < 1 ) 1 < x < 3 ) 3 < x C 2 < 5

) jx C 2j < 5:
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31. Show that the function F.x/ D .x � a/2.x � b/2 C x has the

value .aC b/=2 at some point x.

32.A (A fixed-point theorem) Suppose that f is continuous on the

closed interval Œ0; 1� and that 0 � f .x/ � 1 for every x in

Œ0; 1�. Show that there must exist a number c in Œ0; 1� such that

f .c/ D c. (c is called a fixed point of the function f .) Hint:

If f .0/ D 0 or f .1/ D 1, you are done. If not, apply the

Intermediate-Value Theorem to g.x/ D f .x/ � x.

33.A If an even function f is right continuous at x D 0, show that

it is continuous at x D 0.

34.A If an odd function f is right continuous at x D 0, show that it

is continuous at x D 0 and that it satisfies f .0/ D 0.

Use a graphing utility to find maximum and minimum values of

the functions in Exercises 35–38 and the points x where they

occur. Obtain 3-decimal-place accuracy for all answers.

G 35. f .x/ D
x2
� 2x

x4
C 1

on Œ�5; 5�

G 36. f .x/ D
sinx

6C x
on Œ��; ��

G 37. f .x/ D x2
C

4

x
on Œ1; 3�

G 38. f .x/ D sin.�x/C x.cos.�x/C 1/ on Œ0; 1�

Use a graphing utility or a programmable calculator and the

Bisection Method to solve the equations in Exercises 39–40 to 3

decimal places. As a first step, try to guess a small interval that

you can be sure contains a root.

G 39. x3
C x � 1 D 0 G 40. cos x � x D 0

Use Maple’s fsolve routine to solve the equations in Exercises

41–42.

M 41. sinx C 1 � x2
D 0 (two roots)

M 42. x4
� x � 1 D 0 (two roots)

M 43. Investigate the difference between the Maple routines

fsolve(f,x), solve(f,x), and

evalf(solve(f,x)), where

f := x^3-x-1=0.

Note that no interval is specified for x here.

1.5 The Formal Definition of Limit
The informal definition of limit given in Section 1.2 is not precise enough to enable

The material in this section is

optional.

us to prove results about limits such as those given in Theorems 2–4 of Section 1.2.

A more precise formal definition is based on the idea of controlling the input x of a

function f so that the output f .x/ will lie in a specific interval.

E X A M P L E 1
The area of a circular disk of radius r cm is A D �r

2 cm2. A

machinist is required to manufacture a circular metal disk having

area 400� cm2 within an error tolerance of ˙5 cm2. How close to 20 cm must the

machinist control the radius of the disk to achieve this?

Solution The machinist wants j�r2
� 400�j < 5, that is,

400� � 5 < �r
2
< 400� C 5;

or, equivalently,

p

400 � .5=�/ < r <
p

400C .5=�/

19:96017 < r < 20:03975:

Thus, the machinist needs jr � 20j < 0:03975; she must ensure that the radius of the

disk differs from 20 cm by less than 0:4 mm so that the area of the disk will lie within

the required error tolerance.

When we say that f .x/ has limit L as x approaches a, we are really saying that we

can ensure that the error jf .x/�Lj will be less than any allowed tolerance, no matter

how small, by taking x close enough to a (but not equal to a). It is traditional to use

�, the Greek letter “epsilon,” for the size of the allowable error and ı, the Greek letter

“delta,” for the difference x � a that measures how close x must be to a to ensure that

the error is within that tolerance. These are the letters that Cauchy and Weierstrass

used in their pioneering work on limits and continuity in the nineteenth century.

y

x

L

a

y D f .x/

a � ı aC ı

L� �

LC �

Figure 1.35 If x ¤ a and jx � aj < ı,

then jf .x/ � Lj < �
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If � is any positive number, no matter how small, we must be able to ensure that

jf .x/� Lj < � by restricting x to be close enough to (but not equal to) a. How close

is close enough? It is sufficient that the distance jx � aj from x to a be less than a

positive number ı that depends on �. (See Figure 1.35.) If we can find such a ı for any

positive �, we are entitled to conclude that lim
x!a

f .x/ D L.

D E F I N I T I O N

8

A formal definition of limit

We say that f .x/ approaches the limit L as x approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if 0 < jx � aj < ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Though precise, the above

definition is more restrictive than

it needs to be. It requires that the

domain of f must contain open

intervals with right and left

endpoints at a. In Section 12.2 of

Chapter 12 we will give a new,

more general definition of limit

for functions of any number of

variables. For functions of one

variable, it replaces the

requirement that f be defined on

open intervals with right and left

endpoints at a with the weaker

requirement that every open

interval containing a must

contain a point of the domain of

f different from a. For now, we

prefer the simpler but more

restrictive definition given above.

The formal definition of limit does not tell you how to find the limit of a function, but

it does enable you to verify that a suspected limit is correct. The following examples

show how it can be used to verify limit statements for specific functions. The first of

these gives a formal verification of the two limits found in Example 3 of Section 1.2.

E X A M P L E 2
(Two important limits) Verify that:

(a) lim
x!a

x D a and (b) lim
x!a

k D k (k = constant).

Solution

(a) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jx � aj < �:

Clearly, we can take ı D � and the implication above will be true. This proves that

lim
x!a

x D a.

(b) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jk � kj < �:

Since k � k D 0, we can use any positive number for ı and the implication above

will be true. This proves that lim
x!a

k D k.

E X A M P L E 3
Verify that lim

x!2
x

2
D 4.

Solution Here a D 2 and L D 4. Let � be a given positive number. We want to find

ı > 0 so that if 0 < jx � 2j < ı, then jf .x/� 4j < �. Now

jf .x/� 4j D jx
2
� 4j D j.x C 2/.x � 2/j D jx C 2jjx � 2j:

We want the expression above to be less than �. We can make the factor jx � 2j as

small as we wish by choosing ı properly, but we need to control the factor jx C 2j so

that it does not become too large. If we first assume ı � 1 and require that jx�2j < ı,

then we have

jx � 2j < 1 ) 1 < x < 3 ) 3 < x C 2 < 5

) jx C 2j < 5:
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Hence,

jf .x/� 4j < 5jx � 2j if jx � 2j < ı � 1:

But 5jx�2j < � if jx�2j < �=5. Therefore, if we take ı D minf1; �=5g, the minimum

(the smaller) of the two numbers 1 and �=5, then

jf .x/� 4j < 5jx � 2j < 5 �
�

5
D � if jx � 2j < ı:

This proves that lim
x!2

f .x/ D 4.

Using the Definition of Limit to Prove Theorems
We do not usually rely on the formal definition of limit to verify specific limits such as

those in the two examples above. Rather, we appeal to general theorems about limits, in

particular Theorems 2–4 of Section 1.2. The definition is used to prove these theorems.

As an example, we prove part 1 of Theorem 2, the Sum Rule.

E X A M P L E 4
(Proving the rule for the limit of a sum) If lim

x!a
f .x/ D L and

lim
x!a

g.x/ D M , prove that lim
x!a

�

f .x/C g.x/
�

D LCM:

Solution Let � > 0 be given. We want to find a positive number ı such that

0 < jx � aj < ı )

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ < �:

Observe that

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ Regroup terms.

D

ˇ

ˇ

�

f .x/� L
�

C

�

g.x/�M
�ˇ

ˇ (Use the triangle inequality:

jaC bj � jaj C jbj).

� jf .x/�Lj C jg.x/�M j:

Since lim
x!a

f .x/ D L and �=2 is a positive number, there exists a number ı1 > 0 such

that

0 < jx � aj < ı1 ) jf .x/�Lj < �=2:

Similarly, since lim
x!a

g.x/ D M , there exists a number ı2 > 0 such that

0 < jx � aj < ı2 ) jg.x/�M j < �=2:

Let ı D minfı1; ı2g, the smaller of ı1 and ı2. If 0 < jx � aj < ı, then jx � aj < ı1,

so jf .x/� Lj < �=2, and jx � aj < ı2, so jg.x/�M j < �=2. Therefore,

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ <
�

2
C

�

2
D �:

This shows that lim
x!a

�

f .x/C g.x/
�

D LCM:

Other Kinds of Limits
The formal definition of limit can be modified to give precise definitions of one-sided

limits, limits at infinity, and infinite limits. We give some of the definitions here and

leave you to supply the others.
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D E F I N I T I O N

9

Right limits

We say that f .x/ has right limit L at a, and we write

lim
x!aC

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if a < x < aC ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Notice how the condition 0 < jx � aj < ı in the definition of limit becomes a < x <

y

x
a aC ı

L � �

L

LC �

y D f .x/

Figure 1.36 If a < x < aC ı,

then jf .x/ � Lj < �

aC ı in the right limit case (Figure 1.36). The definition for a left limit is formulated

in a similar way.

E X A M P L E 5
Show that lim

x!0C

p

x D 0.

Solution Let � > 0 be given. If x > 0, then j
p

x � 0j D
p

x. We can ensure that
p

x < � by requiring x < �2. Thus, we can take ı D �2 and the condition of the

definition will be satisfied:

0 < x < ı D �
2 implies j

p

x � 0j < �:

Therefore, lim
x!0C

p

x D 0.

To claim that a function f has a limit L at infinity, we must be able to ensure that

the error jf .x/ � Lj is less than any given positive number � by restricting x to be

sufficiently large, that is, by requiring x > R for some positive number R depending

on �.

D E F I N I T I O N

10

Limit at infinity

We say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number R, possibly depending on �,

such that if x > R, then x belongs to the domain of f and

jf .x/� Lj < �:

You are invited to formulate a version of the definition of a limit at negative infinity.

E X A M P L E 6 Show that lim
x!1

1

x
D 0.

Solution Let � be a given positive number. For x > 0 we have

ˇ

ˇ

ˇ

ˇ

1

x
� 0

ˇ

ˇ

ˇ

ˇ

D

1

jxj
D

1

x
< � provided x >

1

�
:

Therefore, the condition of the definition is satisfied with R D 1=�. We have shown

that lim
x!1

1=x D 0.
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Hence,

jf .x/� 4j < 5jx � 2j if jx � 2j < ı � 1:

But 5jx�2j < � if jx�2j < �=5. Therefore, if we take ı D minf1; �=5g, the minimum

(the smaller) of the two numbers 1 and �=5, then

jf .x/� 4j < 5jx � 2j < 5 �
�

5
D � if jx � 2j < ı:

This proves that lim
x!2

f .x/ D 4.

Using the Definition of Limit to Prove Theorems
We do not usually rely on the formal definition of limit to verify specific limits such as

those in the two examples above. Rather, we appeal to general theorems about limits, in

particular Theorems 2–4 of Section 1.2. The definition is used to prove these theorems.

As an example, we prove part 1 of Theorem 2, the Sum Rule.

E X A M P L E 4
(Proving the rule for the limit of a sum) If lim

x!a
f .x/ D L and

lim
x!a

g.x/ D M , prove that lim
x!a

�

f .x/C g.x/
�

D LCM:

Solution Let � > 0 be given. We want to find a positive number ı such that

0 < jx � aj < ı )

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ < �:

Observe that

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ Regroup terms.

D

ˇ

ˇ

�

f .x/� L
�

C

�

g.x/�M
�ˇ

ˇ (Use the triangle inequality:

jaC bj � jaj C jbj).

� jf .x/�Lj C jg.x/�M j:

Since lim
x!a

f .x/ D L and �=2 is a positive number, there exists a number ı1 > 0 such

that

0 < jx � aj < ı1 ) jf .x/�Lj < �=2:

Similarly, since lim
x!a

g.x/ D M , there exists a number ı2 > 0 such that

0 < jx � aj < ı2 ) jg.x/�M j < �=2:

Let ı D minfı1; ı2g, the smaller of ı1 and ı2. If 0 < jx � aj < ı, then jx � aj < ı1,

so jf .x/� Lj < �=2, and jx � aj < ı2, so jg.x/�M j < �=2. Therefore,

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ <
�

2
C

�

2
D �:

This shows that lim
x!a

�

f .x/C g.x/
�

D LCM:

Other Kinds of Limits
The formal definition of limit can be modified to give precise definitions of one-sided

limits, limits at infinity, and infinite limits. We give some of the definitions here and

leave you to supply the others.
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D E F I N I T I O N

9

Right limits

We say that f .x/ has right limit L at a, and we write

lim
x!aC

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if a < x < aC ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Notice how the condition 0 < jx � aj < ı in the definition of limit becomes a < x <

y

x
a aC ı

L � �

L

LC �

y D f .x/

Figure 1.36 If a < x < aC ı,

then jf .x/ � Lj < �

aC ı in the right limit case (Figure 1.36). The definition for a left limit is formulated

in a similar way.

E X A M P L E 5
Show that lim

x!0C

p

x D 0.

Solution Let � > 0 be given. If x > 0, then j
p

x � 0j D
p

x. We can ensure that
p

x < � by requiring x < �2. Thus, we can take ı D �2 and the condition of the

definition will be satisfied:

0 < x < ı D �
2 implies j

p

x � 0j < �:

Therefore, lim
x!0C

p

x D 0.

To claim that a function f has a limit L at infinity, we must be able to ensure that

the error jf .x/ � Lj is less than any given positive number � by restricting x to be

sufficiently large, that is, by requiring x > R for some positive number R depending

on �.

D E F I N I T I O N

10

Limit at infinity

We say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number R, possibly depending on �,

such that if x > R, then x belongs to the domain of f and

jf .x/� Lj < �:

You are invited to formulate a version of the definition of a limit at negative infinity.

E X A M P L E 6 Show that lim
x!1

1

x
D 0.

Solution Let � be a given positive number. For x > 0 we have

ˇ

ˇ

ˇ

ˇ

1

x
� 0

ˇ

ˇ

ˇ

ˇ

D

1

jxj
D

1

x
< � provided x >

1

�
:

Therefore, the condition of the definition is satisfied with R D 1=�. We have shown

that lim
x!1

1=x D 0.
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To show that f .x/ has an infinite limit at a, we must ensure that f .x/ is larger than any

given positive number (say B) by restricting x to a sufficiently small interval centred

at a, and requiring that x ¤ a.

D E F I N I T I O N

11

Infinite limits

We say that f .x/ approaches infinity as x approaches a and write

lim
x!a

f .x/ D1;

if for every positive number B we can find a positive number ı, possibly

depending on B , such that if 0 < jx � aj < ı, then x belongs to the domain

of f and f .x/ > B .

Try to formulate the corresponding definition for the concept limx!a f .x/ D �1.

Then try to modify both definitions to cover the case of infinite one-sided limits and

infinite limits at infinity.

E X A M P L E 7 Verify that lim
x!0

1

x2
D 1.

Solution Let B be any positive number. We have

1

x2
> B provided that x

2
<
1

B
:

If ı D 1=
p

B , then

0 < jxj < ı ) x
2
< ı

2
D

1

B
)

1

x2
> B:

Therefore, limx!0 1=x
2
D 1.

E X E R C I S E S 1.5

1. The length L of a metal rod is given in terms of the

temperature T ( ıC) by L D 39:6C 0:025T cm: Within what

range of temperature must the rod be kept if its length must be

maintained within˙1 mm of 40 cm?

2. What is the largest tolerable error in the 20 cm edge length of

a cubical cardboard box if the volume of the box must be

within˙1:2% of 8;000 cm3?

In Exercises 3–6, in what interval must x be confined if f .x/ must

be within the given distance � of the number L?

3. f .x/ D 2x � 1, L D 3, � D 0:02

4. f .x/ D x2, L D 4, � D 0:1

5. f .x/ D
p

x, L D 1, � D 0:1

6. f .x/ D 1=x, L D �2, � D 0:01

In Exercises 7–10, find a number ı > 0 such that if jx � aj < ı,

then jf .x/ � Lj will be less than the given number �.

7. f .x/ D 3x C 1, a D 2, L D 7, � D 0:03

8. f .x/ D
p

2x C 3, a D 3, L D 3, � D 0:01

9. f .x/ D x3, a D 2, L D 8, � D 0:2

10. f .x/ D 1=.x C 1/, a D 0, L D 1, � D 0:05

In Exercises 11–20, use the formal definition of limit to verify the

indicated limit.

11. lim
x!1

.3x C 1/ D 4 12. lim
x!2

.5 � 2x/ D 1

13. lim
x!0

x
2
D 0 14. lim

x!2

x � 2

1C x2
D 0

15. lim
x!1=2

1 � 4x2

1 � 2x
D 2 16. lim

x!�2

x2
C 2x

x C 2
D �2

17. lim
x!1

1

x C 1
D

1

2
18. lim

x!�1

x C 1

x2
� 1
D �

1

2

19. lim
x!1

p

x D 1 20. lim
x!2

x
3
D 8

Give formal definitions of the limit statements in Exercises 21–26.

21. lim
x!a�

f .x/ D L 22. lim
x!�1

f .x/ D L

23. lim
x!a

f .x/ D �1 24. lim
x!1

f .x/ D1

25. lim
x!aC

f .x/ D �1 26. lim
x!a�

f .x/ D1

Use formal definitions of the various kinds of limits to prove the

statements in Exercises 27–30.
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27. lim
x!1C

1

x � 1
D1 28. lim

x!1�

1

x � 1
D �1

29. lim
x!1

1
p

x2
C 1
D 0 30. lim

x!1

p

x D1

Proving Theorems with the Definition of Limit

31.I Prove that limits are unique; that is, if limx!a f .x/ D L and

limx!a f .x/ DM , prove that L DM . Hint: Suppose

L ¤M and let � D jL �M j=3.

32.A If limx!a g.x/ DM , show that there exists a number ı > 0

such that

0 < jx � aj < ı ) jg.x/j < 1C jM j:

(Hint: Take � D 1 in the definition of limit.) This says that the

values of g.x/ are bounded near a point where g has a limit.

33.I If limx!a f .x/ D L and limx!a g.x/ DM , prove that

limx!a f .x/g.x/ D LM (the Product Rule part of

Theorem 2). Hint: Reread Example 4. Let � > 0 and write

jf .x/g.x/ � LM j D jf .x/g.x/ � Lg.x/CLg.x/ � LM j

D j.f .x/ � L/g.x/CL.g.x/ �M/j

� j.f .x/ � L/g.x/j C jL.g.x/ �M/j

D jg.x/jjf .x/ � Lj C jLjjg.x/ �M j

Now try to make each term in the last line less than �=2 by

taking x close enough to a. You will need the result of

Exercise 32.

34.A If limx!a g.x/ DM , where M ¤ 0, show that there exists a

number ı > 0 such that

0 < jx � aj < ı ) jg.x/j > jM j=2:

35.A If limx!a g.x/ DM , where M ¤ 0, show that

lim
x!a

1

g.x/
D

1

M
:

Hint: You will need the result of Exercise 34.

36.A Use the facts proved in Exercises 33 and 35 to prove the

Quotient Rule (part 5 of Theorem 2): if limx!a f .x/ D L

and limx!a g.x/ DM , where M ¤ 0, then

lim
x!a

f .x/

g.x/
D

L

M
:

37.I Use the definition of limit twice to prove Theorem 7 of

Section 1.4; that is, if f is continuous at L and if

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

38.I Prove the Squeeze Theorem (Theorem 4 in Section 1.2). Hint:

If f .x/ � g.x/ � h.x/, then

jg.x/ � Lj D jg.x/ � f .x/C f .x/ � Lj

� jg.x/ � f .x/j C jf .x/ � Lj

� jh.x/ � f .x/j C jf .x/ � Lj

D jh.x/ � L � .f .x/ � L/j C jf .x/ � Lj

� jh.x/ � Lj C jf .x/ � Lj C jf .x/ � Lj

Now you can make each term in the last expression less than

�=3 and so complete the proof.

C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ the average rate of change of f .x/ on Œa; b�

˘ the instantaneous rate of change of f .x/ at x D a

˘ limx!a f .x/ D L

˘ limx!aC f .x/ D L; limx!a� f .x/ D L

˘ limx!1 f .x/ D L; limx!�1 f .x/ D L

˘ limx!a f .x/ D1; limx!aC f .x/ D �1

˘ f is continuous at c.

˘ f is left (or right) continuous at c.

˘ f has a continuous extension to c.

˘ f is a continuous function.

˘ f takes on maximum and minimum values on interval I .

˘ f is bounded on interval I .

˘ f has the intermediate-value property on interval I .

� State as many “laws of limits” as you can.

� What properties must a function have if it is continuous and

its domain is a closed, finite interval?

� How can you find zeros (roots) of a continuous function?

Review Exercises

1. Find the average rate of change of x3 over Œ1; 3�.

2. Find the average rate of change of 1=x over Œ�2;�1�.

3. Find the rate of change of x3 at x D 2.

4. Find the rate of change of 1=x at x D �3=2.

Evaluate the limits in Exercises 5–30 or explain why they do not

exist.

5. lim
x!1

.x
2
� 4x C 7/ 6. lim

x!2

x2

1 � x2

7. lim
x!1

x
2

1 � x2
8. lim

x!2

x
2
� 4

x2
� 5x C 6

9. lim
x!2

x2
� 4

x2
� 4x C 4

10. lim
x!2�

x2
� 4

x2
� 4x C 4
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To show that f .x/ has an infinite limit at a, we must ensure that f .x/ is larger than any

given positive number (say B) by restricting x to a sufficiently small interval centred

at a, and requiring that x ¤ a.

D E F I N I T I O N

11

Infinite limits

We say that f .x/ approaches infinity as x approaches a and write

lim
x!a

f .x/ D1;

if for every positive number B we can find a positive number ı, possibly

depending on B , such that if 0 < jx � aj < ı, then x belongs to the domain

of f and f .x/ > B .

Try to formulate the corresponding definition for the concept limx!a f .x/ D �1.

Then try to modify both definitions to cover the case of infinite one-sided limits and

infinite limits at infinity.

E X A M P L E 7 Verify that lim
x!0

1

x2
D 1.

Solution Let B be any positive number. We have

1

x2
> B provided that x

2
<
1

B
:

If ı D 1=
p

B , then

0 < jxj < ı ) x
2
< ı

2
D

1

B
)

1

x2
> B:

Therefore, limx!0 1=x
2
D 1.

E X E R C I S E S 1.5

1. The length L of a metal rod is given in terms of the

temperature T ( ıC) by L D 39:6C 0:025T cm: Within what

range of temperature must the rod be kept if its length must be

maintained within˙1 mm of 40 cm?

2. What is the largest tolerable error in the 20 cm edge length of

a cubical cardboard box if the volume of the box must be

within˙1:2% of 8;000 cm3?

In Exercises 3–6, in what interval must x be confined if f .x/ must

be within the given distance � of the number L?

3. f .x/ D 2x � 1, L D 3, � D 0:02

4. f .x/ D x2, L D 4, � D 0:1

5. f .x/ D
p

x, L D 1, � D 0:1

6. f .x/ D 1=x, L D �2, � D 0:01

In Exercises 7–10, find a number ı > 0 such that if jx � aj < ı,

then jf .x/ � Lj will be less than the given number �.

7. f .x/ D 3x C 1, a D 2, L D 7, � D 0:03

8. f .x/ D
p

2x C 3, a D 3, L D 3, � D 0:01

9. f .x/ D x3, a D 2, L D 8, � D 0:2

10. f .x/ D 1=.x C 1/, a D 0, L D 1, � D 0:05

In Exercises 11–20, use the formal definition of limit to verify the

indicated limit.

11. lim
x!1

.3x C 1/ D 4 12. lim
x!2

.5 � 2x/ D 1

13. lim
x!0

x
2
D 0 14. lim

x!2

x � 2

1C x2
D 0

15. lim
x!1=2

1 � 4x2

1 � 2x
D 2 16. lim

x!�2

x2
C 2x

x C 2
D �2

17. lim
x!1

1

x C 1
D

1

2
18. lim

x!�1

x C 1

x2
� 1
D �

1

2

19. lim
x!1

p

x D 1 20. lim
x!2

x
3
D 8

Give formal definitions of the limit statements in Exercises 21–26.

21. lim
x!a�

f .x/ D L 22. lim
x!�1

f .x/ D L

23. lim
x!a

f .x/ D �1 24. lim
x!1

f .x/ D1

25. lim
x!aC

f .x/ D �1 26. lim
x!a�

f .x/ D1

Use formal definitions of the various kinds of limits to prove the

statements in Exercises 27–30.
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27. lim
x!1C

1

x � 1
D1 28. lim

x!1�

1

x � 1
D �1

29. lim
x!1

1
p

x2
C 1
D 0 30. lim

x!1

p

x D1

Proving Theorems with the Definition of Limit

31.I Prove that limits are unique; that is, if limx!a f .x/ D L and

limx!a f .x/ DM , prove that L DM . Hint: Suppose

L ¤M and let � D jL �M j=3.

32.A If limx!a g.x/ DM , show that there exists a number ı > 0

such that

0 < jx � aj < ı ) jg.x/j < 1C jM j:

(Hint: Take � D 1 in the definition of limit.) This says that the

values of g.x/ are bounded near a point where g has a limit.

33.I If limx!a f .x/ D L and limx!a g.x/ DM , prove that

limx!a f .x/g.x/ D LM (the Product Rule part of

Theorem 2). Hint: Reread Example 4. Let � > 0 and write

jf .x/g.x/ � LM j D jf .x/g.x/ � Lg.x/CLg.x/ � LM j

D j.f .x/ � L/g.x/CL.g.x/ �M/j

� j.f .x/ � L/g.x/j C jL.g.x/ �M/j

D jg.x/jjf .x/ � Lj C jLjjg.x/ �M j

Now try to make each term in the last line less than �=2 by

taking x close enough to a. You will need the result of

Exercise 32.

34.A If limx!a g.x/ DM , where M ¤ 0, show that there exists a

number ı > 0 such that

0 < jx � aj < ı ) jg.x/j > jM j=2:

35.A If limx!a g.x/ DM , where M ¤ 0, show that

lim
x!a

1

g.x/
D

1

M
:

Hint: You will need the result of Exercise 34.

36.A Use the facts proved in Exercises 33 and 35 to prove the

Quotient Rule (part 5 of Theorem 2): if limx!a f .x/ D L

and limx!a g.x/ DM , where M ¤ 0, then

lim
x!a

f .x/

g.x/
D

L

M
:

37.I Use the definition of limit twice to prove Theorem 7 of

Section 1.4; that is, if f is continuous at L and if

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

38.I Prove the Squeeze Theorem (Theorem 4 in Section 1.2). Hint:

If f .x/ � g.x/ � h.x/, then

jg.x/ � Lj D jg.x/ � f .x/C f .x/ � Lj

� jg.x/ � f .x/j C jf .x/ � Lj

� jh.x/ � f .x/j C jf .x/ � Lj

D jh.x/ � L � .f .x/ � L/j C jf .x/ � Lj

� jh.x/ � Lj C jf .x/ � Lj C jf .x/ � Lj

Now you can make each term in the last expression less than

�=3 and so complete the proof.

C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ the average rate of change of f .x/ on Œa; b�

˘ the instantaneous rate of change of f .x/ at x D a

˘ limx!a f .x/ D L

˘ limx!aC f .x/ D L; limx!a� f .x/ D L

˘ limx!1 f .x/ D L; limx!�1 f .x/ D L

˘ limx!a f .x/ D1; limx!aC f .x/ D �1

˘ f is continuous at c.

˘ f is left (or right) continuous at c.

˘ f has a continuous extension to c.

˘ f is a continuous function.

˘ f takes on maximum and minimum values on interval I .

˘ f is bounded on interval I .

˘ f has the intermediate-value property on interval I .

� State as many “laws of limits” as you can.

� What properties must a function have if it is continuous and

its domain is a closed, finite interval?

� How can you find zeros (roots) of a continuous function?

Review Exercises

1. Find the average rate of change of x3 over Œ1; 3�.

2. Find the average rate of change of 1=x over Œ�2;�1�.

3. Find the rate of change of x3 at x D 2.

4. Find the rate of change of 1=x at x D �3=2.

Evaluate the limits in Exercises 5–30 or explain why they do not

exist.

5. lim
x!1

.x
2
� 4x C 7/ 6. lim

x!2

x2

1 � x2

7. lim
x!1

x
2

1 � x2
8. lim

x!2

x
2
� 4

x2
� 5x C 6

9. lim
x!2

x2
� 4

x2
� 4x C 4

10. lim
x!2�

x2
� 4

x2
� 4x C 4
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11. lim
x!�2C

x2
� 4

x2
C 4x C 4

12. lim
x!4

2 �
p

x

x � 4

13. lim
x!3

x2
� 9

p

x �
p

3
14. lim

h!0

h
p

x C 3h �
p

x

15. lim
x!0C

p

x � x2 16. lim
x!0

p

x � x2

17. lim
x!1

p

x � x2 18. lim
x!1�

p

x � x2

19. lim
x!1

1 � x
2

3x2
� x � 1

20. lim
x!�1

2x C 100

x2
C 3

21. lim
x!�1

x3
� 1

x2
C 4

22. lim
x!1

x4

x2
� 4

23. lim
x!0C

1
p

x � x2
24. lim

x!1=2

1
p

x � x2

25. lim
x!1

sinx 26. lim
x!1

cosx

x

27. lim
x!0

x sin
1

x
28. lim

x!0
sin

1

x2

29. lim
x!�1

Œx C

p

x2
� 4x C 1�

30. lim
x!1

Œx C

p

x2
� 4x C 1�

At what, if any, points in its domain is the function f in Exercises

31–38 discontinuous? Is f left or right continuous at these points?

In Exercises 35 and 36,H refers to the Heaviside function: H.x/ D

1 if x � 0 and H.x/ D 0 if x < 0.

31. f .x/ D x3
� 4x

2
C 1 32. f .x/ D

x

x C 1

33. f .x/ D

�

x2 if x > 2

x if x � 2
34. f .x/ D

�

x2 if x > 1

x if x � 1

35. f .x/ D H.x � 1/ 36. f .x/ D H.9 � x2
/

37. f .x/ D jxj C jx C 1j

38. f .x/ D
n

jxj=jx C 1j if x ¤ �1

1 if x D �1

Challenging Problems

1. Show that the average rate of change of the function x3 over the

interval Œa; b�, where 0 < a < b, is equal to the instantaneous

rate of change of x3 at x D
p

.a2
C ab C b2/=3. Is this point

to the left or to the right of the midpoint .a C b/=2 of the

interval Œa; b�?

2. Evaluate lim
x!0

x

jx � 1j � jx C 1j
.

3. Evaluate lim
x!3

j5 � 2xj � jx � 2j

jx � 5j � j3x � 7j
.

4. Evaluate lim
x!64

x1=3
� 4

x1=2
� 8

.

5. Evaluate lim
x!1

p

3C x � 2

3
p

7C x � 2
.

6. The equation ax2
C2x�1 D 0, where a is a constant, has two

roots if a > �1 and a ¤ 0:

rC.a/ D
�1C

p

1C a

a
and r�.a/ D

�1 �
p

1C a

a
:

(a) What happens to the root r�.a/ when a! 0 ?

(b) Investigate numerically what happens to the root

rC.a/ when a! 0 by trying the values a D 1, ˙0:1,

˙0:01, : : : : For values such as a D 10�8, the limited pre-

cision of your calculator may produce some interesting re-

sults. What happens, and why?

(c) Evaluate lima!0 rC.a/ mathematically by using the iden-

tity

p

A �
p

B D
A � B
p

AC
p

B
:

7.A TRUE or FALSE? If TRUE, give reasons; if FALSE, give a

counterexample.

(a) If limx!a f .x/ exists but limx!a g.x/ does not exist,

then limx!a .f .x/C g.x// does not exist.

(b) If neither limx!a f .x/ nor limx!a g.x/ exists, then

limx!a .f .x/C g.x// does not exist.

(c) If f is continuous at a, then so is jf j.

(d) If jf j is continuous at a, then so is f .

(e) If f .x/ < g.x/ for all x in an interval around a, and if

limx!a f .x/ and limx!a g.x/ both exist, then

limx!a f .x/ < limx!a g.x/.

8.A (a) If f is a continuous function defined on a closed interval

Œa; b�, show that R.f / is a closed interval.

(b) What are the possibilities for R.f / if D.f / is an open

interval .a; b/?

9. Consider the function f .x/ D
x2
� 1

jx2
� 1j

. Find all points where

f is not continuous. Does f have one-sided limits at those

points, and if so, what are they?

10.A Find the minimum value of f .x/ D 1=.x�x2/ on the interval

.0; 1/. Explain how you know such a minimum value must

exist.

11.I (a) Suppose f is a continuous function on the interval Œ0; 1�,

and f .0/ D f .1/. Show that f .a/ D f

�

aC
1

2

�

for

some a 2

�

0;
1

2

�

.

Hint: Let g.x/ D f

�

x C
1

2

�

� f .x/, and use the

Intermediate-Value Theorem.

(b) If n is an integer larger than 2, show that

f .a/ D f

�

aC
1

n

�

for some a 2

�

0; 1 �
1

n

�

.
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C H A P T E R 2

Differentiation

“
‘All right,’ said Deep Thought. ‘The Answer to the Great Question : : : ’

‘Yes : : : !’

‘Of Life, the Universe and Everything : : : ’ said Deep Thought.

‘Yes : : : !’

‘Is : : : ’ said Deep Thought, and paused.

‘Yes : : : ! : : : ?’

‘Forty-two,’ said Deep Thought, with infinite majesty and calm.

: : :

‘Forty-two!’ yelled Loonquawl. ‘Is that all you’ve got to show for seven

and a half million years’ work?’

‘I checked it very thoroughly,’ said the computer, ‘and that quite

definitely is the answer. I think the problem, to be quite honest with

you, is that you’ve never actually known what the question is.’

”Douglas Adams 1952–2001

from The Hitchhiker’s Guide to the Galaxy

Introduction Two fundamental problems are considered in calculus.

The problem of slopes is concerned with finding the slope

of (the tangent line to) a given curve at a given point on the curve. The problem of

areas is concerned with finding the area of a plane region bounded by curves and

straight lines. The solution of the problem of slopes is the subject of differential cal-

culus. As we will see, it has many applications in mathematics and other disciplines.

The problem of areas is the subject of integral calculus, which we begin in Chapter 5.

2.1 Tangent Lines and Their Slopes
This section deals with the problem of finding a straight line L that is tangent to a

curve C at a point P . As is often the case in mathematics, the most important step in

the solution of such a fundamental problem is making a suitable definition.

For simplicity, and to avoid certain problems best postponed until later, we will

not deal with the most general kinds of curves now, but only with those that are the

graphs of continuous functions. Let C be the graph of y D f .x/ and let P be the

point .x0; y0/ on C , so that y0 D f .x0/. We assume that P is not an endpoint of C .

Therefore, C extends some distance on both sides of P . (See Figure 2.1.)

What do we mean when we say that the line L is tangent to C at P ? Past experi-

ence with tangent lines to circles does not help us to define tangency for more general

curves. A tangent line to a circle at P has the following properties (see Figure 2.2):

(i) It meets the circle at only the one point P .

(ii) The circle lies on only one side of the line.

y

x

P.x0; y0/

L

C

y D f .x/

Figure 2.1 L is tangent to C at P
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11. lim
x!�2C

x2
� 4

x2
C 4x C 4

12. lim
x!4

2 �
p

x

x � 4

13. lim
x!3

x2
� 9

p

x �
p

3
14. lim

h!0

h
p

x C 3h �
p

x

15. lim
x!0C

p

x � x2 16. lim
x!0

p

x � x2

17. lim
x!1

p

x � x2 18. lim
x!1�

p

x � x2

19. lim
x!1

1 � x
2

3x2
� x � 1

20. lim
x!�1

2x C 100

x2
C 3

21. lim
x!�1

x3
� 1

x2
C 4

22. lim
x!1

x4

x2
� 4

23. lim
x!0C

1
p

x � x2
24. lim

x!1=2

1
p

x � x2

25. lim
x!1

sinx 26. lim
x!1

cosx

x

27. lim
x!0

x sin
1

x
28. lim

x!0
sin

1

x2

29. lim
x!�1

Œx C

p

x2
� 4x C 1�

30. lim
x!1

Œx C

p

x2
� 4x C 1�

At what, if any, points in its domain is the function f in Exercises

31–38 discontinuous? Is f left or right continuous at these points?

In Exercises 35 and 36,H refers to the Heaviside function: H.x/ D

1 if x � 0 and H.x/ D 0 if x < 0.

31. f .x/ D x3
� 4x

2
C 1 32. f .x/ D

x

x C 1

33. f .x/ D

�

x2 if x > 2

x if x � 2
34. f .x/ D

�

x2 if x > 1

x if x � 1

35. f .x/ D H.x � 1/ 36. f .x/ D H.9 � x2
/

37. f .x/ D jxj C jx C 1j

38. f .x/ D
n

jxj=jx C 1j if x ¤ �1

1 if x D �1

Challenging Problems

1. Show that the average rate of change of the function x3 over the

interval Œa; b�, where 0 < a < b, is equal to the instantaneous

rate of change of x3 at x D
p

.a2
C ab C b2/=3. Is this point

to the left or to the right of the midpoint .a C b/=2 of the

interval Œa; b�?

2. Evaluate lim
x!0

x

jx � 1j � jx C 1j
.

3. Evaluate lim
x!3

j5 � 2xj � jx � 2j

jx � 5j � j3x � 7j
.

4. Evaluate lim
x!64

x1=3
� 4

x1=2
� 8

.

5. Evaluate lim
x!1

p

3C x � 2

3
p

7C x � 2
.

6. The equation ax2
C2x�1 D 0, where a is a constant, has two

roots if a > �1 and a ¤ 0:

rC.a/ D
�1C

p

1C a

a
and r�.a/ D

�1 �
p

1C a

a
:

(a) What happens to the root r�.a/ when a! 0 ?

(b) Investigate numerically what happens to the root

rC.a/ when a! 0 by trying the values a D 1, ˙0:1,

˙0:01, : : : : For values such as a D 10�8, the limited pre-

cision of your calculator may produce some interesting re-

sults. What happens, and why?

(c) Evaluate lima!0 rC.a/ mathematically by using the iden-

tity

p

A �
p

B D
A � B
p

AC
p

B
:

7.A TRUE or FALSE? If TRUE, give reasons; if FALSE, give a

counterexample.

(a) If limx!a f .x/ exists but limx!a g.x/ does not exist,

then limx!a .f .x/C g.x// does not exist.

(b) If neither limx!a f .x/ nor limx!a g.x/ exists, then

limx!a .f .x/C g.x// does not exist.

(c) If f is continuous at a, then so is jf j.

(d) If jf j is continuous at a, then so is f .

(e) If f .x/ < g.x/ for all x in an interval around a, and if

limx!a f .x/ and limx!a g.x/ both exist, then

limx!a f .x/ < limx!a g.x/.

8.A (a) If f is a continuous function defined on a closed interval

Œa; b�, show that R.f / is a closed interval.

(b) What are the possibilities for R.f / if D.f / is an open

interval .a; b/?

9. Consider the function f .x/ D
x2
� 1

jx2
� 1j

. Find all points where

f is not continuous. Does f have one-sided limits at those

points, and if so, what are they?

10.A Find the minimum value of f .x/ D 1=.x�x2/ on the interval

.0; 1/. Explain how you know such a minimum value must

exist.

11.I (a) Suppose f is a continuous function on the interval Œ0; 1�,

and f .0/ D f .1/. Show that f .a/ D f

�

aC
1

2

�

for

some a 2

�

0;
1

2

�

.

Hint: Let g.x/ D f

�

x C
1

2

�

� f .x/, and use the

Intermediate-Value Theorem.

(b) If n is an integer larger than 2, show that

f .a/ D f

�

aC
1

n

�

for some a 2

�

0; 1 �
1

n

�

.
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Differentiation

“
‘All right,’ said Deep Thought. ‘The Answer to the Great Question : : : ’

‘Yes : : : !’

‘Of Life, the Universe and Everything : : : ’ said Deep Thought.

‘Yes : : : !’

‘Is : : : ’ said Deep Thought, and paused.

‘Yes : : : ! : : : ?’

‘Forty-two,’ said Deep Thought, with infinite majesty and calm.

: : :

‘Forty-two!’ yelled Loonquawl. ‘Is that all you’ve got to show for seven

and a half million years’ work?’

‘I checked it very thoroughly,’ said the computer, ‘and that quite

definitely is the answer. I think the problem, to be quite honest with

you, is that you’ve never actually known what the question is.’

”Douglas Adams 1952–2001

from The Hitchhiker’s Guide to the Galaxy

Introduction Two fundamental problems are considered in calculus.

The problem of slopes is concerned with finding the slope

of (the tangent line to) a given curve at a given point on the curve. The problem of

areas is concerned with finding the area of a plane region bounded by curves and

straight lines. The solution of the problem of slopes is the subject of differential cal-

culus. As we will see, it has many applications in mathematics and other disciplines.

The problem of areas is the subject of integral calculus, which we begin in Chapter 5.

2.1 Tangent Lines and Their Slopes
This section deals with the problem of finding a straight line L that is tangent to a

curve C at a point P . As is often the case in mathematics, the most important step in

the solution of such a fundamental problem is making a suitable definition.

For simplicity, and to avoid certain problems best postponed until later, we will

not deal with the most general kinds of curves now, but only with those that are the

graphs of continuous functions. Let C be the graph of y D f .x/ and let P be the

point .x0; y0/ on C , so that y0 D f .x0/. We assume that P is not an endpoint of C .

Therefore, C extends some distance on both sides of P . (See Figure 2.1.)

What do we mean when we say that the line L is tangent to C at P ? Past experi-

ence with tangent lines to circles does not help us to define tangency for more general

curves. A tangent line to a circle at P has the following properties (see Figure 2.2):

(i) It meets the circle at only the one point P .

(ii) The circle lies on only one side of the line.

y

x

P.x0; y0/

L

C

y D f .x/

Figure 2.1 L is tangent to C at P
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(iii) The tangent is perpendicular to the line joining the centre of the circle to P:

L
P

C

Figure 2.2 L is tangent to C at P

Most curves do not have obvious centres, so (iii) is useless for characterizing tangents

to them. The curves in Figure 2.3 show that (i) and (ii) cannot be used to define tan-

gency either. In particular, the curve in Figure 2.3(d) is not “smooth” at P; so that

curve should not have any tangent line there. A tangent line should have the “same

direction” as the curve does at the point of tangency.

Figure 2.3

(a) L meets C only at P but is not

tangent to C

(b) L meets C at several points but is

tangent to C at P

(c) L is tangent to C at P but crosses C

at P

(d) Many lines meet C only at P but

none of them is tangent to C at P

y

x

y

x

y

x

y

x

C

L

C

L

C

C

P

L

P

P
P

(a) (b)

(c) (d)

A reasonable definition of tangency can be stated in terms of limits. IfQ is a point

on C different from P , then the line through P and Q is called a secant line to the

curve. This line rotates around P as Q moves along the curve. If L is a line through

P whose slope is the limit of the slopes of these secant lines PQ as Q approaches P

along C (Figure 2.4), then we will say that L is tangent to C at P .

Figure 2.4 Secant lines PQ approach

tangent line L as Q approaches P along

the curve C

y

x

P

y D f .x/

C

x0 x0 C h

Q

L

Since C is the graph of the function y D f .x/, then vertical lines can meet C only

once. Since P D .x0; f .x0//, a different point Q on the graph must have a different

x-coordinate, say x0Ch, where h ¤ 0. ThusQ D .x0Ch; f .x0Ch//, and the slope

of the line PQ is
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f .x0 C h/ � f .x0/

h
:

This expression is called the Newton quotient or difference quotient for f at x0.

Note that h can be positive or negative, depending on whether Q is to the right or left

of P .

D E F I N I T I O N

1

Nonvertical tangent lines

Suppose that the function f is continuous at x D x0 and that

lim
h!0

f .x0 C h/ � f .x0/

h
D m

exists. Then the straight line having slope m and passing through the point

P D .x0; f .x0// is called the tangent line (or simply the tangent) to the

graph of y D f .x/ at P . An equation of this tangent is

y D m.x � x0/C y0:

E X A M P L E 1
Find an equation of the tangent line to the curve y D x2 at the

point .1; 1/.

Solution Here f .x/ D x2, x0 D 1, and y0 D f .1/ D 1. The slope of the required

tangent is

m D lim
h!0

f .1C h/ � f .1/

h
D lim

h!0

.1C h/2 � 1

h

D lim
h!0

1C 2hC h
2
� 1

h

D lim
h!0

2hC h2

h
D lim

h!0
.2C h/ D 2:

Accordingly, the equation of the tangent line at .1; 1/ is y D 2.x�1/C1, or y D 2x�1.

See Figure 2.5.

y

x

y D x
2

.1; 1/

y D 2x � 1

Figure 2.5 The tangent to y D x2 at

.1; 1/

Definition 1 deals only with tangents that have finite slopes and are, therefore, not

vertical. It is also possible for the graph of a continuous function to have a vertical

tangent line.

E X A M P L E 2
Consider the graph of the function f .x/ D 3

p

x D x1=3, which

is shown in Figure 2.6. The graph is a smooth curve, and it seems

evident that the y-axis is tangent to this curve at the origin. Let us try to calculate the

limit of the Newton quotient for f at x D 0:

y

x

y D x1=3

Figure 2.6 The y-axis is tangent to

y D x1=3 at the origin

lim
h!0

f .0C h/ � f .0/

h
D lim

h!0

h1=3

h
D lim

h!0

1

h2=3
D1:

Although the limit does not exist, the slope of the secant line joining the origin to

another point Q on the curve approaches infinity as Q approaches the origin from

either side.
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(iii) The tangent is perpendicular to the line joining the centre of the circle to P:

L
P

C

Figure 2.2 L is tangent to C at P

Most curves do not have obvious centres, so (iii) is useless for characterizing tangents

to them. The curves in Figure 2.3 show that (i) and (ii) cannot be used to define tan-

gency either. In particular, the curve in Figure 2.3(d) is not “smooth” at P; so that

curve should not have any tangent line there. A tangent line should have the “same

direction” as the curve does at the point of tangency.

Figure 2.3

(a) L meets C only at P but is not

tangent to C

(b) L meets C at several points but is

tangent to C at P

(c) L is tangent to C at P but crosses C

at P

(d) Many lines meet C only at P but

none of them is tangent to C at P

y

x

y

x

y

x

y

x

C

L

C

L

C

C

P

L

P

P
P

(a) (b)

(c) (d)

A reasonable definition of tangency can be stated in terms of limits. IfQ is a point

on C different from P , then the line through P and Q is called a secant line to the

curve. This line rotates around P as Q moves along the curve. If L is a line through

P whose slope is the limit of the slopes of these secant lines PQ as Q approaches P

along C (Figure 2.4), then we will say that L is tangent to C at P .

Figure 2.4 Secant lines PQ approach

tangent line L as Q approaches P along

the curve C

y

x

P

y D f .x/

C

x0 x0 C h

Q

L

Since C is the graph of the function y D f .x/, then vertical lines can meet C only

once. Since P D .x0; f .x0//, a different point Q on the graph must have a different

x-coordinate, say x0Ch, where h ¤ 0. ThusQ D .x0Ch; f .x0Ch//, and the slope

of the line PQ is
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f .x0 C h/ � f .x0/

h
:

This expression is called the Newton quotient or difference quotient for f at x0.

Note that h can be positive or negative, depending on whether Q is to the right or left

of P .

D E F I N I T I O N

1

Nonvertical tangent lines

Suppose that the function f is continuous at x D x0 and that

lim
h!0

f .x0 C h/ � f .x0/

h
D m

exists. Then the straight line having slope m and passing through the point

P D .x0; f .x0// is called the tangent line (or simply the tangent) to the

graph of y D f .x/ at P . An equation of this tangent is

y D m.x � x0/C y0:

E X A M P L E 1
Find an equation of the tangent line to the curve y D x2 at the

point .1; 1/.

Solution Here f .x/ D x2, x0 D 1, and y0 D f .1/ D 1. The slope of the required

tangent is

m D lim
h!0

f .1C h/ � f .1/

h
D lim

h!0

.1C h/2 � 1

h

D lim
h!0

1C 2hC h
2
� 1

h

D lim
h!0

2hC h2

h
D lim

h!0
.2C h/ D 2:

Accordingly, the equation of the tangent line at .1; 1/ is y D 2.x�1/C1, or y D 2x�1.

See Figure 2.5.

y

x

y D x
2

.1; 1/

y D 2x � 1

Figure 2.5 The tangent to y D x2 at

.1; 1/

Definition 1 deals only with tangents that have finite slopes and are, therefore, not

vertical. It is also possible for the graph of a continuous function to have a vertical

tangent line.

E X A M P L E 2
Consider the graph of the function f .x/ D 3

p

x D x1=3, which

is shown in Figure 2.6. The graph is a smooth curve, and it seems

evident that the y-axis is tangent to this curve at the origin. Let us try to calculate the

limit of the Newton quotient for f at x D 0:

y

x

y D x1=3

Figure 2.6 The y-axis is tangent to

y D x1=3 at the origin

lim
h!0

f .0C h/ � f .0/

h
D lim

h!0

h1=3

h
D lim

h!0

1

h2=3
D1:

Although the limit does not exist, the slope of the secant line joining the origin to

another point Q on the curve approaches infinity as Q approaches the origin from

either side.
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E X A M P L E 3
On the other hand, the function f .x/ D x2=3, whose graph is

shown in Figure 2.7, does not have a tangent line at the origin be-

cause it is not “smooth” there. In this case the Newton quotient is

f .0C h/ � f .0/

h
D

h2=3

h
D

1

h1=3
;

which has no limit as h approaches zero. (The right limit is1; the left limit is �1.)

y

x

y D x2=3

Figure 2.7 This graph has no tangent at

the origin

We say this curve has a cusp at the origin. A cusp is an infinitely sharp point; if you

were travelling along the curve, you would have to stop and turn 180ı at the origin.

In the light of the two preceding examples, we extend the definition of tangent line to

allow for vertical tangents as follows:

D E F I N I T I O N

2

Vertical tangents

If f is continuous at P D .x0; y0/, where y0 D f .x0/, and if either

lim
h!0

f .x0 C h/ � f .x0/

h
D1 or lim

h!0

f .x0 C h/ � f .x0/

h
D �1;

then the vertical line x D x0 is tangent to the graph y D f .x/ at P . If the

limit of the Newton quotient fails to exist in any other way than by being1

or �1, the graph y D f .x/ has no tangent line at P .

E X A M P L E 4
Does the graph of y D jxj have a tangent line at x D 0?

Solution The Newton quotient here is

j0C hj � j0j

h
D

jhj

h
D sgn h D

�

1; if h > 0

�1; if h < 0:

Since sgnh has different right and left limits at 0 (namely, 1 and �1), the Newton quo-

tient has no limit as h! 0, so y D jxj has no tangent line at .0; 0/. (See Figure 2.8.)

The graph does not have a cusp at the origin, but it is kinked at that point; it suddenly

changes direction and is not smooth. Curves have tangents only at points where they

are smooth. The graphs of y D x2=3 and y D jxj have tangent lines everywhere except

at the origin, where they are not smooth.

y

x

y D jxj

Figure 2.8 y D jxj has no tangent at the

origin

D E F I N I T I O N

3

The slope of a curve

The slope of a curve C at a point P is the slope of the tangent line to C at P

if such a tangent line exists. In particular, the slope of the graph of y D f .x/

at the point x0 is

lim
h!0

f .x0 C h/ � f .x0/

h
:
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E X A M P L E 5
Find the slope of the curve y D x=.3x C 2/ at the point x D �2:

Solution If x D �2, then y D 1=2, so the required slope is

m D lim
h!0

�2C h

3.�2C h/C 2
�

1

2

h

D lim
h!0

�4C 2h � .�6C 3hC 2/

2.�6C 3hC 2/h

D lim
h!0

�h

2h.�4C 3h/
D lim

h!0

�1

2.�4C 3h/
D

1

8
:

Normals
If a curve C has a tangent line L at point P , then the straight line N through P

perpendicular to L is called the normal to C at P . If L is horizontal, then N is

vertical; if L is vertical, then N is horizontal. If L is neither horizontal nor vertical,

then, as shown in Section P.2, the slope of N is the negative reciprocal of the slope of

L; that is,

slope of the normal D
�1

slope of the tangent
:

E X A M P L E 6 Find an equation of the normal to y D x2 at .1; 1/.

Solution By Example 1, the tangent to y D x2 at .1; 1/ has slope 2. Hence, the

normal has slope �1=2, and its equation is

y D �
1

2
.x � 1/C 1 or y D �

x

2
C

3

2
:

E X A M P L E 7
Find equations of the straight lines that are tangent and normal to

the curve y D
p

x at the point .4; 2/.

Solution The slope of the tangent at .4; 2/ (Figure 2.9) is

m D lim
h!0

p

4C h � 2

h
D lim

h!0

.
p

4C h � 2/.
p

4C hC 2/

h.
p

4C hC 2/

D lim
h!0

4C h � 4

h.
p

4C hC 2/

D lim
h!0

1
p

4C hC 2
D

1

4
:

The tangent line has equation

y

x

y D
p

x

normal

tangent

y D 1C
x

4

y D 18 � 4x

.4; 2/

Figure 2.9 The tangent (blue) and normal

(green) to y D
p

x at .4; 2/

y D
1

4
.x � 4/C 2 or x � 4y C 4 D 0;

and the normal has slope �4 and, therefore, equation

y D �4.x � 4/C 2 or y D �4x C 18:
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E X A M P L E 3
On the other hand, the function f .x/ D x2=3, whose graph is

shown in Figure 2.7, does not have a tangent line at the origin be-

cause it is not “smooth” there. In this case the Newton quotient is

f .0C h/ � f .0/

h
D

h2=3

h
D

1

h1=3
;

which has no limit as h approaches zero. (The right limit is1; the left limit is �1.)

y

x

y D x2=3

Figure 2.7 This graph has no tangent at

the origin

We say this curve has a cusp at the origin. A cusp is an infinitely sharp point; if you

were travelling along the curve, you would have to stop and turn 180ı at the origin.

In the light of the two preceding examples, we extend the definition of tangent line to

allow for vertical tangents as follows:

D E F I N I T I O N

2

Vertical tangents

If f is continuous at P D .x0; y0/, where y0 D f .x0/, and if either

lim
h!0

f .x0 C h/ � f .x0/

h
D1 or lim

h!0

f .x0 C h/ � f .x0/

h
D �1;

then the vertical line x D x0 is tangent to the graph y D f .x/ at P . If the

limit of the Newton quotient fails to exist in any other way than by being1

or �1, the graph y D f .x/ has no tangent line at P .

E X A M P L E 4
Does the graph of y D jxj have a tangent line at x D 0?

Solution The Newton quotient here is

j0C hj � j0j

h
D

jhj

h
D sgn h D

�

1; if h > 0

�1; if h < 0:

Since sgnh has different right and left limits at 0 (namely, 1 and �1), the Newton quo-

tient has no limit as h! 0, so y D jxj has no tangent line at .0; 0/. (See Figure 2.8.)

The graph does not have a cusp at the origin, but it is kinked at that point; it suddenly

changes direction and is not smooth. Curves have tangents only at points where they

are smooth. The graphs of y D x2=3 and y D jxj have tangent lines everywhere except

at the origin, where they are not smooth.

y

x

y D jxj

Figure 2.8 y D jxj has no tangent at the

origin

D E F I N I T I O N

3

The slope of a curve

The slope of a curve C at a point P is the slope of the tangent line to C at P

if such a tangent line exists. In particular, the slope of the graph of y D f .x/

at the point x0 is

lim
h!0

f .x0 C h/ � f .x0/

h
:
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E X A M P L E 5
Find the slope of the curve y D x=.3x C 2/ at the point x D �2:

Solution If x D �2, then y D 1=2, so the required slope is

m D lim
h!0

�2C h

3.�2C h/C 2
�

1

2

h

D lim
h!0

�4C 2h � .�6C 3hC 2/

2.�6C 3hC 2/h

D lim
h!0

�h

2h.�4C 3h/
D lim

h!0

�1

2.�4C 3h/
D

1

8
:

Normals
If a curve C has a tangent line L at point P , then the straight line N through P

perpendicular to L is called the normal to C at P . If L is horizontal, then N is

vertical; if L is vertical, then N is horizontal. If L is neither horizontal nor vertical,

then, as shown in Section P.2, the slope of N is the negative reciprocal of the slope of

L; that is,

slope of the normal D
�1

slope of the tangent
:

E X A M P L E 6 Find an equation of the normal to y D x2 at .1; 1/.

Solution By Example 1, the tangent to y D x2 at .1; 1/ has slope 2. Hence, the

normal has slope �1=2, and its equation is

y D �
1

2
.x � 1/C 1 or y D �

x

2
C

3

2
:

E X A M P L E 7
Find equations of the straight lines that are tangent and normal to

the curve y D
p

x at the point .4; 2/.

Solution The slope of the tangent at .4; 2/ (Figure 2.9) is

m D lim
h!0

p

4C h � 2

h
D lim

h!0

.
p

4C h � 2/.
p

4C hC 2/

h.
p

4C hC 2/

D lim
h!0

4C h � 4

h.
p

4C hC 2/

D lim
h!0

1
p

4C hC 2
D

1

4
:

The tangent line has equation

y

x

y D
p

x

normal

tangent

y D 1C
x

4

y D 18 � 4x

.4; 2/

Figure 2.9 The tangent (blue) and normal

(green) to y D
p

x at .4; 2/

y D
1

4
.x � 4/C 2 or x � 4y C 4 D 0;

and the normal has slope �4 and, therefore, equation

y D �4.x � 4/C 2 or y D �4x C 18:
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E X E R C I S E S 2.1

In Exercises 1–12, find an equation of the straight line tangent to

the given curve at the point indicated.

1. y D 3x � 1 at .1; 2/ 2. y D x=2 at .a; a=2/

3. y D 2x2
� 5 at .2; 3/ 4. y D 6 � x � x2 at x D �2

5. y D x3
C 8 at x D �2 6. y D

1

x2
C 1

at .0; 1/

7. y D
p

x C 1 at x D 3 8. y D
1
p

x
at x D 9

9. y D
2x

x C 2
at x D 2 10. y D

p

5� x2 at x D 1

11. y D x2 at x D x0 12. y D
1

x
at

�

a;
1

a

�

Do the graphs of the functions f in Exercises 13–17 have tangent

lines at the given points? If yes, what is the tangent line?

13. f .x/ D
p

jxj at x D 0 14. f .x/ D .x � 1/4=3 at x D 1

15. f .x/ D .x C 2/3=5 at x D �2

16. f .x/ D jx2
� 1j at x D 1

17. f .x/ D

�p

x if x � 0

�

p

�x if x < 0
at x D 0

18. Find the slope of the curve y D x2
� 1 at the point x D x0.

What is the equation of the tangent line to y D x2
� 1 that has

slope �3?

19. (a) Find the slope of y D x3 at the point x D a.

(b) Find the equations of the straight lines having slope 3 that

are tangent to y D x3.

20. Find all points on the curve y D x3
� 3x where the tangent

line is parallel to the x-axis.

21. Find all points on the curve y D x3
� xC 1 where the tangent

line is parallel to the line y D 2x C 5.

22. Find all points on the curve y D 1=x where the tangent line is

perpendicular to the line y D 4x � 3.

23. For what value of the constant k is the line x C y D k normal

to the curve y D x2?

24. For what value of the constant k do the curves y D kx2 and

y D k.x � 2/2 intersect at right angles? Hint: Where do the

curves intersect? What are their slopes there?

Use a graphics utility to plot the following curves. Where does the

curve have a horizontal tangent? Does the curve fail to have a

tangent line anywhere?

G 25. y D x3
.5 � x/

2 G 26. y D 2x3
� 3x

2
� 12x C 1

G 27. y D jx2
� 1j � x G 28. y D jx C 1j � jx � 1j

G 29. y D .x2
� 1/

1=3 G 30. y D ..x2
� 1/

2
/
1=3

31.A If line L is tangent to curve C at point P , then the smaller

angle between L and the secant line PQ joining P to another

point Q on C approaches 0 as Q approaches P along C . Is

the converse true: if the angle between PQ and line L (which

passes through P ) approaches 0, must L be tangent to C ?

32.I Let P.x/ be a polynomial. If a is a real number, then P.x/

can be expressed in the form

P.x/ D a0 C a1.x � a/C a2.x � a/
2
C � � � C an.x � a/

n

for some n � 0. If `.x/ D m.x � a/C b, show that the

straight line y D `.x/ is tangent to the graph of y D P.x/ at

x D a provided P.x/� `.x/ D .x � a/2Q.x/, where Q.x/ is

a polynomial.

2.2 The Derivative
A straight line has the property that its slope is the same at all points. For any other

graph, however, the slope may vary from point to point. Thus, the slope of the graph

of y D f .x/ at the point x is itself a function of x. At any point x where the graph

has a finite slope, we say that f is differentiable, and we call the slope the derivative

of f: The derivative is therefore the limit of the Newton quotient.

D E F I N I T I O N

4

The derivative of a function f is another function f 0 defined by

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

at all points x for which the limit exists (i.e., is a finite real number). If f 0.x/

exists, we say that f is differentiable at x.

The domain of the derivative f 0 (read “f prime”) is the set of numbers x in the domain

of f where the graph of f has a nonvertical tangent line, and the value f 0.x0/ of f 0

at such a point x0 is the slope of the tangent line to y D f .x/ there. Thus, the equation

of the tangent line to y D f .x/ at .x0; f .x0// is
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y D f .x0/C f
0
.x0/.x � x0/:

The domain D.f 0/ of f 0 may be smaller than the domain D.f / of f because it

contains only those points in D.f / at which f is differentiable. Values of x in D.f /

where f is not differentiable and that are not endpoints of D.f / are singular points

of f:

Remark The value of the derivative of f at a particular point x0 can be expressed as

a limit in either of two ways:

f
0
.x0/ D lim

h!0

f .x0 C h/ � f .x0/

h
D lim

x!x0

f .x/� f .x0/

x � x0

:

In the second limit x0Ch is replaced by x, so that h D x�x0 and h! 0 is equivalent

to x ! x0.

The process of calculating the derivative f 0 of a given function f is called differ-

entiation. The graph of f 0 can often be sketched directly from that of f by visualizing

slopes, a procedure called graphical differentiation. In Figure 2.10 the graphs of f 0

and g0 were obtained by measuring the slopes at the corresponding points in the graphs

of f and g lying above them. The height of the graph y D f 0.x/ at x is the slope of

the graph of y D f .x/ at x. Note that �1 and 1 are singular points of f: Although

f .�1/ and f .1/ are defined, f 0.�1/ and f 0.1/ are not defined; the graph of f has no

tangent at �1 or at 1.

Figure 2.10 Graphical differentiation

y

x

y

x

y

x

y

x

.1; 1/

.1; 1/

y D g.x/

y D f .x/

y D g0.x/

y D f
0
.x/

.�1;�1/

.1;�1/

.�1; 1/

.�1;�1/

slope m

height m

A function is differentiable on a set S if it is differentiable at every point x in S .

Typically, the functions we encounter are defined on intervals or unions of intervals. If

f is defined on a closed interval Œa; b�, Definition 4 does not allow for the existence

of a derivative at the endpoints x D a or x D b. (Why?) As we did for continuity in

Section 1.4, we extend the definition to allow for a right derivative at x D a and a left

derivative at x D b:

f
0

C.a/ D lim
h!0C

f .aC h/ � f .a/

h
; f

0
�.b/ D lim

h!0�

f .b C h/ � f .b/

h
:

We now say that f is differentiable on Œa; b� if f 0.x/ exists for all x in .a; b/ and

f 0
C.a/ and f 0

�.b/ both exist.
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E X E R C I S E S 2.1

In Exercises 1–12, find an equation of the straight line tangent to

the given curve at the point indicated.

1. y D 3x � 1 at .1; 2/ 2. y D x=2 at .a; a=2/

3. y D 2x2
� 5 at .2; 3/ 4. y D 6 � x � x2 at x D �2

5. y D x3
C 8 at x D �2 6. y D

1

x2
C 1

at .0; 1/

7. y D
p

x C 1 at x D 3 8. y D
1
p

x
at x D 9

9. y D
2x

x C 2
at x D 2 10. y D

p

5� x2 at x D 1

11. y D x2 at x D x0 12. y D
1

x
at

�

a;
1

a

�

Do the graphs of the functions f in Exercises 13–17 have tangent

lines at the given points? If yes, what is the tangent line?

13. f .x/ D
p

jxj at x D 0 14. f .x/ D .x � 1/4=3 at x D 1

15. f .x/ D .x C 2/3=5 at x D �2

16. f .x/ D jx2
� 1j at x D 1

17. f .x/ D

�p

x if x � 0

�

p

�x if x < 0
at x D 0

18. Find the slope of the curve y D x2
� 1 at the point x D x0.

What is the equation of the tangent line to y D x2
� 1 that has

slope �3?

19. (a) Find the slope of y D x3 at the point x D a.

(b) Find the equations of the straight lines having slope 3 that

are tangent to y D x3.

20. Find all points on the curve y D x3
� 3x where the tangent

line is parallel to the x-axis.

21. Find all points on the curve y D x3
� xC 1 where the tangent

line is parallel to the line y D 2x C 5.

22. Find all points on the curve y D 1=x where the tangent line is

perpendicular to the line y D 4x � 3.

23. For what value of the constant k is the line x C y D k normal

to the curve y D x2?

24. For what value of the constant k do the curves y D kx2 and

y D k.x � 2/2 intersect at right angles? Hint: Where do the

curves intersect? What are their slopes there?

Use a graphics utility to plot the following curves. Where does the

curve have a horizontal tangent? Does the curve fail to have a

tangent line anywhere?

G 25. y D x3
.5 � x/

2 G 26. y D 2x3
� 3x

2
� 12x C 1

G 27. y D jx2
� 1j � x G 28. y D jx C 1j � jx � 1j

G 29. y D .x2
� 1/

1=3 G 30. y D ..x2
� 1/

2
/
1=3

31.A If line L is tangent to curve C at point P , then the smaller

angle between L and the secant line PQ joining P to another

point Q on C approaches 0 as Q approaches P along C . Is

the converse true: if the angle between PQ and line L (which

passes through P ) approaches 0, must L be tangent to C ?

32.I Let P.x/ be a polynomial. If a is a real number, then P.x/

can be expressed in the form

P.x/ D a0 C a1.x � a/C a2.x � a/
2
C � � � C an.x � a/

n

for some n � 0. If `.x/ D m.x � a/C b, show that the

straight line y D `.x/ is tangent to the graph of y D P.x/ at

x D a provided P.x/� `.x/ D .x � a/2Q.x/, where Q.x/ is

a polynomial.

2.2 The Derivative
A straight line has the property that its slope is the same at all points. For any other

graph, however, the slope may vary from point to point. Thus, the slope of the graph

of y D f .x/ at the point x is itself a function of x. At any point x where the graph

has a finite slope, we say that f is differentiable, and we call the slope the derivative

of f: The derivative is therefore the limit of the Newton quotient.

D E F I N I T I O N

4

The derivative of a function f is another function f 0 defined by

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

at all points x for which the limit exists (i.e., is a finite real number). If f 0.x/

exists, we say that f is differentiable at x.

The domain of the derivative f 0 (read “f prime”) is the set of numbers x in the domain

of f where the graph of f has a nonvertical tangent line, and the value f 0.x0/ of f 0

at such a point x0 is the slope of the tangent line to y D f .x/ there. Thus, the equation

of the tangent line to y D f .x/ at .x0; f .x0// is
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y D f .x0/C f
0
.x0/.x � x0/:

The domain D.f 0/ of f 0 may be smaller than the domain D.f / of f because it

contains only those points in D.f / at which f is differentiable. Values of x in D.f /

where f is not differentiable and that are not endpoints of D.f / are singular points

of f:

Remark The value of the derivative of f at a particular point x0 can be expressed as

a limit in either of two ways:

f
0
.x0/ D lim

h!0

f .x0 C h/ � f .x0/

h
D lim

x!x0

f .x/� f .x0/

x � x0

:

In the second limit x0Ch is replaced by x, so that h D x�x0 and h! 0 is equivalent

to x ! x0.

The process of calculating the derivative f 0 of a given function f is called differ-

entiation. The graph of f 0 can often be sketched directly from that of f by visualizing

slopes, a procedure called graphical differentiation. In Figure 2.10 the graphs of f 0

and g0 were obtained by measuring the slopes at the corresponding points in the graphs

of f and g lying above them. The height of the graph y D f 0.x/ at x is the slope of

the graph of y D f .x/ at x. Note that �1 and 1 are singular points of f: Although

f .�1/ and f .1/ are defined, f 0.�1/ and f 0.1/ are not defined; the graph of f has no

tangent at �1 or at 1.

Figure 2.10 Graphical differentiation

y

x

y

x

y

x

y

x

.1; 1/

.1; 1/

y D g.x/

y D f .x/

y D g0.x/

y D f
0
.x/

.�1;�1/

.1;�1/

.�1; 1/

.�1;�1/

slope m

height m

A function is differentiable on a set S if it is differentiable at every point x in S .

Typically, the functions we encounter are defined on intervals or unions of intervals. If

f is defined on a closed interval Œa; b�, Definition 4 does not allow for the existence

of a derivative at the endpoints x D a or x D b. (Why?) As we did for continuity in

Section 1.4, we extend the definition to allow for a right derivative at x D a and a left

derivative at x D b:

f
0

C.a/ D lim
h!0C

f .aC h/ � f .a/

h
; f

0
�.b/ D lim

h!0�

f .b C h/ � f .b/

h
:

We now say that f is differentiable on Œa; b� if f 0.x/ exists for all x in .a; b/ and

f 0
C.a/ and f 0

�.b/ both exist.
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Some Important Derivatives
We now give several examples of the calculation of derivatives algebraically from the

definition of derivative. Some of these are the basic building blocks from which more

complicated derivatives can be calculated later. They are collected in Table 1 later in

this section and should be memorized.

E X A M P L E 1
(The derivative of a linear function) Show that if f .x/ D axC

b, then f 0.x/ D a.

Solution The result is apparent from the graph of f (Figure 2.11), but we will do the

calculation using the definition:

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

a.x C h/C b � .ax C b/

h

D lim
h!0

ah

h
D a:

y

x

y

x

y D f .x/ D ax C b

y D f 0.x/ D a

Figure 2.11 The derivative of the linear

function f .x/ D ax C b is the constant

function f 0.x/ D a

An important special case of Example 1 says that the derivative of a constant function

is the zero function:

If g.x/ D c (constant), then g0.x/ D 0.

E X A M P L E 2
Use the definition of the derivative to calculate the derivatives of

the functions

(a) f .x/ D x2, (b) g.x/ D
1

x
, and (c) k.x/ D

p

x.

Solution Figures 2.12–2.14 show the graphs of these functions and their derivatives.

y

x

y

x

y D f 0.x/ D 2x

y D f .x/ D x
2

Figure 2.12 The derivative of

f .x/ D x2 is f 0.x/ D 2x

y

x

y

x

y D g0.x/ D �
1

x2

y D g.x/ D
1

x

Figure 2.13 The derivative of

g.x/ D 1=x is g0.x/ D �1=x2

y

x
y

x

y D k0.x/ D
1

2
p

x

y D k.x/ D
p

x

Figure 2.14 The derivative of

k.x/ D
p

x is k 0.x/ D 1=.2
p

x/
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(a) f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

.x C h/2 � x2

h

D lim
h!0

2hx C h2

h
D lim

h!0
.2x C h/ D 2x:

(b) g
0
.x/ D lim

h!0

g.x C h/ � g.x/

h

D lim
h!0

1

x C h
�

1

x

h

D lim
h!0

x � .x C h/

h.x C h/x
D lim

h!0
�

1

.x C h/x
D �

1

x2
:

(c) k
0
.x/ D lim

h!0

k.x C h/ � k.x/

h

D lim
h!0

p

x C h �
p

x

h

D lim
h!0

p

x C h �
p

x

h
�

p

x C hC
p

x
p

x C hC
p

x

D lim
h!0

x C h � x

h.
p

x C hC
p

x/
D lim

h!0

1
p

x C hC
p

x
D

1

2
p

x
:

Note that k is not differentiable at the endpoint x D 0.

The three derivative formulas calculated in Example 2 are special cases of the following

General Power Rule:

If f .x/ D xr , then f 0.x/ D r xr�1.

This formula, which we will verify in Section 3.3, is valid for all values of r and x for

which xr�1 makes sense as a real number.

E X A M P L E 3
(Differentiating powers)

If f .x/ D x5=3, then f 0.x/ D
5

3
x

.5=3/�1
D

5

3
x

2=3 for all real x.

If g.t/ D
1
p

t
D t

�1=2, then g0
.t/ D �

1

2
t
�.1=2/�1

D �

1

2
t
�3=2 for t > 0.

Eventually, we will prove all appropriate cases of the General Power Rule. For the time

being, here is a proof of the case r D n, a positive integer, based on the factoring of a

difference of nth powers:

a
n
� b

n
D .a � b/.a

n�1
C a

n�2
b C a

n�3
b

2
C � � � C ab

n�2
C b

n�1
/:

(Check that this formula is correct by multiplying the two factors on the right-hand

side.) If f .x/ D xn, a D x C h, and b D x, then a � b D h and

f
0
.x/ D lim

h!0

.x C h/n � xn

h

D lim
h!0

h

n terms
‚ ‡ ƒ

Œ.x C h/
n�1
C .x C h/

n�2
x C .x C h/

n�3
x

2
C � � � C x

n�1
�

h

D nx
n�1

:
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Some Important Derivatives
We now give several examples of the calculation of derivatives algebraically from the

definition of derivative. Some of these are the basic building blocks from which more

complicated derivatives can be calculated later. They are collected in Table 1 later in

this section and should be memorized.

E X A M P L E 1
(The derivative of a linear function) Show that if f .x/ D axC

b, then f 0.x/ D a.

Solution The result is apparent from the graph of f (Figure 2.11), but we will do the

calculation using the definition:

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

a.x C h/C b � .ax C b/

h

D lim
h!0

ah

h
D a:

y

x

y

x

y D f .x/ D ax C b

y D f 0.x/ D a

Figure 2.11 The derivative of the linear

function f .x/ D ax C b is the constant

function f 0.x/ D a

An important special case of Example 1 says that the derivative of a constant function

is the zero function:

If g.x/ D c (constant), then g0.x/ D 0.

E X A M P L E 2
Use the definition of the derivative to calculate the derivatives of

the functions

(a) f .x/ D x2, (b) g.x/ D
1

x
, and (c) k.x/ D

p

x.

Solution Figures 2.12–2.14 show the graphs of these functions and their derivatives.

y

x

y

x

y D f 0.x/ D 2x

y D f .x/ D x
2

Figure 2.12 The derivative of

f .x/ D x2 is f 0.x/ D 2x

y

x

y

x

y D g0.x/ D �
1

x2

y D g.x/ D
1

x

Figure 2.13 The derivative of

g.x/ D 1=x is g0.x/ D �1=x2

y

x
y

x

y D k0.x/ D
1

2
p

x

y D k.x/ D
p

x

Figure 2.14 The derivative of

k.x/ D
p

x is k 0.x/ D 1=.2
p

x/
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(a) f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

.x C h/2 � x2

h

D lim
h!0

2hx C h2

h
D lim

h!0
.2x C h/ D 2x:

(b) g
0
.x/ D lim

h!0

g.x C h/ � g.x/

h

D lim
h!0

1

x C h
�

1

x

h

D lim
h!0

x � .x C h/

h.x C h/x
D lim

h!0
�

1

.x C h/x
D �

1

x2
:

(c) k
0
.x/ D lim

h!0

k.x C h/ � k.x/

h

D lim
h!0

p

x C h �
p

x

h

D lim
h!0

p

x C h �
p

x

h
�

p

x C hC
p

x
p

x C hC
p

x

D lim
h!0

x C h � x

h.
p

x C hC
p

x/
D lim

h!0

1
p

x C hC
p

x
D

1

2
p

x
:

Note that k is not differentiable at the endpoint x D 0.

The three derivative formulas calculated in Example 2 are special cases of the following

General Power Rule:

If f .x/ D xr , then f 0.x/ D r xr�1.

This formula, which we will verify in Section 3.3, is valid for all values of r and x for

which xr�1 makes sense as a real number.

E X A M P L E 3
(Differentiating powers)

If f .x/ D x5=3, then f 0.x/ D
5

3
x

.5=3/�1
D

5

3
x

2=3 for all real x.

If g.t/ D
1
p

t
D t

�1=2, then g0
.t/ D �

1

2
t
�.1=2/�1

D �

1

2
t
�3=2 for t > 0.

Eventually, we will prove all appropriate cases of the General Power Rule. For the time

being, here is a proof of the case r D n, a positive integer, based on the factoring of a

difference of nth powers:

a
n
� b

n
D .a � b/.a

n�1
C a

n�2
b C a

n�3
b

2
C � � � C ab

n�2
C b

n�1
/:

(Check that this formula is correct by multiplying the two factors on the right-hand

side.) If f .x/ D xn, a D x C h, and b D x, then a � b D h and

f
0
.x/ D lim

h!0

.x C h/n � xn

h

D lim
h!0

h

n terms
‚ ‡ ƒ

Œ.x C h/
n�1
C .x C h/

n�2
x C .x C h/

n�3
x

2
C � � � C x

n�1
�

h

D nx
n�1

:
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An alternative proof based on the product rule and mathematical induction will be

given in Section 2.3. The factorization method used above can also be used to demon-

strate the General Power Rule for negative integers, r D �n, and reciprocals of inte-

gers, r D 1=n. (See Exercises 52 and 54 at the end of this section.)

E X A M P L E 4
(Differentiating the absolute value function) Verify that:

If f .x/ D jxj, then f
0
.x/ D

x

jxj
D sgn x.

Solution We have

f .x/ D

�

x; if x � 0

�x; if x < 0
:

Thus, from Example 1 above, f 0.x/ D 1 if x > 0 and f 0.x/ D �1 if x < 0. Also,

Example 4 of Section 2.1 shows that f is not differentiable at x D 0, which is a

singular point of f . Therefore (see Figure 2.15),

f
0
.x/ D

�

1; if x > 0

�1; if x < 0
D

x

jxj
D sgn x:

Table 1 lists the elementary derivatives calculated above. Beginning in Section 2.3

we will develop general rules for calculating the derivatives of functions obtained by

combining simpler functions. Thereafter, we will seldom have to revert to the definition

of the derivative and to the calculation of limits to evaluate derivatives. It is important,

therefore, to remember the derivatives of some elementary functions. Memorize those

in Table 1.

y

x

y

x

y D f .x/ D jxj

y D f 0.x/ D sgn x

�1

1

Figure 2.15 The derivative of jxj is

sgnx D x=jxj

Table 1. Some elementary functions and their derivatives

f .x/ f 0.x/

c (constant) 0

x 1

x2 2x

1

x
�

1

x2
.x ¤ 0/

p

x
1

2
p

x
.x > 0/

xr r xr�1 .xr�1 real/

jxj
x

jxj
D sgn x

Leibniz Notation
Because functions can be written in different ways, it is useful to have more than one

notation for derivatives. If y D f .x/, we can use the dependent variable y to represent

the function, and we can denote the derivative of the function with respect to x in any

of the following ways:

Dxy D y
0
D

dy

dx
D

d

dx
f .x/ D f

0
.x/ D Dxf .x/ D Df .x/:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 105 October 15, 2016

SECTION 2.2: The Derivative 105

(In the forms using “Dx ,” we can omit the subscript x if the variable of differentiation

is obvious.) Often the most convenient way of referring to the derivative of a function

given explicitly as an expression in the variable x is to write d
dx

in front of that expres-

sion. The symbol d
dx

is a differential operator and should be read “the derivative with

respect to x of : : : ” For example,

d

dx
x

2
D 2x (the derivative with respect to x of x2 is 2x)

d

dx

p

x D
1

2
p

x

d

dt
t
100
D 100 t

99

if y D u3
; then

dy

du
D 3u

2
:

The value of the derivative of a function at a particular number x0 in its domain

Do not confuse the expressions

d

dx
f .x/ and

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

ˇ

xDx0

:

The first expression represents a

function, f 0.x/. The second

represents a number, f 0.x0/.

can also be expressed in several ways:

Dxy

ˇ

ˇ

ˇ

ˇ

xDx0

D y
0
ˇ

ˇ

ˇ

ˇ

xDx0

D

dy

dx

ˇ

ˇ

ˇ

ˇ

xDx0

D

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

xDx0

D f
0
.x0/ D Dxf .x0/:

The symbol

ˇ

ˇ

ˇ

ˇ

xDx0

is called an evaluation symbol. It signifies that the expression

preceding it should be evaluated at x D x0. Thus,

d

dx
x

4

ˇ

ˇ

ˇ

ˇ

xD�1

D 4x
3

ˇ

ˇ

ˇ

ˇ

xD�1

D 4.�1/
3
D �4:

Here is another example in which a derivative is computed from the definition, this

time for a somewhat more complicated function.

E X A M P L E 5 Use the definition of derivative to calculate
d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

.

Solution We could calculate
d

dx

�

x

x2
C 1

�

and then substitute x D 2, but it is

easier to put x D 2 in the expression for the Newton quotient before taking the limit:

d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

D lim
h!0

2C h

.2C h/2 C 1
�

2

22
C 1

h

D lim
h!0

2C h

5C 4hC h2
�

2

5

h

D lim
h!0

5.2C h/ � 2.5C 4hC h2/

5.5C 4hC h2/h

D lim
h!0

�3h � 2h2

5.5C 4hC h2/h

D lim
h!0

�3 � 2h

5.5C 4hC h2/
D �

3

25
:

The notations dy=dx and d
dx
f .x/ are called Leibniz notations for the derivative, after

Gottfried Wilhelm Leibniz (1646–1716), one of the creators of calculus, who used such

notations. The main ideas of calculus were developed independently by Leibniz and

Isaac Newton (1642–1727); Newton used notations similar to the prime .y 0/ notations

we use here.
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An alternative proof based on the product rule and mathematical induction will be

given in Section 2.3. The factorization method used above can also be used to demon-

strate the General Power Rule for negative integers, r D �n, and reciprocals of inte-

gers, r D 1=n. (See Exercises 52 and 54 at the end of this section.)

E X A M P L E 4
(Differentiating the absolute value function) Verify that:

If f .x/ D jxj, then f
0
.x/ D

x

jxj
D sgn x.

Solution We have

f .x/ D

�

x; if x � 0

�x; if x < 0
:

Thus, from Example 1 above, f 0.x/ D 1 if x > 0 and f 0.x/ D �1 if x < 0. Also,

Example 4 of Section 2.1 shows that f is not differentiable at x D 0, which is a

singular point of f . Therefore (see Figure 2.15),

f
0
.x/ D

�

1; if x > 0

�1; if x < 0
D

x

jxj
D sgn x:

Table 1 lists the elementary derivatives calculated above. Beginning in Section 2.3

we will develop general rules for calculating the derivatives of functions obtained by

combining simpler functions. Thereafter, we will seldom have to revert to the definition

of the derivative and to the calculation of limits to evaluate derivatives. It is important,

therefore, to remember the derivatives of some elementary functions. Memorize those

in Table 1.

y

x

y

x

y D f .x/ D jxj

y D f 0.x/ D sgn x

�1

1

Figure 2.15 The derivative of jxj is

sgnx D x=jxj

Table 1. Some elementary functions and their derivatives

f .x/ f 0.x/

c (constant) 0

x 1

x2 2x

1

x
�

1

x2
.x ¤ 0/

p

x
1

2
p

x
.x > 0/

xr r xr�1 .xr�1 real/

jxj
x

jxj
D sgn x

Leibniz Notation
Because functions can be written in different ways, it is useful to have more than one

notation for derivatives. If y D f .x/, we can use the dependent variable y to represent

the function, and we can denote the derivative of the function with respect to x in any

of the following ways:

Dxy D y
0
D

dy

dx
D

d

dx
f .x/ D f

0
.x/ D Dxf .x/ D Df .x/:
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(In the forms using “Dx ,” we can omit the subscript x if the variable of differentiation

is obvious.) Often the most convenient way of referring to the derivative of a function

given explicitly as an expression in the variable x is to write d
dx

in front of that expres-

sion. The symbol d
dx

is a differential operator and should be read “the derivative with

respect to x of : : : ” For example,

d

dx
x

2
D 2x (the derivative with respect to x of x2 is 2x)

d

dx

p

x D
1

2
p

x

d

dt
t
100
D 100 t

99

if y D u3
; then

dy

du
D 3u

2
:

The value of the derivative of a function at a particular number x0 in its domain

Do not confuse the expressions

d

dx
f .x/ and

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

ˇ

xDx0

:

The first expression represents a

function, f 0.x/. The second

represents a number, f 0.x0/.

can also be expressed in several ways:

Dxy

ˇ

ˇ

ˇ

ˇ

xDx0

D y
0
ˇ

ˇ

ˇ

ˇ

xDx0

D

dy

dx

ˇ

ˇ

ˇ

ˇ

xDx0

D

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

xDx0

D f
0
.x0/ D Dxf .x0/:

The symbol

ˇ

ˇ

ˇ

ˇ

xDx0

is called an evaluation symbol. It signifies that the expression

preceding it should be evaluated at x D x0. Thus,

d

dx
x

4

ˇ

ˇ

ˇ

ˇ

xD�1

D 4x
3

ˇ

ˇ

ˇ

ˇ

xD�1

D 4.�1/
3
D �4:

Here is another example in which a derivative is computed from the definition, this

time for a somewhat more complicated function.

E X A M P L E 5 Use the definition of derivative to calculate
d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

.

Solution We could calculate
d

dx

�

x

x2
C 1

�

and then substitute x D 2, but it is

easier to put x D 2 in the expression for the Newton quotient before taking the limit:

d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

D lim
h!0

2C h

.2C h/2 C 1
�

2

22
C 1

h

D lim
h!0

2C h

5C 4hC h2
�

2

5

h

D lim
h!0

5.2C h/ � 2.5C 4hC h2/

5.5C 4hC h2/h

D lim
h!0

�3h � 2h2

5.5C 4hC h2/h

D lim
h!0

�3 � 2h

5.5C 4hC h2/
D �

3

25
:

The notations dy=dx and d
dx
f .x/ are called Leibniz notations for the derivative, after

Gottfried Wilhelm Leibniz (1646–1716), one of the creators of calculus, who used such

notations. The main ideas of calculus were developed independently by Leibniz and

Isaac Newton (1642–1727); Newton used notations similar to the prime .y 0/ notations

we use here.
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The Leibniz notation is suggested by the definition of derivative. The Newton

quotient Œf .x C h/ � f .x/�=h, whose limit we take to find the derivative dy=dx, can

be written in the form �y=�x, where �y D f .x C h/ � f .x/ is the increment in y,

and �x D .x C h/ � x D h is the corresponding increment in x as we pass from the

point .x; f .x// to the point .x C h; f .x C h// on the graph of f: (See Figure 2.16.)

� is the uppercase Greek letter Delta. Using symbols:

dy

dx
D lim

�x!0

�y

�x
:

Figure 2.16
dy

dx
D lim

�x!0

�y

�x

y

xx x C h

�x D h

slope
dy

dx

slope
�y

�x

y D f .x/

�y

Differentials
The Newton quotient �y=�x is actually the quotient of two quantities, �y and �x.

It is not at all clear, however, that the derivative dy=dx, the limit of �y=�x as �x

approaches zero, can be regarded as a quotient. If y is a continuous function of x, then

�y approaches zero when �x approaches zero, so dy=dx appears to be the meaning-

less quantity 0=0. Nevertheless, it is sometimes useful to be able to refer to quantities

dy and dx in such a way that their quotient is the derivative dy=dx. We can justify

this by regarding dx as a new independent variable (called the differential of x) and

defining a new dependent variable dy (the differential of y) as a function of x and

dx by

dy D
dy

dx
dx D f

0
.x/ dx:

For example, if y D x2, we can write dy D 2x dx to mean the same thing as

dy=dx D 2x. Similarly, if f .x/ D 1=x, we can write df .x/ D �.1=x2
/ dx as

the equivalent differential form of the assertion that .d=dx/f .x/ D f 0.x/ D �1=x2.

This differential notation is useful in applications (see Sections 2.7 and 12.6), and

especially for the interpretation and manipulation of integrals beginning in Chapter 5.

Note that, defined as above, differentials are merely variables that may or may not

be small in absolute value. The differentials dy and dx were originally regarded (by

Leibniz and his successors) as “infinitesimals” (infinitely small but nonzero) quantities

whose quotient dy=dx gave the slope of the tangent line (a secant line meeting the

graph of y D f .x/ at two points infinitely close together). It can be shown that such

“infinitesimal” quantities cannot exist (as real numbers). It is possible to extend the

number system to contain infinitesimals and use these to develop calculus, but we will

not consider this approach here.
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Derivatives Have the Intermediate-Value Property
Is a function f defined on an interval I necessarily the derivative of some other func-

tion defined on I ? The answer is no; some functions are derivatives and some are not.

Although a derivative need not be a continuous function (see Exercise 28 in Section

2.8), it must, like a continuous function, have the intermediate-value property: on an

interval Œa; b�, a derivative f 0.x/ takes on every value between f 0.a/ and f 0.b/. (See

Exercise 29 in Section 2.8 for a proof of this fact.) An everywhere-defined step func-

tion such as the Heaviside function H.x/ considered in Example 1 in Section 1.4 (see

Figure 2.17) does not have this property on, say, the interval Œ�1; 1�, so cannot be the

derivative of a function on that interval. This argument does not apply to the signum

y

x

1

y D 1

y D 0

y D H.x/

Figure 2.17 This function is not a

derivative on Œ�1; 1�; it does not have the

intermediate-value property.

function, which is the derivative of the absolute value function on any interval where

it is defined. (See Example 4.) Such an interval cannot contain the origin, as sgn .x/ is

not defined at x D 0.

If g.x/ is continuous on an interval I , then g.x/ D f 0.x/ for some function f

that is differentiable on I . We will discuss this fact further in Chapter 5 and prove it in

Appendix IV.

E X E R C I S E S 2.2

Make rough sketches of the graphs of the derivatives of the

functions in Exercises 1–4.

1. The function f graphed in Figure 2.18(a).

2. The function g graphed in Figure 2.18(b).

3. The function h graphed in Figure 2.18(c).

4. The function k graphed in Figure 2.18(d).

5. Where is the function f graphed in Figure 2.18(a)

differentiable?

6. Where is the function g graphed in Figure 2.18(b)

differentiable?

y

x

y

x

y

x

y

x

(a) (b)

(d)(c)

y D g.x/

y D k.x/y D h.x/

y D f .x/

Figure 2.18

Use a graphics utility with differentiation capabilities to plot the

graphs of the following functions and their derivatives. Observe

the relationships between the graph of y and that of y 0 in each

case. What features of the graph of y can you infer from the graph

of y 0?

G 7. y D 3x � x2
� 1 G 8. y D x3

� 3x
2
C 2x C 1

G 9. y D jx3
� xj G 10. y D jx2

� 1j � jx
2
� 4j

In Exercises 11–24, (a) calculate the derivative of the given

function directly from the definition of derivative, and (b) express

the result of (a) using differentials.

11. y D x2
� 3x 12. f .x/ D 1C 4x � 5x2

13. f .x/ D x3 14. s D
1

3C 4t

15. g.x/ D
2 � x

2C x
16. y D

1

3
x

3
� x

17. F.t/ D
p

2t C 1 18. f .x/ D
3

4

p

2 � x

19. y D x C
1

x
20. z D

s

1C s

21. F.x/ D
1

p

1C x2
22. y D

1

x2

23. y D
1

p

1C x
24. f .t/ D

t2 � 3

t2 C 3

25. How should the function f .x/ D x sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

26. How should the function g.x/ D x2sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

27. Where does h.x/ D jx2
C 3x C 2j fail to be differentiable?

C 28. Using a calculator, find the slope of the secant line to

y D x3
� 2x passing through the points corresponding to

x D 1 and x D 1C�x, for several values of �x of

decreasing size, say �x D ˙0:1, ˙0:01,˙0:001, ˙0:0001.

(Make a table.) Also, calculate
d

dx

�

x
3
� 2x

�

ˇ

ˇ

ˇ

ˇ

xD1

using the

definition of derivative.

C 29. Repeat Exercise 28 for the function f .x/ D
1

x
and the points

x D 2 and x D 2C�x:

Using the definition of derivative, find equations for the tangent

lines to the curves in Exercises 30–33 at the points indicated.
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The Leibniz notation is suggested by the definition of derivative. The Newton

quotient Œf .x C h/ � f .x/�=h, whose limit we take to find the derivative dy=dx, can

be written in the form �y=�x, where �y D f .x C h/ � f .x/ is the increment in y,

and �x D .x C h/ � x D h is the corresponding increment in x as we pass from the

point .x; f .x// to the point .x C h; f .x C h// on the graph of f: (See Figure 2.16.)

� is the uppercase Greek letter Delta. Using symbols:

dy

dx
D lim

�x!0

�y

�x
:

Figure 2.16
dy

dx
D lim

�x!0

�y

�x

y

xx x C h

�x D h

slope
dy

dx

slope
�y

�x

y D f .x/

�y

Differentials
The Newton quotient �y=�x is actually the quotient of two quantities, �y and �x.

It is not at all clear, however, that the derivative dy=dx, the limit of �y=�x as �x

approaches zero, can be regarded as a quotient. If y is a continuous function of x, then

�y approaches zero when �x approaches zero, so dy=dx appears to be the meaning-

less quantity 0=0. Nevertheless, it is sometimes useful to be able to refer to quantities

dy and dx in such a way that their quotient is the derivative dy=dx. We can justify

this by regarding dx as a new independent variable (called the differential of x) and

defining a new dependent variable dy (the differential of y) as a function of x and

dx by

dy D
dy

dx
dx D f

0
.x/ dx:

For example, if y D x2, we can write dy D 2x dx to mean the same thing as

dy=dx D 2x. Similarly, if f .x/ D 1=x, we can write df .x/ D �.1=x2
/ dx as

the equivalent differential form of the assertion that .d=dx/f .x/ D f 0.x/ D �1=x2.

This differential notation is useful in applications (see Sections 2.7 and 12.6), and

especially for the interpretation and manipulation of integrals beginning in Chapter 5.

Note that, defined as above, differentials are merely variables that may or may not

be small in absolute value. The differentials dy and dx were originally regarded (by

Leibniz and his successors) as “infinitesimals” (infinitely small but nonzero) quantities

whose quotient dy=dx gave the slope of the tangent line (a secant line meeting the

graph of y D f .x/ at two points infinitely close together). It can be shown that such

“infinitesimal” quantities cannot exist (as real numbers). It is possible to extend the

number system to contain infinitesimals and use these to develop calculus, but we will

not consider this approach here.
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Derivatives Have the Intermediate-Value Property
Is a function f defined on an interval I necessarily the derivative of some other func-

tion defined on I ? The answer is no; some functions are derivatives and some are not.

Although a derivative need not be a continuous function (see Exercise 28 in Section

2.8), it must, like a continuous function, have the intermediate-value property: on an

interval Œa; b�, a derivative f 0.x/ takes on every value between f 0.a/ and f 0.b/. (See

Exercise 29 in Section 2.8 for a proof of this fact.) An everywhere-defined step func-

tion such as the Heaviside function H.x/ considered in Example 1 in Section 1.4 (see

Figure 2.17) does not have this property on, say, the interval Œ�1; 1�, so cannot be the

derivative of a function on that interval. This argument does not apply to the signum

y

x

1

y D 1

y D 0

y D H.x/

Figure 2.17 This function is not a

derivative on Œ�1; 1�; it does not have the

intermediate-value property.

function, which is the derivative of the absolute value function on any interval where

it is defined. (See Example 4.) Such an interval cannot contain the origin, as sgn .x/ is

not defined at x D 0.

If g.x/ is continuous on an interval I , then g.x/ D f 0.x/ for some function f

that is differentiable on I . We will discuss this fact further in Chapter 5 and prove it in

Appendix IV.

E X E R C I S E S 2.2

Make rough sketches of the graphs of the derivatives of the

functions in Exercises 1–4.

1. The function f graphed in Figure 2.18(a).

2. The function g graphed in Figure 2.18(b).

3. The function h graphed in Figure 2.18(c).

4. The function k graphed in Figure 2.18(d).

5. Where is the function f graphed in Figure 2.18(a)

differentiable?

6. Where is the function g graphed in Figure 2.18(b)

differentiable?

y

x

y

x

y

x

y

x

(a) (b)

(d)(c)

y D g.x/

y D k.x/y D h.x/

y D f .x/

Figure 2.18

Use a graphics utility with differentiation capabilities to plot the

graphs of the following functions and their derivatives. Observe

the relationships between the graph of y and that of y 0 in each

case. What features of the graph of y can you infer from the graph

of y 0?

G 7. y D 3x � x2
� 1 G 8. y D x3

� 3x
2
C 2x C 1

G 9. y D jx3
� xj G 10. y D jx2

� 1j � jx
2
� 4j

In Exercises 11–24, (a) calculate the derivative of the given

function directly from the definition of derivative, and (b) express

the result of (a) using differentials.

11. y D x2
� 3x 12. f .x/ D 1C 4x � 5x2

13. f .x/ D x3 14. s D
1

3C 4t

15. g.x/ D
2 � x

2C x
16. y D

1

3
x

3
� x

17. F.t/ D
p

2t C 1 18. f .x/ D
3

4

p

2 � x

19. y D x C
1

x
20. z D

s

1C s

21. F.x/ D
1

p

1C x2
22. y D

1

x2

23. y D
1

p

1C x
24. f .t/ D

t2 � 3

t2 C 3

25. How should the function f .x/ D x sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

26. How should the function g.x/ D x2sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

27. Where does h.x/ D jx2
C 3x C 2j fail to be differentiable?

C 28. Using a calculator, find the slope of the secant line to

y D x3
� 2x passing through the points corresponding to

x D 1 and x D 1C�x, for several values of �x of

decreasing size, say �x D ˙0:1, ˙0:01,˙0:001, ˙0:0001.

(Make a table.) Also, calculate
d

dx

�

x
3
� 2x

�

ˇ

ˇ

ˇ

ˇ

xD1

using the

definition of derivative.

C 29. Repeat Exercise 28 for the function f .x/ D
1

x
and the points

x D 2 and x D 2C�x:

Using the definition of derivative, find equations for the tangent

lines to the curves in Exercises 30–33 at the points indicated.
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30. y D 5C 4x � x2 at the point where x D 2

31. y D
p

x C 6 at the point .3; 3/

32. y D
t

t2 � 2
at the point where t D �2

33. y D
2

t2 C t
at the point where t D a

Calculate the derivatives of the functions in Exercises 34–39 using

the General Power Rule. Where is each derivative valid?

34. f .x/ D x�17 35. g.t/ D t22

36. y D x1=3 37. y D x�1=3

38. t�2:25 39. s119=4

In Exercises 40–50, you may use the formulas for derivatives

established in this section.

40. Calculate
d

ds

p

s

ˇ

ˇ

ˇ

ˇ

sD9

: 41. Find F 0
.

1
4
/ if F.x/ D

1

x
:

42. Find f 0.8/ if f .x/ D x�2=3.

43. Find dy=dt

ˇ

ˇ

ˇ

ˇ

tD4

if y D t1=4.

44. Find an equation of the straight line tangent to the curve

y D
p

x at x D x0.

45. Find an equation of the straight line normal to the curve

y D 1=x at the point where x D a.

46. Show that the curve y D x2 and the straight line x C 4y D 18

intersect at right angles at one of their two intersection points.

Hint: Find the product of their slopes at their intersection

points.

47. There are two distinct straight lines that pass through the point

.1;�3/ and are tangent to the curve y D x2. Find their

equations. Hint: Draw a sketch. The points of tangency are

not given; let them be denoted .a; a2/.

48. Find equations of two straight lines that have slope �2 and are

tangent to the graph of y D 1=x.

49. Find the slope of a straight line that passes through the point

.�2; 0/ and is tangent to the curve y D
p

x.

50.A Show that there are two distinct tangent lines to the curve

y D x2 passing through the point .a; b/ provided b < a2.

How many tangent lines to y D x2 pass through .a; b/ if

b D a2? if b > a2?

51.A Show that the derivative of an odd differentiable function is

even and that the derivative of an even differentiable function

is odd.

52.I Prove the case r D �n (n is a positive integer) of the General

Power Rule; that is, prove that

d

dx
x

�n
D �n x

�n�1
:

Use the factorization of a difference of nth powers given in

this section.

53.I Use the factoring of a difference of cubes:

a
3
� b

3
D .a � b/.a

2
C ab C b

2
/;

to help you calculate the derivative of f .x/ D x1=3 directly

from the definition of derivative.

54.I Prove the General Power Rule for d
dx
xr , where r D 1=n, n

being a positive integer. (Hint:

d

dx
x

1=n
D lim

h!0

.x C h/1=n
� x1=n

h

D lim
h!0

.x C h/1=n
� x1=n

..x C h/1=n/n � .x1=n/n
:

Apply the factorization of the difference of nth powers to the

denominator of the latter quotient.)

55. Give a proof of the power rule d
dx
xn
D nxn�1 for positive

integers n using the Binomial Theorem:

.x C h/
n
D x

n
C

n

1
x

n�1
hC

n.n � 1/

1 � 2
x

n�2
h

2

C

n.n � 1/.n � 2/

1 � 2 � 3
x

n�3
h

3
C � � � C h

n
:

56.I Use right and left derivatives, f 0
C.a/ and f 0

�.a/, to define the

concept of a half-line starting at .a; f .a// being a right or left

tangent to the graph of f at x D a. Show that the graph has a

tangent line at x D a if and only if it has right and left

tangents that are opposite halves of the same straight line.

What are the left and right tangents to the graphs of y D x1=3,

y D x2=3, and y D jxj at x D 0?

2.3 Differentiation Rules
If every derivative had to be calculated directly from the definition of derivative as in

the examples of Section 2.2, calculus would indeed be a painful subject. Fortunately,

there is an easier way. We will develop several general differentiation rules that en-

able us to calculate the derivatives of complicated combinations of functions easily

if we already know the derivatives of the elementary functions from which they are

constructed. For instance, we will be able to find the derivative of
x2

p

x2
C 1

if we

know the derivatives of x2 and
p

x. The rules we develop in this section tell us how

to differentiate sums, constant multiples, products, and quotients of functions whose

derivatives we already know. In Section 2.4 we will learn how to differentiate compos-

ite functions.
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Before developing these differentiation rules we need to establish one obvious

but very important theorem which states, roughly, that the graph of a function cannot

possibly have a break at a point where it is smooth.

T H E O R E M

1

Differentiability implies continuity

If f is differentiable at x, then f is continuous at x.

PROOF Since f is differentiable at x, we know that

lim
h!0

f .x C h/ � f .x/

h
D f

0
.x/

exists. Using the limit rules (Theorem 2 of Section 1.2), we have

lim
h!0

�

f .x C h/ � f .x/
�

D lim
h!0

�

f .x C h/ � f .x/

h

�

.h/ D
�

f
0
.x/
�

.0/ D 0:

This is equivalent to limh!0 f .x C h/ D f .x/, which says that f is continuous at x.

Sums and Constant Multiples
The derivative of a sum (or difference) of functions is the sum (or difference) of the

derivatives of those functions. The derivative of a constant multiple of a function is

the same constant multiple of the derivative of the function.

T H E O R E M

2

Differentiation rules for sums, differences, and constant multiples

If functions f and g are differentiable at x, and if C is a constant, then the functions

f C g, f � g, and Cf are all differentiable at x and

.f C g/
0
.x/ D f

0
.x/C g

0
.x/;

.f � g/
0
.x/ D f

0
.x/� g

0
.x/;

.Cf /
0
.x/ D Cf

0
.x/:

PROOF The proofs of all three assertions are straightforward, using the correspond-

ing limit rules from Theorem 2 of Section 1.2. For the sum, we have

.f C g/
0
.x/ D lim

h!0

.f C g/.x C h/ � .f C g/.x/

h

D lim
h!0

.f .x C h/C g.x C h// � .f .x/C g.x//

h

D lim
h!0

�

f .x C h/ � f .x/

h
C

g.x C h/ � g.x/

h

�

D f
0
.x/C g

0
.x/;

because the limit of a sum is the sum of the limits. The proof for the difference f � g

is similar. For the constant multiple, we have

.Cf /
0
.x/ D lim

h!0

Cf .x C h/ � Cf .x/

h

D C lim
h!0

f .x C h/ � f .x/

h
D Cf

0
.x/:
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30. y D 5C 4x � x2 at the point where x D 2

31. y D
p

x C 6 at the point .3; 3/

32. y D
t

t2 � 2
at the point where t D �2

33. y D
2

t2 C t
at the point where t D a

Calculate the derivatives of the functions in Exercises 34–39 using

the General Power Rule. Where is each derivative valid?

34. f .x/ D x�17 35. g.t/ D t22

36. y D x1=3 37. y D x�1=3

38. t�2:25 39. s119=4

In Exercises 40–50, you may use the formulas for derivatives

established in this section.

40. Calculate
d

ds

p

s

ˇ

ˇ

ˇ

ˇ

sD9

: 41. Find F 0
.

1
4
/ if F.x/ D

1

x
:

42. Find f 0.8/ if f .x/ D x�2=3.

43. Find dy=dt

ˇ

ˇ

ˇ

ˇ

tD4

if y D t1=4.

44. Find an equation of the straight line tangent to the curve

y D
p

x at x D x0.

45. Find an equation of the straight line normal to the curve

y D 1=x at the point where x D a.

46. Show that the curve y D x2 and the straight line x C 4y D 18

intersect at right angles at one of their two intersection points.

Hint: Find the product of their slopes at their intersection

points.

47. There are two distinct straight lines that pass through the point

.1;�3/ and are tangent to the curve y D x2. Find their

equations. Hint: Draw a sketch. The points of tangency are

not given; let them be denoted .a; a2/.

48. Find equations of two straight lines that have slope �2 and are

tangent to the graph of y D 1=x.

49. Find the slope of a straight line that passes through the point

.�2; 0/ and is tangent to the curve y D
p

x.

50.A Show that there are two distinct tangent lines to the curve

y D x2 passing through the point .a; b/ provided b < a2.

How many tangent lines to y D x2 pass through .a; b/ if

b D a2? if b > a2?

51.A Show that the derivative of an odd differentiable function is

even and that the derivative of an even differentiable function

is odd.

52.I Prove the case r D �n (n is a positive integer) of the General

Power Rule; that is, prove that

d

dx
x

�n
D �n x

�n�1
:

Use the factorization of a difference of nth powers given in

this section.

53.I Use the factoring of a difference of cubes:

a
3
� b

3
D .a � b/.a

2
C ab C b

2
/;

to help you calculate the derivative of f .x/ D x1=3 directly

from the definition of derivative.

54.I Prove the General Power Rule for d
dx
xr , where r D 1=n, n

being a positive integer. (Hint:

d

dx
x

1=n
D lim

h!0

.x C h/1=n
� x1=n

h

D lim
h!0

.x C h/1=n
� x1=n

..x C h/1=n/n � .x1=n/n
:

Apply the factorization of the difference of nth powers to the

denominator of the latter quotient.)

55. Give a proof of the power rule d
dx
xn
D nxn�1 for positive

integers n using the Binomial Theorem:

.x C h/
n
D x

n
C

n

1
x

n�1
hC

n.n � 1/

1 � 2
x

n�2
h

2

C

n.n � 1/.n � 2/

1 � 2 � 3
x

n�3
h

3
C � � � C h

n
:

56.I Use right and left derivatives, f 0
C.a/ and f 0

�.a/, to define the

concept of a half-line starting at .a; f .a// being a right or left

tangent to the graph of f at x D a. Show that the graph has a

tangent line at x D a if and only if it has right and left

tangents that are opposite halves of the same straight line.

What are the left and right tangents to the graphs of y D x1=3,

y D x2=3, and y D jxj at x D 0?

2.3 Differentiation Rules
If every derivative had to be calculated directly from the definition of derivative as in

the examples of Section 2.2, calculus would indeed be a painful subject. Fortunately,

there is an easier way. We will develop several general differentiation rules that en-

able us to calculate the derivatives of complicated combinations of functions easily

if we already know the derivatives of the elementary functions from which they are

constructed. For instance, we will be able to find the derivative of
x2

p

x2
C 1

if we

know the derivatives of x2 and
p

x. The rules we develop in this section tell us how

to differentiate sums, constant multiples, products, and quotients of functions whose

derivatives we already know. In Section 2.4 we will learn how to differentiate compos-

ite functions.
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Before developing these differentiation rules we need to establish one obvious

but very important theorem which states, roughly, that the graph of a function cannot

possibly have a break at a point where it is smooth.

T H E O R E M

1

Differentiability implies continuity

If f is differentiable at x, then f is continuous at x.

PROOF Since f is differentiable at x, we know that

lim
h!0

f .x C h/ � f .x/

h
D f

0
.x/

exists. Using the limit rules (Theorem 2 of Section 1.2), we have

lim
h!0

�

f .x C h/ � f .x/
�

D lim
h!0

�

f .x C h/ � f .x/

h

�

.h/ D
�

f
0
.x/
�

.0/ D 0:

This is equivalent to limh!0 f .x C h/ D f .x/, which says that f is continuous at x.

Sums and Constant Multiples
The derivative of a sum (or difference) of functions is the sum (or difference) of the

derivatives of those functions. The derivative of a constant multiple of a function is

the same constant multiple of the derivative of the function.

T H E O R E M

2

Differentiation rules for sums, differences, and constant multiples

If functions f and g are differentiable at x, and if C is a constant, then the functions

f C g, f � g, and Cf are all differentiable at x and

.f C g/
0
.x/ D f

0
.x/C g

0
.x/;

.f � g/
0
.x/ D f

0
.x/� g

0
.x/;

.Cf /
0
.x/ D Cf

0
.x/:

PROOF The proofs of all three assertions are straightforward, using the correspond-

ing limit rules from Theorem 2 of Section 1.2. For the sum, we have

.f C g/
0
.x/ D lim

h!0

.f C g/.x C h/ � .f C g/.x/

h

D lim
h!0

.f .x C h/C g.x C h// � .f .x/C g.x//

h

D lim
h!0

�

f .x C h/ � f .x/

h
C

g.x C h/ � g.x/

h

�

D f
0
.x/C g

0
.x/;

because the limit of a sum is the sum of the limits. The proof for the difference f � g

is similar. For the constant multiple, we have

.Cf /
0
.x/ D lim

h!0

Cf .x C h/ � Cf .x/

h

D C lim
h!0

f .x C h/ � f .x/

h
D Cf

0
.x/:
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The rule for differentiating sums extends to sums of any finite number of terms

.f1 C f2 C � � � C fn/
0
D f

0
1 C f

0
2 C � � � C f

0
n: .�/

To see this we can use a technique called mathematical induction. (See the note in

the margin.) Theorem 2 shows that the case n D 2 is true; this is STEP 1. For STEP 2,

we must show that if the formula .�/ holds for some integer n D k � 2, then it must

also hold for n D k C 1. Therefore, assume that

.f1 C f2 C � � � C fk/
0
D f

0
1 C f

0
2 C � � � C f

0
k :

Then we have
Mathematical Induction

Mathematical induction is a

technique for proving that a

statement about an integer n is

true for every integer n greater

than or equal to some starting

integer n0. The proof requires us

to carry out two steps:

STEP 1. Prove that the statement

is true for n D n0.

STEP 2. Prove that if the

statement is true for some integer

n D k, where k � n0, then it is

also true for the next larger

integer, n D k C 1.

Step 2 prevents there from being

a smallest integer greater than n0

for which the statement is false.

Being true for n0, the statement

must therefore be true for all

larger integers.

.f1 C f2 C � � � C fk C fkC1/
0

D

�

.f1 C f2 C � � � C fk/
„ † …

Let this function be f

CfkC1

�0

D .f C fkC1/
0 (Now use the known case n D 2.)

D f
0
C f

0
kC1

D f
0

1 C f
0

2 C � � � C f
0

k C f
0

kC1:

With both steps verified, we can claim that .�/ holds for any n � 2 by induction. In

particular, therefore, the derivative of any polynomial is the sum of the derivatives of

its terms.

E X A M P L E 1
Calculate the derivatives of the functions

(a) 2x
3
� 5x2

C 4x C 7, (b) f .x/ D 5
p

x C
3

x
� 18, (c) y D

1

7
t
4
� 3t

7=3.

Solution Each of these functions is a sum of constant multiples of functions that we

already know how to differentiate.

(a)
d

dx
.2x

3
� 5x

2
C 4x C 7/ D 2.3x

2
/� 5.2x/C 4.1/C 0 D 6x

2
� 10x C 4.

(b) f 0
.x/ D 5

�

1

2
p

x

�

C 3

�

�

1

x2

�

� 0 D
5

2
p

x
�

3

x2
.

(c)
dy

dt
D

1

7
.4t

3
/ � 3

�

7

3
t
4=3

�

D

4

7
t
3
� 7t

4=3.

E X A M P L E 2 Find an equation of the tangent to the curve y D
3x3
� 4

x
at the

point on the curve where x D �2.

Solution If x D �2, then y D 14. The slope of the curve at .�2; 14/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD�2

D

d

dx

�

3x
2
�

4

x

�
ˇ

ˇ

ˇ

ˇ

xD�2

D

�

6x C
4

x2

�
ˇ

ˇ

ˇ

ˇ

xD�2

D �11:

An equation of the tangent line is y D 14 � 11.x C 2/, or y D �11x � 8.

The Product Rule
The rule for differentiating a product of functions is a little more complicated than that

for sums. It is not true that the derivative of a product is the product of the derivatives.
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T H E O R E M

3

The Product Rule

If functions f and g are differentiable at x, then their product fg is also differentiable

at x, and

.fg/
0
.x/ D f

0
.x/g.x/C f .x/g

0
.x/:

PROOF We set up the Newton quotient for fg and then add 0 to the numerator in a

way that enables us to involve the Newton quotients for f and g separately:

.fg/
0
.x/ D lim

h!0

f .x C h/g.x C h/ � f .x/g.x/

h

D lim
h!0

f .x C h/g.x C h/ � f .x/g.x C h/C f .x/g.x C h/ � f .x/g.x/

h

D lim
h!0

�

f .x C h/ � f .x/

h
g.x C h/C f .x/

g.x C h/ � g.x/

h

�

D f
0
.x/g.x/C f .x/g

0
.x/:

To get the last line, we have used the fact that f and g are differentiable and the fact

that g is therefore continuous (Theorem 1), as well as limit rules from Theorem 2 of

Section 1.2. A graphical proof of the Product Rule is suggested by Figure 2.19.
u�v �u�v

u �u

v�uv

�v

uv

Figure 2.19

A graphical proof of the Product Rule

Here u D f .x/ and v D g.x/, so that the

rectangular area uv represents f .x/g.x/.

If x changes by an amount �x, the

corresponding increments in u and v are

�u and �v. The change in the area of the

rectangle is

�.uv/

D .uC�u/.v C�v/ � uv

D .�u/v C u.�v/C .�u/.�v/;

the sum of the three shaded areas. Dividing

by �x and taking the limit as �x ! 0, we

get

d

dx
.uv/ D

�

du

dx

�

v C u

�

dv

dx

�

;

since

lim
�x!0

�u

�x
�v D

du

dx
� 0 D 0:

E X A M P L E 3
Find the derivative of .x2

C 1/.x3
C 4/ using and without using

the Product Rule.

Solution Using the Product Rule with f .x/ D x
2
C 1 and g.x/ D x

3
C 4, we

calculate

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D 2x.x
3
C 4/C .x

2
C 1/.3x

2
/ D 5x

4
C 3x

2
C 8x:

On the other hand, we can calculate the derivative by first multiplying the two binomi-

als and then differentiating the resulting polynomial:

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D

d

dx
.x

5
C x

3
C 4x

2
C 4/ D 5x

4
C 3x

2
C 8x:

E X A M P L E 4 Find
dy

dx
if y D

�

2
p

x C
3

x

��

3
p

x �
2

x

�

.

Solution Applying the Product Rule with f and g being the two functions enclosed

in the large parentheses, we obtain

dy

dx
D

�

1
p

x
�

3

x2

��

3
p

x �
2

x

�

C

�

2
p

x C
3

x

��

3

2
p

x
C

2

x2

�

D 6 �
5

2x3=2
C

12

x3
:

E X A M P L E 5
Let y D uv be the product of the functions u and v. Find y 0.2/ if

u.2/ D 2, u0.2/ D �5, v.2/ D 1, and v0.2/ D 3:
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The rule for differentiating sums extends to sums of any finite number of terms

.f1 C f2 C � � � C fn/
0
D f

0
1 C f

0
2 C � � � C f

0
n: .�/

To see this we can use a technique called mathematical induction. (See the note in

the margin.) Theorem 2 shows that the case n D 2 is true; this is STEP 1. For STEP 2,

we must show that if the formula .�/ holds for some integer n D k � 2, then it must

also hold for n D k C 1. Therefore, assume that

.f1 C f2 C � � � C fk/
0
D f

0
1 C f

0
2 C � � � C f

0
k :

Then we have
Mathematical Induction

Mathematical induction is a

technique for proving that a

statement about an integer n is

true for every integer n greater

than or equal to some starting

integer n0. The proof requires us

to carry out two steps:

STEP 1. Prove that the statement

is true for n D n0.

STEP 2. Prove that if the

statement is true for some integer

n D k, where k � n0, then it is

also true for the next larger

integer, n D k C 1.

Step 2 prevents there from being

a smallest integer greater than n0

for which the statement is false.

Being true for n0, the statement

must therefore be true for all

larger integers.

.f1 C f2 C � � � C fk C fkC1/
0

D

�

.f1 C f2 C � � � C fk/
„ † …

Let this function be f

CfkC1

�0

D .f C fkC1/
0 (Now use the known case n D 2.)

D f
0
C f

0
kC1

D f
0

1 C f
0

2 C � � � C f
0

k C f
0

kC1:

With both steps verified, we can claim that .�/ holds for any n � 2 by induction. In

particular, therefore, the derivative of any polynomial is the sum of the derivatives of

its terms.

E X A M P L E 1
Calculate the derivatives of the functions

(a) 2x
3
� 5x2

C 4x C 7, (b) f .x/ D 5
p

x C
3

x
� 18, (c) y D

1

7
t
4
� 3t

7=3.

Solution Each of these functions is a sum of constant multiples of functions that we

already know how to differentiate.

(a)
d

dx
.2x

3
� 5x

2
C 4x C 7/ D 2.3x

2
/� 5.2x/C 4.1/C 0 D 6x

2
� 10x C 4.

(b) f 0
.x/ D 5

�

1

2
p

x

�

C 3

�

�

1

x2

�

� 0 D
5

2
p

x
�

3

x2
.

(c)
dy

dt
D

1

7
.4t

3
/ � 3

�

7

3
t
4=3

�

D

4

7
t
3
� 7t

4=3.

E X A M P L E 2 Find an equation of the tangent to the curve y D
3x3
� 4

x
at the

point on the curve where x D �2.

Solution If x D �2, then y D 14. The slope of the curve at .�2; 14/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD�2

D

d

dx

�

3x
2
�

4

x

�
ˇ

ˇ

ˇ

ˇ

xD�2

D

�

6x C
4

x2

�
ˇ

ˇ

ˇ

ˇ

xD�2

D �11:

An equation of the tangent line is y D 14 � 11.x C 2/, or y D �11x � 8.

The Product Rule
The rule for differentiating a product of functions is a little more complicated than that

for sums. It is not true that the derivative of a product is the product of the derivatives.
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T H E O R E M

3

The Product Rule

If functions f and g are differentiable at x, then their product fg is also differentiable

at x, and

.fg/
0
.x/ D f

0
.x/g.x/C f .x/g

0
.x/:

PROOF We set up the Newton quotient for fg and then add 0 to the numerator in a

way that enables us to involve the Newton quotients for f and g separately:

.fg/
0
.x/ D lim

h!0

f .x C h/g.x C h/ � f .x/g.x/

h

D lim
h!0

f .x C h/g.x C h/ � f .x/g.x C h/C f .x/g.x C h/ � f .x/g.x/

h

D lim
h!0

�

f .x C h/ � f .x/

h
g.x C h/C f .x/

g.x C h/ � g.x/

h

�

D f
0
.x/g.x/C f .x/g

0
.x/:

To get the last line, we have used the fact that f and g are differentiable and the fact

that g is therefore continuous (Theorem 1), as well as limit rules from Theorem 2 of

Section 1.2. A graphical proof of the Product Rule is suggested by Figure 2.19.
u�v �u�v

u �u

v�uv

�v

uv

Figure 2.19

A graphical proof of the Product Rule

Here u D f .x/ and v D g.x/, so that the

rectangular area uv represents f .x/g.x/.

If x changes by an amount �x, the

corresponding increments in u and v are

�u and �v. The change in the area of the

rectangle is

�.uv/

D .uC�u/.v C�v/ � uv

D .�u/v C u.�v/C .�u/.�v/;

the sum of the three shaded areas. Dividing

by �x and taking the limit as �x ! 0, we

get

d

dx
.uv/ D

�

du

dx

�

v C u

�

dv

dx

�

;

since

lim
�x!0

�u

�x
�v D

du

dx
� 0 D 0:

E X A M P L E 3
Find the derivative of .x2

C 1/.x3
C 4/ using and without using

the Product Rule.

Solution Using the Product Rule with f .x/ D x
2
C 1 and g.x/ D x

3
C 4, we

calculate

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D 2x.x
3
C 4/C .x

2
C 1/.3x

2
/ D 5x

4
C 3x

2
C 8x:

On the other hand, we can calculate the derivative by first multiplying the two binomi-

als and then differentiating the resulting polynomial:

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D

d

dx
.x

5
C x

3
C 4x

2
C 4/ D 5x

4
C 3x

2
C 8x:

E X A M P L E 4 Find
dy

dx
if y D

�

2
p

x C
3

x

��

3
p

x �
2

x

�

.

Solution Applying the Product Rule with f and g being the two functions enclosed

in the large parentheses, we obtain

dy

dx
D

�

1
p

x
�

3

x2

��

3
p

x �
2

x

�

C

�

2
p

x C
3

x

��

3

2
p

x
C

2

x2

�

D 6 �
5

2x3=2
C

12

x3
:

E X A M P L E 5
Let y D uv be the product of the functions u and v. Find y 0.2/ if

u.2/ D 2, u0.2/ D �5, v.2/ D 1, and v0.2/ D 3:
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Solution From the Product Rule we have

y
0
D .uv/

0
D u

0
v C uv

0
:

Therefore,

y
0
.2/ D u

0
.2/v.2/C u.2/v

0
.2/ D .�5/.1/C .2/.3/ D �5C 6 D 1:

E X A M P L E 6 Use mathematical induction to verify the formula
d

dx
x

n
D nx

n�1

for all positive integers n.

Solution For n D 1 the formula says that d
dx
x1
D 1 D 1x0, so the formula is true in

this case. We must show that if the formula is true for n D k � 1, then it is also true

for n D k C 1. Therefore, assume that

d

dx
x

k
D kx

k�1
:

Using the Product Rule we calculate

d

dx
x

kC1
D

d

dx

�

x
k
x
�

D .kx
k�1

/.x/C.x
k
/.1/ D .kC1/x

k
D .kC1/x

.kC1/�1
:

Thus, the formula is true for n D kC 1 also. The formula is true for all integers n � 1

by induction.

The Product Rule can be extended to products of any number of factors; for instance,

.fgh/
0
.x/ D f

0
.x/.gh/.x/C f .x/.gh/

0
.x/

D f
0
.x/g.x/h.x/C f .x/g

0
.x/h.x/C f .x/g.x/h

0
.x/:

In general, the derivative of a product of n functions will have n terms; each term will

be the same product but with one of the factors replaced by its derivative:

.f1f2f3 � � � fn/
0
D f

0
1f2f3 � � � fn C f1f

0
2f3 � � � fn C � � � C f1f2f3 � � � f

0
n:

This can be proved by mathematical induction. See Exercise 54 at the end of this

section.

The Reciprocal Rule

T H E O R E M

4

The Reciprocal Rule

If f is differentiable at x and f .x/ ¤ 0, then 1=f is differentiable at x, and

�

1

f

�0

.x/ D
�f 0.x/

.f .x//
2
:

PROOF Using the definition of the derivative, we calculate

d

dx

1

f .x/
D lim

h!0

1

f .x C h/
�

1

f .x/

h

D lim
h!0

f .x/� f .x C h/

hf .x C h/f .x/

D lim
h!0

�

�1

f .x C h/f .x/

�

f .x C h/ � f .x/

h

D

�1

.f .x//2
f

0
.x/:
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Again we have to use the continuity of f (from Theorem 1) and the limit rules

from Section 1.2.

E X A M P L E 7
Differentiate the functions

(a)
1

x2
C 1

and (b) f .t/ D
1

t C
1

t

.

Solution Using the Reciprocal Rule:

(a)
d

dx

�

1

x2
C 1

�

D

�2x

.x2
C 1/2

.

(b) f 0.t/ D
�1

�

t C
1

t

�2

�

1 �
1

t2

�

D

�t
2

.t2 C 1/2

t
2
� 1

t2
D

1 � t
2

.t2 C 1/2
.

We can use the Reciprocal Rule to confirm the General Power Rule for negative inte-

gers:

d

dx
x

�n
D �nx

�n�1
;

since we have already proved the rule for positive integers. We have

d

dx
x

�n
D

d

dx

1

xn
D

�nxn�1

.xn/2
D �nx

�n�1
:

E X A M P L E 8
(Differentiating sums of reciprocals)

d

dx

�

x2
C x C 1

x3

�

D

d

dx

�

1

x
C

1

x2
C

1

x3

�

D

d

dx
.x

�1
C x

�2
C x

�3
/

D �x
�2
� 2x

�3
� 3x

�4
D �

1

x2
�

2

x3
�

3

x4
:

The Quotient Rule
The Product Rule and the Reciprocal Rule can be combined to provide a rule for dif-

ferentiating a quotient of two functions. Observe that

d

dx

�

f .x/

g.x/

�

D

d

dx

�

f .x/
1

g.x/

�

D f
0
.x/

1

g.x/
C f .x/

�

�

g0.x/

.g.x//2

�

D

g.x/f 0.x/� f .x/g0.x/

.g.x//2
:

Thus, we have proved the following Quotient Rule.
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Solution From the Product Rule we have

y
0
D .uv/

0
D u

0
v C uv

0
:

Therefore,

y
0
.2/ D u

0
.2/v.2/C u.2/v

0
.2/ D .�5/.1/C .2/.3/ D �5C 6 D 1:

E X A M P L E 6 Use mathematical induction to verify the formula
d

dx
x

n
D nx

n�1

for all positive integers n.

Solution For n D 1 the formula says that d
dx
x1
D 1 D 1x0, so the formula is true in

this case. We must show that if the formula is true for n D k � 1, then it is also true

for n D k C 1. Therefore, assume that

d

dx
x

k
D kx

k�1
:

Using the Product Rule we calculate

d

dx
x

kC1
D

d

dx

�

x
k
x
�

D .kx
k�1

/.x/C.x
k
/.1/ D .kC1/x

k
D .kC1/x

.kC1/�1
:

Thus, the formula is true for n D kC 1 also. The formula is true for all integers n � 1

by induction.

The Product Rule can be extended to products of any number of factors; for instance,

.fgh/
0
.x/ D f

0
.x/.gh/.x/C f .x/.gh/

0
.x/

D f
0
.x/g.x/h.x/C f .x/g

0
.x/h.x/C f .x/g.x/h

0
.x/:

In general, the derivative of a product of n functions will have n terms; each term will

be the same product but with one of the factors replaced by its derivative:

.f1f2f3 � � � fn/
0
D f

0
1f2f3 � � � fn C f1f

0
2f3 � � � fn C � � � C f1f2f3 � � � f

0
n:

This can be proved by mathematical induction. See Exercise 54 at the end of this

section.

The Reciprocal Rule

T H E O R E M

4

The Reciprocal Rule

If f is differentiable at x and f .x/ ¤ 0, then 1=f is differentiable at x, and

�

1

f

�0

.x/ D
�f 0.x/

.f .x//
2
:

PROOF Using the definition of the derivative, we calculate

d

dx

1

f .x/
D lim

h!0

1

f .x C h/
�

1

f .x/

h

D lim
h!0

f .x/� f .x C h/

hf .x C h/f .x/

D lim
h!0

�

�1

f .x C h/f .x/

�

f .x C h/ � f .x/

h

D

�1

.f .x//2
f

0
.x/:
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Again we have to use the continuity of f (from Theorem 1) and the limit rules

from Section 1.2.

E X A M P L E 7
Differentiate the functions

(a)
1

x2
C 1

and (b) f .t/ D
1

t C
1

t

.

Solution Using the Reciprocal Rule:

(a)
d

dx

�

1

x2
C 1

�

D

�2x

.x2
C 1/2

.

(b) f 0.t/ D
�1

�

t C
1

t

�2

�

1 �
1

t2

�

D

�t
2

.t2 C 1/2

t
2
� 1

t2
D

1 � t
2

.t2 C 1/2
.

We can use the Reciprocal Rule to confirm the General Power Rule for negative inte-

gers:

d

dx
x

�n
D �nx

�n�1
;

since we have already proved the rule for positive integers. We have

d

dx
x

�n
D

d

dx

1

xn
D

�nxn�1

.xn/2
D �nx

�n�1
:

E X A M P L E 8
(Differentiating sums of reciprocals)

d

dx

�

x2
C x C 1

x3

�

D

d

dx

�

1

x
C

1

x2
C

1

x3

�

D

d

dx
.x

�1
C x

�2
C x

�3
/

D �x
�2
� 2x

�3
� 3x

�4
D �

1

x2
�

2

x3
�

3

x4
:

The Quotient Rule
The Product Rule and the Reciprocal Rule can be combined to provide a rule for dif-

ferentiating a quotient of two functions. Observe that

d

dx

�

f .x/

g.x/

�

D

d

dx

�

f .x/
1

g.x/

�

D f
0
.x/

1

g.x/
C f .x/

�

�

g0.x/

.g.x//2

�

D

g.x/f 0.x/� f .x/g0.x/

.g.x//2
:

Thus, we have proved the following Quotient Rule.
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5

The Quotient Rule

If f and g are differentiable at x, and if g.x/ ¤ 0, then the quotient f=g is differen-

tiable at x and

�

f

g

�0

.x/ D
g.x/f

0
.x/� f .x/g

0
.x/

.g.x//
2

:

Sometimes students have trouble remembering this rule. (Getting the order of the

terms in the numerator wrong will reverse the sign.) Try to remember (and use) the

Quotient Rule in the following form:

.quotient/0

D

.denominator/ � .numerator/0 � .numerator/ � .denominator/0

.denominator/2

E X A M P L E 9
Find the derivatives of

(a) y D
1 � x2

1C x2
, (b)

p

t

3 � 5t
, and (c) f .�/ D

aC b�

mC n�
.

Solution We use the Quotient Rule in each case.

(a)
dy

dx
D

.1C x
2
/.�2x/ � .1 � x

2
/.2x/

.1C x2/2
D �

4x

.1C x2/2
.

(b)
d

dt

 p

t

3 � 5t

!

D

.3 � 5t/
1

2
p

t
�

p

t.�5/

.3 � 5t/2
D

3C 5t

2
p

t.3 � 5t/2
.

(c) f 0.�/ D
.mC n�/.b/ � .aC b�/.n/

.mC n�/2
D

mb � na

.mC n�/2
.

In all three parts of Example 9, the Quotient Rule yielded fractions with numerators

that were complicated but could be simplified algebraically. It is advisable to attempt

such simplifications when calculating derivatives; the usefulness of derivatives in ap-

plications of calculus often depends on such simplifications.

E X A M P L E 10
Find equations of any lines that pass through the point .�1; 0/ and

are tangent to the curve y D .x � 1/=.x C 1/.

Solution The point .�1; 0/ does not lie on the curve, so it is not the point of tangency.

Suppose a line is tangent to the curve at x D a, so the point of tangency is .a; .a �

1/=.aC 1//. Note that a cannot be �1. The slope of the line must be

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D

.x C 1/.1/ � .x � 1/.1/

.x C 1/2

ˇ

ˇ

ˇ

ˇ

xDa

D

2

.aC 1/2
:

If the line also passes through .�1; 0/, its slope must also be given by

a � 1

aC 1
� 0

a � .�1/
D

a � 1

.aC 1/2
:

Equating these two expressions for the slope, we get an equation to solve for a:

a � 1

.aC 1/2
D

2

.aC 1/2
÷ a � 1 D 2:
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Thus, a D 3, and the slope of the line is 2=42
D 1=8. There is only one line through

.�1; 0/ tangent to the given curve, and its equation is

y D 0C
1

8
.x C 1/ or x � 8y C 1 D 0:

Remark Derivatives of quotients of functions where the denominator is a monomial,

such as in Example 8, are usually easier to do by breaking the quotient into a sum of

several fractions (as was done in that example) rather than by using the Quotient Rule.

E X E R C I S E S 2.3

In Exercises 1–32, calculate the derivatives of the given functions.

Simplify your answers whenever possible.

1. y D 3x2
� 5x � 7 2. y D 4x1=2

�

5

x

3. f .x/ D Ax2
C Bx C C 4. f .x/ D

6

x3
C

2

x2
� 2

5. z D
s

5
� s

3

15
6. y D x45

� x
�45

7. g.t/ D t1=3
C 2t

1=4
C 3t

1=5

8. y D 3
3
p

t2 �
2
p

t3
9. u D

3

5
x

5=3
�

5

3
x

�3=5

10. F.x/ D .3x � 2/.1 � 5x/

11. y D
p

x

�

5� x �
x2

3

�

12. g.t/ D
1

2t � 3

13. y D
1

x2
C 5x

14. y D
4

3 � x

15. f .t/ D
�

2 � �t
16. g.y/ D

2

1 � y2

17. f .x/ D
1 � 4x

2

x3
18. g.u/ D

u
p

u � 3

u2

19. y D
2C t C t2

p

t
20. z D

x � 1

x2=3

21. f .x/ D
3 � 4x

3C 4x
22. z D

t2 C 2t

t2 � 1

23. s D
1C
p

t

1�
p

t
24. f .x/ D

x3
� 4

x C 1

25. f .x/ D
ax C b

cx C d
26. F.t/ D

t2 C 7t � 8

t2 � t C 1

27. f .x/ D .1C x/.1C 2x/.1C 3x/.1C 4x/

28. f .r/ D .r�2
C r

�3
� 4/.r

2
C r

3
C 1/

29. y D .x2
C 4/.

p

x C 1/.5x
2=3
� 2/

30. y D
.x

2
C 1/.x

3
C 2/

.x2
C 2/.x3

C 1/

31.I y D
x

2x C
1

3x C 1

32.I f .x/ D
.
p

x � 1/.2 � x/.1 � x2/
p

x.3C 2x/

Calculate the derivatives in Exercises 33–36, given that f .2/ D 2

and f 0.2/ D 3.

33.
d

dx

�

x2

f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

34.
d

dx

�

f .x/

x2

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

35.
d

dx

�

x
2
f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

36.
d

dx

�

f .x/

x2
C f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

37. Find
d

dx

�

x2
� 4

x2
C 4

�
ˇ

ˇ

ˇ

ˇ

xD�2

. 38. Find

d

dt

 

t .1C
p

t /

5 � t

!

ˇ

ˇ

ˇ

ˇ

tD4

.

39. If f .x/ D

p

x

x C 1
, find f 0.2/.

40. Find
d

dt

�

.1C t /.1C 2t/.1C 3t/.1C 4t/

�
ˇ

ˇ

ˇ

ˇ

tD0

.

41. Find an equation of the tangent line to y D
2

3 � 4
p

x
at the

point .1;�2/.

42. Find equations of the tangent and normal to y D
x C 1

x � 1
at

x D 2.

43. Find the points on the curve y D x C 1=x where the tangent

line is horizontal.

44. Find the equations of all horizontal lines that are tangent to the

curve y D x2.4 � x2/.

45. Find the coordinates of all points where the curve

y D
1

x2
C x C 1

has a horizontal tangent line.

46. Find the coordinates of points on the curve y D
x C 1

x C 2
where

the tangent line is parallel to the line y D 4x.

47. Find the equation of the straight line that passes through the

point .0; b/ and is tangent to the curve y D 1=x. Assume

b ¤ 0.

48.I Show that the curve y D x2 intersects the curve y D 1=
p

x at

right angles.

49. Find two straight lines that are tangent to y D x3 and pass

through the point .2; 8/.

50. Find two straight lines that are tangent to y D x2=.x � 1/ and

pass through the point .2; 0/.
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5

The Quotient Rule

If f and g are differentiable at x, and if g.x/ ¤ 0, then the quotient f=g is differen-

tiable at x and

�

f

g

�0

.x/ D
g.x/f

0
.x/� f .x/g

0
.x/

.g.x//
2

:

Sometimes students have trouble remembering this rule. (Getting the order of the

terms in the numerator wrong will reverse the sign.) Try to remember (and use) the

Quotient Rule in the following form:

.quotient/0

D

.denominator/ � .numerator/0 � .numerator/ � .denominator/0

.denominator/2

E X A M P L E 9
Find the derivatives of

(a) y D
1 � x2

1C x2
, (b)

p

t

3 � 5t
, and (c) f .�/ D

aC b�

mC n�
.

Solution We use the Quotient Rule in each case.

(a)
dy

dx
D

.1C x
2
/.�2x/ � .1 � x

2
/.2x/

.1C x2/2
D �

4x

.1C x2/2
.

(b)
d

dt

 p

t

3 � 5t

!

D

.3 � 5t/
1

2
p

t
�

p

t.�5/

.3 � 5t/2
D

3C 5t

2
p

t.3 � 5t/2
.

(c) f 0.�/ D
.mC n�/.b/ � .aC b�/.n/

.mC n�/2
D

mb � na

.mC n�/2
.

In all three parts of Example 9, the Quotient Rule yielded fractions with numerators

that were complicated but could be simplified algebraically. It is advisable to attempt

such simplifications when calculating derivatives; the usefulness of derivatives in ap-

plications of calculus often depends on such simplifications.

E X A M P L E 10
Find equations of any lines that pass through the point .�1; 0/ and

are tangent to the curve y D .x � 1/=.x C 1/.

Solution The point .�1; 0/ does not lie on the curve, so it is not the point of tangency.

Suppose a line is tangent to the curve at x D a, so the point of tangency is .a; .a �

1/=.aC 1//. Note that a cannot be �1. The slope of the line must be

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D

.x C 1/.1/ � .x � 1/.1/

.x C 1/2

ˇ

ˇ

ˇ

ˇ

xDa

D

2

.aC 1/2
:

If the line also passes through .�1; 0/, its slope must also be given by

a � 1

aC 1
� 0

a � .�1/
D

a � 1

.aC 1/2
:

Equating these two expressions for the slope, we get an equation to solve for a:

a � 1

.aC 1/2
D

2

.aC 1/2
÷ a � 1 D 2:
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Thus, a D 3, and the slope of the line is 2=42
D 1=8. There is only one line through

.�1; 0/ tangent to the given curve, and its equation is

y D 0C
1

8
.x C 1/ or x � 8y C 1 D 0:

Remark Derivatives of quotients of functions where the denominator is a monomial,

such as in Example 8, are usually easier to do by breaking the quotient into a sum of

several fractions (as was done in that example) rather than by using the Quotient Rule.

E X E R C I S E S 2.3

In Exercises 1–32, calculate the derivatives of the given functions.

Simplify your answers whenever possible.

1. y D 3x2
� 5x � 7 2. y D 4x1=2

�

5

x

3. f .x/ D Ax2
C Bx C C 4. f .x/ D

6

x3
C

2

x2
� 2

5. z D
s

5
� s

3

15
6. y D x45

� x
�45

7. g.t/ D t1=3
C 2t

1=4
C 3t

1=5

8. y D 3
3
p

t2 �
2
p

t3
9. u D

3

5
x

5=3
�

5

3
x

�3=5

10. F.x/ D .3x � 2/.1 � 5x/

11. y D
p

x

�

5� x �
x2

3

�

12. g.t/ D
1

2t � 3

13. y D
1

x2
C 5x

14. y D
4

3 � x

15. f .t/ D
�

2 � �t
16. g.y/ D

2

1 � y2

17. f .x/ D
1 � 4x

2

x3
18. g.u/ D

u
p

u � 3

u2

19. y D
2C t C t2

p

t
20. z D

x � 1

x2=3

21. f .x/ D
3 � 4x

3C 4x
22. z D

t2 C 2t

t2 � 1

23. s D
1C
p

t

1�
p

t
24. f .x/ D

x3
� 4

x C 1

25. f .x/ D
ax C b

cx C d
26. F.t/ D

t2 C 7t � 8

t2 � t C 1

27. f .x/ D .1C x/.1C 2x/.1C 3x/.1C 4x/

28. f .r/ D .r�2
C r

�3
� 4/.r

2
C r

3
C 1/

29. y D .x2
C 4/.

p

x C 1/.5x
2=3
� 2/

30. y D
.x

2
C 1/.x

3
C 2/

.x2
C 2/.x3

C 1/

31.I y D
x

2x C
1

3x C 1

32.I f .x/ D
.
p

x � 1/.2 � x/.1 � x2/
p

x.3C 2x/

Calculate the derivatives in Exercises 33–36, given that f .2/ D 2

and f 0.2/ D 3.

33.
d

dx

�

x2

f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

34.
d

dx

�

f .x/

x2

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

35.
d

dx

�

x
2
f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

36.
d

dx

�

f .x/

x2
C f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

37. Find
d

dx

�

x2
� 4

x2
C 4

�
ˇ

ˇ

ˇ

ˇ

xD�2

. 38. Find

d

dt

 

t .1C
p

t /

5 � t

!

ˇ

ˇ

ˇ

ˇ

tD4

.

39. If f .x/ D

p

x

x C 1
, find f 0.2/.

40. Find
d

dt

�

.1C t /.1C 2t/.1C 3t/.1C 4t/

�
ˇ

ˇ

ˇ

ˇ

tD0

.

41. Find an equation of the tangent line to y D
2

3 � 4
p

x
at the

point .1;�2/.

42. Find equations of the tangent and normal to y D
x C 1

x � 1
at

x D 2.

43. Find the points on the curve y D x C 1=x where the tangent

line is horizontal.

44. Find the equations of all horizontal lines that are tangent to the

curve y D x2.4 � x2/.

45. Find the coordinates of all points where the curve

y D
1

x2
C x C 1

has a horizontal tangent line.

46. Find the coordinates of points on the curve y D
x C 1

x C 2
where

the tangent line is parallel to the line y D 4x.

47. Find the equation of the straight line that passes through the

point .0; b/ and is tangent to the curve y D 1=x. Assume

b ¤ 0.

48.I Show that the curve y D x2 intersects the curve y D 1=
p

x at

right angles.

49. Find two straight lines that are tangent to y D x3 and pass

through the point .2; 8/.

50. Find two straight lines that are tangent to y D x2=.x � 1/ and

pass through the point .2; 0/.
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51.A (A Square Root Rule) Show that if f is differentiable at x

and f .x/ > 0, then

d

dx

p

f .x/ D
f 0.x/

2
p

f .x/
:

Use this Square Root Rule to find the derivative of
p

x2
C 1.

52.A Show that f .x/ D jx3
j is differentiable at every real number

x, and find its derivative.

Mathematical Induction

53.A Use mathematical induction to prove that
d

dx
x

n=2
D

n

2
x

.n=2/�1 for every positive integer n. Then use

the Reciprocal Rule to get the same result for every negative

integer n.

54.A Use mathematical induction to prove the formula for the

derivative of a product of n functions given earlier in this

section.

2.4 The Chain Rule
Although we can differentiate

p

x and x2
C 1, we cannot yet differentiate

p

x2
C 1.

To do this, we need a rule that tells us how to differentiate composites of functions

whose derivatives we already know. This rule is known as the Chain Rule and is the

most often used of all the differentiation rules.

E X A M P L E 1 The function
1

x2
� 4

is the composite f .g.x// of f .u/ D
1

u
and

g.x/ D x2
� 4, which have derivatives

f
0
.u/ D

�1

u2
and g

0
.x/ D 2x:

According to the Reciprocal Rule (which is a special case of the Chain Rule),

d

dx
f .g.x// D

d

dx

�

1

x2
� 4

�

D

�2x

.x2
� 4/2

D

�1

.x2
� 4/2

.2x/

D f
0
.g.x//g

0
.x/:

This example suggests that the derivative of a composite function f .g.x// is the

derivative of f evaluated at g.x/ multiplied by the derivative of g evaluated at x.

This is the Chain Rule:

d

dx
f .g.x// D f

0
.g.x// g

0
.x/:

T H E O R E M

6

The Chain Rule

If f .u/ is differentiable at u D g.x/, and g.x/ is differentiable at x, then the compos-

ite function f ı g.x/ D f .g.x// is differentiable at x, and

.f ı g/
0
.x/ D f

0
.g.x//g

0
.x/:

In terms of Leibniz notation, if y D f .u/ where u D g.x/, then y D f .g.x// and:

at u, y is changing
dy

du
times as fast as u is changing;

at x, u is changing
du

dx
times as fast as x is changing.

Therefore, at x, y D f .u/ D f .g.x// is changing
dy

du
�

du

dx
times as fast as x is

changing. That is,
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dy

dx
D

dy

du

du

dx
; where

dy

du
is evaluated at u D g.x/.

It appears as though the symbol du cancels from the numerator and denominator, but

this is not meaningful because dy=duwas not defined as the quotient of two quantities,

but rather as a single quantity, the derivative of y with respect to u.

We would like to prove Theorem 6 by writing

�y

�x
D

�y

�u

�u

�x

and taking the limit as �x ! 0. Such a proof is valid for most composite functions

but not all. (See Exercise 46 at the end of this section.) A correct proof will be given

later in this section, but first we do more examples to get a better idea of how the Chain

Rule works.

E X A M P L E 2
Find the derivative of y D

p

x2
C 1.

Solution Here y D f .g.x//, where f .u/ D
p

u and g.x/ D x2
C 1. Since the

derivatives of f and g are

f
0
.u/ D

1

2
p

u
and g

0
.x/ D 2x;

the Chain Rule gives

dy

dx
D

d

dx
f .g.x// D f

0
.g.x// � g

0
.x/

D

1

2
p

g.x/
� g

0
.x/ D

1

2
p

x2
C 1
� .2x/ D

x
p

x2
C 1

:

Outside and Inside Functions

In the composite f .g.x//, the

function f is “outside,” and the

function g is “inside.” The Chain

Rule says that the derivative of

the composite is the derivative

f 0 of the outside function

evaluated at the inside function

g.x/, multiplied by the

derivative g0.x/ of the inside

function:
d

dx
f .g.x// D f

0
.g.x//�g

0
.x/.

Usually, when applying the Chain Rule, we do not introduce symbols to represent

the functions being composed, but rather just proceed to calculate the derivative of the

“outside” function and then multiply by the derivative of whatever is “inside.” You can

say to yourself: “the derivative of f of something is f 0 of that thing, multiplied by the

derivative of that thing.”

E X A M P L E 3
Find derivatives of the following functions:

(a) .7x � 3/10, (b) f .t/ D jt2 � 1j, and (c)

�

3x C
1

.2x C 1/3

�1=4

.

Solution

(a) Here, the outside function is the 10th power; it must be differentiated first and the

result multiplied by the derivative of the expression 7x � 3:

d

dx
.7x � 3/

10
D 10.7x � 3/

9
.7/ D 70.7x � 3/

9
:

(b) Here, we are differentiating the absolute value of something. The derivative is

signum of that thing, multiplied by the derivative of that thing:

f
0
.t/ D

�

sgn .t2�1/
�

.2t/ D
2t.t

2
� 1/

jt2 � 1j
D

(

2t if t < �1 or t > 1

�2t if �1 < t < 1

undefined if t D ˙1.
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51.A (A Square Root Rule) Show that if f is differentiable at x

and f .x/ > 0, then

d

dx

p

f .x/ D
f 0.x/

2
p

f .x/
:

Use this Square Root Rule to find the derivative of
p

x2
C 1.

52.A Show that f .x/ D jx3
j is differentiable at every real number

x, and find its derivative.

Mathematical Induction

53.A Use mathematical induction to prove that
d

dx
x

n=2
D

n

2
x

.n=2/�1 for every positive integer n. Then use

the Reciprocal Rule to get the same result for every negative

integer n.

54.A Use mathematical induction to prove the formula for the

derivative of a product of n functions given earlier in this

section.

2.4 The Chain Rule
Although we can differentiate

p

x and x2
C 1, we cannot yet differentiate

p

x2
C 1.

To do this, we need a rule that tells us how to differentiate composites of functions

whose derivatives we already know. This rule is known as the Chain Rule and is the

most often used of all the differentiation rules.

E X A M P L E 1 The function
1

x2
� 4

is the composite f .g.x// of f .u/ D
1

u
and

g.x/ D x2
� 4, which have derivatives

f
0
.u/ D

�1

u2
and g

0
.x/ D 2x:

According to the Reciprocal Rule (which is a special case of the Chain Rule),

d

dx
f .g.x// D

d

dx

�

1

x2
� 4

�

D

�2x

.x2
� 4/2

D

�1

.x2
� 4/2

.2x/

D f
0
.g.x//g

0
.x/:

This example suggests that the derivative of a composite function f .g.x// is the

derivative of f evaluated at g.x/ multiplied by the derivative of g evaluated at x.

This is the Chain Rule:

d

dx
f .g.x// D f

0
.g.x// g

0
.x/:

T H E O R E M

6

The Chain Rule

If f .u/ is differentiable at u D g.x/, and g.x/ is differentiable at x, then the compos-

ite function f ı g.x/ D f .g.x// is differentiable at x, and

.f ı g/
0
.x/ D f

0
.g.x//g

0
.x/:

In terms of Leibniz notation, if y D f .u/ where u D g.x/, then y D f .g.x// and:

at u, y is changing
dy

du
times as fast as u is changing;

at x, u is changing
du

dx
times as fast as x is changing.

Therefore, at x, y D f .u/ D f .g.x// is changing
dy

du
�

du

dx
times as fast as x is

changing. That is,
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dy

dx
D

dy

du

du

dx
; where

dy

du
is evaluated at u D g.x/.

It appears as though the symbol du cancels from the numerator and denominator, but

this is not meaningful because dy=duwas not defined as the quotient of two quantities,

but rather as a single quantity, the derivative of y with respect to u.

We would like to prove Theorem 6 by writing

�y

�x
D

�y

�u

�u

�x

and taking the limit as �x ! 0. Such a proof is valid for most composite functions

but not all. (See Exercise 46 at the end of this section.) A correct proof will be given

later in this section, but first we do more examples to get a better idea of how the Chain

Rule works.

E X A M P L E 2
Find the derivative of y D

p

x2
C 1.

Solution Here y D f .g.x//, where f .u/ D
p

u and g.x/ D x2
C 1. Since the

derivatives of f and g are

f
0
.u/ D

1

2
p

u
and g

0
.x/ D 2x;

the Chain Rule gives

dy

dx
D

d

dx
f .g.x// D f

0
.g.x// � g

0
.x/

D

1

2
p

g.x/
� g

0
.x/ D

1

2
p

x2
C 1
� .2x/ D

x
p

x2
C 1

:

Outside and Inside Functions

In the composite f .g.x//, the

function f is “outside,” and the

function g is “inside.” The Chain

Rule says that the derivative of

the composite is the derivative

f 0 of the outside function

evaluated at the inside function

g.x/, multiplied by the

derivative g0.x/ of the inside

function:
d

dx
f .g.x// D f

0
.g.x//�g

0
.x/.

Usually, when applying the Chain Rule, we do not introduce symbols to represent

the functions being composed, but rather just proceed to calculate the derivative of the

“outside” function and then multiply by the derivative of whatever is “inside.” You can

say to yourself: “the derivative of f of something is f 0 of that thing, multiplied by the

derivative of that thing.”

E X A M P L E 3
Find derivatives of the following functions:

(a) .7x � 3/10, (b) f .t/ D jt2 � 1j, and (c)

�

3x C
1

.2x C 1/3

�1=4

.

Solution

(a) Here, the outside function is the 10th power; it must be differentiated first and the

result multiplied by the derivative of the expression 7x � 3:

d

dx
.7x � 3/

10
D 10.7x � 3/

9
.7/ D 70.7x � 3/

9
:

(b) Here, we are differentiating the absolute value of something. The derivative is

signum of that thing, multiplied by the derivative of that thing:

f
0
.t/ D

�

sgn .t2�1/
�

.2t/ D
2t.t

2
� 1/

jt2 � 1j
D

(

2t if t < �1 or t > 1

�2t if �1 < t < 1

undefined if t D ˙1.
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(c) Here, we will need to use the Chain Rule twice. We begin by differentiating the

1=4 power of something, but the something involves the �3rd power of 2x C 1,

and the derivative of that will also require the Chain Rule:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4
d

dx

�

3x C
1

.2x C 1/3

�

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4

d

dx
.2x C 1/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

When you start to feel comfortable with the Chain Rule, you may want to save a

line or two by carrying out the whole differentiation in one step:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4
.2/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

Use of the Chain Rule produces products of factors that do not usually come out in the

order you would naturally write them. Often you will want to rewrite the result with the

factors in a different order. This is obvious in parts (a) and (c) of the example above. In

monomials (expressions that are products of factors), it is common to write the factors

in order of increasing complexity from left to right, with numerical factors coming

first. One time when you would not waste time doing this, or trying to make any other

simplification, is when you are going to evaluate the derivative at a particular number.

In this case, substitute the number as soon as you have calculated the derivative, before

doing any simplification:

d

dx
.x

2
� 3/

10
ˇ

ˇ

ˇ

xD2
D 10.x

2
� 3/

9
.2x/

ˇ

ˇ

ˇ

xD2
D .10/.1

9
/.4/ D 40:

E X A M P L E 4
Suppose that f is a differentiable function on the real line. In

terms of the derivative f 0 of f , express the derivatives of:

(a) f .3x/, (b) f .x2/, (c) f .�f .x//, and (d) Œf .3 � 2f .x//�4.

Solution

(a)
d

dx
f .3x/ D

�

f
0
.3x/

�

.3/ D 3f
0
.3x/:

(b)
d

dx
f .x

2
/ D

�

f
0
.x

2
/
�

.2x/ D 2xf
0
.x

2
/:

(c)
d

dx
f .�f .x// D

�

f
0
.�f .x//

�

.�f
0
.x// D �f

0
.x/f

0
.�f .x//:

(d)
d

dx

�

f
�

3 � 2f .x/
��4
D 4

�

f
�

3 � 2f .x/
��3
f

0�
3 � 2f .x/

��

�2f
0
.x/
�

D �8f
0
.x/f

0�
3� 2f .x/

��

f
�

3 � 2f .x/
��3
:

As a final example, we illustrate combinations of the Chain Rule with the Product and

Quotient Rules.

E X A M P L E 5
Find and simplify the following derivatives:

(a) f 0.t/ if f .t/ D
t2 C 1
p

t2 C 2
, and (b) g0.�1/ if g.x/ D

�

x2
C3xC4

�5p

3 � 2x.
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Solution

(a) f
0
.t/ D

p

t2 C 2.2t/ � .t
2
C 1/

2t

2
p

t2 C 2

t2 C 2

D

2t
p

t2 C 2
�

t3 C t

�

t2 C 2
�3=2
D

t3 C 3t

�

t2 C 2
�3=2

:

(b) g
0
.x/ D 5

�

x
2
C 3x C 4

�4
.2x C 3/

p

3 � 2x C
�

x
2
C 3x C 4

�5 �2

2
p

3 � 2x

g
0
.�1/ D .5/.2

4
/.1/.
p

5/ �
25

p

5
D 80

p

5 �
32

5

p

5 D
368
p

5

5
:

Finding Derivatives with Maple
M Computer algebra systems know the derivatives of elementary functions and can cal-

culate the derivatives of combinations of these functions symbolically, using differen-

tiation rules. Maple’s D operator can be used to find the derivative function D(f) of a

function f of one variable. Alternatively, you can use diff to differentiate an expres-

sion with respect to a variable and then use the substitution routine subs to evaluate

the result at a particular number.

> f := x -> sqrt(1+2*x^2);

f WD x !
p

1C 2x2

> fprime := D(f);

fprime WD x ! 2
x

p

1C 2x2

> fprime(2);

4

3

> diff(t^2*sin(3*t),t);

2 t sin.3 t/C 3 t2 cos.3 t/

> simplify(subs(t=Pi/12, %));

1

12
�
p

2C
1

96
�

2
p

2

Building the Chain Rule into Differentiation Formulas
If u is a differentiable function of x and y D un, then the Chain Rule gives

d

dx
u

n
D

dy

dx
D

dy

du

du

dx
D nu

n�1 du

dx
:

The formula

d

dx
u

n
D nu

n�1 du

dx

is just the formula d
dx
xn
D nxn�1 with an application of the Chain Rule built in, so

that it applies to functions of x rather than just to x. Some other differentiation rules

with built-in Chain Rule applications are:
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(c) Here, we will need to use the Chain Rule twice. We begin by differentiating the

1=4 power of something, but the something involves the �3rd power of 2x C 1,

and the derivative of that will also require the Chain Rule:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4
d

dx

�

3x C
1

.2x C 1/3

�

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4

d

dx
.2x C 1/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

When you start to feel comfortable with the Chain Rule, you may want to save a

line or two by carrying out the whole differentiation in one step:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4
.2/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

Use of the Chain Rule produces products of factors that do not usually come out in the

order you would naturally write them. Often you will want to rewrite the result with the

factors in a different order. This is obvious in parts (a) and (c) of the example above. In

monomials (expressions that are products of factors), it is common to write the factors

in order of increasing complexity from left to right, with numerical factors coming

first. One time when you would not waste time doing this, or trying to make any other

simplification, is when you are going to evaluate the derivative at a particular number.

In this case, substitute the number as soon as you have calculated the derivative, before

doing any simplification:

d

dx
.x

2
� 3/

10
ˇ

ˇ

ˇ

xD2
D 10.x

2
� 3/

9
.2x/

ˇ

ˇ

ˇ

xD2
D .10/.1

9
/.4/ D 40:

E X A M P L E 4
Suppose that f is a differentiable function on the real line. In

terms of the derivative f 0 of f , express the derivatives of:

(a) f .3x/, (b) f .x2/, (c) f .�f .x//, and (d) Œf .3 � 2f .x//�4.

Solution

(a)
d

dx
f .3x/ D

�

f
0
.3x/

�

.3/ D 3f
0
.3x/:

(b)
d

dx
f .x

2
/ D

�

f
0
.x

2
/
�

.2x/ D 2xf
0
.x

2
/:

(c)
d

dx
f .�f .x// D

�

f
0
.�f .x//

�

.�f
0
.x// D �f

0
.x/f

0
.�f .x//:

(d)
d

dx

�

f
�

3 � 2f .x/
��4
D 4

�

f
�

3 � 2f .x/
��3
f

0�
3 � 2f .x/

��

�2f
0
.x/
�

D �8f
0
.x/f

0�
3� 2f .x/

��

f
�

3 � 2f .x/
��3
:

As a final example, we illustrate combinations of the Chain Rule with the Product and

Quotient Rules.

E X A M P L E 5
Find and simplify the following derivatives:

(a) f 0.t/ if f .t/ D
t2 C 1
p

t2 C 2
, and (b) g0.�1/ if g.x/ D

�

x2
C3xC4

�5p

3 � 2x.
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Solution

(a) f
0
.t/ D

p

t2 C 2.2t/ � .t
2
C 1/

2t

2
p

t2 C 2

t2 C 2

D

2t
p

t2 C 2
�

t3 C t

�

t2 C 2
�3=2
D

t3 C 3t

�

t2 C 2
�3=2

:

(b) g
0
.x/ D 5

�

x
2
C 3x C 4

�4
.2x C 3/

p

3 � 2x C
�

x
2
C 3x C 4

�5 �2

2
p

3 � 2x

g
0
.�1/ D .5/.2

4
/.1/.
p

5/ �
25

p

5
D 80

p

5 �
32

5

p

5 D
368
p

5

5
:

Finding Derivatives with Maple
M Computer algebra systems know the derivatives of elementary functions and can cal-

culate the derivatives of combinations of these functions symbolically, using differen-

tiation rules. Maple’s D operator can be used to find the derivative function D(f) of a

function f of one variable. Alternatively, you can use diff to differentiate an expres-

sion with respect to a variable and then use the substitution routine subs to evaluate

the result at a particular number.

> f := x -> sqrt(1+2*x^2);

f WD x !
p

1C 2x2

> fprime := D(f);

fprime WD x ! 2
x

p

1C 2x2

> fprime(2);

4

3

> diff(t^2*sin(3*t),t);

2 t sin.3 t/C 3 t2 cos.3 t/

> simplify(subs(t=Pi/12, %));

1

12
�
p

2C
1

96
�

2
p

2

Building the Chain Rule into Differentiation Formulas
If u is a differentiable function of x and y D un, then the Chain Rule gives

d

dx
u

n
D

dy

dx
D

dy

du

du

dx
D nu

n�1 du

dx
:

The formula

d

dx
u

n
D nu

n�1 du

dx

is just the formula d
dx
xn
D nxn�1 with an application of the Chain Rule built in, so

that it applies to functions of x rather than just to x. Some other differentiation rules

with built-in Chain Rule applications are:
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d

dx

�

1

u

�

D

�1

u2

du

dx
(the Reciprocal Rule)

d

dx

p

u D
1

2
p

u

du

dx
(the Square Root Rule)

d

dx
u

r
D r ur�1

du

dx
(the General Power Rule)

d

dx
juj D sgnu

du

dx
D

u

juj

du

dx
(the Absolute Value Rule)

Proof of the Chain Rule (Theorem 6)
Suppose that f is differentiable at the point u D g.x/ and that g is differentiable at x.

Let the function E.k/ be defined by

E.0/ D 0;

E.k/ D
f .uC k/� f .u/

k
� f

0
.u/; if k ¤ 0:

By the definition of derivative, limk!0E.k/ D f
0.u/ � f 0.u/ D 0 D E.0/, so E.k/

is continuous at k D 0. Also, whether k D 0 or not, we have

f .uC k/� f .u/ D
�

f
0
.u/CE.k/

�

k:

Now put u D g.x/ and k D g.x C h/ � g.x/, so that uC k D g.x C h/, and obtain

f .g.x C h// � f .g.x// D
�

f
0
.g.x//C E.k/

�

.g.x C h/ � g.x//:

Since g is differentiable at x, limh!0Œg.x C h/ � g.x/�=h D g0.x/. Also, g is

continuous at x by Theorem 1, so limh!0 k D limh!0.g.x C h/ � g.x// D 0. Since

E is continuous at 0, limh!0E.k/ D limk!0E.k/ D E.0/ D 0: Hence,

d

dx
f .g.x// D lim

h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

�

f
0
.g.x//CE.k/

� g.x C h/ � g.x/

h

D

�

f
0
.g.x//C 0

�

g
0
.x/ D f

0
.g.x//g

0
.x/;

which was to be proved.

E X E R C I S E S 2.4

Find the derivatives of the functions in Exercises 1–16.

1. y D .2x C 3/6 2. y D
�

1 �
x

3

�99

3. f .x/ D .4 � x2
/
10 4. y D

p

1� 3x2

5. F.t/ D

�

2C
3

t

��10

6. .1C x2=3
/
3=2

7.
3

5 � 4x
8. .1 � 2t2/�3=2

9.A y D j1 � x
2
j 10.A f .t/ D j2C t

3
j

11. y D 4x C j4x � 1j 12. y D .2C jxj3/1=3

13. y D
1

2C
p

3x C 4
14. f .x/ D

 

1C

r

x � 2

3

!4

15. z D

�

uC
1

u � 1

��5=3

16. y D
x5
p

3C x6

.4C x2/3

17. Sketch the graph of the function in Exercise 10.

18. Sketch the graph of the function in Exercise 11.

Verify that the General Power Rule holds for the functions in

Exercises 19–21.
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19. x1=4
D

q

p

x 20. x3=4
D

q

x
p

x

21. x3=2
D

p

.x3/

In Exercises 22–29, express the derivative of the given function in

terms of the derivative f 0 of the differentiable function f:

22. f .2t C 3/ 23. f .5x � x2
/

24.

�

f

�

2

x

��3

25.
p

3C 2f .x/

26. f
�

p

3C 2t

�

27. f
�

3C 2
p

x
�

28. f
�

2f .3f .x//

�

29. f
�

2 � 3f .4 � 5t/

�

30. Find
d

dx

 p

x2
� 1

x2
C 1

!

ˇ

ˇ

ˇ

ˇ

xD�2

:

31. Find
d

dt

p

3t � 7

ˇ

ˇ

ˇ

ˇ

tD3

:

32. If f .x/ D
1

p

2x C 1
, find f 0.4/:

33. If y D .x3
C 9/17=2, find y 0

ˇ

ˇ

ˇ

ˇ

xD�2

.

34. Find F 0.0/ if F.x/ D .1C x/.2C x/2.3C x/3.4C x/4.

35.I Calculate y 0 if y D .x C ..3x/5 � 2/�1=2/�6. Try to do it all

in one step.

In Exercises 36–39, find an equation of the tangent line to the

given curve at the given point.

36. y D
p

1C 2x2 at x D 2

37. y D .1C x2=3/3=2 at x D �1

38. y D .ax C b/8 at x D b=a

39. y D 1=.x2
� x C 3/

3=2 at x D �2

40. Show that the derivative of f .x/ D .x � a/m.x � b/n

vanishes at some point between a and b if m and n are

positive integers.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 41–44.

M 41. y D
p

x2
C 1C

1

.x2
C 1/3=2

M 42. y D
.x2
� 1/.x2

� 4/.x2
� 9/

x6

M 43.
dy

dt

ˇ

ˇ

ˇ

ˇ

ˇ

tD2

if y D .t C 1/.t
2
C 2/.t

3
C 3/.t

4
C 4/.t

5
C 5/

M 44. f 0
.1/ if f .x/ D

.x2
C 3/1=2.x3

C 7/1=3

.x4
C 15/1=4

45.A Does the Chain Rule enable you to calculate the derivatives of

jxj2 and jx2
j at x D 0? Do these functions have derivatives at

x D 0? Why?

46.I What is wrong with the following “proof” of the Chain Rule?

Let k D g.x C h/ � g.x/. Then limh!0 k D 0: Thus,

lim
h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

f .g.x C h// � f .g.x//

g.x C h/ � g.x/

g.x C h/ � g.x/

h

D lim
h!0

f .g.x/C k/ � f .g.x//

k

g.x C h/ � g.x/

h

D f
0
.g.x// g

0
.x/:

2.5 Derivatives of Trigonometric Functions

The trigonometric functions, especially sine and cosine, play a very important role in

the mathematical modelling of real-world phenomena. In particular, they arise when-

ever quantities fluctuate in a periodic way. Elastic motions, vibrations, and waves of all

kinds naturally involve the trigonometric functions, and many physical and mechanical

laws are formulated as differential equations having these functions as solutions.

In this section we will calculate the derivatives of the six trigonometric functions.

We only have to work hard for one of them, sine; the others then follow from known

identities and the differentiation rules of Section 2.3.

Some Special Limits
First, we have to establish some trigonometric limits that we will need to calculate the

derivative of sine. It is assumed throughout that the arguments of the trigonometric

functions are measured in radians.

T H E O R E M

7

The functions sin � and cos � are continuous at every value of � . In particular, at � D 0

we have:

lim
�!0

sin � D sin 0 D 0 and lim
�!0

cos � D cos 0 D 1:
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d

dx

�

1

u

�

D

�1

u2

du

dx
(the Reciprocal Rule)

d

dx

p

u D
1

2
p

u

du

dx
(the Square Root Rule)

d

dx
u

r
D r ur�1

du

dx
(the General Power Rule)

d

dx
juj D sgnu

du

dx
D

u

juj

du

dx
(the Absolute Value Rule)

Proof of the Chain Rule (Theorem 6)
Suppose that f is differentiable at the point u D g.x/ and that g is differentiable at x.

Let the function E.k/ be defined by

E.0/ D 0;

E.k/ D
f .uC k/� f .u/

k
� f

0
.u/; if k ¤ 0:

By the definition of derivative, limk!0E.k/ D f
0.u/ � f 0.u/ D 0 D E.0/, so E.k/

is continuous at k D 0. Also, whether k D 0 or not, we have

f .uC k/� f .u/ D
�

f
0
.u/CE.k/

�

k:

Now put u D g.x/ and k D g.x C h/ � g.x/, so that uC k D g.x C h/, and obtain

f .g.x C h// � f .g.x// D
�

f
0
.g.x//C E.k/

�

.g.x C h/ � g.x//:

Since g is differentiable at x, limh!0Œg.x C h/ � g.x/�=h D g0.x/. Also, g is

continuous at x by Theorem 1, so limh!0 k D limh!0.g.x C h/ � g.x// D 0. Since

E is continuous at 0, limh!0E.k/ D limk!0E.k/ D E.0/ D 0: Hence,

d

dx
f .g.x// D lim

h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

�

f
0
.g.x//CE.k/

� g.x C h/ � g.x/

h

D

�

f
0
.g.x//C 0

�

g
0
.x/ D f

0
.g.x//g

0
.x/;

which was to be proved.

E X E R C I S E S 2.4

Find the derivatives of the functions in Exercises 1–16.

1. y D .2x C 3/6 2. y D
�

1 �
x

3

�99

3. f .x/ D .4 � x2
/
10 4. y D

p

1� 3x2

5. F.t/ D

�

2C
3

t

��10

6. .1C x2=3
/
3=2

7.
3

5 � 4x
8. .1 � 2t2/�3=2

9.A y D j1 � x
2
j 10.A f .t/ D j2C t

3
j

11. y D 4x C j4x � 1j 12. y D .2C jxj3/1=3

13. y D
1

2C
p

3x C 4
14. f .x/ D

 

1C

r

x � 2

3

!4

15. z D

�

uC
1

u � 1

��5=3

16. y D
x5
p

3C x6

.4C x2/3

17. Sketch the graph of the function in Exercise 10.

18. Sketch the graph of the function in Exercise 11.

Verify that the General Power Rule holds for the functions in

Exercises 19–21.
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19. x1=4
D

q

p

x 20. x3=4
D

q

x
p

x

21. x3=2
D

p

.x3/

In Exercises 22–29, express the derivative of the given function in

terms of the derivative f 0 of the differentiable function f:

22. f .2t C 3/ 23. f .5x � x2
/

24.

�

f

�

2

x

��3

25.
p

3C 2f .x/

26. f
�

p

3C 2t

�

27. f
�

3C 2
p

x
�

28. f
�

2f .3f .x//

�

29. f
�

2 � 3f .4 � 5t/

�

30. Find
d

dx

 p

x2
� 1

x2
C 1

!

ˇ

ˇ

ˇ

ˇ

xD�2

:

31. Find
d

dt

p

3t � 7

ˇ

ˇ

ˇ

ˇ

tD3

:

32. If f .x/ D
1

p

2x C 1
, find f 0.4/:

33. If y D .x3
C 9/17=2, find y 0

ˇ

ˇ

ˇ

ˇ

xD�2

.

34. Find F 0.0/ if F.x/ D .1C x/.2C x/2.3C x/3.4C x/4.

35.I Calculate y 0 if y D .x C ..3x/5 � 2/�1=2/�6. Try to do it all

in one step.

In Exercises 36–39, find an equation of the tangent line to the

given curve at the given point.

36. y D
p

1C 2x2 at x D 2

37. y D .1C x2=3/3=2 at x D �1

38. y D .ax C b/8 at x D b=a

39. y D 1=.x2
� x C 3/

3=2 at x D �2

40. Show that the derivative of f .x/ D .x � a/m.x � b/n

vanishes at some point between a and b if m and n are

positive integers.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 41–44.

M 41. y D
p

x2
C 1C

1

.x2
C 1/3=2

M 42. y D
.x2
� 1/.x2

� 4/.x2
� 9/

x6

M 43.
dy

dt

ˇ

ˇ

ˇ

ˇ

ˇ

tD2

if y D .t C 1/.t
2
C 2/.t

3
C 3/.t

4
C 4/.t

5
C 5/

M 44. f 0
.1/ if f .x/ D

.x2
C 3/1=2.x3

C 7/1=3

.x4
C 15/1=4

45.A Does the Chain Rule enable you to calculate the derivatives of

jxj2 and jx2
j at x D 0? Do these functions have derivatives at

x D 0? Why?

46.I What is wrong with the following “proof” of the Chain Rule?

Let k D g.x C h/ � g.x/. Then limh!0 k D 0: Thus,

lim
h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

f .g.x C h// � f .g.x//

g.x C h/ � g.x/

g.x C h/ � g.x/

h

D lim
h!0

f .g.x/C k/ � f .g.x//

k

g.x C h/ � g.x/

h

D f
0
.g.x// g

0
.x/:

2.5 Derivatives of Trigonometric Functions

The trigonometric functions, especially sine and cosine, play a very important role in

the mathematical modelling of real-world phenomena. In particular, they arise when-

ever quantities fluctuate in a periodic way. Elastic motions, vibrations, and waves of all

kinds naturally involve the trigonometric functions, and many physical and mechanical

laws are formulated as differential equations having these functions as solutions.

In this section we will calculate the derivatives of the six trigonometric functions.

We only have to work hard for one of them, sine; the others then follow from known

identities and the differentiation rules of Section 2.3.

Some Special Limits
First, we have to establish some trigonometric limits that we will need to calculate the

derivative of sine. It is assumed throughout that the arguments of the trigonometric

functions are measured in radians.

T H E O R E M

7

The functions sin � and cos � are continuous at every value of � . In particular, at � D 0

we have:

lim
�!0

sin � D sin 0 D 0 and lim
�!0

cos � D cos 0 D 1:
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This result is obvious from the graphs of sine and cosine, so we will not prove it here. A

proof can be based on the Squeeze Theorem (Theorem 4 of Section 1.2). The method

is suggested in Exercise 62 at the end of this section.

The graph of the function y D .sin �/=� is shown in Figure 2.20. Although it is

not defined at � D 0, this function appears to have limit 1 as � approaches 0.

y

�
�
2

� �
2

��� 0:5

1 y D
sin �

�

Figure 2.20 It appears that

lim
�!0

.sin �/=� D 1

T H E O R E M

8

An important trigonometric limit

lim
�!0

sin �

�
D 1 (where � is in radians).

PROOF Let 0 < � < �=2, and represent � as shown in Figure 2.21. Points A.1; 0/

and P.cos �; sin �/ lie on the unit circle x2
C y2

D 1. The area of the circular sector

OAP lies between the areas of triangles OAP and OAT :

Area 4OAP < Area sector OAP < Area 4OAT:

As shown in Section P.7, the area of a circular sector having central angle � (radians)

y

x

AD.1;0/

T D.1;tan �/

P D.cos �;sin �/

1

O �

�

Figure 2.21 Area 4OAP

< Area sector OAP

< Area 4OAT

and radius 1 is �=2. The area of a triangle is .1=2/ � base � height, so

Area 4OAP D
1

2
.1/ .sin �/ D

sin �

2
;

Area 4OAT D
1

2
.1/ .tan �/ D

sin �

2 cos �
:

Thus,

sin �

2
<
�

2
<

sin �

2 cos �
;

or, upon multiplication by the positive number 2= sin � ,

1 <
�

sin �
<

1

cos �
:

Now take reciprocals, thereby reversing the inequalities:

1 >
sin �

�
> cos �:

Since lim�!0C cos � D 1 by Theorem 7, the Squeeze Theorem gives

lim
�!0C

sin �

�
D 1:

Finally, note that sin � and � are odd functions. Therefore, f .�/ D .sin �/=� is an

even function: f .��/ D f .�/, as shown in Figure 2.20. This symmetry implies that

the left limit at 0 must have the same value as the right limit:

lim
�!0�

sin �

�
D 1 D lim

�!0C

sin �

�
;

so lim�!0.sin �/=� D 1 by Theorem 1 of Section 1.2.

Theorem 8 can be combined with limit rules and known trigonometric identities to

yield other trigonometric limits.
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E X A M P L E 1 Show that lim
h!0

cos h � 1

h
D 0.

Solution Using the half-angle formula cos h D 1 � 2 sin2
.h=2/, we calculate

lim
h!0

cos h � 1

h
D lim

h!0
�

2 sin2
.h=2/

h
Let � D h=2.

D � lim
�!0

sin �

�
sin � D �.1/.0/ D 0:

The Derivatives of Sine and Cosine
To calculate the derivative of sin x, we need the addition formula for sine (see Section

P.7):

sin.x C h/ D sin x cos hC cos x sinh:

T H E O R E M

9

The derivative of the sine function is the cosine function.
d

dx
sin x D cos x:

PROOF We use the definition of derivative, the addition formula for sine, the rules

for combining limits, Theorem 8, and the result of Example 1:

d

dx
sin x D lim

h!0

sin.x C h/ � sin x

h

D lim
h!0

sin x cos hC cos x sinh � sin x

h

D lim
h!0

sin x.cosh � 1/C cos x sinh

h

D lim
h!0

sinx � lim
h!0

cos h � 1

h
C lim

h!0
cos x � lim

h!0

sinh

h

D .sin x/ � .0/C .cos x/ � .1/ D cos x:

T H E O R E M

10

The derivative of the cosine function is the negative of the sine function.

d

dx
cos x D � sin x:

PROOF We could mimic the proof for sine above, using the addition rule for cosine,

cos.x C h/ D cos x cos h � sin x sin h. An easier way is to make use of the comple-

mentary angle identities, sin..�=2/�x/ D cos x and cos..�=2/�x/ D sin x, and the

Chain Rule from Section 2.4:

d

dx
cos x D

d

dx
sin
�

�

2
� x

�

D .�1/ cos
�

�

2
� x

�

D � sin x:

Notice the minus sign in the derivative of cosine. The derivative of the sine is the

cosine, but the derivative of the cosine is minus the sine. This is shown graphically in

Figure 2.22.
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This result is obvious from the graphs of sine and cosine, so we will not prove it here. A

proof can be based on the Squeeze Theorem (Theorem 4 of Section 1.2). The method

is suggested in Exercise 62 at the end of this section.

The graph of the function y D .sin �/=� is shown in Figure 2.20. Although it is

not defined at � D 0, this function appears to have limit 1 as � approaches 0.

y

�
�
2

� �
2

��� 0:5

1 y D
sin �

�

Figure 2.20 It appears that

lim
�!0

.sin �/=� D 1

T H E O R E M

8

An important trigonometric limit

lim
�!0

sin �

�
D 1 (where � is in radians).

PROOF Let 0 < � < �=2, and represent � as shown in Figure 2.21. Points A.1; 0/

and P.cos �; sin �/ lie on the unit circle x2
C y2

D 1. The area of the circular sector

OAP lies between the areas of triangles OAP and OAT :

Area 4OAP < Area sector OAP < Area 4OAT:

As shown in Section P.7, the area of a circular sector having central angle � (radians)

y

x

AD.1;0/

T D.1;tan �/

P D.cos �;sin �/

1

O �

�

Figure 2.21 Area 4OAP

< Area sector OAP

< Area 4OAT

and radius 1 is �=2. The area of a triangle is .1=2/ � base � height, so

Area 4OAP D
1

2
.1/ .sin �/ D

sin �

2
;

Area 4OAT D
1

2
.1/ .tan �/ D

sin �

2 cos �
:

Thus,

sin �

2
<
�

2
<

sin �

2 cos �
;

or, upon multiplication by the positive number 2= sin � ,

1 <
�

sin �
<

1

cos �
:

Now take reciprocals, thereby reversing the inequalities:

1 >
sin �

�
> cos �:

Since lim�!0C cos � D 1 by Theorem 7, the Squeeze Theorem gives

lim
�!0C

sin �

�
D 1:

Finally, note that sin � and � are odd functions. Therefore, f .�/ D .sin �/=� is an

even function: f .��/ D f .�/, as shown in Figure 2.20. This symmetry implies that

the left limit at 0 must have the same value as the right limit:

lim
�!0�

sin �

�
D 1 D lim

�!0C

sin �

�
;

so lim�!0.sin �/=� D 1 by Theorem 1 of Section 1.2.

Theorem 8 can be combined with limit rules and known trigonometric identities to

yield other trigonometric limits.
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E X A M P L E 1 Show that lim
h!0

cos h � 1

h
D 0.

Solution Using the half-angle formula cos h D 1 � 2 sin2
.h=2/, we calculate

lim
h!0

cos h � 1

h
D lim

h!0
�

2 sin2
.h=2/

h
Let � D h=2.

D � lim
�!0

sin �

�
sin � D �.1/.0/ D 0:

The Derivatives of Sine and Cosine
To calculate the derivative of sin x, we need the addition formula for sine (see Section

P.7):

sin.x C h/ D sin x cos hC cos x sinh:

T H E O R E M

9

The derivative of the sine function is the cosine function.
d

dx
sin x D cos x:

PROOF We use the definition of derivative, the addition formula for sine, the rules

for combining limits, Theorem 8, and the result of Example 1:

d

dx
sin x D lim

h!0

sin.x C h/ � sin x

h

D lim
h!0

sin x cos hC cos x sinh � sin x

h

D lim
h!0

sin x.cosh � 1/C cos x sinh

h

D lim
h!0

sinx � lim
h!0

cos h � 1

h
C lim

h!0
cos x � lim

h!0

sinh

h

D .sin x/ � .0/C .cos x/ � .1/ D cos x:

T H E O R E M

10

The derivative of the cosine function is the negative of the sine function.

d

dx
cos x D � sin x:

PROOF We could mimic the proof for sine above, using the addition rule for cosine,

cos.x C h/ D cos x cos h � sin x sin h. An easier way is to make use of the comple-

mentary angle identities, sin..�=2/�x/ D cos x and cos..�=2/�x/ D sin x, and the

Chain Rule from Section 2.4:

d

dx
cos x D

d

dx
sin
�

�

2
� x

�

D .�1/ cos
�

�

2
� x

�

D � sin x:

Notice the minus sign in the derivative of cosine. The derivative of the sine is the

cosine, but the derivative of the cosine is minus the sine. This is shown graphically in

Figure 2.22.
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Figure 2.22 The sine (red) and cosine

(blue) plotted together. The slope of the

sine curve at x is cosx; the slope of the

cosine curve at x is � sinx

y

x

y D sin x

y D cos x

0:5
�

E X A M P L E 2
Evaluate the derivatives of the following functions:

(a) sin.�x/C cos.3x/, (b) x2 sin
p

x, and (c)
cos x

1 � sin x
.

Solution

(a) By the Sum Rule and the Chain Rule:

d

dx
.sin.�x/C cos.3x// D cos.�x/.�/ � sin.3x/.3/

D � cos.�x/� 3 sin.3x/:

(b) By the Product and Chain Rules:

d

dx
.x

2 sin
p

x/ D 2x sin
p

x C x
2
�

cos
p

x
� 1

2
p

x

D 2x sin
p

x C
1

2
x

3=2 cos
p

x:

(c) By the Quotient Rule:

d

dx

� cos x

1 � sinx

�

D

.1 � sin x/.� sin x/� .cos x/.0� cos x/

.1 � sinx/2

D

� sin x C sin2
x C cos2 x

.1 � sin x/2

D

1 � sinx

.1 � sin x/2
D

1

1 � sin x
:

We used the identity sin2
x C cos2 x D 1 to simplify the middle line.

Using trigonometric identities can sometimes change the way a derivative is calculated.

Carrying out a differentiation in different ways can lead to different-looking answers,

but they should be equal if no errors have been made.

E X A M P L E 3
Use two different methods to find the derivative of the function

f .t/ D sin t cos t .
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Solution By the Product Rule:

f
0
.t/ D .cos t/.cos t/C .sin t/.� sin t/ D cos2

t � sin2
t:

On the other hand, since sin.2t/ D 2 sin t cos t , we have

f
0
.t/ D

d

dt

�

1

2
sin.2t/

�

D

�

1

2

�

.2/ cos.2t/ D cos.2t/:

The two answers are really the same, since cos.2t/ D cos2 t � sin2
t .

It is very important to remember that the formulas for the derivatives of sinx and cos x

were obtained under the assumption that x is measured in radians. Since we know that

180ı
D � radians, xı

D �x=180 radians. By the Chain Rule,

d

dx
sin.xı/ D

d

dx
sin
�

�x

180

�

D

�

180
cos

�

�x

180

�

D

�

180
cos.xı/:

(See Figure 2.23.) Similarly, the derivative of cos.xı
/ is �.�=180/ sin.xı

/.

Figure 2.23 sin.xı/ (blue) oscillates

much more slowly than sinx (red). Its

maximum slope is �=180

y

x

y D sin.xı/ D sin.�x=180/

y D sin x 180

1

Continuity

The six trigonometric functions

are differentiable and, therefore,

continuous (by Theorem 1)

everywhere on their domains.

This means that we can calculate

the limits of most trigonometric

functions as x ! a by

evaluating them at x D a.

The Derivatives of the Other Trigonometric Functions

Because sin x and cos x are differentiable everywhere, the functions

tan x D
sinx

cos x
sec x D

1

cos x

cot x D
cos x

sinx
csc x D

1

sin x

are differentiable at every value of x at which they are defined (i.e., where their de-

nominators are not zero). Their derivatives can be calculated by the Quotient and

Reciprocal Rules and are as follows:

The three “co-” functions

(cosine, cotangent, and cosecant)

have explicit minus signs in their

derivatives.

d

dx
tan x D sec2

x

d

dx
cot x D � csc2

x

d

dx
sec x D sec x tanx

d

dx
csc x D � csc x cot x:
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Figure 2.22 The sine (red) and cosine

(blue) plotted together. The slope of the

sine curve at x is cosx; the slope of the

cosine curve at x is � sinx

y

x

y D sin x

y D cos x

0:5
�

E X A M P L E 2
Evaluate the derivatives of the following functions:

(a) sin.�x/C cos.3x/, (b) x2 sin
p

x, and (c)
cos x

1 � sin x
.

Solution

(a) By the Sum Rule and the Chain Rule:

d

dx
.sin.�x/C cos.3x// D cos.�x/.�/ � sin.3x/.3/

D � cos.�x/� 3 sin.3x/:

(b) By the Product and Chain Rules:

d

dx
.x

2 sin
p

x/ D 2x sin
p

x C x
2
�

cos
p

x
� 1

2
p

x

D 2x sin
p

x C
1

2
x

3=2 cos
p

x:

(c) By the Quotient Rule:

d

dx

� cos x

1 � sinx

�

D

.1 � sin x/.� sin x/� .cos x/.0� cos x/

.1 � sinx/2

D

� sin x C sin2
x C cos2 x

.1 � sin x/2

D

1 � sinx

.1 � sin x/2
D

1

1 � sin x
:

We used the identity sin2
x C cos2 x D 1 to simplify the middle line.

Using trigonometric identities can sometimes change the way a derivative is calculated.

Carrying out a differentiation in different ways can lead to different-looking answers,

but they should be equal if no errors have been made.

E X A M P L E 3
Use two different methods to find the derivative of the function

f .t/ D sin t cos t .
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Solution By the Product Rule:

f
0
.t/ D .cos t/.cos t/C .sin t/.� sin t/ D cos2

t � sin2
t:

On the other hand, since sin.2t/ D 2 sin t cos t , we have

f
0
.t/ D

d

dt

�

1

2
sin.2t/

�

D

�

1

2

�

.2/ cos.2t/ D cos.2t/:

The two answers are really the same, since cos.2t/ D cos2 t � sin2
t .

It is very important to remember that the formulas for the derivatives of sinx and cos x

were obtained under the assumption that x is measured in radians. Since we know that

180ı
D � radians, xı

D �x=180 radians. By the Chain Rule,

d

dx
sin.xı/ D

d

dx
sin
�

�x

180

�

D

�

180
cos

�

�x

180

�

D

�

180
cos.xı/:

(See Figure 2.23.) Similarly, the derivative of cos.xı
/ is �.�=180/ sin.xı

/.

Figure 2.23 sin.xı/ (blue) oscillates

much more slowly than sinx (red). Its

maximum slope is �=180

y

x

y D sin.xı/ D sin.�x=180/

y D sin x 180

1

Continuity

The six trigonometric functions

are differentiable and, therefore,

continuous (by Theorem 1)

everywhere on their domains.

This means that we can calculate

the limits of most trigonometric

functions as x ! a by

evaluating them at x D a.

The Derivatives of the Other Trigonometric Functions

Because sin x and cos x are differentiable everywhere, the functions

tan x D
sinx

cos x
sec x D

1

cos x

cot x D
cos x

sinx
csc x D

1

sin x

are differentiable at every value of x at which they are defined (i.e., where their de-

nominators are not zero). Their derivatives can be calculated by the Quotient and

Reciprocal Rules and are as follows:

The three “co-” functions

(cosine, cotangent, and cosecant)

have explicit minus signs in their

derivatives.

d

dx
tan x D sec2

x

d

dx
cot x D � csc2

x

d

dx
sec x D sec x tanx

d

dx
csc x D � csc x cot x:
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E X A M P L E 4
Verify the derivative formulas for tan x and secx.

Solution We use the Quotient Rule for tangent and the Reciprocal Rule for secant:

d

dx
tanx D

d

dx

�

sin x

cos x

�

D

cos x
d

dx
.sin x/� sin x

d

dx
.cos x/

cos2 x

D

cos x cos x � sinx.� sin x/

cos2 x
D

cos2 x C sin2
x

cos2 x

D

1

cos2 x
D sec2

x:

d

dx
secx D

d

dx

�

1

cos x

�

D

�1

cos2 x

d

dx
.cos x/

D

�1

cos2 x
.� sin x/ D

1

cos x
�

sinx

cos x
D sec x tan x:

E X A M P L E 5 (a)
d

dx

h

3x C cot
�

x

2

�i

D 3C

h

� csc2
�

x

2

�i

1

2
D 3 �

1

2
csc2

�

x

2

�

(b)
d

dx

�

3

sin.2x/

�

D

d

dx
.3 csc.2x//

D 3.� csc.2x/ cot.2x//.2/ D �6 csc.2x/ cot.2x/:

E X A M P L E 6
Find the tangent and normal lines to the curve y D tan.�x=4/ at

the point .1; 1/.

Solution The slope of the tangent to y D tan.�x=4/ at .1; 1/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

.�x=4/

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

�

�

4

�

D

�

4

�p

2

�2

D

�

2
:

The tangent is the line

y D 1C
�

2
.x � 1/ ; or y D

�x

2
�

�

2
C 1:

The normal has slope m D �2=� , so its point-slope equation is

y D 1 �
2

�
.x � 1/ ; or y D �

2x

�
C

2

�
C 1:

E X E R C I S E S 2.5

1. Verify the formula for the derivative of csc x D 1=.sinx/.

2. Verify the formula for the derivative of

cot x D .cosx/=.sin x/.

Find the derivatives of the functions in Exercises 3–36. Simplify

your answers whenever possible. Also be on the lookout for ways

you might simplify the given expression before differentiating it.

3. y D cos 3x 4. y D sin
x

5

5. y D tan�x 6. y D secax

7. y D cot.4 � 3x/ 8. y D sin..� � x/=3/

9. f .x/ D cos.s � rx/ 10. y D sin.Ax C B/

11. sin.�x2
/ 12. cos.

p

x/

13. y D
p

1C cosx 14. sin.2 cos x/

15. f .x/ D cos.x C sinx/ 16. g.�/ D tan.� sin �/

17. u D sin3
.�x=2/ 18. y D sec.1=x/

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 127 October 15, 2016

SECTION 2.6: Higher-Order Derivatives 127

19. F.t/ D sin at cos at 20. G.�/ D
sin a�

cos b�

21. sin.2x/ � cos.2x/ 22. cos2
x � sin2

x

23. tanx C cot x 24. sec x � csc x

25. tanx � x 26. tan.3x/ cot.3x/

27. t cos t � sin t 28. t sin t C cos t

29.
sinx

1C cosx
30.

cos x

1C sinx

31. x2 cos.3x/ 32. g.t/ D
p

.sin t /=t

33. v D sec.x2
/ tan.x2

/ 34. z D
sin
p

x

1C cos
p

x

35. sin.cos.tan t //

36. f .s/ D cos.s C cos.s C cos s//

37. Given that sin 2x D 2 sinx cosx, deduce that

cos 2x D cos2 x � sin2
x:

38. Given that cos 2x D cos2 x � sin2
x, deduce that

sin 2x D 2 sinx cos x:

In Exercises 39–42, find equations for the lines that are tangent and

normal to the curve y D f .x/ at the given point.

39. y D sinx; .�; 0/ 40. y D tan.2x/; .0; 0/

41. y D
p

2 cos.x=4/; .�; 1/ 42. y D cos2
x;

�

�

3
;
1

4

�

43. Find an equation of the line tangent to the curve y D sin.xı/

at the point where x D 45.

44. Find an equation of the straight line normal to y D sec.xı/ at

the point where x D 60.

45. Find the points on the curve y D tanx, ��=2 < x < �=2,

where the tangent is parallel to the line y D 2x.

46. Find the points on the curve y D tan.2x/, ��=4 < x < �=4,

where the normal is parallel to the line y D �x=8.

47. Show that the graphs of y D sinx, y D cosx, y D sec x, and

y D csc x have horizontal tangents.

48. Show that the graphs of y D tanx and y D cot x never have

horizontal tangents.

Do the graphs of the functions in Exercises 49–52 have any

horizontal tangents in the interval 0 � x � 2�? If so, where? If

not, why not?

49. y D x C sinx 50. y D 2x C sinx

51. y D x C 2 sinx 52. y D x C 2 cosx

Find the limits in Exercises 53–56.

53. lim
x!0

tan.2x/

x
54. lim

x!�
sec.1C cos x/

55. lim
x!0

.x
2 csc x cotx/ 56. lim

x!0
cos

�

� � � cos2 x

x2

�

57. Use the method of Example 1 to evaluate lim
h!0

1 � cos h

h2
.

58. Find values of a and b that make

f .x/ D

�

ax C b; x < 0

2 sinx C 3 cosx; x � 0

differentiable at x D 0.

C 59. How many straight lines that pass through the origin are

tangent to y D cosx? Find (to 6 decimal places) the slopes of

the two such lines that have the largest positive slopes.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 60–61.

M 60.
d

dx

x cos.x sinx/

x C cos.x cosx/

ˇ

ˇ

ˇ

ˇ

ˇ

xD0

M 61.
d

dx

 

p

2x2
C 3 sin.x2

/ �
.2x2

C 3/3=2 cos.x2/

x

!
ˇ

ˇ

ˇ

ˇ

ˇ

xD
p

�

62.A (The continuity of sine and cosine)

(a) Prove that

lim
�!0

sin � D 0 and lim
�!0

cos � D 1

as follows: Use the fact that the length of chord AP is

less than the length of arc AP in Figure 2.24 to show that

sin2
� C .1 � cos �/2 < �2

:

Then deduce that 0 � j sin � j < j� j and

0 � j1 � cos � j < j� j. Then use the Squeeze Theorem

from Section 1.2.

(b) Part (a) says that sin � and cos � are continuous at � D 0.

Use the addition formulas to prove that they are therefore

continuous at every � .
y

x

�

P D.cos �;sin �/

�

AD.1;0/

Q

1

Figure 2.24

2.6 Higher-Order Derivatives

If the derivative y 0
D f

0
.x/ of a function y D f .x/ is itself differentiable at x, we

can calculate its derivative, which we call the second derivative of f and denote by

y 00
D f 00.x/. As is the case for first derivatives, second derivatives can be denoted by

various notations depending on the context. Some of the more common ones are
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E X A M P L E 4
Verify the derivative formulas for tan x and secx.

Solution We use the Quotient Rule for tangent and the Reciprocal Rule for secant:

d

dx
tanx D

d

dx

�

sin x

cos x

�

D

cos x
d

dx
.sin x/� sin x

d

dx
.cos x/

cos2 x

D

cos x cos x � sinx.� sin x/

cos2 x
D

cos2 x C sin2
x

cos2 x

D

1

cos2 x
D sec2

x:

d

dx
secx D

d

dx

�

1

cos x

�

D

�1

cos2 x

d

dx
.cos x/

D

�1

cos2 x
.� sin x/ D

1

cos x
�

sinx

cos x
D sec x tan x:

E X A M P L E 5 (a)
d

dx

h

3x C cot
�

x

2

�i

D 3C

h

� csc2
�

x

2

�i

1

2
D 3 �

1

2
csc2

�

x

2

�

(b)
d

dx

�

3

sin.2x/

�

D

d

dx
.3 csc.2x//

D 3.� csc.2x/ cot.2x//.2/ D �6 csc.2x/ cot.2x/:

E X A M P L E 6
Find the tangent and normal lines to the curve y D tan.�x=4/ at

the point .1; 1/.

Solution The slope of the tangent to y D tan.�x=4/ at .1; 1/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

.�x=4/

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

�

�

4

�

D

�

4

�p

2

�2

D

�

2
:

The tangent is the line

y D 1C
�

2
.x � 1/ ; or y D

�x

2
�

�

2
C 1:

The normal has slope m D �2=� , so its point-slope equation is

y D 1 �
2

�
.x � 1/ ; or y D �

2x

�
C

2

�
C 1:

E X E R C I S E S 2.5

1. Verify the formula for the derivative of csc x D 1=.sinx/.

2. Verify the formula for the derivative of

cot x D .cosx/=.sin x/.

Find the derivatives of the functions in Exercises 3–36. Simplify

your answers whenever possible. Also be on the lookout for ways

you might simplify the given expression before differentiating it.

3. y D cos 3x 4. y D sin
x

5

5. y D tan�x 6. y D secax

7. y D cot.4 � 3x/ 8. y D sin..� � x/=3/

9. f .x/ D cos.s � rx/ 10. y D sin.Ax C B/

11. sin.�x2
/ 12. cos.

p

x/

13. y D
p

1C cosx 14. sin.2 cos x/

15. f .x/ D cos.x C sinx/ 16. g.�/ D tan.� sin �/

17. u D sin3
.�x=2/ 18. y D sec.1=x/
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19. F.t/ D sin at cos at 20. G.�/ D
sin a�

cos b�

21. sin.2x/ � cos.2x/ 22. cos2
x � sin2

x

23. tanx C cot x 24. sec x � csc x

25. tanx � x 26. tan.3x/ cot.3x/

27. t cos t � sin t 28. t sin t C cos t

29.
sinx

1C cosx
30.

cos x

1C sinx

31. x2 cos.3x/ 32. g.t/ D
p

.sin t /=t

33. v D sec.x2
/ tan.x2

/ 34. z D
sin
p

x

1C cos
p

x

35. sin.cos.tan t //

36. f .s/ D cos.s C cos.s C cos s//

37. Given that sin 2x D 2 sinx cosx, deduce that

cos 2x D cos2 x � sin2
x:

38. Given that cos 2x D cos2 x � sin2
x, deduce that

sin 2x D 2 sinx cos x:

In Exercises 39–42, find equations for the lines that are tangent and

normal to the curve y D f .x/ at the given point.

39. y D sinx; .�; 0/ 40. y D tan.2x/; .0; 0/

41. y D
p

2 cos.x=4/; .�; 1/ 42. y D cos2
x;

�

�

3
;
1

4

�

43. Find an equation of the line tangent to the curve y D sin.xı/

at the point where x D 45.

44. Find an equation of the straight line normal to y D sec.xı/ at

the point where x D 60.

45. Find the points on the curve y D tanx, ��=2 < x < �=2,

where the tangent is parallel to the line y D 2x.

46. Find the points on the curve y D tan.2x/, ��=4 < x < �=4,

where the normal is parallel to the line y D �x=8.

47. Show that the graphs of y D sinx, y D cosx, y D sec x, and

y D csc x have horizontal tangents.

48. Show that the graphs of y D tanx and y D cot x never have

horizontal tangents.

Do the graphs of the functions in Exercises 49–52 have any

horizontal tangents in the interval 0 � x � 2�? If so, where? If

not, why not?

49. y D x C sinx 50. y D 2x C sinx

51. y D x C 2 sinx 52. y D x C 2 cosx

Find the limits in Exercises 53–56.

53. lim
x!0

tan.2x/

x
54. lim

x!�
sec.1C cos x/

55. lim
x!0

.x
2 csc x cotx/ 56. lim

x!0
cos

�

� � � cos2 x

x2

�

57. Use the method of Example 1 to evaluate lim
h!0

1 � cos h

h2
.

58. Find values of a and b that make

f .x/ D

�

ax C b; x < 0

2 sinx C 3 cosx; x � 0

differentiable at x D 0.

C 59. How many straight lines that pass through the origin are

tangent to y D cosx? Find (to 6 decimal places) the slopes of

the two such lines that have the largest positive slopes.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 60–61.

M 60.
d

dx

x cos.x sinx/

x C cos.x cosx/

ˇ

ˇ

ˇ

ˇ

ˇ

xD0

M 61.
d

dx

 

p

2x2
C 3 sin.x2

/ �
.2x2

C 3/3=2 cos.x2/

x

!
ˇ

ˇ

ˇ

ˇ

ˇ

xD
p

�

62.A (The continuity of sine and cosine)

(a) Prove that

lim
�!0

sin � D 0 and lim
�!0

cos � D 1

as follows: Use the fact that the length of chord AP is

less than the length of arc AP in Figure 2.24 to show that

sin2
� C .1 � cos �/2 < �2

:

Then deduce that 0 � j sin � j < j� j and

0 � j1 � cos � j < j� j. Then use the Squeeze Theorem

from Section 1.2.

(b) Part (a) says that sin � and cos � are continuous at � D 0.

Use the addition formulas to prove that they are therefore

continuous at every � .
y

x

�

P D.cos �;sin �/

�

AD.1;0/

Q

1

Figure 2.24

2.6 Higher-Order Derivatives

If the derivative y 0
D f

0
.x/ of a function y D f .x/ is itself differentiable at x, we

can calculate its derivative, which we call the second derivative of f and denote by

y 00
D f 00.x/. As is the case for first derivatives, second derivatives can be denoted by

various notations depending on the context. Some of the more common ones are
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y
00
D f

00
.x/ D

d2y

dx2
D

d

dx

d

dx
f .x/ D

d2

dx2
f .x/ D D

2
xy D D

2
xf .x/:

Similarly, you can consider third-, fourth-, and in general nth-order derivatives. The

prime notation is inconvenient for derivatives of high order, so we denote the order by

a superscript in parentheses (to distinguish it from an exponent): the nth derivative of

y D f .x/ is

y
.n/
D f

.n/
.x/ D

dny

dxn
D

dn

dxn
f .x/ D D

n
xy D D

n
xf .x/;

and it is defined to be the derivative of the .n � 1/st derivative. For n D 1; 2; and 3,

primes are still normally used: f .2/.x/ D f 00.x/; f .3/.x/ D f 000.x/. It is sometimes

convenient to denote f .0/
.x/ D f .x/, that is, to regard a function as its own zeroth-

order derivative.

E X A M P L E 1
The velocity of a moving object is the (instantaneous) rate of change

of the position of the object with respect to time; if the object

moves along the x-axis and is at position x D f .t/ at time t , then its velocity at that

time is

v D
dx

dt
D f

0
.t/:

Similarly, the acceleration of the object is the rate of change of the velocity. Thus, the

acceleration is the second derivative of the position:

a D
dv

dt
D

d2x

dt2
D f

00
.t/:

We will investigate the relationships between position, velocity, and acceleration fur-

ther in Section 2.11.

E X A M P L E 2
If y D x3, then y 0

D 3x2, y 00
D 6x, y 000

D 6, y.4/
D 0, and all

higher derivatives are zero.

In general, if f .x/ D xn (where n is a positive integer), then

f
.k/
.x/ D n.n � 1/.n � 2/ � � � .n � .k � 1// x

n�k

D

8

<

:

nŠ

.n � k/Š
x

n�k if 0 � k � n

0 if k > n,

where nŠ (called n factorial) is defined by:

0Š D 1

1Š D 0Š � 1 D 1 � 1 D 1

2Š D 1Š � 2 D 1 � 2 D 2

3Š D 2Š � 3 D 1 � 2 � 3 D 6

4Š D 3Š � 4 D 1 � 2 � 3 � 4 D 24

:
:
:

nŠ D .n � 1/Š � n D 1 � 2 � 3 � � � � � .n � 1/ � n:
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It follows that if P is a polynomial of degree n,

P.x/ D anx
n
C an�1x

n�1
C � � � C a1x C a0;

where an; an�1; : : : ; a1; a0 are constants, then P .k/.x/ D 0 for k > n. For k � n,

P
.k/ is a polynomial of degree n � k; in particular, P .n/

.x/ D nŠ an, a constant

function.

E X A M P L E 3
Show that if A, B , and k are constants, then the function

y D A cos.kt/ C B sin.kt/ is a solution of the second-order

differential equation of simple harmonic motion (see Section 3.7):

d2y

dt2
C k

2
y D 0:

Solution To be a solution, the function y.t/ must satisfy the differential equation

identically; that is,

d2

dt2
y.t/C k

2
y.t/ D 0

must hold for every real number t . We verify this by calculating the first two derivatives

of the given function y.t/ D A cos.kt/ C B sin.kt/ and observing that the second

derivative plus k2y.t/ is, in fact, zero everywhere:

dy

dt
D �Ak sin.kt/C Bk cos.kt/

d2y

dt2
D �Ak

2 cos.kt/ � Bk2 sin.kt/ D �k2
y.t/;

d2y

dt2
C k

2
y.t/ D 0:

E X A M P L E 4 Find the nth derivative, y.n/, of y D
1

1C x
D .1C x/

�1.

Solution Begin by calculating the first few derivatives:

y
0
D �.1C x/

�2

y
00
D �.�2/.1C x/

�3
D 2.1C x/

�3

y
000
D 2.�3/.1C x/

�4
D �3Š.1C x/

�4

y
.4/
D �3Š.�4/.1C x/

�5
D 4Š.1C x/

�5

The pattern here is becoming obvious. It seems that

y
.n/
D .�1/

n
nŠ.1C x/

�n�1
:

We have not yet actually proved that the above formula is correct for every n, although

Note the use of .�1/n to denote

a positive sign if n is even and a

negative sign if n is odd.

it is clearly correct for n D 1; 2; 3; and 4. To complete the proof we use mathematical

induction (Section 2.3). Suppose that the formula is valid for n D k, where k is some

positive integer. Consider y.kC1/:

y
.kC1/

D

d

dx
y

.k/
D

d

dx

�

.�1/
k
kŠ.1C x/

�k�1
�

D .�1/
k
kŠ.�k � 1/.1C x/

�k�2
D .�1/

kC1
.k C 1/Š.1C x/

�.kC1/�1
:

This is what the formula predicts for the .kC 1/st derivative. Therefore, if the formula

for y.n/ is correct for n D k, then it is also correct for n D k C 1. Since the formula

is known to be true for n D 1, it must therefore be true for every integer n � 1 by

induction.
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y
00
D f

00
.x/ D

d2y

dx2
D

d

dx

d

dx
f .x/ D

d2

dx2
f .x/ D D

2
xy D D

2
xf .x/:

Similarly, you can consider third-, fourth-, and in general nth-order derivatives. The

prime notation is inconvenient for derivatives of high order, so we denote the order by

a superscript in parentheses (to distinguish it from an exponent): the nth derivative of

y D f .x/ is

y
.n/
D f

.n/
.x/ D

dny

dxn
D

dn

dxn
f .x/ D D

n
xy D D

n
xf .x/;

and it is defined to be the derivative of the .n � 1/st derivative. For n D 1; 2; and 3,

primes are still normally used: f .2/.x/ D f 00.x/; f .3/.x/ D f 000.x/. It is sometimes

convenient to denote f .0/
.x/ D f .x/, that is, to regard a function as its own zeroth-

order derivative.

E X A M P L E 1
The velocity of a moving object is the (instantaneous) rate of change

of the position of the object with respect to time; if the object

moves along the x-axis and is at position x D f .t/ at time t , then its velocity at that

time is

v D
dx

dt
D f

0
.t/:

Similarly, the acceleration of the object is the rate of change of the velocity. Thus, the

acceleration is the second derivative of the position:

a D
dv

dt
D

d2x

dt2
D f

00
.t/:

We will investigate the relationships between position, velocity, and acceleration fur-

ther in Section 2.11.

E X A M P L E 2
If y D x3, then y 0

D 3x2, y 00
D 6x, y 000

D 6, y.4/
D 0, and all

higher derivatives are zero.

In general, if f .x/ D xn (where n is a positive integer), then

f
.k/
.x/ D n.n � 1/.n � 2/ � � � .n � .k � 1// x

n�k

D

8

<

:

nŠ

.n � k/Š
x

n�k if 0 � k � n

0 if k > n,

where nŠ (called n factorial) is defined by:

0Š D 1

1Š D 0Š � 1 D 1 � 1 D 1

2Š D 1Š � 2 D 1 � 2 D 2

3Š D 2Š � 3 D 1 � 2 � 3 D 6

4Š D 3Š � 4 D 1 � 2 � 3 � 4 D 24

:
:
:

nŠ D .n � 1/Š � n D 1 � 2 � 3 � � � � � .n � 1/ � n:
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It follows that if P is a polynomial of degree n,

P.x/ D anx
n
C an�1x

n�1
C � � � C a1x C a0;

where an; an�1; : : : ; a1; a0 are constants, then P .k/.x/ D 0 for k > n. For k � n,

P
.k/ is a polynomial of degree n � k; in particular, P .n/

.x/ D nŠ an, a constant

function.

E X A M P L E 3
Show that if A, B , and k are constants, then the function

y D A cos.kt/ C B sin.kt/ is a solution of the second-order

differential equation of simple harmonic motion (see Section 3.7):

d2y

dt2
C k

2
y D 0:

Solution To be a solution, the function y.t/ must satisfy the differential equation

identically; that is,

d2

dt2
y.t/C k

2
y.t/ D 0

must hold for every real number t . We verify this by calculating the first two derivatives

of the given function y.t/ D A cos.kt/ C B sin.kt/ and observing that the second

derivative plus k2y.t/ is, in fact, zero everywhere:

dy

dt
D �Ak sin.kt/C Bk cos.kt/

d2y

dt2
D �Ak

2 cos.kt/ � Bk2 sin.kt/ D �k2
y.t/;

d2y

dt2
C k

2
y.t/ D 0:

E X A M P L E 4 Find the nth derivative, y.n/, of y D
1

1C x
D .1C x/

�1.

Solution Begin by calculating the first few derivatives:

y
0
D �.1C x/

�2

y
00
D �.�2/.1C x/

�3
D 2.1C x/

�3

y
000
D 2.�3/.1C x/

�4
D �3Š.1C x/

�4

y
.4/
D �3Š.�4/.1C x/

�5
D 4Š.1C x/

�5

The pattern here is becoming obvious. It seems that

y
.n/
D .�1/

n
nŠ.1C x/

�n�1
:

We have not yet actually proved that the above formula is correct for every n, although

Note the use of .�1/n to denote

a positive sign if n is even and a

negative sign if n is odd.

it is clearly correct for n D 1; 2; 3; and 4. To complete the proof we use mathematical

induction (Section 2.3). Suppose that the formula is valid for n D k, where k is some

positive integer. Consider y.kC1/:

y
.kC1/

D

d

dx
y

.k/
D

d

dx

�

.�1/
k
kŠ.1C x/

�k�1
�

D .�1/
k
kŠ.�k � 1/.1C x/

�k�2
D .�1/

kC1
.k C 1/Š.1C x/

�.kC1/�1
:

This is what the formula predicts for the .kC 1/st derivative. Therefore, if the formula

for y.n/ is correct for n D k, then it is also correct for n D k C 1. Since the formula

is known to be true for n D 1, it must therefore be true for every integer n � 1 by

induction.
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E X A M P L E 5
Find a formula for f .n/.x/, given that f .x/ D sin.ax C b/.

Solution Begin by calculating several derivatives:

f
0
.x/ D a cos.ax C b/

f
00
.x/ D �a

2 sin.ax C b/ D �a2
f .x/

f
000
.x/ D �a

3 cos.ax C b/ D �a2
f

0
.x/

f
.4/
.x/ D a

4 sin.ax C b/ D a4
f .x/

f
.5/
.x/ D a

5 cos.ax C b/ D a4
f

0
.x/

:
:
:

The pattern is pretty obvious here. Each new derivative is �a2 times the second previ-

ous one. A formula that gives all the derivatives is

f
.n/
.x/ D

�

.�1/k an sin.ax C b/ if n D 2k

.�1/k an cos.ax C b/ if n D 2k C 1
.k D 0; 1; 2; : : :/;

which can also be verified by induction on k.

Our final example shows that it is not always easy to obtain a formula for the nth

derivative of a function.

E X A M P L E 6
Calculate f 0, f 00, and f 000 for f .x/ D

p

x2
C 1. Can you see

enough of a pattern to predict f .4/?

Solution Since f .x/ D .x2
C 1/1=2, we have

f
0
.x/ D

1
2
.x

2
C 1/

�1=2
.2x/ D x.x

2
C 1/

�1=2
;

f
00
.x/ D .x

2
C 1/

�1=2
C x

�

�
1
2

�

.x
2
C 1/

�3=2
.2x/

D .x
2
C 1/

�3=2
.x

2
C 1 � x

2
/ D .x

2
C 1/

�3=2
;

f
000
.x/ D �

3
2
.x

2
C 1/

�5=2
.2x/ D �3x.x

2
C 1/

�5=2
:

Although the expression obtained from each differentiation simplified somewhat, the

pattern of these derivatives is not (yet) obvious enough to enable us to predict the

formula for f .4/.x/ without having to calculate it. In fact,

f
.4/
.x/ D 3.4x

2
� 1/.x

2
C 1/

�7=2
;

so the pattern (if there is one) doesn’t become any clearer at this stage.

M Remark Computing higher-order derivatives may be useful in applications involv-

ing Taylor polynomials (see Section 4.10). As taking derivatives can be automated

with a known algorithm, it makes sense to use a computer to calculate higher-order

ones. However, depending on the function, the amount of memory and processor time

needed may severely restrict the order of derivatives calculated in this way. Higher-

order derivatives can be indicated in Maple by repeating the variable of differentiation

or indicating the order by using the $ operator:

> diff(x^5,x,x) + diff(sin(2*x),x$3);

20 x3
� 8 cos.2x/
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The D operator can also be used for higher-order derivatives of a function (as

distinct from an expression) by composing it explicitly or using the @@ operator:

> f := x -> x^5; fpp := D(D(f)); (D@@3)(f)(a);

f WD x ! x5

fpp WD x ! 20 x3

60 a2

E X E R C I S E S 2.6

Find y 0; y 00; and y 000 for the functions in Exercises 1–12.

1. y D .3 � 2x/7 2. y D x2
�

1

x

3. y D
6

.x � 1/2
4. y D

p

ax C b

5. y D x1=3
� x

�1=3 6. y D x10
C 2x

8

7. y D .x2
C 3/
p

x 8. y D
x � 1

x C 1

9. y D tan x 10. y D secx

11. y D cos.x2
/ 12. y D

sinx

x

In Exercises 13–23, calculate enough derivatives of the given

function to enable you to guess the general formula for f .n/.x/.

Then verify your guess using mathematical induction.

13. f .x/ D
1

x
14. f .x/ D

1

x2

15. f .x/ D
1

2 � x
16. f .x/ D

p

x

17. f .x/ D
1

aC bx
18. f .x/ D x2=3

19. f .x/ D cos.ax/ 20. f .x/ D x cos x

21. f .x/ D x sin.ax/

22.I f .x/ D
1

jxj
23.I f .x/ D

p

1 � 3x

24. If y D tan kx, show that y 00
D 2k2y.1C y2/.

25. If y D sec kx, show that y 00
D k2y.2y2

� 1/.

26.A Use mathematical induction to prove that the nth derivative of

y D sin.ax C b/ is given by the formula asserted at the end of

Example 5.

27.A Use mathematical induction to prove that the nth derivative of

y D tan x is of the form PnC1.tanx/, where PnC1 is a

polynomial of degree nC 1.

28.A If f and g are twice-differentiable functions, show that

.fg/00 D f 00g C 2f 0g0
C fg00.

29.I State and prove the results analogous to that of Exercise 28 but

for .fg/.3/ and .fg/.4/. Can you guess the formula for

.fg/.n/?

2.7 Using Differentials and Derivatives

In this section we will look at some examples of ways in which derivatives are used

to represent and interpret changes and rates of change in the world around us. It is

natural to think of change in terms of dependence on time, such as the velocity of

a moving object, but there is no need to be so restrictive. Change with respect to

variables other than time can be treated in the same way. For example, a physician

may want to know how small changes in dosage can affect the body’s response to a

drug. An economist may want to study how foreign investment changes with respect to

variations in a country’s interest rates. These questions can all be formulated in terms

of rate of change of a function with respect to a variable.

Approximating Small Changes
If one quantity, say y, is a function of another quantity x, that is,

y D f .x/;

we sometimes want to know how a change in the value of x by an amount �x will

affect the value of y. The exact change �y in y is given by

�y D f .x C�x/� f .x/;
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E X A M P L E 5
Find a formula for f .n/.x/, given that f .x/ D sin.ax C b/.

Solution Begin by calculating several derivatives:

f
0
.x/ D a cos.ax C b/

f
00
.x/ D �a

2 sin.ax C b/ D �a2
f .x/

f
000
.x/ D �a

3 cos.ax C b/ D �a2
f

0
.x/

f
.4/
.x/ D a

4 sin.ax C b/ D a4
f .x/

f
.5/
.x/ D a

5 cos.ax C b/ D a4
f

0
.x/

:
:
:

The pattern is pretty obvious here. Each new derivative is �a2 times the second previ-

ous one. A formula that gives all the derivatives is

f
.n/
.x/ D

�

.�1/k an sin.ax C b/ if n D 2k

.�1/k an cos.ax C b/ if n D 2k C 1
.k D 0; 1; 2; : : :/;

which can also be verified by induction on k.

Our final example shows that it is not always easy to obtain a formula for the nth

derivative of a function.

E X A M P L E 6
Calculate f 0, f 00, and f 000 for f .x/ D

p

x2
C 1. Can you see

enough of a pattern to predict f .4/?

Solution Since f .x/ D .x2
C 1/1=2, we have

f
0
.x/ D

1
2
.x

2
C 1/

�1=2
.2x/ D x.x

2
C 1/

�1=2
;

f
00
.x/ D .x

2
C 1/

�1=2
C x

�

�
1
2

�

.x
2
C 1/

�3=2
.2x/

D .x
2
C 1/

�3=2
.x

2
C 1 � x

2
/ D .x

2
C 1/

�3=2
;

f
000
.x/ D �

3
2
.x

2
C 1/

�5=2
.2x/ D �3x.x

2
C 1/

�5=2
:

Although the expression obtained from each differentiation simplified somewhat, the

pattern of these derivatives is not (yet) obvious enough to enable us to predict the

formula for f .4/.x/ without having to calculate it. In fact,

f
.4/
.x/ D 3.4x

2
� 1/.x

2
C 1/

�7=2
;

so the pattern (if there is one) doesn’t become any clearer at this stage.

M Remark Computing higher-order derivatives may be useful in applications involv-

ing Taylor polynomials (see Section 4.10). As taking derivatives can be automated

with a known algorithm, it makes sense to use a computer to calculate higher-order

ones. However, depending on the function, the amount of memory and processor time

needed may severely restrict the order of derivatives calculated in this way. Higher-

order derivatives can be indicated in Maple by repeating the variable of differentiation

or indicating the order by using the $ operator:

> diff(x^5,x,x) + diff(sin(2*x),x$3);

20 x3
� 8 cos.2x/
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The D operator can also be used for higher-order derivatives of a function (as

distinct from an expression) by composing it explicitly or using the @@ operator:

> f := x -> x^5; fpp := D(D(f)); (D@@3)(f)(a);

f WD x ! x5

fpp WD x ! 20 x3

60 a2

E X E R C I S E S 2.6

Find y 0; y 00; and y 000 for the functions in Exercises 1–12.

1. y D .3 � 2x/7 2. y D x2
�

1

x

3. y D
6

.x � 1/2
4. y D

p

ax C b

5. y D x1=3
� x

�1=3 6. y D x10
C 2x

8

7. y D .x2
C 3/
p

x 8. y D
x � 1

x C 1

9. y D tan x 10. y D secx

11. y D cos.x2
/ 12. y D

sinx

x

In Exercises 13–23, calculate enough derivatives of the given

function to enable you to guess the general formula for f .n/.x/.

Then verify your guess using mathematical induction.

13. f .x/ D
1

x
14. f .x/ D

1

x2

15. f .x/ D
1

2 � x
16. f .x/ D

p

x

17. f .x/ D
1

aC bx
18. f .x/ D x2=3

19. f .x/ D cos.ax/ 20. f .x/ D x cos x

21. f .x/ D x sin.ax/

22.I f .x/ D
1

jxj
23.I f .x/ D

p

1 � 3x

24. If y D tan kx, show that y 00
D 2k2y.1C y2/.

25. If y D sec kx, show that y 00
D k2y.2y2

� 1/.

26.A Use mathematical induction to prove that the nth derivative of

y D sin.ax C b/ is given by the formula asserted at the end of

Example 5.

27.A Use mathematical induction to prove that the nth derivative of

y D tan x is of the form PnC1.tanx/, where PnC1 is a

polynomial of degree nC 1.

28.A If f and g are twice-differentiable functions, show that

.fg/00 D f 00g C 2f 0g0
C fg00.

29.I State and prove the results analogous to that of Exercise 28 but

for .fg/.3/ and .fg/.4/. Can you guess the formula for

.fg/.n/?

2.7 Using Differentials and Derivatives

In this section we will look at some examples of ways in which derivatives are used

to represent and interpret changes and rates of change in the world around us. It is

natural to think of change in terms of dependence on time, such as the velocity of

a moving object, but there is no need to be so restrictive. Change with respect to

variables other than time can be treated in the same way. For example, a physician

may want to know how small changes in dosage can affect the body’s response to a

drug. An economist may want to study how foreign investment changes with respect to

variations in a country’s interest rates. These questions can all be formulated in terms

of rate of change of a function with respect to a variable.

Approximating Small Changes
If one quantity, say y, is a function of another quantity x, that is,

y D f .x/;

we sometimes want to know how a change in the value of x by an amount �x will

affect the value of y. The exact change �y in y is given by

�y D f .x C�x/� f .x/;
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but if the change �x is small, then we can get a good approximation to �y by using

the fact that �y=�x is approximately the derivative dy=dx. Thus,

�y D
�y

�x
�x �

dy

dx
�x D f

0
.x/�x:

It is often convenient to represent this approximation in terms of differentials; if we

denote the change in x by dx instead of �x, then the change �y in y is approximated

by the differential dy, that is (see Figure 2.25),

�y � dy D f
0
.x/ dx:

Figure 2.25 dy, the change in height to

the tangent line, approximates �y, the

change in height to the graph of f

y

x

dy
�y

dx D �x

x C dxx

y D f .x/

graph of f

E X A M P L E 1
Without using a scientific calculator, determine by approximately

how much the value of sinx increases as x increases from �=3 to

.�=3/C 0:006. To 3 decimal places, what is the value of sin
�

.�=3/C 0:006
�

?

Solution If y D sin x, x D �=3 � 1:0472, and dx D 0:006, then

dy D cos.x/ dx D cos
�

�

3

�

dx D
1

2
.0:006/ D 0:003:

Thus, the change in the value of sinx is approximately 0:003, and

sin
�

�

3
C 0:006

�

� sin
�

3
C 0:003 D

p

3

2
C 0:003 D 0:869

rounded to 3 decimal places.

Whenever one makes an approximation it is wise to try and estimate how big the error

might be. We will have more to say about such approximations and their error estimates

in Section 4.9.

Sometimes changes in a quantity are measured with respect to the size of the

quantity. The relative change in x is the ratio dx=x if x changes by amount dx. The

percentage change in x is the relative change expressed as a percentage:

relative change in x =
dx

x

percentage change in x = 100
dx

x
:
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E X A M P L E 2
By approximately what percentage does the area of a circle in-

crease if the radius increases by 2%?

Solution The area A of a circle is given in terms of the radius r by A D �r2. Thus,

�A � dA D
dA

dr
dr D 2�r dr:

We divide this approximation by A D �r2 to get an approximation that links the

relative changes in A and r :

�A

A
�

dA

A
D

2�r dr

�r2
D 2

dr

r
:

If r increases by 2%, then dr D 2
100

r , so

�A

A
� 2 �

2

100
D

4

100
:

Thus, A increases by approximately 4%.

Average and Instantaneous Rates of Change
Recall the concept of average rate of change of a function over an interval, introduced

in Section 1.1. The derivative of the function is the limit of this average rate as the

length of the interval goes to zero, and so represents the rate of change of the function

at a given value of its variable.

D E F I N I T I O N

5

The average rate of change of a function f .x/ with respect to x over the

interval from a to aC h is

f .aC h/ � f .a/

h
:

The (instantaneous) rate of change of f with respect to x at x D a is the

derivative

f
0
.a/ D lim

h!0

f .aC h/ � f .a/

h
;

provided the limit exists.

It is conventional to use the word instantaneous even when x does not represent time,

although the word is frequently omitted. When we say rate of change, we mean instan-

taneous rate of change.

E X A M P L E 3
How fast is area A of a circle increasing with respect to its radius

when the radius is 5 m?

Solution The rate of change of the area with respect to the radius is

dA

dr
D

d

dr
.�r

2
/ D 2� r:

When r D 5 m, the area is changing at the rate 2� � 5 D 10� m2/m. This means that

a small change �r m in the radius when the radius is 5 m would result in a change of

about 10��r m2 in the area of the circle.
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but if the change �x is small, then we can get a good approximation to �y by using

the fact that �y=�x is approximately the derivative dy=dx. Thus,

�y D
�y

�x
�x �

dy

dx
�x D f

0
.x/�x:

It is often convenient to represent this approximation in terms of differentials; if we

denote the change in x by dx instead of �x, then the change �y in y is approximated

by the differential dy, that is (see Figure 2.25),

�y � dy D f
0
.x/ dx:

Figure 2.25 dy, the change in height to

the tangent line, approximates �y, the

change in height to the graph of f

y

x

dy
�y

dx D �x

x C dxx

y D f .x/

graph of f

E X A M P L E 1
Without using a scientific calculator, determine by approximately

how much the value of sinx increases as x increases from �=3 to

.�=3/C 0:006. To 3 decimal places, what is the value of sin
�

.�=3/C 0:006
�

?

Solution If y D sin x, x D �=3 � 1:0472, and dx D 0:006, then

dy D cos.x/ dx D cos
�

�

3

�

dx D
1

2
.0:006/ D 0:003:

Thus, the change in the value of sinx is approximately 0:003, and

sin
�

�

3
C 0:006

�

� sin
�

3
C 0:003 D

p

3

2
C 0:003 D 0:869

rounded to 3 decimal places.

Whenever one makes an approximation it is wise to try and estimate how big the error

might be. We will have more to say about such approximations and their error estimates

in Section 4.9.

Sometimes changes in a quantity are measured with respect to the size of the

quantity. The relative change in x is the ratio dx=x if x changes by amount dx. The

percentage change in x is the relative change expressed as a percentage:

relative change in x =
dx

x

percentage change in x = 100
dx

x
:
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E X A M P L E 2
By approximately what percentage does the area of a circle in-

crease if the radius increases by 2%?

Solution The area A of a circle is given in terms of the radius r by A D �r2. Thus,

�A � dA D
dA

dr
dr D 2�r dr:

We divide this approximation by A D �r2 to get an approximation that links the

relative changes in A and r :

�A

A
�

dA

A
D

2�r dr

�r2
D 2

dr

r
:

If r increases by 2%, then dr D 2
100

r , so

�A

A
� 2 �

2

100
D

4

100
:

Thus, A increases by approximately 4%.

Average and Instantaneous Rates of Change
Recall the concept of average rate of change of a function over an interval, introduced

in Section 1.1. The derivative of the function is the limit of this average rate as the

length of the interval goes to zero, and so represents the rate of change of the function

at a given value of its variable.

D E F I N I T I O N

5

The average rate of change of a function f .x/ with respect to x over the

interval from a to aC h is

f .aC h/ � f .a/

h
:

The (instantaneous) rate of change of f with respect to x at x D a is the

derivative

f
0
.a/ D lim

h!0

f .aC h/ � f .a/

h
;

provided the limit exists.

It is conventional to use the word instantaneous even when x does not represent time,

although the word is frequently omitted. When we say rate of change, we mean instan-

taneous rate of change.

E X A M P L E 3
How fast is area A of a circle increasing with respect to its radius

when the radius is 5 m?

Solution The rate of change of the area with respect to the radius is

dA

dr
D

d

dr
.�r

2
/ D 2� r:

When r D 5 m, the area is changing at the rate 2� � 5 D 10� m2/m. This means that

a small change �r m in the radius when the radius is 5 m would result in a change of

about 10��r m2 in the area of the circle.
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The above example suggests that the appropriate units for the rate of change of a quan-

tity y with respect to another quantity x are units of y per unit of x.

If f 0
.x0/ D 0, we say that f is stationary at x0 and call x0 a critical point of f:

The corresponding point .x0; f .x0// on the graph of f is also called a critical point

of the graph. The graph has a horizontal tangent at a critical point, and f may or may

not have a maximum or minimum value there. (See Figure 2.26.) It is still possible for

f to be increasing or decreasing on an open interval containing a critical point. (See

point a in Figure 2.26.) We will revisit these ideas in the next section.

Figure 2.26 Critical points of f

y

x

y D f .x/

a b c

E X A M P L E 4
Suppose the temperature at a certain location t hours after noon

on a certain day is T ıC (T degrees Celsius), where

T D
1

3
t
3
� 3t

2
C 8t C 10 .for 0 � t � 5/:

How fast is the temperature rising or falling at 1:00 p.m.? At 3:00 p.m.? At what

instants is the temperature stationary?

Solution The rate of change of the temperature is given by

dT

dt
D t

2
� 6t C 8 D .t � 2/.t � 4/:

If t D 1, then
dT

dt
D 3, so the temperature is rising at rate 3 ıC/h at 1:00 p.m.

If t D 3, then
dT

dt
D �1, so the temperature is falling at a rate of 1 ıC/h at 3:00 p.m.

The temperature is stationary when
dT

dt
D 0, that is, at 2:00 p.m. and 4:00 p.m.

Sensitivity to Change
When a small change in x produces a large change in the value of a function f .x/,

we say that the function is very sensitive to changes in x. The derivative f 0.x/ is a

measure of the sensitivity of the dependence of f on x.

E X A M P L E 5
(Dosage of a medicine) A pharmacologist studying a drug that

has been developed to lower blood pressure determines experimen-

tally that the average reduction R in blood pressure resulting from a daily dosage of

x mg of the drug is

R D 24:2

�

1C
x � 13

p

x2
� 26x C 529

�

mm Hg:

(The units are millimetres of mercury (Hg).) Determine the sensitivity of R to dosage

x at dosage levels of 5 mg, 15 mg, and 35 mg. At which of these dosage levels would

an increase in the dosage have the greatest effect?
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Solution The sensitivity of R to x is dR=dx. We have

dR

dx
D 24:2

0

B

B

@

p

x2
� 26x C 529.1/ � .x � 13/

x � 13
p

x2
� 26x C 529

x2
� 26x C 529

1

C

C

A

D 24:2

�

x2
� 26x C 529 � .x2

� 26x C 169/

.x2
� 26x C 529/3=2

�

D

8;712

.x2
� 26x C 529/3=2

:

At dosages x D 5 mg, 15 mg, and 35 mg, we have sensitivities of

dR

dx

ˇ

ˇ

ˇ

ˇ

xD5

D 0:998 mm Hg/mg;
dR

dx

ˇ

ˇ

ˇ

ˇ

xD15

D 1:254 mm Hg/mg;

dR

dx

ˇ

ˇ

ˇ

ˇ

xD35

D 0:355 mm Hg/mg:

Among these three levels, the greatest sensitivity is at 15 mg. Increasing the dosage

from 15 to 16 mg/day could be expected to further reduce average blood pressure by

about 1.25 mm Hg.

Derivatives in Economics
Just as physicists use terms such as velocity and acceleration to refer to derivatives of

certain quantities, economists also have their own specialized vocabulary for deriva-

tives. They call them marginals. In economics the term marginal denotes the rate of

change of a quantity with respect to a variable on which it depends. For example, the

cost of production C.x/ in a manufacturing operation is a function of x, the number

of units of product produced. The marginal cost of production is the rate of change

of C with respect to x, so it is dC=dx. Sometimes the marginal cost of production is

loosely defined to be the extra cost of producing one more unit; that is,

�C D C.x C 1/ � C.x/:

To see why this is approximately correct, observe from Figure 2.27 that if the slope of

C D C.x/ does not change quickly near x, then the difference quotient �C=�x will

be close to its limit, the derivative dC=dx, even if �x D 1.

C

x

�C
dC
dx

x xC1

�xD1

�C D �C
�x

� dC
dx

C DC.x/

Figure 2.27 The marginal cost dC=dx is

approximately the extra cost�C of

producing �x D 1 more unit

E X A M P L E 6
(Marginal tax rates) If your marginal income tax rate is 35%

and your income increases by $1,000, you can expect to have to

pay an extra $350 in income taxes. This does not mean that you pay 35% of your entire

income in taxes. It just means that at your current income level I , the rate of increase

of taxes T with respect to income is dT=dI D 0:35. You will pay $0.35 out of every

extra dollar you earn in taxes. Of course, if your income increases greatly, you may

land in a higher tax bracket and your marginal rate will increase.

E X A M P L E 7
(Marginal cost of production) The cost of producing x tonnes

of coal per day in a mine is $C.x/, where

C.x/ D 4;200C 5:40x � 0:001x
2
C 0:000 002x

3
:

(a) What is the average cost of producing each tonne if the daily production level is

1,000 tonnes? 2,000 tonnes?

(b) Find the marginal cost of production if the daily production level is 1,000 tonnes.

2,000 tonnes.

(c) If the production level increases slightly from 1,000 tonnes or from 2,000 tonnes,

what will happen to the average cost per tonne?
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The above example suggests that the appropriate units for the rate of change of a quan-

tity y with respect to another quantity x are units of y per unit of x.

If f 0
.x0/ D 0, we say that f is stationary at x0 and call x0 a critical point of f:

The corresponding point .x0; f .x0// on the graph of f is also called a critical point

of the graph. The graph has a horizontal tangent at a critical point, and f may or may

not have a maximum or minimum value there. (See Figure 2.26.) It is still possible for

f to be increasing or decreasing on an open interval containing a critical point. (See

point a in Figure 2.26.) We will revisit these ideas in the next section.

Figure 2.26 Critical points of f

y

x

y D f .x/

a b c

E X A M P L E 4
Suppose the temperature at a certain location t hours after noon

on a certain day is T ıC (T degrees Celsius), where

T D
1

3
t
3
� 3t

2
C 8t C 10 .for 0 � t � 5/:

How fast is the temperature rising or falling at 1:00 p.m.? At 3:00 p.m.? At what

instants is the temperature stationary?

Solution The rate of change of the temperature is given by

dT

dt
D t

2
� 6t C 8 D .t � 2/.t � 4/:

If t D 1, then
dT

dt
D 3, so the temperature is rising at rate 3 ıC/h at 1:00 p.m.

If t D 3, then
dT

dt
D �1, so the temperature is falling at a rate of 1 ıC/h at 3:00 p.m.

The temperature is stationary when
dT

dt
D 0, that is, at 2:00 p.m. and 4:00 p.m.

Sensitivity to Change
When a small change in x produces a large change in the value of a function f .x/,

we say that the function is very sensitive to changes in x. The derivative f 0.x/ is a

measure of the sensitivity of the dependence of f on x.

E X A M P L E 5
(Dosage of a medicine) A pharmacologist studying a drug that

has been developed to lower blood pressure determines experimen-

tally that the average reduction R in blood pressure resulting from a daily dosage of

x mg of the drug is

R D 24:2

�

1C
x � 13

p

x2
� 26x C 529

�

mm Hg:

(The units are millimetres of mercury (Hg).) Determine the sensitivity of R to dosage

x at dosage levels of 5 mg, 15 mg, and 35 mg. At which of these dosage levels would

an increase in the dosage have the greatest effect?
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Solution The sensitivity of R to x is dR=dx. We have

dR

dx
D 24:2

0

B

B

@

p

x2
� 26x C 529.1/ � .x � 13/

x � 13
p

x2
� 26x C 529

x2
� 26x C 529

1

C

C

A

D 24:2

�

x2
� 26x C 529 � .x2

� 26x C 169/

.x2
� 26x C 529/3=2

�

D

8;712

.x2
� 26x C 529/3=2

:

At dosages x D 5 mg, 15 mg, and 35 mg, we have sensitivities of

dR

dx

ˇ

ˇ

ˇ

ˇ

xD5

D 0:998 mm Hg/mg;
dR

dx

ˇ

ˇ

ˇ

ˇ

xD15

D 1:254 mm Hg/mg;

dR

dx

ˇ

ˇ

ˇ

ˇ

xD35

D 0:355 mm Hg/mg:

Among these three levels, the greatest sensitivity is at 15 mg. Increasing the dosage

from 15 to 16 mg/day could be expected to further reduce average blood pressure by

about 1.25 mm Hg.

Derivatives in Economics
Just as physicists use terms such as velocity and acceleration to refer to derivatives of

certain quantities, economists also have their own specialized vocabulary for deriva-

tives. They call them marginals. In economics the term marginal denotes the rate of

change of a quantity with respect to a variable on which it depends. For example, the

cost of production C.x/ in a manufacturing operation is a function of x, the number

of units of product produced. The marginal cost of production is the rate of change

of C with respect to x, so it is dC=dx. Sometimes the marginal cost of production is

loosely defined to be the extra cost of producing one more unit; that is,

�C D C.x C 1/ � C.x/:

To see why this is approximately correct, observe from Figure 2.27 that if the slope of

C D C.x/ does not change quickly near x, then the difference quotient �C=�x will

be close to its limit, the derivative dC=dx, even if �x D 1.

C

x

�C
dC
dx

x xC1

�xD1

�C D �C
�x

� dC
dx

C DC.x/

Figure 2.27 The marginal cost dC=dx is

approximately the extra cost�C of

producing �x D 1 more unit

E X A M P L E 6
(Marginal tax rates) If your marginal income tax rate is 35%

and your income increases by $1,000, you can expect to have to

pay an extra $350 in income taxes. This does not mean that you pay 35% of your entire

income in taxes. It just means that at your current income level I , the rate of increase

of taxes T with respect to income is dT=dI D 0:35. You will pay $0.35 out of every

extra dollar you earn in taxes. Of course, if your income increases greatly, you may

land in a higher tax bracket and your marginal rate will increase.

E X A M P L E 7
(Marginal cost of production) The cost of producing x tonnes

of coal per day in a mine is $C.x/, where

C.x/ D 4;200C 5:40x � 0:001x
2
C 0:000 002x

3
:

(a) What is the average cost of producing each tonne if the daily production level is

1,000 tonnes? 2,000 tonnes?

(b) Find the marginal cost of production if the daily production level is 1,000 tonnes.

2,000 tonnes.

(c) If the production level increases slightly from 1,000 tonnes or from 2,000 tonnes,

what will happen to the average cost per tonne?
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Solution

(a) The average cost per tonne of coal is

C.x/

x
D

4; 200

x
C 5:40 � 0:001x C 0:000 002x

2
:

If x D 1;000, the average cost per tonne is C.1;000/=1;000 D $10:60/tonne. If

x D 2;000, the average cost per tonne is C.2;000/=2;000 D $13:50/tonne.

(b) The marginal cost of production is

C
0
.x/ D 5:40 � 0:002x C 0:000 006x

2
:

If x D 1;000, the marginal cost is C 0
.1;000/ D $9:40/tonne. If x D 2;000, the

marginal cost is C 0.2;000/ D $25:40/tonne.

(c) If the production level x is increased slightly from x D 1;000, then the average

cost per tonne will drop because the cost is increasing at a rate lower than the

average cost. At x D 2;000 the opposite is true; an increase in production will

increase the average cost per tonne.

Economists sometimes prefer to measure relative rates of change that do not depend

on the units used to measure the quantities involved. They use the term elasticity for

such relative rates.

E X A M P L E 8
(Elasticity of demand) The demand y for a certain product (i.e.,

the amount that can be sold) typically depends on the price p

charged for the product: y D f .p/. The marginal demand dy=dp D f 0.p/ (which is

typically negative) depends on the units used to measure y and p. The elasticity of the

demand is the quantity

�

p

y

dy

dp
(the “�” sign ensures elasticity is positive),

which is independent of units and provides a good measure of the sensitivity of demand

to changes in price. To see this, suppose that new units of demand and price are

introduced, which are multiples of the old units. In terms of the new units the demand

and price are now Y and P , where

Y D k1y and P D k2p:

Thus, Y D k1f .P=k2/ and dY=dP D .k1=k2/f
0.P=k2/ D .k1=k2/f

0.p/ by the

Chain Rule. It follows that the elasticity has the same value:

�

P

Y

dY

dP
D �

k2p

k1y

k1

k2

f
0
.p/ D �

p

y

dy

dp
:
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E X E R C I S E S 2.7

In Exercises 1–4, use differentials to determine the approximate

change in the value of the given function as its argument changes

from the given value by the given amount. What is the

approximate value of the function after the change?

1. y D 1=x, as x increases from 2 to 2.01.

2. f .x/ D
p

3x C 1, as x increases from 1 to 1.08.

3. h.t/ D cos.�t=4/, as t increases from 2 to 2C .1=10�/.

4. u D tan.s=4/ as s decreases from � to � � 0:04.

In Exercises 5–10, find the approximate percentage changes in the

given function y D f .x/ that will result from an increase of 2% in

the value of x.

5. y D x2 6. y D 1=x

7. y D 1=x2 8. y D x3

9. y D
p

x 10. y D x�2=3

11. By approximately what percentage will the volume

(V D 4
3
�r

3) of a ball of radius r increase if the radius

increases by 2%?

12. By about what percentage will the edge length of an ice cube

decrease if the cube loses 6% of its volume by melting?

13. Find the rate of change of the area of a square with respect to

the length of its side when the side is 4 ft.

14. Find the rate of change of the side of a square with respect to

the area of the square when the area is 16 m2.

15. Find the rate of change of the diameter of a circle with respect

to its area.

16. Find the rate of change of the area of a circle with respect to

its diameter.

17. Find the rate of change of the volume of a sphere (given by

V D
4
3
�r3) with respect to its radius r when the radius is

2 m.

18. What is the rate of change of the area A of a square with

respect to the length L of the diagonal of the square?

19. What is the rate of change of the circumference C of a circle

with respect to the area A of the circle?

20. Find the rate of change of the side s of a cube with respect to

the volume V of the cube.

21. The volume of water in a tank t min after it starts draining is

V.t/ D 350.20� t /
2 L:

(a) How fast is the water draining out after 5 min? after 15

min?

(b) What is the average rate at which water is draining out

during the time interval from 5 to 15 min?

22. (Poiseuille’s Law) The flow rate F (in litres per minute) of a

liquid through a pipe is proportional to the fourth power of the

radius of the pipe:

F D kr
4
:

Approximately what percentage increase is needed in the

radius of the pipe to increase the flow rate by 10%?

23. (Gravitational force) The gravitational force F with which

the earth attracts an object in space is given by F D k=r2,

where k is a constant and r is the distance from the object to

the centre of the earth. If F decreases with respect to r at rate

1 pound/mile when r D 4;000 mi, how fast does F change

with respect to r when r D 8;000 mi?

24. (Sensitivity of revenue to price) The sales revenue $R from a

software product depends on the price $p charged by the

distributor according to the formula

R D 4;000p � 10p
2
:

(a) How sensitive is R to p when p D $100? p D $200?

p D $300?

(b) Which of these three is the most reasonable price for the

distributor to charge? Why?

25. (Marginal cost) The cost of manufacturing x refrigerators is

$C.x/, where

C.x/ D 8;000C 400x � 0:5x
2
:

(a) Find the marginal cost if 100 refrigerators are

manufactured.

(b) Show that the marginal cost is approximately the

difference in cost of manufacturing 101 refrigerators

instead of 100.

26. (Marginal profit) If a plywood factory produces x sheets of

plywood per day, its profit per day will be $P.x/, where

P.x/ D 8x � 0:005x
2
� 1;000:

(a) Find the marginal profit. For what values of x is the

marginal profit positive? negative?

(b) How many sheets should be produced each day to

generate maximum profits?

27. The cost C (in dollars) of producing n widgets per month in a

widget factory is given by

C D
80;000

n
C 4nC

n2

100
:

Find the marginal cost of production if the number of widgets

manufactured each month is (a) 100 and (b) 300.

28.I In a mining operation the cost C (in dollars) of extracting each

tonne of ore is given by

C D 10C
20

x
C

x

1;000
;

where x is the number of tonnes extracted each day. (For

small x, C decreases as x increases because of economies of

scale, but for large x, C increases with x because of

overloaded equipment and labour overtime.) If each tonne of

ore can be sold for $13, how many tonnes should be extracted

each day to maximize the daily profit of the mine?

29.I (Average cost and marginal cost) If it costs a manufacturer

C.x/ dollars to produce x items, then his average cost of

production is C.x/=x dollars per item. Typically the average

cost is a decreasing function of x for small x and an

increasing function of x for large x. (Why?)

Show that the value of x that minimizes the average cost

makes the average cost equal to the marginal cost.
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Solution

(a) The average cost per tonne of coal is

C.x/

x
D

4; 200

x
C 5:40 � 0:001x C 0:000 002x

2
:

If x D 1;000, the average cost per tonne is C.1;000/=1;000 D $10:60/tonne. If

x D 2;000, the average cost per tonne is C.2;000/=2;000 D $13:50/tonne.

(b) The marginal cost of production is

C
0
.x/ D 5:40 � 0:002x C 0:000 006x

2
:

If x D 1;000, the marginal cost is C 0
.1;000/ D $9:40/tonne. If x D 2;000, the

marginal cost is C 0.2;000/ D $25:40/tonne.

(c) If the production level x is increased slightly from x D 1;000, then the average

cost per tonne will drop because the cost is increasing at a rate lower than the

average cost. At x D 2;000 the opposite is true; an increase in production will

increase the average cost per tonne.

Economists sometimes prefer to measure relative rates of change that do not depend

on the units used to measure the quantities involved. They use the term elasticity for

such relative rates.

E X A M P L E 8
(Elasticity of demand) The demand y for a certain product (i.e.,

the amount that can be sold) typically depends on the price p

charged for the product: y D f .p/. The marginal demand dy=dp D f 0.p/ (which is

typically negative) depends on the units used to measure y and p. The elasticity of the

demand is the quantity

�

p

y

dy

dp
(the “�” sign ensures elasticity is positive),

which is independent of units and provides a good measure of the sensitivity of demand

to changes in price. To see this, suppose that new units of demand and price are

introduced, which are multiples of the old units. In terms of the new units the demand

and price are now Y and P , where

Y D k1y and P D k2p:

Thus, Y D k1f .P=k2/ and dY=dP D .k1=k2/f
0.P=k2/ D .k1=k2/f

0.p/ by the

Chain Rule. It follows that the elasticity has the same value:

�

P

Y

dY

dP
D �

k2p

k1y

k1

k2

f
0
.p/ D �

p

y

dy

dp
:
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E X E R C I S E S 2.7

In Exercises 1–4, use differentials to determine the approximate

change in the value of the given function as its argument changes

from the given value by the given amount. What is the

approximate value of the function after the change?

1. y D 1=x, as x increases from 2 to 2.01.

2. f .x/ D
p

3x C 1, as x increases from 1 to 1.08.

3. h.t/ D cos.�t=4/, as t increases from 2 to 2C .1=10�/.

4. u D tan.s=4/ as s decreases from � to � � 0:04.

In Exercises 5–10, find the approximate percentage changes in the

given function y D f .x/ that will result from an increase of 2% in

the value of x.

5. y D x2 6. y D 1=x

7. y D 1=x2 8. y D x3

9. y D
p

x 10. y D x�2=3

11. By approximately what percentage will the volume

(V D 4
3
�r

3) of a ball of radius r increase if the radius

increases by 2%?

12. By about what percentage will the edge length of an ice cube

decrease if the cube loses 6% of its volume by melting?

13. Find the rate of change of the area of a square with respect to

the length of its side when the side is 4 ft.

14. Find the rate of change of the side of a square with respect to

the area of the square when the area is 16 m2.

15. Find the rate of change of the diameter of a circle with respect

to its area.

16. Find the rate of change of the area of a circle with respect to

its diameter.

17. Find the rate of change of the volume of a sphere (given by

V D
4
3
�r3) with respect to its radius r when the radius is

2 m.

18. What is the rate of change of the area A of a square with

respect to the length L of the diagonal of the square?

19. What is the rate of change of the circumference C of a circle

with respect to the area A of the circle?

20. Find the rate of change of the side s of a cube with respect to

the volume V of the cube.

21. The volume of water in a tank t min after it starts draining is

V.t/ D 350.20� t /
2 L:

(a) How fast is the water draining out after 5 min? after 15

min?

(b) What is the average rate at which water is draining out

during the time interval from 5 to 15 min?

22. (Poiseuille’s Law) The flow rate F (in litres per minute) of a

liquid through a pipe is proportional to the fourth power of the

radius of the pipe:

F D kr
4
:

Approximately what percentage increase is needed in the

radius of the pipe to increase the flow rate by 10%?

23. (Gravitational force) The gravitational force F with which

the earth attracts an object in space is given by F D k=r2,

where k is a constant and r is the distance from the object to

the centre of the earth. If F decreases with respect to r at rate

1 pound/mile when r D 4;000 mi, how fast does F change

with respect to r when r D 8;000 mi?

24. (Sensitivity of revenue to price) The sales revenue $R from a

software product depends on the price $p charged by the

distributor according to the formula

R D 4;000p � 10p
2
:

(a) How sensitive is R to p when p D $100? p D $200?

p D $300?

(b) Which of these three is the most reasonable price for the

distributor to charge? Why?

25. (Marginal cost) The cost of manufacturing x refrigerators is

$C.x/, where

C.x/ D 8;000C 400x � 0:5x
2
:

(a) Find the marginal cost if 100 refrigerators are

manufactured.

(b) Show that the marginal cost is approximately the

difference in cost of manufacturing 101 refrigerators

instead of 100.

26. (Marginal profit) If a plywood factory produces x sheets of

plywood per day, its profit per day will be $P.x/, where

P.x/ D 8x � 0:005x
2
� 1;000:

(a) Find the marginal profit. For what values of x is the

marginal profit positive? negative?

(b) How many sheets should be produced each day to

generate maximum profits?

27. The cost C (in dollars) of producing n widgets per month in a

widget factory is given by

C D
80;000

n
C 4nC

n2

100
:

Find the marginal cost of production if the number of widgets

manufactured each month is (a) 100 and (b) 300.

28.I In a mining operation the cost C (in dollars) of extracting each

tonne of ore is given by

C D 10C
20

x
C

x

1;000
;

where x is the number of tonnes extracted each day. (For

small x, C decreases as x increases because of economies of

scale, but for large x, C increases with x because of

overloaded equipment and labour overtime.) If each tonne of

ore can be sold for $13, how many tonnes should be extracted

each day to maximize the daily profit of the mine?

29.I (Average cost and marginal cost) If it costs a manufacturer

C.x/ dollars to produce x items, then his average cost of

production is C.x/=x dollars per item. Typically the average

cost is a decreasing function of x for small x and an

increasing function of x for large x. (Why?)

Show that the value of x that minimizes the average cost

makes the average cost equal to the marginal cost.
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30. (Constant elasticity) Show that if demand y is related to

price p by the equation y D Cp�r , where C and r are

positive constants, then the elasticity of demand (see

Example 8) is the constant r .

2.8 The Mean-Value Theorem
If you set out in a car at 1:00 p.m. and arrive in a town 150 km away from your

starting point at 3:00 p.m., then you have travelled at an average speed of 150=2 D

75 km/h. Although you may not have travelled at constant speed, you must have

been going 75 km/h at at least one instant during your journey, for if your speed

was always less than 75 km/h you would have gone less than 150 km in 2 h, and

if your speed was always more than 75 km/h, you would have gone more than 150

km in 2 h. In order to get from a value less than 75 km/h to a value greater than

75 km/h, your speed, which is a continuous function of time, must pass through the

value 75 km/h at some intermediate time.

The conclusion that the average speed over a time interval must be equal to the

instantaneous speed at some time in that interval is an instance of an important math-

ematical principle. In geometric terms it says that if A and B are two points on a

smooth curve, then there is at least one point C on the curve between A and B where

the tangent line is parallel to the chord line AB . See Figure 2.28.

Figure 2.28 There is a point C on the

curve where the tangent (green) is parallel

to the chord AB (blue)

y

x

y D f .x/

B

.b; f .b//

.a; f .a//A

C

a c b

This principle is stated more precisely in the following theorem.

T H E O R E M

11

The Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. Then there exists a point c in the open

interval .a; b/ such that

f .b/� f .a/

b � a
D f

0
.c/:

This says that the slope of the chord line joining the points .a; f .a// and .b; f .b// is

equal to the slope of the tangent line to the curve y D f .x/ at the point .c; f .c//, so

the two lines are parallel.

We will prove the Mean-Value Theorem later in this section. For now we make several

observations:

1. The hypotheses of the Mean-Value Theorem are all necessary for the conclusion;

if f fails to be continuous at even one point of Œa; b� or fails to be differentiable
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at even one point of .a; b/, then there may be no point where the tangent line is

parallel to the secant line AB . (See Figure 2.29.)

2. The Mean-Value Theorem gives no indication of how many points C there may

be on the curve between A and B where the tangent is parallel to AB . If the curve

is itself the straight line AB , then every point on the line between A and B has the

required property. In general, there may be more than one point (see Figure 2.30);

the Mean-Value Theorem asserts only that there must be at least one.

Figure 2.29 Functions that fail to satisfy

the hypotheses of the Mean-Value Theorem

and for which the conclusion is false:

(a) f is discontinuous at endpoint b

(b) f is discontinuous at p

(c) f is not differentiable at p

y

x

y

x

y

xa b a p b a p b

y D f .x/ y D f .x/

y D f .x/

(a) (b) (c)

Figure 2.30 For this curve there are three

points C where the tangent (green) is

parallel to the chord AB (blue)

y

xa c1 c2 c3 b

B

C3

C2

C1

A

y D f .x/

3. The Mean-Value Theorem gives us no information on how to find the point c,

which it says must exist. For some simple functions it is possible to calculate c

(see the following example), but doing so is usually of no practical value. As we

shall see, the importance of the Mean-Value Theorem lies in its use as a theoret-

ical tool. It belongs to a class of theorems called existence theorems, as do the

Max-Min Theorem and the Intermediate-Value Theorem (Theorems 8 and 9 of

Section 1.4).

E X A M P L E 1
Verify the conclusion of the Mean-Value Theorem for f .x/ D

p

x

on the interval Œa; b�, where 0 � a < b.

Solution The theorem says that there must be a number c in the interval .a; b/ such

that

f
0
.c/ D

f .b/� f .a/

b � a

1

2
p

c
D

p

b �
p

a

b � a
D

p

b �
p

a

.
p

b �
p

a/.
p

b C
p

a/
D

1
p

b C
p

a
:

Thus, 2
p

c D
p

aC
p

b and c D

 p

b C
p

a

2

!2

. Since a < b, we have

a D

�p

aC
p

a

2

�2

< c <

 p

b C
p

b

2

!2

D b;

so c lies in the interval .a; b/.

The following two examples are more representative of how the Mean-Value Theorem

is actually used.
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30. (Constant elasticity) Show that if demand y is related to

price p by the equation y D Cp�r , where C and r are

positive constants, then the elasticity of demand (see

Example 8) is the constant r .

2.8 The Mean-Value Theorem
If you set out in a car at 1:00 p.m. and arrive in a town 150 km away from your

starting point at 3:00 p.m., then you have travelled at an average speed of 150=2 D

75 km/h. Although you may not have travelled at constant speed, you must have

been going 75 km/h at at least one instant during your journey, for if your speed

was always less than 75 km/h you would have gone less than 150 km in 2 h, and

if your speed was always more than 75 km/h, you would have gone more than 150

km in 2 h. In order to get from a value less than 75 km/h to a value greater than

75 km/h, your speed, which is a continuous function of time, must pass through the

value 75 km/h at some intermediate time.

The conclusion that the average speed over a time interval must be equal to the

instantaneous speed at some time in that interval is an instance of an important math-

ematical principle. In geometric terms it says that if A and B are two points on a

smooth curve, then there is at least one point C on the curve between A and B where

the tangent line is parallel to the chord line AB . See Figure 2.28.

Figure 2.28 There is a point C on the

curve where the tangent (green) is parallel

to the chord AB (blue)

y

x

y D f .x/

B

.b; f .b//

.a; f .a//A

C

a c b

This principle is stated more precisely in the following theorem.

T H E O R E M

11

The Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. Then there exists a point c in the open

interval .a; b/ such that

f .b/� f .a/

b � a
D f

0
.c/:

This says that the slope of the chord line joining the points .a; f .a// and .b; f .b// is

equal to the slope of the tangent line to the curve y D f .x/ at the point .c; f .c//, so

the two lines are parallel.

We will prove the Mean-Value Theorem later in this section. For now we make several

observations:

1. The hypotheses of the Mean-Value Theorem are all necessary for the conclusion;

if f fails to be continuous at even one point of Œa; b� or fails to be differentiable
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at even one point of .a; b/, then there may be no point where the tangent line is

parallel to the secant line AB . (See Figure 2.29.)

2. The Mean-Value Theorem gives no indication of how many points C there may

be on the curve between A and B where the tangent is parallel to AB . If the curve

is itself the straight line AB , then every point on the line between A and B has the

required property. In general, there may be more than one point (see Figure 2.30);

the Mean-Value Theorem asserts only that there must be at least one.

Figure 2.29 Functions that fail to satisfy

the hypotheses of the Mean-Value Theorem

and for which the conclusion is false:

(a) f is discontinuous at endpoint b

(b) f is discontinuous at p

(c) f is not differentiable at p

y

x

y

x

y

xa b a p b a p b

y D f .x/ y D f .x/

y D f .x/

(a) (b) (c)

Figure 2.30 For this curve there are three

points C where the tangent (green) is

parallel to the chord AB (blue)

y

xa c1 c2 c3 b

B

C3

C2

C1

A

y D f .x/

3. The Mean-Value Theorem gives us no information on how to find the point c,

which it says must exist. For some simple functions it is possible to calculate c

(see the following example), but doing so is usually of no practical value. As we

shall see, the importance of the Mean-Value Theorem lies in its use as a theoret-

ical tool. It belongs to a class of theorems called existence theorems, as do the

Max-Min Theorem and the Intermediate-Value Theorem (Theorems 8 and 9 of

Section 1.4).

E X A M P L E 1
Verify the conclusion of the Mean-Value Theorem for f .x/ D

p

x

on the interval Œa; b�, where 0 � a < b.

Solution The theorem says that there must be a number c in the interval .a; b/ such

that

f
0
.c/ D

f .b/� f .a/

b � a

1

2
p

c
D

p

b �
p

a

b � a
D

p

b �
p

a

.
p

b �
p

a/.
p

b C
p

a/
D

1
p

b C
p

a
:

Thus, 2
p

c D
p

aC
p

b and c D

 p

b C
p

a

2

!2

. Since a < b, we have

a D

�p

aC
p

a

2

�2

< c <

 p

b C
p

b

2

!2

D b;

so c lies in the interval .a; b/.

The following two examples are more representative of how the Mean-Value Theorem

is actually used.
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E X A M P L E 2
Show that sin x < x for all x > 0.

Solution If x > 2� , then sinx � 1 < 2� < x. If 0 < x � 2� , then, by the

Mean-Value Theorem, there exists c in the open interval .0; 2�/ such that

sin x

x
D

sinx � sin 0

x � 0
D

d

dx
sinx

ˇ

ˇ

ˇ

ˇ

xDc

D cos c < 1:

Thus, sin x < x in this case too.

E X A M P L E 3 Show that
p

1C x < 1C
x

2
for x > 0 and for �1 � x < 0.

Solution If x > 0, apply the Mean-Value Theorem to f .x/ D
p

1C x on the inter-

val Œ0; x�. There exists c in .0; x/ such that

p

1C x � 1

x
D

f .x/� f .0/

x � 0
D f

0
.c/ D

1

2
p

1C c
<
1

2
:

The last inequality holds because c > 0. Multiplying by the positive number x and

transposing the �1 gives
p

1C x < 1C
x

2
.

If �1 � x < 0, we apply the Mean-Value Theorem to f .x/ D
p

1C x on the

interval Œx; 0�. There exists c in .x; 0/ such that

p

1C x � 1

x
D

1�
p

1C x

�x
D

f .0/ � f .x/

0 � x
D f

0
.c/ D

1

2
p

1C c
>
1

2

(because 0 < 1 C c < 1). Now we must multiply by the negative number x, which

reverses the inequality,
p

1C x � 1 <
x

2
, and the required inequality again follows by

transposing the �1.

Increasing and Decreasing Functions
Intervals on which the graph of a function f has positive or negative slope provide

useful information about the behaviour of f . The Mean-Value Theorem enables us to

determine such intervals by considering the sign of the derivative f 0.

D E F I N I T I O N

6

Increasing and decreasing functions

Suppose that the function f is defined on an interval I and that x1 and x2 are

two points of I .

(a) If f .x2/ > f .x1/ whenever x2 > x1, we say f is increasing on I:

(b) If f .x2/ < f .x1/ whenever x2 > x1, we say f is decreasing on I:

(c) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nondecreasing on I:

(d) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nonincreasing on I:

Figure 2.31 illustrates these terms. Note the distinction between increasing and non-

decreasing. If a function is increasing (or decreasing) on an interval, it must take differ-

ent values at different points. (Such a function is called one-to-one.) A nondecreasing

function (or a nonincreasing function) may be constant on a subinterval of its domain,

and may therefore not be one-to-one. An increasing function is nondecreasing, but a

nondecreasing function is not necessarily increasing.
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Figure 2.31

(a) Function f is increasing

(b) Function g is decreasing

(c) Function h is nondecreasing

(d) Function k is nonincreasing

y

x

y

x

y

x

y

x

(a)

(c) (d)

(b)

y D f .x/

y D g.x/

y D k.x/

y D h.x/

T H E O R E M

12

Let J be an open interval, and let I be an interval consisting of all the points in J and

possibly one or both of the endpoints of J: Suppose that f is continuous on I and

differentiable on J:

(a) If f 0
.x/ > 0 for all x in J; then f is increasing on I:

(b) If f 0
.x/ < 0 for all x in J; then f is decreasing on I:

(c) If f 0.x/ � 0 for all x in J; then f is nondecreasing on I:

(d) If f 0.x/ � 0 for all x in J; then f is nonincreasing on I:

PROOF Let x1 and x2 be points in I with x2 > x1. By the Mean-Value Theorem

there exists a point c in .x1; x2/ (and therefore in J ) such that

f .x2/ � f .x1/

x2 � x1

D f
0
.c/I

hence, f .x2/� f .x1/ D .x2 � x1/ f
0.c/. Since x2 � x1 > 0, the difference f .x2/�

f .x1/ has the same sign as f 0.c/ and may be zero if f 0.c/ is zero. Thus, all four

conclusions follow from the corresponding parts of Definition 6.

Remark Despite Theorem 12, f 0.x0/ > 0 at a single point x0 does not imply that f

is increasing on any interval containing x0. See Exercise 30 at the end of this section

for a counterexample.

E X A M P L E 4
On what intervals is the function f .x/ D x3

�12xC1 increasing?

On what intervals is it decreasing?

Solution We have f 0.x/ D 3x2
� 12 D 3.x � 2/.x C 2/. Observe that f 0.x/ > 0

if x < �2 or x > 2 and f 0.x/ < 0 if �2 < x < 2. Therefore, f is increasing

on the intervals .�1;�2/ and .2;1/ and is decreasing on the interval .�2; 2/. See

Figure 2.32.

A function f whose derivative satisfies f 0.x/ � 0 on an interval can still be increasing

there, rather than just nondecreasing as assured by Theorem 12(c). This will happen if

f 0.x/ D 0 only at isolated points, so that f is assured to be increasing on intervals to

the left and right of these points.

y

x

.�2; 17/

.2;�15/

y D x3
� 12x C 1

Figure 2.32

E X A M P L E 5
Show that f .x/ D x3 is increasing on any interval.
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E X A M P L E 2
Show that sin x < x for all x > 0.

Solution If x > 2� , then sinx � 1 < 2� < x. If 0 < x � 2� , then, by the

Mean-Value Theorem, there exists c in the open interval .0; 2�/ such that

sin x

x
D

sinx � sin 0

x � 0
D

d

dx
sinx

ˇ

ˇ

ˇ

ˇ

xDc

D cos c < 1:

Thus, sin x < x in this case too.

E X A M P L E 3 Show that
p

1C x < 1C
x

2
for x > 0 and for �1 � x < 0.

Solution If x > 0, apply the Mean-Value Theorem to f .x/ D
p

1C x on the inter-

val Œ0; x�. There exists c in .0; x/ such that

p

1C x � 1

x
D

f .x/� f .0/

x � 0
D f

0
.c/ D

1

2
p

1C c
<
1

2
:

The last inequality holds because c > 0. Multiplying by the positive number x and

transposing the �1 gives
p

1C x < 1C
x

2
.

If �1 � x < 0, we apply the Mean-Value Theorem to f .x/ D
p

1C x on the

interval Œx; 0�. There exists c in .x; 0/ such that

p

1C x � 1

x
D

1�
p

1C x

�x
D

f .0/ � f .x/

0 � x
D f

0
.c/ D

1

2
p

1C c
>
1

2

(because 0 < 1 C c < 1). Now we must multiply by the negative number x, which

reverses the inequality,
p

1C x � 1 <
x

2
, and the required inequality again follows by

transposing the �1.

Increasing and Decreasing Functions
Intervals on which the graph of a function f has positive or negative slope provide

useful information about the behaviour of f . The Mean-Value Theorem enables us to

determine such intervals by considering the sign of the derivative f 0.

D E F I N I T I O N

6

Increasing and decreasing functions

Suppose that the function f is defined on an interval I and that x1 and x2 are

two points of I .

(a) If f .x2/ > f .x1/ whenever x2 > x1, we say f is increasing on I:

(b) If f .x2/ < f .x1/ whenever x2 > x1, we say f is decreasing on I:

(c) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nondecreasing on I:

(d) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nonincreasing on I:

Figure 2.31 illustrates these terms. Note the distinction between increasing and non-

decreasing. If a function is increasing (or decreasing) on an interval, it must take differ-

ent values at different points. (Such a function is called one-to-one.) A nondecreasing

function (or a nonincreasing function) may be constant on a subinterval of its domain,

and may therefore not be one-to-one. An increasing function is nondecreasing, but a

nondecreasing function is not necessarily increasing.
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Figure 2.31

(a) Function f is increasing

(b) Function g is decreasing

(c) Function h is nondecreasing

(d) Function k is nonincreasing

y

x

y

x

y

x

y

x

(a)

(c) (d)

(b)

y D f .x/

y D g.x/

y D k.x/

y D h.x/

T H E O R E M

12

Let J be an open interval, and let I be an interval consisting of all the points in J and

possibly one or both of the endpoints of J: Suppose that f is continuous on I and

differentiable on J:

(a) If f 0
.x/ > 0 for all x in J; then f is increasing on I:

(b) If f 0
.x/ < 0 for all x in J; then f is decreasing on I:

(c) If f 0.x/ � 0 for all x in J; then f is nondecreasing on I:

(d) If f 0.x/ � 0 for all x in J; then f is nonincreasing on I:

PROOF Let x1 and x2 be points in I with x2 > x1. By the Mean-Value Theorem

there exists a point c in .x1; x2/ (and therefore in J ) such that

f .x2/ � f .x1/

x2 � x1

D f
0
.c/I

hence, f .x2/� f .x1/ D .x2 � x1/ f
0.c/. Since x2 � x1 > 0, the difference f .x2/�

f .x1/ has the same sign as f 0.c/ and may be zero if f 0.c/ is zero. Thus, all four

conclusions follow from the corresponding parts of Definition 6.

Remark Despite Theorem 12, f 0.x0/ > 0 at a single point x0 does not imply that f

is increasing on any interval containing x0. See Exercise 30 at the end of this section

for a counterexample.

E X A M P L E 4
On what intervals is the function f .x/ D x3

�12xC1 increasing?

On what intervals is it decreasing?

Solution We have f 0.x/ D 3x2
� 12 D 3.x � 2/.x C 2/. Observe that f 0.x/ > 0

if x < �2 or x > 2 and f 0.x/ < 0 if �2 < x < 2. Therefore, f is increasing

on the intervals .�1;�2/ and .2;1/ and is decreasing on the interval .�2; 2/. See

Figure 2.32.

A function f whose derivative satisfies f 0.x/ � 0 on an interval can still be increasing

there, rather than just nondecreasing as assured by Theorem 12(c). This will happen if

f 0.x/ D 0 only at isolated points, so that f is assured to be increasing on intervals to

the left and right of these points.

y

x

.�2; 17/

.2;�15/

y D x3
� 12x C 1

Figure 2.32

E X A M P L E 5
Show that f .x/ D x3 is increasing on any interval.
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Solution Let x1 and x2 be any two real numbers satsifying x1 < x2. Since f 0.x/ D

3x
2
> 0 except at x D 0, Theorem 12(a) tells us that f .x1/ < f .x2/ if either x1 <

x2 � 0 or 0 � x1 < x2. If x1 < 0 < x2, then f .x1/ < 0 < f .x2/. Thus, f is

increasing on every interval.

If a function is constant on an interval, then its derivative is zero on that interval.

The Mean-Value Theorem provides a converse of this fact.

T H E O R E M

13

If f is continuous on an interval I; and f 0.x/ D 0 at every interior point of I (i.e., at

every point of I that is not an endpoint of I ), then f .x/ D C , a constant, on I:

PROOF Pick a point x0 in I and let C D f .x0/. If x is any other point of I , then the

Mean-Value Theorem says that there exists a point c between x0 and x such that

f .x/� f .x0/

x � x0

D f
0
.c/:

The point c must belong to I because an interval contains all points between any two of

its points, and c cannot be an endpoint of I since c ¤ x0 and c ¤ x. Since f 0
.c/ D 0

for all such points c, we have f .x/�f .x0/ D 0 for all x in I , and f .x/ D f .x0/ D C

as claimed.

We will see how Theorem 13 can be used to establish identities for new functions en-

countered in later chapters. We will also use it when finding antiderivatives in Section

2.10.

Proof of the Mean-Value Theorem
The Mean-Value Theorem is one of those deep results that is based on the completeness

of the real number system via the fact that a continuous function on a closed, finite

interval takes on a maximum and minimum value (Theorem 8 of Section 1.4). Before

giving the proof, we establish two preliminary results.

T H E O R E M

14

If f is defined on an open interval .a; b/ and achieves a maximum (or minimum)

value at the point c in .a; b/, and if f 0.c/ exists, then f 0.c/ D 0. (Values of x where

f 0.x/ D 0 are called critical points of the function f .)

PROOF Suppose that f has a maximum value at c. Then f .x/�f .c/ � 0 whenever

x is in .a; b/. If c < x < b, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!cC

f .x/� f .c/

x � c
� 0:

Similarly, if a < x < c, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!c�

f .x/� f .c/

x � c
� 0:

Thus f 0.c/ D 0. The proof for a minimum value at c is similar.

T H E O R E M

15

Rolle’s Theorem

Suppose that the function g is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. If g.a/ D g.b/, then there exists a point

c in the open interval .a; b/ such that g0.c/ D 0.
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PROOF If g.x/ D g.a/ for every x in Œa; b�, then g is a constant function, so g0.c/ D

0 for every c in .a; b/. Therefore, suppose there exists x in .a; b/ such that g.x/ ¤

g.a/. Let us assume that g.x/ > g.a/. (If g.x/ < g.a/, the proof is similar.) By

the Max-Min Theorem (Theorem 8 of Section 1.4), being continuous on Œa; b�, g must

have a maximum value at some point c in Œa; b�. Since g.c/ � g.x/ > g.a/ D g.b/, c

cannot be either a or b. Therefore, c is in the open interval .a; b/, so g is differentiable

at c. By Theorem 14, c must be a critical point of g: g0.c/ D 0.

Remark Rolle’s Theorem is a special case of the Mean-Value Theorem in which the

chord line has slope 0, so the corresponding parallel tangent line must also have slope

0. We can deduce the Mean-Value Theorem from this special case.

PROOF of the Mean-Value Theorem Suppose f satisfies the conditions of the

Mean-Value Theorem. Let

g.x/ D f .x/�

�

f .a/C
f .b/� f .a/

b � a
.x � a/

�

:

(For a � x � b, g.x/ is the vertical displacement between the curve y D f .x/ and

the chord line

y D f .a/C
f .b/� f .a/

b � a
.x � a/

joining .a; f .a// and .b; f .b//. See Figure 2.33.)

Figure 2.33 g.x/ is the vertical distance

between the graph of f and the chord line

y

x

g.x/

y D f .x/

y D f .a/C
f .b/ � f .a/

b � a
.x � a/

a x b

.b; f .b//

.a; f .a//

The function g is also continuous on Œa; b� and differentiable on .a; b/ because f has

these properties. In addition, g.a/ D g.b/ D 0. By Rolle’s Theorem, there is some

point c in .a; b/ such that g0.c/ D 0. Since

g
0
.x/ D f

0
.x/�

f .b/ � f .a/

b � a
;

it follows that

f
0
.c/ D

f .b/� f .a/

b � a
:

Many of the applications we will make of the Mean-Value Theorem in later chap-

ters will actually use the following generalized version of it.
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Solution Let x1 and x2 be any two real numbers satsifying x1 < x2. Since f 0.x/ D

3x
2
> 0 except at x D 0, Theorem 12(a) tells us that f .x1/ < f .x2/ if either x1 <

x2 � 0 or 0 � x1 < x2. If x1 < 0 < x2, then f .x1/ < 0 < f .x2/. Thus, f is

increasing on every interval.

If a function is constant on an interval, then its derivative is zero on that interval.

The Mean-Value Theorem provides a converse of this fact.

T H E O R E M

13

If f is continuous on an interval I; and f 0.x/ D 0 at every interior point of I (i.e., at

every point of I that is not an endpoint of I ), then f .x/ D C , a constant, on I:

PROOF Pick a point x0 in I and let C D f .x0/. If x is any other point of I , then the

Mean-Value Theorem says that there exists a point c between x0 and x such that

f .x/� f .x0/

x � x0

D f
0
.c/:

The point c must belong to I because an interval contains all points between any two of

its points, and c cannot be an endpoint of I since c ¤ x0 and c ¤ x. Since f 0
.c/ D 0

for all such points c, we have f .x/�f .x0/ D 0 for all x in I , and f .x/ D f .x0/ D C

as claimed.

We will see how Theorem 13 can be used to establish identities for new functions en-

countered in later chapters. We will also use it when finding antiderivatives in Section

2.10.

Proof of the Mean-Value Theorem
The Mean-Value Theorem is one of those deep results that is based on the completeness

of the real number system via the fact that a continuous function on a closed, finite

interval takes on a maximum and minimum value (Theorem 8 of Section 1.4). Before

giving the proof, we establish two preliminary results.

T H E O R E M

14

If f is defined on an open interval .a; b/ and achieves a maximum (or minimum)

value at the point c in .a; b/, and if f 0.c/ exists, then f 0.c/ D 0. (Values of x where

f 0.x/ D 0 are called critical points of the function f .)

PROOF Suppose that f has a maximum value at c. Then f .x/�f .c/ � 0 whenever

x is in .a; b/. If c < x < b, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!cC

f .x/� f .c/

x � c
� 0:

Similarly, if a < x < c, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!c�

f .x/� f .c/

x � c
� 0:

Thus f 0.c/ D 0. The proof for a minimum value at c is similar.

T H E O R E M

15

Rolle’s Theorem

Suppose that the function g is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. If g.a/ D g.b/, then there exists a point

c in the open interval .a; b/ such that g0.c/ D 0.
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PROOF If g.x/ D g.a/ for every x in Œa; b�, then g is a constant function, so g0.c/ D

0 for every c in .a; b/. Therefore, suppose there exists x in .a; b/ such that g.x/ ¤

g.a/. Let us assume that g.x/ > g.a/. (If g.x/ < g.a/, the proof is similar.) By

the Max-Min Theorem (Theorem 8 of Section 1.4), being continuous on Œa; b�, g must

have a maximum value at some point c in Œa; b�. Since g.c/ � g.x/ > g.a/ D g.b/, c

cannot be either a or b. Therefore, c is in the open interval .a; b/, so g is differentiable

at c. By Theorem 14, c must be a critical point of g: g0.c/ D 0.

Remark Rolle’s Theorem is a special case of the Mean-Value Theorem in which the

chord line has slope 0, so the corresponding parallel tangent line must also have slope

0. We can deduce the Mean-Value Theorem from this special case.

PROOF of the Mean-Value Theorem Suppose f satisfies the conditions of the

Mean-Value Theorem. Let

g.x/ D f .x/�

�

f .a/C
f .b/� f .a/

b � a
.x � a/

�

:

(For a � x � b, g.x/ is the vertical displacement between the curve y D f .x/ and

the chord line

y D f .a/C
f .b/� f .a/

b � a
.x � a/

joining .a; f .a// and .b; f .b//. See Figure 2.33.)

Figure 2.33 g.x/ is the vertical distance

between the graph of f and the chord line

y

x

g.x/

y D f .x/

y D f .a/C
f .b/ � f .a/

b � a
.x � a/

a x b

.b; f .b//

.a; f .a//

The function g is also continuous on Œa; b� and differentiable on .a; b/ because f has

these properties. In addition, g.a/ D g.b/ D 0. By Rolle’s Theorem, there is some

point c in .a; b/ such that g0.c/ D 0. Since

g
0
.x/ D f

0
.x/�

f .b/ � f .a/

b � a
;

it follows that

f
0
.c/ D

f .b/� f .a/

b � a
:

Many of the applications we will make of the Mean-Value Theorem in later chap-

ters will actually use the following generalized version of it.
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T H E O R E M

16

The Generalized Mean-Value Theorem

If functions f and g are both continuous on Œa; b� and differentiable on .a; b/, and if

g0.x/ ¤ 0 for every x in .a; b/, then there exists a number c in .a; b/ such that

f .b/� f .a/

g.b/ � g.a/
D

f
0
.c/

g0.c/
:

PROOF Note that g.b/ ¤ g.a/; otherwise, there would be some number in .a; b/

where g0
D 0. Hence, neither denominator above can be zero. Apply the Mean-Value

Theorem to

h.x/ D
�

f .b/� f .a/
��

g.x/� g.a/
�

�

�

g.b/� g.a/
��

f .x/� f .a/
�

:

Since h.a/ D h.b/ D 0, there exists c in .a; b/ such that h0.c/ D 0. Thus,

�

f .b/� f .a/
�

g
0
.c/ �

�

g.b/ � g.a/
�

f
0
.c/ D 0;

and the result follows on division by the g factors.

E X E R C I S E S 2.8

In Exercises 1–3, illustrate the Mean-Value Theorem by finding

any points in the open interval .a; b/ where the tangent line to

y D f .x/ is parallel to the chord line joining .a; f .a// and

.b; f .b//.

1. f .x/ D x2 on Œa; b� 2. f .x/ D
1

x
on Œ1; 2�

3. f .x/ D x3
� 3x C 1 on Œ�2; 2�

4.I By applying the Mean-Value Theorem to f .x/ D cos x C
x2

2
on the interval Œ0; x�, and using the result of Example 2, show

that

cosx > 1 �
x2

2

for x > 0. This inequality is also true for x < 0. Why?

5. Show that tanx > x for 0 < x < �=2.

6. Let r > 1. If x > 0 or �1 � x < 0, show that

.1C x/r > 1C rx.

7. Let 0 < r < 1. If x > 0 or �1 � x < 0, show that

.1C x/r < 1C rx.

Find the intervals of increase and decrease of the functions in

Exercises 8–19.

8. f .x/ D x3
� 12x C 1 9. f .x/ D x2

� 4

10. y D 1 � x � x5 11. y D x3
C 6x

2

12. f .x/ D x2
C 2x C 2 13. f .x/ D x3

� 4x C 1

14. f .x/ D x3
C 4x C 1 15. f .x/ D .x2

� 4/
2

16. f .x/ D
1

x2
C 1

17. f .x/ D x3
.5 � x/

2

18. f .x/ D x � 2 sinx 19. f .x/ D x C sinx

20. On what intervals is f .x/ D x C 2 sinx increasing?

21. Show that f .x/ D x3 is increasing on the whole real line even

though f 0.x/ is not positive at every point.

22.A What is wrong with the following “proof” of the Generalized

Mean-Value Theorem? By the Mean-Value Theorem,

f .b/� f .a/ D .b � a/f
0
.c/ for some c between a and b and,

similarly, g.b/�g.a/ D .b�a/g0.c/ for some such c. Hence,

.f .b/ � f .a//=.g.b/ � g.a// D f 0.c/=g0.c/, as required.

Use a graphing utility or a computer algebra system to find the

critical points of the functions in Exercises 23–26 correct to

6 decimal places.

G 23. f .x/ D
x

2
� x

x2
� 4

G 24. f .x/ D
2x C 1

x2
C x C 1

G 25. f .x/ D x � sin

�

x

x2
C x C 1

�

G 26. f .x/ D

p

1 � x2

cos.x C 0:1/

27.A If f .x/ is differentiable on an interval I and vanishes at n � 2

distinct points of I; prove that f 0.x/ must vanish at at least

n � 1 points in I:

28.A Let f .x/ D x2 sin.1=x/ if x ¤ 0 and f .0/ D 0. Show that

f 0.x/ exists at every x but f 0 is not continuous at x D 0.

This proves the assertion (made at the end of Section 2.2) that

a derivative, defined on an interval, need not be continuous

there.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 145 October 15, 2016

SECTION 2.9: Implicit Differentiation 145

29.I Prove the assertion (made at the end of Section 2.2) that a

derivative, defined on an interval, must have the intermediate-

value property. (Hint: Assume that f 0 exists on Œa; b� and

f 0.a/ ¤ f 0.b/. If k lies between f 0.a/ and f 0.b/, show that

the function g defined by g.x/ D f .x/ � kx must have either

a maximum value or a minimum value on Œa; b� occurring at

an interior point c in .a; b/. Deduce that f 0.c/ D k.)

30.I Let f .x/ D

�

x C 2x2 sin.1=x/ if x ¤ 0,

0 if x D 0.

(a) Show that f 0.0/ D 1. (Hint: Use the definition of

derivative.)

(b) Show that any interval containing x D 0 also contains

points where f 0.x/ < 0, so f cannot be increasing on

such an interval.

31.A If f 00.x/ exists on an interval I and if f vanishes at at least

three distinct points of I; prove that f 00 must vanish at some

point in I:

32.A Generalize Exercise 31 to a function for which f .n/ exists on

I and for which f vanishes at at least nC 1 distinct points

in I:

33.I Suppose f is twice differentiable on an interval I (i.e., f 00

exists on I ). Suppose that the points 0 and 2 belong to I and

that f .0/ D f .1/ D 0 and f .2/ D 1. Prove that

(a) f 0.a/ D
1

2
for some point a in I:

(b) f 00.b/ >
1

2
for some point b in I:

(c) f 0.c/ D
1

7
for some point c in I:

2.9 Implicit Differentiation

We know how to find the slope of a curve that is the graph of a function y D f .x/ by

calculating the derivative of f: But not all curves are the graphs of such functions. To

be the graph of a function f .x/, the curve must not intersect any vertical lines at more

than one point.

Curves are generally the graphs of equations in two variables. Such equations can

be written in the form

F.x; y/ D 0;

where F.x; y/ denotes an expression involving the two variables x and y. For example,

a circle with centre at the origin and radius 5 has equation

x
2
C y

2
� 25 D 0;

so F.x; y/ D x2
C y2

� 25 for that circle.

Sometimes we can solve an equation F.x; y/ D 0 for y and so find explicit formu-

las for one or more functions y D f .x/ defined by the equation. Usually, however, we

are not able to solve the equation. However, we can still regard it as defining y as one

or more functions of x implicitly, even it we cannot solve for these functions explicitly.

Moreover, we still find the derivative dy=dx of these implicit solutions by a technique

called implicit differentiation. The idea is to differentiate the given equation with

respect to x, regarding y as a function of x having derivative dy=dx, or y 0.

E X A M P L E 1
Find dy=dx if y2

D x.

Solution The equation y2
D x defines two differentiable functions of x; in this case

we know them explicitly. They are y1 D
p

x and y2 D �
p

x (see Figure 2.34), having

derivatives defined for x > 0 by

y

x

y2 D �
p

x

y1 D
p

x

P.x;
p

x/

Q.x;�
p

x/

Slope D
1

2y1
D

1

2
p

x

Slope D
1

2y2
D �

1

2
p

x

Figure 2.34 The equation y2
D x defines

two differentiable functions of x on the

interval x � 0

dy1

dx
D

1

2
p

x
and

dy2

dx
D �

1

2
p

x
:

However, we can find the slope of the curve y2
D x at any point .x; y/ satisfying that

equation without first solving the equation for y. To find dy=dx, we simply differenti-

ate both sides of the equation y2
D x with respect to x, treating y as a differentiable
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The Generalized Mean-Value Theorem

If functions f and g are both continuous on Œa; b� and differentiable on .a; b/, and if

g0.x/ ¤ 0 for every x in .a; b/, then there exists a number c in .a; b/ such that

f .b/� f .a/

g.b/ � g.a/
D

f
0
.c/

g0.c/
:

PROOF Note that g.b/ ¤ g.a/; otherwise, there would be some number in .a; b/

where g0
D 0. Hence, neither denominator above can be zero. Apply the Mean-Value

Theorem to

h.x/ D
�

f .b/� f .a/
��

g.x/� g.a/
�

�

�

g.b/� g.a/
��

f .x/� f .a/
�

:

Since h.a/ D h.b/ D 0, there exists c in .a; b/ such that h0.c/ D 0. Thus,

�

f .b/� f .a/
�

g
0
.c/ �

�

g.b/ � g.a/
�

f
0
.c/ D 0;

and the result follows on division by the g factors.

E X E R C I S E S 2.8

In Exercises 1–3, illustrate the Mean-Value Theorem by finding

any points in the open interval .a; b/ where the tangent line to

y D f .x/ is parallel to the chord line joining .a; f .a// and

.b; f .b//.

1. f .x/ D x2 on Œa; b� 2. f .x/ D
1

x
on Œ1; 2�

3. f .x/ D x3
� 3x C 1 on Œ�2; 2�

4.I By applying the Mean-Value Theorem to f .x/ D cos x C
x2

2
on the interval Œ0; x�, and using the result of Example 2, show

that

cosx > 1 �
x2

2

for x > 0. This inequality is also true for x < 0. Why?

5. Show that tanx > x for 0 < x < �=2.

6. Let r > 1. If x > 0 or �1 � x < 0, show that

.1C x/r > 1C rx.

7. Let 0 < r < 1. If x > 0 or �1 � x < 0, show that

.1C x/r < 1C rx.

Find the intervals of increase and decrease of the functions in

Exercises 8–19.

8. f .x/ D x3
� 12x C 1 9. f .x/ D x2

� 4

10. y D 1 � x � x5 11. y D x3
C 6x

2

12. f .x/ D x2
C 2x C 2 13. f .x/ D x3

� 4x C 1

14. f .x/ D x3
C 4x C 1 15. f .x/ D .x2

� 4/
2

16. f .x/ D
1

x2
C 1

17. f .x/ D x3
.5 � x/

2

18. f .x/ D x � 2 sinx 19. f .x/ D x C sinx

20. On what intervals is f .x/ D x C 2 sinx increasing?

21. Show that f .x/ D x3 is increasing on the whole real line even

though f 0.x/ is not positive at every point.

22.A What is wrong with the following “proof” of the Generalized

Mean-Value Theorem? By the Mean-Value Theorem,

f .b/� f .a/ D .b � a/f
0
.c/ for some c between a and b and,

similarly, g.b/�g.a/ D .b�a/g0.c/ for some such c. Hence,

.f .b/ � f .a//=.g.b/ � g.a// D f 0.c/=g0.c/, as required.

Use a graphing utility or a computer algebra system to find the

critical points of the functions in Exercises 23–26 correct to

6 decimal places.

G 23. f .x/ D
x

2
� x

x2
� 4

G 24. f .x/ D
2x C 1

x2
C x C 1

G 25. f .x/ D x � sin

�

x

x2
C x C 1

�

G 26. f .x/ D

p

1 � x2

cos.x C 0:1/

27.A If f .x/ is differentiable on an interval I and vanishes at n � 2

distinct points of I; prove that f 0.x/ must vanish at at least

n � 1 points in I:

28.A Let f .x/ D x2 sin.1=x/ if x ¤ 0 and f .0/ D 0. Show that

f 0.x/ exists at every x but f 0 is not continuous at x D 0.

This proves the assertion (made at the end of Section 2.2) that

a derivative, defined on an interval, need not be continuous

there.
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29.I Prove the assertion (made at the end of Section 2.2) that a

derivative, defined on an interval, must have the intermediate-

value property. (Hint: Assume that f 0 exists on Œa; b� and

f 0.a/ ¤ f 0.b/. If k lies between f 0.a/ and f 0.b/, show that

the function g defined by g.x/ D f .x/ � kx must have either

a maximum value or a minimum value on Œa; b� occurring at

an interior point c in .a; b/. Deduce that f 0.c/ D k.)

30.I Let f .x/ D

�

x C 2x2 sin.1=x/ if x ¤ 0,

0 if x D 0.

(a) Show that f 0.0/ D 1. (Hint: Use the definition of

derivative.)

(b) Show that any interval containing x D 0 also contains

points where f 0.x/ < 0, so f cannot be increasing on

such an interval.

31.A If f 00.x/ exists on an interval I and if f vanishes at at least

three distinct points of I; prove that f 00 must vanish at some

point in I:

32.A Generalize Exercise 31 to a function for which f .n/ exists on

I and for which f vanishes at at least nC 1 distinct points

in I:

33.I Suppose f is twice differentiable on an interval I (i.e., f 00

exists on I ). Suppose that the points 0 and 2 belong to I and

that f .0/ D f .1/ D 0 and f .2/ D 1. Prove that

(a) f 0.a/ D
1

2
for some point a in I:

(b) f 00.b/ >
1

2
for some point b in I:

(c) f 0.c/ D
1

7
for some point c in I:

2.9 Implicit Differentiation

We know how to find the slope of a curve that is the graph of a function y D f .x/ by

calculating the derivative of f: But not all curves are the graphs of such functions. To

be the graph of a function f .x/, the curve must not intersect any vertical lines at more

than one point.

Curves are generally the graphs of equations in two variables. Such equations can

be written in the form

F.x; y/ D 0;

where F.x; y/ denotes an expression involving the two variables x and y. For example,

a circle with centre at the origin and radius 5 has equation

x
2
C y

2
� 25 D 0;

so F.x; y/ D x2
C y2

� 25 for that circle.

Sometimes we can solve an equation F.x; y/ D 0 for y and so find explicit formu-

las for one or more functions y D f .x/ defined by the equation. Usually, however, we

are not able to solve the equation. However, we can still regard it as defining y as one

or more functions of x implicitly, even it we cannot solve for these functions explicitly.

Moreover, we still find the derivative dy=dx of these implicit solutions by a technique

called implicit differentiation. The idea is to differentiate the given equation with

respect to x, regarding y as a function of x having derivative dy=dx, or y 0.

E X A M P L E 1
Find dy=dx if y2

D x.

Solution The equation y2
D x defines two differentiable functions of x; in this case

we know them explicitly. They are y1 D
p

x and y2 D �
p

x (see Figure 2.34), having

derivatives defined for x > 0 by

y

x

y2 D �
p

x

y1 D
p

x

P.x;
p

x/

Q.x;�
p

x/

Slope D
1

2y1
D

1

2
p

x

Slope D
1

2y2
D �

1

2
p

x

Figure 2.34 The equation y2
D x defines

two differentiable functions of x on the

interval x � 0

dy1

dx
D

1

2
p

x
and

dy2

dx
D �

1

2
p

x
:

However, we can find the slope of the curve y2
D x at any point .x; y/ satisfying that

equation without first solving the equation for y. To find dy=dx, we simply differenti-

ate both sides of the equation y2
D x with respect to x, treating y as a differentiable
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function of x and using the Chain Rule to differentiate y2:

d

dx
.y

2
/ D

d

dx
.x/

�

The Chain Rule gives
d

dx
y

2
D 2y

dy

dx
:

�

2y
dy

dx
D 1

dy

dx
D

1

2y
:

Observe that this agrees with the derivatives we calculated above for both of the explicit

solutions y1 D
p

x and y2 D �
p

x:

dy1

dx
D

1

2y1

D

1

2
p

x
and

dy2

dx
D

1

2y2

D

1

2.�
p

x/
D �

1

2
p

x
:

E X A M P L E 2
Find the slope of circle x2

C y
2
D 25 at the point .3;�4/.

Solution The circle is not the graph of a single function of x. Again, it combines the

graphs of two functions, y1 D

p

25 � x2 and y2 D �

p

25 � x2 (Figure 2.35). The

point .3;�4/ lies on the graph of y2, so we can find the slope by calculating explicitly:

y

x

y1 D

p

25 � x2

y2 D �

p

25 � x2

.3;�4/

5�5

Slope = 3/4

Figure 2.35 The circle combines the

graphs of two functions. The graph of y2 is

the lower semicircle and passes through

.3;�4/

dy2

dx

ˇ

ˇ

ˇ

ˇ

xD3

D �

�2x

2
p

25 � x2

ˇ

ˇ

ˇ

ˇ

xD3

D �

�6

2
p

25 � 9
D

3

4
:

But we can also solve the problem more easily by differentiating the given equation of

the circle implicitly with respect to x:

d

dx
.x

2
/C

d

dx
.y

2
/ D

d

dx
.25/

2x C 2y
dy

dx
D 0

dy

dx
D �

x

y
:

The slope at .3;�4/ is �
x

y

ˇ

ˇ

ˇ

.3;�4/
D �

3

�4
D

3

4
:

E X A M P L E 3 Find
dy

dx
if y sin x D x3

C cos y.

To find dy=dx by implicit

differentiation:

1. Differentiate both sides of the

equation with respect to x,

regarding y as a function of x

and using the Chain Rule to

differentiate functions of y.

2. Collect terms with dy=dx on

one side of the equation and

solve for dy=dx by dividing

by its coefficient.

Solution This time we cannot solve the equation for y as an explicit function of x,

so we must use implicit differentiation:

d

dx
.y sin x/ D

d

dx
.x

3
/C

d

dx
.cos y/

�

Use the Product Rule

on the left side.

�

.sin x/
dy

dx
C y cos x D 3x2

� .sin y/
dy

dx

.sin x C siny/
dy

dx
D 3x

2
� y cos x

dy

dx
D

3x2
� y cos x

sin x C sin y
:
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In the examples above, the derivatives dy=dx calculated by implicit differentiation

depend on y, or on both y and x, rather than just on x. This is to be expected because

an equation in x and y can define more than one function of x, and the implicitly

calculated derivative must apply to each of the solutions. For example, in Example 2,

the derivative dy=dx D �x=y also gives the slope �3=4 at the point .3; 4/ on the

circle. When you use implicit differentiation to find the slope of a curve at a point, you

will usually have to know both coordinates of the point.

There are subtle dangers involved in calculating derivatives implicitly. When you

use the Chain Rule to differentiate an equation involving y with respect to x, you are

automatically assuming that the equation defines y as a differentiable function of x.

This need not be the case. To see what can happen, consider the problem of finding

y 0
D dy=dx from the equation

x
2
C y

2
D K; .�/

whereK is a constant. As in Example 2 (whereK D 25), implicit differentiation gives

2x C 2yy
0
D 0 or y

0
D �

x

y
:

This formula will give the slope of the curve .�/ at any point on the curve where

y ¤ 0. For K > 0, .�/ represents a circle centred at the origin and having radius
p

K. This circle has a finite slope, except at the two points where it crosses the x-axis

(where y D 0). If K D 0, the equation represents only a single point, the origin. The

concept of slope of a point is meaningless. For K < 0, there are no real points whose

coordinates satisfy equation .�/, so y 0 is meaningless here too. The point of this is

that being able to calculate y 0 from a given equation by implicit differentiation does

not guarantee that y 0 actually represents the slope of anything.

If .x0; y0/ is a point on the graph of the equation F.x; y/ D 0, there is a theorem

that can justify our use of implicit differentiation to find the slope of the graph there.

We cannot give a careful statement or proof of this implicit function theorem yet (see

Section 12.8), but roughly speaking, it says that part of the graph of F.x; y/ D 0

near .x0; y0/ is the graph of a function of x that is differentiable at x0, provided that

F.x; y/ is a “smooth” function, and that the derivative

d

dy
F.x0; y/

ˇ

ˇ

ˇ

ˇ

yDy0

¤ 0:

For the circle x2
C y2

� K D 0 (where K > 0) this condition says that 2y0 ¤ 0,

which is the condition that the derivative y 0
D �x=y should exist at .x0; y0/.

E X A M P L E 4
Find an equation of the tangent to x2

C xy C 2y
3
D 4 at .�2; 1/.

Solution Note that .�2; 1/ does lie on the given curve. To find the slope of the

tangent we differentiate the given equation implicitly with respect to x. Use the Product

A useful strategy

When you use implicit

differentiation to find the value

of a derivative at a particular

point, it is best to substitute the

coordinates of the point

immediately after you carry out

the differentiation and before you

solve for the derivative dy=dx. It

is easier to solve an equation

involving numbers than one with

algebraic expressions.

Rule to differentiate the xy term:

2x C y C xy
0
C 6y

2
y

0
D 0:

Substitute the coordinates x D �2, y D 1, and solve the resulting equation for y 0:

�4C 1 � 2y
0
C 6y

0
D 0 ) y

0
D

3

4
:

The slope of the tangent at .�2; 1/ is 3=4, and its equation is

y D
3

4
.x C 2/C 1 or 3x � 4y D �10:
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function of x and using the Chain Rule to differentiate y2:

d

dx
.y

2
/ D

d

dx
.x/

�

The Chain Rule gives
d

dx
y

2
D 2y

dy

dx
:

�

2y
dy

dx
D 1

dy

dx
D

1

2y
:

Observe that this agrees with the derivatives we calculated above for both of the explicit

solutions y1 D
p

x and y2 D �
p

x:

dy1

dx
D

1

2y1

D

1

2
p

x
and

dy2

dx
D

1

2y2

D

1

2.�
p

x/
D �

1

2
p

x
:

E X A M P L E 2
Find the slope of circle x2

C y
2
D 25 at the point .3;�4/.

Solution The circle is not the graph of a single function of x. Again, it combines the

graphs of two functions, y1 D

p

25 � x2 and y2 D �

p

25 � x2 (Figure 2.35). The

point .3;�4/ lies on the graph of y2, so we can find the slope by calculating explicitly:

y

x

y1 D

p

25 � x2

y2 D �

p

25 � x2

.3;�4/

5�5

Slope = 3/4

Figure 2.35 The circle combines the

graphs of two functions. The graph of y2 is

the lower semicircle and passes through

.3;�4/

dy2

dx

ˇ

ˇ

ˇ

ˇ

xD3

D �

�2x

2
p

25 � x2

ˇ

ˇ

ˇ

ˇ

xD3

D �

�6

2
p

25 � 9
D

3

4
:

But we can also solve the problem more easily by differentiating the given equation of

the circle implicitly with respect to x:

d

dx
.x

2
/C

d

dx
.y

2
/ D

d

dx
.25/

2x C 2y
dy

dx
D 0

dy

dx
D �

x

y
:

The slope at .3;�4/ is �
x

y

ˇ

ˇ

ˇ

.3;�4/
D �

3

�4
D

3

4
:

E X A M P L E 3 Find
dy

dx
if y sin x D x3

C cos y.

To find dy=dx by implicit

differentiation:

1. Differentiate both sides of the

equation with respect to x,

regarding y as a function of x

and using the Chain Rule to

differentiate functions of y.

2. Collect terms with dy=dx on

one side of the equation and

solve for dy=dx by dividing

by its coefficient.

Solution This time we cannot solve the equation for y as an explicit function of x,

so we must use implicit differentiation:

d

dx
.y sin x/ D

d

dx
.x

3
/C

d

dx
.cos y/

�

Use the Product Rule

on the left side.

�

.sin x/
dy

dx
C y cos x D 3x2

� .sin y/
dy

dx

.sin x C siny/
dy

dx
D 3x

2
� y cos x

dy

dx
D

3x2
� y cos x

sin x C sin y
:
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In the examples above, the derivatives dy=dx calculated by implicit differentiation

depend on y, or on both y and x, rather than just on x. This is to be expected because

an equation in x and y can define more than one function of x, and the implicitly

calculated derivative must apply to each of the solutions. For example, in Example 2,

the derivative dy=dx D �x=y also gives the slope �3=4 at the point .3; 4/ on the

circle. When you use implicit differentiation to find the slope of a curve at a point, you

will usually have to know both coordinates of the point.

There are subtle dangers involved in calculating derivatives implicitly. When you

use the Chain Rule to differentiate an equation involving y with respect to x, you are

automatically assuming that the equation defines y as a differentiable function of x.

This need not be the case. To see what can happen, consider the problem of finding

y 0
D dy=dx from the equation

x
2
C y

2
D K; .�/

whereK is a constant. As in Example 2 (whereK D 25), implicit differentiation gives

2x C 2yy
0
D 0 or y

0
D �

x

y
:

This formula will give the slope of the curve .�/ at any point on the curve where

y ¤ 0. For K > 0, .�/ represents a circle centred at the origin and having radius
p

K. This circle has a finite slope, except at the two points where it crosses the x-axis

(where y D 0). If K D 0, the equation represents only a single point, the origin. The

concept of slope of a point is meaningless. For K < 0, there are no real points whose

coordinates satisfy equation .�/, so y 0 is meaningless here too. The point of this is

that being able to calculate y 0 from a given equation by implicit differentiation does

not guarantee that y 0 actually represents the slope of anything.

If .x0; y0/ is a point on the graph of the equation F.x; y/ D 0, there is a theorem

that can justify our use of implicit differentiation to find the slope of the graph there.

We cannot give a careful statement or proof of this implicit function theorem yet (see

Section 12.8), but roughly speaking, it says that part of the graph of F.x; y/ D 0

near .x0; y0/ is the graph of a function of x that is differentiable at x0, provided that

F.x; y/ is a “smooth” function, and that the derivative

d

dy
F.x0; y/

ˇ

ˇ

ˇ

ˇ

yDy0

¤ 0:

For the circle x2
C y2

� K D 0 (where K > 0) this condition says that 2y0 ¤ 0,

which is the condition that the derivative y 0
D �x=y should exist at .x0; y0/.

E X A M P L E 4
Find an equation of the tangent to x2

C xy C 2y
3
D 4 at .�2; 1/.

Solution Note that .�2; 1/ does lie on the given curve. To find the slope of the

tangent we differentiate the given equation implicitly with respect to x. Use the Product

A useful strategy

When you use implicit

differentiation to find the value

of a derivative at a particular

point, it is best to substitute the

coordinates of the point

immediately after you carry out

the differentiation and before you

solve for the derivative dy=dx. It

is easier to solve an equation

involving numbers than one with

algebraic expressions.

Rule to differentiate the xy term:

2x C y C xy
0
C 6y

2
y

0
D 0:

Substitute the coordinates x D �2, y D 1, and solve the resulting equation for y 0:

�4C 1 � 2y
0
C 6y

0
D 0 ) y

0
D

3

4
:

The slope of the tangent at .�2; 1/ is 3=4, and its equation is

y D
3

4
.x C 2/C 1 or 3x � 4y D �10:
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E X A M P L E 5
Show that for any constants a and b, the curves x2

� y2
D a and

xy D b intersect at right angles, that is, at any point where they

intersect their tangents are perpendicular.

Solution The slope at any point on x2
� y2

D a is given by 2x � 2yy 0
D 0, or

y 0
D x=y. The slope at any point on xy D b is given by yC xy 0

D 0, or y 0
D �y=x.

If the two curves (they are both hyperbolas if a ¤ 0 and b ¤ 0) intersect at .x0; y0/,

then their slopes at that point are x0=y0 and�y0=x0, respectively. Clearly, these slopes

are negative reciprocals, so the tangent line to one curve is the normal line to the other

y

x

Figure 2.36 Some hyperbolas in the

family x2
� y2

D a (red) intersecting

some hyperbolas in the family xy D b

(blue) at right angles

at that point. Hence, the curves intersect at right angles. (See Figure 2.36.)

Higher-Order Derivatives

E X A M P L E 6 Find y 00
D

d2y

dx2
if xy C y2

D 2x.

Solution Twice differentiate both sides of the given equation with respect to x:

y C xy
0
C 2yy

0
D 2

y
0
C y

0
C xy

00
C 2.y

0
/
2
C 2yy

00
D 0:

Now solve these equations for y 0 and y 00.

y
0
D

2 � y

x C 2y

y
00
D �

2y
0
C 2.y

0
/
2

x C 2y
D �2

2 � y

x C 2y

1C
2 � y

x C 2y

x C 2y

D �2
.2 � y/.x C y C 2/

.x C 2y/3

D �2
2x � xy C 2y � y2

C 4 � 2y

.x C 2y/3
D �

8

.x C 2y/3
:

(We used the given equation to simplify the numerator in the last line.)

M Remark We can use Maple to calculate derivatives implicitly provided we show ex-

Note that Maple uses the symbol

@ instead of d when expressing

the derivative in Leibniz form.

This is because the expression it

is differentiating can involve

more than one variable; .@=@x/y

denotes the derivative of y with

respect to the specific variable x

rather than any other variables

on which y may depend. It is

called a partial derivative. We

will study partial derivatives in

Chapter 12. For the time being,

just regard @ as a d .

plicitly which variable depends on which. For example, we can calculate the value of

y
00 for the curve xy C y3

D 3 at the point .2; 1/ as follows. First, we differentiate the

equation with respect to x, writing y.x/ for y to indicate to Maple that it depends on

x.

> deq := diff(x*y(x)+(y(x))^3=3, x);

deq WD y.x/C x

�

@

@x
y.x/

�

C 3y.x/2

�

@

@x
y.x/

�

D 0

Now we solve the resulting equation for y 0:

> yp := solve(deq, diff(y(x),x));

yp WD �
y.x/

x C 3y.x/2

We can now differentiate yp with respect to x to get y 00:

> ypp := diff(yp,x);
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ypp WD �

@

@x
y.x/

x C 3y.x/2
C

y.x/

�

1C 6y.x/

�

@

@x
y.x/

��

.x C 3y.x/2/2

To get an expression depending only on x and y, we need to substitute the expression

obtained for the first derivative into this result. Since the result of this substitution will

involve compound fractions, let us simplify the result as well.

> ypp := simplify(subs(diff(y(x),x)=yp, ypp);

ypp WD 2
x y.x/

.x C 3y.x/2/3

This is y 00 expressed as a function of x and y. Now we want to substitute the coor-

dinates x D 2, y.x/ D 1 to get the value of y 00 at .2; 1/. However, the order of the

substitutions is important. First we must replace y.x/ with 1 and then replace x with

2. (If we replace x first, we would have to then replace y.2/ rather than y.x/ with 1.)

Maple’s subs command makes the substitutions in the order they are written.

> subs(y(x)=1, x=2, ypp);

4

125

The General Power Rule

Until now, we have only proven the General Power Rule

d

dx
x

r
D r x

r�1

for integer exponents r and a few special rational exponents such as r D 1=2. Using

implicit differentiation, we can give the proof for any rational exponent r D m=n,

where m and n are integers, and n ¤ 0.

If y D xm=n, then yn
D xm. Differentiating implicitly with respect to x, we

obtain

ny
n�1 dy

dx
D mx

m�1
; so

dy

dx
D

m

n
x

m�1
y

1�n
D

m

n
x

m�1
x

.m=n/.1�n/
D

m

n
x

m�1C.m=n/�m
D

m

n
x

.m=n/�1
:

E X E R C I S E S 2.9

In Exercises 1–8, find dy=dx in terms of x and y.

1. xy � x C 2y D 1 2. x3
C y

3
D 1

3. x2
C xy D y

3 4. x3
y C xy

5
D 2

5. x2
y

3
D 2x � y 6. x2

C 4.y � 1/
2
D 4

7.
x � y

x C y
D

x2

y
C 1 8. x

p

x C y D 8� xy

In Exercises 9–16, find an equation of the tangent to the given

curve at the given point.

9. 2x2
C 3y2

D 5 at .1; 1/

10. x2y3
� x3y2

D 12 at .�1; 2/

11.
x

y
C

�

y

x

�3

D 2 at .�1;�1/

12. x C 2y C 1 D
y

2

x � 1
at .2;�1/

13. 2x C y �
p

2 sin.xy/ D �=2 at
�

�

4
; 1

�

14. tan.xy2
/ D

2xy

�
at

�

��;
1

2

�

15. x sin.xy � y2
/ D x

2
� 1 at .1; 1/

16. cos
�

�y

x

�

D

x
2

y
�

17

2
at .3; 1/

In Exercises 17–20, find y 00 in terms of x and y.
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E X A M P L E 5
Show that for any constants a and b, the curves x2

� y2
D a and

xy D b intersect at right angles, that is, at any point where they

intersect their tangents are perpendicular.

Solution The slope at any point on x2
� y2

D a is given by 2x � 2yy 0
D 0, or

y 0
D x=y. The slope at any point on xy D b is given by yC xy 0

D 0, or y 0
D �y=x.

If the two curves (they are both hyperbolas if a ¤ 0 and b ¤ 0) intersect at .x0; y0/,

then their slopes at that point are x0=y0 and�y0=x0, respectively. Clearly, these slopes

are negative reciprocals, so the tangent line to one curve is the normal line to the other

y

x

Figure 2.36 Some hyperbolas in the

family x2
� y2

D a (red) intersecting

some hyperbolas in the family xy D b

(blue) at right angles

at that point. Hence, the curves intersect at right angles. (See Figure 2.36.)

Higher-Order Derivatives

E X A M P L E 6 Find y 00
D

d2y

dx2
if xy C y2

D 2x.

Solution Twice differentiate both sides of the given equation with respect to x:

y C xy
0
C 2yy

0
D 2

y
0
C y

0
C xy

00
C 2.y

0
/
2
C 2yy

00
D 0:

Now solve these equations for y 0 and y 00.

y
0
D

2 � y

x C 2y

y
00
D �

2y
0
C 2.y

0
/
2

x C 2y
D �2

2 � y

x C 2y

1C
2 � y

x C 2y

x C 2y

D �2
.2 � y/.x C y C 2/

.x C 2y/3

D �2
2x � xy C 2y � y2

C 4 � 2y

.x C 2y/3
D �

8

.x C 2y/3
:

(We used the given equation to simplify the numerator in the last line.)

M Remark We can use Maple to calculate derivatives implicitly provided we show ex-

Note that Maple uses the symbol

@ instead of d when expressing

the derivative in Leibniz form.

This is because the expression it

is differentiating can involve

more than one variable; .@=@x/y

denotes the derivative of y with

respect to the specific variable x

rather than any other variables

on which y may depend. It is

called a partial derivative. We

will study partial derivatives in

Chapter 12. For the time being,

just regard @ as a d .

plicitly which variable depends on which. For example, we can calculate the value of

y
00 for the curve xy C y3

D 3 at the point .2; 1/ as follows. First, we differentiate the

equation with respect to x, writing y.x/ for y to indicate to Maple that it depends on

x.

> deq := diff(x*y(x)+(y(x))^3=3, x);

deq WD y.x/C x

�

@

@x
y.x/

�

C 3y.x/2

�

@

@x
y.x/

�

D 0

Now we solve the resulting equation for y 0:

> yp := solve(deq, diff(y(x),x));

yp WD �
y.x/

x C 3y.x/2

We can now differentiate yp with respect to x to get y 00:

> ypp := diff(yp,x);
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ypp WD �

@

@x
y.x/

x C 3y.x/2
C

y.x/

�

1C 6y.x/

�

@

@x
y.x/

��

.x C 3y.x/2/2

To get an expression depending only on x and y, we need to substitute the expression

obtained for the first derivative into this result. Since the result of this substitution will

involve compound fractions, let us simplify the result as well.

> ypp := simplify(subs(diff(y(x),x)=yp, ypp);

ypp WD 2
x y.x/

.x C 3y.x/2/3

This is y 00 expressed as a function of x and y. Now we want to substitute the coor-

dinates x D 2, y.x/ D 1 to get the value of y 00 at .2; 1/. However, the order of the

substitutions is important. First we must replace y.x/ with 1 and then replace x with

2. (If we replace x first, we would have to then replace y.2/ rather than y.x/ with 1.)

Maple’s subs command makes the substitutions in the order they are written.

> subs(y(x)=1, x=2, ypp);

4

125

The General Power Rule

Until now, we have only proven the General Power Rule

d

dx
x

r
D r x

r�1

for integer exponents r and a few special rational exponents such as r D 1=2. Using

implicit differentiation, we can give the proof for any rational exponent r D m=n,

where m and n are integers, and n ¤ 0.

If y D xm=n, then yn
D xm. Differentiating implicitly with respect to x, we

obtain

ny
n�1 dy

dx
D mx

m�1
; so

dy

dx
D

m

n
x

m�1
y

1�n
D

m

n
x

m�1
x

.m=n/.1�n/
D

m

n
x

m�1C.m=n/�m
D

m

n
x

.m=n/�1
:

E X E R C I S E S 2.9

In Exercises 1–8, find dy=dx in terms of x and y.

1. xy � x C 2y D 1 2. x3
C y

3
D 1

3. x2
C xy D y

3 4. x3
y C xy

5
D 2

5. x2
y

3
D 2x � y 6. x2

C 4.y � 1/
2
D 4

7.
x � y

x C y
D

x2

y
C 1 8. x

p

x C y D 8� xy

In Exercises 9–16, find an equation of the tangent to the given

curve at the given point.

9. 2x2
C 3y2

D 5 at .1; 1/

10. x2y3
� x3y2

D 12 at .�1; 2/

11.
x

y
C

�

y

x

�3

D 2 at .�1;�1/

12. x C 2y C 1 D
y

2

x � 1
at .2;�1/

13. 2x C y �
p

2 sin.xy/ D �=2 at
�

�

4
; 1

�

14. tan.xy2
/ D

2xy

�
at

�

��;
1

2

�

15. x sin.xy � y2
/ D x

2
� 1 at .1; 1/

16. cos
�

�y

x

�

D

x
2

y
�

17

2
at .3; 1/

In Exercises 17–20, find y 00 in terms of x and y.
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17. xy D x C y 18. x2
C 4y

2
D 4

19.I x
3
� y

2
C y

3
D x 20.I x

3
� 3xy C y

3
D 1

21. For x2
C y2

D a2 show that y 00
D �

a2

y3
.

22. For Ax2
C By2

D C show that y 00
D �

AC

B2y3
.

Use Maple or another computer algebra program to find the values

requested in Exercises 23–26.

M 23. Find the slope of x C y2
C y sinx D y3

C � at .�; 1/.

M 24. Find the slope of
x C
p

y

y C
p

x
D

3y � 9x

x C y
at the point .1; 4/.

M 25. If x C y5
C 1 D y C x

4
C xy

2, find d2
y=dx

2 at .1; 1/.

M 26. If x3
y C xy

3
D 11, find d3

y=dx
3 at .1; 2/.

27.I Show that the ellipse x2
C 2y2

D 2 and the hyperbola

2x2
� 2y2

D 1 intersect at right angles.

28.I Show that the ellipse x2=a2
C y2=b2

D 1 and the hyperbola

x2=A2
� y2=B2

D 1 intersect at right angles if A2
� a2 and

a2
� b2

D A2
C B2. (This says that the ellipse and the

hyperbola have the same foci.)

29.I If z D tan
x

2
, show that

dx

dz
D

2

1C z2
; sinx D

2z

1C z2
; and cos x D

1 � z2

1C z2
.

30.I Use implicit differentiation to find y 0 if y is defined by

.x � y/=.xC y/ D x=yC 1. Now show that there are, in fact,

no points on that curve, so the derivative you calculated is

meaningless. This is another example that demonstrates the

dangers of calculating something when you don’t know

whether or not it exists.

2.10 Antiderivatives and Initial-Value Problems
Throughout this chapter we have been concerned with the problem of finding the

derivative f 0 of a given function f . The reverse problem—given the derivative f 0,

find f —is also interesting and important. It is the problem studied in integral calculus

and is generally more difficult to solve than the problem of finding a derivative. We

will take a preliminary look at this problem in this section and will return to it in more

detail in Chapter 5.

Antiderivatives
We begin by defining an antiderivative of a function f to be a function F whose

derivative is f: It is appropriate to require that F 0
.x/ D f .x/ on an interval.

D E F I N I T I O N

7

An antiderivative of a function f on an interval I is another function F

satisfying

F
0
.x/ D f .x/ for x in I .

E X A M P L E 1

(a) F.x/ D x is an antiderivative of the function f .x/ D 1 on any interval because

F 0.x/ D 1 D f .x/ everywhere.

(b) G.x/ D 1
2
x2 is an antiderivative of the function g.x/ D x on any interval because

G 0.x/ D 1
2
.2x/ D x D g.x/ everywhere.

(c) R.x/ D �1
3

cos.3x/ is an antiderivative of r.x/ D sin.3x/ on any interval be-

cause R0.x/ D �1
3
.�3 sin.3x// D sin.3x/ D r.x/ everywhere.

(d) F.x/ D �1=x is an antiderivative of f .x/ D 1=x2 on any interval not containing

x D 0 because F 0
.x/ D 1=x

2
D f .x/ everywhere except at x D 0.

Antiderivatives are not unique; since a constant has derivative zero, you can always

add any constant to an antiderivative F of a function f on an interval and get another

antiderivative of f on that interval. More importantly, all antiderivatives of f on an

interval can be obtained by adding constants to any particular one. If F andG are both
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antiderivatives of f on an interval I; then

d

dx

�

G.x/� F.x/
�

D f .x/� f .x/ D 0

on I; so G.x/ � F.x/ D C (a constant) on I by Theorem 13 of Section 2.8. Thus,

G.x/ D F.x/C C on I:

Note that neither this conclusion nor Theorem 13 is valid over a set that is not an

interval. For example, the derivative of

sgn x D
n

�1 if x < 0

1 if x > 0

is 0 for all x ¤ 0, but sgn x is not constant for all x ¤ 0. sgn x has different constant

values on the two intervals .�1; 0/ and .0;1/ comprising its domain.

The Indefinite Integral
The general antiderivative of a function f .x/ on an interval I is F.x/ C C , where

F.x/ is any particular antiderivative of f .x/ on I and C is a constant. This general

antiderivative is called the indefinite integral of f .x/ on I and is denoted
R

f .x/ dx.

D E F I N I T I O N

8

The indefinite integral of f .x/ on interval I is

Z

f .x/ dx D F.x/C C on I;

provided F 0
.x/ D f .x/ for all x in I:

The symbol
R

is called an integral sign. It is shaped like an elongated “S” for reasons

that will only become apparent when we study the definite integral in Chapter 5. Just

as you regard dy=dx as a single symbol representing the derivative of y with respect

to x, so you should regard
R

f .x/ dx as a single symbol representing the indefinite

integral (general antiderivative) of f with respect to x. The constant C is called a

constant of integration.

E X A M P L E 2

(a)

Z

x dx D
1

2
x

2
C C on any interval.

(b)

Z

.x
3
� 5x

2
C 7/ dx D

1

4
x

4
�

5

3
x

3
C 7x C C on any interval.

(c)

Z �

1

x2
C

2
p

x

�

dx D �
1

x
C 4
p

x C C on any interval to the right of x D 0.

All three formulas above can be checked by differentiating the right-hand sides.

Finding antiderivatives is generally more difficult than finding derivatives; many func-

tions do not have antiderivatives that can be expressed as combinations of finitely many

elementary functions. However, every formula for a derivative can be rephrased as a

formula for an antiderivative. For instance,

d

dx
sin x D cos xI therefore,

Z

cos x dx D sinx C C:

We will develop several techniques for finding antiderivatives in later chapters. Until

then, we must content ourselves with being able to write a few simple antiderivatives

based on the known derivatives of elementary functions:
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17. xy D x C y 18. x2
C 4y

2
D 4

19.I x
3
� y

2
C y

3
D x 20.I x

3
� 3xy C y

3
D 1

21. For x2
C y2

D a2 show that y 00
D �

a2

y3
.

22. For Ax2
C By2

D C show that y 00
D �

AC

B2y3
.

Use Maple or another computer algebra program to find the values

requested in Exercises 23–26.

M 23. Find the slope of x C y2
C y sinx D y3

C � at .�; 1/.

M 24. Find the slope of
x C
p

y

y C
p

x
D

3y � 9x

x C y
at the point .1; 4/.

M 25. If x C y5
C 1 D y C x

4
C xy

2, find d2
y=dx

2 at .1; 1/.

M 26. If x3
y C xy

3
D 11, find d3

y=dx
3 at .1; 2/.

27.I Show that the ellipse x2
C 2y2

D 2 and the hyperbola

2x2
� 2y2

D 1 intersect at right angles.

28.I Show that the ellipse x2=a2
C y2=b2

D 1 and the hyperbola

x2=A2
� y2=B2

D 1 intersect at right angles if A2
� a2 and

a2
� b2

D A2
C B2. (This says that the ellipse and the

hyperbola have the same foci.)

29.I If z D tan
x

2
, show that

dx

dz
D

2

1C z2
; sinx D

2z

1C z2
; and cos x D

1 � z2

1C z2
.

30.I Use implicit differentiation to find y 0 if y is defined by

.x � y/=.xC y/ D x=yC 1. Now show that there are, in fact,

no points on that curve, so the derivative you calculated is

meaningless. This is another example that demonstrates the

dangers of calculating something when you don’t know

whether or not it exists.

2.10 Antiderivatives and Initial-Value Problems
Throughout this chapter we have been concerned with the problem of finding the

derivative f 0 of a given function f . The reverse problem—given the derivative f 0,

find f —is also interesting and important. It is the problem studied in integral calculus

and is generally more difficult to solve than the problem of finding a derivative. We

will take a preliminary look at this problem in this section and will return to it in more

detail in Chapter 5.

Antiderivatives
We begin by defining an antiderivative of a function f to be a function F whose

derivative is f: It is appropriate to require that F 0
.x/ D f .x/ on an interval.

D E F I N I T I O N

7

An antiderivative of a function f on an interval I is another function F

satisfying

F
0
.x/ D f .x/ for x in I .

E X A M P L E 1

(a) F.x/ D x is an antiderivative of the function f .x/ D 1 on any interval because

F 0.x/ D 1 D f .x/ everywhere.

(b) G.x/ D 1
2
x2 is an antiderivative of the function g.x/ D x on any interval because

G 0.x/ D 1
2
.2x/ D x D g.x/ everywhere.

(c) R.x/ D �1
3

cos.3x/ is an antiderivative of r.x/ D sin.3x/ on any interval be-

cause R0.x/ D �1
3
.�3 sin.3x// D sin.3x/ D r.x/ everywhere.

(d) F.x/ D �1=x is an antiderivative of f .x/ D 1=x2 on any interval not containing

x D 0 because F 0
.x/ D 1=x

2
D f .x/ everywhere except at x D 0.

Antiderivatives are not unique; since a constant has derivative zero, you can always

add any constant to an antiderivative F of a function f on an interval and get another

antiderivative of f on that interval. More importantly, all antiderivatives of f on an

interval can be obtained by adding constants to any particular one. If F andG are both
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antiderivatives of f on an interval I; then

d

dx

�

G.x/� F.x/
�

D f .x/� f .x/ D 0

on I; so G.x/ � F.x/ D C (a constant) on I by Theorem 13 of Section 2.8. Thus,

G.x/ D F.x/C C on I:

Note that neither this conclusion nor Theorem 13 is valid over a set that is not an

interval. For example, the derivative of

sgn x D
n

�1 if x < 0

1 if x > 0

is 0 for all x ¤ 0, but sgn x is not constant for all x ¤ 0. sgn x has different constant

values on the two intervals .�1; 0/ and .0;1/ comprising its domain.

The Indefinite Integral
The general antiderivative of a function f .x/ on an interval I is F.x/ C C , where

F.x/ is any particular antiderivative of f .x/ on I and C is a constant. This general

antiderivative is called the indefinite integral of f .x/ on I and is denoted
R

f .x/ dx.

D E F I N I T I O N

8

The indefinite integral of f .x/ on interval I is

Z

f .x/ dx D F.x/C C on I;

provided F 0
.x/ D f .x/ for all x in I:

The symbol
R

is called an integral sign. It is shaped like an elongated “S” for reasons

that will only become apparent when we study the definite integral in Chapter 5. Just

as you regard dy=dx as a single symbol representing the derivative of y with respect

to x, so you should regard
R

f .x/ dx as a single symbol representing the indefinite

integral (general antiderivative) of f with respect to x. The constant C is called a

constant of integration.

E X A M P L E 2

(a)

Z

x dx D
1

2
x

2
C C on any interval.

(b)

Z

.x
3
� 5x

2
C 7/ dx D

1

4
x

4
�

5

3
x

3
C 7x C C on any interval.

(c)

Z �

1

x2
C

2
p

x

�

dx D �
1

x
C 4
p

x C C on any interval to the right of x D 0.

All three formulas above can be checked by differentiating the right-hand sides.

Finding antiderivatives is generally more difficult than finding derivatives; many func-

tions do not have antiderivatives that can be expressed as combinations of finitely many

elementary functions. However, every formula for a derivative can be rephrased as a

formula for an antiderivative. For instance,

d

dx
sin x D cos xI therefore,

Z

cos x dx D sinx C C:

We will develop several techniques for finding antiderivatives in later chapters. Until

then, we must content ourselves with being able to write a few simple antiderivatives

based on the known derivatives of elementary functions:
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(a)

Z

dx D

Z

1 dx D x C C

(c)

Z

x
2
dx D

x3

3
C C

(e)

Z

1
p

x
dx D 2

p

x C C

(g)

Z

sin x dx D � cos x C C

(i)

Z

sec2
x dx D tan x C C

(k)

Z

sec x tan x dx D secx C C

(b)

Z

x dx D
x2

2
C C

(d)

Z

1

x2
dx D

Z

dx

x2
D �

1

x
C C

(f)

Z

x
r
dx D

xrC1

r C 1
C C .r ¤ �1/

(h)

Z

cos x dx D sin x C C

(j)

Z

csc2
x dx D � cot x C C

(l)

Z

csc x cot x dx D � csc x C C

Observe that formulas (a)–(e) are special cases of formula (f). For the moment, r must

be rational in (f), but this restriction will be removed later.

The rule for differentiating sums and constant multiples of functions translates

into a similar rule for antiderivatives, as reflected in parts (b) and (c) of Example 2

above.

The graphs of the different antiderivatives of the same function on the same in-

y

x

C D �3

C D �2

C D �1

C D 0

C D 1

C D 2

C D 3

Figure 2.37 Graphs of various

antiderivatives of the same function

terval are vertically displaced versions of the same curve, as shown in Figure 2.37. In

general, only one of these curves will pass through any given point, so we can obtain a

unique antiderivative of a given function on an interval by requiring the antiderivative

to take a prescribed value at a particular point x.

E X A M P L E 3
Find the function f .x/ whose derivative is f 0.x/ D 6x2

� 1 for

all real x and for which f .2/ D 10.

Solution Since f 0.x/ D 6x2
� 1, we have

f .x/ D

Z

.6x
2
� 1/ dx D 2x

3
� x C C

for some constant C . Since f .2/ D 10, we have

10 D f .2/ D 16 � 2C C:

Thus, C D �4 and f .x/ D 2x3
� x � 4. (By direct calculation we can verify that

f 0.x/ D 6x2
� 1 and f .2/ D 10.)

E X A M P L E 4 Find the function g.t/ whose derivative is
t C 5

t3=2
and whose graph

passes through the point .4; 1/.

Solution We have

g.t/ D

Z

t C 5

t3=2
dt

D

Z

.t
�1=2
C 5t

�3=2
/ dt

D 2t
1=2
� 10t

�1=2
C C

Since the graph of y D g.t/ must pass through .4; 1/, we require that

1 D g.4/ D 4 � 5C C:

Hence, C D 2 and

g.t/ D 2t
1=2
� 10t

�1=2
C 2 for t > 0:
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Differential Equations and Initial-Value Problems
A differential equation (DE) is an equation involving one or more derivatives of an

unknown function. Any function whose derivatives satisfy the differential equation

identically on an interval is called a solution of the equation on that interval. For

instance, the function y D x3
� x is a solution of the differential equation

dy

dx
D 3x

2
� 1

on the whole real line. This differential equation has more than one solution; in fact,

y D x3
� x C C is a solution for any value of the constant C:

E X A M P L E 5
Show that for any constantsA andB , the function y D Ax3

CB=x

is a solution of the differential equation x2y 00
� xy 0

� 3y D 0 on

any interval not containing 0.

Solution If y D Ax3
C B=x, then for x ¤ 0 we have

y
0
D 3Ax

2
� B=x

2 and y
00
D 6Ax C 2B=x

3
:

Therefore,

x
2
y

00
� xy

0
� 3y D 6Ax

3
C

2B

x
� 3Ax

3
C

B

x
� 3Ax

3
�

3B

x
D 0;

provided x ¤ 0. This is what had to be proved.

The order of a differential equation is the order of the highest-order derivative appear-

ing in the equation. The DE in Example 5 is a second-order DE since it involves y 00

and no higher derivatives of y. Note that the solution verified in Example 5 involves

two arbitrary constants, A and B . This solution is called a general solution to the

equation, since it can be shown that every solution is of this form for some choice of

the constants A and B . A particular solution of the equation is obtained by assign-

ing specific values to these constants. The general solution of an nth-order differential

equation typically involves n arbitrary constants.

An initial-value problem (IVP) is a problem that consists of:

(i) a differential equation (to be solved for an unknown function) and

(ii) prescribed values for the solution and enough of its derivatives at a particular point

(the initial point) to determine values for all the arbitrary constants in the general

solution of the DE and so yield a particular solution.

Remark It is common to use the same symbol, say y, to denote both the dependent

variable and the function that is the solution to a DE or an IVP; that is, we call the

solution function y D y.x/ rather than y D f .x/.

Remark The solution of an IVP is valid in the largest interval containing the initial

point where the solution function is defined.

E X A M P L E 6
Use the result of Example 5 to solve the following initial-value

problem.

8

<

:

x2y 00
� xy 0

� 3y D 0 .x > 0/

y.1/ D 2

y 0.1/ D �6
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(a)

Z

dx D

Z

1 dx D x C C

(c)

Z

x
2
dx D

x3

3
C C

(e)

Z

1
p

x
dx D 2

p

x C C

(g)

Z

sin x dx D � cos x C C

(i)

Z

sec2
x dx D tan x C C

(k)

Z

sec x tan x dx D secx C C

(b)

Z

x dx D
x2

2
C C

(d)

Z

1

x2
dx D

Z

dx

x2
D �

1

x
C C

(f)

Z

x
r
dx D

xrC1

r C 1
C C .r ¤ �1/

(h)

Z

cos x dx D sin x C C

(j)

Z

csc2
x dx D � cot x C C

(l)

Z

csc x cot x dx D � csc x C C

Observe that formulas (a)–(e) are special cases of formula (f). For the moment, r must

be rational in (f), but this restriction will be removed later.

The rule for differentiating sums and constant multiples of functions translates

into a similar rule for antiderivatives, as reflected in parts (b) and (c) of Example 2

above.

The graphs of the different antiderivatives of the same function on the same in-

y

x

C D �3

C D �2

C D �1

C D 0

C D 1

C D 2

C D 3

Figure 2.37 Graphs of various

antiderivatives of the same function

terval are vertically displaced versions of the same curve, as shown in Figure 2.37. In

general, only one of these curves will pass through any given point, so we can obtain a

unique antiderivative of a given function on an interval by requiring the antiderivative

to take a prescribed value at a particular point x.

E X A M P L E 3
Find the function f .x/ whose derivative is f 0.x/ D 6x2

� 1 for

all real x and for which f .2/ D 10.

Solution Since f 0.x/ D 6x2
� 1, we have

f .x/ D

Z

.6x
2
� 1/ dx D 2x

3
� x C C

for some constant C . Since f .2/ D 10, we have

10 D f .2/ D 16 � 2C C:

Thus, C D �4 and f .x/ D 2x3
� x � 4. (By direct calculation we can verify that

f 0.x/ D 6x2
� 1 and f .2/ D 10.)

E X A M P L E 4 Find the function g.t/ whose derivative is
t C 5

t3=2
and whose graph

passes through the point .4; 1/.

Solution We have

g.t/ D

Z

t C 5

t3=2
dt

D

Z

.t
�1=2
C 5t

�3=2
/ dt

D 2t
1=2
� 10t

�1=2
C C

Since the graph of y D g.t/ must pass through .4; 1/, we require that

1 D g.4/ D 4 � 5C C:

Hence, C D 2 and

g.t/ D 2t
1=2
� 10t

�1=2
C 2 for t > 0:
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Differential Equations and Initial-Value Problems
A differential equation (DE) is an equation involving one or more derivatives of an

unknown function. Any function whose derivatives satisfy the differential equation

identically on an interval is called a solution of the equation on that interval. For

instance, the function y D x3
� x is a solution of the differential equation

dy

dx
D 3x

2
� 1

on the whole real line. This differential equation has more than one solution; in fact,

y D x3
� x C C is a solution for any value of the constant C:

E X A M P L E 5
Show that for any constantsA andB , the function y D Ax3

CB=x

is a solution of the differential equation x2y 00
� xy 0

� 3y D 0 on

any interval not containing 0.

Solution If y D Ax3
C B=x, then for x ¤ 0 we have

y
0
D 3Ax

2
� B=x

2 and y
00
D 6Ax C 2B=x

3
:

Therefore,

x
2
y

00
� xy

0
� 3y D 6Ax

3
C

2B

x
� 3Ax

3
C

B

x
� 3Ax

3
�

3B

x
D 0;

provided x ¤ 0. This is what had to be proved.

The order of a differential equation is the order of the highest-order derivative appear-

ing in the equation. The DE in Example 5 is a second-order DE since it involves y 00

and no higher derivatives of y. Note that the solution verified in Example 5 involves

two arbitrary constants, A and B . This solution is called a general solution to the

equation, since it can be shown that every solution is of this form for some choice of

the constants A and B . A particular solution of the equation is obtained by assign-

ing specific values to these constants. The general solution of an nth-order differential

equation typically involves n arbitrary constants.

An initial-value problem (IVP) is a problem that consists of:

(i) a differential equation (to be solved for an unknown function) and

(ii) prescribed values for the solution and enough of its derivatives at a particular point

(the initial point) to determine values for all the arbitrary constants in the general

solution of the DE and so yield a particular solution.

Remark It is common to use the same symbol, say y, to denote both the dependent

variable and the function that is the solution to a DE or an IVP; that is, we call the

solution function y D y.x/ rather than y D f .x/.

Remark The solution of an IVP is valid in the largest interval containing the initial

point where the solution function is defined.

E X A M P L E 6
Use the result of Example 5 to solve the following initial-value

problem.

8

<

:

x2y 00
� xy 0

� 3y D 0 .x > 0/

y.1/ D 2

y 0.1/ D �6
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Solution As shown in Example 5, the DE x2y 00
� xy 0

� 3y D 0 has solution y D

Ax
3
CB=x, which has derivative y 0

D 3Ax
2
�B=x

2. At x D 1 we must have y D 2

and y 0
D �6. Therefore,

AC B D 2

3A � B D �6:

Solving these two linear equations for A and B , we get A D �1 and B D 3. Hence,

y D �x3
C 3=x for x > 0 is the solution of the IVP.

One of the simplest kinds of differential equation is the equation

dy

dx
D f .x/;

which is to be solved for y as a function of x. Evidently the solution is

y D

Z

f .x/ dx:

Our ability to find the unknown function y.x/ depends on our ability to find an

antiderivative of f:

E X A M P L E 7
Solve the initial-value problem

8

<

:

y 0
D

3C 2x2

x2

y.�2/ D 1:

Where is the solution valid?

Solution

y D

Z �

3

x2
C 2

�

dx D �
3

x
C 2x C C

1 D y.�2/ D
3

2
� 4C C

Therefore, C D 7
2

and

y D �
3

x
C 2x C

7

2
:

Although the solution function appears to be defined for all x except 0, it is only a

solution of the given IVP for x < 0. This is because .�1; 0/ is the largest interval

that contains the initial point �2 but not the point x D 0, where the solution y is

undefined.

E X A M P L E 8
Solve the second-order IVP

8

<

:

y 00
D sin x

y.�/ D 2

y 0.�/ D �1:
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Solution Since .y 0/0 D y 00
D sin x, we have

y
0
.x/ D

Z

sin x dx D � cos x C C1:

The initial condition for y 0 gives

�1 D y
0
.�/ D � cos� C C1 D 1C C1;

so that C1 D �2 and y 0.x/ D �.cos x C 2/. Thus,

y.x/ D �

Z

.cos x C 2/ dx

D � sin x � 2x C C2:

The initial condition for y now gives

2 D y.�/ D � sin� � 2� C C2 D �2� C C2;

so that C2 D 2C 2� . The solution to the given IVP is

y D 2C 2� � sin x � 2x

and is valid for all x.

Differential equations and initial-value problems are of great importance in applica-

tions of calculus, especially for expressing in mathematical form certain laws of nature

that involve rates of change of quantities. A large portion of the total mathematical

endeavour of the last two hundred years has been devoted to their study. They are usu-

ally treated in separate courses on differential equations, but we will discuss them from

time to time in this book when appropriate. Throughout this book, except in sections

devoted entirely to differential equations, we will use the symbol P to mark exercises

about differential equations and initial-value problems.

E X E R C I S E S 2.10

In Exercises 1–14, find the given indefinite integrals.

1.

Z

5 dx 2.

Z

x
2
dx

3.

Z

p

x dx 4.

Z

x
12
dx

5.

Z

x
3
dx 6.

Z

.x C cosx/ dx

7.

Z

tanx cos x dx 8.

Z

1C cos3 x

cos2 x
dx

9.

Z

.a
2
� x

2
/ dx 10.

Z

.AC Bx C Cx
2
/ dx

11.

Z

.2x
1=2
C 3x

1=3
/ dx 12.

Z

6.x � 1/

x4=3
dx

13.

Z �

x3

3
�

x2

2
C x � 1

�

dx

14. 105

Z

.1C t
2
C t

4
C t

6
/ dt

In Exercises 15–22, find the given indefinite integrals. This may

require guessing the form of an antiderivative and then checking

by differentiation. For instance, you might suspect that
R

cos.5x � 2/ dx D k sin.5x � 2/CC for some k. Differentiating

the answer shows that k must be 1=5.

15.

Z

cos.2x/ dx 16.

Z

sin
�

x

2

�

dx

17.I

Z

dx

.1C x/2
18.I

Z

sec.1 � x/ tan.1 � x/ dx

19.I

Z

p

2x C 3 dx 20.I

Z

4
p

x C 1
dx

21.

Z

2x sin.x2
/ dx 22.I

Z

2x
p

x2
C 1

dx

Use known trigonometric identities such as

sec2 x D 1C tan2 x, cos.2x/ D 2 cos2 x � 1 D 1 � 2 sin2
x, and

sin.2x/ D 2 sinx cosx to help you evaluate the indefinite integrals

in Exercises 23–26.

23.I

Z

tan2
x dx 24.I

Z

sinx cosx dx
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Solution As shown in Example 5, the DE x2y 00
� xy 0

� 3y D 0 has solution y D

Ax
3
CB=x, which has derivative y 0

D 3Ax
2
�B=x

2. At x D 1 we must have y D 2

and y 0
D �6. Therefore,

AC B D 2

3A � B D �6:

Solving these two linear equations for A and B , we get A D �1 and B D 3. Hence,

y D �x3
C 3=x for x > 0 is the solution of the IVP.

One of the simplest kinds of differential equation is the equation

dy

dx
D f .x/;

which is to be solved for y as a function of x. Evidently the solution is

y D

Z

f .x/ dx:

Our ability to find the unknown function y.x/ depends on our ability to find an

antiderivative of f:

E X A M P L E 7
Solve the initial-value problem

8

<

:

y 0
D

3C 2x2

x2

y.�2/ D 1:

Where is the solution valid?

Solution

y D

Z �

3

x2
C 2

�

dx D �
3

x
C 2x C C

1 D y.�2/ D
3

2
� 4C C

Therefore, C D 7
2

and

y D �
3

x
C 2x C

7

2
:

Although the solution function appears to be defined for all x except 0, it is only a

solution of the given IVP for x < 0. This is because .�1; 0/ is the largest interval

that contains the initial point �2 but not the point x D 0, where the solution y is

undefined.

E X A M P L E 8
Solve the second-order IVP

8

<

:

y 00
D sin x

y.�/ D 2

y 0.�/ D �1:
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Solution Since .y 0/0 D y 00
D sin x, we have

y
0
.x/ D

Z

sin x dx D � cos x C C1:

The initial condition for y 0 gives

�1 D y
0
.�/ D � cos� C C1 D 1C C1;

so that C1 D �2 and y 0.x/ D �.cos x C 2/. Thus,

y.x/ D �

Z

.cos x C 2/ dx

D � sin x � 2x C C2:

The initial condition for y now gives

2 D y.�/ D � sin� � 2� C C2 D �2� C C2;

so that C2 D 2C 2� . The solution to the given IVP is

y D 2C 2� � sin x � 2x

and is valid for all x.

Differential equations and initial-value problems are of great importance in applica-

tions of calculus, especially for expressing in mathematical form certain laws of nature

that involve rates of change of quantities. A large portion of the total mathematical

endeavour of the last two hundred years has been devoted to their study. They are usu-

ally treated in separate courses on differential equations, but we will discuss them from

time to time in this book when appropriate. Throughout this book, except in sections

devoted entirely to differential equations, we will use the symbol P to mark exercises

about differential equations and initial-value problems.

E X E R C I S E S 2.10

In Exercises 1–14, find the given indefinite integrals.

1.

Z

5 dx 2.

Z

x
2
dx

3.

Z

p

x dx 4.

Z

x
12
dx

5.

Z

x
3
dx 6.

Z

.x C cosx/ dx

7.

Z

tanx cos x dx 8.

Z

1C cos3 x

cos2 x
dx

9.

Z

.a
2
� x

2
/ dx 10.

Z

.AC Bx C Cx
2
/ dx

11.

Z

.2x
1=2
C 3x

1=3
/ dx 12.

Z

6.x � 1/

x4=3
dx

13.

Z �

x3

3
�

x2

2
C x � 1

�

dx

14. 105

Z

.1C t
2
C t

4
C t

6
/ dt

In Exercises 15–22, find the given indefinite integrals. This may

require guessing the form of an antiderivative and then checking

by differentiation. For instance, you might suspect that
R

cos.5x � 2/ dx D k sin.5x � 2/CC for some k. Differentiating

the answer shows that k must be 1=5.

15.

Z

cos.2x/ dx 16.

Z

sin
�

x

2

�

dx

17.I

Z

dx

.1C x/2
18.I

Z

sec.1 � x/ tan.1 � x/ dx

19.I

Z

p

2x C 3 dx 20.I

Z

4
p

x C 1
dx

21.

Z

2x sin.x2
/ dx 22.I

Z

2x
p

x2
C 1

dx

Use known trigonometric identities such as

sec2 x D 1C tan2 x, cos.2x/ D 2 cos2 x � 1 D 1 � 2 sin2
x, and

sin.2x/ D 2 sinx cosx to help you evaluate the indefinite integrals

in Exercises 23–26.

23.I

Z

tan2
x dx 24.I

Z

sinx cosx dx
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25.I

Z

cos2
x dx 26.I

Z

sin2
x dx

Differential equations

In Exercises 27–42, find the solution y D y.x/ to the given

initial-value problem. On what interval is the solution valid? (Note

that exercises involving differential equations are prefixed with the

symbolP .)

27.P

(

y
0
D x � 2

y.0/ D 3
28.P

(

y
0
D x

�2
� x

�3

y.�1/ D 0

29.P

(

y
0
D 3
p

x

y.4/ D 1
30.P

(

y
0
D x

1=3

y.0/ D 5

31.P

(

y
0
D Ax

2
C Bx C C

y.1/ D 1
32.P

(

y
0
D x

�9=7

y.1/ D �4

33.P

(

y
0
D cos x

y.�=6/ D 2
34.P

(

y
0
D sin.2x/

y.�=2/ D 1

35.P

(

y
0
D sec2

x

y.0/ D 1
36.P

(

y
0
D sec2

x

y.�/ D 1

37.P

8

ˆ

<

ˆ

:

y
00
D 2

y
0
.0/ D 5

y.0/ D �3

38.P

8

ˆ

<

ˆ

:

y
00
D x

�4

y
0
.1/ D 2

y.1/ D 1

39.P

8

ˆ

<

ˆ

:

y
00
D x

3
� 1

y
0
.0/ D 0

y.0/ D 8

40.P

8

ˆ

<

ˆ

:

y
00
D 5x

2
� 3x

�1=2

y
0
.1/ D 2

y.1/ D 0

41.P

8

ˆ

<

ˆ

:

y
00
D cos x

y.0/ D 0

y
0
.0/ D 1

42.P

8

ˆ

<

ˆ

:

y
00
D x C sinx

y.0/ D 2

y
0
.0/ D 0

43.P Show that for any constants A and B the function

y D y.x/ D Ax C B=x satisfies the second-order differential

equation x2y 00
C xy 0

� y D 0 for x ¤ 0.

Find a function y satisfying the initial-value problem:

8

<

:

x2y 00
C xy 0

� y D 0 .x > 0/

y.1/ D 2

y 0.1/ D 4:

44.P Show that for any constants A and B the function

y D Axr1
C Bxr2 satisfies, for x > 0, the differential

equation ax2
y

00
C bxy

0
C cy D 0, provided that r1 and r2

are two distinct rational roots of the quadratic equation

ar.r � 1/C br C c D 0.

Use the result of Exercise 44 to solve the initial-value problems in

Exercises 45–46 on the interval x > 0.

45.P

8

ˆ

ˆ

<

ˆ

ˆ

:

4x2y 00
C 4xy 0

� y

D 0

y.4/ D 2

y 0.4/ D �2

46.P

8

<

:

x2y 00
� 6y D 0

y.1/ D 1

y 0.1/ D 1

2.11 Velocity and Acceleration

Velocity and Speed
Suppose that an object is moving along a straight line (say the x-axis) so that its po-

sition x is a function of time t , say x D x.t/. (We are using x to represent both the

dependent variable and the function.) Suppose we are measuring x in metres and t

in seconds. The average velocity of the object over the time interval Œt; t C h� is the

change in position divided by the change in time, that is, the Newton quotient

vaverage D
�x

�t
D

x.t C h/ � x.t/

h
m/s:

The velocity v.t/ of the object at time t is the limit of this average velocity as h! 0.

Thus, it is the rate of change (the derivative) of position with respect to time:

Velocity: v.t/ D
dx

dt
D x

0
.t/:

Besides telling us how fast the object is moving, the velocity also tells us in which

direction it is moving. If v.t/ > 0, then x is increasing, so the object is moving to the

right; if v.t/ < 0, then x is decreasing, so the object is moving to the left. At a critical

point of x, that is, a time t when v.t/ D 0, the object is instantaneously at rest—at that

instant it is not moving in either direction.

We distinguish between the term velocity (which involves direction of motion as

well as the rate) and speed, which only involves the rate and not the direction. The
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speed is the absolute value of the velocity:

Speed: s.t/ D jv.t/j D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

:

A speedometer gives us the speed a vehicle is moving; it does not give the velocity.

The speedometer does not start to show negative values if the vehicle turns around and

heads in the opposite direction.

E X A M P L E 1

(a) Determine the velocity v.t/ at time t of an object moving along the x-axis so that

at time t its position is given by

x D v0t C
1

2
at

2
;

where v0 and a are constants.

(b) Draw the graph of v.t/, and show that the area under the graph and above the

t-axis, over Œt1; t2�, is equal to the distance the object travels in that time interval.

Solution The velocity is given by

v.t/ D
dx

dt
D v0 C at:

Its graph is a straight line with slope a and intercept v0 on the vertical (velocity) axis.

The area under the graph (shaded in Figure 2.38) is the sum of the areas of a rectangle

and a triangle. Each has base t2 � t1. The rectangle has height v.t1/ D v0 C at1, and

the triangle has height a.t2 � t1/. (Why?) Thus, the shaded area is equal to

y

t

y D v.t/ D v0 C at

t1 t2

t2 � t1

a.t2 � t1/

v0

Figure 2.38 The shaded area equals the

distance travelled between t1 and t2

Area D .t2 � t1/.v0 C at1/C
1

2
.t2 � t1/Œa.t2 � t1/�

D .t2 � t1/

h

v0 C at1 C
a

2
.t2 � t1/

i

D .t2 � t1/

h

v0 C
a

2
.t2 C t1/

i

D v0.t2 � t1/C
a

2
.t

2
2 � t

2
1 /

D x.t2/ � x.t1/;

which is the distance travelled by the object between times t1 and t2.

Remark In Example 1 we differentiated the position x to get the velocity v and then

used the area under the velocity graph to recover information about the position. It

appears that there is a connection between finding areas and finding functions that

have given derivatives (i.e., finding antiderivatives). This connection, which we will

explore in Chapter 5, is perhaps the most important idea in calculus!

Acceleration
The derivative of the velocity also has a useful interpretation. The rate of change of the

velocity with respect to time is the acceleration of the moving object. It is measured

in units of distance/time2. The value of the acceleration at time t is

Acceleration: a.t/ D v
0
.t/ D

dv

dt
D

d2x

dt2
:
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25.I

Z

cos2
x dx 26.I

Z

sin2
x dx

Differential equations

In Exercises 27–42, find the solution y D y.x/ to the given

initial-value problem. On what interval is the solution valid? (Note

that exercises involving differential equations are prefixed with the

symbolP .)

27.P

(

y
0
D x � 2

y.0/ D 3
28.P

(

y
0
D x

�2
� x

�3

y.�1/ D 0

29.P

(

y
0
D 3
p

x

y.4/ D 1
30.P

(

y
0
D x

1=3

y.0/ D 5

31.P

(

y
0
D Ax

2
C Bx C C

y.1/ D 1
32.P

(

y
0
D x

�9=7

y.1/ D �4

33.P

(

y
0
D cos x

y.�=6/ D 2
34.P

(

y
0
D sin.2x/

y.�=2/ D 1

35.P

(

y
0
D sec2

x

y.0/ D 1
36.P

(

y
0
D sec2

x

y.�/ D 1

37.P

8

ˆ

<

ˆ

:

y
00
D 2

y
0
.0/ D 5

y.0/ D �3

38.P

8

ˆ

<

ˆ

:

y
00
D x

�4

y
0
.1/ D 2

y.1/ D 1

39.P

8

ˆ

<

ˆ

:

y
00
D x

3
� 1

y
0
.0/ D 0

y.0/ D 8

40.P

8

ˆ

<

ˆ

:

y
00
D 5x

2
� 3x

�1=2

y
0
.1/ D 2

y.1/ D 0

41.P

8

ˆ

<

ˆ

:

y
00
D cos x

y.0/ D 0

y
0
.0/ D 1

42.P

8

ˆ

<

ˆ

:

y
00
D x C sinx

y.0/ D 2

y
0
.0/ D 0

43.P Show that for any constants A and B the function

y D y.x/ D Ax C B=x satisfies the second-order differential

equation x2y 00
C xy 0

� y D 0 for x ¤ 0.

Find a function y satisfying the initial-value problem:

8

<

:

x2y 00
C xy 0

� y D 0 .x > 0/

y.1/ D 2

y 0.1/ D 4:

44.P Show that for any constants A and B the function

y D Axr1
C Bxr2 satisfies, for x > 0, the differential

equation ax2
y

00
C bxy

0
C cy D 0, provided that r1 and r2

are two distinct rational roots of the quadratic equation

ar.r � 1/C br C c D 0.

Use the result of Exercise 44 to solve the initial-value problems in

Exercises 45–46 on the interval x > 0.

45.P

8

ˆ

ˆ

<

ˆ

ˆ

:

4x2y 00
C 4xy 0

� y

D 0

y.4/ D 2

y 0.4/ D �2

46.P

8

<

:

x2y 00
� 6y D 0

y.1/ D 1

y 0.1/ D 1

2.11 Velocity and Acceleration

Velocity and Speed
Suppose that an object is moving along a straight line (say the x-axis) so that its po-

sition x is a function of time t , say x D x.t/. (We are using x to represent both the

dependent variable and the function.) Suppose we are measuring x in metres and t

in seconds. The average velocity of the object over the time interval Œt; t C h� is the

change in position divided by the change in time, that is, the Newton quotient

vaverage D
�x

�t
D

x.t C h/ � x.t/

h
m/s:

The velocity v.t/ of the object at time t is the limit of this average velocity as h! 0.

Thus, it is the rate of change (the derivative) of position with respect to time:

Velocity: v.t/ D
dx

dt
D x

0
.t/:

Besides telling us how fast the object is moving, the velocity also tells us in which

direction it is moving. If v.t/ > 0, then x is increasing, so the object is moving to the

right; if v.t/ < 0, then x is decreasing, so the object is moving to the left. At a critical

point of x, that is, a time t when v.t/ D 0, the object is instantaneously at rest—at that

instant it is not moving in either direction.

We distinguish between the term velocity (which involves direction of motion as

well as the rate) and speed, which only involves the rate and not the direction. The
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speed is the absolute value of the velocity:

Speed: s.t/ D jv.t/j D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

:

A speedometer gives us the speed a vehicle is moving; it does not give the velocity.

The speedometer does not start to show negative values if the vehicle turns around and

heads in the opposite direction.

E X A M P L E 1

(a) Determine the velocity v.t/ at time t of an object moving along the x-axis so that

at time t its position is given by

x D v0t C
1

2
at

2
;

where v0 and a are constants.

(b) Draw the graph of v.t/, and show that the area under the graph and above the

t-axis, over Œt1; t2�, is equal to the distance the object travels in that time interval.

Solution The velocity is given by

v.t/ D
dx

dt
D v0 C at:

Its graph is a straight line with slope a and intercept v0 on the vertical (velocity) axis.

The area under the graph (shaded in Figure 2.38) is the sum of the areas of a rectangle

and a triangle. Each has base t2 � t1. The rectangle has height v.t1/ D v0 C at1, and

the triangle has height a.t2 � t1/. (Why?) Thus, the shaded area is equal to

y

t

y D v.t/ D v0 C at

t1 t2

t2 � t1

a.t2 � t1/

v0

Figure 2.38 The shaded area equals the

distance travelled between t1 and t2

Area D .t2 � t1/.v0 C at1/C
1

2
.t2 � t1/Œa.t2 � t1/�

D .t2 � t1/

h

v0 C at1 C
a

2
.t2 � t1/

i

D .t2 � t1/

h

v0 C
a

2
.t2 C t1/

i

D v0.t2 � t1/C
a

2
.t

2
2 � t

2
1 /

D x.t2/ � x.t1/;

which is the distance travelled by the object between times t1 and t2.

Remark In Example 1 we differentiated the position x to get the velocity v and then

used the area under the velocity graph to recover information about the position. It

appears that there is a connection between finding areas and finding functions that

have given derivatives (i.e., finding antiderivatives). This connection, which we will

explore in Chapter 5, is perhaps the most important idea in calculus!

Acceleration
The derivative of the velocity also has a useful interpretation. The rate of change of the

velocity with respect to time is the acceleration of the moving object. It is measured

in units of distance/time2. The value of the acceleration at time t is

Acceleration: a.t/ D v
0
.t/ D

dv

dt
D

d2x

dt2
:
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The acceleration is the second derivative of the position. If a.t/ > 0, the velocity is

increasing. This does not necessarily mean that the speed is increasing; if the object is

moving to the left (v.t/ < 0) and accelerating to the right (a.t/ > 0), then it is actually

slowing down. The object is speeding up only when the velocity and acceleration have

the same sign. (See Table 2.)

Table 2. Velocity, acceleration, and speed

If velocity is and acceleration is then object is and its speed is

positive positive moving right increasing

positive negative moving right decreasing

negative positive moving left decreasing

negative negative moving left increasing

If a.t0/ D 0, then the velocity and the speed are stationary at t0. If a.t/ D 0 during

an interval of time, then the velocity is unchanging and, therefore, constant over that

interval.

E X A M P L E 2
A point P moves along the x-axis in such a way that its position

at time t s is given by

x D 2t
3
� 15t

2
C 24t ft:

(a) Find the velocity and acceleration of P at time t:

(b) In which direction and how fast is P moving at t D 2 s? Is it speeding up or

slowing down at that time?

(c) When is P instantaneously at rest? When is its speed instantaneously not chang-

ing?

(d) When is P moving to the left? to the right?

(e) When is P speeding up? slowing down?

Solution

(a) The velocity and acceleration of P at time t are

v D
dx

dt
D 6t

2
� 30t C 24 D 6.t � 1/.t � 4/ ft/s and

a D
dv

dt
D 12t � 30 D 6.2t � 5/ ft/s2

:

(b) At t D 2 we have v D �12 and a D �6. Thus, P is moving to the left with

speed 12 ft/s, and, since the velocity and acceleration are both negative, its speed

is increasing.

(c) P is at rest when v D 0, that is, when t D 1 s or t D 4 s. Its speed is unchanging

when a D 0, that is, at t D 5=2 s.

(d) The velocity is continuous for all t so, by the Intermediate-Value Theorem, has a

constant sign on the intervals between the points where it is 0. By examining the

values of v.t/ at t D 0, 2, and 5 (or by analyzing the signs of the factors .t�1/ and

.t � 4/ in the expression for v.t/), we conclude that v.t/ < 0 (and P is moving to

the left) on time interval .1; 4/. v.t/ > 0 (and P is moving to the right) on time

intervals .�1; 1/ and .4;1/.

(e) The acceleration a is negative for t < 5=2 and positive for t > 5=2. Table 3

combines this information with information about v to show where P is speeding

up and slowing down.
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Table 3. Data for Example 2

Interval v.t/ is a.t/ is P is

.�1; 1/ positive negative slowing down

.1; 5=2/ negative negative speeding up

.5=2; 4/ negative positive slowing down

.4;1/ positive positive speeding up

The motion of P is shown in Figure 2.39.

Figure 2.39 The motion of the point P in

Example 2
x�20 �15 �10 �5 5 10 15 20

t D 1
t D 4

0

t D 5=2

E X A M P L E 3
An object is hurled upward from the roof of a building 10 m high.

It rises and then falls back; its height above ground t s after it is

thrown is

y D �4:9 t
2
C 8t C 10 m;

until it strikes the ground. What is the greatest height above the ground that the object

attains? With what speed does the object strike the ground?

Solution Refer to Figure 2.40. The vertical velocity at time t during flight is

v.t/ D �2.4:9/ t C 8 D �9:8 t C 8 m/s:

The object is rising when v > 0, that is, when 0 < t < 8=9:8, and is falling for

t > 8=9:8. Thus, the object is at its maximum height at time t D 8=9:8 � 0:8163 s,

and this maximum height is

ymax D �4:9

�

8

9:8

�2

C 8

�

8

9:8

�

C 10 � 13:27 m:

The time t at which the object strikes the ground is the positive root of the quadratic

equation obtained by setting y D 0,

Figure 2.40

�4:9t
2
C 8t C 10 D 0;

namely,

t D
�8 �

p

64C 196

�9:8
� 2:462 s:

The velocity at this time is v D �.9:8/.2:462/C 8 � �16:12. Thus, the object strikes

the ground with a speed of about 16.12 m/s.
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The acceleration is the second derivative of the position. If a.t/ > 0, the velocity is

increasing. This does not necessarily mean that the speed is increasing; if the object is

moving to the left (v.t/ < 0) and accelerating to the right (a.t/ > 0), then it is actually

slowing down. The object is speeding up only when the velocity and acceleration have

the same sign. (See Table 2.)

Table 2. Velocity, acceleration, and speed

If velocity is and acceleration is then object is and its speed is

positive positive moving right increasing

positive negative moving right decreasing

negative positive moving left decreasing

negative negative moving left increasing

If a.t0/ D 0, then the velocity and the speed are stationary at t0. If a.t/ D 0 during

an interval of time, then the velocity is unchanging and, therefore, constant over that

interval.

E X A M P L E 2
A point P moves along the x-axis in such a way that its position

at time t s is given by

x D 2t
3
� 15t

2
C 24t ft:

(a) Find the velocity and acceleration of P at time t:

(b) In which direction and how fast is P moving at t D 2 s? Is it speeding up or

slowing down at that time?

(c) When is P instantaneously at rest? When is its speed instantaneously not chang-

ing?

(d) When is P moving to the left? to the right?

(e) When is P speeding up? slowing down?

Solution

(a) The velocity and acceleration of P at time t are

v D
dx

dt
D 6t

2
� 30t C 24 D 6.t � 1/.t � 4/ ft/s and

a D
dv

dt
D 12t � 30 D 6.2t � 5/ ft/s2

:

(b) At t D 2 we have v D �12 and a D �6. Thus, P is moving to the left with

speed 12 ft/s, and, since the velocity and acceleration are both negative, its speed

is increasing.

(c) P is at rest when v D 0, that is, when t D 1 s or t D 4 s. Its speed is unchanging

when a D 0, that is, at t D 5=2 s.

(d) The velocity is continuous for all t so, by the Intermediate-Value Theorem, has a

constant sign on the intervals between the points where it is 0. By examining the

values of v.t/ at t D 0, 2, and 5 (or by analyzing the signs of the factors .t�1/ and

.t � 4/ in the expression for v.t/), we conclude that v.t/ < 0 (and P is moving to

the left) on time interval .1; 4/. v.t/ > 0 (and P is moving to the right) on time

intervals .�1; 1/ and .4;1/.

(e) The acceleration a is negative for t < 5=2 and positive for t > 5=2. Table 3

combines this information with information about v to show where P is speeding

up and slowing down.
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Table 3. Data for Example 2

Interval v.t/ is a.t/ is P is

.�1; 1/ positive negative slowing down

.1; 5=2/ negative negative speeding up

.5=2; 4/ negative positive slowing down

.4;1/ positive positive speeding up

The motion of P is shown in Figure 2.39.

Figure 2.39 The motion of the point P in

Example 2
x�20 �15 �10 �5 5 10 15 20

t D 1
t D 4

0

t D 5=2

E X A M P L E 3
An object is hurled upward from the roof of a building 10 m high.

It rises and then falls back; its height above ground t s after it is

thrown is

y D �4:9 t
2
C 8t C 10 m;

until it strikes the ground. What is the greatest height above the ground that the object

attains? With what speed does the object strike the ground?

Solution Refer to Figure 2.40. The vertical velocity at time t during flight is

v.t/ D �2.4:9/ t C 8 D �9:8 t C 8 m/s:

The object is rising when v > 0, that is, when 0 < t < 8=9:8, and is falling for

t > 8=9:8. Thus, the object is at its maximum height at time t D 8=9:8 � 0:8163 s,

and this maximum height is

ymax D �4:9

�

8

9:8

�2

C 8

�

8

9:8

�

C 10 � 13:27 m:

The time t at which the object strikes the ground is the positive root of the quadratic

equation obtained by setting y D 0,

Figure 2.40

�4:9t
2
C 8t C 10 D 0;

namely,

t D
�8 �

p

64C 196

�9:8
� 2:462 s:

The velocity at this time is v D �.9:8/.2:462/C 8 � �16:12. Thus, the object strikes

the ground with a speed of about 16.12 m/s.
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Falling under Gravity
According to Newton’s Second Law of Motion, a rock of mass m acted on by an un-

balanced force F will experience an acceleration a proportional to and in the same

direction as F ; with appropriate units of force, F D ma. If the rock is sitting on

the ground, it is acted on by two forces: the force of gravity acting downward and the

reaction of the ground acting upward. These forces balance, so there is no resulting

acceleration. On the other hand, if the rock is up in the air and is unsupported, the

gravitational force on it will be unbalanced and the rock will experience downward

acceleration. It will fall.

According to Newton’s Universal Law of Gravitation, the force by which the earth

attracts the rock is proportional to the mass m of the rock and inversely proportional

to the square of its distance r from the centre of the earth: F D km=r2. If the relative

change �r=r is small, as will be the case if the rock remains near the surface of the

earth, then F D mg, where g D k=r2 is approximately constant. It follows that

ma D F D mg, and the rock experiences constant downward acceleration g. Since g

does not depend on m, all objects experience the same acceleration when falling near

the surface of the earth, provided we ignore air resistance and any other forces that may

be acting on them. Newton’s laws therefore imply that if the height of such an object

at time t is y.t/, then

d
2
y

dt2
D �g:

The negative sign is needed because the gravitational acceleration is downward, the

opposite direction to that of increasing y. Physical experiments give the following

approximate values for g at the surface of the earth:

g D 32 ft/s2 or g D 9:8 m/s2.

E X A M P L E 4
A rock falling freely near the surface of the earth is subject to a

constant downward acceleration g, if the effect of air resistance is

neglected. If the height and velocity of the rock are y0 and v0 at time t D 0, find the

height y.t/ of the rock at any later time t until the rock strikes the ground.

Solution This example asks for a solution y.t/ to the second-order initial-value prob-

lem:

8

ˆ

<

ˆ

:

y
00
.t/ D �g

y.0/ D y0

y
0
.0/ D v0:

We have

y
0
.t/ D �

Z

g dt D �gt C C1

v0 D y
0
.0/ D 0C C1:

Thus, C1 D v0.

y
0
.t/ D �gt C v0

y.t/ D

Z

.�gt C v0/dt D �
1

2
gt

2
C v0t C C2

y0 D y.0/ D 0C 0C C2:

Thus, C2 D y0. Finally, therefore,
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y.t/ D �
1

2
gt

2
C v0t C y0:

E X A M P L E 5
A ball is thrown down with an initial speed of 20 ft/s from the top

of a cliff, and it strikes the ground at the bottom of the cliff after

5 s. How high is the cliff?

Solution We will apply the result of Example 4. Here we have g D 32 ft/s2,

v0 D �20 ft/s, and y0 is the unknown height of the cliff. The height of the ball

t s after it is thrown down is

y.t/ D �16t
2
� 20t C y0 ft:

At t D 5 the ball reaches the ground, so y.5/ D 0:

0 D �16.25/ � 20.5/C y0 ) y0 D 500:

The cliff is 500 ft high.

E X A M P L E 6
(Stopping distance) A car is travelling at 72 km/h. At a certain

instant its brakes are applied to produce a constant deceleration of

0.8 m/s2. How far does the car travel before coming to a stop?

Solution Let s.t/ be the distance the car travels in the t seconds after the brakes are

applied. Then s00.t/ D �0:8 (m/s2), so the velocity at time t is given by

s
0
.t/ D

Z

�0:8 dt D �0:8t C C1 m/s:

Since s0
.0/ D 72 km/hD 72 � 1; 000=3; 600 D 20 m/s, we have C1 D 20. Thus,

s
0
.t/ D 20 � 0:8t

and

s.t/ D

Z

.20 � 0:8t/ dt D 20t � 0:4t
2
C C2:

Since s.0/ D 0, we have C2 D 0 and s.t/ D 20t � 0:4t2. When the car has stopped,

its velocity will be 0. Hence, the stopping time is the solution t of the equation

0 D s
0
.t/ D 20 � 0:8t;

that is, t D 25 s. The distance travelled during deceleration is s.25/ D 250 m.
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Falling under Gravity
According to Newton’s Second Law of Motion, a rock of mass m acted on by an un-

balanced force F will experience an acceleration a proportional to and in the same

direction as F ; with appropriate units of force, F D ma. If the rock is sitting on

the ground, it is acted on by two forces: the force of gravity acting downward and the

reaction of the ground acting upward. These forces balance, so there is no resulting

acceleration. On the other hand, if the rock is up in the air and is unsupported, the

gravitational force on it will be unbalanced and the rock will experience downward

acceleration. It will fall.

According to Newton’s Universal Law of Gravitation, the force by which the earth

attracts the rock is proportional to the mass m of the rock and inversely proportional

to the square of its distance r from the centre of the earth: F D km=r2. If the relative

change �r=r is small, as will be the case if the rock remains near the surface of the

earth, then F D mg, where g D k=r2 is approximately constant. It follows that

ma D F D mg, and the rock experiences constant downward acceleration g. Since g

does not depend on m, all objects experience the same acceleration when falling near

the surface of the earth, provided we ignore air resistance and any other forces that may

be acting on them. Newton’s laws therefore imply that if the height of such an object

at time t is y.t/, then

d
2
y

dt2
D �g:

The negative sign is needed because the gravitational acceleration is downward, the

opposite direction to that of increasing y. Physical experiments give the following

approximate values for g at the surface of the earth:

g D 32 ft/s2 or g D 9:8 m/s2.

E X A M P L E 4
A rock falling freely near the surface of the earth is subject to a

constant downward acceleration g, if the effect of air resistance is

neglected. If the height and velocity of the rock are y0 and v0 at time t D 0, find the

height y.t/ of the rock at any later time t until the rock strikes the ground.

Solution This example asks for a solution y.t/ to the second-order initial-value prob-

lem:

8

ˆ

<

ˆ

:

y
00
.t/ D �g

y.0/ D y0

y
0
.0/ D v0:

We have

y
0
.t/ D �

Z

g dt D �gt C C1

v0 D y
0
.0/ D 0C C1:

Thus, C1 D v0.

y
0
.t/ D �gt C v0

y.t/ D

Z

.�gt C v0/dt D �
1

2
gt

2
C v0t C C2

y0 D y.0/ D 0C 0C C2:

Thus, C2 D y0. Finally, therefore,
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y.t/ D �
1

2
gt

2
C v0t C y0:

E X A M P L E 5
A ball is thrown down with an initial speed of 20 ft/s from the top

of a cliff, and it strikes the ground at the bottom of the cliff after

5 s. How high is the cliff?

Solution We will apply the result of Example 4. Here we have g D 32 ft/s2,

v0 D �20 ft/s, and y0 is the unknown height of the cliff. The height of the ball

t s after it is thrown down is

y.t/ D �16t
2
� 20t C y0 ft:

At t D 5 the ball reaches the ground, so y.5/ D 0:

0 D �16.25/ � 20.5/C y0 ) y0 D 500:

The cliff is 500 ft high.

E X A M P L E 6
(Stopping distance) A car is travelling at 72 km/h. At a certain

instant its brakes are applied to produce a constant deceleration of

0.8 m/s2. How far does the car travel before coming to a stop?

Solution Let s.t/ be the distance the car travels in the t seconds after the brakes are

applied. Then s00.t/ D �0:8 (m/s2), so the velocity at time t is given by

s
0
.t/ D

Z

�0:8 dt D �0:8t C C1 m/s:

Since s0
.0/ D 72 km/hD 72 � 1; 000=3; 600 D 20 m/s, we have C1 D 20. Thus,

s
0
.t/ D 20 � 0:8t

and

s.t/ D

Z

.20 � 0:8t/ dt D 20t � 0:4t
2
C C2:

Since s.0/ D 0, we have C2 D 0 and s.t/ D 20t � 0:4t2. When the car has stopped,

its velocity will be 0. Hence, the stopping time is the solution t of the equation

0 D s
0
.t/ D 20 � 0:8t;

that is, t D 25 s. The distance travelled during deceleration is s.25/ D 250 m.
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E X E R C I S E S 2.11

In Exercises 1–4, a particle moves along the x-axis so that its

position x at time t is specified by the given function. In each case

determine the following:

(a) the time intervals on which the particle is moving to the right

and (b) to the left;

(c) the time intervals on which the particle is accelerating to the

right and (d) to the left;

(e) the time intervals when the particle is speeding up and

(f) slowing down;

(g) the acceleration at times when the velocity is zero;

(h) the average velocity over the time interval Œ0; 4�.

1. x D t2 � 4t C 3 2. x D 4C 5t � t2

3. x D t3 � 4t C 1 4. x D
t

t2 C 1

5. A ball is thrown upward from ground level with an initial

speed of 9.8 m/s so that its height in metres after t s is given

by y D 9:8t � 4:9t2. What is the acceleration of the ball at

any time t? How high does the ball go? How fast is it moving

when it strikes the ground?

6. A ball is thrown downward from the top of a 100-metre-high

tower with an initial speed of 2 m/s. Its height in metres above

the ground t s later is y D 100� 2t � 4:9t2. How long does it

take to reach the ground? What is its average velocity during

the fall? At what instant is its velocity equal to its average

velocity?

7.I (Takeoff distance) The distance an aircraft travels along a

runway before takeoff is given by D D t2, where D is

measured in metres from the starting point, and t is measured

in seconds from the time the brake is released. If the aircraft

will become airborne when its speed reaches 200 km/h, how

long will it take to become airborne, and what distance will it

travel in that time?

8. (Projectiles on Mars) A projectile fired upward from the

surface of the earth falls back to the ground after 10 s. How

long would it take to fall back to the surface if it is fired

upward on Mars with the same initial velocity? gMars D 3:72

m/s2.

9. A ball is thrown upward with initial velocity v0 m/s and

reaches a maximum height of h m. How high would it have

gone if its initial velocity was 2v0? How fast must it be thrown

upward to achieve a maximum height of 2h m?

10. How fast would the ball in Exercise 9 have to be thrown

upward on Mars in order to achieve a maximum height of

3h m?

11. A rock falls from the top of a cliff and hits the ground at the

base of the cliff at a speed of 160 ft/s. How high is the cliff?

12. A rock is thrown down from the top of a cliff with the initial

speed of 32 ft/s and hits the ground at the base of the cliff at a

speed of 160 ft/s. How high is the cliff?

13. (Distance travelled while braking) With full brakes applied,

a freight train can decelerate at a constant rate of

1=6 m/s2. How far will the train travel while braking to a full

stop from an initial speed of 60 km/h?

14.A Show that if the position x of a moving point is given by a

quadratic function of t , x D At2 C Bt C C , then the average

velocity over any time interval Œt1; t2� is equal to the

instantaneous velocity at the midpoint of that time interval.

15.I (Piecewise motion) The position of an object moving along

the s-axis is given at time t by

s D

8

<

:

t2 if 0 � t � 2

4t � 4 if 2 < t < 8

�68C 20t � t2 if 8 � t � 10.

Determine the velocity and acceleration at any time t . Is the

velocity continuous? Is the acceleration continuous? What is

the maximum velocity and when is it attained?

(Rocket flight with limited fuel) Figure 2.41 shows the velocity v

in feet per second of a small rocket that was fired from the top of a

tower at time t D 0 (t in seconds), accelerated with constant

upward acceleration until its fuel was used up, then fell back to the

ground at the foot of the tower. The whole flight lasted 14 s.

Exercises 16–19 refer to this rocket.

v

t

.4; 96/

.14;�224/

Figure 2.41

16. What was the acceleration of the rocket while its fuel lasted?

17. How long was the rocket rising?

18.I What is the maximum height above ground that the rocket

reached?

19.I How high was the tower from which the rocket was fired?

20. Redo Example 6 using instead a nonconstant deceleration,

s 00.t/ D �t m/s2.
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C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ Line L is tangent to curve C at point P:

˘ the Newton quotient of f .x/ at x D a

˘ the derivative f 0
.x/ of the function f .x/

˘ f is differentiable at x D a.

˘ the slope of the graph y D f .x/ at x D a

˘ f is increasing (or decreasing) on interval I:

˘ f is nondecreasing (or nonincreasing) on interval I:

˘ the average rate of change of f .x/ on Œa; b�

˘ the rate of change of f .x/ at x D a

˘ c is a critical point of f .x/.

˘ the second derivative of f .x/ at x D a

˘ an antiderivative of f on interval I

˘ the indefinite integral of f on interval I

˘ differential equation ˘ initial-value problem

˘ velocity ˘ speed ˘ acceleration

� State the following differentiation rules:

˘ the rule for differentiating a sum of functions

˘ the rule for differentiating a constant multiple of a function

˘ the Product Rule ˘ the Reciprocal Rule

˘ the Quotient Rule ˘ the Chain Rule

� State the Mean-Value Theorem.

� State the Generalized Mean-Value Theorem.

� State the derivatives of the following functions:

˘ x ˘ x
2

˘ 1=x ˘

p

x

˘ xn
˘ jxj ˘ sinx ˘ cos x

˘ tanx ˘ cot x ˘ sec x ˘ csc x

� What is a proof by mathematical induction?

Review Exercises

Use the definition of derivative to calculate the derivatives in

Exercises 1–4.

1.
dy

dx
if y D .3x C 1/2 2.

d

dx

p

1 � x2

3. f 0
.2/ if f .x/ D

4

x2
4. g0

.9/ if g.t/ D
t � 5

1C
p

t

5. Find the tangent to y D cos.�x/ at x D 1=6.

6. Find the normal to y D tan.x=4/ at x D � .

Calculate the derivatives of the functions in Exercises 7–12.

7.
1

x � sinx
8.
1C x C x2

C x3

x4

9. .4 � x2=5
/
�5=2 10.

p

2C cos2 x

11. tan � � � sec2
� 12.

p

1C t2 � 1
p

1C t2 C 1

Evaluate the limits in Exercises 13–16 by interpreting each as a

derivative.

13. lim
h!0

.x C h/20
� x20

h
14. lim

x!2

p

4x C 1 � 3

x � 2

15. lim
x!�=6

cos.2x/ � .1=2/

x � �=6
16. lim

x!�a

.1=x2/ � .1=a2/

x C a

In Exercises 17–24, express the derivatives of the given functions

in terms of the derivatives f 0 and g0 of the differentiable functions

f and g.

17. f .3 � x2
/ 18. Œf .

p

x/�
2

19. f .2x/
p

g.x=2/ 20.
f .x/ � g.x/

f .x/C g.x/

21. f .x C .g.x//2/ 22. f

�

g.x2/

x

�

23. f .sinx/ g.cos x/ 24.

s

cosf .x/

sing.x/

25. Find the tangent to the curve x3y C 2xy3
D 12 at the point

.2; 1/.

26. Find the slope of the curve 3
p

2x sin.�y/ C 8y cos.�x/ D 2

at the point
�

1
3
;

1
4

�

.

Find the indefinite integrals in Exercises 27–30.

27.

Z

1C x4

x2
dx 28.

Z

1C x
p

x
dx

29.

Z

2C 3 sinx

cos2 x
dx 30.

Z

.2x C 1/
4
dx

31. Find f .x/ given that f 0.x/ D 12x2
C 12x3 and f .1/ D 0.

32. Find g.x/ if g0.x/ D sin.x=3/C cos.x=6/ and the graph of g

passes through the point .�; 2/.

33. Differentiate x sinx C cosx and x cos x � sinx, and use the

results to find the indefinite integrals

I1 D

Z

x cos x dx and I2 D

Z

x sinx dx:

34. Suppose that f 0.x/ D f .x/ for every x. Let g.x/ D x f .x/.

Calculate the first several derivatives of g and guess a formula

for the nth-order derivative g.n/
.x/. Verify your guess by in-

duction.

35. Find an equation of the straight line that passes through the

origin and is tangent to the curve y D x3
C 2.

36. Find an equation of the straight lines that pass through the point

.0; 1/ and are tangent to the curve y D
p

2C x2.

37. Show that
d

dx

�

sinn
x sin.nx/

�

D n sinn�1
x sin..n C 1/x/.

At what points x in Œ0; �� does the graph of y D sinn
x sin.nx/

have a horizontal tangent? Assume that n � 2.

38. Find differentiation formulas for y D sinn
x cos.nx/,

y D cosn x sin.nx/, and y D cosn x cos.nx/ analogous to the

one given for y D sinn
x sin.nx/ in Exercise 37.

39. Let Q be the point .0; 1/. Find all points P on the curve y D

x2 such that the line PQ is normal to y D x2 at P . What is

the shortest distance from Q to the curve y D x2?
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In Exercises 1–4, a particle moves along the x-axis so that its

position x at time t is specified by the given function. In each case

determine the following:

(a) the time intervals on which the particle is moving to the right

and (b) to the left;

(c) the time intervals on which the particle is accelerating to the

right and (d) to the left;

(e) the time intervals when the particle is speeding up and

(f) slowing down;

(g) the acceleration at times when the velocity is zero;

(h) the average velocity over the time interval Œ0; 4�.

1. x D t2 � 4t C 3 2. x D 4C 5t � t2

3. x D t3 � 4t C 1 4. x D
t

t2 C 1

5. A ball is thrown upward from ground level with an initial

speed of 9.8 m/s so that its height in metres after t s is given

by y D 9:8t � 4:9t2. What is the acceleration of the ball at

any time t? How high does the ball go? How fast is it moving

when it strikes the ground?

6. A ball is thrown downward from the top of a 100-metre-high

tower with an initial speed of 2 m/s. Its height in metres above

the ground t s later is y D 100� 2t � 4:9t2. How long does it

take to reach the ground? What is its average velocity during

the fall? At what instant is its velocity equal to its average

velocity?

7.I (Takeoff distance) The distance an aircraft travels along a

runway before takeoff is given by D D t2, where D is

measured in metres from the starting point, and t is measured

in seconds from the time the brake is released. If the aircraft

will become airborne when its speed reaches 200 km/h, how

long will it take to become airborne, and what distance will it

travel in that time?

8. (Projectiles on Mars) A projectile fired upward from the

surface of the earth falls back to the ground after 10 s. How

long would it take to fall back to the surface if it is fired

upward on Mars with the same initial velocity? gMars D 3:72

m/s2.

9. A ball is thrown upward with initial velocity v0 m/s and

reaches a maximum height of h m. How high would it have

gone if its initial velocity was 2v0? How fast must it be thrown

upward to achieve a maximum height of 2h m?

10. How fast would the ball in Exercise 9 have to be thrown

upward on Mars in order to achieve a maximum height of

3h m?

11. A rock falls from the top of a cliff and hits the ground at the

base of the cliff at a speed of 160 ft/s. How high is the cliff?

12. A rock is thrown down from the top of a cliff with the initial

speed of 32 ft/s and hits the ground at the base of the cliff at a

speed of 160 ft/s. How high is the cliff?

13. (Distance travelled while braking) With full brakes applied,

a freight train can decelerate at a constant rate of

1=6 m/s2. How far will the train travel while braking to a full

stop from an initial speed of 60 km/h?

14.A Show that if the position x of a moving point is given by a

quadratic function of t , x D At2 C Bt C C , then the average

velocity over any time interval Œt1; t2� is equal to the

instantaneous velocity at the midpoint of that time interval.

15.I (Piecewise motion) The position of an object moving along

the s-axis is given at time t by

s D

8

<

:

t2 if 0 � t � 2

4t � 4 if 2 < t < 8

�68C 20t � t2 if 8 � t � 10.

Determine the velocity and acceleration at any time t . Is the

velocity continuous? Is the acceleration continuous? What is

the maximum velocity and when is it attained?

(Rocket flight with limited fuel) Figure 2.41 shows the velocity v

in feet per second of a small rocket that was fired from the top of a

tower at time t D 0 (t in seconds), accelerated with constant

upward acceleration until its fuel was used up, then fell back to the

ground at the foot of the tower. The whole flight lasted 14 s.

Exercises 16–19 refer to this rocket.

v

t

.4; 96/

.14;�224/

Figure 2.41

16. What was the acceleration of the rocket while its fuel lasted?

17. How long was the rocket rising?

18.I What is the maximum height above ground that the rocket

reached?

19.I How high was the tower from which the rocket was fired?

20. Redo Example 6 using instead a nonconstant deceleration,

s 00.t/ D �t m/s2.
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Key Ideas

� What do the following statements and phrases mean?

˘ Line L is tangent to curve C at point P:

˘ the Newton quotient of f .x/ at x D a

˘ the derivative f 0
.x/ of the function f .x/

˘ f is differentiable at x D a.

˘ the slope of the graph y D f .x/ at x D a

˘ f is increasing (or decreasing) on interval I:

˘ f is nondecreasing (or nonincreasing) on interval I:

˘ the average rate of change of f .x/ on Œa; b�

˘ the rate of change of f .x/ at x D a

˘ c is a critical point of f .x/.

˘ the second derivative of f .x/ at x D a

˘ an antiderivative of f on interval I

˘ the indefinite integral of f on interval I

˘ differential equation ˘ initial-value problem

˘ velocity ˘ speed ˘ acceleration

� State the following differentiation rules:

˘ the rule for differentiating a sum of functions

˘ the rule for differentiating a constant multiple of a function

˘ the Product Rule ˘ the Reciprocal Rule

˘ the Quotient Rule ˘ the Chain Rule

� State the Mean-Value Theorem.

� State the Generalized Mean-Value Theorem.

� State the derivatives of the following functions:

˘ x ˘ x
2

˘ 1=x ˘

p

x

˘ xn
˘ jxj ˘ sinx ˘ cos x

˘ tanx ˘ cot x ˘ sec x ˘ csc x

� What is a proof by mathematical induction?

Review Exercises

Use the definition of derivative to calculate the derivatives in

Exercises 1–4.

1.
dy

dx
if y D .3x C 1/2 2.

d

dx

p

1 � x2

3. f 0
.2/ if f .x/ D

4

x2
4. g0

.9/ if g.t/ D
t � 5

1C
p

t

5. Find the tangent to y D cos.�x/ at x D 1=6.

6. Find the normal to y D tan.x=4/ at x D � .

Calculate the derivatives of the functions in Exercises 7–12.

7.
1

x � sinx
8.
1C x C x2

C x3

x4

9. .4 � x2=5
/
�5=2 10.

p

2C cos2 x

11. tan � � � sec2
� 12.

p

1C t2 � 1
p

1C t2 C 1

Evaluate the limits in Exercises 13–16 by interpreting each as a

derivative.

13. lim
h!0

.x C h/20
� x20

h
14. lim

x!2

p

4x C 1 � 3

x � 2

15. lim
x!�=6

cos.2x/ � .1=2/

x � �=6
16. lim

x!�a

.1=x2/ � .1=a2/

x C a

In Exercises 17–24, express the derivatives of the given functions

in terms of the derivatives f 0 and g0 of the differentiable functions

f and g.

17. f .3 � x2
/ 18. Œf .

p

x/�
2

19. f .2x/
p

g.x=2/ 20.
f .x/ � g.x/

f .x/C g.x/

21. f .x C .g.x//2/ 22. f

�

g.x2/

x

�

23. f .sinx/ g.cos x/ 24.

s

cosf .x/

sing.x/

25. Find the tangent to the curve x3y C 2xy3
D 12 at the point

.2; 1/.

26. Find the slope of the curve 3
p

2x sin.�y/ C 8y cos.�x/ D 2

at the point
�

1
3
;

1
4

�

.

Find the indefinite integrals in Exercises 27–30.

27.

Z

1C x4

x2
dx 28.

Z

1C x
p

x
dx

29.

Z

2C 3 sinx

cos2 x
dx 30.

Z

.2x C 1/
4
dx

31. Find f .x/ given that f 0.x/ D 12x2
C 12x3 and f .1/ D 0.

32. Find g.x/ if g0.x/ D sin.x=3/C cos.x=6/ and the graph of g

passes through the point .�; 2/.

33. Differentiate x sinx C cosx and x cos x � sinx, and use the

results to find the indefinite integrals

I1 D

Z

x cos x dx and I2 D

Z

x sinx dx:

34. Suppose that f 0.x/ D f .x/ for every x. Let g.x/ D x f .x/.

Calculate the first several derivatives of g and guess a formula

for the nth-order derivative g.n/
.x/. Verify your guess by in-

duction.

35. Find an equation of the straight line that passes through the

origin and is tangent to the curve y D x3
C 2.

36. Find an equation of the straight lines that pass through the point

.0; 1/ and are tangent to the curve y D
p

2C x2.

37. Show that
d

dx

�

sinn
x sin.nx/

�

D n sinn�1
x sin..n C 1/x/.

At what points x in Œ0; �� does the graph of y D sinn
x sin.nx/

have a horizontal tangent? Assume that n � 2.

38. Find differentiation formulas for y D sinn
x cos.nx/,

y D cosn x sin.nx/, and y D cosn x cos.nx/ analogous to the

one given for y D sinn
x sin.nx/ in Exercise 37.

39. Let Q be the point .0; 1/. Find all points P on the curve y D

x2 such that the line PQ is normal to y D x2 at P . What is

the shortest distance from Q to the curve y D x2?
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40. (Average and marginal profit) Figure 2.42 shows the graph of

the profit $P.x/ realized by a grain exporter from its sale of x

tonnes of wheat. Thus, the average profit per tonne is $P.x/=x.

Show that the maximum average profit occurs when the aver-

age profit equals the marginal profit. What is the geometric

significance of this fact in the figure?

P.x/

x

Figure 2.42

41. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function F.r/ given for r � 0 by

F.r/ D

8

<

:

mgR2

r2
if r � R

mkr if 0 � r < R

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

42. (Compressibility of a gas) The isothermal compressibility of

a gas is the relative rate of change of the volume V with re-

spect to the pressure P at a constant temperature T; that is,

.1=V / dV=dP: For a sample of an ideal gas, the temperature,

pressure, and volume satisfy the equation PV D kT; where k

is a constant related to the number of molecules of gas present

in the sample. Show that the isothermal compressibility of such

a gas is the negative reciprocal of the pressure:

1

V

dV

dP
D �

1

P
:

43. A ball is thrown upward with an initial speed of 10 m/s from

the top of a building. A second ball is thrown upward with

an initial speed of 20 m/s from the ground. Both balls achieve

the same maximum height above the ground. How tall is the

building?

44. A ball is dropped from the top of a 60 m high tower at the same

instant that a second ball is thrown upward from the ground

at the base of the tower. The balls collide at a height of 30 m

above the ground. With what initial velocity was the second

ball thrown? How fast is each ball moving when they collide?

45. (Braking distance) A car’s brakes can decelerate the car at 20

ft/s2. How fast can the car travel if it must be able to stop in a

distance of 160 ft?

46. (Measuring variations in g) The period P of a pendulum of

length L is given by P D 2�
p

L=g, where g is the accelera-

tion of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 1/2% decrease in the period

P . (Variations in the period of a pendulum can be used

to detect small variations in g from place to place on the

earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

Challenging Problems

1. René Descartes, the inventor of analytic geometry, calculated

the tangent to a parabola (or a circle or other quadratic curve) at

a given point .x0; y0/ on the curve by looking for a straight line

through .x0; y0/ having only one intersection with the given

curve. Illustrate his method by writing the equation of a line

through .a; a2/, having arbitrary slopem, and then finding the

value ofm for which the line has only one intersection with the

parabola y D x2. Why does the method not work for more

general curves?

2. Given that f 0.x/ D 1=x and f .2/ D 9, find:

(a) lim
x!2

f .x2
C 5/ � f .9/

x � 2
(b) lim

x!2

p

f .x/ � 3

x � 2

3. Suppose that f 0.4/ D 3, g0.4/ D 7, g.4/ D 4, and g.x/ ¤ 4

for x ¤ 4. Find:

(a) lim
x!4

�

f .x/ � f .4/

�

(b) lim
x!4

f .x/ � f .4/

x2
� 16

(c) lim
x!4

f .x/ � f .4/
p

x � 2
(d) lim

x!4

f .x/ � f .4/

.1=x/ � .1=4/

(e) lim
x!4

f .x/ � f .4/

g.x/ � 4
(f) lim

x!4

f .g.x// � f .4/

x � 4

4. Let f .x/ D
n

x if x D 1; 1=2; 1=3; 1=4; : : :

x2 otherwise.

(a) Find all points at which f is continuous. In particular, is

it continuous at x D 0?

(b) Is the following statement true or false? Justify your an-

swer. For any two real numbers a and b, there is some x

between a and b such that f .x/ D .f .a/C f .b// =2.

(c) Find all points at which f is differentiable. In particular,

is it differentiable at x D 0?

5. Suppose f .0/ D 0 and jf .x/j >
p

jxj for all x. Show that

f 0.0/ does not exist.

6. Suppose that f is a function satisfying the following condi-

tions: f 0.0/ D k, f .0/ ¤ 0, and f .x C y/ D f .x/f .y/ for

all x and y. Show that f .0/ D 1 and that f 0.x/ D k f .x/

for every x. (We will study functions with these properties in

Chapter 3.)

7. Suppose the function g satisfies the conditions: g0.0/ D k, and

g.x C y/ D g.x/C g.y/ for all x and y. Show that:

(a) g.0/ D 0, (b) g0.x/ D k for all x, and

(c) g.x/ D kx for all x. Hint: Let h.x/ D g.x/ � g0.0/x.

8. (a) If f is differentiable at x, show that

(i) lim
h!0

f .x/ � f .x � h/

h
D f

0
.x/

(ii) lim
h!0

f .x C h/ � f .x � h/

2h
D f

0
.x/

(b) Show that the existence of the limit in (i) guarantees that

f is differentiable at x.
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(c) Show that the existence of the limit in (ii) does not guaran-

tee that f is differentiable at x. Hint: Consider the func-

tion f .x/ D jxj at x D 0.

9. Show that there is a line through .a; 0/ that is tangent to the

curve y D x3 at x D 3a=2. If a ¤ 0, is there any other line

through .a; 0/ that is tangent to the curve? If .x0; y0/ is an

arbitrary point, what is the maximum number of lines through

.x0; y0/ that can be tangent to y D x3? the minimum num-

ber?

10. Make a sketch showing that there are two straight lines, each of

which is tangent to both of the parabolas y D x2
C4xC1 and

y D �x
2
C 4x � 1. Find equations of the two lines.

11. Show that if b > 1=2, there are three straight lines through

.0; b/, each of which is normal to the curve y D x2. How

many such lines are there if b D 1=2? if b < 1=2?

12. (Distance from a point to a curve) Find the point on the curve

y D x2 that is closest to the point .3; 0/. Hint: The line from

.3; 0/ to the closest point Q on the parabola is normal to the

parabola at Q.

13.I (Envelope of a family of lines) Show that for each value of

the parameter m, the line y D mx � .m2=4/ is tangent to the

parabola y D x2. (The parabola is called the envelope of the

family of lines y D mx � .m
2
=4/.) Find f .m/ such that the

family of lines y D mx C f .m/ has envelope the parabola

y D Ax2
C Bx C C:

14.I (Common tangents) Consider the two parabolas with equa-

tions y D x2 and y D Ax2
CBxCC: We assume thatA ¤ 0,

and if A D 1, then either B ¤ 0 or C ¤ 0, so that the two

equations do represent different parabolas. Show that:

(a) the two parabolas are tangent to each other if

B2
D 4C.A � 1/;

(b) the parabolas have two common tangent lines if and only

if A ¤ 1 and A
�

B
2
� 4C.A � 1/

�

> 0;

(c) the parabolas have exactly one common tangent line if ei-

ther A D 1 and B ¤ 0, or A ¤ 1 and B2
D 4C.A � 1/;

(d) the parabolas have no common tangent lines if either

A D 1 andB D 0, orA ¤ 1 andA
�

B2
�4C.A�1/

�

< 0.

Make sketches illustrating each of the above possibilities.

15. Let C be the graph of y D x3.

(a) Show that if a ¤ 0, then the tangent to C at x D a also

intersects C at a second point x D b.

(b) Show that the slope of C at x D b is four times its slope

at x D a.

(c) Can any line be tangent to C at more than one point?

(d) Can any line be tangent to the graph of

y D Ax
3
C Bx

2
C Cx CD at more than one point?

16.I Let C be the graph of y D x4
� 2x

2.

(a) Find all horizontal lines that are tangent to C:

(b) One of the lines found in (a) is tangent to C at two dif-

ferent points. Show that there are no other lines with this

property.

(c) Find an equation of a straight line that is tangent to the

graph of y D x4
� 2x2

C x at two different points. Can

there exist more than one such line? Why?

M 17. (Double tangents) A line tangent to the quartic (fourth-degree

polynomial) curve C with equation y D ax4
C bx3

C cx2
C

dx C e at x D p may intersect C at zero, one, or two other

points. If it meets C at only one other point x D q, it must be

tangent to C at that point also, and it is thus a “double tangent.”

(a) Find the condition that must be satisfied by the coefficients

of the quartic to ensure that there does exist such a double

tangent, and show that there cannot be more than one such

double tangent. Illustrate this by applying your results to

y D x4
� 2x2

C x � 1.

(b) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that PQ is parallel to the line tangent to

C at x D .p C q/=2.

(c) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that C has two distinct inflection points

R and S and that RS is parallel to PQ.

18. Verify the following formulas for every positive integer n:

(a)
dn

dxn
cos.ax/ D an cos

�

ax C
n�

2

�

(b)
dn

dxn
sin.ax/ D an sin

�

ax C
n�

2

�

(c)
dn

dxn

�

cos4
x C sin4

x

�

D 4
n�1 cos

�

4x C
n�

2

�

19. (Rocket with a parachute) A rocket is fired from the top of a

tower at time t D 0. It experiences constant upward accelera-

tion until its fuel is used up. Thereafter its acceleration is the

constant downward acceleration of gravity until, during its fall,

it deploys a parachute that gives it a constant upward accelera-

tion again to slow it down. The rocket hits the ground near the

base of the tower. The upward velocity v (in metres per sec-

ond) is graphed against time in Figure 2.43. From information

in the figure answer the following questions:

(a) How long did the fuel last?

(b) When was the rocket’s height maximum?

(c) When was the parachute deployed?

(d) What was the rocket’s upward acceleration while its motor

was firing?

(e) What was the maximum height achieved by the rocket?

(f) How high was the tower from which the rocket was fired?

.3; 39:2/

.12;�49/

.15;�1/

v (m/s)

�40

�30

�20

�10

10

20

30

40

t (s)
2 4 6 8 10 12 14

Figure 2.43
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40. (Average and marginal profit) Figure 2.42 shows the graph of

the profit $P.x/ realized by a grain exporter from its sale of x

tonnes of wheat. Thus, the average profit per tonne is $P.x/=x.

Show that the maximum average profit occurs when the aver-

age profit equals the marginal profit. What is the geometric

significance of this fact in the figure?

P.x/

x

Figure 2.42

41. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function F.r/ given for r � 0 by

F.r/ D

8

<

:

mgR2

r2
if r � R

mkr if 0 � r < R

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

42. (Compressibility of a gas) The isothermal compressibility of

a gas is the relative rate of change of the volume V with re-

spect to the pressure P at a constant temperature T; that is,

.1=V / dV=dP: For a sample of an ideal gas, the temperature,

pressure, and volume satisfy the equation PV D kT; where k

is a constant related to the number of molecules of gas present

in the sample. Show that the isothermal compressibility of such

a gas is the negative reciprocal of the pressure:

1

V

dV

dP
D �

1

P
:

43. A ball is thrown upward with an initial speed of 10 m/s from

the top of a building. A second ball is thrown upward with

an initial speed of 20 m/s from the ground. Both balls achieve

the same maximum height above the ground. How tall is the

building?

44. A ball is dropped from the top of a 60 m high tower at the same

instant that a second ball is thrown upward from the ground

at the base of the tower. The balls collide at a height of 30 m

above the ground. With what initial velocity was the second

ball thrown? How fast is each ball moving when they collide?

45. (Braking distance) A car’s brakes can decelerate the car at 20

ft/s2. How fast can the car travel if it must be able to stop in a

distance of 160 ft?

46. (Measuring variations in g) The period P of a pendulum of

length L is given by P D 2�
p

L=g, where g is the accelera-

tion of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 1/2% decrease in the period

P . (Variations in the period of a pendulum can be used

to detect small variations in g from place to place on the

earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

Challenging Problems

1. René Descartes, the inventor of analytic geometry, calculated

the tangent to a parabola (or a circle or other quadratic curve) at

a given point .x0; y0/ on the curve by looking for a straight line

through .x0; y0/ having only one intersection with the given

curve. Illustrate his method by writing the equation of a line

through .a; a2/, having arbitrary slopem, and then finding the

value ofm for which the line has only one intersection with the

parabola y D x2. Why does the method not work for more

general curves?

2. Given that f 0.x/ D 1=x and f .2/ D 9, find:

(a) lim
x!2

f .x2
C 5/ � f .9/

x � 2
(b) lim

x!2

p

f .x/ � 3

x � 2

3. Suppose that f 0.4/ D 3, g0.4/ D 7, g.4/ D 4, and g.x/ ¤ 4

for x ¤ 4. Find:

(a) lim
x!4

�

f .x/ � f .4/

�

(b) lim
x!4

f .x/ � f .4/

x2
� 16

(c) lim
x!4

f .x/ � f .4/
p

x � 2
(d) lim

x!4

f .x/ � f .4/

.1=x/ � .1=4/

(e) lim
x!4

f .x/ � f .4/

g.x/ � 4
(f) lim

x!4

f .g.x// � f .4/

x � 4

4. Let f .x/ D
n

x if x D 1; 1=2; 1=3; 1=4; : : :

x2 otherwise.

(a) Find all points at which f is continuous. In particular, is

it continuous at x D 0?

(b) Is the following statement true or false? Justify your an-

swer. For any two real numbers a and b, there is some x

between a and b such that f .x/ D .f .a/C f .b// =2.

(c) Find all points at which f is differentiable. In particular,

is it differentiable at x D 0?

5. Suppose f .0/ D 0 and jf .x/j >
p

jxj for all x. Show that

f 0.0/ does not exist.

6. Suppose that f is a function satisfying the following condi-

tions: f 0.0/ D k, f .0/ ¤ 0, and f .x C y/ D f .x/f .y/ for

all x and y. Show that f .0/ D 1 and that f 0.x/ D k f .x/

for every x. (We will study functions with these properties in

Chapter 3.)

7. Suppose the function g satisfies the conditions: g0.0/ D k, and

g.x C y/ D g.x/C g.y/ for all x and y. Show that:

(a) g.0/ D 0, (b) g0.x/ D k for all x, and

(c) g.x/ D kx for all x. Hint: Let h.x/ D g.x/ � g0.0/x.

8. (a) If f is differentiable at x, show that

(i) lim
h!0

f .x/ � f .x � h/

h
D f

0
.x/

(ii) lim
h!0

f .x C h/ � f .x � h/

2h
D f

0
.x/

(b) Show that the existence of the limit in (i) guarantees that

f is differentiable at x.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 165 October 15, 2016

CHAPTER REVIEW 165

(c) Show that the existence of the limit in (ii) does not guaran-

tee that f is differentiable at x. Hint: Consider the func-

tion f .x/ D jxj at x D 0.

9. Show that there is a line through .a; 0/ that is tangent to the

curve y D x3 at x D 3a=2. If a ¤ 0, is there any other line

through .a; 0/ that is tangent to the curve? If .x0; y0/ is an

arbitrary point, what is the maximum number of lines through

.x0; y0/ that can be tangent to y D x3? the minimum num-

ber?

10. Make a sketch showing that there are two straight lines, each of

which is tangent to both of the parabolas y D x2
C4xC1 and

y D �x
2
C 4x � 1. Find equations of the two lines.

11. Show that if b > 1=2, there are three straight lines through

.0; b/, each of which is normal to the curve y D x2. How

many such lines are there if b D 1=2? if b < 1=2?

12. (Distance from a point to a curve) Find the point on the curve

y D x2 that is closest to the point .3; 0/. Hint: The line from

.3; 0/ to the closest point Q on the parabola is normal to the

parabola at Q.

13.I (Envelope of a family of lines) Show that for each value of

the parameter m, the line y D mx � .m2=4/ is tangent to the

parabola y D x2. (The parabola is called the envelope of the

family of lines y D mx � .m
2
=4/.) Find f .m/ such that the

family of lines y D mx C f .m/ has envelope the parabola

y D Ax2
C Bx C C:

14.I (Common tangents) Consider the two parabolas with equa-

tions y D x2 and y D Ax2
CBxCC: We assume thatA ¤ 0,

and if A D 1, then either B ¤ 0 or C ¤ 0, so that the two

equations do represent different parabolas. Show that:

(a) the two parabolas are tangent to each other if

B2
D 4C.A � 1/;

(b) the parabolas have two common tangent lines if and only

if A ¤ 1 and A
�

B
2
� 4C.A � 1/

�

> 0;

(c) the parabolas have exactly one common tangent line if ei-

ther A D 1 and B ¤ 0, or A ¤ 1 and B2
D 4C.A � 1/;

(d) the parabolas have no common tangent lines if either

A D 1 andB D 0, orA ¤ 1 andA
�

B2
�4C.A�1/

�

< 0.

Make sketches illustrating each of the above possibilities.

15. Let C be the graph of y D x3.

(a) Show that if a ¤ 0, then the tangent to C at x D a also

intersects C at a second point x D b.

(b) Show that the slope of C at x D b is four times its slope

at x D a.

(c) Can any line be tangent to C at more than one point?

(d) Can any line be tangent to the graph of

y D Ax
3
C Bx

2
C Cx CD at more than one point?

16.I Let C be the graph of y D x4
� 2x

2.

(a) Find all horizontal lines that are tangent to C:

(b) One of the lines found in (a) is tangent to C at two dif-

ferent points. Show that there are no other lines with this

property.

(c) Find an equation of a straight line that is tangent to the

graph of y D x4
� 2x2

C x at two different points. Can

there exist more than one such line? Why?

M 17. (Double tangents) A line tangent to the quartic (fourth-degree

polynomial) curve C with equation y D ax4
C bx3

C cx2
C

dx C e at x D p may intersect C at zero, one, or two other

points. If it meets C at only one other point x D q, it must be

tangent to C at that point also, and it is thus a “double tangent.”

(a) Find the condition that must be satisfied by the coefficients

of the quartic to ensure that there does exist such a double

tangent, and show that there cannot be more than one such

double tangent. Illustrate this by applying your results to

y D x4
� 2x2

C x � 1.

(b) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that PQ is parallel to the line tangent to

C at x D .p C q/=2.

(c) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that C has two distinct inflection points

R and S and that RS is parallel to PQ.

18. Verify the following formulas for every positive integer n:

(a)
dn

dxn
cos.ax/ D an cos

�

ax C
n�

2

�

(b)
dn

dxn
sin.ax/ D an sin

�

ax C
n�

2

�

(c)
dn

dxn

�

cos4
x C sin4

x

�

D 4
n�1 cos

�

4x C
n�

2

�

19. (Rocket with a parachute) A rocket is fired from the top of a

tower at time t D 0. It experiences constant upward accelera-

tion until its fuel is used up. Thereafter its acceleration is the

constant downward acceleration of gravity until, during its fall,

it deploys a parachute that gives it a constant upward accelera-

tion again to slow it down. The rocket hits the ground near the

base of the tower. The upward velocity v (in metres per sec-

ond) is graphed against time in Figure 2.43. From information

in the figure answer the following questions:

(a) How long did the fuel last?

(b) When was the rocket’s height maximum?

(c) When was the parachute deployed?

(d) What was the rocket’s upward acceleration while its motor

was firing?

(e) What was the maximum height achieved by the rocket?

(f) How high was the tower from which the rocket was fired?

.3; 39:2/

.12;�49/

.15;�1/

v (m/s)

�40

�30

�20

�10

10

20

30

40

t (s)
2 4 6 8 10 12 14

Figure 2.43
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C H A P T E R 3

Transcendental
Functions

“
It is well known that the central problem of the whole of modern

mathematics is the study of the transcendental functions defined by

differential equations.

”Felix Klein 1849–1925

Lectures on Mathematics (1911)

Introduction With the exception of the trigonometric functions, all the

functions we have encountered so far have been of three

main types: polynomials, rational functions (quotients of polynomials), and algebraic

functions (fractional powers of rational functions). On an interval in its domain, each

of these functions can be constructed from real numbers and a single real variable x

by using finitely many arithmetic operations (addition, subtraction, multiplication, and

division) and by taking finitely many roots (fractional powers). Functions that cannot

be so constructed are called transcendental functions. The only examples of these

that we have seen so far are the trigonometric functions.

Much of the importance of calculus and many of its most useful applications re-

sult from its ability to illuminate the behaviour of transcendental functions that arise

naturally when we try to model concrete problems in mathematical terms. This chap-

ter is devoted to developing other transcendental functions, including exponential and

logarithmic functions and the inverse trigonometric functions.

Some of these functions “undo” what other ones “do” and vice versa. When a pair

of functions behaves this way, we call each one the inverse of the other. We begin the

chapter by studying inverse functions in general.

3.1 Inverse Functions
Consider the function f .x/ D x3 whose graph is shown in Figure 3.1. Like any

function, f .x/ has only one value for each x in its domain (for x3 this is the whole

real line R). In geometric terms, this means that any vertical line meets the graph of

f at only one point. However, for this function f; any horizontal line also meets the

graph at only one point. This means that different values of x always give different

values f .x/. Such a function is said to be one-to-one.

D E F I N I T I O N

1

A function f is one-to-one if f .x1/ ¤ f .x2/ whenever x1 and x2 belong to

the domain of f and x1 ¤ x2, or, equivalently, if

f .x1/ D f .x2/ ÷ x1 D x2:
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A function is one-to-one if any horizontal line that intersects its graph does so at only

one point. If a function defined on a single interval is increasing (or decreasing), then

it is one-to-one. (See Section 2.6 for more discussion of this.)

Reconsider the one-to-one function f .x/ D x3 (Figure 3.1). Since the equation

y D x
3

has a unique solution x for every given value of y in the range of f; f is one-to-one.

Specifically, this solution is given by

x D y
1=3
I

it defines x as a function of y. We call this new function the inverse of f and denote it

f �1. Thus,

y

x

y D x3

Figure 3.1 The graph of f .x/ D x3

f
�1
.y/ D y

1=3
:

In general, if a function f is one-to-one, then for any number y in its range there

Do not confuse the �1 in f �1

with an exponent. The inverse

f �1 is not the reciprocal 1=f . If

we want to denote the reciprocal

1=f .x/ with an exponent we can

write it as
�

f .x/

��1

.

will always exist a single number x in its domain such that y D f .x/. Since x is

determined uniquely by y, it is a function of y. We write x D f �1.y/ and call f �1

the inverse of f: The function f whose graph is shown in Figure 3.2(a) is one-to-one

and has an inverse. The function g whose graph is shown in Figure 3.2(b) is not one-

to-one (some horizontal lines meet the graph twice) and so does not have an inverse.

Figure 3.2

(a) f is one-to-one and has an inverse:

y D f .x/ means the same thing as

x D f �1.y/

(b) g is not one-to-one

y

xx

y y D f .x/

or x D f �1.y/

y

xx1 x2

y

y D g.x/

(a) (b)

We usually like to write functions with the domain variable called x rather than y, so

we reverse the roles of x and y and reformulate the above definition as follows.

D E F I N I T I O N

2

If f is one-to-one, then it has an inverse function f �1. The value of f �1.x/

is the unique number y in the domain of f for which f .y/ D x. Thus,

y D f
�1
.x/ ” x D f .y/:

As seen above, y D f .x/ D x3 is equivalent to x D f �1.y/ D y1=3, or, reversing

the roles of x and y, y D f �1.x/ D x1=3 is equivalent to x D f .y/ D y3.

E X A M P L E 1
Show that f .x/ D 2x � 1 is one-to-one, and find its inverse

f �1.x/.

Solution Since f 0.x/ D 2 > 0 on R, f is increasing and therefore one-to-one there.

Let y D f �1.x/. Then

x D f .y/ D 2y � 1:

Solving this equation for y gives y D
x C 1

2
. Thus, f �1

.x/ D
x C 1

2
.
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Transcendental
Functions

“
It is well known that the central problem of the whole of modern

mathematics is the study of the transcendental functions defined by

differential equations.

”Felix Klein 1849–1925

Lectures on Mathematics (1911)

Introduction With the exception of the trigonometric functions, all the

functions we have encountered so far have been of three

main types: polynomials, rational functions (quotients of polynomials), and algebraic

functions (fractional powers of rational functions). On an interval in its domain, each

of these functions can be constructed from real numbers and a single real variable x

by using finitely many arithmetic operations (addition, subtraction, multiplication, and

division) and by taking finitely many roots (fractional powers). Functions that cannot

be so constructed are called transcendental functions. The only examples of these

that we have seen so far are the trigonometric functions.

Much of the importance of calculus and many of its most useful applications re-

sult from its ability to illuminate the behaviour of transcendental functions that arise

naturally when we try to model concrete problems in mathematical terms. This chap-

ter is devoted to developing other transcendental functions, including exponential and

logarithmic functions and the inverse trigonometric functions.

Some of these functions “undo” what other ones “do” and vice versa. When a pair

of functions behaves this way, we call each one the inverse of the other. We begin the

chapter by studying inverse functions in general.

3.1 Inverse Functions
Consider the function f .x/ D x3 whose graph is shown in Figure 3.1. Like any

function, f .x/ has only one value for each x in its domain (for x3 this is the whole

real line R). In geometric terms, this means that any vertical line meets the graph of

f at only one point. However, for this function f; any horizontal line also meets the

graph at only one point. This means that different values of x always give different

values f .x/. Such a function is said to be one-to-one.

D E F I N I T I O N

1

A function f is one-to-one if f .x1/ ¤ f .x2/ whenever x1 and x2 belong to

the domain of f and x1 ¤ x2, or, equivalently, if

f .x1/ D f .x2/ ÷ x1 D x2:
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A function is one-to-one if any horizontal line that intersects its graph does so at only

one point. If a function defined on a single interval is increasing (or decreasing), then

it is one-to-one. (See Section 2.6 for more discussion of this.)

Reconsider the one-to-one function f .x/ D x3 (Figure 3.1). Since the equation

y D x
3

has a unique solution x for every given value of y in the range of f; f is one-to-one.

Specifically, this solution is given by

x D y
1=3
I

it defines x as a function of y. We call this new function the inverse of f and denote it

f �1. Thus,

y

x

y D x3

Figure 3.1 The graph of f .x/ D x3

f
�1
.y/ D y

1=3
:

In general, if a function f is one-to-one, then for any number y in its range there

Do not confuse the �1 in f �1

with an exponent. The inverse

f �1 is not the reciprocal 1=f . If

we want to denote the reciprocal

1=f .x/ with an exponent we can

write it as
�

f .x/

��1

.

will always exist a single number x in its domain such that y D f .x/. Since x is

determined uniquely by y, it is a function of y. We write x D f �1.y/ and call f �1

the inverse of f: The function f whose graph is shown in Figure 3.2(a) is one-to-one

and has an inverse. The function g whose graph is shown in Figure 3.2(b) is not one-

to-one (some horizontal lines meet the graph twice) and so does not have an inverse.

Figure 3.2

(a) f is one-to-one and has an inverse:

y D f .x/ means the same thing as

x D f �1.y/

(b) g is not one-to-one

y

xx

y y D f .x/

or x D f �1.y/

y

xx1 x2

y

y D g.x/

(a) (b)

We usually like to write functions with the domain variable called x rather than y, so

we reverse the roles of x and y and reformulate the above definition as follows.

D E F I N I T I O N

2

If f is one-to-one, then it has an inverse function f �1. The value of f �1.x/

is the unique number y in the domain of f for which f .y/ D x. Thus,

y D f
�1
.x/ ” x D f .y/:

As seen above, y D f .x/ D x3 is equivalent to x D f �1.y/ D y1=3, or, reversing

the roles of x and y, y D f �1.x/ D x1=3 is equivalent to x D f .y/ D y3.

E X A M P L E 1
Show that f .x/ D 2x � 1 is one-to-one, and find its inverse

f �1.x/.

Solution Since f 0.x/ D 2 > 0 on R, f is increasing and therefore one-to-one there.

Let y D f �1.x/. Then

x D f .y/ D 2y � 1:

Solving this equation for y gives y D
x C 1

2
. Thus, f �1

.x/ D
x C 1

2
.
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There are several things you should remember about the relationship between a func-

tion f and its inverse f �1. The most important one is that the two equations

y D f
�1
.x/ and x D f .y/

say the same thing. They are equivalent just as, for example, y D xC1 and x D y�1

are equivalent. Either of the equations can be replaced by the other. This implies that

the domain of f �1 is the range of f and vice versa.

The inverse of a one-to-one function is itself one-to-one and so also has an inverse.

Not surprisingly, the inverse of f �1 is f :

y D .f
�1
/
�1
.x/ ” x D f

�1
.y/ ” y D f .x/:

We can substitute either of the equations y D f �1
.x/ or x D f .y/ into the other and

obtain the cancellation identities:

f
�

f
�1
.x/
�

D x; f
�1
�

f .y/
�

D y:

The first of these identities holds for all x in the domain of f �1 and the second for

all y in the domain of f . If S is any set of real numbers and IS denotes the identity

function on S; defined by

IS .x/ D x for all x in S;

then the cancellation identities say that if D.f / is the domain of f; then

f ı f
�1
D ID.f �1/ and f

�1
ı f D ID.f /;

where f ı g.x/ denotes the composition f
�

g.x/
�

.

If the coordinates of a point P D .a; b/ are exchanged to give those of a new point

Q D .b; a/, then each point is the reflection of the other in the line x D y. (To see

this, note that the line PQ has slope �1, so it is perpendicular to y D x. Also, the

midpoint of PQ is
�

aCb
2
;

bCa
2

�

, which lies on y D x.) It follows that the graphs of

the equations x D f .y/ and y D f .x/ are reflections of each other in the line x D y.

Since the equation x D f .y/ is equivalent to y D f �1.x/, the graphs of the functions

f
�1 and f are reflections of each other in y D x. See Figure 3.3.

Figure 3.3 The graph of y D f �1.x/

(red) is the reflection of the graph of

y D f .x/ (blue) in the line y D x (green)

y

x

y D f �1.x/

or x D f .y/

y D x

y D f .x/

P

Q
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Here is a summary of the properties of inverse functions discussed above:

Properties of inverse functions

1. y D f �1.x/ ” x D f .y/.

2. The domain of f �1 is the range of f:

3. The range of f �1 is the domain of f:

4. f �1
�

f .x/
�

D x for all x in the domain of f:

5. f
�

f
�1
.x/
�

D x for all x in the domain of f �1
:

6. .f �1
/
�1
.x/ D f .x/ for all x in the domain of f:

7. The graph of f �1 is the reflection of the graph of f in the line x D y.

E X A M P L E 2
Show that g.x/ D

p

2x C 1 is invertible, and find its inverse.

Solution If g.x1/ D g.x2/, then
p

2x1 C 1 D
p

2x2 C 1: Squaring both sides we

get 2x1 C 1 D 2x2 C 1, which implies that x1 D x2. Thus, g is one-to-one and

invertible. Let y D g�1
.x/; then

x D g.y/ D
p

2y C 1:

It follows that x � 0 and x2
D 2y C 1. Therefore, y D

x
2
� 1

2
and

g
�1
.x/ D

x2
� 1

2
for x � 0.

(The restriction x � 0 applies since the range of g is Œ0;1/.) See Figure 3.4(a) for the

graphs of g and g�1.

Figure 3.4

(a) The graphs of g.x/ D
p

2x C 1 and

its inverse

(b) The graph of the self-inverse function

f .x/ D 1=x

y

x

y D g
�1
.x/ D

x2
� 1

2

y D x

y D g.x/ D
p

2x C 1 .1C
p

2;1C
p

2/

y

x

y D f .x/ D
1

x

y D x

(a) (b)

D E F I N I T I O N

3

A function f is self-inverse if f �1
D f; that is, if f

�

f .x/
�

D x for every

x in the domain of f:

E X A M P L E 3
The function f .x/ D 1=x is self-inverse. If y D f �1.x/, then

x D f .y/ D
1

y
. Therefore, y D

1

x
, so f �1.x/ D

1

x
D f .x/.

See Figure 3.4(b). The graph of any self-inverse function must be its own reflection in

the line x D y and must therefore be symmetric about that line.
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There are several things you should remember about the relationship between a func-

tion f and its inverse f �1. The most important one is that the two equations

y D f
�1
.x/ and x D f .y/

say the same thing. They are equivalent just as, for example, y D xC1 and x D y�1

are equivalent. Either of the equations can be replaced by the other. This implies that

the domain of f �1 is the range of f and vice versa.

The inverse of a one-to-one function is itself one-to-one and so also has an inverse.

Not surprisingly, the inverse of f �1 is f :

y D .f
�1
/
�1
.x/ ” x D f

�1
.y/ ” y D f .x/:

We can substitute either of the equations y D f �1
.x/ or x D f .y/ into the other and

obtain the cancellation identities:

f
�

f
�1
.x/
�

D x; f
�1
�

f .y/
�

D y:

The first of these identities holds for all x in the domain of f �1 and the second for

all y in the domain of f . If S is any set of real numbers and IS denotes the identity

function on S; defined by

IS .x/ D x for all x in S;

then the cancellation identities say that if D.f / is the domain of f; then

f ı f
�1
D ID.f �1/ and f

�1
ı f D ID.f /;

where f ı g.x/ denotes the composition f
�

g.x/
�

.

If the coordinates of a point P D .a; b/ are exchanged to give those of a new point

Q D .b; a/, then each point is the reflection of the other in the line x D y. (To see

this, note that the line PQ has slope �1, so it is perpendicular to y D x. Also, the

midpoint of PQ is
�

aCb
2
;

bCa
2

�

, which lies on y D x.) It follows that the graphs of

the equations x D f .y/ and y D f .x/ are reflections of each other in the line x D y.

Since the equation x D f .y/ is equivalent to y D f �1.x/, the graphs of the functions

f
�1 and f are reflections of each other in y D x. See Figure 3.3.

Figure 3.3 The graph of y D f �1.x/

(red) is the reflection of the graph of

y D f .x/ (blue) in the line y D x (green)

y

x

y D f �1.x/

or x D f .y/

y D x

y D f .x/

P

Q

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 169 October 15, 2016

SECTION 3.1: Inverse Functions 169

Here is a summary of the properties of inverse functions discussed above:

Properties of inverse functions

1. y D f �1.x/ ” x D f .y/.

2. The domain of f �1 is the range of f:

3. The range of f �1 is the domain of f:

4. f �1
�

f .x/
�

D x for all x in the domain of f:

5. f
�

f
�1
.x/
�

D x for all x in the domain of f �1
:

6. .f �1
/
�1
.x/ D f .x/ for all x in the domain of f:

7. The graph of f �1 is the reflection of the graph of f in the line x D y.

E X A M P L E 2
Show that g.x/ D

p

2x C 1 is invertible, and find its inverse.

Solution If g.x1/ D g.x2/, then
p

2x1 C 1 D
p

2x2 C 1: Squaring both sides we

get 2x1 C 1 D 2x2 C 1, which implies that x1 D x2. Thus, g is one-to-one and

invertible. Let y D g�1
.x/; then

x D g.y/ D
p

2y C 1:

It follows that x � 0 and x2
D 2y C 1. Therefore, y D

x
2
� 1

2
and

g
�1
.x/ D

x2
� 1

2
for x � 0.

(The restriction x � 0 applies since the range of g is Œ0;1/.) See Figure 3.4(a) for the

graphs of g and g�1.

Figure 3.4

(a) The graphs of g.x/ D
p

2x C 1 and

its inverse

(b) The graph of the self-inverse function

f .x/ D 1=x

y

x

y D g
�1
.x/ D

x2
� 1

2

y D x

y D g.x/ D
p

2x C 1 .1C
p

2;1C
p

2/

y

x

y D f .x/ D
1

x

y D x

(a) (b)

D E F I N I T I O N

3

A function f is self-inverse if f �1
D f; that is, if f

�

f .x/
�

D x for every

x in the domain of f:

E X A M P L E 3
The function f .x/ D 1=x is self-inverse. If y D f �1.x/, then

x D f .y/ D
1

y
. Therefore, y D

1

x
, so f �1.x/ D

1

x
D f .x/.

See Figure 3.4(b). The graph of any self-inverse function must be its own reflection in

the line x D y and must therefore be symmetric about that line.
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Inverting Non–One-to-One Functions
Many important functions, such as the trigonometric functions, are not one-to-one on

their whole domains. It is still possible to define an inverse for such a function, but we

have to restrict the domain of the function artificially so that the restricted function is

one-to-one.

As an example, consider the function f .x/ D x
2. Unrestricted, its domain is the

whole real line and it is not one-to-one since f .�a/ D f .a/ for any a. Let us define a

new function F.x/ equal to f .x/ but having a smaller domain, so that it is one-to-one.

We can use the interval Œ0;1/ as the domain of F :

F.x/ D x
2 for 0 � x <1:

The graph of F is shown in Figure 3.5; it is the right half of the parabola y D x2, the

graph of f: Evidently F is one-to-one, so it has an inverse F �1, which we calculate

as follows:

y

x

y D F�1.x/

y D x

y D F.x/

y D x2

Figure 3.5 The restriction F of x2 (blue)

to Œ0;1/ and its inverse F�1 (red)

Let y D F �1.x/, then x D F.y/ D y2 and y � 0. Thus, y D
p

x. Hence

F �1.x/ D
p

x.

This method of restricting the domain of a non–one-to-one function to make it

invertible will be used when we invert the trigonometric functions in Section 3.5.

Derivatives of Inverse Functions
Suppose that the function f is differentiable on an interval .a; b/ and that either

f
0
.x/ > 0 for a < x < b, so that f is increasing on .a; b/, or f 0

.x/ < 0 for

a < x < b, so that f is decreasing on .a; b/. In either case f is one-to-one on .a; b/

and has an inverse, f �1 there. Differentiating the cancellation identity

f
�

f
�1
.x/
�

D x

with respect to x, using the Chain Rule, we obtain

f
0�
f

�1
.x/
� d

dx
f

�1
.x/ D

d

dx
x D 1:

Thus,

d

dx
f

�1
.x/ D

1

f 0 .f �1.x//
:

In Leibniz notation, if y D f �1.x/, we have
dy

dx

ˇ

ˇ

ˇ

ˇ

x

D

1

dx

dy

ˇ

ˇ

ˇ

ˇ

yDf �1.x/

.

The slope of the graph of f �1 at .x; y/ is the reciprocal of the slope of the graph of f

at .y; x/. (See Figure 3.6.)

E X A M P L E 4
Show that f .x/ D x

3
C x is one-to-one on the whole real line,

and, noting that f .2/ D 10, find
�

f �1
�0
.10/.

Solution Since f 0.x/ D 3x2
C 1 > 0 for all real numbers x, f is increasing and

therefore one-to-one and invertible. If y D f �1
.x/, then

x D f .y/ D y
3
C y ÷ 1 D .3y

2
C 1/y

0

÷ y
0
D

1

3y2
C 1

:

Now x D f .2/ D 10 implies y D f �1.10/ D 2. Thus,

�

f
�1
�0
.10/ D

1

3y2
C 1

ˇ

ˇ

ˇ

ˇ

yD2

D

1

13
:
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Figure 3.6 Tangents to the graphs of f

and f �1

y

x

.x; y/

graph of f �1
graph of f

.y; x/

y D x

E X E R C I S E S 3.1

Show that the functions f in Exercises 1–12 are one-to-one, and

calculate the inverse functions f �1. Specify the domains and

ranges of f and f �1.

1. f .x/ D x � 1 2. f .x/ D 2x � 1

3. f .x/ D
p

x � 1 4. f .x/ D �
p

x � 1

5. f .x/ D x3 6. f .x/ D 1C 3
p

x

7. f .x/ D x2
; x � 0 8. f .x/ D .1 � 2x/3

9. f .x/ D
1

x C 1
10. f .x/ D

x

1C x

11. f .x/ D
1 � 2x

1C x
12. f .x/ D

x
p

x2
C 1

In Exercises 13–20, f is a one-to-one function with inverse f �1.

Calculate the inverses of the given functions in terms of f �1.

13. g.x/ D f .x/ � 2 14. h.x/ D f .2x/

15. k.x/ D �3f .x/ 16. m.x/ D f .x � 2/

17. p.x/ D
1

1C f .x/
18. q.x/ D

f .x/ � 3

2

19. r.x/ D 1 � 2f .3 � 4x/ 20. s.x/ D
1C f .x/

1� f .x/

In Exercises 21–23, show that the given function is one-to-one and

find its inverse.

21. f .x/ D

�

x2
C 1 if x � 0

x C 1 if x < 0

22. g.x/ D

�

x3 if x � 0

x1=3 if x < 0

23. h.x/ D xjxj C 1

24. Find f �1.2/ if f .x/ D x3
C x.

25. Find g�1.1/ if g.x/ D x3
C x � 9.

26. Find h�1.�3/ if h.x/ D xjxj C 1.

27. Assume that the function f .x/ satisfies f 0.x/ D
1

x
and that

f is one-to-one. If y D f �1
.x/, show that dy=dx D y.

28. Find
�

f
�1
�0
.x/ if f .x/ D 1C 2x3.

29. Show that f .x/ D
4x3

x2
C 1

has an inverse and find
�

f �1
�0
.2/.

30.I Find
�

f �1
�0
.�2/ if f .x/ D x

p

3C x2.

C 31. If f .x/ D x2=.1C
p

x/, find f �1.2/ correct to 5 decimal

places.

C 32. If g.x/ D 2x C sinx, show that g is invertible, and find

g�1.2/ and .g�1/0.2/ correct to 5 decimal places.

33. Show that f .x/ D x sec x is one-to-one on .��=2; �=2/.

What is the domain of f �1.x/? Find .f �1/0.0/.

34. If functions f and g have respective inverses f �1 and g�1,

show that the composite function f ı g has inverse

.f ı g/�1
D g�1

ı f �1.

35.I For what values of the constants a, b, and c is the function

f .x/ D .x � a/=.bx � c/ self-inverse?

36.A Can an even function be self-inverse? an odd function?

37.A In this section it was claimed that an increasing (or

decreasing) function defined on a single interval is necessarily

one-to-one. Is the converse of this statement true? Explain.

38.I Repeat Exercise 37 with the added assumption that f is

continuous on the interval where it is defined.
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Inverting Non–One-to-One Functions
Many important functions, such as the trigonometric functions, are not one-to-one on

their whole domains. It is still possible to define an inverse for such a function, but we

have to restrict the domain of the function artificially so that the restricted function is

one-to-one.

As an example, consider the function f .x/ D x
2. Unrestricted, its domain is the

whole real line and it is not one-to-one since f .�a/ D f .a/ for any a. Let us define a

new function F.x/ equal to f .x/ but having a smaller domain, so that it is one-to-one.

We can use the interval Œ0;1/ as the domain of F :

F.x/ D x
2 for 0 � x <1:

The graph of F is shown in Figure 3.5; it is the right half of the parabola y D x2, the

graph of f: Evidently F is one-to-one, so it has an inverse F �1, which we calculate

as follows:

y

x

y D F�1.x/

y D x

y D F.x/

y D x2

Figure 3.5 The restriction F of x2 (blue)

to Œ0;1/ and its inverse F�1 (red)

Let y D F �1.x/, then x D F.y/ D y2 and y � 0. Thus, y D
p

x. Hence

F �1.x/ D
p

x.

This method of restricting the domain of a non–one-to-one function to make it

invertible will be used when we invert the trigonometric functions in Section 3.5.

Derivatives of Inverse Functions
Suppose that the function f is differentiable on an interval .a; b/ and that either

f
0
.x/ > 0 for a < x < b, so that f is increasing on .a; b/, or f 0

.x/ < 0 for

a < x < b, so that f is decreasing on .a; b/. In either case f is one-to-one on .a; b/

and has an inverse, f �1 there. Differentiating the cancellation identity

f
�

f
�1
.x/
�

D x

with respect to x, using the Chain Rule, we obtain

f
0�
f

�1
.x/
� d

dx
f

�1
.x/ D

d

dx
x D 1:

Thus,

d

dx
f

�1
.x/ D

1

f 0 .f �1.x//
:

In Leibniz notation, if y D f �1.x/, we have
dy

dx

ˇ

ˇ

ˇ

ˇ

x

D

1

dx

dy

ˇ

ˇ

ˇ

ˇ

yDf �1.x/

.

The slope of the graph of f �1 at .x; y/ is the reciprocal of the slope of the graph of f

at .y; x/. (See Figure 3.6.)

E X A M P L E 4
Show that f .x/ D x

3
C x is one-to-one on the whole real line,

and, noting that f .2/ D 10, find
�

f �1
�0
.10/.

Solution Since f 0.x/ D 3x2
C 1 > 0 for all real numbers x, f is increasing and

therefore one-to-one and invertible. If y D f �1
.x/, then

x D f .y/ D y
3
C y ÷ 1 D .3y

2
C 1/y

0

÷ y
0
D

1

3y2
C 1

:

Now x D f .2/ D 10 implies y D f �1.10/ D 2. Thus,

�

f
�1
�0
.10/ D

1

3y2
C 1

ˇ

ˇ

ˇ

ˇ

yD2

D

1

13
:
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Figure 3.6 Tangents to the graphs of f

and f �1

y

x

.x; y/

graph of f �1
graph of f

.y; x/

y D x

E X E R C I S E S 3.1

Show that the functions f in Exercises 1–12 are one-to-one, and

calculate the inverse functions f �1. Specify the domains and

ranges of f and f �1.

1. f .x/ D x � 1 2. f .x/ D 2x � 1

3. f .x/ D
p

x � 1 4. f .x/ D �
p

x � 1

5. f .x/ D x3 6. f .x/ D 1C 3
p

x

7. f .x/ D x2
; x � 0 8. f .x/ D .1 � 2x/3

9. f .x/ D
1

x C 1
10. f .x/ D

x

1C x

11. f .x/ D
1 � 2x

1C x
12. f .x/ D

x
p

x2
C 1

In Exercises 13–20, f is a one-to-one function with inverse f �1.

Calculate the inverses of the given functions in terms of f �1.

13. g.x/ D f .x/ � 2 14. h.x/ D f .2x/

15. k.x/ D �3f .x/ 16. m.x/ D f .x � 2/

17. p.x/ D
1

1C f .x/
18. q.x/ D

f .x/ � 3

2

19. r.x/ D 1 � 2f .3 � 4x/ 20. s.x/ D
1C f .x/

1� f .x/

In Exercises 21–23, show that the given function is one-to-one and

find its inverse.

21. f .x/ D

�

x2
C 1 if x � 0

x C 1 if x < 0

22. g.x/ D

�

x3 if x � 0

x1=3 if x < 0

23. h.x/ D xjxj C 1

24. Find f �1.2/ if f .x/ D x3
C x.

25. Find g�1.1/ if g.x/ D x3
C x � 9.

26. Find h�1.�3/ if h.x/ D xjxj C 1.

27. Assume that the function f .x/ satisfies f 0.x/ D
1

x
and that

f is one-to-one. If y D f �1
.x/, show that dy=dx D y.

28. Find
�

f
�1
�0
.x/ if f .x/ D 1C 2x3.

29. Show that f .x/ D
4x3

x2
C 1

has an inverse and find
�

f �1
�0
.2/.

30.I Find
�

f �1
�0
.�2/ if f .x/ D x

p

3C x2.

C 31. If f .x/ D x2=.1C
p

x/, find f �1.2/ correct to 5 decimal

places.

C 32. If g.x/ D 2x C sinx, show that g is invertible, and find

g�1.2/ and .g�1/0.2/ correct to 5 decimal places.

33. Show that f .x/ D x sec x is one-to-one on .��=2; �=2/.

What is the domain of f �1.x/? Find .f �1/0.0/.

34. If functions f and g have respective inverses f �1 and g�1,

show that the composite function f ı g has inverse

.f ı g/�1
D g�1

ı f �1.

35.I For what values of the constants a, b, and c is the function

f .x/ D .x � a/=.bx � c/ self-inverse?

36.A Can an even function be self-inverse? an odd function?

37.A In this section it was claimed that an increasing (or

decreasing) function defined on a single interval is necessarily

one-to-one. Is the converse of this statement true? Explain.

38.I Repeat Exercise 37 with the added assumption that f is

continuous on the interval where it is defined.
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3.2 Exponential and Logarithmic Functions

To begin we review exponential and logarithmic functions as you may have encoun-

tered them in your previous mathematical studies. In the following sections we will

approach these functions from a different point of view and learn how to find their

derivatives.

Exponentials
An exponential function is a function of the form f .x/ D ax , where the base a is a

positive constant and the exponent x is the variable. Do not confuse such functions

with power functions such as f .x/ D x
a, where the base is variable and the expo-

nent is constant. The exponential function ax can be defined for integer and rational

exponents x as follows:

D E F I N I T I O N

4

Exponential functions

If a > 0, then

a
0
D 1

a
n
D a � a � a � � � a
„ † …

n factors

if n D 1; 2; 3; : : :

a
�n
D

1

an
if n D 1; 2; 3; : : :

a
m=n
D

n
p

am if n D 1; 2; 3; : : : and m D ˙1;˙2;˙3; : : : :

In this definition, n
p

a is the number b > 0 that satisfies bn
D a.

How should we define ax if x is not rational? For example, what does 2� mean? In

order to calculate a derivative of ax , we will want the function to be defined for all real

numbers x, not just rational ones.

In Figure 3.7 we plot points with coordinates .x; 2x/ for many closely spaced ra-

tional values of x. They appear to lie on a smooth curve. The definition of ax can be

extended to irrational x in such a way that ax becomes a differentiable function of x on

the whole real line. We will do so in the next section. For the moment, if x is irrational

we can regard ax as being the limit of values ar for rational numbers r approaching x:

y

x

1

Figure 3.7 y D 2x for rational x

a
x
D lim

r!x
r rational

a
r
:

E X A M P L E 1
Since the irrational number � D 3:141 592 653 59 : : : is the limit

of the sequence of rational numbers

r1 D 3; r2 D 3:1; r3 D 3:14; r4 D 3:141; r5 D 3:1415; : : : ;

we can calculate 2� as the limit of the corresponding sequence

2
3
D 8; 2

3:1
D 8:574 187 7 : : : ; 2

3:14
D 8:815 240 9 : : : :

This gives 2�
D limn!1 2rn

D 8:824 977 827 : : : .

Exponential functions satisfy several identities called laws of exponents:
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Laws of exponents

If a > 0 and b > 0, and x and y are any real numbers, then

(i) a
0
D 1 (ii) a

xCy
D a

x
a

y

(iii) a
�x
D

1

ax
(iv) a

x�y
D

ax

ay

(v) .a
x
/
y
D a

xy (vi) .ab/
x
D a

x
b

x

These identities can be proved for rational exponents using the definitions above. They

remain true for irrational exponents, but we can’t show that until the next section.

If a D 1, then ax
D 1x

D 1 for every x. If a > 1, then ax is an increasing

function of x; if 0 < a < 1, then ax is decreasing. The graphs of some typical

exponential functions are shown in Figure 3.8(a). They all pass through the point (0,1)

since a0
D 1 for every a > 0. Observe that ax > 0 for all a > 0 and all real x and

that:

If a > 1; then lim
x!�1

a
x
D 0 and lim

x!1
a

x
D1:

If 0 < a < 1; then lim
x!�1

a
x
D 1 and lim

x!1
a

x
D 0:

Figure 3.8

(a) Graphs of some exponential functions

y D a
x

(b) Graphs of some logarithmic functions

y D loga.x/

y

x

aD2

aD4

aD 1
10

aD1

y D ax

aD10

aD 1
4

aD 1
2

y

xaD1=10

aD1=4

aD1=2

aD2

aD4

aD10

y D loga x

(a) (b)

The graph of y D ax has the x-axis as a horizontal asymptote if a ¤ 1. It is asymptotic

on the left (as x ! �1) if a > 1 and on the right (as x !1) if 0 < a < 1.

Logarithms
The function f .x/ D ax is a one-to-one function provided that a > 0 and a ¤ 1.

Therefore, f has an inverse which we call a logarithmic function.

D E F I N I T I O N

5

If a > 0 and a ¤ 1, the function loga x, called the logarithm of x to the

base a, is the inverse of the one-to-one function ax :

y D loga x ” x D a
y
; .a > 0; a ¤ 1/:

Since ax has domain .�1;1/, loga x has range .�1;1/. Since ax has range

.0;1/, loga x has domain .0;1/. Since ax and loga x are inverse functions, the

following cancellation identities hold:

loga .a
x
/ D x for all real x and a

loga x
D x for all x > 0:
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3.2 Exponential and Logarithmic Functions

To begin we review exponential and logarithmic functions as you may have encoun-

tered them in your previous mathematical studies. In the following sections we will

approach these functions from a different point of view and learn how to find their

derivatives.

Exponentials
An exponential function is a function of the form f .x/ D ax , where the base a is a

positive constant and the exponent x is the variable. Do not confuse such functions

with power functions such as f .x/ D x
a, where the base is variable and the expo-

nent is constant. The exponential function ax can be defined for integer and rational

exponents x as follows:

D E F I N I T I O N

4

Exponential functions

If a > 0, then

a
0
D 1

a
n
D a � a � a � � � a
„ † …

n factors

if n D 1; 2; 3; : : :

a
�n
D

1

an
if n D 1; 2; 3; : : :

a
m=n
D

n
p

am if n D 1; 2; 3; : : : and m D ˙1;˙2;˙3; : : : :

In this definition, n
p

a is the number b > 0 that satisfies bn
D a.

How should we define ax if x is not rational? For example, what does 2� mean? In

order to calculate a derivative of ax , we will want the function to be defined for all real

numbers x, not just rational ones.

In Figure 3.7 we plot points with coordinates .x; 2x/ for many closely spaced ra-

tional values of x. They appear to lie on a smooth curve. The definition of ax can be

extended to irrational x in such a way that ax becomes a differentiable function of x on

the whole real line. We will do so in the next section. For the moment, if x is irrational

we can regard ax as being the limit of values ar for rational numbers r approaching x:

y

x

1

Figure 3.7 y D 2x for rational x

a
x
D lim

r!x
r rational

a
r
:

E X A M P L E 1
Since the irrational number � D 3:141 592 653 59 : : : is the limit

of the sequence of rational numbers

r1 D 3; r2 D 3:1; r3 D 3:14; r4 D 3:141; r5 D 3:1415; : : : ;

we can calculate 2� as the limit of the corresponding sequence

2
3
D 8; 2

3:1
D 8:574 187 7 : : : ; 2

3:14
D 8:815 240 9 : : : :

This gives 2�
D limn!1 2rn

D 8:824 977 827 : : : .

Exponential functions satisfy several identities called laws of exponents:
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Laws of exponents

If a > 0 and b > 0, and x and y are any real numbers, then

(i) a
0
D 1 (ii) a

xCy
D a

x
a

y

(iii) a
�x
D

1

ax
(iv) a

x�y
D

ax

ay

(v) .a
x
/
y
D a

xy (vi) .ab/
x
D a

x
b

x

These identities can be proved for rational exponents using the definitions above. They

remain true for irrational exponents, but we can’t show that until the next section.

If a D 1, then ax
D 1x

D 1 for every x. If a > 1, then ax is an increasing

function of x; if 0 < a < 1, then ax is decreasing. The graphs of some typical

exponential functions are shown in Figure 3.8(a). They all pass through the point (0,1)

since a0
D 1 for every a > 0. Observe that ax > 0 for all a > 0 and all real x and

that:

If a > 1; then lim
x!�1

a
x
D 0 and lim

x!1
a

x
D1:

If 0 < a < 1; then lim
x!�1

a
x
D 1 and lim

x!1
a

x
D 0:

Figure 3.8

(a) Graphs of some exponential functions

y D a
x

(b) Graphs of some logarithmic functions

y D loga.x/

y

x

aD2

aD4

aD 1
10

aD1

y D ax

aD10

aD 1
4

aD 1
2

y

xaD1=10

aD1=4

aD1=2

aD2

aD4

aD10

y D loga x

(a) (b)

The graph of y D ax has the x-axis as a horizontal asymptote if a ¤ 1. It is asymptotic

on the left (as x ! �1) if a > 1 and on the right (as x !1) if 0 < a < 1.

Logarithms
The function f .x/ D ax is a one-to-one function provided that a > 0 and a ¤ 1.

Therefore, f has an inverse which we call a logarithmic function.

D E F I N I T I O N

5

If a > 0 and a ¤ 1, the function loga x, called the logarithm of x to the

base a, is the inverse of the one-to-one function ax :

y D loga x ” x D a
y
; .a > 0; a ¤ 1/:

Since ax has domain .�1;1/, loga x has range .�1;1/. Since ax has range

.0;1/, loga x has domain .0;1/. Since ax and loga x are inverse functions, the

following cancellation identities hold:

loga .a
x
/ D x for all real x and a

loga x
D x for all x > 0:
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The graphs of some typical logarithmic functions are shown in Figure 3.8(b). They all

pass through the point .1; 0/. Each graph is the reflection in the line y D x of the

corresponding exponential graph in Figure 3.8(a).

From the laws of exponents we can derive the following laws of logarithms:

Laws of logarithms

If x > 0, y > 0, a > 0, b > 0, a ¤ 1, and b ¤ 1, then

(i) loga 1 D 0 (ii) loga.xy/ D loga xCloga y

(iii) loga

�

1

x

�

D � loga x (iv) loga

�

x

y

�

D loga x�loga y

(v) loga .x
y
/ D y loga x (vi) loga x D

logb x

logb a

E X A M P L E 2
If a > 0, x > 0, and y > 0, verify that loga.xy/ D loga x C

loga y, using laws of exponents.

Solution Let u D loga x and v D loga y. By the defining property of inverse

functions, x D au and y D av . Thus, xy D auav
D auCv . Inverting again, we get

loga.xy/ D uC v D loga x C loga y:

Logarithm law (vi) presented above shows that if you know logarithms to a particular

base b, you can calculate logarithms to any other base a. Scientific calculators usually

have built-in programs for calculating logarithms to base 10 and to base e, a special

number that we will discover in Section 3.3. Logarithms to any base can be calculated

using either of these functions. For example, computer scientists sometimes need to

use logarithms to base 2. Using a scientific calculator, you can readily calculate

log2 13 D
log10 13

log10 2
D

1:113 943 352 31 : : :

0:301 029 995 664 : : :
D 3:700 439 718 14 : : : :

The laws of logarithms can sometimes be used to simplify complicated expressions.

E X A M P L E 3
Simplify

(a) log2 10C log2 12 � log2 15, (b) loga2 a
3, and (c) 3log9 4.

Solution

(a) log2 10C log2 12 � log2 15 D log2

10 � 12

15
(laws (ii) and (iv))

D log2 8

D log2 2
3
D 3: (cancellation identity)

(b) loga2 a
3
D 3 loga2 a (law (v))

D

3

2
loga2 a

2 (law (v) again)

D

3

2
: (cancellation identity)

(c) 3
log9 4

D 3
.log3 4/=.log3 9/ (law (vi))

D

�

3
log3 4

�1= log3 9

D 4
1= log3 32

D 4
1=2
D 2: (cancellation identity)

E X A M P L E 4
Solve the equation 3x�1

D 2x .
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Solution We can take logarithms of both sides of the equation to any base a and get

.x � 1/ loga 3 D x loga 2

.loga 3 � loga 2/x D loga 3

x D
loga 3

loga 3 � loga 2
D

loga 3

loga.3=2/
:

The numerical value of x can be found using the “log” function on a scientific calcu-

lator. (This function is log10.) The value is x D 2:7095 : : : .

Corresponding to the asymptotic behaviour of the exponential functions, the logarith-

mic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic to the

y-axis as x ! 0 from the right:

If a > 1; then lim
x!0C

loga x D �1 and lim
x!1

loga x D1:

If 0 < a < 1; then lim
x!0C

loga x D1 and lim
x!1

loga x D �1:

E X E R C I S E S 3.2

Simplify the expressions in Exercises 1–18.

1.
3

3

p

35
2. 21=2

8
1=2

3.
�

x
�3
��2

4.

�

1

2

�x

4
x=2

5. log5 125 6. log4

�

1

8

�

7. log1=3 3
2x 8. 2log4 8

9. 10� log10.1=x/ 10. x1=.loga x/

11. .loga b/.logb a/ 12. logx

�

x.logy y
2
/
�

13. .log4 16/.log4 2/ 14. log15 75C log15 3

15. log6 9C log6 4 16. 2 log3 12 � 4 log3 6

17. loga.x
4
C 3x

2
C 2/C loga.x

4
C 5x

2
C 6/

� 4 loga

p

x2
C 2

18. log� .1 � cosx/C log� .1C cosx/ � 2 log� sinx

Use the base 10 exponential and logarithm functions 10x and logx

(that is, log10 x) on a scientific calculator to evaluate the

expressions or solve the equations in Exercises 19–24.

C 19. 3
p

2 20.C log3 5

C 21. 22x
D 5

xC1 22.C x

p
2
D 3

C 23. logx 3 D 5 24.C log3 x D 5

Use the laws of exponents to prove the laws of logarithms in

Exercises 25–28.

25. loga

�

1

x

�

D � loga x

26. loga

�

x

y

�

D loga x � loga y

27. loga.x
y
/ D y loga x

28. loga x D .logb x/=.logb a/

29. Solve log4.x C 4/ � 2 log4.x C 1/ D
1

2
for x.

30. Solve 2 log3 x C log9 x D 10 for x.

Evaluate the limits in Exercises 31–34.

31. lim
x!1

logx 2 32. lim
x!0C

logx.1=2/

33. lim
x!1C

logx 2 34. lim
x!1�

logx 2

35.A Suppose that f .x/ D ax is differentiable at x D 0 and that

f 0.0/ D k, where k ¤ 0. Prove that f is differentiable at any

real number x and that

f
0
.x/ D k a

x
D k f .x/:

36.A Continuing Exercise 35, prove that f �1.x/ D loga x is

differentiable at any x > 0 and that

.f
�1
/
0
.x/ D

1

kx
:
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The graphs of some typical logarithmic functions are shown in Figure 3.8(b). They all

pass through the point .1; 0/. Each graph is the reflection in the line y D x of the

corresponding exponential graph in Figure 3.8(a).

From the laws of exponents we can derive the following laws of logarithms:

Laws of logarithms

If x > 0, y > 0, a > 0, b > 0, a ¤ 1, and b ¤ 1, then

(i) loga 1 D 0 (ii) loga.xy/ D loga xCloga y

(iii) loga

�

1

x

�

D � loga x (iv) loga

�

x

y

�

D loga x�loga y

(v) loga .x
y
/ D y loga x (vi) loga x D

logb x

logb a

E X A M P L E 2
If a > 0, x > 0, and y > 0, verify that loga.xy/ D loga x C

loga y, using laws of exponents.

Solution Let u D loga x and v D loga y. By the defining property of inverse

functions, x D au and y D av . Thus, xy D auav
D auCv . Inverting again, we get

loga.xy/ D uC v D loga x C loga y:

Logarithm law (vi) presented above shows that if you know logarithms to a particular

base b, you can calculate logarithms to any other base a. Scientific calculators usually

have built-in programs for calculating logarithms to base 10 and to base e, a special

number that we will discover in Section 3.3. Logarithms to any base can be calculated

using either of these functions. For example, computer scientists sometimes need to

use logarithms to base 2. Using a scientific calculator, you can readily calculate

log2 13 D
log10 13

log10 2
D

1:113 943 352 31 : : :

0:301 029 995 664 : : :
D 3:700 439 718 14 : : : :

The laws of logarithms can sometimes be used to simplify complicated expressions.

E X A M P L E 3
Simplify

(a) log2 10C log2 12 � log2 15, (b) loga2 a
3, and (c) 3log9 4.

Solution

(a) log2 10C log2 12 � log2 15 D log2

10 � 12

15
(laws (ii) and (iv))

D log2 8

D log2 2
3
D 3: (cancellation identity)

(b) loga2 a
3
D 3 loga2 a (law (v))

D

3

2
loga2 a

2 (law (v) again)

D

3

2
: (cancellation identity)

(c) 3
log9 4

D 3
.log3 4/=.log3 9/ (law (vi))

D

�

3
log3 4

�1= log3 9

D 4
1= log3 32

D 4
1=2
D 2: (cancellation identity)

E X A M P L E 4
Solve the equation 3x�1

D 2x .
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Solution We can take logarithms of both sides of the equation to any base a and get

.x � 1/ loga 3 D x loga 2

.loga 3 � loga 2/x D loga 3

x D
loga 3

loga 3 � loga 2
D

loga 3

loga.3=2/
:

The numerical value of x can be found using the “log” function on a scientific calcu-

lator. (This function is log10.) The value is x D 2:7095 : : : .

Corresponding to the asymptotic behaviour of the exponential functions, the logarith-

mic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic to the

y-axis as x ! 0 from the right:

If a > 1; then lim
x!0C

loga x D �1 and lim
x!1

loga x D1:

If 0 < a < 1; then lim
x!0C

loga x D1 and lim
x!1

loga x D �1:

E X E R C I S E S 3.2

Simplify the expressions in Exercises 1–18.

1.
3

3

p

35
2. 21=2

8
1=2

3.
�

x
�3
��2

4.

�

1

2

�x

4
x=2

5. log5 125 6. log4

�

1

8

�

7. log1=3 3
2x 8. 2log4 8

9. 10� log10.1=x/ 10. x1=.loga x/

11. .loga b/.logb a/ 12. logx

�

x.logy y
2
/
�

13. .log4 16/.log4 2/ 14. log15 75C log15 3

15. log6 9C log6 4 16. 2 log3 12 � 4 log3 6

17. loga.x
4
C 3x

2
C 2/C loga.x

4
C 5x

2
C 6/

� 4 loga

p

x2
C 2

18. log� .1 � cosx/C log� .1C cosx/ � 2 log� sinx

Use the base 10 exponential and logarithm functions 10x and logx

(that is, log10 x) on a scientific calculator to evaluate the

expressions or solve the equations in Exercises 19–24.

C 19. 3
p

2 20.C log3 5

C 21. 22x
D 5

xC1 22.C x

p
2
D 3

C 23. logx 3 D 5 24.C log3 x D 5

Use the laws of exponents to prove the laws of logarithms in

Exercises 25–28.

25. loga

�

1

x

�

D � loga x

26. loga

�

x

y

�

D loga x � loga y

27. loga.x
y
/ D y loga x

28. loga x D .logb x/=.logb a/

29. Solve log4.x C 4/ � 2 log4.x C 1/ D
1

2
for x.

30. Solve 2 log3 x C log9 x D 10 for x.

Evaluate the limits in Exercises 31–34.

31. lim
x!1

logx 2 32. lim
x!0C

logx.1=2/

33. lim
x!1C

logx 2 34. lim
x!1�

logx 2

35.A Suppose that f .x/ D ax is differentiable at x D 0 and that

f 0.0/ D k, where k ¤ 0. Prove that f is differentiable at any

real number x and that

f
0
.x/ D k a

x
D k f .x/:

36.A Continuing Exercise 35, prove that f �1.x/ D loga x is

differentiable at any x > 0 and that

.f
�1
/
0
.x/ D

1

kx
:
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3.3 The Natural Logarithm and Exponential Functions

In this section we are going to define a function lnx, called the natural logarithm

of x, in a way that does not at first seem to have anything to do with the logarithms

Regard this paragraph as

describing a game we are going

to play in this section. The result

of the game will be that we will

acquire two new classes of

functions, logarithms, and

exponentials, to which the rules

of calculus will apply.

considered in Section 3.2. We will show, however, that it has the same properties as

those logarithms, and in the end we will see that lnx D loge x, the logarithm of x

to a certain specific base e. We will show that ln x is a one-to-one function, defined

for all positive real numbers. It must therefore have an inverse, ex , that we will call

the exponential function. Our final goal is to arrive at a definition of the exponential

functions ax (for any a > 0) that is valid for any real number x instead of just rational

numbers, and that is known to be continuous and even differentiable without our having

to assume those properties as we did in Section 3.2.

Table 1. Derivatives of integer

powers

f .x/ f 0.x/

:
:
:

:
:
:

x4 4x3

x3 3x2

x2 2x

x1 1x0
D 1

x
0

0

x�1
�x�2

x�2
�2x�3

x�3
�3x�4

:
:
:

:
:
:

The Natural Logarithm

Table 1 lists the derivatives of integer powers of x. Those derivatives are multiples of

integer powers of x, but one integer power, x�1, is conspicuously absent from the list

of derivatives; we do not yet know a function whose derivative is x�1
D 1=x. We are

going to remedy this situation by defining a function lnx in such a way that it will have

derivative 1=x.

To get a hint as to how this can be done, review Example 1 of Section 2.11. In that

example we showed that the area under the graph of the velocity of a moving object in a

time interval is equal to the distance travelled by the object in that time interval. Since

the derivative of distance is velocity, measuring the area provided a way of finding

a function (the distance) that had a given derivative (the velocity). This relationship

between area and derivatives is one of the most important ideas in calculus. It is called

the Fundamental Theorem of Calculus. We will explore it fully in Chapter 5, but we

will make use of the idea now to define lnx, which we want to have derivative 1=x.

D E F I N I T I O N

6

The natural logarithm

For x > 0, let Ax be the area of the plane region bounded by the curve

y D 1=t , the t-axis, and the vertical lines t D 1 and t D x. The function lnx

is defined by

ln x D

�

Ax if x � 1,

�Ax if 0 < x < 1,

as shown in Figure 3.9.

Figure 3.9

(a) lnx D �area Ax if 0 < x < 1

(b) lnx D area Ax if x � 1

y

t

.1; 1/

y D
1

t

Ax

x 1

y

t

.1; 1/

y D
1

t

Ax

1 x

(a) (b)
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The definition implies that ln 1 D 0, that lnx > 0 if x > 1, that ln x < 0 if 0 < x < 1,

and that ln is a one-to-one function. We now show that if y D lnx, then y 0
D 1=x. The

proof of this result is similar to the proof we will give for the Fundamental Theorem of

Calculus in Section 5.5.

T H E O R E M

1

If x > 0, then

d

dx
lnx D

1

x
:

PROOF For x > 0 and h > 0, ln.xCh/� ln x is the area of the plane region bounded

by y D 1=t , y D 0, and the vertical lines t D x and t D x C h; it is the shaded area

in Figure 3.10. Comparing this area with that of two rectangles, we see that

h

x C h
< shaded area D ln.x C h/ � lnx <

h

x
:

Hence, the Newton quotient for lnx satisfies
y

t

y D
1

t

x x C h

h

1
x

1
xCh

Figure 3.10

1

x C h
<

ln.x C h/ � ln x

h
<
1

x
:

Letting h approach 0 from the right, we obtain (by the Squeeze Theorem applied to

one-sided limits)

lim
h!0C

ln.x C h/ � ln x

h
D

1

x
:

A similar argument shows that if 0 < x C h < x, then

1

x
<

ln.x C h/ � ln x

h
<

1

x C h
;

so that

lim
h!0�

ln.x C h/ � lnx

h
D

1

x
:

Combining these two one-sided limits we get the desired result:

d

dx
lnx D lim

h!0

ln.x C h/ � ln x

h
D

1

x
:

The two properties .d=dx/ lnx D 1=x and ln 1 D 0 are sufficient to determine the

function lnx completely. (This follows from Theorem 13 in Section 2.8.) We can

deduce from these two properties that lnx satisfies the appropriate laws of logarithms:

T H E O R E M

2

Properties of the natural logarithm

(i) ln.xy/ D lnx C ln y (ii) ln

�

1

x

�

D � ln x

(iii) ln

�

x

y

�

D ln x � ln y (iv) ln .xr
/ D r ln x

Because we do not want to assume that exponentials are continuous (as we did in

Section 3.2), we should regard (iv) for the moment as only valid for exponents r that

are rational numbers.
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3.3 The Natural Logarithm and Exponential Functions

In this section we are going to define a function lnx, called the natural logarithm

of x, in a way that does not at first seem to have anything to do with the logarithms

Regard this paragraph as

describing a game we are going

to play in this section. The result

of the game will be that we will

acquire two new classes of

functions, logarithms, and

exponentials, to which the rules

of calculus will apply.

considered in Section 3.2. We will show, however, that it has the same properties as

those logarithms, and in the end we will see that lnx D loge x, the logarithm of x

to a certain specific base e. We will show that ln x is a one-to-one function, defined

for all positive real numbers. It must therefore have an inverse, ex , that we will call

the exponential function. Our final goal is to arrive at a definition of the exponential

functions ax (for any a > 0) that is valid for any real number x instead of just rational

numbers, and that is known to be continuous and even differentiable without our having

to assume those properties as we did in Section 3.2.

Table 1. Derivatives of integer

powers

f .x/ f 0.x/

:
:
:

:
:
:

x4 4x3

x3 3x2

x2 2x

x1 1x0
D 1

x
0

0

x�1
�x�2

x�2
�2x�3

x�3
�3x�4

:
:
:

:
:
:

The Natural Logarithm

Table 1 lists the derivatives of integer powers of x. Those derivatives are multiples of

integer powers of x, but one integer power, x�1, is conspicuously absent from the list

of derivatives; we do not yet know a function whose derivative is x�1
D 1=x. We are

going to remedy this situation by defining a function lnx in such a way that it will have

derivative 1=x.

To get a hint as to how this can be done, review Example 1 of Section 2.11. In that

example we showed that the area under the graph of the velocity of a moving object in a

time interval is equal to the distance travelled by the object in that time interval. Since

the derivative of distance is velocity, measuring the area provided a way of finding

a function (the distance) that had a given derivative (the velocity). This relationship

between area and derivatives is one of the most important ideas in calculus. It is called

the Fundamental Theorem of Calculus. We will explore it fully in Chapter 5, but we

will make use of the idea now to define lnx, which we want to have derivative 1=x.

D E F I N I T I O N

6

The natural logarithm

For x > 0, let Ax be the area of the plane region bounded by the curve

y D 1=t , the t-axis, and the vertical lines t D 1 and t D x. The function lnx

is defined by

ln x D

�

Ax if x � 1,

�Ax if 0 < x < 1,

as shown in Figure 3.9.

Figure 3.9

(a) lnx D �area Ax if 0 < x < 1

(b) lnx D area Ax if x � 1

y

t

.1; 1/

y D
1

t

Ax

x 1

y

t

.1; 1/

y D
1

t

Ax

1 x

(a) (b)
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The definition implies that ln 1 D 0, that lnx > 0 if x > 1, that ln x < 0 if 0 < x < 1,

and that ln is a one-to-one function. We now show that if y D lnx, then y 0
D 1=x. The

proof of this result is similar to the proof we will give for the Fundamental Theorem of

Calculus in Section 5.5.

T H E O R E M

1

If x > 0, then

d

dx
lnx D

1

x
:

PROOF For x > 0 and h > 0, ln.xCh/� ln x is the area of the plane region bounded

by y D 1=t , y D 0, and the vertical lines t D x and t D x C h; it is the shaded area

in Figure 3.10. Comparing this area with that of two rectangles, we see that

h

x C h
< shaded area D ln.x C h/ � lnx <

h

x
:

Hence, the Newton quotient for lnx satisfies
y

t

y D
1

t

x x C h

h

1
x

1
xCh

Figure 3.10

1

x C h
<

ln.x C h/ � ln x

h
<
1

x
:

Letting h approach 0 from the right, we obtain (by the Squeeze Theorem applied to

one-sided limits)

lim
h!0C

ln.x C h/ � ln x

h
D

1

x
:

A similar argument shows that if 0 < x C h < x, then

1

x
<

ln.x C h/ � ln x

h
<

1

x C h
;

so that

lim
h!0�

ln.x C h/ � lnx

h
D

1

x
:

Combining these two one-sided limits we get the desired result:

d

dx
lnx D lim

h!0

ln.x C h/ � ln x

h
D

1

x
:

The two properties .d=dx/ lnx D 1=x and ln 1 D 0 are sufficient to determine the

function lnx completely. (This follows from Theorem 13 in Section 2.8.) We can

deduce from these two properties that lnx satisfies the appropriate laws of logarithms:

T H E O R E M

2

Properties of the natural logarithm

(i) ln.xy/ D lnx C ln y (ii) ln

�

1

x

�

D � ln x

(iii) ln

�

x

y

�

D ln x � ln y (iv) ln .xr
/ D r ln x

Because we do not want to assume that exponentials are continuous (as we did in

Section 3.2), we should regard (iv) for the moment as only valid for exponents r that

are rational numbers.
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PROOF We will only prove part (i) because the other parts are proved by the same

method. If y > 0 is a constant, then by the Chain Rule,

d

dx

�

ln.xy/� lnx
�

D

y

xy
�

1

x
D 0 for all x > 0.

Theorem 13 of Section 2.8 now tells us that ln.xy/� ln x D C (a constant) for x > 0.

Putting x D 1 we get C D ln y and identity (i) follows.

Part (iv) of Theorem 2 shows that ln.2n/ D n ln 2 ! 1 as n ! 1. Therefore, we

y

x.1; 0/

y D lnx

Figure 3.11 The graph of lnx

also have ln.1=2/n D �n ln 2 ! �1 as n ! 1. Since .d=dx/ lnx D 1=x > 0 for

x > 0, it follows that ln x is increasing, so we must have (see Figure 3.11)

lim
x!1

ln x D 1; lim
x!0C

lnx D �1:

E X A M P L E 1 Show that
d

dx
ln jxj D

1

x
for any x ¤ 0. Hence find

Z

1

x
dx.

Solution If x > 0, then

d

dx
ln jxj D

d

dx
ln x D

1

x

by Theorem 1. If x < 0, then, using the Chain Rule,

d

dx
ln jxj D

d

dx
ln.�x/ D

1

�x
.�1/ D

1

x
:

Therefore,
d

dx
ln jxj D

1

x
, and on any interval not containing x D 0,

Z

1

x
dx D ln jxj C C:

E X A M P L E 2
Find the derivatives of (a) ln j cos xj and (b) ln

�

x C
p

x2
C 1

�

.

Simplify your answers as much as possible.

Solution

(a) Using the result of Example 1 and the Chain Rule, we have

d

dx
ln j cos xj D

1

cos x
.� sin x/ D � tan x:

(b)
d

dx
ln
�

x C

p

x2
C 1

�

D

1

x C
p

x2
C 1

�

1C
2x

2
p

x2
C 1

�

D

1

x C
p

x2
C 1

p

x2
C 1C x

p

x2
C 1

D

1
p

x2
C 1

:
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The Exponential Function
The function lnx is one-to-one on its domain, the interval .0;1/, so it has an inverse

there. For the moment, let us call this inverse exp x. Thus,

y D exp x ” x D lny .y > 0/:

Since ln 1 D 0, we have exp 0 D 1. The domain of exp is .�1;1/, the range of ln.

The range of exp is .0;1/, the domain of ln. We have cancellation identities

ln.exp x/ D x for all real x and exp.ln x/ D x for x > 0:

We can deduce various properties of exp from corresponding properties of ln. Not

surprisingly, they are properties we would expect an exponential function to have.

T H E O R E M

3

Properties of the exponential function

(i) .exp x/r D exp.rx/ (ii) exp.xCy/ D .exp x/.exp y/

(iii) exp.�x/ D
1

exp.x/
(iv) exp.x � y/ D

exp x

exp y

For the moment, identity (i) is asserted only for rational numbers r .

PROOF We prove only identity (i); the rest are done similarly. If u D .exp x/r , then,

by Theorem 2(iv), lnu D r ln.exp x/ D rx. Therefore, u D exp.rx/.

Now we make an important definition!

Let e D exp.1/:

The number e satisfies ln e D 1, so the area bounded by the curve y D 1=t; the t-axis,

and the vertical lines t D 1 and t D e must be equal to 1 square unit. See Figure 3.12.

The number e is one of the most important numbers in mathematics. Like � , it is

irrational and not a zero of any polynomial with rational coefficients. (Such numbers

are called transcendental.) Its value is between 2 and 3 and begins

y

t

Area = 1

1 e

y D
1

t

.1; 1/

.e; 1=e/

Figure 3.12 The definition of e

e D 2:7 1828 1828 45 90 45 : : : :

Later on we will learn that

e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � ;

a formula from which the value of e can be calculated to any desired precision.

Theorem 3(i) shows that exp r D exp.1r/ D .exp 1/r D er holds for any rational

number r: Now here is a crucial observation. We only know what er means if r is a

rational number (if r D m=n, then er
D

n
p

em). But exp x is defined for all real x;

rational or not. Since er
D exp r when r is rational, we can use exp x as a definition of

what ex means for any real number x, and there will be no contradiction if x happens

to be rational.

e
x
D exp x for all real x:

Theorem 3 can now be restated in terms of ex :
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PROOF We will only prove part (i) because the other parts are proved by the same

method. If y > 0 is a constant, then by the Chain Rule,

d

dx

�

ln.xy/� lnx
�

D

y

xy
�

1

x
D 0 for all x > 0.

Theorem 13 of Section 2.8 now tells us that ln.xy/� ln x D C (a constant) for x > 0.

Putting x D 1 we get C D ln y and identity (i) follows.

Part (iv) of Theorem 2 shows that ln.2n/ D n ln 2 ! 1 as n ! 1. Therefore, we

y

x.1; 0/

y D lnx

Figure 3.11 The graph of lnx

also have ln.1=2/n D �n ln 2 ! �1 as n ! 1. Since .d=dx/ lnx D 1=x > 0 for

x > 0, it follows that ln x is increasing, so we must have (see Figure 3.11)

lim
x!1

ln x D 1; lim
x!0C

lnx D �1:

E X A M P L E 1 Show that
d

dx
ln jxj D

1

x
for any x ¤ 0. Hence find

Z

1

x
dx.

Solution If x > 0, then

d

dx
ln jxj D

d

dx
ln x D

1

x

by Theorem 1. If x < 0, then, using the Chain Rule,

d

dx
ln jxj D

d

dx
ln.�x/ D

1

�x
.�1/ D

1

x
:

Therefore,
d

dx
ln jxj D

1

x
, and on any interval not containing x D 0,

Z

1

x
dx D ln jxj C C:

E X A M P L E 2
Find the derivatives of (a) ln j cos xj and (b) ln

�

x C
p

x2
C 1

�

.

Simplify your answers as much as possible.

Solution

(a) Using the result of Example 1 and the Chain Rule, we have

d

dx
ln j cos xj D

1

cos x
.� sin x/ D � tan x:

(b)
d

dx
ln
�

x C

p

x2
C 1

�

D

1

x C
p

x2
C 1

�

1C
2x

2
p

x2
C 1

�

D

1

x C
p

x2
C 1

p

x2
C 1C x

p

x2
C 1

D

1
p

x2
C 1

:
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The Exponential Function
The function lnx is one-to-one on its domain, the interval .0;1/, so it has an inverse

there. For the moment, let us call this inverse exp x. Thus,

y D exp x ” x D lny .y > 0/:

Since ln 1 D 0, we have exp 0 D 1. The domain of exp is .�1;1/, the range of ln.

The range of exp is .0;1/, the domain of ln. We have cancellation identities

ln.exp x/ D x for all real x and exp.ln x/ D x for x > 0:

We can deduce various properties of exp from corresponding properties of ln. Not

surprisingly, they are properties we would expect an exponential function to have.

T H E O R E M

3

Properties of the exponential function

(i) .exp x/r D exp.rx/ (ii) exp.xCy/ D .exp x/.exp y/

(iii) exp.�x/ D
1

exp.x/
(iv) exp.x � y/ D

exp x

exp y

For the moment, identity (i) is asserted only for rational numbers r .

PROOF We prove only identity (i); the rest are done similarly. If u D .exp x/r , then,

by Theorem 2(iv), lnu D r ln.exp x/ D rx. Therefore, u D exp.rx/.

Now we make an important definition!

Let e D exp.1/:

The number e satisfies ln e D 1, so the area bounded by the curve y D 1=t; the t-axis,

and the vertical lines t D 1 and t D e must be equal to 1 square unit. See Figure 3.12.

The number e is one of the most important numbers in mathematics. Like � , it is

irrational and not a zero of any polynomial with rational coefficients. (Such numbers

are called transcendental.) Its value is between 2 and 3 and begins

y

t

Area = 1

1 e

y D
1

t

.1; 1/

.e; 1=e/

Figure 3.12 The definition of e

e D 2:7 1828 1828 45 90 45 : : : :

Later on we will learn that

e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � ;

a formula from which the value of e can be calculated to any desired precision.

Theorem 3(i) shows that exp r D exp.1r/ D .exp 1/r D er holds for any rational

number r: Now here is a crucial observation. We only know what er means if r is a

rational number (if r D m=n, then er
D

n
p

em). But exp x is defined for all real x;

rational or not. Since er
D exp r when r is rational, we can use exp x as a definition of

what ex means for any real number x, and there will be no contradiction if x happens

to be rational.

e
x
D exp x for all real x:

Theorem 3 can now be restated in terms of ex :
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(i) .e
x
/
y
D e

xy (ii) e
xCy
D e

x
e

y

(iii) e
�x
D

1

ex
(iv) e

x�y
D

ex

ey

The graph of ex is the reflection of the graph of its inverse, ln x, in the line y D x.

Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a

horizontal asymptote of the graph of y D ex as x ! �1. We have

y

x

y D ln x

y D x

y D ex

1

1

Figure 3.13 The graphs of ex and lnx

lim
x!�1

e
x
D 0; lim

x!1
e

x
D1:

Since exp x D ex actually is an exponential function, its inverse must actually be a

logarithm:

lnx D loge x:

The derivative of y D ex is calculated by implicit differentiation:

y D e
x
÷ x D ln y

÷ 1 D
1

y

dy

dx

÷

dy

dx
D y D e

x
:

Thus, the exponential function has the remarkable property that it is its own derivative

and, therefore, also its own antiderivative:

d

dx
e

x
D e

x
;

Z

e
x
dx D e

x
C C:

E X A M P L E 3
Find the derivatives of

(a) ex2�3x , (b)
p

1C e2x , and (c)
ex
� e�x

ex
C e�x

.

Solution

(a)
d

dx
e

x2�3x
D e

x2�3x
.2x � 3/ D .2x � 3/e

x2�3x .

(b)
d

dx

p

1C e2x
D

1

2
p

1C e2x

�

e
2x
.2/
�

D

e2x

p

1C e2x
.

(c)
d

dx

ex
� e�x

ex
C e�x

D

.ex
C e�x/.ex

� .�e�x// � .ex
� e�x/.ex

C .�e�x//

.ex
C e�x/2

D

.ex/2 C 2exe�x
C .e�x/2 � Œ.ex/2 � 2exe�x

C .e�x/2�

.ex
C e�x/2

D

4ex�x

.ex
C e�x/2

D

4

.ex
C e�x/2

:

E X A M P L E 4
Let f .t/ D eat . Find (a) f .n/.t/ and (b)

R

f .t/ dt .
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Solution (a) We have f
0
.t/ D a e

at

f
00
.t/ D a

2
e

at

f
000
.t/ D a

3
e

at

:
:
:

f
.n/
.t/ D a

n
e

at
:

(b) Also,

Z

f .t/ dt D

Z

e
at
dt D

1

a
e

at
C C , since

d

dt

1

a
e

at
D e

at .

General Exponentials and Logarithms
We can use the fact that ex is now defined for all real x to define the arbitrary expo-

nential ax (where a > 0) for all real x: If r is rational, then ln.ar / D r ln a; therefore,

ar
D er ln a. However, ex ln a is defined for all real x; so we can use it as a definition of

ax with no possibility of contradiction arising if x is rational.

D E F I N I T I O N

7

The general exponential a
x

a
x
D e

x ln a
; .a > 0; x real/:

E X A M P L E 5
Evaluate 2� , using the natural logarithm (ln) and exponential (exp

or ex) keys on a scientific calculator, but not using the yx or ^

keys.

Solution 2
�
D e

� ln 2
D 8:824 977 8 � � �. If your calculator has a ^ key, or an xy or

yx key, chances are that it is implemented in terms of the exp and ln functions.

The laws of exponents for ax as presented in Section 3.2 can now be obtained from

those for ex , as can the derivative:

d

dx
a

x
D

d

dx
e

x ln a
D e

x ln a lna D ax ln a:

We can also verify the General Power Rule for xa, where a is any real number, provided

x > 0:

d

dx
x

a
D

d

dx
e

a ln x
D e

a ln x a

x
D

a xa

x
D a x

a�1
:

E X A M P L E 6
Show that the graph of f .x/ D x

�
� �

x has a negative slope at

x D � .
Do not confuse x� , which is a

power function of x, and �x ,

which is an exponential function

of x.

Solution f
0
.x/ D � x

��1
� �

x ln�

f
0
.�/ D � �

��1
� �

� ln� D ��
.1 � ln�/:

Since � > 3 > e, we have ln� > ln e D 1, so 1 � ln� < 0. Since ��
D e� ln � > 0,

we have f 0.�/ < 0. Thus, the graph y D f .x/ has negative slope at x D � .

E X A M P L E 7
Find the critical point of y D xx .

Solution We can’t differentiate xx by treating it as a power (like xa) because the ex-

ponent varies. We can’t treat it as an exponential (like ax) because the base varies. We

can differentiate it if we first write it in terms of the exponential function,
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(i) .e
x
/
y
D e

xy (ii) e
xCy
D e

x
e

y

(iii) e
�x
D

1

ex
(iv) e

x�y
D

ex

ey

The graph of ex is the reflection of the graph of its inverse, ln x, in the line y D x.

Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a

horizontal asymptote of the graph of y D ex as x ! �1. We have

y

x

y D ln x

y D x

y D ex

1

1

Figure 3.13 The graphs of ex and lnx

lim
x!�1

e
x
D 0; lim

x!1
e

x
D1:

Since exp x D ex actually is an exponential function, its inverse must actually be a

logarithm:

lnx D loge x:

The derivative of y D ex is calculated by implicit differentiation:

y D e
x
÷ x D ln y

÷ 1 D
1

y

dy

dx

÷

dy

dx
D y D e

x
:

Thus, the exponential function has the remarkable property that it is its own derivative

and, therefore, also its own antiderivative:

d

dx
e

x
D e

x
;

Z

e
x
dx D e

x
C C:

E X A M P L E 3
Find the derivatives of

(a) ex2�3x , (b)
p

1C e2x , and (c)
ex
� e�x

ex
C e�x

.

Solution

(a)
d

dx
e

x2�3x
D e

x2�3x
.2x � 3/ D .2x � 3/e

x2�3x .

(b)
d

dx

p

1C e2x
D

1

2
p

1C e2x

�

e
2x
.2/
�

D

e2x

p

1C e2x
.

(c)
d

dx

ex
� e�x

ex
C e�x

D

.ex
C e�x/.ex

� .�e�x// � .ex
� e�x/.ex

C .�e�x//

.ex
C e�x/2

D

.ex/2 C 2exe�x
C .e�x/2 � Œ.ex/2 � 2exe�x

C .e�x/2�

.ex
C e�x/2

D

4ex�x

.ex
C e�x/2

D

4

.ex
C e�x/2

:

E X A M P L E 4
Let f .t/ D eat . Find (a) f .n/.t/ and (b)

R

f .t/ dt .
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Solution (a) We have f
0
.t/ D a e

at

f
00
.t/ D a

2
e

at

f
000
.t/ D a

3
e

at

:
:
:

f
.n/
.t/ D a

n
e

at
:

(b) Also,

Z

f .t/ dt D

Z

e
at
dt D

1

a
e

at
C C , since

d

dt

1

a
e

at
D e

at .

General Exponentials and Logarithms
We can use the fact that ex is now defined for all real x to define the arbitrary expo-

nential ax (where a > 0) for all real x: If r is rational, then ln.ar / D r ln a; therefore,

ar
D er ln a. However, ex ln a is defined for all real x; so we can use it as a definition of

ax with no possibility of contradiction arising if x is rational.

D E F I N I T I O N

7

The general exponential a
x

a
x
D e

x ln a
; .a > 0; x real/:

E X A M P L E 5
Evaluate 2� , using the natural logarithm (ln) and exponential (exp

or ex) keys on a scientific calculator, but not using the yx or ^

keys.

Solution 2
�
D e

� ln 2
D 8:824 977 8 � � �. If your calculator has a ^ key, or an xy or

yx key, chances are that it is implemented in terms of the exp and ln functions.

The laws of exponents for ax as presented in Section 3.2 can now be obtained from

those for ex , as can the derivative:

d

dx
a

x
D

d

dx
e

x ln a
D e

x ln a lna D ax ln a:

We can also verify the General Power Rule for xa, where a is any real number, provided

x > 0:

d

dx
x

a
D

d

dx
e

a ln x
D e

a ln x a

x
D

a xa

x
D a x

a�1
:

E X A M P L E 6
Show that the graph of f .x/ D x

�
� �

x has a negative slope at

x D � .
Do not confuse x� , which is a

power function of x, and �x ,

which is an exponential function

of x.

Solution f
0
.x/ D � x

��1
� �

x ln�

f
0
.�/ D � �

��1
� �

� ln� D ��
.1 � ln�/:

Since � > 3 > e, we have ln� > ln e D 1, so 1 � ln� < 0. Since ��
D e� ln � > 0,

we have f 0.�/ < 0. Thus, the graph y D f .x/ has negative slope at x D � .

E X A M P L E 7
Find the critical point of y D xx .

Solution We can’t differentiate xx by treating it as a power (like xa) because the ex-

ponent varies. We can’t treat it as an exponential (like ax) because the base varies. We

can differentiate it if we first write it in terms of the exponential function,
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xx
D ex ln x , and then use the Chain Rule and the Product Rule:

dy

dx
D

d

dx
e

x ln x
D e

x ln x

�

ln x C x

�

1

x

��

D x
x
.1C lnx/:

Now xx is defined only for x > 0 and is itself never 0. (Why?) Therefore, the critical

point occurs where 1C ln x D 0; that is, lnx D �1, or x D 1=e.

Finally, observe that .d=dx/ax
D ax lna is negative for all x if 0 < a < 1 and is

positive for all x if a > 1. Thus, ax is one-to-one and has an inverse function, loga x,

provided a > 0 and a ¤ 1. Its properties follow in the same way as in Section 3.2. If

y D loga x, then x D ay and, differentiating implicitly with respect to x, we get

1 D a
y lna

dy

dx
D x ln a

dy

dx
:

Thus, the derivative of loga x is given by

d

dx
loga x D

1

x ln a
:

Since loga x can be expressed in terms of logarithms to any other base, say e,

loga x D
ln x

ln a
;

we normally use only natural logarithms. Exceptions are found in chemistry, acoustics,

and other sciences where “logarithmic scales” are used to measure quantities for which

a one-unit increase in the measure corresponds to a tenfold increase in the quantity.

Logarithms to base 10 are used in defining such scales. In computer science, where

powers of 2 play a central role, logarithms to base 2 are often encountered.

Logarithmic Differentiation
Suppose we want to differentiate a function of the form

y D .f .x//
g.x/

.for f .x/ > 0/:

Since the variable appears in both the base and the exponent, neither the general power

rule, .d=dx/xa
D axa�1, nor the exponential rule, .d=dx/ax

D ax lna, can be

directly applied. One method for finding the derivative of such a function is to express

it in the form

y D e
g.x/ ln f .x/

and then differentiate, using the Product Rule to handle the exponent. This is the

method used in Example 7.

The derivative in Example 7 can also be obtained by taking natural logarithms of

both sides of the equation y D xx and differentiating implicitly:

lny D x ln x

1

y

dy

dx
D ln x C

x

x
D 1C lnx

dy

dx
D y.1C ln x/ D xx

.1C ln x/:

This latter technique is called logarithmic differentiation.
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E X A M P L E 8
Find dy=dt if y D

�

sin t
�ln t

, where 0 < t < � .

Solution We have ln y D ln t ln sin t . Thus,

1

y

dy

dt
D

1

t
ln sin t C ln t

cos t

sin t

dy

dt
D y

�

ln sin t

t
C ln t cot t

�

D .sin t/ln t

�

ln sin t

t
C ln t cot t

�

:

Logarithmic differentiation is also useful for finding the derivatives of functions ex-

pressed as products and quotients of many factors. Taking logarithms reduces these

products and quotients to sums and differences. This usually makes the calculation

easier than it would be using the Product and Quotient Rules, especially if the deriva-

tive is to be evaluated at a specific point.

E X A M P L E 9
Differentiate y D Œ.x C 1/.x C 2/.x C 3/�=.x C 4/.

Solution ln jyj D ln jx C 1j C ln jx C 2j C ln jx C 3j � ln jx C 4j. Thus,

1

y
y

0
D

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

y
0
D

.x C 1/.x C 2/.x C 3/

x C 4

�

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

�

D

.x C 2/.x C 3/

x C 4
C

.x C 1/.x C 3/

x C 4
C

.x C 1/.x C 2/

x C 4

�

.x C 1/.x C 2/.x C 3/

.x C 4/2
:

E X A M P L E 10 Find
du

dx

ˇ

ˇ

ˇ

ˇ

xD1

if u D
p

.x C 1/.x2
C 1/.x3

C 1/.

Solution

lnu D
1

2

�

ln.x C 1/C ln.x2
C 1/C ln.x3

C 1/

�

1

u

du

dx
D

1

2

�

1

x C 1
C

2x

x2
C 1
C

3x2

x3
C 1

�

:

At x D 1 we have u D
p

8 D 2
p

2. Hence,

du

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

p

2

�

1

2
C 1C

3

2

�

D 3
p

2:

E X E R C I S E S 3.3

Simplify the expressions given in Exercises 1–10.

1. e3
=

p

e5 2. ln
�

e
1=2
e

2=3
�

3. e5 ln x 4. e.3 ln 9/=2

5. ln
1

e3x
6. e2 ln cos x

C

�

ln esin x
�2

7. 3 ln 4 � 4 ln 3 8. 4 ln
p

x C 6 ln.x1=3
/

9. 2 lnx C 5 ln.x � 2/ 10. ln.x2
C 6x C 9/
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xx
D ex ln x , and then use the Chain Rule and the Product Rule:

dy

dx
D

d

dx
e

x ln x
D e

x ln x

�

ln x C x

�

1

x

��

D x
x
.1C lnx/:

Now xx is defined only for x > 0 and is itself never 0. (Why?) Therefore, the critical

point occurs where 1C ln x D 0; that is, lnx D �1, or x D 1=e.

Finally, observe that .d=dx/ax
D ax lna is negative for all x if 0 < a < 1 and is

positive for all x if a > 1. Thus, ax is one-to-one and has an inverse function, loga x,

provided a > 0 and a ¤ 1. Its properties follow in the same way as in Section 3.2. If

y D loga x, then x D ay and, differentiating implicitly with respect to x, we get

1 D a
y lna

dy

dx
D x ln a

dy

dx
:

Thus, the derivative of loga x is given by

d

dx
loga x D

1

x ln a
:

Since loga x can be expressed in terms of logarithms to any other base, say e,

loga x D
ln x

ln a
;

we normally use only natural logarithms. Exceptions are found in chemistry, acoustics,

and other sciences where “logarithmic scales” are used to measure quantities for which

a one-unit increase in the measure corresponds to a tenfold increase in the quantity.

Logarithms to base 10 are used in defining such scales. In computer science, where

powers of 2 play a central role, logarithms to base 2 are often encountered.

Logarithmic Differentiation
Suppose we want to differentiate a function of the form

y D .f .x//
g.x/

.for f .x/ > 0/:

Since the variable appears in both the base and the exponent, neither the general power

rule, .d=dx/xa
D axa�1, nor the exponential rule, .d=dx/ax

D ax lna, can be

directly applied. One method for finding the derivative of such a function is to express

it in the form

y D e
g.x/ ln f .x/

and then differentiate, using the Product Rule to handle the exponent. This is the

method used in Example 7.

The derivative in Example 7 can also be obtained by taking natural logarithms of

both sides of the equation y D xx and differentiating implicitly:

lny D x ln x

1

y

dy

dx
D ln x C

x

x
D 1C lnx

dy

dx
D y.1C ln x/ D xx

.1C ln x/:

This latter technique is called logarithmic differentiation.
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E X A M P L E 8
Find dy=dt if y D

�

sin t
�ln t

, where 0 < t < � .

Solution We have ln y D ln t ln sin t . Thus,

1

y

dy

dt
D

1

t
ln sin t C ln t

cos t

sin t

dy

dt
D y

�

ln sin t

t
C ln t cot t

�

D .sin t/ln t

�

ln sin t

t
C ln t cot t

�

:

Logarithmic differentiation is also useful for finding the derivatives of functions ex-

pressed as products and quotients of many factors. Taking logarithms reduces these

products and quotients to sums and differences. This usually makes the calculation

easier than it would be using the Product and Quotient Rules, especially if the deriva-

tive is to be evaluated at a specific point.

E X A M P L E 9
Differentiate y D Œ.x C 1/.x C 2/.x C 3/�=.x C 4/.

Solution ln jyj D ln jx C 1j C ln jx C 2j C ln jx C 3j � ln jx C 4j. Thus,

1

y
y

0
D

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

y
0
D

.x C 1/.x C 2/.x C 3/

x C 4

�

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

�

D

.x C 2/.x C 3/

x C 4
C

.x C 1/.x C 3/

x C 4
C

.x C 1/.x C 2/

x C 4

�

.x C 1/.x C 2/.x C 3/

.x C 4/2
:

E X A M P L E 10 Find
du

dx

ˇ

ˇ

ˇ

ˇ

xD1

if u D
p

.x C 1/.x2
C 1/.x3

C 1/.

Solution

lnu D
1

2

�

ln.x C 1/C ln.x2
C 1/C ln.x3

C 1/

�

1

u

du

dx
D

1

2

�

1

x C 1
C

2x

x2
C 1
C

3x2

x3
C 1

�

:

At x D 1 we have u D
p

8 D 2
p

2. Hence,

du

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

p

2

�

1

2
C 1C

3

2

�

D 3
p

2:

E X E R C I S E S 3.3

Simplify the expressions given in Exercises 1–10.

1. e3
=

p

e5 2. ln
�

e
1=2
e

2=3
�

3. e5 ln x 4. e.3 ln 9/=2

5. ln
1

e3x
6. e2 ln cos x

C

�

ln esin x
�2

7. 3 ln 4 � 4 ln 3 8. 4 ln
p

x C 6 ln.x1=3
/

9. 2 lnx C 5 ln.x � 2/ 10. ln.x2
C 6x C 9/
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Solve the equations in Exercises 11–14 for x.

11. 2xC1
D 3

x 12. 3x
D 9

1�x

13.
1

2x
D

5

8xC3
14. 2x2�3

D 4
x

Find the domains of the functions in Exercises 15–16.

15. ln
x

2� x
16. ln.x2

� x � 2/

Solve the inequalities in Exercises 17–18.

17. ln.2x � 5/ > ln.7 � 2x/ 18. ln.x2
� 2/ � lnx

In Exercises 19–48, differentiate the given functions. If possible,

simplify your answers.

19. y D e5x 20. y D xex
� x

21. y D
x

e2x
22. y D x2

e
x=2

23. y D ln.3x � 2/ 24. y D ln j3x � 2j

25. y D ln.1C ex
/ 26. f .x/ D e.x2/

27. y D
ex
C e�x

2
28. x D e3t ln t

29. y D e.ex/ 30. y D
ex

1C ex

31. y D ex sinx 32. y D e�x cos x

33. y D ln lnx 34. y D x lnx � x

35. y D x2 lnx �
x2

2
36. y D ln j sinxj

37. y D 52xC1 38. y D 2.x2�3xC8/

39. g.x/ D txxt 40. h.t/ D tx � xt

41. f .s/ D loga.bs C c/ 42. g.x/ D logx.2x C 3/

43. y D x
p

x 44. y D .1=x/ln x

45. y D ln j sec x C tan xj 46. y D ln jx C
p

x2
� a2
j

47. y D ln
�
p

x2
C a2

� x

�

48. y D .cosx/x � xcos x

49. Find the nth derivative of f .x/ D xeax .

50. Show that the nth derivative of .ax2
C bx C c/ex is a

function of the same form but with different constants.

51. Find the first four derivatives of ex2
.

52. Find the nth derivative of ln.2x C 1/.

53. Differentiate (a) f .x/ D .xx/x and (b) g.x/ D x.xx/. Which

function grows more rapidly as x grows large?

54.I Solve the equation xxx::
:

D a, where a > 0. The exponent

tower goes on forever.

Use logarithmic differentiation to find the required derivatives in

Exercises 55–57.

55. f .x/ D .x � 1/.x � 2/.x � 3/.x � 4/. Find f 0.x/.

56. F.x/ D

p

1C x.1 � x/1=3

.1C 5x/4=5
. Find F 0.0/.

57. f .x/ D
.x2
� 1/.x2

� 2/.x2
� 3/

.x2
C 1/.x2

C 2/.x2
C 3/

. Find f 0.2/. Also find

f 0.1/.

58. At what points does the graph y D x2e�x2
have a horizontal

tangent line?

59. Let f .x/ D xe�x . Determine where f is increasing and

where it is decreasing. Sketch the graph of f:

60. Find the equation of a straight line of slope 4 that is tangent to

the graph of y D ln x.

61. Find an equation of the straight line tangent to the curve

y D ex and passing through the origin.

62. Find an equation of the straight line tangent to the curve

y D lnx and passing through the origin.

63. Find an equation of the straight line that is tangent to y D 2x

and that passes through the point .1; 0/.

64. For what values of a > 0 does the curve y D ax intersect the

straight line y D x?

65. Find the slope of the curve exy ln
x

y
D x C

1

y
at .e; 1=e/.

66. Find an equation of the straight line tangent to the curve

xey
C y � 2x D ln 2 at the point .1; ln 2/.

67. Find the derivative of f .x/ D Ax cos lnx C Bx sin lnx. Use

the result to help you find the indefinite integrals
Z

cos lnx dx and

Z

sin lnx dx.

68.I Let FA;B .x/ D Ae
x cosx C Bex sinx. Show that

.d=dx/FA;B .x/ D FACB;B�A.x/.

69.I Using the results of Exercise 68, find

(a) .d2=dx2/FA;B .x/ and (b) .d3=dx3/ex cos x.

70.I Find
d

dx
.Ae

ax cos bx C Beax sin bx/ and use the answer to

help you evaluate

(a)

Z

e
ax cos bx dx and (b)

Z

e
ax sin bx dx.

71.A Prove identity (ii) of Theorem 2 by examining the derivative

of the left side minus the right side, as was done in the proof

of identity (i).

72.A Deduce identity (iii) of Theorem 2 from identities (i) and (ii).

73.A Prove identity (iv) of Theorem 2 for rational exponents r by

the same method used for Exercise 71.

74.I Let x > 0, and let F.x/ be the area bounded by the curve

y D t
2, the t -axis, and the vertical lines t D 0 and t D x.

Using the method of the proof of Theorem 1, show that

F 0.x/ D x2. Hence, find an explicit formula for F.x/. What

is the area of the region bounded by y D t2, y D 0, t D 0,

and t D 2?

75.I Carry out the following steps to show that 2 < e < 3. Let

f .t/ D 1=t for t > 0.

(a) Show that the area under y D f .t/, above y D 0, and

between t D 1 and t D 2 is less than 1 square unit.

Deduce that e > 2.

(b) Show that all tangent lines to the graph of f lie below the

graph. Hint: f 00
.t/ D 2=t

3
> 0.

(c) Find the lines T2 and T3 that are tangent to y D f .t/ at

t D 2 and t D 3, respectively.

(d) Find the area A2 under T2, above y D 0, and between

t D 1 and t D 2. Also find the area A3 under T3, above

y D 0, and between t D 2 and t D 3.

(e) Show that A2 C A3 > 1 square unit. Deduce that e < 3.
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3.4 Growth and Decay

In this section we will study the use of exponential functions to model the growth

rates of quantities whose rate of growth is directly related to their size. The growth of

such quantities is typically governed by differential equations whose solutions involve

exponential functions. Before delving into this topic, we prepare the way by examining

the growth behaviour of exponential and logarithmic functions.

The Growth of Exponentials and Logarithms
In Section 3.3 we showed that both ex and lnx grow large (approach infinity) as x

grows large. However, ex increases very rapidly as x increases, and ln x increases very

slowly. In fact, ex increases faster than any positive power of x (no matter how large

the power), while lnx increases more slowly than any positive power of x (no matter

how small the power). To verify this behaviour we start with an inequality satisfied by

lnx. The straight line y D x � 1 is tangent to the curve y D lnx at the point .1; 0/.

The following theorem asserts that the curve lies below that line. (See Figure 3.14.)

y

x

y D lnx

y D x � 1

.1; 0/

Figure 3.14 lnx � x � 1 for x > 0

T H E O R E M

4

If x > 0, then ln x � x � 1.

PROOF Let g.x/ D lnx � .x � 1/ for x > 0. Then g.1/ D 0 and

g
0
.x/ D

1

x
� 1

n

> 0 if 0 < x < 1

< 0 if x > 1.

As observed in Section 2.8, these inequalities imply that g is increasing on .0; 1/ and

decreasing on .1;1/. Thus, g.x/ � g.1/ D 0 for all x > 0 and ln x � x � 1 for all

such x.

T H E O R E M

5

The growth properties of exp and ln

If a > 0, then

(a) lim
x!1

x
a

ex
D 0;

(c) lim
x!�1

jxj
a
e

x
D 0;

(b) lim
x!1

lnx

xa
D 0;

(d) lim
x!0C

x
a ln x D 0:

Each of these limits makes a statement about who “wins” in a contest between an expo-

nential or logarithm and a power. For example, in part (a), the denominator ex grows

large as x !1, so it tries to make the fraction xa=ex approach 0. On the other hand,

if a is a large positive number, the numerator xa also grows large and tries to make the

fraction approach infinity. The assertion of (a) is that in this contest between the expo-

nential and the power, the exponential is stronger and wins; the fraction approaches 0.

The content of Theorem 5 can be paraphrased as follows:

In a struggle between a power and an exponential, the exponential wins.

In a struggle between a power and a logarithm, the power wins.

PROOF First, we prove part (b). Let x > 1, a > 0, and let s D a=2. Since ln.xs
/ D

s lnx, we have, using Theorem 4,

0 < s ln x D ln.xs
/ � x

s
� 1 < x

s
:
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Solve the equations in Exercises 11–14 for x.

11. 2xC1
D 3

x 12. 3x
D 9

1�x

13.
1

2x
D

5

8xC3
14. 2x2�3

D 4
x

Find the domains of the functions in Exercises 15–16.

15. ln
x

2� x
16. ln.x2

� x � 2/

Solve the inequalities in Exercises 17–18.

17. ln.2x � 5/ > ln.7 � 2x/ 18. ln.x2
� 2/ � lnx

In Exercises 19–48, differentiate the given functions. If possible,

simplify your answers.

19. y D e5x 20. y D xex
� x

21. y D
x

e2x
22. y D x2

e
x=2

23. y D ln.3x � 2/ 24. y D ln j3x � 2j

25. y D ln.1C ex
/ 26. f .x/ D e.x2/

27. y D
ex
C e�x

2
28. x D e3t ln t

29. y D e.ex/ 30. y D
ex

1C ex

31. y D ex sinx 32. y D e�x cos x

33. y D ln lnx 34. y D x lnx � x

35. y D x2 lnx �
x2

2
36. y D ln j sinxj

37. y D 52xC1 38. y D 2.x2�3xC8/

39. g.x/ D txxt 40. h.t/ D tx � xt

41. f .s/ D loga.bs C c/ 42. g.x/ D logx.2x C 3/

43. y D x
p

x 44. y D .1=x/ln x

45. y D ln j sec x C tan xj 46. y D ln jx C
p

x2
� a2
j

47. y D ln
�
p

x2
C a2

� x

�

48. y D .cosx/x � xcos x

49. Find the nth derivative of f .x/ D xeax .

50. Show that the nth derivative of .ax2
C bx C c/ex is a

function of the same form but with different constants.

51. Find the first four derivatives of ex2
.

52. Find the nth derivative of ln.2x C 1/.

53. Differentiate (a) f .x/ D .xx/x and (b) g.x/ D x.xx/. Which

function grows more rapidly as x grows large?

54.I Solve the equation xxx::
:

D a, where a > 0. The exponent

tower goes on forever.

Use logarithmic differentiation to find the required derivatives in

Exercises 55–57.

55. f .x/ D .x � 1/.x � 2/.x � 3/.x � 4/. Find f 0.x/.

56. F.x/ D

p

1C x.1 � x/1=3

.1C 5x/4=5
. Find F 0.0/.

57. f .x/ D
.x2
� 1/.x2

� 2/.x2
� 3/

.x2
C 1/.x2

C 2/.x2
C 3/

. Find f 0.2/. Also find

f 0.1/.

58. At what points does the graph y D x2e�x2
have a horizontal

tangent line?

59. Let f .x/ D xe�x . Determine where f is increasing and

where it is decreasing. Sketch the graph of f:

60. Find the equation of a straight line of slope 4 that is tangent to

the graph of y D ln x.

61. Find an equation of the straight line tangent to the curve

y D ex and passing through the origin.

62. Find an equation of the straight line tangent to the curve

y D lnx and passing through the origin.

63. Find an equation of the straight line that is tangent to y D 2x

and that passes through the point .1; 0/.

64. For what values of a > 0 does the curve y D ax intersect the

straight line y D x?

65. Find the slope of the curve exy ln
x

y
D x C

1

y
at .e; 1=e/.

66. Find an equation of the straight line tangent to the curve

xey
C y � 2x D ln 2 at the point .1; ln 2/.

67. Find the derivative of f .x/ D Ax cos lnx C Bx sin lnx. Use

the result to help you find the indefinite integrals
Z

cos lnx dx and

Z

sin lnx dx.

68.I Let FA;B .x/ D Ae
x cosx C Bex sinx. Show that

.d=dx/FA;B .x/ D FACB;B�A.x/.

69.I Using the results of Exercise 68, find

(a) .d2=dx2/FA;B .x/ and (b) .d3=dx3/ex cos x.

70.I Find
d

dx
.Ae

ax cos bx C Beax sin bx/ and use the answer to

help you evaluate

(a)

Z

e
ax cos bx dx and (b)

Z

e
ax sin bx dx.

71.A Prove identity (ii) of Theorem 2 by examining the derivative

of the left side minus the right side, as was done in the proof

of identity (i).

72.A Deduce identity (iii) of Theorem 2 from identities (i) and (ii).

73.A Prove identity (iv) of Theorem 2 for rational exponents r by

the same method used for Exercise 71.

74.I Let x > 0, and let F.x/ be the area bounded by the curve

y D t
2, the t -axis, and the vertical lines t D 0 and t D x.

Using the method of the proof of Theorem 1, show that

F 0.x/ D x2. Hence, find an explicit formula for F.x/. What

is the area of the region bounded by y D t2, y D 0, t D 0,

and t D 2?

75.I Carry out the following steps to show that 2 < e < 3. Let

f .t/ D 1=t for t > 0.

(a) Show that the area under y D f .t/, above y D 0, and

between t D 1 and t D 2 is less than 1 square unit.

Deduce that e > 2.

(b) Show that all tangent lines to the graph of f lie below the

graph. Hint: f 00
.t/ D 2=t

3
> 0.

(c) Find the lines T2 and T3 that are tangent to y D f .t/ at

t D 2 and t D 3, respectively.

(d) Find the area A2 under T2, above y D 0, and between

t D 1 and t D 2. Also find the area A3 under T3, above

y D 0, and between t D 2 and t D 3.

(e) Show that A2 C A3 > 1 square unit. Deduce that e < 3.
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3.4 Growth and Decay

In this section we will study the use of exponential functions to model the growth

rates of quantities whose rate of growth is directly related to their size. The growth of

such quantities is typically governed by differential equations whose solutions involve

exponential functions. Before delving into this topic, we prepare the way by examining

the growth behaviour of exponential and logarithmic functions.

The Growth of Exponentials and Logarithms
In Section 3.3 we showed that both ex and lnx grow large (approach infinity) as x

grows large. However, ex increases very rapidly as x increases, and ln x increases very

slowly. In fact, ex increases faster than any positive power of x (no matter how large

the power), while lnx increases more slowly than any positive power of x (no matter

how small the power). To verify this behaviour we start with an inequality satisfied by

lnx. The straight line y D x � 1 is tangent to the curve y D lnx at the point .1; 0/.

The following theorem asserts that the curve lies below that line. (See Figure 3.14.)

y

x

y D lnx

y D x � 1

.1; 0/

Figure 3.14 lnx � x � 1 for x > 0

T H E O R E M

4

If x > 0, then ln x � x � 1.

PROOF Let g.x/ D lnx � .x � 1/ for x > 0. Then g.1/ D 0 and

g
0
.x/ D

1

x
� 1

n

> 0 if 0 < x < 1

< 0 if x > 1.

As observed in Section 2.8, these inequalities imply that g is increasing on .0; 1/ and

decreasing on .1;1/. Thus, g.x/ � g.1/ D 0 for all x > 0 and ln x � x � 1 for all

such x.

T H E O R E M

5

The growth properties of exp and ln

If a > 0, then

(a) lim
x!1

x
a

ex
D 0;

(c) lim
x!�1

jxj
a
e

x
D 0;

(b) lim
x!1

lnx

xa
D 0;

(d) lim
x!0C

x
a ln x D 0:

Each of these limits makes a statement about who “wins” in a contest between an expo-

nential or logarithm and a power. For example, in part (a), the denominator ex grows

large as x !1, so it tries to make the fraction xa=ex approach 0. On the other hand,

if a is a large positive number, the numerator xa also grows large and tries to make the

fraction approach infinity. The assertion of (a) is that in this contest between the expo-

nential and the power, the exponential is stronger and wins; the fraction approaches 0.

The content of Theorem 5 can be paraphrased as follows:

In a struggle between a power and an exponential, the exponential wins.

In a struggle between a power and a logarithm, the power wins.

PROOF First, we prove part (b). Let x > 1, a > 0, and let s D a=2. Since ln.xs
/ D

s lnx, we have, using Theorem 4,

0 < s ln x D ln.xs
/ � x

s
� 1 < x

s
:
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Thus, 0 < lnx <
1

s
x

s and, dividing by xa
D x2s ,

0 <
lnx

xa
<
1

s

xs

x2s
D

1

s xs
:

Now 1=.s x
s
/! 0 as x !1 (since s > 0); therefore, by the Squeeze Theorem,

lim
x!1

ln x

xa
D 0:

Next, we deduce part (d) from part (b) by substituting x D 1=t . As x ! 0C, we have

t !1, so

lim
x!0C

x
a lnx D lim

t!1

ln.1=t/

ta
D lim

t!1

� ln t

ta
D �0 D 0:

Now we deduce (a) from (b). If x D ln t , then t !1 as x !1, so

lim
x!1

xa

ex
D lim

t!1

.ln t/a

t
D lim

t!1

�

ln t

t1=a

�a

D 0
a
D 0:

Finally, (c) follows from (a) via the substitution x D �t :

lim
x!�1

jxj
a
e

x
D lim

t!1
j � t j

a
e

�t
D lim

t!1

ta

et
D 0:

Exponential Growth and Decay Models
Many natural processes involve quantities that increase or decrease at a rate propor-

tional to their size. For example, the mass of a culture of bacteria growing in a medium

supplying adequate nourishment will increase at a rate proportional to that mass. The

value of an investment bearing interest that is continuously compounding increases at a

rate proportional to that value. The mass of undecayed radioactive material in a sample

decreases at a rate proportional to that mass.

All of these phenomena, and others exhibiting similar behaviour, can be modelled

mathematically in the same way. If y D y.t/ denotes the value of a quantity y at time

t , and if y changes at a rate proportional to its size, then

dy

dt
D ky;

where k is the constant of proportionality. The above equation is called the differential

equation of exponential growth or decay because, for any value of the constant C;

the function y D Cekt satisfies the equation. In fact, if y.t/ is any solution of the

differential equation y 0
D ky, then

d

dt

�

y.t/

ekt

�

D

ekty 0.t/ � kekty.t/

e2kt
D

y 0.t/ � ky.t/

ekt
D 0 for all t:

Thus, y.t/=ekt
D C; a constant, and y.t/ D Cekt . Since y.0/ D Ce0

D C;

The initial-value problem

8

<

:

dy

dt
D ky

y.0/ D y0

has unique solution y D y0e
kt
:

If y0 > 0, then y.t/ is an increasing function of t if k > 0 and a decreasing function

of t if k < 0. We say that the quantity y exhibits exponential growth if k > 0 and

exponential decay if k < 0. (See Figure 3.15.)

y0

k < 0

k D 0

k > 0y

t

Figure 3.15 Solutions of the initial-value

problem dy=dt D ky, y.0/ D y0, for

k > 0, k D 0, and k < 0
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E X A M P L E 1
(Growth of a cell culture) A certain cell culture grows at a rate

proportional to the number of cells present. If the culture contains

500 cells initially and 800 after 24 h, how many cells will there be after a further 12 h?

Solution Let y.t/ be the number of cells present t hours after there were 500 cells.

Thus, y.0/ D 500 and y.24/ D 800. Because dy=dt D ky, we have

y.t/ D y.0/e
kt
D 500e

kt
:

Therefore, 800 D y.24/ D 500e24k , so 24k D ln 800
500
D ln.1:6/. It follows that

k D .1=24/ ln.1:6/ and

y.t/ D 500e
.t=24/ ln.1:6/

D 500.1:6/
t=24

:

We want to know y when t D 36: y.36/ D 500e.36=24/ ln.1:6/
D 500.1:6/3=2

� 1012.

The cell count grew to about 1,012 in the 12 h after it was 800.

Exponential growth is characterized by a fixed doubling time. If T is the time at which

y has doubled from its size at t D 0, then 2y.0/ D y.T / D y.0/ekT . Therefore,

ekT
D 2. Since y.t/ D y.0/ekt , we have

y.t C T / D y.0/e
k.tCT /

D e
kT
y.0/e

kt
D 2y.t/I

that is, T units of time are required for y to double from any value. Similarly, exponen-

tial decay involves a fixed halving time (usually called the half-life). If y.T / D 1
2
y.0/,

then ekT
D

1
2

and

y.t C T / D y.0/e
k.tCT /

D

1

2
y.t/:

E X A M P L E 2
(Radioactive decay) A radioactive material has a half-life of 1,200

years. What percentage of the original radioactivity of a sample is

left after 10 years? How many years are required to reduce the radioactivity by 10%?

Solution Let p.t/ be the percentage of the original radioactivity left after t years.

Thus p.0/ D 100 and p.1;200/ D 50. Since the radioactivity decreases at a rate

proportional to itself, dp=dt D kp and

p.t/ D 100e
kt
:

Now 50 D p.1;200/ D 100e
1;200k , so

k D
1

1;200
ln
50

100
D �

ln 2

1;200
:

The percentage left after 10 years is

p.10/ D 100e
10k
D 100e

�10.ln 2/=1;200
� 99:424:

If after t years 90% of the radioactivity is left, then

90 D 100e
kt
;

kt D ln
90

100
;

t D
1

k
ln.0:9/ D �

1;200

ln 2
ln.0:9/ � 182:4;

so it will take a little over 182 years to reduce the radioactivity by 10%.
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Thus, 0 < lnx <
1

s
x

s and, dividing by xa
D x2s ,

0 <
lnx

xa
<
1

s

xs

x2s
D

1

s xs
:

Now 1=.s x
s
/! 0 as x !1 (since s > 0); therefore, by the Squeeze Theorem,

lim
x!1

ln x

xa
D 0:

Next, we deduce part (d) from part (b) by substituting x D 1=t . As x ! 0C, we have

t !1, so

lim
x!0C

x
a lnx D lim

t!1

ln.1=t/

ta
D lim

t!1

� ln t

ta
D �0 D 0:

Now we deduce (a) from (b). If x D ln t , then t !1 as x !1, so

lim
x!1

xa

ex
D lim

t!1

.ln t/a

t
D lim

t!1

�

ln t

t1=a

�a

D 0
a
D 0:

Finally, (c) follows from (a) via the substitution x D �t :

lim
x!�1

jxj
a
e

x
D lim

t!1
j � t j

a
e

�t
D lim

t!1

ta

et
D 0:

Exponential Growth and Decay Models
Many natural processes involve quantities that increase or decrease at a rate propor-

tional to their size. For example, the mass of a culture of bacteria growing in a medium

supplying adequate nourishment will increase at a rate proportional to that mass. The

value of an investment bearing interest that is continuously compounding increases at a

rate proportional to that value. The mass of undecayed radioactive material in a sample

decreases at a rate proportional to that mass.

All of these phenomena, and others exhibiting similar behaviour, can be modelled

mathematically in the same way. If y D y.t/ denotes the value of a quantity y at time

t , and if y changes at a rate proportional to its size, then

dy

dt
D ky;

where k is the constant of proportionality. The above equation is called the differential

equation of exponential growth or decay because, for any value of the constant C;

the function y D Cekt satisfies the equation. In fact, if y.t/ is any solution of the

differential equation y 0
D ky, then

d

dt

�

y.t/

ekt

�

D

ekty 0.t/ � kekty.t/

e2kt
D

y 0.t/ � ky.t/

ekt
D 0 for all t:

Thus, y.t/=ekt
D C; a constant, and y.t/ D Cekt . Since y.0/ D Ce0

D C;

The initial-value problem

8

<

:

dy

dt
D ky

y.0/ D y0

has unique solution y D y0e
kt
:

If y0 > 0, then y.t/ is an increasing function of t if k > 0 and a decreasing function

of t if k < 0. We say that the quantity y exhibits exponential growth if k > 0 and

exponential decay if k < 0. (See Figure 3.15.)

y0

k < 0

k D 0

k > 0y

t

Figure 3.15 Solutions of the initial-value

problem dy=dt D ky, y.0/ D y0, for

k > 0, k D 0, and k < 0
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E X A M P L E 1
(Growth of a cell culture) A certain cell culture grows at a rate

proportional to the number of cells present. If the culture contains

500 cells initially and 800 after 24 h, how many cells will there be after a further 12 h?

Solution Let y.t/ be the number of cells present t hours after there were 500 cells.

Thus, y.0/ D 500 and y.24/ D 800. Because dy=dt D ky, we have

y.t/ D y.0/e
kt
D 500e

kt
:

Therefore, 800 D y.24/ D 500e24k , so 24k D ln 800
500
D ln.1:6/. It follows that

k D .1=24/ ln.1:6/ and

y.t/ D 500e
.t=24/ ln.1:6/

D 500.1:6/
t=24

:

We want to know y when t D 36: y.36/ D 500e.36=24/ ln.1:6/
D 500.1:6/3=2

� 1012.

The cell count grew to about 1,012 in the 12 h after it was 800.

Exponential growth is characterized by a fixed doubling time. If T is the time at which

y has doubled from its size at t D 0, then 2y.0/ D y.T / D y.0/ekT . Therefore,

ekT
D 2. Since y.t/ D y.0/ekt , we have

y.t C T / D y.0/e
k.tCT /

D e
kT
y.0/e

kt
D 2y.t/I

that is, T units of time are required for y to double from any value. Similarly, exponen-

tial decay involves a fixed halving time (usually called the half-life). If y.T / D 1
2
y.0/,

then ekT
D

1
2

and

y.t C T / D y.0/e
k.tCT /

D

1

2
y.t/:

E X A M P L E 2
(Radioactive decay) A radioactive material has a half-life of 1,200

years. What percentage of the original radioactivity of a sample is

left after 10 years? How many years are required to reduce the radioactivity by 10%?

Solution Let p.t/ be the percentage of the original radioactivity left after t years.

Thus p.0/ D 100 and p.1;200/ D 50. Since the radioactivity decreases at a rate

proportional to itself, dp=dt D kp and

p.t/ D 100e
kt
:

Now 50 D p.1;200/ D 100e
1;200k , so

k D
1

1;200
ln
50

100
D �

ln 2

1;200
:

The percentage left after 10 years is

p.10/ D 100e
10k
D 100e

�10.ln 2/=1;200
� 99:424:

If after t years 90% of the radioactivity is left, then

90 D 100e
kt
;

kt D ln
90

100
;

t D
1

k
ln.0:9/ D �

1;200

ln 2
ln.0:9/ � 182:4;

so it will take a little over 182 years to reduce the radioactivity by 10%.
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Sometimes an exponential growth or decay problem will involve a quantity that changes

at a rate proportional to the difference between itself and a fixed value:

dy

dt
D k.y � a/:

In this case, the change of dependent variable u.t/ D y.t/ � a should be used to

convert the differential equation to the standard form. Observe that u.t/ changes at the

same rate as y.t/ (i.e., du=dt D dy=dt), so it satisfies

du

dt
D ku:

E X A M P L E 3
(Newton’s law of cooling) A hot object introduced into a cooler

environment will cool at a rate proportional to the excess of its

temperature above that of its environment. If a cup of coffee sitting in a room main-

tained at a temperature of 20 ıC cools from 80
ıC to 50 ıC in 5 minutes, how much

longer will it take to cool to 40 ıC?

Solution Let y.t/ be the temperature of the coffee t min after it was 80 ıC. Thus,

y.0/ D 80 and y.5/ D 50. Newton’s law says that dy=dt D k.y � 20/ in this case, so

let u.t/ D y.t/ � 20. Thus, u.0/ D 60 and u.5/ D 30. We have

du

dt
D

dy

dt
D k.y � 20/ D ku:

Thus,

u.t/ D 60e
kt
;

30 D u.5/ D 60e
5k
;

5k D ln 1
2
D � ln 2:

We want to know t such that y.t/ D 40, that is, u.t/ D 20:

20 D u.t/ D 60e
�.t=5/ ln 2

�

t

5
ln 2 D ln

20

60
D � ln 3;

t D 5
ln 3

ln 2
� 7:92:

The coffee will take about 7:92 � 5 D 2:92 min to cool from 50 ıC to 40 ıC.

Interest on Investments
Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus, the value of

the investment at the end of one year will be $10,000.1:08/ D $10;800. If this amount

remains invested for a second year at the same rate, it will grow to $10,000.1:08/2 =

$11,664; in general, n years after the original investment was made, it will be worth

$10,000.1:08/n.

Now suppose that the 8% rate is compounded semiannually so that the interest is

actually paid at a rate of 4% per 6-month period. After one year (two interest periods)

the $10,000 will grow to $10,000.1:04/2 = $10,816. This is $16 more than was obtained

when the 8% was compounded only once per year. The extra $16 is the interest paid

in the second 6-month period on the $400 interest earned in the first 6-month period.

Continuing in this way, if the 8% interest is compounded monthly (12 periods per year

and 8
12

% paid per period) or daily (365 periods per year and 8
365

% paid per period),

then the original $10,000 would grow in one year to $10,000
�

1C
8

1;200

�12

D $10;830

or $10,000
�

1C
8

36;500

�365

D $10;832:78, respectively.
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For any given nominal interest rate, the investment grows more if the compounding

period is shorter. In general, an original investment of $A invested at r% per annum

compounded n times per year grows in one year to

$A
�

1C
r

100n

�n

:

It is natural to ask how well we can do with our investment if we let the number of

periods in a year approach infinity, that is, we compound the interest continuously.

The answer is that in 1 year the $A will grow to

$A lim
n!1

�

1C
r

100n

�n

D $Aer=100
:

For example, at 8% per annum compounded continuously, our $10,000 will grow in

one year to $10,000e0:08
� $10; 832:87. (Note that this is just a few cents more than

we get by compounding daily.) To justify this result we need the following theorem.

T H E O R E M

6

For every real number x,

e
x
D lim

n!1

�

1C
x

n

�n

:

PROOF If x D 0, there is nothing to prove; both sides of the identity are 1. If x ¤ 0,

let h D x=n. As n tends to infinity, h approaches 0. Thus,

lim
n!1

ln
�

1C
x

n

�n

D lim
n!1

n ln
�

1C
x

n

�

D lim
n!1

x

ln
�

1C
x

n

�

x

n

D x lim
h!0

ln.1C h/

h
.where h D x=n/

D x lim
h!0

ln.1C h/ � ln 1

h
.since ln 1 D 0/

D x

�

d

dt
ln t

�
ˇ

ˇ

ˇ

ˇ

tD1

(by the definition of derivative)

D x
1

t

ˇ

ˇ

ˇ

ˇ

tD1

D x:

Since ln is differentiable, it is continuous. Hence, by Theorem 7 of Section 1.4,

ln
�

lim
n!1

�

1C
x

n

�n�

D lim
n!1

ln
�

1C
x

n

�n

D x:

Taking exponentials of both sides gives the required formula.
Table 2.

n

�

1C
1

n

�n

1 2

10 2:593 74 � � �

100 2:704 81 � � �

1;000 2:716 92 � � �

10;000 2:718 15 � � �

100;000 2:718 27 � � �

In the case x D 1, the formula given in Theorem 6 takes the following form:

e D lim
n!1

�

1C
1

n

�n

:

We can use this formula to compute approximations to e, as shown in Table 2. In a

sense we have cheated in obtaining the numbers in this table; they were produced using

the yx function on a scientific calculator. However, this function is actually computed

as ex ln y . In any event, the formula in this table is not a very efficient way to calculate

e to any great accuracy. Only 4 decimal places are correct for n D 100;000. A much

better way is to use the series
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Sometimes an exponential growth or decay problem will involve a quantity that changes

at a rate proportional to the difference between itself and a fixed value:

dy

dt
D k.y � a/:

In this case, the change of dependent variable u.t/ D y.t/ � a should be used to

convert the differential equation to the standard form. Observe that u.t/ changes at the

same rate as y.t/ (i.e., du=dt D dy=dt), so it satisfies

du

dt
D ku:

E X A M P L E 3
(Newton’s law of cooling) A hot object introduced into a cooler

environment will cool at a rate proportional to the excess of its

temperature above that of its environment. If a cup of coffee sitting in a room main-

tained at a temperature of 20 ıC cools from 80
ıC to 50 ıC in 5 minutes, how much

longer will it take to cool to 40 ıC?

Solution Let y.t/ be the temperature of the coffee t min after it was 80 ıC. Thus,

y.0/ D 80 and y.5/ D 50. Newton’s law says that dy=dt D k.y � 20/ in this case, so

let u.t/ D y.t/ � 20. Thus, u.0/ D 60 and u.5/ D 30. We have

du

dt
D

dy

dt
D k.y � 20/ D ku:

Thus,

u.t/ D 60e
kt
;

30 D u.5/ D 60e
5k
;

5k D ln 1
2
D � ln 2:

We want to know t such that y.t/ D 40, that is, u.t/ D 20:

20 D u.t/ D 60e
�.t=5/ ln 2

�

t

5
ln 2 D ln

20

60
D � ln 3;

t D 5
ln 3

ln 2
� 7:92:

The coffee will take about 7:92 � 5 D 2:92 min to cool from 50 ıC to 40 ıC.

Interest on Investments
Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus, the value of

the investment at the end of one year will be $10,000.1:08/ D $10;800. If this amount

remains invested for a second year at the same rate, it will grow to $10,000.1:08/2 =

$11,664; in general, n years after the original investment was made, it will be worth

$10,000.1:08/n.

Now suppose that the 8% rate is compounded semiannually so that the interest is

actually paid at a rate of 4% per 6-month period. After one year (two interest periods)

the $10,000 will grow to $10,000.1:04/2 = $10,816. This is $16 more than was obtained

when the 8% was compounded only once per year. The extra $16 is the interest paid

in the second 6-month period on the $400 interest earned in the first 6-month period.

Continuing in this way, if the 8% interest is compounded monthly (12 periods per year

and 8
12

% paid per period) or daily (365 periods per year and 8
365

% paid per period),

then the original $10,000 would grow in one year to $10,000
�

1C
8

1;200

�12

D $10;830

or $10,000
�

1C
8

36;500

�365

D $10;832:78, respectively.
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For any given nominal interest rate, the investment grows more if the compounding

period is shorter. In general, an original investment of $A invested at r% per annum

compounded n times per year grows in one year to

$A
�

1C
r

100n

�n

:

It is natural to ask how well we can do with our investment if we let the number of

periods in a year approach infinity, that is, we compound the interest continuously.

The answer is that in 1 year the $A will grow to

$A lim
n!1

�

1C
r

100n

�n

D $Aer=100
:

For example, at 8% per annum compounded continuously, our $10,000 will grow in

one year to $10,000e0:08
� $10; 832:87. (Note that this is just a few cents more than

we get by compounding daily.) To justify this result we need the following theorem.

T H E O R E M

6

For every real number x,

e
x
D lim

n!1

�

1C
x

n

�n

:

PROOF If x D 0, there is nothing to prove; both sides of the identity are 1. If x ¤ 0,

let h D x=n. As n tends to infinity, h approaches 0. Thus,

lim
n!1

ln
�

1C
x

n

�n

D lim
n!1

n ln
�

1C
x

n

�

D lim
n!1

x

ln
�

1C
x

n

�

x

n

D x lim
h!0

ln.1C h/

h
.where h D x=n/

D x lim
h!0

ln.1C h/ � ln 1

h
.since ln 1 D 0/

D x

�

d

dt
ln t

�
ˇ

ˇ

ˇ

ˇ

tD1

(by the definition of derivative)

D x
1

t

ˇ

ˇ

ˇ

ˇ

tD1

D x:

Since ln is differentiable, it is continuous. Hence, by Theorem 7 of Section 1.4,

ln
�

lim
n!1

�

1C
x

n

�n�

D lim
n!1

ln
�

1C
x

n

�n

D x:

Taking exponentials of both sides gives the required formula.
Table 2.

n

�

1C
1

n

�n

1 2

10 2:593 74 � � �

100 2:704 81 � � �

1;000 2:716 92 � � �

10;000 2:718 15 � � �

100;000 2:718 27 � � �

In the case x D 1, the formula given in Theorem 6 takes the following form:

e D lim
n!1

�

1C
1

n

�n

:

We can use this formula to compute approximations to e, as shown in Table 2. In a

sense we have cheated in obtaining the numbers in this table; they were produced using

the yx function on a scientific calculator. However, this function is actually computed

as ex ln y . In any event, the formula in this table is not a very efficient way to calculate

e to any great accuracy. Only 4 decimal places are correct for n D 100;000. A much

better way is to use the series
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e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � D 1C 1C

1

2
C

1

6
C

1

24
C � � � ;

which we will establish in Section 4.10.

A final word about interest rates. Financial institutions sometimes quote effective

rates of interest rather than nominal rates. The effective rate tells you what the actual

effect of the interest rate will be after one year. Thus, $10,000 invested at an effective

rate of 8% will grow to $10,800.00 in one year regardless of the compounding period.

A nominal rate of 8% per annum compounded daily is equivalent to an effective rate

of about 8.3278%.

Logistic Growth
Few quantities in nature can sustain exponential growth over extended periods of time;

the growth is usually limited by external constraints. For example, suppose a small

number of rabbits (of both sexes) is introduced to a small island where there were

no rabbits previously, and where there are no predators who eat rabbits. By virtue of

natural fertility, the number of rabbits might be expected to grow exponentially, but this

growth will eventually be limited by the food supply available to the rabbits. Suppose

the island can grow enough food to supply a population of L rabbits indefinitely. If

there are y.t/ rabbits in the population at time t , we would expect y.t/ to grow at a

rate proportional to y.t/ provided y.t/ is quite small (much less than L). But as the

numbers increase, it will be harder for the rabbits to find enough food, and we would

expect the rate of increase to approach 0 as y.t/ gets closer and closer to L. One

possible model for such behaviour is the differential equation

dy

dt
D ky

�

1 �
y

L

�

;

Figure 3.16 Some logistic curves

y

t

L

which is called the logistic equation since it models growth that is limited by the

supply of necessary resources. Observe that dy=dt > 0 if 0 < y < L and that this

rate is small if y is small (there are few rabbits to reproduce) or if y is close to L (there

are almost as many rabbits as the available resources can feed). Observe also that

dy=dt < 0 if y > L; there being more animals than the resources can feed, the rabbits

die at a greater rate than they are born. Of course, the steady-state populations y D 0

and y D L are solutions of the logistic equation; for both of these dy=dt D 0. We

will examine techniques for solving differential equations like the logistic equation in
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Section 7.9. For now, we invite the reader to verify by differentiation that the solution

satisfying y.0/ D y0 is

y D
Ly0

y0 C .L � y0/e
�kt

:

Observe that, as expected, if 0 < y0 < L, then

lim
t!1

y.t/ D L; lim
t!�1

y.t/ D 0:

The solution given above also holds for y0 > L. However, the solution does not

approach 0 as t approaches �1 in this case. It has a vertical asymptote at a certain

negative value of t . (See Exercise 30 below.) The graphs of solutions of the logistic

equation for various positive values of y0 are given in Figure 3.16.

E X E R C I S E S 3.4

Evaluate the limits in Exercises 1–8.

1. lim
x!1

x
3
e

�x 2. lim
x!1

x
�3
e

x

3. lim
x!1

2e
x
� 3

ex
C 5

4. lim
x!1

x � 2e
�x

x C 3e�x

5. lim
x!0C

x lnx 6. lim
x!0C

ln x

x

7. lim
x!0

x

�

ln jxj
�2

8. lim
x!1

.lnx/3
p

x

9. (Bacterial growth) Bacteria grow in a certain culture at a rate

proportional to the amount present. If there are 100 bacteria

present initially and the amount doubles in 1 h, how many will

there be after a further 1 1
2

h?

10. (Dissolving sugar) Sugar dissolves in water at a rate

proportional to the amount still undissolved. If there were

50 kg of sugar present initially, and at the end of 5 h only

20 kg are left, how much longer will it take until 90% of the

sugar is dissolved?

11. (Radioactive decay) A radioactive substance decays at a rate

proportional to the amount present. If 30% of such a substance

decays in 15 years, what is the half-life of the substance?

12. (Half-life of radium) If the half-life of radium is 1,690 years,

what percentage of the amount present now will be remaining

after (a) 100 years, (b) 1,000 years?

13. Find the half-life of a radioactive substance if after 1 year

99.57% of an initial amount still remains.

14. (Bacterial growth) In a certain culture where the rate of

growth of bacteria is proportional to the number present, the

number triples in 3 days. If at the end of 7 days there are

10 million bacteria present in the culture, how many were

present initially?

15. (Weight of a newborn) In the first few weeks after birth,

babies gain weight at a rate proportional to their weight. A

baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks. How

much did the baby weigh 5 days after birth?

16. (Electric current) When a simple electrical circuit containing

inductance and resistance but no capacitance has the

electromotive force removed, the rate of decrease of the

current is proportional to the current. If the current is I.t/

amperes t s after cutoff, and if I D 40 when t D 0, and

I D 15 when t D 0:01, find a formula for I.t/.

17. (Continuously compounding interest) How much money

needs to be invested today at a nominal rate of 4%

compounded continuously, in order that it should grow to

$10,000 in 7 years?

18. (Continuously compounding interest) Money invested at

compound interest (with instantaneous compounding)

accumulates at a rate proportional to the amount present. If an

initial investment of $1,000 grows to $1,500 in exactly

5 years, find (a) the doubling time for the investment and (b)

the effective annual rate of interest being paid.

19. (Purchasing power) If the purchasing power of the dollar is

decreasing at an effective rate of 9% annually, how long will it

take for the purchasing power to be reduced to 25 cents?

20.I (Effective interest rate) A bank claims to pay interest at an

effective rate of 9.5% on an investment account. If the interest

is actually being compounded monthly, what is the nominal

rate of interest being paid on the account?

21.I Suppose that 1,000 rabbits were introduced onto an island

where they had no natural predators. During the next five

years, the rabbit population grew exponentially. After the first

two years the population was 3,500 rabbits. After the first five

years a rabbit virus was sprayed on the island, and after that

the rabbit population decayed exponentially. Two years after

the virus was introduced (so seven years after rabbits were

introduced to the island), the rabbit population had dropped to

3,000 rabbits. How many rabbits will there be on the island 10

years after they were introduced?

22. Lab rats are to be used in experiments on an isolated island.

Initially R rats are brought to the island and released. Having

a plentiful food supply and no natural predators on the island,

the rat population grows exponentially and doubles in three

months. At the end of the fifth month, and at the end of every

five months thereafter, 1,000 of the rats are captured and

killed. What is the minimum value of R that ensures that the

scientists will never run out of rats?
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e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � D 1C 1C

1

2
C

1

6
C

1

24
C � � � ;

which we will establish in Section 4.10.

A final word about interest rates. Financial institutions sometimes quote effective

rates of interest rather than nominal rates. The effective rate tells you what the actual

effect of the interest rate will be after one year. Thus, $10,000 invested at an effective

rate of 8% will grow to $10,800.00 in one year regardless of the compounding period.

A nominal rate of 8% per annum compounded daily is equivalent to an effective rate

of about 8.3278%.

Logistic Growth
Few quantities in nature can sustain exponential growth over extended periods of time;

the growth is usually limited by external constraints. For example, suppose a small

number of rabbits (of both sexes) is introduced to a small island where there were

no rabbits previously, and where there are no predators who eat rabbits. By virtue of

natural fertility, the number of rabbits might be expected to grow exponentially, but this

growth will eventually be limited by the food supply available to the rabbits. Suppose

the island can grow enough food to supply a population of L rabbits indefinitely. If

there are y.t/ rabbits in the population at time t , we would expect y.t/ to grow at a

rate proportional to y.t/ provided y.t/ is quite small (much less than L). But as the

numbers increase, it will be harder for the rabbits to find enough food, and we would

expect the rate of increase to approach 0 as y.t/ gets closer and closer to L. One

possible model for such behaviour is the differential equation

dy

dt
D ky

�

1 �
y

L

�

;

Figure 3.16 Some logistic curves

y

t

L

which is called the logistic equation since it models growth that is limited by the

supply of necessary resources. Observe that dy=dt > 0 if 0 < y < L and that this

rate is small if y is small (there are few rabbits to reproduce) or if y is close to L (there

are almost as many rabbits as the available resources can feed). Observe also that

dy=dt < 0 if y > L; there being more animals than the resources can feed, the rabbits

die at a greater rate than they are born. Of course, the steady-state populations y D 0

and y D L are solutions of the logistic equation; for both of these dy=dt D 0. We

will examine techniques for solving differential equations like the logistic equation in
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Section 7.9. For now, we invite the reader to verify by differentiation that the solution

satisfying y.0/ D y0 is

y D
Ly0

y0 C .L � y0/e
�kt

:

Observe that, as expected, if 0 < y0 < L, then

lim
t!1

y.t/ D L; lim
t!�1

y.t/ D 0:

The solution given above also holds for y0 > L. However, the solution does not

approach 0 as t approaches �1 in this case. It has a vertical asymptote at a certain

negative value of t . (See Exercise 30 below.) The graphs of solutions of the logistic

equation for various positive values of y0 are given in Figure 3.16.

E X E R C I S E S 3.4

Evaluate the limits in Exercises 1–8.

1. lim
x!1

x
3
e

�x 2. lim
x!1

x
�3
e

x

3. lim
x!1

2e
x
� 3

ex
C 5

4. lim
x!1

x � 2e
�x

x C 3e�x

5. lim
x!0C

x lnx 6. lim
x!0C

ln x

x

7. lim
x!0

x

�

ln jxj
�2

8. lim
x!1

.lnx/3
p

x

9. (Bacterial growth) Bacteria grow in a certain culture at a rate

proportional to the amount present. If there are 100 bacteria

present initially and the amount doubles in 1 h, how many will

there be after a further 1 1
2

h?

10. (Dissolving sugar) Sugar dissolves in water at a rate

proportional to the amount still undissolved. If there were

50 kg of sugar present initially, and at the end of 5 h only

20 kg are left, how much longer will it take until 90% of the

sugar is dissolved?

11. (Radioactive decay) A radioactive substance decays at a rate

proportional to the amount present. If 30% of such a substance

decays in 15 years, what is the half-life of the substance?

12. (Half-life of radium) If the half-life of radium is 1,690 years,

what percentage of the amount present now will be remaining

after (a) 100 years, (b) 1,000 years?

13. Find the half-life of a radioactive substance if after 1 year

99.57% of an initial amount still remains.

14. (Bacterial growth) In a certain culture where the rate of

growth of bacteria is proportional to the number present, the

number triples in 3 days. If at the end of 7 days there are

10 million bacteria present in the culture, how many were

present initially?

15. (Weight of a newborn) In the first few weeks after birth,

babies gain weight at a rate proportional to their weight. A

baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks. How

much did the baby weigh 5 days after birth?

16. (Electric current) When a simple electrical circuit containing

inductance and resistance but no capacitance has the

electromotive force removed, the rate of decrease of the

current is proportional to the current. If the current is I.t/

amperes t s after cutoff, and if I D 40 when t D 0, and

I D 15 when t D 0:01, find a formula for I.t/.

17. (Continuously compounding interest) How much money

needs to be invested today at a nominal rate of 4%

compounded continuously, in order that it should grow to

$10,000 in 7 years?

18. (Continuously compounding interest) Money invested at

compound interest (with instantaneous compounding)

accumulates at a rate proportional to the amount present. If an

initial investment of $1,000 grows to $1,500 in exactly

5 years, find (a) the doubling time for the investment and (b)

the effective annual rate of interest being paid.

19. (Purchasing power) If the purchasing power of the dollar is

decreasing at an effective rate of 9% annually, how long will it

take for the purchasing power to be reduced to 25 cents?

20.I (Effective interest rate) A bank claims to pay interest at an

effective rate of 9.5% on an investment account. If the interest

is actually being compounded monthly, what is the nominal

rate of interest being paid on the account?

21.I Suppose that 1,000 rabbits were introduced onto an island

where they had no natural predators. During the next five

years, the rabbit population grew exponentially. After the first

two years the population was 3,500 rabbits. After the first five

years a rabbit virus was sprayed on the island, and after that

the rabbit population decayed exponentially. Two years after

the virus was introduced (so seven years after rabbits were

introduced to the island), the rabbit population had dropped to

3,000 rabbits. How many rabbits will there be on the island 10

years after they were introduced?

22. Lab rats are to be used in experiments on an isolated island.

Initially R rats are brought to the island and released. Having

a plentiful food supply and no natural predators on the island,

the rat population grows exponentially and doubles in three

months. At the end of the fifth month, and at the end of every

five months thereafter, 1,000 of the rats are captured and

killed. What is the minimum value of R that ensures that the

scientists will never run out of rats?
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Differential equations of the form y 0
D aC by

23.P Suppose that f .x/ satisfies the differential equation

f
0
.x/ D aC bf .x/;

where a and b are constants.

(a) Solve the differential equation by substituting

u.x/ D aC bf .x/ and solving the simpler differential

equation that results for u.x/.

(b) Solve the initial-value problem:

8

<

:

dy

dx
D aC by

y.0/ D y0

24.P (Drug concentrations in the blood) A drug is introduced into

the bloodstream intravenously at a constant rate and breaks

down and is eliminated from the body at a rate proportional to

its concentration in the blood. The concentration x.t/ of the

drug in the blood satisfies the differential equation

dx

dt
D a � bx;

where a and b are positive constants.

(a) What is the limiting concentration limt!1 x.t/ of the

drug in the blood?

(b) Find the concentration of the drug in the blood at time t ,

given that the concentration was zero at t D 0.

(c) How long after t D 0 will it take for the concentration to

rise to half its limiting value?

25.P (Cooling) Use Newton’s law of cooling to determine the

reading on a thermometer five minutes after it is taken from an

oven at 72 ıC to the outdoors where the temperature is 20 ıC,

if the reading dropped to 48 ıC after one minute.

26.P (Cooling) An object is placed in a freezer maintained at a

temperature of �5 ıC. If the object cools from 45 ıC to 20 ıC

in 40 minutes, how many more minutes will it take to cool to

0 ıC?

27.P (Warming) If an object in a room warms up from 5 ıC to

10 ıC in 4 minutes, and if the room is being maintained at

20 ıC, how much longer will the object take to warm up to

15 ıC? Assume the object warms at a rate proportional to the

difference between its temperature and room temperature.

The logistic equation

28.I Suppose the quantity y.t/ exhibits logistic growth. If the

values of y.t/ at times t D 0, t D 1, and t D 2 are y0, y1, and

y2, respectively, find an equation satisfied by the limiting

value L of y.t/, and solve it for L. If y0 D 3, y1 D 5, and

y2 D 6, find L.

29.P Show that a solution y.t/ of the logistic equation having

0 < y.0/ < L is increasing most rapidly when its value is

L=2. (Hint: You do not need to use the formula for the

solution to see this.)

30.I If y0 > L, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the left endpoint of this interval?

31.I If y0 < 0, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the right endpoint of this interval?

32. (Modelling an epidemic) The number y of persons infected

by a highly contagious virus is modelled by a logistic curve

y D
L

1CMe�kt
;

where t is measured in months from the time the outbreak was

discovered. At that time there were 200 infected persons, and

the number grew to 1,000 after 1 month. Eventually, the

number levelled out at 10,000. Find the values of the

parameters L, M , and k of the model.

33. Continuing Exercise 32, how many people were infected

3 months after the outbreak was discovered, and how fast was

the number growing at that time?

3.5 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and, hence, not one-to-one. However, as

we did with the function x2 in Section 3.1, we can restrict their domains in such a way

that the restricted functions are one-to-one and invertible.

The Inverse Sine (or Arcsine) Function
Let us define a function Sinx (note the capital letter) to be sinx, restricted so that its

domain is the interval ��
2
� x �

�
2

:

D E F I N I T I O N

8

The restricted sine function Sin x

Sinx D sin x if �
�

2
� x �

�

2
:

Since its derivative cos x is positive on the interval
�

�
�
2
;

�
2

�

, the function Sinx is

increasing on its domain, so it is a one-to-one function. It has domain
�

�
�
2
;

�
2

�

and
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range Œ�1; 1�. (See Figure 3.17.)

Figure 3.17 The graph of Sinx forms

part of the graph of sinx

y

x

�1

1

��=2

�=2

y D sin x

y D Sin x

Being one-to-one, Sin has an inverse function which is denoted sin�1 (or, in some

books and computer programs, by arcsin, Arcsin, or asin) and which is called the

inverse sine or arcsine function.

D E F I N I T I O N

9

The inverse sine function sin�1
x or Arcsin x

y D sin�1
x ” x D Siny

” x D sin y and �

�

2
� y �

�

2

The graph of sin�1 is shown in Figure 3.18; it is the reflection of the graph of Sin in the

line y D x. The domain of sin�1 is Œ�1; 1� (the range of Sin), and the range of sin�1

is
�

�
�
2
;

�
2

�

(the domain of Sin). The cancellation identities for Sin and sin�1 are

sin�1
.Sinx/ D arcsin .Sinx/ D x for �

�

2
� x �

�

2

Sin .sin�1
x/ D Sin . arcsin x/ D x for � 1 � x � 1

Since the intervals where they apply are specified, Sin can be replaced by sin in both

identities above.

Remark As for the general inverse function f �1, be aware that sin�1
x does not

y

x

.1; �=2/

.�1;��=2/

y D sin�1
x

Figure 3.18 The arcsine function

represent the reciprocal 1= sin x. (We already have a perfectly good name for the

reciprocal of sin x; we call it csc x.) We should think of sin�1
x as “the angle between

�
�
2

and �
2

whose sine is x.”

E X A M P L E 1

(a) sin�1
�

1
2

�

D
�
6

(because sin �
6
D

1
2

and ��
2
<

�
6
<

�
2

).

(b) sin�1
�

�
1p
2

�

D �
�
4

(because sin
�

�
�
4

�

D �
1p
2

and ��
2
< �

�
4
<

�
2

).

(c) sin�1
.�1/ D �

�
2

(because sin
�

�
�
2

�

D �1).

(d) sin�1
2 is not defined. (2 is not in the range of sine.)

E X A M P L E 2
Find (a) sin

�

sin�1
0:7
�

, (b) sin�1
.sin 0:3/, (c) sin�1

�

sin 4�
5

�

,

and (d) cos
�

sin�1
0:6
�

.

Solution

(a) sin
�

sin�1
0:7
�

D 0:7 (cancellation identity).

(b) sin�1
.sin 0:3/ D 0:3 (cancellation identity).

(c) The number 4�
5

does not lie in
�

�
�
2
;

�
2

�

, so we can’t apply the cancellation identity

directly. However, sin 4�
5
D sin

�

� �
�
5

�

D sin �
5

by the supplementary angle

identity. Therefore, sin�1
�

sin 4�
5

�

D sin�1
�

sin �
5

�

D
�
5

(by cancellation).
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Differential equations of the form y 0
D aC by

23.P Suppose that f .x/ satisfies the differential equation

f
0
.x/ D aC bf .x/;

where a and b are constants.

(a) Solve the differential equation by substituting

u.x/ D aC bf .x/ and solving the simpler differential

equation that results for u.x/.

(b) Solve the initial-value problem:

8

<

:

dy

dx
D aC by

y.0/ D y0

24.P (Drug concentrations in the blood) A drug is introduced into

the bloodstream intravenously at a constant rate and breaks

down and is eliminated from the body at a rate proportional to

its concentration in the blood. The concentration x.t/ of the

drug in the blood satisfies the differential equation

dx

dt
D a � bx;

where a and b are positive constants.

(a) What is the limiting concentration limt!1 x.t/ of the

drug in the blood?

(b) Find the concentration of the drug in the blood at time t ,

given that the concentration was zero at t D 0.

(c) How long after t D 0 will it take for the concentration to

rise to half its limiting value?

25.P (Cooling) Use Newton’s law of cooling to determine the

reading on a thermometer five minutes after it is taken from an

oven at 72 ıC to the outdoors where the temperature is 20 ıC,

if the reading dropped to 48 ıC after one minute.

26.P (Cooling) An object is placed in a freezer maintained at a

temperature of �5 ıC. If the object cools from 45 ıC to 20 ıC

in 40 minutes, how many more minutes will it take to cool to

0 ıC?

27.P (Warming) If an object in a room warms up from 5 ıC to

10 ıC in 4 minutes, and if the room is being maintained at

20 ıC, how much longer will the object take to warm up to

15 ıC? Assume the object warms at a rate proportional to the

difference between its temperature and room temperature.

The logistic equation

28.I Suppose the quantity y.t/ exhibits logistic growth. If the

values of y.t/ at times t D 0, t D 1, and t D 2 are y0, y1, and

y2, respectively, find an equation satisfied by the limiting

value L of y.t/, and solve it for L. If y0 D 3, y1 D 5, and

y2 D 6, find L.

29.P Show that a solution y.t/ of the logistic equation having

0 < y.0/ < L is increasing most rapidly when its value is

L=2. (Hint: You do not need to use the formula for the

solution to see this.)

30.I If y0 > L, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the left endpoint of this interval?

31.I If y0 < 0, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the right endpoint of this interval?

32. (Modelling an epidemic) The number y of persons infected

by a highly contagious virus is modelled by a logistic curve

y D
L

1CMe�kt
;

where t is measured in months from the time the outbreak was

discovered. At that time there were 200 infected persons, and

the number grew to 1,000 after 1 month. Eventually, the

number levelled out at 10,000. Find the values of the

parameters L, M , and k of the model.

33. Continuing Exercise 32, how many people were infected

3 months after the outbreak was discovered, and how fast was

the number growing at that time?

3.5 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and, hence, not one-to-one. However, as

we did with the function x2 in Section 3.1, we can restrict their domains in such a way

that the restricted functions are one-to-one and invertible.

The Inverse Sine (or Arcsine) Function
Let us define a function Sinx (note the capital letter) to be sinx, restricted so that its

domain is the interval ��
2
� x �

�
2

:

D E F I N I T I O N

8

The restricted sine function Sin x

Sinx D sin x if �
�

2
� x �

�

2
:

Since its derivative cos x is positive on the interval
�

�
�
2
;

�
2

�

, the function Sinx is

increasing on its domain, so it is a one-to-one function. It has domain
�

�
�
2
;

�
2

�

and
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range Œ�1; 1�. (See Figure 3.17.)

Figure 3.17 The graph of Sinx forms

part of the graph of sinx

y

x

�1

1

��=2

�=2

y D sin x

y D Sin x

Being one-to-one, Sin has an inverse function which is denoted sin�1 (or, in some

books and computer programs, by arcsin, Arcsin, or asin) and which is called the

inverse sine or arcsine function.

D E F I N I T I O N

9

The inverse sine function sin�1
x or Arcsin x

y D sin�1
x ” x D Siny

” x D sin y and �

�

2
� y �

�

2

The graph of sin�1 is shown in Figure 3.18; it is the reflection of the graph of Sin in the

line y D x. The domain of sin�1 is Œ�1; 1� (the range of Sin), and the range of sin�1

is
�

�
�
2
;

�
2

�

(the domain of Sin). The cancellation identities for Sin and sin�1 are

sin�1
.Sinx/ D arcsin .Sinx/ D x for �

�

2
� x �

�

2

Sin .sin�1
x/ D Sin . arcsin x/ D x for � 1 � x � 1

Since the intervals where they apply are specified, Sin can be replaced by sin in both

identities above.

Remark As for the general inverse function f �1, be aware that sin�1
x does not

y

x

.1; �=2/

.�1;��=2/

y D sin�1
x

Figure 3.18 The arcsine function

represent the reciprocal 1= sin x. (We already have a perfectly good name for the

reciprocal of sin x; we call it csc x.) We should think of sin�1
x as “the angle between

�
�
2

and �
2

whose sine is x.”

E X A M P L E 1

(a) sin�1
�

1
2

�

D
�
6

(because sin �
6
D

1
2

and ��
2
<

�
6
<

�
2

).

(b) sin�1
�

�
1p
2

�

D �
�
4

(because sin
�

�
�
4

�

D �
1p
2

and ��
2
< �

�
4
<

�
2

).

(c) sin�1
.�1/ D �

�
2

(because sin
�

�
�
2

�

D �1).

(d) sin�1
2 is not defined. (2 is not in the range of sine.)

E X A M P L E 2
Find (a) sin

�

sin�1
0:7
�

, (b) sin�1
.sin 0:3/, (c) sin�1

�

sin 4�
5

�

,

and (d) cos
�

sin�1
0:6
�

.

Solution

(a) sin
�

sin�1
0:7
�

D 0:7 (cancellation identity).

(b) sin�1
.sin 0:3/ D 0:3 (cancellation identity).

(c) The number 4�
5

does not lie in
�

�
�
2
;

�
2

�

, so we can’t apply the cancellation identity

directly. However, sin 4�
5
D sin

�

� �
�
5

�

D sin �
5

by the supplementary angle

identity. Therefore, sin�1
�

sin 4�
5

�

D sin�1
�

sin �
5

�

D
�
5

(by cancellation).
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(d) Let � D sin�1
0:6, as shown in the right triangle in Figure 3.19, which has hy-

�

0:8

0:6
1

Figure 3.19

potenuse 1 and side opposite � equal to 0.6. By the Pythagorean Theorem, the

side adjacent � is
p

1� .0:6/2 D 0:8. Thus, cos
�

sin�1
0:6
�

D cos � D 0:8.

E X A M P L E 3
Simplify the expression tan.sin�1

x/.

Solution We want the tangent of an angle whose sine is x. Suppose first that 0 �

x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle � , and

label the sides so that � D sin�1
x. The side opposite � is x, and the hypotenuse is 1.

The remaining side is
p

1 � x2, and we have

tan.sin�1
x/ D tan � D

x
p

1 � x2
:

Because both sides of the above equation are odd functions of x, the same result holds

for �1 < x < 0.

�

p

1 � x2

1
x

Figure 3.20

Now let us use implicit differentiation to find the derivative of the inverse sine function.

If y D sin�1
x, then x D sin y and ��

2
� y �

�
2

. Differentiating with respect to x,

we obtain

1 D .cos y/
dy

dx
:

Since ��
2
� y �

�
2

, we know that cos y � 0. Therefore,

cos y D

q

1 � sin2
y D

p

1� x2;

and dy=dx D 1= cos y D 1=
p

1 � x2;

d

dx
sin�1

x D
d

dx
arcsinx D

1
p

1 � x2
:

Note that the inverse sine function is differentiable only on the open interval

.�1; 1/; the slope of its graph approaches infinity as x ! �1C or as

x ! 1�. (See Figure 3.18.)

E X A M P L E 4 Find the derivative of sin�1
�

x

a

�

and hence evaluate

Z

dx
p

a2
� x2

,

where a > 0.

Solution By the Chain Rule,

d

dx
sin�1 x

a
D

1
r

1 �
x2

a2

1

a
D

1
r

a2
� x2

a2

1

a
D

1
p

a2
� x2

if a > 0.

Hence,

Z

1
p

a2
� x2

dx D sin�1 x

a
C C .a > 0/:
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E X A M P L E 5
Find the solution y of the following initial-value problem:

8

<

:

y 0
D

4
p

2 � x2
.�
p

2 < x <
p

2/

y.1/ D 2�:

Solution Using the integral from the previous example, we have

y D

Z

4
p

2 � x2
dx D 4 sin�1

�

x
p

2

�

C C

for some constant C . Also 2� D y.1/ D 4 sin�1
.1=
p

2/CC D 4
�

�
4

�

CC D �CC .

Thus, C D � and y D 4 sin�1
.x=
p

2/C � .

E X A M P L E 6
(A sawtooth curve) Let f .x/ D sin�1

.sin x/ for all real

numbers x.

(a) Calculate and simplify f 0.x/.

(b) Where is f differentiable? Where is f continuous?

(c) Use your results from (a) and (b) to sketch the graph of f:

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate

f
0
.x/ D

1
p

1 � .sin x/2
.cos x/

D

cos x
p

cos2 x
D

cos x

j cos xj
D

n

1 if cos x > 0

�1 if cos x < 0.

(b) f is differentiable at all points where cos x ¤ 0, that is, everywhere except at odd

multiples of �=2, namely, ˙�
2

,˙3�
2

, ˙5�
2

, : : : .

Since sin is continuous everywhere and has values in Œ�1; 1�, and since sin�1 is

continuous on Œ�1; 1�, we have that f is continuous on the whole real line.

(c) Since f is continuous, its graph has no breaks. The graph consists of straight line

segments of slopes alternating between 1 and�1 on intervals between consecutive

odd multiples of �=2. Since f 0.x/ D 1 on the interval
�

�
�
2
;

�
2

�

(where cos x �

0), the graph must be as shown in Figure 3.21.

Figure 3.21 A sawtooth graph

y

x

� �
2

�
2

�
2

� �
2

y D sin�1
.sin x/

The Inverse Tangent (or Arctangent) Function
The inverse tangent function is defined in a manner similar to the inverse sine. We

begin by restricting the tangent function to an interval where it is one-to-one; in this

case we use the open interval
�

�
�
2
;

�
2

�

. See Figure 3.22(a).

D E F I N I T I O N

10

The restricted tangent function Tan x

Tan x D tan x if �
�

2
< x <

�

2
:
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(d) Let � D sin�1
0:6, as shown in the right triangle in Figure 3.19, which has hy-

�

0:8

0:6
1

Figure 3.19

potenuse 1 and side opposite � equal to 0.6. By the Pythagorean Theorem, the

side adjacent � is
p

1� .0:6/2 D 0:8. Thus, cos
�

sin�1
0:6
�

D cos � D 0:8.

E X A M P L E 3
Simplify the expression tan.sin�1

x/.

Solution We want the tangent of an angle whose sine is x. Suppose first that 0 �

x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle � , and

label the sides so that � D sin�1
x. The side opposite � is x, and the hypotenuse is 1.

The remaining side is
p

1 � x2, and we have

tan.sin�1
x/ D tan � D

x
p

1 � x2
:

Because both sides of the above equation are odd functions of x, the same result holds

for �1 < x < 0.

�

p

1 � x2

1
x

Figure 3.20

Now let us use implicit differentiation to find the derivative of the inverse sine function.

If y D sin�1
x, then x D sin y and ��

2
� y �

�
2

. Differentiating with respect to x,

we obtain

1 D .cos y/
dy

dx
:

Since ��
2
� y �

�
2

, we know that cos y � 0. Therefore,

cos y D

q

1 � sin2
y D

p

1� x2;

and dy=dx D 1= cos y D 1=
p

1 � x2;

d

dx
sin�1

x D
d

dx
arcsinx D

1
p

1 � x2
:

Note that the inverse sine function is differentiable only on the open interval

.�1; 1/; the slope of its graph approaches infinity as x ! �1C or as

x ! 1�. (See Figure 3.18.)

E X A M P L E 4 Find the derivative of sin�1
�

x

a

�

and hence evaluate

Z

dx
p

a2
� x2

,

where a > 0.

Solution By the Chain Rule,

d

dx
sin�1 x

a
D

1
r

1 �
x2

a2

1

a
D

1
r

a2
� x2

a2

1

a
D

1
p

a2
� x2

if a > 0.

Hence,

Z

1
p

a2
� x2

dx D sin�1 x

a
C C .a > 0/:
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E X A M P L E 5
Find the solution y of the following initial-value problem:

8

<

:

y 0
D

4
p

2 � x2
.�
p

2 < x <
p

2/

y.1/ D 2�:

Solution Using the integral from the previous example, we have

y D

Z

4
p

2 � x2
dx D 4 sin�1

�

x
p

2

�

C C

for some constant C . Also 2� D y.1/ D 4 sin�1
.1=
p

2/CC D 4
�

�
4

�

CC D �CC .

Thus, C D � and y D 4 sin�1
.x=
p

2/C � .

E X A M P L E 6
(A sawtooth curve) Let f .x/ D sin�1

.sin x/ for all real

numbers x.

(a) Calculate and simplify f 0.x/.

(b) Where is f differentiable? Where is f continuous?

(c) Use your results from (a) and (b) to sketch the graph of f:

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate

f
0
.x/ D

1
p

1 � .sin x/2
.cos x/

D

cos x
p

cos2 x
D

cos x

j cos xj
D

n

1 if cos x > 0

�1 if cos x < 0.

(b) f is differentiable at all points where cos x ¤ 0, that is, everywhere except at odd

multiples of �=2, namely, ˙�
2

,˙3�
2

, ˙5�
2

, : : : .

Since sin is continuous everywhere and has values in Œ�1; 1�, and since sin�1 is

continuous on Œ�1; 1�, we have that f is continuous on the whole real line.

(c) Since f is continuous, its graph has no breaks. The graph consists of straight line

segments of slopes alternating between 1 and�1 on intervals between consecutive

odd multiples of �=2. Since f 0.x/ D 1 on the interval
�

�
�
2
;

�
2

�

(where cos x �

0), the graph must be as shown in Figure 3.21.

Figure 3.21 A sawtooth graph

y

x

� �
2

�
2

�
2

� �
2

y D sin�1
.sin x/

The Inverse Tangent (or Arctangent) Function
The inverse tangent function is defined in a manner similar to the inverse sine. We

begin by restricting the tangent function to an interval where it is one-to-one; in this

case we use the open interval
�

�
�
2
;

�
2

�

. See Figure 3.22(a).

D E F I N I T I O N

10

The restricted tangent function Tan x

Tan x D tan x if �
�

2
< x <

�

2
:
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The inverse of the function Tan is called the inverse tangent function and is denoted

tan�1 (or arctan, Arctan, or atan). The domain of tan�1 is the whole real line (the

range of Tan). Its range is the open interval
�

�
�
2
;

�
2

�

.

D E F I N I T I O N

11

The inverse tangent function tan�1
x or Arctan x

y D tan�1
x ” x D Tan y

” x D tan y and �

�

2
< y <

�

2

The graph of tan�1 is shown in Figure 3.22(b); it is the reflection of the graph of Tan

in the line y D x.

Figure 3.22

(a) The graph of Tanx

(b) The graph of tan�1
x

y

x

�
2

� �
2

y D Tan x

y D tan x

y

x

� �
2

�
2

y D tan�1x

(a) (b)

The cancellation identities for Tan and tan�1 are

tan�1
.Tan x/ D arctan .Tan x/ D x for �

�

2
< x <

�

2

Tan .tan�1
x/ D Tan . arctan x/ D x for �1 < x <1

Again, we can replace Tan with tan above since the intervals are specified.

E X A M P L E 7 Evaluate: (a) tan.tan�1
3/, (b) tan�1

�

tan
3�

4

�

,

and (c) cos.tan�1 2/.

Solution

(a) tan.tan�1 3/ D 3 by cancellation.

(b) tan�1
�

tan 3�
4

�

D tan�1.�1/ D �
�
4

.

(c) cos.tan�1
2/ D cos � D 1p

5
via the triangle in Figure 3.23. Alternatively, we

have tan.tan�1 2/ D 2, so sec2.tan�1 2/ D 1C 22
D 5. Thus, cos2.tan�1 2/ D

1
5

.

Since cosine is positive on the range of tan�1, we have cos.tan�1 2/ D
1p
5

.

�

1

p

5
2

Figure 3.23

The derivative of the inverse tangent function is also found by implicit differentiation:

if y D tan�1 x, then x D tan y and

1 D .sec2
y/
dy

dx
D .1C tan2

y/
dy

dx
D .1C x

2
/
dy

dx
:

Thus,

d

dx
tan�1

x D
1

1C x2
:
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E X A M P L E 8 Find
d

dx
tan�1

�

x

a

�

, and hence evaluate

Z

1

x2
C a2

dx.

Solution We have

d

dx
tan�1

�

x

a

�

D

1

1C
x2

a2

1

a
D

a

a2
C x2

I

hence,

Z

dx

a2
C x2

D

1

a
tan�1

�

x

a

�

C C:

E X A M P L E 9 Prove that tan�1

�

x � 1

x C 1

�

D tan�1 x �
�

4
for x > �1.

Solution Let f .x/ D tan�1

�

x � 1

x C 1

�

� tan�1
x. On the interval .�1;1/ we

have, by the Chain Rule and the Quotient Rule,

f
0
.x/ D

1

1C

�

x � 1

x C 1

�2

.x C 1/ � .x � 1/

.x C 1/2
�

1

1C x2

D

.x C 1/2

.x2
C 2x C 1/C .x2

� 2x C 1/

2

.x C 1/2
�

1

1C x2

D

2

2C 2x2
�

1

1C x2
D 0:

Hence, f .x/ D C (constant) on that interval. We can find C by finding f .0/:

C D f .0/ D tan�1
.�1/ � tan�1

0 D �
�

4
:

Hence, the given identity holds on .�1;1/.

Remark Some computer programs, especially spreadsheets, implement two versions

of the arctangent function, usually called “atan” and “atan2.” The function atan is just

the function tan�1 that we have defined; atan.y=x/ gives the angle in radians, between

the line from the origin to the point .x; y/ and the positive x-axis, provided .x; y/ lies

in quadrants I or IV of the plane. The function atan2 is a function of two variables:

atan2.x; y/ gives that angle for any point .x; y/ not on the y-axis. See Figure 3.24.

Some programs, for instance MATLAB, reverse the order of the variables x and y in

their atan2 function. Maple uses arctan(x) and arctan(y,x) for the one- and

two-variable versions of arctangent.

y

x

�1

.x1; y1/

�2.x2; y2/

Figure 3.24

�1 D tan�1.y1=x1/

D atan.y1=x1/

D atan2.x1; y1/

D arctan.y1=x1/ (Maple)

D arctan.y1; x1/ (Maple)

�2 D atan2.x2; y2/

D arctan.y2; x2/ (Maple)

Other Inverse Trigonometric Functions
The function cos x is one-to-one on the interval Œ0; ��, so we could define the inverse

cosine function, cos�1 x (or arccosx, or Arccosx, or acosx), so that

y D cos�1
x ” x D cos y and 0 � y � �:

However, cos y D sin
�

�
2
� y

�

(the complementary angle identity), and �
2
�y is in the

interval
�

�
�
2
;

�
2

�

when 0 � y � � . Thus, the definition above would lead to

y D cos�1x ” x D sin
�

�

2
� y

�

” sin�1
x D

�

2
� y D

�

2
� cos�1x:
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The inverse of the function Tan is called the inverse tangent function and is denoted

tan�1 (or arctan, Arctan, or atan). The domain of tan�1 is the whole real line (the

range of Tan). Its range is the open interval
�

�
�
2
;

�
2

�

.

D E F I N I T I O N

11

The inverse tangent function tan�1
x or Arctan x

y D tan�1
x ” x D Tan y

” x D tan y and �

�

2
< y <

�

2

The graph of tan�1 is shown in Figure 3.22(b); it is the reflection of the graph of Tan

in the line y D x.

Figure 3.22

(a) The graph of Tanx

(b) The graph of tan�1
x

y

x

�
2

� �
2

y D Tan x

y D tan x

y

x

� �
2

�
2

y D tan�1x

(a) (b)

The cancellation identities for Tan and tan�1 are

tan�1
.Tan x/ D arctan .Tan x/ D x for �

�

2
< x <

�

2

Tan .tan�1
x/ D Tan . arctan x/ D x for �1 < x <1

Again, we can replace Tan with tan above since the intervals are specified.

E X A M P L E 7 Evaluate: (a) tan.tan�1
3/, (b) tan�1

�

tan
3�

4

�

,

and (c) cos.tan�1 2/.

Solution

(a) tan.tan�1 3/ D 3 by cancellation.

(b) tan�1
�

tan 3�
4

�

D tan�1.�1/ D �
�
4

.

(c) cos.tan�1
2/ D cos � D 1p

5
via the triangle in Figure 3.23. Alternatively, we

have tan.tan�1 2/ D 2, so sec2.tan�1 2/ D 1C 22
D 5. Thus, cos2.tan�1 2/ D

1
5

.

Since cosine is positive on the range of tan�1, we have cos.tan�1 2/ D
1p
5

.

�

1

p

5
2

Figure 3.23

The derivative of the inverse tangent function is also found by implicit differentiation:

if y D tan�1 x, then x D tan y and

1 D .sec2
y/
dy

dx
D .1C tan2

y/
dy

dx
D .1C x

2
/
dy

dx
:

Thus,

d

dx
tan�1

x D
1

1C x2
:
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E X A M P L E 8 Find
d

dx
tan�1

�

x

a

�

, and hence evaluate

Z

1

x2
C a2

dx.

Solution We have

d

dx
tan�1

�

x

a

�

D

1

1C
x2

a2

1

a
D

a

a2
C x2

I

hence,

Z

dx

a2
C x2

D

1

a
tan�1

�

x

a

�

C C:

E X A M P L E 9 Prove that tan�1

�

x � 1

x C 1

�

D tan�1 x �
�

4
for x > �1.

Solution Let f .x/ D tan�1

�

x � 1

x C 1

�

� tan�1
x. On the interval .�1;1/ we

have, by the Chain Rule and the Quotient Rule,

f
0
.x/ D

1

1C

�

x � 1

x C 1

�2

.x C 1/ � .x � 1/

.x C 1/2
�

1

1C x2

D

.x C 1/2

.x2
C 2x C 1/C .x2

� 2x C 1/

2

.x C 1/2
�

1

1C x2

D

2

2C 2x2
�

1

1C x2
D 0:

Hence, f .x/ D C (constant) on that interval. We can find C by finding f .0/:

C D f .0/ D tan�1
.�1/ � tan�1

0 D �
�

4
:

Hence, the given identity holds on .�1;1/.

Remark Some computer programs, especially spreadsheets, implement two versions

of the arctangent function, usually called “atan” and “atan2.” The function atan is just

the function tan�1 that we have defined; atan.y=x/ gives the angle in radians, between

the line from the origin to the point .x; y/ and the positive x-axis, provided .x; y/ lies

in quadrants I or IV of the plane. The function atan2 is a function of two variables:

atan2.x; y/ gives that angle for any point .x; y/ not on the y-axis. See Figure 3.24.

Some programs, for instance MATLAB, reverse the order of the variables x and y in

their atan2 function. Maple uses arctan(x) and arctan(y,x) for the one- and

two-variable versions of arctangent.

y

x

�1

.x1; y1/

�2.x2; y2/

Figure 3.24

�1 D tan�1.y1=x1/

D atan.y1=x1/

D atan2.x1; y1/

D arctan.y1=x1/ (Maple)

D arctan.y1; x1/ (Maple)

�2 D atan2.x2; y2/

D arctan.y2; x2/ (Maple)

Other Inverse Trigonometric Functions
The function cos x is one-to-one on the interval Œ0; ��, so we could define the inverse

cosine function, cos�1 x (or arccosx, or Arccosx, or acosx), so that

y D cos�1
x ” x D cos y and 0 � y � �:

However, cos y D sin
�

�
2
� y

�

(the complementary angle identity), and �
2
�y is in the

interval
�

�
�
2
;

�
2

�

when 0 � y � � . Thus, the definition above would lead to

y D cos�1x ” x D sin
�

�

2
� y

�

” sin�1
x D

�

2
� y D

�

2
� cos�1x:
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It is easier to use this result to define cos�1x directly:

D E F I N I T I O N

12

The inverse cosine function cos�1
x or Arccos x

cos�1
x D

�

2
� sin�1

x for � 1 � x � 1:

The cancellation identities for cos�1x are

cos�1
.cos x/ D arccos .cos x/ D x for 0 � x � �

cos.cos�1
x/ D cos. arccos x/ D x for � 1 � x � 1

The derivative of cos�1 x is the negative of that of sin�1
x (why?):

d

dx
cos�1

x D �
1

p

1 � x2
:

The graph of cos�1 is shown in Figure 3.25(a).

Figure 3.25 The graphs of cos�1 and

sec�1

y

x

�
2

.�1; �/

y D cos�1
x

1

y

x

�
2

.�1; �/

1

y D sec�1x

(a) (b)

Scientific calculators usually implement only the primary trigonometric functions—

sine, cosine, and tangent—and the inverses of these three. The secondary functions—

secant, cosecant, and cotangent—are calculated using the reciprocal key; to calculate

secx you calculate cos x and take the reciprocal of the answer. The inverses of the

secondary trigonometric functions are also easily expressed in terms of those of their

reciprocal functions. For example, we define:

D E F I N I T I O N

13

The inverse secant function sec�1
x (or Arcsec x)

sec�1
x D cos�1

�

1

x

�

for jxj � 1:

The domain of sec�1 is the union of intervals .�1;�1� [ Œ1;1/, and its range is
�

0;
�
2

�

[

�

�
2
; �
�

. The graph of y D sec�1x is shown in Figure 3.25(b). It is the

reflection in the line y D x of that part of the graph of secx for x between 0 and � .
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Observe that

sec.sec�1
x/ D sec

�

cos�1

�

1

x

��

D

1

cos

�

cos�1

�

1

x

�� D

1

1

x

D x for jxj � 1;

sec�1
.sec x/ D cos�1

�

1

sec x

�

D cos�1
.cos x/ D x for x in Œ0; ��; x ¤

�

2
:

We calculate the derivative of sec�1 from that of cos�1:
Some authors prefer to define

sec�1 as the inverse of the

restriction of secx to the

separated intervals Œ0; �=2/ and

Œ�; 3�=2/ because this prevents

the absolute value from

appearing in the formula for the

derivative. However, it is much

harder to calculate values with

that definition. Our definition

makes it easy to obtain a value

such as sec�1.�3/ from a

calculator. Scientific calculators

usually have just the inverses of

sine, cosine, and tangent built in.

d

dx
sec�1

x D
d

dx
cos�1

�

1

x

�

D

�1
r

1 �
1

x2

�

�

1

x2

�

D

1

x2

s

x2

x2
� 1
D

1

x2

jxj
p

x2
� 1
D

1

jxj
p

x2
� 1

:

Note that we had to use
p

x2
D jxj in the last line. There are negative values of x

in the domain of sec�1. Observe in Figure 3.25(b) that the slope of y D sec�1
.x/ is

always positive.

d

dx
sec�1

x D
1

jxj
p

x2
� 1

:

The corresponding integration formula takes different forms on intervals where x � 1

or x � �1:

Z

1

x
p

x2
� 1

dx D

�

sec�1x C C on intervals where x � 1

�sec�1x C C on intervals where x � �1

Finally, note that csc�1 and cot�1 are defined similarly to sec�1. They are seldom

encountered.

D E F I N I T I O N

14

The inverse cosecant and inverse cotangent functions

csc�1
x D sin�1

�

1

x

�

; .jxj � 1/I cot�1
x D tan�1

�

1

x

�

; .x ¤ 0/

E X E R C I S E S 3.5

In Exercises 1–12, evaluate the given expression.

1. sin�1
p

3
2

2. cos�1
��1

2

�

3. tan�1
.�1/ 4. sec�1

p

2

5. sin.sin�1
0:7/ 6. cos.sin�1

0:7/

7. tan�1
�

tan 2�
3

�

8. sin�1
.cos 40ı/

9. cos�1
.sin.�0:2// 10. sin

�

cos�1
��1

3

��

11. cos
�

tan�1 1
2

�

12. tan.tan�1
200/

In Exercises 13–18, simplify the given expression.

13. sin.cos�1
x/ 14. cos.sin�1

x/

15. cos.tan�1
x/ 16. sin.tan�1

x/

17. tan.cos�1
x/ 18. tan.sec�1

x/

In Exercises 19–32, differentiate the given function and simplify

the answer whenever possible.
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It is easier to use this result to define cos�1x directly:

D E F I N I T I O N

12

The inverse cosine function cos�1
x or Arccos x

cos�1
x D

�

2
� sin�1

x for � 1 � x � 1:

The cancellation identities for cos�1x are

cos�1
.cos x/ D arccos .cos x/ D x for 0 � x � �

cos.cos�1
x/ D cos. arccos x/ D x for � 1 � x � 1

The derivative of cos�1 x is the negative of that of sin�1
x (why?):

d

dx
cos�1

x D �
1

p

1 � x2
:

The graph of cos�1 is shown in Figure 3.25(a).

Figure 3.25 The graphs of cos�1 and

sec�1

y

x

�
2

.�1; �/

y D cos�1
x

1

y

x

�
2

.�1; �/

1

y D sec�1x

(a) (b)

Scientific calculators usually implement only the primary trigonometric functions—

sine, cosine, and tangent—and the inverses of these three. The secondary functions—

secant, cosecant, and cotangent—are calculated using the reciprocal key; to calculate

secx you calculate cos x and take the reciprocal of the answer. The inverses of the

secondary trigonometric functions are also easily expressed in terms of those of their

reciprocal functions. For example, we define:

D E F I N I T I O N

13

The inverse secant function sec�1
x (or Arcsec x)

sec�1
x D cos�1

�

1

x

�

for jxj � 1:

The domain of sec�1 is the union of intervals .�1;�1� [ Œ1;1/, and its range is
�

0;
�
2

�

[

�

�
2
; �
�

. The graph of y D sec�1x is shown in Figure 3.25(b). It is the

reflection in the line y D x of that part of the graph of secx for x between 0 and � .
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Observe that

sec.sec�1
x/ D sec

�

cos�1

�

1

x

��

D

1

cos

�

cos�1

�

1

x

�� D

1

1

x

D x for jxj � 1;

sec�1
.sec x/ D cos�1

�

1

sec x

�

D cos�1
.cos x/ D x for x in Œ0; ��; x ¤

�

2
:

We calculate the derivative of sec�1 from that of cos�1:
Some authors prefer to define

sec�1 as the inverse of the

restriction of secx to the

separated intervals Œ0; �=2/ and

Œ�; 3�=2/ because this prevents

the absolute value from

appearing in the formula for the

derivative. However, it is much

harder to calculate values with

that definition. Our definition

makes it easy to obtain a value

such as sec�1.�3/ from a

calculator. Scientific calculators

usually have just the inverses of

sine, cosine, and tangent built in.

d

dx
sec�1

x D
d

dx
cos�1

�

1

x

�

D

�1
r

1 �
1

x2

�

�

1

x2

�

D

1

x2

s

x2

x2
� 1
D

1

x2

jxj
p

x2
� 1
D

1

jxj
p

x2
� 1

:

Note that we had to use
p

x2
D jxj in the last line. There are negative values of x

in the domain of sec�1. Observe in Figure 3.25(b) that the slope of y D sec�1
.x/ is

always positive.

d

dx
sec�1

x D
1

jxj
p

x2
� 1

:

The corresponding integration formula takes different forms on intervals where x � 1

or x � �1:

Z

1

x
p

x2
� 1

dx D

�

sec�1x C C on intervals where x � 1

�sec�1x C C on intervals where x � �1

Finally, note that csc�1 and cot�1 are defined similarly to sec�1. They are seldom

encountered.

D E F I N I T I O N

14

The inverse cosecant and inverse cotangent functions

csc�1
x D sin�1

�

1

x

�

; .jxj � 1/I cot�1
x D tan�1

�

1

x

�

; .x ¤ 0/

E X E R C I S E S 3.5

In Exercises 1–12, evaluate the given expression.

1. sin�1
p

3
2

2. cos�1
��1

2

�

3. tan�1
.�1/ 4. sec�1

p

2

5. sin.sin�1
0:7/ 6. cos.sin�1

0:7/

7. tan�1
�

tan 2�
3

�

8. sin�1
.cos 40ı/

9. cos�1
.sin.�0:2// 10. sin

�

cos�1
��1

3

��

11. cos
�

tan�1 1
2

�

12. tan.tan�1
200/

In Exercises 13–18, simplify the given expression.

13. sin.cos�1
x/ 14. cos.sin�1

x/

15. cos.tan�1
x/ 16. sin.tan�1

x/

17. tan.cos�1
x/ 18. tan.sec�1

x/

In Exercises 19–32, differentiate the given function and simplify

the answer whenever possible.
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19. y D sin�1

�

2x � 1

3

�

20. y D tan�1
.ax C b/

21. y D cos�1

�

x � b

a

�

22. f .x/ D x sin�1
x

23. f .t/ D t tan�1
t 24. u D z2 sec�1

.1C z
2
/

25. F.x/ D .1C x2
/ tan�1

x 26. y D sin�1 a

x

27. G.x/ D
sin�1

x

sin�1
2x

28. H.t/ D
sin�1

t

sin t

29. f .x/ D .sin�1
x

2
/
1=2 30. y D cos�1 a

p

a2
C x2

31. y D
p

a2
� x2

C a sin�1 x

a
.a > 0/

32. y D a cos�1
�

1 �
x

a

�

�

p

2ax � x2 .a > 0/

33. Find the slope of the curve tan�1

�

2x

y

�

D

�x

y2
at the point

.1; 2/.

34. Find equations of two straight lines tangent to the graph of

y D sin�1
x and having slope 2.

35.A Show that, on their respective domains, sin�1 and tan�1 are

increasing functions and cos�1 is a decreasing function.

36.A The derivative of sec�1 x is positive for every x in the domain

of sec�1. Does this imply that sec�1 is increasing on its

domain? Why?

37. Sketch the graph of csc�1
x and find its derivative.

38. Sketch the graph of cot�1
x and find its derivative.

39. Show that tan�1
x C cot�1

x D
�
2

for x > 0. What is the sum

if x < 0?

40. Find the derivative of g.x/ D tan.tan�1 x/ and sketch the

graph of g.

In Exercises 41–44, plot the graphs of the given functions by first

calculating and simplifying the derivative of the function. Where

is each function continuous? Where is it differentiable?

41.I cos�1.cosx/ 42.I sin�1
.cosx/

43.I tan�1.tanx/ 44.I tan�1.cot x/

45. Show that sin�1
x D tan�1

�

x
p

1 � x2

�

if jxj < 1.

46. Show that sec�1 x D

�

tan�1
p

x2
� 1 if x � 1

� � tan�1
p

x2
� 1 if x � �1

47. Show that tan�1
x D sin�1

�

x
p

1C x2

�

for all x.

48. Show that sec�1 x D

8

ˆ

ˆ

<

ˆ

ˆ

:

sin�1

p

x2
� 1

x
if x � 1

� C sin�1

p

x2
� 1

x
if x � �1

49.A Show that the function f .x/ of Example 9 is also constant on

the interval .�1;�1/. Find the value of the constant. Hint:

Find limx!�1 f .x/.

50.A Find the derivative of f .x/ D x � tan�1.tanx/. What does

your answer imply about f .x/? Calculate f .0/ and f .�/. Is

there a contradiction here?

51.I Find the derivative of f .x/ D x � sin�1
.sinx/ for

�� � x � � and sketch the graph of f on that interval.

In Exercises 52–55, solve the initial-value problems.

52.P

8

<

:

y 0
D

1

1C x2

y.0/ D 1

53.P

8

<

:

y 0
D

1

9C x2

y.3/ D 2

54.P

8

<

:

y 0
D

1
p

1 � x2

y.1=2/ D 1

55.P

8

<

:

y 0
D

4
p

25 � x2

y.0/ D 0

3.6 Hyperbolic Functions

Any function defined on the real line can be expressed (in a unique way) as the sum of

an even function and an odd function. (See Exercise 35 of Section P.5.) The hyperbolic

functions cosh x and sinh x are, respectively, the even and odd functions whose sum

is the exponential function ex .

D E F I N I T I O N

15

The hyperbolic cosine and hyperbolic sine functions

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x,

are defined by

cosh x D
ex
C e�x

2
; sinhx D

ex
� e�x

2
:

(The symbol “sinh” is somewhat hard to pronounce as written. Some people say

“shine,” and others say “sinch.”) Recall that cosine and sine are called circular func-

tions because, for any t , the point .cos t; sin t/ lies on the circle with equation x2
C

y2
D 1. Similarly, cosh and sinh are called hyperbolic functions because the point

.cosh t; sinh t/ lies on the rectangular hyperbola with equation x2
� y2

D 1,
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cosh2
t � sinh2

t D 1 for any real t :

To see this, observe that

cosh2
t � sinh2

t D

�

et
C e�t

2

�2

�

�

et
� e�t

2

�2

D

1

4

�

e
2t
C 2C e

�2t
� .e

2t
� 2C e

�2t
/
�

D

1

4
.2C 2/ D 1:

There is no interpretation of t as an arc length or angle as there was in the circular

case; however, the area of the hyperbolic sector bounded by y D 0, the hyperbola

x2
� y2

D 1, and the ray from the origin to .cosh t; sinh t/ is t=2 square units (see

Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by y D 0,

the circle x2
C y2

D 1, and the ray from the origin to .cos t; sin t/. (See Figure 3.26.)

Figure 3.26 Both shaded areas are t=2

square units

y

x

x2
� y2

D 1

.cosh t; sinh t /

t=2

y

x

x2
C y2

D 1

.cos t; sin t /

t=2

(a) (b)

Observe that, similar to the corresponding values of cos x and sinx, we have

cosh 0 D 1 and sinh 0 D 0;

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function:

cosh.�x/ D cosh x; sinh.�x/ D � sinh x:

The graphs of cosh and sinh are shown in Figure 3.27. The graph y D cosh x is called

a catenary. A chain hanging by its ends will assume the shape of a catenary.

Many other properties of the hyperbolic functions resemble those of the corre-

sponding circular functions, sometimes with signs changed.

E X A M P L E 1
Show that

d

dx
cosh x D sinh x and

d

dx
sinh x D cosh x:
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19. y D sin�1

�

2x � 1

3

�

20. y D tan�1
.ax C b/

21. y D cos�1

�

x � b

a

�

22. f .x/ D x sin�1
x

23. f .t/ D t tan�1
t 24. u D z2 sec�1

.1C z
2
/

25. F.x/ D .1C x2
/ tan�1

x 26. y D sin�1 a

x

27. G.x/ D
sin�1

x

sin�1
2x

28. H.t/ D
sin�1

t

sin t

29. f .x/ D .sin�1
x

2
/
1=2 30. y D cos�1 a

p

a2
C x2

31. y D
p

a2
� x2

C a sin�1 x

a
.a > 0/

32. y D a cos�1
�

1 �
x

a

�

�

p

2ax � x2 .a > 0/

33. Find the slope of the curve tan�1

�

2x

y

�

D

�x

y2
at the point

.1; 2/.

34. Find equations of two straight lines tangent to the graph of

y D sin�1
x and having slope 2.

35.A Show that, on their respective domains, sin�1 and tan�1 are

increasing functions and cos�1 is a decreasing function.

36.A The derivative of sec�1 x is positive for every x in the domain

of sec�1. Does this imply that sec�1 is increasing on its

domain? Why?

37. Sketch the graph of csc�1
x and find its derivative.

38. Sketch the graph of cot�1
x and find its derivative.

39. Show that tan�1
x C cot�1

x D
�
2

for x > 0. What is the sum

if x < 0?

40. Find the derivative of g.x/ D tan.tan�1 x/ and sketch the

graph of g.

In Exercises 41–44, plot the graphs of the given functions by first

calculating and simplifying the derivative of the function. Where

is each function continuous? Where is it differentiable?

41.I cos�1.cosx/ 42.I sin�1
.cosx/

43.I tan�1.tanx/ 44.I tan�1.cot x/

45. Show that sin�1
x D tan�1

�

x
p

1 � x2

�

if jxj < 1.

46. Show that sec�1 x D

�

tan�1
p

x2
� 1 if x � 1

� � tan�1
p

x2
� 1 if x � �1

47. Show that tan�1
x D sin�1

�

x
p

1C x2

�

for all x.

48. Show that sec�1 x D

8

ˆ

ˆ

<

ˆ

ˆ

:

sin�1

p

x2
� 1

x
if x � 1

� C sin�1

p

x2
� 1

x
if x � �1

49.A Show that the function f .x/ of Example 9 is also constant on

the interval .�1;�1/. Find the value of the constant. Hint:

Find limx!�1 f .x/.

50.A Find the derivative of f .x/ D x � tan�1.tanx/. What does

your answer imply about f .x/? Calculate f .0/ and f .�/. Is

there a contradiction here?

51.I Find the derivative of f .x/ D x � sin�1
.sinx/ for

�� � x � � and sketch the graph of f on that interval.

In Exercises 52–55, solve the initial-value problems.

52.P

8

<

:

y 0
D

1

1C x2

y.0/ D 1

53.P

8

<

:

y 0
D

1

9C x2

y.3/ D 2

54.P

8

<

:

y 0
D

1
p

1 � x2

y.1=2/ D 1

55.P

8

<

:

y 0
D

4
p

25 � x2

y.0/ D 0

3.6 Hyperbolic Functions

Any function defined on the real line can be expressed (in a unique way) as the sum of

an even function and an odd function. (See Exercise 35 of Section P.5.) The hyperbolic

functions cosh x and sinh x are, respectively, the even and odd functions whose sum

is the exponential function ex .

D E F I N I T I O N

15

The hyperbolic cosine and hyperbolic sine functions

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x,

are defined by

cosh x D
ex
C e�x

2
; sinhx D

ex
� e�x

2
:

(The symbol “sinh” is somewhat hard to pronounce as written. Some people say

“shine,” and others say “sinch.”) Recall that cosine and sine are called circular func-

tions because, for any t , the point .cos t; sin t/ lies on the circle with equation x2
C

y2
D 1. Similarly, cosh and sinh are called hyperbolic functions because the point

.cosh t; sinh t/ lies on the rectangular hyperbola with equation x2
� y2

D 1,

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 201 October 15, 2016

SECTION 3.6: Hyperbolic Functions 201

cosh2
t � sinh2

t D 1 for any real t :

To see this, observe that

cosh2
t � sinh2

t D

�

et
C e�t

2

�2

�

�

et
� e�t

2

�2

D

1

4

�

e
2t
C 2C e

�2t
� .e

2t
� 2C e

�2t
/
�

D

1

4
.2C 2/ D 1:

There is no interpretation of t as an arc length or angle as there was in the circular

case; however, the area of the hyperbolic sector bounded by y D 0, the hyperbola

x2
� y2

D 1, and the ray from the origin to .cosh t; sinh t/ is t=2 square units (see

Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by y D 0,

the circle x2
C y2

D 1, and the ray from the origin to .cos t; sin t/. (See Figure 3.26.)

Figure 3.26 Both shaded areas are t=2

square units

y

x

x2
� y2

D 1

.cosh t; sinh t /

t=2

y

x

x2
C y2

D 1

.cos t; sin t /

t=2

(a) (b)

Observe that, similar to the corresponding values of cos x and sinx, we have

cosh 0 D 1 and sinh 0 D 0;

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function:

cosh.�x/ D cosh x; sinh.�x/ D � sinh x:

The graphs of cosh and sinh are shown in Figure 3.27. The graph y D cosh x is called

a catenary. A chain hanging by its ends will assume the shape of a catenary.

Many other properties of the hyperbolic functions resemble those of the corre-

sponding circular functions, sometimes with signs changed.

E X A M P L E 1
Show that

d

dx
cosh x D sinh x and

d

dx
sinh x D cosh x:
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Solution We have

d

dx
cosh x D

d

dx

ex
C e�x

2
D

ex
C e�x.�1/

2
D sinh x

d

dx
sinh x D

d

dx

e
x
� e

�x

2
D

e
x
� e

�x
.�1/

2
D cosh x:

Figure 3.27 The graphs of cosh (red) and

sinh (blue), and some exponential graphs

(green) to which they are asymptotic

y

x

y D cosh x

y D sinh x

y D �
1
2 e

�x

y D
1
2
e�x

y D
1
2 e

x

The following addition formulas and double-angle formulas can be checked algebraically

by using the definition of cosh and sinh and the laws of exponents:

cosh.x C y/ D cosh x cosh y C sinh x sinh y;

sinh.x C y/ D sinh x cosh y C cosh x sinh y;

cosh.2x/ D cosh2
x C sinh2

x D 1C 2 sinh2
x D 2 cosh2

x � 1;

sinh.2x/ D 2 sinh x cosh x:

By analogy with the trigonometric functions, four other hyperbolic functions can

be defined in terms of cosh and sinh.

D E F I N I T I O N

16

Other hyperbolic functions

tanh x D
sinh x

cosh x
D

ex
� e�x

ex
C e�x

coth x D
cosh x

sinh x
D

ex
C e�x

ex
� e�x

sech x D
1

cosh x
D

2

ex
C e�x

csch x D
1

sinh x
D

2

ex
� e�x

Multiplying the numerator and denominator of the fraction defining tanh x by e�x and

ex , respectively, we obtain

lim
x!1

tanh x D lim
x!1

1 � e�2x

1C e�2x
D 1 and

lim
x!�1

tanh x D lim
x!�1

e2x
� 1

e2x
C 1
D �1;

so that the graph of y D tanh x has two horizontal asymptotes. The graph of tanh x

(Figure 3.28) resembles those of x=
p

1C x2 and .2=�/tan�1x in shape, but, of course,

they are not identical.
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Figure 3.28 The graph of tanhx

y

x

�1

y D tanh x

1

The derivatives of the remaining hyperbolic functions

d

dx
tanh x D sech 2

x

d

dx
coth x D �csch 2

x

d

dx
sech x D �sech x tanh x

d

dx
csch x D �csch x coth x

are easily calculated from those of cosh x and sinh x using the Reciprocal and Quotient

Rules. For example,

d

dx
tanh x D

d

dx

sinh x

cosh x
D

.cosh x/.cosh x/� .sinh x/.sinh x/

cosh2
x

D

1

cosh2
x
D sech 2

x:

Remark The distinction between trigonometric and hyperbolic functions largely dis-

appears if we allow complex numbers instead of just real numbers as variables. If i is

the imaginary unit (so that i2 D �1), then

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x:

(See Appendix I.) Therefore,

cosh.ix/ D
eix
C e�ix

2
D cos x; cos.ix/ D cosh.�x/ D cosh x;

sinh.ix/ D
eix
� e�ix

2
D i sinx; sin.ix/ D

1

i
sinh.�x/ D i sinh x:

Inverse Hyperbolic Functions
The functions sinh and tanh are increasing and therefore one-to-one and invertible on

the whole real line. Their inverses are denoted sinh�1 and tanh�1, respectively:

y D sinh�1
x ” x D sinh y;

y D tanh�1
x ” x D tanh y:

Since the hyperbolic functions are defined in terms of exponentials, it is not surprising

that their inverses can be expressed in terms of logarithms.

E X A M P L E 2
Express the functions sinh�1

x and tanh�1
x in terms of natural

logarithms.

Solution Let y D sinh�1
x. Then

x D sinh y D
ey
� e�y

2
D

.ey/2 � 1

2ey
:
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Solution We have

d

dx
cosh x D

d

dx

ex
C e�x

2
D

ex
C e�x.�1/

2
D sinh x

d

dx
sinh x D

d

dx

e
x
� e

�x

2
D

e
x
� e

�x
.�1/

2
D cosh x:

Figure 3.27 The graphs of cosh (red) and

sinh (blue), and some exponential graphs

(green) to which they are asymptotic

y

x

y D cosh x

y D sinh x

y D �
1
2 e

�x

y D
1
2
e�x

y D
1
2 e

x

The following addition formulas and double-angle formulas can be checked algebraically

by using the definition of cosh and sinh and the laws of exponents:

cosh.x C y/ D cosh x cosh y C sinh x sinh y;

sinh.x C y/ D sinh x cosh y C cosh x sinh y;

cosh.2x/ D cosh2
x C sinh2

x D 1C 2 sinh2
x D 2 cosh2

x � 1;

sinh.2x/ D 2 sinh x cosh x:

By analogy with the trigonometric functions, four other hyperbolic functions can

be defined in terms of cosh and sinh.

D E F I N I T I O N

16

Other hyperbolic functions

tanh x D
sinh x

cosh x
D

ex
� e�x

ex
C e�x

coth x D
cosh x

sinh x
D

ex
C e�x

ex
� e�x

sech x D
1

cosh x
D

2

ex
C e�x

csch x D
1

sinh x
D

2

ex
� e�x

Multiplying the numerator and denominator of the fraction defining tanh x by e�x and

ex , respectively, we obtain

lim
x!1

tanh x D lim
x!1

1 � e�2x

1C e�2x
D 1 and

lim
x!�1

tanh x D lim
x!�1

e2x
� 1

e2x
C 1
D �1;

so that the graph of y D tanh x has two horizontal asymptotes. The graph of tanh x

(Figure 3.28) resembles those of x=
p

1C x2 and .2=�/tan�1x in shape, but, of course,

they are not identical.
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Figure 3.28 The graph of tanhx
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1

The derivatives of the remaining hyperbolic functions

d

dx
tanh x D sech 2

x

d

dx
coth x D �csch 2

x

d

dx
sech x D �sech x tanh x

d

dx
csch x D �csch x coth x

are easily calculated from those of cosh x and sinh x using the Reciprocal and Quotient

Rules. For example,

d

dx
tanh x D

d

dx

sinh x

cosh x
D

.cosh x/.cosh x/� .sinh x/.sinh x/

cosh2
x

D

1

cosh2
x
D sech 2

x:

Remark The distinction between trigonometric and hyperbolic functions largely dis-

appears if we allow complex numbers instead of just real numbers as variables. If i is

the imaginary unit (so that i2 D �1), then

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x:

(See Appendix I.) Therefore,

cosh.ix/ D
eix
C e�ix

2
D cos x; cos.ix/ D cosh.�x/ D cosh x;

sinh.ix/ D
eix
� e�ix

2
D i sinx; sin.ix/ D

1

i
sinh.�x/ D i sinh x:

Inverse Hyperbolic Functions
The functions sinh and tanh are increasing and therefore one-to-one and invertible on

the whole real line. Their inverses are denoted sinh�1 and tanh�1, respectively:

y D sinh�1
x ” x D sinh y;

y D tanh�1
x ” x D tanh y:

Since the hyperbolic functions are defined in terms of exponentials, it is not surprising

that their inverses can be expressed in terms of logarithms.

E X A M P L E 2
Express the functions sinh�1

x and tanh�1
x in terms of natural

logarithms.

Solution Let y D sinh�1
x. Then

x D sinh y D
ey
� e�y

2
D

.ey/2 � 1

2ey
:
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(We multiplied the numerator and denominator of the first fraction by ey to get the

second fraction.) Therefore,

.e
y
/
2
� 2xe

y
� 1 D 0:

This is a quadratic equation in ey , and it can be solved by the quadratic formula:

e
y
D

2x ˙
p

4x2
C 4

2
D x ˙

p

x2
C 1:

Note that
p

x2
C 1 > x. Since ey cannot be negative, we need to use the positive sign:

e
y
D x C

p

x2
C 1:

Hence, y D ln
�

x C
p

x2
C 1

�

, and we have

sinh�1
x D ln

�

x C

p

x2
C 1

�

:

Now let y D tanh�1
x. Then

x D tanh y D
e

y
� e

�y

ey
C e�y

D

e
2y
� 1

e2y
C 1

.�1 < x < 1/;

xe
2y
C x D e

2y
� 1;

e
2y
D

1C x

1 � x
; y D

1

2
ln

�

1C x

1 � x

�

:

Thus,

tanh�1
x D

1

2
ln

�

1C x

1 � x

�

; .�1 < x < 1/:

Since cosh is not one-to-one, its domain must be restricted before an inverse can be

defined. Let us define the principal value of cosh to be

Cosh x D cosh x .x � 0/:

The inverse, cosh�1, is then defined by

y D cosh�1
x ” x D Cosh y

” x D cosh y .y � 0/:

As we did for sinh�1, we can obtain the formula

cosh�1
x D ln

�

x C

p

x2
� 1

�

; .x � 1/:

As was the case for the inverses of the reciprocal trigonometric functions, the

inverses of the remaining three hyperbolic functions, coth, sech, and csch, are best

defined using the inverses of their reciprocals.
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coth�1
x D tanh�1

�

1

x

�

D

1

2
ln

0

B

@

1C
1

x

1 �
1

x

1

C

A
for

ˇ

ˇ

ˇ

ˇ

1

x

ˇ

ˇ

ˇ

ˇ

< 1

D

1

2
ln

�

x C 1

x � 1

�

for x > 1 or x < 1

sech �1
x D cosh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
� 1

!

for
1

x
� 1

D ln

 

1C
p

1 � x2

x

!

for 0 < x � 1

csch �1
x D sinh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
C 1

!

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ln

 

1C
p

1C x2

x

!

if x > 0

ln

 

1 �
p

1C x2

x

!

if x < 0.

The derivatives of all six inverse hyperbolic functions are left as exercises for the

reader. See Exercise 5 and Exercises 8–10 below.

E X E R C I S E S 3.6

1. Verify the formulas for the derivatives of sech x, cschx, and

cothx given in this section.

2. Verify the addition formulas

cosh.x C y/ D coshx coshy C sinhx sinhy;

sinh.x C y/ D sinhx coshy C coshx sinhy:

Proceed by expanding the right-hand side of each identity in

terms of exponentials. Find similar formulas for cosh.x � y/

and sinh.x � y/.

3. Obtain addition formulas for tanh.x C y/ and tanh.x � y/

from those for sinh and cosh.

4. Sketch the graphs of y D cothx, y D sechx, and y D cschx,

showing any asymptotes.

5. Calculate the derivatives of sinh�1
x, cosh�1

x, and tanh�1
x.

Hence, express each of the indefinite integrals

Z

dx
p

x2
C 1

;

Z

dx
p

x2
� 1

;

Z

dx

1 � x2

in terms of inverse hyperbolic functions.

6. Calculate the derivatives of the functions sinh�1
.x=a/,

cosh�1
.x=a/, and tanh�1

.x=a/ (where a > 0), and use your

answers to provide formulas for certain indefinite integrals.

7. Simplify the following expressions: (a) sinh lnx,

(b) cosh ln x, (c) tanh lnx, (d)
cosh lnx C sinh lnx

cosh lnx � sinh lnx
.

8. Find the domain, range, and derivative of coth�1
x and sketch

the graph of y D coth�1
x.

9. Find the domain, range, and derivative of sech �1
x and sketch

the graph of y D sech �1
x.

10. Find the domain, range, and derivative of csch �1
x, and

sketch the graph of y D csch �1
x.

11.P Show that the functions fA;B .x/ D Ae
kx
C Be�kx and

gC;D.x/ D C cosh kx CD sinh kx are both solutions of the

differential equation y 00
� k2y D 0. (They are both general

solutions.) Express fA;B in terms of gC;D , and express gC;D

in terms of fA;B .

12.P Show that hL;M .x/ D L cosh k.x � a/CM sinh k.x � a/ is

also a solution of the differential equation in the previous

exercise. Express hL;M in terms of the function fA;B above.

13.P Solve the initial-value problem y 00
� k2y D 0, y.a/ D y0,

y 0.a/ D v0. Express the solution in terms of the function

hL;M of Exercise 12.
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(We multiplied the numerator and denominator of the first fraction by ey to get the

second fraction.) Therefore,

.e
y
/
2
� 2xe

y
� 1 D 0:

This is a quadratic equation in ey , and it can be solved by the quadratic formula:

e
y
D
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p

4x2
C 4

2
D x ˙

p

x2
C 1:

Note that
p

x2
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e
y
D x C

p

x2
C 1:

Hence, y D ln
�

x C
p

x2
C 1

�

, and we have

sinh�1
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�

x C

p

x2
C 1

�

:
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x. Then

x D tanh y D
e

y
� e

�y
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C e�y

D

e
2y
� 1

e2y
C 1

.�1 < x < 1/;

xe
2y
C x D e

2y
� 1;

e
2y
D

1C x

1 � x
; y D

1

2
ln

�

1C x

1 � x

�

:

Thus,

tanh�1
x D

1

2
ln

�

1C x

1 � x

�

; .�1 < x < 1/:

Since cosh is not one-to-one, its domain must be restricted before an inverse can be

defined. Let us define the principal value of cosh to be

Cosh x D cosh x .x � 0/:

The inverse, cosh�1, is then defined by

y D cosh�1
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” x D cosh y .y � 0/:

As we did for sinh�1, we can obtain the formula

cosh�1
x D ln

�

x C

p

x2
� 1

�

; .x � 1/:

As was the case for the inverses of the reciprocal trigonometric functions, the

inverses of the remaining three hyperbolic functions, coth, sech, and csch, are best

defined using the inverses of their reciprocals.
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sinh.x C y/ D sinhx coshy C coshx sinhy:

Proceed by expanding the right-hand side of each identity in
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from those for sinh and cosh.
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answers to provide formulas for certain indefinite integrals.
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11.P Show that the functions fA;B .x/ D Ae
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gC;D.x/ D C cosh kx CD sinh kx are both solutions of the

differential equation y 00
� k2y D 0. (They are both general

solutions.) Express fA;B in terms of gC;D , and express gC;D

in terms of fA;B .

12.P Show that hL;M .x/ D L cosh k.x � a/CM sinh k.x � a/ is

also a solution of the differential equation in the previous

exercise. Express hL;M in terms of the function fA;B above.

13.P Solve the initial-value problem y 00
� k2y D 0, y.a/ D y0,

y 0.a/ D v0. Express the solution in terms of the function
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3.7 Second-Order Linear DEs with Constant Coefficients
A differential equation of the form

a y
00
C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is called a second-order, linear, homo-

geneous differential equation with constant coefficients. The second-order refers to the

highest order derivative present; the terms linear and homogeneous refer to the fact that

if y1.t/ and y2.t/ are two solutions of the equation, then so is y.t/ D Ay1.t/CBy2.t/

for any constants A and B:

If ay 00
1 .t/C by

0
1.t/C cy1.t/ D 0 and ay 00

2 .t/C by
0
2.t/C cy2.t/ D 0,

and if y.t/ D Ay1.t/C By2.t/, then ay 00
.t/C by

0
.t/C cy.t/ D 0.

(See Section 18.1 for more details on this terminology.) Throughout this section we

will assume that the independent variable in our functions is t rather than x, so the

prime (0) refers to the derivative d=dt . This is because in most applications of such

equations the independent variable is time.

Equations of type .�/ arise in many applications of mathematics. In particular,

they can model mechanical vibrations such as the motion of a mass suspended from an

elastic spring or the current in certain electrical circuits. In most such applications the

three constants a, b, and c are positive, although sometimes we may have b D 0.

Recipe for Solving ay” + by’ + cy = 0
In Section 3.4 we observed that the first-order, constant-coefficient equation y 0

D ky

has solution y D Cekt . Let us try to find a solution of equation .�/ having the form

y D ert . Substituting this expression into equation .�/, we obtain

ar
2
e

rt
C bre

rt
C ce

rt
D 0:

Since ert is never zero, y D ert will be a solution of the differential equation .�/ if

and only if r satisfies the quadratic auxiliary equation

ar
2
C br C c D 0; .��/

which has roots given by the quadratic formula,

r D
�b ˙

p

b2
� 4ac

2a
D �

b

2a
˙

p

D

2a
;

where D D b2
� 4ac is called the discriminant of the auxiliary equation .��/.

There are three cases to consider, depending on whether the discriminant D is

positive, zero, or negative.

CASE I Suppose D D b2
� 4ac > 0. Then the auxiliary equation has two different

real roots, r1 and r2, given by

r1 D
�b �

p

D

2a
; r2 D

�b C
p

D

2a
:

(Sometimes these roots can be found easily by factoring the left side of the auxiliary

equation.) In this case both y D y1.t/ D e
r1t and y D y2.t/ D e

r2t are solutions of

the differential equation .�/, and neither is a multiple of the other. As noted above, the

function
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y D Ae
r1t
C B e

r2t

is also a solution for any choice of the constants A and B . Since the differential equa-

tion is of second order and this solution involves two arbitrary constants, we suspect it

is the general solution, that is, that every solution of the differential equation can be

written in this form. Exercise 18 at the end of this section outlines a way to prove this.

CASE II Suppose D D b2
� 4ac D 0. Then the auxiliary equation has two equal

roots, r1 D r2 D �b=.2a/ D r , say. Certainly, y D e
rt is a solution of .�/. We can

find the general solution by letting y D ertu.t/ and calculating:

y
0
D e

rt
�

u
0
.t/C ru.t/

�

;

y
00
D e

rt
�

u
00
.t/C 2ru

0
.t/C r

2
u.t/

�

:

Substituting these expressions into .�/, we obtain

e
rt
�

au
00
.t/C .2ar C b/u

0
.t/C .ar

2
C br C c/u.t/

�

D 0:

Since ert
¤ 0, 2ar C b D 0 and r satisfies .��/, this equation reduces to u00.t/ D 0,

which has general solution u.t/ D AC Bt for arbitrary constants A and B . Thus, the

general solution of .�/ in this case is

y D Ae
rt
C Bt e

rt
:

CASE III Suppose D D b2
� 4ac < 0. Then the auxiliary equation .��/ has

complex conjugate roots given by

r D
�b ˙

p

b2
� 4ac

2a
D k ˙ i!;

where k D �b=.2a/, ! D
p

4ac � b2=.2a/, and i is the imaginary unit (i2 D �1;

see Appendix I). As in Case I, the functions y�
1 .t/ D e.kCi!/t and y�

2 .t/ D e.k�i!/t

are two independent solutions of (*), but they are not real-valued. However, since

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x

(as noted in the previous section and in Appendix II), we can find two real-valued

functions that are solutions of (*) by suitably combining y�
1 and y�

2 :

y1.t/ D
1

2
y

�
1 .t/C

1

2
y

�
2 .t/ D e

kt cos.!t/;

y2.t/ D
1

2i
y

�
1 .t/ �

1

2i
y

�
2 .t/ D e

kt sin.!t/:

Therefore, the general solution of .�/ in this case is

y D Ae
kt cos.!t/C B ekt sin.!t/:

The following examples illustrate the recipe for solving .�/ in each of the three cases.

E X A M P L E 1
Find the general solution of

y 00
C y 0

� 2y D 0.

Solution The auxiliary equation is r2
C r � 2 D 0, or .r C 2/.r � 1/ D 0. The

auxiliary roots are r1 D �2 and r2 D 1, which are real and unequal. According to

Case I, the general solution of the differential equation is

y D Ae
�2t
C Be

t
:
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3.7 Second-Order Linear DEs with Constant Coefficients
A differential equation of the form

a y
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C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is called a second-order, linear, homo-

geneous differential equation with constant coefficients. The second-order refers to the

highest order derivative present; the terms linear and homogeneous refer to the fact that

if y1.t/ and y2.t/ are two solutions of the equation, then so is y.t/ D Ay1.t/CBy2.t/

for any constants A and B:

If ay 00
1 .t/C by

0
1.t/C cy1.t/ D 0 and ay 00

2 .t/C by
0
2.t/C cy2.t/ D 0,

and if y.t/ D Ay1.t/C By2.t/, then ay 00
.t/C by

0
.t/C cy.t/ D 0.

(See Section 18.1 for more details on this terminology.) Throughout this section we

will assume that the independent variable in our functions is t rather than x, so the

prime (0) refers to the derivative d=dt . This is because in most applications of such

equations the independent variable is time.

Equations of type .�/ arise in many applications of mathematics. In particular,

they can model mechanical vibrations such as the motion of a mass suspended from an

elastic spring or the current in certain electrical circuits. In most such applications the

three constants a, b, and c are positive, although sometimes we may have b D 0.

Recipe for Solving ay” + by’ + cy = 0
In Section 3.4 we observed that the first-order, constant-coefficient equation y 0

D ky

has solution y D Cekt . Let us try to find a solution of equation .�/ having the form

y D ert . Substituting this expression into equation .�/, we obtain

ar
2
e

rt
C bre

rt
C ce

rt
D 0:

Since ert is never zero, y D ert will be a solution of the differential equation .�/ if

and only if r satisfies the quadratic auxiliary equation

ar
2
C br C c D 0; .��/

which has roots given by the quadratic formula,

r D
�b ˙

p

b2
� 4ac

2a
D �

b

2a
˙

p

D

2a
;

where D D b2
� 4ac is called the discriminant of the auxiliary equation .��/.

There are three cases to consider, depending on whether the discriminant D is

positive, zero, or negative.

CASE I Suppose D D b2
� 4ac > 0. Then the auxiliary equation has two different

real roots, r1 and r2, given by

r1 D
�b �

p

D

2a
; r2 D

�b C
p

D

2a
:

(Sometimes these roots can be found easily by factoring the left side of the auxiliary

equation.) In this case both y D y1.t/ D e
r1t and y D y2.t/ D e

r2t are solutions of

the differential equation .�/, and neither is a multiple of the other. As noted above, the

function
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is also a solution for any choice of the constants A and B . Since the differential equa-

tion is of second order and this solution involves two arbitrary constants, we suspect it

is the general solution, that is, that every solution of the differential equation can be

written in this form. Exercise 18 at the end of this section outlines a way to prove this.

CASE II Suppose D D b2
� 4ac D 0. Then the auxiliary equation has two equal

roots, r1 D r2 D �b=.2a/ D r , say. Certainly, y D e
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The following examples illustrate the recipe for solving .�/ in each of the three cases.
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auxiliary roots are r1 D �2 and r2 D 1, which are real and unequal. According to
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E X A M P L E 2
Find the general solution of y 00

C 6y 0
C 9y D 0.

Solution The auxiliary equation is r2
C6rC9 D 0, or .rC3/2 D 0, which has equal

roots r D �3. According to Case II, the general solution of the differential equation is

y D Ae
�3t
C Bt e

�3t
:

E X A M P L E 3
Find the general solution of y 00

C 4y 0
C 13y D 0.

Solution The auxiliary equation is r2
C 4r C 13 D 0, which has solutions

r D
�4˙

p

16 � 52

2
D

�4˙
p

�36

2
D �2˙ 3i:

Thus, k D �2 and ! D 3. According to Case III, the general solution of the given

differential equation is

y D Ae
�2t cos.3t/C B e�2t sin.3t/:

Initial-value problems for ay 00
C by 0

C cy D 0 specify values for y and y 0 at an initial

point. These values can be used to determine the values of the constants A and B in

the general solution, so the initial-value problem has a unique solution.

E X A M P L E 4
Solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
C 2y

0
C 2y D 0

y.0/ D 2

y
0
.0/ D �3:

Solution The auxiliary equation is r2
C 2r C 2 D 0, which has roots

r D
�2˙

p

4 � 8

2
D �1˙ i:

Thus, Case III applies, with k D �1 and ! D 1. Therefore, the differential equation

has the general solution

y D Ae
�t cos t C B e�t sin t:

Also,

y
0
D e

�t
�

�A cos t � B sin t � A sin t C B cos t
�

D .B � A/ e
�t cos t � .AC B/ e�t sin t:

Applying the initial conditions y.0/ D 2 and y 0.0/ D �3, we obtain A D 2 and

B � A D �3. Hence, B D �1 and the initial-value problem has the solution

y D 2 e
�t cos t � e�t sin t:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 209 October 15, 2016

SECTION 3.7: Second-Order Linear DEs with Constant Coefficients 209

Simple Harmonic Motion
Many natural phenomena exhibit periodic behaviour. The swinging of a clock pen-

dulum, the vibrating of a guitar string or drum membrane, the altitude of a rider on

a rotating ferris wheel, the motion of an object floating in wavy seas, and the voltage

produced by an alternating current generator are but a few examples where quanti-

ties depend on time in a periodic way. Being periodic, the circular functions sine and

cosine provide a useful model for such behaviour.

It often happens that a quantity displaced from an equilibrium value experiences

a restoring force that tends to move it back in the direction of its equilibrium. Besides

the obvious examples of elastic motions in physics, one can imagine such a model

applying, say, to a biological population in equilibrium with its food supply or the

price of a commodity in an elastic economy where increasing price causes decreasing

demand and hence decreasing price. In the simplest models, the restoring force is

proportional to the amount of displacement from equilibrium. Such a force causes the

quantity to oscillate sinusoidally; we say that it executes simple harmonic motion.

As a specific example, suppose a mass m is suspended by an elastic spring so that

it hangs unmoving in its equilibrium position with the upward spring tension force

balancing the downward gravitational force on the mass. If the mass is displaced ver-

tically by an amount y from this position, the spring tension changes; the extra force

exerted by the spring is directed to restore the mass to its equilibrium position. (See

Figure 3.29.) This extra force is proportional to the displacement (Hooke’s Law); its

magnitude is �ky, where k is a positive constant called the spring constant. Assum-

ing the spring is weightless, this force imparts to the mass m an acceleration d2y=dt2

that satisfies, by Newton’s Second Law, m.d2y=dt2/ D �ky (mass � acceleration =

force). Dividing this equation by m, we obtain the equation

y

m

Figure 3.29

d2y

dt2
C !

2
y D 0; where !

2
D

k

m
:

The second-order differential equation

d2y

dt2
C !

2
y D 0

is called the equation of simple harmonic motion. Its auxiliary equation,

r2
C !2

D 0, has complex roots r D ˙i!, so it has general solution

y D A cos!t C B sin!t;

where A and B are arbitrary constants.

For any values of the constants R and t0, the function

y D R cos
�

!.t � t0/
�

is also a general solution of the differential equation of simple harmonic motion. If we

expand this formula using the addition formula for cosine, we get

y D R cos!t0 cos!t CR sin!t0 sin!t

D A cos!t C B sin!t;

where

A D R cos.!t0/;

R
2
D A

2
C B

2
;

B D R sin.!t0/;

tan.!t0/ D B=A:
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E X A M P L E 2
Find the general solution of y 00

C 6y 0
C 9y D 0.

Solution The auxiliary equation is r2
C6rC9 D 0, or .rC3/2 D 0, which has equal

roots r D �3. According to Case II, the general solution of the differential equation is

y D Ae
�3t
C Bt e

�3t
:

E X A M P L E 3
Find the general solution of y 00

C 4y 0
C 13y D 0.

Solution The auxiliary equation is r2
C 4r C 13 D 0, which has solutions

r D
�4˙

p

16 � 52

2
D

�4˙
p

�36

2
D �2˙ 3i:

Thus, k D �2 and ! D 3. According to Case III, the general solution of the given

differential equation is

y D Ae
�2t cos.3t/C B e�2t sin.3t/:

Initial-value problems for ay 00
C by 0

C cy D 0 specify values for y and y 0 at an initial

point. These values can be used to determine the values of the constants A and B in

the general solution, so the initial-value problem has a unique solution.

E X A M P L E 4
Solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
C 2y

0
C 2y D 0

y.0/ D 2

y
0
.0/ D �3:

Solution The auxiliary equation is r2
C 2r C 2 D 0, which has roots

r D
�2˙

p

4 � 8

2
D �1˙ i:

Thus, Case III applies, with k D �1 and ! D 1. Therefore, the differential equation

has the general solution

y D Ae
�t cos t C B e�t sin t:

Also,

y
0
D e

�t
�

�A cos t � B sin t � A sin t C B cos t
�

D .B � A/ e
�t cos t � .AC B/ e�t sin t:

Applying the initial conditions y.0/ D 2 and y 0.0/ D �3, we obtain A D 2 and

B � A D �3. Hence, B D �1 and the initial-value problem has the solution

y D 2 e
�t cos t � e�t sin t:
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Simple Harmonic Motion
Many natural phenomena exhibit periodic behaviour. The swinging of a clock pen-

dulum, the vibrating of a guitar string or drum membrane, the altitude of a rider on

a rotating ferris wheel, the motion of an object floating in wavy seas, and the voltage

produced by an alternating current generator are but a few examples where quanti-

ties depend on time in a periodic way. Being periodic, the circular functions sine and

cosine provide a useful model for such behaviour.

It often happens that a quantity displaced from an equilibrium value experiences

a restoring force that tends to move it back in the direction of its equilibrium. Besides

the obvious examples of elastic motions in physics, one can imagine such a model

applying, say, to a biological population in equilibrium with its food supply or the

price of a commodity in an elastic economy where increasing price causes decreasing

demand and hence decreasing price. In the simplest models, the restoring force is

proportional to the amount of displacement from equilibrium. Such a force causes the

quantity to oscillate sinusoidally; we say that it executes simple harmonic motion.

As a specific example, suppose a mass m is suspended by an elastic spring so that

it hangs unmoving in its equilibrium position with the upward spring tension force

balancing the downward gravitational force on the mass. If the mass is displaced ver-

tically by an amount y from this position, the spring tension changes; the extra force

exerted by the spring is directed to restore the mass to its equilibrium position. (See

Figure 3.29.) This extra force is proportional to the displacement (Hooke’s Law); its

magnitude is �ky, where k is a positive constant called the spring constant. Assum-

ing the spring is weightless, this force imparts to the mass m an acceleration d2y=dt2

that satisfies, by Newton’s Second Law, m.d2y=dt2/ D �ky (mass � acceleration =

force). Dividing this equation by m, we obtain the equation

y

m

Figure 3.29

d2y

dt2
C !

2
y D 0; where !

2
D

k

m
:

The second-order differential equation

d2y

dt2
C !

2
y D 0

is called the equation of simple harmonic motion. Its auxiliary equation,

r2
C !2

D 0, has complex roots r D ˙i!, so it has general solution

y D A cos!t C B sin!t;

where A and B are arbitrary constants.

For any values of the constants R and t0, the function

y D R cos
�

!.t � t0/
�

is also a general solution of the differential equation of simple harmonic motion. If we

expand this formula using the addition formula for cosine, we get

y D R cos!t0 cos!t CR sin!t0 sin!t

D A cos!t C B sin!t;

where

A D R cos.!t0/;

R
2
D A

2
C B

2
;

B D R sin.!t0/;

tan.!t0/ D B=A:
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Figure 3.30 Simple harmonic motion

y

tt0
t0 C

2�
!

T

R

�R

y D R cos
�

!.t � t0/

�

The constants A and B are related to the position y0 and the velocity v0 of the massm

at time t D 0:

y0 D y.0/ D A cos 0C B sin 0 D A;

v0 D y
0
.0/ D �A! sin 0C B! cos 0 D B!:

The constant R D
p

A2
C B2 is called the amplitude of the motion. Because cos x

oscillates between �1 and 1, the displacement y varies between �R and R. Note

in Figure 3.30 that the graph of the displacement as a function of time is the curve

y D R cos!t shifted t0 units to the right. The number t0 is called the time-shift. (The

related quantity !t0 is called a phase-shift.) The period of this curve is T D 2�=!;

it is the time interval between consecutive instants when the mass is at the same height

moving in the same direction. The reciprocal 1=T of the period is called the frequency

of the motion. It is usually measured in Hertz (Hz), that is, cycles per second. The

quantity ! D 2�=T is called the circular frequency. It is measured in radians per

second since 1 cycle = 1 revolution = 2� radians.

E X A M P L E 5
Solve the initial-value problem

8

<

:

y
00
C 16y D 0

y.0/ D �6

y 0.0/ D 32:

Find the amplitude, frequency, and period of the solution.

Solution Here, !2
D 16, so ! D 4. The solution is of the form

y D A cos.4t/C B sin.4t/:

Since y.0/ D �6, we have A D �6. Also, y 0.t/ D �4A sin.4t/C 4B cos.4t/. Since

y 0.0/ D 32, we have 4B D 32, or B D 8. Thus, the solution is

y D �6 cos.4t/C 8 sin.4t/:

The amplitude is
p

.�6/2 C 82
D 10, the frequency is !=.2�/ � 0:637Hz, and the

period is 2�=! � 1:57 s.

E X A M P L E 6
(Spring-mass problem) Suppose that a 100 g mass is suspended

from a spring and that a force of 3 � 104 dynes (3 � 104 g-cm/s2)

is required to produce a displacement from equilibrium of 1/3 cm. At time t D 0

the mass is pulled down 2 cm below equilibrium and flicked upward with a velocity

of 60 cm/s. Find its subsequent displacement at any time t > 0. Find the frequency,

period, amplitude, and time-shift of the motion. Express the position of the mass at

time t in terms of the amplitude and the time-shift.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 211 October 15, 2016

SECTION 3.7: Second-Order Linear DEs with Constant Coefficients 211

Solution The spring constant k is determined from Hooke’s Law, F D �ky. Here

F D �3 � 10
4 g-cm/s2 is the force of the spring on the mass displaced 1/3 cm:

�3 � 10
4
D �

1

3
k;

so k D 9 � 104 g/s2. Hence, the circular frequency is ! D
p

k=m D 30 rad/s, the

frequency is !=2� D 15=� � 4:77 Hz, and the period is 2�=! � 0:209 s.

Since the displacement at time t D 0 is y0 D �2 and the velocity at that time

is v0 D 60, the subsequent displacement is y D A cos.30t/ C B sin.30t/, where

A D y0 D �2 and B D v0=! D 60=30 D 2. Thus,

y D �2 cos.30t/C 2 sin.30t/; (y in cm, t in seconds):

The amplitude of the motion isR D
p

.�2/2 C 22
D 2
p

2 � 2:83 cm. The time-shift

t0 must satisfy

�2 D A D R cos.!t0/ D 2
p

2 cos.30t0/;

2 D B D R sin.!t0/ D 2
p

2 sin.30t0/;

so sin.30t0/ D 1=
p

2 D � cos.30t0/. Hence the phase-shift is 30t0 D 3�=4 radians,

and the time-shift is t0 D �=40 � 0:0785 s. The position of the mass at time t > 0 is

also given by

y D 2
p

2 cos
h

30

�

t �
�

40

�i

:

Figure 3.31

Undamped oscillator (b D 0)

Damped oscillator (b > 0, b2 < 4ac)

Critically damped case (b > 0, b2
D 4ac)

Overdamped case (b > 0, b2 > 4ac)

y

t

y

t

y

t

y

t

undamped damped oscillator

critically damped overdamped
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Figure 3.30 Simple harmonic motion

y

tt0
t0 C

2�
!

T
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�R

y D R cos
�

!.t � t0/

�

The constants A and B are related to the position y0 and the velocity v0 of the massm

at time t D 0:

y0 D y.0/ D A cos 0C B sin 0 D A;

v0 D y
0
.0/ D �A! sin 0C B! cos 0 D B!:

The constant R D
p

A2
C B2 is called the amplitude of the motion. Because cos x

oscillates between �1 and 1, the displacement y varies between �R and R. Note

in Figure 3.30 that the graph of the displacement as a function of time is the curve

y D R cos!t shifted t0 units to the right. The number t0 is called the time-shift. (The

related quantity !t0 is called a phase-shift.) The period of this curve is T D 2�=!;

it is the time interval between consecutive instants when the mass is at the same height

moving in the same direction. The reciprocal 1=T of the period is called the frequency

of the motion. It is usually measured in Hertz (Hz), that is, cycles per second. The

quantity ! D 2�=T is called the circular frequency. It is measured in radians per

second since 1 cycle = 1 revolution = 2� radians.

E X A M P L E 5
Solve the initial-value problem

8

<

:

y
00
C 16y D 0

y.0/ D �6

y 0.0/ D 32:

Find the amplitude, frequency, and period of the solution.

Solution Here, !2
D 16, so ! D 4. The solution is of the form

y D A cos.4t/C B sin.4t/:

Since y.0/ D �6, we have A D �6. Also, y 0.t/ D �4A sin.4t/C 4B cos.4t/. Since

y 0.0/ D 32, we have 4B D 32, or B D 8. Thus, the solution is

y D �6 cos.4t/C 8 sin.4t/:

The amplitude is
p

.�6/2 C 82
D 10, the frequency is !=.2�/ � 0:637Hz, and the

period is 2�=! � 1:57 s.

E X A M P L E 6
(Spring-mass problem) Suppose that a 100 g mass is suspended

from a spring and that a force of 3 � 104 dynes (3 � 104 g-cm/s2)

is required to produce a displacement from equilibrium of 1/3 cm. At time t D 0

the mass is pulled down 2 cm below equilibrium and flicked upward with a velocity

of 60 cm/s. Find its subsequent displacement at any time t > 0. Find the frequency,

period, amplitude, and time-shift of the motion. Express the position of the mass at

time t in terms of the amplitude and the time-shift.
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Solution The spring constant k is determined from Hooke’s Law, F D �ky. Here

F D �3 � 10
4 g-cm/s2 is the force of the spring on the mass displaced 1/3 cm:

�3 � 10
4
D �

1

3
k;

so k D 9 � 104 g/s2. Hence, the circular frequency is ! D
p

k=m D 30 rad/s, the

frequency is !=2� D 15=� � 4:77 Hz, and the period is 2�=! � 0:209 s.

Since the displacement at time t D 0 is y0 D �2 and the velocity at that time

is v0 D 60, the subsequent displacement is y D A cos.30t/ C B sin.30t/, where

A D y0 D �2 and B D v0=! D 60=30 D 2. Thus,

y D �2 cos.30t/C 2 sin.30t/; (y in cm, t in seconds):

The amplitude of the motion isR D
p

.�2/2 C 22
D 2
p

2 � 2:83 cm. The time-shift

t0 must satisfy

�2 D A D R cos.!t0/ D 2
p

2 cos.30t0/;

2 D B D R sin.!t0/ D 2
p

2 sin.30t0/;

so sin.30t0/ D 1=
p

2 D � cos.30t0/. Hence the phase-shift is 30t0 D 3�=4 radians,

and the time-shift is t0 D �=40 � 0:0785 s. The position of the mass at time t > 0 is

also given by

y D 2
p

2 cos
h

30

�

t �
�

40

�i

:

Figure 3.31

Undamped oscillator (b D 0)

Damped oscillator (b > 0, b2 < 4ac)

Critically damped case (b > 0, b2
D 4ac)

Overdamped case (b > 0, b2 > 4ac)

y

t

y

t

y

t

y

t

undamped damped oscillator

critically damped overdamped
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Damped Harmonic Motion
If a and c are positive and b D 0, then equation

ay
00
C by

0
C cy D 0

is the differential equation of simple harmonic motion and has oscillatory solutions

of fixed amplitude as shown above. If a > 0, b > 0, and c > 0, then the roots

of the auxiliary equation are either negative real numbers or, if b2 < 4ac, complex

numbers k˙ i! with negative real parts k D �b=.2a/ (Case III). In this latter case the

solutions still oscillate, but the amplitude diminishes exponentially as t !1 because

of the factor ekt
D e

�.b=2a/t . (See Exercise 17 below.) A system whose behaviour

is modelled by such an equation is said to exhibit damped harmonic motion. If

b2
D 4ac (Case II), the system is said to be critically damped, and if b2 > 4ac

(Case I), it is overdamped. In these cases the behaviour is no longer oscillatory. (See

Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.)

E X E R C I S E S 3.7

In Exercises 1–12, find the general solutions for the given

second-order equations.

1. y 00
C 7y

0
C 10y D 0 2. y 00

� 2y
0
� 3y D 0

3. y 00
C 2y

0
D 0 4. 4y 00

� 4y
0
� 3y D 0

5. y 00
C 8y

0
C 16y D 0 6. y 00

� 2y
0
C y D 0

7. y 00
� 6y

0
C 10y D 0 8. 9y 00

C 6y
0
C y D 0

9. y 00
C 2y

0
C 5y D 0 10. y 00

� 4y
0
C 5y D 0

11. y 00
C 2y

0
C 3y D 0 12. y 00

C y
0
C y D 0

In Exercises 13–15, solve the given initial-value problems.

13.

8

ˆ

<

ˆ

:

2y
00
C 5y

0
� 3y D 0

y.0/ D 1

y
0
.0/ D 0:

14.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D 0

y
0
.1/ D 2:

15.

8

ˆ

<

ˆ

:

y
00
C 4y

0
C 5y D 0

y.0/ D 2

y
0
.0/ D 2:

16.A Show that if � ¤ 0, the function y�.t/ D
e.1C�/t

� et

�
satisfies the equation y 00

� .2C �/y 0
C .1C �/y D 0.

Calculate y.t/ D lim�!0 y�.t/ and verify that, as expected, it

is a solution of y 00
� 2y

0
C y D 0.

17.I If a > 0, b > 0, and c > 0, prove that all solutions of the

differential equation ay 00
C by 0

C cy D 0 satisfy

limt!1 y.t/ D 0.

18.I Prove that the solution given in the discussion of Case I,

namely, y D Aer1t
C B er2t , is the general solution for that

case as follows: First, let y D er1t
u and show that u satisfies

the equation

u
00
� .r2 � r1/u

0
D 0:

Then let v D u0, so that v must satisfy v 0
D .r2 � r1/v. The

general solution of this equation is v D C e.r2�r1/t , as shown

in the discussion of the equation y 0
D ky in Section 3.4.

Hence, find u and y.

Simple harmonic motion

Exercises 19–22 all refer to the differential equation of simple

harmonic motion:

d2y

dt2
C !

2
y D 0; .! ¤ 0/: .†/

Together they show that y D A cos!t C B sin!t is a general

solution of this equation, that is, every solution is of this form for

some choice of the constants A and B .

19. Show that y D A cos!t C B sin!t is a solution of .†/.

20.A If f .t/ is any solution of .†/, show that !2.f .t//2 C .f 0.t//2

is constant.

21.A If g.t/ is a solution of .†/ satisfying g.0/ D g0.0/ D 0, show

that g.t/ D 0 for all t .

22.A Suppose that f .t/ is any solution of the differential equation

.†/. Show that f .t/ D A cos!t C B sin!t , where A D f .0/

and B! D f 0.0/.

(Hint: Let g.t/ D f .t/ � A cos!t � B sin!t .)

23.I If b2
� 4ac < 0, show that the substitution y D ektu.t/,

where k D �b=.2a/, transforms ay 00
C by

0
C cy D 0 into the

equation u00
C !2u D 0, where !2

D .4ac � b2/=.4a2/.

Together with the result of Exercise 22, this confirms the

recipe for Case III, in case you didn’t feel comfortable with the

complex number argument given in the text.

In Exercises 24–25, solve the given initial-value problems. For

each problem determine the circular frequency, the frequency, the

period, and the amplitude of the solution.

24.

8

<

:

y
00
C 4y D 0

y.0/ D 2

y 0.0/ D �5:

25.

8

<

:

y
00
C 100y D 0

y.0/ D 0

y 0.0/ D 3:

26.I Show that y D ˛ cos.!.t � c//C ˇ sin.!.t � c// is a solution

of the differential equation y 00
C !2y D 0, and that it satisfies

y.c/ D ˛ and y 0.c/ D ˇ!. Express the solution in the form

y D A cos.!t/CB sin.!t/ for certain values of the constants

A and B depending on ˛, ˇ, c, and !.
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27. Solve

8

<

:

y 00
C y D 0

y.2/ D 3

y 0.2/ D �4:

28. Solve

8

<

:

y 00
C !2y D 0

y.a/ D A

y 0.a/ D B:

29. What mass should be suspended from the spring in Example 6

to provide a system whose natural frequency of oscillation is

10 Hz? Find the displacement of such a mass from its

equilibrium position t s after it is pulled down 1 cm from

equilibrium and flicked upward with a speed of 2 cm/s. What

is the amplitude of this motion?

30. A mass of 400 g suspended from a certain elastic spring will

oscillate with a frequency of 24 Hz. What would be the

frequency if the 400 g mass were replaced with a 900 g mass?

a 100 g mass?

31.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

4ac � b2=.2a/, then

y D e
kt
�

A cos
�

!.t � t0/
�

C B sin
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case III (b2
� 4ac < 0). This form

of the general solution is useful for solving initial-value

problems where y.t0/ and y 0
.t0/ are specified.

32.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

b2
� 4ac=.2a/, then

y D e
kt
�

A cosh
�

!.t � t0/
�

C B sinh
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case I (b2
� 4ac > 0). This form of

the general solution is useful for solving initial-value problems

where y.t0/ and y 0
.t0/ are specified.

Use the forms of solution provided by the previous two exercises to

solve the initial-value problems in Exercises 33–34.

33.

8

<

:

y
00
C 2y

0
C 5y D 0

y.3/ D 2

y 0.3/ D 0:

34.

8

<

:

y
00
C 4y

0
C 3y D 0

y.3/ D 1

y 0.3/ D 0:

35. By using the change of dependent variable

u.x/ D c � k2y.x/, solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
.x/ D c � k

2
y.x/

y.0/ D a

y
0
.0/ D b:

36.I A mass is attached to a spring mounted horizontally so the

mass can slide along the top of a table. With a suitable choice

of units, the position x.t/ of the mass at time t is governed by

the differential equation

x
00
D �x C F;

where the �x term is due to the elasticity of the spring, and

the F is due to the friction of the mass with the table. The

frictional force should be constant in magnitude and directed

opposite to the velocity of the mass when the mass is moving.

When the mass is stopped, the friction should be constant and

opposed to the spring force unless the spring force has the

smaller magnitude, in which case the friction force should just

cancel the spring force and the mass should remain at rest

thereafter. For this problem, let the magnitude of the friction

force be 1/5. Accordingly,

F D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

1

5
if x 0 > 0 or if x 0

D 0 and x < �
1

5

1

5
if x 0 < 0 or if x 0

D 0 and x >
1

5

x if x 0
D 0 and jxj �

1

5
.

Find the position x.t/ of the mass at all times t > 0 if

x.0/ D 1 and x 0.0/ D 0.

C H A P T E R R E V I E W

Key Ideas

� State the laws of exponents.

� State the laws of logarithms.

� What is the significance of the number e?

� What do the following statements and phrases mean?

˘ f is one-to-one. ˘ f is invertible.

˘ Function f �1 is the inverse of function f:

˘ a
b
D c ˘ loga b D c

˘ the natural logarithm of x

˘ logarithmic differentiation

˘ the half-life of a varying quantity

˘ The quantity y exhibits exponential growth.

˘ The quantity y exhibits logistic growth.

˘ y D sin�1
x ˘ y D tan�1x

˘ The quantity y exhibits simple harmonic motion.

˘ The quantity y exhibits damped harmonic motion.

� Define the functions sinh x, cosh x, and tanh x.

� What kinds of functions satisfy second-order differential

equations with constant coefficients?

Review Exercises

1. If f .x/ D 3x C x
3, show that f has an inverse and find the

slope of y D f �1.x/ at x D 0.

2. Let f .x/ D sec2 x tan x. Show that f is increasing on the

interval .��=2; �=2/ and, hence, one-to-one and invertible

there. What is the domain of f �1? Find .f �1/0.2/. Hint:

f .�=4/ D 2.
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Damped Harmonic Motion
If a and c are positive and b D 0, then equation

ay
00
C by

0
C cy D 0

is the differential equation of simple harmonic motion and has oscillatory solutions

of fixed amplitude as shown above. If a > 0, b > 0, and c > 0, then the roots

of the auxiliary equation are either negative real numbers or, if b2 < 4ac, complex

numbers k˙ i! with negative real parts k D �b=.2a/ (Case III). In this latter case the

solutions still oscillate, but the amplitude diminishes exponentially as t !1 because

of the factor ekt
D e

�.b=2a/t . (See Exercise 17 below.) A system whose behaviour

is modelled by such an equation is said to exhibit damped harmonic motion. If

b2
D 4ac (Case II), the system is said to be critically damped, and if b2 > 4ac

(Case I), it is overdamped. In these cases the behaviour is no longer oscillatory. (See

Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.)

E X E R C I S E S 3.7

In Exercises 1–12, find the general solutions for the given

second-order equations.

1. y 00
C 7y

0
C 10y D 0 2. y 00

� 2y
0
� 3y D 0

3. y 00
C 2y

0
D 0 4. 4y 00

� 4y
0
� 3y D 0

5. y 00
C 8y

0
C 16y D 0 6. y 00

� 2y
0
C y D 0

7. y 00
� 6y

0
C 10y D 0 8. 9y 00

C 6y
0
C y D 0

9. y 00
C 2y

0
C 5y D 0 10. y 00

� 4y
0
C 5y D 0

11. y 00
C 2y

0
C 3y D 0 12. y 00

C y
0
C y D 0

In Exercises 13–15, solve the given initial-value problems.

13.

8

ˆ

<

ˆ

:

2y
00
C 5y

0
� 3y D 0

y.0/ D 1

y
0
.0/ D 0:

14.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D 0

y
0
.1/ D 2:

15.

8

ˆ

<

ˆ

:

y
00
C 4y

0
C 5y D 0

y.0/ D 2

y
0
.0/ D 2:

16.A Show that if � ¤ 0, the function y�.t/ D
e.1C�/t

� et

�
satisfies the equation y 00

� .2C �/y 0
C .1C �/y D 0.

Calculate y.t/ D lim�!0 y�.t/ and verify that, as expected, it

is a solution of y 00
� 2y

0
C y D 0.

17.I If a > 0, b > 0, and c > 0, prove that all solutions of the

differential equation ay 00
C by 0

C cy D 0 satisfy

limt!1 y.t/ D 0.

18.I Prove that the solution given in the discussion of Case I,

namely, y D Aer1t
C B er2t , is the general solution for that

case as follows: First, let y D er1t
u and show that u satisfies

the equation

u
00
� .r2 � r1/u

0
D 0:

Then let v D u0, so that v must satisfy v 0
D .r2 � r1/v. The

general solution of this equation is v D C e.r2�r1/t , as shown

in the discussion of the equation y 0
D ky in Section 3.4.

Hence, find u and y.

Simple harmonic motion

Exercises 19–22 all refer to the differential equation of simple

harmonic motion:

d2y

dt2
C !

2
y D 0; .! ¤ 0/: .†/

Together they show that y D A cos!t C B sin!t is a general

solution of this equation, that is, every solution is of this form for

some choice of the constants A and B .

19. Show that y D A cos!t C B sin!t is a solution of .†/.

20.A If f .t/ is any solution of .†/, show that !2.f .t//2 C .f 0.t//2

is constant.

21.A If g.t/ is a solution of .†/ satisfying g.0/ D g0.0/ D 0, show

that g.t/ D 0 for all t .

22.A Suppose that f .t/ is any solution of the differential equation

.†/. Show that f .t/ D A cos!t C B sin!t , where A D f .0/

and B! D f 0.0/.

(Hint: Let g.t/ D f .t/ � A cos!t � B sin!t .)

23.I If b2
� 4ac < 0, show that the substitution y D ektu.t/,

where k D �b=.2a/, transforms ay 00
C by

0
C cy D 0 into the

equation u00
C !2u D 0, where !2

D .4ac � b2/=.4a2/.

Together with the result of Exercise 22, this confirms the

recipe for Case III, in case you didn’t feel comfortable with the

complex number argument given in the text.

In Exercises 24–25, solve the given initial-value problems. For

each problem determine the circular frequency, the frequency, the

period, and the amplitude of the solution.

24.

8

<

:

y
00
C 4y D 0

y.0/ D 2

y 0.0/ D �5:

25.

8

<

:

y
00
C 100y D 0

y.0/ D 0

y 0.0/ D 3:

26.I Show that y D ˛ cos.!.t � c//C ˇ sin.!.t � c// is a solution

of the differential equation y 00
C !2y D 0, and that it satisfies

y.c/ D ˛ and y 0.c/ D ˇ!. Express the solution in the form

y D A cos.!t/CB sin.!t/ for certain values of the constants

A and B depending on ˛, ˇ, c, and !.
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27. Solve

8

<

:

y 00
C y D 0

y.2/ D 3

y 0.2/ D �4:

28. Solve

8

<

:

y 00
C !2y D 0

y.a/ D A

y 0.a/ D B:

29. What mass should be suspended from the spring in Example 6

to provide a system whose natural frequency of oscillation is

10 Hz? Find the displacement of such a mass from its

equilibrium position t s after it is pulled down 1 cm from

equilibrium and flicked upward with a speed of 2 cm/s. What

is the amplitude of this motion?

30. A mass of 400 g suspended from a certain elastic spring will

oscillate with a frequency of 24 Hz. What would be the

frequency if the 400 g mass were replaced with a 900 g mass?

a 100 g mass?

31.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

4ac � b2=.2a/, then

y D e
kt
�

A cos
�

!.t � t0/
�

C B sin
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case III (b2
� 4ac < 0). This form

of the general solution is useful for solving initial-value

problems where y.t0/ and y 0
.t0/ are specified.

32.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

b2
� 4ac=.2a/, then

y D e
kt
�

A cosh
�

!.t � t0/
�

C B sinh
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case I (b2
� 4ac > 0). This form of

the general solution is useful for solving initial-value problems

where y.t0/ and y 0
.t0/ are specified.

Use the forms of solution provided by the previous two exercises to

solve the initial-value problems in Exercises 33–34.

33.

8

<

:

y
00
C 2y

0
C 5y D 0

y.3/ D 2

y 0.3/ D 0:

34.

8

<

:

y
00
C 4y

0
C 3y D 0

y.3/ D 1

y 0.3/ D 0:

35. By using the change of dependent variable

u.x/ D c � k2y.x/, solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
.x/ D c � k

2
y.x/

y.0/ D a

y
0
.0/ D b:

36.I A mass is attached to a spring mounted horizontally so the

mass can slide along the top of a table. With a suitable choice

of units, the position x.t/ of the mass at time t is governed by

the differential equation

x
00
D �x C F;

where the �x term is due to the elasticity of the spring, and

the F is due to the friction of the mass with the table. The

frictional force should be constant in magnitude and directed

opposite to the velocity of the mass when the mass is moving.

When the mass is stopped, the friction should be constant and

opposed to the spring force unless the spring force has the

smaller magnitude, in which case the friction force should just

cancel the spring force and the mass should remain at rest

thereafter. For this problem, let the magnitude of the friction

force be 1/5. Accordingly,

F D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

1

5
if x 0 > 0 or if x 0

D 0 and x < �
1

5

1

5
if x 0 < 0 or if x 0

D 0 and x >
1

5

x if x 0
D 0 and jxj �

1

5
.

Find the position x.t/ of the mass at all times t > 0 if

x.0/ D 1 and x 0.0/ D 0.

C H A P T E R R E V I E W

Key Ideas

� State the laws of exponents.

� State the laws of logarithms.

� What is the significance of the number e?

� What do the following statements and phrases mean?

˘ f is one-to-one. ˘ f is invertible.

˘ Function f �1 is the inverse of function f:

˘ a
b
D c ˘ loga b D c

˘ the natural logarithm of x

˘ logarithmic differentiation

˘ the half-life of a varying quantity

˘ The quantity y exhibits exponential growth.

˘ The quantity y exhibits logistic growth.

˘ y D sin�1
x ˘ y D tan�1x

˘ The quantity y exhibits simple harmonic motion.

˘ The quantity y exhibits damped harmonic motion.

� Define the functions sinh x, cosh x, and tanh x.

� What kinds of functions satisfy second-order differential

equations with constant coefficients?

Review Exercises

1. If f .x/ D 3x C x
3, show that f has an inverse and find the

slope of y D f �1.x/ at x D 0.

2. Let f .x/ D sec2 x tan x. Show that f is increasing on the

interval .��=2; �=2/ and, hence, one-to-one and invertible

there. What is the domain of f �1? Find .f �1/0.2/. Hint:

f .�=4/ D 2.
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Exercises 3–5 refer to the function f .x/ D x e�x2

.

3. Find limx!1 f .x/ and limx!�1 f .x/.

4. On what intervals is f increasing? decreasing?

5. What are the maximum and minimum values of f .x/?

6. Find the points on the graph of y D e
�x sinx, .0 � x � 2�/,

where the graph has a horizontal tangent line.

7. Suppose that a function f .x/ satisfies f 0.x/ D x f .x/ for all

real x, and f .2/ D 3. Calculate the derivative of f .x/=ex2=2,

and use the result to help you find f .x/ explicitly.

8. A lump of modelling clay is being rolled out so that it maintains

the shape of a circular cylinder. If the length is increasing at a

rate proportional to itself, show that the radius is decreasing at

a rate proportional to itself.

9. (a) What nominal interest rate, compounded continuously,

will cause an investment to double in 5 years?

(b) By about how many days will the doubling time in part (a)

increase if the nominal interest rate drops by 0.5%?

C 10. (A poor man’s natural logarithm)

(a) Show that if a > 0, then

lim
h!0

ah
� 1

h
D ln a:

Hence, show that

lim
n!1

n.a
1=n
� 1/ D ln a:

(b) Most calculators, even nonscientific ones, have a square

root key. If n is a power of 2, say n D 2k , then a1=n can

be calculated by entering a and hitting the square root key

k times:

a
1=2k

D

r

q

� � �

p

a (k square roots):

Then you can subtract 1 and multiply by n to get an approx-

imation for ln a. Use n D 210
D 1024 and n D 211

D

2048 to find approximations for ln 2. Based on the agree-

ment of these two approximations, quote a value of ln 2 to

as many decimal places as you feel justified.

11. A nonconstant function f satisfies

d

dx

�

f .x/

�2

D

�

f
0
.x/

�2

for all x. If f .0/ D 1, find f .x/.

12. If f .x/ D .lnx/=x, show that f 0.x/ > 0 for 0 < x < e and

f 0.x/ < 0 for x > e, so that f .x/ has a maximum value at

x D e. Use this to show that e� > �e .

13. Find an equation of a straight line that passes through the origin

and is tangent to the curve y D xx .

14. (a) Find x ¤ 2 such that
lnx

x
D

ln 2

2
.

(b) Find b > 1 such that there is no x ¤ b with
lnx

x
D

ln b

b
.

C 15. Investment account A bears simple interest at a certain rate.

Investment account B bears interest at the same nominal rate

but compounded instantaneously. If $1,000 is invested in each

account, B produces $10 more in interest after one year than

does A. Find the nominal rate both accounts use.

16. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of tan�1.

17. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of sin�1.

18.P (A warming problem) A bottle of milk at 5 ıC is removed

from a refrigerator into a room maintained at 20 ıC. After 12

min the temperature of the milk is 12 ıC. How much longer

will it take for the milk to warm up to 18 ıC?

19.P (A cooling problem) A kettle of hot water at 96 ıC is allowed

to sit in an air-conditioned room. The water cools to 60 ıC

in 10 min and then to 40 ıC in another 10 min. What is the

temperature of the room?

20.A Show that ex > 1C x if x ¤ 0.

21.A Use mathematical induction to show that

e
x
> 1C x C

x2

2Š
C � � � C

xn

nŠ

if x > 0 and n is any positive integer.

Challenging Problems

1.I (a) Show that the function f .x/ D xx is strictly increasing on

Œe
�1
; 1/.

(b) If g is the inverse function to f of part (a), show that

lim
y!1

g.y/ ln.ln y/

lny
D 1

Hint: Start with the equation y D x
x and take the ln of

both sides twice.

Two models for incorporating air resistance into the analysis of

the motion of a falling body

2.P (Air resistance proportional to speed) An object falls under

gravity near the surface of the earth, and its motion is impeded

by air resistance proportional to its speed. Its velocity v there-

fore satisfies the equation

dv

dt
D �g � kv; (*)

where k is a positive constant depending on such factors as the

shape and density of the object and the density of the air.

(a) Find the velocity of the object as a function of time t , given

that it was v0 at t D 0.

(b) Find the limiting velocity limt!1 v.t/. Observe that this

can be done either directly from .�/ or from the solution

found in (a).

(c) If the object was at height y0 at time t D 0, find its height

y.t/ at any time during its fall.

3.I (Air resistance proportional to the square of speed) Under

certain conditions a better model for the effect of air resistance

on a moving object is one where the resistance is proportional

to the square of the speed. For an object falling under constant

gravitational acceleration g, the equation of motion is

dv

dt
D �g � kvjvj;
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where k > 0. Note that vjvj is used instead of v2 to ensure that

the resistance is always in the opposite direction to the velocity.

For an object falling from rest at time t D 0, we have v.0/ D 0

and v.t/ < 0 for t > 0, so the equation of motion becomes

dv

dt
D �g C kv

2
:

We are not (yet) in a position to solve this equation. However,

we can verify its solution.

(a) Verify that the velocity is given for t � 0 by

v.t/ D

r

g

k

1 � e2t
p

gk

1C e2t
p

gk
:

(b) What is the limiting velocity limt!1 v.t/?

(c) Also verify that if the falling object was at height y0 at

time t D 0, then its height at subsequent times during its

fall is given by

y.t/ D y0 C

r

g

k
t �

1

k
ln

 

1C e
2t
p

gk

2

!

:

4.P (A model for the spread of a new technology) When a new

and superior technology is introduced, the percentage p of po-

tential clients that adopt it might be expected to increase logis-

tically with time. However, even newer technologies are con-

tinually being introduced, so adoption of a particular one will

fall off exponentially over time. The following model exhibits

this behaviour:

dp

dt
D kp

�

1 �
p

e�btM

�

:

This DE suggests that the growth in p is logistic but that the

asymptotic limit is not a constant but rather e�btM , which de-

creases exponentially with time.

(a) Show that the change of variable p D e�bt
y.t/ transforms

the equation above into a standard logistic equation, and

hence find an explicit formula for p.t/ given that p.0/ D

p0. It will be necessary to assume thatM < 100k=.bCk/

to ensure that p.t/ < 100.

(b) If k D 10, b D 1, M D 90, and p0 D 1, how large will

p.t/ become before it starts to decrease?
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Exercises 3–5 refer to the function f .x/ D x e�x2

.

3. Find limx!1 f .x/ and limx!�1 f .x/.

4. On what intervals is f increasing? decreasing?

5. What are the maximum and minimum values of f .x/?

6. Find the points on the graph of y D e
�x sinx, .0 � x � 2�/,

where the graph has a horizontal tangent line.

7. Suppose that a function f .x/ satisfies f 0.x/ D x f .x/ for all

real x, and f .2/ D 3. Calculate the derivative of f .x/=ex2=2,

and use the result to help you find f .x/ explicitly.

8. A lump of modelling clay is being rolled out so that it maintains

the shape of a circular cylinder. If the length is increasing at a

rate proportional to itself, show that the radius is decreasing at

a rate proportional to itself.

9. (a) What nominal interest rate, compounded continuously,

will cause an investment to double in 5 years?

(b) By about how many days will the doubling time in part (a)

increase if the nominal interest rate drops by 0.5%?

C 10. (A poor man’s natural logarithm)

(a) Show that if a > 0, then

lim
h!0

ah
� 1

h
D ln a:

Hence, show that

lim
n!1

n.a
1=n
� 1/ D ln a:

(b) Most calculators, even nonscientific ones, have a square

root key. If n is a power of 2, say n D 2k , then a1=n can

be calculated by entering a and hitting the square root key

k times:

a
1=2k

D

r

q

� � �

p

a (k square roots):

Then you can subtract 1 and multiply by n to get an approx-

imation for ln a. Use n D 210
D 1024 and n D 211

D

2048 to find approximations for ln 2. Based on the agree-

ment of these two approximations, quote a value of ln 2 to

as many decimal places as you feel justified.

11. A nonconstant function f satisfies

d

dx

�

f .x/

�2

D

�

f
0
.x/

�2

for all x. If f .0/ D 1, find f .x/.

12. If f .x/ D .lnx/=x, show that f 0.x/ > 0 for 0 < x < e and

f 0.x/ < 0 for x > e, so that f .x/ has a maximum value at

x D e. Use this to show that e� > �e .

13. Find an equation of a straight line that passes through the origin

and is tangent to the curve y D xx .

14. (a) Find x ¤ 2 such that
lnx

x
D

ln 2

2
.

(b) Find b > 1 such that there is no x ¤ b with
lnx

x
D

ln b

b
.

C 15. Investment account A bears simple interest at a certain rate.

Investment account B bears interest at the same nominal rate

but compounded instantaneously. If $1,000 is invested in each

account, B produces $10 more in interest after one year than

does A. Find the nominal rate both accounts use.

16. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of tan�1.

17. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of sin�1.

18.P (A warming problem) A bottle of milk at 5 ıC is removed

from a refrigerator into a room maintained at 20 ıC. After 12

min the temperature of the milk is 12 ıC. How much longer

will it take for the milk to warm up to 18 ıC?

19.P (A cooling problem) A kettle of hot water at 96 ıC is allowed

to sit in an air-conditioned room. The water cools to 60 ıC

in 10 min and then to 40 ıC in another 10 min. What is the

temperature of the room?

20.A Show that ex > 1C x if x ¤ 0.

21.A Use mathematical induction to show that

e
x
> 1C x C

x2

2Š
C � � � C

xn

nŠ

if x > 0 and n is any positive integer.

Challenging Problems

1.I (a) Show that the function f .x/ D xx is strictly increasing on

Œe
�1
; 1/.

(b) If g is the inverse function to f of part (a), show that

lim
y!1

g.y/ ln.ln y/

lny
D 1

Hint: Start with the equation y D x
x and take the ln of

both sides twice.

Two models for incorporating air resistance into the analysis of

the motion of a falling body

2.P (Air resistance proportional to speed) An object falls under

gravity near the surface of the earth, and its motion is impeded

by air resistance proportional to its speed. Its velocity v there-

fore satisfies the equation

dv

dt
D �g � kv; (*)

where k is a positive constant depending on such factors as the

shape and density of the object and the density of the air.

(a) Find the velocity of the object as a function of time t , given

that it was v0 at t D 0.

(b) Find the limiting velocity limt!1 v.t/. Observe that this

can be done either directly from .�/ or from the solution

found in (a).

(c) If the object was at height y0 at time t D 0, find its height

y.t/ at any time during its fall.

3.I (Air resistance proportional to the square of speed) Under

certain conditions a better model for the effect of air resistance

on a moving object is one where the resistance is proportional

to the square of the speed. For an object falling under constant

gravitational acceleration g, the equation of motion is

dv

dt
D �g � kvjvj;
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where k > 0. Note that vjvj is used instead of v2 to ensure that

the resistance is always in the opposite direction to the velocity.

For an object falling from rest at time t D 0, we have v.0/ D 0

and v.t/ < 0 for t > 0, so the equation of motion becomes

dv

dt
D �g C kv

2
:

We are not (yet) in a position to solve this equation. However,

we can verify its solution.

(a) Verify that the velocity is given for t � 0 by

v.t/ D

r

g

k

1 � e2t
p

gk

1C e2t
p

gk
:

(b) What is the limiting velocity limt!1 v.t/?

(c) Also verify that if the falling object was at height y0 at

time t D 0, then its height at subsequent times during its

fall is given by

y.t/ D y0 C

r

g

k
t �

1

k
ln

 

1C e
2t
p

gk

2

!

:

4.P (A model for the spread of a new technology) When a new

and superior technology is introduced, the percentage p of po-

tential clients that adopt it might be expected to increase logis-

tically with time. However, even newer technologies are con-

tinually being introduced, so adoption of a particular one will

fall off exponentially over time. The following model exhibits

this behaviour:

dp

dt
D kp

�

1 �
p

e�btM

�

:

This DE suggests that the growth in p is logistic but that the

asymptotic limit is not a constant but rather e�btM , which de-

creases exponentially with time.

(a) Show that the change of variable p D e�bt
y.t/ transforms

the equation above into a standard logistic equation, and

hence find an explicit formula for p.t/ given that p.0/ D

p0. It will be necessary to assume thatM < 100k=.bCk/

to ensure that p.t/ < 100.

(b) If k D 10, b D 1, M D 90, and p0 D 1, how large will

p.t/ become before it starts to decrease?
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C H A P T E R 4

More Applications

of Differentiation

“
In the fall of 1972 President Nixon announced that the rate of increase

of inflation was decreasing. This was the first time a sitting president

used the third derivative to advance his case for reelection.

”Hugo Rossi

Mathematics Is an Edifice, Not a Toolbox, Notices of the AMS, v. 43, Oct. 1996

Introduction Differential calculus can be used to analyze many kinds

of problems and situations that arise in applied disciplines.

Calculus has made and will continue to make significant contributions to every field

of human endeavour that uses quantitative measurement to further its aims. From

economics to physics and from biology to sociology, problems can be found whose

solutions can be aided by the use of some calculus.

In this chapter we will examine several kinds of problems to which the techniques

we have already learned can be applied. These problems arise both outside and within

mathematics. We will deal with the following kinds of problems:

1. Related rates problems, where the rates of change of related quantities are ana-

lyzed.

2. Root finding methods, where we try to find numerical solutions of equations.

3. Evaluation of limits.

4. Optimization problems, where a quantity is to be maximized or minimized.

5. Graphing problems, where derivatives are used to illuminate the behaviour of

functions.

6. Approximation problems, where complicated functions are approximated by poly-

nomials.

Do not assume that most of the problems we present here are “real-world” problems.

Such problems are usually too complex to be treated in a general calculus course.

However, the problems we consider, while sometimes artificial, do show how calculus

can be applied in concrete situations.

4.1 Related Rates
When two or more quantities that change with time are linked by an equation, that

equation can be differentiated with respect to time to produce an equation linking the

rates of change of the quantities. Any one of these rates may then be determined when

the others, and the values of the quantities themselves, are known. We will consider

a couple of examples before formulating a list of procedures for dealing with such

problems.
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E X A M P L E 1
An aircraft is flying horizontally at a speed of 600 km/h. How fast

is the distance between the aircraft and a radio beacon increasing

1 min after the aircraft passes 5 km directly above the beacon?

Solution A diagram is useful here; see Figure 4.1. LetC be the point on the aircraft’s

path directly above the beacon B . Let A be the position of the aircraft

t min after it is at C , and let x and s be the distances CA and BA, respectively. From

the right triangle BCA we have

x
600 km/h

5 km s

A

B

C

Figure 4.1

s
2
D x

2
C 5

2
:

We differentiate this equation implicitly with respect to t to obtain

2s
ds

dt
D 2x

dx

dt
:

We are given that dx=dt = 600 km/h = 10 km/min. Therefore, x D 10 km at time

t D 1 min. At that time s D
p

102
C 52

D 5
p

5 km and is increasing at the rate

ds

dt
D

x

s

dx

dt
D

10

5
p

5
.600/ D

1; 200
p

5
� 536:7 km/h:

One minute after the aircraft passes over the beacon, its distance from the beacon is

increasing at about 537 km/h.

E X A M P L E 2
How fast is the area of a rectangle changing if one side is 10 cm

long and is increasing at a rate of 2 cm/s and the other side is 8 cm

long and is decreasing at a rate of 3 cm/s?

Solution Let the lengths of the sides of the rectangle at time t be x cm and y cm,

respectively. Thus, the area at time t is A D xy cm2. (See Figure 4.2.) We want

to know the value of dA=dt when x D 10 and y D 8, given that dx=dt D 2 and

dy=dt D �3. (Note the negative sign to indicate that y is decreasing.) Since all

the quantities in the equation A D xy are functions of time, we can differentiate that

equation implicitly with respect to time and obtain

dA

dt

ˇ

ˇ

ˇ

ˇ

xD10
yD8

D

�

dx

dt
y C x

dy

dt

�
ˇ

ˇ

ˇ

ˇ

xD10
yD8

D 2.8/C 10.�3/ D �14:

At the time in question, the area of the rectangle is decreasing at a rate of 14 cm2/s.

yA D xy

x

Figure 4.2 Rectangle with sides changing

Procedures for Related-Rates Problems
In view of these examples we can formulate a few general procedures for dealing with

related-rates problems.
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long and is increasing at a rate of 2 cm/s and the other side is 8 cm
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respectively. Thus, the area at time t is A D xy cm2. (See Figure 4.2.) We want
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ˇ

ˇ
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x
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Procedures for Related-Rates Problems
In view of these examples we can formulate a few general procedures for dealing with

related-rates problems.
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How to solve related-rates problems

1. Read the problem very carefully. Try to understand the relationships be-

tween the variable quantities. What is given? What is to be found?

2. Make a sketch if appropriate.

3. Define any symbols you want to use that are not defined in the statement

of the problem. Express given and required quantities and rates in terms

of these symbols.

4. From a careful reading of the problem or consideration of the sketch,

identify one or more equations linking the variable quantities. (You will

need as many equations as quantities or rates to be found in the problem.)

5. Differentiate the equation(s) implicitly with respect to time, regarding all

variable quantities as functions of time. You can manipulate the equa-

tion(s) algebraically before the differentiation is performed (for instance,

you could solve for the quantities whose rates are to be found), but it is

usually easier to differentiate the equations as they are originally obtained

and solve for the desired items later.

6. Substitute any given values for the quantities and their rates, then solve

the resulting equation(s) for the unknown quantities and rates.

7. Make a concluding statement answering the question asked. Is your an-

swer reasonable? If not, check back through your solution to see what

went wrong.

E X A M P L E 3
A lighthouse L is located on a small island 2 km from the nearest

point A on a long, straight shoreline. If the lighthouse lamp rotates

at 3 revolutions per minute, how fast is the illuminated spot P on the shoreline moving

along the shoreline when it is 4 km from A?

Solution Referring to Figure 4.3, let x be the distance AP , and let � be the angle

PLA. Then x D 2 tan � and

dx

dt
D 2 sec2

�
d�

dt
:

Now

L

�

2 km

A x P

Figure 4.3

d�

dt
D .3 rev/min/.2� radians/rev/ D 6� radians/min:

When x D 4, we have tan � D 2 and sec2 � D 1C tan2 � D 5. Thus,

dx

dt
D .2/.5/.6�/ D 60� � 188:5:

The spot of light is moving along the shoreline at a rate of about 189 km/min when it

is 4 km from A.

(Note that it was essential to convert the rate of change of � from revolutions per

minute to radians per minute. If � were not measured in radians we could not assert

that .d=d�/ tan � D sec2 � .)

E X A M P L E 4
A leaky water tank is in the shape of an inverted right circular cone

with depth 5 m and top radius 2 m. When the water in the tank is

4 m deep, it is leaking out at a rate of 1=12 m3/min. How fast is the water level in the

tank dropping at that time?
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Solution Let r and h denote the surface radius and depth of water in the tank at time

t (both measured in metres). Thus, the volume V (in cubic metres) of water in the tank

at time t is

V D
1

3
� r

2
h:

Using similar triangles (see Figure 4.4), we can find a relationship between r and h:

r

h
D

2

5
; so r D

2h

5
and V D

1

3
�

�

2h

5

�2

h D
4�

75
h

3
:

Differentiating this equation with respect to t , we obtain

dV

dt
D

4�

25
h

2 dh

dt
:

Since dV=dt D �1=12 when h D 4, we have

�1

12
D

4�

25
.4

2
/
dh

dt
; so

dh

dt
D �

25

768�
:

When the water in the tank is 4 m deep, its level is dropping at a rate of

25=.768�/ m/min, or about 1.036 cm/min.

5

h

2

r

Figure 4.4 The conical tank of Example 4

A x
400 km/h

100 km/h

y

C

1 km

45ı

Z

X

s

Y

Figure 4.5 Aircraft and car paths in Example 5

E X A M P L E 5
At a certain instant an aircraft flying due east at 400 km/h passes

directly over a car travelling due southeast at 100 km/h on a straight,

level road. If the aircraft is flying at an altitude of 1 km, how fast is the distance be-

tween the aircraft and the car increasing 36 s after the aircraft passes directly over the

car?

Solution A good diagram is essential here. See Figure 4.5. Let time t be measured in

hours from the time the aircraft was at position A directly above the car at position C .

LetX and Y be the positions of the aircraft and the car, respectively, at time t . Let x be

the distanceAX , y the distance CY; and s the distanceXY; all measured in kilometres.

LetZ be the point 1 km above Y: Since angle XAZ D 45ı, the Pythagorean Theorem

and Cosine Law yield

s
2
D 1C .ZX/

2
D 1C x

2
C y

2
� 2xy cos 45ı

D 1C x
2
C y

2
�

p

2 xy:
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The spot of light is moving along the shoreline at a rate of about 189 km/min when it

is 4 km from A.
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minute to radians per minute. If � were not measured in radians we could not assert

that .d=d�/ tan � D sec2 � .)
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A leaky water tank is in the shape of an inverted right circular cone

with depth 5 m and top radius 2 m. When the water in the tank is

4 m deep, it is leaking out at a rate of 1=12 m3/min. How fast is the water level in the

tank dropping at that time?
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Solution Let r and h denote the surface radius and depth of water in the tank at time

t (both measured in metres). Thus, the volume V (in cubic metres) of water in the tank

at time t is

V D
1

3
� r

2
h:
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�
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3
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Since dV=dt D �1=12 when h D 4, we have

�1

12
D

4�

25
.4

2
/
dh

dt
; so

dh

dt
D �

25

768�
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When the water in the tank is 4 m deep, its level is dropping at a rate of

25=.768�/ m/min, or about 1.036 cm/min.
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E X A M P L E 5
At a certain instant an aircraft flying due east at 400 km/h passes

directly over a car travelling due southeast at 100 km/h on a straight,

level road. If the aircraft is flying at an altitude of 1 km, how fast is the distance be-

tween the aircraft and the car increasing 36 s after the aircraft passes directly over the

car?

Solution A good diagram is essential here. See Figure 4.5. Let time t be measured in

hours from the time the aircraft was at position A directly above the car at position C .

LetX and Y be the positions of the aircraft and the car, respectively, at time t . Let x be

the distanceAX , y the distance CY; and s the distanceXY; all measured in kilometres.

LetZ be the point 1 km above Y: Since angle XAZ D 45ı, the Pythagorean Theorem

and Cosine Law yield

s
2
D 1C .ZX/

2
D 1C x

2
C y

2
� 2xy cos 45ı

D 1C x
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C y

2
�

p
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Thus,

2s
ds

dt
D 2x

dx

dt
C 2y

dy

dt
�

p

2
dx

dt
y �
p

2 x
dy

dt

D 400.2x �
p

2 y/C 100.2y �
p

2 x/;

since dx=dt D 400 and dy=dt D 100. When t D 1=100 (i.e., 36 s after t D 0), we

have x D 4 and y D 1. Hence,

s
2
D 1C 16C 1 � 4

p

2 D 18 � 4
p

2

s � 3:5133:

ds

dt
D

1

2s

�

400.8 �
p

2/C 100.2 � 4
p

2/
�

� 322:86:

The aircraft and the car are separating at a rate of about 323 km/h after 36 s. (Note that

it was necessary to convert 36 s to hours in the solution. In general, all measurements

should be in compatible units.)

E X E R C I S E S 4.1

1. Find the rate of change of the area of a square whose side is

8 cm long, if the side length is increasing at 2 cm/min.

2. The area of a square is decreasing at 2 ft2/s. How fast is the

side length changing when it is 8 ft?

3. A pebble dropped into a pond causes a circular ripple to

expand outward from the point of impact. How fast is the area

enclosed by the ripple increasing when the radius is

20 cm and is increasing at a rate of 4 cm/s?

4. The area of a circle is decreasing at a rate of 2 cm2/min. How

fast is the radius of the circle changing when the area is 100

cm2?

5. The area of a circle is increasing at 1=3 km2/h. Express the

rate of change of the radius of the circle as a function of

(a) the radius r and (b) the area A of the circle.

6. At a certain instant the length of a rectangle is 16 m and the

width is 12 m. The width is increasing at 3 m/s. How fast is

the length changing if the area of the rectangle is not

changing?

7. Air is being pumped into a spherical balloon. The volume of

the balloon is increasing at a rate of 20 cm3/s when the radius

is 30 cm. How fast is the radius increasing at that time? (The

volume of a ball of radius r units is V D 4
3
�r3 cubic units.)

8. When the diameter of a ball of ice is 6 cm, it is decreasing at a

rate of 0.5 cm/h due to melting of the ice. How fast is the

volume of the ice ball decreasing at that time?

9. How fast is the surface area of a cube changing when the

volume of the cube is 64 cm3 and is increasing at 2 cm3/s?

10. The volume of a right circular cylinder is 60 cm3 and is

increasing at 2 cm3/min at a time when the radius is 5 cm and

is increasing at 1 cm/min. How fast is the height of the

cylinder changing at that time?

11. How fast is the volume of a rectangular box changing when

the length is 6 cm, the width is 5 cm, and the depth is 4 cm, if

the length and depth are both increasing at a rate of 1 cm/s and

the width is decreasing at a rate of 2 cm/s?

12. The area of a rectangle is increasing at a rate of 5 m2/s while

the length is increasing at a rate of 10 m/s. If the length is

20 m and the width is 16 m, how fast is the width changing?

13. A point moves on the curve y D x2. How fast is y changing

when x D �2 and x is decreasing at a rate of 3?

14. A point is moving to the right along the first-quadrant portion

of the curve x2y3
D 72. When the point has coordinates

.3; 2/, its horizontal velocity is 2 units/s. What is its vertical

velocity?

15. The point P moves so that at time t it is at the intersection of

the curves xy D t and y D tx2. How fast is the distance of P

from the origin changing at time t D 2?

16. (Radar guns) A police officer is standing near a highway

using a radar gun to catch speeders. (See Figure 4.6.) He aims

the gun at a car that has just passed his position and, when the

gun is pointing at an angle of 45ı to the direction of the

highway, notes that the distance between the car and the gun is

increasing at a rate of 100 km/h. How fast is the car travelling?

k s

x

A C

P

Figure 4.6

17. If the radar gun of Exercise 16 is aimed at a car travelling at

90 km/h along a straight road, what will its reading be when it

is aimed making an angle of 30ı with the road?
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18. The top of a ladder 5 m long rests against a vertical wall. If the

base of the ladder is being pulled away from the base of the

wall at a rate of 1/3 m/s, how fast is the top of the ladder

slipping down the wall when it is 3 m above the base of the

wall?

19. A man 2 m tall walks toward a lamppost on level ground at a

rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast is

the length of the man’s shadow decreasing when he is 3 m

from the post? How fast is the shadow of his head moving at

that time?

20. A woman 6 ft tall is walking at 2 ft/s along a straight path on

level ground. There is a lamppost 5 ft to the side of the path.

A light 15 ft high on the lamppost casts the woman’s shadow

on the ground. How fast is the length of her shadow changing

when the woman is 12 feet from the point on the path closest

to the lamppost?

21. (Cost of production) It costs a coal mine owner $C each day

to maintain a production of x tonnes of coal, where

C D 10;000C 3x C x
2=8;000. At what rate is the production

increasing when it is 12,000 tonnes and the daily cost is

increasing at $600 per day?

22. (Distance between ships) At 1:00 p.m. ship A is 25 km due

north of ship B . If ship A is sailing west at a rate of

16 km/h and ship B is sailing south at 20 km/h, at what rate is

the distance between the two ships changing at 1:30 p.m?

23. What is the first time after 3:00 p.m. that the hands of a clock

are together?

24. (Tracking a balloon) A balloon released at point A rises

vertically with a constant speed of 5 m/s. Point B is level with

and 100 m distant from point A. How fast is the angle of

elevation of the balloon at B changing when the balloon is

200 m above A?

25. Sawdust is falling onto a pile at a rate of 1/2 m3/min. If the

pile maintains the shape of a right circular cone with height

equal to half the diameter of its base, how fast is the height of

the pile increasing when the pile is 3 m high?

26. (Conical tank) A water tank is in the shape of an inverted

right circular cone with top radius 10 m and depth 8 m. Water

is flowing in at a rate of 1/10 m3/min. How fast is the depth of

water in the tank increasing when the water is 4 m deep?

27. (Leaky tank) Repeat Exercise 26 with the added assumption

that water is leaking out of the bottom of the tank at a rate of

h3=1;000 m3/min when the depth of water in the tank is h m.

How full can the tank get in this case?

28. (Another leaky tank) Water is pouring into a leaky tank at a

rate of 10 m3/h. The tank is a cone with vertex down, 9 m in

depth and 6 m in diameter at the top. The surface of water in

the tank is rising at a rate of 20 cm/h when the depth is

6 m. How fast is the water leaking out at that time?

29. (Kite flying) How fast must you let out line if the kite you are

flying is 30 m high, 40 m horizontally away from you, and

moving horizontally away from you at a rate of 10 m/min?

30. (Ferris wheel) You are on a Ferris wheel of diameter 20 m. It

is rotating at 1 revolution per minute. How fast are you rising

or falling when you are 6 m horizontally away from the

vertical line passing through the centre of the wheel?

31. (Distance between aircraft) An aircraft is 144 km east of an

airport and is travelling west at 200 km/h. At the same time, a

second aircraft at the same altitude is 60 km north of the

airport and travelling north at 150 km/h. How fast is the

distance between the two aircraft changing?

32. (Production rate) If a truck factory employs x workers and

has daily operating expenses of $y, it can produce

P D .1=3/x
0:6y0:4 trucks per year. How fast are the daily

expenses decreasing when they are $10,000 and the number of

workers is 40, if the number of workers is increasing at

1 per day and production is remaining constant?

33. A lamp is located at point .3; 0/ in the xy-plane. An ant is

crawling in the first quadrant of the plane and the lamp casts

its shadow onto the y-axis. How fast is the ant’s shadow

moving along the y-axis when the ant is at position .1; 2/ and

moving so that its x-coordinate is increasing at rate

1/3 units/s and its y-coordinate is decreasing at 1/4 units/s?

34. A straight highway and a straight canal intersect at right

angles, the highway crossing over the canal on a bridge 20 m

above the water. A boat travelling at 20 km/h passes under the

bridge just as a car travelling at 80 km/h passes over it. How

fast are the boat and car separating after one minute?

35. (Filling a trough) The cross section of a water trough is an

equilateral triangle with top edge horizontal. If the trough is

10 m long and 30 cm deep, and if water is flowing in at a rate

of 1/4 m3/min, how fast is the water level rising when the

water is 20 cm deep at the deepest?

36. (Draining a pool) A rectangular swimming pool is 8 m wide

and 20 m long. (See Figure 4.7.) Its bottom is a sloping plane,

the depth increasing from 1 m at the shallow end to 3 m at the

deep end. Water is draining out of the pool at a rate of

1 m3/min. How fast is the surface of the water falling when

the depth of water at the deep end is (a) 2.5 m? (b) 1 m?

20 m

1 m

8 m

3 m

Figure 4.7

37.I One end of a 10 m long ladder is on the ground. The ladder is

supported partway along its length by resting on top of a 3 m

high fence. (See Figure 4.8.) If the bottom of the ladder is 4 m

from the base of the fence and is being dragged along the

ground away from the fence at a rate of 1/5 m/s, how fast is the

free top end of the ladder moving (a) vertically and (b)

horizontally?

x

1=5 m/s

3 m

10 m

Figure 4.8
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Thus,

2s
ds

dt
D 2x

dx

dt
C 2y

dy

dt
�

p

2
dx

dt
y �
p

2 x
dy

dt

D 400.2x �
p

2 y/C 100.2y �
p

2 x/;

since dx=dt D 400 and dy=dt D 100. When t D 1=100 (i.e., 36 s after t D 0), we

have x D 4 and y D 1. Hence,

s
2
D 1C 16C 1 � 4

p

2 D 18 � 4
p

2

s � 3:5133:

ds

dt
D

1

2s

�

400.8 �
p

2/C 100.2 � 4
p

2/
�

� 322:86:

The aircraft and the car are separating at a rate of about 323 km/h after 36 s. (Note that

it was necessary to convert 36 s to hours in the solution. In general, all measurements

should be in compatible units.)

E X E R C I S E S 4.1

1. Find the rate of change of the area of a square whose side is

8 cm long, if the side length is increasing at 2 cm/min.

2. The area of a square is decreasing at 2 ft2/s. How fast is the

side length changing when it is 8 ft?

3. A pebble dropped into a pond causes a circular ripple to

expand outward from the point of impact. How fast is the area

enclosed by the ripple increasing when the radius is

20 cm and is increasing at a rate of 4 cm/s?

4. The area of a circle is decreasing at a rate of 2 cm2/min. How

fast is the radius of the circle changing when the area is 100

cm2?

5. The area of a circle is increasing at 1=3 km2/h. Express the

rate of change of the radius of the circle as a function of

(a) the radius r and (b) the area A of the circle.

6. At a certain instant the length of a rectangle is 16 m and the

width is 12 m. The width is increasing at 3 m/s. How fast is

the length changing if the area of the rectangle is not

changing?

7. Air is being pumped into a spherical balloon. The volume of

the balloon is increasing at a rate of 20 cm3/s when the radius

is 30 cm. How fast is the radius increasing at that time? (The

volume of a ball of radius r units is V D 4
3
�r3 cubic units.)

8. When the diameter of a ball of ice is 6 cm, it is decreasing at a

rate of 0.5 cm/h due to melting of the ice. How fast is the

volume of the ice ball decreasing at that time?

9. How fast is the surface area of a cube changing when the

volume of the cube is 64 cm3 and is increasing at 2 cm3/s?

10. The volume of a right circular cylinder is 60 cm3 and is

increasing at 2 cm3/min at a time when the radius is 5 cm and

is increasing at 1 cm/min. How fast is the height of the

cylinder changing at that time?

11. How fast is the volume of a rectangular box changing when

the length is 6 cm, the width is 5 cm, and the depth is 4 cm, if

the length and depth are both increasing at a rate of 1 cm/s and

the width is decreasing at a rate of 2 cm/s?

12. The area of a rectangle is increasing at a rate of 5 m2/s while

the length is increasing at a rate of 10 m/s. If the length is

20 m and the width is 16 m, how fast is the width changing?

13. A point moves on the curve y D x2. How fast is y changing

when x D �2 and x is decreasing at a rate of 3?

14. A point is moving to the right along the first-quadrant portion

of the curve x2y3
D 72. When the point has coordinates

.3; 2/, its horizontal velocity is 2 units/s. What is its vertical

velocity?

15. The point P moves so that at time t it is at the intersection of

the curves xy D t and y D tx2. How fast is the distance of P

from the origin changing at time t D 2?

16. (Radar guns) A police officer is standing near a highway

using a radar gun to catch speeders. (See Figure 4.6.) He aims

the gun at a car that has just passed his position and, when the

gun is pointing at an angle of 45ı to the direction of the

highway, notes that the distance between the car and the gun is

increasing at a rate of 100 km/h. How fast is the car travelling?

k s

x

A C

P

Figure 4.6

17. If the radar gun of Exercise 16 is aimed at a car travelling at

90 km/h along a straight road, what will its reading be when it

is aimed making an angle of 30ı with the road?
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18. The top of a ladder 5 m long rests against a vertical wall. If the

base of the ladder is being pulled away from the base of the

wall at a rate of 1/3 m/s, how fast is the top of the ladder

slipping down the wall when it is 3 m above the base of the

wall?

19. A man 2 m tall walks toward a lamppost on level ground at a

rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast is

the length of the man’s shadow decreasing when he is 3 m

from the post? How fast is the shadow of his head moving at

that time?

20. A woman 6 ft tall is walking at 2 ft/s along a straight path on

level ground. There is a lamppost 5 ft to the side of the path.

A light 15 ft high on the lamppost casts the woman’s shadow

on the ground. How fast is the length of her shadow changing

when the woman is 12 feet from the point on the path closest

to the lamppost?

21. (Cost of production) It costs a coal mine owner $C each day

to maintain a production of x tonnes of coal, where

C D 10;000C 3x C x
2=8;000. At what rate is the production

increasing when it is 12,000 tonnes and the daily cost is

increasing at $600 per day?

22. (Distance between ships) At 1:00 p.m. ship A is 25 km due

north of ship B . If ship A is sailing west at a rate of

16 km/h and ship B is sailing south at 20 km/h, at what rate is

the distance between the two ships changing at 1:30 p.m?

23. What is the first time after 3:00 p.m. that the hands of a clock

are together?

24. (Tracking a balloon) A balloon released at point A rises

vertically with a constant speed of 5 m/s. Point B is level with

and 100 m distant from point A. How fast is the angle of

elevation of the balloon at B changing when the balloon is

200 m above A?

25. Sawdust is falling onto a pile at a rate of 1/2 m3/min. If the

pile maintains the shape of a right circular cone with height

equal to half the diameter of its base, how fast is the height of

the pile increasing when the pile is 3 m high?

26. (Conical tank) A water tank is in the shape of an inverted

right circular cone with top radius 10 m and depth 8 m. Water

is flowing in at a rate of 1/10 m3/min. How fast is the depth of

water in the tank increasing when the water is 4 m deep?

27. (Leaky tank) Repeat Exercise 26 with the added assumption

that water is leaking out of the bottom of the tank at a rate of

h3=1;000 m3/min when the depth of water in the tank is h m.

How full can the tank get in this case?

28. (Another leaky tank) Water is pouring into a leaky tank at a

rate of 10 m3/h. The tank is a cone with vertex down, 9 m in

depth and 6 m in diameter at the top. The surface of water in

the tank is rising at a rate of 20 cm/h when the depth is

6 m. How fast is the water leaking out at that time?

29. (Kite flying) How fast must you let out line if the kite you are

flying is 30 m high, 40 m horizontally away from you, and

moving horizontally away from you at a rate of 10 m/min?

30. (Ferris wheel) You are on a Ferris wheel of diameter 20 m. It

is rotating at 1 revolution per minute. How fast are you rising

or falling when you are 6 m horizontally away from the

vertical line passing through the centre of the wheel?

31. (Distance between aircraft) An aircraft is 144 km east of an

airport and is travelling west at 200 km/h. At the same time, a

second aircraft at the same altitude is 60 km north of the

airport and travelling north at 150 km/h. How fast is the

distance between the two aircraft changing?

32. (Production rate) If a truck factory employs x workers and

has daily operating expenses of $y, it can produce

P D .1=3/x
0:6y0:4 trucks per year. How fast are the daily

expenses decreasing when they are $10,000 and the number of

workers is 40, if the number of workers is increasing at

1 per day and production is remaining constant?

33. A lamp is located at point .3; 0/ in the xy-plane. An ant is

crawling in the first quadrant of the plane and the lamp casts

its shadow onto the y-axis. How fast is the ant’s shadow

moving along the y-axis when the ant is at position .1; 2/ and

moving so that its x-coordinate is increasing at rate

1/3 units/s and its y-coordinate is decreasing at 1/4 units/s?

34. A straight highway and a straight canal intersect at right

angles, the highway crossing over the canal on a bridge 20 m

above the water. A boat travelling at 20 km/h passes under the

bridge just as a car travelling at 80 km/h passes over it. How

fast are the boat and car separating after one minute?

35. (Filling a trough) The cross section of a water trough is an

equilateral triangle with top edge horizontal. If the trough is

10 m long and 30 cm deep, and if water is flowing in at a rate

of 1/4 m3/min, how fast is the water level rising when the

water is 20 cm deep at the deepest?

36. (Draining a pool) A rectangular swimming pool is 8 m wide

and 20 m long. (See Figure 4.7.) Its bottom is a sloping plane,

the depth increasing from 1 m at the shallow end to 3 m at the

deep end. Water is draining out of the pool at a rate of

1 m3/min. How fast is the surface of the water falling when

the depth of water at the deep end is (a) 2.5 m? (b) 1 m?

20 m

1 m

8 m

3 m

Figure 4.7

37.I One end of a 10 m long ladder is on the ground. The ladder is

supported partway along its length by resting on top of a 3 m

high fence. (See Figure 4.8.) If the bottom of the ladder is 4 m

from the base of the fence and is being dragged along the

ground away from the fence at a rate of 1/5 m/s, how fast is the

free top end of the ladder moving (a) vertically and (b)

horizontally?

x

1=5 m/s

3 m

10 m

Figure 4.8
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AB

P

4 m

y x

Q
1/2 m/s

Figure 4.9

38.I Two crates, A and B , are on the floor of a warehouse. The

crates are joined by a rope 15 m long, each crate being hooked

at floor level to an end of the rope. The rope is stretched tight

and pulled over a pulley P that is attached to a rafter 4 m

above a point Q on the floor directly between the two crates.

(See Figure 4.9.) If crate A is 3 m from Q and is being pulled

directly away from Q at a rate of 1/2 m/s, how fast is crate B

moving toward Q?

39. (Tracking a rocket) Shortly after launch, a rocket is

100 km high and 50 km downrange. If it is travelling at

4 km/s at an angle of 30ı above the horizontal, how fast is its

angle of elevation, as measured at the launch site, changing?

40. (Shadow of a falling ball) A lamp is 20 m high on a pole. At

time t D 0 a ball is dropped from a point level with the lamp

and 10 m away from it. The ball falls under gravity (its

acceleration is 9.8 m/s2) until it hits the ground. How fast is

the shadow of the ball moving along the ground (a) 1 s after

the ball is dropped? (b) just as the ball hits the ground?

41. (Tracking a rocket) A rocket blasts off at time t D 0 and

climbs vertically with acceleration 10 m/s2. The progress of

the rocket is monitored by a tracking station located 2 km

horizontally away from the launch pad. How fast is the

tracking station antenna rotating upward 10 s after launch?

4.2 Finding Roots of Equations

Finding solutions (roots) of equations is an important mathematical problem to which

calculus can make significant contributions. There are only a few general classes of

equations of the form f .x/ D 0 that we can solve exactly. These include linear

equations:

ax C b D 0; .a ¤ 0/ ) x D �
b

a

and quadratic equations:

ax
2
C bx C c D 0; .a ¤ 0/ ) x D

�b ˙
p

b2
� 4ac

2a
:

Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but

the formulas are very complicated. We usually solve these and most other equations

approximately by using numerical methods, often with the aid of a calculator or com-

puter.

In Section 1.4 we discussed the Bisection Method for approximating a root of an

equation f .x/ D 0. That method uses the Intermediate-Value Theorem and depends

only on the continuity of f and our ability to find an interval Œx1; x2� that must contain

the root because f .x1/ and f .x2/ have opposite signs. The method is rather slow; it

requires between three and four iterations to gain one significant figure of precision in

the root being approximated.

If we know that f is more than just continuous, we can devise better (i.e., faster)

methods for finding roots of f .x/ D 0. We study two such methods in this section:

(a) Fixed-Point Iteration, which looks for solutions of an equation of the form x D

f .x/. Such solutions are called fixed points of the function f:

(b) Newton’s Method, which looks for solutions of the equation f .x/ D 0 as fixed

points of the function g.x/ D x �
f .x/

f 0.x/
, that is, points x such that x D g.x/.

This method is usually very efficient, but it requires that f be differentiable.
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Like the Bisection Method, both of these methods require that we have at the outset a

rough idea of where a root can be found, and they generate sequences of approxima-

tions that get closer and closer to the root.

Discrete Maps and Fixed-Point Iteration
A discrete map is an equation of the form

xnC1 D f .xn/; for n D 0; 1; 2; : : : ;

which generates a sequence of values x1, x2, x3, : : : , from a given starting value x0. In

certain circumstances this sequence of numbers will converge to a limit,

r D limn!1 xn, in which case this limit will be a fixed point of f : r D f .r/.

(A thorough discussion of convergence of sequences can be found in Section 9.1. For

our purposes here, an intuitive understanding will suffice: limn!1 xn D r if jxn � r j

approaches 0 as n!1.)

For certain kinds of functions f; we can solve the equation f .r/ D r by starting

with an initial guess x0 and calculating subsequent values of the discrete map until

sufficient accuracy is achieved. This is the Method of Fixed-Point Iteration. Let us

begin by investigating a simple example:

E X A M P L E 1
Find a root of the equation cos x D 5x.

Solution This equation is of the form f .x/ D x, where f .x/ D 1
5

cos x. Since cos x

is close to 1 for x near 0, we see that 1
5

cos x will be close to 1
5

when x D 1
5

. This

suggests that a reasonable first guess at the fixed point is x0 D
1
5
D 0:2. The values of

Table 1.

n xn

0 0:2

1 0:196 013 32

2 0:196 170 16

3 0:196 164 05

4 0:196 164 29

5 0:196 164 28

6 0:196 164 28

subsequent approximations

x1 D
1

5
cos x0; x2 D

1

5
cos x1; x3 D

1

5
cos x2; : : :

are presented in Table 1. The root is 0:196 164 28 to 8 decimal places.

Why did the method used in Example 1 work? Will it work for any function f ‹

In order to answer these questions, examine the polygonal line in Figure 4.10. Starting

at x0 it goes vertically to the curve y D f .x/, the height there being x1. Then it goes

horizontally to the line y D x, meeting that line at a point whose x-coordinate must

therefore also be x1. Then the process repeats; the line goes vertically to the curve

y D f .x/ and horizontally to y D x, arriving at x D x2. The line continues in this

way, “spiralling” closer and closer to the intersection of y D f .x/ and y D x. Each

value of xn is closer to the fixed point r than the previous value.

Now consider the function f whose graph appears in Figure 4.11(a). If we try the

same method there, starting with x0, the polygonal line spirals outward, away from the

root, and the resulting values xn will not “converge” to the root as they did in Example

1. To see why the method works for the function in Figure 4.10 but not for the function

in Figure 4.11(a), observe the slopes of the two graphs y D f .x/ near the fixed point

r . Both slopes are negative, but in Figure 4.10 the absolute value of the slope is less

than 1 while the absolute value of the slope of f in Figure 4.11(a) is greater than 1.

Close consideration of the graphs should convince you that it is this fact that caused

the points xn to get closer to r in Figure 4.10 and farther from r in Figure 4.11(a).
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y x
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Figure 4.9

38.I Two crates, A and B , are on the floor of a warehouse. The

crates are joined by a rope 15 m long, each crate being hooked

at floor level to an end of the rope. The rope is stretched tight

and pulled over a pulley P that is attached to a rafter 4 m

above a point Q on the floor directly between the two crates.

(See Figure 4.9.) If crate A is 3 m from Q and is being pulled

directly away from Q at a rate of 1/2 m/s, how fast is crate B

moving toward Q?

39. (Tracking a rocket) Shortly after launch, a rocket is

100 km high and 50 km downrange. If it is travelling at

4 km/s at an angle of 30ı above the horizontal, how fast is its

angle of elevation, as measured at the launch site, changing?

40. (Shadow of a falling ball) A lamp is 20 m high on a pole. At

time t D 0 a ball is dropped from a point level with the lamp

and 10 m away from it. The ball falls under gravity (its

acceleration is 9.8 m/s2) until it hits the ground. How fast is

the shadow of the ball moving along the ground (a) 1 s after

the ball is dropped? (b) just as the ball hits the ground?

41. (Tracking a rocket) A rocket blasts off at time t D 0 and

climbs vertically with acceleration 10 m/s2. The progress of

the rocket is monitored by a tracking station located 2 km

horizontally away from the launch pad. How fast is the

tracking station antenna rotating upward 10 s after launch?

4.2 Finding Roots of Equations

Finding solutions (roots) of equations is an important mathematical problem to which

calculus can make significant contributions. There are only a few general classes of

equations of the form f .x/ D 0 that we can solve exactly. These include linear

equations:

ax C b D 0; .a ¤ 0/ ) x D �
b

a

and quadratic equations:

ax
2
C bx C c D 0; .a ¤ 0/ ) x D

�b ˙
p

b2
� 4ac

2a
:

Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but

the formulas are very complicated. We usually solve these and most other equations

approximately by using numerical methods, often with the aid of a calculator or com-

puter.

In Section 1.4 we discussed the Bisection Method for approximating a root of an

equation f .x/ D 0. That method uses the Intermediate-Value Theorem and depends

only on the continuity of f and our ability to find an interval Œx1; x2� that must contain

the root because f .x1/ and f .x2/ have opposite signs. The method is rather slow; it

requires between three and four iterations to gain one significant figure of precision in

the root being approximated.

If we know that f is more than just continuous, we can devise better (i.e., faster)

methods for finding roots of f .x/ D 0. We study two such methods in this section:

(a) Fixed-Point Iteration, which looks for solutions of an equation of the form x D

f .x/. Such solutions are called fixed points of the function f:

(b) Newton’s Method, which looks for solutions of the equation f .x/ D 0 as fixed

points of the function g.x/ D x �
f .x/

f 0.x/
, that is, points x such that x D g.x/.

This method is usually very efficient, but it requires that f be differentiable.
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Like the Bisection Method, both of these methods require that we have at the outset a

rough idea of where a root can be found, and they generate sequences of approxima-

tions that get closer and closer to the root.

Discrete Maps and Fixed-Point Iteration
A discrete map is an equation of the form

xnC1 D f .xn/; for n D 0; 1; 2; : : : ;

which generates a sequence of values x1, x2, x3, : : : , from a given starting value x0. In

certain circumstances this sequence of numbers will converge to a limit,

r D limn!1 xn, in which case this limit will be a fixed point of f : r D f .r/.

(A thorough discussion of convergence of sequences can be found in Section 9.1. For

our purposes here, an intuitive understanding will suffice: limn!1 xn D r if jxn � r j

approaches 0 as n!1.)

For certain kinds of functions f; we can solve the equation f .r/ D r by starting

with an initial guess x0 and calculating subsequent values of the discrete map until

sufficient accuracy is achieved. This is the Method of Fixed-Point Iteration. Let us

begin by investigating a simple example:

E X A M P L E 1
Find a root of the equation cos x D 5x.

Solution This equation is of the form f .x/ D x, where f .x/ D 1
5

cos x. Since cos x

is close to 1 for x near 0, we see that 1
5

cos x will be close to 1
5

when x D 1
5

. This

suggests that a reasonable first guess at the fixed point is x0 D
1
5
D 0:2. The values of

Table 1.

n xn

0 0:2

1 0:196 013 32

2 0:196 170 16

3 0:196 164 05

4 0:196 164 29

5 0:196 164 28

6 0:196 164 28

subsequent approximations

x1 D
1

5
cos x0; x2 D

1

5
cos x1; x3 D

1

5
cos x2; : : :

are presented in Table 1. The root is 0:196 164 28 to 8 decimal places.

Why did the method used in Example 1 work? Will it work for any function f ‹

In order to answer these questions, examine the polygonal line in Figure 4.10. Starting

at x0 it goes vertically to the curve y D f .x/, the height there being x1. Then it goes

horizontally to the line y D x, meeting that line at a point whose x-coordinate must

therefore also be x1. Then the process repeats; the line goes vertically to the curve

y D f .x/ and horizontally to y D x, arriving at x D x2. The line continues in this

way, “spiralling” closer and closer to the intersection of y D f .x/ and y D x. Each

value of xn is closer to the fixed point r than the previous value.

Now consider the function f whose graph appears in Figure 4.11(a). If we try the

same method there, starting with x0, the polygonal line spirals outward, away from the

root, and the resulting values xn will not “converge” to the root as they did in Example

1. To see why the method works for the function in Figure 4.10 but not for the function

in Figure 4.11(a), observe the slopes of the two graphs y D f .x/ near the fixed point

r . Both slopes are negative, but in Figure 4.10 the absolute value of the slope is less

than 1 while the absolute value of the slope of f in Figure 4.11(a) is greater than 1.

Close consideration of the graphs should convince you that it is this fact that caused

the points xn to get closer to r in Figure 4.10 and farther from r in Figure 4.11(a).
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Figure 4.10 Iterations of xnC1 D f .xn/

“spiral” toward the fixed point
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Figure 4.11

(a) A function f for which the iterations

xnC1 D f .xn/ do not converge

(b) “Staircase” convergence to the fixed

point
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A third example, Figure 4.11(b), shows that the method can be expected to work

for functions whose graphs have positive slope near the fixed point r , provided that the

slope is less than 1. In this case the polygonal line forms a “staircase” rather than a

“spiral,” and the successive approximations xn increase toward the root if x0 < r and

decrease toward it if x0 > r .

Remark Note that if jf 0.x/j > 1 near a fixed point r of f , you may still be able to

find that fixed point by applying fixed-point iteration to f �1.x/. Evidently f �1.r/ D

r if and only if r D f .r/.

The following theorem guarantees that the method of fixed-point iteration will

work for a particular class of functions.

T H E O R E M

1

A fixed-point theorem

Suppose that f is defined on an interval I D Œa; b� and satisfies the following two

conditions:

(i) f .x/ belongs to I whenever x belongs to I and

(ii) there exists a constant K with 0 < K < 1 such that for every u and v in I;

jf .u/� f .v/j � Kju� vj:
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Then f has a unique fixed point r in I; that is, f .r/ D r , and starting with any number

x0 in I; the iterates

x1 D f .x0/; x2 D f .x1/; : : : converge to r .

You are invited to prove this theorem by a method outlined in Exercises 26 and 27 at

the end of this section.

E X A M P L E 2
Show that if 0 < k < 1, then f .x/ D k cos x satisfies the con-

ditions of Theorem 1 on the interval I D Œ0; 1�. Observe that if

k D 1=5, the fixed point is that calculated in Example 1 above.

Solution Since 0 < k < 1, f maps I into I . If u and v are in I , then the Mean-Value

Theorem says there exists c between u and v such that

jf .u/� f .v/j D j.u � v/f
0
.c/j D kju� vj sin c � kju� vj:

Thus, the conditions of Theorem 1 are satisfied and f has a fixed point r in Œ0; 1�.

Of course, even if k � 1, f may still have a fixed point in I locatable by iteration,

provided the slope of f near that point is less than 1.

Newton’s Method
We want to find a root of the equation f .x/ D 0, that is, a number r such that f .r/ D

0. Such a number is also called a zero of the function f: If f is differentiable near the

root, then tangent lines can be used to produce a sequence of approximations to the root

that approaches the root quite quickly. The idea is as follows (see Figure 4.12). Make an

initial guess at the root, say x D x0. Draw the tangent line to y D f .x/ at .x0; f .x0//,

and find x1, the x-intercept of this tangent line. Under certain circumstances x1 will

be closer to the root than x0 was. The process can be repeated over and over to get

numbers x2, x3, : : : , getting closer and closer to the root r . The number xnC1 is the

x-intercept of the tangent line to y D f .x/ at .xn; f .xn//.

Figure 4.12

y

x

r

y D f .x/

x3 x2 x1 x0

The tangent line to y D f .x/ at x D x0 has equation

y D f .x0/C f
0
.x0/.x � x0/:
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A third example, Figure 4.11(b), shows that the method can be expected to work

for functions whose graphs have positive slope near the fixed point r , provided that the

slope is less than 1. In this case the polygonal line forms a “staircase” rather than a

“spiral,” and the successive approximations xn increase toward the root if x0 < r and

decrease toward it if x0 > r .

Remark Note that if jf 0.x/j > 1 near a fixed point r of f , you may still be able to

find that fixed point by applying fixed-point iteration to f �1.x/. Evidently f �1.r/ D

r if and only if r D f .r/.

The following theorem guarantees that the method of fixed-point iteration will

work for a particular class of functions.

T H E O R E M

1

A fixed-point theorem

Suppose that f is defined on an interval I D Œa; b� and satisfies the following two

conditions:

(i) f .x/ belongs to I whenever x belongs to I and

(ii) there exists a constant K with 0 < K < 1 such that for every u and v in I;

jf .u/� f .v/j � Kju� vj:
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Then f has a unique fixed point r in I; that is, f .r/ D r , and starting with any number

x0 in I; the iterates

x1 D f .x0/; x2 D f .x1/; : : : converge to r .

You are invited to prove this theorem by a method outlined in Exercises 26 and 27 at

the end of this section.

E X A M P L E 2
Show that if 0 < k < 1, then f .x/ D k cos x satisfies the con-

ditions of Theorem 1 on the interval I D Œ0; 1�. Observe that if

k D 1=5, the fixed point is that calculated in Example 1 above.

Solution Since 0 < k < 1, f maps I into I . If u and v are in I , then the Mean-Value

Theorem says there exists c between u and v such that

jf .u/� f .v/j D j.u � v/f
0
.c/j D kju� vj sin c � kju� vj:

Thus, the conditions of Theorem 1 are satisfied and f has a fixed point r in Œ0; 1�.

Of course, even if k � 1, f may still have a fixed point in I locatable by iteration,

provided the slope of f near that point is less than 1.

Newton’s Method
We want to find a root of the equation f .x/ D 0, that is, a number r such that f .r/ D

0. Such a number is also called a zero of the function f: If f is differentiable near the

root, then tangent lines can be used to produce a sequence of approximations to the root

that approaches the root quite quickly. The idea is as follows (see Figure 4.12). Make an

initial guess at the root, say x D x0. Draw the tangent line to y D f .x/ at .x0; f .x0//,

and find x1, the x-intercept of this tangent line. Under certain circumstances x1 will

be closer to the root than x0 was. The process can be repeated over and over to get

numbers x2, x3, : : : , getting closer and closer to the root r . The number xnC1 is the

x-intercept of the tangent line to y D f .x/ at .xn; f .xn//.

Figure 4.12
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The tangent line to y D f .x/ at x D x0 has equation

y D f .x0/C f
0
.x0/.x � x0/:
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Since the point .x1; 0/ lies on this line, we have 0 D f .x0/Cf
0.x0/.x1�x0/. Hence,

x1 D x0 �
f .x0/

f 0.x0/
:

Similar formulas produce x2 from x1, then x3 from x2, and so on. The formula pro-

ducing xnC1 from xn is the discrete map xnC1 D g.xn/, where g.x/ D x �
f .x/

f 0.x/
.

That is,

xnC1 D xn �
f .xn/

f 0.xn/
;

which is known as the Newton’s Method formula. If r is a fixed point of g then

f .r/ D 0 and r is a zero of f . We usually use a calculator or computer to calculate

the successive approximations x1, x2, x3, : : : ; and observe whether these numbers

appear to converge to a limit. Convergence will not occur if the graph of f has a

horizontal or vertical tangent at any of the numbers in the sequence. However, if

limn!1 xn D r exists, and if f=f 0 is continuous near r , then r must be a zero of f:

This method is known as Newton’s Method or The Newton-Raphson Method. Since

Newton’s Method is just a special case of fixed-point iteration applied to the function

g.x/ defined above, the general properties of fixed-point iteration apply to Newton’s

Method as well.

E X A M P L E 3
Use Newton’s Method to find the only real root of the equation

x3
� x � 1 D 0 correct to 10 decimal places.

Solution We have f .x/ D x3
� x � 1 and f 0

.x/ D 3x
2
� 1. Since f is continuous

and since f .1/ D �1 and f .2/ D 5, the equation has a root in the interval Œ1; 2�.

Figure 4.13 shows that the equation has only one root to the right of x D 0. Let us
y

x

y D x3

y D x C 1

Figure 4.13 The graphs of x3 and x C 1

meet only once to the right of x D 0, and

that meeting is between 1 and 2

make the initial guess x0 D 1:5. The Newton’s Method formula here is

xnC1 D xn �
x3

n � xn � 1

3x2
n � 1

D

2x3
n C 1

3x2
n � 1

;

so that, for example, the approximation x1 is given by

x1 D
2.1:5/

3
C 1

3.1:5/2 � 1
� 1:347 826 : : : :

The values of x1, x2, x3, : : : are given in Table 2.

Table 2.

n xn f .xn/

0 1:5 0:875 000 000 000 � � �

1 1:347 826 086 96 � � � 0:100 682 173 091 � � �

2 1:325 200 398 95 � � � 0:002 058 361 917 � � �

3 1:324 718 174 00 � � � 0:000 000 924 378 � � �

4 1:324 717 957 24 � � � 0:000 000 000 000 � � �

5 1:324 717 957 24 � � �

The values in Table 2 were obtained with a scientific calculator. Evidently r D

1:324 717 957 2 correctly rounded to 10 decimal places.

Observe the behaviour of the numbers xn. By the third iteration, x3, we have appar-

ently achieved a precision of 6 decimal places, and by x4 over 10 decimal places. It is

characteristic of Newton’s Method that when you begin to get close to the root the con-

vergence can be very rapid. Compare these results with those obtained for the same

equation by the Bisection Method in Example 12 of Section 1.4; there we achieved

only 3 decimal place precision after 11 iterations.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 227 October 15, 2016

SECTION 4.2: Finding Roots of Equations 227

E X A M P L E 4
Solve the equation x3

D cos x to 11 decimal places.

Solution We are looking for the x-coordinate r of the intersection of the curves y D

x
3 and y D cos x. From Figure 4.14 it appears that the curves intersect slightly to the

left of x D 1. Let us start with the guess x0 D 0:8. If f .x/ D x3
� cos x, then

f 0.x/ D 3x2
C sin x. The Newton’s Method formula for this function is

y

x

y D cos x

y D x3

r 1

Figure 4.14 Solving x3
D cosx

xnC1 D xn �
x3

n � cos xn

3x2
n C sin xn

D

2x3
n C xn sin xn C cos xn

3x2
n C sinxn

:

The approximations x1, x2, : : : are given in Table 3.

Table 3.

n xn f .xn/

0 0:8 �0:184 706 709 347 � � �

1 0:870 034 801 135 � � � 0:013 782 078 762 � � �

2 0:865 494 102 425 � � � 0:000 006 038 051 � � �

3 0:865 474 033 493 � � � 0:000 000 001 176 � � �

4 0:865 474 033 102 � � � 0:000 000 000 000 � � �

5 0:865 474 033 102 � � �

The two curves intersect at x D 0:865 474 033 10, rounded to 11 decimal places.

Remark Example 4 shows how useful a sketch can be for determining an initial guess

x0. Even a rough sketch of the graph of y D f .x/ can show you how many roots the

equation f .x/ D 0 has and approximately where they are. Usually, the closer the

initial approximation is to the actual root, the smaller the number of iterations needed

to achieve the desired precision. Similarly, for an equation of the form g.x/ D h.x/,

making a sketch of the graphs of g and h (on the same set of axes) can suggest starting

approximations for any intersection points. In either case, you can then apply Newton’s

Method to improve the approximations.

Remark When using Newton’s Method to solve an equation that is of the form

g.x/ D h.x/ (such as the one in Example 4), we must rewrite the equation in the form

f .x/ D 0 and apply Newton’s Method to f: Usually we just use f .x/ D g.x/�h.x/,

although f .x/ D
�

g.x/=h.x/
�

� 1 is also a possibility.

Remark If your calculator is programmable, you should learn how to program the

Newton’s Method formula for a given equation so that generating new iterations re-

quires pressing only a few buttons. If your calculator has graphing capabilities, you

can use them to locate a good initial guess.

Newton’s Method does not always work as well as it does in the preceding exam-

ples. If the first derivative f 0 is very small near the root, or if the second derivative f 00

is very large near the root, a single iteration of the formula can take us from quite close

y

x

x0

x2 x1r

y D f .x/

Figure 4.15 Here the Newton’s Method

iterations do not converge to the root

to the root to quite far away. Figure 4.15 illustrates this possibility. (Also see Exercises

21 and 22 at the end of this section.)

Before you try to use Newton’s Method to find a real root of a funcion f; you

should make sure that a real root actually exists. If you use the method starting with a

real initial guess, but the function has no real root nearby, the successive “approxima-

tions” can exhibit strange behaviour. The following example illustrates this for a very

simple function.

E X A M P L E 5
Consider the function f .x/ D 1C x2. Clearly f has no real roots

though it does have complex roots x D ˙i . The Newton’s Method
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Since the point .x1; 0/ lies on this line, we have 0 D f .x0/Cf
0.x0/.x1�x0/. Hence,

x1 D x0 �
f .x0/

f 0.x0/
:

Similar formulas produce x2 from x1, then x3 from x2, and so on. The formula pro-

ducing xnC1 from xn is the discrete map xnC1 D g.xn/, where g.x/ D x �
f .x/

f 0.x/
.

That is,

xnC1 D xn �
f .xn/

f 0.xn/
;

which is known as the Newton’s Method formula. If r is a fixed point of g then

f .r/ D 0 and r is a zero of f . We usually use a calculator or computer to calculate

the successive approximations x1, x2, x3, : : : ; and observe whether these numbers

appear to converge to a limit. Convergence will not occur if the graph of f has a

horizontal or vertical tangent at any of the numbers in the sequence. However, if

limn!1 xn D r exists, and if f=f 0 is continuous near r , then r must be a zero of f:

This method is known as Newton’s Method or The Newton-Raphson Method. Since

Newton’s Method is just a special case of fixed-point iteration applied to the function

g.x/ defined above, the general properties of fixed-point iteration apply to Newton’s

Method as well.

E X A M P L E 3
Use Newton’s Method to find the only real root of the equation

x3
� x � 1 D 0 correct to 10 decimal places.

Solution We have f .x/ D x3
� x � 1 and f 0

.x/ D 3x
2
� 1. Since f is continuous

and since f .1/ D �1 and f .2/ D 5, the equation has a root in the interval Œ1; 2�.

Figure 4.13 shows that the equation has only one root to the right of x D 0. Let us
y

x

y D x3

y D x C 1

Figure 4.13 The graphs of x3 and x C 1

meet only once to the right of x D 0, and

that meeting is between 1 and 2

make the initial guess x0 D 1:5. The Newton’s Method formula here is

xnC1 D xn �
x3

n � xn � 1

3x2
n � 1

D

2x3
n C 1

3x2
n � 1

;

so that, for example, the approximation x1 is given by

x1 D
2.1:5/

3
C 1

3.1:5/2 � 1
� 1:347 826 : : : :

The values of x1, x2, x3, : : : are given in Table 2.

Table 2.

n xn f .xn/

0 1:5 0:875 000 000 000 � � �

1 1:347 826 086 96 � � � 0:100 682 173 091 � � �

2 1:325 200 398 95 � � � 0:002 058 361 917 � � �

3 1:324 718 174 00 � � � 0:000 000 924 378 � � �

4 1:324 717 957 24 � � � 0:000 000 000 000 � � �

5 1:324 717 957 24 � � �

The values in Table 2 were obtained with a scientific calculator. Evidently r D

1:324 717 957 2 correctly rounded to 10 decimal places.

Observe the behaviour of the numbers xn. By the third iteration, x3, we have appar-

ently achieved a precision of 6 decimal places, and by x4 over 10 decimal places. It is

characteristic of Newton’s Method that when you begin to get close to the root the con-

vergence can be very rapid. Compare these results with those obtained for the same

equation by the Bisection Method in Example 12 of Section 1.4; there we achieved

only 3 decimal place precision after 11 iterations.
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E X A M P L E 4
Solve the equation x3

D cos x to 11 decimal places.

Solution We are looking for the x-coordinate r of the intersection of the curves y D

x
3 and y D cos x. From Figure 4.14 it appears that the curves intersect slightly to the

left of x D 1. Let us start with the guess x0 D 0:8. If f .x/ D x3
� cos x, then

f 0.x/ D 3x2
C sin x. The Newton’s Method formula for this function is

y
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y D x3

r 1

Figure 4.14 Solving x3
D cosx

xnC1 D xn �
x3

n � cos xn

3x2
n C sin xn

D

2x3
n C xn sin xn C cos xn

3x2
n C sinxn

:

The approximations x1, x2, : : : are given in Table 3.

Table 3.

n xn f .xn/

0 0:8 �0:184 706 709 347 � � �

1 0:870 034 801 135 � � � 0:013 782 078 762 � � �

2 0:865 494 102 425 � � � 0:000 006 038 051 � � �

3 0:865 474 033 493 � � � 0:000 000 001 176 � � �

4 0:865 474 033 102 � � � 0:000 000 000 000 � � �

5 0:865 474 033 102 � � �

The two curves intersect at x D 0:865 474 033 10, rounded to 11 decimal places.

Remark Example 4 shows how useful a sketch can be for determining an initial guess

x0. Even a rough sketch of the graph of y D f .x/ can show you how many roots the

equation f .x/ D 0 has and approximately where they are. Usually, the closer the

initial approximation is to the actual root, the smaller the number of iterations needed

to achieve the desired precision. Similarly, for an equation of the form g.x/ D h.x/,

making a sketch of the graphs of g and h (on the same set of axes) can suggest starting

approximations for any intersection points. In either case, you can then apply Newton’s

Method to improve the approximations.

Remark When using Newton’s Method to solve an equation that is of the form

g.x/ D h.x/ (such as the one in Example 4), we must rewrite the equation in the form

f .x/ D 0 and apply Newton’s Method to f: Usually we just use f .x/ D g.x/�h.x/,

although f .x/ D
�

g.x/=h.x/
�

� 1 is also a possibility.

Remark If your calculator is programmable, you should learn how to program the

Newton’s Method formula for a given equation so that generating new iterations re-

quires pressing only a few buttons. If your calculator has graphing capabilities, you

can use them to locate a good initial guess.

Newton’s Method does not always work as well as it does in the preceding exam-

ples. If the first derivative f 0 is very small near the root, or if the second derivative f 00

is very large near the root, a single iteration of the formula can take us from quite close
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Figure 4.15 Here the Newton’s Method

iterations do not converge to the root

to the root to quite far away. Figure 4.15 illustrates this possibility. (Also see Exercises

21 and 22 at the end of this section.)

Before you try to use Newton’s Method to find a real root of a funcion f; you

should make sure that a real root actually exists. If you use the method starting with a

real initial guess, but the function has no real root nearby, the successive “approxima-

tions” can exhibit strange behaviour. The following example illustrates this for a very

simple function.

E X A M P L E 5
Consider the function f .x/ D 1C x2. Clearly f has no real roots

though it does have complex roots x D ˙i . The Newton’s Method
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formula for f is

xnC1 D xn �
1C x2

n

2xn

D

x2
n � 1

2xn

:

If we start with a real guess x0 D 2, iterate this formula 20,000 times, and plot the

resulting points .n; xn/, we obtain Figure 4.16, which was done using a Maple proce-

dure. It is clear from this plot that not only do the iterations not converge (as one might

otherwise expect), but they do not diverge to 1 or �1, and they are not periodic

either. This phenomenon is known as chaos.

Figure 4.16 Plot of 20,000 points .n; xn/

for Example 5
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A definitive characteristic of this phenomenon is sensitivity to initial conditions.

To demonstrate this sensitivity in the case at hand we make a change of variables. Let

yn D
1

1C x2
n

;

then the Newton’s Method formula for f becomes

ynC1 D 4yn.1 � yn/;

(see Exercise 24), which is a special case of a discrete map called the logistic map.

It represents one of the best-known and simplest examples of chaos. If, for example,

yn D sin2
.un/, for n D 0; 1; 2; : : : ; then it follows (see Exercise 25 below) that

un D 2
n
u0. Unless u0 is a rational multiple of � , it follows that two different choices

of u0 will lead to differences in the resulting values of un that grow exponentially with

n. In Exercise 25 it is shown that this sensitivity is carried through to the first order in

xn.

Remark The above example does not imply that Newton’s Method cannot be used to

find complex roots; the formula simply cannot escape from the real line if a real initial

guess is used. To accomodate a complex initial guess, z0 D a0Cib0, we can substitute,

zn D anC ibn into the complex version of Newton’s Method formula znC1 D
z2

n � 1

2zn
(see Appendix I for a discussion of complex arithmetic) to get the following coupled

equations:

anC1 D
a3

n C an.b
2
n � 1/

2.a2
n C b

2
n/

bnC1 D
b3

n C bn.a
2
n C 1/

2.a2
n C b

2
n/

:

With initial guess z0 D 1 C i , the next six members of the sequence of complex

numbers (in 14-figure precision) become

z1 D 0:250 000 000 000 00C i 0:750 000 000 000 00

z2 D �0:075 000 000 000 00C i 0:975 000 000 000 00

z3 D 0:001 715 686 274 51C i 0:997 303 921 568 63

z4 D �0:000 004 641 846 27C i 1:000 002 160 490 67

z5 D �0:000 000 000 010 03C i 0:999 999 999 991 56

z6 D 0:000 000 000 000 00C i 1:000 000 000 000 00
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converging to the rootCi . For an initial guess, 1� i , the resulting sequence converges

as rapidly to the root �i . Note that for the real initial guess z0 D 0 C i0, neither a1

nor b1 is defined, so the process fails. This corresponds to the fact that 1C x2 has a

horizontal tangent y D 1 at .0; 1/, and this tangent has no finite x-intercept.

The following theorem gives sufficient conditions for the Newton approximations

to converge to a root r of the equation f .x/ D 0 if the initial guess x0 is sufficiently

close to that root.

T H E O R E M

2

Error bounds for Newton’s Method

Suppose that f , f 0, and f 00 are continuous on an interval I containing xn, xnC1, and

a root x D r of f .x/ D 0. Suppose also that there exist constants K > 0 and L > 0

such that for all x in I we have

(i) jf 00.x/j � K and

(ii) jf 0.x/j � L.

Then

(a) jxnC1 � r j �
K

2L
jxnC1 � xnj

2 and

(b) jxnC1 � r j �
K

2L
jxn � r j

2.

Conditions (i) and (ii) assert that near r the slope of y D f .x/ is not too small in size

and does not change too rapidly. If K=.2L/ < 1, the theorem shows that xn converges

quickly to r once n becomes large enough that jxn � r j < 1.

The proof of Theorem 2 depends on the Mean-Value Theorem. We will not give

it since the theorem is of little practical use. In practice, we calculate successive ap-

proximations using Newton’s formula and observe whether they seem to converge to a

limit. If they do, and if the values of f at these approximations approach 0, we can be

confident that we have located a root.

“Solve” Routines
C M Many of the more advanced models of scientific calculators and most computer-based

mathematics software have built-in routines for solving general equations numerically

or, in a few cases, symbolically. These “Solve” routines assume continuity of the left

and right sides of the given equations and often require the user to specify an interval

in which to search for the root or an initial guess at the value of the root, or both.

Typically the calculator or computer software also has graphing capabilities, and you

are expected to use them to get an idea of how many roots the equation has and roughly

where they are located before invoking the solving routines. It may also be possible

to specify a tolerance on the difference of the two sides of the equation. For instance,

if we want a solution to the equation f .x/ D 0, it may be more important to us to be

sure that an approximate solution Ox satisfies jf . Ox/j < 0:0001 than it is to be sure that

Ox is within any particular distance of the actual root.

The methods used by the solve routines vary from one calculator or software pack-

age to another and are frequently very sophisticated, making use of numerical differ-

entiation and other techniques to find roots very quickly, even when the search interval

is large. If you have an advanced scientific calculator and/or computer software with

similar capabilities, it is well worth your while to read the manuals that describe how

to make effective use of your hardware/software for solving equations. Applications of

mathematics to solving “real-world” problems frequently require finding approximate

solutions of equations that are intractable by exact methods.
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formula for f is

xnC1 D xn �
1C x2

n

2xn

D

x2
n � 1

2xn

:

If we start with a real guess x0 D 2, iterate this formula 20,000 times, and plot the

resulting points .n; xn/, we obtain Figure 4.16, which was done using a Maple proce-

dure. It is clear from this plot that not only do the iterations not converge (as one might

otherwise expect), but they do not diverge to 1 or �1, and they are not periodic

either. This phenomenon is known as chaos.

Figure 4.16 Plot of 20,000 points .n; xn/

for Example 5
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1
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A definitive characteristic of this phenomenon is sensitivity to initial conditions.

To demonstrate this sensitivity in the case at hand we make a change of variables. Let

yn D
1

1C x2
n

;

then the Newton’s Method formula for f becomes

ynC1 D 4yn.1 � yn/;

(see Exercise 24), which is a special case of a discrete map called the logistic map.

It represents one of the best-known and simplest examples of chaos. If, for example,

yn D sin2
.un/, for n D 0; 1; 2; : : : ; then it follows (see Exercise 25 below) that

un D 2
n
u0. Unless u0 is a rational multiple of � , it follows that two different choices

of u0 will lead to differences in the resulting values of un that grow exponentially with

n. In Exercise 25 it is shown that this sensitivity is carried through to the first order in

xn.

Remark The above example does not imply that Newton’s Method cannot be used to

find complex roots; the formula simply cannot escape from the real line if a real initial

guess is used. To accomodate a complex initial guess, z0 D a0Cib0, we can substitute,

zn D anC ibn into the complex version of Newton’s Method formula znC1 D
z2

n � 1

2zn
(see Appendix I for a discussion of complex arithmetic) to get the following coupled

equations:

anC1 D
a3

n C an.b
2
n � 1/

2.a2
n C b

2
n/

bnC1 D
b3

n C bn.a
2
n C 1/

2.a2
n C b

2
n/

:

With initial guess z0 D 1 C i , the next six members of the sequence of complex

numbers (in 14-figure precision) become

z1 D 0:250 000 000 000 00C i 0:750 000 000 000 00

z2 D �0:075 000 000 000 00C i 0:975 000 000 000 00

z3 D 0:001 715 686 274 51C i 0:997 303 921 568 63

z4 D �0:000 004 641 846 27C i 1:000 002 160 490 67

z5 D �0:000 000 000 010 03C i 0:999 999 999 991 56

z6 D 0:000 000 000 000 00C i 1:000 000 000 000 00
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converging to the rootCi . For an initial guess, 1� i , the resulting sequence converges

as rapidly to the root �i . Note that for the real initial guess z0 D 0 C i0, neither a1

nor b1 is defined, so the process fails. This corresponds to the fact that 1C x2 has a

horizontal tangent y D 1 at .0; 1/, and this tangent has no finite x-intercept.

The following theorem gives sufficient conditions for the Newton approximations

to converge to a root r of the equation f .x/ D 0 if the initial guess x0 is sufficiently

close to that root.

T H E O R E M

2

Error bounds for Newton’s Method

Suppose that f , f 0, and f 00 are continuous on an interval I containing xn, xnC1, and

a root x D r of f .x/ D 0. Suppose also that there exist constants K > 0 and L > 0

such that for all x in I we have

(i) jf 00.x/j � K and

(ii) jf 0.x/j � L.

Then

(a) jxnC1 � r j �
K

2L
jxnC1 � xnj

2 and

(b) jxnC1 � r j �
K

2L
jxn � r j

2.

Conditions (i) and (ii) assert that near r the slope of y D f .x/ is not too small in size

and does not change too rapidly. If K=.2L/ < 1, the theorem shows that xn converges

quickly to r once n becomes large enough that jxn � r j < 1.

The proof of Theorem 2 depends on the Mean-Value Theorem. We will not give

it since the theorem is of little practical use. In practice, we calculate successive ap-

proximations using Newton’s formula and observe whether they seem to converge to a

limit. If they do, and if the values of f at these approximations approach 0, we can be

confident that we have located a root.

“Solve” Routines
C M Many of the more advanced models of scientific calculators and most computer-based

mathematics software have built-in routines for solving general equations numerically

or, in a few cases, symbolically. These “Solve” routines assume continuity of the left

and right sides of the given equations and often require the user to specify an interval

in which to search for the root or an initial guess at the value of the root, or both.

Typically the calculator or computer software also has graphing capabilities, and you

are expected to use them to get an idea of how many roots the equation has and roughly

where they are located before invoking the solving routines. It may also be possible

to specify a tolerance on the difference of the two sides of the equation. For instance,

if we want a solution to the equation f .x/ D 0, it may be more important to us to be

sure that an approximate solution Ox satisfies jf . Ox/j < 0:0001 than it is to be sure that

Ox is within any particular distance of the actual root.

The methods used by the solve routines vary from one calculator or software pack-

age to another and are frequently very sophisticated, making use of numerical differ-

entiation and other techniques to find roots very quickly, even when the search interval

is large. If you have an advanced scientific calculator and/or computer software with

similar capabilities, it is well worth your while to read the manuals that describe how

to make effective use of your hardware/software for solving equations. Applications of

mathematics to solving “real-world” problems frequently require finding approximate

solutions of equations that are intractable by exact methods.
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E X E R C I S E S 4.2

Use fixed-point iteration to solve the equations in Exercises 1–6.

Obtain 5 decimal place precision.

C 1. 2x D e�x , start with x0 D 0:3

C 2. 1C 1
4

sinx D x 3.C cos
x

3
D x

C 4. .x C 9/1=3
D x 5.C

1

2C x2
D x

C 6. Solve x3
C 10x � 10 D 0 by rewriting it in the form

1 �
1

10
x

3
D x.

In Exercises 7–16, use Newton’s Method to solve the given

equations to the precision permitted by your calculator.

C 7. Find
p

2 by solving x2
� 2 D 0.

C 8. Find
p

3 by solving x2
� 3 D 0.

C 9. Find the root of x3
C 2x � 1 D 0 between 0 and 1.

C 10. Find the root of x3
C 2x2

� 2 D 0 between 0 and 1.

C 11. Find the two roots of x4
� 8x2

� x C 16 D 0 in Œ1; 3�.

C 12. Find the three roots of x3
C 3x2

� 1 D 0 in Œ�3; 1�.

C 13. Solve sinx D 1 � x. A sketch can help you make a guess x0.

C 14. Solve cosx D x2. How many roots are there?

C 15. How many roots does the equation tanx D x have? Find the

one between �=2 and 3�=2.

C 16. Solve
1

1C x2
D

p

x by rewriting it .1C x2
/
p

x � 1 D 0.

C 17. If your calculator has a built-in Solve routine, or if you use

computer software with such a routine, use it to solve the

equations in Exercises 7–16.

Find the maximum and minimum values of the functions in

Exercises 18–19.

C 18.
sinx

1C x2
19.C

cosx

1C x2

20. Let f .x/ D x2. The equation f .x/ D 0 clearly has solution

x D 0. Find the Newton’s Method iterations x1, x2, and x3,

starting with x0 D 1.

(a) What is xn?

(b) How many iterations are needed to find the root with error

less than 0:0001 in absolute value?

(c) How many iterations are needed to get an approximation

xn for which jf .xn/j < 0:0001?

(d) Why do the Newton’s Method iterations converge more

slowly here than in the examples done in this section?

21. (Oscillation) Apply Newton’s Method to

f .x/ D

(p

x if x � 0,
p

�x if x < 0,

starting with the initial guess x0 D a > 0. Calculate x1 and

x2. What happens? (Make a sketch.) If you ever observed this

behaviour when you were using Newton’s Method to find a

root of an equation, what would you do next?

22. (Divergent oscillations) Apply Newton’s Method to

f .x/ D x1=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

23. (Convergent oscillations) Apply Newton’s Method to find

f .x/ D x2=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

24. Verify that the Newton’s Method map for 1C x2, namely

xnC1 D xn �
1C x2

n

2xn
, transforms into the logistic map

ynC1 D 4yn.1� yn/ under the transformation yn D
1

1C x2
n

.

25.A Sensitivity to initial conditions is regarded as a definitive

property of chaos. If the initial values of two sequences differ,

and the differences between the two sequences tends to grow

exponentially, the map is said to be sensitive to initial values.

Growing exponentially in this sense does not require that each

sequence grow exponentially on its own. In fact, for chaos the

growth should only be exponential in the differential. More-

over, the growth only needs to be exponential for large n.

a) Show that the logistic map is sensitive to initial conditions

by making the substitution yj D sin2
uj and taking the

differential, given that u0 is not an integral multiple of � .

b) Use part (a) to show that the Newton’s Method map for

1C x2 is also sensitive to initial conditions. Make the

reasonable assumption, based on Figure 4.16, that the

iterates neither converge nor diverge.

Exercises 26–27 constitute a proof of Theorem 1.

26.A Condition (ii) of Theorem 1 implies that f is continuous on

I D Œa; b�. Use condition (i) to show that f has a unique fixed

point r on I . Hint: Apply the Intermediate-Value Theorem to

g.x/ D f .x/ � x on Œa; b�.

27.A Use condition (ii) of Theorem 1 and mathematical induction to

show that jxn � r j � K
n
jx0 � r j. Since 0 < K < 1, we know

that Kn
! 0 as n!1. This shows that limn!1 xn D r .

4.3 Indeterminate Forms
In Section 2.5 we showed that

lim
x!0

sinx

x
D 1:

We could not readily see this by substituting x D 0 into the function .sin x/=x because

both sinx and x are zero at x D 0. We call .sin x/=x an indeterminate form of type

Œ0=0� at x D 0. The limit of such an indeterminate form can be any number. For
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instance, each of the quotients kx=x, x=x3, and x3=x2 is an indeterminate form of

type Œ0=0� at x D 0, but

lim
x!0

kx

x
D k; lim

x!0

x

x3
D1; lim

x!0

x3

x2
D 0:

There are other types of indeterminate forms. Table 4 lists them together with an

example of each type.

Table 4. Types of indeterminate forms

Type Example

Œ0=0� lim
x!0

sin x

x

Œ1=1� lim
x!0

ln.1=x2/

cot.x2/

Œ0 � 1� lim
x!0C

x ln
1

x

Œ1�1� lim
x!.�=2/�

 

tan x �
1

� � 2x

!

Œ00� lim
x!0C

x
x

Œ10� lim
x!.�=2/�

.tan x/
cos x

Œ11� lim
x!1

 

1C
1

x

!x

Indeterminate forms of type Œ0=0� are the most common. You can evaluate many in-

determinate forms of type Œ0=0� with simple algebra, typically by cancelling common

factors. Examples can be found in Sections 1.2 and 1.3. We will now develop another

method called l’Hôpital’s Rules1 for evaluating limits of indeterminate forms of the

types Œ0=0� and Œ1=1�. The other types of indeterminate forms can usually be re-

duced to one of these two by algebraic manipulation and the taking of logarithms. In

Section 4.10 we will discover yet another method for evaluating limits of type Œ0=0�.

l’Hôpital’s Rules

T H E O R E M

3

The first l’Hôpital Rule

Suppose the functions f and g are differentiable on the interval .a; b/, and g0
.x/ ¤ 0

there. Suppose also that

(i) lim
x!aC

f .x/ D lim
x!aC

g.x/ D 0 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Similar results hold if every occurrence of limx!aC is replaced by limx!b� or even

limx!c where a < c < b. The cases a D �1 and b D 1 are also allowed.

1 The Marquis de l’Hôpital (1661–1704), for whom these rules are named, published the first

textbook on calculus. The circumflex ( ^ ) did not come into use in the French language until

after the French Revolution. The Marquis would have written his name “l’Hospital.”
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E X E R C I S E S 4.2

Use fixed-point iteration to solve the equations in Exercises 1–6.

Obtain 5 decimal place precision.

C 1. 2x D e�x , start with x0 D 0:3

C 2. 1C 1
4

sinx D x 3.C cos
x

3
D x

C 4. .x C 9/1=3
D x 5.C

1

2C x2
D x

C 6. Solve x3
C 10x � 10 D 0 by rewriting it in the form

1 �
1

10
x

3
D x.

In Exercises 7–16, use Newton’s Method to solve the given

equations to the precision permitted by your calculator.

C 7. Find
p

2 by solving x2
� 2 D 0.

C 8. Find
p

3 by solving x2
� 3 D 0.

C 9. Find the root of x3
C 2x � 1 D 0 between 0 and 1.

C 10. Find the root of x3
C 2x2

� 2 D 0 between 0 and 1.

C 11. Find the two roots of x4
� 8x2

� x C 16 D 0 in Œ1; 3�.

C 12. Find the three roots of x3
C 3x2

� 1 D 0 in Œ�3; 1�.

C 13. Solve sinx D 1 � x. A sketch can help you make a guess x0.

C 14. Solve cosx D x2. How many roots are there?

C 15. How many roots does the equation tanx D x have? Find the

one between �=2 and 3�=2.

C 16. Solve
1

1C x2
D

p

x by rewriting it .1C x2
/
p

x � 1 D 0.

C 17. If your calculator has a built-in Solve routine, or if you use

computer software with such a routine, use it to solve the

equations in Exercises 7–16.

Find the maximum and minimum values of the functions in

Exercises 18–19.

C 18.
sinx

1C x2
19.C

cosx

1C x2

20. Let f .x/ D x2. The equation f .x/ D 0 clearly has solution

x D 0. Find the Newton’s Method iterations x1, x2, and x3,

starting with x0 D 1.

(a) What is xn?

(b) How many iterations are needed to find the root with error

less than 0:0001 in absolute value?

(c) How many iterations are needed to get an approximation

xn for which jf .xn/j < 0:0001?

(d) Why do the Newton’s Method iterations converge more

slowly here than in the examples done in this section?

21. (Oscillation) Apply Newton’s Method to

f .x/ D

(p

x if x � 0,
p

�x if x < 0,

starting with the initial guess x0 D a > 0. Calculate x1 and

x2. What happens? (Make a sketch.) If you ever observed this

behaviour when you were using Newton’s Method to find a

root of an equation, what would you do next?

22. (Divergent oscillations) Apply Newton’s Method to

f .x/ D x1=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

23. (Convergent oscillations) Apply Newton’s Method to find

f .x/ D x2=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

24. Verify that the Newton’s Method map for 1C x2, namely

xnC1 D xn �
1C x2

n

2xn
, transforms into the logistic map

ynC1 D 4yn.1� yn/ under the transformation yn D
1

1C x2
n

.

25.A Sensitivity to initial conditions is regarded as a definitive

property of chaos. If the initial values of two sequences differ,

and the differences between the two sequences tends to grow

exponentially, the map is said to be sensitive to initial values.

Growing exponentially in this sense does not require that each

sequence grow exponentially on its own. In fact, for chaos the

growth should only be exponential in the differential. More-

over, the growth only needs to be exponential for large n.

a) Show that the logistic map is sensitive to initial conditions

by making the substitution yj D sin2
uj and taking the

differential, given that u0 is not an integral multiple of � .

b) Use part (a) to show that the Newton’s Method map for

1C x2 is also sensitive to initial conditions. Make the

reasonable assumption, based on Figure 4.16, that the

iterates neither converge nor diverge.

Exercises 26–27 constitute a proof of Theorem 1.

26.A Condition (ii) of Theorem 1 implies that f is continuous on

I D Œa; b�. Use condition (i) to show that f has a unique fixed

point r on I . Hint: Apply the Intermediate-Value Theorem to

g.x/ D f .x/ � x on Œa; b�.

27.A Use condition (ii) of Theorem 1 and mathematical induction to

show that jxn � r j � K
n
jx0 � r j. Since 0 < K < 1, we know

that Kn
! 0 as n!1. This shows that limn!1 xn D r .

4.3 Indeterminate Forms
In Section 2.5 we showed that

lim
x!0

sinx

x
D 1:

We could not readily see this by substituting x D 0 into the function .sin x/=x because

both sinx and x are zero at x D 0. We call .sin x/=x an indeterminate form of type

Œ0=0� at x D 0. The limit of such an indeterminate form can be any number. For
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instance, each of the quotients kx=x, x=x3, and x3=x2 is an indeterminate form of

type Œ0=0� at x D 0, but

lim
x!0

kx

x
D k; lim

x!0

x

x3
D1; lim

x!0

x3

x2
D 0:

There are other types of indeterminate forms. Table 4 lists them together with an

example of each type.

Table 4. Types of indeterminate forms

Type Example

Œ0=0� lim
x!0

sin x

x

Œ1=1� lim
x!0

ln.1=x2/

cot.x2/

Œ0 � 1� lim
x!0C

x ln
1

x

Œ1�1� lim
x!.�=2/�

 

tan x �
1

� � 2x

!

Œ00� lim
x!0C

x
x

Œ10� lim
x!.�=2/�

.tan x/
cos x

Œ11� lim
x!1

 

1C
1

x

!x

Indeterminate forms of type Œ0=0� are the most common. You can evaluate many in-

determinate forms of type Œ0=0� with simple algebra, typically by cancelling common

factors. Examples can be found in Sections 1.2 and 1.3. We will now develop another

method called l’Hôpital’s Rules1 for evaluating limits of indeterminate forms of the

types Œ0=0� and Œ1=1�. The other types of indeterminate forms can usually be re-

duced to one of these two by algebraic manipulation and the taking of logarithms. In

Section 4.10 we will discover yet another method for evaluating limits of type Œ0=0�.

l’Hôpital’s Rules

T H E O R E M

3

The first l’Hôpital Rule

Suppose the functions f and g are differentiable on the interval .a; b/, and g0
.x/ ¤ 0

there. Suppose also that

(i) lim
x!aC

f .x/ D lim
x!aC

g.x/ D 0 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Similar results hold if every occurrence of limx!aC is replaced by limx!b� or even

limx!c where a < c < b. The cases a D �1 and b D 1 are also allowed.

1 The Marquis de l’Hôpital (1661–1704), for whom these rules are named, published the first

textbook on calculus. The circumflex ( ^ ) did not come into use in the French language until

after the French Revolution. The Marquis would have written his name “l’Hospital.”
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PROOF We prove the case involving limx!aC for finite a. Define

F.x/ D

n

f .x/ if a < x < b

0 if x D a
and G.x/ D

n

g.x/ if a < x < b

0 if x D a

Then F and G are continuous on the interval Œa; x� and differentiable on the interval

.a; x/ for every x in .a; b/. By the Generalized Mean-Value Theorem (Theorem 16 of

Section 2.8) there exists a number c in .a; x/ such that

f .x/

g.x/
D

F.x/

G.x/
D

F.x/ � F.a/

G.x/ �G.a/
D

F 0.c/

G 0.c/
D

f 0.c/

g0.c/
:

Since a < c < x, if x ! aC, then necessarily c ! aC, so we have

lim
x!aC

f .x/

g.x/
D lim

c!aC

f 0.c/

g0.c/
D L:

The case involving limx!b� for finite b is proved similarly. The cases where a D �1

or b D 1 follow from the cases already considered via the change of variable x D

1=t :

lim
x!1

f .x/

g.x/
D lim

t!0C

f

�

1

t

�

g

�

1

t

� D lim
t!0C

f 0
�

1

t

��

�1

t2

�

g0
�

1

t

��

�1

t2

� D lim
x!1

f 0.x/

g0.x/
D L:

E X A M P L E 1 Evaluate lim
x!1

ln x

x2
� 1

.

Solution We have lim
x!1

lnx

x2
� 1

�

0

0

�

D lim
x!1

1=x

2x
D lim

x!1

1

2x2
D

1

2
:

BEWARE! Note that in

applying l’Hôpital’s Rule we

calculate the quotient of the

derivatives, not the derivative of the

quotient.

This example illustrates how calculations based on l’Hôpital’s Rule are carried out.

Having identified the limit as that of a Œ0=0� indeterminate form, we replace it by

the limit of the quotient of derivatives; the existence of this latter limit will justify

the equality. It is possible that the limit of the quotient of derivatives may still be

indeterminate, in which case a second application of l’Hôpital’s Rule can be made.

Such applications may be strung out until a limit can finally be extracted, which then

justifies all the previous applications of the rule.

E X A M P L E 2 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution We have (using l’Hôpital’s Rule three times)

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

�

0

0

�

D lim
x!0

2 cos x � 2 cos.2x/

2ex
� 2 � 2x

cancel the 2s

D lim
x!0

cos x � cos.2x/

ex
� 1 � x

still

�

0

0

�

D lim
x!0

� sin x C 2 sin.2x/

ex
� 1

still

�

0

0

�

D lim
x!0

� cos x C 4 cos.2x/

ex
D

�1C 4

1
D 3:
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E X A M P L E 3 Evaluate (a) lim
x!.�=2/�

2x � �

cos2 x
and (b) lim

x!1C

x

lnx
.

Solution

(a) lim
x!.�=2/�

2x � �

cos2 x

�

0

0

�

D lim
x!.�=2/�

2

�2 sin x cos x
D �1

(b) l’Hôpital’s Rule cannot be used to evaluate limx!1C x=.lnx/ because this is not

an indeterminate form. The denominator approaches 0 as x ! 1C, but the nu-

merator does not approach 0. Since ln x > 0 for x > 1, we have, directly,

BEWARE! Do not use

l’Hôpital’s Rule to evaluate a limit

that is not indeterminate.

lim
x!1C

x

ln x
D1:

(Had we tried to apply l’Hôpital’s Rule, we would have been led to the erroneous

answer limx!1C.1=.1=x// D 1.)

E X A M P L E 4 Evaluate lim
x!0C

�

1

x
�

1

sinx

�

.

Solution The indeterminate form here is of type Œ1�1�, to which l’Hôpital’s Rule

cannot be applied. However, it becomes Œ0=0� after we combine the fractions into one

fraction:

lim
x!0C

�

1

x
�

1

sin x

�

Œ1�1�

D lim
x!0C

sin x � x

x sin x

�

0

0

�

D lim
x!0C

cos x � 1

sinx C x cos x

�

0

0

�

D lim
x!0C

� sin x

2 cos x � x sin x
D

�0

2
D 0:

A version of l’Hôpital’s Rule also holds for indeterminate forms of the type Œ1=1�.

T H E O R E M

4

The second l’Hôpital Rule

Suppose that f and g are differentiable on the interval .a; b/ and that g0
.x/ ¤ 0 there.

Suppose also that

(i) lim
x!aC

g.x/ D ˙1 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite, or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Again, similar results hold for limx!b� and for limx!c , and the cases a D �1 and

b D1 are allowed.

The proof of the second l’Hôpital Rule is technically rather more difficult than that

of the first Rule and we will not give it here. A sketch of the proof is outlined in

Exercise 35 at the end of this section.
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PROOF We prove the case involving limx!aC for finite a. Define

F.x/ D

n

f .x/ if a < x < b

0 if x D a
and G.x/ D

n

g.x/ if a < x < b

0 if x D a

Then F and G are continuous on the interval Œa; x� and differentiable on the interval

.a; x/ for every x in .a; b/. By the Generalized Mean-Value Theorem (Theorem 16 of

Section 2.8) there exists a number c in .a; x/ such that

f .x/

g.x/
D

F.x/

G.x/
D

F.x/ � F.a/

G.x/ �G.a/
D

F 0.c/

G 0.c/
D

f 0.c/

g0.c/
:

Since a < c < x, if x ! aC, then necessarily c ! aC, so we have

lim
x!aC

f .x/

g.x/
D lim

c!aC

f 0.c/

g0.c/
D L:

The case involving limx!b� for finite b is proved similarly. The cases where a D �1

or b D 1 follow from the cases already considered via the change of variable x D

1=t :

lim
x!1

f .x/

g.x/
D lim

t!0C

f

�

1

t

�

g

�

1

t

� D lim
t!0C

f 0
�

1

t

��

�1

t2

�

g0
�

1

t

��

�1

t2

� D lim
x!1

f 0.x/

g0.x/
D L:

E X A M P L E 1 Evaluate lim
x!1

ln x

x2
� 1

.

Solution We have lim
x!1

lnx

x2
� 1

�

0

0

�

D lim
x!1

1=x

2x
D lim

x!1

1

2x2
D

1

2
:

BEWARE! Note that in

applying l’Hôpital’s Rule we

calculate the quotient of the

derivatives, not the derivative of the

quotient.

This example illustrates how calculations based on l’Hôpital’s Rule are carried out.

Having identified the limit as that of a Œ0=0� indeterminate form, we replace it by

the limit of the quotient of derivatives; the existence of this latter limit will justify

the equality. It is possible that the limit of the quotient of derivatives may still be

indeterminate, in which case a second application of l’Hôpital’s Rule can be made.

Such applications may be strung out until a limit can finally be extracted, which then

justifies all the previous applications of the rule.

E X A M P L E 2 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution We have (using l’Hôpital’s Rule three times)

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

�

0

0

�

D lim
x!0

2 cos x � 2 cos.2x/

2ex
� 2 � 2x

cancel the 2s

D lim
x!0

cos x � cos.2x/

ex
� 1 � x

still

�

0

0

�

D lim
x!0

� sin x C 2 sin.2x/

ex
� 1

still

�

0

0

�

D lim
x!0

� cos x C 4 cos.2x/

ex
D

�1C 4

1
D 3:
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E X A M P L E 3 Evaluate (a) lim
x!.�=2/�

2x � �

cos2 x
and (b) lim

x!1C

x

lnx
.

Solution

(a) lim
x!.�=2/�

2x � �

cos2 x

�

0

0

�

D lim
x!.�=2/�

2

�2 sin x cos x
D �1

(b) l’Hôpital’s Rule cannot be used to evaluate limx!1C x=.lnx/ because this is not

an indeterminate form. The denominator approaches 0 as x ! 1C, but the nu-

merator does not approach 0. Since ln x > 0 for x > 1, we have, directly,

BEWARE! Do not use

l’Hôpital’s Rule to evaluate a limit

that is not indeterminate.

lim
x!1C

x

ln x
D1:

(Had we tried to apply l’Hôpital’s Rule, we would have been led to the erroneous

answer limx!1C.1=.1=x// D 1.)

E X A M P L E 4 Evaluate lim
x!0C

�

1

x
�

1

sinx

�

.

Solution The indeterminate form here is of type Œ1�1�, to which l’Hôpital’s Rule

cannot be applied. However, it becomes Œ0=0� after we combine the fractions into one

fraction:

lim
x!0C

�

1

x
�

1

sin x

�

Œ1�1�

D lim
x!0C

sin x � x

x sin x

�

0

0

�

D lim
x!0C

cos x � 1

sinx C x cos x

�

0

0

�

D lim
x!0C

� sin x

2 cos x � x sin x
D

�0

2
D 0:

A version of l’Hôpital’s Rule also holds for indeterminate forms of the type Œ1=1�.

T H E O R E M

4

The second l’Hôpital Rule

Suppose that f and g are differentiable on the interval .a; b/ and that g0
.x/ ¤ 0 there.

Suppose also that

(i) lim
x!aC

g.x/ D ˙1 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite, or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Again, similar results hold for limx!b� and for limx!c , and the cases a D �1 and

b D1 are allowed.

The proof of the second l’Hôpital Rule is technically rather more difficult than that

of the first Rule and we will not give it here. A sketch of the proof is outlined in

Exercise 35 at the end of this section.
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Remark Do not try to use l’Hôpital’s Rules to evaluate limits that are not indeter-

minate of type Œ0=0� or Œ1=1�; such attempts will almost always lead to false con-

clusions, as observed in Example 3(b) above. (Strictly speaking, the second l’Hôpital

Rule can be applied to the form Œa=1�, but there is no point to doing so if a is not

infinite, since the limit is obviously 0 in that case.)

Remark No conclusion about limf .x/=g.x/ can be made using either l’Hôpital

Rule if limf 0.x/=g0.x/ does not exist. Other techniques might still be used. For

example, limx!0 .x
2 sin.1=x//= sin.x/ D 0 by the Squeeze Theorem even though

limx!0 .2x sin.1=x/ � cos.1=x//= cos.x/ does not exist.

E X A M P L E 5 Evaluate (a) lim
x!1

x
2

ex
and (b) lim

x!0C
x

a ln x, where a > 0.

Solution Both of these limits are covered by Theorem 5 in Section 3.4. We do them

here by l’Hôpital’s Rule.

(a) lim
x!1

x2

ex

h

1

1

i

D lim
x!1

2x

ex
still

h

1

1

i

D lim
x!1

2

ex
D 0:

Similarly, one can show that limx!1 xn=ex
D 0 for any positive integer n by repeated

applications of l’Hôpital’s Rule.

(b) lim
x!0C

x
a ln x .a > 0/ Œ0 � .�1/�

D lim
x!0C

ln x

x�a

h

�1

1

i

D lim
x!0C

1=x

�ax�a�1
D lim

x!0C

xa

�a
D 0:

The easiest way to deal with indeterminate forms of types Œ00�, Œ10�, and Œ11� is to

take logarithms of the expressions involved. Here are two examples.

E X A M P L E 6
Evaluate lim

x!0C
x

x.

Solution This indeterminate form is of type Œ00�. Let y D xx . Then

lim
x!0C

lny D lim
x!0C

x ln x D 0;

by Example 5(b). Hence, lim
x!0

x
x
D lim

x!0C
y D e

0
D 1.

E X A M P L E 7 Evaluate lim
x!1

�

1C sin
3

x

�x

.

Solution This indeterminate form is of type 11. Let y D

�

1C sin
3

x

�x

. Then,
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taking ln of both sides,

lim
x!1

ln y D lim
x!1

x ln

�

1C sin
3

x

�

Œ1 � 0�

D lim
x!1

ln

�

1C sin
3

x

�

1

x

�

0

0

�

D lim
x!1

1

1C sin
3

x

�

cos
3

x

��

�

3

x2

�

�

1

x2

D lim
x!1

3 cos
3

x

1C sin
3

x

D 3:

Hence, lim
x!1

�

1C sin
3

x

�x

D e
3.

E X E R C I S E S 4.3

Evaluate the limits in Exercises 1–32.

1. lim
x!0

3x

tan 4x
2. lim

x!2

ln.2x � 3/

x2
� 4

3. lim
x!0

sin ax

sin bx
4. lim

x!0

1 � cos ax

1 � cos bx

5. lim
x!0

sin�1
x

tan�1 x
6. lim

x!1

x1=3
� 1

x2=3
� 1

7. lim
x!0

x cotx 8. lim
x!0

1 � cosx

ln.1C x2/

9. lim
t!�

sin2
t

t � �
10. lim

x!0

10x
� ex

x

11. lim
x!�=2

cos 3x

� � 2x
12. lim

x!1

ln.ex/ � 1

sin�x

13. lim
x!1

x sin
1

x
14. lim

x!0

x � sinx

x3

15. lim
x!0

x � sinx

x � tanx
16. lim

x!0

2 � x
2
� 2 cos x

x4

17. lim
x!0C

sin2
x

tan x � x
18. lim

r!�=2

ln sin r

cos r

19. lim
t!�=2

sin t

t
20. lim

x!1�

arccos x

x � 1

21. lim
x!1

x.2 tan�1
x � �/ 22. lim

t!.�=2/�
.sec t � tan t /

23. lim
t!0

�

1

t
�

1

teat

�

24. lim
x!0C

x

p
x

25.I lim
x!0C

.csc x/sin2 x 26.I lim
x!1C

�

x

x � 1
�

1

lnx

�

27.I lim
t!0

3 sin t � sin 3t

3 tan t � tan 3t
28.I lim

x!0

�

sinx

x

�1=x2

29.I lim
t!0

.cos 2t/1=t2

30.I lim
x!0C

csc x

lnx

31.I lim
x!1�

ln sin�x

csc�x
32.I lim

x!0
.1C tan x/1=x

33. (A Newton quotient for the second derivative) Evaluate

limh!0

f .x C h/ � 2f .x/C f .x � h/

h2
if f is a twice

differentiable function.

34. If f has a continuous third derivative, evaluate

lim
h!0

f .x C 3h/ � 3f .x C h/C 3f .x � h/ � f .x � 3h/

h3
:

35.I (Proof of the second l’Hôpital Rule) Fill in the details of the

following outline of a proof of the second l’Hôpital Rule

(Theorem 4) for the case where a and L are both finite. Let

a < x < t < b and show that there exists c in .x; t/ such that

f .x/ � f .t/

g.x/ � g.t/
D

f 0.c/

g0.c/
:

Now juggle the above equation algebraically into the form

f .x/

g.x/
� L D

f 0.c/

g0.c/
� LC

1

g.x/

�

f .t/ � g.t/
f 0.c/

g0.c/

�

:

It follows that

ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/
� L

ˇ

ˇ

ˇ

ˇ

C

1

jg.x/j

�

jf .t/j C jg.t/j

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/

ˇ

ˇ

ˇ

ˇ

�

:

Now show that the right side of the above inequality can be

made as small as you wish (say, less than a positive number �)

by choosing first t and then x close enough to a. Remember,

you are given that limc!aC

�

f 0.c/=g0.c/
�

D L and

limx!aC jg.x/j D 1.
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Remark Do not try to use l’Hôpital’s Rules to evaluate limits that are not indeter-

minate of type Œ0=0� or Œ1=1�; such attempts will almost always lead to false con-

clusions, as observed in Example 3(b) above. (Strictly speaking, the second l’Hôpital

Rule can be applied to the form Œa=1�, but there is no point to doing so if a is not

infinite, since the limit is obviously 0 in that case.)

Remark No conclusion about limf .x/=g.x/ can be made using either l’Hôpital

Rule if limf 0.x/=g0.x/ does not exist. Other techniques might still be used. For

example, limx!0 .x
2 sin.1=x//= sin.x/ D 0 by the Squeeze Theorem even though

limx!0 .2x sin.1=x/ � cos.1=x//= cos.x/ does not exist.

E X A M P L E 5 Evaluate (a) lim
x!1

x
2

ex
and (b) lim

x!0C
x

a ln x, where a > 0.

Solution Both of these limits are covered by Theorem 5 in Section 3.4. We do them

here by l’Hôpital’s Rule.

(a) lim
x!1

x2

ex

h

1

1

i

D lim
x!1

2x

ex
still

h

1

1

i

D lim
x!1

2

ex
D 0:

Similarly, one can show that limx!1 xn=ex
D 0 for any positive integer n by repeated

applications of l’Hôpital’s Rule.

(b) lim
x!0C

x
a ln x .a > 0/ Œ0 � .�1/�

D lim
x!0C

ln x

x�a

h

�1

1

i

D lim
x!0C

1=x

�ax�a�1
D lim

x!0C

xa

�a
D 0:

The easiest way to deal with indeterminate forms of types Œ00�, Œ10�, and Œ11� is to

take logarithms of the expressions involved. Here are two examples.

E X A M P L E 6
Evaluate lim

x!0C
x

x.

Solution This indeterminate form is of type Œ00�. Let y D xx . Then

lim
x!0C

lny D lim
x!0C

x ln x D 0;

by Example 5(b). Hence, lim
x!0

x
x
D lim

x!0C
y D e

0
D 1.

E X A M P L E 7 Evaluate lim
x!1

�

1C sin
3

x

�x

.

Solution This indeterminate form is of type 11. Let y D

�

1C sin
3

x

�x

. Then,
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taking ln of both sides,

lim
x!1

ln y D lim
x!1

x ln

�

1C sin
3

x

�

Œ1 � 0�

D lim
x!1

ln

�

1C sin
3

x

�

1

x

�

0

0

�

D lim
x!1

1

1C sin
3

x

�

cos
3

x

��

�

3

x2

�

�

1

x2

D lim
x!1

3 cos
3

x

1C sin
3

x

D 3:

Hence, lim
x!1

�

1C sin
3

x

�x

D e
3.

E X E R C I S E S 4.3

Evaluate the limits in Exercises 1–32.

1. lim
x!0

3x

tan 4x
2. lim

x!2

ln.2x � 3/

x2
� 4

3. lim
x!0

sin ax

sin bx
4. lim

x!0

1 � cos ax

1 � cos bx

5. lim
x!0

sin�1
x

tan�1 x
6. lim

x!1

x1=3
� 1

x2=3
� 1

7. lim
x!0

x cotx 8. lim
x!0

1 � cosx

ln.1C x2/

9. lim
t!�

sin2
t

t � �
10. lim

x!0

10x
� ex

x

11. lim
x!�=2

cos 3x

� � 2x
12. lim

x!1

ln.ex/ � 1

sin�x

13. lim
x!1

x sin
1

x
14. lim

x!0

x � sinx

x3

15. lim
x!0

x � sinx

x � tanx
16. lim

x!0

2 � x
2
� 2 cos x

x4

17. lim
x!0C

sin2
x

tan x � x
18. lim

r!�=2

ln sin r

cos r

19. lim
t!�=2

sin t

t
20. lim

x!1�

arccos x

x � 1

21. lim
x!1

x.2 tan�1
x � �/ 22. lim

t!.�=2/�
.sec t � tan t /

23. lim
t!0

�

1

t
�

1

teat

�

24. lim
x!0C

x

p
x

25.I lim
x!0C

.csc x/sin2 x 26.I lim
x!1C

�

x

x � 1
�

1

lnx

�

27.I lim
t!0

3 sin t � sin 3t

3 tan t � tan 3t
28.I lim

x!0

�

sinx

x

�1=x2

29.I lim
t!0

.cos 2t/1=t2

30.I lim
x!0C

csc x

lnx

31.I lim
x!1�

ln sin�x

csc�x
32.I lim

x!0
.1C tan x/1=x

33. (A Newton quotient for the second derivative) Evaluate

limh!0

f .x C h/ � 2f .x/C f .x � h/

h2
if f is a twice

differentiable function.

34. If f has a continuous third derivative, evaluate

lim
h!0

f .x C 3h/ � 3f .x C h/C 3f .x � h/ � f .x � 3h/

h3
:

35.I (Proof of the second l’Hôpital Rule) Fill in the details of the

following outline of a proof of the second l’Hôpital Rule

(Theorem 4) for the case where a and L are both finite. Let

a < x < t < b and show that there exists c in .x; t/ such that

f .x/ � f .t/

g.x/ � g.t/
D

f 0.c/

g0.c/
:

Now juggle the above equation algebraically into the form

f .x/

g.x/
� L D

f 0.c/

g0.c/
� LC

1

g.x/

�

f .t/ � g.t/
f 0.c/

g0.c/

�

:

It follows that

ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/
� L

ˇ

ˇ

ˇ

ˇ

C

1

jg.x/j

�

jf .t/j C jg.t/j

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/

ˇ

ˇ

ˇ

ˇ

�

:

Now show that the right side of the above inequality can be

made as small as you wish (say, less than a positive number �)

by choosing first t and then x close enough to a. Remember,

you are given that limc!aC

�

f 0.c/=g0.c/
�

D L and

limx!aC jg.x/j D 1.
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4.4 Extreme Values
The first derivative of a function is a source of much useful information about the

behaviour of the function. As we have already seen, the sign of f 0 tells us whether f

is increasing or decreasing. In this section we use this information to find maximum

and minimum values of functions. In Section 4.8 we will put the techniques developed

here to use solving problems that require finding maximum and minimum values.

Maximum and Minimum Values
Recall (from Section 1.4) that a function has a maximum value at x0 if f .x/ � f .x0/

for all x in the domain of f: The maximum value is f .x0/. To be more precise, we

should call such a maximum value an absolute or global maximum because it is the

largest value that f attains anywhere on its entire domain.

D E F I N I T I O N

1

Absolute extreme values

Function f has an absolute maximum value f .x0/ at the point x0 in its

domain if f .x/ � f .x0/ holds for every x in the domain of f:

Similarly, f has an absolute minimum value f .x1/ at the point x1 in its

domain if f .x/ � f .x1/ holds for every x in the domain of f:

A function can have at most one absolute maximum or minimum value, although this

value can be assumed at many points. For example, f .x/ D sinx has absolute maxi-

mum value 1 occurring at every point of the form x D .�=2/C2n� , where n is an inte-

ger, and an absolute minimum value �1 at every point of the form x D �.�=2/C2n� .

A function need not have any absolute extreme values. The function f .x/ D 1=x be-

comes arbitrarily large as x approaches 0 from the right, so has no finite absolute

maximum. (Remember,1 is not a number and is not a value of f:) It doesn’t have an

absolute minimum either. Even a bounded function may not have an absolute maxi-

mum or minimum value. The function g.x/ D x with domain specified to be the open

interval .0; 1/ has neither; the range of g is also the interval .0; 1/, and there is no

largest or smallest number in this interval. Of course, if the domain of g (and therefore

also its range) were extended to be the closed interval Œ0; 1�, then g would have both a

maximum value, 1, and a minimum value, 0.

Maximum and minimum values of a function are collectively referred to as ex-

treme values. The following theorem is a restatement (and slight generalization) of

Theorem 8 of Section 1.4. It will prove very useful in some circumstances when we

want to find extreme values.

T H E O R E M

5

Existence of extreme values

If the domain of the function f is a closed, finite interval or a union of finitely many

such intervals, and if f is continuous on that domain, then f must have an absolute

maximum value and an absolute minimum value.

Consider the graph y D f .x/ shown in Figure 4.17. Evidently the absolute maxi-

mum value of f is f .x2/, and the absolute minimum value is f .x3/. In addition to

these extreme values, f has several other “local” maximum and minimum values cor-

responding to points on the graph that are higher or lower than neighbouring points.

Observe that f has local maximum values at a, x2, x4, and x6 and local minimum

values at x1, x3, x5, and b. The absolute maximum is the highest of the local maxima;

the absolute minimum is the lowest of the local minima.
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Figure 4.17 Local extreme values

y

x

y D f .x/

a x1 x2 x3 x4 x5 x6 b

D E F I N I T I O N

2

Local extreme values

Function f has a local maximum value (loc max) f .x0/ at the point x0 in

its domain provided there exists a number h > 0 such that f .x/ � f .x0/

whenever x is in the domain of f and jx � x0j < h.

Similarly, f has a local minimum value (loc min) f .x1/ at the point x1 in

its domain provided there exists a number h > 0 such that f .x/ � f .x1/

whenever x is in the domain of f and jx � x1j < h.

Thus, f has a local maximum (or minimum) value at x if it has an absolute maximum

(or minimum) value at x when its domain is restricted to points sufficiently near x.

Geometrically, the graph of f is at least as high (or low) at x as it is at nearby points.

Critical Points, Singular Points, and Endpoints
Figure 4.17 suggests that a function f .x/ can have local extreme values only at points

x of three special types:

(i) critical points of f (points x in D.f / where f 0.x/ D 0),

(ii) singular points of f (points x in D.f / where f 0.x/ is not defined), and

(iii) endpoints of the domain of f (points in D.f / that do not belong to any open

interval contained in D.f /).

In Figure 4.17, x1, x3, x4, and x6 are critical points, x2 and x5 are singular points, and

a and b are endpoints.

T H E O R E M

6

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local mini-

mum) value at point x D x0 in I, then x0 must be either a critical point of f; a singular

point of f; or an endpoint of I:

PROOF Suppose that f has a local maximum value at x0 and that x0 is neither an

endpoint of the domain of f nor a singular point of f: Then for some h > 0, f .x/ is

defined on the open interval .x0 � h; x0 C h/ and has an absolute maximum (for that

interval) at x0. Also, f 0.x0/ exists. By Theorem 14 of Section 2.8, f 0.x0/ D 0. The

proof for the case where f has a local minimum value at x0 is similar.

Although a function cannot have extreme values anywhere other than at endpoints,

critical points, and singular points, it need not have extreme values at such points.

Figure 4.18 shows the graph of a function with a critical point x0 and a singular point

x1 at neither of which it has an extreme value. It is more difficult to draw the graph of a

function whose domain has an endpoint at which the function fails to have an extreme

value. See Exercise 49 at the end of this section for an example of such a function.

y

xx1x0

y D f .x/

Figure 4.18 A function need not have

extreme values at a critical point or a

singular point
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4.4 Extreme Values
The first derivative of a function is a source of much useful information about the

behaviour of the function. As we have already seen, the sign of f 0 tells us whether f

is increasing or decreasing. In this section we use this information to find maximum

and minimum values of functions. In Section 4.8 we will put the techniques developed

here to use solving problems that require finding maximum and minimum values.

Maximum and Minimum Values
Recall (from Section 1.4) that a function has a maximum value at x0 if f .x/ � f .x0/

for all x in the domain of f: The maximum value is f .x0/. To be more precise, we

should call such a maximum value an absolute or global maximum because it is the

largest value that f attains anywhere on its entire domain.

D E F I N I T I O N

1

Absolute extreme values

Function f has an absolute maximum value f .x0/ at the point x0 in its

domain if f .x/ � f .x0/ holds for every x in the domain of f:

Similarly, f has an absolute minimum value f .x1/ at the point x1 in its

domain if f .x/ � f .x1/ holds for every x in the domain of f:

A function can have at most one absolute maximum or minimum value, although this

value can be assumed at many points. For example, f .x/ D sinx has absolute maxi-

mum value 1 occurring at every point of the form x D .�=2/C2n� , where n is an inte-

ger, and an absolute minimum value �1 at every point of the form x D �.�=2/C2n� .

A function need not have any absolute extreme values. The function f .x/ D 1=x be-

comes arbitrarily large as x approaches 0 from the right, so has no finite absolute

maximum. (Remember,1 is not a number and is not a value of f:) It doesn’t have an

absolute minimum either. Even a bounded function may not have an absolute maxi-

mum or minimum value. The function g.x/ D x with domain specified to be the open

interval .0; 1/ has neither; the range of g is also the interval .0; 1/, and there is no

largest or smallest number in this interval. Of course, if the domain of g (and therefore

also its range) were extended to be the closed interval Œ0; 1�, then g would have both a

maximum value, 1, and a minimum value, 0.

Maximum and minimum values of a function are collectively referred to as ex-

treme values. The following theorem is a restatement (and slight generalization) of

Theorem 8 of Section 1.4. It will prove very useful in some circumstances when we

want to find extreme values.

T H E O R E M

5

Existence of extreme values

If the domain of the function f is a closed, finite interval or a union of finitely many

such intervals, and if f is continuous on that domain, then f must have an absolute

maximum value and an absolute minimum value.

Consider the graph y D f .x/ shown in Figure 4.17. Evidently the absolute maxi-

mum value of f is f .x2/, and the absolute minimum value is f .x3/. In addition to

these extreme values, f has several other “local” maximum and minimum values cor-

responding to points on the graph that are higher or lower than neighbouring points.

Observe that f has local maximum values at a, x2, x4, and x6 and local minimum

values at x1, x3, x5, and b. The absolute maximum is the highest of the local maxima;

the absolute minimum is the lowest of the local minima.
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Figure 4.17 Local extreme values
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2

Local extreme values

Function f has a local maximum value (loc max) f .x0/ at the point x0 in

its domain provided there exists a number h > 0 such that f .x/ � f .x0/

whenever x is in the domain of f and jx � x0j < h.

Similarly, f has a local minimum value (loc min) f .x1/ at the point x1 in

its domain provided there exists a number h > 0 such that f .x/ � f .x1/

whenever x is in the domain of f and jx � x1j < h.

Thus, f has a local maximum (or minimum) value at x if it has an absolute maximum

(or minimum) value at x when its domain is restricted to points sufficiently near x.

Geometrically, the graph of f is at least as high (or low) at x as it is at nearby points.

Critical Points, Singular Points, and Endpoints
Figure 4.17 suggests that a function f .x/ can have local extreme values only at points

x of three special types:

(i) critical points of f (points x in D.f / where f 0.x/ D 0),

(ii) singular points of f (points x in D.f / where f 0.x/ is not defined), and

(iii) endpoints of the domain of f (points in D.f / that do not belong to any open

interval contained in D.f /).

In Figure 4.17, x1, x3, x4, and x6 are critical points, x2 and x5 are singular points, and

a and b are endpoints.

T H E O R E M

6

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local mini-

mum) value at point x D x0 in I, then x0 must be either a critical point of f; a singular

point of f; or an endpoint of I:

PROOF Suppose that f has a local maximum value at x0 and that x0 is neither an

endpoint of the domain of f nor a singular point of f: Then for some h > 0, f .x/ is

defined on the open interval .x0 � h; x0 C h/ and has an absolute maximum (for that

interval) at x0. Also, f 0.x0/ exists. By Theorem 14 of Section 2.8, f 0.x0/ D 0. The

proof for the case where f has a local minimum value at x0 is similar.

Although a function cannot have extreme values anywhere other than at endpoints,

critical points, and singular points, it need not have extreme values at such points.

Figure 4.18 shows the graph of a function with a critical point x0 and a singular point

x1 at neither of which it has an extreme value. It is more difficult to draw the graph of a

function whose domain has an endpoint at which the function fails to have an extreme

value. See Exercise 49 at the end of this section for an example of such a function.

y

xx1x0

y D f .x/

Figure 4.18 A function need not have

extreme values at a critical point or a

singular point
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Finding Absolute Extreme Values
If a function f is defined on a closed interval or a union of finitely many closed in-

tervals, Theorem 5 assures us that f must have an absolute maximum value and an

absolute minimum value. Theorem 6 tells us how to find them. We need only check

the values of f at any critical points, singular points, and endpoints.

E X A M P L E 1
Find the maximum and minimum values of the function

g.x/ D x3
� 3x2

� 9x C 2 on the interval �2 � x � 2.

Solution Since g is a polynomial, it can have no singular points. For critical points,

we calculate

g
0
.x/ D 3x

2
� 6x � 9 D 3.x

2
� 2x � 3/

D 3.x C 1/.x � 3/

D 0 if x D �1 or x D 3:

However, x D 3 is not in the domain of g, so we can ignore it. We need to consider

only the values of g at the critical point x D �1 and at the endpoints x D �2 and

x D 2:

g.�2/ D 0; g.�1/ D 7; g.2/ D �20:

The maximum value of g.x/ on �2 � x � 2 is 7, at the critical point x D �1, and the

minimum value is �20, at the endpoint x D 2. See Figure 4.19.

y

x

y D g.x/

D x
3
� 3x

2
� 9x C 2

.2;�20/

.�1; 7/

.�2; 0/

Figure 4.19 g has maximum and

minimum values 7 and �20, respectively

E X A M P L E 2
Find the maximum and minimum values of h.x/ D 3x2=3

�2x on

the interval Œ�1; 1�.

Solution The derivative of h is

h
0
.x/ D 3

�

2

3

�

x
�1=3
� 2 D 2.x

�1=3
� 1/:

Note that x�1=3 is not defined at the point x D 0 in D.h/, so x D 0 is a singular

point of h. Also, h has a critical point where x�1=3
D 1, that is, at x D 1, which also

happens to be an endpoint of the domain of h. We must therefore examine the values

of h at the points x D 0 and x D 1, as well as at the other endpoint x D �1. We have

h.�1/ D 5; h.0/ D 0; h.1/ D 1:

The function h has maximum value 5 at the endpoint �1 and minimum value 0 at the

singular point x D 0. See Figure 4.20.

y

x

.1; 1/

.�1; 5/

y D h.x/

D 3x
2=3
� 2x

Figure 4.20 h has absolute minimum

value 0 at a singular point

The First Derivative Test
Most functions you will encounter in elementary calculus have nonzero derivatives ev-

erywhere on their domains except possibly at a finite number of critical points, singular

points, and endpoints of their domains. On intervals between these points the deriva-

tive exists and is not zero, so the function is either increasing or decreasing there. If

f is continuous and increases to the left of x0 and decreases to the right, then it must

have a local maximum value at x0. The following theorem collects several results of

this type together.
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T H E O R E M

7

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x0, and x0 is not an endpoint of the domain of f:

(a) If there exists an open interval .a; b/ containing x0 such that f 0.x/ > 0 on .a; x0/

and f 0.x/ < 0 on .x0; b/, then f has a local maximum value at x0.

(b) If there exists an open interval .a; b/ containing x0 such that f 0.x/ < 0 on .a; x0/

and f 0
.x/ > 0 on .x0; b/, then f has a local minimum value at x0.

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

(c) If f 0.x/ > 0 on some interval .a; b/, then f has a local minimum value at a.

(d) If f 0.x/ < 0 on some interval .a; b/, then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

(e) If f 0.x/ > 0 on some interval .a; b/, then f has a local maximum value at b.

(f) If f 0.x/ < 0 on some interval .a; b/, then f has a local minimum value at b.

Remark If f 0 is positive (or negative) on both sides of a critical or singular point,

then f has neither a maximum nor a minimum value at that point.

E X A M P L E 3
Find the local and absolute extreme values of f .x/ D x4

�2x2
�3

on the interval Œ�2; 2�. Sketch the graph of f:

Solution We begin by calculating and factoring the derivative f 0.x/:

f
0
.x/ D 4x

3
� 4x D 4x.x

2
� 1/ D 4x.x � 1/.x C 1/:

The critical points are 0, �1, and 1. The corresponding values are f .0/ D �3,

f .�1/ D f .1/ D �4. There are no singular points. The values of f at the endpoints

�2 and 2 are f .�2/ D f .2/ D 5. The factored form of f 0.x/ is also convenient for

determining the sign of f 0.x/ on intervals between these endpoints and critical points.

Where an odd number of the factors of f 0.x/ are negative, f 0.x/ will itself be nega-

tive; where an even number of factors are negative, f 0
.x/ will be positive. We sum-

marize the positive/negative properties of f 0
.x/ and the implied increasing/decreasing

behaviour of f .x/ in chart form:

EP CP CP CP EP

x �2 �1 0 1 2
������������������������������������������������������������!

f 0
� 0 C 0 � 0 C

f max & min % max & min % max

Note how the sloping arrows indicate visually the appropriate classification of the end-

.�2; 5/ .2; 5/

.�1;�4/ .1;�4/

�3

y

x

Figure 4.21 The graph y D x4
� 2x2

� 3

points (EP) and critical points (CP) as determined by the First Derivative Test. We

will make extensive use of such charts in future sections. The graph of f is shown

in Figure 4.21. Since the domain is a closed, finite interval, f must have absolute

maximum and minimum values. These are 5 (at˙2) and �4 (at ˙1).

E X A M P L E 4
Find and classify the local and absolute extreme values of the func-

tion f .x/ D x�x2=3 with domain Œ�1; 2�. Sketch the graph of f:
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Finding Absolute Extreme Values
If a function f is defined on a closed interval or a union of finitely many closed in-

tervals, Theorem 5 assures us that f must have an absolute maximum value and an

absolute minimum value. Theorem 6 tells us how to find them. We need only check

the values of f at any critical points, singular points, and endpoints.

E X A M P L E 1
Find the maximum and minimum values of the function

g.x/ D x3
� 3x2

� 9x C 2 on the interval �2 � x � 2.

Solution Since g is a polynomial, it can have no singular points. For critical points,

we calculate

g
0
.x/ D 3x

2
� 6x � 9 D 3.x

2
� 2x � 3/

D 3.x C 1/.x � 3/

D 0 if x D �1 or x D 3:

However, x D 3 is not in the domain of g, so we can ignore it. We need to consider

only the values of g at the critical point x D �1 and at the endpoints x D �2 and

x D 2:

g.�2/ D 0; g.�1/ D 7; g.2/ D �20:

The maximum value of g.x/ on �2 � x � 2 is 7, at the critical point x D �1, and the

minimum value is �20, at the endpoint x D 2. See Figure 4.19.

y

x

y D g.x/

D x
3
� 3x

2
� 9x C 2

.2;�20/

.�1; 7/

.�2; 0/

Figure 4.19 g has maximum and

minimum values 7 and �20, respectively

E X A M P L E 2
Find the maximum and minimum values of h.x/ D 3x2=3

�2x on

the interval Œ�1; 1�.

Solution The derivative of h is

h
0
.x/ D 3

�

2

3

�

x
�1=3
� 2 D 2.x

�1=3
� 1/:

Note that x�1=3 is not defined at the point x D 0 in D.h/, so x D 0 is a singular

point of h. Also, h has a critical point where x�1=3
D 1, that is, at x D 1, which also

happens to be an endpoint of the domain of h. We must therefore examine the values

of h at the points x D 0 and x D 1, as well as at the other endpoint x D �1. We have

h.�1/ D 5; h.0/ D 0; h.1/ D 1:

The function h has maximum value 5 at the endpoint �1 and minimum value 0 at the

singular point x D 0. See Figure 4.20.

y

x

.1; 1/

.�1; 5/

y D h.x/

D 3x
2=3
� 2x

Figure 4.20 h has absolute minimum

value 0 at a singular point

The First Derivative Test
Most functions you will encounter in elementary calculus have nonzero derivatives ev-

erywhere on their domains except possibly at a finite number of critical points, singular

points, and endpoints of their domains. On intervals between these points the deriva-

tive exists and is not zero, so the function is either increasing or decreasing there. If

f is continuous and increases to the left of x0 and decreases to the right, then it must

have a local maximum value at x0. The following theorem collects several results of

this type together.
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T H E O R E M

7

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x0, and x0 is not an endpoint of the domain of f:

(a) If there exists an open interval .a; b/ containing x0 such that f 0.x/ > 0 on .a; x0/

and f 0.x/ < 0 on .x0; b/, then f has a local maximum value at x0.

(b) If there exists an open interval .a; b/ containing x0 such that f 0.x/ < 0 on .a; x0/

and f 0
.x/ > 0 on .x0; b/, then f has a local minimum value at x0.

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

(c) If f 0.x/ > 0 on some interval .a; b/, then f has a local minimum value at a.

(d) If f 0.x/ < 0 on some interval .a; b/, then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

(e) If f 0.x/ > 0 on some interval .a; b/, then f has a local maximum value at b.

(f) If f 0.x/ < 0 on some interval .a; b/, then f has a local minimum value at b.

Remark If f 0 is positive (or negative) on both sides of a critical or singular point,

then f has neither a maximum nor a minimum value at that point.

E X A M P L E 3
Find the local and absolute extreme values of f .x/ D x4

�2x2
�3

on the interval Œ�2; 2�. Sketch the graph of f:

Solution We begin by calculating and factoring the derivative f 0.x/:

f
0
.x/ D 4x

3
� 4x D 4x.x

2
� 1/ D 4x.x � 1/.x C 1/:

The critical points are 0, �1, and 1. The corresponding values are f .0/ D �3,

f .�1/ D f .1/ D �4. There are no singular points. The values of f at the endpoints

�2 and 2 are f .�2/ D f .2/ D 5. The factored form of f 0.x/ is also convenient for

determining the sign of f 0.x/ on intervals between these endpoints and critical points.

Where an odd number of the factors of f 0.x/ are negative, f 0.x/ will itself be nega-

tive; where an even number of factors are negative, f 0
.x/ will be positive. We sum-

marize the positive/negative properties of f 0
.x/ and the implied increasing/decreasing

behaviour of f .x/ in chart form:

EP CP CP CP EP

x �2 �1 0 1 2
������������������������������������������������������������!

f 0
� 0 C 0 � 0 C

f max & min % max & min % max

Note how the sloping arrows indicate visually the appropriate classification of the end-

.�2; 5/ .2; 5/

.�1;�4/ .1;�4/

�3

y

x

Figure 4.21 The graph y D x4
� 2x2

� 3

points (EP) and critical points (CP) as determined by the First Derivative Test. We

will make extensive use of such charts in future sections. The graph of f is shown

in Figure 4.21. Since the domain is a closed, finite interval, f must have absolute

maximum and minimum values. These are 5 (at˙2) and �4 (at ˙1).

E X A M P L E 4
Find and classify the local and absolute extreme values of the func-

tion f .x/ D x�x2=3 with domain Œ�1; 2�. Sketch the graph of f:
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Solution f 0.x/ D 1 �
2
3
x�1=3

D

�

x1=3
�

2
3

� ı

x1=3. There is a singular point,

x D 0, and a critical point, x D 8=27. The endpoints are x D �1 and x D 2. The

values of f at these points are f .�1/ D �2; f .0/ D 0; f .8=27/ D �4=27, and

f .2/ D 2 � 22=3
� 0:4126 (see Figure 4.22). Another interesting point on the graph

is the x-intercept at x D 1. Information from f 0 is summarized in the chart:

EP SP CP EP

x �1 0 8=27 2
���������������������������������������������������������������!

f 0
C undef � 0 C

f min % max & min % max

There are two local minima and two local maxima. The absolute maximum of f is

2 � 22=3 at x D 2; the absolute minimum is �2 at x D �1.

y

x�

8
27
;

�4
27

�

.�1;�2/

.2; 2 � 22=3/

y D x � x2=3

1

Figure 4.22 The graph for Example 4

Functions Not Defined on Closed, Finite Intervals
If the function f is not defined on a closed, finite interval, then Theorem 5 cannot be

used to guarantee the existence of maximum and minimum values for f: Of course,

f may still have such extreme values. In many applied situations we will want to find

extreme values of functions defined on infinite and/or open intervals. The following

theorem adapts Theorem 5 to cover some such situations.

T H E O R E M

8

Existence of extreme values on open intervals

If f is continuous on the open interval .a; b/, and if

lim
x!aC

f .x/ D L and lim
x!b�

f .x/ DM;

then the following conclusions hold:

(i) If f .u/ > L and f .u/ > M for some u in .a; b/, then f has an absolute maxi-

mum value on .a; b/.

(ii) If f .v/ < L and f .v/ < M for some v in .a; b/, then f has an absolute minimum

value on .a; b/.

In this theorem a may be �1, in which case limx!aC should be replaced with

limx!�1, and b may be1, in which case limx!b� should be replaced with limx!1.

Also, either or both of L and M may be either1 or �1.

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is a

number u in .a; b/ such that f .u/ > L and f .u/ > M . Here, L and M may be finite

numbers or �1. Since limx!aC f .x/ D L, there must exist a number x1 in .a; u/

such that

f .x/ < f .u/ whenever a < x < x1:

Similarly, there must exist a number x2 in .u; b/ such that

f .x/ < f .u/ whenever x2 < x < b:

(See Figure 4.23.) Thus, f .x/ < f .u/ at all points of .a; b/ that are not in the closed,

finite subinterval Œx1; x2�. By Theorem 5, the function f; being continuous on Œx1; x2�,

must have an absolute maximum value on that interval, say at the point w. Since u

belongs to Œx1; x2�, we must have f .w/ � f .u/, so f .w/ is the maximum value of

f .x/ for all of .a; b/.
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Figure 4.23

y

x

L

M

f.u/

a x1 u x2 b

y D f .x/

Theorem 6 still tells us where to look for extreme values. There are no endpoints to

consider in an open interval, but we must still look at the values of the function at any

critical points or singular points in the interval.

E X A M P L E 5
Show that f .x/ D x C .4=x/ has an absolute minimum value on

the interval .0;1/, and find that minimum value.

Solution We have

lim
x!0C

f .x/ D1 and lim
x!1

f .x/ D1:

Since f .1/ D 5 < 1, Theorem 8 guarantees that f must have an absolute minimum

value at some point in .0;1/. To find the minimum value we must check the values of

f at any critical points or singular points in the interval. We have

y

x
.2; 4/

y D f .x/ D x C
4

x

Figure 4.24 f has minimum value 4 at

x D 2

f
0
.x/ D 1 �

4

x2
D

x
2
� 4

x2
D

.x � 2/.x C 2/

x2
;

which equals 0 only at x D 2 and x D �2. Since f has domain .0;1/, it has no

singular points and only one critical point, namely, x D 2, where f has the value

f .2/ D 4. This must be the minimum value of f on .0;1/. (See Figure 4.24.)

E X A M P L E 6
Let f .x/ D x e�x2

. Find and classify the critical points of f;

evaluate limx!˙1 f .x/, and use these results to help you sketch

the graph of f:

Solution f 0.x/ D e�x2
.1 � 2x2/ D 0 only if 1 � 2x2

D 0 since the exponential

is always positive. Thus, the critical points are ˙ 1p
2

. We have f
�

˙
1p
2

�

D ˙
1p
2e

.

f 0 is positive (or negative) when 1 � 2x2 is positive (or negative). We summarize the

intervals where f is increasing and decreasing in chart form:

CP CP

x �1=
p

2 1=
p

2
�������������������������������������������������!

f 0
� 0 C 0 �

f & min % max &
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Solution f 0.x/ D 1 �
2
3
x�1=3

D

�

x1=3
�

2
3

� ı

x1=3. There is a singular point,

x D 0, and a critical point, x D 8=27. The endpoints are x D �1 and x D 2. The

values of f at these points are f .�1/ D �2; f .0/ D 0; f .8=27/ D �4=27, and

f .2/ D 2 � 22=3
� 0:4126 (see Figure 4.22). Another interesting point on the graph

is the x-intercept at x D 1. Information from f 0 is summarized in the chart:

EP SP CP EP

x �1 0 8=27 2
���������������������������������������������������������������!

f 0
C undef � 0 C

f min % max & min % max

There are two local minima and two local maxima. The absolute maximum of f is

2 � 22=3 at x D 2; the absolute minimum is �2 at x D �1.

y

x�

8
27
;

�4
27

�

.�1;�2/

.2; 2 � 22=3/

y D x � x2=3

1

Figure 4.22 The graph for Example 4

Functions Not Defined on Closed, Finite Intervals
If the function f is not defined on a closed, finite interval, then Theorem 5 cannot be

used to guarantee the existence of maximum and minimum values for f: Of course,

f may still have such extreme values. In many applied situations we will want to find

extreme values of functions defined on infinite and/or open intervals. The following

theorem adapts Theorem 5 to cover some such situations.

T H E O R E M

8

Existence of extreme values on open intervals

If f is continuous on the open interval .a; b/, and if

lim
x!aC

f .x/ D L and lim
x!b�

f .x/ DM;

then the following conclusions hold:

(i) If f .u/ > L and f .u/ > M for some u in .a; b/, then f has an absolute maxi-

mum value on .a; b/.

(ii) If f .v/ < L and f .v/ < M for some v in .a; b/, then f has an absolute minimum

value on .a; b/.

In this theorem a may be �1, in which case limx!aC should be replaced with

limx!�1, and b may be1, in which case limx!b� should be replaced with limx!1.

Also, either or both of L and M may be either1 or �1.

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is a

number u in .a; b/ such that f .u/ > L and f .u/ > M . Here, L and M may be finite

numbers or �1. Since limx!aC f .x/ D L, there must exist a number x1 in .a; u/

such that

f .x/ < f .u/ whenever a < x < x1:

Similarly, there must exist a number x2 in .u; b/ such that

f .x/ < f .u/ whenever x2 < x < b:

(See Figure 4.23.) Thus, f .x/ < f .u/ at all points of .a; b/ that are not in the closed,

finite subinterval Œx1; x2�. By Theorem 5, the function f; being continuous on Œx1; x2�,

must have an absolute maximum value on that interval, say at the point w. Since u

belongs to Œx1; x2�, we must have f .w/ � f .u/, so f .w/ is the maximum value of

f .x/ for all of .a; b/.
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Figure 4.23

y

x

L

M

f.u/

a x1 u x2 b

y D f .x/

Theorem 6 still tells us where to look for extreme values. There are no endpoints to

consider in an open interval, but we must still look at the values of the function at any

critical points or singular points in the interval.

E X A M P L E 5
Show that f .x/ D x C .4=x/ has an absolute minimum value on

the interval .0;1/, and find that minimum value.

Solution We have

lim
x!0C

f .x/ D1 and lim
x!1

f .x/ D1:

Since f .1/ D 5 < 1, Theorem 8 guarantees that f must have an absolute minimum

value at some point in .0;1/. To find the minimum value we must check the values of

f at any critical points or singular points in the interval. We have

y

x
.2; 4/

y D f .x/ D x C
4

x

Figure 4.24 f has minimum value 4 at

x D 2

f
0
.x/ D 1 �

4

x2
D

x
2
� 4

x2
D

.x � 2/.x C 2/

x2
;

which equals 0 only at x D 2 and x D �2. Since f has domain .0;1/, it has no

singular points and only one critical point, namely, x D 2, where f has the value

f .2/ D 4. This must be the minimum value of f on .0;1/. (See Figure 4.24.)

E X A M P L E 6
Let f .x/ D x e�x2

. Find and classify the critical points of f;

evaluate limx!˙1 f .x/, and use these results to help you sketch

the graph of f:

Solution f 0.x/ D e�x2
.1 � 2x2/ D 0 only if 1 � 2x2

D 0 since the exponential

is always positive. Thus, the critical points are ˙ 1p
2

. We have f
�

˙
1p
2

�

D ˙
1p
2e

.

f 0 is positive (or negative) when 1 � 2x2 is positive (or negative). We summarize the

intervals where f is increasing and decreasing in chart form:

CP CP

x �1=
p

2 1=
p

2
�������������������������������������������������!

f 0
� 0 C 0 �

f & min % max &
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Note that f .0/ D 0 and that f is an odd function (f .�x/ D �f .x/), so the graph is

symmetric about the origin. Also,

lim
x!˙1

x e
�x2

D

�

lim
x!˙1

1

x

� �

lim
x!˙1

x2

ex2

�

D 0 � 0 D 0

because limx!˙1 x2 e�x2
D limu!1 u e�u

D 0 by Theorem 5 of Section 3.4. Since

f .x/ is positive at x D 1=
p

2 and is negative at x D �1=
p

2, f must have absolute

maximum and minimum values by Theorem 8. These values can only be the values

˙1=
p

2e at the two critical points. The graph is shown in Figure 4.25. The x-axis is

an asymptote as x !˙1.

y

x

�

1p
2
;

1p
2e

�

�

�1p
2
;

�1p
2e

�

y D x e�x2

Figure 4.25 The graph for Example 6

E X E R C I S E S 4.4

In Exercises 1–17, determine whether the given function has any

local or absolute extreme values, and find those values if possible.

1. f .x/ D x C 2 on Œ�1; 1� 2. f .x/ D x C 2 on .�1; 0�

3. f .x/ D x C 2 on Œ�1; 1/ 4. f .x/ D x2
� 1

5. f .x/ D x2
� 1 on Œ�2; 3� 6. f .x/ D x2

� 1 on .2; 3/

7. f .x/ D x3
C x � 4 on Œa; b�

8. f .x/ D x3
C x � 4 on .a; b/

9. f .x/ D x5
C x

3
C 2x on .a; b�

10. f .x/ D
1

x � 1
11. f .x/ D

1

x � 1
on .0; 1/

12. f .x/ D
1

x � 1
on Œ2; 3� 13. f .x/ D jx � 1j on Œ�2; 2�

14. jx2
� x � 2j on Œ�3; 3� 15. f .x/ D

1

x2
C 1

16. f .x/ D .x C 2/2=3 17. f .x/ D .x � 2/1=3

In Exercises 18–40, locate and classify all local extreme values of

the given function. Determine whether any of these extreme values

are absolute. Sketch the graph of the function.

18. f .x/ D x2
C 2x 19. f .x/ D x3

� 3x � 2

20. f .x/ D .x2
� 4/

2 21. f .x/ D x3
.x � 1/

2

22. f .x/ D x2
.x � 1/

2 23. f .x/ D x.x2
� 1/

2

24. f .x/ D
x

x2
C 1

25. f .x/ D
x2

x2
C 1

26. f .x/ D
x

p

x4
C 1

27. f .x/ D x
p

2 � x2

28. f .x/ D x C sinx 29. f .x/ D x � 2 sinx

30. f .x/ D x � 2 tan�1
x 31. f .x/ D 2x � sin�1

x

32. f .x/ D e�x2=2 33. f .x/ D x 2�x

34. f .x/ D x2
e

�x2

35. f .x/ D
ln x

x

36. f .x/ D jx C 1j 37. f .x/ D jx2
� 1j

38. f .x/ D sin jxj 39. f .x/ D j sinxj

40.I f .x/ D .x � 1/
2=3
� .x C 1/

2=3

In Exercises 41–46, determine whether the given function has

absolute maximum or absolute minimum values. Justify your

answers. Find the extreme values if you can.

41.
x

p

x2
C 1

42.
x

p

x4
C 1

43. x
p

4 � x2 44.
x2

p

4 � x2

45.I
1

x sinx
on .0; �/ 46.I

sinx

x

47.A If a function has an absolute maximum value, must it have any

local maximum values? If a function has a local maximum

value, must it have an absolute maximum value? Give reasons

for your answers.

48.A If the function f has an absolute maximum value and

g.x/ D jf .x/j, must g have an absolute maximum value?

Justify your answer.

49.A (A function with no max or min at an endpoint) Let

f .x/ D

(

x sin
1

x
if x > 0

0 if x D 0.

Show that f is continuous on Œ0;1/ and differentiable on

.0;1/ but that it has neither a local maximum nor a local

minimum value at the endpoint x D 0.

4.5 Concavity and Inflections

Like the first derivative, the second derivative of a function also provides useful infor-

mation about the behaviour of the function and the shape of its graph: it determines

whether the graph is bending upward (i.e., has increasing slope) or bending downward

(i.e., has decreasing slope) as we move along the graph toward the right.
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D E F I N I T I O N

3

We say that the function f is concave up on an open interval I if it is differ-

entiable there and the derivative f 0 is an increasing function on I: Similarly,

f is concave down on I if f 0 exists and is decreasing on I:

The terms “concave up” and “concave down” are used to describe the graph of the

function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for those,

only on intervals on which their derivatives are not constant. According to the above

definition, a function is neither concave up nor concave down on an interval where

its graph is a straight line segment. We say the function has no concavity on such an

interval. We also say a function has opposite concavity on two intervals if it is concave

up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.26 is concave up on the interval

.a; b/ and concave down on the interval .b; c/.

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies above

its tangents, and chords joining points on the graph lie above the graph.

(ii) If f is concave down on an interval, then, on that interval, the graph of f lies

below its tangents, and chords to the graph lie below the graph.

(iii) If the graph of f has a tangent at a point, and if the concavity of f is opposite on

opposite sides of that point, then the graph crosses its tangent at that point. (This

occurs at the point
�

b; f .b/
�

in Figure 4.26. Such a point is called an inflection

point of the graph of f:)

Figure 4.26 f is concave up on .a; b/

and concave down on .b; c/

y

x

y D f .x/

a b c

D E F I N I T I O N

4

Inflection points

We say that the point
�

x0; f .x0/
�

is an inflection point of the curve y D

f .x/ (or that the function f has an inflection point at x0) if the following

two conditions are satisfied:

(a) the graph of y D f .x/ has a tangent line at x D x0, and

(b) the concavity of f is opposite on opposite sides of x0.

Note that (a) implies that either f is differentiable at x0 or its graph has a vertical

tangent line there, and (b) implies that the graph crosses its tangent line at x0. An

inflection point of a function f is a point on the graph of a function, rather than a

point in its domain like a critical point or a singular point. A function may or may

not have an inflection point at a critical point or singular point. In general, a point P
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Note that f .0/ D 0 and that f is an odd function (f .�x/ D �f .x/), so the graph is

symmetric about the origin. Also,

lim
x!˙1

x e
�x2

D

�

lim
x!˙1

1

x

� �

lim
x!˙1

x2

ex2

�

D 0 � 0 D 0

because limx!˙1 x2 e�x2
D limu!1 u e�u

D 0 by Theorem 5 of Section 3.4. Since

f .x/ is positive at x D 1=
p

2 and is negative at x D �1=
p

2, f must have absolute

maximum and minimum values by Theorem 8. These values can only be the values

˙1=
p

2e at the two critical points. The graph is shown in Figure 4.25. The x-axis is

an asymptote as x !˙1.

y

x

�

1p
2
;

1p
2e

�

�

�1p
2
;

�1p
2e

�

y D x e�x2

Figure 4.25 The graph for Example 6

E X E R C I S E S 4.4

In Exercises 1–17, determine whether the given function has any

local or absolute extreme values, and find those values if possible.

1. f .x/ D x C 2 on Œ�1; 1� 2. f .x/ D x C 2 on .�1; 0�

3. f .x/ D x C 2 on Œ�1; 1/ 4. f .x/ D x2
� 1

5. f .x/ D x2
� 1 on Œ�2; 3� 6. f .x/ D x2

� 1 on .2; 3/

7. f .x/ D x3
C x � 4 on Œa; b�

8. f .x/ D x3
C x � 4 on .a; b/

9. f .x/ D x5
C x

3
C 2x on .a; b�

10. f .x/ D
1

x � 1
11. f .x/ D

1

x � 1
on .0; 1/

12. f .x/ D
1

x � 1
on Œ2; 3� 13. f .x/ D jx � 1j on Œ�2; 2�

14. jx2
� x � 2j on Œ�3; 3� 15. f .x/ D

1

x2
C 1

16. f .x/ D .x C 2/2=3 17. f .x/ D .x � 2/1=3

In Exercises 18–40, locate and classify all local extreme values of

the given function. Determine whether any of these extreme values

are absolute. Sketch the graph of the function.

18. f .x/ D x2
C 2x 19. f .x/ D x3

� 3x � 2

20. f .x/ D .x2
� 4/

2 21. f .x/ D x3
.x � 1/

2

22. f .x/ D x2
.x � 1/

2 23. f .x/ D x.x2
� 1/

2

24. f .x/ D
x

x2
C 1

25. f .x/ D
x2

x2
C 1

26. f .x/ D
x

p

x4
C 1

27. f .x/ D x
p

2 � x2

28. f .x/ D x C sinx 29. f .x/ D x � 2 sinx

30. f .x/ D x � 2 tan�1
x 31. f .x/ D 2x � sin�1

x

32. f .x/ D e�x2=2 33. f .x/ D x 2�x

34. f .x/ D x2
e

�x2

35. f .x/ D
ln x

x

36. f .x/ D jx C 1j 37. f .x/ D jx2
� 1j

38. f .x/ D sin jxj 39. f .x/ D j sinxj

40.I f .x/ D .x � 1/
2=3
� .x C 1/

2=3

In Exercises 41–46, determine whether the given function has

absolute maximum or absolute minimum values. Justify your

answers. Find the extreme values if you can.

41.
x

p

x2
C 1

42.
x

p

x4
C 1

43. x
p

4 � x2 44.
x2

p

4 � x2

45.I
1

x sinx
on .0; �/ 46.I

sinx

x

47.A If a function has an absolute maximum value, must it have any

local maximum values? If a function has a local maximum

value, must it have an absolute maximum value? Give reasons

for your answers.

48.A If the function f has an absolute maximum value and

g.x/ D jf .x/j, must g have an absolute maximum value?

Justify your answer.

49.A (A function with no max or min at an endpoint) Let

f .x/ D

(

x sin
1

x
if x > 0

0 if x D 0.

Show that f is continuous on Œ0;1/ and differentiable on

.0;1/ but that it has neither a local maximum nor a local

minimum value at the endpoint x D 0.

4.5 Concavity and Inflections

Like the first derivative, the second derivative of a function also provides useful infor-

mation about the behaviour of the function and the shape of its graph: it determines

whether the graph is bending upward (i.e., has increasing slope) or bending downward

(i.e., has decreasing slope) as we move along the graph toward the right.
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D E F I N I T I O N

3

We say that the function f is concave up on an open interval I if it is differ-

entiable there and the derivative f 0 is an increasing function on I: Similarly,

f is concave down on I if f 0 exists and is decreasing on I:

The terms “concave up” and “concave down” are used to describe the graph of the

function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for those,

only on intervals on which their derivatives are not constant. According to the above

definition, a function is neither concave up nor concave down on an interval where

its graph is a straight line segment. We say the function has no concavity on such an

interval. We also say a function has opposite concavity on two intervals if it is concave

up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.26 is concave up on the interval

.a; b/ and concave down on the interval .b; c/.

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies above

its tangents, and chords joining points on the graph lie above the graph.

(ii) If f is concave down on an interval, then, on that interval, the graph of f lies

below its tangents, and chords to the graph lie below the graph.

(iii) If the graph of f has a tangent at a point, and if the concavity of f is opposite on

opposite sides of that point, then the graph crosses its tangent at that point. (This

occurs at the point
�

b; f .b/
�

in Figure 4.26. Such a point is called an inflection

point of the graph of f:)

Figure 4.26 f is concave up on .a; b/

and concave down on .b; c/

y

x

y D f .x/

a b c

D E F I N I T I O N

4

Inflection points

We say that the point
�

x0; f .x0/
�

is an inflection point of the curve y D

f .x/ (or that the function f has an inflection point at x0) if the following

two conditions are satisfied:

(a) the graph of y D f .x/ has a tangent line at x D x0, and

(b) the concavity of f is opposite on opposite sides of x0.

Note that (a) implies that either f is differentiable at x0 or its graph has a vertical

tangent line there, and (b) implies that the graph crosses its tangent line at x0. An

inflection point of a function f is a point on the graph of a function, rather than a

point in its domain like a critical point or a singular point. A function may or may

not have an inflection point at a critical point or singular point. In general, a point P
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is an inflection point (or simply an inflection) of a curve C (which is not necessarily

the graph of a function) if C has a tangent at P and arcs of C extending in opposite

directions from P are on opposite sides of that tangent line.

Figures 4.27–4.29 illustrate some situations involving critical and singular points

and inflections.

y

x

y D f .x/ D x3

Figure 4.27 x D 0 is a critical point

of f .x/ D x3, and f has an inflection

point there

y

x

y D g.x/

a

Figure 4.28 The concavity of g is

opposite on opposite sides of the

singular point a, but its graph has no

tangent and therefore no inflection point

there

y

x

y D h.x/ D x1=3

Figure 4.29 This graph of h has an

inflection point at the origin even

though x D 0 is a singular point of h

If a function f has a second derivative f 00, the sign of that second derivative tells

us whether the first derivative f 0 is increasing or decreasing and hence determines the

concavity of f:

T H E O R E M

9

Concavity and the second derivative

(a) If f 00
.x/ > 0 on interval I; then f is concave up on I:

(b) If f 00
.x/ < 0 on interval I; then f is concave down on I:

(c) If f has an inflection point at x0 and f 00.x0/ exists, then f 00.x0/ D 0.

PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.8 to the

derivative f 0 of f: If f has an inflection point at x0 and f 00.x0/ exists, then f must

be differentiable in an open interval containing x0. Since f 0 is increasing on one side

of x0 and decreasing on the other side, it must have a local maximum or minimum

value at x0. By Theorem 6, f 00.x0/ D 0.

Theorem 9 tells us that to find (the x-coordinates of) inflection points of a twice dif-

ferentiable function f; we need only look at points where f 00.x/ D 0. However,

not every such point has to be an inflection point. For example, f .x/ D x4, whose

y

x

y D f .x/ D x4

Figure 4.30 f 00.0/ D 0, but f does not

have an inflection point at 0

graph is shown in Figure 4.30, does not have an inflection point at x D 0 even though

f
00
.0/ D 12x

2
jxD0 D 0. In fact, x4 is concave up on every interval.

E X A M P L E 1
Determine the intervals of concavity of f .x/ D x6

� 10x4 and

the inflection points of its graph.

Solution We have

f
0
.x/ D 6x

5
� 40x

3
;

f
00
.x/ D 30x

4
� 120x

2
D 30x

2
.x � 2/.x C 2/:

Having factored f 00.x/ in this manner, we can see that it vanishes only at x D �2,

x D 0, and x D 2. On the intervals .�1;�2/ and .2;1/, f 00.x/ > 0, so f is
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concave up. On .�2; 0/ and .0; 2/, f 00.x/ < 0, so f is concave down. f 00.x/ changes

sign as we pass through �2 and 2. Since f .˙2/ D �96, the graph of f has inflection

points at .˙2;�96/. However, f 00.x/ does not change sign at x D 0, since x2 > 0

for both positive and negative x. Thus, there is no inflection point at 0. As was the

case for the first derivative, information about the sign of f 00.x/ and the consequent

concavity of f can be conveniently conveyed in a chart:

y

x

�2 2

�96

y D f .x/

Figure 4.31 The graph of

f .x/ D x6
� 10x4

x �2 0 2
��������������������������������������������������������!

f
00

C 0 � 0 � 0 C

f ^ infl _ _ infl ^

The graph of f is sketched in Figure 4.31.

E X A M P L E 2
Determine the intervals of increase and decrease, the local extreme

values, and the concavity of f .x/ D x4
� 2x3

C 1. Use the

information to sketch the graph of f:

Solution

f
0
.x/ D 4x

3
� 6x

2
D 2x

2
.2x � 3/ D 0 at x D 0 and x D 3=2;

f
00
.x/ D 12x

2
� 12x D 12x.x � 1/ D 0 at x D 0 and x D 1:

The behaviour of f is summarized in the following chart:

CP CP

x 0 1 3=2
��������������������������������������������������������!

f 0
� 0 � � 0 C

f 00
C 0 � 0 C C

f & & & min %

^ infl _ infl ^ ^

Note that f has an inflection at the critical point x D 0. We calculate the values of f

at the “interesting values of x” in the charts:

y

x

1

1

�

3
2

;� 11
16

�

y D x4
� 2x3

C 1

Figure 4.32 The function of Example 2

f .0/ D 1; f .1/ D 0; f
�

3
2

�

D �
11
16
:

The graph of f is sketched in Figure 4.32.

The Second Derivative Test
A function f will have a local maximum (or minimum) value at a critical point if its

graph is concave down (or up) in an interval containing that point. In fact, we can

often use the value of the second derivative at the critical point to determine whether

the function has a local maximum or a local minimum value there.

T H E O R E M

10

The Second Derivative Test

(a) If f 0.x0/ D 0 and f 00.x0/ < 0, then f has a local maximum value at x0.

(b) If f 0.x0/ D 0 and f 00.x0/ > 0, then f has a local minimum value at x0.

(c) If f 0.x0/ D 0 and f 00.x0/ D 0, no conclusion can be drawn; f may have a local

maximum at x0 or a local minimum, or it may have an inflection point instead.
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is an inflection point (or simply an inflection) of a curve C (which is not necessarily

the graph of a function) if C has a tangent at P and arcs of C extending in opposite

directions from P are on opposite sides of that tangent line.

Figures 4.27–4.29 illustrate some situations involving critical and singular points

and inflections.

y

x

y D f .x/ D x3

Figure 4.27 x D 0 is a critical point

of f .x/ D x3, and f has an inflection

point there

y

x

y D g.x/

a

Figure 4.28 The concavity of g is

opposite on opposite sides of the

singular point a, but its graph has no

tangent and therefore no inflection point

there

y

x

y D h.x/ D x1=3

Figure 4.29 This graph of h has an

inflection point at the origin even

though x D 0 is a singular point of h

If a function f has a second derivative f 00, the sign of that second derivative tells

us whether the first derivative f 0 is increasing or decreasing and hence determines the

concavity of f:

T H E O R E M

9

Concavity and the second derivative

(a) If f 00
.x/ > 0 on interval I; then f is concave up on I:

(b) If f 00
.x/ < 0 on interval I; then f is concave down on I:

(c) If f has an inflection point at x0 and f 00.x0/ exists, then f 00.x0/ D 0.

PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.8 to the

derivative f 0 of f: If f has an inflection point at x0 and f 00.x0/ exists, then f must

be differentiable in an open interval containing x0. Since f 0 is increasing on one side

of x0 and decreasing on the other side, it must have a local maximum or minimum

value at x0. By Theorem 6, f 00.x0/ D 0.

Theorem 9 tells us that to find (the x-coordinates of) inflection points of a twice dif-

ferentiable function f; we need only look at points where f 00.x/ D 0. However,

not every such point has to be an inflection point. For example, f .x/ D x4, whose

y

x

y D f .x/ D x4

Figure 4.30 f 00.0/ D 0, but f does not

have an inflection point at 0

graph is shown in Figure 4.30, does not have an inflection point at x D 0 even though

f
00
.0/ D 12x

2
jxD0 D 0. In fact, x4 is concave up on every interval.

E X A M P L E 1
Determine the intervals of concavity of f .x/ D x6

� 10x4 and

the inflection points of its graph.

Solution We have

f
0
.x/ D 6x

5
� 40x

3
;

f
00
.x/ D 30x

4
� 120x

2
D 30x

2
.x � 2/.x C 2/:

Having factored f 00.x/ in this manner, we can see that it vanishes only at x D �2,

x D 0, and x D 2. On the intervals .�1;�2/ and .2;1/, f 00.x/ > 0, so f is
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concave up. On .�2; 0/ and .0; 2/, f 00.x/ < 0, so f is concave down. f 00.x/ changes

sign as we pass through �2 and 2. Since f .˙2/ D �96, the graph of f has inflection

points at .˙2;�96/. However, f 00.x/ does not change sign at x D 0, since x2 > 0

for both positive and negative x. Thus, there is no inflection point at 0. As was the

case for the first derivative, information about the sign of f 00.x/ and the consequent

concavity of f can be conveniently conveyed in a chart:

y

x

�2 2

�96

y D f .x/

Figure 4.31 The graph of

f .x/ D x6
� 10x4

x �2 0 2
��������������������������������������������������������!

f
00

C 0 � 0 � 0 C

f ^ infl _ _ infl ^

The graph of f is sketched in Figure 4.31.

E X A M P L E 2
Determine the intervals of increase and decrease, the local extreme

values, and the concavity of f .x/ D x4
� 2x3

C 1. Use the

information to sketch the graph of f:

Solution

f
0
.x/ D 4x

3
� 6x

2
D 2x

2
.2x � 3/ D 0 at x D 0 and x D 3=2;

f
00
.x/ D 12x

2
� 12x D 12x.x � 1/ D 0 at x D 0 and x D 1:

The behaviour of f is summarized in the following chart:

CP CP

x 0 1 3=2
��������������������������������������������������������!

f 0
� 0 � � 0 C

f 00
C 0 � 0 C C

f & & & min %

^ infl _ infl ^ ^

Note that f has an inflection at the critical point x D 0. We calculate the values of f

at the “interesting values of x” in the charts:

y

x

1

1

�

3
2

;� 11
16

�

y D x4
� 2x3

C 1

Figure 4.32 The function of Example 2

f .0/ D 1; f .1/ D 0; f
�

3
2

�

D �
11
16
:

The graph of f is sketched in Figure 4.32.

The Second Derivative Test
A function f will have a local maximum (or minimum) value at a critical point if its

graph is concave down (or up) in an interval containing that point. In fact, we can

often use the value of the second derivative at the critical point to determine whether

the function has a local maximum or a local minimum value there.

T H E O R E M

10

The Second Derivative Test

(a) If f 0.x0/ D 0 and f 00.x0/ < 0, then f has a local maximum value at x0.

(b) If f 0.x0/ D 0 and f 00.x0/ > 0, then f has a local minimum value at x0.

(c) If f 0.x0/ D 0 and f 00.x0/ D 0, no conclusion can be drawn; f may have a local

maximum at x0 or a local minimum, or it may have an inflection point instead.
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PROOF Suppose that f 0.x0/ D 0 and f 00.x0/ < 0. Since

lim
h!0

f 0.x0 C h/

h
D lim

h!0

f 0.x0 C h/ � f
0.x0/

h
D f

00
.x0/ < 0;

it follows that f 0.x0Ch/ < 0 for all sufficiently small positive h, and f 0.x0Ch/ > 0

for all sufficiently small negative h. By the first derivative test (Theorem 7), f must

have a local maximum value at x0. The proof of the local minimum case is similar.

The functions f .x/ D x4 (Figure 4.30), f .x/ D �x4, and f .x/ D x3 (Figure 4.27)

all satisfy f 0
.0/ D 0 and f 00

.0/ D 0. But x4 has a minimum value at x D 0, �x4

has a maximum value at x D 0, and x3 has neither a maximum nor a minimum value

at x D 0 but has an inflection there. Therefore, we cannot make any conclusion about

the nature of a critical point based on knowing that f 00.x/ D 0 there.

E X A M P L E 3
Find and classify the critical points of f .x/ D x2e�x .

Solution We begin by calculating the first two derivatives of f :

f
0
.x/ D .2x � x

2
/e

�x
D x.2 � x/e

�x
D 0 at x D 0 and x D 2;

f
00
.x/ D .2 � 4x C x

2
/e

�x

f
00
.0/ D 2 > 0; f

00
.2/ D �2e

�2
< 0:

Thus, f has a local minimum value at x D 0 and a local maximum value at x D 2.

See Figure 4.33.

y

x

yDx2 e�x

.2;4e�2/

Figure 4.33 The critical points of

f .x/ D x
2
e

�x

For many functions the second derivative is more complicated to calculate than the

first derivative, so the First Derivative Test is likely to be of more use in classifying

critical points than is the Second Derivative Test. Also note that the First Derivative

Test can classify local extreme values that occur at endpoints and singular points as

well as at critical points.

It is possible to generalize the Second Derivative Test to obtain a higher derivative

test to deal with some situations where the second derivative is zero at a critical point.

(See Exercise 40 at the end of this section.)

E X E R C I S E S 4.5

In Exercises 1–22, determine the intervals of constant concavity of

the given function, and locate any inflection points.

1. f .x/ D
p

x 2. f .x/ D 2x � x2

3. f .x/ D x2
C 2x C 3 4. f .x/ D x � x3

5. f .x/ D 10x3
� 3x

5 6. f .x/ D 10x3
C 3x

5

7. f .x/ D .3 � x2
/
2 8. f .x/ D .2C 2x � x2

/
2

9. f .x/ D .x2
� 4/

3 10. f .x/ D
x

x2
C 3

11. f .x/ D sinx 12. f .x/ D cos 3x

13. f .x/ D x C sin 2x 14. f .x/ D x � 2 sinx

15. f .x/ D tan�1
x 16. f .x/ D x ex

17. f .x/ D e�x2

18. f .x/ D
ln.x2/

x

19. f .x/ D ln.1C x2
/ 20. f .x/ D .lnx/2

21. f .x/ D
x3

3
� 4x

2
C 12x �

25

3

22. f .x/ D .x � 1/1=3
C .x C 1/

1=3

23. Discuss the concavity of the linear function

f .x/ D ax C b. Does it have any inflections?

Classify the critical points of the functions in Exercises 24–35

using the Second Derivative Test whenever possible.

24. f .x/ D 3x3
� 36x � 3 25. f .x/ D x.x � 2/2 C 1

26. f .x/ D x C
4

x
27. f .x/ D x3

C

1

x

28. f .x/ D
x

2x
29. f .x/ D

x

1C x2

30. f .x/ D xex 31. f .x/ D x lnx

32. f .x/ D .x2
� 4/

2 33. f .x/ D .x2
� 4/

3
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34. f .x/ D .x2
� 3/e

x 35. f .x/ D x2
e

�2x2

36. Let f .x/ D x2 if x � 0 and f .x/ D �x2 if x < 0. Is 0 a

critical point of f ? Does f have an inflection point there? Is

f 00.0/ D 0? If a function has a nonvertical tangent line at an

inflection point, does the second derivative of the function

necessarily vanish at that point?

37.I Verify that if f is concave up on an interval, then its graph

lies above its tangent lines on that interval. Hint: Suppose f is

concave up on an open interval containing x0. Let h.x/ D

f .x/ � f .x0/ � f
0.x0/.x � x0/. Show that h has a local

minimum value at x0 and hence that h.x/ � 0 on the interval.

Show that h.x/ > 0 if x ¤ x0.

38.I Verify that the graph y D f .x/ crosses its tangent line at an

inflection point. Hint: Consider separately the cases where the

tangent line is vertical and nonvertical.

39. Let fn.x/ D x
n and gn.x/ D �x

n; .n D 2; 3; 4; : : :/.

Determine whether each function has a local maximum, a

local minimum, or an inflection point at x D 0.

40.I (Higher Derivative Test) Use your conclusions from Exercise

39 to suggest a generalization of the Second Derivative Test

that applies when

f
0
.x0/ D f

00
.x0/ D : : : D f

.k�1/
.x0/ D 0; f

.k/
.x0/ ¤ 0;

for some k � 2.

41.I This problem shows that no test based solely on the signs of

derivatives at x0 can determine whether every function with a

critical point at x0 has a local maximum or minimum or an

inflection point there. Let

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0.

Prove the following:

(a) limx!0 x
�n
f .x/ D 0 for n D 0; 1; 2; 3; : : : .

(b) limx!0 P.1=x/f .x/ D 0 for every polynomial P .

(c) For x ¤ 0; f .k/
.x/ D Pk.1=x/f .x/.k D 1; 2; 3; : : :/,

where Pk is a polynomial.

(d) f .k/.0/ exists and equals 0 for k D 1; 2; 3; : : : .

(e) f has a local minimum at x D 0I �f has a local

maximum at x D 0.

(f) If g.x/ D xf .x/, then g.k/.0/ D 0 for every positive

integer k and g has an inflection point at x D 0.

42.I A function may have neither a local maximum nor a local

minimum nor an inflection at a critical point. Show this by

considering the following function:

f .x/ D

(

x2 sin
1

x
if x ¤ 0

0 if x D 0.

Show that f 0.0/ D f .0/ D 0, so the x-axis is tangent to the

graph of f at x D 0; but f 0.x/ is not continuous at x D 0, so

f 00.0/ does not exist. Show that the concavity of f is not

constant on any interval with endpoint 0.

4.6 Sketching the Graph of a Function

When sketching the graph y D f .x/ of a function f , we have three sources of useful

information:

(i) the function f itself, from which we determine the coordinates of some points

on the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, f
0, from which we determine the intervals of increase and

decrease and the location of any local extreme values; and

(iii) the second derivative, f
00, from which we determine the concavity and inflection

points, and sometimes extreme values.

Items (ii) and (iii) were explored in the previous two sections. In this section we

consider what we can learn from the function itself about the shape of its graph, and

then we illustrate the entire sketching procedure with several examples using all three

sources of information.

We could sketch a graph by plotting the coordinates of many points on it and join-

ing them by a suitably smooth curve. This is what computer software and graphics

calculators do. When carried out by hand (without a computer or calculator), this sim-

plistic approach is at best tedious and at worst can fail to reveal the most interesting

aspects of the graph (singular points, extreme values, and so on). We could also com-

pute the slope at each of the plotted points and, by drawing short line segments through

these points with the appropriate slopes, ensure that the sketched graph passes through

each plotted point with the correct slope. A more efficient procedure is to obtain the

coordinates of only a few points and use qualitative information from the function

and its first and second derivatives to determine the shape of the graph between these

points.
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PROOF Suppose that f 0.x0/ D 0 and f 00.x0/ < 0. Since

lim
h!0

f 0.x0 C h/

h
D lim

h!0

f 0.x0 C h/ � f
0.x0/

h
D f

00
.x0/ < 0;

it follows that f 0.x0Ch/ < 0 for all sufficiently small positive h, and f 0.x0Ch/ > 0

for all sufficiently small negative h. By the first derivative test (Theorem 7), f must

have a local maximum value at x0. The proof of the local minimum case is similar.

The functions f .x/ D x4 (Figure 4.30), f .x/ D �x4, and f .x/ D x3 (Figure 4.27)

all satisfy f 0
.0/ D 0 and f 00

.0/ D 0. But x4 has a minimum value at x D 0, �x4

has a maximum value at x D 0, and x3 has neither a maximum nor a minimum value

at x D 0 but has an inflection there. Therefore, we cannot make any conclusion about

the nature of a critical point based on knowing that f 00.x/ D 0 there.

E X A M P L E 3
Find and classify the critical points of f .x/ D x2e�x .

Solution We begin by calculating the first two derivatives of f :

f
0
.x/ D .2x � x

2
/e

�x
D x.2 � x/e

�x
D 0 at x D 0 and x D 2;

f
00
.x/ D .2 � 4x C x

2
/e

�x

f
00
.0/ D 2 > 0; f

00
.2/ D �2e

�2
< 0:

Thus, f has a local minimum value at x D 0 and a local maximum value at x D 2.

See Figure 4.33.

y

x

yDx2 e�x

.2;4e�2/

Figure 4.33 The critical points of

f .x/ D x
2
e

�x

For many functions the second derivative is more complicated to calculate than the

first derivative, so the First Derivative Test is likely to be of more use in classifying

critical points than is the Second Derivative Test. Also note that the First Derivative

Test can classify local extreme values that occur at endpoints and singular points as

well as at critical points.

It is possible to generalize the Second Derivative Test to obtain a higher derivative

test to deal with some situations where the second derivative is zero at a critical point.

(See Exercise 40 at the end of this section.)

E X E R C I S E S 4.5

In Exercises 1–22, determine the intervals of constant concavity of

the given function, and locate any inflection points.

1. f .x/ D
p

x 2. f .x/ D 2x � x2

3. f .x/ D x2
C 2x C 3 4. f .x/ D x � x3

5. f .x/ D 10x3
� 3x

5 6. f .x/ D 10x3
C 3x

5

7. f .x/ D .3 � x2
/
2 8. f .x/ D .2C 2x � x2

/
2

9. f .x/ D .x2
� 4/

3 10. f .x/ D
x

x2
C 3

11. f .x/ D sinx 12. f .x/ D cos 3x

13. f .x/ D x C sin 2x 14. f .x/ D x � 2 sinx

15. f .x/ D tan�1
x 16. f .x/ D x ex

17. f .x/ D e�x2

18. f .x/ D
ln.x2/

x

19. f .x/ D ln.1C x2
/ 20. f .x/ D .lnx/2

21. f .x/ D
x3

3
� 4x

2
C 12x �

25

3

22. f .x/ D .x � 1/1=3
C .x C 1/

1=3

23. Discuss the concavity of the linear function

f .x/ D ax C b. Does it have any inflections?

Classify the critical points of the functions in Exercises 24–35

using the Second Derivative Test whenever possible.

24. f .x/ D 3x3
� 36x � 3 25. f .x/ D x.x � 2/2 C 1

26. f .x/ D x C
4

x
27. f .x/ D x3

C

1

x

28. f .x/ D
x

2x
29. f .x/ D

x

1C x2

30. f .x/ D xex 31. f .x/ D x lnx

32. f .x/ D .x2
� 4/

2 33. f .x/ D .x2
� 4/

3
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34. f .x/ D .x2
� 3/e

x 35. f .x/ D x2
e

�2x2

36. Let f .x/ D x2 if x � 0 and f .x/ D �x2 if x < 0. Is 0 a

critical point of f ? Does f have an inflection point there? Is

f 00.0/ D 0? If a function has a nonvertical tangent line at an

inflection point, does the second derivative of the function

necessarily vanish at that point?

37.I Verify that if f is concave up on an interval, then its graph

lies above its tangent lines on that interval. Hint: Suppose f is

concave up on an open interval containing x0. Let h.x/ D

f .x/ � f .x0/ � f
0.x0/.x � x0/. Show that h has a local

minimum value at x0 and hence that h.x/ � 0 on the interval.

Show that h.x/ > 0 if x ¤ x0.

38.I Verify that the graph y D f .x/ crosses its tangent line at an

inflection point. Hint: Consider separately the cases where the

tangent line is vertical and nonvertical.

39. Let fn.x/ D x
n and gn.x/ D �x

n; .n D 2; 3; 4; : : :/.

Determine whether each function has a local maximum, a

local minimum, or an inflection point at x D 0.

40.I (Higher Derivative Test) Use your conclusions from Exercise

39 to suggest a generalization of the Second Derivative Test

that applies when

f
0
.x0/ D f

00
.x0/ D : : : D f

.k�1/
.x0/ D 0; f

.k/
.x0/ ¤ 0;

for some k � 2.

41.I This problem shows that no test based solely on the signs of

derivatives at x0 can determine whether every function with a

critical point at x0 has a local maximum or minimum or an

inflection point there. Let

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0.

Prove the following:

(a) limx!0 x
�n
f .x/ D 0 for n D 0; 1; 2; 3; : : : .

(b) limx!0 P.1=x/f .x/ D 0 for every polynomial P .

(c) For x ¤ 0; f .k/
.x/ D Pk.1=x/f .x/.k D 1; 2; 3; : : :/,

where Pk is a polynomial.

(d) f .k/.0/ exists and equals 0 for k D 1; 2; 3; : : : .

(e) f has a local minimum at x D 0I �f has a local

maximum at x D 0.

(f) If g.x/ D xf .x/, then g.k/.0/ D 0 for every positive

integer k and g has an inflection point at x D 0.

42.I A function may have neither a local maximum nor a local

minimum nor an inflection at a critical point. Show this by

considering the following function:

f .x/ D

(

x2 sin
1

x
if x ¤ 0

0 if x D 0.

Show that f 0.0/ D f .0/ D 0, so the x-axis is tangent to the

graph of f at x D 0; but f 0.x/ is not continuous at x D 0, so

f 00.0/ does not exist. Show that the concavity of f is not

constant on any interval with endpoint 0.

4.6 Sketching the Graph of a Function

When sketching the graph y D f .x/ of a function f , we have three sources of useful

information:

(i) the function f itself, from which we determine the coordinates of some points

on the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, f
0, from which we determine the intervals of increase and

decrease and the location of any local extreme values; and

(iii) the second derivative, f
00, from which we determine the concavity and inflection

points, and sometimes extreme values.

Items (ii) and (iii) were explored in the previous two sections. In this section we

consider what we can learn from the function itself about the shape of its graph, and

then we illustrate the entire sketching procedure with several examples using all three

sources of information.

We could sketch a graph by plotting the coordinates of many points on it and join-

ing them by a suitably smooth curve. This is what computer software and graphics

calculators do. When carried out by hand (without a computer or calculator), this sim-

plistic approach is at best tedious and at worst can fail to reveal the most interesting

aspects of the graph (singular points, extreme values, and so on). We could also com-

pute the slope at each of the plotted points and, by drawing short line segments through

these points with the appropriate slopes, ensure that the sketched graph passes through

each plotted point with the correct slope. A more efficient procedure is to obtain the

coordinates of only a few points and use qualitative information from the function

and its first and second derivatives to determine the shape of the graph between these

points.
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Besides critical and singular points and inflections, a graph may have other “in-

teresting” points. The intercepts (points at which the graph intersects the coordinate

axes) are usually among these. When sketching any graph it is wise to try to find

all such intercepts, that is, all points with coordinates .x; 0/ and .0; y/ that lie on the

graph. Of course, not every graph will have such points, and even when they do exist

it may not always be possible to compute them exactly. Whenever a graph is made

up of several disconnected pieces (called components), the coordinates of at least one

point on each component must be obtained. It can sometimes be useful to determine

the slopes at those points too. Vertical asymptotes (discussed below) usually break the

graph of a function into components.

Realizing that a given function possesses some symmetry can aid greatly in ob-

taining a good sketch of its graph. In Section P.4 we discussed odd and even func-

tions and observed that odd functions have graphs that are symmetric about the origin,

while even functions have graphs that are symmetric about the y-axis, as shown in

Figure 4.34. These are the symmetries you are most likely to notice, but functions can

have other symmetries. For example, the graph of 2C .x � 1/2 will certainly be sym-

metric about the line x D 1, and the graph of 2 C .x � 3/3 is symmetric about the

point .3; 2/.

Figure 4.34

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Asymptotes
Some of the curves we have sketched in previous sections have had asymptotes, that is,

straight lines to which the curve draws arbitrarily close as it recedes to infinite distance

from the origin. Asymptotes are of three types: vertical, horizontal, and oblique.

D E F I N I T I O N

5

The graph of y D f .x/ has a vertical asymptote at x D a if

either lim
x!a�

f .x/ D ˙1 or lim
x!aC

f .x/ D ˙1; or both.

This situation tends to arise when f .x/ is a quotient of two expressions and the de-

nominator is zero at x D a.y

x

y D
1

x2
� x

x D 1

Figure 4.35

E X A M P L E 1 Find the vertical asymptotes of f .x/ D
1

x2
� x

. How does the

graph approach these asymptotes?

Solution The denominator x2
� x D x.x � 1/ approaches 0 as x approaches 0 or

1, so f has vertical asymptotes at x D 0 and x D 1 (Figure 4.35). Since x.x � 1/ is

positive on .�1; 0/ and on .1;1/ and is negative on .0; 1/, we have

lim
x!0�

1

x2
� x
D1;

lim
x!0C

1

x2
� x
D �1;

lim
x!1�

1

x2
� x
D �1;

lim
x!1C

1

x2
� x
D1:
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D E F I N I T I O N

6

The graph of y D f .x/ has a horizontal asymptote y D L if

either lim
x!1

f .x/ D L or lim
x!�1

f .x/ D L; or both:

E X A M P L E 2
Find the horizontal asymptotes of

(a) f .x/ D
1

x2
� x

and (b) g.x/ D
x4
C x2

x4
C 1

.

Solution

(a) The function f has horizontal asymptote y D 0 (Figure 4.35) since

lim
x!˙1

1

x2
� x
D lim

x!˙1

1=x
2

1 � .1=x/
D

0

1
D 0:

(b) The function g has horizontal asymptote y D 1 (Figure 4.36) since

lim
x!˙1

x4
C x2

x4
C 1

D lim
x!˙1

1C .1=x2/

1C .1=x4/
D

1

1
D 1:

Observe that the graph of g crosses its asymptote twice. (There is a popular mis-

conception among students that curves cannot cross their asymptotes. Exercise 41

below gives an example of a curve that crosses its asymptote infinitely often.)

y

x

y D
x4
C x2

x4
C 1

y D 1

Figure 4.36

The horizontal asymptotes of both functions f and g in Example 2 are two-sided,

which means that the graphs approach the asymptotes as x approaches both infinity

and negative infinity. The function tan�1 x has two one-sided asymptotes, y D �=2

(as x !1) and y D �.�=2/ (as x ! �1). See Figure 4.37.

Figure 4.37 One-sided horizontal

asymptotes

y

x

y D tan�1x

�

�

2

�

2

It can also happen that the graph of a function f approaches a nonhorizontal

straight line as x approaches 1 or �1 (or both). Such a line is called an oblique

asymptote of the graph.

D E F I N I T I O N

7

The straight line y D ax C b (where a ¤ 0) is an oblique asymptote of the

graph of y D f .x/ if

either lim
x!�1

�

f .x/�.axCb/
�

D 0 or lim
x!1

�

f .x/�.axCb/
�

D 0;

or both.

E X A M P L E 3 Consider the function f .x/ D
x2
C 1

x
D x C

1

x
; whose graph is

shown in Figure 4.38(a). The straight line y D x is a two-sided

oblique asymptote of the graph of f because

lim
x!˙1

�

f .x/� x
�

D lim
x!˙1

1

x
D 0:
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Besides critical and singular points and inflections, a graph may have other “in-

teresting” points. The intercepts (points at which the graph intersects the coordinate

axes) are usually among these. When sketching any graph it is wise to try to find

all such intercepts, that is, all points with coordinates .x; 0/ and .0; y/ that lie on the

graph. Of course, not every graph will have such points, and even when they do exist

it may not always be possible to compute them exactly. Whenever a graph is made

up of several disconnected pieces (called components), the coordinates of at least one

point on each component must be obtained. It can sometimes be useful to determine

the slopes at those points too. Vertical asymptotes (discussed below) usually break the

graph of a function into components.

Realizing that a given function possesses some symmetry can aid greatly in ob-

taining a good sketch of its graph. In Section P.4 we discussed odd and even func-

tions and observed that odd functions have graphs that are symmetric about the origin,

while even functions have graphs that are symmetric about the y-axis, as shown in

Figure 4.34. These are the symmetries you are most likely to notice, but functions can

have other symmetries. For example, the graph of 2C .x � 1/2 will certainly be sym-

metric about the line x D 1, and the graph of 2 C .x � 3/3 is symmetric about the

point .3; 2/.

Figure 4.34

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Asymptotes
Some of the curves we have sketched in previous sections have had asymptotes, that is,

straight lines to which the curve draws arbitrarily close as it recedes to infinite distance

from the origin. Asymptotes are of three types: vertical, horizontal, and oblique.

D E F I N I T I O N

5

The graph of y D f .x/ has a vertical asymptote at x D a if

either lim
x!a�

f .x/ D ˙1 or lim
x!aC

f .x/ D ˙1; or both.

This situation tends to arise when f .x/ is a quotient of two expressions and the de-

nominator is zero at x D a.y

x

y D
1

x2
� x

x D 1

Figure 4.35

E X A M P L E 1 Find the vertical asymptotes of f .x/ D
1

x2
� x

. How does the

graph approach these asymptotes?

Solution The denominator x2
� x D x.x � 1/ approaches 0 as x approaches 0 or

1, so f has vertical asymptotes at x D 0 and x D 1 (Figure 4.35). Since x.x � 1/ is

positive on .�1; 0/ and on .1;1/ and is negative on .0; 1/, we have

lim
x!0�

1

x2
� x
D1;

lim
x!0C

1

x2
� x
D �1;

lim
x!1�

1

x2
� x
D �1;

lim
x!1C

1

x2
� x
D1:
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D E F I N I T I O N

6

The graph of y D f .x/ has a horizontal asymptote y D L if

either lim
x!1

f .x/ D L or lim
x!�1

f .x/ D L; or both:

E X A M P L E 2
Find the horizontal asymptotes of

(a) f .x/ D
1

x2
� x

and (b) g.x/ D
x4
C x2

x4
C 1

.

Solution

(a) The function f has horizontal asymptote y D 0 (Figure 4.35) since

lim
x!˙1

1

x2
� x
D lim

x!˙1

1=x
2

1 � .1=x/
D

0

1
D 0:

(b) The function g has horizontal asymptote y D 1 (Figure 4.36) since

lim
x!˙1

x4
C x2

x4
C 1

D lim
x!˙1

1C .1=x2/

1C .1=x4/
D

1

1
D 1:

Observe that the graph of g crosses its asymptote twice. (There is a popular mis-

conception among students that curves cannot cross their asymptotes. Exercise 41

below gives an example of a curve that crosses its asymptote infinitely often.)

y

x

y D
x4
C x2

x4
C 1

y D 1

Figure 4.36

The horizontal asymptotes of both functions f and g in Example 2 are two-sided,

which means that the graphs approach the asymptotes as x approaches both infinity

and negative infinity. The function tan�1 x has two one-sided asymptotes, y D �=2

(as x !1) and y D �.�=2/ (as x ! �1). See Figure 4.37.

Figure 4.37 One-sided horizontal

asymptotes

y

x

y D tan�1x

�

�

2

�

2

It can also happen that the graph of a function f approaches a nonhorizontal

straight line as x approaches 1 or �1 (or both). Such a line is called an oblique

asymptote of the graph.

D E F I N I T I O N

7

The straight line y D ax C b (where a ¤ 0) is an oblique asymptote of the

graph of y D f .x/ if

either lim
x!�1

�

f .x/�.axCb/
�

D 0 or lim
x!1

�

f .x/�.axCb/
�

D 0;

or both.

E X A M P L E 3 Consider the function f .x/ D
x2
C 1

x
D x C

1

x
; whose graph is

shown in Figure 4.38(a). The straight line y D x is a two-sided

oblique asymptote of the graph of f because

lim
x!˙1

�

f .x/� x
�

D lim
x!˙1

1

x
D 0:
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Figure 4.38

(a) The graph of y D f .x/ has a

two-sided oblique asymptote, y D x

(b) This graph has a horizontal asymptote

at the left and an oblique asymptote at

the right

y

x

y D x C
1

x

.�1;�2/

.1;2/

y D x

y

x

y D
x ex

1C ex

y D x

(a) (b)

E X A M P L E 4 The graph of y D
x ex

1C ex
, shown in Figure 4.38(b), has a horizon-

tal asymptote y D 0 at the left and an oblique asymptote y D x at

the right:

lim
x!�1

x e
x

1C ex
D

0

1
D 0 and

lim
x!1

�

x ex

1C ex
� x

�

D lim
x!1

x.ex
� 1 � ex/

1C ex
D lim

x!1

�x

1C ex
D 0:

Recall that a rational function is a function of the form f .x/ D P.x/=Q.x/, where

P and Q are polynomials. Following observations made in Sections P.6, 1.2, and 1.3,

we can be quite specific about the asymptotes of a rational function.

Asymptotes of a rational function

Suppose that f .x/ D
Pm.x/

Qn.x/
, where Pm and Qn are polynomials of degree

m and n, respectively. Suppose also that Pm and Qn have no common linear

factors. Then

(a) The graph of f has a vertical asymptote at every position x such that

Qn.x/ D 0.

(b) The graph of f has a two-sided horizontal asymptote y D 0 if m < n.

(c) The graph of f has a two-sided horizontal asymptote y D L, .L ¤ 0/ if

m D n. L is the quotient of the coefficients of the highest degree terms

in Pm and Qn.

(d) The graph of f has a two-sided oblique asymptote if m D n C 1. This

asymptote can be found by dividing Qn into Pm to obtain a linear quo-

tient, ax C b, and remainder, R, a polynomial of degree at most n � 1.

That is,

f .x/ D ax C b C
R.x/

Qn.x/
:

The oblique asymptote is y D ax C b.

(e) The graph of f has no horizontal or oblique asymptotes if m > nC 1.

E X A M P L E 5 Find the oblique asymptote of y D
x

3

x2
C x C 1

.

Solution We can either obtain the quotient by long division:
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x � 1

x2
C x C 1 x

3

x
3
C x

2
C x

� x
2
� x

� x2
� x � 1

1

x3

x2
C x C 1

D x � 1 C
1

x2
C x C 1

or we can obtain the same result by short division:

x3

x2
C x C 1

D

x3
C x2

C x � x2
� x � 1C 1

x2
C x C 1

D x � 1C
1

x2
C x C 1

:

In any event, we see that the oblique asymptote has equation y D x � 1.

Examples of Formal Curve Sketching
Here is a checklist of things to consider when you are asked to make a careful sketch

of the graph of y D f .x/. It will, of course, not always be possible to obtain every

item of information mentioned in the list.

Checklist for curve sketching

1. Calculate f 0.x/ and f 00.x/, and express the results in factored form.

2. Examine f .x/ to determine its domain and the following items:

(a) Any vertical asymptotes. (Look for zeros of denominators.)

(b) Any horizontal or oblique asymptotes. (Consider limx!˙1 f .x/.)

(c) Any obvious symmetry. (Is f even or odd?)

(d) Any easily calculated intercepts (points with coordinates .x; 0/ or

.0; y/) or endpoints or other “obvious” points. You will add to this

list when you know any critical points, singular points, and inflection

points. Eventually you should make sure you know the coordinates

of at least one point on every component of the graph.

3. Examine f 0.x/ for the following:

(a) Any critical points.

(b) Any points where f 0 is not defined. (These will include singular

points, endpoints of the domain of f; and vertical asymptotes.)

(c) Intervals on which f 0 is positive or negative. It’s a good idea to con-

vey this information in the form of a chart such as those used in the

examples. Conclusions about where f is increasing and decreas-

ing and classification of some critical and singular points as local

maxima and minima can also be indicated on the chart.

4. Examine f 00.x/ for the following:

(a) Points where f 00.x/ D 0.

(b) Points where f 00.x/ is undefined. (These will include singular points,

endpoints, vertical asymptotes, and possibly other points as well,

where f 0 is defined but f 00 isn’t.)

(c) Intervals where f 00 is positive or negative and where f is therefore

concave up or down. Use a chart.

(d) Any inflection points.

When you have obtained as much of this information as possible, make a careful sketch

that reflects everything you have learned about the function. Consider where best to

place the axes and what scale to use on each so the “interesting features” of the graph

show up most clearly. Be alert for seeming inconsistencies in the information—that is
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Figure 4.38

(a) The graph of y D f .x/ has a

two-sided oblique asymptote, y D x

(b) This graph has a horizontal asymptote

at the left and an oblique asymptote at

the right

y

x

y D x C
1

x

.�1;�2/

.1;2/

y D x

y

x

y D
x ex

1C ex

y D x

(a) (b)

E X A M P L E 4 The graph of y D
x ex

1C ex
, shown in Figure 4.38(b), has a horizon-

tal asymptote y D 0 at the left and an oblique asymptote y D x at

the right:

lim
x!�1

x e
x

1C ex
D

0

1
D 0 and

lim
x!1

�

x ex

1C ex
� x

�

D lim
x!1

x.ex
� 1 � ex/

1C ex
D lim

x!1

�x

1C ex
D 0:

Recall that a rational function is a function of the form f .x/ D P.x/=Q.x/, where

P and Q are polynomials. Following observations made in Sections P.6, 1.2, and 1.3,

we can be quite specific about the asymptotes of a rational function.

Asymptotes of a rational function

Suppose that f .x/ D
Pm.x/

Qn.x/
, where Pm and Qn are polynomials of degree

m and n, respectively. Suppose also that Pm and Qn have no common linear

factors. Then

(a) The graph of f has a vertical asymptote at every position x such that

Qn.x/ D 0.

(b) The graph of f has a two-sided horizontal asymptote y D 0 if m < n.

(c) The graph of f has a two-sided horizontal asymptote y D L, .L ¤ 0/ if

m D n. L is the quotient of the coefficients of the highest degree terms

in Pm and Qn.

(d) The graph of f has a two-sided oblique asymptote if m D n C 1. This

asymptote can be found by dividing Qn into Pm to obtain a linear quo-

tient, ax C b, and remainder, R, a polynomial of degree at most n � 1.

That is,

f .x/ D ax C b C
R.x/

Qn.x/
:

The oblique asymptote is y D ax C b.

(e) The graph of f has no horizontal or oblique asymptotes if m > nC 1.

E X A M P L E 5 Find the oblique asymptote of y D
x

3

x2
C x C 1

.

Solution We can either obtain the quotient by long division:
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x � 1

x2
C x C 1 x

3

x
3
C x

2
C x

� x
2
� x

� x2
� x � 1

1

x3

x2
C x C 1

D x � 1 C
1

x2
C x C 1

or we can obtain the same result by short division:

x3

x2
C x C 1

D

x3
C x2

C x � x2
� x � 1C 1

x2
C x C 1

D x � 1C
1

x2
C x C 1

:

In any event, we see that the oblique asymptote has equation y D x � 1.

Examples of Formal Curve Sketching
Here is a checklist of things to consider when you are asked to make a careful sketch

of the graph of y D f .x/. It will, of course, not always be possible to obtain every

item of information mentioned in the list.

Checklist for curve sketching

1. Calculate f 0.x/ and f 00.x/, and express the results in factored form.

2. Examine f .x/ to determine its domain and the following items:

(a) Any vertical asymptotes. (Look for zeros of denominators.)

(b) Any horizontal or oblique asymptotes. (Consider limx!˙1 f .x/.)

(c) Any obvious symmetry. (Is f even or odd?)

(d) Any easily calculated intercepts (points with coordinates .x; 0/ or

.0; y/) or endpoints or other “obvious” points. You will add to this

list when you know any critical points, singular points, and inflection

points. Eventually you should make sure you know the coordinates

of at least one point on every component of the graph.

3. Examine f 0.x/ for the following:

(a) Any critical points.

(b) Any points where f 0 is not defined. (These will include singular

points, endpoints of the domain of f; and vertical asymptotes.)

(c) Intervals on which f 0 is positive or negative. It’s a good idea to con-

vey this information in the form of a chart such as those used in the

examples. Conclusions about where f is increasing and decreas-

ing and classification of some critical and singular points as local

maxima and minima can also be indicated on the chart.

4. Examine f 00.x/ for the following:

(a) Points where f 00.x/ D 0.

(b) Points where f 00.x/ is undefined. (These will include singular points,

endpoints, vertical asymptotes, and possibly other points as well,

where f 0 is defined but f 00 isn’t.)

(c) Intervals where f 00 is positive or negative and where f is therefore

concave up or down. Use a chart.

(d) Any inflection points.

When you have obtained as much of this information as possible, make a careful sketch

that reflects everything you have learned about the function. Consider where best to

place the axes and what scale to use on each so the “interesting features” of the graph

show up most clearly. Be alert for seeming inconsistencies in the information—that is
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a strong suggestion you may have made an error somewhere. For example, if you have

determined that f .x/ ! 1 as x approaches the vertical asymptote x D a from the

right, and also that f is decreasing and concave down on the interval .a; b/, then you

have very likely made an error. (Try to sketch such a situation to see why.)

E X A M P L E 6 Sketch the graph of y D
x2
C 2x C 4

2x
.

Solution It is useful to rewrite the function y in the form

y D
x

2
C 1C

2

x
;

since this form not only shows clearly that y D .x=2/C 1 is an oblique asymptote, but

also makes it easier to calculate the derivatives

y
0
D

1

2
�

2

x2
D

x2
� 4

2x2
; y

00
D

4

x3
:

From y: Domain: all x except 0. Vertical asymptote: x D 0,

Oblique asymptote: y D
x

2
C 1, y�

�

x

2
C 1

�

D

2

x
! 0 as x !˙1.

Symmetry: none obvious (y is neither odd nor even).

Intercepts: none. x2
C 2x C 4 D .x C 1/2 C 3 � 3 for all x, and y is not

defined at x D 0.

From y 0: Critical points: x D ˙2; points .�2;�1/ and .2; 3/.

y
0 not defined at x D 0 (vertical asymptote).

From y 00: y 00
D 0 nowhere; y 00 undefined at x D 0.

CP ASY CP

x �2 0 2
�������������������������������������������������!

y 0
C 0 � undef � 0 C

y 00
� � undef C C

y % max & undef & min %

_ _ ^ ^

The graph is shown in Figure 4.39.

E X A M P L E 7 Sketch the graph of f .x/ D
x

2
� 1

x2
� 4

.

Solution We have

f
0
.x/ D

�6x

.x2
� 4/2

; f
00
.x/ D

6.3x
2
C 4/

.x2
� 4/3

:

From f : Domain: all x except ˙2. Vertical asymptotes: x D �2 and x D 2.

Horizontal asymptote: y D 1 (as x !˙1).

Symmetry: about the y-axis (y is even).

Intercepts: .0; 1=4/, .�1; 0/, and .1; 0/.

Other points: .�3; 8=5/, .3; 8=5/. (The two vertical asymptotes divide the

graph into three components; we need points on each. The outer compo-

nents require points with jxj > 2.)
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y

x
.�2;�1/

.2;3/

y D
x

2
C 1

y D
x2
C 2x C 4

2x

Figure 4.39

y

x

y D
x2
� 1

x2
� 4

.3;8=5/

x D �2

.�3;8=5/

x D 2

�1 1
1=4 y D 1

Figure 4.40

From f 0: Critical point: x D 0; f 0 not defined at x D 2 or x D �2.

From f 00: f 00.x/ D 0 nowhere; f 00 not defined at x D 2 or x D �2.

ASY CP ASY

x �2 0 2
�������������������������������������������������!

f 0
C undef C 0 � undef �

f 00
C undef � � undef C

f % undef % max & undef &

^ _ _ ^

The graph is shown in Figure 4.40.

E X A M P L E 8
Sketch the graph of y D xe�x2=2.

Solution We have y 0
D .1 � x2/e�x2=2, y 00

D x.x2
� 3/e�x2=2.

From y: Domain: all x.

Horizontal asymptote: y D 0. Note that if t D x2=2, then

jxe�x2=2
j D

p

2t e�t
! 0 as t !1 (hence as x !˙1).

Symmetry: about the origin (y is odd). Intercepts: .0; 0/.

From y 0: Critical points: x D ˙1; points .˙1;˙1=
p

e/ � .˙1;˙0:61/.

From y 00: y 00
D 0 at x D 0 and x D ˙

p

3;

points .0; 0/, .˙
p

3;˙
p

3e�3=2/ � .˙1:73;˙0:39/.
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a strong suggestion you may have made an error somewhere. For example, if you have

determined that f .x/ ! 1 as x approaches the vertical asymptote x D a from the

right, and also that f is decreasing and concave down on the interval .a; b/, then you

have very likely made an error. (Try to sketch such a situation to see why.)

E X A M P L E 6 Sketch the graph of y D
x2
C 2x C 4

2x
.

Solution It is useful to rewrite the function y in the form

y D
x

2
C 1C

2

x
;

since this form not only shows clearly that y D .x=2/C 1 is an oblique asymptote, but

also makes it easier to calculate the derivatives

y
0
D

1

2
�

2

x2
D

x2
� 4

2x2
; y

00
D

4

x3
:

From y: Domain: all x except 0. Vertical asymptote: x D 0,

Oblique asymptote: y D
x

2
C 1, y�

�

x

2
C 1

�

D

2

x
! 0 as x !˙1.

Symmetry: none obvious (y is neither odd nor even).

Intercepts: none. x2
C 2x C 4 D .x C 1/2 C 3 � 3 for all x, and y is not

defined at x D 0.

From y 0: Critical points: x D ˙2; points .�2;�1/ and .2; 3/.

y
0 not defined at x D 0 (vertical asymptote).

From y 00: y 00
D 0 nowhere; y 00 undefined at x D 0.

CP ASY CP

x �2 0 2
�������������������������������������������������!

y 0
C 0 � undef � 0 C

y 00
� � undef C C

y % max & undef & min %

_ _ ^ ^

The graph is shown in Figure 4.39.

E X A M P L E 7 Sketch the graph of f .x/ D
x

2
� 1

x2
� 4

.

Solution We have

f
0
.x/ D

�6x

.x2
� 4/2

; f
00
.x/ D

6.3x
2
C 4/

.x2
� 4/3

:

From f : Domain: all x except ˙2. Vertical asymptotes: x D �2 and x D 2.

Horizontal asymptote: y D 1 (as x !˙1).

Symmetry: about the y-axis (y is even).

Intercepts: .0; 1=4/, .�1; 0/, and .1; 0/.

Other points: .�3; 8=5/, .3; 8=5/. (The two vertical asymptotes divide the

graph into three components; we need points on each. The outer compo-

nents require points with jxj > 2.)
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y

x
.�2;�1/

.2;3/

y D
x

2
C 1

y D
x2
C 2x C 4

2x

Figure 4.39

y

x

y D
x2
� 1

x2
� 4

.3;8=5/

x D �2

.�3;8=5/

x D 2

�1 1
1=4 y D 1

Figure 4.40

From f 0: Critical point: x D 0; f 0 not defined at x D 2 or x D �2.

From f 00: f 00.x/ D 0 nowhere; f 00 not defined at x D 2 or x D �2.

ASY CP ASY

x �2 0 2
�������������������������������������������������!

f 0
C undef C 0 � undef �

f 00
C undef � � undef C

f % undef % max & undef &

^ _ _ ^

The graph is shown in Figure 4.40.

E X A M P L E 8
Sketch the graph of y D xe�x2=2.

Solution We have y 0
D .1 � x2/e�x2=2, y 00

D x.x2
� 3/e�x2=2.

From y: Domain: all x.

Horizontal asymptote: y D 0. Note that if t D x2=2, then

jxe�x2=2
j D

p

2t e�t
! 0 as t !1 (hence as x !˙1).

Symmetry: about the origin (y is odd). Intercepts: .0; 0/.

From y 0: Critical points: x D ˙1; points .˙1;˙1=
p

e/ � .˙1;˙0:61/.

From y 00: y 00
D 0 at x D 0 and x D ˙

p

3;

points .0; 0/, .˙
p

3;˙
p

3e�3=2/ � .˙1:73;˙0:39/.
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CP CP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

y 0
� � 0 C C 0 � �

y 00
� 0 C C 0 � � 0 C

y & & min % % max & &

_ infl ^ ^ infl _ _ infl ^

The graph is shown in Figure 4.41.

y

x

.1;e�1=2/

.�1;�e�1=2/

.�
p

3;�
p

3e�3=2/

.
p

3;
p

3e�3=2/

y D x e�x2=2

Figure 4.41

y

x

y D .x2
� 1/2=3

1

�1 1

.�
p

3;22=3/ .
p

3;22=3/

Figure 4.42

E X A M P L E 9
Sketch the graph of f .x/ D .x2

� 1/2=3. (See Figure 4.42.)

Solution f
0
.x/ D

4

3

x

.x2
� 1/1=3

; f
00
.x/ D

4

9

x2
� 3

.x2
� 1/4=3

.

From f : Domain: all x.

Asymptotes: none. (f .x/ grows like x4=3 as x !˙1.)

Symmetry: about the y-axis (f is an even function).

Intercepts: .˙1; 0/, .0; 1/.

From f 0: Critical points: x D 0; singular points: x D ˙1.

From f 00: f 00.x/ D 0 at x D ˙
p

3; points .˙
p

3; 22=3/ � .˙1:73; 1:59/I

f 00.x/ not defined at x D ˙1.

SP CP SP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

f 0
� � undef C 0 � undef C C

f 00
C 0 � undef � � undef � 0 C

f & & min % max & min % %

^ infl _ _ _ _ infl ^
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E X E R C I S E S 4.6

1. Figure 4.43 shows the graphs of a function f, its two

derivatives f 0 and f 00, and another function g. Which graph

corresponds to each function?

2. List, for each function graphed in Figure 4.43, such

information that you can determine (approximately) by

inspecting the graph (e.g., symmetry, asymptotes, intercepts,

intervals of increase and decrease, critical and singular points,

local maxima and minima, intervals of constant concavity,

inflection points).

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.43

3. Figure 4.44 shows the graphs of four functions:

f .x/ D
x

1 � x2
;

h.x/ D
x3
� x

q

x6
C 1

;

g.x/ D
x

3

1 � x4
;

k.x/ D
x3

q

jx4
� 1j

:

Which graph corresponds to each function?

4. Repeat Exercise 2 for the graphs in Figure 4.44.

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.44

In Exercises 5–6, sketch the graph of a function that has the given

properties. Identify any critical points, singular points, local

maxima and minima, and inflection points. Assume that f is

continuous and its derivatives exist everywhere unless the contrary

is implied or explicitly stated.

5. f .0/ D 1, f .˙1/ D 0, f .2/ D 1, limx!1 f .x/ D 2,

limx!�1 f .x/ D �1, f 0.x/ > 0 on .�1; 0/ and on .1;1/,

f 0.x/ < 0 on .0; 1/, f 00.x/ > 0 on .�1; 0/ and on .0; 2/,

and f 00.x/ < 0 on .2;1/.

6. f .�1/ D 0, f .0/ D 2, f .1/ D 1, f .2/ D 0, f .3/ D 1,

limx!˙1.f .x/C 1 � x/ D 0, f 0.x/ > 0 on .�1;�1/,

.�1; 0/ and .2;1/, f 0.x/ < 0 on .0; 2/,

limx!�1 f
0.x/ D1, f 00.x/ > 0 on .�1;�1/ and on .1; 3/,

and f 00.x/ < 0 on .�1; 1/ and on .3;1/.

In Exercises 7–39, sketch the graphs of the given functions,

making use of any suitable information you can obtain from the

function and its first and second derivatives.

7. y D .x2
� 1/

3 8. y D x.x2
� 1/

2

9. y D
2� x

x
10. y D

x � 1

x C 1

11. y D
x3

1C x
12. y D

1

4C x2

13. y D
1

2� x2
14. y D

x

x2
� 1

15. y D
x2

x2
� 1

16. y D
x3

x2
� 1

17. y D
x3

x2
C 1

18. y D
x2

x2
C 1

19. y D
x2
� 4

x C 1
20. y D

x2
� 2

x2
� 1

21. y D
x3
� 4x

x2
� 1

22. y D
x2
� 1

x2

23. y D
x

5

.x2
� 1/2

24. y D
.2 � x/

2

x3

25. y D
1

x3
� 4x

26. y D
x

x2
C x � 2

27. y D
x3
� 3x2

C 1

x3
28. y D x C sinx

29. y D x C 2 sinx 30. y D e�x2

31. y D xex 32. y D e�x sinx; .x � 0/

33. y D x2
e

�x2

34. y D x2
e

x

35. y D
lnx

x
; .x > 0/ 36. y D

lnx

x2
; .x > 0/

37. y D
1

p

4 � x2
38. y D

x
p

x2
C 1

39. y D .x2
� 1/

1=3

40.I What is limx!0C x ln x? limx!0 x ln jxj? If f .x/ D x ln jxj

for x ¤ 0, is it possible to define f .0/ in such a way that f is

continuous on the whole real line? Sketch the graph of f.

41. What straight line is an asymptote of the curve y D
sinx

1C x2
?

At what points does the curve cross this asymptote?
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CP CP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

y 0
� � 0 C C 0 � �

y 00
� 0 C C 0 � � 0 C

y & & min % % max & &

_ infl ^ ^ infl _ _ infl ^

The graph is shown in Figure 4.41.

y

x

.1;e�1=2/

.�1;�e�1=2/

.�
p

3;�
p

3e�3=2/

.
p

3;
p

3e�3=2/

y D x e�x2=2

Figure 4.41

y

x

y D .x2
� 1/2=3

1

�1 1

.�
p

3;22=3/ .
p

3;22=3/

Figure 4.42

E X A M P L E 9
Sketch the graph of f .x/ D .x2

� 1/2=3. (See Figure 4.42.)

Solution f
0
.x/ D

4

3

x

.x2
� 1/1=3

; f
00
.x/ D

4

9

x2
� 3

.x2
� 1/4=3

.

From f : Domain: all x.

Asymptotes: none. (f .x/ grows like x4=3 as x !˙1.)

Symmetry: about the y-axis (f is an even function).

Intercepts: .˙1; 0/, .0; 1/.

From f 0: Critical points: x D 0; singular points: x D ˙1.

From f 00: f 00.x/ D 0 at x D ˙
p

3; points .˙
p

3; 22=3/ � .˙1:73; 1:59/I

f 00.x/ not defined at x D ˙1.

SP CP SP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

f 0
� � undef C 0 � undef C C

f 00
C 0 � undef � � undef � 0 C

f & & min % max & min % %

^ infl _ _ _ _ infl ^
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E X E R C I S E S 4.6

1. Figure 4.43 shows the graphs of a function f, its two

derivatives f 0 and f 00, and another function g. Which graph

corresponds to each function?

2. List, for each function graphed in Figure 4.43, such

information that you can determine (approximately) by

inspecting the graph (e.g., symmetry, asymptotes, intercepts,

intervals of increase and decrease, critical and singular points,

local maxima and minima, intervals of constant concavity,

inflection points).

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5
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�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.43

3. Figure 4.44 shows the graphs of four functions:

f .x/ D
x

1 � x2
;

h.x/ D
x3
� x

q

x6
C 1

;

g.x/ D
x

3

1 � x4
;

k.x/ D
x3

q

jx4
� 1j

:

Which graph corresponds to each function?

4. Repeat Exercise 2 for the graphs in Figure 4.44.

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4
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�2
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2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.44

In Exercises 5–6, sketch the graph of a function that has the given

properties. Identify any critical points, singular points, local

maxima and minima, and inflection points. Assume that f is

continuous and its derivatives exist everywhere unless the contrary

is implied or explicitly stated.

5. f .0/ D 1, f .˙1/ D 0, f .2/ D 1, limx!1 f .x/ D 2,

limx!�1 f .x/ D �1, f 0.x/ > 0 on .�1; 0/ and on .1;1/,

f 0.x/ < 0 on .0; 1/, f 00.x/ > 0 on .�1; 0/ and on .0; 2/,

and f 00.x/ < 0 on .2;1/.

6. f .�1/ D 0, f .0/ D 2, f .1/ D 1, f .2/ D 0, f .3/ D 1,

limx!˙1.f .x/C 1 � x/ D 0, f 0.x/ > 0 on .�1;�1/,

.�1; 0/ and .2;1/, f 0.x/ < 0 on .0; 2/,

limx!�1 f
0.x/ D1, f 00.x/ > 0 on .�1;�1/ and on .1; 3/,

and f 00.x/ < 0 on .�1; 1/ and on .3;1/.

In Exercises 7–39, sketch the graphs of the given functions,

making use of any suitable information you can obtain from the

function and its first and second derivatives.

7. y D .x2
� 1/

3 8. y D x.x2
� 1/

2

9. y D
2� x

x
10. y D

x � 1

x C 1

11. y D
x3

1C x
12. y D

1

4C x2

13. y D
1

2� x2
14. y D

x

x2
� 1

15. y D
x2

x2
� 1

16. y D
x3

x2
� 1

17. y D
x3

x2
C 1

18. y D
x2

x2
C 1

19. y D
x2
� 4

x C 1
20. y D

x2
� 2

x2
� 1

21. y D
x3
� 4x

x2
� 1

22. y D
x2
� 1

x2

23. y D
x

5

.x2
� 1/2

24. y D
.2 � x/

2

x3

25. y D
1

x3
� 4x

26. y D
x

x2
C x � 2

27. y D
x3
� 3x2

C 1

x3
28. y D x C sinx

29. y D x C 2 sinx 30. y D e�x2

31. y D xex 32. y D e�x sinx; .x � 0/

33. y D x2
e

�x2

34. y D x2
e

x

35. y D
lnx

x
; .x > 0/ 36. y D

lnx

x2
; .x > 0/

37. y D
1

p

4 � x2
38. y D

x
p

x2
C 1

39. y D .x2
� 1/

1=3

40.I What is limx!0C x ln x? limx!0 x ln jxj? If f .x/ D x ln jxj

for x ¤ 0, is it possible to define f .0/ in such a way that f is

continuous on the whole real line? Sketch the graph of f.

41. What straight line is an asymptote of the curve y D
sinx

1C x2
?

At what points does the curve cross this asymptote?
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4.7 Graphing with Computers

The techniques for sketching, developed in the previous section, are useful for graphs of

functions that are simple enough to allow you to calculate and analyze their derivatives.

They are also essential for testing the validity of graphs produced by computers or

calculators, which can be inaccurate or misleading for a variety of reasons, including

the case of numerical monsters introduced in previous chapters. In practice, it is often

easiest to first produce a graph using a computer or graphing calculator, but many

times this will not turn out to be the last step. (We will use the term “computer” for

both computers and calculators.) For many simple functions this can be a quick and

painless activity, but sometimes functions have properties that complicate the process.

Knowledge of the function, from techniques like those above, is important to guide you

on what the next steps must be.

The Maple command1 for viewing the graph of the function from Example 6

of Section 4.6, together with its oblique asymptote, is a straightforward example of

plotting; we ask Maple to plot both .x2
C 2x C 4/=.2x/ and 1C .x=2/:

> plot(f(x^2+2*x+4)/(2*x), 1+(x/2)g, x=-6..6, y=-7..7);

This command sets the window �6 � x � 6 and �7 � y � 7. Why that window? To

get a plot that characterizes the function, knowledge of its vertical asymptote at x D 0

is essential. (If x � 10 were substituted for x in the expression, the given window

would no longer produce a reasonable graph of the key features of the function. The

new function would be better viewed on the interval 4 � x � 16.) If the range Œ�7; 7�

were not specified, the computer would plot all of the points where it evaluates the

function, including those very close to the vertical asymptote where the function is

very large. The resulting plot would compress all of the features of the graph onto the

x-axis. Even the asymptote would look like a horizontal line in that scaling. You might

even miss the vertical asymptote, which is squeezed into the y-axis.

Getting Maple to plot the curve in Example 9 of Section 4.6 is a bit trickier. Be-

cause Maple doesn’t deal well with fractional powers of negative numbers, even when

they have positive real values, we must actually plot jx2
� 1j2=3 or ..x2

� 1/2/1=3.

Otherwise, the part of the graph between �1 and 1 will be missing. Either of the plot

commands

> plot((abs(x^2-1))^(2/3), x=-4..4, y=-1..5);

> plot(((x^2-1)^2)^(1/3), x=-4..4, y=-1..5);

will produce the desired graph. In order to ensure a complete plot with all of the

features of the function present, the graph of the simple expression should be viewed

critically, and not taken at face value.

Numerical Monsters and Computer Graphing

K The next obvious problem is that of false features and false behaviours. Functions that

are mathematically well-behaved can still be computationally poorly behaved, leading

to false features on graphs, as we have already seen.

E X A M P L E 1
Consider the function f .x/ D ex ln.1C e�x/, which has suitably

simplified derivative

f
0
.x/ D e

x
g.x/; where g.x/ D ln.1C e�x

/ �
1

ex
C 1

:

In turn, the derivative of g.x/ simplifies to

g
0
.x/ D �

1

.ex
C 1/2

;

1 Although we focus on Maple to illustrate the issues of graphing with computers, the issues

presented are general ones, pertaining to all software and computers.
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which is negative for all x, so g is decreasing. Since g.0/ D ln 2 � 1=2 > 0 and

limx!1 g.x/ D 0, it follows that g.x/ > 0 and decreasing for all x. Thus, f 0
.x/ is

positive, and f .x/ is an increasing function for all x. Furthermore, l’Hôpital’s Rules

show that

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D 0:

This gives us a pretty full picture of how the function f behaves. It grows with increas-

ing x from 0 at �1, crosses the y-axis at ln 2, and finally approaches 1 asymptotically

from below as x increases toward1.

Now let’s plot the graph of f using the Maple command

> plot(exp(x)*ln(1+(1/exp(x))), x=-20..45, style=point,

symbol=point, numpoints=1500);

Figure 4.45 A faulty computer plot of

y D ex ln.1C e�x/

0
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1

1.5

2

–20 –10 10 20 30 40x

The result is shown in Figure 4.45. Clearly something is wrong. From x D �20

to about x D 30, the graph behaves in accordance with the mathematical analysis.

However, for larger values of x, peculiarities emerge that sharply disagree with the

analysis. The calculus of this chapter tells us that the function is increasing with no

horizontal tangents, but the computer suggests that it decreases in some places. The

calculus tells us that the function rises asymptotically to 1, but the computer suggests

that the function starts to oscillate and ultimately becomes 0 at about x D 36.

This is another numerical monster. What a computer does can simply be wrong.

In this case, it is significantly so. In practical applications an erroneous value of 0

instead of 1 could, for example, be a factor in a product, and that would change every-

thing dramatically. If the mathematics were not known in this case, how could we

even know that the computer is wrong? Another computer cannot be used to check

it, as the problem is one that all computers share. Another program cannot be used

because all software must use the special floating-point arithmetic that is subject to the

roundoff errors responsible for the problem. Figure 4.45 is not particular to Maple.

This monster, or one much like it, can be created in nearly any software package.

Floating-Point Representation of Numbers in Computers
It is necessary that you know mathematics in order to use computers correctly and

effectively. It is equally necessary to understand why all computers fail to fully capture

the mathematics. As indicated previously, the reason is that no computer can represent

all numbers. Computer designers artfully attempt to minimize the effects of this by

making the number of representable numbers as large as possible. But, speaking in

terms of physics, a finite-sized machine can only represent a finite number of numbers.

Having only a finite number of numbers leads to numbers sufficiently small, compared

to 1, that the computer simply discards them in a sum. When digits are lost in this

manner, the resulting error is known as roundoff error.

In many cases the finiteness shows up in the use of floating-point numbers and

a set of corresponding arithmetic rules that approximate correct arithmetic. These

approximate rules and approximate representations are not unique by any means. For

example, the software package Derive uses so-called slash arithmetic, which works
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4.7 Graphing with Computers

The techniques for sketching, developed in the previous section, are useful for graphs of

functions that are simple enough to allow you to calculate and analyze their derivatives.

They are also essential for testing the validity of graphs produced by computers or

calculators, which can be inaccurate or misleading for a variety of reasons, including

the case of numerical monsters introduced in previous chapters. In practice, it is often

easiest to first produce a graph using a computer or graphing calculator, but many

times this will not turn out to be the last step. (We will use the term “computer” for

both computers and calculators.) For many simple functions this can be a quick and

painless activity, but sometimes functions have properties that complicate the process.

Knowledge of the function, from techniques like those above, is important to guide you

on what the next steps must be.

The Maple command1 for viewing the graph of the function from Example 6

of Section 4.6, together with its oblique asymptote, is a straightforward example of

plotting; we ask Maple to plot both .x2
C 2x C 4/=.2x/ and 1C .x=2/:

> plot(f(x^2+2*x+4)/(2*x), 1+(x/2)g, x=-6..6, y=-7..7);

This command sets the window �6 � x � 6 and �7 � y � 7. Why that window? To

get a plot that characterizes the function, knowledge of its vertical asymptote at x D 0

is essential. (If x � 10 were substituted for x in the expression, the given window

would no longer produce a reasonable graph of the key features of the function. The

new function would be better viewed on the interval 4 � x � 16.) If the range Œ�7; 7�

were not specified, the computer would plot all of the points where it evaluates the

function, including those very close to the vertical asymptote where the function is

very large. The resulting plot would compress all of the features of the graph onto the

x-axis. Even the asymptote would look like a horizontal line in that scaling. You might

even miss the vertical asymptote, which is squeezed into the y-axis.

Getting Maple to plot the curve in Example 9 of Section 4.6 is a bit trickier. Be-

cause Maple doesn’t deal well with fractional powers of negative numbers, even when

they have positive real values, we must actually plot jx2
� 1j2=3 or ..x2

� 1/2/1=3.

Otherwise, the part of the graph between �1 and 1 will be missing. Either of the plot

commands

> plot((abs(x^2-1))^(2/3), x=-4..4, y=-1..5);

> plot(((x^2-1)^2)^(1/3), x=-4..4, y=-1..5);

will produce the desired graph. In order to ensure a complete plot with all of the

features of the function present, the graph of the simple expression should be viewed

critically, and not taken at face value.

Numerical Monsters and Computer Graphing

K The next obvious problem is that of false features and false behaviours. Functions that

are mathematically well-behaved can still be computationally poorly behaved, leading

to false features on graphs, as we have already seen.

E X A M P L E 1
Consider the function f .x/ D ex ln.1C e�x/, which has suitably

simplified derivative

f
0
.x/ D e

x
g.x/; where g.x/ D ln.1C e�x

/ �
1

ex
C 1

:

In turn, the derivative of g.x/ simplifies to

g
0
.x/ D �

1

.ex
C 1/2

;

1 Although we focus on Maple to illustrate the issues of graphing with computers, the issues

presented are general ones, pertaining to all software and computers.
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which is negative for all x, so g is decreasing. Since g.0/ D ln 2 � 1=2 > 0 and

limx!1 g.x/ D 0, it follows that g.x/ > 0 and decreasing for all x. Thus, f 0
.x/ is

positive, and f .x/ is an increasing function for all x. Furthermore, l’Hôpital’s Rules

show that

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D 0:

This gives us a pretty full picture of how the function f behaves. It grows with increas-

ing x from 0 at �1, crosses the y-axis at ln 2, and finally approaches 1 asymptotically

from below as x increases toward1.

Now let’s plot the graph of f using the Maple command

> plot(exp(x)*ln(1+(1/exp(x))), x=-20..45, style=point,

symbol=point, numpoints=1500);

Figure 4.45 A faulty computer plot of

y D ex ln.1C e�x/
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The result is shown in Figure 4.45. Clearly something is wrong. From x D �20

to about x D 30, the graph behaves in accordance with the mathematical analysis.

However, for larger values of x, peculiarities emerge that sharply disagree with the

analysis. The calculus of this chapter tells us that the function is increasing with no

horizontal tangents, but the computer suggests that it decreases in some places. The

calculus tells us that the function rises asymptotically to 1, but the computer suggests

that the function starts to oscillate and ultimately becomes 0 at about x D 36.

This is another numerical monster. What a computer does can simply be wrong.

In this case, it is significantly so. In practical applications an erroneous value of 0

instead of 1 could, for example, be a factor in a product, and that would change every-

thing dramatically. If the mathematics were not known in this case, how could we

even know that the computer is wrong? Another computer cannot be used to check

it, as the problem is one that all computers share. Another program cannot be used

because all software must use the special floating-point arithmetic that is subject to the

roundoff errors responsible for the problem. Figure 4.45 is not particular to Maple.

This monster, or one much like it, can be created in nearly any software package.

Floating-Point Representation of Numbers in Computers
It is necessary that you know mathematics in order to use computers correctly and

effectively. It is equally necessary to understand why all computers fail to fully capture

the mathematics. As indicated previously, the reason is that no computer can represent

all numbers. Computer designers artfully attempt to minimize the effects of this by

making the number of representable numbers as large as possible. But, speaking in

terms of physics, a finite-sized machine can only represent a finite number of numbers.

Having only a finite number of numbers leads to numbers sufficiently small, compared

to 1, that the computer simply discards them in a sum. When digits are lost in this

manner, the resulting error is known as roundoff error.

In many cases the finiteness shows up in the use of floating-point numbers and

a set of corresponding arithmetic rules that approximate correct arithmetic. These

approximate rules and approximate representations are not unique by any means. For

example, the software package Derive uses so-called slash arithmetic, which works
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with a representation of numbers as continued fractions instead of decimals. This has

certain advantages and disadvantages, but, in the end, finiteness forces truncation just

the same.

The term “roundoff” implies that there is some kind of mitigation procedure or

rounding done to reduce error once the smallest digits have been discarded. There are

a number of different kinds of rounding practices. The various options can be quite in-

tricate, but they all begin with the aim to slightly reduce error as a result of truncation.

The truncation is the source of error, not the rounding, despite the terminology that

seems to suggest otherwise. The entire process of truncation and rounding have come

to be termed “roundoff,” although the details of the error mitigation are immaterial for

the purposes of this discussion. Rounding is beyond the scope of this section and will

not be considered further.

Historically, the term “decimal” implies base ten, but the idea works the same

in any base. In particular, in any base, multiplying by the base to an integral power

simply shifts the position of the “decimal point.” Thus, multiplying or dividing by the

base is known as a shift operation. The term “floating-point” signifies this shifting

of the point to the left or right. The general technical term for the decimal point is

radix point. Specifically for base two, the point is sometimes called the binary point.

However, we will use the term decimal point or just decimal for all bases, as the

etymological purity is not worth having several names for one small symbol.

While computers, for the most part, work in base two, they can be and have been

built in other bases. For example, there have been base-three computers, and many

computers group numbers so that they work as if they were built in base eight (octal)

or base sixteen (hexadecimal). (If you are feeling old, quote your age in hexadecimal.

For example, 48 D 3 � 16 or 30 in hexadecimal. If you are feeling too young, use

octal.)

In a normal binary computer, floating-point numbers approximate the mathemati-

cal real numbers. Several bytes of memory (frequently 8 bytes) are allocated for each

floating-point number. Each byte consists of eight bits, each of which has two (phys-

ical) states and can thus store one of the two base-two digits “0” or “1,” as it is the

equivalent of a switch being either off or on.

Thus, an eight-byte allocation for a floating-point number can store 64 bits of

data. The computer uses something similar to scientific notation, which is often used

to express numbers in base ten. However, the convention is to place the decimal im-

mediately to the left of all significant figures. For example, the computer convention

would call for the base-ten number 284,070,000 to be represented as 0:28407 � 109.

Here 0.28407 is called the mantissa, and it has 5 significant base-ten digits follow-

ing the decimal point, the 2 being the most significant and the 7 the least significant

digit. The 9 in the factor 109 is called the exponent, which defines the number of

shift operations needed to locate the correct position of the decimal point of the actual

number.

The computer only needs to represent the mantissa and the exponent, each with its

appropriate sign. The base is set by the architecture and so is not stored. Neither is the

decimal point nor the leading zero in the mantissa stored. These are all just implied.

If the floating-point number has 64 bits, two are used for the two signs, leaving 62 bits

for significant digits in the mantissa and the exponent.

As an example of base two (i.e., binary) representation, the number

101:011 D 1 � 2
2
C 0 � 2

1
C 1 � 2

0
C 0 � 2

�1
C 1 � 2

�2
C 1 � 2

�3

stands for the base-ten number 4 + 1 + (1/4) + (1/8) = 43/8. On a computer the stored

bits would be +101011 for the mantissa and +11 for the exponent. Thus, the base-two

floating-point form is 0:101011�23 , with mantissa 0.101011 and exponent 3. Note that

we are representing the exponent in base ten (3), and not base two (11), because that is

more convenient for counting shift operations.
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While the base-two representation of two is 10, we will continue, for convenience,

to write two as 2 when using it as the base for base-two representations. After all, any

base b is represented by 10 with respect to itself as base. So, if we chose to write the

number above as 0:101011 � 1011, the numeral could as well denote a number in any

base. However, for us people normally thinking in base ten, 0:101011 � 23 clearly

indicates that the base is two and the decimal point is shifted 3 digits to the right of the

most significant digit in the mantissa.

Now consider x D 0:101 � 2�10
D 0:0000000000101, the base-two floating-

point number whose value as a base-ten fraction is x D 5=8192. The only significant

base-two digits are the 101 in the mantissa. Now add x to 1; the result is

1C x D 0:10000000000101 � 2
1
;

which has mantissa 0.10000000000101 and exponent 1. The mantissa now has 14 sig-

nificant base-two digits; all the zeros between the first and last 1s are significant. If

your computer or calculator software only allocates, say, 12 bits for mantissas, then

it would be unable to represent 1 C x. It would have to throw away the two least

significant base-two digits and save the number as

1C x D 0:100000000001 � 2
1
D

2;049

2;048
;

thus creating a roundoff error of 1/8,192. Even worse, if only ten base-two digits were

used to store mantissas, the computer would store 1C x D 0:1000000000 � 21 (i.e., it

would not be able to distinguish 1 C x from 1). Of course, calculators and computer

software use many more than ten or twelve base-two digits to represent mantissas of

floating-point numbers, but the number of digits used is certainly finite, and so the

problem of roundoff will always occur for sufficiently small floating-point numbers x.

Machine Epsilon and Its Effect on Figure 4.45
The smallest number x for which the computer recognizes that 1C x is greater than 1

is called machine epsilon (denoted �) for that computer. The computer does not return

1 when evaluating 1C �, but for all positive numbers x smaller than �, the computer

simply returns 1 when asked to evaluate 1 C x, because the computer only keeps a

finite number of (normally base two) digits.

When using computer algebra packages like Maple, the number of digits can be

increased in the software. Thus, the number of numbers that the computer can repre-

sent can be extended beyond what is native to the processor’s hardware, by stringing

together bits to make available larger numbers of digits for a single number. The Maple

command for this is “Digits,” which defaults to 10 (decimal digits). However, the

computer remains finite in size, so there will always be an effective value for �, no

matter how the software is set. A hardware value for � is not uniform for all devices

either. Thus, for any device you may be using (calculator or computer), the value of

machine epsilon may not be immediately obvious. To anticipate where a computer may

be wrong, you need the value of machine epsilon, and you need to understand where

the function may run afoul of it. We will outline a simple way to determine this below.

In the case of the function f in Example 1, it is clear where the computer discards

digits in a sum. The factor ln.1 C e�x/ decreases as x increases, but for sufficiently

large x a computer must discard the exponential in the sum because it is too small to

show up in the digits allotted for 1. When the exponential term decreases below the

value of �, the computer will return 1 for the argument of the natural logarithm, and

the factor will be determined by the computer to be 0. Thus, f will be represented as

0 instead of nearly 1.

Of course, pathological behaviour begins to happen before the exponential e�x

decreases to below �. When the exponential is small enough, all change with x happens

in the smaller digits. The sum forces them to be discarded by the computer, so the
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with a representation of numbers as continued fractions instead of decimals. This has

certain advantages and disadvantages, but, in the end, finiteness forces truncation just

the same.

The term “roundoff” implies that there is some kind of mitigation procedure or

rounding done to reduce error once the smallest digits have been discarded. There are

a number of different kinds of rounding practices. The various options can be quite in-

tricate, but they all begin with the aim to slightly reduce error as a result of truncation.

The truncation is the source of error, not the rounding, despite the terminology that

seems to suggest otherwise. The entire process of truncation and rounding have come

to be termed “roundoff,” although the details of the error mitigation are immaterial for

the purposes of this discussion. Rounding is beyond the scope of this section and will

not be considered further.

Historically, the term “decimal” implies base ten, but the idea works the same

in any base. In particular, in any base, multiplying by the base to an integral power

simply shifts the position of the “decimal point.” Thus, multiplying or dividing by the

base is known as a shift operation. The term “floating-point” signifies this shifting

of the point to the left or right. The general technical term for the decimal point is

radix point. Specifically for base two, the point is sometimes called the binary point.

However, we will use the term decimal point or just decimal for all bases, as the

etymological purity is not worth having several names for one small symbol.

While computers, for the most part, work in base two, they can be and have been

built in other bases. For example, there have been base-three computers, and many

computers group numbers so that they work as if they were built in base eight (octal)

or base sixteen (hexadecimal). (If you are feeling old, quote your age in hexadecimal.

For example, 48 D 3 � 16 or 30 in hexadecimal. If you are feeling too young, use

octal.)

In a normal binary computer, floating-point numbers approximate the mathemati-

cal real numbers. Several bytes of memory (frequently 8 bytes) are allocated for each

floating-point number. Each byte consists of eight bits, each of which has two (phys-

ical) states and can thus store one of the two base-two digits “0” or “1,” as it is the

equivalent of a switch being either off or on.

Thus, an eight-byte allocation for a floating-point number can store 64 bits of

data. The computer uses something similar to scientific notation, which is often used

to express numbers in base ten. However, the convention is to place the decimal im-

mediately to the left of all significant figures. For example, the computer convention

would call for the base-ten number 284,070,000 to be represented as 0:28407 � 109.

Here 0.28407 is called the mantissa, and it has 5 significant base-ten digits follow-

ing the decimal point, the 2 being the most significant and the 7 the least significant

digit. The 9 in the factor 109 is called the exponent, which defines the number of

shift operations needed to locate the correct position of the decimal point of the actual

number.

The computer only needs to represent the mantissa and the exponent, each with its

appropriate sign. The base is set by the architecture and so is not stored. Neither is the

decimal point nor the leading zero in the mantissa stored. These are all just implied.

If the floating-point number has 64 bits, two are used for the two signs, leaving 62 bits

for significant digits in the mantissa and the exponent.

As an example of base two (i.e., binary) representation, the number

101:011 D 1 � 2
2
C 0 � 2

1
C 1 � 2

0
C 0 � 2

�1
C 1 � 2

�2
C 1 � 2

�3

stands for the base-ten number 4 + 1 + (1/4) + (1/8) = 43/8. On a computer the stored

bits would be +101011 for the mantissa and +11 for the exponent. Thus, the base-two

floating-point form is 0:101011�23 , with mantissa 0.101011 and exponent 3. Note that

we are representing the exponent in base ten (3), and not base two (11), because that is

more convenient for counting shift operations.
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While the base-two representation of two is 10, we will continue, for convenience,

to write two as 2 when using it as the base for base-two representations. After all, any

base b is represented by 10 with respect to itself as base. So, if we chose to write the

number above as 0:101011 � 1011, the numeral could as well denote a number in any

base. However, for us people normally thinking in base ten, 0:101011 � 23 clearly

indicates that the base is two and the decimal point is shifted 3 digits to the right of the

most significant digit in the mantissa.

Now consider x D 0:101 � 2�10
D 0:0000000000101, the base-two floating-

point number whose value as a base-ten fraction is x D 5=8192. The only significant

base-two digits are the 101 in the mantissa. Now add x to 1; the result is

1C x D 0:10000000000101 � 2
1
;

which has mantissa 0.10000000000101 and exponent 1. The mantissa now has 14 sig-

nificant base-two digits; all the zeros between the first and last 1s are significant. If

your computer or calculator software only allocates, say, 12 bits for mantissas, then

it would be unable to represent 1 C x. It would have to throw away the two least

significant base-two digits and save the number as

1C x D 0:100000000001 � 2
1
D

2;049

2;048
;

thus creating a roundoff error of 1/8,192. Even worse, if only ten base-two digits were

used to store mantissas, the computer would store 1C x D 0:1000000000 � 21 (i.e., it

would not be able to distinguish 1 C x from 1). Of course, calculators and computer

software use many more than ten or twelve base-two digits to represent mantissas of

floating-point numbers, but the number of digits used is certainly finite, and so the

problem of roundoff will always occur for sufficiently small floating-point numbers x.

Machine Epsilon and Its Effect on Figure 4.45
The smallest number x for which the computer recognizes that 1C x is greater than 1

is called machine epsilon (denoted �) for that computer. The computer does not return

1 when evaluating 1C �, but for all positive numbers x smaller than �, the computer

simply returns 1 when asked to evaluate 1 C x, because the computer only keeps a

finite number of (normally base two) digits.

When using computer algebra packages like Maple, the number of digits can be

increased in the software. Thus, the number of numbers that the computer can repre-

sent can be extended beyond what is native to the processor’s hardware, by stringing

together bits to make available larger numbers of digits for a single number. The Maple

command for this is “Digits,” which defaults to 10 (decimal digits). However, the

computer remains finite in size, so there will always be an effective value for �, no

matter how the software is set. A hardware value for � is not uniform for all devices

either. Thus, for any device you may be using (calculator or computer), the value of

machine epsilon may not be immediately obvious. To anticipate where a computer may

be wrong, you need the value of machine epsilon, and you need to understand where

the function may run afoul of it. We will outline a simple way to determine this below.

In the case of the function f in Example 1, it is clear where the computer discards

digits in a sum. The factor ln.1 C e�x/ decreases as x increases, but for sufficiently

large x a computer must discard the exponential in the sum because it is too small to

show up in the digits allotted for 1. When the exponential term decreases below the

value of �, the computer will return 1 for the argument of the natural logarithm, and

the factor will be determined by the computer to be 0. Thus, f will be represented as

0 instead of nearly 1.

Of course, pathological behaviour begins to happen before the exponential e�x

decreases to below �. When the exponential is small enough, all change with x happens

in the smaller digits. The sum forces them to be discarded by the computer, so the
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change is discarded with it. That means for finite intervals the larger digits from the

decreasing exponential term do not change until the smaller changes accrue. In the

case of f; this means it behaves like an increasing exponential times a constant between

corrections of the larger digits. This is confirmed in Figure 4.46, which is a close-up

of the pathological region given by adjusting the interval of the plot command.

Figure 4.46 Part of the graph of f from

Example 1 over the interval Œ33; 38�
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Determining Machine Epsilon
A small alteration in the function f of Example 1 provides an easy way to determine

the value of machine epsilon. As computers store and process data in base-two form,

it is useful to use instead of f the function h.x/ D 2x ln.1 C 2�x/. The Maple plot

command

> plot(2^x*ln(1+1/2^x), x=50..55, style=line,

thickness=5, xtickmarks=[50,51,52,53,54]);

produces the graph in Figure 4.47. The graph drops to 0 at x D 53. Thus, 2�53 is

the next number below � that the computer can represent. Because the first nonzero

digit in a base-two number is 1, the next largest number must be up to twice as large.

But because all higher digits are discarded, the effect is to have simply a change in the

exponent of the number, a shift operation. A single shift operation larger than 2�53 is

2�52, so � D 2�52 in the settings for this plot.

0
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1

1.5

2

50 51 52 53 54 55x

Figure 4.47 This indicates that machine

epsilon is � D 2�52

From this we can predict when f will drop to zero in Figure 4.45 and Figure 4.46.

It will be when �=2 D 2�53
D e�x , or approximately x D 36:74. While this seems

to give us a complete command of the effect for most computers, there is much more

going on with computer error that depends on specific algorithms. While significant

error erupts when � is reached in a sum with 1, other sources of error are in play well

before that for smaller values of x.

It is interesting to look at some of the complex and structured patterns of error in

a close-up of what should be a single curve well before the catastrophic drop to zero.

Figure 4.48 is produced by the plot instruction

> plot(exp(x)*ln(1+1/exp(x)), x = 29.5 .. 30,

style = point, symbol = point, numpoints = 3000);

Figure 4.48 Illusions of computation
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In this figure there are many fascinating and beautiful patterns created, which are com-

pletely spurious. In this region the exponential curves are collapsed together, forming

what seems like a single region contained within an expanding envelope. The beautiful

patterns make it easy to forget that the mathematically correct curve would appear as a
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single horizontal line at height 1. The patterns here are created by Maple’s selection of

points at which to evaluate the function and their placement in the plot. If you change

the plot window, try to zoom in on them, or change the numbers of points or the in-

terval; they will change too, or disappear. They are completely illusive and spurious

features. Computers can’t be trusted blindly. You can trust mathematics.

E X E R C I S E S 4.7

1. Use Maple to get a plot instruction that plots an exponential

function through one of the stripes in Figure 4.46. You can

use the cursor position in the Maple display to read off the

approximate coordinates of the lower left endpoint on one of

the stripes.

2. Why should the expression h.x/ �
p

h.x/2 not be expected to

be exactly zero, especially for large h.x/, when evaluated on a

computer?

3. Consider Figure 4.49. It is the result of the plot instruction

> plot([ln(2^x-sqrt(2^(2*x)-1)),

-ln(2^x+sqrt(2^(2*x)-1))], x=0..50,

y=-30..10, style=line, symbol=point,

thickness=[1,4],

color=[magenta, grey], numpoints=8000);

The grey line is a plot of f .x/ D � ln.2x
C

p

22x
� 1/. The

coloured line is a plot of g.x/ D ln.2x
�

p

22x
� 1/.

(a) Show that g.x/ D f .x/.

(b) Why do the graphs of f and g behave differently?

(c) Estimate a value of x beyond which the plots of f and g

will behave differently. Assume machine epsilon is

� D 2�52.

–30

–20

–10

0

10

y

10 20 30 40 50x

Figure 4.49

4. If you use a graphing calculator or other mathematical

graphing software, try to determine machine epsilon for it.

In Exercises 5–6 assume that a computer uses 64 bits (binary

digits) of memory to store a floating-point number, and that of

these 64 bits 52 are used for the mantissa and one each for the

signs of the mantissa and the exponent.

5. To the nearest power of 10, what is the smallest positive

number that can be represented in floating-point form by the

computer?

6. To the nearest power of 10, what is the largest positive number

that can be represented in floating-point form by the

computer?

4.8 Extreme-Value Problems
In this section we solve various word problems that, when translated into mathemati-

cal terms, require the finding of a maximum or minimum value of a function of one

variable. Such problems can range from simple to very complex and difficult; they can

be phrased in terminology appropriate to some other discipline, or they can be already

partially translated into a more mathematical context. We have already encountered a

few such problems in earlier chapters.

Let us consider a couple of examples before attempting to formulate any general

principles for dealing with such problems.

E X A M P L E 1
A rectangular animal enclosure is to be constructed having one

side along an existing long wall and the other three sides fenced.

If 100 m of fence are available, what is the largest possible area for the enclosure?

Solution This problem, like many others, is essentially a geometric one. A sketch

should be made at the outset, as we have done in Figure 4.50. Let the length and width

of the enclosure be x and y m, respectively, and let its area be A m2. Thus A D xy.

x

A D xy yy

Figure 4.50

Since the total length of the fence is 100 m, we must have xC 2y D 100. A appears to
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change is discarded with it. That means for finite intervals the larger digits from the

decreasing exponential term do not change until the smaller changes accrue. In the

case of f; this means it behaves like an increasing exponential times a constant between

corrections of the larger digits. This is confirmed in Figure 4.46, which is a close-up

of the pathological region given by adjusting the interval of the plot command.

Figure 4.46 Part of the graph of f from

Example 1 over the interval Œ33; 38�
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A small alteration in the function f of Example 1 provides an easy way to determine

the value of machine epsilon. As computers store and process data in base-two form,

it is useful to use instead of f the function h.x/ D 2x ln.1 C 2�x/. The Maple plot

command

> plot(2^x*ln(1+1/2^x), x=50..55, style=line,

thickness=5, xtickmarks=[50,51,52,53,54]);

produces the graph in Figure 4.47. The graph drops to 0 at x D 53. Thus, 2�53 is

the next number below � that the computer can represent. Because the first nonzero

digit in a base-two number is 1, the next largest number must be up to twice as large.

But because all higher digits are discarded, the effect is to have simply a change in the

exponent of the number, a shift operation. A single shift operation larger than 2�53 is

2�52, so � D 2�52 in the settings for this plot.
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Figure 4.47 This indicates that machine

epsilon is � D 2�52

From this we can predict when f will drop to zero in Figure 4.45 and Figure 4.46.

It will be when �=2 D 2�53
D e�x , or approximately x D 36:74. While this seems

to give us a complete command of the effect for most computers, there is much more

going on with computer error that depends on specific algorithms. While significant

error erupts when � is reached in a sum with 1, other sources of error are in play well

before that for smaller values of x.

It is interesting to look at some of the complex and structured patterns of error in

a close-up of what should be a single curve well before the catastrophic drop to zero.

Figure 4.48 is produced by the plot instruction

> plot(exp(x)*ln(1+1/exp(x)), x = 29.5 .. 30,

style = point, symbol = point, numpoints = 3000);

Figure 4.48 Illusions of computation
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In this figure there are many fascinating and beautiful patterns created, which are com-

pletely spurious. In this region the exponential curves are collapsed together, forming

what seems like a single region contained within an expanding envelope. The beautiful

patterns make it easy to forget that the mathematically correct curve would appear as a
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single horizontal line at height 1. The patterns here are created by Maple’s selection of

points at which to evaluate the function and their placement in the plot. If you change

the plot window, try to zoom in on them, or change the numbers of points or the in-

terval; they will change too, or disappear. They are completely illusive and spurious

features. Computers can’t be trusted blindly. You can trust mathematics.

E X E R C I S E S 4.7

1. Use Maple to get a plot instruction that plots an exponential

function through one of the stripes in Figure 4.46. You can

use the cursor position in the Maple display to read off the

approximate coordinates of the lower left endpoint on one of

the stripes.

2. Why should the expression h.x/ �
p

h.x/2 not be expected to

be exactly zero, especially for large h.x/, when evaluated on a

computer?

3. Consider Figure 4.49. It is the result of the plot instruction

> plot([ln(2^x-sqrt(2^(2*x)-1)),

-ln(2^x+sqrt(2^(2*x)-1))], x=0..50,

y=-30..10, style=line, symbol=point,

thickness=[1,4],

color=[magenta, grey], numpoints=8000);

The grey line is a plot of f .x/ D � ln.2x
C

p

22x
� 1/. The

coloured line is a plot of g.x/ D ln.2x
�

p

22x
� 1/.

(a) Show that g.x/ D f .x/.

(b) Why do the graphs of f and g behave differently?

(c) Estimate a value of x beyond which the plots of f and g

will behave differently. Assume machine epsilon is

� D 2�52.
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4. If you use a graphing calculator or other mathematical

graphing software, try to determine machine epsilon for it.

In Exercises 5–6 assume that a computer uses 64 bits (binary

digits) of memory to store a floating-point number, and that of

these 64 bits 52 are used for the mantissa and one each for the

signs of the mantissa and the exponent.

5. To the nearest power of 10, what is the smallest positive

number that can be represented in floating-point form by the

computer?

6. To the nearest power of 10, what is the largest positive number

that can be represented in floating-point form by the

computer?

4.8 Extreme-Value Problems
In this section we solve various word problems that, when translated into mathemati-

cal terms, require the finding of a maximum or minimum value of a function of one

variable. Such problems can range from simple to very complex and difficult; they can

be phrased in terminology appropriate to some other discipline, or they can be already

partially translated into a more mathematical context. We have already encountered a

few such problems in earlier chapters.

Let us consider a couple of examples before attempting to formulate any general

principles for dealing with such problems.

E X A M P L E 1
A rectangular animal enclosure is to be constructed having one

side along an existing long wall and the other three sides fenced.

If 100 m of fence are available, what is the largest possible area for the enclosure?

Solution This problem, like many others, is essentially a geometric one. A sketch

should be made at the outset, as we have done in Figure 4.50. Let the length and width

of the enclosure be x and y m, respectively, and let its area be A m2. Thus A D xy.

x

A D xy yy

Figure 4.50

Since the total length of the fence is 100 m, we must have xC 2y D 100. A appears to
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be a function of two variables, x and y, but these variables are not independent; they

are related by the constraint xC 2y D 100. This constraint equation can be solved for

one variable in terms of the other, and A can therefore be written as a function of only

one variable:

x D 100 � 2y;

A D A.y/ D .100 � 2y/y D 100y � 2y
2
:

Evidently, we require y � 0 and y � 50 (i.e., x � 0) in order that the area make

sense. (It would otherwise be negative.) Thus, we must maximize the function A.y/

on the interval Œ0; 50�. Being continuous on this closed, finite interval, A must have

a maximum value, by Theorem 5. Clearly, A.0/ D A.50/ D 0 and A.y/ > 0 for

0 < y < 50. Hence, the maximum cannot occur at an endpoint. Since A has no

singular points, the maximum must occur at a critical point. To find any critical points,

we set

0 D A
0
.y/ D 100 � 4y:

Therefore, y D 25. SinceAmust have a maximum value and there is only one possible

point where it can be, the maximum must occur at y D 25. The greatest possible area

for the enclosure is therefore A.25/ D 1;250 m2.

E X A M P L E 2
A lighthouse L is located on a small island 5 km north of a point

A on a straight east-west shoreline. A cable is to be laid from L to

point B on the shoreline 10 km east of A. The cable will be laid through the water in a

straight line from L to a point C on the shoreline between A and B , and from there to

B along the shoreline. (See Figure 4.51.) The part of the cable lying in the water costs

$5,000/km, and the part along the shoreline costs $3,000/km.

(a) Where should C be chosen to minimize the total cost of the cable?

(b) Where should C be chosen if B is only 3 km from A?

Solution

(a) Let C be x km from A toward B . Thus 0 � x � 10. The length of LC is

5 km

L

C

A x 10 � x B

p

25C x2

Figure 4.51

p

25C x2 km, and the length of CB is 10 � x km, as illustrated in Figure 4.51.

Hence, the total cost of the cable is $T , where

T D T .x/ D 5;000

p

25C x2
C 3;000.10 � x/; .0 � x � 10/:

T is continuous on the closed, finite interval Œ0; 10�, so it has a minimum value

that may occur at one of the endpoints x D 0 or x D 10 or at a critical point in

the interval .0; 10/. (T has no singular points.) To find any critical points, we set

0 D
dT

dx
D

5;000x
p

25C x2
� 3;000:

Thus, 5;000x D 3;000

p

25C x2

25x
2
D 9.25C x

2
/

16x
2
D 225

x
2
D

225

16
D

152

42
:

This equation has two solutions, but only one, x D 15=4 D 3:75, lies in the inter-

val .0; 10/. Since T .0/ D 55;000, T .15=4/ D 50;000, and T .10/ � 55;902, the

critical point 3.75 evidently provides the minimum value for T .x/. For minimal

cost, C should be 3.75 km from A.
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(b) If B is 3 km from A, the corresponding total cost function is

T .x/ D 5;000

p

25C x2
C 3;000.3 � x/; .0 � x � 3/;

which differs from the total cost function T .x/ of part (a) only in the added con-

stant (9,000 rather than 30,000). It therefore has the same critical point, x D

15=4 D 3:75, which does not lie in the interval .0; 3/. Since T .0/ D 34;000 and

T .3/ � 29;155, in this case we should choose x D 3. To minimize the total cost,

the cable should go straight from L to B .

Procedure for Solving Extreme-Value Problems
Based on our experience with the examples above, we can formulate a checklist of

steps involved in solving optimization problems.

Solving extreme-value problems

1. Read the problem very carefully, perhaps more than once. You must

understand clearly what is given and what must be found.

2. Make a diagram if appropriate. Many problems have a geometric com-

ponent, and a good diagram can often be an essential part of the solution

process.

3. Define any symbols you wish to use that are not already specified in the

statement of the problem.

4. Express the quantity Q to be maximized or minimized as a function of

one or more variables.

5. If Q depends on n variables, where n > 1, find n � 1 equations (con-

straints) linking these variables. (If this cannot be done, the problem

cannot be solved by single-variable techniques.)

6. Use the constraints to eliminate variables and hence expressQ as a func-

tion of only one variable. Determine the interval(s) in which this vari-

able must lie for the problem to make sense. Alternatively, regard the

constraints as implicitly defining n � 1 of the variables, and hence Q, as

functions of the remaining variable.

7. Find the required extreme value of the functionQ using the techniques of

Section 4.4. Remember to consider any critical points, singular points,

and endpoints. Make sure to give a convincing argument that your ex-

treme value is the one being sought; for example, if you are looking for a

maximum, the value you have found should not be a minimum.

8. Make a concluding statement answering the question asked. Is your an-

swer for the question reasonable? If not, check back through the solution

to see what went wrong.

E X A M P L E 3
Find the length of the shortest ladder that can extend from a verti-

1 m

2 m

�

L

Figure 4.52

cal wall, over a fence 2 m high located 1 m away from the wall, to

a point on the ground outside the fence.

Solution Let � be the angle of inclination of the ladder, as shown in Figure 4.52.

Using the two right-angled triangles in the figure, we obtain the length L of the ladder

as a function of � :

L D L.�/ D
1

cos �
C

2

sin �
;

where 0 < � < �=2. Since

lim
�!.�=2/�

L.�/ D 1 and lim
�!0C

L.�/ D 1;

9780134154367_Calculus   282 05/12/16   3:16 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 262 October 15, 2016

262 CHAPTER 4 More Applications of Differentiation

be a function of two variables, x and y, but these variables are not independent; they

are related by the constraint xC 2y D 100. This constraint equation can be solved for

one variable in terms of the other, and A can therefore be written as a function of only

one variable:

x D 100 � 2y;

A D A.y/ D .100 � 2y/y D 100y � 2y
2
:

Evidently, we require y � 0 and y � 50 (i.e., x � 0) in order that the area make

sense. (It would otherwise be negative.) Thus, we must maximize the function A.y/

on the interval Œ0; 50�. Being continuous on this closed, finite interval, A must have

a maximum value, by Theorem 5. Clearly, A.0/ D A.50/ D 0 and A.y/ > 0 for

0 < y < 50. Hence, the maximum cannot occur at an endpoint. Since A has no

singular points, the maximum must occur at a critical point. To find any critical points,

we set

0 D A
0
.y/ D 100 � 4y:

Therefore, y D 25. SinceAmust have a maximum value and there is only one possible

point where it can be, the maximum must occur at y D 25. The greatest possible area

for the enclosure is therefore A.25/ D 1;250 m2.

E X A M P L E 2
A lighthouse L is located on a small island 5 km north of a point

A on a straight east-west shoreline. A cable is to be laid from L to

point B on the shoreline 10 km east of A. The cable will be laid through the water in a

straight line from L to a point C on the shoreline between A and B , and from there to

B along the shoreline. (See Figure 4.51.) The part of the cable lying in the water costs

$5,000/km, and the part along the shoreline costs $3,000/km.

(a) Where should C be chosen to minimize the total cost of the cable?

(b) Where should C be chosen if B is only 3 km from A?

Solution

(a) Let C be x km from A toward B . Thus 0 � x � 10. The length of LC is

5 km

L

C

A x 10 � x B

p

25C x2

Figure 4.51

p

25C x2 km, and the length of CB is 10 � x km, as illustrated in Figure 4.51.

Hence, the total cost of the cable is $T , where

T D T .x/ D 5;000

p

25C x2
C 3;000.10 � x/; .0 � x � 10/:

T is continuous on the closed, finite interval Œ0; 10�, so it has a minimum value

that may occur at one of the endpoints x D 0 or x D 10 or at a critical point in

the interval .0; 10/. (T has no singular points.) To find any critical points, we set

0 D
dT

dx
D

5;000x
p

25C x2
� 3;000:

Thus, 5;000x D 3;000

p

25C x2

25x
2
D 9.25C x

2
/

16x
2
D 225

x
2
D

225

16
D

152

42
:

This equation has two solutions, but only one, x D 15=4 D 3:75, lies in the inter-

val .0; 10/. Since T .0/ D 55;000, T .15=4/ D 50;000, and T .10/ � 55;902, the

critical point 3.75 evidently provides the minimum value for T .x/. For minimal

cost, C should be 3.75 km from A.
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(b) If B is 3 km from A, the corresponding total cost function is

T .x/ D 5;000

p

25C x2
C 3;000.3 � x/; .0 � x � 3/;

which differs from the total cost function T .x/ of part (a) only in the added con-

stant (9,000 rather than 30,000). It therefore has the same critical point, x D

15=4 D 3:75, which does not lie in the interval .0; 3/. Since T .0/ D 34;000 and

T .3/ � 29;155, in this case we should choose x D 3. To minimize the total cost,

the cable should go straight from L to B .

Procedure for Solving Extreme-Value Problems
Based on our experience with the examples above, we can formulate a checklist of

steps involved in solving optimization problems.

Solving extreme-value problems

1. Read the problem very carefully, perhaps more than once. You must

understand clearly what is given and what must be found.

2. Make a diagram if appropriate. Many problems have a geometric com-

ponent, and a good diagram can often be an essential part of the solution

process.

3. Define any symbols you wish to use that are not already specified in the

statement of the problem.

4. Express the quantity Q to be maximized or minimized as a function of

one or more variables.

5. If Q depends on n variables, where n > 1, find n � 1 equations (con-

straints) linking these variables. (If this cannot be done, the problem

cannot be solved by single-variable techniques.)

6. Use the constraints to eliminate variables and hence expressQ as a func-

tion of only one variable. Determine the interval(s) in which this vari-

able must lie for the problem to make sense. Alternatively, regard the

constraints as implicitly defining n � 1 of the variables, and hence Q, as

functions of the remaining variable.

7. Find the required extreme value of the functionQ using the techniques of

Section 4.4. Remember to consider any critical points, singular points,

and endpoints. Make sure to give a convincing argument that your ex-

treme value is the one being sought; for example, if you are looking for a

maximum, the value you have found should not be a minimum.

8. Make a concluding statement answering the question asked. Is your an-

swer for the question reasonable? If not, check back through the solution

to see what went wrong.

E X A M P L E 3
Find the length of the shortest ladder that can extend from a verti-

1 m

2 m

�

L

Figure 4.52

cal wall, over a fence 2 m high located 1 m away from the wall, to

a point on the ground outside the fence.

Solution Let � be the angle of inclination of the ladder, as shown in Figure 4.52.

Using the two right-angled triangles in the figure, we obtain the length L of the ladder

as a function of � :

L D L.�/ D
1

cos �
C

2

sin �
;

where 0 < � < �=2. Since

lim
�!.�=2/�

L.�/ D 1 and lim
�!0C

L.�/ D 1;
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L.�/ must have a minimum value on .0; �=2/, occurring at a critical point. (L has no

singular points in .0; �=2/.) To find any critical points, we set

0 D L
0
.�/ D

sin �

cos2 �
�

2 cos �

sin2
�
D

sin3
� � 2 cos3 �

cos2 � sin2
�

:

Any critical point satisfies sin3
� D 2 cos3 � , or, equivalently, tan3 � D 2. We don’t

need to solve this equation for � D tan�1
.2

1=3
/ since it is really the corresponding

value of L.�/ that we want. Observe that

sec2
� D 1C tan2

� D 1C 2
2=3
:

It follows that

cos � D
1

.1C 22=3/1=2
and sin � D tan � cos � D

21=3

.1C 22=3/1=2
:

Therefore, the minimal value of L.�/ is

1

cos �
C

2

sin �
D .1C 2

2=3
/
1=2
C 2

.1C 22=3/1=2

21=3
D

�

1C 2
2=3
�3=2

� 4:16:

The shortest ladder that can extend from the wall over the fence to the ground outside

is about 4.16 m long.

E X A M P L E 4
Find the most economical shape of a cylindrical tin can.

Solution This problem is stated in a rather vague way. We must consider what is

meant by “most economical” and even “shape.” Without further information, we can

take one of two points of view:

(i) the volume of the tin can is to be regarded as given, and we must choose the

dimensions to minimize the total surface area, or

(ii) the total surface area is given (we can use just so much metal), and we must choose

the dimensions to maximize the volume.

We will discuss other possible interpretations later. Since a cylinder is determined by

its radius and height (Figure 4.53), its shape is determined by the ratio radius/height.

Let r , h, S , and V denote, respectively, the radius, height, total surface area, and

volume of the can. The volume of a cylinder is the base area times the height:

r

h

Figure 4.53

V D �r
2
h:

The surface of the can is made up of the cylindrical wall and circular disks for the top

and bottom. The disks each have area �r2, and the cylindrical wall is really just a

rolled-up rectangle with base 2�r (the circumference of the can) and height h. There-

fore, the total surface area of the can is

S D 2�rhC 2�r
2
:

Let us use interpretation (i): V is a given constant, and S is to be minimized. We

can use the equation for V to eliminate one of the two variables r and h on which

S depends. Say we solve for h D V=.�r2/ and substitute into the equation for S to

obtain S as a function of r alone:

S D S.r/ D 2�r
V

�r2
C 2�r

2
D

2V

r
C 2�r

2
.0 < r <1/:
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Evidently, limr!0C S.r/ D 1 and limr!1 S.r/ D 1. Being differentiable and

therefore continuous on .0;1/, S.r/ must have a minimum value, and it must occur

at a critical point. To find any critical points,

0 D S
0
.r/ D �

2V

r2
C 4�r;

r
3
D

2V

4�
D

1

2�
�r

2
h D

1

2
r

2
h:

Thus, h D 2r at the critical point of S . Under interpretation (i), the most economical

can is shaped so that its height equals the diameter of its base. You are encouraged to

show that interpretation (ii) leads to the same conclusion.

Remark A different approach to the problem in Example 4 shows directly that in-

terpretations (i) and (ii) must give the same solution. Again, we start from the two

equations

V D �r
2
h and S D 2�rhC 2�r

2
:

If we regard h as a function of r and differentiate implicitly, we obtain

dV

dr
D 2�rhC �r

2 dh

dr
;

dS

dr
D 2�hC 2�r

dh

dr
C 4�r:

Under interpretation (i), V is constant and we want a critical point of S ; under interpre-

tation (ii), S is constant and we want a critical point of V . In either case, dV=dr D 0

and dS=dr D 0. Hence, both interpretations yield

2�rhC �r
2 dh

dr
D 0 and 2�hC 4�r C 2�r

dh

dr
D 0:

If we divide the first equation by �r2 and the second equation by 2�r and subtract to

eliminate dh=dr , we again get h D 2r .

Remark Modifying Example 4 Given the sparse information provided in the state-

ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do.

The problem could be made more meaningful economically (from the point of view,

say, of a tin can manufacturer) if more elements were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom

disks. If the cylindrical wall material costs $A per unit area and the material for

the top and bottom costs $B per unit area, we might prefer to minimize the total

cost of materials for a can of given volume. What is the optimal shape ifA D 2B?

(b) Large numbers of cans are to be manufactured. The material is probably being

cut out of sheets of metal. The cylindrical walls are made by bending up rect-

angles, and rectangles can be cut from the sheet with little or no waste. There

will, however, always be a proportion of material wasted when the disks are cut

out. The exact proportion will depend on how the disks are arranged; two possible

arrangements are shown in Figure 4.54. What is the optimal shape of the can if a

square packing of disks is used? A hexagonal packing? Any such modification of

the original problem will alter the optimal shape to some extent. In “real-world”

problems, many factors may have to be taken into account to come up with a “best”

Square Packing:
each disk uses up a square

Hexagonal Packing:
each disk uses up a hexagon

Figure 4.54 Square and hexagonal

packing of disks in a plane

strategy.

(c) The problem makes no provision for costs of manufacturing the can other than

the cost of sheet metal. There may also be costs for joining the opposite edges of

the rectangle to make the cylinder and for joining the top and bottom disks to the

cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred

at a critical point. Our final example is one where this is not the case.
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L.�/ must have a minimum value on .0; �=2/, occurring at a critical point. (L has no

singular points in .0; �=2/.) To find any critical points, we set

0 D L
0
.�/ D

sin �

cos2 �
�

2 cos �

sin2
�
D

sin3
� � 2 cos3 �

cos2 � sin2
�

:

Any critical point satisfies sin3
� D 2 cos3 � , or, equivalently, tan3 � D 2. We don’t

need to solve this equation for � D tan�1
.2

1=3
/ since it is really the corresponding

value of L.�/ that we want. Observe that

sec2
� D 1C tan2

� D 1C 2
2=3
:

It follows that

cos � D
1

.1C 22=3/1=2
and sin � D tan � cos � D

21=3

.1C 22=3/1=2
:

Therefore, the minimal value of L.�/ is

1

cos �
C

2

sin �
D .1C 2

2=3
/
1=2
C 2

.1C 22=3/1=2

21=3
D

�

1C 2
2=3
�3=2

� 4:16:

The shortest ladder that can extend from the wall over the fence to the ground outside

is about 4.16 m long.

E X A M P L E 4
Find the most economical shape of a cylindrical tin can.

Solution This problem is stated in a rather vague way. We must consider what is

meant by “most economical” and even “shape.” Without further information, we can

take one of two points of view:

(i) the volume of the tin can is to be regarded as given, and we must choose the

dimensions to minimize the total surface area, or

(ii) the total surface area is given (we can use just so much metal), and we must choose

the dimensions to maximize the volume.

We will discuss other possible interpretations later. Since a cylinder is determined by

its radius and height (Figure 4.53), its shape is determined by the ratio radius/height.

Let r , h, S , and V denote, respectively, the radius, height, total surface area, and

volume of the can. The volume of a cylinder is the base area times the height:

r

h

Figure 4.53

V D �r
2
h:

The surface of the can is made up of the cylindrical wall and circular disks for the top

and bottom. The disks each have area �r2, and the cylindrical wall is really just a

rolled-up rectangle with base 2�r (the circumference of the can) and height h. There-

fore, the total surface area of the can is

S D 2�rhC 2�r
2
:

Let us use interpretation (i): V is a given constant, and S is to be minimized. We

can use the equation for V to eliminate one of the two variables r and h on which

S depends. Say we solve for h D V=.�r2/ and substitute into the equation for S to

obtain S as a function of r alone:

S D S.r/ D 2�r
V

�r2
C 2�r

2
D

2V

r
C 2�r

2
.0 < r <1/:
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Evidently, limr!0C S.r/ D 1 and limr!1 S.r/ D 1. Being differentiable and

therefore continuous on .0;1/, S.r/ must have a minimum value, and it must occur

at a critical point. To find any critical points,

0 D S
0
.r/ D �

2V

r2
C 4�r;

r
3
D

2V

4�
D

1

2�
�r

2
h D

1

2
r

2
h:

Thus, h D 2r at the critical point of S . Under interpretation (i), the most economical

can is shaped so that its height equals the diameter of its base. You are encouraged to

show that interpretation (ii) leads to the same conclusion.

Remark A different approach to the problem in Example 4 shows directly that in-

terpretations (i) and (ii) must give the same solution. Again, we start from the two

equations

V D �r
2
h and S D 2�rhC 2�r

2
:

If we regard h as a function of r and differentiate implicitly, we obtain

dV

dr
D 2�rhC �r

2 dh

dr
;

dS

dr
D 2�hC 2�r

dh

dr
C 4�r:

Under interpretation (i), V is constant and we want a critical point of S ; under interpre-

tation (ii), S is constant and we want a critical point of V . In either case, dV=dr D 0

and dS=dr D 0. Hence, both interpretations yield

2�rhC �r
2 dh

dr
D 0 and 2�hC 4�r C 2�r

dh

dr
D 0:

If we divide the first equation by �r2 and the second equation by 2�r and subtract to

eliminate dh=dr , we again get h D 2r .

Remark Modifying Example 4 Given the sparse information provided in the state-

ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do.

The problem could be made more meaningful economically (from the point of view,

say, of a tin can manufacturer) if more elements were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom

disks. If the cylindrical wall material costs $A per unit area and the material for

the top and bottom costs $B per unit area, we might prefer to minimize the total

cost of materials for a can of given volume. What is the optimal shape ifA D 2B?

(b) Large numbers of cans are to be manufactured. The material is probably being

cut out of sheets of metal. The cylindrical walls are made by bending up rect-

angles, and rectangles can be cut from the sheet with little or no waste. There

will, however, always be a proportion of material wasted when the disks are cut

out. The exact proportion will depend on how the disks are arranged; two possible

arrangements are shown in Figure 4.54. What is the optimal shape of the can if a

square packing of disks is used? A hexagonal packing? Any such modification of

the original problem will alter the optimal shape to some extent. In “real-world”

problems, many factors may have to be taken into account to come up with a “best”

Square Packing:
each disk uses up a square

Hexagonal Packing:
each disk uses up a hexagon

Figure 4.54 Square and hexagonal

packing of disks in a plane

strategy.

(c) The problem makes no provision for costs of manufacturing the can other than

the cost of sheet metal. There may also be costs for joining the opposite edges of

the rectangle to make the cylinder and for joining the top and bottom disks to the

cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred

at a critical point. Our final example is one where this is not the case.
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E X A M P L E 5
A man can run twice as fast as he can swim. He is standing at

point A on the edge of a circular swimming pool 40 m in diameter,

and he wishes to get to the diametrically opposite point B as quickly as possible. He

can run around the edge to point C , then swim directly from C to B . Where should C

be chosen to minimize the total time taken to get from A to B?

Figure 4.55 Running and swimming to

get from A to B

A

C

�

L

B

O 20 m

���
2

Solution It is convenient to describe the position of C in terms of the angle AOC ,

where O is the centre of the pool. (See Figure 4.55.) Let � denote this angle. Clearly,

0 � � � � . (If � D 0, the man swims the whole way; if � D � , he runs the whole

way.) The radius of the pool is 20 m, so arc AC D 20� . Since angle BOC D � � � ,

we have angle BOL D .� � �/=2 and chord BC D 2BL D 40 sin
�

.� � �/=2
�

.

Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/s. If t is

the total time he takes to get from A to B , then

t D t.�/ D time runningC time swimming

D

20�

2k
C

40

k
sin

� � �

2
:

(We are assuming that no time is wasted in jumping into the water at C .) The domain

of t is Œ0; �� and t has no singular points. Since t is continuous on a closed, finite

interval, it must have a minimum value, and that value must occur at a critical point or

an endpoint. For critical points,

0 D t
0
.�/ D

10

k
�

20

k
cos

� � �

2
:

Thus,

cos
� � �

2
D

1

2
;

� � �

2
D

�

3
; � D

�

3
:

This is the only critical value of � lying in the interval Œ0; ��. We have

t

�

�

3

�

D

10�

3k
C

40

k
sin

�

3
D

10

k

 

�

3
C

4
p

3

2

!

�

45:11

k
:

We must also look at the endpoints � D 0 and � D � :

t.0/ D
40

k
; t.�/ D

10�

k
�

31:4

k
:

Evidently, t.�/ is the least of these three times. To get from A to B as quickly as

possible, the man should run the entire distance.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 267 October 15, 2016

SECTION 4.8: Extreme-Value Problems 267

Remark This problem shows how important it is to check every candidate point to

see whether it gives a maximum or minimum. Here, the critical point � D �=3 yielded

the worst possible strategy: running one-third of the way around and then swimming

the remainder would take the greatest time, not the least.

E X E R C I S E S 4.8

1. Two positive numbers have sum 7. What is the largest possible

value for their product?

2. Two positive numbers have product 8. What is the smallest

possible value for their sum?

3. Two nonnegative numbers have sum 60. What are the

numbers if the product of one of them and the square of the

other is maximal?

4. Two numbers have sum 16. What are the numbers if the

product of the cube of one and the fifth power of the other is

as large as possible?

C 5. The sum of two nonnegative numbers is 10. What is the

smallest value of the sum of the cube of one number and the

square of the other?

6. Two nonnegative numbers have sum n. What is the smallest

possible value for the sum of their squares?

7. Among all rectangles of given area, show that the square has

the least perimeter.

8. Among all rectangles of given perimeter, show that the square

has the greatest area.

9. Among all isosceles triangles of given perimeter, show that

the equilateral triangle has the greatest area.

10. Find the largest possible area for an isosceles triangle if the

length of each of its two equal sides is 10 m.

11. Find the area of the largest rectangle that can be inscribed in a

semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle.

12. Find the largest possible perimeter of a rectangle inscribed in

a semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle. (It is interesting that the

rectangle with the largest perimeter has a different shape than

the one with the largest area, obtained in Exercise 11.)

13. A rectangle with sides parallel to the coordinate axes is

inscribed in the ellipse

x
2

a2
C

y
2

b2
D 1:

Find the largest possible area for this rectangle.

14. Let ABC be a triangle right-angled at C and having area S .

Find the maximum area of a rectangle inscribed in the triangle

if (a) one corner of the rectangle lies at C , or (b) one side of

the rectangle lies along the hypotenuse, AB .

15. Find the maximum area of an isosceles triangle whose equal

sides are 10 cm in length. Use half the length of the third side

of the triangle as the variable in terms of which to express the

area of the triangle.

16. Repeat Exercise 15, but use instead the angle between the

equal sides of the triangle as the variable in terms of which to

express the area of the triangle. Which solution is easier?

17. (Designing a billboard) A billboard is to be made with

100 m2 of printed area and with margins of 2 m at the top and

bottom and 4 m on each side. Find the outside dimensions of

the billboard if its total area is to be a minimum.

18. (Designing a box) A box is to be made from a rectangular

sheet of cardboard 70 cm by 150 cm by cutting equal squares

out of the four corners and bending up the resulting four flaps

to make the sides of the box. (The box has no top.) What is

the largest possible volume of the box?

19. (Using rebates to maximize profit) An automobile

manufacturer sells 2,000 cars per month, at an average profit

of $1,000 per car. Market research indicates that for each $50

of factory rebate the manufacturer offers to buyers it can

expect to sell 200 more cars each month. How much of a

rebate should it offer to maximize its monthly profit?

20. (Maximizing rental profit) All 80 rooms in a motel will be

rented each night if the manager charges $40 or less per room.

If he charges $.40C x/ per room, then 2x rooms will remain

vacant. If each rented room costs the manager $10 per day and

each unrented room $2 per day in overhead, how much should

the manager charge per room to maximize his daily profit?

21. (Minimizing travel time) You are in a dune buggy in the

desert 12 km due south of the nearest point A on a straight

east-west road. You wish to get to point B on the road 10 km

east of A. If your dune buggy can average 15 km/h travelling

over the desert and 39 km/h travelling on the road, toward

what point on the road should you head in order to minimize

your travel time to B?

22. Repeat Exercise 21, but assume that B is only 4 km from A.

23. (Flying with least energy) At the altitude of airliners, winds

can typically blow at a speed of about 100 knots (nautical

miles per hour) from the west toward the east. A westward-

flying passenger jet from London, England, on its way to

Toronto, flies directly against this wind for 3,000 nautical

miles. The energy per unit time expended by the airliner is

proportional to v3, where v is the speed of the airliner relative

to the air. This reflects the power required to push aside the air

exerting ram pressure proportional to v2. What speed uses the

least energy on this trip? Estimate the time it would take to fly

this route at the resulting optimal speed. Is this a typical speed

at which airliners travel? Explain.

24. (Energy for a round trip) In the preceding problem we found

that an airliner flying against the wind at speed v with respect

to the air consumes the least energy over a flight if it travels at

v D 3u=2, where u is the speed of the headwind with respect

to the ground. Assume the power (energy per unit time)

required to push aside the air is kv3.

(a) Write the general expression for energy consumed over a

trip of distance ` flying with an airspeed v into a

headwind of speed u. Also write the general expression

9780134154367_Calculus   286 05/12/16   3:16 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 266 October 15, 2016

266 CHAPTER 4 More Applications of Differentiation

E X A M P L E 5
A man can run twice as fast as he can swim. He is standing at

point A on the edge of a circular swimming pool 40 m in diameter,

and he wishes to get to the diametrically opposite point B as quickly as possible. He

can run around the edge to point C , then swim directly from C to B . Where should C

be chosen to minimize the total time taken to get from A to B?

Figure 4.55 Running and swimming to

get from A to B

A

C

�

L

B

O 20 m

���
2

Solution It is convenient to describe the position of C in terms of the angle AOC ,

where O is the centre of the pool. (See Figure 4.55.) Let � denote this angle. Clearly,

0 � � � � . (If � D 0, the man swims the whole way; if � D � , he runs the whole

way.) The radius of the pool is 20 m, so arc AC D 20� . Since angle BOC D � � � ,

we have angle BOL D .� � �/=2 and chord BC D 2BL D 40 sin
�

.� � �/=2
�

.

Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/s. If t is

the total time he takes to get from A to B , then

t D t.�/ D time runningC time swimming

D

20�

2k
C

40

k
sin

� � �

2
:

(We are assuming that no time is wasted in jumping into the water at C .) The domain

of t is Œ0; �� and t has no singular points. Since t is continuous on a closed, finite

interval, it must have a minimum value, and that value must occur at a critical point or

an endpoint. For critical points,

0 D t
0
.�/ D

10

k
�

20

k
cos

� � �

2
:

Thus,

cos
� � �

2
D

1

2
;

� � �

2
D

�

3
; � D

�

3
:

This is the only critical value of � lying in the interval Œ0; ��. We have

t

�

�

3

�

D

10�

3k
C

40

k
sin

�

3
D

10

k

 

�

3
C

4
p

3

2

!

�

45:11

k
:

We must also look at the endpoints � D 0 and � D � :

t.0/ D
40

k
; t.�/ D

10�

k
�

31:4

k
:

Evidently, t.�/ is the least of these three times. To get from A to B as quickly as

possible, the man should run the entire distance.
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Remark This problem shows how important it is to check every candidate point to

see whether it gives a maximum or minimum. Here, the critical point � D �=3 yielded

the worst possible strategy: running one-third of the way around and then swimming

the remainder would take the greatest time, not the least.

E X E R C I S E S 4.8

1. Two positive numbers have sum 7. What is the largest possible

value for their product?

2. Two positive numbers have product 8. What is the smallest

possible value for their sum?

3. Two nonnegative numbers have sum 60. What are the

numbers if the product of one of them and the square of the

other is maximal?

4. Two numbers have sum 16. What are the numbers if the

product of the cube of one and the fifth power of the other is

as large as possible?

C 5. The sum of two nonnegative numbers is 10. What is the

smallest value of the sum of the cube of one number and the

square of the other?

6. Two nonnegative numbers have sum n. What is the smallest

possible value for the sum of their squares?

7. Among all rectangles of given area, show that the square has

the least perimeter.

8. Among all rectangles of given perimeter, show that the square

has the greatest area.

9. Among all isosceles triangles of given perimeter, show that

the equilateral triangle has the greatest area.

10. Find the largest possible area for an isosceles triangle if the

length of each of its two equal sides is 10 m.

11. Find the area of the largest rectangle that can be inscribed in a

semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle.

12. Find the largest possible perimeter of a rectangle inscribed in

a semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle. (It is interesting that the

rectangle with the largest perimeter has a different shape than

the one with the largest area, obtained in Exercise 11.)

13. A rectangle with sides parallel to the coordinate axes is

inscribed in the ellipse

x
2

a2
C

y
2

b2
D 1:

Find the largest possible area for this rectangle.

14. Let ABC be a triangle right-angled at C and having area S .

Find the maximum area of a rectangle inscribed in the triangle

if (a) one corner of the rectangle lies at C , or (b) one side of

the rectangle lies along the hypotenuse, AB .

15. Find the maximum area of an isosceles triangle whose equal

sides are 10 cm in length. Use half the length of the third side

of the triangle as the variable in terms of which to express the

area of the triangle.

16. Repeat Exercise 15, but use instead the angle between the

equal sides of the triangle as the variable in terms of which to

express the area of the triangle. Which solution is easier?

17. (Designing a billboard) A billboard is to be made with

100 m2 of printed area and with margins of 2 m at the top and

bottom and 4 m on each side. Find the outside dimensions of

the billboard if its total area is to be a minimum.

18. (Designing a box) A box is to be made from a rectangular

sheet of cardboard 70 cm by 150 cm by cutting equal squares

out of the four corners and bending up the resulting four flaps

to make the sides of the box. (The box has no top.) What is

the largest possible volume of the box?

19. (Using rebates to maximize profit) An automobile

manufacturer sells 2,000 cars per month, at an average profit

of $1,000 per car. Market research indicates that for each $50

of factory rebate the manufacturer offers to buyers it can

expect to sell 200 more cars each month. How much of a

rebate should it offer to maximize its monthly profit?

20. (Maximizing rental profit) All 80 rooms in a motel will be

rented each night if the manager charges $40 or less per room.

If he charges $.40C x/ per room, then 2x rooms will remain

vacant. If each rented room costs the manager $10 per day and

each unrented room $2 per day in overhead, how much should

the manager charge per room to maximize his daily profit?

21. (Minimizing travel time) You are in a dune buggy in the

desert 12 km due south of the nearest point A on a straight

east-west road. You wish to get to point B on the road 10 km

east of A. If your dune buggy can average 15 km/h travelling

over the desert and 39 km/h travelling on the road, toward

what point on the road should you head in order to minimize

your travel time to B?

22. Repeat Exercise 21, but assume that B is only 4 km from A.

23. (Flying with least energy) At the altitude of airliners, winds

can typically blow at a speed of about 100 knots (nautical

miles per hour) from the west toward the east. A westward-

flying passenger jet from London, England, on its way to

Toronto, flies directly against this wind for 3,000 nautical

miles. The energy per unit time expended by the airliner is

proportional to v3, where v is the speed of the airliner relative

to the air. This reflects the power required to push aside the air

exerting ram pressure proportional to v2. What speed uses the

least energy on this trip? Estimate the time it would take to fly

this route at the resulting optimal speed. Is this a typical speed

at which airliners travel? Explain.

24. (Energy for a round trip) In the preceding problem we found

that an airliner flying against the wind at speed v with respect

to the air consumes the least energy over a flight if it travels at

v D 3u=2, where u is the speed of the headwind with respect

to the ground. Assume the power (energy per unit time)

required to push aside the air is kv3.

(a) Write the general expression for energy consumed over a

trip of distance ` flying with an airspeed v into a

headwind of speed u. Also write the general expression
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for energy used on the return journey along the same path

with airspeed w aided by a tailwind of speed u.

(b) Show that the energy consumed in the return journey is a

strictly increasing function of w. What is the least energy

consumed in the return journey if the airliner must have a

minimum airspeed of s (known as “stall speed”) to stay

aloft?

(c) What is the least energy consumed in the round trip if

u > 2s=3? What is the energy consumed when

u < 2s=3?

25. A one-metre length of stiff wire is cut into two pieces. One

piece is bent into a circle, the other piece into a square. Find

the length of the part used for the square if the sum of the

areas of the circle and the square is (a) maximum and

(b) minimum.

26. Find the area of the largest rectangle that can be drawn so that

each of its sides passes through a different vertex of a

rectangle having sides a and b.

27. What is the length of the shortest line segment having one end

on the x-axis, the other end on the y-axis, and passing

through the point .9;
p

3/?

28. (Getting around a corner) Find the length of the longest

beam that can be carried horizontally around the corner from

a hallway of width a m to a hallway of width b m. (See

Figure 4.56; assume the beam has no width.)

a m

b m

Figure 4.56

29. If the height of both hallways in Exercise 28 is c m, and if the

beam need not be carried horizontally, how long can it be and

still get around the corner? Hint: You can use the result of the

previous exercise to do this one easily.

30. The fence in Example 3 is demolished and a new fence is built

2 m away from the wall. How high can the fence be if a 6 m

ladder must be able to extend from the wall, over the fence, to

the ground outside?

31. Find the shortest distance from the origin to the curve

x2y4
D 1.

32. Find the shortest distance from the point .8; 1/ to the curve

y D 1C x3=2.

33. Find the dimensions of the largest right-circular cylinder that

can be inscribed in a sphere of radius R.

34. Find the dimensions of the circular cylinder of greatest volume

that can be inscribed in a cone of base radius R and height H

if the base of the cylinder lies in the base of the cone.

35. A box with square base and no top has a volume of 4 m3. Find

the dimensions of the most economical box.

36. (Folding a pyramid) A pyramid with a square base and four

faces, each in the shape of an isosceles triangle, is made by

cutting away four triangles from a 2 ft square piece of

cardboard (as shown in Figure 4.57) and bending up the

resulting triangles to form the walls of the pyramid. What is

the largest volume the pyramid can have? Hint: The volume of

a pyramid having base area A and height h measured

perpendicular to the base is V D 1
3
Ah.

2 ft

2 ft

Figure 4.57

37. (Getting the most light) A window has perimeter 10 m and is

in the shape of a rectangle with the top edge replaced by a

semicircle. Find the dimensions of the rectangle if the window

admits the greatest amount of light.

38. (Fuel tank design) A fuel tank is made of a cylindrical part

capped by hemispheres at each end. If the hemispheres are

twice as expensive per unit area as the cylindrical wall, and if

the volume of the tank is V , find the radius and height of the

cylindrical part to minimize the total cost. The surface area of

a sphere of radius r is 4�r2; its volume is 4
3
�r3.

39. (Reflection of light) Light travels in such a way that it

requires the minimum possible time to get from one point to

another. A ray of light from C reflects off a plane mirror AB

at X and then passes through D. (See Figure 4.58.) Show that

the rays CX and XD make equal angles with the normal to

AB at X . (Remark: You may wish to give a proof based on

elementary geometry without using any calculus, or you can

minimize the travel time on CXD.)

�

D

C

�

A BX

Figure 4.58

40.I (Snell’s Law) If light travels with speed v1 in one medium

and speed v2 in a second medium, and if the two media are

separated by a plane interface, show that a ray of light passing

from point A in one medium to point B in the other is bent at

the interface in such a way that

sin i

sin r
D

v1

v2

;

where i and r are the angles of incidence and refraction, as is

shown in Figure 4.59. This is known as Snell’s Law. Deduce it

from the least-time principle stated in Exercise 39.
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A

i

r

B

speed v1

speed v2

Figure 4.59

41. (Cutting the stiffest beam) The stiffness of a wooden beam

of rectangular cross section is proportional to the product of

the width and the cube of the depth of the cross section. Find

the width and depth of the stiffest beam that can be cut out of

a circular log of radius R.

42. Find the equation of the straight line of maximum slope

tangent to the curve y D 1C 2x � x3.

43. A quantityQ grows according to the differential equation

dQ

dt
D kQ

3
.L �Q/

5
;

where k and L are positive constants. How large is Q when it

is growing most rapidly?

44.I Find the smallest possible volume of a right-circular cone that

can contain a sphere of radius R. (The volume of a cone of

base radius r and height h is 1
3
�r2h.)

45.I (Ferry loading) A ferry runs between the mainland and the

island of Dedlos. The ferry has a maximum capacity of 1,000

cars, but loading near capacity is very time consuming. It is

found that the number of cars that can be loaded in t hours is

f .t/ D 1;000
t

e�t
C t

:

(Note that limt!1 f .t/ D 1;000, as expected.) Further, it is

found that it takes x=1;000 hours to unload x cars. The sailing

time to or from the island is 1 hour. Assume there are always

more cars waiting for each sailing than can be loaded. How

many cars should be loaded on the ferry for each sailing to

maximize the average movement of cars back and forth to the

island? (You will need to use a graphing calculator or

computer software like Maple’s fsolve routine to find the

appropriate critical point.)

46.I (The best view of a mural) How far back from a mural

should one stand to view it best if the mural is 10 ft high and

the bottom of it is 2 ft above eye level? (See Figure 4.60.)

10 ft

2 ft
�

x

Figure 4.60

47.I (Improving the enclosure of Example 1) An enclosure is to

be constructed having part of its boundary along an existing

straight wall. The other part of the boundary is to be fenced in

the shape of an arc of a circle. If 100 m of fencing is available,

what is the area of the largest possible enclosure? Into what

fraction of a circle is the fence bent?

48.I (Designing a Dixie cup) A sector is cut out of a circular disk

of radius R, and the remaining part of the disk is bent up so

that the two edges join and a cone is formed (see Figure 4.61).

What is the largest possible volume for the cone?

A D B

A

B

O

O

R

R

Figure 4.61

49.I (Minimize the fold) One corner of a strip of paper a cm wide

is folded up so that it lies along the opposite edge. (See

Figure 4.62.) Find the least possible length for the fold line.

fold

a

Figure 4.62

4.9 Linear Approximations

Many problems in applied mathematics are too difficult to be solved exactly—that is

why we resort to using computers, even though in many cases they may only give

approximate answers. However, not all approximation is done with machines. Linear

approximation can be a very effective way to estimate values or test the plausibility of
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for energy used on the return journey along the same path

with airspeed w aided by a tailwind of speed u.

(b) Show that the energy consumed in the return journey is a

strictly increasing function of w. What is the least energy

consumed in the return journey if the airliner must have a

minimum airspeed of s (known as “stall speed”) to stay

aloft?

(c) What is the least energy consumed in the round trip if

u > 2s=3? What is the energy consumed when

u < 2s=3?

25. A one-metre length of stiff wire is cut into two pieces. One

piece is bent into a circle, the other piece into a square. Find

the length of the part used for the square if the sum of the

areas of the circle and the square is (a) maximum and

(b) minimum.

26. Find the area of the largest rectangle that can be drawn so that

each of its sides passes through a different vertex of a

rectangle having sides a and b.

27. What is the length of the shortest line segment having one end

on the x-axis, the other end on the y-axis, and passing

through the point .9;
p

3/?

28. (Getting around a corner) Find the length of the longest

beam that can be carried horizontally around the corner from

a hallway of width a m to a hallway of width b m. (See

Figure 4.56; assume the beam has no width.)

a m

b m

Figure 4.56

29. If the height of both hallways in Exercise 28 is c m, and if the

beam need not be carried horizontally, how long can it be and

still get around the corner? Hint: You can use the result of the

previous exercise to do this one easily.

30. The fence in Example 3 is demolished and a new fence is built

2 m away from the wall. How high can the fence be if a 6 m

ladder must be able to extend from the wall, over the fence, to

the ground outside?

31. Find the shortest distance from the origin to the curve

x2y4
D 1.

32. Find the shortest distance from the point .8; 1/ to the curve

y D 1C x3=2.

33. Find the dimensions of the largest right-circular cylinder that

can be inscribed in a sphere of radius R.

34. Find the dimensions of the circular cylinder of greatest volume

that can be inscribed in a cone of base radius R and height H

if the base of the cylinder lies in the base of the cone.

35. A box with square base and no top has a volume of 4 m3. Find

the dimensions of the most economical box.

36. (Folding a pyramid) A pyramid with a square base and four

faces, each in the shape of an isosceles triangle, is made by

cutting away four triangles from a 2 ft square piece of

cardboard (as shown in Figure 4.57) and bending up the

resulting triangles to form the walls of the pyramid. What is

the largest volume the pyramid can have? Hint: The volume of

a pyramid having base area A and height h measured

perpendicular to the base is V D 1
3
Ah.

2 ft

2 ft

Figure 4.57

37. (Getting the most light) A window has perimeter 10 m and is

in the shape of a rectangle with the top edge replaced by a

semicircle. Find the dimensions of the rectangle if the window

admits the greatest amount of light.

38. (Fuel tank design) A fuel tank is made of a cylindrical part

capped by hemispheres at each end. If the hemispheres are

twice as expensive per unit area as the cylindrical wall, and if

the volume of the tank is V , find the radius and height of the

cylindrical part to minimize the total cost. The surface area of

a sphere of radius r is 4�r2; its volume is 4
3
�r3.

39. (Reflection of light) Light travels in such a way that it

requires the minimum possible time to get from one point to

another. A ray of light from C reflects off a plane mirror AB

at X and then passes through D. (See Figure 4.58.) Show that

the rays CX and XD make equal angles with the normal to

AB at X . (Remark: You may wish to give a proof based on

elementary geometry without using any calculus, or you can

minimize the travel time on CXD.)

�

D

C

�

A BX

Figure 4.58

40.I (Snell’s Law) If light travels with speed v1 in one medium

and speed v2 in a second medium, and if the two media are

separated by a plane interface, show that a ray of light passing

from point A in one medium to point B in the other is bent at

the interface in such a way that

sin i

sin r
D

v1

v2

;

where i and r are the angles of incidence and refraction, as is

shown in Figure 4.59. This is known as Snell’s Law. Deduce it

from the least-time principle stated in Exercise 39.
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A

i

r

B

speed v1

speed v2

Figure 4.59

41. (Cutting the stiffest beam) The stiffness of a wooden beam

of rectangular cross section is proportional to the product of

the width and the cube of the depth of the cross section. Find

the width and depth of the stiffest beam that can be cut out of

a circular log of radius R.

42. Find the equation of the straight line of maximum slope

tangent to the curve y D 1C 2x � x3.

43. A quantityQ grows according to the differential equation

dQ

dt
D kQ

3
.L �Q/

5
;

where k and L are positive constants. How large is Q when it

is growing most rapidly?

44.I Find the smallest possible volume of a right-circular cone that

can contain a sphere of radius R. (The volume of a cone of

base radius r and height h is 1
3
�r2h.)

45.I (Ferry loading) A ferry runs between the mainland and the

island of Dedlos. The ferry has a maximum capacity of 1,000

cars, but loading near capacity is very time consuming. It is

found that the number of cars that can be loaded in t hours is

f .t/ D 1;000
t

e�t
C t

:

(Note that limt!1 f .t/ D 1;000, as expected.) Further, it is

found that it takes x=1;000 hours to unload x cars. The sailing

time to or from the island is 1 hour. Assume there are always

more cars waiting for each sailing than can be loaded. How

many cars should be loaded on the ferry for each sailing to

maximize the average movement of cars back and forth to the

island? (You will need to use a graphing calculator or

computer software like Maple’s fsolve routine to find the

appropriate critical point.)

46.I (The best view of a mural) How far back from a mural

should one stand to view it best if the mural is 10 ft high and

the bottom of it is 2 ft above eye level? (See Figure 4.60.)

10 ft

2 ft
�

x

Figure 4.60

47.I (Improving the enclosure of Example 1) An enclosure is to

be constructed having part of its boundary along an existing

straight wall. The other part of the boundary is to be fenced in

the shape of an arc of a circle. If 100 m of fencing is available,

what is the area of the largest possible enclosure? Into what

fraction of a circle is the fence bent?

48.I (Designing a Dixie cup) A sector is cut out of a circular disk

of radius R, and the remaining part of the disk is bent up so

that the two edges join and a cone is formed (see Figure 4.61).

What is the largest possible volume for the cone?

A D B

A

B

O

O

R

R

Figure 4.61

49.I (Minimize the fold) One corner of a strip of paper a cm wide

is folded up so that it lies along the opposite edge. (See

Figure 4.62.) Find the least possible length for the fold line.

fold

a

Figure 4.62

4.9 Linear Approximations

Many problems in applied mathematics are too difficult to be solved exactly—that is

why we resort to using computers, even though in many cases they may only give

approximate answers. However, not all approximation is done with machines. Linear

approximation can be a very effective way to estimate values or test the plausibility of
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numbers given by a computer. In Section 2.7 we observed how differentials could be
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 4.63 The linearization of function

f about a

used to approximate (changes in) the values of functions between nearby points. In this

section we reconsider such approximations in a more formal way and obtain estimates

for the size of the errors encountered when such “linear” approximations are made.

The tangent to the graph y D f .x/ at x D a describes the behaviour of that

graph near the point P D .a; f .a// better than any other straight line through P ,

because it goes through P in the same direction as the curve y D f .x/. (See

Figure 4.63.) We exploit this fact by using the height to the tangent line to calcu-

late approximate values of f .x/ for values of x near a. The tangent line has equation

y D f .a/C f 0.a/.x � a/. We call the right side of this equation the linearization of

f about a (or the linearization of f .x/ about x D a).

D E F I N I T I O N

8

The linearization of the function f about a is the function L defined by

L.x/ D f .a/C f
0
.a/.x � a/:

We say that f .x/ � L.x/ D f .a/C f 0
.a/.x � a/ provides linear approxi-

mations for values of f near a.

E X A M P L E 1
Find linearizations of (a) f .x/ D

p

1C x about x D 0 and

(b) g.t/ D 1=t about t D 1=2.

Solution

(a) We have f .0/ D 1 and, since f 0.x/ D 1=.2
p

1C x/, f 0.0/ D 1=2. The lin-

earization of f about 0 is

L.x/ D 1C
1

2
.x � 0/ D 1C

x

2
:

(b) We have g.1=2/ D 2 and, since g0.t/ D �1=t2, g0.1=2/ D �4. The linearization

of g.t/ about t D 1=2 is

L.t/ D 2� 4

�

t �
1

2

�

D 4 � 4t:

Approximating Values of Functions
We have already made use of linearization in Section 2.7, where it was disguised as the

formula

�y �
dy

dx
�x

and used to approximate a small change �y D f .a C �x/ � f .a/ in the values of

function f corresponding to the small change in the argument of the function from a

to aC�x. This is just the linear approximation

f .aC�x/ � L.aC�x/ D f .a/C f
0
.a/�x:

E X A M P L E 2
A ball of ice melts so that its radius decreases from 5 cm to 4.92 cm.

By approximately how much does the volume of the ball decrease?

Solution The volume V of a ball of radius r is V D
4

3
�r

3, so that dV=dr D 4�r2

and L.r C�r/ D V.r/C 4�r2
�r . Thus,

�V � L.r C�r/ D 4�r
2
�r:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 271 October 15, 2016

SECTION 4.9: Linear Approximations 271

For r D 5 and �r D �0:08, we have

�V � 4�.5
2
/.�0:08/ D �8� � �25:13:

The volume of the ball decreases by about 25 cm3.

The following example illustrates the use of linearization to find an approximate value

of a function near a point where the values of the function and its derivative are known.

E X A M P L E 3
Use the linearization for

p

x about x D 25 to find an approximate

value for
p

26.

Solution If f .x/ D
p

x, then f 0.x/ D 1=.2
p

x/. Since we know that f .25/ D 5

and f 0.25/ D 1=10, the linearization of f .x/ about x D 25 is

L.x/ D 5C
1

10
.x � 25/:

Putting x D 26, we get

p

26 D f .26/ � L.26/ D 5C
1

10
.26 � 25/ D 5:1:

If we use the square root function on a calculator we can obtain the “true value” of
p

26 (actually, just another approximation, although presumably a better one):
p

26 D

5:099 019 5 : : : ; but if we have such a calculator we don’t need the approximation in

the first place. Approximations are useful when there is no easy way to obtain the

true value. However, if we don’t know the true value, we would at least like to have

some way of determining how good the approximation must be; that is, we want an

estimate for the error. After all, any number is an approximation to
p

26, but the error

may be unacceptably large; for instance, the size of the error in the approximation
p

26 � 1;000;000 is greater than 999,994.

Error Analysis
In any approximation, the error is defined by

error D true value � approximate value:

If the linearization of f about a is used to approximate f .x/ near x D a, that is,

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/;

then the error E.x/ in this approximation is

E.x/ D f .x/� L.x/ D f .x/� f .a/ � f
0
.a/.x � a/:

It is the vertical distance at x between the graph of f and the tangent line to that graph

at x D a, as shown in Figure 4.64. Observe that if x is “near” a, then E.x/ is small

compared to the horizontal distance between x and a.
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numbers given by a computer. In Section 2.7 we observed how differentials could be
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 4.63 The linearization of function

f about a

used to approximate (changes in) the values of functions between nearby points. In this

section we reconsider such approximations in a more formal way and obtain estimates

for the size of the errors encountered when such “linear” approximations are made.

The tangent to the graph y D f .x/ at x D a describes the behaviour of that

graph near the point P D .a; f .a// better than any other straight line through P ,

because it goes through P in the same direction as the curve y D f .x/. (See

Figure 4.63.) We exploit this fact by using the height to the tangent line to calcu-

late approximate values of f .x/ for values of x near a. The tangent line has equation

y D f .a/C f 0.a/.x � a/. We call the right side of this equation the linearization of

f about a (or the linearization of f .x/ about x D a).

D E F I N I T I O N

8

The linearization of the function f about a is the function L defined by

L.x/ D f .a/C f
0
.a/.x � a/:

We say that f .x/ � L.x/ D f .a/C f 0
.a/.x � a/ provides linear approxi-

mations for values of f near a.

E X A M P L E 1
Find linearizations of (a) f .x/ D

p

1C x about x D 0 and

(b) g.t/ D 1=t about t D 1=2.

Solution

(a) We have f .0/ D 1 and, since f 0.x/ D 1=.2
p

1C x/, f 0.0/ D 1=2. The lin-

earization of f about 0 is

L.x/ D 1C
1

2
.x � 0/ D 1C

x

2
:

(b) We have g.1=2/ D 2 and, since g0.t/ D �1=t2, g0.1=2/ D �4. The linearization

of g.t/ about t D 1=2 is

L.t/ D 2� 4

�

t �
1

2

�

D 4 � 4t:

Approximating Values of Functions
We have already made use of linearization in Section 2.7, where it was disguised as the

formula

�y �
dy

dx
�x

and used to approximate a small change �y D f .a C �x/ � f .a/ in the values of

function f corresponding to the small change in the argument of the function from a

to aC�x. This is just the linear approximation

f .aC�x/ � L.aC�x/ D f .a/C f
0
.a/�x:

E X A M P L E 2
A ball of ice melts so that its radius decreases from 5 cm to 4.92 cm.

By approximately how much does the volume of the ball decrease?

Solution The volume V of a ball of radius r is V D
4

3
�r

3, so that dV=dr D 4�r2

and L.r C�r/ D V.r/C 4�r2
�r . Thus,

�V � L.r C�r/ D 4�r
2
�r:
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For r D 5 and �r D �0:08, we have

�V � 4�.5
2
/.�0:08/ D �8� � �25:13:

The volume of the ball decreases by about 25 cm3.

The following example illustrates the use of linearization to find an approximate value

of a function near a point where the values of the function and its derivative are known.

E X A M P L E 3
Use the linearization for

p

x about x D 25 to find an approximate

value for
p

26.

Solution If f .x/ D
p

x, then f 0.x/ D 1=.2
p

x/. Since we know that f .25/ D 5

and f 0.25/ D 1=10, the linearization of f .x/ about x D 25 is

L.x/ D 5C
1

10
.x � 25/:

Putting x D 26, we get

p

26 D f .26/ � L.26/ D 5C
1

10
.26 � 25/ D 5:1:

If we use the square root function on a calculator we can obtain the “true value” of
p

26 (actually, just another approximation, although presumably a better one):
p

26 D

5:099 019 5 : : : ; but if we have such a calculator we don’t need the approximation in

the first place. Approximations are useful when there is no easy way to obtain the

true value. However, if we don’t know the true value, we would at least like to have

some way of determining how good the approximation must be; that is, we want an

estimate for the error. After all, any number is an approximation to
p

26, but the error

may be unacceptably large; for instance, the size of the error in the approximation
p

26 � 1;000;000 is greater than 999,994.

Error Analysis
In any approximation, the error is defined by

error D true value � approximate value:

If the linearization of f about a is used to approximate f .x/ near x D a, that is,

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/;

then the error E.x/ in this approximation is

E.x/ D f .x/� L.x/ D f .x/� f .a/ � f
0
.a/.x � a/:

It is the vertical distance at x between the graph of f and the tangent line to that graph

at x D a, as shown in Figure 4.64. Observe that if x is “near” a, then E.x/ is small

compared to the horizontal distance between x and a.
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Figure 4.64 f .x/ and its linearization

L.x/ about x D a. E.x/ is the error in the

approximation f .x/ � L.x/

y

x

f .x/

L.x/

f 0.a/.x � a/

f .a/

E.x/

y D f .x/

P

a x

The following theorem and its corollaries give us a way to estimate this error if we

know bounds for the second derivative of f:

T H E O R E M

11

An error formula for linearization

If f 00.t/ exists for all t in an interval containing a and x, then there exists some point s

between a and x such that the error E.x/ D f .x/� L.x/ in the linear approximation

f .x/ � L.x/ D f .a/C f 0.a/.x � a/ satisfies

E.x/ D
f 00.s/

2
.x � a/

2
:

PROOF Let us assume that x > a. (The proof for x < a is similar.) Since

E.t/ D f .t/� f .a/ � f
0
.a/.t � a/;

we have E 0.t/ D f 0.t/ � f 0.a/. We apply the Generalized Mean-Value Theorem

(Theorem 16 of Section 2.8) to the two functions E.t/ and .t � a/2 on Œa; x�. Noting

that E.a/ D 0, we obtain a number u in .a; x/ such that

E.x/

.x � a/2
D

E.x/� E.a/

.x � a/2 � .a � a/2
D

E 0.u/

2.u � a/
D

f 0.u/ � f 0.a/

2.u � a/
D

1

2
f

00
.s/

for some s in .a; u/; the latter expression is a consequence of applying the Mean-Value

Theorem again, this time to f 0 on Œa; u�. Thus,

E.x/ D
f 00.s/

2
.x � a/

2

as claimed.

The following three corollaries are immediate consequences of Theorem 11.
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Corollary A. If f 00.t/ has constant sign (i.e., is always positive or always negative)

between a and x, then the error E.x/ in the linear approximation f .x/ � L.x/ in the

Theorem has that same sign; if f 00.t/ > 0 between a and x, then f .x/ > L.x/; if

f 00.t/ < 0 between a and x, then f .x/ < L.x/.

Corollary B. If jf 00.t/j < K for all t between a and x (where K is a constant), then

jE.x/j < .K=2/.x � a/2.

Corollary C. If f 00
.t/ satisfiesM < f

00
.t/ < N for all t between a and x (where M

and N are constants), then

L.x/C
M

2
.x � a/

2
< f .x/ < L.x/C

N

2
.x � a/

2
:

If M and N have the same sign, a better approximation to f .x/ is given by the mid-

point of this interval containing f .x/:

f .x/ � L.x/C
M CN

4
.x � a/

2
:

For this approximation the error is less than half the length of the interval:

jErrorj <
N �M

4
.x � a/

2
:

E X A M P L E 4
Determine the sign and estimate the size of the error in the approx-

imation
p

26 � 5:1 obtained in Example 3. Use these to give a

small interval that you can be sure contains
p

26.

Solution For f .t/ D t1=2, we have

f
0
.t/ D

1

2
t
�1=2 and f

00
.t/ D �

1

4
t
�3=2

:

For 25 < t < 26, we have f 00
.t/ < 0, so

p

26 D f .26/ < L.26/ D 5:1. Also,

t
3=2

> 25
3=2
D 125, so jf 00

.t/j < .1=4/.1=125/ D 1=500 and

jE.26/j <
1

2
�

1

500
� .26 � 25/

2
D

1

1,000
D 0:001:

Therefore, f .26/ > L.26/ � 0:001 D 5:099, and
p

26 is in the interval .5:099; 5:1/.

Remark We can use Corollary C of Theorem 11 and the fact that
p

26 < 5:1 to

find a better (i.e., smaller) interval containing
p

26 as follows. If 25 < t < 26, then

125 D 253=2 < t3=2 < 263=2 < 5:13. Thus,

M D �
1

4 � 125
< f

00
.t/ < �

1

4 � 5:13
D N

p

26 � L.26/C
M CN

4
D 5:1 �

1

4

�

1

4 � 125
C

1

4 � 5:13

�

� 5:099 028 8

jErrorj <
N �M

4
D

1

16

�

�

1

5:13
C

1

125

�

� 0:000 028 8:

Thus,
p

26 lies in the interval .5:099 00; 5:099 06/.

E X A M P L E 5
Use a suitable linearization to find an approximate value for

cos 36ı
D cos.�=5/. Is the true value greater than or less than

your approximation? Estimate the size of the error, and give an interval that you can

be sure contains cos 36ı.

9780134154367_Calculus   292 05/12/16   3:17 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 272 October 15, 2016

272 CHAPTER 4 More Applications of Differentiation

Figure 4.64 f .x/ and its linearization

L.x/ about x D a. E.x/ is the error in the

approximation f .x/ � L.x/

y

x

f .x/

L.x/

f 0.a/.x � a/

f .a/

E.x/

y D f .x/

P

a x

The following theorem and its corollaries give us a way to estimate this error if we

know bounds for the second derivative of f:

T H E O R E M

11

An error formula for linearization

If f 00.t/ exists for all t in an interval containing a and x, then there exists some point s

between a and x such that the error E.x/ D f .x/� L.x/ in the linear approximation

f .x/ � L.x/ D f .a/C f 0.a/.x � a/ satisfies

E.x/ D
f 00.s/

2
.x � a/

2
:

PROOF Let us assume that x > a. (The proof for x < a is similar.) Since

E.t/ D f .t/� f .a/ � f
0
.a/.t � a/;

we have E 0.t/ D f 0.t/ � f 0.a/. We apply the Generalized Mean-Value Theorem

(Theorem 16 of Section 2.8) to the two functions E.t/ and .t � a/2 on Œa; x�. Noting

that E.a/ D 0, we obtain a number u in .a; x/ such that

E.x/

.x � a/2
D

E.x/� E.a/

.x � a/2 � .a � a/2
D

E 0.u/

2.u � a/
D

f 0.u/ � f 0.a/

2.u � a/
D

1

2
f

00
.s/

for some s in .a; u/; the latter expression is a consequence of applying the Mean-Value

Theorem again, this time to f 0 on Œa; u�. Thus,

E.x/ D
f 00.s/

2
.x � a/

2

as claimed.

The following three corollaries are immediate consequences of Theorem 11.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 273 October 15, 2016

SECTION 4.9: Linear Approximations 273

Corollary A. If f 00.t/ has constant sign (i.e., is always positive or always negative)

between a and x, then the error E.x/ in the linear approximation f .x/ � L.x/ in the

Theorem has that same sign; if f 00.t/ > 0 between a and x, then f .x/ > L.x/; if

f 00.t/ < 0 between a and x, then f .x/ < L.x/.

Corollary B. If jf 00.t/j < K for all t between a and x (where K is a constant), then

jE.x/j < .K=2/.x � a/2.

Corollary C. If f 00
.t/ satisfiesM < f

00
.t/ < N for all t between a and x (where M

and N are constants), then

L.x/C
M

2
.x � a/

2
< f .x/ < L.x/C

N

2
.x � a/

2
:

If M and N have the same sign, a better approximation to f .x/ is given by the mid-

point of this interval containing f .x/:

f .x/ � L.x/C
M CN

4
.x � a/

2
:

For this approximation the error is less than half the length of the interval:

jErrorj <
N �M

4
.x � a/

2
:

E X A M P L E 4
Determine the sign and estimate the size of the error in the approx-

imation
p

26 � 5:1 obtained in Example 3. Use these to give a

small interval that you can be sure contains
p

26.

Solution For f .t/ D t1=2, we have

f
0
.t/ D

1

2
t
�1=2 and f

00
.t/ D �

1

4
t
�3=2

:

For 25 < t < 26, we have f 00
.t/ < 0, so

p

26 D f .26/ < L.26/ D 5:1. Also,

t
3=2

> 25
3=2
D 125, so jf 00

.t/j < .1=4/.1=125/ D 1=500 and

jE.26/j <
1

2
�

1

500
� .26 � 25/

2
D

1

1,000
D 0:001:

Therefore, f .26/ > L.26/ � 0:001 D 5:099, and
p

26 is in the interval .5:099; 5:1/.

Remark We can use Corollary C of Theorem 11 and the fact that
p

26 < 5:1 to

find a better (i.e., smaller) interval containing
p

26 as follows. If 25 < t < 26, then

125 D 253=2 < t3=2 < 263=2 < 5:13. Thus,

M D �
1

4 � 125
< f

00
.t/ < �

1

4 � 5:13
D N

p

26 � L.26/C
M CN

4
D 5:1 �

1

4

�

1

4 � 125
C

1

4 � 5:13

�

� 5:099 028 8

jErrorj <
N �M

4
D

1

16

�

�

1

5:13
C

1

125

�

� 0:000 028 8:

Thus,
p

26 lies in the interval .5:099 00; 5:099 06/.

E X A M P L E 5
Use a suitable linearization to find an approximate value for

cos 36ı
D cos.�=5/. Is the true value greater than or less than

your approximation? Estimate the size of the error, and give an interval that you can

be sure contains cos 36ı.
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Solution Let f .t/ D cos t , so that f 0.t/ D � sin t and f 00.t/ D � cos t . The

value of a nearest to 36ı for which we know cos a is a D 30
ı
D �=6, so we use the

linearization about that point:

L.x/ D cos
�

6
� sin

�

6

�

x �
�

6

�

D

p

3

2
�

1

2

�

x �
�

6

�

:

Since .�=5/ � .�=6/ D �=30, our approximation is

cos 36ı
D cos

�

5
� L

�

�

5

�

D

p

3

2
�

1

2

�

�

30

�

� 0:813 67:

If .�=6/ < t < .�=5/, then f 00.t/ < 0 and jf 00.t/j < cos.�=6/ D
p

3=2. Therefore,

cos 36ı < 0:813 67 and

jE.36ı/j <

p

3

4

�

�

30

�2

< 0:004 75:

Thus, 0:813 67 � 0:004 75 < cos 36ı < 0:813 67, so cos 36ı lies in the interval

.0:808 92; 0:813 67/.

Remark The error in the linearization of f .x/ about x D a can be interpreted in

terms of differentials (see Section 2.7 and the beginning of this section) as follows: if

�x D dx D x � a, then the change in f .x/ as we pass from x D a to x D a C�x

is f .aC�x/ � f .a/ D �y, and the corresponding change in the linearization L.x/

is f 0.a/.x � a/ D f 0.a/ dx, which is just the value at x D a of the differential

dy D f
0
.x/ dx. Thus,

E.x/ D �y � dy:

The errorE.x/ is small compared with�x as�x approaches 0, as seen in Figure 4.64.

In fact,

lim
�x!0

�y � dy

�x
D lim

�x!0

�

�y

�x
�

dy

dx

�

D

dy

dx
�

dy

dx
D 0:

If jf 00.t/j � K (constant) near t D a, a stronger assertion can be made:

ˇ

ˇ

ˇ

ˇ

�y � dy

.�x/2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

E.x/

.�x/2

ˇ

ˇ

ˇ

ˇ

�

K

2
; so j�y � dyj �

K

2
.�x/

2
:

E X E R C I S E S 4.9

In Exercises 1–10, find the linearization of the given function

about the given point.

1. x2 about x D 3 2. x�3 about x D 2

3.
p

4 � x about x D 0 4.
p

3C x2 about x D 1

5. 1=.1C x/2 about x D 2 6. 1=
p

x about x D 4

7. sinx about x D � 8. cos.2x/ about x D �=3

9. sin2
x about x D �=6 10. tan x about x D �=4

11. By approximately how much does the area of a square

increase if its side length increases from 10 cm to 10.4 cm?

12. By about how much must the edge length of a cube decrease

from 20 cm to reduce the volume of the cube by 12 cm3?

13. A spacecraft orbits the earth at a distance of 4,100 miles from

the centre of the earth. By about how much will the circum-

ference of its orbit decrease if the radius decreases by 10

miles?

14. (Acceleration of gravity) The acceleration a of gravity at an

altitude of h miles above the surface of the earth is given by

a D g

�

R

RC h

�2

;
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where g � 32 ft/s2 is the acceleration at the surface of the

earth, and R � 3; 960 miles is the radius of the earth. By

about what percentage will a decrease if h increases from 0 to

10 miles?

In Exercises 15–22, use a suitable linearization to approximate the

indicated value. Determine the sign of the error and estimate its

size. Use this information to specify an interval you can be sure

contains the value.

15.
p

50 16.
p

47

17.
4
p

85 18.
1

2:003

19. cos 46ı 20. sin
�

5

21. sin.3:14/ 22. sin 33ı

Use Corollary C of Theorem 11 in the manner suggested in the

remark following Example 4 to find better intervals and better

approximations to the values in Exercises 23–26.

23.
p

50 as first approximated in Exercise 15.

24.
p

47 as first approximated in Exercise 16.

25. cos 36ı as first approximated in Example 5.

26. sin 33ı as first approximated in Exercise 22.

27. If f .2/ D 4, f 0
.2/ D �1, and 0 � f 00

.x/ � 1=x for x > 0,

find the smallest interval you can be sure contains f .3/.

28. If f .2/ D 4, f 0.2/ D �1, and
1

2x
� f

00
.x/ �

1

x
for

2 � x � 3, find the best approximation you can for f .3/.

29. If g.2/ D 1, g0
.2/ D 2, and jg00

.x/j < 1C .x � 2/
2 for all

x > 0, find the best approximation you can for g.1:8/. How

large can the error be?

30. Show that the linearization of sin � at � D 0 is L.�/ D � .

How large can the percentage error in the approximation

sin � � � be if j� j is less than 17ı?

31. A spherical balloon is inflated so that its radius increases from

20.00 cm to 20.20 cm in 1 min. By approximately how much

has its volume increased in that minute?

4.10 Taylor Polynomials

The linearization of a function f .x/ about x D a, namely, the linear function

P1.x/ D L.x/ D f .a/C f
0
.a/.x � a/;

describes the behaviour of f near a better than any other polynomial of degree 1

because both P1 and f have the same value and the same derivative at a:

P1.a/ D f .a/ and P
0
1.a/ D f

0
.a/:

(We are now using the symbol P1 instead of L to stress the fact that the linearization

is a polynomial of degree at most 1.)

We can obtain even better approximations to f .x/ by using quadratic or higher-

degree polynomials and matching more derivatives at x D a. For example, if f is

twice differentiable near a, then the polynomial

P2.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2
.x � a/

2

satisfies P2.a/ D f .a/, P 0
2.a/ D f 0.a/, and P 00

2 .a/ D f 00.a/ and describes the

behaviour of f near a better than any other polynomial of degree at most 2.

In general, if f .n/.x/ exists in an open interval containing x D a, then the poly-

nomial

Pn.x/ D f .a/C
f 0.a/

1Š
.x � a/C

f 00.a/

2Š
.x � a/

2

C

f 000.a/

3Š
.x � a/

3
C � � � C

f .n/.a/

nŠ
.x � a/

n

matches f and its first n derivatives at x D a,

Pn.a/ D f .a/; P
0
n.a/ D f

0
.a/; : : : ; P

.n/
n .a/ D f

.n/
.a/;

9780134154367_Calculus   294 05/12/16   3:17 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 274 October 15, 2016

274 CHAPTER 4 More Applications of Differentiation

Solution Let f .t/ D cos t , so that f 0.t/ D � sin t and f 00.t/ D � cos t . The

value of a nearest to 36ı for which we know cos a is a D 30
ı
D �=6, so we use the

linearization about that point:

L.x/ D cos
�

6
� sin

�

6

�

x �
�

6

�

D

p

3

2
�

1

2

�

x �
�

6

�

:

Since .�=5/ � .�=6/ D �=30, our approximation is

cos 36ı
D cos

�

5
� L

�

�

5

�

D

p

3

2
�

1

2

�

�

30

�

� 0:813 67:

If .�=6/ < t < .�=5/, then f 00.t/ < 0 and jf 00.t/j < cos.�=6/ D
p

3=2. Therefore,

cos 36ı < 0:813 67 and

jE.36ı/j <

p

3

4

�

�

30

�2

< 0:004 75:

Thus, 0:813 67 � 0:004 75 < cos 36ı < 0:813 67, so cos 36ı lies in the interval

.0:808 92; 0:813 67/.

Remark The error in the linearization of f .x/ about x D a can be interpreted in

terms of differentials (see Section 2.7 and the beginning of this section) as follows: if

�x D dx D x � a, then the change in f .x/ as we pass from x D a to x D a C�x

is f .aC�x/ � f .a/ D �y, and the corresponding change in the linearization L.x/

is f 0.a/.x � a/ D f 0.a/ dx, which is just the value at x D a of the differential

dy D f
0
.x/ dx. Thus,

E.x/ D �y � dy:

The errorE.x/ is small compared with�x as�x approaches 0, as seen in Figure 4.64.

In fact,

lim
�x!0

�y � dy

�x
D lim

�x!0

�

�y

�x
�

dy

dx

�

D

dy

dx
�

dy

dx
D 0:

If jf 00.t/j � K (constant) near t D a, a stronger assertion can be made:

ˇ

ˇ

ˇ

ˇ

�y � dy

.�x/2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

E.x/

.�x/2

ˇ

ˇ

ˇ

ˇ

�

K

2
; so j�y � dyj �

K

2
.�x/

2
:

E X E R C I S E S 4.9

In Exercises 1–10, find the linearization of the given function

about the given point.

1. x2 about x D 3 2. x�3 about x D 2

3.
p

4 � x about x D 0 4.
p

3C x2 about x D 1

5. 1=.1C x/2 about x D 2 6. 1=
p

x about x D 4

7. sinx about x D � 8. cos.2x/ about x D �=3

9. sin2
x about x D �=6 10. tan x about x D �=4

11. By approximately how much does the area of a square

increase if its side length increases from 10 cm to 10.4 cm?

12. By about how much must the edge length of a cube decrease

from 20 cm to reduce the volume of the cube by 12 cm3?

13. A spacecraft orbits the earth at a distance of 4,100 miles from

the centre of the earth. By about how much will the circum-

ference of its orbit decrease if the radius decreases by 10

miles?

14. (Acceleration of gravity) The acceleration a of gravity at an

altitude of h miles above the surface of the earth is given by

a D g

�

R

RC h

�2

;
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where g � 32 ft/s2 is the acceleration at the surface of the

earth, and R � 3; 960 miles is the radius of the earth. By

about what percentage will a decrease if h increases from 0 to

10 miles?

In Exercises 15–22, use a suitable linearization to approximate the

indicated value. Determine the sign of the error and estimate its

size. Use this information to specify an interval you can be sure

contains the value.

15.
p

50 16.
p

47

17.
4
p

85 18.
1

2:003

19. cos 46ı 20. sin
�

5

21. sin.3:14/ 22. sin 33ı

Use Corollary C of Theorem 11 in the manner suggested in the

remark following Example 4 to find better intervals and better

approximations to the values in Exercises 23–26.

23.
p

50 as first approximated in Exercise 15.

24.
p

47 as first approximated in Exercise 16.

25. cos 36ı as first approximated in Example 5.

26. sin 33ı as first approximated in Exercise 22.

27. If f .2/ D 4, f 0
.2/ D �1, and 0 � f 00

.x/ � 1=x for x > 0,

find the smallest interval you can be sure contains f .3/.

28. If f .2/ D 4, f 0.2/ D �1, and
1

2x
� f

00
.x/ �

1

x
for

2 � x � 3, find the best approximation you can for f .3/.

29. If g.2/ D 1, g0
.2/ D 2, and jg00

.x/j < 1C .x � 2/
2 for all

x > 0, find the best approximation you can for g.1:8/. How

large can the error be?

30. Show that the linearization of sin � at � D 0 is L.�/ D � .

How large can the percentage error in the approximation

sin � � � be if j� j is less than 17ı?

31. A spherical balloon is inflated so that its radius increases from

20.00 cm to 20.20 cm in 1 min. By approximately how much

has its volume increased in that minute?

4.10 Taylor Polynomials

The linearization of a function f .x/ about x D a, namely, the linear function

P1.x/ D L.x/ D f .a/C f
0
.a/.x � a/;

describes the behaviour of f near a better than any other polynomial of degree 1

because both P1 and f have the same value and the same derivative at a:

P1.a/ D f .a/ and P
0
1.a/ D f

0
.a/:

(We are now using the symbol P1 instead of L to stress the fact that the linearization

is a polynomial of degree at most 1.)

We can obtain even better approximations to f .x/ by using quadratic or higher-

degree polynomials and matching more derivatives at x D a. For example, if f is

twice differentiable near a, then the polynomial

P2.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2
.x � a/

2

satisfies P2.a/ D f .a/, P 0
2.a/ D f 0.a/, and P 00

2 .a/ D f 00.a/ and describes the

behaviour of f near a better than any other polynomial of degree at most 2.

In general, if f .n/.x/ exists in an open interval containing x D a, then the poly-

nomial

Pn.x/ D f .a/C
f 0.a/

1Š
.x � a/C

f 00.a/

2Š
.x � a/

2

C

f 000.a/

3Š
.x � a/

3
C � � � C

f .n/.a/

nŠ
.x � a/

n

matches f and its first n derivatives at x D a,

Pn.a/ D f .a/; P
0
n.a/ D f

0
.a/; : : : ; P

.n/
n .a/ D f

.n/
.a/;
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and so describes f .x/ near x D a better than any other polynomial of degree at most

n. Pn is called the nth-order Taylor polynomial for f about a. (Taylor polynomials

about 0 are usually called Maclaurin polynomials.) The 0th-order Taylor polynomial

for f about a is just the constant function P0.x/ D f .a/. The nth-order Taylor poly-

nomial for f about a is sometimes called the nth-degree Taylor polynomial, but its

degree will actually be less than n if f .n/.a/ D 0.

E X A M P L E 1
Find the following Taylor polynomials:

(a) P2.x/ for f .x/ D
p

x about x D 25.

(b) P3.x/ for g.x/ D ln x about x D e.

Solution (a) f 0.x/ D .1=2/x�1=2, f 00.x/ D �.1=4/x�3=2. Thus,

P2.x/ D f .25/C f
0
.25/.x � 25/C

f 00.25/

2Š
.x � 25/

2

D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

(b) g0.x/ D
1

x
, g00.x/ D �

1

x2
, g000.x/ D

2

x3
. Thus,

P3.x/ D g.e/C g
0
.e/.x � e/C

g00.e/

2Š
.x � e/

2
C

g000.e/

3Š
.x � e/

3

D 1C
1

e
.x � e/ �

1

2e2
.x � e/

2
C

1

3e3
.x � e/

3
:

E X A M P L E 2
Find the nth-order Maclaurin polynomial Pn.x/ for ex . UseP0.1/,

P1.1/, P2.1/, : : : to calculate approximate values for e D e1. Stop

when you think you have 3 decimal places correct.

Solution Since every derivative of ex is ex and so is 1 at x D 0, the nth-order

Maclaurin polynomial for ex (i.e., Taylor polynomial at x D 0) is

Pn.x/ D 1C
x

1Š
C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
:

Thus, we have for x D 1, adding one more term at each step:

P0.1/ D 1

P1.1/ D P0.1/C
1

1Š
D 1C 1 D 2

P2.1/ D P1.1/C
1

2Š
D 2C

1

2
D 2:5

P3.1/ D P2.1/C
1

3Š
D 2:5C

1

6
D 2:6666

P4.1/ D P3.1/C
1

4Š
D 2:6666C

1

24
D 2:7083

P5.1/ D P4.1/C
1

5Š
D 2:7083C

1

120
D 2:7166

P6.1/ D P5.1/C
1

6Š
D 2:7166C

1

720
D 2:7180

P7.1/ D P6.1/C
1

7Š
D 2:7180C

1

5;040
D 2:7182:

It appears that e � 2:718 to 3 decimal places. We will verify in Example 5 below

that P7.1/ does indeed give this much precision. The graphs of ex and its first four

Maclaurin polynomials are shown in Figure 4.65.
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Figure 4.65 Some Maclaurin

polynomials for ex

y

1

2

3

4

5

6

x�2 �1 1

y D P1.x/

y D P2.x/

y D P3.x/

y D ex

y D P0.x/

E X A M P L E 3
Find Maclaurin polynomials P1.x/, P2.x/, P3.x/, and P4.x/ for

f .x/ D sinx. Then write the general Maclaurin polynomials

P2n�1.x/ and P2n.x/ for that function.

Solution We have f 0
.x/ D cos x, f 00

.x/ D � sin x, f 000
.x/ D � cos x, and f .4/

.x/ D

sinx D f .x/, so the pattern repeats for higher derivatives. Since

f .0/ D 0;

f
0
.0/ D 1;

f
00
.0/ D 0;

f
000
.0/ D �1;

f
.4/
.0/ D 0;

f
.5/
.0/ D 1;

f
.6/
.0/ D 0; : : :

f
.7/
.0/ D �1; : : :

we have

P1.x/ D 0C x D x

P2.x/ D x C
0

2Š
x

2
D x D P1.x/

P3.x/ D x �
1

3Š
x

3
D x �

x3

3Š

P4.x/ D x �
1

3Š
x

3
C

0

4Š
x

4
D x �

x3

3Š
D P3.x/:

In general, f .2n�1/.0/ D .�1/n�1 and f .2n/.0/ D 0, so

P2n�1.x/ D P2n.x/ D x �
x3

3Š
C

x5

5Š
� � � � C .�1/

n�1 x2n�1

.2n � 1/Š
:

Taylor’s Formula
The following theorem provides a formula for the error in a Taylor approximation

f .x/ � Pn.x/ similar to that provided for linear approximation by Theorem 11.
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and so describes f .x/ near x D a better than any other polynomial of degree at most

n. Pn is called the nth-order Taylor polynomial for f about a. (Taylor polynomials

about 0 are usually called Maclaurin polynomials.) The 0th-order Taylor polynomial

for f about a is just the constant function P0.x/ D f .a/. The nth-order Taylor poly-

nomial for f about a is sometimes called the nth-degree Taylor polynomial, but its

degree will actually be less than n if f .n/.a/ D 0.

E X A M P L E 1
Find the following Taylor polynomials:

(a) P2.x/ for f .x/ D
p

x about x D 25.

(b) P3.x/ for g.x/ D ln x about x D e.

Solution (a) f 0.x/ D .1=2/x�1=2, f 00.x/ D �.1=4/x�3=2. Thus,

P2.x/ D f .25/C f
0
.25/.x � 25/C

f 00.25/

2Š
.x � 25/

2

D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

(b) g0.x/ D
1

x
, g00.x/ D �

1

x2
, g000.x/ D

2

x3
. Thus,

P3.x/ D g.e/C g
0
.e/.x � e/C

g00.e/

2Š
.x � e/

2
C

g000.e/

3Š
.x � e/

3

D 1C
1

e
.x � e/ �

1

2e2
.x � e/

2
C

1

3e3
.x � e/

3
:

E X A M P L E 2
Find the nth-order Maclaurin polynomial Pn.x/ for ex . UseP0.1/,

P1.1/, P2.1/, : : : to calculate approximate values for e D e1. Stop

when you think you have 3 decimal places correct.

Solution Since every derivative of ex is ex and so is 1 at x D 0, the nth-order

Maclaurin polynomial for ex (i.e., Taylor polynomial at x D 0) is

Pn.x/ D 1C
x

1Š
C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
:

Thus, we have for x D 1, adding one more term at each step:

P0.1/ D 1

P1.1/ D P0.1/C
1

1Š
D 1C 1 D 2

P2.1/ D P1.1/C
1

2Š
D 2C

1

2
D 2:5

P3.1/ D P2.1/C
1

3Š
D 2:5C

1

6
D 2:6666

P4.1/ D P3.1/C
1

4Š
D 2:6666C

1

24
D 2:7083

P5.1/ D P4.1/C
1

5Š
D 2:7083C

1

120
D 2:7166

P6.1/ D P5.1/C
1

6Š
D 2:7166C

1

720
D 2:7180

P7.1/ D P6.1/C
1

7Š
D 2:7180C

1

5;040
D 2:7182:

It appears that e � 2:718 to 3 decimal places. We will verify in Example 5 below

that P7.1/ does indeed give this much precision. The graphs of ex and its first four

Maclaurin polynomials are shown in Figure 4.65.
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Figure 4.65 Some Maclaurin

polynomials for ex

y

1

2

3

4

5

6

x�2 �1 1

y D P1.x/

y D P2.x/

y D P3.x/

y D ex

y D P0.x/

E X A M P L E 3
Find Maclaurin polynomials P1.x/, P2.x/, P3.x/, and P4.x/ for

f .x/ D sinx. Then write the general Maclaurin polynomials

P2n�1.x/ and P2n.x/ for that function.

Solution We have f 0
.x/ D cos x, f 00

.x/ D � sin x, f 000
.x/ D � cos x, and f .4/

.x/ D

sinx D f .x/, so the pattern repeats for higher derivatives. Since

f .0/ D 0;

f
0
.0/ D 1;

f
00
.0/ D 0;

f
000
.0/ D �1;

f
.4/
.0/ D 0;

f
.5/
.0/ D 1;

f
.6/
.0/ D 0; : : :

f
.7/
.0/ D �1; : : :

we have

P1.x/ D 0C x D x

P2.x/ D x C
0

2Š
x

2
D x D P1.x/

P3.x/ D x �
1

3Š
x

3
D x �

x3

3Š

P4.x/ D x �
1

3Š
x

3
C

0

4Š
x

4
D x �

x3

3Š
D P3.x/:

In general, f .2n�1/.0/ D .�1/n�1 and f .2n/.0/ D 0, so

P2n�1.x/ D P2n.x/ D x �
x3

3Š
C

x5

5Š
� � � � C .�1/

n�1 x2n�1

.2n � 1/Š
:

Taylor’s Formula
The following theorem provides a formula for the error in a Taylor approximation

f .x/ � Pn.x/ similar to that provided for linear approximation by Theorem 11.
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T H E O R E M

12

Taylor’s Theorem

If the .nC 1/st-order derivative, f .nC1/.t/, exists for all t in an interval containing a

and x, and if Pn.x/ is the nth-order Taylor polynomial for f about a, that is,

Pn.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n
;

then the error En.x/ D f .x/ � Pn.x/ in the approximation f .x/ � Pn.x/ is given

by

Note that the error term

(Lagrange remainder) in Taylor’s

formula looks just like the next

term in the Taylor polynomial

would look if we continued the

Taylor polynomial to include one

more term (of degree nC 1)

EXCEPT that the derivative

f .nC1/ is not evaluated at a but

rather at some (generally

unknown) point s between a and

x. This makes it easy to

remember Taylor’s formula.

En.x/ D
f .nC1/.s/

.nC 1/Š
.x � a/

nC1
;

where s is some number between a and x. The resulting formula

f .x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n

C

f .nC1/.s/

.nC 1/Š
.x � a/

nC1
; for some s between a and x,

is called Taylor’s formula with Lagrange remainder; the Lagrange remainder term

is the explicit formula given above for En.x/.

PROOF Observe that the case n D 0 of Taylor’s formula, namely,

f .x/ D P0.x/CE0.x/ D f .a/C
f 0.s/

1Š
.x � a/;

is just the Mean-Value Theorem

f .x/� f .a/

x � a
D f

0
.s/ for some s between a and x.

Also note that the case n D 1 is just the error formula for linearization given in

Theorem 11.

We will complete the proof for higher n using mathematical induction. (See the

proof of Theorem 2 in Section 2.3.) Suppose, therefore, that we have proved the case

n D k � 1, where k � 2 is an integer. Thus, we are assuming that if f is any function

whose kth derivative exists on an interval containing a and x, then

Ek�1.x/ D
f .k/.s/

kŠ
.x � a/

k
;

where s is some number between a and x. Let us consider the next higher case: n D k.

As in the proof of Theorem 11, we assume x > a (the case x < a is similar) and apply

the Generalized Mean-Value Theorem to the functions Ek.t/ and .t � a/kC1 on Œa; x�.

Since Ek.a/ D 0, we obtain a number u in .a; x/ such that

Ek.x/

.x � a/kC1
D

Ek.x/� Ek.a/

.x � a/kC1
� .a � a/kC1

D

E 0
k
.u/

.k C 1/.u � a/k
:

Now

E
0
k.u/ D

d

dt

�

f .t/� f .a/ � f
0
.a/ .t � a/ �

f 00.a/

2Š
.t � a/

2

� � � � �

f
.k/
.a/

kŠ
.t � a/

k

!ˇ

ˇ

ˇ

ˇ

ˇ

tDu

D f
0
.u/� f

0
.a/ � f

00
.a/ .u � a/ � � � � �

f .k/.a/

.k � 1/Š
.u � a/

k�1
:
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This last expression is just Ek�1.u/ for the function f 0 instead of f: By the induction

assumption it is equal to

.f 0/.k/.s/

kŠ
.u � a/

k
D

f .kC1/.s/

kŠ
.u � a/

k

for some s between a and u. Therefore,

Ek.x/ D
f .kC1/.s/

.k C 1/Š
.x � a/

kC1
:

We have shown that the case n D k of Taylor’s Theorem is true if the case n D k � 1

is true, and the inductive proof is complete.

Remark For any value of x for which limn!1En.x/ D 0, we can ensure that

the Taylor approximation f .x/ � Pn.x/ is as close as we want by choosing n large

enough.

E X A M P L E 4
Use the 2nd-order Taylor polynomial for

p

x about x D 25 found

in Example 1(a) to approximate
p

26. Estimate the size of the

error, and specify an interval that you can be sure contains
p

26.

Solution In Example 1(a) we calculated f 00.x/ D �.1=4/x�3=2 and obtained the

Taylor polynomial

P2.x/ D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

The required approximation is

p

26 D f .26/ � P2.26/ D 5C
1

10
.26 � 25/ �

1

1;000
.26 � 25/

2
D 5:099:

Now f 000.x/ D .3=8/x�5=2. For 25 < s < 26, we have

jf
000
.s/j �

3

8

1

255=2
D

3

8 � 3;125
D

3

25;000
:

Thus, the error in the approximation satisfies

jE2.26/j �
3

25;000 � 6
.26 � 25/

3
D

1

50;000
D 0:000 02:

Therefore,
p

26 lies in the interval .5:098 98; 5:099 02/.

E X A M P L E 5
Use Taylor’s Theorem to confirm that the Maclaurin polynomial

P7.x/ for ex is sufficient to give e correct to 3 decimal places as

claimed in Example 2.

Solution The error in the approximation ex
� Pn.x/ satisfies

En.x/ D
es

.nC 1/Š
x

nC1
; for some s between 0 and x.

If x D 1, then 0 < s < 1, so es
< e < 3 and 0 < En.1/ < 3=.n C 1/Š.

To get an approximation for e D e1 correct to 3 decimal places, we need to have

En.1/ < 0:0005. Since 3=.8Š/ D 3=40;320 � 0:000 074, but 3=.7Š/ D 3=5;040 �

0:000 59, we can be sure n D 7 will do, but we cannot be sure n D 6 will do:

e � 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š
C

1

7Š
� 2:7183 � 2:718

to 3 decimal places.
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T H E O R E M

12

Taylor’s Theorem

If the .nC 1/st-order derivative, f .nC1/.t/, exists for all t in an interval containing a

and x, and if Pn.x/ is the nth-order Taylor polynomial for f about a, that is,

Pn.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n
;

then the error En.x/ D f .x/ � Pn.x/ in the approximation f .x/ � Pn.x/ is given

by

Note that the error term

(Lagrange remainder) in Taylor’s

formula looks just like the next

term in the Taylor polynomial

would look if we continued the

Taylor polynomial to include one

more term (of degree nC 1)

EXCEPT that the derivative

f .nC1/ is not evaluated at a but

rather at some (generally

unknown) point s between a and

x. This makes it easy to

remember Taylor’s formula.

En.x/ D
f .nC1/.s/

.nC 1/Š
.x � a/

nC1
;

where s is some number between a and x. The resulting formula

f .x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n

C

f .nC1/.s/

.nC 1/Š
.x � a/

nC1
; for some s between a and x,

is called Taylor’s formula with Lagrange remainder; the Lagrange remainder term

is the explicit formula given above for En.x/.

PROOF Observe that the case n D 0 of Taylor’s formula, namely,

f .x/ D P0.x/CE0.x/ D f .a/C
f 0.s/

1Š
.x � a/;

is just the Mean-Value Theorem

f .x/� f .a/

x � a
D f

0
.s/ for some s between a and x.

Also note that the case n D 1 is just the error formula for linearization given in

Theorem 11.

We will complete the proof for higher n using mathematical induction. (See the

proof of Theorem 2 in Section 2.3.) Suppose, therefore, that we have proved the case

n D k � 1, where k � 2 is an integer. Thus, we are assuming that if f is any function

whose kth derivative exists on an interval containing a and x, then

Ek�1.x/ D
f .k/.s/

kŠ
.x � a/

k
;

where s is some number between a and x. Let us consider the next higher case: n D k.

As in the proof of Theorem 11, we assume x > a (the case x < a is similar) and apply

the Generalized Mean-Value Theorem to the functions Ek.t/ and .t � a/kC1 on Œa; x�.

Since Ek.a/ D 0, we obtain a number u in .a; x/ such that

Ek.x/

.x � a/kC1
D

Ek.x/� Ek.a/

.x � a/kC1
� .a � a/kC1

D

E 0
k
.u/

.k C 1/.u � a/k
:

Now

E
0
k.u/ D

d

dt

�

f .t/� f .a/ � f
0
.a/ .t � a/ �

f 00.a/

2Š
.t � a/

2

� � � � �

f
.k/
.a/

kŠ
.t � a/

k

!ˇ

ˇ

ˇ

ˇ

ˇ

tDu

D f
0
.u/� f

0
.a/ � f

00
.a/ .u � a/ � � � � �

f .k/.a/

.k � 1/Š
.u � a/

k�1
:
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This last expression is just Ek�1.u/ for the function f 0 instead of f: By the induction

assumption it is equal to

.f 0/.k/.s/

kŠ
.u � a/

k
D

f .kC1/.s/

kŠ
.u � a/

k

for some s between a and u. Therefore,

Ek.x/ D
f .kC1/.s/

.k C 1/Š
.x � a/

kC1
:

We have shown that the case n D k of Taylor’s Theorem is true if the case n D k � 1

is true, and the inductive proof is complete.

Remark For any value of x for which limn!1En.x/ D 0, we can ensure that

the Taylor approximation f .x/ � Pn.x/ is as close as we want by choosing n large

enough.

E X A M P L E 4
Use the 2nd-order Taylor polynomial for

p

x about x D 25 found

in Example 1(a) to approximate
p

26. Estimate the size of the

error, and specify an interval that you can be sure contains
p

26.

Solution In Example 1(a) we calculated f 00.x/ D �.1=4/x�3=2 and obtained the

Taylor polynomial

P2.x/ D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

The required approximation is

p

26 D f .26/ � P2.26/ D 5C
1

10
.26 � 25/ �

1

1;000
.26 � 25/

2
D 5:099:

Now f 000.x/ D .3=8/x�5=2. For 25 < s < 26, we have

jf
000
.s/j �

3

8

1

255=2
D

3

8 � 3;125
D

3

25;000
:

Thus, the error in the approximation satisfies

jE2.26/j �
3

25;000 � 6
.26 � 25/

3
D

1

50;000
D 0:000 02:

Therefore,
p

26 lies in the interval .5:098 98; 5:099 02/.

E X A M P L E 5
Use Taylor’s Theorem to confirm that the Maclaurin polynomial

P7.x/ for ex is sufficient to give e correct to 3 decimal places as

claimed in Example 2.

Solution The error in the approximation ex
� Pn.x/ satisfies

En.x/ D
es

.nC 1/Š
x

nC1
; for some s between 0 and x.

If x D 1, then 0 < s < 1, so es
< e < 3 and 0 < En.1/ < 3=.n C 1/Š.

To get an approximation for e D e1 correct to 3 decimal places, we need to have

En.1/ < 0:0005. Since 3=.8Š/ D 3=40;320 � 0:000 074, but 3=.7Š/ D 3=5;040 �

0:000 59, we can be sure n D 7 will do, but we cannot be sure n D 6 will do:

e � 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š
C

1

7Š
� 2:7183 � 2:718

to 3 decimal places.
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Big-O Notation

D E F I N I T I O N

9

We write f .x/ D O
�

u.x/
�

as x ! a (read this “f .x/ is big-Oh of u.x/ as

x approaches a”) provided that

jf .x/j � Kju.x/j

holds for some constant K on some open interval containing x D a.

Similarly, f .x/ D g.x/CO
�

u.x/
�

as x ! a if f .x/� g.x/ D O
�

u.x/
�

as

x ! a, that is, if

jf .x/� g.x/j � Kju.x/j near a:

For example, sin x D O.x/ as x ! 0 because j sin xj � jxj near 0.

The following properties of big-O notation follow from the definition:

(i) If f .x/ D O
�

u.x/
�

as x ! a, then Cf .x/ D O
�

u.x/
�

as x ! a for any value

of the constant C .

(ii) If f .x/ D O
�

u.x/
�

as x ! a and g.x/ D O
�

u.x/
�

as x ! a, then

f .x/˙ g.x/ D O
�

u.x/
�

as x ! a.

(iii) If f .x/ D O
�

.x�a/ku.x/
�

as x ! a, then f .x/=.x�a/k D O
�

u.x/
�

as x ! a

for any constant k.

Taylor’s Theorem says that if f .nC1/.t/ exists on an interval containing a and x,

and if Pn is the nth-order Taylor polynomial for f at a, then, as x ! a,

f .x/ D Pn.x/CO
�

.x � a/
nC1

�

:

This is a statement about how rapidly the graph of the Taylor polynomial Pn.x/ ap-

proaches that of f .x/ as x ! a; the vertical distance between the graphs decreases as

fast as jx � ajnC1. The following theorem shows that the Taylor polynomial Pn.x/ is

the only polynomial of degree at most n whose graph approximates the graph of f .x/

that rapidly.

T H E O R E M

13

If f .x/ D Qn.x/CO
�

.x � a/
nC1

�

as x ! a, where Qn is a polynomial of degree at

most n, then Qn.x/ D Pn.x/, that is, Qn is the Taylor polynomial for f .x/ at x D a.

PROOF Let Pn be the Taylor polynomial, then properties (i) and (ii) of big-O imply

that Rn.x/ D Qn.x/ � Pn.x/ D O
�

.x � a/nC1
�

as x ! a. We want to show

that Rn.x/ is identically zero so that Qn.x/ D Pn.x/ for all x. By replacing x with

aC .x � a/ and expanding powers, we can write Rn.x/ in the form

Rn.x/ D c0 C c1.x � a/C c2.x � a/
2
C � � � C cn.x � a/

n
:

If Rn.x/ is not identically zero, then there is a smallest coefficient ck (k � n), such

that ck ¤ 0, but cj D 0 for 0 � j � k � 1. Thus,

Rn.x/ D .x � a/
k
�

ck C ckC1.x � a/C � � � C cn.x � a/
n�k

�

:

Therefore, limx!a Rn.x/=.x � a/
k
D ck ¤ 0. However, by property (iii) above

we have Rn.x/=.x � a/
k
D O

�

.x � a/nC1�k
�

. Since n C 1 � k > 0, this says

Rn.x/=.x � a/
k
! 0 as x ! a. This contradiction shows that Rn.x/ must be

identically zero. Therefore, Qn.x/ D Pn.x/ for all x.

Table 5 lists Taylor formulas about 0 (Maclaurin formulas) for some elementary func-

tions, with error terms expressed using big-O notation.
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Table 5. Some Maclaurin Formulas with Errors in Big-O Form

As x ! 0:

(a) ex
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
n

nŠ
CO

�

x
nC1

�

(b) cos x D 1�
x

2

2Š
C

x4

4Š
� � � � C .�1/

n x2n

.2n/Š
CO

�

x
2nC2

�

(c) sin x D x �
x

3

3Š
C

x5

5Š
� � � � C .�1/

n x2nC1

.2nC 1/Š
CO

�

x
2nC3

�

(d)
1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
CO

�

x
nC1

�

(e) ln.1C x/ D x �
x

2

2
C

x3

3
� � � � C .�1/

n�1 x
n

n
CO

�

x
nC1

�

(f) tan�1 x D x �
x

3

3
C

x
5

5
� � � � C .�1/

n x
2nC1

2nC 1
CO

�

x
2nC3

�

It is worthwhile remembering these. The first three can be established easily by using

Taylor’s formula with Lagrange remainder; the other three would require much more

effort to verify for general n. In Section 9.6 we will return to the subject of Taylor and

Maclaurin polynomials in relation to Taylor and Maclaurin series. At that time we will

have access to much more powerful machinery to establish such results. The need to

calculate high-order derivatives can make the use of Taylor’s formula difficult for all

but the simplest functions.

The real importance of Theorem 13 is that it enables us to obtain Taylor

polynomials for new functions by combining others already known; as long as the er-

ror term is of higher degree than the order of the polynomial obtained, the polynomial

must be the Taylor polynomial. We illustrate this with a few examples.

E X A M P L E 6
Find the Maclaurin polynomial of order 2n for cosh x.

Solution Write the Taylor formula for ex at x D 0 (from Table 5) with n replaced by

2nC 1, and then rewrite that with x replaced by �x. We get

e
x
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š
CO

�

x
2nC2

�

;

e
�x
D 1 � x C

x2

2Š
�

x3

3Š
C � � � C

x2n

.2n/Š
�

x2nC1

.2nC 1/Š
CO

�

x
2nC2

�

as x ! 0. Now average these two to get

cosh x D
ex
C e�x

2
D 1C

x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
CO

�

x
2nC2

�

as x ! 0. By Theorem 13 the Maclaurin polynomial P2n.x/ for cosh x is

P2n.x/ D 1C
x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
:

E X A M P L E 7
Obtain the Taylor polynomial of order 3 for e2x about x D 1 from

the corresponding Maclaurin polynomial for ex (from Table 5).
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D E F I N I T I O N

9

We write f .x/ D O
�

u.x/
�

as x ! a (read this “f .x/ is big-Oh of u.x/ as

x approaches a”) provided that

jf .x/j � Kju.x/j

holds for some constant K on some open interval containing x D a.

Similarly, f .x/ D g.x/CO
�

u.x/
�

as x ! a if f .x/� g.x/ D O
�

u.x/
�

as

x ! a, that is, if

jf .x/� g.x/j � Kju.x/j near a:

For example, sin x D O.x/ as x ! 0 because j sin xj � jxj near 0.

The following properties of big-O notation follow from the definition:

(i) If f .x/ D O
�

u.x/
�

as x ! a, then Cf .x/ D O
�

u.x/
�

as x ! a for any value

of the constant C .

(ii) If f .x/ D O
�

u.x/
�

as x ! a and g.x/ D O
�

u.x/
�

as x ! a, then

f .x/˙ g.x/ D O
�

u.x/
�

as x ! a.

(iii) If f .x/ D O
�

.x�a/ku.x/
�

as x ! a, then f .x/=.x�a/k D O
�

u.x/
�

as x ! a

for any constant k.

Taylor’s Theorem says that if f .nC1/.t/ exists on an interval containing a and x,

and if Pn is the nth-order Taylor polynomial for f at a, then, as x ! a,

f .x/ D Pn.x/CO
�

.x � a/
nC1

�

:

This is a statement about how rapidly the graph of the Taylor polynomial Pn.x/ ap-

proaches that of f .x/ as x ! a; the vertical distance between the graphs decreases as

fast as jx � ajnC1. The following theorem shows that the Taylor polynomial Pn.x/ is

the only polynomial of degree at most n whose graph approximates the graph of f .x/

that rapidly.

T H E O R E M

13

If f .x/ D Qn.x/CO
�

.x � a/
nC1

�

as x ! a, where Qn is a polynomial of degree at

most n, then Qn.x/ D Pn.x/, that is, Qn is the Taylor polynomial for f .x/ at x D a.

PROOF Let Pn be the Taylor polynomial, then properties (i) and (ii) of big-O imply

that Rn.x/ D Qn.x/ � Pn.x/ D O
�

.x � a/nC1
�

as x ! a. We want to show

that Rn.x/ is identically zero so that Qn.x/ D Pn.x/ for all x. By replacing x with

aC .x � a/ and expanding powers, we can write Rn.x/ in the form

Rn.x/ D c0 C c1.x � a/C c2.x � a/
2
C � � � C cn.x � a/

n
:

If Rn.x/ is not identically zero, then there is a smallest coefficient ck (k � n), such

that ck ¤ 0, but cj D 0 for 0 � j � k � 1. Thus,

Rn.x/ D .x � a/
k
�

ck C ckC1.x � a/C � � � C cn.x � a/
n�k

�

:

Therefore, limx!a Rn.x/=.x � a/
k
D ck ¤ 0. However, by property (iii) above

we have Rn.x/=.x � a/
k
D O

�

.x � a/nC1�k
�

. Since n C 1 � k > 0, this says

Rn.x/=.x � a/
k
! 0 as x ! a. This contradiction shows that Rn.x/ must be

identically zero. Therefore, Qn.x/ D Pn.x/ for all x.

Table 5 lists Taylor formulas about 0 (Maclaurin formulas) for some elementary func-

tions, with error terms expressed using big-O notation.
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Table 5. Some Maclaurin Formulas with Errors in Big-O Form

As x ! 0:

(a) ex
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
n

nŠ
CO

�

x
nC1

�

(b) cos x D 1�
x

2

2Š
C

x4

4Š
� � � � C .�1/

n x2n

.2n/Š
CO

�

x
2nC2

�

(c) sin x D x �
x

3

3Š
C

x5

5Š
� � � � C .�1/

n x2nC1

.2nC 1/Š
CO

�

x
2nC3

�

(d)
1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
CO

�

x
nC1

�

(e) ln.1C x/ D x �
x

2

2
C

x3

3
� � � � C .�1/

n�1 x
n

n
CO

�

x
nC1

�

(f) tan�1 x D x �
x

3

3
C

x
5

5
� � � � C .�1/

n x
2nC1

2nC 1
CO

�

x
2nC3

�

It is worthwhile remembering these. The first three can be established easily by using

Taylor’s formula with Lagrange remainder; the other three would require much more

effort to verify for general n. In Section 9.6 we will return to the subject of Taylor and

Maclaurin polynomials in relation to Taylor and Maclaurin series. At that time we will

have access to much more powerful machinery to establish such results. The need to

calculate high-order derivatives can make the use of Taylor’s formula difficult for all

but the simplest functions.

The real importance of Theorem 13 is that it enables us to obtain Taylor

polynomials for new functions by combining others already known; as long as the er-

ror term is of higher degree than the order of the polynomial obtained, the polynomial

must be the Taylor polynomial. We illustrate this with a few examples.

E X A M P L E 6
Find the Maclaurin polynomial of order 2n for cosh x.

Solution Write the Taylor formula for ex at x D 0 (from Table 5) with n replaced by

2nC 1, and then rewrite that with x replaced by �x. We get

e
x
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š
CO

�

x
2nC2

�

;

e
�x
D 1 � x C

x2

2Š
�

x3

3Š
C � � � C

x2n

.2n/Š
�

x2nC1

.2nC 1/Š
CO

�

x
2nC2

�

as x ! 0. Now average these two to get

cosh x D
ex
C e�x

2
D 1C

x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
CO

�

x
2nC2

�

as x ! 0. By Theorem 13 the Maclaurin polynomial P2n.x/ for cosh x is

P2n.x/ D 1C
x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
:

E X A M P L E 7
Obtain the Taylor polynomial of order 3 for e2x about x D 1 from

the corresponding Maclaurin polynomial for ex (from Table 5).
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Solution Writing x D 1C .x � 1/, we have

e
2x
D e

2C2.x�1/
D e

2
e

2.x�1/

D e
2

�

1C 2.x � 1/C
22.x � 1/2

2Š
C

23.x � 1/3

3Š
CO

�

.x � 1/
4
�

�

as x ! 1. By Theorem 13 the Taylor polynomial P3.x/ for e2x at x D 1 must be

P3.x/ D e
2
C 2e

2
.x � 1/C 2e

2
.x � 1/

2
C

4e2

3
.x � 1/

3
:

E X A M P L E 8
Use the Taylor formula for ln.1 C x/ (from Table 5) to find the

Taylor polynomial P3.x/ for lnx about x D e. (This provides an

alternative to using the definition of Taylor polynomial as was done to solve the same

problem in Example 1(b).)

Solution We have x D e C .x � e/ D e.1C t/ where t D .x � e/=e. As x ! e we

have t ! 0, so

ln x D ln e C ln.1C t/ D ln e C t �
t2

2
C

t3

3
CO.t

4
/

D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

CO
�

.x � e/
4
�

:

Therefore, by Theorem 13,

P3.x/ D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

:

Evaluating Limits of Indeterminate Forms
Taylor and Maclaurin polynomials provide us with another method for evaluating lim-

its of indeterminate forms of type Œ0=0�. For some such limits this method can be

considerably easier than using l’Hôpital’s Rule.

E X A M P L E 9 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution Both the numerator and denominator approach 0 as x ! 0. Let us replace

the trigonometric and exponential functions with their degree-3 Maclaurin polynomi-

als plus error terms written in big-O notation:

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

D lim
x!0

2

�

x �
x

3

3Š
CO.x

5
/

�

�

�

2x �
2

3
x

3

3Š
CO.x

5
/

�

2

�

1C x C
x2

2Š
C

x3

3Š
CO.x

4
/

�

� 2 � 2x � x2

D lim
x!0

�

x3

3
C

4x3

3
CO.x

5
/

x3

3
CO.x

4
/

D lim
x!0

1CO.x2/

1

3
CO.x/

D

1

1

3

D 3:

Observe how we used the properties of big-O as listed in this section. We needed to use

Maclaurin polynomials of degree at least 3 because all lower degree terms cancelled

out in the numerator and the denominator.
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E X A M P L E 10 Evaluate lim
x!1

ln x

x2
� 1

.

Solution This is also of type Œ0=0�. We begin by substituting x D 1C t . Note that

x ! 1 corresponds to t ! 0. We can use a known Maclaurin polynomial for ln.1Ct/.

For this limit even the degree 1 polynomial P1.t/ D t with error O.t2/ will do.

lim
x!1

lnx

x2
� 1
D lim

t!0

ln.1C t/

.1C t/2 � 1
D lim

t!0

ln.1C t/

2t C t2

D lim
t!0

t CO.t2/

2t C t2
D lim

t!0

1CO.t/

2C t
D

1

2
:

E X E R C I S E S 4.10

Find the indicated Taylor polynomials for the functions in

Exercises 1–8 by using the definition of Taylor polynomial.

1. for e�x about x D 0, order 4.

2. for cos x about x D �=4, order 3.

3. for ln x about x D 2, order 4.

4. for sec x about x D 0, order 3.

5. for
p

x about x D 4, order 3.

6. for 1=.1 � x/ about x D 0, order n.

7. for 1=.2C x/ about x D 1, order n.

8. for sin.2x/ about x D �=2, order 2n � 1.

In Exercises 9–14, use second order Taylor polynomials P2.x/ for

the given function about the point specified to approximate the

indicated value. Estimate the error, and write the smallest interval

you can be sure contains the value.

9. f .x/ D x1=3 about 8; approximate 91=3.

10. f .x/ D
p

x about 64; approximate
p

61.

11. f .x/ D
1

x
about 1; approximate

1

1:02
.

12. f .x/ D tan�1 x about 1; approximate tan�1.0:97/.

13. f .x/ D ex about 0; approximate e�0:5.

14. f .x/ D sinx about �=4; approximate sin.47ı/.

In Exercises 15–20, write the indicated case of Taylor’s formula for

the given function. What is the Lagrange remainder in each case?

15. f .x/ D sinx; a D 0; n D 7

16. f .x/ D cosx; a D 0; n D 6

17. f .x/ D sinx; a D �=4; n D 4

18. f .x/ D
1

1 � x
; a D 0; n D 6

19. f .x/ D lnx; a D 1; n D 6

20. f .x/ D tanx; a D 0; n D 3

Find the requested Taylor polynomials in Exercises 21–26 by using

known Taylor or Maclaurin polynomials and changing variables as

in Examples 6–8.

21. P3.x/ for e3x about x D �1.

22. P8.x/ for e�x2
about x D 0.

23. P4.x/ for sin2
x about x D 0. Hint: sin2

x D
1 � cos.2x/

2
.

24. P5.x/ for sinx about x D � .

25. P6.x/ for 1=.1C 2x2
/ about x D 0

26. P8.x/ for cos.3x � �/ about x D 0.

27. Find all Maclaurin polynomials Pn.x/ for f .x/ D x3.

28. Find all Taylor polynomials Pn.x/ for f .x/ D x3 at x D 1.

29. Find the Maclaurin polynomial P2nC1.x/ for sinhx by

suitably combining polynomials for ex and e�x .

30. By suitably combining Maclaurin polynomials for ln.1C x/

and ln.1 � x/, find the Maclaurin polynomial of order 2nC 1

for tanh�1
.x/ D

1

2
ln

�

1C x

1 � x

�

.

31. Write Taylor’s formula for f .x/ D e�x with a D 0, and use it

to calculate 1=e to 5 decimal places. (You may use a

calculator but not the ex function on it.)

32.I Write the general form of Taylor’s formula for f .x/ D sinx at

x D 0 with Lagrange remainder. How large need n be taken to

ensure that the corresponding Taylor polynomial approxi-

mation will give the sine of 1 radian correct to 5 decimal

places?

33. What is the best order 2 approximation to the function

f .x/ D .x � 1/2 at x D 0? What is the error in this

approximation? Now answer the same questions for

g.x/ D x3
C 2x2

C 3x C 4. Can the constant 1=6 D 1=3Š, in

the error formula for the degree 2 approximation, be improved

(i.e., made smaller)?

34. By factoring 1 � xnC1 (or by long division), show that

1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
C

xnC1

1 � x
: .�/

Next, show that if jxj � K < 1, then

ˇ

ˇ

ˇ

ˇ

xnC1

1 � x

ˇ

ˇ

ˇ

ˇ

�

1

1 �K
jx

nC1
j:

This implies that xnC1=.1 � x/ D O.xnC1/ as x ! 0 and

confirms formula (d) of Table 5. What does Theorem 13 then

say about the nth-order Maclaurin polynomial for 1=.1� x/?
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Solution Writing x D 1C .x � 1/, we have

e
2x
D e

2C2.x�1/
D e

2
e

2.x�1/

D e
2

�

1C 2.x � 1/C
22.x � 1/2

2Š
C

23.x � 1/3

3Š
CO

�

.x � 1/
4
�

�

as x ! 1. By Theorem 13 the Taylor polynomial P3.x/ for e2x at x D 1 must be

P3.x/ D e
2
C 2e

2
.x � 1/C 2e

2
.x � 1/

2
C

4e2

3
.x � 1/

3
:

E X A M P L E 8
Use the Taylor formula for ln.1 C x/ (from Table 5) to find the

Taylor polynomial P3.x/ for lnx about x D e. (This provides an

alternative to using the definition of Taylor polynomial as was done to solve the same

problem in Example 1(b).)

Solution We have x D e C .x � e/ D e.1C t/ where t D .x � e/=e. As x ! e we

have t ! 0, so

ln x D ln e C ln.1C t/ D ln e C t �
t2

2
C

t3

3
CO.t

4
/

D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

CO
�

.x � e/
4
�

:

Therefore, by Theorem 13,

P3.x/ D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

:

Evaluating Limits of Indeterminate Forms
Taylor and Maclaurin polynomials provide us with another method for evaluating lim-

its of indeterminate forms of type Œ0=0�. For some such limits this method can be

considerably easier than using l’Hôpital’s Rule.

E X A M P L E 9 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution Both the numerator and denominator approach 0 as x ! 0. Let us replace

the trigonometric and exponential functions with their degree-3 Maclaurin polynomi-

als plus error terms written in big-O notation:

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

D lim
x!0

2

�

x �
x

3

3Š
CO.x

5
/

�

�

�

2x �
2

3
x

3

3Š
CO.x

5
/

�

2

�

1C x C
x2

2Š
C

x3

3Š
CO.x

4
/

�

� 2 � 2x � x2

D lim
x!0

�

x3

3
C

4x3

3
CO.x

5
/

x3

3
CO.x

4
/

D lim
x!0

1CO.x2/

1

3
CO.x/

D

1

1

3

D 3:

Observe how we used the properties of big-O as listed in this section. We needed to use

Maclaurin polynomials of degree at least 3 because all lower degree terms cancelled

out in the numerator and the denominator.
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E X A M P L E 10 Evaluate lim
x!1

ln x

x2
� 1

.

Solution This is also of type Œ0=0�. We begin by substituting x D 1C t . Note that

x ! 1 corresponds to t ! 0. We can use a known Maclaurin polynomial for ln.1Ct/.

For this limit even the degree 1 polynomial P1.t/ D t with error O.t2/ will do.

lim
x!1

lnx

x2
� 1
D lim

t!0

ln.1C t/

.1C t/2 � 1
D lim

t!0

ln.1C t/

2t C t2

D lim
t!0

t CO.t2/

2t C t2
D lim

t!0

1CO.t/

2C t
D

1

2
:

E X E R C I S E S 4.10

Find the indicated Taylor polynomials for the functions in

Exercises 1–8 by using the definition of Taylor polynomial.

1. for e�x about x D 0, order 4.

2. for cos x about x D �=4, order 3.

3. for ln x about x D 2, order 4.

4. for sec x about x D 0, order 3.

5. for
p

x about x D 4, order 3.

6. for 1=.1 � x/ about x D 0, order n.

7. for 1=.2C x/ about x D 1, order n.

8. for sin.2x/ about x D �=2, order 2n � 1.

In Exercises 9–14, use second order Taylor polynomials P2.x/ for

the given function about the point specified to approximate the

indicated value. Estimate the error, and write the smallest interval

you can be sure contains the value.

9. f .x/ D x1=3 about 8; approximate 91=3.

10. f .x/ D
p

x about 64; approximate
p

61.

11. f .x/ D
1

x
about 1; approximate

1

1:02
.

12. f .x/ D tan�1 x about 1; approximate tan�1.0:97/.

13. f .x/ D ex about 0; approximate e�0:5.

14. f .x/ D sinx about �=4; approximate sin.47ı/.

In Exercises 15–20, write the indicated case of Taylor’s formula for

the given function. What is the Lagrange remainder in each case?

15. f .x/ D sinx; a D 0; n D 7

16. f .x/ D cosx; a D 0; n D 6

17. f .x/ D sinx; a D �=4; n D 4

18. f .x/ D
1

1 � x
; a D 0; n D 6

19. f .x/ D lnx; a D 1; n D 6

20. f .x/ D tanx; a D 0; n D 3

Find the requested Taylor polynomials in Exercises 21–26 by using

known Taylor or Maclaurin polynomials and changing variables as

in Examples 6–8.

21. P3.x/ for e3x about x D �1.

22. P8.x/ for e�x2
about x D 0.

23. P4.x/ for sin2
x about x D 0. Hint: sin2

x D
1 � cos.2x/

2
.

24. P5.x/ for sinx about x D � .

25. P6.x/ for 1=.1C 2x2
/ about x D 0

26. P8.x/ for cos.3x � �/ about x D 0.

27. Find all Maclaurin polynomials Pn.x/ for f .x/ D x3.

28. Find all Taylor polynomials Pn.x/ for f .x/ D x3 at x D 1.

29. Find the Maclaurin polynomial P2nC1.x/ for sinhx by

suitably combining polynomials for ex and e�x .

30. By suitably combining Maclaurin polynomials for ln.1C x/

and ln.1 � x/, find the Maclaurin polynomial of order 2nC 1

for tanh�1
.x/ D

1

2
ln

�

1C x

1 � x

�

.

31. Write Taylor’s formula for f .x/ D e�x with a D 0, and use it

to calculate 1=e to 5 decimal places. (You may use a

calculator but not the ex function on it.)

32.I Write the general form of Taylor’s formula for f .x/ D sinx at

x D 0 with Lagrange remainder. How large need n be taken to

ensure that the corresponding Taylor polynomial approxi-

mation will give the sine of 1 radian correct to 5 decimal

places?

33. What is the best order 2 approximation to the function

f .x/ D .x � 1/2 at x D 0? What is the error in this

approximation? Now answer the same questions for

g.x/ D x3
C 2x2

C 3x C 4. Can the constant 1=6 D 1=3Š, in

the error formula for the degree 2 approximation, be improved

(i.e., made smaller)?

34. By factoring 1 � xnC1 (or by long division), show that

1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
C

xnC1

1 � x
: .�/

Next, show that if jxj � K < 1, then

ˇ

ˇ

ˇ

ˇ

xnC1

1 � x

ˇ

ˇ

ˇ

ˇ

�

1

1 �K
jx

nC1
j:

This implies that xnC1=.1 � x/ D O.xnC1/ as x ! 0 and

confirms formula (d) of Table 5. What does Theorem 13 then

say about the nth-order Maclaurin polynomial for 1=.1� x/?

9780134154367_Calculus   303 05/12/16   3:17 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 284 October 15, 2016

284 CHAPTER 4 More Applications of Differentiation

35.I By differentiating identity (*) in Exercise 34 and then

replacing n with nC 1, show that

1

.1 � x/2
D 1C 2x C 3x

2
C � � � C .nC 1/x

n

C

nC 2 � .nC 1/x

.1 � x/2
x

nC1
:

Then use Theorem 13 to determine the nth-order Maclaurin

polynomial for 1=.1� x/2.

4.11 Roundoff Error, Truncation Error, and Computers

In Section 4.7 we introduced the idea of roundoff error, while in Sections 4.9 and

4.10 we discussed the result of approximating a function by its Taylor polynomials.

The resulting error here is known as truncation error. This conventional terminology

may be a bit confusing at first because rounding off is itself a kind of truncation of

the digital representation of a number. However in numerical analysis “truncation”

is reserved for discarding higher order terms, typically represented by big-O , often

leaving a Taylor polynomial.

Truncation error is a crucial source of error in using computers to do mathematical

operations. In computation with computers, many of the mathematical functions and

structures being investigated are approximated by polynomials in order to make it pos-

sible for computers to manipulate them. However, the other source of error, roundoff,

is ubiquitous, so it is inevitable that mathematics on computers has to involve consider-

ation of both sources of error. These sources can sometimes be treated independently,

but in other circumstances they can interact with each other in fascinating ways. In this

section we look at some of these fascinating interactions in the form of numerical mon-

sters using Maple. Of course, as stated previously, the issues concern all calculation

on computers and not Maple in particular.

Taylor Polynomials in Maple
In much of the following discussion we will be examining the function sin x. Let us

begin by defining the Maple expression s := sin(x)to denote this function. The

Maple input

> u := taylor(s, x=0, 5);

produces the Taylor polynomial of degree 4 about x D 0 (i.e., a Maclaurin polynomial)

for sin.x/ together with a big-O term of order x5:

u WD x �
1

6
x

3
CO.x

5
/

The presence of the big-O term means that u is an actual representation of sin x; there

is no error involved. If we want to get an actual Taylor polynomial, we need to convert

the expression for u to drop off the big-O term. Since the coefficient of x4 is zero, let

us call the resulting polynomial P3:

> P3 := convert(u, polynom);

P3 WD x �
1

6
x

3

Unlike u, P3 is not an exact representation of sin x; it is only an approximation. The

discarded term O.x5/ D s � P3 D u � P3 is the error in this approximation. On

the basis of the discussion in the previous section, this truncation error can be ex-

pected to be quite small for x close to 0, a fact that is confirmed by the Maple plot

in Figure 4.66(a). The behaviour is much as expected. sin x behaves like the cubic

polynomial near 0 (so the difference is nearly 0), while farther from 0 the cubic term

dominates the expression.
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> plot(s-P3, x=-1..1, style=point,

symbol=point, numpoints=1000);

Figure 4.66 The error sinx � P3.x/ over

(a) the interval Œ�1; 1�, and (b) the interval

Œ�4:2 � 10�4; 4:2 � 10�4�

–0.008
–0.006
–0.004
–0.002

0.002
0.004
0.006
0.008

–1 –0.6 –0.2 0.2 0.6 1x

–1e–19
–5e–20

5e–20
1e–19

–0.0004 0.0004x

(a) (b)

K The limiting behaviour near 0 can be explored by changing the plot window. If the

Maple plot instruction is revised to

> plot(s-P3, x=-0.42e-3..0.42e-3, style=point,

symbol=point, numpoints=1000);

the plot in Figure 4.66(b) results. What is this structure? Clearly the distances from

the x-axis are very small, and one can see the cubic-like behaviour. But why are the

points not distributed along a single curve, filling out a jagged arrow-like structure

instead? This is another numerical monster connected to roundoff error, as we can see

if we plot sin.x/�P3.x/ together with the functions˙.�=2/ sin.x/ and˙.�=4/ sin x,

where � D 2�52 is machine epsilon, as calculated in Section 4.7.

> eps := evalf(2^(-52)):

> plot([s-P3, -eps*s/2, eps*s/2, -eps*s/4, eps*s/4],

x=-0.1e-3,0.1e-3, colour=[magenta,grey,grey,black,black],

style=point, symbol=point, numpoints=1000);

The result is in Figure 4.67. The black and grey envelope curves (which appear

–1e–20

–5e–21

5e–21

1e–20

–0.0001 0.0001x

Figure 4.67 Examining the structure of

the Maple plot of sinx � P3.x/ for x in

Œ�0:0001; 0:0001�. Note the relationship to

the envelope curves y D ˙.�=4/ sinx

(black), and y D ˙.�=2/ sinx (grey)

like straight lines since the plot window is so close to the origin) link the structure of

the plot to machine epsilon; the seemingly random points are not as random as they

first seemed.

Moreover, this structure is distinctive to Maple. Other software packages, such as

Matlab, produce a somewhat different, but still spurious, structure for the same plotting

window. Try some others. If different software produces different behaviour under

the same instructions, it is certain that some type of computational error is involved.

Software-dependent behaviour is one sure sign of computational error.

A distinctive aspect of this monster is that for a large plot window, the trunca-

tion error dominates, while near zero, where the truncation error approaches zero, the

roundoff error dominates. This is a common relationship between truncation error

and roundoff error. However, the roundoff error shows up for plot windows near zero,

while the truncation error is dominant over wide ranges of plot windows. Is this always

true for truncation error? No—as the next monster shows.

Persistent Roundoff Error
The trade-off between truncation error and roundoff error is distinctive, but one should

not get the impression that roundoff error only matters in extreme limiting cases in

certain plot windows. Consider, for example, the function f .x/ D x2
� 2xC 1� .x�

1/
2. It is identically 0, not just 0 in the limiting case x D 0. However, the computer

evaluates the two mathematically equivalent parts of the function f differently, leaving

different errors from rounding off the true values of the numbers inserted into the

expression. The difference of the result is then not exactly 0. A plot of f .x/ on the
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35.I By differentiating identity (*) in Exercise 34 and then

replacing n with nC 1, show that

1

.1 � x/2
D 1C 2x C 3x

2
C � � � C .nC 1/x

n

C

nC 2 � .nC 1/x

.1 � x/2
x

nC1
:

Then use Theorem 13 to determine the nth-order Maclaurin

polynomial for 1=.1� x/2.

4.11 Roundoff Error, Truncation Error, and Computers

In Section 4.7 we introduced the idea of roundoff error, while in Sections 4.9 and

4.10 we discussed the result of approximating a function by its Taylor polynomials.

The resulting error here is known as truncation error. This conventional terminology

may be a bit confusing at first because rounding off is itself a kind of truncation of

the digital representation of a number. However in numerical analysis “truncation”

is reserved for discarding higher order terms, typically represented by big-O , often

leaving a Taylor polynomial.

Truncation error is a crucial source of error in using computers to do mathematical

operations. In computation with computers, many of the mathematical functions and

structures being investigated are approximated by polynomials in order to make it pos-

sible for computers to manipulate them. However, the other source of error, roundoff,

is ubiquitous, so it is inevitable that mathematics on computers has to involve consider-

ation of both sources of error. These sources can sometimes be treated independently,

but in other circumstances they can interact with each other in fascinating ways. In this

section we look at some of these fascinating interactions in the form of numerical mon-

sters using Maple. Of course, as stated previously, the issues concern all calculation

on computers and not Maple in particular.

Taylor Polynomials in Maple
In much of the following discussion we will be examining the function sin x. Let us

begin by defining the Maple expression s := sin(x)to denote this function. The

Maple input

> u := taylor(s, x=0, 5);

produces the Taylor polynomial of degree 4 about x D 0 (i.e., a Maclaurin polynomial)

for sin.x/ together with a big-O term of order x5:

u WD x �
1

6
x

3
CO.x

5
/

The presence of the big-O term means that u is an actual representation of sin x; there

is no error involved. If we want to get an actual Taylor polynomial, we need to convert

the expression for u to drop off the big-O term. Since the coefficient of x4 is zero, let

us call the resulting polynomial P3:

> P3 := convert(u, polynom);

P3 WD x �
1

6
x

3

Unlike u, P3 is not an exact representation of sin x; it is only an approximation. The

discarded term O.x5/ D s � P3 D u � P3 is the error in this approximation. On

the basis of the discussion in the previous section, this truncation error can be ex-

pected to be quite small for x close to 0, a fact that is confirmed by the Maple plot

in Figure 4.66(a). The behaviour is much as expected. sin x behaves like the cubic

polynomial near 0 (so the difference is nearly 0), while farther from 0 the cubic term

dominates the expression.
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> plot(s-P3, x=-1..1, style=point,

symbol=point, numpoints=1000);

Figure 4.66 The error sinx � P3.x/ over

(a) the interval Œ�1; 1�, and (b) the interval

Œ�4:2 � 10�4; 4:2 � 10�4�

–0.008
–0.006
–0.004
–0.002

0.002
0.004
0.006
0.008

–1 –0.6 –0.2 0.2 0.6 1x

–1e–19
–5e–20

5e–20
1e–19

–0.0004 0.0004x

(a) (b)

K The limiting behaviour near 0 can be explored by changing the plot window. If the

Maple plot instruction is revised to

> plot(s-P3, x=-0.42e-3..0.42e-3, style=point,

symbol=point, numpoints=1000);

the plot in Figure 4.66(b) results. What is this structure? Clearly the distances from

the x-axis are very small, and one can see the cubic-like behaviour. But why are the

points not distributed along a single curve, filling out a jagged arrow-like structure

instead? This is another numerical monster connected to roundoff error, as we can see

if we plot sin.x/�P3.x/ together with the functions˙.�=2/ sin.x/ and˙.�=4/ sin x,

where � D 2�52 is machine epsilon, as calculated in Section 4.7.

> eps := evalf(2^(-52)):

> plot([s-P3, -eps*s/2, eps*s/2, -eps*s/4, eps*s/4],

x=-0.1e-3,0.1e-3, colour=[magenta,grey,grey,black,black],

style=point, symbol=point, numpoints=1000);

The result is in Figure 4.67. The black and grey envelope curves (which appear

–1e–20

–5e–21

5e–21

1e–20

–0.0001 0.0001x

Figure 4.67 Examining the structure of

the Maple plot of sinx � P3.x/ for x in

Œ�0:0001; 0:0001�. Note the relationship to

the envelope curves y D ˙.�=4/ sinx

(black), and y D ˙.�=2/ sinx (grey)

like straight lines since the plot window is so close to the origin) link the structure of

the plot to machine epsilon; the seemingly random points are not as random as they

first seemed.

Moreover, this structure is distinctive to Maple. Other software packages, such as

Matlab, produce a somewhat different, but still spurious, structure for the same plotting

window. Try some others. If different software produces different behaviour under

the same instructions, it is certain that some type of computational error is involved.

Software-dependent behaviour is one sure sign of computational error.

A distinctive aspect of this monster is that for a large plot window, the trunca-

tion error dominates, while near zero, where the truncation error approaches zero, the

roundoff error dominates. This is a common relationship between truncation error

and roundoff error. However, the roundoff error shows up for plot windows near zero,

while the truncation error is dominant over wide ranges of plot windows. Is this always

true for truncation error? No—as the next monster shows.

Persistent Roundoff Error
The trade-off between truncation error and roundoff error is distinctive, but one should

not get the impression that roundoff error only matters in extreme limiting cases in

certain plot windows. Consider, for example, the function f .x/ D x2
� 2xC 1� .x�

1/
2. It is identically 0, not just 0 in the limiting case x D 0. However, the computer

evaluates the two mathematically equivalent parts of the function f differently, leaving

different errors from rounding off the true values of the numbers inserted into the

expression. The difference of the result is then not exactly 0. A plot of f .x/ on the
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interval Œ�108; 108� is produced by the Maple command

> plot([eps*(x-1)^2,eps*(x-1)^2/2,-eps*(x-1)^2,

-eps*(x-1)^2/2,(x^2-2*x+1)-(x-1)^2],

x=-1e8..1e8,numpoints=1500,style=point,symbol=point,

color=[black,grey,black,grey,magenta],

tickmarks=[[-1e8,-5e7,5e7,1e8],[-2,-1,1,2]]);

Figure 4.68 The values of

x2
� 2x C 1 � .x � 1/2 (colour) lie

between the parabolas ˙�.x � 1/2 (black)

and ˙�.x � 1/2=2 (grey) for

(a) �108
� x � 108, and

(b) �100 � x � 100

–2

–1

1

2

–1e+08–5e+07 5e+07 1e+08x

–2e–12

–1e–12

1e–12

2e–12

–100 –50 50 100x

(a) (b)

K It is shown in Figure 4.68(a). The spurious values of f .x/ seem like rungs on a ladder.

Note that these false nonzero values of f .x/ (colour) are not small compared to 1.

This is because the window is so wide. But the error is clearly due to roundoff as

the grey and black envelope curves are proportional to machine epsilon. This plot is

largely independent of the width of the window chosen. Figure 4.68(b) is the same

plot with a window one million times narrower. Except for a change of scale, it is

virtually identical to the plot in Figure 4.68(a). This behaviour is quite different from

the numerical monster involving Taylor polynomials encountered above.

Truncation, Roundoff, and Computer Algebra
One of the more modern developments in computer mathematics is the computer’s

ability to deal with mathematics symbolically. This important capability is known as

“computer algebra.” For example, Maple can generate Taylor expansions of very high

order. This might appear to make the issue of error less important. If one can generate

exact Taylor polynomials of very high order, how could error remain an issue?

K To see how the finiteness of computers intrudes on our calculations in this case

too, let us consider the Taylor (Maclaurin) polynomial of degree 99 for sinx:

> v := taylor(s, x=0, 100): P99 := convert(v, polynom):

It is good to suppress the output here; each command produces screensfull of output.

Figure 4.69 shows the result of the Maple plot command

> plot([P99,s],x=35..39,y=-3..3,colour=[magenta,black],

style=point,symbol=point,numpoints=500,

xtickmarks=[36,37,38,39]);

The black curve is the graph of the sine function, and the colour tornado-like cloud is

the plot of P99.x/ that Maple produces. For plotting, the polynomial must be evaluated

at specific values of x. The algorithm cannot employ the large rational expressions for

coefficients and high powers of input values. In order to place the result into an actual

pixel on the computer screen, the value of the polynomial must be converted to a

floating-point number. Then, with the adding and subtracting of 100 terms involving

rounded powers, roundoff error returns despite the exact polynomial that we began

with.

–3

–2

–1

0

1

2

3

y

36 37 38 39x

Figure 4.69 The coloured cloud results

from Maple’s attempt to evaluate the

polynomial P99.x/ at 500 values of x

between 35 and 39

Of course, there are often tactics to fix these types of problems, but the only way

to know what the problems are that need fixing is to understand the mathematics in the
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first place. But this also means that careful calculations on computers constitute a full

field of modern research, requiring considerable mathematical knowledge.

E X E R C I S E S 4.11

1. Use Maple to repeat the plots of Figure 4.68, except using the

mathematically equivalent function .x � 1/2 � .x2
� 2x C 1/.

Does the result look the same? Is the result surprising?

2. Use Maple to graph f � P4.x/ where f .x/ D cosx and

P4.x/ is the 4th degree Taylor polynomial of f about x D 0.

Use the interval Œ�10�3=2; 10�3=2� for the plot and plot 1000

points. On the same plot, graph ˙�f=2 and ˙�f=4, where �

is machine epsilon. How does the result differ from what is

expected mathematically?

3.I If a real number x is represented on a computer, it is replaced

by a floating-point number F.x/; x is said to be “floated” by

the function F . Show that the relative error in floating for a

base-two machine satisfies

jerrorj D jx � F.x/j � �jxj;

where � D 2�t and t is the number of base-two digits (bits) in

the floating-point number.

4.I Consider two different but mathematically equivalent

expressions, having the value C after evaluation. On a

computer, with each step in the evaluation of each of the

expressions, roundoff error is introduced as digits are

discarded and rounded according to various rules. In

subsequent steps, resulting error is added or subtracted

according to the details of the expression producing a final

error that depends in detail on the expression, the particular

software package, the operating system, and the machine

hardware. Computer errors are not equivalent for the two

expressions, even when the expressions are mathematically

equivalent.

(a) If we suppose that the computer satisfactorily evaluates

the expressions for many input values within an interval,

all to within machine precision, why might we expect the

difference of these expressions on a computer to have an

error contained within an interval Œ��C; �C �?

(b) Is it possible for exceptional values of the error to lie

outside that interval in some cases? Why?

(c) Is it possible for the error to be much smaller than the

interval indicates? Why?

C H A P T E R R E V I E W

Key Ideas

� What do the following words, phrases, and statements mean?

˘ critical point of f ˘ singular point of f

˘ inflection point of f

˘ f has absolute maximum valueM

˘ f has a local minimum value at x D c

˘ vertical asymptote ˘ horizontal asymptote

˘ oblique asymptote ˘ machine epsilon

˘ the linearization of f .x/ about x D a

˘ the Taylor polynomial of degree n of f .x/ about x D a

˘ Taylor’s formula with Lagrange remainder

˘ f .x/ D O

�

.x � a/n
�

as x ! a

˘ a root of f .x/ D 0 ˘ a fixed point of f .x/

˘ an indeterminate form ˘ l’Hôpital’s Rules

� Describe how to estimate the error in a linear (tangent line)

approximation to the value of a function.

� Describe how to find a root of an equation f .x/ D 0 by using

Newton’s Method. When will this method work well?

Review Exercises

1. If the radius r of a ball is increasing at a rate of 2 percent per

minute, how fast is the volume V of the ball increasing?

2. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function of r for r � 0, given by

F D

(

mgR2

r2
if r � R

mkr if 0 � r < R,

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

3. (Resistors in parallel) Two variable resistors R1 and R2 are

connected in parallel so that their combined resistance R is

given by

1

R
D

1

R1
C

1

R2
:

At an instant when R1 D 250 ohms and R2 D 1; 000 ohms,

R1 is increasing at a rate of 100 ohms/min. How fast must R2

be changing at that moment (a) to keep R constant? and (b) to

enable R to increase at a rate of 10 ohms/min?
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interval Œ�108; 108� is produced by the Maple command

> plot([eps*(x-1)^2,eps*(x-1)^2/2,-eps*(x-1)^2,

-eps*(x-1)^2/2,(x^2-2*x+1)-(x-1)^2],

x=-1e8..1e8,numpoints=1500,style=point,symbol=point,

color=[black,grey,black,grey,magenta],

tickmarks=[[-1e8,-5e7,5e7,1e8],[-2,-1,1,2]]);

Figure 4.68 The values of

x2
� 2x C 1 � .x � 1/2 (colour) lie

between the parabolas ˙�.x � 1/2 (black)

and ˙�.x � 1/2=2 (grey) for

(a) �108
� x � 108, and

(b) �100 � x � 100

–2

–1

1

2

–1e+08–5e+07 5e+07 1e+08x

–2e–12

–1e–12

1e–12

2e–12

–100 –50 50 100x

(a) (b)

K It is shown in Figure 4.68(a). The spurious values of f .x/ seem like rungs on a ladder.

Note that these false nonzero values of f .x/ (colour) are not small compared to 1.

This is because the window is so wide. But the error is clearly due to roundoff as

the grey and black envelope curves are proportional to machine epsilon. This plot is

largely independent of the width of the window chosen. Figure 4.68(b) is the same

plot with a window one million times narrower. Except for a change of scale, it is

virtually identical to the plot in Figure 4.68(a). This behaviour is quite different from

the numerical monster involving Taylor polynomials encountered above.

Truncation, Roundoff, and Computer Algebra
One of the more modern developments in computer mathematics is the computer’s

ability to deal with mathematics symbolically. This important capability is known as

“computer algebra.” For example, Maple can generate Taylor expansions of very high

order. This might appear to make the issue of error less important. If one can generate

exact Taylor polynomials of very high order, how could error remain an issue?

K To see how the finiteness of computers intrudes on our calculations in this case

too, let us consider the Taylor (Maclaurin) polynomial of degree 99 for sinx:

> v := taylor(s, x=0, 100): P99 := convert(v, polynom):

It is good to suppress the output here; each command produces screensfull of output.

Figure 4.69 shows the result of the Maple plot command

> plot([P99,s],x=35..39,y=-3..3,colour=[magenta,black],

style=point,symbol=point,numpoints=500,

xtickmarks=[36,37,38,39]);

The black curve is the graph of the sine function, and the colour tornado-like cloud is

the plot of P99.x/ that Maple produces. For plotting, the polynomial must be evaluated

at specific values of x. The algorithm cannot employ the large rational expressions for

coefficients and high powers of input values. In order to place the result into an actual

pixel on the computer screen, the value of the polynomial must be converted to a

floating-point number. Then, with the adding and subtracting of 100 terms involving

rounded powers, roundoff error returns despite the exact polynomial that we began

with.

–3

–2

–1

0

1

2

3

y

36 37 38 39x

Figure 4.69 The coloured cloud results

from Maple’s attempt to evaluate the

polynomial P99.x/ at 500 values of x

between 35 and 39

Of course, there are often tactics to fix these types of problems, but the only way

to know what the problems are that need fixing is to understand the mathematics in the
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first place. But this also means that careful calculations on computers constitute a full

field of modern research, requiring considerable mathematical knowledge.

E X E R C I S E S 4.11

1. Use Maple to repeat the plots of Figure 4.68, except using the

mathematically equivalent function .x � 1/2 � .x2
� 2x C 1/.

Does the result look the same? Is the result surprising?

2. Use Maple to graph f � P4.x/ where f .x/ D cosx and

P4.x/ is the 4th degree Taylor polynomial of f about x D 0.

Use the interval Œ�10�3=2; 10�3=2� for the plot and plot 1000

points. On the same plot, graph ˙�f=2 and ˙�f=4, where �

is machine epsilon. How does the result differ from what is

expected mathematically?

3.I If a real number x is represented on a computer, it is replaced

by a floating-point number F.x/; x is said to be “floated” by

the function F . Show that the relative error in floating for a

base-two machine satisfies

jerrorj D jx � F.x/j � �jxj;

where � D 2�t and t is the number of base-two digits (bits) in

the floating-point number.

4.I Consider two different but mathematically equivalent

expressions, having the value C after evaluation. On a

computer, with each step in the evaluation of each of the

expressions, roundoff error is introduced as digits are

discarded and rounded according to various rules. In

subsequent steps, resulting error is added or subtracted

according to the details of the expression producing a final

error that depends in detail on the expression, the particular

software package, the operating system, and the machine

hardware. Computer errors are not equivalent for the two

expressions, even when the expressions are mathematically

equivalent.

(a) If we suppose that the computer satisfactorily evaluates

the expressions for many input values within an interval,

all to within machine precision, why might we expect the

difference of these expressions on a computer to have an

error contained within an interval Œ��C; �C �?

(b) Is it possible for exceptional values of the error to lie

outside that interval in some cases? Why?

(c) Is it possible for the error to be much smaller than the

interval indicates? Why?

C H A P T E R R E V I E W

Key Ideas

� What do the following words, phrases, and statements mean?

˘ critical point of f ˘ singular point of f

˘ inflection point of f

˘ f has absolute maximum valueM

˘ f has a local minimum value at x D c

˘ vertical asymptote ˘ horizontal asymptote

˘ oblique asymptote ˘ machine epsilon

˘ the linearization of f .x/ about x D a

˘ the Taylor polynomial of degree n of f .x/ about x D a

˘ Taylor’s formula with Lagrange remainder

˘ f .x/ D O

�

.x � a/n
�

as x ! a

˘ a root of f .x/ D 0 ˘ a fixed point of f .x/

˘ an indeterminate form ˘ l’Hôpital’s Rules

� Describe how to estimate the error in a linear (tangent line)

approximation to the value of a function.

� Describe how to find a root of an equation f .x/ D 0 by using

Newton’s Method. When will this method work well?

Review Exercises

1. If the radius r of a ball is increasing at a rate of 2 percent per

minute, how fast is the volume V of the ball increasing?

2. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function of r for r � 0, given by

F D

(

mgR2

r2
if r � R

mkr if 0 � r < R,

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

3. (Resistors in parallel) Two variable resistors R1 and R2 are

connected in parallel so that their combined resistance R is

given by

1

R
D

1

R1
C

1

R2
:

At an instant when R1 D 250 ohms and R2 D 1; 000 ohms,

R1 is increasing at a rate of 100 ohms/min. How fast must R2

be changing at that moment (a) to keep R constant? and (b) to

enable R to increase at a rate of 10 ohms/min?
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4. (Gas law) The volume V (in m3), pressure P (in kilopascals,

kPa), and temperature T (in kelvin, K) for a sample of a certain

gas satisfy the equation pV D 5:0T .

(a) How rapidly does the pressure increase if the temperature

is 400 K and increasing at 4 K/min while the gas is kept

confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is

2 m3 and increases at 0.05 m3/min while the temperature

is kept constant at 400 K?

5. (The size of a print run) It costs a publisher $10,000 to set

up the presses for a print run of a book and $8 to cover the

material costs for each book printed. In addition, machinery

servicing, labour, and warehousing add another $6:25�10�7
x

2

to the cost of each book if x copies are manufactured during the

printing. How many copies should the publisher print in order

to minimize the average cost per book?

6. (Maximizing profit) A bicycle wholesaler must pay the manu-

facturer $75 for each bicycle. Market research tells the whole-

saler that if she charges her customers $x per bicycle, she can

expect to sell N.x/ D 4:5 � 106=x2 of them. What price

should she charge to maximize her profit, and how many bicy-

cles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that

can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C.x/ of production

in a factory varies with the amount x of product manufactured.

The cost may rise sharply with x when x is small, and more

slowly for larger values of x because of economies of scale.

However, if x becomes too large, the resources of the factory

can be overtaxed, and the cost can begin to rise quickly again.

Figure 4.70 shows the graph of a typical such cost function

C.x/.

C

x

.x; C.x//

slope =
C.x/

x
= average cost

Figure 4.70

If x units are manufactured, the average cost per unit is

$C.x/=x, which is the slope of the line from the origin to the

point .x; C.x// on the graph.

(a) If it is desired to choose x to minimize this average cost

per unit (as would be the case if all units produced could

be sold for the same price), show that x should be chosen

to make the average cost equal to the marginal cost:

C.x/

x
D C

0
.x/:

(b) Interpret the conclusion of (a) geometrically in the figure.

(c) If the average cost equals the marginal cost for some x,

does x necessarily minimize the average cost?

9. (Box design) Four squares are cut out of a rectangle of card-

board 50 cm by 80 cm, as shown in Figure 4.71, and the re-

maining piece is folded into a closed, rectangular box, with

two extra flaps tucked in. What is the largest possible volume

for such a box?

side bottom side top

flapside

side flap

80 cm

50 cm

Figure 4.71

10. (Yield from an orchard) A certain orchard has 60 trees and

produces an average of 800 apples per tree per year. If the

density of trees is increased, the yield per tree drops; for each

additional tree planted, the average yield per tree is reduced by

10 apples per year. How many more trees should be planted to

maximize the total annual yield of apples from the orchard?

11. (Rotation of a tracking antenna) What is the maximum rate

at which the antenna in Exercise 41 of Section 4.1 must be able

to turn in order to track the rocket during its entire vertical as-

cent?

12. An oval table has its outer edge in the shape of the curve

x
2
C y

4
D 1=8, where x and y are measured in metres. What

is the width of the narrowest hallway in which the table can be

turned horizontally through 180ı?

C 13. A hollow iron ball whose shell is 2 cm thick weighs half as

much as it would if it were solid iron throughout. What is the

radius of the ball?

C 14. (Range of a cannon fired from a hill) A cannon ball is fired

with a speed of 200 ft/s at an angle of 45ı above the horizontal

from the top of a hill whose height at a horizontal distance x ft

from the top is y D 1;000=.1C .x=500/2/ ft above sea level.

How far does the cannon ball travel horizontally before striking

the ground?

C 15. (Linear approximation for a pendulum) Because sin � � �

for small values of j� j, the nonlinear equation of motion of a

simple pendulum

d2�

dt2
D �

g

L
sin �;

which determines the displacement angle �.t/ away from the

vertical at time t for a simple pendulum, is frequently approxi-

mated by the simpler linear equation

d2�

dt2
D �

g

L
�

when the maximum displacement of the pendulum is not large.

What is the percentage error in the right side of the equation if

j� j does not exceed 20ı?

16. Find the Taylor polynomial of degree 6 for sin2
x about x D 0

and use it to help you evaluate

lim
x!0

3 sin2
x � 3x2

C x4

x6
:
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17. Use a second-order Taylor polynomial for tan�1 x about x D 1

to find an approximate value for tan�1.1:1/. Estimate the size

of the error by using Taylor’s formula.

18. The line 2y D 10x�19 is tangent to y D f .x/ at x D 2. If an

initial approximation x0 D 2 is made for a root of f .x/ D 0

and Newton’s Method is applied once, what will be the new

approximation that results?

C 19. Find all solutions of the equation cosx D .x � 1/2 to 10 deci-

mal places.

C 20. Find the shortest distance from the point .2; 0/ to the curve

y D lnx.

C 21. A car is travelling at night along a level, curved road whose

equation is y D ex . At a certain instant its headlights illumi-

nate a signpost located at the point .1; 1/. Where is the car at

that instant?

Challenging Problems

1. (Growth of a crystal) A single cubical salt crystal is growing

in a beaker of salt solution. The crystal’s volume V increases

at a rate proportional to its surface area and to the amount by

which its volume is less than a limiting volume V0:

dV

dt
D kx

2
.V0 � V /;

where x is the edge length of the crystal at time t .

(a) Using V D x
3, transform the equation above to one that

gives the rate of change dx=dt of the edge length x in

terms of x.

(b) Show that the growth rate of the edge of the crystal de-

creases with time but remains positive as long as

x < x0 D V
1=3

0 .

(c) Find the volume of the crystal when its edge length is

growing at half the rate it was initially.

2.I (A review of calculus!) You are in a tank (the military variety)

moving down the y-axis toward the origin. At time t D 0 you

are 4 km from the origin, and 10 min later you are 2 km from

the origin. Your speed is decreasing; it is proportional to your

distance from the origin. You know that an enemy tank is wait-

ing somewhere on the positive x-axis, but there is a high wall

along the curve xy D 1 (all distances in kilometres) preventing

you from seeing just where it is. How fast must your gun turret

be capable of turning to maximize your chances of surviving

the encounter?

C 3. (The economics of blood testing) Suppose that it is necessary

to perform a blood test on a large number N of individuals to

detect the presence of a virus. If each test costs $C; then the

total cost of the testing program is $NC: If the proportion of

people in the population who have the virus is not large, this

cost can be greatly reduced by adopting the following strategy.

Divide the N samples of blood into N=x groups of x samples

each. Pool the blood in each group to make a single sample

for that group and test it. If it tests negative, no further testing

is necessary for individuals in that group. If the group sample

tests positive, test all the individuals in that group.

Suppose that the fraction of individuals in the population in-

fected with the virus is p, so the fraction uninfected is q D

1 � p. The probability that a given individual is unaffected is

q, so the probability that all x individuals in a group are un-

affected is qx . Therefore, the probability that a pooled sample

is infected is 1 � qx . Each group requires one test, and the in-

fected groups require an extra x tests. Therefore, the expected

total number of tests to be performed is

T D
N

x
C

N

x
.1 � q

x
/x D N

�

1

x
C 1 � q

x

�

:

For example, if p D 0:01, so that q D 0:99 and x D 20,

then the expected number of tests required is T D 0:23N , a

reduction of over 75%. But maybe we can do better by making

a different choice for x.

(a) For q D 0:99, find the number x of samples in a group

that minimizes T (i.e., solve dT=dx D 0). Show that the

minimizing value of x satisfies

x D
.0:99/�x=2

p

� ln.0:99/
:

(b) Use the technique of fixed-point iteration (see Section 4.2)

to solve the equation in (a) for x. Start with x D 20, say.

4. (Measuring variations in g) The period P of a pendulum of

length L is given by

P D 2�
p

L=g;

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 0.5% decrease in the

period P: (Variations in the period of a pendulum can be

used to detect small variations in g from place to place on

the earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

5. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above

the level of the drain: if V.t/ is the volume of liquid in the

tank at time t , and y.t/ is the height of the surface of the liquid

above the drain, then dV=dt D �k
p

y, where k is a constant

depending on the size of the drain. For a cylindrical tank with

constant cross-sectional area A with drain at the bottom:

(a) Verify that the depth y.t/ of liquid in the tank at time t

satisfies dy=dt D �.k=A/
p

y.

(b) Verify that if the depth of liquid in the tank at t D 0 is

y0, then the depth at subsequent times during the draining

process is y D

�

p

y0 �
kt

2A

�2

.

(c) If the tank drains completely in time T; express the depth

y.t/ at time t in terms of y0 and T:

(d) In terms of T; how long does it take for half the liquid in

the tank to drain out?

6. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T; show that the

depth of liquid in the tank at time t (0 < t < T ) is

y D y0

�

1�
t

T

�2=5

;

where y0 is the depth at t D 0.
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4. (Gas law) The volume V (in m3), pressure P (in kilopascals,

kPa), and temperature T (in kelvin, K) for a sample of a certain

gas satisfy the equation pV D 5:0T .

(a) How rapidly does the pressure increase if the temperature

is 400 K and increasing at 4 K/min while the gas is kept

confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is

2 m3 and increases at 0.05 m3/min while the temperature

is kept constant at 400 K?

5. (The size of a print run) It costs a publisher $10,000 to set

up the presses for a print run of a book and $8 to cover the

material costs for each book printed. In addition, machinery

servicing, labour, and warehousing add another $6:25�10�7
x

2

to the cost of each book if x copies are manufactured during the

printing. How many copies should the publisher print in order

to minimize the average cost per book?

6. (Maximizing profit) A bicycle wholesaler must pay the manu-

facturer $75 for each bicycle. Market research tells the whole-

saler that if she charges her customers $x per bicycle, she can

expect to sell N.x/ D 4:5 � 106=x2 of them. What price

should she charge to maximize her profit, and how many bicy-

cles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that

can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C.x/ of production

in a factory varies with the amount x of product manufactured.

The cost may rise sharply with x when x is small, and more

slowly for larger values of x because of economies of scale.

However, if x becomes too large, the resources of the factory

can be overtaxed, and the cost can begin to rise quickly again.

Figure 4.70 shows the graph of a typical such cost function

C.x/.

C

x

.x; C.x//

slope =
C.x/

x
= average cost

Figure 4.70

If x units are manufactured, the average cost per unit is

$C.x/=x, which is the slope of the line from the origin to the

point .x; C.x// on the graph.

(a) If it is desired to choose x to minimize this average cost

per unit (as would be the case if all units produced could

be sold for the same price), show that x should be chosen

to make the average cost equal to the marginal cost:

C.x/

x
D C

0
.x/:

(b) Interpret the conclusion of (a) geometrically in the figure.

(c) If the average cost equals the marginal cost for some x,

does x necessarily minimize the average cost?

9. (Box design) Four squares are cut out of a rectangle of card-

board 50 cm by 80 cm, as shown in Figure 4.71, and the re-

maining piece is folded into a closed, rectangular box, with

two extra flaps tucked in. What is the largest possible volume

for such a box?

side bottom side top

flapside

side flap

80 cm

50 cm

Figure 4.71

10. (Yield from an orchard) A certain orchard has 60 trees and

produces an average of 800 apples per tree per year. If the

density of trees is increased, the yield per tree drops; for each

additional tree planted, the average yield per tree is reduced by

10 apples per year. How many more trees should be planted to

maximize the total annual yield of apples from the orchard?

11. (Rotation of a tracking antenna) What is the maximum rate

at which the antenna in Exercise 41 of Section 4.1 must be able

to turn in order to track the rocket during its entire vertical as-

cent?

12. An oval table has its outer edge in the shape of the curve

x
2
C y

4
D 1=8, where x and y are measured in metres. What

is the width of the narrowest hallway in which the table can be

turned horizontally through 180ı?

C 13. A hollow iron ball whose shell is 2 cm thick weighs half as

much as it would if it were solid iron throughout. What is the

radius of the ball?

C 14. (Range of a cannon fired from a hill) A cannon ball is fired

with a speed of 200 ft/s at an angle of 45ı above the horizontal

from the top of a hill whose height at a horizontal distance x ft

from the top is y D 1;000=.1C .x=500/2/ ft above sea level.

How far does the cannon ball travel horizontally before striking

the ground?

C 15. (Linear approximation for a pendulum) Because sin � � �

for small values of j� j, the nonlinear equation of motion of a

simple pendulum

d2�

dt2
D �

g

L
sin �;

which determines the displacement angle �.t/ away from the

vertical at time t for a simple pendulum, is frequently approxi-

mated by the simpler linear equation

d2�

dt2
D �

g

L
�

when the maximum displacement of the pendulum is not large.

What is the percentage error in the right side of the equation if

j� j does not exceed 20ı?

16. Find the Taylor polynomial of degree 6 for sin2
x about x D 0

and use it to help you evaluate

lim
x!0

3 sin2
x � 3x2

C x4

x6
:
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17. Use a second-order Taylor polynomial for tan�1 x about x D 1

to find an approximate value for tan�1.1:1/. Estimate the size

of the error by using Taylor’s formula.

18. The line 2y D 10x�19 is tangent to y D f .x/ at x D 2. If an

initial approximation x0 D 2 is made for a root of f .x/ D 0

and Newton’s Method is applied once, what will be the new

approximation that results?

C 19. Find all solutions of the equation cosx D .x � 1/2 to 10 deci-

mal places.

C 20. Find the shortest distance from the point .2; 0/ to the curve

y D lnx.

C 21. A car is travelling at night along a level, curved road whose

equation is y D ex . At a certain instant its headlights illumi-

nate a signpost located at the point .1; 1/. Where is the car at

that instant?

Challenging Problems

1. (Growth of a crystal) A single cubical salt crystal is growing

in a beaker of salt solution. The crystal’s volume V increases

at a rate proportional to its surface area and to the amount by

which its volume is less than a limiting volume V0:

dV

dt
D kx

2
.V0 � V /;

where x is the edge length of the crystal at time t .

(a) Using V D x
3, transform the equation above to one that

gives the rate of change dx=dt of the edge length x in

terms of x.

(b) Show that the growth rate of the edge of the crystal de-

creases with time but remains positive as long as

x < x0 D V
1=3

0 .

(c) Find the volume of the crystal when its edge length is

growing at half the rate it was initially.

2.I (A review of calculus!) You are in a tank (the military variety)

moving down the y-axis toward the origin. At time t D 0 you

are 4 km from the origin, and 10 min later you are 2 km from

the origin. Your speed is decreasing; it is proportional to your

distance from the origin. You know that an enemy tank is wait-

ing somewhere on the positive x-axis, but there is a high wall

along the curve xy D 1 (all distances in kilometres) preventing

you from seeing just where it is. How fast must your gun turret

be capable of turning to maximize your chances of surviving

the encounter?

C 3. (The economics of blood testing) Suppose that it is necessary

to perform a blood test on a large number N of individuals to

detect the presence of a virus. If each test costs $C; then the

total cost of the testing program is $NC: If the proportion of

people in the population who have the virus is not large, this

cost can be greatly reduced by adopting the following strategy.

Divide the N samples of blood into N=x groups of x samples

each. Pool the blood in each group to make a single sample

for that group and test it. If it tests negative, no further testing

is necessary for individuals in that group. If the group sample

tests positive, test all the individuals in that group.

Suppose that the fraction of individuals in the population in-

fected with the virus is p, so the fraction uninfected is q D

1 � p. The probability that a given individual is unaffected is

q, so the probability that all x individuals in a group are un-

affected is qx . Therefore, the probability that a pooled sample

is infected is 1 � qx . Each group requires one test, and the in-

fected groups require an extra x tests. Therefore, the expected

total number of tests to be performed is

T D
N

x
C

N

x
.1 � q

x
/x D N

�

1

x
C 1 � q

x

�

:

For example, if p D 0:01, so that q D 0:99 and x D 20,

then the expected number of tests required is T D 0:23N , a

reduction of over 75%. But maybe we can do better by making

a different choice for x.

(a) For q D 0:99, find the number x of samples in a group

that minimizes T (i.e., solve dT=dx D 0). Show that the

minimizing value of x satisfies

x D
.0:99/�x=2

p

� ln.0:99/
:

(b) Use the technique of fixed-point iteration (see Section 4.2)

to solve the equation in (a) for x. Start with x D 20, say.

4. (Measuring variations in g) The period P of a pendulum of

length L is given by

P D 2�
p

L=g;

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 0.5% decrease in the

period P: (Variations in the period of a pendulum can be

used to detect small variations in g from place to place on

the earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

5. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above

the level of the drain: if V.t/ is the volume of liquid in the

tank at time t , and y.t/ is the height of the surface of the liquid

above the drain, then dV=dt D �k
p

y, where k is a constant

depending on the size of the drain. For a cylindrical tank with

constant cross-sectional area A with drain at the bottom:

(a) Verify that the depth y.t/ of liquid in the tank at time t

satisfies dy=dt D �.k=A/
p

y.

(b) Verify that if the depth of liquid in the tank at t D 0 is

y0, then the depth at subsequent times during the draining

process is y D

�

p

y0 �
kt

2A

�2

.

(c) If the tank drains completely in time T; express the depth

y.t/ at time t in terms of y0 and T:

(d) In terms of T; how long does it take for half the liquid in

the tank to drain out?

6. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T; show that the

depth of liquid in the tank at time t (0 < t < T ) is

y D y0

�

1�
t

T

�2=5

;

where y0 is the depth at t D 0.
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7. Find the largest possible area of a right-angled triangle whose

perimeter is P:

8. Find a tangent to the graph of y D x3
C ax2

C bx C c that is

not parallel to any other tangent.

9. (Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric cur-

rent through it is proportional to its length and inversely

proportional to its cross-sectional area. Thus, the resis-

tance R of a wire of length L and radius r is R D kL=r2,

where k is a positive constant. A long straight wire of

length L and radius r1 extends from A to B: A second

straight wire of smaller radius r2 is to be connected be-

tween a point P on AB and a point C at distance h from

B such thatCB is perpendicular toAB: (See Figure 4.72.)

Find the value of the angle � D †BPC that minimizes the

total resistance of the path APC; that is, the resistance of

AP plus the resistance of PC .

B

C

h

P

�
A

Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow

of liquid through it is, by Poiseuille’s Law, proportional to

its length and inversely proportional to the fourth power

of its radius: R D kL=r4. If the situation in part (a)

represents pipes instead of wires, find the value of � that

minimizes the total resistance of the pathAPC . How does

your answer relate to the answer for part (a)? Could you

have predicted this relationship?

10.I (The range of a spurt) A cylindrical water tank sitting on a

horizontal table has a small hole located on its vertical wall at

height h above the bottom of the tank. Water escapes from the

tank horizontally through the hole and then curves down under

the influence of gravity to strike the table at a distance R from

the base of the tank, as shown in Figure 4.73. (We ignore air

resistance.) Torricelli’s Law implies that the speed v at which

water escapes through the hole is proportional to the square

root of the depth of the hole below the surface of the water:

if the depth of water in the tank at time t is y.t/ > h, then

v D k
p

y � h, where the constant k depends on the size of the

hole.

(a) Find the range R in terms of v and h.

(b) For a given depth y of water in the tank, how high should

the hole be to maximize R?

(c) Suppose that the depth of water in the tank at time t D 0

is y0, that the range R of the spurt is R0 at that time, and

that the water level drops to the height h of the hole in T

minutes. Find, as a function of t , the range R of the water

that escaped through the hole at time t .

R

h

y

Figure 4.73

M 11. (Designing a dustpan) Equal squares are cut out of two adja-

cent corners of a square of sheet metal having sides of length

25 cm. The three resulting flaps are bent up, as shown in

Figure 4.74, to form the sides of a dustpan. Find the maximum

volume of a dustpan made in this way.

25 cm

25 cm

Figure 4.74
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C H A P T E R 5

Integration

“
There are in this world optimists who feel that any symbol that starts

off with an integral sign must necessarily denote something that will

have every property that they should like an integral to possess. This

of course is quite annoying to us rigorous mathematicians; what is

even more annoying is that by doing so they often come up with the

right answer.

”E. J. McShane

Bulletin of the American Mathematical Society, v. 69, p. 611, 1963

Introduction The second fundamental problem addressed by calculus

is the problem of areas, that is, the problem of determin-

ing the area of a region of the plane bounded by various curves. Like the problem

of tangents considered in Chapter 2, many practical problems in various disciplines

require the evaluation of areas for their solution, and the solution of the problem of

areas necessarily involves the notion of limits. On the surface the problem of areas ap-

pears unrelated to the problem of tangents. However, we will see that the two problems

are very closely related; one is the inverse of the other. Finding an area is equivalent

to finding an antiderivative or, as we prefer to say, finding an integral. The relation-

ship between areas and antiderivatives is called the Fundamental Theorem of Calculus.

When we have proved it, we will be able to find areas at will, provided only that we

can integrate (i.e., antidifferentiate) the various functions we encounter.

We would like to have at our disposal a set of integration rules similar to the differ-

entiation rules developed in Chapter 2. We can find the derivative of any differentiable

function using those differentiation rules. Unfortunately, integration is generally more

difficult; indeed, some fairly simple functions are not themselves derivatives of simple

functions. For example, ex2
is not the derivative of any finite combination of elemen-

tary functions. Nevertheless, we will expend some effort in Section 5.6 and Sections

6.1–6.4 to develop techniques for integrating as many functions as possible. Later, in

Chapter 6, we will examine how to approximate areas bounded by graphs of functions

that we cannot antidifferentiate.

5.1 Sums and Sigma Notation

When we begin calculating areas in the next section, we will often encounter sums

of values of functions. We need to have a convenient notation for representing sums

of arbitrary (possibly large) numbers of terms, and we need to develop techniques for

evaluating some such sums.

We use the symbol
P

to represent a sum; it is an enlarged Greek capital letter S

called sigma.
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7. Find the largest possible area of a right-angled triangle whose

perimeter is P:

8. Find a tangent to the graph of y D x3
C ax2

C bx C c that is

not parallel to any other tangent.

9. (Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric cur-

rent through it is proportional to its length and inversely

proportional to its cross-sectional area. Thus, the resis-

tance R of a wire of length L and radius r is R D kL=r2,

where k is a positive constant. A long straight wire of

length L and radius r1 extends from A to B: A second

straight wire of smaller radius r2 is to be connected be-

tween a point P on AB and a point C at distance h from

B such thatCB is perpendicular toAB: (See Figure 4.72.)

Find the value of the angle � D †BPC that minimizes the

total resistance of the path APC; that is, the resistance of

AP plus the resistance of PC .

B

C

h

P

�
A

Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow

of liquid through it is, by Poiseuille’s Law, proportional to

its length and inversely proportional to the fourth power

of its radius: R D kL=r4. If the situation in part (a)

represents pipes instead of wires, find the value of � that

minimizes the total resistance of the pathAPC . How does

your answer relate to the answer for part (a)? Could you

have predicted this relationship?

10.I (The range of a spurt) A cylindrical water tank sitting on a

horizontal table has a small hole located on its vertical wall at

height h above the bottom of the tank. Water escapes from the

tank horizontally through the hole and then curves down under

the influence of gravity to strike the table at a distance R from

the base of the tank, as shown in Figure 4.73. (We ignore air

resistance.) Torricelli’s Law implies that the speed v at which

water escapes through the hole is proportional to the square

root of the depth of the hole below the surface of the water:

if the depth of water in the tank at time t is y.t/ > h, then

v D k
p

y � h, where the constant k depends on the size of the

hole.

(a) Find the range R in terms of v and h.

(b) For a given depth y of water in the tank, how high should

the hole be to maximize R?

(c) Suppose that the depth of water in the tank at time t D 0

is y0, that the range R of the spurt is R0 at that time, and

that the water level drops to the height h of the hole in T

minutes. Find, as a function of t , the range R of the water

that escaped through the hole at time t .

R

h

y

Figure 4.73

M 11. (Designing a dustpan) Equal squares are cut out of two adja-

cent corners of a square of sheet metal having sides of length

25 cm. The three resulting flaps are bent up, as shown in

Figure 4.74, to form the sides of a dustpan. Find the maximum

volume of a dustpan made in this way.

25 cm

25 cm

Figure 4.74
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Integration

“
There are in this world optimists who feel that any symbol that starts

off with an integral sign must necessarily denote something that will

have every property that they should like an integral to possess. This

of course is quite annoying to us rigorous mathematicians; what is

even more annoying is that by doing so they often come up with the

right answer.

”E. J. McShane

Bulletin of the American Mathematical Society, v. 69, p. 611, 1963

Introduction The second fundamental problem addressed by calculus

is the problem of areas, that is, the problem of determin-

ing the area of a region of the plane bounded by various curves. Like the problem

of tangents considered in Chapter 2, many practical problems in various disciplines

require the evaluation of areas for their solution, and the solution of the problem of

areas necessarily involves the notion of limits. On the surface the problem of areas ap-

pears unrelated to the problem of tangents. However, we will see that the two problems

are very closely related; one is the inverse of the other. Finding an area is equivalent

to finding an antiderivative or, as we prefer to say, finding an integral. The relation-

ship between areas and antiderivatives is called the Fundamental Theorem of Calculus.

When we have proved it, we will be able to find areas at will, provided only that we

can integrate (i.e., antidifferentiate) the various functions we encounter.

We would like to have at our disposal a set of integration rules similar to the differ-

entiation rules developed in Chapter 2. We can find the derivative of any differentiable

function using those differentiation rules. Unfortunately, integration is generally more

difficult; indeed, some fairly simple functions are not themselves derivatives of simple

functions. For example, ex2
is not the derivative of any finite combination of elemen-

tary functions. Nevertheless, we will expend some effort in Section 5.6 and Sections

6.1–6.4 to develop techniques for integrating as many functions as possible. Later, in

Chapter 6, we will examine how to approximate areas bounded by graphs of functions

that we cannot antidifferentiate.

5.1 Sums and Sigma Notation

When we begin calculating areas in the next section, we will often encounter sums

of values of functions. We need to have a convenient notation for representing sums

of arbitrary (possibly large) numbers of terms, and we need to develop techniques for

evaluating some such sums.

We use the symbol
P

to represent a sum; it is an enlarged Greek capital letter S

called sigma.
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D E F I N I T I O N

1

Sigma notation

If m and n are integers with m � n, and if f is a function defined at the

integers m, mC 1, mC 2, : : : ; n, the symbol
Pn

iDm f .i/ represents the sum

of the values of f at those integers:

n
X

iDm

f .i/ D f .m/C f .mC 1/C f .mC 2/C � � � C f .n/:

The explicit sum appearing on the right side of this equation is the expansion

of the sum represented in sigma notation on the left side.

E X A M P L E 1
5
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The i that appears in the symbol
Pn

iDm f .i/ is called an index of summation. To

evaluate
Pn

iDm f .i/, replace the index i with the integers m, m C 1, : : : , n, succes-

sively, and sum the results. Observe that the value of the sum does not depend on what

we call the index; the index does not appear on the right side of the definition. If we

use another letter in place of i in the sum in Example 1, we still get the same value for

the sum:

5
X

kD1

k
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The index of summation is a dummy variable used to represent an arbitrary point where

the function is evaluated to produce a term to be included in the sum. On the other

hand, the sum
Pn

iDm f .i/ does depend on the two numbers m and n, called the limits

of summation; m is the lower limit, and n is the upper limit.

E X A M P L E 2
(Examples of sums using sigma notation)

20
X

j D1

j D 1C 2C 3C � � � C 18C 19C 20

n
X

iD0

x
i
D x

0
C x

1
C x

2
C � � � C x

n�1
C x

n

n
X

mD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

3
X

kD�2

1

k C 7
D

1

5
C

1

6
C

1

7
C

1

8
C

1

9
C

1

10

Sometimes we use a subscripted variable ai to denote the i th term of a general sum

instead of using the functional notation f .i/:

n
X

iDm

ai D am C amC1 C amC2 C � � � C an:
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In particular, an infinite series is such a sum with infinitely many terms:

1
X

nD1

an D a1 C a2 C a3 C � � � :

When no final term follows the � � �, it is understood that the terms go on forever. We

will study infinite series in Chapter 9.

When adding finitely many numbers, the order in which they are added is unim-

portant; any order will give the same sum. If all the numbers have a common factor,

then that factor can be removed from each term and multiplied after the sum is eval-

uated: ca C cb D c.a C b/. These laws of arithmetic translate into the following

linearity rule for finite sums; if A and B are constants, then

n
X

iDm

�

Af .i/C Bg.i/
�

D A

n
X

iDm

f .i/C B

n
X

iDm

g.i/:

Both of the sums
PmCn

j Dm f .j / and
Pn

iD0 f .i Cm/ have the same expansion, namely,

f .m/C f .mC 1/C � � � C f .mC n/. Therefore, the two sums are equal.

mCn
X

j Dm

f .j / D

n
X

iD0

f .i Cm/:

This equality can also be derived by substituting i Cm for j everywhere j appears on

the left side, noting that i Cm D m reduces to i D 0, and i Cm D mC n reduces to

i D n. It is often convenient to make such a change of index in a summation.

E X A M P L E 3
Express

P17
j D3

p

1C j 2 in the form
Pn

iD1 f .i/.

Solution Let j D i C 2. Then j D 3 corresponds to i D 1 and j D 17 corresponds

to i D 15. Thus,

17
X

j D3

p

1C j 2
D

15
X

iD1

p

1C .i C 2/2:

Evaluating Sums
There is a closed form expression for the sum S of the first n positive integers, namely,

S D

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

To see this, write the sum forwards and backwards and add the two to get

S = 1 C 2 C 3 C � � � C .n� 1/ C n

S = n C .n� 1/ C .n � 2/ C � � � C 2 C 1

2S = .nC 1/C .nC 1/ C .nC 1/C � � � C .nC 1/ C .nC 1/D n.nC 1/

The formula for S follows when we divide by 2.

It is not usually this easy to evaluate a general sum in closed form. We can only

simplify
Pn

iDm f .i/ for a small class of functions f: The only such formulas we will

need in the next sections are collected in Theorem 1.
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D E F I N I T I O N

1

Sigma notation

If m and n are integers with m � n, and if f is a function defined at the

integers m, mC 1, mC 2, : : : ; n, the symbol
Pn

iDm f .i/ represents the sum

of the values of f at those integers:

n
X

iDm

f .i/ D f .m/C f .mC 1/C f .mC 2/C � � � C f .n/:

The explicit sum appearing on the right side of this equation is the expansion

of the sum represented in sigma notation on the left side.

E X A M P L E 1
5
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The i that appears in the symbol
Pn

iDm f .i/ is called an index of summation. To

evaluate
Pn

iDm f .i/, replace the index i with the integers m, m C 1, : : : , n, succes-

sively, and sum the results. Observe that the value of the sum does not depend on what

we call the index; the index does not appear on the right side of the definition. If we

use another letter in place of i in the sum in Example 1, we still get the same value for

the sum:

5
X

kD1

k
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The index of summation is a dummy variable used to represent an arbitrary point where

the function is evaluated to produce a term to be included in the sum. On the other

hand, the sum
Pn

iDm f .i/ does depend on the two numbers m and n, called the limits

of summation; m is the lower limit, and n is the upper limit.

E X A M P L E 2
(Examples of sums using sigma notation)

20
X

j D1

j D 1C 2C 3C � � � C 18C 19C 20

n
X

iD0

x
i
D x

0
C x

1
C x

2
C � � � C x

n�1
C x

n

n
X

mD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

3
X

kD�2

1

k C 7
D

1

5
C

1

6
C

1

7
C

1

8
C

1

9
C

1

10

Sometimes we use a subscripted variable ai to denote the i th term of a general sum

instead of using the functional notation f .i/:

n
X

iDm

ai D am C amC1 C amC2 C � � � C an:
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In particular, an infinite series is such a sum with infinitely many terms:

1
X

nD1

an D a1 C a2 C a3 C � � � :

When no final term follows the � � �, it is understood that the terms go on forever. We

will study infinite series in Chapter 9.

When adding finitely many numbers, the order in which they are added is unim-

portant; any order will give the same sum. If all the numbers have a common factor,

then that factor can be removed from each term and multiplied after the sum is eval-

uated: ca C cb D c.a C b/. These laws of arithmetic translate into the following

linearity rule for finite sums; if A and B are constants, then

n
X

iDm

�

Af .i/C Bg.i/
�

D A

n
X

iDm

f .i/C B

n
X

iDm

g.i/:

Both of the sums
PmCn

j Dm f .j / and
Pn

iD0 f .i Cm/ have the same expansion, namely,

f .m/C f .mC 1/C � � � C f .mC n/. Therefore, the two sums are equal.

mCn
X

j Dm

f .j / D

n
X

iD0

f .i Cm/:

This equality can also be derived by substituting i Cm for j everywhere j appears on

the left side, noting that i Cm D m reduces to i D 0, and i Cm D mC n reduces to

i D n. It is often convenient to make such a change of index in a summation.

E X A M P L E 3
Express

P17
j D3

p

1C j 2 in the form
Pn

iD1 f .i/.

Solution Let j D i C 2. Then j D 3 corresponds to i D 1 and j D 17 corresponds

to i D 15. Thus,

17
X

j D3

p

1C j 2
D

15
X

iD1

p

1C .i C 2/2:

Evaluating Sums
There is a closed form expression for the sum S of the first n positive integers, namely,

S D

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

To see this, write the sum forwards and backwards and add the two to get

S = 1 C 2 C 3 C � � � C .n� 1/ C n

S = n C .n� 1/ C .n � 2/ C � � � C 2 C 1

2S = .nC 1/C .nC 1/ C .nC 1/C � � � C .nC 1/ C .nC 1/D n.nC 1/

The formula for S follows when we divide by 2.

It is not usually this easy to evaluate a general sum in closed form. We can only

simplify
Pn

iDm f .i/ for a small class of functions f: The only such formulas we will

need in the next sections are collected in Theorem 1.
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T H E O R E M

1

Summation formulas

(a)

n
X

iD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

D n:

(b)

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

(c)

n
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C � � � C n

2
D

n.nC 1/.2nC 1/

6
:

(d)

n
X

iD1

r
i�1
D 1C r C r

2
C r

3
C � � � C r

n�1
D

rn
� 1

r � 1
if r ¤ 1:

PROOF Formula (a) is trivial; the sum of n ones is n. One proof of formula (b) was

given above.

To prove (c) we write n copies of the identity

.k C 1/
3
� k

3
D 3k

2
C 3k C 1;

one for each value of k from 1 to n, and add them up:

23
� 13

D 3 � 12
C 3 � 1 C 1

3
3
� 2

3
D 3 � 2

2
C 3 � 2 C 1

43
� 33

D 3 � 32
C 3 � 3 C 1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

n3
� .n � 1/3 D 3.n � 1/2 C 3.n � 1/ C 1

.nC 1/3 � n3
D 3 n2

C 3n C 1

.nC 1/3 � 13
D 3

�
Pn

iD1 i
2
�

C 3
�
Pn

iD1 i
�

C n

D 3
�
Pn

iD1 i
2
�

C

3n.nC 1/

2
C n:

We used formula (b) in the last line. The final equation can be solved for the desired

sum to give formula (c). Note the cancellations that occurred when we added up the

left sides of the n equations. The term 23 in the first line cancelled the �23 in the

second line, and so on, leaving us with only two terms, the .nC 1/3 from the nth line

and the �13 from the first line:

n
X

kD1

�

.k C 1/
3
� k

3
�

D .nC 1/
3
� 1

3
:

This is an example of what we call a telescoping sum. In general, a sum of the form
Pn

iDm

�

f .i C 1/ � f .i/
�

telescopes to the closed form f .nC 1/ � f .m/ because all

but the first and last terms cancel out.

To prove formula (d), let s D
Pn

iD1 r
i�1 and subtract s from rs:

.r � 1/s D rs � s D .r C r
2
C r

3
C � � � C r

n
/ � .1C r C r

2
C � � � C r

n�1
/

D r
n
� 1:

The result follows on division by r � 1.

Other proofs of (b) – (d) are suggested in Exercises 36–38.

E X A M P L E 4 Evaluate

n
X

kDmC1

.6k
2
� 4k C 3/, where 1 � m < n.
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Solution Using the rules of summation and various summation formulas from Theorem 1,

we calculate

n
X

kD1

.6k
2
� 4k C 3/ D 6

n
X

kD1

k
2
� 4

n
X

kD1

k C 3

n
X

kD1

1

D 6
n.nC 1/.2nC 1/

6
� 4

n.nC 1/

2
C 3n

D 2n
3
C n

2
C 2n

Thus,

n
X

kDmC1

.6k
2
� 4k C 3/ D

n
X

kD1

.6k
2
� 4k C 3/ �

m
X

kD1

.6k
2
� 4k C 3/

D 2n
3
C n

2
C 2n � 2m

3
�m

2
� 2m:

M Remark Maple can find closed form expressions for some sums. For example,

> sum(i^4, i=1..n); factor(%);

1

5
.nC 1/

5
�

1

2
.nC 1/

4
C

1

3
.nC 1/

3
�

1

30
n �

1

30

1

30
n.2nC 1/.nC 1/.3n

2
C 3n � 1/

E X E R C I S E S 5.1

Expand the sums in Exercises 1–6.

1.

4
X

iD1

i
3 2.

100
X

j D1

j

j C 1

3.

n
X

iD1

3
i 4.

n�1
X

iD0

.�1/i

i C 1

5.

n
X

j D3

.�2/j

.j � 2/2
6.

n
X

j D1

j 2

n3

Write the sums in Exercises 7–14 using sigma notation. (Note that

the answers are not unique.)

7. 5C 6C 7C 8C 9

8. 2C 2C 2C � � � C 2 .200 terms/

9. 22
� 3

2
C 4

2
� 5

2
C � � � � 99

2

10. 1C 2x C 3x2
C 4x

3
C � � � C 100x

99

11. 1C x C x2
C x

3
C � � � C x

n

12. 1 � x C x2
� x

3
C � � � C x

2n

13. 1 �
1

4
C

1

9
�

1

16
C � � � C

.�1/n�1

n2

14.
1

2
C

2

4
C

3

8
C

4

16
C � � � C

n

2n

Express the sums in Exercises 15–16 in the form
Pn

iD1 f .i/.

15.

99
X

j D0

sin.j / 16.

m
X

kD�5

1

k2
C 1

Find closed form values for the sums in Exercises 17–28.

17.

n
X

iD1

�

i
2
C 2i

�

18.

1;000
X

j D1

.2j C 3/

19.

n
X

kD1

.�
k
� 3/ 20.

n
X

iD1

.2
i
� i

2
/

21.

n
X

mD1

lnm 22.

n
X

iD0

e
i=n

23. The sum in Exercise 8. 24. The sum in Exercise 11.

25. The sum in Exercise 12.

26.I The sum in Exercise 10. Hint: Differentiate the sum
P100

iD0 x
i .

27.I The sum in Exercise 9. Hint: The sum is
49
X

kD1

�

.2k/
2
� .2k C 1/

2
�

D

49
X

kD1

.�4k � 1/.

28.I The sum in Exercise 14. Hint: apply the method of proof of

Theorem 1(d) to this sum.

29. Verify the formula for the value of a telescoping sum:

n
X

iDm

�

f .i C 1/ � f .i/

�

D f .nC 1/ � f .m/:

Why is the word “telescoping” used to describe this sum?
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T H E O R E M

1

Summation formulas

(a)

n
X

iD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

D n:

(b)

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

(c)

n
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C � � � C n

2
D

n.nC 1/.2nC 1/

6
:

(d)

n
X

iD1

r
i�1
D 1C r C r

2
C r

3
C � � � C r

n�1
D

rn
� 1

r � 1
if r ¤ 1:

PROOF Formula (a) is trivial; the sum of n ones is n. One proof of formula (b) was

given above.

To prove (c) we write n copies of the identity

.k C 1/
3
� k

3
D 3k

2
C 3k C 1;

one for each value of k from 1 to n, and add them up:

23
� 13

D 3 � 12
C 3 � 1 C 1

3
3
� 2

3
D 3 � 2

2
C 3 � 2 C 1

43
� 33

D 3 � 32
C 3 � 3 C 1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

n3
� .n � 1/3 D 3.n � 1/2 C 3.n � 1/ C 1

.nC 1/3 � n3
D 3 n2

C 3n C 1

.nC 1/3 � 13
D 3

�
Pn

iD1 i
2
�

C 3
�
Pn

iD1 i
�

C n

D 3
�
Pn

iD1 i
2
�

C

3n.nC 1/

2
C n:

We used formula (b) in the last line. The final equation can be solved for the desired

sum to give formula (c). Note the cancellations that occurred when we added up the

left sides of the n equations. The term 23 in the first line cancelled the �23 in the

second line, and so on, leaving us with only two terms, the .nC 1/3 from the nth line

and the �13 from the first line:

n
X

kD1

�

.k C 1/
3
� k

3
�

D .nC 1/
3
� 1

3
:

This is an example of what we call a telescoping sum. In general, a sum of the form
Pn

iDm

�

f .i C 1/ � f .i/
�

telescopes to the closed form f .nC 1/ � f .m/ because all

but the first and last terms cancel out.

To prove formula (d), let s D
Pn

iD1 r
i�1 and subtract s from rs:

.r � 1/s D rs � s D .r C r
2
C r

3
C � � � C r

n
/ � .1C r C r

2
C � � � C r

n�1
/

D r
n
� 1:

The result follows on division by r � 1.

Other proofs of (b) – (d) are suggested in Exercises 36–38.

E X A M P L E 4 Evaluate

n
X

kDmC1

.6k
2
� 4k C 3/, where 1 � m < n.
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Solution Using the rules of summation and various summation formulas from Theorem 1,

we calculate

n
X

kD1

.6k
2
� 4k C 3/ D 6

n
X

kD1

k
2
� 4

n
X

kD1

k C 3

n
X

kD1

1

D 6
n.nC 1/.2nC 1/

6
� 4

n.nC 1/

2
C 3n

D 2n
3
C n

2
C 2n

Thus,

n
X

kDmC1

.6k
2
� 4k C 3/ D

n
X

kD1

.6k
2
� 4k C 3/ �

m
X

kD1

.6k
2
� 4k C 3/

D 2n
3
C n

2
C 2n � 2m

3
�m

2
� 2m:

M Remark Maple can find closed form expressions for some sums. For example,

> sum(i^4, i=1..n); factor(%);

1

5
.nC 1/

5
�

1

2
.nC 1/

4
C

1

3
.nC 1/

3
�

1

30
n �

1

30

1

30
n.2nC 1/.nC 1/.3n

2
C 3n � 1/

E X E R C I S E S 5.1

Expand the sums in Exercises 1–6.

1.

4
X

iD1

i
3 2.

100
X

j D1

j

j C 1

3.

n
X

iD1

3
i 4.

n�1
X

iD0

.�1/i

i C 1

5.

n
X

j D3

.�2/j

.j � 2/2
6.

n
X

j D1

j 2

n3

Write the sums in Exercises 7–14 using sigma notation. (Note that

the answers are not unique.)

7. 5C 6C 7C 8C 9

8. 2C 2C 2C � � � C 2 .200 terms/

9. 22
� 3

2
C 4

2
� 5

2
C � � � � 99

2

10. 1C 2x C 3x2
C 4x

3
C � � � C 100x

99

11. 1C x C x2
C x

3
C � � � C x

n

12. 1 � x C x2
� x

3
C � � � C x

2n

13. 1 �
1

4
C

1

9
�

1

16
C � � � C

.�1/n�1

n2

14.
1

2
C

2

4
C

3

8
C

4

16
C � � � C

n

2n

Express the sums in Exercises 15–16 in the form
Pn

iD1 f .i/.

15.

99
X

j D0

sin.j / 16.

m
X

kD�5

1

k2
C 1

Find closed form values for the sums in Exercises 17–28.

17.

n
X

iD1

�

i
2
C 2i

�

18.

1;000
X

j D1

.2j C 3/

19.

n
X

kD1

.�
k
� 3/ 20.

n
X

iD1

.2
i
� i

2
/

21.

n
X

mD1

lnm 22.

n
X

iD0

e
i=n

23. The sum in Exercise 8. 24. The sum in Exercise 11.

25. The sum in Exercise 12.

26.I The sum in Exercise 10. Hint: Differentiate the sum
P100

iD0 x
i .

27.I The sum in Exercise 9. Hint: The sum is
49
X

kD1

�

.2k/
2
� .2k C 1/

2
�

D

49
X

kD1

.�4k � 1/.

28.I The sum in Exercise 14. Hint: apply the method of proof of

Theorem 1(d) to this sum.

29. Verify the formula for the value of a telescoping sum:

n
X

iDm

�

f .i C 1/ � f .i/

�

D f .nC 1/ � f .m/:

Why is the word “telescoping” used to describe this sum?
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In Exercises 30–32, evaluate the given telescoping sums.

30.

10
X

nD1

�

n
4
� .n � 1/

4
�

31.

m
X

j D1

.2
j
� 2

j �1
/

32.

2m
X

iDm

�

1

i
�

1

i C 1

�

33. Show that
1

j.j C 1/
D

1

j
�

1

j C 1
, and hence evaluate

n
X

j D1

1

j.j C 1/
.

34. Figure 5.1 shows a square of side n subdivided into n2 smaller

squares of side 1. How many small squares are shaded?

Obtain the closed form expression for
Pn

iD1 i by considering

the sum of the areas of the shaded squares.

Figure 5.1

35. Write n copies of the identity .k C 1/2 � k2
D 2k C 1; one

for each integer k from 1 to n, and add them up to obtain the

formula

n
X

iD1

i D
n.nC 1/

2

in a manner similar to the proof of Theorem 1(c).

36. Use mathematical induction to prove Theorem 1(b).

37. Use mathematical induction to prove Theorem 1(c).

38. Use mathematical induction to prove Theorem 1(d).

39. Figure 5.2 shows a square of side
Pn

iD1 i D n.nC 1/=2

subdivided into a small square of side 1 and n � 1

L-shaped regions whose short edges are 2, 3, : : : ; n. Show

that the area of the L-shaped region with short side i is i3, and

hence verify that

n
X

iD1

i
3
D

n2.nC 1/2

4
:

1 2 3 � � � n
1

2

3

:
:
:

n

Figure 5.2

40.I Write n copies of the identity

.k C 1/
4
� k

4
D 4k

3
C 6k

2
C 4k C 1;

one for each integer k from 1 to n, and add them up to obtain

the formula

n
X

iD1

i
3
D

n2.nC 1/2

4

in a manner similar to the proof of Theorem 1(c).

41. Use mathematical induction to verify the formula for the sum

of cubes given in Exercise 40.

M 42. Extend the method of Exercise 40 to find a closed form

expression for
Pn

iD1 i
4. You will probably want to use Maple

or other computer algebra software to do all the algebra.

M 43. Use Maple or another computer algebra system to find
Pn

iD1 i
k for k D 5, 6, 7, 8. Observe the term involving the

highest power of n in each case. Predict the highest-power

term in
Pn

iD1 i
10 and verify your prediction.

5.2 Areas as Limits of Sums
We began the study of derivatives in Chapter 2 by defining what is meant by a tangent

line to a curve at a particular point. We would like to begin the study of integrals by

defining what is meant by the area of a plane region, but a definition of area is much

more difficult to give than a definition of tangency. Let us assume (as we did, for

example, in Section 3.3) that we know intuitively what area means and list some of its

properties. (See Figure 5.3.)

(i) The area of a plane region is a nonnegative real number of square units.

(ii) The area of a rectangle with width w and height h is A D wh.
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(iii) The areas of congruent plane regions are equal.

(iv) If region S is contained in region R, then the area of S is less than or equal to that

of R.

(v) If region R is a union of (finitely many) nonoverlapping regions, then the area of

R is the sum of the areas of those regions.

Using these five properties we can calculate the area of any polygon (a region bounded

by straight line segments). First, we note that properties (iii) and (v) show that the

area of a parallelogram is the same as that of a rectangle having the same base width

and height. Any triangle can be butted against a congruent copy of itself to form a

parallelogram, so a triangle has area half the base width times the height. Finally, any

polygon can be subdivided into finitely many nonoverlapping triangles so its area is the

sum of the areas of those triangles.

We can’t go beyond polygons without taking limits. If a region has a curved

boundary, its area can only be approximated by using rectangles or triangles; calcu-

lating the exact area requires the evaluation of a limit. We showed how this could be

done for a circle in Section 1.1.

Figure 5.3 Properties of area

w wA BA B

A w B

D C D D 0 C C 0

C

S
R hh

h

area ABCD D wh area S < area R area ABC 0D 0
D wh

area ABC = 1
2 wh area of polygon =

sum of areas of triangles

The Basic Area Problem
In this section we are going to consider how to find the area of a region R lying under

the graph y D f .x/ of a nonnegative-valued, continuous function f; above the x-axis

and between the vertical lines x D a and x D b, where a < b. (See Figure 5.4.) To

accomplish this, we proceed as follows. Divide the interval Œa; b� into n subintervals

by using division points:

y

x

y D f .x/

R

a b

Figure 5.4 The basic area problem: find

the area of region R

a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b:

Denote by �xi the length of the i th subinterval Œxi�1; xi �:

�xi D xi � xi�1; .i D 1; 2; 3; : : : ; n/:

Vertically above each subinterval Œxi�1; xi � build a rectangle whose base has length

�xi and whose height is f .xi /. The area of this rectangle is f .xi/�xi . Form the

sum of these areas:

Sn D f .x1/�x1Cf .x2/�x2Cf .x3/�x3C� � �Cf .xn/�xn D

n
X

iD1

f .xi /�xi :
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In Exercises 30–32, evaluate the given telescoping sums.

30.

10
X

nD1

�

n
4
� .n � 1/

4
�

31.

m
X

j D1

.2
j
� 2

j �1
/

32.

2m
X

iDm

�

1

i
�

1

i C 1

�

33. Show that
1

j.j C 1/
D

1

j
�

1

j C 1
, and hence evaluate

n
X

j D1

1

j.j C 1/
.

34. Figure 5.1 shows a square of side n subdivided into n2 smaller

squares of side 1. How many small squares are shaded?

Obtain the closed form expression for
Pn

iD1 i by considering

the sum of the areas of the shaded squares.

Figure 5.1

35. Write n copies of the identity .k C 1/2 � k2
D 2k C 1; one

for each integer k from 1 to n, and add them up to obtain the

formula

n
X

iD1

i D
n.nC 1/

2

in a manner similar to the proof of Theorem 1(c).

36. Use mathematical induction to prove Theorem 1(b).

37. Use mathematical induction to prove Theorem 1(c).

38. Use mathematical induction to prove Theorem 1(d).

39. Figure 5.2 shows a square of side
Pn

iD1 i D n.nC 1/=2

subdivided into a small square of side 1 and n � 1

L-shaped regions whose short edges are 2, 3, : : : ; n. Show

that the area of the L-shaped region with short side i is i3, and

hence verify that

n
X

iD1

i
3
D

n2.nC 1/2

4
:

1 2 3 � � � n
1

2

3

:
:
:

n
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40.I Write n copies of the identity
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C 6k
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C 4k C 1;

one for each integer k from 1 to n, and add them up to obtain

the formula

n
X

iD1

i
3
D

n2.nC 1/2

4

in a manner similar to the proof of Theorem 1(c).

41. Use mathematical induction to verify the formula for the sum

of cubes given in Exercise 40.

M 42. Extend the method of Exercise 40 to find a closed form

expression for
Pn

iD1 i
4. You will probably want to use Maple

or other computer algebra software to do all the algebra.

M 43. Use Maple or another computer algebra system to find
Pn

iD1 i
k for k D 5, 6, 7, 8. Observe the term involving the

highest power of n in each case. Predict the highest-power

term in
Pn

iD1 i
10 and verify your prediction.

5.2 Areas as Limits of Sums
We began the study of derivatives in Chapter 2 by defining what is meant by a tangent

line to a curve at a particular point. We would like to begin the study of integrals by

defining what is meant by the area of a plane region, but a definition of area is much

more difficult to give than a definition of tangency. Let us assume (as we did, for

example, in Section 3.3) that we know intuitively what area means and list some of its

properties. (See Figure 5.3.)

(i) The area of a plane region is a nonnegative real number of square units.

(ii) The area of a rectangle with width w and height h is A D wh.
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(iii) The areas of congruent plane regions are equal.

(iv) If region S is contained in region R, then the area of S is less than or equal to that

of R.

(v) If region R is a union of (finitely many) nonoverlapping regions, then the area of

R is the sum of the areas of those regions.

Using these five properties we can calculate the area of any polygon (a region bounded

by straight line segments). First, we note that properties (iii) and (v) show that the

area of a parallelogram is the same as that of a rectangle having the same base width

and height. Any triangle can be butted against a congruent copy of itself to form a

parallelogram, so a triangle has area half the base width times the height. Finally, any

polygon can be subdivided into finitely many nonoverlapping triangles so its area is the

sum of the areas of those triangles.

We can’t go beyond polygons without taking limits. If a region has a curved

boundary, its area can only be approximated by using rectangles or triangles; calcu-

lating the exact area requires the evaluation of a limit. We showed how this could be

done for a circle in Section 1.1.

Figure 5.3 Properties of area

w wA BA B

A w B

D C D D 0 C C 0

C

S
R hh

h

area ABCD D wh area S < area R area ABC 0D 0
D wh

area ABC = 1
2 wh area of polygon =

sum of areas of triangles

The Basic Area Problem
In this section we are going to consider how to find the area of a region R lying under

the graph y D f .x/ of a nonnegative-valued, continuous function f; above the x-axis

and between the vertical lines x D a and x D b, where a < b. (See Figure 5.4.) To

accomplish this, we proceed as follows. Divide the interval Œa; b� into n subintervals

by using division points:

y

x

y D f .x/

R

a b

Figure 5.4 The basic area problem: find

the area of region R

a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b:

Denote by �xi the length of the i th subinterval Œxi�1; xi �:

�xi D xi � xi�1; .i D 1; 2; 3; : : : ; n/:

Vertically above each subinterval Œxi�1; xi � build a rectangle whose base has length

�xi and whose height is f .xi /. The area of this rectangle is f .xi/�xi . Form the

sum of these areas:

Sn D f .x1/�x1Cf .x2/�x2Cf .x3/�x3C� � �Cf .xn/�xn D

n
X

iD1

f .xi /�xi :
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The rectangles are shown shaded in Figure 5.5 for a decreasing function f: For an

increasing function, the tops of the rectangles would lie above the graph of f rather

than below it. Evidently, Sn is an approximation to the area of the region R, and

the approximation gets better as n increases, provided we choose the points a D x0 <

x1 < � � � < xn D b in such a way that the width�xi of the widest rectangle approaches

zero.

Figure 5.5 Approximating the area under

the graph of a decreasing function using

rectangles

y

x

y D f .x/

�x1 �x2 �x3 �xi �xn

x0 x1 x2 x3 xi�1 xi xn�1 xn

D bD a

Observe in Figure 5.6, for example, that subdividing a subinterval into two smaller

subintervals reduces the error in the approximation by reducing that part of the area

under the curve that is not contained in the rectangles. It is reasonable, therefore, to

calculate the area of R by finding the limit of Sn as n ! 1 with the restriction that

the largest of the subinterval widths �xi must approach zero:

Area of R D lim
n!1

max �xi !0

Sn:

y

x

y

x

new error

y D f .x/

old error

y D f .x/

Figure 5.6 Using more rectangles makes

the error smaller

Sometimes, but not always, it is useful to choose the points xi (0 � i � n) in Œa; b� in

such a way that the subinterval lengths �xi are all equal. In this case we have

�xi D �x D
b � a

n
; xi D aC i�x D aC

i

n
.b � a/:

Some Area Calculations
We devote the rest of this section to some examples in which we apply the technique

described above for finding areas under graphs of functions by approximating with

rectangles. Let us begin with a region for which we already know the area so we can

satisfy ourselves that the method does give the correct value.

E X A M P L E 1
Find the area A of the region lying under the straight line y D

x C 1, above the x-axis, and between the lines x D 0 and x D 2.

Solution The region is shaded in Figure 5.7(a). It is a trapezoid (a four-sided polygon

with one pair of parallel sides) and has area 4 square units. (It can be divided into a

rectangle and a triangle, each of area 2 square units.) We will calculate the area as a

limit of sums of areas of rectangles constructed as described above. Divide the interval

Œ0; 2� into n subintervals of equal length by points

x0 D 0; x1 D
2

n
; x2 D

4

n
; x3 D

6

n
; : : : xn D

2n

n
D 2:

The value of y D x C 1 at x D xi is xi C 1 D
2i

n
C 1 and the i th subinterval,

�

2.i � 1/

n
;
2i

n

�

, has length �xi D
2

n
. Observe that �xi ! 0 as n!1.
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The sum of the areas of the approximating rectangles shown in Figure 5.7(a) is

Sn D

n
X

iD1

�

2i

n
C 1

�

2

n

D

�

2

n

�

"

2

n

n
X

iD1

i C

n
X

iD1

1

#

(Use parts (b) and (a) of Theorem 1.)

D

�

2

n

��

2

n

n.nC 1/

2
C n

�

D 2
nC 1

n
C 2:

Therefore, the required area A is given by

A D lim
n!1

Sn D lim
n!1

�

2
nC 1

n
C 2

�

D 2C 2 D 4 square units:

Figure 5.7

(a) The region of Example 1

(b) The region of Example 2

y

x
2
n

4
n

6
n

2n
n

y D x C 1
y

xb
n

2b
n

3b
n

nb
n

Db

.n�1/b
n

y D x2

(a) (b)

E X A M P L E 2
Find the area of the region bounded by the parabola y D x2 and

the straight lines y D 0, x D 0, and x D b, where b > 0.

Solution The areaA of the region is the limit of the sum Sn of areas of the rectangles

shown in Figure 5.7(b). Again we have used equal subintervals, each of length b=n.

The height of the i th rectangle is .ib=n/2. Thus,

Sn D

n
X

iD1

�

ib

n

�2
b

n
D

b3

n3

n
X

iD1

i
2
D

b3

n3

n.nC 1/.2nC 1/

6
;

by formula (c) of Theorem 1. Hence, the required area is

A D lim
n!1

Sn D lim
n!1

b
3 .nC 1/.2nC 1/

6n2
D

b3

3
square units:

Finding an area under the graph of y D xk over an interval I becomes more and more

difficult as k increases if we continue to try to subdivide I into subintervals of equal

length. (See Exercise 14 at the end of this section for the case k D 3.) It is, however,

possible to find the area for arbitrary k if we subdivide the interval I into subintervals

whose lengths increase in geometric progression. Example 3 illustrates this.

E X A M P L E 3
Let b > a > 0, and let k be any real number except �1. Show that

the area A of the region bounded by y D x
k, y D 0, x D a, and

x D b is

A D
b

kC1
� a

kC1

k C 1
square units:
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The rectangles are shown shaded in Figure 5.5 for a decreasing function f: For an

increasing function, the tops of the rectangles would lie above the graph of f rather

than below it. Evidently, Sn is an approximation to the area of the region R, and

the approximation gets better as n increases, provided we choose the points a D x0 <

x1 < � � � < xn D b in such a way that the width�xi of the widest rectangle approaches

zero.

Figure 5.5 Approximating the area under

the graph of a decreasing function using

rectangles

y

x

y D f .x/

�x1 �x2 �x3 �xi �xn

x0 x1 x2 x3 xi�1 xi xn�1 xn

D bD a

Observe in Figure 5.6, for example, that subdividing a subinterval into two smaller

subintervals reduces the error in the approximation by reducing that part of the area

under the curve that is not contained in the rectangles. It is reasonable, therefore, to

calculate the area of R by finding the limit of Sn as n ! 1 with the restriction that

the largest of the subinterval widths �xi must approach zero:

Area of R D lim
n!1

max �xi !0

Sn:

y

x

y

x

new error

y D f .x/

old error

y D f .x/

Figure 5.6 Using more rectangles makes

the error smaller

Sometimes, but not always, it is useful to choose the points xi (0 � i � n) in Œa; b� in

such a way that the subinterval lengths �xi are all equal. In this case we have

�xi D �x D
b � a

n
; xi D aC i�x D aC

i

n
.b � a/:

Some Area Calculations
We devote the rest of this section to some examples in which we apply the technique

described above for finding areas under graphs of functions by approximating with

rectangles. Let us begin with a region for which we already know the area so we can

satisfy ourselves that the method does give the correct value.

E X A M P L E 1
Find the area A of the region lying under the straight line y D

x C 1, above the x-axis, and between the lines x D 0 and x D 2.

Solution The region is shaded in Figure 5.7(a). It is a trapezoid (a four-sided polygon

with one pair of parallel sides) and has area 4 square units. (It can be divided into a

rectangle and a triangle, each of area 2 square units.) We will calculate the area as a

limit of sums of areas of rectangles constructed as described above. Divide the interval

Œ0; 2� into n subintervals of equal length by points

x0 D 0; x1 D
2

n
; x2 D

4

n
; x3 D

6

n
; : : : xn D

2n

n
D 2:

The value of y D x C 1 at x D xi is xi C 1 D
2i

n
C 1 and the i th subinterval,

�

2.i � 1/

n
;
2i

n

�

, has length �xi D
2

n
. Observe that �xi ! 0 as n!1.
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The sum of the areas of the approximating rectangles shown in Figure 5.7(a) is

Sn D

n
X

iD1

�

2i

n
C 1

�

2

n

D

�

2

n

�

"

2

n

n
X

iD1

i C

n
X

iD1

1

#

(Use parts (b) and (a) of Theorem 1.)

D

�

2

n

��

2

n

n.nC 1/

2
C n

�

D 2
nC 1

n
C 2:

Therefore, the required area A is given by

A D lim
n!1

Sn D lim
n!1

�

2
nC 1

n
C 2

�

D 2C 2 D 4 square units:

Figure 5.7

(a) The region of Example 1

(b) The region of Example 2

y

x
2
n

4
n

6
n

2n
n

y D x C 1
y

xb
n

2b
n

3b
n

nb
n

Db

.n�1/b
n

y D x2

(a) (b)

E X A M P L E 2
Find the area of the region bounded by the parabola y D x2 and

the straight lines y D 0, x D 0, and x D b, where b > 0.

Solution The areaA of the region is the limit of the sum Sn of areas of the rectangles

shown in Figure 5.7(b). Again we have used equal subintervals, each of length b=n.

The height of the i th rectangle is .ib=n/2. Thus,

Sn D

n
X

iD1

�

ib

n

�2
b

n
D

b3

n3

n
X

iD1

i
2
D

b3

n3

n.nC 1/.2nC 1/

6
;

by formula (c) of Theorem 1. Hence, the required area is

A D lim
n!1

Sn D lim
n!1

b
3 .nC 1/.2nC 1/

6n2
D

b3

3
square units:

Finding an area under the graph of y D xk over an interval I becomes more and more

difficult as k increases if we continue to try to subdivide I into subintervals of equal

length. (See Exercise 14 at the end of this section for the case k D 3.) It is, however,

possible to find the area for arbitrary k if we subdivide the interval I into subintervals

whose lengths increase in geometric progression. Example 3 illustrates this.

E X A M P L E 3
Let b > a > 0, and let k be any real number except �1. Show that

the area A of the region bounded by y D x
k, y D 0, x D a, and

x D b is

A D
b

kC1
� a

kC1

k C 1
square units:
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Figure 5.8 For this partition the

subinterval lengths increase exponentially

y

xa at at2 at3 atn�1 atn D b

y D xk

Solution Let t D .b=a/1=n and let

BEWARE! This is a long and

rather difficult example. Either skip

over it or take your time and check

each step carefully.

x0 D a; x1 D at; x2 D at
2
; x3 D at

3
; : : : xn D at

n
D b:

These points subdivide the interval Œa; b� into n subintervals of which the i th, Œxi�1; xi �,

has length �xi D at i�1.t � 1/. If f .x/ D xk , then f .xi / D ak tki . The sum of the

areas of the rectangles shown in Figure 5.8 is:

Sn D

n
X

iD1

f .xi/�xi

D

n
X

iD1

a
k
t
ki
at

i�1
.t � 1/

D a
kC1

.t � 1/ t
k

n
X

iD1

t
.kC1/.i�1/

D a
kC1

.t � 1/ t
k

n
X

iD1

r
.i�1/ where r D tkC1

D a
kC1

.t � 1/ t
k r

n
� 1

r � 1
(by Theorem 1(d))

D a
kC1

.t � 1/ t
k t

.kC1/n
� 1

tkC1
� 1

:

Now replace t with its value .b=a/1=n and rearrange factors to obtain

Sn D a
kC1

 

�

b

a

�1=n

� 1

!

�

b

a

�k=n

�

b

a

�kC1

� 1

�

b

a

�.kC1/=n

� 1

D

�

b
kC1
� a

kC1
�

c
k=n c1=n

� 1

c.kC1/=n
� 1

; where c D
b

a
:

Of the three factors in the final line above, the first does not depend on n, and the

second, ck=n, approaches c0
D 1 as n!1. The third factor is an indeterminate form

of type Œ0=0�, which we evaluate using l’Hôpital’s Rule. First let u D 1=n. Then

lim
n!1

c1=n
� 1

c.kC1/=n
� 1
D lim

u!0C

cu
� 1

c.kC1/u
� 1

�

0

0

�

D lim
u!0C

cu ln c

.k C 1/ c.kC1/u ln c
D

1

k C 1
:
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Therefore, the required area is

A D lim
n!1

Sn D
�

b
kC1
� a

kC1
�

� 1 �
1

k C 1
D

b
kC1
� a

kC1

k C 1
square units.

As you can see, it can be rather difficult to calculate areas bounded by curves by the

methods developed above. Fortunately, there is an easier way, as we will discover in

Section 5.5.

Remark For technical reasons it was necessary to assume a > 0 in Example 3. The

result is also valid for a D 0 provided k > �1. In this case we have lima!0C a
kC1
D

0, so the area under y D x
k, above y D 0, between x D 0 and x D b > 0 is

A D bkC1=.k C 1/ square units. For k D 2 this agrees with the result of Example 2.

E X A M P L E 4 Identify the limit L D lim
n!1

n
X

iD1

n � i

n2
as an area, and evaluate it.

Solution We can rewrite the i th term of the sum so that it depends on i=n:

L D lim
n!1

n
X

iD1

�

1�
i

n

�

1

n
:

The terms now appear to be the areas of rectangles of base 1=n and heights 1 � xi ,

.1 � i � n/, where

x1 D
1

n
; x2 D

2

n
; x3 D

3

n
; : : : ; xn D

n

n
:

Thus, the limit L is the area under the curve y D 1 � x from x D 0 to x D 1. (See

Figure 5.9.) This region is a triangle having area 1=2 square unit, so L D 1=2.

y

x

1

y D 1 � x

1
n

2
n

3
n

n
n D1

Figure 5.9 Recognizing a sum of areas

E X E R C I S E S 5.2

Use the techniques of Examples 1 and 2 (with subintervals of equal

length) to find the areas of the regions specified in Exercises 1–13.

1. Below y D 3x, above y D 0, from x D 0 to x D 1.

2. Below y D 2x C 1, above y D 0, from x D 0 to x D 3.

3. Below y D 2x � 1, above y D 0, from x D 1 to x D 3.

4. Below y D 3x C 4, above y D 0, from x D �1 to x D 2.

5. Below y D x2, above y D 0, from x D 1 to x D 3.

6. Below y D x2
C 1, above y D 0, from x D 0 to x D a > 0.

7. Below y D x2
C 2x C 3, above y D 0, from x D �1 to

x D 2.

8. Above y D x2
� 1, below y D 0.

9. Above y D 1 � x, below y D 0, from x D 2 to x D 4.

10. Above y D x2
� 2x, below y D 0.

11. Below y D 4x � x2
C 1, above y D 1.

12.I Below y D ex , above y D 0, from x D 0 to x D b > 0.

13.I Below y D 2
x , above y D 0, from x D �1 to x D 1.

14. Use the formula
Pn

iD1 i
3
D n

2
.nC 1/

2
=4, from

Exercises 39–41 of Section 5.1, to find the area of the region

lying under y D x3, above the x-axis, and between the

vertical lines at x D 0 and x D b > 0.

15. Use the subdivision of Œa; b� given in Example 3 to find the

area under y D 1=x, above y D 0, from x D a > 0 to

x D b > a. Why should your answer not be surprising?

In Exercises 16–19, interpret the given sum Sn as a sum of areas of

rectangles approximating the area of a certain region in the plane

and hence evaluate limn!1 Sn.

16. Sn D

n
X

iD1

2

n

�

1 �
i

n

�

17. Sn D

n
X

iD1

2

n

�

1 �
2i

n

�

18. Sn D

n
X

iD1

2nC 3i

n2
19.I Sn D

n
X

j D1

1

n

p

1 � .j=n/2
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Figure 5.8 For this partition the

subinterval lengths increase exponentially

y

xa at at2 at3 atn�1 atn D b

y D xk

Solution Let t D .b=a/1=n and let

BEWARE! This is a long and

rather difficult example. Either skip

over it or take your time and check

each step carefully.

x0 D a; x1 D at; x2 D at
2
; x3 D at

3
; : : : xn D at

n
D b:

These points subdivide the interval Œa; b� into n subintervals of which the i th, Œxi�1; xi �,

has length �xi D at i�1.t � 1/. If f .x/ D xk , then f .xi / D ak tki . The sum of the

areas of the rectangles shown in Figure 5.8 is:

Sn D

n
X

iD1

f .xi/�xi

D

n
X

iD1

a
k
t
ki
at

i�1
.t � 1/

D a
kC1

.t � 1/ t
k

n
X

iD1

t
.kC1/.i�1/

D a
kC1

.t � 1/ t
k

n
X

iD1

r
.i�1/ where r D tkC1

D a
kC1

.t � 1/ t
k r

n
� 1

r � 1
(by Theorem 1(d))

D a
kC1

.t � 1/ t
k t

.kC1/n
� 1

tkC1
� 1

:

Now replace t with its value .b=a/1=n and rearrange factors to obtain

Sn D a
kC1

 

�

b

a

�1=n

� 1

!

�

b

a

�k=n

�

b

a

�kC1

� 1

�

b

a

�.kC1/=n

� 1

D

�

b
kC1
� a

kC1
�

c
k=n c1=n

� 1

c.kC1/=n
� 1

; where c D
b

a
:

Of the three factors in the final line above, the first does not depend on n, and the

second, ck=n, approaches c0
D 1 as n!1. The third factor is an indeterminate form

of type Œ0=0�, which we evaluate using l’Hôpital’s Rule. First let u D 1=n. Then

lim
n!1

c1=n
� 1

c.kC1/=n
� 1
D lim

u!0C

cu
� 1

c.kC1/u
� 1

�

0

0

�

D lim
u!0C

cu ln c

.k C 1/ c.kC1/u ln c
D

1

k C 1
:
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Therefore, the required area is

A D lim
n!1

Sn D
�

b
kC1
� a

kC1
�

� 1 �
1

k C 1
D

b
kC1
� a

kC1

k C 1
square units.

As you can see, it can be rather difficult to calculate areas bounded by curves by the

methods developed above. Fortunately, there is an easier way, as we will discover in

Section 5.5.

Remark For technical reasons it was necessary to assume a > 0 in Example 3. The

result is also valid for a D 0 provided k > �1. In this case we have lima!0C a
kC1
D

0, so the area under y D x
k, above y D 0, between x D 0 and x D b > 0 is

A D bkC1=.k C 1/ square units. For k D 2 this agrees with the result of Example 2.

E X A M P L E 4 Identify the limit L D lim
n!1

n
X

iD1

n � i

n2
as an area, and evaluate it.

Solution We can rewrite the i th term of the sum so that it depends on i=n:

L D lim
n!1

n
X

iD1

�

1�
i

n

�

1

n
:

The terms now appear to be the areas of rectangles of base 1=n and heights 1 � xi ,

.1 � i � n/, where

x1 D
1

n
; x2 D

2

n
; x3 D

3

n
; : : : ; xn D

n

n
:

Thus, the limit L is the area under the curve y D 1 � x from x D 0 to x D 1. (See

Figure 5.9.) This region is a triangle having area 1=2 square unit, so L D 1=2.

y

x

1

y D 1 � x

1
n

2
n

3
n

n
n D1

Figure 5.9 Recognizing a sum of areas

E X E R C I S E S 5.2

Use the techniques of Examples 1 and 2 (with subintervals of equal

length) to find the areas of the regions specified in Exercises 1–13.

1. Below y D 3x, above y D 0, from x D 0 to x D 1.

2. Below y D 2x C 1, above y D 0, from x D 0 to x D 3.

3. Below y D 2x � 1, above y D 0, from x D 1 to x D 3.

4. Below y D 3x C 4, above y D 0, from x D �1 to x D 2.

5. Below y D x2, above y D 0, from x D 1 to x D 3.

6. Below y D x2
C 1, above y D 0, from x D 0 to x D a > 0.

7. Below y D x2
C 2x C 3, above y D 0, from x D �1 to

x D 2.

8. Above y D x2
� 1, below y D 0.

9. Above y D 1 � x, below y D 0, from x D 2 to x D 4.

10. Above y D x2
� 2x, below y D 0.

11. Below y D 4x � x2
C 1, above y D 1.

12.I Below y D ex , above y D 0, from x D 0 to x D b > 0.

13.I Below y D 2
x , above y D 0, from x D �1 to x D 1.

14. Use the formula
Pn

iD1 i
3
D n

2
.nC 1/

2
=4, from

Exercises 39–41 of Section 5.1, to find the area of the region

lying under y D x3, above the x-axis, and between the

vertical lines at x D 0 and x D b > 0.

15. Use the subdivision of Œa; b� given in Example 3 to find the

area under y D 1=x, above y D 0, from x D a > 0 to

x D b > a. Why should your answer not be surprising?

In Exercises 16–19, interpret the given sum Sn as a sum of areas of

rectangles approximating the area of a certain region in the plane

and hence evaluate limn!1 Sn.

16. Sn D

n
X

iD1

2

n

�

1 �
i

n

�

17. Sn D

n
X

iD1

2

n

�

1 �
2i

n

�

18. Sn D

n
X

iD1

2nC 3i

n2
19.I Sn D

n
X

j D1

1

n

p

1 � .j=n/2
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5.3 The Definite Integral

In this section we generalize and make more precise the procedure used for finding

areas developed in Section 5.2, and we use it to define the definite integral of a func-

tion f on an interval I: Let us assume, for the time being, that f .x/ is defined and

continuous on the closed, finite interval Œa; b�. We no longer assume that the values of

f are nonnegative.

Partitions and Riemann Sums
Let P be a finite set of points arranged in order between a and b on the real line, say

P D fx0; x1; x2; x3; : : : ; xn�1; xng;

where a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b. Such a set P is called a

partition of Œa; b�; it divides Œa; b� into n subintervals of which the i th is Œxi�1; xi �. We

call these the subintervals of the partition P . The number n depends on the particular

partition, so we write n D n.P /. The length of the i th subinterval of P is

�xi D xi � xi�1; (for 1 � i � n),

and we call the greatest of these numbers �xi the norm of the partition P and denote

it kP k:

kP k D max
1�i�n

�xi :

Since f is continuous on each subinterval Œxi�1; xi � of P; it takes on maximum and

minimum values at points of that interval (by Theorem 8 of Section 1.4). Thus, there

are numbers li and ui in Œxi�1; xi � such that

f .li / � f .x/ � f .ui / whenever xi�1 � x � xi :

If f .x/ � 0 on Œa; b�, then f .li /�xi and f .ui /�xi represent the areas of rectangles

having the interval Œxi�1; xi � on the x-axis as base, and having tops passing through

the lowest and highest points, respectively, on the graph of f on that interval. (See

Figure 5.10.) If Ai is that part of the area under y D f .x/ and above the x-axis that

lies in the vertical strip between x D xi�1 and x D xi , then

xxi�1 ui li
xi

y D f .x/

Figure 5.10

f .li /�xi � Ai � f .ui /�xi :

If f can have negative values, then one or both of f .li /�xi and f .ui /�xi can be

negative and will then represent the negative of the area of a rectangle lying below the

x-axis. In any event, we always have f .li /�xi � f .ui/�xi .

D E F I N I T I O N

2

Upper and lower Riemann sums

The lower (Riemann) sum,L.f;P /, and the upper (Riemann) sum,U.f;P /,

for the function f and the partition P are defined by:

L.f;P / D f .l1/�x1 C f .l2/�x2 C � � � C f .ln/�xn

D

n
X

iD1

f .li /�xi ;

U.f; P / D f .u1/�x1 C f .u2/�x2 C � � � C f .un/�xn

D

n
X

iD1

f .ui/�xi :

Figure 5.11 illustrates these Riemann sums as sums of signed areas of rectangles; any

such areas that lie below the x-axis are counted as negative.
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Figure 5.11 (a) A lower Riemann sum

and (b) an upper Riemann sum for a

decreasing function f: The areas of

rectangles shaded in green are counted as

positive; those shaded in blue are counted

as negative

x

y D f .x/

x3

Dl3

xn

Dln

x0 x1

Dl1 x2

Dl2

x

xn�1
Dun xn

y D f .x/

x0
Du1

x1
Du2

x2
Du3

(a) (b)

E X A M P L E 1
Calculate lower and upper Riemann sums for the function

f .x/ D 1=x on the interval Œ1; 2�, corresponding to the partition

P of Œ1; 2� into four subintervals of equal length.

Solution The partition P consists of the points x0 D 1, x1 D 5=4, x2 D 3=2,

x3 D 7=4, and x4 D 2. Since 1=x is decreasing on Œ1; 2�, its minimum and maximum

values on the i th subinterval Œxi�1; xi � are 1=xi and 1=xi�1, respectively. Thus, the

lower and upper Riemann sums are

L.f;P / D
1

4

�

4

5
C

2

3
C

4

7
C

1

2

�

D

533

840
� 0:6345;

U.f; P / D
1

4

�

1C
4

5
C

2

3
C

4

7

�

D

319

420
� 0:7595:

E X A M P L E 2
Calculate the lower and upper Riemann sums for the function

f .x/ D x2 on the interval Œ0; a� (where a > 0), corresponding

to the partition Pn of Œ0; a� into n subintervals of equal length.

Solution Each subinterval of Pn has length �x D a=n, and the division points are

given by xi D ia=n for i D 0, 1, 2, : : : , n. Since x2 is increasing on Œ0; a�, its

minimum and maximum values over the i th subinterval Œxi�1; xi � occur at li D xi�1

and ui D xi , respectively. Thus, the lower Riemann sum of f for Pn is

L.f;Pn/ D

n
X

iD1

.xi�1/
2
�x D

a3

n3

n
X

iD1

.i � 1/
2

D

a3

n3

n�1
X

j D0

j
2
D

a3

n3

.n � 1/n.2.n � 1/C 1/

6
D

.n � 1/.2n � 1/a3

6n2
;

where we have used Theorem 1(c) of Section 5.1 to evaluate the sum of squares. Sim-

ilarly, the upper Riemann sum is

U.f;Pn/ D

n
X

iD1

.xi /
2
�x

D

a3

n3

n
X

iD1

i
2
D

a3

n3

n.nC 1/.2nC 1/

6
D

.nC 1/.2nC 1/a3

6n2
:

The Definite Integral
If we calculate L.f;P / and U.f;P / for partitions P having more and more points

spaced closer and closer together, we expect that, in the limit, these Riemann sums

will converge to a common value that will be the area bounded by y D f .x/, y D 0,

x D a, and x D b if f .x/ � 0 on Œa; b�. This is indeed the case, but we cannot fully

prove it yet.
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5.3 The Definite Integral

In this section we generalize and make more precise the procedure used for finding

areas developed in Section 5.2, and we use it to define the definite integral of a func-

tion f on an interval I: Let us assume, for the time being, that f .x/ is defined and

continuous on the closed, finite interval Œa; b�. We no longer assume that the values of

f are nonnegative.

Partitions and Riemann Sums
Let P be a finite set of points arranged in order between a and b on the real line, say

P D fx0; x1; x2; x3; : : : ; xn�1; xng;

where a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b. Such a set P is called a

partition of Œa; b�; it divides Œa; b� into n subintervals of which the i th is Œxi�1; xi �. We

call these the subintervals of the partition P . The number n depends on the particular

partition, so we write n D n.P /. The length of the i th subinterval of P is

�xi D xi � xi�1; (for 1 � i � n),

and we call the greatest of these numbers �xi the norm of the partition P and denote

it kP k:

kP k D max
1�i�n

�xi :

Since f is continuous on each subinterval Œxi�1; xi � of P; it takes on maximum and

minimum values at points of that interval (by Theorem 8 of Section 1.4). Thus, there

are numbers li and ui in Œxi�1; xi � such that

f .li / � f .x/ � f .ui / whenever xi�1 � x � xi :

If f .x/ � 0 on Œa; b�, then f .li /�xi and f .ui /�xi represent the areas of rectangles

having the interval Œxi�1; xi � on the x-axis as base, and having tops passing through

the lowest and highest points, respectively, on the graph of f on that interval. (See

Figure 5.10.) If Ai is that part of the area under y D f .x/ and above the x-axis that

lies in the vertical strip between x D xi�1 and x D xi , then

xxi�1 ui li
xi

y D f .x/

Figure 5.10

f .li /�xi � Ai � f .ui /�xi :

If f can have negative values, then one or both of f .li /�xi and f .ui /�xi can be

negative and will then represent the negative of the area of a rectangle lying below the

x-axis. In any event, we always have f .li /�xi � f .ui/�xi .

D E F I N I T I O N

2

Upper and lower Riemann sums

The lower (Riemann) sum,L.f;P /, and the upper (Riemann) sum,U.f;P /,

for the function f and the partition P are defined by:

L.f;P / D f .l1/�x1 C f .l2/�x2 C � � � C f .ln/�xn

D

n
X

iD1

f .li /�xi ;

U.f; P / D f .u1/�x1 C f .u2/�x2 C � � � C f .un/�xn

D

n
X

iD1

f .ui/�xi :

Figure 5.11 illustrates these Riemann sums as sums of signed areas of rectangles; any

such areas that lie below the x-axis are counted as negative.
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Figure 5.11 (a) A lower Riemann sum

and (b) an upper Riemann sum for a

decreasing function f: The areas of

rectangles shaded in green are counted as

positive; those shaded in blue are counted

as negative

x

y D f .x/

x3

Dl3

xn

Dln

x0 x1

Dl1 x2

Dl2

x

xn�1
Dun xn

y D f .x/

x0
Du1

x1
Du2

x2
Du3

(a) (b)

E X A M P L E 1
Calculate lower and upper Riemann sums for the function

f .x/ D 1=x on the interval Œ1; 2�, corresponding to the partition

P of Œ1; 2� into four subintervals of equal length.

Solution The partition P consists of the points x0 D 1, x1 D 5=4, x2 D 3=2,

x3 D 7=4, and x4 D 2. Since 1=x is decreasing on Œ1; 2�, its minimum and maximum

values on the i th subinterval Œxi�1; xi � are 1=xi and 1=xi�1, respectively. Thus, the

lower and upper Riemann sums are

L.f;P / D
1

4

�

4

5
C

2

3
C

4

7
C

1

2

�

D

533

840
� 0:6345;

U.f; P / D
1

4

�

1C
4

5
C

2

3
C

4

7

�

D

319

420
� 0:7595:

E X A M P L E 2
Calculate the lower and upper Riemann sums for the function

f .x/ D x2 on the interval Œ0; a� (where a > 0), corresponding

to the partition Pn of Œ0; a� into n subintervals of equal length.

Solution Each subinterval of Pn has length �x D a=n, and the division points are

given by xi D ia=n for i D 0, 1, 2, : : : , n. Since x2 is increasing on Œ0; a�, its

minimum and maximum values over the i th subinterval Œxi�1; xi � occur at li D xi�1

and ui D xi , respectively. Thus, the lower Riemann sum of f for Pn is

L.f;Pn/ D

n
X

iD1

.xi�1/
2
�x D

a3

n3

n
X

iD1

.i � 1/
2

D

a3

n3

n�1
X

j D0

j
2
D

a3

n3

.n � 1/n.2.n � 1/C 1/

6
D

.n � 1/.2n � 1/a3

6n2
;

where we have used Theorem 1(c) of Section 5.1 to evaluate the sum of squares. Sim-

ilarly, the upper Riemann sum is

U.f;Pn/ D

n
X

iD1

.xi /
2
�x

D

a3

n3

n
X

iD1

i
2
D

a3

n3

n.nC 1/.2nC 1/

6
D

.nC 1/.2nC 1/a3

6n2
:

The Definite Integral
If we calculate L.f;P / and U.f;P / for partitions P having more and more points

spaced closer and closer together, we expect that, in the limit, these Riemann sums

will converge to a common value that will be the area bounded by y D f .x/, y D 0,

x D a, and x D b if f .x/ � 0 on Œa; b�. This is indeed the case, but we cannot fully

prove it yet.
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If P1 and P2 are two partitions of Œa; b� such that every point of P1 also belongs

to P2, then we say that P2 is a refinement of P1. It is not difficult to show that in this

case

L.f;P1/ � L.f;P2/ � U.f;P2/ � U.f;P1/I

adding more points to a partition increases the lower sum and decreases the upper sum.

(See Exercise 18 at the end of this section.) Given any two partitions, P1 and P2, we

can form their common refinement P; which consists of all of the points of P1 and

P2. Thus,

L.f;P1/ � L.f;P / � U.f;P / � U.f;P2/:

Hence, every lower sum is less than or equal to every upper sum. Since the real num-

bers are complete, there must exist at least one real number I such that

L.f;P / � I � U.f;P / for every partition P:

If there is only one such number, we will call it the definite integral of f on Œa; b�.

D E F I N I T I O N

3

The definite integral

Suppose there is exactly one number I such that for every partitionP of Œa; b�

we have

L.f;P / � I � U.f;P /:

Then we say that the function f is integrable on Œa; b�, and we call I the

definite integral of f on Œa; b�. The definite integral is denoted by the symbol

I D

Z b

a

f .x/ dx:

The definite integral of f .x/ over Œa; b� is a number; it is not a function of x. It

depends on the numbers a and b and on the particular function f , but not on the

variable x (which is a dummy variable like the variable i in the sum
Pn

iD1 f .i/).

Replacing x with another variable does not change the value of the integral:

Z b

a

f .x/ dx D

Z b

a

f .t/ dt:

While we normally write the

definite integral of f .x/ as

Z b

a

f .x/ dx;

it is equally correct to write it as

Z b

a

dx f .x/:

This latter form will become

quite useful when we deal with

multiple integrals in Chapter 14.

The various parts of the symbol

Z b

a

f .x/ dx have their own names:

(i)
R

is called the integral sign; it resembles the letter S since it represents the limit

of a sum.

(ii) a and b are called the limits of integration; a is the lower limit, b is the upper

limit.

(iii) The function f is the integrand; x is the variable of integration.

(iv) dx is the differential of x. It replaces �x in the Riemann sums. If an integrand

depends on more than one variable, the differential tells you which one is the

variable of integration.

E X A M P L E 3
Show that f .x/ D x2 is integrable over the interval Œ0; a�, where

a > 0, and evaluate

Z a

0

x
2
dx.
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Solution We evaluate the limits as n ! 1 of the lower and upper sums of f over

Œ0; a� obtained in Example 2 above.

lim
n!1

L.f;Pn/ D lim
n!1

.n � 1/.2n � 1/a3

6n2
D

a3

3
;

lim
n!1

U.f;Pn/ D lim
n!1

.nC 1/.2nC 1/a3

6n2
D

a3

3
:

If L.f;Pn/ � I � U.f;Pn/, we must have I D a3=3. Thus, f .x/ D x2 is integrable

over Œ0; a�, and

Z a

0

f .x/ dx D

Z a

0

x
2
dx D

a3

3
:

For all partitions P of Œa; b�, we have

L.f;P / �

Z b

a

f .x/ dx � U.f;P /:

If f .x/ � 0 on Œa; b�, then the area of the regionR bounded by the graph of y D f .x/,

the x-axis, and the lines x D a and x D b is A square units, where A D
R b

a
f .x/ dx.

If f .x/ � 0 on Œa; b�, the area of R is �
R b

a
f .x/ dx square units. For general f;

R b

a
f .x/ dx is the area of that part of R lying above the x-axis minus the area of that

part lying below the x-axis. (See Figure 5.12.) You can think of
R b

a
f .x/ dx as a

“sum” of “areas” of infinitely many rectangles with heights f .x/ and “infinitesimally

small widths” dx; it is a limit of the upper and lower Riemann sums.

Figure 5.12

Z b

a

f .x/ dx equals

area R1 � area R2 C area R3

y

x

R1

R2

R3

ba

y D f .x/

General Riemann Sums
Let P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn D b, be a

partition of Œa; b� having norm kP k D max1�i�n�xi . In each subinterval Œxi�1; xi �

of P; pick a point ci (called a tag). Let c D .c1; c2; : : : ; cn/ denote the set of these

tags. The sum

R.f;P; c/ D

n
X

iD1

f .ci/�xi

D f .c1/�x1 C f .c2/�x2 C f .c3/�x3 C � � � C f .cn/�xn

is called the Riemann sum of f on Œa; b� corresponding to partition P and tags c.

Note in Figure 5.13 that R.f;P; c/ is a sum of signed areas of rectangles between

the x-axis and the curve y D f .x/. For any choice of the tags c, the Riemann sum

R.f;P; c/ satisfies

L.f;P / � R.f;P; c/ � U.f;P /:
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If P1 and P2 are two partitions of Œa; b� such that every point of P1 also belongs

to P2, then we say that P2 is a refinement of P1. It is not difficult to show that in this

case

L.f;P1/ � L.f;P2/ � U.f;P2/ � U.f;P1/I

adding more points to a partition increases the lower sum and decreases the upper sum.

(See Exercise 18 at the end of this section.) Given any two partitions, P1 and P2, we

can form their common refinement P; which consists of all of the points of P1 and

P2. Thus,

L.f;P1/ � L.f;P / � U.f;P / � U.f;P2/:

Hence, every lower sum is less than or equal to every upper sum. Since the real num-

bers are complete, there must exist at least one real number I such that

L.f;P / � I � U.f;P / for every partition P:

If there is only one such number, we will call it the definite integral of f on Œa; b�.

D E F I N I T I O N

3

The definite integral

Suppose there is exactly one number I such that for every partitionP of Œa; b�

we have

L.f;P / � I � U.f;P /:

Then we say that the function f is integrable on Œa; b�, and we call I the

definite integral of f on Œa; b�. The definite integral is denoted by the symbol

I D

Z b

a

f .x/ dx:

The definite integral of f .x/ over Œa; b� is a number; it is not a function of x. It

depends on the numbers a and b and on the particular function f , but not on the

variable x (which is a dummy variable like the variable i in the sum
Pn

iD1 f .i/).

Replacing x with another variable does not change the value of the integral:

Z b

a

f .x/ dx D

Z b

a

f .t/ dt:

While we normally write the

definite integral of f .x/ as

Z b

a

f .x/ dx;

it is equally correct to write it as

Z b

a

dx f .x/:

This latter form will become

quite useful when we deal with

multiple integrals in Chapter 14.

The various parts of the symbol

Z b

a

f .x/ dx have their own names:

(i)
R

is called the integral sign; it resembles the letter S since it represents the limit

of a sum.

(ii) a and b are called the limits of integration; a is the lower limit, b is the upper

limit.

(iii) The function f is the integrand; x is the variable of integration.

(iv) dx is the differential of x. It replaces �x in the Riemann sums. If an integrand

depends on more than one variable, the differential tells you which one is the

variable of integration.

E X A M P L E 3
Show that f .x/ D x2 is integrable over the interval Œ0; a�, where

a > 0, and evaluate

Z a

0

x
2
dx.
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Solution We evaluate the limits as n ! 1 of the lower and upper sums of f over

Œ0; a� obtained in Example 2 above.

lim
n!1

L.f;Pn/ D lim
n!1

.n � 1/.2n � 1/a3

6n2
D

a3

3
;

lim
n!1

U.f;Pn/ D lim
n!1

.nC 1/.2nC 1/a3

6n2
D

a3

3
:

If L.f;Pn/ � I � U.f;Pn/, we must have I D a3=3. Thus, f .x/ D x2 is integrable

over Œ0; a�, and

Z a

0

f .x/ dx D

Z a

0

x
2
dx D

a3

3
:

For all partitions P of Œa; b�, we have

L.f;P / �

Z b

a

f .x/ dx � U.f;P /:

If f .x/ � 0 on Œa; b�, then the area of the regionR bounded by the graph of y D f .x/,

the x-axis, and the lines x D a and x D b is A square units, where A D
R b

a
f .x/ dx.

If f .x/ � 0 on Œa; b�, the area of R is �
R b

a
f .x/ dx square units. For general f;

R b

a
f .x/ dx is the area of that part of R lying above the x-axis minus the area of that

part lying below the x-axis. (See Figure 5.12.) You can think of
R b

a
f .x/ dx as a

“sum” of “areas” of infinitely many rectangles with heights f .x/ and “infinitesimally

small widths” dx; it is a limit of the upper and lower Riemann sums.

Figure 5.12

Z b

a

f .x/ dx equals

area R1 � area R2 C area R3

y

x

R1

R2

R3

ba

y D f .x/

General Riemann Sums
Let P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn D b, be a

partition of Œa; b� having norm kP k D max1�i�n�xi . In each subinterval Œxi�1; xi �

of P; pick a point ci (called a tag). Let c D .c1; c2; : : : ; cn/ denote the set of these

tags. The sum

R.f;P; c/ D

n
X

iD1

f .ci/�xi

D f .c1/�x1 C f .c2/�x2 C f .c3/�x3 C � � � C f .cn/�xn

is called the Riemann sum of f on Œa; b� corresponding to partition P and tags c.

Note in Figure 5.13 that R.f;P; c/ is a sum of signed areas of rectangles between

the x-axis and the curve y D f .x/. For any choice of the tags c, the Riemann sum

R.f;P; c/ satisfies

L.f;P / � R.f;P; c/ � U.f;P /:
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Therefore, if f is integrable on Œa; b�, then its integral is the limit of such Riemann

sums, where the limit is taken as the number n.P / of subintervals of P increases to

infinity in such a way that the lengths of all the subintervals approach zero. That is,

lim
n.P /!1

kP k!0

R.f;P; c/ D

Z b

a

f .x/ dx:

As we will see in Chapter 7, many applications of integration depend on recognizing

that a limit of Riemann sums is a definite integral.

Figure 5.13 The Riemann sum R.f; P; c/

is the sum of areas of the rectangles shaded

in green minus the sum of the areas of the

rectangles shaded in blue

y

x

xi�1 xi

ci

x0 x1 x2 xn

D bD a

c1 c2 cn

y D f .x/

T H E O R E M

2

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

Remark The assumption that f is continuous in Theorem 2 may seem a bit super-

fluous since continuity was required throughout the above discussion leading to the

definition of the definite integral. We cannot, however, prove this theorem yet. Its

proof makes subtle use of the completeness property of the real numbers and is given

in Appendix IV in the context of an extended definition of definite integral that is

meaningful for a larger class of functions that are not necessarily continuous. (The

integral studied in Appendix IV is called the Riemann integral.)

We can, however, make the following observation. In order to prove that f is

integrable on Œa; b�, it is sufficient that, for any given positive number �, we should be

able to find a partition P of Œa; b� for which U.f;P / � L.f;P / < �. This condition

prevents there being more than one number I that is both greater than every lower

sum and less than every upper sum. It is not difficult to find such a partition if the

function f is nondecreasing (or if it is nonincreasing) on Œa; b�. (See Exercise 17

at the end of this section.) Therefore, nondecreasing and nonincreasing continuous

functions are integrable; so, therefore, is any continuous function that is the sum of

a nondecreasing and a nonincreasing function. This class of functions includes any

continuous functions we are likely to encounter in concrete applications of calculus

but, unfortunately, does not include all continuous functions.

Meanwhile, in Sections 5.4 and 6.5 we will extend the definition of the definite

integral to certain kinds of functions that are not continuous, or where the interval of

integration is not closed or not bounded.

E X A M P L E 4 Express the limit lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

as a definite

integral.

Solution We want to interpret the sum as a Riemann sum for f .x/ D .1 C x/1=3.

The factor 2=n suggests that the interval of integration has length 2 and is partitioned
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into n equal subintervals, each of length 2=n. Let ci D .2i � 1/=n for i D 1, 2, 3, : : : ,

n. As n!1, c1 D 1=n! 0 and cn D .2n � 1/=n! 2. Thus, the interval is Œ0; 2�,

and the points of the partition are xi D 2i=n. Observe that xi�1 D .2i � 2/=n < ci <

2i=n D xi for each i , so that the sum is indeed a Riemann sum for f .x/ over Œ0; 2�.

Since f is continuous on that interval, it is integrable there, and

lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

D

Z 2

0

.1C x/
1=3
dx:

E X E R C I S E S 5.3

In Exercises 1–6, let Pn denote the partition of the given interval

Œa; b� into n subintervals of equal length �xi D .b � a/=n.

Evaluate L.f; Pn/ and U.f; Pn/ for the given functions f and the

given values of n.

1. f .x/ D x on Œ0; 2�, with n D 8

2. f .x/ D x2 on Œ0; 4�, with n D 4

3. f .x/ D ex on Œ�2; 2�, with n D 4

4. f .x/ D lnx on Œ1; 2�, with n D 5

5. f .x/ D sinx on Œ0; ��, with n D 6

6. f .x/ D cosx on Œ0; 2��, with n D 4

In Exercises 7–10, calculate L.f; Pn/ and U.f; Pn/ for the given

function f over the given interval Œa; b�, where Pn is the partition

of the interval into n subintervals of equal length

�x D .b � a/=n. Show that

lim
n!1

L.f; Pn/ D lim
n!1

U.f; Pn/:

Hence, f is integrable on Œa; b�. (Why?) What is
R b

a f .x/ dx?

7. f .x/ D x; Œa; b� D Œ0; 1�

8. f .x/ D 1 � x; Œa; b� D Œ0; 2�

9. f .x/ D x3
; Œa; b� D Œ0; 1�

10. f .x/ D ex
; Œa; b� D Œ0; 3�

In Exercises 11–16, express the given limit as a definite integral.

11. lim
n!1

n
X

iD1

1

n

r

i

n
12. lim

n!1

n
X

iD1

1

n

r

i � 1

n

13. lim
n!1

n
X

iD1

�

n
sin

�

�i

n

�

14. lim
n!1

n
X

iD1

2

n
ln

�

1C
2i

n

�

15. lim
n!1

n
X

iD1

1

n
tan�1

�

2i � 1

2n

�

16. lim
n!1

n
X

iD1

n

n2
C i2

17.I If f is continuous and nondecreasing on Œa; b�, and Pn is the

partition of Œa; b� into n subintervals of equal length

(�xi D .b � a/=n for 1 � i � n), show that

U.f; Pn/ � L.f; Pn/ D

.b � a/

�

f .b/ � f .a/

�

n
:

Since we can make the right side as small as we please by

choosing n large enough, f must be integrable on Œa; b�.

18.I Let P D fa D x0 < x1 < x2 < � � � < xn D bg be a partition

of Œa; b�, and let P 0 be a refinement of P having one more

point, x 0, satisfying, say, xi�1 < x
0
< xi for some i between

1 and n. Show that

L.f; P / � L.f; P
0
/ � U.f; P

0
/ � U.f; P /

for any continuous function f: (Hint: Consider the maximum

and minimum values of f on the intervals Œxi�1; xi �,

Œxi�1; x
0�, and Œx 0; xi �.) Hence, deduce that

L.f; P / � L.f; P
00
/ � U.f; P

00
/ � U.f; P / if P 00

is any refinement of P:

5.4 Properties of the Definite Integral

It is convenient to extend the definition of the definite integral
R b

a
f .x/ dx to allow

a D b and a > b as well as a < b. The extension still involves partitions P having

x0 D a and xn D b with intermediate points occurring in order between these end

points, so that if a D b, then we must have�xi D 0 for every i , and hence the integral

is zero. If a > b, we have �xi < 0 for each i , so the integral will be negative for

positive functions f and vice versa.
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Therefore, if f is integrable on Œa; b�, then its integral is the limit of such Riemann

sums, where the limit is taken as the number n.P / of subintervals of P increases to

infinity in such a way that the lengths of all the subintervals approach zero. That is,

lim
n.P /!1

kP k!0

R.f;P; c/ D

Z b

a

f .x/ dx:

As we will see in Chapter 7, many applications of integration depend on recognizing

that a limit of Riemann sums is a definite integral.

Figure 5.13 The Riemann sum R.f; P; c/

is the sum of areas of the rectangles shaded

in green minus the sum of the areas of the

rectangles shaded in blue

y

x

xi�1 xi

ci

x0 x1 x2 xn

D bD a

c1 c2 cn

y D f .x/

T H E O R E M

2

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

Remark The assumption that f is continuous in Theorem 2 may seem a bit super-

fluous since continuity was required throughout the above discussion leading to the

definition of the definite integral. We cannot, however, prove this theorem yet. Its

proof makes subtle use of the completeness property of the real numbers and is given

in Appendix IV in the context of an extended definition of definite integral that is

meaningful for a larger class of functions that are not necessarily continuous. (The

integral studied in Appendix IV is called the Riemann integral.)

We can, however, make the following observation. In order to prove that f is

integrable on Œa; b�, it is sufficient that, for any given positive number �, we should be

able to find a partition P of Œa; b� for which U.f;P / � L.f;P / < �. This condition

prevents there being more than one number I that is both greater than every lower

sum and less than every upper sum. It is not difficult to find such a partition if the

function f is nondecreasing (or if it is nonincreasing) on Œa; b�. (See Exercise 17

at the end of this section.) Therefore, nondecreasing and nonincreasing continuous

functions are integrable; so, therefore, is any continuous function that is the sum of

a nondecreasing and a nonincreasing function. This class of functions includes any

continuous functions we are likely to encounter in concrete applications of calculus

but, unfortunately, does not include all continuous functions.

Meanwhile, in Sections 5.4 and 6.5 we will extend the definition of the definite

integral to certain kinds of functions that are not continuous, or where the interval of

integration is not closed or not bounded.

E X A M P L E 4 Express the limit lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

as a definite

integral.

Solution We want to interpret the sum as a Riemann sum for f .x/ D .1 C x/1=3.

The factor 2=n suggests that the interval of integration has length 2 and is partitioned
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into n equal subintervals, each of length 2=n. Let ci D .2i � 1/=n for i D 1, 2, 3, : : : ,

n. As n!1, c1 D 1=n! 0 and cn D .2n � 1/=n! 2. Thus, the interval is Œ0; 2�,

and the points of the partition are xi D 2i=n. Observe that xi�1 D .2i � 2/=n < ci <

2i=n D xi for each i , so that the sum is indeed a Riemann sum for f .x/ over Œ0; 2�.

Since f is continuous on that interval, it is integrable there, and

lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

D

Z 2

0

.1C x/
1=3
dx:

E X E R C I S E S 5.3

In Exercises 1–6, let Pn denote the partition of the given interval

Œa; b� into n subintervals of equal length �xi D .b � a/=n.

Evaluate L.f; Pn/ and U.f; Pn/ for the given functions f and the

given values of n.

1. f .x/ D x on Œ0; 2�, with n D 8

2. f .x/ D x2 on Œ0; 4�, with n D 4

3. f .x/ D ex on Œ�2; 2�, with n D 4

4. f .x/ D lnx on Œ1; 2�, with n D 5

5. f .x/ D sinx on Œ0; ��, with n D 6

6. f .x/ D cosx on Œ0; 2��, with n D 4

In Exercises 7–10, calculate L.f; Pn/ and U.f; Pn/ for the given

function f over the given interval Œa; b�, where Pn is the partition

of the interval into n subintervals of equal length

�x D .b � a/=n. Show that

lim
n!1

L.f; Pn/ D lim
n!1

U.f; Pn/:

Hence, f is integrable on Œa; b�. (Why?) What is
R b

a f .x/ dx?

7. f .x/ D x; Œa; b� D Œ0; 1�

8. f .x/ D 1 � x; Œa; b� D Œ0; 2�

9. f .x/ D x3
; Œa; b� D Œ0; 1�

10. f .x/ D ex
; Œa; b� D Œ0; 3�

In Exercises 11–16, express the given limit as a definite integral.

11. lim
n!1

n
X

iD1

1

n

r

i

n
12. lim

n!1

n
X

iD1

1

n

r

i � 1

n

13. lim
n!1

n
X

iD1

�

n
sin

�

�i

n

�

14. lim
n!1

n
X

iD1

2

n
ln

�

1C
2i

n

�

15. lim
n!1

n
X

iD1

1

n
tan�1

�

2i � 1

2n

�

16. lim
n!1

n
X

iD1

n

n2
C i2

17.I If f is continuous and nondecreasing on Œa; b�, and Pn is the

partition of Œa; b� into n subintervals of equal length

(�xi D .b � a/=n for 1 � i � n), show that

U.f; Pn/ � L.f; Pn/ D

.b � a/

�

f .b/ � f .a/

�

n
:

Since we can make the right side as small as we please by

choosing n large enough, f must be integrable on Œa; b�.

18.I Let P D fa D x0 < x1 < x2 < � � � < xn D bg be a partition

of Œa; b�, and let P 0 be a refinement of P having one more

point, x 0, satisfying, say, xi�1 < x
0
< xi for some i between

1 and n. Show that

L.f; P / � L.f; P
0
/ � U.f; P

0
/ � U.f; P /

for any continuous function f: (Hint: Consider the maximum

and minimum values of f on the intervals Œxi�1; xi �,

Œxi�1; x
0�, and Œx 0; xi �.) Hence, deduce that

L.f; P / � L.f; P
00
/ � U.f; P

00
/ � U.f; P / if P 00

is any refinement of P:

5.4 Properties of the Definite Integral

It is convenient to extend the definition of the definite integral
R b

a
f .x/ dx to allow

a D b and a > b as well as a < b. The extension still involves partitions P having

x0 D a and xn D b with intermediate points occurring in order between these end

points, so that if a D b, then we must have�xi D 0 for every i , and hence the integral

is zero. If a > b, we have �xi < 0 for each i , so the integral will be negative for

positive functions f and vice versa.
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Some of the most important properties of the definite integral are summarized in

the following theorem.

T H E O R E M

3

Let f and g be integrable on an interval containing the points a, b, and c. Then

(a) An integral over an interval of zero length is zero.

Z a

a

f .x/ dx D 0:

(b) Reversing the limits of integration changes the sign of the integral.

Z a

b

f .x/ dx D �

Z b

a

f .x/ dx:

(c) An integral depends linearly on the integrand. If A and B are constants, then

Z b

a

�

Af .x/C Bg.x/
�

dx D A

Z b

a

f .x/ dx C B

Z b

a

g.x/ dx:

(d) An integral depends additively on the interval of integration.

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

(e) If a � b and f .x/ � g.x/ for a � x � b, then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

(f) The triangle inequality for sums extends to definite integrals. If a � b, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:

(g) The integral of an odd function over an interval symmetric about zero is zero. If

f is an odd function (i.e., f .�x/ D �f .x/), then

Z a

�a

f .x/ dx D 0:

(h) The integral of an even function over an interval symmetric about zero is twice

the integral over the positive half of the interval. If f is an even function (i.e.,

f .�x/ D f .x/), then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

The proofs of parts (a) and (b) are suggested in the first paragraph of this section.

We postpone giving formal proofs of parts (c)–(h) until Appendix IV (see Exercises

5–8 in that Appendix). Nevertheless, all of these results should appear intuitively

reasonable if you regard the integrals as representing (signed) areas. For instance,

properties (d) and (e) are, respectively, properties (v) and (iv) of areas mentioned in

the first paragraph of Section 5.2. (See Figure 5.14.)
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Figure 5.14

(a) Property (d) of Theorem 3

(b) Property (e) of Theorem 3

y

x

R1

R

R2

area R1 + area R2 = area R
Z b

a
f .x/ dx C

Z c

b
f .x/ dx D

Z c

a
f .x/ dx

a b c

y D f .x/

y

x

y D g.x/

y D f .x/

a b

S

R

area S � area R
Z b

a
f .x/ dx �

Z b

a
g.x/ dx

(a) (b)

Property (f) is a generalization of the triangle inequality for numbers:

jx C yj � jxj C jyj; or more generally,

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

iD1

jxi j :

It follows from property (e) (assuming that jf j is integrable on Œa; b�), since

�jf .x/j � f .x/ � jf .x/j. The symmetry properties (g) and (h), which are illus-

trated in Figure 5.15, are particularly useful and should always be kept in mind when

evaluating definite integrals because they can save much unnecessary work.

Figure 5.15

(a) Property (g) of Theorem 3

(b) Property (h) of Theorem 3

y

x

y D f .x/ (odd)

R2

R1

area R1 � area R2 = 0
Z a

�a
f .x/ dx D 0

a

�a

y

x

y D f .x/ (even)

R1 R2

area R1 + area R2 D 2 � area R2

Z a

�a
f .x/ dx D 2

Z a

0
f .x/ dx

�a a

(a) (b)

As yet we have no easy method for evaluating definite integrals. However, some

such integrals can be simplified by using various properties in Theorem 3, and others

can be interpreted as known areas.

E X A M P L E 1
Evaluate

(a)

Z 2

�2

.2C 5x/ dx, (b)

Z 3

0

.2C x/ dx, and (c)

Z 3

�3

p

9 � x2 dx.

y

x

y D 2

�2 2

Figure 5.16

y

x

y D x C 2

2

3

.3; 5/

Figure 5.17

y

x�3 3

y D
p

9 � x2

Figure 5.18
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Some of the most important properties of the definite integral are summarized in

the following theorem.

T H E O R E M

3

Let f and g be integrable on an interval containing the points a, b, and c. Then

(a) An integral over an interval of zero length is zero.

Z a

a

f .x/ dx D 0:

(b) Reversing the limits of integration changes the sign of the integral.

Z a

b

f .x/ dx D �

Z b

a

f .x/ dx:

(c) An integral depends linearly on the integrand. If A and B are constants, then

Z b

a

�

Af .x/C Bg.x/
�

dx D A

Z b

a

f .x/ dx C B

Z b

a

g.x/ dx:

(d) An integral depends additively on the interval of integration.

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

(e) If a � b and f .x/ � g.x/ for a � x � b, then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

(f) The triangle inequality for sums extends to definite integrals. If a � b, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:

(g) The integral of an odd function over an interval symmetric about zero is zero. If

f is an odd function (i.e., f .�x/ D �f .x/), then

Z a

�a

f .x/ dx D 0:

(h) The integral of an even function over an interval symmetric about zero is twice

the integral over the positive half of the interval. If f is an even function (i.e.,

f .�x/ D f .x/), then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

The proofs of parts (a) and (b) are suggested in the first paragraph of this section.

We postpone giving formal proofs of parts (c)–(h) until Appendix IV (see Exercises

5–8 in that Appendix). Nevertheless, all of these results should appear intuitively

reasonable if you regard the integrals as representing (signed) areas. For instance,

properties (d) and (e) are, respectively, properties (v) and (iv) of areas mentioned in

the first paragraph of Section 5.2. (See Figure 5.14.)
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Figure 5.14

(a) Property (d) of Theorem 3

(b) Property (e) of Theorem 3

y

x

R1

R

R2

area R1 + area R2 = area R
Z b

a
f .x/ dx C

Z c

b
f .x/ dx D

Z c

a
f .x/ dx

a b c

y D f .x/

y

x

y D g.x/

y D f .x/

a b

S

R

area S � area R
Z b

a
f .x/ dx �

Z b

a
g.x/ dx

(a) (b)

Property (f) is a generalization of the triangle inequality for numbers:

jx C yj � jxj C jyj; or more generally,

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

iD1

jxi j :

It follows from property (e) (assuming that jf j is integrable on Œa; b�), since

�jf .x/j � f .x/ � jf .x/j. The symmetry properties (g) and (h), which are illus-

trated in Figure 5.15, are particularly useful and should always be kept in mind when

evaluating definite integrals because they can save much unnecessary work.

Figure 5.15

(a) Property (g) of Theorem 3

(b) Property (h) of Theorem 3

y

x

y D f .x/ (odd)

R2

R1

area R1 � area R2 = 0
Z a

�a
f .x/ dx D 0

a

�a

y

x

y D f .x/ (even)

R1 R2

area R1 + area R2 D 2 � area R2

Z a

�a
f .x/ dx D 2

Z a

0
f .x/ dx

�a a

(a) (b)

As yet we have no easy method for evaluating definite integrals. However, some

such integrals can be simplified by using various properties in Theorem 3, and others

can be interpreted as known areas.

E X A M P L E 1
Evaluate

(a)

Z 2

�2

.2C 5x/ dx, (b)

Z 3

0

.2C x/ dx, and (c)

Z 3

�3

p

9 � x2 dx.

y

x

y D 2

�2 2

Figure 5.16

y

x

y D x C 2

2

3

.3; 5/

Figure 5.17

y

x�3 3

y D
p

9 � x2

Figure 5.18
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Solution See Figures 5.16–5.18.

(a) By the linearity property (c),
R 2

�2
.2C 5x/ dx D

R 2

�2
2 dx C 5

R 2

�2
x dx. The first

integral on the right represents the area of a rectangle of width 4 and height 2

(Figure 5.16), so it has value 8. The second integral on the right is 0 because its

integrand is odd and the interval is symmetric about 0. Thus,

Z 2

�2

.2C 5x/ dx D 8C 0 D 8:

(b)
R 3

0
.2Cx/ dx represents the area of the trapezoid in Figure 5.17. Adding the areas

While areas are measured in

squared units of length, definite

integrals are numbers and have

no units. Even when you use an

area to find an integral, do not

quote units for the integral.

of the rectangle and triangle comprising this trapezoid, we get

Z 3

0

.2C x/ dx D .3 � 2/C
1

2
.3 � 3/ D

21

2
:

(c)
R 3

�3

p

9� x2 dx represents the area of a semicircle of radius 3 (Figure 5.18), so

Z 3

�3

p

9� x2 dx D
1

2
�.3

2
/ D

9�

2
:

A Mean-Value Theorem for Integrals
Let f be a function continuous on the interval Œa; b�. Then f assumes a minimum

value m and a maximum value M on the interval, say at points x D l and x D u,

respectively:

m D f .l/ � f .x/ � f .u/ DM for all x in Œa; b�:

For the 2-point partition P of Œa; b� having x0 D a and x1 D b, we have

m.b � a/ D L.f;P / �

Z b

a

f .x/ dx � U.f;P / DM.b � a/:

Therefore,

f .l/ D m �
1

b � a

Z b

a

f .x/ dx �M D f .u/:

By the Intermediate-Value Theorem, f .x/ must take on every value between the two

values f .l/ and f .u/ at some point between l and u (Figure 5.19). Hence, there is a

number c between l and u such that

f .c/ D
1

b � a

Z b

a

f .x/ dx:

That is,
R b

a
f .x/ dx is equal to the area .b � a/f .c/ of a rectangle with base width

b � a and height f .c/ for some c between a and b. This is the Mean-Value Theorem

for integrals.

T H E O R E M

4

The Mean-Value Theorem for integrals

If f is continuous on Œa; b�, then there exists a point c in Œa; b� such that

Z b

a

f .x/ dx D .b � a/f .c/:
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Figure 5.19 Half of the area between

y D f .x/ and the horizontal line

y D f .c/ lies above the line, and the other

half lies below the line

y

x

y D f .x/

M

f .c/

m

a l c u b

Observe in Figure 5.19 that the area below the curve y D f .x/ and above the line

y D f .c/ is equal to the area above y D f .x/ and below y D f .c/. In this sense,

f .c/ is the average value of the function f .x/ on the interval Œa; b�.

D E F I N I T I O N

4

Average value of a function

If f is integrable on Œa; b�, then the average value or mean value of f on

Œa; b�, denoted by Nf, is

Nf D
1

b � a

Z b

a

f .x/ dx:

E X A M P L E 2
Find the average value of f .x/ D 2x on the interval Œ1; 5�.

Solution The average value (see Figure 5.20) is

Nf D
1

5 � 1

Z 5

1

2x dx D
1

4

�

4 � 2C
1

2
.4 � 8/

�

D 6:

y

x

4

4

8

2

1 5

y D 2x

Figure 5.20

Z 5

1

2x dx D 24

Definite Integrals of Piecewise Continuous Functions
The definition of integrability and the definite integral given above can be extended to

a wider class than just continuous functions. One simple but very important extension

is to the class of piecewise continuous functions.

Consider the graph y D f .x/ shown in Figure 5.21(a). Although f is not con-

tinuous at all points in Œa; b� (it is discontinuous at c1 and c2), clearly the region lying

under the graph and above the x-axis between x D a and x D b does have an area.

We would like to represent this area as

Z c1

a

f .x/ dx C

Z c2

c1

f .x/ dx C

Z b

c2

f .x/ dx:

This is reasonable because there are continuous functions on Œa; c1�, Œc1; c2�, and Œc2; b�

equal to f .x/ on the corresponding open intervals, .a; c1/, .c1; c2/, and .c2; b/.
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Solution See Figures 5.16–5.18.

(a) By the linearity property (c),
R 2

�2
.2C 5x/ dx D

R 2

�2
2 dx C 5

R 2

�2
x dx. The first

integral on the right represents the area of a rectangle of width 4 and height 2

(Figure 5.16), so it has value 8. The second integral on the right is 0 because its

integrand is odd and the interval is symmetric about 0. Thus,

Z 2

�2

.2C 5x/ dx D 8C 0 D 8:

(b)
R 3

0
.2Cx/ dx represents the area of the trapezoid in Figure 5.17. Adding the areas

While areas are measured in

squared units of length, definite

integrals are numbers and have

no units. Even when you use an

area to find an integral, do not

quote units for the integral.

of the rectangle and triangle comprising this trapezoid, we get

Z 3

0

.2C x/ dx D .3 � 2/C
1

2
.3 � 3/ D

21

2
:

(c)
R 3

�3

p

9� x2 dx represents the area of a semicircle of radius 3 (Figure 5.18), so

Z 3

�3

p

9� x2 dx D
1

2
�.3

2
/ D

9�

2
:

A Mean-Value Theorem for Integrals
Let f be a function continuous on the interval Œa; b�. Then f assumes a minimum

value m and a maximum value M on the interval, say at points x D l and x D u,

respectively:

m D f .l/ � f .x/ � f .u/ DM for all x in Œa; b�:

For the 2-point partition P of Œa; b� having x0 D a and x1 D b, we have

m.b � a/ D L.f;P / �

Z b

a

f .x/ dx � U.f;P / DM.b � a/:

Therefore,

f .l/ D m �
1

b � a

Z b

a

f .x/ dx �M D f .u/:

By the Intermediate-Value Theorem, f .x/ must take on every value between the two

values f .l/ and f .u/ at some point between l and u (Figure 5.19). Hence, there is a

number c between l and u such that

f .c/ D
1

b � a

Z b

a

f .x/ dx:

That is,
R b

a
f .x/ dx is equal to the area .b � a/f .c/ of a rectangle with base width

b � a and height f .c/ for some c between a and b. This is the Mean-Value Theorem

for integrals.

T H E O R E M

4

The Mean-Value Theorem for integrals

If f is continuous on Œa; b�, then there exists a point c in Œa; b� such that

Z b

a

f .x/ dx D .b � a/f .c/:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 311 October 5, 2016

SECTION 5.4: Properties of the Definite Integral 311

Figure 5.19 Half of the area between

y D f .x/ and the horizontal line

y D f .c/ lies above the line, and the other

half lies below the line

y

x

y D f .x/

M

f .c/

m

a l c u b

Observe in Figure 5.19 that the area below the curve y D f .x/ and above the line

y D f .c/ is equal to the area above y D f .x/ and below y D f .c/. In this sense,

f .c/ is the average value of the function f .x/ on the interval Œa; b�.

D E F I N I T I O N

4

Average value of a function

If f is integrable on Œa; b�, then the average value or mean value of f on

Œa; b�, denoted by Nf, is

Nf D
1

b � a

Z b

a

f .x/ dx:

E X A M P L E 2
Find the average value of f .x/ D 2x on the interval Œ1; 5�.

Solution The average value (see Figure 5.20) is

Nf D
1

5 � 1

Z 5

1

2x dx D
1

4

�

4 � 2C
1

2
.4 � 8/

�

D 6:

y

x

4

4

8

2

1 5

y D 2x

Figure 5.20

Z 5

1

2x dx D 24

Definite Integrals of Piecewise Continuous Functions
The definition of integrability and the definite integral given above can be extended to

a wider class than just continuous functions. One simple but very important extension

is to the class of piecewise continuous functions.

Consider the graph y D f .x/ shown in Figure 5.21(a). Although f is not con-

tinuous at all points in Œa; b� (it is discontinuous at c1 and c2), clearly the region lying

under the graph and above the x-axis between x D a and x D b does have an area.

We would like to represent this area as

Z c1

a

f .x/ dx C

Z c2

c1

f .x/ dx C

Z b

c2

f .x/ dx:

This is reasonable because there are continuous functions on Œa; c1�, Œc1; c2�, and Œc2; b�

equal to f .x/ on the corresponding open intervals, .a; c1/, .c1; c2/, and .c2; b/.
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D E F I N I T I O N

5

Piecewise continuous functions

Let c0 < c1 < c2 < � � � < cn be a finite set of points on the real line.

A function f defined on Œc0; cn� except possibly at some of the points ci ,

(0 � i � n), is called piecewise continuous on that interval if for each i

(1 � i � n) there exists a function Fi continuous on the closed interval

Œci�1; ci � such that

f .x/ D Fi .x/ on the open interval .ci�1; ci /:

In this case, we define the definite integral of f from c0 to cn to be

Z cn

c0

f .x/ dx D

n
X

iD1

Z ci

ci�1

Fi .x/ dx:

E X A M P L E 3 Find

Z 3

0

f .x/ dx, where f .x/ D

8

<

:

p

1 � x2 if 0 � x � 1

2 if 1 < x � 2

x � 2 if 2 < x � 3.

Solution The value of the integral is the sum of the shaded areas in Figure 5.21(b):

Z 3

0

f .x/ dx D

Z 1

0

p

1 � x2 dx C

Z 2

1

2 dx C

Z 3

2

.x � 2/ dx

D

�

1

4
� � � 1

2

�

C .2 � 1/C

�

1

2
� 1 � 1

�

D

� C 10

4
:

Figure 5.21 Two piecewise continuous

functions

y

x

y D f .x/

a c1 c2 b

y

x

yD
p

1�x2

yD2

.3;1/
yDx�2

1 2 3

1

(a) (b)

E X E R C I S E S 5.4

1. Simplify

Z b

a

f .x/ dx C

Z c

b

f .x/ dx C

Z a

c

f .x/ dx.

2. Simplify

Z 2

0

3f .x/ dx C

Z 3

1

3f .x/ dx �

Z 3

0

2f .x/ dx

�

Z 2

1

3f .x/ dx.

Evaluate the integrals in Exercises 3–16 by using the properties of

the definite integral and interpreting integrals as areas.

3.

Z 2

�2

.x C 2/ dx 4.

Z 2

0

.3x C 1/ dx

5.

Z b

a

x dx 6.

Z 2

�1

.1 � 2x/ dx

7.

Z

p
2

�
p

2

p

2 � t2 dt 8.

Z 0

�
p

2

p

2 � x2 dx

9.

Z �

��

sin.x3
/ dx 10.

Z a

�a

.a � jsj/ ds

11.

Z 1

�1

.u
5
� 3u

3
C �/ du 12.

Z 2

0

p

2x � x2 dx

13.

Z 4

�4

.e
x
� e

�x
/ dx 14.

Z 3

�3

.2C t /

p

9 � t2 dt

15.I

Z 1

0

p

4 � x2 dx 16.I

Z 2

1

p

4 � x2 dx
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Given that

Z a

0

x
2
dx D

a3

3
, evaluate the integrals in Exercises

17–22.

17.

Z 2

0

6x
2
dx 18.

Z 3

2

.x
2
� 4/ dx

19.

Z 2

�2

.4 � t
2
/ dt 20.

Z 2

0

.v
2
� v/ dv

21.

Z 1

0

.x
2
C

p

1 � x2/ dx 22.

Z 6

�6

x
2
.2C sinx/ dx

The definition of lnx as an area in Section 3.3 implies that

Z x

1

1

t
dt D lnx

for x > 0. Use this to evaluate the integrals in Exercises 23–26.

23.

Z 2

1

1

x
dx 24.

Z 4

2

1

t
dt

25.

Z 1

1=3

1

t
dt 26.

Z 3

1=4

1

s
ds

Find the average values of the functions in Exercises 27–32 over

the given intervals.

27. f .x/ D x C 2 over Œ0; 4�

28. g.x/ D x C 2 over Œa; b�

29. f .t/ D 1C sin t over Œ��; ��

30. k.x/ D x2 over Œ0; 3�

31. f .x/ D
p

4 � x2 over Œ0; 2�

32. g.s/ D 1=s over Œ1=2; 2�

Piecewise continuous functions

33. Evaluate

Z 2

�1

sgnx dx. Recall that sgnx is 1 if x > 0 and �1

if x < 0.

34. Find

Z 2

�3

f .x/ dx, where f .x/ D

�

1C x if x < 0

2 if x � 0.

35. Find

Z 2

0

g.x/ dx, where g.x/ D

�

x2 if 0 � x � 1

x if 1 < x � 2.

36. Evaluate

Z 3

0

j2 � xj dx.

37.I Evaluate

Z 2

0

p

4 � x2 sgn.x � 1/ dx.

38. Evaluate

Z 3:5

0

bxc dx, where bxc is the greatest integer less

than or equal to x. (See Example 10 of Section P.5.)

Evaluate the integrals in Exercises 39–40 by inspecting the graphs

of the integrands.

G 39.

Z 4

�3

�

jx C 1j � jx � 1j C jx C 2j

�

dx

G 40.

Z 3

0

x2
� x

jx � 1j
dx

41. Find the average value of the function

f .x/ D jx C 1j sgnx on the interval Œ�2; 2�.

42. If a < b and f is continuous on Œa; b�, show that
Z b

a

�

f .x/ � Nf

�

dx D 0.

43.A Suppose that a < b and f is continuous on Œa; b�. Find the

constant k that minimizes the integral

Z b

a

�

f .x/ � k

�2

dx.

5.5 The Fundamental Theorem of Calculus
In this section we demonstrate the relationship between the definite integral defined in

Section 5.3 and the indefinite integral (or general antiderivative) introduced in

Section 2.10. A consequence of this relationship is that we will be able to calculate

definite integrals of functions whose antiderivatives we can find.

In Section 3.3 we wanted to find a function whose derivative was 1=x. We solved

this problem by defining the desired function .lnx/ in terms of the area under the graph

of y D 1=x. This idea motivates, and is a special case of, the following theorem.

T H E O R E M

5

The Fundamental Theorem of Calculus

Suppose that the function f is continuous on an interval I containing the point a.

PART I. Let the function F be defined on I by

F.x/ D

Z x

a

f .t/ dt:

Then F is differentiable on I; and F 0.x/ D f .x/ there. Thus, F is an antiderivative

of f on I W
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D E F I N I T I O N

5

Piecewise continuous functions

Let c0 < c1 < c2 < � � � < cn be a finite set of points on the real line.

A function f defined on Œc0; cn� except possibly at some of the points ci ,

(0 � i � n), is called piecewise continuous on that interval if for each i

(1 � i � n) there exists a function Fi continuous on the closed interval

Œci�1; ci � such that

f .x/ D Fi .x/ on the open interval .ci�1; ci /:

In this case, we define the definite integral of f from c0 to cn to be

Z cn

c0

f .x/ dx D

n
X

iD1

Z ci

ci�1

Fi .x/ dx:

E X A M P L E 3 Find

Z 3

0

f .x/ dx, where f .x/ D

8

<

:

p

1 � x2 if 0 � x � 1

2 if 1 < x � 2

x � 2 if 2 < x � 3.

Solution The value of the integral is the sum of the shaded areas in Figure 5.21(b):

Z 3

0

f .x/ dx D

Z 1

0

p

1 � x2 dx C

Z 2

1

2 dx C

Z 3

2

.x � 2/ dx

D

�

1

4
� � � 1

2

�

C .2 � 1/C

�

1

2
� 1 � 1

�

D

� C 10

4
:

Figure 5.21 Two piecewise continuous

functions

y

x

y D f .x/

a c1 c2 b

y

x

yD
p

1�x2

yD2

.3;1/
yDx�2

1 2 3

1

(a) (b)

E X E R C I S E S 5.4

1. Simplify

Z b

a

f .x/ dx C

Z c

b

f .x/ dx C

Z a

c

f .x/ dx.

2. Simplify

Z 2

0

3f .x/ dx C

Z 3

1

3f .x/ dx �

Z 3

0

2f .x/ dx

�

Z 2

1

3f .x/ dx.

Evaluate the integrals in Exercises 3–16 by using the properties of

the definite integral and interpreting integrals as areas.

3.

Z 2

�2

.x C 2/ dx 4.

Z 2

0

.3x C 1/ dx

5.

Z b

a

x dx 6.

Z 2

�1

.1 � 2x/ dx

7.

Z

p
2

�
p

2

p

2 � t2 dt 8.

Z 0

�
p

2

p

2 � x2 dx

9.

Z �

��

sin.x3
/ dx 10.

Z a

�a

.a � jsj/ ds

11.

Z 1

�1

.u
5
� 3u

3
C �/ du 12.

Z 2

0

p

2x � x2 dx

13.

Z 4

�4

.e
x
� e

�x
/ dx 14.

Z 3

�3

.2C t /

p

9 � t2 dt

15.I

Z 1

0

p

4 � x2 dx 16.I

Z 2

1

p

4 � x2 dx
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Given that

Z a

0

x
2
dx D

a3

3
, evaluate the integrals in Exercises

17–22.

17.

Z 2

0

6x
2
dx 18.

Z 3

2

.x
2
� 4/ dx

19.

Z 2

�2

.4 � t
2
/ dt 20.

Z 2

0

.v
2
� v/ dv

21.

Z 1

0

.x
2
C

p

1 � x2/ dx 22.

Z 6

�6

x
2
.2C sinx/ dx

The definition of lnx as an area in Section 3.3 implies that

Z x

1

1

t
dt D lnx

for x > 0. Use this to evaluate the integrals in Exercises 23–26.

23.

Z 2

1

1

x
dx 24.

Z 4

2

1

t
dt

25.

Z 1

1=3

1

t
dt 26.

Z 3

1=4

1

s
ds

Find the average values of the functions in Exercises 27–32 over

the given intervals.

27. f .x/ D x C 2 over Œ0; 4�

28. g.x/ D x C 2 over Œa; b�

29. f .t/ D 1C sin t over Œ��; ��

30. k.x/ D x2 over Œ0; 3�

31. f .x/ D
p

4 � x2 over Œ0; 2�

32. g.s/ D 1=s over Œ1=2; 2�

Piecewise continuous functions

33. Evaluate

Z 2

�1

sgnx dx. Recall that sgnx is 1 if x > 0 and �1

if x < 0.

34. Find

Z 2

�3

f .x/ dx, where f .x/ D

�

1C x if x < 0

2 if x � 0.

35. Find

Z 2

0

g.x/ dx, where g.x/ D

�

x2 if 0 � x � 1

x if 1 < x � 2.

36. Evaluate

Z 3

0

j2 � xj dx.

37.I Evaluate

Z 2

0

p

4 � x2 sgn.x � 1/ dx.

38. Evaluate

Z 3:5

0

bxc dx, where bxc is the greatest integer less

than or equal to x. (See Example 10 of Section P.5.)

Evaluate the integrals in Exercises 39–40 by inspecting the graphs

of the integrands.

G 39.

Z 4

�3

�

jx C 1j � jx � 1j C jx C 2j

�

dx

G 40.

Z 3

0

x2
� x

jx � 1j
dx

41. Find the average value of the function

f .x/ D jx C 1j sgnx on the interval Œ�2; 2�.

42. If a < b and f is continuous on Œa; b�, show that
Z b

a

�

f .x/ � Nf

�

dx D 0.

43.A Suppose that a < b and f is continuous on Œa; b�. Find the

constant k that minimizes the integral

Z b

a

�

f .x/ � k

�2

dx.

5.5 The Fundamental Theorem of Calculus
In this section we demonstrate the relationship between the definite integral defined in

Section 5.3 and the indefinite integral (or general antiderivative) introduced in

Section 2.10. A consequence of this relationship is that we will be able to calculate

definite integrals of functions whose antiderivatives we can find.

In Section 3.3 we wanted to find a function whose derivative was 1=x. We solved

this problem by defining the desired function .lnx/ in terms of the area under the graph

of y D 1=x. This idea motivates, and is a special case of, the following theorem.

T H E O R E M

5

The Fundamental Theorem of Calculus

Suppose that the function f is continuous on an interval I containing the point a.

PART I. Let the function F be defined on I by

F.x/ D

Z x

a

f .t/ dt:

Then F is differentiable on I; and F 0.x/ D f .x/ there. Thus, F is an antiderivative

of f on I W
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d

dx

Z x

a

f .t/ dt D f .x/:

PART II. If G.x/ is any antiderivative of f .x/ on I; so that G 0.x/ D f .x/ on I; then

for any b in I; we have

Z b

a

f .x/ dx D G.b/ �G.a/:

PROOF Using the definition of the derivative, we calculate

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h

D lim
h!0

1

h

 

Z xCh

a

f .t/ dt �

Z x

a

f .t/ dt

!

D lim
h!0

1

h

Z xCh

x

f .t/ dt by Theorem 3(d)

D lim
h!0

1

h
hf .c/ for some c D c.h/ (depending on h)

between x and x C h (Theorem 4)

D lim
c!x

f .c/ since c ! x as h! 0

D f .x/ since f is continuous.

Also, ifG 0.x/ D f .x/, then F.x/ D G.x/CC on I for some constant C (by Theorem

13 of Section 2.8). Hence,

Z x

a

f .t/ dt D F.x/ D G.x/C C:

Let x D a and obtain 0 D G.a/ C C via Theorem 3(a), so C D �G.a/. Now let

x D b to get

Z b

a

f .t/ dt D G.b/C C D G.b/ �G.a/:

Of course, we can replace t with x (or any other variable) as the variable of integration

on the left-hand side.

Remark You should remember both conclusions of the Fundamental Theorem; they

are both useful. Part I concerns the derivative of an integral; it tells you how to differ-

entiate a definite integral with respect to its upper limit. Part II concerns the integral

of a derivative; it tells you how to evaluate a definite integral if you can find an anti-

derivative of the integrand.

D E F I N I T I O N

6

To facilitate the evaluation of definite integrals using the Fundamental Theo-

rem of Calculus, we define the evaluation symbol:

F.x/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/ � F.a/:
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Thus,

Z b

a

f .x/ dx D

�Z

f .x/ dx

�
ˇ

ˇ

ˇ

ˇ

b

a

;

where
R

f .x/ dx denotes the indefinite integral or general antiderivative of f: (See

Section 2.10.) When evaluating a definite integral this way, we will omit the constant of

integration (CC ) from the indefinite integral because it cancels out in the subtraction:

.F.x/C C/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/C C � .F.a/C C/ D F.b/ � F.a/ D F.x/

ˇ

ˇ

ˇ

ˇ

b

a

:

Any antiderivative of f can be used to calculate the definite integral.

E X A M P L E 1 Evaluate (a)

Z a

0

x
2
dx and (b)

Z 2

�1

.x
2
� 3x C 2/ dx.

Solution

(a)

Z a

0

x
2
dx D

1

3
x

3

ˇ

ˇ

ˇ

ˇ

a

0

D

1

3
a

3
�

1

3
0

3
D

a3

3
(because

d

dx

x3

3
D x

2).

BEWARE! Be careful to keep

track of all the minus signs when

substituting a negative lower limit.

(b)

Z 2

�1

.x
2
� 3x C 2/ dx D

�

1

3
x

3
�

3

2
x

2
C 2x

�
ˇ

ˇ

ˇ

ˇ

2

�1

D

1

3
.8/ �

3

2
.4/C 4 �

�

1

3
.�1/ �

3

2
.1/C .�2/

�

D

9

2
:

E X A M P L E 2
Find the area A of the plane region lying above the x-axis and

under the curve y D 3x � x2.

Solution We need to find the points where the curve y D 3x � x2 meets the x-axis.

These are solutions of the equation

0 D 3x � x
2
D x.3 � x/:

The only roots are x D 0 and x D 3. (See Figure 5.22.) Hence, the area of the region

is given by

y

x

y D 3x � x2

A

3

Figure 5.22

A D

Z 3

0

.3x � x
2
/ dx D

�

3

2
x

2
�

1

3
x

3

�
ˇ

ˇ

ˇ

ˇ

3

0

D

27

2
�

27

3
� .0 � 0/ D

27

6
D

9

2
square units:

E X A M P L E 3
Find the area under the curve y D sin x, above y D 0, from x D 0

to x D � .

Solution The required area, illustrated in Figure 5.23, is

A D

Z �

0

sin x dx D � cos x

ˇ

ˇ

ˇ

ˇ

�

0

D �

�

�1 � .1/
�

D 2 square units:

y

x

y D sin x

A

�

Figure 5.23

Note that while the definite integral is a pure number, an area is a geometric quantity

that implicitly involves units. If the units along the x- and y-axes are, for example,

metres, the area should be quoted in square metres (m2). If units of length along the

x-axis and y-axis are not specified, areas should be quoted in square units.
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d

dx

Z x

a

f .t/ dt D f .x/:

PART II. If G.x/ is any antiderivative of f .x/ on I; so that G 0.x/ D f .x/ on I; then

for any b in I; we have

Z b

a

f .x/ dx D G.b/ �G.a/:

PROOF Using the definition of the derivative, we calculate

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h

D lim
h!0

1

h

 

Z xCh

a

f .t/ dt �

Z x

a

f .t/ dt

!

D lim
h!0

1

h

Z xCh

x

f .t/ dt by Theorem 3(d)

D lim
h!0

1

h
hf .c/ for some c D c.h/ (depending on h)

between x and x C h (Theorem 4)

D lim
c!x

f .c/ since c ! x as h! 0

D f .x/ since f is continuous.

Also, ifG 0.x/ D f .x/, then F.x/ D G.x/CC on I for some constant C (by Theorem

13 of Section 2.8). Hence,

Z x

a

f .t/ dt D F.x/ D G.x/C C:

Let x D a and obtain 0 D G.a/ C C via Theorem 3(a), so C D �G.a/. Now let

x D b to get

Z b

a

f .t/ dt D G.b/C C D G.b/ �G.a/:

Of course, we can replace t with x (or any other variable) as the variable of integration

on the left-hand side.

Remark You should remember both conclusions of the Fundamental Theorem; they

are both useful. Part I concerns the derivative of an integral; it tells you how to differ-

entiate a definite integral with respect to its upper limit. Part II concerns the integral

of a derivative; it tells you how to evaluate a definite integral if you can find an anti-

derivative of the integrand.

D E F I N I T I O N

6

To facilitate the evaluation of definite integrals using the Fundamental Theo-

rem of Calculus, we define the evaluation symbol:

F.x/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/ � F.a/:
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Thus,

Z b

a

f .x/ dx D

�Z

f .x/ dx

�
ˇ

ˇ

ˇ

ˇ

b

a

;

where
R

f .x/ dx denotes the indefinite integral or general antiderivative of f: (See

Section 2.10.) When evaluating a definite integral this way, we will omit the constant of

integration (CC ) from the indefinite integral because it cancels out in the subtraction:

.F.x/C C/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/C C � .F.a/C C/ D F.b/ � F.a/ D F.x/

ˇ

ˇ

ˇ

ˇ

b

a

:

Any antiderivative of f can be used to calculate the definite integral.

E X A M P L E 1 Evaluate (a)

Z a

0

x
2
dx and (b)

Z 2

�1

.x
2
� 3x C 2/ dx.

Solution

(a)

Z a

0

x
2
dx D

1

3
x

3

ˇ

ˇ

ˇ

ˇ

a

0

D

1

3
a

3
�

1

3
0

3
D

a3

3
(because

d

dx

x3

3
D x

2).

BEWARE! Be careful to keep

track of all the minus signs when

substituting a negative lower limit.

(b)

Z 2

�1

.x
2
� 3x C 2/ dx D

�

1

3
x

3
�

3

2
x

2
C 2x

�
ˇ

ˇ

ˇ

ˇ

2

�1

D

1

3
.8/ �

3

2
.4/C 4 �

�

1

3
.�1/ �

3

2
.1/C .�2/

�

D

9

2
:

E X A M P L E 2
Find the area A of the plane region lying above the x-axis and

under the curve y D 3x � x2.

Solution We need to find the points where the curve y D 3x � x2 meets the x-axis.

These are solutions of the equation

0 D 3x � x
2
D x.3 � x/:

The only roots are x D 0 and x D 3. (See Figure 5.22.) Hence, the area of the region

is given by

y

x

y D 3x � x2

A

3

Figure 5.22

A D

Z 3

0

.3x � x
2
/ dx D

�

3

2
x

2
�

1

3
x

3

�
ˇ

ˇ

ˇ

ˇ

3

0

D

27

2
�

27

3
� .0 � 0/ D

27

6
D

9

2
square units:

E X A M P L E 3
Find the area under the curve y D sin x, above y D 0, from x D 0

to x D � .

Solution The required area, illustrated in Figure 5.23, is

A D

Z �

0

sin x dx D � cos x

ˇ

ˇ

ˇ

ˇ

�

0

D �

�

�1 � .1/
�

D 2 square units:

y

x

y D sin x

A

�

Figure 5.23

Note that while the definite integral is a pure number, an area is a geometric quantity

that implicitly involves units. If the units along the x- and y-axes are, for example,

metres, the area should be quoted in square metres (m2). If units of length along the

x-axis and y-axis are not specified, areas should be quoted in square units.
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E X A M P L E 4
Find the area of the regionR lying above the line y D 1 and below

the curve y D 5=.x2
C 1/.

Solution The region R is shaded in Figure 5.24. To find the intersections of y D 1

and y D 5=.x2
C 1/, we must solve these equations simultaneously:

1 D
5

x2
C 1

;

so x2
C 1 D 5, x2

D 4, and x D ˙2.

The area A of the region R is the area under the curve y D 5=.x2
C 1/ and above

the x-axis between x D �2 and x D 2, minus the area of a rectangle of width 4 and

height 1. Since tan�1
x is an antiderivative of 1=.x2

C 1/,

A D

Z 2

�2

5

x2
C 1

dx � 4 D 2

Z 2

0

5

x2
C 1

dx � 4

D 10 tan�1
x

ˇ

ˇ

ˇ

ˇ

2

0

� 4 D 10 tan�1
2 � 4 square units:

Observe the use of even symmetry (Theorem 3(h) of Section 5.4) to replace the lower

limit of integration by 0. It is easier to substitute 0 into the antiderivative than �2:

y

x

y D
5

x2
C 1

y D 1

�2 2

R

Figure 5.24

E X A M P L E 5
Find the average value of f .x/ D e

�x
C cos x on the interval

Œ��=2; 0�.

Solution The average value is

Nf D
1

0 �

�

�

�

2

�

Z 0

�.�=2/

.e
�x
C cos x/ dx

D

2

�
.�e

�x
C sin x/

ˇ

ˇ

ˇ

0

�.�=2/

D

2

�

�

�1C 0C e
�=2
� .�1/

�

D

2

�
e

�=2
:

Beware of integrals of the form
R b

a
f .x/ dx where f is not continuous at all points in

the interval Œa; b�. The Fundamental Theorem does not apply in such cases.

E X A M P L E 6 We know that
d

dx
ln jxj D

1

x
if x ¤ 0. It is incorrect, however,

to state that

Z 1

�1

dx

x
D ln jxj

ˇ

ˇ

ˇ

ˇ

1

�1

D 0 � 0 D 0;

even though 1=x is an odd function. In fact, 1=x is undefined and has no limit at x D 0,

and it is not integrable on Œ�1; 0� or Œ0; 1� (Figure 5.25). Observe that

lim
c!0C

Z 1

c

1

x
dx D lim

c!0C
� ln c D1;

so both shaded regions in Figure 5.25 have infinite area. Integrals of this type are called

y

x

y D
1

x

�1

1

Figure 5.25

improper integrals. We deal with them in Section 6.5.

The following example illustrates, this time using definite integrals, the relation-

ship observed in Example 1 of Section 2.11 between the area under the graph of its

velocity and the distance travelled by an object over a time interval.
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E X A M P L E 7
An object at rest at time t D 0 accelerates at a constant 10 m/s2

during the time interval Œ0; T �. If 0 � t0 � t1 � T; find the

distance travelled by the object in the time interval Œt0; t1�.

Solution Let v.t/ denote the velocity of the object at time t , and let y.t/ denote the

distance travelled by the object during the time interval Œ0; t �, where 0 � t � T: Then

v.0/ D 0 and y.0/ D 0. Also v 0.t/ D 10 and y 0.t/ D v.t/. Thus,

v.t/ D v.t/ � v.0/ D

Z t

0

v
0
.u/ du D

Z t

0

10 du D 10u

ˇ

ˇ

ˇ

ˇ

t

0

D 10t

y.t/ D y.t/� y.0/ D

Z t

0

y
0
.u/ du D

Z t

0

v.u/ du D

Z t

0

10u du D 5u
2

ˇ

ˇ

ˇ

ˇ

t

0

D 5t
2
:

On the time interval Œt0; t1�, the object has travelled distance

y.t1/ � y.t0/ D 5t
2
1 � 5t

2
0 D

Z t1

0

v.t/ dt �

Z t0

0

v.t/ dt D

Z t1

t0

v.t/ dt m:

Observe that this last integral is the area under the graph of y D v.t/ above the interval

Œt0; t1� on the t axis.

We now give some examples illustrating the first conclusion of the Fundamental

Theorem.

E X A M P L E 8
Find the derivatives of the following functions:

(a) F.x/ D

Z 3

x

e
�t2

dt , (b) G.x/ D x2

Z 5x

�4

e
�t2

dt , (c) H.x/ D

Z x3

x2

e
�t2

dt .

Solution The solutions involve applying the first conclusion of the Fundamental The-

orem together with other differentiation rules.

(a) Observe that F.x/ D �
R x

3
e

�t2

dt (by Theorem 3(b)). Therefore, by the Funda-

mental Theorem, F 0
.x/ D �e

�x2

.

(b) By the Product Rule and the Chain Rule,

G
0
.x/ D 2x

Z 5x

�4

e
�t2

dt C x
2 d

dx

Z 5x

�4

e
�t2

dt

D 2x

Z 5x

�4

e
�t2

dt C x
2
e

�.5x/2

.5/

D 2x

Z 5x

�4

e
�t2

dt C 5x
2
e

�25x2

:

(c) Split the integral into a difference of two integrals in each of which the variable x

appears only in the upper limit:

H.x/ D

Z x3

0

e
�t2

dt �

Z x2

0

e
�t2

dt

H
0
.x/ D e

�.x3/2

.3x
2
/ � e

�.x2/2

.2x/

D 3x
2
e

�x6

� 2x e
�x4

:

Parts (b) and (c) of Example 8 are examples of the following formulas that build the

Chain Rule into the first conclusion of the Fundamental Theorem:
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E X A M P L E 4
Find the area of the regionR lying above the line y D 1 and below

the curve y D 5=.x2
C 1/.

Solution The region R is shaded in Figure 5.24. To find the intersections of y D 1

and y D 5=.x2
C 1/, we must solve these equations simultaneously:

1 D
5

x2
C 1

;

so x2
C 1 D 5, x2

D 4, and x D ˙2.

The area A of the region R is the area under the curve y D 5=.x2
C 1/ and above

the x-axis between x D �2 and x D 2, minus the area of a rectangle of width 4 and

height 1. Since tan�1
x is an antiderivative of 1=.x2

C 1/,

A D

Z 2

�2

5

x2
C 1

dx � 4 D 2

Z 2

0

5

x2
C 1

dx � 4

D 10 tan�1
x

ˇ

ˇ

ˇ

ˇ

2

0

� 4 D 10 tan�1
2 � 4 square units:

Observe the use of even symmetry (Theorem 3(h) of Section 5.4) to replace the lower

limit of integration by 0. It is easier to substitute 0 into the antiderivative than �2:

y

x

y D
5

x2
C 1

y D 1

�2 2

R

Figure 5.24

E X A M P L E 5
Find the average value of f .x/ D e

�x
C cos x on the interval

Œ��=2; 0�.

Solution The average value is

Nf D
1

0 �

�

�

�

2

�

Z 0

�.�=2/

.e
�x
C cos x/ dx

D

2

�
.�e

�x
C sin x/

ˇ

ˇ

ˇ

0

�.�=2/

D

2

�

�

�1C 0C e
�=2
� .�1/

�

D

2

�
e

�=2
:

Beware of integrals of the form
R b

a
f .x/ dx where f is not continuous at all points in

the interval Œa; b�. The Fundamental Theorem does not apply in such cases.

E X A M P L E 6 We know that
d

dx
ln jxj D

1

x
if x ¤ 0. It is incorrect, however,

to state that

Z 1

�1

dx

x
D ln jxj

ˇ

ˇ

ˇ

ˇ

1

�1

D 0 � 0 D 0;

even though 1=x is an odd function. In fact, 1=x is undefined and has no limit at x D 0,

and it is not integrable on Œ�1; 0� or Œ0; 1� (Figure 5.25). Observe that

lim
c!0C

Z 1

c

1

x
dx D lim

c!0C
� ln c D1;

so both shaded regions in Figure 5.25 have infinite area. Integrals of this type are called

y

x

y D
1

x

�1

1

Figure 5.25

improper integrals. We deal with them in Section 6.5.

The following example illustrates, this time using definite integrals, the relation-

ship observed in Example 1 of Section 2.11 between the area under the graph of its

velocity and the distance travelled by an object over a time interval.
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E X A M P L E 7
An object at rest at time t D 0 accelerates at a constant 10 m/s2

during the time interval Œ0; T �. If 0 � t0 � t1 � T; find the

distance travelled by the object in the time interval Œt0; t1�.

Solution Let v.t/ denote the velocity of the object at time t , and let y.t/ denote the

distance travelled by the object during the time interval Œ0; t �, where 0 � t � T: Then

v.0/ D 0 and y.0/ D 0. Also v 0.t/ D 10 and y 0.t/ D v.t/. Thus,

v.t/ D v.t/ � v.0/ D

Z t

0

v
0
.u/ du D

Z t

0

10 du D 10u

ˇ

ˇ

ˇ

ˇ

t

0

D 10t

y.t/ D y.t/� y.0/ D

Z t

0

y
0
.u/ du D

Z t

0

v.u/ du D

Z t

0

10u du D 5u
2

ˇ

ˇ

ˇ

ˇ

t

0

D 5t
2
:

On the time interval Œt0; t1�, the object has travelled distance

y.t1/ � y.t0/ D 5t
2
1 � 5t

2
0 D

Z t1

0

v.t/ dt �

Z t0

0

v.t/ dt D

Z t1

t0

v.t/ dt m:

Observe that this last integral is the area under the graph of y D v.t/ above the interval

Œt0; t1� on the t axis.

We now give some examples illustrating the first conclusion of the Fundamental

Theorem.

E X A M P L E 8
Find the derivatives of the following functions:

(a) F.x/ D

Z 3

x

e
�t2

dt , (b) G.x/ D x2

Z 5x

�4

e
�t2

dt , (c) H.x/ D

Z x3

x2

e
�t2

dt .

Solution The solutions involve applying the first conclusion of the Fundamental The-

orem together with other differentiation rules.

(a) Observe that F.x/ D �
R x

3
e

�t2

dt (by Theorem 3(b)). Therefore, by the Funda-

mental Theorem, F 0
.x/ D �e

�x2

.

(b) By the Product Rule and the Chain Rule,

G
0
.x/ D 2x

Z 5x

�4

e
�t2

dt C x
2 d

dx

Z 5x

�4

e
�t2

dt

D 2x

Z 5x

�4

e
�t2

dt C x
2
e

�.5x/2

.5/

D 2x

Z 5x

�4

e
�t2

dt C 5x
2
e

�25x2

:

(c) Split the integral into a difference of two integrals in each of which the variable x

appears only in the upper limit:

H.x/ D

Z x3

0

e
�t2

dt �

Z x2

0

e
�t2

dt

H
0
.x/ D e

�.x3/2

.3x
2
/ � e

�.x2/2

.2x/

D 3x
2
e

�x6

� 2x e
�x4

:

Parts (b) and (c) of Example 8 are examples of the following formulas that build the

Chain Rule into the first conclusion of the Fundamental Theorem:
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d

dx

Z g.x/

a

f .t/ dt D f
�

g.x/
�

g
0
.x/

d

dx

Z g.x/

h.x/

f .t/ dt D f
�

g.x/
�

g
0
.x/� f

�

h.x/
�

h
0
.x/

E X A M P L E 9 Solve the integral equation f .x/ D 2C 3

Z x

4

f .t/ dt .

Solution Differentiate the integral equation to get f 0.x/ D 3f .x/, the DE for ex-

ponential growth, having solution f .x/ D Ce3x . Now put x D 4 into the integral

equation to get f .4/ D 2. Hence 2 D Ce12, so C D 2e�12. Therefore, the integral

equation has solution f .x/ D 2e3x�12.

We conclude with an example showing how the Fundamental Theorem can be used to

evaluate limits of Riemann sums.

E X A M P L E 10 Evaluate lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

:

Solution The sum involves values of cos x at the right endpoints of the n subintervals

of the partition

0;
�

2n
;

2�

2n
;

3�

2n
; : : : ;

n�

2n

of the interval Œ0; �=2�. Since each of the subintervals of this partition has length

�=.2n/, and since cos x is continuous on Œ0; �=2�, we have, expressing the limit of a

Riemann sum as an integral (see Figure 5.26),

y

x

y D cos x

�
2n

2�
2n

3�
2n

n�
2n

Figure 5.26

lim
n!1

�

2n

n
X

j D1

cos

�

j�

2n

�

D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1 � 0 D 1:

The given sum differs from the Riemann sum above only in that the factor �=2 is

missing. Thus,

lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

D

2

�
:

E X E R C I S E S 5.5

Evaluate the definite integrals in Exercises 1–20.

1.

Z 2

0

x
3
dx 2.

Z 4

0

p

x dx

3.

Z 1

1=2

1

x2
dx 4.

Z �1

�2

�

1

x2
�

1

x3

�

dx

5.

Z 2

�1

.3x
2
� 4x C 2/ dx 6.

Z 2

1

�

2

x3
�

x
3

2

�

dx

7.

Z 2

�2

.x
2
C 3/

2
dx 8.

Z 9

4

�

p

x �
1
p

x

�

dx

9.

Z ��=6

��=4

cosx dx 10.

Z �=3

0

sec2
� d�

11.

Z �=3

�=4

sin � d� 12.

Z 2�

0

.1C sinu/ du

13.

Z �

��

e
x
dx 14.

Z 2

�2

.e
x
� e

�x
/ dx

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 319 October 5, 2016

SECTION 5.6: The Method of Substitution 319

15.

Z e

0

a
x
dx .a > 0/ 16.

Z 1

�1

2
x
dx

17.

Z 1

�1

dx

1C x2
18.

Z 1=2

0

dx
p

1 � x2

19.I

Z 1

�1

dx
p

4 � x2
20.I

Z 0

�2

dx

4C x2

Find the area of the region R specified in Exercises 21–32. It is

helpful to make a sketch of the region.

21. Bounded by y D x4, y D 0, x D 0, and x D 1

22. Bounded by y D 1=x, y D 0, x D e, and x D e2

23. Above y D x2
� 4x and below the x-axis

24. Bounded by y D 5 � 2x � 3x2, y D 0, x D �1, and x D 1

25. Bounded by y D x2
� 3x C 3 and y D 1

26. Below y D
p

x and above y D
x

2

27. Above y D x2 and to the right of x D y2

28. Above y D jxj and below y D 12 � x2

29. Bounded by y D x1=3
� x1=2, y D 0, x D 0, and x D 1

30. Under y D e�x and above y D 0 from x D �a to x D 0

31. Below y D 1 � cosx and above y D 0 between two

consecutive intersections of these graphs

32. Below y D x�1=3 and above y D 0 from x D 1 to x D 27

Find the integrals of the piecewise continuous functions in

Exercises 33–34.

33.

Z 3�=2

0

j cos xj dx 34.

Z 3

1

sgn .x � 2/

x2
dx

In Exercises 35–38, find the average values of the given functions

over the intervals specified.

35. f .x/ D 1C x C x2
C x3 over Œ0; 2�

36. f .x/ D e3x over Œ�2; 2�

37. f .x/ D 2x over Œ0; 1= ln 2�

38. g.t/ D

�

0 if 0 � t � 1

1 if 1 < t � 3
over Œ0; 3�

Find the indicated derivatives in Exercises 39–46.

39.
d

dx

Z x

2

sin t

t
dt 40.

d

dt

Z 3

t

sinx

x
dx

41.
d

dx

Z 0

x2

sin t

t
dt 42.

d

dx
x

2

Z x2

0

sinu

u
du

43.
d

dt

Z t

��

cosy

1C y2
dy 44.

d

d�

Z cos �

sin �

1

1 � x2
dx

45.
d

dx
F.
p

x/; if F.t/ D

Z t

0

cos.x2
/ dx

46. H 0
.2/; if H.x/ D 3x

Z x2

4

e
�

p
t
dt

47. Solve the integral equation f .x/ D �

�

1C

Z x

1

f .t/ dt

�

.

48. Solve the integral equation f .x/ D 1 �

Z x

0

f .t/ dt .

49.A Criticize the following erroneous calculation:

Z 1

�1

dx

x2
D �

1

x

ˇ

ˇ

ˇ

ˇ

ˇ

1

�1

D �1C
1

�1
D �2:

Exactly where did the error occur? Why is �2 an

unreasonable value for the integral?

50.I Use a definite integral to define a function F.x/ having

derivative
sinx

1C x2
for all x and satisfying F.17/ D 0.

51.I Does the function F.x/ D

Z 2x�x2

0

cos

�

1

1C t2

�

dt have a

maximum or a minimum value? Justify your answer.

Evaluate the limits in Exercises 52–54.

52.I lim
n!1

1

n

 

�

1C
1

n

�5

C

�

1C
2

n

�5

C � � � C

�

1C
n

n

�5
!

53.I lim
n!1

�

n

�

sin
�

n
C sin

2�

n
C sin

3�

n
C � � � C sin

n�

n

�

54.I lim
n!1

�

n

n2
C 1
C

n

n2
C 4
C

n

n2
C 9
C � � � C

n

2n2

�

5.6 The Method of Substitution
As we have seen, the evaluation of definite integrals is most easily carried out if we

can antidifferentiate the integrand. In this section and Sections 6.1–6.4 we develop

some techniques of integration, that is, methods for finding antiderivatives of functions.

Although the techniques we develop can be used for a large class of functions, they will

not work for all functions we might want to integrate. If a definite integral involves an

integrand whose antiderivative is either impossible or very difficult to find, we may

wish, instead, to approximate the definite integral by numerical means. Techniques for

doing that will be presented in Sections 6.6–6.8.

Let us begin by assembling a table of some known indefinite integrals. These

results have all emerged during our development of differentiation formulas for ele-

mentary functions. You should memorize them.
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d

dx

Z g.x/

a

f .t/ dt D f
�

g.x/
�

g
0
.x/

d

dx

Z g.x/

h.x/

f .t/ dt D f
�

g.x/
�

g
0
.x/� f

�

h.x/
�

h
0
.x/

E X A M P L E 9 Solve the integral equation f .x/ D 2C 3

Z x

4

f .t/ dt .

Solution Differentiate the integral equation to get f 0.x/ D 3f .x/, the DE for ex-

ponential growth, having solution f .x/ D Ce3x . Now put x D 4 into the integral

equation to get f .4/ D 2. Hence 2 D Ce12, so C D 2e�12. Therefore, the integral

equation has solution f .x/ D 2e3x�12.

We conclude with an example showing how the Fundamental Theorem can be used to

evaluate limits of Riemann sums.

E X A M P L E 10 Evaluate lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

:

Solution The sum involves values of cos x at the right endpoints of the n subintervals

of the partition

0;
�

2n
;

2�

2n
;

3�

2n
; : : : ;

n�

2n

of the interval Œ0; �=2�. Since each of the subintervals of this partition has length

�=.2n/, and since cos x is continuous on Œ0; �=2�, we have, expressing the limit of a

Riemann sum as an integral (see Figure 5.26),

y

x

y D cos x

�
2n

2�
2n

3�
2n

n�
2n

Figure 5.26

lim
n!1

�

2n

n
X

j D1

cos

�

j�

2n

�

D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1 � 0 D 1:

The given sum differs from the Riemann sum above only in that the factor �=2 is

missing. Thus,

lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

D

2

�
:

E X E R C I S E S 5.5

Evaluate the definite integrals in Exercises 1–20.

1.

Z 2

0

x
3
dx 2.

Z 4

0

p

x dx

3.

Z 1

1=2

1

x2
dx 4.

Z �1

�2

�

1

x2
�

1

x3

�

dx

5.

Z 2

�1

.3x
2
� 4x C 2/ dx 6.

Z 2

1

�

2

x3
�

x
3

2

�

dx

7.

Z 2

�2

.x
2
C 3/

2
dx 8.

Z 9

4

�

p

x �
1
p

x

�

dx

9.

Z ��=6

��=4

cosx dx 10.

Z �=3

0

sec2
� d�

11.

Z �=3

�=4

sin � d� 12.

Z 2�

0

.1C sinu/ du

13.

Z �

��

e
x
dx 14.

Z 2

�2

.e
x
� e

�x
/ dx
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15.

Z e

0

a
x
dx .a > 0/ 16.

Z 1

�1

2
x
dx

17.

Z 1

�1

dx

1C x2
18.

Z 1=2

0

dx
p

1 � x2

19.I

Z 1

�1

dx
p

4 � x2
20.I

Z 0

�2

dx

4C x2

Find the area of the region R specified in Exercises 21–32. It is

helpful to make a sketch of the region.

21. Bounded by y D x4, y D 0, x D 0, and x D 1

22. Bounded by y D 1=x, y D 0, x D e, and x D e2

23. Above y D x2
� 4x and below the x-axis

24. Bounded by y D 5 � 2x � 3x2, y D 0, x D �1, and x D 1

25. Bounded by y D x2
� 3x C 3 and y D 1

26. Below y D
p

x and above y D
x

2

27. Above y D x2 and to the right of x D y2

28. Above y D jxj and below y D 12 � x2

29. Bounded by y D x1=3
� x1=2, y D 0, x D 0, and x D 1

30. Under y D e�x and above y D 0 from x D �a to x D 0

31. Below y D 1 � cosx and above y D 0 between two

consecutive intersections of these graphs

32. Below y D x�1=3 and above y D 0 from x D 1 to x D 27

Find the integrals of the piecewise continuous functions in

Exercises 33–34.

33.

Z 3�=2

0

j cos xj dx 34.

Z 3

1

sgn .x � 2/

x2
dx

In Exercises 35–38, find the average values of the given functions

over the intervals specified.

35. f .x/ D 1C x C x2
C x3 over Œ0; 2�

36. f .x/ D e3x over Œ�2; 2�

37. f .x/ D 2x over Œ0; 1= ln 2�

38. g.t/ D

�

0 if 0 � t � 1

1 if 1 < t � 3
over Œ0; 3�

Find the indicated derivatives in Exercises 39–46.

39.
d

dx

Z x

2

sin t

t
dt 40.

d

dt

Z 3

t

sinx

x
dx

41.
d

dx

Z 0

x2

sin t

t
dt 42.

d

dx
x

2

Z x2

0

sinu

u
du

43.
d

dt

Z t

��

cosy

1C y2
dy 44.

d

d�

Z cos �

sin �

1

1 � x2
dx

45.
d

dx
F.
p

x/; if F.t/ D

Z t

0

cos.x2
/ dx

46. H 0
.2/; if H.x/ D 3x

Z x2

4

e
�

p
t
dt

47. Solve the integral equation f .x/ D �

�

1C

Z x

1

f .t/ dt

�

.

48. Solve the integral equation f .x/ D 1 �

Z x

0

f .t/ dt .

49.A Criticize the following erroneous calculation:

Z 1

�1

dx

x2
D �

1

x

ˇ

ˇ

ˇ

ˇ

ˇ

1

�1

D �1C
1

�1
D �2:

Exactly where did the error occur? Why is �2 an

unreasonable value for the integral?

50.I Use a definite integral to define a function F.x/ having

derivative
sinx

1C x2
for all x and satisfying F.17/ D 0.

51.I Does the function F.x/ D

Z 2x�x2

0

cos

�

1

1C t2

�

dt have a

maximum or a minimum value? Justify your answer.

Evaluate the limits in Exercises 52–54.

52.I lim
n!1

1

n

 

�

1C
1

n

�5

C

�

1C
2

n

�5

C � � � C

�

1C
n

n

�5
!

53.I lim
n!1

�

n

�

sin
�

n
C sin

2�

n
C sin

3�

n
C � � � C sin

n�

n

�

54.I lim
n!1

�

n

n2
C 1
C

n

n2
C 4
C

n

n2
C 9
C � � � C

n

2n2

�

5.6 The Method of Substitution
As we have seen, the evaluation of definite integrals is most easily carried out if we

can antidifferentiate the integrand. In this section and Sections 6.1–6.4 we develop

some techniques of integration, that is, methods for finding antiderivatives of functions.

Although the techniques we develop can be used for a large class of functions, they will

not work for all functions we might want to integrate. If a definite integral involves an

integrand whose antiderivative is either impossible or very difficult to find, we may

wish, instead, to approximate the definite integral by numerical means. Techniques for

doing that will be presented in Sections 6.6–6.8.

Let us begin by assembling a table of some known indefinite integrals. These

results have all emerged during our development of differentiation formulas for ele-

mentary functions. You should memorize them.

9780134154367_Calculus   339 05/12/16   3:20 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 320 October 5, 2016

320 CHAPTER 5 Integration

Some elementary integrals

1.

Z

1 dx D x C C 2.

Z

x dx D
1

2
x

2
C C

3.

Z

x
2
dx D

1

3
x

3
C C 4.

Z

1

x2
dx D �

1

x
C C

5.

Z

p

x dx D
2

3
x

3=2
C C 6.

Z

1
p

x
dx D 2

p

x C C

7.

Z

x
r
dx D

1

r C 1
x

rC1
C C .r ¤ �1/ 8.

Z

1

x
dx D ln jxj C C

9.

Z

sinax dx D �
1

a
cos ax C C 10.

Z

cos ax dx D
1

a
sin ax C C

11.

Z

sec2
ax dx D

1

a
tanax C C 12.

Z

csc2
ax dx D �

1

a
cot ax C C

13.

Z

sec ax tan ax dx D
1

a
sec ax C C 14.

Z

csc ax cot ax dx D �
1

a
csc ax C C

15.

Z

1
p

a2
� x2

dx D sin�1 x

a
CC .a > 0/ 16.

Z

1

a2
C x2

dx D
1

a
tan�1 x

a
C C

17.

Z

e
ax
dx D

1

a
e

ax
C C 18.

Z

b
ax
dx D

1

a ln b
b

ax
C C

19.

Z

cosh ax dx D
1

a
sinh ax C C 20.

Z

sinh ax dx D
1

a
cosh ax C C

Note that formulas 1–6 are special cases of formula 7, which holds on any interval

where xr makes sense. The linearity formula

Z

.Af .x/C B g.x// dx D A

Z

f .x/ dx C B

Z

g.x/ dx

makes it possible to integrate sums and constant multiples of functions.

E X A M P L E 1
(Combining elementary integrals)

(a)

Z

.x
4
� 3x

3
C 8x

2
� 6x � 7/ dx D

x5

5
�

3x4

4
C

8x3

3
� 3x

2
� 7x C C

(b)

Z �

5x
3=5
�

3

2C x2

�

dx D
25

8
x

8=5
�

3
p

2
tan�1 x

p

2
C C

(c)

Z

.4 cos 5x � 5 sin 3x/ dx D
4

5
sin 5x C

5

3
cos 3x C C

(d)

Z �

1

�x
C a

�x

�

dx D
1

�
ln jxj C

1

� ln a
a

�x
C C , .a > 0/.

Sometimes it is necessary to manipulate an integrand so that the method can be applied.

E X A M P L E 2

Z

.x C 1/3

x
dx D

Z

x3
C 3x2

C 3x C 1

x
dx

D

Z �

x
2
C 3x C 3C

1

x

�

dx

D

1

3
x

3
C

3

2
x

2
C 3x C ln jxj C C:
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When an integral cannot be evaluated by inspection, as those in Examples 1–2 can,

we require one or more special techniques. The most important of these techniques is

the method of substitution, the integral version of the Chain Rule. If we rewrite the

Chain Rule, d
dx
f
�

g.x/
�

D f 0�g.x/
�

g0.x/, in integral form, we obtain

Z

f
0�
g.x/

�

g
0
.x/ dx D f

�

g.x/
�

C C:

Observe that the following formalism would produce this latter formula even if we did

not already know it was true:

Let u D g.x/. Then du=dx D g0.x/, or in differential form, du D g0.x/ dx. Thus,

Z

f
0
.g.x// g

0
.x/ dx D

Z

f
0
.u/ du D f .u/C C D f .g.x//C C:

E X A M P L E 3
(Examples of substitution) Find the indefinite integrals:

(a)

Z

x

x2
C 1

dx; (b)

Z

sin.3 ln x/

x
dx; and (c)

Z

e
x
p

1C ex dx:

Solution

(a)

Z

x

x2
C 1

dx Let u D x2
C 1.

Then du D 2x dx and

x dx D
1
2
du

D

1

2

Z

du

u
D

1

2
ln juj C C D

1

2
ln.x2

C 1/C C D ln
p

x2
C 1C C:

(Both versions of the final answer are equally acceptable.)

(b)

Z

sin.3 ln x/

x
dx Let u D 3 ln x.

Then du D
3

x
dx

D

1

3

Z

sinudu D �
1

3
cosuC C D �

1

3
cos.3 ln x/C C:

(c)

Z

e
x
p

1C ex dx Let v D 1C ex .

Then dv D ex dx

D

Z

v
1=2

dv D
2

3
v

3=2
C C D

2

3
.1C e

x
/
3=2
C C:

Sometimes the appropriate substitutions are not as obvious as they were in Example 3,

and it may be necessary to manipulate the integrand algebraically to put it into a better

form for substitution.

E X A M P L E 4 Evaluate (a)

Z

1

x2
C 4x C 5

dx and (b)

Z

dx
p

e2x
� 1

.

Solution

(a)

Z

dx

x2
C 4x C 5

D

Z

dx

.x C 2/2 C 1
Let t D x C 2.

Then dt D dx.

D

Z

dt

t2 C 1

D tan�1
t C C D tan�1

.x C 2/C C:
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Some elementary integrals

1.

Z

1 dx D x C C 2.

Z

x dx D
1

2
x

2
C C

3.

Z

x
2
dx D

1

3
x

3
C C 4.

Z

1

x2
dx D �

1

x
C C

5.

Z

p

x dx D
2

3
x

3=2
C C 6.

Z

1
p

x
dx D 2

p

x C C

7.

Z

x
r
dx D

1

r C 1
x

rC1
C C .r ¤ �1/ 8.

Z

1

x
dx D ln jxj C C

9.

Z

sinax dx D �
1

a
cos ax C C 10.

Z

cos ax dx D
1

a
sin ax C C

11.

Z

sec2
ax dx D

1

a
tanax C C 12.

Z

csc2
ax dx D �

1

a
cot ax C C

13.

Z

sec ax tan ax dx D
1

a
sec ax C C 14.

Z

csc ax cot ax dx D �
1

a
csc ax C C

15.

Z

1
p

a2
� x2

dx D sin�1 x

a
CC .a > 0/ 16.

Z

1

a2
C x2

dx D
1

a
tan�1 x

a
C C

17.

Z

e
ax
dx D

1

a
e

ax
C C 18.

Z

b
ax
dx D

1

a ln b
b

ax
C C

19.

Z

cosh ax dx D
1

a
sinh ax C C 20.

Z

sinh ax dx D
1

a
cosh ax C C

Note that formulas 1–6 are special cases of formula 7, which holds on any interval

where xr makes sense. The linearity formula

Z

.Af .x/C B g.x// dx D A

Z

f .x/ dx C B

Z

g.x/ dx

makes it possible to integrate sums and constant multiples of functions.

E X A M P L E 1
(Combining elementary integrals)

(a)

Z

.x
4
� 3x

3
C 8x

2
� 6x � 7/ dx D

x5

5
�

3x4

4
C

8x3

3
� 3x

2
� 7x C C

(b)

Z �

5x
3=5
�

3

2C x2

�

dx D
25

8
x

8=5
�

3
p

2
tan�1 x

p

2
C C

(c)

Z

.4 cos 5x � 5 sin 3x/ dx D
4

5
sin 5x C

5

3
cos 3x C C

(d)

Z �

1

�x
C a

�x

�

dx D
1

�
ln jxj C

1

� ln a
a

�x
C C , .a > 0/.

Sometimes it is necessary to manipulate an integrand so that the method can be applied.

E X A M P L E 2

Z

.x C 1/3

x
dx D

Z

x3
C 3x2

C 3x C 1

x
dx

D

Z �

x
2
C 3x C 3C

1

x

�

dx

D

1

3
x

3
C

3

2
x

2
C 3x C ln jxj C C:
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When an integral cannot be evaluated by inspection, as those in Examples 1–2 can,

we require one or more special techniques. The most important of these techniques is

the method of substitution, the integral version of the Chain Rule. If we rewrite the

Chain Rule, d
dx
f
�

g.x/
�

D f 0�g.x/
�

g0.x/, in integral form, we obtain

Z

f
0�
g.x/

�

g
0
.x/ dx D f

�

g.x/
�

C C:

Observe that the following formalism would produce this latter formula even if we did

not already know it was true:

Let u D g.x/. Then du=dx D g0.x/, or in differential form, du D g0.x/ dx. Thus,

Z

f
0
.g.x// g

0
.x/ dx D

Z

f
0
.u/ du D f .u/C C D f .g.x//C C:

E X A M P L E 3
(Examples of substitution) Find the indefinite integrals:

(a)

Z

x

x2
C 1

dx; (b)

Z

sin.3 ln x/

x
dx; and (c)

Z

e
x
p

1C ex dx:

Solution

(a)

Z

x

x2
C 1

dx Let u D x2
C 1.

Then du D 2x dx and

x dx D
1
2
du

D

1

2

Z

du

u
D

1

2
ln juj C C D

1

2
ln.x2

C 1/C C D ln
p

x2
C 1C C:

(Both versions of the final answer are equally acceptable.)

(b)

Z

sin.3 ln x/

x
dx Let u D 3 ln x.

Then du D
3

x
dx

D

1

3

Z

sinudu D �
1

3
cosuC C D �

1

3
cos.3 ln x/C C:

(c)

Z

e
x
p

1C ex dx Let v D 1C ex .

Then dv D ex dx

D

Z

v
1=2

dv D
2

3
v

3=2
C C D

2

3
.1C e

x
/
3=2
C C:

Sometimes the appropriate substitutions are not as obvious as they were in Example 3,

and it may be necessary to manipulate the integrand algebraically to put it into a better

form for substitution.

E X A M P L E 4 Evaluate (a)

Z

1

x2
C 4x C 5

dx and (b)

Z

dx
p

e2x
� 1

.

Solution

(a)

Z

dx

x2
C 4x C 5

D

Z

dx

.x C 2/2 C 1
Let t D x C 2.

Then dt D dx.

D

Z

dt

t2 C 1

D tan�1
t C C D tan�1

.x C 2/C C:
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(b)

Z

dx
p

e2x
� 1
D

Z

dx

ex
p

1 � e�2x

D

Z

e�x dx
p

1 � .e�x/2
Let u D e�x .

Then du D �e�x dx.

D �

Z

du
p

1 � u2

D � sin�1
uC C D � sin�1

.e
�x
/C C:

The method of substitution cannot be forced to work. There is no substitution that

will do much good with the integral
R

x.2 C x7/1=5 dx, for instance. However, the

integral
R

x6.2Cx7/1=5 dx will yield to the substitution u D 2Cx7. The substitution

u D g.x/ is more likely to work if g0.x/ is a factor of the integrand.

The following theorem simplifies the use of the method of substitution in definite

integrals.

T H E O R E M

6

Substitution in a definite integral

Suppose that g is a differentiable function on Œa; b� that satisfies g.a/ D A and g.b/ D

B . Also suppose that f is continuous on the range of g. Then

Z b

a

f
�

g.x/
�

g
0
.x/ dx D

Z B

A

f .u/ du:

PROOF Let F be an antiderivative of f ; F 0.u/ D f .u/. Then

d

dx
F
�

g.x/
�

D F
0�
g.x/

�

g
0
.x/ D f

�

g.x/
�

g
0
.x/:

Thus,

Z b

a

f
�

g.x/
�

g
0
.x/ dx D F

�

g.x/
�

ˇ

ˇ

ˇ

ˇ

b

a

D F
�

g.b/
�

� F
�

g.a/
�

D F.B/ � F.A/ D F.u/

ˇ

ˇ

ˇ

ˇ

B

A

D

Z B

A

f .u/ du:

E X A M P L E 5 Evaluate the integral I D

Z 8

0

cos
p

x C 1
p

x C 1
dx.

Solution METHOD I. Let u D
p

x C 1. Then du D
dx

2
p

x C 1
. If x D 0, then

u D 1; if x D 8, then u D 3. Thus,

I D 2

Z 3

1

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

3

1

D 2 sin 3 � 2 sin 1:

METHOD II. We use the same substitution as in Method I, but we do not transform

the limits of integration from x values to u values. Hence, we must return to the

variable x before substituting in the limits:

I D 2

Z xD8

xD0

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

xD8

xD0

D 2 sin
p

x C 1

ˇ

ˇ

ˇ

ˇ

8

0

D 2 sin 3 � 2 sin 1:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 323 October 5, 2016

SECTION 5.6: The Method of Substitution 323

Note that the limits must be written x D 0 and x D 8 at any stage where the variable

is not x. It would have been wrong to write

I D 2

Z 8

0

cosudu

because this would imply that u, rather than x, goes from 0 to 8. Method I gives the

shorter solution and is therefore preferable. However, in cases where the transformed

limits (the u-limits) are very complicated, you might prefer to use Method II.

E X A M P L E 6 Find the area of the region bounded by y D
�

2C sin
x

2

�2

cos
x

2
,

the x-axis, and the lines x D 0 and x D � .

Solution Because y � 0 when 0 � x � � , the required area is

A D

Z �

0

�

2C sin
x

2

�2

cos
x

2
dx Let v D 2C sin

x

2
.

Then dv D
1

2
cos

x

2
dx

D 2

Z 3

2

v
2
dv D

2

3
v

3

ˇ

ˇ

ˇ

ˇ

3

2

D

2

3
.27 � 8/ D

38

3
square units:

Remark The condition that f be continuous on the range of the function u D g.x/

(for a � x � b) is essential in Theorem 6. Using the substitution u D x2 in the

integral
R 1

�1
x csc.x2

/ dx leads to the erroneous conclusion

Z 1

�1

x csc.x2
/ dx D

1

2

Z 1

1

cscudu D 0:

Although x csc.x2/ is an odd function, it is not continuous at 0, and it happens that

the given integral represents the difference of infinite areas. If we assume that f is

continuous on an interval containing A and B; then it suffices to know that u D g.x/

is one-to-one as well as differentiable. In this case the range of g will lie between A

and B; so the condition of Theorem 6 will be satisfied.

Trigonometric Integrals
The method of substitution is often useful for evaluating trigonometric integrals. We

begin by listing the integrals of the four trigonometric functions whose integrals we

have not yet seen. They arise often in applications and should be memorized.

Integrals of tangent, cotangent, secant, and cosecant
Z

tan x dx D ln j sec xj C C;

Z

cot x dx D ln j sin xj C C D � ln j csc xj C C;

Z

sec x dx D ln j sec x C tanxj C C;

Z

csc x dx D � ln j csc x C cot xj C C D ln j csc x � cot xj C C:
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(b)

Z

dx
p

e2x
� 1
D

Z

dx

ex
p

1 � e�2x

D

Z

e�x dx
p

1 � .e�x/2
Let u D e�x .

Then du D �e�x dx.

D �

Z

du
p

1 � u2

D � sin�1
uC C D � sin�1

.e
�x
/C C:

The method of substitution cannot be forced to work. There is no substitution that

will do much good with the integral
R

x.2 C x7/1=5 dx, for instance. However, the

integral
R

x6.2Cx7/1=5 dx will yield to the substitution u D 2Cx7. The substitution

u D g.x/ is more likely to work if g0.x/ is a factor of the integrand.

The following theorem simplifies the use of the method of substitution in definite

integrals.

T H E O R E M

6

Substitution in a definite integral

Suppose that g is a differentiable function on Œa; b� that satisfies g.a/ D A and g.b/ D

B . Also suppose that f is continuous on the range of g. Then

Z b

a

f
�

g.x/
�

g
0
.x/ dx D

Z B

A

f .u/ du:

PROOF Let F be an antiderivative of f ; F 0.u/ D f .u/. Then

d

dx
F
�

g.x/
�

D F
0�
g.x/

�

g
0
.x/ D f

�

g.x/
�

g
0
.x/:

Thus,

Z b

a

f
�

g.x/
�

g
0
.x/ dx D F

�

g.x/
�

ˇ

ˇ

ˇ

ˇ

b

a

D F
�

g.b/
�

� F
�

g.a/
�

D F.B/ � F.A/ D F.u/

ˇ

ˇ

ˇ

ˇ

B

A

D

Z B

A

f .u/ du:

E X A M P L E 5 Evaluate the integral I D

Z 8

0

cos
p

x C 1
p

x C 1
dx.

Solution METHOD I. Let u D
p

x C 1. Then du D
dx

2
p

x C 1
. If x D 0, then

u D 1; if x D 8, then u D 3. Thus,

I D 2

Z 3

1

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

3

1

D 2 sin 3 � 2 sin 1:

METHOD II. We use the same substitution as in Method I, but we do not transform

the limits of integration from x values to u values. Hence, we must return to the

variable x before substituting in the limits:

I D 2

Z xD8

xD0

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

xD8

xD0

D 2 sin
p

x C 1

ˇ

ˇ

ˇ

ˇ

8

0

D 2 sin 3 � 2 sin 1:
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Note that the limits must be written x D 0 and x D 8 at any stage where the variable

is not x. It would have been wrong to write

I D 2

Z 8

0

cosudu

because this would imply that u, rather than x, goes from 0 to 8. Method I gives the

shorter solution and is therefore preferable. However, in cases where the transformed

limits (the u-limits) are very complicated, you might prefer to use Method II.

E X A M P L E 6 Find the area of the region bounded by y D
�

2C sin
x

2

�2

cos
x

2
,

the x-axis, and the lines x D 0 and x D � .

Solution Because y � 0 when 0 � x � � , the required area is

A D

Z �

0

�

2C sin
x

2

�2

cos
x

2
dx Let v D 2C sin

x

2
.

Then dv D
1

2
cos

x

2
dx

D 2

Z 3

2

v
2
dv D

2

3
v

3

ˇ

ˇ

ˇ

ˇ

3

2

D

2

3
.27 � 8/ D

38

3
square units:

Remark The condition that f be continuous on the range of the function u D g.x/

(for a � x � b) is essential in Theorem 6. Using the substitution u D x2 in the

integral
R 1

�1
x csc.x2

/ dx leads to the erroneous conclusion

Z 1

�1

x csc.x2
/ dx D

1

2

Z 1

1

cscudu D 0:

Although x csc.x2/ is an odd function, it is not continuous at 0, and it happens that

the given integral represents the difference of infinite areas. If we assume that f is

continuous on an interval containing A and B; then it suffices to know that u D g.x/

is one-to-one as well as differentiable. In this case the range of g will lie between A

and B; so the condition of Theorem 6 will be satisfied.

Trigonometric Integrals
The method of substitution is often useful for evaluating trigonometric integrals. We

begin by listing the integrals of the four trigonometric functions whose integrals we

have not yet seen. They arise often in applications and should be memorized.

Integrals of tangent, cotangent, secant, and cosecant
Z

tan x dx D ln j sec xj C C;

Z

cot x dx D ln j sin xj C C D � ln j csc xj C C;

Z

sec x dx D ln j sec x C tanxj C C;

Z

csc x dx D � ln j csc x C cot xj C C D ln j csc x � cot xj C C:
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All of these can, of course, be checked by differentiating the right-hand sides. The first

two can be evaluated directly by rewriting tanx or cot x in terms of sinx and cos x and

using an appropriate substitution. For example,
Z

tan x dx D

Z

sin x

cos x
dx Let u D cos x.

Then du D � sin x dx.

D �

Z

du

u
D � ln juj C C

D � ln j cos xj C C D ln

ˇ

ˇ

ˇ

ˇ

1

cos x

ˇ

ˇ

ˇ

ˇ

C C D ln j sec xj C C:

The integral of sec x can be evaluated by rewriting it in the form
Z

secx dx D

Z

sec x.sec x C tan x/

sec x C tan x
dx

and using the substitution u D sec x C tan x. The integral of csc x can be evaluated

similarly. (Show that the two versions given for that integral are equivalent!)

We now consider integrals of the form
Z

sinm
x cosn

x dx:

If either m or n is an odd, positive integer, the integral can be done easily by sub-

stitution. If, say, n D 2k C 1 where k is an integer, then we can use the identity

sin2
x C cos2 x D 1 to rewrite the integral in the form
Z

sinm
x .1 � sin2

x/
k cos x dx;

which can be integrated using the substitution u D sinx. Similarly, u D cos x can be

used if m is an odd integer.

E X A M P L E 7 Evaluate (a)

Z

sin3
x cos8

x dx and (b)

Z

cos5
ax dx.

Solution

(a)

Z

sin3
x cos8

x dx D

Z

.1 � cos2
x/ cos8

x sin x dx Let u D cos x,

du D � sin x dx:

D �

Z

.1 � u
2
/ u

8
du D

Z

.u
10
� u

8
/ du

D

u11

11
�

u9

9
C C D

1

11
cos11

x �
1

9
cos9

x C C:

(b)

Z

cos5
ax dx D

Z

.1 � sin2
ax/

2 cos ax dx Let u D sin ax,

du D a cos ax dx:

D

1

a

Z

.1 � u
2
/
2
du D

1

a

Z

.1 � 2u
2
C u

4
/ du

D

1

a

�

u �
2

3
u

3
C

1

5
u

5

�

C C

D

1

a

�

sin ax �
2

3
sin3

ax C
1

5
sin5

ax

�

C C:

If the powers of sin x and cos x are both even, then we can make use of the double-

angle formulas (see Section P.7):

cos2
x D

1

2
.1C cos 2x/ and sin2

x D
1

2
.1 � cos 2x/:
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E X A M P L E 8
(Integrating even powers of sine and cosine) Verify the integra-

tion formulas

Z

cos2
x dx D

1

2
.x C sin x cos x/C C;

Z

sin2
x dx D

1

2
.x � sinx cos x/C C:

These integrals are encountered frequently and are worth remembering.

Solution Each of the integrals follows from the corresponding double-angle identity.

We do the first; the second is similar.

Z

cos2
x dx D

1

2

Z

.1C cos 2x/ dx

D

x

2
C

1

4
sin 2x C C

D

1

2
.x C sin x cos x/C C (since sin 2x D 2 sin x cos x):

E X A M P L E 9 Evaluate

Z

sin4
x dx.

Solution We will have to apply the double-angle formula twice.

Z

sin4
x dx D

1

4

Z

.1 � cos 2x/2 dx

D

1

4

Z

.1 � 2 cos 2x C cos2
2x/ dx

D

x

4
�

1

4
sin 2x C

1

8

Z

.1C cos 4x/ dx

D

x

4
�

1

4
sin 2x C

x

8
C

1

32
sin 4x C C

D

3

8
x �

1

4
sin 2x C

1

32
sin 4x C C

(Note that there is no point in inserting the constant of integration C until the last

integral has been evaluated.)

Using the identities sec2 x D 1 C tan2 x and csc2 x D 1 C cot2 x and one of the

substitutions u D sec x, u D tan x, u D cscx, or u D cot x, we can evaluate integrals

of the form

Z

secm
x tann

x dx or

Z

cscm
x cotn x dx;

unless m is odd and n is even. (If this is the case, these integrals can be handled by

integration by parts; see Section 6.1.)

E X A M P L E 10
(Integrals involving secants and tangents) Evaluate the follow-

ing integrals:

(a)

Z

tan2
x dx, (b)

Z

sec4
t dt , and (c)

Z

sec3
x tan3

x dx.
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All of these can, of course, be checked by differentiating the right-hand sides. The first

two can be evaluated directly by rewriting tanx or cot x in terms of sinx and cos x and

using an appropriate substitution. For example,
Z

tan x dx D

Z

sin x

cos x
dx Let u D cos x.

Then du D � sin x dx.

D �

Z

du

u
D � ln juj C C

D � ln j cos xj C C D ln

ˇ

ˇ

ˇ

ˇ

1

cos x

ˇ

ˇ

ˇ

ˇ

C C D ln j sec xj C C:

The integral of sec x can be evaluated by rewriting it in the form
Z

secx dx D

Z

sec x.sec x C tan x/

sec x C tan x
dx

and using the substitution u D sec x C tan x. The integral of csc x can be evaluated

similarly. (Show that the two versions given for that integral are equivalent!)

We now consider integrals of the form
Z

sinm
x cosn

x dx:

If either m or n is an odd, positive integer, the integral can be done easily by sub-

stitution. If, say, n D 2k C 1 where k is an integer, then we can use the identity

sin2
x C cos2 x D 1 to rewrite the integral in the form
Z

sinm
x .1 � sin2

x/
k cos x dx;

which can be integrated using the substitution u D sinx. Similarly, u D cos x can be

used if m is an odd integer.

E X A M P L E 7 Evaluate (a)

Z

sin3
x cos8

x dx and (b)

Z

cos5
ax dx.

Solution

(a)

Z

sin3
x cos8

x dx D

Z

.1 � cos2
x/ cos8

x sin x dx Let u D cos x,

du D � sin x dx:

D �

Z

.1 � u
2
/ u

8
du D

Z

.u
10
� u

8
/ du

D

u11

11
�

u9

9
C C D

1

11
cos11

x �
1

9
cos9

x C C:

(b)

Z

cos5
ax dx D

Z

.1 � sin2
ax/

2 cos ax dx Let u D sin ax,

du D a cos ax dx:

D

1

a

Z

.1 � u
2
/
2
du D

1

a

Z

.1 � 2u
2
C u

4
/ du

D

1

a

�

u �
2

3
u

3
C

1

5
u

5

�

C C

D

1

a

�

sin ax �
2

3
sin3

ax C
1

5
sin5

ax

�

C C:

If the powers of sin x and cos x are both even, then we can make use of the double-

angle formulas (see Section P.7):

cos2
x D

1

2
.1C cos 2x/ and sin2

x D
1

2
.1 � cos 2x/:
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E X A M P L E 8
(Integrating even powers of sine and cosine) Verify the integra-

tion formulas

Z

cos2
x dx D

1

2
.x C sin x cos x/C C;

Z

sin2
x dx D

1

2
.x � sinx cos x/C C:

These integrals are encountered frequently and are worth remembering.

Solution Each of the integrals follows from the corresponding double-angle identity.

We do the first; the second is similar.

Z

cos2
x dx D

1

2

Z

.1C cos 2x/ dx

D

x

2
C

1

4
sin 2x C C

D

1

2
.x C sin x cos x/C C (since sin 2x D 2 sin x cos x):

E X A M P L E 9 Evaluate

Z

sin4
x dx.

Solution We will have to apply the double-angle formula twice.

Z

sin4
x dx D

1

4

Z

.1 � cos 2x/2 dx

D

1

4

Z

.1 � 2 cos 2x C cos2
2x/ dx

D

x

4
�

1

4
sin 2x C

1

8

Z

.1C cos 4x/ dx

D

x

4
�

1

4
sin 2x C

x

8
C

1

32
sin 4x C C

D

3

8
x �

1

4
sin 2x C

1

32
sin 4x C C

(Note that there is no point in inserting the constant of integration C until the last

integral has been evaluated.)

Using the identities sec2 x D 1 C tan2 x and csc2 x D 1 C cot2 x and one of the

substitutions u D sec x, u D tan x, u D cscx, or u D cot x, we can evaluate integrals

of the form

Z

secm
x tann

x dx or

Z

cscm
x cotn x dx;

unless m is odd and n is even. (If this is the case, these integrals can be handled by

integration by parts; see Section 6.1.)

E X A M P L E 10
(Integrals involving secants and tangents) Evaluate the follow-

ing integrals:

(a)

Z

tan2
x dx, (b)

Z

sec4
t dt , and (c)

Z

sec3
x tan3

x dx.
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Solution

(a)

Z

tan2
x dx D

Z

.sec2
x � 1/ dx D tan x � x C C .

(b)

Z

sec4
t dt D

Z

.1C tan2
t/ sec2

t dt Let u D tan t ,

du D sec2 t dt:

D

Z

.1C u
2
/ du D uC

1

3
u

3
C C D tan t C

1

3
tan3

t C C:

(c)

Z

sec3
x tan3

x dx

D

Z

sec2
x .sec2

x � 1/ secx tan x dx Let u D sec x,

du D sec x tan x dx:

D

Z

.u
4
� u

2
/ du D

u5

5
�

u3

3
C C D

1

5
sec5

x �
1

3
sec3

x C C:

E X E R C I S E S 5.6

Evaluate the integrals in Exercises 1–44. Remember to include a

constant of integration with the indefinite integrals. Your answers

may appear different from those in the Answers section but may

still be correct. For example, evaluating I D
R

sinx cosx dx

using the substitution u D sinx leads to I D 1
2

sin2
x C C ; using

u D cosx leads to I D � 1
2

cos2 x C C ; and rewriting

I D
1
2

R

sin.2x/ dx leads to I D � 1
4

cos.2x/C C . These

answers are all equal except for different choices for the constant

of integration C : 1
2

sin2
x D �

1
2

cos2
C

1
2
D �

1
4

cos.2x/C 1
4

.

You can always check your own answer to an indefinite

integral by differentiating it to get back to the integrand. This is

often easier than comparing your answer with the answer in the

back of the book. You may find integrals that you can’t do, but you

should not make mistakes in those you can do because the answer

is so easily checked. (This is a good thing to remember during

tests and exams.)

1.

Z

e
5�2x

dx 2.

Z

cos.ax C b/ dx

3.

Z

p

3x C 4 dx 4.

Z

e
2x sin.e2x

/ dx

5.

Z

x dx

.4x2
C 1/5

6.

Z

sin
p

x
p

x
dx

7.

Z

x e
x2

dx 8.

Z

x
2
2

x3C1
dx

9.

Z

cosx

4C sin2
x
dx 10.

Z

sec2 x
p

1� tan2 x
dx

11.I

Z

ex
C 1

ex
� 1

dx 12.

Z

ln t

t
dt

13.

Z

ds
p

4 � 5s
14.

Z

x C 1
p

x2
C 2x C 3

dx

15.

Z

t dt
p

4 � t4
16.

Z

x2 dx

2C x6

17.I

Z

dx

ex
C 1

18.I

Z

dx

ex
C e�x

19.

Z

tanx ln cos x dx 20.

Z

x C 1
p

1� x2
dx

21.

Z

dx

x2
C 6x C 13

22.

Z

dx
p

4C 2x � x2

23.

Z

sin3
x cos5

x dx 24.

Z

sin4
t cos5

t dt

25.

Z

sin ax cos2
ax dx 26.

Z

sin2
x cos2

x dx

27.

Z

sin6
x dx 28.

Z

cos4
x dx

29.

Z

sec5
x tanx dx 30.

Z

sec6
x tan2

x dx

31.

Z

p

tanx sec4
x dx 32.

Z

sin�2=3
x cos3

x dx

33.

Z

cosx sin4
.sinx/ dx 34.

Z

sin3 lnx cos3 ln x

x
dx

35.

Z

sin2
x

cos4 x
dx 36.

Z

sin3
x

cos4 x
dx

37.

Z

csc5
x cot5 x dx 38.

Z

cos4 x

sin8
x
dx

39.

Z 4

0

x
3
.x

2
C 1/

� 1
2 dx 40.

Z

p
e

1

sin.� lnx/

x
dx

41.

Z �=2

0

sin4
x dx 42.

Z �

�=4

sin5
x dx

43.

Z e2

e

dt

t ln t
44.

Z

�2

9

�2

16

2sin
p

x cos
p

x
p

x
dx

45.I Use the identities cos 2� D 2 cos2 � � 1 D 1 � 2 sin2
� and

sin � D cos
�

�

2
� �

�

to help you evaluate the following:

Z �=2

0

p

1C cos x dx and

Z �=2

0

p

1 � sinx dx
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46. Find the area of the region bounded by

y D x=.x2
C 16/, y D 0, x D 0, and x D 2.

47. Find the area of the region bounded by

y D x=.x4
C 16/, y D 0, x D 0, and x D 2.

48. Express the area bounded by the ellipse

.x2=a2/C .y2=b2/ D 1 as a definite integral. Make a

substitution that converts this integral into one representing

the area of a circle, and hence evaluate it.

49.I Use the addition formulas for sin.x ˙ y/ and cos.x ˙ y/ from

Section P.7 to establish the following identities:

cosx cosy D
1

2

�

cos.x � y/C cos.x C y/
�

;

sinx siny D
1

2

�

cos.x � y/ � cos.x C y/
�

;

sinx cosy D
1

2

�

sin.x C y/C sin.x � y/
�

:

50.I Use the identities established in Exercise 49 to calculate the

following integrals:
Z

cos ax cos bx dx,

Z

sinax sin bx dx,

and

Z

sin ax cos bx dx.

51.I If m and n are integers, show that:

(i)

Z �

��

cosmx cosnx dx D 0 if m ¤ n,

(ii)

Z �

��

sinmx sinnx dx D 0 if m ¤ n,

(iii)

Z �

��

sinmx cos nx dx D 0.

52.I (Fourier coefficients) Suppose that for some positive integer

k,

f .x/ D
a0

2
C

k
X

nD1

.an cosnx C bn sinnx/

holds for all x in Œ��; ��. Use the result of Exercise 51 to

show that the coefficients am (0 � m � k) and bm

(1 � m � k), which are called the Fourier coefficients of f

on Œ��; ��, are given by

am D
1

�

Z �

��

f .x/ cosmx dx; bm D
1

�

Z �

��

f .x/ sinmx dx:

5.7 Areas of Plane Regions

In this section we review and extend the use of definite integrals to represent plane

areas. Recall that the integral
R b

a
f .x/ dx measures the area between the graph of f

and the x-axis from x D a to x D b, but treats as negative any part of this area that

lies below the x-axis. (We are assuming that a < b.) In order to express the total area

bounded by y D f .x/, y D 0, x D a, and x D b, counting all of the area positively,

we should integrate the absolute value of f (see Figure 5.27):

Z b

a

f .x/ dx D A1 � A2 and

Z b

a

jf .x/j dx D A1 C A2:

There is no “rule” for integrating
R b

a
jf .x/j dx; one must break the integral into a sum

y

x

y D f .x/
y D jf .x/j

A1
A2

A2

a b

Figure 5.27

of integrals over intervals where f .x/ > 0 (so jf .x/j D f .x/), and intervals where

f .x/ < 0 (so jf .x/j D �f .x/).

E X A M P L E 1
The area bounded by y D cos x, y D 0, x D 0, and x D 3�=2

(see Figure 5.28) is
y

x

y D cos x

�
2

3�
2

Figure 5.28

A D

Z 3�=2

0

j cos xj dx

D

Z �=2

0

cos x dx C

Z 3�=2

�=2

.� cos x/ dx

D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

� sin x

ˇ

ˇ

ˇ

ˇ

3�=2

�=2

D .1 � 0/ � .�1 � 1/ D 3 square units:
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Solution

(a)

Z

tan2
x dx D

Z

.sec2
x � 1/ dx D tan x � x C C .

(b)

Z

sec4
t dt D

Z

.1C tan2
t/ sec2

t dt Let u D tan t ,

du D sec2 t dt:

D

Z

.1C u
2
/ du D uC

1

3
u

3
C C D tan t C

1

3
tan3

t C C:

(c)

Z

sec3
x tan3

x dx

D

Z

sec2
x .sec2

x � 1/ secx tan x dx Let u D sec x,

du D sec x tan x dx:

D

Z

.u
4
� u

2
/ du D

u5

5
�

u3

3
C C D

1

5
sec5

x �
1

3
sec3

x C C:

E X E R C I S E S 5.6

Evaluate the integrals in Exercises 1–44. Remember to include a

constant of integration with the indefinite integrals. Your answers

may appear different from those in the Answers section but may

still be correct. For example, evaluating I D
R

sinx cosx dx

using the substitution u D sinx leads to I D 1
2

sin2
x C C ; using

u D cosx leads to I D � 1
2

cos2 x C C ; and rewriting

I D
1
2

R

sin.2x/ dx leads to I D � 1
4

cos.2x/C C . These

answers are all equal except for different choices for the constant

of integration C : 1
2

sin2
x D �

1
2

cos2
C

1
2
D �

1
4

cos.2x/C 1
4

.

You can always check your own answer to an indefinite

integral by differentiating it to get back to the integrand. This is

often easier than comparing your answer with the answer in the

back of the book. You may find integrals that you can’t do, but you

should not make mistakes in those you can do because the answer

is so easily checked. (This is a good thing to remember during

tests and exams.)

1.

Z

e
5�2x

dx 2.

Z

cos.ax C b/ dx

3.

Z

p

3x C 4 dx 4.

Z

e
2x sin.e2x

/ dx

5.

Z

x dx

.4x2
C 1/5

6.

Z

sin
p

x
p

x
dx

7.

Z

x e
x2

dx 8.

Z

x
2
2

x3C1
dx

9.

Z

cosx

4C sin2
x
dx 10.

Z

sec2 x
p

1� tan2 x
dx

11.I

Z

ex
C 1

ex
� 1

dx 12.

Z

ln t

t
dt

13.

Z

ds
p

4 � 5s
14.

Z

x C 1
p

x2
C 2x C 3

dx

15.

Z

t dt
p

4 � t4
16.

Z

x2 dx

2C x6

17.I

Z

dx

ex
C 1

18.I

Z

dx

ex
C e�x

19.

Z

tanx ln cos x dx 20.

Z

x C 1
p

1� x2
dx

21.

Z

dx

x2
C 6x C 13

22.

Z

dx
p

4C 2x � x2

23.

Z

sin3
x cos5

x dx 24.

Z

sin4
t cos5

t dt

25.

Z

sin ax cos2
ax dx 26.

Z

sin2
x cos2

x dx

27.

Z

sin6
x dx 28.

Z

cos4
x dx

29.

Z

sec5
x tanx dx 30.

Z

sec6
x tan2

x dx

31.

Z

p

tanx sec4
x dx 32.

Z

sin�2=3
x cos3

x dx

33.

Z

cosx sin4
.sinx/ dx 34.

Z

sin3 lnx cos3 ln x

x
dx

35.

Z

sin2
x

cos4 x
dx 36.

Z

sin3
x

cos4 x
dx

37.

Z

csc5
x cot5 x dx 38.

Z

cos4 x

sin8
x
dx

39.

Z 4

0

x
3
.x

2
C 1/

� 1
2 dx 40.

Z

p
e

1

sin.� lnx/

x
dx

41.

Z �=2

0

sin4
x dx 42.

Z �

�=4

sin5
x dx

43.

Z e2

e

dt

t ln t
44.

Z

�2

9

�2

16

2sin
p

x cos
p

x
p

x
dx

45.I Use the identities cos 2� D 2 cos2 � � 1 D 1 � 2 sin2
� and

sin � D cos
�

�

2
� �

�

to help you evaluate the following:

Z �=2

0

p

1C cos x dx and

Z �=2

0

p

1 � sinx dx
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46. Find the area of the region bounded by

y D x=.x2
C 16/, y D 0, x D 0, and x D 2.

47. Find the area of the region bounded by

y D x=.x4
C 16/, y D 0, x D 0, and x D 2.

48. Express the area bounded by the ellipse

.x2=a2/C .y2=b2/ D 1 as a definite integral. Make a

substitution that converts this integral into one representing

the area of a circle, and hence evaluate it.

49.I Use the addition formulas for sin.x ˙ y/ and cos.x ˙ y/ from

Section P.7 to establish the following identities:

cosx cosy D
1

2

�

cos.x � y/C cos.x C y/
�

;

sinx siny D
1

2

�

cos.x � y/ � cos.x C y/
�

;

sinx cosy D
1

2

�

sin.x C y/C sin.x � y/
�

:

50.I Use the identities established in Exercise 49 to calculate the

following integrals:
Z

cos ax cos bx dx,

Z

sinax sin bx dx,

and

Z

sin ax cos bx dx.

51.I If m and n are integers, show that:

(i)

Z �

��

cosmx cosnx dx D 0 if m ¤ n,

(ii)

Z �

��

sinmx sinnx dx D 0 if m ¤ n,

(iii)

Z �

��

sinmx cos nx dx D 0.

52.I (Fourier coefficients) Suppose that for some positive integer

k,

f .x/ D
a0

2
C

k
X

nD1

.an cosnx C bn sinnx/

holds for all x in Œ��; ��. Use the result of Exercise 51 to

show that the coefficients am (0 � m � k) and bm

(1 � m � k), which are called the Fourier coefficients of f

on Œ��; ��, are given by

am D
1

�

Z �

��

f .x/ cosmx dx; bm D
1

�

Z �

��

f .x/ sinmx dx:

5.7 Areas of Plane Regions

In this section we review and extend the use of definite integrals to represent plane

areas. Recall that the integral
R b

a
f .x/ dx measures the area between the graph of f

and the x-axis from x D a to x D b, but treats as negative any part of this area that

lies below the x-axis. (We are assuming that a < b.) In order to express the total area

bounded by y D f .x/, y D 0, x D a, and x D b, counting all of the area positively,

we should integrate the absolute value of f (see Figure 5.27):

Z b

a

f .x/ dx D A1 � A2 and

Z b

a

jf .x/j dx D A1 C A2:

There is no “rule” for integrating
R b

a
jf .x/j dx; one must break the integral into a sum

y

x

y D f .x/
y D jf .x/j

A1
A2

A2

a b

Figure 5.27

of integrals over intervals where f .x/ > 0 (so jf .x/j D f .x/), and intervals where

f .x/ < 0 (so jf .x/j D �f .x/).

E X A M P L E 1
The area bounded by y D cos x, y D 0, x D 0, and x D 3�=2

(see Figure 5.28) is
y

x

y D cos x

�
2

3�
2

Figure 5.28

A D

Z 3�=2

0

j cos xj dx

D

Z �=2

0

cos x dx C

Z 3�=2

�=2

.� cos x/ dx

D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

� sin x

ˇ

ˇ

ˇ

ˇ

3�=2

�=2

D .1 � 0/ � .�1 � 1/ D 3 square units:
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Areas Between Two Curves
Suppose that a plane region R is bounded by the graphs of two continuous functions,

y D f .x/ and y D g.x/, and the vertical straight lines x D a and x D b, as shown in

Figure 5.29(a). Assume that a < b and that f .x/ � g.x/ on Œa; b�, so the graph of f

lies below that of g. If f .x/ � 0 on Œa; b�, then the area A of R is the area above the

x-axis and under the graph of g minus the area above the x-axis and under the graph

of f W

A D

Z b

a

g.x/ dx �

Z b

a

f .x/ dx D

Z b

a

�

g.x/� f .x/
�

dx:

Figure 5.29

(a) The region R lying between two

graphs

(b) An area element of the region R

y

x

y D f .x/

y D g.x/

R

a b

y

x

y D f .x/

y D g.x/

R

a b

g.x/ � f .x/

dx

x

(a) (b)

It is useful to regard this formula as expressing A as the “sum” (i.e., the integral) of

infinitely many area elements

dA D .g.x/ � f .x// dx;

corresponding to values of x between a and b. Each such area element is the area

of an infinitely thin vertical rectangle of width dx and height g.x/ � f .x/ located at

position x (see Figure 5.29(b)). Even if f and g can take on negative values on Œa; b�,

this interpretation and the resulting area formula

A D

Z b

a

�

g.x/� f .x/
�

dx

remain valid, provided that f .x/ � g.x/ on Œa; b� so that all the area elements dA have

positive area. Using integrals to represent a quantity as a sum of differential elements

(i.e., a sum of little bits of the quantity) is a very helpful approach. We will do this

often in Chapter 7. Of course, what we are really doing is identifying the integral as a

limit of a suitable Riemann sum.

More generally, if the restriction f .x/ � g.x/ is removed, then the vertical rect-

angle of width dx at position x extending between the graphs of f and g has height

jf .x/� g.x/j and hence area

dA D jf .x/� g.x/j dx:

(See Figure 5.30.) Hence, the total area lying between the graphs y D f .x/ and

y D g.x/ and between the vertical lines x D a and x D b > a is given by

A D

Z b

a

ˇ

ˇf .x/� g.x/
ˇ

ˇdx:
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Figure 5.30 An area element for the

region between y D f .x/ and y D g.x/

y

x

jf .x/ � g.x/j

dx

a x b

y D f .x/

y D g.x/

In order to evaluate this integral, we have to determine the intervals on which f .x/ >

g.x/ or f .x/ < g.x/, and break the integral into a sum of integrals over each of these

intervals.

E X A M P L E 2
Find the area of the bounded, plane region R lying between the

curves y D x2
� 2x and y D 4 � x2.

Solution First, we must find the intersections of the curves, so we solve the equations

simultaneously:

x
2
� 2x D y D 4� x

2

2x
2
� 2x � 4 D 0

2.x � 2/.x C 1/ D 0 so x D 2 or x D �1.

The curves are sketched in Figure 5.31, and the bounded (finite) region between them

is shaded. (A sketch should always be made in problems of this sort.) Since 4 � x2
�

y

x

y D 4 � x2

y D x2
� 2x

�1 2

R

Figure 5.31

x2
� 2x for �1 � x � 2, the area A of R is given by

A D

Z 2

�1

�

.4 � x
2
/ � .x

2
� 2x/

�

dx

D

Z 2

�1

.4 � 2x
2
C 2x/ dx

D

�

4x �
2

3
x

3
C x

2

�
ˇ

ˇ

ˇ

ˇ

2

�1

D 4.2/ �
2

3
.8/C 4 �

�

�4C
2

3
C 1

�

D 9 square units:

Note that in representing the area as an integral we must subtract the height y to the

lower curve from the height y to the upper curve to get a positive area element dA.

Subtracting the wrong way would have produced a negative value for the area.

E X A M P L E 3
Find the total area A lying between the curves y D sin x and y D

cos x from x D 0 to x D 2� .
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Areas Between Two Curves
Suppose that a plane region R is bounded by the graphs of two continuous functions,

y D f .x/ and y D g.x/, and the vertical straight lines x D a and x D b, as shown in

Figure 5.29(a). Assume that a < b and that f .x/ � g.x/ on Œa; b�, so the graph of f

lies below that of g. If f .x/ � 0 on Œa; b�, then the area A of R is the area above the

x-axis and under the graph of g minus the area above the x-axis and under the graph

of f W

A D

Z b

a

g.x/ dx �

Z b

a

f .x/ dx D

Z b

a

�

g.x/� f .x/
�

dx:

Figure 5.29

(a) The region R lying between two

graphs

(b) An area element of the region R

y

x

y D f .x/

y D g.x/

R

a b

y

x

y D f .x/

y D g.x/

R

a b

g.x/ � f .x/

dx

x

(a) (b)

It is useful to regard this formula as expressing A as the “sum” (i.e., the integral) of

infinitely many area elements

dA D .g.x/ � f .x// dx;

corresponding to values of x between a and b. Each such area element is the area

of an infinitely thin vertical rectangle of width dx and height g.x/ � f .x/ located at

position x (see Figure 5.29(b)). Even if f and g can take on negative values on Œa; b�,

this interpretation and the resulting area formula

A D

Z b

a

�

g.x/� f .x/
�

dx

remain valid, provided that f .x/ � g.x/ on Œa; b� so that all the area elements dA have

positive area. Using integrals to represent a quantity as a sum of differential elements

(i.e., a sum of little bits of the quantity) is a very helpful approach. We will do this

often in Chapter 7. Of course, what we are really doing is identifying the integral as a

limit of a suitable Riemann sum.

More generally, if the restriction f .x/ � g.x/ is removed, then the vertical rect-

angle of width dx at position x extending between the graphs of f and g has height

jf .x/� g.x/j and hence area

dA D jf .x/� g.x/j dx:

(See Figure 5.30.) Hence, the total area lying between the graphs y D f .x/ and

y D g.x/ and between the vertical lines x D a and x D b > a is given by

A D

Z b

a

ˇ

ˇf .x/� g.x/
ˇ

ˇdx:
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Figure 5.30 An area element for the

region between y D f .x/ and y D g.x/

y

x

jf .x/ � g.x/j

dx

a x b

y D f .x/

y D g.x/

In order to evaluate this integral, we have to determine the intervals on which f .x/ >

g.x/ or f .x/ < g.x/, and break the integral into a sum of integrals over each of these

intervals.

E X A M P L E 2
Find the area of the bounded, plane region R lying between the

curves y D x2
� 2x and y D 4 � x2.

Solution First, we must find the intersections of the curves, so we solve the equations

simultaneously:

x
2
� 2x D y D 4� x

2

2x
2
� 2x � 4 D 0

2.x � 2/.x C 1/ D 0 so x D 2 or x D �1.

The curves are sketched in Figure 5.31, and the bounded (finite) region between them

is shaded. (A sketch should always be made in problems of this sort.) Since 4 � x2
�

y

x

y D 4 � x2

y D x2
� 2x

�1 2

R

Figure 5.31

x2
� 2x for �1 � x � 2, the area A of R is given by

A D

Z 2

�1

�

.4 � x
2
/ � .x

2
� 2x/

�

dx

D

Z 2

�1

.4 � 2x
2
C 2x/ dx

D

�

4x �
2

3
x

3
C x

2

�
ˇ

ˇ

ˇ

ˇ

2

�1

D 4.2/ �
2

3
.8/C 4 �

�

�4C
2

3
C 1

�

D 9 square units:

Note that in representing the area as an integral we must subtract the height y to the

lower curve from the height y to the upper curve to get a positive area element dA.

Subtracting the wrong way would have produced a negative value for the area.

E X A M P L E 3
Find the total area A lying between the curves y D sin x and y D

cos x from x D 0 to x D 2� .
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Figure 5.32

y

x

y D sin x

y D cos x

�
4

2�

5�
4

Solution The region is shaded in Figure 5.32. Between 0 and 2� the graphs of sine

and cosine cross at x D �=4 and x D 5�=4. The required area is

A D

Z �=4

0

.cos x � sin x/ dx C

Z 5�=4

�=4

.sin x � cos x/ dx

C

Z 2�

5�=4

.cos x � sinx/ dx

D .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

�=4

0

� .cos x C sinx/

ˇ

ˇ

ˇ

ˇ

5�=4

�=4

C .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

2�

5�=4

D .
p

2 � 1/C .
p

2C
p

2/C .1C
p

2/ D 4
p

2 square units:

It is sometimes more convenient to use horizontal area elements instead of vertical

ones and integrate over an interval of the y-axis instead of the x-axis. This is usually

the case if the region whose area we want to find is bounded by curves whose equations

are written in terms of functions of y. In Figure 5.33(a), the region R lying to the right

of x D f .y/ and to the left of x D g.y/, and between the horizontal lines y D c and

y D d > c, has area element dA D
�

g.y/� f .y/
�

dy. Its area is

A D

Z d

c

�

g.y/ � f .y/
�

dy:

Figure 5.33

(a) A horizontal area element

(b) The finite region bounded by

x D y2
� 12 and x D y

y

x

R

g.y/ � f .y/

dy

d

c

x D g.y/

y

x D f .y/

y

x

�3

4

x D y2
� 12

x D y

�12

(a) (b)

E X A M P L E 4
Find the area of the plane region lying to the right of the parabola

x D y2
�12 and to the left of the straight line y D x, as illustrated

in Figure 5.33(b).

Solution For the intersections of the curves:

y
2
� 12 D x D y

y
2
� y � 12 D 0

.y � 4/.y C 3/ D 0 so y D 4 or y D �3.
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Observe that y2
� 12 � y for �3 � y � 4. Thus, the area is

A D

Z 4

�3

�

y � .y
2
� 12/

�

dy D

�

y2

2
�

y3

3
C 12y

�
ˇ

ˇ

ˇ

ˇ

4

�3

D

343

6
square units:

Of course, the same result could have been obtained by integrating in the x direction,

but the integral would have been more complicated:

A D

Z �3

�12

�p

12C x � .�
p

12C x/
�

dx C

Z 4

�3

�p

12C x � x
�

dxI

different integrals are required over the intervals where the region is bounded below

by the parabola and by the straight line.

E X E R C I S E S 5.7

In Exercises 1–16, sketch and find the area of the plane region

bounded by the given curves.

1. y D x; y D x
2 2. y D

p

x; y D x
2

3. y D x2
� 5; y D 3 � x

2

4. y D x2
� 2x; y D 6x � x

2

5. 2y D 4x � x2
; 2y C 3x D 6

6. x � y D 7; x D 2y
2
� y C 3

7. y D x3
; y D x 8. y D x3

; y D x
2

9. y D x3
; x D y

2

10. x D y2
; x D 2y

2
� y � 2

11. y D
1

x
; 2x C 2y D 5

12. y D .x2
� 1/

2
; y D 1 � x

2

13. y D
1

2
x

2
; y D

1

x2
C 1

14. y D
4x

3C x2
; y D 1

15. y D
4

x2
; y D 5 � x

2 16. x D y2
� �

2
; x D siny

Find the areas of the regions described in Exercises 17–28. It is

helpful to sketch the regions before writing an integral to represent

the area.

17. Bounded by y D sinx and y D cos x, and between two

consecutive intersections of these curves

18. Bounded by y D sin2
x and y D 1, and between two

consecutive intersections of these curves

19. Bounded by y D sinx and y D sin2
x, between x D 0 and

x D �=2

20. Bounded by y D sin2
x and y D cos2 x, and between two

consecutive intersections of these curves

21. Under y D 4x=� and above y D tanx, between x D 0 and

the first intersection of the curves to the right of x D 0

22. Bounded by y D x1=3 and the component of y D tan.�x=4/

that passes through the origin

23. Bounded by y D 2 and the component of y D sec x that

passes through the point .0; 1/

24. Bounded by y D
p

2 cos.�x=4/ and y D jxj

25. Bounded by y D sin.�x=2/ and y D x

G 26. Bounded by y D ex and y D x C 2

27. Find the total area enclosed by the curve y2
D x2

� x4.

28. Find the area of the closed loop of the curve y2
D x4.2C x/

that lies to the left of the origin.

29. Find the area of the finite plane region that is bounded by the

curve y D ex , the line x D 0, and the tangent line to y D ex

at x D 1.

30.I Find the area of the finite plane region bounded by the curve

y D x3 and the tangent line to that curve at the point .1; 1/.

Hint: Find the other point at which that tangent line meets the

curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ sigma notation ˘ a partition of an interval

˘ a Riemann sum ˘ a definite integral

˘ an indefinite integral ˘ an integrable function

˘ an area element ˘ an evaluation symbol

˘ the triangle inequality for integrals

˘ a piecewise continuous function
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Figure 5.32

y

x

y D sin x

y D cos x

�
4

2�

5�
4

Solution The region is shaded in Figure 5.32. Between 0 and 2� the graphs of sine

and cosine cross at x D �=4 and x D 5�=4. The required area is

A D

Z �=4

0

.cos x � sin x/ dx C

Z 5�=4

�=4

.sin x � cos x/ dx

C

Z 2�

5�=4

.cos x � sinx/ dx

D .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

�=4

0

� .cos x C sinx/

ˇ

ˇ

ˇ

ˇ

5�=4

�=4

C .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

2�

5�=4

D .
p

2 � 1/C .
p

2C
p

2/C .1C
p

2/ D 4
p

2 square units:

It is sometimes more convenient to use horizontal area elements instead of vertical

ones and integrate over an interval of the y-axis instead of the x-axis. This is usually

the case if the region whose area we want to find is bounded by curves whose equations

are written in terms of functions of y. In Figure 5.33(a), the region R lying to the right

of x D f .y/ and to the left of x D g.y/, and between the horizontal lines y D c and

y D d > c, has area element dA D
�

g.y/� f .y/
�

dy. Its area is

A D

Z d

c

�

g.y/ � f .y/
�

dy:

Figure 5.33

(a) A horizontal area element

(b) The finite region bounded by

x D y2
� 12 and x D y

y

x

R

g.y/ � f .y/

dy

d

c

x D g.y/

y

x D f .y/

y

x

�3

4

x D y2
� 12

x D y

�12

(a) (b)

E X A M P L E 4
Find the area of the plane region lying to the right of the parabola

x D y2
�12 and to the left of the straight line y D x, as illustrated

in Figure 5.33(b).

Solution For the intersections of the curves:

y
2
� 12 D x D y

y
2
� y � 12 D 0

.y � 4/.y C 3/ D 0 so y D 4 or y D �3.
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Observe that y2
� 12 � y for �3 � y � 4. Thus, the area is

A D

Z 4

�3

�

y � .y
2
� 12/

�

dy D

�

y2

2
�

y3

3
C 12y

�
ˇ

ˇ

ˇ

ˇ

4

�3

D

343

6
square units:

Of course, the same result could have been obtained by integrating in the x direction,

but the integral would have been more complicated:

A D

Z �3

�12

�p

12C x � .�
p

12C x/
�

dx C

Z 4

�3

�p

12C x � x
�

dxI

different integrals are required over the intervals where the region is bounded below

by the parabola and by the straight line.

E X E R C I S E S 5.7

In Exercises 1–16, sketch and find the area of the plane region

bounded by the given curves.

1. y D x; y D x
2 2. y D

p

x; y D x
2

3. y D x2
� 5; y D 3 � x

2

4. y D x2
� 2x; y D 6x � x

2

5. 2y D 4x � x2
; 2y C 3x D 6

6. x � y D 7; x D 2y
2
� y C 3

7. y D x3
; y D x 8. y D x3

; y D x
2

9. y D x3
; x D y

2

10. x D y2
; x D 2y

2
� y � 2

11. y D
1

x
; 2x C 2y D 5

12. y D .x2
� 1/

2
; y D 1 � x

2

13. y D
1

2
x

2
; y D

1

x2
C 1

14. y D
4x

3C x2
; y D 1

15. y D
4

x2
; y D 5 � x

2 16. x D y2
� �

2
; x D siny

Find the areas of the regions described in Exercises 17–28. It is

helpful to sketch the regions before writing an integral to represent

the area.

17. Bounded by y D sinx and y D cos x, and between two

consecutive intersections of these curves

18. Bounded by y D sin2
x and y D 1, and between two

consecutive intersections of these curves

19. Bounded by y D sinx and y D sin2
x, between x D 0 and

x D �=2

20. Bounded by y D sin2
x and y D cos2 x, and between two

consecutive intersections of these curves

21. Under y D 4x=� and above y D tanx, between x D 0 and

the first intersection of the curves to the right of x D 0

22. Bounded by y D x1=3 and the component of y D tan.�x=4/

that passes through the origin

23. Bounded by y D 2 and the component of y D sec x that

passes through the point .0; 1/

24. Bounded by y D
p

2 cos.�x=4/ and y D jxj

25. Bounded by y D sin.�x=2/ and y D x

G 26. Bounded by y D ex and y D x C 2

27. Find the total area enclosed by the curve y2
D x2

� x4.

28. Find the area of the closed loop of the curve y2
D x4.2C x/

that lies to the left of the origin.

29. Find the area of the finite plane region that is bounded by the

curve y D ex , the line x D 0, and the tangent line to y D ex

at x D 1.

30.I Find the area of the finite plane region bounded by the curve

y D x3 and the tangent line to that curve at the point .1; 1/.

Hint: Find the other point at which that tangent line meets the

curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ sigma notation ˘ a partition of an interval

˘ a Riemann sum ˘ a definite integral

˘ an indefinite integral ˘ an integrable function

˘ an area element ˘ an evaluation symbol

˘ the triangle inequality for integrals

˘ a piecewise continuous function
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˘ the average value of function f on Œa; b�

˘ the method of substitution

� State the Mean-Value Theorem for integrals.

� State the Fundamental Theorem of Calculus.

� List as many properties of the definite integral as you can.

� What is the relationship between the definite integral and the

indefinite integral of a function f on an interval Œa; b�?

� What is the derivative of
R g.x/

f .x/
h.t/ dt with respect

to x?
� How can the area between the graphs of two functions be

calculated?

Review Exercises

1. Show that
2j C 1

j 2.j C 1/2
D

1

j 2
�

1

.j C 1/2
; hence evaluate

n
X

j D1

2j C 1

j 2.j C 1/2
.

2. (Stacking balls) A display of golf balls in a sporting goods

store is built in the shape of a pyramid with a rectangular base

measuring 40 balls long and 30 balls wide. The next layer up is

39 balls by 29 balls, etc. How many balls are in the pyramid?

3. Let Pn D fx0 D 1; x1; x2; : : : ; xn D 3g be a parti-

tion of Œ1; 3� into n subintervals of equal length, and let

f .x/ D x2
� 2x C 3. Evaluate

Z 3

1

f .x/ dx by finding

limn!1
Pn

iD1 f .xi /�xi :

4. Interpret Rn D

n
X

iD1

1

n

r

1C
i

n
as a Riemann sum for a certain

function f on the interval Œ0; 1�; hence evaluate limn!1Rn.

Evaluate the integrals in Exercises 5–8 without using the Funda-

mental Theorem of Calculus.

5.

Z �

��

.2 � sinx/ dx 6.

Z

p
5

0

p

5 � x2 dx

7.

Z 3

1

�

1 �
x

2

�

dx 8.

Z �

0

cos x dx

Find the average values of the functions in Exercises 9–10 over the

indicated intervals.

9. f .x/ D 2 � sinx3 on Œ��; ��

10. h.x/ D jx � 2j on Œ0; 3�

Find the derivatives of the functions in Exercises 11–14.

11. f .t/ D

Z t

13

sin.x2
/ dx 12. f .x/ D

Z sin x

�13

p

1C t2 dt

13. g.s/ D

Z 1

4s

e
sin u

du 14. g.�/ D

Z ecos �

esin �

lnx dx

15. Solve the integral equation 2f .x/C 1 D 3

Z 1

x

f .t/ dt .

16. Use the substitution x D � � u to show that

Z �

0

x f .sin x/ dx D
�

2

Z �

0

f .sin x/ dx

for any function f continuous on Œ0; 1�.

Find the areas of the finite plane regions bounded by the indicated

graphs in Exercises 17–22.

17. y D 2C x � x2 and y D 0

18. y D .x � 1/2; y D 0; and x D 0

19. x D y � y4 and x D 0 20. y D 4x � x2 and y D 3

21. y D sinx; y D cos 2x; x D 0; and x D �=6

22. y D 5 � x2 and y D 4=x2

Evaluate the integrals in Exercises 23–30.

23.

Z

x
2 cos.2x3

C 1/ dx 24.

Z e

1

lnx

x
dx

25.

Z 4

0

p

9t2 C t4 dt 26.

Z

sin3
.�x/ dx

27.

Z ln 2

0

eu

4C e2u
du 28.

Z 4
p

e

1

tan2 � lnx

x
dx

29.

Z

sin
p

2s C 1
p

2s C 1
ds 30.

Z

cos2 t

5
sin2 t

5
dt

31. Find the minimum value of F.x/ D

Z x2�2x

0

1

1C t2
dt . Does

F have a maximum value? Why?

32. Find the maximum value of
R b

a .4x�x
2/ dx for intervals Œa; b�,

where a < b. How do you know such a maximum value ex-

ists?

33. An object moves along the x-axis so that its position at time t

is given by the function x.t/. In Section 2.11 we defined the

average velocity of the object over the time interval Œt0; t1� to

be vav D

�

x.t1/ � x.t0/

�

=.t1 � t0/. Show that vav is, in fact,

the average value of the velocity function v.t/ D dx=dt over

the interval Œt0; t1�.

34. If an object falls from rest under constant gravitational acceler-

ation, show that its average height during the time T of its fall

is its height at time T=
p

3.

35. Find two numbers x1 and x2 in the interval Œ0; 1� with x1 < x2

such that if f .x/ is any cubic polynomial (i.e., polynomial of

degree 3), then

Z 1

0

f .x/ dx D
f .x1/C f .x2/

2
:

Challenging Problems

1. Evaluate the upper and lower Riemann sums, U.f; Pn/ and

L.f; Pn/, for f .x/ D 1=x on the interval Œ1; 2� for the par-

tition Pn with division points xi D 2
i=n for 0 � i � n. Verify

that limn!1 U.f; Pn/ D ln 2 D limn!1L.f; Pn/.

2.I (a) Use the addition formulas for cos.a C b/ and cos.a � b/

to show that

cos
�

.j C
1
2
/t

�

� cos
�

.j �
1
2
/t

�

D �2 sin. 1
2
t / sin.jt/;

and hence deduce that if t=.2�/ is not an integer, then

n
X

j D1

sin.jt/ D
cos t

2
� cos

�

.nC
1
2
/t

�

2 sin t
2

:

(b) Use the result of part (a) to evaluate
R �=2

0 sinx dx as a

limit of a Riemann sum.
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3. (a) Use the method of Problem 2 to show that if t=.2�/ is not

an integer, then

n
X

j D1

cos.jt/ D
sin
�

.nC
1
2
/t

�

� sin t
2

2 sin t
2

:

(b) Use the result to part (a) to evaluate
R �=3

0 cos x dx as a

limit of a Riemann sum.

4. Let f .x/ D 1=x2 and let 1 D x0 < x1 < x2 < � � � < xn D 2,

so that fx0; x1; x2; : : : ; xng is a partition of Œ1; 2� into n subin-

tervals. Show that ci D
p

xi�1xi is in the i th subinter-

val Œxi�1; xi � of the partition, and evaluate the Riemann sum
Pn

iD1 f .ci /�xi . What does this imply about
R 2

1 .1=x
2/ dx?

5.I (a) Use mathematical induction to verify that for every pos-

itive integer k;
Pn

j D1 j
k
D

nkC1

k C 1
C

nk

2
C Pk�1.n/;

where Pk�1 is a polynomial of degree at most k�1. Hint:

Start by iterating the identity

.j C 1/
kC1
� j

kC1
D .k C 1/j

k
C

.k C 1/k

2
j

k�1

C lower powers of j

for j D 1, 2, 3, : : : , k and adding.

(b) Deduce from (a) that

Z a

0

x
k
dx D

akC1

k C 1
:

M 6. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

pointQ. The tangent to C atQ meets C again atR. Show that

the area between C and the tangent at Q is 16 times the area

between C and the tangent at P:

M 7. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

point Q. Let R be the inflection point of C . Show that R lies

between P and Q on C and that QR divides the area between

C and its tangent at P in the ratio 16/11.

M 8. (Double tangents) Let line PQ be tangent to the graph C of

the quartic polynomial f .x/ D ax4
C bx3

C cx2
C dx C e

at two distinct points: P D .p; f .p// and Q D .q; f .q//. Let

U D .u; f .u// and V D .v; f .v// be the other two points

where the line tangent to C at T D ..pCq/=2; f ..pCq/=2//

meets C . If A and B are the two inflection points of C , let

R and S be the other two points where AB meets C . (See

Figure 5.34. Also see Challenging Problem 17 in Chapter 2 for

more background.)

(a) Find the ratio of the area bounded by UV and C to the

area bounded by PQ and C .

(b) Show that the area bounded by RS and C is divided at A

and B into three parts in the ratio 1 W 2 W 1.

Q

P

A

R

U

B

S

V

T

Figure 5.34
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˘ the average value of function f on Œa; b�

˘ the method of substitution

� State the Mean-Value Theorem for integrals.

� State the Fundamental Theorem of Calculus.

� List as many properties of the definite integral as you can.

� What is the relationship between the definite integral and the

indefinite integral of a function f on an interval Œa; b�?

� What is the derivative of
R g.x/

f .x/
h.t/ dt with respect

to x?
� How can the area between the graphs of two functions be

calculated?

Review Exercises

1. Show that
2j C 1

j 2.j C 1/2
D

1

j 2
�

1

.j C 1/2
; hence evaluate

n
X

j D1

2j C 1

j 2.j C 1/2
.

2. (Stacking balls) A display of golf balls in a sporting goods

store is built in the shape of a pyramid with a rectangular base

measuring 40 balls long and 30 balls wide. The next layer up is

39 balls by 29 balls, etc. How many balls are in the pyramid?

3. Let Pn D fx0 D 1; x1; x2; : : : ; xn D 3g be a parti-

tion of Œ1; 3� into n subintervals of equal length, and let

f .x/ D x2
� 2x C 3. Evaluate

Z 3

1

f .x/ dx by finding

limn!1
Pn

iD1 f .xi /�xi :

4. Interpret Rn D

n
X

iD1

1

n

r

1C
i

n
as a Riemann sum for a certain

function f on the interval Œ0; 1�; hence evaluate limn!1Rn.

Evaluate the integrals in Exercises 5–8 without using the Funda-

mental Theorem of Calculus.

5.

Z �

��

.2 � sinx/ dx 6.

Z

p
5

0

p

5 � x2 dx

7.

Z 3

1

�

1 �
x

2

�

dx 8.

Z �

0

cos x dx

Find the average values of the functions in Exercises 9–10 over the

indicated intervals.

9. f .x/ D 2 � sinx3 on Œ��; ��

10. h.x/ D jx � 2j on Œ0; 3�

Find the derivatives of the functions in Exercises 11–14.

11. f .t/ D

Z t

13

sin.x2
/ dx 12. f .x/ D

Z sin x

�13

p

1C t2 dt

13. g.s/ D

Z 1

4s

e
sin u

du 14. g.�/ D

Z ecos �

esin �

lnx dx

15. Solve the integral equation 2f .x/C 1 D 3

Z 1

x

f .t/ dt .

16. Use the substitution x D � � u to show that

Z �

0

x f .sin x/ dx D
�

2

Z �

0

f .sin x/ dx

for any function f continuous on Œ0; 1�.

Find the areas of the finite plane regions bounded by the indicated

graphs in Exercises 17–22.

17. y D 2C x � x2 and y D 0

18. y D .x � 1/2; y D 0; and x D 0

19. x D y � y4 and x D 0 20. y D 4x � x2 and y D 3

21. y D sinx; y D cos 2x; x D 0; and x D �=6

22. y D 5 � x2 and y D 4=x2

Evaluate the integrals in Exercises 23–30.

23.

Z

x
2 cos.2x3

C 1/ dx 24.

Z e

1

lnx

x
dx

25.

Z 4

0

p

9t2 C t4 dt 26.

Z

sin3
.�x/ dx

27.

Z ln 2

0

eu

4C e2u
du 28.

Z 4
p

e

1

tan2 � lnx

x
dx

29.

Z

sin
p

2s C 1
p

2s C 1
ds 30.

Z

cos2 t

5
sin2 t

5
dt

31. Find the minimum value of F.x/ D

Z x2�2x

0

1

1C t2
dt . Does

F have a maximum value? Why?

32. Find the maximum value of
R b

a .4x�x
2/ dx for intervals Œa; b�,

where a < b. How do you know such a maximum value ex-

ists?

33. An object moves along the x-axis so that its position at time t

is given by the function x.t/. In Section 2.11 we defined the

average velocity of the object over the time interval Œt0; t1� to

be vav D

�

x.t1/ � x.t0/

�

=.t1 � t0/. Show that vav is, in fact,

the average value of the velocity function v.t/ D dx=dt over

the interval Œt0; t1�.

34. If an object falls from rest under constant gravitational acceler-

ation, show that its average height during the time T of its fall

is its height at time T=
p

3.

35. Find two numbers x1 and x2 in the interval Œ0; 1� with x1 < x2

such that if f .x/ is any cubic polynomial (i.e., polynomial of

degree 3), then

Z 1

0

f .x/ dx D
f .x1/C f .x2/

2
:

Challenging Problems

1. Evaluate the upper and lower Riemann sums, U.f; Pn/ and

L.f; Pn/, for f .x/ D 1=x on the interval Œ1; 2� for the par-

tition Pn with division points xi D 2
i=n for 0 � i � n. Verify

that limn!1 U.f; Pn/ D ln 2 D limn!1L.f; Pn/.

2.I (a) Use the addition formulas for cos.a C b/ and cos.a � b/

to show that

cos
�

.j C
1
2
/t

�

� cos
�

.j �
1
2
/t

�

D �2 sin. 1
2
t / sin.jt/;

and hence deduce that if t=.2�/ is not an integer, then

n
X

j D1

sin.jt/ D
cos t

2
� cos

�

.nC
1
2
/t

�

2 sin t
2

:

(b) Use the result of part (a) to evaluate
R �=2

0 sinx dx as a

limit of a Riemann sum.
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3. (a) Use the method of Problem 2 to show that if t=.2�/ is not

an integer, then

n
X

j D1

cos.jt/ D
sin
�

.nC
1
2
/t

�

� sin t
2

2 sin t
2

:

(b) Use the result to part (a) to evaluate
R �=3

0 cos x dx as a

limit of a Riemann sum.

4. Let f .x/ D 1=x2 and let 1 D x0 < x1 < x2 < � � � < xn D 2,

so that fx0; x1; x2; : : : ; xng is a partition of Œ1; 2� into n subin-

tervals. Show that ci D
p

xi�1xi is in the i th subinter-

val Œxi�1; xi � of the partition, and evaluate the Riemann sum
Pn

iD1 f .ci /�xi . What does this imply about
R 2

1 .1=x
2/ dx?

5.I (a) Use mathematical induction to verify that for every pos-

itive integer k;
Pn

j D1 j
k
D

nkC1

k C 1
C

nk

2
C Pk�1.n/;

where Pk�1 is a polynomial of degree at most k�1. Hint:

Start by iterating the identity

.j C 1/
kC1
� j

kC1
D .k C 1/j

k
C

.k C 1/k

2
j

k�1

C lower powers of j

for j D 1, 2, 3, : : : , k and adding.

(b) Deduce from (a) that

Z a

0

x
k
dx D

akC1

k C 1
:

M 6. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

pointQ. The tangent to C atQ meets C again atR. Show that

the area between C and the tangent at Q is 16 times the area

between C and the tangent at P:

M 7. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

point Q. Let R be the inflection point of C . Show that R lies

between P and Q on C and that QR divides the area between

C and its tangent at P in the ratio 16/11.

M 8. (Double tangents) Let line PQ be tangent to the graph C of

the quartic polynomial f .x/ D ax4
C bx3

C cx2
C dx C e

at two distinct points: P D .p; f .p// and Q D .q; f .q//. Let

U D .u; f .u// and V D .v; f .v// be the other two points

where the line tangent to C at T D ..pCq/=2; f ..pCq/=2//

meets C . If A and B are the two inflection points of C , let

R and S be the other two points where AB meets C . (See

Figure 5.34. Also see Challenging Problem 17 in Chapter 2 for

more background.)

(a) Find the ratio of the area bounded by UV and C to the

area bounded by PQ and C .

(b) Show that the area bounded by RS and C is divided at A

and B into three parts in the ratio 1 W 2 W 1.

Q

P

A

R

U

B

S

V

T

Figure 5.34
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C H A P T E R 6

Techniques of

Integration

“
I’m very good at integral and differential calculus,

I know the scientific names of beings animalculous;

In short, in matters vegetable, animal, and mineral,

I am the very model of a modern Major-General.

”William Schwenck Gilbert 1836–1911

from The Pirates of Penzance

Introduction This chapter is completely concerned with how to evalu-

ate integrals. The first four sections continue our search,

begun in Section 5.6, for ways to find antiderivatives and, therefore, definite integrals

by the Fundamental Theorem of Calculus. Section 6.5 deals with the problem of find-

ing definite integrals of functions over infinite intervals, or over intervals where the

functions are not bounded. The remaining three sections deal with techniques of nu-

merical integration that can be used to find approximate values of definite integrals

when an antiderivative cannot be found.

It is not necessary to cover the material of this chapter before proceeding to the

various applications of integration discussed in Chapter 7, but some of the examples

and exercises in that chapter do depend on techniques presented here.

6.1 Integration by Parts

Our next general method for antidifferentiation is called integration by parts. Just

as the method of substitution can be regarded as inverse to the Chain Rule for dif-

ferentiation, so the method for integration by parts is inverse to the Product Rule for

differentiation.

Suppose that U.x/ and V.x/ are two differentiable functions. According to the

Product Rule,

d

dx

�

U.x/V.x/
�

D U.x/
dV

dx
C V.x/

dU

dx
:

Integrating both sides of this equation and transposing terms, we obtain

Z

U.x/
dV

dx
dx D U.x/V.x/�

Z

V.x/
dU

dx
dx

or, more simply,
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Z

U dV D UV �

Z

V dU:

The above formula serves as a pattern for carrying out integration by parts, as we will

see in the examples below. In each application of the method, we break up the given

integrand into a product of two pieces, U and V 0, where V 0 is readily integrated and

where
R

V U 0 dx is usually (but not always) a simpler integral than
R

UV 0 dx. The

technique is called integration by parts because it replaces one integral with the sum

of an integrated term and another integral that remains to be evaluated. That is, it

accomplishes only part of the original integration.

E X A M P L E 1

Z

xe
x
dx Let U D x, dV D ex dx.

Then dU D dx, V D ex .

D xe
x
�

Z

e
x
dx (i.e., UV �

R

V dU )

D xe
x
� e

x
C C:

Note the form in which the integration by parts is carried out. We indicate at the side

what choices we are making for U and dV and then calculate dU and V from these.

However, we do not actually substitute U and V into the integral; instead, we use the

formula
R

U dV D UV �
R

V dU as a pattern or mnemonic device to replace the

given integral by the equivalent partially integrated form on the second line.

Note also that had we included a constant of integration with V; for example,

V D ex
CK, that constant would cancel out in the next step:

Z

xe
x
dx D x.e

x
CK/�

Z

.e
x
CK/dx

D xe
x
CKx � e

x
�Kx C C D xe

x
� e

x
C C:

In general, do not include a constant of integration with V or on the right-hand side

until the last integral has been evaluated.

Study the various parts of the following example carefully; they show the various

ways in which integration by parts is used, and they give some insights into what

choices should be made for U and dV in various situations. An improper choice can

result in making an integral more difficult rather than easier. Look for a factor of the

integrand that is easily integrated, and include dx with that factor to make up dV:

Then U is the remaining factor of the integrand. Sometimes it is necessary to take

dV D dx only. When breaking up an integrand using integration by parts, choose U

and dV so that, if possible, V dU is “simpler” (easier to integrate) than U dV:

E X A M P L E 2
Use integration by parts to evaluate

(a)

Z

lnx dx, (b)

Z

x
2 sin x dx, (c)

Z

x tan�1
x dx, (d)

Z

sin�1
x dx.

Solution

(a)

Z

ln x dx Let U D ln x, dV D dx.

Then dU D dx=x, V D x.

D x ln x �

Z

x
1

x
dx

D x ln x � x C C:
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C H A P T E R 6

Techniques of

Integration

“
I’m very good at integral and differential calculus,

I know the scientific names of beings animalculous;

In short, in matters vegetable, animal, and mineral,

I am the very model of a modern Major-General.

”William Schwenck Gilbert 1836–1911

from The Pirates of Penzance

Introduction This chapter is completely concerned with how to evalu-

ate integrals. The first four sections continue our search,

begun in Section 5.6, for ways to find antiderivatives and, therefore, definite integrals

by the Fundamental Theorem of Calculus. Section 6.5 deals with the problem of find-

ing definite integrals of functions over infinite intervals, or over intervals where the

functions are not bounded. The remaining three sections deal with techniques of nu-

merical integration that can be used to find approximate values of definite integrals

when an antiderivative cannot be found.

It is not necessary to cover the material of this chapter before proceeding to the

various applications of integration discussed in Chapter 7, but some of the examples

and exercises in that chapter do depend on techniques presented here.

6.1 Integration by Parts

Our next general method for antidifferentiation is called integration by parts. Just

as the method of substitution can be regarded as inverse to the Chain Rule for dif-

ferentiation, so the method for integration by parts is inverse to the Product Rule for

differentiation.

Suppose that U.x/ and V.x/ are two differentiable functions. According to the

Product Rule,

d

dx

�

U.x/V.x/
�

D U.x/
dV

dx
C V.x/

dU

dx
:

Integrating both sides of this equation and transposing terms, we obtain

Z

U.x/
dV

dx
dx D U.x/V.x/�

Z

V.x/
dU

dx
dx

or, more simply,
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Z

U dV D UV �

Z

V dU:

The above formula serves as a pattern for carrying out integration by parts, as we will

see in the examples below. In each application of the method, we break up the given

integrand into a product of two pieces, U and V 0, where V 0 is readily integrated and

where
R

V U 0 dx is usually (but not always) a simpler integral than
R

UV 0 dx. The

technique is called integration by parts because it replaces one integral with the sum

of an integrated term and another integral that remains to be evaluated. That is, it

accomplishes only part of the original integration.

E X A M P L E 1

Z

xe
x
dx Let U D x, dV D ex dx.

Then dU D dx, V D ex .

D xe
x
�

Z

e
x
dx (i.e., UV �

R

V dU )

D xe
x
� e

x
C C:

Note the form in which the integration by parts is carried out. We indicate at the side

what choices we are making for U and dV and then calculate dU and V from these.

However, we do not actually substitute U and V into the integral; instead, we use the

formula
R

U dV D UV �
R

V dU as a pattern or mnemonic device to replace the

given integral by the equivalent partially integrated form on the second line.

Note also that had we included a constant of integration with V; for example,

V D ex
CK, that constant would cancel out in the next step:

Z

xe
x
dx D x.e

x
CK/�

Z

.e
x
CK/dx

D xe
x
CKx � e

x
�Kx C C D xe

x
� e

x
C C:

In general, do not include a constant of integration with V or on the right-hand side

until the last integral has been evaluated.

Study the various parts of the following example carefully; they show the various

ways in which integration by parts is used, and they give some insights into what

choices should be made for U and dV in various situations. An improper choice can

result in making an integral more difficult rather than easier. Look for a factor of the

integrand that is easily integrated, and include dx with that factor to make up dV:

Then U is the remaining factor of the integrand. Sometimes it is necessary to take

dV D dx only. When breaking up an integrand using integration by parts, choose U

and dV so that, if possible, V dU is “simpler” (easier to integrate) than U dV:

E X A M P L E 2
Use integration by parts to evaluate

(a)

Z

lnx dx, (b)

Z

x
2 sin x dx, (c)

Z

x tan�1
x dx, (d)

Z

sin�1
x dx.

Solution

(a)

Z

ln x dx Let U D ln x, dV D dx.

Then dU D dx=x, V D x.

D x ln x �

Z

x
1

x
dx

D x ln x � x C C:
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(b) We have to integrate by parts twice this time:
Z

x
2 sin x dx Let U D x

2, dV D sinx dx.

Then dU D 2x dx, V D � cos x.

D �x
2 cos x C 2

Z

x cos x dx Let U D x, dV D cos x dx.

Then dU D dx, V D sin x.

D �x
2 cos x C 2

�

x sinx �

Z

sin x dx

�

D �x
2 cos x C 2x sinx C 2 cos x C C:

(c)

Z

x tan�1
x dx Let U D tan�1 x, dV D x dx.

Then dU D dx=.1C x2/, V D
1
2
x2.

D

1

2
x

2 tan�1
x �

1

2

Z

x2

1C x2
dx

D

1

2
x

2 tan�1
x �

1

2

Z �

1 �
1

1C x2

�

dx

D

1

2
x

2 tan�1
x �

1

2
x C

1

2
tan�1

x C C:

(d)

Z

sin�1
x dx Let U D sin�1

x, dV D dx.

Then dU D dx=
p

1 � x2, V D x.

D x sin�1
x �

Z

x
p

1 � x2
dx Let u D 1 � x2,

du D �2x dx

D x sin�1
x C

1

2

Z

u
�1=2

du

D x sin�1
x C u

1=2
C C D x sin�1

x C

p

1 � x2
C C:

The following are two useful rules of thumb for choosing U and dV :

(i) If the integrand involves a polynomial multiplied by an exponential, a sine or a

cosine, or some other readily integrable function, try U equals the polynomial

and dV equals the rest.

(ii) If the integrand involves a logarithm, an inverse trigonometric function, or some

other function that is not readily integrable but whose derivative is readily calcu-

lated, try that function for U and let dV equal the rest.

(Of course, these “rules” come with no guarantee. They may fail to be helpful if

“the rest” is not of a suitable form. There remain many functions that cannot be anti-

differentiated by any standard techniques; e.g., ex2
.)

The following two examples illustrate a frequently occurring and very useful phe-

nomenon. It may happen after one or two integrations by parts, with the possible

application of some known identity, that the original integral reappears on the right-

hand side. Unless its coefficient there is 1, we have an equation that can be solved for

that integral.

E X A M P L E 3 Evaluate I D

Z

sec3
x dx.

Solution Start by integrating by parts:

I D

Z

sec3
x dx Let U D secx, dV D sec2 x dx.

Then dU D secx tan x dx, V D tan x.

D sec x tan x �

Z

sec x tan2
x dx
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D sec x tan x �

Z

sec x.sec2
x � 1/ dx

D sec x tan x �

Z

sec3
x dx C

Z

sec x dx

D sec x tan x � I C ln j sec x C tan xj:

This is an equation that can be solved for the desired integral I: Since

2I D sec x tan x C ln j sec x C tanxj, we have

Z

sec3
x dx D I D

1

2
sec x tan x C

1

2
ln j sec x C tan xj C C:

This integral occurs frequently in applications and is worth remembering.

E X A M P L E 4 Find I D

Z

e
ax cos bx dx.

Solution If either a D 0 or b D 0, the integral is easy to do, so let us assume a ¤ 0

and b ¤ 0. We have

I D

Z

e
ax cos bx dx Let U D eax , dV D cos bx dx.

Then dU D a eax dx, V D .1=b/ sin bx.

D

1

b
e

ax sin bx �
a

b

Z

e
ax sin bx dx

Let U D e
ax , dV D sin bx dx.

Then dU D aeax
dx, V D �.cos bx/=b.

D

1

b
e

ax sin bx �
a

b

�

�

1

b
e

ax cos bx C
a

b

Z

e
ax cos bx dx

�

D

1

b
e

ax sin bx C
a

b2
e

ax cos bx �
a2

b2
I:

Thus,
�

1C
a2

b2

�

I D
1

b
e

ax sin bx C
a

b2
e

ax cos bx C C1

and
Z

e
ax cos bx dx D I D

b eax sin bx C a eax cos bx

b2
C a2

C C:

Observe that after the first integration by parts we had an integral that was different

from, but no simpler than, the original integral. At this point we might have become

discouraged and given up on this method. However, perseverance proved worthwhile;

a second integration by parts returned the original integral I in an equation that could

be solved for I: Having chosen to let U be the exponential in the first integration by

parts (we could have let it be the cosine), we made the same choice for U in the second

integration by parts. Had we switched horses in midstream and decided to let U be the

trigonometric function the second time, we would have obtained

I D
1

b
e

ax sin bx �
1

b
e

ax sin bx C I;

that is, we would have undone what we accomplished in the first step.

If we want to evaluate a definite integral by the method of integration by parts, we

must remember to include the appropriate evaluation symbol with the integrated term.
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(b) We have to integrate by parts twice this time:
Z

x
2 sin x dx Let U D x

2, dV D sinx dx.

Then dU D 2x dx, V D � cos x.

D �x
2 cos x C 2

Z

x cos x dx Let U D x, dV D cos x dx.

Then dU D dx, V D sin x.

D �x
2 cos x C 2

�

x sinx �

Z

sin x dx

�

D �x
2 cos x C 2x sinx C 2 cos x C C:

(c)

Z

x tan�1
x dx Let U D tan�1 x, dV D x dx.

Then dU D dx=.1C x2/, V D
1
2
x2.

D

1

2
x

2 tan�1
x �

1

2

Z

x2

1C x2
dx

D

1

2
x

2 tan�1
x �

1

2

Z �

1 �
1

1C x2

�

dx

D

1

2
x

2 tan�1
x �

1

2
x C

1

2
tan�1

x C C:

(d)

Z

sin�1
x dx Let U D sin�1

x, dV D dx.

Then dU D dx=
p

1 � x2, V D x.

D x sin�1
x �

Z

x
p

1 � x2
dx Let u D 1 � x2,

du D �2x dx

D x sin�1
x C

1

2

Z

u
�1=2

du

D x sin�1
x C u

1=2
C C D x sin�1

x C

p

1 � x2
C C:

The following are two useful rules of thumb for choosing U and dV :

(i) If the integrand involves a polynomial multiplied by an exponential, a sine or a

cosine, or some other readily integrable function, try U equals the polynomial

and dV equals the rest.

(ii) If the integrand involves a logarithm, an inverse trigonometric function, or some

other function that is not readily integrable but whose derivative is readily calcu-

lated, try that function for U and let dV equal the rest.

(Of course, these “rules” come with no guarantee. They may fail to be helpful if

“the rest” is not of a suitable form. There remain many functions that cannot be anti-

differentiated by any standard techniques; e.g., ex2
.)

The following two examples illustrate a frequently occurring and very useful phe-

nomenon. It may happen after one or two integrations by parts, with the possible

application of some known identity, that the original integral reappears on the right-

hand side. Unless its coefficient there is 1, we have an equation that can be solved for

that integral.

E X A M P L E 3 Evaluate I D

Z

sec3
x dx.

Solution Start by integrating by parts:

I D

Z

sec3
x dx Let U D secx, dV D sec2 x dx.

Then dU D secx tan x dx, V D tan x.

D sec x tan x �

Z

sec x tan2
x dx
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D sec x tan x �

Z

sec x.sec2
x � 1/ dx

D sec x tan x �

Z

sec3
x dx C

Z

sec x dx

D sec x tan x � I C ln j sec x C tan xj:

This is an equation that can be solved for the desired integral I: Since

2I D sec x tan x C ln j sec x C tanxj, we have

Z

sec3
x dx D I D

1

2
sec x tan x C

1

2
ln j sec x C tan xj C C:

This integral occurs frequently in applications and is worth remembering.

E X A M P L E 4 Find I D

Z

e
ax cos bx dx.

Solution If either a D 0 or b D 0, the integral is easy to do, so let us assume a ¤ 0

and b ¤ 0. We have

I D

Z

e
ax cos bx dx Let U D eax , dV D cos bx dx.

Then dU D a eax dx, V D .1=b/ sin bx.

D

1

b
e

ax sin bx �
a

b

Z

e
ax sin bx dx

Let U D e
ax , dV D sin bx dx.

Then dU D aeax
dx, V D �.cos bx/=b.

D

1

b
e

ax sin bx �
a

b

�

�

1

b
e

ax cos bx C
a

b

Z

e
ax cos bx dx

�

D

1

b
e

ax sin bx C
a

b2
e

ax cos bx �
a2

b2
I:

Thus,
�

1C
a2

b2

�

I D
1

b
e

ax sin bx C
a

b2
e

ax cos bx C C1

and
Z

e
ax cos bx dx D I D

b eax sin bx C a eax cos bx

b2
C a2

C C:

Observe that after the first integration by parts we had an integral that was different

from, but no simpler than, the original integral. At this point we might have become

discouraged and given up on this method. However, perseverance proved worthwhile;

a second integration by parts returned the original integral I in an equation that could

be solved for I: Having chosen to let U be the exponential in the first integration by

parts (we could have let it be the cosine), we made the same choice for U in the second

integration by parts. Had we switched horses in midstream and decided to let U be the

trigonometric function the second time, we would have obtained

I D
1

b
e

ax sin bx �
1

b
e

ax sin bx C I;

that is, we would have undone what we accomplished in the first step.

If we want to evaluate a definite integral by the method of integration by parts, we

must remember to include the appropriate evaluation symbol with the integrated term.

9780134154367_Calculus   357 05/12/16   3:22 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 6 – page 338 October 15, 2016

338 CHAPTER 6 Techniques of Integration

E X A M P L E 5
(A definite integral)

Z e

1

x
3
.ln x/2 dx Let U D .ln x/2, dV D x3 dx.

Then dU D 2 ln x .1=x/ dx, V D x4=4.

D

x
4

4
.ln x/2

ˇ

ˇ

ˇ

ˇ

e

1

�

1

2

Z e

1

x
3 lnx dx Let U D ln x, dV D x3 dx.

Then dU D dx=x, V D x4=4.

D

e
4

4
.1

2
/ � 0 �

1

2

�

x
4

4
lnx

ˇ

ˇ

ˇ

ˇ

e

1

�

1

4

Z e

1

x
3
dx

�

D

e4

4
�

e4

8
C

1

8

x4

4

ˇ

ˇ

ˇ

ˇ

e

1

D

e4

8
C

e4

32
�

1

32
D

5

32
e

4
�

1

32
:

Reduction Formulas
Consider the problem of finding

R

x4 e�x dx. We can, as in Example 1, proceed by

using integration by parts four times. Each time will reduce the power of x by 1. Since

this is repetitive and tedious, we prefer the following approach. For n � 0, let

In D

Z

x
n
e

�x
dx:

We want to find I4. If we integrate by parts, we obtain a formula for In in terms of

In�1:

In D

Z

x
n
e

�x
dx Let U D xn, dV D e�x dx.

Then dU D nxn�1 dx, V D �e�x .

D �x
n
e

�x
C n

Z

x
n�1

e
�x
dx D �x

n
e

�x
C nIn�1:

The formula

In D �x
n
e

�x
C nIn�1

is called a reduction formula because it gives the value of the integral In in terms of

In�1, an integral corresponding to a reduced value of the exponent n. Starting with

I0 D

Z

x
0
e

�x
dx D

Z

e
�x
dx D �e

�x
C C;

we can apply the reduction formula four times to get

I1 D �xe
�x
C I0 D �e

�x
.x C 1/C C1

I2 D �x
2
e

�x
C 2I1 D �e

�x
.x

2
C 2x C 2/C C2

I3 D �x
3
e

�x
C 3I2 D �e

�x
.x

3
C 3x

2
C 6x C 6/C C3

I4 D �x
4
e

�x
C 4I3 D �e

�x
.x

4
C 4x

3
C 12x

2
C 24x C 24/C C4:

E X A M P L E 6
Obtain and use a reduction formula to evaluate

In D

Z �=2

0

cosn
x dx .n D 0; 1; 2; 3; : : : /:
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Solution Observe first that

I0 D

Z �=2

0

dx D
�

2
and I1 D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1:

Now let n � 2:

In D

Z �=2

0

cosn
x dx D

Z �=2

0

cosn�1
x cos x dx

U D cosn�1 x; dV D cos x dx

dU D �.n � 1/ cosn�2 x sin x dx; V D sin x

D sin x cosn�1
x

ˇ

ˇ

ˇ

ˇ

�=2

0

C .n � 1/

Z �=2

0

cosn�2
x sin2

x dx

D 0 � 0C .n � 1/

Z �=2

0

cosn�2
x .1 � cos2

x/ dx

D .n � 1/In�2 � .n � 1/In:

Transposing the term �.n � 1/In, we obtain nIn D .n � 1/In�2, or

In D
n� 1

n
In�2;

which is the required reduction formula. It is valid for n � 2, which was needed to

ensure that cosn�1
.�=2/ D 0. If n � 2 is an even integer, we have

In D
n � 1

n
In�2 D

n� 1

n
�

n � 3

n � 2
In�4 D � � �

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

5

6
�

3

4
�

1

2
� I0

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

5

6
�

3

4
�

1

2
�

�

2
:

If n � 3 is an odd integer, we have

In D
n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

6

7
�

4

5
�

2

3
� I1

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � � � �

6

7
�

4

5
�

2

3
:

See Exercise 38 for an interesting consequence of these formulas.

E X E R C I S E S 6.1

Evaluate the integrals in Exercises 1–28.

1.

Z

x cosx dx 2.

Z

.x C 3/e
2x
dx

3.

Z

x
2 cos�x dx 4.

Z

.x
2
� 2x/e

kx
dx

5.

Z

x
3 lnx dx 6.

Z

x.ln x/3 dx

7.

Z

tan�1
x dx 8.

Z

x
2 tan�1

x dx

9.

Z

x sin�1
x dx 10.

Z

x
5
e

�x2

dx

11.

Z �=4

0

sec5
x dx 12.

Z

tan2
x sec x dx

13.

Z

e
2x sin 3x dx 14.

Z

xe

p
x
dx

15.I

Z 1

1=2

sin�1
x

x2
dx 16.

Z 1

0

p

x sin.�
p

x/ dx

17.

Z

x sec2
x dx 18.

Z

x sin2
x dx
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E X A M P L E 5
(A definite integral)

Z e

1

x
3
.ln x/2 dx Let U D .ln x/2, dV D x3 dx.

Then dU D 2 ln x .1=x/ dx, V D x4=4.

D

x
4

4
.ln x/2

ˇ

ˇ

ˇ

ˇ

e

1

�

1

2

Z e

1

x
3 lnx dx Let U D ln x, dV D x3 dx.

Then dU D dx=x, V D x4=4.

D

e
4

4
.1

2
/ � 0 �

1

2

�

x
4

4
lnx

ˇ

ˇ

ˇ

ˇ

e

1

�

1

4

Z e

1

x
3
dx

�

D

e4

4
�

e4

8
C

1

8

x4

4

ˇ

ˇ

ˇ

ˇ

e

1

D

e4

8
C

e4

32
�

1

32
D

5

32
e

4
�

1

32
:

Reduction Formulas
Consider the problem of finding

R

x4 e�x dx. We can, as in Example 1, proceed by

using integration by parts four times. Each time will reduce the power of x by 1. Since

this is repetitive and tedious, we prefer the following approach. For n � 0, let

In D

Z

x
n
e

�x
dx:

We want to find I4. If we integrate by parts, we obtain a formula for In in terms of

In�1:

In D

Z

x
n
e

�x
dx Let U D xn, dV D e�x dx.

Then dU D nxn�1 dx, V D �e�x .

D �x
n
e

�x
C n

Z

x
n�1

e
�x
dx D �x

n
e

�x
C nIn�1:

The formula

In D �x
n
e

�x
C nIn�1

is called a reduction formula because it gives the value of the integral In in terms of

In�1, an integral corresponding to a reduced value of the exponent n. Starting with

I0 D

Z

x
0
e

�x
dx D

Z

e
�x
dx D �e

�x
C C;

we can apply the reduction formula four times to get

I1 D �xe
�x
C I0 D �e

�x
.x C 1/C C1

I2 D �x
2
e

�x
C 2I1 D �e

�x
.x

2
C 2x C 2/C C2

I3 D �x
3
e

�x
C 3I2 D �e

�x
.x

3
C 3x

2
C 6x C 6/C C3

I4 D �x
4
e

�x
C 4I3 D �e

�x
.x

4
C 4x

3
C 12x

2
C 24x C 24/C C4:

E X A M P L E 6
Obtain and use a reduction formula to evaluate

In D

Z �=2

0

cosn
x dx .n D 0; 1; 2; 3; : : : /:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 6 – page 339 October 15, 2016

SECTION 6.1: Integration by Parts 339

Solution Observe first that

I0 D

Z �=2

0

dx D
�

2
and I1 D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1:

Now let n � 2:

In D

Z �=2

0

cosn
x dx D

Z �=2

0

cosn�1
x cos x dx

U D cosn�1 x; dV D cos x dx

dU D �.n � 1/ cosn�2 x sin x dx; V D sin x

D sin x cosn�1
x

ˇ

ˇ

ˇ

ˇ

�=2

0

C .n � 1/

Z �=2

0

cosn�2
x sin2

x dx

D 0 � 0C .n � 1/

Z �=2

0

cosn�2
x .1 � cos2

x/ dx

D .n � 1/In�2 � .n � 1/In:

Transposing the term �.n � 1/In, we obtain nIn D .n � 1/In�2, or

In D
n� 1

n
In�2;

which is the required reduction formula. It is valid for n � 2, which was needed to

ensure that cosn�1
.�=2/ D 0. If n � 2 is an even integer, we have

In D
n � 1

n
In�2 D

n� 1

n
�

n � 3

n � 2
In�4 D � � �

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

5

6
�

3

4
�

1

2
� I0

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

5

6
�

3

4
�

1

2
�

�

2
:

If n � 3 is an odd integer, we have

In D
n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � �

6

7
�

4

5
�

2

3
� I1

D

n � 1

n
�

n� 3

n� 2
�

n � 5

n � 4
� � � � �

6

7
�

4

5
�

2

3
:

See Exercise 38 for an interesting consequence of these formulas.

E X E R C I S E S 6.1

Evaluate the integrals in Exercises 1–28.

1.

Z

x cosx dx 2.

Z

.x C 3/e
2x
dx

3.

Z

x
2 cos�x dx 4.

Z

.x
2
� 2x/e

kx
dx

5.

Z

x
3 lnx dx 6.

Z

x.ln x/3 dx

7.

Z

tan�1
x dx 8.

Z

x
2 tan�1

x dx

9.

Z

x sin�1
x dx 10.

Z

x
5
e

�x2

dx

11.

Z �=4

0

sec5
x dx 12.

Z

tan2
x sec x dx

13.

Z

e
2x sin 3x dx 14.

Z

xe

p
x
dx

15.I

Z 1

1=2

sin�1
x

x2
dx 16.

Z 1

0

p

x sin.�
p

x/ dx

17.

Z

x sec2
x dx 18.

Z

x sin2
x dx
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19.

Z

cos.lnx/ dx 20.

Z e

1

sin.lnx/ dx

21.

Z

ln.lnx/

x
dx 22.

Z 4

0

p

xe

p
x
dx

23.

Z

arccos x dx 24.

Z

x sec�1x dx

25.

Z 2

1

sec�1x dx 26.I

Z

.sin�1
x/

2
dx

27.I

Z

x.tan�1
x/

2
dx 28.I

Z

x e
x cosx dx

29. Find the area below y D e�x sinx and above y D 0 from

x D 0 to x D � .

30. Find the area of the finite plane region bounded by the curve

y D lnx, the line y D 1, and the tangent line to y D lnx at

x D 1.

Reduction formulas

31. Obtain a reduction formula for In D
R

.lnx/n dx, and use it to

evaluate I4.

32. Obtain a reduction formula for In D
R �=2

0 x
n sinx dx, and

use it to evaluate I6.

33. Obtain a reduction formula for In D
R

sinn
x dx (where

n � 2), and use it to find I6 and I7.

34. Obtain a reduction formula for In D
R

secn x dx (where

n � 3), and use it to find I6 and I7.

35.I By writing

In D

Z

dx

.x2
C a2/n

D

1

a2

Z

dx

.x2
C a2/n�1

�

1

a2

Z

x
x

.x2
C a2/n

dx

and integrating the last integral by parts, using U D x, obtain

a reduction formula for In. Use this formula to find I3.

36.I If f is twice differentiable on Œa; b� and f .a/ D f .b/ D 0,

show that
Z b

a

.x � a/.b � x/f
00
.x/ dx D �2

Z b

a

f .x/ dx:

(Hint: Use integration by parts on the left-hand side twice.)

This formula will be used in Section 6.6 to construct an error

estimate for the Trapezoid Rule approximation formula.

37.I If f and g are two functions having continuous second

derivatives on the interval Œa; b�, and if

f .a/ D g.a/ D f .b/ D g.b/ D 0, show that

Z b

a

f .x/ g
00
.x/ dx D

Z b

a

f
00
.x/ g.x/ dx:

What other assumptions about the values of f and g at a and

b would give the same result?

38.I (The Wallis Product) Let In D
R �=2

0 cosn x dx.

(a) Use the fact that 0 � cos x � 1 for 0 � x � �=2 to show

that I2nC2 � I2nC1 � I2n, for n D 0, 1, 2, : : : .

(b) Use the reduction formula In D ..n � 1/=n/In�2

obtained in Example 6, together with the result of (a), to

show that

lim
n!1

I2nC1

I2n
D 1:

(c) Combine the result of (b) with the explicit formulas

obtained for In (for even and odd n) in Example 6 to

show that

lim
n!1

2

1
�

2

3
�

4

3
�

4

5
�

6

5
�

6

7
� � �

2n

2n � 1
�

2n

2nC 1
D

�

2
:

This interesting product formula for � is due to the

seventeenth-century English mathematician John Wallis

and is referred to as the Wallis Product.

6.2 Integrals of Rational Functions

In this section we are concerned with integrals of the form
Z

P.x/

Q.x/
dx;

where P and Q are polynomials. Recall that a polynomial is a function P of the form

P.x/ D anx
n
C an�1x

n�1
C � � � C a2x

2
C a1x C a0;

where n is a nonnegative integer, a0; a1; a2; : : : ; an are constants, and an ¤ 0. We

call n the degree of P: A quotient P.x/=Q.x/ of two polynomials is called a rational

function. (See Section P.6 for more discussion of polynomials and rational functions.)

We need normally concern ourselves only with rational functions P.x/=Q.x/ where

the degree of P is less than that of Q. If the degree of P equals or exceeds the degree

of Q, then we can use division to express the fraction P.x/=Q.x/ as a polynomial

plus another fraction R.x/=Q.x/, where R, the remainder in the division, has degree

less than that of Q.
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E X A M P L E 1 Evaluate

Z

x3
C 3x2

x2
C 1

dx.

Solution The numerator has degree 3 and the denominator has degree 2, so we need

to divide. We use long division:

x C 3

x2
C 1 x

3
C 3x2

x3
C x

3x
2
� x

3x2
C 3

� x � 3

x3
C 3x2

x2
C 1

D x C 3 �
x C 3

x2
C 1

:

Thus,

Z

x3
C 3x2

x2
C 1

dx D

Z

.x C 3/ dx �

Z

x

x2
C 1

dx � 3

Z

dx

x2
C 1

D

1

2
x

2
C 3x �

1

2
ln.x2

C 1/ � 3 tan�1
x C C:

E X A M P L E 2 Evaluate

Z

x

2x � 1
dx.

Solution The numerator and denominator have the same degree, 1, so division is

again required. In this case the division can be carried out by manipulation of the

integrand:

x

2x � 1
D

1

2

2x

2x � 1
D

1

2

2x � 1C 1

2x � 1
D

1

2

�

1C
1

2x � 1

�

;

a process that we call short division (see Section P.6). We have

Z

x

2x � 1
dx D

1

2

Z �

1C
1

2x � 1

�

dx D
x

2
C

1

4
ln j2x � 1j C C:

In the discussion that follows, we always assume that any necessary division has been

performed and the quotient polynomial has been integrated. The remaining basic prob-

lem with which we will deal in this section is the following:

The basic problem

Evaluate

Z

P.x/

Q.x/
dx, where the degree of P < the degree of Q.

The complexity of this problem depends on the degree of Q.

Linear and Quadratic Denominators
Suppose that Q.x/ has degree 1. Thus, Q.x/ D ax C b, where a ¤ 0. Then P.x/

must have degree 0 and be a constant c. We have P.x/=Q.x/ D c=.ax C b/. The

substitution u D ax C b leads to

Z

c

ax C b
dx D

c

a

Z

du

u
D

c

a
ln juj C C;

so that for c D 1:
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19.

Z

cos.lnx/ dx 20.

Z e

1

sin.lnx/ dx

21.

Z

ln.lnx/

x
dx 22.

Z 4

0

p

xe

p
x
dx

23.

Z

arccos x dx 24.

Z

x sec�1x dx

25.

Z 2

1

sec�1x dx 26.I

Z

.sin�1
x/

2
dx

27.I

Z

x.tan�1
x/

2
dx 28.I

Z

x e
x cosx dx

29. Find the area below y D e�x sinx and above y D 0 from

x D 0 to x D � .

30. Find the area of the finite plane region bounded by the curve

y D lnx, the line y D 1, and the tangent line to y D lnx at

x D 1.

Reduction formulas

31. Obtain a reduction formula for In D
R

.lnx/n dx, and use it to

evaluate I4.

32. Obtain a reduction formula for In D
R �=2

0 x
n sinx dx, and

use it to evaluate I6.

33. Obtain a reduction formula for In D
R

sinn
x dx (where

n � 2), and use it to find I6 and I7.

34. Obtain a reduction formula for In D
R

secn x dx (where

n � 3), and use it to find I6 and I7.

35.I By writing

In D

Z

dx

.x2
C a2/n

D

1

a2

Z

dx

.x2
C a2/n�1

�

1

a2

Z

x
x

.x2
C a2/n

dx

and integrating the last integral by parts, using U D x, obtain

a reduction formula for In. Use this formula to find I3.

36.I If f is twice differentiable on Œa; b� and f .a/ D f .b/ D 0,

show that
Z b

a

.x � a/.b � x/f
00
.x/ dx D �2

Z b

a

f .x/ dx:

(Hint: Use integration by parts on the left-hand side twice.)

This formula will be used in Section 6.6 to construct an error

estimate for the Trapezoid Rule approximation formula.

37.I If f and g are two functions having continuous second

derivatives on the interval Œa; b�, and if

f .a/ D g.a/ D f .b/ D g.b/ D 0, show that

Z b

a

f .x/ g
00
.x/ dx D

Z b

a

f
00
.x/ g.x/ dx:

What other assumptions about the values of f and g at a and

b would give the same result?

38.I (The Wallis Product) Let In D
R �=2

0 cosn x dx.

(a) Use the fact that 0 � cos x � 1 for 0 � x � �=2 to show

that I2nC2 � I2nC1 � I2n, for n D 0, 1, 2, : : : .

(b) Use the reduction formula In D ..n � 1/=n/In�2

obtained in Example 6, together with the result of (a), to

show that

lim
n!1

I2nC1

I2n
D 1:

(c) Combine the result of (b) with the explicit formulas

obtained for In (for even and odd n) in Example 6 to

show that

lim
n!1

2

1
�

2

3
�

4

3
�

4

5
�

6

5
�

6

7
� � �

2n

2n � 1
�

2n

2nC 1
D

�

2
:

This interesting product formula for � is due to the

seventeenth-century English mathematician John Wallis

and is referred to as the Wallis Product.

6.2 Integrals of Rational Functions

In this section we are concerned with integrals of the form
Z

P.x/

Q.x/
dx;

where P and Q are polynomials. Recall that a polynomial is a function P of the form

P.x/ D anx
n
C an�1x

n�1
C � � � C a2x

2
C a1x C a0;

where n is a nonnegative integer, a0; a1; a2; : : : ; an are constants, and an ¤ 0. We

call n the degree of P: A quotient P.x/=Q.x/ of two polynomials is called a rational

function. (See Section P.6 for more discussion of polynomials and rational functions.)

We need normally concern ourselves only with rational functions P.x/=Q.x/ where

the degree of P is less than that of Q. If the degree of P equals or exceeds the degree

of Q, then we can use division to express the fraction P.x/=Q.x/ as a polynomial

plus another fraction R.x/=Q.x/, where R, the remainder in the division, has degree

less than that of Q.
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E X A M P L E 1 Evaluate

Z

x3
C 3x2

x2
C 1

dx.

Solution The numerator has degree 3 and the denominator has degree 2, so we need

to divide. We use long division:

x C 3

x2
C 1 x

3
C 3x2

x3
C x

3x
2
� x

3x2
C 3

� x � 3

x3
C 3x2

x2
C 1

D x C 3 �
x C 3

x2
C 1

:

Thus,

Z

x3
C 3x2

x2
C 1

dx D

Z

.x C 3/ dx �

Z

x

x2
C 1

dx � 3

Z

dx

x2
C 1

D

1

2
x

2
C 3x �

1

2
ln.x2

C 1/ � 3 tan�1
x C C:

E X A M P L E 2 Evaluate

Z

x

2x � 1
dx.

Solution The numerator and denominator have the same degree, 1, so division is

again required. In this case the division can be carried out by manipulation of the

integrand:

x

2x � 1
D

1

2

2x

2x � 1
D

1

2

2x � 1C 1

2x � 1
D

1

2

�

1C
1

2x � 1

�

;

a process that we call short division (see Section P.6). We have

Z

x

2x � 1
dx D

1

2

Z �

1C
1

2x � 1

�

dx D
x

2
C

1

4
ln j2x � 1j C C:

In the discussion that follows, we always assume that any necessary division has been

performed and the quotient polynomial has been integrated. The remaining basic prob-

lem with which we will deal in this section is the following:

The basic problem

Evaluate

Z

P.x/

Q.x/
dx, where the degree of P < the degree of Q.

The complexity of this problem depends on the degree of Q.

Linear and Quadratic Denominators
Suppose that Q.x/ has degree 1. Thus, Q.x/ D ax C b, where a ¤ 0. Then P.x/

must have degree 0 and be a constant c. We have P.x/=Q.x/ D c=.ax C b/. The

substitution u D ax C b leads to

Z

c

ax C b
dx D

c

a

Z

du

u
D

c

a
ln juj C C;

so that for c D 1:
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The case of a linear denominator
Z

1

ax C b
dx D

1

a
ln jax C bj C C:

Now suppose thatQ.x/ is quadratic, that is, has degree 2. For purposes of this discus-

sion we can assume that Q.x/ is either of the form x2
C a2 or of the form x2

� a2,

since completing the square and making the appropriate change of variable can always

reduce a quadratic denominator to this form, as shown in Section 6.2. Since P.x/ can

be at most a linear function, P.x/ D Ax C B , we are led to consider the following

four integrals:

Z

x dx

x2
C a2

;

Z

x dx

x2
� a2

;

Z

dx

x2
C a2

; and

Z

dx

x2
� a2

:

(If a D 0, there are only two integrals; each is easily evaluated.) The first two integrals

yield to the substitution u D x2
˙a2; the third is a known integral. The fourth integral

will be evaluated by a different method below. The values of all four integrals are given

in the following box:

The case of a quadratic denominator
Z

x dx

x2
C a2

D

1

2
ln.x2

C a
2
/C C;

Z

x dx

x2
� a2

D

1

2
ln jx2

� a
2
j C C;

Z

dx

x2
C a2

D

1

a
tan�1 x

a
C C;

Z

dx

x2
� a2

D

1

2a
ln

ˇ

ˇ

ˇ

ˇ

x � a

x C a

ˇ

ˇ

ˇ

ˇ

C C:

To obtain the last formula in the box, let us try to write the integrand as a sum of two

fractions with linear denominators:

1

x2
� a2

D

1

.x � a/.x C a/
D

A

x � a
C

B

x C a
D

Ax C AaC Bx � Ba

x2
� a2

;

where we have added the two fractions together again in the last step. If this equation is

to hold identically for all x (except x D ˙a), then the numerators on the left and right

sides must be identical as polynomials in x. The equation .AC B/x C .Aa � Ba/ D

1 D 0x C 1 can hold for all x only if

AC B D 0 (the coefficient of x),

Aa � Ba D 1 (the constant term).

Solving this pair of linear equations for the unknowns A and B , we get A D 1=.2a/

and B D �1=.2a/. Therefore,

Z

dx

x2
� a2

D

1

2a

Z

dx

x � a
�

1

2a

Z

dx

x C a

D

1

2a
ln jx � aj �

1

2a
ln jx C aj C C

D

1

2a
ln

ˇ

ˇ

ˇ

ˇ

x � a

x C a

ˇ

ˇ

ˇ

ˇ

C C:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 6 – page 343 October 15, 2016

SECTION 6.2: Integrals of Rational Functions 343

Partial Fractions
The technique used above, involving the writing of a complicated fraction as a sum of

simpler fractions, is called the method of partial fractions. Suppose that a polynomial

Q.x/ is of degree n and that its highest degree term is xn (with coefficient 1). Suppose

also that Q factors into a product of n distinct linear (degree 1) factors, say,

Q.x/ D .x � a1/.x � a2/ � � � .x � an/;

where ai ¤ aj if i ¤ j , 1 � i , j � n. If P.x/ is a polynomial of degree smaller than

n, then P.x/=Q.x/ has a partial fraction decomposition of the form

P.x/

Q.x/
D

A1

x � a1

C

A2

x � a2

C � � � C

An

x � an

for certain values of the constants A1; A2; : : : ; An. We do not attempt to give any

formal proof of this assertion here; such a proof belongs in an algebra course. (See

Theorem 1 below for the statement of a more general result.)

Given that P.x/=Q.x/ has a partial fraction decomposition as claimed above,

there are two methods for determining the constants A1; A2; : : : ; An. The first of

these methods, and one that generalizes most easily to the more complicated decom-

positions considered below, is to add up the fractions in the decomposition, obtaining

a new fraction S.x/=Q.x/ with numerator S.x/, a polynomial of degree one less than

that ofQ.x/. This new fraction will be identical to the original fraction P.x/=Q.x/ if

S and P are identical polynomials. The constants A1; A2; : : : ; An are determined by

solving the n linear equations resulting from equating the coefficients of like powers

of x in the two polynomials S and P:

The second method depends on the following observation: if we multiply the

partial fraction decomposition by x � aj , we get

.x � aj /
P.x/

Q.x/

D A1

x � aj

x � a1

C � � � C Aj �1

x � aj

x � aj �1

C Aj C Aj C1

x � aj

x � aj C1

C � � � C An

x � aj

x � an

:

All terms on the right side are 0 at x D aj except the j th term, Aj . Hence,

Aj D lim
x!aj

.x � aj /
P.x/

Q.x/

D

P.aj /

.aj � a1/ � � � .aj � aj �1/.aj � aj C1/ � � � .aj � an/
;

for 1 � j � n. In practice, you can use this method to find each number Aj by

cancelling the factor x � aj from the denominator of P.x/=Q.x/ and evaluating the

resulting expression at x D aj .

E X A M P L E 3 Evaluate

Z

.x C 4/

x2
� 5x C 6

dx.

Solution The partial fraction decomposition takes the form

x C 4

x2
� 5x C 6

D

x C 4

.x � 2/.x � 3/
D

A

x � 2
C

B

x � 3
:

We calculate A and B by both of the methods suggested above.

METHOD I. Add the partial fractions

x C 4

x2
� 5x C 6

D

Ax � 3AC Bx � 2B

.x � 2/.x � 3/
;
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The case of a linear denominator
Z

1

ax C b
dx D

1

a
ln jax C bj C C:

Now suppose thatQ.x/ is quadratic, that is, has degree 2. For purposes of this discus-

sion we can assume that Q.x/ is either of the form x2
C a2 or of the form x2

� a2,

since completing the square and making the appropriate change of variable can always

reduce a quadratic denominator to this form, as shown in Section 6.2. Since P.x/ can

be at most a linear function, P.x/ D Ax C B , we are led to consider the following

four integrals:

Z

x dx

x2
C a2

;

Z

x dx

x2
� a2

;

Z

dx

x2
C a2

; and

Z

dx

x2
� a2

:

(If a D 0, there are only two integrals; each is easily evaluated.) The first two integrals

yield to the substitution u D x2
˙a2; the third is a known integral. The fourth integral

will be evaluated by a different method below. The values of all four integrals are given

in the following box:

The case of a quadratic denominator
Z

x dx

x2
C a2

D

1

2
ln.x2

C a
2
/C C;

Z

x dx

x2
� a2

D

1

2
ln jx2

� a
2
j C C;

Z

dx

x2
C a2

D

1

a
tan�1 x

a
C C;

Z

dx

x2
� a2

D

1

2a
ln

ˇ

ˇ

ˇ

ˇ

x � a

x C a

ˇ

ˇ

ˇ

ˇ

C C:

To obtain the last formula in the box, let us try to write the integrand as a sum of two

fractions with linear denominators:

1

x2
� a2

D

1

.x � a/.x C a/
D

A

x � a
C

B

x C a
D

Ax C AaC Bx � Ba

x2
� a2

;

where we have added the two fractions together again in the last step. If this equation is

to hold identically for all x (except x D ˙a), then the numerators on the left and right

sides must be identical as polynomials in x. The equation .AC B/x C .Aa � Ba/ D

1 D 0x C 1 can hold for all x only if

AC B D 0 (the coefficient of x),

Aa � Ba D 1 (the constant term).

Solving this pair of linear equations for the unknowns A and B , we get A D 1=.2a/

and B D �1=.2a/. Therefore,

Z

dx

x2
� a2

D

1

2a

Z

dx

x � a
�

1

2a

Z

dx

x C a

D

1

2a
ln jx � aj �

1

2a
ln jx C aj C C

D

1

2a
ln

ˇ

ˇ

ˇ

ˇ

x � a

x C a

ˇ

ˇ

ˇ

ˇ

C C:
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Partial Fractions
The technique used above, involving the writing of a complicated fraction as a sum of

simpler fractions, is called the method of partial fractions. Suppose that a polynomial

Q.x/ is of degree n and that its highest degree term is xn (with coefficient 1). Suppose

also that Q factors into a product of n distinct linear (degree 1) factors, say,

Q.x/ D .x � a1/.x � a2/ � � � .x � an/;

where ai ¤ aj if i ¤ j , 1 � i , j � n. If P.x/ is a polynomial of degree smaller than

n, then P.x/=Q.x/ has a partial fraction decomposition of the form

P.x/

Q.x/
D

A1

x � a1

C

A2

x � a2

C � � � C

An

x � an

for certain values of the constants A1; A2; : : : ; An. We do not attempt to give any

formal proof of this assertion here; such a proof belongs in an algebra course. (See

Theorem 1 below for the statement of a more general result.)

Given that P.x/=Q.x/ has a partial fraction decomposition as claimed above,

there are two methods for determining the constants A1; A2; : : : ; An. The first of

these methods, and one that generalizes most easily to the more complicated decom-

positions considered below, is to add up the fractions in the decomposition, obtaining

a new fraction S.x/=Q.x/ with numerator S.x/, a polynomial of degree one less than

that ofQ.x/. This new fraction will be identical to the original fraction P.x/=Q.x/ if

S and P are identical polynomials. The constants A1; A2; : : : ; An are determined by

solving the n linear equations resulting from equating the coefficients of like powers

of x in the two polynomials S and P:

The second method depends on the following observation: if we multiply the

partial fraction decomposition by x � aj , we get

.x � aj /
P.x/

Q.x/

D A1

x � aj

x � a1

C � � � C Aj �1

x � aj

x � aj �1

C Aj C Aj C1

x � aj

x � aj C1

C � � � C An

x � aj

x � an

:

All terms on the right side are 0 at x D aj except the j th term, Aj . Hence,

Aj D lim
x!aj

.x � aj /
P.x/

Q.x/

D

P.aj /

.aj � a1/ � � � .aj � aj �1/.aj � aj C1/ � � � .aj � an/
;

for 1 � j � n. In practice, you can use this method to find each number Aj by

cancelling the factor x � aj from the denominator of P.x/=Q.x/ and evaluating the

resulting expression at x D aj .

E X A M P L E 3 Evaluate

Z

.x C 4/

x2
� 5x C 6

dx.

Solution The partial fraction decomposition takes the form

x C 4

x2
� 5x C 6

D

x C 4

.x � 2/.x � 3/
D

A

x � 2
C

B

x � 3
:

We calculate A and B by both of the methods suggested above.

METHOD I. Add the partial fractions

x C 4

x2
� 5x C 6

D

Ax � 3AC Bx � 2B

.x � 2/.x � 3/
;
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and equate the coefficient of x and the constant terms in the numerators on both sides

to obtain

AC B D 1 and � 3A � 2B D 4:

Solve these equations to get A D �6 and B D 7.

METHOD II. To findA, cancel x�2 from the denominator of the expression P.x/=Q.x/

and evaluate the result at x D 2. Obtain B similarly.

A D
x C 4

x � 3

ˇ

ˇ

ˇ

ˇ

xD2

D �6 and B D
x C 4

x � 2

ˇ

ˇ

ˇ

ˇ

xD3

D 7:

In either case we have

Z

.x C 4/

x2
� 5x C 6

dx D �6

Z

1

x � 2
dx C 7

Z

1

x � 3
dx

D �6 ln jx � 2j C 7 ln jx � 3j C C:

E X A M P L E 4 Evaluate I D

Z

x3
C 2

x3
� x

dx.

Solution Since the numerator does not have degree smaller than the denominator, we

must divide:

I D

Z

x3
� x C x C 2

x3
� x

dx D

Z �

1C
x C 2

x3
� x

�

dx D x C

Z

x C 2

x3
� x

dx:

Now we can use the method of partial fractions.

x C 2

x3
� x
D

x C 2

x.x � 1/.x C 1/
D

A

x
C

B

x � 1
C

C

x C 1

D

A.x2
� 1/C B.x2

C x/C C.x2
� x/

x.x � 1/.x C 1/

We have
A C B C C D 0 (coefficient of x2)

B � C D 1 (coefficient of x)

� A D 2 (constant term).

It follows that A D �2, B D 3=2, and C D 1=2. We can also find these values using

Method II of the previous example:

A D
x C 2

.x � 1/.x C 1/

ˇ

ˇ

ˇ

ˇ

xD0

D �2; B D
x C 2

x.x C 1/

ˇ

ˇ

ˇ

ˇ

xD1

D

3

2
; and

C D
x C 2

x.x � 1/

ˇ

ˇ

ˇ

ˇ

xD�1

D

1

2
:

Finally, we have

I D x � 2

Z

1

x
dx C

3

2

Z

1

x � 1
dx C

1

2

Z

1

x C 1
dx

D x � 2 ln jxj C
3

2
ln jx � 1j C

1

2
ln jx C 1j C C:

Next, we consider a rational function whose denominator has a quadratic factor that is

equivalent to a sum of squares and cannot, therefore, be further factored into a product

of real linear factors.
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E X A M P L E 5 Evaluate

Z

2C 3x C x2

x.x2
C 1/

dx.

Solution Note that the numerator has degree 2 and the denominator degree 3, so no

division is necessary. If we decompose the integrand as a sum of two simpler fractions,

we want one with denominator x and one with denominator x2
C 1. The appropriate

form of the decomposition turns out to be

2C 3x C x2

x.x2
C 1/

D

A

x
C

Bx C C

x2
C 1

D

A.x2
C 1/C Bx2

C Cx

x.x2
C 1/

:

Note that corresponding to the quadratic (degree 2) denominator we use a linear (de-

gree 1) numerator. Equating coefficients in the two numerators, we obtain

A C B D 1 (coefficient of x2)

C D 3 (coefficient of x)

A D 2 (constant term).

Hence A D 2, B D �1, and C D 3. We have, therefore,

Z

2C 3x C x2

x.x2
C 1/

dx D 2

Z

1

x
dx �

Z

x

x2
C 1

dx C 3

Z

1

x2
C 1

dx

D 2 ln jxj �
1

2
ln.x2

C 1/C 3 tan�1
x C C:

We remark that addition of the fractions is the only reasonable real-variable method

for determining the constants A, B , and C here. We could determine A by Method II

of Example 3, but there is no simple equivalent way of finding B or C without using

complex numbers.

Completing the Square
Quadratic expressions of the form Ax2

CBxCC are often found in integrands. These

can be written as sums or differences of squares using the procedure of completing

the square, as was done to find the formula for the roots of quadratic equations in

Section P.6. First factor out A so that the remaining expression begins with x2
C 2bx,

where 2b D B=A. These are the first two terms of .x C b/2 D x2
C 2bx C b2. Add

the third term b2
D B2=4A2 and then subtract it again:

Ax
2
C Bx C C D A

�

x
2
C

B

A
x C

C

A

�

D A

�

x
2
C

B

A
x C

B2

4A2
C

C

A
�

B2

4A2

�

D A

�

x C
B

2A

�2

C

4AC � B2

4A
:

The substitution u D x C
B

2A
should then be made.

E X A M P L E 6 Evaluate I D

Z

1

x3
C 1

dx.

Solution Here Q.x/ D x3
C 1 D .xC 1/.x2

� xC 1/. The latter factor has no real

roots, so it has no real linear subfactors. We have

1

x3
C 1
D

1

.x C 1/.x2
� x C 1/

D

A

x C 1
C

Bx C C

x2
� x C 1

D

A.x2
� x C 1/C B.x2

C x/C C.x C 1/

.x C 1/.x2
� x C 1/
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and equate the coefficient of x and the constant terms in the numerators on both sides

to obtain

AC B D 1 and � 3A � 2B D 4:

Solve these equations to get A D �6 and B D 7.

METHOD II. To findA, cancel x�2 from the denominator of the expression P.x/=Q.x/

and evaluate the result at x D 2. Obtain B similarly.

A D
x C 4

x � 3

ˇ

ˇ

ˇ

ˇ

xD2

D �6 and B D
x C 4

x � 2

ˇ

ˇ

ˇ

ˇ

xD3

D 7:

In either case we have

Z

.x C 4/

x2
� 5x C 6

dx D �6

Z

1

x � 2
dx C 7

Z

1

x � 3
dx

D �6 ln jx � 2j C 7 ln jx � 3j C C:

E X A M P L E 4 Evaluate I D

Z

x3
C 2

x3
� x

dx.

Solution Since the numerator does not have degree smaller than the denominator, we

must divide:

I D

Z

x3
� x C x C 2

x3
� x

dx D

Z �

1C
x C 2

x3
� x

�

dx D x C

Z

x C 2

x3
� x

dx:

Now we can use the method of partial fractions.

x C 2

x3
� x
D

x C 2

x.x � 1/.x C 1/
D

A

x
C

B

x � 1
C

C

x C 1

D

A.x2
� 1/C B.x2

C x/C C.x2
� x/

x.x � 1/.x C 1/

We have
A C B C C D 0 (coefficient of x2)

B � C D 1 (coefficient of x)

� A D 2 (constant term).

It follows that A D �2, B D 3=2, and C D 1=2. We can also find these values using

Method II of the previous example:

A D
x C 2

.x � 1/.x C 1/

ˇ

ˇ

ˇ

ˇ

xD0

D �2; B D
x C 2

x.x C 1/

ˇ

ˇ

ˇ

ˇ

xD1

D

3

2
; and

C D
x C 2

x.x � 1/

ˇ

ˇ

ˇ

ˇ

xD�1

D

1

2
:

Finally, we have

I D x � 2

Z

1

x
dx C

3

2

Z

1

x � 1
dx C

1

2

Z

1

x C 1
dx

D x � 2 ln jxj C
3

2
ln jx � 1j C

1

2
ln jx C 1j C C:

Next, we consider a rational function whose denominator has a quadratic factor that is

equivalent to a sum of squares and cannot, therefore, be further factored into a product

of real linear factors.
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E X A M P L E 5 Evaluate

Z

2C 3x C x2

x.x2
C 1/

dx.

Solution Note that the numerator has degree 2 and the denominator degree 3, so no

division is necessary. If we decompose the integrand as a sum of two simpler fractions,

we want one with denominator x and one with denominator x2
C 1. The appropriate

form of the decomposition turns out to be

2C 3x C x2

x.x2
C 1/

D

A

x
C

Bx C C

x2
C 1

D

A.x2
C 1/C Bx2

C Cx

x.x2
C 1/

:

Note that corresponding to the quadratic (degree 2) denominator we use a linear (de-

gree 1) numerator. Equating coefficients in the two numerators, we obtain

A C B D 1 (coefficient of x2)

C D 3 (coefficient of x)

A D 2 (constant term).

Hence A D 2, B D �1, and C D 3. We have, therefore,

Z

2C 3x C x2

x.x2
C 1/

dx D 2

Z

1

x
dx �

Z

x

x2
C 1

dx C 3

Z

1

x2
C 1

dx

D 2 ln jxj �
1

2
ln.x2

C 1/C 3 tan�1
x C C:

We remark that addition of the fractions is the only reasonable real-variable method

for determining the constants A, B , and C here. We could determine A by Method II

of Example 3, but there is no simple equivalent way of finding B or C without using

complex numbers.

Completing the Square
Quadratic expressions of the form Ax2

CBxCC are often found in integrands. These

can be written as sums or differences of squares using the procedure of completing

the square, as was done to find the formula for the roots of quadratic equations in

Section P.6. First factor out A so that the remaining expression begins with x2
C 2bx,

where 2b D B=A. These are the first two terms of .x C b/2 D x2
C 2bx C b2. Add

the third term b2
D B2=4A2 and then subtract it again:

Ax
2
C Bx C C D A

�

x
2
C

B

A
x C

C

A

�

D A

�

x
2
C

B

A
x C

B2

4A2
C

C

A
�

B2

4A2

�

D A

�

x C
B

2A

�2

C

4AC � B2

4A
:

The substitution u D x C
B

2A
should then be made.

E X A M P L E 6 Evaluate I D

Z

1

x3
C 1

dx.

Solution Here Q.x/ D x3
C 1 D .xC 1/.x2

� xC 1/. The latter factor has no real

roots, so it has no real linear subfactors. We have

1

x3
C 1
D

1

.x C 1/.x2
� x C 1/

D

A

x C 1
C

Bx C C

x2
� x C 1

D

A.x2
� x C 1/C B.x2

C x/C C.x C 1/

.x C 1/.x2
� x C 1/
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A C B D 0 (coefficient of x2)

� A C B C C D 0 (coefficient of x)

A C C D 1 (constant term).

Hence, A D 1=3, B D �1=3, and C D 2=3. We have

I D
1

3

Z

dx

x C 1
�

1

3

Z

x � 2

x2
� x C 1

dx:

The first integral is easily evaluated; in the second we complete the square in the de-

nominator: x2
� x C 1 D

�

x �
1

2

�2

C

3

4
, and make a similar modification in the

numerator.

I D
1

3
ln jx C 1j �

1

3

Z x �
1

2
�

3

2
�

x �
1

2

�2

C

3

4

dx Let u D x � 1=2,

du D dx

D

1

3
ln jx C 1j �

1

3

Z

u

u2
C

3

4

duC
1

2

Z

1

u2
C

3

4

du

D

1

3
ln jx C 1j �

1

6
ln

�

u
2
C

3

4

�

C

1

2

2
p

3
tan�1

�

2u
p

3

�

C C

D

1

3
ln jx C 1j �

1

6
ln.x2

� x C 1/C
1
p

3
tan�1

�

2x � 1
p

3

�

C C:

Denominators with Repeated Factors
We require one final refinement of the method of partial fractions. If any of the lin-

ear or quadratic factors of Q.x/ is repeated (say, m times), then the partial fraction

decomposition of P.x/=Q.x/ requires m distinct fractions corresponding to that fac-

tor. The denominators of these fractions have exponents increasing from 1 to m, and

the numerators are all constants where the repeated factor is linear or linear where the

repeated factor is quadratic. (See Theorem 1 below.)

E X A M P L E 7 Evaluate

Z

1

x.x � 1/2
dx.

Solution The appropriate partial fraction decomposition here is

1

x.x � 1/2
D

A

x
C

B

x � 1
C

C

.x � 1/2

D

A.x
2
� 2x C 1/C B.x

2
� x/C Cx

x.x � 1/2
:

Equating coefficients of x2, x, and 1 in the numerators of both sides, we get

A C B D 0 (coefficient of x2)

� 2A � B C C D 0 (coefficient of x)

A D 1 (constant term).

Hence, A D 1, B D �1, C D 1, and
Z

1

x.x � 1/2
dx D

Z

1

x
dx �

Z

1

x � 1
dx C

Z

1

.x � 1/2
dx

D ln jxj � ln jx � 1j �
1

x � 1
C C

D ln

ˇ

ˇ

ˇ

x

x � 1

ˇ

ˇ

ˇ
�

1

x � 1
C C:
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E X A M P L E 8 Evaluate I D

Z

x2
C 2

4x5
C 4x3

C x
dx.

Solution The denominator factors to x.2x2
C 1/

2, so the appropriate partial fraction

decomposition is

x
2
C 2

x.2x2
C 1/2

D

A

x
C

Bx C C

2x2
C 1
C

Dx CE

.2x2
C 1/2

D

A.4x4
C 4x2

C 1/C B.2x4
C x2/C C.2x3

C x/CDx2
CEx

x.2x2
C 1/2

:

Thus,
4A C 2B D 0 (coefficient of x4)

2C D 0 (coefficient of x3)

4A C B C D D 1 (coefficient of x2)

C C E D 0 (coefficient of x)

A D 2 (constant term).

Solving these equations, we get A D 2, B D �4, C D 0, D D �3, and E D 0.

I D 2

Z

dx

x
� 4

Z

x dx

2x2
C 1
� 3

Z

x dx

.2x2
C 1/2

Let u D 2x2
C 1,

du D 4x dx

D 2 ln jxj �

Z

du

u
�

3

4

Z

du

u2

D 2 ln jxj � ln juj C
3

4u
C C

D ln

�

x2

2x2
C 1

�

C

3

4

1

2x2
C 1
C C:

The following theorem summarizes the various aspects of the method of partial frac-

tions.

T H E O R E M

1

Partial fraction decompositions of rational functions

Let P and Q be polynomials with real coefficients, and suppose that the degree of P

is less than the degree of Q. Then
(a) Q.x/ can be factored into the product of a constant K, real linear factors of the

form x � ai , and real quadratic factors of the form x2
C bix C ci having no real

roots. The linear and quadratic factors may be repeated:

Q.x/ D K.x � a1/
m1.x � a2/

m2
� � � .x � aj /

mj .x
2
C b1x C c1/

n1

� � � .x
2
C bkx C ck/

nk :

The degree of Q is m1 Cm2 C � � � Cmj C 2n1 C 2n2 C � � � C 2nk .

(b) The rational function P.x/=Q.x/ can be expressed as a sum of partial fractions

as follows:

(i) corresponding to each factor .x � a/m of Q.x/ the decomposition contains a

sum of fractions of the form

A1

x � a
C

A2

.x � a/2
C � � � C

Am

.x � a/m
I
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A C B D 0 (coefficient of x2)

� A C B C C D 0 (coefficient of x)

A C C D 1 (constant term).

Hence, A D 1=3, B D �1=3, and C D 2=3. We have

I D
1

3

Z

dx

x C 1
�

1

3

Z

x � 2

x2
� x C 1

dx:

The first integral is easily evaluated; in the second we complete the square in the de-

nominator: x2
� x C 1 D

�

x �
1

2

�2

C

3

4
, and make a similar modification in the

numerator.

I D
1

3
ln jx C 1j �

1

3

Z x �
1

2
�

3

2
�

x �
1

2

�2

C

3

4

dx Let u D x � 1=2,

du D dx

D

1

3
ln jx C 1j �

1

3

Z

u

u2
C

3

4

duC
1

2

Z

1

u2
C

3

4

du

D

1

3
ln jx C 1j �

1

6
ln

�

u
2
C

3

4

�

C

1

2

2
p

3
tan�1

�

2u
p

3

�

C C

D

1

3
ln jx C 1j �

1

6
ln.x2

� x C 1/C
1
p

3
tan�1

�

2x � 1
p

3

�

C C:

Denominators with Repeated Factors
We require one final refinement of the method of partial fractions. If any of the lin-

ear or quadratic factors of Q.x/ is repeated (say, m times), then the partial fraction

decomposition of P.x/=Q.x/ requires m distinct fractions corresponding to that fac-

tor. The denominators of these fractions have exponents increasing from 1 to m, and

the numerators are all constants where the repeated factor is linear or linear where the

repeated factor is quadratic. (See Theorem 1 below.)

E X A M P L E 7 Evaluate

Z

1

x.x � 1/2
dx.

Solution The appropriate partial fraction decomposition here is

1

x.x � 1/2
D

A

x
C

B

x � 1
C

C

.x � 1/2

D

A.x
2
� 2x C 1/C B.x

2
� x/C Cx

x.x � 1/2
:

Equating coefficients of x2, x, and 1 in the numerators of both sides, we get

A C B D 0 (coefficient of x2)

� 2A � B C C D 0 (coefficient of x)

A D 1 (constant term).

Hence, A D 1, B D �1, C D 1, and
Z

1

x.x � 1/2
dx D

Z

1

x
dx �

Z

1

x � 1
dx C

Z

1

.x � 1/2
dx

D ln jxj � ln jx � 1j �
1

x � 1
C C

D ln

ˇ

ˇ

ˇ

x

x � 1

ˇ

ˇ

ˇ
�

1

x � 1
C C:
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E X A M P L E 8 Evaluate I D

Z

x2
C 2

4x5
C 4x3

C x
dx.

Solution The denominator factors to x.2x2
C 1/

2, so the appropriate partial fraction

decomposition is

x
2
C 2

x.2x2
C 1/2

D

A

x
C

Bx C C

2x2
C 1
C

Dx CE

.2x2
C 1/2

D

A.4x4
C 4x2

C 1/C B.2x4
C x2/C C.2x3

C x/CDx2
CEx

x.2x2
C 1/2

:

Thus,
4A C 2B D 0 (coefficient of x4)

2C D 0 (coefficient of x3)

4A C B C D D 1 (coefficient of x2)

C C E D 0 (coefficient of x)

A D 2 (constant term).

Solving these equations, we get A D 2, B D �4, C D 0, D D �3, and E D 0.

I D 2

Z

dx

x
� 4

Z

x dx

2x2
C 1
� 3

Z

x dx

.2x2
C 1/2

Let u D 2x2
C 1,

du D 4x dx

D 2 ln jxj �

Z

du

u
�

3

4

Z

du

u2

D 2 ln jxj � ln juj C
3

4u
C C

D ln

�

x2

2x2
C 1

�

C

3

4

1

2x2
C 1
C C:

The following theorem summarizes the various aspects of the method of partial frac-

tions.

T H E O R E M

1

Partial fraction decompositions of rational functions

Let P and Q be polynomials with real coefficients, and suppose that the degree of P

is less than the degree of Q. Then
(a) Q.x/ can be factored into the product of a constant K, real linear factors of the

form x � ai , and real quadratic factors of the form x2
C bix C ci having no real

roots. The linear and quadratic factors may be repeated:

Q.x/ D K.x � a1/
m1.x � a2/

m2
� � � .x � aj /

mj .x
2
C b1x C c1/

n1

� � � .x
2
C bkx C ck/

nk :

The degree of Q is m1 Cm2 C � � � Cmj C 2n1 C 2n2 C � � � C 2nk .

(b) The rational function P.x/=Q.x/ can be expressed as a sum of partial fractions

as follows:

(i) corresponding to each factor .x � a/m of Q.x/ the decomposition contains a

sum of fractions of the form

A1

x � a
C

A2

.x � a/2
C � � � C

Am

.x � a/m
I
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(ii) corresponding to each factor .x2
C bx C c/

n of Q.x/ the decomposition

contains a sum of fractions of the form

B1x C C1

x2
C bx C c

C

B2x C C2

.x2
C bx C c/2

C � � � C

Bnx C Cn

.x2
C bx C c/n

:

The constants A1; A2; : : : ; Am; B1; B2; : : : ; Bn; C1; C2; : : : ; Cn can be

determined by adding up the fractions in the decomposition and equating the

coefficients of like powers of x in the numerator of the sum with those in

P.x/.

Part (a) of the above theorem is just a restatement of results discussed and proved in

Section P.6 and Appendix II. The proof of part (b) is algebraic in nature and is beyond

the scope of this text.

Note that part (a) does not tell us how to find the factors of Q.x/; it tells us only

what form they have. We must know the factors ofQ before we can make use of partial

fractions to integrate the rational functionP.x/=Q.x/. Partial fraction decompositions

are also used in other mathematical situations, in particular, to solve certain problems

involving differential equations.

E X E R C I S E S 6.2
Evaluate the integrals in Exercises 1–28.

1.

Z

2 dx

2x � 3
2.

Z

dx

5 � 4x

3.

Z

x dx

�x C 2
4.

Z

x2

x � 4
dx

5.

Z

1

x2
� 9

dx 6.

Z

dx

5 � x2

7.

Z

dx

a2
� x2

8.

Z

dx

b2
� a2x2

9.

Z

x2 dx

x2
C x � 2

10.

Z

x dx

3x2
C 8x � 3

11.

Z

x � 2

x2
C x

dx 12.

Z

dx

x3
C 9x

13.

Z

dx

1 � 6x C 9x2
14.

Z

x dx

2C 6x C 9x2

15.

Z

x2
C 1

6x � 9x2
dx 16.

Z

x3
C 1

12C 7x C x2
dx

17.

Z

dx

x.x2
� a2/

18.

Z

dx

x4
� a4

19.I

Z

x3 dx

x3
� a3

20.

Z

dx

x3
C 2x2

C 2x

21.

Z

dx

x3
� 4x2

C 3x
22.

Z

x2
C 1

x3
C 8

dx

23.

Z

dx

.x2
� 1/2

24.

Z

x2 dx

.x2
� 1/.x2

� 4/

25.

Z

dx

x4
� 3x3

26.I

Z

dt

.t � 1/.t2 � 1/2

27.I

Z

dx

e2x
� 4ex

C 4
28.I

Z

d�

cos �.1C sin �/

In Exercises 29–30 write the form that the partial fraction

decomposition of the given rational function takes. Do not actually

evaluate the constants you use in the decomposition.

29.
x5
C x3

C 1

.x � 1/.x2
� 1/.x3

� 1/
30.

123� x7

.x4
� 16/2

31. Write
x5

.x2
� 4/.x C 2/2

as the sum of a polynomial and a

partial fraction decomposition (with constants left

undetermined) of a rational function whose numerator has

smaller degree than the denominator.

32. Show that x4
C 4x2

C 16 factors to

.x2
C kx C 4/.x2

� kx C 4/ for a certain positive constant k.

What is the value of k? Now repeat the previous exercise for

the rational function
x4

x4
C 4x2

C 16
.

33.I Suppose that P and Q are polynomials such that the degree of

P is smaller than that of Q. If

Q.x/ D .x � a1/.x � a2/ � � � .x � an/;

where ai ¤ aj if i ¤ j.1 � i; j � n/, so that P.x/=Q.x/

has partial fraction decomposition

P.x/

Q.x/
D

A1

x � a1
C

A2

x � a2
C � � � C

An

x � an
;

show that

Aj D
P.aj /

Q0.aj /
.1 � j � n/:

This gives yet another method for computing the constants in

a partial fraction decomposition if the denominator factors

completely into distinct linear factors.
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6.3 Inverse Substitutions
The substitutions considered in Section 5.6 were direct substitutions in the sense that

we simplified an integrand by replacing an expression appearing in it with a single

variable. In this section we consider the reverse approach: we replace the variable

of integration with a function of a new variable. Such substitutions, called inverse

substitutions, would appear on the surface to make the integral more complicated.

That is, substituting x D g.u/ in the integral

Z b

a

f .x/ dx

leads to the more “complicated” integral

Z xDb

xDa

f
�

g.u/
�

g
0
.u/ du:

As we will see, however, sometimes such substitutions can actually simplify an in-

tegrand, transforming the integral into one that can be evaluated by inspection or to

which other techniques can readily be applied. In any event, inverse substitutions can

often be used to convert integrands to rational functions to which the methods of Sec-

tion 6.2 can be applied.

The Inverse Trigonometric Substitutions
Three very useful inverse substitutions are

x D a sin �; x D a tan �; and x D a sec �:

These correspond to the direct substitutions

� D sin�1 x

a
; � D tan�1 x

a
; and � D sec�1 x

a
D cos�1

a

x
:

The inverse sine substitution

Integrals involving
p

a2
� x2 (where a > 0) can frequently be reduced to a

simpler form by means of the substitution

x D a sin � or, equivalently, � D sin�1 x

a
:

Observe that
p

a2
� x2 makes sense only if �a � x � a, which corresponds to

��=2 � � � �=2. Since cos � � 0 for such � , we have

p

a2
� x2

D

q

a2.1 � sin2
�/ D

p

a2 cos2 � D a cos �:

(If cos � were not nonnegative, we would have obtained aj cos � j instead.) If needed,

the other trigonometric functions of � can be recovered in terms of x by examining a

right-angled triangle labelled to correspond to the substitution (see Figure 6.1)

�

a

x

p

a2
� x2

Figure 6.1
cos � D

p

a2
� x2

a
and tan � D

x
p

a2
� x2

:

E X A M P L E 1 Evaluate

Z

1

.5 � x2/3=2
dx.
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(ii) corresponding to each factor .x2
C bx C c/

n of Q.x/ the decomposition

contains a sum of fractions of the form

B1x C C1

x2
C bx C c

C

B2x C C2

.x2
C bx C c/2

C � � � C

Bnx C Cn

.x2
C bx C c/n

:

The constants A1; A2; : : : ; Am; B1; B2; : : : ; Bn; C1; C2; : : : ; Cn can be

determined by adding up the fractions in the decomposition and equating the

coefficients of like powers of x in the numerator of the sum with those in

P.x/.

Part (a) of the above theorem is just a restatement of results discussed and proved in

Section P.6 and Appendix II. The proof of part (b) is algebraic in nature and is beyond

the scope of this text.

Note that part (a) does not tell us how to find the factors of Q.x/; it tells us only

what form they have. We must know the factors ofQ before we can make use of partial

fractions to integrate the rational functionP.x/=Q.x/. Partial fraction decompositions

are also used in other mathematical situations, in particular, to solve certain problems

involving differential equations.

E X E R C I S E S 6.2
Evaluate the integrals in Exercises 1–28.

1.

Z

2 dx

2x � 3
2.

Z

dx

5 � 4x

3.

Z

x dx

�x C 2
4.

Z

x2

x � 4
dx

5.

Z

1

x2
� 9

dx 6.

Z

dx

5 � x2

7.

Z

dx

a2
� x2

8.

Z

dx

b2
� a2x2

9.

Z

x2 dx

x2
C x � 2

10.

Z

x dx

3x2
C 8x � 3

11.

Z

x � 2

x2
C x

dx 12.

Z

dx

x3
C 9x

13.

Z

dx

1 � 6x C 9x2
14.

Z

x dx

2C 6x C 9x2

15.

Z

x2
C 1

6x � 9x2
dx 16.

Z

x3
C 1

12C 7x C x2
dx

17.

Z

dx

x.x2
� a2/

18.

Z

dx

x4
� a4

19.I

Z

x3 dx

x3
� a3

20.

Z

dx

x3
C 2x2

C 2x

21.

Z

dx

x3
� 4x2

C 3x
22.

Z

x2
C 1

x3
C 8

dx

23.

Z

dx

.x2
� 1/2

24.

Z

x2 dx

.x2
� 1/.x2

� 4/

25.

Z

dx

x4
� 3x3

26.I

Z

dt

.t � 1/.t2 � 1/2

27.I

Z

dx

e2x
� 4ex

C 4
28.I

Z

d�

cos �.1C sin �/

In Exercises 29–30 write the form that the partial fraction

decomposition of the given rational function takes. Do not actually

evaluate the constants you use in the decomposition.

29.
x5
C x3

C 1

.x � 1/.x2
� 1/.x3

� 1/
30.

123� x7

.x4
� 16/2

31. Write
x5

.x2
� 4/.x C 2/2

as the sum of a polynomial and a

partial fraction decomposition (with constants left

undetermined) of a rational function whose numerator has

smaller degree than the denominator.

32. Show that x4
C 4x2

C 16 factors to

.x2
C kx C 4/.x2

� kx C 4/ for a certain positive constant k.

What is the value of k? Now repeat the previous exercise for

the rational function
x4

x4
C 4x2

C 16
.

33.I Suppose that P and Q are polynomials such that the degree of

P is smaller than that of Q. If

Q.x/ D .x � a1/.x � a2/ � � � .x � an/;

where ai ¤ aj if i ¤ j.1 � i; j � n/, so that P.x/=Q.x/

has partial fraction decomposition

P.x/

Q.x/
D

A1

x � a1
C

A2

x � a2
C � � � C

An

x � an
;

show that

Aj D
P.aj /

Q0.aj /
.1 � j � n/:

This gives yet another method for computing the constants in

a partial fraction decomposition if the denominator factors

completely into distinct linear factors.
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6.3 Inverse Substitutions
The substitutions considered in Section 5.6 were direct substitutions in the sense that

we simplified an integrand by replacing an expression appearing in it with a single

variable. In this section we consider the reverse approach: we replace the variable

of integration with a function of a new variable. Such substitutions, called inverse

substitutions, would appear on the surface to make the integral more complicated.

That is, substituting x D g.u/ in the integral

Z b

a

f .x/ dx

leads to the more “complicated” integral

Z xDb

xDa

f
�

g.u/
�

g
0
.u/ du:

As we will see, however, sometimes such substitutions can actually simplify an in-

tegrand, transforming the integral into one that can be evaluated by inspection or to

which other techniques can readily be applied. In any event, inverse substitutions can

often be used to convert integrands to rational functions to which the methods of Sec-

tion 6.2 can be applied.

The Inverse Trigonometric Substitutions
Three very useful inverse substitutions are

x D a sin �; x D a tan �; and x D a sec �:

These correspond to the direct substitutions

� D sin�1 x

a
; � D tan�1 x

a
; and � D sec�1 x

a
D cos�1

a

x
:

The inverse sine substitution

Integrals involving
p

a2
� x2 (where a > 0) can frequently be reduced to a

simpler form by means of the substitution

x D a sin � or, equivalently, � D sin�1 x

a
:

Observe that
p

a2
� x2 makes sense only if �a � x � a, which corresponds to

��=2 � � � �=2. Since cos � � 0 for such � , we have

p

a2
� x2

D

q

a2.1 � sin2
�/ D

p

a2 cos2 � D a cos �:

(If cos � were not nonnegative, we would have obtained aj cos � j instead.) If needed,

the other trigonometric functions of � can be recovered in terms of x by examining a

right-angled triangle labelled to correspond to the substitution (see Figure 6.1)

�

a

x

p

a2
� x2

Figure 6.1
cos � D

p

a2
� x2

a
and tan � D

x
p

a2
� x2

:

E X A M P L E 1 Evaluate

Z

1

.5 � x2/3=2
dx.
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Solution Refer to Figure 6.2.

Z

1

.5 � x2/3=2
dx Let x D

p

5 sin � ,

dx D
p

5 cos � d�

D

Z

p

5 cos � d�

53=2 cos3 �

D

1

5

Z

sec2
� d� D

1

5
tan � C C D

1

5

x
p

5 � x2
C C

�

p

5

x

p

5 � x2

Figure 6.2

E X A M P L E 2
Find the area of the circular segment shaded in Figure 6.3.

y

x

a

y D
p

a2
� x2

b

Figure 6.3

Solution The area is

A D 2

Z a

b

p

a2
� x2 dx Let x D a sin � ,

dx D a cos � d�

D 2

Z xDa

xDb

a
2 cos2

� d�

D a
2
�

� C sin � cos �
�

ˇ

ˇ

ˇ

ˇ

xDa

xDb

.as in Example 8 of Section 5:6/

D a
2

 

sin�1 x

a
C

x
p

a2
� x2

a2

!

ˇ

ˇ

ˇ

ˇ

a

b

(See Figure 6.1.)

D

�

2
a

2
� a

2 sin�1 b

a
� b

p

a2
� b2 square units:

The inverse tangent substitution

Integrals involving
p

a2
C x2 or

1

x2
C a2

(where a > 0) are often simplified

by the substitution

x D a tan � or, equivalently, � D tan�1 x

a
:

Since x can take any real value, we have ��=2 < � < �=2, so sec � > 0 and

p

a2
C x2

D a

p

1C tan2 � D a sec �:

Other trigonometric functions of � can be expressed in terms of x by referring to a

�

p

a2
C x2

x

a

Figure 6.4

right-angled triangle with legs a and x and hypotenuse
p

a2
C x2 (see Figure 6.4):

sin � D
x

p

a2
C x2

and cos � D
a

p

a2
C x2

:

E X A M P L E 3 Evaluate (a)

Z

1
p

4C x2
dx and (b)

Z

1

.1C 9x2/2
dx.

Solution Figures 6.5 and 6.6 illustrate parts (a) and (b), respectively.
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(a)

Z

1
p

4C x2
dx Let x D 2 tan � ,

dx D 2 sec2 � d�

D

Z

2 sec2 �

2 sec �
d�

D

Z

sec � d�

D ln j sec � C tan � j C C D ln

ˇ

ˇ

ˇ

ˇ

p

4C x2

2
C

x

2

ˇ

ˇ

ˇ

ˇ

C C

D ln
�

p

4C x2
C x

�

C C1; where C1 D C � ln 2.

�

p

4C x2

x

2

Figure 6.5

(Note that
p

4C x2
C x > 0 for all x, so we do not need an absolute value on it.)

(b)

Z

1

.1C 9x2/2
dx Let 3x D tan � ,

3dx D sec2 � d� ,

1C 9x2
D sec2 �

D

1

3

Z

sec2 � d�

sec4 �

D

1

3

Z

cos2
� d� D

1

6

�

� C sin � cos �
�

C C

D

1

6
tan�1

.3x/C
1

6

3x
p

1C 9x2

1
p

1C 9x2
C C

D

1

6
tan�1

.3x/C
1

2

x

1C 9x2
C C

�

p

1C 9x2

3x

1

Figure 6.6

The inverse secant substitution

Integrals involving
p

x2
� a2 (where a > 0) can frequently be simplified by

using the substitution

x D a sec � or, equivalently, � D sec�1
x

a
:

We must be more careful with this substitution. Although

p

x2
� a2

D a

p

sec2 � � 1 D a

p

tan2 � D aj tan � j;

we cannot always drop the absolute value from the tangent. Observe that
p

x2
� a2

makes sense for x � a and for x � �a.

If x � a, then 0 � � D sec�1
x

a
D arccos

a

x
<
�

2
; and tan � � 0:

If x � �a, then
�

2
< � D sec�1

x

a
D arccos

a

x
� �; and tan � � 0:

In the first case
p

x2
� a2

D a tan � ; in the second case
p

x2
� a2

D �a tan � .

E X A M P L E 4 Find I D

Z

dx
p

x2
� a2

, where a > 0.

Solution For the moment, assume that x � a. If x D a sec � , then

dx D a sec � tan � d� and
p

x2
� a2

D a tan � . (See Figure 6.7). Thus,

I D

Z

sec � d� D ln j sec � C tan � j C C

D ln

ˇ

ˇ

ˇ

ˇ

x

a
C

p

x2
� a2

a

ˇ

ˇ

ˇ

ˇ

C C D ln jx C
p

x2
� a2
j C C1;
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Solution Refer to Figure 6.2.

Z

1

.5 � x2/3=2
dx Let x D

p

5 sin � ,

dx D
p

5 cos � d�

D

Z

p

5 cos � d�

53=2 cos3 �

D

1

5

Z

sec2
� d� D

1

5
tan � C C D

1

5

x
p

5 � x2
C C

�

p

5

x

p

5 � x2

Figure 6.2

E X A M P L E 2
Find the area of the circular segment shaded in Figure 6.3.

y

x

a

y D
p

a2
� x2

b

Figure 6.3

Solution The area is

A D 2

Z a

b

p

a2
� x2 dx Let x D a sin � ,

dx D a cos � d�

D 2

Z xDa

xDb

a
2 cos2

� d�

D a
2
�

� C sin � cos �
�

ˇ

ˇ

ˇ

ˇ

xDa

xDb

.as in Example 8 of Section 5:6/

D a
2

 

sin�1 x

a
C

x
p

a2
� x2

a2

!

ˇ

ˇ

ˇ

ˇ

a

b

(See Figure 6.1.)

D

�

2
a

2
� a

2 sin�1 b

a
� b

p

a2
� b2 square units:

The inverse tangent substitution

Integrals involving
p

a2
C x2 or

1

x2
C a2

(where a > 0) are often simplified

by the substitution

x D a tan � or, equivalently, � D tan�1 x

a
:

Since x can take any real value, we have ��=2 < � < �=2, so sec � > 0 and

p

a2
C x2

D a

p

1C tan2 � D a sec �:

Other trigonometric functions of � can be expressed in terms of x by referring to a

�

p

a2
C x2

x

a

Figure 6.4

right-angled triangle with legs a and x and hypotenuse
p

a2
C x2 (see Figure 6.4):

sin � D
x

p

a2
C x2

and cos � D
a

p

a2
C x2

:

E X A M P L E 3 Evaluate (a)

Z

1
p

4C x2
dx and (b)

Z

1

.1C 9x2/2
dx.

Solution Figures 6.5 and 6.6 illustrate parts (a) and (b), respectively.
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(a)

Z

1
p

4C x2
dx Let x D 2 tan � ,

dx D 2 sec2 � d�

D

Z

2 sec2 �

2 sec �
d�

D

Z

sec � d�

D ln j sec � C tan � j C C D ln

ˇ

ˇ

ˇ

ˇ

p

4C x2

2
C

x

2

ˇ

ˇ

ˇ

ˇ

C C

D ln
�

p

4C x2
C x

�

C C1; where C1 D C � ln 2.

�

p

4C x2

x

2

Figure 6.5

(Note that
p

4C x2
C x > 0 for all x, so we do not need an absolute value on it.)

(b)

Z

1

.1C 9x2/2
dx Let 3x D tan � ,

3dx D sec2 � d� ,

1C 9x2
D sec2 �

D

1

3

Z

sec2 � d�

sec4 �

D

1

3

Z

cos2
� d� D

1

6

�

� C sin � cos �
�

C C

D

1

6
tan�1

.3x/C
1

6

3x
p

1C 9x2

1
p

1C 9x2
C C

D

1

6
tan�1

.3x/C
1

2

x

1C 9x2
C C

�

p

1C 9x2

3x

1

Figure 6.6

The inverse secant substitution

Integrals involving
p

x2
� a2 (where a > 0) can frequently be simplified by

using the substitution

x D a sec � or, equivalently, � D sec�1
x

a
:

We must be more careful with this substitution. Although

p

x2
� a2

D a

p

sec2 � � 1 D a

p

tan2 � D aj tan � j;

we cannot always drop the absolute value from the tangent. Observe that
p

x2
� a2

makes sense for x � a and for x � �a.

If x � a, then 0 � � D sec�1
x

a
D arccos

a

x
<
�

2
; and tan � � 0:

If x � �a, then
�

2
< � D sec�1

x

a
D arccos

a

x
� �; and tan � � 0:

In the first case
p

x2
� a2

D a tan � ; in the second case
p

x2
� a2

D �a tan � .

E X A M P L E 4 Find I D

Z

dx
p

x2
� a2

, where a > 0.

Solution For the moment, assume that x � a. If x D a sec � , then

dx D a sec � tan � d� and
p

x2
� a2

D a tan � . (See Figure 6.7). Thus,

I D

Z

sec � d� D ln j sec � C tan � j C C

D ln

ˇ

ˇ

ˇ

ˇ

x

a
C

p

x2
� a2

a

ˇ

ˇ

ˇ

ˇ

C C D ln jx C
p

x2
� a2
j C C1;
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where C1 D C � ln a. If x � �a, let u D �x so that u � a and du D �dx. We have

�

x
p

x2
� a2

a

Figure 6.7

I D �

Z

du
p

u2
� a2

D � ln juC
p

u2
� a2
j C C1

D ln

ˇ

ˇ

ˇ

ˇ

1

�x C
p

x2
� a2

x C
p

x2
� a2

x C
p

x2
� a2

ˇ

ˇ

ˇ

ˇ

C C1

D ln

ˇ

ˇ

ˇ

ˇ

x C
p

x2
� a2

�a2

ˇ

ˇ

ˇ

ˇ

C C1 D ln jx C
p

x2
� a2
j C C2;

where C2 D C1 � 2 ln a. Thus, in either case, we have

I D ln jx C
p

x2
� a2
j C C:

The following example requires the technique of completing the square as presented in

Section 6.2.

E X A M P L E 5 Evaluate (a)

Z

1
p

2x � x2
dx and (b)

Z

x

4x2
C 12x C 13

dx.

Solution

(a)

Z

1
p

2x � x2
dx D

Z

dx
p

1 � .1 � 2x C x2/

D

Z

dx
p

1 � .x � 1/2
Let u D x � 1,

du D dx

D

Z

du
p

1 � u2

D sin�1
uC C D sin�1

.x � 1/C C:

(b)

Z

x

4x2
C 12x C 13

dx D

Z

x dx

4

�

x2
C 3x C

9

4
C 1

�

D

1

4

Z

x dx
�

x C
3

2

�2

C 1

Let u D x C .3=2/,

du D dx,

x D u � .3=2/

D

1

4

Z

udu

u2
C 1
�

3

8

Z

du

u2
C 1

In the first integral

let v D u2
C 1,

dv D 2u du

D

1

8

Z

dv

v
�

3

8
tan�1

u

D

1

8
ln jvj �

3

8
tan�1

uC C

D

1

8
ln.4x2

C 12x C 13/ �
3

8
tan�1

�

x C
3

2

�

C C1;

where C1 D C � .ln 4/=8.

Inverse Hyperbolic Substitutions
As an alternative to the inverse secant substitution x D a sec � to simplify integrals

involving
p

x2
� a2 (where x � a > 0), we can use the inverse hyperbolic cosine

substitution x D a cosh u. Since cosh2
u � 1 D sinh2

u, this substitution produces
p

x2
� a2

D a sinhu. To express u in terms of x, we need the result, noted in Section

3.6,

cosh�1
x D ln

�

x C

p

x2
� 1

�

; x � 1:
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To illustrate, we redo Example 4 using the inverse hyperbolic cosine substitution.

E X A M P L E 6 Find I D

Z

dx
p

x2
� a2

, where a > 0.

Solution Again we assume x � a. (The case where x � �a can be handled simi-

larly.) Using the substitution x D a coshu, so that dx D a sinhudu, we have

I D

Z

a sinhu

a sinhu
du D

Z

du D U C C

D cosh�1 x

a
C C D ln

0

@

x

a
C

s

x2

a2
� 1

1

AC C

D ln
�

x C

p

x2
� a2

�

C C1 (where C1 D C � ln a)

Similarly, the inverse hyperbolic substitution x D a sinhu can be used instead of the

inverse tangent substitution x D a tan � to simplify integrals involving
p

x2
C a2 or

1

x2
C a2

. In this case we have dx D a coshudu and x2
C a

2
D a

2 cosh2
u, and we

may need the result

sinh�1
x D ln

�

x C

p

x2
C 1

�

valid for all x and proved in Section 3.6.

E X A M P L E 7 Evaluate I D

Z 4

0

dx

.x2
C 9/3=2

.

Solution We use the inverse substitution x D 3 sinh u, so that dx D 3 cosh udu and

x
2
C 9 D 9 cosh2

u. We have

I D

Z xD4

xD0

3 cosh u

27 cosh3
u
du D

1

9

Z xD4

xD0

sech 2
udu D

1

9
tanhu

ˇ

ˇ

ˇ

ˇ

ˇ

xD4

xD0

D

1

9

sinhu

coshu

ˇ

ˇ

ˇ

ˇ

ˇ

xD4

xD0

D

1

9

x=3

.
p

x2
C 9/=3

ˇ

ˇ

ˇ

ˇ

ˇ

4

0

D

1

9
�

4

5
D

4

45
:

Integrals involving
p

a2
� x2, where jxj � a, can be attempted with the aid of the

inverse hyperbolic substitution x D a tanhu, making use of the identity 1� tanh2
u D

sech 2
u. However, it is usually better to use the inverse sine substitution x D a sin �

for such integrals. In general, it is better to avoid the inverse trigonometric substitutions

unless you are very familiar with the identities satisfied by the hyperbolic functions as

presented in Section 3.6.

Other Inverse Substitutions
Integrals involving

p

ax C b can sometimes be made simpler with the substitution

ax C b D u2.
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where C1 D C � ln a. If x � �a, let u D �x so that u � a and du D �dx. We have

�

x
p

x2
� a2

a

Figure 6.7

I D �

Z

du
p

u2
� a2

D � ln juC
p

u2
� a2
j C C1

D ln

ˇ

ˇ

ˇ

ˇ

1

�x C
p

x2
� a2

x C
p

x2
� a2

x C
p

x2
� a2

ˇ

ˇ

ˇ

ˇ

C C1

D ln

ˇ

ˇ

ˇ

ˇ

x C
p

x2
� a2

�a2

ˇ

ˇ

ˇ

ˇ

C C1 D ln jx C
p

x2
� a2
j C C2;

where C2 D C1 � 2 ln a. Thus, in either case, we have

I D ln jx C
p

x2
� a2
j C C:

The following example requires the technique of completing the square as presented in

Section 6.2.

E X A M P L E 5 Evaluate (a)

Z

1
p

2x � x2
dx and (b)

Z

x

4x2
C 12x C 13

dx.

Solution

(a)

Z

1
p

2x � x2
dx D

Z

dx
p

1 � .1 � 2x C x2/

D

Z

dx
p

1 � .x � 1/2
Let u D x � 1,

du D dx

D

Z

du
p

1 � u2

D sin�1
uC C D sin�1

.x � 1/C C:

(b)

Z

x

4x2
C 12x C 13

dx D

Z

x dx

4

�

x2
C 3x C

9

4
C 1

�

D

1

4

Z

x dx
�

x C
3

2

�2

C 1

Let u D x C .3=2/,

du D dx,

x D u � .3=2/

D

1

4

Z

udu

u2
C 1
�

3

8

Z

du

u2
C 1

In the first integral

let v D u2
C 1,

dv D 2u du

D

1

8

Z

dv

v
�

3

8
tan�1

u

D

1

8
ln jvj �

3

8
tan�1

uC C

D

1

8
ln.4x2

C 12x C 13/ �
3

8
tan�1

�

x C
3

2

�

C C1;

where C1 D C � .ln 4/=8.

Inverse Hyperbolic Substitutions
As an alternative to the inverse secant substitution x D a sec � to simplify integrals

involving
p

x2
� a2 (where x � a > 0), we can use the inverse hyperbolic cosine

substitution x D a cosh u. Since cosh2
u � 1 D sinh2

u, this substitution produces
p

x2
� a2

D a sinhu. To express u in terms of x, we need the result, noted in Section

3.6,

cosh�1
x D ln

�

x C

p

x2
� 1

�

; x � 1:
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To illustrate, we redo Example 4 using the inverse hyperbolic cosine substitution.

E X A M P L E 6 Find I D

Z

dx
p

x2
� a2

, where a > 0.

Solution Again we assume x � a. (The case where x � �a can be handled simi-

larly.) Using the substitution x D a coshu, so that dx D a sinhudu, we have

I D

Z

a sinhu

a sinhu
du D

Z

du D U C C

D cosh�1 x

a
C C D ln

0

@

x

a
C

s

x2

a2
� 1

1

AC C

D ln
�

x C

p

x2
� a2

�

C C1 (where C1 D C � ln a)

Similarly, the inverse hyperbolic substitution x D a sinhu can be used instead of the

inverse tangent substitution x D a tan � to simplify integrals involving
p

x2
C a2 or

1

x2
C a2

. In this case we have dx D a coshudu and x2
C a

2
D a

2 cosh2
u, and we

may need the result

sinh�1
x D ln

�

x C

p

x2
C 1

�

valid for all x and proved in Section 3.6.

E X A M P L E 7 Evaluate I D

Z 4

0

dx

.x2
C 9/3=2

.

Solution We use the inverse substitution x D 3 sinh u, so that dx D 3 cosh udu and

x
2
C 9 D 9 cosh2

u. We have

I D

Z xD4

xD0

3 cosh u

27 cosh3
u
du D

1

9

Z xD4

xD0

sech 2
udu D

1

9
tanhu

ˇ

ˇ

ˇ

ˇ

ˇ

xD4

xD0

D

1

9

sinhu

coshu

ˇ

ˇ

ˇ

ˇ

ˇ

xD4

xD0

D

1

9

x=3

.
p

x2
C 9/=3

ˇ

ˇ

ˇ

ˇ

ˇ

4

0

D

1

9
�

4

5
D

4

45
:

Integrals involving
p

a2
� x2, where jxj � a, can be attempted with the aid of the

inverse hyperbolic substitution x D a tanhu, making use of the identity 1� tanh2
u D

sech 2
u. However, it is usually better to use the inverse sine substitution x D a sin �

for such integrals. In general, it is better to avoid the inverse trigonometric substitutions

unless you are very familiar with the identities satisfied by the hyperbolic functions as

presented in Section 3.6.

Other Inverse Substitutions
Integrals involving

p

ax C b can sometimes be made simpler with the substitution

ax C b D u2.
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E X A M P L E 8

Z

1

1C
p

2x
dx Let 2x D u2,

2 dx D 2u du

D

Z

u

1C u
du

D

Z

1C u � 1

1C u
du

D

Z �

1 �
1

1C u

�

du Let v D 1C u,

dv D du

D u �

Z

dv

v
D u � ln jvj C C

D

p

2x � ln
�

1C
p

2x
�

C C

Sometimes integrals involving
n
p

ax C b will be much simplified by the hybrid sub-

stitution ax C b D un, a dx D nun�1 du.

E X A M P L E 9

Z 2

�1=3

x

3
p

3x C 2
dx Let 3x C 2 D u3,

3 dx D 3u2 du

D

Z 2

1

u3
� 2

3u
u

2
du

D

1

3

Z 2

1

.u
4
� 2u/ du D

1

3

�

u5

5
� u

2

�
ˇ

ˇ

ˇ

ˇ

2

1

D

16

15
:

Note that the limits were changed in this definite integral: u D 1 when x D �1=3,

and, coincidentally, u D 2 when x D 2.

If more than one fractional power is present, it may be possible to eliminate all of them

at once.

E X A M P L E 10 Evaluate

Z

1

x1=2.1C x1=3/
dx.

Solution We can eliminate both the square root and the cube root by using the inverse

substitution x D u6. (The power 6 is chosen because 6 is the least common multiple

of 2 and 3.)

Z

dx

x1=2.1C x1=3/
Let x D u6,

dx D 6u5 du

D 6

Z

u5 du

u3.1C u2/
D 6

Z

u2

1C u2
du D 6

Z �

1 �
1

1C u2

�

du

D 6 .u � tan�1
u/C C D 6 .x

1=6
� tan�1

x
1=6
/C C:

The tan(�/2) Substitution
There is a certain special substitution that can transform an integral whose integrand is

a rational function of sin � and cos � (i.e., a quotient of polynomials in sin � and cos �)

into a rational function of x. The substitution is

x D tan
�

2
or, equivalently, � D 2 tan�1

x:
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Observe that

cos2 �

2
D

1

sec2
�

2

D

1

1C tan2
�

2

D

1

1C x2
;

so

cos � D 2 cos2 �

2
� 1 D

2

1C x2
� 1 D

1 � x2

1C x2

sin � D 2 sin
�

2
cos

�

2
D 2 tan

�

2
cos2 �

2
D

2x

1C x2
:

Also, dx D
1

2
sec2 �

2
d� , so

d� D 2 cos2 �

2
dx D

2 dx

1C x2
:

In summary:

The tan(�=2) substitution

If x D tan.�=2/, then

cos � D
1 � x2

1C x2
; sin � D

2x

1C x2
; and d� D

2 dx

1C x2
:

Note that cos � , sin � , and d� all involve only rational functions of x. We examined

general techniques for integrating rational functions of x in Section 6.2.

E X A M P L E 11

Z

1

2C cos �
d� Let x D tan.�=2/, so

cos � D
1 � x2

1C x2
,

d� D
2 dx

1C x2

D

Z

2 dx

1C x2

2C
1 � x2

1C x2

D 2

Z

1

3C x2
dx

D

2
p

3
tan�1 x

p

3
C C

D

2
p

3
tan�1

�

1
p

3
tan

�

2

�

C C:

E X E R C I S E S 6.3

Evaluate the integrals in Exercises 1–42.

1.

Z

dx
p

1 � 4x2
2.

Z

x2 dx
p

1� 4x2

3.

Z

x2 dx
p

9 � x2
4.

Z

dx

x
p

1 � 4x2

5.

Z

dx

x2
p

9 � x2
6.

Z

dx

x
p

9 � x2

7.

Z

x C 1
p

9 � x2
dx 8.

Z

dx
p

9C x2

9.

Z

x3 dx
p

9C x2
10.

Z

p

9C x2

x4
dx
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E X A M P L E 8

Z

1

1C
p

2x
dx Let 2x D u2,

2 dx D 2u du

D

Z

u

1C u
du

D

Z

1C u � 1

1C u
du

D

Z �

1 �
1

1C u

�

du Let v D 1C u,

dv D du

D u �

Z

dv

v
D u � ln jvj C C

D

p

2x � ln
�

1C
p

2x
�

C C

Sometimes integrals involving
n
p

ax C b will be much simplified by the hybrid sub-

stitution ax C b D un, a dx D nun�1 du.

E X A M P L E 9

Z 2

�1=3

x

3
p

3x C 2
dx Let 3x C 2 D u3,

3 dx D 3u2 du

D

Z 2

1

u3
� 2

3u
u

2
du

D

1

3

Z 2

1

.u
4
� 2u/ du D

1

3

�

u5

5
� u

2

�
ˇ

ˇ

ˇ

ˇ

2

1

D

16

15
:

Note that the limits were changed in this definite integral: u D 1 when x D �1=3,

and, coincidentally, u D 2 when x D 2.

If more than one fractional power is present, it may be possible to eliminate all of them

at once.

E X A M P L E 10 Evaluate

Z

1

x1=2.1C x1=3/
dx.

Solution We can eliminate both the square root and the cube root by using the inverse

substitution x D u6. (The power 6 is chosen because 6 is the least common multiple

of 2 and 3.)

Z

dx

x1=2.1C x1=3/
Let x D u6,

dx D 6u5 du

D 6

Z

u5 du

u3.1C u2/
D 6

Z

u2

1C u2
du D 6

Z �

1 �
1

1C u2

�

du

D 6 .u � tan�1
u/C C D 6 .x

1=6
� tan�1

x
1=6
/C C:

The tan(�/2) Substitution
There is a certain special substitution that can transform an integral whose integrand is

a rational function of sin � and cos � (i.e., a quotient of polynomials in sin � and cos �)

into a rational function of x. The substitution is

x D tan
�

2
or, equivalently, � D 2 tan�1

x:
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Observe that

cos2 �

2
D

1

sec2
�

2

D

1

1C tan2
�

2

D

1

1C x2
;

so

cos � D 2 cos2 �

2
� 1 D

2

1C x2
� 1 D

1 � x2

1C x2

sin � D 2 sin
�

2
cos

�

2
D 2 tan

�

2
cos2 �

2
D

2x

1C x2
:

Also, dx D
1

2
sec2 �

2
d� , so

d� D 2 cos2 �

2
dx D

2 dx

1C x2
:

In summary:

The tan(�=2) substitution

If x D tan.�=2/, then

cos � D
1 � x2

1C x2
; sin � D

2x

1C x2
; and d� D

2 dx

1C x2
:

Note that cos � , sin � , and d� all involve only rational functions of x. We examined

general techniques for integrating rational functions of x in Section 6.2.

E X A M P L E 11

Z

1

2C cos �
d� Let x D tan.�=2/, so

cos � D
1 � x2

1C x2
,

d� D
2 dx

1C x2

D

Z

2 dx

1C x2

2C
1 � x2

1C x2

D 2

Z

1

3C x2
dx

D

2
p

3
tan�1 x

p

3
C C

D

2
p

3
tan�1

�

1
p

3
tan

�

2

�

C C:

E X E R C I S E S 6.3

Evaluate the integrals in Exercises 1–42.

1.

Z

dx
p

1 � 4x2
2.

Z

x2 dx
p

1� 4x2

3.

Z

x2 dx
p

9 � x2
4.

Z

dx

x
p

1 � 4x2

5.

Z

dx

x2
p

9 � x2
6.

Z

dx

x
p

9 � x2

7.

Z

x C 1
p

9 � x2
dx 8.

Z

dx
p

9C x2

9.

Z

x3 dx
p

9C x2
10.

Z

p

9C x2

x4
dx
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11.

Z

dx

.a2
� x2/3=2

12.

Z

dx

.a2
C x2/3=2

13.

Z

x2 dx

.a2
� x2/3=2

14.

Z

dx

.1C 2x2/5=2

15.

Z

dx

x
p

x2
� 4

; .x > 2/ 16.

Z

dx

x2
p

x2
� a2

.x > a > 0/

17.

Z

dx

x2
C 2x C 10

18.

Z

dx

x2
C x C 1

19.

Z

dx

.4x2
C 4x C 5/2

20.

Z

x dx

x2
� 2x C 3

21.

Z

x dx
p

2ax � x2
22.

Z

dx

.4x � x2/3=2

23.

Z

x dx

.3 � 2x � x2/3=2
24.

Z

dx

.x2
C 2x C 2/2

25.

Z

dx

.1C x2/3
26.

Z

x2 dx

.1C x2/2

27.I

Z

p

1 � x2

x3
dx 28.

Z

p

9C x2 dx

29.

Z

dx

2C
p

x
30.

Z

dx

1C x1=3

31.I

Z

1C x1=2

1C x1=3
dx 32.I

Z

x
p

2 � x2

p

x2
C 1

dx

33.

Z 0

� ln 2

e
x
p

1 � e2x dx 34.

Z �=2

0

cosx
p

1C sin2
x

dx

35.

Z

p
3�1

�1

dx

x2
C 2x C 2

36.

Z 2

1

dx

x2
p

9 � x2

37.I

Z

t dt

.t C 1/.t2 C 1/2
38.

Z

x dx

.x2
� x C 1/2

39.I

Z

dx

x.3C x2/
p

1 � x2
40.I

Z

dx

x2.x2
� 1/3=2

41.I

Z

dx

x.1C x2/3=2
42.I

Z

dx

x.1 � x2/3=2

In Exercises 43–45, evaluate the integral using the special

substitution x D tan.�=2/ as in Example 11.

43.I

Z

d�

2C sin �
44.I

Z �=2

0

d�

1C cos � C sin �

45.I

Z

d�

3C 2 cos �

46. Find the area of the region bounded by

y D .2x � x2/�1=2, y D 0, x D 1=2, and x D 1.

47. Find the area of the region lying below

y D 9=.x4
C 4x2

C 4/ and above y D 1.

48. Find the average value of the function

f .x/ D .x2
� 4x C 8/�3=2 over the interval Œ0; 4�.

49. Find the area inside the circle x2
C y2

D a2 and above the

line y D b, .�a � b � a/.

50. Find the area inside both of the circles x2
C y2

D 1 and

.x � 2/2 C y2
D 4.

51. Find the area in the first quadrant above the hyperbola

xy D 12 and inside the circle x2
C y2

D 25.

52. Find the area to the left of
x2

a2
C

y2

b2
D 1 and to the right of

the line x D c, where �a � c � a.

53.I Find the area of the region bounded by the x-axis, the

hyperbola x2
� y2

D 1, and the straight line from the origin

to the point
�

p

1C Y 2; Y

�

on that hyperbola. (Assume

Y > 0.) In particular, show that the area is t=2 square units if

Y D sinh t .

54.I Evaluate the integral

Z

dx

x2
p

x2
� a2

, for x > a > 0, using

the inverse hyperbolic cosine substitution x D a coshu.

6.4 Other Methods for Evaluating Integrals

Sections 5.6 and 6.1–6.3 explore some standard methods for evaluating both definite

and indefinite integrals of functions belonging to several well-defined classes. There is

another such method that is often used to solve certain kinds of differential equations

but can also be helpful for evaluating integrals; after all, integrating f .x/ is equivalent

to solving the DE dy=dx D f .x/. It goes by the name of the Method of Undeter-

mined Coefficients or the Method of Judicious Guessing, and we will investigate it

below.

Although anyone who uses calculus should be familiar with the basic techniques of

integration, just as anyone who uses arithmetic should be familiar with the techniques

of multiplication and division, technology is steadily eroding the necessity for being

able to do long, complicated integrals by such methods. In fact, today there are several

computer programs that can manipulate mathematical expressions symbolically (rather

than just numerically) and that can carry out, with little or no assistance from us, the

various algebraic steps and limit calculations that are required to calculate and simplify

both derivatives and integrals. Much pain can be avoided and time saved by having the
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computer evaluate a complicated integral such as

Z

1C x C x2

.x4
� 1/.x4

� 16/2
dx

rather than doing it by hand using partial fractions. Even without the aid of a computer,

we can use tables of standard integrals such as the ones in the back endpapers of

this book to help us evaluate complicated integrals. Using computers or tables can

nevertheless require that we perform some simplifications beforehand and can make

demands on our ability to interpret the answers we get. We also examine some such

situations in this section.

The Method of Undetermined Coefficients
The method consists of guessing a family of functions that may contain the integral,

then using differentiation to select the member of the family with the derivative that

matches the integrand. It should be stressed that both people and machines are able

to calculate derivatives with fewer complications than are involved in calculating inte-

grals.

The method of undetermined coefficients is not so much a method as a strategy,

because the family might be chosen on little more than an informed guess. But other

integration methods can involve guesswork too. There can be some guesswork, for

example, in deciding which integration technique will work best. What technique is

best can remain unclear even after considerable effort has been expended. For undeter-

mined coefficients, matters are clear. If the wrong family is guessed, a contradiction

quickly emerges. Moreover, because of its broad nature, it provides a general alterna-

tive to other integration techniques. Often the guess is easily made. For example, if

the integrand belongs to a family that remains unchanged under differentiation, then a

good first guess at the form of the antiderivative is that family. A few examples will

illustrate the technique.

E X A M P L E 1 Evaluate I D

Z

.x
2
C xC 1/ e

x
dx using the method of undeter-

mined coefficients.

Solution Experience tells us that the derivative of a polynomial times an exponential

is a different polynomial of the same degree times the exponential. Thus, we “guess”

that

I D .a0 C a1x C a2x
2
/ e

x
C C:

We differentiate I and equate the result to the integrand to determine the actual values

of the coeffieients a0, a1, and a2.

dI

dx
D .a1 C 2a2x/ e

x
C .a0 C a1x C a2x

2
/ e

x

D

�

a2x
2
C .a1 C 2a2/x C .a0 C a1/

�

e
x

D .x
2
C x C 1/e

x
;

provided that a2 D 1, a1 C 2a2 D 1, and a0 C a1 D 1. These equations imply that

a2 D 1, a1 D �1, and a0 D 2. Thus,

Z

.x
2
C x C 1/e

x
dx D I D .x

2
� x C 2/e

x
C C:

E X A M P L E 2 Evaluate y D

Z

x
3 cos.3x/ dx using the method of undetermined

coefficients.
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11.

Z

dx

.a2
� x2/3=2

12.

Z

dx

.a2
C x2/3=2

13.

Z

x2 dx

.a2
� x2/3=2

14.

Z

dx

.1C 2x2/5=2

15.

Z

dx

x
p

x2
� 4

; .x > 2/ 16.

Z

dx

x2
p

x2
� a2

.x > a > 0/

17.

Z

dx

x2
C 2x C 10

18.

Z

dx

x2
C x C 1

19.

Z

dx

.4x2
C 4x C 5/2

20.

Z

x dx

x2
� 2x C 3

21.

Z

x dx
p

2ax � x2
22.

Z

dx

.4x � x2/3=2

23.

Z

x dx

.3 � 2x � x2/3=2
24.

Z

dx

.x2
C 2x C 2/2

25.

Z

dx

.1C x2/3
26.

Z

x2 dx

.1C x2/2

27.I

Z

p

1 � x2

x3
dx 28.

Z

p

9C x2 dx

29.

Z

dx

2C
p

x
30.

Z

dx

1C x1=3

31.I

Z

1C x1=2

1C x1=3
dx 32.I

Z

x
p

2 � x2

p

x2
C 1

dx

33.

Z 0

� ln 2

e
x
p

1 � e2x dx 34.

Z �=2

0

cosx
p

1C sin2
x

dx

35.

Z

p
3�1

�1

dx

x2
C 2x C 2

36.

Z 2

1

dx

x2
p

9 � x2

37.I

Z

t dt

.t C 1/.t2 C 1/2
38.

Z

x dx

.x2
� x C 1/2

39.I

Z

dx

x.3C x2/
p

1 � x2
40.I

Z

dx

x2.x2
� 1/3=2

41.I

Z

dx

x.1C x2/3=2
42.I

Z

dx

x.1 � x2/3=2

In Exercises 43–45, evaluate the integral using the special

substitution x D tan.�=2/ as in Example 11.

43.I

Z

d�

2C sin �
44.I

Z �=2

0

d�

1C cos � C sin �

45.I

Z

d�

3C 2 cos �

46. Find the area of the region bounded by

y D .2x � x2/�1=2, y D 0, x D 1=2, and x D 1.

47. Find the area of the region lying below

y D 9=.x4
C 4x2

C 4/ and above y D 1.

48. Find the average value of the function

f .x/ D .x2
� 4x C 8/�3=2 over the interval Œ0; 4�.

49. Find the area inside the circle x2
C y2

D a2 and above the

line y D b, .�a � b � a/.

50. Find the area inside both of the circles x2
C y2

D 1 and

.x � 2/2 C y2
D 4.

51. Find the area in the first quadrant above the hyperbola

xy D 12 and inside the circle x2
C y2

D 25.

52. Find the area to the left of
x2

a2
C

y2

b2
D 1 and to the right of

the line x D c, where �a � c � a.

53.I Find the area of the region bounded by the x-axis, the

hyperbola x2
� y2

D 1, and the straight line from the origin

to the point
�

p

1C Y 2; Y

�

on that hyperbola. (Assume

Y > 0.) In particular, show that the area is t=2 square units if

Y D sinh t .

54.I Evaluate the integral

Z

dx

x2
p

x2
� a2

, for x > a > 0, using

the inverse hyperbolic cosine substitution x D a coshu.

6.4 Other Methods for Evaluating Integrals

Sections 5.6 and 6.1–6.3 explore some standard methods for evaluating both definite

and indefinite integrals of functions belonging to several well-defined classes. There is

another such method that is often used to solve certain kinds of differential equations

but can also be helpful for evaluating integrals; after all, integrating f .x/ is equivalent

to solving the DE dy=dx D f .x/. It goes by the name of the Method of Undeter-

mined Coefficients or the Method of Judicious Guessing, and we will investigate it

below.

Although anyone who uses calculus should be familiar with the basic techniques of

integration, just as anyone who uses arithmetic should be familiar with the techniques

of multiplication and division, technology is steadily eroding the necessity for being

able to do long, complicated integrals by such methods. In fact, today there are several

computer programs that can manipulate mathematical expressions symbolically (rather

than just numerically) and that can carry out, with little or no assistance from us, the

various algebraic steps and limit calculations that are required to calculate and simplify

both derivatives and integrals. Much pain can be avoided and time saved by having the
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computer evaluate a complicated integral such as

Z

1C x C x2

.x4
� 1/.x4

� 16/2
dx

rather than doing it by hand using partial fractions. Even without the aid of a computer,

we can use tables of standard integrals such as the ones in the back endpapers of

this book to help us evaluate complicated integrals. Using computers or tables can

nevertheless require that we perform some simplifications beforehand and can make

demands on our ability to interpret the answers we get. We also examine some such

situations in this section.

The Method of Undetermined Coefficients
The method consists of guessing a family of functions that may contain the integral,

then using differentiation to select the member of the family with the derivative that

matches the integrand. It should be stressed that both people and machines are able

to calculate derivatives with fewer complications than are involved in calculating inte-

grals.

The method of undetermined coefficients is not so much a method as a strategy,

because the family might be chosen on little more than an informed guess. But other

integration methods can involve guesswork too. There can be some guesswork, for

example, in deciding which integration technique will work best. What technique is

best can remain unclear even after considerable effort has been expended. For undeter-

mined coefficients, matters are clear. If the wrong family is guessed, a contradiction

quickly emerges. Moreover, because of its broad nature, it provides a general alterna-

tive to other integration techniques. Often the guess is easily made. For example, if

the integrand belongs to a family that remains unchanged under differentiation, then a

good first guess at the form of the antiderivative is that family. A few examples will

illustrate the technique.

E X A M P L E 1 Evaluate I D

Z

.x
2
C xC 1/ e

x
dx using the method of undeter-

mined coefficients.

Solution Experience tells us that the derivative of a polynomial times an exponential

is a different polynomial of the same degree times the exponential. Thus, we “guess”

that

I D .a0 C a1x C a2x
2
/ e

x
C C:

We differentiate I and equate the result to the integrand to determine the actual values

of the coeffieients a0, a1, and a2.

dI

dx
D .a1 C 2a2x/ e

x
C .a0 C a1x C a2x

2
/ e

x

D

�

a2x
2
C .a1 C 2a2/x C .a0 C a1/

�

e
x

D .x
2
C x C 1/e

x
;

provided that a2 D 1, a1 C 2a2 D 1, and a0 C a1 D 1. These equations imply that

a2 D 1, a1 D �1, and a0 D 2. Thus,

Z

.x
2
C x C 1/e

x
dx D I D .x

2
� x C 2/e

x
C C:

E X A M P L E 2 Evaluate y D

Z

x
3 cos.3x/ dx using the method of undetermined

coefficients.
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Solution The derivative of a sum of products of polynomials with sine or cosine

functions is a sum of products of polynomials with sine or cosine functions. Thus, we

try y D P.x/ cos.3x/CQ.x/ sin.3x/ C C , where P.x/ and Q.x/ are polynomials

of degrees m and n, respectively. The degrees m and n and the coefficients of the

polynomials are determined by setting the derivative y 0 equal to the given integrand

x3 cos.3x/.

y
0
D P

0
.x/ cos.3x/� 3P.x/ sin.3x/CQ0

.x/ sin.3x/C 3Q0
.x/ cos.3x/

D x
3 cos 3x:

Equating coefficients of like trigonometric functions, we find

P
0
.x/C 3Q.x/ D x

3 and Q
0
.x/� 3P.x/ D 0:

The second of these equations requires that m D n � 1. From the first we conclude

that n D 3, which implies that m D 2. Thus, we let P.x/ D p0 C p1x C p2x
2 and

Q.x/ D q0 C q1x C q2x
2
C q3x

3 in these equations:

p1 C 2p2x C 3.q0 C q1x C q2x
2
C q3x

3
/ D x

3

q1 C 2q2x C 3q3x
2
� 3.p0 C p1x C p2x

2
/ D 0:

Comparison of coefficients with like powers yields:

p1 C 3q0 D 0

q1 � 3p0 D 0

2p2 C 3q1 D 0

2q2 � 3p1 D 0

3q2 D 0

3q3 � 3p2 D 0;

3q3 D 1

which leads to q3 D 1=3, p2 D 1=3, q1 D �2=9, and p0 D �2=27, with p1 D q0 D

q2 D 0. Thus,

Z

x
3 cos.3x/ dx D y D

�

�

2

27
C

x
2

3

�

cos.3x/C

�

�

2x

9
C

x
3

3

�

sin.3x/C C:

E X A M P L E 3
Find the derivative of fmn.x/ D xm.ln x/n and use the result to

suggest a trial formula for I D

Z

x
3
.ln x/2 dx. Thus, evaluate

this integral.

Solution We have

f
0

mn.x/ D mx
m�1

.ln x/nCnxm
.ln x/n�1 1

x
D mx

m�1
.ln x/nCnxm�1

.ln x/n�1
:

This suggests that we try

I D

Z

x
3
.ln x/2 dx D

Z

f32.x/ dx D Px
4
.ln x/2 CQx4 ln x C Rx4

C C

for constants P; Q; R; and C: Differentiating, we get

dI

dx
D 4Px

3
.ln x/2 C 2Px3 ln x C 4Qx3 ln x CQx3

C 4Rx
3
D x

3
.ln x/2;

provided 4P D 1, 2P C 4Q D 0, and QC 4R D 0. Thus, P D 1=4, Q D �1=8, and

R D 1=32, and so

Z

x
3
.lnx/2 dx D

1

4
x

4
.ln x/2 �

1

8
x

4 lnx C
1

32
x

4
C C:
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Remark These examples and most in the following exercises can also be done using

integration by parts. Using undetermined coefficients does not replace other methods,

but it does provide an alternative that gives insight into what types of functions will not

work as guesses for the integral. This has implications for how computer algorithms

can and cannot do antiderivatives. This issue is taken up in Exercise 21. Moreover, with

access to a differentiation algorithm and a computer to manage details, this method

can sometimes produce integrals more quickly and precisely than classical techniques

alone.

Using Maple for Integration
Computer algebra systems are capable of evaluating both indefinite and definite in-

tegrals symbolically, as well as giving numerical approximations for those definite

integrals that have numerical values. The following examples show how to use Maple

to evaluate integrals.

We begin by calculating

Z

2
x
p

1C 4x dx and

Z �

0

2
x
p

1C 4x dx.

We use Maple’s “int” command, specifying the function and the variable of inte-

gration:

> int(2^x*sqrt(1+4^x),x);

e.x ln.2//
p

1C .e.x ln.2///2

2 ln.2/
C

arcsinh.e.x ln.2///

2 ln.2/

If you don’t like the inverse hyperbolic sine, you can convert it to a logarithm:

> convert(%,ln);

e.x ln.2//
p

1C .e.x ln.2///22 ln.2/C ln
�

e.x ln.2//
C

p

1C .e.x ln.2///2
�

2 ln.2/

The “%” there refers to the result of the previous calculation. Note how Maple prefers

to use ex ln 2 in place of 2x .

For the definite integral, you specify the interval of values of the variable of inte-

gration using two dots between the endpoints as follows:

> int(2^x*sqrt(1+4^x),x=0..Pi);

�

p

2 � ln.1C
p

2/C 2�
p

1C 4�
C ln.2�

C

p

1C 4� /

2 ln.2/

If you want a decimal approximation to this exact answer, you can ask Maple to evalu-

ate the last result as a floating-point number:

> evalf(%);

56:955 421 55

M Remark Maple defaults to giving 10 significant digits in its floating-point numbers

unless you request a different precision by declaring a value for the variable “Digits”:

> Digits := 20; evalf(Pi);

3:141 592 653 589 793 238 5

Suppose we ask Maple to do an integral that we know we can’t do ourselves:

> int(exp(-x^2),x);

1

2

p

� erf.x/

Maple expresses the answer in terms of the error function that is defined by

erf.x/ D
2
p

�

Z x

0

e
�t2

dt:
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Solution The derivative of a sum of products of polynomials with sine or cosine

functions is a sum of products of polynomials with sine or cosine functions. Thus, we

try y D P.x/ cos.3x/CQ.x/ sin.3x/ C C , where P.x/ and Q.x/ are polynomials

of degrees m and n, respectively. The degrees m and n and the coefficients of the

polynomials are determined by setting the derivative y 0 equal to the given integrand

x3 cos.3x/.

y
0
D P

0
.x/ cos.3x/� 3P.x/ sin.3x/CQ0

.x/ sin.3x/C 3Q0
.x/ cos.3x/

D x
3 cos 3x:

Equating coefficients of like trigonometric functions, we find

P
0
.x/C 3Q.x/ D x

3 and Q
0
.x/� 3P.x/ D 0:

The second of these equations requires that m D n � 1. From the first we conclude

that n D 3, which implies that m D 2. Thus, we let P.x/ D p0 C p1x C p2x
2 and

Q.x/ D q0 C q1x C q2x
2
C q3x

3 in these equations:

p1 C 2p2x C 3.q0 C q1x C q2x
2
C q3x

3
/ D x

3

q1 C 2q2x C 3q3x
2
� 3.p0 C p1x C p2x

2
/ D 0:

Comparison of coefficients with like powers yields:

p1 C 3q0 D 0

q1 � 3p0 D 0

2p2 C 3q1 D 0

2q2 � 3p1 D 0

3q2 D 0

3q3 � 3p2 D 0;

3q3 D 1

which leads to q3 D 1=3, p2 D 1=3, q1 D �2=9, and p0 D �2=27, with p1 D q0 D

q2 D 0. Thus,

Z

x
3 cos.3x/ dx D y D

�

�

2

27
C

x
2

3

�

cos.3x/C

�

�

2x

9
C

x
3

3

�

sin.3x/C C:

E X A M P L E 3
Find the derivative of fmn.x/ D xm.ln x/n and use the result to

suggest a trial formula for I D

Z

x
3
.ln x/2 dx. Thus, evaluate

this integral.

Solution We have

f
0

mn.x/ D mx
m�1

.ln x/nCnxm
.ln x/n�1 1

x
D mx

m�1
.ln x/nCnxm�1

.ln x/n�1
:

This suggests that we try

I D

Z

x
3
.ln x/2 dx D

Z

f32.x/ dx D Px
4
.ln x/2 CQx4 ln x C Rx4

C C

for constants P; Q; R; and C: Differentiating, we get

dI

dx
D 4Px

3
.ln x/2 C 2Px3 ln x C 4Qx3 ln x CQx3

C 4Rx
3
D x

3
.ln x/2;

provided 4P D 1, 2P C 4Q D 0, and QC 4R D 0. Thus, P D 1=4, Q D �1=8, and

R D 1=32, and so

Z

x
3
.lnx/2 dx D

1

4
x

4
.ln x/2 �

1

8
x

4 lnx C
1

32
x

4
C C:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 6 – page 359 October 15, 2016

SECTION 6.4: Other Methods for Evaluating Integrals 359

Remark These examples and most in the following exercises can also be done using

integration by parts. Using undetermined coefficients does not replace other methods,

but it does provide an alternative that gives insight into what types of functions will not

work as guesses for the integral. This has implications for how computer algorithms

can and cannot do antiderivatives. This issue is taken up in Exercise 21. Moreover, with

access to a differentiation algorithm and a computer to manage details, this method

can sometimes produce integrals more quickly and precisely than classical techniques

alone.

Using Maple for Integration
Computer algebra systems are capable of evaluating both indefinite and definite in-

tegrals symbolically, as well as giving numerical approximations for those definite

integrals that have numerical values. The following examples show how to use Maple

to evaluate integrals.

We begin by calculating

Z

2
x
p

1C 4x dx and

Z �

0

2
x
p

1C 4x dx.

We use Maple’s “int” command, specifying the function and the variable of inte-

gration:

> int(2^x*sqrt(1+4^x),x);

e.x ln.2//
p

1C .e.x ln.2///2

2 ln.2/
C

arcsinh.e.x ln.2///

2 ln.2/

If you don’t like the inverse hyperbolic sine, you can convert it to a logarithm:

> convert(%,ln);

e.x ln.2//
p

1C .e.x ln.2///22 ln.2/C ln
�

e.x ln.2//
C

p

1C .e.x ln.2///2
�

2 ln.2/

The “%” there refers to the result of the previous calculation. Note how Maple prefers

to use ex ln 2 in place of 2x .

For the definite integral, you specify the interval of values of the variable of inte-

gration using two dots between the endpoints as follows:

> int(2^x*sqrt(1+4^x),x=0..Pi);

�

p

2 � ln.1C
p

2/C 2�
p

1C 4�
C ln.2�

C

p

1C 4� /

2 ln.2/

If you want a decimal approximation to this exact answer, you can ask Maple to evalu-

ate the last result as a floating-point number:

> evalf(%);

56:955 421 55

M Remark Maple defaults to giving 10 significant digits in its floating-point numbers

unless you request a different precision by declaring a value for the variable “Digits”:

> Digits := 20; evalf(Pi);

3:141 592 653 589 793 238 5

Suppose we ask Maple to do an integral that we know we can’t do ourselves:

> int(exp(-x^2),x);

1

2

p

� erf.x/

Maple expresses the answer in terms of the error function that is defined by

erf.x/ D
2
p

�

Z x

0

e
�t2

dt:
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But observe:

> Int(exp(-x^2),x=-infinity..infinity)

= int(exp(-x^2), x=-infinity..infinity);
Z 1

�1
e

.�x2/
dx D

p

�

Note the use of the inert Maple command “Int” on the left side to simply print the

integral without any evaluation. The active command “int” performs the evaluation.

Computer algebra programs can be used to integrate symbolically many functions,

but you may get some surprises when you use them, and you may have to do some of

the work to get an answer useful in the context of the problem on which you are work-

ing. Such programs, and some of the more sophisticated scientific calculators, are able

to evaluate definite integrals numerically to any desired degree of accuracy even if

symbolic antiderivatives cannot be found. We will discuss techniques of numerical in-

tegration in Sections 6.6–6.8, but note here that Maple’s evalf(Int()) can always

be used to get numerical values:

> evalf(Int(sin(cos(x)),x=0..1));

:738 642 998 0

Using Integral Tables
You can get some help evaluating integrals by using an integral table, such as the one in

the back endpapers of this book. Besides giving the values of the common elementary

integrals that you likely remember while you are studying calculus, they also give many

more complicated integrals, especially ones representing standard types that often arise

in applications. Familiarize yourself with the main headings under which the integrals

are classified. Using the tables usually means massaging your integral using simple

substitutions until you get it into the form of one of the integrals in the table.

E X A M P L E 4 Use the table to evaluate I D

Z

t
5

p

3 � 2t4
dt .

Solution This integral doesn’t resemble any in the tables, but there are numerous

integrals in the tables involving
p

a2
� x2. We can begin to put the integral into this

form with the substitution t2 D u, so that 2t dt D du. Thus,

I D
1

2

Z

u2

p

3 � 2u2
du:

This is not quite what we want yet; let us get rid of the 2 multiplying the u2 under

the square root. One way to do this is with the change of variable
p

2u D x, so that

du D dx=
p

2:

I D
1

4
p

2

Z

x2

p

3 � x2
dx:

Now the denominator is of the form
p

a2
� x2 for a D

p

3. Looking through the part

of the table (in the back endpapers) dealing with integrals involving
p

a2
� x2, we

find the third one, which says that
Z

x2

p

a2
� x2

dx D �
x

2

p

a2
� x2

C

a2

2
sin�1 x

a
C C:

Thus,

I D
1

4
p

2

�

�

x

2

p

3 � x2
C

3

2
sin�1 x

p

3

�

C C1

D �

t
2

8

p

3 � 2t4 C
3

8
p

2
sin�1

p

2 t
2

p

3
C C1:
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Many of the integrals in the table are reduction formulas. (An integral appears on both

sides of the equation.) These can be iterated to simplify integrals as in some of the

examples and exercises of Section 6.1.

E X A M P L E 5 Evaluate I D

Z 1

0

1

.x2
C 1/3

dx:

Solution The fourth integral in the table of Miscellaneous Algebraic Integrals says

that if n ¤ 1, then

Z

dx

.a2
˙ x2/n

D

1

2a2.n � 1/

�

x

.a2
˙ x2/n�1

C .2n � 3/

Z

dx

.a2
˙ x2/n�1

�

:

Using a D 1 and the + signs, we have

Z 1

0

dx

.1C x2/n
D

1

2.n � 1/

 

x

.1C x2/n�1

ˇ

ˇ

ˇ

ˇ

1

0

C .2n � 3/

Z 1

0

dx

.1C x2/n�1

!

D

1

2n.n � 1/
C

2n � 3

2.n � 1/

Z 1

0

dx

.1C x2/n�1
:

Thus, we have

I D
1

16
C

3

4

Z 1

0

dx

.1C x2/2

D

1

16
C

3

4

�

1

4
C

1

2

Z 1

0

dx

1C x2

�

D

1

16
C

3

16
C

3

8
tan�1x

ˇ

ˇ

ˇ

ˇ

1

0

D

1

4
C

3�

32
:

Special Functions Arising from Integrals

The integrals

Z

dx

x
D lnx C C and

Z

dx

1C x2
D tan�1

x C C

both take algebraic functions to a function that is not produced by adding, subtracting,

multiplying, or dividing. In the first case the integral expands the class of functions to

include logarithms, and in the second case, trigonometric functions.

The functions we have dealt with so far have mostly come from a class called Ele-

mentary Functions, which consists of polynomials, logarithms, exponentials, trigono-

metric and hyperbolic functions, and their inverses, and also finite sums, differences,

products, quotients, powers, and roots of such functions. The derivative of any dif-

ferentiable elementary function is elementary, but an integral may or may not be el-

ementary. This expands the class of functions to a wider class known, for historical

reasons, as Special Functions. The subject of Special Functions is a large topic in

applied mathematics. There are many standard special functions that are thoroughly

studied and important for applications. For instance,

J0.x/ D
1

�

Z �

0

cos.x sin t/dt

is a special function known as a Bessel function of the first kind of order zero. It is a

solution of Bessel’s equation (see Exercise 20), which is a differential equation. Tradi-

tionally, this function is introduced when series methods are used to solve differential

equations (see Section 18.8), but it can be defined as a definite integral.
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But observe:

> Int(exp(-x^2),x=-infinity..infinity)

= int(exp(-x^2), x=-infinity..infinity);
Z 1

�1
e

.�x2/
dx D

p

�

Note the use of the inert Maple command “Int” on the left side to simply print the

integral without any evaluation. The active command “int” performs the evaluation.

Computer algebra programs can be used to integrate symbolically many functions,

but you may get some surprises when you use them, and you may have to do some of

the work to get an answer useful in the context of the problem on which you are work-

ing. Such programs, and some of the more sophisticated scientific calculators, are able

to evaluate definite integrals numerically to any desired degree of accuracy even if

symbolic antiderivatives cannot be found. We will discuss techniques of numerical in-

tegration in Sections 6.6–6.8, but note here that Maple’s evalf(Int()) can always

be used to get numerical values:

> evalf(Int(sin(cos(x)),x=0..1));

:738 642 998 0

Using Integral Tables
You can get some help evaluating integrals by using an integral table, such as the one in

the back endpapers of this book. Besides giving the values of the common elementary

integrals that you likely remember while you are studying calculus, they also give many

more complicated integrals, especially ones representing standard types that often arise

in applications. Familiarize yourself with the main headings under which the integrals

are classified. Using the tables usually means massaging your integral using simple

substitutions until you get it into the form of one of the integrals in the table.

E X A M P L E 4 Use the table to evaluate I D

Z

t
5

p

3 � 2t4
dt .

Solution This integral doesn’t resemble any in the tables, but there are numerous

integrals in the tables involving
p

a2
� x2. We can begin to put the integral into this

form with the substitution t2 D u, so that 2t dt D du. Thus,

I D
1

2

Z

u2

p

3 � 2u2
du:

This is not quite what we want yet; let us get rid of the 2 multiplying the u2 under

the square root. One way to do this is with the change of variable
p

2u D x, so that

du D dx=
p

2:

I D
1

4
p

2

Z

x2

p

3 � x2
dx:

Now the denominator is of the form
p

a2
� x2 for a D

p

3. Looking through the part

of the table (in the back endpapers) dealing with integrals involving
p

a2
� x2, we

find the third one, which says that
Z

x2

p

a2
� x2

dx D �
x

2

p

a2
� x2

C

a2

2
sin�1 x

a
C C:

Thus,

I D
1

4
p

2

�

�

x

2

p

3 � x2
C

3

2
sin�1 x

p

3

�

C C1

D �

t
2

8

p

3 � 2t4 C
3

8
p

2
sin�1

p

2 t
2

p

3
C C1:
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Many of the integrals in the table are reduction formulas. (An integral appears on both

sides of the equation.) These can be iterated to simplify integrals as in some of the

examples and exercises of Section 6.1.

E X A M P L E 5 Evaluate I D

Z 1

0

1

.x2
C 1/3

dx:

Solution The fourth integral in the table of Miscellaneous Algebraic Integrals says

that if n ¤ 1, then

Z

dx

.a2
˙ x2/n

D

1

2a2.n � 1/

�

x

.a2
˙ x2/n�1

C .2n � 3/

Z

dx

.a2
˙ x2/n�1

�

:

Using a D 1 and the + signs, we have

Z 1

0

dx

.1C x2/n
D

1

2.n � 1/

 

x

.1C x2/n�1

ˇ

ˇ

ˇ

ˇ

1

0

C .2n � 3/

Z 1

0

dx

.1C x2/n�1

!

D

1

2n.n � 1/
C

2n � 3

2.n � 1/

Z 1

0

dx

.1C x2/n�1
:

Thus, we have

I D
1

16
C

3

4

Z 1

0

dx

.1C x2/2

D

1

16
C

3

4

�

1

4
C

1

2

Z 1

0

dx

1C x2

�

D

1

16
C

3

16
C

3

8
tan�1x

ˇ

ˇ

ˇ

ˇ

1

0

D

1

4
C

3�

32
:

Special Functions Arising from Integrals

The integrals

Z

dx

x
D lnx C C and

Z

dx

1C x2
D tan�1

x C C

both take algebraic functions to a function that is not produced by adding, subtracting,

multiplying, or dividing. In the first case the integral expands the class of functions to

include logarithms, and in the second case, trigonometric functions.

The functions we have dealt with so far have mostly come from a class called Ele-

mentary Functions, which consists of polynomials, logarithms, exponentials, trigono-

metric and hyperbolic functions, and their inverses, and also finite sums, differences,

products, quotients, powers, and roots of such functions. The derivative of any dif-

ferentiable elementary function is elementary, but an integral may or may not be el-

ementary. This expands the class of functions to a wider class known, for historical

reasons, as Special Functions. The subject of Special Functions is a large topic in

applied mathematics. There are many standard special functions that are thoroughly

studied and important for applications. For instance,

J0.x/ D
1

�

Z �

0

cos.x sin t/dt

is a special function known as a Bessel function of the first kind of order zero. It is a

solution of Bessel’s equation (see Exercise 20), which is a differential equation. Tradi-

tionally, this function is introduced when series methods are used to solve differential

equations (see Section 18.8), but it can be defined as a definite integral.
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Another example is the Error Function, arising in the field of probability and

statistics. It is encountered in connection with the integral of f .x/ D e
�x2

, which

does not have an elementary integral. If one did have such an integral, it would have

to be of the form

Z

e
�x2

dx D P.x/ e
�x2

for some polynomial P having finite degree. Such is not possible. See Exercise 21

below.

To deal with this situation we use the error function defined as

erf.x/ D
2
p

�

Z x

0

e
�t2

dt:

It follows that

Z

e
�x2

dx D

p

�

2
erf.x/C C:

At first, this may seem like the integral is merely dressed up with a new name. In a way

that is true, but it would be equally true for lnx or tan�1 x above if we knew nothing

about them other than the integral definition. But we know more about ln x; tan�1 x,

and erf.x/ than simply that they are antiderivatives of simpler functions. Above all, we

know that they are functions in their own right that are not algebraic in the case of the

first two and not an elementary function in the latter case.

E X E R C I S E S 6.4

In Exercises 1–4, use the method of undetermined coefficients to

evaluate the given integrals.

1.

Z

e
3x sin.4x/ dx 2.

Z

x e
�x sinx dx

3.

Z

x
5
e

�x2

dx 4.

Z

x
2
.ln x/4 dx

M 5. Use Maple or another computer algebra program to check any

of the integrals you have done in the exercises from Sections

5.6 and 6.1–6.3, as well as any of the integrals you have been

unable to do.

M 6. Use Maple or another computer algebra program to evaluate

the integral in the opening paragraph of this section.

M 7. Use Maple or another computer algebra program to

re-evaluate the integral in Example 4.

M 8. Use Maple or another computer algebra program to

re-evaluate the integral in Example 5.

Use the integral tables to help you find the integrals in Exercises

9–18.

9.

Z

x2

p

x2
� 2

dx 10.

Z

p

.x2
C 4/3 dx

11.

Z

dt

t2
p

3t2 C 5
12.

Z

dt

t
p

3t � 5

13.

Z

x
4
.lnx/4 dx 14.

Z

x
7
e

x2

dx

15.

Z

x

p

2x � x2 dx 16.

Z

p

2x � x2

x2
dx

17.

Z

dx

.
p

4x � x2/3
18.

Z

dx

.
p

4x � x2/4

M 19. Use Maple or another computer algebra program to evaluate

the integrals in Exercises 9–18.

20. Show that y D J0.x/ satisfies the Bessel equation of order

zero: xy 00
C y 0

C xy D 0.

21. The Error Function erf.x/

(a) Express the integral

Z

e
�x2

dx in terms of the Error

Function.

(b) Given that

Z 1

�1
e

�x2

dx D
p

� (which will be proved in

Section 14.4), evaluate limx!1 erf.x/ and

limx!�1 erf.x/.

(c) Show that P.x/e�x2

cannot be an antiderivative of erf.x/

for any polynomial P .

(d) Use undetermined coefficients to evaluate

J D

Z

erf.x/ dx.
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6.5 Improper Integrals

Up to this point, we have considered definite integrals of the form

I D

Z b

a

f .x/ dx;

where the integrand f is continuous on the closed, finite interval Œa; b�. Since such a

function is necessarily bounded, the integral I is necessarily a finite number; for posi-

tive f it corresponds to the area of a bounded region of the plane, a region contained

inside some disk of finite radius with centre at the origin. Such integrals are also called

proper integrals. We are now going to generalize the definite integral to allow for two

possibilities excluded in the situation described above:

(i) We may have a D �1 or b D1 or both.

(ii) f may be unbounded as x approaches a or b or both.

Integrals satisfying (i) are called improper integrals of type I; integrals satisfying (ii)

are called improper integrals of type II. Either type of improper integral corresponds

(for positive f ) to the area of a region in the plane that “extends to infinity” in some

direction and therefore is unbounded. As we will see, such integrals may or may not

have finite values. The ideas involved are best introduced by examples.

Improper Integrals of Type I

E X A M P L E 1
Find the area of the region A lying under the curve y D 1=x2 and

above the x-axis to the right of x D 1. (See Figure 6.8(a).)

Solution We would like to calculate the area with an integral

A D

Z 1

1

dx

x2
;

which is improper of type I, since its interval of integration is infinite. It is not im-

mediately obvious whether the area is finite; the region has an infinitely long “spike”

along the x-axis, but this spike becomes infinitely thin as x approaches 1. In order

to evaluate this improper integral, we interpret it as a limit of proper integrals over

intervals Œ1; R� as R!1. (See Figure 6.8(b).)

A D

Z 1

1

dx

x2
D lim

R!1

Z R

1

dx

x2
D lim

R!1

�

�

1

x

�
ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

�

�

1

R
C 1

�

D 1

Since the limit exists (is finite), we say that the improper integral converges. The region

has finite area A D 1 square unit.

Figure 6.8

(a) A D

Z 1

1

1

x2
dx

(b) A D lim
R!1

Z R

1

1

x2
dx

y

x

y D
1

x2

A

1

y

x

y D
1

x2

1 R

(a) (b)
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Another example is the Error Function, arising in the field of probability and

statistics. It is encountered in connection with the integral of f .x/ D e
�x2

, which

does not have an elementary integral. If one did have such an integral, it would have

to be of the form

Z

e
�x2

dx D P.x/ e
�x2

for some polynomial P having finite degree. Such is not possible. See Exercise 21

below.

To deal with this situation we use the error function defined as

erf.x/ D
2
p

�

Z x

0

e
�t2

dt:

It follows that

Z

e
�x2

dx D

p

�

2
erf.x/C C:

At first, this may seem like the integral is merely dressed up with a new name. In a way

that is true, but it would be equally true for lnx or tan�1 x above if we knew nothing

about them other than the integral definition. But we know more about ln x; tan�1 x,

and erf.x/ than simply that they are antiderivatives of simpler functions. Above all, we

know that they are functions in their own right that are not algebraic in the case of the

first two and not an elementary function in the latter case.

E X E R C I S E S 6.4

In Exercises 1–4, use the method of undetermined coefficients to

evaluate the given integrals.

1.

Z

e
3x sin.4x/ dx 2.

Z

x e
�x sinx dx

3.

Z

x
5
e

�x2

dx 4.

Z

x
2
.ln x/4 dx

M 5. Use Maple or another computer algebra program to check any

of the integrals you have done in the exercises from Sections

5.6 and 6.1–6.3, as well as any of the integrals you have been

unable to do.

M 6. Use Maple or another computer algebra program to evaluate

the integral in the opening paragraph of this section.

M 7. Use Maple or another computer algebra program to

re-evaluate the integral in Example 4.

M 8. Use Maple or another computer algebra program to

re-evaluate the integral in Example 5.

Use the integral tables to help you find the integrals in Exercises

9–18.

9.

Z

x2

p

x2
� 2

dx 10.

Z

p

.x2
C 4/3 dx

11.

Z

dt

t2
p

3t2 C 5
12.

Z

dt

t
p

3t � 5

13.

Z

x
4
.lnx/4 dx 14.

Z

x
7
e

x2

dx

15.

Z

x

p

2x � x2 dx 16.

Z

p

2x � x2

x2
dx

17.

Z

dx

.
p

4x � x2/3
18.

Z

dx

.
p

4x � x2/4

M 19. Use Maple or another computer algebra program to evaluate

the integrals in Exercises 9–18.

20. Show that y D J0.x/ satisfies the Bessel equation of order

zero: xy 00
C y 0

C xy D 0.

21. The Error Function erf.x/

(a) Express the integral

Z

e
�x2

dx in terms of the Error

Function.

(b) Given that

Z 1

�1
e

�x2

dx D
p

� (which will be proved in

Section 14.4), evaluate limx!1 erf.x/ and

limx!�1 erf.x/.

(c) Show that P.x/e�x2

cannot be an antiderivative of erf.x/

for any polynomial P .

(d) Use undetermined coefficients to evaluate

J D

Z

erf.x/ dx.
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6.5 Improper Integrals

Up to this point, we have considered definite integrals of the form

I D

Z b

a

f .x/ dx;

where the integrand f is continuous on the closed, finite interval Œa; b�. Since such a

function is necessarily bounded, the integral I is necessarily a finite number; for posi-

tive f it corresponds to the area of a bounded region of the plane, a region contained

inside some disk of finite radius with centre at the origin. Such integrals are also called

proper integrals. We are now going to generalize the definite integral to allow for two

possibilities excluded in the situation described above:

(i) We may have a D �1 or b D1 or both.

(ii) f may be unbounded as x approaches a or b or both.

Integrals satisfying (i) are called improper integrals of type I; integrals satisfying (ii)

are called improper integrals of type II. Either type of improper integral corresponds

(for positive f ) to the area of a region in the plane that “extends to infinity” in some

direction and therefore is unbounded. As we will see, such integrals may or may not

have finite values. The ideas involved are best introduced by examples.

Improper Integrals of Type I

E X A M P L E 1
Find the area of the region A lying under the curve y D 1=x2 and

above the x-axis to the right of x D 1. (See Figure 6.8(a).)

Solution We would like to calculate the area with an integral

A D

Z 1

1

dx

x2
;

which is improper of type I, since its interval of integration is infinite. It is not im-

mediately obvious whether the area is finite; the region has an infinitely long “spike”

along the x-axis, but this spike becomes infinitely thin as x approaches 1. In order

to evaluate this improper integral, we interpret it as a limit of proper integrals over

intervals Œ1; R� as R!1. (See Figure 6.8(b).)

A D

Z 1

1

dx

x2
D lim

R!1

Z R

1

dx

x2
D lim

R!1

�

�

1

x

�
ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

�

�

1

R
C 1

�

D 1

Since the limit exists (is finite), we say that the improper integral converges. The region

has finite area A D 1 square unit.

Figure 6.8

(a) A D

Z 1

1

1

x2
dx

(b) A D lim
R!1

Z R

1

1

x2
dx

y

x

y D
1

x2

A

1

y

x

y D
1

x2

1 R

(a) (b)
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E X A M P L E 2
Find the area of the region under y D 1=x, above y D 0, and to

the right of x D 1. (See Figure 6.9.)

Figure 6.9 The area under the red curve

is infinite. The area under the blue curve is

finite.

y

x

y D
1

x

y D
1

x2

1

Solution This area is given by the improper integral

A D

Z 1

1

dx

x
D lim

R!1

Z R

1

dx

x
D lim

R!1
lnx

ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

lnR D1:

We say that this improper integral diverges to infinity. Observe that the region has a

similar shape to the region under y D 1=x2 considered in the above example, but its

“spike” is somewhat thicker at each value of x > 1. Evidently, the extra thickness

makes a big difference; this region has infinite area.

D E F I N I T I O N

1

Improper integrals of type I

If f is continuous on Œa;1/, we define the improper integral of f over Œa;1/

as a limit of proper integrals:

Z 1

a

f .x/ dx D lim
R!1

Z R

a

f .x/ dx:

Similarly, if f is continuous on .�1; b�, then we define

Z b

�1
f .x/ dx D lim

R!�1

Z b

R

f .x/ dx:

In either case, if the limit exists (is a finite number), we say that the im-

proper integral converges; if the limit does not exist, we say that the improper

integral diverges. If the limit is 1 (or �1), we say the improper integral

diverges to infinity (or diverges to negative infinity).

The integral
R1

�1 f .x/ dx is, for f continuous on the real line, improper of type I at

both endpoints. We break it into two separate integrals:

Z 1

�1
f .x/ dx D

Z 0

�1
f .x/ dx C

Z 1

0

f .x/ dx:

The integral on the left converges if and only if both integrals on the right converge.

E X A M P L E 3 Evaluate

Z 1

�1

1

1C x2
dx.
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Solution By the (even) symmetry of the integrand (see Figure 6.10), we have
y

x

y D
1

1C x2

Figure 6.10

Z 1

�1

dx

1C x2
D

Z 0

�1

dx

1C x2
C

Z 1

0

dx

1C x2

D 2 lim
R!1

Z R

0

dx

1C x2

D 2 lim
R!1

tan�1
R D 2

�

�

2

�

D �:

The use of symmetry here requires some justification. At the time we used it we did

not know whether each of the half-line integrals was finite or infinite. However, since

both are positive, even if they are infinite, their sum would still be twice one of them.

If one had been positive and the other negative, we would not have been justified in

cancelling them to get 0 until we knew that they were finite. (1C1D1, but1�1

is not defined.) In any event, the given integral converges to � .

E X A M P L E 4

Z 1

0

cos x dx D lim
R!1

Z R

0

cos x dx D lim
R!1

sinR.

This limit does not exist (and it is not1 or �1), so all we can say is that the given

integral diverges. (See Figure 6.11.) As R increases, the integral alternately adds and

subtracts the areas of the hills and valleys but does not approach any unique limit.

Figure 6.11 Not every divergent improper

integral diverges to1 or �1

y

x

y D cos x

R

Improper Integrals of Type II

D E F I N I T I O N

2

Improper integrals of type II

If f is continuous on the interval .a; b� and is possibly unbounded near a, we

define the improper integral

Z b

a

f .x/ dx D lim
c!aC

Z b

c

f .x/ dx:

Similarly, if f is continuous on Œa; b/ and is possibly unbounded near b, we

define

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx:

These improper integrals may converge, diverge, diverge to infinity, or diverge

to negative infinity.

E X A M P L E 5
Find the area of the region S lying under y D 1=

p

x, above the

x-axis, between x D 0 and x D 1.
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E X A M P L E 2
Find the area of the region under y D 1=x, above y D 0, and to

the right of x D 1. (See Figure 6.9.)

Figure 6.9 The area under the red curve

is infinite. The area under the blue curve is

finite.

y

x

y D
1

x

y D
1

x2

1

Solution This area is given by the improper integral

A D

Z 1

1

dx

x
D lim

R!1

Z R

1

dx

x
D lim

R!1
lnx

ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

lnR D1:

We say that this improper integral diverges to infinity. Observe that the region has a

similar shape to the region under y D 1=x2 considered in the above example, but its

“spike” is somewhat thicker at each value of x > 1. Evidently, the extra thickness

makes a big difference; this region has infinite area.

D E F I N I T I O N

1

Improper integrals of type I

If f is continuous on Œa;1/, we define the improper integral of f over Œa;1/

as a limit of proper integrals:

Z 1

a

f .x/ dx D lim
R!1

Z R

a

f .x/ dx:

Similarly, if f is continuous on .�1; b�, then we define

Z b

�1
f .x/ dx D lim

R!�1

Z b

R

f .x/ dx:

In either case, if the limit exists (is a finite number), we say that the im-

proper integral converges; if the limit does not exist, we say that the improper

integral diverges. If the limit is 1 (or �1), we say the improper integral

diverges to infinity (or diverges to negative infinity).

The integral
R1

�1 f .x/ dx is, for f continuous on the real line, improper of type I at

both endpoints. We break it into two separate integrals:

Z 1

�1
f .x/ dx D

Z 0

�1
f .x/ dx C

Z 1

0

f .x/ dx:

The integral on the left converges if and only if both integrals on the right converge.

E X A M P L E 3 Evaluate

Z 1

�1

1

1C x2
dx.
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Solution By the (even) symmetry of the integrand (see Figure 6.10), we have
y

x

y D
1

1C x2

Figure 6.10

Z 1

�1

dx

1C x2
D

Z 0

�1

dx

1C x2
C

Z 1

0

dx

1C x2

D 2 lim
R!1

Z R

0

dx

1C x2

D 2 lim
R!1

tan�1
R D 2

�

�

2

�

D �:

The use of symmetry here requires some justification. At the time we used it we did

not know whether each of the half-line integrals was finite or infinite. However, since

both are positive, even if they are infinite, their sum would still be twice one of them.

If one had been positive and the other negative, we would not have been justified in

cancelling them to get 0 until we knew that they were finite. (1C1D1, but1�1

is not defined.) In any event, the given integral converges to � .

E X A M P L E 4

Z 1

0

cos x dx D lim
R!1

Z R

0

cos x dx D lim
R!1

sinR.

This limit does not exist (and it is not1 or �1), so all we can say is that the given

integral diverges. (See Figure 6.11.) As R increases, the integral alternately adds and

subtracts the areas of the hills and valleys but does not approach any unique limit.

Figure 6.11 Not every divergent improper

integral diverges to1 or �1

y

x

y D cos x

R

Improper Integrals of Type II

D E F I N I T I O N

2

Improper integrals of type II

If f is continuous on the interval .a; b� and is possibly unbounded near a, we

define the improper integral

Z b

a

f .x/ dx D lim
c!aC

Z b

c

f .x/ dx:

Similarly, if f is continuous on Œa; b/ and is possibly unbounded near b, we

define

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx:

These improper integrals may converge, diverge, diverge to infinity, or diverge

to negative infinity.

E X A M P L E 5
Find the area of the region S lying under y D 1=

p

x, above the

x-axis, between x D 0 and x D 1.
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Solution The area A is given by

A D

Z 1

0

1
p

x
dx;

which is an improper integral of type II since the integrand is unbounded near x D 0.

The region S has a “spike” extending to infinity along the y-axis, a vertical asymptote

of the integrand, as shown in Figure 6.12. As we did for improper integrals of type I,

we express such integrals as limits of proper integrals:

y

xc 1

y D
1
p

x

S

Figure 6.12 The shaded area is finite

A D lim
c!0C

Z 1

c

x
�1=2

dx D lim
c!0C

2x
1=2

ˇ

ˇ

ˇ

ˇ

1

c

D lim
c!0C

.2 � 2
p

c/ D 2:

This integral converges, and S has a finite area of 2 square units.

While improper integrals of type I are always easily recognized because of the infinite

limits of integration, improper integrals of type II can be somewhat harder to spot. You

should be alert for singularities of integrands and especially points where they have

vertical asymptotes. It may be necessary to break an improper integral into several

improper integrals if it is improper at both endpoints or at points inside the interval of

integration. For example,

Z 1

�1

ln jxj dx
p

1 � x
D

Z 0

�1

ln jxj dx
p

1 � x
C

Z 1=2

0

ln jxj dx
p

1 � x
C

Z 1

1=2

ln jxj dx
p

1 � x
:

Each integral on the right is improper because of a singularity at one endpoint.

E X A M P L E 6
Evaluate each of the following integrals or show that it diverges:

(a)

Z 1

0

1

x
dx; (b)

Z 2

0

1
p

2x � x2
dx; and (c)

Z 1

0

lnx dx:

Solution

(a)

Z 1

0

1

x
dx D lim

c!0C

Z 1

c

1

x
dx D lim

c!0C
.ln 1 � ln c/ D1.

This integral diverges to infinity.

(b)

Z 2

0

1
p

2x � x2
dx D

Z 2

0

1
p

1 � .x � 1/2
dx Let u D x � 1,

du D dx

D

Z 1

�1

1
p

1 � u2
du

D 2

Z 1

0

1
p

1 � u2
du .by symmetry/

D 2 lim
c!1�

Z c

0

1
p

1 � u2
du

D 2 lim
c!1�

sin�1
u

ˇ

ˇ

ˇ

ˇ

c

0

D 2 lim
c!1�

sin�1
c D �:

This integral converges to � . Observe how a change of variable can be made even

before an improper integral is expressed as a limit of proper integrals.
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(c)

Z 1

0

lnx dx D lim
c!0C

Z 1

c

lnx dx (See Example 2(a) of Section 6.1.)

D lim
c!0C

.x lnx � x/

ˇ

ˇ

ˇ

ˇ

1

c

D lim
c!0C

.0 � 1 � c ln c C c/

D �1C 0 � lim
c!0C

ln c

1=c

h

�1

1

i

D �1 � lim
c!0C

1=c

�.1=c2/
(by l’Hôpital’s Rule)

D �1 � lim
c!0C

.�c/ D �1C 0 D �1:

The integral converges to �1.

The following theorem summarizes the behaviour of improper integrals of types I and

II for powers of x.

T H E O R E M

2

p-integrals

If 0 < a <1, then

(a)

Z 1

a

x
�p
dx

8

<

:

converges to
a1�p

p � 1
if p > 1

diverges to1 if p � 1

(b)

Z a

0

x
�p
dx

8

<

:

converges to
a1�p

1 � p
if p < 1

diverges to1 if p � 1.

PROOF We prove part (b) only. The proof of part (a) is similar and is left as an

exercise. Also, the case p D 1 of part (b) is similar to Example 6(a) above, so we need

consider only the cases p < 1 and p > 1. If p < 1, then we have
Z a

0

x
�p
dx D lim

c!0C

Z a

c

x
�p
dx

D lim
c!0C

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

a

c

D lim
c!0C

a1�p
� c1�p

1 � p
D

a1�p

1 � p

because 1 � p > 0. If p > 1, then
Z a

0

x
�p
dx D lim

c!0C

Z a

c

x
�p
dx

D lim
c!0C

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

a

c

D lim
c!0C

c
�.p�1/

� a
�.p�1/

p � 1
D1:

The integrals in Theorem 2 are called p-integrals. It is very useful to know when

they converge and diverge when you have to decide whether certain other improper

integrals converge or not and you can’t find the appropriate antiderivatives. (See the

discussion of estimating convergence below.) Note that
R1

0
x�p dx does not converge

for any value of p.
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Solution The area A is given by

A D

Z 1

0

1
p

x
dx;

which is an improper integral of type II since the integrand is unbounded near x D 0.

The region S has a “spike” extending to infinity along the y-axis, a vertical asymptote

of the integrand, as shown in Figure 6.12. As we did for improper integrals of type I,

we express such integrals as limits of proper integrals:

y

xc 1

y D
1
p

x

S

Figure 6.12 The shaded area is finite

A D lim
c!0C

Z 1

c

x
�1=2

dx D lim
c!0C

2x
1=2

ˇ

ˇ

ˇ

ˇ

1

c

D lim
c!0C

.2 � 2
p

c/ D 2:

This integral converges, and S has a finite area of 2 square units.

While improper integrals of type I are always easily recognized because of the infinite

limits of integration, improper integrals of type II can be somewhat harder to spot. You

should be alert for singularities of integrands and especially points where they have

vertical asymptotes. It may be necessary to break an improper integral into several

improper integrals if it is improper at both endpoints or at points inside the interval of

integration. For example,

Z 1

�1

ln jxj dx
p

1 � x
D

Z 0

�1

ln jxj dx
p

1 � x
C

Z 1=2

0

ln jxj dx
p

1 � x
C

Z 1

1=2

ln jxj dx
p

1 � x
:

Each integral on the right is improper because of a singularity at one endpoint.

E X A M P L E 6
Evaluate each of the following integrals or show that it diverges:

(a)

Z 1

0

1

x
dx; (b)

Z 2

0

1
p

2x � x2
dx; and (c)

Z 1

0

lnx dx:

Solution

(a)

Z 1

0

1

x
dx D lim

c!0C

Z 1

c

1

x
dx D lim

c!0C
.ln 1 � ln c/ D1.

This integral diverges to infinity.

(b)

Z 2

0

1
p

2x � x2
dx D

Z 2

0

1
p

1 � .x � 1/2
dx Let u D x � 1,

du D dx

D

Z 1

�1

1
p

1 � u2
du

D 2

Z 1

0

1
p

1 � u2
du .by symmetry/

D 2 lim
c!1�

Z c

0

1
p

1 � u2
du

D 2 lim
c!1�

sin�1
u

ˇ

ˇ

ˇ

ˇ

c

0

D 2 lim
c!1�

sin�1
c D �:

This integral converges to � . Observe how a change of variable can be made even

before an improper integral is expressed as a limit of proper integrals.
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(c)

Z 1

0

lnx dx D lim
c!0C

Z 1

c

lnx dx (See Example 2(a) of Section 6.1.)

D lim
c!0C

.x lnx � x/

ˇ

ˇ

ˇ

ˇ

1

c

D lim
c!0C

.0 � 1 � c ln c C c/

D �1C 0 � lim
c!0C

ln c

1=c

h

�1

1

i

D �1 � lim
c!0C

1=c

�.1=c2/
(by l’Hôpital’s Rule)

D �1 � lim
c!0C

.�c/ D �1C 0 D �1:

The integral converges to �1.

The following theorem summarizes the behaviour of improper integrals of types I and

II for powers of x.

T H E O R E M

2

p-integrals

If 0 < a <1, then

(a)

Z 1

a

x
�p
dx

8

<

:

converges to
a1�p

p � 1
if p > 1

diverges to1 if p � 1

(b)

Z a

0

x
�p
dx

8

<

:

converges to
a1�p

1 � p
if p < 1

diverges to1 if p � 1.

PROOF We prove part (b) only. The proof of part (a) is similar and is left as an

exercise. Also, the case p D 1 of part (b) is similar to Example 6(a) above, so we need

consider only the cases p < 1 and p > 1. If p < 1, then we have
Z a

0

x
�p
dx D lim

c!0C

Z a

c

x
�p
dx

D lim
c!0C

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

a

c

D lim
c!0C

a1�p
� c1�p

1 � p
D

a1�p

1 � p

because 1 � p > 0. If p > 1, then
Z a

0

x
�p
dx D lim

c!0C

Z a

c

x
�p
dx

D lim
c!0C

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

a

c

D lim
c!0C

c
�.p�1/

� a
�.p�1/

p � 1
D1:

The integrals in Theorem 2 are called p-integrals. It is very useful to know when

they converge and diverge when you have to decide whether certain other improper

integrals converge or not and you can’t find the appropriate antiderivatives. (See the

discussion of estimating convergence below.) Note that
R1

0
x�p dx does not converge

for any value of p.
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Remark If f is continuous on the interval Œa; b� so that
R b

a
f .x/ dx is a proper

definite integral, then treating the integral as improper will lead to the same value:

lim
c!aC

Z b

c

f .x/ dx D

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx:

This justifies the definition of the definite integral of a piecewise continuous function

that was given in Section 5.4. To integrate a function defined to be different continuous

functions on different intervals, we merely add the integrals of the various component

functions over their respective intervals. Any of these integrals may be proper or im-

proper; if any are improper, all must converge or the given integral will diverge.

E X A M P L E 7 Evaluate

Z 2

0

f .x/ dx, where f .x/ D

�

1=
p

x if 0 < x � 1

x � 1 if 1 < x � 2.

Solution The graph of f is shown in Figure 6.13. We have

Z 2

0

f .x/ dx D

Z 1

0

dx
p

x
C

Z 2

1

.x � 1/ dx

D lim
c!0C

Z 1

c

dx
p

x
C

�

x2

2
� x

�
ˇ

ˇ

ˇ

ˇ

2

1

D 2C

�

2 � 2 �
1

2
C 1

�

D

5

2
I

the first integral on the right is improper but convergent (see Example 5 above), and

y

x

y D
1
p

x

.1; 1/ .2; 1/

y D x � 1

1

Figure 6.13 A discontinuous function

the second is proper.

Estimating Convergence and Divergence
When an improper integral cannot be evaluated by the Fundamental Theorem of Calcu-

lus because an antiderivative can’t be found, we may still be able to determine whether

the integral converges by comparing it with simpler integrals. The following theorem

is central to this approach.

T H E O R E M

3

A comparison theorem for integrals

Let �1 � a < b � 1, and suppose that functions f and g are continuous on the

interval .a; b/ and satisfy 0 � f .x/ � g.x/. If
R b

a
g.x/ dx converges, then so does

R b

a
f .x/ dx, and

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

Equivalently, if
R b

a
f .x/ dx diverges to1, then so does

R b

a
g.x/ dx.

PROOF Since both integrands are nonnegative, there are only two possibilities for

each integral: it can either converge to a nonnegative number or diverge to1. Since

f .x/ � g.x/ on .a; b/, it follows by Theorem 3(e) of Section 5.4 that if a < r < s <

b, then
Z s

r

f .x/ dx �

Z s

r

g.x/ dx:

This theorem now follows by taking limits as r ! aC and s ! b�.

E X A M P L E 8 Show that

Z 1

0

e
�x2

dx converges, and find an upper bound for its

value.
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Solution We can’t integrate e�x2
, but we can integrate e�x . We would like to use the

inequality e�x2

� e�x , but this is only valid for x � 1. (See Figure 6.14.) Therefore,

we break the integral into two parts.

On Œ0; 1� we have 0 < e�x2

� 1, so

0 <

Z 1

0

e
�x2

dx �

Z 1

0

dx D 1:

On Œ1;1/ we have x2
� x, so �x2

� �x and 0 < e�x2
� e�x . Thus,

0 <

Z 1

1

e
�x2

dx �

Z 1

1

e
�x
dx D lim

R!1

e�x

�1

ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

�

1

e
�

1

eR

�

D

1

e
:

Hence,

Z 1

0

e
�x2

dx converges and its value is less than 1C .1=e/.

y

x

y D e�x2

y D e�x

1

Figure 6.14 Comparing e�x2
and e�x

We remark that the above integral is, in fact, equal to 1
2

p

� , although we cannot prove

this now. See Section 14.4.

For large or small values of x many integrands behave like powers of x. If so, they

can be compared with p-integrals.

E X A M P L E 9 Determine whether

Z 1

0

dx
p

x C x3
converges.

Solution The integral is improper of both types, so we write

Z 1

0

dx
p

x C x3
D

Z 1

0

dx
p

x C x3
C

Z 1

1

dx
p

x C x3
D I1 C I2:

On .0; 1� we have
p

x C x3 >
p

x, so

I1 <

Z 1

0

dx
p

x
D 2 (by Theorem 2):

On Œ1;1/ we have
p

x C x3 >
p

x3, so

I2 <

Z 1

1

x
�3=2

dx D 2 (by Theorem 2):

Hence, the given integral converges, and its value is less than 4.

In Section 4.10 we introduced big-O notation as a way of conveying growth-rate infor-

mation in limit situations. We wrote f .x/ D O
�

g.x/
�

as x ! a to mean the same

thing as jf .x/j � Kjg.x/j for some constant K on some open interval containing a.

Similarly, we can say that f .x/ D O
�

g.x/
�

as x !1 if for some constants a and K

we have jf .x/j � Kjg.x/j for all x � a.

E X A M P L E 10
1C x2

1C x4
D O

�

1

x2

�

as x !1 because, for x � 1 we have

ˇ

ˇ

ˇ

ˇ

1C x2

1C x4

ˇ

ˇ

ˇ

ˇ

<
2x2

x4
D

2

x2
:
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Remark If f is continuous on the interval Œa; b� so that
R b

a
f .x/ dx is a proper

definite integral, then treating the integral as improper will lead to the same value:

lim
c!aC

Z b

c

f .x/ dx D

Z b

a

f .x/ dx D lim
c!b�

Z c

a

f .x/ dx:

This justifies the definition of the definite integral of a piecewise continuous function

that was given in Section 5.4. To integrate a function defined to be different continuous

functions on different intervals, we merely add the integrals of the various component

functions over their respective intervals. Any of these integrals may be proper or im-

proper; if any are improper, all must converge or the given integral will diverge.

E X A M P L E 7 Evaluate

Z 2

0

f .x/ dx, where f .x/ D

�

1=
p

x if 0 < x � 1

x � 1 if 1 < x � 2.

Solution The graph of f is shown in Figure 6.13. We have

Z 2

0

f .x/ dx D

Z 1

0

dx
p

x
C

Z 2

1

.x � 1/ dx

D lim
c!0C

Z 1

c

dx
p

x
C

�

x2

2
� x

�
ˇ

ˇ

ˇ

ˇ

2

1

D 2C

�

2 � 2 �
1

2
C 1

�

D

5

2
I

the first integral on the right is improper but convergent (see Example 5 above), and

y

x

y D
1
p

x

.1; 1/ .2; 1/

y D x � 1

1

Figure 6.13 A discontinuous function

the second is proper.

Estimating Convergence and Divergence
When an improper integral cannot be evaluated by the Fundamental Theorem of Calcu-

lus because an antiderivative can’t be found, we may still be able to determine whether

the integral converges by comparing it with simpler integrals. The following theorem

is central to this approach.

T H E O R E M

3

A comparison theorem for integrals

Let �1 � a < b � 1, and suppose that functions f and g are continuous on the

interval .a; b/ and satisfy 0 � f .x/ � g.x/. If
R b

a
g.x/ dx converges, then so does

R b

a
f .x/ dx, and

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

Equivalently, if
R b

a
f .x/ dx diverges to1, then so does

R b

a
g.x/ dx.

PROOF Since both integrands are nonnegative, there are only two possibilities for

each integral: it can either converge to a nonnegative number or diverge to1. Since

f .x/ � g.x/ on .a; b/, it follows by Theorem 3(e) of Section 5.4 that if a < r < s <

b, then
Z s

r

f .x/ dx �

Z s

r

g.x/ dx:

This theorem now follows by taking limits as r ! aC and s ! b�.

E X A M P L E 8 Show that

Z 1

0

e
�x2

dx converges, and find an upper bound for its

value.
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Solution We can’t integrate e�x2
, but we can integrate e�x . We would like to use the

inequality e�x2

� e�x , but this is only valid for x � 1. (See Figure 6.14.) Therefore,

we break the integral into two parts.

On Œ0; 1� we have 0 < e�x2

� 1, so

0 <

Z 1

0

e
�x2

dx �

Z 1

0

dx D 1:

On Œ1;1/ we have x2
� x, so �x2

� �x and 0 < e�x2
� e�x . Thus,

0 <

Z 1

1

e
�x2

dx �

Z 1

1

e
�x
dx D lim

R!1

e�x

�1

ˇ

ˇ

ˇ

ˇ

R

1

D lim
R!1

�

1

e
�

1

eR

�

D

1

e
:

Hence,

Z 1

0

e
�x2

dx converges and its value is less than 1C .1=e/.

y

x

y D e�x2

y D e�x

1

Figure 6.14 Comparing e�x2
and e�x

We remark that the above integral is, in fact, equal to 1
2

p

� , although we cannot prove

this now. See Section 14.4.

For large or small values of x many integrands behave like powers of x. If so, they

can be compared with p-integrals.

E X A M P L E 9 Determine whether

Z 1

0

dx
p

x C x3
converges.

Solution The integral is improper of both types, so we write

Z 1

0

dx
p

x C x3
D

Z 1

0

dx
p

x C x3
C

Z 1

1

dx
p

x C x3
D I1 C I2:

On .0; 1� we have
p

x C x3 >
p

x, so

I1 <

Z 1

0

dx
p

x
D 2 (by Theorem 2):

On Œ1;1/ we have
p

x C x3 >
p

x3, so

I2 <

Z 1

1

x
�3=2

dx D 2 (by Theorem 2):

Hence, the given integral converges, and its value is less than 4.

In Section 4.10 we introduced big-O notation as a way of conveying growth-rate infor-

mation in limit situations. We wrote f .x/ D O
�

g.x/
�

as x ! a to mean the same

thing as jf .x/j � Kjg.x/j for some constant K on some open interval containing a.

Similarly, we can say that f .x/ D O
�

g.x/
�

as x !1 if for some constants a and K

we have jf .x/j � Kjg.x/j for all x � a.

E X A M P L E 10
1C x2

1C x4
D O

�

1

x2

�

as x !1 because, for x � 1 we have

ˇ

ˇ

ˇ

ˇ

1C x2

1C x4

ˇ

ˇ

ˇ

ˇ

<
2x2

x4
D

2

x2
:
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E X A M P L E 11
Show that if p > 1 and f is continuous on Œ1;1/ and satisfies

f .x/ D O.x�p/, then
R1

1 f .x/ dx converges, and the errorE.R/

in the approximation

Z 1

1

f .x/ dx �

Z R

1

f .x/ dx

satisfies E.R/ D O.R1�p/ as R!1.

Solution Since f .x/ D O.x�p/ as x !1, we have, for some a � 1 and some K,

f .x/ � K x�p for all x � a. Thus,

jE.R/j D

ˇ

ˇ

ˇ

ˇ

Z 1

R

f .x/ dx

ˇ

ˇ

ˇ

ˇ

� K

Z 1

R

x
�p
dx D K

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

1

R

D

K

p � 1
R

1�p
;

so E.R/ D O.R1�p/ as R!1:

E X E R C I S E S 6.5

In Exercises 1–22, evaluate the given integral or show that it

diverges.

1.

Z 1

2

1

.x � 1/3
dx 2.

Z 1

3

1

.2x � 1/2=3
dx

3.

Z 1

0

e
�2x

dx 4.

Z �1

�1

dx

x2
C 1

5.

Z 1

�1

dx

.x C 1/2=3
6.

Z a

0

dx

a2
� x2

7.

Z 1

0

1

.1 � x/1=3
dx 8.

Z 1

0

1

x
p

1 � x
dx

9.

Z �=2

0

cosx dx

.1 � sinx/2=3
10.

Z 1

0

x e
�x
dx

11.

Z 1

0

dx
p

x.1 � x/
12.

Z 1

0

x

1C 2x2
dx

13.

Z 1

0

x dx

.1C 2x2/3=2
14.

Z �=2

0

sec x dx

15.

Z �=2

0

tanx dx 16.

Z 1

e

dx

x lnx

17.

Z e

1

dx

x
p

lnx
18.

Z 1

e

dx

x.ln x/2

19.

Z 1

�1

x

1C x2
dx 20.

Z 1

�1

x

1C x4
dx

21.

Z 1

�1
x e

�x2

dx 22.

Z 1

�1
e

�jxj
dx

23. Find the area below y D 0, above y D lnx, and to the right of

x D 0.

24. Find the area below y D e
�x , above y D e�2x , and to the

right of x D 0.

25. Find the area of a region that lies above y D 0, to the right of

x D 1, and under the curve y D
4

2x C 1
�

2

x C 2
.

26. Find the area of the plane region that lies under the graph of

y D x�2e�1=x , above the x-axis, and to the right of the

y-axis.

27. Prove Theorem 2(a) by directly evaluating the integrals

involved.

28. Evaluate
R 1

�1.x sgnx/=.x C 2/ dx. Recall that sgnx D x=jxj.

29. Evaluate
R 2

0 x
2 sgn .x � 1/ dx.

In Exercises 30–41, state whether the given integral converges or

diverges, and justify your claim.

30.

Z 1

0

x2

x5
C 1

dx 31.

Z 1

0

dx

1C
p

x

32.

Z 1

2

x
p

x dx

x2
� 1

33.

Z 1

0

e
�x3

dx

34.

Z 1

0

dx
p

x C x2
35.

Z 1

�1

ex

x C 1
dx

36.

Z �

0

sinx

x
dx 37.I

Z 1

0

j sinxj

x2
dx

38.I

Z �2

0

dx

1 � cos
p

x
39.I

Z �=2

��=2

cscx dx

40.I

Z 1

2

dx
p

x lnx
41.I

Z 1

0

dx

xex
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42.I Given that
R1

0 e�x2
dx D

1

2

p

� , evaluate

(a)

Z 1

0

x
2
e

�x2

dx and (b)

Z 1

0

x
4
e

�x2

dx.

43. Suppose f is continuous on the interval .0; 1� and satisfies

f .x/ D O.xp/ as x ! 0C, where p > �1. Show that
Z 1

0

f .x/ dx converges, and that if 0 < � < 1, then the error

E.�/ in the approximation

Z 1

0

f .x/ dx �

Z 1

�

f .x/ dx

satisfies E.�/ D O.�pC1/ as � ! 0C.

44. What is the largest value of k such that the error E.�/ in the

approximation

Z 1

0

dx
p

x C x2
�

Z 1=�

�

dx
p

x C x2
;

where 0 < � < 1, satisfies E.�/ D O.�k/ as � ! 0C.

45.I If f is continuous on Œa; b�, show that

lim
c!aC

Z b

c

f .x/ dx D

Z b

a

f .x/ dx:

Hint: A continuous function on a closed, finite interval is

bounded: there exists a positive constantK such that

jf .x/j � K for all x in Œa; b�. Use this fact, together with

parts (d) and (f) of Theorem 3 of Section 5.4, to show that

lim
c!aC

 

Z b

a

f .x/ dx �

Z b

c

f .x/ dx

!

D 0:

Similarly, show that

lim
c!b�

Z c

a

f .x/ dx D

Z b

a

f .x/ dx:

46.I (The gamma function) The gamma function �.x/ is defined

by the improper integral

�.x/ D

Z 1

0

t
x�1

e
�t
dt:

(� is the Greek capital letter gamma.)

(a) Show that the integral converges for x > 0.

(b) Use integration by parts to show that �.x C 1/ D x�.x/

for x > 0.

(c) Show that �.nC 1/ D nŠ for n D 0, 1, 2, : : : .

(d) Given that
R1

0 e�x2
dx D

1
2

p

� , show that �. 1
2
/ D
p

�

and �. 3
2
/ D

1
2

p

� .

In view of (c), �.x C 1/ is often written xŠ and regarded as a

real-valued extension of the factorial function. Some scientific

calculators (in particular, HP calculators) with the factorial

function nŠ built in actually calculate the gamma function

rather than just the integral factorial. Check whether your

calculator does this by asking it for 0:5Š. If you get an error

message, it’s not using the gamma function.

6.6 The Trapezoid and Midpoint Rules

Most of the applications of integration, within and outside of mathematics, involve the

definite integral

I D

Z b

a

f .x/ dx:

Thanks to the Fundamental Theorem of Calculus, we can evaluate such definite inte-

grals by first finding an antiderivative of f: This is why we have spent considerable

time developing techniques of integration. There are, however, two obstacles that can

prevent our calculating I in this way:

(i) Finding an antiderivative of f in terms of familiar functions may be impossible,

or at least very difficult.

(ii) We may not be given a formula for f .x/ as a function of x; for instance, f .x/

may be an unknown function whose values at certain points of the interval Œa; b�

have been determined by experimental measurement.

In the next two sections we investigate the problem of approximating the value of the

definite integral I using only the values of f .x/ at finitely many points of Œa; b�. Ob-

taining such an approximation is called numerical integration. Upper and lower sums

(or, indeed, any Riemann sum) can be used for this purpose, but these usually require

much more calculation to yield a desired precision than the methods we will develop
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E X A M P L E 11
Show that if p > 1 and f is continuous on Œ1;1/ and satisfies

f .x/ D O.x�p/, then
R1

1 f .x/ dx converges, and the errorE.R/

in the approximation

Z 1

1

f .x/ dx �

Z R

1

f .x/ dx

satisfies E.R/ D O.R1�p/ as R!1.

Solution Since f .x/ D O.x�p/ as x !1, we have, for some a � 1 and some K,

f .x/ � K x�p for all x � a. Thus,

jE.R/j D

ˇ

ˇ

ˇ

ˇ

Z 1

R

f .x/ dx

ˇ

ˇ

ˇ

ˇ

� K

Z 1

R

x
�p
dx D K

x�pC1

�p C 1

ˇ

ˇ

ˇ

ˇ

1

R

D

K

p � 1
R

1�p
;

so E.R/ D O.R1�p/ as R!1:

E X E R C I S E S 6.5

In Exercises 1–22, evaluate the given integral or show that it

diverges.

1.

Z 1

2

1

.x � 1/3
dx 2.

Z 1

3

1

.2x � 1/2=3
dx

3.

Z 1

0

e
�2x

dx 4.

Z �1

�1

dx

x2
C 1

5.

Z 1

�1

dx

.x C 1/2=3
6.

Z a

0

dx

a2
� x2

7.

Z 1

0

1

.1 � x/1=3
dx 8.

Z 1

0

1

x
p

1 � x
dx

9.

Z �=2

0

cosx dx

.1 � sinx/2=3
10.

Z 1

0

x e
�x
dx

11.

Z 1

0

dx
p

x.1 � x/
12.

Z 1

0

x

1C 2x2
dx

13.

Z 1

0

x dx

.1C 2x2/3=2
14.

Z �=2

0

sec x dx

15.

Z �=2

0

tanx dx 16.

Z 1

e

dx

x lnx

17.

Z e

1

dx

x
p

lnx
18.

Z 1

e

dx

x.ln x/2

19.

Z 1

�1

x

1C x2
dx 20.

Z 1

�1

x

1C x4
dx

21.

Z 1

�1
x e

�x2

dx 22.

Z 1

�1
e

�jxj
dx

23. Find the area below y D 0, above y D lnx, and to the right of

x D 0.

24. Find the area below y D e
�x , above y D e�2x , and to the

right of x D 0.

25. Find the area of a region that lies above y D 0, to the right of

x D 1, and under the curve y D
4

2x C 1
�

2

x C 2
.

26. Find the area of the plane region that lies under the graph of

y D x�2e�1=x , above the x-axis, and to the right of the

y-axis.

27. Prove Theorem 2(a) by directly evaluating the integrals

involved.

28. Evaluate
R 1

�1.x sgnx/=.x C 2/ dx. Recall that sgnx D x=jxj.

29. Evaluate
R 2

0 x
2 sgn .x � 1/ dx.

In Exercises 30–41, state whether the given integral converges or

diverges, and justify your claim.

30.

Z 1

0

x2

x5
C 1

dx 31.

Z 1

0

dx

1C
p

x

32.

Z 1

2

x
p

x dx

x2
� 1

33.

Z 1

0

e
�x3

dx

34.

Z 1

0

dx
p

x C x2
35.

Z 1

�1

ex

x C 1
dx

36.

Z �

0

sinx

x
dx 37.I

Z 1

0

j sinxj

x2
dx

38.I

Z �2

0

dx

1 � cos
p

x
39.I

Z �=2

��=2

cscx dx

40.I

Z 1

2

dx
p

x lnx
41.I

Z 1

0

dx

xex
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42.I Given that
R1

0 e�x2
dx D

1

2

p

� , evaluate

(a)

Z 1

0

x
2
e

�x2

dx and (b)

Z 1

0

x
4
e

�x2

dx.

43. Suppose f is continuous on the interval .0; 1� and satisfies

f .x/ D O.xp/ as x ! 0C, where p > �1. Show that
Z 1

0

f .x/ dx converges, and that if 0 < � < 1, then the error

E.�/ in the approximation

Z 1

0

f .x/ dx �

Z 1

�

f .x/ dx

satisfies E.�/ D O.�pC1/ as � ! 0C.

44. What is the largest value of k such that the error E.�/ in the

approximation

Z 1

0

dx
p

x C x2
�

Z 1=�

�

dx
p

x C x2
;

where 0 < � < 1, satisfies E.�/ D O.�k/ as � ! 0C.

45.I If f is continuous on Œa; b�, show that

lim
c!aC

Z b

c

f .x/ dx D

Z b

a

f .x/ dx:

Hint: A continuous function on a closed, finite interval is

bounded: there exists a positive constantK such that

jf .x/j � K for all x in Œa; b�. Use this fact, together with

parts (d) and (f) of Theorem 3 of Section 5.4, to show that

lim
c!aC

 

Z b

a

f .x/ dx �

Z b

c

f .x/ dx

!

D 0:

Similarly, show that

lim
c!b�

Z c

a

f .x/ dx D

Z b

a

f .x/ dx:

46.I (The gamma function) The gamma function �.x/ is defined

by the improper integral

�.x/ D

Z 1

0

t
x�1

e
�t
dt:

(� is the Greek capital letter gamma.)

(a) Show that the integral converges for x > 0.

(b) Use integration by parts to show that �.x C 1/ D x�.x/

for x > 0.

(c) Show that �.nC 1/ D nŠ for n D 0, 1, 2, : : : .

(d) Given that
R1

0 e�x2
dx D

1
2

p

� , show that �. 1
2
/ D
p

�

and �. 3
2
/ D

1
2

p

� .

In view of (c), �.x C 1/ is often written xŠ and regarded as a

real-valued extension of the factorial function. Some scientific

calculators (in particular, HP calculators) with the factorial

function nŠ built in actually calculate the gamma function

rather than just the integral factorial. Check whether your

calculator does this by asking it for 0:5Š. If you get an error

message, it’s not using the gamma function.

6.6 The Trapezoid and Midpoint Rules

Most of the applications of integration, within and outside of mathematics, involve the

definite integral

I D

Z b

a

f .x/ dx:

Thanks to the Fundamental Theorem of Calculus, we can evaluate such definite inte-

grals by first finding an antiderivative of f: This is why we have spent considerable

time developing techniques of integration. There are, however, two obstacles that can

prevent our calculating I in this way:

(i) Finding an antiderivative of f in terms of familiar functions may be impossible,

or at least very difficult.

(ii) We may not be given a formula for f .x/ as a function of x; for instance, f .x/

may be an unknown function whose values at certain points of the interval Œa; b�

have been determined by experimental measurement.

In the next two sections we investigate the problem of approximating the value of the

definite integral I using only the values of f .x/ at finitely many points of Œa; b�. Ob-

taining such an approximation is called numerical integration. Upper and lower sums

(or, indeed, any Riemann sum) can be used for this purpose, but these usually require

much more calculation to yield a desired precision than the methods we will develop
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here. We will develop three methods for evaluating definite integrals numerically: the

Trapezoid Rule, the Midpoint Rule, and Simpson’s Rule (see Section 6.7). All of these

methods can be easily implemented on a small computer or using a scientific calcula-

tor. The wide availability of these devices makes numerical integration a steadily more

important tool for the user of mathematics. Some of the more advanced calculators

have built-in routines for numerical integration.

All the techniques we consider require us to calculate the values of f .x/ at a set of

equally spaced points in Œa; b�. The computational “expense” involved in determining

an approximate value for the integral I will be roughly proportional to the number

of function values required, so that the fewer function evaluations needed to achieve

a desired degree of accuracy for the integral, the better we will regard the technique.

Time is money, even in the world of computers.

The Trapezoid Rule
We assume that f .x/ is continuous on Œa; b� and subdivide Œa; b� into n subintervals

of equal length h D .b � a/=n using the nC 1 points

x0 D a; x1 D aC h; x2 D aC 2h; : : : ; xn D aC nh D b:

We assume that the value of f .x/ at each of these points is known:

y0 D f .x0/; y1 D f .x1/; y2 D f .x2/; : : : ; yn D f .xn/:

The Trapezoid Rule approximates
R b

a
f .x/ dx by using straight line segments between

the points .xj �1; yj �1/ and .xj ; yj /, (1 � j � n/, to approximate the graph of f;

as shown in Figure 6.15, and summing the areas of the resulting n trapezoids. A

trapezoid is a four-sided polygon with one pair of parallel sides. (For our discus-

sion we assume f is positive so we can talk about “areas,” but the resulting formulas

apply to any continuous function f:)

The first trapezoid has vertices .x0; 0/, .x0; y0/, .x1; y1/, and .x1; 0/. The two

parallel sides are vertical and have lengths y0 and y1. The perpendicular distance

between them is h D x1 � x0. The area of this trapezoid is h times the average of the

parallel sides:

h
y0 C y1

2
square units.

Figure 6.15 The area under y D f .x/ is

approximated by the sum of the areas of n

trapezoids

y

x
a D x0 x1 x2 xn�1 xn D b

y0
y1

y2

yn�1

yn

y D f .x/

h h h
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This can be seen geometrically by considering the trapezoid as the nonoverlapping

union of a rectangle and a triangle; see Figure 6.16. We use this trapezoidal area to

approximate the integral of f over the first subinterval Œx0; x1�:

h

x0 x1

hy0

y1

y0 � y1

y1

y D f .x/

Figure 6.16 The trapezoid has area

y1hC
1
2
.y0 � y1/h D

1
2
h.y0 C y1/

Z x1

x0

f .x/ dx � h
y0 C y1

2
:

We can approximate the integral of f over any subinterval in the same way:

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2
; .1 � j � n/:

It follows that the original integral I can be approximated by the sum of these trape-

zoidal areas:

Z b

a

f .x/ dx � h

�

y0 C y1

2
C

y1 C y2

2
C

y2 C y3

2
C � � � C

yn�1 C yn

2

�

D h

�

1

2
y0 C y1 C y2 C y3 C � � � C yn�1 C

1

2
yn

�

:

D E F I N I T I O N

3

The Trapezoid Rule

The n-subinterval Trapezoid Rule approximation to
R b

a
f .x/ dx, denoted

Tn, is given by

Tn D h

�

1

2
y0 C y1 C y2 C y3 C � � � C yn�1 C

1

2
yn

�

:

We now illustrate the Trapezoid Rule by using it to approximate an integral whose

value we already know:

I D

Z 2

1

1

x
dx D ln 2 D 0:693 147 18 : : : :

(This value, and those of all the approximations quoted in these sections, were cal-

culated using a scientific calculator.) We will use the same integral to illustrate other

methods for approximating definite integrals later.

E X A M P L E 1
Calculate the Trapezoid Rule approximations T4, T8, and T16 for

I D

Z 2

1

1

x
dx:

Solution For n D 4 we have h D .2 � 1/=4 D 1=4; for n D 8 we have h D 1=8; for

n D 16 we have h D 1=16. Therefore,

T4 D
1

4

�

1

2
.1/C

4

5
C

2

3
C

4

7
C

1

2

�

1

2

��

D 0:697 023 81 : : :

T8 D
1

8

�

1

2
.1/C

8

9
C

4

5
C

8

11
C

2

3
C

8

13
C

4

7
C

8

15
C

1

2

�

1

2

��

D

1

8

�

4T4 C
8

9
C

8

11
C

8

13
C

8

15

�

D 0:694 121 85 : : :

T16 D
1

16

�

8T8 C
16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

D 0:693 391 20 : : : :
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here. We will develop three methods for evaluating definite integrals numerically: the

Trapezoid Rule, the Midpoint Rule, and Simpson’s Rule (see Section 6.7). All of these

methods can be easily implemented on a small computer or using a scientific calcula-

tor. The wide availability of these devices makes numerical integration a steadily more

important tool for the user of mathematics. Some of the more advanced calculators

have built-in routines for numerical integration.

All the techniques we consider require us to calculate the values of f .x/ at a set of

equally spaced points in Œa; b�. The computational “expense” involved in determining

an approximate value for the integral I will be roughly proportional to the number

of function values required, so that the fewer function evaluations needed to achieve

a desired degree of accuracy for the integral, the better we will regard the technique.

Time is money, even in the world of computers.

The Trapezoid Rule
We assume that f .x/ is continuous on Œa; b� and subdivide Œa; b� into n subintervals

of equal length h D .b � a/=n using the nC 1 points

x0 D a; x1 D aC h; x2 D aC 2h; : : : ; xn D aC nh D b:

We assume that the value of f .x/ at each of these points is known:

y0 D f .x0/; y1 D f .x1/; y2 D f .x2/; : : : ; yn D f .xn/:

The Trapezoid Rule approximates
R b

a
f .x/ dx by using straight line segments between

the points .xj �1; yj �1/ and .xj ; yj /, (1 � j � n/, to approximate the graph of f;

as shown in Figure 6.15, and summing the areas of the resulting n trapezoids. A

trapezoid is a four-sided polygon with one pair of parallel sides. (For our discus-

sion we assume f is positive so we can talk about “areas,” but the resulting formulas

apply to any continuous function f:)

The first trapezoid has vertices .x0; 0/, .x0; y0/, .x1; y1/, and .x1; 0/. The two

parallel sides are vertical and have lengths y0 and y1. The perpendicular distance

between them is h D x1 � x0. The area of this trapezoid is h times the average of the

parallel sides:

h
y0 C y1

2
square units.

Figure 6.15 The area under y D f .x/ is

approximated by the sum of the areas of n

trapezoids

y

x
a D x0 x1 x2 xn�1 xn D b

y0
y1

y2

yn�1

yn

y D f .x/

h h h
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This can be seen geometrically by considering the trapezoid as the nonoverlapping

union of a rectangle and a triangle; see Figure 6.16. We use this trapezoidal area to

approximate the integral of f over the first subinterval Œx0; x1�:

h

x0 x1

hy0

y1

y0 � y1

y1

y D f .x/

Figure 6.16 The trapezoid has area

y1hC
1
2
.y0 � y1/h D

1
2
h.y0 C y1/

Z x1

x0

f .x/ dx � h
y0 C y1

2
:

We can approximate the integral of f over any subinterval in the same way:

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2
; .1 � j � n/:

It follows that the original integral I can be approximated by the sum of these trape-

zoidal areas:

Z b

a

f .x/ dx � h

�

y0 C y1

2
C

y1 C y2

2
C

y2 C y3

2
C � � � C

yn�1 C yn

2

�

D h

�

1

2
y0 C y1 C y2 C y3 C � � � C yn�1 C

1

2
yn

�

:

D E F I N I T I O N

3

The Trapezoid Rule

The n-subinterval Trapezoid Rule approximation to
R b

a
f .x/ dx, denoted

Tn, is given by

Tn D h

�

1

2
y0 C y1 C y2 C y3 C � � � C yn�1 C

1

2
yn

�

:

We now illustrate the Trapezoid Rule by using it to approximate an integral whose

value we already know:

I D

Z 2

1

1

x
dx D ln 2 D 0:693 147 18 : : : :

(This value, and those of all the approximations quoted in these sections, were cal-

culated using a scientific calculator.) We will use the same integral to illustrate other

methods for approximating definite integrals later.

E X A M P L E 1
Calculate the Trapezoid Rule approximations T4, T8, and T16 for

I D

Z 2

1

1

x
dx:

Solution For n D 4 we have h D .2 � 1/=4 D 1=4; for n D 8 we have h D 1=8; for

n D 16 we have h D 1=16. Therefore,

T4 D
1

4

�

1

2
.1/C

4

5
C

2

3
C

4

7
C

1

2

�

1

2

��

D 0:697 023 81 : : :

T8 D
1

8

�

1

2
.1/C

8

9
C

4

5
C

8

11
C

2

3
C

8

13
C

4

7
C

8

15
C

1

2

�

1

2

��

D

1

8

�

4T4 C
8

9
C

8

11
C

8

13
C

8

15

�

D 0:694 121 85 : : :

T16 D
1

16

�

8T8 C
16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

D 0:693 391 20 : : : :
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Note how the function values used to calculate T4 were reused in the calculation of T8,

and similarly how those in T8 were reused for T16. When several approximations are

needed, it is very useful to double the number of subintervals for each new calculation

so that previously calculated values of f can be reused.

All Trapezoid Rule approximations to I D
R 2

1
.1=x/ dx are greater than the true value

of I: This is because the graph of y D 1=x is concave up on Œ1; 2�, and therefore the

tops of the approximating trapezoids lie above the curve. (See Figure 6.17.)

We can calculate the exact errors in the three approximations since we know that

I D ln 2 D 0:69314718 : : : (We always take the error in an approximation to be the

true value minus the approximate value.)

y

x

y D
1

x

Figure 6.17 The trapezoid areas are

greater than the area under the curve if the

curve is concave upward

I � T4 D 0:693 147 18 : : : � 0:697 023 81 : : : D �0:003 876 63 : : :

I � T8 D 0:693 147 18 : : : � 0:694 121 85 : : : D �0:000 974 67 : : :

I � T16 D 0:693 147 18 : : : � 0:693 391 20 : : : D �0:000 244 02 : : : :

Observe that the size of the error decreases to about a quarter of its previous value each

time we double n. We will show below that this is to be expected for a “well-behaved”

function like 1=x.

Example 1 is somewhat artificial in the sense that we know the actual value of

the integral so we really don’t need an approximation. In practical applications of

numerical integration we do not know the actual value. It is tempting to calculate

several approximations for increasing values of n until the two most recent ones agree

to within a prescribed error tolerance. For example, we might be inclined to claim that

ln 2 � 0:69 : : : from a comparison of T4 and T8, and further comparison of T16 and

T8 suggests that the third decimal place is probably 3: I � 0:693 : : : . Although this

approach cannot be justified in general, it is frequently used in practice.

The Midpoint Rule

A somewhat simpler approximation to
R b

a
f .x/ dx, based on the partition of Œa; b� into

n equal subintervals, involves forming a Riemann sum of the areas of rectangles whose

heights are taken at the midpoints of the n subintervals. (See Figure 6.18.)

D E F I N I T I O N

4

The Midpoint Rule

If h D .b � a/=n, let mj D a C
�

j �
1
2

�

h for 1 � j � n. The Midpoint

Rule approximation to
R b

a
f .x/ dx, denoted Mn, is given by

Mn D h
�

f .m1/C f .m2/C � � � C f .mn/
�

D h

n
X

j D1

f .mj /:

E X A M P L E 2
Find the Midpoint Rule approximations M4 and M8 for the inte-

gral I D

Z 2

1

1

x
dx, and compare their actual errors with those

obtained for the Trapezoid Rule approximations above.

Solution To find M4, the interval Œ1; 2� is divided into four equal subintervals,

�

1;
5

4

�

;

�

5

4
;
3

2

�

;

�

3

2
;
7

4

�

; and

�

7

4
; 2

�

:

The midpoints of these intervals are 9=8, 11=8, 13=8, and 15=8, respectively. The mid-

points of the subintervals for M8 are obtained in a similar way. The required Midpoint

Rule approximations are
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Figure 6.18 The Midpoint Rule

approximation Mn to
R b

a f .x/ dx is the

Riemann sum based on the heights to the

graph of f at the midpoints of the

subintervals of the partition

y

xm1 m2 m3 mn

y D f .x/

M4 D
1

4

�

8

9
C

8

11
C

8

13
C

8

15

�

D 0:691 219 89 : : :

M8 D
1

8

�

16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

D 0:692 660 55 : : :

The errors in these approximations are

I �M4 D 0:693 147 18 : : : � 0:691 219 89 : : : D 0:001 927 29 : : :

I �M8 D 0:693 147 18 : : : � 0:692 660 55 : : : D 0:000 486 63 : : :

These errors are of opposite sign and about half the size of the corresponding Trape-

zoid Rule errors I � T4 and I � T8. Figure 6.19 suggests the reason for this. The

rectangular area hf .mj / is equal to the area of the trapezoid formed by the tangent

line to y D f .x/ at .mj ; f .mj //. The shaded region above the curve is the part of the

Trapezoid Rule error due to the j th subinterval. The shaded area below the curve is

the corresponding Midpoint Rule error.

h=2 h=2

xj �1 mj xj

Figure 6.19 The Midpoint Rule error (the

yellow area) is opposite in sign and about

half the size of the Trapezoid Rule error

(shaded in green)

One drawback of the Midpoint Rule is that we cannot reuse values of f calculated for

Mn when we calculate M2n. However, to calculate T2n we can use the data values

already calculated for Tn and Mn. Specifically,

T2n D
1
2
.Tn CMn/:

A good strategy for using these methods to obtain a value for an integral I to a desired

degree of accuracy is to calculate successively

Tn; Mn; T2n D
Tn CMn

2
; M2n; T4n D

T2n CM2n

2
; M4n; � � �

until two consecutive terms agree sufficiently closely. If a single quick approximation

is needed, Mn is a better choice than Tn.

Error Estimates
The following theorem provides a bound for the error in the Trapezoid and Midpoint

Rule approximations in terms of the second derivative of the integrand.
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Note how the function values used to calculate T4 were reused in the calculation of T8,

and similarly how those in T8 were reused for T16. When several approximations are

needed, it is very useful to double the number of subintervals for each new calculation

so that previously calculated values of f can be reused.

All Trapezoid Rule approximations to I D
R 2

1
.1=x/ dx are greater than the true value

of I: This is because the graph of y D 1=x is concave up on Œ1; 2�, and therefore the

tops of the approximating trapezoids lie above the curve. (See Figure 6.17.)

We can calculate the exact errors in the three approximations since we know that

I D ln 2 D 0:69314718 : : : (We always take the error in an approximation to be the

true value minus the approximate value.)

y

x

y D
1

x

Figure 6.17 The trapezoid areas are

greater than the area under the curve if the

curve is concave upward

I � T4 D 0:693 147 18 : : : � 0:697 023 81 : : : D �0:003 876 63 : : :

I � T8 D 0:693 147 18 : : : � 0:694 121 85 : : : D �0:000 974 67 : : :

I � T16 D 0:693 147 18 : : : � 0:693 391 20 : : : D �0:000 244 02 : : : :

Observe that the size of the error decreases to about a quarter of its previous value each

time we double n. We will show below that this is to be expected for a “well-behaved”

function like 1=x.

Example 1 is somewhat artificial in the sense that we know the actual value of

the integral so we really don’t need an approximation. In practical applications of

numerical integration we do not know the actual value. It is tempting to calculate

several approximations for increasing values of n until the two most recent ones agree

to within a prescribed error tolerance. For example, we might be inclined to claim that

ln 2 � 0:69 : : : from a comparison of T4 and T8, and further comparison of T16 and

T8 suggests that the third decimal place is probably 3: I � 0:693 : : : . Although this

approach cannot be justified in general, it is frequently used in practice.

The Midpoint Rule

A somewhat simpler approximation to
R b

a
f .x/ dx, based on the partition of Œa; b� into

n equal subintervals, involves forming a Riemann sum of the areas of rectangles whose

heights are taken at the midpoints of the n subintervals. (See Figure 6.18.)

D E F I N I T I O N

4

The Midpoint Rule

If h D .b � a/=n, let mj D a C
�

j �
1
2

�

h for 1 � j � n. The Midpoint

Rule approximation to
R b

a
f .x/ dx, denoted Mn, is given by

Mn D h
�

f .m1/C f .m2/C � � � C f .mn/
�

D h

n
X

j D1

f .mj /:

E X A M P L E 2
Find the Midpoint Rule approximations M4 and M8 for the inte-

gral I D

Z 2

1

1

x
dx, and compare their actual errors with those

obtained for the Trapezoid Rule approximations above.

Solution To find M4, the interval Œ1; 2� is divided into four equal subintervals,

�

1;
5

4

�

;

�

5

4
;
3

2

�

;

�

3

2
;
7

4

�

; and

�

7

4
; 2

�

:

The midpoints of these intervals are 9=8, 11=8, 13=8, and 15=8, respectively. The mid-

points of the subintervals for M8 are obtained in a similar way. The required Midpoint

Rule approximations are
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Figure 6.18 The Midpoint Rule

approximation Mn to
R b

a f .x/ dx is the

Riemann sum based on the heights to the

graph of f at the midpoints of the

subintervals of the partition

y

xm1 m2 m3 mn

y D f .x/

M4 D
1

4

�

8

9
C

8

11
C

8

13
C

8

15

�

D 0:691 219 89 : : :

M8 D
1

8

�

16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

D 0:692 660 55 : : :

The errors in these approximations are

I �M4 D 0:693 147 18 : : : � 0:691 219 89 : : : D 0:001 927 29 : : :

I �M8 D 0:693 147 18 : : : � 0:692 660 55 : : : D 0:000 486 63 : : :

These errors are of opposite sign and about half the size of the corresponding Trape-

zoid Rule errors I � T4 and I � T8. Figure 6.19 suggests the reason for this. The

rectangular area hf .mj / is equal to the area of the trapezoid formed by the tangent

line to y D f .x/ at .mj ; f .mj //. The shaded region above the curve is the part of the

Trapezoid Rule error due to the j th subinterval. The shaded area below the curve is

the corresponding Midpoint Rule error.

h=2 h=2

xj �1 mj xj

Figure 6.19 The Midpoint Rule error (the

yellow area) is opposite in sign and about

half the size of the Trapezoid Rule error

(shaded in green)

One drawback of the Midpoint Rule is that we cannot reuse values of f calculated for

Mn when we calculate M2n. However, to calculate T2n we can use the data values

already calculated for Tn and Mn. Specifically,

T2n D
1
2
.Tn CMn/:

A good strategy for using these methods to obtain a value for an integral I to a desired

degree of accuracy is to calculate successively

Tn; Mn; T2n D
Tn CMn

2
; M2n; T4n D

T2n CM2n

2
; M4n; � � �

until two consecutive terms agree sufficiently closely. If a single quick approximation

is needed, Mn is a better choice than Tn.

Error Estimates
The following theorem provides a bound for the error in the Trapezoid and Midpoint

Rule approximations in terms of the second derivative of the integrand.
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4

Error estimates for the Trapezoid and Midpoint Rules

If f has a continuous second derivative on Œa; b� and satisfies jf 00.x/j � K there, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Tn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

12
h

2
D

K.b � a/3

12n2
;

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx �Mn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

24
h

2
D

K.b � a/
3

24n2
;

where h D .b � a/=n. Note that these error bounds decrease like the square of the

subinterval length as n increases.

PROOF We will prove only the Trapezoid Rule error estimate here. (The one for the

Midpoint Rule is a little easier to prove; the method is suggested in Exercise 14 below.)

The straight line approximating y D f .x/ in the first subinterval Œx0; x1� D Œa; aC h�

passes through the two points .x0; y0/ and .x1; y1/. Its equation is y D ACB.x�x0/,

where

A D y0 and B D
y1 � y0

x1 � x0

D

y1 � y0

h
:

Let the function g.x/ be the vertical distance between the graph of f and this line:

g.x/ D f .x/� A� B.x � x0/:

Since the integral ofACB.x�x0/ over Œx0; x1� is the area of the first trapezoid, which

is h.y0 C y1/=2 (see Figure 6.20), the integral of g.x/ over Œx0; x1� is the error in the

approximation of
R x1

x0
f .x/ dx by the area of the trapezoid:

Z x1

x0

f .x/ dx � h
y0 C y1

2
D

Z x1

x0

g.x/ dx:

Now g is twice differentiable, and g00
.x/ D f

00
.x/. Also g.x0/ D g.x1/ D 0. Two

integrations by parts (see Exercise 36 of Section 6.1) show that

h

x0 x1

g.x/

x

y D AC B.x � x0/

y D f .x/

y0

y1

Figure 6.20 The error in approximating

the area under the curve by that of the

trapezoid is
R x1

x0
g.x/ dx

Z x1

x0

.x � x0/.x1 � x/ f
00
.x/ dx D

Z x1

x0

.x � x0/.x1 � x/ g
00
.x/ dx

D �2

Z x1

x0

g.x/ dx:

By the triangle inequality for definite integrals (Theorem 3(f) of Section 5.4),
ˇ

ˇ

ˇ

ˇ

Z x1

x0

f .x/ dx � h
y0 C y1

2

ˇ

ˇ

ˇ

ˇ

�

1

2

Z x1

x0

.x � x0/.x1 � x/ jf
00
.x/j dx

�

K

2

Z x1

x0

�

�x
2
C .x0 C x1/x � x0x1

�

dx

D

K

12
.x1 � x0/

3
D

K

12
h

3
:

A similar estimate holds on each subinterval Œxj �1; xj � .1 � j � n/. Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Tn

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

j D1

 

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2

!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

j D1

ˇ

ˇ

ˇ

ˇ

ˇ

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2

ˇ

ˇ

ˇ

ˇ

ˇ

D

n
X

j D1

K

12
h

3
D

K

12
nh

3
D

K.b � a/

12
h

2
;

since nh D b � a.
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We illustrate this error estimate for the approximations of Examples 1 and 2 above.

E X A M P L E 3
Obtain bounds for the errors for T4; T8; T16; M4, and M8 for

I D

Z 2

1

1

x
dx.

Solution If f .x/ D 1=x, then f 0.x/ D �1=x2 and f 00.x/ D 2=x3. On Œ1; 2� we

have jf 00.x/j � 2, so we may take K D 2 in the estimate. Thus,

jI � T4j �
2.2 � 1/

12

�

1

4

�2

D 0:010 4 : : : ;

jI �M4j �
2.2 � 1/

24

�

1

4

�2

D 0:005 2 : : : ;

jI � T8j �
2.2 � 1/

12

�

1

8

�2

D 0:002 6 : : : ;

jI �M8j �
2.2 � 1/

24

�

1

8

�2

D 0:001 3 : : : ;

jI � T16j �
2.2 � 1/

12

�

1

16

�2

D 0:000 65 : : : :

The actual errors calculated earlier are considerably smaller than these bounds, be-

cause jf 00.x/j is rather smaller than K D 2 over most of the interval Œ1; 2�.

Remark Error bounds are not usually as easily obtained as they are in Example 3. In

particular, if an exact formula for f .x/ is not known (as is usually the case if the values

of f are obtained from experimental data), then we have no method of calculating

f 00.x/, so we can’t determine K. Theorem 4 is of more theoretical than practical

importance. It shows us that, for a “well-behaved” function f , the Midpoint Rule error

is typically about half as large as the Trapezoid Rule error and that both the Trapezoid

Rule and Midpoint Rule errors can be expected to decrease like 1=n2 as n increases;

in terms of big-O notation,

I D Tn CO

�

1

n2

�

and I DMn CO

�

1

n2

�

as n!1:

Of course, actual errors are not equal to the error bounds, so they won’t always be cut

to exactly a quarter of their size when we double n.

E X E R C I S E S 6.6

In Exercises 1–4, calculate the approximations T4; M4; T8; M8,

and T16 for the given integrals. (Use a scientific calculator or

computer spreadsheet program.) Also calculate the exact value of

each integral, and so determine the exact error in each approx-

imation. Compare these exact errors with the bounds for the size

of the error supplied by Theorem 4.

1.C I D

Z 2

0

.1C x
2
/ dx 2.C I D

Z 1

0

e
�x
dx

3.C I D

Z �=2

0

sinx dx 4.C I D

Z 1

0

dx

1C x2

5. Figure 6.21 shows the graph of a function f over the interval

Œ1; 9�. Using values from the graph, find the Trapezoid Rule

estimates T4 and T8 for
R 9

1 f .x/ dx.

y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

y D f .x/

Figure 6.21
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Error estimates for the Trapezoid and Midpoint Rules

If f has a continuous second derivative on Œa; b� and satisfies jf 00.x/j � K there, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Tn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

12
h

2
D

K.b � a/3

12n2
;

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx �Mn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

24
h

2
D

K.b � a/
3

24n2
;

where h D .b � a/=n. Note that these error bounds decrease like the square of the

subinterval length as n increases.

PROOF We will prove only the Trapezoid Rule error estimate here. (The one for the

Midpoint Rule is a little easier to prove; the method is suggested in Exercise 14 below.)

The straight line approximating y D f .x/ in the first subinterval Œx0; x1� D Œa; aC h�

passes through the two points .x0; y0/ and .x1; y1/. Its equation is y D ACB.x�x0/,

where

A D y0 and B D
y1 � y0

x1 � x0

D

y1 � y0

h
:

Let the function g.x/ be the vertical distance between the graph of f and this line:

g.x/ D f .x/� A� B.x � x0/:

Since the integral ofACB.x�x0/ over Œx0; x1� is the area of the first trapezoid, which

is h.y0 C y1/=2 (see Figure 6.20), the integral of g.x/ over Œx0; x1� is the error in the

approximation of
R x1

x0
f .x/ dx by the area of the trapezoid:

Z x1

x0

f .x/ dx � h
y0 C y1

2
D

Z x1

x0

g.x/ dx:

Now g is twice differentiable, and g00
.x/ D f

00
.x/. Also g.x0/ D g.x1/ D 0. Two

integrations by parts (see Exercise 36 of Section 6.1) show that

h

x0 x1

g.x/

x

y D AC B.x � x0/

y D f .x/

y0

y1

Figure 6.20 The error in approximating

the area under the curve by that of the

trapezoid is
R x1

x0
g.x/ dx

Z x1

x0

.x � x0/.x1 � x/ f
00
.x/ dx D

Z x1

x0

.x � x0/.x1 � x/ g
00
.x/ dx

D �2

Z x1

x0

g.x/ dx:

By the triangle inequality for definite integrals (Theorem 3(f) of Section 5.4),
ˇ

ˇ

ˇ

ˇ

Z x1

x0

f .x/ dx � h
y0 C y1

2

ˇ

ˇ

ˇ

ˇ

�

1

2

Z x1

x0

.x � x0/.x1 � x/ jf
00
.x/j dx

�

K

2

Z x1

x0

�

�x
2
C .x0 C x1/x � x0x1

�

dx

D

K

12
.x1 � x0/

3
D

K

12
h

3
:

A similar estimate holds on each subinterval Œxj �1; xj � .1 � j � n/. Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Tn

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

j D1

 

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2

!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

j D1

ˇ

ˇ

ˇ

ˇ

ˇ

Z xj

xj �1

f .x/ dx � h
yj �1 C yj

2

ˇ

ˇ

ˇ

ˇ

ˇ

D

n
X

j D1

K

12
h

3
D

K

12
nh

3
D

K.b � a/

12
h

2
;

since nh D b � a.
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We illustrate this error estimate for the approximations of Examples 1 and 2 above.

E X A M P L E 3
Obtain bounds for the errors for T4; T8; T16; M4, and M8 for

I D

Z 2

1

1

x
dx.

Solution If f .x/ D 1=x, then f 0.x/ D �1=x2 and f 00.x/ D 2=x3. On Œ1; 2� we

have jf 00.x/j � 2, so we may take K D 2 in the estimate. Thus,

jI � T4j �
2.2 � 1/

12

�

1

4

�2

D 0:010 4 : : : ;

jI �M4j �
2.2 � 1/

24

�

1

4

�2

D 0:005 2 : : : ;

jI � T8j �
2.2 � 1/

12

�

1

8

�2

D 0:002 6 : : : ;

jI �M8j �
2.2 � 1/

24

�

1

8

�2

D 0:001 3 : : : ;

jI � T16j �
2.2 � 1/

12

�

1

16

�2

D 0:000 65 : : : :

The actual errors calculated earlier are considerably smaller than these bounds, be-

cause jf 00.x/j is rather smaller than K D 2 over most of the interval Œ1; 2�.

Remark Error bounds are not usually as easily obtained as they are in Example 3. In

particular, if an exact formula for f .x/ is not known (as is usually the case if the values

of f are obtained from experimental data), then we have no method of calculating

f 00.x/, so we can’t determine K. Theorem 4 is of more theoretical than practical

importance. It shows us that, for a “well-behaved” function f , the Midpoint Rule error

is typically about half as large as the Trapezoid Rule error and that both the Trapezoid

Rule and Midpoint Rule errors can be expected to decrease like 1=n2 as n increases;

in terms of big-O notation,

I D Tn CO

�

1

n2

�

and I DMn CO

�

1

n2

�

as n!1:

Of course, actual errors are not equal to the error bounds, so they won’t always be cut

to exactly a quarter of their size when we double n.

E X E R C I S E S 6.6

In Exercises 1–4, calculate the approximations T4; M4; T8; M8,

and T16 for the given integrals. (Use a scientific calculator or

computer spreadsheet program.) Also calculate the exact value of

each integral, and so determine the exact error in each approx-

imation. Compare these exact errors with the bounds for the size

of the error supplied by Theorem 4.

1.C I D

Z 2

0

.1C x
2
/ dx 2.C I D

Z 1

0

e
�x
dx

3.C I D

Z �=2

0

sinx dx 4.C I D

Z 1

0

dx

1C x2

5. Figure 6.21 shows the graph of a function f over the interval

Œ1; 9�. Using values from the graph, find the Trapezoid Rule

estimates T4 and T8 for
R 9

1 f .x/ dx.

y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

y D f .x/

Figure 6.21
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6. Obtain the best Midpoint Rule approximation that you can for
R 9

1 f .x/ dx from the data in Figure 6.21.

7. The map of a region is traced on the grid in Figure 6.22,

where 1 unit in both the vertical and horizontal directions

represents 10 km. Use the Trapezoid Rule to obtain two

estimates for the area of the region.

y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

Figure 6.22

8. Find a Midpoint Rule estimate for the area of the region in

Exercise 7.

C 9. Find T4; M4; T8; M8, and T16 for
R 1:6

0 f .x/ dx for the

function f whose values are given in Table 1.

Table 1.

x f .x/ x f .x/

0:0 1:4142 0:1 1:4124

0:2 1:4071 0:3 1:3983

0:4 1:3860 0:5 1:3702

0:6 1:3510 0:7 1:3285

0:8 1:3026 0:9 1:2734

1:0 1:2411 1:1 1:2057

1:2 1:1772 1:3 1:1258

1:4 1:0817 1:5 1:0348

1:6 0:9853

C 10. Find the approximationsM8 and T16 for
R 1

0 e
�x2

dx. Quote a

value for the integral to as many decimal places as you feel are

justified.

C 11. Repeat Exercise 10 for
R �=2

0

sinx

x
dx. (Assume the integrand

is 1 at x D 0.)

12.A Compute the actual error in the approximation
R 1

0 x
2 dx � T1

and use it to show that the constant 12 in the estimate of

Theorem 4 cannot be improved. That is, show that the

absolute value of the actual error is as large as allowed by that

estimate.

13.A Repeat Exercise 12 for M1.

14.I Prove the error estimate for the Midpoint Rule in Theorem 4

as follows: If x1 � x0 D h and m1 is the midpoint of Œx0; x1�,

use the error estimate for the tangent line approximation

(Theorem 11 of Section 4.9) to show that

jf .x/ � f .m1/ � f
0
.m1/.x �m1/j �

K

2
.x �m1/

2
:

Use this inequality to show that

ˇ

ˇ

ˇ

ˇ

Z x1

x0

f .x/ dx � f .m1/h

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

Z x1

x0

�

f .x/ � f .m1/ � f
0
.m1/.x �m1/

�

dx

ˇ

ˇ

ˇ

ˇ

�

K

24
h

3
:

Complete the proof the same way used for the Trapezoid Rule

estimate in Theorem 4.

6.7 Simpson’s Rule

The Trapezoid Rule approximation to
R b

a
f .x/ dx results from approximating the graph

of f by straight line segments through adjacent pairs of data points on the graph. In-

tuitively, we would expect to do better if we approximate the graph by more general

curves. Since straight lines are the graphs of linear functions, the simplest obvious

generalization is to use the class of quadratic functions, that is, to approximate the

graph of f by segments of parabolas. This is the basis of Simpson’s Rule.

Suppose that we are given three points in the plane, one on each of three equally

spaced vertical lines, spaced, say, h units apart. If we choose the middle of these lines

as the y-axis, then the coordinates of the three points will be, say, .�h; yL/, .0; yM /,

and .h; yR/, as illustrated in Figure 6.23.
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Constants A, B , and C can be chosen so that the parabola y D AC Bx C Cx2

passes through these points; substituting the coordinates of the three points into the

equation of the parabola, we gety

x

yL

.�h; yL/
yM yR

.h; yR/

.0; yM /
y D AC Bx C Cx2

�h h

Figure 6.23 Fitting a quadratic graph

through three points with equal horizontal

spacing

yL D A � BhC Ch
2

yM D A

yR D AC BhC Ch
2

9

>

=

>

;

) A D yM and 2Ch
2
D yL � 2yM C yR:

Now we have
Z h

�h

.AC Bx C Cx
2
/ dx D

�

Ax C
B

2
x

2
C

C

3
x

3

�
ˇ

ˇ

ˇ

ˇ

h

�h

D 2AhC
2

3
Ch

3

D h

�

2yM C
1

3
.yL � 2yM C yR/

�

D

h

3
.yL C 4yM C yR/:

Thus, the area of the plane region bounded by the parabolic arc, the interval of length

2h on the x-axis, and the left and right vertical lines is equal to .h=3/ times the sum

of the heights of the region at the left and right edges and four times the height at the

middle. (It is independent of the position of the y-axis.)

Now suppose that we are given the same data for f as we were given for the

Trapezoid Rule; that is, we know the values yj D f .xj / .0 � j � n/ at nC 1 equally

spaced points

x0 D a; x1 D aC h; x2 D aC 2h; : : : ; xn D aC nh D b;

where h D .b � a/=n. We can approximate the graph of f over pairs of the

subintervals Œxj �1; xj � using parabolic segments and use the integrals of the corre-

sponding quadratic functions to approximate the integrals of f over these subintervals.

Since we need to use the subintervals two at a time, we must assume that n is even.

Using the integral computed for the parabolic segment above, we have
Z x2

x0

f .x/ dx �
h

3
.y0 C 4y1 C y2/

Z x4

x2

f .x/ dx �
h

3
.y2 C 4y3 C y4/

:
:
:

Z xn

xn�2

f .x/ dx �
h

3
.yn�2 C 4yn�1 C yn/:

Adding these n=2 individual approximations, we get the Simpson’s Rule approxima-

tion to the integral
R b

a
f .x/ dx.

D E F I N I T I O N

5

Simpson’s Rule

The Simpson’s Rule approximation to
R b

a
f .x/ dx based on a subdivision of

Œa; b� into an even number n of subintervals of equal length h D .b � a/=n is

denoted Sn and is given by:

Z b

a

f .x/ dx � Sn

D

h

3

�

y0 C 4y1 C 2y2 C 4y3 C 2y4 C � � � C 2yn�2 C 4yn�1 C yn

�

D

h

3

�

X

y“ends” C 4

X

y“odds” C 2

X

y“evens”

�

:
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6. Obtain the best Midpoint Rule approximation that you can for
R 9

1 f .x/ dx from the data in Figure 6.21.

7. The map of a region is traced on the grid in Figure 6.22,

where 1 unit in both the vertical and horizontal directions

represents 10 km. Use the Trapezoid Rule to obtain two

estimates for the area of the region.

y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

Figure 6.22

8. Find a Midpoint Rule estimate for the area of the region in

Exercise 7.

C 9. Find T4; M4; T8; M8, and T16 for
R 1:6

0 f .x/ dx for the

function f whose values are given in Table 1.

Table 1.

x f .x/ x f .x/

0:0 1:4142 0:1 1:4124

0:2 1:4071 0:3 1:3983

0:4 1:3860 0:5 1:3702

0:6 1:3510 0:7 1:3285

0:8 1:3026 0:9 1:2734

1:0 1:2411 1:1 1:2057

1:2 1:1772 1:3 1:1258

1:4 1:0817 1:5 1:0348

1:6 0:9853

C 10. Find the approximationsM8 and T16 for
R 1

0 e
�x2

dx. Quote a

value for the integral to as many decimal places as you feel are

justified.

C 11. Repeat Exercise 10 for
R �=2

0

sinx

x
dx. (Assume the integrand

is 1 at x D 0.)

12.A Compute the actual error in the approximation
R 1

0 x
2 dx � T1

and use it to show that the constant 12 in the estimate of

Theorem 4 cannot be improved. That is, show that the

absolute value of the actual error is as large as allowed by that

estimate.

13.A Repeat Exercise 12 for M1.

14.I Prove the error estimate for the Midpoint Rule in Theorem 4

as follows: If x1 � x0 D h and m1 is the midpoint of Œx0; x1�,

use the error estimate for the tangent line approximation

(Theorem 11 of Section 4.9) to show that

jf .x/ � f .m1/ � f
0
.m1/.x �m1/j �

K

2
.x �m1/

2
:

Use this inequality to show that

ˇ

ˇ

ˇ

ˇ

Z x1

x0

f .x/ dx � f .m1/h

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

Z x1

x0

�

f .x/ � f .m1/ � f
0
.m1/.x �m1/

�

dx

ˇ

ˇ

ˇ

ˇ

�

K

24
h

3
:

Complete the proof the same way used for the Trapezoid Rule

estimate in Theorem 4.

6.7 Simpson’s Rule

The Trapezoid Rule approximation to
R b

a
f .x/ dx results from approximating the graph

of f by straight line segments through adjacent pairs of data points on the graph. In-

tuitively, we would expect to do better if we approximate the graph by more general

curves. Since straight lines are the graphs of linear functions, the simplest obvious

generalization is to use the class of quadratic functions, that is, to approximate the

graph of f by segments of parabolas. This is the basis of Simpson’s Rule.

Suppose that we are given three points in the plane, one on each of three equally

spaced vertical lines, spaced, say, h units apart. If we choose the middle of these lines

as the y-axis, then the coordinates of the three points will be, say, .�h; yL/, .0; yM /,

and .h; yR/, as illustrated in Figure 6.23.
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Constants A, B , and C can be chosen so that the parabola y D AC Bx C Cx2

passes through these points; substituting the coordinates of the three points into the

equation of the parabola, we gety

x

yL

.�h; yL/
yM yR

.h; yR/

.0; yM /
y D AC Bx C Cx2

�h h

Figure 6.23 Fitting a quadratic graph

through three points with equal horizontal

spacing

yL D A � BhC Ch
2

yM D A

yR D AC BhC Ch
2

9

>

=

>

;

) A D yM and 2Ch
2
D yL � 2yM C yR:

Now we have
Z h

�h

.AC Bx C Cx
2
/ dx D

�

Ax C
B

2
x

2
C

C

3
x

3

�
ˇ

ˇ

ˇ

ˇ

h

�h

D 2AhC
2

3
Ch

3

D h

�

2yM C
1

3
.yL � 2yM C yR/

�

D

h

3
.yL C 4yM C yR/:

Thus, the area of the plane region bounded by the parabolic arc, the interval of length

2h on the x-axis, and the left and right vertical lines is equal to .h=3/ times the sum

of the heights of the region at the left and right edges and four times the height at the

middle. (It is independent of the position of the y-axis.)

Now suppose that we are given the same data for f as we were given for the

Trapezoid Rule; that is, we know the values yj D f .xj / .0 � j � n/ at nC 1 equally

spaced points

x0 D a; x1 D aC h; x2 D aC 2h; : : : ; xn D aC nh D b;

where h D .b � a/=n. We can approximate the graph of f over pairs of the

subintervals Œxj �1; xj � using parabolic segments and use the integrals of the corre-

sponding quadratic functions to approximate the integrals of f over these subintervals.

Since we need to use the subintervals two at a time, we must assume that n is even.

Using the integral computed for the parabolic segment above, we have
Z x2

x0

f .x/ dx �
h

3
.y0 C 4y1 C y2/

Z x4

x2

f .x/ dx �
h

3
.y2 C 4y3 C y4/

:
:
:

Z xn

xn�2

f .x/ dx �
h

3
.yn�2 C 4yn�1 C yn/:

Adding these n=2 individual approximations, we get the Simpson’s Rule approxima-

tion to the integral
R b

a
f .x/ dx.

D E F I N I T I O N

5

Simpson’s Rule

The Simpson’s Rule approximation to
R b

a
f .x/ dx based on a subdivision of

Œa; b� into an even number n of subintervals of equal length h D .b � a/=n is

denoted Sn and is given by:

Z b

a

f .x/ dx � Sn

D

h

3

�

y0 C 4y1 C 2y2 C 4y3 C 2y4 C � � � C 2yn�2 C 4yn�1 C yn

�

D

h

3

�

X

y“ends” C 4

X

y“odds” C 2

X

y“evens”

�

:
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Note that the Simpson’s Rule approximation Sn requires no more data than does the

Trapezoid Rule approximation Tn; both require the values of f .x/ at n C 1 equally

spaced points. However, Simpson’s Rule treats the data differently, weighting succes-

sive values either 1=3, 2=3, or 4=3. As we will see, this can produce a much better

approximation to the integral of f:

E X A M P L E 1 Calculate the approximations S4, S8, and S16 for I D

Z 2

1

1

x
dx

and compare them with the actual value I D ln 2 D 0:693 147 18 : : : ,

and with the values of T4, T8, and T16 obtained in Example 1 of Section 6.6.

Solution We calculate

S4 D
1

12

�

1C 4

�

4

5

�

C 2

�

2

3

�

C 4

�

4

7

�

C

1

2

�

D 0:693 253 97 : : : ;

S8 D
1

24

�

1C
1

2
C 4

�

8

9
C

8

11
C

8

13
C

8

15

�

C2

�

4

5
C

2

3
C

4

7

��

D 0:693 154 53 : : : ;

S16 D
1

48

�

1C
1

2

C4

�

16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

C2

�

8

9
C

4

5
C

8

11
C

2

3
C

8

13
C

4

7
C

8

15

��

D 0:693 147 65 : : : :

The errors are

I � S4 D 0:693 147 18 : : : � 0:693 253 97 : : : D �0:000 106 79;

I � S8 D 0:693 147 18 : : : � 0:693 154 53 : : : D �0:000 007 35;

I � S16 D 0:693 147 18 : : : � 0:693 147 65 : : : D �0:000 000 47:

These errors are evidently much smaller than the corresponding errors for the Trape-

zoid or Midpoint Rule approximations.

Remark Simpson’s Rule S2n makes use of the same 2nC 1 data values that Tn and

Mn together use. It is not difficult to verify that

S2n D
Tn C 2Mn

3
; S2n D

2T2n CMn

3
; and S2n D

4T2n � Tn

3
:

Figure 6.19 and Theorem 4 in Section 6.6 suggest why the first of these formulas ought

to yield a particularly good approximation to I:

Obtaining an error estimate for Simpson’s Rule is more difficult than for the Trape-

zoid Rule. We state the appropriate estimate in the following theorem, but we do not

attempt any proof. Proofs can be found in textbooks on numerical analysis.
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T H E O R E M

5

Error estimate for Simpson’s Rule

If f has a continuous fourth derivative on the interval Œa; b�, satisfying

jf .4/.x/j � K there, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Sn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

180
h

4
D

K.b � a/5

180n4
;

where h D .b � a/=n.

Observe that, as n increases, the error decreases as the fourth power of h and, hence,

as 1=n4. Using the big-O notation we have

Z b

a

f .x/ dx D Sn CO

�

1

n4

�

as n!1:

This accounts for the fact that Sn is a much better approximation than is Tn, provided

that h is small and jf .4/
.x/j is not unduly large compared with jf 00

.x/j. Note also

that for any (even) n, Sn gives the exact value of the integral of any cubic function

f .x/ D AC Bx C Cx2
CDx3; f .4/.x/ D 0 identically for such f; so we can take

K D 0 in the error estimate.

E X A M P L E 2
Obtain bounds for the absolute values of the errors in the approx-

imations of Example 1.

Solution If f .x/ D 1=x, then

f
0
.x/ D �

1

x2
; f

00
.x/ D

2

x3
; f

.3/
.x/ D �

6

x4
; f

.4/
.x/ D

24

x5
:

Clearly, jf .4/.x/j � 24 on Œ1; 2�, so we can takeK D 24 in the estimate of Theorem 5.

We have

jI � S4j �
24.2 � 1/

180

�

1

4

�4

� 0:000 520 83;

jI � S8j �
24.2 � 1/

180

�

1

8

�4

� 0:000 032 55;

jI � S16j �
24.2 � 1/

180

�

1

16

�4

� 0:000 002 03:

Again we observe that the actual errors are well within these bounds.

E X A M P L E 3
A function f satisfies jf .4/.x/j � 7 on the interval Œ1; 3�, and

the values f .1:0/ D 0:1860, f .1:5/ D 0:9411, f .2:0/ D 1:1550,

f .2:5/ D 1:4511, and f .3:0/ D 1:2144. Find the best possible Simpson’s Rule ap-

proximation to I D
R 3

1
f .x/ dx based on these data. Give a bound for the size of the

error, and specify the smallest interval you can that must contain the value of I:

Solution We take n D 4, so that h D .3 � 1/=4 D 0:5, and we obtain

I D

Z 3

1

f .x/ dx

� S4 D
0:5

3

�

0:1860C 4.0:9411C 1:4511/C 2.1:1550/C 1:2144
�

D 2:2132:
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Note that the Simpson’s Rule approximation Sn requires no more data than does the

Trapezoid Rule approximation Tn; both require the values of f .x/ at n C 1 equally

spaced points. However, Simpson’s Rule treats the data differently, weighting succes-

sive values either 1=3, 2=3, or 4=3. As we will see, this can produce a much better

approximation to the integral of f:

E X A M P L E 1 Calculate the approximations S4, S8, and S16 for I D

Z 2

1

1

x
dx

and compare them with the actual value I D ln 2 D 0:693 147 18 : : : ,

and with the values of T4, T8, and T16 obtained in Example 1 of Section 6.6.

Solution We calculate

S4 D
1

12

�

1C 4

�

4

5

�

C 2

�

2

3

�

C 4

�

4

7

�

C

1

2

�

D 0:693 253 97 : : : ;

S8 D
1

24

�

1C
1

2
C 4

�

8

9
C

8

11
C

8

13
C

8

15

�

C2

�

4

5
C

2

3
C

4

7

��

D 0:693 154 53 : : : ;

S16 D
1

48

�

1C
1

2

C4

�

16

17
C

16

19
C

16

21
C

16

23
C

16

25
C

16

27
C

16

29
C

16

31

�

C2

�

8

9
C

4

5
C

8

11
C

2

3
C

8

13
C

4

7
C

8

15

��

D 0:693 147 65 : : : :

The errors are

I � S4 D 0:693 147 18 : : : � 0:693 253 97 : : : D �0:000 106 79;

I � S8 D 0:693 147 18 : : : � 0:693 154 53 : : : D �0:000 007 35;

I � S16 D 0:693 147 18 : : : � 0:693 147 65 : : : D �0:000 000 47:

These errors are evidently much smaller than the corresponding errors for the Trape-

zoid or Midpoint Rule approximations.

Remark Simpson’s Rule S2n makes use of the same 2nC 1 data values that Tn and

Mn together use. It is not difficult to verify that

S2n D
Tn C 2Mn

3
; S2n D

2T2n CMn

3
; and S2n D

4T2n � Tn

3
:

Figure 6.19 and Theorem 4 in Section 6.6 suggest why the first of these formulas ought

to yield a particularly good approximation to I:

Obtaining an error estimate for Simpson’s Rule is more difficult than for the Trape-

zoid Rule. We state the appropriate estimate in the following theorem, but we do not

attempt any proof. Proofs can be found in textbooks on numerical analysis.
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T H E O R E M

5

Error estimate for Simpson’s Rule

If f has a continuous fourth derivative on the interval Œa; b�, satisfying

jf .4/.x/j � K there, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx � Sn

ˇ

ˇ

ˇ

ˇ

ˇ

�

K.b � a/

180
h

4
D

K.b � a/5

180n4
;

where h D .b � a/=n.

Observe that, as n increases, the error decreases as the fourth power of h and, hence,

as 1=n4. Using the big-O notation we have

Z b

a

f .x/ dx D Sn CO

�

1

n4

�

as n!1:

This accounts for the fact that Sn is a much better approximation than is Tn, provided

that h is small and jf .4/
.x/j is not unduly large compared with jf 00

.x/j. Note also

that for any (even) n, Sn gives the exact value of the integral of any cubic function

f .x/ D AC Bx C Cx2
CDx3; f .4/.x/ D 0 identically for such f; so we can take

K D 0 in the error estimate.

E X A M P L E 2
Obtain bounds for the absolute values of the errors in the approx-

imations of Example 1.

Solution If f .x/ D 1=x, then

f
0
.x/ D �

1

x2
; f

00
.x/ D

2

x3
; f

.3/
.x/ D �

6

x4
; f

.4/
.x/ D

24

x5
:

Clearly, jf .4/.x/j � 24 on Œ1; 2�, so we can takeK D 24 in the estimate of Theorem 5.

We have

jI � S4j �
24.2 � 1/

180

�

1

4

�4

� 0:000 520 83;

jI � S8j �
24.2 � 1/

180

�

1

8

�4

� 0:000 032 55;

jI � S16j �
24.2 � 1/

180

�

1

16

�4

� 0:000 002 03:

Again we observe that the actual errors are well within these bounds.

E X A M P L E 3
A function f satisfies jf .4/.x/j � 7 on the interval Œ1; 3�, and

the values f .1:0/ D 0:1860, f .1:5/ D 0:9411, f .2:0/ D 1:1550,

f .2:5/ D 1:4511, and f .3:0/ D 1:2144. Find the best possible Simpson’s Rule ap-

proximation to I D
R 3

1
f .x/ dx based on these data. Give a bound for the size of the

error, and specify the smallest interval you can that must contain the value of I:

Solution We take n D 4, so that h D .3 � 1/=4 D 0:5, and we obtain

I D

Z 3

1

f .x/ dx

� S4 D
0:5

3

�

0:1860C 4.0:9411C 1:4511/C 2.1:1550/C 1:2144
�

D 2:2132:
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Since jf .4/.x/j � 7 on Œ1; 3�, we have

jI � S4j �
7.3 � 1/

180
.0:5/

4
< 0:0049:

I must therefore satisfy

2:2132 � 0:0049 < I < 2:2132C 0:0049 or 2:2083 < I < 2:2181:

E X E R C I S E S 6.7

In Exercises 1–4, find Simpson’s Rule approximations S4 and S8

for the given functions. Compare your results with the actual

values of the integrals and with the corresponding Trapezoid Rule

approximations obtained in Exercises 1–4 of Section 6.6.

1.C I D

Z 2

0

.1C x
2
/ dx 2.C I D

Z 1

0

e
�x
dx

3.C I D

Z �=2

0

sinx dx 4.C I D

Z 1

0

dx

1C x2

5. Find the Simpson’s Rule approximation S8 for the integral in

Exercise 5 of Section 6.6.

6. Find the best Simpson’s Rule approximation that you can for

the area of the region in Exercise 7 of Section 6.6.

C 7. Use Theorem 5 to obtain bounds for the errors in the

approximations obtained in Exercises 2 and 3 above.

8. Verify that S2n D
Tn C 2Mn

3
D

2T2n CMn

3
, where Tn and

Mn refer to the appropriate Trapezoid and Midpoint Rule

approximations. Deduce that S2n D
4T2n � Tn

3
.

C 9. Find S4, S8, and S16 for
R 1:6

0 f .x/ dx for the function f

whose values are tabulated in Exercise 9 of Section 6.6.

C 10. Find the Simpson’s Rule approximations S8 and S16 for
R 1

0 e
�x2

dx. Quote a value for the integral to the number of

decimal places you feel is justified based on comparing the

two approximations.

11.A Compute the actual error in the approximation
R 1

0 x
4
dx � S2 and use it to show that the constant 180 in the

estimate of Theorem 5 cannot be improved.

12.A Since Simpson’s Rule is based on quadratic approximation, it

is not surprising that it should give an exact value for an

integral of AC Bx C Cx2. It is more surprising that it is

exact for a cubic function as well. Verify by direct calculation

that
R 1

0 x
3 dx D S2.

6.8 Other Aspects of Approximate Integration

The numerical methods described in Sections 6.6 and 6.7 are suitable for finding ap-

proximate values for integrals of the form

I D

Z b

a

f .x/ dx;

where Œa; b� is a finite interval and the integrand f is “well-behaved” on Œa; b�. In

particular, I must be a proper integral. There are many other methods for dealing

with such integrals, some of which we mention later in this section. First, however,

we consider what can be done if the function f isn’t “well-behaved” on Œa; b�. We

mean by this that either the integral is improper or f doesn’t have sufficiently many

continuous derivatives on Œa; b� to justify whatever numerical methods we want to use.

The ideas of this section are best presented by means of concrete examples.

E X A M P L E 1 Describe how to would evaluate the integral I D

Z 1

0

p

x e
x
dx

numerically?

Solution Although I is a proper integral, with integrand f .x/ D
p

x ex satisfying

f .x/! 0 as x ! 0C, nevertheless, the standard numerical methods can be expected

to perform poorly for I because the derivatives of f are not bounded near 0. This

problem is easily remedied; just make the change of variable x D t
2 and rewrite I in

the form

I D 2

Z 1

0

t
2
e

t2

dt;
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whose integrand g.t/ D t2 et2
has bounded derivatives near 0. The latter integral can

be efficiently approximated by the methods of Sections 6.6 and 6.7.

Approximating Improper Integrals

E X A M P L E 2 Describe how to evaluate I D

Z 1

0

cos x
p

x
dx numerically.

Solution The integral is improper, but convergent because, on Œ0; 1�,

0 <
cos x
p

x
�

1
p

x
and

Z 1

0

dx
p

x
D 2:

However, since limx!0C
cos x
p

x
D 1, we cannot directly apply any of the techniques

developed in Sections 6.6 and 6.7. (y0 is infinite.) The substitution x D t
2 removes

this difficulty:

I D

Z 1

0

cos t2

t
2t dt D 2

Z 1

0

cos t2 dt:

The latter integral is not improper and is well-behaved. Numerical techniques can be

applied to evaluate it.

E X A M P L E 3 Show how to evaluate I D

Z 1

0

dx
p

2C x2
C x4

by numerical

means.

Solution Here, the integral is improper of type I; the interval of integration is infinite.

Although there is no singularity at x D 0, it is still useful to break the integral into two

parts:

I D

Z 1

0

dx
p

2C x2
C x4

C

Z 1

1

dx
p

2C x2
C x4

D I1 C I2:

I1 is proper. In I2 make the change of variable x D 1=t :

I2 D

Z 1

0

dt

t2

r

2C
1

t2
C

1

t4

D

Z 1

0

dt
p

2t4 C t2 C 1
:

This is also a proper integral. If desired, I1 and I2 can be recombined into a single

integral before numerical methods are applied:

I D

Z 1

0

�

1
p

2C x2
C x4

C

1
p

2x4
C x2

C 1

�

dx:

Example 3 suggests that when an integral is taken over an infinite interval, a change of

variable should be made to convert the integral to a finite interval.

Using Taylor’s Formula
Taylor’s formula (see Section 4.10) can sometimes be useful for evaluating integrals.

Here is an example.

E X A M P L E 4
Use Taylor’s formula for f .x/ D ex ; obtained in Section 4.10,

to evaluate the integral
R 1

0
ex2

dx to within an error of less than

10�4.
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Since jf .4/.x/j � 7 on Œ1; 3�, we have

jI � S4j �
7.3 � 1/

180
.0:5/

4
< 0:0049:

I must therefore satisfy

2:2132 � 0:0049 < I < 2:2132C 0:0049 or 2:2083 < I < 2:2181:

E X E R C I S E S 6.7

In Exercises 1–4, find Simpson’s Rule approximations S4 and S8

for the given functions. Compare your results with the actual

values of the integrals and with the corresponding Trapezoid Rule

approximations obtained in Exercises 1–4 of Section 6.6.

1.C I D

Z 2

0

.1C x
2
/ dx 2.C I D

Z 1

0

e
�x
dx

3.C I D

Z �=2

0

sinx dx 4.C I D

Z 1

0

dx

1C x2

5. Find the Simpson’s Rule approximation S8 for the integral in

Exercise 5 of Section 6.6.

6. Find the best Simpson’s Rule approximation that you can for

the area of the region in Exercise 7 of Section 6.6.

C 7. Use Theorem 5 to obtain bounds for the errors in the

approximations obtained in Exercises 2 and 3 above.

8. Verify that S2n D
Tn C 2Mn

3
D

2T2n CMn

3
, where Tn and

Mn refer to the appropriate Trapezoid and Midpoint Rule

approximations. Deduce that S2n D
4T2n � Tn

3
.

C 9. Find S4, S8, and S16 for
R 1:6

0 f .x/ dx for the function f

whose values are tabulated in Exercise 9 of Section 6.6.

C 10. Find the Simpson’s Rule approximations S8 and S16 for
R 1

0 e
�x2

dx. Quote a value for the integral to the number of

decimal places you feel is justified based on comparing the

two approximations.

11.A Compute the actual error in the approximation
R 1

0 x
4
dx � S2 and use it to show that the constant 180 in the

estimate of Theorem 5 cannot be improved.

12.A Since Simpson’s Rule is based on quadratic approximation, it

is not surprising that it should give an exact value for an

integral of AC Bx C Cx2. It is more surprising that it is

exact for a cubic function as well. Verify by direct calculation

that
R 1

0 x
3 dx D S2.

6.8 Other Aspects of Approximate Integration

The numerical methods described in Sections 6.6 and 6.7 are suitable for finding ap-

proximate values for integrals of the form

I D

Z b

a

f .x/ dx;

where Œa; b� is a finite interval and the integrand f is “well-behaved” on Œa; b�. In

particular, I must be a proper integral. There are many other methods for dealing

with such integrals, some of which we mention later in this section. First, however,

we consider what can be done if the function f isn’t “well-behaved” on Œa; b�. We

mean by this that either the integral is improper or f doesn’t have sufficiently many

continuous derivatives on Œa; b� to justify whatever numerical methods we want to use.

The ideas of this section are best presented by means of concrete examples.

E X A M P L E 1 Describe how to would evaluate the integral I D

Z 1

0

p

x e
x
dx

numerically?

Solution Although I is a proper integral, with integrand f .x/ D
p

x ex satisfying

f .x/! 0 as x ! 0C, nevertheless, the standard numerical methods can be expected

to perform poorly for I because the derivatives of f are not bounded near 0. This

problem is easily remedied; just make the change of variable x D t
2 and rewrite I in

the form

I D 2

Z 1

0

t
2
e

t2

dt;
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whose integrand g.t/ D t2 et2
has bounded derivatives near 0. The latter integral can

be efficiently approximated by the methods of Sections 6.6 and 6.7.

Approximating Improper Integrals

E X A M P L E 2 Describe how to evaluate I D

Z 1

0

cos x
p

x
dx numerically.

Solution The integral is improper, but convergent because, on Œ0; 1�,

0 <
cos x
p

x
�

1
p

x
and

Z 1

0

dx
p

x
D 2:

However, since limx!0C
cos x
p

x
D 1, we cannot directly apply any of the techniques

developed in Sections 6.6 and 6.7. (y0 is infinite.) The substitution x D t
2 removes

this difficulty:

I D

Z 1

0

cos t2

t
2t dt D 2

Z 1

0

cos t2 dt:

The latter integral is not improper and is well-behaved. Numerical techniques can be

applied to evaluate it.

E X A M P L E 3 Show how to evaluate I D

Z 1

0

dx
p

2C x2
C x4

by numerical

means.

Solution Here, the integral is improper of type I; the interval of integration is infinite.

Although there is no singularity at x D 0, it is still useful to break the integral into two

parts:

I D

Z 1

0

dx
p

2C x2
C x4

C

Z 1

1

dx
p

2C x2
C x4

D I1 C I2:

I1 is proper. In I2 make the change of variable x D 1=t :

I2 D

Z 1

0

dt

t2

r

2C
1

t2
C

1

t4

D

Z 1

0

dt
p

2t4 C t2 C 1
:

This is also a proper integral. If desired, I1 and I2 can be recombined into a single

integral before numerical methods are applied:

I D

Z 1

0

�

1
p

2C x2
C x4

C

1
p

2x4
C x2

C 1

�

dx:

Example 3 suggests that when an integral is taken over an infinite interval, a change of

variable should be made to convert the integral to a finite interval.

Using Taylor’s Formula
Taylor’s formula (see Section 4.10) can sometimes be useful for evaluating integrals.

Here is an example.

E X A M P L E 4
Use Taylor’s formula for f .x/ D ex ; obtained in Section 4.10,

to evaluate the integral
R 1

0
ex2

dx to within an error of less than

10�4.
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Solution In Example 4 of Section 4.10 we showed that

f .x/ D e
x
D 1C x C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
CEn.x/;

where

En.x/ D
eX

.nC 1/Š
x

nC1

for some X between 0 and x. If 0 � x � 1, then 0 � X � 1, so eX
� e < 3.

Therefore,

jEn.x/j �
3

.nC 1/Š
x

nC1
:

Now replace x by x2 in the formula for ex above and integrate from 0 to 1:

Z 1

0

e
x2

dx D

Z 1

0

�

1C x
2
C

x4

2Š
C � � � C

x2n

nŠ

�

dx C

Z 1

0

En.x
2
/ dx

D 1C
1

3
C

1

5 � 2Š
C � � � C

1

.2nC 1/nŠ
C

Z 1

0

En.x
2
/ dx:

We want the error to be less than 10�4, so we estimate the remainder term:

ˇ

ˇ

ˇ

ˇ

Z 1

0

En.x
2
/ dx

ˇ

ˇ

ˇ

ˇ

�

3

.nC 1/Š

Z 1

0

x
2.nC1/

dx D
3

.nC 1/Š.2nC 3/
< 10

�4
;

provided .2n C 3/.nC 1/Š > 30;000. Since 13 � 6Š D 9;360 and 15 � 7Š D 75;600,

we need n D 6. Thus,

Z 1

0

e
x2

dx � 1C
1

3
C

1

5 � 2Š
C

1

7 � 3Š
C

1

9 � 4Š
C

1

11 � 5Š
C

1

13 � 6Š

� 1:462 64

with error less than 10�4.

Romberg Integration
Using Taylor’s formula, it is possible to verify that for a function f having continuous

derivatives up to order 2mC 2 on Œa; b� the error En D I � Tn in the Trapezoid Rule

approximation Tn to I D
R b

a
f .x/ dx satisfies

En D I � Tn D
C1

n2
C

C2

n4
C

C3

n6
C � � � C

Cm

n2m
CO

�

1

n2mC2

�

;

where the constants Cj depend on the 2j th derivative of f: It is possible to use this

formula to obtain higher-order approximations to I; starting with Trapezoid Rule ap-

proximations. The technique is known as Romberg integration or Richardson ex-

trapolation.

To begin, suppose we have constructed Trapezoid Rule approximations for values

of n that are powers of 2: n D 1; 2; 4; 8; : : :. Accordingly, let us define

T
0
k D T2k : Thus, T

0
0 D T1; T

0
1 D T2; T

0
2 D T4; : : : :
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Using the formula for T2k D I � E2k given above, we write

T
0
k D I �

C1

4k
�

C2

42k
� � � � �

Cm

4mk
CO

�

1

4.mC1/k

�

(as k !1).

Similarly, replacing k by k C 1, we get

T
0
kC1 D I �

C1

4kC1
�

C2

42.kC1/
� � � � �

Cm

4m.kC1/
CO

�

1

4.mC1/.kC1/

�

:

If we multiply the formula for T 0
kC1

by 4 and subtract the formula for T 0
k

, the terms

involving C1 will cancel out. The first term on the right will be 4I � I D 3I , so let us

also divide by 3 and define T 1
kC1

to be the result. Then as k !1, we have

T
1
kC1 D

4T
0
kC1
� T

0
k

3
D I �

C
1
2

42k
�

C
1
3

43k
� � � � �

C 1
m

4mk
CO

�

1

4.mC1/k

�

:

(The C 1
i are new constants.) Unless these constants are much larger than the previous

ones, T 1
kC1

ought to be a better approximation to I than T 0
kC1

since we have elimi-

nated the lowest order (and therefore the largest) of the error terms, C1=4
kC1. In fact,

Exercise 8 in Section 6.7 shows that T 1
kC1
D S2kC1 , the Simpson’s Rule approximation

based on 2kC1 subintervals.

We can continue the process of eliminating error terms begun above. Replacing

k C 1 by k C 2 in the expression for T 1
kC1

, we obtain

T
1
kC2 D I �

C 1
2

42.kC1/
�

C 1
3

43.kC1/
� � � � �

C 1
m

4m.kC1/
CO

�

1

4.mC1/.kC1/

�

:

To eliminate C 1
2 we can multiply the second formula by 16, subtract the first formula,

and divide by 15. Denoting the result T 2
kC2

, we have, as k !1,

T
2
kC2 D

16T
1
kC2
� T

1
kC1

15
D I �

C
2
3

43k
� � � � �

C 2
m

4mk
CO

�

1

4.mC1/k

�

:

We can proceed in this way, eliminating one error term after another. In general, for

j < m and k � 0,

T
j

kCj
D

4
j
T

j �1

kCj
� T

j �1

kCj �1

4j
� 1

D I �
C

j
j C1

4.j C1/k
� � � � �

C
j
m

4mk
CO

�

1

4.mC1/k

�

:

The big-O term refers to k !1 for fixed j: All this looks very complicated, but it is

not difficult to carry out in practice, especially with the aid of a computer spreadsheet.

Let Rj D T
j

j , called a Romberg approximation to I , and calculate the entries in the

following scheme in order from left to right and down each column when you come

to it:

Scheme for calculating Romberg approximations

T
0
0 D T1 D R0 � T

0
1 D T2 � T

0
2 D T4 � T

0
3 D T8 �

# # #

T
1
1 D S2 D R1 T

1
2 D S4 T

1
3 D S8

# #

T 2
2 D R2 T 2

3

#

T 3
3 D R3
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Solution In Example 4 of Section 4.10 we showed that

f .x/ D e
x
D 1C x C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
CEn.x/;

where

En.x/ D
eX

.nC 1/Š
x

nC1

for some X between 0 and x. If 0 � x � 1, then 0 � X � 1, so eX
� e < 3.

Therefore,

jEn.x/j �
3

.nC 1/Š
x

nC1
:

Now replace x by x2 in the formula for ex above and integrate from 0 to 1:

Z 1

0

e
x2

dx D

Z 1

0

�

1C x
2
C

x4

2Š
C � � � C

x2n

nŠ

�

dx C

Z 1

0

En.x
2
/ dx

D 1C
1

3
C

1

5 � 2Š
C � � � C

1

.2nC 1/nŠ
C

Z 1

0

En.x
2
/ dx:

We want the error to be less than 10�4, so we estimate the remainder term:

ˇ

ˇ

ˇ

ˇ

Z 1

0

En.x
2
/ dx

ˇ

ˇ

ˇ

ˇ

�

3

.nC 1/Š

Z 1

0

x
2.nC1/

dx D
3

.nC 1/Š.2nC 3/
< 10

�4
;

provided .2n C 3/.nC 1/Š > 30;000. Since 13 � 6Š D 9;360 and 15 � 7Š D 75;600,

we need n D 6. Thus,

Z 1

0

e
x2

dx � 1C
1

3
C

1

5 � 2Š
C

1

7 � 3Š
C

1

9 � 4Š
C

1

11 � 5Š
C

1

13 � 6Š

� 1:462 64

with error less than 10�4.

Romberg Integration
Using Taylor’s formula, it is possible to verify that for a function f having continuous

derivatives up to order 2mC 2 on Œa; b� the error En D I � Tn in the Trapezoid Rule

approximation Tn to I D
R b

a
f .x/ dx satisfies

En D I � Tn D
C1

n2
C

C2

n4
C

C3

n6
C � � � C

Cm

n2m
CO

�

1

n2mC2

�

;

where the constants Cj depend on the 2j th derivative of f: It is possible to use this

formula to obtain higher-order approximations to I; starting with Trapezoid Rule ap-

proximations. The technique is known as Romberg integration or Richardson ex-

trapolation.

To begin, suppose we have constructed Trapezoid Rule approximations for values

of n that are powers of 2: n D 1; 2; 4; 8; : : :. Accordingly, let us define

T
0
k D T2k : Thus, T

0
0 D T1; T

0
1 D T2; T

0
2 D T4; : : : :
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Using the formula for T2k D I � E2k given above, we write

T
0
k D I �

C1

4k
�

C2

42k
� � � � �

Cm

4mk
CO

�

1

4.mC1/k

�

(as k !1).

Similarly, replacing k by k C 1, we get

T
0
kC1 D I �

C1

4kC1
�

C2

42.kC1/
� � � � �

Cm

4m.kC1/
CO

�

1

4.mC1/.kC1/

�

:

If we multiply the formula for T 0
kC1

by 4 and subtract the formula for T 0
k

, the terms

involving C1 will cancel out. The first term on the right will be 4I � I D 3I , so let us

also divide by 3 and define T 1
kC1

to be the result. Then as k !1, we have

T
1
kC1 D

4T
0
kC1
� T

0
k

3
D I �

C
1
2

42k
�

C
1
3

43k
� � � � �

C 1
m

4mk
CO

�

1

4.mC1/k

�

:

(The C 1
i are new constants.) Unless these constants are much larger than the previous

ones, T 1
kC1

ought to be a better approximation to I than T 0
kC1

since we have elimi-

nated the lowest order (and therefore the largest) of the error terms, C1=4
kC1. In fact,

Exercise 8 in Section 6.7 shows that T 1
kC1
D S2kC1 , the Simpson’s Rule approximation

based on 2kC1 subintervals.

We can continue the process of eliminating error terms begun above. Replacing

k C 1 by k C 2 in the expression for T 1
kC1

, we obtain

T
1
kC2 D I �

C 1
2

42.kC1/
�

C 1
3

43.kC1/
� � � � �

C 1
m

4m.kC1/
CO

�

1

4.mC1/.kC1/

�

:

To eliminate C 1
2 we can multiply the second formula by 16, subtract the first formula,

and divide by 15. Denoting the result T 2
kC2

, we have, as k !1,

T
2
kC2 D

16T
1
kC2
� T

1
kC1

15
D I �

C
2
3

43k
� � � � �

C 2
m

4mk
CO

�

1

4.mC1/k

�

:

We can proceed in this way, eliminating one error term after another. In general, for

j < m and k � 0,

T
j

kCj
D

4
j
T

j �1

kCj
� T

j �1

kCj �1

4j
� 1

D I �
C

j
j C1

4.j C1/k
� � � � �

C
j
m

4mk
CO

�

1

4.mC1/k

�

:

The big-O term refers to k !1 for fixed j: All this looks very complicated, but it is

not difficult to carry out in practice, especially with the aid of a computer spreadsheet.

Let Rj D T
j

j , called a Romberg approximation to I , and calculate the entries in the

following scheme in order from left to right and down each column when you come

to it:

Scheme for calculating Romberg approximations

T
0
0 D T1 D R0 � T

0
1 D T2 � T

0
2 D T4 � T

0
3 D T8 �

# # #

T
1
1 D S2 D R1 T

1
2 D S4 T

1
3 D S8

# #

T 2
2 D R2 T 2

3

#

T 3
3 D R3

9780134154367_Calculus   405 05/12/16   3:26 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 6 – page 386 October 15, 2016

386 CHAPTER 6 Techniques of Integration

Stop when T
j �1

j and Rj differ by less than the acceptable error, and quote Rj as the

Romberg approximation to
R b

a
f .x/ dx.

The top line in the scheme is made up of the Trapezoid Rule approximations T1,

T2, T4, T8, : : : . Elements in subsequent rows are calculated by the following formulas:

Formulas for calculating Romberg approximations

T
1
1 D

4T
0
1 � T

0
0

3
T

1
2 D

4T
0
2 � T

0
1

3
T

1
3 D

4T
0
3 � T

0
2

3
� � �

T
2
2 D

16T
1
2 � T

1
1

15
T

2
3 D

16T
1
3 � T

1
2

15
� � �

T 3
3 D

64T 2
3 � T

2
2

63
� � �

In general, if 1 � j � k, then T
j

k
D

4jT
j �1

k
� T

j �1

k�1

4j
� 1

:

Each new entry is calculated from the one above and the one to the left of that one.

E X A M P L E 5
Calculate the Romberg approximations R0, R1, R2, R3, and R4

for the integral I D

Z 2

1

1

x
dx.

Solution We will carry all calculations to 8 decimal places. Since we must obtain

R4, we will need to find all the entries in the first five columns of the scheme. First we

calculate the first two Trapezoid Rule approximations:

R0 D T
0
0 D T1 D

1

2
C

1

4
D 0:750 000 00;

T
0
1 D T2 D

1

2

�

1

2
.1/C

2

3
C

1

2

�

1

2

��

D 0:708 333 33:

The remaining required Trapezoid Rule approximations were calculated in Example 1

of Section 6.6, so we will just record them here:

T
0
2 D T4 D 0:697 023 81;

T
0
3 D T8 D 0:694 121 85;

T
0
4 D T16 D 0:693 391 20:

Now we calculate down the columns from left to right. For the second column:

R1 D S2 D T
1
1 D

4T 0
1 � T

0
0

3
D 0:694 444 44I

the third column:

S4 D T
1
2 D

4T
0
2 � T

0
1

3
D 0:693 253 97;

R2 D T
2
2 D

16T 1
2 � T

1
1

15
D 0:693 174 60I

the fourth column:

S8 D T
1
3 D

4T
0
3 � T

0
2

3
D 0:693 154 53;

T
2
3 D

16T
1
3 � T

1
2

15
D 0:693 147 90;

R3 D T
3
3 D

64T 2
3 � T

2
2

63
D 0:693 147 48I
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and the fifth column:

S16 D T
1
4 D

4T
0
4 � T

0
3

3
D 0:693 147 65;

T
2
4 D

16T 1
4 � T

1
3

15
D 0:693 147 19;

T
3
4 D

64T
2
4 � T

2
3

63
D 0:693 147 18;

R4 D T
4
4 D

256T 3
4 � T

3
3

255
D 0:693 147 18:

Since T 3
4 and R4 agree to the 8 decimal places we are calculating, we expect that

I D

Z 2

1

dx

x
D ln 2 � 0:693 147 18 : : : :

The various approximations calculated above suggest that for any given value of n D

2k , the Romberg approximation Rn should give the best value obtainable for the inte-

gral based on the nC 1 data values y0, y1, : : : , yn. This is so only if the derivatives

f .n/.x/ do not grow too rapidly as n increases.

The Importance of Higher-Order Methods
Higher-order methods, such as Romberg, remove lower-order error by manipulating

series. Removing lower-order error is of enormous importance for computation. With-

out it, even simple computations would be impossible for all practical purposes. For

example, consider again the integral I D

Z 2

1

1

x
dx.

We can use Maple to compute this integral numerically to 16 digits (classical

double precision),

> Digits=16:

> int(1/x, x = 1 .. 2.);

0:6931471805599453

Comparison with ln 2

> ln(2.);

0:6931471805599453

confirms the consistency of this calculation. Furthermore, we can compute the proces-

sor time for this calculation

> time(int(1/x, x = 1 .. 2.));

0:033

which indicates that, on the system used, 16 digits of accuracy is produced in hun-

dredths of seconds of processor time.

Now let’s consider what happens without removing lower-order error. If we were

to estimate this integral using a simple end point Riemann sum, as we used in the

original definition of a definite integral, the error is O.h/ or O.1=n/. Let the step size

be 10�7.

> 1e-7*add(1/(1+i/1e7), i = 1 .. 1e7);

0:6931471555599459

which has an error of 2:5� 10�8. The processor time used to do this sum computation

is given by
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Stop when T
j �1

j and Rj differ by less than the acceptable error, and quote Rj as the

Romberg approximation to
R b

a
f .x/ dx.

The top line in the scheme is made up of the Trapezoid Rule approximations T1,

T2, T4, T8, : : : . Elements in subsequent rows are calculated by the following formulas:

Formulas for calculating Romberg approximations

T
1
1 D

4T
0
1 � T

0
0

3
T

1
2 D

4T
0
2 � T

0
1

3
T

1
3 D

4T
0
3 � T

0
2

3
� � �

T
2
2 D

16T
1
2 � T

1
1

15
T

2
3 D

16T
1
3 � T

1
2

15
� � �

T 3
3 D

64T 2
3 � T

2
2

63
� � �

In general, if 1 � j � k, then T
j

k
D

4jT
j �1

k
� T

j �1

k�1

4j
� 1

:

Each new entry is calculated from the one above and the one to the left of that one.

E X A M P L E 5
Calculate the Romberg approximations R0, R1, R2, R3, and R4

for the integral I D

Z 2

1

1

x
dx.

Solution We will carry all calculations to 8 decimal places. Since we must obtain

R4, we will need to find all the entries in the first five columns of the scheme. First we

calculate the first two Trapezoid Rule approximations:

R0 D T
0
0 D T1 D

1

2
C

1

4
D 0:750 000 00;

T
0
1 D T2 D

1

2

�

1

2
.1/C

2

3
C

1

2

�

1

2

��

D 0:708 333 33:

The remaining required Trapezoid Rule approximations were calculated in Example 1

of Section 6.6, so we will just record them here:

T
0
2 D T4 D 0:697 023 81;

T
0
3 D T8 D 0:694 121 85;

T
0
4 D T16 D 0:693 391 20:

Now we calculate down the columns from left to right. For the second column:

R1 D S2 D T
1
1 D

4T 0
1 � T

0
0

3
D 0:694 444 44I

the third column:

S4 D T
1
2 D

4T
0
2 � T

0
1

3
D 0:693 253 97;

R2 D T
2
2 D

16T 1
2 � T

1
1

15
D 0:693 174 60I

the fourth column:

S8 D T
1
3 D

4T
0
3 � T

0
2

3
D 0:693 154 53;

T
2
3 D

16T
1
3 � T

1
2

15
D 0:693 147 90;

R3 D T
3
3 D

64T 2
3 � T

2
2

63
D 0:693 147 48I
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and the fifth column:

S16 D T
1
4 D

4T
0
4 � T

0
3

3
D 0:693 147 65;

T
2
4 D

16T 1
4 � T

1
3

15
D 0:693 147 19;

T
3
4 D

64T
2
4 � T

2
3

63
D 0:693 147 18;

R4 D T
4
4 D

256T 3
4 � T

3
3

255
D 0:693 147 18:

Since T 3
4 and R4 agree to the 8 decimal places we are calculating, we expect that

I D

Z 2

1

dx

x
D ln 2 � 0:693 147 18 : : : :

The various approximations calculated above suggest that for any given value of n D

2k , the Romberg approximation Rn should give the best value obtainable for the inte-

gral based on the nC 1 data values y0, y1, : : : , yn. This is so only if the derivatives

f .n/.x/ do not grow too rapidly as n increases.

The Importance of Higher-Order Methods
Higher-order methods, such as Romberg, remove lower-order error by manipulating

series. Removing lower-order error is of enormous importance for computation. With-

out it, even simple computations would be impossible for all practical purposes. For

example, consider again the integral I D

Z 2

1

1

x
dx.

We can use Maple to compute this integral numerically to 16 digits (classical

double precision),

> Digits=16:

> int(1/x, x = 1 .. 2.);

0:6931471805599453

Comparison with ln 2

> ln(2.);

0:6931471805599453

confirms the consistency of this calculation. Furthermore, we can compute the proces-

sor time for this calculation

> time(int(1/x, x = 1 .. 2.));

0:033

which indicates that, on the system used, 16 digits of accuracy is produced in hun-

dredths of seconds of processor time.

Now let’s consider what happens without removing lower-order error. If we were

to estimate this integral using a simple end point Riemann sum, as we used in the

original definition of a definite integral, the error is O.h/ or O.1=n/. Let the step size

be 10�7.

> 1e-7*add(1/(1+i/1e7), i = 1 .. 1e7);

0:6931471555599459

which has an error of 2:5� 10�8. The processor time used to do this sum computation

is given by
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> time(1e-7*add(1/(1+i/1e7), i = 1 .. 1e7));

175:777

that is, 175.577 seconds on the particular computer we used. (If you do the calculation

on your machine your result will vary according to the speed of your system.) Note that

we used the Maple “add” routine rather than “sum” in the calculations above. This

was done to tell Maple to add the floating-point values of the terms one after another

rather than to attempt a symbolic summation.

Because the computation time is proportional to the number n of rectangles used

in the Riemann sum, and because the error is proportional to 1=n, it follows that error

times computation time is roughly constant. We can use this to estimate the time to

compute the integral by this method to 16 digits of precision. Assuming an error of

10�16, the time for the computation will be

175:777 � 2:5 �
10�8

10�16
seconds,

or about 1,400 years.

Maple is not limited to 16 digits, of course. For each additional digit of precision,

the Riemann sum method corresponds to a factor-of-ten increase in time because of

lower-order error. The ability to compute such quantities is a powerful and important

application of series expansions.

Other Methods
As developed above, the Trapezoid, Midpoint, Simpson, and Romberg methods all in-

volved using equal subdivisions of the interval Œa; b�. There are other methods that

avoid this restriction. In particular, Gaussian approximations involve selecting eval-

uation points and weights in an optimal way so as to give the most accurate results

for “well-behaved” functions. See Exercises 11–13 below. You can consult a text on

numerical analysis to learn more about this method.

Finally, we note that even when you apply one of the methods of Sections 6.6 and

6.7, it may be advisable for you to break up the integral into two or more integrals over

smaller intervals and then use different subinterval lengths h for each of the different

integrals. You will want to evaluate the integrand at more points in an interval where

its graph is changing direction erratically than in one where the graph is better behaved.

E X E R C I S E S 6.8

Rewrite the integrals in Exercises 1–6 in a form to which

numerical methods can be readily applied.

1.

Z 1

0

dx

x1=3.1C x/
2.

Z 1

0

ex

p

1 � x
dx

3.

Z 1

�1

ex

p

1� x2
dx 4.

Z 1

1

dx

x2
C

p

x C 1

5.I

Z �=2

0

dx
p

sinx
6.

Z 1

0

dx

x4
C 1

C 7. Find T2; T4; T8, and T16 for
R 1

0

p

x dx, and find the actual

errors in these approximations. Do the errors decrease like

1=n2 as n increases? Why?

C 8. Transform the integral I D
R1

1 e�x2
dx using the

substitution x D 1=t , and calculate the Simpson’s Rule

approximations S2, S4, and S8 for the resulting integral

(whose integrand has limit 0 as t ! 0C). Quote the value of

I to the accuracy you feel is justified. Do the approximations

converge as quickly as you might expect? Can you think of a

reason why they might not?

C 9. Evaluate I D
R 1

0 e
�x2

dx, by the Taylor’s formula method of

Example 4, to within an error of 10�4.

C 10. Recall that
R1

0 e�x2
dx D

1

2

p

� . Combine this fact with the

result of Exercise 9 to evaluate I D

Z 1

1

e
�x2

dx to 3

decimal places.

11.A (Gaussian approximation) Find constants A and u, with u

between 0 and 1, such that

Z 1

�1

f .x/ dx D Af .�u/C Af .u/

holds for every cubic polynomial

f .x/ D ax3
C bx2

C cx C d . For a general function f .x/
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defined on Œ�1; 1�, the approximation

Z 1

�1

f .x/ dx � Af .�u/C Af .u/

is called a Gaussian approximation.

C 12. Use the method of Exercise 11 to approximate the integrals of

(a) x4, (b) cosx, and (c) ex , over the interval Œ�1; 1�, and find

the error in each approximation.

13.A (Another Gaussian approximation) Find constants A and B ,

and u between 0 and 1, such that

Z 1

�1

f .x/ dx D Af .�u/C Bf .0/C Af .u/

holds for every quintic polynomial

f .x/ D ax5
C bx4

C cx3
C dx2

C ex C f:

C 14. Use the Gaussian approximation

Z 1

�1

f .x/ dx � Af .�u/C Bf .0/C Af .u/;

where A, B , and u are as determined in Exercise 13, to find

approximations for the integrals of (a) x6, (b) cosx, and (c)

ex over the interval Œ�1; 1�, and find the error in each

approximation.

C 15. Calculate sufficiently many Romberg approximations

R1, R2, R3, : : : for the integral

Z 1

0

e
�x2

dx

to be confident you have evaluated the integral correctly to

6 decimal places.

C 16. Use the values of f .x/ given in the table accompanying

Exercise 9 in Section 6.6 to calculate the Romberg

approximations R1, R2, and R3 for the integral

Z 1:6

0

f .x/ dx

in that exercise.

17.A The Romberg approximation R2 for
R b

a f .x/ dx requires five

values of f; y0 D f .a/, y1 D f .aC h/, : : : ,

y4 D f .x C 4h/ D f .b/, where h D .b � a/=4. Write the

formula for R2 explicitly in terms of these five values.

18.I Explain why the change of variable x D 1=t is not suitable for

transforming the integral

Z 1

�

sinx

1C x2
dx into a form to which

numerical methods can be applied. Try to devise a method

whereby this integral could be approximated to any desired

degree of accuracy.

19.A If f .x/ D
sinx

x
for x ¤ 0 and f .0/ D 1, show that f 00.x/

has a finite limit as x ! 0. Hence, f 00 is bounded on finite

intervals Œ0; a�, and Trapezoid Rule approximations Tn to
R a

0

sinx

x
dx converge suitably quickly as n increases. Higher

derivatives are also bounded (Taylor’s formula is useful for

showing this), so Simpson’s Rule and higher-order

approximations can also be used effectively.

20.A (Estimating computation time) With higher-order methods,

the time to compute remains proportional to the number of

intervals n used to numerically approximate an integral. But

the error is reduced. For the Trapezoid Rule the error goes as

O.1=n
2
/. When n D 1 � 107, the error turns out to be

6 � 10�16. The computation time is approximately the same

as that computed for the Riemann sum approximation to
R 2

1 .1=x/ dx discussed above (175.777 seconds for our

computer), because we need essentially the same number of

function evaluations. How long would it take our computer to

get the trapezoid approximation to have quadruple (i.e.,

32-digit) precession?

21.A Repeat the previous exercise, but this time using Simpson’s

Rule, whose error is O.1=n4/. Again use the same time,

175.777 s for n D 1� 107, but for Simpson’s Rule the error for

this calculation is 3:15 � 10�30. How long would we expect

our computer to take to achieve 32-digit accuracy (i.e., error

10�32)? Note, however, that Maple’s integration package for

the computer used took 0.134 seconds to achieve this

precision. Will it have used a higher-order method than

Simpson’s Rule to achieve this time?

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ integration by parts ˘ a reduction formula

˘ an inverse substitution ˘ a rational function

˘ the method of partial fractions

˘ a computer algebra system

˘ an improper integral of type I

˘ an improper integral of type II

˘ a p-integral ˘ the Trapezoid Rule

˘ the Midpoint Rule ˘ Simpson’s Rule

� Describe the inverse sine and inverse tangent substitutions.

� What is the significance of the comparison theorem for im-

proper integrals?

� When is numerical integration necessary?

Summary of Techniques of Integration
Students sometimes have difficulty deciding which method to use

to evaluate a given integral. Often no one method will suffice to

produce the whole solution, but one method may lead to a different,

possibly simpler, integral that can then be dealt with on its own

merits. Here are a few guidelines:

1. First, and always, be alert for simplifying substitutions. Even

when these don’t accomplish the whole integration, they can

lead to integrals to which some other method can be applied.
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> time(1e-7*add(1/(1+i/1e7), i = 1 .. 1e7));

175:777

that is, 175.577 seconds on the particular computer we used. (If you do the calculation

on your machine your result will vary according to the speed of your system.) Note that

we used the Maple “add” routine rather than “sum” in the calculations above. This

was done to tell Maple to add the floating-point values of the terms one after another

rather than to attempt a symbolic summation.

Because the computation time is proportional to the number n of rectangles used

in the Riemann sum, and because the error is proportional to 1=n, it follows that error

times computation time is roughly constant. We can use this to estimate the time to

compute the integral by this method to 16 digits of precision. Assuming an error of

10�16, the time for the computation will be

175:777 � 2:5 �
10�8

10�16
seconds,

or about 1,400 years.

Maple is not limited to 16 digits, of course. For each additional digit of precision,

the Riemann sum method corresponds to a factor-of-ten increase in time because of

lower-order error. The ability to compute such quantities is a powerful and important

application of series expansions.

Other Methods
As developed above, the Trapezoid, Midpoint, Simpson, and Romberg methods all in-

volved using equal subdivisions of the interval Œa; b�. There are other methods that

avoid this restriction. In particular, Gaussian approximations involve selecting eval-

uation points and weights in an optimal way so as to give the most accurate results

for “well-behaved” functions. See Exercises 11–13 below. You can consult a text on

numerical analysis to learn more about this method.

Finally, we note that even when you apply one of the methods of Sections 6.6 and

6.7, it may be advisable for you to break up the integral into two or more integrals over

smaller intervals and then use different subinterval lengths h for each of the different

integrals. You will want to evaluate the integrand at more points in an interval where

its graph is changing direction erratically than in one where the graph is better behaved.

E X E R C I S E S 6.8

Rewrite the integrals in Exercises 1–6 in a form to which

numerical methods can be readily applied.

1.

Z 1

0

dx

x1=3.1C x/
2.

Z 1

0

ex

p

1 � x
dx

3.

Z 1

�1

ex

p

1� x2
dx 4.

Z 1

1

dx

x2
C

p

x C 1

5.I

Z �=2

0

dx
p

sinx
6.

Z 1

0

dx

x4
C 1

C 7. Find T2; T4; T8, and T16 for
R 1

0

p

x dx, and find the actual

errors in these approximations. Do the errors decrease like

1=n2 as n increases? Why?

C 8. Transform the integral I D
R1

1 e�x2
dx using the

substitution x D 1=t , and calculate the Simpson’s Rule

approximations S2, S4, and S8 for the resulting integral

(whose integrand has limit 0 as t ! 0C). Quote the value of

I to the accuracy you feel is justified. Do the approximations

converge as quickly as you might expect? Can you think of a

reason why they might not?

C 9. Evaluate I D
R 1

0 e
�x2

dx, by the Taylor’s formula method of

Example 4, to within an error of 10�4.

C 10. Recall that
R1

0 e�x2
dx D

1

2

p

� . Combine this fact with the

result of Exercise 9 to evaluate I D

Z 1

1

e
�x2

dx to 3

decimal places.

11.A (Gaussian approximation) Find constants A and u, with u

between 0 and 1, such that

Z 1

�1

f .x/ dx D Af .�u/C Af .u/

holds for every cubic polynomial

f .x/ D ax3
C bx2

C cx C d . For a general function f .x/
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defined on Œ�1; 1�, the approximation

Z 1

�1

f .x/ dx � Af .�u/C Af .u/

is called a Gaussian approximation.

C 12. Use the method of Exercise 11 to approximate the integrals of

(a) x4, (b) cosx, and (c) ex , over the interval Œ�1; 1�, and find

the error in each approximation.

13.A (Another Gaussian approximation) Find constants A and B ,

and u between 0 and 1, such that

Z 1

�1

f .x/ dx D Af .�u/C Bf .0/C Af .u/

holds for every quintic polynomial

f .x/ D ax5
C bx4

C cx3
C dx2

C ex C f:

C 14. Use the Gaussian approximation

Z 1

�1

f .x/ dx � Af .�u/C Bf .0/C Af .u/;

where A, B , and u are as determined in Exercise 13, to find

approximations for the integrals of (a) x6, (b) cosx, and (c)

ex over the interval Œ�1; 1�, and find the error in each

approximation.

C 15. Calculate sufficiently many Romberg approximations

R1, R2, R3, : : : for the integral

Z 1

0

e
�x2

dx

to be confident you have evaluated the integral correctly to

6 decimal places.

C 16. Use the values of f .x/ given in the table accompanying

Exercise 9 in Section 6.6 to calculate the Romberg

approximations R1, R2, and R3 for the integral

Z 1:6

0

f .x/ dx

in that exercise.

17.A The Romberg approximation R2 for
R b

a f .x/ dx requires five

values of f; y0 D f .a/, y1 D f .aC h/, : : : ,

y4 D f .x C 4h/ D f .b/, where h D .b � a/=4. Write the

formula for R2 explicitly in terms of these five values.

18.I Explain why the change of variable x D 1=t is not suitable for

transforming the integral

Z 1

�

sinx

1C x2
dx into a form to which

numerical methods can be applied. Try to devise a method

whereby this integral could be approximated to any desired

degree of accuracy.

19.A If f .x/ D
sinx

x
for x ¤ 0 and f .0/ D 1, show that f 00.x/

has a finite limit as x ! 0. Hence, f 00 is bounded on finite

intervals Œ0; a�, and Trapezoid Rule approximations Tn to
R a

0

sinx

x
dx converge suitably quickly as n increases. Higher

derivatives are also bounded (Taylor’s formula is useful for

showing this), so Simpson’s Rule and higher-order

approximations can also be used effectively.

20.A (Estimating computation time) With higher-order methods,

the time to compute remains proportional to the number of

intervals n used to numerically approximate an integral. But

the error is reduced. For the Trapezoid Rule the error goes as

O.1=n
2
/. When n D 1 � 107, the error turns out to be

6 � 10�16. The computation time is approximately the same

as that computed for the Riemann sum approximation to
R 2

1 .1=x/ dx discussed above (175.777 seconds for our

computer), because we need essentially the same number of

function evaluations. How long would it take our computer to

get the trapezoid approximation to have quadruple (i.e.,

32-digit) precession?

21.A Repeat the previous exercise, but this time using Simpson’s

Rule, whose error is O.1=n4/. Again use the same time,

175.777 s for n D 1� 107, but for Simpson’s Rule the error for

this calculation is 3:15 � 10�30. How long would we expect

our computer to take to achieve 32-digit accuracy (i.e., error

10�32)? Note, however, that Maple’s integration package for

the computer used took 0.134 seconds to achieve this

precision. Will it have used a higher-order method than

Simpson’s Rule to achieve this time?

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ integration by parts ˘ a reduction formula

˘ an inverse substitution ˘ a rational function

˘ the method of partial fractions

˘ a computer algebra system

˘ an improper integral of type I

˘ an improper integral of type II

˘ a p-integral ˘ the Trapezoid Rule

˘ the Midpoint Rule ˘ Simpson’s Rule

� Describe the inverse sine and inverse tangent substitutions.

� What is the significance of the comparison theorem for im-

proper integrals?

� When is numerical integration necessary?

Summary of Techniques of Integration
Students sometimes have difficulty deciding which method to use

to evaluate a given integral. Often no one method will suffice to

produce the whole solution, but one method may lead to a different,

possibly simpler, integral that can then be dealt with on its own

merits. Here are a few guidelines:

1. First, and always, be alert for simplifying substitutions. Even

when these don’t accomplish the whole integration, they can

lead to integrals to which some other method can be applied.
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2. If the integral involves a quadratic expression Ax2
C Bx C

C with A ¤ 0 and B ¤ 0, complete the square. A simple

substitution then reduces the quadratic expression to a sum or

difference of squares.

3. Integrals of products of trigonometric functions can sometimes

be evaluated or rendered simpler by the use of appropriate

trigonometric identities such as:

sin2
x C cos2

x D 1

sec2
x D 1C tan2

x

csc2
x D 1C cot2 x

sinx cos x D 1
2

sin 2x

sin2
x D

1
2
.1 � cos 2x/

cos2
x D

1
2
.1C cos 2x/:

4. Integrals involving .a2
�x2/1=2 can be transformed using x D

a sin � . Integrals involving .a2
C x2/1=2 or 1=.a2

C x2/ may

yield to x D a tan � . Integrals involving .x2
� a2/1=2 can be

transformed using x D a sec � or x D a cosh � .

5. Use integration by parts for integrals of functions such as prod-

ucts of polynomials and transcendental functions, and for in-

verse trigonometric functions and logarithms. Be alert for ways

of using integration by parts to obtain formulas representing

complicated integrals in terms of simpler ones.

6. Use partial fractions to integrate rational functions whose de-

nominators can be factored into real linear and quadratic fac-

tors. Remember to divide the polynomials first, if necessary, to

reduce the fraction to one whose numerator has degree smaller

than that of its denominator.

7. There is a table of integrals at the back of this book. If you

can’t do an integral directly, try to use the methods above to

convert it to the form of one of the integrals in the table.

8. If you can’t find any way to evaluate a definite integral for

which you need a numerical value, consider using a computer

or calculator and one of the numerical methods presented in

Sections 6.6–6.8.

Review Exercises on Techniques
of Integration
Here is an opportunity to get more practice evaluating integrals.

Unlike the exercises in Sections 5.6 and 6.1–6.3, which used only

the technique of the particular section, these exercises are grouped

randomly, so you will have to decide which techniques to use.

1.

Z

x dx

2x2
C 5x C 2

2.

Z

x dx

.x � 1/3

3.

Z

sin3
x cos3

x dx 4.

Z

.1C
p

x/1=3

p

x
dx

5.

Z

3 dx

4x2
� 1

6.

Z

.x
2
C x � 2/ sin 3x dx

7.

Z

p

1 � x2

x4
dx 8.

Z

x
3 cos.x2

/ dx

9.

Z

x2 dx

.5x3
� 2/2=3

10.

Z

dx

x2
C 2x � 15

11.

Z

dx

.4C x2/2
12.

Z

.sinx C cosx/2 dx

13.

Z

2
x
p

1C 4x dx 14.

Z

cosx

1C sin2
x
dx

15.

Z

sin3
x

cos7 x
dx 16.

Z

x2 dx

.3C 5x2/3=2

17.

Z

e
�x sin.2x/ dx 18.

Z

2x
2
C 4x � 3

x2
C 5x

dx

19.

Z

cos.3 lnx/ dx 20.

Z

dx

4x3
C x

21.

Z

x ln.1C x2/

1C x2
dx 22.

Z

sin2
x cos4

x dx

23.

Z

x2

p

2 � x2
dx 24.

Z

tan4
x sec x dx

25.

Z

x2 dx

.4x C 1/10
26.

Z

x sin�1 x

2
dx

27.

Z

sin5
.4x/ dx 28.

Z

dx

x5
� 2x3

C x

29.

Z

dx

2C ex
30.

Z

x
3
3

x
dx

31.

Z

sin2
x cosx

2 � sinx
dx 32.

Z

x
2
C 1

x2
C 2x C 2

dx

33.

Z

dx

x2
p

1 � x2
34.

Z

x
3
.ln x/2 dx

35.

Z

x3

p

1 � 4x2
dx 36.

Z

e1=x dx

x2

37.

Z

x C 1
p

x2
C 1

dx 38.

Z

e
.x1=3/

dx

39.

Z

x3
� 3

x3
� 9x

dx 40.

Z

10

p
xC2

p

x C 2
dx

41.

Z

sin5
x cos9

x dx 42.

Z

x2 dx
p

x2
� 1

43.

Z

x dx

x2
C 2x � 1

44.

Z

2x � 3
p

4� 3x C x2
dx

45.

Z

x
2 sin�1

.2x/ dx 46.

Z

p

3x2
� 1

x
dx

47.

Z

cos4
x sin4

x dx 48.

Z

p

x � x2 dx

49.

Z

dx

.4C x/
p

x
50.

Z

x tan�1 x

3
dx

51.

Z

x4
� 1

x3
C 2x2

dx 52.

Z

dx

x.x2
C 4/2

53.

Z

sin.2 lnx/

x
dx 54.

Z

sin.lnx/

x2
dx

55.

Z

e2 tan�1 x

1C x2
dx 56.

Z

x3
C x � 2

x2
� 7

dx

57.

Z

ln.3C x2
/

3C x2
x dx 58.

Z

cos7
x dx
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59.

Z

sin�1
.x=2/

.4 � x2/1=2
dx 60.

Z

tan4
.�x/ dx

61.

Z

.x C 1/ dx
p

x2
C 6x C 10

62.

Z

e
x
.1 � e

2x
/
5=2

dx

63.

Z

x3 dx

.x2
C 2/7=2

64.

Z

x2

2x2
� 3

dx

65.

Z

x1=2

1C x1=3
dx 66.

Z

dx

x.x2
C x C 1/1=2

67.

Z

1C x

1C
p

x
dx 68.

Z

x dx

4x4
C 4x2

C 5

69.

Z

x dx

.x2
� 4/2

70.

Z

dx

x3
C x2

C x

71.

Z

x
2 tan�1

x dx 72.

Z

e
x sec.ex

/ dx

73.

Z

dx

4 sinx � 3 cosx
74.

Z

dx

x1=3
� 1

75.

Z

dx

tan x C sinx
76.

Z

x dx
p

3� 4x � 4x2

77.

Z
p

x

1C x
dx 78.

Z

p

1C ex dx

79.

Z

x4 dx

x3
� 8

80.

Z

xe
x cos x dx

Other Review Exercises
1. Evaluate I D

R

x ex cos x dx and J D
R

x ex sinx dx by

differentiating ex
�

.axCb/ cosxC .cxCd/ sinx
�

and exam-

ining coefficients.

2. For which real numbers r is the following reduction formula

(obtained using integration by parts) valid?

Z 1

0

x
r
e

�x
dx D r

Z 1

0

x
r�1

e
�x
dx

Evaluate the integrals in Exercises 3–6, or show that they diverge.

3.

Z �=2

0

csc x dx 4.

Z 1

1

1

x C x3
dx

5.

Z 1

0

p

x lnx dx 6.

Z 1

�1

dx

x
p

1 � x2

7. Show that the integral I D
R1

0 .1=.
p

x e
x
// dx converges and

that its value satisfies I < .2e C 1/=e.

C 8. By measuring the areas enclosed by contours on a topographic

map, a geologist determines the cross-sectional areas A (m2)

through a 60 m high hill at various heights h (m) given in

Table 2.
Table 2.

h 0 10 20 30 40 50 60

A 10;200 9;200 8;000 7;100 4;500 2;400 100

If she uses the Trapezoid Rule to estimate the volume of the

hill (which is V D
R 60

0 A.h/ dh), what will be her estimate, to

the nearest 1,000 m3?

C 9. What will be the geologist’s estimate of the volume of the hill in

Exercise 8 if she uses Simpson’s Rule instead of the Trapezoid

Rule?

C 10. Find the Trapezoid Rule and Midpoint Rule approximations T4

and M4 for the integral I D
R 1

0

p

2C sin.�x/ dx. Quote the

results to 5 decimal places. Quote a value of I to as many dec-

imal places as you feel are justified by these approximations.

C 11. Use the results of Exercise 10 to calculate the Trapezoid Rule

approximation T8 and the Simpson’s Rule approximation S8

for the integral I in that exercise. Quote a value of I to as

many decimal places as you feel are justified by these approxi-

mations.

C 12. Devise a way to evaluate I D
R1

1=2 x
2=.x5

C x3
C 1/ dx nu-

merically, and use it to find I correct to 3 decimal places.

13.A You want to approximate the integral I D
R 4

0 f .x/ dx of an

unknown function f .x/, and you measure the following values

of f :

Table 3.

x 0 1 2 3 4

f .x/ 0:730 1:001 1:332 1:729 2:198

(a) What are the approximations T4 and S4 to I that you cal-

culate with these data?

(b) You then decide to make more measurements in order to

calculate T8 and S8. You obtain T8 D 5:5095. What do

you obtain for S8?

(c) You have theoretical reasons to believe that f .x/ is, in fact,

a polynomial of degree 3. Do your calculations support

this theory? Why or why not?

Challenging Problems

1.I (a) Some people think that � D 22=7. Prove that this is not

so by showing that

Z 1

0

x4.1 � x/4

x2
C 1

dx D
22

7
� �:

(b) If I D
R 1

0 x
4.1 � x/4 dx, show that

22

7
� I < � <

22

7
�

I

2
:

(c) Evaluate I and hence determine an explicit small interval

containing � .

2. (a) Find a reduction formula for
R

.1 � x
2
/
n
dx.

(b) Show that if n is a positive integer, then
Z 1

0

.1 � x
2
/
n
dx D

22n.nŠ/2

.2nC 1/Š
.

(c) Use your reduction formula to evaluate
R

.1 � x2/�3=2 dx.

3. (a) Show that x4
C x2

C 1 factors into a product of two real

quadratics, and evaluate
R

.x2
C1/=.x4

Cx2
C1/ dx. Hint:

x4
C x2

C 1 D .x2
C 1/2 � x2.

(b) Use the same method to find
R

.x2
C 1/=.x4

C 1/ dx.

4. Let Im;n D
R 1

0 x
m.lnx/n dx.

(a) Show that Im;n D .�1/
n
R1

0 xne�.mC1/x dx.

(b) Show that Im;n D
.�1/nnŠ

.mC 1/nC1
.
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2. If the integral involves a quadratic expression Ax2
C Bx C

C with A ¤ 0 and B ¤ 0, complete the square. A simple

substitution then reduces the quadratic expression to a sum or

difference of squares.

3. Integrals of products of trigonometric functions can sometimes

be evaluated or rendered simpler by the use of appropriate

trigonometric identities such as:

sin2
x C cos2

x D 1

sec2
x D 1C tan2

x

csc2
x D 1C cot2 x

sinx cos x D 1
2

sin 2x

sin2
x D

1
2
.1 � cos 2x/

cos2
x D

1
2
.1C cos 2x/:

4. Integrals involving .a2
�x2/1=2 can be transformed using x D

a sin � . Integrals involving .a2
C x2/1=2 or 1=.a2

C x2/ may

yield to x D a tan � . Integrals involving .x2
� a2/1=2 can be

transformed using x D a sec � or x D a cosh � .

5. Use integration by parts for integrals of functions such as prod-

ucts of polynomials and transcendental functions, and for in-

verse trigonometric functions and logarithms. Be alert for ways

of using integration by parts to obtain formulas representing

complicated integrals in terms of simpler ones.

6. Use partial fractions to integrate rational functions whose de-

nominators can be factored into real linear and quadratic fac-

tors. Remember to divide the polynomials first, if necessary, to

reduce the fraction to one whose numerator has degree smaller

than that of its denominator.

7. There is a table of integrals at the back of this book. If you

can’t do an integral directly, try to use the methods above to

convert it to the form of one of the integrals in the table.

8. If you can’t find any way to evaluate a definite integral for

which you need a numerical value, consider using a computer

or calculator and one of the numerical methods presented in

Sections 6.6–6.8.

Review Exercises on Techniques
of Integration
Here is an opportunity to get more practice evaluating integrals.

Unlike the exercises in Sections 5.6 and 6.1–6.3, which used only

the technique of the particular section, these exercises are grouped

randomly, so you will have to decide which techniques to use.

1.

Z

x dx

2x2
C 5x C 2

2.

Z

x dx

.x � 1/3

3.

Z

sin3
x cos3

x dx 4.

Z

.1C
p

x/1=3

p

x
dx

5.

Z

3 dx

4x2
� 1

6.

Z

.x
2
C x � 2/ sin 3x dx

7.

Z

p

1 � x2

x4
dx 8.

Z

x
3 cos.x2

/ dx

9.

Z

x2 dx

.5x3
� 2/2=3

10.

Z

dx

x2
C 2x � 15

11.

Z

dx

.4C x2/2
12.

Z

.sinx C cosx/2 dx

13.

Z

2
x
p

1C 4x dx 14.

Z

cosx

1C sin2
x
dx

15.

Z

sin3
x

cos7 x
dx 16.

Z

x2 dx

.3C 5x2/3=2

17.

Z

e
�x sin.2x/ dx 18.

Z

2x
2
C 4x � 3

x2
C 5x

dx

19.

Z

cos.3 lnx/ dx 20.

Z

dx

4x3
C x

21.

Z

x ln.1C x2/

1C x2
dx 22.

Z

sin2
x cos4

x dx

23.

Z

x2

p

2 � x2
dx 24.

Z

tan4
x sec x dx

25.

Z

x2 dx

.4x C 1/10
26.

Z

x sin�1 x

2
dx

27.

Z

sin5
.4x/ dx 28.

Z

dx

x5
� 2x3

C x

29.

Z

dx

2C ex
30.

Z

x
3
3

x
dx

31.

Z

sin2
x cosx

2 � sinx
dx 32.

Z

x
2
C 1

x2
C 2x C 2

dx

33.

Z

dx

x2
p

1 � x2
34.

Z

x
3
.ln x/2 dx

35.

Z

x3

p

1 � 4x2
dx 36.

Z

e1=x dx

x2

37.

Z

x C 1
p

x2
C 1

dx 38.

Z

e
.x1=3/

dx

39.

Z

x3
� 3

x3
� 9x

dx 40.

Z

10

p
xC2

p

x C 2
dx

41.

Z

sin5
x cos9

x dx 42.

Z

x2 dx
p

x2
� 1

43.

Z

x dx

x2
C 2x � 1

44.

Z

2x � 3
p

4� 3x C x2
dx

45.

Z

x
2 sin�1

.2x/ dx 46.

Z

p

3x2
� 1

x
dx

47.

Z

cos4
x sin4

x dx 48.

Z

p

x � x2 dx

49.

Z

dx

.4C x/
p

x
50.

Z

x tan�1 x

3
dx

51.

Z

x4
� 1

x3
C 2x2

dx 52.

Z

dx

x.x2
C 4/2

53.

Z

sin.2 lnx/

x
dx 54.

Z

sin.lnx/

x2
dx

55.

Z

e2 tan�1 x

1C x2
dx 56.

Z

x3
C x � 2

x2
� 7

dx

57.

Z

ln.3C x2
/

3C x2
x dx 58.

Z

cos7
x dx
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59.

Z

sin�1
.x=2/

.4 � x2/1=2
dx 60.

Z

tan4
.�x/ dx

61.

Z

.x C 1/ dx
p

x2
C 6x C 10

62.

Z

e
x
.1 � e

2x
/
5=2

dx

63.

Z

x3 dx

.x2
C 2/7=2

64.

Z

x2

2x2
� 3

dx

65.

Z

x1=2

1C x1=3
dx 66.

Z

dx

x.x2
C x C 1/1=2

67.

Z

1C x

1C
p

x
dx 68.

Z

x dx

4x4
C 4x2

C 5

69.

Z

x dx

.x2
� 4/2

70.

Z

dx

x3
C x2

C x

71.

Z

x
2 tan�1

x dx 72.

Z

e
x sec.ex

/ dx

73.

Z

dx

4 sinx � 3 cosx
74.

Z

dx

x1=3
� 1

75.

Z

dx

tan x C sinx
76.

Z

x dx
p

3� 4x � 4x2

77.

Z
p

x

1C x
dx 78.

Z

p

1C ex dx

79.

Z

x4 dx

x3
� 8

80.

Z

xe
x cos x dx

Other Review Exercises
1. Evaluate I D

R

x ex cos x dx and J D
R

x ex sinx dx by

differentiating ex
�

.axCb/ cosxC .cxCd/ sinx
�

and exam-

ining coefficients.

2. For which real numbers r is the following reduction formula

(obtained using integration by parts) valid?

Z 1

0

x
r
e

�x
dx D r

Z 1

0

x
r�1

e
�x
dx

Evaluate the integrals in Exercises 3–6, or show that they diverge.

3.

Z �=2

0

csc x dx 4.

Z 1

1

1

x C x3
dx

5.

Z 1

0

p

x lnx dx 6.

Z 1

�1

dx

x
p

1 � x2

7. Show that the integral I D
R1

0 .1=.
p

x e
x
// dx converges and

that its value satisfies I < .2e C 1/=e.

C 8. By measuring the areas enclosed by contours on a topographic

map, a geologist determines the cross-sectional areas A (m2)

through a 60 m high hill at various heights h (m) given in

Table 2.
Table 2.

h 0 10 20 30 40 50 60

A 10;200 9;200 8;000 7;100 4;500 2;400 100

If she uses the Trapezoid Rule to estimate the volume of the

hill (which is V D
R 60

0 A.h/ dh), what will be her estimate, to

the nearest 1,000 m3?

C 9. What will be the geologist’s estimate of the volume of the hill in

Exercise 8 if she uses Simpson’s Rule instead of the Trapezoid

Rule?

C 10. Find the Trapezoid Rule and Midpoint Rule approximations T4

and M4 for the integral I D
R 1

0

p

2C sin.�x/ dx. Quote the

results to 5 decimal places. Quote a value of I to as many dec-

imal places as you feel are justified by these approximations.

C 11. Use the results of Exercise 10 to calculate the Trapezoid Rule

approximation T8 and the Simpson’s Rule approximation S8

for the integral I in that exercise. Quote a value of I to as

many decimal places as you feel are justified by these approxi-

mations.

C 12. Devise a way to evaluate I D
R1

1=2 x
2=.x5

C x3
C 1/ dx nu-

merically, and use it to find I correct to 3 decimal places.

13.A You want to approximate the integral I D
R 4

0 f .x/ dx of an

unknown function f .x/, and you measure the following values

of f :

Table 3.

x 0 1 2 3 4

f .x/ 0:730 1:001 1:332 1:729 2:198

(a) What are the approximations T4 and S4 to I that you cal-

culate with these data?

(b) You then decide to make more measurements in order to

calculate T8 and S8. You obtain T8 D 5:5095. What do

you obtain for S8?

(c) You have theoretical reasons to believe that f .x/ is, in fact,

a polynomial of degree 3. Do your calculations support

this theory? Why or why not?

Challenging Problems

1.I (a) Some people think that � D 22=7. Prove that this is not

so by showing that

Z 1

0

x4.1 � x/4

x2
C 1

dx D
22

7
� �:

(b) If I D
R 1

0 x
4.1 � x/4 dx, show that

22

7
� I < � <

22

7
�

I

2
:

(c) Evaluate I and hence determine an explicit small interval

containing � .

2. (a) Find a reduction formula for
R

.1 � x
2
/
n
dx.

(b) Show that if n is a positive integer, then
Z 1

0

.1 � x
2
/
n
dx D

22n.nŠ/2

.2nC 1/Š
.

(c) Use your reduction formula to evaluate
R

.1 � x2/�3=2 dx.

3. (a) Show that x4
C x2

C 1 factors into a product of two real

quadratics, and evaluate
R

.x2
C1/=.x4

Cx2
C1/ dx. Hint:

x4
C x2

C 1 D .x2
C 1/2 � x2.

(b) Use the same method to find
R

.x2
C 1/=.x4

C 1/ dx.

4. Let Im;n D
R 1

0 x
m.lnx/n dx.

(a) Show that Im;n D .�1/
n
R1

0 xne�.mC1/x dx.

(b) Show that Im;n D
.�1/nnŠ

.mC 1/nC1
.
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5.I Let In D
R 1

0 x
ne�x dx.

(a) Show that 0 < In <
1

nC 1
and hence that

limn!1 In D 0.

(b) Show that In D nIn�1 �
1

e
for n � 1, and I0 D 1 �

1

e
.

(c) Verify by induction that In D nŠ

0

@1 �
1

e

n
X

j D0

1

j Š

1

A.

(d) Deduce from (a) and (c) that lim
n!1

n
X

j D0

1

j Š
D e.

6.I If K is very large, which of the approximations T100 (Trape-

zoid Rule), M100 (Midpoint Rule), and S100 (Simpson’s Rule)

will be closest to the true value for
R 1

0 e
�Kx dx? Which will

be farthest? Justify your answers. (Caution: This is trickier

than it sounds!)

7.I Simpson’s Rule gives the exact definite integral for a cubic f:

Suppose you want a numerical integration rule that gives the

exact answer for a polynomial of degree 5. You might ap-

proximate the integral over the subinterval Œm � h;m C h�

by something of the form 2h

�

af .m � h/ C bf .m �
h

2
/ C

f .m/C bf .mC
h

2
/C af .m C h/

�

for some constants a, b,

and c.

(a) Determine a, b, and c for which this will work. (Hint: Take

m D 0 to make things simple.)

(b) Use this method to approximate
R 1

0 e
�x dx using first one

and then two of these intervals (thus evaluating the inte-

grand at nine points).

8.I The convergence of improper integrals can be a more delicate

matter when the integrand changes sign. Here is one method

that can be used to prove convergence in some cases where the

comparison theorem fails.

(a) Suppose that f .x/ is differentiable on Œ1; 1/, f 0.x/ is

continuous there, f 0.x/ < 0, and lim
x!1

f .x/ D 0.

Show that
R1

1 f 0.x/ cos.x/ dx converges. Hint: What is
R1

1 jf
0.x/j dx?

(b) Under the same hypotheses, show that
R1

1 f .x/ sinx dx

converges. Hint: Integrate by parts and use (a).

(c) Show that
R1

1

sinx

x
dx converges but

R1
1

j sinxj

x
dx di-

verges. Hint: j sinxj � sin2
x D

1 � cos.2x/

2
. Note

that (b) would work just as well with sinx replaced by

cos.2x/.
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C H A P T E R 7

Applications of

Integration

“
‘It’s like this,’ he said. ‘When you go after honey with a balloon, the

great thing is not to let the bees know you’re coming. Now if you have

a green balloon, they might think you were only part of the tree and

not notice you, and if you have a blue balloon, they might think you

were only part of the sky and not notice you, and the question’ [said

Winnie the Pooh] ‘is: Which is most likely?’

”A. A. Milne 1882–1956

from Winnie the Pooh

“
The entire world believes [in the Normal distribution], Mr. Lippmann

told me one day, because the experimentalists believe that it is a theo-

rem of mathematics, and mathematicians believe it is an experimental

fact.

”Henri Poincaré

Calcul des Probabilités, 1896, p.149

Introduction Numerous quantities in mathematics, physics, economics,

biology, and indeed any quantitative science can be con-

veniently represented by integrals. In addition to measuring plane areas, the problem

that motivated the definition of the definite integral, we can use these integrals to ex-

press volumes of solids, lengths of curves, areas of surfaces, forces, work, energy,

pressure, probabilities, dollar values of a stream of payments, and a variety of other

quantities that are in one sense or another equivalent to areas under graphs.

In addition, as we saw previously, many of the basic principles that govern the

behaviour of our world are expressed in terms of differential equations and initial-value

problems. Indefinite integration is a key tool in the solution of such problems.

In this chapter we examine some of these applications. For the most part they are

independent of one another, and for that reason some of the later sections in this chapter

can be regarded as optional material. The material of Sections 7.1–7.3, however, should

be regarded as core because these ideas will arise again in the study of multivariable

calculus.

7.1 Volumes by Slicing—Solids of Revolution

In this section we show how volumes of certain three-dimensional regions (or solids)

can be expressed as definite integrals and thereby determined. We will not attempt

to give a definition of volume but will rely on our intuition and experience with solid
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5.I Let In D
R 1

0 x
ne�x dx.

(a) Show that 0 < In <
1

nC 1
and hence that

limn!1 In D 0.

(b) Show that In D nIn�1 �
1

e
for n � 1, and I0 D 1 �

1

e
.
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0

@1 �
1

e

n
X

j D0

1

j Š

1

A.
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n!1

n
X

j D0

1

j Š
D e.
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zoid Rule), M100 (Midpoint Rule), and S100 (Simpson’s Rule)
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R 1

0 e
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than it sounds!)

7.I Simpson’s Rule gives the exact definite integral for a cubic f:
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by something of the form 2h
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for some constants a, b,

and c.

(a) Determine a, b, and c for which this will work. (Hint: Take

m D 0 to make things simple.)

(b) Use this method to approximate
R 1

0 e
�x dx using first one

and then two of these intervals (thus evaluating the inte-

grand at nine points).

8.I The convergence of improper integrals can be a more delicate

matter when the integrand changes sign. Here is one method

that can be used to prove convergence in some cases where the

comparison theorem fails.

(a) Suppose that f .x/ is differentiable on Œ1; 1/, f 0.x/ is

continuous there, f 0.x/ < 0, and lim
x!1

f .x/ D 0.

Show that
R1

1 f 0.x/ cos.x/ dx converges. Hint: What is
R1

1 jf
0.x/j dx?

(b) Under the same hypotheses, show that
R1

1 f .x/ sinx dx

converges. Hint: Integrate by parts and use (a).

(c) Show that
R1

1

sinx

x
dx converges but

R1
1

j sinxj

x
dx di-

verges. Hint: j sinxj � sin2
x D

1 � cos.2x/

2
. Note

that (b) would work just as well with sinx replaced by

cos.2x/.
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great thing is not to let the bees know you’re coming. Now if you have

a green balloon, they might think you were only part of the tree and

not notice you, and if you have a blue balloon, they might think you

were only part of the sky and not notice you, and the question’ [said

Winnie the Pooh] ‘is: Which is most likely?’

”A. A. Milne 1882–1956

from Winnie the Pooh

“
The entire world believes [in the Normal distribution], Mr. Lippmann

told me one day, because the experimentalists believe that it is a theo-

rem of mathematics, and mathematicians believe it is an experimental

fact.

”Henri Poincaré

Calcul des Probabilités, 1896, p.149

Introduction Numerous quantities in mathematics, physics, economics,

biology, and indeed any quantitative science can be con-

veniently represented by integrals. In addition to measuring plane areas, the problem

that motivated the definition of the definite integral, we can use these integrals to ex-

press volumes of solids, lengths of curves, areas of surfaces, forces, work, energy,

pressure, probabilities, dollar values of a stream of payments, and a variety of other

quantities that are in one sense or another equivalent to areas under graphs.

In addition, as we saw previously, many of the basic principles that govern the

behaviour of our world are expressed in terms of differential equations and initial-value

problems. Indefinite integration is a key tool in the solution of such problems.

In this chapter we examine some of these applications. For the most part they are

independent of one another, and for that reason some of the later sections in this chapter

can be regarded as optional material. The material of Sections 7.1–7.3, however, should

be regarded as core because these ideas will arise again in the study of multivariable

calculus.

7.1 Volumes by Slicing—Solids of Revolution

In this section we show how volumes of certain three-dimensional regions (or solids)

can be expressed as definite integrals and thereby determined. We will not attempt

to give a definition of volume but will rely on our intuition and experience with solid
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objects to provide enough insight for us to specify the volumes of certain simple solids.

For example, if the base of a rectangular box is a rectangle of length l and widthw (and

therefore areaA D lw), and if the box has height h, then its volume is V D Ah D lwh.

If l , w, and h are measured in units (e.g., centimetres), then the volume is expressed in

cubic units (cubic centimetres, or cm3).

What is a cylinder? The word

“cylinder” has two different but

related meanings in Mathe-

matics. As used in this Section,

it is a solid object lying between

congruent bases in two parallel

planes and inside a surface (the

cylindrical wall) consisting of

parallel line segments joining

corresponding points on the

boundaries of those bases. The

second meaning for “cylinder”

that we will encounter in Chapter

10 and later, extends the concept

of the cylindrical wall of a solid

cylinder. It is a surface

consisting of a family of parallel

straight lines in three dimension-

al space that intersect a plane

perpendicular to those lines in a

curve C. In this case the cylinder

is circular if C is a circle.

A rectangular box is a special case of a solid called a cylinder. (See Figure 7.1.)

Such a solid has a flat base occupying a region R in a plane, and consists of all points

on parallel straight line segments having one end inR and the other end in a (necessar-

ily congruent) region in a second plane parallel to the plane of the base. Either of these

regions can be called the base of the cylinder. The cylindrical wall is the surface con-

sisting of the parallel line segments joining corresponding points on the boundaries of

the two bases. A cylinder having a polygonal base (i.e., one bounded by straight lines)

is usually called a prism. The height of any cylinder or prism is the perpendicular

distance between the parallel planes containing the two bases. If this height is h units

and the area of a base is A square units, then the volume of the cylinder or prism is

V D Ah cubic units.

We use the adjective right to describe a cylinder or prism if the parallel line seg-

ments that constitute it are perpendicular to the base planes; otherwise, the cylinder or

prism is called oblique. For example, a right cylinder whose bases are circular disks

of radius r units and whose height is h units is called a right circular cylinder; its

volume is V D �r2h cubic units. Obliqueness has no effect on the volume V D Ah

of a prism or cylinder since h is always measured in a direction perpendicular to the

base.

Figure 7.1 The volume of any prism or

cylinder is the area A of its base times its

height h (measured perpendicularly to the

base): V D Ah

A
A

A D �r2
A

h

h

h

h

rectangular box triangular prism right-circular
cylinder

oblique general
cylinder

r

Figure 7.2 Slicing a solid perpendicularly

to an axis
x

b
a

Volumes by Slicing
Knowing the volume of a cylinder enables us to determine the volumes of some more

general solids. We can divide solids into thin “slices” by parallel planes. (Think of a

loaf of sliced bread.) Each slice is approximately a cylinder of very small “height”;

the height is the thickness of the slice. See Figure 7.2, where the height is measured
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horizontally in the x direction. If we know the cross-sectional area of each slice, we

can determine its volume and sum these volumes to find the volume of the solid.

To be specific, suppose that the solid S lies between planes perpendicular to the

x-axis at positions x D a and x D b and that the cross-sectional area of S in the plane

perpendicular to the x-axis at x is a known function A.x/, for a � x � b. We assume

that A.x/ is continuous on Œa; b�. If a D x0 < x1 < x2 < � � � < xn�1 < xn D b,

then P D fx0; x1; x2; : : : ; xn�1; xng is a partition of Œa; b� into n subintervals, and

the planes perpendicular to the x-axis at x1, x2, : : : ; xn�1 divide the solid into n slices

of which the i th has thickness �xi D xi � xi�1. The volume �Vi of that slice lies

xi
xi�1

ci

x

Figure 7.3 The volume of a slice

between the maximum and minimum values of A.x/�xi for values of x in Œxi�1; xi �

(Figure 7.3), so, by the Intermediate-Value Theorem, for some ci in Œxi�1; xi �,

�Vi D A.ci /�xi :

The volume of the solid is therefore given by the Riemann sum

V D

n
X

iD1

�Vi D

n
X

iD1

A.ci /�xi :

Letting n approach infinity in such a way that max�xi approaches 0, we obtain the

definite integral of A.x/ over Œa; b� as the limit of this Riemann sum. Therefore:

The volume V of a solid between x D a and x D b having cross-sectional

area A.x/ at position x is

V D

Z b

a

A.x/ dx:

There is another way to obtain this formula and others of a similar nature. Consider

a slice of the solid between the planes perpendicular to the x-axis at positions x and

xC�x. Since A.x/ is continuous, it doesn’t change much in a short interval, so if�x

is small, then the slice has volume�V approximately equal to the volume of a cylinder

of base area A.x/ and height �x:

�V � A.x/�x:

The error in this approximation is small compared to the size of �V: This suggests,

correctly, that the volume element, that is, the volume of an infinitely thin slice of

thickness dx is dV D A.x/ dx, and that the volume of the solid is the “sum” (i.e.,

the integral) of these volume elements between the two ends of the solid, x D a and

x D b (see Figure 7.4):

V D

Z xDb

xDa

dV; where dV D A.x/ dx:

x

dx

a x
b

Figure 7.4 The volume element

We will use this differential element approach to model other applications that result

in integrals rather than setting up explicit Riemann sums each time. Even though this

argument does not constitute a proof of the formula, you are strongly encouraged to

think of the formula this way; the volume is the integral of the volume elements.

Solids of Revolution
Many common solids have circular cross-sections in planes perpendicular to some

axis. Such solids are called solids of revolution because they can be generated by

rotating a plane region about an axis in that plane so that it sweeps out the solid. For

example, a solid ball is generated by rotating a half-disk about the diameter of that

half-disk (Figure 7.5(a)). Similarly, a solid right-circular cone is generated by rotating

a right-angled triangle about one of its legs (Figure 7.5(b)).

If the region R bounded by y D f .x/, y D 0, x D a, and x D b is rotated about

the x-axis, then the cross-section of the solid generated in the plane perpendicular to

the x-axis at x is a circular disk of radius jf .x/j. The area of this cross-section is

A.x/ D �
�

f .x/
�2

, so the volume of the solid of revolution is
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objects to provide enough insight for us to specify the volumes of certain simple solids.

For example, if the base of a rectangular box is a rectangle of length l and widthw (and

therefore areaA D lw), and if the box has height h, then its volume is V D Ah D lwh.

If l , w, and h are measured in units (e.g., centimetres), then the volume is expressed in

cubic units (cubic centimetres, or cm3).

What is a cylinder? The word

“cylinder” has two different but

related meanings in Mathe-

matics. As used in this Section,

it is a solid object lying between

congruent bases in two parallel

planes and inside a surface (the

cylindrical wall) consisting of

parallel line segments joining

corresponding points on the

boundaries of those bases. The

second meaning for “cylinder”

that we will encounter in Chapter

10 and later, extends the concept

of the cylindrical wall of a solid

cylinder. It is a surface

consisting of a family of parallel

straight lines in three dimension-

al space that intersect a plane

perpendicular to those lines in a

curve C. In this case the cylinder

is circular if C is a circle.

A rectangular box is a special case of a solid called a cylinder. (See Figure 7.1.)

Such a solid has a flat base occupying a region R in a plane, and consists of all points

on parallel straight line segments having one end inR and the other end in a (necessar-

ily congruent) region in a second plane parallel to the plane of the base. Either of these

regions can be called the base of the cylinder. The cylindrical wall is the surface con-

sisting of the parallel line segments joining corresponding points on the boundaries of

the two bases. A cylinder having a polygonal base (i.e., one bounded by straight lines)

is usually called a prism. The height of any cylinder or prism is the perpendicular

distance between the parallel planes containing the two bases. If this height is h units

and the area of a base is A square units, then the volume of the cylinder or prism is

V D Ah cubic units.

We use the adjective right to describe a cylinder or prism if the parallel line seg-

ments that constitute it are perpendicular to the base planes; otherwise, the cylinder or

prism is called oblique. For example, a right cylinder whose bases are circular disks

of radius r units and whose height is h units is called a right circular cylinder; its

volume is V D �r2h cubic units. Obliqueness has no effect on the volume V D Ah

of a prism or cylinder since h is always measured in a direction perpendicular to the

base.

Figure 7.1 The volume of any prism or

cylinder is the area A of its base times its

height h (measured perpendicularly to the

base): V D Ah
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A D �r2
A

h

h

h
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cylinder

oblique general
cylinder

r

Figure 7.2 Slicing a solid perpendicularly
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Volumes by Slicing
Knowing the volume of a cylinder enables us to determine the volumes of some more

general solids. We can divide solids into thin “slices” by parallel planes. (Think of a

loaf of sliced bread.) Each slice is approximately a cylinder of very small “height”;

the height is the thickness of the slice. See Figure 7.2, where the height is measured
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horizontally in the x direction. If we know the cross-sectional area of each slice, we

can determine its volume and sum these volumes to find the volume of the solid.

To be specific, suppose that the solid S lies between planes perpendicular to the

x-axis at positions x D a and x D b and that the cross-sectional area of S in the plane

perpendicular to the x-axis at x is a known function A.x/, for a � x � b. We assume

that A.x/ is continuous on Œa; b�. If a D x0 < x1 < x2 < � � � < xn�1 < xn D b,

then P D fx0; x1; x2; : : : ; xn�1; xng is a partition of Œa; b� into n subintervals, and

the planes perpendicular to the x-axis at x1, x2, : : : ; xn�1 divide the solid into n slices

of which the i th has thickness �xi D xi � xi�1. The volume �Vi of that slice lies

xi
xi�1

ci

x

Figure 7.3 The volume of a slice

between the maximum and minimum values of A.x/�xi for values of x in Œxi�1; xi �

(Figure 7.3), so, by the Intermediate-Value Theorem, for some ci in Œxi�1; xi �,

�Vi D A.ci /�xi :

The volume of the solid is therefore given by the Riemann sum

V D

n
X

iD1

�Vi D

n
X

iD1

A.ci /�xi :

Letting n approach infinity in such a way that max�xi approaches 0, we obtain the

definite integral of A.x/ over Œa; b� as the limit of this Riemann sum. Therefore:

The volume V of a solid between x D a and x D b having cross-sectional

area A.x/ at position x is

V D

Z b

a

A.x/ dx:

There is another way to obtain this formula and others of a similar nature. Consider

a slice of the solid between the planes perpendicular to the x-axis at positions x and

xC�x. Since A.x/ is continuous, it doesn’t change much in a short interval, so if�x

is small, then the slice has volume�V approximately equal to the volume of a cylinder

of base area A.x/ and height �x:

�V � A.x/�x:

The error in this approximation is small compared to the size of �V: This suggests,

correctly, that the volume element, that is, the volume of an infinitely thin slice of

thickness dx is dV D A.x/ dx, and that the volume of the solid is the “sum” (i.e.,

the integral) of these volume elements between the two ends of the solid, x D a and

x D b (see Figure 7.4):

V D

Z xDb

xDa

dV; where dV D A.x/ dx:

x

dx

a x
b

Figure 7.4 The volume element

We will use this differential element approach to model other applications that result

in integrals rather than setting up explicit Riemann sums each time. Even though this

argument does not constitute a proof of the formula, you are strongly encouraged to

think of the formula this way; the volume is the integral of the volume elements.

Solids of Revolution
Many common solids have circular cross-sections in planes perpendicular to some

axis. Such solids are called solids of revolution because they can be generated by

rotating a plane region about an axis in that plane so that it sweeps out the solid. For

example, a solid ball is generated by rotating a half-disk about the diameter of that

half-disk (Figure 7.5(a)). Similarly, a solid right-circular cone is generated by rotating

a right-angled triangle about one of its legs (Figure 7.5(b)).

If the region R bounded by y D f .x/, y D 0, x D a, and x D b is rotated about

the x-axis, then the cross-section of the solid generated in the plane perpendicular to

the x-axis at x is a circular disk of radius jf .x/j. The area of this cross-section is

A.x/ D �
�

f .x/
�2

, so the volume of the solid of revolution is
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V D �

Z b

a

.f .x//
2
dx:

E X A M P L E 1
(The volume of a ball) Find the volume of a solid ball having

radius a.

Solution The ball can be generated by rotating the half-disk, 0 � y �
p

a2
� x2,

�a � x � a about the x-axis. See the cutaway view in Figure 7.5(a). Therefore, its

volume is

V D �

Z a

�a

.

p

a2
� x2/

2
dx D 2�

Z a

0

.a
2
� x

2
/ dx

D 2�

�

a
2
x �

x3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D 2�

�

a
3
�

1

3
a

3

�

D

4

3
�a

3 cubic units:

Figure 7.5

(a) The ball is generated by rotating the

red half-disk 0 � y �
p

a2
� x2

about the x-axis

(b) The cone of base radius r and height

h is generated by rotating the red

triangle 0 � x � h, 0 � y � rx=h

about the x-axis

x

y

y D
p

a2
� x2

a

�a

x

y

x

y

.h; 0/

.h; r/

y D
rx

h

(a) (b)

E X A M P L E 2
(The volume of a right-circular cone) Find the volume of the

right-circular cone of base radius r and height h that is generated

by rotating the triangle with vertices .0; 0/, .h; 0/, and .h; r/ about the x-axis.

Solution The line from .0; 0/ to .h; r/ has equation y D rx=h. Thus, the volume of

the cone (see the cutaway view in Figure 7.5(b)) is

V D �

Z h

0

�

rx

h

�2

dx D �

�

r

h

�2 x3

3

ˇ

ˇ

ˇ

ˇ

h

0

D

1

3
� r

2
h cubic units:

Improper integrals can represent volumes of unbounded solids. If the improper integral

converges, the unbounded solid has a finite volume.

E X A M P L E 3
Find the volume of the infinitely long horn that is generated by

rotating the region bounded by y D 1=x and y D 0 and lying to

the right of x D 1 about the x-axis. The horn is illustrated in Figure 7.6.

Solution The volume of the horn is

V D �

Z 1

1

�

1

x

�2

dx D � lim
R!1

Z R

1

1

x2
dx

D �� lim
R!1

1

x

ˇ

ˇ

ˇ

ˇ

R

1

D �� lim
R!1

�

1

R
� 1

�

D � cubic units:
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It is interesting to note that this finite volume arises from rotating a region that itself

has infinite area:
R1

1
dx=x D 1. We have a paradox: it takes an infinite amount of

paint to paint the region but only a finite amount to fill the horn obtained by rotating

the region. (How can you resolve this paradox?)

Figure 7.6 Cutaway view of an infinitely

long horn

x

y

y D
1

x

1

The following example shows how to deal with a problem where the axis of rotation

is not the x-axis. Just rotate a suitable area element about the axis to form a volume

element.

E X A M P L E 4
A ring-shaped solid is generated by rotating the finite plane region

y

x

1

2 � x2y D 1

y D 2

�1 1

y D x2

R

Figure 7.7 The volume element for

Example 4

R bounded by the curve y D x2 and the line y D 1 about the line

y D 2. Find its volume.

Solution First, we solve the pair of equations y D x2 and y D 1 to obtain the

intersections at x D �1 and x D 1. The solid lies between these two values of x. The

area element of R at position x is a vertical strip of width dx extending upward from

y D x2 to y D 1. When R is rotated about the line y D 2, this area element sweeps

out a thin, washer-shaped volume element of thickness dx and radius 2� x2, having a

hole of radius 1 through the middle. (See Figure 7.7.) The cross-sectional area of this

element is the area of a circle of radius 2 � x2 minus the area of the hole, a circle of

radius 1. Thus,

dV D
�

�.2 � x
2
/
2
� �.1/

2
�

dx D �.3 � 4x
2
C x

4
/ dx:

Since the solid extends from x D �1 to x D 1, its volume is

V D �

Z 1

�1

.3 � 4x
2
C x

4
/ dx D 2�

Z 1

0

.3 � 4x
2
C x

4
/ dx

D 2�

�

3x �
4x3

3
C

x5

5

�
ˇ

ˇ

ˇ

ˇ

1

0

D 2�

�

3 �
4

3
C

1

5

�

D

56�

15
cubic units.

Sometimes we want to rotate a region bounded by curves with equations of the form

x D g.y/ about the y-axis. In this case, the roles of x and y are reversed, and we use

horizontal slices instead of vertical ones.

E X A M P L E 5
Find the volume of the solid generated by rotating the region to the

right of the y-axis and to the left of the curve x D 2y � y2 about

the y-axis.

Solution For intersections of x D 2y � y2 and x D 0, we have

2y � y
2
D 0 ÷ y D 0 or y D 2:
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V D �

Z b

a

.f .x//
2
dx:

E X A M P L E 1
(The volume of a ball) Find the volume of a solid ball having

radius a.

Solution The ball can be generated by rotating the half-disk, 0 � y �
p

a2
� x2,

�a � x � a about the x-axis. See the cutaway view in Figure 7.5(a). Therefore, its

volume is

V D �

Z a

�a

.

p

a2
� x2/

2
dx D 2�

Z a

0

.a
2
� x

2
/ dx

D 2�

�

a
2
x �

x3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D 2�

�

a
3
�

1

3
a

3

�

D

4

3
�a

3 cubic units:

Figure 7.5

(a) The ball is generated by rotating the

red half-disk 0 � y �
p

a2
� x2

about the x-axis

(b) The cone of base radius r and height

h is generated by rotating the red

triangle 0 � x � h, 0 � y � rx=h

about the x-axis

x

y

y D
p

a2
� x2

a

�a

x

y

x

y

.h; 0/

.h; r/

y D
rx

h

(a) (b)

E X A M P L E 2
(The volume of a right-circular cone) Find the volume of the

right-circular cone of base radius r and height h that is generated

by rotating the triangle with vertices .0; 0/, .h; 0/, and .h; r/ about the x-axis.

Solution The line from .0; 0/ to .h; r/ has equation y D rx=h. Thus, the volume of

the cone (see the cutaway view in Figure 7.5(b)) is

V D �

Z h

0

�

rx

h

�2

dx D �

�

r

h

�2 x3

3

ˇ

ˇ

ˇ

ˇ

h

0

D

1

3
� r

2
h cubic units:

Improper integrals can represent volumes of unbounded solids. If the improper integral

converges, the unbounded solid has a finite volume.

E X A M P L E 3
Find the volume of the infinitely long horn that is generated by

rotating the region bounded by y D 1=x and y D 0 and lying to

the right of x D 1 about the x-axis. The horn is illustrated in Figure 7.6.

Solution The volume of the horn is

V D �

Z 1

1

�

1

x

�2

dx D � lim
R!1

Z R

1

1

x2
dx

D �� lim
R!1

1

x

ˇ

ˇ

ˇ

ˇ

R

1

D �� lim
R!1

�

1

R
� 1

�

D � cubic units:
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It is interesting to note that this finite volume arises from rotating a region that itself

has infinite area:
R1

1
dx=x D 1. We have a paradox: it takes an infinite amount of

paint to paint the region but only a finite amount to fill the horn obtained by rotating

the region. (How can you resolve this paradox?)

Figure 7.6 Cutaway view of an infinitely

long horn

x

y

y D
1

x

1

The following example shows how to deal with a problem where the axis of rotation

is not the x-axis. Just rotate a suitable area element about the axis to form a volume

element.

E X A M P L E 4
A ring-shaped solid is generated by rotating the finite plane region

y

x

1

2 � x2y D 1

y D 2

�1 1

y D x2

R

Figure 7.7 The volume element for

Example 4

R bounded by the curve y D x2 and the line y D 1 about the line

y D 2. Find its volume.

Solution First, we solve the pair of equations y D x2 and y D 1 to obtain the

intersections at x D �1 and x D 1. The solid lies between these two values of x. The

area element of R at position x is a vertical strip of width dx extending upward from

y D x2 to y D 1. When R is rotated about the line y D 2, this area element sweeps

out a thin, washer-shaped volume element of thickness dx and radius 2� x2, having a

hole of radius 1 through the middle. (See Figure 7.7.) The cross-sectional area of this

element is the area of a circle of radius 2 � x2 minus the area of the hole, a circle of

radius 1. Thus,

dV D
�

�.2 � x
2
/
2
� �.1/

2
�

dx D �.3 � 4x
2
C x

4
/ dx:

Since the solid extends from x D �1 to x D 1, its volume is

V D �

Z 1

�1

.3 � 4x
2
C x

4
/ dx D 2�

Z 1

0

.3 � 4x
2
C x

4
/ dx

D 2�

�

3x �
4x3

3
C

x5

5

�
ˇ

ˇ

ˇ

ˇ

1

0

D 2�

�

3 �
4

3
C

1

5

�

D

56�

15
cubic units.

Sometimes we want to rotate a region bounded by curves with equations of the form

x D g.y/ about the y-axis. In this case, the roles of x and y are reversed, and we use

horizontal slices instead of vertical ones.

E X A M P L E 5
Find the volume of the solid generated by rotating the region to the

right of the y-axis and to the left of the curve x D 2y � y2 about

the y-axis.

Solution For intersections of x D 2y � y2 and x D 0, we have

2y � y
2
D 0 ÷ y D 0 or y D 2:
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The solid lies between the horizontal planes at y D 0 and y D 2. A horizontal area

element at height y and having thickness dy rotates about the y-axis to generate a thin

disk-shaped volume element of radius 2y � y2 and thickness dy. (See Figure 7.8.) Its

volume is
y

x

2

x D 2y � y
2

dy

Figure 7.8 The volume element for

Example 5

dV D �.2y � y
2
/
2
dy D �.4y

2
� 4y

3
C y

4
/ dy:

Thus, the volume of the solid is

V D �

Z 2

0

.4y
2
� 4y

3
C y

4
/ dy

D �

�

4y3

3
� y

4
C

y5

5

�
ˇ

ˇ

ˇ

ˇ

2

0

D �

�

32

3
� 16C

32

5

�

D

16�

15
cubic units.

Cylindrical Shells
Suppose that the region R bounded by y D f .x/ � 0, y D 0, x D a � 0, and

x D b > a is rotated about the y-axis to generate a solid of revolution. In order

to find the volume of the solid using (plane) slices, we would need to know the cross-

sectional areaA.y/ in each plane of height y, and this would entail solving the equation

y D f .x/ for one or more solutions of the form x D g.y/. In practice this can be

inconvenient or impossible.

Figure 7.9 When rotated around the

y-axis, the area element of width dx under

y D f .x/ at x generates a cylindrical shell

of height f .x/, circumference 2�x, and

hence volume dV D 2�x f .x/ dx

x

y

f .x/

a

b
x

dx

x

circumference 2�x

y D f .x/

R

The standard area element of R at position x is a vertical strip of width dx, height

f .x/, and area dA D f .x/ dx. When R is rotated about the y-axis, this strip sweeps

out a volume element in the shape of a circular cylindrical shell having radius x, height

f .x/, and thickness dx. (See Figure 7.9.) Regard this shell as a rolled-up rectangular

slab with dimensions 2�x, f .x/, and dx; evidently, it has volume

dV D 2�x f .x/ dx:

The volume of the solid of revolution is the sum (integral) of the volumes of such

shells with radii ranging from a to b:
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The volume of the solid obtained by rotating the plane region

0 � y � f .x/, 0 � a < x < b about the y-axis is

V D 2�

Z b

a

x f .x/ dx:

E X A M P L E 6
(The volume of a torus) A disk of radius a has centre at the point

.b; 0/, where b > a > 0. The disk is rotated about the y-axis to

generate a torus (a doughnut-shaped solid), illustrated in Figure 7.10. Find its volume.

Solution The circle with centre at .b; 0/ and having radius a has equation

.x � b/2 C y2
D a2, so its upper semicircle is the graph of the function

f .x/ D

p

a2
� .x � b/2:

We will double the volume of the upper half of the torus, which is generated by rotating

the half-disk 0 � y �
p

a2
� .x � b/2, b � a � x � b C a about the y-axis. The

volume of the complete torus is

V D 2 � 2�

Z bCa

b�a

x

p

a2
� .x � b/2 dx Let u D x � b,

du D dx

D 4�

Z a

�a

.uC b/

p

a2
� u2 du

D 4�

Z a

�a

u

p

a2
� u2 duC 4�b

Z a

�a

p

a2
� u2 du

D 0C 4�b
�a2

2
D 2�

2
a

2
b cubic units:

(The first of the final two integrals is 0 because the integrand is odd and the interval is

symmetric about 0; the second is the area of a semicircle of radius a.) Note that the

volume of the torus is .�a2/.2�b/, that is, the area of the disk being rotated times the

distance travelled by the centre of that disk as it rotates about the y-axis. This result

will be generalized by Pappus’s Theorem in Section 7.5.

Figure 7.10 Cutaway view of a torus

x

y

x

y

y D
p

a2
� .x � b/2

b C a

b

b � a

E X A M P L E 7
Find the volume of a bowl obtained by revolving the parabolic arc

y D x2, 0 � x � 1 about the y-axis.
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The solid lies between the horizontal planes at y D 0 and y D 2. A horizontal area

element at height y and having thickness dy rotates about the y-axis to generate a thin

disk-shaped volume element of radius 2y � y2 and thickness dy. (See Figure 7.8.) Its

volume is
y

x

2

x D 2y � y
2

dy

Figure 7.8 The volume element for

Example 5

dV D �.2y � y
2
/
2
dy D �.4y

2
� 4y

3
C y

4
/ dy:

Thus, the volume of the solid is

V D �

Z 2

0

.4y
2
� 4y

3
C y

4
/ dy

D �

�

4y3

3
� y

4
C

y5

5

�
ˇ

ˇ

ˇ

ˇ

2

0

D �

�

32

3
� 16C

32

5

�

D

16�

15
cubic units.

Cylindrical Shells
Suppose that the region R bounded by y D f .x/ � 0, y D 0, x D a � 0, and

x D b > a is rotated about the y-axis to generate a solid of revolution. In order

to find the volume of the solid using (plane) slices, we would need to know the cross-

sectional areaA.y/ in each plane of height y, and this would entail solving the equation

y D f .x/ for one or more solutions of the form x D g.y/. In practice this can be

inconvenient or impossible.

Figure 7.9 When rotated around the

y-axis, the area element of width dx under

y D f .x/ at x generates a cylindrical shell

of height f .x/, circumference 2�x, and

hence volume dV D 2�x f .x/ dx

x

y

f .x/

a

b
x

dx

x

circumference 2�x

y D f .x/

R

The standard area element of R at position x is a vertical strip of width dx, height

f .x/, and area dA D f .x/ dx. When R is rotated about the y-axis, this strip sweeps

out a volume element in the shape of a circular cylindrical shell having radius x, height

f .x/, and thickness dx. (See Figure 7.9.) Regard this shell as a rolled-up rectangular

slab with dimensions 2�x, f .x/, and dx; evidently, it has volume

dV D 2�x f .x/ dx:

The volume of the solid of revolution is the sum (integral) of the volumes of such

shells with radii ranging from a to b:
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The volume of the solid obtained by rotating the plane region

0 � y � f .x/, 0 � a < x < b about the y-axis is

V D 2�

Z b

a

x f .x/ dx:

E X A M P L E 6
(The volume of a torus) A disk of radius a has centre at the point

.b; 0/, where b > a > 0. The disk is rotated about the y-axis to

generate a torus (a doughnut-shaped solid), illustrated in Figure 7.10. Find its volume.

Solution The circle with centre at .b; 0/ and having radius a has equation

.x � b/2 C y2
D a2, so its upper semicircle is the graph of the function

f .x/ D

p

a2
� .x � b/2:

We will double the volume of the upper half of the torus, which is generated by rotating

the half-disk 0 � y �
p

a2
� .x � b/2, b � a � x � b C a about the y-axis. The

volume of the complete torus is

V D 2 � 2�

Z bCa

b�a

x

p

a2
� .x � b/2 dx Let u D x � b,

du D dx

D 4�

Z a

�a

.uC b/

p

a2
� u2 du

D 4�

Z a

�a

u

p

a2
� u2 duC 4�b

Z a

�a

p

a2
� u2 du

D 0C 4�b
�a2

2
D 2�

2
a

2
b cubic units:

(The first of the final two integrals is 0 because the integrand is odd and the interval is

symmetric about 0; the second is the area of a semicircle of radius a.) Note that the

volume of the torus is .�a2/.2�b/, that is, the area of the disk being rotated times the

distance travelled by the centre of that disk as it rotates about the y-axis. This result

will be generalized by Pappus’s Theorem in Section 7.5.

Figure 7.10 Cutaway view of a torus

x

y

x

y

y D
p

a2
� .x � b/2

b C a

b

b � a

E X A M P L E 7
Find the volume of a bowl obtained by revolving the parabolic arc

y D x2, 0 � x � 1 about the y-axis.
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Solution The interior of the bowl corresponds to revolving the region given by x2
�

y � 1, 0 � x � 1 about the y-axis. The area element at position x has height 1 � x2

and generates a cylindrical shell of volume dV D 2�x.1� x2/ dx. (See Figure 7.11.)

Thus, the volume of the bowl is

y

x

1 � x2

x

dx

y D x2

Figure 7.11 A parabolic bowl

V D 2�

Z 1

0

x.1 � x
2
/ dx

D 2�

�

x2

2
�

x4

4

�
ˇ

ˇ

ˇ

ˇ

1

0

D

�

2
cubic units.

We have described two methods for determining the volume of a solid of revolution,

slicing and cylindrical shells. The choice of method for a particular solid is usually

dictated by the form of the equations defining the region being rotated and by the axis

of rotation. The volume element dV can always be determined by rotating a suitable

area element dA about the axis of rotation. If the region is bounded by vertical lines

and one or more graphs of the form y D f .x/, the appropriate area element is a

vertical strip of width dx. If the rotation is about the x-axis or any other horizontal

line, this strip generates a disk- or washer-shaped slice of thickness dx. If the rotation

is about the y-axis or any other vertical line, the strip generates a cylindrical shell of

thickness dx. On the other hand, if the region being rotated is bounded by horizontal

lines and one or more graphs of the form x D g.y/, it is easier to use a horizontal

strip of width dy as the area element, and this generates a slice if the rotation is about

a vertical line and a cylindrical shell if the rotation is about a horizontal line. For very

simple regions either method can be made to work easily. See the following table.

Table 1. Volumes of solids of revolution

If region R�

is rotated about

#

y

x

dx

R

a x b

y D f .x/

y D g.x/
y

x

c

y

d

x D h.y/

x D k.y/

R

dy

the x-axis

use plane slices

V D �

Z b

a

�

.g.x//
2
� .f .x//

2
�

dx

use cylindrical shells

V D 2�

Z d

c

y
�

k.y/ � h.y/
�

dy

the y-axis

use cylindrical shells

V D 2�

Z b

a

x
�

g.x/� f .x/
�

dx

use plane slices

V D �

Z d

c

�

.k.y//
2
� .h.y//

2
�

dy

Our final example involves rotation about a vertical line other than the y-axis.

E X A M P L E 8
The triangular region bounded by y D x, y D 0, and x D a > 0

is rotated about the line x D b > a. (See Figure 7.12.) Find the

volume of the solid so generated.

Solution Here the vertical area element at x generates a cylindrical shell of radius

b�x, height x, and thickness dx. Its volume is dV D 2�.b�x/ x dx, and the volume

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 401 October 15, 2016

SECTION 7.1: Volumes by Slicing—Solids of Revolution 401

of the solid is

V D 2�

Z a

0

.b�x/ x dx D 2�

�

bx2

2
�

x3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D �

�

a
2
b �

2a3

3

�

cubic units:

Figure 7.12 The volume element for

Example 8

y

xx a b

y D x

E X E R C I S E S 7.1

Find the volume of each solid S in Exercises 1–4 in two ways,

using the method of slicing and the method of cylindrical shells.

1. S is generated by rotating about the x-axis the region bounded

by y D x2, y D 0, and x D 1.

2. S is generated by rotating the region of Exercise 1 about the

y-axis.

3. S is generated by rotating about the x-axis the region bounded

by y D x2 and y D
p

x between x D 0 and x D 1.

4. S is generated by rotating the region of Exercise 3 about the

y-axis.

Find the volumes of the solids obtained if the plane regions R

described in Exercises 5–10 are rotated about (a) the x-axis and (b)

the y-axis.

5. R is bounded by y D x.2 � x/ and y D 0 between x D 0 and

x D 2.

6. R is the finite region bounded by y D x and y D x2.

7. R is the finite region bounded by y D x and x D 4y � y2.

8. R is bounded by y D 1C sinx and y D 1 from x D 0 to

x D � .

9. R is bounded by y D 1=.1Cx2/, y D 2, x D 0, and x D 1.

10. R is the finite region bounded by y D 1=x and 3xC 3y D 10.

11. The triangular region with vertices .0;�1/, .1; 0/, and .0; 1/ is

rotated about the line x D 2. Find the volume of the solid so

generated.

12. Find the volume of the solid generated by rotating the region

0 � y � 1 � x2 about the line y D 1.

13. What percentage of the volume of a ball of radius 2 is removed

if a hole of radius 1 is drilled through the centre of the ball?

14. A cylindrical hole is bored through the centre of a ball of

radius R. If the length of the hole is L, show that the volume

of the remaining part of the ball depends only on L and not

on R.

15. A cylindrical hole of radius a is bored through a solid

right-circular cone of height h and base radius b > a. If the

axis of the hole lies along that of the cone, find the volume of

the remaining part of the cone.

16. Find the volume of the solid obtained by rotating a circular

disk about one of its tangent lines.

17. A plane slices a ball of radius a into two pieces. If the plane

passes b units away from the centre of the ball (where b < a),

find the volume of the smaller piece.

18. Water partially fills a hemispherical bowl of radius 30 cm so

that the maximum depth of the water is 20 cm. What volume

of water is in the bowl?

19. Find the volume of the ellipsoid of revolution obtained by

rotating the ellipse .x2
=a

2
/C .y

2
=b

2
/ D 1 about the x-axis.

20. Recalculate the volume of the torus of Example 6 by slicing

perpendicular to the y-axis rather than using cylindrical

shells.

21. The region R bounded by y D e�x and y D 0 and lying to the

right of x D 0 is rotated (a) about the x-axis and (b) about the

y-axis. Find the volume of the solid of revolution generated in

each case.

22. The region R bounded by y D x�k and y D 0 and lying to the

right of x D 1 is rotated about the x-axis. Find all real values

of k for which the solid so generated has finite volume.

23. Repeat Exercise 22 with rotation about the y-axis.

24. Early editions of this text incorrectly defined a prism or

cylinder as being a solid for which cross-sections parallel to

the base were congruent to the base. Does this define a larger

or smaller set of solids than the definition given in this

section? What does the older definition say about the volume

of a cylinder or prism having base area A and height h?

25. Continuing Exercise 24, consider the solid S whose cross-

section in the plane perpendicular to the x-axis at x is an

isosceles right-angled triangle having equal sides of length

a cm with one end of the hypotenuse on the x-axis and with

hypotenuse making angle x with a fixed direction. Is S a
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Solution The interior of the bowl corresponds to revolving the region given by x2
�

y � 1, 0 � x � 1 about the y-axis. The area element at position x has height 1 � x2

and generates a cylindrical shell of volume dV D 2�x.1� x2/ dx. (See Figure 7.11.)

Thus, the volume of the bowl is

y

x

1 � x2

x

dx

y D x2

Figure 7.11 A parabolic bowl
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cubic units.

We have described two methods for determining the volume of a solid of revolution,

slicing and cylindrical shells. The choice of method for a particular solid is usually

dictated by the form of the equations defining the region being rotated and by the axis

of rotation. The volume element dV can always be determined by rotating a suitable

area element dA about the axis of rotation. If the region is bounded by vertical lines

and one or more graphs of the form y D f .x/, the appropriate area element is a

vertical strip of width dx. If the rotation is about the x-axis or any other horizontal

line, this strip generates a disk- or washer-shaped slice of thickness dx. If the rotation

is about the y-axis or any other vertical line, the strip generates a cylindrical shell of

thickness dx. On the other hand, if the region being rotated is bounded by horizontal

lines and one or more graphs of the form x D g.y/, it is easier to use a horizontal

strip of width dy as the area element, and this generates a slice if the rotation is about

a vertical line and a cylindrical shell if the rotation is about a horizontal line. For very

simple regions either method can be made to work easily. See the following table.

Table 1. Volumes of solids of revolution

If region R�

is rotated about

#

y

x

dx

R

a x b

y D f .x/

y D g.x/
y

x

c

y

d

x D h.y/

x D k.y/

R

dy

the x-axis

use plane slices

V D �

Z b

a

�

.g.x//
2
� .f .x//

2
�

dx

use cylindrical shells

V D 2�

Z d

c

y
�

k.y/ � h.y/
�

dy

the y-axis

use cylindrical shells

V D 2�

Z b

a

x
�

g.x/� f .x/
�

dx

use plane slices

V D �

Z d

c

�

.k.y//
2
� .h.y//

2
�

dy

Our final example involves rotation about a vertical line other than the y-axis.

E X A M P L E 8
The triangular region bounded by y D x, y D 0, and x D a > 0

is rotated about the line x D b > a. (See Figure 7.12.) Find the

volume of the solid so generated.

Solution Here the vertical area element at x generates a cylindrical shell of radius

b�x, height x, and thickness dx. Its volume is dV D 2�.b�x/ x dx, and the volume
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of the solid is

V D 2�

Z a

0

.b�x/ x dx D 2�

�

bx2

2
�

x3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D �

�

a
2
b �

2a3

3

�

cubic units:

Figure 7.12 The volume element for

Example 8

y

xx a b

y D x

E X E R C I S E S 7.1

Find the volume of each solid S in Exercises 1–4 in two ways,

using the method of slicing and the method of cylindrical shells.

1. S is generated by rotating about the x-axis the region bounded

by y D x2, y D 0, and x D 1.

2. S is generated by rotating the region of Exercise 1 about the

y-axis.

3. S is generated by rotating about the x-axis the region bounded

by y D x2 and y D
p

x between x D 0 and x D 1.

4. S is generated by rotating the region of Exercise 3 about the

y-axis.

Find the volumes of the solids obtained if the plane regions R

described in Exercises 5–10 are rotated about (a) the x-axis and (b)

the y-axis.

5. R is bounded by y D x.2 � x/ and y D 0 between x D 0 and

x D 2.

6. R is the finite region bounded by y D x and y D x2.

7. R is the finite region bounded by y D x and x D 4y � y2.

8. R is bounded by y D 1C sinx and y D 1 from x D 0 to

x D � .

9. R is bounded by y D 1=.1Cx2/, y D 2, x D 0, and x D 1.

10. R is the finite region bounded by y D 1=x and 3xC 3y D 10.

11. The triangular region with vertices .0;�1/, .1; 0/, and .0; 1/ is

rotated about the line x D 2. Find the volume of the solid so

generated.

12. Find the volume of the solid generated by rotating the region

0 � y � 1 � x2 about the line y D 1.

13. What percentage of the volume of a ball of radius 2 is removed

if a hole of radius 1 is drilled through the centre of the ball?

14. A cylindrical hole is bored through the centre of a ball of

radius R. If the length of the hole is L, show that the volume

of the remaining part of the ball depends only on L and not

on R.

15. A cylindrical hole of radius a is bored through a solid

right-circular cone of height h and base radius b > a. If the

axis of the hole lies along that of the cone, find the volume of

the remaining part of the cone.

16. Find the volume of the solid obtained by rotating a circular

disk about one of its tangent lines.

17. A plane slices a ball of radius a into two pieces. If the plane

passes b units away from the centre of the ball (where b < a),

find the volume of the smaller piece.

18. Water partially fills a hemispherical bowl of radius 30 cm so

that the maximum depth of the water is 20 cm. What volume

of water is in the bowl?

19. Find the volume of the ellipsoid of revolution obtained by

rotating the ellipse .x2
=a

2
/C .y

2
=b

2
/ D 1 about the x-axis.

20. Recalculate the volume of the torus of Example 6 by slicing

perpendicular to the y-axis rather than using cylindrical

shells.

21. The region R bounded by y D e�x and y D 0 and lying to the

right of x D 0 is rotated (a) about the x-axis and (b) about the

y-axis. Find the volume of the solid of revolution generated in

each case.

22. The region R bounded by y D x�k and y D 0 and lying to the

right of x D 1 is rotated about the x-axis. Find all real values

of k for which the solid so generated has finite volume.

23. Repeat Exercise 22 with rotation about the y-axis.

24. Early editions of this text incorrectly defined a prism or

cylinder as being a solid for which cross-sections parallel to

the base were congruent to the base. Does this define a larger

or smaller set of solids than the definition given in this

section? What does the older definition say about the volume

of a cylinder or prism having base area A and height h?

25. Continuing Exercise 24, consider the solid S whose cross-

section in the plane perpendicular to the x-axis at x is an

isosceles right-angled triangle having equal sides of length

a cm with one end of the hypotenuse on the x-axis and with

hypotenuse making angle x with a fixed direction. Is S a
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prism according to the definition given in early editions? Is it

a prism according to the definition in this edition? If the

height of S is b cm, what is the volume of S?

26.I Find the volume of the solid generated by rotating the finite

region in the first quadrant bounded by the coordinate axes

and the curve x2=3
C y2=3

D 4 about either of the coordinate

axes. (Both volumes are the same. Why?)

27.I Given that the surface area of a sphere of radius r is kr2,

where k is a constant independent of r; express the volume of

a ball of radius R as an integral of volume elements that are

the volumes of spherical shells of thickness dr and varying

radii r: Hence find k:
y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

y D f .x/

Figure 7.13

C 28. The region shaded in Figure 7.13 is rotated about the x-axis.

Use Simpson’s Rule to find the volume of the resulting solid.

C 29. The region shaded in Figure 7.13 is rotated about the y-axis.

Use Simpson’s Rule to find the volume of the resulting solid.

C 30. The region shaded in Figure 7.13 is rotated about the line

x D �1. Use Simpson’s Rule to find the volume of the

resulting solid.

The following problems are very difficult. You will need some

ingenuity and a lot of hard work to solve them by the techniques

available to you now.

31.I A martini glass in the shape of a right-circular cone of height

h and semi-vertical angle ˛ (see Figure 7.14) is filled with

liquid. Slowly a ball is lowered into the glass, displacing

liquid and causing it to overflow. Find the radius R of the ball

that causes the greatest volume of liquid to overflow out of the

glass.

R

h

˛

Figure 7.14

32.I The finite plane region bounded by the curve xy D 1 and the

straight line 2x C 2y D 5 is rotated about that line to generate

a solid of revolution. Find the volume of that solid.

7.2 More Volumes by Slicing

The method of slicing introduced in Section 7.1 can be used to determine volumes of

solids that are not solids of revolution. All we need to know is the area of cross-section

of the solid in every plane perpendicular to some fixed axis. If that axis is the x-axis,

if the solid lies between the planes at x D a and x D b > a, and if the cross-sectional

area in the plane at x is the continuous (or even piecewise continuous) function A.x/,

then the volume of the solid is

V D

Z b

a

A.x/ dx:

In this section we consider some examples that are not solids of revolution.

Pyramids and cones are solids consisting of all points on line segments that join

a fixed point, the vertex, to all the points in a region lying in a plane not containing the

vertex. The region is called the base of the pyramid or cone. Some pyramids and cones

are shown in Figure 7.15. If the base is bounded by straight lines, the solid is called

a pyramid; if the base has a curved boundary the solid is called a cone. All pyramids

and cones have volume

V D
1

3
Ah;
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where A is the area of the base region, and h is the height from the vertex to the plane

of the base, measured in the direction perpendicular to that plane. We will give a very

simple proof of this fact in Section 16.4. For the time being, we verify it for the case

of a rectangular base.

Figure 7.15 Some pyramids and

cones. Each has volume V D
1

3
Ah,

where A is the area of the base,

and h is the height measured

perpendicular to the base

A

A

A A

h

E X A M P L E 1
Verify the formula for the volume of a pyramid with rectangular

base of area A and height h.

Figure 7.16

(a) A rectangular pyramid

(b) A general cone

0

x

h
A

A.x/

P

L

M

Q

dx

x

x

h

x

0

A

A.x/

(a) (b)

Solution Cross-sections of the pyramid in planes parallel to the base are similar rect-

angles. If the origin is at the vertex of the pyramid and the x-axis is perpendicular

to the base, then the cross-section at position x is a rectangle whose dimensions are

x=h times the corresponding dimensions of the base. For example, in Figure 7.16(a),

the length LM is x=h times the length PQ, as can be seen from the similar triangles

OLM and OPQ. Thus, the area of the rectangular cross-section at x is

A.x/ D

�

x

h

�2

A:

The volume of the pyramid is therefore

V D

Z h

0

�

x

h

�2

Adx D
A

h2

x3

3

ˇ

ˇ

ˇ

ˇ

h

0

D

1

3
Ah cubic units:

A similar argument, resulting in the same formula for the volume, holds for a cone,

that is, a pyramid with a more general (curved) shape to its base, such as that in

Figure 7.16(b). Although it is not as obvious as in the case of the pyramid, the cross-

section at x still has area .x=h/2 times that of the base. A proof of this volume formula

for an arbitrary cone or pyramid can be found in Example 3 of Section 16.4.
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prism according to the definition given in early editions? Is it

a prism according to the definition in this edition? If the

height of S is b cm, what is the volume of S?

26.I Find the volume of the solid generated by rotating the finite

region in the first quadrant bounded by the coordinate axes

and the curve x2=3
C y2=3

D 4 about either of the coordinate

axes. (Both volumes are the same. Why?)

27.I Given that the surface area of a sphere of radius r is kr2,

where k is a constant independent of r; express the volume of

a ball of radius R as an integral of volume elements that are

the volumes of spherical shells of thickness dr and varying

radii r: Hence find k:
y

x

y

1

2

3

4

5

6

7

8

x1 2 3 4 5 6 7 8 9

y D f .x/

Figure 7.13

C 28. The region shaded in Figure 7.13 is rotated about the x-axis.

Use Simpson’s Rule to find the volume of the resulting solid.

C 29. The region shaded in Figure 7.13 is rotated about the y-axis.

Use Simpson’s Rule to find the volume of the resulting solid.

C 30. The region shaded in Figure 7.13 is rotated about the line

x D �1. Use Simpson’s Rule to find the volume of the

resulting solid.

The following problems are very difficult. You will need some

ingenuity and a lot of hard work to solve them by the techniques

available to you now.

31.I A martini glass in the shape of a right-circular cone of height

h and semi-vertical angle ˛ (see Figure 7.14) is filled with

liquid. Slowly a ball is lowered into the glass, displacing

liquid and causing it to overflow. Find the radius R of the ball

that causes the greatest volume of liquid to overflow out of the

glass.

R

h

˛

Figure 7.14

32.I The finite plane region bounded by the curve xy D 1 and the

straight line 2x C 2y D 5 is rotated about that line to generate

a solid of revolution. Find the volume of that solid.

7.2 More Volumes by Slicing

The method of slicing introduced in Section 7.1 can be used to determine volumes of

solids that are not solids of revolution. All we need to know is the area of cross-section

of the solid in every plane perpendicular to some fixed axis. If that axis is the x-axis,

if the solid lies between the planes at x D a and x D b > a, and if the cross-sectional

area in the plane at x is the continuous (or even piecewise continuous) function A.x/,

then the volume of the solid is

V D

Z b

a

A.x/ dx:

In this section we consider some examples that are not solids of revolution.

Pyramids and cones are solids consisting of all points on line segments that join

a fixed point, the vertex, to all the points in a region lying in a plane not containing the

vertex. The region is called the base of the pyramid or cone. Some pyramids and cones

are shown in Figure 7.15. If the base is bounded by straight lines, the solid is called

a pyramid; if the base has a curved boundary the solid is called a cone. All pyramids

and cones have volume

V D
1

3
Ah;
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where A is the area of the base region, and h is the height from the vertex to the plane

of the base, measured in the direction perpendicular to that plane. We will give a very

simple proof of this fact in Section 16.4. For the time being, we verify it for the case

of a rectangular base.

Figure 7.15 Some pyramids and

cones. Each has volume V D
1

3
Ah,

where A is the area of the base,

and h is the height measured

perpendicular to the base

A

A

A A

h

E X A M P L E 1
Verify the formula for the volume of a pyramid with rectangular

base of area A and height h.

Figure 7.16

(a) A rectangular pyramid

(b) A general cone

0

x

h
A

A.x/

P

L

M

Q

dx

x

x

h

x

0

A

A.x/

(a) (b)

Solution Cross-sections of the pyramid in planes parallel to the base are similar rect-

angles. If the origin is at the vertex of the pyramid and the x-axis is perpendicular

to the base, then the cross-section at position x is a rectangle whose dimensions are

x=h times the corresponding dimensions of the base. For example, in Figure 7.16(a),

the length LM is x=h times the length PQ, as can be seen from the similar triangles

OLM and OPQ. Thus, the area of the rectangular cross-section at x is

A.x/ D

�

x

h

�2

A:

The volume of the pyramid is therefore

V D

Z h

0

�

x

h

�2

Adx D
A

h2

x3

3

ˇ

ˇ

ˇ

ˇ

h

0

D

1

3
Ah cubic units:

A similar argument, resulting in the same formula for the volume, holds for a cone,

that is, a pyramid with a more general (curved) shape to its base, such as that in

Figure 7.16(b). Although it is not as obvious as in the case of the pyramid, the cross-

section at x still has area .x=h/2 times that of the base. A proof of this volume formula

for an arbitrary cone or pyramid can be found in Example 3 of Section 16.4.
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E X A M P L E 2
A tent has a circular base of radius a metres and is supported by

a horizontal ridge bar held at height b metres above a diameter of

the base by vertical supports at each end of the diameter. The material of the tent is

stretched tight so that each cross-section perpendicular to the ridge bar is an isosceles

triangle. (See Figure 7.17.) Find the volume of the tent.

Solution Let the x-axis be the diameter of the base under the ridge bar. The cross-

section at position x has base length 2
p

a2
� x2, so its area is

A.x/ D
1

2

�

2

p

a2
� x2

�

b D b

p

a2
� x2:

Thus, the volume of the solid is

V D

Z a

�a

b

p

a2
� x2 dx D b

Z a

�a

p

a2
� x2 dx D b

�a
2

2
D

�

2
a

2
b m3

:

Note that we evaluated the last integral by inspection. It is the area of a half-disk of

radius a.

Figure 7.17 The tent of Example 2 with

the front covering removed to show the

shape more clearly

x

p

a2
� x2

x

b

a

�a

E X A M P L E 3
Two circular cylinders, each having radius a, intersect so that their

axes meet at right angles. Find the volume of the region lying

inside both cylinders.

Solution We represent the cylinders in a three-dimensional Cartesian coordinate sys-

tem where the plane containing the x- and y-axes is horizontal and the z-axis is verti-

cal. One-eighth of the solid is represented in Figure 7.18, that part corresponding to all

three coordinates being positive. The two cylinders have axes along the x- and y-axes,

respectively. The cylinder with axis along the x-axis intersects the plane of the y- and

z-axes in a circle of radius a.

Similarly, the other cylinder meets the plane of the x- and z-axes in a circle of

radius a. It follows that if the region lying inside both cylinders (and having x � 0,

y � 0, and z � 0) is sliced horizontally, then the slice at height z above the xy-plane

is a square of side
p

a2
� z2 and has areaA.z/ D a2

�z
2. The volume V of the whole

region, being eight times that of the part shown, is

V D 8

Z a

0

.a
2
� z

2
/ dz D 8

�

a
2
z �

z
3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D

16

3
a

3 cubic units:
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Figure 7.18 One-eighth of the solid lying

inside two perpendicular cylindrical pipes.

The horizontal slice shown is square

x

y

z

p

a2
� z2p

a2
� z2

z

a

dz

E X E R C I S E S 7.2

1. A solid is 2 m high. The cross-section of the solid at height x

above its base has area 3x square metres. Find the volume of

the solid.

2. The cross-section at height z of a solid of height h is a

rectangle with dimensions z and h� z. Find the volume of the

solid.

3. Find the volume of a solid of height 1 whose cross-section at

height z is an ellipse with semi-axes z and
p

1 � z2.

4. A solid extends from x D 1 to x D 3. The cross-section of the

solid in the plane perpendicular to the x-axis at x is a square

of side x. Find the volume of the solid.

5. A solid is 6 ft high. Its horizontal cross-section at height z ft

above its base is a rectangle with length 2C z ft and width

8 � z ft. Find the volume of the solid.

6. A solid extends along the x-axis from x D 1 to x D 4. Its

cross-section at position x is an equilateral triangle with edge

length
p

x. Find the volume of the solid.

7. Find the volume of a solid that is h cm high if its horizontal

cross-section at any height y above its base is a circular sector

having radius a cm and angle 2�
�

1 � .y=h/

�

radians.

8. The opposite ends of a solid are at x D 0 and x D 2. The area

of cross-section of the solid in a plane perpendicular to the

x-axis at x is kx3 square units. The volume of the solid is

4 cubic units. Find k.

9. Find the cross-sectional area of a solid in any horizontal plane

at height z above its base if the volume of that part of the solid

lying below any such plane is z3 cubic units.

10. All the cross-sections of a solid in horizontal planes are

squares. The volume of the part of the solid lying below any

plane of height z is 4z cubic units, where 0 < z < h, the

height of the solid. Find the edge length of the square

cross-section at height z for 0 < z < h.

11. A solid has a circular base of radius r . All sections of the solid

perpendicular to a particular diameter of the base are squares.

Find the volume of the solid.

12. Repeat Exercise 11 but with sections that are equilateral

triangles instead of squares.

13. The base of a solid is an isosceles right-angled triangle with

equal legs measuring 12 cm. Each cross-section perpendicular

to one of these legs is half of a circular disk. Find the volume

of the solid.

14. (Cavalieri’s Principle) Two solids have equal cross-sectional

areas at equal heights above their bases. If both solids have the

same height, show that they both have the same volume.

r

b

a

Figure 7.19

15. The top of a circular cylinder of radius r is a plane inclined at

an angle to the horizontal. (See Figure 7.19.) If the lowest and

highest points on the top are at heights a and b, respectively,

above the base, find the volume of the cylinder. (Note that

there is an easy geometric way to get the answer, but you

should also try to do it by slicing. You can use either

rectangular or trapezoidal slices.)
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E X A M P L E 2
A tent has a circular base of radius a metres and is supported by

a horizontal ridge bar held at height b metres above a diameter of

the base by vertical supports at each end of the diameter. The material of the tent is

stretched tight so that each cross-section perpendicular to the ridge bar is an isosceles

triangle. (See Figure 7.17.) Find the volume of the tent.

Solution Let the x-axis be the diameter of the base under the ridge bar. The cross-

section at position x has base length 2
p

a2
� x2, so its area is

A.x/ D
1

2

�

2

p

a2
� x2

�

b D b

p

a2
� x2:

Thus, the volume of the solid is

V D

Z a

�a

b

p

a2
� x2 dx D b

Z a

�a

p

a2
� x2 dx D b

�a
2

2
D

�

2
a

2
b m3

:

Note that we evaluated the last integral by inspection. It is the area of a half-disk of

radius a.

Figure 7.17 The tent of Example 2 with

the front covering removed to show the

shape more clearly

x

p

a2
� x2

x

b

a

�a

E X A M P L E 3
Two circular cylinders, each having radius a, intersect so that their

axes meet at right angles. Find the volume of the region lying

inside both cylinders.

Solution We represent the cylinders in a three-dimensional Cartesian coordinate sys-

tem where the plane containing the x- and y-axes is horizontal and the z-axis is verti-

cal. One-eighth of the solid is represented in Figure 7.18, that part corresponding to all

three coordinates being positive. The two cylinders have axes along the x- and y-axes,

respectively. The cylinder with axis along the x-axis intersects the plane of the y- and

z-axes in a circle of radius a.

Similarly, the other cylinder meets the plane of the x- and z-axes in a circle of

radius a. It follows that if the region lying inside both cylinders (and having x � 0,

y � 0, and z � 0) is sliced horizontally, then the slice at height z above the xy-plane

is a square of side
p

a2
� z2 and has areaA.z/ D a2

�z
2. The volume V of the whole

region, being eight times that of the part shown, is

V D 8

Z a

0

.a
2
� z

2
/ dz D 8

�

a
2
z �

z
3

3

�
ˇ

ˇ

ˇ

ˇ

a

0

D

16

3
a

3 cubic units:
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Figure 7.18 One-eighth of the solid lying

inside two perpendicular cylindrical pipes.

The horizontal slice shown is square

x

y

z

p

a2
� z2p

a2
� z2

z

a

dz

E X E R C I S E S 7.2

1. A solid is 2 m high. The cross-section of the solid at height x

above its base has area 3x square metres. Find the volume of

the solid.

2. The cross-section at height z of a solid of height h is a

rectangle with dimensions z and h� z. Find the volume of the

solid.

3. Find the volume of a solid of height 1 whose cross-section at

height z is an ellipse with semi-axes z and
p

1 � z2.

4. A solid extends from x D 1 to x D 3. The cross-section of the

solid in the plane perpendicular to the x-axis at x is a square

of side x. Find the volume of the solid.

5. A solid is 6 ft high. Its horizontal cross-section at height z ft

above its base is a rectangle with length 2C z ft and width

8 � z ft. Find the volume of the solid.

6. A solid extends along the x-axis from x D 1 to x D 4. Its

cross-section at position x is an equilateral triangle with edge

length
p

x. Find the volume of the solid.

7. Find the volume of a solid that is h cm high if its horizontal

cross-section at any height y above its base is a circular sector

having radius a cm and angle 2�
�

1 � .y=h/

�

radians.

8. The opposite ends of a solid are at x D 0 and x D 2. The area

of cross-section of the solid in a plane perpendicular to the

x-axis at x is kx3 square units. The volume of the solid is

4 cubic units. Find k.

9. Find the cross-sectional area of a solid in any horizontal plane

at height z above its base if the volume of that part of the solid

lying below any such plane is z3 cubic units.

10. All the cross-sections of a solid in horizontal planes are

squares. The volume of the part of the solid lying below any

plane of height z is 4z cubic units, where 0 < z < h, the

height of the solid. Find the edge length of the square

cross-section at height z for 0 < z < h.

11. A solid has a circular base of radius r . All sections of the solid

perpendicular to a particular diameter of the base are squares.

Find the volume of the solid.

12. Repeat Exercise 11 but with sections that are equilateral

triangles instead of squares.

13. The base of a solid is an isosceles right-angled triangle with

equal legs measuring 12 cm. Each cross-section perpendicular

to one of these legs is half of a circular disk. Find the volume

of the solid.

14. (Cavalieri’s Principle) Two solids have equal cross-sectional

areas at equal heights above their bases. If both solids have the

same height, show that they both have the same volume.

r

b

a

Figure 7.19

15. The top of a circular cylinder of radius r is a plane inclined at

an angle to the horizontal. (See Figure 7.19.) If the lowest and

highest points on the top are at heights a and b, respectively,

above the base, find the volume of the cylinder. (Note that

there is an easy geometric way to get the answer, but you

should also try to do it by slicing. You can use either

rectangular or trapezoidal slices.)
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16.I (Volume of an ellipsoid) Find the volume enclosed by the

ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1:

Hint: This is not a solid of revolution. As in Example 3, the

z-axis is perpendicular to the plane of the x- and y-axes. Each

horizontal plane z D k .�c � k � c/ intersects the ellipsoid

in an ellipse .x=a/2 C .y=b/2 D 1 � .k=c/2. Thus,

dV D dz � the area of this ellipse. The area of the ellipse

.x=a/
2
C .y=b/

2
D 1 is �ab.

20 cm

Figure 7.20

17.I (Notching a log) A 45ı notch is cut to the centre of a

cylindrical log having radius 20 cm, as shown in Figure 7.20.

One plane face of the notch is perpendicular to the axis of the

log. What volume of wood was removed from the log by

cutting the notch?

18. (A smaller notch) Repeat Exercise 17, but assume that the

notch penetrates only one quarter way (10 cm) into the log.

19. What volume of wood is removed from a 3-in-thick board if a

circular hole of radius 2 in is drilled through it with the axis of

the hole tilted at an angle of 45ı to board?

20.I (More intersecting cylinders) The axes of two circular

cylinders intersect at right angles. If the radii of the cylinders

are a and b .a > b > 0/, show that the region lying inside

both cylinders has volume

V D 8

Z b

0

p

b2
� z2
p

a2
� z2 dz:

Hint: Review Example 3. Try to make a similar diagram,

showing only one-eighth of the region. The integral is not

easily evaluated.

C 21. A circular hole of radius 2 cm is drilled through the middle of

a circular log of radius 4 cm, with the axis of the hole

perpendicular to the axis of the log. Find the volume of wood

removed from the log. Hint: This is very similar to Exercise

20. You will need to use numerical methods or a calculator

with a numerical integration function to get the answer.

7.3 Arc Length and Surface Area

In this section we consider how integrals can be used to find the lengths of curves and

the areas of the surfaces of solids of revolution.

Arc Length
If A and B are two points in the plane, let jABj denote the distance between A and B ,

that is, the length of the straight line segment AB .

Figure 7.21 A polygonal approximation

to a curve C

P0 D A

Pn D B

C

P2

P1

Pi�1

Pi

Pn�1

Given a curve C joining the two points A and B , we would like to define what is

meant by the length of the curve C from A to B . Suppose we choose points A D P0,

P1, P2, : : : ; Pn�1, and Pn D B in order along the curve, as shown in Figure 7.21.

The polygonal line P0P1P2 : : : Pn�1Pn constructed by joining adjacent pairs of these
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points with straight line segments forms a polygonal approximation to C, having length

Ln D jP0P1j C jP1P2j C � � � C jPn�1Pnj D

n
X

iD1

jPi�1Pi j:

Intuition tells us that the shortest curve joining two points is a straight line segment,

so the length Ln of any such polygonal approximation to C cannot exceed the length

of C. If we increase n by adding more vertices to the polygonal line between existing

vertices,Ln cannot get smaller and may increase. If there exists a finite numberK such

thatLn � K for every polygonal approximation to C, then there will be a smallest such

number K (by the completeness of the real numbers), and we call this smallest K the

arc length of C.

D E F I N I T I O N

1

The arc length of the curve C from A to B is the smallest real number s such

that the length Ln of every polygonal approximation to C satisfies Ln � s.

A curve with a finite arc length is said to be rectifiable. Its arc length s is the limit

of the lengths Ln of polygonal approximations as n ! 1 in such a way that the

maximum segment length jPi�1Pi j ! 0.

It is possible to construct continuous curves that are bounded (they do not go off

to infinity anywhere) but are not rectifiable; they have infinite length. To avoid such

pathological examples, we will assume that our curves are smooth; they will be defined

by functions having continuous derivatives.

The Arc Length of the Graph of a Function
Let f be a function defined on a closed, finite interval Œa; b� and having a continuous

derivative f 0 there. If C is the graph of f; that is, the graph of the equation y D f .x/,

then any partition of Œa; b� provides a polygonal approximation to C. For the partition

fa D x0 < x1 < x2 < � � � < xn D bg;

let Pi be the point
�

xi ; f .xi /
�

, .0 � i � n/. The length of the polygonal line

P0P1P2 : : : Pn�1Pn is

Ln D

n
X

iD1

jPi�1Pi j D

n
X

iD1

q

.xi � xi�1/
2
C

�

f .xi / � f .xi�1/
�2

D

n
X

iD1

s

1C

�

f .xi / � f .xi�1/

xi � xi�1

�2

�xi ;

where �xi D xi � xi�1. By the Mean-Value Theorem there exists a number ci in the

interval Œxi�1; xi � such that

f .xi / � f .xi�1/

xi � xi�1

D f
0
.ci /;

so we have Ln D

n
X

iD1

q

1C
�

f 0.ci /
�2
�xi .

Thus, Ln is a Riemann sum for
R b

a

p

1C .f 0.x//2 dx. Being the limit of such Rie-

mann sums as n!1 in such a way that max.�xi /! 0, that integral is the length of

the curve C.

The arc length s of the curve y D f .x/ from x D a to x D b is given by

s D

Z b

a

q

1C
�

f 0.x/
�2
dx D

Z b

a

s

1C

�

dy

dx

�2

dx:
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16.I (Volume of an ellipsoid) Find the volume enclosed by the

ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1:

Hint: This is not a solid of revolution. As in Example 3, the

z-axis is perpendicular to the plane of the x- and y-axes. Each

horizontal plane z D k .�c � k � c/ intersects the ellipsoid

in an ellipse .x=a/2 C .y=b/2 D 1 � .k=c/2. Thus,

dV D dz � the area of this ellipse. The area of the ellipse

.x=a/
2
C .y=b/

2
D 1 is �ab.

20 cm

Figure 7.20

17.I (Notching a log) A 45ı notch is cut to the centre of a

cylindrical log having radius 20 cm, as shown in Figure 7.20.

One plane face of the notch is perpendicular to the axis of the

log. What volume of wood was removed from the log by

cutting the notch?

18. (A smaller notch) Repeat Exercise 17, but assume that the

notch penetrates only one quarter way (10 cm) into the log.

19. What volume of wood is removed from a 3-in-thick board if a

circular hole of radius 2 in is drilled through it with the axis of

the hole tilted at an angle of 45ı to board?

20.I (More intersecting cylinders) The axes of two circular

cylinders intersect at right angles. If the radii of the cylinders

are a and b .a > b > 0/, show that the region lying inside

both cylinders has volume

V D 8

Z b

0

p

b2
� z2
p

a2
� z2 dz:

Hint: Review Example 3. Try to make a similar diagram,

showing only one-eighth of the region. The integral is not

easily evaluated.

C 21. A circular hole of radius 2 cm is drilled through the middle of

a circular log of radius 4 cm, with the axis of the hole

perpendicular to the axis of the log. Find the volume of wood

removed from the log. Hint: This is very similar to Exercise

20. You will need to use numerical methods or a calculator

with a numerical integration function to get the answer.

7.3 Arc Length and Surface Area

In this section we consider how integrals can be used to find the lengths of curves and

the areas of the surfaces of solids of revolution.

Arc Length
If A and B are two points in the plane, let jABj denote the distance between A and B ,

that is, the length of the straight line segment AB .

Figure 7.21 A polygonal approximation

to a curve C

P0 D A

Pn D B

C

P2

P1

Pi�1

Pi

Pn�1

Given a curve C joining the two points A and B , we would like to define what is

meant by the length of the curve C from A to B . Suppose we choose points A D P0,

P1, P2, : : : ; Pn�1, and Pn D B in order along the curve, as shown in Figure 7.21.

The polygonal line P0P1P2 : : : Pn�1Pn constructed by joining adjacent pairs of these
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points with straight line segments forms a polygonal approximation to C, having length

Ln D jP0P1j C jP1P2j C � � � C jPn�1Pnj D

n
X

iD1

jPi�1Pi j:

Intuition tells us that the shortest curve joining two points is a straight line segment,

so the length Ln of any such polygonal approximation to C cannot exceed the length

of C. If we increase n by adding more vertices to the polygonal line between existing

vertices,Ln cannot get smaller and may increase. If there exists a finite numberK such

thatLn � K for every polygonal approximation to C, then there will be a smallest such

number K (by the completeness of the real numbers), and we call this smallest K the

arc length of C.

D E F I N I T I O N

1

The arc length of the curve C from A to B is the smallest real number s such

that the length Ln of every polygonal approximation to C satisfies Ln � s.

A curve with a finite arc length is said to be rectifiable. Its arc length s is the limit

of the lengths Ln of polygonal approximations as n ! 1 in such a way that the

maximum segment length jPi�1Pi j ! 0.

It is possible to construct continuous curves that are bounded (they do not go off

to infinity anywhere) but are not rectifiable; they have infinite length. To avoid such

pathological examples, we will assume that our curves are smooth; they will be defined

by functions having continuous derivatives.

The Arc Length of the Graph of a Function
Let f be a function defined on a closed, finite interval Œa; b� and having a continuous

derivative f 0 there. If C is the graph of f; that is, the graph of the equation y D f .x/,

then any partition of Œa; b� provides a polygonal approximation to C. For the partition

fa D x0 < x1 < x2 < � � � < xn D bg;

let Pi be the point
�

xi ; f .xi /
�

, .0 � i � n/. The length of the polygonal line

P0P1P2 : : : Pn�1Pn is

Ln D

n
X

iD1

jPi�1Pi j D

n
X

iD1

q

.xi � xi�1/
2
C

�

f .xi / � f .xi�1/
�2

D

n
X

iD1

s

1C

�

f .xi / � f .xi�1/

xi � xi�1

�2

�xi ;

where �xi D xi � xi�1. By the Mean-Value Theorem there exists a number ci in the

interval Œxi�1; xi � such that

f .xi / � f .xi�1/

xi � xi�1

D f
0
.ci /;

so we have Ln D

n
X

iD1

q

1C
�

f 0.ci /
�2
�xi .

Thus, Ln is a Riemann sum for
R b

a

p

1C .f 0.x//2 dx. Being the limit of such Rie-

mann sums as n!1 in such a way that max.�xi /! 0, that integral is the length of

the curve C.

The arc length s of the curve y D f .x/ from x D a to x D b is given by

s D

Z b

a

q

1C
�

f 0.x/
�2
dx D

Z b

a

s

1C

�

dy

dx

�2

dx:
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You can regard the integral formula above as giving the arc length s of C as a “sum”

of arc length elements:

s D

Z xDb

xDa

ds; where ds D

q

1C
�

f 0.x/
�2
dx:

Figure 7.22 provides a convenient way to remember this; it also suggests how we can

arrive at similar formulas for arc length elements of other kinds of curves. The differ-

ential triangle in the figure suggests that

dx

dy
ds

Figure 7.22 A differential triangle

.ds/
2
D .dx/

2
C .dy/

2
:

Dividing this equation by .dx/2 and taking the square root, we get

�

ds

dx

�2

D 1C

�

dy

dx

�2

ds

dx
D

s

1C

�

dy

dx

�2

ds D

s

1C

�

dy

dx

�2

dx D

q

1C
�

f 0.x/
�2
dx:

A similar argument shows that for a curve specified by an equation of the form x D

g.y/, .c � y � d/, the arc length element is

ds D

s

1C

�

dx

dy

�2

dy D

q

1C
�

g0.y/
�2
dy:

E X A M P L E 1
Find the length of the curve y D x2=3 from x D 1 to x D 8.

Solution Since dy=dx D 2
3
x

�1=3
is continuous between x D 1 and x D 8 and

x
1=3

> 0 there, the length of the curve is given by

s D

Z 8

1

r

1C
4

9
x

�2=3
dx D

Z 8

1

s

9x2=3
C 4

9x2=3
dx

D

Z 8

1

p

9x2=3
C 4

3x1=3
dx Let u D 9x2=3

C 4,

du D 6x�1=3 dx

D

1

18

Z 40

13

u
1=2

du D
1

27
u

3=2

ˇ

ˇ

ˇ

ˇ

40

13

D

40
p

40 � 13
p

13

27
units.

E X A M P L E 2 Find the length of the curve y D x4
C

1

32x2
from x D 1 to x D 2.

Solution Here
dy

dx
D 4x

3
�

1

16x3
and

1C

�

dy

dx

�2

D 1C

�

4x
3
�

1

16x3

�2

D 1C .4x
3
/
2
�

1

2
C

�

1

16x3

�2

D .4x
3
/
2
C

1

2
C

�

1

16x3

�2

D

�

4x
3
C

1

16x3

�2

:
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The expression in the last set of parentheses is positive for 1 � x � 2, so the length of

the curve is

s D

Z 2

1

�

4x
3
C

1

16x3

�

dx D

�

x
4
�

1

32x2

�
ˇ

ˇ

ˇ

ˇ

2

1

D 16 �
1

128
�

�

1 �
1

32

�

D 15C
3

128
units.

The examples above are deceptively simple; the curves were chosen so that the arc

length integrals could be easily evaluated. For instance, the number 32 in the curve in

Example 2 was chosen so the expression 1C .dy=dx/2 would turn out to be a perfect

square and its square root would cause no problems. Because of the square root in

the formula, arc length problems for most curves lead to integrals that are difficult or

impossible to evaluate without using numerical techniques.

E X A M P L E 3
(Manufacturing corrugated panels) Flat rectangular sheets of

metal 2 m wide are to be formed into corrugated roofing panels

2 m wide by bending them into the sinusoidal shape shown in Figure 7.23. The period

of the cross-sectional sine curve is 20 cm. Its amplitude is 5 cm, so the panel is 10 cm

thick. How long should the flat sheets be cut if the resulting panels must be 5 m long?

Figure 7.23 A corrugated roofing panel 20 cm
10 cm

5 m

2 m

Solution One period of the sinusoidal cross-section is shown in Figure 7.24. The

distances are all in metres; the 5 cm amplitude is shown as 1/20 m, and the 20 cm

period is shown as 2/10 m. The curve has equation

y D
1

20
sin.10�x/:

Note that 25 periods are required to produce a 5 m long panel. The length of the flat

sheet required is 25 times the length of one period of the sine curve:

y

x

yD� 1
20

yD 1
20

y D
1

20
sin.10�x/

2=10

Figure 7.24 One period of the panel’s

cross-section

s D 25

Z 2=10

0

r

1C

�

�

2
cos.10�x/

�2

dx Let t D 10�x,

dt D 10� dx

D

5

2�

Z 2�

0

s

1C
�2

4
cos2

t dt D
10

�

Z �=2

0

s

1C
�2

4
cos2

t dt:

The integral can be evaluated numerically using the techniques of the previous chap-

ter or by using the definite integral function on an advanced scientific calculator or a

computer. The value is s � 7:32. The flat metal sheet should be about 7.32 m long to

yield a 5 m long finished panel.

If integrals needed for standard problems such as arc lengths of simple curves cannot

be evaluated exactly, they are sometimes used to define new functions whose values are

tabulated or built into computer programs. An example of this is the complete elliptic

integral function that arises in the next example.
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You can regard the integral formula above as giving the arc length s of C as a “sum”

of arc length elements:

s D

Z xDb

xDa

ds; where ds D

q

1C
�

f 0.x/
�2
dx:

Figure 7.22 provides a convenient way to remember this; it also suggests how we can

arrive at similar formulas for arc length elements of other kinds of curves. The differ-

ential triangle in the figure suggests that

dx

dy
ds

Figure 7.22 A differential triangle

.ds/
2
D .dx/

2
C .dy/

2
:

Dividing this equation by .dx/2 and taking the square root, we get

�

ds

dx

�2

D 1C

�

dy

dx

�2

ds

dx
D

s

1C

�

dy

dx

�2

ds D

s

1C

�

dy

dx

�2

dx D

q

1C
�

f 0.x/
�2
dx:

A similar argument shows that for a curve specified by an equation of the form x D

g.y/, .c � y � d/, the arc length element is

ds D

s

1C

�

dx

dy

�2

dy D

q

1C
�

g0.y/
�2
dy:

E X A M P L E 1
Find the length of the curve y D x2=3 from x D 1 to x D 8.

Solution Since dy=dx D 2
3
x

�1=3
is continuous between x D 1 and x D 8 and

x
1=3

> 0 there, the length of the curve is given by

s D

Z 8

1

r

1C
4

9
x

�2=3
dx D

Z 8

1

s

9x2=3
C 4

9x2=3
dx

D

Z 8

1

p

9x2=3
C 4

3x1=3
dx Let u D 9x2=3

C 4,

du D 6x�1=3 dx

D

1

18

Z 40

13

u
1=2

du D
1

27
u

3=2

ˇ

ˇ

ˇ

ˇ

40

13

D

40
p

40 � 13
p

13

27
units.

E X A M P L E 2 Find the length of the curve y D x4
C

1

32x2
from x D 1 to x D 2.

Solution Here
dy

dx
D 4x

3
�

1

16x3
and

1C

�

dy

dx

�2

D 1C

�

4x
3
�

1

16x3

�2

D 1C .4x
3
/
2
�

1

2
C

�

1

16x3

�2

D .4x
3
/
2
C

1

2
C

�

1

16x3

�2

D

�

4x
3
C

1

16x3

�2

:
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The expression in the last set of parentheses is positive for 1 � x � 2, so the length of

the curve is

s D

Z 2

1

�

4x
3
C

1

16x3

�

dx D

�

x
4
�

1

32x2

�
ˇ

ˇ

ˇ

ˇ

2

1

D 16 �
1

128
�

�

1 �
1

32

�

D 15C
3

128
units.

The examples above are deceptively simple; the curves were chosen so that the arc

length integrals could be easily evaluated. For instance, the number 32 in the curve in

Example 2 was chosen so the expression 1C .dy=dx/2 would turn out to be a perfect

square and its square root would cause no problems. Because of the square root in

the formula, arc length problems for most curves lead to integrals that are difficult or

impossible to evaluate without using numerical techniques.

E X A M P L E 3
(Manufacturing corrugated panels) Flat rectangular sheets of

metal 2 m wide are to be formed into corrugated roofing panels

2 m wide by bending them into the sinusoidal shape shown in Figure 7.23. The period

of the cross-sectional sine curve is 20 cm. Its amplitude is 5 cm, so the panel is 10 cm

thick. How long should the flat sheets be cut if the resulting panels must be 5 m long?

Figure 7.23 A corrugated roofing panel 20 cm
10 cm

5 m

2 m

Solution One period of the sinusoidal cross-section is shown in Figure 7.24. The

distances are all in metres; the 5 cm amplitude is shown as 1/20 m, and the 20 cm

period is shown as 2/10 m. The curve has equation

y D
1

20
sin.10�x/:

Note that 25 periods are required to produce a 5 m long panel. The length of the flat

sheet required is 25 times the length of one period of the sine curve:

y

x

yD� 1
20

yD 1
20

y D
1

20
sin.10�x/

2=10

Figure 7.24 One period of the panel’s

cross-section

s D 25

Z 2=10

0

r

1C

�

�

2
cos.10�x/

�2

dx Let t D 10�x,

dt D 10� dx

D

5

2�

Z 2�

0

s

1C
�2

4
cos2

t dt D
10

�

Z �=2

0

s

1C
�2

4
cos2

t dt:

The integral can be evaluated numerically using the techniques of the previous chap-

ter or by using the definite integral function on an advanced scientific calculator or a

computer. The value is s � 7:32. The flat metal sheet should be about 7.32 m long to

yield a 5 m long finished panel.

If integrals needed for standard problems such as arc lengths of simple curves cannot

be evaluated exactly, they are sometimes used to define new functions whose values are

tabulated or built into computer programs. An example of this is the complete elliptic

integral function that arises in the next example.

9780134154367_Calculus   429 05/12/16   3:28 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 410 October 15, 2016

410 CHAPTER 7 Applications of Integration

E X A M P L E 4
(The circumference of an ellipse) Find the circumference of the

ellipse

x2

a2
C

y2

b2
D 1;

where a � b > 0. See Figure 7.25.

Solution The upper half of the ellipse has equation y D b

r

1 �
x2

a2
D

b

a

p

a2
� x2.

Hence,

dy

dx
D �

b

a

x
p

a2
� x2

;

so

1C

�

dy

dx

�2

D 1C
b

2

a2

x
2

a2
� x2

D

a4
� .a2

� b2/x2

a2.a2
� x2/

:

y

x

b

a

�b

�a

x2

a2 C y2

b2 D1

Figure 7.25 The ellipse of Example 4

The circumference of the ellipse is four times the arc length of the part lying in the first

quadrant, so

s D 4

Z a

0

p

a4
� .a2

� b2/x2

a
p

a2
� x2

dx Let x D a sin t ,

dx D a cos t dt

D 4

Z �=2

0

p

a4
� .a2

� b2/a2 sin2
t

a.a cos t/
a cos t dt

D 4

Z �=2

0

q

a2
� .a2

� b2/ sin2
t dt

D 4a

Z �=2

0

s

1 �
a2
� b2

a2
sin2

t dt

D 4a

Z �=2

0

p

1 � "2 sin2
t dt units,

where " D .
p

a2
� b2/=a is the eccentricity of the ellipse. (See Section 8.1 for a

discussion of ellipses.) Note that 0 � " < 1. The function E."/, defined by

E."/ D

Z �=2

0

p

1 � "2 sin2
t dt;

is called the complete elliptic integral of the second kind. The integral cannot be

evaluated by elementary techniques for general ", although numerical methods can be

applied to find approximate values for any given value of ". Tables of values of E."/

for various values of " can be found in collections of mathematical tables. As shown

above, the circumference of the ellipse is given by 4aE."/. Note that for a D b we have

" D 0, and the formula returns the circumference of a circle; s D 4a.�=2/ D 2�a

units.

Areas of Surfaces of Revolution
When a plane curve is rotated (in three dimensions) about a line in the plane of the

curve, it sweeps out a surface of revolution. For instance, a sphere of radius a is

generated by rotating a semicircle of radius a about the diameter of that semicircle.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 411 October 15, 2016

SECTION 7.3: Arc Length and Surface Area 411

The area of a surface of revolution can be found by integrating an area element dS

constructed by rotating the arc length element ds of the curve about the given line. If

the radius of rotation of the element ds is r; then it generates, on rotation, a circular

band of width ds and length (circumference) 2�r: The area of this band is, therefore,

dS D 2�r ds;

as shown in Figure 7.26. The areas of surfaces of revolution around various lines can

be obtained by integrating dS with appropriate choices of r: Here are some important

special cases:

Curve

ds

Axis

r

dS D 2�r ds

Figure 7.26 The circular band generated

by rotating arc length element ds about the

axis

Area of a surface of revolution

If f 0
.x/ is continuous on Œa; b� and the curve y D f .x/ is rotated about the

x-axis, the area of the surface of revolution so generated is

S D 2�

Z xDb

xDa

jyj ds D 2�

Z b

a

jf .x/j

p

1C .f 0.x//2 dx:

If the rotation is about the y-axis, the surface area is

S D 2�

Z xDb

xDa

jxj ds D 2�

Z b

a

jxj

p

1C .f 0.x//2 dx:

If g0.y/ is continuous on Œc; d � and the curve x D g.y/ is rotated about the

x-axis, the area of the surface of revolution so generated is

S D 2�

Z yDd

yDc

jyj ds D 2�

Z d

c

jyj

p

1C .g0.y//2 dy:

If the rotation is about the y-axis, the surface area is

S D 2�

Z yDd

yDc

jxj ds D 2�

Z d

c

jg.y/j

p

1C .g0.y//2 dy:

Remark Students sometimes wonder whether such complicated formulas are actu-

ally necessary. Why not just use dS D 2�jyj dx for the area element when y D

f .x/ is rotated about the x-axis instead of the more complicated area element dS D

2�jyj ds? After all, we are regarding dx and ds as both being infinitely small, and we

certainly used dx for the width of the disk-shaped volume element when we rotated

the region under y D f .x/ about the x-axis to generate a solid of revolution. The

reason is somewhat subtle. For small thickness �x, the volume of a slice of the solid

of revolution is only approximately �y2
�x, but the error is small compared to the

volume of this slice. On the other hand, if we use 2�jyj�x as an approximation to

the area of a thin band of the surface of revolution corresponding to an x interval of

width�x, the error is not small compared to the area of that band. If, for instance, the

curve y D f .x/ has slope 1 at x, then the width of the band is really �s D
p

2�x,

so that the area of the band is�S D 2�
p

2jyj�x, not just 2�jyj�x. Always use the

appropriate arc length element along the curve when you rotate a curve to find the area

of a surface of revolution.

E X A M P L E 5
(Surface area of a sphere) Find the area of the surface of a sphere

of radius a.
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E X A M P L E 4
(The circumference of an ellipse) Find the circumference of the

ellipse

x2

a2
C

y2

b2
D 1;

where a � b > 0. See Figure 7.25.

Solution The upper half of the ellipse has equation y D b

r

1 �
x2

a2
D

b

a

p

a2
� x2.

Hence,

dy

dx
D �

b

a

x
p

a2
� x2

;

so

1C

�

dy

dx

�2

D 1C
b

2

a2

x
2

a2
� x2

D

a4
� .a2

� b2/x2

a2.a2
� x2/

:

y

x

b

a

�b

�a

x2

a2 C y2

b2 D1

Figure 7.25 The ellipse of Example 4

The circumference of the ellipse is four times the arc length of the part lying in the first

quadrant, so

s D 4

Z a

0

p

a4
� .a2

� b2/x2

a
p

a2
� x2

dx Let x D a sin t ,

dx D a cos t dt

D 4

Z �=2

0

p

a4
� .a2

� b2/a2 sin2
t

a.a cos t/
a cos t dt

D 4

Z �=2

0

q

a2
� .a2

� b2/ sin2
t dt

D 4a

Z �=2

0

s

1 �
a2
� b2

a2
sin2

t dt

D 4a

Z �=2

0

p

1 � "2 sin2
t dt units,

where " D .
p

a2
� b2/=a is the eccentricity of the ellipse. (See Section 8.1 for a

discussion of ellipses.) Note that 0 � " < 1. The function E."/, defined by

E."/ D

Z �=2

0

p

1 � "2 sin2
t dt;

is called the complete elliptic integral of the second kind. The integral cannot be

evaluated by elementary techniques for general ", although numerical methods can be

applied to find approximate values for any given value of ". Tables of values of E."/

for various values of " can be found in collections of mathematical tables. As shown

above, the circumference of the ellipse is given by 4aE."/. Note that for a D b we have

" D 0, and the formula returns the circumference of a circle; s D 4a.�=2/ D 2�a

units.

Areas of Surfaces of Revolution
When a plane curve is rotated (in three dimensions) about a line in the plane of the

curve, it sweeps out a surface of revolution. For instance, a sphere of radius a is

generated by rotating a semicircle of radius a about the diameter of that semicircle.
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The area of a surface of revolution can be found by integrating an area element dS

constructed by rotating the arc length element ds of the curve about the given line. If

the radius of rotation of the element ds is r; then it generates, on rotation, a circular

band of width ds and length (circumference) 2�r: The area of this band is, therefore,

dS D 2�r ds;

as shown in Figure 7.26. The areas of surfaces of revolution around various lines can

be obtained by integrating dS with appropriate choices of r: Here are some important

special cases:

Curve

ds

Axis

r

dS D 2�r ds

Figure 7.26 The circular band generated

by rotating arc length element ds about the

axis

Area of a surface of revolution

If f 0
.x/ is continuous on Œa; b� and the curve y D f .x/ is rotated about the

x-axis, the area of the surface of revolution so generated is

S D 2�

Z xDb

xDa

jyj ds D 2�

Z b

a

jf .x/j

p

1C .f 0.x//2 dx:

If the rotation is about the y-axis, the surface area is

S D 2�

Z xDb

xDa

jxj ds D 2�

Z b

a

jxj

p

1C .f 0.x//2 dx:

If g0.y/ is continuous on Œc; d � and the curve x D g.y/ is rotated about the

x-axis, the area of the surface of revolution so generated is

S D 2�

Z yDd

yDc

jyj ds D 2�

Z d

c

jyj

p

1C .g0.y//2 dy:

If the rotation is about the y-axis, the surface area is

S D 2�

Z yDd

yDc

jxj ds D 2�

Z d

c

jg.y/j

p

1C .g0.y//2 dy:

Remark Students sometimes wonder whether such complicated formulas are actu-

ally necessary. Why not just use dS D 2�jyj dx for the area element when y D

f .x/ is rotated about the x-axis instead of the more complicated area element dS D

2�jyj ds? After all, we are regarding dx and ds as both being infinitely small, and we

certainly used dx for the width of the disk-shaped volume element when we rotated

the region under y D f .x/ about the x-axis to generate a solid of revolution. The

reason is somewhat subtle. For small thickness �x, the volume of a slice of the solid

of revolution is only approximately �y2
�x, but the error is small compared to the

volume of this slice. On the other hand, if we use 2�jyj�x as an approximation to

the area of a thin band of the surface of revolution corresponding to an x interval of

width�x, the error is not small compared to the area of that band. If, for instance, the

curve y D f .x/ has slope 1 at x, then the width of the band is really �s D
p

2�x,

so that the area of the band is�S D 2�
p

2jyj�x, not just 2�jyj�x. Always use the

appropriate arc length element along the curve when you rotate a curve to find the area

of a surface of revolution.

E X A M P L E 5
(Surface area of a sphere) Find the area of the surface of a sphere

of radius a.

9780134154367_Calculus   431 05/12/16   3:28 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 412 October 15, 2016

412 CHAPTER 7 Applications of Integration

Solution Such a sphere can be generated by rotating the semicircle with equation

y D
p

a2
� x2, .�a � x � a/, about the x-axis. (See Figure 7.27.) Since

ds

y D
p

a2
� x2

x

y

Figure 7.27 An area element on a sphere

dy

dx
D �

x
p

a2
� x2

D �

x

y
;

the area of the sphere is given by

S D 2�

Z a

�a

y

s

1C

�

x

y

�2

dx

D 4�

Z a

0

p

y2
C x2 dx

D 4�

Z a

0

p

a2 dx D 4�ax

ˇ

ˇ

ˇ

ˇ

a

0

D 4�a
2 square units.

E X A M P L E 6
(Surface area of a parabolic dish) Find the surface area of a

parabolic reflector whose shape is obtained by rotating the parabolic
y

x

ds

y D x
2

.1; 1/

Figure 7.28 The area element is a

horizontal band here

arc y D x2, .0 � x � 1/, about the y-axis, as illustrated in Figure 7.28.

Solution The arc length element for the parabola y D x2 is ds D
p

1C 4x2 dx, so

the required surface area is

S D 2�

Z 1

0

x

p

1C 4x2 dx Let u D 1C 4x2,

du D 8x dx

D

�

4

Z 5

1

u
1=2
du

D

�

6
u

3=2

ˇ

ˇ

ˇ

ˇ

5

1

D

�

6
.5
p

5 � 1/ square units.

E X E R C I S E S 7.3

In Exercises 1–16, find the lengths of the given curves.

1. y D 2x � 1 from x D 1 to x D 3

2. y D ax C b from x D A to x D B

3. y D
2

3
x

3=2 from x D 0 to x D 8

4. y2
D .x � 1/3 from .1; 0/ to .2; 1/

5. y3
D x2 from .�1; 1/ to .1; 1/

6. 2.x C 1/3 D 3.y � 1/2 from .�1; 1/ to .0; 1C
p

2=3/

7. y D
x3

12
C

1

x
from x D 1 to x D 4

8. y D
x3

3
C

1

4x
from x D 1 to x D 2

9. 4y D 2 ln x � x2 from x D 1 to x D e

10. y D x2
�

lnx

8
from x D 1 to x D 2

11. y D
e

x
C e

�x

2
.D cosh x/ from x D 0 to x D a

12. y D ln.1 � x2/ from x D �.1=2/ to x D 1=2

13. y D ln cos x from x D �=6 to x D �=4

14.I y D x2 from x D 0 to x D 2

15.I y D ln
ex
� 1

ex
C 1

from x D 2 to x D 4

16.I y D lnx from x D 1 to x D e

17. Find the circumference of the closed curve

x2=3
C y2=3

D a2=3. Hint: The curve is symmetric about

both coordinate axes (why?), so one-quarter of it lies in the

first quadrant.

Use numerical methods (or a calculator with an integration

function, or computer software like Maple) to find the lengths of

the curves in Exercises 18–21 to 4 decimal places.

C 18. y D x4 from x D 0 to x D 1

C 19. y D x1=3 from x D 1 to x D 2

C 20. The circumference of the ellipse 3x2
C y2

D 3

C 21. The shorter arc of the ellipse x2
C 2y2

D 2 between .0; 1/

and .1; 1=
p

2/
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In Exercises 22–29, find the areas of the surfaces obtained by

rotating the given curve about the indicated lines.

22. y D x2, (0 � x � 2), about the y-axis

23. y D x3, (0 � x � 1), about the x-axis

24. y D x3=2, (0 � x � 1), about the x-axis

25. y D x3=2, (0 � x � 1), about the y-axis

26. y D ex , (0 � x � 1), about the x-axis

27. y D sinx, (0 � x � �), about the x-axis

28. y D
x

3

12
C

1

x
, (1 � x � 4), about the x-axis

29. y D
x3

12
C

1

x
, (1 � x � 4), about the y-axis

30. (Surface area of a cone) Find the area of the curved surface

of a right-circular cone of base radius r and height h by

rotating the straight line segment from .0; 0/ to .r; h/ about

the y-axis.

31. (How much icing on a doughnut?) Find the surface area of

the torus (doughnut) obtained by rotating the circle

.x � b/
2
C y

2
D a

2 about the y-axis.

32. (Area of a prolate spheroid) Find the area of the surface

obtained by rotating the ellipse x2
C 4y2

D 4 about the

x-axis.

33. (Area of an oblate spheroid) Find the area of the surface

obtained by rotating the ellipse x2
C 4y2

D 4 about the

y-axis.

34.I The ellipse of Example 4 is rotated about the line y D c > b

to generate a doughnut with elliptical cross-sections. Express

the surface area of this doughnut in terms of the complete

elliptic integral function E."/ introduced in that example.

35.I Express the integral formula obtained for the length of the

metal sheet in Example 3 in terms of the complete elliptic

integral function E.�/ introduced in Example 4.

36. (An interesting property of spheres) If two parallel planes

intersect a sphere, show that the surface area of that part of the

sphere lying between the two planes depends only on the

radius of the sphere and the distance between the planes, and

not on the position of the planes.

37. For what real values of k does the surface generated by

rotating the curve y D xk , .0 < x � 1/, about the y-axis have

a finite surface area?

38.I The curve y D lnx, .0 < x � 1/, is rotated about the y-axis.

Find the area of the horn-shaped surface so generated.

39.A A hollow container in the shape of an infinitely long horn is

generated by rotating the curve y D 1=x, .1 � x <1/, about

the x-axis.

(a) Find the volume of the container.

(b) Show that the container has infinite surface area.

(c) How do you explain the “paradox” that the container can

be filled with a finite volume of paint but requires an

infinite amount of paint to cover its surface?

7.4 Mass, Moments, and Centre of Mass

Many quantities of interest in physics, mechanics, ecology, finance, and other disci-

plines are described in terms of densities over regions of space, the plane, or even the

real line. To determine the total value of such a quantity we must add up (integrate)

the contributions from the various places where the quantity is distributed.

Mass and Density
If a solid object is made of a homogeneous material, we would expect different parts

of the solid that have the same volume to have the same mass as well. We express

this homogeneity by saying that the object has constant density, that density being

the mass divided by the volume for the whole object or for any part of it. Thus, for

By “density at a point P ” of a

solid object, we mean the limit

�.P / of mass/volume for the

part of the solid lying in small

regions containing P (e.g., balls

centred at P ) as the dimensions

of the regions approach zero.

Such a density � is continuous at

P if we can ensure that

j�.Q/ � �.P /j is as small as we

want by taking Q close enough

to P:

example, a rectangular brick with dimensions 20 cm, 10 cm, and 8 cm would have

volume V D 20� 10� 8 D 1;600 cm3, and if it was made of material having constant

density � D 3 g/cm3, it would have mass m D �V D 3 � 1;600 D 4;800 g. (We will

use the lowercase Greek letter rho (�) to represent density.)

If the density of the material constituting a solid object is not constant but varies

from point to point in the object, no such simple relationship exists between mass and

volume. If the density � D �.P / is a continuous function of position P; we can

subdivide the solid into many small volume elements and, by regarding � as approxi-

mately constant over each such element, determine the masses of all the elements and

add them up to get the mass of the solid. The mass �m of a volume element �V

containing the point P would satisfy

�m � �.P /�V;
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Solution Such a sphere can be generated by rotating the semicircle with equation

y D
p

a2
� x2, .�a � x � a/, about the x-axis. (See Figure 7.27.) Since

ds

y D
p

a2
� x2

x

y

Figure 7.27 An area element on a sphere

dy

dx
D �

x
p

a2
� x2

D �

x

y
;

the area of the sphere is given by

S D 2�

Z a

�a

y

s

1C

�

x

y

�2

dx

D 4�

Z a

0

p

y2
C x2 dx

D 4�

Z a

0

p

a2 dx D 4�ax

ˇ

ˇ

ˇ

ˇ

a

0

D 4�a
2 square units.

E X A M P L E 6
(Surface area of a parabolic dish) Find the surface area of a

parabolic reflector whose shape is obtained by rotating the parabolic
y

x

ds

y D x
2

.1; 1/

Figure 7.28 The area element is a

horizontal band here

arc y D x2, .0 � x � 1/, about the y-axis, as illustrated in Figure 7.28.

Solution The arc length element for the parabola y D x2 is ds D
p

1C 4x2 dx, so

the required surface area is

S D 2�

Z 1

0

x

p

1C 4x2 dx Let u D 1C 4x2,

du D 8x dx

D

�

4

Z 5

1

u
1=2
du

D

�

6
u

3=2

ˇ

ˇ

ˇ

ˇ

5

1

D

�

6
.5
p

5 � 1/ square units.

E X E R C I S E S 7.3

In Exercises 1–16, find the lengths of the given curves.

1. y D 2x � 1 from x D 1 to x D 3

2. y D ax C b from x D A to x D B

3. y D
2

3
x

3=2 from x D 0 to x D 8

4. y2
D .x � 1/3 from .1; 0/ to .2; 1/

5. y3
D x2 from .�1; 1/ to .1; 1/

6. 2.x C 1/3 D 3.y � 1/2 from .�1; 1/ to .0; 1C
p

2=3/

7. y D
x3

12
C

1

x
from x D 1 to x D 4

8. y D
x3

3
C

1

4x
from x D 1 to x D 2

9. 4y D 2 ln x � x2 from x D 1 to x D e

10. y D x2
�

lnx

8
from x D 1 to x D 2

11. y D
e

x
C e

�x

2
.D cosh x/ from x D 0 to x D a

12. y D ln.1 � x2/ from x D �.1=2/ to x D 1=2

13. y D ln cos x from x D �=6 to x D �=4

14.I y D x2 from x D 0 to x D 2

15.I y D ln
ex
� 1

ex
C 1

from x D 2 to x D 4

16.I y D lnx from x D 1 to x D e

17. Find the circumference of the closed curve

x2=3
C y2=3

D a2=3. Hint: The curve is symmetric about

both coordinate axes (why?), so one-quarter of it lies in the

first quadrant.

Use numerical methods (or a calculator with an integration

function, or computer software like Maple) to find the lengths of

the curves in Exercises 18–21 to 4 decimal places.

C 18. y D x4 from x D 0 to x D 1

C 19. y D x1=3 from x D 1 to x D 2

C 20. The circumference of the ellipse 3x2
C y2

D 3

C 21. The shorter arc of the ellipse x2
C 2y2

D 2 between .0; 1/

and .1; 1=
p

2/
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In Exercises 22–29, find the areas of the surfaces obtained by

rotating the given curve about the indicated lines.

22. y D x2, (0 � x � 2), about the y-axis

23. y D x3, (0 � x � 1), about the x-axis

24. y D x3=2, (0 � x � 1), about the x-axis

25. y D x3=2, (0 � x � 1), about the y-axis

26. y D ex , (0 � x � 1), about the x-axis

27. y D sinx, (0 � x � �), about the x-axis

28. y D
x

3

12
C

1

x
, (1 � x � 4), about the x-axis

29. y D
x3

12
C

1

x
, (1 � x � 4), about the y-axis

30. (Surface area of a cone) Find the area of the curved surface

of a right-circular cone of base radius r and height h by

rotating the straight line segment from .0; 0/ to .r; h/ about

the y-axis.

31. (How much icing on a doughnut?) Find the surface area of

the torus (doughnut) obtained by rotating the circle

.x � b/
2
C y

2
D a

2 about the y-axis.

32. (Area of a prolate spheroid) Find the area of the surface

obtained by rotating the ellipse x2
C 4y2

D 4 about the

x-axis.

33. (Area of an oblate spheroid) Find the area of the surface

obtained by rotating the ellipse x2
C 4y2

D 4 about the

y-axis.

34.I The ellipse of Example 4 is rotated about the line y D c > b

to generate a doughnut with elliptical cross-sections. Express

the surface area of this doughnut in terms of the complete

elliptic integral function E."/ introduced in that example.

35.I Express the integral formula obtained for the length of the

metal sheet in Example 3 in terms of the complete elliptic

integral function E.�/ introduced in Example 4.

36. (An interesting property of spheres) If two parallel planes

intersect a sphere, show that the surface area of that part of the

sphere lying between the two planes depends only on the

radius of the sphere and the distance between the planes, and

not on the position of the planes.

37. For what real values of k does the surface generated by

rotating the curve y D xk , .0 < x � 1/, about the y-axis have

a finite surface area?

38.I The curve y D lnx, .0 < x � 1/, is rotated about the y-axis.

Find the area of the horn-shaped surface so generated.

39.A A hollow container in the shape of an infinitely long horn is

generated by rotating the curve y D 1=x, .1 � x <1/, about

the x-axis.

(a) Find the volume of the container.

(b) Show that the container has infinite surface area.

(c) How do you explain the “paradox” that the container can

be filled with a finite volume of paint but requires an

infinite amount of paint to cover its surface?

7.4 Mass, Moments, and Centre of Mass

Many quantities of interest in physics, mechanics, ecology, finance, and other disci-

plines are described in terms of densities over regions of space, the plane, or even the

real line. To determine the total value of such a quantity we must add up (integrate)

the contributions from the various places where the quantity is distributed.

Mass and Density
If a solid object is made of a homogeneous material, we would expect different parts

of the solid that have the same volume to have the same mass as well. We express

this homogeneity by saying that the object has constant density, that density being

the mass divided by the volume for the whole object or for any part of it. Thus, for

By “density at a point P ” of a

solid object, we mean the limit

�.P / of mass/volume for the

part of the solid lying in small

regions containing P (e.g., balls

centred at P ) as the dimensions

of the regions approach zero.

Such a density � is continuous at

P if we can ensure that

j�.Q/ � �.P /j is as small as we

want by taking Q close enough

to P:

example, a rectangular brick with dimensions 20 cm, 10 cm, and 8 cm would have

volume V D 20� 10� 8 D 1;600 cm3, and if it was made of material having constant

density � D 3 g/cm3, it would have mass m D �V D 3 � 1;600 D 4;800 g. (We will

use the lowercase Greek letter rho (�) to represent density.)

If the density of the material constituting a solid object is not constant but varies

from point to point in the object, no such simple relationship exists between mass and

volume. If the density � D �.P / is a continuous function of position P; we can

subdivide the solid into many small volume elements and, by regarding � as approxi-

mately constant over each such element, determine the masses of all the elements and

add them up to get the mass of the solid. The mass �m of a volume element �V

containing the point P would satisfy

�m � �.P /�V;
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so the mass m of the solid can be approximated:

m D

X

�m �

X

�.P /�V:

Such approximations become exact as we pass to the limit of differential mass and

volume elements, dm D �.P / dV; so we expect to be able to calculate masses as

integrals, that is, as the limits of such sums:

m D

Z

dm D

Z

�.P / dV:

E X A M P L E 1
The density of a solid vertical cylinder of height H cm and base

area A cm2 is � D �0.1 C h/ g/cm3, where h is the height in

centimetres above the base and �0 is a constant. Find the mass of the cylinder.

Solution See Figure 7.29(a). A slice of the solid at height h above the base and

having thickness dh is a circular disk of volume dV D Adh. Since the density is

constant over this disk, the mass of the volume element is

dm D � dV D �0.1C h/Adh:

Therefore, the mass of the whole cylinder is

m D

Z H

0

�0A.1C h/ dh D �0A

�

H C
H 2

2

�

g:

Figure 7.29

(a) A solid cylinder whose density varies

with height

(b) Cutaway view of a planet whose

density depends on distance from the

centre

dh

h

A

dr

r

(a) (b)

E X A M P L E 2
(Using spherical shells) The density of a certain spherical planet

of radius R m varies with distance r from the centre according to

the formula

� D
�0

1C r2
kg=m3

:

Find the mass of the planet.

Solution Recall that the surface area of a sphere of radius r is 4�r2. The planet can

be regarded as being composed of concentric spherical shells having radii between 0

andR. The volume of a shell of radius r and thickness dr (see Figure 7.29(b)) is equal

to its surface area times its thickness, and its mass is its volume times its density:

dV D 4�r
2
dr I dm D � dV D 4��0

r2

1C r2
dr:
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We add the masses of these shells to find the mass of the whole planet:

m D 4��0

Z R

0

r2

1C r2
dr D 4��0

Z R

0

�

1 �
1

1C r2

�

dr

D 4��0.r � tan�1
r/

ˇ

ˇ

ˇ

ˇ

R

0

D 4��0.R � tan�1
R/ kg:

Similar techniques can be applied to find masses of one- and two-dimensional objects,

such as wires and thin plates, that have variable densities of the forms mass/unit length

(line density, which we will usually denote by ı) and � D mass/unit area (areal den-

sity, which we will denote by �).

E X A M P L E 3
A wire of variable composition is stretched along the x-axis from

x D 0 to x D L cm. Find the mass of the wire if the line density

at position x is ı.x/ D kx g/cm, where k is a positive constant.

Solution The mass of a length element dx of the wire located at position x is given

by dm D ı.x/ dx D kx dx. Thus, the mass of the wire is

m D

Z L

0

kx dx D

�

kx
2

2

�
ˇ

ˇ

ˇ

ˇ

L

0

D

kL
2

2
g:

E X A M P L E 4
Find the mass of a disk of radius a cm whose centre is at the

origin in the xy-plane if the areal density at position .x; y/ is

� D k.2aC x/ g/cm2. Here k is a constant.

Solution The areal density depends only on the horizontal coordinate x, so it is con-

stant along vertical lines on the disk. This suggests that thin vertical strips should

be used as area elements. A vertical strip of thickness dx at x has area dA D

2
p

a2
� x2 dx (see Figure 7.30); its mass is therefore

y

x

x a

y D
p

a2
� x2

dx

�a

Figure 7.30 The area element of

Example 4

dm D � dA D 2k.2a C x/

p

a2
� x2 dx:

Hence, the mass of the disk is

m D

Z xDa

xD�a

dm D 2k

Z a

�a

.2aC x/

p

a2
� x2 dx

D 4ak

Z a

�a

p

a2
� x2 dx C 2k

Z a

�a

x

p

a2
� x2 dx

D 4ak
�a2

2
C 0 D 2�ka

3 g:

We used the area of a semicircle to evaluate the first integral. The second integral is

zero because the integrand is odd and the interval is symmetric about x D 0.

Distributions of mass along one-dimensional structures (lines or curves) necessarily

lead to integrals of functions of one variable, but distributions of mass on a surface

or in space can lead to integrals involving functions of more than one variable. Such

integrals are studied in multivariable calculus. (See, for example, Section 14.7.) In

the examples above, the given densities were functions of only one variable, so these

problems, although higher dimensional in nature, led to integrals of functions of only

one variable and could be solved by the methods at hand.
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so the mass m of the solid can be approximated:

m D

X

�m �

X

�.P /�V:

Such approximations become exact as we pass to the limit of differential mass and

volume elements, dm D �.P / dV; so we expect to be able to calculate masses as

integrals, that is, as the limits of such sums:

m D

Z

dm D

Z

�.P / dV:

E X A M P L E 1
The density of a solid vertical cylinder of height H cm and base

area A cm2 is � D �0.1 C h/ g/cm3, where h is the height in

centimetres above the base and �0 is a constant. Find the mass of the cylinder.

Solution See Figure 7.29(a). A slice of the solid at height h above the base and

having thickness dh is a circular disk of volume dV D Adh. Since the density is

constant over this disk, the mass of the volume element is

dm D � dV D �0.1C h/Adh:

Therefore, the mass of the whole cylinder is

m D

Z H

0

�0A.1C h/ dh D �0A

�

H C
H 2

2

�

g:

Figure 7.29

(a) A solid cylinder whose density varies

with height

(b) Cutaway view of a planet whose

density depends on distance from the

centre

dh

h

A

dr

r

(a) (b)

E X A M P L E 2
(Using spherical shells) The density of a certain spherical planet

of radius R m varies with distance r from the centre according to

the formula

� D
�0

1C r2
kg=m3

:

Find the mass of the planet.

Solution Recall that the surface area of a sphere of radius r is 4�r2. The planet can

be regarded as being composed of concentric spherical shells having radii between 0

andR. The volume of a shell of radius r and thickness dr (see Figure 7.29(b)) is equal

to its surface area times its thickness, and its mass is its volume times its density:

dV D 4�r
2
dr I dm D � dV D 4��0

r2

1C r2
dr:
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We add the masses of these shells to find the mass of the whole planet:

m D 4��0

Z R

0

r2

1C r2
dr D 4��0

Z R

0

�

1 �
1

1C r2

�

dr

D 4��0.r � tan�1
r/

ˇ

ˇ

ˇ

ˇ

R

0

D 4��0.R � tan�1
R/ kg:

Similar techniques can be applied to find masses of one- and two-dimensional objects,

such as wires and thin plates, that have variable densities of the forms mass/unit length

(line density, which we will usually denote by ı) and � D mass/unit area (areal den-

sity, which we will denote by �).

E X A M P L E 3
A wire of variable composition is stretched along the x-axis from

x D 0 to x D L cm. Find the mass of the wire if the line density

at position x is ı.x/ D kx g/cm, where k is a positive constant.

Solution The mass of a length element dx of the wire located at position x is given

by dm D ı.x/ dx D kx dx. Thus, the mass of the wire is

m D

Z L

0

kx dx D

�

kx
2

2

�
ˇ

ˇ

ˇ

ˇ

L

0

D

kL
2

2
g:

E X A M P L E 4
Find the mass of a disk of radius a cm whose centre is at the

origin in the xy-plane if the areal density at position .x; y/ is

� D k.2aC x/ g/cm2. Here k is a constant.

Solution The areal density depends only on the horizontal coordinate x, so it is con-

stant along vertical lines on the disk. This suggests that thin vertical strips should

be used as area elements. A vertical strip of thickness dx at x has area dA D

2
p

a2
� x2 dx (see Figure 7.30); its mass is therefore

y

x

x a

y D
p

a2
� x2

dx

�a

Figure 7.30 The area element of

Example 4

dm D � dA D 2k.2a C x/

p

a2
� x2 dx:

Hence, the mass of the disk is

m D

Z xDa

xD�a

dm D 2k

Z a

�a

.2aC x/

p

a2
� x2 dx

D 4ak

Z a

�a

p

a2
� x2 dx C 2k

Z a

�a

x

p

a2
� x2 dx

D 4ak
�a2

2
C 0 D 2�ka

3 g:

We used the area of a semicircle to evaluate the first integral. The second integral is

zero because the integrand is odd and the interval is symmetric about x D 0.

Distributions of mass along one-dimensional structures (lines or curves) necessarily

lead to integrals of functions of one variable, but distributions of mass on a surface

or in space can lead to integrals involving functions of more than one variable. Such

integrals are studied in multivariable calculus. (See, for example, Section 14.7.) In

the examples above, the given densities were functions of only one variable, so these

problems, although higher dimensional in nature, led to integrals of functions of only

one variable and could be solved by the methods at hand.
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Moments and Centres of Mass
The moment about the point x D x0 of a mass m located at position x on the x-axis

is the product m.x � x0/ of the mass and its (signed) distance from x0. If the x-axis

is a horizontal arm hinged at x0, the moment about x0 measures the tendency of the

weight of the mass m to cause the arm to rotate. If several masses m1, m2, m3, : : : ;

mn are located at the points x1, x2, x3, : : : ; xn, respectively, then the total moment

of the system of masses about the point x D x0 is the sum of the individual moments

(see Figure 7.31):

MxDx0
D .x1 � x0/m1C .x2 � x0/m2C � � � C .xn � x0/mn D

n
X

j D1

.xj � x0/mj :

Figure 7.31 A system of discrete masses

on a line

m2 m1 m3 m5 m4

x2 0 x1 x3 x5 x4

The centre of mass of the system of masses is the point Nx about which the total

moment of the system is zero. Thus,

0 D

n
X

j D1

.xj � Nx/mj D

n
X

j D1

xjmj � Nx

n
X

j D1

mj :

The centre of mass of the system is therefore given by

Nx D

n
X

j D1

xjmj

n
X

j D1

mj

D

MxD0

m
;

where m is the total mass of the system and MxD0 is the total moment about x D 0.

If you think of the x-axis as being a weightless wire supporting the masses, then Nx is

the point at which the wire could be supported and remain in perfect balance (equi-

librium), not tipping either way. Even if the axis represents a nonweightless support,

say a seesaw, supported at x D Nx, it will remain balanced after the masses are added,

provided it was balanced beforehand. For many purposes a system of masses behaves

as though its total mass were concentrated at its centre of mass.

Now suppose that a one-dimensional distribution of mass with continuously vari-

able line density ı.x/ lies along the interval Œa; b� of the x-axis. An element of length

dx at position x contains mass dm D ı.x/ dx, so its moment is dMxD0 D x dm D

xı.x/ dx about x D 0. The total moment about x D 0 is the sum (integral) of these

moment elements:

MxD0 D

Z b

a

xı.x/ dx:

Since the total mass is

m D

Z b

a

ı.x/ dx;

we obtain the following formula for the centre of mass:
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The centre of mass of a distribution of mass with line density ı.x/ on the

interval Œa; b� is given by

Nx D
MxD0

m
D

Z b

a

xı.x/ dx

Z b

a

ı.x/ dx

:

E X A M P L E 5
At what point can the wire of Example 3 be suspended so that it

will balance?

Solution In Example 3 we evaluated the mass of the wire to be kL2=2 g. Its moment

about x D 0 is

MxD0 D

Z L

0

xı.x/ dx

D

Z L

0

kx
2
dx D

�

kx
3

3

�ˇ

ˇ

ˇ

ˇ

L

0

D

kL
3

3
g�cm:

(Note that the appropriate units for the moment are units of mass times units of dis-

tance: in this case gram-centimetres.) The centre of mass of the wire is

Nx D
kL3=3

kL2=2
D

2L

3
:

The wire will be balanced if suspended at position x D 2L=3 cm.

Two- and Three-Dimensional Examples
The system of mass considered in Example 5 is one-dimensional and lies along a

straight line. If mass is distributed in a plane or in space, similar considerations pre-

vail. For a system of masses m1 at .x1; y1/, m2 at .x2; y2/, : : : ; mn at .xn; yn/, the

moment about x D 0 is

MxD0 D x1m1 C x2m2 C � � � C xnmn D

n
X

j D1

xjmj ;

and the moment about y D 0 is

MyD0 D y1m1 C y2m2 C � � � C ynmn D

n
X

j D1

yjmj :

The centre of mass is the point . Nx; Ny/ where

Nx D
MxD0

m
D

n
X

j D1

xjmj

n
X

j D1

mj

and Ny D
MyD0

m
D

n
X

j D1

yjmj

n
X

j D1

mj

:

For continuous distributions of mass, the sums become appropriate integrals.

E X A M P L E 6
Find the centre of mass of a rectangular plate that occupies the

region 0 � x � a, 0 � y � b, if the areal density of the material

in the plate at position .x; y/ is � D ky.
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Moments and Centres of Mass
The moment about the point x D x0 of a mass m located at position x on the x-axis

is the product m.x � x0/ of the mass and its (signed) distance from x0. If the x-axis

is a horizontal arm hinged at x0, the moment about x0 measures the tendency of the

weight of the mass m to cause the arm to rotate. If several masses m1, m2, m3, : : : ;

mn are located at the points x1, x2, x3, : : : ; xn, respectively, then the total moment

of the system of masses about the point x D x0 is the sum of the individual moments

(see Figure 7.31):

MxDx0
D .x1 � x0/m1C .x2 � x0/m2C � � � C .xn � x0/mn D

n
X

j D1

.xj � x0/mj :

Figure 7.31 A system of discrete masses

on a line

m2 m1 m3 m5 m4

x2 0 x1 x3 x5 x4

The centre of mass of the system of masses is the point Nx about which the total

moment of the system is zero. Thus,

0 D

n
X

j D1

.xj � Nx/mj D

n
X

j D1

xjmj � Nx

n
X

j D1

mj :

The centre of mass of the system is therefore given by

Nx D

n
X

j D1

xjmj

n
X

j D1

mj

D

MxD0

m
;

where m is the total mass of the system and MxD0 is the total moment about x D 0.

If you think of the x-axis as being a weightless wire supporting the masses, then Nx is

the point at which the wire could be supported and remain in perfect balance (equi-

librium), not tipping either way. Even if the axis represents a nonweightless support,

say a seesaw, supported at x D Nx, it will remain balanced after the masses are added,

provided it was balanced beforehand. For many purposes a system of masses behaves

as though its total mass were concentrated at its centre of mass.

Now suppose that a one-dimensional distribution of mass with continuously vari-

able line density ı.x/ lies along the interval Œa; b� of the x-axis. An element of length

dx at position x contains mass dm D ı.x/ dx, so its moment is dMxD0 D x dm D

xı.x/ dx about x D 0. The total moment about x D 0 is the sum (integral) of these

moment elements:

MxD0 D

Z b

a

xı.x/ dx:

Since the total mass is

m D

Z b

a

ı.x/ dx;

we obtain the following formula for the centre of mass:
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The centre of mass of a distribution of mass with line density ı.x/ on the

interval Œa; b� is given by

Nx D
MxD0

m
D

Z b

a

xı.x/ dx

Z b

a

ı.x/ dx

:

E X A M P L E 5
At what point can the wire of Example 3 be suspended so that it

will balance?

Solution In Example 3 we evaluated the mass of the wire to be kL2=2 g. Its moment

about x D 0 is

MxD0 D

Z L

0

xı.x/ dx

D

Z L

0

kx
2
dx D

�

kx
3

3

�ˇ

ˇ

ˇ

ˇ

L

0

D

kL
3

3
g�cm:

(Note that the appropriate units for the moment are units of mass times units of dis-

tance: in this case gram-centimetres.) The centre of mass of the wire is

Nx D
kL3=3

kL2=2
D

2L

3
:

The wire will be balanced if suspended at position x D 2L=3 cm.

Two- and Three-Dimensional Examples
The system of mass considered in Example 5 is one-dimensional and lies along a

straight line. If mass is distributed in a plane or in space, similar considerations pre-

vail. For a system of masses m1 at .x1; y1/, m2 at .x2; y2/, : : : ; mn at .xn; yn/, the

moment about x D 0 is

MxD0 D x1m1 C x2m2 C � � � C xnmn D

n
X

j D1

xjmj ;

and the moment about y D 0 is

MyD0 D y1m1 C y2m2 C � � � C ynmn D

n
X

j D1

yjmj :

The centre of mass is the point . Nx; Ny/ where

Nx D
MxD0

m
D

n
X

j D1

xjmj

n
X

j D1

mj

and Ny D
MyD0

m
D

n
X

j D1

yjmj

n
X

j D1

mj

:

For continuous distributions of mass, the sums become appropriate integrals.

E X A M P L E 6
Find the centre of mass of a rectangular plate that occupies the

region 0 � x � a, 0 � y � b, if the areal density of the material

in the plate at position .x; y/ is � D ky.
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Solution Since the areal density is independent of x and the rectangle is symmetric
y

xa=2 a

dy

y

b

Figure 7.32 The area element for

Example 6

about the line x D a=2, the x-coordinate of the centre of mass must be Nx D a=2. A

thin horizontal strip of width dy at height y (see Figure 7.32) has mass dm D aky dy.

The moment of this strip about y D 0 is dMyD0 D y dm D kay2 dy. Hence, the

mass and moment about y D 0 of the whole plate are

m D ka

Z b

0

y dy D
kab2

2
;

MyD0 D ka

Z b

0

y
2
dy D

kab3

3
:

Therefore, Ny D MyD0=m D 2b=3, and the centre of mass of the plate is .a=2; 2b=3/.

The plate would be balanced if supported at this point.

For distributions of mass in three-dimensional space one defines, analogously, the mo-

ments MxD0, MyD0, and MzD0 of the system of mass about the planes x D 0, y D 0,

and z D 0, respectively. The centre of mass is . Nx; Ny; Nz/ where

Nx D
MxD0

m
; Ny D

MyD0

m
; and Nz D

MzD0

m
;

m being the total mass: m D m1Cm2C � � � Cmn. Again, the sums are replaced with

integrals for continuous distributions of mass.

E X A M P L E 7
Find the centre of mass of a solid hemisphere of radius R ft if its

density at height z ft above the base plane of the hemisphere is

�0z lb/ft3.
z

zdz

R

Figure 7.33 Mass element of a solid

hemisphere with density depending on

height

Solution The solid is symmetric about the vertical axis (let us call it the z-axis), and

the density is constant in planes perpendicular to this axis. Therefore, the centre of

mass must lie somewhere on this axis. A slice of the solid at height z above the base,

and having thickness dz, is a disk of radius
p

R2
� z2. (See Figure 7.33.) Its volume

is dV D �.R2
� z2/ dz, and its mass is dm D �0z dV D �0�.R

2z � z3/ dz. Its

moment about the base plane z D 0 is dMzD0 D z dm D �0�.R
2z2
� z4/ dz. The

mass of the solid is

m D �0�

Z R

0

.R
2
z � z

3
/ dz D �0�

�

R2z2

2
�

z4

4

�
ˇ

ˇ

ˇ

ˇ

R

0

D

�

4
�0R

4 lb:

The moment of the hemisphere about the plane z D 0 is

MzD0 D �0�

Z R

0

.R
2
z

2
� z

4
/ dz D �0�

�

R2z3

3
�

z5

5

�
ˇ

ˇ

ˇ

ˇ

R

0

D

2�

15
�0R

5 lb�ft:

The centre of mass therefore lies along the axis of symmetry of the hemisphere at

height Nz DMzD0=m D 8R=15 ft above the base of the hemisphere.

E X A M P L E 8
Find the centre of mass of a plate that occupies the region

a � x � b, 0 � y � f .x/, if the density at any point .x; y/

is �.x/.

Solution The appropriate area element is shown in Figure 7.34. It has area f .x/ dx,

mass

dm D �.x/f .x/ dx;
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and moment about x D 0

dMxD0 D x�.x/f .x/ dx:

Since the density depends only on x, the mass element dm has constant density, so the

y-coordinate of its centre of mass is at its midpoint: Nydm D
1
2
f .x/. Therefore, the

moment of the mass element dm about y D 0 is
y

x

dx

y D f .x/

a x b

Figure 7.34 Mass element of a plate

dMyD0 D Nydm dm D
1

2
�.x/

�

f .x/
�2
dx:

The coordinates of the centre of mass of the plate are Nx D
MxD0

m
and Ny D

MyD0

m
,

where

m D

Z b

a

�.x/f .x/ dx;

MxD0 D

Z b

a

x�.x/f .x/ dx;

MyD0 D
1

2

Z b

a

�.x/
�

f .x/
�2
dx:

Remark Similar formulas can be obtained if the density depends on y instead of

x, provided that the region admits a suitable horizontal area element (e.g., the region

might be specified by c � y � d , 0 � x � g.y/). Finding centres of mass for plates

that occupy regions specified by functions of x, but where the density depends on y,

generally requires the use of “double integrals.” Such problems are therefore studied

in multivariable calculus. (See Section 14.7.)

E X E R C I S E S 7.4

Find the mass and centre of mass for the systems in Exercises

1–16. Be alert for symmetries.

1. A straight wire of length L cm, where the density at distance

s cm from one end is ı.s/ D sin�s=L g/cm

2. A straight wire along the x-axis from x D 0 to x D L if the

density is constant ı0, but the cross-sectional radius of the

wire varies so that its value at x is aC bx

3. A quarter-circular plate having radius a, constant areal density

�0, and occupying the region x2
C y2

� a2, x � 0, y � 0

4. A quarter-circular plate of radius a occupying the region

x2
C y2

� a2, x � 0, y � 0, having areal density

�.x/ D �0x

5. A plate occupying the region 0 � y � 4 � x2 if the areal

density at .x; y/ is ky

6. A right-triangular plate with legs 2 m and 3 m if the areal

density at any point P is 5h kg/m2, h being the distance of P

from the shorter leg

7. A square plate of edge a cm if the areal density at P is kx

g/cm2, where x is the distance from P to one edge of the

square

8. The plate in Exercise 7, but with areal density kr g/cm2,

where r is the distance (in centimetres) from P to one of the

diagonals of the square

9. A plate of areal density �.x/ occupying the region a � x � b,

f .x/ � y � g.x/

10. A rectangular brick with dimensions 20 cm, 10 cm, and

5 cm if the density at P is kx g/cm3, where x is the distance

from P to one of the 10 � 5 faces

11. A solid ball of radius R m if the density at P is z kg/m3,

where z is the distance from P to a plane at distance 2R m

from the centre of the ball

12. A right-circular cone of base radius a cm and height b cm if

the density at point P is kz g/cm3, where z is the distance of

P from the base of the cone

13.I The solid occupying the quarter of a ball of radius a centred at

the origin having as base the region x2
C y2

� a2, x � 0 in

the xy-plane, if the density at height z above the base is �0z

14.I The cone of Exercise 12, but with density at P equal to

kx g/cm3, where x is the distance of P from the axis of

symmetry of the cone. Hint: Use a cylindrical shell centred on

the axis of symmetry as a volume element. This element has

constant density, so its centre of mass is known, and its

moment can be determined from its mass.
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Solution Since the areal density is independent of x and the rectangle is symmetric
y

xa=2 a

dy

y

b

Figure 7.32 The area element for

Example 6

about the line x D a=2, the x-coordinate of the centre of mass must be Nx D a=2. A

thin horizontal strip of width dy at height y (see Figure 7.32) has mass dm D aky dy.

The moment of this strip about y D 0 is dMyD0 D y dm D kay2 dy. Hence, the

mass and moment about y D 0 of the whole plate are

m D ka

Z b

0

y dy D
kab2

2
;

MyD0 D ka

Z b

0

y
2
dy D

kab3

3
:

Therefore, Ny D MyD0=m D 2b=3, and the centre of mass of the plate is .a=2; 2b=3/.

The plate would be balanced if supported at this point.

For distributions of mass in three-dimensional space one defines, analogously, the mo-

ments MxD0, MyD0, and MzD0 of the system of mass about the planes x D 0, y D 0,

and z D 0, respectively. The centre of mass is . Nx; Ny; Nz/ where

Nx D
MxD0

m
; Ny D

MyD0

m
; and Nz D

MzD0

m
;

m being the total mass: m D m1Cm2C � � � Cmn. Again, the sums are replaced with

integrals for continuous distributions of mass.

E X A M P L E 7
Find the centre of mass of a solid hemisphere of radius R ft if its

density at height z ft above the base plane of the hemisphere is

�0z lb/ft3.
z

zdz

R

Figure 7.33 Mass element of a solid

hemisphere with density depending on

height

Solution The solid is symmetric about the vertical axis (let us call it the z-axis), and

the density is constant in planes perpendicular to this axis. Therefore, the centre of

mass must lie somewhere on this axis. A slice of the solid at height z above the base,

and having thickness dz, is a disk of radius
p

R2
� z2. (See Figure 7.33.) Its volume

is dV D �.R2
� z2/ dz, and its mass is dm D �0z dV D �0�.R

2z � z3/ dz. Its

moment about the base plane z D 0 is dMzD0 D z dm D �0�.R
2z2
� z4/ dz. The

mass of the solid is

m D �0�

Z R

0

.R
2
z � z

3
/ dz D �0�

�

R2z2

2
�

z4

4

�
ˇ

ˇ

ˇ

ˇ

R

0

D

�

4
�0R

4 lb:

The moment of the hemisphere about the plane z D 0 is

MzD0 D �0�

Z R

0

.R
2
z

2
� z

4
/ dz D �0�

�

R2z3

3
�

z5

5

�
ˇ

ˇ

ˇ

ˇ

R

0

D

2�

15
�0R

5 lb�ft:

The centre of mass therefore lies along the axis of symmetry of the hemisphere at

height Nz DMzD0=m D 8R=15 ft above the base of the hemisphere.

E X A M P L E 8
Find the centre of mass of a plate that occupies the region

a � x � b, 0 � y � f .x/, if the density at any point .x; y/

is �.x/.

Solution The appropriate area element is shown in Figure 7.34. It has area f .x/ dx,

mass

dm D �.x/f .x/ dx;
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and moment about x D 0

dMxD0 D x�.x/f .x/ dx:

Since the density depends only on x, the mass element dm has constant density, so the

y-coordinate of its centre of mass is at its midpoint: Nydm D
1
2
f .x/. Therefore, the

moment of the mass element dm about y D 0 is
y

x

dx

y D f .x/

a x b

Figure 7.34 Mass element of a plate

dMyD0 D Nydm dm D
1

2
�.x/

�

f .x/
�2
dx:

The coordinates of the centre of mass of the plate are Nx D
MxD0

m
and Ny D

MyD0

m
,

where

m D

Z b

a

�.x/f .x/ dx;

MxD0 D

Z b

a

x�.x/f .x/ dx;

MyD0 D
1

2

Z b

a

�.x/
�

f .x/
�2
dx:

Remark Similar formulas can be obtained if the density depends on y instead of

x, provided that the region admits a suitable horizontal area element (e.g., the region

might be specified by c � y � d , 0 � x � g.y/). Finding centres of mass for plates

that occupy regions specified by functions of x, but where the density depends on y,

generally requires the use of “double integrals.” Such problems are therefore studied

in multivariable calculus. (See Section 14.7.)

E X E R C I S E S 7.4

Find the mass and centre of mass for the systems in Exercises

1–16. Be alert for symmetries.

1. A straight wire of length L cm, where the density at distance

s cm from one end is ı.s/ D sin�s=L g/cm

2. A straight wire along the x-axis from x D 0 to x D L if the

density is constant ı0, but the cross-sectional radius of the

wire varies so that its value at x is aC bx

3. A quarter-circular plate having radius a, constant areal density

�0, and occupying the region x2
C y2

� a2, x � 0, y � 0

4. A quarter-circular plate of radius a occupying the region

x2
C y2

� a2, x � 0, y � 0, having areal density

�.x/ D �0x

5. A plate occupying the region 0 � y � 4 � x2 if the areal

density at .x; y/ is ky

6. A right-triangular plate with legs 2 m and 3 m if the areal

density at any point P is 5h kg/m2, h being the distance of P

from the shorter leg

7. A square plate of edge a cm if the areal density at P is kx

g/cm2, where x is the distance from P to one edge of the

square

8. The plate in Exercise 7, but with areal density kr g/cm2,

where r is the distance (in centimetres) from P to one of the

diagonals of the square

9. A plate of areal density �.x/ occupying the region a � x � b,

f .x/ � y � g.x/

10. A rectangular brick with dimensions 20 cm, 10 cm, and

5 cm if the density at P is kx g/cm3, where x is the distance

from P to one of the 10 � 5 faces

11. A solid ball of radius R m if the density at P is z kg/m3,

where z is the distance from P to a plane at distance 2R m

from the centre of the ball

12. A right-circular cone of base radius a cm and height b cm if

the density at point P is kz g/cm3, where z is the distance of

P from the base of the cone

13.I The solid occupying the quarter of a ball of radius a centred at

the origin having as base the region x2
C y2

� a2, x � 0 in

the xy-plane, if the density at height z above the base is �0z

14.I The cone of Exercise 12, but with density at P equal to

kx g/cm3, where x is the distance of P from the axis of

symmetry of the cone. Hint: Use a cylindrical shell centred on

the axis of symmetry as a volume element. This element has

constant density, so its centre of mass is known, and its

moment can be determined from its mass.
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15.I A semicircular plate occupying the region x2
C y2

� a2,

y � 0, if the density at distance s from the origin is

ks g/cm2

16.I The wire in Exercise 1 if it is bent in a semicircle

C 17. It is estimated that the density of matter in the neighbourhood

of a gas giant star is given by �.r/ D Ce�kr2

, where C and k

are positive constants, and r is the distance from the centre of

the star. The radius of the star is indeterminate but can be

taken to be infinite since �.r/ decreases very rapidly for large

r . Find the approximate mass of the star in terms of C and k.

C 18. Find the average distance Nr of matter in the star of Exercise 17

from the centre of the star. Nr is given by
R1

0 r dm/
R1

0 dm,

where dm is the mass element at distance r from the centre of

the star.

7.5 Centroids
If matter is distributed uniformly in a system so that the density ı is constant, then that

density cancels out of the numerator and denominator in sum or integral expressions

for coordinates of the centre of mass. In such cases the centre of mass depends only on

the shape of the object, that is, on geometric properties of the region occupied by the

object, and we call it the centroid of the region.

Centroids are calculated using the same formulas as those used for centres of mass,

except that the density (being constant) is taken to be unity, so the mass is just the

length, area, or volume of the region, and the moments are referred to as moments of

the region, rather than of any mass occupying the region. If we set �.x/ D 1 in the

formulas obtained in Example 8 of Section 7.4, we obtain the following result:

The centroid of a standard plane region

The centroid of the plane region a � x � b, 0 � y � f .x/, is . Nx; Ny/, where

Nx D
MxD0

A
; Ny D

MyD0

A
; and)

A D

Z b

a

f .x/ dx; MxD0 D

Z b

a

xf .x/ dx; MyD0 D
1

2

Z b

a

�

f .x/
�2
dx:

Thus, for example, Nx is the average value of the function x over the region.

The centroids of some regions are obvious by symmetry. The centroid of a circular

disk or an elliptical disk is at the centre of the disk. The centroid of a rectangle is at

the centre also; the centre is the point of intersection of the diagonals. The centroid of

any region lies on any axes of symmetry of the region.

E X A M P L E 1
What is the average value of y over the half-disk �a � x � a,

0 � y �
p

a2
� x2? Find the centroid of the half-disk.

Solution By symmetry, the centroid lies on the y-axis, so its x-coordinate is Nx D 0.

(See Figure 7.35.) Since the area of the half-disk is A D 1
2
�a2, the average value of

y over the half-disk is

y

x

dx

y D
p

a2
� x2

�a x a

Figure 7.35 The half-disk of Example 1

Ny D
MyD0

A
D

2

�a2

1

2

Z a

�a

.a
2
� x

2
/ dx D

2

�a2

2a
3

3
D

4a

3�
:

The centroid of the half-disk is

�

0;
4a

3�

�

.

E X A M P L E 2
Find the centroid of the semicircle y D

p

a2
� x2.
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Solution Here, the “region” is a one-dimensional curve, having length rather than
y

x

y D
p

a2
� x2

y

x

ds

�a a

Figure 7.36 The semicircle of Example 2

area. Again Nx D 0 by symmetry. A short arc of length ds at height y on the semicircle

has moment dMyD0 D y ds about y D 0. (See Figure 7.36.) Since

ds D

s

1C

�

dy

dx

�2

dx D

s

1C
x2

a2
� x2

dx D
a dx

p

a2
� x2

;

and since y D
p

a2
� x2 on the semicircle, we have

MyD0 D

Z a

�a

p

a2
� x2

a dx
p

a2
� x2

D a

Z a

�a

dx D 2a
2
:

Since the length of the semicircle is �a, we have Ny D
MyD0

�a
D

2a

�
, and the centroid

of the semicircle is

�

0;
2a

�

�

. Note that the centroid of a semicircle of radius a is not

the same as that of half-disk of radius a. Note also that the centroid of the semicircle

does not lie on the semicircle itself.

T H E O R E M

1

The centroid of a triangle

The centroid of a triangle is the point at which all three medians of the triangle

intersect.

PROOF Recall that a median of a triangle is a straight line joining one vertex of the

triangle to the midpoint of the opposite side. Given any median of a triangle, we will

show that the centroid lies on that median. Thus, the centroid must lie on all three

medians.

Figure 7.37 The axes of Theorem 1

y

x

.a;mC c/

.0;m/

x�x

.�a;m� c/

h.�x/

h.x/

Adopt a coordinate system where the median in question lies along the y-axis and

such that a vertex of the triangle is at the origin. (See Figure 7.37.) Let the midpoint

of the opposite side be .0;m/. Then the other two vertices of the triangle must have

coordinates of the form .�a;m� c/ and .a;mC c/ so that .0;m/ will be the midpoint

between them. The two vertical area elements shown in the figure are at the same

distance on opposite sides of the y-axis, so they have the same heights h.�x/ D h.x/

(by similar triangles) and the same area. The sum of the moments about x D 0 of

these area elements is

dMxD0 D �xh.�x/ dx C xh.x/ dx D 0;
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15.I A semicircular plate occupying the region x2
C y2

� a2,

y � 0, if the density at distance s from the origin is

ks g/cm2

16.I The wire in Exercise 1 if it is bent in a semicircle

C 17. It is estimated that the density of matter in the neighbourhood

of a gas giant star is given by �.r/ D Ce�kr2

, where C and k

are positive constants, and r is the distance from the centre of

the star. The radius of the star is indeterminate but can be

taken to be infinite since �.r/ decreases very rapidly for large

r . Find the approximate mass of the star in terms of C and k.

C 18. Find the average distance Nr of matter in the star of Exercise 17

from the centre of the star. Nr is given by
R1

0 r dm/
R1

0 dm,

where dm is the mass element at distance r from the centre of

the star.

7.5 Centroids
If matter is distributed uniformly in a system so that the density ı is constant, then that

density cancels out of the numerator and denominator in sum or integral expressions

for coordinates of the centre of mass. In such cases the centre of mass depends only on

the shape of the object, that is, on geometric properties of the region occupied by the

object, and we call it the centroid of the region.

Centroids are calculated using the same formulas as those used for centres of mass,

except that the density (being constant) is taken to be unity, so the mass is just the

length, area, or volume of the region, and the moments are referred to as moments of

the region, rather than of any mass occupying the region. If we set �.x/ D 1 in the

formulas obtained in Example 8 of Section 7.4, we obtain the following result:

The centroid of a standard plane region

The centroid of the plane region a � x � b, 0 � y � f .x/, is . Nx; Ny/, where

Nx D
MxD0

A
; Ny D

MyD0

A
; and)

A D

Z b

a

f .x/ dx; MxD0 D

Z b

a

xf .x/ dx; MyD0 D
1

2

Z b

a

�

f .x/
�2
dx:

Thus, for example, Nx is the average value of the function x over the region.

The centroids of some regions are obvious by symmetry. The centroid of a circular

disk or an elliptical disk is at the centre of the disk. The centroid of a rectangle is at

the centre also; the centre is the point of intersection of the diagonals. The centroid of

any region lies on any axes of symmetry of the region.

E X A M P L E 1
What is the average value of y over the half-disk �a � x � a,

0 � y �
p

a2
� x2? Find the centroid of the half-disk.

Solution By symmetry, the centroid lies on the y-axis, so its x-coordinate is Nx D 0.

(See Figure 7.35.) Since the area of the half-disk is A D 1
2
�a2, the average value of

y over the half-disk is

y

x

dx

y D
p

a2
� x2

�a x a

Figure 7.35 The half-disk of Example 1

Ny D
MyD0

A
D

2

�a2

1

2

Z a

�a

.a
2
� x

2
/ dx D

2

�a2

2a
3

3
D

4a

3�
:

The centroid of the half-disk is

�

0;
4a

3�

�

.

E X A M P L E 2
Find the centroid of the semicircle y D

p

a2
� x2.
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Solution Here, the “region” is a one-dimensional curve, having length rather than
y

x

y D
p

a2
� x2

y

x

ds

�a a

Figure 7.36 The semicircle of Example 2

area. Again Nx D 0 by symmetry. A short arc of length ds at height y on the semicircle

has moment dMyD0 D y ds about y D 0. (See Figure 7.36.) Since

ds D

s

1C

�

dy

dx

�2

dx D

s

1C
x2

a2
� x2

dx D
a dx

p

a2
� x2

;

and since y D
p

a2
� x2 on the semicircle, we have

MyD0 D

Z a

�a

p

a2
� x2

a dx
p

a2
� x2

D a

Z a

�a

dx D 2a
2
:

Since the length of the semicircle is �a, we have Ny D
MyD0

�a
D

2a

�
, and the centroid

of the semicircle is

�

0;
2a

�

�

. Note that the centroid of a semicircle of radius a is not

the same as that of half-disk of radius a. Note also that the centroid of the semicircle

does not lie on the semicircle itself.

T H E O R E M

1

The centroid of a triangle

The centroid of a triangle is the point at which all three medians of the triangle

intersect.

PROOF Recall that a median of a triangle is a straight line joining one vertex of the

triangle to the midpoint of the opposite side. Given any median of a triangle, we will

show that the centroid lies on that median. Thus, the centroid must lie on all three

medians.

Figure 7.37 The axes of Theorem 1

y

x

.a;mC c/

.0;m/

x�x

.�a;m� c/

h.�x/

h.x/

Adopt a coordinate system where the median in question lies along the y-axis and

such that a vertex of the triangle is at the origin. (See Figure 7.37.) Let the midpoint

of the opposite side be .0;m/. Then the other two vertices of the triangle must have

coordinates of the form .�a;m� c/ and .a;mC c/ so that .0;m/ will be the midpoint

between them. The two vertical area elements shown in the figure are at the same

distance on opposite sides of the y-axis, so they have the same heights h.�x/ D h.x/

(by similar triangles) and the same area. The sum of the moments about x D 0 of

these area elements is

dMxD0 D �xh.�x/ dx C xh.x/ dx D 0;
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so the moment of the whole triangle about x D 0 is

MxD0 D

Z xDa

xD�a

dMxD0 D 0:

Therefore, the centroid of the triangle lies on the y-axis.

Remark By simultaneously solving the equations of any two medians of a triangle,

we can verify the following formula:

Coordinates of the centroid of a triangle

The coordinates of the centroid of a triangle are the averages of the corre-

sponding coordinates of the three vertices of the triangle. The triangle with

vertices .x1; y1/, .x2; y2/, and .x3; y3/ has centroid

. Nx; Ny/ D

�

x1 C x2 C x3

3
;
y1 C y2 C y3

3

�

:

If a region is a union of nonoverlapping subregions, then any moment of the region

is the sum of the corresponding moments of the subregions. This fact enables us

to calculate the centroid of the region if we know the centroids and areas of all the

subregions.

E X A M P L E 3
Find the centroid of the trapezoid with vertices .0; 0/, .1; 0/, .1; 2/,

and .0; 1/.

Solution The trapezoid is the union of a square and a (nonoverlapping) triangle, as

shown in Figure 7.38. By symmetry, the square has centroid . NxS ; NyS / D
�

1
2
;

1
2

�

, and

its area is AS D 1. The triangle has area AT D
1
2

, and its centroid is . NxT ; NyT /, where

y

x

.1; 2/

.1; 1/
.0; 1/

.0; 0/ .1; 0/

S

T

Figure 7.38 The trapezoid of Example 3

NxT D
0C 1C 1

3
D

2

3
and NyT D

1C 1C 2

3
D

4

3
:

Continuing to use subscripts S and T to denote the square and triangle, respectively,

we calculate

MxD0 DMSIxD0 CMT IxD0 D AS NxS C AT NxT D 1 �
1

2
C

1

2
�

2

3
D

5

6
;

MyD0 DMSIyD0 CMT IyD0 D AS NyS C AT NyT D 1 �
1

2
C

1

2
�

4

3
D

7

6
:

Since the area of the trapezoid is A D AS C AT D
3
2

, its centroid is

. Nx; Ny/ D

�

5

6

�

3

2
;
7

6

�

3

2

�

D

�

5

9
;
7

9

�

:

E X A M P L E 4
Find the centroid of the solid region obtained by rotating about the

y-axis the first quadrant region lying between the x-axis and the

parabola y D 4 � x2.

Solution By symmetry, the centroid of the parabolic solid will lie on its axis of sym-

metry, the y-axis. A thin, disk-shaped slice of the solid at height y and having thickness

dy (see Figure 7.39) has volume

dy

2 x

4

y

y

p

4 � y

Figure 7.39 A parabolic solid

dV D �x
2
dy D �.4 � y/ dy
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and moment about the base plane

dMyD0 D y dV D �.4y � y
2
/ dy:

Hence, the volume of the solid is

V D �

Z 4

0

.4 � y/ dy D �

�

4y �
y

2

2

�
ˇ

ˇ

ˇ

ˇ

4

0

D �.16 � 8/ D 8�;

and its moment about y D 0 is

MyD0 D �

Z 4

0

.4y � y
2
/ dy D �

�

2y
2
�

y
3

3

�
ˇ

ˇ

ˇ

ˇ

4

0

D �

�

32 �
64

3

�

D

32

3
�:

Hence, the centroid is located at Ny D
32�

3
�

1

8�
D

4

3
.

Pappus’s Theorem
The following theorem relates volumes or surface areas of revolution to the centroid of

the region or curve being rotated.

T H E O R E M

2

Pappus’s Theorem

(a) If a plane region R lies on one side of a line L in that plane and is rotated about

L to generate a solid of revolution, then the volume V of that solid is the product

of the area of R and the distance travelled by the centroid of R under the rotation;

that is,

V D 2� NrA;

where A is the area of R, and Nr is the perpendicular distance from the centroid of

R to L.

(b) If a plane curve C lies on one side of a line L in that plane and is rotated about

that line to generate a surface of revolution, then the area S of that surface is the

length of C times the distance travelled by the centroid of C:

S D 2� Nrs;

where s is the length of the curve C, and Nr is the perpendicular distance from the

centroid of C to the line L.

PROOF We prove part (a). The proof of (b) is similar and is left as an exercise.

Let us take L to be the y-axis and suppose that R lies between x D a and x D b

where 0 � a < b. Thus Nr D Nx, the x-coordinate of the centroid of R. Let dA denote

the area of a thin strip of R at position x and having width dx. (See Figure 7.40.) This

strip generates, on rotation about L, a cylindrical shell of volume dV D 2�x dA, so

the volume of the solid of revolution is

V D 2�

Z xDb

xDa

x dA D 2�MxD0 D 2� NxA D 2� NrA:

y

x

Nr
dA

R

a x b

Figure 7.40 Proving Theorem 2(a)

As the following examples illustrate, Pappus’s Theorem can be used in two ways: either

the centroid can be determined when the appropriate volume or surface area is known,

or the volume or surface area can be determined if the centroid of the rotating region

or curve is known.
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so the moment of the whole triangle about x D 0 is

MxD0 D

Z xDa

xD�a

dMxD0 D 0:

Therefore, the centroid of the triangle lies on the y-axis.

Remark By simultaneously solving the equations of any two medians of a triangle,

we can verify the following formula:

Coordinates of the centroid of a triangle

The coordinates of the centroid of a triangle are the averages of the corre-

sponding coordinates of the three vertices of the triangle. The triangle with

vertices .x1; y1/, .x2; y2/, and .x3; y3/ has centroid

. Nx; Ny/ D

�

x1 C x2 C x3

3
;
y1 C y2 C y3

3

�

:

If a region is a union of nonoverlapping subregions, then any moment of the region

is the sum of the corresponding moments of the subregions. This fact enables us

to calculate the centroid of the region if we know the centroids and areas of all the

subregions.

E X A M P L E 3
Find the centroid of the trapezoid with vertices .0; 0/, .1; 0/, .1; 2/,

and .0; 1/.

Solution The trapezoid is the union of a square and a (nonoverlapping) triangle, as

shown in Figure 7.38. By symmetry, the square has centroid . NxS ; NyS / D
�

1
2
;

1
2

�

, and

its area is AS D 1. The triangle has area AT D
1
2

, and its centroid is . NxT ; NyT /, where

y

x

.1; 2/

.1; 1/
.0; 1/

.0; 0/ .1; 0/

S

T

Figure 7.38 The trapezoid of Example 3

NxT D
0C 1C 1

3
D

2

3
and NyT D

1C 1C 2

3
D

4

3
:

Continuing to use subscripts S and T to denote the square and triangle, respectively,

we calculate

MxD0 DMSIxD0 CMT IxD0 D AS NxS C AT NxT D 1 �
1

2
C

1

2
�

2

3
D

5

6
;

MyD0 DMSIyD0 CMT IyD0 D AS NyS C AT NyT D 1 �
1

2
C

1

2
�

4

3
D

7

6
:

Since the area of the trapezoid is A D AS C AT D
3
2

, its centroid is

. Nx; Ny/ D

�

5

6

�

3

2
;
7

6

�

3

2

�

D

�

5

9
;
7

9

�

:

E X A M P L E 4
Find the centroid of the solid region obtained by rotating about the

y-axis the first quadrant region lying between the x-axis and the

parabola y D 4 � x2.

Solution By symmetry, the centroid of the parabolic solid will lie on its axis of sym-

metry, the y-axis. A thin, disk-shaped slice of the solid at height y and having thickness

dy (see Figure 7.39) has volume

dy

2 x

4

y

y

p

4 � y

Figure 7.39 A parabolic solid

dV D �x
2
dy D �.4 � y/ dy
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and moment about the base plane

dMyD0 D y dV D �.4y � y
2
/ dy:

Hence, the volume of the solid is

V D �

Z 4

0

.4 � y/ dy D �

�

4y �
y

2

2

�
ˇ

ˇ

ˇ

ˇ

4

0

D �.16 � 8/ D 8�;

and its moment about y D 0 is

MyD0 D �

Z 4

0

.4y � y
2
/ dy D �

�

2y
2
�

y
3

3

�
ˇ

ˇ

ˇ

ˇ

4

0

D �

�

32 �
64

3

�

D

32

3
�:

Hence, the centroid is located at Ny D
32�

3
�

1

8�
D

4

3
.

Pappus’s Theorem
The following theorem relates volumes or surface areas of revolution to the centroid of

the region or curve being rotated.

T H E O R E M

2

Pappus’s Theorem

(a) If a plane region R lies on one side of a line L in that plane and is rotated about

L to generate a solid of revolution, then the volume V of that solid is the product

of the area of R and the distance travelled by the centroid of R under the rotation;

that is,

V D 2� NrA;

where A is the area of R, and Nr is the perpendicular distance from the centroid of

R to L.

(b) If a plane curve C lies on one side of a line L in that plane and is rotated about

that line to generate a surface of revolution, then the area S of that surface is the

length of C times the distance travelled by the centroid of C:

S D 2� Nrs;

where s is the length of the curve C, and Nr is the perpendicular distance from the

centroid of C to the line L.

PROOF We prove part (a). The proof of (b) is similar and is left as an exercise.

Let us take L to be the y-axis and suppose that R lies between x D a and x D b

where 0 � a < b. Thus Nr D Nx, the x-coordinate of the centroid of R. Let dA denote

the area of a thin strip of R at position x and having width dx. (See Figure 7.40.) This

strip generates, on rotation about L, a cylindrical shell of volume dV D 2�x dA, so

the volume of the solid of revolution is

V D 2�

Z xDb

xDa

x dA D 2�MxD0 D 2� NxA D 2� NrA:

y

x

Nr
dA

R

a x b

Figure 7.40 Proving Theorem 2(a)

As the following examples illustrate, Pappus’s Theorem can be used in two ways: either

the centroid can be determined when the appropriate volume or surface area is known,

or the volume or surface area can be determined if the centroid of the rotating region

or curve is known.
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E X A M P L E 5
Use Pappus’s Theorem to find the centroid of the semicircle

y D

q

a2
� x2.

Solution The centroid of the semicircle lies on its axis of symmetry, the y-axis, so it

is located at a point with coordinates .0; Ny/. Since the semicircle has length �a units

and generates, on rotation about the x-axis, a sphere having area 4�a2 square units,

we obtain, using part (b) of Pappus’s Theorem,

4�a
2
D 2�.�a/ Ny:

Thus Ny D 2a=� , as shown previously in Example 2.

E X A M P L E 6
Use Pappus’s Theorem to find the volume and surface area of the

torus (doughnut) obtained by rotating the disk .x�b/2Cy2
� a2

about the y-axis. Here 0 < a < b. (See Figure 7.10 in Section 7.1.)

Solution The centroid of the disk is at .b; 0/, which is at distance Nr D b units from

the axis of rotation. Since the disk has area �a2 square units, the volume of the torus

is

V D 2�b.�a
2
/ D 2�

2
a

2
b cubic units:

To find the surface area S of the torus (in case you want to have icing on the doughnut),

rotate the circular boundary of the disk, which has length 2�a, about the y-axis and

obtain

S D 2�b.2�a/ D 4�
2
ab square units:

E X E R C I S E S 7.5

Find the centroids of the geometric structures in Exercises 1–21.

Be alert for symmetries and opportunities to use Pappus’s

Theorem.

1. The quarter-disk x2
C y2

� r2; x � 0; y � 0

2. The region 0 � y � 9 � x2

3. The region 0 � x � 1, 0 � y �
1

p

1C x2

4. The circular disk sector x2
C y

2
� r

2
; 0 � y � x

5. The circular disk segment 0 � y �
p

4 � x2
� 1

6. The semi-elliptic disk 0 � y � b
p

1 � .x=a/2

7. The quadrilateral with vertices (in clockwise order) .0; 0/,

.3; 1/, .4; 0/, and .2;�2/

8. The region bounded by the semicircle

y D
p

1 � .x � 1/2, the y-axis, and the line y D x � 2

9. A hemispherical surface of radius r

10. A solid half ball of radius r

11. A solid cone of base radius r and height h

12. A conical surface of base radius r and height h

13. The plane region 0 � y � sinx; 0 � x � �

14. The plane region 0 � y � cosx; 0 � x � �=2

15. The quarter-circle arc x2
C y2

D r2; x � 0; y � 0

16. The solid obtained by rotating the region in Figure 7.41(a)

about the y-axis
y

x

y

x

y

x

y

x

.0;2/ .2;2/ .0;1/
.1;1/

.1;0/

.0;1/

.1;0/

semicircle

.1;0/

.2;1/

.0;0/ .0;�1/

.0;�1/

.�1;0/

.�1;0/

.�1;0/

semicircles

(a)

(c) (d)

(b)

semicircle

Figure 7.41
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17. The region in Figure 7.41(a)

18. The region in Figure 7.41(b)

19. The region in Figure 7.41(c)

20. The region in Figure 7.41(d)

21. The solid obtained by rotating the plane region

0 � y � 2x � x2 about the line y D �2

22. The line segment from .1; 0/ to .0; 1/ is rotated about the line

x D 2 to generate part of a conical surface. Find the area of

that surface.

23. The triangle with vertices .0; 0/, .1; 0/, and .0; 1/ is rotated

about the line x D 2 to generate a certain solid. Find the

volume of that solid.

24. An equilateral triangle of edge s cm is rotated about one of its

edges to generate a solid. Find the volume and surface area of

that solid.

C 25. Find to 5 decimal places the coordinates of the centroid of the

region 0 � x � �=2, 0 � y �
p

x cos x.

C 26. Find to 5 decimal places the coordinates of the centroid of the

region 0 < x � �=2, ln.sin x/ � y � 0.

27. Find the centroid of the infinitely long spike-shaped region

lying between the x-axis and the curve y D .x C 1/�3 and to

the right of the y-axis.

28.A Show that the curve y D e�x2

.�1 < x <1/ generates a

surface of finite area when rotated about the x-axis. What

does this imply about the location of the centroid of this

infinitely long curve?

29. Obtain formulas for the coordinates of the centroid of the

plane region c � y � d , 0 < f .y/ � x � g.y/.

30.A Prove part (b) of Pappus’s Theorem (Theorem 2).

M 31. (Stability of a floating object) Determining the orientation

that a floating object will assume is a problem of critical

importance to ship designers. Boats must be designed to float

stably in an upright position; if the boat tilts somewhat from

upright, the forces on it must be such as to right it again. The

two forces on a floating object that need to be taken into

account are its weight W and the balancing buoyant force

B D �W. The weight W must be treated for mechanical

purposes as being applied at the centre of mass (CM) of the

object. The buoyant force, however, acts at the centre of

buoyancy (CB), which is the centre of mass of the water

displaced by the object, and is therefore the centroid of the

“hole in the water” made by the object.

For example, consider a channel marker buoy consisting

of a hemispherical hull surmounted by a conical tower

supporting a navigation light. The buoy has a vertical axis of

symmetry. If it is upright, both the CM and the CB lie on this

line, as shown in the left half of Figure 7.42.

CB

CM

O

CM
W

B
CB

O

W

B

Figure 7.42

Is this upright flotation of the buoy stable? It is if the CM

lies below the centre O of the hemispherical hull, as shown in

the right half of the figure. To see why, imagine the buoy tilted

slightly from the vertical as shown in the right half of the

figure. Observe that the CM still lies on the axis of symmetry

of the buoy, but the CB lies on the vertical line through O. The

forces W and B no longer act along the same line, but their

torques are such as to rotate the buoy back to a vertical upright

position. If CM had been above O in the left figure, the

torques would have been such as to tip the buoy over once it

was displaced even slightly from the vertical.

A wooden beam has a square cross-section and specific

gravity 0.5, so that it will float with half of its volume

submerged. (See Figure 7.43.) Assuming it will float

horizontally in the water, what is the stable orientation of the

square cross-section with respect to the surface of the water?

In particular, will the beam float with a flat face upward or an

edge upward? Prove your assertions. You may find Maple or

another symbolic algebra program useful.
y

x
t

.�=4/ � t

P

N

M

L

.�=4/ � t

1

t

1

p

2
p

2

Figure 7.43

7.6 Other Physical Applications

In this section we present some examples of the use of integration to calculate quanti-

ties arising in physics and mechanics.
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E X A M P L E 5
Use Pappus’s Theorem to find the centroid of the semicircle

y D

q

a2
� x2.

Solution The centroid of the semicircle lies on its axis of symmetry, the y-axis, so it

is located at a point with coordinates .0; Ny/. Since the semicircle has length �a units

and generates, on rotation about the x-axis, a sphere having area 4�a2 square units,

we obtain, using part (b) of Pappus’s Theorem,

4�a
2
D 2�.�a/ Ny:

Thus Ny D 2a=� , as shown previously in Example 2.

E X A M P L E 6
Use Pappus’s Theorem to find the volume and surface area of the

torus (doughnut) obtained by rotating the disk .x�b/2Cy2
� a2

about the y-axis. Here 0 < a < b. (See Figure 7.10 in Section 7.1.)

Solution The centroid of the disk is at .b; 0/, which is at distance Nr D b units from

the axis of rotation. Since the disk has area �a2 square units, the volume of the torus

is

V D 2�b.�a
2
/ D 2�

2
a

2
b cubic units:

To find the surface area S of the torus (in case you want to have icing on the doughnut),

rotate the circular boundary of the disk, which has length 2�a, about the y-axis and

obtain

S D 2�b.2�a/ D 4�
2
ab square units:

E X E R C I S E S 7.5

Find the centroids of the geometric structures in Exercises 1–21.

Be alert for symmetries and opportunities to use Pappus’s

Theorem.

1. The quarter-disk x2
C y2

� r2; x � 0; y � 0

2. The region 0 � y � 9 � x2

3. The region 0 � x � 1, 0 � y �
1

p

1C x2

4. The circular disk sector x2
C y

2
� r

2
; 0 � y � x

5. The circular disk segment 0 � y �
p

4 � x2
� 1

6. The semi-elliptic disk 0 � y � b
p

1 � .x=a/2

7. The quadrilateral with vertices (in clockwise order) .0; 0/,

.3; 1/, .4; 0/, and .2;�2/

8. The region bounded by the semicircle

y D
p

1 � .x � 1/2, the y-axis, and the line y D x � 2

9. A hemispherical surface of radius r

10. A solid half ball of radius r

11. A solid cone of base radius r and height h

12. A conical surface of base radius r and height h

13. The plane region 0 � y � sinx; 0 � x � �

14. The plane region 0 � y � cosx; 0 � x � �=2

15. The quarter-circle arc x2
C y2

D r2; x � 0; y � 0

16. The solid obtained by rotating the region in Figure 7.41(a)

about the y-axis
y

x

y

x

y

x

y

x

.0;2/ .2;2/ .0;1/
.1;1/

.1;0/

.0;1/

.1;0/

semicircle

.1;0/

.2;1/

.0;0/ .0;�1/

.0;�1/

.�1;0/

.�1;0/

.�1;0/

semicircles

(a)

(c) (d)

(b)

semicircle

Figure 7.41
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17. The region in Figure 7.41(a)

18. The region in Figure 7.41(b)

19. The region in Figure 7.41(c)

20. The region in Figure 7.41(d)

21. The solid obtained by rotating the plane region

0 � y � 2x � x2 about the line y D �2

22. The line segment from .1; 0/ to .0; 1/ is rotated about the line

x D 2 to generate part of a conical surface. Find the area of

that surface.

23. The triangle with vertices .0; 0/, .1; 0/, and .0; 1/ is rotated

about the line x D 2 to generate a certain solid. Find the

volume of that solid.

24. An equilateral triangle of edge s cm is rotated about one of its

edges to generate a solid. Find the volume and surface area of

that solid.

C 25. Find to 5 decimal places the coordinates of the centroid of the

region 0 � x � �=2, 0 � y �
p

x cos x.

C 26. Find to 5 decimal places the coordinates of the centroid of the

region 0 < x � �=2, ln.sin x/ � y � 0.

27. Find the centroid of the infinitely long spike-shaped region

lying between the x-axis and the curve y D .x C 1/�3 and to

the right of the y-axis.

28.A Show that the curve y D e�x2

.�1 < x <1/ generates a

surface of finite area when rotated about the x-axis. What

does this imply about the location of the centroid of this

infinitely long curve?

29. Obtain formulas for the coordinates of the centroid of the

plane region c � y � d , 0 < f .y/ � x � g.y/.

30.A Prove part (b) of Pappus’s Theorem (Theorem 2).

M 31. (Stability of a floating object) Determining the orientation

that a floating object will assume is a problem of critical

importance to ship designers. Boats must be designed to float

stably in an upright position; if the boat tilts somewhat from

upright, the forces on it must be such as to right it again. The

two forces on a floating object that need to be taken into

account are its weight W and the balancing buoyant force

B D �W. The weight W must be treated for mechanical

purposes as being applied at the centre of mass (CM) of the

object. The buoyant force, however, acts at the centre of

buoyancy (CB), which is the centre of mass of the water

displaced by the object, and is therefore the centroid of the

“hole in the water” made by the object.

For example, consider a channel marker buoy consisting

of a hemispherical hull surmounted by a conical tower

supporting a navigation light. The buoy has a vertical axis of

symmetry. If it is upright, both the CM and the CB lie on this

line, as shown in the left half of Figure 7.42.

CB

CM

O

CM
W

B
CB

O

W

B

Figure 7.42

Is this upright flotation of the buoy stable? It is if the CM

lies below the centre O of the hemispherical hull, as shown in

the right half of the figure. To see why, imagine the buoy tilted

slightly from the vertical as shown in the right half of the

figure. Observe that the CM still lies on the axis of symmetry

of the buoy, but the CB lies on the vertical line through O. The

forces W and B no longer act along the same line, but their

torques are such as to rotate the buoy back to a vertical upright

position. If CM had been above O in the left figure, the

torques would have been such as to tip the buoy over once it

was displaced even slightly from the vertical.

A wooden beam has a square cross-section and specific

gravity 0.5, so that it will float with half of its volume

submerged. (See Figure 7.43.) Assuming it will float

horizontally in the water, what is the stable orientation of the

square cross-section with respect to the surface of the water?

In particular, will the beam float with a flat face upward or an

edge upward? Prove your assertions. You may find Maple or

another symbolic algebra program useful.
y

x
t

.�=4/ � t

P

N

M

L

.�=4/ � t

1

t

1

p

2
p

2

Figure 7.43

7.6 Other Physical Applications

In this section we present some examples of the use of integration to calculate quanti-

ties arising in physics and mechanics.
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Hydrostatic Pressure
The pressure p at depth h beneath the surface of a liquid is the force per unit area

exerted on a horizontal plane surface at that depth due to the weight of the liquid above

it. Hence, p is given by

p D �gh;

where � is the density of the liquid, and g is the acceleration produced by gravity where

the fluid is located. (See Figure 7.44.) For water at the surface of the earth we have,

approximately, � D 1;000 kg/m3 and g D 9:8 m/s2, so the pressure at depth h m is

p D 9;800h N/m2:

The unit of force used here is the newton (N); 1 N = 1 kg�m/s2, the force that imparts

an acceleration of 1 m/s2 to a mass of 1 kg.

A

h

Figure 7.44 The volume of liquid above

the area A is V D Ah. The weight of this

liquid is �Vg D �ghA, so the pressure

(force per unit area) at depth h is p D �gh

The molecules in a liquid interact in such a way that the pressure at any depth

acts equally in all directions; the pressure against a vertical surface is the same as that

against a horizontal surface at the same depth. This is Pascal’s principle.

The total force exerted by a liquid on a horizontal surface (say, the bottom of a

tank holding the liquid) is found by multiplying the area of that surface by the pressure

at the depth of the surface below the top of the liquid. For nonhorizontal surfaces,

however, the pressure is not constant over the whole surface, and the total force cannot

be determined so easily. In this case we divide the surface into area elements dA, each

at some particular depth h, and we then sum (i.e., integrate) the corresponding force

elements dF D �ghdA to find the total force.

E X A M P L E 1
One vertical wall of a water trough is a semicircular plate of radius

R m with curved edge downward. If the trough is full, so that the

water comes up to the top of the plate, find the total force of the water on the plate.

Solution A horizontal strip of the surface of the plate at depth h m and having

width dh m (see Figure 7.45) has length 2
p

R2
� h2 m; hence, its area is dA D

2
p

R2
� h2 dh m2. The force of the water on this strip is

R
h

dh

Figure 7.45 An end plate of the water

trough

dF D �ghdA D 2�gh

p

R2
� h2 dh:

Thus, the total force on the plate is

F D

Z hDR

hD0

dF D 2�g

Z R

0

h

p

R2
� h2 dh Let u D R2

� h2,

du D �2hdh

D �g

Z R2

0

u
1=2
du D �g

2

3
u

3=2

ˇ

ˇ

ˇ

ˇ

R2

0

�

2

3
� 9;800R

3
� 6;533R

3 N:

E X A M P L E 2
(Force on a dam) Find the total force on a section of a dam 100 m

long and having a vertical height of 10 m, if the surface holding

back the water is inclined at an angle of 30ı to the vertical and the water comes up to

the top of the dam.

Solution The water in a horizontal layer of thickness dh m at depth h m makes

contact with the dam along a slanted strip of width dh sec 30ı
D .2=

p

3/ dh m. (See

Figure 7.46.) The area of this strip is dA D .200=
p

3/ dh m2, and the force of water

against the strip is

dF D �ghdA D
200
p

3
� 1;000 � 9:8h dh � 1;131;600hdh N:
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The total force on the dam section is therefore

F � 1;131;600

Z 10

0

hdh D 1;131;600 �
10

2

2
� 5:658 � 10

7 N:

Figure 7.46 The dam of Example 2

h

30ı

dh sec 30ı

100 m

10 m
dh

Work
When a force acts on an object to move that object, it is said to have done work on the

object. The amount of work done by a constant force is measured by the product of the

force and the distance through which it moves the object. This assumes that the force

is in the direction of the motion.

work D force � distance

Work is always related to a particular force. If other forces acting on an object cause

it to move in a direction opposite to the force F; then work is said to have been done

against the force F:

Suppose that a force in the direction of the x-axis moves an object from x D a

to x D b on that axis and that the force varies continuously with the position x of

the object; that is, F D F.x/ is a continuous function. The element of work done

by the force in moving the object through a very short distance from x to x C dx is

dW D F.x/ dx, so the total work done by the force is

W D

Z xDb

xDa

dW D

Z b

a

F.x/ dx:

E X A M P L E 3
(Stretching or compressing a spring) By Hooke’s Law, the

force F.x/ required to extend (or compress) an elastic spring to

x units longer (or shorter) than its natural length is proportional to x:

F.x/ D kx;

where k is the spring constant for the particular spring. If a force of 2,000 N is

required to extend a certain spring to 4 cm longer than its natural length, how much

work must be done to extend it that far?

Solution Since F.x/ D kx D 2;000 N when x D 4 cm, we must have

k D 2;000=4 D 500 N/cm. The work done in extending the spring 4 cm is

W D

Z 4

0

kx dx D k
x2

2

ˇ

ˇ

ˇ

ˇ

4

0

D 500
N

cm
�

42 cm2

2
D 4;000 N�cm D 40 N�m:

Forty newton-metres (joules) of work must be done to stretch the spring 4 cm.
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Hydrostatic Pressure
The pressure p at depth h beneath the surface of a liquid is the force per unit area

exerted on a horizontal plane surface at that depth due to the weight of the liquid above

it. Hence, p is given by

p D �gh;

where � is the density of the liquid, and g is the acceleration produced by gravity where

the fluid is located. (See Figure 7.44.) For water at the surface of the earth we have,

approximately, � D 1;000 kg/m3 and g D 9:8 m/s2, so the pressure at depth h m is

p D 9;800h N/m2:

The unit of force used here is the newton (N); 1 N = 1 kg�m/s2, the force that imparts

an acceleration of 1 m/s2 to a mass of 1 kg.

A

h

Figure 7.44 The volume of liquid above

the area A is V D Ah. The weight of this

liquid is �Vg D �ghA, so the pressure

(force per unit area) at depth h is p D �gh

The molecules in a liquid interact in such a way that the pressure at any depth

acts equally in all directions; the pressure against a vertical surface is the same as that

against a horizontal surface at the same depth. This is Pascal’s principle.

The total force exerted by a liquid on a horizontal surface (say, the bottom of a

tank holding the liquid) is found by multiplying the area of that surface by the pressure

at the depth of the surface below the top of the liquid. For nonhorizontal surfaces,

however, the pressure is not constant over the whole surface, and the total force cannot

be determined so easily. In this case we divide the surface into area elements dA, each

at some particular depth h, and we then sum (i.e., integrate) the corresponding force

elements dF D �ghdA to find the total force.

E X A M P L E 1
One vertical wall of a water trough is a semicircular plate of radius

R m with curved edge downward. If the trough is full, so that the

water comes up to the top of the plate, find the total force of the water on the plate.

Solution A horizontal strip of the surface of the plate at depth h m and having

width dh m (see Figure 7.45) has length 2
p

R2
� h2 m; hence, its area is dA D

2
p

R2
� h2 dh m2. The force of the water on this strip is

R
h

dh

Figure 7.45 An end plate of the water

trough

dF D �ghdA D 2�gh

p

R2
� h2 dh:

Thus, the total force on the plate is

F D

Z hDR

hD0

dF D 2�g

Z R

0

h

p

R2
� h2 dh Let u D R2

� h2,

du D �2hdh

D �g

Z R2

0

u
1=2
du D �g

2

3
u

3=2

ˇ

ˇ

ˇ

ˇ

R2

0

�

2

3
� 9;800R

3
� 6;533R

3 N:

E X A M P L E 2
(Force on a dam) Find the total force on a section of a dam 100 m

long and having a vertical height of 10 m, if the surface holding

back the water is inclined at an angle of 30ı to the vertical and the water comes up to

the top of the dam.

Solution The water in a horizontal layer of thickness dh m at depth h m makes

contact with the dam along a slanted strip of width dh sec 30ı
D .2=

p

3/ dh m. (See

Figure 7.46.) The area of this strip is dA D .200=
p

3/ dh m2, and the force of water

against the strip is

dF D �ghdA D
200
p

3
� 1;000 � 9:8h dh � 1;131;600hdh N:
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The total force on the dam section is therefore

F � 1;131;600

Z 10

0

hdh D 1;131;600 �
10

2

2
� 5:658 � 10

7 N:

Figure 7.46 The dam of Example 2

h

30ı

dh sec 30ı

100 m

10 m
dh

Work
When a force acts on an object to move that object, it is said to have done work on the

object. The amount of work done by a constant force is measured by the product of the

force and the distance through which it moves the object. This assumes that the force

is in the direction of the motion.

work D force � distance

Work is always related to a particular force. If other forces acting on an object cause

it to move in a direction opposite to the force F; then work is said to have been done

against the force F:

Suppose that a force in the direction of the x-axis moves an object from x D a

to x D b on that axis and that the force varies continuously with the position x of

the object; that is, F D F.x/ is a continuous function. The element of work done

by the force in moving the object through a very short distance from x to x C dx is

dW D F.x/ dx, so the total work done by the force is

W D

Z xDb

xDa

dW D

Z b

a

F.x/ dx:

E X A M P L E 3
(Stretching or compressing a spring) By Hooke’s Law, the

force F.x/ required to extend (or compress) an elastic spring to

x units longer (or shorter) than its natural length is proportional to x:

F.x/ D kx;

where k is the spring constant for the particular spring. If a force of 2,000 N is

required to extend a certain spring to 4 cm longer than its natural length, how much

work must be done to extend it that far?

Solution Since F.x/ D kx D 2;000 N when x D 4 cm, we must have

k D 2;000=4 D 500 N/cm. The work done in extending the spring 4 cm is

W D

Z 4

0

kx dx D k
x2

2

ˇ

ˇ

ˇ

ˇ

4

0

D 500
N

cm
�

42 cm2

2
D 4;000 N�cm D 40 N�m:

Forty newton-metres (joules) of work must be done to stretch the spring 4 cm.
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Figure 7.47 Pumping water out of a

conical tank

3 m

r

h

4 m

dh

PUMP

E X A M P L E 4
(Work done to pump out a tank) Water fills a tank in the shape

of a right-circular cone with top radius 3 m and depth 4 m. How

much work must be done (against gravity) to pump all the water out of the tank over

the top edge of the tank?

Solution A thin, disk-shaped slice of water at height h above the vertex of the tank

has radius r (see Figure 7.47), where r D 3
4
h by similar triangles. The volume of this

slice is

dV D �r
2
dh D

9

16
�h

2
dh;

and its weight (the force of gravity on the mass of water in the slice) is

dF D �g dV D
9

16
�g �h

2
dh:

The water in this disk must be raised (against gravity) a distance .4 � h/ m by the

pump. The work required to do this is

dW D
9

16
�g �.4 � h/h

2
dh:

The total work that must be done to empty the tank is the sum (integral) of all these

elements of work for disks at depths between 0 and 4 m:

W D

Z 4

0

9

16
�g �.4h

2
� h

3
/ dh

D

9

16
�g �

�

4h3

3
�

h4

4

�
ˇ

ˇ

ˇ

ˇ

4

0

D

9�

16
� 1;000 � 9:8 �

64

3
� 3:69 � 10

5 N�m:

E X A M P L E 5
(Work to raise material into orbit) The gravitational force of

the earth on a mass m located at height h above the surface of the

earth is given by

F.h/ D
Km

.RC h/2
;
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where R is the radius of the earth and K is a constant that is independent of m and h.

Determine, in terms of K and R, the work that must be done against gravity to raise

an object from the surface of the earth to:

(a) a height H above the surface of the earth, and

(b) an infinite height above the surface of the earth.

Solution The work done to raise the mass m from height h to height hC dh is

dW D
Km

.RC h/2
dh:

(a) The total work to raise it from height h D 0 to height h D H is

W D

Z H

0

Km

.RC h/2
dh D

�Km

RC h

ˇ

ˇ

ˇ

ˇ

H

0

D Km

�

1

R
�

1

RCH

�

:

If R and H are measured in metres and F is measured in newtons, then W is

measured in newton-metres (N�m), or joules.

(b) The total work necessary to raise the mass m to an infinite height is

W D

Z 1

0

Km

.RC h/2
dh D lim

H!1
Km

�

1

R
�

1

RCH

�

D

Km

R
:

E X A M P L E 6
One end of a horizontal tank with cross-section a square of edge

length L metres is fixed while the other end is a square piston free

to travel without friction along the length of the tank. Between the piston and the fixed

end there is some water in the tank; its depth depends on the position of the piston.

(See Figure 7.48.)

(a) When the depth of the water is y metres (0 � y � L), what force does it exert on

the piston?

(b) If the piston is X metres from the fixed end of the tank when the water depth is

L=2 metres, how much work must be done to force the piston in further to halve

that distance and hence cause the water level to increase to fill the available space?

Assume no water leaks out but that trapped air can escape from the top of the tank.

y
L

L

Lx

Figure 7.48 The piston in Example 6

Solution

(a) When the depth of water in the tank is y m, a horizontal strip on the face of the

piston at depth z below the surface of the water (0 � z � y) and having height

dz has area dA D Ldz. Since the pressure at depth z is �gz D 9;800z N/m2,

the force of the water on the strip is dF D 9;800Lz dz N. Thus, the force on the

piston is

F D

Z y

0

9;800Lz dz D 4;900Ly
2 N, where 0 � y � L:

(b) If the distance from the fixed end of the tank to the piston is x m when the water

depth is y m, then the volume of water in the tank is V D Lxy m3. But we are

given that V D L2X=2, so we have u D LX=2. Now the work done in moving

the piston from x to x � dx is

dW D 4;900Ly
2
.�dx/ D �4;900L

L2X2

4x2
dx:

Thus, the work done to move the piston from position X to position X=2 is

W D �

Z X=2

X

4;900
L3X2

4

dx

x2

D 4;900
L3X2

4

�

2

X
�

1

X

�

D 1;225N �m:
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Figure 7.47 Pumping water out of a

conical tank

3 m

r

h

4 m

dh

PUMP

E X A M P L E 4
(Work done to pump out a tank) Water fills a tank in the shape

of a right-circular cone with top radius 3 m and depth 4 m. How

much work must be done (against gravity) to pump all the water out of the tank over

the top edge of the tank?

Solution A thin, disk-shaped slice of water at height h above the vertex of the tank

has radius r (see Figure 7.47), where r D 3
4
h by similar triangles. The volume of this

slice is

dV D �r
2
dh D

9

16
�h

2
dh;

and its weight (the force of gravity on the mass of water in the slice) is

dF D �g dV D
9

16
�g �h

2
dh:

The water in this disk must be raised (against gravity) a distance .4 � h/ m by the

pump. The work required to do this is

dW D
9

16
�g �.4 � h/h

2
dh:

The total work that must be done to empty the tank is the sum (integral) of all these

elements of work for disks at depths between 0 and 4 m:

W D

Z 4

0

9

16
�g �.4h

2
� h

3
/ dh

D

9

16
�g �

�

4h3

3
�

h4

4

�
ˇ

ˇ

ˇ

ˇ

4

0

D

9�

16
� 1;000 � 9:8 �

64

3
� 3:69 � 10

5 N�m:

E X A M P L E 5
(Work to raise material into orbit) The gravitational force of

the earth on a mass m located at height h above the surface of the

earth is given by

F.h/ D
Km

.RC h/2
;
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where R is the radius of the earth and K is a constant that is independent of m and h.

Determine, in terms of K and R, the work that must be done against gravity to raise

an object from the surface of the earth to:

(a) a height H above the surface of the earth, and

(b) an infinite height above the surface of the earth.

Solution The work done to raise the mass m from height h to height hC dh is

dW D
Km

.RC h/2
dh:

(a) The total work to raise it from height h D 0 to height h D H is

W D

Z H

0

Km

.RC h/2
dh D

�Km

RC h

ˇ

ˇ

ˇ

ˇ

H

0

D Km

�

1

R
�

1

RCH

�

:

If R and H are measured in metres and F is measured in newtons, then W is

measured in newton-metres (N�m), or joules.

(b) The total work necessary to raise the mass m to an infinite height is

W D

Z 1

0

Km

.RC h/2
dh D lim

H!1
Km

�

1

R
�

1

RCH

�

D

Km

R
:

E X A M P L E 6
One end of a horizontal tank with cross-section a square of edge

length L metres is fixed while the other end is a square piston free

to travel without friction along the length of the tank. Between the piston and the fixed

end there is some water in the tank; its depth depends on the position of the piston.

(See Figure 7.48.)

(a) When the depth of the water is y metres (0 � y � L), what force does it exert on

the piston?

(b) If the piston is X metres from the fixed end of the tank when the water depth is

L=2 metres, how much work must be done to force the piston in further to halve

that distance and hence cause the water level to increase to fill the available space?

Assume no water leaks out but that trapped air can escape from the top of the tank.

y
L

L

Lx

Figure 7.48 The piston in Example 6

Solution

(a) When the depth of water in the tank is y m, a horizontal strip on the face of the

piston at depth z below the surface of the water (0 � z � y) and having height

dz has area dA D Ldz. Since the pressure at depth z is �gz D 9;800z N/m2,

the force of the water on the strip is dF D 9;800Lz dz N. Thus, the force on the

piston is

F D

Z y

0

9;800Lz dz D 4;900Ly
2 N, where 0 � y � L:

(b) If the distance from the fixed end of the tank to the piston is x m when the water

depth is y m, then the volume of water in the tank is V D Lxy m3. But we are

given that V D L2X=2, so we have u D LX=2. Now the work done in moving

the piston from x to x � dx is

dW D 4;900Ly
2
.�dx/ D �4;900L

L2X2

4x2
dx:

Thus, the work done to move the piston from position X to position X=2 is

W D �

Z X=2

X

4;900
L3X2

4

dx

x2

D 4;900
L3X2

4

�

2

X
�

1

X

�

D 1;225N �m:
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Potential Energy and Kinetic Energy
The units of energy are the same as those of work (force � distance). Work done

against a force may be regarded as storing up energy for future use or for conversion

to other forms. Such stored energy is called potential energy (P.E.). For instance,

in extending or compressing an elastic spring, we are doing work against the tension

in the spring and hence storing energy in the spring. When work is done against a

(variable) force F.x/ to move an object from x D a to x D b, the energy stored is

P.E. D �

Z b

a

F.x/ dx:

Since the work is being done against F; the signs of F.x/ and b � a are opposite,

so the integral is negative; the explicit negative sign is included so that the calculated

potential energy will be positive.

One of the forms of energy into which potential energy can be converted is kinetic

energy (K.E.), the energy of motion. If an object of mass m is moving with velocity

v, it has kinetic energy

K.E. D
1

2
mv

2
:

For example, if an object is raised and then dropped, it accelerates downward under

gravity as more and more of the potential energy stored in it when it was raised is

converted to kinetic energy.

Consider the change in potential energy stored in a mass m as it moves along the

x-axis from a to b under the influence of a force F.x/ depending only on x:

P.E..b/ � P.E..a/ D �

Z b

a

F.x/ dx:

(The change in P.E. is negative if m is moving in the direction of F:) According to

Newton’s Second Law of Motion, the force F.x/ causes the mass m to accelerate,

with acceleration dv=dt given by

F.x/ D m
dv

dt
.force D mass � acceleration/:

By the Chain Rule we can rewrite dv=dt in the form

dv

dt
D

dv

dx

dx

dt
D v

dv

dx
;

so F.x/ D mv
dv

dx
. Hence,

P.E..b/ � P.E..a/ D �

Z b

a

mv
dv

dx
dx

D �m

Z xDb

xDa

v dv

D �

1

2
mv

2

ˇ

ˇ

ˇ

ˇ

xDb

xDa

D K.E..a/ � K.E..b/:

It follows that

P.E..b/C K.E..b/ D P.E..a/C K.E..a/:

This shows that the total energy (potential + kinetic) remains constant as the mass m

moves under the influence of a force F; depending only on position. Such a force is

said to be conservative, and the above result is called the Law of Conservation of

Energy. Conservative forces will be further discussed in Section 15.2.
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E X A M P L E 7
(Escape velocity) Use the result of Example 5 together with the

following known values,

(a) the radius R of the earth is about 6;400 km, or 6:4 � 106 m,

(b) the acceleration of gravity g at the surface of the earth is about 9:8 m/s2,

to determine the constant K in the gravitational force formula of Example 5, and use

this information to determine the escape velocity for a projectile fired vertically from

the surface of the earth. The escape velocity is the (minimum) speed that such a

projectile must have at firing to ensure that it will continue to move farther and farther

away from the earth and not fall back.

Solution According to the formula of Example 5, the force of gravity on a mass

m kg at the surface of the earth .h D 0/ is

F D
Km

.RC 0/2
D

Km

R2
:

According to Newton’s Second Law of Motion, this force is related to the acceleration

of gravity .g/ there by the equation F D mg. Thus,

Km

R2
D mg and K D gR

2
:

According to the Law of Conservation of Energy, the projectile must have sufficient

kinetic energy at firing to do the work necessary to raise the mass m to infinite height.

By the result of Example 5, this required energy isKm=R. If the initial velocity of the

projectile is v, we want

1

2
mv

2
�

Km

R
:

Thus, v must satisfy

v �

r

2K

R
D

p

2gR �

p

2 � 9:8 � 6:4 � 106
� 1:12 � 10

4 m/s:

Thus, the escape velocity is approximately 11.2 km/s and is independent of the mass

m. In this calculation we have neglected any air resistance near the surface of the earth.

Such resistance depends on velocity rather than on position, so it is not a conservative

force. The effect of such resistance would be to use up (convert to heat) some of the

initial kinetic energy and so raise the escape velocity.

E X E R C I S E S 7.6

1. A tank has a square base 2 m on each side and vertical sides

6 m high. If the tank is filled with water, find the total force

exerted by the water (a) on the bottom of the tank and (b) on

one of the four vertical walls of the tank.

2. A swimming pool 20 m long and 8 m wide has a sloping plane

bottom so that the depth of the pool is 1 m at one end and 3 m

at the other end. Find the total force exerted on the bottom if

the pool is full of water.

3. A dam 200 m long and 24 m high presents a sloping face of

26 m slant height to the water in a reservoir behind the dam

(Figure 7.49). If the surface of the water is level with the top

of the dam, what is the total force of the water on the dam?

26 m
24 m

200 m

Figure 7.49
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Potential Energy and Kinetic Energy
The units of energy are the same as those of work (force � distance). Work done

against a force may be regarded as storing up energy for future use or for conversion

to other forms. Such stored energy is called potential energy (P.E.). For instance,

in extending or compressing an elastic spring, we are doing work against the tension

in the spring and hence storing energy in the spring. When work is done against a

(variable) force F.x/ to move an object from x D a to x D b, the energy stored is

P.E. D �

Z b

a

F.x/ dx:

Since the work is being done against F; the signs of F.x/ and b � a are opposite,

so the integral is negative; the explicit negative sign is included so that the calculated

potential energy will be positive.

One of the forms of energy into which potential energy can be converted is kinetic

energy (K.E.), the energy of motion. If an object of mass m is moving with velocity

v, it has kinetic energy

K.E. D
1

2
mv

2
:

For example, if an object is raised and then dropped, it accelerates downward under

gravity as more and more of the potential energy stored in it when it was raised is

converted to kinetic energy.

Consider the change in potential energy stored in a mass m as it moves along the

x-axis from a to b under the influence of a force F.x/ depending only on x:

P.E..b/ � P.E..a/ D �

Z b

a

F.x/ dx:

(The change in P.E. is negative if m is moving in the direction of F:) According to

Newton’s Second Law of Motion, the force F.x/ causes the mass m to accelerate,

with acceleration dv=dt given by

F.x/ D m
dv

dt
.force D mass � acceleration/:

By the Chain Rule we can rewrite dv=dt in the form

dv

dt
D

dv

dx

dx

dt
D v

dv

dx
;

so F.x/ D mv
dv

dx
. Hence,

P.E..b/ � P.E..a/ D �

Z b

a

mv
dv

dx
dx

D �m

Z xDb

xDa

v dv

D �

1

2
mv

2

ˇ

ˇ

ˇ

ˇ

xDb

xDa

D K.E..a/ � K.E..b/:

It follows that

P.E..b/C K.E..b/ D P.E..a/C K.E..a/:

This shows that the total energy (potential + kinetic) remains constant as the mass m

moves under the influence of a force F; depending only on position. Such a force is

said to be conservative, and the above result is called the Law of Conservation of

Energy. Conservative forces will be further discussed in Section 15.2.
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E X A M P L E 7
(Escape velocity) Use the result of Example 5 together with the

following known values,

(a) the radius R of the earth is about 6;400 km, or 6:4 � 106 m,

(b) the acceleration of gravity g at the surface of the earth is about 9:8 m/s2,

to determine the constant K in the gravitational force formula of Example 5, and use

this information to determine the escape velocity for a projectile fired vertically from

the surface of the earth. The escape velocity is the (minimum) speed that such a

projectile must have at firing to ensure that it will continue to move farther and farther

away from the earth and not fall back.

Solution According to the formula of Example 5, the force of gravity on a mass

m kg at the surface of the earth .h D 0/ is

F D
Km

.RC 0/2
D

Km

R2
:

According to Newton’s Second Law of Motion, this force is related to the acceleration

of gravity .g/ there by the equation F D mg. Thus,

Km

R2
D mg and K D gR

2
:

According to the Law of Conservation of Energy, the projectile must have sufficient

kinetic energy at firing to do the work necessary to raise the mass m to infinite height.

By the result of Example 5, this required energy isKm=R. If the initial velocity of the

projectile is v, we want

1

2
mv

2
�

Km

R
:

Thus, v must satisfy

v �

r

2K

R
D

p

2gR �

p

2 � 9:8 � 6:4 � 106
� 1:12 � 10

4 m/s:

Thus, the escape velocity is approximately 11.2 km/s and is independent of the mass

m. In this calculation we have neglected any air resistance near the surface of the earth.

Such resistance depends on velocity rather than on position, so it is not a conservative

force. The effect of such resistance would be to use up (convert to heat) some of the

initial kinetic energy and so raise the escape velocity.

E X E R C I S E S 7.6

1. A tank has a square base 2 m on each side and vertical sides

6 m high. If the tank is filled with water, find the total force

exerted by the water (a) on the bottom of the tank and (b) on

one of the four vertical walls of the tank.

2. A swimming pool 20 m long and 8 m wide has a sloping plane

bottom so that the depth of the pool is 1 m at one end and 3 m

at the other end. Find the total force exerted on the bottom if

the pool is full of water.

3. A dam 200 m long and 24 m high presents a sloping face of

26 m slant height to the water in a reservoir behind the dam

(Figure 7.49). If the surface of the water is level with the top

of the dam, what is the total force of the water on the dam?

26 m
24 m

200 m

Figure 7.49
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4. A pyramid with a square base, 4 m on each side and four

equilateral triangular faces, sits on the level bottom of a lake at

a place where the lake is 10 m deep. Find the total force of the

water on each of the triangular faces.

5. A lock on a canal has a gate in the shape of a vertical rectangle

5 m wide and 20 m high. If the water on one side of the gate

comes up to the top of the gate, and the water on the other side

comes only 6 m up the gate, find the total force that must be

exerted to hold the gate in place.

6. If 100 N�cm of work must be done to compress an elastic

spring to 3 cm shorter than its natural length, how much work

must be done to compress it 1 cm further?

7. Find the total work that must be done to pump all the water in

the tank of Exercise 1 out over the top of the tank.

8. Find the total work that must be done to pump all the water in

the swimming pool of Exercise 2 out over the top edge of the

pool.

9. Find the work that must be done to pump all the water in a full

hemispherical bowl of radius a m to a height h m above the

top of the bowl.

10.I A horizontal cylindrical tank has radius R m. One end of the

tank is a fixed disk, but the other end is a circular piston of

radius R m free to travel along the length of the tank. There is

some water in the tank between the piston and the fixed end;

its depth depends on the position of the piston. What force

does the water exert on the piston when the surface of the

water is y m (�R � y � R) above the centre of the piston

face? (See Figure 7.50.)

R

y

x

Figure 7.50

11.I Continuing the previous problem, suppose that when the

piston is X m from the fixed end of the tank the water level is

at the centre of the piston face. How much work must be done

to reduce the distance from the piston to the fixed end to

X=2m, and thus cause the water to fill the volume between the

piston and the fixed end of the tank? As in Example 6, you can

assume the piston can move without friction and that trapped

air can escape. Hint: The technique used to solve part (b) of

Example 6 is very difficult to apply here. Instead, calculate the

work done to raise the water in half of the bottom half-

cylinder of length X so that it fills the top half-cylinder of

length X=2.

12.I A bucket is raised vertically from ground level at a constant

speed of 2 m/min by a winch. If the bucket weighs 1 kg and

contains 15 kg of water when it starts up but loses water by

leakage at a rate of 1 kg/min thereafter, how much work must

be done by the winch to raise the bucket to a height of 10 m?

7.7 Applications in Business, Finance, and Ecology

If the rate of change f 0.x/ of a function f .x/ is known, the change in value of the

function over an interval from x D a to x D b is just the integral of f 0 over Œa; b�:

f .b/� f .a/ D

Z b

a

f
0
.x/ dx:

For example, if the speed of a moving car at time t is v.t/ km/h, then the distance

travelled by the car during the time interval Œ0; T � (hours) is
R T

0
v.t/ dt km.

Similar situations arise naturally in business and economics, where the rates of

change are often called marginals.

E X A M P L E 1
(Finding total revenue from marginal revenue) A supplier of

calculators realizes a marginal revenue of $15 � 5e�x=50 per cal-

culator when she has sold x calculators. What will be her total revenue from the sale

of 100 calculators?

Solution The marginal revenue is the rate of change of revenue with respect to the

number of calculators sold. Thus, the revenue from the sale of dx calculators after x

have already been sold is

dR D .15 � 5e
�x=50

/ dx dollars.
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The total revenue from the sale of the first 100 calculators is $R, where

R D

Z xD100

xD0

dR D

Z 100

0

.15 � 5e
�x=50

/ dx

D

�

15x C 250e
�x=50

�

ˇ

ˇ

ˇ

100

0

D 1; 500C 250e
�2
� 250 � 1; 283:83;

that is, about $1,284.

The Present Value of a Stream of Payments
Suppose that you have a business that generates income continuously at a variable rate

P.t/ dollars per year at time t and that you expect this income to continue for the next

T years. How much is the business worth today?

The answer surely depends on interest rates. One dollar to be received t years from

now is worth less than one dollar received today, which could be invested at interest to

yield more than one dollar t years from now. The higher the interest rate, the lower the

value today of a payment that is not due until sometime in the future.

To analyze this situation, suppose that the nominal interest rate is r% per annum,

but is compounded continuously. Let ı D r=100. As shown in Section 3.4, an invest-

ment of $1 today will grow to

lim
n!1

�

1C
ı

n

�nt

D e
ıt dollars

after t years. Therefore, a payment of $1 after t years must be worth only $e�ıt today.

This is called the present value of the future payment. When viewed this way, the

interest rate ı is frequently called a discount rate; it represents the amount by which

future payments are discounted.

Returning to the business income problem, in the short time interval from t to t C

dt , the business produces income $P.t/ dt , of which the present value is $e�ıtP.t/ dt .

Therefore, the present value $V of the income stream over the time interval Œ0; T � is

the “sum” of these contributions:

V D

Z T

0

e
�ıt
P.t/ dt:

E X A M P L E 2
What is the present value of a constant, continual stream of pay-

ments at a rate of $10;000 per year, to continue forever, starting

now? Assume an interest rate of 6% per annum, compounded continuously.

Solution The required present value is

V D

Z 1

0

e
�0:06t

10;000 dt D 10;000 lim
R!1

e�0:06t

�0:06

ˇ

ˇ

ˇ

ˇ

R

0

� $166;667:

The Economics of Exploiting Renewable Resources
As noted in Section 3.4, the rate of increase of a biological population sometimes

conforms to a logistic model1

dx

dt
D kx

�

1 �
x

L

�

:

1 This example was suggested by Professor C. W. Clark, of the University of British Columbia.
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4. A pyramid with a square base, 4 m on each side and four

equilateral triangular faces, sits on the level bottom of a lake at

a place where the lake is 10 m deep. Find the total force of the

water on each of the triangular faces.

5. A lock on a canal has a gate in the shape of a vertical rectangle

5 m wide and 20 m high. If the water on one side of the gate

comes up to the top of the gate, and the water on the other side

comes only 6 m up the gate, find the total force that must be

exerted to hold the gate in place.

6. If 100 N�cm of work must be done to compress an elastic

spring to 3 cm shorter than its natural length, how much work

must be done to compress it 1 cm further?

7. Find the total work that must be done to pump all the water in

the tank of Exercise 1 out over the top of the tank.

8. Find the total work that must be done to pump all the water in

the swimming pool of Exercise 2 out over the top edge of the

pool.

9. Find the work that must be done to pump all the water in a full

hemispherical bowl of radius a m to a height h m above the

top of the bowl.

10.I A horizontal cylindrical tank has radius R m. One end of the

tank is a fixed disk, but the other end is a circular piston of

radius R m free to travel along the length of the tank. There is

some water in the tank between the piston and the fixed end;

its depth depends on the position of the piston. What force

does the water exert on the piston when the surface of the

water is y m (�R � y � R) above the centre of the piston

face? (See Figure 7.50.)

R

y

x

Figure 7.50

11.I Continuing the previous problem, suppose that when the

piston is X m from the fixed end of the tank the water level is

at the centre of the piston face. How much work must be done

to reduce the distance from the piston to the fixed end to

X=2m, and thus cause the water to fill the volume between the

piston and the fixed end of the tank? As in Example 6, you can

assume the piston can move without friction and that trapped

air can escape. Hint: The technique used to solve part (b) of

Example 6 is very difficult to apply here. Instead, calculate the

work done to raise the water in half of the bottom half-

cylinder of length X so that it fills the top half-cylinder of

length X=2.

12.I A bucket is raised vertically from ground level at a constant

speed of 2 m/min by a winch. If the bucket weighs 1 kg and

contains 15 kg of water when it starts up but loses water by

leakage at a rate of 1 kg/min thereafter, how much work must

be done by the winch to raise the bucket to a height of 10 m?

7.7 Applications in Business, Finance, and Ecology

If the rate of change f 0.x/ of a function f .x/ is known, the change in value of the

function over an interval from x D a to x D b is just the integral of f 0 over Œa; b�:

f .b/� f .a/ D

Z b

a

f
0
.x/ dx:

For example, if the speed of a moving car at time t is v.t/ km/h, then the distance

travelled by the car during the time interval Œ0; T � (hours) is
R T

0
v.t/ dt km.

Similar situations arise naturally in business and economics, where the rates of

change are often called marginals.

E X A M P L E 1
(Finding total revenue from marginal revenue) A supplier of

calculators realizes a marginal revenue of $15 � 5e�x=50 per cal-

culator when she has sold x calculators. What will be her total revenue from the sale

of 100 calculators?

Solution The marginal revenue is the rate of change of revenue with respect to the

number of calculators sold. Thus, the revenue from the sale of dx calculators after x

have already been sold is

dR D .15 � 5e
�x=50

/ dx dollars.
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The total revenue from the sale of the first 100 calculators is $R, where

R D

Z xD100

xD0

dR D

Z 100

0

.15 � 5e
�x=50

/ dx

D

�

15x C 250e
�x=50

�

ˇ

ˇ

ˇ

100

0

D 1; 500C 250e
�2
� 250 � 1; 283:83;

that is, about $1,284.

The Present Value of a Stream of Payments
Suppose that you have a business that generates income continuously at a variable rate

P.t/ dollars per year at time t and that you expect this income to continue for the next

T years. How much is the business worth today?

The answer surely depends on interest rates. One dollar to be received t years from

now is worth less than one dollar received today, which could be invested at interest to

yield more than one dollar t years from now. The higher the interest rate, the lower the

value today of a payment that is not due until sometime in the future.

To analyze this situation, suppose that the nominal interest rate is r% per annum,

but is compounded continuously. Let ı D r=100. As shown in Section 3.4, an invest-

ment of $1 today will grow to

lim
n!1

�

1C
ı

n

�nt

D e
ıt dollars

after t years. Therefore, a payment of $1 after t years must be worth only $e�ıt today.

This is called the present value of the future payment. When viewed this way, the

interest rate ı is frequently called a discount rate; it represents the amount by which

future payments are discounted.

Returning to the business income problem, in the short time interval from t to t C

dt , the business produces income $P.t/ dt , of which the present value is $e�ıtP.t/ dt .

Therefore, the present value $V of the income stream over the time interval Œ0; T � is

the “sum” of these contributions:

V D

Z T

0

e
�ıt
P.t/ dt:

E X A M P L E 2
What is the present value of a constant, continual stream of pay-

ments at a rate of $10;000 per year, to continue forever, starting

now? Assume an interest rate of 6% per annum, compounded continuously.

Solution The required present value is

V D

Z 1

0

e
�0:06t

10;000 dt D 10;000 lim
R!1

e�0:06t

�0:06

ˇ

ˇ

ˇ

ˇ

R

0

� $166;667:

The Economics of Exploiting Renewable Resources
As noted in Section 3.4, the rate of increase of a biological population sometimes

conforms to a logistic model1

dx

dt
D kx

�

1 �
x

L

�

:

1 This example was suggested by Professor C. W. Clark, of the University of British Columbia.
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Here, x D x.t/ is the size (or biomass) of the population at time t , k is the natural

rate at which the population would grow if its food supply were unlimited, and L is the

natural limiting size of the population—the carrying capacity of its environment. Such

models are thought to apply, for example, to the Antarctic blue whale and to several

species of fish and trees. If the resource is harvested (say, the fish are caught) at a rate

h.t/ units per year at time t , then the population grows at a slower rate:

dx

dt
D kx

�

1 �
x

L

�

� h.t/: .�/

In particular, if we harvest the population at its current rate of growth,

h.t/ D kx

�

1�
x

L

�

;

then dx=dt D 0, and the population will maintain a constant size. Assume that each

unit of harvest produces an income of $p for the fishing industry. The total annual

income from harvesting the resource at its current rate of growth will be

T D ph.t/ D pkx

�

1 �
x

L

�

:

Considered as a function of x, this total annual income is quadratic and has a maximum

value when x D L=2, the value that ensures dT=dx D 0. The industry can maintain

a stable maximum annual income by ensuring that the population level remains at half

the maximal size of the population with no harvesting.

The analysis above, however, does not take into account the discounted value of fu-

ture harvests. If the discount rate is ı, compounded continuously, then the present value

of the income $ph.t/ dt due between t and t C dt years from now is e�ıt
ph.t/ dt .

The total present value of all income from the fishery in future years is

T D

Z 1

0

e
�ıt
ph.t/ dt:

What fishing strategy will maximize T ? If we substitute for h.t/ from equation .�/

governing the growth rate of the population, we get

T D

Z 1

0

pe
�ıt

�

kx

�

1 �
x

L

�

�

dx

dt

�

dt

D

Z 1

0

kpe
�ıt
x

�

1 �
x

L

�

dt �

Z 1

0

pe
�ıt dx

dt
dt:

Integrate by parts in the last integral above, taking U D pe�ıt and dV D
dx

dt
dt :

T D

Z 1

0

kpe
�ıt
x

�

1 �
x

L

�

dt �

�

pe
�ıt
x

ˇ

ˇ

ˇ

ˇ

1

0

C

Z 1

0

pıe
�ıt
x dt

�

D px.0/C

Z 1

0

pe
�ıt

h

kx

�

1 �
x

L

�

� ıx

i

dt:

To make this expression as large as possible, we should choose the population size x

to maximize the quadratic expression

Q.x/ D kx

�

1 �
x

L

�

� ıx

at as early a time t as possible, and keep the population size constant at that level

thereafter. The maximum occurs where Q0.x/ D k� .2kx=L/� ı D 0, that is, where

x D
L

2
�

ıL

2k
D .k � ı/

L

2k
:

The maximum present value of the fishery is realized if the population level x is held

at this value. Note that this population level is smaller than the optimal level L=2 we

obtained by ignoring the discount rate. The higher the discount rate ı, the smaller

will be the income-maximizing population level. More unfortunately, if ı � k, the

model predicts greatest income from fishing the species to extinction immediately!

(See Figure 7.51.)
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Figure 7.51 The greater the discount rate

ı, the smaller the population size x that

will maximize the present value of future

income from harvesting. If ı � k; the

model predicts fishing the species to

extinction

y

x

L=2

x D .k � ı/L=.2k/ L

y D kx

�

1 �
x

L

�

slope ı

extinction

Of course, this model fails to take into consideration other factors that may affect

the fishing strategy, such as the increased cost of harvesting when the population level

is small and the effect of competition among various parts of the fishing industry.

Nevertheless, it does explain the regrettable fact that, under some circumstances, an

industry based on a renewable resource can find it in its best interest to destroy the

resource. This is especially likely to happen when the natural growth rate k of the

resource is low, as it is for the case of whales and most trees. There is good reason not

to allow economics alone to dictate the management of the resource.

E X E R C I S E S 7.7

1. (Cost of production) The marginal cost of production in a

coal mine is $6� 2 � 10�3x C 6 � 10�6x2 per ton after the

first x tons are produced each day. In addition, there is a fixed

cost of $4,000 per day to open the mine. Find the total cost of

production on a day when 1,000 tons are produced.

2. (Total sales) The sales of a new computer chip are modelled

by s.t/ D te�t=10, where s.t/ is the number of thousands of

chips sold per week, t weeks after the chip was introduced to

the market. How many chips were sold in the first year?

3. (Internet connection rates) An internet service provider

charges clients at a continuously decreasing marginal rate of

$4=.1C
p

t / per hour when the client has already used

t hours during a month. How much will be billed to a client

who uses x hours in a month? (x need not be an integer.)

4. (Total revenue from declining sales) The price per kilogram

of maple syrup in a store rises at a constant rate from $10 at

the beginning of the year to $15 at the end of the year. As the

price rises, the quantity sold decreases; the sales rate is

400=.1C 0:1t/ kg/year at time t years, .0 � t � 1/. What

total revenue does the store obtain from sales of the syrup

during the year?

(Stream of payment problems) Find the present value of a

continuous stream of payments of $1,000 per year for the periods

and discount rates given in Exercises 5–10. In each case the

discount rate is compounded continuously.

5. 10 years at a discount rate of 2%

6. 10 years at a discount rate of 5%

7. 10 years beginning 2 years from now at a discount rate of 8%

8. 25 years beginning 10 years from now at a discount rate

of 5%

9. For all future time at a discount rate of 2%

10. Beginning in 10 years and continuing forever after at a

discount rate of 5%

11. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at $100 per year. The discount

rate is 5%.

12. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at 10% per year. The discount rate

is 5%.

13. Money flows continuously into an account at a rate of $5,000

per year. If the account earns interest at a rate of 5%

compounded continuously, how much will be in the account

after 10 years?

C 14. Money flows continuously into an account beginning at a rate

of $5,000 per year and increasing at 10% per year. Interest

causes the account to grow at a real rate of 6% (so that $1

grows to $1:06t in t years). How long will it take for the

balance in the account to reach $1,000,000?

15. If the discount rate ı varies with time, say ı D ı.t/, show that

the present value of a payment of $P due t years from now is

$Pe��.t/, where

�.t/ D

Z t

0

ı.�/ d�:

What is the value of a stream of payments due at a rate $P.t/

at time t , from t D 0 to t D T ?

16.A (Discount rates and population models) Suppose that the

growth rate of a population is a function of the population

size: dx=dt D F.x/. (For the logistic model,

F.x/ D kx.1 � .x=L//.) If the population is harvested at rate

h.t/ at time t , then x.t/ satisfies

dx

dt
D F.x/ � h.t/:
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Here, x D x.t/ is the size (or biomass) of the population at time t , k is the natural

rate at which the population would grow if its food supply were unlimited, and L is the

natural limiting size of the population—the carrying capacity of its environment. Such

models are thought to apply, for example, to the Antarctic blue whale and to several

species of fish and trees. If the resource is harvested (say, the fish are caught) at a rate

h.t/ units per year at time t , then the population grows at a slower rate:

dx

dt
D kx

�

1 �
x

L

�

� h.t/: .�/

In particular, if we harvest the population at its current rate of growth,

h.t/ D kx

�

1�
x

L

�

;

then dx=dt D 0, and the population will maintain a constant size. Assume that each

unit of harvest produces an income of $p for the fishing industry. The total annual

income from harvesting the resource at its current rate of growth will be

T D ph.t/ D pkx

�

1 �
x

L

�

:

Considered as a function of x, this total annual income is quadratic and has a maximum

value when x D L=2, the value that ensures dT=dx D 0. The industry can maintain

a stable maximum annual income by ensuring that the population level remains at half

the maximal size of the population with no harvesting.

The analysis above, however, does not take into account the discounted value of fu-

ture harvests. If the discount rate is ı, compounded continuously, then the present value

of the income $ph.t/ dt due between t and t C dt years from now is e�ıt
ph.t/ dt .

The total present value of all income from the fishery in future years is

T D

Z 1

0

e
�ıt
ph.t/ dt:

What fishing strategy will maximize T ? If we substitute for h.t/ from equation .�/

governing the growth rate of the population, we get

T D

Z 1

0

pe
�ıt

�

kx

�

1 �
x

L

�

�

dx

dt

�

dt

D

Z 1

0

kpe
�ıt
x

�

1 �
x

L

�

dt �

Z 1

0

pe
�ıt dx

dt
dt:

Integrate by parts in the last integral above, taking U D pe�ıt and dV D
dx

dt
dt :

T D

Z 1

0

kpe
�ıt
x

�

1 �
x

L

�

dt �

�

pe
�ıt
x

ˇ

ˇ

ˇ

ˇ

1

0

C

Z 1

0

pıe
�ıt
x dt

�

D px.0/C

Z 1

0

pe
�ıt

h

kx

�

1 �
x

L

�

� ıx

i

dt:

To make this expression as large as possible, we should choose the population size x

to maximize the quadratic expression

Q.x/ D kx

�

1 �
x

L

�

� ıx

at as early a time t as possible, and keep the population size constant at that level

thereafter. The maximum occurs where Q0.x/ D k� .2kx=L/� ı D 0, that is, where

x D
L

2
�

ıL

2k
D .k � ı/

L

2k
:

The maximum present value of the fishery is realized if the population level x is held

at this value. Note that this population level is smaller than the optimal level L=2 we

obtained by ignoring the discount rate. The higher the discount rate ı, the smaller

will be the income-maximizing population level. More unfortunately, if ı � k, the

model predicts greatest income from fishing the species to extinction immediately!

(See Figure 7.51.)
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Figure 7.51 The greater the discount rate

ı, the smaller the population size x that

will maximize the present value of future

income from harvesting. If ı � k; the

model predicts fishing the species to

extinction

y

x

L=2

x D .k � ı/L=.2k/ L

y D kx

�

1 �
x

L

�

slope ı

extinction

Of course, this model fails to take into consideration other factors that may affect

the fishing strategy, such as the increased cost of harvesting when the population level

is small and the effect of competition among various parts of the fishing industry.

Nevertheless, it does explain the regrettable fact that, under some circumstances, an

industry based on a renewable resource can find it in its best interest to destroy the

resource. This is especially likely to happen when the natural growth rate k of the

resource is low, as it is for the case of whales and most trees. There is good reason not

to allow economics alone to dictate the management of the resource.

E X E R C I S E S 7.7

1. (Cost of production) The marginal cost of production in a

coal mine is $6� 2 � 10�3x C 6 � 10�6x2 per ton after the

first x tons are produced each day. In addition, there is a fixed

cost of $4,000 per day to open the mine. Find the total cost of

production on a day when 1,000 tons are produced.

2. (Total sales) The sales of a new computer chip are modelled

by s.t/ D te�t=10, where s.t/ is the number of thousands of

chips sold per week, t weeks after the chip was introduced to

the market. How many chips were sold in the first year?

3. (Internet connection rates) An internet service provider

charges clients at a continuously decreasing marginal rate of

$4=.1C
p

t / per hour when the client has already used

t hours during a month. How much will be billed to a client

who uses x hours in a month? (x need not be an integer.)

4. (Total revenue from declining sales) The price per kilogram

of maple syrup in a store rises at a constant rate from $10 at

the beginning of the year to $15 at the end of the year. As the

price rises, the quantity sold decreases; the sales rate is

400=.1C 0:1t/ kg/year at time t years, .0 � t � 1/. What

total revenue does the store obtain from sales of the syrup

during the year?

(Stream of payment problems) Find the present value of a

continuous stream of payments of $1,000 per year for the periods

and discount rates given in Exercises 5–10. In each case the

discount rate is compounded continuously.

5. 10 years at a discount rate of 2%

6. 10 years at a discount rate of 5%

7. 10 years beginning 2 years from now at a discount rate of 8%

8. 25 years beginning 10 years from now at a discount rate

of 5%

9. For all future time at a discount rate of 2%

10. Beginning in 10 years and continuing forever after at a

discount rate of 5%

11. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at $100 per year. The discount

rate is 5%.

12. Find the present value of a continuous stream of payments

over a 10-year period beginning at a rate of $1,000 per year

now and increasing steadily at 10% per year. The discount rate

is 5%.

13. Money flows continuously into an account at a rate of $5,000

per year. If the account earns interest at a rate of 5%

compounded continuously, how much will be in the account

after 10 years?

C 14. Money flows continuously into an account beginning at a rate

of $5,000 per year and increasing at 10% per year. Interest

causes the account to grow at a real rate of 6% (so that $1

grows to $1:06t in t years). How long will it take for the

balance in the account to reach $1,000,000?

15. If the discount rate ı varies with time, say ı D ı.t/, show that

the present value of a payment of $P due t years from now is

$Pe��.t/, where

�.t/ D

Z t

0

ı.�/ d�:

What is the value of a stream of payments due at a rate $P.t/

at time t , from t D 0 to t D T ?

16.A (Discount rates and population models) Suppose that the

growth rate of a population is a function of the population

size: dx=dt D F.x/. (For the logistic model,

F.x/ D kx.1 � .x=L//.) If the population is harvested at rate

h.t/ at time t , then x.t/ satisfies

dx

dt
D F.x/ � h.t/:
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Show that the value of x that maximizes the present value of

all future harvests satisfies F 0.x/ D ı, where ı is the

(continuously compounded) discount rate. Hint: Mimic the

argument used above for the logistic case.

17. (Managing a fishery) The carrying capacity of a certain lake

is L D 80;000 of a certain species of fish. The natural growth

rate of this species is 12% per year (k D 0:12). Each fish is

worth $6. The discount rate is 5%. What population of fish

should be maintained in the lake to maximize the present

value of all future revenue from harvesting the fish? What is

the annual revenue resulting from maintaining this population

level?

18. (Blue whales) It is speculated that the natural growth rate of

the Antarctic blue whale population is about 2% per year

(k D 0:02) and that the carrying capacity of its habitat is

about L D 150;000. One blue whale is worth, on average,

$10,000. Assuming that the blue whale population satisfies a

logistic model, and using the data above, find the following:

(a) The maximum sustainable annual harvest of blue whales.

(b) The annual revenue resulting from the maximum annual

sustainable harvest.

(c) The annual interest generated if the whale population

(assumed to be at the level L=2 supporting the maximum

sustainable harvest) is exterminated and the proceeds

invested at 2%. (d) at 5%.

(e) The total present value of all future revenue if the

population is maintained at the level L=2 and the discount

rate is 5%.

19.I The model developed above does not allow for the costs of

harvesting. Try to devise a way to alter the model to take this

into account. Typically, the cost of catching a fish goes up as

the number of fish goes down.

7.8 Probability

Probability theory is a very important field of application of calculus. This subject

cannot, of course, be developed thoroughly here—an adequate presentation requires

one or more whole courses—but we can give a brief introduction that suggests some

of the ways sums and integrals are used in probability theory.

In the context of probability theory the term experiment is used to denote a pro-

cess that can result in different outcomes. A particular outcome is also called a real-

ization. The set of all possible outcomes is called the sample space for the experiment.

For example, the process might be the tossing of a coin for which we could have three

possible outcomes: H (the coin lands horizontal with “heads” showing on top), T (the

coin lands horizontal with “tails” showing on top), or E (the coin lands and remains

standing on its edge). Of course, outcome E is not very likely unless the coin is quite

thick, but it can happen. So our sample space is S D fH;T;Eg. Suppose we were

to toss the coin a great many times, and observe that the outcomes H and T each oc-

cur on 49% of the tosses while E occurs only 2% of the time. We would say that on

any one toss of the coin the outcomes H and T each have probability 0.49 and E has

probability 0.02.

An event is any subset of the sample space. The probability of an event is a

real number between 0 and 1 that measures the proportion of times the outcome of

the experiment can be expected to belong to that event if the experiment is repeated

many times. If the event is the whole sample space, its occurrence is certain, and its

probability is 1; if the event is the empty set ; D f g, it cannot possibly occur, and its

probability is 0. For the coin-tossing experiment, there are eight possible events; we

record their probabilities as follows:

Pr.;/ D 0;

Pr.fH g/ D 0:49;

Pr.fT g/ D 0:49;

Pr.fEg/ D 0:02;

Pr.fH;T g/ D 0:98;

Pr.fH;Eg/ D 0:51;

Pr.fT;Eg/ D 0:51;

Pr.S/ D 1:

Given any two events A and B (subsets of sample space S), their intersection

A \ B consists of those outcomes belonging to both A and B; it is sometimes called

the event “A and B .” Two events are disjoint if A \ B D ;; no outcome can belong

to two disjoint events. For instance, an event A and its complement, Ac , consisting of

all outcomes in S that don’t belong to A, are disjoint. The union of two events A and

B (also called the event “A or B”) consists of all outcomes that belong to at least one

of A and B . Note that A [Ac
D S .
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We summarize the basic rules governing probability as follows: if S is a sample

space, ; is the empty subset of S , and A and B are any events, then

(a) 0 � Pr.A/ � 1;

(b) Pr.;/ D 0 and Pr.S/ D 1;

(c) Pr.Ac
/ D 1 � Pr.A/;

(d) Pr.A[ B/ D Pr.A/C Pr.B/ � Pr.A \ B/:

Note that just adding Pr.A/ C Pr.B/ would count outcomes in A \ B twice. As

an example, in our coin-tossing experiment if A D fH;T g and B D fH;Eg, then

Ac
D fEg, A[ B D fH;T;Eg D S , and A\ B D fH g. We have

Pr.Ac
/ D Pr.fEg/ D 0:02 D 1 � 0:98 D 1 � Pr.fH;T g/ D 1 � Pr.A/

Pr.A [ B/ D Pr.S/ D 1 D 0:51C 0:51 � 0:02 D Pr.A/C Pr.B/ � Pr.A \ B/:

Remark The generality of these rules of probability can be misleading. Probability

only has meaning in terms of a given sample space or measure. In popular culture

probability is sometimes cited in the absence of a sample space at all. Probability

theory also has infamous paradoxes and jokes that arise from attempting to compute

probabilities across more than one sample space or computing them inadvertently from

a different sample space than a user had in mind. Misunderstandings do arise in an

overlooked shift in a question about a probability, implying an unnoticed change in the

sample space, or lack of precision about what the sample space actually is. Infamous

disputes about the “correct” probability have arisen as a result. These are beyond the

scope of this section.

Discrete Random Variables
A random variable is a function defined on a sample space. We will denote random

variables by using uppercase letters such asX and Y: If the sample space contains only

discrete outcomes (like the sample space for the coin-tossing experiment), a random

variable on it will have only discrete values and will be called a discrete random

variable. If, on the other hand, the sample space contains all possible measurements

of, say, heights of trees, then a random variable equal to that measurement can itself

take on a continuum of real values and will be called a continuous random variable.

We will study both types in this section.

Most discrete random variables have only finitely many values, but some can

have infinitely many values if, say, the sample space consisted of the positive integers

f1; 2; 3; : : :g. A discrete random variable X has an associated probability function

f defined on the range of X by f .x/ D Pr.X D x/ for each possible value x of X .

Typically, f is represented by a bar graph; the sum of the heights of all the bars must

be 1,

X

x

f .x/ D

X

x

Pr.X D x/ D 1;

since it is certain that the experiment must produce an outcome, and therefore a value

of X .

E X A M P L E 1
A single fair die is rolled so that it will show one of the numbers

1 to 6 on top when it stops. If X denotes the number showing on

any roll, then X is a discrete random variable with 6 possible values. Since the die is

fair, no one value of X is any more likely than any other, so the probability that the

number showing is n must be 1/6 for each possible value of n. If f is the probability

function of X , then

f .n/ D Pr.X D n/ D
1

6
for each n in f1; 2; 3; 4; 5; 6g:

9780134154367_Calculus   456 05/12/16   3:30 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 436 October 15, 2016

436 CHAPTER 7 Applications of Integration

Show that the value of x that maximizes the present value of

all future harvests satisfies F 0.x/ D ı, where ı is the

(continuously compounded) discount rate. Hint: Mimic the

argument used above for the logistic case.

17. (Managing a fishery) The carrying capacity of a certain lake

is L D 80;000 of a certain species of fish. The natural growth

rate of this species is 12% per year (k D 0:12). Each fish is

worth $6. The discount rate is 5%. What population of fish

should be maintained in the lake to maximize the present

value of all future revenue from harvesting the fish? What is

the annual revenue resulting from maintaining this population

level?

18. (Blue whales) It is speculated that the natural growth rate of

the Antarctic blue whale population is about 2% per year

(k D 0:02) and that the carrying capacity of its habitat is

about L D 150;000. One blue whale is worth, on average,

$10,000. Assuming that the blue whale population satisfies a

logistic model, and using the data above, find the following:

(a) The maximum sustainable annual harvest of blue whales.

(b) The annual revenue resulting from the maximum annual

sustainable harvest.

(c) The annual interest generated if the whale population

(assumed to be at the level L=2 supporting the maximum

sustainable harvest) is exterminated and the proceeds

invested at 2%. (d) at 5%.

(e) The total present value of all future revenue if the

population is maintained at the level L=2 and the discount

rate is 5%.

19.I The model developed above does not allow for the costs of

harvesting. Try to devise a way to alter the model to take this

into account. Typically, the cost of catching a fish goes up as

the number of fish goes down.

7.8 Probability

Probability theory is a very important field of application of calculus. This subject

cannot, of course, be developed thoroughly here—an adequate presentation requires

one or more whole courses—but we can give a brief introduction that suggests some

of the ways sums and integrals are used in probability theory.

In the context of probability theory the term experiment is used to denote a pro-

cess that can result in different outcomes. A particular outcome is also called a real-

ization. The set of all possible outcomes is called the sample space for the experiment.

For example, the process might be the tossing of a coin for which we could have three

possible outcomes: H (the coin lands horizontal with “heads” showing on top), T (the

coin lands horizontal with “tails” showing on top), or E (the coin lands and remains

standing on its edge). Of course, outcome E is not very likely unless the coin is quite

thick, but it can happen. So our sample space is S D fH;T;Eg. Suppose we were

to toss the coin a great many times, and observe that the outcomes H and T each oc-

cur on 49% of the tosses while E occurs only 2% of the time. We would say that on

any one toss of the coin the outcomes H and T each have probability 0.49 and E has

probability 0.02.

An event is any subset of the sample space. The probability of an event is a

real number between 0 and 1 that measures the proportion of times the outcome of

the experiment can be expected to belong to that event if the experiment is repeated

many times. If the event is the whole sample space, its occurrence is certain, and its

probability is 1; if the event is the empty set ; D f g, it cannot possibly occur, and its

probability is 0. For the coin-tossing experiment, there are eight possible events; we

record their probabilities as follows:

Pr.;/ D 0;

Pr.fH g/ D 0:49;

Pr.fT g/ D 0:49;

Pr.fEg/ D 0:02;

Pr.fH;T g/ D 0:98;

Pr.fH;Eg/ D 0:51;

Pr.fT;Eg/ D 0:51;

Pr.S/ D 1:

Given any two events A and B (subsets of sample space S), their intersection

A \ B consists of those outcomes belonging to both A and B; it is sometimes called

the event “A and B .” Two events are disjoint if A \ B D ;; no outcome can belong

to two disjoint events. For instance, an event A and its complement, Ac , consisting of

all outcomes in S that don’t belong to A, are disjoint. The union of two events A and

B (also called the event “A or B”) consists of all outcomes that belong to at least one

of A and B . Note that A [Ac
D S .

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 437 October 15, 2016

SECTION 7.8: Probability 437

We summarize the basic rules governing probability as follows: if S is a sample

space, ; is the empty subset of S , and A and B are any events, then

(a) 0 � Pr.A/ � 1;

(b) Pr.;/ D 0 and Pr.S/ D 1;

(c) Pr.Ac
/ D 1 � Pr.A/;

(d) Pr.A[ B/ D Pr.A/C Pr.B/ � Pr.A \ B/:

Note that just adding Pr.A/ C Pr.B/ would count outcomes in A \ B twice. As

an example, in our coin-tossing experiment if A D fH;T g and B D fH;Eg, then

Ac
D fEg, A[ B D fH;T;Eg D S , and A\ B D fH g. We have

Pr.Ac
/ D Pr.fEg/ D 0:02 D 1 � 0:98 D 1 � Pr.fH;T g/ D 1 � Pr.A/

Pr.A [ B/ D Pr.S/ D 1 D 0:51C 0:51 � 0:02 D Pr.A/C Pr.B/ � Pr.A \ B/:

Remark The generality of these rules of probability can be misleading. Probability

only has meaning in terms of a given sample space or measure. In popular culture

probability is sometimes cited in the absence of a sample space at all. Probability

theory also has infamous paradoxes and jokes that arise from attempting to compute

probabilities across more than one sample space or computing them inadvertently from

a different sample space than a user had in mind. Misunderstandings do arise in an

overlooked shift in a question about a probability, implying an unnoticed change in the

sample space, or lack of precision about what the sample space actually is. Infamous

disputes about the “correct” probability have arisen as a result. These are beyond the

scope of this section.

Discrete Random Variables
A random variable is a function defined on a sample space. We will denote random

variables by using uppercase letters such asX and Y: If the sample space contains only

discrete outcomes (like the sample space for the coin-tossing experiment), a random

variable on it will have only discrete values and will be called a discrete random

variable. If, on the other hand, the sample space contains all possible measurements

of, say, heights of trees, then a random variable equal to that measurement can itself

take on a continuum of real values and will be called a continuous random variable.

We will study both types in this section.

Most discrete random variables have only finitely many values, but some can

have infinitely many values if, say, the sample space consisted of the positive integers

f1; 2; 3; : : :g. A discrete random variable X has an associated probability function

f defined on the range of X by f .x/ D Pr.X D x/ for each possible value x of X .

Typically, f is represented by a bar graph; the sum of the heights of all the bars must

be 1,

X

x

f .x/ D

X

x

Pr.X D x/ D 1;

since it is certain that the experiment must produce an outcome, and therefore a value

of X .

E X A M P L E 1
A single fair die is rolled so that it will show one of the numbers

1 to 6 on top when it stops. If X denotes the number showing on

any roll, then X is a discrete random variable with 6 possible values. Since the die is

fair, no one value of X is any more likely than any other, so the probability that the

number showing is n must be 1/6 for each possible value of n. If f is the probability

function of X , then

f .n/ D Pr.X D n/ D
1

6
for each n in f1; 2; 3; 4; 5; 6g:
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The discrete random variable X is therefore said to be distributed uniformly. All the

bars in the graph of its probability function f have the same height. (See Figure 7.52.)

Note that

n1 2 3 4 5 6

1
6

f .n/ D Pr.X D n/

Figure 7.52 The probability function for

a single rolled die

6
X

nD1

Pr.X D n/ D 1;

reflecting the fact that the rolled die must certainly give one of the six possible out-

comes. The probability that a roll will produce a value from 1 to 4 is

Pr.1 � X � 4/ D

4
X

nD1

Pr.X D n/ D
1

6
C

1

6
C

1

6
C

1

6
D

2

3
:

E X A M P L E 2
What is the sample space for the numbers showing on top when

two fair dice are rolled? What is the probability that a 4 and a 2

will be showing? Find the probability function for the random variable X that gives

the sum of the two numbers showing on the dice. What is the probability that that sum

is less than 10?

Solution The sample space consists of all pairs of integers .m; n/ satisfying 1 �

m � 6 and 1 � n � 6. There are 36 such pairs, so the probability of any one of them

is 1/36. Two of the pairs, .4; 2/ and .2; 4/, correspond to a 4 and a 2 showing, so the

probability of that event is .1=36/C .1=36/ D 1=18. The random variable X defined

by X.m; n/ D mC n has 11 possible values, the integers from 2 to 12 inclusive. The

following table lists the pairs that produce each value k of X and the probability f .k/

of that value, that is, the value of the probability function at k:

Table 2. Probability function for the sum of two dice

k D mC n outcomes for which X D k f .k/ D Pr.X D k/

2 .1; 1/ 1=36

3 .1; 2/; .2; 1/ 2=36 D 1=18

4 .1; 3/; .2; 2/; .3; 1/ 3=36 D 1=12

5 .1; 4/; .2; 3/; .3; 2/; .4; 1/ 4=36 D 1=9

6 .1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/ 5=36

7 .1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/ 6=36 D 1=6

8 .2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/ 5=36

9 .3; 6/; .4; 5/; .5; 4/; .6; 3/ 4=36 D 1=9

10 .4; 6/; .5; 5/; .6; 4/ 3=36 D 1=12

11 .5; 6/; .6; 5/ 2=36 D 1=18

12 .6; 6/ 1=36

The bar graph of the probability function f is shown in Figure 7.53. We have

k1 2 3 4 5 6 7 8 9 10 11 12

1
36

2
36

3
36

4
36

5
36

6
36

f .k/ D Pr.X D k/

Figure 7.53 The probability function for

the sum of two dice

Pr.X < 10/ D 1 � Pr.X � 10/ D 1 �

�

1

12
C

1

18
C

1

36

�

D

5

6
:

Expectation, Mean, Variance, and Standard Deviation
Consider a simple gambling game in which the player pays the house C dollars for the

privilege of rolling a single die and in which he winsX dollars, whereX is the number

showing on top of the rolled die. In each game the possible winnings are 1, 2, 3, 4, 5,
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or 6 dollars, each with probability 1/6. In n games the player can expect to win about

n=6 C 2n=6 C 3n=6 C 4n=6 C 5n=6 C 6n=6 D 21n=6 D 7n=2 dollars, so that his

expected average winnings per game are 7/2 dollars, that is, $3.50. If C > 3:5, the

player can expect, on average, to lose money. The amount 3.5 is called the expectation,

or mean, of the discrete random variable X . The mean is usually denoted by �, the

Greek letter “mu” (pronounced “mew”).

D E F I N I T I O N

2

Mean or expectation

If X is a discrete random variable with range of values R and probability

function f; then the mean (denoted �), or expectation ofX (denoted E.X/),

is

� D E.X/ D

X

x2R

x f .x/:

Also, the expectation of any function g.X/ of the random variable X is

E.g.X// D

X

x2R

g.x/ f .x/:

Note that in this usageE.X/ does not define a function ofX but a constant (parameter)

associated with the random variableX . Note also that if f .x/were a mass density such

as that studied in Section 7.4, then � would be the moment of the mass about 0 and,

since the total mass would be
P

x2R f .x/ D 1, � would in fact be the centre of mass.

Another parameter used to describe the way probability is distributed for a random

variable is the variable’s standard deviation.

D E F I N I T I O N

3

Variance and standard deviation

The variance of a random variable X with range R and probability function

f is the expectation of the square of the distance of X from its mean �. The

variance is denoted �2 or Var(X).

�
2
D Var.X/ D E

�

.X � �/
2
�

D

X

x2R

.x � �/
2
f .x/:

The standard deviation of X is the square root of the variance and therefore

is denoted �:

The symbol � is the lowercase Greek letter “sigma.” (The symbol † used for sum-

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �

Figure 7.54 A probability function with

mean � D 5 and standard deviation

� D 1:86

mation is an uppercase sigma.) The standard deviation gives a measure of how spread

out the probability distribution of X is. The smaller the standard deviation, the more

the probability is concentrated at values of X close to the mean. Figure 7.54 and

Figure 7.55 illustrate the probability functions of two random variables with sample

space f1; 2; : : : ; 9g, one having small � and one with large �: Note how a significant

fraction of the total probability lies between � � � and �C � in each case. Note also

that the distribution of probability in Figure 7.54 is symmetric, resulting in � D 5, the

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �

Figure 7.55 A probability function with

mean � D 5:38 and standard deviation

� D 3:05

midpoint of the sample space, while the distribution in Figure 7.55 is skewed a bit to

the right, resulting in � > 5.

Since
P

x2R f .x/ D 1, the expression given in the definition of variance can be

rewritten as follows:

�
2
D Var.X/ D

X

x2R

.x
2
� 2�x C �

2
/ f .x/

D

X

x2R

x
2
f .x/� 2�

X

x2R

xf .x/C �
2
X

x2R

f .x/

D

X

x2R

x
2
f .x/� 2�

2
C �

2
D E.X

2
/ � �

2
;
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The discrete random variable X is therefore said to be distributed uniformly. All the

bars in the graph of its probability function f have the same height. (See Figure 7.52.)

Note that

n1 2 3 4 5 6

1
6

f .n/ D Pr.X D n/

Figure 7.52 The probability function for

a single rolled die

6
X

nD1

Pr.X D n/ D 1;

reflecting the fact that the rolled die must certainly give one of the six possible out-

comes. The probability that a roll will produce a value from 1 to 4 is

Pr.1 � X � 4/ D

4
X

nD1

Pr.X D n/ D
1

6
C

1

6
C

1

6
C

1

6
D

2

3
:

E X A M P L E 2
What is the sample space for the numbers showing on top when

two fair dice are rolled? What is the probability that a 4 and a 2

will be showing? Find the probability function for the random variable X that gives

the sum of the two numbers showing on the dice. What is the probability that that sum

is less than 10?

Solution The sample space consists of all pairs of integers .m; n/ satisfying 1 �

m � 6 and 1 � n � 6. There are 36 such pairs, so the probability of any one of them

is 1/36. Two of the pairs, .4; 2/ and .2; 4/, correspond to a 4 and a 2 showing, so the

probability of that event is .1=36/C .1=36/ D 1=18. The random variable X defined

by X.m; n/ D mC n has 11 possible values, the integers from 2 to 12 inclusive. The

following table lists the pairs that produce each value k of X and the probability f .k/

of that value, that is, the value of the probability function at k:

Table 2. Probability function for the sum of two dice

k D mC n outcomes for which X D k f .k/ D Pr.X D k/

2 .1; 1/ 1=36

3 .1; 2/; .2; 1/ 2=36 D 1=18

4 .1; 3/; .2; 2/; .3; 1/ 3=36 D 1=12

5 .1; 4/; .2; 3/; .3; 2/; .4; 1/ 4=36 D 1=9

6 .1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/ 5=36

7 .1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/ 6=36 D 1=6

8 .2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/ 5=36

9 .3; 6/; .4; 5/; .5; 4/; .6; 3/ 4=36 D 1=9

10 .4; 6/; .5; 5/; .6; 4/ 3=36 D 1=12

11 .5; 6/; .6; 5/ 2=36 D 1=18

12 .6; 6/ 1=36

The bar graph of the probability function f is shown in Figure 7.53. We have

k1 2 3 4 5 6 7 8 9 10 11 12

1
36

2
36

3
36

4
36

5
36

6
36

f .k/ D Pr.X D k/

Figure 7.53 The probability function for

the sum of two dice

Pr.X < 10/ D 1 � Pr.X � 10/ D 1 �

�

1

12
C

1

18
C

1

36

�

D

5

6
:

Expectation, Mean, Variance, and Standard Deviation
Consider a simple gambling game in which the player pays the house C dollars for the

privilege of rolling a single die and in which he winsX dollars, whereX is the number

showing on top of the rolled die. In each game the possible winnings are 1, 2, 3, 4, 5,

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 439 October 15, 2016

SECTION 7.8: Probability 439

or 6 dollars, each with probability 1/6. In n games the player can expect to win about

n=6 C 2n=6 C 3n=6 C 4n=6 C 5n=6 C 6n=6 D 21n=6 D 7n=2 dollars, so that his

expected average winnings per game are 7/2 dollars, that is, $3.50. If C > 3:5, the

player can expect, on average, to lose money. The amount 3.5 is called the expectation,

or mean, of the discrete random variable X . The mean is usually denoted by �, the

Greek letter “mu” (pronounced “mew”).

D E F I N I T I O N

2

Mean or expectation

If X is a discrete random variable with range of values R and probability

function f; then the mean (denoted �), or expectation ofX (denoted E.X/),

is

� D E.X/ D

X

x2R

x f .x/:

Also, the expectation of any function g.X/ of the random variable X is

E.g.X// D

X

x2R

g.x/ f .x/:

Note that in this usageE.X/ does not define a function ofX but a constant (parameter)

associated with the random variableX . Note also that if f .x/were a mass density such

as that studied in Section 7.4, then � would be the moment of the mass about 0 and,

since the total mass would be
P

x2R f .x/ D 1, � would in fact be the centre of mass.

Another parameter used to describe the way probability is distributed for a random

variable is the variable’s standard deviation.

D E F I N I T I O N

3

Variance and standard deviation

The variance of a random variable X with range R and probability function

f is the expectation of the square of the distance of X from its mean �. The

variance is denoted �2 or Var(X).

�
2
D Var.X/ D E

�

.X � �/
2
�

D

X

x2R

.x � �/
2
f .x/:

The standard deviation of X is the square root of the variance and therefore

is denoted �:

The symbol � is the lowercase Greek letter “sigma.” (The symbol † used for sum-

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �

Figure 7.54 A probability function with

mean � D 5 and standard deviation

� D 1:86

mation is an uppercase sigma.) The standard deviation gives a measure of how spread

out the probability distribution of X is. The smaller the standard deviation, the more

the probability is concentrated at values of X close to the mean. Figure 7.54 and

Figure 7.55 illustrate the probability functions of two random variables with sample

space f1; 2; : : : ; 9g, one having small � and one with large �: Note how a significant

fraction of the total probability lies between � � � and �C � in each case. Note also

that the distribution of probability in Figure 7.54 is symmetric, resulting in � D 5, the

n1 2 3 4 5 6 7 8 9

:1

:2

:3

:4

:5

� � � � �C �

Figure 7.55 A probability function with

mean � D 5:38 and standard deviation

� D 3:05

midpoint of the sample space, while the distribution in Figure 7.55 is skewed a bit to

the right, resulting in � > 5.

Since
P

x2R f .x/ D 1, the expression given in the definition of variance can be

rewritten as follows:

�
2
D Var.X/ D

X

x2R

.x
2
� 2�x C �

2
/ f .x/

D

X

x2R

x
2
f .x/� 2�

X

x2R

xf .x/C �
2
X

x2R

f .x/

D

X

x2R

x
2
f .x/� 2�

2
C �

2
D E.X

2
/ � �

2
;
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that is,

�
2
D Var.X/ D E.X2

/ � �
2
D E.X

2
/ � .E.X//

2
:

Therefore, the standard deviation of X is given by

� D

p

E.X2/� �2:

E X A M P L E 3
Find the mean of the random variable X of Example 2. Also find

the expectation of X2 and the standard deviation of X .

Solution We have

� D E.X/ D 2 �
1

36
C 3 �

2

36
C 4 �

3

36
C 5 �

4

36
C 6 �

5

36
C 7 �

6

36

C 8 �
5

36
C 9 �

4

36
C 10 �

3

36
C 11 �

2

36
C 12 �

1

36
D 7;

a fact that is fairly obvious from the symmetry of the graph of the probability function

in Figure 7.53. Also,

E.X
2
/ D 2

2
�

1

36
C 3

2
�

2

36
C 4

2
�

3

36
C 5

2
�

4

36
C 6

2
�

5

36

C 7
2
�

6

36
C 8

2
�

5

36
C 9

2
�

4

36
C 10

2
�

3

36

C 11
2
�

2

36
C 12

2
�

1

36
D

1;974

36
� 54:8333:

The variance of X is �2
D E.X

2
/ � �

2
� 54:8333 � 49 D 5:8333, so the standard

deviation of X is � � 2:4152.

Continuous Random Variables
Now we consider an example with a continuous range of possible outcomes.

E X A M P L E 4
Suppose that a needle is dropped at random on a flat table with

a straight line drawn on it. For each drop, let X be the acute an-

gle, measured in degrees, that the needle makes with the line. (See Figure 7.56(a).)

Evidently, X can take any real value in the interval Œ0; 90�; therefore, X is called a

continuous random variable. The probability that X takes on any particular real

value is 0. (There are infinitely many real numbers in Œ0; 90�, and none is more likely

than any other.) However, the probability that X lies in some interval, say Œ10; 20�, is

the same as the probability that it lies in any other interval of the same length. Since

the interval has length 10 and the interval of all possible values of X has length 90,

this probability is

Pr.10 � X � 20/ D
10

90
D

1

9
:

More generally, if 0 � x1 � x2 � 90, then

Pr.x1 � X � x2/ D
1

90
.x2 � x1/:

This situation can be conveniently represented as follows: Let f .x/ be defined on the

interval Œ0; 90�, taking at each point the constant value 1/90:

f .x/ D
1

90
; 0 � x � 90:

The area under the graph of f is 1, and Pr.x1 � X � x2/ is equal to the area under that

part of the graph lying over the interval Œx1; x2�. (See Figure 7.56(b).) The function

f .x/ is called the probability density function for the random variable X . Since

f .x/ is constant on its domain, X is said to be uniformly distributed.
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Figure 7.56

(a) X is the acute angle, measured in

degrees, that the needle makes with

the line

(b) The probability density function f of

the random variable X

X

needle

needle

X

line

y

x

Pr.x1 � X � x2/

x1 x2 90

y D f .x/
1

90

(a) (b)

D E F I N I T I O N

4

Probability density functions

A function defined on an interval Œa; b� is a probability density function for

a continuous random variable X distributed on Œa; b� if, whenever x1 and x2

satisfy a � x1 � x2 � b, we have

Pr.x1 � X � x2/ D

Z x2

x1

f .x/ dx;

which is the area above the interval Œx1; x2� and under the graph of f , pro-

vided f .x/ � 0. In order to be such a probability density function, f must

satisfy two conditions:

Note that this definition of

probability density function

generalizes the probability

function used in the discrete case

if we regard the bar graphs there

as the graphs of step functions

with unit base lengths.

(a) f .x/ � 0 on Œa; b� (probability cannot be negative) and

(b)
R b

a
f .x/ dx D 1 (Pr.a � X � b/ D 1).

These ideas extend to random variables distributed on semi-infinite or infinite intervals,

but the integrals appearing will be improper in those cases. In any event, the role

played by sums in the analysis of discrete random variables is taken over by integrals

for continuous random variables.

In the example of the dropping needle, the probability density function has a hor-

izontal straight line graph, and we termed such a probability distribution uniform. The

uniform probability density function on the interval Œa; b� is

f .x/ D

(

1

b � a
if a � x � b

0 otherwise.

Many other functions are commonly encountered as density functions for continuous

random variables.

E X A M P L E 5
(The exponential distribution) The length of time T that any

particular atom in a radioactive sample survives before decaying

is a random variable taking values in Œ0;1/. It has been observed that the proportion

of atoms that survive to time t becomes small exponentially as t increases; thus,

Pr.T � t/ D Ce�kt
:

Let f be the probability density function for the random variable T: Then
Z 1

t

f .x/ dx D Pr.T � t/ D Ce�kt
:

Differentiating this equation with respect to t (using the Fundamental Theorem of

Calculus), we obtain �f .t/ D �Cke�kt , so f .t/ D Cke�kt . C is determined by the

requirement that
R1

0
f .t/ dt D 1. We have

1 D Ck

Z 1

0

e
�kt

dt D lim
R!1

Ck

Z R

0

e
�kt

dt D �C lim
R!1

.e
�kR
� 1/ D C:

Thus, C D 1 and f .t/ D ke�kt . Note that Pr.T � .ln 2/=k/ D e�k.ln 2/=k
D 1=2,

reflecting the fact that the half-life of such a radioactive sample is .ln 2/=k.
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that is,

�
2
D Var.X/ D E.X2

/ � �
2
D E.X

2
/ � .E.X//

2
:

Therefore, the standard deviation of X is given by

� D

p

E.X2/� �2:

E X A M P L E 3
Find the mean of the random variable X of Example 2. Also find

the expectation of X2 and the standard deviation of X .

Solution We have

� D E.X/ D 2 �
1

36
C 3 �

2

36
C 4 �

3

36
C 5 �

4

36
C 6 �

5

36
C 7 �

6

36

C 8 �
5

36
C 9 �

4

36
C 10 �

3

36
C 11 �

2

36
C 12 �

1

36
D 7;

a fact that is fairly obvious from the symmetry of the graph of the probability function

in Figure 7.53. Also,

E.X
2
/ D 2

2
�

1

36
C 3

2
�

2

36
C 4

2
�

3

36
C 5

2
�

4

36
C 6

2
�

5

36

C 7
2
�

6

36
C 8

2
�

5

36
C 9

2
�

4

36
C 10

2
�

3

36

C 11
2
�

2

36
C 12

2
�

1

36
D

1;974

36
� 54:8333:

The variance of X is �2
D E.X

2
/ � �

2
� 54:8333 � 49 D 5:8333, so the standard

deviation of X is � � 2:4152.

Continuous Random Variables
Now we consider an example with a continuous range of possible outcomes.

E X A M P L E 4
Suppose that a needle is dropped at random on a flat table with

a straight line drawn on it. For each drop, let X be the acute an-

gle, measured in degrees, that the needle makes with the line. (See Figure 7.56(a).)

Evidently, X can take any real value in the interval Œ0; 90�; therefore, X is called a

continuous random variable. The probability that X takes on any particular real

value is 0. (There are infinitely many real numbers in Œ0; 90�, and none is more likely

than any other.) However, the probability that X lies in some interval, say Œ10; 20�, is

the same as the probability that it lies in any other interval of the same length. Since

the interval has length 10 and the interval of all possible values of X has length 90,

this probability is

Pr.10 � X � 20/ D
10

90
D

1

9
:

More generally, if 0 � x1 � x2 � 90, then

Pr.x1 � X � x2/ D
1

90
.x2 � x1/:

This situation can be conveniently represented as follows: Let f .x/ be defined on the

interval Œ0; 90�, taking at each point the constant value 1/90:

f .x/ D
1

90
; 0 � x � 90:

The area under the graph of f is 1, and Pr.x1 � X � x2/ is equal to the area under that

part of the graph lying over the interval Œx1; x2�. (See Figure 7.56(b).) The function

f .x/ is called the probability density function for the random variable X . Since

f .x/ is constant on its domain, X is said to be uniformly distributed.
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Figure 7.56

(a) X is the acute angle, measured in

degrees, that the needle makes with

the line

(b) The probability density function f of

the random variable X

X

needle

needle

X

line

y

x

Pr.x1 � X � x2/

x1 x2 90

y D f .x/
1

90

(a) (b)

D E F I N I T I O N

4

Probability density functions

A function defined on an interval Œa; b� is a probability density function for

a continuous random variable X distributed on Œa; b� if, whenever x1 and x2

satisfy a � x1 � x2 � b, we have

Pr.x1 � X � x2/ D

Z x2

x1

f .x/ dx;

which is the area above the interval Œx1; x2� and under the graph of f , pro-

vided f .x/ � 0. In order to be such a probability density function, f must

satisfy two conditions:

Note that this definition of

probability density function

generalizes the probability

function used in the discrete case

if we regard the bar graphs there

as the graphs of step functions

with unit base lengths.

(a) f .x/ � 0 on Œa; b� (probability cannot be negative) and

(b)
R b

a
f .x/ dx D 1 (Pr.a � X � b/ D 1).

These ideas extend to random variables distributed on semi-infinite or infinite intervals,

but the integrals appearing will be improper in those cases. In any event, the role

played by sums in the analysis of discrete random variables is taken over by integrals

for continuous random variables.

In the example of the dropping needle, the probability density function has a hor-

izontal straight line graph, and we termed such a probability distribution uniform. The

uniform probability density function on the interval Œa; b� is

f .x/ D

(

1

b � a
if a � x � b

0 otherwise.

Many other functions are commonly encountered as density functions for continuous

random variables.

E X A M P L E 5
(The exponential distribution) The length of time T that any

particular atom in a radioactive sample survives before decaying

is a random variable taking values in Œ0;1/. It has been observed that the proportion

of atoms that survive to time t becomes small exponentially as t increases; thus,

Pr.T � t/ D Ce�kt
:

Let f be the probability density function for the random variable T: Then
Z 1

t

f .x/ dx D Pr.T � t/ D Ce�kt
:

Differentiating this equation with respect to t (using the Fundamental Theorem of

Calculus), we obtain �f .t/ D �Cke�kt , so f .t/ D Cke�kt . C is determined by the

requirement that
R1

0
f .t/ dt D 1. We have

1 D Ck

Z 1

0

e
�kt

dt D lim
R!1

Ck

Z R

0

e
�kt

dt D �C lim
R!1

.e
�kR
� 1/ D C:

Thus, C D 1 and f .t/ D ke�kt . Note that Pr.T � .ln 2/=k/ D e�k.ln 2/=k
D 1=2,

reflecting the fact that the half-life of such a radioactive sample is .ln 2/=k.
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E X A M P L E 6
For what value of C is f .x/ D C.1 � x2/ a probability density

function on Œ�1; 1�? If X is a random variable with this density,

what is the probability that X � 1=2?

Solution Observe that f .x/ � 0 on Œ�1; 1� if C � 0. Since
Z 1

�1

f .x/ dx D C

Z 1

�1

.1 � x
2
/ dx D 2C

�

x �
x3

3

�
ˇ

ˇ

ˇ

ˇ

1

0

D

4C

3
;

f .x/ will be a probability density function if C D 3=4. In this case

Pr

�

X �
1

2

�

D

3

4

Z 1=2

�1

.1 � x
2
/ dx D

3

4

�

x �
x3

3

�
ˇ

ˇ

ˇ

ˇ

1=2

�1

D

3

4

�

1

2
�

1

24
� .�1/C

�1

3

�

D

27

32
:

By analogy with the discrete case, we formulate definitions for the mean (or expec-

tation), variance, and standard deviation of a continuous random variable as follows:

D E F I N I T I O N S

5

If X is a continuous random variable on Œa; b� with probability density func-

tion f .x/, the mean �, (or expectation E.X/) of X is

� D E.X/ D

Z b

a

xf .x/ dx:

The expectation of a function g of X is

E
�

g.X/
�

D

Z b

a

g.x/ f .x/ dx:

Similarly, the variance �2 of X is the mean of the squared deviation of X

from its mean:

�
2
D Var.X/ D E..X � �/2/ D

Z b

a

.x � �/
2
f .x/ dx;

and the standard deviation is the square root of the variance.

As was the case for a discrete random variable, it is easily shown that

�
2
D E.X

2
/ � �

2
; � D

p

E.X2/ � �2:

Again the standard deviation gives a measure of how spread out the probability distri-

bution of X is. The smaller the standard deviation, the more concentrated is the area

under the density curve around the mean, and so the smaller is the probability that a

value of X will be far away from the mean. (See Figure 7.57.)

E X A M P L E 7
Find the mean � and the standard deviation � of a random variable

X distributed uniformly on the interval Œa; b�. Find Pr.� � � �

X � �C �/.

Solution The probability density function is f .x/ D 1=.b�a/ on Œa; b�, so the mean

is given by

� D E.X/ D

Z b

a

x

b � a
dx D

1

b � a

x2

2

ˇ

ˇ

ˇ

ˇ

b

a

D

1

2

b2
� a2

b � a
D

b C a

2
:
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Figure 7.57 Densities with large and

small standard deviations

y

x

y

x

large �

small �

Hence, the mean is, as might have been anticipated, the midpoint of Œa; b�. The expec-

tation of X2 is given by

E.X
2
/ D

Z b

a

x2

b � a
dx D

1

b � a

x3

3

ˇ

ˇ

ˇ

ˇ

b

a

D

1

3

b3
� a3

b � a
D

b2
C ab C a2

3
:

Hence, the variance is

�
2
D E.X

2
/ � �

2
D

b2
C ab C a2

3
�

b2
C 2ab C a2

4
D

.b � a/2

12
;

and the standard deviation is

� D
b � a

2
p

3
� 0:29.b � a/:

Finally,

Pr.� � � � X � �C �/ D

Z �C�

���

dx

b � a
D

1

b � a

2.b � a/

2
p

3
D

1
p

3
� 0:577:

E X A M P L E 8
Find the mean � and the standard deviation � of a random variable

X distributed exponentially with density function f .x/ D ke�kx

on the interval Œ0;1/. Find Pr.� � � � X � �C �/.

Solution We use integration by parts to find the mean:

� D E.X/ D k

Z 1

0

xe
�kx

dx

D lim
R!1

k

Z R

0

xe
�kx

dx Let U D x, dV D e�kx dx.

Then dU D dx, V D �e�kx=k.

D lim
R!1

 

�xe
�kx

ˇ

ˇ

ˇ

ˇ

R

0

C

Z R

0

e
�kx

dx

!

D lim
R!1

�

�Re
�kR
�

1

k

�

e
�kR
� 1

�

�

D

1

k
; since k > 0:

Thus, the mean of the exponential distribution is 1=k. This fact can be quite useful in

determining the value of k for an exponentially distributed random variable. A similar

integration by parts enables us to evaluate

E.X
2
/ D k

Z 1

0

x
2
e

�kx
dx D 2

Z 1

0

xe
�kx

dx D
2

k2
;

9780134154367_Calculus   462 05/12/16   3:31 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 442 October 15, 2016

442 CHAPTER 7 Applications of Integration

E X A M P L E 6
For what value of C is f .x/ D C.1 � x2/ a probability density

function on Œ�1; 1�? If X is a random variable with this density,

what is the probability that X � 1=2?

Solution Observe that f .x/ � 0 on Œ�1; 1� if C � 0. Since
Z 1

�1

f .x/ dx D C

Z 1

�1

.1 � x
2
/ dx D 2C

�

x �
x3

3

�
ˇ

ˇ

ˇ

ˇ

1

0

D

4C

3
;

f .x/ will be a probability density function if C D 3=4. In this case

Pr

�

X �
1

2

�

D

3

4

Z 1=2

�1

.1 � x
2
/ dx D

3

4

�

x �
x3

3

�
ˇ

ˇ

ˇ

ˇ

1=2

�1

D

3

4

�

1

2
�

1

24
� .�1/C

�1

3

�

D

27

32
:

By analogy with the discrete case, we formulate definitions for the mean (or expec-

tation), variance, and standard deviation of a continuous random variable as follows:

D E F I N I T I O N S

5

If X is a continuous random variable on Œa; b� with probability density func-

tion f .x/, the mean �, (or expectation E.X/) of X is

� D E.X/ D

Z b

a

xf .x/ dx:

The expectation of a function g of X is

E
�

g.X/
�

D

Z b

a

g.x/ f .x/ dx:

Similarly, the variance �2 of X is the mean of the squared deviation of X

from its mean:

�
2
D Var.X/ D E..X � �/2/ D

Z b

a

.x � �/
2
f .x/ dx;

and the standard deviation is the square root of the variance.

As was the case for a discrete random variable, it is easily shown that

�
2
D E.X

2
/ � �

2
; � D

p

E.X2/ � �2:

Again the standard deviation gives a measure of how spread out the probability distri-

bution of X is. The smaller the standard deviation, the more concentrated is the area

under the density curve around the mean, and so the smaller is the probability that a

value of X will be far away from the mean. (See Figure 7.57.)

E X A M P L E 7
Find the mean � and the standard deviation � of a random variable

X distributed uniformly on the interval Œa; b�. Find Pr.� � � �

X � �C �/.

Solution The probability density function is f .x/ D 1=.b�a/ on Œa; b�, so the mean

is given by

� D E.X/ D

Z b

a

x

b � a
dx D

1

b � a

x2

2

ˇ

ˇ

ˇ

ˇ

b

a

D

1

2

b2
� a2

b � a
D

b C a

2
:
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Figure 7.57 Densities with large and

small standard deviations

y

x
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Hence, the mean is, as might have been anticipated, the midpoint of Œa; b�. The expec-

tation of X2 is given by

E.X
2
/ D

Z b

a

x2

b � a
dx D

1

b � a

x3

3

ˇ

ˇ

ˇ

ˇ

b

a

D

1

3

b3
� a3

b � a
D

b2
C ab C a2

3
:

Hence, the variance is

�
2
D E.X

2
/ � �

2
D

b2
C ab C a2

3
�

b2
C 2ab C a2

4
D

.b � a/2

12
;

and the standard deviation is

� D
b � a

2
p

3
� 0:29.b � a/:

Finally,

Pr.� � � � X � �C �/ D

Z �C�

���

dx

b � a
D

1

b � a

2.b � a/

2
p

3
D

1
p

3
� 0:577:

E X A M P L E 8
Find the mean � and the standard deviation � of a random variable

X distributed exponentially with density function f .x/ D ke�kx

on the interval Œ0;1/. Find Pr.� � � � X � �C �/.

Solution We use integration by parts to find the mean:

� D E.X/ D k

Z 1

0

xe
�kx

dx

D lim
R!1

k

Z R

0

xe
�kx

dx Let U D x, dV D e�kx dx.

Then dU D dx, V D �e�kx=k.

D lim
R!1

 

�xe
�kx

ˇ

ˇ

ˇ

ˇ

R

0

C

Z R

0

e
�kx

dx

!

D lim
R!1

�

�Re
�kR
�

1

k

�

e
�kR
� 1

�

�

D

1

k
; since k > 0:

Thus, the mean of the exponential distribution is 1=k. This fact can be quite useful in

determining the value of k for an exponentially distributed random variable. A similar

integration by parts enables us to evaluate

E.X
2
/ D k

Z 1

0

x
2
e

�kx
dx D 2

Z 1

0

xe
�kx

dx D
2

k2
;
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so the variance of the exponential distribution is

�
2
D E.X

2
/ � �

2
D

1

k2
;

and the standard deviation is equal to the mean

� D � D
1

k
:

Now we have

Pr.� � � � X � �C �/ D Pr.0 � X � 2=k/

D k

Z 2=k

0

e
�kx

dx

D �e
�kx

ˇ

ˇ

ˇ

ˇ

2=k

0

D 1 � e
�2
� 0:86;

which is independent of the value of k. Exponential densities for small and large values

of k are graphed in Figure 7.58.

Figure 7.58 Exponential density

functions

y

x

y

x

y D ke�kx

large k

small k

y D ke�kx

k

k

1
k

1
k

The Normal Distribution
The most important probability distributions are the so-called normal or Gaussian

distributions. Such distributions govern the behaviour of many interesting random

variables, in particular, those associated with random errors in measurements. There

is a family of normal distributions, all related to the particular normal distribution

called the standard normal distribution, which has the following probability density

function:

D E F I N I T I O N

6

The standard normal probability density

f .z/ D
1
p

2�
e

�z2=2
; �1 < z <1:

It is common to use z to denote the random variable in the standard normal distribution;

the other normal distributions are obtained from this one by a change of variable. The

graph of the standard normal density has a pleasant bell shape, as shown in Figure 7.59.

As we have noted previously, the function e�z2
has no elementary antiderivative,

so the improper integral

I D

Z 1

�1
e

�z2=2
dz
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cannot be evaluated using the Fundamental Theorem of Calculus, although it is a con-
y

z

Figure 7.59 The standard normal density

function f .z/ D
1
p

2�
e

�z2=2

vergent improper integral. The integral can be evaluated using techniques of multi-

variable calculus involving double integrals of functions of two variables. (We do so

in Example 4 of Section 14.4.) The value is I D
p

2� , which ensures that the above-

defined standard normal density f .z/ is indeed a probability density function:

Z 1

�1
f .z/ dz D

1
p

2�

Z 1

�1
e

�z2=2
dz D 1:

Since ze�z2=2 is an odd function of z and its integral on .�1;1/ converges, the mean

of the standard normal distribution is 0:

� D E.Z/ D
1
p

2�

Z 1

�1
ze

�z2=2
dz D 0:

We calculate the variance of the standard normal distribution using integration by parts

as follows:

�
2
D E.Z

2
/

D

1
p

2�

Z 1

�1
z

2
e

�z2=2
dz

D

1
p

2�
lim

R!1

Z R

�R

z
2
e

�z2=2
dz Let U D z, dV D ze�z2=2 dz.

Then dU D dz, V D �e�z2=2.

D

1
p

2�
lim

R!1

 

�ze
�z2=2

ˇ

ˇ

ˇ

ˇ

R

�R

C

Z R

�R

e
�z2=2

dz

!

D

1
p

2�
lim

R!1
.�2Re

�R2=2
/C

1
p

2�

Z 1

�1
e

�z2=2
dz

D 0C 1 D 1:

Hence, the standard deviation of the standard normal distribution is 1.

Other normal distributions are obtained from the standard normal distribution by

a change of variable.

D E F I N I T I O N

7

The general normal distribution

A random variable X on .�1;1/ is said to be normally distributed with

mean � and standard deviation � (where � is any real number and � > 0) if

its probability density function f�;� is given in terms of the standard normal

density f by

f�;� .x/ D
1

�
f

�

x � �

�

�

D

1

�
p

2�
e

�.x��/2=.2�2/
:

(See Figure 7.60.) Using the change of variable z D .x � �/=� , dz D dx=� , we can

verify that

Z 1

�1
f�;� .x/ dx D

Z 1

�1
f .z/ dz D 1;

so f�;� .x/ is indeed a probability density function. Using the same change of variable,

we can show that

y

x

y D f�;� .x/

�

Figure 7.60 A general normal density

with mean �

E.X/ D � and E..X � �/
2
/ D �

2
:

Hence, the density f�;� does indeed have mean � and standard deviation �:
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so the variance of the exponential distribution is

�
2
D E.X

2
/ � �

2
D

1

k2
;

and the standard deviation is equal to the mean

� D � D
1

k
:

Now we have

Pr.� � � � X � �C �/ D Pr.0 � X � 2=k/

D k

Z 2=k

0

e
�kx

dx

D �e
�kx

ˇ

ˇ

ˇ

ˇ

2=k

0

D 1 � e
�2
� 0:86;

which is independent of the value of k. Exponential densities for small and large values

of k are graphed in Figure 7.58.

Figure 7.58 Exponential density

functions
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The Normal Distribution
The most important probability distributions are the so-called normal or Gaussian

distributions. Such distributions govern the behaviour of many interesting random

variables, in particular, those associated with random errors in measurements. There

is a family of normal distributions, all related to the particular normal distribution

called the standard normal distribution, which has the following probability density

function:

D E F I N I T I O N

6

The standard normal probability density

f .z/ D
1
p

2�
e

�z2=2
; �1 < z <1:

It is common to use z to denote the random variable in the standard normal distribution;

the other normal distributions are obtained from this one by a change of variable. The

graph of the standard normal density has a pleasant bell shape, as shown in Figure 7.59.

As we have noted previously, the function e�z2
has no elementary antiderivative,

so the improper integral

I D

Z 1

�1
e

�z2=2
dz
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cannot be evaluated using the Fundamental Theorem of Calculus, although it is a con-
y

z

Figure 7.59 The standard normal density

function f .z/ D
1
p

2�
e

�z2=2

vergent improper integral. The integral can be evaluated using techniques of multi-

variable calculus involving double integrals of functions of two variables. (We do so

in Example 4 of Section 14.4.) The value is I D
p

2� , which ensures that the above-

defined standard normal density f .z/ is indeed a probability density function:

Z 1

�1
f .z/ dz D

1
p

2�

Z 1

�1
e

�z2=2
dz D 1:

Since ze�z2=2 is an odd function of z and its integral on .�1;1/ converges, the mean

of the standard normal distribution is 0:

� D E.Z/ D
1
p

2�

Z 1

�1
ze

�z2=2
dz D 0:

We calculate the variance of the standard normal distribution using integration by parts

as follows:

�
2
D E.Z

2
/

D

1
p

2�

Z 1

�1
z

2
e

�z2=2
dz

D

1
p

2�
lim

R!1

Z R

�R

z
2
e

�z2=2
dz Let U D z, dV D ze�z2=2 dz.

Then dU D dz, V D �e�z2=2.

D

1
p

2�
lim

R!1

 

�ze
�z2=2

ˇ

ˇ

ˇ

ˇ

R

�R

C

Z R

�R

e
�z2=2

dz

!

D

1
p

2�
lim

R!1
.�2Re

�R2=2
/C

1
p

2�

Z 1

�1
e

�z2=2
dz

D 0C 1 D 1:

Hence, the standard deviation of the standard normal distribution is 1.

Other normal distributions are obtained from the standard normal distribution by

a change of variable.

D E F I N I T I O N

7

The general normal distribution

A random variable X on .�1;1/ is said to be normally distributed with

mean � and standard deviation � (where � is any real number and � > 0) if

its probability density function f�;� is given in terms of the standard normal

density f by

f�;� .x/ D
1

�
f

�

x � �

�

�

D

1

�
p

2�
e

�.x��/2=.2�2/
:

(See Figure 7.60.) Using the change of variable z D .x � �/=� , dz D dx=� , we can

verify that

Z 1

�1
f�;� .x/ dx D

Z 1

�1
f .z/ dz D 1;

so f�;� .x/ is indeed a probability density function. Using the same change of variable,

we can show that

y

x

y D f�;� .x/

�

Figure 7.60 A general normal density

with mean �

E.X/ D � and E..X � �/
2
/ D �

2
:

Hence, the density f�;� does indeed have mean � and standard deviation �:

9780134154367_Calculus   465 05/12/16   3:31 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 7 – page 446 October 15, 2016

446 CHAPTER 7 Applications of Integration

To find the probability Pr.Z � z/ we compute what is called the cumulative

distribution function of a random variable with standard normal distribution,

F.z/ D
1
p

2�

Z z

�1
e

�x2=2
dx D Pr.Z � z/;

which represents the area under the standard normal density function from �1 up to

z, as shown in Figure 7.61. According to the definition of the error function in Section

6.4, an antiderivative of e�z2=2 is
p

2=� erf.z=
p

2/. Thus,

F.z/ D
1

2

�

erf

�

z
p

2

�

C 1

�

:

Figure 7.61 The cumulative distribution

function F.z/ for the standard normal

distribution is the area under the standard

normal density function from �1 to z

y

x

1

y D F.z/

y

z

y D
1
p

2�
e

�x2=2

F.z/

z

For convenience in the following examples and exercises, we include an abbreviated

lookup table for this expression. Alternatively, F.z/ is easily defined in Maple to cal-

culate to any desired number of decimal places, say 10, using the known error function:

> F := x -> (1/2)*(erf(z/sqrt(2)) + 1);

which can then be used to calculate values of F: See the following examples.

Table 3. Values of the standard normal distribution function F.z/ (rounded to 3 decimal places)

z 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

�3:0 0:001 0:001 0:001 0:000 0:000 0:000 0:000 0:000 0:000 0:000

�2:0 0:023 0:018 0:014 0:011 0:008 0:006 0:005 0:003 0:003 0:002

�1:0 0:159 0:136 0:115 0:097 0:081 0:067 0:055 0:045 0:036 0:029

�0:0 0:500 0:460 0:421 0:382 0:345 0:309 0:274 0:242 0:212 0:184

0:0 0:500 0:540 0:579 0:618 0:655 0:691 0:726 0:758 0:788 0:816

1:0 0:841 0:864 0:885 0:903 0:919 0:933 0:945 0:955 0:964 0:971

2:0 0:977 0:982 0:986 0:989 0:992 0:994 0:995 0:997 0:997 0:998

3:0 0:999 0:999 0:999 1:000 1:000 1:000 1:000 1:000 1:000 1:000

E X A M P L E 9
If Z is a standard normal random variable, find

(a) Pr.�1:2 � Z � 2:0/, and (b) Pr.Z � 1:5/, using the table to

three decimal places or using Maple to 10 decimal places.

Solution Using values from the table, we obtain

Pr.�1:2 � Z � 2:0/ D Pr.Z � 2:0/ � Pr.Z < �1:2/

D F.2:0/ � F.�1:2/ � 0:977 � 0:115

D 0:862

Pr.Z � 1:5/ D 1 � Pr.Z < 1:5/

D 1 � F.1:5/ � 1 � 0:933 D 0:067:
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After making the Maple definition shown above, we calculate Pr.�1:2 � Z � 2:0/ to

10 decimal places using

> evalf(F(2) - F(-1.2), 10)

0:8621801977

and for Pr.Z � 1:5/

> evalf(1 -(F(1.5), 10)

0:0668072012

E X A M P L E 10
A certain random variable X is distributed normally with mean

2 and standard deviation 0.4. Find (a) Pr.1:8 � X � 2:4/, and

(b) Pr.X > 2:4/, using the table to three decimal places or using Maple to 10 decimal

places.

Solution Since X is distributed normally with mean 2 and standard deviation 0.4,

Z D .X � 2/=0:4 is distributed according to the standard normal distribution (with

mean 0 and standard deviation 1). Accordingly,

Pr.1:8 � X � 2:4/ D Pr.�0:5 � Z � 1/

D F.1/ � F.�0:5/ � 0:841 � 0:309 D 0:532;

Pr.X > 2:4/ D Pr.Z > 1/ D 1 � Pr.Z � 1/

D 1 � F.1/ � 1� 0:841 D 0:159:

Alternatively, using Maple with F defined as above, Pr.1:8 � X � 2:4/ is

> evalf(F(1) - F(-0.5), 10)

0:5328072072

For Pr.X > 2:4/

> evalf(1 - F(1), 10)

0:1586552540

E Heavy Tails
With continuous random variables over an infinite domain, complications of improper

integrals arise for certain established probability density functions that do not satisfy

the conditions needed for the normal distribution to hold. For an important class of

these functions the integrals for the mean or variance do not exist. For example,

a common nonnormal probability density function arising in physics is the Cauchy

distribution:

D E F I N I T I O N

8

The Cauchy probability density

C.x/ D
1

�



.x � �/2 C 2
�1 < x <1:

Here the constants � and  play roles similar to those of the mean and standard devia-

tion in the normal distribution. The graph of C.x/ is symmetric about the line x D �,

and  is a measure of the width of the single peak. However, � is not really a mean and

 is certainly not a standard deviation, as neither
R1

�1 xC.x/ dx nor
R1

�1 x
2
C.x/ dx

is a convergent improper integral. The Cauchy density function is known in spectro-

scopy as the Lorentz profile for spectral lines, while in nuclear physics it is known as

the probability density function of the Breit-Wigner distribution.
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To find the probability Pr.Z � z/ we compute what is called the cumulative

distribution function of a random variable with standard normal distribution,

F.z/ D
1
p

2�

Z z

�1
e

�x2=2
dx D Pr.Z � z/;

which represents the area under the standard normal density function from �1 up to

z, as shown in Figure 7.61. According to the definition of the error function in Section

6.4, an antiderivative of e�z2=2 is
p

2=� erf.z=
p

2/. Thus,

F.z/ D
1

2

�

erf

�

z
p

2

�

C 1

�

:

Figure 7.61 The cumulative distribution

function F.z/ for the standard normal

distribution is the area under the standard

normal density function from �1 to z
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For convenience in the following examples and exercises, we include an abbreviated

lookup table for this expression. Alternatively, F.z/ is easily defined in Maple to cal-

culate to any desired number of decimal places, say 10, using the known error function:

> F := x -> (1/2)*(erf(z/sqrt(2)) + 1);

which can then be used to calculate values of F: See the following examples.

Table 3. Values of the standard normal distribution function F.z/ (rounded to 3 decimal places)

z 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

�3:0 0:001 0:001 0:001 0:000 0:000 0:000 0:000 0:000 0:000 0:000

�2:0 0:023 0:018 0:014 0:011 0:008 0:006 0:005 0:003 0:003 0:002

�1:0 0:159 0:136 0:115 0:097 0:081 0:067 0:055 0:045 0:036 0:029

�0:0 0:500 0:460 0:421 0:382 0:345 0:309 0:274 0:242 0:212 0:184

0:0 0:500 0:540 0:579 0:618 0:655 0:691 0:726 0:758 0:788 0:816

1:0 0:841 0:864 0:885 0:903 0:919 0:933 0:945 0:955 0:964 0:971

2:0 0:977 0:982 0:986 0:989 0:992 0:994 0:995 0:997 0:997 0:998

3:0 0:999 0:999 0:999 1:000 1:000 1:000 1:000 1:000 1:000 1:000

E X A M P L E 9
If Z is a standard normal random variable, find

(a) Pr.�1:2 � Z � 2:0/, and (b) Pr.Z � 1:5/, using the table to

three decimal places or using Maple to 10 decimal places.

Solution Using values from the table, we obtain

Pr.�1:2 � Z � 2:0/ D Pr.Z � 2:0/ � Pr.Z < �1:2/

D F.2:0/ � F.�1:2/ � 0:977 � 0:115

D 0:862

Pr.Z � 1:5/ D 1 � Pr.Z < 1:5/

D 1 � F.1:5/ � 1 � 0:933 D 0:067:
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After making the Maple definition shown above, we calculate Pr.�1:2 � Z � 2:0/ to

10 decimal places using

> evalf(F(2) - F(-1.2), 10)

0:8621801977

and for Pr.Z � 1:5/

> evalf(1 -(F(1.5), 10)

0:0668072012

E X A M P L E 10
A certain random variable X is distributed normally with mean

2 and standard deviation 0.4. Find (a) Pr.1:8 � X � 2:4/, and

(b) Pr.X > 2:4/, using the table to three decimal places or using Maple to 10 decimal

places.

Solution Since X is distributed normally with mean 2 and standard deviation 0.4,

Z D .X � 2/=0:4 is distributed according to the standard normal distribution (with

mean 0 and standard deviation 1). Accordingly,

Pr.1:8 � X � 2:4/ D Pr.�0:5 � Z � 1/

D F.1/ � F.�0:5/ � 0:841 � 0:309 D 0:532;

Pr.X > 2:4/ D Pr.Z > 1/ D 1 � Pr.Z � 1/

D 1 � F.1/ � 1� 0:841 D 0:159:

Alternatively, using Maple with F defined as above, Pr.1:8 � X � 2:4/ is

> evalf(F(1) - F(-0.5), 10)

0:5328072072

For Pr.X > 2:4/

> evalf(1 - F(1), 10)

0:1586552540

E Heavy Tails
With continuous random variables over an infinite domain, complications of improper

integrals arise for certain established probability density functions that do not satisfy

the conditions needed for the normal distribution to hold. For an important class of

these functions the integrals for the mean or variance do not exist. For example,

a common nonnormal probability density function arising in physics is the Cauchy

distribution:

D E F I N I T I O N

8

The Cauchy probability density

C.x/ D
1

�



.x � �/2 C 2
�1 < x <1:

Here the constants � and  play roles similar to those of the mean and standard devia-

tion in the normal distribution. The graph of C.x/ is symmetric about the line x D �,

and  is a measure of the width of the single peak. However, � is not really a mean and

 is certainly not a standard deviation, as neither
R1

�1 xC.x/ dx nor
R1

�1 x
2
C.x/ dx

is a convergent improper integral. The Cauchy density function is known in spectro-

scopy as the Lorentz profile for spectral lines, while in nuclear physics it is known as

the probability density function of the Breit-Wigner distribution.
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Figure 7.62 The standard normal density

(blue) and the Cauchy density with � D 0

and  D
p

2=� (red)
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Figure 7.62 shows the graphs of the standard Normal density and the Cauchy density

with � D 0 and  D
p

2=� , the latter value being chosen so that both curves would

peak at the same height. Observe the tails of these curves (i.e., the parts where jxj > 2,

say). While the normal curve is higher than the Cauchy one for small jxj, the expo-

nential factor in the normal density decreases very rapidly for large jxj; it is O.jxj�n/

for every positive integer n as jxj ! 1 while the Cauchy density is only O.jxj�2
/.

Because of this polynomial asymptotic behaviour as jxj ! 1, the Cauchy density is

said to have fat tails or heavy tails. To understand the significance of this, we use

direct integration to find the tail probability from some x to infinity for the Cauchy

distribution,

Pr.X > x/ D
1

2
�

1

�
tan�1

x;

and divide it by the corresponding tail probability, Pr.X > x/ D 1 � F.x/, for the

standard normal distribution. This ratio is plotted in Figure 7.63 for 1 � x � 8. From

about x D 7 on, the ratio grows extremely rapidly! This ratio shows that the amount

of probability in the tail of C.x/ is very “heavy” relative to the normal.y

1 � 1013

2 � 1013

3 � 1013

4 � 1013

5 � 1013

6 � 1013

x

1 2 3 4 5 6 7 8

Figure 7.63 Plot of the ratio

y D
Cauchy Pr.x < X <1/

Normal Pr.x < X <1/

C.x/ is far from the only heavy-tailed probability density function. One important

class of heavy-tailed probability distributions are the Lévy stable distributions with

densities S˛.x/ for 0 < ˛ � 2. Except for ˛ D 1 (the Cauchy case) and ˛ D 2 (the

normal case), the densities S˛.x/ are not elementary functions, and providing exact

descriptions of them is beyond the scope of this section. They can be represented

explicitly as integral transforms (see Section 18.7), but must be computed numerically

to get specific values, as is the case for any other nonalgebraic function. The graphs

of the symmetric versions of S˛.x/ are similar to those of the normal and Cauchy

densities. The definitive differences are found in the specifics of the tail behaviours,

which are discussed in Exercises 23–24.

Remark Poincaré’s telling remark, in the quotations at the beginning of this chapter,

humorously warns us that a presumption of normality is common. However, in the

standard physics examples given, normality does not hold. C.x/ arises theoretically in

them. Without a theoretical basis, any presumption of normality can only be confirmed

with data alone. But the tail represents the least probable events, so tail data are least

likely to be observed over any finite time. Thus, the greatest deviations from normal

distributions are the least likely to be observed, making empirical demonstrations of

heavy tails difficult.

Remark Suppose that, because of a naïve expectation of the universality of normal

distributions, we mistakenly assume that the outcomes of a heavy tail process are dis-

tributed normally. Since the largest disagreement between the supposed and actual

distributions only occur for the rarest of events, finite samples of outcomes will not

likely expose our error; the samples won’t have any outcomes from far out in the tail.

But, being the most extreme, the rarest of events can also be the most consequen-

tial. The sharp growth of the ratio in Figure 7.63 shows that the probability of such
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events can be seriously underestimated in this circumstance. People adhering to the

assumption of normality can thus experience costly surprises. A surprise of this type

is named a Black Swan by Nassim Taleb, who authored a well-known book on this

topic, entitled The Black Swan: The Impact of the Highly Improbable.

Remark Measured data from a continuous process are always finite in number and

discretely sampled. While the mean and variance may not exist for a continuous heavy

tail process, they will, nonetheless, always exist for finite data. Thus statistical uncer-

tainty based on normality may be moot. Caution should be taken for questions that

depend heavily on normality.

E X E R C I S E S 7.8

1. How much should you be willing to pay to play a game where

you toss the coin discussed at the beginning of this section and

win $1 if it comes up heads, $2 if it comes up tails, and $50 if

it remains standing on its edge? Assume you will play the

game many times and would like to at least break even.

2. A die is weighted so that if X represents the number showing

on top when the die is rolled, then Pr.X D n/ D Kn for

n 2 f1; 2; 3; 4; 5; 6g.

(a) Find the value of the constant K:

(b) Find the probability that X � 3 on any roll of the die.

3. Find the standard deviation of your winings on a roll of the die

in Exercise 1.

4. Find the mean and standard deviation of the random variable

X in Exercise 2.

5. A die is weighted so that the probability of rolling each of the

numbers 2, 3, 4, and 5 is still 1/6, but the probability of rolling

1 is 9/60 and the probability of rolling 6 is 11/60. What are the

mean and standard deviation of the number X rolled using

this die? What is the probability that X � 3?

C 6. Two dice, each weighted like the one in Exercise 5, are

thrown. Let X be the random variable giving the sum of the

numbers showing on top of the two dice.

(a) Find the probability function for X:

(b) Determine the mean and standard deviation of X:

Compare them with those found for unweighted dice in

Example 3.

C 7. A thin but biased coin has probability 0.55 of landing heads

and 0.45 of landing tails. (Standing on its edge is not possible

for this coin.) The coin is tossed three times. (Determine all

numerical answers to the following questions to six decimal

places.)

(a) What is the sample space of possible outcomes of the

three tosses?

(b) What is the probability of each of these possible

outcomes?

(c) Find the probability function for the number X of times

heads comes up during the three tosses.

(d) What is the probability that the number of heads is at least

1?

(e) What is the expectation of X‹

8. A sack contains 20 balls all the same size; some are red and

the rest are blue. If you reach in and pull out a ball at random,

the probability that it is red is 0:6.

(a) If you reach in and pull out two balls, what is the

probability they are both blue?

(b) Suppose you reach in the bag of 20 balls and pull out three

balls. Describe the sample space of possible outcomes of

this experiment. What is the expectation of the number of

red balls among the three balls you pulled out?

For each function f .x/ in Exercises 9–15, find the following:

(a) the value of C for which f is a probability density on the

given interval,

(b) the mean �, variance �2, and standard deviation � of the

probability density f; and

(c) Pr.� � � � X � �C �/, that is, the probability that the

random variable X is no further than one standard deviation

away from its mean.

9. f .x/ D Cx on Œ0; 3� 10. f .x/ D Cx on Œ1; 2�

11. f .x/ D Cx2 on Œ0; 1� 12. f .x/ D C sinx on Œ0; ��

13. f .x/ D C.x � x2
/ on Œ0; 1�

14. f .x/ D C xe�kx on Œ0;1/; .k > 0/

15. f .x/ D C e�x2
on Œ0;1/. Hint: Use properties of the

standard normal density to show that
R1

0 e�x2

dx D
p

�=2.

16. Is it possible for a random variable to be uniformly distributed

on the whole real line? Explain why.

17. Carry out the calculations to show that the normal density

f�;� .x/ defined in the text is a probability density function

and has mean � and standard deviation �:

18.I Show that f .x/ D
2

�.1C x2/
is a probability density on

Œ0;1/. Find the expectation of a random variable X having

this density. If a machine generates values this random

variable X , how much would you be willing to pay, per game,

to play a game in which you operate the machine to produce a

value of X and win X dollars? Explain.

19. Calculate Pr.jX � �j � 2�/ for

(a) the uniform distribution on Œa; b�,

(b) the exponential distribution with density f .x/ D ke�kx

on Œ0;1/, and

(c) the normal distribution with density f�;� .x/.

20. The length of time T (in hours) between malfunctions of a

computer system is an exponentially distributed random

variable. If the average length of time between successive
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Figure 7.62 The standard normal density

(blue) and the Cauchy density with � D 0

and  D
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Figure 7.62 shows the graphs of the standard Normal density and the Cauchy density

with � D 0 and  D
p

2=� , the latter value being chosen so that both curves would

peak at the same height. Observe the tails of these curves (i.e., the parts where jxj > 2,

say). While the normal curve is higher than the Cauchy one for small jxj, the expo-

nential factor in the normal density decreases very rapidly for large jxj; it is O.jxj�n/

for every positive integer n as jxj ! 1 while the Cauchy density is only O.jxj�2
/.

Because of this polynomial asymptotic behaviour as jxj ! 1, the Cauchy density is

said to have fat tails or heavy tails. To understand the significance of this, we use

direct integration to find the tail probability from some x to infinity for the Cauchy

distribution,

Pr.X > x/ D
1

2
�

1

�
tan�1

x;

and divide it by the corresponding tail probability, Pr.X > x/ D 1 � F.x/, for the

standard normal distribution. This ratio is plotted in Figure 7.63 for 1 � x � 8. From

about x D 7 on, the ratio grows extremely rapidly! This ratio shows that the amount

of probability in the tail of C.x/ is very “heavy” relative to the normal.y
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C.x/ is far from the only heavy-tailed probability density function. One important

class of heavy-tailed probability distributions are the Lévy stable distributions with

densities S˛.x/ for 0 < ˛ � 2. Except for ˛ D 1 (the Cauchy case) and ˛ D 2 (the

normal case), the densities S˛.x/ are not elementary functions, and providing exact

descriptions of them is beyond the scope of this section. They can be represented

explicitly as integral transforms (see Section 18.7), but must be computed numerically

to get specific values, as is the case for any other nonalgebraic function. The graphs

of the symmetric versions of S˛.x/ are similar to those of the normal and Cauchy

densities. The definitive differences are found in the specifics of the tail behaviours,

which are discussed in Exercises 23–24.

Remark Poincaré’s telling remark, in the quotations at the beginning of this chapter,

humorously warns us that a presumption of normality is common. However, in the

standard physics examples given, normality does not hold. C.x/ arises theoretically in

them. Without a theoretical basis, any presumption of normality can only be confirmed

with data alone. But the tail represents the least probable events, so tail data are least

likely to be observed over any finite time. Thus, the greatest deviations from normal

distributions are the least likely to be observed, making empirical demonstrations of

heavy tails difficult.

Remark Suppose that, because of a naïve expectation of the universality of normal

distributions, we mistakenly assume that the outcomes of a heavy tail process are dis-

tributed normally. Since the largest disagreement between the supposed and actual

distributions only occur for the rarest of events, finite samples of outcomes will not

likely expose our error; the samples won’t have any outcomes from far out in the tail.

But, being the most extreme, the rarest of events can also be the most consequen-

tial. The sharp growth of the ratio in Figure 7.63 shows that the probability of such
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events can be seriously underestimated in this circumstance. People adhering to the

assumption of normality can thus experience costly surprises. A surprise of this type

is named a Black Swan by Nassim Taleb, who authored a well-known book on this

topic, entitled The Black Swan: The Impact of the Highly Improbable.

Remark Measured data from a continuous process are always finite in number and

discretely sampled. While the mean and variance may not exist for a continuous heavy

tail process, they will, nonetheless, always exist for finite data. Thus statistical uncer-

tainty based on normality may be moot. Caution should be taken for questions that

depend heavily on normality.

E X E R C I S E S 7.8

1. How much should you be willing to pay to play a game where

you toss the coin discussed at the beginning of this section and

win $1 if it comes up heads, $2 if it comes up tails, and $50 if

it remains standing on its edge? Assume you will play the

game many times and would like to at least break even.

2. A die is weighted so that if X represents the number showing

on top when the die is rolled, then Pr.X D n/ D Kn for

n 2 f1; 2; 3; 4; 5; 6g.

(a) Find the value of the constant K:

(b) Find the probability that X � 3 on any roll of the die.

3. Find the standard deviation of your winings on a roll of the die

in Exercise 1.

4. Find the mean and standard deviation of the random variable

X in Exercise 2.

5. A die is weighted so that the probability of rolling each of the

numbers 2, 3, 4, and 5 is still 1/6, but the probability of rolling

1 is 9/60 and the probability of rolling 6 is 11/60. What are the

mean and standard deviation of the number X rolled using

this die? What is the probability that X � 3?

C 6. Two dice, each weighted like the one in Exercise 5, are

thrown. Let X be the random variable giving the sum of the

numbers showing on top of the two dice.

(a) Find the probability function for X:

(b) Determine the mean and standard deviation of X:

Compare them with those found for unweighted dice in

Example 3.

C 7. A thin but biased coin has probability 0.55 of landing heads

and 0.45 of landing tails. (Standing on its edge is not possible

for this coin.) The coin is tossed three times. (Determine all

numerical answers to the following questions to six decimal

places.)

(a) What is the sample space of possible outcomes of the

three tosses?

(b) What is the probability of each of these possible

outcomes?

(c) Find the probability function for the number X of times

heads comes up during the three tosses.

(d) What is the probability that the number of heads is at least

1?

(e) What is the expectation of X‹

8. A sack contains 20 balls all the same size; some are red and

the rest are blue. If you reach in and pull out a ball at random,

the probability that it is red is 0:6.

(a) If you reach in and pull out two balls, what is the

probability they are both blue?

(b) Suppose you reach in the bag of 20 balls and pull out three

balls. Describe the sample space of possible outcomes of

this experiment. What is the expectation of the number of

red balls among the three balls you pulled out?

For each function f .x/ in Exercises 9–15, find the following:

(a) the value of C for which f is a probability density on the

given interval,

(b) the mean �, variance �2, and standard deviation � of the

probability density f; and

(c) Pr.� � � � X � �C �/, that is, the probability that the

random variable X is no further than one standard deviation

away from its mean.

9. f .x/ D Cx on Œ0; 3� 10. f .x/ D Cx on Œ1; 2�

11. f .x/ D Cx2 on Œ0; 1� 12. f .x/ D C sinx on Œ0; ��

13. f .x/ D C.x � x2
/ on Œ0; 1�

14. f .x/ D C xe�kx on Œ0;1/; .k > 0/

15. f .x/ D C e�x2
on Œ0;1/. Hint: Use properties of the

standard normal density to show that
R1

0 e�x2

dx D
p

�=2.

16. Is it possible for a random variable to be uniformly distributed

on the whole real line? Explain why.

17. Carry out the calculations to show that the normal density

f�;� .x/ defined in the text is a probability density function

and has mean � and standard deviation �:

18.I Show that f .x/ D
2

�.1C x2/
is a probability density on

Œ0;1/. Find the expectation of a random variable X having

this density. If a machine generates values this random

variable X , how much would you be willing to pay, per game,

to play a game in which you operate the machine to produce a

value of X and win X dollars? Explain.

19. Calculate Pr.jX � �j � 2�/ for

(a) the uniform distribution on Œa; b�,

(b) the exponential distribution with density f .x/ D ke�kx

on Œ0;1/, and

(c) the normal distribution with density f�;� .x/.

20. The length of time T (in hours) between malfunctions of a

computer system is an exponentially distributed random

variable. If the average length of time between successive
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malfunctions is 20 hours, find the probability that the system,

having just had a malfunction corrected, will operate without

malfunction for at least 12 hours.

21. The number X of metres of cable produced any day by a

cable-making company is a normally distributed random

variable with mean 5,000 and standard deviation 200. On

what fraction of the days the company operates will the

number of metres of cable produced exceed 5,500?

22. A spinner is made with a scale from 0 to 1. Over time it

suffers from wear and tends to stick at the number 1/4.

Suppose it sticks at 1/4 half of the time and the rest of the time

it gives values uniformly distributed in the interval Œ0; 1�.

What is the mean and standard deviation of the spinner’s

values? (Note: the random variable giving the spinner’s value

has a distribution that is partially discrete and partially

continuous.)

23. Lévy stable probability densities are known to have the

following asymptotic behaviour as x !1

S˛.x/ D c˛x
�.1C˛/

CO

�

x
�.1C2˛/

�

for 0 < ˛ < 2, and for simplicity S˛.x/ is assumed symmetric

about x D 0. Note that the normal case, ˛ D 2, is excluded.

(a) Under what conditions can moments (i.e.,
R1

�1 xpS˛.x/dx for some p � 0) exist?

(b) For what values of ˛ do the mean (p D 1) and the

variance (p D 2) not exist?

24. Use the asymptotic behaviour from the previous exercise to

find the probability in the tail of symmetric Lévy stable

distributions valid for large x.

7.9 First-Order Differential Equations

This final section on applications of integration concentrates on application of the in-

definite integral rather than of the definite integral. We can use the techniques of

integration developed in Chapters 5 and 6 to solve certain kinds of first-order differ-

ential equations that arise in a variety of modelling situations. We have already seen

some examples of applications of differential equations to modelling growth and decay

phenomena in Section 3.4.

Separable Equations
Consider the logistic equation introduced in Section 3.4 to model the growth of an

animal population with a limited food supply:

dy

dt
D ky

�

1 �
y

L

�

;

where y.t/ is the size of the population at time t , k is a positive constant related to

the fertility of the population, and L is the steady-state population size that can be

sustained by the available food supply. This equation has two particular solutions,

y D 0 and y D L, that are constant functions of time.

The logistic equation is an example of a class of first-order differential equations

called separable equations because when they are written in terms of differentials,

they can be separated with only the dependent variable on one side of the equation and

only the independent variable on the other. The logistic equation can be written in the

form

Ldy

y.L � y/
D k dt

and solved by integrating both sides. Expanding the left side in partial fractions and

integrating, we get
Z �

1

y
C

1

L � y

�

dy D kt C C:

Assuming that 0 < y < L, we therefore obtain

ln y � ln.L � y/ D kt C C;

ln

�

y

L � y

�

D kt C C:
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We can solve this equation for y by taking exponentials of both sides:

y

L � y
D e

ktCC
D C1e

kt

y D .L � y/C1e
kt

y D
C1Le

kt

1C C1e
kt
;

where C1 D e
C :

Generally, separable equations are of the form

dy

dx
D f .x/g.y/:

We solve them by rewriting them in the form

dy

g.y/
D f .x/ dx

and integrating both sides. Note that the separable equation above will have a constant

solution y.x/ D C for any constant C satisfying g.C/ D 0.

E X A M P L E 1 Solve the equation
dy

dx
D

x

y
.

Solution We rewrite the equation in the form y dy D x dx and integrate both sides

to get

1

2
y

2
D

1

2
x

2
C C1;

or y2
� x2

D C; where C D 2C1 is an arbitrary constant. The solution curves are

rectangular hyperbolas. (See Figure 7.64.) Their asymptotes y D x and y D �x are

also solutions corresponding to C D 0.

y

x

y

x

C D0

C D�1

C D�4

C D�9

C D1 C D4

C D9

Figure 7.64 Some curves of the family

y2
� x2

D C

E X A M P L E 2
Solve the initial-value problem

8

<

:

dy

dx
D x

2
y

3

y.1/ D 3:

Solution Separating the differential equation gives
dy

y3
D x

2
dx. Thus,

Z

dy

y3
D

Z

x
2
dx; so

�1

2y2
D

x3

3
C C:

Since y D 3 when x D 1, we have � 1
18
D

1
3
C C and C D � 7

18
. Substituting this

value into the above solution and solving for y, we obtain

y.x/ D
3

p

7 � 6x3
: (Only the positive square root of y2 satisfies y.1/ D 3.)

This solution is valid for x <
�

7
6

�1=3
. (See Figure 7.65.)

y

x

y D
3

p

7 � 6x3

.7=6/1=3

Figure 7.65 The solution of
dy

dx
D x

2
y

3

satisfying y.1/ D 3
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malfunctions is 20 hours, find the probability that the system,

having just had a malfunction corrected, will operate without

malfunction for at least 12 hours.

21. The number X of metres of cable produced any day by a

cable-making company is a normally distributed random

variable with mean 5,000 and standard deviation 200. On

what fraction of the days the company operates will the

number of metres of cable produced exceed 5,500?

22. A spinner is made with a scale from 0 to 1. Over time it

suffers from wear and tends to stick at the number 1/4.

Suppose it sticks at 1/4 half of the time and the rest of the time

it gives values uniformly distributed in the interval Œ0; 1�.

What is the mean and standard deviation of the spinner’s

values? (Note: the random variable giving the spinner’s value

has a distribution that is partially discrete and partially

continuous.)

23. Lévy stable probability densities are known to have the

following asymptotic behaviour as x !1

S˛.x/ D c˛x
�.1C˛/

CO

�

x
�.1C2˛/

�

for 0 < ˛ < 2, and for simplicity S˛.x/ is assumed symmetric

about x D 0. Note that the normal case, ˛ D 2, is excluded.

(a) Under what conditions can moments (i.e.,
R1

�1 xpS˛.x/dx for some p � 0) exist?

(b) For what values of ˛ do the mean (p D 1) and the

variance (p D 2) not exist?

24. Use the asymptotic behaviour from the previous exercise to

find the probability in the tail of symmetric Lévy stable

distributions valid for large x.

7.9 First-Order Differential Equations

This final section on applications of integration concentrates on application of the in-

definite integral rather than of the definite integral. We can use the techniques of

integration developed in Chapters 5 and 6 to solve certain kinds of first-order differ-

ential equations that arise in a variety of modelling situations. We have already seen

some examples of applications of differential equations to modelling growth and decay

phenomena in Section 3.4.

Separable Equations
Consider the logistic equation introduced in Section 3.4 to model the growth of an

animal population with a limited food supply:

dy

dt
D ky

�

1 �
y

L

�

;

where y.t/ is the size of the population at time t , k is a positive constant related to

the fertility of the population, and L is the steady-state population size that can be

sustained by the available food supply. This equation has two particular solutions,

y D 0 and y D L, that are constant functions of time.

The logistic equation is an example of a class of first-order differential equations

called separable equations because when they are written in terms of differentials,

they can be separated with only the dependent variable on one side of the equation and

only the independent variable on the other. The logistic equation can be written in the

form

Ldy

y.L � y/
D k dt

and solved by integrating both sides. Expanding the left side in partial fractions and

integrating, we get
Z �

1

y
C

1

L � y

�

dy D kt C C:

Assuming that 0 < y < L, we therefore obtain

ln y � ln.L � y/ D kt C C;

ln

�

y

L � y

�

D kt C C:
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We can solve this equation for y by taking exponentials of both sides:

y

L � y
D e

ktCC
D C1e

kt

y D .L � y/C1e
kt

y D
C1Le

kt

1C C1e
kt
;

where C1 D e
C :

Generally, separable equations are of the form

dy

dx
D f .x/g.y/:

We solve them by rewriting them in the form

dy

g.y/
D f .x/ dx

and integrating both sides. Note that the separable equation above will have a constant

solution y.x/ D C for any constant C satisfying g.C/ D 0.

E X A M P L E 1 Solve the equation
dy

dx
D

x

y
.

Solution We rewrite the equation in the form y dy D x dx and integrate both sides

to get

1

2
y

2
D

1

2
x

2
C C1;

or y2
� x2

D C; where C D 2C1 is an arbitrary constant. The solution curves are

rectangular hyperbolas. (See Figure 7.64.) Their asymptotes y D x and y D �x are

also solutions corresponding to C D 0.

y

x

y

x

C D0

C D�1

C D�4

C D�9

C D1 C D4

C D9

Figure 7.64 Some curves of the family

y2
� x2

D C

E X A M P L E 2
Solve the initial-value problem

8

<

:

dy

dx
D x

2
y

3

y.1/ D 3:

Solution Separating the differential equation gives
dy

y3
D x

2
dx. Thus,

Z

dy

y3
D

Z

x
2
dx; so

�1

2y2
D

x3

3
C C:

Since y D 3 when x D 1, we have � 1
18
D

1
3
C C and C D � 7

18
. Substituting this

value into the above solution and solving for y, we obtain

y.x/ D
3

p

7 � 6x3
: (Only the positive square root of y2 satisfies y.1/ D 3.)

This solution is valid for x <
�

7
6

�1=3
. (See Figure 7.65.)

y

x

y D
3

p

7 � 6x3

.7=6/1=3

Figure 7.65 The solution of
dy

dx
D x

2
y

3

satisfying y.1/ D 3
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E X A M P L E 3 Solve the integral equation y.x/ D 3C 2

Z x

1

ty.t/ dt .

Solution Differentiating the integral equation with respect to x gives

dy

dx
D 2x y.x/ or

dy

y
D 2x dx:

Thus, ln jy.x/j D x2
C C; and solving for y, y.x/ D C1e

x2
. Putting x D 1 in the

integral equation provides an initial value: y.1/ D 3C 0 D 3, so C1 D 3=e and

y.x/ D 3e
x2�1

:

E X A M P L E 4
(A solution concentration problem) Initially a tank contains

1,000 L of brine with 50 kg of dissolved salt. Brine containing

10 g of salt per litre is flowing into the tank at a constant rate of 10 L/min. If the con-

tents of the tank are kept thoroughly mixed at all times, and if the solution also flows

out at 10 L/min, how much salt remains in the tank at the end of 40 min?

Solution Let x.t/ be the number of kilograms of salt in solution in the tank after

t min. Thus, x.0/ D 50. Salt is coming into the tank at a rate of 10 g/L � 10 L/min

= 100 g/min = 1/10 kg/min. At all times the tank contains 1,000 L of liquid, so the

concentration of salt in the tank at time t is x=1;000 kg/L. Since the contents flow out

at 10 L/min, salt is being removed at a rate of 10x=1;000 D x=100 kg/min. Therefore,

dx

dt
D rate in � rate out D

1

10
�

x

100
D

10 � x

100
:

Although x.t/ D 10 is a constant solution of the differential equation, it does not

satisfy the initial condition x.0/ D 50, so we will find other solutions by separating

variables:

dx

10 � x
D

dt

100
:

Integrating both sides of this equation, we obtain

� ln j10 � xj D
t

100
C C:

Observe that x.t/ ¤ 10 for any finite time t (since ln 0 is not defined). Since x.0/ D

50 > 10, it follows that x.t/ > 10 for all t > 0. (x.t/ is necessarily continuous,

so it cannot take any value less than 10 without somewhere taking the value 10 by

the Intermediate-Value Theorem.) Hence, we can drop the absolute value from the

solution above and obtain

ln.x � 10/ D �
t

100
� C:

Since x.0/ D 50, we have �C D ln 40 and

x D x.t/ D 10C 40e
�t=100

:

After 40 min there will be 10C 40e�0:4
� 36:8 kg of salt in the tank.
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E X A M P L E 5
(A rate of reaction problem) In a chemical reaction that goes to

completion in solution, one molecule of each of two reactants, A

andB , combine to form each molecule of the product C: According to the law of mass

action, the reaction proceeds at a rate proportional to the product of the concentrations

of A and B in the solution. Thus, if there were initially present a > 0 molecules/cm3

of A and b > 0 molecules/cm3 of B; then the number x.t/ of molecules/cm3 of C

present at time t thereafter is determined by the differential equation

dx

dt
D k.a � x/.b � x/:

This equation has constant solutions x.t/ D a and x.t/ D b, neither of which satisfies

the initial condition x.0/ D 0. We find other solutions for this equation by separation

of variables and the technique of partial fraction decomposition under the assumption

that b ¤ a:

Z

dx

.a � x/.b � x/
D k

Z

dt D kt C C:

Since

1

.a � x/.b � x/
D

1

b � a

�

1

a � x
�

1

b � x

�

;

and since necessarily x � a and x � b, we have

1

b � a

�

� ln.a � x/C ln.b � x/
�

D kt C C;

or

ln

�

b � x

a � x

�

D .b � a/ kt C C1; where C1 D .b � a/C:

By assumption, x.0/ D 0, so C1 D ln.b=a/ and

ln
a.b � x/

b.a � x/
D .b � a/ kt:

This equation can be solved for x to yield x D x.t/ D
ab.e.b�a/kt

� 1/

be.b�a/kt
� a

.

E X A M P L E 6
Find a family of curves, each of which intersects every parabola

with equation of the form y D Cx2 at right angles.

Solution The family of parabolas y D Cx2 satisfies the differential equation

d

dx

�

y

x2

�

D

d

dx
C D 0I

that is,

x
2 dy

dx
� 2xy D 0 or

dy

dx
D

2y

x
:

Any curve that meets the parabolas y D Cx2 at right angles must, at any point .x; y/

on it, have slope equal to the negative reciprocal of the slope of the particular parabola

passing through that point. Thus, such a curve must satisfy

dy

dx
D �

x

2y
:
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E X A M P L E 3 Solve the integral equation y.x/ D 3C 2

Z x

1

ty.t/ dt .

Solution Differentiating the integral equation with respect to x gives

dy

dx
D 2x y.x/ or

dy

y
D 2x dx:

Thus, ln jy.x/j D x2
C C; and solving for y, y.x/ D C1e

x2
. Putting x D 1 in the

integral equation provides an initial value: y.1/ D 3C 0 D 3, so C1 D 3=e and

y.x/ D 3e
x2�1

:

E X A M P L E 4
(A solution concentration problem) Initially a tank contains

1,000 L of brine with 50 kg of dissolved salt. Brine containing

10 g of salt per litre is flowing into the tank at a constant rate of 10 L/min. If the con-

tents of the tank are kept thoroughly mixed at all times, and if the solution also flows

out at 10 L/min, how much salt remains in the tank at the end of 40 min?

Solution Let x.t/ be the number of kilograms of salt in solution in the tank after

t min. Thus, x.0/ D 50. Salt is coming into the tank at a rate of 10 g/L � 10 L/min

= 100 g/min = 1/10 kg/min. At all times the tank contains 1,000 L of liquid, so the

concentration of salt in the tank at time t is x=1;000 kg/L. Since the contents flow out

at 10 L/min, salt is being removed at a rate of 10x=1;000 D x=100 kg/min. Therefore,

dx

dt
D rate in � rate out D

1

10
�

x

100
D

10 � x

100
:

Although x.t/ D 10 is a constant solution of the differential equation, it does not

satisfy the initial condition x.0/ D 50, so we will find other solutions by separating

variables:

dx

10 � x
D

dt

100
:

Integrating both sides of this equation, we obtain

� ln j10 � xj D
t

100
C C:

Observe that x.t/ ¤ 10 for any finite time t (since ln 0 is not defined). Since x.0/ D

50 > 10, it follows that x.t/ > 10 for all t > 0. (x.t/ is necessarily continuous,

so it cannot take any value less than 10 without somewhere taking the value 10 by

the Intermediate-Value Theorem.) Hence, we can drop the absolute value from the

solution above and obtain

ln.x � 10/ D �
t

100
� C:

Since x.0/ D 50, we have �C D ln 40 and

x D x.t/ D 10C 40e
�t=100

:

After 40 min there will be 10C 40e�0:4
� 36:8 kg of salt in the tank.
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E X A M P L E 5
(A rate of reaction problem) In a chemical reaction that goes to

completion in solution, one molecule of each of two reactants, A

andB , combine to form each molecule of the product C: According to the law of mass

action, the reaction proceeds at a rate proportional to the product of the concentrations

of A and B in the solution. Thus, if there were initially present a > 0 molecules/cm3

of A and b > 0 molecules/cm3 of B; then the number x.t/ of molecules/cm3 of C

present at time t thereafter is determined by the differential equation

dx

dt
D k.a � x/.b � x/:

This equation has constant solutions x.t/ D a and x.t/ D b, neither of which satisfies

the initial condition x.0/ D 0. We find other solutions for this equation by separation

of variables and the technique of partial fraction decomposition under the assumption

that b ¤ a:

Z

dx

.a � x/.b � x/
D k

Z

dt D kt C C:

Since

1

.a � x/.b � x/
D

1

b � a

�

1

a � x
�

1

b � x

�

;

and since necessarily x � a and x � b, we have

1

b � a

�

� ln.a � x/C ln.b � x/
�

D kt C C;

or

ln

�

b � x

a � x

�

D .b � a/ kt C C1; where C1 D .b � a/C:

By assumption, x.0/ D 0, so C1 D ln.b=a/ and

ln
a.b � x/

b.a � x/
D .b � a/ kt:

This equation can be solved for x to yield x D x.t/ D
ab.e.b�a/kt

� 1/

be.b�a/kt
� a

.

E X A M P L E 6
Find a family of curves, each of which intersects every parabola

with equation of the form y D Cx2 at right angles.

Solution The family of parabolas y D Cx2 satisfies the differential equation

d

dx

�

y

x2

�

D

d

dx
C D 0I

that is,

x
2 dy

dx
� 2xy D 0 or

dy

dx
D

2y

x
:

Any curve that meets the parabolas y D Cx2 at right angles must, at any point .x; y/

on it, have slope equal to the negative reciprocal of the slope of the particular parabola

passing through that point. Thus, such a curve must satisfy

dy

dx
D �

x

2y
:
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Figure 7.66 The parabolas y D C1x
2

(blue) and the ellipses x2
C 2y2

D C2

(red) intersect at right angles

y

x

Separation of the variables leads to 2y dy D �x dx, and integration of both sides

then yields y2
D �

1
2
x2
C C1 or x2

C 2y2
D C , where C D 2C1. This equation

represents a family of ellipses centred at the origin. Each ellipse meets each parabola

at right angles, as shown in Figure 7.66. When the curves of one family intersect the

curves of a second family at right angles, each family is called the family of orthogonal

trajectories of the other family.

First-Order Linear Equations
A first-order linear differential equation is one of the type

dy

dx
C p.x/y D q.x/; .�/

where p.x/ and q.x/ are given functions, which we assume to be continuous. The

equation is called nonhomogeneous unless q.x/ is identically zero. The correspond-

ing homogeneous equation,

dy

dx
C p.x/y D 0;

is separable and so is easily solved to give y D K e��.x/, whereK is any constant and

�.x/ is any antiderivative of p.x/:

�.x/ D

Z

p.x/ dx and
d�

dx
D p.x/:

There are two methods for solving the nonhomogeneous equation (�). Both in-

volve the function �.x/ defined above.

METHOD I. Using an Integrating Factor. Multiply equation (�) by e�.x/ (which

is called an integrating factor for the equation) and observe that the left side is just

the derivative of e�.x/y; by the Product Rule

d

dx

�

e
�.x/

y.x/
�

D e
�.x/ dy

dx
C e

�.x/ d�

dx
y.x/

D e
�.x/

�

dy

dx
C p.x/y

�

D e
�.x/

q.x/:

Therefore, e�.x/
y.x/ D

Z

e
�.x/

q.x/ dx, or
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y.x/ D e
��.x/

Z

e
�.x/

q.x/ dx:

METHOD II. Variation of the Parameter. Start with the solution of the corre-

sponding homogeneous equation, namely y D K e��.x/, and replace the constant (i.e.,

parameter) K by an as yet unknown function k.x/ of the independent variable. Then

substitute this expression for y into the differential equation (�) and simplify:

d

dx

�

k.x/e
��.x/

�

C p.x/k.x/e
��.x/

D q.x/

k
0
.x/e

��.x/
� �

0
.x/k.x/e

��.x/
C p.x/k.x/e

��.x/
D q.x/;

which, since �0.x/ D p.x/, reduces to

k
0
.x/ D e

�.x/
q.x/:

Integrating the right side leads to the solution for k.x/ and thereby to the solution y

for (�).

E X A M P L E 7 Solve
dy

dx
C

y

x
D 1 for x > 0. Use both methods for comparison.

Solution Here, p.x/ D 1=x, so �.x/ D
R

p.x/ dx D lnx (for x > 0).

METHOD I. The integrating factor is e�.x/
D x. We calculate

d

dx
.xy/ D x

dy

dx
C y D x

�

dy

dx
C

y

x

�

D x;

and so

xy D

Z

x dx D
1

2
x

2
C C:

Finally,

y D
1

x

�

1

2
x

2
C C

�

D

x

2
C

C

x
:

This is a solution of the given equation for any value of the constant C:

METHOD II. The corresponding homogeneous equation,
dy

dx
C

y

x
D 0, has solution

y D Ke
��.x/

D

K

x
. Replacing the constantK with the function k.x/ and substituting

into the given differential equation we obtain

1

x
k

0
.x/�

1

x2
k.x/C

1

x2
k.x/ D 1;

so that k 0.x/ D x and k.x/ D
x2

2
C C , where C is any constant. Therefore,

y D
k.x/

x
D

x

2
C

C

x
;

the same solution obtained by METHOD I.
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Figure 7.66 The parabolas y D C1x
2

(blue) and the ellipses x2
C 2y2

D C2

(red) intersect at right angles

y

x

Separation of the variables leads to 2y dy D �x dx, and integration of both sides

then yields y2
D �

1
2
x2
C C1 or x2

C 2y2
D C , where C D 2C1. This equation

represents a family of ellipses centred at the origin. Each ellipse meets each parabola

at right angles, as shown in Figure 7.66. When the curves of one family intersect the

curves of a second family at right angles, each family is called the family of orthogonal

trajectories of the other family.

First-Order Linear Equations
A first-order linear differential equation is one of the type

dy

dx
C p.x/y D q.x/; .�/

where p.x/ and q.x/ are given functions, which we assume to be continuous. The

equation is called nonhomogeneous unless q.x/ is identically zero. The correspond-

ing homogeneous equation,

dy

dx
C p.x/y D 0;

is separable and so is easily solved to give y D K e��.x/, whereK is any constant and

�.x/ is any antiderivative of p.x/:

�.x/ D

Z

p.x/ dx and
d�

dx
D p.x/:

There are two methods for solving the nonhomogeneous equation (�). Both in-

volve the function �.x/ defined above.

METHOD I. Using an Integrating Factor. Multiply equation (�) by e�.x/ (which

is called an integrating factor for the equation) and observe that the left side is just

the derivative of e�.x/y; by the Product Rule

d

dx

�

e
�.x/

y.x/
�

D e
�.x/ dy

dx
C e

�.x/ d�

dx
y.x/

D e
�.x/

�

dy

dx
C p.x/y

�

D e
�.x/

q.x/:

Therefore, e�.x/
y.x/ D

Z

e
�.x/

q.x/ dx, or
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y.x/ D e
��.x/

Z

e
�.x/

q.x/ dx:

METHOD II. Variation of the Parameter. Start with the solution of the corre-

sponding homogeneous equation, namely y D K e��.x/, and replace the constant (i.e.,

parameter) K by an as yet unknown function k.x/ of the independent variable. Then

substitute this expression for y into the differential equation (�) and simplify:

d

dx

�

k.x/e
��.x/

�

C p.x/k.x/e
��.x/

D q.x/

k
0
.x/e

��.x/
� �

0
.x/k.x/e

��.x/
C p.x/k.x/e

��.x/
D q.x/;

which, since �0.x/ D p.x/, reduces to

k
0
.x/ D e

�.x/
q.x/:

Integrating the right side leads to the solution for k.x/ and thereby to the solution y

for (�).

E X A M P L E 7 Solve
dy

dx
C

y

x
D 1 for x > 0. Use both methods for comparison.

Solution Here, p.x/ D 1=x, so �.x/ D
R

p.x/ dx D lnx (for x > 0).

METHOD I. The integrating factor is e�.x/
D x. We calculate

d

dx
.xy/ D x

dy

dx
C y D x

�

dy

dx
C

y

x

�

D x;

and so

xy D

Z

x dx D
1

2
x

2
C C:

Finally,

y D
1

x

�

1

2
x

2
C C

�

D

x

2
C

C

x
:

This is a solution of the given equation for any value of the constant C:

METHOD II. The corresponding homogeneous equation,
dy

dx
C

y

x
D 0, has solution

y D Ke
��.x/

D

K

x
. Replacing the constantK with the function k.x/ and substituting

into the given differential equation we obtain

1

x
k

0
.x/�

1

x2
k.x/C

1

x2
k.x/ D 1;

so that k 0.x/ D x and k.x/ D
x2

2
C C , where C is any constant. Therefore,

y D
k.x/

x
D

x

2
C

C

x
;

the same solution obtained by METHOD I.
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Remark Both methods really amount to the same calculations expressed in different

ways. Use whichever one you think is easiest to understand. The remaining examples

in this section will be done by using integrating factors, but variation of parameters will

prove useful later on (Section 18.6) to deal with nonhomogeneous linear differential

equations of second or higher order.

E X A M P L E 8 Solve
dy

dx
C xy D x

3.

Solution Here, p.x/ D x, so �.x/ D x2=2 and e�.x/
D ex2=2. We calculate

d

dx

�

e
x2=2

y
�

D e
x2=2 dy

dx
C e

x2=2
xy D e

x2=2

�

dy

dx
C xy

�

D x
3
e

x2=2
:

Thus,

e
x2=2

y D

Z

x
3
e

x2=2
dx Let U D x2, dV D x ex2=2 dx.

Then dU D 2x dx, V D ex2=2.

D x
2
e

x2=2
� 2

Z

x e
x2=2

dx

D x
2
e

x2=2
� 2 e

x2=2
C C;

and, finally, y D x2
� 2C Ce�x2=2.

E X A M P L E 9
(An inductance-resistance circuit) An electric circuit (see

Figure 7.67) contains a constant DC voltage source of V volts, a

switch, a resistor of size R ohms, and an inductor of size L henrys. The circuit has no

capacitance. The switch, initially open so that no current is flowing, is closed at time

t D 0 so that current begins to flow at that time. If the inductance L were zero, the

current would suddenly jump from 0 amperes when t < 0 to I D V=R amperes when

t > 0. However, if L > 0 the current cannot change instantaneously; it will depend

on time t . Let the current t seconds after the switch is closed be I.t/ amperes. It is

known that I.t/ satisfies the initial-value problem

VS

R L

Figure 7.67 An inductance-resistance

circuit

8

<

:

L
dI

dt
CRI D V

I.0/ D 0:

Find I.t/. What is limt!1 I.t/? How long does it take after the switch is closed for

the current to rise to 90% of its limiting value?

Solution The DE can be written in the form
dI

dt
C

R

L
I D

V

L
. It is linear and has

integrating factor e�.t/, where

�.t/ D

Z

R

L
dt D

Rt

L
:

Therefore,

d

dt

�

e
Rt=L

I

�

D e
Rt=L

�

dI

dt
C

R

L
I

�

D e
Rt=L V

L

e
Rt=L

I D
V

L

Z

e
Rt=L

dt D
V

R
e

Rt=L
C C

I.t/ D
V

R
C Ce

�Rt=L
:
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Since I.0/ D 0, we have 0 D .V=R/C C , so C D �V=R. Thus, the current flowing

at any time t > 0 is

I.t/ D
V

R

�

1 � e
�Rt=L

�

:

It is clear from this solution that limt!1 I.t/ D V=R; the steady-state current is the

current that would flow if the inductance were zero.

I.t/ will be 90% of this limiting value when

V

R

�

1 � e
�Rt=L

�

D

90

100

V

R
:

This equation implies that e�Rt=L
D 1=10, or t D .L ln 10/=R. The current will grow

to 90% of its limiting value in .L ln 10/=R seconds.

Our final example reviews a typical stream of payments problem of the sort consid-

ered in Section 7.7. This time we treat the problem as an initial-value problem for a

differential equation.

E X A M P L E 10
A savings account is opened with a deposit of A dollars. At any

time t years thereafter, money is being continually deposited into

the account at a rate of .C C Dt/ dollars per year. If interest is also being paid into

the account at a nominal rate of 100R percent per year, compounded continuously, find

the balance B.t/ dollars in the account after t years. Illustrate the solution for the data

A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5.

Solution As noted in Section 3.4, continuous compounding of interest at a nominal

rate of 100R percent causes $1.00 to grow to eRt dollars in t years. Without subsequent

deposits, the balance in the account would grow according to the differential equation

of exponential growth:

dB

dt
D RB:

Allowing for additional growth due to the continual deposits, we observe that B must

satisfy the differential equation

dB

dt
D RB C .C CDt/

or, equivalently, dB=dt � RB D C C Dt . This is a linear equation for B having

p.t/ D �R. Hence, we may take �.t/ D �Rt and e�.t/
D e�Rt . We now calculate

d

dt

�

e
�Rt

B.t/
�

D e
�Rt dB

dt
�Re

�Rt
B.t/ D .C CDt/ e

�Rt

and

e
�Rt

B.t/ D

Z

.C CDt/e
�Rt

dt Let U D C CDt , dV D e�Rt dt .

Then dU D D dt , V D �e�Rt=R.

D �

C CDt

R
e

�Rt
C

D

R

Z

e
�Rt

dt

D �

C CDt

R
e

�Rt
�

D

R2
e

�Rt
CK; .K = constant/:

Hence,

B.t/ D �
C CDt

R
�

D

R2
CKe

Rt
:
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Remark Both methods really amount to the same calculations expressed in different

ways. Use whichever one you think is easiest to understand. The remaining examples

in this section will be done by using integrating factors, but variation of parameters will

prove useful later on (Section 18.6) to deal with nonhomogeneous linear differential

equations of second or higher order.

E X A M P L E 8 Solve
dy

dx
C xy D x

3.

Solution Here, p.x/ D x, so �.x/ D x2=2 and e�.x/
D ex2=2. We calculate

d

dx

�

e
x2=2

y
�

D e
x2=2 dy

dx
C e

x2=2
xy D e

x2=2

�

dy

dx
C xy

�

D x
3
e

x2=2
:

Thus,

e
x2=2

y D

Z

x
3
e

x2=2
dx Let U D x2, dV D x ex2=2 dx.

Then dU D 2x dx, V D ex2=2.

D x
2
e

x2=2
� 2

Z

x e
x2=2

dx

D x
2
e

x2=2
� 2 e

x2=2
C C;

and, finally, y D x2
� 2C Ce�x2=2.

E X A M P L E 9
(An inductance-resistance circuit) An electric circuit (see

Figure 7.67) contains a constant DC voltage source of V volts, a

switch, a resistor of size R ohms, and an inductor of size L henrys. The circuit has no

capacitance. The switch, initially open so that no current is flowing, is closed at time

t D 0 so that current begins to flow at that time. If the inductance L were zero, the

current would suddenly jump from 0 amperes when t < 0 to I D V=R amperes when

t > 0. However, if L > 0 the current cannot change instantaneously; it will depend

on time t . Let the current t seconds after the switch is closed be I.t/ amperes. It is

known that I.t/ satisfies the initial-value problem

VS

R L

Figure 7.67 An inductance-resistance

circuit

8

<

:

L
dI

dt
CRI D V

I.0/ D 0:

Find I.t/. What is limt!1 I.t/? How long does it take after the switch is closed for

the current to rise to 90% of its limiting value?

Solution The DE can be written in the form
dI

dt
C

R

L
I D

V

L
. It is linear and has

integrating factor e�.t/, where

�.t/ D

Z

R

L
dt D

Rt

L
:

Therefore,

d

dt

�

e
Rt=L

I

�

D e
Rt=L

�

dI

dt
C

R

L
I

�

D e
Rt=L V

L

e
Rt=L

I D
V

L

Z

e
Rt=L

dt D
V

R
e

Rt=L
C C

I.t/ D
V

R
C Ce

�Rt=L
:
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Since I.0/ D 0, we have 0 D .V=R/C C , so C D �V=R. Thus, the current flowing

at any time t > 0 is

I.t/ D
V

R

�

1 � e
�Rt=L

�

:

It is clear from this solution that limt!1 I.t/ D V=R; the steady-state current is the

current that would flow if the inductance were zero.

I.t/ will be 90% of this limiting value when

V

R

�

1 � e
�Rt=L

�

D

90

100

V

R
:

This equation implies that e�Rt=L
D 1=10, or t D .L ln 10/=R. The current will grow

to 90% of its limiting value in .L ln 10/=R seconds.

Our final example reviews a typical stream of payments problem of the sort consid-

ered in Section 7.7. This time we treat the problem as an initial-value problem for a

differential equation.

E X A M P L E 10
A savings account is opened with a deposit of A dollars. At any

time t years thereafter, money is being continually deposited into

the account at a rate of .C C Dt/ dollars per year. If interest is also being paid into

the account at a nominal rate of 100R percent per year, compounded continuously, find

the balance B.t/ dollars in the account after t years. Illustrate the solution for the data

A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5.

Solution As noted in Section 3.4, continuous compounding of interest at a nominal

rate of 100R percent causes $1.00 to grow to eRt dollars in t years. Without subsequent

deposits, the balance in the account would grow according to the differential equation

of exponential growth:

dB

dt
D RB:

Allowing for additional growth due to the continual deposits, we observe that B must

satisfy the differential equation

dB

dt
D RB C .C CDt/

or, equivalently, dB=dt � RB D C C Dt . This is a linear equation for B having

p.t/ D �R. Hence, we may take �.t/ D �Rt and e�.t/
D e�Rt . We now calculate

d

dt

�

e
�Rt

B.t/
�

D e
�Rt dB

dt
�Re

�Rt
B.t/ D .C CDt/ e

�Rt

and

e
�Rt

B.t/ D

Z

.C CDt/e
�Rt

dt Let U D C CDt , dV D e�Rt dt .

Then dU D D dt , V D �e�Rt=R.

D �

C CDt

R
e

�Rt
C

D

R

Z

e
�Rt

dt

D �

C CDt

R
e

�Rt
�

D

R2
e

�Rt
CK; .K = constant/:

Hence,

B.t/ D �
C CDt

R
�

D

R2
CKe

Rt
:
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Since A D B.0/ D �
C

R
�

D

R2
CK, we have K D AC

C

R
C

D

R2
and

B.t/ D

�

AC
C

R
C

D

R2

�

e
Rt
�

C CDt

R
�

D

R2
:

For the illustration A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5, we

obtain, using a calculator, B.5/ D 19;762:82. The account will contain $19,762.82,

after five years, under these circumstances.

E X E R C I S E S 7.9

Solve the separable equations in Exercises 1–10.

1.
dy

dx
D

y

2x
2.

dy

dx
D

3y � 1

x

3.
dy

dx
D

x2

y2
4.

dy

dx
D x

2
y

2

5.
dY

dt
D tY 6.

dx

dt
D e

x sin t

7.
dy

dx
D 1 � y

2 8.
dy

dx
D 1C y

2

9.
dy

dt
D 2C e

y 10.
dy

dx
D y

2
.1 � y/

Solve the linear equations in Exercises 11–16.

11.
dy

dx
�

2y

x
D x

2 12.
dy

dx
C

2y

x
D

1

x2

13.
dy

dx
C 2y D 3 14.

dy

dx
C y D e

x

15.
dy

dx
C y D x 16.

dy

dx
C 2e

x
y D e

x

Solve the initial-value problems in Exercises 17–20.

17.

8

<

:

dy

dt
C 10y D 1

y.1=10/ D 2=10

18.

8

<

:

dy

dx
C 3x

2
y D x

2

y.0/ D 1

19.

(

x
2
y

0
C y D x

2
e

1=x

y.1/ D 3e
20.

(

y
0
C .cosx/y D 2xe� sin x

y.�/ D 0

Solve the integral equations in Exercises 21–24.

21. y.x/ D 2C

Z x

0

t

y.t/
dt 22. y.x/ D 1C

Z x

0

�

y.t/

�2

1C t2
dt

23. y.x/ D 1C

Z x

1

y.t/ dt

t.t C 1/
24. y.x/ D 3C

Z x

0

e
�y.t/

dt

25. If a > b > 0 in Example 5, find limt!1 x.t/.

26. If b > a > 0 in Example 5, find limt!1 x.t/.

27. Why is the solution given in Example 5 not valid for a D b?

Find the solution for the case a D b.

28. An object of mass m falling near the surface of the earth is

retarded by air resistance proportional to its velocity so that,

according to Newton’s Second Law of Motion,

m
dv

dt
D mg � kv;

where v D v.t/ is the velocity of the object at time t , and g is

the acceleration of gravity near the surface of the earth.

Assuming that the object falls from rest at time t D 0, that is,

v.0/ D 0, find the velocity v.t/ for any t > 0 (up until the

object strikes the ground). Show v.t/ approaches a limit as

t !1. Do you need the explicit formula for v.t/ to

determine this limiting velocity?

29. Repeat Exercise 28 except assume that the air resistance is

proportional to the square of the velocity so that the equation

of motion is

m
dv

dt
D mg � kv

2
:

30. Find the amount in a savings account after one year if the

initial balance in the account was $1,000, if the interest is paid

continuously into the account at a nominal rate of 10% per

annum, compounded continuously, and if the account is being

continuously depleted (by taxes, say) at a rate of y2=1;000;000

dollars per year, where y D y.t/ is the balance in the account

after t years. How large can the account grow? How long will

it take the account to grow to half this balance?

31. Find the family of curves each of which intersects all of the

hyperbolas xy D C at right angles.

32. Repeat the solution concentration problem in Example 4,

changing the rate of inflow of brine into the tank to 12 L/min

but leaving all the other data as they were in that example.

Note that the volume of liquid in the tank is no longer constant

as time increases.

C H A P T E R R E V I E W

Key Ideas

� What do the following phrases mean?

˘ a solid of revolution

˘ a volume element

˘ the arc length of a curve

˘ the moment of a point mass m about x D 0
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˘ the centre of mass of a distribution of mass

˘ the centroid of a plane region

˘ a first-order separable differential equation

˘ a first-order linear differential equation

� Let D be the plane region 0 � y � f .x/, a � x � b. Use

integrals to represent the following:

˘ the volume generated by revolvingD about the x-axis

˘ the volume generated by revolvingD about the y-axis

˘ the moment of D about the y-axis

˘ the moment of D about the x-axis

˘ the centroid of D

� Let C be the curve y D f .x/, a � x � b. Use integrals to

represent the following:

˘ the length of C

˘ the area of the surface generated by revolving C about the

x-axis

˘ the area of the surface generated by revolving C about the

y-axis

Review Exercises

1. Figure 7.68 shows cross-sections along the axes of two circular

spools. The left spool will hold 1,000 metres of thread if wound

full with no bulging. How many metres of thread of the same

size will the right spool hold?

3 cm5 cm

1 cm

3 cm 3 cm

5 cm1 cm

1 cm

Figure 7.68

2. Water sitting in a bowl evaporates at a rate proportional to its

surface area. Show that the depth of water in the bowl decreases

at a constant rate, regardless of the shape of the bowl.

C 3. A barrel is 4 ft high and its volume is 16 cubic feet. Its

top and bottom are circular disks of radius 1 ft, and its

side wall is obtained by rotating the part of the parabola

x D a � by2 between y D �2 and y D 2 about the

y-axis. Find, approximately, the values of the positive con-

stants a and b.

4. The solid in Figure 7.69 is cut from a vertical cylinder of radius

10 cm by two planes making angles of 60ı with the horizontal.

Find its volume.

60ı

10 cm

Figure 7.69

C 5. Find to 4 decimal places the value of the positive constant a

for which the curve y D .1=a/ cosh ax has arc length 2 units

between x D 0 and x D 1.

6. Find the area of the surface obtained by rotating the curve y D
p

x, .0 � x � 6/, about the x-axis.

7. Find the centroid of the plane region x � 0, y � 0,

x2
C 4y2

� 4.

8. A thin plate in the shape of a circular disk has radius 3 ft and

constant areal density. A circular hole of radius 1 ft is cut out

of the disk, centred 1 ft from the centre of the disk. Find the

centre of mass of the remaining part of the disk.

gas

piston

Figure 7.70

9. According to Boyle’s Law, the product of the pressure and vol-

ume of a gas remains constant if the gas expands or is com-

pressed isothermally. The cylinder in Figure 7.70 is filled with

a gas that exerts a force of 1,000 N on the piston when the pis-

ton is 20 cm above the base of the cylinder. How much work

is done by the piston if it compresses the gas isothermally by

descending to a height of 5 cm above the base?

10. Suppose two functions f and g have the following property:

for any a > 0, the solid produced by revolving the region of the

xy-plane bounded by y D f .x/, y D g.x/, x D 0, and x D a

about the x-axis has the same volume as the solid produced by

revolving the same region about the y-axis. What can you say

about f and g?

11. Find the equation of a curve that passes through the point .2; 4/

and has slope 3y=.x � 1/ at any point .x; y/ on it.

12. Find a family of curves that intersect every ellipse of the form

3x
2
C 4y2

D C at right angles.

13. The income and expenses of a seasonal business result in de-

posits and withdrawals from its bank account that correspond

to a flow rate into the account of $P.t//year at time t years,

where P.t/ D 10; 000 sin.2�t/. If the account earns interest

at an instantaneous rate of 4% per year and has $8,000 in it at

time t D 0, how much is in the account two years later?

Challenging Problems

1. The curve y D e�kx sinx, .x � 0/, is revolved about the

x-axis to generate a string of “beads” whose volumes decrease

to the right if k > 0.

(a) Show that the ratio of the volume of the .nC 1/st bead to

that of the nth bead depends on k, but not on n.

(b) For what value of k is the ratio in part (a) equal to 1/2?

(c) Find the total volume of all the beads as a function of the

positive number k:
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Since A D B.0/ D �
C

R
�

D

R2
CK, we have K D AC

C

R
C

D

R2
and

B.t/ D

�

AC
C

R
C

D

R2

�

e
Rt
�

C CDt

R
�

D

R2
:

For the illustration A D 5;000, C D 1;000, D D 200, R D 0:13, and t D 5, we

obtain, using a calculator, B.5/ D 19;762:82. The account will contain $19,762.82,

after five years, under these circumstances.

E X E R C I S E S 7.9

Solve the separable equations in Exercises 1–10.

1.
dy

dx
D

y

2x
2.

dy

dx
D

3y � 1

x

3.
dy

dx
D

x2

y2
4.

dy

dx
D x

2
y

2

5.
dY

dt
D tY 6.

dx

dt
D e

x sin t

7.
dy

dx
D 1 � y

2 8.
dy

dx
D 1C y

2

9.
dy

dt
D 2C e

y 10.
dy

dx
D y

2
.1 � y/

Solve the linear equations in Exercises 11–16.

11.
dy

dx
�

2y

x
D x

2 12.
dy

dx
C

2y

x
D

1

x2

13.
dy

dx
C 2y D 3 14.

dy

dx
C y D e

x

15.
dy

dx
C y D x 16.

dy

dx
C 2e

x
y D e

x

Solve the initial-value problems in Exercises 17–20.

17.

8

<

:

dy

dt
C 10y D 1

y.1=10/ D 2=10

18.

8

<

:

dy

dx
C 3x

2
y D x

2

y.0/ D 1

19.

(

x
2
y

0
C y D x

2
e

1=x

y.1/ D 3e
20.

(

y
0
C .cosx/y D 2xe� sin x

y.�/ D 0

Solve the integral equations in Exercises 21–24.

21. y.x/ D 2C

Z x

0

t

y.t/
dt 22. y.x/ D 1C

Z x

0

�

y.t/

�2

1C t2
dt

23. y.x/ D 1C

Z x

1

y.t/ dt

t.t C 1/
24. y.x/ D 3C

Z x

0

e
�y.t/

dt

25. If a > b > 0 in Example 5, find limt!1 x.t/.

26. If b > a > 0 in Example 5, find limt!1 x.t/.

27. Why is the solution given in Example 5 not valid for a D b?

Find the solution for the case a D b.

28. An object of mass m falling near the surface of the earth is

retarded by air resistance proportional to its velocity so that,

according to Newton’s Second Law of Motion,

m
dv

dt
D mg � kv;

where v D v.t/ is the velocity of the object at time t , and g is

the acceleration of gravity near the surface of the earth.

Assuming that the object falls from rest at time t D 0, that is,

v.0/ D 0, find the velocity v.t/ for any t > 0 (up until the

object strikes the ground). Show v.t/ approaches a limit as

t !1. Do you need the explicit formula for v.t/ to

determine this limiting velocity?

29. Repeat Exercise 28 except assume that the air resistance is

proportional to the square of the velocity so that the equation

of motion is

m
dv

dt
D mg � kv

2
:

30. Find the amount in a savings account after one year if the

initial balance in the account was $1,000, if the interest is paid

continuously into the account at a nominal rate of 10% per

annum, compounded continuously, and if the account is being

continuously depleted (by taxes, say) at a rate of y2=1;000;000

dollars per year, where y D y.t/ is the balance in the account

after t years. How large can the account grow? How long will

it take the account to grow to half this balance?

31. Find the family of curves each of which intersects all of the

hyperbolas xy D C at right angles.

32. Repeat the solution concentration problem in Example 4,

changing the rate of inflow of brine into the tank to 12 L/min

but leaving all the other data as they were in that example.

Note that the volume of liquid in the tank is no longer constant

as time increases.

C H A P T E R R E V I E W

Key Ideas

� What do the following phrases mean?

˘ a solid of revolution

˘ a volume element

˘ the arc length of a curve

˘ the moment of a point mass m about x D 0
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˘ the centre of mass of a distribution of mass

˘ the centroid of a plane region

˘ a first-order separable differential equation

˘ a first-order linear differential equation

� Let D be the plane region 0 � y � f .x/, a � x � b. Use

integrals to represent the following:

˘ the volume generated by revolvingD about the x-axis

˘ the volume generated by revolvingD about the y-axis

˘ the moment of D about the y-axis

˘ the moment of D about the x-axis

˘ the centroid of D

� Let C be the curve y D f .x/, a � x � b. Use integrals to

represent the following:

˘ the length of C

˘ the area of the surface generated by revolving C about the

x-axis

˘ the area of the surface generated by revolving C about the

y-axis

Review Exercises

1. Figure 7.68 shows cross-sections along the axes of two circular

spools. The left spool will hold 1,000 metres of thread if wound

full with no bulging. How many metres of thread of the same

size will the right spool hold?

3 cm5 cm

1 cm

3 cm 3 cm

5 cm1 cm

1 cm

Figure 7.68

2. Water sitting in a bowl evaporates at a rate proportional to its

surface area. Show that the depth of water in the bowl decreases

at a constant rate, regardless of the shape of the bowl.

C 3. A barrel is 4 ft high and its volume is 16 cubic feet. Its

top and bottom are circular disks of radius 1 ft, and its

side wall is obtained by rotating the part of the parabola

x D a � by2 between y D �2 and y D 2 about the

y-axis. Find, approximately, the values of the positive con-

stants a and b.

4. The solid in Figure 7.69 is cut from a vertical cylinder of radius

10 cm by two planes making angles of 60ı with the horizontal.

Find its volume.

60ı

10 cm

Figure 7.69

C 5. Find to 4 decimal places the value of the positive constant a

for which the curve y D .1=a/ cosh ax has arc length 2 units

between x D 0 and x D 1.

6. Find the area of the surface obtained by rotating the curve y D
p

x, .0 � x � 6/, about the x-axis.

7. Find the centroid of the plane region x � 0, y � 0,

x2
C 4y2

� 4.

8. A thin plate in the shape of a circular disk has radius 3 ft and

constant areal density. A circular hole of radius 1 ft is cut out

of the disk, centred 1 ft from the centre of the disk. Find the

centre of mass of the remaining part of the disk.

gas

piston

Figure 7.70

9. According to Boyle’s Law, the product of the pressure and vol-

ume of a gas remains constant if the gas expands or is com-

pressed isothermally. The cylinder in Figure 7.70 is filled with

a gas that exerts a force of 1,000 N on the piston when the pis-

ton is 20 cm above the base of the cylinder. How much work

is done by the piston if it compresses the gas isothermally by

descending to a height of 5 cm above the base?

10. Suppose two functions f and g have the following property:

for any a > 0, the solid produced by revolving the region of the

xy-plane bounded by y D f .x/, y D g.x/, x D 0, and x D a

about the x-axis has the same volume as the solid produced by

revolving the same region about the y-axis. What can you say

about f and g?

11. Find the equation of a curve that passes through the point .2; 4/

and has slope 3y=.x � 1/ at any point .x; y/ on it.

12. Find a family of curves that intersect every ellipse of the form

3x
2
C 4y2

D C at right angles.

13. The income and expenses of a seasonal business result in de-

posits and withdrawals from its bank account that correspond

to a flow rate into the account of $P.t//year at time t years,

where P.t/ D 10; 000 sin.2�t/. If the account earns interest

at an instantaneous rate of 4% per year and has $8,000 in it at

time t D 0, how much is in the account two years later?

Challenging Problems

1. The curve y D e�kx sinx, .x � 0/, is revolved about the

x-axis to generate a string of “beads” whose volumes decrease

to the right if k > 0.

(a) Show that the ratio of the volume of the .nC 1/st bead to

that of the nth bead depends on k, but not on n.

(b) For what value of k is the ratio in part (a) equal to 1/2?

(c) Find the total volume of all the beads as a function of the

positive number k:
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2. (Conservation of earth) A landscaper wants to create on level

ground a ring-shaped pool having an outside radius of 10 m and

a maximum depth of 1 m surrounding a hill that will be built up

using all the earth excavated from the pool. (See Figure 7.71.)

She decides to use a fourth-degree polynomial to determine the

cross-sectional shape of the hill and pool bottom: at distance r

metres from the centre of the development the height above or

below normal ground level will be

h.r/ D a.r
2
� 100/.r

2
� k

2
/ metres;

for some a > 0, where k is the inner radius of the pool. Find

k and a so that the requirements given above are all satisfied.

How much earth must be moved from the pool to build the

hill?

10 m

1 m

Figure 7.71

M 3. (Rocket design) The nose of a rocket is a solid of revolution

of base radius r and height h that must join smoothly to the

cylindrical body of the rocket. (See Figure 7.72.) Taking the

origin at the tip of the nose and the x-axis along the central axis

of the rocket, various nose shapes can be obtained by revolving

the cubic curve

y D f .x/ D ax C bx
2
C cx

3

about the x-axis. The cubic curve must have slope 0 at x D

h, and its slope must be positive for 0 < x < h. Find the

particular cubic curve that maximizes the volume of the nose.

Also show that this choice of the cubic makes the slope dy=dx

at the origin as large as possible and, hence, corresponds to the

bluntest nose.

y

x

.h; r/

y D ax C bx2
C cx3

Figure 7.72

M 4. (Quadratic splines) Let A D .x1; y1/, B D .x2; y2/, and

C D .x3; y3/ be three points with x1 < x2 < x3. A func-

tion f .x/ whose graph passes through the three points is a

quadratic spline if f .x/ is a quadratic function on Œx1; x2� and

a possibly different quadratic function on Œx2; x3�, and the two

quadratics have the same slope at x2. For this problem, take

A D .0; 1/, B D .1; 2/, and C D .3; 0/.

(a) Find a one-parameter family f .x;m/ of quadratic splines

through A; B; and C; having slope m at B .

(b) Find the value of m for which the length of the graph y D

f .x; m/ between x D 0 and x D 3 is minimum. What is

this minimum length? Compare it with the length of the

polygonal line ABC:

M 5. A concrete wall in the shape of a circular ring must be built to

have maximum height 2 m, inner radius 15 m, and width 1 m at

ground level, so that its outer radius is 16 m. (See Figure 7.73.)

Built on level ground, the wall will have a curved top with

height at distance 15 C x metres from the centre of the ring

given by the cubic function

f .x/ D x.1 � x/.ax C b/ m;

which must not vanish anywhere in the open interval .0; 1/.

Find the values of a and b that minimize the total volume of

concrete needed to build the wall.

15

x

y

Figure 7.73

M 6. (The volume of an n-dimensional ball) Euclidean n-dimensional

space consists of points .x1; x2; : : : ; xn/ with n real coordi-

nates. By analogy with the 3-dimensional case, we call the set

of such points that satisfy the inequality x2
1Cx

2
2C� � �Cx

2
n � r

2

the n-dimensional ball centred at the origin. For example, the

1-dimensional ball is the interval �r � x1 � r , which has vol-

ume (i.e., length) V1.r/ D 2r . The 2-dimensional ball is the

disk x2
1 C x

2
2 � r

2, which has volume (i.e., area)

V2.r/ D �r
2
D

Z r

�r

2

p

r2
� x2 dx

D

Z r

�r

V1

�p

r2
� x2

�

dx:

The 3-dimensional ball x2
1 C x

2
2 C x

2
3 � r

2 has volume

V3.r/ D
4

3
�r

3
D

Z r

�r

�

�p

r2
� x2

�2

dx

D

Z r

�r

V2

�p

r2
� x2

�

dx:

By analogy with these formulas, the volume Vn.r/ of the

n-dimensional ball of radius r is the integral of the volume of

the .n� 1/-dimensional ball of radius
p

r2
� x2 from x D �r

to x D r :

Vn.r/ D

Z r

�r

Vn�1

�p

r2
� x2

�

dx:

Using a computer algebra program, calculate V4.r/, V5.r/, : : : ;

V10.r/, and guess formulas for V2n.r/ (the even-dimensional

balls) and V2nC1.r/ (the odd-dimensional balls). If your com-

puter algebra software is sufficiently powerful, you may be able

to verify your guesses by induction. Otherwise, use them to

predict V11.r/ and V12.r/, then check your predictions by start-

ing from V10.r/.
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7.I (Buffon’s needle problem) A horizontal flat surface is ruled

with parallel lines 10 cm apart, as shown in Figure 7.74. A nee-

dle 5 cm long is dropped at random onto the surface. Find the

probability that the needle intersects one of the lines. Hint: Let

the “lower” end of the needle (the end further down the page

in the figure) be considered the reference point. (If both ends

are the same height, use the left end.) Let y be the distance

from the reference point to the nearest line above it, and let �

be the angle between the needle and the line extending to the

right of the reference point in the figure. What are the possible

values of y and �? In a plane with Cartesian coordinates � and

y; sketch the region consisting of all points .�; y/ correspond-

ing to possible positions of the needle. Also sketch the region

corresponding to those positions for which the needle crosses

one of the parallel lines. The required probability is the area of

the second region divided by the area of the first.

y

�

�

y

5

5

10 cm

10 cm

10 cm

Figure 7.74

y

x

P.x; y/

.L; 0/

L

Q

y D f .x/

Figure 7.75

8.I (The path of a trailer) Find the equation y D f .x/ of a curve

in the first quadrant of the xy-plane, starting from the point

.L; 0/, and having the property that if the tangent line to the

curve at P meets the y-axis at Q, then the length of PQ is the

constant L. (See Figure 7.75. This curve is called a tractrix

after the Latin participle tractus, meaning dragged. It is the

path of the rear end P of a trailer of length L, originally lying

along the x-axis, as the trailer is pulled (dragged) by a tractor

Q moving along the y-axis away from the origin.)

9.I (Approximating the surface area of an ellipsoid) A physical

geographer studying the flow of streams around oval stones

needed to calculate the surface areas of many such stones that

he modelled as ellipsoids:

x2

a2
C

y2

b2
C

z2

c2
D 1:

He wanted a simple formula for the surface area so that he

could implement it in a spreadsheet containing the measure-

ments a, b, and c of the stones. Unfortunately, there is no

exact formula for the area of a general ellipsoid in terms of ele-

mentary functions. However, there are such formulas for ellip-

soids of revolution, where two of the three semi-axes are equal.

These ellipsoids are called spheroids; an oblate spheroid (like

the earth) has its two longer semi-axes equal; a prolate spheroid

(like an American football) has its two shorter semi-axes equal.

A reasonable approximation to the area of a general ellipsoid

can be obtained by linear interpolation between these two.

To be specific, assume the semi-axes are arranged in de-

creasing order a � b � c, and let the surface area be S.a; b; c/.

(a) Calculate S.a; a; c/, the area of an oblate spheroid.

(b) Calculate S.a; c; c/, the area of a prolate spheroid.

(c) Construct an approximation for S.a; b; c/ that divides the

interval from S.a; a; c/ to S.a; c; c/ in the same ratio that

b divides the interval from a to c.

(d) Approximate the area of the ellipsoid

x
2

9
C

y2

4
C z

2
D 1

using the above method.
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2. (Conservation of earth) A landscaper wants to create on level

ground a ring-shaped pool having an outside radius of 10 m and

a maximum depth of 1 m surrounding a hill that will be built up

using all the earth excavated from the pool. (See Figure 7.71.)

She decides to use a fourth-degree polynomial to determine the

cross-sectional shape of the hill and pool bottom: at distance r

metres from the centre of the development the height above or

below normal ground level will be

h.r/ D a.r
2
� 100/.r

2
� k

2
/ metres;

for some a > 0, where k is the inner radius of the pool. Find

k and a so that the requirements given above are all satisfied.

How much earth must be moved from the pool to build the

hill?

10 m

1 m

Figure 7.71

M 3. (Rocket design) The nose of a rocket is a solid of revolution

of base radius r and height h that must join smoothly to the

cylindrical body of the rocket. (See Figure 7.72.) Taking the

origin at the tip of the nose and the x-axis along the central axis

of the rocket, various nose shapes can be obtained by revolving

the cubic curve

y D f .x/ D ax C bx
2
C cx

3

about the x-axis. The cubic curve must have slope 0 at x D

h, and its slope must be positive for 0 < x < h. Find the

particular cubic curve that maximizes the volume of the nose.

Also show that this choice of the cubic makes the slope dy=dx

at the origin as large as possible and, hence, corresponds to the

bluntest nose.

y

x

.h; r/

y D ax C bx2
C cx3

Figure 7.72

M 4. (Quadratic splines) Let A D .x1; y1/, B D .x2; y2/, and

C D .x3; y3/ be three points with x1 < x2 < x3. A func-

tion f .x/ whose graph passes through the three points is a

quadratic spline if f .x/ is a quadratic function on Œx1; x2� and

a possibly different quadratic function on Œx2; x3�, and the two

quadratics have the same slope at x2. For this problem, take

A D .0; 1/, B D .1; 2/, and C D .3; 0/.

(a) Find a one-parameter family f .x;m/ of quadratic splines

through A; B; and C; having slope m at B .

(b) Find the value of m for which the length of the graph y D

f .x; m/ between x D 0 and x D 3 is minimum. What is

this minimum length? Compare it with the length of the

polygonal line ABC:

M 5. A concrete wall in the shape of a circular ring must be built to

have maximum height 2 m, inner radius 15 m, and width 1 m at

ground level, so that its outer radius is 16 m. (See Figure 7.73.)

Built on level ground, the wall will have a curved top with

height at distance 15 C x metres from the centre of the ring

given by the cubic function

f .x/ D x.1 � x/.ax C b/ m;

which must not vanish anywhere in the open interval .0; 1/.

Find the values of a and b that minimize the total volume of

concrete needed to build the wall.

15

x

y

Figure 7.73

M 6. (The volume of an n-dimensional ball) Euclidean n-dimensional

space consists of points .x1; x2; : : : ; xn/ with n real coordi-

nates. By analogy with the 3-dimensional case, we call the set

of such points that satisfy the inequality x2
1Cx

2
2C� � �Cx

2
n � r

2

the n-dimensional ball centred at the origin. For example, the

1-dimensional ball is the interval �r � x1 � r , which has vol-

ume (i.e., length) V1.r/ D 2r . The 2-dimensional ball is the

disk x2
1 C x

2
2 � r

2, which has volume (i.e., area)

V2.r/ D �r
2
D

Z r

�r

2

p

r2
� x2 dx

D

Z r

�r

V1

�p

r2
� x2

�

dx:

The 3-dimensional ball x2
1 C x

2
2 C x

2
3 � r

2 has volume

V3.r/ D
4

3
�r

3
D

Z r

�r

�

�p

r2
� x2

�2

dx

D

Z r

�r

V2

�p

r2
� x2

�

dx:

By analogy with these formulas, the volume Vn.r/ of the

n-dimensional ball of radius r is the integral of the volume of

the .n� 1/-dimensional ball of radius
p

r2
� x2 from x D �r

to x D r :

Vn.r/ D

Z r

�r

Vn�1

�p

r2
� x2

�

dx:

Using a computer algebra program, calculate V4.r/, V5.r/, : : : ;

V10.r/, and guess formulas for V2n.r/ (the even-dimensional

balls) and V2nC1.r/ (the odd-dimensional balls). If your com-

puter algebra software is sufficiently powerful, you may be able

to verify your guesses by induction. Otherwise, use them to

predict V11.r/ and V12.r/, then check your predictions by start-

ing from V10.r/.
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7.I (Buffon’s needle problem) A horizontal flat surface is ruled

with parallel lines 10 cm apart, as shown in Figure 7.74. A nee-

dle 5 cm long is dropped at random onto the surface. Find the

probability that the needle intersects one of the lines. Hint: Let

the “lower” end of the needle (the end further down the page

in the figure) be considered the reference point. (If both ends

are the same height, use the left end.) Let y be the distance

from the reference point to the nearest line above it, and let �

be the angle between the needle and the line extending to the

right of the reference point in the figure. What are the possible

values of y and �? In a plane with Cartesian coordinates � and

y; sketch the region consisting of all points .�; y/ correspond-

ing to possible positions of the needle. Also sketch the region

corresponding to those positions for which the needle crosses

one of the parallel lines. The required probability is the area of

the second region divided by the area of the first.

y

�

�

y

5

5

10 cm

10 cm

10 cm

Figure 7.74

y

x

P.x; y/

.L; 0/

L

Q

y D f .x/

Figure 7.75

8.I (The path of a trailer) Find the equation y D f .x/ of a curve

in the first quadrant of the xy-plane, starting from the point

.L; 0/, and having the property that if the tangent line to the

curve at P meets the y-axis at Q, then the length of PQ is the

constant L. (See Figure 7.75. This curve is called a tractrix

after the Latin participle tractus, meaning dragged. It is the

path of the rear end P of a trailer of length L, originally lying

along the x-axis, as the trailer is pulled (dragged) by a tractor

Q moving along the y-axis away from the origin.)

9.I (Approximating the surface area of an ellipsoid) A physical

geographer studying the flow of streams around oval stones

needed to calculate the surface areas of many such stones that

he modelled as ellipsoids:

x2

a2
C

y2

b2
C

z2

c2
D 1:

He wanted a simple formula for the surface area so that he

could implement it in a spreadsheet containing the measure-

ments a, b, and c of the stones. Unfortunately, there is no

exact formula for the area of a general ellipsoid in terms of ele-

mentary functions. However, there are such formulas for ellip-

soids of revolution, where two of the three semi-axes are equal.

These ellipsoids are called spheroids; an oblate spheroid (like

the earth) has its two longer semi-axes equal; a prolate spheroid

(like an American football) has its two shorter semi-axes equal.

A reasonable approximation to the area of a general ellipsoid

can be obtained by linear interpolation between these two.

To be specific, assume the semi-axes are arranged in de-

creasing order a � b � c, and let the surface area be S.a; b; c/.

(a) Calculate S.a; a; c/, the area of an oblate spheroid.

(b) Calculate S.a; c; c/, the area of a prolate spheroid.

(c) Construct an approximation for S.a; b; c/ that divides the

interval from S.a; a; c/ to S.a; c; c/ in the same ratio that

b divides the interval from a to c.

(d) Approximate the area of the ellipsoid

x
2

9
C

y2

4
C z

2
D 1

using the above method.
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C H A P T E R 8

Conics, Parametric Curves,

and Polar Curves

“
Everyone knows what a curve is, until he has studied enough math-

ematics to become confused through the countless number of possible

exceptions: : : . A curve is the totality of points, whose co-ordinates

are functions of a parameter which may be differentiated as often as

may be required.

”Felix Klein 1849–1925

Introduction Until now, most curves we have encountered have been

graphs of functions, and they provided useful visual in-

formation about the behaviour of the functions. In this chapter we begin to look at

plane curves as interesting objects in their own right. First, we examine conic sections,

curves with quadratic equations obtained by intersecting a plane with a right-circular

cone. Then we consider curves that can be described by two parametric equations that

give the coordinates of points on the curve as functions of a parameter. If this para-

meter is time, the equations describe the path of a moving point in the plane. Finally,

we consider curves described by equations in a new coordinate system called polar

coordinates, in which a point is located by giving its distance and direction from the

origin. In Chapter 11 we will expand our study of curves to three dimensions.

8.1 Conics

Circles, ellipses, parabolas, and hyperbolas are called conic sections (or, more simply,

just conics) because they are curves in which planes intersect right-circular cones.

To be specific, suppose that a line A is fixed in space, and V is a point fixed

on A. The right-circular cone having axis A, vertex V; and semi-vertical angle ˛

is the surface consisting of all points on straight lines through V that make angle ˛

with the line A. (See Figure 8.1.) The cone has two halves (called nappes) lying on

opposite sides of the vertex V: Any plane P that does not pass through V will intersect

the cone (one or both nappes) in a curve C. (See Figure 8.2.) If a line normal (i.e.,

perpendicular) to P makes angle � with the axis A of the cone, where 0 � � � �=2,

then

A

˛

V

Figure 8.1 A cone with vertex V; axis A,

and semi-vertical angle ˛

C is a circle if � D 0

C is an ellipse if 0 < � <
�

2
� ˛

C is a parabola if � D
�

2
� ˛

C is a hyperbola if
�

2
� ˛ < � �

�

2
:
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Figure 8.2 Planes intersecting cones in an

ellipse, a parabola, and a hyperbola ellipse parabola hyperbola

�

�
˛

In Sections 10.4 and 10.5 it is shown that planes are represented by first-degree equa-

tions and cones by second-degree equations. Therefore, all conics can be represented

analytically (in terms of Cartesian coordinates x and y in the plane of the conic) by a

second-degree equation of the general form

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0;

where A; B; : : : ; F are constants. However, such an equation can also represent the

empty set, a single point, or one or two straight lines if the left-hand side factors into

linear factors:

.A1x C B1y C C1/.A2x C B2y C C2/ D 0:

After straight lines, the conic sections are the simplest of plane curves. They have

many properties that make them useful in applications of mathematics; that is why we

include a discussion of them here. Much of this material is optional from the point

of view of a calculus course, but familiarity with the properties of conics can be very

important in some applications. Most of the properties of conics were discovered by

the Greek geometer Apollonius of Perga, around 200 BC. It is remarkable that he was

able to obtain these properties using only the techniques of classical Euclidean geom-

etry; today, most of these properties are expressed more conveniently using analytic

geometry and specific coordinate systems.

Parabolas

D E F I N I T I O N

1

Parabolas

A parabola consists of points in the plane that are equidistant from a given

point (the focus of the parabola) and a given straight line (the directrix of the

parabola). The line through the focus perpendicular to the directrix is called

the principal axis (or simply the axis) of the parabola. The vertex of the

parabola is the point where the parabola crosses its principal axis. It is on the

axis halfway between the focus and the directrix.

E X A M P L E 1
Find an equation of the parabola whose focus is the point F D

.a; 0/ and whose directrix is the line L with equation x D �a.
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Everyone knows what a curve is, until he has studied enough math-

ematics to become confused through the countless number of possible

exceptions: : : . A curve is the totality of points, whose co-ordinates

are functions of a parameter which may be differentiated as often as

may be required.

”Felix Klein 1849–1925

Introduction Until now, most curves we have encountered have been

graphs of functions, and they provided useful visual in-

formation about the behaviour of the functions. In this chapter we begin to look at

plane curves as interesting objects in their own right. First, we examine conic sections,

curves with quadratic equations obtained by intersecting a plane with a right-circular

cone. Then we consider curves that can be described by two parametric equations that

give the coordinates of points on the curve as functions of a parameter. If this para-

meter is time, the equations describe the path of a moving point in the plane. Finally,

we consider curves described by equations in a new coordinate system called polar

coordinates, in which a point is located by giving its distance and direction from the

origin. In Chapter 11 we will expand our study of curves to three dimensions.

8.1 Conics

Circles, ellipses, parabolas, and hyperbolas are called conic sections (or, more simply,

just conics) because they are curves in which planes intersect right-circular cones.

To be specific, suppose that a line A is fixed in space, and V is a point fixed

on A. The right-circular cone having axis A, vertex V; and semi-vertical angle ˛

is the surface consisting of all points on straight lines through V that make angle ˛

with the line A. (See Figure 8.1.) The cone has two halves (called nappes) lying on

opposite sides of the vertex V: Any plane P that does not pass through V will intersect

the cone (one or both nappes) in a curve C. (See Figure 8.2.) If a line normal (i.e.,

perpendicular) to P makes angle � with the axis A of the cone, where 0 � � � �=2,

then

A

˛

V

Figure 8.1 A cone with vertex V; axis A,

and semi-vertical angle ˛

C is a circle if � D 0

C is an ellipse if 0 < � <
�

2
� ˛

C is a parabola if � D
�

2
� ˛

C is a hyperbola if
�

2
� ˛ < � �

�

2
:
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Figure 8.2 Planes intersecting cones in an

ellipse, a parabola, and a hyperbola ellipse parabola hyperbola

�

�
˛

In Sections 10.4 and 10.5 it is shown that planes are represented by first-degree equa-

tions and cones by second-degree equations. Therefore, all conics can be represented

analytically (in terms of Cartesian coordinates x and y in the plane of the conic) by a

second-degree equation of the general form

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0;

where A; B; : : : ; F are constants. However, such an equation can also represent the

empty set, a single point, or one or two straight lines if the left-hand side factors into

linear factors:

.A1x C B1y C C1/.A2x C B2y C C2/ D 0:

After straight lines, the conic sections are the simplest of plane curves. They have

many properties that make them useful in applications of mathematics; that is why we

include a discussion of them here. Much of this material is optional from the point

of view of a calculus course, but familiarity with the properties of conics can be very

important in some applications. Most of the properties of conics were discovered by

the Greek geometer Apollonius of Perga, around 200 BC. It is remarkable that he was

able to obtain these properties using only the techniques of classical Euclidean geom-

etry; today, most of these properties are expressed more conveniently using analytic

geometry and specific coordinate systems.

Parabolas

D E F I N I T I O N

1

Parabolas

A parabola consists of points in the plane that are equidistant from a given

point (the focus of the parabola) and a given straight line (the directrix of the

parabola). The line through the focus perpendicular to the directrix is called

the principal axis (or simply the axis) of the parabola. The vertex of the

parabola is the point where the parabola crosses its principal axis. It is on the

axis halfway between the focus and the directrix.

E X A M P L E 1
Find an equation of the parabola whose focus is the point F D

.a; 0/ and whose directrix is the line L with equation x D �a.
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Solution The parabola has axis along the x-axis and vertex at the origin. (See

Figure 8.3.) If P D .x; y/ is any point on the parabola, then the distance from P

to F is equal to the distance from P to the nearest point Q on L. Thus,

p

.x � a/2 C y2
D x C a

or x2
� 2ax C a

2
C y

2
D x

2
C 2ax C a

2
;

or, upon simplification, y2
D 4ax.

Similarly, we can obtain standard equations for parabolas with vertices at the origin

and foci at .�a; 0/, .0; a/, and .0;�a/:

y

x

.x; y/

.a; 0/

y
2
D 4ax

F

PQ

.�a; y/

x D �a

Figure 8.3 PF D PQ: the defining

property of a parabola

Table 1. Standard equations of parabolas

Focus Directrix Equation

.a; 0/ x D �a y2
D 4ax

.�a; 0/ x D a y2
D �4ax

.0; a/ y D �a x2
D 4ay

.0;�a/ y D a x
2
D �4ay

The Focal Property of a Parabola
All of the conic sections have interesting and useful focal properties relating to the way

in which surfaces of revolution they generate reflect light if the surfaces are mirrors.

For instance, a circle will clearly reflect back along the same path any ray of light

incident along a line passing through its centre. The focal properties of parabolas,

ellipses, and hyperbolas can be derived from the reflecting property of a straight line

(i.e., a plane mirror) by elementary geometrical arguments.

Light travels in straight lines in a medium of constant optical density (one where

the speed of light is constant). This is a consequence of the physical Principle of

Least Action, which asserts that in travelling between two points, light takes the path

requiring the minimum travel time. Given a straight line L in a plane and two points

A and B in the plane on the same side of L, the point P on L for which the sum of

the distances AP C PB is minimum is such that AP and PB make equal angles with

L, or equivalently, with the normal to L at P: (See Figure 8.4.) If B 0 is the point such

that L is the right bisector of the line segment BB 0, then P is the intersection of L and

AB 0. Since one side of a triangle cannot exceed the sum of the other two sides,

AP C PB D AP C PB
0
D AB

0
� AQCQB

0
D AQCQB:

Figure 8.4 Reflection by a straight line

�

B

B 0

Q P L

A

�

Reflection by a straight line

The point P on L at which a ray from A reflects so as to pass through B is

the point that minimizes the sum of the distances AP C PB .
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Figure 8.5 Reflection by a parabola

AP

Q

T

N

M

D

X

F

Now consider a parabola with focus F and directrix D: Let P be on the parabola

and let T be the line tangent to the parabola at P: (See Figure 8.5.) LetQ be any point

on T: Then FQ meets the parabola at a point X between F and Q. Let M and N be

points on D such that MX and NP are perpendicular to D; and let A be a point on

the line through N and P that lies on the same side of the parabola as F: We have

BEWARE! Consider the

equalities and inequalities in this

chain one at a time. Why is each one

true?

FP C PA D NP C PA D NA �MX CXA D FX CXA

� FX CXQ CQA D FQCQA:

Thus, among all points Q on the line T; Q D P is the one that minimizes the sum

of distances FQ C QA. By the observation made for straight lines above, FP and

PA make equal angles with T and so also with the normal to the parabola at P: (The

parabola and the tangent line have the same normal at P:)

Reflection by a parabola

Any ray from the focus will be reflected parallel to the axis of the parabola.

Equivalently, any incident ray parallel to the axis of the parabola will be re-

flected through the focus.

Ellipses

D E F I N I T I O N

2

Ellipses

An ellipse consists of all points in the plane, the sum of whose distances from

two fixed points (the foci) is constant.

E X A M P L E 2
Find the ellipse with foci at the points .�c; 0/ and .c; 0/ if the sum

of the distances from any point P on the ellipse to these two foci

is 2a (where a > c).

Solution The ellipse passes through the four points .a; 0/, .�a; 0/, .0; b/, and .0;�b/,

where b2
D a2

� c2. (See Figure 8.6.) Also, if P D .x; y/ is on the ellipse, then
p

.x � c/2 C y2
C

p

.x C c/2 C y2
D 2a:

Transposing one term from the left side to the right side and squaring, we get

.x � c/
2
C y

2
D 4a

2
� 4a

p

.x C c/2 C y2
C .x C c/

2
C y

2
:

Now we expand the squares, cancel terms, transpose, and square again:

a

p

.x C c/2 C y2
D a

2
C cx

a
2
.x

2
C 2cx C c

2
C y

2
/ D a

4
C 2a

2
cx C c

2
x

2

.a
2
� c

2
/x

2
C a

2
y

2
D a

2
.a

2
� c

2
/:
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Solution The parabola has axis along the x-axis and vertex at the origin. (See

Figure 8.3.) If P D .x; y/ is any point on the parabola, then the distance from P

to F is equal to the distance from P to the nearest point Q on L. Thus,

p

.x � a/2 C y2
D x C a

or x2
� 2ax C a

2
C y

2
D x

2
C 2ax C a

2
;

or, upon simplification, y2
D 4ax.

Similarly, we can obtain standard equations for parabolas with vertices at the origin

and foci at .�a; 0/, .0; a/, and .0;�a/:

y

x

.x; y/

.a; 0/

y
2
D 4ax

F

PQ

.�a; y/

x D �a

Figure 8.3 PF D PQ: the defining

property of a parabola

Table 1. Standard equations of parabolas

Focus Directrix Equation

.a; 0/ x D �a y2
D 4ax

.�a; 0/ x D a y2
D �4ax

.0; a/ y D �a x2
D 4ay

.0;�a/ y D a x
2
D �4ay

The Focal Property of a Parabola
All of the conic sections have interesting and useful focal properties relating to the way

in which surfaces of revolution they generate reflect light if the surfaces are mirrors.

For instance, a circle will clearly reflect back along the same path any ray of light

incident along a line passing through its centre. The focal properties of parabolas,

ellipses, and hyperbolas can be derived from the reflecting property of a straight line

(i.e., a plane mirror) by elementary geometrical arguments.

Light travels in straight lines in a medium of constant optical density (one where

the speed of light is constant). This is a consequence of the physical Principle of

Least Action, which asserts that in travelling between two points, light takes the path

requiring the minimum travel time. Given a straight line L in a plane and two points

A and B in the plane on the same side of L, the point P on L for which the sum of

the distances AP C PB is minimum is such that AP and PB make equal angles with

L, or equivalently, with the normal to L at P: (See Figure 8.4.) If B 0 is the point such

that L is the right bisector of the line segment BB 0, then P is the intersection of L and

AB 0. Since one side of a triangle cannot exceed the sum of the other two sides,

AP C PB D AP C PB
0
D AB

0
� AQCQB

0
D AQCQB:

Figure 8.4 Reflection by a straight line

�

B

B 0

Q P L

A

�

Reflection by a straight line

The point P on L at which a ray from A reflects so as to pass through B is

the point that minimizes the sum of the distances AP C PB .
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Figure 8.5 Reflection by a parabola

AP

Q

T

N

M

D

X

F

Now consider a parabola with focus F and directrix D: Let P be on the parabola

and let T be the line tangent to the parabola at P: (See Figure 8.5.) LetQ be any point

on T: Then FQ meets the parabola at a point X between F and Q. Let M and N be

points on D such that MX and NP are perpendicular to D; and let A be a point on

the line through N and P that lies on the same side of the parabola as F: We have

BEWARE! Consider the

equalities and inequalities in this

chain one at a time. Why is each one

true?

FP C PA D NP C PA D NA �MX CXA D FX CXA

� FX CXQ CQA D FQCQA:

Thus, among all points Q on the line T; Q D P is the one that minimizes the sum

of distances FQ C QA. By the observation made for straight lines above, FP and

PA make equal angles with T and so also with the normal to the parabola at P: (The

parabola and the tangent line have the same normal at P:)

Reflection by a parabola

Any ray from the focus will be reflected parallel to the axis of the parabola.

Equivalently, any incident ray parallel to the axis of the parabola will be re-

flected through the focus.

Ellipses

D E F I N I T I O N

2

Ellipses

An ellipse consists of all points in the plane, the sum of whose distances from

two fixed points (the foci) is constant.

E X A M P L E 2
Find the ellipse with foci at the points .�c; 0/ and .c; 0/ if the sum

of the distances from any point P on the ellipse to these two foci

is 2a (where a > c).

Solution The ellipse passes through the four points .a; 0/, .�a; 0/, .0; b/, and .0;�b/,

where b2
D a2

� c2. (See Figure 8.6.) Also, if P D .x; y/ is on the ellipse, then
p

.x � c/2 C y2
C

p

.x C c/2 C y2
D 2a:

Transposing one term from the left side to the right side and squaring, we get

.x � c/
2
C y

2
D 4a

2
� 4a

p

.x C c/2 C y2
C .x C c/

2
C y

2
:

Now we expand the squares, cancel terms, transpose, and square again:

a

p

.x C c/2 C y2
D a

2
C cx

a
2
.x

2
C 2cx C c

2
C y

2
/ D a

4
C 2a

2
cx C c

2
x

2

.a
2
� c

2
/x

2
C a

2
y

2
D a

2
.a

2
� c

2
/:
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Finally, replace a2
� c2 with b2 and divide by a2b2 to get the standard equation of the

ellipse:

x2

a2
C

y2

b2
D 1:

Figure 8.6 An ellipse and its foci

y

x

.0; b/

a

.a; 0/

.0;�b/

.�a; 0/

a

.�c; 0/ .c; 0/

c

b

x
2

a2
C

y
2

b2
D 1

The following quantities describe this ellipse:

a is the semi-major axis;

b is the semi-minor axis;

c D

p

a2
� b2 is the semi-focal separation:

The point halfway between the foci is called the centre of the ellipse. In the example

above it is the origin. Note that a > b in this example. If a < b, then the ellipse has

its foci at .0; c/ and .0;�c/, where c D
p

b2
� a2. The line containing the foci (the

major axis) and the line through the centre perpendicular to that line (the minor axis)

are called the principal axes of the ellipse.

The eccentricity of an ellipse is the ratio of the semi-focal separation to the semi-

major axis. We denote the eccentricity ". For the ellipse
x2

a2
C

y2

b2
D 1 with a > b,

" D
c

a
D

p

a2
� b2

a
:

Note that " < 1 for any ellipse; the greater the value of ", the more elongated (less

circular) is the ellipse. If " D 0 so that a D b and c D 0, the two foci coincide and the

ellipse is a circle.

The Focal Property of an Ellipse
Let P be any point on an ellipse having foci F1 and F2. The normal to the ellipse at

P bisects the angle between the lines F1P and F2P:

Reflection by an ellipse

Any ray coming from one focus of an ellipse will be reflected through the

other focus.

To see this, observe that if Q is any point on the line T tangent to the ellipse at P;

then F1Q meets the ellipse at a point X between F1 and Q (see Figure 8.7), so

F1P C PF2 D F1X CXF2 � F1X CXQ CQF2 D F1QCQF2:
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Among all points on T; P is the one that minimizes the sum of the distances to F1

and F2. This implies that the normal to the ellipse at P bisects the angle F1PF2.

Figure 8.7 A ray from one focus of an

ellipse is reflected to the other focus

y

x

Q

P

T

F2F1

X
� �

The Directrices of an Ellipse
If a > b > 0, each of the lines x D a=" and x D �a=" is called a directrix

of the ellipse
x2

a2
C

y2

b2
D 1. These directrices correspond to the foci .c; 0/ and

.�c; 0/ respectively, where c D "a. If P is a point on the ellipse, then the ratio of

the distance from P to a focus to its distance from the corresponding directrix is equal

to the eccentricity ". If P D .x; y/, F is the focus .c; 0/, Q is on the corresponding

directrix x D a=", and PQ is perpendicular to the directrix (see Figure 8.8), then
y

x

P D.x;y/

a

Q

xD a
"

F

c

�

a
" ;y
�

Figure 8.8 A focus and corresponding

directrix of an ellipse

PF
2
D .x � c/

2
C y

2

D x
2
� 2cx C c

2
C b

2

�

1 �
x2

a2

�

D x
2

�

a2
� b2

a2

�

� 2cx C a
2
� b

2
C b

2

D "
2
x

2
� 2"ax C a

2 (because c D "a)

D .a � "x/
2
:

Thus, PF D a� "x. Also,QP D .a="/�x D .a� "x/=". Therefore, PF=QP D ",

as asserted.

A parabola may be considered as the limiting case of an ellipse whose eccentricity

has increased to 1. The distance between the foci is infinite, so the centre, one focus,

and its corresponding directrix have moved off to infinity leaving only one focus and

its directrix in the finite plane.

Hyperbolas

D E F I N I T I O N

3

Hyperbolas

A hyperbola consists of all points in the plane, the difference of whose dis-

tances from two fixed points (the foci) is constant.

E X A M P L E 3
If the foci of a hyperbola are F1 D .c; 0/ and F2 D .�c; 0/, and

the difference of the distances from a point P D .x; y/ on the

hyperbola to these foci is 2a (where a < c), then

PF2 � PF1 D

p

.x C c/2 C y2
�

p

.x � c/2 C y2
D

�

2a (right branch)

�2a (left branch).

(See Figure 8.9.) Simplifying this equation by squaring and transposing, as was done

for the ellipse in Example 2, we obtain the standard equation for the hyperbola:
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Finally, replace a2
� c2 with b2 and divide by a2b2 to get the standard equation of the

ellipse:

x2

a2
C

y2

b2
D 1:

Figure 8.6 An ellipse and its foci

y

x

.0; b/

a

.a; 0/

.0;�b/

.�a; 0/

a

.�c; 0/ .c; 0/

c

b

x
2

a2
C

y
2

b2
D 1

The following quantities describe this ellipse:

a is the semi-major axis;

b is the semi-minor axis;

c D

p

a2
� b2 is the semi-focal separation:

The point halfway between the foci is called the centre of the ellipse. In the example

above it is the origin. Note that a > b in this example. If a < b, then the ellipse has

its foci at .0; c/ and .0;�c/, where c D
p

b2
� a2. The line containing the foci (the

major axis) and the line through the centre perpendicular to that line (the minor axis)

are called the principal axes of the ellipse.

The eccentricity of an ellipse is the ratio of the semi-focal separation to the semi-

major axis. We denote the eccentricity ". For the ellipse
x2

a2
C

y2

b2
D 1 with a > b,

" D
c

a
D

p

a2
� b2

a
:

Note that " < 1 for any ellipse; the greater the value of ", the more elongated (less

circular) is the ellipse. If " D 0 so that a D b and c D 0, the two foci coincide and the

ellipse is a circle.

The Focal Property of an Ellipse
Let P be any point on an ellipse having foci F1 and F2. The normal to the ellipse at

P bisects the angle between the lines F1P and F2P:

Reflection by an ellipse

Any ray coming from one focus of an ellipse will be reflected through the

other focus.

To see this, observe that if Q is any point on the line T tangent to the ellipse at P;

then F1Q meets the ellipse at a point X between F1 and Q (see Figure 8.7), so

F1P C PF2 D F1X CXF2 � F1X CXQ CQF2 D F1QCQF2:
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Among all points on T; P is the one that minimizes the sum of the distances to F1

and F2. This implies that the normal to the ellipse at P bisects the angle F1PF2.

Figure 8.7 A ray from one focus of an

ellipse is reflected to the other focus

y

x

Q

P

T

F2F1

X
� �

The Directrices of an Ellipse
If a > b > 0, each of the lines x D a=" and x D �a=" is called a directrix

of the ellipse
x2

a2
C

y2

b2
D 1. These directrices correspond to the foci .c; 0/ and

.�c; 0/ respectively, where c D "a. If P is a point on the ellipse, then the ratio of

the distance from P to a focus to its distance from the corresponding directrix is equal

to the eccentricity ". If P D .x; y/, F is the focus .c; 0/, Q is on the corresponding

directrix x D a=", and PQ is perpendicular to the directrix (see Figure 8.8), then
y

x

P D.x;y/

a

Q

xD a
"

F

c

�

a
" ;y
�

Figure 8.8 A focus and corresponding

directrix of an ellipse

PF
2
D .x � c/

2
C y

2

D x
2
� 2cx C c

2
C b

2

�

1 �
x2

a2

�

D x
2

�

a2
� b2

a2

�

� 2cx C a
2
� b

2
C b

2

D "
2
x

2
� 2"ax C a

2 (because c D "a)

D .a � "x/
2
:

Thus, PF D a� "x. Also,QP D .a="/�x D .a� "x/=". Therefore, PF=QP D ",

as asserted.

A parabola may be considered as the limiting case of an ellipse whose eccentricity

has increased to 1. The distance between the foci is infinite, so the centre, one focus,

and its corresponding directrix have moved off to infinity leaving only one focus and

its directrix in the finite plane.

Hyperbolas

D E F I N I T I O N

3

Hyperbolas

A hyperbola consists of all points in the plane, the difference of whose dis-

tances from two fixed points (the foci) is constant.

E X A M P L E 3
If the foci of a hyperbola are F1 D .c; 0/ and F2 D .�c; 0/, and

the difference of the distances from a point P D .x; y/ on the

hyperbola to these foci is 2a (where a < c), then

PF2 � PF1 D

p

.x C c/2 C y2
�

p

.x � c/2 C y2
D

�

2a (right branch)

�2a (left branch).

(See Figure 8.9.) Simplifying this equation by squaring and transposing, as was done

for the ellipse in Example 2, we obtain the standard equation for the hyperbola:
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x2

a2
�

y2

b2
D 1;

where b2
D c2

� a2.

The points .a; 0/ and .�a; 0/ (called the vertices) lie on the hyperbola, one on each

branch. (The two branches correspond to the intersections of the plane of the hyperbola

with the two nappes of a cone.) Some parameters used to describe the hyperbola are

a the semi-transverse axis;

b the semi-conjugate axis;

c D

p

a2
C b2 the semi-focal separation:

The midpoint of the line segment F1F2 (in this case the origin) is called the centre of

y

x

b

c

x2

a2 � y2

b2 D1

a�c �a

�b

Figure 8.9 Hyperbola with foci .˙c; 0/

and vertices .˙a; 0/

the hyperbola. The line through the centre, the vertices, and the foci is the transverse

axis. The line through the centre perpendicular to the transverse axis is the conjugate

axis. The conjugate axis does not intersect the hyperbola. If a rectangle with sides 2a

and 2b is drawn centred at the centre of the hyperbola and with two sides tangent to the

hyperbola at the vertices, then the two diagonal lines of the rectangle are asymptotes

of the hyperbola. They have equations .x=a/˙ .y=b/ D 0; that is, they are solutions

of the degenerate equation

x2

a2
�

y2

b2
D 0:

The hyperbola approaches arbitrarily close to these lines as it recedes from the origin.

(See Figure 8.10.) A rectangular hyperbola is one whose asymptotes are perpendicu-

lar lines. (This is so if b D a.)

The eccentricity of the hyperbola is

y

x

b

c

x2

a2 � y2

b2 D1

a�c �a

�b

axis

transverse

asymptotes

conjugate
axis

vertices

centre

focus

focus

Figure 8.10 Terms associated with a

hyperbola

" D
c

a
D

p

a2
C b2

a
:

Note that " > 1. The lines x D ˙.a="/ are called the directrices of the hyperbola

.x2=a2/ � .y2=b2/ D 1. (See Figure 8.11.) In a manner similar to that used for the

ellipse, you can show that if P is on the hyperbola, then
y

x

directrixdirectrix

focus focus

Figure 8.11 The directrices of a

hyperbola

distance from P to a focus

distance from P to the corresponding directrix
D ":

The eccentricity of a rectangular hyperbola is
p

2.

A hyperbola with the same asymptotes as x2=a2
�y2=b2

D 1, but with transverse

axis along the y-axis, vertices at .0; b/ and .0;�b/, and foci at .0; c/ and .0;�c/ is

represented by the equation

x2

a2
�

y2

b2
D �1; or, equivalently,

y2

b2
�

x2

a2
D 1:

The two hyperbolas are said to be conjugate to one another. (See Figure 8.12.) The

conjugate axis of a hyperbola is the transverse axis of the conjugate hyperbola. To-

gether, the transverse and conjugate axes of a hyperbola are called its principal axes.
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Figure 8.12 Two conjugate hyperbolas

and their common asymptotes

y

x

b

c

ca�a

�b

�c

x2

a2
�

y2

b2
D 1

x
2

a2
�

y
2

b2
D �1

�c

The Focal Property of a Hyperbola
Let P be any point on a hyperbola with foci F1 and F2. Then the tangent line to the

hyperbola at P bisects the angle between the lines F1P and F2P:

Reflection by a hyperbola

A ray from one focus of a hyperbola is reflected by the hyperbola so that it

appears to have come from the other focus.

Figure 8.13 A ray from one focus is

reflected along a line from the other focus

y

x

D

E

T

P

Q

F2

X

F1

C

To see this, let P be on the right branch, let T be the line tangent to the hyperbola at

P; and let C be a circle of large radius centred at F2. (See Figure 8.13.) Let F2P

intersect this circle at D: Let Q be any point on T: Then QF1 meets the hyperbola at

X between Q and F1, and F2X meets C at E: Since X is on the radial line F2E, it is

closer to E than it is to other points on C: That is, XE � XD. Thus,

F1P C PD D F1P C F2D � F2P

D F2D � .F2P � F1P /

D F2E � .F2X � F1X/
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x2

a2
�

y2

b2
D 1;

where b2
D c2

� a2.

The points .a; 0/ and .�a; 0/ (called the vertices) lie on the hyperbola, one on each

branch. (The two branches correspond to the intersections of the plane of the hyperbola

with the two nappes of a cone.) Some parameters used to describe the hyperbola are

a the semi-transverse axis;

b the semi-conjugate axis;

c D

p

a2
C b2 the semi-focal separation:

The midpoint of the line segment F1F2 (in this case the origin) is called the centre of

y

x

b

c

x2

a2 � y2

b2 D1

a�c �a

�b

Figure 8.9 Hyperbola with foci .˙c; 0/

and vertices .˙a; 0/

the hyperbola. The line through the centre, the vertices, and the foci is the transverse

axis. The line through the centre perpendicular to the transverse axis is the conjugate

axis. The conjugate axis does not intersect the hyperbola. If a rectangle with sides 2a

and 2b is drawn centred at the centre of the hyperbola and with two sides tangent to the

hyperbola at the vertices, then the two diagonal lines of the rectangle are asymptotes

of the hyperbola. They have equations .x=a/˙ .y=b/ D 0; that is, they are solutions

of the degenerate equation

x2

a2
�

y2

b2
D 0:

The hyperbola approaches arbitrarily close to these lines as it recedes from the origin.

(See Figure 8.10.) A rectangular hyperbola is one whose asymptotes are perpendicu-

lar lines. (This is so if b D a.)

The eccentricity of the hyperbola is

y

x

b

c

x2

a2 � y2

b2 D1

a�c �a

�b

axis

transverse

asymptotes

conjugate
axis

vertices

centre

focus

focus

Figure 8.10 Terms associated with a

hyperbola

" D
c

a
D

p

a2
C b2

a
:

Note that " > 1. The lines x D ˙.a="/ are called the directrices of the hyperbola

.x2=a2/ � .y2=b2/ D 1. (See Figure 8.11.) In a manner similar to that used for the

ellipse, you can show that if P is on the hyperbola, then
y

x

directrixdirectrix

focus focus

Figure 8.11 The directrices of a

hyperbola

distance from P to a focus

distance from P to the corresponding directrix
D ":

The eccentricity of a rectangular hyperbola is
p

2.

A hyperbola with the same asymptotes as x2=a2
�y2=b2

D 1, but with transverse

axis along the y-axis, vertices at .0; b/ and .0;�b/, and foci at .0; c/ and .0;�c/ is

represented by the equation

x2

a2
�

y2

b2
D �1; or, equivalently,

y2

b2
�

x2

a2
D 1:

The two hyperbolas are said to be conjugate to one another. (See Figure 8.12.) The

conjugate axis of a hyperbola is the transverse axis of the conjugate hyperbola. To-

gether, the transverse and conjugate axes of a hyperbola are called its principal axes.
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Figure 8.12 Two conjugate hyperbolas

and their common asymptotes

y

x

b

c

ca�a

�b

�c

x2

a2
�

y2

b2
D 1

x
2

a2
�
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2

b2
D �1

�c

The Focal Property of a Hyperbola
Let P be any point on a hyperbola with foci F1 and F2. Then the tangent line to the

hyperbola at P bisects the angle between the lines F1P and F2P:

Reflection by a hyperbola

A ray from one focus of a hyperbola is reflected by the hyperbola so that it

appears to have come from the other focus.

Figure 8.13 A ray from one focus is

reflected along a line from the other focus

y

x

D

E

T

P

Q

F2

X

F1

C

To see this, let P be on the right branch, let T be the line tangent to the hyperbola at

P; and let C be a circle of large radius centred at F2. (See Figure 8.13.) Let F2P

intersect this circle at D: Let Q be any point on T: Then QF1 meets the hyperbola at

X between Q and F1, and F2X meets C at E: Since X is on the radial line F2E, it is

closer to E than it is to other points on C: That is, XE � XD. Thus,

F1P C PD D F1P C F2D � F2P

D F2D � .F2P � F1P /

D F2E � .F2X � F1X/
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D F1X C F2E � F2X

D F1X CXE

� F1X CXD

� F1X CXQCQD D F1QCQD:

P is the point on T that minimizes the sum of distances to F1 and D; therefore, the

BEWARE! Check the equalities

and inequalities in the above chain

one at a time to make sure you

understand why it is true.

normal to the hyperbola at P bisects the angle F1PD: Therefore, T bisects the angle

F1PF2.

Classifying General Conics
A second-degree equation in two variables,

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0; .A

2
C B

2
C C

2
> 0/;

generally represents a conic curve, but in certain degenerate cases it may represent two

straight lines (x2
� y2

D 0 represents the lines x D y and x D �y), one straight line

(x2
D 0 represents the line x D 0), a single point (x2

Cy
2
D 0 represents the origin),

or no points at all (x2
C y2

D �1 is not satisfied by any point in the plane).

The nature of the set of points represented by a given second-degree equation can

be determined by rewriting the equation in a form that can be recognized as one of

the standard types. If B D 0, this rewriting can be accomplished by completing the

squares in the x and y terms.

E X A M P L E 4
Describe the curve with equation x2

C 2y2
C 6x � 4y C 7 D 0.

Solution We complete the squares in the x and y terms, and rewrite the equation in

the form

x
2
C 6x C 9C 2.y

2
� 2y C 1/ D 9C 2 � 7 D 4

.x C 3/
2

4
C

.y � 1/
2

2
D 1:

Therefore, it represents an ellipse with centre at .�3; 1/, semi-major axis a D 2, and

semi-minor axis b D
p

2. Since c D
p

a2
� b2

D

p

2, the foci are .�3˙
p

2; 1/. See

Figure 8.14.

y

x

2p
2

p
2

.�3;1/

x2
C 2y2

C 6x � 4y C 7 D 0

Figure 8.14 This curve is an ellipse

If B ¤ 0, the equation has an xy term, and it cannot represent a circle. To see what

it does represent, we can rotate the coordinate axes to produce an equation with no

xy term. Let new coordinate axes (a u-axis and a v-axis) have the same origin but be

rotated an angle � from the x- and y-axes, respectively. (See Figure 8.15.) If point P

has coordinates .x; y/ with respect to the old axes, and coordinates .u; v/ with respect

to the new axes, then an analysis of triangles in the figure shows that

x D OA�XA D OU cos � �OV sin � D u cos � � v sin �;

y D XB C BP D OU sin � COV cos � D u sin � C v cos �:

Substituting these expressions into the equation

BEWARE! A lengthy

calculation is needed here. The

details have been omitted.

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0; .A

2
C B

2
C C

2
> 0/;

leads to a new equation,

A
0
u

2
C B

0
uv C C

0
v

2
CD

0
uCE

0
v C F D 0;

where
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Figure 8.15 Rotation of axes

y

x

v

u

P

V

U

X A

B

x

y

O

x D u cos � � v sin �

y D u sin � C v cos �

�

�

A
0
D

1

2

�

A.1C cos 2�/C B sin 2� C C.1 � cos 2�/
�

B
0
D .C � A/ sin 2� C B cos 2�

C
0
D

1

2

�

A.1 � cos 2�/ � B sin 2� C C.1C cos 2�/
�

D
0
D D cos � CE sin �

E
0
D �D sin � CE cos �:

Note that F remains unchanged. If we choose � so that

tan 2� D
B

A� C
; or � D

�

4
if A D C; B ¤ 0;

then B 0
D 0, and the new equation can then be analyzed as described previously.

E X A M P L E 5
Identify the curve with equation xy D 1.

Solution The reader is likely well aware that the given equation represents a rec-

tangular hyperbola with the coordinate axes as asymptotes. Since the given equation

involves A D C D D D E D 0 and B D 1, it is appropriate to rotate the axes through

angle �=4 so that

x D
1
p

2
.u � v/; y D

1
p

2
.uC v/:

The transformed equation is u2
� v2

D 2, which is, as suspected, a rectangular hy-

perbola with vertices at u D ˙
p

2, v D 0, foci at u D ˙2, v D 0, and asymptotes

u D ˙v. Hence, xy D 1 represents a rectangular hyperbola with coordinate axes as

asymptotes, vertices at .1; 1/ and .�1;�1/, and foci at .
p

2;
p

2/ and .�
p

2;�
p

2/.

E X A M P L E 6
Show that the curve 2x2

C xyC y2
D 2 is an ellipse, and find the

lengths of its semi-major and semi-minor axes.

Solution Here, A D 2, B D C D 1, D D E D 0, and F D �2. We rotate the

axes through angle � where tan 2� D B=.A� C/ D 1. Thus, B 0
D 0, 2� D �=4, and

sin 2� D cos 2� D 1=
p

2. We have

A
0
D

1

2

�

2

�

1C
1
p

2

�

C

1
p

2
C

�

1 �
1
p

2

��

D

3C
p

2

2

C
0
D

1

2

�

2

�

1 �
1
p

2

�

�

1
p

2
C

�

1C
1
p

2

��

D

3 �
p

2

2
:
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D F1X C F2E � F2X

D F1X CXE

� F1X CXD

� F1X CXQCQD D F1QCQD:

P is the point on T that minimizes the sum of distances to F1 and D; therefore, the

BEWARE! Check the equalities

and inequalities in the above chain

one at a time to make sure you

understand why it is true.

normal to the hyperbola at P bisects the angle F1PD: Therefore, T bisects the angle

F1PF2.

Classifying General Conics
A second-degree equation in two variables,

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0; .A

2
C B

2
C C

2
> 0/;

generally represents a conic curve, but in certain degenerate cases it may represent two

straight lines (x2
� y2

D 0 represents the lines x D y and x D �y), one straight line

(x2
D 0 represents the line x D 0), a single point (x2

Cy
2
D 0 represents the origin),

or no points at all (x2
C y2

D �1 is not satisfied by any point in the plane).

The nature of the set of points represented by a given second-degree equation can

be determined by rewriting the equation in a form that can be recognized as one of

the standard types. If B D 0, this rewriting can be accomplished by completing the

squares in the x and y terms.

E X A M P L E 4
Describe the curve with equation x2

C 2y2
C 6x � 4y C 7 D 0.

Solution We complete the squares in the x and y terms, and rewrite the equation in

the form

x
2
C 6x C 9C 2.y

2
� 2y C 1/ D 9C 2 � 7 D 4

.x C 3/
2

4
C

.y � 1/
2

2
D 1:

Therefore, it represents an ellipse with centre at .�3; 1/, semi-major axis a D 2, and

semi-minor axis b D
p

2. Since c D
p

a2
� b2

D

p

2, the foci are .�3˙
p

2; 1/. See

Figure 8.14.

y

x

2p
2

p
2

.�3;1/

x2
C 2y2

C 6x � 4y C 7 D 0

Figure 8.14 This curve is an ellipse

If B ¤ 0, the equation has an xy term, and it cannot represent a circle. To see what

it does represent, we can rotate the coordinate axes to produce an equation with no

xy term. Let new coordinate axes (a u-axis and a v-axis) have the same origin but be

rotated an angle � from the x- and y-axes, respectively. (See Figure 8.15.) If point P

has coordinates .x; y/ with respect to the old axes, and coordinates .u; v/ with respect

to the new axes, then an analysis of triangles in the figure shows that

x D OA�XA D OU cos � �OV sin � D u cos � � v sin �;

y D XB C BP D OU sin � COV cos � D u sin � C v cos �:

Substituting these expressions into the equation

BEWARE! A lengthy

calculation is needed here. The

details have been omitted.

Ax
2
C Bxy C Cy

2
CDx CEy C F D 0; .A

2
C B

2
C C

2
> 0/;

leads to a new equation,

A
0
u

2
C B

0
uv C C

0
v

2
CD

0
uCE

0
v C F D 0;

where
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Figure 8.15 Rotation of axes

y

x

v

u

P

V

U

X A

B

x

y

O

x D u cos � � v sin �

y D u sin � C v cos �

�

�

A
0
D

1

2

�

A.1C cos 2�/C B sin 2� C C.1 � cos 2�/
�

B
0
D .C � A/ sin 2� C B cos 2�

C
0
D

1

2

�

A.1 � cos 2�/ � B sin 2� C C.1C cos 2�/
�

D
0
D D cos � CE sin �

E
0
D �D sin � CE cos �:

Note that F remains unchanged. If we choose � so that

tan 2� D
B

A� C
; or � D

�

4
if A D C; B ¤ 0;

then B 0
D 0, and the new equation can then be analyzed as described previously.

E X A M P L E 5
Identify the curve with equation xy D 1.

Solution The reader is likely well aware that the given equation represents a rec-

tangular hyperbola with the coordinate axes as asymptotes. Since the given equation

involves A D C D D D E D 0 and B D 1, it is appropriate to rotate the axes through

angle �=4 so that

x D
1
p

2
.u � v/; y D

1
p

2
.uC v/:

The transformed equation is u2
� v2

D 2, which is, as suspected, a rectangular hy-

perbola with vertices at u D ˙
p

2, v D 0, foci at u D ˙2, v D 0, and asymptotes

u D ˙v. Hence, xy D 1 represents a rectangular hyperbola with coordinate axes as

asymptotes, vertices at .1; 1/ and .�1;�1/, and foci at .
p

2;
p

2/ and .�
p

2;�
p

2/.

E X A M P L E 6
Show that the curve 2x2

C xyC y2
D 2 is an ellipse, and find the

lengths of its semi-major and semi-minor axes.

Solution Here, A D 2, B D C D 1, D D E D 0, and F D �2. We rotate the

axes through angle � where tan 2� D B=.A� C/ D 1. Thus, B 0
D 0, 2� D �=4, and

sin 2� D cos 2� D 1=
p

2. We have

A
0
D

1

2

�

2

�

1C
1
p

2

�

C

1
p

2
C

�

1 �
1
p

2

��

D

3C
p

2

2

C
0
D

1

2

�

2

�

1 �
1
p

2

�

�

1
p

2
C

�

1C
1
p

2

��

D

3 �
p

2

2
:
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The transformed equation is .3 C
p

2/u2
C .3 �

p

2/v2
D 4, which represents an

ellipse with semi-major axis 2=
p

3 �
p

2 and semi-minor axis 2=
p

3C
p

2. (We will

discover another way to do a question like this in Section 13.3.)

E X E R C I S E S 8.1

Find equations of the conics specified in Exercises 1–6.

1. ellipse with foci at .0;˙2/ and semi-major axis 3

2. ellipse with foci at .0; 1/ and .4; 1/ and eccentricity 1=2

3. parabola with focus at .2; 3/ and vertex at .2; 4/

4. parabola passing through the origin and having focus at

.0;�1/ and axis along y D �1

5. hyperbola with foci at .0;˙2/ and semi-transverse axis 1

6. hyperbola with foci at .˙5; 1/ and asymptotes x D ˙.y � 1/

In Exercises 7–15, identify and sketch the set of points in the plane

satisfying the given equation. Specify the asymptotes of any

hyperbolas.

7. x2
C y

2
C 2x D �1 8. x2

C 4y
2
� 4y D 0

9. 4x2
C y

2
� 4y D 0 10. 4x2

� y
2
� 4y D 0

11. x2
C 2x � y D 3 12. x C 2y C 2y2

D 1

13. x2
� 2y

2
C 3x C 4y D 2

14. 9x2
C 4y

2
� 18x C 8y D �13

15. 9x2
C 4y

2
� 18x C 8y D 23

16. Identify and sketch the curve that is the graph of the equation

.x � y/2 � .x C y/2 D 1.

17.I Light rays in the xy-plane coming from the point .3; 4/ reflect

in a parabola so that they form a beam parallel to the x-axis.

The parabola passes through the origin. Find its equation.

(There are two possible answers.)

18. Light rays in the xy-plane coming from the origin are

reflected by an ellipse so that they converge at the point .3; 0/.

Find all possible equations for the ellipse.

In Exercises 19–22, identify the conic and find its centre, principal

axes, foci, and eccentricity. Specify the asymptotes of any

hyperbolas.

19. xy C x � y D 2

20.I x
2
C 2xy C y

2
D 4x � 4y C 4

21.I 8x
2
C 12xy C 17y

2
D 20

22.I x
2
� 4xy C 4y

2
C 2x C y D 0

23. The focus-directrix definition of a conic defines a conic as a

set of points P in the plane that satisfy the condition

distance from P to F

distance from P to D
D ";

where F is a fixed point, D a fixed straight line, and " a fixed

positive number. The conic is an ellipse, a parabola, or a

hyperbola according to whether " < 1, " D 1, or " > 1. Find

the equation of the conic if F is the origin and D is the line

x D �p.

Another parameter associated with conics is the semi-latus

rectum, usually denoted `. For a circle it is equal to the radius. For

other conics it is half the length of the chord through a focus and

perpendicular to the axis (for a parabola), the major axis (for an

ellipse), or the transverse axis (for a hyperbola). That chord is

called the latus rectum of the conic.

24.A Show that the semi-latus rectum of the parabola is twice the

distance from the vertex to the focus.

25.A Show that the semi-latus rectum for an ellipse with

semi-major axis a and semi-minor axis b is ` D b2=a.

26.A Show that the formula in Exercise 25 also gives the semi-latus

rectum of a hyperbola with semi-transverse axis a and

semi-conjugate axis b.

27.I Suppose a plane intersects a right-circular cone in an ellipse

and that two spheres (one on each side of the plane) are

inscribed between the cone and the plane so that each is

tangent to the cone around a circle and is also tangent to the

plane at a point. Show that the points where these two spheres

touch the plane are the foci of the ellipse. Hint: All tangent

lines drawn to a sphere from a given point outside the sphere

are equal in length. The distance between the two circles in

which the spheres intersect the cone, measured along

generators of the cone (i.e., straight lines lying on the cone), is

the same for all generators.

28.I State and prove a result analogous to that in Exercise 27 but

pertaining to a hyperbola.

29.I Suppose a plane intersects a right-circular cone in a parabola

with vertex at V: Suppose that a sphere is inscribed between

the cone and the plane as in the previous exercises and is

tangent to the plane of the parabola at point F: Show that the

chord to the parabola through F that is perpendicular to FV

has length equal to that of the latus rectum of the parabola.

Therefore, F is the focus of the parabola.
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8.2 Parametric Curves
Suppose that an object moves around in the xy-plane so that the coordinates of its

position at any time t are continuous functions of the variable t :

x D f .t/; y D g.t/:

The path followed by the object is a curve C in the plane that is specified by the two

equations above. We call these equations parametric equations of C. A curve specified

by a particular pair of parametric equations is called a parametric curve.

D E F I N I T I O N

4

Parametric curves

A parametric curve C in the plane consists of an ordered pair .f; g/ of con-

tinuous functions each defined on the same interval I: The equations

x D f .t/; y D g.t/; for t in I;

are called parametric equations of the curve C. The independent variable t

is called the parameter.

Note that the parametric curve C was not defined as a set of points in the plane, but

rather as the ordered pair of functions whose range is that set of points. Different pairs

of functions can give the same set of points in the plane, but we may still want to

regard them as different parametric curves. Nevertheless, we will often refer to the set

of points (the path traced out by .x; y/ as t traverses I ) as the curve C. The axis (real

line) of the parameter t is distinct from the coordinate axes of the plane of the curve.

(See Figure 8.16.) We will usually denote the parameter by t ; in many applications

the parameter represents time, but this need not always be the case. Because f and g

are assumed to be continuous, the curve x D f .t/, y D g.t/ has no breaks in it. A

parametric curve has a direction (indicated, say, by arrowheads), namely, the direction

corresponding to increasing values of the parameter t , as shown in Figure 8.16.

Figure 8.16 A parametric curve

y

x

a t b
Pa

Pt

Pb

C

t

E X A M P L E 1
Sketch and identify the parametric curve

x D t
2
� 1; y D t C 1; .�1 < t <1/:

Solution We could construct a table of values of x and y for various values of t , thus

getting the coordinates of a number of points on a curve. However, for this example it is

easier to eliminate the parameter from the pair of parametric equations, thus producing

a single equation in x and y whose graph is the desired curve:

t D y � 1; x D t
2
� 1 D .y � 1/

2
� 1 D y

2
� 2y:

All points on the curve lie on the parabola x D y2
�2y. Since y !˙1 as t !˙1,

the parametric curve is the whole parabola. (See Figure 8.17.)

y

x

tD�2

tD�1

tD1

tD2

tD0

Figure 8.17 The parabola defined

parametrically by x D t2 � 1, y D t C 1,

.�1 < t <1/
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The transformed equation is .3 C
p

2/u2
C .3 �

p

2/v2
D 4, which represents an

ellipse with semi-major axis 2=
p

3 �
p

2 and semi-minor axis 2=
p

3C
p

2. (We will

discover another way to do a question like this in Section 13.3.)

E X E R C I S E S 8.1

Find equations of the conics specified in Exercises 1–6.

1. ellipse with foci at .0;˙2/ and semi-major axis 3

2. ellipse with foci at .0; 1/ and .4; 1/ and eccentricity 1=2

3. parabola with focus at .2; 3/ and vertex at .2; 4/

4. parabola passing through the origin and having focus at

.0;�1/ and axis along y D �1

5. hyperbola with foci at .0;˙2/ and semi-transverse axis 1

6. hyperbola with foci at .˙5; 1/ and asymptotes x D ˙.y � 1/

In Exercises 7–15, identify and sketch the set of points in the plane

satisfying the given equation. Specify the asymptotes of any

hyperbolas.

7. x2
C y

2
C 2x D �1 8. x2

C 4y
2
� 4y D 0

9. 4x2
C y

2
� 4y D 0 10. 4x2

� y
2
� 4y D 0

11. x2
C 2x � y D 3 12. x C 2y C 2y2

D 1

13. x2
� 2y

2
C 3x C 4y D 2

14. 9x2
C 4y

2
� 18x C 8y D �13

15. 9x2
C 4y

2
� 18x C 8y D 23

16. Identify and sketch the curve that is the graph of the equation

.x � y/2 � .x C y/2 D 1.

17.I Light rays in the xy-plane coming from the point .3; 4/ reflect

in a parabola so that they form a beam parallel to the x-axis.

The parabola passes through the origin. Find its equation.

(There are two possible answers.)

18. Light rays in the xy-plane coming from the origin are

reflected by an ellipse so that they converge at the point .3; 0/.

Find all possible equations for the ellipse.

In Exercises 19–22, identify the conic and find its centre, principal

axes, foci, and eccentricity. Specify the asymptotes of any

hyperbolas.

19. xy C x � y D 2

20.I x
2
C 2xy C y

2
D 4x � 4y C 4

21.I 8x
2
C 12xy C 17y

2
D 20

22.I x
2
� 4xy C 4y

2
C 2x C y D 0

23. The focus-directrix definition of a conic defines a conic as a

set of points P in the plane that satisfy the condition

distance from P to F

distance from P to D
D ";

where F is a fixed point, D a fixed straight line, and " a fixed

positive number. The conic is an ellipse, a parabola, or a

hyperbola according to whether " < 1, " D 1, or " > 1. Find

the equation of the conic if F is the origin and D is the line

x D �p.

Another parameter associated with conics is the semi-latus

rectum, usually denoted `. For a circle it is equal to the radius. For

other conics it is half the length of the chord through a focus and

perpendicular to the axis (for a parabola), the major axis (for an

ellipse), or the transverse axis (for a hyperbola). That chord is

called the latus rectum of the conic.

24.A Show that the semi-latus rectum of the parabola is twice the

distance from the vertex to the focus.

25.A Show that the semi-latus rectum for an ellipse with

semi-major axis a and semi-minor axis b is ` D b2=a.

26.A Show that the formula in Exercise 25 also gives the semi-latus

rectum of a hyperbola with semi-transverse axis a and

semi-conjugate axis b.

27.I Suppose a plane intersects a right-circular cone in an ellipse

and that two spheres (one on each side of the plane) are

inscribed between the cone and the plane so that each is

tangent to the cone around a circle and is also tangent to the

plane at a point. Show that the points where these two spheres

touch the plane are the foci of the ellipse. Hint: All tangent

lines drawn to a sphere from a given point outside the sphere

are equal in length. The distance between the two circles in

which the spheres intersect the cone, measured along

generators of the cone (i.e., straight lines lying on the cone), is

the same for all generators.

28.I State and prove a result analogous to that in Exercise 27 but

pertaining to a hyperbola.

29.I Suppose a plane intersects a right-circular cone in a parabola

with vertex at V: Suppose that a sphere is inscribed between

the cone and the plane as in the previous exercises and is

tangent to the plane of the parabola at point F: Show that the

chord to the parabola through F that is perpendicular to FV

has length equal to that of the latus rectum of the parabola.

Therefore, F is the focus of the parabola.
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8.2 Parametric Curves
Suppose that an object moves around in the xy-plane so that the coordinates of its

position at any time t are continuous functions of the variable t :

x D f .t/; y D g.t/:

The path followed by the object is a curve C in the plane that is specified by the two

equations above. We call these equations parametric equations of C. A curve specified

by a particular pair of parametric equations is called a parametric curve.

D E F I N I T I O N

4

Parametric curves

A parametric curve C in the plane consists of an ordered pair .f; g/ of con-

tinuous functions each defined on the same interval I: The equations

x D f .t/; y D g.t/; for t in I;

are called parametric equations of the curve C. The independent variable t

is called the parameter.

Note that the parametric curve C was not defined as a set of points in the plane, but

rather as the ordered pair of functions whose range is that set of points. Different pairs

of functions can give the same set of points in the plane, but we may still want to

regard them as different parametric curves. Nevertheless, we will often refer to the set

of points (the path traced out by .x; y/ as t traverses I ) as the curve C. The axis (real

line) of the parameter t is distinct from the coordinate axes of the plane of the curve.

(See Figure 8.16.) We will usually denote the parameter by t ; in many applications

the parameter represents time, but this need not always be the case. Because f and g

are assumed to be continuous, the curve x D f .t/, y D g.t/ has no breaks in it. A

parametric curve has a direction (indicated, say, by arrowheads), namely, the direction

corresponding to increasing values of the parameter t , as shown in Figure 8.16.

Figure 8.16 A parametric curve

y

x

a t b
Pa

Pt

Pb

C

t

E X A M P L E 1
Sketch and identify the parametric curve

x D t
2
� 1; y D t C 1; .�1 < t <1/:

Solution We could construct a table of values of x and y for various values of t , thus

getting the coordinates of a number of points on a curve. However, for this example it is

easier to eliminate the parameter from the pair of parametric equations, thus producing

a single equation in x and y whose graph is the desired curve:

t D y � 1; x D t
2
� 1 D .y � 1/

2
� 1 D y

2
� 2y:

All points on the curve lie on the parabola x D y2
�2y. Since y !˙1 as t !˙1,

the parametric curve is the whole parabola. (See Figure 8.17.)

y

x

tD�2

tD�1

tD1

tD2

tD0

Figure 8.17 The parabola defined

parametrically by x D t2 � 1, y D t C 1,

.�1 < t <1/
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Although the curve in Example 1 is more easily identified when the parameter is elim-

inated, there is a loss of information in going to the nonparametric form. Specifically,

we lose the sense of the curve as the path of a moving point and hence also the direc-

tion of the curve. If the t in the parametric form denotes the time at which an object is

at the point .x; y/, the nonparametric equation x D y2
� 2y no longer tells us where

the object is at any particular time t .

E X A M P L E 2
(Parametric equations of a straight line) The straight line pass-

ing through the two points P0 D .x0; y0/ and P1 D .x1; y1/ (see

Figure 8.18) has parametric equations

(

x D x0 C t.x1 � x0/

y D y0 C t.y1 � y0/
.�1 < t <1/:

To see that these equations represent a straight line, note that
y

x

P1

P0

P

tD0

tD1

Figure 8.18 The straight line through P0

and P1

y � y0

x � x0

D

y1 � y0

x1 � x0

D constant .assuming x1 ¤ x0/:

The point P D .x; y/ is at position P0 when t D 0 and at P1 when t D 1. If t D 1=2,

then P is the midpoint between P0 and P1. Note that the line segment from P0 to P1

corresponds to values of t between 0 and 1.

E X A M P L E 3
(An arc of a circle) Sketch and identify the curve x D 3 cos t ,

y D 3 sin t , .0 � t � 3�=2/.

Solution Since x2
C y2

D 9 cos2 t C 9 sin2
t D 9, all points on the curve lie on the

circle x2
Cy2

D 9. As t increases from 0 through �=2 and � to 3�=2, the point .x; y/

moves from .3; 0/ through .0; 3/ and .�3; 0/ to .0;�3/. The parametric curve is three-

quarters of the circle. See Figure 8.19. The parameter t has geometric significance in

this example. If Pt is the point on the curve corresponding to parameter value t; then

t is the angle at the centre of the circle corresponding to the arc from the initial point

to Pt .

y

x

tD �
2

tD 3�
2

tD0

tD� t

Pt D .x; y/

Figure 8.19 Three-quarters of a circle

E X A M P L E 4
(Parametric equations of an ellipse) Sketch and identify the

curve x D a cos t , y D b sin t , .0 � t � 2�/, where a > b > 0.

Solution Observe that

x
2

a2
C

y
2

b2
D cos2

t C sin2
t D 1:

Therefore, the curve is all or part of an ellipse with major axis from .�a; 0/ to .a; 0/

and minor axis from .0;�b/ to .0; b/. As t increases from 0 to 2� , the point .x; y/

moves counterclockwise around the ellipse starting from .a; 0/ and returning to the

same point. Thus, the curve is the whole ellipse.

Figure 8.20(a) shows how the parameter t can be interpreted as an angle and how

the points on the ellipse can be obtained using circles of radii a and b. Since the curve

starts and ends at the same point, it is called a closed curve.

E X A M P L E 5
Sketch the parametric curve

x D t
3
� 3t; y D t

2
; .�2 � t � 2/:
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Figure 8.20

(a) An ellipse parametrized in terms of an

angle and constructed with the help of

two circles

(b) A self-intersecting parametric curve

y

x

t

b

a

Pt

y

x

tD2

tD�1:5

tD�1

tD˙
p

3

tD�0:5

tD0

tD0:5

tD1

tD1:5

tD�2

(a) (b)

Solution We could eliminate the parameter and obtain

x
2
D t

2
.t

2
� 3/

2
D y.y � 3/

2
;

but this doesn’t help much since we do not recognize this curve from its Cartesian

equation. Instead, let us calculate the coordinates of some points:

Table 2. Coordinates of some points on the curve of Example 5

t �2 �

3

2
�1 �

1

2
0

1

2
1

3

2
2

x �2
9

8
2

11

8
0 �

11

8
�2 �

9

8
2

y 4
9

4
1

1

4
0

1

4
1

9

4
4

Note that the curve is symmetric about the y-axis because x is an odd function of t

and y is an even function of t . (At t and �t , x has opposite values but y has the same

value.)

The curve intersects itself on the y-axis. (See Figure 8.20(b).) To find this self-

intersection, set x D 0:

0 D x D t
3
� 3t D t.t �

p

3/.t C
p

3/:

For t D 0 the curve is at .0; 0/, but for t D ˙
p

3 the curve is at .0; 3/. The self-

intersection occurs because the curve passes through the same point for two different

values of the parameter.

M Remark Here is how to get Maple to plot the parametric curve in the example above.

Note the square brackets enclosing the two functions t3� 3t and t2, and the parameter

interval, followed by the ranges of x and y for the plot.

> plot([t^3-3*t, t^2, t=-2..2], x=-3..3, y=-1..5);

General Plane Curves and Parametrizations
According to Definition 4, a parametric curve always involves a particular set of para-

metric equations; it is not just a set of points in the plane. When we are interested

in considering a curve solely as a set of points (a geometric object), we need not be

concerned with any particular pair of parametric equations representing that curve. In

this case we call the curve simply a plane curve.
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Although the curve in Example 1 is more easily identified when the parameter is elim-

inated, there is a loss of information in going to the nonparametric form. Specifically,

we lose the sense of the curve as the path of a moving point and hence also the direc-

tion of the curve. If the t in the parametric form denotes the time at which an object is

at the point .x; y/, the nonparametric equation x D y2
� 2y no longer tells us where

the object is at any particular time t .

E X A M P L E 2
(Parametric equations of a straight line) The straight line pass-

ing through the two points P0 D .x0; y0/ and P1 D .x1; y1/ (see

Figure 8.18) has parametric equations

(

x D x0 C t.x1 � x0/

y D y0 C t.y1 � y0/
.�1 < t <1/:

To see that these equations represent a straight line, note that
y

x

P1

P0

P

tD0

tD1

Figure 8.18 The straight line through P0

and P1

y � y0

x � x0

D

y1 � y0

x1 � x0

D constant .assuming x1 ¤ x0/:

The point P D .x; y/ is at position P0 when t D 0 and at P1 when t D 1. If t D 1=2,

then P is the midpoint between P0 and P1. Note that the line segment from P0 to P1

corresponds to values of t between 0 and 1.

E X A M P L E 3
(An arc of a circle) Sketch and identify the curve x D 3 cos t ,

y D 3 sin t , .0 � t � 3�=2/.

Solution Since x2
C y2

D 9 cos2 t C 9 sin2
t D 9, all points on the curve lie on the

circle x2
Cy2

D 9. As t increases from 0 through �=2 and � to 3�=2, the point .x; y/

moves from .3; 0/ through .0; 3/ and .�3; 0/ to .0;�3/. The parametric curve is three-

quarters of the circle. See Figure 8.19. The parameter t has geometric significance in

this example. If Pt is the point on the curve corresponding to parameter value t; then

t is the angle at the centre of the circle corresponding to the arc from the initial point

to Pt .

y

x

tD �
2

tD 3�
2

tD0

tD� t

Pt D .x; y/

Figure 8.19 Three-quarters of a circle

E X A M P L E 4
(Parametric equations of an ellipse) Sketch and identify the

curve x D a cos t , y D b sin t , .0 � t � 2�/, where a > b > 0.

Solution Observe that

x
2

a2
C

y
2

b2
D cos2

t C sin2
t D 1:

Therefore, the curve is all or part of an ellipse with major axis from .�a; 0/ to .a; 0/

and minor axis from .0;�b/ to .0; b/. As t increases from 0 to 2� , the point .x; y/

moves counterclockwise around the ellipse starting from .a; 0/ and returning to the

same point. Thus, the curve is the whole ellipse.

Figure 8.20(a) shows how the parameter t can be interpreted as an angle and how

the points on the ellipse can be obtained using circles of radii a and b. Since the curve

starts and ends at the same point, it is called a closed curve.

E X A M P L E 5
Sketch the parametric curve

x D t
3
� 3t; y D t

2
; .�2 � t � 2/:
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Figure 8.20

(a) An ellipse parametrized in terms of an

angle and constructed with the help of

two circles

(b) A self-intersecting parametric curve

y

x

t

b

a

Pt

y

x

tD2

tD�1:5

tD�1

tD˙
p

3

tD�0:5

tD0

tD0:5

tD1

tD1:5

tD�2

(a) (b)

Solution We could eliminate the parameter and obtain

x
2
D t

2
.t

2
� 3/

2
D y.y � 3/

2
;

but this doesn’t help much since we do not recognize this curve from its Cartesian

equation. Instead, let us calculate the coordinates of some points:

Table 2. Coordinates of some points on the curve of Example 5

t �2 �

3

2
�1 �

1

2
0

1

2
1

3

2
2

x �2
9

8
2

11

8
0 �

11

8
�2 �

9

8
2

y 4
9

4
1

1

4
0

1

4
1

9

4
4

Note that the curve is symmetric about the y-axis because x is an odd function of t

and y is an even function of t . (At t and �t , x has opposite values but y has the same

value.)

The curve intersects itself on the y-axis. (See Figure 8.20(b).) To find this self-

intersection, set x D 0:

0 D x D t
3
� 3t D t.t �

p

3/.t C
p

3/:

For t D 0 the curve is at .0; 0/, but for t D ˙
p

3 the curve is at .0; 3/. The self-

intersection occurs because the curve passes through the same point for two different

values of the parameter.

M Remark Here is how to get Maple to plot the parametric curve in the example above.

Note the square brackets enclosing the two functions t3� 3t and t2, and the parameter

interval, followed by the ranges of x and y for the plot.

> plot([t^3-3*t, t^2, t=-2..2], x=-3..3, y=-1..5);

General Plane Curves and Parametrizations
According to Definition 4, a parametric curve always involves a particular set of para-

metric equations; it is not just a set of points in the plane. When we are interested

in considering a curve solely as a set of points (a geometric object), we need not be

concerned with any particular pair of parametric equations representing that curve. In

this case we call the curve simply a plane curve.
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5

Plane curves

A plane curve is a set of points .x; y/ in the plane such that x D f .t/ and

y D g.t/ for some t in an interval I; where f and g are continuous functions

defined on I: Any such interval I and function pair .f; g/ that generate the

points of C is called a parametrization of C.

Since a plane curve does not involve any specific parametrization, it has no specific

direction.

E X A M P L E 6
The circle x2

C y2
D 1 is a plane curve. Each of the following is

a possible parametrization of the circle:

(i) x D cos t; y D sin t; .0 � t � 2�/,

(ii) x D sin s2; y D cos s2; .0 � s �
p

2�/,

(iii) x D cos.�uC 1/; y D sin.�uC 1/; .�1 � u � 1/,

(iv) x D 1 � t2; y D t
p

2 � t2; .�
p

2 � t �
p

2/.

To verify that any of these represents the circle, substitute the appropriate functions for

x and y in the expression x2
C y2, and show that the result simplifies to the value 1.

This shows that the parametric curve lies on the circle. Then examine the ranges of x

and y as the parameter varies over its domain. For example, for (iv) we have

x
2
C y

2
D .1 � t

2
/
2
C .t

p

2 � t2/
2
D 1 � 2t

2
C t

4
C 2t

2
� t

4
D 1;

and .x; y/ moves from .�1; 0/ through .0;�1/ to .1; 0/ as t increases from �
p

2

through �1 to 0, and then continues on through .0; 1/ back to .�1; 0/ as t continues to

increase from 0 through 1 to
p

2.

There are, of course, infinitely many other possible parametrizations of this curve.

E X A M P L E 7
If f is a continuous function on an interval I; then the graph of

f is a plane curve. One obvious parametrization of this curve is

x D t; y D f .t/; .t in I /:

Some Interesting Plane Curves
We complete this section by parametrizing two curves that arise in the physical world.

E X A M P L E 8
(A cycloid) If a circle rolls without slipping along a straight line,

find the path followed by a point fixed on the circle. This path is

called a cycloid.

Solution Suppose that the line on which the circle rolls is the x-axis, that the circle

has radius a and lies above the line, and that the point whose motion we follow is

originally at the origin O: See Figure 8.21. After the circle has rolled through an

angle t , it is tangent to the line at T; and the point whose path we are trying to find has

moved to position P; as shown in the figure. Since no slipping occurs,

segment OT D arc PT D at:
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Figure 8.21 Each arch of the

cycloid is traced out by P as

the circle rolls through one

complete revolution

y

x

a

Q

C

O T

P D.x;y/

t

Let PQ be perpendicular to TC; as shown in the figure. If P has coordinates .x; y/,

The brachistochrone and

tautochrone problems

Suppose a wire is bent into a

curve from point A to a lower

point B and a bead can slide

without friction along the wire.

If the bead is released at A, it

will fall toward B: What curve

should be used to minimize the

time it takes to fall from A to B?

This problem, known as the

brachistochrone (Greek for

“shortest time”) problem, has as

its solution part of an upside-

down arch of a cycloid.

Moreover, it takes the same

amount of time for the bead to

slide from any point on the curve

to the lowest point B; making the

cycloid the solution of the

tautochrone (“equal time”)

problem as well. We will

examine these matters further in

the Challenging Exercises at the

end of Chapter 11.

then

x D OT� PQ D at � a sin.� � t/ D at � a sin t;

y D TCC CQ D aC a cos.� � t/ D a � a cos t:

The parametric equations of the cycloid are, therefore,

x D a.t � sin t/; y D a.1 � cos t/:

Observe that the cycloid has a cusp at the points where it returns to the x-axis, that is, at

points corresponding to t D 2n� , where n is an integer. Even though the functions x

and y are everywhere differentiable functions of t , the curve is not smooth everywhere.

We shall consider such matters in the next section.

E X A M P L E 9
(An involute of a circle) A string is wound around a fixed circle.

One end is unwound in such a way that the part of the string not

lying on the circle is extended in a straight line. The curve followed by this free end

of the string is called an involute of the circle. (The involute of any curve is the path

traced out by the end of the curve as the curve is straightened out beginning at that

end.)

Suppose the circle has equation x2
C y2

D a2, and suppose the end of the string

being unwound starts at the point A D .a; 0/. At some subsequent time during the

unwinding let P be the position of the end of the string, and let T be the point where

the string leaves the circle. The line PT must be tangent to the circle at T:

We parametrize the path of P in terms of the angle AOT; which we denote by t:

Let points R on OA and S on TR be as shown in Figure 8.22. TR is perpendicular to

OA and to PS. Note that

OR D OT cos t D a cos t; RT D OT sin t D a sin t:

Since angle OTP is 90ı, we have angle STP D t: Since PT D arcAT D at (because

the string does not stretch or slip on the circle), we have

SP D TP sin t D at sin t; ST D TP cos t D at cos t:

If P has coordinates .x; y/, then x D ORC SP; and y D RT � ST :

x D a cos t C at sin t; y D a sin t � at cos t; .t � 0/:

These are parametric equations of the involute.
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Plane curves

A plane curve is a set of points .x; y/ in the plane such that x D f .t/ and

y D g.t/ for some t in an interval I; where f and g are continuous functions

defined on I: Any such interval I and function pair .f; g/ that generate the

points of C is called a parametrization of C.

Since a plane curve does not involve any specific parametrization, it has no specific

direction.

E X A M P L E 6
The circle x2

C y2
D 1 is a plane curve. Each of the following is

a possible parametrization of the circle:

(i) x D cos t; y D sin t; .0 � t � 2�/,

(ii) x D sin s2; y D cos s2; .0 � s �
p

2�/,

(iii) x D cos.�uC 1/; y D sin.�uC 1/; .�1 � u � 1/,

(iv) x D 1 � t2; y D t
p

2 � t2; .�
p

2 � t �
p

2/.

To verify that any of these represents the circle, substitute the appropriate functions for

x and y in the expression x2
C y2, and show that the result simplifies to the value 1.

This shows that the parametric curve lies on the circle. Then examine the ranges of x

and y as the parameter varies over its domain. For example, for (iv) we have

x
2
C y

2
D .1 � t

2
/
2
C .t

p

2 � t2/
2
D 1 � 2t

2
C t

4
C 2t

2
� t

4
D 1;

and .x; y/ moves from .�1; 0/ through .0;�1/ to .1; 0/ as t increases from �
p

2

through �1 to 0, and then continues on through .0; 1/ back to .�1; 0/ as t continues to

increase from 0 through 1 to
p

2.

There are, of course, infinitely many other possible parametrizations of this curve.

E X A M P L E 7
If f is a continuous function on an interval I; then the graph of

f is a plane curve. One obvious parametrization of this curve is

x D t; y D f .t/; .t in I /:

Some Interesting Plane Curves
We complete this section by parametrizing two curves that arise in the physical world.

E X A M P L E 8
(A cycloid) If a circle rolls without slipping along a straight line,

find the path followed by a point fixed on the circle. This path is

called a cycloid.

Solution Suppose that the line on which the circle rolls is the x-axis, that the circle

has radius a and lies above the line, and that the point whose motion we follow is

originally at the origin O: See Figure 8.21. After the circle has rolled through an

angle t , it is tangent to the line at T; and the point whose path we are trying to find has

moved to position P; as shown in the figure. Since no slipping occurs,

segment OT D arc PT D at:
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Figure 8.21 Each arch of the

cycloid is traced out by P as

the circle rolls through one

complete revolution

y

x

a

Q

C

O T

P D.x;y/

t

Let PQ be perpendicular to TC; as shown in the figure. If P has coordinates .x; y/,

The brachistochrone and

tautochrone problems

Suppose a wire is bent into a

curve from point A to a lower

point B and a bead can slide

without friction along the wire.

If the bead is released at A, it

will fall toward B: What curve

should be used to minimize the

time it takes to fall from A to B?

This problem, known as the

brachistochrone (Greek for

“shortest time”) problem, has as

its solution part of an upside-

down arch of a cycloid.

Moreover, it takes the same

amount of time for the bead to

slide from any point on the curve

to the lowest point B; making the

cycloid the solution of the

tautochrone (“equal time”)

problem as well. We will

examine these matters further in

the Challenging Exercises at the

end of Chapter 11.

then

x D OT� PQ D at � a sin.� � t/ D at � a sin t;

y D TCC CQ D aC a cos.� � t/ D a � a cos t:

The parametric equations of the cycloid are, therefore,

x D a.t � sin t/; y D a.1 � cos t/:

Observe that the cycloid has a cusp at the points where it returns to the x-axis, that is, at

points corresponding to t D 2n� , where n is an integer. Even though the functions x

and y are everywhere differentiable functions of t , the curve is not smooth everywhere.

We shall consider such matters in the next section.

E X A M P L E 9
(An involute of a circle) A string is wound around a fixed circle.

One end is unwound in such a way that the part of the string not

lying on the circle is extended in a straight line. The curve followed by this free end

of the string is called an involute of the circle. (The involute of any curve is the path

traced out by the end of the curve as the curve is straightened out beginning at that

end.)

Suppose the circle has equation x2
C y2

D a2, and suppose the end of the string

being unwound starts at the point A D .a; 0/. At some subsequent time during the

unwinding let P be the position of the end of the string, and let T be the point where

the string leaves the circle. The line PT must be tangent to the circle at T:

We parametrize the path of P in terms of the angle AOT; which we denote by t:

Let points R on OA and S on TR be as shown in Figure 8.22. TR is perpendicular to

OA and to PS. Note that

OR D OT cos t D a cos t; RT D OT sin t D a sin t:

Since angle OTP is 90ı, we have angle STP D t: Since PT D arcAT D at (because

the string does not stretch or slip on the circle), we have

SP D TP sin t D at sin t; ST D TP cos t D at cos t:

If P has coordinates .x; y/, then x D ORC SP; and y D RT � ST :

x D a cos t C at sin t; y D a sin t � at cos t; .t � 0/:

These are parametric equations of the involute.
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Figure 8.22 An involute of a circle

y

x

t

t

P D.x;y/

at

T

S

R AO

a

E X E R C I S E S 8.2

In Exercises 1–10, sketch the given parametric curve, showing its

direction with an arrow. Eliminate the parameter to give a

Cartesian equation in x and y whose graph contains the parametric

curve.

1. x D 1C 2t; y D t2; .�1 < t <1/

2. x D 2 � t; y D t C 1; .0 � t <1/

3. x D
1

t
; y D t � 1; .0 < t < 4/

4. x D
1

1C t2
; y D

t

1C t2
; .�1 < t <1/

5. x D 3 sin 2t; y D 3 cos 2t;
�

0 � t �
�

3

�

6. x D a sec t; y D b tan t;
�

�

�

2
< t <

�

2

�

7. x D 3 sin�t; y D 4 cos�t; .�1 � t � 1/

8. x D cos sin s; y D sin sin s; .�1 < s <1/

9. x D cos3
t; y D sin3

t; .0 � t � 2�/

10. x D 1 �
p

4 � t2; y D 2C t; .�2 � t � 2/

11. Describe the parametric curve x D cosh t , y D sinh t , and

find its Cartesian equation.

12. Describe the parametric curve x D 2 � 3 cosh t ,

y D �1C 2 sinh t .

13. Describe the curve x D t cos t , y D t sin t , .0 � t � 4�/.

14. Show that each of the following sets of parametric equations

represents a different arc of the parabola with equation

2.x C y/ D 1C .x � y/2.

(a) x D cos4 t; y D sin4
t

(b) x D sec4 t; y D tan4 t

(c) x D tan4 t; y D sec4 t

15. Find a parametrization of the parabola y D x2 using as

parameter the slope of the tangent line at the general point.

16. Find a parametrization of the circle x2
C y2

D R2 using as

parameter the slopem of the line joining the general point to

the point .R; 0/. Does the parametrization fail to give any

point on the circle?

17. A circle of radius a is centred at the origin O: T is a point on

the circle such that OT makes angle t with the positive

x-axis. The tangent to the circle at T meets the x-axis at X .

The point P D .x; y/ is at the intersection of the vertical line

through X and the horizontal line through T: Find, in terms

of the parameter t , parametric equations for the curve C traced

out by P as T moves around the circle. Also, eliminate t and

find an equation for C in x and y. Sketch C.

18. Repeat Exercise 17 with the following modification: OT

meets a second circle of radius b centred at O at the point Y:

P D .x; y/ is at the intersection of the vertical line through X

and the horizontal line through Y:

19.I (The folium of Descartes) Eliminate the parameter from the

parametric equations

x D
3t

1C t3
; y D

3t2

1C t3
; .t ¤ �1/;

and hence find an ordinary equation in x and y for this curve.

The parameter t can be interpreted as the slope of the line

joining the general point .x; y/ to the origin. Sketch the curve

and show that the line x C y D �1 is an asymptote.

20.I (A prolate cycloid) A railroad wheel has a flange extending

below the level of the track on which the wheel rolls. If the

radius of the wheel is a and that of the flange is b > a, find

parametric equations of the path of a point P at the

circumference of the flange as the wheel rolls along the track.

(Note that for a portion of each revolution of the wheel, P is

moving backward.) Try to sketch the graph of this prolate

cycloid.

21.I (Hypocycloids) If a circle of radius b rolls, without slipping,

around the inside of a fixed circle of radius a > b, a point on

the circumference of the rolling circle traces a curve called a

hypocycloid. If the fixed circle is centred at the origin and the
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point tracing the curve starts at .a; 0/, show that the

hypocycloid has parametric equations

x D .a � b/ cos t C b cos

�

a � b

b
t

�

;

y D .a � b/ sin t � b sin

�

a � b

b
t

�

;

where t is the angle between the positive x-axis and the line

from the origin to the point at which the rolling circle touches

the fixed circle.

If a D 2 and b D 1, show that the hypocycloid becomes a

straight line segment.

If a D 4 and b D 1, show that the parametric equations of

the hypocycloid simplify to x D 4 cos3 t , y D 4 sin3
t . This

curve is called a hypocycloid of four cusps or an astroid. (See

Figure 8.23.) It has Cartesian equation x2=3
C y2=3

D 42=3.
y

x

4

4

�4

�4

Figure 8.23 The astroid x2=3
C y2=3

D 42=3

Hypocycloids resemble the curves produced by a popular

children’s toy called Spirograph, but Spirograph curves result

from following a point inside the disc of the rolling circle

rather than on its circumference, and they therefore do not

have sharp cusps.

22.I (The witch of Agnesi)

(a) Show that the curve traced out by the point P constructed

from a circle as shown in Figure 8.24 has parametric

equations x D tan t; y D cos2 t in terms of the angle t

shown. (Hint: You will need to make extensive use of

similar triangles.)

(b) Use a trigonometric identity to eliminate t from the

parametric equations, and hence find an ordinary

Cartesian equation for the curve.

This curve is named for the Italian mathematician Maria

Agnesi (1718–1799), one of the foremost women scholars of

the eighteenth century and author of an important calculus

text. The term witch is due to a mistranslation of the Italian

word versiera (“turning curve”), which she used to describe

the curve. The word is similar to avversiera (“wife of the

devil” or “witch”).

y

x

P D .x; y/

y D 1

1
2

t

Figure 8.24 The witch of Agnesi

In Exercises 23–26, obtain a graph of the curve x D sin.mt/,

y D sin.nt/ for the given values of m and n. Such curves are

called Lissajous figures. They arise in the analysis of electrical

signals using an oscilloscope. A signal of fixed but unknown

frequency is applied to the vertical input, and a control signal is

applied to the horizontal input. The horizontal frequency is varied

until a stable Lissajous figure is observed. The (known) frequency

of the control signal and the shape of the figure then determine the

unknown frequency.

G 23. m D 1; n D 2 G 24. m D 1; n D 3

G 25. m D 2; n D 3 G 26. m D 2; n D 5

G 27. (Epicycloids) Use a graphing calculator or computer graphing

program to investigate the behaviour of curves with equations

of the form

x D

�

1C
1

n

�

cos t �
1

n
cos.nt/

y D

�

1C
1

n

�

sin t �
1

n
sin.nt/

for various integer and fractional values of n � 3. Can you

formulate any principles governing the behaviour of such

curves?

G 28. (More hypocycloids) Use a graphing calculator or computer

graphing program to investigate the behaviour of curves with

equations of the form

x D

�

1C
1

n

�

cos t C
1

n
cos..n � 1/t/

y D

�

1C
1

n

�

sin t �
1

n
sin..n � 1/t/

for various integer and fractional values of n � 3. Can you

formulate any principles governing the behaviour of these

curves?

8.3 Smooth Parametric Curves and Their Slopes

We say that a plane curve is smooth if it has a tangent line at each point P and this

tangent turns in a continuous way as P moves along the curve. (That is, the angle
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Figure 8.22 An involute of a circle
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In Exercises 1–10, sketch the given parametric curve, showing its

direction with an arrow. Eliminate the parameter to give a

Cartesian equation in x and y whose graph contains the parametric

curve.

1. x D 1C 2t; y D t2; .�1 < t <1/

2. x D 2 � t; y D t C 1; .0 � t <1/

3. x D
1

t
; y D t � 1; .0 < t < 4/

4. x D
1

1C t2
; y D

t

1C t2
; .�1 < t <1/

5. x D 3 sin 2t; y D 3 cos 2t;
�

0 � t �
�

3

�

6. x D a sec t; y D b tan t;
�

�

�

2
< t <

�

2

�

7. x D 3 sin�t; y D 4 cos�t; .�1 � t � 1/

8. x D cos sin s; y D sin sin s; .�1 < s <1/

9. x D cos3
t; y D sin3

t; .0 � t � 2�/

10. x D 1 �
p

4 � t2; y D 2C t; .�2 � t � 2/

11. Describe the parametric curve x D cosh t , y D sinh t , and

find its Cartesian equation.

12. Describe the parametric curve x D 2 � 3 cosh t ,

y D �1C 2 sinh t .

13. Describe the curve x D t cos t , y D t sin t , .0 � t � 4�/.

14. Show that each of the following sets of parametric equations

represents a different arc of the parabola with equation

2.x C y/ D 1C .x � y/2.

(a) x D cos4 t; y D sin4
t

(b) x D sec4 t; y D tan4 t

(c) x D tan4 t; y D sec4 t

15. Find a parametrization of the parabola y D x2 using as

parameter the slope of the tangent line at the general point.

16. Find a parametrization of the circle x2
C y2

D R2 using as

parameter the slopem of the line joining the general point to

the point .R; 0/. Does the parametrization fail to give any

point on the circle?

17. A circle of radius a is centred at the origin O: T is a point on

the circle such that OT makes angle t with the positive

x-axis. The tangent to the circle at T meets the x-axis at X .

The point P D .x; y/ is at the intersection of the vertical line

through X and the horizontal line through T: Find, in terms

of the parameter t , parametric equations for the curve C traced

out by P as T moves around the circle. Also, eliminate t and

find an equation for C in x and y. Sketch C.

18. Repeat Exercise 17 with the following modification: OT

meets a second circle of radius b centred at O at the point Y:

P D .x; y/ is at the intersection of the vertical line through X

and the horizontal line through Y:

19.I (The folium of Descartes) Eliminate the parameter from the

parametric equations

x D
3t

1C t3
; y D

3t2

1C t3
; .t ¤ �1/;

and hence find an ordinary equation in x and y for this curve.

The parameter t can be interpreted as the slope of the line

joining the general point .x; y/ to the origin. Sketch the curve

and show that the line x C y D �1 is an asymptote.

20.I (A prolate cycloid) A railroad wheel has a flange extending

below the level of the track on which the wheel rolls. If the

radius of the wheel is a and that of the flange is b > a, find

parametric equations of the path of a point P at the

circumference of the flange as the wheel rolls along the track.

(Note that for a portion of each revolution of the wheel, P is

moving backward.) Try to sketch the graph of this prolate

cycloid.

21.I (Hypocycloids) If a circle of radius b rolls, without slipping,

around the inside of a fixed circle of radius a > b, a point on

the circumference of the rolling circle traces a curve called a

hypocycloid. If the fixed circle is centred at the origin and the
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point tracing the curve starts at .a; 0/, show that the

hypocycloid has parametric equations

x D .a � b/ cos t C b cos

�

a � b

b
t

�

;

y D .a � b/ sin t � b sin

�

a � b

b
t

�

;

where t is the angle between the positive x-axis and the line

from the origin to the point at which the rolling circle touches

the fixed circle.

If a D 2 and b D 1, show that the hypocycloid becomes a

straight line segment.

If a D 4 and b D 1, show that the parametric equations of

the hypocycloid simplify to x D 4 cos3 t , y D 4 sin3
t . This

curve is called a hypocycloid of four cusps or an astroid. (See

Figure 8.23.) It has Cartesian equation x2=3
C y2=3

D 42=3.
y

x

4

4

�4

�4

Figure 8.23 The astroid x2=3
C y2=3

D 42=3

Hypocycloids resemble the curves produced by a popular

children’s toy called Spirograph, but Spirograph curves result

from following a point inside the disc of the rolling circle

rather than on its circumference, and they therefore do not

have sharp cusps.

22.I (The witch of Agnesi)

(a) Show that the curve traced out by the point P constructed

from a circle as shown in Figure 8.24 has parametric

equations x D tan t; y D cos2 t in terms of the angle t

shown. (Hint: You will need to make extensive use of

similar triangles.)

(b) Use a trigonometric identity to eliminate t from the

parametric equations, and hence find an ordinary

Cartesian equation for the curve.

This curve is named for the Italian mathematician Maria

Agnesi (1718–1799), one of the foremost women scholars of

the eighteenth century and author of an important calculus

text. The term witch is due to a mistranslation of the Italian

word versiera (“turning curve”), which she used to describe

the curve. The word is similar to avversiera (“wife of the

devil” or “witch”).

y

x

P D .x; y/

y D 1

1
2

t

Figure 8.24 The witch of Agnesi

In Exercises 23–26, obtain a graph of the curve x D sin.mt/,

y D sin.nt/ for the given values of m and n. Such curves are

called Lissajous figures. They arise in the analysis of electrical

signals using an oscilloscope. A signal of fixed but unknown

frequency is applied to the vertical input, and a control signal is

applied to the horizontal input. The horizontal frequency is varied

until a stable Lissajous figure is observed. The (known) frequency

of the control signal and the shape of the figure then determine the

unknown frequency.

G 23. m D 1; n D 2 G 24. m D 1; n D 3

G 25. m D 2; n D 3 G 26. m D 2; n D 5

G 27. (Epicycloids) Use a graphing calculator or computer graphing

program to investigate the behaviour of curves with equations

of the form

x D

�

1C
1

n

�

cos t �
1

n
cos.nt/

y D

�

1C
1

n

�

sin t �
1

n
sin.nt/

for various integer and fractional values of n � 3. Can you

formulate any principles governing the behaviour of such

curves?

G 28. (More hypocycloids) Use a graphing calculator or computer

graphing program to investigate the behaviour of curves with

equations of the form

x D

�

1C
1

n

�

cos t C
1

n
cos..n � 1/t/

y D

�

1C
1

n

�

sin t �
1

n
sin..n � 1/t/

for various integer and fractional values of n � 3. Can you

formulate any principles governing the behaviour of these

curves?

8.3 Smooth Parametric Curves and Their Slopes

We say that a plane curve is smooth if it has a tangent line at each point P and this

tangent turns in a continuous way as P moves along the curve. (That is, the angle
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between the tangent line at P and some fixed line, the x-axis say, is a continuous

function of the position of P:)

If the curve C is the graph of function f; then C is certainly smooth on any

interval where the derivative f 0.x/ exists and is a continuous function of x. It may

also be smooth on intervals containing isolated singular points; for example, the curve

y D x1=3 is smooth everywhere even though dy=dx does not exist at x D 0.

For parametric curves x D f .t/, y D g.t/, the situation is more complicated.

Even if f and g have continuous derivatives everywhere, such curves may fail to be

smooth at certain points, specifically points where f 0.t/ D g0.t/ D 0.

E X A M P L E 1
Consider the parametric curve x D f .t/ D t

2
; y D g.t/ D t

3.

Eliminating t leads to the Cartesian equation y2
D x

3 or x D

y2=3, which is not smooth at the origin even though f 0.t/ D 2t and g0.t/ D 3t2 are

continuous for all t . (See Figure 8.25.) Observe that both f 0 and g0 vanish at t D 0:

f 0.0/ D g0.0/ D 0. If we regard the parametric equations as specifying the position

at time t of a moving point P; then the horizontal velocity is f 0.t/ and the vertical

velocity is g0.t/. Both velocities are 0 at t D 0, so P has come to a stop at that

y

x

t D 1

t D �1

t D 0

x D t2

y D t3

Figure 8.25 This curve is not smooth at

the origin but has a cusp there

instant. When it starts moving again, it need not move in the direction it was going

before it stopped. The cycloid of Example 8 of Section 8.2 is another example where a

parametric curve is not smooth at points where dx=dt and dy=dt both vanish.

The Slope of a Parametric Curve
The following theorem confirms that a parametric curve is smooth at points where the

derivatives of its coordinate functions are continuous and not both zero.

T H E O R E M

1

Let C be the parametric curve x D f .t/, y D g.t/, where f 0.t/ and g0.t/ are contin-

uous on an interval I: If f 0.t/ ¤ 0 on I , then C is smooth and has at each t a tangent

line with slope

dy

dx
D

g
0
.t/

f 0.t/
:

If g0.t/ ¤ 0 on I; then C is smooth and has at each t a normal line with slope

�

dx

dy
D �

f 0.t/

g0.t/
:

Thus, C is smooth except possibly at points where f 0.t/ and g0.t/ are both 0.

PROOF If f 0
.t/ ¤ 0 on I; then f is either increasing or decreasing on I and so is

one-to-one and invertible. The part of C corresponding to values of t in I has ordinary

equation y D g
�

f �1.x/
�

and hence slope

dy

dx
D g

0�
f

�1
.x/
� d

dx
f

�1
.x/ D

g0�f �1.x/
�

f 0
�

f �1.x/
� D

g0.t/

f 0.t/
:

We have used here the formula

d

dx
f

�1
.x/ D

1

f 0
�

f �1.x/
�

for the derivative of an inverse function obtained in Section 3.1. This slope is a con-

tinuous function of t , so the tangent to C turns continuously for t in I: The proof for

g0.t/ ¤ 0 is similar. In this case the slope of the normal is a continuous function of t;

so the normal turns continuously. Therefore, so does the tangent.
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If f 0 and g0 are continuous, and both vanish at some point t0, then the curve x D f .t/,

y D g.t/ may or may not be smooth around t0. Example 1 was an example of a curve

that was not smooth at such a point.

E X A M P L E 2
The curve with parametrization x D t3, y D t6 is just the parabola

y D x2, so it is smooth everywhere, although dx=dt D 3t2 and

dy=dt D 6t5 both vanish at t D 0.

Tangents and normals to parametric curves

If f 0 and g0 are continuous and not both 0 at t0, then the parametric equations

�

x D f .t0/C f
0.t0/.t � t0/

y D g.t0/C g
0
.t0/.t � t0/

.�1 < t <1/

represent the tangent line to the parametric curve x D f .t/; y D g.t/ at the

point
�

f .t0/; g.t0/
�

. The normal line there has parametric equations

�

x D f .t0/C g
0.t0/.t � t0/

y D g.t0/ � f
0.t0/.t � t0/

.�1 < t <1/:

Both lines pass through
�

f .t0/; g.t0/
�

when t D t0.

E X A M P L E 3
Find equations of the tangent and normal lines to the parametric

curve x D t2 � t; y D t2 C t at the point where t D 2.

Solution At t D 2 we have x D 2, y D 6, and

dx

dt
D 2t � 1 D 3;

dy

dt
D 2t C 1 D 5:

Hence, the tangent and the normal lines have parametric equations

Tangent:

�

x D 2C 3.t � 2/ D 3t � 4

y D 6C 5.t � 2/ D 5t � 4:

Normal:

�

x D 2C 5.t � 2/ D 5t � 8

y D 6 � 3.t � 2/ D �3t C 12:

The concavity of a parametric curve can be determined using the second derivatives of

the parametric equations. The procedure is just to calculate d2y=dx2 using the Chain

Rule:

d2y

dx2
D

d

dx

dy

dx
D

d

dx

g0.t/

f 0.t/
D

d

dt

�

g0.t/

f 0.t/

�

dt

dx

D

f
0
.t/g

00
.t/ � g

0
.t/f

00
.t/

.f 0.t//2
1

f 0.t/
:

Concavity of a parametric curve

On an interval where f 0.t/ ¤ 0, the parametric curve x D f .t/, y D g.t/

has concavity determined by

d2y

dx2
D

f 0.t/g00.t/ � g0.t/f 00.t/

.f 0.t//3
:
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between the tangent line at P and some fixed line, the x-axis say, is a continuous

function of the position of P:)

If the curve C is the graph of function f; then C is certainly smooth on any

interval where the derivative f 0.x/ exists and is a continuous function of x. It may

also be smooth on intervals containing isolated singular points; for example, the curve

y D x1=3 is smooth everywhere even though dy=dx does not exist at x D 0.

For parametric curves x D f .t/, y D g.t/, the situation is more complicated.

Even if f and g have continuous derivatives everywhere, such curves may fail to be

smooth at certain points, specifically points where f 0.t/ D g0.t/ D 0.

E X A M P L E 1
Consider the parametric curve x D f .t/ D t

2
; y D g.t/ D t

3.

Eliminating t leads to the Cartesian equation y2
D x

3 or x D

y2=3, which is not smooth at the origin even though f 0.t/ D 2t and g0.t/ D 3t2 are

continuous for all t . (See Figure 8.25.) Observe that both f 0 and g0 vanish at t D 0:

f 0.0/ D g0.0/ D 0. If we regard the parametric equations as specifying the position

at time t of a moving point P; then the horizontal velocity is f 0.t/ and the vertical

velocity is g0.t/. Both velocities are 0 at t D 0, so P has come to a stop at that

y

x

t D 1

t D �1

t D 0

x D t2

y D t3

Figure 8.25 This curve is not smooth at

the origin but has a cusp there

instant. When it starts moving again, it need not move in the direction it was going

before it stopped. The cycloid of Example 8 of Section 8.2 is another example where a

parametric curve is not smooth at points where dx=dt and dy=dt both vanish.

The Slope of a Parametric Curve
The following theorem confirms that a parametric curve is smooth at points where the

derivatives of its coordinate functions are continuous and not both zero.

T H E O R E M

1

Let C be the parametric curve x D f .t/, y D g.t/, where f 0.t/ and g0.t/ are contin-

uous on an interval I: If f 0.t/ ¤ 0 on I , then C is smooth and has at each t a tangent

line with slope

dy

dx
D

g
0
.t/

f 0.t/
:

If g0.t/ ¤ 0 on I; then C is smooth and has at each t a normal line with slope

�

dx

dy
D �

f 0.t/

g0.t/
:

Thus, C is smooth except possibly at points where f 0.t/ and g0.t/ are both 0.

PROOF If f 0
.t/ ¤ 0 on I; then f is either increasing or decreasing on I and so is

one-to-one and invertible. The part of C corresponding to values of t in I has ordinary

equation y D g
�

f �1.x/
�

and hence slope

dy

dx
D g

0�
f

�1
.x/
� d

dx
f

�1
.x/ D

g0�f �1.x/
�

f 0
�

f �1.x/
� D

g0.t/

f 0.t/
:

We have used here the formula

d

dx
f

�1
.x/ D

1

f 0
�

f �1.x/
�

for the derivative of an inverse function obtained in Section 3.1. This slope is a con-

tinuous function of t , so the tangent to C turns continuously for t in I: The proof for

g0.t/ ¤ 0 is similar. In this case the slope of the normal is a continuous function of t;

so the normal turns continuously. Therefore, so does the tangent.
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If f 0 and g0 are continuous, and both vanish at some point t0, then the curve x D f .t/,

y D g.t/ may or may not be smooth around t0. Example 1 was an example of a curve

that was not smooth at such a point.

E X A M P L E 2
The curve with parametrization x D t3, y D t6 is just the parabola

y D x2, so it is smooth everywhere, although dx=dt D 3t2 and

dy=dt D 6t5 both vanish at t D 0.

Tangents and normals to parametric curves

If f 0 and g0 are continuous and not both 0 at t0, then the parametric equations

�

x D f .t0/C f
0.t0/.t � t0/

y D g.t0/C g
0
.t0/.t � t0/

.�1 < t <1/

represent the tangent line to the parametric curve x D f .t/; y D g.t/ at the

point
�

f .t0/; g.t0/
�

. The normal line there has parametric equations

�

x D f .t0/C g
0.t0/.t � t0/

y D g.t0/ � f
0.t0/.t � t0/

.�1 < t <1/:

Both lines pass through
�

f .t0/; g.t0/
�

when t D t0.

E X A M P L E 3
Find equations of the tangent and normal lines to the parametric

curve x D t2 � t; y D t2 C t at the point where t D 2.

Solution At t D 2 we have x D 2, y D 6, and

dx

dt
D 2t � 1 D 3;

dy

dt
D 2t C 1 D 5:

Hence, the tangent and the normal lines have parametric equations

Tangent:

�

x D 2C 3.t � 2/ D 3t � 4

y D 6C 5.t � 2/ D 5t � 4:

Normal:

�

x D 2C 5.t � 2/ D 5t � 8

y D 6 � 3.t � 2/ D �3t C 12:

The concavity of a parametric curve can be determined using the second derivatives of

the parametric equations. The procedure is just to calculate d2y=dx2 using the Chain

Rule:

d2y

dx2
D

d

dx

dy

dx
D

d

dx

g0.t/

f 0.t/
D

d

dt

�

g0.t/

f 0.t/

�

dt

dx

D

f
0
.t/g

00
.t/ � g

0
.t/f

00
.t/

.f 0.t//2
1

f 0.t/
:

Concavity of a parametric curve

On an interval where f 0.t/ ¤ 0, the parametric curve x D f .t/, y D g.t/

has concavity determined by

d2y

dx2
D

f 0.t/g00.t/ � g0.t/f 00.t/

.f 0.t//3
:
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Sketching Parametric Curves
As in the case of graphs of functions, derivatives provide useful information about the

shape of a parametric curve. At points where dy=dt D 0 but dx=dt ¤ 0, the tangent

is horizontal; at points where dx=dt D 0 but dy=dt ¤ 0, the tangent is vertical. For

points where dx=dt D dy=dt D 0, anything can happen; it is wise to calculate left-

and right-hand limits of the slope dy=dx as the parameter t approaches one of these

points. Concavity can be determined using the formula obtained above. We illustrate

these ideas by reconsidering a parametric curve encountered in the previous section.

E X A M P L E 4
Use slope and concavity information to sketch the graph of the

parametric curve

x D f .t/ D t
3
� 3t; y D g.t/ D t

2
; .�2 � t � 2/

previously encountered in Example 5 of Section 8.2.

Solution We have

f
0
.t/ D 3.t

2
� 1/ D 3.t � 1/.t C 1/; g

0
.t/ D 2t:

The curve has a horizontal tangent at t D 0, that is, at .0; 0/, and vertical tangents at

t D ˙1, that is, at .2; 1/ and .�2; 1/. Directional information for the curve between

these points is summarized in the following chart.

t �2 �1 0 1 2
���������������������������������������������������������������!

f 0.t/ C 0 � � � 0 C

g0.t/ � � � 0 C C C

x ! �    � !

y # # # � " " "

curve & # .  - " %

For concavity we calculate the second derivative d2y=dx2 by the formula obtained

above. Since f 00.t/ D 6t and g00.t/ D 2, we have

d2y

dx2
D

f 0.t/g00.t/ � g0.t/f 00.t/

.f 0.t//3

D

3.t2 � 1/.2/ � 2t.6t/

Œ3.t2 � 1/�3
D �

2

9

t2 C 1

.t2 � 1/3
;

which is never zero but which fails to be defined at t D ˙1. Evidently the curve

is concave upward for �1 < t < 1 and concave downward elsewhere. The curve is

sketched in Figure 8.26.

y

x

tD�1
.2;1/

tD1
.�2;1/

.�2;4/ .2;4/

tD2

tD˙
p

3

tD�2

tD0

Figure 8.26 The curve x D t3 � 3t ,

y D t2, .�2 � t � 2/
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E X E R C I S E S 8.3

In Exercises 1–8, find the coordinates of the points at which the

given parametric curve has (a) a horizontal tangent and (b) a

vertical tangent.

1. x D t2 C 1; y D 2t � 4 2. x D t2 � 2t; y D t2 C 2t

3. x D t2 � 2t; y D t3 � 12t

4. x D t3 � 3t; y D 2t3 C 3t2

5. x D te�t2=2
; y D e

�t2

6. x D sin t; y D sin t � t cos t

7. x D sin 2t; y D sin t 8. x D
3t

1C t3
; y D

3t2

1C t3

Find the slopes of the curves in Exercises 9–12 at the points

indicated.

9. x D t3 C t; y D 1 � t3; at t D 1

10. x D t4 � t2; y D t3 C 2t; at t D �1

11. x D cos 2t; y D sin t; at t D �=6

12. x D e2t
; y D te

2t
; at t D �2

Find parametric equations of the tangents to the curves in

Exercises 13–14 at the indicated points.

13. x D t3 � 2t; y D t C t3; at t D 1

14. x D t � cos t; y D 1 � sin t; at t D �=4

15. Show that the curve x D t3 � t , y D t2 has two different

tangent lines at the point .0; 1/ and find their slopes.

16. Find the slopes of two lines that are tangent to x D sin t ,

y D sin 2t at the origin.

Where, if anywhere, do the curves in Exercises 17–20 fail to be

smooth?

17. x D t3; y D t2

18. x D .t � 1/4; y D .t � 1/3

19. x D t sin t; y D t3 20. x D t3; y D t � sin t

In Exercises 21–25, sketch the graphs of the given parametric

curves, making use of information from the first two derivatives.

Unless otherwise stated, the parameter interval for each curve is

the whole real line.

21. x D t2 � 2t; y D t2 � 4t 22. x D t3; y D 3t2 � 1

23. x D t3 � 3t; y D
2

1C t2

24. x D t3 � 3t � 2; y D t2 � t � 2

25. x D cos t C t sin t; y D sin t � t cos t; .t � 0/. (See

Example 9 of Section 8.2.)

8.4 Arc Lengths and Areas for Parametric Curves

In this section we look at the problems of finding lengths of curves defined paramet-

rically, areas of surfaces of revolution obtained by rotating parametric curves, and areas

of plane regions bounded by parametric curves.

Arc Lengths and Surface Areas
Let C be a smooth parametric curve with equations

x D f .t/; y D g.t/; .a � t � b/:

(We assume that f 0.t/ and g0.t/ are continuous on the interval Œa; b� and are never

both zero.) From the differential triangle with legs dx and dy and hypotenuse ds (see

Figure 8.27), we obtain .ds/2 D .dx/2 C .dy/2, so we have

The arc length element for a parametric curve

ds D
ds

dt
dt D

s

�

ds

dt

�2

dt D

s

�

dx

dt

�2

C

�

dy

dt

�2

dt

The length of the curve C is given by

dx

dy
ds

Figure 8.27 A differential triangle

s D

Z tDb

tDa

ds D

Z b

a

s

�

dx

dt

�2

C

�

dy

dt

�2

dt:

E X A M P L E 1
Find the length of the parametric curve

x D e
t cos t; y D e

t sin t; .0 � t � 2/:
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Sketching Parametric Curves
As in the case of graphs of functions, derivatives provide useful information about the

shape of a parametric curve. At points where dy=dt D 0 but dx=dt ¤ 0, the tangent

is horizontal; at points where dx=dt D 0 but dy=dt ¤ 0, the tangent is vertical. For

points where dx=dt D dy=dt D 0, anything can happen; it is wise to calculate left-

and right-hand limits of the slope dy=dx as the parameter t approaches one of these

points. Concavity can be determined using the formula obtained above. We illustrate

these ideas by reconsidering a parametric curve encountered in the previous section.

E X A M P L E 4
Use slope and concavity information to sketch the graph of the

parametric curve

x D f .t/ D t
3
� 3t; y D g.t/ D t

2
; .�2 � t � 2/

previously encountered in Example 5 of Section 8.2.

Solution We have

f
0
.t/ D 3.t

2
� 1/ D 3.t � 1/.t C 1/; g

0
.t/ D 2t:

The curve has a horizontal tangent at t D 0, that is, at .0; 0/, and vertical tangents at

t D ˙1, that is, at .2; 1/ and .�2; 1/. Directional information for the curve between

these points is summarized in the following chart.

t �2 �1 0 1 2
���������������������������������������������������������������!

f 0.t/ C 0 � � � 0 C

g0.t/ � � � 0 C C C

x ! �    � !

y # # # � " " "

curve & # .  - " %

For concavity we calculate the second derivative d2y=dx2 by the formula obtained

above. Since f 00.t/ D 6t and g00.t/ D 2, we have

d2y

dx2
D

f 0.t/g00.t/ � g0.t/f 00.t/

.f 0.t//3

D

3.t2 � 1/.2/ � 2t.6t/

Œ3.t2 � 1/�3
D �

2

9

t2 C 1

.t2 � 1/3
;

which is never zero but which fails to be defined at t D ˙1. Evidently the curve

is concave upward for �1 < t < 1 and concave downward elsewhere. The curve is

sketched in Figure 8.26.

y

x

tD�1
.2;1/

tD1
.�2;1/

.�2;4/ .2;4/

tD2

tD˙
p

3

tD�2

tD0

Figure 8.26 The curve x D t3 � 3t ,

y D t2, .�2 � t � 2/
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E X E R C I S E S 8.3

In Exercises 1–8, find the coordinates of the points at which the

given parametric curve has (a) a horizontal tangent and (b) a

vertical tangent.

1. x D t2 C 1; y D 2t � 4 2. x D t2 � 2t; y D t2 C 2t

3. x D t2 � 2t; y D t3 � 12t

4. x D t3 � 3t; y D 2t3 C 3t2

5. x D te�t2=2
; y D e

�t2

6. x D sin t; y D sin t � t cos t

7. x D sin 2t; y D sin t 8. x D
3t

1C t3
; y D

3t2

1C t3

Find the slopes of the curves in Exercises 9–12 at the points

indicated.

9. x D t3 C t; y D 1 � t3; at t D 1

10. x D t4 � t2; y D t3 C 2t; at t D �1

11. x D cos 2t; y D sin t; at t D �=6

12. x D e2t
; y D te

2t
; at t D �2

Find parametric equations of the tangents to the curves in

Exercises 13–14 at the indicated points.

13. x D t3 � 2t; y D t C t3; at t D 1

14. x D t � cos t; y D 1 � sin t; at t D �=4

15. Show that the curve x D t3 � t , y D t2 has two different

tangent lines at the point .0; 1/ and find their slopes.

16. Find the slopes of two lines that are tangent to x D sin t ,

y D sin 2t at the origin.

Where, if anywhere, do the curves in Exercises 17–20 fail to be

smooth?

17. x D t3; y D t2

18. x D .t � 1/4; y D .t � 1/3

19. x D t sin t; y D t3 20. x D t3; y D t � sin t

In Exercises 21–25, sketch the graphs of the given parametric

curves, making use of information from the first two derivatives.

Unless otherwise stated, the parameter interval for each curve is

the whole real line.

21. x D t2 � 2t; y D t2 � 4t 22. x D t3; y D 3t2 � 1

23. x D t3 � 3t; y D
2

1C t2

24. x D t3 � 3t � 2; y D t2 � t � 2

25. x D cos t C t sin t; y D sin t � t cos t; .t � 0/. (See

Example 9 of Section 8.2.)

8.4 Arc Lengths and Areas for Parametric Curves

In this section we look at the problems of finding lengths of curves defined paramet-

rically, areas of surfaces of revolution obtained by rotating parametric curves, and areas

of plane regions bounded by parametric curves.

Arc Lengths and Surface Areas
Let C be a smooth parametric curve with equations

x D f .t/; y D g.t/; .a � t � b/:

(We assume that f 0.t/ and g0.t/ are continuous on the interval Œa; b� and are never

both zero.) From the differential triangle with legs dx and dy and hypotenuse ds (see

Figure 8.27), we obtain .ds/2 D .dx/2 C .dy/2, so we have

The arc length element for a parametric curve

ds D
ds

dt
dt D

s

�

ds

dt

�2

dt D

s

�

dx

dt

�2

C

�

dy

dt

�2

dt

The length of the curve C is given by

dx

dy
ds

Figure 8.27 A differential triangle

s D

Z tDb

tDa

ds D

Z b

a

s

�

dx

dt

�2

C

�

dy

dt

�2

dt:

E X A M P L E 1
Find the length of the parametric curve

x D e
t cos t; y D e

t sin t; .0 � t � 2/:
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Solution We have

dx

dt
D e

t
.cos t � sin t/;

dy

dt
D e

t
.sin t C cos t/:

Squaring these formulas, adding and simplifying, we get
�

ds

dt

�2

D e
2t
.cos t � sin t/2 C e2t

.sin t C cos t/2

D e
2t
�

cos2
t � 2 cos t sin t C sin2

t C sin2
t C 2 sin t cos t C cos2

t
�

D 2e
2t
:

The length of the curve is, therefore,

s D

Z 2

0

p

2e2t dt D
p

2

Z 2

0

e
t
dt D

p

2 .e
2
� 1/ units:

Parametric curves can be rotated around various axes to generate surfaces of revolution.

The areas of these surfaces can be found by the same procedure used for graphs of

functions, with the appropriate version of ds. If the curve

x D f .t/; y D g.t/; .a � t � b/

is rotated about the x-axis, the area S of the surface so generated is given by

S D 2�

Z tDb

tDa

jyj ds D 2�

Z b

a

jg.t/j

p

.f 0.t//2 C .g0.t//2 dt:

If the rotation is about the y-axis, then the area is

S D 2�

Z tDb

tDa

jxj ds D 2�

Z b

a

jf .t/j

p

.f 0.t//2 C .g0.t//2 dt:

E X A M P L E 2
Find the area of the surface of revolution obtained by rotating the

astroid curve x D a cos3 t , y D a sin3
t (where a > 0), about the

x-axis.

Solution The curve is symmetric about both coordinate axes. (See Figure 8.28.) The

entire surface will be generated by rotating the upper half of the curve; in fact, we need

only rotate the first quadrant part and multiply by 2. The first quadrant part of the curve

corresponds to 0 � t � �=2. We have

y

x

a

a

�a

�a

Figure 8.28 An astroid

dx

dt
D �3a cos2

t sin t;
dy

dt
D 3a sin2

t cos t:

Accordingly, the arc length element is

ds D

p

9a2 cos4 t sin2
t C 9a2 sin4

t cos2 t dt

D 3a cos t sin t
p

cos2 t C sin2
t dt

D 3a cos t sin t dt:

Therefore, the required surface area is

S D 2 � 2�

Z �=2

0

a sin3
t 3a cos t sin t dt

D 12�a
2

Z �=2

0

sin4
t cos t dt Let u D sin t ,

du D cos t dt

D 12�a
2

Z 1

0

u
4
du D

12�a2

5
square units:
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Areas Bounded by Parametric Curves
Consider the parametric curve C with equations x D f .t/, y D g.t/, .a � t � b/,

where f is differentiable and g is continuous on Œa; b�. For the moment, let us also

assume that f 0.t/ � 0 and g.t/ � 0 on Œa; b�, so C has no points below the x-axis and

is traversed from left to right as t increases from a to b.

The region under C and above the x-axis has area element given by

dA D y dx D g.t/f 0.t/ dt , so its area (see Figure 8.29) is

A D

Z b

a

g.t/f
0
.t/ dt:

Similar arguments can be given for three other cases:

y

xf .a/ f .t/ f .b/

tDa

g.t/

dxDf 0.t/ dt

tDb

Figure 8.29 Area element under a

parametric curve

If f 0.t/ � 0 and g.t/ � 0 on Œa; b�, then A D �

Z b

a

g.t/f
0
.t/ dt ,

If f 0
.t/ � 0 and g.t/ � 0 on Œa; b�, then A D �

Z b

a

g.t/f
0
.t/ dt ,

If f 0.t/ � 0 and g.t/ � 0 on Œa; b�, then A D

Z b

a

g.t/f
0
.t/ dt ,

whereA is the (positive) area bounded by C, the x-axis, and the vertical lines x D f .a/

and x D f .b/. Combining these results we can see that

Z b

a

g.t/f
0
.t/ dt D A1 �A2;

where A1 is the area lying vertically between C and that part of the x-axis consisting

of points x D f .t/ such that g.t/f 0
.t/ � 0, and A2 is a similar area correspond-

ing to points where g.t/f 0.t/ < 0. This formula is valid for arbitrary continuous

g and differentiable f: See Figure 8.30 for generic examples. In particular, if C

is a non–self-intersecting closed curve, then the area of the region bounded by C is

given by

A D

Z b

a

g.t/f
0
.t/ dt if C is traversed clockwise as t increases,

A D �

Z b

a

g.t/f
0
.t/ dt if C is traversed counterclockwise,

both of which are illustrated in Figure 8.31.

Figure 8.30 Areas defined by parametric

curves

y

x

y

x
t D b

t D b

t D a

t D a

A D

Z b

a
g.t/f

0
.t/ dt A D �

Z b

a
g.t/f

0
.t/ dt

A
A

C
C
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Solution We have

dx

dt
D e

t
.cos t � sin t/;

dy

dt
D e

t
.sin t C cos t/:

Squaring these formulas, adding and simplifying, we get
�

ds

dt

�2

D e
2t
.cos t � sin t/2 C e2t

.sin t C cos t/2

D e
2t
�

cos2
t � 2 cos t sin t C sin2

t C sin2
t C 2 sin t cos t C cos2

t
�

D 2e
2t
:

The length of the curve is, therefore,

s D

Z 2

0

p

2e2t dt D
p

2

Z 2

0

e
t
dt D

p

2 .e
2
� 1/ units:

Parametric curves can be rotated around various axes to generate surfaces of revolution.

The areas of these surfaces can be found by the same procedure used for graphs of

functions, with the appropriate version of ds. If the curve

x D f .t/; y D g.t/; .a � t � b/

is rotated about the x-axis, the area S of the surface so generated is given by

S D 2�

Z tDb

tDa

jyj ds D 2�

Z b

a

jg.t/j

p

.f 0.t//2 C .g0.t//2 dt:

If the rotation is about the y-axis, then the area is

S D 2�

Z tDb

tDa

jxj ds D 2�

Z b

a

jf .t/j

p

.f 0.t//2 C .g0.t//2 dt:

E X A M P L E 2
Find the area of the surface of revolution obtained by rotating the

astroid curve x D a cos3 t , y D a sin3
t (where a > 0), about the

x-axis.

Solution The curve is symmetric about both coordinate axes. (See Figure 8.28.) The

entire surface will be generated by rotating the upper half of the curve; in fact, we need

only rotate the first quadrant part and multiply by 2. The first quadrant part of the curve

corresponds to 0 � t � �=2. We have

y

x

a

a

�a

�a

Figure 8.28 An astroid

dx

dt
D �3a cos2

t sin t;
dy

dt
D 3a sin2

t cos t:

Accordingly, the arc length element is

ds D

p

9a2 cos4 t sin2
t C 9a2 sin4

t cos2 t dt

D 3a cos t sin t
p

cos2 t C sin2
t dt

D 3a cos t sin t dt:

Therefore, the required surface area is

S D 2 � 2�

Z �=2

0

a sin3
t 3a cos t sin t dt

D 12�a
2

Z �=2

0

sin4
t cos t dt Let u D sin t ,

du D cos t dt

D 12�a
2

Z 1

0

u
4
du D

12�a2

5
square units:
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Areas Bounded by Parametric Curves
Consider the parametric curve C with equations x D f .t/, y D g.t/, .a � t � b/,

where f is differentiable and g is continuous on Œa; b�. For the moment, let us also

assume that f 0.t/ � 0 and g.t/ � 0 on Œa; b�, so C has no points below the x-axis and

is traversed from left to right as t increases from a to b.

The region under C and above the x-axis has area element given by

dA D y dx D g.t/f 0.t/ dt , so its area (see Figure 8.29) is

A D

Z b

a

g.t/f
0
.t/ dt:

Similar arguments can be given for three other cases:

y

xf .a/ f .t/ f .b/

tDa

g.t/

dxDf 0.t/ dt

tDb

Figure 8.29 Area element under a

parametric curve

If f 0.t/ � 0 and g.t/ � 0 on Œa; b�, then A D �

Z b

a

g.t/f
0
.t/ dt ,

If f 0
.t/ � 0 and g.t/ � 0 on Œa; b�, then A D �

Z b

a

g.t/f
0
.t/ dt ,

If f 0.t/ � 0 and g.t/ � 0 on Œa; b�, then A D

Z b

a

g.t/f
0
.t/ dt ,

whereA is the (positive) area bounded by C, the x-axis, and the vertical lines x D f .a/

and x D f .b/. Combining these results we can see that

Z b

a

g.t/f
0
.t/ dt D A1 �A2;

where A1 is the area lying vertically between C and that part of the x-axis consisting

of points x D f .t/ such that g.t/f 0
.t/ � 0, and A2 is a similar area correspond-

ing to points where g.t/f 0.t/ < 0. This formula is valid for arbitrary continuous

g and differentiable f: See Figure 8.30 for generic examples. In particular, if C

is a non–self-intersecting closed curve, then the area of the region bounded by C is

given by

A D

Z b

a

g.t/f
0
.t/ dt if C is traversed clockwise as t increases,

A D �

Z b

a

g.t/f
0
.t/ dt if C is traversed counterclockwise,

both of which are illustrated in Figure 8.31.

Figure 8.30 Areas defined by parametric

curves

y

x

y

x
t D b

t D b

t D a

t D a

A D

Z b

a
g.t/f

0
.t/ dt A D �

Z b

a
g.t/f

0
.t/ dt

A
A

C
C
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Figure 8.31 Areas bounded by closed

parametric curves

y

x

y

x

A D

Z b

a

g.t/f
0
.t/ dt A D �

Z b

a

g.t/f
0
.t/ dt

A

A

tDb

tDa
tDb

tDa C C

E X A M P L E 3
Find the area bounded by the ellipse x D a cos s, y D b sin s;

.0 � s � 2�/.

Solution This ellipse is traversed counterclockwise. (See Example 4 in Section 8.2.)

The area enclosed is

A D �

Z 2�

0

b sin s.�a sin s/ ds

D

ab

2

Z 2�

0

.1 � cos 2s/ ds

D

ab

2
s

ˇ

ˇ

ˇ

ˇ

2�

0

�

ab

4
sin 2s

ˇ

ˇ

ˇ

ˇ

2�

0

D �ab square units.

E X A M P L E 4
Find the area above the x-axis and under one arch of the cycloid

x D at � a sin t , y D a � a cos t .

Solution Part of the cycloid is shown in Figure 8.21 in Section 8.2. One arch cor-

responds to the parameter interval 0 � t � 2� . Since y D a.1 � cos t/ � 0 and

dx=dt D a.1 � cos t/ � 0, the area under one arch is

A D

Z 2�

0

a
2
.1 � cos t/2 dt D a2

Z 2�

0

�

1 � 2 cos t C
1C cos 2t

2

�

dt

D a
2

�

t � 2 sin t C
t

2
C

sin 2t

4

�
ˇ

ˇ

ˇ

ˇ

2�

0

D 3�a
2 square units.

y

x

tDb C

tDa
g.a/

g.b/

A

Figure 8.32 The shaded area is

A D

Z b

a

f .t/g
0
.t/ dt

Similar arguments to those used above show that if f is continuous and g is differen-

tiable, then we can also interpret

Z b

a

f .t/g
0
.t/ dt D

Z tDb

tDa

x dy D A1 �A2;

where A1 is the area of the region lying horizontally between the parametric curve

x D f .t/, y D g.t/, .a � t � b/ and that part of the y-axis consisting of points

y D g.t/ such that f .t/g0.t/ � 0, and A2 is the area of a similar region corre-

sponding to f .t/g0.t/ < 0. For example, the region shaded in Figure 8.32 has area
R b

a
f .t/g0.t/ dt . Green’s Theorem in Section 16.3 provides a more coherent approach

to finding such areas.
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E X E R C I S E S 8.4

Find the lengths of the curves in Exercises 1–8.

1. x D 3t2; y D 2t3; .0 � t � 1/

2. x D 1C t3; y D 1 � t2; .�1 � t � 2/

3. x D a cos3
t; y D a sin3

t; .0 � t � 2�/

4. x D ln.1C t2/; y D 2 tan�1
t; .0 � t � 1/

5. x D t2 sin t; y D t2 cos t; .0 � t � 2�/

6. x D cos t C t sin t; y D sin t � t cos t; .0 � t � 2�/

7. x D t C sin t; y D cos t; .0 � t � �/

8. x D sin2
t; y D 2 cos t; .0 � t � �=2/

9. Find the length of one arch of the cycloid x D at � a sin t ,

y D a � a cos t . (One arch corresponds to 0 � t � 2� .)

10. Find the area of the surfaces obtained by rotating one arch of

the cycloid in Exercise 9 about (a) the x-axis, (b) the y-axis.

11. Find the area of the surface generated by rotating the curve

x D et cos t , y D et sin t , .0 � t � �=2/ about the x-axis.

12. Find the area of the surface generated by rotating the curve of

Exercise 11 about the y-axis.

13. Find the area of the surface generated by rotating the curve

x D 3t2, y D 2t3, .0 � t � 1/ about the y-axis.

14. Find the area of the surface generated by rotating the curve

x D 3t2, y D 2t3, .0 � t � 1/ about the x-axis.

In Exercises 15–20, sketch and find the area of the region R

described in terms of the given parametric curves.

15. R is the closed loop bounded by x D t3 � 4t , y D t2,

.�2 � t � 2/.

16. R is bounded by the astroid x D a cos3
t , y D a sin3

t ,

.0 � t � 2�/.

17. R is bounded by the coordinate axes and the parabolic arc

x D sin4
t , y D cos4 t .

18. R is bounded by x D cos s sin s, y D sin2
s,

.0 � s � �=2/, and the y-axis.

19. R is bounded by the oval x D .2C sin t / cos t ,

y D .2C sin t / sin t .

20.I R is bounded by the x-axis, the hyperbola x D sec t ,

y D tan t , and the ray joining the origin to the point

.sec t0; tan t0/.

21. Show that the region bounded by the x-axis and the hyperbola

x D cosh t , y D sinh t (where t > 0), and the ray from the

origin to the point .cosh t0; sinh t0/ has area t0=2 square units.

This proves a claim made at the beginning of Section 3.6.

22. Find the volume of the solid obtained by rotating about the

x-axis the region bounded by that axis and one arch of the

cycloid x D at � a sin t , y D a � a cos t . (See Example 8 in

Section 8.2.)

23. Find the volume generated by rotating about the x-axis the

region lying under the astroid x D a cos3 t , y D a sin3
t and

above the x-axis.

8.5 Polar Coordinates and Polar Curves
The polar coordinate system is an alternative to the rectangular (Cartesian) coordinate

system for describing the location of points in a plane. Sometimes it is more important

to know how far, and in what direction, a point is from the origin than it is to know its

Cartesian coordinates. In the polar coordinate system there is an origin (or pole), O ,

and a polar axis, a ray (i.e., a half-line) extending from O horizontally to the right.

The position of any point P in the plane is then determined by its polar coordinates

Œr; ��, where

(i) r is the distance from O to P; and

(ii) � is the angle that the rayOP makes with the polar axis (counterclockwise angles

being considered positive).

We will use square brackets for polar coordinates of a point to distinguish them from

rectangular (Cartesian) coordinates. Figure 8.33 shows some points with their polar

coordinates. The rectangular coordinate axes x and y are usually shown on a polar

graph. The polar axis coincides with the positive x-axis.

Unlike rectangular coordinates, the polar coordinates of a point are not unique.

The polar coordinates Œr; �1� and Œr; �2� represent the same point provided �1 and �2

differ by an integer multiple of 2� :

�2 D �1 C 2n�; where n D 0; ˙1; ˙2; : : : :
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Figure 8.31 Areas bounded by closed

parametric curves

y

x

y

x

A D

Z b

a

g.t/f
0
.t/ dt A D �

Z b

a

g.t/f
0
.t/ dt

A

A

tDb

tDa
tDb

tDa C C

E X A M P L E 3
Find the area bounded by the ellipse x D a cos s, y D b sin s;

.0 � s � 2�/.

Solution This ellipse is traversed counterclockwise. (See Example 4 in Section 8.2.)

The area enclosed is

A D �

Z 2�

0

b sin s.�a sin s/ ds

D

ab

2

Z 2�

0

.1 � cos 2s/ ds

D

ab

2
s

ˇ

ˇ

ˇ

ˇ

2�

0

�

ab

4
sin 2s

ˇ

ˇ

ˇ

ˇ

2�

0

D �ab square units.

E X A M P L E 4
Find the area above the x-axis and under one arch of the cycloid

x D at � a sin t , y D a � a cos t .

Solution Part of the cycloid is shown in Figure 8.21 in Section 8.2. One arch cor-

responds to the parameter interval 0 � t � 2� . Since y D a.1 � cos t/ � 0 and

dx=dt D a.1 � cos t/ � 0, the area under one arch is

A D

Z 2�

0

a
2
.1 � cos t/2 dt D a2

Z 2�

0

�

1 � 2 cos t C
1C cos 2t

2

�

dt

D a
2

�

t � 2 sin t C
t

2
C

sin 2t

4

�
ˇ

ˇ

ˇ

ˇ

2�

0

D 3�a
2 square units.

y

x

tDb C

tDa
g.a/

g.b/

A

Figure 8.32 The shaded area is

A D

Z b

a

f .t/g
0
.t/ dt

Similar arguments to those used above show that if f is continuous and g is differen-

tiable, then we can also interpret

Z b

a

f .t/g
0
.t/ dt D

Z tDb

tDa

x dy D A1 �A2;

where A1 is the area of the region lying horizontally between the parametric curve

x D f .t/, y D g.t/, .a � t � b/ and that part of the y-axis consisting of points

y D g.t/ such that f .t/g0.t/ � 0, and A2 is the area of a similar region corre-

sponding to f .t/g0.t/ < 0. For example, the region shaded in Figure 8.32 has area
R b

a
f .t/g0.t/ dt . Green’s Theorem in Section 16.3 provides a more coherent approach

to finding such areas.
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E X E R C I S E S 8.4

Find the lengths of the curves in Exercises 1–8.

1. x D 3t2; y D 2t3; .0 � t � 1/

2. x D 1C t3; y D 1 � t2; .�1 � t � 2/

3. x D a cos3
t; y D a sin3

t; .0 � t � 2�/

4. x D ln.1C t2/; y D 2 tan�1
t; .0 � t � 1/

5. x D t2 sin t; y D t2 cos t; .0 � t � 2�/

6. x D cos t C t sin t; y D sin t � t cos t; .0 � t � 2�/

7. x D t C sin t; y D cos t; .0 � t � �/

8. x D sin2
t; y D 2 cos t; .0 � t � �=2/

9. Find the length of one arch of the cycloid x D at � a sin t ,

y D a � a cos t . (One arch corresponds to 0 � t � 2� .)

10. Find the area of the surfaces obtained by rotating one arch of

the cycloid in Exercise 9 about (a) the x-axis, (b) the y-axis.

11. Find the area of the surface generated by rotating the curve

x D et cos t , y D et sin t , .0 � t � �=2/ about the x-axis.

12. Find the area of the surface generated by rotating the curve of

Exercise 11 about the y-axis.

13. Find the area of the surface generated by rotating the curve

x D 3t2, y D 2t3, .0 � t � 1/ about the y-axis.

14. Find the area of the surface generated by rotating the curve

x D 3t2, y D 2t3, .0 � t � 1/ about the x-axis.

In Exercises 15–20, sketch and find the area of the region R

described in terms of the given parametric curves.

15. R is the closed loop bounded by x D t3 � 4t , y D t2,

.�2 � t � 2/.

16. R is bounded by the astroid x D a cos3
t , y D a sin3

t ,

.0 � t � 2�/.

17. R is bounded by the coordinate axes and the parabolic arc

x D sin4
t , y D cos4 t .

18. R is bounded by x D cos s sin s, y D sin2
s,

.0 � s � �=2/, and the y-axis.

19. R is bounded by the oval x D .2C sin t / cos t ,

y D .2C sin t / sin t .

20.I R is bounded by the x-axis, the hyperbola x D sec t ,

y D tan t , and the ray joining the origin to the point

.sec t0; tan t0/.

21. Show that the region bounded by the x-axis and the hyperbola

x D cosh t , y D sinh t (where t > 0), and the ray from the

origin to the point .cosh t0; sinh t0/ has area t0=2 square units.

This proves a claim made at the beginning of Section 3.6.

22. Find the volume of the solid obtained by rotating about the

x-axis the region bounded by that axis and one arch of the

cycloid x D at � a sin t , y D a � a cos t . (See Example 8 in

Section 8.2.)

23. Find the volume generated by rotating about the x-axis the

region lying under the astroid x D a cos3 t , y D a sin3
t and

above the x-axis.

8.5 Polar Coordinates and Polar Curves
The polar coordinate system is an alternative to the rectangular (Cartesian) coordinate

system for describing the location of points in a plane. Sometimes it is more important

to know how far, and in what direction, a point is from the origin than it is to know its

Cartesian coordinates. In the polar coordinate system there is an origin (or pole), O ,

and a polar axis, a ray (i.e., a half-line) extending from O horizontally to the right.

The position of any point P in the plane is then determined by its polar coordinates

Œr; ��, where

(i) r is the distance from O to P; and

(ii) � is the angle that the rayOP makes with the polar axis (counterclockwise angles

being considered positive).

We will use square brackets for polar coordinates of a point to distinguish them from

rectangular (Cartesian) coordinates. Figure 8.33 shows some points with their polar

coordinates. The rectangular coordinate axes x and y are usually shown on a polar

graph. The polar axis coincides with the positive x-axis.

Unlike rectangular coordinates, the polar coordinates of a point are not unique.

The polar coordinates Œr; �1� and Œr; �2� represent the same point provided �1 and �2

differ by an integer multiple of 2� :

�2 D �1 C 2n�; where n D 0; ˙1; ˙2; : : : :
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Figure 8.33 Polar coordinates of some

points in the xy-plane
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For instance, the polar coordinates

h

3;
�

4

i

;

�

3;
9�

4

�

; and

�

3;�
7�

4

�

all represent the same point with Cartesian coordinates
�

3p
2
;

3p
2

�

. Similarly, Œ4; ��

and Œ4;��� both represent the point with Cartesian coordinates .�4; 0/, and Œ1; 0�

and Œ1; 2�� both represent the point with Cartesian coordinates .1; 0/. In addition, the

origin O has polar coordinates Œ0; �� for any value of � . (If we go zero distance from

O; it doesn’t matter in what direction we go.)

Sometimes we need to interpret polar coordinates Œr; ��, where r < 0. The ap-

propriate interpretation for this “negative distance” r is that it represents a positive

distance �r measured in the opposite direction (i.e., in the direction � C �):

Œr; �� D Œ�r; � C ��:

For example, Œ�1; �=4� D Œ1; 5�=4�. Allowing r < 0 increases the number of different

sets of polar coordinates that represent the same point.

If we want to consider both rectangular and polar coordinate systems in the same

plane, and we choose the positive x-axis as the polar axis, then the relationships be-

tween the rectangular coordinates of a point and its polar coordinates are as shown in

Figure 8.34.

Polar–rectangular conversion

x D r cos �

y D r sin �

x
2
C y

2
D r

2

tan � D
y

x

A single equation in x and y generally represents a curve in the plane with respect to

y

x

Œr;��

.x;y/

y

x

r

�

Figure 8.34 Relating Cartesian and polar

coordinates of a point

the Cartesian coordinate system. Similarly, a single equation in r and � generally rep-

resents a curve with respect to the polar coordinate system. The conversion formulas

above can be used to convert one representation of a curve into the other.

E X A M P L E 1
The straight line 2x � 3y D 5 has polar equation

r.2 cos � � 3 sin �/ D 5, or

r D
5

2 cos � � 3 sin �
:
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E X A M P L E 2
Find the Cartesian equation of the curve represented by the polar

equation r D 2a cos � ; hence, identify the curve.

Solution The polar equation can be transformed to Cartesian coordinates if we first

multiply it by r :

r
2
D 2ar cos �

x
2
C y

2
D 2ax

.x � a/
2
C y

2
D a

2

The given polar equation r D 2a cos � thus represents a circle with centre .a; 0/ and

radius a, as shown in Figure 8.35. Observe from the equation that r ! 0 as � !

˙�=2. In the figure, this corresponds to the fact that the circle approaches the origin

in the vertical direction.

y

x

2aa

Figure 8.35 The circle r D 2a cos �

Some Polar Curves
Figure 8.36 shows the graphs of the polar equations r D a and � D ˇ, where a and ˇ

(Greek “beta”) are constants. These are, respectively, the circle with radius jaj centred

at the origin, and a line through the origin making angle ˇ with the polar axis. Note

that the line and the circle meet at two points, with polar coordinates Œa; ˇ� and Œ�a; ˇ�.

The “coordinate curves” for polar coordinates, that is, the curves with equations r D

constant and � D constant, are circles centred at the origin and lines through the origin,

respectively. The “coordinate curves” for Cartesian coordinates, x D constant and y D

constant, are vertical and horizontal straight lines. Cartesian graph paper is ruled with

vertical and horizontal lines; polar graph paper is ruled with concentric circles and

radial lines emanating from the origin, as shown in Figures 8.33 and 8.38.

The graph of an equation of the form r D f .�/ is called the polar graph of

the function f: Some polar graphs can be recognized easily if the polar equation is

transformed to rectangular form. For others, this transformation does not help; the

y

x

ˇ

Œa; ˇ�

r D a

� D ˇ

Œ�a; ˇ�

Figure 8.36 Coordinate curves for the

polar coordinate system

rectangular equation may be too complicated to be recognizable. In these cases one

must resort to constructing a table of values and plotting points.

E X A M P L E 3
Sketch and identify the curve r D 2a cos.� � �0/.

Solution We proceed as in Example 2.

r
2
D 2ar cos.� � �0/ D 2ar cos �0 cos � C 2ar sin �0 sin �

x
2
C y

2
D 2a cos �0x C 2a sin �0y

x
2
� 2a cos �0x C a

2 cos2
�0 C y

2
� 2a sin �0y C a

2 sin2
�0 D a

2

.x � a cos �0/
2
C .y � a sin �0/

2
D a

2
:

This is a circle of radius a that passes through the origin in the directions

� D �0 ˙
�
2

, which make r D 0. (See Figure 8.37.) Its centre has Cartesian co-

ordinates .a cos �0; a sin �0/ and hence polar coordinates Œa; �0�. For �0 D �=2, we

have r D 2a sin � as the equation of a circle of radius a centred on the y-axis.

y

x

�0

Œa; �0�

a

Figure 8.37 The circle

r D 2a cos.� � �0/

Comparing Examples 2 and 3, we are led to formulate the following principle.

Rotating a polar graph

The polar graph with equation r D f .���0/ is the polar graph with equation

r D f .�/ rotated through angle �0 about the origin.
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Figure 8.33 Polar coordinates of some

points in the xy-plane
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For instance, the polar coordinates

h

3;
�

4

i

;

�

3;
9�

4

�

; and

�

3;�
7�

4

�

all represent the same point with Cartesian coordinates
�

3p
2
;

3p
2

�

. Similarly, Œ4; ��

and Œ4;��� both represent the point with Cartesian coordinates .�4; 0/, and Œ1; 0�

and Œ1; 2�� both represent the point with Cartesian coordinates .1; 0/. In addition, the

origin O has polar coordinates Œ0; �� for any value of � . (If we go zero distance from

O; it doesn’t matter in what direction we go.)

Sometimes we need to interpret polar coordinates Œr; ��, where r < 0. The ap-

propriate interpretation for this “negative distance” r is that it represents a positive

distance �r measured in the opposite direction (i.e., in the direction � C �):

Œr; �� D Œ�r; � C ��:

For example, Œ�1; �=4� D Œ1; 5�=4�. Allowing r < 0 increases the number of different

sets of polar coordinates that represent the same point.

If we want to consider both rectangular and polar coordinate systems in the same

plane, and we choose the positive x-axis as the polar axis, then the relationships be-

tween the rectangular coordinates of a point and its polar coordinates are as shown in

Figure 8.34.

Polar–rectangular conversion

x D r cos �

y D r sin �

x
2
C y

2
D r

2

tan � D
y

x

A single equation in x and y generally represents a curve in the plane with respect to

y

x

Œr;��

.x;y/

y

x

r

�

Figure 8.34 Relating Cartesian and polar

coordinates of a point

the Cartesian coordinate system. Similarly, a single equation in r and � generally rep-

resents a curve with respect to the polar coordinate system. The conversion formulas

above can be used to convert one representation of a curve into the other.

E X A M P L E 1
The straight line 2x � 3y D 5 has polar equation

r.2 cos � � 3 sin �/ D 5, or

r D
5

2 cos � � 3 sin �
:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 8 – page 489 October 19, 2016

SECTION 8.5: Polar Coordinates and Polar Curves 489

E X A M P L E 2
Find the Cartesian equation of the curve represented by the polar

equation r D 2a cos � ; hence, identify the curve.

Solution The polar equation can be transformed to Cartesian coordinates if we first

multiply it by r :

r
2
D 2ar cos �

x
2
C y

2
D 2ax

.x � a/
2
C y

2
D a

2

The given polar equation r D 2a cos � thus represents a circle with centre .a; 0/ and

radius a, as shown in Figure 8.35. Observe from the equation that r ! 0 as � !

˙�=2. In the figure, this corresponds to the fact that the circle approaches the origin

in the vertical direction.

y

x

2aa

Figure 8.35 The circle r D 2a cos �

Some Polar Curves
Figure 8.36 shows the graphs of the polar equations r D a and � D ˇ, where a and ˇ

(Greek “beta”) are constants. These are, respectively, the circle with radius jaj centred

at the origin, and a line through the origin making angle ˇ with the polar axis. Note

that the line and the circle meet at two points, with polar coordinates Œa; ˇ� and Œ�a; ˇ�.

The “coordinate curves” for polar coordinates, that is, the curves with equations r D

constant and � D constant, are circles centred at the origin and lines through the origin,

respectively. The “coordinate curves” for Cartesian coordinates, x D constant and y D

constant, are vertical and horizontal straight lines. Cartesian graph paper is ruled with

vertical and horizontal lines; polar graph paper is ruled with concentric circles and

radial lines emanating from the origin, as shown in Figures 8.33 and 8.38.

The graph of an equation of the form r D f .�/ is called the polar graph of

the function f: Some polar graphs can be recognized easily if the polar equation is

transformed to rectangular form. For others, this transformation does not help; the

y

x

ˇ

Œa; ˇ�

r D a

� D ˇ

Œ�a; ˇ�

Figure 8.36 Coordinate curves for the

polar coordinate system

rectangular equation may be too complicated to be recognizable. In these cases one

must resort to constructing a table of values and plotting points.

E X A M P L E 3
Sketch and identify the curve r D 2a cos.� � �0/.

Solution We proceed as in Example 2.

r
2
D 2ar cos.� � �0/ D 2ar cos �0 cos � C 2ar sin �0 sin �

x
2
C y

2
D 2a cos �0x C 2a sin �0y

x
2
� 2a cos �0x C a

2 cos2
�0 C y

2
� 2a sin �0y C a

2 sin2
�0 D a

2

.x � a cos �0/
2
C .y � a sin �0/

2
D a

2
:

This is a circle of radius a that passes through the origin in the directions

� D �0 ˙
�
2

, which make r D 0. (See Figure 8.37.) Its centre has Cartesian co-

ordinates .a cos �0; a sin �0/ and hence polar coordinates Œa; �0�. For �0 D �=2, we

have r D 2a sin � as the equation of a circle of radius a centred on the y-axis.

y

x

�0

Œa; �0�

a

Figure 8.37 The circle

r D 2a cos.� � �0/

Comparing Examples 2 and 3, we are led to formulate the following principle.

Rotating a polar graph

The polar graph with equation r D f .���0/ is the polar graph with equation

r D f .�/ rotated through angle �0 about the origin.
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E X A M P L E 4
Sketch the polar curve r D a.1 � cos �/, where a > 0.

Solution Transformation to rectangular coordinates is not much help here; the re-

sulting equation is .x2
C y2

C ax/2 D a2.x2
C y2/ (verify this), which we do not

recognize. Therefore, we will make a table of values and plot some points.

Table 3.

� 0 ˙

�

6
˙

�

4
˙

�

3
˙

�

2
˙

2�

3
˙

3�

4
˙

5�

6
�

r 0 0:13a 0:29a 0:5a a 1:5a 1:71a 1:87a 2a

Because it is shaped like a heart, this curve is called a cardioid. Observe the cusp at

the origin in Figure 8.38. As in the previous example, the curve enters the origin in the

directions � that make r D f .�/ D 0. In this case, the only such direction is � D 0. It

is important, when sketching polar graphs, to show clearly any directions of approach

to the origin.

Figure 8.38 The cardioid

r D a.1 � cos �/

y

x
a

�=6

�=4

�=32�=3

3�=4

5�=6

Direction of a polar graph at the origin

A polar graph r D f .�/ approaches the origin from the direction � for which

f .�/ D 0.

The equation r D a.1 � cos.� � �0// represents a cardioid of the same size and

shape as that in Figure 8.38 but rotated through an angle �0 counterclockwise about

the origin. Its cusp is in the direction � D �0. In particular, r D a.1 � sin �/ has a

vertical cusp, as shown in Figure 8.39.

y

x

Figure 8.39 The cardioid

r D a.1 � sin �/

It is not usually necessary to make a detailed table of values to sketch a polar

curve with a simple equation of the form r D f .�/. It is essential to determine those

values of � for which r D 0 and indicate them on the graph with rays. It is also

useful to determine points where the curve is farthest from the origin. (Where is f .�/

maximum or minimum?) Except possibly at the origin, polar curves will be smooth

wherever f .�/ is a differentiable function of � .
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E X A M P L E 5
Sketch the polar graphs (a) r D cos.2�/, (b) r D sin.3�/, and

(c) r2
D cos.2�/.

Solution The graphs are shown in Figures 8.40–8.42. Observe how the curves (a)

and (c) approach the origin in the directions � D ˙�
4

and � D ˙3�
4

, and curve

(b) approaches in the directions � D 0; �; ˙
�
3

, and ˙2�
3

. This curve is traced out

twice as � increases from �� to � . So is curve (c) if we allow both square roots

r D ˙
p

cos.2�/. Note that there are no points on curve (c) between � D ˙�
4

and

� D ˙
3�
4

because r2 cannot be negative.

Curve (c) is called a lemniscate. Lemniscates are curves consisting of points P

such that the product of the distances from P to certain fixed points is constant. For

the curve (c), these fixed points are
�

˙
1p
2
; 0
�

.

y

x

�=4

��=4

3�=4

�3�=4

Figure 8.40 Curve (a): the polar

curve r D cos.2�/

y

x

�=3

��=3�2�=3

2�=3

Figure 8.41 Curve (b): the polar

curve r D sin.3�/

y

x

�=4

��=4

3�=4

�3�=4

Figure 8.42 Curve (c): the

lemniscate r2
D cos.2�/

In all of the examples above, the functions f .�/ are periodic and 2� is a period of each

of them, so each line through the origin could meet the polar graph at most twice. (�

and � C � determine the same line.) If f .�/ does not have period 2� , then the curve

can wind around the origin many times. Two such spirals are shown in Figure 8.43,

the equiangular spiral r D � and the exponential spiral r D e��=3, each sketched

for positive values of � .

Figure 8.43

(a) The equiangular spiral r D �

(b) The exponential spiral r D e��=3

y

x

y

x

(a) (b)

M Remark Maple has a polarplot routine as part of its “plots” package, which must

be loaded prior to the use of polarplot. Here is how to get Maple to plot on the same

graph the polar curves r D 1 and r D 2 sin.3�/, for 0 � � � 2� :

> with(plots):

> polarplot([1,2*sin(3*t)],t=0..2*Pi,scaling=constrained);

The option scaling=constrained is necessary with polar plots to force Maple

to use the same distance unit on both axes (so a circle will appear circular).
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E X A M P L E 4
Sketch the polar curve r D a.1 � cos �/, where a > 0.

Solution Transformation to rectangular coordinates is not much help here; the re-

sulting equation is .x2
C y2

C ax/2 D a2.x2
C y2/ (verify this), which we do not

recognize. Therefore, we will make a table of values and plot some points.

Table 3.

� 0 ˙

�

6
˙

�

4
˙

�

3
˙

�

2
˙

2�

3
˙

3�

4
˙

5�

6
�

r 0 0:13a 0:29a 0:5a a 1:5a 1:71a 1:87a 2a

Because it is shaped like a heart, this curve is called a cardioid. Observe the cusp at

the origin in Figure 8.38. As in the previous example, the curve enters the origin in the

directions � that make r D f .�/ D 0. In this case, the only such direction is � D 0. It

is important, when sketching polar graphs, to show clearly any directions of approach

to the origin.

Figure 8.38 The cardioid

r D a.1 � cos �/

y

x
a

�=6

�=4

�=32�=3

3�=4

5�=6

Direction of a polar graph at the origin

A polar graph r D f .�/ approaches the origin from the direction � for which

f .�/ D 0.

The equation r D a.1 � cos.� � �0// represents a cardioid of the same size and

shape as that in Figure 8.38 but rotated through an angle �0 counterclockwise about

the origin. Its cusp is in the direction � D �0. In particular, r D a.1 � sin �/ has a

vertical cusp, as shown in Figure 8.39.

y

x

Figure 8.39 The cardioid

r D a.1 � sin �/

It is not usually necessary to make a detailed table of values to sketch a polar

curve with a simple equation of the form r D f .�/. It is essential to determine those

values of � for which r D 0 and indicate them on the graph with rays. It is also

useful to determine points where the curve is farthest from the origin. (Where is f .�/

maximum or minimum?) Except possibly at the origin, polar curves will be smooth

wherever f .�/ is a differentiable function of � .
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E X A M P L E 5
Sketch the polar graphs (a) r D cos.2�/, (b) r D sin.3�/, and

(c) r2
D cos.2�/.

Solution The graphs are shown in Figures 8.40–8.42. Observe how the curves (a)

and (c) approach the origin in the directions � D ˙�
4

and � D ˙3�
4

, and curve

(b) approaches in the directions � D 0; �; ˙
�
3

, and ˙2�
3

. This curve is traced out

twice as � increases from �� to � . So is curve (c) if we allow both square roots

r D ˙
p

cos.2�/. Note that there are no points on curve (c) between � D ˙�
4

and

� D ˙
3�
4

because r2 cannot be negative.

Curve (c) is called a lemniscate. Lemniscates are curves consisting of points P

such that the product of the distances from P to certain fixed points is constant. For

the curve (c), these fixed points are
�

˙
1p
2
; 0
�

.

y

x

�=4

��=4

3�=4

�3�=4

Figure 8.40 Curve (a): the polar

curve r D cos.2�/

y

x

�=3

��=3�2�=3

2�=3

Figure 8.41 Curve (b): the polar

curve r D sin.3�/

y

x

�=4

��=4

3�=4

�3�=4

Figure 8.42 Curve (c): the

lemniscate r2
D cos.2�/

In all of the examples above, the functions f .�/ are periodic and 2� is a period of each

of them, so each line through the origin could meet the polar graph at most twice. (�

and � C � determine the same line.) If f .�/ does not have period 2� , then the curve

can wind around the origin many times. Two such spirals are shown in Figure 8.43,

the equiangular spiral r D � and the exponential spiral r D e��=3, each sketched

for positive values of � .

Figure 8.43

(a) The equiangular spiral r D �

(b) The exponential spiral r D e��=3

y

x

y

x

(a) (b)

M Remark Maple has a polarplot routine as part of its “plots” package, which must

be loaded prior to the use of polarplot. Here is how to get Maple to plot on the same

graph the polar curves r D 1 and r D 2 sin.3�/, for 0 � � � 2� :

> with(plots):

> polarplot([1,2*sin(3*t)],t=0..2*Pi,scaling=constrained);

The option scaling=constrained is necessary with polar plots to force Maple

to use the same distance unit on both axes (so a circle will appear circular).
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Intersections of Polar Curves
Because the polar coordinates of points are not unique, finding the intersection points

of two polar curves can be more complicated than the similar problem for Cartesian

graphs. Of course, the polar curves r D f .�/ and r D g.�/ will intersect at any points

Œr0; �0� for which

f .�0/ D g.�0/ and r0 D f .�0/;

but there may be other intersections as well. In particular, if both curves pass through

the origin, then the origin will be an intersection point, even though it may not show up

in solving f .�/ D g.�/, because the curves may be at the origin for different values

of � . For example, the two circles r D cos � and r D sin � intersect at the origin and

also at the point Œ1=
p

2; �=4�, even though only the latter point is obtained by solving

the equation cos � D sin � . (See Figure 8.44.)

y

x

� D �=4

r D sin �

r D cos �

Figure 8.44 Two intersecting circles

E X A M P L E 6
Find the intersections of the curves r D sin � and r D 1 � sin � .

Solution Since both functions of � are periodic with period 2� , we need only look

for solutions satisfying 0 � � � 2� . Solving the equation

sin � D 1 � sin �;

we get sin � D 1=2, so that � D �=6 or � D 5�=6. Both curves have r D 1=2 at these

points, so the two curves intersect at Œ1=2; �=6� and Œ1=2; 5�=6�. Also, the origin lies

on the curve r D sin � (for � D 0 and � D 2�) and on the curve r D 1 � sin �

(for � D �=2). Therefore, the origin is also an intersection point of the curves. (See

Figure 8.45.)

Finally, if negative values of r are allowed, then the curves r D f .�/ and y D g.�/

will also intersect at Œr1; �1� D Œr2; �2� if, for some integer k,

�1 D �2 C .2k C 1/� and r1 D f .�1/ D �g.�2/ D �r2:

See Exercise 28 for an example.

y

x

� D �=6

r D sin �

r D 1 � sin �

� D 5�=6

Figure 8.45 The circle and the cardioid

intersect at three points

Polar Conics
LetD be the vertical straight line x D �p, and let " be a positive real number. The set

of points P in the plane that satisfy the condition

distance of P from the origin

perpendicular distance from P to D
D "

is a conic section with eccentricity ", focus at the origin, and corresponding directrix

D; as observed in Section 8.1. (It is an ellipse if " < 1, a parabola if " D 1, and

a hyperbola if " > 1.) If P has polar coordinates Œr; ��, then the condition above

becomes (see Figure 8.46)

r

p C r cos �
D ";

or, solving for r;
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Figure 8.46 A conic curve with

eccentricity ", focus at the origin, and

directrix x D �p

y

x

�

r

P D Œr; � �

D

p r cos �

x D �p

r D
"p

1 � " cos �
:

Examples of the three possibilities (ellipse, parabola, and hyperbola) are shown in

Figures 8.47–8.49. Note that for the hyperbola, the directions of the asymptotes are the

angles that make the denominator 1 � " cos � D 0. We will have more to say about

polar equations of conics, especially ellipses, in Section 11.6.
y

x

� "p
1C"

;�
�

� "p
1�" ;0

�

Figure 8.47 Ellipse: " < 1

y

x

�p
2

;�
�

Figure 8.48 Parabola: " D 1

y

x

cos�1.1="/

� "p
1C" ;�

�� "p
1�" ;0

�

Figure 8.49 Hyperbola: " > 1

E X E R C I S E S 8.5

In Exercises 1–12, transform the given polar equation to

rectangular coordinates, and identify the curve represented.

1. r D 3 sec � 2. r D �2 csc �

3. r D
5

3 sin � � 4 cos �
4. r D sin � C cos �

5. r2
D csc 2� 6. r D sec � tan �

7. r D sec �.1C tan �/ 8. r D
2

p

cos2 � C 4 sin2
�

9. r D
1

1 � cos �
10. r D

2

2 � cos �

11. r D
2

1 � 2 sin �
12. r D

2

1C sin �

In Exercises 13–24, sketch the polar graphs of the given equations.

13. r D 1C sin � 14. r D 1 � cos.� C �
4
/

15. r D 1C 2 cos � 16. r D 1 � 2 sin �

17. r D 2C cos � 18. r D 2 sin 2�

19. r D cos 3� 20. r D 2 cos 4�

21. r2
D 4 sin 2� 22. r2

D 4 cos 3�

23. r2
D sin 3� 24. r D ln �

Find all intersections of the pairs of curves in Exercises 25–28.

25. r D
p

3 cos �; r D sin �

26. r2
D 2 cos.2�/; r D 1

27. r D 1C cos �; r D 3 cos �

28.I r D �; r D � C �
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Intersections of Polar Curves
Because the polar coordinates of points are not unique, finding the intersection points

of two polar curves can be more complicated than the similar problem for Cartesian

graphs. Of course, the polar curves r D f .�/ and r D g.�/ will intersect at any points

Œr0; �0� for which

f .�0/ D g.�0/ and r0 D f .�0/;

but there may be other intersections as well. In particular, if both curves pass through

the origin, then the origin will be an intersection point, even though it may not show up

in solving f .�/ D g.�/, because the curves may be at the origin for different values

of � . For example, the two circles r D cos � and r D sin � intersect at the origin and

also at the point Œ1=
p

2; �=4�, even though only the latter point is obtained by solving

the equation cos � D sin � . (See Figure 8.44.)

y

x

� D �=4

r D sin �

r D cos �

Figure 8.44 Two intersecting circles

E X A M P L E 6
Find the intersections of the curves r D sin � and r D 1 � sin � .

Solution Since both functions of � are periodic with period 2� , we need only look

for solutions satisfying 0 � � � 2� . Solving the equation

sin � D 1 � sin �;

we get sin � D 1=2, so that � D �=6 or � D 5�=6. Both curves have r D 1=2 at these

points, so the two curves intersect at Œ1=2; �=6� and Œ1=2; 5�=6�. Also, the origin lies

on the curve r D sin � (for � D 0 and � D 2�) and on the curve r D 1 � sin �

(for � D �=2). Therefore, the origin is also an intersection point of the curves. (See

Figure 8.45.)

Finally, if negative values of r are allowed, then the curves r D f .�/ and y D g.�/

will also intersect at Œr1; �1� D Œr2; �2� if, for some integer k,

�1 D �2 C .2k C 1/� and r1 D f .�1/ D �g.�2/ D �r2:

See Exercise 28 for an example.

y

x

� D �=6

r D sin �

r D 1 � sin �

� D 5�=6

Figure 8.45 The circle and the cardioid

intersect at three points

Polar Conics
LetD be the vertical straight line x D �p, and let " be a positive real number. The set

of points P in the plane that satisfy the condition

distance of P from the origin

perpendicular distance from P to D
D "

is a conic section with eccentricity ", focus at the origin, and corresponding directrix

D; as observed in Section 8.1. (It is an ellipse if " < 1, a parabola if " D 1, and

a hyperbola if " > 1.) If P has polar coordinates Œr; ��, then the condition above

becomes (see Figure 8.46)

r

p C r cos �
D ";

or, solving for r;
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Figure 8.46 A conic curve with

eccentricity ", focus at the origin, and

directrix x D �p

y

x

�

r

P D Œr; � �

D

p r cos �

x D �p

r D
"p

1 � " cos �
:

Examples of the three possibilities (ellipse, parabola, and hyperbola) are shown in

Figures 8.47–8.49. Note that for the hyperbola, the directions of the asymptotes are the

angles that make the denominator 1 � " cos � D 0. We will have more to say about

polar equations of conics, especially ellipses, in Section 11.6.
y

x

� "p
1C"

;�
�

� "p
1�" ;0

�

Figure 8.47 Ellipse: " < 1

y

x

�p
2

;�
�

Figure 8.48 Parabola: " D 1

y

x

cos�1.1="/

� "p
1C" ;�

�� "p
1�" ;0

�

Figure 8.49 Hyperbola: " > 1

E X E R C I S E S 8.5

In Exercises 1–12, transform the given polar equation to

rectangular coordinates, and identify the curve represented.

1. r D 3 sec � 2. r D �2 csc �

3. r D
5

3 sin � � 4 cos �
4. r D sin � C cos �

5. r2
D csc 2� 6. r D sec � tan �

7. r D sec �.1C tan �/ 8. r D
2

p

cos2 � C 4 sin2
�

9. r D
1

1 � cos �
10. r D

2

2 � cos �

11. r D
2

1 � 2 sin �
12. r D

2

1C sin �

In Exercises 13–24, sketch the polar graphs of the given equations.

13. r D 1C sin � 14. r D 1 � cos.� C �
4
/

15. r D 1C 2 cos � 16. r D 1 � 2 sin �

17. r D 2C cos � 18. r D 2 sin 2�

19. r D cos 3� 20. r D 2 cos 4�

21. r2
D 4 sin 2� 22. r2

D 4 cos 3�

23. r2
D sin 3� 24. r D ln �

Find all intersections of the pairs of curves in Exercises 25–28.

25. r D
p

3 cos �; r D sin �

26. r2
D 2 cos.2�/; r D 1

27. r D 1C cos �; r D 3 cos �

28.I r D �; r D � C �
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29.I Sketch the graph of the equation r D 1=� , � > 0. Show that

this curve has a horizontal asymptote. Does r D 1=.� � ˛/

have an asymptote?

30. How many leaves does the curve r D cos n� have? the curve

r2
D cosn�? Distinguish the cases where n is odd and even.

31. Show that the polar graph r D f .�/ (where f is continuous)

can be written as a parametric curve with parameter � .

In Exercises 32–37, use computer graphing software or a graphing

calculator to plot various members of the given families of polar

curves, and try to observe patterns that would enable you to predict

behaviour of other members of the families.

G 32. r D cos � cos.m�/; m D 1; 2; 3; : : :

G 33. r D 1C cos � cos.m�/; m D 1; 2; 3; : : :

G 34. r D sin.2�/ sin.m�/; m D 2; 3; 4; 5; : : :

G 35. r D 1C sin.2�/ sin.m�/; m D 2; 3; 4; 5; : : :

G 36. r D C C cos � cos.2�/ for C D 0, C D 1, values of C

between 0 and 1, and values of C greater than 1

G 37. r D C C cos � sin.3�/ for C D 0, C D 1, values of C

between 0 and 1, values of C less than 0, and values of C

greater than 1

G 38. Plot the curve r D ln � for 0 < � � 2� . It intersects itself at

point P: Thus, there are two values �1 and �2 between 0 and

2� for which Œf .�1/; �1� D Œf .�2/; �2�. What equations must

be satsified by �1 and �2? Find �1 and �2, and find the

Cartesian coordinates of P correct to 6 decimal places.

G 39. Simultaneously plot the two curves r D ln � and r D 1=� , for

0 < � � 2� . The two curves intersect at two points. What

equations must be satisfied by the � values of these points?

What are their Cartesian coordinates to 6 decimal places?

8.6 Slopes, Areas, and Arc Lengths for Polar Curves

There is a simple formula that can be used to determine the direction of the tangent

line to a polar curve r D f .�/ at a point P D Œr; �� other than the origin. Let Q be a

point on the curve near P corresponding to polar angle � C h. Let S be on OQ with

PS perpendicular to OQ. Observe that PS D f .�/ sin h and SQ D OQ � OS D

f .� C h/ � f .�/ cos h. If the tangent line to r D f .�/ at P makes angle  (Greek

“psi”) with the radial lineOP , as shown in Figure 8.50, then  is the limit of the angle

SQP as h! 0. Thus,

tan D lim
h!0

PS

SQ
D lim

h!0

f .�/ sin h

f .� C h/ � f .�/ cos h

�

0

0

�

D lim
h!0

f .�/ cos h

f 0.� C h/C f .�/ sin h
(by l’Hôpital’s Rule)

D

f .�/

f 0.�/
D

r

dr=d�
:

Figure 8.50 The angle  is the limit of

angle SQP as h! 0

y

x

P

Q

h

�

 

O

S
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Tangent direction for a polar curve

At any point P other than the origin on the polar curve r D f .�/, the angle

 between the radial line from the origin to P and the tangent to the curve is

given by

tan D
f .�/

f 0.�/
:

In particular,  D �=2 if f 0.�/ D 0. If f .�0/ D 0 and the curve has a

tangent line at �0, then that tangent line has equation � D �0.

The formula above can be used to find points where a polar graph has horizontal or

vertical tangents:

 C � D �; so tan D � tan � for a horizontal tangent,

 C � D
�

2
; so tan D cot � for a vertical tangent.

Remark Since for parametric curves horizontal and vertical tangents correspond to

dy=dt D 0 and dx=dt D 0, respectively, it is usually easier to find the critical points

of y D f .�/ sin � for horizontal tangents and of x D f .�/ cos � for vertical tangents.

E X A M P L E 1
Find the points on the cardioid r D 1 C cos � where the tangent

lines are vertical or horizontal.

Solution We have y D .1C cos �/ sin � and x D .1C cos �/ cos � . For horizontal

tangents,

0 D
dy

d�
D � sin2

� C cos2
� C cos �

D 2 cos2
� C cos � � 1

D .2 cos � � 1/.cos � C 1/:

The solutions are cos � D 1
2

and cos � D �1, that is, � D ˙�=3 and � D � . There

are horizontal tangents at
�

3
2
;˙

�
3

�

. At � D � , we have r D 0. The curve does not

have a tangent line at the origin (it has a cusp). See Figure 8.51.

For vertical tangents,

0 D
dx

d�
D � sin � � 2 cos � sin � D � sin �.1C 2 cos �/:

The solutions are sin � D 0 and cos � D �1
2

, that is, � D 0, � , ˙2�=3. There are

vertical tangent lines at Œ2; 0� and
�

1
2
;˙

2�
3

�

.

Figure 8.51 Horizontal and vertical

tangents to a cardioid

y

x

�=3

2�=3

�2�=3

��=3

2

r D 1C cos �
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29.I Sketch the graph of the equation r D 1=� , � > 0. Show that

this curve has a horizontal asymptote. Does r D 1=.� � ˛/

have an asymptote?

30. How many leaves does the curve r D cos n� have? the curve

r2
D cosn�? Distinguish the cases where n is odd and even.

31. Show that the polar graph r D f .�/ (where f is continuous)

can be written as a parametric curve with parameter � .

In Exercises 32–37, use computer graphing software or a graphing

calculator to plot various members of the given families of polar

curves, and try to observe patterns that would enable you to predict

behaviour of other members of the families.

G 32. r D cos � cos.m�/; m D 1; 2; 3; : : :

G 33. r D 1C cos � cos.m�/; m D 1; 2; 3; : : :

G 34. r D sin.2�/ sin.m�/; m D 2; 3; 4; 5; : : :

G 35. r D 1C sin.2�/ sin.m�/; m D 2; 3; 4; 5; : : :

G 36. r D C C cos � cos.2�/ for C D 0, C D 1, values of C

between 0 and 1, and values of C greater than 1

G 37. r D C C cos � sin.3�/ for C D 0, C D 1, values of C

between 0 and 1, values of C less than 0, and values of C

greater than 1

G 38. Plot the curve r D ln � for 0 < � � 2� . It intersects itself at

point P: Thus, there are two values �1 and �2 between 0 and

2� for which Œf .�1/; �1� D Œf .�2/; �2�. What equations must

be satsified by �1 and �2? Find �1 and �2, and find the

Cartesian coordinates of P correct to 6 decimal places.

G 39. Simultaneously plot the two curves r D ln � and r D 1=� , for

0 < � � 2� . The two curves intersect at two points. What

equations must be satisfied by the � values of these points?

What are their Cartesian coordinates to 6 decimal places?

8.6 Slopes, Areas, and Arc Lengths for Polar Curves

There is a simple formula that can be used to determine the direction of the tangent

line to a polar curve r D f .�/ at a point P D Œr; �� other than the origin. Let Q be a

point on the curve near P corresponding to polar angle � C h. Let S be on OQ with

PS perpendicular to OQ. Observe that PS D f .�/ sin h and SQ D OQ � OS D

f .� C h/ � f .�/ cos h. If the tangent line to r D f .�/ at P makes angle  (Greek

“psi”) with the radial lineOP , as shown in Figure 8.50, then  is the limit of the angle

SQP as h! 0. Thus,

tan D lim
h!0

PS

SQ
D lim

h!0

f .�/ sin h

f .� C h/ � f .�/ cos h

�

0

0

�

D lim
h!0

f .�/ cos h

f 0.� C h/C f .�/ sin h
(by l’Hôpital’s Rule)

D

f .�/

f 0.�/
D

r

dr=d�
:

Figure 8.50 The angle  is the limit of

angle SQP as h! 0

y

x

P

Q

h

�

 

O

S

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 8 – page 495 October 19, 2016

SECTION 8.6: Slopes, Areas, and Arc Lengths for Polar Curves 495

Tangent direction for a polar curve

At any point P other than the origin on the polar curve r D f .�/, the angle

 between the radial line from the origin to P and the tangent to the curve is

given by

tan D
f .�/

f 0.�/
:

In particular,  D �=2 if f 0.�/ D 0. If f .�0/ D 0 and the curve has a

tangent line at �0, then that tangent line has equation � D �0.

The formula above can be used to find points where a polar graph has horizontal or

vertical tangents:

 C � D �; so tan D � tan � for a horizontal tangent,

 C � D
�

2
; so tan D cot � for a vertical tangent.

Remark Since for parametric curves horizontal and vertical tangents correspond to

dy=dt D 0 and dx=dt D 0, respectively, it is usually easier to find the critical points

of y D f .�/ sin � for horizontal tangents and of x D f .�/ cos � for vertical tangents.

E X A M P L E 1
Find the points on the cardioid r D 1 C cos � where the tangent

lines are vertical or horizontal.

Solution We have y D .1C cos �/ sin � and x D .1C cos �/ cos � . For horizontal

tangents,

0 D
dy

d�
D � sin2

� C cos2
� C cos �

D 2 cos2
� C cos � � 1

D .2 cos � � 1/.cos � C 1/:

The solutions are cos � D 1
2

and cos � D �1, that is, � D ˙�=3 and � D � . There

are horizontal tangents at
�

3
2
;˙

�
3

�

. At � D � , we have r D 0. The curve does not

have a tangent line at the origin (it has a cusp). See Figure 8.51.

For vertical tangents,

0 D
dx

d�
D � sin � � 2 cos � sin � D � sin �.1C 2 cos �/:

The solutions are sin � D 0 and cos � D �1
2

, that is, � D 0, � , ˙2�=3. There are

vertical tangent lines at Œ2; 0� and
�

1
2
;˙

2�
3

�

.

Figure 8.51 Horizontal and vertical

tangents to a cardioid

y

x

�=3

2�=3

�2�=3

��=3

2

r D 1C cos �
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Areas Bounded by Polar Curves
The basic area problem in polar coordinates is that of finding the area A of the region

R bounded by the polar graph r D f .�/ and the two rays � D ˛ and � D ˇ. We

assume that ˇ > ˛ and that f is continuous for ˛ � � � ˇ. See Figure 8.52.

A suitable area element in this case is a sector of angular width d� , as shown in

Figure 8.52. For infinitesimal d� this is just a sector of a circle of radius r D f .�/:
y

x

ˇ �

˛

r D f .�/

dA

d�

Figure 8.52 An area element in polar

coordinates

dA D
d�

2�
�r

2
D

1

2
r

2
d� D

1

2

�

f .�/
�2
d�:

Area in polar coordinates

The region bounded by r D f .�/ and the rays � D ˛ and � D ˇ, (˛ < ˇ),

has area

A D
1

2

Z ˇ

˛

�

f .�/
�2
d�:

E X A M P L E 2
Find the area bounded by the cardioid r D a.1C cos �/, as illus-

trated in Figure 8.53.
y

x

2a

r D a.1C cos �/

Figure 8.53 The area encosed by the

cardioid is twice the shaded part

Solution By symmetry, the area is twice that of the top half:

A D 2 �
1

2

Z �

0

a
2
.1C cos �/2 d�

D a
2

Z �

0

.1C 2 cos � C cos2
�/ d�

D a
2

Z �

0

�

1C 2 cos � C
1C cos 2�

2

�

d�

D a
2

�

3

2
� C 2 sin � C

1

4
sin 2�

�
ˇ

ˇ

ˇ

ˇ

�

0

D

3

2
�a

2 square units:

E X A M P L E 3
Find the area of the region that lies inside the circle r D

p

2 sin �

and inside the lemniscate r2
D sin 2� .

y

x

�=4

rD
p

2 sin �

r2Dsin.2�/

Figure 8.54 The area between two polar

curves

Solution The region is shaded in Figure 8.54. Besides intersecting at the origin, the

curves intersect at the first quadrant point satisfying

2 sin2
� D sin 2� D 2 sin � cos �:

Thus, sin � D cos � and � D �=4. The required area is

A D
1

2

Z �=4

0

2 sin2
� d� C

1

2

Z �=2

�=4

sin 2� d�

D

Z �=4

0

1 � cos 2�

2
d� �

1

4
cos 2�

ˇ

ˇ

ˇ

ˇ

�=2

�=4

D

�

8
�

1

4
sin 2�

ˇ

ˇ

ˇ

ˇ

�=4

0

C

1

4
D

�

8
�

1

4
C

1

4
D

�

8
square units:
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Arc Lengths for Polar Curves
The arc length element for the polar curve r D f .�/ can be determined from the

differential triangle shown in Figure 8.55. The leg r d� of the triangle is obtained as

the arc length of a circular arc of radius r subtending angle d� at the origin. We have

.ds/
2
D .dr/

2
C r

2
.d�/

2
D

"

�

dr

d�

�2

C r
2

#

.d�/
2
;

so we obtain the following formula:

Arc length element for a polar curve

The arc length element for the polar curve r D f .�/ is

ds D

s

�

dr

d�

�2

C r2 d� D

q

�

f 0.�/
�2
C

�

f .�/
�2
d�:

This arc length element can also be derived from that for a parametric curve. See

Exercise 26 at the end of this section.

y

x

ds

r D f .�/r

d�

dr
r d�

Figure 8.55 The arc length element for a

polar curve

E X A M P L E 4
Find the total length of the cardioid r D a.1C cos �/.

Solution The total length is twice the length from � D 0 to � D � . (Review

Figure 8.53.) Since dr=d� D �a sin � for the cardioid, the arc length is

s D 2

Z �

0

q

a2 sin2
� C a2.1C cos �/2 d�

D 2

Z �

0

p

2a2
C 2a2 cos � d� .but 1C cos � D 2 cos2

.�=2//

D 2
p

2a

Z �

0

r

2 cos2
�

2
d�

D 4a

Z �

0

cos
�

2
d� D 8a sin

�

2

ˇ

ˇ

ˇ

ˇ

�

0

D 8a units:

E X E R C I S E S 8.6

In Exercises 1–11, sketch and find the areas of the given polar

regions R.

1. R lies between the origin and the spiral r D
p

� , 0 � � � 2� .

2. R lies between the origin and the spiral r D � , 0 � � � 2� .

3. R is bounded by the curve r2
D a2 cos 2� .

4. R is one leaf of the curve r D sin 3� .

5. R is bounded by the curve r D cos 4� .

6. R lies inside both of the circles r D a and r D 2a cos � .

7. R lies inside the cardioid r D 1 � cos � and outside the circle

r D 1.

8. R lies inside the cardioid r D a.1 � sin �/ and inside the

circle r D a.

9. R lies inside the cardioid r D 1C cos � and outside the circle

r D 3 cos � .

10. R is bounded by the lemniscate r2
D 2 cos 2� and is outside

the circle r D 1.

11. R is bounded by the smaller loop of the curve

r D 1C 2 cos � .

Find the lengths of the polar curves in Exercises 12–14.

12. r D �2
; 0 � � � � 13. r D ea�

; �� � � � �

14. r D a�; 0 � � � 2�

15. Show that the total arc length of the lemniscate r2
D cos 2� is

4

Z �=4

0

p

sec 2� d�:

16. One leaf of the lemniscate r2
D cos 2� is rotated (a) about the

x-axis and (b) about the y-axis. Find the area of the surface

generated in each case.

17.I Determine the angles at which the straight line � D �=4

intersects the cardioid r D 1C sin � .
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Areas Bounded by Polar Curves
The basic area problem in polar coordinates is that of finding the area A of the region

R bounded by the polar graph r D f .�/ and the two rays � D ˛ and � D ˇ. We

assume that ˇ > ˛ and that f is continuous for ˛ � � � ˇ. See Figure 8.52.

A suitable area element in this case is a sector of angular width d� , as shown in

Figure 8.52. For infinitesimal d� this is just a sector of a circle of radius r D f .�/:
y

x

ˇ �

˛

r D f .�/

dA

d�

Figure 8.52 An area element in polar

coordinates

dA D
d�

2�
�r

2
D

1

2
r

2
d� D

1

2

�

f .�/
�2
d�:

Area in polar coordinates

The region bounded by r D f .�/ and the rays � D ˛ and � D ˇ, (˛ < ˇ),

has area

A D
1

2

Z ˇ

˛

�

f .�/
�2
d�:

E X A M P L E 2
Find the area bounded by the cardioid r D a.1C cos �/, as illus-

trated in Figure 8.53.
y

x

2a

r D a.1C cos �/

Figure 8.53 The area encosed by the

cardioid is twice the shaded part

Solution By symmetry, the area is twice that of the top half:

A D 2 �
1

2

Z �

0

a
2
.1C cos �/2 d�

D a
2

Z �

0

.1C 2 cos � C cos2
�/ d�

D a
2

Z �

0

�

1C 2 cos � C
1C cos 2�

2

�

d�

D a
2

�

3

2
� C 2 sin � C

1

4
sin 2�

�
ˇ

ˇ

ˇ

ˇ

�

0

D

3

2
�a

2 square units:

E X A M P L E 3
Find the area of the region that lies inside the circle r D

p

2 sin �

and inside the lemniscate r2
D sin 2� .

y

x

�=4

rD
p

2 sin �

r2Dsin.2�/

Figure 8.54 The area between two polar

curves

Solution The region is shaded in Figure 8.54. Besides intersecting at the origin, the

curves intersect at the first quadrant point satisfying

2 sin2
� D sin 2� D 2 sin � cos �:

Thus, sin � D cos � and � D �=4. The required area is

A D
1

2

Z �=4

0

2 sin2
� d� C

1

2

Z �=2

�=4

sin 2� d�

D

Z �=4

0

1 � cos 2�

2
d� �

1

4
cos 2�

ˇ

ˇ

ˇ

ˇ

�=2

�=4

D

�

8
�

1

4
sin 2�

ˇ

ˇ

ˇ

ˇ

�=4

0

C

1

4
D

�

8
�

1

4
C

1

4
D

�

8
square units:
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Arc Lengths for Polar Curves
The arc length element for the polar curve r D f .�/ can be determined from the

differential triangle shown in Figure 8.55. The leg r d� of the triangle is obtained as

the arc length of a circular arc of radius r subtending angle d� at the origin. We have

.ds/
2
D .dr/

2
C r

2
.d�/

2
D

"

�

dr

d�

�2

C r
2

#

.d�/
2
;

so we obtain the following formula:

Arc length element for a polar curve

The arc length element for the polar curve r D f .�/ is

ds D

s

�

dr

d�

�2

C r2 d� D

q

�

f 0.�/
�2
C

�

f .�/
�2
d�:

This arc length element can also be derived from that for a parametric curve. See

Exercise 26 at the end of this section.

y

x

ds

r D f .�/r

d�

dr
r d�

Figure 8.55 The arc length element for a

polar curve

E X A M P L E 4
Find the total length of the cardioid r D a.1C cos �/.

Solution The total length is twice the length from � D 0 to � D � . (Review

Figure 8.53.) Since dr=d� D �a sin � for the cardioid, the arc length is

s D 2

Z �

0

q

a2 sin2
� C a2.1C cos �/2 d�

D 2

Z �

0

p

2a2
C 2a2 cos � d� .but 1C cos � D 2 cos2

.�=2//

D 2
p

2a

Z �

0

r

2 cos2
�

2
d�

D 4a

Z �

0

cos
�

2
d� D 8a sin

�

2

ˇ

ˇ

ˇ

ˇ

�

0

D 8a units:

E X E R C I S E S 8.6

In Exercises 1–11, sketch and find the areas of the given polar

regions R.

1. R lies between the origin and the spiral r D
p

� , 0 � � � 2� .

2. R lies between the origin and the spiral r D � , 0 � � � 2� .

3. R is bounded by the curve r2
D a2 cos 2� .

4. R is one leaf of the curve r D sin 3� .

5. R is bounded by the curve r D cos 4� .

6. R lies inside both of the circles r D a and r D 2a cos � .

7. R lies inside the cardioid r D 1 � cos � and outside the circle

r D 1.

8. R lies inside the cardioid r D a.1 � sin �/ and inside the

circle r D a.

9. R lies inside the cardioid r D 1C cos � and outside the circle

r D 3 cos � .

10. R is bounded by the lemniscate r2
D 2 cos 2� and is outside

the circle r D 1.

11. R is bounded by the smaller loop of the curve

r D 1C 2 cos � .

Find the lengths of the polar curves in Exercises 12–14.

12. r D �2
; 0 � � � � 13. r D ea�

; �� � � � �

14. r D a�; 0 � � � 2�

15. Show that the total arc length of the lemniscate r2
D cos 2� is

4

Z �=4

0

p

sec 2� d�:

16. One leaf of the lemniscate r2
D cos 2� is rotated (a) about the

x-axis and (b) about the y-axis. Find the area of the surface

generated in each case.

17.I Determine the angles at which the straight line � D �=4

intersects the cardioid r D 1C sin � .
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18.I At what points do the curves r2
D 2 sin 2� and r D 2 cos �

intersect? At what angle do the curves intersect at each of

these points?

19.I At what points do the curves r D 1 � cos � and r D 1 � sin �

intersect? At what angle do the curves intersect at each of

these points?

In Exercises 20–25, find all points on the given curve where the

tangent line is horizontal, vertical, or does not exist.

20.I r D cos � C sin � 21.I r D 2 cos �

22.I r
2
D cos 2� 23.I r D sin 2�

24.I r D e
� 25.I r D 2.1 � sin �/

26. The polar curve r D f .�/; .˛ � � � ˇ/, can be

parametrized:

x D r cos � D f .�/ cos �; y D r sin � D f .�/ sin �:

Derive the formula for the arc length element for the polar

curve from that for a parametric curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ a conic section ˘ an ellipse

˘ a parabola ˘ a hyperbola

˘ a parametric curve ˘ a parametrization of a curve

˘ a smooth curve ˘ a polar curve

� What is the focus-directrix definition of a conic?

� How can you find the slope of a parametric curve?

� How can you find the length of a parametric curve?

� How can you find the length of a polar curve?

� How can you find the area bounded by a polar curve?

Review Exercises

In Exercises 1–4, describe the conic having the given equation.

Give its foci and principal axes and, if it is a hyperbola, its asymp-

totes.

1. x2
C 2y

2
D 2 2. 9x2

� 4y
2
D 36

3. x C y2
D 2y C 3 4. 2x2

C 8y
2
D 4x � 48y

Identify the parametric curves in Exercises 5–10.

5. x D t; y D 2 � t; .0 � t � 2/

6. x D 2 sin 3t; y D 2 cos 3t; .0 � t � 1=2/

7. x D cosh t; y D sinh2
t

8. x D et
; y D e

�2t
; .�1 � t � 1/

9. x D cos.t=2/; y D 4 sin.t=2/; .0 � t � �/

10. x D cos t C sin t; y D cos t � sin t; .0 � t � 2�/

In Exercises 11–14, determine the points where the given para-

metric curves have horizontal and vertical tangents, and sketch the

curves.

11. x D
4

1C t2
; y D t

3
� 3t

12. x D t3 � 3t; y D t3 C 3t

13. x D t3 � 3t; y D t3

14. x D t3 � 3t; y D t3 � 12t

15. Find the area bounded by the part of the curve x D t3 � t ,

y D jt3j that forms a closed loop.

16. Find the volume of the solid generated by rotating the closed

loop in Exercise 15 about the y-axis.

17. Find the length of the curve x D et
� t , y D 4et=2 from t D 0

to t D 2.

18. Find the area of the surface obtained by rotating the arc in Ex-

ercise 17 about the x-axis.

Sketch the polar graphs of the equations in Exercises 19–24.

19. r D �;
�

�
3�
2
� � �

3�
2

�

20. r D j� j; .�2� � � � 2�/

21. r D 1C cos 2� 22. r D 2C cos 2�

23. r D 1C 2 cos 2� 24. r D 1 � sin 3�

25. Find the area of one of the two larger loops of the curve in

Exercise 23.

26. Find the area of one of the two smaller loops of the curve in

Exercise 23.

27. Find the area of the smaller of the two loops enclosed by the

curve r D 1C
p

2 sin � .

28. Find the area of the region inside the cardioid r D 1 C cos �

and to the left of the line x D 1=4.

Challenging Problems

1. A glass in the shape of a circular cylinder of radius 4 cm is more

than half filled with water. If the glass is tilted by an angle �

from the vertical, where � is small enough that no water spills

out, find the surface area of the water.

2. Show that a plane that is not parallel to the axis of a cir-

cular cylinder intersects the cylinder in an ellipse. Hint:

You can do this by the same method used in Exercise 27 of

Section 8.1.

3. Given two points F1 and F2 that are foci of an ellipse and a

third point P on the ellipse, describe a geometric method (us-

ing a straight edge and a compass) for constructing the tangent

line to the ellipse at P: Hint: Think about the reflection prop-

erty of ellipses.

4. Let C be a parabola with vertex V; and let P be any point

on the parabola. Let R be the point where the tangent to the

parabola at P intersects the axis of the parabola. (Thus, the

axis is the line RV:) Let Q be the point on RV such that PQ

is perpendicular to RV: Show that V bisects the line segment

RQ: How does this result suggest a geometric method for con-

structing a tangent to a parabola at a point on it, given the axis

and vertex of the parabola?

5. A barrel has the shape of a solid of revolution obtained by ro-

tating about its major axis the part of an ellipse lying between

lines through its foci perpendicular to that axis. The barrel is

4 ft high and 2 ft in radius at its middle. What is its volume?
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6. (a) Show that any straight line not passing through the origin

can be written in polar form as

r D
a

cos.� � �0/
;

where a and �0 are constants. What is the geometric sig-

nificance of these constants?

(b) Let r D g.�/ be the polar equation of a straight line that

does not pass through the origin. Show that

g
2
C 2.g

0
/
2
� gg

00
D 0:

(c) Let r D f .�/ be the polar equation of a curve, where f 00

is continuous and r ¤ 0 in some interval of values of � .

Let

F D f
2
C 2.f

0
/
2
� ff

00
:

Show that the curve is turning toward the origin if F > 0

and away from the origin if F < 0. Hint: Let r D g.�/

be the polar equation of a straight line tangent to the curve,

and use part (b). How do f; f 0, and f 00 relate to g, g0, and

g00 at the point of tangency?

7. (Fast trip, but it might get hot) If we assume that the density

of the earth is uniform throughout, then it can be shown that

the acceleration of gravity at a distance r � R from the centre

of the earth is directed toward the centre of the earth and has

magnitude a.r/ D rg=R, where g is the usual acceleration of

gravity at the surface (g � 32 ft/s2), and R is the radius of the

earth (R � 3;960 mi). Suppose that a straight tunnel AB is

drilled through the earth between any two points A and B on

the surface, say Atlanta and Baghdad. (See Figure 8.56.)

r

�

0 x.t/

x

R

B A

Figure 8.56

Suppose that a vehicle is constructed that can slide without fric-

tion or air resistance through this tunnel. Show that such a vehi-

cle will, if released at one end of the tunnel, fall back and forth

between A and B; executing simple harmonic motion with pe-

riod 2�
p

R=g. How many minutes will the round trip take?

What is surprising here is that this period does not depend on

where A and B are or on the distance between them. Hint: Let

the x-axis lie along the tunnel, with origin at the point closest

to the centre of the earth. When the vehicle is at position with

x-coordinate x.t/, its acceleration along the tunnel is the com-

ponent of the gravitational acceleration along the tunnel, that

is, �a.r/ cos � , where � is the angle between the line of the

tunnel and the line from the vehicle to the centre of the earth.

8.I (Search and Rescue) Two coast guard stations pick up a dis-

tress signal from a ship and use radio direction finders to locate

it. Station O observes that the distress signal is coming from

the northeast (45ı east of north), while station P; which is 100

miles north of station O; observes that the signal is coming

from due east. Each station’s direction finder is accurate to

within˙3ı.

(a) How large an area of the ocean must a rescue aircraft

search to ensure that it finds the foundering ship?

(b) If the accuracy of the direction finders is within ˙", how

sensitive is the search area to changes in " when " D 3ı?

(Express your answer in square miles per degree.)

9. Figure 8.57 shows the graphs of the parametric curve x D sin t ,

y D
1
2

sin.2t/, 0 � t � 2� , and the polar curve r2
D cos.2�/.

Each has the shape of an “1.” Which curve is which? Find the

area inside the outer curve and outside the inner curve.
y

x

Figure 8.57
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18.I At what points do the curves r2
D 2 sin 2� and r D 2 cos �

intersect? At what angle do the curves intersect at each of

these points?

19.I At what points do the curves r D 1 � cos � and r D 1 � sin �

intersect? At what angle do the curves intersect at each of

these points?

In Exercises 20–25, find all points on the given curve where the

tangent line is horizontal, vertical, or does not exist.

20.I r D cos � C sin � 21.I r D 2 cos �

22.I r
2
D cos 2� 23.I r D sin 2�

24.I r D e
� 25.I r D 2.1 � sin �/

26. The polar curve r D f .�/; .˛ � � � ˇ/, can be

parametrized:

x D r cos � D f .�/ cos �; y D r sin � D f .�/ sin �:

Derive the formula for the arc length element for the polar

curve from that for a parametric curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ a conic section ˘ an ellipse

˘ a parabola ˘ a hyperbola

˘ a parametric curve ˘ a parametrization of a curve

˘ a smooth curve ˘ a polar curve

� What is the focus-directrix definition of a conic?

� How can you find the slope of a parametric curve?

� How can you find the length of a parametric curve?

� How can you find the length of a polar curve?

� How can you find the area bounded by a polar curve?

Review Exercises

In Exercises 1–4, describe the conic having the given equation.

Give its foci and principal axes and, if it is a hyperbola, its asymp-

totes.

1. x2
C 2y

2
D 2 2. 9x2

� 4y
2
D 36

3. x C y2
D 2y C 3 4. 2x2

C 8y
2
D 4x � 48y

Identify the parametric curves in Exercises 5–10.

5. x D t; y D 2 � t; .0 � t � 2/

6. x D 2 sin 3t; y D 2 cos 3t; .0 � t � 1=2/

7. x D cosh t; y D sinh2
t

8. x D et
; y D e

�2t
; .�1 � t � 1/

9. x D cos.t=2/; y D 4 sin.t=2/; .0 � t � �/

10. x D cos t C sin t; y D cos t � sin t; .0 � t � 2�/

In Exercises 11–14, determine the points where the given para-

metric curves have horizontal and vertical tangents, and sketch the

curves.

11. x D
4

1C t2
; y D t

3
� 3t

12. x D t3 � 3t; y D t3 C 3t

13. x D t3 � 3t; y D t3

14. x D t3 � 3t; y D t3 � 12t

15. Find the area bounded by the part of the curve x D t3 � t ,

y D jt3j that forms a closed loop.

16. Find the volume of the solid generated by rotating the closed

loop in Exercise 15 about the y-axis.

17. Find the length of the curve x D et
� t , y D 4et=2 from t D 0

to t D 2.

18. Find the area of the surface obtained by rotating the arc in Ex-

ercise 17 about the x-axis.

Sketch the polar graphs of the equations in Exercises 19–24.

19. r D �;
�

�
3�
2
� � �

3�
2

�

20. r D j� j; .�2� � � � 2�/

21. r D 1C cos 2� 22. r D 2C cos 2�

23. r D 1C 2 cos 2� 24. r D 1 � sin 3�

25. Find the area of one of the two larger loops of the curve in

Exercise 23.

26. Find the area of one of the two smaller loops of the curve in

Exercise 23.

27. Find the area of the smaller of the two loops enclosed by the

curve r D 1C
p

2 sin � .

28. Find the area of the region inside the cardioid r D 1 C cos �

and to the left of the line x D 1=4.

Challenging Problems

1. A glass in the shape of a circular cylinder of radius 4 cm is more

than half filled with water. If the glass is tilted by an angle �

from the vertical, where � is small enough that no water spills

out, find the surface area of the water.

2. Show that a plane that is not parallel to the axis of a cir-

cular cylinder intersects the cylinder in an ellipse. Hint:

You can do this by the same method used in Exercise 27 of

Section 8.1.

3. Given two points F1 and F2 that are foci of an ellipse and a

third point P on the ellipse, describe a geometric method (us-

ing a straight edge and a compass) for constructing the tangent

line to the ellipse at P: Hint: Think about the reflection prop-

erty of ellipses.

4. Let C be a parabola with vertex V; and let P be any point

on the parabola. Let R be the point where the tangent to the

parabola at P intersects the axis of the parabola. (Thus, the

axis is the line RV:) Let Q be the point on RV such that PQ

is perpendicular to RV: Show that V bisects the line segment

RQ: How does this result suggest a geometric method for con-

structing a tangent to a parabola at a point on it, given the axis

and vertex of the parabola?

5. A barrel has the shape of a solid of revolution obtained by ro-

tating about its major axis the part of an ellipse lying between

lines through its foci perpendicular to that axis. The barrel is

4 ft high and 2 ft in radius at its middle. What is its volume?
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6. (a) Show that any straight line not passing through the origin

can be written in polar form as

r D
a

cos.� � �0/
;

where a and �0 are constants. What is the geometric sig-

nificance of these constants?

(b) Let r D g.�/ be the polar equation of a straight line that

does not pass through the origin. Show that

g
2
C 2.g

0
/
2
� gg

00
D 0:

(c) Let r D f .�/ be the polar equation of a curve, where f 00

is continuous and r ¤ 0 in some interval of values of � .

Let

F D f
2
C 2.f

0
/
2
� ff

00
:

Show that the curve is turning toward the origin if F > 0

and away from the origin if F < 0. Hint: Let r D g.�/

be the polar equation of a straight line tangent to the curve,

and use part (b). How do f; f 0, and f 00 relate to g, g0, and

g00 at the point of tangency?

7. (Fast trip, but it might get hot) If we assume that the density

of the earth is uniform throughout, then it can be shown that

the acceleration of gravity at a distance r � R from the centre

of the earth is directed toward the centre of the earth and has

magnitude a.r/ D rg=R, where g is the usual acceleration of

gravity at the surface (g � 32 ft/s2), and R is the radius of the

earth (R � 3;960 mi). Suppose that a straight tunnel AB is

drilled through the earth between any two points A and B on

the surface, say Atlanta and Baghdad. (See Figure 8.56.)

r

�

0 x.t/

x

R

B A

Figure 8.56

Suppose that a vehicle is constructed that can slide without fric-

tion or air resistance through this tunnel. Show that such a vehi-

cle will, if released at one end of the tunnel, fall back and forth

between A and B; executing simple harmonic motion with pe-

riod 2�
p

R=g. How many minutes will the round trip take?

What is surprising here is that this period does not depend on

where A and B are or on the distance between them. Hint: Let

the x-axis lie along the tunnel, with origin at the point closest

to the centre of the earth. When the vehicle is at position with

x-coordinate x.t/, its acceleration along the tunnel is the com-

ponent of the gravitational acceleration along the tunnel, that

is, �a.r/ cos � , where � is the angle between the line of the

tunnel and the line from the vehicle to the centre of the earth.

8.I (Search and Rescue) Two coast guard stations pick up a dis-

tress signal from a ship and use radio direction finders to locate

it. Station O observes that the distress signal is coming from

the northeast (45ı east of north), while station P; which is 100

miles north of station O; observes that the signal is coming

from due east. Each station’s direction finder is accurate to

within˙3ı.

(a) How large an area of the ocean must a rescue aircraft

search to ensure that it finds the foundering ship?

(b) If the accuracy of the direction finders is within ˙", how

sensitive is the search area to changes in " when " D 3ı?

(Express your answer in square miles per degree.)

9. Figure 8.57 shows the graphs of the parametric curve x D sin t ,

y D
1
2

sin.2t/, 0 � t � 2� , and the polar curve r2
D cos.2�/.

Each has the shape of an “1.” Which curve is which? Find the

area inside the outer curve and outside the inner curve.
y

x

Figure 8.57
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C H A P T E R 9

Sequences, Series,

and Power Series

“
‘Then you should say what you mean,’ the March Hare went on.

‘I do,’ Alice hastily replied; ‘at least—at least I mean what I say—

that’s the same thing, you know.’

‘Not the same thing a bit!’ said the Hatter. ‘Why, you might just as

well say that “I see what I eat” is the same thing as “I eat what I see!”’

”Lewis Carroll (Charles Lutwidge Dodgson) 1832–1898

from Alice’s Adventures in Wonderland

Introduction An infinite series is a sum that involves infinitely many

terms. Since addition is carried out on two numbers at

a time, the evaluation of the sum of an infinite series necessarily involves finding a

limit. Complicated functions f .x/ can frequently be expressed as series of simpler

functions. For example, many of the transcendental functions we have encountered

can be expressed as series of powers of x so that they resemble polynomials of infinite

degree. Such series can be differentiated and integrated term by term, and they play a

very important role in the study of calculus.

9.1 Sequences and Convergence

By a sequence (or an infinite sequence) we mean an ordered list having a first element

but no last element. For our purposes, the elements (called terms) of a sequence will

always be real numbers, although much of our discussion could be applied to complex

numbers as well. Examples of sequences are:

f1; 2; 3; 4; 5; : : :g the sequence of positive integers,
�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

the sequence of positive integer powers of �
1

2
.

The terms of a sequence are usually listed in braces as shown. The ellipsis points .: : :/

should be read “and so on.”

An infinite sequence is a special kind of function, one whose domain is a set of

integers extending from some starting integer to infinity. The starting integer is usually

1, so the domain is the set of positive integers. The sequence fa1; a2; a3; a4; : : :g is

the function f that takes the value f .n/ D an at each positive integer n. A sequence

can be specified in three ways:

(i) We can list the first few terms followed by : : : if the pattern is obvious.

(ii) We can provide a formula for the general term an as a function of n.

(iii) We can provide a formula for calculating the term an as a function of earlier terms

a1; a2; : : : ; an�1 and specify enough of the beginning terms so the process of

computing higher terms can begin.
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In each case it must be possible to determine any term of the sequence, although it may

be necessary to calculate all the preceding terms first.

E X A M P L E 1
(Some examples of sequences)

(a) fng D f1; 2; 3; 4; 5; : : :g

(b)

��

�

1

2

�n�

D

�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

(c)

�

n� 1

n

�

D

�

0;
1

2
;
2

3
;
3

4
;
4

5
; : : :

�

(d) f.�1/n�1
g D fcos..n � 1/�/g D f1; �1; 1; �1; 1; : : :g

(e)

�

n2

2n

�

D

�

1

2
; 1;

9

8
; 1;

25

32
;
36

64
;
49

128
; : : :

�

(f)

��

1C
1

n

�n�

D

(

2;

�

3

2

�2

;

�

4

3

�3

;

�

5

4

�4

; : : :

)

(g)

�

cos.n�=2/

n

�

D

�

0; �
1

2
; 0;

1

4
; 0; �

1

6
; 0;

1

8
; 0; : : :

�

(h) a1 D 1, anC1 D
p

6C an, .n D 1; 2; 3; : : :/

In this case fang D f1;
p

7;

p

6C
p

7; : : :g. Note that there is no obvious for-

mula for an as an explicit function of n here, but we can still calculate an for any

desired value of n provided we first calculate all the earlier values a2; a3; : : : ; an�1.

(i) a1 D 1, a2 D 1, anC2 D an C anC1, .n D 1; 2; 3; : : :/

Here fang D f1; 1; 2; 3; 5; 8; 13; 21; : : :g. This is called the Fibonacci

sequence. Each term after the second is the sum of the previous two terms.

In parts (a)–(g) of Example 1, the formulas on the left sides define the general term of

each sequence fang as an explicit function of n. In parts (h) and (i) we say the sequence

fang is defined recursively or inductively; each term must be calculated from previous

ones rather than directly as a function of n. We now introduce terminology used to

describe various properties of sequences.

D E F I N I T I O N

1

Terms for describing sequences

(a) The sequence fang is bounded below by L, and L is a lower bound for

fang, if an � L for every n D 1; 2; 3; : : : : The sequence is bounded

above by M; and M is an upper bound, if an �M for every such n.

The sequence fang is bounded if it is both bounded above and bounded

below. In this case there is a constant K such that janj � K for every

n D 1; 2; 3; : : : : (We can take K to be the larger of jLj and jM j.)

(b) The sequence fang is positive if it is bounded below by zero, that is, if

an � 0 for every n D 1; 2; 3; : : : I it is negative if an � 0 for every n.

(c) The sequence fang is increasing if anC1 � an for every n D 1; 2; 3; : : : I

it is decreasing if anC1 � an for every such n. The sequence is said to be

monotonic if it is either increasing or decreasing. (The terminology here

is looser than that used for functions, where we would have used non-

decreasing and nonincreasing to describe this behaviour. The distinction

between anC1 > an and anC1 � an is not as important for sequences as

it is for functions defined on intervals.)

(d) The sequence fang is alternating if ananC1 < 0 for every n D 1; 2; : : : ;

that is, if any two consecutive terms have opposite signs. Note that this

definition requires an ¤ 0 for each n.

9780134154367_Calculus   520 05/12/16   3:37 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 500 October 5, 2016

500

C H A P T E R 9

Sequences, Series,

and Power Series

“
‘Then you should say what you mean,’ the March Hare went on.

‘I do,’ Alice hastily replied; ‘at least—at least I mean what I say—

that’s the same thing, you know.’

‘Not the same thing a bit!’ said the Hatter. ‘Why, you might just as

well say that “I see what I eat” is the same thing as “I eat what I see!”’

”Lewis Carroll (Charles Lutwidge Dodgson) 1832–1898

from Alice’s Adventures in Wonderland

Introduction An infinite series is a sum that involves infinitely many

terms. Since addition is carried out on two numbers at

a time, the evaluation of the sum of an infinite series necessarily involves finding a

limit. Complicated functions f .x/ can frequently be expressed as series of simpler

functions. For example, many of the transcendental functions we have encountered

can be expressed as series of powers of x so that they resemble polynomials of infinite

degree. Such series can be differentiated and integrated term by term, and they play a

very important role in the study of calculus.

9.1 Sequences and Convergence

By a sequence (or an infinite sequence) we mean an ordered list having a first element

but no last element. For our purposes, the elements (called terms) of a sequence will

always be real numbers, although much of our discussion could be applied to complex

numbers as well. Examples of sequences are:

f1; 2; 3; 4; 5; : : :g the sequence of positive integers,
�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

the sequence of positive integer powers of �
1

2
.

The terms of a sequence are usually listed in braces as shown. The ellipsis points .: : :/

should be read “and so on.”

An infinite sequence is a special kind of function, one whose domain is a set of

integers extending from some starting integer to infinity. The starting integer is usually

1, so the domain is the set of positive integers. The sequence fa1; a2; a3; a4; : : :g is

the function f that takes the value f .n/ D an at each positive integer n. A sequence

can be specified in three ways:

(i) We can list the first few terms followed by : : : if the pattern is obvious.

(ii) We can provide a formula for the general term an as a function of n.

(iii) We can provide a formula for calculating the term an as a function of earlier terms

a1; a2; : : : ; an�1 and specify enough of the beginning terms so the process of

computing higher terms can begin.
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In each case it must be possible to determine any term of the sequence, although it may

be necessary to calculate all the preceding terms first.

E X A M P L E 1
(Some examples of sequences)

(a) fng D f1; 2; 3; 4; 5; : : :g

(b)

��

�

1

2

�n�

D

�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

(c)

�

n� 1

n

�

D

�

0;
1

2
;
2

3
;
3

4
;
4

5
; : : :

�

(d) f.�1/n�1
g D fcos..n � 1/�/g D f1; �1; 1; �1; 1; : : :g

(e)

�

n2

2n

�

D

�

1

2
; 1;

9

8
; 1;

25

32
;
36

64
;
49

128
; : : :

�

(f)

��

1C
1

n

�n�

D

(

2;

�

3

2

�2

;

�

4

3

�3

;

�

5

4

�4

; : : :

)

(g)

�

cos.n�=2/

n

�

D

�

0; �
1

2
; 0;

1

4
; 0; �

1

6
; 0;

1

8
; 0; : : :

�

(h) a1 D 1, anC1 D
p

6C an, .n D 1; 2; 3; : : :/

In this case fang D f1;
p

7;

p

6C
p

7; : : :g. Note that there is no obvious for-

mula for an as an explicit function of n here, but we can still calculate an for any

desired value of n provided we first calculate all the earlier values a2; a3; : : : ; an�1.

(i) a1 D 1, a2 D 1, anC2 D an C anC1, .n D 1; 2; 3; : : :/

Here fang D f1; 1; 2; 3; 5; 8; 13; 21; : : :g. This is called the Fibonacci

sequence. Each term after the second is the sum of the previous two terms.

In parts (a)–(g) of Example 1, the formulas on the left sides define the general term of

each sequence fang as an explicit function of n. In parts (h) and (i) we say the sequence

fang is defined recursively or inductively; each term must be calculated from previous

ones rather than directly as a function of n. We now introduce terminology used to

describe various properties of sequences.

D E F I N I T I O N

1

Terms for describing sequences

(a) The sequence fang is bounded below by L, and L is a lower bound for

fang, if an � L for every n D 1; 2; 3; : : : : The sequence is bounded

above by M; and M is an upper bound, if an �M for every such n.

The sequence fang is bounded if it is both bounded above and bounded

below. In this case there is a constant K such that janj � K for every

n D 1; 2; 3; : : : : (We can take K to be the larger of jLj and jM j.)

(b) The sequence fang is positive if it is bounded below by zero, that is, if

an � 0 for every n D 1; 2; 3; : : : I it is negative if an � 0 for every n.

(c) The sequence fang is increasing if anC1 � an for every n D 1; 2; 3; : : : I

it is decreasing if anC1 � an for every such n. The sequence is said to be

monotonic if it is either increasing or decreasing. (The terminology here

is looser than that used for functions, where we would have used non-

decreasing and nonincreasing to describe this behaviour. The distinction

between anC1 > an and anC1 � an is not as important for sequences as

it is for functions defined on intervals.)

(d) The sequence fang is alternating if ananC1 < 0 for every n D 1; 2; : : : ;

that is, if any two consecutive terms have opposite signs. Note that this

definition requires an ¤ 0 for each n.
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E X A M P L E 2
(Describing some sequences)

(a) The sequence fng D f1; 2; 3; : : :g is positive, increasing, and bounded below. A

lower bound for the sequence is 1 or any smaller number. The sequence is not

bounded above.

(b)

�

n� 1

n

�

D

�

0;
1

2
;
2

3
;
3

4
; : : :

�

is positive, bounded, and increasing. Here, 0 is a

lower bound and 1 is an upper bound.

(c)

��

�

1

2

�n�

D

�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

is bounded and alternating. Here, �1=2 is

a lower bound and 1=4 is an upper bound.

(d) f.�1/nng D f�1; 2; �3; 4; �5; : : :g is alternating but not bounded either above

or below.

When you want to show that a sequence is increasing, you can try to show that the

inequality anC1 � an � 0 holds for n � 1. Alternatively, if an D f .n/ for a dif-

ferentiable function f .x/, you can show that f is a nondecreasing function on Œ1;1/

by showing that f 0.x/ � 0 there. Similar approaches are useful for showing that a

sequence is decreasing.

E X A M P L E 3 If an D
n

n2
C 1

, show that the sequence fang is decreasing.

Solution Since an D f .n/, where f .x/ D
x

x2
C 1

and

f
0
.x/ D

.x
2
C 1/.1/ � x.2x/

.x2
C 1/2

D

1 � x
2

.x2
C 1/2

� 0 for x � 1;

the function f .x/ is decreasing on Œ1;1/; therefore, fang is a decreasing sequence.

The sequence

�

n2

2n

�

D

�

1

2
; 1;

9

8
; 1;

25

32
;
36

64
;
49

128
; : : :

�

is positive and, therefore,

bounded below. It seems clear that from the fourth term on, all the terms are getting

smaller. However, a2 > a1 and a3 > a2. Since anC1 � an only if n � 3, we say

that this sequence is ultimately decreasing. The adverb ultimately is used to describe

any termwise property of a sequence that the terms have from some point on, but not

necessarily at the beginning of the sequence. Thus, the sequence

fn� 100g D f�99; �98; : : : ; �2; �1; 0; 1; 2; 3; : : :g

is ultimately positive even though the first 99 terms are negative, and the sequence

�

.�1/
n
C

4

n

�

D

�

3; 3;
1

3
; 2; �

1

5
;
5

3
; �

3

7
;
3

2
; : : :

�

is ultimately alternating even though the first few terms do not alternate.

Convergence of Sequences
Central to the study of sequences is the notion of convergence. The concept of the

limit of a sequence is a special case of the concept of the limit of a function f .x/

as x ! 1. We say that the sequence fang converges to the limit L; and we write

limn!1 an D L; provided the distance from an to L on the real line approaches 0 as

n increases toward1. We state this definition more formally as follows:
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D E F I N I T I O N

2

Limit of a sequence

We say that sequence fang converges to the limit L, and we write

limn!1 an D L, if for every positive real number � there exists an integer N

(which may depend on �) such that if n � N , then jan � Lj < �:

This definition is illustrated in Figure 9.1.

Figure 9.1 A convergent sequence

y

x

L � �

LC �

L

1 2 3 4 N n

an

a1

a2

a3
a4

E X A M P L E 4 Show that limn!1
c

np
D 0 for any real number c and any p > 0.

Solution Let � > 0 be given. Then

ˇ

ˇ

ˇ

c

np

ˇ

ˇ

ˇ < � if n
p
>
jcj

�
;

that is, if n � N; the least integer greater than .jcj=�/1=p . Therefore, by Definition 2,

limn!1
c

np
D 0.

Every sequence fang must either converge to a finite limit L or diverge. That is,

either limn!1 an D L exists (is a real number) or limn!1 an does not exist. If

limn!1 an D 1, we can say that the sequence diverges to1; if limn!1 an D �1,

we can say that it diverges to �1. If limn!1 an simply does not exist (but is not1

or �1), we can only say that the sequence diverges.

E X A M P L E 5
(Examples of convergent and divergent sequences)

(a) f.n � 1/=ng converges to 1; limn!1.n � 1/=n D limn!1
�

1 � .1=n/
�

D 1.

(b) fng D f1; 2; 3; 4; : : :g diverges to1.

(c) f�ng D f�1;�2;�3;�4; : : :g diverges to �1.

(d) f.�1/ng D f�1; 1;�1; 1;�1; : : :g simply diverges.

(e) f.�1/nng D f�1; 2;�3; 4;�5; : : :g diverges (but not to 1 or �1 even though

limn!1 janj D 1).

The limit of a sequence is equivalent to the limit of a function as its argument ap-

proaches infinity:

If lim
x!1

f .x/ D L and an D f .n/, then lim
n!1

an D L.
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E X A M P L E 2
(Describing some sequences)

(a) The sequence fng D f1; 2; 3; : : :g is positive, increasing, and bounded below. A

lower bound for the sequence is 1 or any smaller number. The sequence is not

bounded above.

(b)

�

n� 1

n

�

D

�

0;
1

2
;
2

3
;
3

4
; : : :

�

is positive, bounded, and increasing. Here, 0 is a

lower bound and 1 is an upper bound.

(c)

��

�

1

2

�n�

D

�

�

1

2
;
1

4
; �

1

8
;
1

16
; : : :

�

is bounded and alternating. Here, �1=2 is

a lower bound and 1=4 is an upper bound.

(d) f.�1/nng D f�1; 2; �3; 4; �5; : : :g is alternating but not bounded either above

or below.

When you want to show that a sequence is increasing, you can try to show that the

inequality anC1 � an � 0 holds for n � 1. Alternatively, if an D f .n/ for a dif-

ferentiable function f .x/, you can show that f is a nondecreasing function on Œ1;1/

by showing that f 0.x/ � 0 there. Similar approaches are useful for showing that a

sequence is decreasing.

E X A M P L E 3 If an D
n

n2
C 1

, show that the sequence fang is decreasing.

Solution Since an D f .n/, where f .x/ D
x

x2
C 1

and

f
0
.x/ D

.x
2
C 1/.1/ � x.2x/

.x2
C 1/2

D

1 � x
2

.x2
C 1/2

� 0 for x � 1;

the function f .x/ is decreasing on Œ1;1/; therefore, fang is a decreasing sequence.

The sequence

�

n2

2n

�

D

�

1

2
; 1;

9

8
; 1;

25

32
;
36

64
;
49

128
; : : :

�

is positive and, therefore,

bounded below. It seems clear that from the fourth term on, all the terms are getting

smaller. However, a2 > a1 and a3 > a2. Since anC1 � an only if n � 3, we say

that this sequence is ultimately decreasing. The adverb ultimately is used to describe

any termwise property of a sequence that the terms have from some point on, but not

necessarily at the beginning of the sequence. Thus, the sequence

fn� 100g D f�99; �98; : : : ; �2; �1; 0; 1; 2; 3; : : :g

is ultimately positive even though the first 99 terms are negative, and the sequence

�

.�1/
n
C

4

n

�

D

�

3; 3;
1

3
; 2; �

1

5
;
5

3
; �

3

7
;
3

2
; : : :

�

is ultimately alternating even though the first few terms do not alternate.

Convergence of Sequences
Central to the study of sequences is the notion of convergence. The concept of the

limit of a sequence is a special case of the concept of the limit of a function f .x/

as x ! 1. We say that the sequence fang converges to the limit L; and we write

limn!1 an D L; provided the distance from an to L on the real line approaches 0 as

n increases toward1. We state this definition more formally as follows:
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D E F I N I T I O N

2

Limit of a sequence

We say that sequence fang converges to the limit L, and we write

limn!1 an D L, if for every positive real number � there exists an integer N

(which may depend on �) such that if n � N , then jan � Lj < �:

This definition is illustrated in Figure 9.1.

Figure 9.1 A convergent sequence

y

x

L � �

LC �

L

1 2 3 4 N n

an

a1

a2

a3
a4

E X A M P L E 4 Show that limn!1
c

np
D 0 for any real number c and any p > 0.

Solution Let � > 0 be given. Then

ˇ

ˇ

ˇ

c

np

ˇ

ˇ

ˇ < � if n
p
>
jcj

�
;

that is, if n � N; the least integer greater than .jcj=�/1=p . Therefore, by Definition 2,

limn!1
c

np
D 0.

Every sequence fang must either converge to a finite limit L or diverge. That is,

either limn!1 an D L exists (is a real number) or limn!1 an does not exist. If

limn!1 an D 1, we can say that the sequence diverges to1; if limn!1 an D �1,

we can say that it diverges to �1. If limn!1 an simply does not exist (but is not1

or �1), we can only say that the sequence diverges.

E X A M P L E 5
(Examples of convergent and divergent sequences)

(a) f.n � 1/=ng converges to 1; limn!1.n � 1/=n D limn!1
�

1 � .1=n/
�

D 1.

(b) fng D f1; 2; 3; 4; : : :g diverges to1.

(c) f�ng D f�1;�2;�3;�4; : : :g diverges to �1.

(d) f.�1/ng D f�1; 1;�1; 1;�1; : : :g simply diverges.

(e) f.�1/nng D f�1; 2;�3; 4;�5; : : :g diverges (but not to 1 or �1 even though

limn!1 janj D 1).

The limit of a sequence is equivalent to the limit of a function as its argument ap-

proaches infinity:

If lim
x!1

f .x/ D L and an D f .n/, then lim
n!1

an D L.
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Because of this, the standard rules for limits of functions (Theorems 2 and 4 of

Section 1.2) also hold for limits of sequences, with the appropriate changes of notation.

Thus, if fang and fbng converge, then

lim
n!1

.an ˙ bn/ D lim
n!1

an ˙ lim
n!1

bn;

lim
n!1

can D c lim
n!1

an;

lim
n!1

anbn D

�

lim
n!1

an

� �

lim
n!1

bn

�

;

lim
n!1

an

bn

D

lim
n!1

an

lim
n!1

bn

assuming lim
n!1

bn ¤ 0:

If an � bn ultimately, then lim
n!1

an � lim
n!1

bn:

If an � bn � cn ultimately, and lim
n!1

an D L D lim
n!1

cn, then lim
n!1

bn D L:

The limits of many explicitly defined sequences can be evaluated using these proper-

ties in a manner similar to the methods used for limits of the form limx!1 f .x/ in

Section 1.3.

E X A M P L E 6
Calculate the limits of the sequences

(a)

�

2n
2
� n� 1

5n2
C n� 3

�

; (b)
ncos n

n

o

; and (c) f
p

n2
C 2n � ng:

Solution

(a) We divide the numerator and denominator of the expression for an by the highest

power of n in the denominator, that is, by n2:

lim
n!1

2n
2
� n� 1

5n2
C n� 3

D lim
n!1

2 � .1=n/ � .1=n
2
/

5C .1=n/ � .3=n2/
D

2 � 0 � 0

5C 0 � 0
D

2

5
;

since limn!1 1=n D 0 and limn!1 1=n
2
D 0. The sequence converges and its

limit is 2/5.

(b) Since j cos nj � 1 for every n, we have

�

1

n
�

cos n

n
�

1

n
for n � 1:

Now, limn!1�1=n D 0 and limn!1 1=n D 0. Therefore, by the sequence

version of the Squeeze Theorem, limn!1.cos n/=n D 0. The given sequence

converges to 0.

(c) For this sequence we multiply the numerator and the denominator (which is 1) by

the conjugate of the expression in the numerator:

lim
n!1

.

p

n2
C 2n � n/ D lim

n!1

.
p

n2
C 2n � n/.

p

n2
C 2nC n/

p

n2
C 2nC n

D lim
n!1

2n
p

n2
C 2nC n

D lim
n!1

2
p

1C .2=n/C 1
D 1:

The sequence converges to 1.
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E X A M P L E 7 Evaluate lim
n!1

n tan�1

�

1

n

�

.

Solution For this example it is best to replace the nth term of the sequence by the

corresponding function of a real variable x and take the limit as x ! 1. We use

l’Hôpital’s Rule:

lim
n!1

n tan�1

�

1

n

�

D lim
x!1

x tan�1

�

1

x

�

D lim
x!1

tan�1

�

1

x

�

1

x

�

0

0

�

D lim
x!1

1

1C .1=x2/

�

�

1

x2

�

�

�

1

x2

� D lim
x!1

1

1C
1

x2

D 1:

T H E O R E M

1

If fang converges, then fang is bounded.

PROOF Suppose limn!1 an D L. According to Definition 2, for � D 1 there exists

a number N such that if n > N , then jan � Lj < 1; therefore janj < 1C jLj for such

n. (Why is this true?) If K denotes the largest of the numbers ja1j, ja2j; : : : ; jaN j,

and 1C jLj, then janj � K for every n D 1; 2; 3; : : : : Hence, fang is bounded.

The converse of Theorem 1 is false; the sequence f.�1/ng is bounded but does not

converge.

The completeness property of the real number system (see Section P.1) can be

reformulated in terms of sequences to read as follows:

Bounded monotonic sequences converge

If the sequence fang is bounded above and is (ultimately) increasing, then

it converges. The same conclusion holds if fang is bounded below and is

(ultimately) decreasing.

Thus, a bounded, ultimately monotonic sequence is convergent. (See Figure 9.2.)

Figure 9.2 An ultimately

increasing sequence that is

bounded above

y

x

L

M
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Because of this, the standard rules for limits of functions (Theorems 2 and 4 of

Section 1.2) also hold for limits of sequences, with the appropriate changes of notation.

Thus, if fang and fbng converge, then

lim
n!1

.an ˙ bn/ D lim
n!1

an ˙ lim
n!1

bn;

lim
n!1

can D c lim
n!1

an;

lim
n!1

anbn D

�

lim
n!1

an

� �

lim
n!1

bn

�

;

lim
n!1

an

bn

D

lim
n!1

an

lim
n!1

bn

assuming lim
n!1

bn ¤ 0:

If an � bn ultimately, then lim
n!1

an � lim
n!1

bn:

If an � bn � cn ultimately, and lim
n!1

an D L D lim
n!1

cn, then lim
n!1

bn D L:

The limits of many explicitly defined sequences can be evaluated using these proper-

ties in a manner similar to the methods used for limits of the form limx!1 f .x/ in

Section 1.3.

E X A M P L E 6
Calculate the limits of the sequences

(a)

�

2n
2
� n� 1

5n2
C n� 3

�

; (b)
ncos n

n

o

; and (c) f
p

n2
C 2n � ng:

Solution

(a) We divide the numerator and denominator of the expression for an by the highest

power of n in the denominator, that is, by n2:

lim
n!1

2n
2
� n� 1

5n2
C n� 3

D lim
n!1

2 � .1=n/ � .1=n
2
/

5C .1=n/ � .3=n2/
D

2 � 0 � 0

5C 0 � 0
D

2

5
;

since limn!1 1=n D 0 and limn!1 1=n
2
D 0. The sequence converges and its

limit is 2/5.

(b) Since j cos nj � 1 for every n, we have

�

1

n
�

cos n

n
�

1

n
for n � 1:

Now, limn!1�1=n D 0 and limn!1 1=n D 0. Therefore, by the sequence

version of the Squeeze Theorem, limn!1.cos n/=n D 0. The given sequence

converges to 0.

(c) For this sequence we multiply the numerator and the denominator (which is 1) by

the conjugate of the expression in the numerator:

lim
n!1

.

p

n2
C 2n � n/ D lim

n!1

.
p

n2
C 2n � n/.

p

n2
C 2nC n/

p

n2
C 2nC n

D lim
n!1

2n
p

n2
C 2nC n

D lim
n!1

2
p

1C .2=n/C 1
D 1:

The sequence converges to 1.
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E X A M P L E 7 Evaluate lim
n!1

n tan�1

�

1

n

�

.

Solution For this example it is best to replace the nth term of the sequence by the

corresponding function of a real variable x and take the limit as x ! 1. We use

l’Hôpital’s Rule:

lim
n!1

n tan�1

�

1

n

�

D lim
x!1

x tan�1

�

1

x

�

D lim
x!1

tan�1

�

1

x

�

1

x

�

0

0

�

D lim
x!1

1

1C .1=x2/

�

�

1

x2

�

�

�

1

x2

� D lim
x!1

1

1C
1

x2

D 1:

T H E O R E M

1

If fang converges, then fang is bounded.

PROOF Suppose limn!1 an D L. According to Definition 2, for � D 1 there exists

a number N such that if n > N , then jan � Lj < 1; therefore janj < 1C jLj for such

n. (Why is this true?) If K denotes the largest of the numbers ja1j, ja2j; : : : ; jaN j,

and 1C jLj, then janj � K for every n D 1; 2; 3; : : : : Hence, fang is bounded.

The converse of Theorem 1 is false; the sequence f.�1/ng is bounded but does not

converge.

The completeness property of the real number system (see Section P.1) can be

reformulated in terms of sequences to read as follows:

Bounded monotonic sequences converge

If the sequence fang is bounded above and is (ultimately) increasing, then

it converges. The same conclusion holds if fang is bounded below and is

(ultimately) decreasing.

Thus, a bounded, ultimately monotonic sequence is convergent. (See Figure 9.2.)

Figure 9.2 An ultimately

increasing sequence that is

bounded above

y

x

L

M
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E X A M P L E 8
Let an be defined recursively by

There is a subtle point to note in

this solution. Showing that fang

is increasing is pretty obvious,

but how did we know to try and

show that 3 (rather than some

other number) was an upper

bound? The answer is that we

actually did the last part first and

showed that if liman D a exists,

then a D 3. It then makes sense

to try and show that an < 3 for

all n.

Of course, we can easily

show that any number greater

than 3 is an upper bound.

a1 D 1; anC1 D

p

6C an .n D 1; 2; 3; : : :/:

Show that limn!1 an exists and find its value.

Solution Observe that a2 D
p

6C 1 D
p

7 > a1. If akC1 > ak , then we have

akC2 D
p

6C akC1 >
p

6C ak D akC1, so fang is increasing, by induction. Now

observe that a1 D 1 < 3. If ak < 3, then akC1 D
p

6C ak <
p

6C 3 D 3, so an < 3

for every n by induction. Since fang is increasing and bounded above, limn!1 an D a

exists, by completeness. Since
p

6C x is a continuous function of x, we have

a D lim
n!1

anC1 D lim
n!1

p

6C an D

q

6C lim
n!1

an D

p

6C a:

Thus, a2
D 6C a, or a2

� a� 6 D 0, or .a� 3/.aC 2/ D 0. This quadratic has roots

a D 3 and a D �2. Since an � 1 for every n, we must have a � 1. Therefore, a D 3

and limn!1 an D 3.

E X A M P L E 9 Does

��

1C
1

n

�n�

converge or diverge?

Solution We could make an effort to show that the given sequence is, in fact, in-

creasing and bounded above. (See Exercise 32 at the end of this section.) However, we

already know the answer. The sequence converges by Theorem 6 of Section 3.4:

lim
n!1

�

1C
1

n

�n

D e
1
D e:

T H E O R E M

2

If fang is (ultimately) increasing, then either it is bounded above, and therefore con-

vergent, or it is not bounded above and diverges to infinity.

The proof of this theorem is left as an exercise. A corresponding result holds for

(ultimately) decreasing sequences.

The following theorem evaluates two important limits that find frequent applica-

tion in the study of series.

T H E O R E M

3

(a) If jxj < 1, then lim
n!1

x
n
D 0:

(b) If x is any real number, then lim
n!1

xn

nŠ
D 0:

PROOF For part (a) observe that

lim
n!1

ln jxjn D lim
n!1

n ln jxj D �1;

since ln jxj < 0 when jxj < 1. Accordingly, since ex is continuous,

lim
n!1

jxj
n
D lim

n!1
e

ln jxjn
D e

limn!1
ln jxjn

D 0:

Since �jxjn � xn
� jxjn, we have limn!1 xn

D 0 by the Squeeze Theorem.
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For part (b), pick any x and let N be an integer such that N > jxj. If n > N we

have

ˇ

ˇ

ˇ

ˇ

xn

nŠ

ˇ

ˇ

ˇ

ˇ

D

jxj

1

jxj

2

jxj

3
: : :

jxj

N � 1

jxj

N

jxj

N C 1
: : :
jxj

n

<
jxjN �1

.N � 1/Š

jxj

N

jxj

N

jxj

N
: : :
jxj

N

D

jxjN �1

.N � 1/Š

�

jxj

N

�n�N C1

D K

�

jxj

N

�n

;

whereK D
jxj

N �1

.N � 1/Š

�

jxj

N

�1�N

is a constant that is independent of n. Since jxj=N <

1, we have limn!1.jxj=N /
n
D 0 by part (a). Thus, limn!1 jx

n=nŠj D 0, so

limn!1 xn=nŠ D 0.

E X A M P L E 10 Find limn!1
3n
C 4n

C 5n

5n
.

Solution lim
n!1

3n
C 4n

C 5n

5n
D lim

n!1

��

3

5

�n

C

�

4

5

�n

C 1

�

D 0C 0C 1 D 1, by

Theorem 3(a).

E X E R C I S E S 9.1

In Exercises 1–13, determine whether the given sequence is

(a) bounded (above or below), (b) positive or negative (ultimately),

(c) increasing, decreasing, or alternating, and (d) convergent,

divergent, divergent to1 or �1.

1.

�

2n2

n2
C 1

�

2.

�

2n

n2
C 1

�

3.

�

4 �
.�1/n

n

�

4.

�

sin
1

n

�

5.

�

n
2
� 1

n

�

6.

�

e
n

�n

�

7.

�

e
n

�n=2

�

8.

�

.�1/
n
n

en

�

9.

�

2n

nn

�

10.

�

.nŠ/2

.2n/Š

�

11.
n

n cos
�

n�

2

�o

12.

�

sinn

n

�

13. f1; 1; �2; 3; 3; �4; 5; 5; �6; : : :g

In Exercises 14–29, evaluate, wherever possible, the limit of the

sequence fang.

14. an D
5 � 2n

3n� 7
15. an D

n
2
� 4

nC 5

16. an D
n2

n3
C 1

17. an D .�1/
n n

n3
C 1

18. an D
n2
� 2
p

nC 1

1 � n � 3n2
19. an D

en
� e�n

en
C e�n

20. an D n sin
1

n
21. an D

�

n � 3

n

�n

22. an D
n

ln.nC 1/
23. an D

p

nC 1 �
p

n

24. an D n �

p

n2
� 4n

25. an D

p

n2
C n �

p

n2
� 1

26. an D

�

n � 1

nC 1

�n

27. an D
.nŠ/

2

.2n/Š

28. an D
n22n

nŠ
29. an D

�n

1C 22n

30. Let a1 D 1 and anC1 D
p

1C 2an .n D 1; 2; 3; : : :/. Show

that fang is increasing and bounded above. (Hint: Show that 3

is an upper bound.) Hence, conclude that the sequence

converges, and find its limit.

31.A Repeat Exercise 30 for the sequence defined by a1 D 3,

anC1 D
p

15C 2an, n D 1; 2; 3; : : : : This time you will

have to guess an upper bound.

32.A Let an D

�

1C
1

n

�n

so that ln an D n ln

�

1C
1

n

�

. Use

properties of the logarithm function to show that (a) fang is

increasing and (b) e is an upper bound for fang.

33.A Prove Theorem 2. Also, state an analogous theorem pertaining

to ultimately decreasing sequences.

34.A If fjanjg is bounded, prove that fang is bounded.

35.A If limn!1 janj D 0, prove that limn!1 an D 0.

36.A Which of the following statements are TRUE and which are

FALSE? Justify your answers.

9780134154367_Calculus   526 05/12/16   3:37 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 506 October 5, 2016

506 CHAPTER 9 Sequences, Series, and Power Series

E X A M P L E 8
Let an be defined recursively by

There is a subtle point to note in

this solution. Showing that fang

is increasing is pretty obvious,

but how did we know to try and

show that 3 (rather than some

other number) was an upper

bound? The answer is that we

actually did the last part first and

showed that if liman D a exists,

then a D 3. It then makes sense

to try and show that an < 3 for

all n.

Of course, we can easily

show that any number greater

than 3 is an upper bound.

a1 D 1; anC1 D

p

6C an .n D 1; 2; 3; : : :/:

Show that limn!1 an exists and find its value.

Solution Observe that a2 D
p

6C 1 D
p

7 > a1. If akC1 > ak , then we have

akC2 D
p

6C akC1 >
p

6C ak D akC1, so fang is increasing, by induction. Now

observe that a1 D 1 < 3. If ak < 3, then akC1 D
p

6C ak <
p

6C 3 D 3, so an < 3

for every n by induction. Since fang is increasing and bounded above, limn!1 an D a

exists, by completeness. Since
p

6C x is a continuous function of x, we have

a D lim
n!1

anC1 D lim
n!1

p

6C an D

q

6C lim
n!1

an D

p

6C a:

Thus, a2
D 6C a, or a2

� a� 6 D 0, or .a� 3/.aC 2/ D 0. This quadratic has roots

a D 3 and a D �2. Since an � 1 for every n, we must have a � 1. Therefore, a D 3

and limn!1 an D 3.

E X A M P L E 9 Does

��

1C
1

n

�n�

converge or diverge?

Solution We could make an effort to show that the given sequence is, in fact, in-

creasing and bounded above. (See Exercise 32 at the end of this section.) However, we

already know the answer. The sequence converges by Theorem 6 of Section 3.4:

lim
n!1

�

1C
1

n

�n

D e
1
D e:

T H E O R E M

2

If fang is (ultimately) increasing, then either it is bounded above, and therefore con-

vergent, or it is not bounded above and diverges to infinity.

The proof of this theorem is left as an exercise. A corresponding result holds for

(ultimately) decreasing sequences.

The following theorem evaluates two important limits that find frequent applica-

tion in the study of series.

T H E O R E M

3

(a) If jxj < 1, then lim
n!1

x
n
D 0:

(b) If x is any real number, then lim
n!1

xn

nŠ
D 0:

PROOF For part (a) observe that

lim
n!1

ln jxjn D lim
n!1

n ln jxj D �1;

since ln jxj < 0 when jxj < 1. Accordingly, since ex is continuous,

lim
n!1

jxj
n
D lim

n!1
e

ln jxjn
D e

limn!1
ln jxjn

D 0:

Since �jxjn � xn
� jxjn, we have limn!1 xn

D 0 by the Squeeze Theorem.
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For part (b), pick any x and let N be an integer such that N > jxj. If n > N we

have

ˇ

ˇ

ˇ

ˇ

xn

nŠ

ˇ

ˇ

ˇ

ˇ

D

jxj

1

jxj

2

jxj

3
: : :

jxj

N � 1

jxj

N

jxj

N C 1
: : :
jxj

n

<
jxjN �1

.N � 1/Š

jxj

N

jxj

N

jxj

N
: : :
jxj

N

D

jxjN �1

.N � 1/Š

�

jxj

N

�n�N C1

D K

�

jxj

N

�n

;

whereK D
jxj

N �1

.N � 1/Š

�

jxj

N

�1�N

is a constant that is independent of n. Since jxj=N <

1, we have limn!1.jxj=N /
n
D 0 by part (a). Thus, limn!1 jx

n=nŠj D 0, so

limn!1 xn=nŠ D 0.

E X A M P L E 10 Find limn!1
3n
C 4n

C 5n

5n
.

Solution lim
n!1

3n
C 4n

C 5n

5n
D lim

n!1

��

3

5

�n

C

�

4

5

�n

C 1

�

D 0C 0C 1 D 1, by

Theorem 3(a).

E X E R C I S E S 9.1

In Exercises 1–13, determine whether the given sequence is

(a) bounded (above or below), (b) positive or negative (ultimately),

(c) increasing, decreasing, or alternating, and (d) convergent,

divergent, divergent to1 or �1.

1.

�

2n2

n2
C 1

�

2.

�

2n

n2
C 1

�

3.

�

4 �
.�1/n

n

�

4.

�

sin
1

n

�

5.

�

n
2
� 1

n

�

6.

�

e
n

�n

�

7.

�

e
n

�n=2

�

8.

�

.�1/
n
n

en

�

9.

�

2n

nn

�

10.

�

.nŠ/2

.2n/Š

�

11.
n

n cos
�

n�

2

�o

12.

�

sinn

n

�

13. f1; 1; �2; 3; 3; �4; 5; 5; �6; : : :g

In Exercises 14–29, evaluate, wherever possible, the limit of the

sequence fang.

14. an D
5 � 2n

3n� 7
15. an D

n
2
� 4

nC 5

16. an D
n2

n3
C 1

17. an D .�1/
n n

n3
C 1

18. an D
n2
� 2
p

nC 1

1 � n � 3n2
19. an D

en
� e�n

en
C e�n

20. an D n sin
1

n
21. an D

�

n � 3

n

�n

22. an D
n

ln.nC 1/
23. an D

p

nC 1 �
p

n

24. an D n �

p

n2
� 4n

25. an D

p

n2
C n �

p

n2
� 1

26. an D

�

n � 1

nC 1

�n

27. an D
.nŠ/

2

.2n/Š

28. an D
n22n

nŠ
29. an D

�n

1C 22n

30. Let a1 D 1 and anC1 D
p

1C 2an .n D 1; 2; 3; : : :/. Show

that fang is increasing and bounded above. (Hint: Show that 3

is an upper bound.) Hence, conclude that the sequence

converges, and find its limit.

31.A Repeat Exercise 30 for the sequence defined by a1 D 3,

anC1 D
p

15C 2an, n D 1; 2; 3; : : : : This time you will

have to guess an upper bound.

32.A Let an D

�

1C
1

n

�n

so that ln an D n ln

�

1C
1

n

�

. Use

properties of the logarithm function to show that (a) fang is

increasing and (b) e is an upper bound for fang.

33.A Prove Theorem 2. Also, state an analogous theorem pertaining

to ultimately decreasing sequences.

34.A If fjanjg is bounded, prove that fang is bounded.

35.A If limn!1 janj D 0, prove that limn!1 an D 0.

36.A Which of the following statements are TRUE and which are

FALSE? Justify your answers.
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(a) If limn!1 an D1 and limn!1 bn D L > 0, then

limn!1 anbn D1.

(b) If limn!1 an D1 and limn!1 bn D �1, then

limn!1.an C bn/ D 0.

(c) If limn!1 an D1 and limn!1 bn D �1, then

limn!1 anbn D �1.

(d) If neither fang nor fbng converges, then fanbng does not

converge.

(e) If fjanjg converges, then fang converges.

9.2 Infinite Series
An infinite series, usually just called a series, is a formal sum of infinitely many terms;

for instance, a1 C a2 C a3 C a4 C � � � is a series formed by adding the terms of the

sequence fang. This series is also denoted
P1

nD1 an:

1
X

nD1

an D a1 C a2 C a3 C a4 C � � � :

For example,

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � �

1
X

nD1

.�1/
n�1

2n�1
D 1 �

1

2
C

1

4
�

1

8
C

1

16
� � � � :

It is sometimes necessary or useful to start the sum from some index other than 1:

1
X

nD0

a
n
D 1C aC a

2
C a

3
C � � �

1
X

nD2

1

ln n
D

1

ln 2
C

1

ln 3
C

1

ln 4
C � � � :

Note that the latter series would make no sense if we had started the sum from n D 1;

the first term would have been undefined.

When necessary, we can change the index of summation to start at a different

value. This is accomplished by a substitution, as illustrated in Example 3 of Section 5.1.

For instance, using the substitution n D m � 2, we can rewrite
P1

nD1 an in the form
P1

mD3 am�2. Both sums give rise to the same expansion

1
X

nD1

an D a1 C a2 C a3 C � � � D

1
X

mD3

am�2:

Addition is an operation that is carried out on two numbers at a time. If we want to

calculate the finite sum a1 C a2 C a3, we could proceed by adding a1 C a2 and then

adding a3 to this sum, or else we might first add a2 C a3 and then add a1 to the sum.

Of course, the associative law for addition assures us we will get the same answer both

ways. This is the reason the symbol a1 C a2 C a3 makes sense; we would otherwise

have to write .a1 C a2/C a3 or a1 C .a2 C a3/. This reasoning extends to any sum

a1 C a2 C � � � C an of finitely many terms, but it is not obvious what should be meant

by a sum with infinitely many terms:

a1 C a2 C a3 C a4 C � � � :
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We no longer have any assurance that the terms can be added up in any order to yield

the same sum. In fact, we will see in Section 9.4 that in certain circumstances, changing

the order of terms in a series can actually change the sum of the series. The interpre-

tation we place on the infinite sum is that of adding from left to right, as suggested by

the grouping

� � � ....a1 C a2/C a3/C a4/C a5/C � � � :

We accomplish this by defining a new sequence fsng, called the sequence of partial

sums of the series
P1

nD1 an, so that sn is the sum of the first n terms of the series:

s1 D a1

s2 D s1 C a2 D a1 C a2

s3 D s2 C a3 D a1 C a2 C a3

:
:
:

sn D sn�1 C an D a1 C a2 C a3 C � � � C an D

n
X

j D1

aj

:
:
:

We then define the sum of the infinite series to be the limit of this sequence of partial

sums.

D E F I N I T I O N

3

Convergence of a series

We say that the series
P1

nD1 an converges to the sum s, and we write

1
X

nD1

an D s;

if limn!1 sn D s, where sn is the nth partial sum of
P1

nD1 an:

sn D a1 C a2 C a3 C � � � C an D

n
X

j D1

aj :

Thus, a series converges if and only if the sequence of its partial sums converges.

Similarly, a series is said to diverge to infinity, diverge to negative infinity, or

simply diverge if its sequence of partial sums does so. It must be stressed that the con-

vergence of the series
P1

nD1 an depends on the convergence of the sequence fsng D

f

Pn
j D1 aj g, not the sequence fang.

Geometric Series

D E F I N I T I O N

4

Geometric series

A series of the form
P1

nD1 a r
n�1
D aC ar C ar2

C ar3
C � � �, whose nth

term is an D a rn�1, is called a geometric series. The number a is the first

term. The number r is called the common ratio of the series, since it is the

value of the ratio of the .nC 1/st term to the nth term for any n � 1:

anC1

an

D

ar
n

arn�1
D r; n D 1; 2; 3; : : : :
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(a) If limn!1 an D1 and limn!1 bn D L > 0, then

limn!1 anbn D1.

(b) If limn!1 an D1 and limn!1 bn D �1, then

limn!1.an C bn/ D 0.

(c) If limn!1 an D1 and limn!1 bn D �1, then

limn!1 anbn D �1.

(d) If neither fang nor fbng converges, then fanbng does not

converge.

(e) If fjanjg converges, then fang converges.

9.2 Infinite Series
An infinite series, usually just called a series, is a formal sum of infinitely many terms;

for instance, a1 C a2 C a3 C a4 C � � � is a series formed by adding the terms of the

sequence fang. This series is also denoted
P1

nD1 an:

1
X

nD1

an D a1 C a2 C a3 C a4 C � � � :

For example,

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � �

1
X

nD1

.�1/
n�1

2n�1
D 1 �

1

2
C

1

4
�

1

8
C

1

16
� � � � :

It is sometimes necessary or useful to start the sum from some index other than 1:

1
X

nD0

a
n
D 1C aC a

2
C a

3
C � � �

1
X

nD2

1

ln n
D

1

ln 2
C

1

ln 3
C

1

ln 4
C � � � :

Note that the latter series would make no sense if we had started the sum from n D 1;

the first term would have been undefined.

When necessary, we can change the index of summation to start at a different

value. This is accomplished by a substitution, as illustrated in Example 3 of Section 5.1.

For instance, using the substitution n D m � 2, we can rewrite
P1

nD1 an in the form
P1

mD3 am�2. Both sums give rise to the same expansion

1
X

nD1

an D a1 C a2 C a3 C � � � D

1
X

mD3

am�2:

Addition is an operation that is carried out on two numbers at a time. If we want to

calculate the finite sum a1 C a2 C a3, we could proceed by adding a1 C a2 and then

adding a3 to this sum, or else we might first add a2 C a3 and then add a1 to the sum.

Of course, the associative law for addition assures us we will get the same answer both

ways. This is the reason the symbol a1 C a2 C a3 makes sense; we would otherwise

have to write .a1 C a2/C a3 or a1 C .a2 C a3/. This reasoning extends to any sum

a1 C a2 C � � � C an of finitely many terms, but it is not obvious what should be meant

by a sum with infinitely many terms:

a1 C a2 C a3 C a4 C � � � :
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We no longer have any assurance that the terms can be added up in any order to yield

the same sum. In fact, we will see in Section 9.4 that in certain circumstances, changing

the order of terms in a series can actually change the sum of the series. The interpre-

tation we place on the infinite sum is that of adding from left to right, as suggested by

the grouping

� � � ....a1 C a2/C a3/C a4/C a5/C � � � :

We accomplish this by defining a new sequence fsng, called the sequence of partial

sums of the series
P1

nD1 an, so that sn is the sum of the first n terms of the series:

s1 D a1

s2 D s1 C a2 D a1 C a2

s3 D s2 C a3 D a1 C a2 C a3

:
:
:

sn D sn�1 C an D a1 C a2 C a3 C � � � C an D

n
X

j D1

aj

:
:
:

We then define the sum of the infinite series to be the limit of this sequence of partial

sums.

D E F I N I T I O N

3

Convergence of a series

We say that the series
P1

nD1 an converges to the sum s, and we write

1
X

nD1

an D s;

if limn!1 sn D s, where sn is the nth partial sum of
P1

nD1 an:

sn D a1 C a2 C a3 C � � � C an D

n
X

j D1

aj :

Thus, a series converges if and only if the sequence of its partial sums converges.

Similarly, a series is said to diverge to infinity, diverge to negative infinity, or

simply diverge if its sequence of partial sums does so. It must be stressed that the con-

vergence of the series
P1

nD1 an depends on the convergence of the sequence fsng D

f

Pn
j D1 aj g, not the sequence fang.

Geometric Series

D E F I N I T I O N

4

Geometric series

A series of the form
P1

nD1 a r
n�1
D aC ar C ar2

C ar3
C � � �, whose nth

term is an D a rn�1, is called a geometric series. The number a is the first

term. The number r is called the common ratio of the series, since it is the

value of the ratio of the .nC 1/st term to the nth term for any n � 1:

anC1

an

D

ar
n

arn�1
D r; n D 1; 2; 3; : : : :
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The nth partial sum sn of a geometric series is calculated as follows:

sn D aC ar C ar
2
C ar

3
C � � � C ar

n�1

rsn D ar C ar
2
C ar

3
C � � � C ar

n�1
C ar

n
:

The second equation is obtained by multiplying the first by r . Subtracting these two

equations (note the cancellations), we get .1�r/sn D a�ar
n. If r ¤ 1, we can divide

by 1 � r and get a formula for sn.

Partial sums of geometric series

If r D 1, then the nth partial sum of a geometric series
P1

nD1 ar
n�1 is

sn D aC aC � � � C a D na. If r ¤ 1, then

sn D aC ar C ar
2
C � � � C ar

n�1
D

a.1 � rn/

1 � r
:

If a D 0, then sn D 0 for every n, and limn!1 sn D 0. Now suppose a ¤ 0. If jr j <

1, then limn!1 rn
D 0, so limn!1 sn D a=.1� r/. If r > 1, then limn!1 rn

D1,

and limn!1 sn D 1 if a > 0, or limn!1 sn D �1 if a < 0. The same conclusion

holds if r D 1, since sn D na in this case. If r � �1, limn!1 r
n does not exist and

neither does limn!1 sn. Hence, we conclude that

1
X

nD1

ar
n�1

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

converges to 0 if a D 0

converges to
a

1 � r
if jr j < 1

diverges to1 if r � 1 and a > 0

diverges to �1 if r � 1 and a < 0

diverges if r � �1 and a ¤ 0.

The representation of the function 1=.1 � x/ as the sum of a geometric series,

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � for � 1 < x < 1;

will be important in our discussion of power series later in this chapter.

E X A M P L E 1
(Examples of geometric series and their sums)

(a) 1C
1

2
C

1

4
C

1

8
C � � � D

1
X

nD1

�

1

2

�n�1

D

1

1 �
1

2

D 2. Here a D 1 and r D
1

2
.

Since jr j < 1, the series converges.

(b) � � e C
e

2

�
�

e
3

�2
C � � � D

1
X

nD1

�

�

�

e

�

�n�1

Here a D � and r D �
e

�
.

D

�

1 �

�

�

e

�

� D

�2

� C e
:

The series converges since

ˇ

ˇ

ˇ
�

e

�

ˇ

ˇ

ˇ
< 1.

(c) 1 C 2
1=2
C 2 C 2

3=2
C � � � D

1
X

nD1

.
p

2/
n�1. This series diverges to 1 since

a D 1 > 0 and r D
p

2 > 1.

(d) 1 � 1C 1 � 1C 1 � � � � D

1
X

nD1

.�1/
n�1. This series diverges since r D �1.
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(e) Let x D 0:32 32 32 � � � D 0:32; then

x D
32

100
C

32

1002
C

32

1003
C � � � D

1
X

nD1

32

100

�

1

100

�n�1

D

32

100

1

1 �
1

100

D

32

99
:

This is an alternative to the method of Example 1 of Section P.1 for representing

repeating decimals as quotients of integers.

E X A M P L E 2
If money earns interest at a constant effective rate of 5% per year,

how much should you pay today for an annuity that will pay you

(a) $1,000 at the end of each of the next 10 years and (b) $1,000 at the end of every

year forever?

Solution A payment of $1,000 that is due to be received n years from now has present

value $1;000�

�

1

1:05

�n

(since $A would grow to $A.1:05/n in n years). Thus, $1,000

payments at the end of each of the next n years are worth $sn at the present time, where

sn D 1;000

"

1

1:05
C

�

1

1:05

�2

C � � � C

�

1

1:05

�n
#

D

1;000

1:05

"

1C
1

1:05
C

�

1

1:05

�2

C � � � C

�

1

1:05

�n�1
#

D

1;000

1:05

1 �

�

1

1:05

�n

1 �
1

1:05

D

1;000

0:05

�

1 �

�

1

1:05

�n�

:

(a) The present value of 10 future payments is $s10 D $7;721:73.

(b) The present value of future payments continuing forever is

$ lim
n!1

sn D
$1;000

0:05
D $20;000:

Telescoping Series and Harmonic Series

E X A M P L E 3
Show that the series

1
X

nD1

1

n.nC 1/
D

1

1 � 2
C

1

2 � 3
C

1

3 � 4
C

1

4 � 5
C � � �

converges and find its sum.

Solution Since
1

n.nC 1/
D

1

n
�

1

nC 1
, we can write the partial sum sn in the form

sn D
1

1 � 2
C

1

2 � 3
C

1

3 � 4
C � � � C

1

.n � 1/n
C

1

n.nC 1/

D

�

1 �
1

2

�

C

�

1

2
�

1

3

�

C

�

1

3
�

1

4

�

C � � � C

�

1

n � 1
�

1

n

�

C

�

1

n
�

1

nC 1

�

D 1 �
1

2
C

1

2
�

1

3
C

1

3
� � � � �

1

n
C

1

n
�

1

nC 1

D 1 �
1

nC 1
:
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The nth partial sum sn of a geometric series is calculated as follows:

sn D aC ar C ar
2
C ar

3
C � � � C ar

n�1

rsn D ar C ar
2
C ar

3
C � � � C ar

n�1
C ar

n
:

The second equation is obtained by multiplying the first by r . Subtracting these two

equations (note the cancellations), we get .1�r/sn D a�ar
n. If r ¤ 1, we can divide

by 1 � r and get a formula for sn.

Partial sums of geometric series

If r D 1, then the nth partial sum of a geometric series
P1

nD1 ar
n�1 is

sn D aC aC � � � C a D na. If r ¤ 1, then

sn D aC ar C ar
2
C � � � C ar

n�1
D

a.1 � rn/

1 � r
:

If a D 0, then sn D 0 for every n, and limn!1 sn D 0. Now suppose a ¤ 0. If jr j <

1, then limn!1 rn
D 0, so limn!1 sn D a=.1� r/. If r > 1, then limn!1 rn

D1,

and limn!1 sn D 1 if a > 0, or limn!1 sn D �1 if a < 0. The same conclusion

holds if r D 1, since sn D na in this case. If r � �1, limn!1 r
n does not exist and

neither does limn!1 sn. Hence, we conclude that

1
X

nD1

ar
n�1

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

converges to 0 if a D 0

converges to
a

1 � r
if jr j < 1

diverges to1 if r � 1 and a > 0

diverges to �1 if r � 1 and a < 0

diverges if r � �1 and a ¤ 0.

The representation of the function 1=.1 � x/ as the sum of a geometric series,

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � for � 1 < x < 1;

will be important in our discussion of power series later in this chapter.

E X A M P L E 1
(Examples of geometric series and their sums)

(a) 1C
1

2
C

1

4
C

1

8
C � � � D

1
X

nD1

�

1

2

�n�1

D

1

1 �
1

2

D 2. Here a D 1 and r D
1

2
.

Since jr j < 1, the series converges.

(b) � � e C
e

2

�
�

e
3

�2
C � � � D

1
X

nD1

�

�

�

e

�

�n�1

Here a D � and r D �
e

�
.

D

�

1 �

�

�

e

�

� D

�2

� C e
:

The series converges since

ˇ

ˇ

ˇ
�

e

�

ˇ

ˇ

ˇ
< 1.

(c) 1 C 2
1=2
C 2 C 2

3=2
C � � � D

1
X

nD1

.
p

2/
n�1. This series diverges to 1 since

a D 1 > 0 and r D
p

2 > 1.

(d) 1 � 1C 1 � 1C 1 � � � � D

1
X

nD1

.�1/
n�1. This series diverges since r D �1.
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(e) Let x D 0:32 32 32 � � � D 0:32; then

x D
32

100
C

32

1002
C

32

1003
C � � � D

1
X

nD1

32

100

�

1

100

�n�1

D

32

100

1

1 �
1

100

D

32

99
:

This is an alternative to the method of Example 1 of Section P.1 for representing

repeating decimals as quotients of integers.

E X A M P L E 2
If money earns interest at a constant effective rate of 5% per year,

how much should you pay today for an annuity that will pay you

(a) $1,000 at the end of each of the next 10 years and (b) $1,000 at the end of every

year forever?

Solution A payment of $1,000 that is due to be received n years from now has present

value $1;000�

�

1

1:05

�n

(since $A would grow to $A.1:05/n in n years). Thus, $1,000

payments at the end of each of the next n years are worth $sn at the present time, where

sn D 1;000

"

1

1:05
C

�

1

1:05

�2

C � � � C

�

1

1:05

�n
#

D

1;000

1:05

"

1C
1

1:05
C

�

1

1:05

�2

C � � � C

�

1

1:05

�n�1
#

D

1;000

1:05

1 �

�

1

1:05

�n

1 �
1

1:05

D

1;000

0:05

�

1 �

�

1

1:05

�n�

:

(a) The present value of 10 future payments is $s10 D $7;721:73.

(b) The present value of future payments continuing forever is

$ lim
n!1

sn D
$1;000

0:05
D $20;000:

Telescoping Series and Harmonic Series

E X A M P L E 3
Show that the series

1
X

nD1

1

n.nC 1/
D

1

1 � 2
C

1

2 � 3
C

1

3 � 4
C

1

4 � 5
C � � �

converges and find its sum.

Solution Since
1

n.nC 1/
D

1

n
�

1

nC 1
, we can write the partial sum sn in the form

sn D
1

1 � 2
C

1

2 � 3
C

1

3 � 4
C � � � C

1

.n � 1/n
C

1

n.nC 1/

D

�

1 �
1

2

�

C

�

1

2
�

1

3

�

C

�

1

3
�

1

4

�

C � � � C

�

1

n � 1
�

1

n

�

C

�

1

n
�

1

nC 1

�

D 1 �
1

2
C

1

2
�

1

3
C

1

3
� � � � �

1

n
C

1

n
�

1

nC 1

D 1 �
1

nC 1
:
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Therefore, limn!1 sn D 1 and the series converges to 1:

1
X

nD1

1

n.nC 1/
D 1:

This is an example of a telescoping series, so called because the partial sums fold up

into a simple form when the terms are expanded in partial fractions. Other examples

can be found in the exercises at the end of this section. As these examples show, the

method of partial fractions can be a useful tool for series as well as for integrals.

E X A M P L E 4
Show that the harmonic series

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � �

diverges to infinity.

Solution If sn is the nth partial sum of the harmonic series, then

sn D 1C
1

2
C

1

3
C � � � C

1

n

D sum of areas of rectangles shaded in blue in Figure 9.3

> area under y D
1

x
from x D 1 to x D nC 1

D

Z nC1

1

dx

x
D ln.nC 1/:

Now limn!1 ln.nC 1/ D 1. Therefore, limn!1 sn D 1 and

1
X

nD1

1

n
D 1C

1

2
C

1

3
C � � � diverges to infinity.

Figure 9.3 A partial sum of the harmonic

series

y

x1 2 3 n nC 1

y D
1

x

1

0:5

Like geometric series, the harmonic series will often be encountered in subsequent

sections.

Some Theorems About Series

T H E O R E M

4

If
P1

nD1 an converges, then limn!1 an D 0. Therefore, if limn!1 an does not exist,

or exists but is not zero, then the series
P1

nD1 an is divergent. (This amounts to an nth

term test for divergence of a series.)
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PROOF If sn D a1 C a2 C � � � C an, then sn � sn�1 D an. If
P1

nD1 an converges,

then limn!1 sn D s exists, and limn!1 sn�1 D s. Hence, limn!1 an D s � s D 0.

Remark Theorem 4 is very important for the understanding of infinite series. Stu-

dents often err either in forgeting that a series cannot converge if its terms do not

approach zero or in confusing this result with its converse, which is false. The con-

verse would say that if limn!1 an D 0, then
P1

nD1 an must converge. The harmonic

series is a counterexample showing the falsehood of this assertion:

lim
n!1

1

n
D 0 but

1
X

nD1

1

n
diverges to infinity:

When considering whether a given series converges, the first question you should ask

yourself is: “Does the nth term approach 0 as n approaches1?” If the answer is no,

then the series does not converge. If the answer is yes, then the series may or may

not converge. If the sequence of terms fang tends to a nonzero limit L, then
P1

nD1 an

diverges to infinity if L > 0 and diverges to negative infinity if L < 0.

E X A M P L E 5

(a)

1
X

nD1

n

2n � 1
diverges to infinity since limn!1

n

2n � 1
D 1=2 > 0.

(b)
P1

nD1.�1/
n
n sin.1=n/ diverges since

lim
n!1

ˇ

ˇ

ˇ

ˇ

.�1/
n
n sin

1

n

ˇ

ˇ

ˇ

ˇ

D lim
n!1

sin.1=n/

1=n
D lim

x!0C

sinx

x
D 1 ¤ 0:

The following theorem asserts that it is only the ultimate behaviour of fang that deter-

mines whether
P1

nD1 an converges. Any finite number of terms can be dropped from

the beginning of a series without affecting the convergence; the convergence depends

only on the tail of the series. Of course, the actual sum of the series depends on all the

terms.

T H E O R E M

5

P1
nD1 an converges if and only if

P1
nDN an converges for any integer N � 1.

T H E O R E M

6

If fang is ultimately positive, then the series
P1

nD1 an must either converge (if its par-

tial sums are bounded above) or diverge to infinity (if its partial sums are not bounded

above).

The proofs of these two theorems are posed as exercises at the end of this section. The

following theorem is just a reformulation of standard laws of limits.

T H E O R E M

7

If
P1

nD1 an and
P1

nD1 bn converge to A and B , respectively, then

(a)
P1

nD1 can converges to cA (where c is any constant);

(b)
P1

nD1.an ˙ bn/ converges to A˙ B;

(c) if an � bn for all n D 1; 2; 3; : : : ; then A � B .

E X A M P L E 6 Find the sum of the series

1
X

nD1

1C 2nC1

3n
.
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Therefore, limn!1 sn D 1 and the series converges to 1:

1
X

nD1

1

n.nC 1/
D 1:

This is an example of a telescoping series, so called because the partial sums fold up

into a simple form when the terms are expanded in partial fractions. Other examples

can be found in the exercises at the end of this section. As these examples show, the

method of partial fractions can be a useful tool for series as well as for integrals.

E X A M P L E 4
Show that the harmonic series

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � �

diverges to infinity.

Solution If sn is the nth partial sum of the harmonic series, then

sn D 1C
1

2
C

1

3
C � � � C

1

n

D sum of areas of rectangles shaded in blue in Figure 9.3

> area under y D
1

x
from x D 1 to x D nC 1

D

Z nC1

1

dx

x
D ln.nC 1/:

Now limn!1 ln.nC 1/ D 1. Therefore, limn!1 sn D 1 and

1
X

nD1

1

n
D 1C

1

2
C

1

3
C � � � diverges to infinity.

Figure 9.3 A partial sum of the harmonic

series

y

x1 2 3 n nC 1

y D
1

x

1

0:5

Like geometric series, the harmonic series will often be encountered in subsequent

sections.

Some Theorems About Series

T H E O R E M

4

If
P1

nD1 an converges, then limn!1 an D 0. Therefore, if limn!1 an does not exist,

or exists but is not zero, then the series
P1

nD1 an is divergent. (This amounts to an nth

term test for divergence of a series.)
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PROOF If sn D a1 C a2 C � � � C an, then sn � sn�1 D an. If
P1

nD1 an converges,

then limn!1 sn D s exists, and limn!1 sn�1 D s. Hence, limn!1 an D s � s D 0.

Remark Theorem 4 is very important for the understanding of infinite series. Stu-

dents often err either in forgeting that a series cannot converge if its terms do not

approach zero or in confusing this result with its converse, which is false. The con-

verse would say that if limn!1 an D 0, then
P1

nD1 an must converge. The harmonic

series is a counterexample showing the falsehood of this assertion:

lim
n!1

1

n
D 0 but

1
X

nD1

1

n
diverges to infinity:

When considering whether a given series converges, the first question you should ask

yourself is: “Does the nth term approach 0 as n approaches1?” If the answer is no,

then the series does not converge. If the answer is yes, then the series may or may

not converge. If the sequence of terms fang tends to a nonzero limit L, then
P1

nD1 an

diverges to infinity if L > 0 and diverges to negative infinity if L < 0.

E X A M P L E 5

(a)

1
X

nD1

n

2n � 1
diverges to infinity since limn!1

n

2n � 1
D 1=2 > 0.

(b)
P1

nD1.�1/
n
n sin.1=n/ diverges since

lim
n!1

ˇ

ˇ

ˇ

ˇ

.�1/
n
n sin

1

n

ˇ

ˇ

ˇ

ˇ

D lim
n!1

sin.1=n/

1=n
D lim

x!0C

sinx

x
D 1 ¤ 0:

The following theorem asserts that it is only the ultimate behaviour of fang that deter-

mines whether
P1

nD1 an converges. Any finite number of terms can be dropped from

the beginning of a series without affecting the convergence; the convergence depends

only on the tail of the series. Of course, the actual sum of the series depends on all the

terms.

T H E O R E M

5

P1
nD1 an converges if and only if

P1
nDN an converges for any integer N � 1.

T H E O R E M

6

If fang is ultimately positive, then the series
P1

nD1 an must either converge (if its par-

tial sums are bounded above) or diverge to infinity (if its partial sums are not bounded

above).

The proofs of these two theorems are posed as exercises at the end of this section. The

following theorem is just a reformulation of standard laws of limits.

T H E O R E M

7

If
P1

nD1 an and
P1

nD1 bn converge to A and B , respectively, then

(a)
P1

nD1 can converges to cA (where c is any constant);

(b)
P1

nD1.an ˙ bn/ converges to A˙ B;

(c) if an � bn for all n D 1; 2; 3; : : : ; then A � B .

E X A M P L E 6 Find the sum of the series

1
X

nD1

1C 2nC1

3n
.
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Solution The given series is the sum of two geometric series,

1
X

nD1

1

3n
D

1
X

nD1

1

3

�

1

3

�n�1

D

1=3

1 � .1=3/
D

1

2
and

1
X

nD1

2nC1

3n
D

1
X

nD1

4

3

�

2

3

�n�1

D

4=3

1 � .2=3/
D 4:

Thus, its sum is
1

2
C 4 D

9

2
by Theorem 7(b).

E X E R C I S E S 9.2

In Exercises 1–18, find the sum of the given series, or show that

the series diverges (possibly to infinity or negative infinity).

Exercises 11–14 are telescoping series and should be done by

partial fractions as suggested in Example 3 in this section.

1.
1

3
C

1

9
C

1

27
C � � � D

1
X

nD1

1

3n

2. 3 �
3

4
C

3

16
�

3

64
C � � � D

1
X

nD1

3

�

�

1

4

�n�1

3.

1
X

nD5

1

.2C �/2n
4.

1
X

nD0

5

103n

5.

1
X

nD2

.�5/n

82n
6.

1
X

nD0

1

en

7.

1
X

kD0

2kC3

ek�3
8.

1
X

j D1

�
j=2 cos.j�/

9.

1
X

nD1

3C 2n

2nC2
10.

1
X

nD0

3C 2n

3nC2

11.

1
X

nD1

1

n.nC 2/
D

1

1 � 3
C

1

2 � 4
C

1

3 � 5
C � � �

12.

1
X

nD1

1

.2n � 1/.2nC 1/
D

1

1 � 3
C

1

3 � 5
C

1

5 � 7
C � � �

13.

1
X

nD1

1

.3n � 2/.3nC 1/
D

1

1 � 4
C

1

4 � 7
C

1

7 � 10
C � � �

14.I

1
X

nD1

1

n.nC 1/.nC 2/

D

1

1 � 2 � 3
C

1

2 � 3 � 4
C

1

3 � 4 � 5
C � � �

15.

1
X

nD1

1

2n � 1
16.

1
X

nD1

n

nC 2

17.

1
X

nD1

n
�1=2 18.

1
X

nD1

2

nC 1

19. Obtain a simple expression for the partial sum sn of the series
P1

nD1.�1/
n, and use it to show that the series diverges.

20. Find the sum of the series

1

1
C

1

1C 2
C

1

1C 2C 3
C

1

1C 2C 3C 4
C � � � :

21. When dropped, an elastic ball bounces back up to a height

three-quarters of that from which it fell. If the ball is dropped

from a height of 2 m and allowed to bounce up and down

indefinitely, what is the total distance it travels before coming

to rest?

22. If a bank account pays 10% simple interest into an account

once a year, what is the balance in the account at the end of

8 years if $1,000 is deposited into the account at the beginning

of each of the 8 years? (Assume there was no balance in the

account initially.)

23.I Prove Theorem 5. 24.A Prove Theorem 6.

25.A State a theorem analogous to Theorem 6 but for a negative

sequence.

In Exercises 26–31, decide whether the given statement is TRUE

or FALSE. If it is true, prove it. If it is false, give a counter-

example showing the falsehood.

26.A If an D 0 for every n, then
P

an converges.

27.A If
P

an converges, then
P

.1=an/ diverges to infinity.

28.A If
P

an and
P

bn both diverge, then so does
P

.an C bn/.

29.A If an � c > 0 for every n, then
P

an diverges to infinity.

30.A If
P

an diverges and fbng is bounded, then
P

anbn diverges.

31.A If an > 0 and
P

an converges, then
P

.an/
2 converges.
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9.3 Convergence Tests for Positive Series

In the previous section we saw a few examples of convergent series (geometric and

telescoping series) whose sums could be determined exactly because the partial sums

sn could be expressed in closed form as explicit functions of n whose limits as n!1

could be evaluated. It is not usually possible to do this with a given series, and therefore

it is not usually possible to determine the sum of the series exactly. However, there are

many techniques for determining whether a given series converges and, if it does, for

approximating the sum to any desired degree of accuracy.

In this section we deal exclusively with positive series, that is, series of the form

1
X

nD1

an D a1 C a2 C a3 C � � � ;

where an � 0 for all n � 1. As noted in Theorem 6, such a series will converge

if its partial sums are bounded above and will diverge to infinity otherwise. All our

results apply equally well to ultimately positive series since convergence or divergence

depends only on the tail of a series.

The Integral Test
The integral test provides a means for determining whether an ultimately positive series

converges or diverges by comparing it with an improper integral that behaves similarly.

Example 4 in Section 9.2 is an example of the use of this technique. We formalize the

method in the following theorem.

T H E O R E M

8

The integral test

Suppose that an D f .n/, where f is positive, continuous, and nonincreasing on an

interval ŒN;1/ for some positive integer N: Then

1
X

nD1

an and

Z 1

N

f .t/ dt

either both converge or both diverge to infinity.

PROOF Let sn D a1 C a2 C � � � C an. If n > N , we have

sn D sN C aN C1 C aN C2 C � � � C an

D sN C f .N C 1/C f .N C 2/C � � � C f .n/

D sN C sum of areas of rectangles shaded in Figure 9.4(a)

� sN C

Z 1

N

f .t/ dt:

If the improper integral
R1

N
f .t/ dt converges, then the sequence fsng is bounded

above and
P1

nD1 an converges.

Figure 9.4 Comparing integrals and

series

y D f .x/

N
N C1

N C2
N C3

n x

y D f .x/

N
N C1

N C2
N C3

x

(a) (b)
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Solution The given series is the sum of two geometric series,

1
X

nD1

1

3n
D

1
X

nD1

1

3

�

1

3

�n�1

D

1=3

1 � .1=3/
D

1

2
and

1
X

nD1

2nC1

3n
D

1
X

nD1

4

3

�

2

3

�n�1

D

4=3

1 � .2=3/
D 4:

Thus, its sum is
1

2
C 4 D

9

2
by Theorem 7(b).

E X E R C I S E S 9.2

In Exercises 1–18, find the sum of the given series, or show that

the series diverges (possibly to infinity or negative infinity).

Exercises 11–14 are telescoping series and should be done by

partial fractions as suggested in Example 3 in this section.

1.
1

3
C

1

9
C

1

27
C � � � D

1
X

nD1

1

3n

2. 3 �
3

4
C

3

16
�

3

64
C � � � D

1
X

nD1

3

�

�

1

4

�n�1

3.

1
X

nD5

1

.2C �/2n
4.

1
X

nD0

5

103n

5.

1
X

nD2

.�5/n

82n
6.

1
X

nD0

1

en

7.

1
X

kD0

2kC3

ek�3
8.

1
X

j D1

�
j=2 cos.j�/

9.

1
X

nD1

3C 2n

2nC2
10.

1
X

nD0

3C 2n

3nC2

11.

1
X

nD1

1

n.nC 2/
D

1

1 � 3
C

1

2 � 4
C

1

3 � 5
C � � �

12.

1
X

nD1

1

.2n � 1/.2nC 1/
D

1

1 � 3
C

1

3 � 5
C

1

5 � 7
C � � �

13.

1
X

nD1

1

.3n � 2/.3nC 1/
D

1

1 � 4
C

1

4 � 7
C

1

7 � 10
C � � �

14.I

1
X

nD1

1

n.nC 1/.nC 2/

D

1

1 � 2 � 3
C

1

2 � 3 � 4
C

1

3 � 4 � 5
C � � �

15.

1
X

nD1

1

2n � 1
16.

1
X

nD1

n

nC 2

17.

1
X

nD1

n
�1=2 18.

1
X

nD1

2

nC 1

19. Obtain a simple expression for the partial sum sn of the series
P1

nD1.�1/
n, and use it to show that the series diverges.

20. Find the sum of the series

1

1
C

1

1C 2
C

1

1C 2C 3
C

1

1C 2C 3C 4
C � � � :

21. When dropped, an elastic ball bounces back up to a height

three-quarters of that from which it fell. If the ball is dropped

from a height of 2 m and allowed to bounce up and down

indefinitely, what is the total distance it travels before coming

to rest?

22. If a bank account pays 10% simple interest into an account

once a year, what is the balance in the account at the end of

8 years if $1,000 is deposited into the account at the beginning

of each of the 8 years? (Assume there was no balance in the

account initially.)

23.I Prove Theorem 5. 24.A Prove Theorem 6.

25.A State a theorem analogous to Theorem 6 but for a negative

sequence.

In Exercises 26–31, decide whether the given statement is TRUE

or FALSE. If it is true, prove it. If it is false, give a counter-

example showing the falsehood.

26.A If an D 0 for every n, then
P

an converges.

27.A If
P

an converges, then
P

.1=an/ diverges to infinity.

28.A If
P

an and
P

bn both diverge, then so does
P

.an C bn/.

29.A If an � c > 0 for every n, then
P

an diverges to infinity.

30.A If
P

an diverges and fbng is bounded, then
P

anbn diverges.

31.A If an > 0 and
P

an converges, then
P

.an/
2 converges.
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9.3 Convergence Tests for Positive Series

In the previous section we saw a few examples of convergent series (geometric and

telescoping series) whose sums could be determined exactly because the partial sums

sn could be expressed in closed form as explicit functions of n whose limits as n!1

could be evaluated. It is not usually possible to do this with a given series, and therefore

it is not usually possible to determine the sum of the series exactly. However, there are

many techniques for determining whether a given series converges and, if it does, for

approximating the sum to any desired degree of accuracy.

In this section we deal exclusively with positive series, that is, series of the form

1
X

nD1

an D a1 C a2 C a3 C � � � ;

where an � 0 for all n � 1. As noted in Theorem 6, such a series will converge

if its partial sums are bounded above and will diverge to infinity otherwise. All our

results apply equally well to ultimately positive series since convergence or divergence

depends only on the tail of a series.

The Integral Test
The integral test provides a means for determining whether an ultimately positive series

converges or diverges by comparing it with an improper integral that behaves similarly.

Example 4 in Section 9.2 is an example of the use of this technique. We formalize the

method in the following theorem.

T H E O R E M

8

The integral test

Suppose that an D f .n/, where f is positive, continuous, and nonincreasing on an

interval ŒN;1/ for some positive integer N: Then

1
X

nD1

an and

Z 1

N

f .t/ dt

either both converge or both diverge to infinity.

PROOF Let sn D a1 C a2 C � � � C an. If n > N , we have

sn D sN C aN C1 C aN C2 C � � � C an

D sN C f .N C 1/C f .N C 2/C � � � C f .n/

D sN C sum of areas of rectangles shaded in Figure 9.4(a)

� sN C

Z 1

N

f .t/ dt:

If the improper integral
R1

N
f .t/ dt converges, then the sequence fsng is bounded

above and
P1

nD1 an converges.

Figure 9.4 Comparing integrals and

series

y D f .x/

N
N C1

N C2
N C3

n x

y D f .x/

N
N C1

N C2
N C3

x

(a) (b)
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Conversely, suppose that
P1

nD1 an converges to the sum s. Then

Z 1

N

f .t/ dt D area under y D f .t/ above y D 0 from t D N to t D1

� sum of areas of shaded rectangles in Figure 9.4(b)

D aN C aN C1 C aN C2 C � � �

D s � sN �1 <1;

so the improper integral represents a finite area and is thus convergent. (We omit the

remaining details showing that limR!1
R R

N
f .t/ dt exists; like the series case, the

argument depends on the completeness of the real numbers.)

Remark If an D f .n/, where f is positive, continuous, and nonincreasing on

Œ1;1/, then Theorem 8 assures us that
P1

nD1 an and
R1

1
f .x/ dx both converge or

both diverge to infinity. It does not tell us that the sum of the series is equal to the

value of the integral. The two are not likely to be equal in the case of convergence.

However, as we see below, integrals can help us approximate the sum of a series.

The principal use of the integral test is to establish the result of the following

example concerning the series
P1

nD1 n
�p, which is called a p-series. This result

should be memorized; we will frequently compare the behaviour of other series with

p-series later in this and subsequent sections.

E X A M P L E 1
(p-series) Show that

1
X

nD1

n
�p
D

1
X

nD1

1

np

�

converges if p > 1

diverges to infinity if p � 1:

Solution Observe that if p > 0, then f .x/ D x�p is positive, continuous, and

decreasing on Œ1;1/. By the integral test, the p-series converges for p > 1 and

diverges for 0 < p � 1 by comparison with
R1

1
x�p dx. (See Theorem 2(a) of

Section 6.5.) If p � 0, then limn!1.1=n
p/ ¤ 0, so the series cannot converge in this

case. Being a positive series, it must diverge to infinity.

Remark The harmonic series
P1

nD1 n
�1 (the case p D 1 of the p-series) is on the

borderline between convergence and divergence, although it diverges. While its terms

decrease toward 0 as n increases, they do not decrease fast enough to allow the sum

of the series to be finite. If p > 1, the terms of
P1

nD1 n
�p decrease toward zero fast

enough that their sum is finite. We can refine the distinction between convergence and

divergence at p D 1 by using terms that decrease faster than 1=n, but not as fast as

1=nq for any q > 1. If p > 0, the terms 1=
�

n.ln n/p
�

have this property since ln n

grows more slowly than any positive power of n as n increases. The question now

arises whether
P1

nD2 1=.n.ln n/
p/ converges. It does, provided again that p > 1; you

can use the substitution u D lnx to check that

Z 1

2

dx

x.lnx/p
D

Z 1

ln 2

du

up
;

which converges if p > 1 and diverges if 0 < p � 1. This process of fine-tuning

Example 1 can be extended even further. (See Exercise 36 below.)
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Using Integral Bounds to Estimate the Sum of a Series
Suppose that ak D f .k/ for k D n C 1; n C 2; n C 3; : : : , where f is a positive,

continuous function, decreasing at least on the interval Œn;1/. We have:

s � sn D

1
X

kDnC1

f .k/

D sum of areas of rectangles shaded in Figure 9.5(a)

�

Z 1

n

f .x/ dx:

Figure 9.5 Using integrals to estimate the

tail of a series

y D f .x/

xn nC1 nC2 nC3

y D f .x/

n nC1 nC2 nC3 x

(a) (b)

Similarly,

s � sn D sum of areas of rectangles in Figure 9.5(b)

�

Z 1

nC1

f .x/ dx:

If we define

An D

Z 1

n

f .x/ dx;

then we can combine the above inequalities to obtain

AnC1 � s � sn � An;

or, equivalently:

sn C AnC1 � s � sn C An:

The error in the approximation s � sn satisfies 0 � s � sn � An. However, since s

must lie in the interval Œsn C AnC1; sn C An�, we can do better by using the midpoint

s�
n of this interval as an approximation for s. The error is then less than half the length

An � AnC1 of the interval:

A better integral approximation

The error js � s�
n j in the approximation

s � s
�
n D sn C

AnC1 C An

2
; where An D

Z 1

n

f .x/ dx;

satisfies js � s�
n j �

An �AnC1

2
.

(Whenever a quantity is known to lie in a certain interval, the midpoint of that interval

can be used to approximate the quantity, and the absolute value of the error in that

approximation does not exceed half the length of the interval.)
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Conversely, suppose that
P1

nD1 an converges to the sum s. Then

Z 1

N

f .t/ dt D area under y D f .t/ above y D 0 from t D N to t D1

� sum of areas of shaded rectangles in Figure 9.4(b)

D aN C aN C1 C aN C2 C � � �

D s � sN �1 <1;

so the improper integral represents a finite area and is thus convergent. (We omit the

remaining details showing that limR!1
R R

N
f .t/ dt exists; like the series case, the

argument depends on the completeness of the real numbers.)

Remark If an D f .n/, where f is positive, continuous, and nonincreasing on

Œ1;1/, then Theorem 8 assures us that
P1

nD1 an and
R1

1
f .x/ dx both converge or

both diverge to infinity. It does not tell us that the sum of the series is equal to the

value of the integral. The two are not likely to be equal in the case of convergence.

However, as we see below, integrals can help us approximate the sum of a series.

The principal use of the integral test is to establish the result of the following

example concerning the series
P1

nD1 n
�p, which is called a p-series. This result

should be memorized; we will frequently compare the behaviour of other series with

p-series later in this and subsequent sections.

E X A M P L E 1
(p-series) Show that

1
X

nD1

n
�p
D

1
X

nD1

1

np

�

converges if p > 1

diverges to infinity if p � 1:

Solution Observe that if p > 0, then f .x/ D x�p is positive, continuous, and

decreasing on Œ1;1/. By the integral test, the p-series converges for p > 1 and

diverges for 0 < p � 1 by comparison with
R1

1
x�p dx. (See Theorem 2(a) of

Section 6.5.) If p � 0, then limn!1.1=n
p/ ¤ 0, so the series cannot converge in this

case. Being a positive series, it must diverge to infinity.

Remark The harmonic series
P1

nD1 n
�1 (the case p D 1 of the p-series) is on the

borderline between convergence and divergence, although it diverges. While its terms

decrease toward 0 as n increases, they do not decrease fast enough to allow the sum

of the series to be finite. If p > 1, the terms of
P1

nD1 n
�p decrease toward zero fast

enough that their sum is finite. We can refine the distinction between convergence and

divergence at p D 1 by using terms that decrease faster than 1=n, but not as fast as

1=nq for any q > 1. If p > 0, the terms 1=
�

n.ln n/p
�

have this property since lnn

grows more slowly than any positive power of n as n increases. The question now

arises whether
P1

nD2 1=.n.ln n/
p/ converges. It does, provided again that p > 1; you

can use the substitution u D lnx to check that

Z 1

2

dx

x.lnx/p
D

Z 1

ln 2

du

up
;

which converges if p > 1 and diverges if 0 < p � 1. This process of fine-tuning

Example 1 can be extended even further. (See Exercise 36 below.)
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Using Integral Bounds to Estimate the Sum of a Series
Suppose that ak D f .k/ for k D n C 1; n C 2; n C 3; : : : , where f is a positive,

continuous function, decreasing at least on the interval Œn;1/. We have:

s � sn D

1
X

kDnC1

f .k/

D sum of areas of rectangles shaded in Figure 9.5(a)

�

Z 1

n

f .x/ dx:

Figure 9.5 Using integrals to estimate the

tail of a series

y D f .x/

xn nC1 nC2 nC3

y D f .x/

n nC1 nC2 nC3 x

(a) (b)

Similarly,

s � sn D sum of areas of rectangles in Figure 9.5(b)

�

Z 1

nC1

f .x/ dx:

If we define

An D

Z 1

n

f .x/ dx;

then we can combine the above inequalities to obtain

AnC1 � s � sn � An;

or, equivalently:

sn C AnC1 � s � sn C An:

The error in the approximation s � sn satisfies 0 � s � sn � An. However, since s

must lie in the interval Œsn C AnC1; sn C An�, we can do better by using the midpoint

s�
n of this interval as an approximation for s. The error is then less than half the length

An � AnC1 of the interval:

A better integral approximation

The error js � s�
n j in the approximation

s � s
�
n D sn C

AnC1 C An

2
; where An D

Z 1

n

f .x/ dx;

satisfies js � s�
n j �

An �AnC1

2
.

(Whenever a quantity is known to lie in a certain interval, the midpoint of that interval

can be used to approximate the quantity, and the absolute value of the error in that

approximation does not exceed half the length of the interval.)
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E X A M P L E 2
Find the best approximation s�

n to the sum s of the series
P1

nD1 1=n
2, making use of the partial sum sn of the first n terms.

How large would n have to be to ensure that the approximation s � s�
n has error less

than 0.001 in absolute value? How large would n have to be to ensure that the approx-

imation s � sn has error less than 0.001 in absolute value?

Solution Since f .x/ D 1=x
2 is positive, continuous, and decreasing on Œ1;1/ for

any n D 1; 2; 3; : : : , we have

sn C AnC1 � s � sn C An;

where

An D

Z 1

n

dx

x2
D lim

R!1

�

�

1

x

�
ˇ

ˇ

ˇ

ˇ

R

n

D

1

n
:

The best approximation to s using sn is

s
�
n D sn C

1

2

�

1

nC 1
C

1

n

�

D sn C
2nC 1

2n.nC 1/

D 1C
1

4
C

1

9
C � � � C

1

n2
C

2nC 1

2n.nC 1/
:

The error in this approximation satisfies

js � s
�
n j �

1

2

�

1

n
�

1

nC 1

�

D

1

2n.nC 1/
� 0:001;

provided 2n.n C 1/ � 1=0:001 D 1;000. It is easily checked that this condition is

satisfied if n � 22; the approximation

s � s
�
22 D 1C

1

4
C

1

9
C � � � C

1

222
C

45

44 � 23

will have error with absolute value not exceeding 0.001. Had we used the approxima-

tion s � sn we could only have concluded that

0 � s � sn � An D
1

n
< 0:001;

provided n > 1;000; we would need 1,000 terms of the series to get the desired accu-

racy.

Comparison Tests
The next test we consider for positive series is analogous to the comparison theorem

for improper integrals. (See Theorem 3 of Section 6.5.) It enables us to determine

the convergence or divergence of one series by comparing it with another series that is

known to converge or diverge.

T H E O R E M

9

A comparison test

Let fang and fbng be sequences for which there exists a positive constant K such that,

ultimately, 0 � an � Kbn.

(a) If the series
P1

nD1 bn converges, then so does the series
P1

nD1 an.

(b) If the series
P1

nD1 an diverges to infinity, then so does the series
P1

nD1 bn.
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PROOF Since a series converges if and only if its tail converges (Theorem 5), we can

BEWARE! Theorem 9 does not

say that if
P

an converges then
P

bn converges. It is possible that

the smaller sum may be finite while

the larger one is infinite. (Do not

confuse a theorem with its

converse.)

assume, without loss of generality, that the condition 0 � an � Kbn holds for all

n � 1. Let sn D a1C a2C � � �C an and Sn D b1C b2C � � �C bn. Then sn � KSn. If
P

bn converges, then fSng is convergent and hence is bounded by Theorem 1. Hence

fsng is bounded above. By Theorem 6,
P

an converges. Since the convergence of
P

bn guarantees that of
P

an, if the latter series diverges to infinity, then the former

cannot converge either, so it must diverge to infinity too.

E X A M P L E 3
Which of the following series converge? Give reasons for your

answers.

(a)

1
X

nD1

1

2n
C 1

, (b)

1
X

nD1

3nC 1

n3
C 1

, (c)

1
X

nD2

1

ln n
.

Solution In each case we must find a suitable comparison series that we already

know converges or diverges.

(a) Since 0 <
1

2n
C 1

<
1

2n
for n D 1; 2; 3; : : : ; and since

P1
nD1

1

2n
is a convergent

geometric series, the series
P1

nD1

1

2n
C 1

also converges by comparison.

(b) Observe that
3nC 1

n3
C 1

behaves like
3

n2
for large n, so we would expect to compare

the series with the convergent p-series
P1

nD1 n
�2. We have, for n � 1,

3nC 1

n3
C 1
D

3n

n3
C 1
C

1

n3
C 1

<
3n

n3
C

1

n3
<

3

n2
C

1

n2
D

4

n2
:

Thus, the given series converges by Theorem 9.

(c) For n D 2; 3; 4; : : : , we have 0 < ln n < n. Thus
1

lnn
>
1

n
. Since

P1
nD2

1

n

diverges to infinity (it is a harmonic series), so does
P1

nD2

1

ln n
by comparison.

The following theorem provides a version of the comparison test that is not quite as

general as Theorem 9 but is often easier to apply in specific cases.

T H E O R E M

10

A limit comparison test

Suppose that fang and fbng are positive sequences and that

lim
n!1

an

bn

D L;

where L is either a nonnegative finite number orC1.

(a) If L <1 and
P1

nD1 bn converges, then
P1

nD1 an also converges.

(b) If L > 0 and
P1

nD1 bn diverges to infinity, then so does
P1

nD1 an.

PROOF If L <1, then for n sufficiently large, we have bn > 0 and

0 �
an

bn

� LC 1;

so 0 � an � .L C 1/bn. Hence
P1

nD1 an converges if
P1

nD1 bn converges, by

Theorem 9(a).
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E X A M P L E 2
Find the best approximation s�

n to the sum s of the series
P1

nD1 1=n
2, making use of the partial sum sn of the first n terms.

How large would n have to be to ensure that the approximation s � s�
n has error less

than 0.001 in absolute value? How large would n have to be to ensure that the approx-

imation s � sn has error less than 0.001 in absolute value?

Solution Since f .x/ D 1=x
2 is positive, continuous, and decreasing on Œ1;1/ for

any n D 1; 2; 3; : : : , we have

sn C AnC1 � s � sn C An;

where

An D

Z 1

n

dx

x2
D lim

R!1

�

�

1

x

�
ˇ

ˇ

ˇ

ˇ

R

n

D

1

n
:

The best approximation to s using sn is

s
�
n D sn C

1

2

�

1

nC 1
C

1

n

�

D sn C
2nC 1

2n.nC 1/

D 1C
1

4
C

1

9
C � � � C

1

n2
C

2nC 1

2n.nC 1/
:

The error in this approximation satisfies

js � s
�
n j �

1

2

�

1

n
�

1

nC 1

�

D

1

2n.nC 1/
� 0:001;

provided 2n.n C 1/ � 1=0:001 D 1;000. It is easily checked that this condition is

satisfied if n � 22; the approximation

s � s
�
22 D 1C

1

4
C

1

9
C � � � C

1

222
C

45

44 � 23

will have error with absolute value not exceeding 0.001. Had we used the approxima-

tion s � sn we could only have concluded that

0 � s � sn � An D
1

n
< 0:001;

provided n > 1;000; we would need 1,000 terms of the series to get the desired accu-

racy.

Comparison Tests
The next test we consider for positive series is analogous to the comparison theorem

for improper integrals. (See Theorem 3 of Section 6.5.) It enables us to determine

the convergence or divergence of one series by comparing it with another series that is

known to converge or diverge.

T H E O R E M

9

A comparison test

Let fang and fbng be sequences for which there exists a positive constant K such that,

ultimately, 0 � an � Kbn.

(a) If the series
P1

nD1 bn converges, then so does the series
P1

nD1 an.

(b) If the series
P1

nD1 an diverges to infinity, then so does the series
P1

nD1 bn.
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PROOF Since a series converges if and only if its tail converges (Theorem 5), we can

BEWARE! Theorem 9 does not

say that if
P

an converges then
P

bn converges. It is possible that

the smaller sum may be finite while

the larger one is infinite. (Do not

confuse a theorem with its

converse.)

assume, without loss of generality, that the condition 0 � an � Kbn holds for all

n � 1. Let sn D a1C a2C � � �C an and Sn D b1C b2C � � �C bn. Then sn � KSn. If
P

bn converges, then fSng is convergent and hence is bounded by Theorem 1. Hence

fsng is bounded above. By Theorem 6,
P

an converges. Since the convergence of
P

bn guarantees that of
P

an, if the latter series diverges to infinity, then the former

cannot converge either, so it must diverge to infinity too.

E X A M P L E 3
Which of the following series converge? Give reasons for your

answers.

(a)

1
X

nD1

1

2n
C 1

, (b)

1
X

nD1

3nC 1

n3
C 1

, (c)

1
X

nD2

1

ln n
.

Solution In each case we must find a suitable comparison series that we already

know converges or diverges.

(a) Since 0 <
1

2n
C 1

<
1

2n
for n D 1; 2; 3; : : : ; and since

P1
nD1

1

2n
is a convergent

geometric series, the series
P1

nD1

1

2n
C 1

also converges by comparison.

(b) Observe that
3nC 1

n3
C 1

behaves like
3

n2
for large n, so we would expect to compare

the series with the convergent p-series
P1

nD1 n
�2. We have, for n � 1,

3nC 1

n3
C 1
D

3n

n3
C 1
C

1

n3
C 1

<
3n

n3
C

1

n3
<

3

n2
C

1

n2
D

4

n2
:

Thus, the given series converges by Theorem 9.

(c) For n D 2; 3; 4; : : : , we have 0 < ln n < n. Thus
1

lnn
>
1

n
. Since

P1
nD2

1

n

diverges to infinity (it is a harmonic series), so does
P1

nD2

1

ln n
by comparison.

The following theorem provides a version of the comparison test that is not quite as

general as Theorem 9 but is often easier to apply in specific cases.

T H E O R E M

10

A limit comparison test

Suppose that fang and fbng are positive sequences and that

lim
n!1

an

bn

D L;

where L is either a nonnegative finite number orC1.

(a) If L <1 and
P1

nD1 bn converges, then
P1

nD1 an also converges.

(b) If L > 0 and
P1

nD1 bn diverges to infinity, then so does
P1

nD1 an.

PROOF If L <1, then for n sufficiently large, we have bn > 0 and

0 �
an

bn

� LC 1;

so 0 � an � .L C 1/bn. Hence
P1

nD1 an converges if
P1

nD1 bn converges, by

Theorem 9(a).
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If L > 0, then for n sufficiently large

an

bn

�

L

2
:

Therefore, 0 < bn � .2=L/an , and
P1

nD1 an diverges to infinity if
P1

nD1 bn does, by

Theorem 9(b).

E X A M P L E 4
Which of the following series converge? Give reasons for your

answers.

(a)

1
X

nD1

1

1C
p

n
, (b)

1
X

nD1

nC 5

n3
� 2nC 3

.

Solution Again we must make appropriate choices for comparison series.

(a) The terms of this series decrease like 1=
p

n. Observe that

L D lim
n!1

1

1C
p

n

1
p

n

D lim
n!1

p

n

1C
p

n
D lim

n!1

1

.1=
p

n/C 1
D 1:

Since the p-series
P1

nD1

1
p

n
diverges to infinity (p D 1=2), so does the series

P1
nD1

1

1C
p

n
, by the limit comparison test.

(b) For large n, the terms behave like n=n3, so let us compare the series with the

p-series
P1

nD1 1=n
2, which we know converges.

L D lim
n!1

nC 5

n3
� 2nC 3

1

n2

D lim
n!1

n3
C 5n2

n3
� 2nC 3

D 1:

SinceL <1, the series

1
X

nD1

nC 5

n3
� 2nC 3

also converges by the limit comparison

test.

In order to apply the original version of the comparison test (Theorem 9) successfully,

it is important to have an intuitive feeling for whether the given series converges or

diverges. The form of the comparison will depend on whether you are trying to prove

convergence or divergence. For instance, if you did not know intuitively that

1
X

nD1

1

100nC 20;000

would have to diverge to infinity, you might try to argue that

1

100nC 20;000
<
1

n
for n D 1; 2; 3; : : : :

While true, this doesn’t help at all.
P1

nD1 1=n diverges to infinity; therefore Theorem 9

yields no information from this comparison. We could, of course, argue instead that

1

100nC 20;000
�

1

20;100n
if n � 1;
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and conclude by Theorem 9 that
P1

nD1.1=.100n C 20;000// diverges to infinity by

comparison with the divergent series
P1

nD1 1=n. An easier way is to use Theorem 10

and the fact that

L D lim
n!1

1

100nC 20;000

1

n

D lim
n!1

n

100nC 20;000
D

1

100
> 0:

However, the limit comparison test Theorem 10 has a disadvantage when compared to

the ordinary comparison test Theorem 9. It can fail in certain cases because the limit

L does not exist. In such cases it is possible that the ordinary comparison test may still

work.

E X A M P L E 5 Test the series

1
X

nD1

1C sin n

n2
for convergence.

Solution Since

lim
n!1

1C sin n

n2

1

n2

D lim
n!1

.1C sin n/

does not exist, the limit comparison test gives us no information. However, since

sinn � 1, we have

0 �
1C sinn

n2
�

2

n2
for n D 1; 2; 3; : : : :

The given series does, in fact, converge by comparison with
P1

nD1 1=n
2, using the

ordinary comparison test.

The Ratio and Root Tests

T H E O R E M

11

The ratio test

Suppose that an > 0 (ultimately) and that � D lim
n!1

anC1

an

exists or isC1.

(a) If 0 � � < 1, then
P1

nD1 an converges.

(b) If 1 < � � 1, then limn!1 an D 1 and
P1

nD1 an diverges to infinity.

(c) If � D 1, this test gives no information; the series may either converge or diverge

to infinity.

PROOF Here � is the lowercase Greek letter “rho” (pronounced “roh”).

(a) Suppose � < 1. Pick a number r such that � < r < 1. Since we are given that

limn!1 anC1=an D �, we have anC1=an � r for n sufficiently large; that is,

anC1 � ran for n � N; say. In particular,

aN C1 � raN

aN C2 � raN C1 � r
2
aN

aN C3 � raN C2 � r
3
aN

:
:
:

aN Ck � r
k
aN .k D 0; 1; 2; 3; : : :/:
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If L > 0, then for n sufficiently large

an

bn

�

L

2
:

Therefore, 0 < bn � .2=L/an , and
P1

nD1 an diverges to infinity if
P1

nD1 bn does, by

Theorem 9(b).

E X A M P L E 4
Which of the following series converge? Give reasons for your

answers.

(a)

1
X

nD1

1

1C
p

n
, (b)

1
X

nD1

nC 5

n3
� 2nC 3

.

Solution Again we must make appropriate choices for comparison series.

(a) The terms of this series decrease like 1=
p

n. Observe that

L D lim
n!1

1

1C
p

n

1
p

n

D lim
n!1

p

n

1C
p

n
D lim

n!1

1

.1=
p

n/C 1
D 1:

Since the p-series
P1

nD1

1
p

n
diverges to infinity (p D 1=2), so does the series

P1
nD1

1

1C
p

n
, by the limit comparison test.

(b) For large n, the terms behave like n=n3, so let us compare the series with the

p-series
P1

nD1 1=n
2, which we know converges.

L D lim
n!1

nC 5

n3
� 2nC 3

1

n2

D lim
n!1

n3
C 5n2

n3
� 2nC 3

D 1:

SinceL <1, the series

1
X

nD1

nC 5

n3
� 2nC 3

also converges by the limit comparison

test.

In order to apply the original version of the comparison test (Theorem 9) successfully,

it is important to have an intuitive feeling for whether the given series converges or

diverges. The form of the comparison will depend on whether you are trying to prove

convergence or divergence. For instance, if you did not know intuitively that

1
X

nD1

1

100nC 20;000

would have to diverge to infinity, you might try to argue that

1

100nC 20;000
<
1

n
for n D 1; 2; 3; : : : :

While true, this doesn’t help at all.
P1

nD1 1=n diverges to infinity; therefore Theorem 9

yields no information from this comparison. We could, of course, argue instead that

1

100nC 20;000
�

1

20;100n
if n � 1;

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 521 October 5, 2016

SECTION 9.3: Convergence Tests for Positive Series 521

and conclude by Theorem 9 that
P1

nD1.1=.100n C 20;000// diverges to infinity by

comparison with the divergent series
P1

nD1 1=n. An easier way is to use Theorem 10

and the fact that

L D lim
n!1

1

100nC 20;000

1

n

D lim
n!1

n

100nC 20;000
D

1

100
> 0:

However, the limit comparison test Theorem 10 has a disadvantage when compared to

the ordinary comparison test Theorem 9. It can fail in certain cases because the limit

L does not exist. In such cases it is possible that the ordinary comparison test may still

work.

E X A M P L E 5 Test the series

1
X

nD1

1C sin n

n2
for convergence.

Solution Since

lim
n!1

1C sin n

n2

1

n2

D lim
n!1

.1C sin n/

does not exist, the limit comparison test gives us no information. However, since

sinn � 1, we have

0 �
1C sinn

n2
�

2

n2
for n D 1; 2; 3; : : : :

The given series does, in fact, converge by comparison with
P1

nD1 1=n
2, using the

ordinary comparison test.

The Ratio and Root Tests

T H E O R E M

11

The ratio test

Suppose that an > 0 (ultimately) and that � D lim
n!1

anC1

an

exists or isC1.

(a) If 0 � � < 1, then
P1

nD1 an converges.

(b) If 1 < � � 1, then limn!1 an D 1 and
P1

nD1 an diverges to infinity.

(c) If � D 1, this test gives no information; the series may either converge or diverge

to infinity.

PROOF Here � is the lowercase Greek letter “rho” (pronounced “roh”).

(a) Suppose � < 1. Pick a number r such that � < r < 1. Since we are given that

limn!1 anC1=an D �, we have anC1=an � r for n sufficiently large; that is,

anC1 � ran for n � N; say. In particular,

aN C1 � raN

aN C2 � raN C1 � r
2
aN

aN C3 � raN C2 � r
3
aN

:
:
:

aN Ck � r
k
aN .k D 0; 1; 2; 3; : : :/:
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Hence,
P1

nDN an converges by comparison with the convergent geometric series
P1

kD0 r
k . It follows that

P1
nD1 an D

PN �1
nD1 anC

P1
nDN an must also converge.

(b) Now suppose that � > 1. Pick a number r such that 1 < r < �. Since

limn!1 anC1=an D �, we have anC1=an � r for n sufficiently large, say for

n � N: We assume N is chosen large enough that aN > 0. It follows by an

argument similar to that used in part (a) that aN Ck � r
kaN for k D 0; 1; 2; : : : ,

and since r > 1, limn!1 an D 1. Therefore,
P1

nD1 an diverges to infinity.

(c) If � is computed for the series
P1

nD1 1=n and
P1

nD1 1=n
2, we get � D 1 for each.

Since the first series diverges to infinity and the second converges, the ratio test

cannot distinguish between convergence and divergence if � D 1.

All p-series fall into the indecisive category where � D 1, as does
P1

nD1 an, where

an is any rational function of n. The ratio test is most useful for series whose terms

decrease at least exponentially fast. The presence of factorials in a term also suggests

that the ratio test might be useful.

E X A M P L E 6
Test the following series for convergence:

(a)

1
X

nD1

99n

nŠ
, (b)

1
X

nD1

n5

2n
, (c)

1
X

nD1

nŠ

nn
, (d)

1
X

nD1

.2n/Š

.nŠ/2
.

Solution We use the ratio test for each of these series.

(a) � D lim
n!1

99nC1

.nC 1/Š

,

99n

nŠ
D lim

n!1

99

nC 1
D 0 < 1:

Thus,
P1

nD1.99
n=nŠ/ converges.

(b) � D lim
n!1

.nC 1/5

2nC1

,

n5

2n
D lim

n!1

1

2

�

nC 1

n

�5

D

1

2
< 1:

Hence,
P1

nD1.n
5=2n/ converges.

(c) � D lim
n!1

.nC 1/Š

.nC 1/nC1

,

nŠ

nn
D lim

n!1

.nC 1/Šnn

.nC 1/nC1nŠ
D lim

n!1

�

n

nC 1

�n

D lim
n!1

1
�

1C
1

n

�n D
1

e
< 1:

Thus,
P1

nD1.nŠ=n
n/ converges.

(d) � D lim
n!1

.2.nC 1//Š

..nC 1/Š/2

,

.2n/Š

.nŠ/2
D lim

n!1

.2nC 2/.2nC 1/

.nC 1/2
D 4 > 1:

Thus,
P1

nD1.2n/Š=.nŠ/
2 diverges to infinity.

The following theorem is very similar to the ratio test but is less frequently used. Its

proof is left as an exercise. (See Exercise 37.) For examples of series to which it can

be applied, see Exercises 38 and 39.

T H E O R E M

12

The root test

Suppose that an > 0 (ultimately) and that � D limn!1.an/
1=n exists or isC1.

(a) If 0 � � < 1, then
P1

nD1 an converges.

(b) If 1 < � � 1, then limn!1 an D1 and
P1

nD1 an diverges to infinity.

(c) If � D 1, this test gives no information; the series may either converge or diverge

to infinity.
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Using Geometric Bounds to Estimate the Sum of a Series
Suppose that an inequality of the form

0 � ak � Kr
k

holds for k D nC 1; n C 2; n C 3; : : : , where K and r are constants and r < 1. We

can then use a geometric series to bound the tail of
P1

nD1 an.

0 � s � sn D

1
X

kDnC1

ak �

1
X

kDnC1

Kr
k

D Kr
nC1

.1C r C r
2
C � � �/

D

KrnC1

1 � r
:

Since r < 1, the series converges and the error approaches 0 at an exponential rate as

n increases.

E X A M P L E 7
In Section 9.6 we will show that

e D
1

0Š
C

1

1Š
C

1

2Š
C

1

3Š
C � � � D

1
X

nD0

1

nŠ
:

(Recall that 0Š D 1.) Estimate the error if the sum sn of the first n terms of the series

is used to approximate e. Find e to 3-decimal-place accuracy using the series.

Solution We have

sn D
1

0Š
C

1

1Š
C

1

2Š
C

1

3Š
C � � � C

1

.n � 1/Š

D 1C 1C
1

2
C

1

6
C

1

24
C � � � C

1

.n � 1/Š
:

(Since the series starts with the term for n D 0, the nth term is 1=.n � 1/Š:/ We can

estimate the error in the approximation s � sn as follows:

0 < s � sn D
1

nŠ
C

1

.nC 1/Š
C

1

.nC 2/Š
C

1

.nC 3/Š
C � � �

D

1

nŠ

�

1C
1

nC 1
C

1

.nC 1/.nC 2/
C

1

.nC 1/.nC 2/.nC 3/
C � � �

�

<
1

nŠ

�

1C
1

nC 1
C

1

.nC 1/2
C

1

.nC 1/3
C � � �

�

since nC 2 > nC 1, nC 3 > nC 1, and so on. The latter series is geometric, so

0 < s � sn <
1

nŠ

1

1 �
1

nC 1

D

nC 1

nŠn
:

If we want to evaluate e accurately to 3 decimal places, then we must ensure that the

error is less than 5 in the fourth decimal place, that is, that the error is less than 0.0005.

Hence, we want

nC 1

n

1

nŠ
< 0:0005 D

1

2;000
:

Since 7Š D 5;040 but 6Š D 720, we can use n D 7 but no smaller. We have

e � s7 D 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š

D 2C
1

2
C

1

6
C

1

24
C

1

120
C

1

720
� 2:718 to 3 decimal places.

It is appropriate to use geometric series to bound the tails of positive series whose

convergence would be demonstrated by the ratio test. Such series converge ultimately

faster than any p-series
P1

nD1 n
�p , for which the limit ratio is � D 1.
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Hence,
P1

nDN an converges by comparison with the convergent geometric series
P1

kD0 r
k . It follows that

P1
nD1 an D

PN �1
nD1 anC

P1
nDN an must also converge.

(b) Now suppose that � > 1. Pick a number r such that 1 < r < �. Since

limn!1 anC1=an D �, we have anC1=an � r for n sufficiently large, say for

n � N: We assume N is chosen large enough that aN > 0. It follows by an

argument similar to that used in part (a) that aN Ck � r
kaN for k D 0; 1; 2; : : : ,

and since r > 1, limn!1 an D 1. Therefore,
P1

nD1 an diverges to infinity.

(c) If � is computed for the series
P1

nD1 1=n and
P1

nD1 1=n
2, we get � D 1 for each.

Since the first series diverges to infinity and the second converges, the ratio test

cannot distinguish between convergence and divergence if � D 1.

All p-series fall into the indecisive category where � D 1, as does
P1

nD1 an, where

an is any rational function of n. The ratio test is most useful for series whose terms

decrease at least exponentially fast. The presence of factorials in a term also suggests

that the ratio test might be useful.

E X A M P L E 6
Test the following series for convergence:

(a)

1
X

nD1

99n

nŠ
, (b)

1
X

nD1

n5

2n
, (c)

1
X

nD1

nŠ

nn
, (d)

1
X

nD1

.2n/Š

.nŠ/2
.

Solution We use the ratio test for each of these series.

(a) � D lim
n!1

99nC1

.nC 1/Š

,

99n

nŠ
D lim

n!1

99

nC 1
D 0 < 1:

Thus,
P1

nD1.99
n=nŠ/ converges.

(b) � D lim
n!1

.nC 1/5

2nC1

,

n5

2n
D lim

n!1

1

2

�

nC 1

n

�5

D

1

2
< 1:

Hence,
P1

nD1.n
5=2n/ converges.

(c) � D lim
n!1

.nC 1/Š

.nC 1/nC1

,

nŠ

nn
D lim

n!1

.nC 1/Šnn

.nC 1/nC1nŠ
D lim

n!1

�

n

nC 1

�n

D lim
n!1

1
�

1C
1

n

�n D
1

e
< 1:

Thus,
P1

nD1.nŠ=n
n/ converges.

(d) � D lim
n!1

.2.nC 1//Š

..nC 1/Š/2

,

.2n/Š

.nŠ/2
D lim

n!1

.2nC 2/.2nC 1/

.nC 1/2
D 4 > 1:

Thus,
P1

nD1.2n/Š=.nŠ/
2 diverges to infinity.

The following theorem is very similar to the ratio test but is less frequently used. Its

proof is left as an exercise. (See Exercise 37.) For examples of series to which it can

be applied, see Exercises 38 and 39.

T H E O R E M

12

The root test

Suppose that an > 0 (ultimately) and that � D limn!1.an/
1=n exists or isC1.

(a) If 0 � � < 1, then
P1

nD1 an converges.

(b) If 1 < � � 1, then limn!1 an D1 and
P1

nD1 an diverges to infinity.

(c) If � D 1, this test gives no information; the series may either converge or diverge

to infinity.
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Using Geometric Bounds to Estimate the Sum of a Series
Suppose that an inequality of the form

0 � ak � Kr
k

holds for k D nC 1; n C 2; n C 3; : : : , where K and r are constants and r < 1. We

can then use a geometric series to bound the tail of
P1

nD1 an.

0 � s � sn D

1
X

kDnC1

ak �

1
X

kDnC1

Kr
k

D Kr
nC1

.1C r C r
2
C � � �/

D

KrnC1

1 � r
:

Since r < 1, the series converges and the error approaches 0 at an exponential rate as

n increases.

E X A M P L E 7
In Section 9.6 we will show that

e D
1

0Š
C

1

1Š
C

1

2Š
C

1

3Š
C � � � D

1
X

nD0

1

nŠ
:

(Recall that 0Š D 1.) Estimate the error if the sum sn of the first n terms of the series

is used to approximate e. Find e to 3-decimal-place accuracy using the series.

Solution We have

sn D
1

0Š
C

1

1Š
C

1

2Š
C

1

3Š
C � � � C

1

.n � 1/Š

D 1C 1C
1

2
C

1

6
C

1

24
C � � � C

1

.n � 1/Š
:

(Since the series starts with the term for n D 0, the nth term is 1=.n � 1/Š:/ We can

estimate the error in the approximation s � sn as follows:

0 < s � sn D
1

nŠ
C

1

.nC 1/Š
C

1

.nC 2/Š
C

1

.nC 3/Š
C � � �

D

1

nŠ

�

1C
1

nC 1
C

1

.nC 1/.nC 2/
C

1

.nC 1/.nC 2/.nC 3/
C � � �

�

<
1

nŠ

�

1C
1

nC 1
C

1

.nC 1/2
C

1

.nC 1/3
C � � �

�

since nC 2 > nC 1, nC 3 > nC 1, and so on. The latter series is geometric, so

0 < s � sn <
1

nŠ

1

1 �
1

nC 1

D

nC 1

nŠn
:

If we want to evaluate e accurately to 3 decimal places, then we must ensure that the

error is less than 5 in the fourth decimal place, that is, that the error is less than 0.0005.

Hence, we want

nC 1

n

1

nŠ
< 0:0005 D

1

2;000
:

Since 7Š D 5;040 but 6Š D 720, we can use n D 7 but no smaller. We have

e � s7 D 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š

D 2C
1

2
C

1

6
C

1

24
C

1

120
C

1

720
� 2:718 to 3 decimal places.

It is appropriate to use geometric series to bound the tails of positive series whose

convergence would be demonstrated by the ratio test. Such series converge ultimately

faster than any p-series
P1

nD1 n
�p , for which the limit ratio is � D 1.
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E X E R C I S E S 9.3

In Exercises 1–26, determine whether the given series converges or

diverges by using any appropriate test. The p-series can be used

for comparison, as can geometric series. Be alert for series whose

terms do not approach 0.

1.

1
X

nD1

1

n2
C 1

2.

1
X

nD1

n

n4
� 2

3.

1
X

nD1

n
2
C 1

n3
C 1

4.

1
X

nD1

p

n

n2
C nC 1

5.

1
X

nD1

ˇ

ˇ

ˇ

ˇ

sin
1

n2

ˇ

ˇ

ˇ

ˇ

6.

1
X

nD8

1

�n
C 5

7.

1
X

nD2

1

.lnn/3
8.

1
X

nD1

1

ln.3n/

9.

1
X

nD1

1

�n
� n�

10.

1
X

nD0

1C n

2C n

11.

1
X

nD1

1C n4=3

2C n5=3
12.

1
X

nD1

n2

1C n
p

n

13.

1
X

nD3

1

n lnn
p

ln ln n
14.

1
X

nD2

1

n lnn.ln lnn/2

15.

1
X

nD1

1 � .�1/n

n4
16.

1
X

nD1

1C .�1/n

p

n

17.

1
X

nD1

1

2n.nC 1/
18.

1
X

nD1

n4

nŠ

19.

1
X

nD1

nŠ

n2en
20.

1
X

nD1

.2n/Š6n

.3n/Š

21.

1
X

nD2

p

n

3n lnn
22.

1
X

nD0

n1002n

p

nŠ

23.

1
X

nD1

.2n/Š

.nŠ/3
24.

1
X

nD1

1C nŠ

.1C n/Š

25.

1
X

nD4

2
n

3n
� n3

26.

1
X

nD1

n
n

�nnŠ

In Exercises 27–30, use sn and integral bounds to find the smallest

interval that you can be sure contains the sum s of the series. If the

midpoint s�
n of this interval is used to approximate s, how large

should n be chosen to ensure that the error is less than 0.001?

27.

1
X

kD1

1

k4
28.

1
X

kD1

1

k3

29.

1
X

kD1

1

k3=2
30.

1
X

kD1

1

k2
C 4

For each positive series in Exercises 31–34, find the best upper

bound you can for the error s � sn encountered if the partial sum

sn is used to approximate the sum s of the series. How many terms

of each series do you need to be sure that the approximation has

error less than 0.001?

31.

1
X

kD1

1

2kkŠ
32.

1
X

nD1

1

.2n � 1/Š

33.

1
X

nD0

2n

.2n/Š
34.

1
X

nD1

1

nn

35. Use the integral test to show that

1
X

nD1

1

1C n2
converges.

Show that the sum s of the series is less than �=2.

36.I Show that
P1

nD3.1=.n lnn.ln lnn/p/ converges if and only if

p > 1. Generalize this result to series of the form

1
X

nDN

1

n.lnn/.ln lnn/ � � � .lnj n/.lnj C1 n/
p
;

where lnj n D ln ln ln ln � � � ln
„ † …

j ln0 s

n:

37.I Prove the root test. Hint: Mimic the proof of the ratio test.

38. Use the root test to show that

1
X

nD1

2nC1

nn
converges.

39.I Use the root test to test the following series for convergence:

1
X

nD1

�

n

nC 1

�n2

:

40. Repeat Exercise 38, but use the ratio test instead of the root

test.

41.I Try to use the ratio test to determine whether

1
X

nD1

22n.nŠ/2

.2n/Š

converges. What happens? Now observe that

22n.nŠ/2

.2n/Š
D

Œ2n.2n � 2/.2n � 4/ � � � 6 � 4 � 2�2

2n.2n � 1/.2n � 2/ � � � 4 � 3 � 2 � 1

D

2n

2n � 1
�

2n� 2

2n� 3
� � � � �

4

3
�

2

1
:

Does the given series converge? Why or why not?

42.I Determine whether the series

1
X

nD1

.2n/Š

22n.nŠ/2
converges. Hint:

Proceed as in Exercise 41. Show that an � 1=.2n/.

43.I (a) Show that if k > 0 and n is a positive integer, then

n <
1

k
.1C k/

n
:

(b) Use the estimate in (a) with 0 < k < 1 to obtain an upper

bound for the sum of the series
P1

nD0 n=2
n. For what

value of k is this bound lowest?

(c) If we use the sum sn of the first n terms to approximate

the sum s of the series in (b), obtain an upper bound for

the error s � sn using the inequality from (a). For given n,

find k to minimize this upper bound.

44.A (Improving the convergence of a series) We know that
P1

nD1 1=

�

n.nC 1/

�

D 1. (See Example 3 of Section 9.2.)

Since
1

n2
D

1

n.nC 1/
C cn; where cn D

1

n2.nC 1/
; we

have

1
X

nD1

1

n2
D 1C

1
X

nD1

cn:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 525 October 5, 2016

SECTION 9.4: Absolute and Conditional Convergence 525

The series
P1

nD1 cn converges more rapidly than does
P1

nD1 1=n
2 because its terms decrease like 1=n3. Hence,

fewer terms of that series will be needed to compute
P1

nD1 1=n
2 to any desired degree of accuracy than would be

needed if we calculated with
P1

nD1 1=n
2 directly. Using

integral upper and lower bounds, determine a value of n for

which the modified partial sum s�
n for the series

P1
nD1 cn

approximates the sum of that series with error less than 0.001

in absolute value. Hence, determine
P1

nD1 1=n
2 to within

0.001 of its true value. (The technique exibited in this exercise

is known as improving the convergence of a series. It can be

applied to estimating the sum
P

an if we know the sum
P

bn

and if an � bn D cn, where jcnj decreases faster than janj as n

tends to infinity.)

C 45. Consider the series s D
P1

nD1 1=.2
n
C 1/, and the partial

sum sn of its first n terms.

(a) How large need n be taken to ensure that the error in the

approximation s � sn is less than 0:001 in absolute

value?

(b) The geometric series
P1

nD1 1=2
n converges to 1. If

bn D
1

2n
�

1

2n
C 1

for n D 1, 2, 3, : : : ; how many terms of the series
P1

nD1 bn are needed to calculate its sum to within 0:001?

(c) Use the result of part (b) to calculate the
P1

nD1 1=.2
n
C 1/ to within 0:001.

9.4 Absolute and Conditional Convergence

All of the series
P1

nD1 an considered in the previous section were ultimately positive;

that is, an � 0 for n sufficiently large. We now drop this restriction and allow arbitrary

real terms an. We can, however, always obtain a positive series from any given series

by replacing all the terms with their absolute values.

D E F I N I T I O N

5

Absolute convergence

The series
P1

nD1 an is said to be absolutely convergent if
P1

nD1 janj con-

verges.

The series

s D

1
X

nD1

.�1/n

n2
D �1C

1

4
�

1

9
C

1

16
� � � �

converges absolutely since

S D

1
X

nD1

ˇ

ˇ

ˇ

ˇ

.�1/n

n2

ˇ

ˇ

ˇ

ˇ

D

1
X

nD1

1

n2
D 1C

1

4
C

1

9
C

1

16
C � � �

converges. It seems reasonable that the first series must converge, and its sum s should

satisfy �S � s � S . In general, the cancellation that occurs because some terms are

negative and others positive makes it easier for a series to converge than if all the terms

are of one sign. We verify this insight in the following theorem.

T H E O R E M

13

If a series converges absolutely, then it converges.

PROOF Let
P1

nD1 an be absolutely convergent, and let bn D an C janj for each n.

Since �janj � an � janj, we have 0 � bn � 2janj for each n. Thus,
P1

nD1 bn

converges by the comparison test. Therefore,
P1

nD1 an D
P1

nD1 bn �
P1

nD1 janj also

converges.

Again you are cautioned not to confuse the statement of Theorem 13 with the con-

verse statement, which is false. We will show later in this section that the alternating

harmonic series
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E X E R C I S E S 9.3

In Exercises 1–26, determine whether the given series converges or

diverges by using any appropriate test. The p-series can be used

for comparison, as can geometric series. Be alert for series whose

terms do not approach 0.

1.

1
X

nD1

1

n2
C 1

2.

1
X

nD1

n

n4
� 2

3.

1
X

nD1

n
2
C 1

n3
C 1

4.

1
X

nD1

p

n

n2
C nC 1

5.

1
X

nD1

ˇ

ˇ

ˇ

ˇ

sin
1

n2

ˇ

ˇ

ˇ

ˇ

6.

1
X

nD8

1

�n
C 5

7.

1
X

nD2

1

.lnn/3
8.

1
X

nD1

1

ln.3n/

9.

1
X

nD1

1

�n
� n�

10.

1
X

nD0

1C n

2C n

11.

1
X

nD1

1C n4=3

2C n5=3
12.

1
X

nD1

n2

1C n
p

n

13.

1
X

nD3

1

n lnn
p

ln ln n
14.

1
X

nD2

1

n lnn.ln lnn/2

15.

1
X

nD1

1 � .�1/n

n4
16.

1
X

nD1

1C .�1/n

p

n

17.

1
X

nD1

1

2n.nC 1/
18.

1
X

nD1

n4

nŠ

19.

1
X

nD1

nŠ

n2en
20.

1
X

nD1

.2n/Š6n

.3n/Š

21.

1
X

nD2

p

n

3n lnn
22.

1
X

nD0

n1002n

p

nŠ

23.

1
X

nD1

.2n/Š

.nŠ/3
24.

1
X

nD1

1C nŠ

.1C n/Š

25.

1
X

nD4

2
n

3n
� n3

26.

1
X

nD1

n
n

�nnŠ

In Exercises 27–30, use sn and integral bounds to find the smallest

interval that you can be sure contains the sum s of the series. If the

midpoint s�
n of this interval is used to approximate s, how large

should n be chosen to ensure that the error is less than 0.001?

27.

1
X

kD1

1

k4
28.

1
X

kD1

1

k3

29.

1
X

kD1

1

k3=2
30.

1
X

kD1

1

k2
C 4

For each positive series in Exercises 31–34, find the best upper

bound you can for the error s � sn encountered if the partial sum

sn is used to approximate the sum s of the series. How many terms

of each series do you need to be sure that the approximation has

error less than 0.001?

31.

1
X

kD1

1

2kkŠ
32.

1
X

nD1

1

.2n � 1/Š

33.

1
X

nD0

2n

.2n/Š
34.

1
X

nD1

1

nn

35. Use the integral test to show that

1
X

nD1

1

1C n2
converges.

Show that the sum s of the series is less than �=2.

36.I Show that
P1

nD3.1=.n lnn.ln lnn/p/ converges if and only if

p > 1. Generalize this result to series of the form

1
X

nDN

1

n.lnn/.ln lnn/ � � � .lnj n/.lnj C1 n/
p
;

where lnj n D ln ln ln ln � � � ln
„ † …

j ln0 s

n:

37.I Prove the root test. Hint: Mimic the proof of the ratio test.

38. Use the root test to show that

1
X

nD1

2nC1

nn
converges.

39.I Use the root test to test the following series for convergence:

1
X

nD1

�

n

nC 1

�n2

:

40. Repeat Exercise 38, but use the ratio test instead of the root

test.

41.I Try to use the ratio test to determine whether

1
X

nD1

22n.nŠ/2

.2n/Š

converges. What happens? Now observe that

22n.nŠ/2

.2n/Š
D

Œ2n.2n � 2/.2n � 4/ � � � 6 � 4 � 2�2

2n.2n � 1/.2n � 2/ � � � 4 � 3 � 2 � 1

D

2n

2n � 1
�

2n� 2

2n� 3
� � � � �

4

3
�

2

1
:

Does the given series converge? Why or why not?

42.I Determine whether the series

1
X

nD1

.2n/Š

22n.nŠ/2
converges. Hint:

Proceed as in Exercise 41. Show that an � 1=.2n/.

43.I (a) Show that if k > 0 and n is a positive integer, then

n <
1

k
.1C k/

n
:

(b) Use the estimate in (a) with 0 < k < 1 to obtain an upper

bound for the sum of the series
P1

nD0 n=2
n. For what

value of k is this bound lowest?

(c) If we use the sum sn of the first n terms to approximate

the sum s of the series in (b), obtain an upper bound for

the error s � sn using the inequality from (a). For given n,

find k to minimize this upper bound.

44.A (Improving the convergence of a series) We know that
P1

nD1 1=

�

n.nC 1/

�

D 1. (See Example 3 of Section 9.2.)

Since
1

n2
D

1

n.nC 1/
C cn; where cn D

1

n2.nC 1/
; we

have

1
X

nD1

1

n2
D 1C

1
X

nD1

cn:
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The series
P1

nD1 cn converges more rapidly than does
P1

nD1 1=n
2 because its terms decrease like 1=n3. Hence,

fewer terms of that series will be needed to compute
P1

nD1 1=n
2 to any desired degree of accuracy than would be

needed if we calculated with
P1

nD1 1=n
2 directly. Using

integral upper and lower bounds, determine a value of n for

which the modified partial sum s�
n for the series

P1
nD1 cn

approximates the sum of that series with error less than 0.001

in absolute value. Hence, determine
P1

nD1 1=n
2 to within

0.001 of its true value. (The technique exibited in this exercise

is known as improving the convergence of a series. It can be

applied to estimating the sum
P

an if we know the sum
P

bn

and if an � bn D cn, where jcnj decreases faster than janj as n

tends to infinity.)

C 45. Consider the series s D
P1

nD1 1=.2
n
C 1/, and the partial

sum sn of its first n terms.

(a) How large need n be taken to ensure that the error in the

approximation s � sn is less than 0:001 in absolute

value?

(b) The geometric series
P1

nD1 1=2
n converges to 1. If

bn D
1

2n
�

1

2n
C 1

for n D 1, 2, 3, : : : ; how many terms of the series
P1

nD1 bn are needed to calculate its sum to within 0:001?

(c) Use the result of part (b) to calculate the
P1

nD1 1=.2
n
C 1/ to within 0:001.

9.4 Absolute and Conditional Convergence

All of the series
P1

nD1 an considered in the previous section were ultimately positive;

that is, an � 0 for n sufficiently large. We now drop this restriction and allow arbitrary

real terms an. We can, however, always obtain a positive series from any given series

by replacing all the terms with their absolute values.

D E F I N I T I O N

5

Absolute convergence

The series
P1

nD1 an is said to be absolutely convergent if
P1

nD1 janj con-

verges.

The series

s D

1
X

nD1

.�1/n

n2
D �1C

1

4
�

1

9
C

1

16
� � � �

converges absolutely since

S D

1
X

nD1

ˇ

ˇ

ˇ

ˇ

.�1/n

n2

ˇ

ˇ

ˇ

ˇ

D

1
X

nD1

1

n2
D 1C

1

4
C

1

9
C

1

16
C � � �

converges. It seems reasonable that the first series must converge, and its sum s should

satisfy �S � s � S . In general, the cancellation that occurs because some terms are

negative and others positive makes it easier for a series to converge than if all the terms

are of one sign. We verify this insight in the following theorem.

T H E O R E M

13

If a series converges absolutely, then it converges.

PROOF Let
P1

nD1 an be absolutely convergent, and let bn D an C janj for each n.

Since �janj � an � janj, we have 0 � bn � 2janj for each n. Thus,
P1

nD1 bn

converges by the comparison test. Therefore,
P1

nD1 an D
P1

nD1 bn �
P1

nD1 janj also

converges.

Again you are cautioned not to confuse the statement of Theorem 13 with the con-

verse statement, which is false. We will show later in this section that the alternating

harmonic series
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1
X

nD1

.�1/n�1

n
D 1 �

1

2
C

1

3
�

1

4
C

1

5
� � � �

converges, although it does not converge absolutely. If we replace all the terms by

BEWARE! Although absolute

convergence implies convergence,

convergence does not imply absolute

convergence.

their absolute values, we get the divergent harmonic series

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � � D 1:

D E F I N I T I O N

6

Conditional convergence

If
P1

nD1 an is convergent, but not absolutely convergent, then we say that it

is conditionally convergent or that it converges conditionally.

The alternating harmonic series is an example of a conditionally convergent series.

The comparison tests, the integral test, and the ratio test can each be used to test

for absolute convergence. They should be applied to the series
P1

nD1 janj. For the

ratio test we calculate � D limn!1 janC1=anj. If � < 1, then
P1

nD1 an converges

absolutely. If � > 1, then limn!1 janj D 1, so both
P1

nD1 janj and
P1

nD1 an must

diverge. If � D 1, we get no information; the series
P1

nD1 an may converge absolutely,

it may converge conditionally, or it may diverge.

E X A M P L E 1
Test the following series for absolute convergence:

(a)

1
X

nD1

.�1/
n�1

2n � 1
, (b)

1
X

nD1

n cos.n�/

2n
.

Solution

(a) lim
n!1

ˇ

ˇ

ˇ

ˇ

.�1/n�1

2n � 1

ˇ

ˇ

ˇ

ˇ

,

1

n
D lim

n!1

n

2n � 1
D

1

2
> 0.

Since the harmonic series
P1

nD1.1=n/ diverges to infinity, the comparison test

assures us that
P1

nD1..�1/
n�1=.2n � 1// does not converge absolutely.

(b) � D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.nC 1/ cos..nC 1/�/

2nC1

,

n cos.n�/

2n

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nC 1

2n
D

1

2
< 1.

(Note that cos.n�/ is just a fancy way of writing .�1/n.) Therefore, by the

ratio test,
P1

nD1..n cos.n�//=2n/ converges absolutely.

The Alternating Series Test
We cannot use any of the previously developed tests to show that the alternating har-

monic series converges; all of those tests apply only to (ultimately) positive series, so

they can test only for absolute convergence. Demonstrating convergence that is not

absolute is generally more difficult to do. We present only one test that can establish

such convergence; this test can only be used on a very special kind of series.

T H E O R E M

14

The alternating series test

Suppose fang is a sequence whose terms satisfy, for some positive integer N;
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(i) ananC1 < 0 for n � N;

(ii) janC1j � janj for n � N; and

(iii) limn!1 an D 0,

that is, the terms are ultimately alternating in sign and decreasing in size, and the

sequence has limit zero. Then the series
P1

nD1 an converges.

PROOF Without loss of generality we can assume N D 1 because convergence only

depends on the tail of a series. We also assume a1 > 0; the proof if a1 < 0 is similar.

If sn D a1 C a2 C � � � C an is the nth partial sum of the series, it follows from the

alternation of fang that a2nC1 > 0 and a2n < 0 for each n. Since the terms decrease

in size, a2nC1 � �a2nC2. Therefore, s2nC2 D s2n C a2nC1 C a2nC2 � s2n for

n D 1; 2; 3; : : :; the even partial sums fs2ng form an increasing sequence. Similarly,

s2nC1 D s2n�1 C a2n C a2nC1 � s2n�1, so the odd partial sums fs2n�1g form a

decreasing sequence. Since s2n D s2n�1 C a2n � s2n�1, we can say, for any n, that

BEWARE! Read this proof

slowly and think about why each

statement is true.

s2 � s4 � s6 � � � � � s2n � s2n�1 � s2n�3 � � � � � s5 � s3 � s1:

Hence, s2 is a lower bound for the decreasing sequence fs2n�1g, and s1 is an upper

bound for the increasing sequence fs2ng. Both of these sequences therefore converge

by the completeness of the real numbers:

lim
n!1

s2n�1 D sodd; lim
n!1

s2n D seven:

Now a2n D s2n� s2n�1, so 0 D limn!1 a2n D limn!1.s2n� s2n�1/ D seven� sodd.

Therefore sodd D seven D s, say. Every partial sum sn is either of the form s2n�1 or of

the form s2n. Thus, limn!1 sn D s exists and the series
P

.�1/n�1an converges to

this sum s.

Remark The proof of Theorem 14 shows that the sum s of the series always lies

between any two consecutive partial sums of the series:

either sn < s < snC1 or snC1 < s < sn:

This proves the following theorem.

T H E O R E M

15

Error estimate for alternating series

If the sequence fang satisfies the conditions of the alternating series test (Theorem 14),

so that the series
P1

nD1 an converges to the sum s, then the error in the approximation

s � sn (where n � N ) has the same sign as the first omitted term anC1 D snC1 � sn,

and its size is no greater than the size of that term:

js � snj � jsnC1 � snj D janC1j:

E X A M P L E 2 How many terms of the series

1
X

nD1

.�1/n

1C 2n
are needed to compute

the sum of the series with error less than 0:001?

Solution This series satisfies the hypotheses for Theorem 15. If we use the partial

sum of the first n terms of the series to approximate the sum of the series, the error

will satisfy

jerrorj � jfirst omitted termj D
1

1C 2nC1
:
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1
X

nD1

.�1/n�1

n
D 1 �

1

2
C

1

3
�

1

4
C

1

5
� � � �

converges, although it does not converge absolutely. If we replace all the terms by

BEWARE! Although absolute

convergence implies convergence,

convergence does not imply absolute

convergence.

their absolute values, we get the divergent harmonic series

1
X

nD1

1

n
D 1C

1

2
C

1

3
C

1

4
C � � � D 1:

D E F I N I T I O N

6

Conditional convergence

If
P1

nD1 an is convergent, but not absolutely convergent, then we say that it

is conditionally convergent or that it converges conditionally.

The alternating harmonic series is an example of a conditionally convergent series.

The comparison tests, the integral test, and the ratio test can each be used to test

for absolute convergence. They should be applied to the series
P1

nD1 janj. For the

ratio test we calculate � D limn!1 janC1=anj. If � < 1, then
P1

nD1 an converges

absolutely. If � > 1, then limn!1 janj D 1, so both
P1

nD1 janj and
P1

nD1 an must

diverge. If � D 1, we get no information; the series
P1

nD1 an may converge absolutely,

it may converge conditionally, or it may diverge.

E X A M P L E 1
Test the following series for absolute convergence:

(a)

1
X

nD1

.�1/
n�1

2n � 1
, (b)

1
X

nD1

n cos.n�/

2n
.

Solution

(a) lim
n!1

ˇ

ˇ

ˇ

ˇ

.�1/n�1

2n � 1

ˇ

ˇ

ˇ

ˇ

,

1

n
D lim

n!1

n

2n � 1
D

1

2
> 0.

Since the harmonic series
P1

nD1.1=n/ diverges to infinity, the comparison test

assures us that
P1

nD1..�1/
n�1=.2n � 1// does not converge absolutely.

(b) � D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.nC 1/ cos..nC 1/�/

2nC1

,

n cos.n�/

2n

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nC 1

2n
D

1

2
< 1.

(Note that cos.n�/ is just a fancy way of writing .�1/n.) Therefore, by the

ratio test,
P1

nD1..n cos.n�//=2n/ converges absolutely.

The Alternating Series Test
We cannot use any of the previously developed tests to show that the alternating har-

monic series converges; all of those tests apply only to (ultimately) positive series, so

they can test only for absolute convergence. Demonstrating convergence that is not

absolute is generally more difficult to do. We present only one test that can establish

such convergence; this test can only be used on a very special kind of series.

T H E O R E M

14

The alternating series test

Suppose fang is a sequence whose terms satisfy, for some positive integer N;
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(i) ananC1 < 0 for n � N;

(ii) janC1j � janj for n � N; and

(iii) limn!1 an D 0,

that is, the terms are ultimately alternating in sign and decreasing in size, and the

sequence has limit zero. Then the series
P1

nD1 an converges.

PROOF Without loss of generality we can assume N D 1 because convergence only

depends on the tail of a series. We also assume a1 > 0; the proof if a1 < 0 is similar.

If sn D a1 C a2 C � � � C an is the nth partial sum of the series, it follows from the

alternation of fang that a2nC1 > 0 and a2n < 0 for each n. Since the terms decrease

in size, a2nC1 � �a2nC2. Therefore, s2nC2 D s2n C a2nC1 C a2nC2 � s2n for

n D 1; 2; 3; : : :; the even partial sums fs2ng form an increasing sequence. Similarly,

s2nC1 D s2n�1 C a2n C a2nC1 � s2n�1, so the odd partial sums fs2n�1g form a

decreasing sequence. Since s2n D s2n�1 C a2n � s2n�1, we can say, for any n, that

BEWARE! Read this proof

slowly and think about why each

statement is true.

s2 � s4 � s6 � � � � � s2n � s2n�1 � s2n�3 � � � � � s5 � s3 � s1:

Hence, s2 is a lower bound for the decreasing sequence fs2n�1g, and s1 is an upper

bound for the increasing sequence fs2ng. Both of these sequences therefore converge

by the completeness of the real numbers:

lim
n!1

s2n�1 D sodd; lim
n!1

s2n D seven:

Now a2n D s2n� s2n�1, so 0 D limn!1 a2n D limn!1.s2n� s2n�1/ D seven� sodd.

Therefore sodd D seven D s, say. Every partial sum sn is either of the form s2n�1 or of

the form s2n. Thus, limn!1 sn D s exists and the series
P

.�1/n�1an converges to

this sum s.

Remark The proof of Theorem 14 shows that the sum s of the series always lies

between any two consecutive partial sums of the series:

either sn < s < snC1 or snC1 < s < sn:

This proves the following theorem.

T H E O R E M

15

Error estimate for alternating series

If the sequence fang satisfies the conditions of the alternating series test (Theorem 14),

so that the series
P1

nD1 an converges to the sum s, then the error in the approximation

s � sn (where n � N ) has the same sign as the first omitted term anC1 D snC1 � sn,

and its size is no greater than the size of that term:

js � snj � jsnC1 � snj D janC1j:

E X A M P L E 2 How many terms of the series

1
X

nD1

.�1/n

1C 2n
are needed to compute

the sum of the series with error less than 0:001?

Solution This series satisfies the hypotheses for Theorem 15. If we use the partial

sum of the first n terms of the series to approximate the sum of the series, the error

will satisfy

jerrorj � jfirst omitted termj D
1

1C 2nC1
:
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This error is less than 0:001 if 1 C 2nC1 > 1;000. Since 210
D 1;024, n C 1 D 10

will do; we need 9 terms of the series to compute the sum to within 0:001 of its actual

value.

When determining the convergence of a given series, it is best to consider first whether

the series converges absolutely. If it does not, then there remains the possibility of

conditional convergence.

E X A M P L E 3
Test the following series for absolute and conditional convergence:

(a)

1
X

nD1

.�1/n�1

n
, (b)

1
X

nD2

cos.n�/

lnn
, (c)

1
X

nD1

.�1/n�1

n4
.

Solution The absolute values of the terms in series (a) and (b) are 1=n and 1=.ln n/,

respectively. Since 1=.ln n/ > 1=n, and
P1

nD1 1=n diverges to infinity, neither se-

ries (a) nor (b) converges absolutely. However, both series satisfy the requirements of

Theorem 14 and so both converge. Each of these series is conditionally convergent.

Series (c) is absolutely convergent because j.�1/n�1=n4
j D 1=n4, and

P1
nD1 1=n

4

is a convergent p-series (p D 4 > 1). We could establish its convergence using

Theorem 14, but there is no need to do that since every absolutely convergent series is

convergent (Theorem 13).

E X A M P L E 4 For what values of x does the series

1
X

nD1

.x � 5/n

n 2n
converge abso-

lutely? converge conditionally? diverge?

Solution For such series whose terms involve functions of a variable x, it is usually

wisest to begin testing for absolute convergence with the ratio test. We have

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.x � 5/nC1

.nC 1/2nC1

,

.x � 5/n

n 2n

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

n

nC 1

ˇ

ˇ

ˇ

ˇ

x � 5

2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

x � 5

2

ˇ

ˇ

ˇ

ˇ

:

The series converges absolutely if j.x � 5/=2j < 1. This inequality is equivalent to

jx � 5j < 2 (the distance from x to 5 is less than 2), that is, 3 < x < 7. If x < 3 or

x > 7, then j.x � 5/=2j > 1. The series diverges; its terms do not approach zero.

If x D 3, the series is
P1

nD1

�

.�1/n=n
�

, which converges conditionally (it is an

alternating harmonic series); if x D 7, the series is the harmonic series
P1

nD1 1=n,

which diverges to infinity. Hence, the given series converges absolutely on the open

interval .3; 7/, converges conditionally at x D 3, and diverges everywhere else.

E X A M P L E 5 For what values of x does the series

1
X

nD0

.nC 1/
2

�

x

x C 2

�n

con-

verge absolutely? converge conditionally? diverge?

Solution Again we begin with the ratio test.

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.nC 2/
2

�

x

x C 2

�nC1
,

.nC 1/
2

�

x

x C 2

�n
ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

�

nC 2

nC 1

�2 ˇ
ˇ

ˇ

ˇ

x

x C 2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

x

x C 2

ˇ

ˇ

ˇ

ˇ

D

jxj

jx C 2j
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The series converges absolutely if jxj=jxC2j < 1. This condition says that the distance

from x to 0 is less than the distance from x to �2. Hence, x > �1. The series diverges

if jxj=jx C 2j > 1, that is, if x < �1. If x D �1, the series is
P1

nD0.�1/
n.n C

1/2, which diverges. We conclude that the series converges absolutely for x > �1,

converges conditionally nowhere, and diverges for x � �1.

When using the alternating series test, it is important to verify (at least mentally) that

all three conditions (i)–(iii) are satisfied.

E X A M P L E 6
Test the following series for convergence:

(a)

1
X

nD1

.�1/
n�1 nC 1

n
,

(b) 1 �
1

4
C

1

3
�

1

16
C

1

5
� � � � D

1
X

nD1

an, where

an D

�

1=n if n is odd,

�1=n2 if n is even.

Solution

(a) Certainly, the terms an alternate and decrease in size as n increases. However,

limn!1 janj D 1 ¤ 0. The alternating series test does not apply. In fact, the

given series diverges because its terms do not approach 0.

(b) This series alternates and its terms have limit zero. However, the terms are not

decreasing in size (even ultimately). Once again, the alternating series test cannot

be applied. In fact, since

�

1

4
�

1

16
� � � � �

1

.2n/2
� � � � converges, and

1C
1

3
C

1

5
C � � � C

1

2n � 1
C � � � diverges to infinity,

it is readily seen that the given series diverges to infinity.

Rearranging the Terms in a Series
The basic difference between absolute and conditional convergence is that when a

series
P1

nD1 an converges absolutely, it does so because its terms fang decrease in

size fast enough that their sum can be finite even if no cancellation occurs due to terms

of opposite sign. If cancellation is required to make the series converge (because the

terms decrease slowly), then the series can only converge conditionally.

Consider the alternating harmonic series

1 �
1

2
C

1

3
�

1

4
C

1

5
�

1

6
C � � � :

This series converges, but only conditionally. If we take the subseries containing only

the positive terms, we get the series

1C
1

3
C

1

5
C

1

7
C � � � ;

which diverges to infinity. Similarly, the subseries of negative terms

�

1

2
�

1

4
�

1

6
�

1

8
� � � �

diverges to negative infinity.
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This error is less than 0:001 if 1 C 2nC1 > 1;000. Since 210
D 1;024, n C 1 D 10

will do; we need 9 terms of the series to compute the sum to within 0:001 of its actual

value.

When determining the convergence of a given series, it is best to consider first whether

the series converges absolutely. If it does not, then there remains the possibility of

conditional convergence.

E X A M P L E 3
Test the following series for absolute and conditional convergence:

(a)

1
X

nD1

.�1/n�1

n
, (b)

1
X

nD2

cos.n�/

lnn
, (c)

1
X

nD1

.�1/n�1

n4
.

Solution The absolute values of the terms in series (a) and (b) are 1=n and 1=.ln n/,

respectively. Since 1=.ln n/ > 1=n, and
P1

nD1 1=n diverges to infinity, neither se-

ries (a) nor (b) converges absolutely. However, both series satisfy the requirements of

Theorem 14 and so both converge. Each of these series is conditionally convergent.

Series (c) is absolutely convergent because j.�1/n�1=n4
j D 1=n4, and

P1
nD1 1=n

4

is a convergent p-series (p D 4 > 1). We could establish its convergence using

Theorem 14, but there is no need to do that since every absolutely convergent series is

convergent (Theorem 13).

E X A M P L E 4 For what values of x does the series

1
X

nD1

.x � 5/n

n 2n
converge abso-

lutely? converge conditionally? diverge?

Solution For such series whose terms involve functions of a variable x, it is usually

wisest to begin testing for absolute convergence with the ratio test. We have

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.x � 5/nC1

.nC 1/2nC1

,

.x � 5/n

n 2n

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

n

nC 1

ˇ

ˇ

ˇ

ˇ

x � 5

2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

x � 5

2

ˇ

ˇ

ˇ

ˇ

:

The series converges absolutely if j.x � 5/=2j < 1. This inequality is equivalent to

jx � 5j < 2 (the distance from x to 5 is less than 2), that is, 3 < x < 7. If x < 3 or

x > 7, then j.x � 5/=2j > 1. The series diverges; its terms do not approach zero.

If x D 3, the series is
P1

nD1

�

.�1/n=n
�

, which converges conditionally (it is an

alternating harmonic series); if x D 7, the series is the harmonic series
P1

nD1 1=n,

which diverges to infinity. Hence, the given series converges absolutely on the open

interval .3; 7/, converges conditionally at x D 3, and diverges everywhere else.

E X A M P L E 5 For what values of x does the series

1
X

nD0

.nC 1/
2

�

x

x C 2

�n

con-

verge absolutely? converge conditionally? diverge?

Solution Again we begin with the ratio test.

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

.nC 2/
2

�

x

x C 2

�nC1
,

.nC 1/
2

�

x

x C 2

�n
ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

�

nC 2

nC 1

�2 ˇ
ˇ

ˇ

ˇ

x

x C 2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

x

x C 2

ˇ

ˇ

ˇ

ˇ

D

jxj

jx C 2j
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The series converges absolutely if jxj=jxC2j < 1. This condition says that the distance

from x to 0 is less than the distance from x to �2. Hence, x > �1. The series diverges

if jxj=jx C 2j > 1, that is, if x < �1. If x D �1, the series is
P1

nD0.�1/
n.n C

1/2, which diverges. We conclude that the series converges absolutely for x > �1,

converges conditionally nowhere, and diverges for x � �1.

When using the alternating series test, it is important to verify (at least mentally) that

all three conditions (i)–(iii) are satisfied.

E X A M P L E 6
Test the following series for convergence:

(a)

1
X

nD1

.�1/
n�1 nC 1

n
,

(b) 1 �
1

4
C

1

3
�

1

16
C

1

5
� � � � D

1
X

nD1

an, where

an D

�

1=n if n is odd,

�1=n2 if n is even.

Solution

(a) Certainly, the terms an alternate and decrease in size as n increases. However,

limn!1 janj D 1 ¤ 0. The alternating series test does not apply. In fact, the

given series diverges because its terms do not approach 0.

(b) This series alternates and its terms have limit zero. However, the terms are not

decreasing in size (even ultimately). Once again, the alternating series test cannot

be applied. In fact, since

�

1

4
�

1

16
� � � � �

1

.2n/2
� � � � converges, and

1C
1

3
C

1

5
C � � � C

1

2n � 1
C � � � diverges to infinity,

it is readily seen that the given series diverges to infinity.

Rearranging the Terms in a Series
The basic difference between absolute and conditional convergence is that when a

series
P1

nD1 an converges absolutely, it does so because its terms fang decrease in

size fast enough that their sum can be finite even if no cancellation occurs due to terms

of opposite sign. If cancellation is required to make the series converge (because the

terms decrease slowly), then the series can only converge conditionally.

Consider the alternating harmonic series

1 �
1

2
C

1

3
�

1

4
C

1

5
�

1

6
C � � � :

This series converges, but only conditionally. If we take the subseries containing only

the positive terms, we get the series

1C
1

3
C

1

5
C

1

7
C � � � ;

which diverges to infinity. Similarly, the subseries of negative terms

�

1

2
�

1

4
�

1

6
�

1

8
� � � �

diverges to negative infinity.
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If a series converges absolutely, the subseries consisting of positive terms and the

subseries consisting of negative terms must each converge to a finite sum. If a series

converges conditionally, the positive and negative subseries will both diverge, to 1

and �1, respectively.

Using these facts we can answer a question raised at the beginning of Section 9.2.

If we rearrange the terms of a convergent series so that they are added in a different

order, must the rearranged series converge, and if it does will it converge to the same

sum as the original series? The answer depends on whether the original series was

absolutely convergent or merely conditionally convergent.

T H E O R E M

16

Convergence of rearrangements of a series

(a) If the terms of an absolutely convergent series are rearranged so that addition

occurs in a different order, the rearranged series still converges to the same sum as

the original series.

(b) If a series is conditionally convergent, and L is any real number, then the terms of

the series can be rearranged so as to make the series converge (conditionally) to

the sum L. It can also be rearranged so as to diverge to1 or to �1, or just to

diverge.

Part (b) shows that conditional convergence is a rather suspect kind of convergence,

being dependent on the order in which the terms are added. We will not present a

formal proof of the theorem but will give an example suggesting what is involved.

(See also Exercise 30 below.)

E X A M P L E 7
In Section 9.5 we will show that the alternating harmonic series

1
X

nD1

.�1/
n�1

n
D 1 �

1

2
C

1

3
�

1

4
C

1

5
�

1

6
C

1

7
� � � �

converges (conditionally) to the sum ln 2. Describe how to rearrange its terms so that

it converges to 8 instead.

Solution Start adding terms of the positive subseries

1C
1

3
C

1

5
C � � � ;

and keep going until the partial sum exceeds 8. (It will, eventually, because the positive

subseries diverges to infinity.) Then add the first term �1=2 of the negative subseries

�

1

2
�

1

4
�

1

6
� � � � :

This will reduce the partial sum below 8 again. Now resume adding terms of the

positive subseries until the partial sum climbs above 8 once more. Then add the second

term of the negative subseries and the partial sum will drop below 8. Keep repeating

this procedure, alternately adding terms of the positive subseries to force the sum above

8 and then terms of the negative subseries to force it below 8. Since both subseries have

infinitely many terms and diverge to1 and �1, respectively, eventually every term of

the original series will be included, and the partial sums of the new series will oscillate
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back and forth around 8, converging to that number. Of course, any number other than

8 could also be used in place of 8.

E X E R C I S E S 9.4

Determine whether the series in Exercises 1–12 converge

absolutely, converge conditionally, or diverge.

1.

1
X

nD1

.�1/n�1

p

n
2.

1
X

nD1

.�1/n

n2
C lnn

3.

1
X

nD1

cos.n�/

.nC 1/ ln.nC 1/
4.

1
X

nD1

.�1/2n

2n

5.

1
X

nD0

.�1/n.n2
� 1/

n2
C 1

6.

1
X

nD1

.�2/n

nŠ

7.

1
X

nD1

.�1/n

n�n
8.

1
X

nD0

�n

n2
C 1

9.

1
X

nD1

.�1/
n 20n

2
� n� 1

n3
C n2

C 33
10.

1
X

nD1

100 cos.n�/

2nC 3

11.

1
X

nD1

nŠ

.�100/n
12.

1
X

nD10

sin.nC 1=2/�

ln lnn

For the series in Exercises 13–16, find the smallest integer n that

ensures that the partial sum sn approximates the sum s of the

series with error less than 0.001 in absolute value.

13.

1
X

nD1

.�1/
n�1 n

n2
C 1

14.

1
X

nD0

.�1/n

.2n/Š

15.

1
X

nD1

.�1/
n�1 n

2n
16.

1
X

nD0

.�1/
n 3

n

nŠ

Determine the values of x for which the series in Exercises 17–24

converge absolutely, converge conditionally, or diverge.

17.

1
X

nD0

xn

p

nC 1
18.

1
X

nD1

.x � 2/n

n222n

19.

1
X

nD0

.�1/
n .x � 1/

n

2nC 3
20.

1
X

nD1

1

2n � 1

�

3x C 2

�5

�n

21.

1
X

nD2

xn

2n lnn
22.

1
X

nD1

.4x C 1/n

n3

23.

1
X

nD1

.2x C 3/
n

n1=34n
24.

1
X

nD1

1

n

�

1C
1

x

�n

25.A Does the alternating series test apply directly to the series
P1

nD1.1=n/ sin.n�=2/? Determine whether the series

converges.

26.A Show that the series
P1

nD1 an converges absolutely if

an D 10=n
2 for even n and an D �1=10n

3 for odd n.

27.A Which of the following statements are TRUE and which are

FALSE? Justify your assertion of truth, or give a counter-

example to show falsehood.

(a) If
P1

nD1 an converges, then
P1

nD1.�1/
nan converges.

(b) If
P1

nD1 an converges and
P1

nD1.�1/
nan converges,

then
P1

nD1 an converges absolutely.

(c) If
P1

nD1 an converges absolutely, then

P1
nD1.�1/

n
an converges absolutely.

28.I (a) Use a Riemann sum argument to show that

lnnŠ �

Z n

1

ln t dt D n lnn � nC 1:

(b) For what values of x does the series
P1

nD1

nŠxn

nn

converge absolutely? converge conditionally? diverge?

(Hint: First use the ratio test. To test the cases where

� D 1, you may find the inequality in part (a) useful.)

29.I For what values of x does the series
P1

nD1

.2n/Šxn

22n.nŠ/2
converge

absolutely? converge conditionally? diverge? Hint: See

Exercise 42 of Section 9.3.

30.A Devise procedures for rearranging the terms of the alternating

harmonic series so that the rearranged series

(a) diverges to1, (b) converges to �2.

9.5 Power Series
This section is concerned with a special kind of infinite series called a power series,

which may be thought of as a polynomial of infinite degree.
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If a series converges absolutely, the subseries consisting of positive terms and the

subseries consisting of negative terms must each converge to a finite sum. If a series

converges conditionally, the positive and negative subseries will both diverge, to 1

and �1, respectively.

Using these facts we can answer a question raised at the beginning of Section 9.2.

If we rearrange the terms of a convergent series so that they are added in a different

order, must the rearranged series converge, and if it does will it converge to the same

sum as the original series? The answer depends on whether the original series was

absolutely convergent or merely conditionally convergent.

T H E O R E M

16

Convergence of rearrangements of a series

(a) If the terms of an absolutely convergent series are rearranged so that addition

occurs in a different order, the rearranged series still converges to the same sum as

the original series.

(b) If a series is conditionally convergent, and L is any real number, then the terms of

the series can be rearranged so as to make the series converge (conditionally) to

the sum L. It can also be rearranged so as to diverge to1 or to �1, or just to

diverge.

Part (b) shows that conditional convergence is a rather suspect kind of convergence,

being dependent on the order in which the terms are added. We will not present a

formal proof of the theorem but will give an example suggesting what is involved.

(See also Exercise 30 below.)

E X A M P L E 7
In Section 9.5 we will show that the alternating harmonic series

1
X

nD1

.�1/
n�1

n
D 1 �

1

2
C

1

3
�

1

4
C

1

5
�

1

6
C

1

7
� � � �

converges (conditionally) to the sum ln 2. Describe how to rearrange its terms so that

it converges to 8 instead.

Solution Start adding terms of the positive subseries

1C
1

3
C

1

5
C � � � ;

and keep going until the partial sum exceeds 8. (It will, eventually, because the positive

subseries diverges to infinity.) Then add the first term �1=2 of the negative subseries

�

1

2
�

1

4
�

1

6
� � � � :

This will reduce the partial sum below 8 again. Now resume adding terms of the

positive subseries until the partial sum climbs above 8 once more. Then add the second

term of the negative subseries and the partial sum will drop below 8. Keep repeating

this procedure, alternately adding terms of the positive subseries to force the sum above

8 and then terms of the negative subseries to force it below 8. Since both subseries have

infinitely many terms and diverge to1 and �1, respectively, eventually every term of

the original series will be included, and the partial sums of the new series will oscillate
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back and forth around 8, converging to that number. Of course, any number other than

8 could also be used in place of 8.

E X E R C I S E S 9.4

Determine whether the series in Exercises 1–12 converge

absolutely, converge conditionally, or diverge.

1.

1
X

nD1

.�1/n�1

p

n
2.

1
X

nD1

.�1/n

n2
C lnn

3.

1
X

nD1

cos.n�/

.nC 1/ ln.nC 1/
4.

1
X

nD1

.�1/2n

2n

5.

1
X

nD0

.�1/n.n2
� 1/

n2
C 1

6.

1
X

nD1

.�2/n

nŠ

7.

1
X

nD1

.�1/n

n�n
8.

1
X

nD0

�n

n2
C 1

9.

1
X

nD1

.�1/
n 20n

2
� n� 1

n3
C n2

C 33
10.

1
X

nD1

100 cos.n�/

2nC 3

11.

1
X

nD1

nŠ

.�100/n
12.

1
X

nD10

sin.nC 1=2/�

ln lnn

For the series in Exercises 13–16, find the smallest integer n that

ensures that the partial sum sn approximates the sum s of the

series with error less than 0.001 in absolute value.

13.

1
X

nD1

.�1/
n�1 n

n2
C 1

14.

1
X

nD0

.�1/n

.2n/Š

15.

1
X

nD1

.�1/
n�1 n

2n
16.

1
X

nD0

.�1/
n 3

n

nŠ

Determine the values of x for which the series in Exercises 17–24

converge absolutely, converge conditionally, or diverge.

17.

1
X

nD0

xn

p

nC 1
18.

1
X

nD1

.x � 2/n

n222n

19.

1
X

nD0

.�1/
n .x � 1/

n

2nC 3
20.

1
X

nD1

1

2n � 1

�

3x C 2

�5

�n

21.

1
X

nD2

xn

2n lnn
22.

1
X

nD1

.4x C 1/n

n3

23.

1
X

nD1

.2x C 3/
n

n1=34n
24.

1
X

nD1

1

n

�

1C
1

x

�n

25.A Does the alternating series test apply directly to the series
P1

nD1.1=n/ sin.n�=2/? Determine whether the series

converges.

26.A Show that the series
P1

nD1 an converges absolutely if

an D 10=n
2 for even n and an D �1=10n

3 for odd n.

27.A Which of the following statements are TRUE and which are

FALSE? Justify your assertion of truth, or give a counter-

example to show falsehood.

(a) If
P1

nD1 an converges, then
P1

nD1.�1/
nan converges.

(b) If
P1

nD1 an converges and
P1

nD1.�1/
nan converges,

then
P1

nD1 an converges absolutely.

(c) If
P1

nD1 an converges absolutely, then

P1
nD1.�1/

n
an converges absolutely.

28.I (a) Use a Riemann sum argument to show that

lnnŠ �

Z n

1

ln t dt D n lnn � nC 1:

(b) For what values of x does the series
P1

nD1

nŠxn

nn

converge absolutely? converge conditionally? diverge?

(Hint: First use the ratio test. To test the cases where

� D 1, you may find the inequality in part (a) useful.)

29.I For what values of x does the series
P1

nD1

.2n/Šxn

22n.nŠ/2
converge

absolutely? converge conditionally? diverge? Hint: See

Exercise 42 of Section 9.3.

30.A Devise procedures for rearranging the terms of the alternating

harmonic series so that the rearranged series

(a) diverges to1, (b) converges to �2.

9.5 Power Series
This section is concerned with a special kind of infinite series called a power series,

which may be thought of as a polynomial of infinite degree.
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7

Power series

A series of the form

1
X

nD0

an.x � c/
n
D a0 C a1.x � c/C a2.x � c/

2
C a3.x � c/

3
C � � �

is called a power series in powers of x � c or a power series about c. The

constants a0; a1; a2; : : : are called the coefficients of the power series.

Since the terms of a power series are functions of a variable x, the series may or may

not converge for each value of x. For those values of x for which the series does

converge, the sum defines a function of x. For example, if �1 < x < 1, then

1C x C x
2
C x

3
C � � � D

1

1 � x
:

The geometric series on the left side is a power series representation of the function

1=.1 � x/ in powers of x (or about 0). Note that the representation is valid only in the

open interval .�1; 1/ even though 1=.1� x/ is defined for all real x except x D 1. For

x D �1 and for jxj > 1 the series does not converge, so it cannot represent 1=.1 � x/

at these points.

The point c is the centre of convergence of the power series
P1

nD0 an.x � c/
n.

The series certainly converges (to a0) at x D c. (All the terms except possibly the

first are 0.) Theorem 17 below shows that if the series converges anywhere else, then

it converges on an interval (possibly infinite) centred at x D c, and it converges abso-

lutely everywhere on that interval except possibly at one or both of the endpoints if the

interval is finite. The geometric series

1C x C x
2
C x

3
C � � �

is an example of this behaviour. It has centre of convergence c D 0, and converges

only on the interval .�1; 1/, centred at 0. The convergence is absolute at every point

of the interval. Another example is the series

1
X

nD1

1

n 2n
.x � 5/

n
D

x � 5

2
C

.x � 5/2

2 � 22
C

.x � 5/3

3 � 23
C � � � ;

which we discussed in Example 4 of Section 9.4. We showed that this series con-

verges on the interval Œ3; 7/, an interval with centre x D 5, and that the convergence is

absolute on the open interval .3; 7/ but is only conditional at the endpoint x D 3.

T H E O R E M

17

For any power series
P1

nD0 an .x � c/
n one of the following alternatives must hold:

(i) the series may converge only at x D c,

(ii) the series may converge at every real number x, or

(iii) there may exist a positive real number R such that the series converges at every x

satisfying jx� cj < R and diverges at every x satisfying jx� cj > R. In this case

the series may or may not converge at either of the two endpoints x D c � R and

x D c CR.

In each of these cases the convergence is absolute except possibly at the endpoints

x D c � R and x D c CR in case (iii).

PROOF We observed above that every power series converges at its centre of conver-

gence; only the first term can be nonzero, so the convergence is absolute. To prove

the rest of this theorem, it suffices to show that if the series converges at any number

x0 ¤ c, then it converges absolutely at every number x closer to c than x0 is, that is,

at every x satisfying jx � cj < jx0 � cj. This means that convergence at any x0 ¤ c

implies absolute convergence on .c � x0; c C x0/, so the set of points x where the

series converges must be an interval centred at c.
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Suppose, therefore, that
P1

nD0 an.x0�c/
n converges. Then lim an.x0�c/

n
D 0,

so jan.x0 � c/
n
j � K for all n, where K is some constant (Theorem 1 of Section 9.1).

If r D jx � cj=jx0 � cj < 1, then

1
X

nD0

jan.x � c/
n
j D

1
X

nD0

jan.x0 � c/
n
j

ˇ

ˇ

ˇ

ˇ

x � c

x0 � c

ˇ

ˇ

ˇ

ˇ

n

� K

1
X

nD0

r
n
D

K

1 � r
<1:

Thus,
P1

nD0 an.x � c/
n converges absolutely.

By Theorem 17, the set of values x for which the power series
P1

nD0 an.x � c/
n con-

verges is an interval centred at x D c. We call this interval the interval of convergence

of the power series. It must have one of the following forms:

(i) the isolated point x D c (a degenerate closed interval Œc; c�),

(ii) the entire line .�1;1/,

(iii) a finite interval centred at c:

Œc �R; c CR�, or Œc � R; c C R/, or .c � R; c CR�, or .c � R; c CR/.

The number R in (iii) is called the radius of convergence of the power series. In case

(i) we say the radius of convergence is R D 0; in case (ii) it is R D1.

The radius of convergence, R, can often be found by using the ratio test on the

power series: if

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1.x � c/
nC1

an.x � c/
n

ˇ

ˇ

ˇ

ˇ

D

�

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

�

jx � cj

exists, then the series
P1

nD0 an.x � c/
n converges absolutely where � < 1, that is,

where

jx � cj < R D 1

,

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

:

The series diverges if jx � cj > R.

Radius of convergence

Suppose that L D limn!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

exists or is 1. Then the power series
P1

nD0 an.x � c/
n has radius of convergence R D 1=L. (If L D 0, then

R D1; if L D1, then R D 0.)

E X A M P L E 1
Determine the centre, radius, and interval of convergence of

1
X

nD0

.2x C 5/n

.n2
C 1/3n

:

Solution The series can be rewritten

1
X

nD0

�

2

3

�n
1

n2
C 1

�

x C
5

2

�n

:

The centre of convergence is x D �5=2. The radius of convergence, R, is given by

1

R
D L D lim

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

2

3

�nC1
1

.nC 1/2 C 1
�

2

3

�n
1

n2
C 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
2

3

n2
C 1

.nC 1/2 C 1
D

2

3
:
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Power series

A series of the form

1
X

nD0

an.x � c/
n
D a0 C a1.x � c/C a2.x � c/

2
C a3.x � c/

3
C � � �

is called a power series in powers of x � c or a power series about c. The

constants a0; a1; a2; : : : are called the coefficients of the power series.

Since the terms of a power series are functions of a variable x, the series may or may

not converge for each value of x. For those values of x for which the series does

converge, the sum defines a function of x. For example, if �1 < x < 1, then

1C x C x
2
C x

3
C � � � D

1

1 � x
:

The geometric series on the left side is a power series representation of the function

1=.1 � x/ in powers of x (or about 0). Note that the representation is valid only in the

open interval .�1; 1/ even though 1=.1� x/ is defined for all real x except x D 1. For

x D �1 and for jxj > 1 the series does not converge, so it cannot represent 1=.1 � x/

at these points.

The point c is the centre of convergence of the power series
P1

nD0 an.x � c/
n.

The series certainly converges (to a0) at x D c. (All the terms except possibly the

first are 0.) Theorem 17 below shows that if the series converges anywhere else, then

it converges on an interval (possibly infinite) centred at x D c, and it converges abso-

lutely everywhere on that interval except possibly at one or both of the endpoints if the

interval is finite. The geometric series

1C x C x
2
C x

3
C � � �

is an example of this behaviour. It has centre of convergence c D 0, and converges

only on the interval .�1; 1/, centred at 0. The convergence is absolute at every point

of the interval. Another example is the series

1
X

nD1

1

n 2n
.x � 5/

n
D

x � 5

2
C

.x � 5/2

2 � 22
C

.x � 5/3

3 � 23
C � � � ;

which we discussed in Example 4 of Section 9.4. We showed that this series con-

verges on the interval Œ3; 7/, an interval with centre x D 5, and that the convergence is

absolute on the open interval .3; 7/ but is only conditional at the endpoint x D 3.

T H E O R E M

17

For any power series
P1

nD0 an .x � c/
n one of the following alternatives must hold:

(i) the series may converge only at x D c,

(ii) the series may converge at every real number x, or

(iii) there may exist a positive real number R such that the series converges at every x

satisfying jx� cj < R and diverges at every x satisfying jx� cj > R. In this case

the series may or may not converge at either of the two endpoints x D c � R and

x D c CR.

In each of these cases the convergence is absolute except possibly at the endpoints

x D c � R and x D c CR in case (iii).

PROOF We observed above that every power series converges at its centre of conver-

gence; only the first term can be nonzero, so the convergence is absolute. To prove

the rest of this theorem, it suffices to show that if the series converges at any number

x0 ¤ c, then it converges absolutely at every number x closer to c than x0 is, that is,

at every x satisfying jx � cj < jx0 � cj. This means that convergence at any x0 ¤ c

implies absolute convergence on .c � x0; c C x0/, so the set of points x where the

series converges must be an interval centred at c.
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Suppose, therefore, that
P1

nD0 an.x0�c/
n converges. Then lim an.x0�c/

n
D 0,

so jan.x0 � c/
n
j � K for all n, where K is some constant (Theorem 1 of Section 9.1).

If r D jx � cj=jx0 � cj < 1, then

1
X

nD0

jan.x � c/
n
j D

1
X

nD0

jan.x0 � c/
n
j

ˇ

ˇ

ˇ

ˇ

x � c

x0 � c

ˇ

ˇ

ˇ

ˇ

n

� K

1
X

nD0

r
n
D

K

1 � r
<1:

Thus,
P1

nD0 an.x � c/
n converges absolutely.

By Theorem 17, the set of values x for which the power series
P1

nD0 an.x � c/
n con-

verges is an interval centred at x D c. We call this interval the interval of convergence

of the power series. It must have one of the following forms:

(i) the isolated point x D c (a degenerate closed interval Œc; c�),

(ii) the entire line .�1;1/,

(iii) a finite interval centred at c:

Œc �R; c CR�, or Œc � R; c C R/, or .c � R; c CR�, or .c � R; c CR/.

The number R in (iii) is called the radius of convergence of the power series. In case

(i) we say the radius of convergence is R D 0; in case (ii) it is R D1.

The radius of convergence, R, can often be found by using the ratio test on the

power series: if

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1.x � c/
nC1

an.x � c/
n

ˇ

ˇ

ˇ

ˇ

D

�

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

�

jx � cj

exists, then the series
P1

nD0 an.x � c/
n converges absolutely where � < 1, that is,

where

jx � cj < R D 1

,

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

:

The series diverges if jx � cj > R.

Radius of convergence

Suppose that L D limn!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

exists or is 1. Then the power series
P1

nD0 an.x � c/
n has radius of convergence R D 1=L. (If L D 0, then

R D1; if L D1, then R D 0.)

E X A M P L E 1
Determine the centre, radius, and interval of convergence of

1
X

nD0

.2x C 5/n

.n2
C 1/3n

:

Solution The series can be rewritten

1
X

nD0

�

2

3

�n
1

n2
C 1

�

x C
5

2

�n

:

The centre of convergence is x D �5=2. The radius of convergence, R, is given by

1

R
D L D lim

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

2

3

�nC1
1

.nC 1/2 C 1
�

2

3

�n
1

n2
C 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
2

3

n2
C 1

.nC 1/2 C 1
D

2

3
:
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Thus, R D 3=2. The series converges absolutely on .�5=2 � 3=2;�5=2 C 3=2/ D

.�4;�1/, and it diverges on .�1;�4/ and on .�1;1/. At x D �1 the series is
P1

nD0 1=.n
2
C 1/; at x D �4 it is

P1
nD0.�1/

n=.n2
C 1/. Both series converge (ab-

solutely). The interval of convergence of the given power series is therefore Œ�4;�1�.

E X A M P L E 2
Determine the radii of convergence of the series

(a)

1
X

nD0

xn

nŠ
and (b)

1
X

nD0

nŠx
n.

Solution

(a) L D

ˇ

ˇ

ˇ

ˇ

ˇ

lim
1

.nC 1/Š

,

1

nŠ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
nŠ

.nC 1/Š
D lim

1

nC 1
D 0. Thus, R D1.

This series converges (absolutely) for all x. The sum is ex , as will be shown in

Example 1 in the next section.

(b) L D

ˇ

ˇ

ˇ

ˇ

lim
.nC 1/Š

nŠ

ˇ

ˇ

ˇ

ˇ

D lim.nC 1/ D 1. Thus, R D 0.

This series converges only at its centre of convergence, x D 0.

Algebraic Operations on Power Series
To simplify the following discussion, we will consider only power series with centre

of convergence 0, that is, series of the form

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � :

Any properties we demonstrate for such series extend automatically to power series of

the form
P1

nD0 an.y � c/
n via the change of variable x D y � c.

First, we observe that series having the same centre of convergence can be added

or subtracted on whatever interval is common to their intervals of convergence. The

following theorem is a simple consequence of Theorem 7 of Section 9.2 and does not

require a proof.

T H E O R E M

18

Let
P1

nD0 an x
n and

P1
nD0 bn x

n be two power series with radii of convergence Ra

and Rb , respectively, and let c be a constant. Then

(i)
P1

nD0.can/ x
n has radius of convergence Ra, and

1
X

nD0

.can/ x
n
D c

1
X

nD0

an x
n

wherever the series on the right converges.

(ii)
P1

nD0.an C bn/ x
n has radius of convergence R at least as large as the smaller of

Ra and Rb (R � minfRa; Rbg), and

1
X

nD0

.an C bn/ x
n
D

1
X

nD0

an x
n
C

1
X

nD0

bn x
n

wherever both series on the right converge.

The situation regarding multiplication and division of power series is more compli-

cated. We will mention only the results and will not attempt any proofs of our asser-

tions. A textbook in mathematical analysis will provide more details.
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Long multiplication of the form

.a0 C a1x C a2x
2
C � � �/.b0 C b1x C b2x

2
C � � �/

D a0b0 C .a0b1 C a1b0/x C .a0b2 C a1b1 C a2b0/x
2
C � � �

leads us to conjecture the formula

 1
X

nD0

anx
n

! 1
X

nD0

bnx
n

!

D

1
X

nD0

cnx
n
;

where

cn D a0bn C a1bn�1 C � � � C anb0 D

n
X

j D0

aj bn�j :

The series
P1

nD0 cnx
n is called the Cauchy product of the series

P1
nD0 anx

n and
P1

nD0 bnx
n. Like the sum, the Cauchy product also has radius of convergence at least

equal to the lesser of those of the factor series.

E X A M P L E 3 Since
1

1 � x
D 1CxCx

2
Cx

3
C� � � D

1
X

nD0

x
n holds for�1 < x <

1, we can determine a power series representation for 1=.1 � x/2

by taking the Cauchy product of this series with itself. Since an D bn D 1 for

n D 0; 1; 2; : : : , we have

cn D

n
X

j D0

1 D nC 1 and

1

.1 � x/2
D 1C 2x C 3x

2
C 4x

3
C � � � D

1
X

nD0

.nC 1/x
n
;

which must also hold for �1 < x < 1. The same series can be obtained by direct long

multiplication of the series:

1 C x C x
2
C x

3
C � � �

� 1 C x C x2
C x3

C � � �

1 C x C x2
C x3

C � � �

x C x
2
C x

3
C � � �

x
2
C x

3
C � � �

x3
C � � �

� � �

1 C 2x C 3x
2
C 4x

3
C � � �

Long division can also be performed on power series, but there is no simple rule for

determining the coefficients of the quotient series. The radius of convergence of the

quotient series is not less than the least of the three numbers R1,R2, andR3, whereR1

and R2 are the radii of convergence of the numerator and denominator series and R3

is the distance from the centre of convergence to the nearest complex number where

the denominator series has sum equal to 0. To illustrate this point, observe that 1 and

1 � x are both power series with infinite radii of convergence:

1 D 1C 0x C 0x
2
C 0x

3
C � � � for all x;

1 � x D 1 � x C 0x
2
C 0x

3
C � � � for all x:
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Thus, R D 3=2. The series converges absolutely on .�5=2 � 3=2;�5=2 C 3=2/ D

.�4;�1/, and it diverges on .�1;�4/ and on .�1;1/. At x D �1 the series is
P1

nD0 1=.n
2
C 1/; at x D �4 it is

P1
nD0.�1/

n=.n2
C 1/. Both series converge (ab-

solutely). The interval of convergence of the given power series is therefore Œ�4;�1�.

E X A M P L E 2
Determine the radii of convergence of the series

(a)

1
X

nD0

xn

nŠ
and (b)

1
X

nD0

nŠx
n.

Solution

(a) L D

ˇ

ˇ

ˇ

ˇ

ˇ

lim
1

.nC 1/Š

,

1

nŠ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
nŠ

.nC 1/Š
D lim

1

nC 1
D 0. Thus, R D1.

This series converges (absolutely) for all x. The sum is ex , as will be shown in

Example 1 in the next section.

(b) L D

ˇ

ˇ

ˇ

ˇ

lim
.nC 1/Š

nŠ

ˇ

ˇ

ˇ

ˇ

D lim.nC 1/ D 1. Thus, R D 0.

This series converges only at its centre of convergence, x D 0.

Algebraic Operations on Power Series
To simplify the following discussion, we will consider only power series with centre

of convergence 0, that is, series of the form

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � :

Any properties we demonstrate for such series extend automatically to power series of

the form
P1

nD0 an.y � c/
n via the change of variable x D y � c.

First, we observe that series having the same centre of convergence can be added

or subtracted on whatever interval is common to their intervals of convergence. The

following theorem is a simple consequence of Theorem 7 of Section 9.2 and does not

require a proof.

T H E O R E M

18

Let
P1

nD0 an x
n and

P1
nD0 bn x

n be two power series with radii of convergence Ra

and Rb , respectively, and let c be a constant. Then

(i)
P1

nD0.can/ x
n has radius of convergence Ra, and

1
X

nD0

.can/ x
n
D c

1
X

nD0

an x
n

wherever the series on the right converges.

(ii)
P1

nD0.an C bn/ x
n has radius of convergence R at least as large as the smaller of

Ra and Rb (R � minfRa; Rbg), and

1
X

nD0

.an C bn/ x
n
D

1
X

nD0

an x
n
C

1
X

nD0

bn x
n

wherever both series on the right converge.

The situation regarding multiplication and division of power series is more compli-

cated. We will mention only the results and will not attempt any proofs of our asser-

tions. A textbook in mathematical analysis will provide more details.
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Long multiplication of the form

.a0 C a1x C a2x
2
C � � �/.b0 C b1x C b2x

2
C � � �/

D a0b0 C .a0b1 C a1b0/x C .a0b2 C a1b1 C a2b0/x
2
C � � �

leads us to conjecture the formula

 1
X

nD0

anx
n

! 1
X

nD0

bnx
n

!

D

1
X

nD0

cnx
n
;

where

cn D a0bn C a1bn�1 C � � � C anb0 D

n
X

j D0

aj bn�j :

The series
P1

nD0 cnx
n is called the Cauchy product of the series

P1
nD0 anx

n and
P1

nD0 bnx
n. Like the sum, the Cauchy product also has radius of convergence at least

equal to the lesser of those of the factor series.

E X A M P L E 3 Since
1

1 � x
D 1CxCx

2
Cx

3
C� � � D

1
X

nD0

x
n holds for�1 < x <

1, we can determine a power series representation for 1=.1 � x/2

by taking the Cauchy product of this series with itself. Since an D bn D 1 for

n D 0; 1; 2; : : : , we have

cn D

n
X

j D0

1 D nC 1 and

1

.1 � x/2
D 1C 2x C 3x

2
C 4x

3
C � � � D

1
X

nD0

.nC 1/x
n
;

which must also hold for �1 < x < 1. The same series can be obtained by direct long

multiplication of the series:

1 C x C x
2
C x

3
C � � �

� 1 C x C x2
C x3

C � � �

1 C x C x2
C x3

C � � �

x C x
2
C x

3
C � � �

x
2
C x

3
C � � �

x3
C � � �

� � �

1 C 2x C 3x
2
C 4x

3
C � � �

Long division can also be performed on power series, but there is no simple rule for

determining the coefficients of the quotient series. The radius of convergence of the

quotient series is not less than the least of the three numbers R1,R2, andR3, whereR1

and R2 are the radii of convergence of the numerator and denominator series and R3

is the distance from the centre of convergence to the nearest complex number where

the denominator series has sum equal to 0. To illustrate this point, observe that 1 and

1 � x are both power series with infinite radii of convergence:

1 D 1C 0x C 0x
2
C 0x

3
C � � � for all x;

1 � x D 1 � x C 0x
2
C 0x

3
C � � � for all x:
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Their quotient, 1=.1�x/, however, only has radius of convergence 1, the distance from

the centre of convergence x D 0 to the point x D 1 where the denominator vanishes:

1

1 � x
D 1C x C x

2
C x

3
C � � � for jxj < 1:

Differentiation and Integration of Power Series
If a power series has a positive radius of convergence, it can be differentiated or inte-

grated term by term. The resulting series will converge to the appropriate derivative or

integral of the sum of the original series everywhere except possibly at the endpoints

of the interval of convergence of the original series. This very important fact ensures

that, for purposes of calculation, power series behave just like polynomials, the easiest

functions to differentiate and integrate. We formalize the differentiation and integra-

tion properties of power series in the following theorem.

T H E O R E M

19

Term-by-term differentiation and integration of power series

If the series
P1

nD0 anx
n converges to the sum f .x/ on an interval .�R;R/, where

R > 0, that is,

f .x/ D

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � ; .�R < x < R/;

then f is differentiable on .�R;R/ and

f
0
.x/ D

1
X

nD1

nanx
n�1
D a1 C 2a2x C 3a3x

2
C � � � ; .�R < x < R/:

Also, f is integrable over any closed subinterval of .�R;R/, and if jxj < R, then

Z x

0

f .t/ dt D

1
X

nD0

an

nC 1
x

nC1
D a0x C

a1

2
x

2
C

a2

3
x

3
C � � � :

PROOF Let x satisfy �R < x < R and choose H > 0 such that jxj CH < R. By

While understanding the

statement of this theorem is very

important for what follows,

understanding the proof is not.

Feel free to skip the proof and go

on to the applications.

Theorem 17 we then have1

1
X

nD1

janj.jxj CH/
n
D K <1:

The Binomial Theorem (see Section 9.8) shows that if n � 1, then

.x C h/
n
D x

n
C nx

n�1
hC

n
X

kD2

�

n

k

�

x
n�k

h
k
:

1 This proof is due to R. Vyborny, American Mathematical Monthly, April 1987.
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Therefore, if jhj � H , we have

j.x C h/
n
� x

n
� nx

n�1
hj D

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kD2

�

n

k

�

x
n�k

h
k

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

kD2

�

n

k

�

jxj
n�k jhj

k

H k
H

k

�

jhj2

H 2

n
X

kD0

�

n

k

�

jxj
n�k

H
k

D

jhj2

H 2

�

jxj CH
�n
:

Also,

jnx
n�1
j D

njxjn�1H

H
�

1

H

�

jxj CH
�n
:

Thus,

1
X

nD1

jnanx
n�1
j �

1

H

1
X

nD1

janj.jxj CH/
n
D

K

H
<1;

so the series
P1

nD1 nanx
n�1 converges (absolutely) to g.x/, say. Now

ˇ

ˇ

ˇ

ˇ

f .x C h/ � f .x/

h
� g.x/

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

1
X

nD1

an.x C h/
n
� anx

n
� nanx

n�1h

h

ˇ

ˇ

ˇ

ˇ

ˇ

�

1

jhj

1
X

nD1

janjj.x C h/
n
� x

n
� nx

n�1
hj

�

jhj

H 2

1
X

nD1

janj
�

jxj CH
�n
�

Kjhj

H 2
:

Letting h approach zero, we obtain jf 0.x/�g.x/j � 0, so f 0.x/ D g.x/, as required.

Now observe that since jan=.nC 1/j � janj, the series

h.x/ D

1
X

nD0

an

nC 1
x

nC1

converges (absolutely) at least on the interval .�R;R/. Using the differentiation result

proved above, we obtain

h
0
.x/ D

1
X

nD0

anx
n
D f .x/:

Since h.0/ D 0, we have

Z x

0

f .t/ dt D

Z x

0

h
0
.t/ dt D h.t/

ˇ

ˇ

ˇ

ˇ

x

0

D h.x/;

as required.
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Their quotient, 1=.1�x/, however, only has radius of convergence 1, the distance from

the centre of convergence x D 0 to the point x D 1 where the denominator vanishes:

1

1 � x
D 1C x C x

2
C x

3
C � � � for jxj < 1:

Differentiation and Integration of Power Series
If a power series has a positive radius of convergence, it can be differentiated or inte-

grated term by term. The resulting series will converge to the appropriate derivative or

integral of the sum of the original series everywhere except possibly at the endpoints

of the interval of convergence of the original series. This very important fact ensures

that, for purposes of calculation, power series behave just like polynomials, the easiest

functions to differentiate and integrate. We formalize the differentiation and integra-

tion properties of power series in the following theorem.

T H E O R E M

19

Term-by-term differentiation and integration of power series

If the series
P1

nD0 anx
n converges to the sum f .x/ on an interval .�R;R/, where

R > 0, that is,

f .x/ D

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � ; .�R < x < R/;

then f is differentiable on .�R;R/ and

f
0
.x/ D

1
X

nD1

nanx
n�1
D a1 C 2a2x C 3a3x

2
C � � � ; .�R < x < R/:

Also, f is integrable over any closed subinterval of .�R;R/, and if jxj < R, then

Z x

0

f .t/ dt D

1
X

nD0

an

nC 1
x

nC1
D a0x C

a1

2
x

2
C

a2

3
x

3
C � � � :

PROOF Let x satisfy �R < x < R and choose H > 0 such that jxj CH < R. By

While understanding the

statement of this theorem is very

important for what follows,

understanding the proof is not.

Feel free to skip the proof and go

on to the applications.

Theorem 17 we then have1

1
X

nD1

janj.jxj CH/
n
D K <1:

The Binomial Theorem (see Section 9.8) shows that if n � 1, then

.x C h/
n
D x

n
C nx

n�1
hC

n
X

kD2

�

n

k

�

x
n�k

h
k
:

1 This proof is due to R. Vyborny, American Mathematical Monthly, April 1987.
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Therefore, if jhj � H , we have

j.x C h/
n
� x

n
� nx

n�1
hj D

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kD2

�

n

k

�

x
n�k

h
k

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

kD2

�

n

k

�

jxj
n�k jhj

k

H k
H

k

�

jhj2

H 2

n
X

kD0

�

n

k

�

jxj
n�k

H
k

D

jhj2

H 2

�

jxj CH
�n
:

Also,

jnx
n�1
j D

njxjn�1H

H
�

1

H

�

jxj CH
�n
:

Thus,

1
X

nD1

jnanx
n�1
j �

1

H

1
X

nD1

janj.jxj CH/
n
D

K

H
<1;

so the series
P1

nD1 nanx
n�1 converges (absolutely) to g.x/, say. Now

ˇ

ˇ

ˇ

ˇ

f .x C h/ � f .x/

h
� g.x/

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

1
X

nD1

an.x C h/
n
� anx

n
� nanx

n�1h

h

ˇ

ˇ

ˇ

ˇ

ˇ

�

1

jhj

1
X

nD1

janjj.x C h/
n
� x

n
� nx

n�1
hj

�

jhj

H 2

1
X

nD1

janj
�

jxj CH
�n
�

Kjhj

H 2
:

Letting h approach zero, we obtain jf 0.x/�g.x/j � 0, so f 0.x/ D g.x/, as required.

Now observe that since jan=.nC 1/j � janj, the series

h.x/ D

1
X

nD0

an

nC 1
x

nC1

converges (absolutely) at least on the interval .�R;R/. Using the differentiation result

proved above, we obtain

h
0
.x/ D

1
X

nD0

anx
n
D f .x/:

Since h.0/ D 0, we have

Z x

0

f .t/ dt D

Z x

0

h
0
.t/ dt D h.t/

ˇ

ˇ

ˇ

ˇ

x

0

D h.x/;

as required.
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Together, these results imply that the termwise differentiated or integrated series have

the same radius of convergence as the given series. In fact, as the following examples

illustrate, the interval of convergence of the differentiated series is the same as that of

the original series except for the possible loss of one or both endpoints if the original

series converges at endpoints of its interval of convergence. Similarly, the integrated

series will converge everywhere on the interval of convergence of the original series

and possibly at one or both endpoints of that interval, even if the original series does

not converge at the endpoints.

Being differentiable on .�R;R/, where R is the radius of convergence, the sum

f .x/ of a power series is necessarily continuous on that open interval. If the series

happens to converge at either or both of the endpoints �R and R, then f is also

continuous (on one side) up to these endpoints. This result is stated formally in the fol-

lowing theorem. We will not prove it here; the interested reader is referred to textbooks

on mathematical analysis for a proof.

T H E O R E M

20

Abel’s Theorem

The sum of a power series is a continuous function everywhere on the interval of

convergence of the series. In particular, if
P1

nD0 anR
n converges for some R > 0,

then

lim
x!R�

1
X

nD0

anx
n
D

1
X

nD0

anR
n
;

and if
P1

nD0 an.�R/
n converges, then

lim
x!�RC

1
X

nD0

anx
n
D

1
X

nD0

an.�R/
n
:

The following examples show how the above theorems are applied to obtain power

series representations for functions.

E X A M P L E 4
Find power series representations for the functions

(a)
1

.1 � x/2
, (b)

1

.1 � x/3
, and (c) ln.1C x/

by starting with the geometric series

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � .�1 < x < 1/

and using differentiation, integration, and substitution. Where is each series valid?

Solution

(a) Differentiate the geometric series term by term to obtain

1

.1 � x/2
D

1
X

nD1

nx
n�1
D 1C 2x C 3x

2
C 4x

3
C � � � .�1 < x < 1/.

This is the same result obtained by multiplication of series in Example 3 above.

(b) Differentiate again to get, for �1 < x < 1,

2

.1 � x/3
D

1
X

nD2

n.n � 1/ x
n�2
D .1 � 2/C .2 � 3/x C .3 � 4/x

2
C � � � :
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Now divide by 2:

1

.1 � x/3
D

1
X

nD2

n.n � 1/

2
x

n�2
D 1C 3x C 6x

2
C 10x

3
C � � � .�1 < x < 1/:

(c) Substitute �t in place of x in the original geometric series:

1

1C t
D

1
X

nD0

.�1/
n
t
n
D 1 � t C t

2
� t

3
C t

4
� � � � .�1 < t < 1/.

Integrate from 0 to x, where jxj < 1, to get

ln.1C x/ D

Z x

0

dt

1C t
D

1
X

nD0

.�1/
n

Z x

0

t
n
dt

D

1
X

nD0

.�1/
n x

nC1

nC 1
D x �

x2

2
C

x3

3
�

x4

4
C � � � (�1 < x � 1).

Note that the latter series converges (conditionally) at the endpoint x D 1 as well as on

the interval �1 < x < 1. Since ln.1C x/ is continuous at x D 1, Theorem 20 assures

us that the series must converge to that function at x D 1 also. In particular, therefore,

the alternating harmonic series converges to ln 2:

ln 2 D 1 �
1

2
C

1

3
�

1

4
C

1

5
� � � � D

1
X

nD0

.�1/n

nC 1
:

This would not, however, be a very useful formula for calculating the value of ln 2.

(Why not?)

E X A M P L E 5
Use the geometric series of the previous example to find a power

series representation for tan�1 x.

Solution Substitute �t2 for x in the geometric series. Since 0 � t2 < 1 whenever

�1 < t < 1, we obtain

1

1C t2
D 1 � t

2
C t

4
� t

6
C t

8
� � � � (�1 < t < 1).

Now integrate from 0 to x, where jxj < 1:

tan�1
x D

Z x

0

dt

1C t2
D

Z x

0

.1 � t
2
C t

4
� t

6
C t

8
� � � �/ dt

D x �
x3

3
C

x5

5
�

x7

7
C

x9

9
� � � �

D

1
X

nD0

.�1/
n x

2nC1

2nC 1
(�1 < x < 1).

However, note that the series also converges (conditionally) at x D �1 and 1. Since

tan�1 is continuous at ˙1, the above series representation for tan�1
x also holds for

these values, by Theorem 20. Letting x D 1 we get another interesting result:

�

4
D 1 �

1

3
C

1

5
�

1

7
C

1

9
� � � � :

Again, however, this would not be a good formula with which to calculate a numerical

value of � . (Why not?)
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Together, these results imply that the termwise differentiated or integrated series have

the same radius of convergence as the given series. In fact, as the following examples

illustrate, the interval of convergence of the differentiated series is the same as that of

the original series except for the possible loss of one or both endpoints if the original

series converges at endpoints of its interval of convergence. Similarly, the integrated

series will converge everywhere on the interval of convergence of the original series

and possibly at one or both endpoints of that interval, even if the original series does

not converge at the endpoints.

Being differentiable on .�R;R/, where R is the radius of convergence, the sum

f .x/ of a power series is necessarily continuous on that open interval. If the series

happens to converge at either or both of the endpoints �R and R, then f is also

continuous (on one side) up to these endpoints. This result is stated formally in the fol-

lowing theorem. We will not prove it here; the interested reader is referred to textbooks

on mathematical analysis for a proof.

T H E O R E M

20

Abel’s Theorem

The sum of a power series is a continuous function everywhere on the interval of

convergence of the series. In particular, if
P1

nD0 anR
n converges for some R > 0,

then

lim
x!R�

1
X

nD0

anx
n
D

1
X

nD0

anR
n
;

and if
P1

nD0 an.�R/
n converges, then

lim
x!�RC

1
X

nD0

anx
n
D

1
X

nD0

an.�R/
n
:

The following examples show how the above theorems are applied to obtain power

series representations for functions.

E X A M P L E 4
Find power series representations for the functions

(a)
1

.1 � x/2
, (b)

1

.1 � x/3
, and (c) ln.1C x/

by starting with the geometric series

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � .�1 < x < 1/

and using differentiation, integration, and substitution. Where is each series valid?

Solution

(a) Differentiate the geometric series term by term to obtain

1

.1 � x/2
D

1
X

nD1

nx
n�1
D 1C 2x C 3x

2
C 4x

3
C � � � .�1 < x < 1/.

This is the same result obtained by multiplication of series in Example 3 above.

(b) Differentiate again to get, for �1 < x < 1,

2

.1 � x/3
D

1
X

nD2

n.n � 1/ x
n�2
D .1 � 2/C .2 � 3/x C .3 � 4/x

2
C � � � :
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Now divide by 2:

1

.1 � x/3
D

1
X

nD2

n.n � 1/

2
x

n�2
D 1C 3x C 6x

2
C 10x

3
C � � � .�1 < x < 1/:

(c) Substitute �t in place of x in the original geometric series:

1

1C t
D

1
X

nD0

.�1/
n
t
n
D 1 � t C t

2
� t

3
C t

4
� � � � .�1 < t < 1/.

Integrate from 0 to x, where jxj < 1, to get

ln.1C x/ D

Z x

0

dt

1C t
D

1
X

nD0

.�1/
n

Z x

0

t
n
dt

D

1
X

nD0

.�1/
n x

nC1

nC 1
D x �

x2

2
C

x3

3
�

x4

4
C � � � (�1 < x � 1).

Note that the latter series converges (conditionally) at the endpoint x D 1 as well as on

the interval �1 < x < 1. Since ln.1C x/ is continuous at x D 1, Theorem 20 assures

us that the series must converge to that function at x D 1 also. In particular, therefore,

the alternating harmonic series converges to ln 2:

ln 2 D 1 �
1

2
C

1

3
�

1

4
C

1

5
� � � � D

1
X

nD0

.�1/n

nC 1
:

This would not, however, be a very useful formula for calculating the value of ln 2.

(Why not?)

E X A M P L E 5
Use the geometric series of the previous example to find a power

series representation for tan�1 x.

Solution Substitute �t2 for x in the geometric series. Since 0 � t2 < 1 whenever

�1 < t < 1, we obtain

1

1C t2
D 1 � t

2
C t

4
� t

6
C t

8
� � � � (�1 < t < 1).

Now integrate from 0 to x, where jxj < 1:

tan�1
x D

Z x

0

dt

1C t2
D

Z x

0

.1 � t
2
C t

4
� t

6
C t

8
� � � �/ dt

D x �
x3

3
C

x5

5
�

x7

7
C

x9

9
� � � �

D

1
X

nD0

.�1/
n x

2nC1

2nC 1
(�1 < x < 1).

However, note that the series also converges (conditionally) at x D �1 and 1. Since

tan�1 is continuous at ˙1, the above series representation for tan�1
x also holds for

these values, by Theorem 20. Letting x D 1 we get another interesting result:

�

4
D 1 �

1

3
C

1

5
�

1

7
C

1

9
� � � � :

Again, however, this would not be a good formula with which to calculate a numerical

value of � . (Why not?)
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E X A M P L E 6 Find the sum of the series

1
X

nD1

n2

2n
by first finding the sum of the

power series

1
X

nD1

n
2
x

n
D x C 4x

2
C 9x

3
C 16x

4
C � � � :

Solution Observe in Example 4(a) how the process of differentiating the geometric

series produces a series with coefficients 1; 2; 3; : : : : Start with the series obtained

for 1=.1 � x/2 and multiply it by x to obtain

1
X

nD1

nx
n
D x C 2x

2
C 3x

3
C 4x

4
C � � � D

x

.1 � x/2
:

Now differentiate again to get a series with coefficients 12; 22; 32; : : : :

1
X

nD1

n
2
x

n�1
D 1C 4x C 9x

2
C 16x

3
C � � � D

d

dx

x

.x � 1/2
D

1C x

.1 � x/3
:

Multiplication by x again gives the desired power series:

1
X

nD1

n
2
x

n
D x C 4x

2
C 9x

3
C 16x

4
C � � � D

x.1C x/

.1 � x/3
:

Differentiation and multiplication by x do not change the radius of convergence, so

this series converges to the indicated function for �1 < x < 1. Putting x D 1=2,

we get

1
X

nD1

n2

2n
D

1

2
�

3

2

1

8

D 6:

The following example illustrates how substitution can be used to obtain power series

representations of functions with centres of convergence different from 0.

E X A M P L E 7
Find a series representation of f .x/ D 1=.2 C x/ in powers of

x � 1. What is the interval of convergence of this series?

Solution Let t D x � 1 so that x D t C 1. We have

1

2C x
D

1

3C t
D

1

3

1

1C
t

3

D

1

3

�

1 �
t

3
C

t2

32
�

t3

33
C � � �

�

.�1 < t=3 < 1/

D

1
X

nD0

.�1/
n tn

3nC1
.�3 < t < 3/

D

1
X

nD0

.�1/
n .x � 1/

n

3nC1
.�2 < x < 4/.

Note that the radius of convergence of this series is 3, the distance from the centre of

convergence, 1, to the point �2 where the denominator is 0. We could have predicted

this in advance.
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Maple Calculations
Maple can find the sums of many kinds of series, including absolutely and condition-

ally convergent numerical series and many power series. Even when Maple can’t find

the formal sum of a (convergent) series, it can provide a decimal approximation to the

precision indicated by the current value of its variable Digits, which defaults to 10.

Here are some examples.

> sum(n^4/2^n, n=1..infinity);

150

> sum(1/n^2, n=1..infinity);

1

6
�

2

> sum(exp(-n^2), n=0..infinity);

1
X

nD0

e
.�n2/

> evalf(%);

1:386 318 602

> f := x -> sum(x^(n-1)/n, n=1..infinity);

f WD x !

1
X

nD1

 

x.n�1/

n

!

> f(1); f(-1); f(1/2);

1

ln.2/

2 ln.2/

E X E R C I S E S 9.5

Determine the centre, radius, and interval of convergence of each

of the power series in Exercises 1–8.

1.

1
X

nD0

x2n

p

nC 1
2.

1
X

nD0

3n .x C 1/
n

3.

1
X

nD1

1

n

�

x C 2

2

�n

4.

1
X

nD1

.�1/n

n422n
x

n

5.

1
X

nD0

n
3
.2x � 3/

n 6.

1
X

nD1

en

n3
.4 � x/

n

7.

1
X

nD0

.1C 5n/

nŠ
x

n 8.

1
X

nD1

.4x � 1/n

nn

9. Use multiplication of series to find a power series

representation of 1=.1 � x/3 valid in the interval .�1; 1/.

10. Determine the Cauchy product of the series

1C x C x2
C x3

C � � � and 1 � x C x2
� x3

C � � �. On

what interval and to what function does the product series

converge?

11. Determine the power series expansion of 1=.1 � x/2 by

formally dividing 1 � 2x C x2 into 1.

Starting with the power series representation

1

1 � x
D 1C x C x

2
C x

3
C � � � ; (�1 < x < 1),

determine power series representations for the functions indicated

in Exercises 12–20. On what interval is each representation valid?

12.
1

2 � x
in powers of x 13.

1

.2 � x/2
in powers of x

14.
1

1C 2x
in powers of x 15. ln.2 � x/ in powers of x

16.
1

x
in powers of x � 1 17.

1

x2
in powers of x C 2

18.
1 � x

1C x
in powers of x 19.

x
3

1 � 2x2
in powers of x

20. lnx in powers of x � 4

Determine the interval of convergence and the sum of each of the

series in Exercises 21–26.

21. 1 � 4x C 16x2
� 64x

3
C � � � D

1
X

nD0

.�1/
n
.4x/

n
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E X A M P L E 6 Find the sum of the series

1
X

nD1

n2

2n
by first finding the sum of the

power series

1
X

nD1

n
2
x

n
D x C 4x

2
C 9x

3
C 16x

4
C � � � :

Solution Observe in Example 4(a) how the process of differentiating the geometric

series produces a series with coefficients 1; 2; 3; : : : : Start with the series obtained

for 1=.1 � x/2 and multiply it by x to obtain

1
X

nD1

nx
n
D x C 2x

2
C 3x

3
C 4x

4
C � � � D

x

.1 � x/2
:

Now differentiate again to get a series with coefficients 12; 22; 32; : : : :

1
X

nD1

n
2
x

n�1
D 1C 4x C 9x

2
C 16x

3
C � � � D

d

dx

x

.x � 1/2
D

1C x

.1 � x/3
:

Multiplication by x again gives the desired power series:

1
X

nD1

n
2
x

n
D x C 4x

2
C 9x

3
C 16x

4
C � � � D

x.1C x/

.1 � x/3
:

Differentiation and multiplication by x do not change the radius of convergence, so

this series converges to the indicated function for �1 < x < 1. Putting x D 1=2,

we get

1
X

nD1

n2

2n
D

1

2
�

3

2

1

8

D 6:

The following example illustrates how substitution can be used to obtain power series

representations of functions with centres of convergence different from 0.

E X A M P L E 7
Find a series representation of f .x/ D 1=.2 C x/ in powers of

x � 1. What is the interval of convergence of this series?

Solution Let t D x � 1 so that x D t C 1. We have

1

2C x
D

1

3C t
D

1

3

1

1C
t

3

D

1

3

�

1 �
t

3
C

t2

32
�

t3

33
C � � �

�

.�1 < t=3 < 1/

D

1
X

nD0

.�1/
n tn

3nC1
.�3 < t < 3/

D

1
X

nD0

.�1/
n .x � 1/

n

3nC1
.�2 < x < 4/.

Note that the radius of convergence of this series is 3, the distance from the centre of

convergence, 1, to the point �2 where the denominator is 0. We could have predicted

this in advance.
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Maple Calculations
Maple can find the sums of many kinds of series, including absolutely and condition-

ally convergent numerical series and many power series. Even when Maple can’t find

the formal sum of a (convergent) series, it can provide a decimal approximation to the

precision indicated by the current value of its variable Digits, which defaults to 10.

Here are some examples.

> sum(n^4/2^n, n=1..infinity);

150

> sum(1/n^2, n=1..infinity);

1

6
�

2

> sum(exp(-n^2), n=0..infinity);

1
X

nD0

e
.�n2/

> evalf(%);

1:386 318 602

> f := x -> sum(x^(n-1)/n, n=1..infinity);

f WD x !

1
X

nD1

 

x.n�1/

n

!

> f(1); f(-1); f(1/2);

1

ln.2/

2 ln.2/

E X E R C I S E S 9.5

Determine the centre, radius, and interval of convergence of each

of the power series in Exercises 1–8.

1.

1
X

nD0

x2n

p

nC 1
2.

1
X

nD0

3n .x C 1/
n

3.

1
X

nD1

1

n

�

x C 2

2

�n

4.

1
X

nD1

.�1/n

n422n
x

n

5.

1
X

nD0

n
3
.2x � 3/

n 6.

1
X

nD1

en

n3
.4 � x/

n

7.

1
X

nD0

.1C 5n/

nŠ
x

n 8.

1
X

nD1

.4x � 1/n

nn

9. Use multiplication of series to find a power series

representation of 1=.1 � x/3 valid in the interval .�1; 1/.

10. Determine the Cauchy product of the series

1C x C x2
C x3

C � � � and 1 � x C x2
� x3

C � � �. On

what interval and to what function does the product series

converge?

11. Determine the power series expansion of 1=.1 � x/2 by

formally dividing 1 � 2x C x2 into 1.

Starting with the power series representation

1

1 � x
D 1C x C x

2
C x

3
C � � � ; (�1 < x < 1),

determine power series representations for the functions indicated

in Exercises 12–20. On what interval is each representation valid?

12.
1

2 � x
in powers of x 13.

1

.2 � x/2
in powers of x

14.
1

1C 2x
in powers of x 15. ln.2 � x/ in powers of x

16.
1

x
in powers of x � 1 17.

1

x2
in powers of x C 2

18.
1 � x

1C x
in powers of x 19.

x
3

1 � 2x2
in powers of x

20. lnx in powers of x � 4

Determine the interval of convergence and the sum of each of the

series in Exercises 21–26.

21. 1 � 4x C 16x2
� 64x

3
C � � � D

1
X

nD0

.�1/
n
.4x/

n
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22.I 3C 4x C 5x
2
C 6x

3
C � � � D

1
X

nD0

.nC 3/x
n

23.I
1

3
C

x

4
C

x2

5
C

x3

6
C � � � D

1
X

nD0

xn

nC 3

24.I 1 � 3 � 2 � 4x C 3 � 5x
2
� 4 � 6x

3
C � � �

D

1
X

nD0

.�1/
n
.nC 1/.nC 3/ x

n

25.I 2C 4x
2
C 6x

4
C 8x

6
C 10x

8
C � � � D

1
X

nD0

2.nC 1/ x
2n

26.I 1 �
x2

2
C

x4

3
�

x6

4
C

x8

5
� � � � D

1
X

nD0

.�1/nx2n

nC 1

Use the technique (or the result) of Example 6 to find the sums of

the numerical series in Exercises 27–32.

27.

1
X

nD1

n

3n
28.

1
X

nD0

nC 1

2n

29.I

1
X

nD0

.nC 1/
2

�n
30.I

1
X

nD1

.�1/
n
n.nC 1/

2n

31.

1
X

nD1

.�1/n�1

n2n
32.

1
X

nD3

1

n2n

9.6 Taylor and Maclaurin Series

If a power series
P1

nD0 an.x � c/
n has a positive radius of convergence R, then the

sum of the series defines a function f .x/ on the interval .c � R; c C R/. We say that

the power series is a representation of f .x/ on that interval. What relationship exists

between the function f .x/ and the coefficients a0; a1; a2; : : : of the power series?

The following theorem answers this question.

T H E O R E M

21

Suppose the series

f .x/ D

1
X

nD0

an.x � c/
n
D a0 C a1.x � c/C a2.x � c/

2
C a3.x � c/

3
C � � �

converges to f .x/ for c �R < x < c C R, where R > 0. Then

ak D
f .k/.c/

kŠ
for k D 0; 1; 2; 3; : : : :

PROOF This proof requires that we differentiate the series for f .x/ term by term

several times, a process justified by Theorem 19 (suitably reformulated for powers of

x � c):

f
0
.x/ D

1
X

nD1

nan.x � c/
n�1
D a1 C 2a2.x � c/C 3a3.x � c/

2
C � � �

f
00
.x/ D

1
X

nD2

n.n � 1/an.x � c/
n�2
D 2a2 C 6a3.x � c/C 12a4.x � c/

2
C � � �

:
:
:

f
.k/
.x/ D

1
X

nDk

n.n � 1/.n � 2/ � � � .n � k C 1/an.x � c/
n�k

D kŠak C
.k C 1/Š

1Š
akC1.x � c/C

.k C 2/Š

2Š
akC2.x � c/

2
C � � � :

Each series converges for c � R < x < c CR. Setting x D c, we obtain

f
.k/
.c/ D kŠak , which proves the theorem.
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Theorem 21 shows that a function f .x/ that has a power series representation with

centre at c and positive radius of convergence must have derivatives of all orders in an

interval around x D c, and it can have only one representation as a power series in

powers of x � c, namely

f .x/ D

1
X

nD0

f .n/.c/

nŠ
.x � c/

n
D f .c/C f

0
.c/.x � c/C

f 00.c/

2Š
.x � c/

2
C � � � :

Such a series is called a Taylor series or, if c D 0, a Maclaurin series.

D E F I N I T I O N

8

Taylor and Maclaurin series

If f .x/ has derivatives of all orders at x D c (i.e., if f .k/.c/ exists for k D

0; 1; 2; 3; : : :), then the series

1
X

kD0

f .k/.c/

kŠ
.x � c/

k

D f .c/C f
0
.c/.x � c/C

f
00
.c/

2Š
.x � c/

2
C

f
.3/
.c/

3Š
.x � c/

3
C � � �

is called the Taylor series of f about c (or the Taylor series of f in powers

of x � c). If c D 0, the term Maclaurin series is usually used in place of

Taylor series.

Note that the partial sums of such Taylor (or Maclaurin) series are just the Taylor (or

Maclaurin) polynomials studied in Section 4.10.

The Taylor series is a power series as defined in the previous section. Theorem 17

implies that c must be the centre of any interval on which such a series converges, but

the definition of Taylor series makes no requirement that the series should converge

anywhere except at the point x D c, where the series is just f .c/C 0C 0C � � �. The

series exists provided all the derivatives of f exist at x D c; in practice this means

that each derivative must exist in an open interval containing x D c. (Why?) However,

the series may converge nowhere except at x D c, and if it does converge elsewhere, it

may converge to something other than f .x/. (See Exercise 40 at the end of this section

for an example where this happens.) If the Taylor series does converge to f .x/ in an

open interval containing c, then we will say that f is analytic at c.

D E F I N I T I O N

9

Analytic functions

A function f is analytic at c if f has a Taylor series at c and that series

converges to f .x/ in an open interval containing c. If f is analytic at each

point of an open interval, then we say it is analytic on that interval.

Most, but not all, of the elementary functions encountered in calculus are analytic

wherever they have derivatives of all orders. On the other hand, whenever a power

series in powers of x � c converges for all x in an open interval containing c, then its

sum f .x/ is analytic at c, and the given series is the Taylor series of f about c.

Maclaurin Series for Some Elementary Functions
Calculating Taylor and Maclaurin series for a function f directly from Definition 8 is

practical only when we can find a formula for the nth derivative of f . Examples of

such functions include .ax C b/r , eaxCb , ln.ax C b/, sin.ax C b/, cos.ax C b/, and

sums of such functions.

E X A M P L E 1
Find the Taylor series for ex about x D c. Where does the series

converge to ex? Where is ex analytic? What is the Maclaurin

series for ex?
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22.I 3C 4x C 5x
2
C 6x

3
C � � � D

1
X

nD0

.nC 3/x
n

23.I
1

3
C

x

4
C

x2

5
C

x3

6
C � � � D

1
X

nD0

xn

nC 3

24.I 1 � 3 � 2 � 4x C 3 � 5x
2
� 4 � 6x

3
C � � �

D

1
X

nD0

.�1/
n
.nC 1/.nC 3/ x

n

25.I 2C 4x
2
C 6x

4
C 8x

6
C 10x

8
C � � � D

1
X

nD0

2.nC 1/ x
2n

26.I 1 �
x2

2
C

x4

3
�

x6

4
C

x8

5
� � � � D

1
X

nD0

.�1/nx2n

nC 1

Use the technique (or the result) of Example 6 to find the sums of

the numerical series in Exercises 27–32.

27.

1
X

nD1

n

3n
28.

1
X

nD0

nC 1

2n

29.I

1
X

nD0

.nC 1/
2

�n
30.I

1
X

nD1

.�1/
n
n.nC 1/

2n

31.

1
X

nD1

.�1/n�1

n2n
32.

1
X

nD3

1

n2n

9.6 Taylor and Maclaurin Series

If a power series
P1

nD0 an.x � c/
n has a positive radius of convergence R, then the

sum of the series defines a function f .x/ on the interval .c � R; c C R/. We say that

the power series is a representation of f .x/ on that interval. What relationship exists

between the function f .x/ and the coefficients a0; a1; a2; : : : of the power series?

The following theorem answers this question.

T H E O R E M

21

Suppose the series

f .x/ D

1
X

nD0

an.x � c/
n
D a0 C a1.x � c/C a2.x � c/

2
C a3.x � c/

3
C � � �

converges to f .x/ for c �R < x < c C R, where R > 0. Then

ak D
f .k/.c/

kŠ
for k D 0; 1; 2; 3; : : : :

PROOF This proof requires that we differentiate the series for f .x/ term by term

several times, a process justified by Theorem 19 (suitably reformulated for powers of

x � c):

f
0
.x/ D

1
X

nD1

nan.x � c/
n�1
D a1 C 2a2.x � c/C 3a3.x � c/

2
C � � �

f
00
.x/ D

1
X

nD2

n.n � 1/an.x � c/
n�2
D 2a2 C 6a3.x � c/C 12a4.x � c/

2
C � � �

:
:
:

f
.k/
.x/ D

1
X

nDk

n.n � 1/.n � 2/ � � � .n � k C 1/an.x � c/
n�k

D kŠak C
.k C 1/Š

1Š
akC1.x � c/C

.k C 2/Š

2Š
akC2.x � c/

2
C � � � :

Each series converges for c � R < x < c CR. Setting x D c, we obtain

f
.k/
.c/ D kŠak , which proves the theorem.
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Theorem 21 shows that a function f .x/ that has a power series representation with

centre at c and positive radius of convergence must have derivatives of all orders in an

interval around x D c, and it can have only one representation as a power series in

powers of x � c, namely

f .x/ D

1
X

nD0

f .n/.c/

nŠ
.x � c/

n
D f .c/C f

0
.c/.x � c/C

f 00.c/

2Š
.x � c/

2
C � � � :

Such a series is called a Taylor series or, if c D 0, a Maclaurin series.

D E F I N I T I O N

8

Taylor and Maclaurin series

If f .x/ has derivatives of all orders at x D c (i.e., if f .k/.c/ exists for k D

0; 1; 2; 3; : : :), then the series

1
X

kD0

f .k/.c/

kŠ
.x � c/

k

D f .c/C f
0
.c/.x � c/C

f
00
.c/

2Š
.x � c/

2
C

f
.3/
.c/

3Š
.x � c/

3
C � � �

is called the Taylor series of f about c (or the Taylor series of f in powers

of x � c). If c D 0, the term Maclaurin series is usually used in place of

Taylor series.

Note that the partial sums of such Taylor (or Maclaurin) series are just the Taylor (or

Maclaurin) polynomials studied in Section 4.10.

The Taylor series is a power series as defined in the previous section. Theorem 17

implies that c must be the centre of any interval on which such a series converges, but

the definition of Taylor series makes no requirement that the series should converge

anywhere except at the point x D c, where the series is just f .c/C 0C 0C � � �. The

series exists provided all the derivatives of f exist at x D c; in practice this means

that each derivative must exist in an open interval containing x D c. (Why?) However,

the series may converge nowhere except at x D c, and if it does converge elsewhere, it

may converge to something other than f .x/. (See Exercise 40 at the end of this section

for an example where this happens.) If the Taylor series does converge to f .x/ in an

open interval containing c, then we will say that f is analytic at c.

D E F I N I T I O N

9

Analytic functions

A function f is analytic at c if f has a Taylor series at c and that series

converges to f .x/ in an open interval containing c. If f is analytic at each

point of an open interval, then we say it is analytic on that interval.

Most, but not all, of the elementary functions encountered in calculus are analytic

wherever they have derivatives of all orders. On the other hand, whenever a power

series in powers of x � c converges for all x in an open interval containing c, then its

sum f .x/ is analytic at c, and the given series is the Taylor series of f about c.

Maclaurin Series for Some Elementary Functions
Calculating Taylor and Maclaurin series for a function f directly from Definition 8 is

practical only when we can find a formula for the nth derivative of f . Examples of

such functions include .ax C b/r , eaxCb , ln.ax C b/, sin.ax C b/, cos.ax C b/, and

sums of such functions.

E X A M P L E 1
Find the Taylor series for ex about x D c. Where does the series

converge to ex? Where is ex analytic? What is the Maclaurin

series for ex?
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Solution Since all the derivatives of f .x/ D ex are ex , we have f .n/.c/ D ec for

every integer n � 0. Thus, the Taylor series for ex about x D c is

1
X

nD0

ec

nŠ
.x � c/

n
D e

c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � :

The radius of convergence R of this series is given by

1

R
D lim

n!1

ˇ

ˇ

ˇ

ˇ

ec=.nC 1/Š

ec=nŠ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nŠ

.nC 1/Š
D lim

n!1

1

nC 1
D 0:

Thus, the radius of convergence is R D1 and the series converges for all x.

Suppose the sum is g.x/:

g.x/ D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � :

By Theorem 19, we have

g
0
.x/ D 0C e

c
C

ec

2Š
2.x � c/C

ec

3Š
3.x � c/

2
C � � �

D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C � � � D g.x/:

Also, g.c/ D ec
C 0 C 0 C � � � D ec . Since g.x/ satisfies the differential equation

g0.x/ D g.x/ of exponential growth, we have g.x/ D Cex . Substituting x D c gives

ec
D g.c/ D Cec , so C D 1. Thus, the Taylor series for ex in powers of x � c

converges to ex for every real number x:

e
x
D

1
X

nD0

ec

nŠ
.x � c/

n

D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � (for all x).

In particular, ex is analytic on the whole real line R. Setting c D 0 we obtain the

Maclaurin series for ex :

e
x
D

1
X

nD0

xn

nŠ
D 1C x C

x2

2Š
C

x3

3Š
C � � � (for all x).

E X A M P L E 2
Find the Maclaurin series for (a) sinx and (b) cos x. Where does

each series converge?

Solution Let f .x/ D sin x. Then we have f .0/ D 0 and

f
0
.x/ D cos x

f
00
.x/ D � sin x

f
.3/
.x/ D � cos x

f
.4/
.x/ D sinx

f
.5/
.x/ D cos x

:
:
:

f
0
.0/ D 1

f
00
.0/ D 0

f
.3/
.0/ D �1

f
.4/
.0/ D 0

f
.5/
.0/ D 1

:
:
:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 545 October 5, 2016

SECTION 9.6: Taylor and Maclaurin Series 545

Thus, the Maclaurin series for sinx is

g.x/ D 0C x C 0 �
x3

3Š
C 0C

x5

5Š
C 0 � � � �

D x �
x3

3Š
C

x5

5Š
�

x7

7Š
C � � � D

1
X

nD0

.�1/n

.2nC 1/Š
x

2nC1
:

We have denoted the sum by g.x/ since we don’t yet know whether the series converges

to sinx. The series does converge for all x by the ratio test:

lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.�1/nC1

.2.nC 1/C 1/Š
x

2.nC1/C1

.�1/
n

.2nC 1/Š
x

2nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

.2nC 1/Š

.2nC 3/Š
jxj

2

D lim
n!1

jxj2

.2nC 3/.2nC 2/
D 0:

Now we can differentiate the function g.x/ twice to get

g
0
.x/ D 1 �

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

g
00
.x/ D �x C

x
3

3Š
�

x
5

5Š
C

x
7

7Š
� � � � D �g.x/:

Thus, g.x/ satisfies the differential equation g00
.x/ C g.x/ D 0 of simple harmonic

motion. The general solution of this equation, as observed in Section 3.7, is

g.x/ D A cos x C B sin x:

Observe, from the series, that g.0/ D 0 and g0.0/ D 1. These values determine that

A D 0 and B D 1. Thus, g.x/ D sinx and g0
.x/ D cos x for all x.

We have therefore demonstrated that

sin x D

1
X

nD0

.�1/
n

.2nC 1/Š
x

2nC1
D x �

x
3

3Š
C

x
5

5Š
�

x
7

7Š
C � � � (for all x);

cos x D

1
X

nD0

.�1/
n

.2n/Š
x

2n
D 1�

x
2

2Š
C

x
4

4Š
�

x
6

6Š
C � � � (for all x):

Theorem 21 shows that we can use any available means to find a power series con-

verging to a given function on an interval, and the series obtained will turn out to be

the Taylor series. In Section 9.5 several series were constructed by manipulating a

geometric series. These include:

Some Maclaurin series

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � .�1 < x < 1/

1

.1 � x/2
D

1
X

nD1

nx
n�1
D 1C 2x C 3x

2
C 4x

3
C � � � .�1 < x < 1/

ln.1C x/ D

1
X

nD1

.�1/n�1

n
x

n
D x �

x2

2
C

x3

3
�

x4

4
C � � � .�1 < x � 1/

tan�1
x D

1
X

nD0

.�1/n

2nC 1
x

2nC1
D x �

x3

3
C

x5

5
�

x7

7
C � � � .�1 � x � 1/

These series, together with the intervals on which they converge, are frequently used

hereafter and should be memorized.
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Solution Since all the derivatives of f .x/ D ex are ex , we have f .n/.c/ D ec for

every integer n � 0. Thus, the Taylor series for ex about x D c is

1
X

nD0

ec

nŠ
.x � c/

n
D e

c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � :

The radius of convergence R of this series is given by

1

R
D lim

n!1

ˇ

ˇ

ˇ

ˇ

ec=.nC 1/Š

ec=nŠ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nŠ

.nC 1/Š
D lim

n!1

1

nC 1
D 0:

Thus, the radius of convergence is R D1 and the series converges for all x.

Suppose the sum is g.x/:

g.x/ D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � :

By Theorem 19, we have

g
0
.x/ D 0C e

c
C

ec

2Š
2.x � c/C

ec

3Š
3.x � c/

2
C � � �

D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C � � � D g.x/:

Also, g.c/ D ec
C 0 C 0 C � � � D ec . Since g.x/ satisfies the differential equation

g0.x/ D g.x/ of exponential growth, we have g.x/ D Cex . Substituting x D c gives

ec
D g.c/ D Cec , so C D 1. Thus, the Taylor series for ex in powers of x � c

converges to ex for every real number x:

e
x
D

1
X

nD0

ec

nŠ
.x � c/

n

D e
c
C e

c
.x � c/C

ec

2Š
.x � c/

2
C

ec

3Š
.x � c/

3
C � � � (for all x).

In particular, ex is analytic on the whole real line R. Setting c D 0 we obtain the

Maclaurin series for ex :

e
x
D

1
X

nD0

xn

nŠ
D 1C x C

x2

2Š
C

x3

3Š
C � � � (for all x).

E X A M P L E 2
Find the Maclaurin series for (a) sinx and (b) cos x. Where does

each series converge?

Solution Let f .x/ D sin x. Then we have f .0/ D 0 and

f
0
.x/ D cos x

f
00
.x/ D � sin x

f
.3/
.x/ D � cos x

f
.4/
.x/ D sinx

f
.5/
.x/ D cos x

:
:
:

f
0
.0/ D 1

f
00
.0/ D 0

f
.3/
.0/ D �1

f
.4/
.0/ D 0

f
.5/
.0/ D 1

:
:
:
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Thus, the Maclaurin series for sinx is

g.x/ D 0C x C 0 �
x3

3Š
C 0C

x5

5Š
C 0 � � � �

D x �
x3

3Š
C

x5

5Š
�

x7

7Š
C � � � D

1
X

nD0

.�1/n

.2nC 1/Š
x

2nC1
:

We have denoted the sum by g.x/ since we don’t yet know whether the series converges

to sinx. The series does converge for all x by the ratio test:

lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.�1/nC1

.2.nC 1/C 1/Š
x

2.nC1/C1

.�1/
n

.2nC 1/Š
x

2nC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

.2nC 1/Š

.2nC 3/Š
jxj

2

D lim
n!1

jxj2

.2nC 3/.2nC 2/
D 0:

Now we can differentiate the function g.x/ twice to get

g
0
.x/ D 1 �

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

g
00
.x/ D �x C

x
3

3Š
�

x
5

5Š
C

x
7

7Š
� � � � D �g.x/:

Thus, g.x/ satisfies the differential equation g00
.x/ C g.x/ D 0 of simple harmonic

motion. The general solution of this equation, as observed in Section 3.7, is

g.x/ D A cos x C B sin x:

Observe, from the series, that g.0/ D 0 and g0.0/ D 1. These values determine that

A D 0 and B D 1. Thus, g.x/ D sinx and g0
.x/ D cos x for all x.

We have therefore demonstrated that

sin x D

1
X

nD0

.�1/
n

.2nC 1/Š
x

2nC1
D x �

x
3

3Š
C

x
5

5Š
�

x
7

7Š
C � � � (for all x);

cos x D

1
X

nD0

.�1/
n

.2n/Š
x

2n
D 1�

x
2

2Š
C

x
4

4Š
�

x
6

6Š
C � � � (for all x):

Theorem 21 shows that we can use any available means to find a power series con-

verging to a given function on an interval, and the series obtained will turn out to be

the Taylor series. In Section 9.5 several series were constructed by manipulating a

geometric series. These include:

Some Maclaurin series

1

1 � x
D

1
X

nD0

x
n
D 1C x C x

2
C x

3
C � � � .�1 < x < 1/

1

.1 � x/2
D

1
X

nD1

nx
n�1
D 1C 2x C 3x

2
C 4x

3
C � � � .�1 < x < 1/

ln.1C x/ D

1
X

nD1

.�1/n�1

n
x

n
D x �

x2

2
C

x3

3
�

x4

4
C � � � .�1 < x � 1/

tan�1
x D

1
X

nD0

.�1/n

2nC 1
x

2nC1
D x �

x3

3
C

x5

5
�

x7

7
C � � � .�1 � x � 1/

These series, together with the intervals on which they converge, are frequently used

hereafter and should be memorized.
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Other Maclaurin and Taylor Series
Series can be combined in various ways to generate new series. For example, we can

find the Maclaurin series for e�x by replacing x with �x in the series for ex :

e
�x
D

1
X

nD0

.�1/n

nŠ
x

n
D 1� x C

x2

2Š
�

x3

3Š
C � � � .for all x/:

The series for ex and e�x can then be subtracted or added and the results divided by 2

to obtain Maclaurin series for the hyperbolic functions sinh x and cosh x:

sinh x D
ex
� e�x

2
D

1
X

nD0

x2nC1

.2nC 1/Š
D x C

x3

3Š
C

x5

5Š
C � � � .for all x/

cosh x D
e

x
C e

�x

2
D

1
X

nD0

x
2n

.2n/Š
D 1C

x
2

2Š
C

x
4

4Š
C � � � .for all x/:

Remark Observe the similarity between the series for sinx and sinh x and between

those for cos x and cosh x. If we were to allow complex numbers (numbers of the form

z D x C iy, where i2 D �1 and x and y are real; see Appendix I) as arguments

for our functions, and if we were to demonstrate that our operations on series could

be extended to series of complex numbers, we would see that cos x D cosh.ix/ and

sinx D �i sinh.ix/. In fact, eix
D cos x C i sinx and e�ix

D cos x � i sin x, so

cos x D
eix
C e�ix

2
; and sin x D

eix
� e�ix

2i
:

Such formulas are encountered in the study of functions of a complex variable (see

Appendix II); from the complex point of view the trigonometric and exponential func-

tions are just different manifestations of the same basic function, a complex exponen-

tial ez
D exCiy . We content ourselves here with having mentioned the interesting

relationships above and invite the reader to verify them formally by calculating with

series. (Such formal calculations do not, of course, constitute a proof, since we have

not established the various rules covering series of complex numbers.)

E X A M P L E 3
Obtain Maclaurin series for the following functions:

(a) e�x2=3, (b)
sin.x2/

x
, (c) sin2

x.

Solution

(a) We substitute �x2=3 for x in the Maclaurin series for ex :

e
�x2=3

D 1 �
x2

3
C

1

2Š

�

x2

3

�2

�

1

3Š

�

x2

3

�3

C � � �

D

1
X

nD0

.�1/
n 1

3nnŠ
x

2n
.for all real x/:

(b) For all x ¤ 0 we have

sin.x2/

x
D

1

x

�

x
2
�

.x2/3

3Š
C

.x2/5

5Š
� � � �

�

D x �
x5

3Š
C

x9

5Š
� � � � D

1
X

nD0

.�1/
n x4nC1

.2nC 1/Š
:
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Note that f .x/ D .sin.x2//=x is not defined at x D 0 but does have a limit

(namely 0) as x approaches 0. If we define f .0/ D 0 (the continuous extension of

f .x/ to x D 0), then the series converges to f .x/ for all x.

(c) We use a trigonometric identity to express sin2
x in terms of cos 2x and then use

the Maclaurin series for cos x with x replaced by 2x:

sin2
x D

1 � cos 2x

2
D

1

2
�

1

2

�

1 �
.2x/2

2Š
C

.2x/4

4Š
� � � �

�

D

1

2

�

.2x/2

2Š
�

.2x/4

4Š
C

.2x/6

6Š
� � � �

�

D

1
X

nD0

.�1/
n 2

2nC1

.2nC 2/Š
x

2nC2
.for all real x/:

Taylor series about points other than 0 can often be obtained from known Maclaurin

series by a change of variable.

E X A M P L E 4
Find the Taylor series for ln x in powers of x � 2. Where does the

series converge to ln x?

Solution Note that if t D .x � 2/=2, then

lnx D ln
�

2C .x � 2/
�

D ln

�

2

�

1C
x � 2

2

��

D ln 2C ln.1C t/:

We use the known Maclaurin series for ln.1C t/:

ln x D ln 2C ln.1C t/

D ln 2C t �
t2

2
C

t3

3
�

t4

4
C � � �

D ln 2C
x � 2

2
�

.x � 2/2

2 � 22
C

.x � 2/3

3 � 23
�

.x � 2/4

4 � 24
C � � �

D ln 2C

1
X

nD1

.�1/n�1

n 2n
.x � 2/

n
:

Since the series for ln.1 C t/ is valid for �1 < t � 1, this series for ln x is valid for

�1 < .x � 2/=2 � 1, that is, for 0 < x � 4.

E X A M P L E 5
Find the Taylor series for cos x about �=3. Where is the series

valid?

Solution We use the addition formula for cosine:

cos x D cos
�

x �
�

3
C

�

3

�

D cos
�

x �
�

3

�

cos
�

3
� sin

�

x �
�

3

�

sin
�

3

D

1

2

�

1 �
1

2Š

�

x �
�

3

�2

C

1

4Š

�

x �
�

3

�4

� � � �

�

�

p

3

2

�

�

x �
�

3

�

�

1

3Š

�

x �
�

3

�3

C � � �

�

D

1

2
�

p

3

2

�

x �
�

3

�

�

1

2

1

2Š

�

x �
�

3

�2

C

p

3

2

1

3Š

�

x �
�

3

�3

C

1

2

1

4Š

�

x �
�

3

�4

� � � � :
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Other Maclaurin and Taylor Series
Series can be combined in various ways to generate new series. For example, we can

find the Maclaurin series for e�x by replacing x with �x in the series for ex :

e
�x
D

1
X

nD0

.�1/n

nŠ
x

n
D 1� x C

x2

2Š
�

x3

3Š
C � � � .for all x/:

The series for ex and e�x can then be subtracted or added and the results divided by 2

to obtain Maclaurin series for the hyperbolic functions sinh x and cosh x:

sinh x D
ex
� e�x

2
D

1
X

nD0

x2nC1

.2nC 1/Š
D x C

x3

3Š
C

x5

5Š
C � � � .for all x/

cosh x D
e

x
C e

�x

2
D

1
X

nD0

x
2n

.2n/Š
D 1C

x
2

2Š
C

x
4

4Š
C � � � .for all x/:

Remark Observe the similarity between the series for sinx and sinh x and between

those for cos x and cosh x. If we were to allow complex numbers (numbers of the form

z D x C iy, where i2 D �1 and x and y are real; see Appendix I) as arguments

for our functions, and if we were to demonstrate that our operations on series could

be extended to series of complex numbers, we would see that cos x D cosh.ix/ and

sinx D �i sinh.ix/. In fact, eix
D cos x C i sinx and e�ix

D cos x � i sin x, so

cos x D
eix
C e�ix

2
; and sin x D

eix
� e�ix

2i
:

Such formulas are encountered in the study of functions of a complex variable (see

Appendix II); from the complex point of view the trigonometric and exponential func-

tions are just different manifestations of the same basic function, a complex exponen-

tial ez
D exCiy . We content ourselves here with having mentioned the interesting

relationships above and invite the reader to verify them formally by calculating with

series. (Such formal calculations do not, of course, constitute a proof, since we have

not established the various rules covering series of complex numbers.)

E X A M P L E 3
Obtain Maclaurin series for the following functions:

(a) e�x2=3, (b)
sin.x2/

x
, (c) sin2

x.

Solution

(a) We substitute �x2=3 for x in the Maclaurin series for ex :

e
�x2=3

D 1 �
x2

3
C

1

2Š

�

x2

3

�2

�

1

3Š

�

x2

3

�3

C � � �

D

1
X

nD0

.�1/
n 1

3nnŠ
x

2n
.for all real x/:

(b) For all x ¤ 0 we have

sin.x2/

x
D

1

x

�

x
2
�

.x2/3

3Š
C

.x2/5

5Š
� � � �

�

D x �
x5

3Š
C

x9

5Š
� � � � D

1
X

nD0

.�1/
n x4nC1

.2nC 1/Š
:
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Note that f .x/ D .sin.x2//=x is not defined at x D 0 but does have a limit

(namely 0) as x approaches 0. If we define f .0/ D 0 (the continuous extension of

f .x/ to x D 0), then the series converges to f .x/ for all x.

(c) We use a trigonometric identity to express sin2
x in terms of cos 2x and then use

the Maclaurin series for cos x with x replaced by 2x:

sin2
x D

1 � cos 2x

2
D

1

2
�

1

2

�

1 �
.2x/2

2Š
C

.2x/4

4Š
� � � �

�

D

1

2

�

.2x/2

2Š
�

.2x/4

4Š
C

.2x/6

6Š
� � � �

�

D

1
X

nD0

.�1/
n 2

2nC1

.2nC 2/Š
x

2nC2
.for all real x/:

Taylor series about points other than 0 can often be obtained from known Maclaurin

series by a change of variable.

E X A M P L E 4
Find the Taylor series for ln x in powers of x � 2. Where does the

series converge to ln x?

Solution Note that if t D .x � 2/=2, then

lnx D ln
�

2C .x � 2/
�

D ln

�

2

�

1C
x � 2

2

��

D ln 2C ln.1C t/:

We use the known Maclaurin series for ln.1C t/:

ln x D ln 2C ln.1C t/

D ln 2C t �
t2

2
C

t3

3
�

t4

4
C � � �

D ln 2C
x � 2

2
�

.x � 2/2

2 � 22
C

.x � 2/3

3 � 23
�

.x � 2/4

4 � 24
C � � �

D ln 2C

1
X

nD1

.�1/n�1

n 2n
.x � 2/

n
:

Since the series for ln.1 C t/ is valid for �1 < t � 1, this series for ln x is valid for

�1 < .x � 2/=2 � 1, that is, for 0 < x � 4.

E X A M P L E 5
Find the Taylor series for cos x about �=3. Where is the series

valid?

Solution We use the addition formula for cosine:

cos x D cos
�

x �
�

3
C

�

3

�

D cos
�

x �
�

3

�

cos
�

3
� sin

�

x �
�

3

�

sin
�

3

D

1

2

�

1 �
1

2Š

�

x �
�

3

�2

C

1

4Š

�

x �
�

3

�4

� � � �

�

�

p

3

2

�

�

x �
�

3

�

�

1

3Š

�

x �
�

3

�3

C � � �

�

D

1

2
�

p

3

2

�

x �
�

3

�

�

1

2

1

2Š

�

x �
�

3

�2

C

p

3

2

1

3Š

�

x �
�

3

�3

C

1

2

1

4Š

�

x �
�

3

�4

� � � � :
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This series representation is valid for all x. A similar calculation would enable us to

expand cos x or sin x in powers of x � c for any real c; both functions are analytic at

every point of the real line.

Sometimes it is quite difficult, if not impossible, to find a formula for the general

term of a Maclaurin or Taylor series. In such cases it is usually possible to obtain

the first few terms before the calculations get too cumbersome. Had we attempted to

solve Example 3(c) by multiplying the series for sinx by itself we might have found

ourselves in this bind. Other examples occur when it is necessary to substitute one

series into another or to divide one by another.

E X A M P L E 6
Obtain the first three nonzero terms of the Maclaurin series for

(a) tan x and (b) ln cos x.

Solution

(a) tan x D .sin x/=.cos x/. We can obtain the first three terms of the Maclaurin

series for tan x by long division of the series for cos x into that for sin x:

x C

x3

3
C

2

15
x

5
C � � �

1 �

x2

2
C

x4

24
x �

x
3

6
C

x5

120
� � � �

x �

x3

2
C

x5

24
� � � �

x
3

3
�

x
5

30
C � � �

x
3

3
�

x5

6
C � � �

2x
5

15
� � � �

2x5

15
� � � �

Thus, tan x D x C
1

3
x

3
C

2

15
x

5
C � � �.

We cannot easily find all the terms of the series; only with considerable computa-

tional effort can we find many more terms than we have already found. This Maclau-

rin series for tanx converges for jxj < �=2, but we cannot demonstrate this fact by

the techniques we have at our disposal now. (It is true because the complex number

z D x C iy closest to 0 where the “denominator” of tan z, that is, cos z, is zero, is, in

fact, the real value z D �=2.)

(b) ln cos x D ln

�

1C

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

��

D

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

�

�

1

2

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

�2

C

1

3

�

�

x
2

2Š
C

x
4

4Š
�

x
6

6Š
C � � �

�3

� � � �

D �

x2

2
C

x4

24
�

x6

720
C � � � �

1

2

�

x4

4
�

x6

24
C � � �

�

C

1

3

�

�

x6

8
C � � �

�

� � � �
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D �

x2

2
�

x4

12
�

x6

45
� � � �.

Note that at each stage of the calculation we kept only enough terms to ensure

that we could get all the terms with powers up to x6. Being an even function,

ln cos x has only even powers in its Maclaurin series. Again, we cannot find the

general term of this series. We could try to calculate terms by using the formula

ak D f
.k/.0/=kŠ, but even this becomes difficult after the first few values of k.

Observe that the series for tan x could also have been derived from that of ln cos x

because we have tan x D �
d

dx
ln cos x.

Taylor’s Formula Revisited
In the examples above we have used a variety of techniques to obtain Taylor series for

functions and verify that functions are analytic. As shown in Section 4.10, Taylor’s

Theorem provides a means for estimating the size of the error En.x/ D f .x/�Pn.x/

involved when the Taylor polynomial

Pn.x/ D

n
X

kD0

f .k/.c/

kŠ
.x � c/

k

is used to approximate the value of f .x/ for x ¤ c. Since the Taylor polynomials are

partial sums of the Taylor series for f at c (if the latter exists), another technique for

verifying the convergence of a Taylor series is to use the formula for En.x/ provided

by Taylor’s Theorem to show, at least for an interval of values of x containing c, that

limn!1En.x/ D 0. This implies that limn!1 Pn.x/ D f .x/ so that f is indeed

the sum of its Taylor series about c on that inverval, and f is analytic at c. Here is a

somewhat more general version of Taylor’s Theroem.

T H E O R E M

22

Taylor’s Theorem

If the .nC 1/st derivative of f exists on an interval containing c and x, and if Pn.x/

is the Taylor polynomial of degree n for f about the point x D c, then

f .x/ D Pn.x/CEn.x/ Taylor’s Formula

holds, where the error term En.x/ is given by either of the following formulas:

Lagrange remainder En.x/ D
f .nC1/.s/

.nC 1/Š
.x � c/

nC1
;

for some s between c and x

Integral remainder En.x/ D
1

nŠ

Z x

c

.x � t/
n
f

.nC1/
.t/ dt:

Taylor’s Theorem with Lagrange remainder was proved in Section 4.10 (Theorem 12)

by using the Mean-Value Theorem and induction on n. The integral remainder version

is also proved by induction on n. See Exercise 42 for hints on how to carry out the

proof. We will not make any use of the integral form of the remainder here.

Our final example in this section re-establishes the Maclaurin series for ex by

finding the limit of the Lagrange remainder as suggested above.

E X A M P L E 7
Use Taylor’s Theorem to find the Maclaurin series for f .x/ D ex .

Where does the series converge to f .x/?
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This series representation is valid for all x. A similar calculation would enable us to

expand cos x or sin x in powers of x � c for any real c; both functions are analytic at

every point of the real line.

Sometimes it is quite difficult, if not impossible, to find a formula for the general

term of a Maclaurin or Taylor series. In such cases it is usually possible to obtain

the first few terms before the calculations get too cumbersome. Had we attempted to

solve Example 3(c) by multiplying the series for sinx by itself we might have found

ourselves in this bind. Other examples occur when it is necessary to substitute one

series into another or to divide one by another.

E X A M P L E 6
Obtain the first three nonzero terms of the Maclaurin series for

(a) tan x and (b) ln cos x.

Solution

(a) tan x D .sin x/=.cos x/. We can obtain the first three terms of the Maclaurin

series for tan x by long division of the series for cos x into that for sin x:

x C

x3

3
C

2

15
x

5
C � � �

1 �

x2

2
C

x4

24
x �

x
3

6
C

x5

120
� � � �

x �

x3

2
C

x5

24
� � � �

x
3

3
�

x
5

30
C � � �

x
3

3
�

x5

6
C � � �

2x
5

15
� � � �

2x5

15
� � � �

Thus, tan x D x C
1

3
x

3
C

2

15
x

5
C � � �.

We cannot easily find all the terms of the series; only with considerable computa-

tional effort can we find many more terms than we have already found. This Maclau-

rin series for tanx converges for jxj < �=2, but we cannot demonstrate this fact by

the techniques we have at our disposal now. (It is true because the complex number

z D x C iy closest to 0 where the “denominator” of tan z, that is, cos z, is zero, is, in

fact, the real value z D �=2.)

(b) ln cos x D ln

�

1C

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

��

D

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

�

�

1

2

�

�

x2

2Š
C

x4

4Š
�

x6

6Š
C � � �

�2

C

1

3

�

�

x
2

2Š
C

x
4

4Š
�

x
6

6Š
C � � �

�3

� � � �

D �

x2

2
C

x4

24
�

x6

720
C � � � �

1

2

�

x4

4
�

x6

24
C � � �

�

C

1

3

�

�

x6

8
C � � �

�

� � � �
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D �

x2

2
�

x4

12
�

x6

45
� � � �.

Note that at each stage of the calculation we kept only enough terms to ensure

that we could get all the terms with powers up to x6. Being an even function,

ln cos x has only even powers in its Maclaurin series. Again, we cannot find the

general term of this series. We could try to calculate terms by using the formula

ak D f
.k/.0/=kŠ, but even this becomes difficult after the first few values of k.

Observe that the series for tan x could also have been derived from that of ln cos x

because we have tan x D �
d

dx
ln cos x.

Taylor’s Formula Revisited
In the examples above we have used a variety of techniques to obtain Taylor series for

functions and verify that functions are analytic. As shown in Section 4.10, Taylor’s

Theorem provides a means for estimating the size of the error En.x/ D f .x/�Pn.x/

involved when the Taylor polynomial

Pn.x/ D

n
X

kD0

f .k/.c/

kŠ
.x � c/

k

is used to approximate the value of f .x/ for x ¤ c. Since the Taylor polynomials are

partial sums of the Taylor series for f at c (if the latter exists), another technique for

verifying the convergence of a Taylor series is to use the formula for En.x/ provided

by Taylor’s Theorem to show, at least for an interval of values of x containing c, that

limn!1En.x/ D 0. This implies that limn!1 Pn.x/ D f .x/ so that f is indeed

the sum of its Taylor series about c on that inverval, and f is analytic at c. Here is a

somewhat more general version of Taylor’s Theroem.

T H E O R E M

22

Taylor’s Theorem

If the .nC 1/st derivative of f exists on an interval containing c and x, and if Pn.x/

is the Taylor polynomial of degree n for f about the point x D c, then

f .x/ D Pn.x/CEn.x/ Taylor’s Formula

holds, where the error term En.x/ is given by either of the following formulas:

Lagrange remainder En.x/ D
f .nC1/.s/

.nC 1/Š
.x � c/

nC1
;

for some s between c and x

Integral remainder En.x/ D
1

nŠ

Z x

c

.x � t/
n
f

.nC1/
.t/ dt:

Taylor’s Theorem with Lagrange remainder was proved in Section 4.10 (Theorem 12)

by using the Mean-Value Theorem and induction on n. The integral remainder version

is also proved by induction on n. See Exercise 42 for hints on how to carry out the

proof. We will not make any use of the integral form of the remainder here.

Our final example in this section re-establishes the Maclaurin series for ex by

finding the limit of the Lagrange remainder as suggested above.

E X A M P L E 7
Use Taylor’s Theorem to find the Maclaurin series for f .x/ D ex .

Where does the series converge to f .x/?
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Solution Since ex is positive and increasing, es
� ejxj for any s � jxj. Since

f
.k/
.x/ D e

x for any k we have, taking c D 0 in the Lagrange remainder in Taylor’s

Formula,

jEn.x/j D

ˇ

ˇ

ˇ

ˇ

ˇ

f
.nC1/

.s/

.nC 1/Š
x

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

for some s between 0 and x

D

es

.nC 1/Š
jxj

nC1
� e

jxj jxj
nC1

.nC 1/Š
! 0 as n!1

for any real x, as shown in Theorem 3(b) of Section 9.1. Thus, limn!1En.x/ D 0.

Since the nth-order Maclaurin polynomial for ex is
Pn

kD0.x
k=kŠ/,

e
x
D lim

n!1

 

n
X

kD0

xk

kŠ
CEn.x/

!

D

1
X

kD0

xk

kŠ
D 1C x C

x2

2Š
C

x3

3Š
C � � � ;

and the series converges to ex for all real numbers x.

E X E R C I S E S 9.6

Find Maclaurin series representations for the functions in

Exercises 1–14. For what values of x is each representation valid?

1. e3xC1 2. cos.2x3
/

3. sin.x � �=4/ 4. cos.2x � �/

5. x2 sin.x=3/ 6. cos2
.x=2/

7. sinx cosx 8. tan�1
.5x

2
/

9.
1C x3

1C x2
10. ln.2C x2

/

11. ln
1C x

1� x
12. .e2x2

� 1/=x
2

13. coshx � cos x 14. sinhx � sinx

Find the required Taylor series representations of the functions in

Exercises 15–26. Where is each series representation valid?

15. f .x/ D e�2x about �1

16. f .x/ D sinx about �=2

17. f .x/ D cosx in powers of x � �

18. f .x/ D lnx in powers of x � 3

19. f .x/ D ln.2C x/ in powers of x � 2

20. f .x/ D e2xC3 in powers of x C 1

21. f .x/ D sinx � cosx about
�

4

22. f .x/ D cos2 x about
�

8

23. f .x/ D 1=x2 in powers of x C 2

24. f .x/ D
x

1C x
in powers of x � 1

25. f .x/ D x lnx in powers of x � 1

26. f .x/ D xex in powers of x C 2

Find the first three nonzero terms in the Maclaurin series for the

functions in Exercises 27–30.

27. sec x 28. sec x tan x

29. tan�1
.e

x
� 1/ 30. etan�1 x

� 1

31.I Use the fact that .
p

1C x/2 D 1C x to find the first three

nonzero terms of the Maclaurin series for
p

1C x.

32. Does csc x have a Maclaurin series? Why? Find the first three

nonzero terms of the Taylor series for csc x about the point

x D �=2.

Find the sums of the series in Exercises 33–36.

33. 1C x2
C

x4

2Š
C

x6

3Š
C

x8

4Š
C � � �

34.I x
3
�

x9

3Š � 4
C

x15

5Š � 16
�

x21

7Š � 64
C

x27

9Š � 256
� � � �

35. 1C
x2

3Š
C

x4

5Š
C

x6

7Š
C

x8

9Š
C � � �

36.I 1C
1

2 � 2Š
C

1

4 � 3Š
C

1

8 � 4Š
C � � �

37. Let P.x/ D 1C x C x2. Find (a) the Maclaurin series for

P.x/ and (b) the Taylor series for P.x/ about 1.

38.I Verify by direct calculation that f .x/ D 1=x is analytic at a

for every a ¤ 0.

39.I Verify by direct calculation that lnx is analytic at a for every

a > 0.

40.I Review Exercise 41 of Section 4.5. It shows that the function

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0

has derivatives of all orders at every point of the real line, and

f .k/.0/ D 0 for every positive integer k. What is the

Maclaurin series for f .x/? What is the interval of

convergence of this Maclaurin series? On what interval does

the series converge to f .x/? Is f analytic at 0?

41.I By direct multiplication of the Maclaurin series for ex and ey

show that exey
D exCy .
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42.I (Taylor’s Formula with integral remainder) Verify that if

f .nC1/ exists on an interval containing c and x, and if Pn.x/

is the nth-order Taylor polynomial for f about c, then

f .x/ D Pn.x/CEn.x/, where

En.x/ D
1

nŠ

Z x

c

.x � t /
n
f

.nC1/
.t/ dt:

Proceed as follows:

(a) First observe that the case n D 0 is just the Fundamental

Theorem of Calculus:

f .x/ D f .c/C

Z x

c

f
0
.t/ dt:

Now integrate by parts in this formula, taking U D f 0.t/

and dV D dt . Contrary to our usual policy of not

including a constant of integration in V , here write

V D �.x � t / rather than just V D t . Observe that the

result of the integration by parts is the case n D 1 of the

formula.

(b) Use induction argument (and integration by parts again)

to show that if the formula is valid for n D k, then it is

also valid for n D k C 1.

43.I Use Taylor’s formula with integral remainder to re-prove that

the Maclaurin series for ln.1C x/ converges to ln.1C x/ for

�1 < x � 1.

44.I (Stirling’s Formula) The limit

lim
n!1

nŠ
p

2�nnC1=2e�n
D 1

says that the relative error in the approximation

nŠ �
p

2�n
nC1=2

e
�n

approaches zero as n increases. That is, nŠ grows at a rate

comparable to
p

2�nnC1=2e�n. This result, known as

Stirling’s Formula, is often very useful in applied mathematics

and statistics. Prove it by carrying out the following steps:

(a) Use the identity ln.nŠ/ D
Pn

j D1 ln j and the increasing

nature of ln to show that if n � 1,

Z n

0

lnx dx < ln.nŠ/ <

Z nC1

1

lnx dx

and hence that

n ln n � n < ln.nŠ/ < .nC 1/ ln.nC 1/ � n:

(b) If cn D ln.nŠ/ �
�

nC
1
2

�

lnnC n, show that

cn � cnC1 D

�

nC
1

2

�

ln
nC 1

n
� 1

D

�

nC
1

2

�

ln
1C 1=.2nC 1/

1 � 1=.2nC 1/
� 1:

(c) Use the Maclaurin series for ln
1C t

1 � t
(see Exercise 11) to

show that

0 < cn � cnC1 <
1

3

�

1

.2nC 1/2
C

1

.2nC 1/4
C � � �

�

D

1

12

�

1

n
�

1

nC 1

�

;

and therefore that fcng is decreasing and
˚

cn �
1

12n

�

is

increasing. Hence conclude that limn!1 cn D c exists,

and that

lim
n!1

nŠ

nnC1=2e�n
D lim

n!1
e

cn
D e

c
:

(d) Now use the Wallis Product from Exercise 38 of Section

6.1 to show that

lim
n!1

.2nnŠ/2

.2n/Š
p

2n
D

r

�

2
;

and hence deduce that ec
D

p

2� , which completes the

proof.

45.I (A Modified Stirling Formula) A simpler approximation to

nŠ for large n is given by

nŠ � n
n
e

�n or, equivalently, ln.nŠ/ � n lnn � n:

While not as accurate as Stirling’s Formula, this modified

version still has relative error approaching zero as n!1 and

can be useful in many applications.

(a) Prove this assertion about the relative error by using the

conclusion of part (a) of the previous exercise.

(b) Compare the relative errors in the approximations for

ln.10Š/ and ln.20Š/ using Stirling’s Formula and the

Modified Stirling Formula.

9.7 Applications of Taylor and Maclaurin Series

Approximating the Values of Functions
We saw in Section 4.10 how Taylor and Maclaurin polynomials (the partial sums of

Taylor and Maclaurin series) can be used as polynomial approximations to more com-

plicated functions. In Example 5 of that section we used the Lagrange remainder in
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Solution Since ex is positive and increasing, es
� ejxj for any s � jxj. Since

f
.k/
.x/ D e

x for any k we have, taking c D 0 in the Lagrange remainder in Taylor’s

Formula,

jEn.x/j D

ˇ

ˇ

ˇ

ˇ

ˇ

f
.nC1/

.s/

.nC 1/Š
x

nC1

ˇ

ˇ

ˇ

ˇ

ˇ

for some s between 0 and x

D

es

.nC 1/Š
jxj

nC1
� e

jxj jxj
nC1

.nC 1/Š
! 0 as n!1

for any real x, as shown in Theorem 3(b) of Section 9.1. Thus, limn!1En.x/ D 0.

Since the nth-order Maclaurin polynomial for ex is
Pn

kD0.x
k=kŠ/,

e
x
D lim

n!1

 

n
X

kD0

xk

kŠ
CEn.x/

!

D

1
X

kD0

xk

kŠ
D 1C x C

x2

2Š
C

x3

3Š
C � � � ;

and the series converges to ex for all real numbers x.

E X E R C I S E S 9.6

Find Maclaurin series representations for the functions in

Exercises 1–14. For what values of x is each representation valid?

1. e3xC1 2. cos.2x3
/

3. sin.x � �=4/ 4. cos.2x � �/

5. x2 sin.x=3/ 6. cos2
.x=2/

7. sinx cosx 8. tan�1
.5x

2
/

9.
1C x3

1C x2
10. ln.2C x2

/

11. ln
1C x

1� x
12. .e2x2

� 1/=x
2

13. coshx � cos x 14. sinhx � sinx

Find the required Taylor series representations of the functions in

Exercises 15–26. Where is each series representation valid?

15. f .x/ D e�2x about �1

16. f .x/ D sinx about �=2

17. f .x/ D cosx in powers of x � �

18. f .x/ D lnx in powers of x � 3

19. f .x/ D ln.2C x/ in powers of x � 2

20. f .x/ D e2xC3 in powers of x C 1

21. f .x/ D sinx � cosx about
�

4

22. f .x/ D cos2 x about
�

8

23. f .x/ D 1=x2 in powers of x C 2

24. f .x/ D
x

1C x
in powers of x � 1

25. f .x/ D x lnx in powers of x � 1

26. f .x/ D xex in powers of x C 2

Find the first three nonzero terms in the Maclaurin series for the

functions in Exercises 27–30.

27. sec x 28. sec x tan x

29. tan�1
.e

x
� 1/ 30. etan�1 x

� 1

31.I Use the fact that .
p

1C x/2 D 1C x to find the first three

nonzero terms of the Maclaurin series for
p

1C x.

32. Does csc x have a Maclaurin series? Why? Find the first three

nonzero terms of the Taylor series for csc x about the point

x D �=2.

Find the sums of the series in Exercises 33–36.

33. 1C x2
C

x4

2Š
C

x6

3Š
C

x8

4Š
C � � �

34.I x
3
�

x9

3Š � 4
C

x15

5Š � 16
�

x21

7Š � 64
C

x27

9Š � 256
� � � �

35. 1C
x2

3Š
C

x4

5Š
C

x6

7Š
C

x8

9Š
C � � �

36.I 1C
1

2 � 2Š
C

1

4 � 3Š
C

1

8 � 4Š
C � � �

37. Let P.x/ D 1C x C x2. Find (a) the Maclaurin series for

P.x/ and (b) the Taylor series for P.x/ about 1.

38.I Verify by direct calculation that f .x/ D 1=x is analytic at a

for every a ¤ 0.

39.I Verify by direct calculation that lnx is analytic at a for every

a > 0.

40.I Review Exercise 41 of Section 4.5. It shows that the function

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0

has derivatives of all orders at every point of the real line, and

f .k/.0/ D 0 for every positive integer k. What is the

Maclaurin series for f .x/? What is the interval of

convergence of this Maclaurin series? On what interval does

the series converge to f .x/? Is f analytic at 0?

41.I By direct multiplication of the Maclaurin series for ex and ey

show that exey
D exCy .
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42.I (Taylor’s Formula with integral remainder) Verify that if

f .nC1/ exists on an interval containing c and x, and if Pn.x/

is the nth-order Taylor polynomial for f about c, then

f .x/ D Pn.x/CEn.x/, where

En.x/ D
1

nŠ

Z x

c

.x � t /
n
f

.nC1/
.t/ dt:

Proceed as follows:

(a) First observe that the case n D 0 is just the Fundamental

Theorem of Calculus:

f .x/ D f .c/C

Z x

c

f
0
.t/ dt:

Now integrate by parts in this formula, taking U D f 0.t/

and dV D dt . Contrary to our usual policy of not

including a constant of integration in V , here write

V D �.x � t / rather than just V D t . Observe that the

result of the integration by parts is the case n D 1 of the

formula.

(b) Use induction argument (and integration by parts again)

to show that if the formula is valid for n D k, then it is

also valid for n D k C 1.

43.I Use Taylor’s formula with integral remainder to re-prove that

the Maclaurin series for ln.1C x/ converges to ln.1C x/ for

�1 < x � 1.

44.I (Stirling’s Formula) The limit

lim
n!1

nŠ
p

2�nnC1=2e�n
D 1

says that the relative error in the approximation

nŠ �
p

2�n
nC1=2

e
�n

approaches zero as n increases. That is, nŠ grows at a rate

comparable to
p

2�nnC1=2e�n. This result, known as

Stirling’s Formula, is often very useful in applied mathematics

and statistics. Prove it by carrying out the following steps:

(a) Use the identity ln.nŠ/ D
Pn

j D1 ln j and the increasing

nature of ln to show that if n � 1,

Z n

0

lnx dx < ln.nŠ/ <

Z nC1

1

lnx dx

and hence that

n ln n � n < ln.nŠ/ < .nC 1/ ln.nC 1/ � n:

(b) If cn D ln.nŠ/ �
�

nC
1
2

�

lnnC n, show that

cn � cnC1 D

�

nC
1

2

�

ln
nC 1

n
� 1

D

�

nC
1

2

�

ln
1C 1=.2nC 1/

1 � 1=.2nC 1/
� 1:

(c) Use the Maclaurin series for ln
1C t

1 � t
(see Exercise 11) to

show that

0 < cn � cnC1 <
1

3

�

1

.2nC 1/2
C

1

.2nC 1/4
C � � �

�

D

1

12

�

1

n
�

1

nC 1

�

;

and therefore that fcng is decreasing and
˚

cn �
1

12n

�

is

increasing. Hence conclude that limn!1 cn D c exists,

and that

lim
n!1

nŠ

nnC1=2e�n
D lim

n!1
e

cn
D e

c
:

(d) Now use the Wallis Product from Exercise 38 of Section

6.1 to show that

lim
n!1

.2nnŠ/2

.2n/Š
p

2n
D

r

�

2
;

and hence deduce that ec
D

p

2� , which completes the

proof.

45.I (A Modified Stirling Formula) A simpler approximation to

nŠ for large n is given by

nŠ � n
n
e

�n or, equivalently, ln.nŠ/ � n lnn � n:

While not as accurate as Stirling’s Formula, this modified

version still has relative error approaching zero as n!1 and

can be useful in many applications.

(a) Prove this assertion about the relative error by using the

conclusion of part (a) of the previous exercise.

(b) Compare the relative errors in the approximations for

ln.10Š/ and ln.20Š/ using Stirling’s Formula and the

Modified Stirling Formula.

9.7 Applications of Taylor and Maclaurin Series

Approximating the Values of Functions
We saw in Section 4.10 how Taylor and Maclaurin polynomials (the partial sums of

Taylor and Maclaurin series) can be used as polynomial approximations to more com-

plicated functions. In Example 5 of that section we used the Lagrange remainder in
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Taylor’s Formula to determine how many terms of the Maclaurin series for ex are

needed to calculate e1
D e correct to 3 decimal places. For comparison, we obtained

the same result in Example 7 in Section 9.3 by using a geometric series to bound the

tail of the series for e.

The following example shows how the error bound associated with the alternating

series test (see Theorem 15 in Section 9.4) can also be used for such approximations.

When the terms an of a series (i) alternate in sign, (ii) decrease steadily in size, and

(iii) approach zero as n ! 1, then the error involved in using a partial sum of the

series as an approximation to the sum of the series has the same sign as, and is no

greater in absolute value than, the first omitted term.

E X A M P L E 1
Find cos 43ı with error less than 1=10;000.

Solution We give two alternative solutions:

METHOD I. We can use the Maclaurin series for cosine:

cos 43ı
D cos

43�

180
D 1 �

1

2Š

�

43�

180

�2

C

1

4Š

�

43�

180

�4

� � � � :

Now 43�=180 � 0:750 49 � � � < 1, so the series above must satisfy the conditions

(i)–(iii) mentioned above. If we truncate the series after the nth term

.�1/
n�1 1

.2n � 2/Š

�

43�

180

�2n�2

;

then the error E will be bounded by the size of the first omitted term:

jEj �
1

.2n/Š

�

43�

180

�2n

<
1

.2n/Š
:

The error will not exceed 1=10;000 if .2n/Š > 10;000, so n D 4 will do (8Š D 40;320).

cos 43ı
� 1 �

1

2Š

�

43�

180

�2

C

1

4Š

�

43�

180

�4

�

1

6Š

�

43�

180

�6

� 0:731 35 � � �

METHOD II. Since 43ı is close to 45ı
D �=4 rad, we can do a bit better by using the

Taylor series about �=4 instead of the Maclaurin series:

cos 43ı
D cos

�

�

4
�

�

90

�

D cos
�

4
cos

�

90
C sin

�

4
sin

�

90

D

1
p

2

��

1 �
1

2Š

�

�

90

�2

C

1

4Š

�

�

90

�4

� � � �

�

C

�

�

90
�

1

3Š

�

�

90

�3

C � � �

��

:

Since

1

4Š

�

�

90

�4

<
1

3Š

�

�

90

�3

<
1

20;000
;

we need only the first two terms of the first series and the first term of the second series:

cos 43ı
�

1
p

2

�

1C
�

90
�

1

2

�

�

90

�2
�

� 0:731 358 � � � :

(In fact, cos 43ı
D 0:731 353 7 � � � :)

When finding approximate values of functions, it is best, whenever possible, to use a

power series about a point as close as possible to the point where the approximation is

desired.
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Functions Defined by Integrals
Many functions that can be expressed as simple combinations of elementary func-

tions cannot be antidifferentiated by elementary techniques; their antiderivatives are

not simple combinations of elementary functions. We can, however, often find the

Taylor series for the antiderivatives of such functions and hence approximate their def-

inite integrals.

E X A M P L E 2
Find the Maclaurin series for

E.x/ D

Z x

0

e
�t2

dt;

and use it to evaluate E.1/ correct to 3 decimal places.

Solution The Maclaurin series for E.x/ is given by

E.x/ D

Z x

0

�

1 � t
2
C

t
4

2Š
�

t
6

3Š
C

t
8

4Š
� � � �

�

dt

D

�

t �
t3

3
C

t5

5 � 2Š
�

t7

7 � 3Š
C

t9

9 � 4Š
� � � �

�
ˇ

ˇ

ˇ

ˇ

x

0

D x �
x3

3
C

x5

5 � 2Š
�

x7

7 � 3Š
C

x9

9 � 4Š
� � � � D

1
X

nD0

.�1/
n x2nC1

.2nC 1/nŠ
;

and is valid for all x because the series for e�t2

is valid for all t . Therefore,

E.1/ D 1 �
1

3
C

1

5 � 2Š
�

1

7 � 3Š
C � � �

� 1 �
1

3
C

1

5 � 2Š
�

1

7 � 3Š
C � � � C

.�1/n�1

.2n � 1/.n � 1/Š
:

We stopped with the nth term. Again, the alternating series test assures us that the

error in this approximation does not exceed the first omitted term, so it will be less

than 0.0005, provided .2n C 1/nŠ > 2;000. Since 13 � 6Š D 9;360, n D 6 will do.

Thus,

E.1/ � 1 �
1

3
C

1

10
�

1

42
C

1

216
�

1

1;320
� 0:747;

rounded to 3 decimal places.

Indeterminate Forms
Examples 9 and 10 of Section 4.10 showed how Maclaurin polynomials could be used

for evaluating the limits of indeterminate forms. Here are two more examples, this time

using the series directly and keeping enough terms to allow cancellation of the Œ0=0�

factors.

E X A M P L E 3 Evaluate (a) lim
x!0

x � sinx

x3
and (b) lim

x!0

.e2x
� 1/ ln.1C x3/

.1 � cos 3x/2
.
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Taylor’s Formula to determine how many terms of the Maclaurin series for ex are

needed to calculate e1
D e correct to 3 decimal places. For comparison, we obtained

the same result in Example 7 in Section 9.3 by using a geometric series to bound the

tail of the series for e.

The following example shows how the error bound associated with the alternating

series test (see Theorem 15 in Section 9.4) can also be used for such approximations.

When the terms an of a series (i) alternate in sign, (ii) decrease steadily in size, and

(iii) approach zero as n ! 1, then the error involved in using a partial sum of the

series as an approximation to the sum of the series has the same sign as, and is no

greater in absolute value than, the first omitted term.

E X A M P L E 1
Find cos 43ı with error less than 1=10;000.

Solution We give two alternative solutions:

METHOD I. We can use the Maclaurin series for cosine:

cos 43ı
D cos

43�

180
D 1 �

1

2Š

�

43�

180

�2

C

1

4Š

�

43�

180

�4

� � � � :

Now 43�=180 � 0:750 49 � � � < 1, so the series above must satisfy the conditions

(i)–(iii) mentioned above. If we truncate the series after the nth term

.�1/
n�1 1

.2n � 2/Š

�

43�

180

�2n�2

;

then the error E will be bounded by the size of the first omitted term:

jEj �
1

.2n/Š

�

43�

180

�2n

<
1

.2n/Š
:

The error will not exceed 1=10;000 if .2n/Š > 10;000, so n D 4 will do (8Š D 40;320).

cos 43ı
� 1 �

1

2Š

�

43�

180

�2

C

1

4Š

�

43�

180

�4

�

1

6Š

�

43�

180

�6

� 0:731 35 � � �

METHOD II. Since 43ı is close to 45ı
D �=4 rad, we can do a bit better by using the

Taylor series about �=4 instead of the Maclaurin series:

cos 43ı
D cos

�

�

4
�

�

90

�

D cos
�

4
cos

�

90
C sin

�

4
sin

�

90

D

1
p

2

��

1 �
1

2Š

�

�

90

�2

C

1

4Š

�

�

90

�4

� � � �

�

C

�

�

90
�

1

3Š

�

�

90

�3

C � � �

��

:

Since

1

4Š

�

�

90

�4

<
1

3Š

�

�

90

�3

<
1

20;000
;

we need only the first two terms of the first series and the first term of the second series:

cos 43ı
�

1
p

2

�

1C
�

90
�

1

2

�

�

90

�2
�

� 0:731 358 � � � :

(In fact, cos 43ı
D 0:731 353 7 � � � :)

When finding approximate values of functions, it is best, whenever possible, to use a

power series about a point as close as possible to the point where the approximation is

desired.
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Functions Defined by Integrals
Many functions that can be expressed as simple combinations of elementary func-

tions cannot be antidifferentiated by elementary techniques; their antiderivatives are

not simple combinations of elementary functions. We can, however, often find the

Taylor series for the antiderivatives of such functions and hence approximate their def-

inite integrals.

E X A M P L E 2
Find the Maclaurin series for

E.x/ D

Z x

0

e
�t2

dt;

and use it to evaluate E.1/ correct to 3 decimal places.

Solution The Maclaurin series for E.x/ is given by

E.x/ D

Z x

0

�

1 � t
2
C

t
4

2Š
�

t
6

3Š
C

t
8

4Š
� � � �

�

dt

D

�

t �
t3

3
C

t5

5 � 2Š
�

t7

7 � 3Š
C

t9

9 � 4Š
� � � �

�
ˇ

ˇ

ˇ

ˇ

x

0

D x �
x3

3
C

x5

5 � 2Š
�

x7

7 � 3Š
C

x9

9 � 4Š
� � � � D

1
X

nD0

.�1/
n x2nC1

.2nC 1/nŠ
;

and is valid for all x because the series for e�t2

is valid for all t . Therefore,

E.1/ D 1 �
1

3
C

1

5 � 2Š
�

1

7 � 3Š
C � � �

� 1 �
1

3
C

1

5 � 2Š
�

1

7 � 3Š
C � � � C

.�1/n�1

.2n � 1/.n � 1/Š
:

We stopped with the nth term. Again, the alternating series test assures us that the

error in this approximation does not exceed the first omitted term, so it will be less

than 0.0005, provided .2n C 1/nŠ > 2;000. Since 13 � 6Š D 9;360, n D 6 will do.

Thus,

E.1/ � 1 �
1

3
C

1

10
�

1

42
C

1

216
�

1

1;320
� 0:747;

rounded to 3 decimal places.

Indeterminate Forms
Examples 9 and 10 of Section 4.10 showed how Maclaurin polynomials could be used

for evaluating the limits of indeterminate forms. Here are two more examples, this time

using the series directly and keeping enough terms to allow cancellation of the Œ0=0�

factors.

E X A M P L E 3 Evaluate (a) lim
x!0

x � sinx

x3
and (b) lim

x!0

.e2x
� 1/ ln.1C x3/

.1 � cos 3x/2
.
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Solution

(a) lim
x!0

x � sin x

x3

�

0

0

�

D lim
x!0

x �

�

x �
x3

3Š
C

x5

5Š
� � � �

�

x3

D lim
x!0

x3

3Š
�

x5

5Š
C � � �

x3

D lim
x!0

�

1

3Š
�

x2

5Š
C � � �

�

D

1

3Š
D

1

6
:

(b) lim
x!0

.e
2x
� 1/ ln.1C x3

/

.1 � cos 3x/2

�

0

0

�

D lim
x!0

�

1C .2x/C
.2x/2

2Š
C

.2x/3

3Š
C � � � � 1

��

x
3
�

x6

2
C � � �

�

�

1 �

�

1 �
.3x/2

2Š
C

.3x/4

4Š
� � � �

��2

D lim
x!0

2x
4
C 2x

5
C � � �

�

9

2
x

2
�

34

4Š
x

4
C � � �

�2

D lim
x!0

2C 2x C � � �

�

9

2
�

34

4Š
x

2
C � � �

�2
D

2
�

9

2

�2
D

8

81
:

You can check that the second of these examples is much more difficult if attempted

using l’Hôpital’s Rule.

E X E R C I S E S 9.7

1. Estimate the error if the Maclaurin polynomial of degree 5 for

sinx is used to approximate sin.0:2/.

2. Estimate the error if the Taylor polynomial of degree 4 for lnx

in powers of x � 2 is used to approximate ln.1:95/.

Use Maclaurin or Taylor series to calculate the function values

indicated in Exercises 3–14, with error less than 5 � 10�5 in

absolute value.

3. e0:2 4. 1=e

5. e1:2 6. sin.0:1/

7. cos 5ı 8. ln.6=5/

9. ln.0:9/ 10. sin 80ı

11. cos 65ı 12. tan�1
0:2

13. cosh.1/ 14. ln.3=2/

Find Maclaurin series for the functions in Exercises 15–19.

15. I.x/ D

Z x

0

sin t

t
dt 16. J.x/ D

Z x

0

et
� 1

t
dt

17. K.x/ D

Z 1Cx

1

ln t

t � 1
dt 18. L.x/ D

Z x

0

cos.t2/ dt

19. M.x/ D

Z x

0

tan�1 t2

t2
dt

20. Find L.0:5/ correct to 3 decimal places, with L defined as in

Exercise 18.

21. Find I.1/ correct to 3 decimal places, with I defined as in

Exercise 15.

Evaluate the limits in Exercises 22–27.

22. lim
x!0

sin.x2/

sinhx
23. lim

x!0

1 � cos.x2/

.1 � cosx/2

24. lim
x!0

.e
x
� 1 � x/

2

x2
� ln.1C x2/

25. lim
x!0

2 sin 3x � 3 sin 2x

5x � tan�1 5x

26. lim
x!0

sin.sinx/ � x

x.cos.sinx/ � 1/
27. lim

x!0

sinhx � sinx

coshx � cos x
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9.8 The Binomial Theorem and Binomial Series

E X A M P L E 1
Use Taylor’s Formula to prove the Binomial Theorem: if n is a

positive integer, then

.aC x/
n
D a

n
C na

n�1
x C

n.n � 1/

2Š
a

n�2
x

2
C � � � C nax

n�1
C x

n

D

n
X

kD0

�

n

k

�

a
n�k

x
k
;

where
�

n

k

�

D

nŠ

.n � k/ŠkŠ
.

Solution Let f .x/ D .aC x/n. Then

f
0
.x/ D n.aC x/

n�1
D

nŠ

.n � 1/Š
.aC x/

n�1

f
00
.x/ D

nŠ

.n � 1/Š
.n� 1/.a C x/

n�2
D

nŠ

.n � 2/Š
.aC x/

n�2

:
:
:

f
.k/
.x/ D

nŠ

.n � k/Š
.aC x/

n�k (0 � k � n):

In particular, f .n/.x/ D
nŠ

0Š
.aC x/

n�n
D nŠ, a constant, and so

f
.k/
.x/ D 0 for all x, if k > n:

For 0 � k � n we have f .k/.0/ D
nŠ

.n � k/Š
a

n�k . Thus, by Taylor’s Theorem with

Lagrange remainder, for some s between a and x,

.aC x/
n
D f .x/ D

n
X

kD0

f .k/.0/

kŠ
x

k
C

f .nC1/.s/

.nC 1/Š
x

nC1

D

n
X

kD0

nŠ

.n � k/ŠkŠ
a

n�k
x

k
C 0 D

n
X

kD0

�

n

k

�

a
n�k

x
k
:

This is, in fact, the Maclaurin series for .a C x/n, not just the Maclaurin polynomial

of degree n. Since all higher-degree terms are zero, the series has only finitely many

nonzero terms and so converges for all x.

Remark If f .x/ D .aCx/r , where a > 0 and r is any real number, then calculations

similar to those above show that the Maclaurin polynomial of degree n for f is

Pn.x/ D a
r
C

n
X

kD1

r.r � 1/.r � 2/ � � � .r � k C 1/

kŠ
a

r�k
x

k
:

However, if r is not a positive integer, then there will be no positive integer n for which

the remainder En.x/ D f .x/ � Pn.x/ vanishes identically, and the corresponding

Maclaurin series will not be a polynomial.
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Solution

(a) lim
x!0

x � sin x

x3

�

0

0

�

D lim
x!0

x �

�

x �
x3

3Š
C

x5

5Š
� � � �

�

x3

D lim
x!0

x3

3Š
�

x5

5Š
C � � �

x3

D lim
x!0

�

1

3Š
�

x2

5Š
C � � �

�

D

1

3Š
D

1

6
:

(b) lim
x!0

.e
2x
� 1/ ln.1C x3

/

.1 � cos 3x/2

�

0

0

�

D lim
x!0

�

1C .2x/C
.2x/2

2Š
C

.2x/3

3Š
C � � � � 1

��

x
3
�

x6

2
C � � �

�

�

1 �

�

1 �
.3x/2

2Š
C

.3x/4

4Š
� � � �

��2

D lim
x!0

2x
4
C 2x

5
C � � �

�

9

2
x

2
�

34

4Š
x

4
C � � �

�2

D lim
x!0

2C 2x C � � �

�

9

2
�

34

4Š
x

2
C � � �

�2
D

2
�

9

2

�2
D

8

81
:

You can check that the second of these examples is much more difficult if attempted

using l’Hôpital’s Rule.

E X E R C I S E S 9.7

1. Estimate the error if the Maclaurin polynomial of degree 5 for

sinx is used to approximate sin.0:2/.

2. Estimate the error if the Taylor polynomial of degree 4 for lnx

in powers of x � 2 is used to approximate ln.1:95/.

Use Maclaurin or Taylor series to calculate the function values

indicated in Exercises 3–14, with error less than 5 � 10�5 in

absolute value.

3. e0:2 4. 1=e

5. e1:2 6. sin.0:1/

7. cos 5ı 8. ln.6=5/

9. ln.0:9/ 10. sin 80ı

11. cos 65ı 12. tan�1
0:2

13. cosh.1/ 14. ln.3=2/

Find Maclaurin series for the functions in Exercises 15–19.

15. I.x/ D

Z x

0

sin t

t
dt 16. J.x/ D

Z x

0

et
� 1

t
dt

17. K.x/ D

Z 1Cx

1

ln t

t � 1
dt 18. L.x/ D

Z x

0

cos.t2/ dt

19. M.x/ D

Z x

0

tan�1 t2

t2
dt

20. Find L.0:5/ correct to 3 decimal places, with L defined as in

Exercise 18.

21. Find I.1/ correct to 3 decimal places, with I defined as in

Exercise 15.

Evaluate the limits in Exercises 22–27.

22. lim
x!0

sin.x2/

sinhx
23. lim

x!0

1 � cos.x2/

.1 � cosx/2

24. lim
x!0

.e
x
� 1 � x/

2

x2
� ln.1C x2/

25. lim
x!0

2 sin 3x � 3 sin 2x

5x � tan�1 5x

26. lim
x!0

sin.sinx/ � x

x.cos.sinx/ � 1/
27. lim

x!0

sinhx � sinx

coshx � cos x
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9.8 The Binomial Theorem and Binomial Series

E X A M P L E 1
Use Taylor’s Formula to prove the Binomial Theorem: if n is a

positive integer, then

.aC x/
n
D a

n
C na

n�1
x C

n.n � 1/

2Š
a

n�2
x

2
C � � � C nax

n�1
C x

n

D

n
X

kD0

�

n

k

�

a
n�k

x
k
;

where
�

n

k

�

D

nŠ

.n � k/ŠkŠ
.

Solution Let f .x/ D .aC x/n. Then

f
0
.x/ D n.aC x/

n�1
D

nŠ

.n � 1/Š
.aC x/

n�1

f
00
.x/ D

nŠ

.n � 1/Š
.n� 1/.a C x/

n�2
D

nŠ

.n � 2/Š
.aC x/

n�2

:
:
:

f
.k/
.x/ D

nŠ

.n � k/Š
.aC x/

n�k (0 � k � n):

In particular, f .n/.x/ D
nŠ

0Š
.aC x/

n�n
D nŠ, a constant, and so

f
.k/
.x/ D 0 for all x, if k > n:

For 0 � k � n we have f .k/.0/ D
nŠ

.n � k/Š
a

n�k . Thus, by Taylor’s Theorem with

Lagrange remainder, for some s between a and x,

.aC x/
n
D f .x/ D

n
X

kD0

f .k/.0/

kŠ
x

k
C

f .nC1/.s/

.nC 1/Š
x

nC1

D

n
X

kD0

nŠ

.n � k/ŠkŠ
a

n�k
x

k
C 0 D

n
X

kD0

�

n

k

�

a
n�k

x
k
:

This is, in fact, the Maclaurin series for .a C x/n, not just the Maclaurin polynomial

of degree n. Since all higher-degree terms are zero, the series has only finitely many

nonzero terms and so converges for all x.

Remark If f .x/ D .aCx/r , where a > 0 and r is any real number, then calculations

similar to those above show that the Maclaurin polynomial of degree n for f is

Pn.x/ D a
r
C

n
X

kD1

r.r � 1/.r � 2/ � � � .r � k C 1/

kŠ
a

r�k
x

k
:

However, if r is not a positive integer, then there will be no positive integer n for which

the remainder En.x/ D f .x/ � Pn.x/ vanishes identically, and the corresponding

Maclaurin series will not be a polynomial.
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The Binomial Series
To simplify the discussion of the function .aCx/r when r is not a positive integer, we

take a D 1 and consider the function .1C x/r . Results for the general case follow via

the identity

.aC x/
r
D a

r
�

1C
x

a

�r

;

valid for any a > 0.

If r is any real number and x > �1, then the kth derivative of .1C x/r is

r.r � 1/.r � 2/ � � � .r � k C 1/ .1C x/
r�k

; .k D 1; 2; : : :/:

Thus, the Maclaurin series for .1C x/r is

1C

1
X

kD1

r.r � 1/.r � 2/ � � � .r � k C 1/

kŠ
x

k
;

which is called the binomial series. The following theorem shows that the binomial

series does, in fact, converge to .1 C x/r if jxj < 1. We could accomplish this by

writing Taylor’s Formula for .1 C x/r with c D 0 and showing that the remainder

En.x/ ! 0 as n ! 1. (We would need to use the integral form of the remainder to

prove this for all jxj < 1.) However, we will use an easier method, similar to the one

used for the exponential and trigonometric functions in Section 9.6.

T H E O R E M

23

The binomial series

If jxj < 1, then

.1C x/
r
D 1C rx C

r.r � 1/

2Š
x

2
C

r.r � 1/.r � 2/

3Š
x

3
C � � �

D 1C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n
.�1 < x < 1/:

PROOF If jxj < 1, then the series

f .x/ D 1C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n

converges by the ratio test, since

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r.r � 1/.r � 2/ � � � .r � nC 1/.r � n/

.nC 1/Š
x

nC1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

ˇ

ˇ

ˇ

ˇ

r � n

nC 1

ˇ

ˇ

ˇ

ˇ

jxj D jxj < 1:

Note that f .0/ D 1. We need to show that f .x/ D .1C x/r for jxj < 1.

By Theorem 19, we can differentiate the series for f .x/ termwise on jxj < 1 to

obtain

f
0
.x/ D

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

.n� 1/Š
x

n�1

D

1
X

nD0

r.r � 1/.r � 2/ � � � .r � n/

nŠ
x

n
:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 9 – page 557 October 5, 2016

SECTION 9.8: The Binomial Theorem and Binomial Series 557

We have replaced n with n C 1 to get the second version of the sum from the first

version. Adding the second version to x times the first version, we get

.1C x/f
0
.x/ D

1
X

nD0

r.r � 1/.r � 2/ � � � .r � n/

nŠ
x

n

C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

.n � 1/Š
x

n

D r C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n
�

.r � n/C n
�

D r f .x/:

The differential equation .1C x/f 0.x/ D rf .x/ implies that

d

dx

f .x/

.1C x/r
D

.1C x/
r
f

0
.x/ � r.1C x/

r�1
f .x/

.1C x/2r
D 0

for all x satisfying jxj < 1. Thus, f .x/=.1Cx/r is constant on that interval, and since

f .0/ D 1, the constant must be 1. Thus, f .x/ D .1C x/r .

Remark For some values of r the binomial series may converge at the endpoints

x D 1 or x D �1. As observed above, if r is a positive integer, the series has only

finitely many nonzero terms, and so converges for all x.

E X A M P L E 2 Find the Maclaurin series for
1

p

1C x
.

Solution Here r D �.1=2/:

1
p

1C x
D .1C x/

�1=2

D 1 �
1

2
x C

1

2Š

�

�

1

2

��

�

3

2

�

x
2
C

1

3Š

�

�

1

2

��

�

3

2

��

�

5

2

�

x
3
C � � �

D 1 �
1

2
x C

1 � 3

222Š
x

2
�

1 � 3 � 5

233Š
x

3
C � � �

D 1C

1
X

nD1

.�1/
n 1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
x

n
:

This series converges for �1 < x � 1. (Use the alternating series test to get the

endpoint x D 1.)

E X A M P L E 3
Find the Maclaurin series for sin�1

x.

Solution Replace x with �t2 in the series obtained in the previous example to get

1
p

1 � t2
D 1C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
t
2n

.�1 < t < 1/.

Now integrate t from 0 to x:

sin�1
x D

Z x

0

dt
p

1 � t2
D

Z x

0

 

1C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
t
2n

!

dt

D x C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ.2nC 1/
x

2nC1

D x C
x3

6
C

3

40
x

5
C � � � .�1 < x < 1/.
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The Binomial Series
To simplify the discussion of the function .aCx/r when r is not a positive integer, we

take a D 1 and consider the function .1C x/r . Results for the general case follow via

the identity

.aC x/
r
D a

r
�

1C
x

a

�r

;

valid for any a > 0.

If r is any real number and x > �1, then the kth derivative of .1C x/r is

r.r � 1/.r � 2/ � � � .r � k C 1/ .1C x/
r�k

; .k D 1; 2; : : :/:

Thus, the Maclaurin series for .1C x/r is

1C

1
X

kD1

r.r � 1/.r � 2/ � � � .r � k C 1/

kŠ
x

k
;

which is called the binomial series. The following theorem shows that the binomial

series does, in fact, converge to .1 C x/r if jxj < 1. We could accomplish this by

writing Taylor’s Formula for .1 C x/r with c D 0 and showing that the remainder

En.x/ ! 0 as n ! 1. (We would need to use the integral form of the remainder to

prove this for all jxj < 1.) However, we will use an easier method, similar to the one

used for the exponential and trigonometric functions in Section 9.6.

T H E O R E M

23

The binomial series

If jxj < 1, then

.1C x/
r
D 1C rx C

r.r � 1/

2Š
x

2
C

r.r � 1/.r � 2/

3Š
x

3
C � � �

D 1C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n
.�1 < x < 1/:

PROOF If jxj < 1, then the series

f .x/ D 1C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n

converges by the ratio test, since

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r.r � 1/.r � 2/ � � � .r � nC 1/.r � n/

.nC 1/Š
x

nC1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
n!1

ˇ

ˇ

ˇ

ˇ

r � n

nC 1

ˇ

ˇ

ˇ

ˇ

jxj D jxj < 1:

Note that f .0/ D 1. We need to show that f .x/ D .1C x/r for jxj < 1.

By Theorem 19, we can differentiate the series for f .x/ termwise on jxj < 1 to

obtain

f
0
.x/ D

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

.n� 1/Š
x

n�1

D

1
X

nD0

r.r � 1/.r � 2/ � � � .r � n/

nŠ
x

n
:
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We have replaced n with n C 1 to get the second version of the sum from the first

version. Adding the second version to x times the first version, we get

.1C x/f
0
.x/ D

1
X

nD0

r.r � 1/.r � 2/ � � � .r � n/

nŠ
x

n

C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

.n � 1/Š
x

n

D r C

1
X

nD1

r.r � 1/.r � 2/ � � � .r � nC 1/

nŠ
x

n
�

.r � n/C n
�

D r f .x/:

The differential equation .1C x/f 0.x/ D rf .x/ implies that

d

dx

f .x/

.1C x/r
D

.1C x/
r
f

0
.x/ � r.1C x/

r�1
f .x/

.1C x/2r
D 0

for all x satisfying jxj < 1. Thus, f .x/=.1Cx/r is constant on that interval, and since

f .0/ D 1, the constant must be 1. Thus, f .x/ D .1C x/r .

Remark For some values of r the binomial series may converge at the endpoints

x D 1 or x D �1. As observed above, if r is a positive integer, the series has only

finitely many nonzero terms, and so converges for all x.

E X A M P L E 2 Find the Maclaurin series for
1

p

1C x
.

Solution Here r D �.1=2/:

1
p

1C x
D .1C x/

�1=2

D 1 �
1

2
x C

1

2Š

�

�

1

2

��

�

3

2

�

x
2
C

1

3Š

�

�

1

2

��

�

3

2

��

�

5

2

�

x
3
C � � �

D 1 �
1

2
x C

1 � 3

222Š
x

2
�

1 � 3 � 5

233Š
x

3
C � � �

D 1C

1
X

nD1

.�1/
n 1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
x

n
:

This series converges for �1 < x � 1. (Use the alternating series test to get the

endpoint x D 1.)

E X A M P L E 3
Find the Maclaurin series for sin�1

x.

Solution Replace x with �t2 in the series obtained in the previous example to get

1
p

1 � t2
D 1C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
t
2n

.�1 < t < 1/.

Now integrate t from 0 to x:

sin�1
x D

Z x

0

dt
p

1 � t2
D

Z x

0

 

1C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ
t
2n

!

dt

D x C

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ.2nC 1/
x

2nC1

D x C
x3

6
C

3

40
x

5
C � � � .�1 < x < 1/.
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The Multinomial Theorem
The Binomial Theorem can be extended to provide for expansions of positive integer

powers of sums of more than two quantities. Before stating this Multinomial Theo-

rem, we require some new notation.

For an integer n � 2, let m D .m1; m2; : : : ; mn/ be an n-tuple of nonnegative

integers. We callm a multiindex of order n, and the number jmj D m1Cm2C� � �Cmn

the degree of the multiindex. In terms of multiindices, the Binomial Theorem can be

restated in the form

.x1 C x2/
k
D

X

jmjDk

�

kŠ

m1Šm2Š

�

x
m1

1 x
m2

2 D

X

jmjDk

kŠ

m1Šm2Š
x

m1

1 x
m2

2 ;

the sum being taken over all multiindices of order 2 having degree k. Here the binomial

coefficients have been rewritten in the form
�

k

m1m2

�

D

kŠ

m1Šm2Š
;

which is correct since m2 D k �m1.

T H E O R E M

24

The Multinomial Theorem

If m and k are integers satisfying n � 2 and k � 1, then

.x1 C x2 C � � � C xn/
k
D

X

jmjDk

kŠ

m1Šm2Š � � � mnŠ
x

m1

1 x
m2

2 � � � x
mn
n ;

the sum being taken over all multiindices m of order n and degree k.

Evidently, the Binomial Theorem is the special case n D 2. The proof of the Multi-

nomial Theorem can be carried out by induction on n. See Exercise 12 below.

The coefficients of the various products of powers of the variables xi in the Multi-

nomial Theorem are called multinomial coefficients. By analogy with the notation

used for binomial coefficients, ifm1C� � �Cmn D k, the multinomial coefficients can

be denoted
�

k

m1; m2; : : : ; mn

�

D

�

m1 Cm2 C � � � Cmn

m1; m2; : : : ; mn

�

D

kŠ

m1Šm2Š � � �mnŠ
: .�/

They are useful for counting distinct arrangements of objects where not all of the ob-

jects appear to be different.

E X A M P L E 4
The number of ways that k distinct objects can be arranged in a

sequence of positions 1, 2, : : : , k is kŠ because there are k choices

for the object to go in position 1, then k � 1 choices for the object to go into posi-

tion 2, and so on, until there is only 1 choice for the object to go into position k. But

what if the objects are not all distinct, but instead there are several objects of each of

n different types, say type 1, type 2, : : : , type n such that objects of the same type are

indistinguishable from one another. If you just look at positions in the sequence con-

taining objects of type j; and rearrange only those objects, you can’t tell the difference.

If there are mj objects of type j; (1 � j � n), then the number of distinct rearrange-

ments of the k objects is given by the multinomial coefficient .�/. For example, the

number of visually different arrangements of 9 balls, 2 of which are red, 3 green, and

4 blue is
�

9

2; 3; 4

�

D

9Š

2Š3Š4Š
D

362,880

288
D 1,260:
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Remark A direct proof of the Multinomial Theorem can be based on the above ex-

ample. When calculating the kth power of .x1Cx2C� � �Cxn/ by long multiplication,

we obtain a sum of monomials of degree k having the form x
m1

1 x
m2

2 � � � x
mn
n , where

m1 C m2 C � � � C mn D k. The number of ways you can arrange m1 factors x1, m2

factors x2, : : : , andmn factors xn to form that monomial is the multinomial coefficient

.�/. Since .x1 C x2 C � � � C xn/
k is the sum of all such monomials, we must have

.x1 C x2 C � � � C xn/
k
D

X

jmjDk

kŠ

m1Šm2Š � � � mnŠ
x

m1

1 x
m2

2 � � � x
mn
n :

E X E R C I S E S 9.8

Find Maclaurin series representations for the functions in

Exercises 1–8. Use the binomial series to calculate the answers.

1.
p

1C x 2. x
p

1 � x

3.
p

4C x 4.
1

p

4C x2

5. .1 � x/�2 6. .1C x/�3

7. cos�1
x 8. sinh�1

x

9.A (Binomial coefficients) Show that the binomial coefficients
 

n

k

!

D

nŠ

kŠ .n � k/Š
satisfy

(i)

 

n

0

!

D

 

n

n

!

D 1 for every n, and

(ii) if 0 � k � n, then

 

n

k � 1

!

C

 

n

k

!

D

 

nC 1

k

!

.

It follows that, for fixed n � 1, the binomial coefficients
 

n

0

!

;

 

n

1

!

;

 

n

2

!

; : : : ;

 

n

n

!

are the elements of the nth row of Pascal’s triangle below,

where each element with value greater than 1 is the sum of the

two diagonally above it.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

� �

� �

10.I (An inductive proof of the Binomial Theorem) Use

mathematical induction and the results of Exercise 9 to prove

the Binomial Theorem:

.aC b/
n
D

n
X

kD0

 

n

k

!

a
n�k

b
k

D a
n
C na

n�1
b C

 

n

2

!

a
n�2

b
2
C

 

n

3

!

a
n�3

b
3
C � � � C b

n
:

11.I (The Leibniz Rule) Use mathematical induction, the Product

Rule, and Exercise 9 to verify the Leibniz Rule for the nth

derivative of a product of two functions:

.fg/
.n/
D

n
X

kD0

 

n

k

!

f
.n�k/

g
.k/

D f
.n/
g C nf

.n�1/
g

0
C

 

n

2

!

f
.n�2/

g
00

C

 

n

3

!

f
.n�3/

g
.3/
C � � � C fg

.n/
:

12.I (Proof of the Multinomial Theorem) Use the Binomial

Theorem and induction on n to prove Theorem 24. Hint:

Assume the theorem holds for specific n and all k. Apply the

Binomial Theorem to

.x1 C � � � C xn C xnC1/
k
D

�

.x1 C � � � C xn/C xnC1

�k

.

13.I (A Multifunction Leibniz Rule) Use the technique of

Exercise 12 to generalize the Leibniz Rule of Exercise 11 to

calculate the kth derivative of a product of n functions

f1 f2 � � � fn.
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The Multinomial Theorem
The Binomial Theorem can be extended to provide for expansions of positive integer

powers of sums of more than two quantities. Before stating this Multinomial Theo-

rem, we require some new notation.

For an integer n � 2, let m D .m1; m2; : : : ; mn/ be an n-tuple of nonnegative

integers. We callm a multiindex of order n, and the number jmj D m1Cm2C� � �Cmn

the degree of the multiindex. In terms of multiindices, the Binomial Theorem can be

restated in the form

.x1 C x2/
k
D

X

jmjDk

�

kŠ

m1Šm2Š

�

x
m1

1 x
m2

2 D

X

jmjDk

kŠ

m1Šm2Š
x

m1

1 x
m2

2 ;

the sum being taken over all multiindices of order 2 having degree k. Here the binomial

coefficients have been rewritten in the form
�

k

m1m2

�

D

kŠ

m1Šm2Š
;

which is correct since m2 D k �m1.

T H E O R E M

24

The Multinomial Theorem

If m and k are integers satisfying n � 2 and k � 1, then

.x1 C x2 C � � � C xn/
k
D

X

jmjDk

kŠ

m1Šm2Š � � � mnŠ
x

m1

1 x
m2

2 � � � x
mn
n ;

the sum being taken over all multiindices m of order n and degree k.

Evidently, the Binomial Theorem is the special case n D 2. The proof of the Multi-

nomial Theorem can be carried out by induction on n. See Exercise 12 below.

The coefficients of the various products of powers of the variables xi in the Multi-

nomial Theorem are called multinomial coefficients. By analogy with the notation

used for binomial coefficients, ifm1C� � �Cmn D k, the multinomial coefficients can

be denoted
�

k

m1; m2; : : : ; mn

�

D

�

m1 Cm2 C � � � Cmn

m1; m2; : : : ; mn

�

D

kŠ

m1Šm2Š � � �mnŠ
: .�/

They are useful for counting distinct arrangements of objects where not all of the ob-

jects appear to be different.

E X A M P L E 4
The number of ways that k distinct objects can be arranged in a

sequence of positions 1, 2, : : : , k is kŠ because there are k choices

for the object to go in position 1, then k � 1 choices for the object to go into posi-

tion 2, and so on, until there is only 1 choice for the object to go into position k. But

what if the objects are not all distinct, but instead there are several objects of each of

n different types, say type 1, type 2, : : : , type n such that objects of the same type are

indistinguishable from one another. If you just look at positions in the sequence con-

taining objects of type j; and rearrange only those objects, you can’t tell the difference.

If there are mj objects of type j; (1 � j � n), then the number of distinct rearrange-

ments of the k objects is given by the multinomial coefficient .�/. For example, the

number of visually different arrangements of 9 balls, 2 of which are red, 3 green, and

4 blue is
�

9

2; 3; 4

�

D

9Š

2Š3Š4Š
D

362,880

288
D 1,260:
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Remark A direct proof of the Multinomial Theorem can be based on the above ex-

ample. When calculating the kth power of .x1Cx2C� � �Cxn/ by long multiplication,

we obtain a sum of monomials of degree k having the form x
m1

1 x
m2

2 � � � x
mn
n , where

m1 C m2 C � � � C mn D k. The number of ways you can arrange m1 factors x1, m2

factors x2, : : : , andmn factors xn to form that monomial is the multinomial coefficient

.�/. Since .x1 C x2 C � � � C xn/
k is the sum of all such monomials, we must have

.x1 C x2 C � � � C xn/
k
D

X

jmjDk

kŠ

m1Šm2Š � � � mnŠ
x

m1

1 x
m2

2 � � � x
mn
n :

E X E R C I S E S 9.8

Find Maclaurin series representations for the functions in

Exercises 1–8. Use the binomial series to calculate the answers.

1.
p

1C x 2. x
p

1 � x

3.
p

4C x 4.
1

p

4C x2

5. .1 � x/�2 6. .1C x/�3

7. cos�1
x 8. sinh�1

x

9.A (Binomial coefficients) Show that the binomial coefficients
 

n

k

!

D

nŠ

kŠ .n � k/Š
satisfy

(i)

 

n

0

!

D

 

n

n

!

D 1 for every n, and

(ii) if 0 � k � n, then

 

n

k � 1

!

C

 

n

k

!

D

 

nC 1

k

!

.

It follows that, for fixed n � 1, the binomial coefficients
 

n

0

!

;

 

n

1

!

;

 

n

2

!

; : : : ;

 

n

n

!

are the elements of the nth row of Pascal’s triangle below,

where each element with value greater than 1 is the sum of the

two diagonally above it.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

� �

� �

10.I (An inductive proof of the Binomial Theorem) Use

mathematical induction and the results of Exercise 9 to prove

the Binomial Theorem:

.aC b/
n
D

n
X

kD0

 

n

k

!

a
n�k

b
k

D a
n
C na

n�1
b C

 

n

2

!

a
n�2

b
2
C

 

n

3

!

a
n�3

b
3
C � � � C b

n
:

11.I (The Leibniz Rule) Use mathematical induction, the Product

Rule, and Exercise 9 to verify the Leibniz Rule for the nth

derivative of a product of two functions:

.fg/
.n/
D

n
X

kD0

 

n

k

!

f
.n�k/

g
.k/

D f
.n/
g C nf

.n�1/
g

0
C

 

n

2

!

f
.n�2/

g
00

C

 

n

3

!

f
.n�3/

g
.3/
C � � � C fg

.n/
:

12.I (Proof of the Multinomial Theorem) Use the Binomial

Theorem and induction on n to prove Theorem 24. Hint:

Assume the theorem holds for specific n and all k. Apply the

Binomial Theorem to

.x1 C � � � C xn C xnC1/
k
D

�

.x1 C � � � C xn/C xnC1

�k

.

13.I (A Multifunction Leibniz Rule) Use the technique of

Exercise 12 to generalize the Leibniz Rule of Exercise 11 to

calculate the kth derivative of a product of n functions

f1 f2 � � � fn.
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9.9 Fourier Series
As we have seen, power series representations of functions make it possible to ap-

proximate those functions as closely as we want in intervals near a particular point of

interest by using partial sums of the series, that is, polynomials. However, in many

important applications of mathematics, the functions involved are required to be peri-

odic. For example, much of electrical engineering is concerned with the analysis and

manipulation of waveforms, which are periodic functions of time. Polynomials are not

periodic functions, and for this reason power series are not well suited to representing

such functions.

Much more appropriate for the representations of periodic functions over extended

intervals are certain infinite series of periodic functions called Fourier series.

Periodic Functions
Recall that a function f defined on the real line is periodic with period T if

f .t C T / D f .t/ for all real t . .�/

This implies that f .t C mT / D f .t/ for any integer m, so that if T is a period of f;

then so is any multiple mT of T: The smallest positive number T for which .�/ holds

is called the fundamental period, or simply the period of f:

The entire graph of a function with period T can be obtained by shifting the part

of the graph in any half-open interval of length T (e.g., the interval Œ0; T /) to the left

or right by integer multiples of the period T: Figure 9.6 shows the graph of a function

of period 2.

Figure 9.6 This function has period 2.

Observe how the graph repeats the part in

the interval Œ0; 2/ over and over to the left

and right

y

�2

�1

1

2

t�6 �5 �4 �3 �2 �1 1 2 3 4 5 6

y D f .t/ D cos.�t/C 1
2

sin.2�t/

E X A M P L E 1
The functions g.t/ D cos.�t/ and h.t/ D sin.�t/ are both peri-

odic with period 2:

g.t C 2/ D cos.�t C 2�/ D cos.�t/ D g.t/:

The function k.t/ D sin.2�t/ also has period 2, but this is not its fundamental period.

The fundamental period is 1:

k.t C 1/ D sin.2�t C 2�/ D sin.2�t/ D k.t/:

The sum f .t/ D g.t/ C
1
2
k.t/ D cos.�t/ C 1

2
sin.2�t/, graphed in Figure 9.6, has

period 2, the least common multiple of the periods of its two terms.

E X A M P L E 2
For any positive integer n, the functions

fn.t/ D cos.n!t/ and gn.t/ D sin.n!t/
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both have fundamental period T D 2�=.n!/. The collection of all such functions

corresponding to all positive integers n have common period T D 2�=!, the funda-

mental period of f1 and g1. T is an integer multiple of the fundamental periods of

all the functions fn and gn. The subject of Fourier series is concerned with express-

ing general functions with period T as series whose terms are real multiples of these

functions.

Fourier Series
It can be shown (but we won’t do it here) that if f .t/ is periodic with fundamental

period T; is continuous, and has a piecewise continuous derivative on the real line,

then f .t/ is everywhere the sum of a series of the form

f .t/ D
a0

2
C

1
X

nD1

�

an cos.n!t/C bn sin.n!t/
�

, .��/

called the Fourier series of f; where ! D 2�=T and the sequences fang
1
nD0 and

fbng
1
nD1 are the Fourier coefficients of f: Determining the values of these coefficients

for a given such function f is made possible by the following identities, valid for

integers m and n, which are easily proved by using the addition formulas for sine and

cosine. (See Exercises 49–51 in Section 5.6.)

Z T

0

cos .n!t/ dt D
n

0 if n ¤ 0

T if n D 0
Z T

0

sin .n!t/ dt D 0

Z T

0

cos .m!t/ cos .n!t/ dt D

�

0 if m ¤ n

T=2 if m D n
Z T

0

sin .m!t/ sin .n!t/ dt D

�

0 if m ¤ n

T=2 if m D n
Z T

0

cos .m!t/ sin .n!t/ dt D 0:

If we multiply equation .��/ by cos.m!t/ (or by sin.m!t/) and integrate the resulting

equation over Œ0; T � term by term, all the terms on the right except the one involving

am (or bm) will be 0. (The term-by-term integration requires justification, but we won’t

try to do that here either.) The integration results in

Z T

0

f .t/ cos.m!t/ dt D
1

2
Tam

Z T

0

f .t/ sin.m!t/ dt D
1

2
T bm:

(Note that the first of these formulas is even valid for m D 0 because we chose to call

the constant term in the Fourier series a0=2 instead of a0.) Since the integrands are all

periodic with period T; the integrals can be taken over any interval of length T ; it is

often convenient to use Œ�T=2; T=2� instead of Œ0; T �. The Fourier coefficients of f

are therefore given by

an D
2

T

Z T=2

�T=2

f .t/ cos.n!t/ dt .n D 0; 1; 2; : : :/

bn D
2

T

Z T=2

�T=2

f .t/ sin.n!t/ dt .n D 1; 2; 3; : : :/;

where ! D 2�=T:
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9.9 Fourier Series
As we have seen, power series representations of functions make it possible to ap-

proximate those functions as closely as we want in intervals near a particular point of

interest by using partial sums of the series, that is, polynomials. However, in many

important applications of mathematics, the functions involved are required to be peri-

odic. For example, much of electrical engineering is concerned with the analysis and

manipulation of waveforms, which are periodic functions of time. Polynomials are not

periodic functions, and for this reason power series are not well suited to representing

such functions.

Much more appropriate for the representations of periodic functions over extended

intervals are certain infinite series of periodic functions called Fourier series.

Periodic Functions
Recall that a function f defined on the real line is periodic with period T if

f .t C T / D f .t/ for all real t . .�/

This implies that f .t C mT / D f .t/ for any integer m, so that if T is a period of f;

then so is any multiple mT of T: The smallest positive number T for which .�/ holds

is called the fundamental period, or simply the period of f:

The entire graph of a function with period T can be obtained by shifting the part

of the graph in any half-open interval of length T (e.g., the interval Œ0; T /) to the left

or right by integer multiples of the period T: Figure 9.6 shows the graph of a function

of period 2.

Figure 9.6 This function has period 2.

Observe how the graph repeats the part in

the interval Œ0; 2/ over and over to the left

and right

y

�2

�1

1

2

t�6 �5 �4 �3 �2 �1 1 2 3 4 5 6

y D f .t/ D cos.�t/C 1
2

sin.2�t/

E X A M P L E 1
The functions g.t/ D cos.�t/ and h.t/ D sin.�t/ are both peri-

odic with period 2:

g.t C 2/ D cos.�t C 2�/ D cos.�t/ D g.t/:

The function k.t/ D sin.2�t/ also has period 2, but this is not its fundamental period.

The fundamental period is 1:

k.t C 1/ D sin.2�t C 2�/ D sin.2�t/ D k.t/:

The sum f .t/ D g.t/ C
1
2
k.t/ D cos.�t/ C 1

2
sin.2�t/, graphed in Figure 9.6, has

period 2, the least common multiple of the periods of its two terms.

E X A M P L E 2
For any positive integer n, the functions

fn.t/ D cos.n!t/ and gn.t/ D sin.n!t/
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both have fundamental period T D 2�=.n!/. The collection of all such functions

corresponding to all positive integers n have common period T D 2�=!, the funda-

mental period of f1 and g1. T is an integer multiple of the fundamental periods of

all the functions fn and gn. The subject of Fourier series is concerned with express-

ing general functions with period T as series whose terms are real multiples of these

functions.

Fourier Series
It can be shown (but we won’t do it here) that if f .t/ is periodic with fundamental

period T; is continuous, and has a piecewise continuous derivative on the real line,

then f .t/ is everywhere the sum of a series of the form

f .t/ D
a0

2
C

1
X

nD1

�

an cos.n!t/C bn sin.n!t/
�

, .��/

called the Fourier series of f; where ! D 2�=T and the sequences fang
1
nD0 and

fbng
1
nD1 are the Fourier coefficients of f: Determining the values of these coefficients

for a given such function f is made possible by the following identities, valid for

integers m and n, which are easily proved by using the addition formulas for sine and

cosine. (See Exercises 49–51 in Section 5.6.)

Z T

0

cos .n!t/ dt D
n

0 if n ¤ 0

T if n D 0
Z T

0

sin .n!t/ dt D 0

Z T

0

cos .m!t/ cos .n!t/ dt D

�

0 if m ¤ n

T=2 if m D n
Z T

0

sin .m!t/ sin .n!t/ dt D

�

0 if m ¤ n

T=2 if m D n
Z T

0

cos .m!t/ sin .n!t/ dt D 0:

If we multiply equation .��/ by cos.m!t/ (or by sin.m!t/) and integrate the resulting

equation over Œ0; T � term by term, all the terms on the right except the one involving

am (or bm) will be 0. (The term-by-term integration requires justification, but we won’t

try to do that here either.) The integration results in

Z T

0

f .t/ cos.m!t/ dt D
1

2
Tam

Z T

0

f .t/ sin.m!t/ dt D
1

2
T bm:

(Note that the first of these formulas is even valid for m D 0 because we chose to call

the constant term in the Fourier series a0=2 instead of a0.) Since the integrands are all

periodic with period T; the integrals can be taken over any interval of length T ; it is

often convenient to use Œ�T=2; T=2� instead of Œ0; T �. The Fourier coefficients of f

are therefore given by

an D
2

T

Z T=2

�T=2

f .t/ cos.n!t/ dt .n D 0; 1; 2; : : :/

bn D
2

T

Z T=2

�T=2

f .t/ sin.n!t/ dt .n D 1; 2; 3; : : :/;

where ! D 2�=T:
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Figure 9.7 A sawtooth function of period

2�

y

t

�

y D f .t/

�� � 3�

E X A M P L E 3
Find the Fourier series of the sawtooth function f .t/ of period 2�

whose values in the interval Œ��; �� are given by f .t/ D � � jt j.

(See Figure 9.7.)

Solution Here T D 2� and ! D 2�=.2�/ D 1. Since f .t/ is an even function,

f .t/ sin.nt/ is odd, so all the Fourier sine coefficients bn are zero:

bn D
2

2�

Z �

��

f .t/ sin.nt/ dt D 0:

Also, f .t/ cos.nt/ is an even function, so

an D
2

2�

Z �

��

f .t/ cos.nt/ dt D
4

2�

Z �

0

f .t/ cos.nt/ dt

D

2

�

Z �

0

.� � t/ cos.nt/ dt

D

(

� if n D 0

0 if n ¤ 0 and n is even

4=.�n2/ if n is odd.

Since odd positive integers n are of the form n D 2k � 1, where k is a positive integer,

the Fourier series of f is given by

f .t/ D
�

2
C

1
X

kD1

4

�.2k � 1/2
cos
�

.2k � 1/t
�

:

Convergence of Fourier Series
The partial sums of a Fourier series are called Fourier polynomials because they can

be expressed as polynomials in sin.!t/ and cos.!t/, although we will not actually try

to write them that way. The Fourier polynomial of order m of the periodic function f

having period T is

fm.t/ D
a0

2
C

m
X

nD1

�

an cos.n!t/C bn sin.n!t/
�

;

where ! D 2�=T and the coefficients an (0 � n � m) and bn (1 � n � m) are given

by the integral formulas developed earlier.

E X A M P L E 4
The Fourier polynomial of order 3 of the sawtooth function of

Example 3 is

f3.t/ D
�

2
C

4

�
cos t C

4

9�
cos.3t/:

The graph of this function is shown in Figure 9.8. Observe that it appears to be a

reasonable approximation to the graph of f in Figure 9.7, but, being a finite sum of

differentiable functions, f3.t/ is itself differentiable everywhere, even at the integer

multiples of � where f is not differentiable.
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Figure 9.8 The Fourier polynomial

approximation f3.t/ to the sawtooth

function of Example 3

y

t

y D f3.t/ D
�

2
C

4

�
cos t C

4

9�
cos.3t/

�� � 3�

As noted earlier, the Fourier series of a function f .t/ that is periodic, continuous,

and has a piecewise continuous derivative on the real line converges to f .t/ at each

real number t . However, the Fourier coefficients (and hence the Fourier series) can be

calculated (by the formulas given above) for periodic functions with piecewise contin-

uous derivative even if the functions are not themselves continuous, but only piecewise

continuous.

Recall that f .t/ is piecewise continuous on the interval Œa; b� if there exists a

partition fa D x0 < x1 < x2 < � � � < xk D bg of Œa; b� and functions F1, F2, : : : , Fk ,

such that

(i) Fi is continuous on Œxi�1; xi �, and

(ii) f .t/ D Fi .t/ on .xi�1; xi /.

The integral of such a function f is the sum of integrals of the functions Fi :

Z b

a

f .t/ dt D

k
X

iD1

Z xi

xi�1

Fi .t/ dt:

Since f .t/ cos.n!t/ and f .t/ sin.n!t/ are piecewise continuous if f is, the Fourier

coefficients of a piecewise continuous, periodic function can be calculated by the same

formulas given for a continuous periodic function. The question of where and to what

the Fourier series converges in this case is answered by the following theorem, proved

in textbooks on Fourier analysis.

T H E O R E M

25

The Fourier series of a piecewise continuous, periodic function f with piecewise con-

tinuous derivative converges to that function at every point t where f is continuous.

Moreover, if f is discontinuous at t D c, then f has different, but finite, left and right

limits at c:

lim
t!c�

f .t/ D f .c�/; and lim
t!cC

f .t/ D f .cC/:

The Fourier series of f converges at t D c to the average of these left and right limits:

a0

2
C

1
X

nD1

�

an cos.n!c/C bn sin.n!c/
�

D

f .c�/C f .cC/

2
;

where ! D 2�=T:

E X A M P L E 5
Calculate the Fourier series for the periodic function f with period

2 satisfying

f .t/ D

n

�1 if �1 < x < 0

1 if 0 < x < 1.

Where does f fail to be continuous? To what does the Fourier series of f converge at

these points?
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Figure 9.7 A sawtooth function of period

2�

y

t

�

y D f .t/

�� � 3�

E X A M P L E 3
Find the Fourier series of the sawtooth function f .t/ of period 2�

whose values in the interval Œ��; �� are given by f .t/ D � � jt j.

(See Figure 9.7.)

Solution Here T D 2� and ! D 2�=.2�/ D 1. Since f .t/ is an even function,

f .t/ sin.nt/ is odd, so all the Fourier sine coefficients bn are zero:

bn D
2

2�

Z �

��

f .t/ sin.nt/ dt D 0:

Also, f .t/ cos.nt/ is an even function, so

an D
2

2�

Z �

��

f .t/ cos.nt/ dt D
4

2�

Z �

0

f .t/ cos.nt/ dt

D

2

�

Z �

0

.� � t/ cos.nt/ dt

D

(

� if n D 0

0 if n ¤ 0 and n is even

4=.�n2/ if n is odd.

Since odd positive integers n are of the form n D 2k � 1, where k is a positive integer,

the Fourier series of f is given by

f .t/ D
�

2
C

1
X

kD1

4

�.2k � 1/2
cos
�

.2k � 1/t
�

:

Convergence of Fourier Series
The partial sums of a Fourier series are called Fourier polynomials because they can

be expressed as polynomials in sin.!t/ and cos.!t/, although we will not actually try

to write them that way. The Fourier polynomial of order m of the periodic function f

having period T is

fm.t/ D
a0

2
C

m
X

nD1

�

an cos.n!t/C bn sin.n!t/
�

;

where ! D 2�=T and the coefficients an (0 � n � m) and bn (1 � n � m) are given

by the integral formulas developed earlier.

E X A M P L E 4
The Fourier polynomial of order 3 of the sawtooth function of

Example 3 is

f3.t/ D
�

2
C

4

�
cos t C

4

9�
cos.3t/:

The graph of this function is shown in Figure 9.8. Observe that it appears to be a

reasonable approximation to the graph of f in Figure 9.7, but, being a finite sum of

differentiable functions, f3.t/ is itself differentiable everywhere, even at the integer

multiples of � where f is not differentiable.
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Figure 9.8 The Fourier polynomial

approximation f3.t/ to the sawtooth

function of Example 3

y

t

y D f3.t/ D
�

2
C

4

�
cos t C

4

9�
cos.3t/

�� � 3�

As noted earlier, the Fourier series of a function f .t/ that is periodic, continuous,

and has a piecewise continuous derivative on the real line converges to f .t/ at each

real number t . However, the Fourier coefficients (and hence the Fourier series) can be

calculated (by the formulas given above) for periodic functions with piecewise contin-

uous derivative even if the functions are not themselves continuous, but only piecewise

continuous.

Recall that f .t/ is piecewise continuous on the interval Œa; b� if there exists a

partition fa D x0 < x1 < x2 < � � � < xk D bg of Œa; b� and functions F1, F2, : : : , Fk ,

such that

(i) Fi is continuous on Œxi�1; xi �, and

(ii) f .t/ D Fi .t/ on .xi�1; xi /.

The integral of such a function f is the sum of integrals of the functions Fi :

Z b

a

f .t/ dt D

k
X

iD1

Z xi

xi�1

Fi .t/ dt:

Since f .t/ cos.n!t/ and f .t/ sin.n!t/ are piecewise continuous if f is, the Fourier

coefficients of a piecewise continuous, periodic function can be calculated by the same

formulas given for a continuous periodic function. The question of where and to what

the Fourier series converges in this case is answered by the following theorem, proved

in textbooks on Fourier analysis.

T H E O R E M

25

The Fourier series of a piecewise continuous, periodic function f with piecewise con-

tinuous derivative converges to that function at every point t where f is continuous.

Moreover, if f is discontinuous at t D c, then f has different, but finite, left and right

limits at c:

lim
t!c�

f .t/ D f .c�/; and lim
t!cC

f .t/ D f .cC/:

The Fourier series of f converges at t D c to the average of these left and right limits:

a0

2
C

1
X

nD1

�

an cos.n!c/C bn sin.n!c/
�

D

f .c�/C f .cC/

2
;

where ! D 2�=T:

E X A M P L E 5
Calculate the Fourier series for the periodic function f with period

2 satisfying

f .t/ D

n

�1 if �1 < x < 0

1 if 0 < x < 1.

Where does f fail to be continuous? To what does the Fourier series of f converge at

these points?
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Solution Here T D 2 and ! D 2�=2 D � . Since f is an odd function, its cosine

coefficients are all zero:

an D

Z 1

�1

f .t/ cos.n�t/ dt D 0: (The integrand is odd.)

The same symmetry implies that

bn D

Z 1

�1

f .t/ sin.n�t/ dt

D 2

Z 1

0

sin.n�t/ dt D �
2 cos.n�t/

n�

ˇ

ˇ

ˇ

ˇ

1

0

D �

2

n�

�

.�1/
n
� 1

�

D

n

4=.n�/ if n is odd

0 if n is even.

Odd integers n are of the form n D 2k � 1 for k D 1, 2, 3, : : : . Therefore, the Fourier

series of f is

4

�

1
X

kD1

1

2k � 1
sin
�

.2k � 1/�t
�

D

4

�

�

sin.�t/C
1

3
sin.3�t/C

1

5
sin.5�t/C � � �

�

:

Note that f is continuous except at the points where t is an integer. At each of these

points f jumps from �1 to 1 or from 1 to �1, so the average of the left and right limits

of f at these points is 0. Observe that the sum of the Fourier series is 0 at integer

values of t , in accordance with Theorem 25. See Figure 9.9.

Figure 9.9 The piecewise continuous

function f (blue) of Example 5 and its

Fourier polynomial f15 (red)

f15.t/ D

8
X

kD1

4 sin
�

.2k � 1/�t

�

.2k � 1/�

y

t

1 2

�1

1

Fourier Cosine and Sine Series
As observed in Example 3 and Example 5, even functions have no sine terms in their

Fourier series, and odd functions have no cosine terms (including the constant term

a0=2). It is often necessary in applications to find a Fourier series representation of a

given function defined on a finite interval Œ0; a� having either no sine terms (a Fourier

cosine series) or no cosine terms (a Fourier sine series). This is accomplished by

extending the domain of f to Œ�a; 0/ so as to make f either even or odd on Œ�a; a�,

f .�t/ D f .t/ if �a � t < 0 for the even extension

f .�t/ D �f .t/ if �a � t < 0 for the odd extension,

and then calculating its Fourier series considering the extended f to have period 2a.

(If we want the odd extension, we may have to redefine f .0/ to be 0.)

E X A M P L E 6
Find the Fourier cosine series of g.t/ D � � t defined on Œ0; ��.
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Solution The even extension of g.t/ to Œ��; �� is the function f of Example 3.

Thus, the Fourier cosine series of g is

�

2
C

1
X

kD1

4

�.2k � 1/2
cos
�

.2k � 1/t
�

:

E X A M P L E 7
Find the Fourier sine series of h.t/ D 1 defined on Œ0; 1�.

Solution If we redefine h.0/ D 0, then the odd extension of h to Œ�1; 1� coincides

with the function f .t/ of Example 5 except that the latter function is undefined at

t D 0. The Fourier sine series of h is the series obtained in Example 5, namely,

4

�

1
X

kD1

1

2k � 1
sin
�

.2k � 1/�t
�

:

Remark Fourier cosine and sine series are treated from a different perspective in

Section 13.5.

E X E R C I S E S 9.9

In Exercises 1–4, what is the fundamental period of the given

function?

1. f .t/ D sin.3t/ 2. g.t/ D cos.3C �t/

3. h.t/ D cos2
t 4. k.t/ D sin.2t/C cos.3t/

In Exercises 5–8, find the Fourier series of the given function.

5. f .t/ D t , �� < t � � , f has period 2� .

6. f .t/ D

�

0 if 0 � t < 1

1 if 1 � t < 2,
f has period 2.

7. f .t/ D

�

0 if �1 � t < 0

t if 0 � t < 1,
f has period 2.

8. f .t/ D

(

t if 0 � t < 1

1 if 1 � t < 2

3 � t if 2 � t < 3,

f has period 3.

9. What is the Fourier cosine series of the function h.t/ of

Example 7?

10. Calculate the Fourier sine series of the function g.t/ of

Example 6.

11. Find the Fourier sine series of f .t/ D t on Œ0; 1�.

12. Find the Fourier cosine series of f .t/ D t on Œ0; 1�.

13. Use the result of Example 3 to evaluate

1
X

nD1

1

.2n � 1/2
D 1C

1

32
C

1

52
C � � � :

14.A Verify that if f is an even function of period T , then the

Fourier sine coefficients bn of f are all zero and the Fourier

cosine coefficients an of f are given by

an D
4

T

Z T=2

0

f .t/ cos.n!t/ dt; n D 0; 1; 2; : : : ;

where ! D 2�=T: State and verify the corresponding result

for odd functions f:

C H A P T E R R E V I E W

Key Ideas

� What does it mean to say that the sequence fang

˘ is bounded above? ˘ is ultimately positive?

˘ is alternating? ˘ is increasing?

˘ converges? ˘ diverges to infinity?

� What does it mean to say that the series
P1

nD1 an

˘ converges? ˘ diverges?

˘ is geometric? ˘ is telescoping?

˘ is a p-series? ˘ is positive?

˘ converges absolutely? ˘ converges conditionally?
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Solution Here T D 2 and ! D 2�=2 D � . Since f is an odd function, its cosine

coefficients are all zero:

an D

Z 1

�1

f .t/ cos.n�t/ dt D 0: (The integrand is odd.)

The same symmetry implies that

bn D

Z 1

�1

f .t/ sin.n�t/ dt

D 2

Z 1

0

sin.n�t/ dt D �
2 cos.n�t/

n�

ˇ

ˇ

ˇ

ˇ

1

0

D �

2

n�

�

.�1/
n
� 1

�

D

n

4=.n�/ if n is odd

0 if n is even.

Odd integers n are of the form n D 2k � 1 for k D 1, 2, 3, : : : . Therefore, the Fourier

series of f is

4

�

1
X

kD1

1

2k � 1
sin
�

.2k � 1/�t
�

D

4

�

�

sin.�t/C
1

3
sin.3�t/C

1

5
sin.5�t/C � � �

�

:

Note that f is continuous except at the points where t is an integer. At each of these

points f jumps from �1 to 1 or from 1 to �1, so the average of the left and right limits

of f at these points is 0. Observe that the sum of the Fourier series is 0 at integer

values of t , in accordance with Theorem 25. See Figure 9.9.

Figure 9.9 The piecewise continuous

function f (blue) of Example 5 and its

Fourier polynomial f15 (red)

f15.t/ D

8
X

kD1

4 sin
�

.2k � 1/�t

�

.2k � 1/�

y

t

1 2

�1

1

Fourier Cosine and Sine Series
As observed in Example 3 and Example 5, even functions have no sine terms in their

Fourier series, and odd functions have no cosine terms (including the constant term

a0=2). It is often necessary in applications to find a Fourier series representation of a

given function defined on a finite interval Œ0; a� having either no sine terms (a Fourier

cosine series) or no cosine terms (a Fourier sine series). This is accomplished by

extending the domain of f to Œ�a; 0/ so as to make f either even or odd on Œ�a; a�,

f .�t/ D f .t/ if �a � t < 0 for the even extension

f .�t/ D �f .t/ if �a � t < 0 for the odd extension,

and then calculating its Fourier series considering the extended f to have period 2a.

(If we want the odd extension, we may have to redefine f .0/ to be 0.)

E X A M P L E 6
Find the Fourier cosine series of g.t/ D � � t defined on Œ0; ��.
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Solution The even extension of g.t/ to Œ��; �� is the function f of Example 3.

Thus, the Fourier cosine series of g is

�

2
C

1
X

kD1

4

�.2k � 1/2
cos
�

.2k � 1/t
�

:

E X A M P L E 7
Find the Fourier sine series of h.t/ D 1 defined on Œ0; 1�.

Solution If we redefine h.0/ D 0, then the odd extension of h to Œ�1; 1� coincides

with the function f .t/ of Example 5 except that the latter function is undefined at

t D 0. The Fourier sine series of h is the series obtained in Example 5, namely,

4

�

1
X

kD1

1

2k � 1
sin
�

.2k � 1/�t
�

:

Remark Fourier cosine and sine series are treated from a different perspective in

Section 13.5.

E X E R C I S E S 9.9

In Exercises 1–4, what is the fundamental period of the given

function?

1. f .t/ D sin.3t/ 2. g.t/ D cos.3C �t/

3. h.t/ D cos2
t 4. k.t/ D sin.2t/C cos.3t/

In Exercises 5–8, find the Fourier series of the given function.

5. f .t/ D t , �� < t � � , f has period 2� .

6. f .t/ D

�

0 if 0 � t < 1

1 if 1 � t < 2,
f has period 2.

7. f .t/ D

�

0 if �1 � t < 0

t if 0 � t < 1,
f has period 2.

8. f .t/ D

(

t if 0 � t < 1

1 if 1 � t < 2

3 � t if 2 � t < 3,

f has period 3.

9. What is the Fourier cosine series of the function h.t/ of

Example 7?

10. Calculate the Fourier sine series of the function g.t/ of

Example 6.

11. Find the Fourier sine series of f .t/ D t on Œ0; 1�.

12. Find the Fourier cosine series of f .t/ D t on Œ0; 1�.

13. Use the result of Example 3 to evaluate

1
X

nD1

1

.2n � 1/2
D 1C

1

32
C

1

52
C � � � :

14.A Verify that if f is an even function of period T , then the

Fourier sine coefficients bn of f are all zero and the Fourier

cosine coefficients an of f are given by

an D
4

T

Z T=2

0

f .t/ cos.n!t/ dt; n D 0; 1; 2; : : : ;

where ! D 2�=T: State and verify the corresponding result

for odd functions f:

C H A P T E R R E V I E W

Key Ideas

� What does it mean to say that the sequence fang

˘ is bounded above? ˘ is ultimately positive?

˘ is alternating? ˘ is increasing?

˘ converges? ˘ diverges to infinity?

� What does it mean to say that the series
P1

nD1 an

˘ converges? ˘ diverges?

˘ is geometric? ˘ is telescoping?

˘ is a p-series? ˘ is positive?

˘ converges absolutely? ˘ converges conditionally?
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� State the following convergence tests for series:

˘ the integral test ˘ the comparison test

˘ the limit comparison test ˘ the ratio test

˘ the alternating series test

� How can you find bounds for the tail of a series?

� What is a bound for the tail of an alternating series?

� What do the following terms and phrases mean?

˘ a power series ˘ interval of convergence

˘ radius of convergence ˘ centre of convergence

˘ a Taylor series ˘ a Maclaurin series

˘ a Taylor polynomial ˘ a binomial series

˘ an analytic function

� Where is the sum of a power series differentiable?

� Where does the integral of a power series converge?

� Where is the sum of a power series continuous?

� State Taylor’s Theorem with Lagrange remainder.

� State Taylor’s Theorem with integral remainder.

� What is the Binomial Theorem?

� What is a Fourier series?

� What is a Fourier cosine series? a Fourier sine series?

Review Exercises

In Exercises 1–4, determine whether the given sequence converges,

and find its limit if it does converge.

1.

�

.�1/nen

nŠ

�

2.

�

n100
C 2n�

2n

�

3.

�

lnn

tan�1n

�

4.

�

.�1/nn2

�n.n � �/

�

5. Let a1 >
p

2, and let

anC1 D
an

2
C

1

an

for n D 1; 2; 3; : : :

Show that fang is decreasing and that an >
p

2 for n � 1.

Why must fang converge? Find limn!1 an.

6. Find the limit of the sequence fln ln.nC 1/ � ln lnng.

Evaluate the sums of the series in Exercises 7–10.

7.

1
X

nD1

2
�.n�5/=2 8.

1
X

nD0

4n�1

.� � 1/2n

9.

1
X

nD1

1

n2
�

1
4

10.

1
X

nD1

1

n2
�

9
4

Determine whether the series in Exercises 11–16 converge or di-

verge. Give reasons for your answers.

11.

1
X

nD1

n � 1

n3
12.

1
X

nD1

nC 2n

1C 3n

13.

1
X

nD1

n

.1C n/.1C n
p

n/
14.

1
X

nD1

n2

.1C 2n/.1C n
p

n/

15.

1
X

nD1

32nC1

nŠ
16.

1
X

nD1

nŠ

.nC 2/ŠC 1

Do the series in Exercises 17–20 converge absolutely, converge con-

ditionally, or diverge?

17.

1
X

nD1

.�1/n�1

1C n3
18.

1
X

nD1

.�1/n

2n
� n

19.

1
X

nD10

.�1/n�1

ln lnn
20.

1
X

nD1

n2 cos.n�/

1C n3

For what values of x do the series in Exercises 21–22 converge

absolutely? converge conditionally? diverge?

21.

1
X

nD1

.x � 2/n

3n
p

n
22.

1
X

nD1

.5 � 2x/n

n

Determine the sums of the series in Exercises 23–24 to within

0:001.

23.

1
X

nD1

1

n3
24.

1
X

nD1

1

4C n2

In Exercises 25–32, find Maclaurin series for the given functions.

State where each series converges to the function.

25.
1

3 � x
26.

x

3 � x2

27. ln.e C x2
/ 28.

1 � e�2x

x

29. x cos2
x 30. sin.x C .�=3//

31. .8C x/�1=3 32. .1C x/1=3

Find Taylor series for the functions in Exercises 33–34 about the

indicated points x D c.

33. 1=x; c D � 34. sinx C cos x; c D �=4

Find the Maclaurin polynomial of the indicated degree for the func-

tions in Exercises 35–38.

35. ex2C2x
; degree 3 36. sin.1C x/; degree 3

37. cos.sinx/; degree 4 38.
p

1C sinx; degree 4

39. What function has Maclaurin series

1 �
x

2Š
C

x
2

4Š
� � � � D

1
X

nD0

.�1/
n
x

n

.2n/Š
‹

40. A function f .x/ has Maclaurin series

1C x
2
C

x4

22
C

x6

32
C � � � D 1C

1
X

nD1

x2n

n2
:

Find f .k/.0/ for all positive integers k.

Find the sums of the series in Exercises 41–44.

41.

1
X

nD0

nC 1

�n
42.I

1
X

nD0

n2

�n

43.

1
X

nD1

1

nen
44.I

1
X

nD2

.�1/n�2n�4

.2n� 1/Š

45. If S.x/ D

Z x

0

sin.t2/ dt , find lim
x!0

x3
� 3S.x/

x7
.

46. Use series to evaluate lim
x!0

.x � tan�1x/.e2x
� 1/

2x2
� 1C cos.2x/

.
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47. How many nonzero terms in the Maclaurin series for e�x4

are

needed to evaluate
R 1=2

0 e�x4

dx correct to 5 decimal places?

Evaluate the integral to that accuracy.

48. Estimate the size of the error if the Taylor polynomial of degree

4 about x D �=2 for f .x/ D ln sinx is used to approximate

ln sin.1:5/.

49. Find the Fourier sine series for f .t/ D � � t on Œ0; ��.

50. Find the Fourier series for f .t/ D

�

1 if �� < t � 0

t if 0 < t � � .

Challenging Problems

1. (A refinement of the ratio test) Suppose an > 0 and

anC1=an � n=.nC 1/ for all n. Show that
P1

nD1 an diverges.

Hint: an � K=n for some constant K.

2.I (Summation by parts) Let fung and fvng be two sequences,

and let sn D
Pn

kD1 vk .

(a) Show that
Pn

kD1 ukvk D unC1snC
Pn

kD1.uk�ukC1/sn.

(Hint: Write vn D sn � sn�1, with s0 D 0, and rearrange

the sum.)

(b) If fung is positive, decreasing, and convergent to 0, and

if fvng has bounded partial sums, jsnj � K for all n,

where K is a constant, show that
P1

nD1 unvn converges.

(Hint: Show that the series
P1

nD1.un�unC1/sn converges

by comparing it to the telescoping series
P1

nD1.un �

unC1/.)

3.I Show that
P1

nD1.1=n/ sin.nx/ converges for every x. Hint: If

x is an integer multiple of � , all the terms in the series are 0,

so there is nothing to prove. Otherwise, sin.x=2/ ¤ 0. In this

case show that

N
X

nD1

sin.nx/ D
cos.x=2/ � cos..N C 1=2/x/

2 sin.x=2/

using the identity

sin a sin b D
cos.a � b/ � cos.aC b/

2

to make the sum telescope. Then apply the result of Problem

2(b) with un D 1=n and vn D sin.nx/.

4. Let a1; a2; a3; : : : be those positive integers that do not contain

the digit 0 in their decimal representations. Thus, a1 D 1,

a2 D 2, : : : ; a9 D 9, a10 D 11, : : : ; a18 D 19, a19 D 21,

: : : ; a90 D 99, a91 D 111, etc. Show that the series

1
X

nD1

1

an

converges and that the sum is less than 90. (Hint: How many

of these integers havem digits? Each term 1=an, where an has

m digits, is less than 10�mC1.)

5.I (Using an integral to improve convergence) Recall the error

formula for the Midpoint Rule, according to which

Z kC1=2

k�1=2

f .x/ dx � f .k/ D
f 00.c/

24
;

where k � .1=2/ � c � k C .1=2/.

(a) If f 00.x/ is a decreasing function of x, show that

f
0
.k C

3
2
/ � f

0
.k C

1
2
/ � f

00
.c/ � f

0
.k �

1
2
/ � f

0
.k �

3
2
/:

(b) If (i) f 00.x/ is a decreasing function of x,

(ii)
R1

N C1=2 f .x/ dx converges, and (iii) f 0
.x/ ! 0 as

x !1, show that

f 0.N � 1
2
/

24
�

1
X

nDN C1

f .n/ �

Z 1

N C1=2

f .x/ dx �
f 0.N C 3

2
/

24
:

(c) Use the result of part (b) to approximate
P1

nD1 1=n
2 to

within 0.001.

6.I (The number e is irrational) Start with e D
P1

nD0 1=nŠ.

(a) Use the technique of Example 7 in Section 9.3 to show that

for any n > 0,

0 < e �

n
X

j D0

1

j Š
<

1

nŠn
:

(Note that the sum here has nC 1 terms, not n terms.)

(b) Suppose that e is a rational number, say e D M=N for

certain positive integers M and N: Show that

NŠ

�

e �
PN

j D0.1=j Š/

�

is an integer.

(c) Combine parts (a) and (b) to show that there is an integer

between 0 and 1=N: Why is this not possible? Conclude

that e cannot be a rational number.

7. Let

f .x/ D

1
X

kD0

22kkŠ

.2k C 1/Š
x

2kC1

D x C
2

3
x

3
C

4

3 � 5
x

5
C

8

3 � 5 � 7
x

7
C : : : :

(a) Find the radius of convergence of this power series.

(b) Show that f 0.x/ D 1C 2xf .x/.

(c) What is
d

dx

�

e
�x2

f .x/

�

?

(d) Express f .x/ in terms of an integral.

8.I (The number � is irrational) Problem 6 above shows how to

prove that e is irrational by assuming the contrary and deducing

a contradiction. In this problem you will show that � is also

irrational. The proof for � is also by contradiction but is rather

more complicated, so it will be broken down into several parts.

(a) Let f .x/ be a polynomial, and let

g.x/ D f .x/ � f
00
.x/C f

.4/
.x/ � f

.6/
.x/C � � �

D

1
X

j D0

.�1/
j
f

.2j /
.x/:

(Since f is a polynomial, all but a finite number of terms

in the above sum are identically zero, so there are no con-

vergence problems.) Verify that

d

dx

�

g
0
.x/ sinx � g.x/ cosx

�

D f .x/ sinx;

and hence that

Z �

0

f .x/ sinx dx D g.�/C g.0/.
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� State the following convergence tests for series:

˘ the integral test ˘ the comparison test

˘ the limit comparison test ˘ the ratio test

˘ the alternating series test

� How can you find bounds for the tail of a series?

� What is a bound for the tail of an alternating series?

� What do the following terms and phrases mean?

˘ a power series ˘ interval of convergence

˘ radius of convergence ˘ centre of convergence

˘ a Taylor series ˘ a Maclaurin series

˘ a Taylor polynomial ˘ a binomial series

˘ an analytic function

� Where is the sum of a power series differentiable?

� Where does the integral of a power series converge?

� Where is the sum of a power series continuous?

� State Taylor’s Theorem with Lagrange remainder.

� State Taylor’s Theorem with integral remainder.

� What is the Binomial Theorem?

� What is a Fourier series?

� What is a Fourier cosine series? a Fourier sine series?

Review Exercises

In Exercises 1–4, determine whether the given sequence converges,

and find its limit if it does converge.

1.

�

.�1/nen

nŠ

�

2.

�

n100
C 2n�

2n

�

3.

�

lnn

tan�1n

�

4.

�

.�1/nn2

�n.n � �/

�

5. Let a1 >
p

2, and let

anC1 D
an

2
C

1

an

for n D 1; 2; 3; : : :

Show that fang is decreasing and that an >
p

2 for n � 1.

Why must fang converge? Find limn!1 an.

6. Find the limit of the sequence fln ln.nC 1/ � ln lnng.

Evaluate the sums of the series in Exercises 7–10.

7.

1
X

nD1

2
�.n�5/=2 8.

1
X

nD0

4n�1

.� � 1/2n

9.

1
X

nD1

1

n2
�

1
4

10.

1
X

nD1

1

n2
�

9
4

Determine whether the series in Exercises 11–16 converge or di-

verge. Give reasons for your answers.

11.

1
X

nD1

n � 1

n3
12.

1
X

nD1

nC 2n

1C 3n

13.

1
X

nD1

n

.1C n/.1C n
p

n/
14.

1
X

nD1

n2

.1C 2n/.1C n
p

n/

15.

1
X

nD1

32nC1

nŠ
16.

1
X

nD1

nŠ

.nC 2/ŠC 1

Do the series in Exercises 17–20 converge absolutely, converge con-

ditionally, or diverge?

17.

1
X

nD1

.�1/n�1

1C n3
18.

1
X

nD1

.�1/n

2n
� n

19.

1
X

nD10

.�1/n�1

ln lnn
20.

1
X

nD1

n2 cos.n�/

1C n3

For what values of x do the series in Exercises 21–22 converge

absolutely? converge conditionally? diverge?

21.

1
X

nD1

.x � 2/n

3n
p

n
22.

1
X

nD1

.5 � 2x/n

n

Determine the sums of the series in Exercises 23–24 to within

0:001.

23.

1
X

nD1

1

n3
24.

1
X

nD1

1

4C n2

In Exercises 25–32, find Maclaurin series for the given functions.

State where each series converges to the function.

25.
1

3 � x
26.

x

3 � x2

27. ln.e C x2
/ 28.

1 � e�2x

x

29. x cos2
x 30. sin.x C .�=3//

31. .8C x/�1=3 32. .1C x/1=3

Find Taylor series for the functions in Exercises 33–34 about the

indicated points x D c.

33. 1=x; c D � 34. sinx C cos x; c D �=4

Find the Maclaurin polynomial of the indicated degree for the func-

tions in Exercises 35–38.

35. ex2C2x
; degree 3 36. sin.1C x/; degree 3

37. cos.sinx/; degree 4 38.
p

1C sinx; degree 4

39. What function has Maclaurin series

1 �
x

2Š
C

x
2

4Š
� � � � D

1
X

nD0

.�1/
n
x

n

.2n/Š
‹

40. A function f .x/ has Maclaurin series

1C x
2
C

x4

22
C

x6

32
C � � � D 1C

1
X

nD1

x2n

n2
:

Find f .k/.0/ for all positive integers k.

Find the sums of the series in Exercises 41–44.

41.

1
X

nD0

nC 1

�n
42.I

1
X

nD0

n2

�n

43.

1
X

nD1

1

nen
44.I

1
X

nD2

.�1/n�2n�4

.2n� 1/Š

45. If S.x/ D

Z x

0

sin.t2/ dt , find lim
x!0

x3
� 3S.x/

x7
.

46. Use series to evaluate lim
x!0

.x � tan�1x/.e2x
� 1/

2x2
� 1C cos.2x/

.
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47. How many nonzero terms in the Maclaurin series for e�x4

are

needed to evaluate
R 1=2

0 e�x4

dx correct to 5 decimal places?

Evaluate the integral to that accuracy.

48. Estimate the size of the error if the Taylor polynomial of degree

4 about x D �=2 for f .x/ D ln sinx is used to approximate

ln sin.1:5/.

49. Find the Fourier sine series for f .t/ D � � t on Œ0; ��.

50. Find the Fourier series for f .t/ D

�

1 if �� < t � 0

t if 0 < t � � .

Challenging Problems

1. (A refinement of the ratio test) Suppose an > 0 and

anC1=an � n=.nC 1/ for all n. Show that
P1

nD1 an diverges.

Hint: an � K=n for some constant K.

2.I (Summation by parts) Let fung and fvng be two sequences,

and let sn D
Pn

kD1 vk .

(a) Show that
Pn

kD1 ukvk D unC1snC
Pn

kD1.uk�ukC1/sn.

(Hint: Write vn D sn � sn�1, with s0 D 0, and rearrange

the sum.)

(b) If fung is positive, decreasing, and convergent to 0, and

if fvng has bounded partial sums, jsnj � K for all n,

where K is a constant, show that
P1

nD1 unvn converges.

(Hint: Show that the series
P1

nD1.un�unC1/sn converges

by comparing it to the telescoping series
P1

nD1.un �

unC1/.)

3.I Show that
P1

nD1.1=n/ sin.nx/ converges for every x. Hint: If

x is an integer multiple of � , all the terms in the series are 0,

so there is nothing to prove. Otherwise, sin.x=2/ ¤ 0. In this

case show that

N
X

nD1

sin.nx/ D
cos.x=2/ � cos..N C 1=2/x/

2 sin.x=2/

using the identity

sin a sin b D
cos.a � b/ � cos.aC b/

2

to make the sum telescope. Then apply the result of Problem

2(b) with un D 1=n and vn D sin.nx/.

4. Let a1; a2; a3; : : : be those positive integers that do not contain

the digit 0 in their decimal representations. Thus, a1 D 1,

a2 D 2, : : : ; a9 D 9, a10 D 11, : : : ; a18 D 19, a19 D 21,

: : : ; a90 D 99, a91 D 111, etc. Show that the series

1
X

nD1

1

an

converges and that the sum is less than 90. (Hint: How many

of these integers havem digits? Each term 1=an, where an has

m digits, is less than 10�mC1.)

5.I (Using an integral to improve convergence) Recall the error

formula for the Midpoint Rule, according to which

Z kC1=2

k�1=2

f .x/ dx � f .k/ D
f 00.c/

24
;

where k � .1=2/ � c � k C .1=2/.

(a) If f 00.x/ is a decreasing function of x, show that

f
0
.k C

3
2
/ � f

0
.k C

1
2
/ � f

00
.c/ � f

0
.k �

1
2
/ � f

0
.k �

3
2
/:

(b) If (i) f 00.x/ is a decreasing function of x,

(ii)
R1

N C1=2 f .x/ dx converges, and (iii) f 0
.x/ ! 0 as

x !1, show that

f 0.N � 1
2
/

24
�

1
X

nDN C1

f .n/ �

Z 1

N C1=2

f .x/ dx �
f 0.N C 3

2
/

24
:

(c) Use the result of part (b) to approximate
P1

nD1 1=n
2 to

within 0.001.

6.I (The number e is irrational) Start with e D
P1

nD0 1=nŠ.

(a) Use the technique of Example 7 in Section 9.3 to show that

for any n > 0,

0 < e �

n
X

j D0

1

j Š
<

1

nŠn
:

(Note that the sum here has nC 1 terms, not n terms.)

(b) Suppose that e is a rational number, say e D M=N for

certain positive integers M and N: Show that

NŠ

�

e �
PN

j D0.1=j Š/

�

is an integer.

(c) Combine parts (a) and (b) to show that there is an integer

between 0 and 1=N: Why is this not possible? Conclude

that e cannot be a rational number.

7. Let

f .x/ D

1
X

kD0

22kkŠ

.2k C 1/Š
x

2kC1

D x C
2

3
x

3
C

4

3 � 5
x

5
C

8

3 � 5 � 7
x

7
C : : : :

(a) Find the radius of convergence of this power series.

(b) Show that f 0.x/ D 1C 2xf .x/.

(c) What is
d

dx

�

e
�x2

f .x/

�

?

(d) Express f .x/ in terms of an integral.

8.I (The number � is irrational) Problem 6 above shows how to

prove that e is irrational by assuming the contrary and deducing

a contradiction. In this problem you will show that � is also

irrational. The proof for � is also by contradiction but is rather

more complicated, so it will be broken down into several parts.

(a) Let f .x/ be a polynomial, and let

g.x/ D f .x/ � f
00
.x/C f

.4/
.x/ � f

.6/
.x/C � � �

D

1
X

j D0

.�1/
j
f

.2j /
.x/:

(Since f is a polynomial, all but a finite number of terms

in the above sum are identically zero, so there are no con-

vergence problems.) Verify that

d

dx

�

g
0
.x/ sinx � g.x/ cosx

�

D f .x/ sinx;

and hence that

Z �

0

f .x/ sinx dx D g.�/C g.0/.
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(b) Suppose that � is rational, say, � D m=n, where m and

n are positive integers. You will show that this leads to

a contradiction and thus cannot be true. Choose a posi-

tive integer k such that .�m/k=kŠ < 1=2. (Why is this

possible?) Consider the polynomial

f .x/ D
xk.m � nx/k

kŠ
D

1

kŠ

k
X

j D0

�

k

j

�

m
k�j

.�n/
j
x

j Ck
:

Show that 0 < f .x/ < 1=2 for 0 < x < � , and hence that

0 <

Z �

0

f .x/ sinx dx < 1. Thus, 0 < g.�/C g.0/ < 1,

where g.x/ is defined as in part (a).

(c) Show that the i th derivative of f .x/ is given by

f
.i/
.x/ D

1

kŠ

k
X

j D0

�

k

j

�

m
k�j

.�n/
j .j C k/Š

.j C k � i /Š
x

j Ck�i
:

(d) Show that f .i/.0/ is an integer for i D 0, 1, 2, : : : . (Hint:

Observe for i < k that f .i/
.0/ D 0, and for i > 2k

that f .i/.x/ D 0 for all x. For k � i � 2k, show that

only one term in the sum for f .i/.0/ is not 0, and that this

term is an integer. You will need the fact that the binomial

coefficients
�

k
j

�

are integers.)

(e) Show that f .� � x/ D f .x/ for all x, and hence that

f .i/.�/ is also an integer for each i D 0, 1, 2, : : : . There-

fore, if g.x/ is defined as in (a), then g.�/ C g.0/ is an

integer. This contradicts the conclusion of part (b) and so

shows that � cannot be rational.

9.I (An asymptotic series) Integrate by parts to show that

Z x

0

e
�1=t

dt D e
�1=x

N
X

nD2

.�1/
n
.n � 1/Šx

n

C .�1/
N C1

NŠ

Z x

0

t
N �1

e
�1=t

dt:

Why can’t you just use a Maclaurin series to approximate

this integral? Using N D 5, find an approximate value for
R 0:1

0 e�1=t dt , and estimate the error. Estimate the error for

N D 10 and N D 20.

Note that the series
P1

nD2.�1/
n.n � 1/Šxn diverges for

any x ¤ 0. This is an example of what is called an asymptotic

series. Even though it diverges, a properly chosen partial sum

gives a good approximation to our function when x is small.
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C H A P T E R 10

Vectors and Coordinate
Geometry in 3-Space

“
Lord Ronald said nothing; he flung himself from the room, flung

himself upon his horse and rode madly off in all directions. : : :

And who is this tall young man who draws nearer to Gertrude with

every revolution of the horse? : : :

The two were destined to meet. Nearer and nearer they came. And

then still nearer. Then for one brief moment they met. As they passed

Gertrude raised her head and directed towards the young nobleman

two eyes so eye-like in their expression as to be absolutely circular,

while Lord Ronald directed towards the occupant of the dogcart a

gaze so gaze-like that nothing but a gazelle, or a gas-pipe, could have

emulated its intensity.

”Stephen Leacock 1869–1944

from Gertrude the Governess: or, Simple Seventeen

Introduction A complete real-variable calculus program involves the

study of

(i) real-valued functions of a single real variable,

(ii) vector-valued functions of a single real variable,

(iii) real-valued functions of a real vector variable, and

(iv) vector-valued functions of a real vector variable.

Chapters 1–9 are concerned with item (i). The remaining chapters deal with items (ii),

(iii), and (iv). Specifically, Chapter 11 deals with vector-valued functions of a single

real variable. Chapters 12–14 are concerned with the differentiation and integration

of real-valued functions of several real variables, that is, of a real vector variable.

Chapters 15–17 present aspects of the calculus of functions whose domains and ranges

both have dimension greater than one, that is, vector-valued functions of a vector vari-

able. Most of the time we will limit our attention to vector functions with domains and

ranges in the plane, or in three-dimensional space.

In this chapter we will lay the foundation for multivariable and vector calculus

by extending the concepts of analytic geometry to three or more dimensions and by

introducing vectors as a convenient way of dealing with several variables as a single

entity. We also introduce matrices, because these will prove useful for formulating

some of the concepts of calculus. This chapter is not intended to be a full course in

linear algebra; we develop only those aspects that we will use in later chapters, and we

omit most proofs.
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(b) Suppose that � is rational, say, � D m=n, where m and

n are positive integers. You will show that this leads to

a contradiction and thus cannot be true. Choose a posi-

tive integer k such that .�m/k=kŠ < 1=2. (Why is this

possible?) Consider the polynomial

f .x/ D
xk.m � nx/k

kŠ
D

1

kŠ

k
X

j D0

�

k

j

�

m
k�j

.�n/
j
x

j Ck
:

Show that 0 < f .x/ < 1=2 for 0 < x < � , and hence that

0 <

Z �

0

f .x/ sinx dx < 1. Thus, 0 < g.�/C g.0/ < 1,

where g.x/ is defined as in part (a).

(c) Show that the i th derivative of f .x/ is given by

f
.i/
.x/ D

1

kŠ

k
X

j D0

�

k

j

�

m
k�j

.�n/
j .j C k/Š

.j C k � i /Š
x

j Ck�i
:

(d) Show that f .i/.0/ is an integer for i D 0, 1, 2, : : : . (Hint:

Observe for i < k that f .i/
.0/ D 0, and for i > 2k

that f .i/.x/ D 0 for all x. For k � i � 2k, show that

only one term in the sum for f .i/.0/ is not 0, and that this

term is an integer. You will need the fact that the binomial

coefficients
�

k
j

�

are integers.)

(e) Show that f .� � x/ D f .x/ for all x, and hence that

f .i/.�/ is also an integer for each i D 0, 1, 2, : : : . There-

fore, if g.x/ is defined as in (a), then g.�/ C g.0/ is an

integer. This contradicts the conclusion of part (b) and so

shows that � cannot be rational.

9.I (An asymptotic series) Integrate by parts to show that

Z x

0

e
�1=t

dt D e
�1=x

N
X

nD2

.�1/
n
.n � 1/Šx

n

C .�1/
N C1

NŠ

Z x

0

t
N �1

e
�1=t

dt:

Why can’t you just use a Maclaurin series to approximate

this integral? Using N D 5, find an approximate value for
R 0:1

0 e�1=t dt , and estimate the error. Estimate the error for

N D 10 and N D 20.

Note that the series
P1

nD2.�1/
n.n � 1/Šxn diverges for

any x ¤ 0. This is an example of what is called an asymptotic

series. Even though it diverges, a properly chosen partial sum

gives a good approximation to our function when x is small.
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C H A P T E R 10

Vectors and Coordinate
Geometry in 3-Space

“
Lord Ronald said nothing; he flung himself from the room, flung

himself upon his horse and rode madly off in all directions. : : :

And who is this tall young man who draws nearer to Gertrude with

every revolution of the horse? : : :

The two were destined to meet. Nearer and nearer they came. And

then still nearer. Then for one brief moment they met. As they passed

Gertrude raised her head and directed towards the young nobleman

two eyes so eye-like in their expression as to be absolutely circular,

while Lord Ronald directed towards the occupant of the dogcart a

gaze so gaze-like that nothing but a gazelle, or a gas-pipe, could have

emulated its intensity.

”Stephen Leacock 1869–1944

from Gertrude the Governess: or, Simple Seventeen

Introduction A complete real-variable calculus program involves the

study of

(i) real-valued functions of a single real variable,

(ii) vector-valued functions of a single real variable,

(iii) real-valued functions of a real vector variable, and

(iv) vector-valued functions of a real vector variable.

Chapters 1–9 are concerned with item (i). The remaining chapters deal with items (ii),

(iii), and (iv). Specifically, Chapter 11 deals with vector-valued functions of a single

real variable. Chapters 12–14 are concerned with the differentiation and integration

of real-valued functions of several real variables, that is, of a real vector variable.

Chapters 15–17 present aspects of the calculus of functions whose domains and ranges

both have dimension greater than one, that is, vector-valued functions of a vector vari-

able. Most of the time we will limit our attention to vector functions with domains and

ranges in the plane, or in three-dimensional space.

In this chapter we will lay the foundation for multivariable and vector calculus

by extending the concepts of analytic geometry to three or more dimensions and by

introducing vectors as a convenient way of dealing with several variables as a single

entity. We also introduce matrices, because these will prove useful for formulating

some of the concepts of calculus. This chapter is not intended to be a full course in

linear algebra; we develop only those aspects that we will use in later chapters, and we

omit most proofs.
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10.1 Analytic Geometry in Three Dimensions

We say that the physical world in which we live is three-dimensional because through

any point there can pass three, and no more, straight lines that are mutually perpen-

dicular; that is, each of them is perpendicular to the other two. This is equivalent to the

fact that we require three numbers to locate a point in space with respect to some ref-

erence point (the origin). One way to use three numbers to locate a point is by having

them represent (signed) distances from the origin, measured in the directions of three

mutually perpendicular lines passing through the origin. We call such a set of lines a

Cartesian coordinate system, and each of the lines is called a coordinate axis. We usu-

ally call these axes the x-axis, the y-axis, and the z-axis, regarding the x- and y-axes

as lying in a horizontal plane and the z-axis as vertical. Moreover, the coordinate sys-

tem should have a right-handed orientation. This means that the thumb, forefinger,

and middle finger of the right hand can be extended so as to point, respectively, in the

directions of the positive x-axis, the positive y-axis, and the positive z-axis. For the

more mechanically minded, a right-handed screw will advance in the positive z direc-

tion if twisted in the direction of rotation from the positive x-axis toward the positive

y-axis. (See Figure 10.1(a).)

Figure 10.1

(a) The screw moves upward when

twisted counterclockwise as seen from

above

(b) The three coordinates of a point in

3-space

y

x

O

z

x

y

z

Q D .x; y; 0/

P D .x; y; z/

z

s

y

x

O

r

(a) (b)

With respect to such a Cartesian coordinate system, the coordinates of a point

P in 3-space constitute an ordered triple of real numbers, .x; y; z/. The numbers x,

y, and z are, respectively, the signed distances of P from the origin, measured in the

directions of the x-axis, the y-axis, and the z-axis. (See Figure 10.1(b).)

Let Q be the point with coordinates .x; y; 0/. Then Q lies in the xy-plane (the

plane containing the x- and y-axes) directly under (or over) P: We say that Q is the

vertical projection of P onto the xy-plane. If r is the distance from the origin O to P

and s is the distance from O to Q, then, using two right-angled triangles, we have

s
2
D x

2
C y

2 and r
2
D s

2
C z

2
D x

2
C y

2
C z

2
:

Thus, the distance from P to the origin is given by

r D

p

x2
C y2

C z2:

Similarly, the distance r between points P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/ (see

Figure 10.2) is

r D

p

.x2 � x1/
2
C .y2 � y1/

2
C .z2 � z1/

2:
x

y

z

P1

P2

jz2�z1j

.x2;y2;z2/

.x2;y2;z1/

.x1;y2;z1/
.x1 ;y1;z1/ jy2�y1j

jx2�x1j

r

Figure 10.2 Distance between points

E X A M P L E 1
Show that the triangle with vertices A D .1;�1; 2/, B D .3; 3; 8/,

and C D .2; 0; 1/ has a right angle.
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Solution We calculate the lengths of the three sides of the triangle:

a D jBC j D

p

.2 � 3/2 C .0 � 3/2 C .1 � 8/2 D
p

59

b D jAC j D

p

.2 � 1/2 C .0C 1/2 C .1 � 2/2 D
p

3

c D jABj D

p

.3 � 1/2 C .3C 1/2 C .8 � 2/2 D
p

56

By the cosine law, a2
D b

2
Cc

2
�2bc cosA: In this case a2

D 59 D 3C56 D b
2
Cc

2,

so that 2bc cosA must be 0. Therefore, cosA D 0 and A D 90ı.

Just as the x- and y-axes divide the xy-plane into four quadrants, so also the three

coordinate planes in 3-space (the xy-plane, the xz-plane, and the yz-plane) divide

3-space into eight octants. We call the octant in which x � 0, y � 0, and z � 0 the

first octant. When drawing graphs in 3-space it is sometimes easier to draw only the

part lying in the first octant (Figure 10.3).

An equation or inequality involving the three variables x, y, and z defines a subset

of points in 3-space whose coordinates satisfy the equation or inequality. A single

equation usually represents a surface (a two-dimensional object) in 3-space.

x

y

z

Figure 10.3 The first octant

E X A M P L E 2
(Some equations and the surfaces they represent)

(a) The equation z D 0 represents all points with coordinates .x; y; 0/, that is, the

xy-plane. The equation z D �2 represents all points with coordinates .x; y;�2/,

that is, the horizontal plane passing through the point .0; 0;�2/ on the z-axis.

(b) The equation x D y represents all points with coordinates .x; x; z/. This is a

vertical plane containing the straight line with equation x D y in the xy-plane.

The plane also contains the z-axis. (See Figure 10.4.)

x

y

z

Figure 10.4 Equation x D y defines a

vertical plane

(c) The equation x C y C z D 1 represents all points the sum of whose coordinates

is 1. This set is a plane that passes through the three points .1; 0; 0/, .0; 1; 0/,

and .0; 0; 1/. These points are not collinear (they do not lie on a straight line), so

there is only one plane passing through all three. (See Figure 10.5.) The equation

xCyC z D 0 represents a plane parallel to the one with equation xCyC z D 1

but passing through the origin.

(d) The equation x2
C y2

D 4 represents all points on the vertical circular cylinder

containing the circle with equation x2
C y

2
D 4 in the xy-plane. This cylinder

has radius 2 and axis along the z-axis. (See Figure 10.6.)

Here the term “cylinder” is used

to describe a surface ruled by

parallel straight lines, not a solid

as it was in Section 7.1.

(e) The equation z D x2 represents all points with coordinates .x; y; x2/. This

surface is a parabolic cylinder tangent to the xy-plane along the y-axis. (See

Figure 10.7.)

(f) The equation x2
C y2

C z2
D 25 represents all points .x; y; z/ at distance 5 from

the origin. This set of points is a sphere of radius 5 centred at the origin.

x

y

z

.0; 0; 1/

.0; 1; 0/

.1; 0; 0/

Figure 10.5 The plane with

equation x C y C z D 1

2
2

x

y

z

Figure 10.6 The circular cylinder

with equation x2
C y

2
D 4

x

y

z

Figure 10.7 The parabolic cylinder

with equation z D x2
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10.1 Analytic Geometry in Three Dimensions

We say that the physical world in which we live is three-dimensional because through

any point there can pass three, and no more, straight lines that are mutually perpen-

dicular; that is, each of them is perpendicular to the other two. This is equivalent to the

fact that we require three numbers to locate a point in space with respect to some ref-

erence point (the origin). One way to use three numbers to locate a point is by having

them represent (signed) distances from the origin, measured in the directions of three

mutually perpendicular lines passing through the origin. We call such a set of lines a

Cartesian coordinate system, and each of the lines is called a coordinate axis. We usu-

ally call these axes the x-axis, the y-axis, and the z-axis, regarding the x- and y-axes

as lying in a horizontal plane and the z-axis as vertical. Moreover, the coordinate sys-

tem should have a right-handed orientation. This means that the thumb, forefinger,

and middle finger of the right hand can be extended so as to point, respectively, in the

directions of the positive x-axis, the positive y-axis, and the positive z-axis. For the

more mechanically minded, a right-handed screw will advance in the positive z direc-

tion if twisted in the direction of rotation from the positive x-axis toward the positive

y-axis. (See Figure 10.1(a).)

Figure 10.1

(a) The screw moves upward when

twisted counterclockwise as seen from

above

(b) The three coordinates of a point in

3-space

y

x

O

z

x

y

z

Q D .x; y; 0/

P D .x; y; z/

z

s

y

x

O

r

(a) (b)

With respect to such a Cartesian coordinate system, the coordinates of a point

P in 3-space constitute an ordered triple of real numbers, .x; y; z/. The numbers x,

y, and z are, respectively, the signed distances of P from the origin, measured in the

directions of the x-axis, the y-axis, and the z-axis. (See Figure 10.1(b).)

Let Q be the point with coordinates .x; y; 0/. Then Q lies in the xy-plane (the

plane containing the x- and y-axes) directly under (or over) P: We say that Q is the

vertical projection of P onto the xy-plane. If r is the distance from the origin O to P

and s is the distance from O to Q, then, using two right-angled triangles, we have

s
2
D x

2
C y

2 and r
2
D s

2
C z

2
D x

2
C y

2
C z

2
:

Thus, the distance from P to the origin is given by

r D

p

x2
C y2

C z2:

Similarly, the distance r between points P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/ (see

Figure 10.2) is

r D

p

.x2 � x1/
2
C .y2 � y1/

2
C .z2 � z1/

2:
x

y

z

P1

P2

jz2�z1j

.x2;y2;z2/

.x2;y2;z1/

.x1;y2;z1/
.x1 ;y1;z1/ jy2�y1j

jx2�x1j

r

Figure 10.2 Distance between points

E X A M P L E 1
Show that the triangle with vertices A D .1;�1; 2/, B D .3; 3; 8/,

and C D .2; 0; 1/ has a right angle.
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Solution We calculate the lengths of the three sides of the triangle:

a D jBC j D

p

.2 � 3/2 C .0 � 3/2 C .1 � 8/2 D
p

59

b D jAC j D

p

.2 � 1/2 C .0C 1/2 C .1 � 2/2 D
p

3

c D jABj D

p

.3 � 1/2 C .3C 1/2 C .8 � 2/2 D
p

56

By the cosine law, a2
D b

2
Cc

2
�2bc cosA: In this case a2

D 59 D 3C56 D b
2
Cc

2,

so that 2bc cosA must be 0. Therefore, cosA D 0 and A D 90ı.

Just as the x- and y-axes divide the xy-plane into four quadrants, so also the three

coordinate planes in 3-space (the xy-plane, the xz-plane, and the yz-plane) divide

3-space into eight octants. We call the octant in which x � 0, y � 0, and z � 0 the

first octant. When drawing graphs in 3-space it is sometimes easier to draw only the

part lying in the first octant (Figure 10.3).

An equation or inequality involving the three variables x, y, and z defines a subset

of points in 3-space whose coordinates satisfy the equation or inequality. A single

equation usually represents a surface (a two-dimensional object) in 3-space.

x

y

z

Figure 10.3 The first octant

E X A M P L E 2
(Some equations and the surfaces they represent)

(a) The equation z D 0 represents all points with coordinates .x; y; 0/, that is, the

xy-plane. The equation z D �2 represents all points with coordinates .x; y;�2/,

that is, the horizontal plane passing through the point .0; 0;�2/ on the z-axis.

(b) The equation x D y represents all points with coordinates .x; x; z/. This is a

vertical plane containing the straight line with equation x D y in the xy-plane.

The plane also contains the z-axis. (See Figure 10.4.)

x

y

z

Figure 10.4 Equation x D y defines a

vertical plane

(c) The equation x C y C z D 1 represents all points the sum of whose coordinates

is 1. This set is a plane that passes through the three points .1; 0; 0/, .0; 1; 0/,

and .0; 0; 1/. These points are not collinear (they do not lie on a straight line), so

there is only one plane passing through all three. (See Figure 10.5.) The equation

xCyC z D 0 represents a plane parallel to the one with equation xCyC z D 1

but passing through the origin.

(d) The equation x2
C y2

D 4 represents all points on the vertical circular cylinder

containing the circle with equation x2
C y

2
D 4 in the xy-plane. This cylinder

has radius 2 and axis along the z-axis. (See Figure 10.6.)

Here the term “cylinder” is used

to describe a surface ruled by

parallel straight lines, not a solid

as it was in Section 7.1.

(e) The equation z D x2 represents all points with coordinates .x; y; x2/. This

surface is a parabolic cylinder tangent to the xy-plane along the y-axis. (See

Figure 10.7.)

(f) The equation x2
C y2

C z2
D 25 represents all points .x; y; z/ at distance 5 from

the origin. This set of points is a sphere of radius 5 centred at the origin.

x

y

z

.0; 0; 1/

.0; 1; 0/

.1; 0; 0/

Figure 10.5 The plane with

equation x C y C z D 1

2
2

x

y

z

Figure 10.6 The circular cylinder

with equation x2
C y

2
D 4

x

y

z

Figure 10.7 The parabolic cylinder

with equation z D x2
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Observe that equations in x, y, and z need not involve each variable explicitly. When

one of the variables is missing from the equation, the equation represents a surface

parallel to the axis of the missing variable. Such a surface may be a plane or a cylinder.

For example, if z is absent from the equation, the equation represents in 3-space a

vertical (i.e., parallel to the z-axis) surface containing the curve with the same equation

in the xy-plane.

Occasionally, a single equation may not represent a two-dimensional object (a sur-

face). It can represent a one-dimensional object (a line or curve), a zero-dimensional

object (one or more points), or even nothing at all.

E X A M P L E 3
Identify the graphs of (a) y2

C.z�1/2 D 4, (b) y2
C.z�1/2 D 0,

(c) x2
C y2

C z2
D 0, and (d) x2

C y2
C z2

D �1.

Solution

(a) Since x is absent, the equation y2
C .z � 1/2 D 4 represents an object parallel to

the x-axis. In the yz-plane the equation represents a circle of radius 2 centred at

.y; z/ D .0; 1/. In 3-space it represents a horizontal circular cylinder, parallel to

the x-axis, with axis one unit above the x-axis. (See Figure 10.8.)

(b) Since squares cannot be negative, the equation y2
C .z � 1/2 D 0 implies that

y D 0 and z D 1, so it represents points .x; 0; 1/. All these points lie on the line

parallel to the x-axis and one unit above it. (See Figure 10.8.)

(c) As in part (b), x2
C y

2
C z

2
D 0 implies that x D 0, y D 0, and z D 0. The

equation represents only one point, the origin.

x

y

z

x

y

z

y2
C .z � 1/2 D 4

Figure 10.8 The cylinder

y2
C .z � 1/2 D 4 and its axial line y D 0,

z D 1, or y2
C .z � 1/2 D 0

(d) The equation x2
C y

2
C z

2
D �1 is not satisfied by any real numbers x, y, and

z, so it represents no points at all.

A single inequality in x, y, and z typically represents points lying on one side of the

surface represented by the corresponding equation (together with points on the surface

if the inequality is not strict).

E X A M P L E 4
(a) The inequality z > 0 represents all points above the xy-plane.

(b) The inequality x2
C y

2
� 4 says that the square of the distance from .x; y; z/ to

the nearest point .0; 0; z/ on the z-axis is at least 4. This inequality represents all

points lying on or outside the cylinder of Example 2(d).

(c) The inequality x2
C y2

C z2
� 25 says that the square of the distance from

.x; y; z/ to the origin is no greater than 25. It represents the solid ball of radius 5

centred at the origin, which consists of all points lying inside or on the sphere of

Example 2(f).

Two equations in x, y, and z normally represent a one-dimensional object, the line or

curve along which the two surfaces represented by the two equations intersect. Any

point whose coordinates satisfy both equations must lie on both the surfaces, so must

lie on their intersection.

E X A M P L E 5
What sets of points in 3-space are represented by the following

pairs of equations?

(a)

�

x C y C z D 1

y � 2x D 0
(b)

�

x2
C y2

C z2
D 1

x C y D 1
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Figure 10.9

(a) The two planes intersect in a straight

line

(b) The plane intersects the sphere in

a circle

x

y

z

y D 2x

x C y C z D 1

1

1

1
x

y

z

x2
C y2

C z2
D 1

x C y D 1

.1; 0; 0/
.

1
2
;

1
2
; 0/ .0; 1; 0/

(a) (b)

Solution

(a) The equation xCyCz D 1 represents the oblique plane of Example 2(c), and the

equation y � 2x D 0 represents a vertical plane through the origin and the point

.1; 2; 0/. Together these two equations represent the line of intersection of the two

planes. This line passes through, for example, the points .0; 0; 1/ and .1
3
;

2
3
; 0/.

(See Figure 10.9(a).)

(b) The equation x2
C y

2
C z

2
D 1 represents a sphere of radius 1 with centre at the

origin, and x C y D 1 represents a vertical plane through the points .1; 0; 0/ and

.0; 1; 0/. The two surfaces intersect in a circle, as shown in Figure 10.9(b). The

line from .1; 0; 0/ to .0; 1; 0/ is a diameter of the circle, so the centre of the circle

is .1
2
;

1
2
; 0/, and its radius is

p

2=2.

In Sections 10.4 and 10.5 we will see many more examples of geometric objects in

3-space represented by simple equations.

Euclidean n-Space
Mathematicians and users of mathematics frequently need to consider n-dimensional

space, where n is greater than 3 and may even be infinite. It is difficult to visualize a

space of dimension 4 or higher geometrically. The secret to dealing with these spaces

is to regard the points in n-space as being ordered n-tuples of real numbers; that is,

.x1; x2; : : : ; xn/ is a point in n-space instead of just being the coordinates of such a

point. We stop thinking of points as existing in physical space and start thinking of

them as algebraic objects. We usually denote n-space by the symbol R
n to show that

its points are n-tuples of real numbers. Thus R
2 and R

3 denote the plane and 3-space,

respectively. Note that in passing from R
3 to R

n we have altered the notation a bit: in

R
3 we called the coordinates x, y, and z, while in R

n we called them x1, x2, : : : and xn

so as not to run out of letters. We could, of course, talk about coordinates .x1; x2; x3/

in R
3 and .x1; x2/ in the plane R

2, but .x; y; z/ and .x; y/ are traditionally used there.

Although we think of points in R
n as n-tuples rather than geometric objects, we

do not want to lose all sight of the underlying geometry. By analogy with the two- and

three-dimensional cases, we still consider the quantity
p

.y1 � x1/
2
C .y2 � x2/

2
C � � � C .yn � xn/

2

as representing the distance between the points with coordinates .x1; x2; : : : ; xn/ and

.y1; y2; : : : ; yn/. Also, we call the .n� 1/-dimensional set of points in R
n that satisfy

the equation xn D 0 a hyperplane, by analogy with the plane z D 0 in R
3.

Describing Sets in the Plane, 3-Space, and n-Space
We conclude this section by collecting some definitions of terms used to describe sets

of points in R
n for n � 2. These terms belong to the branch of mathematics called
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Observe that equations in x, y, and z need not involve each variable explicitly. When

one of the variables is missing from the equation, the equation represents a surface

parallel to the axis of the missing variable. Such a surface may be a plane or a cylinder.

For example, if z is absent from the equation, the equation represents in 3-space a

vertical (i.e., parallel to the z-axis) surface containing the curve with the same equation

in the xy-plane.

Occasionally, a single equation may not represent a two-dimensional object (a sur-

face). It can represent a one-dimensional object (a line or curve), a zero-dimensional

object (one or more points), or even nothing at all.

E X A M P L E 3
Identify the graphs of (a) y2

C.z�1/2 D 4, (b) y2
C.z�1/2 D 0,

(c) x2
C y2

C z2
D 0, and (d) x2

C y2
C z2

D �1.

Solution

(a) Since x is absent, the equation y2
C .z � 1/2 D 4 represents an object parallel to

the x-axis. In the yz-plane the equation represents a circle of radius 2 centred at

.y; z/ D .0; 1/. In 3-space it represents a horizontal circular cylinder, parallel to

the x-axis, with axis one unit above the x-axis. (See Figure 10.8.)

(b) Since squares cannot be negative, the equation y2
C .z � 1/2 D 0 implies that

y D 0 and z D 1, so it represents points .x; 0; 1/. All these points lie on the line

parallel to the x-axis and one unit above it. (See Figure 10.8.)

(c) As in part (b), x2
C y

2
C z

2
D 0 implies that x D 0, y D 0, and z D 0. The

equation represents only one point, the origin.

x

y

z

x

y

z

y2
C .z � 1/2 D 4

Figure 10.8 The cylinder

y2
C .z � 1/2 D 4 and its axial line y D 0,

z D 1, or y2
C .z � 1/2 D 0

(d) The equation x2
C y

2
C z

2
D �1 is not satisfied by any real numbers x, y, and

z, so it represents no points at all.

A single inequality in x, y, and z typically represents points lying on one side of the

surface represented by the corresponding equation (together with points on the surface

if the inequality is not strict).

E X A M P L E 4
(a) The inequality z > 0 represents all points above the xy-plane.

(b) The inequality x2
C y

2
� 4 says that the square of the distance from .x; y; z/ to

the nearest point .0; 0; z/ on the z-axis is at least 4. This inequality represents all

points lying on or outside the cylinder of Example 2(d).

(c) The inequality x2
C y2

C z2
� 25 says that the square of the distance from

.x; y; z/ to the origin is no greater than 25. It represents the solid ball of radius 5

centred at the origin, which consists of all points lying inside or on the sphere of

Example 2(f).

Two equations in x, y, and z normally represent a one-dimensional object, the line or

curve along which the two surfaces represented by the two equations intersect. Any

point whose coordinates satisfy both equations must lie on both the surfaces, so must

lie on their intersection.

E X A M P L E 5
What sets of points in 3-space are represented by the following

pairs of equations?

(a)

�

x C y C z D 1

y � 2x D 0
(b)

�

x2
C y2

C z2
D 1

x C y D 1
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Figure 10.9

(a) The two planes intersect in a straight

line

(b) The plane intersects the sphere in

a circle

x

y

z

y D 2x

x C y C z D 1

1

1

1
x

y

z

x2
C y2

C z2
D 1

x C y D 1

.1; 0; 0/
.

1
2
;

1
2
; 0/ .0; 1; 0/

(a) (b)

Solution

(a) The equation xCyCz D 1 represents the oblique plane of Example 2(c), and the

equation y � 2x D 0 represents a vertical plane through the origin and the point

.1; 2; 0/. Together these two equations represent the line of intersection of the two

planes. This line passes through, for example, the points .0; 0; 1/ and .1
3
;

2
3
; 0/.

(See Figure 10.9(a).)

(b) The equation x2
C y

2
C z

2
D 1 represents a sphere of radius 1 with centre at the

origin, and x C y D 1 represents a vertical plane through the points .1; 0; 0/ and

.0; 1; 0/. The two surfaces intersect in a circle, as shown in Figure 10.9(b). The

line from .1; 0; 0/ to .0; 1; 0/ is a diameter of the circle, so the centre of the circle

is .1
2
;

1
2
; 0/, and its radius is

p

2=2.

In Sections 10.4 and 10.5 we will see many more examples of geometric objects in

3-space represented by simple equations.

Euclidean n-Space
Mathematicians and users of mathematics frequently need to consider n-dimensional

space, where n is greater than 3 and may even be infinite. It is difficult to visualize a

space of dimension 4 or higher geometrically. The secret to dealing with these spaces

is to regard the points in n-space as being ordered n-tuples of real numbers; that is,

.x1; x2; : : : ; xn/ is a point in n-space instead of just being the coordinates of such a

point. We stop thinking of points as existing in physical space and start thinking of

them as algebraic objects. We usually denote n-space by the symbol R
n to show that

its points are n-tuples of real numbers. Thus R
2 and R

3 denote the plane and 3-space,

respectively. Note that in passing from R
3 to R

n we have altered the notation a bit: in

R
3 we called the coordinates x, y, and z, while in R

n we called them x1, x2, : : : and xn

so as not to run out of letters. We could, of course, talk about coordinates .x1; x2; x3/

in R
3 and .x1; x2/ in the plane R

2, but .x; y; z/ and .x; y/ are traditionally used there.

Although we think of points in R
n as n-tuples rather than geometric objects, we

do not want to lose all sight of the underlying geometry. By analogy with the two- and

three-dimensional cases, we still consider the quantity
p

.y1 � x1/
2
C .y2 � x2/

2
C � � � C .yn � xn/

2

as representing the distance between the points with coordinates .x1; x2; : : : ; xn/ and

.y1; y2; : : : ; yn/. Also, we call the .n� 1/-dimensional set of points in R
n that satisfy

the equation xn D 0 a hyperplane, by analogy with the plane z D 0 in R
3.

Describing Sets in the Plane, 3-Space, and n-Space
We conclude this section by collecting some definitions of terms used to describe sets

of points in R
n for n � 2. These terms belong to the branch of mathematics called
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topology, and they generalize the notions of open and closed intervals and endpoints

used to describe sets on the real line R. We state the definitions for R
n, but we are most

interested in the cases where n D 2 or n D 3.

A neighbourhood of a point P in R
n is a set of the form

Br .P / D fQ 2 R
n
W distance from Q to P < rg

for some r > 0.

For n D 1, if p 2 R, then Br .p/ is the open interval .p � r; p C r/ centred at p.

For n D 2, Br .P / is the open disk of radius r centred at point P:

For n D 3, Br .P / is the open ball of radius r centred at point P:

A set S is open in R
n if every point of S has a neighbourhood contained in S .

Every neighbourhood is itself an open set. Other examples of open sets in R
2 include

the sets of points .x; y/ such that x > 0, or such that y > x2, or even such that y ¤ x2.

Typically, sets defined by strict inequalities (using > and <) are open. Examples in R
3

include the sets of points .x; y; z/ satisfying x C y C z > 2, or 1 < x < 3.

The whole space R
n is an open set in itself. For technical reasons, the empty set

(containing no points) is also considered to be open. (No point in the empty set fails to

have a neighbourhood contained in the empty set.)

The complement, Sc ; of a set S in R
n is the set of all points in R

n that do not

belong to S . For example, the complement of the set of points .x; y/ in R
2 such that

x > 0 is the set of points for which x � 0. A set is said to be closed if its complement

is open. Typically, sets defined by nonstrict inequalities (using � and �) are closed.

Closed intervals are closed sets in R. Since the whole space and the empty set are both

open in R
n and are complements of each other, they are also both closed. They are the

only sets that are both open and closed.

A point P is called a boundary point of a set S if every neighbourhood of P

contains both points in S and points in Sc . The boundary, bdry.S/, of a set S is

the set of all boundary points of S . For example, the boundary of the closed disk

x
2
C y

2
� 1 in R

2 is the circle x2
C y

2
D 1. A closed set contains all its boundary

points. An open set contains none of its boundary points.

A point P is an interior point of a set S if it belongs to S but not to the boundary

of S . P is an exterior point of S if it belongs to the complement of S but not to

the boundary of S . The interior, int.S/, and exterior, ext.S/, of S consist of all the

interior points and exterior points of S , respectively. Both int.S/ and ext.S/ are open

sets. S is open if and only if int.S/ D S . S is closed if and only if ext.S/ D Sc . See

Figure 10.10.

y

x

point in Sc

boundary pointS
c

point in S

interior point

S

Figure 10.10 The closed disk S

consisting of points .x; y/ 2 R
2

that

satisfy x2
C y2

� 1. Note the shaded

neighbourhoods of the boundary

point and the interior point.

bdry.S/ is the circle x2
C y2

D 1

int.S/ is the open disk x2
C y2 < 1

ext.S/ is the open set x2
C y2 > 1

E X E R C I S E S 10.1

Find the distance between the pairs of points in Exercises 1–4.

1. .0; 0; 0/ and .2;�1;�2/ 2. .�1;�1;�1/ and .1; 1; 1/

3. .1; 1; 0/ and .0; 2;�2/ 4. .3; 8;�1/ and .�2; 3;�6/

5. What is the shortest distance from the point .x; y; z/ to

(a) the xy-plane? (b) the x-axis?

6. Show that the triangle with vertices .1; 2; 3/, .4; 0; 5/, and

.3; 6; 4/ has a right angle.

7. Find the angle A in the triangle with vertices

A D .2;�1;�1/, B D .0; 1;�2/, and C D .1;�3; 1/.

8. Show that the triangle with vertices .1; 2; 3/, .1; 3; 4/, and

.0; 3; 3/ is equilateral.

9. Find the area of the triangle with vertices .1; 1; 0/, .1; 0; 1/,

and .0; 1; 1/.

10. What is the distance from the origin to the point .1; 1; : : : ; 1/

in R
n

?

11. What is the distance from the point .1; 1; : : : ; 1/ in n-space to

the closest point on the x1-axis?

In Exercises 12–23, describe (and sketch if possible) the set of

points in R
3

that satisfy the given equation or inequality.

12. z D 2 13. y � �1

14. z D x 15. x C y D 1

16. x
2
C y2

C z2
D 4

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 10 – page 575 October 15, 2016

SECTION 10.2: Vectors 575

17. .x � 1/2 C .y C 2/2 C .z � 3/2 D 4

18. x2
C y2

C z2
D 2z 19. y2

C z2
� 4

20. x2
C z

2
D 4 21. z D y2

22. z �
p

x2
C y2 23. x C 2y C 3z D 6

In Exercises 24–32, describe (and sketch if possible) the set of

points in R
3

that satisfy the given pair of equations or inequalities.

24.

�

x D 1

y D 2
25.

�

x D 1

y D z

26.

�

x
2
C y

2
C z

2
D 4

z D 1
27.

�

x2
C y2

C z2
D 4

x2
C y2

C z2
D 4x

28.

�

x2
C y2

C z2
D 4

x2
C z2

D 1
29.

�

x2
C y2

D 1

z D x

30.

�

y � x

z � y
31.

�

x2
C y2

� 1

z � y

32.

(

x2
C y2

C z2
� 1

p

x2
C y2

� z

In Exercises 33–36, specify the boundary and the interior of the

plane sets S whose points .x; y/ satisfy the given conditions. Is S

open, closed, or neither?

33. 0 < x2
C y

2
< 1 34. x � 0; y < 0

35. x C y D 1 36. jxj C jyj � 1

In Exercises 37–40, specify the boundary and the interior of the

sets S in 3-space whose points .x; y; z/ satisfy the given

conditions. Is S open, closed, or neither?

37. 1 � x2
C y

2
C z

2
� 4 38. x � 0; y > 1; z < 2

39. .x � z/2 C .y � z/2 D 0 40. x2
C y

2
< 1; y C z > 2

10.2 Vectors
A vector is a quantity that involves both magnitude (size or length) and direction. For

instance, the velocity of a moving object involves its speed and direction of motion, and

so is a vector. Such quantities are represented geometrically by arrows (directed line

segments) and are often actually identified with these arrows. For instance, the vector
��!

AB is an arrow with tail at the point A and head at the point B . In print, such a vector

is usually denoted by a single letter in boldface type,

B

v

A

Figure 10.11 The vector v D
��!

AB
v D
��!

AB:

(See Figure 10.11.) In handwriting, an arrow over a letter (�!v D
��!

AB) can be used to

denote a vector. The magnitude of the vector v is the length of the arrow and is denoted

jvj or j
��!

ABj.

While vectors have magnitude and direction, they do not generally have position;

that is, they are not regarded as being in a particular place. Two vectors, u and v, are

considered equal if they have the same length and the same direction, even if their

representative arrows do not coincide. The arrows must be parallel, have the same

length, and point in the same direction. In Figure 10.12, for example, if ABYX is a

parallelogram, then
��!

AB D
��!

XY .

A

B

Y

X

Figure 10.12
��!

AB D
��!

XY

For the moment we consider plane vectors, that is, vectors whose representative

arrows lie in a plane. If we introduce a Cartesian coordinate system into the plane, we

can talk about the x and y components of any vector. If A D .a; b/ and P D .p; q/,

as shown in Figure 10.13, then the x and y components of
��!

AP are, respectively, p � a

and q � b. Note that if O is the origin and X is the point .p � a; q � b/, then

j

��!

AP j D

p

.p � a/2 C .q � b/2 D j
��!

OX j

slope of
��!

AP D
q � b

p � a
D slope of

��!

OX:

Hence,
��!

AP D
��!

OX . In general, two vectors are equal if and only if they have the same

x components and y components.

There are two important algebraic operations defined for vectors: addition and

scalar multiplication.

y

x

P D.p;q/

XD.p�a;q�b/

AD.a;b/ p � a

O

q � b

Figure 10.13 Components of a vector
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topology, and they generalize the notions of open and closed intervals and endpoints

used to describe sets on the real line R. We state the definitions for R
n, but we are most

interested in the cases where n D 2 or n D 3.

A neighbourhood of a point P in R
n is a set of the form

Br .P / D fQ 2 R
n
W distance from Q to P < rg

for some r > 0.

For n D 1, if p 2 R, then Br .p/ is the open interval .p � r; p C r/ centred at p.

For n D 2, Br .P / is the open disk of radius r centred at point P:

For n D 3, Br .P / is the open ball of radius r centred at point P:

A set S is open in R
n if every point of S has a neighbourhood contained in S .

Every neighbourhood is itself an open set. Other examples of open sets in R
2 include

the sets of points .x; y/ such that x > 0, or such that y > x2, or even such that y ¤ x2.

Typically, sets defined by strict inequalities (using > and <) are open. Examples in R
3

include the sets of points .x; y; z/ satisfying x C y C z > 2, or 1 < x < 3.

The whole space R
n is an open set in itself. For technical reasons, the empty set

(containing no points) is also considered to be open. (No point in the empty set fails to

have a neighbourhood contained in the empty set.)

The complement, Sc ; of a set S in R
n is the set of all points in R

n that do not

belong to S . For example, the complement of the set of points .x; y/ in R
2 such that

x > 0 is the set of points for which x � 0. A set is said to be closed if its complement

is open. Typically, sets defined by nonstrict inequalities (using � and �) are closed.

Closed intervals are closed sets in R. Since the whole space and the empty set are both

open in R
n and are complements of each other, they are also both closed. They are the

only sets that are both open and closed.

A point P is called a boundary point of a set S if every neighbourhood of P

contains both points in S and points in Sc . The boundary, bdry.S/, of a set S is

the set of all boundary points of S . For example, the boundary of the closed disk

x
2
C y

2
� 1 in R

2 is the circle x2
C y

2
D 1. A closed set contains all its boundary

points. An open set contains none of its boundary points.

A point P is an interior point of a set S if it belongs to S but not to the boundary

of S . P is an exterior point of S if it belongs to the complement of S but not to

the boundary of S . The interior, int.S/, and exterior, ext.S/, of S consist of all the

interior points and exterior points of S , respectively. Both int.S/ and ext.S/ are open

sets. S is open if and only if int.S/ D S . S is closed if and only if ext.S/ D Sc . See

Figure 10.10.

y

x

point in Sc

boundary pointS
c

point in S

interior point

S

Figure 10.10 The closed disk S

consisting of points .x; y/ 2 R
2

that

satisfy x2
C y2

� 1. Note the shaded

neighbourhoods of the boundary

point and the interior point.

bdry.S/ is the circle x2
C y2

D 1

int.S/ is the open disk x2
C y2 < 1

ext.S/ is the open set x2
C y2 > 1

E X E R C I S E S 10.1

Find the distance between the pairs of points in Exercises 1–4.

1. .0; 0; 0/ and .2;�1;�2/ 2. .�1;�1;�1/ and .1; 1; 1/

3. .1; 1; 0/ and .0; 2;�2/ 4. .3; 8;�1/ and .�2; 3;�6/

5. What is the shortest distance from the point .x; y; z/ to

(a) the xy-plane? (b) the x-axis?

6. Show that the triangle with vertices .1; 2; 3/, .4; 0; 5/, and

.3; 6; 4/ has a right angle.

7. Find the angle A in the triangle with vertices

A D .2;�1;�1/, B D .0; 1;�2/, and C D .1;�3; 1/.

8. Show that the triangle with vertices .1; 2; 3/, .1; 3; 4/, and

.0; 3; 3/ is equilateral.

9. Find the area of the triangle with vertices .1; 1; 0/, .1; 0; 1/,

and .0; 1; 1/.

10. What is the distance from the origin to the point .1; 1; : : : ; 1/

in R
n

?

11. What is the distance from the point .1; 1; : : : ; 1/ in n-space to

the closest point on the x1-axis?

In Exercises 12–23, describe (and sketch if possible) the set of

points in R
3

that satisfy the given equation or inequality.

12. z D 2 13. y � �1

14. z D x 15. x C y D 1

16. x
2
C y2

C z2
D 4
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17. .x � 1/2 C .y C 2/2 C .z � 3/2 D 4

18. x2
C y2

C z2
D 2z 19. y2

C z2
� 4

20. x2
C z

2
D 4 21. z D y2

22. z �
p

x2
C y2 23. x C 2y C 3z D 6

In Exercises 24–32, describe (and sketch if possible) the set of

points in R
3

that satisfy the given pair of equations or inequalities.

24.

�

x D 1

y D 2
25.

�

x D 1

y D z

26.

�

x
2
C y

2
C z

2
D 4

z D 1
27.

�

x2
C y2

C z2
D 4

x2
C y2

C z2
D 4x

28.

�

x2
C y2

C z2
D 4

x2
C z2

D 1
29.

�

x2
C y2

D 1

z D x

30.

�

y � x

z � y
31.

�

x2
C y2

� 1

z � y

32.

(

x2
C y2

C z2
� 1

p

x2
C y2

� z

In Exercises 33–36, specify the boundary and the interior of the

plane sets S whose points .x; y/ satisfy the given conditions. Is S

open, closed, or neither?

33. 0 < x2
C y

2
< 1 34. x � 0; y < 0

35. x C y D 1 36. jxj C jyj � 1

In Exercises 37–40, specify the boundary and the interior of the

sets S in 3-space whose points .x; y; z/ satisfy the given

conditions. Is S open, closed, or neither?

37. 1 � x2
C y

2
C z

2
� 4 38. x � 0; y > 1; z < 2

39. .x � z/2 C .y � z/2 D 0 40. x2
C y

2
< 1; y C z > 2

10.2 Vectors
A vector is a quantity that involves both magnitude (size or length) and direction. For

instance, the velocity of a moving object involves its speed and direction of motion, and

so is a vector. Such quantities are represented geometrically by arrows (directed line

segments) and are often actually identified with these arrows. For instance, the vector
��!

AB is an arrow with tail at the point A and head at the point B . In print, such a vector

is usually denoted by a single letter in boldface type,

B

v

A

Figure 10.11 The vector v D
��!

AB
v D
��!

AB:

(See Figure 10.11.) In handwriting, an arrow over a letter (�!v D
��!

AB) can be used to

denote a vector. The magnitude of the vector v is the length of the arrow and is denoted

jvj or j
��!

ABj.

While vectors have magnitude and direction, they do not generally have position;

that is, they are not regarded as being in a particular place. Two vectors, u and v, are

considered equal if they have the same length and the same direction, even if their

representative arrows do not coincide. The arrows must be parallel, have the same

length, and point in the same direction. In Figure 10.12, for example, if ABYX is a

parallelogram, then
��!

AB D
��!

XY .

A

B

Y

X

Figure 10.12
��!

AB D
��!

XY

For the moment we consider plane vectors, that is, vectors whose representative

arrows lie in a plane. If we introduce a Cartesian coordinate system into the plane, we

can talk about the x and y components of any vector. If A D .a; b/ and P D .p; q/,

as shown in Figure 10.13, then the x and y components of
��!

AP are, respectively, p � a

and q � b. Note that if O is the origin and X is the point .p � a; q � b/, then

j

��!

AP j D

p

.p � a/2 C .q � b/2 D j
��!

OX j

slope of
��!

AP D
q � b

p � a
D slope of

��!

OX:

Hence,
��!

AP D
��!

OX . In general, two vectors are equal if and only if they have the same

x components and y components.

There are two important algebraic operations defined for vectors: addition and

scalar multiplication.

y

x

P D.p;q/

XD.p�a;q�b/

AD.a;b/ p � a

O

q � b

Figure 10.13 Components of a vector
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D E F I N I T I O N

1

Vector addition

Given two vectors u and v, their sum uC v is defined as follows. If an arrow

representing v is placed with its tail at the head of an arrow representing u,

then an arrow from the tail of u to the head of v represents u C v. Equiva-

lently, if u and v have tails at the same point, then u C v is represented by

an arrow with its tail at that point and its head at the opposite vertex of the

parallelogram spanned by u and v. This is shown in Figure 10.14(a).

Figure 10.14

(a) Vector addition

(b) Scalar multiplication

v
u

u

v
uC v

uC v

�
1
2 v

�v

2v

v

(a) (b)

D E F I N I T I O N

2

Scalar multiplication

If v is a vector and t is a real number (also called a scalar), then the scalar

multiple tv is a vector with magnitude jt j times that of v and direction the

same as v if t > 0, or opposite to that of v if t < 0. See Figure 10.14(b). If

t D 0, then tv has zero length and therefore no particular direction. It is the

zero vector, denoted 0.

Suppose that u has components a and b and that v has components x and y. Then

the components of u C v are a C x and b C y, and those of tv are tx and ty. See

Figure 10.15.

Figure 10.15 The components of a sum

of vectors or a scalar multiple of a vector is

the same sum or multiple of the corres-

ponding components of the vectors

y

x

y

x

uC v v

u

v

tv
ty

y

b C y

y

b

aC x

x

x

tx

a

In R
2 we single out two particular vectors for special attention. They are

(i) the vector i from the origin to the point .1; 0/, and

(ii) the vector j from the origin to the point .0; 1/.

Thus, i has components 1 and 0, and j has components 0 and 1. These vectors are

called the standard basis vectors in the plane. The vector r from the origin to the

point .x; y/ has components x and y and can be expressed in the form

r D hx; yi D xiC yj:

In the first form we specify the vector by listing its components between angle brackets;

in the second we write r as a linear combination of the standard basis vectors i and

j. (See Figure 10.16.) The vector r is called the position vector of the point .x; y/. A
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position vector has its tail at the origin and its head at the point whose position it is

specifying. The length of r is jrj D
p

x2
C y2.

y

x

.x; y/

x

i

j

y

r D xiC yj

Figure 10.16 Any vector is a linear

combination of the basis vectors

More generally, the vector
��!

AP from A D .a; b/ to P D .p; q/ in Figure 10.13 can

also be written as a list of components or as a linear combination of the standard basis

vectors:
��!

AP D hp � a; q � bi D .p � a/iC .q � b/j:

Sums and scalar multiples of vectors are easily expressed in terms of components. If

u D u1iC u2j and v D v1iC v2j, and if t is a scalar (i.e., a real number), then

uC v D .u1 C v1/iC .u2 C v2/j;

tu D .tu1/iC .tu2/j:

The zero vector is 0 D 0i C 0j. It has length zero and no specific direction. For any

vector u we have 0u D 0. A unit vector is a vector of length 1. The standard basis

vectors i and j are unit vectors. Given any nonzero vector v, we can form a unit vector

Ov in the same direction as v by multiplying v by the reciprocal of its length (a scalar):

Ov D

�

1

jvj

�

v:

E X A M P L E 1
If A D .2;�1/, B D .�1; 3/, and C D .0; 1/, express each of

the following vectors as a linear combination of the standard basis

vectors:

(a)
��!

AB (b)
��!

BC (c)
��!

AC (d)
��!

AB C
��!

BC (e) 2
��!

AC � 3
��!

CB

(f) a unit vector in the direction of
��!

AB.

Solution

(a)
��!

AB D .�1 � 2/iC .3 � .�1//j D �3iC 4j

(b)
��!

BC D .0 � .�1//iC .1 � 3/j D i � 2j

(c)
��!

AC D .0 � 2/iC .1 � .�1//j D �2iC 2j

(d)
��!

AB C
��!

BC D
��!

AC D �2i C 2j

(e) 2
��!

AC � 3
��!

CB D 2.�2iC 2j/ � 3.�iC 2j/ D �i � 2j

(f) A unit vector in the direction of
��!

AB is

��!

AB

j

��!

ABj

D �

3

5
iC

4

5
j.

Implicit in the above example is the fact that the operations of addition and scalar

multiplication obey appropriate algebraic rules, such as

uC v D vC u;

.uC v/C w D uC .vC w/;

u � v D uC .�1/v;

t.uC v/ D tuC tv:

Vectors in 3-Space
The algebra and geometry of vectors described here extends to spaces of any number

of dimensions; we can still think of vectors as represented by arrows, and sums and

scalar multiples are formed just as for plane vectors.

Given a Cartesian coordinate system in 3-space, we define three standard ba-

sis vectors, i, j, and k, represented by arrows from the origin to the points .1; 0; 0/,

.0; 1; 0/, and .0; 0; 1/, respectively. (See Figure 10.17.) Any vector in 3-space can be

written as a linear combination of these basis vectors; for instance, the position vector

of the point .x; y; z/ is given by

x

y

z

j

r

P D .x; y; z/

i

k

y
x

z

Figure 10.17 The standard basis vectors i,

j, and k

r D xiC yjC zk:
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D E F I N I T I O N

1

Vector addition

Given two vectors u and v, their sum uC v is defined as follows. If an arrow

representing v is placed with its tail at the head of an arrow representing u,

then an arrow from the tail of u to the head of v represents u C v. Equiva-

lently, if u and v have tails at the same point, then u C v is represented by

an arrow with its tail at that point and its head at the opposite vertex of the

parallelogram spanned by u and v. This is shown in Figure 10.14(a).

Figure 10.14

(a) Vector addition

(b) Scalar multiplication

v
u

u

v
uC v

uC v

�
1
2 v

�v

2v

v

(a) (b)

D E F I N I T I O N

2

Scalar multiplication

If v is a vector and t is a real number (also called a scalar), then the scalar

multiple tv is a vector with magnitude jt j times that of v and direction the

same as v if t > 0, or opposite to that of v if t < 0. See Figure 10.14(b). If

t D 0, then tv has zero length and therefore no particular direction. It is the

zero vector, denoted 0.

Suppose that u has components a and b and that v has components x and y. Then

the components of u C v are a C x and b C y, and those of tv are tx and ty. See

Figure 10.15.

Figure 10.15 The components of a sum

of vectors or a scalar multiple of a vector is

the same sum or multiple of the corres-

ponding components of the vectors

y

x

y

x

uC v v

u

v

tv
ty

y

b C y

y

b

aC x

x

x

tx

a

In R
2 we single out two particular vectors for special attention. They are

(i) the vector i from the origin to the point .1; 0/, and

(ii) the vector j from the origin to the point .0; 1/.

Thus, i has components 1 and 0, and j has components 0 and 1. These vectors are

called the standard basis vectors in the plane. The vector r from the origin to the

point .x; y/ has components x and y and can be expressed in the form

r D hx; yi D xiC yj:

In the first form we specify the vector by listing its components between angle brackets;

in the second we write r as a linear combination of the standard basis vectors i and

j. (See Figure 10.16.) The vector r is called the position vector of the point .x; y/. A
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position vector has its tail at the origin and its head at the point whose position it is

specifying. The length of r is jrj D
p

x2
C y2.

y

x

.x; y/

x

i

j

y

r D xiC yj

Figure 10.16 Any vector is a linear

combination of the basis vectors

More generally, the vector
��!

AP from A D .a; b/ to P D .p; q/ in Figure 10.13 can

also be written as a list of components or as a linear combination of the standard basis

vectors:
��!

AP D hp � a; q � bi D .p � a/iC .q � b/j:

Sums and scalar multiples of vectors are easily expressed in terms of components. If

u D u1iC u2j and v D v1iC v2j, and if t is a scalar (i.e., a real number), then

uC v D .u1 C v1/iC .u2 C v2/j;

tu D .tu1/iC .tu2/j:

The zero vector is 0 D 0i C 0j. It has length zero and no specific direction. For any

vector u we have 0u D 0. A unit vector is a vector of length 1. The standard basis

vectors i and j are unit vectors. Given any nonzero vector v, we can form a unit vector

Ov in the same direction as v by multiplying v by the reciprocal of its length (a scalar):

Ov D

�

1

jvj

�

v:

E X A M P L E 1
If A D .2;�1/, B D .�1; 3/, and C D .0; 1/, express each of

the following vectors as a linear combination of the standard basis

vectors:

(a)
��!

AB (b)
��!

BC (c)
��!

AC (d)
��!

AB C
��!

BC (e) 2
��!

AC � 3
��!

CB

(f) a unit vector in the direction of
��!

AB.

Solution

(a)
��!

AB D .�1 � 2/iC .3 � .�1//j D �3iC 4j

(b)
��!

BC D .0 � .�1//iC .1 � 3/j D i � 2j

(c)
��!

AC D .0 � 2/iC .1 � .�1//j D �2iC 2j

(d)
��!

AB C
��!

BC D
��!

AC D �2i C 2j

(e) 2
��!

AC � 3
��!

CB D 2.�2iC 2j/ � 3.�iC 2j/ D �i � 2j

(f) A unit vector in the direction of
��!

AB is

��!

AB

j

��!

ABj

D �

3

5
iC

4

5
j.

Implicit in the above example is the fact that the operations of addition and scalar

multiplication obey appropriate algebraic rules, such as

uC v D vC u;

.uC v/C w D uC .vC w/;

u � v D uC .�1/v;

t.uC v/ D tuC tv:

Vectors in 3-Space
The algebra and geometry of vectors described here extends to spaces of any number

of dimensions; we can still think of vectors as represented by arrows, and sums and

scalar multiples are formed just as for plane vectors.

Given a Cartesian coordinate system in 3-space, we define three standard ba-

sis vectors, i, j, and k, represented by arrows from the origin to the points .1; 0; 0/,

.0; 1; 0/, and .0; 0; 1/, respectively. (See Figure 10.17.) Any vector in 3-space can be

written as a linear combination of these basis vectors; for instance, the position vector

of the point .x; y; z/ is given by

x

y

z

j

r

P D .x; y; z/

i

k

y
x

z

Figure 10.17 The standard basis vectors i,

j, and k

r D xiC yjC zk:
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We say that r has components x, y, and z. The length of r is

jrj D
p

x2
C y2

C z2:

If P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/ are two points in 3-space, then the vector

v D
���!

P1P2 from P1 to P2 has components x2�x1, y2�y1, and z2�z1 and is therefore

represented in terms of the standard basis vectors by

v D
���!

P1P2 D .x2 � x1/iC .y2 � y1/jC .z2 � z1/k:

E X A M P L E 2
If u D 2iC j� 2k and v D 3i� 2j� k, find uC v, u� v, 3u� 2v,

juj, jvj, and a unit vector Ou in the direction of u.

Solution

uC v D .2C 3/iC .1 � 2/jC .�2 � 1/k D 5i � j � 3k

u � v D .2 � 3/iC .1C 2/jC .�2C 1/k D �iC 3j � k

3u � 2v D .6 � 6/iC .3C 4/jC .�6C 2/k D 7j � 4k

juj D
p

4C 1C 4 D 3; jvj D
p

9C 4C 1 D
p

14

Ou D

�

1

juj

�

u D
2

3
iC

1

3
j �

2

3
k:

The following example illustrates the way vectors can be used to solve problems in-

volving relative velocities. If Amoves with velocity vA rel B relative to B , and B moves

with velocity vB rel C relative to C , then A moves with velocity vA rel C relative to C ,

where

vA rel C D vA rel B C vB rel C :

E X A M P L E 3
An aircraft cruises at a speed of 300 km/h in still air. If the wind

is blowing from the east at 100 km/h, in what direction should the

aircraft head in order to fly in a straight line from city P to city Q, 400 km north-

northeast of P ? How long will the trip take?

Solution The problem is two-dimensional, so we use plane vectors. Let us choose

our coordinate system so that the x- and y-axes point east and north, respectively.

Figure 10.18 illustrates the three velocities that must be considered. The velocity of the

air relative to the ground is

vair rel ground D �100 i:

If the aircraft heads in a direction making angle � with the positive direction of the

x-axis, then the velocity of the aircraft relative to the air is

vaircraft rel air D 300 cos � iC 300 sin � j:

Thus, the velocity of the aircraft relative to the ground is

y

x

�

67:5ı
300.cos � iC sin � j/

�100i

Figure 10.18 Velocity diagram for the

aircraft in Example 3

vaircraft rel ground D vaircraft rel air C vair rel ground

D .300 cos � � 100/ iC 300 sin � j:

We want this latter velocity to be in a north-northeasterly direction, that is, in the

direction making angle 3�=8 D 67:5ı with the positive direction of the x-axis. Thus,

we will have

vaircraft rel ground D v
��

cos 67:5ı� iC
�

sin 67:5ı� j
�

;
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where v is the actual groundspeed of the aircraft. Comparing the two expressions for

vaircraft rel ground we obtain

300 cos � � 100 D v cos 67:5ı

300 sin � D v sin 67:5ı
:

Eliminating v between these two equations we get

300 cos � sin 67:5ı
� 300 sin � cos 67:5ı

D 100 sin 67:5ı
;

or

3 sin.67:5ı
� �/ D sin 67:5ı

:

Therefore, the aircraft should head in direction � given by

� D 67:5
ı
� arcsin

�

1

3
sin 67:5ı

�

� 49:56
ı
;

that is, 49:56ı north of east. The groundspeed is now seen to be

v D 300 sin �= sin 67:5ı
� 247:15 km/h:

Thus, the 400 km trip will take about 400=247:15 � 1:618 hours, or about 1 hour and

37 minutes.

Hanging Cables and Chains
When it is suspended from both ends and allowed to hang under gravity, a heavy cable

or chain assumes the shape of a catenary curve, which is the graph of the hyperbolic

cosine function. We will demonstrate this now, using vectors to keep track of the

various forces acting on the cable.

Suppose that the cable has line density ı (units of mass per unit length) and hangs

as shown in Figure 10.19. Let us choose a coordinate system so that the lowest point

L on the cable is at .0; y0/; we will specify the value of y0 later. If P D .x; y/ is

another point on the cable, there are three forces acting on the arc LP of the cable

between L and P: These are all forces that we can represent using horizontal and

vertical components.

(i) The horizontal tension H D �H i at L. This is the force that the part of the

cable to the left of L exerts on the arc LP at L.

(ii) The tangential tension T D ThiC Tvj. This is the force the part of the cable

to the right of P exerts on arc LP at P:

(iii) The weight W D �ıgsj of arc LP; where g is the acceleration of gravity and

s is the length of the arc LP:

Since the cable is not moving, these three forces must balance; their vector sum must

be zero:

TCHCW D 0

.Th �H/iC .Tv � ıgs/j D 0
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We say that r has components x, y, and z. The length of r is

jrj D
p

x2
C y2

C z2:

If P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/ are two points in 3-space, then the vector

v D
���!

P1P2 from P1 to P2 has components x2�x1, y2�y1, and z2�z1 and is therefore

represented in terms of the standard basis vectors by

v D
���!

P1P2 D .x2 � x1/iC .y2 � y1/jC .z2 � z1/k:

E X A M P L E 2
If u D 2iC j� 2k and v D 3i� 2j� k, find uC v, u� v, 3u� 2v,

juj, jvj, and a unit vector Ou in the direction of u.

Solution

uC v D .2C 3/iC .1 � 2/jC .�2 � 1/k D 5i � j � 3k

u � v D .2 � 3/iC .1C 2/jC .�2C 1/k D �iC 3j � k

3u � 2v D .6 � 6/iC .3C 4/jC .�6C 2/k D 7j � 4k

juj D
p

4C 1C 4 D 3; jvj D
p

9C 4C 1 D
p

14

Ou D

�

1

juj

�

u D
2

3
iC

1

3
j �

2

3
k:

The following example illustrates the way vectors can be used to solve problems in-

volving relative velocities. If Amoves with velocity vA rel B relative to B , and B moves

with velocity vB rel C relative to C , then A moves with velocity vA rel C relative to C ,

where

vA rel C D vA rel B C vB rel C :

E X A M P L E 3
An aircraft cruises at a speed of 300 km/h in still air. If the wind

is blowing from the east at 100 km/h, in what direction should the

aircraft head in order to fly in a straight line from city P to city Q, 400 km north-

northeast of P ? How long will the trip take?

Solution The problem is two-dimensional, so we use plane vectors. Let us choose

our coordinate system so that the x- and y-axes point east and north, respectively.

Figure 10.18 illustrates the three velocities that must be considered. The velocity of the

air relative to the ground is

vair rel ground D �100 i:

If the aircraft heads in a direction making angle � with the positive direction of the

x-axis, then the velocity of the aircraft relative to the air is

vaircraft rel air D 300 cos � iC 300 sin � j:

Thus, the velocity of the aircraft relative to the ground is

y

x

�

67:5ı
300.cos � iC sin � j/

�100i

Figure 10.18 Velocity diagram for the

aircraft in Example 3

vaircraft rel ground D vaircraft rel air C vair rel ground

D .300 cos � � 100/ iC 300 sin � j:

We want this latter velocity to be in a north-northeasterly direction, that is, in the

direction making angle 3�=8 D 67:5ı with the positive direction of the x-axis. Thus,

we will have

vaircraft rel ground D v
��

cos 67:5ı� iC
�

sin 67:5ı� j
�

;
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where v is the actual groundspeed of the aircraft. Comparing the two expressions for

vaircraft rel ground we obtain

300 cos � � 100 D v cos 67:5ı

300 sin � D v sin 67:5ı
:

Eliminating v between these two equations we get

300 cos � sin 67:5ı
� 300 sin � cos 67:5ı

D 100 sin 67:5ı
;

or

3 sin.67:5ı
� �/ D sin 67:5ı

:

Therefore, the aircraft should head in direction � given by

� D 67:5
ı
� arcsin

�

1

3
sin 67:5ı

�

� 49:56
ı
;

that is, 49:56ı north of east. The groundspeed is now seen to be

v D 300 sin �= sin 67:5ı
� 247:15 km/h:

Thus, the 400 km trip will take about 400=247:15 � 1:618 hours, or about 1 hour and

37 minutes.

Hanging Cables and Chains
When it is suspended from both ends and allowed to hang under gravity, a heavy cable

or chain assumes the shape of a catenary curve, which is the graph of the hyperbolic

cosine function. We will demonstrate this now, using vectors to keep track of the

various forces acting on the cable.

Suppose that the cable has line density ı (units of mass per unit length) and hangs

as shown in Figure 10.19. Let us choose a coordinate system so that the lowest point

L on the cable is at .0; y0/; we will specify the value of y0 later. If P D .x; y/ is

another point on the cable, there are three forces acting on the arc LP of the cable

between L and P: These are all forces that we can represent using horizontal and

vertical components.

(i) The horizontal tension H D �H i at L. This is the force that the part of the

cable to the left of L exerts on the arc LP at L.

(ii) The tangential tension T D ThiC Tvj. This is the force the part of the cable

to the right of P exerts on arc LP at P:

(iii) The weight W D �ıgsj of arc LP; where g is the acceleration of gravity and

s is the length of the arc LP:

Since the cable is not moving, these three forces must balance; their vector sum must

be zero:

TCHCW D 0

.Th �H/iC .Tv � ıgs/j D 0
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Figure 10.19 A hanging cable and the

forces acting on arc LP

y

x

L

T

Tv

W D �ıgsj

s

Th

H D �H i

y0

P D .x; y/

Thus, Th D H and Tv D ıgs. Since T is tangent to the cable at P; the slope of the

cable there is

dy

dx
D

Tv

Th

D

ıgs

H
D as;

where a D ıg=H is a constant for the given cable. Differentiating with respect to x

and using the fact, from our study of arc length, that

ds

dx
D

s

1C

�

dy

dx

�2

;

we obtain a second-order differential equation,

d2y

dx2
D a

ds

dx
D a

s

1C

�

dy

dx

�2

;

to be solved for the equation of the curve along which the hanging cable lies. The

appropriate initial conditions are y D y0 and dy=dx D 0 at x D 0.

Since the differential equation depends on dy=dx rather than y, we substitute

m.x/ D dy=dx and obtain a first-order equation for m:

dm

dx
D a

p

1Cm2:

This equation is separable; we integrate it using the substitution m D sinhu:

Z

1
p

1Cm2
dm D

Z

a dx

Z

du D

Z

coshu
p

1C sinh2
u

du D ax C C1

sinh�1
m D u D ax C C1

m D sinh.ax C C1/:

Since m D dy=dx D 0 at x D 0, we have 0 D sinhC1, so C1 D 0 and

dy

dx
D m D sinh.ax/:
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This equation is easily integrated to find y. (Had we used a tangent substitution instead

of the hyperbolic sine substitution for m we would have had more trouble here.)

y D
1

a
cosh.ax/C C2:

If we choose y0 D y.0/ D 1=a, then, substituting x D 0, we will get C2 D 0. With

this choice of y0, we therefore find that the equation of the curve along which the

hanging cable lies is the catenary

y D
1

a
cosh.ax/:

Remark If a hanging cable bears loads other than its own weight, it will assume

a different shape. For example, a cable supporting a level suspension bridge whose

weight per unit length is much greater than that of the cable will assume the shape of

a parabola. See Exercise 34 below.

The Dot Product and Projections

There is another operation on vectors in any dimension by which two vectors are com-

bined to produce a number called their dot product.

D E F I N I T I O N

3

The dot product of two vectors

Given two vectors, u D u1i C u2j and v D v1i C v2j in R
2, we define

their dot product u � v to be the sum of the products of their corresponding

components:

u � v D u1v1 C u2v2:

The terms scalar product and inner product are also used in place of dot

product. Similarly, for vectors u D u1iCu2jCu3k and v D v1iCv2jCv3k

in R
3,

u � v D u1v1 C u2v2 C u3v3:

The dot product has the following algebraic properties, easily checked using the defi-

nition above:

u � v D v � u (commutative law);

u � .vC w/ D u � vC u � w (distributive law);

.tu/ � v D u � .tv/ D t.u � v/ (for real t);

u � u D juj2:

The real significance of the dot product is shown by the following result, which could

have been used as the definition of dot product:

T H E O R E M

1

If � is the angle between the directions of u and v .0 � � � �/, then

u � v D jujjvj cos �:

In particular, u � v D 0 if and only if u and v are perpendicular. (Of course, the zero

vector is perpendicular to every vector.)
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Figure 10.19 A hanging cable and the

forces acting on arc LP
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L

T

Tv

W D �ıgsj

s

Th

H D �H i

y0

P D .x; y/

Thus, Th D H and Tv D ıgs. Since T is tangent to the cable at P; the slope of the

cable there is

dy

dx
D

Tv

Th

D

ıgs

H
D as;

where a D ıg=H is a constant for the given cable. Differentiating with respect to x

and using the fact, from our study of arc length, that

ds

dx
D

s

1C

�

dy

dx

�2

;

we obtain a second-order differential equation,

d2y

dx2
D a

ds

dx
D a

s

1C

�

dy

dx

�2

;

to be solved for the equation of the curve along which the hanging cable lies. The

appropriate initial conditions are y D y0 and dy=dx D 0 at x D 0.

Since the differential equation depends on dy=dx rather than y, we substitute

m.x/ D dy=dx and obtain a first-order equation for m:

dm

dx
D a

p

1Cm2:

This equation is separable; we integrate it using the substitution m D sinhu:

Z

1
p

1Cm2
dm D

Z

a dx

Z

du D

Z

coshu
p

1C sinh2
u

du D ax C C1

sinh�1
m D u D ax C C1

m D sinh.ax C C1/:

Since m D dy=dx D 0 at x D 0, we have 0 D sinhC1, so C1 D 0 and

dy

dx
D m D sinh.ax/:
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This equation is easily integrated to find y. (Had we used a tangent substitution instead

of the hyperbolic sine substitution for m we would have had more trouble here.)

y D
1

a
cosh.ax/C C2:

If we choose y0 D y.0/ D 1=a, then, substituting x D 0, we will get C2 D 0. With

this choice of y0, we therefore find that the equation of the curve along which the

hanging cable lies is the catenary

y D
1

a
cosh.ax/:

Remark If a hanging cable bears loads other than its own weight, it will assume

a different shape. For example, a cable supporting a level suspension bridge whose

weight per unit length is much greater than that of the cable will assume the shape of

a parabola. See Exercise 34 below.

The Dot Product and Projections

There is another operation on vectors in any dimension by which two vectors are com-

bined to produce a number called their dot product.

D E F I N I T I O N

3

The dot product of two vectors

Given two vectors, u D u1i C u2j and v D v1i C v2j in R
2, we define

their dot product u � v to be the sum of the products of their corresponding

components:

u � v D u1v1 C u2v2:

The terms scalar product and inner product are also used in place of dot

product. Similarly, for vectors u D u1iCu2jCu3k and v D v1iCv2jCv3k

in R
3,

u � v D u1v1 C u2v2 C u3v3:

The dot product has the following algebraic properties, easily checked using the defi-

nition above:

u � v D v � u (commutative law);

u � .vC w/ D u � vC u � w (distributive law);

.tu/ � v D u � .tv/ D t.u � v/ (for real t);

u � u D juj2:

The real significance of the dot product is shown by the following result, which could

have been used as the definition of dot product:

T H E O R E M

1

If � is the angle between the directions of u and v .0 � � � �/, then

u � v D jujjvj cos �:

In particular, u � v D 0 if and only if u and v are perpendicular. (Of course, the zero

vector is perpendicular to every vector.)
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PROOF Refer to Figure 10.20 and apply the Cosine Law to the triangle with the ar-

rows u, v, and u � v as sides:

juj2 C jvj2 � 2juj jvj cos � D ju � vj2 D .u � v/ � .u � v/

D u � .u � v/ � v � .u � v/

D u � u � u � v � v � uC v � v

D juj2 C jvj2 � 2u � v

Hence, jujjvj cos � D u � v, as claimed.

�

u � v

u

v

v

�

u � v

u

Figure 10.20 Applying the Cosine Law to

a triangle reveals the relationship between

dot the product and angle between vectors

E X A M P L E 4
Find the angle � between the vectors u D 2i C j � 2k and v D

3i � 2j � k.

Solution Solving the formula u � v D jujjvj cos � for � , we obtain

� D cos�1 u � v

jujjvj
D cos�1

�

.2/.3/C .1/.�2/C .�2/.�1/

3
p

14

�

D cos�1 2
p

14
� 57:69

ı
:

It is sometimes useful to project one vector along another. We define both scalar and

vector projections of u in the direction of v:

D E F I N I T I O N

4

Scalar and vector projections

The scalar projection s of any vector u in the direction of a nonzero vector v

is the dot product of u with a unit vector in the direction of v. Thus, it is the

number

s D
u � v

jvj
D juj cos �;

where � is the angle between u and v.

The vector projection, uv, of u in the direction of v (see Figure 10.21)

is the scalar multiple of a unit vector Ov in the direction of v, by the scalar

projection of u in the direction of v; that is,

vector projection of u along v D uv D
u � v

jvj
Ov D

u � v

jvj2
v:

Note that jsj is the length of the line segment along the line of v obtained by dropping

perpendiculars to that line from the tail and head of u. (See Figure 10.21.) Also, s is

negative if � > 90ı.

It is often necessary to express a vector as a sum of two other vectors parallel and

perpendicular to a given direction.

�

uv
v

u

s

Figure 10.21 The scalar projection s and

the vector projection uv of vector u along

vector v

E X A M P L E 5
Express the vector 3i C j as a sum of vectors u C v, where u is

parallel to the vector iC j and v is perpendicular to u.

Solution

METHOD I (Using vector projection) Note that u must be the vector projection of

3iC j in the direction of iC j. Thus,

u D
.3iC j/ � .iC j/

jiC jj2
.iC j/ D

4

2
.iC j/ D 2iC 2j

v D 3iC j � u D i � j:
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METHOD II (From basic principles) Since u is parallel to iCj and v is perpendicular

to u, we have

u D t.iC j/ and v � .iC j/ D 0;

for some scalar t . We want uC v D 3iC j. Take the dot product of this equation with

iC j:

u � .iC j/C v � .iC j/ D .3iC j/ � .iC j/

t.iC j/ � .iC j/C 0 D 4:

Thus 2t D 4, so t D 2. Therefore,

u D 2iC 2j and v D 3iC j � u D i � j:

Vectors in n-Space
All the above ideas make sense for vectors in spaces of any dimension. Vectors in R

n

can be expressed as linear combinations of the n unit vectors

e1 from the origin to the point .1; 0; 0; : : : ; 0/

e2 from the origin to the point .0; 1; 0; : : : ; 0/

:
:
:

en from the origin to the point .0; 0; 0; : : : ; 1/:

These vectors constitute a standard basis in R
n. The n-vector x with components

x1; x2; : : : ; xn is expressed in the form

x D x1e1 C x2e2 C � � � C xnen:

The length of x is jxj D
p

x1
2
C x2

2
C � � � C xn

2. The angle between two vectors x

and y is

� D cos�1 x � y

jxjjyj
;

where

x � y D x1y1 C x2y2 C � � � C xnyn:

We will not make much use of n-vectors for n > 3, but you should be aware that

everything said up until now for 2-vectors or 3-vectors extends to n-vectors.

E X E R C I S E S 10.2

1. Let A D .�1; 2/; B D .2; 0/; C D .1;�3/; D D .0; 4/.

Express each of the following vectors as a linear combination

of the standard basis vectors i and j in R
2
.

(a)
��!

AB , (b)
�!

BA, (c)
��!

AC , (d)
��!

BD, (e)
��!

DA,

(f)
��!

AB �
��!

BC , (g)
��!

AC � 2
��!

AB C 3
��!

CD, and

(h)

��!

AB C
��!

AC C
��!

AD

3
:

In Exercises 2–3, calculate the following for the given vectors u

and v:

(a) uC v, u � v, 2u� 3v,

(b) the lengths juj and jvj,
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PROOF Refer to Figure 10.20 and apply the Cosine Law to the triangle with the ar-

rows u, v, and u � v as sides:

juj2 C jvj2 � 2juj jvj cos � D ju � vj2 D .u � v/ � .u � v/

D u � .u � v/ � v � .u � v/

D u � u � u � v � v � uC v � v

D juj2 C jvj2 � 2u � v

Hence, jujjvj cos � D u � v, as claimed.

�

u � v

u

v

v

�

u � v

u

Figure 10.20 Applying the Cosine Law to

a triangle reveals the relationship between

dot the product and angle between vectors

E X A M P L E 4
Find the angle � between the vectors u D 2i C j � 2k and v D

3i � 2j � k.

Solution Solving the formula u � v D jujjvj cos � for � , we obtain

� D cos�1 u � v

jujjvj
D cos�1

�

.2/.3/C .1/.�2/C .�2/.�1/

3
p

14

�

D cos�1 2
p

14
� 57:69

ı
:

It is sometimes useful to project one vector along another. We define both scalar and

vector projections of u in the direction of v:

D E F I N I T I O N

4

Scalar and vector projections

The scalar projection s of any vector u in the direction of a nonzero vector v

is the dot product of u with a unit vector in the direction of v. Thus, it is the

number

s D
u � v

jvj
D juj cos �;

where � is the angle between u and v.

The vector projection, uv, of u in the direction of v (see Figure 10.21)

is the scalar multiple of a unit vector Ov in the direction of v, by the scalar

projection of u in the direction of v; that is,

vector projection of u along v D uv D
u � v

jvj
Ov D

u � v

jvj2
v:

Note that jsj is the length of the line segment along the line of v obtained by dropping

perpendiculars to that line from the tail and head of u. (See Figure 10.21.) Also, s is

negative if � > 90ı.

It is often necessary to express a vector as a sum of two other vectors parallel and

perpendicular to a given direction.

�

uv
v

u

s

Figure 10.21 The scalar projection s and

the vector projection uv of vector u along

vector v

E X A M P L E 5
Express the vector 3i C j as a sum of vectors u C v, where u is

parallel to the vector iC j and v is perpendicular to u.

Solution

METHOD I (Using vector projection) Note that u must be the vector projection of

3iC j in the direction of iC j. Thus,

u D
.3iC j/ � .iC j/

jiC jj2
.iC j/ D

4

2
.iC j/ D 2iC 2j

v D 3iC j � u D i � j:
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METHOD II (From basic principles) Since u is parallel to iCj and v is perpendicular

to u, we have

u D t.iC j/ and v � .iC j/ D 0;

for some scalar t . We want uC v D 3iC j. Take the dot product of this equation with

iC j:

u � .iC j/C v � .iC j/ D .3iC j/ � .iC j/

t.iC j/ � .iC j/C 0 D 4:

Thus 2t D 4, so t D 2. Therefore,

u D 2iC 2j and v D 3iC j � u D i � j:

Vectors in n-Space
All the above ideas make sense for vectors in spaces of any dimension. Vectors in R

n

can be expressed as linear combinations of the n unit vectors

e1 from the origin to the point .1; 0; 0; : : : ; 0/

e2 from the origin to the point .0; 1; 0; : : : ; 0/

:
:
:

en from the origin to the point .0; 0; 0; : : : ; 1/:

These vectors constitute a standard basis in R
n. The n-vector x with components

x1; x2; : : : ; xn is expressed in the form

x D x1e1 C x2e2 C � � � C xnen:

The length of x is jxj D
p

x1
2
C x2

2
C � � � C xn

2. The angle between two vectors x

and y is

� D cos�1 x � y

jxjjyj
;

where

x � y D x1y1 C x2y2 C � � � C xnyn:

We will not make much use of n-vectors for n > 3, but you should be aware that

everything said up until now for 2-vectors or 3-vectors extends to n-vectors.

E X E R C I S E S 10.2

1. Let A D .�1; 2/; B D .2; 0/; C D .1;�3/; D D .0; 4/.

Express each of the following vectors as a linear combination

of the standard basis vectors i and j in R
2
.

(a)
��!

AB , (b)
�!

BA, (c)
��!

AC , (d)
��!

BD, (e)
��!

DA,

(f)
��!

AB �
��!

BC , (g)
��!

AC � 2
��!

AB C 3
��!

CD, and

(h)

��!

AB C
��!

AC C
��!

AD

3
:

In Exercises 2–3, calculate the following for the given vectors u

and v:

(a) uC v, u � v, 2u� 3v,

(b) the lengths juj and jvj,
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(c) unit vectors Ou and Ov in the directions of u and v,

respectively,

(d) the dot product u � v,

(e) the angle between u and v,

(f) the scalar projection of u in the direction of v,

(g) the vector projection of v along u.

2. u D i � j and v D jC 2k

3. u D 3iC 4j � 5k and v D 3i � 4j � 5k

4. Use vectors to show that the triangle with vertices .�1; 1/,

.2; 5/, and .10;�1/ is right-angled.

In Exercises 5–8, prove the stated geometric result using vectors.

5.A The line segment joining the midpoints of two sides of a

triangle is parallel to and half as long as the third side.

6.A If P; Q, R, and S are midpoints of sides AB , BC , CD, and

DA, respectively, of quadrilateral ABCD, then PQRS is a

parallelogram.

7.I The diagonals of any parallelogram bisect each other.

8.I The medians of any triangle meet in a common point. (A

median is a line joining one vertex to the midpoint of the

opposite side. The common point is the centroid of the

triangle.)

9. A weather vane mounted on the top of a car moving due north

at 50 km/h indicates that the wind is coming from the west.

When the car doubles its speed, the weather vane indicates

that the wind is coming from the northwest. From what

direction is the wind coming, and what is its speed?

10. A straight river 500 m wide flows due east at a constant speed

of 3 km/h. If you can row your boat at a speed of 5 km/h in

still water, in what direction should you head if you wish to

row from point A on the south shore to point B on the north

shore directly north of A? How long will the trip take?

11.I In what direction should you head to cross the river in

Exercise 10 if you can only row at 2 km/h, and you wish to

row from A to point C on the north shore, k km downstream

from B? For what values of k is the trip not possible?

12. A certain aircraft flies with an airspeed of 750 km/h. In what

direction should it head in order to make progress in a true

easterly direction if the wind is from the northeast at

100 km/h? How long will it take to complete a trip to a city

1,500 km from its starting point?

13. For what value of t is the vector 2t iC 4j � .10C t /k

perpendicular to the vector iC t jC k?

14. Find the angle between a diagonal of a cube and one of the

edges of the cube.

15. Find the angle between a diagonal of a cube and a diagonal of

one of the faces of the cube. Give all possible answers.

16.A (Direction cosines) If a vector u in R
3

makes angles ˛, ˇ, and

 with the coordinate axes, show that

Ou D cos˛iC cosˇjC cos k

is a unit vector in the direction of u, so

cos2 ˛ C cos2 ˇ C cos2  D 1. The numbers cos ˛, cosˇ, and

cos  are called the direction cosines of u.

17. Find a unit vector that makes equal angles with the three

coordinate axes.

18. Find the three angles of the triangle with vertices .1; 0; 0/,

.0; 2; 0/, and .0; 0; 3/.

19.A If r1 and r2 are the position vectors of two points, P1 and P2,

and � is a real number, show that

r D .1 � �/r1 C �r2

is the position vector of a point P on the straight line joining

P1 and P2. Where is P if � D 1=2? if � D 2=3? if � D �1?

if � D 2?

20. Let a be a nonzero vector. Describe the set of all points in

3-space whose position vectors r satisfy a � r D 0.

21. Let a be a nonzero vector, and let b be any real number.

Describe the set of all points in 3-space whose position

vectors r satisfy a � r D b.

In Exercises 22–24, u D 2iC j � 2k, v D iC 2j � 2k, and

w D 2i� 2jC k.

22. Find two unit vectors each of which is perpendicular to both

u and v.

23. Find a vector x satisfying the system of equations x � u D 9,

x � v D 4, x � w D 6.

24. Find two unit vectors each of which makes equal angles with

u, v, and w.

25. Find a unit vector that bisects the angle between any two

nonzero vectors u and v.

26. Given two nonparallel vectors u and v, describe the set of all

points whose position vectors r are of the form r D �uC �v,

where � and � are arbitrary real numbers.

27.A (The triangle inequality) Let u and v be two vectors.

(a) Show that juC vj2 D juj2 C 2u � vC jvj2.

(b) Show that u � v � jujjvj.

(c) Deduce from (a) and (b) that juC vj � juj C jvj.

28. (a) Why is the inequality in Exercise 27(c) called a triangle

inequality?

(b) What conditions on u and v imply that

juC vj D juj C jvj?

29. (Orthonormal bases) Let u D 3
5

iC 4
5

j, v D 4
5

i � 3
5

j, and

w D k.

(a) Show that juj D jvj D jwj D 1 and

u � v D u � w D v � w D 0. The vectors u, v, and w are

mutually perpendicular unit vectors and as such are said

to constitute an orthonormal basis for R
3
.

(b) If r D xiC yjC zk, show by direct calculation that

r D .r � u/uC .r � v/vC .r � w/w:

30. Show that if u, v, and w are any three mutually perpendicular

unit vectors in R
3

and r D auC bvC cw, then a D r � u,

b D r � v, and c D r � w.

31. (Resolving a vector in perpendicular directions) If a is a

nonzero vector and w is any vector, find vectors u and v such

that w D uC v, u is parallel to a, and v is perpendicular to a.
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32.A (Expressing a vector as a linear combination of two other

vectors with which it is coplanar) Suppose that u, v, and r

are position vectors of points U , V , and P , respectively, that u

is not parallel to v, and that P lies in the plane containing the

origin, U , and V . Show that there exist numbers � and � such

that r D �uC �v. Hint: Resolve both v and r as sums of

vectors parallel and perpendicular to u as suggested in

Exercise 31.

33.I Given constants r , s, and t , with r ¤ 0 and s ¤ 0, and given a

vector a satisfying jaj2 > 4rst , solve the system of equations

�

rxC sy D a

x � y D t

for the unknown vectors x and y.

Hanging cables

34. (A suspension bridge) If a hanging cable is supporting

weight with constant horizontal line density (so that the

weight supported by the arc LP in Figure 10.19 is ıgx rather

than ıgs), show that the cable assumes the shape of a parabola

rather than a catenary. Such is likely to be the case for the

cables of a suspension bridge.

C 35. At a point P , 10 m away horizontally from its lowest point L,

a cable makes an angle 55ı with the horizontal. Find the

length of the cable between L and P .

36. Calculate the length s of the arc LP of the hanging cable in

Figure 10.19 using the equation y D .1=a/ cosh.ax/ obtained

for the cable. Hence, verify that the magnitude T D jTj of the

tension in the cable at any point P D .x; y/ is T D ıgy.

C 37. A cable 100 m long hangs between two towers 90 m apart so

that its ends are attached at the same height on the two towers.

How far below that height is the lowest point on the cable?

10.3 The Cross Product in 3-Space

There is defined, in 3-space only, another kind of product of two vectors called a cross

product or vector product, and denoted u� v.

D E F I N I T I O N

5

For any vectors u and v in R
3, the cross product u� v is the unique vector

satisfying the following three conditions:

(i) .u� v/ � u D 0 and .u� v/ � v D 0,

(ii) ju� vj D jujjvj sin �; where � is the angle between u and v, and

(iii) u, v, and u� v form a right-handed triad.

If u and v are parallel, condition (ii) says that u� v D 0, the zero vector. Otherwise,

through any point in R
3 there is a unique straight line that is perpendicular to both u

and v. Condition (i) says that u� v is parallel to this line. Condition (iii) determines

which of the two directions along this line is the direction of u� v; a right-handed

screw advances in the direction of u� v if rotated in the direction from u toward v.

(This is equivalent to saying that the thumb, forefinger, and middle finger of the right

hand can be made to point in the directions of u, v, and u� v, respectively.)
�

u� v

u

P v

Figure 10.22 u� v is perpendicular to

both u and v and has length equal to the

area of the blue shaded parallelogram

If u and v have their tails at the point P , then u� v is normal (i.e., perpendicular)

to the plane through P in which u and v lie and, by condition (ii), u� v has length

equal to the area of the parallelogram spanned by u and v. (See Figure 10.22.) These

properties make the cross product very useful for the description of tangent planes and

normal lines to surfaces in R
3.

The definition of cross product given above does not involve any coordinate system

and therefore does not directly show the components of the cross product with respect

to the standard basis. These components are provided by the following theorem.

T H E O R E M

2

Components of the cross product

If u D u1iC u2jC u3k and v D v1iC v2jC v3k, then

u� v D .u2v3 � u3v2/iC .u3v1 � u1v3/jC .u1v2 � u2v1/k:
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(c) unit vectors Ou and Ov in the directions of u and v,

respectively,

(d) the dot product u � v,

(e) the angle between u and v,

(f) the scalar projection of u in the direction of v,

(g) the vector projection of v along u.

2. u D i � j and v D jC 2k

3. u D 3iC 4j � 5k and v D 3i � 4j � 5k

4. Use vectors to show that the triangle with vertices .�1; 1/,

.2; 5/, and .10;�1/ is right-angled.

In Exercises 5–8, prove the stated geometric result using vectors.

5.A The line segment joining the midpoints of two sides of a

triangle is parallel to and half as long as the third side.

6.A If P; Q, R, and S are midpoints of sides AB , BC , CD, and

DA, respectively, of quadrilateral ABCD, then PQRS is a

parallelogram.

7.I The diagonals of any parallelogram bisect each other.

8.I The medians of any triangle meet in a common point. (A

median is a line joining one vertex to the midpoint of the

opposite side. The common point is the centroid of the

triangle.)

9. A weather vane mounted on the top of a car moving due north

at 50 km/h indicates that the wind is coming from the west.

When the car doubles its speed, the weather vane indicates

that the wind is coming from the northwest. From what

direction is the wind coming, and what is its speed?

10. A straight river 500 m wide flows due east at a constant speed

of 3 km/h. If you can row your boat at a speed of 5 km/h in

still water, in what direction should you head if you wish to

row from point A on the south shore to point B on the north

shore directly north of A? How long will the trip take?

11.I In what direction should you head to cross the river in

Exercise 10 if you can only row at 2 km/h, and you wish to

row from A to point C on the north shore, k km downstream

from B? For what values of k is the trip not possible?

12. A certain aircraft flies with an airspeed of 750 km/h. In what

direction should it head in order to make progress in a true

easterly direction if the wind is from the northeast at

100 km/h? How long will it take to complete a trip to a city

1,500 km from its starting point?

13. For what value of t is the vector 2t iC 4j � .10C t /k

perpendicular to the vector iC t jC k?

14. Find the angle between a diagonal of a cube and one of the

edges of the cube.

15. Find the angle between a diagonal of a cube and a diagonal of

one of the faces of the cube. Give all possible answers.

16.A (Direction cosines) If a vector u in R
3

makes angles ˛, ˇ, and

 with the coordinate axes, show that

Ou D cos˛iC cosˇjC cos k

is a unit vector in the direction of u, so

cos2 ˛ C cos2 ˇ C cos2  D 1. The numbers cos ˛, cosˇ, and

cos  are called the direction cosines of u.

17. Find a unit vector that makes equal angles with the three

coordinate axes.

18. Find the three angles of the triangle with vertices .1; 0; 0/,

.0; 2; 0/, and .0; 0; 3/.

19.A If r1 and r2 are the position vectors of two points, P1 and P2,

and � is a real number, show that

r D .1 � �/r1 C �r2

is the position vector of a point P on the straight line joining

P1 and P2. Where is P if � D 1=2? if � D 2=3? if � D �1?

if � D 2?

20. Let a be a nonzero vector. Describe the set of all points in

3-space whose position vectors r satisfy a � r D 0.

21. Let a be a nonzero vector, and let b be any real number.

Describe the set of all points in 3-space whose position

vectors r satisfy a � r D b.

In Exercises 22–24, u D 2iC j � 2k, v D iC 2j � 2k, and

w D 2i� 2jC k.

22. Find two unit vectors each of which is perpendicular to both

u and v.

23. Find a vector x satisfying the system of equations x � u D 9,

x � v D 4, x � w D 6.

24. Find two unit vectors each of which makes equal angles with

u, v, and w.

25. Find a unit vector that bisects the angle between any two

nonzero vectors u and v.

26. Given two nonparallel vectors u and v, describe the set of all

points whose position vectors r are of the form r D �uC �v,

where � and � are arbitrary real numbers.

27.A (The triangle inequality) Let u and v be two vectors.

(a) Show that juC vj2 D juj2 C 2u � vC jvj2.

(b) Show that u � v � jujjvj.

(c) Deduce from (a) and (b) that juC vj � juj C jvj.

28. (a) Why is the inequality in Exercise 27(c) called a triangle

inequality?

(b) What conditions on u and v imply that

juC vj D juj C jvj?

29. (Orthonormal bases) Let u D 3
5

iC 4
5

j, v D 4
5

i � 3
5

j, and

w D k.

(a) Show that juj D jvj D jwj D 1 and

u � v D u � w D v � w D 0. The vectors u, v, and w are

mutually perpendicular unit vectors and as such are said

to constitute an orthonormal basis for R
3
.

(b) If r D xiC yjC zk, show by direct calculation that

r D .r � u/uC .r � v/vC .r � w/w:

30. Show that if u, v, and w are any three mutually perpendicular

unit vectors in R
3

and r D auC bvC cw, then a D r � u,

b D r � v, and c D r � w.

31. (Resolving a vector in perpendicular directions) If a is a

nonzero vector and w is any vector, find vectors u and v such

that w D uC v, u is parallel to a, and v is perpendicular to a.
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32.A (Expressing a vector as a linear combination of two other

vectors with which it is coplanar) Suppose that u, v, and r

are position vectors of points U , V , and P , respectively, that u

is not parallel to v, and that P lies in the plane containing the

origin, U , and V . Show that there exist numbers � and � such

that r D �uC �v. Hint: Resolve both v and r as sums of

vectors parallel and perpendicular to u as suggested in

Exercise 31.

33.I Given constants r , s, and t , with r ¤ 0 and s ¤ 0, and given a

vector a satisfying jaj2 > 4rst , solve the system of equations

�

rxC sy D a

x � y D t

for the unknown vectors x and y.

Hanging cables

34. (A suspension bridge) If a hanging cable is supporting

weight with constant horizontal line density (so that the

weight supported by the arc LP in Figure 10.19 is ıgx rather

than ıgs), show that the cable assumes the shape of a parabola

rather than a catenary. Such is likely to be the case for the

cables of a suspension bridge.

C 35. At a point P , 10 m away horizontally from its lowest point L,

a cable makes an angle 55ı with the horizontal. Find the

length of the cable between L and P .

36. Calculate the length s of the arc LP of the hanging cable in

Figure 10.19 using the equation y D .1=a/ cosh.ax/ obtained

for the cable. Hence, verify that the magnitude T D jTj of the

tension in the cable at any point P D .x; y/ is T D ıgy.

C 37. A cable 100 m long hangs between two towers 90 m apart so

that its ends are attached at the same height on the two towers.

How far below that height is the lowest point on the cable?

10.3 The Cross Product in 3-Space

There is defined, in 3-space only, another kind of product of two vectors called a cross

product or vector product, and denoted u� v.

D E F I N I T I O N

5

For any vectors u and v in R
3, the cross product u� v is the unique vector

satisfying the following three conditions:

(i) .u� v/ � u D 0 and .u� v/ � v D 0,

(ii) ju� vj D jujjvj sin �; where � is the angle between u and v, and

(iii) u, v, and u� v form a right-handed triad.

If u and v are parallel, condition (ii) says that u� v D 0, the zero vector. Otherwise,

through any point in R
3 there is a unique straight line that is perpendicular to both u

and v. Condition (i) says that u� v is parallel to this line. Condition (iii) determines

which of the two directions along this line is the direction of u� v; a right-handed

screw advances in the direction of u� v if rotated in the direction from u toward v.

(This is equivalent to saying that the thumb, forefinger, and middle finger of the right

hand can be made to point in the directions of u, v, and u� v, respectively.)
�

u� v

u

P v

Figure 10.22 u� v is perpendicular to

both u and v and has length equal to the

area of the blue shaded parallelogram

If u and v have their tails at the point P , then u� v is normal (i.e., perpendicular)

to the plane through P in which u and v lie and, by condition (ii), u� v has length

equal to the area of the parallelogram spanned by u and v. (See Figure 10.22.) These

properties make the cross product very useful for the description of tangent planes and

normal lines to surfaces in R
3.

The definition of cross product given above does not involve any coordinate system

and therefore does not directly show the components of the cross product with respect

to the standard basis. These components are provided by the following theorem.

T H E O R E M

2

Components of the cross product

If u D u1iC u2jC u3k and v D v1iC v2jC v3k, then

u� v D .u2v3 � u3v2/iC .u3v1 � u1v3/jC .u1v2 � u2v1/k:
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PROOF First, we observe that the vector

w D .u2v3 � u3v2/iC .u3v1 � u1v3/jC .u1v2 � u2v1/k

is perpendicular to both u and v since

u � w D u1.u2v3 � u3v2/C u2.u3v1 � u1v3/C u3.u1v2 � u2v1/ D 0;

and similarly v � w D 0. Thus, u� v is parallel to w. Next, we show that w and u� v

have the same length. In fact,

jwj2 D .u2v3 � u3v2/
2
C .u3v1 � u1v3/

2
C .u1v2 � u2v1/

2

D u
2
2v

2
3 C u

2
3v

2
2 � 2u2v3u3v2 C u

2
3v

2
1 C u

2
1v

2
3

� 2u3v1u1v3 C u
2
1v

2
2 C u

2
2v

2
1 � 2u1v2u2v1;

while

ju� vj2 D juj2jvj2 sin2
�

D juj2jvj2 .1 � cos2
�/

D juj2jvj2 � .u � v/2

D .u
2
1 C u

2
2 C u

2
3/.v

2
1 C v

2
2 C v

2
3/ � .u1v1 C u2v2 C u3v3/

2

D u
2
1v

2
1 C u

2
1v

2
2 C u

2
1v

2
3 C u

2
2v

2
1 C u

2
2v

2
2 C u

2
2v

2
3 C u

2
3v

2
1 C u

2
3v

2
2 C u

2
3v

2
3

� u
2
1v

2
1 � u

2
2v

2
2 � u

2
3v

2
3 � 2u1v1u2v2 � 2u1v1u3v3 � 2u2v2u3v3

D jwj2:

Since w is parallel to, and has the same length as, u� v, we must have either u� v D w

or u� v D �w. It remains to be shown that the first of these is the correct choice. To

see this, suppose that the triad of vectors u, v, and w is rigidly rotated in 3-space so

that u points in the direction of the positive x-axis and v lies in the upper half of the

xy-plane. Then u D u1i, and v D v1iC v2j, where u1 > 0 and v2 > 0. By the “right-

hand rule” u� v must point in the direction of the positive z-axis. But w D u1v2k

does point in that direction, so u� v D w, as asserted.

The formula for the cross product in terms of components may seem awkward and

asymmetric. As we shall see, however, it can be written more easily in terms of a

determinant. We introduce determinants later in this section.

E X A M P L E 1
(Calculating cross products)

(a) i� i D 0;

j� j D 0;

k� k D 0;

i� j D k;

j� k D i;

k� i D j;

j� i D �k;

k� j D �i;

i� k D �j:

(b) .2iC j � 3k/� .�2jC 5k/

D

�

.1/.5/ � .�2/.�3/
�

iC
�

.�3/.0/ � .2/.5/
�

jC
�

.2/.�2/ � .1/.0/
�

k

D �i � 10j � 4k:

The cross product has some but not all of the properties we usually ascribe to products.

We summarize its algebraic properties as follows:
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Properties of the cross product

If u, v, and w are any vectors in R
3, and t is a real number (a scalar), then

(i) u� u D 0,

(ii) u� v D �v� u, (The cross product is anticommutative.)

(iii) .uC v/�w D u�wC v�w,

(iv) u� .vC w/ D u� vC u�w,

(v) .tu/� v D u� .tv/ D t.u� v/,

(vi) u � .u� v/ D v � .u� v/ D 0.

These identities are all easily verified using the components or the definition of the

cross product or by using properties of determinants discussed below. They are left as

exercises for the reader. Note the absence of an associative law. The cross product is

not associative. (See Exercise 21 at the end of this section.) In general,

u� .v�w/ ¤ .u� v/�w:

Determinants
In order to simplify certain formulas such as the component representation of the cross

product, we introduce 2 � 2 and 3 � 3 determinants. General n � n determinants are

normally studied in courses on linear algebra; we will encounter them in Section 10.7

and later chapters. Here we will outline enough of the properties of determinants to

enable us to use them as shorthand in some otherwise complicated formulas.

A determinant is an expression that involves the elements of a square array (ma-

trix) of numbers. The determinant of the 2 � 2 array of numbers

a b

c d

is denoted by enclosing the array between vertical bars, and its value is the number

ad � bc:

ˇ

ˇ

ˇ

ˇ

a b

c d

ˇ

ˇ

ˇ

ˇ

D ad � bc:

This is the product of elements in the downward diagonal of the array minus the prod-

uct of elements in the upward diagonal, as shown in Figure 10.23. For example,

a b

dc

Figure 10.23 Upward and downward

diagonals

ˇ

ˇ

ˇ

ˇ

1 2

3 4

ˇ

ˇ

ˇ

ˇ

D .1/.4/ � .2/.3/ D �2:

Similarly, the determinant of a 3 � 3 array of numbers is defined by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D aei C bfg C cdh� gec � hfa � idb:

Observe that each of the six products in the value of the determinant involves exactly

one element from each row and exactly one from each column of the array. As such,

each term is the product of elements in a diagonal of an extended array obtained by

repeating the first two columns of the array to the right of the third column, as shown

in Figure 10.24. The value of the determinant is the sum of products corresponding

to the three complete downward diagonals minus the sum corresponding to the three

upward diagonals. With practice you will be able to form these diagonal products

without having to write the extended array.

f d ed e

c a ba b

i g hg h

Figure 10.24 WARNING: This method

does not work for 4�4 or higher-order

determinants!
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PROOF First, we observe that the vector

w D .u2v3 � u3v2/iC .u3v1 � u1v3/jC .u1v2 � u2v1/k

is perpendicular to both u and v since

u � w D u1.u2v3 � u3v2/C u2.u3v1 � u1v3/C u3.u1v2 � u2v1/ D 0;

and similarly v � w D 0. Thus, u� v is parallel to w. Next, we show that w and u� v

have the same length. In fact,

jwj2 D .u2v3 � u3v2/
2
C .u3v1 � u1v3/

2
C .u1v2 � u2v1/

2

D u
2
2v

2
3 C u

2
3v

2
2 � 2u2v3u3v2 C u

2
3v

2
1 C u

2
1v

2
3

� 2u3v1u1v3 C u
2
1v

2
2 C u

2
2v

2
1 � 2u1v2u2v1;

while

ju� vj2 D juj2jvj2 sin2
�

D juj2jvj2 .1 � cos2
�/

D juj2jvj2 � .u � v/2

D .u
2
1 C u

2
2 C u

2
3/.v

2
1 C v

2
2 C v

2
3/ � .u1v1 C u2v2 C u3v3/

2

D u
2
1v

2
1 C u

2
1v

2
2 C u

2
1v

2
3 C u

2
2v

2
1 C u

2
2v

2
2 C u

2
2v

2
3 C u

2
3v

2
1 C u

2
3v

2
2 C u

2
3v

2
3

� u
2
1v

2
1 � u

2
2v

2
2 � u

2
3v

2
3 � 2u1v1u2v2 � 2u1v1u3v3 � 2u2v2u3v3

D jwj2:

Since w is parallel to, and has the same length as, u� v, we must have either u� v D w

or u� v D �w. It remains to be shown that the first of these is the correct choice. To

see this, suppose that the triad of vectors u, v, and w is rigidly rotated in 3-space so

that u points in the direction of the positive x-axis and v lies in the upper half of the

xy-plane. Then u D u1i, and v D v1iC v2j, where u1 > 0 and v2 > 0. By the “right-

hand rule” u� v must point in the direction of the positive z-axis. But w D u1v2k

does point in that direction, so u� v D w, as asserted.

The formula for the cross product in terms of components may seem awkward and

asymmetric. As we shall see, however, it can be written more easily in terms of a

determinant. We introduce determinants later in this section.

E X A M P L E 1
(Calculating cross products)

(a) i� i D 0;

j� j D 0;

k� k D 0;

i� j D k;

j� k D i;

k� i D j;

j� i D �k;

k� j D �i;

i� k D �j:

(b) .2iC j � 3k/� .�2jC 5k/

D

�

.1/.5/ � .�2/.�3/
�

iC
�

.�3/.0/ � .2/.5/
�

jC
�

.2/.�2/ � .1/.0/
�

k

D �i � 10j � 4k:

The cross product has some but not all of the properties we usually ascribe to products.

We summarize its algebraic properties as follows:
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Properties of the cross product

If u, v, and w are any vectors in R
3, and t is a real number (a scalar), then

(i) u� u D 0,

(ii) u� v D �v� u, (The cross product is anticommutative.)

(iii) .uC v/�w D u�wC v�w,

(iv) u� .vC w/ D u� vC u�w,

(v) .tu/� v D u� .tv/ D t.u� v/,

(vi) u � .u� v/ D v � .u� v/ D 0.

These identities are all easily verified using the components or the definition of the

cross product or by using properties of determinants discussed below. They are left as

exercises for the reader. Note the absence of an associative law. The cross product is

not associative. (See Exercise 21 at the end of this section.) In general,

u� .v�w/ ¤ .u� v/�w:

Determinants
In order to simplify certain formulas such as the component representation of the cross

product, we introduce 2 � 2 and 3 � 3 determinants. General n � n determinants are

normally studied in courses on linear algebra; we will encounter them in Section 10.7

and later chapters. Here we will outline enough of the properties of determinants to

enable us to use them as shorthand in some otherwise complicated formulas.

A determinant is an expression that involves the elements of a square array (ma-

trix) of numbers. The determinant of the 2 � 2 array of numbers

a b

c d

is denoted by enclosing the array between vertical bars, and its value is the number

ad � bc:

ˇ

ˇ

ˇ

ˇ

a b

c d

ˇ

ˇ

ˇ

ˇ

D ad � bc:

This is the product of elements in the downward diagonal of the array minus the prod-

uct of elements in the upward diagonal, as shown in Figure 10.23. For example,

a b

dc

Figure 10.23 Upward and downward

diagonals

ˇ

ˇ

ˇ

ˇ

1 2

3 4

ˇ

ˇ

ˇ

ˇ

D .1/.4/ � .2/.3/ D �2:

Similarly, the determinant of a 3 � 3 array of numbers is defined by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D aei C bfg C cdh� gec � hfa � idb:

Observe that each of the six products in the value of the determinant involves exactly

one element from each row and exactly one from each column of the array. As such,

each term is the product of elements in a diagonal of an extended array obtained by

repeating the first two columns of the array to the right of the third column, as shown

in Figure 10.24. The value of the determinant is the sum of products corresponding

to the three complete downward diagonals minus the sum corresponding to the three

upward diagonals. With practice you will be able to form these diagonal products

without having to write the extended array.

f d ed e

c a ba b

i g hg h

Figure 10.24 WARNING: This method

does not work for 4�4 or higher-order

determinants!
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If we group the terms in the expansion of the determinant to factor out the elements

of the first row, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D a.ei � f h/ � b.di � fg/C c.dh� eg/

D a

ˇ

ˇ

ˇ

ˇ

e f

h i

ˇ

ˇ

ˇ

ˇ

� b

ˇ

ˇ

ˇ

ˇ

d f

g i

ˇ

ˇ

ˇ

ˇ

C c

ˇ

ˇ

ˇ

ˇ

d e

g h

ˇ

ˇ

ˇ

ˇ

:

The 2�2 determinants appearing here (called minors of the given 3�3 determinant) are

obtained by deleting the row and column containing the corresponding element from

the original 3 � 3 determinant. This process is called expanding the 3�3 determinant

in minors about the first row.

Such expansions in minors can be carried out about any row or column. Note that

if i C j is an odd number, a minus sign appears in a term obtained by multiplying

the element in the i th row and j th column and its corresponding minor obtained by

deleting that row and column. For example, we can expand the above determinant in

The pattern ofC and � signs

used with the terms of an

expansion in minors of a 3 � 3

determinant is given by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C � C

� C �

C � C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

minors about the second column as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �b

ˇ

ˇ

ˇ

ˇ

d f

g i

ˇ

ˇ

ˇ

ˇ

C e

ˇ

ˇ

ˇ

ˇ

a c

g i

ˇ

ˇ

ˇ

ˇ

� h

ˇ

ˇ

ˇ

ˇ

a c

d f

ˇ

ˇ

ˇ

ˇ

D �bdi C bfg C eai � ecg � haf C hcd:

(Of course, this is the same value as the one obtained previously.)

E X A M P L E 2 ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 4 �2

�3 1 0

2 2 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 3

ˇ

ˇ

ˇ

ˇ

4 �2

2 �3

ˇ

ˇ

ˇ

ˇ

C 1

ˇ

ˇ

ˇ

ˇ

1 �2

2 �3

ˇ

ˇ

ˇ

ˇ

D 3.�8/C 1 D �23:

We expanded about the second row; the third column would also have been a good

choice. (Why?)

Any row (or column) of a determinant may be regarded as the components of a vector.

Then the determinant is a linear function of that vector. For example,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

sx C t l sy C tm sz C tn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

x y z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

l m n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

because the determinant is a linear function of its third row. This and other properties

of determinants follow directly from the definition. Some other properties are summa-

rized below. These are stated for rows and for 3�3 determinants, but similar statements

can be made for columns and for determinants of any order.
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Properties of determinants

(i) If two rows of a determinant are interchanged, then the determinant changes

sign:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d e f

a b c

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(ii) If two rows of a determinant are equal, the determinant has value 0:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

a b c

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

(iii) If a multiple of one row of a determinant is added to another row, the

value of the determinant remains unchanged:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d C ta e C tb f C tc

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The Cross Product as a Determinant
The elements of a determinant are usually numbers because they have to be multiplied

to get the value of the determinant. However, it is possible to use vectors as the ele-

ments of one row (or column) of a determinant. When expanding in minors about that

row (or column), the minor for each vector element is a number that determines the

scalar multiple of the vector. The formula for the cross product of

u D u1iC u2jC u3k and v D v1iC v2jC v3k

presented in Theorem 2 can be expressed symbolically as a determinant with the stan-

dard basis vectors as the elements of the first row:

u� v D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

u2 u3

v2 v3

ˇ

ˇ

ˇ

ˇ

i �

ˇ

ˇ

ˇ

ˇ

u1 u3

v1 v3

ˇ

ˇ

ˇ

ˇ

jC

ˇ

ˇ

ˇ

ˇ

u1 u2

v1 v2

ˇ

ˇ

ˇ

ˇ

k:

The formula for the cross product given in that theorem is just the expansion of this

determinant in minors about the first row.

E X A M P L E 3
Find the area of the triangle with vertices at the three points

A D .1; 1; 0/, B D .3; 0; 2/, and C D .0;�1; 1/.

Solution Two sides of the triangle (Figure 10.25) are given by the vectors

B D .3; 0; 2/
A D .1; 1; 0/

C D .0;�1; 1/

Figure 10.25

��!

AB D 2i � jC 2k and
��!

AC D �i � 2jC k:

The area of the triangle is half the area of the parallelogram spanned by
��!

AB and
��!

AC .
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If we group the terms in the expansion of the determinant to factor out the elements

of the first row, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D a.ei � f h/ � b.di � fg/C c.dh� eg/

D a

ˇ

ˇ

ˇ

ˇ

e f

h i

ˇ

ˇ

ˇ

ˇ

� b

ˇ

ˇ

ˇ

ˇ

d f

g i

ˇ

ˇ

ˇ

ˇ

C c

ˇ

ˇ

ˇ

ˇ

d e

g h

ˇ

ˇ

ˇ

ˇ

:

The 2�2 determinants appearing here (called minors of the given 3�3 determinant) are

obtained by deleting the row and column containing the corresponding element from

the original 3 � 3 determinant. This process is called expanding the 3�3 determinant

in minors about the first row.

Such expansions in minors can be carried out about any row or column. Note that

if i C j is an odd number, a minus sign appears in a term obtained by multiplying

the element in the i th row and j th column and its corresponding minor obtained by

deleting that row and column. For example, we can expand the above determinant in

The pattern ofC and � signs

used with the terms of an

expansion in minors of a 3 � 3

determinant is given by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C � C

� C �

C � C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

minors about the second column as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �b

ˇ

ˇ

ˇ

ˇ

d f

g i

ˇ

ˇ

ˇ

ˇ

C e

ˇ

ˇ

ˇ

ˇ

a c

g i

ˇ

ˇ

ˇ

ˇ

� h

ˇ

ˇ

ˇ

ˇ

a c

d f

ˇ

ˇ

ˇ

ˇ

D �bdi C bfg C eai � ecg � haf C hcd:

(Of course, this is the same value as the one obtained previously.)

E X A M P L E 2 ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 4 �2

�3 1 0

2 2 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 3

ˇ

ˇ

ˇ

ˇ

4 �2

2 �3

ˇ

ˇ

ˇ

ˇ

C 1

ˇ

ˇ

ˇ

ˇ

1 �2

2 �3

ˇ

ˇ

ˇ

ˇ

D 3.�8/C 1 D �23:

We expanded about the second row; the third column would also have been a good

choice. (Why?)

Any row (or column) of a determinant may be regarded as the components of a vector.

Then the determinant is a linear function of that vector. For example,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

sx C t l sy C tm sz C tn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

x y z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

l m n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

because the determinant is a linear function of its third row. This and other properties

of determinants follow directly from the definition. Some other properties are summa-

rized below. These are stated for rows and for 3�3 determinants, but similar statements

can be made for columns and for determinants of any order.
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Properties of determinants

(i) If two rows of a determinant are interchanged, then the determinant changes

sign:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d e f

a b c

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(ii) If two rows of a determinant are equal, the determinant has value 0:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

a b c

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

(iii) If a multiple of one row of a determinant is added to another row, the

value of the determinant remains unchanged:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d C ta e C tb f C tc

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a b c

d e f

g h i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The Cross Product as a Determinant
The elements of a determinant are usually numbers because they have to be multiplied

to get the value of the determinant. However, it is possible to use vectors as the ele-

ments of one row (or column) of a determinant. When expanding in minors about that

row (or column), the minor for each vector element is a number that determines the

scalar multiple of the vector. The formula for the cross product of

u D u1iC u2jC u3k and v D v1iC v2jC v3k

presented in Theorem 2 can be expressed symbolically as a determinant with the stan-

dard basis vectors as the elements of the first row:

u� v D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

u2 u3

v2 v3

ˇ

ˇ

ˇ

ˇ

i �

ˇ

ˇ

ˇ

ˇ

u1 u3

v1 v3

ˇ

ˇ

ˇ

ˇ

jC

ˇ

ˇ

ˇ

ˇ

u1 u2

v1 v2

ˇ

ˇ

ˇ

ˇ

k:

The formula for the cross product given in that theorem is just the expansion of this

determinant in minors about the first row.

E X A M P L E 3
Find the area of the triangle with vertices at the three points

A D .1; 1; 0/, B D .3; 0; 2/, and C D .0;�1; 1/.

Solution Two sides of the triangle (Figure 10.25) are given by the vectors

B D .3; 0; 2/
A D .1; 1; 0/

C D .0;�1; 1/

Figure 10.25

��!

AB D 2i � jC 2k and
��!

AC D �i � 2jC k:

The area of the triangle is half the area of the parallelogram spanned by
��!

AB and
��!

AC .
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By the definition of cross product, the area of the triangle must therefore be

1

2
j

��!

AB �
��!

AC j D
1

2
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

2 �1 2

�1 �2 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j

D

1

2
j3i � 4j � 5kj D

1

2

p

9C 16C 25 D
5

2

p

2 square units:

A parallelepiped is the three-dimensional analogue of a parallelogram. It is a solid

with three pairs of parallel planar faces. Each face is in the shape of a parallelogram.

A rectangular brick is a special case of a parallelepiped in which nonparallel faces

intersect at right angles. We say that a parallelepiped is spanned by three vectors

coinciding with three of its edges that meet at one vertex. (See Figure 10.26.)�
h

v�w

w

v

u

Figure 10.26

E X A M P L E 4
Find the volume of the parallelepiped spanned by the vectors u, v,

and w.

Solution The volume of the parallelepiped is equal to the area of one of its faces, say,

the face spanned by v and w, multiplied by the height of the parallelepiped measured

in a direction perpendicular to that face. The area of the face is jv�wj. Since v�w is

perpendicular to the face, the height h of the parallelepiped will be the absolute value

of the scalar projection of u along v�w. If � is the angle between u and v�w, then

the volume of the parallelepiped is given by

Volume D jujj v�wj j cos � j D ju � .v�w/j cubic units.

D E F I N I T I O N

6

The quantity u � .v�w/ is called the scalar triple product of the vectors u,

v, and w.

The scalar triple product is easily expressed in terms of a determinant. If

u D u1iC u2jC u3k, and similar representations hold for v and w, then

u � .v�w/ D u1

ˇ

ˇ

ˇ

ˇ

v2 v3

w2 w3

ˇ

ˇ

ˇ

ˇ

� u2

ˇ

ˇ

ˇ

ˇ

v1 v3

w1 w3

ˇ

ˇ

ˇ

ˇ

C u3

ˇ

ˇ

ˇ

ˇ

v1 v2

w1 w2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The volume of the parallelepiped spanned by u, v, and w is the absolute value of this

determinant.

Using the properties of the determinant, it is easily verified that

u � .v�w/ D v � .w� u/ D w � .u� v/:

(See Exercise 18 below.) Note that u, v, and w remain in the same cyclic order in these

three expressions. Reversing the order would introduce a factor �1:

u � .v�w/ D �u � .w� v/:

Three vectors in 3-space are said to be coplanar if the parallelepiped they span has

zero volume; if their tails coincide, three such vectors must lie in the same plane.

u, v, and w are coplanar ” u � .v�w/ D 0

”

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:
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Three vectors are certainly coplanar if any of them is 0, or if any pair of them is

parallel. If neither of these degenerate conditions apply, they are only coplanar if any

one of them can be expressed as a linear combination of the other two. (See Exercise

20 below.)

Applications of Cross Products
Cross products are of considerable importance in mechanics and electromagnetic the-

ory, as well as in the study of motion in general. For example:

(a) The linear velocity v of a particle located at position r in a body rotating with

angular velocity � about the origin is given by v D �� r. (See Section 11.2 for

more details.)

(b) The angular momentum of a planet of mass m moving with velocity v in its orbit

around the sun is given by h D r�mv, where r is the position vector of the planet

relative to the sun as origin. (See Section 11.6.)

(c) If a particle of electric charge q is travelling with velocity v through a magnetic

field whose strength and direction are given by vector B, then the force that the

field exerts on the particle is given by F D qv�B. The electron beam in a tele-

vision tube is controlled by magnetic fields using this principle.

(d) The torque T of a force F applied at the point P with position vector r about

another point P0 with position vector r0 is defined to be

T D
��!

P0P �F D .r � r0/�F:

This torque measures the effectiveness of the force F in causing rotation about P0.

The direction of T is along the axis through P0 about which F acts to rotate P:

E X A M P L E 5
An automobile wheel has centre at the origin and axle along the

y-axis. One of the retaining nuts holding the wheel is at position

P0 D .0; 0; 10/. (Distances are measured in centimetres.) A bent tire wrench with arm

25 cm long and inclined at an angle of 60ı to the direction of its handle is fitted to the

nut in an upright direction, as shown in Figure 10.27. If a horizontal force F D 500i

newtons (N) is applied to the handle of the wrench, what is its torque on the nut?

What part (component) of this torque is effective in trying to rotate the nut about its

horizontal axis? What is the effective torque trying to rotate the wheel?

Solution The nut is at position r0 D 10k, and the handle of the wrench is at position

r D 25 cos 60ıjC .10C 25 sin 60ı/k � 12:5jC 31:65k:

The torque of the force F on the nut is

z

y

60ı

25 cm

10 cm

handle

Figure 10.27 The force on the handle is

500 N in a direction directly toward you

T D .r � r0/�F

� .12:5jC 21:65k/� 500i � 10;825j � 6;250k;

which is at right angles to F and to the arm of the wrench. Only the horizontal com-

ponent of this torque is effective in turning the nut. This component is 10,825 N�cm

or 108.25 N�m in magnitude. For the effective torque on the wheel itself, we have to

replace r0 by 0, the position of the centre of the wheel. In this case the horizontal

torque is

31:65k� 500i � 15;825j;

that is, about 158.25 N�m.
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By the definition of cross product, the area of the triangle must therefore be

1

2
j

��!

AB �
��!

AC j D
1

2
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

2 �1 2

�1 �2 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j

D

1

2
j3i � 4j � 5kj D

1

2

p

9C 16C 25 D
5

2

p

2 square units:

A parallelepiped is the three-dimensional analogue of a parallelogram. It is a solid

with three pairs of parallel planar faces. Each face is in the shape of a parallelogram.

A rectangular brick is a special case of a parallelepiped in which nonparallel faces

intersect at right angles. We say that a parallelepiped is spanned by three vectors

coinciding with three of its edges that meet at one vertex. (See Figure 10.26.)�
h

v�w

w

v

u

Figure 10.26

E X A M P L E 4
Find the volume of the parallelepiped spanned by the vectors u, v,

and w.

Solution The volume of the parallelepiped is equal to the area of one of its faces, say,

the face spanned by v and w, multiplied by the height of the parallelepiped measured

in a direction perpendicular to that face. The area of the face is jv�wj. Since v�w is

perpendicular to the face, the height h of the parallelepiped will be the absolute value

of the scalar projection of u along v�w. If � is the angle between u and v�w, then

the volume of the parallelepiped is given by

Volume D jujj v�wj j cos � j D ju � .v�w/j cubic units.

D E F I N I T I O N

6

The quantity u � .v�w/ is called the scalar triple product of the vectors u,

v, and w.

The scalar triple product is easily expressed in terms of a determinant. If

u D u1iC u2jC u3k, and similar representations hold for v and w, then

u � .v�w/ D u1

ˇ

ˇ

ˇ

ˇ

v2 v3

w2 w3

ˇ

ˇ

ˇ

ˇ

� u2

ˇ

ˇ

ˇ

ˇ

v1 v3

w1 w3

ˇ

ˇ

ˇ

ˇ

C u3

ˇ

ˇ

ˇ

ˇ

v1 v2

w1 w2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The volume of the parallelepiped spanned by u, v, and w is the absolute value of this

determinant.

Using the properties of the determinant, it is easily verified that

u � .v�w/ D v � .w� u/ D w � .u� v/:

(See Exercise 18 below.) Note that u, v, and w remain in the same cyclic order in these

three expressions. Reversing the order would introduce a factor �1:

u � .v�w/ D �u � .w� v/:

Three vectors in 3-space are said to be coplanar if the parallelepiped they span has

zero volume; if their tails coincide, three such vectors must lie in the same plane.

u, v, and w are coplanar ” u � .v�w/ D 0

”

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:
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Three vectors are certainly coplanar if any of them is 0, or if any pair of them is

parallel. If neither of these degenerate conditions apply, they are only coplanar if any

one of them can be expressed as a linear combination of the other two. (See Exercise

20 below.)

Applications of Cross Products
Cross products are of considerable importance in mechanics and electromagnetic the-

ory, as well as in the study of motion in general. For example:

(a) The linear velocity v of a particle located at position r in a body rotating with

angular velocity � about the origin is given by v D �� r. (See Section 11.2 for

more details.)

(b) The angular momentum of a planet of mass m moving with velocity v in its orbit

around the sun is given by h D r�mv, where r is the position vector of the planet

relative to the sun as origin. (See Section 11.6.)

(c) If a particle of electric charge q is travelling with velocity v through a magnetic

field whose strength and direction are given by vector B, then the force that the

field exerts on the particle is given by F D qv�B. The electron beam in a tele-

vision tube is controlled by magnetic fields using this principle.

(d) The torque T of a force F applied at the point P with position vector r about

another point P0 with position vector r0 is defined to be

T D
��!

P0P �F D .r � r0/�F:

This torque measures the effectiveness of the force F in causing rotation about P0.

The direction of T is along the axis through P0 about which F acts to rotate P:

E X A M P L E 5
An automobile wheel has centre at the origin and axle along the

y-axis. One of the retaining nuts holding the wheel is at position

P0 D .0; 0; 10/. (Distances are measured in centimetres.) A bent tire wrench with arm

25 cm long and inclined at an angle of 60ı to the direction of its handle is fitted to the

nut in an upright direction, as shown in Figure 10.27. If a horizontal force F D 500i

newtons (N) is applied to the handle of the wrench, what is its torque on the nut?

What part (component) of this torque is effective in trying to rotate the nut about its

horizontal axis? What is the effective torque trying to rotate the wheel?

Solution The nut is at position r0 D 10k, and the handle of the wrench is at position

r D 25 cos 60ıjC .10C 25 sin 60ı/k � 12:5jC 31:65k:

The torque of the force F on the nut is

z

y

60ı

25 cm

10 cm

handle

Figure 10.27 The force on the handle is

500 N in a direction directly toward you

T D .r � r0/�F

� .12:5jC 21:65k/� 500i � 10;825j � 6;250k;

which is at right angles to F and to the arm of the wrench. Only the horizontal com-

ponent of this torque is effective in turning the nut. This component is 10,825 N�cm

or 108.25 N�m in magnitude. For the effective torque on the wheel itself, we have to

replace r0 by 0, the position of the centre of the wheel. In this case the horizontal

torque is

31:65k� 500i � 15;825j;

that is, about 158.25 N�m.
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E X E R C I S E S 10.3

1. Calculate u� v if u D i � 2jC 3k and v D 3iC j � 4k.

2. Calculate u� v if u D jC 2k and v D �i � jC k.

3. Find the area of the triangle with vertices .1; 2; 0/, .1; 0; 2/,

and .0; 3; 1/.

4. Find a unit vector perpendicular to the plane containing the

points .a; 0; 0/, .0; b; 0/, and .0; 0; c/. What is the area of the

triangle with these vertices?

5. Find a unit vector perpendicular to the vectors iC j and

jC 2k.

6. Find a unit vector with positive k component that is

perpendicular to both 2i � j � 2k and 2i � 3jC k.

Verify the identities in Exercises 7–11, either by using the

definition of cross product or the properties of determinants.

7. u�u D 0 8. u� v D �v�u

9. .uC v/�w D u�wC v�w

10. .tu/� v D u� .tv/ D t .u� v/

11. u � .u� v/ D v � .u� v/ D 0

12. Obtain the addition formula

sin.˛ � ˇ/ D sin˛ cosˇ � cos˛ sinˇ

by examining the cross product of the two unit vectors

u D cosˇiC sinˇj and v D cos ˛iC sin˛j. Assume

0 � ˛ � ˇ � � . Hint: Regard u and v as position vectors.

What is the area of the parallelogram they span?

13. If uC vC w D 0, show that u� v D v�w D w�u.

14.A (Volume of a tetrahedron) A tetrahedron is a pyramid with

a triangular base and three other triangular faces. It has four

vertices and six edges. Like any pyramid or cone, its volume

is equal to 1
3
Ah, where A is the area of the base and h is the

height measured perpendicular to the base. If u, v, and w are

vectors coinciding with the three edges of a tetrahedron that

meet at one vertex, show that the tetrahedron has volume

given by

Volume D
1

6
ju � .v�w/j D

1

6
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j:

Thus, the volume of a tetrahedron spanned by three vectors is

one-sixth of the volume of the parallelepiped spanned by the

same vectors.

15. Find the volume of the tetrahedron with vertices .1; 0; 0/,

.1; 2; 0/, .2; 2; 2/, and .0; 3; 2/.

16. Find the volume of the parallelepiped spanned by the

diagonals of the three faces of a cube of side a that meet at

one vertex of the cube.

17. For what value of k do the four points .1; 1;�1/, .0; 3;�2/,

.�2; 1; 0/, and .k; 0; 2/ all lie in a plane?

18.A (The scalar triple product) Verify the identities

u � .v�w/ D v � .w�u/ D w � .u� v/:

19. If u � .v�w/ ¤ 0 and x is an arbitrary 3-vector, find the

numbers �, �, and � such that

x D �uC �vC �w:

20. If u � .v�w/ D 0 but v�w ¤ 0, show that there are

constants � and � such that

u D �vC �w:

Hint: Use the result of Exercise 19 with u in place of x and

v�w in place of u.

21. Calculate u� .v�w/ and .u� v/�w, given that

u D iC 2jC 3k, v D 2i� 3j, and w D j� k. Why would you

not expect these to be equal?

22. Does the notation u � v�w make sense? Why? How about

the notation u� v�w?

23.A (The vector triple product) The product u� .v�w/ is called

a vector triple product. Since it is perpendicular to v�w, it

must lie in the plane of v and w. Show that

u� .v�w/ D .u � w/v � .u � v/w:

Hint: This can be done by direct calculation of the

components of both sides of the equation, but the job is much

easier if you choose coordinate axes so that v lies along the

x-axis and w lies in the xy-plane.

24. If u, v, and w are mutually perpendicular vectors, show that

u� .v�w/ D 0. What is u � .v�w/ in this case?

25. Show that u� .v�w/C v� .w�u/C w� .u� v/ D 0.

26. Find all vectors x that satisfy the equation

.�iC 2jC 3k/� x D iC 5j � 3k:

27. Show that the equation

.�iC 2jC 3k/� x D iC 5j

has no solutions for the unknown vector x.

28. What condition must be satisfied by the nonzero vectors a and

b to guarantee that the equation a� x D b has a solution for

x? Is the solution unique?
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10.4 Planes and Lines
A single equation in the three variables, x, y, and z, constitutes a single constraint on

the freedom of the point P D .x; y; z/ to lie anywhere in 3-space. Such a constraint

usually results in the loss of exactly one degree of freedom and so forces P to lie on a

two-dimensional surface. For example, the equation

x
2
C y

2
C z

2
D 4

states that the point .x; y; z/ is at distance 2 from the origin. All points satisfying this

condition lie on a sphere (i.e., the surface of a ball) of radius 2 centred at the origin.

The equation above therefore represents that sphere, and the sphere is the graph of the

equation. In this section we will investigate the graphs of linear equations in three

variables.

Planes in 3-Space
Let P0 D .x0; y0; z0/ be a point in R

3 with position vector

r0 D x0iC y0jC z0k:

If n D AiC BjC Ck is any given nonzero vector, then there exists exactly one plane

(flat surface) passing through P0 and perpendicular to n. We say that n is a normal

vector to the plane. The plane is the set of all points P for which
��!

P0P is perpendicular

to n. (See Figure 10.28.)

If P D .x; y; z/ has position vector r, then
��!

P0P D r � r0. This vector is per-

pendicular to n if and only if n � .r � r0/ D 0. This is the equation of the plane in

vector form. We can rewrite it in terms of coordinates to obtain the corresponding

scalar equation.

Figure 10.28 The plane through P0 with

normal n contains all points P for which
���!

P0P is perpendicular to n

x
y

z

n

r � r0

P

P0

r0

r

The point-normal equation of a plane

The plane having nonzero normal vector n D Ai C Bj C Ck, and passing

through the point P0 D .x0; y0; z0/ with position vector r0, has equation

n � .r � r0/ D 0

in vector form, or, equivalently,

A.x � x0/C B.y � y0/C C.z � z0/ D 0

in scalar form.
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E X E R C I S E S 10.3

1. Calculate u� v if u D i � 2jC 3k and v D 3iC j � 4k.

2. Calculate u� v if u D jC 2k and v D �i � jC k.

3. Find the area of the triangle with vertices .1; 2; 0/, .1; 0; 2/,

and .0; 3; 1/.

4. Find a unit vector perpendicular to the plane containing the

points .a; 0; 0/, .0; b; 0/, and .0; 0; c/. What is the area of the

triangle with these vertices?

5. Find a unit vector perpendicular to the vectors iC j and

jC 2k.

6. Find a unit vector with positive k component that is

perpendicular to both 2i � j � 2k and 2i � 3jC k.

Verify the identities in Exercises 7–11, either by using the

definition of cross product or the properties of determinants.

7. u�u D 0 8. u� v D �v�u

9. .uC v/�w D u�wC v�w

10. .tu/� v D u� .tv/ D t .u� v/

11. u � .u� v/ D v � .u� v/ D 0

12. Obtain the addition formula

sin.˛ � ˇ/ D sin˛ cosˇ � cos˛ sinˇ

by examining the cross product of the two unit vectors

u D cosˇiC sinˇj and v D cos ˛iC sin˛j. Assume

0 � ˛ � ˇ � � . Hint: Regard u and v as position vectors.

What is the area of the parallelogram they span?

13. If uC vC w D 0, show that u� v D v�w D w�u.

14.A (Volume of a tetrahedron) A tetrahedron is a pyramid with

a triangular base and three other triangular faces. It has four

vertices and six edges. Like any pyramid or cone, its volume

is equal to 1
3
Ah, where A is the area of the base and h is the

height measured perpendicular to the base. If u, v, and w are

vectors coinciding with the three edges of a tetrahedron that

meet at one vertex, show that the tetrahedron has volume

given by

Volume D
1

6
ju � .v�w/j D

1

6
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j:

Thus, the volume of a tetrahedron spanned by three vectors is

one-sixth of the volume of the parallelepiped spanned by the

same vectors.

15. Find the volume of the tetrahedron with vertices .1; 0; 0/,

.1; 2; 0/, .2; 2; 2/, and .0; 3; 2/.

16. Find the volume of the parallelepiped spanned by the

diagonals of the three faces of a cube of side a that meet at

one vertex of the cube.

17. For what value of k do the four points .1; 1;�1/, .0; 3;�2/,

.�2; 1; 0/, and .k; 0; 2/ all lie in a plane?

18.A (The scalar triple product) Verify the identities

u � .v�w/ D v � .w�u/ D w � .u� v/:

19. If u � .v�w/ ¤ 0 and x is an arbitrary 3-vector, find the

numbers �, �, and � such that

x D �uC �vC �w:

20. If u � .v�w/ D 0 but v�w ¤ 0, show that there are

constants � and � such that

u D �vC �w:

Hint: Use the result of Exercise 19 with u in place of x and

v�w in place of u.

21. Calculate u� .v�w/ and .u� v/�w, given that

u D iC 2jC 3k, v D 2i� 3j, and w D j� k. Why would you

not expect these to be equal?

22. Does the notation u � v�w make sense? Why? How about

the notation u� v�w?

23.A (The vector triple product) The product u� .v�w/ is called

a vector triple product. Since it is perpendicular to v�w, it

must lie in the plane of v and w. Show that

u� .v�w/ D .u � w/v � .u � v/w:

Hint: This can be done by direct calculation of the

components of both sides of the equation, but the job is much

easier if you choose coordinate axes so that v lies along the

x-axis and w lies in the xy-plane.

24. If u, v, and w are mutually perpendicular vectors, show that

u� .v�w/ D 0. What is u � .v�w/ in this case?

25. Show that u� .v�w/C v� .w�u/C w� .u� v/ D 0.

26. Find all vectors x that satisfy the equation

.�iC 2jC 3k/� x D iC 5j � 3k:

27. Show that the equation

.�iC 2jC 3k/� x D iC 5j

has no solutions for the unknown vector x.

28. What condition must be satisfied by the nonzero vectors a and

b to guarantee that the equation a� x D b has a solution for

x? Is the solution unique?
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10.4 Planes and Lines
A single equation in the three variables, x, y, and z, constitutes a single constraint on

the freedom of the point P D .x; y; z/ to lie anywhere in 3-space. Such a constraint

usually results in the loss of exactly one degree of freedom and so forces P to lie on a

two-dimensional surface. For example, the equation

x
2
C y

2
C z

2
D 4

states that the point .x; y; z/ is at distance 2 from the origin. All points satisfying this

condition lie on a sphere (i.e., the surface of a ball) of radius 2 centred at the origin.

The equation above therefore represents that sphere, and the sphere is the graph of the

equation. In this section we will investigate the graphs of linear equations in three

variables.

Planes in 3-Space
Let P0 D .x0; y0; z0/ be a point in R

3 with position vector

r0 D x0iC y0jC z0k:

If n D AiC BjC Ck is any given nonzero vector, then there exists exactly one plane

(flat surface) passing through P0 and perpendicular to n. We say that n is a normal

vector to the plane. The plane is the set of all points P for which
��!

P0P is perpendicular

to n. (See Figure 10.28.)

If P D .x; y; z/ has position vector r, then
��!

P0P D r � r0. This vector is per-

pendicular to n if and only if n � .r � r0/ D 0. This is the equation of the plane in

vector form. We can rewrite it in terms of coordinates to obtain the corresponding

scalar equation.

Figure 10.28 The plane through P0 with

normal n contains all points P for which
���!

P0P is perpendicular to n

x
y

z

n

r � r0

P

P0

r0

r

The point-normal equation of a plane

The plane having nonzero normal vector n D Ai C Bj C Ck, and passing

through the point P0 D .x0; y0; z0/ with position vector r0, has equation

n � .r � r0/ D 0

in vector form, or, equivalently,

A.x � x0/C B.y � y0/C C.z � z0/ D 0

in scalar form.
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The scalar form can be written more simply in the standard formAxCByCCz D D,

where D D Ax0 C By0 C Cz0.

If at least one of the constants A, B , and C is not zero, then the linear equation

Ax C By C Cz D D always represents a plane in R
3. For example, if A ¤ 0, it

represents the plane through .D=A; 0; 0/ with normal vector n D Ai C Bj C Ck. A

vector normal to a plane can always be determined from the coefficients of x, y, and

z. If the constant term D D 0, then the plane must pass through the origin.

E X A M P L E 1
(Recognizing and writing the equations of planes)

(a) The equation 2x � 3y � 4z D 0 represents a plane that passes through the origin

and is normal (perpendicular) to the vector n D 2i � 3j � 4k.

(b) The plane that passes through the point .2; 0; 1/ and is perpendicular to the straight

line passing through the points .1; 1; 0/ and .4;�1;�2/ has normal vector n D

.4 � 1/i C .�1 � 1/j C .�2 � 0/k D 3i � 2j � 2k. Therefore, its equation is

3.x � 2/ � 2.y � 0/ � 2.z � 1/ D 0, or, more simply, 3x � 2y � 2z D 4.

(c) The plane with equation 2x � y D 1 has a normal 2i � j that is perpendicular to

the z-axis. The plane is therefore parallel to the z-axis. Note that the equation is

independent of z. In the xy-plane, the equation 2x � y D 1 represents a straight

line; in 3-space it represents a plane containing that line and parallel to the z-axis.

What does the equation y D z represent in R
3? the equation y D �2?

(d) The equation 2xCyC3z D 6 represents a plane with normal n D 2iC jC3k. In

this case we cannot directly read from the equation the coordinates of a particular

point on the plane, but it is not difficult to discover some points. For instance, if

we put y D z D 0 in the equation we get x D 3, so .3; 0; 0/ is a point on the plane.

We say that the x-intercept of the plane is 3 since .3; 0; 0/ is the point where the

plane intersects the x-axis. Similarly, the y-intercept is 6 and the z-intercept is 2

because the plane intersects the y- and z-axes at .0; 6; 0/ and .0; 0; 2/, respectively.

(e) In general, if a, b, and c are all nonzero, the plane with intercepts a, b, and c on

the coordinate axes has equation

x

y

z

c
x

a
C

y

b
C

z

c
D 1

b

a

Figure 10.29 The plane with intercepts a,

b, and c on the coordinate axes

x

a
C

y

b
C

z

c
D 1;

called the intercept form of the equation of the plane. (See Figure 10.29.)

E X A M P L E 2
Find an equation of the plane that passes through the three points

P D .1; 1; 0/, Q D .0; 2; 1/, and R D .3; 2;�1/.

Solution We need to find a vector, n, normal to the plane. Such a vector will be

perpendicular to the vectors
��!

PQ D �iC jC k and
�!

PR D 2iC j � k. Therefore, we

can use

n D
��!

PQ�
�!

PR D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�1 1 1

2 1 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2iC j � 3k:

We can use this normal vector together with the coordinates of any one of the three

given points to write the equation of the plane. Using point P leads to the equation

�2.x � 1/C 1.y � 1/ � 3.z � 0/ D 0, or

2x � y C 3z D 1:

You can check that using eitherQ orR leads to the same equation. (If the cross product
��!

PQ�
�!

PR had been the zero vector, what would have been true about the three points

P; Q, and R? Would they have determined a unique plane?)
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E X A M P L E 3
Show that the two planes x � y D 3 and xC y C z D 0 intersect,

and find a vector, v, parallel to their line of intersection.

Solution The two planes have normal vectors

n1 D i � j and n2 D iC jC k;

respectively. Since these vectors are not parallel, the planes are not parallel, and they

intersect in a straight line perpendicular to both n1 and n2. This line must therefore be

parallel to

v D n1 � n2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

1 �1 0

1 1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �i � jC 2k:

A family of planes intersecting in a straight line is called a pencil of planes. (See

Figure 10.30.) Such a pencil of planes is determined by any two nonparallel planes in

it, since these have a unique line of intersection. If the two nonparallel planes have

equations

A1x C B1y C C1z D D1 and A2x C B2y C C2z D D2;

then, for any value of the real number �, the equation

Figure 10.30 A pencil of planes

A1x C B1y C C1z �D1 C �.A2x C B2y C C2z �D2/ D 0

represents a plane in the pencil. To see this, observe that the equation is linear, and so

represents a plane, and that any point .x; y; z/ satisfying the equations of both given

planes also satisfies this equation for any value of �. Any plane in the pencil except the

second defining plane, A2xCB2yCC2z D D2, can be obtained by suitably choosing

the value of �.

E X A M P L E 4
Find an equation of the plane passing through the line of intersec-

tion of the two planes

x C y � 2z D 6 and 2x � y C z D 2

and also passing through the point .�2; 0; 1/.

Solution For any constant �, the equation

x C y � 2z � 6C �.2x � y C z � 2/ D 0

represents a plane and is satisfied by the coordinates of all points on the line of inter-

section of the given planes. This plane passes through the point .�2; 0; 1/ if �2� 2�

6C�.�4C1�2/ D 0, that is, if � D �2. The equation of the required plane therefore

simplifies to 3x� 3yC 4zC 2 D 0. (This solution would not have worked if the given

point had been on the second plane, 2x � y C z D 2. Why?)

Lines in 3-Space
As we observed above, any two nonparallel planes in R

3 determine a unique (straight)

line of intersection, and a vector parallel to this line can be obtained by taking the cross

product of normal vectors to the two planes.

Suppose that r0 D x0i C y0j C z0k is the position vector of point P0 and v D

ai C bj C ck is a nonzero vector. There is a unique line passing through P0 parallel

to v. If r D xiC yjC zk is the position vector of any other point P on the line, then

r� r0 lies along the line and so is parallel to v. (See Figure 10.31.) Thus, r� r0 D tv

for some real number t . This equation, usually rewritten in the form
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The scalar form can be written more simply in the standard formAxCByCCz D D,

where D D Ax0 C By0 C Cz0.

If at least one of the constants A, B , and C is not zero, then the linear equation

Ax C By C Cz D D always represents a plane in R
3. For example, if A ¤ 0, it

represents the plane through .D=A; 0; 0/ with normal vector n D Ai C Bj C Ck. A

vector normal to a plane can always be determined from the coefficients of x, y, and

z. If the constant term D D 0, then the plane must pass through the origin.

E X A M P L E 1
(Recognizing and writing the equations of planes)

(a) The equation 2x � 3y � 4z D 0 represents a plane that passes through the origin

and is normal (perpendicular) to the vector n D 2i � 3j � 4k.

(b) The plane that passes through the point .2; 0; 1/ and is perpendicular to the straight

line passing through the points .1; 1; 0/ and .4;�1;�2/ has normal vector n D

.4 � 1/i C .�1 � 1/j C .�2 � 0/k D 3i � 2j � 2k. Therefore, its equation is

3.x � 2/ � 2.y � 0/ � 2.z � 1/ D 0, or, more simply, 3x � 2y � 2z D 4.

(c) The plane with equation 2x � y D 1 has a normal 2i � j that is perpendicular to

the z-axis. The plane is therefore parallel to the z-axis. Note that the equation is

independent of z. In the xy-plane, the equation 2x � y D 1 represents a straight

line; in 3-space it represents a plane containing that line and parallel to the z-axis.

What does the equation y D z represent in R
3? the equation y D �2?

(d) The equation 2xCyC3z D 6 represents a plane with normal n D 2iC jC3k. In

this case we cannot directly read from the equation the coordinates of a particular

point on the plane, but it is not difficult to discover some points. For instance, if

we put y D z D 0 in the equation we get x D 3, so .3; 0; 0/ is a point on the plane.

We say that the x-intercept of the plane is 3 since .3; 0; 0/ is the point where the

plane intersects the x-axis. Similarly, the y-intercept is 6 and the z-intercept is 2

because the plane intersects the y- and z-axes at .0; 6; 0/ and .0; 0; 2/, respectively.

(e) In general, if a, b, and c are all nonzero, the plane with intercepts a, b, and c on

the coordinate axes has equation

x

y

z

c
x

a
C

y

b
C

z

c
D 1

b

a

Figure 10.29 The plane with intercepts a,

b, and c on the coordinate axes

x

a
C

y

b
C

z

c
D 1;

called the intercept form of the equation of the plane. (See Figure 10.29.)

E X A M P L E 2
Find an equation of the plane that passes through the three points

P D .1; 1; 0/, Q D .0; 2; 1/, and R D .3; 2;�1/.

Solution We need to find a vector, n, normal to the plane. Such a vector will be

perpendicular to the vectors
��!

PQ D �iC jC k and
�!

PR D 2iC j � k. Therefore, we

can use

n D
��!

PQ�
�!

PR D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�1 1 1

2 1 �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2iC j � 3k:

We can use this normal vector together with the coordinates of any one of the three

given points to write the equation of the plane. Using point P leads to the equation

�2.x � 1/C 1.y � 1/ � 3.z � 0/ D 0, or

2x � y C 3z D 1:

You can check that using eitherQ orR leads to the same equation. (If the cross product
��!

PQ�
�!

PR had been the zero vector, what would have been true about the three points

P; Q, and R? Would they have determined a unique plane?)
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E X A M P L E 3
Show that the two planes x � y D 3 and xC y C z D 0 intersect,

and find a vector, v, parallel to their line of intersection.

Solution The two planes have normal vectors

n1 D i � j and n2 D iC jC k;

respectively. Since these vectors are not parallel, the planes are not parallel, and they

intersect in a straight line perpendicular to both n1 and n2. This line must therefore be

parallel to

v D n1 � n2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

1 �1 0

1 1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �i � jC 2k:

A family of planes intersecting in a straight line is called a pencil of planes. (See

Figure 10.30.) Such a pencil of planes is determined by any two nonparallel planes in

it, since these have a unique line of intersection. If the two nonparallel planes have

equations

A1x C B1y C C1z D D1 and A2x C B2y C C2z D D2;

then, for any value of the real number �, the equation

Figure 10.30 A pencil of planes

A1x C B1y C C1z �D1 C �.A2x C B2y C C2z �D2/ D 0

represents a plane in the pencil. To see this, observe that the equation is linear, and so

represents a plane, and that any point .x; y; z/ satisfying the equations of both given

planes also satisfies this equation for any value of �. Any plane in the pencil except the

second defining plane, A2xCB2yCC2z D D2, can be obtained by suitably choosing

the value of �.

E X A M P L E 4
Find an equation of the plane passing through the line of intersec-

tion of the two planes

x C y � 2z D 6 and 2x � y C z D 2

and also passing through the point .�2; 0; 1/.

Solution For any constant �, the equation

x C y � 2z � 6C �.2x � y C z � 2/ D 0

represents a plane and is satisfied by the coordinates of all points on the line of inter-

section of the given planes. This plane passes through the point .�2; 0; 1/ if �2� 2�

6C�.�4C1�2/ D 0, that is, if � D �2. The equation of the required plane therefore

simplifies to 3x� 3yC 4zC 2 D 0. (This solution would not have worked if the given

point had been on the second plane, 2x � y C z D 2. Why?)

Lines in 3-Space
As we observed above, any two nonparallel planes in R

3 determine a unique (straight)

line of intersection, and a vector parallel to this line can be obtained by taking the cross

product of normal vectors to the two planes.

Suppose that r0 D x0i C y0j C z0k is the position vector of point P0 and v D

ai C bj C ck is a nonzero vector. There is a unique line passing through P0 parallel

to v. If r D xiC yjC zk is the position vector of any other point P on the line, then

r� r0 lies along the line and so is parallel to v. (See Figure 10.31.) Thus, r� r0 D tv

for some real number t . This equation, usually rewritten in the form
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r D r0 C tv;

is called the vector parametric equation of the straight line. All points on the line

can be obtained as the parameter t ranges from �1 to 1. The vector v is called a

direction vector of the line.

Figure 10.31 The line through P0 parallel

to v x
y

z

P

r

r0

P0

v

r � r0

Breaking the vector parametric equation down into its components yields the

scalar parametric equations of the line:

(

x D x0 C at

y D y0 C bt .�1 < t <1/

z D z0 C ct:

These appear to be three linear equations, but the parameter t can be eliminated to give

two linear equations in x, y, and z. If a ¤ 0, b ¤ 0, and c ¤ 0, then we can solve

each of the scalar equations for t and so obtain

x � x0

a
D

y � y0

b
D

z � z0

c
;

which is called the standard form for the equations of the straight line through .x0; y0; z0/

parallel to v. The standard form must be modified if any component of v vanishes. For

example, if c D 0, the equations are

x � x0

a
D

y � y0

b
; z D z0:

Note that none of the above equations for straight lines is unique; each depends on the

particular choice of the point .x0; y0; z0/ on the line. In general, you can always use

the equations of two nonparallel planes to represent their line of intersection.

E X A M P L E 5
(Equations of straight lines)

(a) The equations
(

x D 2C t

y D 3

z D �4t

represent the straight line through .2; 3; 0/ parallel to the vector i � 4k.

(b) The straight line through .1;�2; 3/ perpendicular to the plane x � 2y C 4z D 5

is parallel to the normal vector i � 2j C 4k of the plane. Therefore, the line has

vector parametric equation

r D i � 2jC 3kC t.i � 2jC 4k/;
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or scalar parametric equations

(

x D 1C t

y D �2 � 2t

z D 3C 4t:

Its standard form equations are

x � 1

1
D

y C 2

�2
D

z � 3

4
:

E X A M P L E 6
Find a direction vector for the line of intersection of the two planes

xC y � z D 0 and yC 2z D 6, and find a set of equations for the

line in standard form.

Solution The two planes have respective normals n1 D iC j � k and n2 D jC 2k.

Thus, a direction vector of their line of intersection is

v D n1 � n2 D 3i � 2jC k:

We need to know one point on the line in order to write equations in standard form.

We can find a point by assigning a value to one coordinate and calculating the other

two from the given equations. For instance, taking z D 0 in the two equations we are

led to y D 6 and x D �6, so .�6; 6; 0/ is one point on the line. Thus, the line has

standard form equations

x C 6

3
D

y � 6

�2
D z:

This answer is not unique; the coordinates of any other point on the line could be

used in place of .�6; 6; 0/. You could even find a direction vector v by subtracting the

position vectors of two different points on the line.

Distances
The distance between two geometric objects always means the minimum distance be-

tween two points, one in each object. In the case of flat objects like lines and planes

defined by linear equations, such minimum distances can usually be determined by

geometric arguments without having to use calculus.

E X A M P L E 7
(Distance from a point to a plane)

(a) Find the distance from the point P0 D .x0; y0; z0/ to the plane P having equation

Ax C By C Cz D D.

(b) What is the distance from .2;�1; 3/ to the plane 2x � 2y � z D 9?

Solution

(a) Let r0 be the position vector of P0, and let n D AiC BjC Ck be the normal to

P. Let P1 be the point on P that is closest to P0. Then
���!

P1P0 is perpendicular

to P and so is parallel to n. The distance from P0 to P is s D j
���!

P1P0j. If P;

having position vector r, is any point on P, then s is the length of the projection

of
��!

PP0 D r0 � r in the direction of n. (See Figure 10.32.) Thus,

s D

ˇ

ˇ

ˇ

ˇ

ˇ

��!

PP0 � n

jnj

ˇ

ˇ

ˇ

ˇ

ˇ

D

j.r0 � r/ � nj

jnj
D

jr0 � n � r � nj

jnj
:

Since P D .x; y; z/ lies on P, we have r � n D Ax C By C Cz D D. In terms

of the coordinates .x0; y0; z0/ of P0, we can therefore represent the distance from

P0 to P as
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r D r0 C tv;

is called the vector parametric equation of the straight line. All points on the line

can be obtained as the parameter t ranges from �1 to 1. The vector v is called a

direction vector of the line.

Figure 10.31 The line through P0 parallel

to v x
y

z

P

r

r0

P0

v

r � r0

Breaking the vector parametric equation down into its components yields the

scalar parametric equations of the line:

(

x D x0 C at

y D y0 C bt .�1 < t <1/

z D z0 C ct:

These appear to be three linear equations, but the parameter t can be eliminated to give

two linear equations in x, y, and z. If a ¤ 0, b ¤ 0, and c ¤ 0, then we can solve

each of the scalar equations for t and so obtain

x � x0

a
D

y � y0

b
D

z � z0

c
;

which is called the standard form for the equations of the straight line through .x0; y0; z0/

parallel to v. The standard form must be modified if any component of v vanishes. For

example, if c D 0, the equations are

x � x0

a
D

y � y0

b
; z D z0:

Note that none of the above equations for straight lines is unique; each depends on the

particular choice of the point .x0; y0; z0/ on the line. In general, you can always use

the equations of two nonparallel planes to represent their line of intersection.

E X A M P L E 5
(Equations of straight lines)

(a) The equations
(

x D 2C t

y D 3

z D �4t

represent the straight line through .2; 3; 0/ parallel to the vector i � 4k.

(b) The straight line through .1;�2; 3/ perpendicular to the plane x � 2y C 4z D 5

is parallel to the normal vector i � 2j C 4k of the plane. Therefore, the line has

vector parametric equation

r D i � 2jC 3kC t.i � 2jC 4k/;
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or scalar parametric equations

(

x D 1C t

y D �2 � 2t

z D 3C 4t:

Its standard form equations are

x � 1

1
D

y C 2

�2
D

z � 3

4
:

E X A M P L E 6
Find a direction vector for the line of intersection of the two planes

xC y � z D 0 and yC 2z D 6, and find a set of equations for the

line in standard form.

Solution The two planes have respective normals n1 D iC j � k and n2 D jC 2k.

Thus, a direction vector of their line of intersection is

v D n1 � n2 D 3i � 2jC k:

We need to know one point on the line in order to write equations in standard form.

We can find a point by assigning a value to one coordinate and calculating the other

two from the given equations. For instance, taking z D 0 in the two equations we are

led to y D 6 and x D �6, so .�6; 6; 0/ is one point on the line. Thus, the line has

standard form equations

x C 6

3
D

y � 6

�2
D z:

This answer is not unique; the coordinates of any other point on the line could be

used in place of .�6; 6; 0/. You could even find a direction vector v by subtracting the

position vectors of two different points on the line.

Distances
The distance between two geometric objects always means the minimum distance be-

tween two points, one in each object. In the case of flat objects like lines and planes

defined by linear equations, such minimum distances can usually be determined by

geometric arguments without having to use calculus.

E X A M P L E 7
(Distance from a point to a plane)

(a) Find the distance from the point P0 D .x0; y0; z0/ to the plane P having equation

Ax C By C Cz D D.

(b) What is the distance from .2;�1; 3/ to the plane 2x � 2y � z D 9?

Solution

(a) Let r0 be the position vector of P0, and let n D AiC BjC Ck be the normal to

P. Let P1 be the point on P that is closest to P0. Then
���!

P1P0 is perpendicular

to P and so is parallel to n. The distance from P0 to P is s D j
���!

P1P0j. If P;

having position vector r, is any point on P, then s is the length of the projection

of
��!

PP0 D r0 � r in the direction of n. (See Figure 10.32.) Thus,

s D

ˇ

ˇ

ˇ

ˇ

ˇ

��!

PP0 � n

jnj

ˇ

ˇ

ˇ

ˇ

ˇ

D

j.r0 � r/ � nj

jnj
D

jr0 � n � r � nj

jnj
:

Since P D .x; y; z/ lies on P, we have r � n D Ax C By C Cz D D. In terms

of the coordinates .x0; y0; z0/ of P0, we can therefore represent the distance from

P0 to P as
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Figure 10.32 The distance from P0 to the

plane P is the length of the vector projec-

tion of PP0 along the normal n to P,

where P is any point on P
x

y

z

r0 � r

P

r

n

P1

s

P0

s D
jAx0 C By0 C Cz0 �Dj
p

A2
C B2

C C 2
:

(b) The distance from .2;�1; 3/ to the plane 2x � 2y � z D 9 is

s D
j2.2/ � 2.�1/ � 1.3/ � 9j
p

22
C .�2/2 C .�1/2

D

j � 6j

3
D 2 units.

E X A M P L E 8
(Distance from a point to a line)

(a) Find the distance from the point P0 to the straight line L through P1 parallel to

the nonzero vector v.

(b) What is the distance from .2; 0;�3/ to the line r D iC .1C 3t/j � .3 � 4t/k?

Solution

(a) Let r0 and r1 be the position vectors of P0 and P1, respectively. The point P2 on

L that is closest to P0 is such that P2P0 is perpendicular to L. The distance from

P0 to L is

s D jP2P0j D jP1P0j sin � D jr0 � r1j sin �;

where � is the angle between r0 � r1 and v. (See Figure 10.33(a).) Since

j.r0 � r1/� vj D jr0 � r1j jvj sin �;

we have

s D
j.r0 � r1/� vj

jvj
:

(b) The line r D i C .1 C 3t/j � .3 � 4t/k passes through P1 D .1; 1;�3/ and is

parallel to v D 3jC 4k. The distance from P0 D .2; 0;�3/ to this line is

s D

ˇ

ˇ

�

.2 � 1/iC .0 � 1/jC .�3C 3/k
�

� .3jC 4k/
ˇ

ˇ

p

32
C 42

D

j.i � j/� .3jC 4k/j

5
D

j � 4i � 4jC 3kj

5
D

p

41

5
units.
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Figure 10.33

(a) The distance from P0 to the

line L is s D jP0P1j sin �

(b) The distance between the lines

L1 and L2 is the length of the

projection of P1P2 along the vector

v1 � v2

x
y

z

s

r0 � r1

P0r0

r1L

P1
v

P2

�

x
y

z

v2

r2 � r1

v1

P1

P3

P4

v1 � v2

P2
L2

L1

(a) (b)

E X A M P L E 9
(The distance between two lines) Find the distance between the

two lines L1 through pointP1 parallel to vector v1 and L2 through

point P2 parallel to vector v2.

Solution Let r1 and r2 be the position vectors of points P1 and P2, respectively. If

P3 and P4 (with position vectors r3 and r4) are the points on L1 and L2, respectively,

that are closest to one another, then
���!

P3P4 is perpendicular to both lines and is therefore

parallel to v1 � v2. (See Figure 10.33(b).)
���!

P3P4 is the vector projection of
���!

P1P2 D

r2 � r1 along v1 � v2. Therefore, the distance s D j
���!

P3P4j between the lines is given

by

s D jr4 � r3j D
j.r2 � r1/ � .v1 � v2/j

jv1 � v2j
:

E X E R C I S E S 10.4

1. A single equation involving the coordinates .x; y; z/ need not

always represent a two-dimensional “surface” in R
3
. For

example, x2
C y2

C z2
D 0 represents the single point

.0; 0; 0/, which has dimension zero. Give examples of single

equations in x, y, and z that represent

(a) a (one-dimensional) straight line,

(b) the whole of R
3
,

(c) no points at all (i.e., the empty set).

In Exercises 2–9, find equations of the planes satisfying the given

conditions.

2. Passing through .0; 2;�3/ and normal to the vector

4i � j � 2k

3. Passing through the origin and having normal i � jC 2k

4. Passing through .1; 2; 3/ and parallel to the plane

3x C y � 2z D 15

5. Passing through the three points .1; 1; 0/, .2; 0; 2/, and

.0; 3; 3/

6. Passing through the three points .�2; 0; 0/, .0; 3; 0/, and

.0; 0; 4/

7. Passing through .1; 1; 1/ and .2; 0; 3/ and perpendicular to the

plane x C 2y � 3z D 0

8. Passing through the line of intersection of the planes

2xC 3y � z D 0 and x � 4yC 2z D �5, and passing through

the point .�2; 0;�1/

9. Passing through the line x C y D 2, y � z D 3, and

perpendicular to the plane 2x C 3y C 4z D 5

10. Under what geometric condition will three distinct points in

R
3

not determine a unique plane passing through them? How

can this condition be expressed algebraically in terms of the

position vectors, r1, r2, and r3, of the three points?

11. Give a condition on the position vectors of four points that

guarantees that the four points are coplanar, that is, all lie on

one plane.

Describe geometrically the one-parameter families of planes in

Exercises 12–14. (� is a real parameter.)

12. x C y C z D �. 13.I x C �y C �z D �.

14.I �x C
p

1 � �2y D 1.

In Exercises 15–19, find equations of the line specified in vector

and scalar parametric forms and in standard form.

15. Through the point .1; 2; 3/ and parallel to 2i � 3j � 4k

16. Through .�1; 0; 1/ and perpendicular to the plane

2x � y C 7z D 12

17. Through the origin and parallel to the line of intersection of

the planes x C 2y � z D 2 and 2x � y C 4z D 5

18. Through .2;�1;�1/ and parallel to each of the two planes

x C y D 0 and x � y C 2z D 0
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Figure 10.32 The distance from P0 to the

plane P is the length of the vector projec-

tion of PP0 along the normal n to P,

where P is any point on P
x

y

z

r0 � r

P

r

n

P1

s

P0

s D
jAx0 C By0 C Cz0 �Dj
p

A2
C B2

C C 2
:

(b) The distance from .2;�1; 3/ to the plane 2x � 2y � z D 9 is

s D
j2.2/ � 2.�1/ � 1.3/ � 9j
p

22
C .�2/2 C .�1/2

D

j � 6j

3
D 2 units.

E X A M P L E 8
(Distance from a point to a line)

(a) Find the distance from the point P0 to the straight line L through P1 parallel to

the nonzero vector v.

(b) What is the distance from .2; 0;�3/ to the line r D iC .1C 3t/j � .3 � 4t/k?

Solution

(a) Let r0 and r1 be the position vectors of P0 and P1, respectively. The point P2 on

L that is closest to P0 is such that P2P0 is perpendicular to L. The distance from

P0 to L is

s D jP2P0j D jP1P0j sin � D jr0 � r1j sin �;

where � is the angle between r0 � r1 and v. (See Figure 10.33(a).) Since

j.r0 � r1/� vj D jr0 � r1j jvj sin �;

we have

s D
j.r0 � r1/� vj

jvj
:

(b) The line r D i C .1 C 3t/j � .3 � 4t/k passes through P1 D .1; 1;�3/ and is

parallel to v D 3jC 4k. The distance from P0 D .2; 0;�3/ to this line is

s D

ˇ

ˇ

�

.2 � 1/iC .0 � 1/jC .�3C 3/k
�

� .3jC 4k/
ˇ

ˇ

p

32
C 42

D

j.i � j/� .3jC 4k/j

5
D

j � 4i � 4jC 3kj

5
D

p

41

5
units.
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Figure 10.33

(a) The distance from P0 to the

line L is s D jP0P1j sin �

(b) The distance between the lines

L1 and L2 is the length of the

projection of P1P2 along the vector

v1 � v2

x
y

z

s

r0 � r1

P0r0

r1L

P1
v

P2

�

x
y

z

v2

r2 � r1

v1

P1

P3

P4

v1 � v2

P2
L2

L1

(a) (b)

E X A M P L E 9
(The distance between two lines) Find the distance between the

two lines L1 through pointP1 parallel to vector v1 and L2 through

point P2 parallel to vector v2.

Solution Let r1 and r2 be the position vectors of points P1 and P2, respectively. If

P3 and P4 (with position vectors r3 and r4) are the points on L1 and L2, respectively,

that are closest to one another, then
���!

P3P4 is perpendicular to both lines and is therefore

parallel to v1 � v2. (See Figure 10.33(b).)
���!

P3P4 is the vector projection of
���!

P1P2 D

r2 � r1 along v1 � v2. Therefore, the distance s D j
���!

P3P4j between the lines is given

by

s D jr4 � r3j D
j.r2 � r1/ � .v1 � v2/j

jv1 � v2j
:

E X E R C I S E S 10.4

1. A single equation involving the coordinates .x; y; z/ need not

always represent a two-dimensional “surface” in R
3
. For

example, x2
C y2

C z2
D 0 represents the single point

.0; 0; 0/, which has dimension zero. Give examples of single

equations in x, y, and z that represent

(a) a (one-dimensional) straight line,

(b) the whole of R
3
,

(c) no points at all (i.e., the empty set).

In Exercises 2–9, find equations of the planes satisfying the given

conditions.

2. Passing through .0; 2;�3/ and normal to the vector

4i � j � 2k

3. Passing through the origin and having normal i � jC 2k

4. Passing through .1; 2; 3/ and parallel to the plane

3x C y � 2z D 15

5. Passing through the three points .1; 1; 0/, .2; 0; 2/, and

.0; 3; 3/

6. Passing through the three points .�2; 0; 0/, .0; 3; 0/, and

.0; 0; 4/

7. Passing through .1; 1; 1/ and .2; 0; 3/ and perpendicular to the

plane x C 2y � 3z D 0

8. Passing through the line of intersection of the planes

2xC 3y � z D 0 and x � 4yC 2z D �5, and passing through

the point .�2; 0;�1/

9. Passing through the line x C y D 2, y � z D 3, and

perpendicular to the plane 2x C 3y C 4z D 5

10. Under what geometric condition will three distinct points in

R
3

not determine a unique plane passing through them? How

can this condition be expressed algebraically in terms of the

position vectors, r1, r2, and r3, of the three points?

11. Give a condition on the position vectors of four points that

guarantees that the four points are coplanar, that is, all lie on

one plane.

Describe geometrically the one-parameter families of planes in

Exercises 12–14. (� is a real parameter.)

12. x C y C z D �. 13.I x C �y C �z D �.

14.I �x C
p

1 � �2y D 1.

In Exercises 15–19, find equations of the line specified in vector

and scalar parametric forms and in standard form.

15. Through the point .1; 2; 3/ and parallel to 2i � 3j � 4k

16. Through .�1; 0; 1/ and perpendicular to the plane

2x � y C 7z D 12

17. Through the origin and parallel to the line of intersection of

the planes x C 2y � z D 2 and 2x � y C 4z D 5

18. Through .2;�1;�1/ and parallel to each of the two planes

x C y D 0 and x � y C 2z D 0
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19. Through .1; 2;�1/ and making equal angles with the positive

directions of the coordinate axes

In Exercises 20–22, find the equations of the given line in standard

form.

20. r D .1 � 2t/iC .4C 3t/jC .9 � 4t/k.

21.

(

x D 4 � 5t

y D 3t

z D 7

22.

�

x � 2y C 3z D 0

2x C 3y � 4z D 4

23. If P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/, show that the

equations

8

ˆ

<

ˆ

:

x D x1 C t .x2 � x1/

y D y1 C t .y2 � y1/

z D z1 C t .z2 � z1/

represent a line through P1 and P2.

24. What points on the line in Exercise 23 correspond to the

parameter values t D �1, t D 1=2, and t D 2? Describe their

locations.

25. Under what conditions on the position vectors of four distinct

points P1, P2, P3, and P4 will the straight line through P1

and P2 intersect the straight line through P3 and P4 at a

unique point?

Find the required distances in Exercises 26–29.

26. From the origin to the plane x C 2y C 3z D 4

27. From .1; 2; 0/ to the plane 3x � 4y � 5z D 2

28. From the origin to the line x C y C z D 0, 2x � y � 5z D 1

29. Between the lines

�

x C 2y D 3

y C 2z D 3
and

n

x C y C z D 6

x � 2z D �5

30. Show that the line x � 2 D
y C 3

2
D

z � 1

4
is parallel to the

plane 2y � z D 1. What is the distance between the line and

the plane?

In Exercises 31–32, describe the one-parameter families of straight

lines represented by the given equations. (� is a real parameter.)

31.I .1 � �/.x � x0/ D �.y � y0/, z D z0.

32.I
x � x0
p

1 � �2
D

y � y0

�
D z � z0:

33. Why does the factored second-degree equation

.A1xCB1yCC1z �D1/.A2xCB2yCC2z �D2/ D 0

represent a pair of planes rather than a single straight line?

10.5 Quadric Surfaces

The most general second-degree equation in three variables is

Ax
2
C By

2
C Cz

2
CDxy CExz C Fyz CGx CHy C Iz D J:

We will not attempt the (rather difficult) task of classifying all the surfaces that can be

represented by such an equation, but will examine some interesting special cases. Let

us observe at the outset that if the above equation can be factored in the form

.A1x C B1y C C1z �D1/.A2x C B2y C C2z �D2/ D 0;

then the graph is, in fact, a pair of planes,

A1x C B1y C C1z D D1 and A2x C B2y C C2z D D2;

or one plane if the two linear equations represent the same plane. This is considered a

degenerate case. Where such factorization is not possible, the surface (called a quadric

surface) will not be flat, although there may still be straight lines that lie on the surface.

Nondegenerate quadric surfaces fall into the following six categories:

Spheres. The equation x2
C y2

C z2
D a2 represents a sphere of radius a centred at

the origin. More generally,

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
D a

2

represents a sphere of radius a centred at the point .x0; y0; z0/. If a quadratic equation

in x, y, and z has equal coefficients for the x2, y2, and z2 terms and has no other

second-degree terms, then it will represent, if any surface at all, a sphere. The centre

can be found by completing the squares as for circles in the plane.
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Cylinders. The equation x2
C y2

D a2, being independent of z, represents a right-

circular cylinder of radius a and axis along the z-axis. (See Figure 10.34(a).) The

intersection of the cylinder with the horizontal plane z D k is the circle with equations
�

x2
C y2

D a2

z D k:

Quadric cylinders also come in other shapes: elliptic, parabolic, and hyperbolic. For

instance, z D x2 represents a parabolic cylinder with vertex line along the y-axis. (See

Figure 10.34(b).) In general, an equation in two variables only will represent a cylinder

in 3-space.

Figure 10.34

(a) The circular cylinder

x2
C y2

D a2

(b) The parabolic cylinder z D x2

x

y

z

x

y

z

(a) (b)

Cones. The equation z2
D x2

C y2 represents a right-circular cone with axis along

the z-axis. The surface is generated by rotating about the z-axis the line z D y in

the yz-plane. This generator makes an angle of 45ı with the axis of the cone. Cross-

sections of the cone in planes parallel to the xy-plane are circles. (See Figure 10.35(a).)

The equation x2
C y2

D a2z2 also represents a right-circular cone with vertex at the

origin and axis along the z-axis but having semi-vertical angle ˛ D tan�1 a. A circular

cone has plane cross-sections that are elliptical, parabolic, and hyperbolic. Conversely,

any nondegenerate quadric cone has a direction perpendicular to which the cross-

sections of the cone are circular. In that sense, every quadric cone is a circular cone,

although it may be oblique rather than right-circular in that the line joining the centres

of the circular cross-sections need not be perpendicular to those cross-sections. (See

Exercise 24.)

Figure 10.35

(a) The circular cone a2z2
D x2

C y2

(b) The ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1

x

y

z

x

y

z

.0; 0; c/

.0; b; 0/

.a; 0; 0/

(a) (b)

Ellipsoids. The equation

x2

a2
C

y2

b2
C

z2

c2
D 1
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19. Through .1; 2;�1/ and making equal angles with the positive

directions of the coordinate axes

In Exercises 20–22, find the equations of the given line in standard

form.

20. r D .1 � 2t/iC .4C 3t/jC .9 � 4t/k.

21.

(

x D 4 � 5t

y D 3t

z D 7

22.

�

x � 2y C 3z D 0

2x C 3y � 4z D 4

23. If P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/, show that the

equations

8

ˆ

<

ˆ

:

x D x1 C t .x2 � x1/

y D y1 C t .y2 � y1/

z D z1 C t .z2 � z1/

represent a line through P1 and P2.

24. What points on the line in Exercise 23 correspond to the

parameter values t D �1, t D 1=2, and t D 2? Describe their

locations.

25. Under what conditions on the position vectors of four distinct

points P1, P2, P3, and P4 will the straight line through P1

and P2 intersect the straight line through P3 and P4 at a

unique point?

Find the required distances in Exercises 26–29.

26. From the origin to the plane x C 2y C 3z D 4

27. From .1; 2; 0/ to the plane 3x � 4y � 5z D 2

28. From the origin to the line x C y C z D 0, 2x � y � 5z D 1

29. Between the lines

�

x C 2y D 3

y C 2z D 3
and

n

x C y C z D 6

x � 2z D �5

30. Show that the line x � 2 D
y C 3

2
D

z � 1

4
is parallel to the

plane 2y � z D 1. What is the distance between the line and

the plane?

In Exercises 31–32, describe the one-parameter families of straight

lines represented by the given equations. (� is a real parameter.)

31.I .1 � �/.x � x0/ D �.y � y0/, z D z0.

32.I
x � x0
p

1 � �2
D

y � y0

�
D z � z0:

33. Why does the factored second-degree equation

.A1xCB1yCC1z �D1/.A2xCB2yCC2z �D2/ D 0

represent a pair of planes rather than a single straight line?

10.5 Quadric Surfaces

The most general second-degree equation in three variables is

Ax
2
C By

2
C Cz

2
CDxy CExz C Fyz CGx CHy C Iz D J:

We will not attempt the (rather difficult) task of classifying all the surfaces that can be

represented by such an equation, but will examine some interesting special cases. Let

us observe at the outset that if the above equation can be factored in the form

.A1x C B1y C C1z �D1/.A2x C B2y C C2z �D2/ D 0;

then the graph is, in fact, a pair of planes,

A1x C B1y C C1z D D1 and A2x C B2y C C2z D D2;

or one plane if the two linear equations represent the same plane. This is considered a

degenerate case. Where such factorization is not possible, the surface (called a quadric

surface) will not be flat, although there may still be straight lines that lie on the surface.

Nondegenerate quadric surfaces fall into the following six categories:

Spheres. The equation x2
C y2

C z2
D a2 represents a sphere of radius a centred at

the origin. More generally,

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
D a

2

represents a sphere of radius a centred at the point .x0; y0; z0/. If a quadratic equation

in x, y, and z has equal coefficients for the x2, y2, and z2 terms and has no other

second-degree terms, then it will represent, if any surface at all, a sphere. The centre

can be found by completing the squares as for circles in the plane.
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Cylinders. The equation x2
C y2

D a2, being independent of z, represents a right-

circular cylinder of radius a and axis along the z-axis. (See Figure 10.34(a).) The

intersection of the cylinder with the horizontal plane z D k is the circle with equations
�

x2
C y2

D a2

z D k:

Quadric cylinders also come in other shapes: elliptic, parabolic, and hyperbolic. For

instance, z D x2 represents a parabolic cylinder with vertex line along the y-axis. (See

Figure 10.34(b).) In general, an equation in two variables only will represent a cylinder

in 3-space.

Figure 10.34

(a) The circular cylinder

x2
C y2

D a2

(b) The parabolic cylinder z D x2

x

y

z

x

y

z

(a) (b)

Cones. The equation z2
D x2

C y2 represents a right-circular cone with axis along

the z-axis. The surface is generated by rotating about the z-axis the line z D y in

the yz-plane. This generator makes an angle of 45ı with the axis of the cone. Cross-

sections of the cone in planes parallel to the xy-plane are circles. (See Figure 10.35(a).)

The equation x2
C y2

D a2z2 also represents a right-circular cone with vertex at the

origin and axis along the z-axis but having semi-vertical angle ˛ D tan�1 a. A circular

cone has plane cross-sections that are elliptical, parabolic, and hyperbolic. Conversely,

any nondegenerate quadric cone has a direction perpendicular to which the cross-

sections of the cone are circular. In that sense, every quadric cone is a circular cone,

although it may be oblique rather than right-circular in that the line joining the centres

of the circular cross-sections need not be perpendicular to those cross-sections. (See

Exercise 24.)

Figure 10.35

(a) The circular cone a2z2
D x2

C y2

(b) The ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1

x

y

z

x

y

z

.0; 0; c/

.0; b; 0/

.a; 0; 0/

(a) (b)

Ellipsoids. The equation

x2

a2
C

y2

b2
C

z2

c2
D 1
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represents an ellipsoid with semi-axes a, b, and c. (See Figure 10.35(b).) The surface

is oval, and it is enclosed inside the rectangular parallelepiped �a � x � a, �b �

y � b, �c � z � c. If a D b D c, the ellipsoid is a sphere. In general, all plane

cross-sections of ellipsoids are ellipses. This is easy to see for cross-sections parallel

to coordinate planes, but somewhat harder to see for other planes.

Paraboloids. The equations

z D
x2

a2
C

y2

b2
and z D

x2

a2
�

y2

b2

represent, respectively, an elliptic paraboloid and a hyperbolic paraboloid. (See

Figure 10.36(a) and (b).) Cross-sections in planes z D k (k being a positive constant)

are ellipses (circles if a D b) and hyperbolas, respectively. Parabolic reflective mirrors

have the shape of circular paraboloids. The hyperbolic paraboloid is a ruled surface.

(A ruled surface is one through every point of which there passes a straight line lying

wholly on the surface. Cones and cylinders are also examples of ruled surfaces.) There

are two one-parameter families of straight lines that lie on the hyperbolic paraboloid:

8

ˆ

<

ˆ

:

�z D
x

a
�

y

b
1

�
D

x

a
C

y

b

and

8

ˆ

<

ˆ

:

�z D
x

a
C

y

b
1

�
D

x

a
�

y

b

;

where � and � are real parameters. Every point on the hyperbolic paraboloid lies on

one line of each family.

Figure 10.36

(a) The elliptic paraboloid z D
x2

a2
C

y2

b2

(b) The hyperbolic paraboloid

z D
x2

a2
�

y2

b2
x

y

z

x

y

z

(a) (b)

Hyperboloids. The equation

x2

a2
C

y2

b2
�

z2

c2
D 1

represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a).) The

equation

x
2

a2
C

y
2

b2
�

z
2

c2
D �1

represents a hyperboloid of two sheets. (See Figure 10.37(b).) Both surfaces

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 10 – page 603 October 15, 2016

SECTION 10.6: Cylindrical and Spherical Coordinates 603

Figure 10.37

(a) The hyperboloid of one sheet

x2

a2
C

y2

b2
�

z2

c2
D 1

(b) The hyperboloid of two sheets

x
2

a2
C

y
2

b2
�

z
2

c2
D �1

x

y

z

.a; 0; 0/ .0; b; 0/

x

y

z

.0; 0;�c/

(a) (b)

have elliptical cross-sections in horizontal planes and hyperbolic cross-sections in ver-

tical planes. Both are asymptotic to the elliptic cone with equation

x2

a2
C

y2

b2
D

z2

c2
I

they approach arbitrarily close to the cone as they recede arbitrarily far away from the

origin. Like the hyperbolic paraboloid, the hyperboloid of one sheet is a ruled surface.

E X E R C I S E S 10.5

Identify the surfaces represented by the equations in

Exercises 1–16 and sketch their graphs.

1. x2
C 4y2

C 9z2
D 36 2. x2

C y2
C 4z2

D 4

3. 2x2
C 2y2

C 2z2
� 4x C 8y � 12z C 27 D 0

4. x2
C 4y2

C 9z2
C 4x � 8y D 8

5. z D x2
C 2y2 6. z D x2

� 2y2

7. x2
� y2

� z2
D 4 8. �x2

C y2
C z2

D 4

9. z D xy 10. x2
C 4z2

D 4

11. x2
� 4z2

D 4 12. y D z2

13. x D z2
C z 14. x2

D y2
C 2z2

15. .z � 1/2 D .x � 2/2 C .y � 3/2

16. .z � 1/2 D .x � 2/2 C .y � 3/2 C 4

Describe and sketch the geometric objects represented by the

systems of equations in Exercises 17–20.

17.

�

x2
C y2

C z2
D 4

x C y C z D 1
18.

�

x2
C y2

D 1

z D x C y

19.

�

z2
D x2

C y2

z D 1C x
20.

�

x2
C 2y2

C 3z2
D 6

y D 1

21. Find two one-parameter families of straight lines that lie on

the hyperboloid of one sheet

x2

a2
C

y2

b2
�

z2

c2
D 1:

22. Find two one-parameter families of straight lines that lie on

the hyperbolic paraboloid z D xy.

23. The equation 2x2
C y2

D 1 represents a cylinder with

elliptical cross-sections in planes perpendicular to the z-axis.

Find a vector a perpendicular to which the cylinder has

circular cross-sections.

24.I The equation z2
D 2x2

C y2 represents a cone with elliptical

cross-sections in planes perpendicular to the z-axis. Find a

vector a perpendicular to which the cone has circular

cross-sections. Hint: Do Exercise 23 first and use its result.

10.6 Cylindrical and Spherical Coordinates

Polar coordinates provide a useful alternative to plane Cartesian coordinates for de-

scribing plane regions with circular symmetry or bounded by arcs of circles centred
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represents an ellipsoid with semi-axes a, b, and c. (See Figure 10.35(b).) The surface

is oval, and it is enclosed inside the rectangular parallelepiped �a � x � a, �b �

y � b, �c � z � c. If a D b D c, the ellipsoid is a sphere. In general, all plane

cross-sections of ellipsoids are ellipses. This is easy to see for cross-sections parallel

to coordinate planes, but somewhat harder to see for other planes.

Paraboloids. The equations

z D
x2

a2
C

y2

b2
and z D

x2

a2
�

y2

b2

represent, respectively, an elliptic paraboloid and a hyperbolic paraboloid. (See

Figure 10.36(a) and (b).) Cross-sections in planes z D k (k being a positive constant)

are ellipses (circles if a D b) and hyperbolas, respectively. Parabolic reflective mirrors

have the shape of circular paraboloids. The hyperbolic paraboloid is a ruled surface.

(A ruled surface is one through every point of which there passes a straight line lying

wholly on the surface. Cones and cylinders are also examples of ruled surfaces.) There

are two one-parameter families of straight lines that lie on the hyperbolic paraboloid:

8

ˆ

<

ˆ

:

�z D
x

a
�

y

b
1

�
D

x

a
C

y

b

and

8

ˆ

<

ˆ

:

�z D
x

a
C

y

b
1

�
D

x

a
�

y

b

;

where � and � are real parameters. Every point on the hyperbolic paraboloid lies on

one line of each family.

Figure 10.36

(a) The elliptic paraboloid z D
x2

a2
C

y2

b2

(b) The hyperbolic paraboloid

z D
x2

a2
�

y2

b2
x

y

z

x

y

z

(a) (b)

Hyperboloids. The equation

x2

a2
C

y2

b2
�

z2

c2
D 1

represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a).) The

equation

x
2

a2
C

y
2

b2
�

z
2

c2
D �1

represents a hyperboloid of two sheets. (See Figure 10.37(b).) Both surfaces
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Figure 10.37

(a) The hyperboloid of one sheet

x2

a2
C

y2

b2
�

z2

c2
D 1

(b) The hyperboloid of two sheets

x
2

a2
C

y
2

b2
�

z
2

c2
D �1

x

y

z

.a; 0; 0/ .0; b; 0/

x

y

z

.0; 0;�c/

(a) (b)

have elliptical cross-sections in horizontal planes and hyperbolic cross-sections in ver-

tical planes. Both are asymptotic to the elliptic cone with equation

x2

a2
C

y2

b2
D

z2

c2
I

they approach arbitrarily close to the cone as they recede arbitrarily far away from the

origin. Like the hyperbolic paraboloid, the hyperboloid of one sheet is a ruled surface.

E X E R C I S E S 10.5

Identify the surfaces represented by the equations in

Exercises 1–16 and sketch their graphs.

1. x2
C 4y2

C 9z2
D 36 2. x2

C y2
C 4z2

D 4

3. 2x2
C 2y2

C 2z2
� 4x C 8y � 12z C 27 D 0

4. x2
C 4y2

C 9z2
C 4x � 8y D 8

5. z D x2
C 2y2 6. z D x2

� 2y2

7. x2
� y2

� z2
D 4 8. �x2

C y2
C z2

D 4

9. z D xy 10. x2
C 4z2

D 4

11. x2
� 4z2

D 4 12. y D z2

13. x D z2
C z 14. x2

D y2
C 2z2

15. .z � 1/2 D .x � 2/2 C .y � 3/2

16. .z � 1/2 D .x � 2/2 C .y � 3/2 C 4

Describe and sketch the geometric objects represented by the

systems of equations in Exercises 17–20.

17.

�

x2
C y2

C z2
D 4

x C y C z D 1
18.

�

x2
C y2

D 1

z D x C y

19.

�

z2
D x2

C y2

z D 1C x
20.

�

x2
C 2y2

C 3z2
D 6

y D 1

21. Find two one-parameter families of straight lines that lie on

the hyperboloid of one sheet

x2

a2
C

y2

b2
�

z2

c2
D 1:

22. Find two one-parameter families of straight lines that lie on

the hyperbolic paraboloid z D xy.

23. The equation 2x2
C y2

D 1 represents a cylinder with

elliptical cross-sections in planes perpendicular to the z-axis.

Find a vector a perpendicular to which the cylinder has

circular cross-sections.

24.I The equation z2
D 2x2

C y2 represents a cone with elliptical

cross-sections in planes perpendicular to the z-axis. Find a

vector a perpendicular to which the cone has circular

cross-sections. Hint: Do Exercise 23 first and use its result.

10.6 Cylindrical and Spherical Coordinates

Polar coordinates provide a useful alternative to plane Cartesian coordinates for de-

scribing plane regions with circular symmetry or bounded by arcs of circles centred
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at the origin and radial lines from the origin. Similarly, there are two commonly en-

countered alternatives to Cartesian coordinates in 3-space. They generalize plane polar

coordinates to 3-space and are suitable for describing regions with cylindrical or spher-

ical symmetry. We introduce these two coordinate systems here, but won’t make much

use of them until the latter part of Chapter 14 when we will learn how to integrate over

such regions.

Cylindrical Coordinates
Among the most useful alternatives to Cartesian coordinates in 3-space is the coor-

dinate system that directly generalizes plane polar coordinates by replacing only the

horizontal x and y coordinates with the polar coordinates r and � , while leaving the

vertical z coordinate untouched. This system is called cylindrical coordinates. Each

point in 3-space has cylindrical coordinates Œr; �; z� related to its Cartesian coordinates

.x; y; z/ by the transformation

x D r cos �; y D r sin �; z D z:

Figure 10.38 shows how a point P is located by its cylindrical coordinates Œr; �; z� as

well as by its Cartesian coordinates .x; y; z/. Note that the distance from P to the

z-axis is r , while the distance from P to the origin is

d D

p

r2
C z2

D

p

x2
C y2

C z2:

E X A M P L E 1
The point with Cartesian coordinates .1; 1; 1/ has cylindrical co-

ordinates Œ
p

2; �=4; 1�. The point with Cartesian coordinates

.0; 2;�3/ has cylindrical coordinates Œ2; �=2;�3�. The point with cylindrical co-

ordinates Œ4;��=3; 5� has Cartesian coordinates .2;�2
p

3; 5/.

x

y

z

y

P D .x; y; z/

D Œr; �; z�

z

r

d

O

x
�

Figure 10.38 The cylindrical coordinates of a point

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 10.39 The coordinate surfaces for cylindrical

coordinates

Just as planes with equations x D x0, y D y0, and z D z0 are the coordinate sur-

faces containing the point .x0; y0; z0/ of the Cartesian coordinate system in 3-space, so

also the coordinate surfaces containing the point Œr0; �0; z0� in cylindrical coordinates

(see Figure 10.39) are:

the r-surface with equations r D r0 (the blue vertical circular cylinder centred on

the z-axis),

the �-surface � D �0 (the yellow vertical half-plane with edge along the z-axis),

and

the z-surface z D z0 (the red horizontal plane).
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Cylindrical coordinates lend themselves to representing domains that are bounded by

such surfaces and, in particular, to problems with axial symmetry (around the z-axis).

The coordinate curves in the cylindrical coordinate system are intersections of

pairs of coordinate surfaces.

The r-curves are the intersections of the planes � D constant and z D constant,

and so are horizontal radial lines emanating from the z-axis.

The �-curves are intersections of the cylinders r D constant and planes z D

constant, and so are horizontal circles centred on the z-axis.

The z-curves are intersections of the cylinders r D constant and the half-planes

� D constant, and so are vertical straight lines.

E X A M P L E 2
Identify the surfaces whose equations in cylindrical coordinates

are:

(a) z D r2, (b) z D r cos � , (c) r D 2 cos � .

Solution

(a) z D r2 represents the circular paraboloid with Cartesian equation z D x2
C y2.

It has vertex at the origin and axis of symmetry along the positive z-axis.

(b) z D r cos � represents the plane with Cartesian equation z D x. It contains the

y-axis and the point with Cartesian coordinates .1; 0; 1/.

(c) r D 2 cos � can be rewritten r2
D 2r cos � , so represents the vertical surface

with Cartesian equation x2
C y2

D 2x. This is a circular cylinder of radius 1

with central axis along the vertical line through the point .1; 0; 0/ (in Cartesian

coordinates).

E X A M P L E 3
Describe the curves whose equations in cylindrical coordinates

are:

(a)

(

r D z

z D 1C r cos �
, (b)

(

� D �=2

r
2
C z

2
D 4

.

Solution

(a) The curve is the parabola in which the plane z D 1Cx intersects the right-circular

half-cone z D
p

x2
C y2. Since the plane is parallel to the line z D x, which is a

generator of the cone, the intersection must be a parabola rather than an ellipse or

a hyperbola. (See Section 8.1.)

(b) � D �=2 represents the half of the yz-plane where y � 0. r2
Cz2

D 4 represents

a sphere of radius 2 centred at the origin. Thus, this curve is the semicircle with

cartesian equation y D
p

4 � z2 in the plane x D 0.

Spherical Coordinates
In the system of spherical coordinates a point P in 3-space is represented by the

ordered triple ŒR; �; ��, where R is the distance from P to the origin O , � (Greek

“phi”) is the angle the radial line OP makes with the positive direction of the z-axis,

and � is the angle between the plane containing P and the z-axis and the xz-plane.

(See Figure 10.40.) It is conventional to consider spherical coordinates restricted in

such a way that R � 0, 0 � � � � , and 0 � � < 2� (or �� < � � �). Every point

not on the z-axis then has exactly one spherical coordinate representation, and the

transformation from Cartesian coordinates .x; y; z/ to spherical coordinates ŒR; �; ��

is one-to-one off the z-axis. Using the right-angled triangles in the figure, we can see

that this transformation is given by:
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at the origin and radial lines from the origin. Similarly, there are two commonly en-

countered alternatives to Cartesian coordinates in 3-space. They generalize plane polar

coordinates to 3-space and are suitable for describing regions with cylindrical or spher-

ical symmetry. We introduce these two coordinate systems here, but won’t make much

use of them until the latter part of Chapter 14 when we will learn how to integrate over

such regions.

Cylindrical Coordinates
Among the most useful alternatives to Cartesian coordinates in 3-space is the coor-

dinate system that directly generalizes plane polar coordinates by replacing only the

horizontal x and y coordinates with the polar coordinates r and � , while leaving the

vertical z coordinate untouched. This system is called cylindrical coordinates. Each

point in 3-space has cylindrical coordinates Œr; �; z� related to its Cartesian coordinates

.x; y; z/ by the transformation

x D r cos �; y D r sin �; z D z:

Figure 10.38 shows how a point P is located by its cylindrical coordinates Œr; �; z� as

well as by its Cartesian coordinates .x; y; z/. Note that the distance from P to the

z-axis is r , while the distance from P to the origin is

d D

p

r2
C z2

D

p

x2
C y2

C z2:

E X A M P L E 1
The point with Cartesian coordinates .1; 1; 1/ has cylindrical co-

ordinates Œ
p

2; �=4; 1�. The point with Cartesian coordinates

.0; 2;�3/ has cylindrical coordinates Œ2; �=2;�3�. The point with cylindrical co-

ordinates Œ4;��=3; 5� has Cartesian coordinates .2;�2
p

3; 5/.

x

y

z

y

P D .x; y; z/

D Œr; �; z�

z

r

d

O

x
�

Figure 10.38 The cylindrical coordinates of a point

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 10.39 The coordinate surfaces for cylindrical

coordinates

Just as planes with equations x D x0, y D y0, and z D z0 are the coordinate sur-

faces containing the point .x0; y0; z0/ of the Cartesian coordinate system in 3-space, so

also the coordinate surfaces containing the point Œr0; �0; z0� in cylindrical coordinates

(see Figure 10.39) are:

the r-surface with equations r D r0 (the blue vertical circular cylinder centred on

the z-axis),

the �-surface � D �0 (the yellow vertical half-plane with edge along the z-axis),

and

the z-surface z D z0 (the red horizontal plane).
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Cylindrical coordinates lend themselves to representing domains that are bounded by

such surfaces and, in particular, to problems with axial symmetry (around the z-axis).

The coordinate curves in the cylindrical coordinate system are intersections of

pairs of coordinate surfaces.

The r-curves are the intersections of the planes � D constant and z D constant,

and so are horizontal radial lines emanating from the z-axis.

The �-curves are intersections of the cylinders r D constant and planes z D

constant, and so are horizontal circles centred on the z-axis.

The z-curves are intersections of the cylinders r D constant and the half-planes

� D constant, and so are vertical straight lines.

E X A M P L E 2
Identify the surfaces whose equations in cylindrical coordinates

are:

(a) z D r2, (b) z D r cos � , (c) r D 2 cos � .

Solution

(a) z D r2 represents the circular paraboloid with Cartesian equation z D x2
C y2.

It has vertex at the origin and axis of symmetry along the positive z-axis.

(b) z D r cos � represents the plane with Cartesian equation z D x. It contains the

y-axis and the point with Cartesian coordinates .1; 0; 1/.

(c) r D 2 cos � can be rewritten r2
D 2r cos � , so represents the vertical surface

with Cartesian equation x2
C y2

D 2x. This is a circular cylinder of radius 1

with central axis along the vertical line through the point .1; 0; 0/ (in Cartesian

coordinates).

E X A M P L E 3
Describe the curves whose equations in cylindrical coordinates

are:

(a)

(

r D z

z D 1C r cos �
, (b)

(

� D �=2

r
2
C z

2
D 4

.

Solution

(a) The curve is the parabola in which the plane z D 1Cx intersects the right-circular

half-cone z D
p

x2
C y2. Since the plane is parallel to the line z D x, which is a

generator of the cone, the intersection must be a parabola rather than an ellipse or

a hyperbola. (See Section 8.1.)

(b) � D �=2 represents the half of the yz-plane where y � 0. r2
Cz2

D 4 represents

a sphere of radius 2 centred at the origin. Thus, this curve is the semicircle with

cartesian equation y D
p

4 � z2 in the plane x D 0.

Spherical Coordinates
In the system of spherical coordinates a point P in 3-space is represented by the

ordered triple ŒR; �; ��, where R is the distance from P to the origin O , � (Greek

“phi”) is the angle the radial line OP makes with the positive direction of the z-axis,

and � is the angle between the plane containing P and the z-axis and the xz-plane.

(See Figure 10.40.) It is conventional to consider spherical coordinates restricted in

such a way that R � 0, 0 � � � � , and 0 � � < 2� (or �� < � � �). Every point

not on the z-axis then has exactly one spherical coordinate representation, and the

transformation from Cartesian coordinates .x; y; z/ to spherical coordinates ŒR; �; ��

is one-to-one off the z-axis. Using the right-angled triangles in the figure, we can see

that this transformation is given by:
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x D R sin� cos �

y D R sin� sin �

z D R cos�:

Observe that

R
2
D x

2
C y

2
C z

2
D r

2
C z

2

and that the r coordinate in cylindrical coordinates is related to R and � by

r D

p

x2
C y2

D R sin�:

Thus, also

tan� D
r

z
D

p

x2
C y2

z
and tan � D

y

x
:

If � D 0 or � D � , then r D 0, so the � coordinate is irrelevant at points on the z-axis.

x

y

z

y

P D .x; y; z/

D ŒR; �; ��

z

r�

R

x

O

�

�

Figure 10.40 The spherical coordinates of a point

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 10.41 The coordinate surfaces for spherical

coordinates

The coordinate surfaces containing point ŒR0; �0; �0� in spherical coordinates are shown

in Figure 10.41. They are:

the R-surface R D R0, the blue sphere centred at the origin,

the �-surface � D �0, the red nappe of the circular cone with the z-axis as axis,

and

the �-surface � D �0, the yellow vertical half-planes with edge along the z-axis.

Similarly, pairs of coordinate surfaces intersect in coordinate curves along which only

one of the coordinates varies.

The R-curves (along which only R varies) are the intersections of �- and

�-surfaces, and so are radial lines emanating from the origin.

The �-curves (along which only � varies) are the intersections of R- and

�-surfaces, and so are vertical semicircles centred at the origin and beginning

and ending on the z-axis.

The �-curves (along which only � varies) are the intersections of the R- and

�-surfaces, and thus are horizontal circles with centres on the z-axis.

If we take a coordinate system with origin at the centre of the earth, z-axis through
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the north pole, and x-axis through the intersection of the Greenwich meridian and the

equator, then the earth’s surface is (roughly speaking) an R-surface. It’s intersections

with the �-surfaces are �-curves on the earth’s surface and are called parallels of

latitude. The intersections of the surface of the earth with the �-surfaces are �-curves,

called meridians of longitude. Since latitude is measured from 90ı at the north pole to

�90ı at the south pole, while � is measured from 0 at the north pole to � .D 180ı/ at

the south pole, the coordinate � is frequently referred to as the colatitude coordinate;

� is the longitude coordinate. Observe that � has the same significance in spherical

coordinates as it does in cylindrical coordinates.

Spherical coordinates are suited to problems involving spherical symmetry and,

in particular, to regions bounded by spheres centred at the origin, circular cones with

axes along the z-axis, and vertical planes containing the z-axis.

E X A M P L E 4
Find:

(a) the Cartesian coordinates of the point P with spherical coordinates

Œ2; �=3; �=2�, and

(b) the spherical coordinates of the point Q with Cartesian coordinates .1; 1;
p

2/.

Solution

(a) If R D 2, � D �=3, and � D �=2, then

x D 2 sin.�=3/ cos.�=2/ D 0

y D 2 sin.�=3/ sin.�=2/ D
p

3

z D 2 cos.�=3/ D 1:

The Cartesian coordinates of P are .0;
p

3; 1/.

(b) Given that

R sin� cos � D x D 1

R sin� sin � D y D 1

R cos� D z D
p

2;

we calculate that R2
D 1 C 1 C 2 D 4, so R D 2. Also r2

D 1 C 1 D 2,

so r D
p

2. Thus, tan� D r=z D 1, so � D �=4. Also, tan � D y=x D 1,

so � D �=4 or 5�=4. Since x > 0, we must have � D �=4. The spherical

coordinates of Q are Œ2; �=4; �=4�.

Remark You may wonder why we write spherical coordinates in the order R;�; �

rather than R; �; �. The reason, which will not become apparent until Chapter 16,

concerns the triad of unit vectors at any point P , taken in coordinate order and tangent

to the corresponding coordinate curve in the direction of increase of that coordinate.

The order R;�; � ensures that this triad is a right-handed basis rather than a left-

handed one.

E X E R C I S E S 10.6

1. Convert the Cartesian coordinates .2;�2; 1/ to cylindrical

coordinates and to spherical coordinates.

2. Convert the cylindrical coordinates Œ2; �=6;�2� to Cartesian

coordinates and to spherical coordinates.

3. Convert the spherical coordinates Œ4; �=3; 2�=3� to Cartesian

coordinates and to cylindrical coordinates.

4. A point P has spherical coordinates Œ1; �; �� and cylindrical

coordinates Œr; �=4; r�. Find the Cartesian coordinates of the

point.
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x D R sin� cos �

y D R sin� sin �

z D R cos�:

Observe that

R
2
D x

2
C y

2
C z

2
D r

2
C z

2

and that the r coordinate in cylindrical coordinates is related to R and � by

r D

p

x2
C y2

D R sin�:

Thus, also

tan� D
r

z
D

p

x2
C y2

z
and tan � D

y

x
:

If � D 0 or � D � , then r D 0, so the � coordinate is irrelevant at points on the z-axis.

x

y

z

y

P D .x; y; z/

D ŒR; �; ��

z

r�

R

x

O

�

�

Figure 10.40 The spherical coordinates of a point

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 10.41 The coordinate surfaces for spherical

coordinates

The coordinate surfaces containing point ŒR0; �0; �0� in spherical coordinates are shown

in Figure 10.41. They are:

the R-surface R D R0, the blue sphere centred at the origin,

the �-surface � D �0, the red nappe of the circular cone with the z-axis as axis,

and

the �-surface � D �0, the yellow vertical half-planes with edge along the z-axis.

Similarly, pairs of coordinate surfaces intersect in coordinate curves along which only

one of the coordinates varies.

The R-curves (along which only R varies) are the intersections of �- and

�-surfaces, and so are radial lines emanating from the origin.

The �-curves (along which only � varies) are the intersections of R- and

�-surfaces, and so are vertical semicircles centred at the origin and beginning

and ending on the z-axis.

The �-curves (along which only � varies) are the intersections of the R- and

�-surfaces, and thus are horizontal circles with centres on the z-axis.

If we take a coordinate system with origin at the centre of the earth, z-axis through
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the north pole, and x-axis through the intersection of the Greenwich meridian and the

equator, then the earth’s surface is (roughly speaking) an R-surface. It’s intersections

with the �-surfaces are �-curves on the earth’s surface and are called parallels of

latitude. The intersections of the surface of the earth with the �-surfaces are �-curves,

called meridians of longitude. Since latitude is measured from 90ı at the north pole to

�90ı at the south pole, while � is measured from 0 at the north pole to � .D 180ı/ at

the south pole, the coordinate � is frequently referred to as the colatitude coordinate;

� is the longitude coordinate. Observe that � has the same significance in spherical

coordinates as it does in cylindrical coordinates.

Spherical coordinates are suited to problems involving spherical symmetry and,

in particular, to regions bounded by spheres centred at the origin, circular cones with

axes along the z-axis, and vertical planes containing the z-axis.

E X A M P L E 4
Find:

(a) the Cartesian coordinates of the point P with spherical coordinates

Œ2; �=3; �=2�, and

(b) the spherical coordinates of the point Q with Cartesian coordinates .1; 1;
p

2/.

Solution

(a) If R D 2, � D �=3, and � D �=2, then

x D 2 sin.�=3/ cos.�=2/ D 0

y D 2 sin.�=3/ sin.�=2/ D
p

3

z D 2 cos.�=3/ D 1:

The Cartesian coordinates of P are .0;
p

3; 1/.

(b) Given that

R sin� cos � D x D 1

R sin� sin � D y D 1

R cos� D z D
p

2;

we calculate that R2
D 1 C 1 C 2 D 4, so R D 2. Also r2

D 1 C 1 D 2,

so r D
p

2. Thus, tan� D r=z D 1, so � D �=4. Also, tan � D y=x D 1,

so � D �=4 or 5�=4. Since x > 0, we must have � D �=4. The spherical

coordinates of Q are Œ2; �=4; �=4�.

Remark You may wonder why we write spherical coordinates in the order R;�; �

rather than R; �; �. The reason, which will not become apparent until Chapter 16,

concerns the triad of unit vectors at any point P , taken in coordinate order and tangent

to the corresponding coordinate curve in the direction of increase of that coordinate.

The order R;�; � ensures that this triad is a right-handed basis rather than a left-

handed one.

E X E R C I S E S 10.6

1. Convert the Cartesian coordinates .2;�2; 1/ to cylindrical

coordinates and to spherical coordinates.

2. Convert the cylindrical coordinates Œ2; �=6;�2� to Cartesian

coordinates and to spherical coordinates.

3. Convert the spherical coordinates Œ4; �=3; 2�=3� to Cartesian

coordinates and to cylindrical coordinates.

4. A point P has spherical coordinates Œ1; �; �� and cylindrical

coordinates Œr; �=4; r�. Find the Cartesian coordinates of the

point.
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Describe the sets of points in 3-space that satisfy the equations in

Exercises 5–14. Here, r , � , R, and � denote the appropriate

cylindrical or spherical coordinates.

5. � D �=2 6. � D 2�=3

7. � D �=2 8. R D 4

9. r D 4 10. R D z

11. R D r 12. R D 2x

13. R D 2 cos� 14. r D 2 cos �

10.7 A Little Linear Algebra

Differential calculus is essentially the study of linear approximations to functions. The

tangent line to the graph y D f .x/ at x D x0 provides the “best linear approximation”

to f .x/ near x0. Differentiation of functions of several variables can also be viewed

as a process of finding best linear approximations. Therefore, the language of linear

algebra can be very useful for expressing certain concepts in the calculus of several

variables.

Linear algebra is a vast subject and is usually studied independently of calculus.

This is unfortunate because understanding the relationship between the two subjects

can greatly enhance your understanding and appreciation of each of them. Knowledge

of linear algebra, and therefore familiarity with the material covered in this section,

is not essential for fruitful study of the rest of this book. However, we shall occa-

sionally comment on the significance of the subject at hand from the point of view

of linear algebra. To this end we need only a little of the terminology and content of

this subject, especially that part pertaining to matrix manipulation and systems of lin-

ear equations. In the rest of this section we present an outline of this material. Some

students will already be familiar with it; others will encounter it later. We make no

attempt at completeness here and refer interested students to standard linear algebra

texts for proofs of some assertions. Students proceeding beyond this book to further

study of advanced calculus and differential equations will certainly need a much more

extensive background in linear algebra.

Matrices
An m � n matrix A is a rectangular array of mn numbers arranged in m rows and n

columns. If aij is the element in the i th row and the j th column, then

A D

0

B

B

@

a11 a12 � � � a1n

a21 a22 � � � a2n
:
:
:

:
:
:

:
:
:

am1 am2 � � � amn

1

C

C

A

:

Sometimes, as a shorthand notation, we write A D .aij /. In this case i is assumed to

range from 1 to m and j from 1 to n. If m D n, we say that A is a square matrix. The

elements aij of the matrices we use in this book will always be real numbers.

The transpose of an m� n matrix A is the n�m matrix A
T whose rows are the

columns of A:

A
T
D

0

B

B

@

a11 a21 � � � am1

a12 a22 � � � am2
:
:
:

:
:
:

:
:
:

a1n a2n � � � amn

1

C

C

A

:

Matrix A is called symmetric if A
T
D A. Symmetric matrices are necessarily

square. Observe that .AT
/T DA for every matrix A. Frequently we want to consider
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an n-vector x as an n � 1 matrix having n rows and one column:

x D

0

B

B

@

x1

x2
:
:
:

xn

1

C

C

A

:

As such, x is called a column vector. xT then has one row and n columns and is called

a row vector:

xT
D .x1 x2 � � � xn/:

Note that x and xT have the same components, so they are identical as vectors even

though they appear differently as matrices.

Most of the usefulness of matrices depends on the following definition of matrix

multiplication, which enables two arrays to be combined into a single one in a manner

that preserves linear relationships.

D E F I N I T I O N

7

Multiplying matrices

If A D .aij / is an m � n matrix and B D .bij / is an n � p matrix, then the

product AB is the m � p matrix C D .cij / with elements given by

cij D

n
X

kD1

aikbkj ; i D 1; : : : ; m; j D 1; : : : ; p:

That is, cij is the dot product of the i th row of A and the j th column of B

(both of which are n-vectors).

Note that only some pairs of matrices can be multiplied. The product AB is only

defined if the number of columns of A is equal to the number of rows of B.

E X A M P L E 1
�

1 0 3

2 1 �1

�

0

@

2 1 1 0

0 �1 3 1

1 0 4 5

1

A D

�

5 1 13 15

3 1 1 �4

�

The left factor has 2 rows and 3 columns, and the right factor has 3 rows and 4 columns.

Therefore, the product has 2 rows and 4 columns. The element in the first row and third

column of the product, 13, is the dot product of the first row, .1; 0; 3/, of the left factor

and the third column, .1; 3; 4/, of the second factor:

1 � 1C 0 � 3C 3 � 4 D 13:

With a little practice you can easily calculate the elements of a matrix product by

simultaneously running your left index finger across rows of the left factor and your

right index finger down columns of the right factor while taking the dot products.

E X A M P L E 2
0

@

1 2 3

0 1 �1

�2 3 0

1

A

0

@

x

y

z

1

A D

0

@

x C 2y C 3z

y � z

�2x C 3y

1

A

The product of a 3 � 3 matrix with a column 3-vector is a column 3-vector.
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Describe the sets of points in 3-space that satisfy the equations in

Exercises 5–14. Here, r , � , R, and � denote the appropriate

cylindrical or spherical coordinates.

5. � D �=2 6. � D 2�=3

7. � D �=2 8. R D 4

9. r D 4 10. R D z

11. R D r 12. R D 2x

13. R D 2 cos� 14. r D 2 cos �

10.7 A Little Linear Algebra

Differential calculus is essentially the study of linear approximations to functions. The

tangent line to the graph y D f .x/ at x D x0 provides the “best linear approximation”

to f .x/ near x0. Differentiation of functions of several variables can also be viewed

as a process of finding best linear approximations. Therefore, the language of linear

algebra can be very useful for expressing certain concepts in the calculus of several

variables.

Linear algebra is a vast subject and is usually studied independently of calculus.

This is unfortunate because understanding the relationship between the two subjects

can greatly enhance your understanding and appreciation of each of them. Knowledge

of linear algebra, and therefore familiarity with the material covered in this section,

is not essential for fruitful study of the rest of this book. However, we shall occa-

sionally comment on the significance of the subject at hand from the point of view

of linear algebra. To this end we need only a little of the terminology and content of

this subject, especially that part pertaining to matrix manipulation and systems of lin-

ear equations. In the rest of this section we present an outline of this material. Some

students will already be familiar with it; others will encounter it later. We make no

attempt at completeness here and refer interested students to standard linear algebra

texts for proofs of some assertions. Students proceeding beyond this book to further

study of advanced calculus and differential equations will certainly need a much more

extensive background in linear algebra.

Matrices
An m � n matrix A is a rectangular array of mn numbers arranged in m rows and n

columns. If aij is the element in the i th row and the j th column, then

A D

0

B

B

@

a11 a12 � � � a1n

a21 a22 � � � a2n
:
:
:

:
:
:

:
:
:

am1 am2 � � � amn

1

C

C

A

:

Sometimes, as a shorthand notation, we write A D .aij /. In this case i is assumed to

range from 1 to m and j from 1 to n. If m D n, we say that A is a square matrix. The

elements aij of the matrices we use in this book will always be real numbers.

The transpose of an m� n matrix A is the n�m matrix A
T whose rows are the

columns of A:

A
T
D

0

B

B

@

a11 a21 � � � am1

a12 a22 � � � am2
:
:
:

:
:
:

:
:
:

a1n a2n � � � amn

1

C

C

A

:

Matrix A is called symmetric if A
T
D A. Symmetric matrices are necessarily

square. Observe that .AT
/T DA for every matrix A. Frequently we want to consider
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an n-vector x as an n � 1 matrix having n rows and one column:

x D

0

B

B

@

x1

x2
:
:
:

xn

1

C

C

A

:

As such, x is called a column vector. xT then has one row and n columns and is called

a row vector:

xT
D .x1 x2 � � � xn/:

Note that x and xT have the same components, so they are identical as vectors even

though they appear differently as matrices.

Most of the usefulness of matrices depends on the following definition of matrix

multiplication, which enables two arrays to be combined into a single one in a manner

that preserves linear relationships.

D E F I N I T I O N

7

Multiplying matrices

If A D .aij / is an m � n matrix and B D .bij / is an n � p matrix, then the

product AB is the m � p matrix C D .cij / with elements given by

cij D

n
X

kD1

aikbkj ; i D 1; : : : ; m; j D 1; : : : ; p:

That is, cij is the dot product of the i th row of A and the j th column of B

(both of which are n-vectors).

Note that only some pairs of matrices can be multiplied. The product AB is only

defined if the number of columns of A is equal to the number of rows of B.

E X A M P L E 1
�

1 0 3

2 1 �1

�

0

@

2 1 1 0

0 �1 3 1

1 0 4 5

1

A D

�

5 1 13 15

3 1 1 �4

�

The left factor has 2 rows and 3 columns, and the right factor has 3 rows and 4 columns.

Therefore, the product has 2 rows and 4 columns. The element in the first row and third

column of the product, 13, is the dot product of the first row, .1; 0; 3/, of the left factor

and the third column, .1; 3; 4/, of the second factor:

1 � 1C 0 � 3C 3 � 4 D 13:

With a little practice you can easily calculate the elements of a matrix product by

simultaneously running your left index finger across rows of the left factor and your

right index finger down columns of the right factor while taking the dot products.

E X A M P L E 2
0

@

1 2 3

0 1 �1

�2 3 0

1

A

0

@

x

y

z

1

A D

0

@

x C 2y C 3z

y � z

�2x C 3y

1

A

The product of a 3 � 3 matrix with a column 3-vector is a column 3-vector.
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Matrix multiplication is associative. This means that

A.BC/ D .AB/C

(provided A, B, and C have dimensions compatible with the formation of the various

products); therefore, it makes sense to write ABC. However, matrix multiplication is

not commutative. Indeed, if A is an m � n matrix and B is an n � p matrix, then the

product AB is defined, but the product BA is not defined unless m D p. Even if A

and B are square matrices of the same size, it is not necessarily true that AB D BA.

E X A M P L E 3

�

1 2

3 0

��

1 �1

1 1

�

D

�

3 1

3 �3

�

but

�

1 �1

1 1

��

1 2

3 0

�

D

�

�2 2

4 2

�

The reader should verify that if the product AB is defined, then the transpose of the

product is the product of the transposes in the reverse order:

.AB/
T
D B

T
A

T
:

Determinants and Matrix Inverses
In Section 10.3 we introduced 2 � 2 and 3 � 3 determinants as certain algebraic ex-

pressions associated with 2 � 2 and 3 � 3 square arrays of numbers. In general, it is

possible to define the determinant det(A) for any square matrix. For an n � n matrix

A we continue to denote

det.A/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n
:
:
:

:
:
:

: : :
:
:
:

an1 an2 � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

We will not attempt to give a formal definition of the determinant here but will note

that the properties of determinants stated for the 3� 3 case in Section 10.3 continue to

be true. In particular, an n � n determinant can be expanded in minors about any row

or column and so expressed as a sum of multiples of .n � 1/ � .n � 1/ determinants.

The expansion in minors of the n�n determinant det.A/ about its i th row is a sum of

n terms:

det.A/ D

n
X

j D1

.�1/
iCj

aijAij ;

where Aij is the .n�1/� .n�1/ determinant obtained by deleting the i th row and j th

column from A. Continuing this process, we can eventually reduce the evaluation of

any n�n determinant to the evaluation of (perhaps many) 2� 2 or 3� 3 determinants.

It is important to realize that the “diagonal” method for evaluating 2 � 2 or 3 � 3

determinants does not extend to 4 � 4 or higher-order determinants.

E X A M P L E 4
Here is the expansion of a certain 4� 4 determinant about its third

column:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 0 1

1 0 1 1

3 0 0 2

�1 1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1

3 0 2

�1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1

1 0 1

3 0 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

�

�3

ˇ

ˇ

ˇ

ˇ

1 1

1 0

ˇ

ˇ

ˇ

ˇ

� 2

ˇ

ˇ

ˇ

ˇ

2 1

�1 1

ˇ

ˇ

ˇ

ˇ

�

�

�

�1

ˇ

ˇ

ˇ

ˇ

1 1

3 2

ˇ

ˇ

ˇ

ˇ

�

D 3.0 � 1/C 2.2C 1/C 1.2 � 3/ D 2:
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Since the third column had only two nonzero elements, the expansion has only two

nonzero terms involving 3 � 3 determinants. The first of these was then expanded

about its second row, and the other about its second column.

In addition to the properties stated in Section 10.3, determinants have two other very

important properties, which are stated in the following theorem.

T H E O R E M

3

If A and B are n � n matrices, then

(a) det.AT
/ D det.A/ and

(b) det.AB/ D det.A/det.B/.

We will not attempt any proof of this or other theorems in this section. The reader is

referred to texts on linear algebra. Part (a) is not very difficult to prove, even in the case

of general n. Part (b) cannot really be proved in general without a formal definition

of determinant. However, the reader should verify (b) for 2 � 2 matrices by direct

calculation.

We say that the square matrix A is singular if det.A/ D 0. If det.A/ ¤ 0, we

say that A is nonsingular or invertible.

Remark If A is a 3�3matrix, then det(A) is the scalar triple product of the rows of

A, and its absolute value is the volume of the parallelepiped spanned by those rows.

Therefore, A is nonsingular if and only if its rows span a parallelepiped of positive

volume; the row vectors cannot all lie in the same plane. The same may be said of the

columns of A.

In general, an n � n matrix is singular if its rows (or columns), considered as

vectors, satisfy one or more linear equations of the form

c1x1 C c2x2 C � � � C cnxn D 0;

with at least one nonzero coefficient ci . A set of vectors satisfying such a linear equa-

tion is called linearly dependent because one of the vectors can always be expressed

as a linear combination of the others; if c1 ¤ 0, then

x1 D �
c2

c1

x2 �
c3

c1

x3 � � � � �
cn

c1

xn:

All linear combinations of the vectors in a linearly dependent set of n vectors in R
n

must lie in a subspace of dimension lower than n. Conversely, a set ofm vectors in R
n

(where m � n) is called linearly independent if the only linear combination of them

that equals the zero vector is the one with all coefficients equal to zero; that is

c1x1 C c2x2 C � � � C cmxm D 0 ÷ ci D 0 for 1 � i � m:

Such a set of vectors spans (constitutes a basis of) a subspace space of dimension m in

R
n unless m D n, in which case the set spans R

n itself.

The n � n identity matrix is the matrix

I D

0

B

B

@

1 0 � � � 0

0 1 � � � 0
:
:
:

:
:
:

: : :
:
:
:

0 0 � � � 1

1

C

C

A

with “1” in every position on the main diagonal and “0” in every other position.

Evidently, I commutes with every n � n matrix: IA D AI D A. Also det.I/ D 1.

The identity matrix plays the same role in matrix algebra that the number 1 plays in

arithmetic.
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Matrix multiplication is associative. This means that

A.BC/ D .AB/C

(provided A, B, and C have dimensions compatible with the formation of the various

products); therefore, it makes sense to write ABC. However, matrix multiplication is

not commutative. Indeed, if A is an m � n matrix and B is an n � p matrix, then the

product AB is defined, but the product BA is not defined unless m D p. Even if A

and B are square matrices of the same size, it is not necessarily true that AB D BA.

E X A M P L E 3

�

1 2

3 0

��

1 �1

1 1

�

D

�

3 1

3 �3

�

but

�

1 �1

1 1

��

1 2

3 0

�

D

�

�2 2

4 2

�

The reader should verify that if the product AB is defined, then the transpose of the

product is the product of the transposes in the reverse order:

.AB/
T
D B

T
A

T
:

Determinants and Matrix Inverses
In Section 10.3 we introduced 2 � 2 and 3 � 3 determinants as certain algebraic ex-

pressions associated with 2 � 2 and 3 � 3 square arrays of numbers. In general, it is

possible to define the determinant det(A) for any square matrix. For an n � n matrix

A we continue to denote

det.A/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n
:
:
:

:
:
:

: : :
:
:
:

an1 an2 � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

We will not attempt to give a formal definition of the determinant here but will note

that the properties of determinants stated for the 3� 3 case in Section 10.3 continue to

be true. In particular, an n � n determinant can be expanded in minors about any row

or column and so expressed as a sum of multiples of .n � 1/ � .n � 1/ determinants.

The expansion in minors of the n�n determinant det.A/ about its i th row is a sum of

n terms:

det.A/ D

n
X

j D1

.�1/
iCj

aijAij ;

where Aij is the .n�1/� .n�1/ determinant obtained by deleting the i th row and j th

column from A. Continuing this process, we can eventually reduce the evaluation of

any n�n determinant to the evaluation of (perhaps many) 2� 2 or 3� 3 determinants.

It is important to realize that the “diagonal” method for evaluating 2 � 2 or 3 � 3

determinants does not extend to 4 � 4 or higher-order determinants.

E X A M P L E 4
Here is the expansion of a certain 4� 4 determinant about its third

column:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 0 1

1 0 1 1

3 0 0 2

�1 1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1

3 0 2

�1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1

1 0 1

3 0 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

�

�3

ˇ

ˇ

ˇ

ˇ

1 1

1 0

ˇ

ˇ

ˇ

ˇ

� 2

ˇ

ˇ

ˇ

ˇ

2 1

�1 1

ˇ

ˇ

ˇ

ˇ

�

�

�

�1

ˇ

ˇ

ˇ

ˇ

1 1

3 2

ˇ

ˇ

ˇ

ˇ

�

D 3.0 � 1/C 2.2C 1/C 1.2 � 3/ D 2:
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Since the third column had only two nonzero elements, the expansion has only two

nonzero terms involving 3 � 3 determinants. The first of these was then expanded

about its second row, and the other about its second column.

In addition to the properties stated in Section 10.3, determinants have two other very

important properties, which are stated in the following theorem.

T H E O R E M

3

If A and B are n � n matrices, then

(a) det.AT
/ D det.A/ and

(b) det.AB/ D det.A/det.B/.

We will not attempt any proof of this or other theorems in this section. The reader is

referred to texts on linear algebra. Part (a) is not very difficult to prove, even in the case

of general n. Part (b) cannot really be proved in general without a formal definition

of determinant. However, the reader should verify (b) for 2 � 2 matrices by direct

calculation.

We say that the square matrix A is singular if det.A/ D 0. If det.A/ ¤ 0, we

say that A is nonsingular or invertible.

Remark If A is a 3�3matrix, then det(A) is the scalar triple product of the rows of

A, and its absolute value is the volume of the parallelepiped spanned by those rows.

Therefore, A is nonsingular if and only if its rows span a parallelepiped of positive

volume; the row vectors cannot all lie in the same plane. The same may be said of the

columns of A.

In general, an n � n matrix is singular if its rows (or columns), considered as

vectors, satisfy one or more linear equations of the form

c1x1 C c2x2 C � � � C cnxn D 0;

with at least one nonzero coefficient ci . A set of vectors satisfying such a linear equa-

tion is called linearly dependent because one of the vectors can always be expressed

as a linear combination of the others; if c1 ¤ 0, then

x1 D �
c2

c1

x2 �
c3

c1

x3 � � � � �
cn

c1

xn:

All linear combinations of the vectors in a linearly dependent set of n vectors in R
n

must lie in a subspace of dimension lower than n. Conversely, a set ofm vectors in R
n

(where m � n) is called linearly independent if the only linear combination of them

that equals the zero vector is the one with all coefficients equal to zero; that is

c1x1 C c2x2 C � � � C cmxm D 0 ÷ ci D 0 for 1 � i � m:

Such a set of vectors spans (constitutes a basis of) a subspace space of dimension m in

R
n unless m D n, in which case the set spans R

n itself.

The n � n identity matrix is the matrix

I D

0

B

B

@

1 0 � � � 0

0 1 � � � 0
:
:
:

:
:
:

: : :
:
:
:

0 0 � � � 1

1

C

C

A

with “1” in every position on the main diagonal and “0” in every other position.

Evidently, I commutes with every n � n matrix: IA D AI D A. Also det.I/ D 1.

The identity matrix plays the same role in matrix algebra that the number 1 plays in

arithmetic.
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Any nonzero number x has a reciprocal x�1 such that xx�1
D x�1x D 1. A

similar situation holds for square matrices. The inverse of a nonsingular square matrix

A is a nonsingular square matrix A
�1 satisfying

AA
�1
DA

�1
A D I :

T H E O R E M

4

Every nonsingular square matrix A has a unique inverse A
�1. Moreover, the inverse

satisfies

(a) det.A�1
/ D

1

det.A/
,

(b) .A
�1
/
T
D .A

T
/
�1

.

We will not have much cause to calculate inverses, but we note that it can be done by

solving systems of linear equations, as the following simple example illustrates.

E X A M P L E 5 Show that the matrix A D

�

1 �1

1 1

�

is nonsingular and find its

inverse.

Solution det.A/ D

ˇ

ˇ

ˇ

ˇ

1 �1

1 1

ˇ

ˇ

ˇ

ˇ

D 1 C 1 D 2. Therefore, A is nonsingular and

invertible. Let A
�1
D

�

a b

c d

�

. Then AA
�1
D I , that is,

�

1 0

0 1

�

D

�

1 �1

1 1

��

a b

c d

�

D

�

a � c b � d

aC c b C d

�

;

so a, b, c, and d must satisfy the systems of equations

n

a � c D 1

aC c D 0

n

b � d D 0

b C d D 1:

Evidently, a D b D d D 1=2, c D �1=2, and

A
�1
D

0

@

1
2

1
2

�
1
2

1
2

1

A :

Remark The same technique used in Example 5 can be used to show that the general

2 � 2 matrix A D

�

a b

c d

�

is nonsingular (and therefore invertible) provided D D

ad � bc ¤ 0, and in this case

A
�1
D

0

B

B

@

d

D

�b

D

�c

D

a

D

1

C

C

A

:

Generally, matrix inversion is not carried out by the method of Example 5 but

rather by an orderly process of performing operations on the rows of the matrix to

transform it into the identity. When the same operations are performed on the rows

of the identity matrix, the inverse of the original matrix results. See a text on linear

algebra for a description of the method. A singular matrix has no inverse.
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Linear Transformations
A function F whose domain is the m-dimensional space R

m and whose range is con-

tained in the n-dimensional space R
n is called a linear transformation from R

m to

R
n if it satisfies

F.�xC �y/ D �F.x/C �F.y/

for all points x and y in R
m and all real numbers � and �. To such a linear transforma-

tion F there corresponds an n �m matrix F such that for all x in R
m,

F.x/ D F x;

or, expressed in terms of the components of x,

F.x1; x2; � � � ; xm/ D F

0

B

B

@

x1

x2
:
:
:

xm

1

C

C

A

:

We say that F is a matrix representation of the linear transformation F. If m D n so

that F maps R
m into itself, then F is a square matrix. In this case F is nonsingular if

and only if F is one-to-one and has the whole of R
m as range.

A composition of linear transformations is still a linear transformation and will

have a matrix representation. The real motivation lying behind the definition of matrix

multiplication is that the matrix representation of a composition of linear transforma-

tions is the product of the individual matrix representations of the transformations

being composed.

T H E O R E M

5

If F is a linear transformation from R
m to R

n represented by the n �m matrix F, and

if G is a linear transformation from R
n to R

p represented by the p � n matrix G, then

the composition G ı F defined by

G ı F.x1; x2; : : : ; xm/ D G
�

F.x1; x2; : : : ; xm/

�

is itself a linear transformation from R
m to R

p represented by the p � m matrix GF.

That is,

G
�

F.x/
�

D GF x:

Linear Equations
A system of n linear equations in n unknowns:

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

:
:
:

an1x1 C an2x2 C � � � C annxn D bn

can be written compactly as a single matrix equation,

Ax D b;
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Any nonzero number x has a reciprocal x�1 such that xx�1
D x�1x D 1. A

similar situation holds for square matrices. The inverse of a nonsingular square matrix

A is a nonsingular square matrix A
�1 satisfying

AA
�1
DA

�1
A D I :

T H E O R E M

4

Every nonsingular square matrix A has a unique inverse A
�1. Moreover, the inverse

satisfies

(a) det.A�1
/ D

1

det.A/
,

(b) .A
�1
/
T
D .A

T
/
�1

.

We will not have much cause to calculate inverses, but we note that it can be done by

solving systems of linear equations, as the following simple example illustrates.

E X A M P L E 5 Show that the matrix A D

�

1 �1

1 1

�

is nonsingular and find its

inverse.

Solution det.A/ D

ˇ

ˇ

ˇ

ˇ

1 �1

1 1

ˇ

ˇ

ˇ

ˇ

D 1 C 1 D 2. Therefore, A is nonsingular and

invertible. Let A
�1
D

�

a b

c d

�

. Then AA
�1
D I , that is,

�

1 0

0 1

�

D

�

1 �1

1 1

��

a b

c d

�

D

�

a � c b � d

aC c b C d

�

;

so a, b, c, and d must satisfy the systems of equations

n

a � c D 1

aC c D 0

n

b � d D 0

b C d D 1:

Evidently, a D b D d D 1=2, c D �1=2, and

A
�1
D

0

@

1
2

1
2

�
1
2

1
2

1

A :

Remark The same technique used in Example 5 can be used to show that the general

2 � 2 matrix A D

�

a b

c d

�

is nonsingular (and therefore invertible) provided D D

ad � bc ¤ 0, and in this case

A
�1
D

0

B

B

@

d

D

�b

D

�c

D

a

D

1

C

C

A

:

Generally, matrix inversion is not carried out by the method of Example 5 but

rather by an orderly process of performing operations on the rows of the matrix to

transform it into the identity. When the same operations are performed on the rows

of the identity matrix, the inverse of the original matrix results. See a text on linear

algebra for a description of the method. A singular matrix has no inverse.
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Linear Transformations
A function F whose domain is the m-dimensional space R

m and whose range is con-

tained in the n-dimensional space R
n is called a linear transformation from R

m to

R
n if it satisfies

F.�xC �y/ D �F.x/C �F.y/

for all points x and y in R
m and all real numbers � and �. To such a linear transforma-

tion F there corresponds an n �m matrix F such that for all x in R
m,

F.x/ D F x;

or, expressed in terms of the components of x,

F.x1; x2; � � � ; xm/ D F

0

B

B

@

x1

x2
:
:
:

xm

1

C

C

A

:

We say that F is a matrix representation of the linear transformation F. If m D n so

that F maps R
m into itself, then F is a square matrix. In this case F is nonsingular if

and only if F is one-to-one and has the whole of R
m as range.

A composition of linear transformations is still a linear transformation and will

have a matrix representation. The real motivation lying behind the definition of matrix

multiplication is that the matrix representation of a composition of linear transforma-

tions is the product of the individual matrix representations of the transformations

being composed.

T H E O R E M

5

If F is a linear transformation from R
m to R

n represented by the n �m matrix F, and

if G is a linear transformation from R
n to R

p represented by the p � n matrix G, then

the composition G ı F defined by

G ı F.x1; x2; : : : ; xm/ D G
�

F.x1; x2; : : : ; xm/

�

is itself a linear transformation from R
m to R

p represented by the p � m matrix GF.

That is,

G
�

F.x/
�

D GF x:

Linear Equations
A system of n linear equations in n unknowns:

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

:
:
:

an1x1 C an2x2 C � � � C annxn D bn

can be written compactly as a single matrix equation,

Ax D b;
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where

A D

0

B

B

@

a11 a12 � � � a1n

a21 a22 � � � a2n
:
:
:

:
:
:

: : :
:
:
:

an1 an2 � � � ann

1

C

C

A

; x D

0

B

B

@

x1

x2
:
:
:

xn

1

C

C

A

; and b D

0

B

B

@

b1

b2
:
:
:

bn

1

C

C

A

:

Compare the equation Ax D b with the equation ax D b for a single unknown x. The

equation ax D b has the unique solution x D a�1b provided a ¤ 0. By analogy, the

linear system Ax D b has a unique solution given by

x DA
�1b;

provided A is nonsingular. To see this, just multiply both sides of the equation Ax D b

on the left by A
�1; x D Ix DA

�1
Ax DA

�1b.

If A is singular, then the system Ax D b may or may not have a solution, and

if a solution exists it will not be unique. Consider the case b D 0 (the zero vector).

Then any vector x perpendicular to all the rows of A will satisfy the system. Since the

rows of A lie in a space of dimension less than n (because det.A/ D 0), there will

be at least a line of such vectors x. Thus, solutions of Ax D 0 are not unique if A is

singular. The same must be true of the system A
T y D 0; there will be nonzero vectors

y satisfying it if A is singular. But then, if the system Ax D b has any solution x, we

must have

.y � b/ D yT b D yT
Ax D .xT

A
T y/T D .xT 0/T D .0/:

Hence, Ax D b can only have solutions for those vectors b that are perpendicular to

every solution y of A
T y D 0.

A system of m linear equations in n unknowns may or may not have any solutions

if n < m. It will have solutions if somem�n of the equations are linear combinations

(sums of multiples) of the other n equations. If n > m, then we can try to solve

the m equations for m of the variables, allowing the solutions to depend on the other

n �m variables. Such a solution exists if the determinant of the coefficients of the m

variables for which we want to solve is not zero. This is a special case of the Implicit

Function Theorem, which we will examine in Section 12.8.

E X A M P L E 6 Solve

�

2x C y � 3z D 4

x C 2y C 6z D 5
for x and y in terms of z.

Solution The system can be expressed in the form

A

�

x

y

�

D

�

4C 3z

5 � 6z

�

; where A D

�

2 1

1 2

�

:

A has determinant 3 and inverse A
�1
D

�

2=3 �1=3

�1=3 2=3

�

. Thus,

�

x

y

�

DA
�1

�

4C 3z

5 � 6z

�

D

�

2=3 �1=3

�1=3 2=3

��

4C 3z

5 � 6z

�

D

�

1C 4z

2 � 5z

�

:

The solution is x D 1C4z, y D 2�5z. (Of course, this solution could have been found

by elimination of x or y from the given equations without using matrix methods.)

The following theorem states a result of some theoretical importance expressing the

solution of the system Ax D b for nonsingular A in terms of determinants.
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Cramer’s Rule

Let A be a nonsingular n � n matrix. Then the solution x of the system

Ax D b

has components given by

x1 D
det.A1/

det.A/
; x2 D

det.A2/

det.A/
; � � � ; xn D

det.An/

det.A/
;

where Aj is the matrix A with its j th column replaced by the column vector b. That

is,

det.Aj / D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � � a1.j �1/ b1 a1.j C1/ � � � a1n

a21 � � � a2.j �1/ b2 a2.j C1/ � � � a2n

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

an1 � � � an.j �1/ bn an.j C1/ � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The following example provides a concrete illustration of the use of Cramer’s Rule

to solve a specific linear system. However, Cramer’s Rule is primarily used in a more

general (theoretical) context; it is not efficient to use determinants to calculate solutions

of linear systems.

E X A M P L E 7
Find the point of intersection of the three planes

x C y C 2z D 1

3x C 6y � z D 0

x � y � 4z D 3:

Solution The solution of the linear system above provides the coordinates of the

intersection point. The determinant of the coefficient matrix of this system is

det.A/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

3 6 �1

1 �1 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �32;

so the system does have a unique solution. We have

x D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

0 6 �1

3 �1 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�64

�32
D 2;

y D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

3 0 �1

1 3 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

32

�32
D �1;

z D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

3 6 0

1 �1 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

0

�32
D 0:

The intersection point is .2;�1; 0/.
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where

A D
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B

B
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1

C

C

A

; and b D

0

B

B

@
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:
:

bn

1

C

C

A

:

Compare the equation Ax D b with the equation ax D b for a single unknown x. The

equation ax D b has the unique solution x D a�1b provided a ¤ 0. By analogy, the

linear system Ax D b has a unique solution given by

x DA
�1b;

provided A is nonsingular. To see this, just multiply both sides of the equation Ax D b

on the left by A
�1; x D Ix DA

�1
Ax DA

�1b.

If A is singular, then the system Ax D b may or may not have a solution, and

if a solution exists it will not be unique. Consider the case b D 0 (the zero vector).

Then any vector x perpendicular to all the rows of A will satisfy the system. Since the

rows of A lie in a space of dimension less than n (because det.A/ D 0), there will

be at least a line of such vectors x. Thus, solutions of Ax D 0 are not unique if A is

singular. The same must be true of the system A
T y D 0; there will be nonzero vectors

y satisfying it if A is singular. But then, if the system Ax D b has any solution x, we

must have

.y � b/ D yT b D yT
Ax D .xT

A
T y/T D .xT 0/T D .0/:

Hence, Ax D b can only have solutions for those vectors b that are perpendicular to

every solution y of A
T y D 0.

A system of m linear equations in n unknowns may or may not have any solutions

if n < m. It will have solutions if somem�n of the equations are linear combinations

(sums of multiples) of the other n equations. If n > m, then we can try to solve

the m equations for m of the variables, allowing the solutions to depend on the other

n �m variables. Such a solution exists if the determinant of the coefficients of the m

variables for which we want to solve is not zero. This is a special case of the Implicit

Function Theorem, which we will examine in Section 12.8.

E X A M P L E 6 Solve

�

2x C y � 3z D 4

x C 2y C 6z D 5
for x and y in terms of z.

Solution The system can be expressed in the form

A

�

x

y

�

D

�

4C 3z

5 � 6z

�

; where A D

�

2 1

1 2

�

:

A has determinant 3 and inverse A
�1
D

�

2=3 �1=3

�1=3 2=3

�

. Thus,

�

x

y

�

DA
�1

�

4C 3z

5 � 6z

�

D

�

2=3 �1=3

�1=3 2=3

��

4C 3z

5 � 6z

�

D

�

1C 4z

2 � 5z

�

:

The solution is x D 1C4z, y D 2�5z. (Of course, this solution could have been found

by elimination of x or y from the given equations without using matrix methods.)

The following theorem states a result of some theoretical importance expressing the

solution of the system Ax D b for nonsingular A in terms of determinants.
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Cramer’s Rule

Let A be a nonsingular n � n matrix. Then the solution x of the system

Ax D b

has components given by

x1 D
det.A1/

det.A/
; x2 D

det.A2/

det.A/
; � � � ; xn D

det.An/

det.A/
;

where Aj is the matrix A with its j th column replaced by the column vector b. That

is,

det.Aj / D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � � a1.j �1/ b1 a1.j C1/ � � � a1n

a21 � � � a2.j �1/ b2 a2.j C1/ � � � a2n

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

an1 � � � an.j �1/ bn an.j C1/ � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The following example provides a concrete illustration of the use of Cramer’s Rule

to solve a specific linear system. However, Cramer’s Rule is primarily used in a more

general (theoretical) context; it is not efficient to use determinants to calculate solutions

of linear systems.

E X A M P L E 7
Find the point of intersection of the three planes

x C y C 2z D 1

3x C 6y � z D 0

x � y � 4z D 3:

Solution The solution of the linear system above provides the coordinates of the

intersection point. The determinant of the coefficient matrix of this system is

det.A/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

3 6 �1

1 �1 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �32;

so the system does have a unique solution. We have

x D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

0 6 �1

3 �1 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�64

�32
D 2;

y D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 2

3 0 �1

1 3 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

32

�32
D �1;

z D
1

�32

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

3 6 0

1 �1 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

0

�32
D 0:

The intersection point is .2;�1; 0/.
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Quadratic Forms, Eigenvalues, and Eigenvectors
If x is a column vector in R

n and A D
�

aij

�

is an n � n, real, symmetric matrix (i.e.,

aij D aj i for 1 � i; j � n), then the expression

Q.x/ D xT
Ax D

n
X

i;j D1

aijxixj

is called a quadratic form on R
n corresponding to the matrix A. Observe that Q.x/

is a real number for every n-vector x.

We say that A is positive definite if Q.x/ > 0 for every nonzero vector x. Simi-

larly, A is negative definite if Q.x/ < 0 for every nonzero vector x. We say that A is

positive semidefinite (or negative semidefinite) if Q.x/ � 0 (or Q.x/ � 0) for every

nonzero vector x.

If Q.x/ > 0 for some nonzero vectors x while Q.x/ < 0 for other such x (i.e., if

A is neither positive semidefinite nor negative semidefinite), then we will say that A

is indefinite.

E X A M P L E 8
The expressionQ.x; y; z/ D 3x2

C2y
2
C5z

2
�2xyC4xzC2yz

is a quadratic form on R
3 corresponding to the symmetric matrix

A D

0

@

3 �1 2

�1 2 1

2 1 5

1

A :

Observe how the elements of the matrix are obtained from the coefficients of Q; the

coefficients of x2, y2, and z2 form the main diagonal elements, while the coefficients

of the product terms are cut in half and half is put in each of the two corresponding

symmetric off-diagonal positions.

The matrix A is positive definite since Q.x; y; z/ can be rewritten in the form

Q.x; y; z/ D x
2
C .x � y/

2
C .x C 2z/

2
C .y C z/

2
;

from which it is apparent that Q.x; y; z/ � 0 for all .x; y; z/ and Q.x; y; z/ D 0 only

if x D y D z D 0.

In Section 13.1 we will use the positive or negative definiteness of certain matrices to

classify critical points of functions of several variables as local maxima and minima.

Useful criteria for definiteness can be expressed in terms of the eigenvalues of the

matrix A.

We say that � is an eigenvalue of the n�n square matrix A D .aij / if there exists

a nonzero column vector x such that Ax D �x, or, equivalently,

.A � �I/x D 0;

where I is the n � n identity matrix. The nonzero vector x is called an eigenvector of

A corresponding to the eigenvalue � and can exist only if A��I is a singular matrix,

that is, if

det.A � �I/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � a12 � � � a1n

a21 a22 � � � � � a2n
:
:
:

:
:
:

: : :
:
:
:

an1 an2 � � � ann � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

The eigenvalues of A must satisfy this nth-degree polynomial equation, so they can be

either real or complex. The following theorems are proved in standard linear algebra

texts.
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7

If A D
�

aij

�n

i;j D1
is a real, symmetric matrix, then

(a) all the eigenvalues of A are real,

(b) all the eigenvalues of A are nonzero if det.A/ ¤ 0,

(c) A is positive definite if all its eigenvalues are positive,

(d) A is negative definite if all its eigenvalues are negative,

(e) A is positive semidefinite if all its eigenvalues are nonnegative,

(f) A is negative semidefinite if all its eigenvalues are nonpositive,

(g) A is indefinite if it has at least one positive eigenvalue and at least one negative

eigenvalue.

T H E O R E M

8

Let A D
�

aij

�n

i;j D1
be a real symmetric matrix and consider the determinants

Di D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1i

a21 a22 � � � a2i
:
:
:

:
:
:

: : :
:
:
:

ai1 ai2 � � � ai i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for 1 � i � n.

Thus, D1 D a11, D2 D

ˇ

ˇ

ˇ

ˇ

a11 a12

a21 a22

ˇ

ˇ

ˇ

ˇ

D a11a22 � a12a21 D a11a22 � a
2
12, etc.

(a) If Di > 0 for 1 � i � n, then A is positive definite.

(b) If Di > 0 for even numbers i in f1; 2; : : : ; ng, and Di < 0 for odd numbers i in

f1; 2; : : : ; ng, then A is negative definite.

(c) If det.A/ D Dn ¤ 0 but neither of the above conditions hold, then Q.x/ is

indefinite.

(d) If det.A/ D 0, then A is not positive or negative definite and may be semidefinite

or indefinite.

E X A M P L E 9
For the matrix A of Example 8, we have

D1 D 3 > 0; D2 D

ˇ

ˇ

ˇ

ˇ

3 �1

�1 2

ˇ

ˇ

ˇ

ˇ

D 5 > 0; D3 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 �1 2

�1 2 1

2 1 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 10 > 0;

which reconfirms that the quadratic form of that exercise is positive definite.

E X E R C I S E S 10.7

Evaluate the matrix products in Exercises 1–4.

1.

0

@

3 0 �2

1 1 2

�1 1 �1

1

A

0

@

2 1

3 0

0 �2

1

A

2.

0

@

1 1 1

0 1 1

0 0 1

1

A

0

@

1 1 1

0 1 1

0 0 1

1

A

3.

�

a b

c d

��

w x

y z

�

4.

�

w x

y z

��

a b

c d

�

5. Evaluate AA
T and A

2
DAA, where

A D

0

B

B

@

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

1

C

C

A

:

6. Evaluate xxT , xT x, and xT
Ax, where

x D

0

@

x

y

z

1

A and A D

0

@

a p q

p b r

q r c

1

A :
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Quadratic Forms, Eigenvalues, and Eigenvectors
If x is a column vector in R

n and A D
�

aij

�

is an n � n, real, symmetric matrix (i.e.,

aij D aj i for 1 � i; j � n), then the expression

Q.x/ D xT
Ax D

n
X

i;j D1

aijxixj

is called a quadratic form on R
n corresponding to the matrix A. Observe that Q.x/

is a real number for every n-vector x.

We say that A is positive definite if Q.x/ > 0 for every nonzero vector x. Simi-

larly, A is negative definite if Q.x/ < 0 for every nonzero vector x. We say that A is

positive semidefinite (or negative semidefinite) if Q.x/ � 0 (or Q.x/ � 0) for every

nonzero vector x.

If Q.x/ > 0 for some nonzero vectors x while Q.x/ < 0 for other such x (i.e., if

A is neither positive semidefinite nor negative semidefinite), then we will say that A

is indefinite.

E X A M P L E 8
The expressionQ.x; y; z/ D 3x2

C2y
2
C5z

2
�2xyC4xzC2yz

is a quadratic form on R
3 corresponding to the symmetric matrix

A D

0

@

3 �1 2

�1 2 1

2 1 5

1

A :

Observe how the elements of the matrix are obtained from the coefficients of Q; the

coefficients of x2, y2, and z2 form the main diagonal elements, while the coefficients

of the product terms are cut in half and half is put in each of the two corresponding

symmetric off-diagonal positions.

The matrix A is positive definite since Q.x; y; z/ can be rewritten in the form

Q.x; y; z/ D x
2
C .x � y/

2
C .x C 2z/

2
C .y C z/

2
;

from which it is apparent that Q.x; y; z/ � 0 for all .x; y; z/ and Q.x; y; z/ D 0 only

if x D y D z D 0.

In Section 13.1 we will use the positive or negative definiteness of certain matrices to

classify critical points of functions of several variables as local maxima and minima.

Useful criteria for definiteness can be expressed in terms of the eigenvalues of the

matrix A.

We say that � is an eigenvalue of the n�n square matrix A D .aij / if there exists

a nonzero column vector x such that Ax D �x, or, equivalently,

.A � �I/x D 0;

where I is the n � n identity matrix. The nonzero vector x is called an eigenvector of

A corresponding to the eigenvalue � and can exist only if A��I is a singular matrix,

that is, if

det.A � �I/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 � � a12 � � � a1n

a21 a22 � � � � � a2n
:
:
:

:
:
:

: : :
:
:
:

an1 an2 � � � ann � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

The eigenvalues of A must satisfy this nth-degree polynomial equation, so they can be

either real or complex. The following theorems are proved in standard linear algebra

texts.
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i;j D1
is a real, symmetric matrix, then

(a) all the eigenvalues of A are real,

(b) all the eigenvalues of A are nonzero if det.A/ ¤ 0,

(c) A is positive definite if all its eigenvalues are positive,

(d) A is negative definite if all its eigenvalues are negative,

(e) A is positive semidefinite if all its eigenvalues are nonnegative,

(f) A is negative semidefinite if all its eigenvalues are nonpositive,

(g) A is indefinite if it has at least one positive eigenvalue and at least one negative

eigenvalue.

T H E O R E M

8

Let A D
�

aij

�n

i;j D1
be a real symmetric matrix and consider the determinants
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ˇ

ˇ

ˇ
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(b) If Di > 0 for even numbers i in f1; 2; : : : ; ng, and Di < 0 for odd numbers i in

f1; 2; : : : ; ng, then A is negative definite.

(c) If det.A/ D Dn ¤ 0 but neither of the above conditions hold, then Q.x/ is

indefinite.

(d) If det.A/ D 0, then A is not positive or negative definite and may be semidefinite

or indefinite.

E X A M P L E 9
For the matrix A of Example 8, we have

D1 D 3 > 0; D2 D

ˇ

ˇ

ˇ

ˇ

3 �1

�1 2

ˇ

ˇ

ˇ

ˇ

D 5 > 0; D3 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 �1 2

�1 2 1

2 1 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 10 > 0;

which reconfirms that the quadratic form of that exercise is positive definite.

E X E R C I S E S 10.7

Evaluate the matrix products in Exercises 1–4.

1.

0

@

3 0 �2

1 1 2

�1 1 �1

1

A

0

@

2 1

3 0

0 �2

1

A

2.

0

@

1 1 1

0 1 1

0 0 1

1

A

0

@

1 1 1

0 1 1

0 0 1

1

A

3.

�

a b

c d

��

w x

y z

�

4.

�

w x

y z

��

a b

c d

�

5. Evaluate AA
T and A

2
DAA, where

A D

0

B

B

@

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

1

C

C

A

:

6. Evaluate xxT , xT x, and xT
Ax, where

x D

0

@

x

y

z

1

A and A D

0

@

a p q

p b r

q r c

1

A :
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Evaluate the determinants in Exercises 7–8.

7.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 3 �1 0

4 0 2 1

1 0 �1 1

�2 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

1 2 3 4

�2 0 2 4

3 �3 2 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9. Show that if A D .aij / is an n � n matrix for which aij D 0

whenever i > j , then det.A/ D
Qn

kD1 akk , the product of the

elements on the main diagonal of A.

10. Show that

ˇ

ˇ

ˇ

ˇ

1 1

x y

ˇ

ˇ

ˇ

ˇ

D y � x, and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

x y z

x2 y2 z2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .y � x/.z � x/.z � y/:

Try to generalize this result to the n � n case.

11.A Verify the associative law .AB/C DA.BC/ by direct

calculation for three arbitrary 2 � 2 matrices.

12.A Show that det.AT
/ D det.A/ for n � n matrices by induction

on n. Start with the 2 � 2 case.

13.A Verify by direct calculation that det.AB/ D det.A/det.B/

holds for two arbitrary 2 � 2 matrices.

14.A Let A� D

�

cos � sin �

� sin � cos �

�

. Show that

.A� /
T
D .A� /

�1
DA�� .

15.A Verify by using matrix multiplication that the inverse of the

matrix A in the remark following Example 5 is as specified

there.

16. For what values of the variables x and y is the matrix

B D

�

x y

x2 y2

�

invertible, and what is its inverse?

Find the inverses of the matrices in Exercises 17–18.

17.

0

@

1 1 1

0 1 1

0 0 1

1

A 18.

0

@

1 0 �1

�1 1 0

2 1 3

1

A

19. Use your result from Exercise18 to solve the linear system

8

<

:

x � z D �2

�x C y D 1

2x C y C 3z D 13:

20. Solve the system of Exercise 19 by using Cramer’s Rule.

21. Solve the system

8

ˆ

<

ˆ

:

x1 C x2 C x3 C x4 D 0

x1 C x2 C x3 � x4 D 4

x1 C x2 � x3 � x4 D 6

x1 � x2 � x3 � x4 D 2:

22. Verify Theorem 5 for the special case where F and G are

linear transformations from R
2

to R
2
.

In Exercises 23–28, classify the given symmetric matrices as

positive or negative definite, positive or negative semidefinite, or

indefinite.

23.

�

�1 1

1 �2

�

24.

0

@

1 2 0

2 1 0

0 0 1

1

A

25.

0

@

2 1 1

1 2 1

1 1 2

1

A 26.

0

@

1 1 0

1 1 0

0 0 1

1

A

27.

0

@

1 0 1

0 1 �1

1 �1 1

1

A 28.

0

@

2 0 1

0 4 �1

1 �1 1

1

A

10.8 Using Maple for Vector and Matrix Calculations

The use of a computer algebra system can free us from much of the tedious calculation

needed to do calculus. This is especially true of calculations in multivariable and vector

calculus, where the calculations can quickly become unmanageable as the number of

variables increases. This author’s colleague, Dr. Robert Israel, has written an excellent

book, Calculus, the Maple Way, to show how Maple can be used effectively for doing

calculus involving both single-variable and multivariable functions.

In this book we will occasionally call on the power of Maple to carry out calcu-

lations involving functions of several variables and vector-valued functions of one or

more variables. This section illustrates some of the most basic techniques for calculat-

ing with vectors and matrices. The examples here were calculated using Maple 10, but

Maple 6 or later should give similar output.

Most of Maple’s capability to deal with vectors and matrices is not in its kernel

but is written into a package of procedures called LinearAlgebra. Therefore, it is

customary to load this package at the beginning of a session where it will be needed:

> with(LinearAlgebra):

One usually completes a Maple command with a semicolon rather than a colon. You
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can use a colon to suppress output. Had we used a semicolon to complete the command

the result would have produced a list of all the procedures defined in the LinearAlgebra

package.

Maple also includes a second linear algebra package called linalg, but it is inferior

to LinearAlgebra, especially for heavy-duty numerical calculations using large matri-

ces; it is also somewhat more difficult to use. However, the linalg package was present

in releases of Maple earlier than release 6 and is still present in release 9. We will

not make any use of linalg here, but it was used instead of LinearAlgebra in the fifth

edition of this book.

Vectors
There are several ways to define vectors in Maple; the easiest are to use the

Vector([,]) or <,> constructions, where a comma-separated list of the compo-

nents of the vector is placed in the square or angle brackets. Both of these constructions

produce column vectors:

> Uc := Vector([1,2,3]); Vc := <a,b,c>;

Uc WD

2

4

1

2

3

3

5

Vc WD

2

4

a

b

c

3

5

You can use Vector[row]([,]) to produce a row vector; alternatively, you can

define a row vector using angle brackets with “j” to separate the components:

> Ur := Vector[row]([1,2,3]); Vr := <a|b|c>;

Ur WD Œ1; 2; 3�

V r WD Œa; b; c�

Vectors can be of any dimension; simply include the appropriate number of commas

or j separated components. You can also use the Vector() construct with two ar-

guments, the first a positive integer giving the dimension of the vector and the second

either a square-bracket-enclosed list of components or an assignment rule giving the

value of the i th component:

> <5|-2|3|x>; W := Vector[row](5, i -> i^2);

Œ5;�2; 3; x�

W WD Œ1; 4; 9; 16; 25�

We can also construct a vector with arbitrary components like this:

> X := Vector(2, symbol=x);

Y := Vector[row](4, symbol=y);

X WD

�

x1

x2

�

Y WD Œy1; y2; y3; y4�

The components of a vector can be referenced by appending the index of the compo-

nent, enclosed in square brackets, to the name or constructor of the vector. The fourth

component of vector W above is W[4]:

> W[4]; Vector(16, i -> 3*i - 1)[10]; X[2]+Y[3];
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Evaluate the determinants in Exercises 7–8.

7.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 3 �1 0

4 0 2 1

1 0 �1 1

�2 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

1 2 3 4

�2 0 2 4

3 �3 2 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9. Show that if A D .aij / is an n � n matrix for which aij D 0

whenever i > j , then det.A/ D
Qn

kD1 akk , the product of the

elements on the main diagonal of A.

10. Show that

ˇ

ˇ

ˇ

ˇ

1 1

x y

ˇ

ˇ

ˇ

ˇ

D y � x, and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

x y z

x2 y2 z2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .y � x/.z � x/.z � y/:

Try to generalize this result to the n � n case.

11.A Verify the associative law .AB/C DA.BC/ by direct

calculation for three arbitrary 2 � 2 matrices.

12.A Show that det.AT
/ D det.A/ for n � n matrices by induction

on n. Start with the 2 � 2 case.

13.A Verify by direct calculation that det.AB/ D det.A/det.B/

holds for two arbitrary 2 � 2 matrices.

14.A Let A� D

�

cos � sin �

� sin � cos �

�

. Show that

.A� /
T
D .A� /

�1
DA�� .

15.A Verify by using matrix multiplication that the inverse of the

matrix A in the remark following Example 5 is as specified

there.

16. For what values of the variables x and y is the matrix

B D

�

x y

x2 y2

�

invertible, and what is its inverse?

Find the inverses of the matrices in Exercises 17–18.

17.

0

@

1 1 1

0 1 1

0 0 1

1

A 18.

0

@

1 0 �1

�1 1 0

2 1 3

1

A

19. Use your result from Exercise18 to solve the linear system

8

<

:

x � z D �2

�x C y D 1

2x C y C 3z D 13:

20. Solve the system of Exercise 19 by using Cramer’s Rule.

21. Solve the system

8

ˆ

<

ˆ

:

x1 C x2 C x3 C x4 D 0

x1 C x2 C x3 � x4 D 4

x1 C x2 � x3 � x4 D 6

x1 � x2 � x3 � x4 D 2:

22. Verify Theorem 5 for the special case where F and G are

linear transformations from R
2

to R
2
.

In Exercises 23–28, classify the given symmetric matrices as

positive or negative definite, positive or negative semidefinite, or

indefinite.

23.

�

�1 1

1 �2

�

24.

0

@

1 2 0

2 1 0

0 0 1

1

A

25.

0

@

2 1 1

1 2 1

1 1 2

1

A 26.

0

@

1 1 0

1 1 0

0 0 1

1

A

27.

0

@

1 0 1

0 1 �1

1 �1 1

1

A 28.

0

@

2 0 1

0 4 �1

1 �1 1

1

A

10.8 Using Maple for Vector and Matrix Calculations

The use of a computer algebra system can free us from much of the tedious calculation

needed to do calculus. This is especially true of calculations in multivariable and vector

calculus, where the calculations can quickly become unmanageable as the number of

variables increases. This author’s colleague, Dr. Robert Israel, has written an excellent

book, Calculus, the Maple Way, to show how Maple can be used effectively for doing

calculus involving both single-variable and multivariable functions.

In this book we will occasionally call on the power of Maple to carry out calcu-

lations involving functions of several variables and vector-valued functions of one or

more variables. This section illustrates some of the most basic techniques for calculat-

ing with vectors and matrices. The examples here were calculated using Maple 10, but

Maple 6 or later should give similar output.

Most of Maple’s capability to deal with vectors and matrices is not in its kernel

but is written into a package of procedures called LinearAlgebra. Therefore, it is

customary to load this package at the beginning of a session where it will be needed:

> with(LinearAlgebra):

One usually completes a Maple command with a semicolon rather than a colon. You

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 10 – page 619 October 15, 2016

SECTION 10.8: Using Maple for Vector and Matrix Calculations 619

can use a colon to suppress output. Had we used a semicolon to complete the command

the result would have produced a list of all the procedures defined in the LinearAlgebra

package.

Maple also includes a second linear algebra package called linalg, but it is inferior

to LinearAlgebra, especially for heavy-duty numerical calculations using large matri-

ces; it is also somewhat more difficult to use. However, the linalg package was present

in releases of Maple earlier than release 6 and is still present in release 9. We will

not make any use of linalg here, but it was used instead of LinearAlgebra in the fifth

edition of this book.

Vectors
There are several ways to define vectors in Maple; the easiest are to use the

Vector([,]) or <,> constructions, where a comma-separated list of the compo-

nents of the vector is placed in the square or angle brackets. Both of these constructions

produce column vectors:

> Uc := Vector([1,2,3]); Vc := <a,b,c>;

Uc WD

2

4

1

2

3

3

5

Vc WD

2

4

a

b

c

3

5

You can use Vector[row]([,]) to produce a row vector; alternatively, you can

define a row vector using angle brackets with “j” to separate the components:

> Ur := Vector[row]([1,2,3]); Vr := <a|b|c>;

Ur WD Œ1; 2; 3�

V r WD Œa; b; c�

Vectors can be of any dimension; simply include the appropriate number of commas

or j separated components. You can also use the Vector() construct with two ar-

guments, the first a positive integer giving the dimension of the vector and the second

either a square-bracket-enclosed list of components or an assignment rule giving the

value of the i th component:

> <5|-2|3|x>; W := Vector[row](5, i -> i^2);

Œ5;�2; 3; x�

W WD Œ1; 4; 9; 16; 25�

We can also construct a vector with arbitrary components like this:

> X := Vector(2, symbol=x);

Y := Vector[row](4, symbol=y);

X WD

�

x1

x2

�

Y WD Œy1; y2; y3; y4�

The components of a vector can be referenced by appending the index of the compo-

nent, enclosed in square brackets, to the name or constructor of the vector. The fourth

component of vector W above is W[4]:

> W[4]; Vector(16, i -> 3*i - 1)[10]; X[2]+Y[3];
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16

29

x2 C y3

Vectors of the same dimension and type (row or column) can be added, subtracted, and

multiplied by scalars using the ordinary operatorsC, �, and �:

> Uc + Vc; Vc - 3*Uc;

2

4

1C a

2C b

3C c

3

5

2

4

a � 3

b � 6

c � 9

3

5

For most vector calculations it doesn’t matter whether you think of vectors as row or

column vectors, but it does make a difference for some LinearAlgebra operators; if you

try to add a row vector to a column vector, or two vectors of different dimensions, you

will get an error message.

The LinearAlgebra package also defines the product functions DotProduct and

CrossProduct, each of which takes two vector arguments. For DotProduct, the

arguments must be of the same but arbitrary dimension. For CrossProduct, both argu-

ments must have dimension 3. However, neither requires both arguments to be of the

same type (row or column). The cross product will be a column vector unless both its

arguments are row vectors.

As defined in the LinearAlgebra package, DotProduct can produce some strange

results. Consider the following:

> DotProduct(Uc,Vc); DotProduct(Vc,Uc);

DotProduct(Ur,Vr);

aC 2b C 3c

NaC 2 Nb C 3 Nc

NaC 2 Nb C 3 Nc

What is going on here? The bars on the unknown quantities a, b, and c denote complex

conjugates of these quantities. The LinearAlgebra package is designed to meet the

needs of a great many users of linear algebra, not just calculus students for whom all

vectors are assumed to have real components. In fact, DotProduct(U,V) sums

the products of the complex congugates of the components of U and the unconjugated

components of V if both vectors are column vectors, and vice versa if both are row

vectors. In the first example above, the components of Uc are real numbers, so no

conjugates appeared over them; in the other two cases it is the components of Vc or Vr

that require conjugation, and since Maple doesn’t know that these are real, it puts on the

bars. To avoid this difficulty when using real vectors, include “conjugate=false”

as a third argument when using DotProduct from the LinearAlgebra package:

> DotProduct(Ur,Vr, conjugate=false);

aC 2b C 3c

It is also possible to use a dot “.” as a binary operator to calculate a dot product.

However, dot also represents matrix multiplication, so you must use a row vector to the

left of the dot and a column vector to the right to be sure of getting a dot product.

> <1|2|3>.<a,b,c>; <1,2,3>.<a|b|c>;
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aC 2b C 3c

2

6

4

a b c

2a 2b 2c

3a 3b 3c

3

7

5

LinearAlgebra also has a CrossProduct function, which applies only to 3-vectors.

It does not matter whether either of the arguments is a row or column vector. This

function can be called using either CrossProduct(U,V) or U &x V.

> CrossProduct(Uc,Vc); Ur &x Vr;

2

4

2c � 3b

3a � c

b � 2a

3

5

Œ2c�3b; 3a � c; b � 2a�

LinearAlgebra has a function Norm() for calculating the length of a vector. Unfor-

tunately, Maple knows many different definitions for the length of a vector. The one

we use is the Euclidean length. The Euclidean length of a vector V is calculated by

Norm(V,Euclidean) or Norm(V,2). (In the latter case the 2 stands for the fact

that we use the square root of the sum of the squares of the components to find the

length.)

> Norm(Ur,Euclidean); Norm(<1,-1,2,-3,1>,2);

p

14

4

You can use Normalize(U,Euclidean) or Normalize(U,2) to find a unit

vector in the same direction as U. Of course, you could always just multiply U by the

scalar, which is the reciprocal of its length:

> Normalize(<2|-2|1>,2); (1/Norm(Uc,2))*Uc;

�

2

3
;
�2

3
;
1

3

�

2

6

6

6

6

6

4

1

14

p

14

1

7

p

14

3

14

p

14

3

7

7

7

7

7

5

LinearAlgebra has a function VectorAngle to give the angle between two vec-

tors. It doesn’t matter whether either vector is a row or column. The result will be in

radian measure, so you will have to multiply it by 180=� to get the angle in degrees.

> VectorAngle(<2,2,1>,<1,-2,2>);

1

2
�

To further illustrate these ideas, let us get Maple to calculate an equation of the

plane through .2; 1;�1/ perpendicular to the line of intersection of the two planes

2x C 3y C z D 5 and 3x � 2y � 4z D 1.

> (<2|3|1> &x <3|-2|-4>) . (<x,y,z>-<2,1,-1>) = 0;

�10x � 4C 11y � 13z D 0
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16

29

x2 C y3

Vectors of the same dimension and type (row or column) can be added, subtracted, and

multiplied by scalars using the ordinary operatorsC, �, and �:

> Uc + Vc; Vc - 3*Uc;

2

4

1C a

2C b

3C c

3

5

2

4

a � 3

b � 6

c � 9

3

5

For most vector calculations it doesn’t matter whether you think of vectors as row or

column vectors, but it does make a difference for some LinearAlgebra operators; if you

try to add a row vector to a column vector, or two vectors of different dimensions, you

will get an error message.

The LinearAlgebra package also defines the product functions DotProduct and

CrossProduct, each of which takes two vector arguments. For DotProduct, the

arguments must be of the same but arbitrary dimension. For CrossProduct, both argu-

ments must have dimension 3. However, neither requires both arguments to be of the

same type (row or column). The cross product will be a column vector unless both its

arguments are row vectors.

As defined in the LinearAlgebra package, DotProduct can produce some strange

results. Consider the following:

> DotProduct(Uc,Vc); DotProduct(Vc,Uc);

DotProduct(Ur,Vr);

aC 2b C 3c

NaC 2 Nb C 3 Nc

NaC 2 Nb C 3 Nc

What is going on here? The bars on the unknown quantities a, b, and c denote complex

conjugates of these quantities. The LinearAlgebra package is designed to meet the

needs of a great many users of linear algebra, not just calculus students for whom all

vectors are assumed to have real components. In fact, DotProduct(U,V) sums

the products of the complex congugates of the components of U and the unconjugated

components of V if both vectors are column vectors, and vice versa if both are row

vectors. In the first example above, the components of Uc are real numbers, so no

conjugates appeared over them; in the other two cases it is the components of Vc or Vr

that require conjugation, and since Maple doesn’t know that these are real, it puts on the

bars. To avoid this difficulty when using real vectors, include “conjugate=false”

as a third argument when using DotProduct from the LinearAlgebra package:

> DotProduct(Ur,Vr, conjugate=false);

aC 2b C 3c

It is also possible to use a dot “.” as a binary operator to calculate a dot product.

However, dot also represents matrix multiplication, so you must use a row vector to the

left of the dot and a column vector to the right to be sure of getting a dot product.

> <1|2|3>.<a,b,c>; <1,2,3>.<a|b|c>;
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aC 2b C 3c

2

6

4

a b c

2a 2b 2c

3a 3b 3c

3

7

5

LinearAlgebra also has a CrossProduct function, which applies only to 3-vectors.

It does not matter whether either of the arguments is a row or column vector. This

function can be called using either CrossProduct(U,V) or U &x V.

> CrossProduct(Uc,Vc); Ur &x Vr;

2

4

2c � 3b

3a � c

b � 2a

3

5

Œ2c�3b; 3a � c; b � 2a�

LinearAlgebra has a function Norm() for calculating the length of a vector. Unfor-

tunately, Maple knows many different definitions for the length of a vector. The one

we use is the Euclidean length. The Euclidean length of a vector V is calculated by

Norm(V,Euclidean) or Norm(V,2). (In the latter case the 2 stands for the fact

that we use the square root of the sum of the squares of the components to find the

length.)

> Norm(Ur,Euclidean); Norm(<1,-1,2,-3,1>,2);

p

14

4

You can use Normalize(U,Euclidean) or Normalize(U,2) to find a unit

vector in the same direction as U. Of course, you could always just multiply U by the

scalar, which is the reciprocal of its length:

> Normalize(<2|-2|1>,2); (1/Norm(Uc,2))*Uc;

�

2

3
;
�2

3
;
1

3

�

2

6

6

6

6

6

4

1

14

p

14

1

7

p

14

3

14

p

14

3

7

7

7

7

7

5

LinearAlgebra has a function VectorAngle to give the angle between two vec-

tors. It doesn’t matter whether either vector is a row or column. The result will be in

radian measure, so you will have to multiply it by 180=� to get the angle in degrees.

> VectorAngle(<2,2,1>,<1,-2,2>);

1

2
�

To further illustrate these ideas, let us get Maple to calculate an equation of the

plane through .2; 1;�1/ perpendicular to the line of intersection of the two planes

2x C 3y C z D 5 and 3x � 2y � 4z D 1.

> (<2|3|1> &x <3|-2|-4>) . (<x,y,z>-<2,1,-1>) = 0;

�10x � 4C 11y � 13z D 0
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or, as we would write it, 10x � 11y C 13z D �4. Note how we used the cross product

of two row vectors (which is itself, therefore, a row vector) to the left of the “.” and a

difference of two column vectors (which is itself a column vector) to the right of the

“.” for calculating the dot product.

Finally, let us use Maple to verify the identity

.U�V/�W D .W � U/V � .W � V/U:

First, we define U, V, and W to be vectors with arbitrary components. In view of the

two dot products on the right-hand side of the identity, we make W a row vector and

the other two column vectors:

> U := Vector(3,symbol=u);

V := Vector(3, symbol=v);

W := Vector[row](3, symbol=w);

U WD

2

4

u1

u2

u3

3

5

V WD

2

4

v1

v2

v3

3

5

W WD Œw1; w2; w3�

Now we only need to subtract the right side of the identity from the left side and

simplify the result:

> simplify((U &x V) &x W - (W . U)*V + (W . V)*U);

2

4

0

0

0

3

5

The result is the zero vector, thus confirming the identity.

Remark Maple 8 and later releases have a new package called VectorCalculus, which

provides greater functionality than the LinearAlgebra package for dealing with vector-

valued functions and functions of vector variables. We will be illustrating the use of

this package in later chapters, but note here that it also defines the vector operations

considered above but not all of the matrix functions considered below. VectorCalculus

reports vectors as linear combinations of basis vectors rather than as row or column

matrices. The default bases it uses consist of vectors ex , ey , ez (rather than i, j, k)

for vectors of dimension up to 3, but ex1; ex2; : : : for dimensions higher than 3. Nev-

ertheless, although it is not apparent from the way VectorCalculus displays vectors, it

still maintains the distinction between row and column vectors and won’t let you add

a row vector to a column vector. A big advantage of the VectorCalculus package over

LinearAlgebra is that VectorCalculus uses the usual definition of dot product (even

when using the “.” notation), so that the order of factors in a dot product is irrelevant

and no complex conjugation is used. If you want to use the VectorCalculus package

and still have access to all the matrix operations provided by LinearAlgebra, load the

VectorCalculus package after the LinearAlgebra package, so that its new definitions of

vector operations will replace those of the LinearAlgebra package.

> with(LinearAlgebra):

with(VectorCalculus):

Even with output suppressed, the second with above produces a few lines of “warn-

ings” mainly about the changed definitions of some vector operations.

> V1 := <2,-3,4>; V2 := <a|b|c>; V3 := <2,-3,4,-5,6>;
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V1 WD 2ex � 3ey C 4ez

V 2 WD aex C bey C cez

V 3 WD 2ex1 � 3ex2 C 4ex3 � 5ex4 C 6ex5

> V1.V2; V2.V1;

2a � 3b C 4c

2a � 3b C 4c

Because V1 is a column vector and V2 is a row vector, any attempt to calculate a

linear combination of these vectors will generate an error, as will attempts to calculate

M.V2 or V1.M if M is a 3 � 3 matrix. Of course, M.V1 will work fine, as will V2.M,

although the result will be a one-row matrix rather than a vector. We will examine

VectorCalculus further in later chapters.

Matrices
The LinearAlgebra package also provides a variety of ways to define and manipulate

matrices. We can define a matrix as a column vector whose elements are row vectors,

or as a row vector whose elements are column vectors:

> «1|1|1>,<2|1|3»; «1,2>|<1,1>|<1,3»;
�

1 1 1

2 1 3

�

�

1 1 1

2 1 3

�

You can also use the Matrix function to define a matrix. This function can either be

supplied with a list of lists specifying the rows of the matrix, or two positive integers

(the number of rows and columns, respectively) and a rule for calculating the element

in the i th row and j th column.

> L := Matrix([[1,1,1],[2,1,3]]);

M := Matrix(3,3, (i,j) -> i-j);

L WD

�

1 1 1

2 1 3

�

M WD

2

4

0 �1 �2

1 0 �1

2 1 0

3

5

A matrix P with 2 rows and four columns having arbitrary elements pi;j can be con-

structed as follows:

> P := Matrix(2,4,symbol=p);

P WD

�

p1;1 p1;2 p1;3 p1;4

p2;1 p2;2 p2;3 p2;4

�

As with vectors, particular elements in a matrix can be accessed by including the row

and column indices in square brackets following the name of the matrix.

> P[1,2] := Pi; P[1,4]+P[2,4]; P;

P1;2 WD �

p1;4 C p2;4

2

4

p1;1 � p1;3 p1;4

p2;1 p2;2 p2;3 p2;4

3

5

There are also shorthand constructs for special kinds of matrices, such as ones

with all zero entries, identity (square) matrices, and diagonal matrices:
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or, as we would write it, 10x � 11y C 13z D �4. Note how we used the cross product

of two row vectors (which is itself, therefore, a row vector) to the left of the “.” and a

difference of two column vectors (which is itself a column vector) to the right of the

“.” for calculating the dot product.

Finally, let us use Maple to verify the identity

.U�V/�W D .W � U/V � .W � V/U:

First, we define U, V, and W to be vectors with arbitrary components. In view of the

two dot products on the right-hand side of the identity, we make W a row vector and

the other two column vectors:

> U := Vector(3,symbol=u);

V := Vector(3, symbol=v);

W := Vector[row](3, symbol=w);

U WD

2

4

u1

u2

u3

3

5

V WD

2

4

v1

v2

v3

3

5

W WD Œw1; w2; w3�

Now we only need to subtract the right side of the identity from the left side and

simplify the result:

> simplify((U &x V) &x W - (W . U)*V + (W . V)*U);

2

4

0

0

0

3

5

The result is the zero vector, thus confirming the identity.

Remark Maple 8 and later releases have a new package called VectorCalculus, which

provides greater functionality than the LinearAlgebra package for dealing with vector-

valued functions and functions of vector variables. We will be illustrating the use of

this package in later chapters, but note here that it also defines the vector operations

considered above but not all of the matrix functions considered below. VectorCalculus

reports vectors as linear combinations of basis vectors rather than as row or column

matrices. The default bases it uses consist of vectors ex , ey , ez (rather than i, j, k)

for vectors of dimension up to 3, but ex1; ex2; : : : for dimensions higher than 3. Nev-

ertheless, although it is not apparent from the way VectorCalculus displays vectors, it

still maintains the distinction between row and column vectors and won’t let you add

a row vector to a column vector. A big advantage of the VectorCalculus package over

LinearAlgebra is that VectorCalculus uses the usual definition of dot product (even

when using the “.” notation), so that the order of factors in a dot product is irrelevant

and no complex conjugation is used. If you want to use the VectorCalculus package

and still have access to all the matrix operations provided by LinearAlgebra, load the

VectorCalculus package after the LinearAlgebra package, so that its new definitions of

vector operations will replace those of the LinearAlgebra package.

> with(LinearAlgebra):

with(VectorCalculus):

Even with output suppressed, the second with above produces a few lines of “warn-

ings” mainly about the changed definitions of some vector operations.

> V1 := <2,-3,4>; V2 := <a|b|c>; V3 := <2,-3,4,-5,6>;
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V1 WD 2ex � 3ey C 4ez

V 2 WD aex C bey C cez

V 3 WD 2ex1 � 3ex2 C 4ex3 � 5ex4 C 6ex5

> V1.V2; V2.V1;

2a � 3b C 4c

2a � 3b C 4c

Because V1 is a column vector and V2 is a row vector, any attempt to calculate a

linear combination of these vectors will generate an error, as will attempts to calculate

M.V2 or V1.M if M is a 3 � 3 matrix. Of course, M.V1 will work fine, as will V2.M,

although the result will be a one-row matrix rather than a vector. We will examine

VectorCalculus further in later chapters.

Matrices
The LinearAlgebra package also provides a variety of ways to define and manipulate

matrices. We can define a matrix as a column vector whose elements are row vectors,

or as a row vector whose elements are column vectors:

> «1|1|1>,<2|1|3»; «1,2>|<1,1>|<1,3»;
�

1 1 1

2 1 3

�

�

1 1 1

2 1 3

�

You can also use the Matrix function to define a matrix. This function can either be

supplied with a list of lists specifying the rows of the matrix, or two positive integers

(the number of rows and columns, respectively) and a rule for calculating the element

in the i th row and j th column.

> L := Matrix([[1,1,1],[2,1,3]]);

M := Matrix(3,3, (i,j) -> i-j);

L WD

�

1 1 1

2 1 3

�

M WD

2

4

0 �1 �2

1 0 �1

2 1 0

3

5

A matrix P with 2 rows and four columns having arbitrary elements pi;j can be con-

structed as follows:

> P := Matrix(2,4,symbol=p);

P WD

�

p1;1 p1;2 p1;3 p1;4

p2;1 p2;2 p2;3 p2;4

�

As with vectors, particular elements in a matrix can be accessed by including the row

and column indices in square brackets following the name of the matrix.

> P[1,2] := Pi; P[1,4]+P[2,4]; P;

P1;2 WD �

p1;4 C p2;4

2

4

p1;1 � p1;3 p1;4

p2;1 p2;2 p2;3 p2;4

3

5

There are also shorthand constructs for special kinds of matrices, such as ones

with all zero entries, identity (square) matrices, and diagonal matrices:
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> Matrix(2,3); IdentityMatrix(3);

DiagonalMatrix([a,b,c]);

�

0 0 0

0 0 0

�

2

4

1 0 0

0 1 0

0 0 1

3

5

2

4

a 0 0

0 b 0

0 0 c

3

5

The transpose T of the matrix L is obtained by using the Transpose function,

or, more simply, T := L^%T.

> T := Transpose(L);

T WD

2

4

1 2

1 1

1 3

3

5

We can use a period . as a binary operator between two matrices to represent their

product. That is, the product of matrices A and B can be written A.B. Of course, the

number of columns of A must be equal to the number of rows of B .

> L.T; T.L;

�

3 6

6 14

�

2

4

5 3 7

3 2 4

7 4 10

3

5

The determinant and inverse of a square matrix are calculated with the Deter-

minant and MatrixInverse functions.

> A := «1|1|1>,<2|1|3>,<1|1|2»;

DetA := Determinant(A); Ainv := MatrixInverse(A);

A WD

2

4

1 1 1

2 1 3

1 1 2

3

5

DetA WD �1

Ainv WD

2

4

1 1 �2

1 �1 1

�1 0 1

3

5

> A.Ainv = Ainv.A;

2

4

1 0 0

0 1 0

0 0 1

3

5 D

2

4

1 0 0

0 1 0

0 0 1

3

5

Linear Equations
A set of n linear equations in n variables can be written in the form AX D B, where

A is an n � n matrix and X and B are column n-vectors. Thus, the solution can be

calculated as X D A�1B. For example, the system

x C y C z D 2; 2x C y C 3z D 9; x C y C 2z D 1
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has the matrix A defined above as its coefficient matrix, and B the column vector

<2,9,1>. The solution of the system is:

> X : = Ainv.<2,9,1>;

X WD

2

4

9

�6

�1

3

5

that is, x D 9, y D �6, z D �1. LinearAlgebra provides a simpler way of solving the

system AX D B; we just need to use the function LinearSolve(A,B):

> X := LinearSolve(A,<2,9,1>);

X WD

2

4

9

�6

�1

3

5

LinearSolve is better at solving linear systems than is matrix inversion, since it can

solve some systems for which the matrix is singular or not square. Consider the two

systems

x C y D 1

2x C 2y D 2
and

x C y D 1

2x C 2y D 1

The first system has a one-parameter family of solutions x D 1� t , y D t for arbitrary

t . The second system is inconsistent and has no solutions.

> L := Matrix([[1,1],[2,2]]); B1 := <1,2>; B2 := <1,1>;

L WD

�

1 1

2 2

�

B1 WD

�

1

2

�

B2 WD

�

1

1

�

> X := LinearSolve(L,B1,free=t);

X WD

�

1 � t2

t2

�

The extra argument free=t was included to force LinearSolve to use subscripted t

variables for any parameters. It is always safe to include an argument of this type;

omitting it can cause output that looks somewhat strange. (Try it and see.) If the

system has a unique solution, the free=t parameter will just be ignored.

> X := LinearSolve(L,B2,free=t);

Error, (in LinearSolve) inconsistent system

Eigenvalues and Eigenvectors
The LinearAlgebra package has procedures for finding the eigenvalues and eigen-

vectors of matrices. For a real symmetric matrix, the eigenvalues are always real.

> K := Matrix([[3,1,-1],[1,4,1],[-1,1,3]]);

K WD

2

4

3 1 �1

1 4 1

�1 1 3

3

5

> Eigenvalues(K);
2

4

4

3C
p

3

3 �
p

3

3

5
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> Matrix(2,3); IdentityMatrix(3);

DiagonalMatrix([a,b,c]);

�

0 0 0

0 0 0

�

2

4

1 0 0

0 1 0

0 0 1

3

5

2

4

a 0 0

0 b 0

0 0 c

3

5

The transpose T of the matrix L is obtained by using the Transpose function,

or, more simply, T := L^%T.

> T := Transpose(L);

T WD

2

4

1 2

1 1

1 3

3

5

We can use a period . as a binary operator between two matrices to represent their

product. That is, the product of matrices A and B can be written A.B. Of course, the

number of columns of A must be equal to the number of rows of B .

> L.T; T.L;

�

3 6

6 14

�

2

4

5 3 7

3 2 4

7 4 10

3

5

The determinant and inverse of a square matrix are calculated with the Deter-

minant and MatrixInverse functions.

> A := «1|1|1>,<2|1|3>,<1|1|2»;

DetA := Determinant(A); Ainv := MatrixInverse(A);

A WD

2

4

1 1 1

2 1 3

1 1 2

3

5

DetA WD �1

Ainv WD

2

4

1 1 �2

1 �1 1

�1 0 1

3

5

> A.Ainv = Ainv.A;

2

4

1 0 0

0 1 0

0 0 1

3

5 D

2

4

1 0 0

0 1 0

0 0 1

3

5

Linear Equations
A set of n linear equations in n variables can be written in the form AX D B, where

A is an n � n matrix and X and B are column n-vectors. Thus, the solution can be

calculated as X D A�1B. For example, the system

x C y C z D 2; 2x C y C 3z D 9; x C y C 2z D 1
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has the matrix A defined above as its coefficient matrix, and B the column vector

<2,9,1>. The solution of the system is:

> X : = Ainv.<2,9,1>;

X WD

2

4

9

�6

�1

3

5

that is, x D 9, y D �6, z D �1. LinearAlgebra provides a simpler way of solving the

system AX D B; we just need to use the function LinearSolve(A,B):

> X := LinearSolve(A,<2,9,1>);

X WD

2

4

9

�6

�1

3

5

LinearSolve is better at solving linear systems than is matrix inversion, since it can

solve some systems for which the matrix is singular or not square. Consider the two

systems

x C y D 1

2x C 2y D 2
and

x C y D 1

2x C 2y D 1

The first system has a one-parameter family of solutions x D 1� t , y D t for arbitrary

t . The second system is inconsistent and has no solutions.

> L := Matrix([[1,1],[2,2]]); B1 := <1,2>; B2 := <1,1>;

L WD

�

1 1

2 2

�

B1 WD

�

1

2

�

B2 WD

�

1

1

�

> X := LinearSolve(L,B1,free=t);

X WD

�

1 � t2

t2

�

The extra argument free=t was included to force LinearSolve to use subscripted t

variables for any parameters. It is always safe to include an argument of this type;

omitting it can cause output that looks somewhat strange. (Try it and see.) If the

system has a unique solution, the free=t parameter will just be ignored.

> X := LinearSolve(L,B2,free=t);

Error, (in LinearSolve) inconsistent system

Eigenvalues and Eigenvectors
The LinearAlgebra package has procedures for finding the eigenvalues and eigen-

vectors of matrices. For a real symmetric matrix, the eigenvalues are always real.

> K := Matrix([[3,1,-1],[1,4,1],[-1,1,3]]);

K WD

2

4

3 1 �1

1 4 1

�1 1 3

3

5

> Eigenvalues(K);
2

4

4

3C
p

3

3 �
p

3

3

5
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The Eigenvalues function produces a column vector of the eigenvalues of the

square matrix that is its argument. In this example all three eigenvalues are positive,

so K is a positive definite matrix. Our main use for eigenvalues will be the classifi-

cation of critical points of functions of several variables. This use does not require

knowledge of the corresponding eigenvectors, but if we did need to know them, we

could have used the function Eigenvectors(K) instead. The output would then

have consisted of two items separated by a comma. The first item would be the column

vector of eigenvalues of K; the second would be a square matrix whose columns are

the eigenvectors corresponding to those eigenvalues. (Corresponding to an eigenvalue

having multiplicity m there would be m linearly independent columns in the matrix.)

> Eigenvectors(K);

2

4

4

3C
p

3

3 �
p

3

3

5 ;

2

6

6

6

6

4

�1 �

.�2C
p

3/
p

3

�3C 2
p

3
�

.�2 �
p

3/
p

3

�3 � 2
p

3

0 �

�3C
p

3

�3C 2
p

3
�

�3 �
p

3

�3 � 2
p

3
1 1 1

3

7

7

7

7

5

Maple isn’t always good at spotting simplifications. If you follow the above Maple

command with simplify(%[2]), you will see that the top row in the matrix of

eigenvectors is, in fact, much simpler than it looks.

Remark All the matrices and vectors used in the examples of this section were

of very small dimension. The LinearAlgebra package is capable of dealing with

large matrices with hundreds of rows and columns, but for such matrices it is best

to avoid simple expressions like 2*M-3*N and M.N for linear combinations and prod-

ucts of matrices, and use instead MatrixAdd(M,N,2,-3) and MatrixMatrix-

Multiply(M,N), which are much more efficient in their calculations. Similarly,

use MatrixVectorMultiply(M,X) rather than M.X if X is a column vector and

ScalarMultiply(M,c) rather than c*M if c is a number.

E X E R C I S E S 10.8

Use Maple to calculate the quantities in Exercises 1–2.

1. The distance between the line through .3; 0; 2/ parallel to the

vector 2iC j � 2k and the line through .1; 2; 4/ parallel to

iC 3jC 4k

2. The angle (in degrees) between the vector i � jC 2k and the

plane through the origin containing the vectors i� 2j� 3k and

2iC 3jC 4k

Use Maple to verify the identities in Exercises 3–4.

3. U � .V�W/ D V � .W�U/ DW � .U�V/

4. .U�V/� .U�W/ D .U � .V�W//U

In Exercises 5–10, define Maple functions to produce the indicated

results. You may use functions already defined in LinearAlgebra.

5. A function sp(U,V) that gives the scalar projection of vector

U along the nonzero vector V

6. A function vp(U,V) that gives the vector projection of

vector U along the nonzero vector V

7. A function ang(U,V) that gives the angle between the

nonzero vectors U and V in degrees as a decimal number

8. A function unitn(U,V) that gives a unit vector normal to

the two nonparallel vectors U and V in 3-space

9. A function VolT(U,V,W) that gives the volume of the

tetrahedron in 3-space spanned by the vectors U, V, and W

10. A function dist(A,B) giving the distance between two

points having position vectors A and B. Use your function to

find the distance between Œ1; 1; 1; 1� and Œ3;�1; 2; 5�

In Exercises 11–12, use LinearSolve to solve the systems.

11.

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

uC 2v C 3x C 4y C 5z D 20

6u � v C 6x C 2y � 3z D 0

2uC 8v � 8x � 2y C z D 6

uC v C x C y C z D 5

10u � 3v C 3x � 2y C 2z D 5

12.

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

uC v C x C y D 10

uC y C z D 10

uC x C y D 8

uC v C x C z D 11

v C y � z D 1

13. Evaluate the determinant of the coefficient matrix for the

system in Exercise 11.

14. Find the eigenvalues of the coefficient matrix for the system in

Exercise 12. Quote your answers as decimal numbers (use

evalf) to 5 decimal places. Do you think any of them are

really complex?
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15. Find the inverse of the matrix

A D

2

4

1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

3

5 :

16. Find, in decimal form (using evalf(Eigenvals(A)), the

eigenvalues of the matrix A of Exercise 15 and the eigen-

values of its inverse. Use Digits := 10. How do you

account for the fact that some of the eigenvalues appear to be

complex? What relationship appears to exist between the

eigenvalues of A and those of its inverse?

C H A P T E R R E V I E W

Key Ideas

� What is each of the following?

˘ a neighbourhood ˘ an open set ˘ a closed set

˘ the boundary of a set ˘ the interior of a set

˘ a vector in 3-space ˘ the dot product of vectors

˘ the cross product of two vectors in R
3

˘ a scalar triple product ˘ a vector triple product

˘ a matrix ˘ a determinant

˘ a plane ˘ a straight line ˘ a cone

˘ a cylinder ˘ an ellipsoid ˘ a paraboloid

˘ a hyperboloid of 1 sheet ˘ a hyperboloid of 2 sheets

˘ the transpose of a matrix ˘ the inverse of a matrix

˘ a linear transformation ˘ an eigenvalue of a matrix

� What is the angle between the vectors u and v?

� How do you calculate u� v, given the components of u and

v?
� What is an equation of the plane through P0 having normal

vector N?

� What is an equation of the straight line through P0 parallel

to the vector a?
� Given two 3 � 3 matrices A and B , how do you calculate the

product AB?

� What is the distance from the point P0 to the plane

Ax C By C Cz CD D 0?

� What is Cramer’s Rule, and how is it used?

Review Exercises

Describe the sets of points in 3-space that satisfy the given equa-

tions or inequalities in Exercises 1–18.

1. x C 3z D 3 2. y � z � 1

3. x C y C z � 0 4. x � 2y � 4z D 8

5. y D 1C x2
C z

2 6. y D z2

7. x D y2
� z

2 8. z D xy

9. x2
C y

2
C 4z

2
< 4 10. x2

C y
2
� 4z

2
D 4

11. x2
� y

2
� 4z

2
D 0 12. x2

� y
2
� 4z

2
D 4

13.I .x � z/
2
C y

2
D 1 14.I .x � z/

2
C y

2
D z

2

15.
n

x C 2y D 0

z D 3
16.

�

x C y C 2z D 1

x C y C z D 0

17.

�

x2
C y2

C z2
D 4

x C y C z D 3
18.

�

x2
C z2

� 1

x � y � 0

Find equations of the planes and lines specified in Exercises

19–28.

19. The plane through the origin perpendicular to the line

x � 1

2
D

y C 3

�1
D

z C 2

3

20. The plane through .2;�1; 1/ and .1; 0;�1/ parallel to the line

in Exercise 19

21. The plane through .2;�1; 1/ perpendicular to the planes

x � y C z D 0 and 2x C y � 3z D 2

22. The plane through .�1; 1; 0/, .0; 4;�1/, and .2; 0; 0/

23. The plane containing the line of intersection of the planes x C

yCz D 0 and 2xCy�3z D 2, and passing through the point

.2; 0; 1/

24. The plane containing the line of intersection of the planes x C

y C z D 0 and 2x C y � 3z D 2, and perpendicular to the

plane x � 2y � 5z D 17

25. The vector parametric equation of the line through .2; 1;�1/

and .�1; 0; 1/

26. Standard form equations of the line through .1; 0;�1/ parallel

to each of the planes x � y D 3 and x C 2y C z D 1

27. Scalar parametric equations of the line through the origin per-

pendicular to the plane 3x � 2y C 4z D 5

28. The vector parametric equation of the line that joins points on

the two lines

r D .1C t /i � t j � .2C 2t/k

r D 2t iC .t � 2/j � .1C 3t/k

and is perpendicular to both those lines

Express the given conditions or quantities in Exercises 29–30 in

terms of dot and cross products.

29. The three points with position vectors r1, r2, and r3 all lie on

a straight line.

30. The four points with position vectors r1, r2, r3, and r4 do not

all lie on a plane.

31. Find the area of the triangle with vertices .1; 2; 1/, .4;�1; 1/,

and .3; 4;�2/.

32. Find the volume of the tetrahedron with vertices .1; 2; 1/,

.4;�1; 1/, .3; 4;�2/, and .2; 2; 2/.
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The Eigenvalues function produces a column vector of the eigenvalues of the

square matrix that is its argument. In this example all three eigenvalues are positive,

so K is a positive definite matrix. Our main use for eigenvalues will be the classifi-

cation of critical points of functions of several variables. This use does not require

knowledge of the corresponding eigenvectors, but if we did need to know them, we

could have used the function Eigenvectors(K) instead. The output would then

have consisted of two items separated by a comma. The first item would be the column

vector of eigenvalues of K; the second would be a square matrix whose columns are

the eigenvectors corresponding to those eigenvalues. (Corresponding to an eigenvalue

having multiplicity m there would be m linearly independent columns in the matrix.)

> Eigenvectors(K);

2

4

4

3C
p

3

3 �
p

3

3

5 ;

2

6

6

6

6

4

�1 �

.�2C
p

3/
p

3

�3C 2
p

3
�

.�2 �
p

3/
p

3

�3 � 2
p

3

0 �

�3C
p

3

�3C 2
p

3
�

�3 �
p

3

�3 � 2
p

3
1 1 1

3

7

7

7

7

5

Maple isn’t always good at spotting simplifications. If you follow the above Maple

command with simplify(%[2]), you will see that the top row in the matrix of

eigenvectors is, in fact, much simpler than it looks.

Remark All the matrices and vectors used in the examples of this section were

of very small dimension. The LinearAlgebra package is capable of dealing with

large matrices with hundreds of rows and columns, but for such matrices it is best

to avoid simple expressions like 2*M-3*N and M.N for linear combinations and prod-

ucts of matrices, and use instead MatrixAdd(M,N,2,-3) and MatrixMatrix-

Multiply(M,N), which are much more efficient in their calculations. Similarly,

use MatrixVectorMultiply(M,X) rather than M.X if X is a column vector and

ScalarMultiply(M,c) rather than c*M if c is a number.

E X E R C I S E S 10.8

Use Maple to calculate the quantities in Exercises 1–2.

1. The distance between the line through .3; 0; 2/ parallel to the

vector 2iC j � 2k and the line through .1; 2; 4/ parallel to

iC 3jC 4k

2. The angle (in degrees) between the vector i � jC 2k and the

plane through the origin containing the vectors i� 2j� 3k and

2iC 3jC 4k

Use Maple to verify the identities in Exercises 3–4.

3. U � .V�W/ D V � .W�U/ DW � .U�V/

4. .U�V/� .U�W/ D .U � .V�W//U

In Exercises 5–10, define Maple functions to produce the indicated

results. You may use functions already defined in LinearAlgebra.

5. A function sp(U,V) that gives the scalar projection of vector

U along the nonzero vector V

6. A function vp(U,V) that gives the vector projection of

vector U along the nonzero vector V

7. A function ang(U,V) that gives the angle between the

nonzero vectors U and V in degrees as a decimal number

8. A function unitn(U,V) that gives a unit vector normal to

the two nonparallel vectors U and V in 3-space

9. A function VolT(U,V,W) that gives the volume of the

tetrahedron in 3-space spanned by the vectors U, V, and W

10. A function dist(A,B) giving the distance between two

points having position vectors A and B. Use your function to

find the distance between Œ1; 1; 1; 1� and Œ3;�1; 2; 5�

In Exercises 11–12, use LinearSolve to solve the systems.

11.

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

uC 2v C 3x C 4y C 5z D 20

6u � v C 6x C 2y � 3z D 0

2uC 8v � 8x � 2y C z D 6

uC v C x C y C z D 5

10u � 3v C 3x � 2y C 2z D 5

12.

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

uC v C x C y D 10

uC y C z D 10

uC x C y D 8

uC v C x C z D 11

v C y � z D 1

13. Evaluate the determinant of the coefficient matrix for the

system in Exercise 11.

14. Find the eigenvalues of the coefficient matrix for the system in

Exercise 12. Quote your answers as decimal numbers (use

evalf) to 5 decimal places. Do you think any of them are

really complex?
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15. Find the inverse of the matrix

A D

2

4

1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

3

5 :

16. Find, in decimal form (using evalf(Eigenvals(A)), the

eigenvalues of the matrix A of Exercise 15 and the eigen-

values of its inverse. Use Digits := 10. How do you

account for the fact that some of the eigenvalues appear to be

complex? What relationship appears to exist between the

eigenvalues of A and those of its inverse?

C H A P T E R R E V I E W

Key Ideas

� What is each of the following?

˘ a neighbourhood ˘ an open set ˘ a closed set

˘ the boundary of a set ˘ the interior of a set

˘ a vector in 3-space ˘ the dot product of vectors

˘ the cross product of two vectors in R
3

˘ a scalar triple product ˘ a vector triple product

˘ a matrix ˘ a determinant

˘ a plane ˘ a straight line ˘ a cone

˘ a cylinder ˘ an ellipsoid ˘ a paraboloid

˘ a hyperboloid of 1 sheet ˘ a hyperboloid of 2 sheets

˘ the transpose of a matrix ˘ the inverse of a matrix

˘ a linear transformation ˘ an eigenvalue of a matrix

� What is the angle between the vectors u and v?

� How do you calculate u� v, given the components of u and

v?
� What is an equation of the plane through P0 having normal

vector N?

� What is an equation of the straight line through P0 parallel

to the vector a?
� Given two 3 � 3 matrices A and B , how do you calculate the

product AB?

� What is the distance from the point P0 to the plane

Ax C By C Cz CD D 0?

� What is Cramer’s Rule, and how is it used?

Review Exercises

Describe the sets of points in 3-space that satisfy the given equa-

tions or inequalities in Exercises 1–18.

1. x C 3z D 3 2. y � z � 1

3. x C y C z � 0 4. x � 2y � 4z D 8

5. y D 1C x2
C z

2 6. y D z2

7. x D y2
� z

2 8. z D xy

9. x2
C y

2
C 4z

2
< 4 10. x2

C y
2
� 4z

2
D 4

11. x2
� y

2
� 4z

2
D 0 12. x2

� y
2
� 4z

2
D 4

13.I .x � z/
2
C y

2
D 1 14.I .x � z/

2
C y

2
D z

2

15.
n

x C 2y D 0

z D 3
16.

�

x C y C 2z D 1

x C y C z D 0

17.

�

x2
C y2

C z2
D 4

x C y C z D 3
18.

�

x2
C z2

� 1

x � y � 0

Find equations of the planes and lines specified in Exercises

19–28.

19. The plane through the origin perpendicular to the line

x � 1

2
D

y C 3

�1
D

z C 2

3

20. The plane through .2;�1; 1/ and .1; 0;�1/ parallel to the line

in Exercise 19

21. The plane through .2;�1; 1/ perpendicular to the planes

x � y C z D 0 and 2x C y � 3z D 2

22. The plane through .�1; 1; 0/, .0; 4;�1/, and .2; 0; 0/

23. The plane containing the line of intersection of the planes x C

yCz D 0 and 2xCy�3z D 2, and passing through the point

.2; 0; 1/

24. The plane containing the line of intersection of the planes x C

y C z D 0 and 2x C y � 3z D 2, and perpendicular to the

plane x � 2y � 5z D 17

25. The vector parametric equation of the line through .2; 1;�1/

and .�1; 0; 1/

26. Standard form equations of the line through .1; 0;�1/ parallel

to each of the planes x � y D 3 and x C 2y C z D 1

27. Scalar parametric equations of the line through the origin per-

pendicular to the plane 3x � 2y C 4z D 5

28. The vector parametric equation of the line that joins points on

the two lines

r D .1C t /i � t j � .2C 2t/k

r D 2t iC .t � 2/j � .1C 3t/k

and is perpendicular to both those lines

Express the given conditions or quantities in Exercises 29–30 in

terms of dot and cross products.

29. The three points with position vectors r1, r2, and r3 all lie on

a straight line.

30. The four points with position vectors r1, r2, r3, and r4 do not

all lie on a plane.

31. Find the area of the triangle with vertices .1; 2; 1/, .4;�1; 1/,

and .3; 4;�2/.

32. Find the volume of the tetrahedron with vertices .1; 2; 1/,

.4;�1; 1/, .3; 4;�2/, and .2; 2; 2/.
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33. Show that the matrix

A D

0

B

B

@

1 0 0 0

2 1 0 0

3 2 1 0

4 3 2 1

1

C

C

A

has an inverse, and find the inverse A
�1.

34. Let A D

0

@

1 1 1

2 1 0

1 0 �1

1

A. What condition must the vector b

satsify in order that the equation Ax D b has solutions x?

What are the solutions x if b satisfies the condition?

35. Is the matrix

0

@

3 �1 1

�1 1 �1

1 �1 2

1

A positive or negative definite or

neither?

Challenging Problems

1.A Show that the distance d from point P to the line AB can be

expressed in terms of the position vectors of P; A, and B by

d D
j.rA � rP / � .rB � rP /j

jrA � rB j

2.A For any vectors u, v, w, and x, show that

.u � v/ � .w � x/ D
�

.u � v/ � x
�

w �
�

.u � v/ � w
�

x

D

�

.w � x/ � u
�

v �
�

.w � x/ � v
�

u:

In particular, show that

.u � v/ � .u � w/ D
�

.u � v/ � w
�

u:

3.A Show that the area A of a triangle with vertices .x1; y1; 0/,

.x2; y2; 0/, and .x3; y3; 0/ in the xy-plane is given by

A D
1

2
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 y1 1

x2 y2 1

x3 y3 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j:

4.A (a) If L1 and L2 are two skew (i.e., nonparallel and noninter-

secting) lines, show that there is a pair of parallel planes

P1 and P2 such that L1 lies in P1 and L2 lies in P2.

(b) Find parallel planes containing the following two lines: L1

through points .1; 1; 0/ and .2; 0; 1/ andL2 through points

.0; 1; 1/ and .1; 2; 2/.

5.A What condition must the vectors a and b satisfy to ensure that

the equation a� x D b has solutions? If this condition is sat-

isfied, find all solutions of the equation. Describe the set of

solutions.
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C H A P T E R 11

Vector Functions
and Curves

“
Philosophy is written in this grand book—I mean the universe—which

stands continually open to our gaze, but it cannot be understood un-

less one first learns to comprehend the language and interpret the

characters in which it is written. It is written in the language of

mathematics, and its characters are triangles, circles, and other geo-

metrical figures, without which it is humanly impossible to understand

a single word of it; without these, one is wandering about in a dark

labyrinth.

”Galileo Galilei 1564–1642

Introduction This chapter is concerned with functions of a single real

variable that have vector values. Such functions can be

thought of as parametric representations of curves, and we will examine them from

both a kinematic point of view (involving position, velocity, and acceleration of a mov-

ing particle) and a geometric point of view (involving tangents, normals, curvature,

and torsion). Finally, we will work through a simple derivation of Kepler’s laws of

planetary motion.

11.1 Vector Functions of One Variable
In this section we will examine several aspects of differential and integral calculus

as applied to vector-valued functions of a single real variable. Such functions can

be used to represent curves parametrically. It is natural to interpret a vector-valued

function of the real variable t as giving the position, at time t , of a point or “particle”

moving around in space. Derivatives of this position vector are then other vector-

valued functions giving the velocity and acceleration of the particle. To motivate the

study of vector functions, we will consider such a vectorial description of motion in

3-space. Some of our examples will involve motion in the plane; in this case the third

components of the vectors will be 0 and will be omitted.

If a particle moves around in 3-space, its motion can be described by giving the

three coordinates of its position as functions of time t :

x D x.t/; y D y.t/; and z D z.t/:

It is more convenient, however, to replace these three equations by a single vector

equation,

r D r.t/;

giving the position vector of the moving particle as a function of t . (Recall that the

position vector of a point is the vector from the origin to that point.) In terms of the

standard basis vectors i, j, and k, the position of the particle at time t is
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33. Show that the matrix

A D

0

B

B

@

1 0 0 0

2 1 0 0

3 2 1 0

4 3 2 1

1

C

C

A

has an inverse, and find the inverse A
�1.

34. Let A D

0

@

1 1 1

2 1 0

1 0 �1

1

A. What condition must the vector b

satsify in order that the equation Ax D b has solutions x?

What are the solutions x if b satisfies the condition?

35. Is the matrix

0

@

3 �1 1

�1 1 �1

1 �1 2

1

A positive or negative definite or

neither?

Challenging Problems

1.A Show that the distance d from point P to the line AB can be

expressed in terms of the position vectors of P; A, and B by

d D
j.rA � rP / � .rB � rP /j

jrA � rB j

2.A For any vectors u, v, w, and x, show that

.u � v/ � .w � x/ D
�

.u � v/ � x
�

w �
�

.u � v/ � w
�

x

D

�

.w � x/ � u
�

v �
�

.w � x/ � v
�

u:

In particular, show that

.u � v/ � .u � w/ D
�

.u � v/ � w
�

u:

3.A Show that the area A of a triangle with vertices .x1; y1; 0/,

.x2; y2; 0/, and .x3; y3; 0/ in the xy-plane is given by

A D
1

2
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 y1 1

x2 y2 1

x3 y3 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j:

4.A (a) If L1 and L2 are two skew (i.e., nonparallel and noninter-

secting) lines, show that there is a pair of parallel planes

P1 and P2 such that L1 lies in P1 and L2 lies in P2.

(b) Find parallel planes containing the following two lines: L1

through points .1; 1; 0/ and .2; 0; 1/ andL2 through points

.0; 1; 1/ and .1; 2; 2/.

5.A What condition must the vectors a and b satisfy to ensure that

the equation a� x D b has solutions? If this condition is sat-

isfied, find all solutions of the equation. Describe the set of

solutions.
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C H A P T E R 11

Vector Functions
and Curves

“
Philosophy is written in this grand book—I mean the universe—which

stands continually open to our gaze, but it cannot be understood un-

less one first learns to comprehend the language and interpret the

characters in which it is written. It is written in the language of

mathematics, and its characters are triangles, circles, and other geo-

metrical figures, without which it is humanly impossible to understand

a single word of it; without these, one is wandering about in a dark

labyrinth.

”Galileo Galilei 1564–1642

Introduction This chapter is concerned with functions of a single real

variable that have vector values. Such functions can be

thought of as parametric representations of curves, and we will examine them from

both a kinematic point of view (involving position, velocity, and acceleration of a mov-

ing particle) and a geometric point of view (involving tangents, normals, curvature,

and torsion). Finally, we will work through a simple derivation of Kepler’s laws of

planetary motion.

11.1 Vector Functions of One Variable
In this section we will examine several aspects of differential and integral calculus

as applied to vector-valued functions of a single real variable. Such functions can

be used to represent curves parametrically. It is natural to interpret a vector-valued

function of the real variable t as giving the position, at time t , of a point or “particle”

moving around in space. Derivatives of this position vector are then other vector-

valued functions giving the velocity and acceleration of the particle. To motivate the

study of vector functions, we will consider such a vectorial description of motion in

3-space. Some of our examples will involve motion in the plane; in this case the third

components of the vectors will be 0 and will be omitted.

If a particle moves around in 3-space, its motion can be described by giving the

three coordinates of its position as functions of time t :

x D x.t/; y D y.t/; and z D z.t/:

It is more convenient, however, to replace these three equations by a single vector

equation,

r D r.t/;

giving the position vector of the moving particle as a function of t . (Recall that the

position vector of a point is the vector from the origin to that point.) In terms of the

standard basis vectors i, j, and k, the position of the particle at time t is
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position: r D r.t/ D x.t/ iC y.t/ jC z.t/k:

As t increases, the particle moves along a path, a curve C in 3-space. If z.t/ D 0, then

C is a plane curve in the xy-plane. We assume that C is a continuous curve; the particle

cannot instantaneously jump from one point to a distant point. This is equivalent to

requiring that the component functions x.t/, y.t/, and z.t/ are continuous functions

of t , and we therefore say that r.t/ is a continuous vector function of t .

In the time interval from t to t C �t , the particle moves from position r.t/ to

position r.t C�t/. Therefore, its average velocity is

r.t C�t/ � r.t/

�t
;

which is a vector parallel to the secant vector from r.t/ to r.t C �t/. If the average

velocity has a limit as �t ! 0, then we say that r is differentiable at t , and we call

the limit the (instantaneous) velocity of the particle at time t . We denote the velocity

vector by v.t/:

velocity: v.t/ D lim
�t!0

r.t C�t/ � r.t/

�t
D

d

dt
r.t/:

Figure 11.1 The velocity v.t/ is the

derivative of the position r.t/ and is

tangent to the path of motion at the point

with position vector r.t/
x

y

z

v.t/

C

r.t/

r.t C�t/

This velocity vector has direction tangent to the path C at the point r.t/ (see Figure 11.1),

and it points in the direction of motion. The length of the velocity vector, v.t/ D jv.t/j,

is called the speed of the particle:

speed: v.t/ D jv.t/j:

Wherever the velocity vector exists, is continuous, and does not vanish, the path C is

a smooth curve; that is, it has a continuously turning tangent line. The path may not

be smooth at points where the velocity is zero, even if the components of the velocity

vector are smooth functions of t .

E X A M P L E 1
Consider the plane curve r D t3i C t2j. Its component functions

t3 and t2 have continuous derivatives of all orders. However, the

curve is not smooth at the origin (t D 0), where its velocity v D 3t2iC 2tj D 0. (See

Figure 11.2.) The curve is smooth at all other points where v.t/ ¤ 0.

y

x

r D t3iC t2j

Figure 11.2 The components of r.t/ are

smooth functions of t , but the curve fails to

be smooth at the origin, where v D 0
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The rules for addition and scalar multiplication of vectors imply that

v D
dr

dt

D lim
�t!0

�

x.t C�t/ � x.t/

�t
iC

y.t C�t/ � y.t/

�t
jC

z.t C�t/ � z.t/

�t
k

�

D

dx

dt
iC

dy

dt
jC

dz

dt
k:

Thus, the vector function r is differentiable at t if and only if its three scalar compo-

nents, x, y, and z, are differentiable at t . In general, vector functions can be differ-

entiated (or integrated) by differentiating (or integrating) their component functions,

provided that the basis vectors with respect to which the components are taken are

fixed in space and not changing with time.

Continuing our analysis of the moving particle, we define the acceleration of the

particle to be the time derivative of the velocity:

acceleration: a.t/ D
dv

dt
D

d 2r

dt2
:

Newton’s Second Law of Motion asserts that this acceleration is proportional to, and

in the same direction as, the force F causing the motion: if the particle has mass m,

then the law is expressed by the vector equation F D ma.

E X A M P L E 2
Describe the curve r D t i C t2j C t3k. Find the velocity and

acceleration vectors for this curve at .1; 1; 1/.

Solution Since the scalar parametric equations for the curve are

x D t; y D t
2
; and z D t

3
;

which satisfy y D x2 and z D x3, the curve is the curve of intersection of the two

cylinders y D x2 and z D x3. At any time t the velocity and acceleration vectors are

given by

v D
dr

dt
D iC 2tjC 3t2k;

a D
dv

dt
D 2jC 6tk:

The point .1; 1; 1/ on the curve corresponds to t D 1, so the velocity and acceleration

at that point are v D iC 2jC 3k and a D 2jC 6k, respectively.

E X A M P L E 3
Find the velocity, speed, and acceleration, and describe the motion

of a particle whose position at time t is

r D 3 cos!t iC 4 cos!t jC 5 sin!t k:

Solution The velocity, speed, and acceleration are readily calculated:

v D
dr

dt
D �3! sin!t i � 4! sin!t jC 5! cos!t k

v D jvj D 5!

a D
dv

dt
D �3!

2 cos!t i � 4!2 cos!t j � 5!2 sin!t k D �!2r:
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position: r D r.t/ D x.t/ iC y.t/ jC z.t/k:

As t increases, the particle moves along a path, a curve C in 3-space. If z.t/ D 0, then

C is a plane curve in the xy-plane. We assume that C is a continuous curve; the particle

cannot instantaneously jump from one point to a distant point. This is equivalent to

requiring that the component functions x.t/, y.t/, and z.t/ are continuous functions

of t , and we therefore say that r.t/ is a continuous vector function of t .

In the time interval from t to t C �t , the particle moves from position r.t/ to

position r.t C�t/. Therefore, its average velocity is

r.t C�t/ � r.t/

�t
;

which is a vector parallel to the secant vector from r.t/ to r.t C �t/. If the average

velocity has a limit as �t ! 0, then we say that r is differentiable at t , and we call

the limit the (instantaneous) velocity of the particle at time t . We denote the velocity

vector by v.t/:

velocity: v.t/ D lim
�t!0

r.t C�t/ � r.t/

�t
D

d

dt
r.t/:

Figure 11.1 The velocity v.t/ is the

derivative of the position r.t/ and is

tangent to the path of motion at the point

with position vector r.t/
x

y

z

v.t/

C

r.t/

r.t C�t/

This velocity vector has direction tangent to the path C at the point r.t/ (see Figure 11.1),

and it points in the direction of motion. The length of the velocity vector, v.t/ D jv.t/j,

is called the speed of the particle:

speed: v.t/ D jv.t/j:

Wherever the velocity vector exists, is continuous, and does not vanish, the path C is

a smooth curve; that is, it has a continuously turning tangent line. The path may not

be smooth at points where the velocity is zero, even if the components of the velocity

vector are smooth functions of t .

E X A M P L E 1
Consider the plane curve r D t3i C t2j. Its component functions

t3 and t2 have continuous derivatives of all orders. However, the

curve is not smooth at the origin (t D 0), where its velocity v D 3t2iC 2tj D 0. (See

Figure 11.2.) The curve is smooth at all other points where v.t/ ¤ 0.

y

x

r D t3iC t2j

Figure 11.2 The components of r.t/ are

smooth functions of t , but the curve fails to

be smooth at the origin, where v D 0
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The rules for addition and scalar multiplication of vectors imply that

v D
dr

dt

D lim
�t!0

�

x.t C�t/ � x.t/

�t
iC

y.t C�t/ � y.t/

�t
jC

z.t C�t/ � z.t/

�t
k

�

D

dx

dt
iC

dy

dt
jC

dz

dt
k:

Thus, the vector function r is differentiable at t if and only if its three scalar compo-

nents, x, y, and z, are differentiable at t . In general, vector functions can be differ-

entiated (or integrated) by differentiating (or integrating) their component functions,

provided that the basis vectors with respect to which the components are taken are

fixed in space and not changing with time.

Continuing our analysis of the moving particle, we define the acceleration of the

particle to be the time derivative of the velocity:

acceleration: a.t/ D
dv

dt
D

d 2r

dt2
:

Newton’s Second Law of Motion asserts that this acceleration is proportional to, and

in the same direction as, the force F causing the motion: if the particle has mass m,

then the law is expressed by the vector equation F D ma.

E X A M P L E 2
Describe the curve r D t i C t2j C t3k. Find the velocity and

acceleration vectors for this curve at .1; 1; 1/.

Solution Since the scalar parametric equations for the curve are

x D t; y D t
2
; and z D t

3
;

which satisfy y D x2 and z D x3, the curve is the curve of intersection of the two

cylinders y D x2 and z D x3. At any time t the velocity and acceleration vectors are

given by

v D
dr

dt
D iC 2tjC 3t2k;

a D
dv

dt
D 2jC 6tk:

The point .1; 1; 1/ on the curve corresponds to t D 1, so the velocity and acceleration

at that point are v D iC 2jC 3k and a D 2jC 6k, respectively.

E X A M P L E 3
Find the velocity, speed, and acceleration, and describe the motion

of a particle whose position at time t is

r D 3 cos!t iC 4 cos!t jC 5 sin!t k:

Solution The velocity, speed, and acceleration are readily calculated:

v D
dr

dt
D �3! sin!t i � 4! sin!t jC 5! cos!t k

v D jvj D 5!

a D
dv

dt
D �3!

2 cos!t i � 4!2 cos!t j � 5!2 sin!t k D �!2r:
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Observe that jrj D 5. Therefore, the path of the particle lies on the sphere with

equation x2
C y

2
C z

2
D 25. Since x D 3 cos!t and y D 4 cos!t , the path also lies

on the vertical plane 4x D 3y. Hence, the particle moves around a circle of radius 5

centred at the origin and lying in the plane 4x D 3y. Observe also that r is periodic

with period 2�=!. Therefore, the particle makes one revolution around the circle

in time 2�=!. The acceleration is always in the direction of �r, that is, toward the

origin. The term centripetal acceleration is used to describe such a “centre-seeking”

acceleration.

E X A M P L E 4
(The projectile problem) Describe the path followed by a particle

experiencing a constant downward acceleration, �gk, caused by

gravity. Assume that at time t D 0 the particle is at position r0 and its velocity is v0.

Solution If the position of the particle at time t is r.t/, then its acceleration is

d2r=dt2. The position of the particle can be found by solving the initial-value problem

d2r

dt2
D �gk;

dr

dt

ˇ

ˇ

ˇ

ˇ

tD0

D v0; r.0/ D r0:

We integrate the differential equation twice. Each integration introduces a vector con-

stant of integration that we can determine from the given data by evaluating at t D 0:

dr

dt
D �gtkC v0

r D �
gt

2

2
kC v0t C r0:

The latter equation represents a parabola in the vertical plane passing through the point

with position vector r0 and containing the vector v0. (See Figure 11.3.) The parabola

has scalar parametric equations

x D u0t C x0;

y D v0t C y0;

z D �
gt2

2
C w0t C z0;

where r0 D x0iC y0jC z0k and v0 D u0iC v0jC w0k.

Figure 11.3 The path of a projectile fired

from position r0 with velocity v0

x
y

z

v0

r0

E X A M P L E 5
An object moves to the right along the plane curve y D x2 with

constant speed v D 5. Find the velocity and acceleration of the

object when it is at the point .1; 1/.
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Solution The position of the object at time t is

r D xiC x2j;

where x, the x-coordinate of the object’s position, is a function of t . The object’s

velocity, speed, and acceleration at time t are given by

v D
dr

dt
D

dx

dt
iC 2x

dx

dt
j D

dx

dt

�

iC 2xj
�

;

v D jvj D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

p

1C .2x/2 D
dx

dt

p

1C 4x2;

a D
dv

dt
D

d2x

dt2

�

iC 2xj
�

C 2

�

dx

dt

�2

j:

(In the speed calculation we used jdx=dt j D dx=dt because the object is moving to

the right.) We are given that the speed is constant; v D 5. Therefore,

dx

dt
D

5
p

1C 4x2
:

When x D 1, we have dx=dt D 5=
p

1C 4 D
p

5, so the velocity of the object at that

point is v D
p

5iC 2
p

5j. Now we can calculate

d2x

dt2
D

d

dt

5
p

1C 4x2
D

�

d

dx

5
p

1C 4x2

�

dx

dt

D �

5

2.1C 4x2/3=2
.8x/

5
p

1C 4x2
D �

100x

.1C 4x2/2
:

At x D 1, we have d2x=dt2 D �4. Thus, the acceleration at that point is

a D �4.iC 2j/C 10j D �4iC 2j:

Remark Note that we used x as the parameter for the curve in the above example,

so we could use t for time. If you want to analyze motion along a curve r D r.t/,

where t is just a parameter, not necessarily time, then you will have to use a different

symbol, say � (Greek “tau”), for time. The physical velocity and acceleration of a

particle moving along the curve are then

v D
dr

d�
D

dt

d�

dr

dt
and a D

dv

d�
D

d2t

d�2

dr

dt
C

�

dt

d�

�2
d2r

dt2
:

Be careful how you interpret t in a problem where time is meaningful.

Differentiating Combinations of Vectors
Vectors and scalars can be combined in a variety of ways to form other vectors or

scalars. Vectors can be added and multiplied by scalars and can be factors in dot and

cross products. Appropriate differentiation rules apply to all such combinations of

vector and scalar functions; we summarize them in the following theorem.

T H E O R E M

1

Differentiation rules for vector functions

Let u.t/ and v.t/ be differentiable vector-valued functions, and let �.t/ be a differen-

tiable scalar-valued function. Then u.t/C v.t/, �.t/u.t/, u.t/ � v.t/, u.t/� v.t/, and

u
�

�.t/
�

are differentiable, and
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Observe that jrj D 5. Therefore, the path of the particle lies on the sphere with

equation x2
C y

2
C z

2
D 25. Since x D 3 cos!t and y D 4 cos!t , the path also lies

on the vertical plane 4x D 3y. Hence, the particle moves around a circle of radius 5

centred at the origin and lying in the plane 4x D 3y. Observe also that r is periodic

with period 2�=!. Therefore, the particle makes one revolution around the circle

in time 2�=!. The acceleration is always in the direction of �r, that is, toward the

origin. The term centripetal acceleration is used to describe such a “centre-seeking”

acceleration.

E X A M P L E 4
(The projectile problem) Describe the path followed by a particle

experiencing a constant downward acceleration, �gk, caused by

gravity. Assume that at time t D 0 the particle is at position r0 and its velocity is v0.

Solution If the position of the particle at time t is r.t/, then its acceleration is

d2r=dt2. The position of the particle can be found by solving the initial-value problem

d2r

dt2
D �gk;

dr

dt

ˇ

ˇ

ˇ

ˇ

tD0

D v0; r.0/ D r0:

We integrate the differential equation twice. Each integration introduces a vector con-

stant of integration that we can determine from the given data by evaluating at t D 0:

dr

dt
D �gtkC v0

r D �
gt

2

2
kC v0t C r0:

The latter equation represents a parabola in the vertical plane passing through the point

with position vector r0 and containing the vector v0. (See Figure 11.3.) The parabola

has scalar parametric equations

x D u0t C x0;

y D v0t C y0;

z D �
gt2

2
C w0t C z0;

where r0 D x0iC y0jC z0k and v0 D u0iC v0jC w0k.

Figure 11.3 The path of a projectile fired

from position r0 with velocity v0

x
y

z

v0

r0

E X A M P L E 5
An object moves to the right along the plane curve y D x2 with

constant speed v D 5. Find the velocity and acceleration of the

object when it is at the point .1; 1/.
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Solution The position of the object at time t is

r D xiC x2j;

where x, the x-coordinate of the object’s position, is a function of t . The object’s

velocity, speed, and acceleration at time t are given by

v D
dr

dt
D

dx

dt
iC 2x

dx

dt
j D

dx

dt

�

iC 2xj
�

;

v D jvj D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

p

1C .2x/2 D
dx

dt

p

1C 4x2;

a D
dv

dt
D

d2x

dt2

�

iC 2xj
�

C 2

�

dx

dt

�2

j:

(In the speed calculation we used jdx=dt j D dx=dt because the object is moving to

the right.) We are given that the speed is constant; v D 5. Therefore,

dx

dt
D

5
p

1C 4x2
:

When x D 1, we have dx=dt D 5=
p

1C 4 D
p

5, so the velocity of the object at that

point is v D
p

5iC 2
p

5j. Now we can calculate

d2x

dt2
D

d

dt

5
p

1C 4x2
D

�

d

dx

5
p

1C 4x2

�

dx

dt

D �

5

2.1C 4x2/3=2
.8x/

5
p

1C 4x2
D �

100x

.1C 4x2/2
:

At x D 1, we have d2x=dt2 D �4. Thus, the acceleration at that point is

a D �4.iC 2j/C 10j D �4iC 2j:

Remark Note that we used x as the parameter for the curve in the above example,

so we could use t for time. If you want to analyze motion along a curve r D r.t/,

where t is just a parameter, not necessarily time, then you will have to use a different

symbol, say � (Greek “tau”), for time. The physical velocity and acceleration of a

particle moving along the curve are then

v D
dr

d�
D

dt

d�

dr

dt
and a D

dv

d�
D

d2t

d�2

dr

dt
C

�

dt

d�

�2
d2r

dt2
:

Be careful how you interpret t in a problem where time is meaningful.

Differentiating Combinations of Vectors
Vectors and scalars can be combined in a variety of ways to form other vectors or

scalars. Vectors can be added and multiplied by scalars and can be factors in dot and

cross products. Appropriate differentiation rules apply to all such combinations of

vector and scalar functions; we summarize them in the following theorem.

T H E O R E M

1

Differentiation rules for vector functions

Let u.t/ and v.t/ be differentiable vector-valued functions, and let �.t/ be a differen-

tiable scalar-valued function. Then u.t/C v.t/, �.t/u.t/, u.t/ � v.t/, u.t/� v.t/, and

u
�

�.t/
�

are differentiable, and
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(a)
d

dt

�

u.t/C v.t/
�

D u0
.t/C v0

.t/

(b)
d

dt

�

�.t/u.t/
�

D �
0
.t/u.t/C �.t/u0

.t/

(c)
d

dt

�

u.t/ � v.t/
�

D u0
.t/ � v.t/C u.t/ � v0

.t/

(d)
d

dt

�

u.t/� v.t/
�

D u0
.t/� v.t/C u.t/� v0

.t/

(e)
d

dt

�

u
�

�.t/
�

�

D �
0
.t/u0�

�.t/
�

:

Also, at any point where u.t/ ¤ 0,

(f)
d

dt
ju.t/j D

u.t/ � u0.t/

ju.t/j
:

Remark Formulas (b), (c), and (d) are versions of the Product Rule. Formula (e) is

a version of the Chain Rule. Formula (f) is also a case of the Chain Rule applied to

juj D
p

u � u. All have the obvious form. Note that the order of the factors is the same

in the terms on both sides of the cross product formula (d). It is essential that the order

be preserved because, unlike the dot product or the product of a vector with a scalar,

the cross product is not commutative.

Remark The formula for the derivative of a cross product is a special case of that

for the derivative of a 3 � 3 determinant. (See Section 10.3.) Since every term in

the expansion of a determinant of any order is a product involving one element from

each row (or column), the general Product Rule implies that the derivative of an n � n

determinant whose elements are functions will be the sum of n such n�n determinants,

each with the elements of one of the rows (or columns) differentiated. For the 3 � 3

case we have

d

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a0
11.t/ a0

12.t/ a0
13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a0
21.t/ a0

22.t/ a0
23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a
0
31.t/ a

0
32.t/ a

0
33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

E X A M P L E 6
Show that the speed of a moving particle remains constant over an

interval of time if and only if the acceleration is perpendicular to

the velocity throughout that interval.

Solution Since
�

v.t/
�2
D v.t/ � v.t/, we have

2v.t/
dv

dt
D

d

dt

�

v.t/

�2

D

d

dt

�

v.t/ � v.t/
�

D a.t/ � v.t/C v.t/ � a.t/ D 2v.t/ � a.t/:

If we assume that v.t/ ¤ 0, it follows that dv=dt D 0 if and only if v � a D 0. The

speed is constant if and only if the velocity is perpendicular to the acceleration.
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E X A M P L E 7
If u is three times differentiable, calculate and simplify the triple

product derivative

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

:

Solution Using various versions of the Product Rule, we calculate

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

D

du

dt
�

�

du

dt
�

d 2u

dt2

�

C u �
�

d 2u

dt2
�

d 2u

dt2

�

C u �
�

du

dt
�

d3u

dt3

�

D 0C 0C u �
�

du

dt
�

d3u

dt3

�

D u �
�

du

dt
�

d3u

dt3

�

:

The first term vanishes because du=dt is perpendicular to its cross product with an-

other vector; the second term vanishes because of the cross product of identical vectors.

E X E R C I S E S 11.1

In Exercises 1–14, find the velocity, speed, and acceleration at time

t of the particle whose position is r.t/. Describe the path of the

particle.

1. r D iC t j 2. r D t2iC k

3. r D t2jC tk 4. r D iC t jC tk

5. r D t2i� t2jC k 6. r D t iC t2jC t2k

7. r D a cos t iC a sin t jC ctk

8. r D a cos!t iC bjC a sin!t k

9. r D 3 cos t iC 4 cos t jC 5 sin t k

10. r D 3 cos t iC 4 sin t jC tk

11. r D aet iC bet jC cet k

12. r D at cos!t iC at sin!t jC b ln t k

13. r D e�t cos.et
/iC e�t sin.et

/j � et k

14. r D a cos t sin t iC a sin2
t jC a cos t k

15. A particle moves around the circle x2
C y2

D 25 at constant

speed, making one revolution in 2 s. Find its acceleration

when it is at .3; 4/.

16. A particle moves to the right along the curve y D 3=x. If its

speed is 10 when it passes through the point
�

2;
3
2

�

, what is its

velocity at that time?

17. A point P moves along the curve of intersection of the

cylinder z D x2 and the plane x C y D 2 in the direction of

increasing y with constant speed v D 3. Find the velocity of

P when it is at .1; 1; 1/.

18. An object moves along the curve y D x2, z D x3, with

constant vertical speed dz=dt D 3. Find the velocity and

acceleration of the object when it is at the point .2; 4; 8/.

19. A particle moves along the curve r D 3uiC 3u2jC 2u3k in

the direction corresponding to increasing u and with a

constant speed of 6. Find the velocity and acceleration of the

particle when it is at the point .3; 3; 2/.

20. A particle moves along the curve of intersection of the

cylinders y D �x2 and z D x2 in the direction in which x

increases. (All distances are in centimetres.) At the instant

when the particle is at the point .1;�1; 1/, its speed is 9 cm/s,

and that speed is increasing at a rate of 3 cm/s2. Find the

velocity and acceleration of the particle at that instant.

21. Show that if the dot product of the velocity and acceleration of

a moving particle is positive (or negative), then the speed of

the particle is increasing (or decreasing).

22. Verify the formula for the derivative of a dot product given in

Theorem 1(c).

23. Verify the formula for the derivative of a 3 � 3 determinant in

the second remark following Theorem 1. Use this formula to

verify the formula for the derivative of the cross product in

Theorem 1.

24. If the position and velocity vectors of a moving particle are

always perpendicular, show that the path of the particle lies on

a sphere.

25. Generalize Exercise 24 to the case where the velocity of the

particle is always perpendicular to the line joining the particle

to a fixed point P0.

26. What can be said about the motion of a particle at a time when

its position and velocity satisfy r � v > 0? What can be said

when r � v < 0?

In Exercises 27–32, assume that the vector functions encountered

have continuous derivatives of all required orders.

27. Show that
d

dt

�

du

dt
�

d 2u

dt2

�

D

du

dt
�

d3u

dt3
.

28. Write the Product Rule for
d

dt

�

u � .v�w/

�

.

29. Write the Product Rule for
d

dt

�

u� .v�w/

�

.
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(a)
d

dt

�

u.t/C v.t/
�

D u0
.t/C v0

.t/

(b)
d

dt

�

�.t/u.t/
�

D �
0
.t/u.t/C �.t/u0

.t/

(c)
d

dt

�

u.t/ � v.t/
�

D u0
.t/ � v.t/C u.t/ � v0

.t/

(d)
d

dt

�

u.t/� v.t/
�

D u0
.t/� v.t/C u.t/� v0

.t/

(e)
d

dt

�

u
�

�.t/
�

�

D �
0
.t/u0�

�.t/
�

:

Also, at any point where u.t/ ¤ 0,

(f)
d

dt
ju.t/j D

u.t/ � u0.t/

ju.t/j
:

Remark Formulas (b), (c), and (d) are versions of the Product Rule. Formula (e) is

a version of the Chain Rule. Formula (f) is also a case of the Chain Rule applied to

juj D
p

u � u. All have the obvious form. Note that the order of the factors is the same

in the terms on both sides of the cross product formula (d). It is essential that the order

be preserved because, unlike the dot product or the product of a vector with a scalar,

the cross product is not commutative.

Remark The formula for the derivative of a cross product is a special case of that

for the derivative of a 3 � 3 determinant. (See Section 10.3.) Since every term in

the expansion of a determinant of any order is a product involving one element from

each row (or column), the general Product Rule implies that the derivative of an n � n

determinant whose elements are functions will be the sum of n such n�n determinants,

each with the elements of one of the rows (or columns) differentiated. For the 3 � 3

case we have

d

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a0
11.t/ a0

12.t/ a0
13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a0
21.t/ a0

22.t/ a0
23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a
0
31.t/ a

0
32.t/ a

0
33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

E X A M P L E 6
Show that the speed of a moving particle remains constant over an

interval of time if and only if the acceleration is perpendicular to

the velocity throughout that interval.

Solution Since
�

v.t/
�2
D v.t/ � v.t/, we have

2v.t/
dv

dt
D

d

dt

�

v.t/

�2

D

d

dt

�

v.t/ � v.t/
�

D a.t/ � v.t/C v.t/ � a.t/ D 2v.t/ � a.t/:

If we assume that v.t/ ¤ 0, it follows that dv=dt D 0 if and only if v � a D 0. The

speed is constant if and only if the velocity is perpendicular to the acceleration.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 635 October 17, 2016

SECTION 11.1: Vector Functions of One Variable 635

E X A M P L E 7
If u is three times differentiable, calculate and simplify the triple

product derivative

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

:

Solution Using various versions of the Product Rule, we calculate

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

D

du

dt
�

�

du

dt
�

d 2u

dt2

�

C u �
�

d 2u

dt2
�

d 2u

dt2

�

C u �
�

du

dt
�

d3u

dt3

�

D 0C 0C u �
�

du

dt
�

d3u

dt3

�

D u �
�

du

dt
�

d3u

dt3

�

:

The first term vanishes because du=dt is perpendicular to its cross product with an-

other vector; the second term vanishes because of the cross product of identical vectors.

E X E R C I S E S 11.1

In Exercises 1–14, find the velocity, speed, and acceleration at time

t of the particle whose position is r.t/. Describe the path of the

particle.

1. r D iC t j 2. r D t2iC k

3. r D t2jC tk 4. r D iC t jC tk

5. r D t2i� t2jC k 6. r D t iC t2jC t2k

7. r D a cos t iC a sin t jC ctk

8. r D a cos!t iC bjC a sin!t k

9. r D 3 cos t iC 4 cos t jC 5 sin t k

10. r D 3 cos t iC 4 sin t jC tk

11. r D aet iC bet jC cet k

12. r D at cos!t iC at sin!t jC b ln t k

13. r D e�t cos.et
/iC e�t sin.et

/j � et k

14. r D a cos t sin t iC a sin2
t jC a cos t k

15. A particle moves around the circle x2
C y2

D 25 at constant

speed, making one revolution in 2 s. Find its acceleration

when it is at .3; 4/.

16. A particle moves to the right along the curve y D 3=x. If its

speed is 10 when it passes through the point
�

2;
3
2

�

, what is its

velocity at that time?

17. A point P moves along the curve of intersection of the

cylinder z D x2 and the plane x C y D 2 in the direction of

increasing y with constant speed v D 3. Find the velocity of

P when it is at .1; 1; 1/.

18. An object moves along the curve y D x2, z D x3, with

constant vertical speed dz=dt D 3. Find the velocity and

acceleration of the object when it is at the point .2; 4; 8/.

19. A particle moves along the curve r D 3uiC 3u2jC 2u3k in

the direction corresponding to increasing u and with a

constant speed of 6. Find the velocity and acceleration of the

particle when it is at the point .3; 3; 2/.

20. A particle moves along the curve of intersection of the

cylinders y D �x2 and z D x2 in the direction in which x

increases. (All distances are in centimetres.) At the instant

when the particle is at the point .1;�1; 1/, its speed is 9 cm/s,

and that speed is increasing at a rate of 3 cm/s2. Find the

velocity and acceleration of the particle at that instant.

21. Show that if the dot product of the velocity and acceleration of

a moving particle is positive (or negative), then the speed of

the particle is increasing (or decreasing).

22. Verify the formula for the derivative of a dot product given in

Theorem 1(c).

23. Verify the formula for the derivative of a 3 � 3 determinant in

the second remark following Theorem 1. Use this formula to

verify the formula for the derivative of the cross product in

Theorem 1.

24. If the position and velocity vectors of a moving particle are

always perpendicular, show that the path of the particle lies on

a sphere.

25. Generalize Exercise 24 to the case where the velocity of the

particle is always perpendicular to the line joining the particle

to a fixed point P0.

26. What can be said about the motion of a particle at a time when

its position and velocity satisfy r � v > 0? What can be said

when r � v < 0?

In Exercises 27–32, assume that the vector functions encountered

have continuous derivatives of all required orders.

27. Show that
d

dt

�

du

dt
�

d 2u

dt2

�

D

du

dt
�

d3u

dt3
.

28. Write the Product Rule for
d

dt

�

u � .v�w/

�

.

29. Write the Product Rule for
d

dt

�

u� .v�w/

�

.
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30. Expand and simplify:
d

dt

�

u�
�

du

dt
�

d 2u

dt2

�

�

.

31. Expand and simplify:
d

dt

�

.uC u00
/ � .u�u0

/

�

.

32. Expand and simplify:
d

dt

�

.u� u0
/ � .u0

� u00
/

�

.

33. If at all times t the position and velocity vectors of a moving

particle satisfy v.t/ D 2r.t/, and if r.0/ D r0, find r.t/ and

the acceleration a.t/. What is the path of motion?

34.P Verify that r D r0 cos.!t/C .v0=!/ sin.!t/ satisfies the

initial-value problem

d2r

dt2
D �!

2r; r0
.0/ D v0; r.0/ D r0:

(It is the unique solution.) Describe the path r.t/. What is the

path if r0 is perpendicular to v0?

35.P (Free fall with air resistance) A projectile falling under

gravity and slowed by air resistance proportional to its speed

has position satisfying

d 2r

dt2
D �gk � c

dr

dt
;

where c is a positive constant. If r D r0 and dr=dt D v0 at

time t D 0, find r.t/. (Hint: Let w D ect .dr=dt/.) Show that

the solution approaches that of the projectile problem given in

this section as c ! 0.

11.2 Some Applications of Vector Differentiation

Many interesting problems in mechanics involve the differentiation of vector functions.

This section is devoted to a brief discussion of a few of these.

Motion Involving Varying Mass
The momentum p of a moving object is the product of its (scalar) mass m and its

(vector) velocity v; p D mv. Newton’s Second Law of Motion states that the rate of

change of momentum is equal to the external force acting on the object:

F D
dp

dt
D

d

dt

�

mv
�

:

It is only when the mass of the object remains constant that this law reduces to the

more familiar F D ma. When mass is changing you must deal with momentum rather

than acceleration.

E X A M P L E 1
(The changing velocity of a rocket) A rocket accelerates by burn-

ing its onboard fuel. If the exhaust gases are ejected with constant

velocity ve relative to the rocket, and if the rocket ejects p% of its initial mass while

its engines are firing, by what amount will the velocity of the rocket change? Assume

the rocket is in deep space so that gravitational and other external forces acting on it

can be neglected.

Solution Since the rocket is not acted on by any external forces (i.e., F D 0), New-

ton’s law implies that the total momentum of the rocket and its exhaust gases will

remain constant. At time t the rocket has mass m.t/ and velocity v.t/. At time t C�t

the rocket’s mass is m C �m (where �m < 0), its velocity is v C �v, and the mass

��m of exhaust gases has escaped with velocity vCve (relative to a coordinate system

fixed in space). Equating total momenta at t and t C�t we obtain

.mC�m/.vC�v/C .��m/.vC ve/ D mv:

Simplifying this equation and dividing by �t gives

.mC�m/
�v

�t
D

�m

�t
ve;

and, on taking the limit as �t ! 0,

m
dv

dt
D

dm

dt
ve:
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Suppose that the engine fires from t D 0 to t D T: By the Fundamental Theorem of

Calculus, the velocity of the rocket will change by

v.T / � v.0/ D

Z T

0

dv

dt
dt D

�Z T

0

1

m

dm

dt
dt

�

ve

D

�

lnm.T / � lnm.0/
�

ve D � ln
�

m.0/

m.T /

�

ve :

Since m.0/ > m.T /, we have ln
�

m.0/=m.T /
�

> 0 and, as was to be expected, the

change in velocity of the rocket is in the opposite direction to the exhaust velocity ve .

If p% of the mass of the rocket is ejected during the burn, then the velocity of the

rocket will change by the amount �ve ln.100=.100 � p//.

Remark It is interesting that this model places no restriction on how great a velocity

the rocket can achieve, provided that a sufficiently large percentage of its initial mass

is fuel. See Exercise 1 at the end of the section.

Circular Motion
The angular speed � of a rotating body is its rate of rotation measured in radians per

unit time. For instance, a lighthouse lamp rotating at a rate of three revolutions per

minute has an angular speed of � D 6� radians per minute. It is useful to represent

the rate of rotation of a rigid body about an axis in terms of an angular velocity vector

rather than just the scalar angular speed. The angular velocity vector, �, has magnitude

equal to the angular speed, �, and direction along the axis of rotation such that if the

extended right thumb points in the direction of �, then the fingers surround the axis in

the direction of rotation.

If the origin of the coordinate system is on the axis of rotation, and r D r.t/ is

the position vector at time t of a point P in the rotating body, then P moves around a

circle of radius D D jr.t/j sin � , where � is the (constant) angle between � and r.t/.

(See Figure 11.4.) Thus, P travels a distance 2�D in time 2�=�, and its linear speed

is

�

D

�

P

r.t/

O

v.t/

Figure 11.4 Rotation with angular

velocity �: v D�� r

distance

time
D

2�D

2�=�
D �D D j�jjr.t/j sin � D j�� r.t/j:

Since the direction of � was defined so that �� r.t/ would point in the direction of

motion of P; the linear velocity of P at time t is given by

dr

dt
D v.t/ D �� r.t/:

E X A M P L E 2
The position vector r.t/ of a moving particle P satisfies the initial-

value problem
8

<

:

dr

dt
D 2i� r.t/

r.0/ D iC 3j:

Find r.t/ and describe the motion of P:

Solution There are two ways to solve this problem. We will do it both ways.

METHOD I. By the discussion above, the given differential equation is consistent

with rotation about the x-axis with angular velocity 2i, so that the angular speed is

2, and the motion is counterclockwise as seen from far out on the positive x-axis.

Therefore, the particle P moves on a circle in a plane x = constant and centred on the

x-axis. Since P is at .1; 3; 0/ at time t D 0, the plane of motion is x D 1, and the

radius of the circle is 3. Therefore, the circle has a parametric equation of the form

r D iC 3 cos.�t/jC 3 sin.�t/k:

9780134154367_Calculus   656 05/12/16   3:57 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 636 October 17, 2016

636 CHAPTER 11 Vector Functions and Curves

30. Expand and simplify:
d

dt

�

u�
�

du

dt
�

d 2u

dt2

�

�

.

31. Expand and simplify:
d

dt

�

.uC u00
/ � .u�u0

/

�

.

32. Expand and simplify:
d

dt

�

.u� u0
/ � .u0

� u00
/

�

.

33. If at all times t the position and velocity vectors of a moving

particle satisfy v.t/ D 2r.t/, and if r.0/ D r0, find r.t/ and

the acceleration a.t/. What is the path of motion?

34.P Verify that r D r0 cos.!t/C .v0=!/ sin.!t/ satisfies the

initial-value problem

d2r

dt2
D �!

2r; r0
.0/ D v0; r.0/ D r0:

(It is the unique solution.) Describe the path r.t/. What is the

path if r0 is perpendicular to v0?

35.P (Free fall with air resistance) A projectile falling under

gravity and slowed by air resistance proportional to its speed

has position satisfying

d 2r

dt2
D �gk � c

dr

dt
;

where c is a positive constant. If r D r0 and dr=dt D v0 at

time t D 0, find r.t/. (Hint: Let w D ect .dr=dt/.) Show that

the solution approaches that of the projectile problem given in

this section as c ! 0.

11.2 Some Applications of Vector Differentiation

Many interesting problems in mechanics involve the differentiation of vector functions.

This section is devoted to a brief discussion of a few of these.

Motion Involving Varying Mass
The momentum p of a moving object is the product of its (scalar) mass m and its

(vector) velocity v; p D mv. Newton’s Second Law of Motion states that the rate of

change of momentum is equal to the external force acting on the object:

F D
dp

dt
D

d

dt

�

mv
�

:

It is only when the mass of the object remains constant that this law reduces to the

more familiar F D ma. When mass is changing you must deal with momentum rather

than acceleration.

E X A M P L E 1
(The changing velocity of a rocket) A rocket accelerates by burn-

ing its onboard fuel. If the exhaust gases are ejected with constant

velocity ve relative to the rocket, and if the rocket ejects p% of its initial mass while

its engines are firing, by what amount will the velocity of the rocket change? Assume

the rocket is in deep space so that gravitational and other external forces acting on it

can be neglected.

Solution Since the rocket is not acted on by any external forces (i.e., F D 0), New-

ton’s law implies that the total momentum of the rocket and its exhaust gases will

remain constant. At time t the rocket has mass m.t/ and velocity v.t/. At time t C�t

the rocket’s mass is m C �m (where �m < 0), its velocity is v C �v, and the mass

��m of exhaust gases has escaped with velocity vCve (relative to a coordinate system

fixed in space). Equating total momenta at t and t C�t we obtain

.mC�m/.vC�v/C .��m/.vC ve/ D mv:

Simplifying this equation and dividing by �t gives

.mC�m/
�v

�t
D

�m

�t
ve;

and, on taking the limit as �t ! 0,

m
dv

dt
D

dm

dt
ve:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 637 October 17, 2016

SECTION 11.2: Some Applications of Vector Differentiation 637

Suppose that the engine fires from t D 0 to t D T: By the Fundamental Theorem of

Calculus, the velocity of the rocket will change by

v.T / � v.0/ D

Z T

0

dv

dt
dt D

�Z T

0

1

m

dm

dt
dt

�

ve

D

�

lnm.T / � lnm.0/
�

ve D � ln
�

m.0/

m.T /

�

ve :

Since m.0/ > m.T /, we have ln
�

m.0/=m.T /
�

> 0 and, as was to be expected, the

change in velocity of the rocket is in the opposite direction to the exhaust velocity ve .

If p% of the mass of the rocket is ejected during the burn, then the velocity of the

rocket will change by the amount �ve ln.100=.100 � p//.

Remark It is interesting that this model places no restriction on how great a velocity

the rocket can achieve, provided that a sufficiently large percentage of its initial mass

is fuel. See Exercise 1 at the end of the section.

Circular Motion
The angular speed � of a rotating body is its rate of rotation measured in radians per

unit time. For instance, a lighthouse lamp rotating at a rate of three revolutions per

minute has an angular speed of � D 6� radians per minute. It is useful to represent

the rate of rotation of a rigid body about an axis in terms of an angular velocity vector

rather than just the scalar angular speed. The angular velocity vector, �, has magnitude

equal to the angular speed, �, and direction along the axis of rotation such that if the

extended right thumb points in the direction of �, then the fingers surround the axis in

the direction of rotation.

If the origin of the coordinate system is on the axis of rotation, and r D r.t/ is

the position vector at time t of a point P in the rotating body, then P moves around a

circle of radius D D jr.t/j sin � , where � is the (constant) angle between � and r.t/.

(See Figure 11.4.) Thus, P travels a distance 2�D in time 2�=�, and its linear speed

is

�

D

�

P

r.t/

O

v.t/

Figure 11.4 Rotation with angular

velocity �: v D�� r

distance

time
D

2�D

2�=�
D �D D j�jjr.t/j sin � D j�� r.t/j:

Since the direction of � was defined so that �� r.t/ would point in the direction of

motion of P; the linear velocity of P at time t is given by

dr

dt
D v.t/ D �� r.t/:

E X A M P L E 2
The position vector r.t/ of a moving particle P satisfies the initial-

value problem
8

<

:

dr

dt
D 2i� r.t/

r.0/ D iC 3j:

Find r.t/ and describe the motion of P:

Solution There are two ways to solve this problem. We will do it both ways.

METHOD I. By the discussion above, the given differential equation is consistent

with rotation about the x-axis with angular velocity 2i, so that the angular speed is

2, and the motion is counterclockwise as seen from far out on the positive x-axis.

Therefore, the particle P moves on a circle in a plane x = constant and centred on the

x-axis. Since P is at .1; 3; 0/ at time t D 0, the plane of motion is x D 1, and the

radius of the circle is 3. Therefore, the circle has a parametric equation of the form

r D iC 3 cos.�t/jC 3 sin.�t/k:
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P travels once around this circle (2� radians) in time t D 2�=�, so the angular speed

is �. Therefore, � D 2 and the motion of the particle is given by

r D iC 3 cos.2t/jC 3 sin.2t/k:

METHOD II. Break the given vector differential equation into components:

dx

dt
iC

dy

dt
jC

dz

dt
k D 2i� .xiC yjC zk/ D �2zjC 2yk

dx

dt
D 0;

dy

dt
D �2z;

dz

dt
D 2y:

The first equation implies that x = constant. Since x.0/ D 1, we have x.t/ D 1 for all

t . Differentiate the second equation with respect to t and substitute the third equation.

This leads to the equation of simple harmonic motion for y,

d2y

dt2
D �2

dz

dt
D �4y;

for which a general solution is

y D A cos.2t/C B sin.2t/:

Thus, z D �1
2
.dy=dt/ D A sin.2t/ � B cos.2t/. Since y.0/ D 3 and z.0/ D 0, we

have A D 3 and B D 0. Thus, the particle P travels counterclockwise around the

circular path

r D iC 3 cos.2t/jC 3 sin.2t/k

in the plane x D 1 with angular speed 2.

Remark Newton’s Second Law states that F D .d=dt/.mv/ D dp=dt , where

p D mv is the (linear) momentum of a particle of mass m moving under the influence

of a force F. This law may be reformulated in a manner appropriate for describing

rotational motion as follows. If r.t/ is the position of the particle at time t , then, since

v� v D 0,

d

dt
.r�p/ D

d

dt

�

r� .mv/
�

D v� .mv/C r�
d

dt
.mv/ D r�F:

The quantities H D r� .mv/ and T D r�F are, respectively, the angular momentum

of the particle about the origin and the torque of F about the origin. We have shown

that

T D
dH

dt
I

the torque of the external forces is equal to the rate of change of the angular momentum

of the particle. This is the analogue for rotational motion of F D dp=dt .

E Rotating Frames and the Coriolis Effect
The procedure of differentiating a vector function by differentiating its components is

valid only if the basis vectors themselves do not depend on the variable of differenti-

ation. In some situations in mechanics this is not the case. For instance, in modelling

large-scale weather phenomena the analysis is affected by the fact that a coordinate

system fixed with respect to the earth is, in fact, rotating (along with the earth) relative

to directions fixed in space.
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In order to understand the effect that the rotation of the coordinate system has on

representations of velocity and acceleration, let us consider two Cartesian coordinate

frames (i.e., systems of axes with corresponding unit basis vectors), a “fixed” frame

with basis fI; J;Kg, not rotating with the earth, and a rotating frame with basis fi; j;kg

attached to the earth and therefore rotating with the same angular speed as the earth,

namely, �=12 radians/hour. Let us take the origin of the fixed frame to be at the

centre of the earth, with K pointing north. Then the angular velocity of the earth is

� D .�=12/K. The fixed frame is being carried along with the earth in its orbit around

the sun, but it is not rotating with the earth, and, since the earth’s orbital rotation around

the sun has angular speed only 1/365th of the angular speed of its rotation about its

axis, we can ignore the much smaller effect of the motion of the earth along its orbit.

Let us take the origin of the rotating frame to be at the location of an observer on

the surface of the earth, say, at point P0 with position vector R0 with respect to the

fixed frame.1 Assume that P0 has colatitude � (the angle between R0 and K) satisfying

0 < � < � , so that P0 is not at either the north pole or the south pole. Let us assume

that i and j point, respectively, due east and north at P0. Thus, k must point directly

upward there. (See Figure 11.5.)

Figure 11.5 The fixed and local frames
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Since each of the vectors i, j, k, and R0 is rotating with the earth (with angular

velocity �), we have, as shown earlier in this section,

d i

dt
D �� i;

d j

dt
D �� j;

d k

dt
D �� k; and

d R0

dt
D ��R0:

Any vector function can be expressed in terms of either basis. Let us denote by R.t/,

V.t/, and A.t/ the position, velocity, and acceleration of a moving object with respect

to the fixed frame, and by r.t/, v.t/, and a.t/ the same quantities with respect to the

rotating frame. Thus,

R D XIC Y JCZK;

V D
dX

dt
IC

dY

dt
JC

dZ

dt
K;

A D
d2X

dt2
IC

d2Y

dt2
JC

d2Z

dt2
K;

r D xiC yjC zk;

v D
dx

dt
iC

dy

dt
jC

dz

dt
k;

a D
d2x

dt2
iC

d2y

dt2
jC

d2z

dt2
k:

How are the rotating-frame values of these vectors related to the fixed-frame values?

Since the origin of the rotating frame is at R0, we have (see Figure 11.6)

r

P0

R

R0

observer

centre of the earth

moving object

Figure 11.6 Position vectors relative to

the fixed and rotating frames

R D R0 C r:

1 The authors are grateful to Professor Lon Rosen for suggesting this approach to the analysis of the

rotating frame.
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P travels once around this circle (2� radians) in time t D 2�=�, so the angular speed

is �. Therefore, � D 2 and the motion of the particle is given by

r D iC 3 cos.2t/jC 3 sin.2t/k:

METHOD II. Break the given vector differential equation into components:

dx

dt
iC

dy

dt
jC

dz

dt
k D 2i� .xiC yjC zk/ D �2zjC 2yk

dx

dt
D 0;

dy

dt
D �2z;

dz

dt
D 2y:

The first equation implies that x = constant. Since x.0/ D 1, we have x.t/ D 1 for all

t . Differentiate the second equation with respect to t and substitute the third equation.

This leads to the equation of simple harmonic motion for y,

d 2y

dt2
D �2

dz

dt
D �4y;

for which a general solution is

y D A cos.2t/C B sin.2t/:

Thus, z D �1
2
.dy=dt/ D A sin.2t/ � B cos.2t/. Since y.0/ D 3 and z.0/ D 0, we

have A D 3 and B D 0. Thus, the particle P travels counterclockwise around the

circular path

r D iC 3 cos.2t/jC 3 sin.2t/k

in the plane x D 1 with angular speed 2.

Remark Newton’s Second Law states that F D .d=dt/.mv/ D dp=dt , where

p D mv is the (linear) momentum of a particle of mass m moving under the influence

of a force F. This law may be reformulated in a manner appropriate for describing

rotational motion as follows. If r.t/ is the position of the particle at time t , then, since

v� v D 0,

d

dt
.r�p/ D

d

dt

�

r� .mv/
�

D v� .mv/C r�
d

dt
.mv/ D r�F:

The quantities H D r� .mv/ and T D r�F are, respectively, the angular momentum

of the particle about the origin and the torque of F about the origin. We have shown

that

T D
dH

dt
I

the torque of the external forces is equal to the rate of change of the angular momentum

of the particle. This is the analogue for rotational motion of F D dp=dt .

E Rotating Frames and the Coriolis Effect
The procedure of differentiating a vector function by differentiating its components is

valid only if the basis vectors themselves do not depend on the variable of differenti-

ation. In some situations in mechanics this is not the case. For instance, in modelling

large-scale weather phenomena the analysis is affected by the fact that a coordinate

system fixed with respect to the earth is, in fact, rotating (along with the earth) relative

to directions fixed in space.
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In order to understand the effect that the rotation of the coordinate system has on

representations of velocity and acceleration, let us consider two Cartesian coordinate

frames (i.e., systems of axes with corresponding unit basis vectors), a “fixed” frame

with basis fI; J;Kg, not rotating with the earth, and a rotating frame with basis fi; j;kg

attached to the earth and therefore rotating with the same angular speed as the earth,

namely, �=12 radians/hour. Let us take the origin of the fixed frame to be at the

centre of the earth, with K pointing north. Then the angular velocity of the earth is

� D .�=12/K. The fixed frame is being carried along with the earth in its orbit around

the sun, but it is not rotating with the earth, and, since the earth’s orbital rotation around

the sun has angular speed only 1/365th of the angular speed of its rotation about its

axis, we can ignore the much smaller effect of the motion of the earth along its orbit.

Let us take the origin of the rotating frame to be at the location of an observer on

the surface of the earth, say, at point P0 with position vector R0 with respect to the

fixed frame.1 Assume that P0 has colatitude � (the angle between R0 and K) satisfying

0 < � < � , so that P0 is not at either the north pole or the south pole. Let us assume

that i and j point, respectively, due east and north at P0. Thus, k must point directly

upward there. (See Figure 11.5.)
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Since each of the vectors i, j, k, and R0 is rotating with the earth (with angular

velocity �), we have, as shown earlier in this section,

d i

dt
D �� i;

d j

dt
D �� j;

d k

dt
D �� k; and

d R0

dt
D ��R0:

Any vector function can be expressed in terms of either basis. Let us denote by R.t/,

V.t/, and A.t/ the position, velocity, and acceleration of a moving object with respect

to the fixed frame, and by r.t/, v.t/, and a.t/ the same quantities with respect to the

rotating frame. Thus,

R D XIC Y JCZK;

V D
dX

dt
IC

dY

dt
JC

dZ

dt
K;

A D
d2X

dt2
IC

d2Y

dt2
JC

d2Z

dt2
K;

r D xiC yjC zk;

v D
dx

dt
iC

dy

dt
jC

dz

dt
k;

a D
d2x

dt2
iC

d2y

dt2
jC

d2z

dt2
k:

How are the rotating-frame values of these vectors related to the fixed-frame values?

Since the origin of the rotating frame is at R0, we have (see Figure 11.6)
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P0

R

R0
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centre of the earth

moving object

Figure 11.6 Position vectors relative to

the fixed and rotating frames

R D R0 C r:

1 The authors are grateful to Professor Lon Rosen for suggesting this approach to the analysis of the

rotating frame.
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When we differentiate with respect to time, we must remember that R0, i, j, and k all

depend on time. Therefore,

V D
dR

dt
D

dR0

dt
C

dx

dt
iC x

d i

dt
C

dy

dt
jC y

d j

dt
C

dz

dt
kC z

dk

dt

D vC��R0 C x�� iC y�� jC z�� k

D vC��R0 C�� r

D vC��R:

Similarly,

A D
dV

dt
D

d

dt
.vC��R/

D

d
2
x

dt2
iC

dx

dt

d i

dt
C

d
2
y

dt2
jC

dy

dt

d j

dt
C

d
2
z

dt2
kC

dz

dt

dk

dt
C��

dR

dt

D aC�� vC�� .V/

D aC 2�� vC�� .��R/:

The term 2�� v is called the Coriolis acceleration, and the term �� .��R/ is

called the centripetal acceleration.

Suppose our moving object has mass m and is acted on by an external force F. By

Newton’s Second Law,

F D mA D maC 2m�� vCm�� .��R/;

or, equivalently,

a D
F

m
� 2�� v ��� .��R/:

To the observer on the rotating earth, the object appears to be subject to F and to two

other forces, a Coriolis force, whose value per unit mass is�2�� v, and a centrifugal

force, whose value per unit mass is��� .��R/. The centrifugal and Coriolis forces

are not “real” forces acting on the object. They are fictitious forces that compensate

for the fact that we are measuring acceleration with respect to a frame that we are

regarding as fixed, although it is really rotating and hence accelerating.

Observe that the centrifugal force points directly away from the polar axis of the

earth. It represents the effect that the moving object wants to continue moving in a

straight line and “fly off” from the earth rather than continuing to rotate along with the

observer. This force is greatest at the equator (where � is perpendicular to R), but it is

of very small magnitude: j�j2jR0j � 0:003g.

The Coriolis force is quite different in nature from the centrifugal force. In partic-

ular, it is zero if the observer perceives the object to be at rest. It is perpendicular to

both the velocity of the object and the polar axis of the earth, and its magnitude can be

as large as 2j�jjvj; and, in particular, it can be larger than that of the centrifugal force

if jvj is sufficiently large.

E X A M P L E 3
(Winds around the eye of a storm) The circulation of winds

around a storm centre is an example of the Coriolis effect. The eye

of a storm is an area of low pressure sucking air toward it. The direction of rotation of

the earth is such that the angular velocity � points north and is parallel to the earth’s

axis of rotation. At any point P on the surface of the earth we can express � as a sum

of tangential (to the earth’s surface) and normal components (see Figure 11.7(a)),

�.P / D �T .P /C�N .P /:
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If P is in the northern hemisphere, �N .P / points upward (away from the centre of

the earth). At such a point the Coriolis “force” C D �2�.P /� v on a particle of air

moving with horizontal velocity v would itself have horizontal and normal components

C D �2�T � v � 2�N � v D CN C CT :

The normal component of the Coriolis force has negligible effect, since air is not free

to travel great distances vertically. However, the tangential component of the Coriolis

force, CT D �2�N � v, is 90ı to the right of v (i.e., clockwise from v). Therefore,

particles of air that are being sucked toward the eye of the storm experience Coriolis

deflection to the right and so actually spiral into the eye in a counterclockwise direction.

The opposite is true in the southern hemisphere, where the normal component �N is

downward (into the earth). The suction force F, the velocity v, and the component

of the Coriolis force tangential to the earth’s surface, CT , are shown at two positions

on the path of an air particle spiralling around a low-pressure area in the northern

hemisphere in Figure 11.7(b).

Figure 11.7

(a) Tangential and normal components of

the angular velocity of the earth in the

northern and southern hemispheres

(b) In the northern hemisphere the

tangential Coriolis force deflects

winds to the right of the path toward

the low-pressure area L so the winds

move counterclockwise around the

centre of L

N
�
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�
�N

S
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v
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Remark Strong winds spiralling inward around low-pressure areas are called cy-

clones. Strong winds spiralling outward around high-pressure areas are called

anticyclones. The latter spiral counterclockwise in the southern hemisphere and clock-

wise in the northern hemisphere. The Coriolis effect also accounts for the high-

velocity eastward-flowing jet streams in the upper atmosphere at midlatitudes in both

hemispheres, the energy being supplied by the rising of warm tropical air and its sub-

sequent moving toward the poles.

The relationships between the basis vectors in the fixed and rotating frames can be

used to analyze many phenomena. Recall that R0 makes angle � with K. Suppose the

projection of R0 onto the equatorial plane (containing I and J) makes angle � with I,

as shown in Figure 11.5. Careful consideration of that figure should convince you that

i D � sin �IC cos �J

j D � cos � cos �I� cos� sin �JC sin�K

k D sin� cos �IC sin� sin �JC cos�K:

Similarly, or by solving the above equations for I, J, and K,

I D � sin � i � cos� cos �jC sin� cos �k

J D cos � i � cos� sin �jC sin� sin �k

K D sin�jC cos�k:

Note that as the earth rotates on its axis, � remains constant while � increases at .�=12/

radians/hour.
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When we differentiate with respect to time, we must remember that R0, i, j, and k all

depend on time. Therefore,

V D
dR

dt
D

dR0

dt
C

dx

dt
iC x

d i

dt
C

dy

dt
jC y

d j

dt
C

dz

dt
kC z

dk

dt

D vC��R0 C x�� iC y�� jC z�� k

D vC��R0 C�� r

D vC��R:

Similarly,

A D
dV

dt
D

d

dt
.vC��R/

D

d
2
x

dt2
iC

dx

dt

d i

dt
C

d
2
y

dt2
jC

dy

dt

d j

dt
C

d
2
z

dt2
kC

dz

dt

dk

dt
C��

dR

dt

D aC�� vC�� .V/

D aC 2�� vC�� .��R/:

The term 2�� v is called the Coriolis acceleration, and the term �� .��R/ is

called the centripetal acceleration.

Suppose our moving object has mass m and is acted on by an external force F. By

Newton’s Second Law,

F D mA D maC 2m�� vCm�� .��R/;

or, equivalently,

a D
F

m
� 2�� v ��� .��R/:

To the observer on the rotating earth, the object appears to be subject to F and to two

other forces, a Coriolis force, whose value per unit mass is�2�� v, and a centrifugal

force, whose value per unit mass is��� .��R/. The centrifugal and Coriolis forces

are not “real” forces acting on the object. They are fictitious forces that compensate

for the fact that we are measuring acceleration with respect to a frame that we are

regarding as fixed, although it is really rotating and hence accelerating.

Observe that the centrifugal force points directly away from the polar axis of the

earth. It represents the effect that the moving object wants to continue moving in a

straight line and “fly off” from the earth rather than continuing to rotate along with the

observer. This force is greatest at the equator (where � is perpendicular to R), but it is

of very small magnitude: j�j2jR0j � 0:003g.

The Coriolis force is quite different in nature from the centrifugal force. In partic-

ular, it is zero if the observer perceives the object to be at rest. It is perpendicular to

both the velocity of the object and the polar axis of the earth, and its magnitude can be

as large as 2j�jjvj; and, in particular, it can be larger than that of the centrifugal force

if jvj is sufficiently large.

E X A M P L E 3
(Winds around the eye of a storm) The circulation of winds

around a storm centre is an example of the Coriolis effect. The eye

of a storm is an area of low pressure sucking air toward it. The direction of rotation of

the earth is such that the angular velocity � points north and is parallel to the earth’s

axis of rotation. At any point P on the surface of the earth we can express � as a sum

of tangential (to the earth’s surface) and normal components (see Figure 11.7(a)),

�.P / D �T .P /C�N .P /:
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If P is in the northern hemisphere, �N .P / points upward (away from the centre of

the earth). At such a point the Coriolis “force” C D �2�.P /� v on a particle of air

moving with horizontal velocity v would itself have horizontal and normal components

C D �2�T � v � 2�N � v D CN C CT :

The normal component of the Coriolis force has negligible effect, since air is not free

to travel great distances vertically. However, the tangential component of the Coriolis

force, CT D �2�N � v, is 90ı to the right of v (i.e., clockwise from v). Therefore,

particles of air that are being sucked toward the eye of the storm experience Coriolis

deflection to the right and so actually spiral into the eye in a counterclockwise direction.

The opposite is true in the southern hemisphere, where the normal component �N is

downward (into the earth). The suction force F, the velocity v, and the component

of the Coriolis force tangential to the earth’s surface, CT , are shown at two positions

on the path of an air particle spiralling around a low-pressure area in the northern

hemisphere in Figure 11.7(b).

Figure 11.7

(a) Tangential and normal components of

the angular velocity of the earth in the

northern and southern hemispheres

(b) In the northern hemisphere the

tangential Coriolis force deflects

winds to the right of the path toward

the low-pressure area L so the winds

move counterclockwise around the
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Remark Strong winds spiralling inward around low-pressure areas are called cy-

clones. Strong winds spiralling outward around high-pressure areas are called

anticyclones. The latter spiral counterclockwise in the southern hemisphere and clock-

wise in the northern hemisphere. The Coriolis effect also accounts for the high-

velocity eastward-flowing jet streams in the upper atmosphere at midlatitudes in both

hemispheres, the energy being supplied by the rising of warm tropical air and its sub-

sequent moving toward the poles.

The relationships between the basis vectors in the fixed and rotating frames can be

used to analyze many phenomena. Recall that R0 makes angle � with K. Suppose the

projection of R0 onto the equatorial plane (containing I and J) makes angle � with I,

as shown in Figure 11.5. Careful consideration of that figure should convince you that

i D � sin �IC cos �J

j D � cos � cos �I� cos� sin �JC sin�K

k D sin� cos �IC sin� sin �JC cos�K:

Similarly, or by solving the above equations for I, J, and K,

I D � sin � i � cos� cos �jC sin� cos �k

J D cos � i � cos� sin �jC sin� sin �k

K D sin�jC cos�k:

Note that as the earth rotates on its axis, � remains constant while � increases at .�=12/

radians/hour.
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E X A M P L E 4
Suppose that the direction to the sun lies in the plane of I and K,

and makes angle � with I. Thus, the sun lies in the direction of the

vector

S D cos �IC sin �K:

(� D 0 at the March and September equinoxes, and � � 23:5ı and �23:5ı at the June

and December solstices.) Find the length of the day (the time between sunrise and

sunset) for an observer at colatitude �.

Solution The sun will be “up” for the observer if the angle between S and k does not

exceed �=2, that is, if S � k � 0. Thus, daytime corresponds to

cos � sin� cos � C sin � cos� � 0;

or, equivalently, cos � � �
tan �

tan�
. Sunup and sundown occur where equality occurs,

namely, when

� D �0 D ˙ cos�1

�

�

tan �

tan�

�

if such values exist. (They will exist if � � � � 0 or if � �� � �� � 0:) In this case,

daytime for the observer lasts

2�0

2�
� 24 D

24

�
cos�1

�

�

tan �

tan �

�

hours.

For instance, on June 21st at the Arctic Circle (so � D �), daytime lasts

.24=�/ cos�1
.�1/ D 24 hours.

E X E R C I S E S 11.2

1. What fraction of its total initial mass would the rocket

considered in Example 1 have to burn as fuel in order to

accelerate in a straight line from rest to the speed of its own

exhaust gases? to twice that speed?

2.I When run at maximum power output, the motor in a

self-propelled tank car can accelerate the full car (mass

M kg) along a horizontal track at a m/s2. The tank is full at

time zero, but the contents pour out of a hole in the bottom at

rate k kg/s thereafter. If the car is at rest at time zero and full

forward power is turned on at that time, how fast will it be

moving at any time t before the tank is empty?

3.P Solve the initial-value problem

dr

dt
D k� r; r.0/ D iC k:

Describe the curve r D r.t/.

4.P An object moves so that its position vector r.t/ satisfies

dr

dt
D a�

�

r.t/ � b
�

and r.0/ D r0. Here, a, b, and r0 are given constant vectors

with a ¤ 0. Describe the path along which the object moves.

The Coriolis effect

5.I A satellite is in a low, circular, polar orbit around the earth

(i.e., passing over the north and south poles). It makes one

revolution every two hours. An observer standing on the earth

at the equator sees the satellite pass directly overhead. In what

direction does it seem to the observer to be moving? From the

observer’s point of view, what is the approximate value of the

Coriolis force acting on the satellite?

6.I Repeat Exercise 5 for an observer at a latitude of 45ı in the

northern hemisphere.

7.I Describe the tangential and normal components of the

Coriolis force on a particle moving with horizontal velocity v

at (a) the north pole, (b) the south pole, and (c) the equator. In

general, what is the effect of the normal component of the

Coriolis force near the eye of a storm?

8.I (The location of sunrise and sunset) Extend the argument in

Example 4 to determine where on the horizon of the observer

at P0 the sun will rise and set. Specifically, if � is the angle

between j and S (the direction to the sun) at sunrise or sunset,

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 643 October 17, 2016

SECTION 11.3: Curves and Parametrizations 643

show that

cos� D
sin �

sin�
:

For example, if � D 0 (the equinoxes), then � D �=2 at all

colatitudes �; the sun rises due east and sets due west on those

days.

9. Vancouver, Canada, has latitude 49:2ı N, so its colatitude is

40:8ı. How long is the sun visible in Vancouver on June 21st?

Or rather, how long would it be visible if it weren’t raining and

if there were not so many mountains around? At what angle

away from north would the sun rise and set?

10. Repeat Exercise 9 for Umea, Sweden (latitude 63:5ı N).

11.3 Curves and Parametrizations
In this section we will consider curves as geometric objects rather than as paths of

moving particles. Everyone has an intuitive idea of what a curve is, but it is difficult to

give a formal definition of a curve as a geometric object (i.e., as a certain kind of set

of points) without involving the concept of parametric representation. We will avoid

this difficulty by continuing to regard a curve in 3-space as the set of points whose

positions are given by the position vector function

r D r.t/ D x.t/iC y.t/jC z.t/k; a � t � b:

However, the parameter t need no longer represent time or any other specific physical

quantity.

E X A M P L E 1
Use t D y to parametrize the part of the line of intersection of the

two planes y D 2x�4 and z D 3xC1 from .2; 0; 7/ to .3; 2; 10/.

Solution We need to express all three coordinates of an arbitrary point on the line

as functions of t D y. Since y D t , the equation y D 2x � 4 assures us that x D
1
2
.yC4/ D

1
2
.tC4/. Then the equation z D 3xC1 gives z D 3

2
.tC4/C1 D

3
2
tC7.

Since the line segment goes from y D 0 to y D 2, the required parametrization is

r D
t C 4

2
iC tjC

�

3

2
t C 7

�

k; 0 � t � 2:

E X A M P L E 2
The plane x C y D 1 intersects the paraboloid z D x2

C y2

in a parabola. Parametrize the whole parabola using t D x as

parameter. Could t D y have been used as the parameter? What about t D z?

Solution From the equations of the two surfaces defining the parabola, we have y D

1�x D 1� t , and z D x2
Cy2

D 1�2t C2t2. Thus, the required parametrization is

r D t iC .1 � t/jC .1 � 2t C 2t2/k; �1 < t <1:

We could use t D y instead of t D x as the parameter; in this case the parametrization

would be r D .1� t/iC tjC .1� 2t C 2t2/k; �1 < t <1. However, if we try to

use t D z as the parameter, we would have to solve the system of equations xCy D 1,

x
2
C y

2
D t for x and y. This system has two possible solutions, each corresponding

to a different half of the parabola starting at the lowest point
�

1
2
;

1
2
;

1
2

�

because there

are two points on the parabola at each height z > 1
2

. The whole parabola cannot be

parametrized using z as the parameter.
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E X A M P L E 4
Suppose that the direction to the sun lies in the plane of I and K,

and makes angle � with I. Thus, the sun lies in the direction of the

vector

S D cos �IC sin �K:

(� D 0 at the March and September equinoxes, and � � 23:5ı and �23:5ı at the June

and December solstices.) Find the length of the day (the time between sunrise and

sunset) for an observer at colatitude �.

Solution The sun will be “up” for the observer if the angle between S and k does not

exceed �=2, that is, if S � k � 0. Thus, daytime corresponds to

cos � sin� cos � C sin � cos� � 0;

or, equivalently, cos � � �
tan �

tan�
. Sunup and sundown occur where equality occurs,

namely, when

� D �0 D ˙ cos�1

�

�

tan �

tan�

�

if such values exist. (They will exist if � � � � 0 or if � �� � �� � 0:) In this case,

daytime for the observer lasts

2�0

2�
� 24 D

24

�
cos�1

�

�

tan �

tan �

�

hours.

For instance, on June 21st at the Arctic Circle (so � D �), daytime lasts

.24=�/ cos�1
.�1/ D 24 hours.

E X E R C I S E S 11.2

1. What fraction of its total initial mass would the rocket

considered in Example 1 have to burn as fuel in order to

accelerate in a straight line from rest to the speed of its own

exhaust gases? to twice that speed?

2.I When run at maximum power output, the motor in a

self-propelled tank car can accelerate the full car (mass

M kg) along a horizontal track at a m/s2. The tank is full at

time zero, but the contents pour out of a hole in the bottom at

rate k kg/s thereafter. If the car is at rest at time zero and full

forward power is turned on at that time, how fast will it be

moving at any time t before the tank is empty?

3.P Solve the initial-value problem

dr

dt
D k� r; r.0/ D iC k:

Describe the curve r D r.t/.

4.P An object moves so that its position vector r.t/ satisfies

dr

dt
D a�

�

r.t/ � b
�

and r.0/ D r0. Here, a, b, and r0 are given constant vectors

with a ¤ 0. Describe the path along which the object moves.

The Coriolis effect

5.I A satellite is in a low, circular, polar orbit around the earth

(i.e., passing over the north and south poles). It makes one

revolution every two hours. An observer standing on the earth

at the equator sees the satellite pass directly overhead. In what

direction does it seem to the observer to be moving? From the

observer’s point of view, what is the approximate value of the

Coriolis force acting on the satellite?

6.I Repeat Exercise 5 for an observer at a latitude of 45ı in the

northern hemisphere.

7.I Describe the tangential and normal components of the

Coriolis force on a particle moving with horizontal velocity v

at (a) the north pole, (b) the south pole, and (c) the equator. In

general, what is the effect of the normal component of the

Coriolis force near the eye of a storm?

8.I (The location of sunrise and sunset) Extend the argument in

Example 4 to determine where on the horizon of the observer

at P0 the sun will rise and set. Specifically, if � is the angle

between j and S (the direction to the sun) at sunrise or sunset,
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show that

cos� D
sin �

sin�
:

For example, if � D 0 (the equinoxes), then � D �=2 at all

colatitudes �; the sun rises due east and sets due west on those

days.

9. Vancouver, Canada, has latitude 49:2ı N, so its colatitude is

40:8ı. How long is the sun visible in Vancouver on June 21st?

Or rather, how long would it be visible if it weren’t raining and

if there were not so many mountains around? At what angle

away from north would the sun rise and set?

10. Repeat Exercise 9 for Umea, Sweden (latitude 63:5ı N).

11.3 Curves and Parametrizations
In this section we will consider curves as geometric objects rather than as paths of

moving particles. Everyone has an intuitive idea of what a curve is, but it is difficult to

give a formal definition of a curve as a geometric object (i.e., as a certain kind of set

of points) without involving the concept of parametric representation. We will avoid

this difficulty by continuing to regard a curve in 3-space as the set of points whose

positions are given by the position vector function

r D r.t/ D x.t/iC y.t/jC z.t/k; a � t � b:

However, the parameter t need no longer represent time or any other specific physical

quantity.

E X A M P L E 1
Use t D y to parametrize the part of the line of intersection of the

two planes y D 2x�4 and z D 3xC1 from .2; 0; 7/ to .3; 2; 10/.

Solution We need to express all three coordinates of an arbitrary point on the line

as functions of t D y. Since y D t , the equation y D 2x � 4 assures us that x D
1
2
.yC4/ D

1
2
.tC4/. Then the equation z D 3xC1 gives z D 3

2
.tC4/C1 D

3
2
tC7.

Since the line segment goes from y D 0 to y D 2, the required parametrization is

r D
t C 4

2
iC tjC

�

3

2
t C 7

�

k; 0 � t � 2:

E X A M P L E 2
The plane x C y D 1 intersects the paraboloid z D x2

C y2

in a parabola. Parametrize the whole parabola using t D x as

parameter. Could t D y have been used as the parameter? What about t D z?

Solution From the equations of the two surfaces defining the parabola, we have y D

1�x D 1� t , and z D x2
Cy2

D 1�2t C2t2. Thus, the required parametrization is

r D t iC .1 � t/jC .1 � 2t C 2t2/k; �1 < t <1:

We could use t D y instead of t D x as the parameter; in this case the parametrization

would be r D .1� t/iC tjC .1� 2t C 2t2/k; �1 < t <1. However, if we try to

use t D z as the parameter, we would have to solve the system of equations xCy D 1,

x
2
C y

2
D t for x and y. This system has two possible solutions, each corresponding

to a different half of the parabola starting at the lowest point
�

1
2
;

1
2
;

1
2

�

because there

are two points on the parabola at each height z > 1
2

. The whole parabola cannot be

parametrized using z as the parameter.
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Curves can be very pathological. For instance, there exist continuous curves that

pass through every point in a cube. It is difficult to think of such a curve as a one-

dimensional object. In order to avoid such strange objects we assume hereafter that the

defining function r.t/ has a continuous first derivative, dr=dt , which we will continue

to call “velocity” and denote by v.t/ by analogy with the physical case where t is time.

(We also continue to call v.t/ D jv.t/j the “speed.”) As we will see later, this implies

that the curve has an arc length between any two points corresponding to parameter

values t1 and t2; if t1 < t2, this arc length is

Z t2

t1

v.t/ dt D

Z t2

t1

jv.t/j dt D

Z t2

t1

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ dt:

Frequently we will want r.t/ to have continuous derivatives of higher order. Whenever

needed, we will assume that the “acceleration,” a.t/ D d2r=dt2, and even the third

derivative, d3r=dt3, are continuous. Of course, most of the curves we encounter in

practice have parametrizations with continuous derivatives of all orders.

It must be recalled, however, that no assumptions on the continuity of derivatives

of the function r.t/ are sufficient to guarantee that the curve r D r.t/ is a “smooth”

curve. It may fail to be smooth at a point where v D 0. (See Example 1 in Section

11.1.) We will show in the next section that if, besides being continuous, the velocity

vector v.t/ is never the zero vector, then the curve r D r.t/ is smooth in the sense that

it has a continuously turning tangent line.

Although we have said that a curve is a set of points given by a parametric equation

r D r.t/, there is no unique way of representing a given curve parametrically. Just

as two cars can travel the same highway at different speeds, stopping and starting at

different places, so too can the same curve be defined by different parametrizations; a

given curve can have infinitely many different parametrizations.

E X A M P L E 3
Show that the vector functions

r1.t/ D sin t iC cos t j, .��=2 � t � �=2/;

r2.t/ D .t � 1/ iC
p

2t � t2 j, .0 � t � 2/; and

r3.t/ D t
p

2 � t2 iC .1 � t2/ j, .�1 � t � 1/

all represent the same curve. Describe the curve.

Solution All three functions represent points in the xy-plane. The function r1.t/

starts at the point .�1; 0/ with position vector r1.��=2/ D �i and ends at the point

.1; 0/ with position vector i. It lies in the half of the xy-plane where y � 0 (because

cos t � 0 for .��=2 � t � �=2/). Finally, all points on the curve are at distance 1

from the origin:

jr1.t/j D

p

.sin t/2 C .cos t/2 D 1:

Therefore, r1.t/ represents the semicircle y D
p

1 � x2 in the xy-plane traversed

from left to right.

y

x

C

.�1;0/ .1;0/

Figure 11.8 Three parametrizations of the

semicircle C are given in Example 3

The other two functions have the same properties: both graphs lie in y � 0,

r2.0/ D �i;

r3.�1/ D �i;

r2.2/ D i;

r3.1/ D i;

jr2.t/j D

p

.t � 1/2 C 2t � t2 D 1;

jr3.t/j D

p

t2.2 � t2/C .1 � t2/2 D 1:

Thus, all three functions represent the same semicircle (see Figure 11.8). Of course,

the three parametrizations trace out the curve with different velocities.
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The curve r D r.t/, .a � t � b/, is called a closed curve if r.a/ D r.b/, that is, if the

curve begins and ends at the same point. The curve C is non–self-intersecting if there

exists some parametrization r D r.t/, .a � t � b/, of C that is one-to-one except that

the endpoints could be the same:

r.t1/ D r.t2/ a � t1 < t2 � b ÷ t1 D a and t2 D b:

Such a curve can be closed, but otherwise does not intersect itself; it is then called a

simple closed curve. Circles and ellipses are examples of simple closed curves. Ev-

ery parametrization of a particular curve determines one of two possible orientations

corresponding to the direction along the curve in which the parameter is increasing.

Figure 11.9 illustrates these concepts. All three parametrizations of the semicircle in

tDa
tDa

tDa; tDb
tDa; tDb

tDb
tDb

C1
C2

C3 C4

Figure 11.9 Curves C1 and C3 are

non–self-intersecting

Curves C2 and C4 intersect themselves

Curves C1 and C2 are not closed

Curves C3 and C4 are closed

Curve C3 is a simple closed curve

Example 3 orient the semicircle clockwise as viewed from a point above the xy-plane.

This orientation is shown by the arrowheads on the curve in Figure 11.8. The same

semicircle could be given the opposite orientation by, for example, the parametrization

r.t/ D cos t iC sin t j; 0 � t � �:

Parametrizing the Curve of Intersection of Two Surfaces
Frequently, a curve is specified as the intersection of two surfaces with given Cartesian

equations. We may want to represent the curve by parametric equations. There is

no unique way to do this, but if one of the given surfaces is a cylinder parallel to a

coordinate axis (so its equation is independent of one of the variables), we can begin

by parametrizing that surface. The following examples clarify the method.

E X A M P L E 4
Parametrize the curve of intersection of the plane xC2yC4z D 4

and the elliptic cylinder x2
C 4y2

D 4.

Solution We begin with the equation x2
C 4y2

D 4, which is independent of z. It

can be parametrized in many ways; one convenient way is

x D 2 cos t; y D sin t; .0 � t � 2�/:

The equation of the plane can then be solved for z, so that z can be expressed in terms

of t :

z D
1

4
.4 � x � 2y/ D 1 �

1

2
.cos t C sin t/:

Thus, the given surfaces intersect in the curve (see Figure 11.10)

x

y

z x2
C 4y2

D 4

x C 2y C 4z D 4

Figure 11.10 The curve (red) of

intersection of an oblique plane (blue) and

an elliptic cylinder (green)

r D 2 cos t iC sin tjC

�

1 �
cos t C sin t

2

�

k; .0 � t � 2�/:

E X A M P L E 5
Find a parametric representation of the curve of intersection of the

two surfaces

x
2
C y C z D 2 and xy C z D 1:

Solution Here, neither given equation is independent of a variable, but we can obtain

a third equation representing a surface containing the curve of intersection of the two

given surfaces by subtracting the two given equations to eliminate z:

x
2
C y � xy D 1:
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Curves can be very pathological. For instance, there exist continuous curves that

pass through every point in a cube. It is difficult to think of such a curve as a one-

dimensional object. In order to avoid such strange objects we assume hereafter that the

defining function r.t/ has a continuous first derivative, dr=dt , which we will continue

to call “velocity” and denote by v.t/ by analogy with the physical case where t is time.

(We also continue to call v.t/ D jv.t/j the “speed.”) As we will see later, this implies

that the curve has an arc length between any two points corresponding to parameter

values t1 and t2; if t1 < t2, this arc length is

Z t2

t1

v.t/ dt D

Z t2

t1

jv.t/j dt D

Z t2

t1

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ dt:

Frequently we will want r.t/ to have continuous derivatives of higher order. Whenever

needed, we will assume that the “acceleration,” a.t/ D d2r=dt2, and even the third

derivative, d3r=dt3, are continuous. Of course, most of the curves we encounter in

practice have parametrizations with continuous derivatives of all orders.

It must be recalled, however, that no assumptions on the continuity of derivatives

of the function r.t/ are sufficient to guarantee that the curve r D r.t/ is a “smooth”

curve. It may fail to be smooth at a point where v D 0. (See Example 1 in Section

11.1.) We will show in the next section that if, besides being continuous, the velocity

vector v.t/ is never the zero vector, then the curve r D r.t/ is smooth in the sense that

it has a continuously turning tangent line.

Although we have said that a curve is a set of points given by a parametric equation

r D r.t/, there is no unique way of representing a given curve parametrically. Just

as two cars can travel the same highway at different speeds, stopping and starting at

different places, so too can the same curve be defined by different parametrizations; a

given curve can have infinitely many different parametrizations.

E X A M P L E 3
Show that the vector functions

r1.t/ D sin t iC cos t j, .��=2 � t � �=2/;

r2.t/ D .t � 1/ iC
p

2t � t2 j, .0 � t � 2/; and

r3.t/ D t
p

2 � t2 iC .1 � t2/ j, .�1 � t � 1/

all represent the same curve. Describe the curve.

Solution All three functions represent points in the xy-plane. The function r1.t/

starts at the point .�1; 0/ with position vector r1.��=2/ D �i and ends at the point

.1; 0/ with position vector i. It lies in the half of the xy-plane where y � 0 (because

cos t � 0 for .��=2 � t � �=2/). Finally, all points on the curve are at distance 1

from the origin:

jr1.t/j D

p

.sin t/2 C .cos t/2 D 1:

Therefore, r1.t/ represents the semicircle y D
p

1 � x2 in the xy-plane traversed

from left to right.

y

x

C

.�1;0/ .1;0/

Figure 11.8 Three parametrizations of the

semicircle C are given in Example 3

The other two functions have the same properties: both graphs lie in y � 0,

r2.0/ D �i;

r3.�1/ D �i;

r2.2/ D i;

r3.1/ D i;

jr2.t/j D

p

.t � 1/2 C 2t � t2 D 1;

jr3.t/j D

p

t2.2 � t2/C .1 � t2/2 D 1:

Thus, all three functions represent the same semicircle (see Figure 11.8). Of course,

the three parametrizations trace out the curve with different velocities.
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The curve r D r.t/, .a � t � b/, is called a closed curve if r.a/ D r.b/, that is, if the

curve begins and ends at the same point. The curve C is non–self-intersecting if there

exists some parametrization r D r.t/, .a � t � b/, of C that is one-to-one except that

the endpoints could be the same:

r.t1/ D r.t2/ a � t1 < t2 � b ÷ t1 D a and t2 D b:

Such a curve can be closed, but otherwise does not intersect itself; it is then called a

simple closed curve. Circles and ellipses are examples of simple closed curves. Ev-

ery parametrization of a particular curve determines one of two possible orientations

corresponding to the direction along the curve in which the parameter is increasing.

Figure 11.9 illustrates these concepts. All three parametrizations of the semicircle in

tDa
tDa

tDa; tDb
tDa; tDb

tDb
tDb

C1
C2

C3 C4

Figure 11.9 Curves C1 and C3 are

non–self-intersecting

Curves C2 and C4 intersect themselves

Curves C1 and C2 are not closed

Curves C3 and C4 are closed

Curve C3 is a simple closed curve

Example 3 orient the semicircle clockwise as viewed from a point above the xy-plane.

This orientation is shown by the arrowheads on the curve in Figure 11.8. The same

semicircle could be given the opposite orientation by, for example, the parametrization

r.t/ D cos t iC sin t j; 0 � t � �:

Parametrizing the Curve of Intersection of Two Surfaces
Frequently, a curve is specified as the intersection of two surfaces with given Cartesian

equations. We may want to represent the curve by parametric equations. There is

no unique way to do this, but if one of the given surfaces is a cylinder parallel to a

coordinate axis (so its equation is independent of one of the variables), we can begin

by parametrizing that surface. The following examples clarify the method.

E X A M P L E 4
Parametrize the curve of intersection of the plane xC2yC4z D 4

and the elliptic cylinder x2
C 4y2

D 4.

Solution We begin with the equation x2
C 4y2

D 4, which is independent of z. It

can be parametrized in many ways; one convenient way is

x D 2 cos t; y D sin t; .0 � t � 2�/:

The equation of the plane can then be solved for z, so that z can be expressed in terms

of t :

z D
1

4
.4 � x � 2y/ D 1 �

1

2
.cos t C sin t/:

Thus, the given surfaces intersect in the curve (see Figure 11.10)

x

y

z x2
C 4y2

D 4

x C 2y C 4z D 4

Figure 11.10 The curve (red) of

intersection of an oblique plane (blue) and

an elliptic cylinder (green)

r D 2 cos t iC sin tjC

�

1 �
cos t C sin t

2

�

k; .0 � t � 2�/:

E X A M P L E 5
Find a parametric representation of the curve of intersection of the

two surfaces

x
2
C y C z D 2 and xy C z D 1:

Solution Here, neither given equation is independent of a variable, but we can obtain

a third equation representing a surface containing the curve of intersection of the two

given surfaces by subtracting the two given equations to eliminate z:

x
2
C y � xy D 1:
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This equation is readily parametrized. If, for example, we let x D t , then

t
2
C y.1� t/ D 1; so y D

1 � t2

1 � t
D 1C t:

Either of the given equations can then be used to express z in terms of t :

z D 1 � xy D 1 � t.1C t/ D 1 � t � t
2
:

Thus, a possible parametrization of the curve is

r D t iC .1C t/jC .1 � t � t2/k:

Of course, this answer is not unique. Many other parametrizations can be found for the

curve, providing orientations in either direction.

Arc Length
We now consider how to define and calculate the length of a curve. Let C be a bounded,

continuous curve specified by

r D r.t/; a � t � b:

Subdivide the closed interval Œa; b� into n subintervals by points

a D t0 < t1 < t2 < � � � < tn�1 < tn D b:

The points ri D r.ti /, .0 � i � n/, subdivide C into n arcs. If we use the chord length

jri � ri�1j as an approximation to the arc length between ri�1 and ri , then the sum

sn D

n
X

iD1

jri � ri�1j

approximates the length of C by the length of a polygonal line. (See Figure 11.11.)

Evidently, any such approximation is less than or equal to the actual length of C. We

say that C is rectifiable if there exists a constant K such that sn � K for every n and

every choice of the points ti . In this case, the completeness axiom of the real number

system assures us that there will be a smallest such number K. We call this smallestK

the length of C and denote it by s. Let �ti D ti � ti�1 and �ri D ri � ri�1. Then sn
can be written in the form

sn D

n
X

iD1

ˇ

ˇ

ˇ

ˇ

�ri

�ti

ˇ

ˇ

ˇ

ˇ

�ti :

Figure 11.11 A polygonal approximation

to a curve C. The length of the polygonal

line cannot exceed the length of the curve.

In this figure the points on the curve are

labelled with their position vectors, but the

origin and these vectors are not themselves

shown
r0

r1

ri�1

C

r2

rn

ri

If r.t/ has a continuous derivative v.t/, then

s D lim
n!1

max �ti !0

sn D

Z b

a

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z b

a

jv.t/j dt D

Z b

a

v.t/ dt:

In kinematic terms, this formula states that the distance travelled by a moving particle

is the integral of its speed.
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Remark Although the above formula is expressed in terms of the parameter t , the

arc length, as defined above, is a strictly geometric property of the curve C. It is

independent of the particular parametrization used to represent C. See Exercise 27 at

the end of this section.

If s.t/ denotes the arc length of that part of C corresponding to parameter values

in Œa; t �, then

ds

dt
D

d

dt

Z t

a

v.�/ d� D v.t/;

so that the arc length element for C is given by

ds D v.t/ dt D

ˇ

ˇ

ˇ

ˇ

d

dt
r.t/

ˇ

ˇ

ˇ

ˇ

dt:

The length of C is the integral of these arc length elements; we write

Z

C
ds D length of C D

Z b

a

v.t/ dt:

Several familiar formulas for arc length follow from the above formula by using specific

parametrizations of curves. For instance, the arc length element ds for the Cartesian

plane curve y D f .x/ on Œa; b� is obtained by using x as parameter; here, r D xiC

f .x/j, so v D iC f 0
.x/j and

ds D

r

1C

�

f 0.x/
�2

dx:

Similarly, the arc length element ds for a plane polar curve r D g.�/ can be calculated

from the parametrization

r.�/ D g.�/ cos � iC g.�/ sin �j:

It is

ds D

r

�

g.�/

�2

C

�

g0.�/
�2

d�:

E X A M P L E 6
Find the length s of that part of the circular helix

r D a cos t iC a sin t jC bt k

between the points .a; 0; 0/ and .a; 0; 2�b/.

Solution This curve spirals around the z-axis, rising as it turns. (See Figure 11.12.)

It lies on the surface of the circular cylinder x2
C y2

D a2. We have

v D
dr

dt
D �a sin t iC a cos t jC bk

v D

p

a2
C b2;

so that in terms of the parameter t the helix is traced out at constant speed. The required

length s corresponds to parameter interval Œ0; 2��. Thus,

s D

Z 2�

0

v.t/ dt D

Z 2�

0

p

a2
C b2 dt D 2�

p

a2
C b2:

x

y

z

.a;0;2�b/

.a;0;0/

Figure 11.12 The helix

x D a cos t

y D a sin t

z D bt
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This equation is readily parametrized. If, for example, we let x D t , then

t
2
C y.1� t/ D 1; so y D

1 � t2

1 � t
D 1C t:

Either of the given equations can then be used to express z in terms of t :

z D 1 � xy D 1 � t.1C t/ D 1 � t � t
2
:

Thus, a possible parametrization of the curve is

r D t iC .1C t/jC .1 � t � t2/k:

Of course, this answer is not unique. Many other parametrizations can be found for the

curve, providing orientations in either direction.

Arc Length
We now consider how to define and calculate the length of a curve. Let C be a bounded,

continuous curve specified by

r D r.t/; a � t � b:

Subdivide the closed interval Œa; b� into n subintervals by points

a D t0 < t1 < t2 < � � � < tn�1 < tn D b:

The points ri D r.ti /, .0 � i � n/, subdivide C into n arcs. If we use the chord length

jri � ri�1j as an approximation to the arc length between ri�1 and ri , then the sum

sn D

n
X

iD1

jri � ri�1j

approximates the length of C by the length of a polygonal line. (See Figure 11.11.)

Evidently, any such approximation is less than or equal to the actual length of C. We

say that C is rectifiable if there exists a constant K such that sn � K for every n and

every choice of the points ti . In this case, the completeness axiom of the real number

system assures us that there will be a smallest such number K. We call this smallestK

the length of C and denote it by s. Let �ti D ti � ti�1 and �ri D ri � ri�1. Then sn
can be written in the form

sn D

n
X

iD1

ˇ

ˇ

ˇ

ˇ

�ri

�ti

ˇ

ˇ

ˇ

ˇ

�ti :

Figure 11.11 A polygonal approximation

to a curve C. The length of the polygonal

line cannot exceed the length of the curve.

In this figure the points on the curve are

labelled with their position vectors, but the

origin and these vectors are not themselves

shown
r0

r1

ri�1

C

r2

rn

ri

If r.t/ has a continuous derivative v.t/, then

s D lim
n!1

max �ti !0

sn D

Z b

a

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z b

a

jv.t/j dt D

Z b

a

v.t/ dt:

In kinematic terms, this formula states that the distance travelled by a moving particle

is the integral of its speed.
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Remark Although the above formula is expressed in terms of the parameter t , the

arc length, as defined above, is a strictly geometric property of the curve C. It is

independent of the particular parametrization used to represent C. See Exercise 27 at

the end of this section.

If s.t/ denotes the arc length of that part of C corresponding to parameter values

in Œa; t �, then

ds

dt
D

d

dt

Z t

a

v.�/ d� D v.t/;

so that the arc length element for C is given by

ds D v.t/ dt D

ˇ

ˇ

ˇ

ˇ

d

dt
r.t/

ˇ

ˇ

ˇ

ˇ

dt:

The length of C is the integral of these arc length elements; we write

Z

C
ds D length of C D

Z b

a

v.t/ dt:

Several familiar formulas for arc length follow from the above formula by using specific

parametrizations of curves. For instance, the arc length element ds for the Cartesian

plane curve y D f .x/ on Œa; b� is obtained by using x as parameter; here, r D xiC

f .x/j, so v D iC f 0
.x/j and

ds D

r

1C

�

f 0.x/
�2

dx:

Similarly, the arc length element ds for a plane polar curve r D g.�/ can be calculated

from the parametrization

r.�/ D g.�/ cos � iC g.�/ sin �j:

It is

ds D

r

�

g.�/

�2

C

�

g0.�/
�2

d�:

E X A M P L E 6
Find the length s of that part of the circular helix

r D a cos t iC a sin t jC bt k

between the points .a; 0; 0/ and .a; 0; 2�b/.

Solution This curve spirals around the z-axis, rising as it turns. (See Figure 11.12.)

It lies on the surface of the circular cylinder x2
C y2

D a2. We have

v D
dr

dt
D �a sin t iC a cos t jC bk

v D

p

a2
C b2;

so that in terms of the parameter t the helix is traced out at constant speed. The required

length s corresponds to parameter interval Œ0; 2��. Thus,

s D

Z 2�

0

v.t/ dt D

Z 2�

0

p

a2
C b2 dt D 2�

p

a2
C b2:

x

y

z

.a;0;2�b/

.a;0;0/

Figure 11.12 The helix

x D a cos t

y D a sin t

z D bt
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Piecewise Smooth Curves
As observed earlier, a parametric curve C given by r D r.t/ can fail to be smooth at

points where dr=dt D 0. If there are finitely many such points, we will say that the

curve is piecewise smooth.

In general, a piecewise smooth curve C consists of a finite number of smooth

arcs, C1, C2, : : : , Ck , as shown in Figure 11.13.

Figure 11.13 A piecewise smooth curve

C1

C2

Ck

r1.a1/

r1.b1/ D r2.a2/

rk.bk/

In this case we express C as the sum of the individual arcs:

C D C1 C C2 C � � � C Ck:

Each arc Ci can have its own parametrization

r D ri .t/; .ai � t � bi /;

where vi D dri=dt ¤ 0 for ai < t < bi . The fact that CiC1 must begin at the point

where Ci ends requires the conditions

riC1.aiC1/ D ri .bi / for 1 � i � k � 1:

If also rk.bk/ D r1.a1/, then C is a closed piecewise smooth curve.

The length of a piecewise smooth curve C D C1 C C2 C � � � C Ck is the sum of

the lengths of its component arcs:

length of C D

k
X

iD1

Z bi

ai

ˇ

ˇ

ˇ

ˇ

dri

dt

ˇ

ˇ

ˇ

ˇ

dt:

The Arc-Length Parametrization
The selection of a particular parameter in terms of which to specify a given curve

will usually depend on the problem in which the curve arises; there is no one “right

way” to parametrize a curve. However, there is one parameter that is “natural” in

that it arises from the geometry (shape and size) of the curve itself and not from any

particular coordinate system in which the equation of the curve is to be expressed. This

parameter is the arc length measured from some particular point (the initial point) on

the curve. The position vector of an arbitrary point P on the curve can be specified as

a function of the arc length s along the curve from the initial point P0 to P;

r D r.s/:

This equation is called an arc-length parametrization or intrinsic parametrization

of the curve. Since ds D v.t/ dt for any parametrization r D r.t/, for the arc-

length parametrization we have ds D v.s/ ds. Thus, v.s/ D 1, identically; a curve

parametrized in terms of arc length is traced at unit speed. Although it is seldom

easy (and usually not possible) to find r.s/ explicitly when the curve is given in terms

of some other parameter, smooth curves always have such parametrizations (see Ex-

ercise 28 at the end of this section), and they will prove useful when we develop the

fundamentals of the differential geometry for 3-space curves in the next section.
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Suppose that a curve is specified in terms of an arbitrary parameter t . If the arc

length over a parameter interval Œt0; t �,

s D s.t/ D

Z t

t0

ˇ

ˇ

ˇ

ˇ

d

d�
r.�/

ˇ

ˇ

ˇ

ˇ

d�;

can be evaluated explicitly, and if the equation s D s.t/ can be explicitly solved for

t as a function of s (t D t.s/), then the curve can be reparametrized in terms of arc

length by substituting for t in the original parametrization:

r D r.t.s//:

E X A M P L E 7
Parametrize the circular helix

r D a cos t iC a sin tjC btk

in terms of the arc length measured from the point .a; 0; 0/ in the direction of increas-

ing t . (See Figure 11.12.)

Solution The initial point corresponds to t D 0. As shown in Example 6, we have

ds=dt D
p

a2
C b2, so

s D s.t/ D

Z t

0

p

a2
C b2 d� D

p

a2
C b2 t:

Therefore, t D s=
p

a2
C b2, and the arc-length parametrization is

r.s/ D a cos

�

s
p

a2
C b2

�

iC a sin

�

s
p

a2
C b2

�

jC
bs

p

a2
C b2

k:

E X E R C I S E S 11.3

In Exercises 1–4, find the required parametrization of the first

quadrant part of the circular arc x2
C y2

D a2.

1. In terms of the y-coordinate, oriented counterclockwise

2. In terms of the x-coordinate, oriented clockwise

3. In terms of the angle between the tangent line and the positive

x-axis, oriented counterclockwise

4. In terms of arc length measured from .0; a/, oriented

clockwise

5. The cylinders z D x2 and z D 4y2 intersect in two curves,

one of which passes through the point .2;�1; 4/. Find a

parametrization of that curve using t D y as parameter.

6. The plane x C y C z D 1 intersects the cylinder z D x2 in a

parabola. Parametrize the parabola using t D x as parameter.

In Exercises 7–10, parametrize the curve of intersection of the

given surfaces. Note: The answers are not unique.

7. x2
C y2

D 9 and z D x C y

8. z D
p

1 � x2
� y2 and x C y D 1

9. z D x2
C y

2 and 2x � 4y � z � 1 D 0

10. yz C x D 1 and xz � x D 1

11. The plane z D 1C x intersects the cone z2
D x

2
C y

2 in a

parabola. Try to parametrize the parabola using as parameter:

(a) t D x, (b) t D y, and (c) t D z.

Which of these choices for t leads to a single parametrization

that represents the whole parabola? What is that para-

metrization? What happens with the other two choices?

12.I The plane x C y C z D 1 intersects the sphere

x
2
C y

2
C z

2
D 1 in a circle C. Find the centre r0 and radius

r of C. Also find two perpendicular unit vectors Ov1 and Ov2

parallel to the plane of C. (Hint: To be specific, show that

Ov1 D .i � j/=
p

2 is one such vector; then find a second that is

perpendicular to Ov1.) Use your results to construct a

parametrization of C.

13. Find the length of the curve r D t2iC t2jC t3k from t D 0

to t D 1.

14. For what values of the parameter � is the length s.T / of the

curve r D t iC �t2jC t3k, .0 � t � T / given by

s.T / D T C T
3?

15. Express the length of the curve r D at2 iC bt jC c ln t k,

.1 � t � T /, as a definite integral. Evaluate the integral if

b2
D 4ac.

16. Describe the parametric curve C given by

x D a cos t sin t; y D a sin2
t; z D bt:

What is the length of C between t D 0 and t D T > 0?
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Piecewise Smooth Curves
As observed earlier, a parametric curve C given by r D r.t/ can fail to be smooth at

points where dr=dt D 0. If there are finitely many such points, we will say that the

curve is piecewise smooth.

In general, a piecewise smooth curve C consists of a finite number of smooth

arcs, C1, C2, : : : , Ck , as shown in Figure 11.13.

Figure 11.13 A piecewise smooth curve

C1

C2

Ck

r1.a1/

r1.b1/ D r2.a2/

rk.bk/

In this case we express C as the sum of the individual arcs:

C D C1 C C2 C � � � C Ck:

Each arc Ci can have its own parametrization

r D ri .t/; .ai � t � bi /;

where vi D dri=dt ¤ 0 for ai < t < bi . The fact that CiC1 must begin at the point

where Ci ends requires the conditions

riC1.aiC1/ D ri .bi / for 1 � i � k � 1:

If also rk.bk/ D r1.a1/, then C is a closed piecewise smooth curve.

The length of a piecewise smooth curve C D C1 C C2 C � � � C Ck is the sum of

the lengths of its component arcs:

length of C D

k
X

iD1

Z bi

ai

ˇ

ˇ

ˇ

ˇ

dri

dt

ˇ

ˇ

ˇ

ˇ

dt:

The Arc-Length Parametrization
The selection of a particular parameter in terms of which to specify a given curve

will usually depend on the problem in which the curve arises; there is no one “right

way” to parametrize a curve. However, there is one parameter that is “natural” in

that it arises from the geometry (shape and size) of the curve itself and not from any

particular coordinate system in which the equation of the curve is to be expressed. This

parameter is the arc length measured from some particular point (the initial point) on

the curve. The position vector of an arbitrary point P on the curve can be specified as

a function of the arc length s along the curve from the initial point P0 to P;

r D r.s/:

This equation is called an arc-length parametrization or intrinsic parametrization

of the curve. Since ds D v.t/ dt for any parametrization r D r.t/, for the arc-

length parametrization we have ds D v.s/ ds. Thus, v.s/ D 1, identically; a curve

parametrized in terms of arc length is traced at unit speed. Although it is seldom

easy (and usually not possible) to find r.s/ explicitly when the curve is given in terms

of some other parameter, smooth curves always have such parametrizations (see Ex-

ercise 28 at the end of this section), and they will prove useful when we develop the

fundamentals of the differential geometry for 3-space curves in the next section.
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Suppose that a curve is specified in terms of an arbitrary parameter t . If the arc

length over a parameter interval Œt0; t �,

s D s.t/ D

Z t

t0

ˇ

ˇ

ˇ

ˇ

d

d�
r.�/

ˇ

ˇ

ˇ

ˇ

d�;

can be evaluated explicitly, and if the equation s D s.t/ can be explicitly solved for

t as a function of s (t D t.s/), then the curve can be reparametrized in terms of arc

length by substituting for t in the original parametrization:

r D r.t.s//:

E X A M P L E 7
Parametrize the circular helix

r D a cos t iC a sin tjC btk

in terms of the arc length measured from the point .a; 0; 0/ in the direction of increas-

ing t . (See Figure 11.12.)

Solution The initial point corresponds to t D 0. As shown in Example 6, we have

ds=dt D
p

a2
C b2, so

s D s.t/ D

Z t

0

p

a2
C b2 d� D

p

a2
C b2 t:

Therefore, t D s=
p

a2
C b2, and the arc-length parametrization is

r.s/ D a cos

�

s
p

a2
C b2

�

iC a sin

�

s
p

a2
C b2

�

jC
bs

p

a2
C b2

k:

E X E R C I S E S 11.3

In Exercises 1–4, find the required parametrization of the first

quadrant part of the circular arc x2
C y2

D a2.

1. In terms of the y-coordinate, oriented counterclockwise

2. In terms of the x-coordinate, oriented clockwise

3. In terms of the angle between the tangent line and the positive

x-axis, oriented counterclockwise

4. In terms of arc length measured from .0; a/, oriented

clockwise

5. The cylinders z D x2 and z D 4y2 intersect in two curves,

one of which passes through the point .2;�1; 4/. Find a

parametrization of that curve using t D y as parameter.

6. The plane x C y C z D 1 intersects the cylinder z D x2 in a

parabola. Parametrize the parabola using t D x as parameter.

In Exercises 7–10, parametrize the curve of intersection of the

given surfaces. Note: The answers are not unique.

7. x2
C y2

D 9 and z D x C y

8. z D
p

1 � x2
� y2 and x C y D 1

9. z D x2
C y

2 and 2x � 4y � z � 1 D 0

10. yz C x D 1 and xz � x D 1

11. The plane z D 1C x intersects the cone z2
D x

2
C y

2 in a

parabola. Try to parametrize the parabola using as parameter:

(a) t D x, (b) t D y, and (c) t D z.

Which of these choices for t leads to a single parametrization

that represents the whole parabola? What is that para-

metrization? What happens with the other two choices?

12.I The plane x C y C z D 1 intersects the sphere

x
2
C y

2
C z

2
D 1 in a circle C. Find the centre r0 and radius

r of C. Also find two perpendicular unit vectors Ov1 and Ov2

parallel to the plane of C. (Hint: To be specific, show that

Ov1 D .i � j/=
p

2 is one such vector; then find a second that is

perpendicular to Ov1.) Use your results to construct a

parametrization of C.

13. Find the length of the curve r D t2iC t2jC t3k from t D 0

to t D 1.

14. For what values of the parameter � is the length s.T / of the

curve r D t iC �t2jC t3k, .0 � t � T / given by

s.T / D T C T
3?

15. Express the length of the curve r D at2 iC bt jC c ln t k,

.1 � t � T /, as a definite integral. Evaluate the integral if

b2
D 4ac.

16. Describe the parametric curve C given by

x D a cos t sin t; y D a sin2
t; z D bt:

What is the length of C between t D 0 and t D T > 0?
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17. Find the length of the conical helix given by the para-

metrization r D t cos t iC t sin t jC t k, .0 � t � 2�/. Why

is the curve called a conical helix?

18. Describe the intersection of the sphere x2
C y2

C z2
D 1 and

the elliptic cylinder x2
C 2z2

D 1. Find the total length of

this intersection curve.

19. Let C be the curve x D et cos t , y D et sin t , z D t between

t D 0 and t D 2� . Find the length of C.

20. Find the length of the piecewise smooth curve r D t3iC t2j,

.�1 � t � 2/.

21. Describe the piecewise smooth curve C D C1 C C2, where

r1.t/ D t iC t j, .0 � t � 1/, and r2.t/ D .1 � t /iC .1C t /j,

.0 � t � 1/.

22.I A cable of length L and circular cross-section of radius a is

wound around a cylindrical spool of radius b with no

overlapping and with the adjacent windings touching one

another. What length of the spool is covered by the cable?

In Exercises 23–26, reparametrize the given curve in the same

orientation in terms of arc length measured from the point where

t D 0.

23. r D At iC Bt jC Ctk; .A
2
C B

2
C C

2
> 0/

24. r D et iC
p

2t j � e�t k

25.I r D a cos3
t iC a sin3

t jC b cos 2t k; .0 � t �
�

2
/

26.I r D 3t cos t iC 3t sin t jC 2
p

2t
3=2k

27.A Let r D r1.t/, .a � t � b/, and r D r2.u/, .c � u � d/, be

two parametrizations of the same curve C, each one-to-one on

its domain and each giving C the same orientation (so that

r1.a/ D r2.c/ and r1.b/ D r2.d/). Then for each t in Œa; b�

there is a unique u D u.t/ such that r2.u.t// D r1.t/. Show

that

Z b

a

ˇ

ˇ

ˇ

ˇ

d

dt
r1.t/

ˇ

ˇ

ˇ

ˇ

dt D

Z d

c

ˇ

ˇ

ˇ

ˇ

d

du
r2.u/

ˇ

ˇ

ˇ

ˇ

du;

and thus that the length of C is independent of

parametrization.

28.A If the curve r D r.t/ has continuous, nonvanishing velocity

v.t/ on the interval Œa; b�, and if t0 is some point in Œa; b�,

show that the function

s D g.t/ D

Z t

t0

jv.u/j du

is an increasing function on Œa; b� and so has an inverse:

t D g
�1
.s/ ” s D g.t/:

Hence, show that the curve can be parametrized in terms of

arc length measured from r.t0/.

11.4 Curvature, Torsion, and the Frenet Frame

In this section and the next we develop the fundamentals of differential geometry of

curves in 3-space. We will introduce several new scalar and vector functions associated

with a curve C. The most important of these are the curvature and torsion of the curve

and a right-handed triad of mutually perpendicular unit vectors called the Frenet frame

that forms a basis at any point on the curve. The curvature measures the rate at which

a curve is turning (away from its tangent line) at any point. The torsion measures the

rate at which the curve is twisting (out of the plane in which it is turning) at any point.

The Unit Tangent Vector
The velocity vector v.t/ D dr=dt is tangent to the parametric curve r D r.t/ at the

point r.t/ and points in the direction of the orientation of the curve there. Since we are

assuming that v.t/ ¤ 0, we can find a unit tangent vector, OT.t/, at r.t/ by dividing

v.t/ by its length:

OT.t/ D
v.t/

v.t/
D

dr

dt

�
ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

:

Recall that a curve parametrized in terms of arc length, r D r.s/, is traced at unit

speed; v.s/ D 1. In terms of arc-length parametrization, the unit tangent vector is

OT.s/ D
dr

ds
:
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E X A M P L E 1
Find the unit tangent vector, OT, for the circular helix of Example 6

of Section 11.3 in terms of both t and the arc-length parameter s.

Solution In terms of t we have

r D a cos t iC a sin t jC btk

v.t/ D �a sin t iC a cos t jC bk

v.t/ D

p

a2 sin2
t C a2 cos2 t C b2

D

p

a2
C b2

OT.t/ D �
a

p

a2
C b2

sin t iC
a

p

a2
C b2

cos t jC
b

p

a2
C b2

k:

In terms of the arc-length parameter (see Example 7 of Section 11.3),

r.s/ D a cos

�

s
p

a2
C b2

�

iC a sin

�

s
p

a2
C b2

�

jC
bs

p

a2
C b2

k

OT.s/ D
dr

ds
D�

a
p

a2
C b2

sin

�

s
p

a2
C b2

�

iC
a

p

a2
C b2

cos

�

s
p

a2
C b2

�

j

C

b
p

a2
C b2

k:

Remark If the curve r D r.t/ has a continuous, nonvanishing velocity v.t/, then the

unit tangent vector OT.t/ is a continuous function of t . The angle �.t/ between OT.t/

and any fixed unit vector Ou is also continuous in t :

�.t/ D cos�1
. OT.t/ � Ou/:

Thus, as asserted previously, the curve is smooth in the sense that it has a continuously

turning tangent line. The rate of this turning is quantified by the curvature, which we

introduce now.

Curvature and the Unit Normal
In the rest of this section we will deal abstractly with a curve C parametrized in terms

of arc length measured from some point on it:

r D r.s/:

In the next section we return to curves with arbitrary parametrizations and apply the

principles developed in this section to specific problems. Throughout we assume that

the parametric equations of curves have continuous derivatives up to third order on the

intervals where they are defined.

Having unit length, the tangent vector OT.s/ D dr=ds satisfies OT.s/ � OT.s/ D 1.

Differentiating this equation with respect to s we get

2 OT.s/ �
d OT

ds
D 0;

so that d OT=ds is perpendicular to OT.s/.
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17. Find the length of the conical helix given by the para-

metrization r D t cos t iC t sin t jC t k, .0 � t � 2�/. Why

is the curve called a conical helix?

18. Describe the intersection of the sphere x2
C y2

C z2
D 1 and

the elliptic cylinder x2
C 2z2

D 1. Find the total length of

this intersection curve.

19. Let C be the curve x D et cos t , y D et sin t , z D t between

t D 0 and t D 2� . Find the length of C.

20. Find the length of the piecewise smooth curve r D t3iC t2j,

.�1 � t � 2/.

21. Describe the piecewise smooth curve C D C1 C C2, where

r1.t/ D t iC t j, .0 � t � 1/, and r2.t/ D .1 � t /iC .1C t /j,

.0 � t � 1/.

22.I A cable of length L and circular cross-section of radius a is

wound around a cylindrical spool of radius b with no

overlapping and with the adjacent windings touching one

another. What length of the spool is covered by the cable?

In Exercises 23–26, reparametrize the given curve in the same

orientation in terms of arc length measured from the point where

t D 0.

23. r D At iC Bt jC Ctk; .A
2
C B

2
C C

2
> 0/

24. r D et iC
p

2t j � e�t k

25.I r D a cos3
t iC a sin3

t jC b cos 2t k; .0 � t �
�

2
/

26.I r D 3t cos t iC 3t sin t jC 2
p

2t
3=2k

27.A Let r D r1.t/, .a � t � b/, and r D r2.u/, .c � u � d/, be

two parametrizations of the same curve C, each one-to-one on

its domain and each giving C the same orientation (so that

r1.a/ D r2.c/ and r1.b/ D r2.d/). Then for each t in Œa; b�

there is a unique u D u.t/ such that r2.u.t// D r1.t/. Show

that

Z b

a

ˇ

ˇ

ˇ

ˇ

d

dt
r1.t/

ˇ

ˇ

ˇ

ˇ

dt D

Z d

c

ˇ

ˇ

ˇ

ˇ

d

du
r2.u/

ˇ

ˇ

ˇ

ˇ

du;

and thus that the length of C is independent of

parametrization.

28.A If the curve r D r.t/ has continuous, nonvanishing velocity

v.t/ on the interval Œa; b�, and if t0 is some point in Œa; b�,

show that the function

s D g.t/ D

Z t

t0

jv.u/j du

is an increasing function on Œa; b� and so has an inverse:

t D g
�1
.s/ ” s D g.t/:

Hence, show that the curve can be parametrized in terms of

arc length measured from r.t0/.

11.4 Curvature, Torsion, and the Frenet Frame

In this section and the next we develop the fundamentals of differential geometry of

curves in 3-space. We will introduce several new scalar and vector functions associated

with a curve C. The most important of these are the curvature and torsion of the curve

and a right-handed triad of mutually perpendicular unit vectors called the Frenet frame

that forms a basis at any point on the curve. The curvature measures the rate at which

a curve is turning (away from its tangent line) at any point. The torsion measures the

rate at which the curve is twisting (out of the plane in which it is turning) at any point.

The Unit Tangent Vector
The velocity vector v.t/ D dr=dt is tangent to the parametric curve r D r.t/ at the

point r.t/ and points in the direction of the orientation of the curve there. Since we are

assuming that v.t/ ¤ 0, we can find a unit tangent vector, OT.t/, at r.t/ by dividing

v.t/ by its length:

OT.t/ D
v.t/

v.t/
D

dr

dt

�
ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

:

Recall that a curve parametrized in terms of arc length, r D r.s/, is traced at unit

speed; v.s/ D 1. In terms of arc-length parametrization, the unit tangent vector is

OT.s/ D
dr

ds
:
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E X A M P L E 1
Find the unit tangent vector, OT, for the circular helix of Example 6

of Section 11.3 in terms of both t and the arc-length parameter s.

Solution In terms of t we have

r D a cos t iC a sin t jC btk

v.t/ D �a sin t iC a cos t jC bk

v.t/ D

p

a2 sin2
t C a2 cos2 t C b2

D

p

a2
C b2

OT.t/ D �
a

p

a2
C b2

sin t iC
a

p

a2
C b2

cos t jC
b

p

a2
C b2

k:

In terms of the arc-length parameter (see Example 7 of Section 11.3),

r.s/ D a cos

�

s
p

a2
C b2

�

iC a sin

�

s
p

a2
C b2

�

jC
bs

p

a2
C b2

k

OT.s/ D
dr

ds
D�

a
p

a2
C b2

sin

�

s
p

a2
C b2

�

iC
a

p

a2
C b2

cos

�

s
p

a2
C b2

�

j

C

b
p

a2
C b2

k:

Remark If the curve r D r.t/ has a continuous, nonvanishing velocity v.t/, then the

unit tangent vector OT.t/ is a continuous function of t . The angle �.t/ between OT.t/

and any fixed unit vector Ou is also continuous in t :

�.t/ D cos�1
. OT.t/ � Ou/:

Thus, as asserted previously, the curve is smooth in the sense that it has a continuously

turning tangent line. The rate of this turning is quantified by the curvature, which we

introduce now.

Curvature and the Unit Normal
In the rest of this section we will deal abstractly with a curve C parametrized in terms

of arc length measured from some point on it:

r D r.s/:

In the next section we return to curves with arbitrary parametrizations and apply the

principles developed in this section to specific problems. Throughout we assume that

the parametric equations of curves have continuous derivatives up to third order on the

intervals where they are defined.

Having unit length, the tangent vector OT.s/ D dr=ds satisfies OT.s/ � OT.s/ D 1.

Differentiating this equation with respect to s we get

2 OT.s/ �
d OT

ds
D 0;

so that d OT=ds is perpendicular to OT.s/.
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D E F I N I T I O N

1

Curvature and radius of curvature

The curvature of C at the point r.s/ is the length of d OT=ds there. It is

denoted by �, the Greek letter “kappa”:

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

:

The radius of curvature, denoted �, the Greek letter “rho,” is the reciprocal

of the curvature:

�.s/ D
1

�.s/
:

As we will see below, the curvature of C at r.s/ measures the rate of turning of the

tangent line to the curve there. The radius of curvature is the radius of the circle

through r.s/ that most closely approximates the curve C near that point.

According to its definition, �.s/ � 0 everywhere on C. If �.s/ ¤ 0, we can divide

d OT=ds by its length, �.s/, and obtain a unit vector ON.s/ in the same direction. This

unit vector is called the unit principal normal to C at r.s/, or, more commonly, just

the unit normal:

ON.s/ D
1

�.s/

d OT

ds
D

d OT

ds

,ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

:

Note that ON.s/ is perpendicular to C at r.s/ and points in the direction that OT, and

therefore C, is turning. The principal normal is not defined at points where the curva-

ture �.s/ is zero. For instance, a straight line has no principal normal. Figure 11.14(a)

shows OT and ON at a point on a typical curve.

E X A M P L E 2
Let a > 0. Show that the curve C given by

r D a cos
�

s

a

�

iC a sin
�

s

a

�

j

is a circle in the xy-plane having radius a and centre at the origin and that it is

parametrized in terms of arc length. Find the curvature, the radius of curvature, and

the unit tangent and principal normal vectors at any point on C.

Figure 11.14

(a) The unit tangent and principal normal

vectors for a curve

(b) The unit tangent and principal normal

vectors for a circle

C

ON

OT

r

y

x

s=a

s

OT.s/

ON.s/

a

C

(a) (b)
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Solution Since

jr.s/j D a

r

�

cos
�

s

a

��2

C

�

sin
�

s

a

��2

D a;

C is indeed a circle of radius a centred at the origin in the xy-plane. Since the speed

ˇ

ˇ

ˇ

ˇ

dr

ds

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ� sin
�

s

a

�

iC cos
�

s

a

�

j

ˇ

ˇ

ˇ D 1;

the parameter s must represent arc length; hence the unit tangent vector is

OT.s/ D � sin
�

s

a

�

iC cos
�

s

a

�

j:

Therefore,

d OT

ds
D �

1

a
cos
�

s

a

�

i �
1

a
sin
�

s

a

�

j

and the curvature and radius of curvature at r.s/ are

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D

1

a
; �.s/ D

1

�.s/
D a:

Finally, the unit principal normal is

ON.s/ D � cos
�

s

a

�

i � sin
�

s

a

�

j D �
1

a
r.s/:

Note that the curvature and radius of curvature are constant; the latter is in fact the

radius of the circle. The circle and its unit tangent and normal vectors at a typical point

are sketched in Figure 11.14(b). Note that ON points toward the centre of the circle.

Remark Another observation can be made about the above example. The position

vector r.s/ makes angle � D s=a with the positive x-axis; therefore, OT.s/ makes the

same angle with the positive y-axis. Therefore, the rate of rotation of OT with respect

to s is

d�

ds
D

1

a
D �:

That is, � is the rate at which OT is turning (measured with respect to arc length). This

observation extends to a general smooth curve.

T H E O R E M

2

Curvature is the rate of turning of the unit tangent

Let � > 0 on an interval containing s, and let�� be the angle between OT.sC�s/ and
OT.s/, the unit tangent vectors at neighbouring points on the curve. Then

�.s/ D lim
�s!0

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

:

9780134154367_Calculus   672 05/12/16   3:59 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 652 October 17, 2016

652 CHAPTER 11 Vector Functions and Curves

D E F I N I T I O N

1

Curvature and radius of curvature

The curvature of C at the point r.s/ is the length of d OT=ds there. It is

denoted by �, the Greek letter “kappa”:

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

:

The radius of curvature, denoted �, the Greek letter “rho,” is the reciprocal

of the curvature:

�.s/ D
1

�.s/
:

As we will see below, the curvature of C at r.s/ measures the rate of turning of the

tangent line to the curve there. The radius of curvature is the radius of the circle

through r.s/ that most closely approximates the curve C near that point.

According to its definition, �.s/ � 0 everywhere on C. If �.s/ ¤ 0, we can divide

d OT=ds by its length, �.s/, and obtain a unit vector ON.s/ in the same direction. This

unit vector is called the unit principal normal to C at r.s/, or, more commonly, just

the unit normal:

ON.s/ D
1

�.s/

d OT

ds
D

d OT

ds

,ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

:

Note that ON.s/ is perpendicular to C at r.s/ and points in the direction that OT, and

therefore C, is turning. The principal normal is not defined at points where the curva-

ture �.s/ is zero. For instance, a straight line has no principal normal. Figure 11.14(a)

shows OT and ON at a point on a typical curve.

E X A M P L E 2
Let a > 0. Show that the curve C given by

r D a cos
�

s

a

�

iC a sin
�

s

a

�

j

is a circle in the xy-plane having radius a and centre at the origin and that it is

parametrized in terms of arc length. Find the curvature, the radius of curvature, and

the unit tangent and principal normal vectors at any point on C.

Figure 11.14

(a) The unit tangent and principal normal

vectors for a curve

(b) The unit tangent and principal normal

vectors for a circle

C

ON

OT

r

y

x

s=a

s

OT.s/

ON.s/

a

C

(a) (b)
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Solution Since

jr.s/j D a

r

�

cos
�

s

a

��2

C

�

sin
�

s

a

��2

D a;

C is indeed a circle of radius a centred at the origin in the xy-plane. Since the speed

ˇ

ˇ

ˇ

ˇ

dr

ds

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ� sin
�

s

a

�

iC cos
�

s

a

�

j

ˇ

ˇ

ˇ D 1;

the parameter s must represent arc length; hence the unit tangent vector is

OT.s/ D � sin
�

s

a

�

iC cos
�

s

a

�

j:

Therefore,

d OT

ds
D �

1

a
cos
�

s

a

�

i �
1

a
sin
�

s

a

�

j

and the curvature and radius of curvature at r.s/ are

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D

1

a
; �.s/ D

1

�.s/
D a:

Finally, the unit principal normal is

ON.s/ D � cos
�

s

a

�

i � sin
�

s

a

�

j D �
1

a
r.s/:

Note that the curvature and radius of curvature are constant; the latter is in fact the

radius of the circle. The circle and its unit tangent and normal vectors at a typical point

are sketched in Figure 11.14(b). Note that ON points toward the centre of the circle.

Remark Another observation can be made about the above example. The position

vector r.s/ makes angle � D s=a with the positive x-axis; therefore, OT.s/ makes the

same angle with the positive y-axis. Therefore, the rate of rotation of OT with respect

to s is

d�

ds
D

1

a
D �:

That is, � is the rate at which OT is turning (measured with respect to arc length). This

observation extends to a general smooth curve.

T H E O R E M

2

Curvature is the rate of turning of the unit tangent

Let � > 0 on an interval containing s, and let�� be the angle between OT.sC�s/ and
OT.s/, the unit tangent vectors at neighbouring points on the curve. Then

�.s/ D lim
�s!0

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

:
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PROOF Let � OT D OT.s C �s/ � OT.s/. Because both OT.s/ and OT.s C �s/ are unit

vectors, j� OT=�� j is the ratio of the length of a chord to the length of the corresponding

arc on a circle of radius 1. (See Figure 11.15.) Thus,

lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

��

ˇ

ˇ

ˇ

ˇ

ˇ

D 1 and

�.s/ D lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

�s

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

��

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

D lim
�s!0

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

:

OT.s/

� OT

OT.s C�s/

��

radius 1

Figure 11.15 j� OTj � j�� j for small

values of j�sj

The unit tangent OT and unit normal ON at a point r.s/ on a curve C are regarded as

having their tails at that point. They are perpendicular, and ON points in the direction

toward which OT.s/ turns as s increases. The plane passing through r.s/ and containing

the vectors OT.s/ and ON.s/ is called the osculating plane of C at r.s/ (from the Latin

osculum, meaning kiss). For a plane curve, such as the circle in Example 2, the oscu-

lating plane is just the plane containing the curve. For more general three-dimensional

curves the osculating plane varies from point to point; at any point it is the plane that

comes closest to containing the part of the curve near that point. The osculating plane

is not properly defined at a point where �.s/ D 0, although if such points are isolated,

it can sometimes be defined as a limit of osculating planes for neighbouring points.

Still assuming that �.s/ ¤ 0, let

rc.s/ D r.s/C �.s/ ON.s/:

For each s the point with position vector rc.s/ lies in the osculating plane of C at r.s/,

on the concave side of C and at distance �.s/ from r.s/. It is called the centre of

curvature of C for the point r.s/. The circle in the osculating plane having centre at

the centre of curvature and radius equal to the radius of curvature �.s/ is called the

osculating circle for C at r.s/. Among all circles that pass through the point r.s/,

the osculating circle is the one that best describes the behaviour of C near that point.

Of course, the osculating circle of a circle at any point is the same circle. A typical

example of an osculating circle is shown in Figure 11.16.

rc � r

ON

OT

r

C

osculating circle at r

Figure 11.16 An osculating circle

Torsion and Binormal, the Frenet-Serret Formulas
At any point r.s/ on the curve C where OT and ON are defined, a third unit vector, the

unit binormal OB, is defined by the formula

OB D OT� ON:

Note that OB.s/ is normal to the osculating plane of C at r.s/; if C is a plane curve,

then OB is a constant vector, independent of s on any interval where �.s/ ¤ 0. At each

point r.s/ on C, the three vectors f OT; ON; OBg constitute a right-handed basis of mutually

perpendicular unit vectors like the standard basis fi; j;kg. (See Figure 11.17.) This

basis is called the Frenet frame for C at the point r.s/. Note that

OB� OT D ON and ON� OB D OT:
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Figure 11.17 The Frenet frame f OT; ON; OBg

at some points on C

ON
OB

OT

OT

OB

OB
ON

OT

ON

C

Since 1 D OB.s/� OB.s/, then OB.s/� .d OB=ds/ D 0, and d OB=ds is perpendicular to OB.s/.

Also, differentiating OB D OT� ON we obtain

d OB

ds
D

d OT

ds
�
ONC OT�

d ON

ds
D � ON� ONC OT�

d ON

ds
D
OT�

d ON

ds
:

Therefore, d OB=ds is also perpendicular to OT. Being perpendicular to both OT and OB,

d OB=ds must be parallel to ON. This fact is the basis for our definition of torsion.

D E F I N I T I O N

2

Torsion

On any interval where �.s/ ¤ 0 there exists a function �.s/ such that

d OB

ds
D ��.s/ ON.s/:

The number �.s/ is called the torsion of C at r.s/.

The torsion measures the degree of twisting that the curve exhibits near a point, that

is, the extent to which the curve fails to be planar. It may be positive or negative,

depending on the right-handedness or left-handedness of the twisting. We will present

an example later in this section.

Theorem 2 has an analogue for torsion, for which the proof is similar. It states

that the absolute value of the torsion, j�.s/j, at point r.s/ on the curve C is the rate of

turning of the unit binormal:

lim
�s!0

ˇ

ˇ

ˇ

ˇ

� 

�s

ˇ

ˇ

ˇ

ˇ

D j�.s/j;

where � is the angle between OB.s C�s/ and OB.s/.

E X A M P L E 3
(The circular helix) As observed in Example 7 of Section 11.3,

the parametric equation

r.s/ D a cos.cs/iC a sin.cs/jC bcsk; where c D
1

p

a2
C b2

;

represents a circular helix wound on the cylinder x2
C y2

D a2 and parametrized in

terms of arc length. Assume a > 0. Find the curvature and torsion functions �.s/ and

�.s/ for this helix and also the unit vectors comprising the Frenet frame at any point

r.s/ on the helix.
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PROOF Let � OT D OT.s C �s/ � OT.s/. Because both OT.s/ and OT.s C �s/ are unit

vectors, j� OT=�� j is the ratio of the length of a chord to the length of the corresponding

arc on a circle of radius 1. (See Figure 11.15.) Thus,

lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

��

ˇ

ˇ

ˇ

ˇ

ˇ

D 1 and

�.s/ D lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

�s

ˇ

ˇ

ˇ

ˇ

ˇ

D lim
�s!0

ˇ

ˇ

ˇ

ˇ

ˇ

� OT

��

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

D lim
�s!0

ˇ

ˇ

ˇ

ˇ

��

�s

ˇ

ˇ

ˇ

ˇ

:

OT.s/

� OT

OT.s C�s/

��

radius 1

Figure 11.15 j� OTj � j�� j for small

values of j�sj

The unit tangent OT and unit normal ON at a point r.s/ on a curve C are regarded as

having their tails at that point. They are perpendicular, and ON points in the direction

toward which OT.s/ turns as s increases. The plane passing through r.s/ and containing

the vectors OT.s/ and ON.s/ is called the osculating plane of C at r.s/ (from the Latin

osculum, meaning kiss). For a plane curve, such as the circle in Example 2, the oscu-

lating plane is just the plane containing the curve. For more general three-dimensional

curves the osculating plane varies from point to point; at any point it is the plane that

comes closest to containing the part of the curve near that point. The osculating plane

is not properly defined at a point where �.s/ D 0, although if such points are isolated,

it can sometimes be defined as a limit of osculating planes for neighbouring points.

Still assuming that �.s/ ¤ 0, let

rc.s/ D r.s/C �.s/ ON.s/:

For each s the point with position vector rc.s/ lies in the osculating plane of C at r.s/,

on the concave side of C and at distance �.s/ from r.s/. It is called the centre of

curvature of C for the point r.s/. The circle in the osculating plane having centre at

the centre of curvature and radius equal to the radius of curvature �.s/ is called the

osculating circle for C at r.s/. Among all circles that pass through the point r.s/,

the osculating circle is the one that best describes the behaviour of C near that point.

Of course, the osculating circle of a circle at any point is the same circle. A typical

example of an osculating circle is shown in Figure 11.16.

rc � r

ON

OT

r

C

osculating circle at r

Figure 11.16 An osculating circle

Torsion and Binormal, the Frenet-Serret Formulas
At any point r.s/ on the curve C where OT and ON are defined, a third unit vector, the

unit binormal OB, is defined by the formula

OB D OT� ON:

Note that OB.s/ is normal to the osculating plane of C at r.s/; if C is a plane curve,

then OB is a constant vector, independent of s on any interval where �.s/ ¤ 0. At each

point r.s/ on C, the three vectors f OT; ON; OBg constitute a right-handed basis of mutually

perpendicular unit vectors like the standard basis fi; j;kg. (See Figure 11.17.) This

basis is called the Frenet frame for C at the point r.s/. Note that

OB� OT D ON and ON� OB D OT:
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Figure 11.17 The Frenet frame f OT; ON; OBg

at some points on C

ON
OB

OT

OT

OB

OB
ON

OT

ON

C

Since 1 D OB.s/� OB.s/, then OB.s/� .d OB=ds/ D 0, and d OB=ds is perpendicular to OB.s/.

Also, differentiating OB D OT� ON we obtain

d OB

ds
D

d OT

ds
�
ONC OT�

d ON

ds
D � ON� ONC OT�

d ON

ds
D
OT�

d ON

ds
:

Therefore, d OB=ds is also perpendicular to OT. Being perpendicular to both OT and OB,

d OB=ds must be parallel to ON. This fact is the basis for our definition of torsion.

D E F I N I T I O N

2

Torsion

On any interval where �.s/ ¤ 0 there exists a function �.s/ such that

d OB

ds
D ��.s/ ON.s/:

The number �.s/ is called the torsion of C at r.s/.

The torsion measures the degree of twisting that the curve exhibits near a point, that

is, the extent to which the curve fails to be planar. It may be positive or negative,

depending on the right-handedness or left-handedness of the twisting. We will present

an example later in this section.

Theorem 2 has an analogue for torsion, for which the proof is similar. It states

that the absolute value of the torsion, j�.s/j, at point r.s/ on the curve C is the rate of

turning of the unit binormal:

lim
�s!0

ˇ

ˇ

ˇ

ˇ

� 

�s

ˇ

ˇ

ˇ

ˇ

D j�.s/j;

where � is the angle between OB.s C�s/ and OB.s/.

E X A M P L E 3
(The circular helix) As observed in Example 7 of Section 11.3,

the parametric equation

r.s/ D a cos.cs/iC a sin.cs/jC bcsk; where c D
1

p

a2
C b2

;

represents a circular helix wound on the cylinder x2
C y2

D a2 and parametrized in

terms of arc length. Assume a > 0. Find the curvature and torsion functions �.s/ and

�.s/ for this helix and also the unit vectors comprising the Frenet frame at any point

r.s/ on the helix.
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Solution In Example 1 we calculated the unit tangent vector to be

OT.s/ D �ac sin.cs/iC ac cos.cs/jC bck:

Differentiating again leads to

d OT

ds
D �ac

2 cos.cs/i � ac2 sin.cs/j;

so that the curvature of the helix is

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D ac
2
D

a

a2
C b2

;

and the unit normal vector is

ON.s/ D
1

�.s/

d OT

ds
D � cos.cs/i � sin.cs/j:

Now we have

OB.s/ D OT.s/� ON.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�ac sin.cs/ ac cos.cs/ bc

� cos.cs/ � sin.cs/ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D bc sin.cs/i � bc cos.cs/jC ack:

Differentiating this formula leads to

d OB

ds
D bc

2 cos.cs/iC bc2 sin.cs/j D �bc2 ON.s/:

Therefore, the torsion is given by

�.s/ D �.�bc
2
/ D

b

a2
C b2

:

Remark Observe that the curvature �.s/ and the torsion �.s/ are both constant (i.e.,

independent of s) for a circular helix. In the above example, � > 0 (assuming that

b > 0). This corresponds to the fact that the helix is right-handed. (See Figure 11.12

in the previous section.) If you grasp the helix with your right hand so your fingers

surround it in the direction of increasing s (counterclockwise, looking down from the

positive z-axis), then your thumb also points in the axial direction corresponding to

increasing s (the upward direction). Had we started with a left-handed helix, such as

r D a sin t iC a cos t jC btk; .a; b > 0/;

we would have obtained � D �b=.a2
C b2/.

Making use of the formulas d OT=ds D � ON and d OB=ds D �� ON, we can calculate

d ON=ds as well:

d ON

ds
D

d

ds
. OB� OT/ D

d OB

ds
�
OTC OB�

d OT

ds

D �� ON� OTC � OB� ON D �� OTC � OB:

Together, the three formulas
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d OT

ds
D � ON

d ON

ds
D �� OTC � OB

d OB

ds
D �� ON

are known as the Frenet–Serret formulas. (See Figure 11.18.) They are of fundamen-

tal importance in the theory of curves in 3-space. The Frenet–Serret formulas can be

written in matrix form as follows:

�� ON

OB

� OB

�� OT

ON

� ON

OT

Figure 11.18 OT; ON, and OB, and their

directions of change

d

ds

0

@

OT
ON
OB

1

A D

0

@

0 � 0

�� 0 �

0 �� 0

1

A

0

@

OT
ON
OB

1

A :

Using the Frenet–Serret formulas, we can show that the shape of a curve with non-

vanishing curvature is completely determined by the curvature and torsion functions

�.s/ and �.s/.

T H E O R E M

3

The Fundamental Theorem of Space Curves

Let C1 and C2 be two curves, both of which have the same nonvanishing curvature

function �.s/ and the same torsion function �.s/. Then the curves are congruent. That

is, one can be moved rigidly (translated and rotated) so as to coincide exactly with the

other.

PROOF We require � ¤ 0 because ON and OB are not defined where � D 0. Move

C2 rigidly so that its initial point coincides with the initial point of C1 and so that the

Frenet frames of both curves coincide at that point. Let OT1, OT2, ON1, ON2, OB1, and OB2 be

the unit tangents, normals, and binormals for the two curves. Let

f .s/ D OT1.s/ �
OT2.s/C

ON1.s/ �
ON2.s/C

OB1.s/ �
OB2.s/:

We calculate the derivative of f .s/ using the Product Rule and the Frenet–Serret for-

mulas:

f
0
.s/ D OT

0
1 �
OT2 C

OT1 �
OT

0
2 C
ON

0
1 �
ON2 C

ON1 �
ON

0
2 C
OB

0
1 �
OB2 C

OB1 �
OB

0
2

D � ON1 �
OT2 C �

OT1 �
ON2 � �

OT1 �
ON2 C �

OB1 �
ON2 � �

ON1 �
OT2

C � ON1 �
OB2 � �

ON1 �
OB2 � �

OB1 �
ON2

D 0:

Therefore, f .s/ is constant. Since the frames coincide at s D 0, the constant must, in

fact, be 3:

OT1.s/ �
OT2.s/C

ON1.s/ �
ON2.s/C

OB1.s/ �
OB2.s/ D 3:

However, each dot product cannot exceed 1 since the factors are unit vectors. Therefore,

each dot product must be equal to 1. In particular, OT1.s/ �
OT2.s/ D 1 for all s; hence,

dr1

ds
D
OT1.s/ D

OT2.s/ D
dr2

ds
:

Integrating with respect to s and using the fact that both curves start from the same

point when s D 0, we obtain r1.s/ D r2.s/ for all s, which is what we wanted to show.

Remark It is a consequence of the above theorem that any curve having nonzero

constant curvature and constant torsion must, in fact, be a circle (if the torsion is zero)

or a circular helix (if the torsion is nonzero). See Exercises 7 and 8 below.
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Solution In Example 1 we calculated the unit tangent vector to be

OT.s/ D �ac sin.cs/iC ac cos.cs/jC bck:

Differentiating again leads to

d OT

ds
D �ac

2 cos.cs/i � ac2 sin.cs/j;

so that the curvature of the helix is

�.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D ac
2
D

a

a2
C b2

;

and the unit normal vector is

ON.s/ D
1

�.s/

d OT

ds
D � cos.cs/i � sin.cs/j:

Now we have

OB.s/ D OT.s/� ON.s/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�ac sin.cs/ ac cos.cs/ bc

� cos.cs/ � sin.cs/ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D bc sin.cs/i � bc cos.cs/jC ack:

Differentiating this formula leads to

d OB

ds
D bc

2 cos.cs/iC bc2 sin.cs/j D �bc2 ON.s/:

Therefore, the torsion is given by

�.s/ D �.�bc
2
/ D

b

a2
C b2

:

Remark Observe that the curvature �.s/ and the torsion �.s/ are both constant (i.e.,

independent of s) for a circular helix. In the above example, � > 0 (assuming that

b > 0). This corresponds to the fact that the helix is right-handed. (See Figure 11.12

in the previous section.) If you grasp the helix with your right hand so your fingers

surround it in the direction of increasing s (counterclockwise, looking down from the

positive z-axis), then your thumb also points in the axial direction corresponding to

increasing s (the upward direction). Had we started with a left-handed helix, such as

r D a sin t iC a cos t jC btk; .a; b > 0/;

we would have obtained � D �b=.a2
C b2/.

Making use of the formulas d OT=ds D � ON and d OB=ds D �� ON, we can calculate

d ON=ds as well:

d ON

ds
D

d

ds
. OB� OT/ D

d OB

ds
�
OTC OB�

d OT

ds

D �� ON� OTC � OB� ON D �� OTC � OB:

Together, the three formulas
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d OT

ds
D � ON

d ON

ds
D �� OTC � OB

d OB

ds
D �� ON

are known as the Frenet–Serret formulas. (See Figure 11.18.) They are of fundamen-

tal importance in the theory of curves in 3-space. The Frenet–Serret formulas can be

written in matrix form as follows:

�� ON

OB

� OB

�� OT

ON

� ON

OT

Figure 11.18 OT; ON, and OB, and their

directions of change

d

ds

0

@

OT
ON
OB

1

A D

0

@

0 � 0

�� 0 �

0 �� 0

1

A

0

@

OT
ON
OB

1

A :

Using the Frenet–Serret formulas, we can show that the shape of a curve with non-

vanishing curvature is completely determined by the curvature and torsion functions

�.s/ and �.s/.

T H E O R E M

3

The Fundamental Theorem of Space Curves

Let C1 and C2 be two curves, both of which have the same nonvanishing curvature

function �.s/ and the same torsion function �.s/. Then the curves are congruent. That

is, one can be moved rigidly (translated and rotated) so as to coincide exactly with the

other.

PROOF We require � ¤ 0 because ON and OB are not defined where � D 0. Move

C2 rigidly so that its initial point coincides with the initial point of C1 and so that the

Frenet frames of both curves coincide at that point. Let OT1, OT2, ON1, ON2, OB1, and OB2 be

the unit tangents, normals, and binormals for the two curves. Let

f .s/ D OT1.s/ �
OT2.s/C

ON1.s/ �
ON2.s/C

OB1.s/ �
OB2.s/:

We calculate the derivative of f .s/ using the Product Rule and the Frenet–Serret for-

mulas:

f
0
.s/ D OT

0
1 �
OT2 C

OT1 �
OT

0
2 C
ON

0
1 �
ON2 C

ON1 �
ON

0
2 C
OB

0
1 �
OB2 C

OB1 �
OB

0
2

D � ON1 �
OT2 C �

OT1 �
ON2 � �

OT1 �
ON2 C �

OB1 �
ON2 � �

ON1 �
OT2

C � ON1 �
OB2 � �

ON1 �
OB2 � �

OB1 �
ON2

D 0:

Therefore, f .s/ is constant. Since the frames coincide at s D 0, the constant must, in

fact, be 3:

OT1.s/ �
OT2.s/C

ON1.s/ �
ON2.s/C

OB1.s/ �
OB2.s/ D 3:

However, each dot product cannot exceed 1 since the factors are unit vectors. Therefore,

each dot product must be equal to 1. In particular, OT1.s/ �
OT2.s/ D 1 for all s; hence,

dr1

ds
D
OT1.s/ D

OT2.s/ D
dr2

ds
:

Integrating with respect to s and using the fact that both curves start from the same

point when s D 0, we obtain r1.s/ D r2.s/ for all s, which is what we wanted to show.

Remark It is a consequence of the above theorem that any curve having nonzero

constant curvature and constant torsion must, in fact, be a circle (if the torsion is zero)

or a circular helix (if the torsion is nonzero). See Exercises 7 and 8 below.
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E X E R C I S E S 11.4

Find the unit tangent vector OT.t/ for the curves in Exercises 1–4.

1. r D t i � 2t2jC 3t3k

2. r D a sin!t iC a cos!t k

3. r D cos t sin t iC sin2
t jC cos t k

4. r D a cos t iC b sin t jC tk

5. Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

straight line.

6.A Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

plane curve. Hint: Show that r.s/ lies in the plane through

r.0/ with normal OB.0/.

7.A Show that if �.s/ D C is a positive constant and �.s/ D 0 for

all s, then the curve r D r.s/ is a circle. Hint: Find a circle

having the given constant curvature. Then use Theorem 3.

8.A Show that if the curvature �.s/ and the torsion �.s/ are both

nonzero constants, then the curve r D r.s/ is a circular helix.

Hint: Find a helix having the given curvature and torsion.

11.5 Curvature and Torsion for General Parametrizations
The formulas developed above for curvature and torsion as well as for the unit normal

and binormal vectors are not very useful if the curve we want to analyze is not ex-

pressed in terms of the arc-length parameter. We will now consider how to find these

quantities in terms of a general parametrization r D r.t/. We will express them all in

terms of the velocity, v.t/, the speed, v.t/ D jv.t/j, and the acceleration, a.t/. First,

observe that

v D
dr

dt
D

dr

ds

ds

dt
D v OT

a D
dv

dt
D

dv

dt

OTC v
d OT

dt

D

dv

dt

OTC v
d OT

ds

ds

dt
D

dv

dt

OTC v2
� ON

v� a D v
dv

dt

OT� OTC v3
� OT� ON D v3

� OB:

Note that OB is in the direction of v� a. From these formulas we obtain useful formulas

for OT, OB, and �:

OT D
v

v
; OB D

v� a

jv� aj
; � D

jv� aj

v3
:

There are several ways to calculate ON. Perhaps the easiest is

ON D OB� OT:

Sometimes it may be easier to use
d OT

dt
D

d OT

ds

ds

dt
D v

d OT

ds
D v� ON to calculate

ON D
1

v�

d OT

dt
D

�

v

d OT

dt
D

d OT

dt

�

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

dt

ˇ

ˇ

ˇ

ˇ

ˇ

:

The torsion remains to be calculated. Observe that

da

dt
D

d

dt

�

dv

dt

OTC v2
� ON
�

:
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This differentiation will produce several terms. The only one that involves OB is the one

that comes from evaluating v2
�.d ON=dt/ D v3

�.d ON=ds/ D v3
�.� OB�� OT/. Therefore,

da

dt
D � OTC � ONC v3

�� OB

for certain scalars � and �. Since v� a D v3
� OB, it follows that

.v� a/ �
da

dt
D .v

3
�/

2
� D jv� aj2�:

Hence,

� D
.v� a/ � .da=dt/

jv� aj2
:

E X A M P L E 1
Find the curvature, the torsion, and the Frenet frame at a general

point on the curve

r D .t C cos t/iC .t � cos t/jC
p

2 sin tk:

Describe this curve.

Solution We calculate the various quantities using the recipe given above. First, the

preliminaries:

v D .1 � sin t/iC .1C sin t/jC
p

2 cos tk

a D � cos t iC cos tj �
p

2 sin tk

da

dt
D sin t i � sin tj �

p

2 cos tk

v� a D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

1 � sin t 1C sin t
p

2 cos t

� cos t cos t �

p

2 sin t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

p

2.1C sin t/i �
p

2.1 � sin t/jC 2 cos tk

.v� a/ �
da

dt
D �

p

2 sin t.1C sin t/C
p

2 sin t.1 � sin t/ � 2
p

2 cos2
t

D �2
p

2

v D jvj D
p

2C 2 sin2
t C 2 cos2 t D 2

jv� aj D

q

2.2C 2 sin2
t/C 4 cos2 t D

p

8 D 2
p

2:

Thus, we have

� D
jv� aj

v3
D

2
p

2

8
D

1

2
p

2

� D
.v� a/ � .da=dt/

jv� aj2
D

�2
p

2

.2
p

2/2
D �

1

2
p

2

OT D
v

v
D

1 � sin t

2
iC

1C sin t

2
jC

1
p

2
cos tk

OB D
v� a

jv� aj
D �

1C sin t

2
i �

1 � sin t

2
jC

1
p

2
cos tk

ON D OB� OT D �
1
p

2
cos t iC

1
p

2
cos tj � sin tk:
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E X E R C I S E S 11.4

Find the unit tangent vector OT.t/ for the curves in Exercises 1–4.

1. r D t i � 2t2jC 3t3k

2. r D a sin!t iC a cos!t k

3. r D cos t sin t iC sin2
t jC cos t k

4. r D a cos t iC b sin t jC tk

5. Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

straight line.

6.A Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

plane curve. Hint: Show that r.s/ lies in the plane through

r.0/ with normal OB.0/.

7.A Show that if �.s/ D C is a positive constant and �.s/ D 0 for

all s, then the curve r D r.s/ is a circle. Hint: Find a circle

having the given constant curvature. Then use Theorem 3.

8.A Show that if the curvature �.s/ and the torsion �.s/ are both

nonzero constants, then the curve r D r.s/ is a circular helix.

Hint: Find a helix having the given curvature and torsion.

11.5 Curvature and Torsion for General Parametrizations
The formulas developed above for curvature and torsion as well as for the unit normal

and binormal vectors are not very useful if the curve we want to analyze is not ex-

pressed in terms of the arc-length parameter. We will now consider how to find these

quantities in terms of a general parametrization r D r.t/. We will express them all in

terms of the velocity, v.t/, the speed, v.t/ D jv.t/j, and the acceleration, a.t/. First,

observe that

v D
dr

dt
D

dr

ds

ds

dt
D v OT

a D
dv

dt
D

dv

dt

OTC v
d OT

dt

D

dv

dt

OTC v
d OT

ds

ds

dt
D

dv

dt

OTC v2
� ON

v� a D v
dv

dt

OT� OTC v3
� OT� ON D v3

� OB:

Note that OB is in the direction of v� a. From these formulas we obtain useful formulas

for OT, OB, and �:

OT D
v

v
; OB D

v� a

jv� aj
; � D

jv� aj

v3
:

There are several ways to calculate ON. Perhaps the easiest is

ON D OB� OT:

Sometimes it may be easier to use
d OT

dt
D

d OT

ds

ds

dt
D v

d OT

ds
D v� ON to calculate

ON D
1

v�

d OT

dt
D

�

v

d OT

dt
D

d OT

dt

�

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

dt

ˇ

ˇ

ˇ

ˇ

ˇ

:

The torsion remains to be calculated. Observe that

da

dt
D

d

dt

�

dv

dt

OTC v2
� ON
�

:
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This differentiation will produce several terms. The only one that involves OB is the one

that comes from evaluating v2
�.d ON=dt/ D v3

�.d ON=ds/ D v3
�.� OB�� OT/. Therefore,

da

dt
D � OTC � ONC v3

�� OB

for certain scalars � and �. Since v� a D v3
� OB, it follows that

.v� a/ �
da

dt
D .v

3
�/

2
� D jv� aj2�:

Hence,

� D
.v� a/ � .da=dt/

jv� aj2
:

E X A M P L E 1
Find the curvature, the torsion, and the Frenet frame at a general

point on the curve

r D .t C cos t/iC .t � cos t/jC
p

2 sin tk:

Describe this curve.

Solution We calculate the various quantities using the recipe given above. First, the

preliminaries:

v D .1 � sin t/iC .1C sin t/jC
p

2 cos tk

a D � cos t iC cos tj �
p

2 sin tk

da

dt
D sin t i � sin tj �

p

2 cos tk

v� a D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

1 � sin t 1C sin t
p

2 cos t

� cos t cos t �

p

2 sin t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �

p

2.1C sin t/i �
p

2.1 � sin t/jC 2 cos tk

.v� a/ �
da

dt
D �

p

2 sin t.1C sin t/C
p

2 sin t.1 � sin t/ � 2
p

2 cos2
t

D �2
p

2

v D jvj D
p

2C 2 sin2
t C 2 cos2 t D 2

jv� aj D

q

2.2C 2 sin2
t/C 4 cos2 t D

p

8 D 2
p

2:

Thus, we have

� D
jv� aj

v3
D

2
p

2

8
D

1

2
p

2

� D
.v� a/ � .da=dt/

jv� aj2
D

�2
p

2

.2
p

2/2
D �

1

2
p

2

OT D
v

v
D

1 � sin t

2
iC

1C sin t

2
jC

1
p

2
cos tk

OB D
v� a

jv� aj
D �

1C sin t

2
i �

1 � sin t

2
jC

1
p

2
cos tk

ON D OB� OT D �
1
p

2
cos t iC

1
p

2
cos tj � sin tk:
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Since the curvature and torsion are both constant (they are therefore constant when

expressed in terms of any parametrization), the curve must be a circular helix by

Theorem 3. It is left-handed, since � < 0. By Example 3 in Section 11.4, it is congru-

ent to the helix

r D a cos t iC a sin tjC btk;

provided that a=.a2
Cb2/ D 1=.2

p

2/ D �b=.a2
Cb2/. Solving these equations gives

a D
p

2 and b D �
p

2, so the helix is wound on a cylinder of radius
p

2. The axis

of this cylinder is the line x D y, z D 0, as can be seen by inspecting the components

of r.t/.

E X A M P L E 2
(Curvature of the graph of a function of one variable) Find

the curvature of the plane curve with equation y D f .x/ at an

arbitrary point .x; f .x// on the curve.

Solution The graph can be parametrized: r D xiC f .x/j. Thus,

v D iC f 0
.x/j;

a D f 00
.x/j;

v� a D f 00
.x/k:

Therefore, the curvature is

�.x/ D
jv� aj

v3
D

jf
00
.x/j

�

1C .f 0.x//2
�3=2

:

Tangential and Normal Acceleration
In the formula obtained earlier for the acceleration in terms of the unit tangent and

normal,

a D
dv

dt

OTC v2
� ON;

the term .dv=dt/ OT is called the tangential acceleration, and the term v2� ON is called

the normal or centripetal acceleration. This latter component is directed toward the

centre of curvature and its magnitude is v2� D v2=�. Highway, railway, and roller-

coaster designers attempt to bank curves in such a way that the resultant of the corre-

sponding centrifugal force, �m.v2=�/ ON, and the weight, �mgk, of the vehicle will be

normal to the surface at a desired speed.

E X A M P L E 3
Banking a curve. A level, curved road lies along the curve y D

x
2 in the horizontal xy-plane. Find, as a function of x, the angle

at which the road should be banked (i.e., the angle between the vertical and the normal

to the surface of the road) so that the resultant of the centrifugal and gravitational

(�mgk) forces acting on the vehicle travelling at constant speed v0 along the road is

always normal to the surface of the road.

Solution By Example 2 the path of the road, y D x2, has curvature

� D

ˇ

ˇd2y=dx2
ˇ

ˇ

�

1C .dy=dx/
2
�3=2

D

2

.1C 4x2/3=2
:
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The normal component of the acceleration of a vehicle travelling at speed v0 along the

road is

�

�

�maN
ON

�mgk

Figure 11.19 Banking a curve on a

roadway

aN D v
2
0� D

2v
2
0

.1C 4x2/3=2
:

If the road is banked at angle � (see Figure 11.19), then the resultant of the centrifugal

force �maN
ON and the gravitational force �mgk is normal to the roadway provided

tan � D
maN

mg
; that is, � D tan�1 2v

2
0

g.1C 4x2/3=2
:

Remark The definition of centripetal acceleration given above is consistent with the

one that arose in the discussion of rotating frames in Section 11.2. If r.t/ is the position

of a moving particle at time t , we can regard the motion at any instant as being a

rotation about the centre of curvature, so that the angular velocity must be � D � OB.

The linear velocity is v D �� .r � rc/ D v OT, so the speed is v D ��, and � D

.v=�/ OB. As developed in Section 11.2, the centripetal acceleration is

�� .�� .r � rc// D �� v D
v2

�

OB� OT D
v2

�

ON:

Evolutes
The centre of curvature rc.t/ of a given curve can itself trace out another curve as t

varies. This curve is called the evolute of the given curve r.t/.

E X A M P L E 4
Find the evolute of the exponential spiral

r D ae�t cos t iC ae�t sin t j:

Solution The curve is a plane curve, so � D 0. We will take a shortcut to the

curvature and the unit normal without calculating v� a. First, we calculate

v D ae�t
�

�.cos t C sin t/i � .sin t � cos t/j
�

ds

dt
D v D

p

2ae
�t

OT.t/ D
1
p

2

�

�.cos t C sin t/i � .sin t � cos t/j
�

d OT

ds
D

1

.ds=dt/

d OT

dt
D

1

2ae�t

�

.sin t � cos t/i � .cos t C sin t/j
�

�.t/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D

1
p

2ae�t
:

It follows that the radius of curvature is �.t/ D
p

2ae�t . Since d OT=ds D � ON, we have
ON D �.d OT=ds/. The centre of curvature is

rc.t/ D r.t/C �.t/ ON.t/

D r.t/C �2 d
OT

ds

D ae
�t
�

cos t iC sin t j
�

C 2a
2
e

�2t 1

2ae�t

�

.sin t � cos t/i � .cos t C sin t/j
�

D ae
�t
�

sin t i � cos t j
�

D ae
�t
�

cos.t �
�

2
/iC sin.t �

�

2
/j
�

:

Thus, interestingly, the evolute of the exponential spiral is the same exponential spiral

rotated 90ı clockwise in the plane. (See Figure 11.20(a).)
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Since the curvature and torsion are both constant (they are therefore constant when

expressed in terms of any parametrization), the curve must be a circular helix by

Theorem 3. It is left-handed, since � < 0. By Example 3 in Section 11.4, it is congru-

ent to the helix

r D a cos t iC a sin tjC btk;

provided that a=.a2
Cb2/ D 1=.2

p

2/ D �b=.a2
Cb2/. Solving these equations gives

a D
p

2 and b D �
p

2, so the helix is wound on a cylinder of radius
p

2. The axis

of this cylinder is the line x D y, z D 0, as can be seen by inspecting the components

of r.t/.

E X A M P L E 2
(Curvature of the graph of a function of one variable) Find

the curvature of the plane curve with equation y D f .x/ at an

arbitrary point .x; f .x// on the curve.

Solution The graph can be parametrized: r D xiC f .x/j. Thus,

v D iC f 0
.x/j;

a D f 00
.x/j;

v� a D f 00
.x/k:

Therefore, the curvature is

�.x/ D
jv� aj

v3
D

jf
00
.x/j

�

1C .f 0.x//2
�3=2

:

Tangential and Normal Acceleration
In the formula obtained earlier for the acceleration in terms of the unit tangent and

normal,

a D
dv

dt

OTC v2
� ON;

the term .dv=dt/ OT is called the tangential acceleration, and the term v2� ON is called

the normal or centripetal acceleration. This latter component is directed toward the

centre of curvature and its magnitude is v2� D v2=�. Highway, railway, and roller-

coaster designers attempt to bank curves in such a way that the resultant of the corre-

sponding centrifugal force, �m.v2=�/ ON, and the weight, �mgk, of the vehicle will be

normal to the surface at a desired speed.

E X A M P L E 3
Banking a curve. A level, curved road lies along the curve y D

x
2 in the horizontal xy-plane. Find, as a function of x, the angle

at which the road should be banked (i.e., the angle between the vertical and the normal

to the surface of the road) so that the resultant of the centrifugal and gravitational

(�mgk) forces acting on the vehicle travelling at constant speed v0 along the road is

always normal to the surface of the road.

Solution By Example 2 the path of the road, y D x2, has curvature

� D

ˇ

ˇd2y=dx2
ˇ

ˇ

�

1C .dy=dx/
2
�3=2

D

2

.1C 4x2/3=2
:
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The normal component of the acceleration of a vehicle travelling at speed v0 along the

road is

�

�

�maN
ON

�mgk

Figure 11.19 Banking a curve on a

roadway

aN D v
2
0� D

2v
2
0

.1C 4x2/3=2
:

If the road is banked at angle � (see Figure 11.19), then the resultant of the centrifugal

force �maN
ON and the gravitational force �mgk is normal to the roadway provided

tan � D
maN

mg
; that is, � D tan�1 2v

2
0

g.1C 4x2/3=2
:

Remark The definition of centripetal acceleration given above is consistent with the

one that arose in the discussion of rotating frames in Section 11.2. If r.t/ is the position

of a moving particle at time t , we can regard the motion at any instant as being a

rotation about the centre of curvature, so that the angular velocity must be � D � OB.

The linear velocity is v D �� .r � rc/ D v OT, so the speed is v D ��, and � D

.v=�/ OB. As developed in Section 11.2, the centripetal acceleration is

�� .�� .r � rc// D �� v D
v2

�

OB� OT D
v2

�

ON:

Evolutes
The centre of curvature rc.t/ of a given curve can itself trace out another curve as t

varies. This curve is called the evolute of the given curve r.t/.

E X A M P L E 4
Find the evolute of the exponential spiral

r D ae�t cos t iC ae�t sin t j:

Solution The curve is a plane curve, so � D 0. We will take a shortcut to the

curvature and the unit normal without calculating v� a. First, we calculate

v D ae�t
�

�.cos t C sin t/i � .sin t � cos t/j
�

ds

dt
D v D

p

2ae
�t

OT.t/ D
1
p

2

�

�.cos t C sin t/i � .sin t � cos t/j
�

d OT

ds
D

1

.ds=dt/

d OT

dt
D

1

2ae�t

�

.sin t � cos t/i � .cos t C sin t/j
�

�.t/ D

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

ds

ˇ

ˇ

ˇ

ˇ

ˇ

D

1
p

2ae�t
:

It follows that the radius of curvature is �.t/ D
p

2ae�t . Since d OT=ds D � ON, we have
ON D �.d OT=ds/. The centre of curvature is

rc.t/ D r.t/C �.t/ ON.t/

D r.t/C �2 d
OT

ds

D ae
�t
�

cos t iC sin t j
�

C 2a
2
e

�2t 1

2ae�t

�

.sin t � cos t/i � .cos t C sin t/j
�

D ae
�t
�

sin t i � cos t j
�

D ae
�t
�

cos.t �
�

2
/iC sin.t �

�

2
/j
�

:

Thus, interestingly, the evolute of the exponential spiral is the same exponential spiral

rotated 90ı clockwise in the plane. (See Figure 11.20(a).)
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An Application to Track (or Road) Design
Model trains frequently come with two kinds of track sections: straight and curved.

The curved sections are arcs of a circle of radius R, and the track is intended to be laid

out in the shape shown in Figure 11.20(b); AB and CD are straight, and BC and DA

are semicircles. The track looks smooth, but is it smooth enough?

Figure 11.20

(a) The evolute of an exponential spiral

(red) is another exponential spiral

(blue)

(b) The shape of a model train track

y

x

r D ae�t .cos t iC sin t j/

rc D ae
�t .sin t i � cos t j/

A B

D C

(a) (b)

The track is held together by friction, and occasionally it can come apart as the

train is racing around. It is especially likely to come apart at the points A, B , C ,

and D. To see why, assume that the train is travelling at constant speed v. Then

the tangential acceleration, .dv=dt/ OT, is zero, and the total acceleration is just the

centripetal acceleration, a D .v2=�/ ON. Therefore, jaj D 0 along the straight sections,

and jaj D v2� D v2=R on the semicircular sections. The acceleration is discontinuous

at the points A, B , C , and D, and the reactive force exerted by the train on the track

is also discontinuous at these points. There is a “shock” or “jolt” as the train enters or

leaves a curved part of the track. In order to avoid such stress points, tracks should be

designed so that the curvature varies continuously from point to point.

E X A M P L E 5
Existing track along the negative x-axis and along the ray

y D x � 1, x � 2, is to be joined smoothly by track along the

transition curve y D f .x/, 0 � x � 2, where f .x/ is a polynomial of degree as

small as possible. Find f .x/ so that a train moving along the track will not experience

discontinuous acceleration at the joins.

Solution The situation is shown in Figure 11.21. The polynomial f .x/ must be cho-

sen so that the track is continuous, has continuous slope, and has continuous curvature

at x D 0 and x D 2. Since the curvature of y D f .x/ is

� D jf
00
.x/j

�

1C .f
0
.x//

2
��3=2

;

we need only arrange that f; f 0; and f 00 take the same values at x D 0 and x D 2 that

the straight sections do there:

f .0/ D 0; f
0
.0/ D 0; f

00
.0/ D 0;

f .2/ D 1; f
0
.2/ D 1; f

00
.2/ D 0:

These six independent conditions suggest we should try a polynomial of degree 5 in-

volving six arbitrary coefficients:

f .x/ D AC Bx C Cx
2
CDx

3
CEx

4
C Fx

5

f
0
.x/ D B C 2Cx C 3Dx

2
C 4Ex

3
C 5F x

4

f
00
.x/ D 2C C 6Dx C 12Ex

2
C 20F x

3
:
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The three conditions at x D 0 imply that A D B D C D 0. Those at x D 2 imply that

8D C 16E C 32F D f .2/ D 1

12D C 32E C 80F D f
0
.2/ D 1

12D C 48E C 160F D f
00
.2/ D 0:

This system has solution D D 1=4, E D �1=16, and F D 0, so we should use

f .x/ D .x3=4/ � .x4=16/.

Figure 11.21 Joining two straight tracks

with a curved track

y

x

y D 0
y D

x3

4
�

x4

16

.2; 1/

y D x � 1

Remark Road and railroad builders do not usually use polynomial graphs as transi-

tion curves. Other kinds of curves called clothoids and lemniscates are usually used.

(See Exercise 7 in the Review Exercises at the end of this chapter.)

Maple Calculations
In the following we assume the LinearAlgebra and VectorCalculus packages have been

loaded (in that order):

> with(LinearAlgebra): with(VectorCalculus):

Here is how we might define a vector-valued function representing a circular helix:

> R := t -> <a*cos(t), a*sin(t), b*t>;

The output from this definition (which we omit here) may appear a bit cryptic at first;

it asserts that R is defined as a procedure “VectorCalculus-<,>” whose arguments are

three “VectorCalculus-�” procedures for the products that represent the three compo-

nents of R. Calling the function generates the expected results.

> R(t); R(Pi);

a cos.t/ ex C a sin.t/ ey C b t ez

�a ex C b � ez

Velocity, acceleration, and speed functions can now be defined in the obvious way and

the results used to find these quantities at any point:

> V := D(R): A := D(V):

> v := t -> Norm(V(t),2):

> V(t); A(t); v(t);

�a sin.t/ ex C a cos.t/ ey C b ez

�a cos.t/ ex � a sin.t/ ey

p

ja sin.t/j2 C ja cos.t/j2 C jbj2

No attempt to simplify the last expression has much effect unless we tell Maple that

a and b are real numbers. In fact, it is useful for purposes of simplification to tell

Maple that a, b, and t are all real, and to suppress Maple’s urge to beat us over the

head with that fact by subsequently placing a tilde (~) after each of these variables in

all subsequent output. We can accomplish this with
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An Application to Track (or Road) Design
Model trains frequently come with two kinds of track sections: straight and curved.

The curved sections are arcs of a circle of radius R, and the track is intended to be laid

out in the shape shown in Figure 11.20(b); AB and CD are straight, and BC and DA

are semicircles. The track looks smooth, but is it smooth enough?

Figure 11.20

(a) The evolute of an exponential spiral

(red) is another exponential spiral

(blue)

(b) The shape of a model train track

y

x

r D ae�t .cos t iC sin t j/

rc D ae
�t .sin t i � cos t j/

A B

D C

(a) (b)

The track is held together by friction, and occasionally it can come apart as the

train is racing around. It is especially likely to come apart at the points A, B , C ,

and D. To see why, assume that the train is travelling at constant speed v. Then

the tangential acceleration, .dv=dt/ OT, is zero, and the total acceleration is just the

centripetal acceleration, a D .v2=�/ ON. Therefore, jaj D 0 along the straight sections,

and jaj D v2� D v2=R on the semicircular sections. The acceleration is discontinuous

at the points A, B , C , and D, and the reactive force exerted by the train on the track

is also discontinuous at these points. There is a “shock” or “jolt” as the train enters or

leaves a curved part of the track. In order to avoid such stress points, tracks should be

designed so that the curvature varies continuously from point to point.

E X A M P L E 5
Existing track along the negative x-axis and along the ray

y D x � 1, x � 2, is to be joined smoothly by track along the

transition curve y D f .x/, 0 � x � 2, where f .x/ is a polynomial of degree as

small as possible. Find f .x/ so that a train moving along the track will not experience

discontinuous acceleration at the joins.

Solution The situation is shown in Figure 11.21. The polynomial f .x/ must be cho-

sen so that the track is continuous, has continuous slope, and has continuous curvature

at x D 0 and x D 2. Since the curvature of y D f .x/ is

� D jf
00
.x/j

�

1C .f
0
.x//

2
��3=2

;

we need only arrange that f; f 0; and f 00 take the same values at x D 0 and x D 2 that

the straight sections do there:

f .0/ D 0; f
0
.0/ D 0; f

00
.0/ D 0;

f .2/ D 1; f
0
.2/ D 1; f

00
.2/ D 0:

These six independent conditions suggest we should try a polynomial of degree 5 in-

volving six arbitrary coefficients:

f .x/ D AC Bx C Cx
2
CDx

3
CEx

4
C Fx

5

f
0
.x/ D B C 2Cx C 3Dx

2
C 4Ex

3
C 5F x

4

f
00
.x/ D 2C C 6Dx C 12Ex

2
C 20F x

3
:
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The three conditions at x D 0 imply that A D B D C D 0. Those at x D 2 imply that

8D C 16E C 32F D f .2/ D 1

12D C 32E C 80F D f
0
.2/ D 1

12D C 48E C 160F D f
00
.2/ D 0:

This system has solution D D 1=4, E D �1=16, and F D 0, so we should use

f .x/ D .x3=4/ � .x4=16/.

Figure 11.21 Joining two straight tracks

with a curved track

y

x

y D 0
y D

x3

4
�

x4

16

.2; 1/

y D x � 1

Remark Road and railroad builders do not usually use polynomial graphs as transi-

tion curves. Other kinds of curves called clothoids and lemniscates are usually used.

(See Exercise 7 in the Review Exercises at the end of this chapter.)

Maple Calculations
In the following we assume the LinearAlgebra and VectorCalculus packages have been

loaded (in that order):

> with(LinearAlgebra): with(VectorCalculus):

Here is how we might define a vector-valued function representing a circular helix:

> R := t -> <a*cos(t), a*sin(t), b*t>;

The output from this definition (which we omit here) may appear a bit cryptic at first;

it asserts that R is defined as a procedure “VectorCalculus-<,>” whose arguments are

three “VectorCalculus-�” procedures for the products that represent the three compo-

nents of R. Calling the function generates the expected results.

> R(t); R(Pi);

a cos.t/ ex C a sin.t/ ey C b t ez

�a ex C b � ez

Velocity, acceleration, and speed functions can now be defined in the obvious way and

the results used to find these quantities at any point:

> V := D(R): A := D(V):

> v := t -> Norm(V(t),2):

> V(t); A(t); v(t);

�a sin.t/ ex C a cos.t/ ey C b ez

�a cos.t/ ex � a sin.t/ ey

p

ja sin.t/j2 C ja cos.t/j2 C jbj2

No attempt to simplify the last expression has much effect unless we tell Maple that

a and b are real numbers. In fact, it is useful for purposes of simplification to tell

Maple that a, b, and t are all real, and to suppress Maple’s urge to beat us over the

head with that fact by subsequently placing a tilde (~) after each of these variables in

all subsequent output. We can accomplish this with
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> assume(a::real, b::real, t::real);

> interface(showassumed=0);

> simplify(v(t));

p

b2
C a2

The VectorCalculus package has a function called TNBFrame whose output is a

list of functions generating the unit tangent, principal normal, and binormal vectors
OT.t/, ON.t/, and OB.t/. We can use the components of this list to define each vector:

> T := TNBFrame(R,t)[1]: T(t);

�

a sin.t/
p

b2
C a2

ex C
a cos.t/
p

b2
C a2

ey C
b

p

b2
C a2

ez

> N := TNBFrame(R,t)[2]: N(t);

�

a cos.t/

jaj
ex �

a sin.t/

jaj
ey

> B := TNBFrame(R,t)[3]: B(t);

b a sin.t/
p

b2
C a2

jaj
ex �

b a cos.t/
p

b2
C a2

jaj
ey C

�

a2 sin.t/2
p

b2
C a2

jaj
C

a2 cos.t/2
p

b2
C a2

jaj

�

ez

> simplify(%);

b a sin.t/
p

b2
C a2

jaj
ex �

b a cos.t/
p

b2
C a2

jaj
ey C

jaj
p

b2
C a2

ez

VectorCalculus also defines Curvature and Torsion functions that can be invoked as

follows:

> simplify(Curvature(R,t)(t));

jaj
p

b2
C a2

> simplify(Torsion(R,t)(t));

b
p

b2
C a2

In Maple 8 and some releases of Maple 9 the expression generated for the torsion had

an absolute value on the numerator (i.e., jbj instead of b). This was in error if b < 0;

the torsion should be negative in this case. In fact, the result above would make the

third Frenet-Serret formula false, as we can see from

> simplify(diff(B(t),t) + tau*N(t));

a cos.t/
�

b � �
p

b2
C a2

�

p

b2
C a2

jaj
ex C

a sin.t/
�

b � �
p

b2
C a2

�

p

b2
C a2

jaj
ey

This must be 0, but will be zero only if � D b=
p

b2
C a2. This error has been cor-

rected in Maple 10 and more recent releases.

E X E R C I S E S 11.5

Find the radius of curvature of the curves in Exercises 1–4 at the

points indicated.

1. y D x2 at x D 0 and at x D
p

2

2. y D cos x at x D 0 and at x D �=2

3. r D 2t iC .1=t/j � 2tk at .2; 1;�2/

4. r D t3iC t2jC tk at the point where t D 1

Find the Frenet frames f OT; ON; OBg for the curves in Exercises 5–6 at

the points indicated.

5. r D t iC t2jC 2k at .1; 1; 2/

6. r D t iC t2jC tk at .1; 1; 1/
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In Exercises 7–8, find the unit tangent, normal, and binormal

vectors and the curvature and torsion at a general point on the

given curve.

7. r D t iC
t2

2
jC

t3

3
k 8. r D et

.cos t iC sin t jC k/

9. Find the curvature and torsion of the parametric curve

x D 2C
p

2 cos t; y D 1 � sin t; z D 3C sin t

at an arbitrary point t . What is the curve?

10. A particle moves along the plane curve y D sinx in the

direction of increasing x with constant horizontal speed

dx=dt D k. Find the tangential and normal components of

the acceleration of the particle when it is at position x.

11. Find the unit tangent, normal and binormal, and the curvature

and torsion for the curve

r D sin t cos t iC sin2
t jC cos t k

at the points (a) t D 0 and (b) t D �=4.

12. A particle moves on an elliptical path in the xy-plane so that

its position at time t is r D a cos t iC b sin t j. Find the

tangential and normal components of its acceleration at time t .

At what points is the tangential acceleration zero?

13. Find the maximum and minimum values for the curvature of

the ellipse x D a cos t , y D b sin t , where a > b > 0.

14. A bead of mass m slides without friction down a wire bent in

the shape of the curve y D x2, under the influence of the

gravitational force �mgj. The speed of the bead is v as it

passes through the point .1; 1/. Find, at that instant, the

magnitude of the normal acceleration of the bead and the rate

of change of its speed.

15. Find the curvature of the plane curve y D ex at x. Find the

equation of the evolute of this curve.

16.A Show that the curvature of the plane polar graph r D f .�/ at

a general point � is

�.�/ D

j2

�

f 0.�/
�2

C

�

f .�/

�2

� f .�/f 00.�/j

h�

f 0.�/
�2

C

�

f .�/

�2i3=2
:

17. Find the curvature of the cardioid r D a.1 � cos �/.

18.I Find the curve r D r.t/ for which �.t/ D 1 and �.t/ D 1 for

all t , and r.0/ D OT.0/ D i, ON.0/ D j, and OB.0/ D k.

19. Suppose the curve r D r.t/ satisfies
dr

dt
D c� r.t/, where c is

a constant vector. Show that the curve is the circle in which

the plane through r.0/ normal to c intersects a sphere with

radius jr.0/j centred at the origin.

20. Find the evolute of the circular helix

r D a cos t iC a sin t jC btk.

21. Find the evolute of the parabola y D x2.

22. Find the evolute of the ellipse x D 2 cos t , y D sin t .

23. Find the polynomial f .x/ of lowest degree so that track along

y D f .x/ from x D �1 to x D 1 joins with existing straight

tracks y D �1, x � �1 and y D 1, x � 1 sufficiently

smoothly that a train moving at constant speed will not

experience discontinuous acceleration at the joins.

24.I Help out model train manufacturers. Design a track segment

y D f .x/, �1 � x � 0, to provide a jolt-free link between a

straight track section y D 1, x � �1, and a semicircular arc

section x2
C y2

D 1, x � 0.

25.A If the position r, velocity v, and acceleration a of a moving

particle satisfy a.t/ D �.t/r.t/C �.t/v.t/, where �.t/ and

�.t/ are scalar functions of time t , and if v� a ¤ 0, show that

the path of the particle lies in a plane.

Use Maple in Exercises 26–31. Make sure to load the

LinearAlgebra and VectorCalculus packages.

In Exercises 26–29, determine the curvature and torsion functions

for the given curves. Because of the problem with the Torsion

function in some versions of the VectorCalculus package (as

mentioned at the end of this section), you may want to use the

formulas derived from the derivatives of position to determine it,

and probably the curvature as well. Try to describe the curve.

M 26. r.t/ D cos.t/iC 2 sin.t/jC cos.t/k. Why should you not be

surprised at the value of the torsion? What are the maximum

and minimum curvatures? Describe the curve.

M 27. r.t/ D .t � sin t /iC .1 � cos t /jC tk. Are the curvature and

torsion continuous for all t?

M 28. r.t/ D cos.t/ cos.2t/iC cos.t/ sin.2t/jC sin.t/k. Show that

the curve lies on the sphere x2
C y

2
C z

2
D 1. What is the

minimum value of its curvature?

M 29. r.t/ D .t C cos t /iC .t C sin t /jC .1C t � cos t /k.

In Exercises 30–31, define new Maple functions to calculate the

requested items. Assume the LinearAlgebra and VectorCalculus

packages are loaded.

M 30. The evolute(R)(t) whose value at R is the function

whose value at t is the position vector of the centre of

curvature of the curve R for the point R(t).

M 31. A function tanline(R)(t,u) whose value at R is the

function whose value at (t,u) is the position vector of the

point on the tangent line to the curve R at t at distance u from

R(t) in the direction of increasing t.

11.6 Kepler’s Laws of Planetary Motion

The German mathematician and astronomer Johannes Kepler (1571–1630) was a stu-

dent and colleague of Danish astronomer Tycho Brahe (1546–1601). Over a lifetime

of observing the positions of planets without the aid of a telescope, Brahe compiled
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> assume(a::real, b::real, t::real);

> interface(showassumed=0);

> simplify(v(t));

p

b2
C a2

The VectorCalculus package has a function called TNBFrame whose output is a

list of functions generating the unit tangent, principal normal, and binormal vectors
OT.t/, ON.t/, and OB.t/. We can use the components of this list to define each vector:

> T := TNBFrame(R,t)[1]: T(t);

�

a sin.t/
p

b2
C a2

ex C
a cos.t/
p

b2
C a2

ey C
b

p

b2
C a2

ez

> N := TNBFrame(R,t)[2]: N(t);

�

a cos.t/

jaj
ex �

a sin.t/

jaj
ey

> B := TNBFrame(R,t)[3]: B(t);

b a sin.t/
p

b2
C a2

jaj
ex �

b a cos.t/
p

b2
C a2

jaj
ey C

�

a2 sin.t/2
p

b2
C a2

jaj
C

a2 cos.t/2
p

b2
C a2

jaj

�

ez

> simplify(%);

b a sin.t/
p

b2
C a2

jaj
ex �

b a cos.t/
p

b2
C a2

jaj
ey C

jaj
p

b2
C a2

ez

VectorCalculus also defines Curvature and Torsion functions that can be invoked as

follows:

> simplify(Curvature(R,t)(t));

jaj
p

b2
C a2

> simplify(Torsion(R,t)(t));

b
p

b2
C a2

In Maple 8 and some releases of Maple 9 the expression generated for the torsion had

an absolute value on the numerator (i.e., jbj instead of b). This was in error if b < 0;

the torsion should be negative in this case. In fact, the result above would make the

third Frenet-Serret formula false, as we can see from

> simplify(diff(B(t),t) + tau*N(t));

a cos.t/
�

b � �
p

b2
C a2

�

p

b2
C a2

jaj
ex C

a sin.t/
�

b � �
p

b2
C a2

�

p

b2
C a2

jaj
ey

This must be 0, but will be zero only if � D b=
p

b2
C a2. This error has been cor-

rected in Maple 10 and more recent releases.

E X E R C I S E S 11.5

Find the radius of curvature of the curves in Exercises 1–4 at the

points indicated.

1. y D x2 at x D 0 and at x D
p

2

2. y D cos x at x D 0 and at x D �=2

3. r D 2t iC .1=t/j � 2tk at .2; 1;�2/

4. r D t3iC t2jC tk at the point where t D 1

Find the Frenet frames f OT; ON; OBg for the curves in Exercises 5–6 at

the points indicated.

5. r D t iC t2jC 2k at .1; 1; 2/

6. r D t iC t2jC tk at .1; 1; 1/
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In Exercises 7–8, find the unit tangent, normal, and binormal

vectors and the curvature and torsion at a general point on the

given curve.

7. r D t iC
t2

2
jC

t3

3
k 8. r D et

.cos t iC sin t jC k/

9. Find the curvature and torsion of the parametric curve

x D 2C
p

2 cos t; y D 1 � sin t; z D 3C sin t

at an arbitrary point t . What is the curve?

10. A particle moves along the plane curve y D sinx in the

direction of increasing x with constant horizontal speed

dx=dt D k. Find the tangential and normal components of

the acceleration of the particle when it is at position x.

11. Find the unit tangent, normal and binormal, and the curvature

and torsion for the curve

r D sin t cos t iC sin2
t jC cos t k

at the points (a) t D 0 and (b) t D �=4.

12. A particle moves on an elliptical path in the xy-plane so that

its position at time t is r D a cos t iC b sin t j. Find the

tangential and normal components of its acceleration at time t .

At what points is the tangential acceleration zero?

13. Find the maximum and minimum values for the curvature of

the ellipse x D a cos t , y D b sin t , where a > b > 0.

14. A bead of mass m slides without friction down a wire bent in

the shape of the curve y D x2, under the influence of the

gravitational force �mgj. The speed of the bead is v as it

passes through the point .1; 1/. Find, at that instant, the

magnitude of the normal acceleration of the bead and the rate

of change of its speed.

15. Find the curvature of the plane curve y D ex at x. Find the

equation of the evolute of this curve.

16.A Show that the curvature of the plane polar graph r D f .�/ at

a general point � is

�.�/ D

j2

�

f 0.�/
�2

C

�

f .�/

�2

� f .�/f 00.�/j

h�

f 0.�/
�2

C

�

f .�/

�2i3=2
:

17. Find the curvature of the cardioid r D a.1 � cos �/.

18.I Find the curve r D r.t/ for which �.t/ D 1 and �.t/ D 1 for

all t , and r.0/ D OT.0/ D i, ON.0/ D j, and OB.0/ D k.

19. Suppose the curve r D r.t/ satisfies
dr

dt
D c� r.t/, where c is

a constant vector. Show that the curve is the circle in which

the plane through r.0/ normal to c intersects a sphere with

radius jr.0/j centred at the origin.

20. Find the evolute of the circular helix

r D a cos t iC a sin t jC btk.

21. Find the evolute of the parabola y D x2.

22. Find the evolute of the ellipse x D 2 cos t , y D sin t .

23. Find the polynomial f .x/ of lowest degree so that track along

y D f .x/ from x D �1 to x D 1 joins with existing straight

tracks y D �1, x � �1 and y D 1, x � 1 sufficiently

smoothly that a train moving at constant speed will not

experience discontinuous acceleration at the joins.

24.I Help out model train manufacturers. Design a track segment

y D f .x/, �1 � x � 0, to provide a jolt-free link between a

straight track section y D 1, x � �1, and a semicircular arc

section x2
C y2

D 1, x � 0.

25.A If the position r, velocity v, and acceleration a of a moving

particle satisfy a.t/ D �.t/r.t/C �.t/v.t/, where �.t/ and

�.t/ are scalar functions of time t , and if v� a ¤ 0, show that

the path of the particle lies in a plane.

Use Maple in Exercises 26–31. Make sure to load the

LinearAlgebra and VectorCalculus packages.

In Exercises 26–29, determine the curvature and torsion functions

for the given curves. Because of the problem with the Torsion

function in some versions of the VectorCalculus package (as

mentioned at the end of this section), you may want to use the

formulas derived from the derivatives of position to determine it,

and probably the curvature as well. Try to describe the curve.

M 26. r.t/ D cos.t/iC 2 sin.t/jC cos.t/k. Why should you not be

surprised at the value of the torsion? What are the maximum

and minimum curvatures? Describe the curve.

M 27. r.t/ D .t � sin t /iC .1 � cos t /jC tk. Are the curvature and

torsion continuous for all t?

M 28. r.t/ D cos.t/ cos.2t/iC cos.t/ sin.2t/jC sin.t/k. Show that

the curve lies on the sphere x2
C y

2
C z

2
D 1. What is the

minimum value of its curvature?

M 29. r.t/ D .t C cos t /iC .t C sin t /jC .1C t � cos t /k.

In Exercises 30–31, define new Maple functions to calculate the

requested items. Assume the LinearAlgebra and VectorCalculus

packages are loaded.

M 30. The evolute(R)(t) whose value at R is the function

whose value at t is the position vector of the centre of

curvature of the curve R for the point R(t).

M 31. A function tanline(R)(t,u) whose value at R is the

function whose value at (t,u) is the position vector of the

point on the tangent line to the curve R at t at distance u from

R(t) in the direction of increasing t.

11.6 Kepler’s Laws of Planetary Motion

The German mathematician and astronomer Johannes Kepler (1571–1630) was a stu-

dent and colleague of Danish astronomer Tycho Brahe (1546–1601). Over a lifetime

of observing the positions of planets without the aid of a telescope, Brahe compiled
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a vast amount of data, which Kepler analyzed. Although Polish astronomer Nicolaus

Copernicus (1473–1543) had postulated that the earth and other planets moved around

the sun, the religious and philosophical climate in Europe at the end of the sixteenth

century still favoured explaining the motion of heavenly bodies in terms of circular

orbits around the earth. It was known that planets such as Mars could not move on

circular orbits centred at the earth, but models were proposed in which they moved on

other circles (epicycles) whose centres moved on circles centred at the earth.

Brahe’s observations of Mars were sufficiently detailed that Kepler realized that

no simple model based on circles could be made to conform very closely with the

actual orbit. He was, however, able to fit a more general quadratic curve, an ellipse

with one focus at the sun. Based on this success and on Brahe’s data on other planets,

he formulated the following three laws of planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focus.

2. The radial line from the sun to a planet sweeps out equal areas in equal

times.

3. The squares of the periods of revolution of the planets around the sun are

proportional to the cubes of the major axes of their orbits.

Kepler’s statement of the third law actually says that the squares of the periods of

revolution of the planets are proportional to the cubes of their mean distances from the

sun. The mean distance of points on an ellipse from a focus of the ellipse is equal to

the semi-major axis. (See Exercise 17 at the end of this section.) Therefore, the two

statements are equivalent.

The choice of ellipses was reasonable once it became clear that circles would not

work. The properties of the conic sections were well understood, having been devel-

oped by the Greek mathematician Apollonius of Perga around 200 BC. Nevertheless,

based, as it was, on observations rather than theory, Kepler’s formulation of his laws

without any causal explanation was a truly remarkable feat. The theoretical underpin-

nings came later when Newton, with the aid of his newly created calculus, showed that

Kepler’s laws implied an inverse square gravitational force. (See Review Exercises

14–16 at the end of this chapter.) Newton believed that his universal gravitational law

also implied Kepler’s laws, but his writings fail to provide a proof that is convincing

by today’s standards.1

Later in this section we will derive Kepler’s laws from the gravitational law by

an elegant method that exploits vector differentiation to the fullest. First, however, we

need to attend to some preliminaries.

Ellipses in Polar Coordinates
The polar coordinates Œr; �� of a point in the plane whose distance r from the origin

is " times its distance p � r cos � from the line x D p (see Figure 11.22) satisfy the

equation r D ".p � r cos �/, or, solving for r ,

r D
`

1C " cos �
;

where ` D "p. As observed in Sections 8.1 and 8.5, for 0 � " < 1 this equation

represents an ellipse having eccentricity ". (It is a circle if " D 0.) To see this, let us

transform the equation to Cartesian coordinates:

y

x

�

Œr;��

p�r cos �

xDp

rrD "p
1C" cos �

Figure 11.22 An ellipse with focus at the

origin, directrix x D p, and eccentricity "

x
2
C y

2
D r

2
D "

2
.p � r cos �/2 D "2

.p � x/
2
D "

2
.p

2
� 2px C x

2
/:

1 There are interesting articles debating the historical significance of Newton’s work by Robert Wein-

stock, Curtis Wilson, and others in The College Mathematics Journal, vol. 25, No. 3, 1994.
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With some algebraic manipulation, this equation can be juggled into the form
�

x C
"`

1 � "2

�2

�

`

1 � "2

�2
C

y
2

�

`
p

1 � "2

�2
D 1;

which can be recognized as an ellipse with centre at the point C D .�c; 0/, where

c D "`=.1 � "2/, and semi-axes a and b given by

a D
`

1 � "2
(semi-major axis);

b D
`

p

1 � "2
(semi-minor axis):

The Cartesian equation of the ellipse shows that the curve is symmetric about the lines

x D �c and y D 0 and so has a second focus at F D .�2c; 0/ and a second directrix

with equation x D �2c � p. (See Figure 11.23.) The ends of the major axis are

A D .a � c; 0/ and A0
D .�a � c; 0/, and the ends of the minor axis are B D .�c; b/

and B 0
D .�c;�b/.

Figure 11.23 The sum of the distances

from any point P on the ellipse to the two

foci O and F is constant, " times the

distance between the directrices

y

x

P Q

A

B D .�c; b/

B 0
D .�c;�b/

O .a � c; 0/.�c; 0/F D .�2c; 0/

x D �2c � p

Q0

x D p

.�a � c; 0/

A0

C

If P is any point on the ellipse, then the distance OP is " times the distance PQ

from P to the right directrix. Similarly, the distance FP is " times the distance Q0
P

from P to the left directrix. Thus, the sum of the focal radii OP C FP is the constant

"Q0Q D ".2cC 2p/, regardless of where P is on the ellipse. Letting P be A or B we

get for this sum

2a D .a � c/C .aC c/ D OAC FA D OB C FB D 2

p

b2
C c2:

It follows that

a
2
D b

2
C c

2
; c D

p

a2
� b2

D

`"

1 � "2
D "a:

The number ` is called the semi-latus rectum of the ellipse; the latus rectum is the

width measured along the line through a focus, perpendicular to the major axis. (See

Figure 11.24.)
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Figure 11.24 Some parameters of an

ellipse

Remark The polar equation r D `=.1C " cos �/ represents a bounded curve only if

" < 1; in this case we have `=.1C "/ � r � `=.1 � "/ for all directions � . If " D 1,

the equation represents a parabola, and if " > 1, a hyperbola. It is possible for objects

to travel on parabolic or hyperbolic orbits, but they will approach the sun only once,

rather than continue to loop around it. Some comets have hyperbolic orbits.
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a vast amount of data, which Kepler analyzed. Although Polish astronomer Nicolaus

Copernicus (1473–1543) had postulated that the earth and other planets moved around

the sun, the religious and philosophical climate in Europe at the end of the sixteenth

century still favoured explaining the motion of heavenly bodies in terms of circular

orbits around the earth. It was known that planets such as Mars could not move on

circular orbits centred at the earth, but models were proposed in which they moved on

other circles (epicycles) whose centres moved on circles centred at the earth.

Brahe’s observations of Mars were sufficiently detailed that Kepler realized that

no simple model based on circles could be made to conform very closely with the

actual orbit. He was, however, able to fit a more general quadratic curve, an ellipse

with one focus at the sun. Based on this success and on Brahe’s data on other planets,

he formulated the following three laws of planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focus.

2. The radial line from the sun to a planet sweeps out equal areas in equal

times.

3. The squares of the periods of revolution of the planets around the sun are

proportional to the cubes of the major axes of their orbits.

Kepler’s statement of the third law actually says that the squares of the periods of

revolution of the planets are proportional to the cubes of their mean distances from the

sun. The mean distance of points on an ellipse from a focus of the ellipse is equal to

the semi-major axis. (See Exercise 17 at the end of this section.) Therefore, the two

statements are equivalent.

The choice of ellipses was reasonable once it became clear that circles would not

work. The properties of the conic sections were well understood, having been devel-

oped by the Greek mathematician Apollonius of Perga around 200 BC. Nevertheless,

based, as it was, on observations rather than theory, Kepler’s formulation of his laws

without any causal explanation was a truly remarkable feat. The theoretical underpin-

nings came later when Newton, with the aid of his newly created calculus, showed that

Kepler’s laws implied an inverse square gravitational force. (See Review Exercises

14–16 at the end of this chapter.) Newton believed that his universal gravitational law

also implied Kepler’s laws, but his writings fail to provide a proof that is convincing

by today’s standards.1

Later in this section we will derive Kepler’s laws from the gravitational law by

an elegant method that exploits vector differentiation to the fullest. First, however, we

need to attend to some preliminaries.

Ellipses in Polar Coordinates
The polar coordinates Œr; �� of a point in the plane whose distance r from the origin

is " times its distance p � r cos � from the line x D p (see Figure 11.22) satisfy the

equation r D ".p � r cos �/, or, solving for r ,

r D
`

1C " cos �
;

where ` D "p. As observed in Sections 8.1 and 8.5, for 0 � " < 1 this equation

represents an ellipse having eccentricity ". (It is a circle if " D 0.) To see this, let us

transform the equation to Cartesian coordinates:

y

x

�

Œr;��

p�r cos �

xDp

rrD "p
1C" cos �

Figure 11.22 An ellipse with focus at the

origin, directrix x D p, and eccentricity "

x
2
C y

2
D r

2
D "

2
.p � r cos �/2 D "2

.p � x/
2
D "

2
.p

2
� 2px C x

2
/:

1 There are interesting articles debating the historical significance of Newton’s work by Robert Wein-

stock, Curtis Wilson, and others in The College Mathematics Journal, vol. 25, No. 3, 1994.
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With some algebraic manipulation, this equation can be juggled into the form
�

x C
"`

1 � "2

�2

�

`

1 � "2

�2
C

y
2

�

`
p

1 � "2

�2
D 1;

which can be recognized as an ellipse with centre at the point C D .�c; 0/, where

c D "`=.1 � "2/, and semi-axes a and b given by

a D
`

1 � "2
(semi-major axis);

b D
`

p

1 � "2
(semi-minor axis):

The Cartesian equation of the ellipse shows that the curve is symmetric about the lines

x D �c and y D 0 and so has a second focus at F D .�2c; 0/ and a second directrix

with equation x D �2c � p. (See Figure 11.23.) The ends of the major axis are

A D .a � c; 0/ and A0
D .�a � c; 0/, and the ends of the minor axis are B D .�c; b/

and B 0
D .�c;�b/.

Figure 11.23 The sum of the distances

from any point P on the ellipse to the two

foci O and F is constant, " times the

distance between the directrices
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If P is any point on the ellipse, then the distance OP is " times the distance PQ

from P to the right directrix. Similarly, the distance FP is " times the distance Q0
P

from P to the left directrix. Thus, the sum of the focal radii OP C FP is the constant

"Q0Q D ".2cC 2p/, regardless of where P is on the ellipse. Letting P be A or B we

get for this sum

2a D .a � c/C .aC c/ D OAC FA D OB C FB D 2

p

b2
C c2:

It follows that
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; c D

p
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`"
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D "a:

The number ` is called the semi-latus rectum of the ellipse; the latus rectum is the

width measured along the line through a focus, perpendicular to the major axis. (See

Figure 11.24.)
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Figure 11.24 Some parameters of an

ellipse

Remark The polar equation r D `=.1C " cos �/ represents a bounded curve only if

" < 1; in this case we have `=.1C "/ � r � `=.1 � "/ for all directions � . If " D 1,

the equation represents a parabola, and if " > 1, a hyperbola. It is possible for objects

to travel on parabolic or hyperbolic orbits, but they will approach the sun only once,

rather than continue to loop around it. Some comets have hyperbolic orbits.
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Polar Components of Velocity and Acceleration
Let r.t/ be the position vector at time t of a particle P moving in the xy-plane. We

construct two unit vectors at P; the vector Or points in the direction of the position

vector r, and the vector O� is rotated 90ı counterclockwise from Or. (See Figure 11.25.)

If P has polar coordinates Œr; ��, then Or points in the direction of increasing r at P; and
O� points in the direction of increasing � . Evidently,

Or D cos � iC sin � j

O� D � sin � iC cos � j:

Note that Or and O� do not depend on r but only on � :

y

x

Or
P

�

r

O�

Figure 11.25 Basis vectors in the

direction of increasing r and �

d Or

d�
D
O� and

d O�

d�
D �Or:

The pair fOr; O�g forms a reference frame (a basis) at P so that vectors in the plane can

be expressed in terms of these two unit vectors. The Or component of a vector is called

the radial component, and the O� component is called the transverse component. The

frame varies from point to point, so we must remember that Or and O� are both functions

of t . In terms of this moving frame, the position r.t/ of P can be expressed very

simply:

r D r Or;

where r D r.t/ D jr.t/j is the distance from P to the origin at time t .

We are going to differentiate this equation with respect to t in order to express

the velocity and acceleration of P in terms of the moving frame. Along the path of

motion, r can be regarded as a function of either � or t ; � is itself a function of t . To

avoid confusion, let us adopt a notation that is used extensively in mechanics and that

resembles the notation originally used by Newton in his calculus.

A dot over a quantity denotes the time derivative of that quantity. Two dots

denote the second derivative with respect to time. Thus,

Pu D du=dt and Ru D d
2
u=dt

2
:

First, let us record the time derivatives of the vectors Or and O� . By the Chain Rule, we

have

P
Or D

d Or

d�

d�

dt
D
P� O�;

P
O� D

d O�

d�

d�

dt
D �
P� Or:

Now the velocity of P is

v D Pr D
d

dt
.r Or/ D Pr OrC r P� O�:

Polar components of velocity:

The radial component of velocity is Pr .

The transverse component of velocity is r P� .

Since Or and O� are perpendicular unit vectors, the speed of P is given by

v D jvj D

q

Pr2
C r2 P�2:
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Similarly, the acceleration of P can be expressed in terms of radial and transverse

components:

a D Pv D Rr D
d

dt
.Pr OrC r P� O�/

D Rr OrC Pr P� O� C Pr P� O� C r R� O� � r P�2
Or

D .Rr � r P�
2
/OrC .r R� C 2Pr P�/ O�:

Polar components of acceleration:

The radial component of acceleration is Rr � r P�2.

The transverse component of acceleration is r R� C 2Pr P� .

Central Forces and Kepler’s Second Law
Polar coordinates are most appropriate for analyzing motion due to a central force that

is always directed toward (or away from) a single point, the origin: F D �.r/r, where

the scalar �.r/ depends on the position r of the object. If the velocity and acceleration

of the object are v D Pr and a D Pv, then Newton’s Second Law of Motion (F D ma)

says that a is parallel to r. Therefore,

d

dt
.r� v/ D Pr� vC r� Pv D v� vC r� a D 0C 0 D 0;

and r� v D h, a constant vector representing the object’s angular momentum per unit

mass about the origin. This says that r is always perpendicular to h, so motion due to

a central force always takes place in a plane through the origin having normal h.

If we choose the z-axis to be in the direction of h and let jhj D h, then h D hk,

and the path of the object is in the xy-plane. In this case the position and velocity of

the object satisfy

r D r Or and v D Pr OrC r P� O�:

Since Or� O� D k, we have

hk D r� v D r Pr Or� OrC r2 P� Or� O� D r2 P�k:

Hence, for any motion under a central force,

r
2 P� D h (a constant for the path of motion).

This formula is equivalent to Kepler’s Second Law; if A.t/ is the area in the plane of

motion bounded by the orbit and radial lines � D �0 and � D �.t/, then

A.t/ D
1

2

Z �.t/

�0

r
2
d�;

so that

dA

dt
D

dA

d�

d�

dt
D

1

2
r

2 P� D
h

2
:

Thus, area is being swept out at the constant rate h=2, and equal areas are swept out in

equal times. Note that this law does not depend on the magnitude or direction of the

force on the moving object other than the fact that it is central. You can also derive the

equation r2 P� D h (constant) directly from the fact that the transverse acceleration is

zero:

d

dt
.r

2 P�/ D 2r Pr P� C r
2 R� D r.2Pr P� C r R�/ D 0:
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Polar Components of Velocity and Acceleration
Let r.t/ be the position vector at time t of a particle P moving in the xy-plane. We

construct two unit vectors at P; the vector Or points in the direction of the position

vector r, and the vector O� is rotated 90ı counterclockwise from Or. (See Figure 11.25.)

If P has polar coordinates Œr; ��, then Or points in the direction of increasing r at P; and
O� points in the direction of increasing � . Evidently,

Or D cos � iC sin � j

O� D � sin � iC cos � j:

Note that Or and O� do not depend on r but only on � :

y

x

Or
P

�

r

O�

Figure 11.25 Basis vectors in the

direction of increasing r and �

d Or

d�
D
O� and

d O�

d�
D �Or:

The pair fOr; O�g forms a reference frame (a basis) at P so that vectors in the plane can

be expressed in terms of these two unit vectors. The Or component of a vector is called

the radial component, and the O� component is called the transverse component. The

frame varies from point to point, so we must remember that Or and O� are both functions

of t . In terms of this moving frame, the position r.t/ of P can be expressed very

simply:

r D r Or;

where r D r.t/ D jr.t/j is the distance from P to the origin at time t .

We are going to differentiate this equation with respect to t in order to express

the velocity and acceleration of P in terms of the moving frame. Along the path of

motion, r can be regarded as a function of either � or t ; � is itself a function of t . To

avoid confusion, let us adopt a notation that is used extensively in mechanics and that

resembles the notation originally used by Newton in his calculus.

A dot over a quantity denotes the time derivative of that quantity. Two dots

denote the second derivative with respect to time. Thus,

Pu D du=dt and Ru D d
2
u=dt

2
:

First, let us record the time derivatives of the vectors Or and O� . By the Chain Rule, we

have

P
Or D

d Or

d�

d�

dt
D
P� O�;

P
O� D

d O�

d�

d�

dt
D �
P� Or:

Now the velocity of P is

v D Pr D
d

dt
.r Or/ D Pr OrC r P� O�:

Polar components of velocity:

The radial component of velocity is Pr .

The transverse component of velocity is r P� .

Since Or and O� are perpendicular unit vectors, the speed of P is given by

v D jvj D

q

Pr2
C r2 P�2:
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Similarly, the acceleration of P can be expressed in terms of radial and transverse

components:

a D Pv D Rr D
d

dt
.Pr OrC r P� O�/

D Rr OrC Pr P� O� C Pr P� O� C r R� O� � r P�2
Or

D .Rr � r P�
2
/OrC .r R� C 2Pr P�/ O�:

Polar components of acceleration:

The radial component of acceleration is Rr � r P�2.

The transverse component of acceleration is r R� C 2Pr P� .

Central Forces and Kepler’s Second Law
Polar coordinates are most appropriate for analyzing motion due to a central force that

is always directed toward (or away from) a single point, the origin: F D �.r/r, where

the scalar �.r/ depends on the position r of the object. If the velocity and acceleration

of the object are v D Pr and a D Pv, then Newton’s Second Law of Motion (F D ma)

says that a is parallel to r. Therefore,

d

dt
.r� v/ D Pr� vC r� Pv D v� vC r� a D 0C 0 D 0;

and r� v D h, a constant vector representing the object’s angular momentum per unit

mass about the origin. This says that r is always perpendicular to h, so motion due to

a central force always takes place in a plane through the origin having normal h.

If we choose the z-axis to be in the direction of h and let jhj D h, then h D hk,

and the path of the object is in the xy-plane. In this case the position and velocity of

the object satisfy

r D r Or and v D Pr OrC r P� O�:

Since Or� O� D k, we have

hk D r� v D r Pr Or� OrC r2 P� Or� O� D r2 P�k:

Hence, for any motion under a central force,

r
2 P� D h (a constant for the path of motion).

This formula is equivalent to Kepler’s Second Law; if A.t/ is the area in the plane of

motion bounded by the orbit and radial lines � D �0 and � D �.t/, then

A.t/ D
1

2

Z �.t/

�0

r
2
d�;

so that

dA

dt
D

dA

d�

d�

dt
D

1

2
r

2 P� D
h

2
:

Thus, area is being swept out at the constant rate h=2, and equal areas are swept out in

equal times. Note that this law does not depend on the magnitude or direction of the

force on the moving object other than the fact that it is central. You can also derive the

equation r2 P� D h (constant) directly from the fact that the transverse acceleration is

zero:

d

dt
.r

2 P�/ D 2r Pr P� C r
2 R� D r.2Pr P� C r R�/ D 0:
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E X A M P L E 1
An object moves along the polar curve r D 1=� under the influ-

ence of a force attracting it toward the origin. If the speed of the

object is v0 at the instant when � D 1, find the magnitude of the acceleration of the

object at any point on its path as a function of its distance r from the origin.

Solution Since the force is central, we know that the transverse acceleration is zero

and that r2 P� D h is constant. Differentiating the equation of the path with respect to

time and expressing the result in terms of r , we obtain

Pr D �
1

�2
P� D �r

2 h

r2
D �h:

Hence, the radial component of acceleration is

ar D Rr � r.
P�/

2
D 0 � r

h2

r4
D �

h2

r3
:

At � D 1 we have r D 1, so P� D h. At that instant the square of the speed is

v
2
0 D Pr

2
C r

2 P�
2
D h

2
C h

2
D 2h

2
:

Hence, h2
D v

2
0=2, and, at any point of its path, the magnitude of the acceleration of

the object is

jar j D
v2

0

2r3
:

Derivation of Kepler’s First and Third Laws
The planets and the sun move around their common centre of mass. Since the sun is

vastly more massive than the planets, that centre of mass is quite close to the centre

of the sun. For example, the joint centre of mass of the sun and the earth lies inside

the sun. For the following derivation we will take the sun and a planet as point masses

and consider the sun to be fixed at the origin. We will specify the directions of the

coordinate axes later, when the need arises.

According to Newton’s Law of Gravitation, the force that the sun exerts on a planet

of mass m whose position vector is r is

F D �
km

r2
Or D �

km

r3
r;

where k is a positive constant depending on the mass of the sun, and Or D r=r .

As observed above, the fact that the force on the planet is always directed toward

the origin implies that r� v is constant. We choose the direction of the z-axis so

that r� v D hk, so the motion will be in the xy-plane and r2 P� D h. We have not

yet specified the directions of the x- and y-axes but will do so shortly. Using polar

coordinates in the xy-plane, we calculate

dv

d�
D

Pv

P�
D

�

k

r2
Or

h

r2

D �

k

h
Or:

Since d O�=d� D �Or, we can integrate the differential equation above to find v:

v D �
k

h

Z

Or d� D
k

h

O� C C;
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where C is a vector constant of integration. Therefore, we have shown that

jv �Cj D
k

h
:

This result, known as Hamilton’s Theorem, says that as a planet moves around its

orbit, its velocity vector (when positioned with its tail at the origin) traces out a circle

with centre at point C having position vector C. It is perhaps surprising that there is

a circle associated with the orbit of a planet after all. Only it is not the position vector

that moves on a circle but the velocity vector. (See Figure 11.26.)

Recall that so far we have specified only the position of the origin and the direction

of the z-axis. Therefore, the xy-plane is determined but not the directions of the x-axis

y

x

y

x

orbit

velocities

C

Figure 11.26 The velocity vectors define

a circle

or the y-axis. Let us choose these axes in the xy-plane so that C is in the direction of

the y-axis; say C D ."k=h/j, where " is a positive constant. We therefore have

v D
k

h
. O� C "j/:

The position of the x-axis is now determined by the fact that the three vectors i, j, and

k are mutually perpendicular and form a right-handed basis. We calculate r� v again.

Remember that r D r cos � iC r sin �j, and also r D r Or:

hk D r� v D
k

h
.r Or� O� C r" cos � i� jC r" sin �j� j/

D

k

h
r.1C " cos �/k:

Thus, h D
kr

h
.1C " cos �/, or, solving for r ,

r D
h2=k

1C " cos �
:

This is the polar equation of the orbit. If " < 1, it is an ellipse with one focus at the

origin (the sun) and with parameters given by

Semi-latus rectum: ` D
h2

k

Semi-major axis: a D
h2

k.1 � "2/
D

`

1 � "2

Semi-minor axis: b D
h2

k
p

1 � "2
D

`
p

1 � "2

Semi-focal separation: c D

p

a2
� b2

D

"`

1 � "2
:

We have deduced Kepler’s First Law! The choices we made for the coordinate axes

result in perihelion (the point on the orbit that is closest to the sun) being on the

positive x-axis (� D 0).

E X A M P L E 2
A planet’s orbit has eccentricity " (where 0 < " < 1), and its speed

at perihelion is vP . Find its speed vA at aphelion (the point on its

orbit farthest from the sun).
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E X A M P L E 1
An object moves along the polar curve r D 1=� under the influ-

ence of a force attracting it toward the origin. If the speed of the

object is v0 at the instant when � D 1, find the magnitude of the acceleration of the

object at any point on its path as a function of its distance r from the origin.

Solution Since the force is central, we know that the transverse acceleration is zero

and that r2 P� D h is constant. Differentiating the equation of the path with respect to

time and expressing the result in terms of r , we obtain

Pr D �
1

�2
P� D �r

2 h

r2
D �h:

Hence, the radial component of acceleration is

ar D Rr � r.
P�/

2
D 0 � r

h2

r4
D �

h2

r3
:

At � D 1 we have r D 1, so P� D h. At that instant the square of the speed is

v
2
0 D Pr

2
C r

2 P�
2
D h

2
C h

2
D 2h

2
:

Hence, h2
D v

2
0=2, and, at any point of its path, the magnitude of the acceleration of

the object is

jar j D
v2

0

2r3
:

Derivation of Kepler’s First and Third Laws
The planets and the sun move around their common centre of mass. Since the sun is

vastly more massive than the planets, that centre of mass is quite close to the centre

of the sun. For example, the joint centre of mass of the sun and the earth lies inside

the sun. For the following derivation we will take the sun and a planet as point masses

and consider the sun to be fixed at the origin. We will specify the directions of the

coordinate axes later, when the need arises.

According to Newton’s Law of Gravitation, the force that the sun exerts on a planet

of mass m whose position vector is r is

F D �
km

r2
Or D �

km

r3
r;

where k is a positive constant depending on the mass of the sun, and Or D r=r .

As observed above, the fact that the force on the planet is always directed toward

the origin implies that r� v is constant. We choose the direction of the z-axis so

that r� v D hk, so the motion will be in the xy-plane and r2 P� D h. We have not

yet specified the directions of the x- and y-axes but will do so shortly. Using polar

coordinates in the xy-plane, we calculate

dv

d�
D

Pv

P�
D

�

k

r2
Or

h

r2

D �

k

h
Or:

Since d O�=d� D �Or, we can integrate the differential equation above to find v:

v D �
k

h

Z

Or d� D
k

h

O� C C;
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where C is a vector constant of integration. Therefore, we have shown that

jv �Cj D
k

h
:

This result, known as Hamilton’s Theorem, says that as a planet moves around its

orbit, its velocity vector (when positioned with its tail at the origin) traces out a circle

with centre at point C having position vector C. It is perhaps surprising that there is

a circle associated with the orbit of a planet after all. Only it is not the position vector

that moves on a circle but the velocity vector. (See Figure 11.26.)

Recall that so far we have specified only the position of the origin and the direction

of the z-axis. Therefore, the xy-plane is determined but not the directions of the x-axis

y

x

y

x

orbit

velocities

C

Figure 11.26 The velocity vectors define

a circle

or the y-axis. Let us choose these axes in the xy-plane so that C is in the direction of

the y-axis; say C D ."k=h/j, where " is a positive constant. We therefore have

v D
k

h
. O� C "j/:

The position of the x-axis is now determined by the fact that the three vectors i, j, and

k are mutually perpendicular and form a right-handed basis. We calculate r� v again.

Remember that r D r cos � iC r sin �j, and also r D r Or:

hk D r� v D
k

h
.r Or� O� C r" cos � i� jC r" sin �j� j/

D

k

h
r.1C " cos �/k:

Thus, h D
kr

h
.1C " cos �/, or, solving for r ,

r D
h2=k

1C " cos �
:

This is the polar equation of the orbit. If " < 1, it is an ellipse with one focus at the

origin (the sun) and with parameters given by

Semi-latus rectum: ` D
h2

k

Semi-major axis: a D
h2

k.1 � "2/
D

`

1 � "2

Semi-minor axis: b D
h2

k
p

1 � "2
D

`
p

1 � "2

Semi-focal separation: c D

p

a2
� b2

D

"`

1 � "2
:

We have deduced Kepler’s First Law! The choices we made for the coordinate axes

result in perihelion (the point on the orbit that is closest to the sun) being on the

positive x-axis (� D 0).

E X A M P L E 2
A planet’s orbit has eccentricity " (where 0 < " < 1), and its speed

at perihelion is vP . Find its speed vA at aphelion (the point on its

orbit farthest from the sun).
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Solution At perihelion and aphelion the planet’s radial velocity Pr is zero (since r is

minimum or maximum), so the velocity is entirely transverse. Thus, vP D rP
P�P and

vA D rA
P�A. Since r2 P� D h has the same value at all points of the orbit, we have

rP vP D r
2
P
P�P D h D r

2
A
P�A D rAvA:

The planet’s orbit has equation

r D
`

1C " cos �
;

so perihelion corresponds to � D 0 and aphelion to � D � :

rP D
`

1C "
and rA D

`

1 � "
:

Therefore, vA D
rP

rA
vP D

1 � "

1C "
vP .

We can obtain Kepler’s Third Law from the other two as follows. Since the radial

line from the sun to a planet sweeps out area at a constant rate h=2, the total area A

enclosed by the orbit is A D .h=2/T , where T is the period of revolution. The area of

an ellipse with semi-axes a and b is A D �ab. Since b2
D `a D h2a=k, we have

T
2
D

4

h2
A

2
D

4

h2
�

2
a

2
b

2
D

4�2

k
a

3
:

Note how the final expression for T 2 does not depend on h, which is a constant for

the orbit of any one planet, but varies from planet to planet. The constant 4�2=k does

not depend on the particular planet. (k depends on the mass of the sun and a universal

gravitational constant.) Thus,

T
2
D

4�2

k
a

3

says that the square of the period of a planet is proportional to the cube of the length,

2a, of the major axis of its orbit, the proportionality extending over all the planets.

This is Kepler’s Third Law. Modern astronomical data show that T 2
=a

3 varies by only

about three-tenths of one percent over the solar system’s known planets.

Conservation of Energy
Solving the second-order differential equation of motion F D mRr to find the orbit

of a planet requires two integrations. In the above derivation we exploited properties

of the cross product to make these integrations easy. More traditional derivations of

Kepler’s laws usually begin with separating the radial and transverse components in

the equation of motion:

Rr � r P�
2
D �

k

r2
; r R� C 2Pr P� D 0:

As observed earlier, the second equation above implies that r2 P� D h D constant,

which is Kepler’s Second Law. This can be used to eliminate � from the first equation

to give

Rr �
h

2

r3
D �

k

r2
:

Therefore,

d

dt

�

Pr
2

2
C

h
2

2r2

�

D Pr

�

Rr �
h

2

r3

�

D �

k

r2
Pr:
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If we integrate this equation, we obtain

1

2

�

Pr
2
C

h2

r2

�

�

k

r
D E:

This is a conservation of energy law. The first term on the left is v2
=2, the kinetic

energy (per unit mass) of the planet. The term �k=r is the potential energy per unit

mass. It is difficult to integrate this equation and to find r as a function of t . In any

event, we really want r as a function of � so that we can recognize that we have an

ellipse. Another way to obtain this is suggested in Exercise 18 below.

Remark The procedure used above to demonstrate Kepler’s laws in fact shows that

if any object moves under the influence of a force that attracts it toward the origin (or

repels it away from the origin) and has magnitude proportional to the reciprocal of the

square of distance from the origin, then the object must move in a plane orbit whose

shape is a conic section. If the total energy E defined above is negative, then the orbit

is bounded and must therefore be an ellipse. If E D 0, the orbit is a parabola. If

E > 0, the orbit is a hyperbola. Hyperbolic orbits are typical for repulsive forces but

may also occur for attractions if the object has high enough velocity (exceeding the

escape velocity). See Exercise 22 for an example.

E X E R C I S E S 11.6

1. (Polar ellipses) Fill in the details of the calculation suggested

in the text to transform the polar equation of an ellipse,

r D `=.1C " cos �/, where 0 < " < 1, to Cartesian

coordinates in a form showing the centre and semi-axes

explicitly.

Polar components of velocity and acceleration

2. A particle moves on the circle with polar equation r D k,

.k > 0/. What are the radial and transverse components of its

velocity and acceleration? Show that the transverse

component of the acceleration is equal to the rate of change of

the speed of the particle.

3. Find the radial and transverse components of velocity and

acceleration of a particle moving at unit speed along the

exponential spiral r D e� . Express your answers in terms of

the angle � .

4. If a particle moves along the polar curve r D � under the

influence of a central force attracting it to the origin, find the

magnitude of the acceleration as a function of r and the speed

of the particle.

5. An object moves along the polar curve r D ��2 under the

influence of a force attracting it toward the origin. If the speed

of the object is v0 at the instant when � D 1, find the

magnitude of the acceleration of the object at any point on its

path as a function of its distance r from the origin.

Deductions from Kepler’s laws

6. The mean distance from the earth to the sun is approximately

150 million km. Comet Halley approaches perihelion (comes

closest to the sun) in its elliptical orbit approximately every 76

years. Estimate the major axis of the orbit of Comet Halley.

7. The mean distance from the moon to the earth is about

385,000 km, and its period of revolution around the earth is

about 27 days (the sidereal month). At approximately what

distance from the centre of the earth, and in what plane,

should a communications satellite be inserted into circular

orbit if it must remain directly above the same position on the

earth at all times?

8. An asteroid is in a circular orbit around the sun. If its period

of revolution is T; find the radius of its orbit.

9.I If the asteroid in Exercise 8 is instantaneously stopped in its

orbit, it will fall toward the sun. How long will it take to get

there? Hint: You can do this question easily if instead you

regard the asteroid as almost stopped, so that it goes into a

highly eccentric elliptical orbit whose major axis is a bit

greater than the radius of the original circular orbit.

10. Find the eccentricity of an asteroid’s orbit if the asteroid’s

speed at perihelion is twice its speed at aphelion.

11. Show that the orbital speed of a planet is constant if and only

if the orbit is circular. Hint: Use the conservation of energy

identity.

12. A planet’s distance from the sun at perihelion is 80% of its

distance at aphelion. Find the ratio of its speeds at perihelion

and aphelion and the eccentricity of its orbit.

13.I As a result of a collision, an asteroid originally in a circular

orbit about the sun suddenly has its velocity cut in half, so that

it falls into an elliptical orbit with maximum distance from the

sun equal to the radius of the original circular orbit. Find the

eccentricity of its new orbit.

14. If the speeds of a planet at perihelion and aphelion are vP and

vA, respectively, what is its speed when it is at the ends of the

minor axis of its orbit?

15. What fraction of its “year” (i.e., the period of its orbit) does a

planet spend traversing the half of its orbit that is closest to the

sun? Give your answer in terms of the eccentricity " of the

planet’s orbit.
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Solution At perihelion and aphelion the planet’s radial velocity Pr is zero (since r is

minimum or maximum), so the velocity is entirely transverse. Thus, vP D rP
P�P and

vA D rA
P�A. Since r2 P� D h has the same value at all points of the orbit, we have

rP vP D r
2
P
P�P D h D r

2
A
P�A D rAvA:

The planet’s orbit has equation

r D
`

1C " cos �
;

so perihelion corresponds to � D 0 and aphelion to � D � :

rP D
`

1C "
and rA D

`

1 � "
:

Therefore, vA D
rP

rA
vP D

1 � "

1C "
vP .

We can obtain Kepler’s Third Law from the other two as follows. Since the radial

line from the sun to a planet sweeps out area at a constant rate h=2, the total area A

enclosed by the orbit is A D .h=2/T , where T is the period of revolution. The area of

an ellipse with semi-axes a and b is A D �ab. Since b2
D `a D h2a=k, we have

T
2
D

4

h2
A

2
D

4

h2
�

2
a

2
b

2
D

4�2

k
a

3
:

Note how the final expression for T 2 does not depend on h, which is a constant for

the orbit of any one planet, but varies from planet to planet. The constant 4�2=k does

not depend on the particular planet. (k depends on the mass of the sun and a universal

gravitational constant.) Thus,

T
2
D

4�2

k
a

3

says that the square of the period of a planet is proportional to the cube of the length,

2a, of the major axis of its orbit, the proportionality extending over all the planets.

This is Kepler’s Third Law. Modern astronomical data show that T 2
=a

3 varies by only

about three-tenths of one percent over the solar system’s known planets.

Conservation of Energy
Solving the second-order differential equation of motion F D mRr to find the orbit

of a planet requires two integrations. In the above derivation we exploited properties

of the cross product to make these integrations easy. More traditional derivations of

Kepler’s laws usually begin with separating the radial and transverse components in

the equation of motion:

Rr � r P�
2
D �

k

r2
; r R� C 2Pr P� D 0:

As observed earlier, the second equation above implies that r2 P� D h D constant,

which is Kepler’s Second Law. This can be used to eliminate � from the first equation

to give

Rr �
h

2

r3
D �

k

r2
:

Therefore,

d

dt

�

Pr
2

2
C

h
2

2r2

�

D Pr

�

Rr �
h

2

r3

�

D �

k

r2
Pr:
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If we integrate this equation, we obtain

1

2

�

Pr
2
C

h2

r2

�

�

k

r
D E:

This is a conservation of energy law. The first term on the left is v2
=2, the kinetic

energy (per unit mass) of the planet. The term �k=r is the potential energy per unit

mass. It is difficult to integrate this equation and to find r as a function of t . In any

event, we really want r as a function of � so that we can recognize that we have an

ellipse. Another way to obtain this is suggested in Exercise 18 below.

Remark The procedure used above to demonstrate Kepler’s laws in fact shows that

if any object moves under the influence of a force that attracts it toward the origin (or

repels it away from the origin) and has magnitude proportional to the reciprocal of the

square of distance from the origin, then the object must move in a plane orbit whose

shape is a conic section. If the total energy E defined above is negative, then the orbit

is bounded and must therefore be an ellipse. If E D 0, the orbit is a parabola. If

E > 0, the orbit is a hyperbola. Hyperbolic orbits are typical for repulsive forces but

may also occur for attractions if the object has high enough velocity (exceeding the

escape velocity). See Exercise 22 for an example.

E X E R C I S E S 11.6

1. (Polar ellipses) Fill in the details of the calculation suggested

in the text to transform the polar equation of an ellipse,

r D `=.1C " cos �/, where 0 < " < 1, to Cartesian

coordinates in a form showing the centre and semi-axes

explicitly.

Polar components of velocity and acceleration

2. A particle moves on the circle with polar equation r D k,

.k > 0/. What are the radial and transverse components of its

velocity and acceleration? Show that the transverse

component of the acceleration is equal to the rate of change of

the speed of the particle.

3. Find the radial and transverse components of velocity and

acceleration of a particle moving at unit speed along the

exponential spiral r D e� . Express your answers in terms of

the angle � .

4. If a particle moves along the polar curve r D � under the

influence of a central force attracting it to the origin, find the

magnitude of the acceleration as a function of r and the speed

of the particle.

5. An object moves along the polar curve r D ��2 under the

influence of a force attracting it toward the origin. If the speed

of the object is v0 at the instant when � D 1, find the

magnitude of the acceleration of the object at any point on its

path as a function of its distance r from the origin.

Deductions from Kepler’s laws

6. The mean distance from the earth to the sun is approximately

150 million km. Comet Halley approaches perihelion (comes

closest to the sun) in its elliptical orbit approximately every 76

years. Estimate the major axis of the orbit of Comet Halley.

7. The mean distance from the moon to the earth is about

385,000 km, and its period of revolution around the earth is

about 27 days (the sidereal month). At approximately what

distance from the centre of the earth, and in what plane,

should a communications satellite be inserted into circular

orbit if it must remain directly above the same position on the

earth at all times?

8. An asteroid is in a circular orbit around the sun. If its period

of revolution is T; find the radius of its orbit.

9.I If the asteroid in Exercise 8 is instantaneously stopped in its

orbit, it will fall toward the sun. How long will it take to get

there? Hint: You can do this question easily if instead you

regard the asteroid as almost stopped, so that it goes into a

highly eccentric elliptical orbit whose major axis is a bit

greater than the radius of the original circular orbit.

10. Find the eccentricity of an asteroid’s orbit if the asteroid’s

speed at perihelion is twice its speed at aphelion.

11. Show that the orbital speed of a planet is constant if and only

if the orbit is circular. Hint: Use the conservation of energy

identity.

12. A planet’s distance from the sun at perihelion is 80% of its

distance at aphelion. Find the ratio of its speeds at perihelion

and aphelion and the eccentricity of its orbit.

13.I As a result of a collision, an asteroid originally in a circular

orbit about the sun suddenly has its velocity cut in half, so that

it falls into an elliptical orbit with maximum distance from the

sun equal to the radius of the original circular orbit. Find the

eccentricity of its new orbit.

14. If the speeds of a planet at perihelion and aphelion are vP and

vA, respectively, what is its speed when it is at the ends of the

minor axis of its orbit?

15. What fraction of its “year” (i.e., the period of its orbit) does a

planet spend traversing the half of its orbit that is closest to the

sun? Give your answer in terms of the eccentricity " of the

planet’s orbit.
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16.I Suppose that a planet is travelling at speed v0 at an instant

when it is at distance r0 from the sun. Show that the period of

the planet’s orbit is

T D
2�
p

k

�

2

r0
�

v2
0

k

��3=2

:

Hint: The quantity
k

r
�

1

2
v

2 is constant at all points of the

orbit, as shown in the discussion of conservation of energy.

Find the value of this expression at perihelion in terms of the

semi-major axis, a.

17.I The sum of the distances from a point P on an ellipse E to the

foci of E is the constant 2a, the length of the major axis of the

ellipse. Use this fact in a geometric argument to show that the

mean distance from points P to one focus of E is a. That is,

show that

1

c.E/

Z

E
r ds D a;

where c.E/ is the circumference of E, and r is the distance

from a point on E to one focus.

18.I (A direct approach to Kepler’s First Law) The result of

eliminating � between the equations for the radial and

transverse components of acceleration for a planet is

Rr �
h2

r3
D �

k

r2
:

Show that the change of dependent and independent variables,

r.t/ D
1

u.�/
; � D �.t/;

transforms this equation to the simpler equation

d 2u

d�2
C u D

k

h2
:

Show that the solution of this equation is

u D
k

h2

�

1C " cos.� � �0/

�

;

where " and �0 are constants. Hence, show that the orbit is

elliptical if j"j < 1.

19.I (What if gravitation were an inverse cube law?) Use the

technique of Exercise 18 to find the trajectory of an object of

unit mass attracted to the origin by a force of magnitude

f .r/ D k=r
3. Are there any orbits that do not approach

infinity or the origin as t !1?

20. Use the conservation of energy formula to show that if E < 0

the orbit must be bounded; that is, it cannot get arbitrarily far

away from the origin.

21.I (Polar hyperbolas) If " > 1, then the equation

r D
`

1C " cos �

represents a hyperbola rather than an ellipse. Sketch the

hyperbola, find its centre and the directions of its asymptotes,

and determine its semi-transverse axis, its semi-conjugate

axis, and semi-focal separation in terms of ` and ".

22.I (Hyperbolic orbits) A meteor travels from infinity on a

hyperbolic orbit passing near the sun. At a very large distance

from the sun it has speed v1. The asymptotes of its orbit pass

at perpendicular distanceD from the sun. (See Figure 11.27.)

Show that the angle ı through which the meteor’s path is

deflected by the gravitational attraction of the sun is given by

cot

�

ı

2

�

D

Dv
2
1
k

:

y

xS

D

rp

� 2�

a

ı

.c;0/

Figure 11.27 Path of a meteor

(Hint: You will need the result of Exercise 21.) The same

analysis and results hold for electrostatic attraction or

repulsion; f .r/ D ˙k=r2 in that case also. The constant k

depends on the charges of two particles, and r is the distance

between them.

C H A P T E R R E V I E W

Key Ideas

� What is a vector function of a real variable, and why does it

represent a curve?

� State the Product Rule for the derivative of

u.t/ �
�

v.t/�w.t/
�

.

� What do the following terms mean?

˘ angular velocity ˘ angular momentum

˘ centripetal acceleration ˘ Coriolis acceleration

˘ arc-length parametrization ˘ central force

� Find the following quantities associated with a

parametric curve C with parametrization

r D r.t/, .a � t � b/:
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˘ the velocity v.t/ ˘ the speed v.t/

˘ the arc length ˘ the acceleration a.t/

˘ the unit tangent OT.t/ ˘ the unit normal ON.t/

˘ the curvature �.t/ ˘ the radius of curvature �.t/

˘ the osculating plane ˘ the osculating circle

˘ the unit binormal OB.t/ ˘ the torsion �.t/

˘ the tangential acceleration ˘ the normal acceleration

˘ the evolute

� State the Frenet–Serret formulas.

� State Kepler’s laws of planetary motion.

� What are the radial and transverse components of velocity

and acceleration?

Review Exercises

1. If r.t/, v.t/, and a.t/ represent the position, velocity, and ac-

celeration at time t of a particle moving in 3-space, and if, at

every time t , the a is perpendicular to both r and v, show that

the vector r.t/ � tv.t/ has constant length.

2. Describe the parametric curve

r D t cos t iC t sin t jC .2� � t /k;

.0 � t � 2�/, and find its length.

3. A particle moves along the curve of intersection of the surfaces

y D x2 and z D 2x3=3 with constant speed v D 6. It is

moving in the direction of increasing x. Find its velocity and

acceleration when it is at the point .1; 1; 2=3/.

4. A particle moves along the curve y D x2 in the xy-plane so

that at time t its speed is v D t . Find its acceleration at time

t D 3 if it is at the point .
p

2; 2/ at that time.

5. Find the curvature and torsion at a general point of the curve

r D et iC
p

2t jC e�t k.

6. A particle moves on the curve of Exercise 5 so that it is at posi-

tion r.t/ at time t . Find its normal acceleration and tangential

acceleration at any time t . What is its minimum speed?

7. (A clothoid curve) The plane curve C in Figure 11.28 has para-

metric equations

x.s/ D

Z s

0

cos
kt2

2
dt and y.s/ D

Z s

0

sin
kt2

2
dt:

Verify that s is, in fact, the arc length along C measured from

.0; 0/ and that the curvature of C is given by �.s/ D ks. Be-

cause the curvature changes linearly with distance along the

curve, such curves, called clothoids, are useful for joining track

sections of different curvatures.
y

x

Figure 11.28 A clothoid curve

8. A particle moves along the polar curve r D e�� with constant

angular speed P� D k. Express its velocity and acceleration in

terms of radial and transverse components depending only on

the distance r from the origin.

Some properties of cycloids

Exercises 9–12 all deal with the cycloid

r D a.t � sin t /iC a.1 � cos t /j:

Recall that this curve is the path of a point on the circumference of

a circle of radius a rolling along the x-axis.

9. Find the arc length s D s.T / of the part of the cycloid from

t D 0 to t D T � 2� .

10. Find the arc-length parametrization r D r.s/ of the arch

0 � t � 2� of the cycloid, with s measured from the

point .0; 0/.

11. Find the evolute of the cycloid; that is, find parametric equa-

tions of the centre of curvature r D rc.t/ of the cycloid. Show

that the evolute is the same cycloid translated �a units to the

right and 2a units downward.

12. A string of length 4a has one end fixed at the origin and is

wound along the arch of the cycloid to the right of the origin.

Since that arch has total length 8a, the free end of the string lies

at the highest pointA of the arch. Find the path followed by the

free end Q of the string as it is unwound from the cycloid and

is held taught during the unwinding. (See Figure 11.29.) If the

string leaves the cycloid at P; then

.arc OP/C PQ D 4a:

The path of Q is called the involute of the cycloid. Show that,

like the evolute, the involute is also a translate of the original

cycloid. In fact, the cycloid is the evolute of its involute.

y

x

A

Q

P

O

Figure 11.29

13. Let P be a point in 3-space with spherical coordinates

.R; �; �/. Suppose that P is not on the z-axis. Find a triad

of mutually perpendicular unit vectors, f OR; O�; O�g, at P in the

directions of increasing R, �, and � , respectively. Is the triad

right- or left-handed?

Kepler’s laws imply Newton’s Law of Gravitation

In Exercises 14–16, it is assumed that a planet of mass m moves in

an elliptical orbit r D `=.1C " cos �/, with focus at the origin (the

sun), under the influence of a force F D F.r/ that depends only on

the position of the planet.

14. Assuming Kepler’s Second Law, show that r� v D h is con-

stant and, hence, that r2 P� D h is constant.

9780134154367_Calculus   694 05/12/16   4:03 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 11 – page 674 October 17, 2016

674 CHAPTER 11 Vector Functions and Curves

16.I Suppose that a planet is travelling at speed v0 at an instant

when it is at distance r0 from the sun. Show that the period of

the planet’s orbit is

T D
2�
p

k

�

2

r0
�

v2
0

k

��3=2

:

Hint: The quantity
k

r
�

1

2
v

2 is constant at all points of the

orbit, as shown in the discussion of conservation of energy.

Find the value of this expression at perihelion in terms of the

semi-major axis, a.

17.I The sum of the distances from a point P on an ellipse E to the

foci of E is the constant 2a, the length of the major axis of the

ellipse. Use this fact in a geometric argument to show that the

mean distance from points P to one focus of E is a. That is,

show that

1

c.E/

Z

E
r ds D a;

where c.E/ is the circumference of E, and r is the distance

from a point on E to one focus.

18.I (A direct approach to Kepler’s First Law) The result of

eliminating � between the equations for the radial and

transverse components of acceleration for a planet is

Rr �
h2

r3
D �

k

r2
:

Show that the change of dependent and independent variables,

r.t/ D
1

u.�/
; � D �.t/;

transforms this equation to the simpler equation

d 2u

d�2
C u D

k

h2
:

Show that the solution of this equation is

u D
k

h2

�

1C " cos.� � �0/

�

;

where " and �0 are constants. Hence, show that the orbit is

elliptical if j"j < 1.

19.I (What if gravitation were an inverse cube law?) Use the

technique of Exercise 18 to find the trajectory of an object of

unit mass attracted to the origin by a force of magnitude

f .r/ D k=r
3. Are there any orbits that do not approach

infinity or the origin as t !1?

20. Use the conservation of energy formula to show that if E < 0

the orbit must be bounded; that is, it cannot get arbitrarily far

away from the origin.

21.I (Polar hyperbolas) If " > 1, then the equation

r D
`

1C " cos �

represents a hyperbola rather than an ellipse. Sketch the

hyperbola, find its centre and the directions of its asymptotes,

and determine its semi-transverse axis, its semi-conjugate

axis, and semi-focal separation in terms of ` and ".

22.I (Hyperbolic orbits) A meteor travels from infinity on a

hyperbolic orbit passing near the sun. At a very large distance

from the sun it has speed v1. The asymptotes of its orbit pass

at perpendicular distanceD from the sun. (See Figure 11.27.)

Show that the angle ı through which the meteor’s path is

deflected by the gravitational attraction of the sun is given by

cot

�

ı

2

�

D

Dv
2
1
k

:

y

xS

D

rp

� 2�

a

ı

.c;0/

Figure 11.27 Path of a meteor

(Hint: You will need the result of Exercise 21.) The same

analysis and results hold for electrostatic attraction or

repulsion; f .r/ D ˙k=r2 in that case also. The constant k

depends on the charges of two particles, and r is the distance

between them.

C H A P T E R R E V I E W

Key Ideas

� What is a vector function of a real variable, and why does it

represent a curve?

� State the Product Rule for the derivative of

u.t/ �
�

v.t/�w.t/
�

.

� What do the following terms mean?

˘ angular velocity ˘ angular momentum

˘ centripetal acceleration ˘ Coriolis acceleration

˘ arc-length parametrization ˘ central force

� Find the following quantities associated with a

parametric curve C with parametrization

r D r.t/, .a � t � b/:
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˘ the velocity v.t/ ˘ the speed v.t/

˘ the arc length ˘ the acceleration a.t/

˘ the unit tangent OT.t/ ˘ the unit normal ON.t/

˘ the curvature �.t/ ˘ the radius of curvature �.t/

˘ the osculating plane ˘ the osculating circle

˘ the unit binormal OB.t/ ˘ the torsion �.t/

˘ the tangential acceleration ˘ the normal acceleration

˘ the evolute

� State the Frenet–Serret formulas.

� State Kepler’s laws of planetary motion.

� What are the radial and transverse components of velocity

and acceleration?

Review Exercises

1. If r.t/, v.t/, and a.t/ represent the position, velocity, and ac-

celeration at time t of a particle moving in 3-space, and if, at

every time t , the a is perpendicular to both r and v, show that

the vector r.t/ � tv.t/ has constant length.

2. Describe the parametric curve

r D t cos t iC t sin t jC .2� � t /k;

.0 � t � 2�/, and find its length.

3. A particle moves along the curve of intersection of the surfaces

y D x2 and z D 2x3=3 with constant speed v D 6. It is

moving in the direction of increasing x. Find its velocity and

acceleration when it is at the point .1; 1; 2=3/.

4. A particle moves along the curve y D x2 in the xy-plane so

that at time t its speed is v D t . Find its acceleration at time

t D 3 if it is at the point .
p

2; 2/ at that time.

5. Find the curvature and torsion at a general point of the curve

r D et iC
p

2t jC e�t k.

6. A particle moves on the curve of Exercise 5 so that it is at posi-

tion r.t/ at time t . Find its normal acceleration and tangential

acceleration at any time t . What is its minimum speed?

7. (A clothoid curve) The plane curve C in Figure 11.28 has para-

metric equations

x.s/ D

Z s

0

cos
kt2

2
dt and y.s/ D

Z s

0

sin
kt2

2
dt:

Verify that s is, in fact, the arc length along C measured from

.0; 0/ and that the curvature of C is given by �.s/ D ks. Be-

cause the curvature changes linearly with distance along the

curve, such curves, called clothoids, are useful for joining track

sections of different curvatures.
y

x

Figure 11.28 A clothoid curve

8. A particle moves along the polar curve r D e�� with constant

angular speed P� D k. Express its velocity and acceleration in

terms of radial and transverse components depending only on

the distance r from the origin.

Some properties of cycloids

Exercises 9–12 all deal with the cycloid

r D a.t � sin t /iC a.1 � cos t /j:

Recall that this curve is the path of a point on the circumference of

a circle of radius a rolling along the x-axis.

9. Find the arc length s D s.T / of the part of the cycloid from

t D 0 to t D T � 2� .

10. Find the arc-length parametrization r D r.s/ of the arch

0 � t � 2� of the cycloid, with s measured from the

point .0; 0/.

11. Find the evolute of the cycloid; that is, find parametric equa-

tions of the centre of curvature r D rc.t/ of the cycloid. Show

that the evolute is the same cycloid translated �a units to the

right and 2a units downward.

12. A string of length 4a has one end fixed at the origin and is

wound along the arch of the cycloid to the right of the origin.

Since that arch has total length 8a, the free end of the string lies

at the highest pointA of the arch. Find the path followed by the

free end Q of the string as it is unwound from the cycloid and

is held taught during the unwinding. (See Figure 11.29.) If the

string leaves the cycloid at P; then

.arc OP/C PQ D 4a:

The path of Q is called the involute of the cycloid. Show that,

like the evolute, the involute is also a translate of the original

cycloid. In fact, the cycloid is the evolute of its involute.

y

x

A

Q

P

O

Figure 11.29

13. Let P be a point in 3-space with spherical coordinates

.R; �; �/. Suppose that P is not on the z-axis. Find a triad

of mutually perpendicular unit vectors, f OR; O�; O�g, at P in the

directions of increasing R, �, and � , respectively. Is the triad

right- or left-handed?

Kepler’s laws imply Newton’s Law of Gravitation

In Exercises 14–16, it is assumed that a planet of mass m moves in

an elliptical orbit r D `=.1C " cos �/, with focus at the origin (the

sun), under the influence of a force F D F.r/ that depends only on

the position of the planet.

14. Assuming Kepler’s Second Law, show that r� v D h is con-

stant and, hence, that r2 P� D h is constant.
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15. Use Newton’s Second Law of Motion (F D mRr) to show that

r�F.r/ D 0. Therefore F.r/ is parallel to r:

F.r/ D �f .r/ Or, for some scalar-valued function f .r/, and the

transverse component of F.r/ is zero.

16. By direct calculation of the radial acceleration of the planet,

show that f .r/ D mh2=.`r2/, where r D jrj. Thus, F is an

attraction to the origin, proportional to the mass of the planet,

and inversely proportional to the square of its distance from the

sun.

Challenging Problems

1. Let P be a point on the surface of the earth at 45ı north lati-

tude. Use a coordinate system with origin at P and basis vec-

tors i and j pointing east and north, respectively, so that k points

vertically upward.

(a) Express the angular velocity � of the earth in terms of

the basis vectors at P: What is the magnitude � of � in

radians per second?

(b) Find the Coriolis acceleration aC D 2� � v of an object

falling vertically with speed v above P:

(c) If the object in (b) drops from rest from a height of 100 m

above P; approximately where will it strike the ground?

Ignore air resistance but not the Coriolis acceleration.

Since the Coriolis acceleration is much smaller than the

gravitational acceleration in magnitude, you can use the

vertical velocity as a good approximation to the actual ve-

locity of the object at any time during its fall.

2.I (The spin of a baseball) When a ball is thrown with spin about

an axis that is not parallel to its velocity, it experiences a lat-

eral acceleration due to differences in friction along its sides.

This spin acceleration is given by as D kS � v, where v is the

velocity of the ball, S is the angular velocity of its spin, and

k is a positive constant depending on the surface of the ball.

Suppose that a ball for which k D 0:001 is thrown horizontally

along the x-axis with an initial speed of 70 ft/s and a spin of

1,000 radians/s about a vertical axis. Its velocity v must satisfy
8

<

:

dv

dt
D .0:001/.1;000k/ � v � 32k D k � v � 32k

v.0/ D 70i;

since the acceleration of gravity is 32 ft/s2.

(a) Show that the components of v D v1iC v2jC v3k satisfy
8

<

:

dv1

dt
D �v2

v1.0/ D 70

8

<

:

dv2

dt
D v1

v2.0/ D 0

8

<

:

dv3

dt
D �32

v3.0/ D 0.

(b) Solve these equations, and find the position of the ball t s

after it is thrown. Assume that it is thrown from the origin

at time t D 0.

(c) At t D 1=5 s, how far, and in what direction, has the ball

deviated from the parabolic path it would have followed if

it had been thrown without spin?

3.I (Charged particles moving in magnetic fields) Magnetic

fields exert forces on moving charged particles. If a particle

of mass m and charge q is moving with velocity v in a mag-

netic field B, then it experiences a force F D qv�B, and hence

its velocity is governed by the equation

m
dv

dt
D qv � B:

For this exercise, suppose that the magnetic field is constant

and vertical, say, B D Bk (e.g., in a cathode-ray tube). If the

moving particle has initial velocity v0, then its velocity at time

t is determined by

8

<

:

dv

dt
D !v � k; where ! D

qB

m

v.0/ D v0:

(a) Show that v � k D v0 � k and jvj D jv0j for all t .

(b) Let w.t/ D v.t/ � .v0 � k/k, so that w is perpendicular to

k for all t . Show that w satisfies

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

d2w

dt2
D �!

2w

w.0/ D v0 � .v0 � k/k

w0
.0/ D !v0 � k:

(c) Solve the initial-value problem in (b) for w.t/, and hence

find v.t/.

(d) Find the position vector r.t/ of the particle at time t if

it is at the origin at time t D 0. Verify that the path of

the particle is, in general, a circular helix. Under what

circumstances is the path a straight line? a circle?

4.I (The tautochrone) The parametric equations

x D a.� � sin �/ and y D a.cos � � 1/

(for 0 � � � 2�), describe an arch of the cycloid followed

by a point on a circle of radius a rolling along the underside

of the x-axis. Suppose the curve is made of wire along which

a bead can slide without friction. (See Figure 11.30.) If the

bead slides from rest under gravity, starting at a point hav-

ing parameter value �0, show that the time it takes for the

bead to fall to the lowest point on the arch (corresponding to

� D �) is a constant, independent of the starting position

�0. Thus, two such beads released simultaneously from dif-

ferent positions along the wire will always collide at the lowest

point. For this reason, the cycloid is sometimes called the tau-

tochrone, from the Greek for “constant time.” Hint: When the

bead has fallen from height y.�0/ to height y.�/, its speed is

v D

r

2g

�

y.�0/ � y.�/

�

. (Why?) The time for the bead to

fall to the bottom is

T D

Z �D�

�D�0

1

v
ds;

where ds is the arc length element along the cycloid.

y

x

� D �0 starting point

� D �

Figure 11.30
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5.I (The Drop of Doom) An amusement park ride that used to be

located at the West Edmonton Mall in Alberta, Canada, gives

thrill seekers a taste of free-fall. It consists of a car moving

along a track consisting of straight vertical and horizontal sec-

tions joined by a smooth curve. The car drops from the top

and falls vertically under gravity for 10� 2
p

2 � 7:2 m before

entering the curved section at B . (See Figure 11.31.) It falls

another 2
p

2 � 2:8 m as it whips around the curve and into

the horizontal section DE at ground level, where brakes are

applied to stop it. (Thus, the total vertical drop from A to D or

E is 10 m, a figure, like the others in this problem, chosen for

mathematical convenience rather than engineering precision.)

For purposes of this problem it is helpful to take the coordi-

nate axes at a 45ı angle to the vertical, so that the two straight

sections of the track lie along the graph y D jxj. The curved

section then goes from .�2; 2/ to .2; 2/ and can be taken to be

symmetric about the y-axis. With this coordinate system, the

gravitational acceleration is in the direction of i � j.
y

x

B

A E

D

C

.2; 2/.�2; 2/

g D .g=
p

2/.i � j/

vertical section horizontal section

Figure 11.31

(a) Find a fourth-degree polynomial whose graph can be used

to link the two straight sections of track without producing

discontinuous accelerations for the falling car. (Why is

fourth degree adequate?)

(b) Ignoring friction and air resistance, how fast is the car

moving when it enters the curve at B? at the midpoint

C of the curve? and when it leaves the curve at D?

(c) Find the magnitude of the normal acceleration and of the

total acceleration of the car as it passes through C .

6.I (A chase problem) A fox and a hare are running in the xy-

plane. Both are running at the same speed v. The hare is run-

ning up the y-axis; at time t D 0 it is at the origin. The fox

is always running straight toward the hare. At time t D 0 the

fox is at the point .a; 0/, where a > 0. Let the fox’s position at

time t be
�

x.t/; y.t/

�

.

(a) Verify that the tangent to the fox’s path at time t has slope

dy

dx
D

y.t/ � vt

x.t/
:

(b) Show that the equation of the path of the fox satisfies the

equation

x
d2y

dx2
D

s

1C

�

dy

dx

�2

:

Hint: Differentiate the equation in (a) with respect to t . On

the left side note that .d=dt/ D .dx=dt/.d=dx/.

(c) Solve the equation in (b) by substituting u.x/ D dy=dx

and separating variables. Note that y D 0 and u D 0

when x D a.

7.I Suppose the earth is a perfect sphere of radius a. You set out

from the point on the equator whose spherical coordinates are

.R; �; �/ D .a; �=2; 0/ and travel on the surface of the earth

at constant speed v, always moving toward the northeast (45ı

east of north).

(a) Will you ever get to the north pole? If so, how long will it

take to get there?

(b) Find the functions �.t/ and �.t/ that are the angular spher-

ical coordinates of your position at time t > 0.

(c) How many times does your path cross the meridian � D 0?
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15. Use Newton’s Second Law of Motion (F D mRr) to show that

r�F.r/ D 0. Therefore F.r/ is parallel to r:

F.r/ D �f .r/ Or, for some scalar-valued function f .r/, and the

transverse component of F.r/ is zero.

16. By direct calculation of the radial acceleration of the planet,

show that f .r/ D mh2=.`r2/, where r D jrj. Thus, F is an

attraction to the origin, proportional to the mass of the planet,

and inversely proportional to the square of its distance from the

sun.

Challenging Problems

1. Let P be a point on the surface of the earth at 45ı north lati-

tude. Use a coordinate system with origin at P and basis vec-

tors i and j pointing east and north, respectively, so that k points

vertically upward.

(a) Express the angular velocity � of the earth in terms of

the basis vectors at P: What is the magnitude � of � in

radians per second?

(b) Find the Coriolis acceleration aC D 2� � v of an object

falling vertically with speed v above P:

(c) If the object in (b) drops from rest from a height of 100 m

above P; approximately where will it strike the ground?

Ignore air resistance but not the Coriolis acceleration.

Since the Coriolis acceleration is much smaller than the

gravitational acceleration in magnitude, you can use the

vertical velocity as a good approximation to the actual ve-

locity of the object at any time during its fall.

2.I (The spin of a baseball) When a ball is thrown with spin about

an axis that is not parallel to its velocity, it experiences a lat-

eral acceleration due to differences in friction along its sides.

This spin acceleration is given by as D kS � v, where v is the

velocity of the ball, S is the angular velocity of its spin, and

k is a positive constant depending on the surface of the ball.

Suppose that a ball for which k D 0:001 is thrown horizontally

along the x-axis with an initial speed of 70 ft/s and a spin of

1,000 radians/s about a vertical axis. Its velocity v must satisfy
8

<

:

dv

dt
D .0:001/.1;000k/ � v � 32k D k � v � 32k

v.0/ D 70i;

since the acceleration of gravity is 32 ft/s2.

(a) Show that the components of v D v1iC v2jC v3k satisfy
8

<

:

dv1

dt
D �v2

v1.0/ D 70

8

<

:

dv2

dt
D v1

v2.0/ D 0

8

<

:

dv3

dt
D �32

v3.0/ D 0.

(b) Solve these equations, and find the position of the ball t s

after it is thrown. Assume that it is thrown from the origin

at time t D 0.

(c) At t D 1=5 s, how far, and in what direction, has the ball

deviated from the parabolic path it would have followed if

it had been thrown without spin?

3.I (Charged particles moving in magnetic fields) Magnetic

fields exert forces on moving charged particles. If a particle

of mass m and charge q is moving with velocity v in a mag-

netic field B, then it experiences a force F D qv�B, and hence

its velocity is governed by the equation

m
dv

dt
D qv � B:

For this exercise, suppose that the magnetic field is constant

and vertical, say, B D Bk (e.g., in a cathode-ray tube). If the

moving particle has initial velocity v0, then its velocity at time

t is determined by

8

<

:

dv

dt
D !v � k; where ! D

qB

m

v.0/ D v0:

(a) Show that v � k D v0 � k and jvj D jv0j for all t .

(b) Let w.t/ D v.t/ � .v0 � k/k, so that w is perpendicular to

k for all t . Show that w satisfies

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

d2w

dt2
D �!

2w

w.0/ D v0 � .v0 � k/k

w0
.0/ D !v0 � k:

(c) Solve the initial-value problem in (b) for w.t/, and hence

find v.t/.

(d) Find the position vector r.t/ of the particle at time t if

it is at the origin at time t D 0. Verify that the path of

the particle is, in general, a circular helix. Under what

circumstances is the path a straight line? a circle?

4.I (The tautochrone) The parametric equations

x D a.� � sin �/ and y D a.cos � � 1/

(for 0 � � � 2�), describe an arch of the cycloid followed

by a point on a circle of radius a rolling along the underside

of the x-axis. Suppose the curve is made of wire along which

a bead can slide without friction. (See Figure 11.30.) If the

bead slides from rest under gravity, starting at a point hav-

ing parameter value �0, show that the time it takes for the

bead to fall to the lowest point on the arch (corresponding to

� D �) is a constant, independent of the starting position

�0. Thus, two such beads released simultaneously from dif-

ferent positions along the wire will always collide at the lowest

point. For this reason, the cycloid is sometimes called the tau-

tochrone, from the Greek for “constant time.” Hint: When the

bead has fallen from height y.�0/ to height y.�/, its speed is

v D

r

2g

�

y.�0/ � y.�/

�

. (Why?) The time for the bead to

fall to the bottom is

T D

Z �D�

�D�0

1

v
ds;

where ds is the arc length element along the cycloid.

y

x

� D �0 starting point

� D �

Figure 11.30
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5.I (The Drop of Doom) An amusement park ride that used to be

located at the West Edmonton Mall in Alberta, Canada, gives

thrill seekers a taste of free-fall. It consists of a car moving

along a track consisting of straight vertical and horizontal sec-

tions joined by a smooth curve. The car drops from the top

and falls vertically under gravity for 10� 2
p

2 � 7:2 m before

entering the curved section at B . (See Figure 11.31.) It falls

another 2
p

2 � 2:8 m as it whips around the curve and into

the horizontal section DE at ground level, where brakes are

applied to stop it. (Thus, the total vertical drop from A to D or

E is 10 m, a figure, like the others in this problem, chosen for

mathematical convenience rather than engineering precision.)

For purposes of this problem it is helpful to take the coordi-

nate axes at a 45ı angle to the vertical, so that the two straight

sections of the track lie along the graph y D jxj. The curved

section then goes from .�2; 2/ to .2; 2/ and can be taken to be

symmetric about the y-axis. With this coordinate system, the

gravitational acceleration is in the direction of i � j.
y

x

B

A E

D

C

.2; 2/.�2; 2/

g D .g=
p

2/.i � j/

vertical section horizontal section

Figure 11.31

(a) Find a fourth-degree polynomial whose graph can be used

to link the two straight sections of track without producing

discontinuous accelerations for the falling car. (Why is

fourth degree adequate?)

(b) Ignoring friction and air resistance, how fast is the car

moving when it enters the curve at B? at the midpoint

C of the curve? and when it leaves the curve at D?

(c) Find the magnitude of the normal acceleration and of the

total acceleration of the car as it passes through C .

6.I (A chase problem) A fox and a hare are running in the xy-

plane. Both are running at the same speed v. The hare is run-

ning up the y-axis; at time t D 0 it is at the origin. The fox
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�

x.t/; y.t/

�

.
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dy

dx
D

y.t/ � vt

x.t/
:
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x
d2y

dx2
D

s

1C

�

dy

dx

�2

:

Hint: Differentiate the equation in (a) with respect to t . On
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from the point on the equator whose spherical coordinates are
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(c) How many times does your path cross the meridian � D 0?
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rC H A P T E R 12

Partial
Differentiation

“
I have a very wide command of matters mathematical,

I understand equations both the simple and quadratical.

About binomial theorem I’m teeming with a lot of news,

And many cheerful facts about the square on the hypotenuse.

”William Schwenck Gilbert 1836–1911

from The Pirates of Penzance

Introduction This chapter is concerned with extending the idea of the

derivative to real functions of a vector variable, that is, to

functions depending on several real variables. Although differentiation is carried out

one variable at a time, the relationship between derivatives with respect to different

variables makes the analysis of such functions much more complicated and subtle than

in the single-variable case.

12.1 Functions of Several Variables

The notation y D f .x/ is used to indicate that the variable y depends on the single

real variable x, that is, that y is a function of x. The domain of such a function f

is a set of real numbers. Many quantities can be regarded as depending on more than

one real variable and thus to be functions of more than one variable. For example, the

volume of a circular cylinder of radius r and height h is given by V D �r2h; we say

that V is a function of the two variables r and h. If we choose to denote this function

by f , then we would write V D f .r; h/ where

f .r; h/ D �r
2
h; .r � 0; h � 0/:

Thus, f is a function of two variables having as domain the set of points in the

rh-plane with coordinates .r; h/ satisfying r � 0 and h � 0. Similarly, the rela-

tionship w D f .x; y; z/ D x C 2y � 3z defines w as a function of the three variables

x, y, and z, with domain the whole of R
3, or, if we state explicitly, some particular

subset of R
3.

By analogy with the corresponding definition for functions of one variable, we

define a function of n variables as follows:

D E F I N I T I O N

1

A function f of n real variables is a rule that assigns a unique real number

f .x1; x2; : : : ; xn/ to each point .x1; x2; : : : ; xn/ in some subset D.f / of R
n.

D.f / is called the domain of f: The set of real numbers f .x1; x2; : : : ; xn/

obtained from points in the domain is called the range of f:

As for functions of one variable, the domain convention specifies that the

domain of a function of n variables is the largest set of points .x1; x2; : : : ; xn/

for which f .x1; x2; : : : ; xn/makes sense as a real number, unless that domain

is explicitly stated to be a smaller set.
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Most of the examples we consider hereafter will be functions of two or three inde-

pendent variables. When a function f depends on two variables, we will usually call

these independent variables x and y, and we will use z to denote the dependent vari-

able that represents the value of the function; that is, z D f .x; y/. We will normally

use x, y, and z as the independent variables of a function of three variables and w as

the value of the function: w D f .x; y; z/. Some definitions will be given, and some

theorems will be stated (and proved) only for the two-variable case, but extensions to

three or more variables will usually be obvious.

Graphs
The graph of a function f of one variable (i.e., the graph of the equation y D f .x/) is

the set of points in the xy-plane having coordinates
�

x; f .x/
�

, where x is in the domain

of f: Similarly, the graph of a function f of two variables (i.e., the graph of the equa-

tion z D f .x; y/) is the set of points in 3-space having coordinates
�

x; y; f .x; y/
�

,

where .x; y/ belongs to the domain of f: This graph is a surface in R
3 lying above

(if f .x; y/ > 0) or below (if f .x; y/ < 0) the domain of f in the xy-plane. (See

Figure 12.1.) The graph of a function of three variables is a three-dimensional hy-

persurface in 4-space, R
4. In general, the graph of a function of n variables is an

n-dimensional surface in R
nC1. We will not attempt to draw graphs of functions of

more than two variables!

Figure 12.1 The graph of f .x; y/ is the

surface with equation z D f .x; y/ defined

for points .x; y/ in the domain of f x

y

z

graph z D f .x; y/

domain of f

E X A M P L E 1
Consider the function

x

y

z

3

zD3
�

1� x
2 � y

4

�

4
2

Figure 12.2 The graph of the function in

Example 1

f .x; y/ D 3

�

1 �
x

2
�

y

4

�

; .0 � x � 2; 0 � y � 4 � 2x/:

The graph of f is the plane triangular surface with vertices at .2; 0; 0/, .0; 4; 0/, and

.0; 0; 3/. (See Figure 12.2.) If the domain of f had not been explicitly stated to be

a particular set in the xy-plane, the graph would have been the whole plane through

these three points.

E X A M P L E 2
Consider f .x; y/ D

p

9 � x2
� y2. The expression under the

square root cannot be negative, so the domain is the disk x2
Cy2

�

9 in the xy-plane.

If we square the equation z D
p

9 � x2
� y2, we can rewrite the result in the

form x2
C y2

C z2
D 9. This is a sphere of radius 3 centred at the origin. However,

the graph of f is only the upper hemisphere where z � 0. (See Figure 12.3.)
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volume of a circular cylinder of radius r and height h is given by V D �r2h; we say
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by f , then we would write V D f .r; h/ where
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Thus, f is a function of two variables having as domain the set of points in the

rh-plane with coordinates .r; h/ satisfying r � 0 and h � 0. Similarly, the rela-
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3, or, if we state explicitly, some particular

subset of R
3.

By analogy with the corresponding definition for functions of one variable, we

define a function of n variables as follows:

D E F I N I T I O N

1

A function f of n real variables is a rule that assigns a unique real number

f .x1; x2; : : : ; xn/ to each point .x1; x2; : : : ; xn/ in some subset D.f / of R
n.

D.f / is called the domain of f: The set of real numbers f .x1; x2; : : : ; xn/

obtained from points in the domain is called the range of f:

As for functions of one variable, the domain convention specifies that the

domain of a function of n variables is the largest set of points .x1; x2; : : : ; xn/

for which f .x1; x2; : : : ; xn/makes sense as a real number, unless that domain

is explicitly stated to be a smaller set.
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tion z D f .x; y/) is the set of points in 3-space having coordinates
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,

where .x; y/ belongs to the domain of f: This graph is a surface in R
3 lying above

(if f .x; y/ > 0) or below (if f .x; y/ < 0) the domain of f in the xy-plane. (See

Figure 12.1.) The graph of a function of three variables is a three-dimensional hy-
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The graph of f is the plane triangular surface with vertices at .2; 0; 0/, .0; 4; 0/, and

.0; 0; 3/. (See Figure 12.2.) If the domain of f had not been explicitly stated to be

a particular set in the xy-plane, the graph would have been the whole plane through

these three points.

E X A M P L E 2
Consider f .x; y/ D

p

9 � x2
� y2. The expression under the

square root cannot be negative, so the domain is the disk x2
Cy2

�

9 in the xy-plane.

If we square the equation z D
p

9 � x2
� y2, we can rewrite the result in the

form x2
C y2

C z2
D 9. This is a sphere of radius 3 centred at the origin. However,

the graph of f is only the upper hemisphere where z � 0. (See Figure 12.3.)
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Since it is necessary to project the surface z D f .x; y/ onto a two-dimensional page,

x
y

z

3
3

Figure 12.3 The graph of the funtion in

Example 2 is a hemisphere

most such graphs are difficult to sketch without considerable artistic talent and training.

Nevertheless, you should always try to visualize such a graph and sketch it as best you

can. Sometimes it is convenient to sketch only part of a graph, for instance, the part

lying in the first octant. It is also helpful to determine (and sketch) the intersections of

the graph with various planes, especially the coordinate planes and planes parallel to

the coordinate planes. (See Figure 12.1.)

Some mathematical software packages will produce plots of three-dimensional

graphs to help you get a feeling for how the corresponding functions behave. Figure 12.1

is an example of such a computer-drawn graph, as is Figure 12.4 below. Along with

most of the other mathematical graphics in this book, both were produced using the

mathematical graphics software package MG. Later in this section we discuss how to

use Maple to produce such graphs.

Figure 12.4 The graph of

z D
�6y

2C x2
C y2

x

y

z

z D
�6y

2C x2
C y2

Level Curves
Another way to represent the function f .x; y/ graphically is to produce a two-

dimensional topographic map of the surface z D f .x; y/. In the xy-plane we sketch

the curves f .x; y/ D C for various values of the constant C . These curves are called

level curves of f because they are the vertical projections onto the xy-plane of the

curves in which the graph z D f .x; y/ intersects the horizontal (level) planes z D C .

The graph and some level curves of the function f .x; y/ D x2
C y2 are shown in

Figure 12.5. The graph is a circular paraboloid in 3-space, which is a smooth sur-

face. The level curves of f are circles centred at the origin in the xy-plane. Observe,

however, that the function g.x; y/ D
p

x2
C y2 has the same family of circles as its

level curves (though for different values of C ), but the graph of g is a circular cone

with vertex at the origin and is therefore not smooth there. We can not infer from the

smoothness of the level curves of a function that the graph of the function is smooth.

E X A M P L E 3
The brown contour curves in the topographic map in Figure 12.6

show the elevations, in 40 m increments above sea level, on a

mountainous region bordering Narrows Inlet on the British Columbia coast. Since

these contours are drawn for equally spaced values of C , the spacing of the contours

themselves conveys information about the relative steepness at various places on the

mountains; the land is steepest where the contour lines are closest together. Observe

also that the streams shown in blue (not the grid lines) cross the contours at right

angles. They take the route of steepest descent. Isotherms (curves of constant temper-

ature) and isobars (curves of constant pressure) on weather maps are also examples of

level curves.
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C D 0:6

C D 1:4

C D 2:2

C D 1:0

C D 1:8

Figure 12.5 The graph of f .x; y/ D x2
C y2

and some level curves of f

Figure 12.6 Level curves (contours) representing elevation in a topographic

map

E X A M P L E 4 The level curves of the function f .x; y/ D 3

�

1 �
x

2
�

y

4

�

of

Example 1 are the segments of the straight lines

3

�

1 �
x

2
�

y

4

�

D C or
x

2
C

y

4
D 1 �

C

3
; .0 � C � 3/;

which lie in the first quadrant. Several such level curves are shown in Figure 12.7(a).

They correspond to equally spaced values of C , and their equal spacing indicates the

uniform steepness of the graph of f in Figure 12.2.

Figure 12.7

(a) Level curves of 3
�

1 �
x

2
�

y

4

�

(b) Level curves of
p

9 � x2
� y2

y

x

C D0

C D0:5

C D1

C D1:5

C D2

C D2:5

level curves

f .x;y/D3

�

1�
x

2
�

y

4

�

DC4

21

3

2

1

C D3

y

x

C D2:75

C D2:5

C D2:25

C D2

C D1:75

C D0

C D3

level curves

f .x;y/D
p

9�x2�y2DC

(a) (b)

E X A M P L E 5
The level curves of the function f .x; y/ D

p

9 � x2
� y2 of

Example 2 are the concentric circles
p

9 � x2
� y2

D C or x
2
C y

2
D 9 � C

2
; .0 � C � 3/:

Observe the spacing of these circles in Figure 12.7(b); they are plotted for several

equally spaced values of C . The bunching of the circles as C ! 0C indicates the

steepness of the hemispherical surface that is the graph of f: (See Figure 12.3.)

A function determines its level curves with any given spacing between consecutive

values of C . However, level curves only determine the function if all of them are

known.
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mountainous region bordering Narrows Inlet on the British Columbia coast. Since

these contours are drawn for equally spaced values of C , the spacing of the contours

themselves conveys information about the relative steepness at various places on the

mountains; the land is steepest where the contour lines are closest together. Observe
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uniform steepness of the graph of f in Figure 12.2.
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Observe the spacing of these circles in Figure 12.7(b); they are plotted for several

equally spaced values of C . The bunching of the circles as C ! 0C indicates the

steepness of the hemispherical surface that is the graph of f: (See Figure 12.3.)

A function determines its level curves with any given spacing between consecutive

values of C . However, level curves only determine the function if all of them are

known.
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E X A M P L E 6
The level curves of the function f .x; y/ D x2

� y2 are the curves

x2
� y2

D C . For C D 0 the level “curve” is the pair of straight

lines x D y and x D �y. For other values of C the level curves are rectangular

hyperbolas with these lines as asymptotes. (See Figure 12.8(a).) The graph of f is the

saddle-like hyperbolic paraboloid in Figure 12.8(b).

Figure 12.8

(a) Level curves of x2
� y

2

(b) The graph of x2
� y

2

y

x

y

x

C D0

C D1

C D4

C D9

C D�1
C D�4

C D�9

x

y

z

z D x2
� y2

(a) (b)

E X A M P L E 7
Describe and sketch some level curves of the function z D g.x; y/

defined by z � 0, and x2
C .y�z/2 D 2z2. Also sketch the graph

of the function g.

Solution The level curve z D g.x; y/ D C (where C is a positive constant) has

equation x2
C .y � C/2 D 2C 2 and is, therefore, a circle of radius

p

2C centred at

.0; C /. Level curves forC in increments of 0.1 from 0 to 1 are shown in Figure 12.9(a).

These level curves intersect rays from the origin at equal spacing (the spacing is differ-

ent for different rays) indicating that the surface z D g.x; y/ is an oblique cone. See

Figure 12.9(b).

Figure 12.9

(a) Level curves of z D g.x; y/ for

Example 7

(b) The graph of z D g.x; y/

y

x

C D1

C D0:8

C D0:6

C D0:4

C D0:2
C D0

x

y

z

x2
C .y � z/2 D 2z2, z � 0

(a) (b)

Although the graph of a function f .x; y; z/ of three variables cannot easily be drawn

(it is a three-dimensional hypersurface in 4-space), such a function has level surfaces

in 3-space that can, perhaps, be drawn. These level surfaces have equations of the form

f .x; y; z/ D C for various choices of the constant C . For instance, the level surfaces

of the function f .x; y; z/ D x2
Cy2

Cz2 are concentric spheres centred at the origin.

Figure 12.10 shows a few level surfaces of the function f .x; y; z/ D x2
� z. They are

parabolic cylinders.
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Figure 12.10 Level surfaces of

f .x; y; z/ D x2
� z
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Using Maple Graphics
Like many mathematical software packages, Maple has several plotting routines to help

you visualize the behaviour of functions of two and three variables. We mention only

a few of them here; there are many more. Most of the plotting routines are in the plots

package, so you should begin any Maple session where you want to use them with the

input

> with(plots);

To save space, we won’t show any of the plot output here. You will need to play with

modifications to the various plot commands to obtain the kind of output you desire.

The graph of a function f .x; y/ of two variables (or an expression in x and y)

can be plotted over a rectangle in the xy-plane with a call to the plot3d routine. For

example,

> f := -6*y/(2+x^2+y^2);

> plot3d(f, x=-6..6, y=-6..6);

will plot a surface similar to the one in Figure 12.4 but without axes and viewed from

a steeper angle. You can add many kinds of options to the command to change the

output. For instance,

> plot3d(f, x=-6..6, y=-6..6, axes=boxed,

orientation=[30,70]);

will plot the same surface within a three-dimensional rectangular box with scales on

three of its edges indicating the coordinate values. (If we had said axes=normal

instead, we would have gotten the usual coordinate axes through the origin, but they

tend to be more difficult to see against the background of the surface, so axes=boxed

is usually preferable.) The option orientation=[30,70] results in the plot’s

being viewed from the direction making angle 70ı with the z-axis and lying in a plane

containing the z-axis making an angle 30ı with the xz-plane. (The default value of

the orientation is Œ45; 45� if the option is not specified.) By default, the surface plotted

by plot3d is ruled by two families of curves, representing its intersection with vertical

planes x D a and y D b for several equally spaced values of a and b, and it is coloured

opaquely so that hidden parts do not show.

Instead of plot3d, you can use contourplot3d to get a plot of the surface ruled
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E X A M P L E 6
The level curves of the function f .x; y/ D x2

� y2 are the curves

x2
� y2

D C . For C D 0 the level “curve” is the pair of straight

lines x D y and x D �y. For other values of C the level curves are rectangular

hyperbolas with these lines as asymptotes. (See Figure 12.8(a).) The graph of f is the

saddle-like hyperbolic paraboloid in Figure 12.8(b).

Figure 12.8

(a) Level curves of x2
� y

2

(b) The graph of x2
� y

2

y

x

y

x

C D0

C D1

C D4

C D9

C D�1
C D�4

C D�9

x

y

z

z D x2
� y2

(a) (b)

E X A M P L E 7
Describe and sketch some level curves of the function z D g.x; y/

defined by z � 0, and x2
C .y�z/2 D 2z2. Also sketch the graph

of the function g.

Solution The level curve z D g.x; y/ D C (where C is a positive constant) has

equation x2
C .y � C/2 D 2C 2 and is, therefore, a circle of radius

p

2C centred at

.0; C /. Level curves forC in increments of 0.1 from 0 to 1 are shown in Figure 12.9(a).

These level curves intersect rays from the origin at equal spacing (the spacing is differ-

ent for different rays) indicating that the surface z D g.x; y/ is an oblique cone. See

Figure 12.9(b).

Figure 12.9

(a) Level curves of z D g.x; y/ for

Example 7

(b) The graph of z D g.x; y/

y

x

C D1

C D0:8

C D0:6

C D0:4

C D0:2
C D0

x

y

z

x2
C .y � z/2 D 2z2, z � 0

(a) (b)

Although the graph of a function f .x; y; z/ of three variables cannot easily be drawn

(it is a three-dimensional hypersurface in 4-space), such a function has level surfaces

in 3-space that can, perhaps, be drawn. These level surfaces have equations of the form

f .x; y; z/ D C for various choices of the constant C . For instance, the level surfaces

of the function f .x; y; z/ D x2
Cy2

Cz2 are concentric spheres centred at the origin.

Figure 12.10 shows a few level surfaces of the function f .x; y; z/ D x2
� z. They are

parabolic cylinders.
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Figure 12.10 Level surfaces of

f .x; y; z/ D x2
� z
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Using Maple Graphics
Like many mathematical software packages, Maple has several plotting routines to help

you visualize the behaviour of functions of two and three variables. We mention only

a few of them here; there are many more. Most of the plotting routines are in the plots

package, so you should begin any Maple session where you want to use them with the

input

> with(plots);

To save space, we won’t show any of the plot output here. You will need to play with

modifications to the various plot commands to obtain the kind of output you desire.

The graph of a function f .x; y/ of two variables (or an expression in x and y)

can be plotted over a rectangle in the xy-plane with a call to the plot3d routine. For

example,

> f := -6*y/(2+x^2+y^2);

> plot3d(f, x=-6..6, y=-6..6);

will plot a surface similar to the one in Figure 12.4 but without axes and viewed from

a steeper angle. You can add many kinds of options to the command to change the

output. For instance,

> plot3d(f, x=-6..6, y=-6..6, axes=boxed,

orientation=[30,70]);

will plot the same surface within a three-dimensional rectangular box with scales on

three of its edges indicating the coordinate values. (If we had said axes=normal

instead, we would have gotten the usual coordinate axes through the origin, but they

tend to be more difficult to see against the background of the surface, so axes=boxed

is usually preferable.) The option orientation=[30,70] results in the plot’s

being viewed from the direction making angle 70ı with the z-axis and lying in a plane

containing the z-axis making an angle 30ı with the xz-plane. (The default value of

the orientation is Œ45; 45� if the option is not specified.) By default, the surface plotted

by plot3d is ruled by two families of curves, representing its intersection with vertical

planes x D a and y D b for several equally spaced values of a and b, and it is coloured

opaquely so that hidden parts do not show.

Instead of plot3d, you can use contourplot3d to get a plot of the surface ruled
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by contours on which the value of the function is constant. If you don’t get enough

contours by default, you can include a contours=n option to specify the number

you want.

> contourplot3d(f, x=-6..6, y=-6..6, axes=boxed,

contours=24);

The contours are the projections of the level curves onto the graph of the surface.

Alternatively, you can get a two-dimensional plot of the level curves themselves using

contourplot:

> contourplot(f, x=-6..6, y=-6..6, axes=normal,

contours=24);

Other options you may want to include with plot3d or contourplot3d are

(a) view=zmin..zmax to specify the range of values of the function (i.e., z) to

show in the plot.

(b) grid=[m,n] to specify the number of x and y values at which to evaluate the

function. If your plot doesn’t look smooth enough, try m D n D 20 or 30 or even

higher values.

The graph of an equation, f .x; y/ D 0, in the xy-plane can be generated without

solving the equation for x or y first by using implicitplot.

> implicitplot(x^3-y^2-5*x*y-x-5, x=-6..7, y=-5..6);

will produce the graph of x3
� y2

� 5xy � x � 5 D 0 on the rectangle �6 � x � 7,

�5 � y � 6. There is also an implicitplot3d routine to plot the surface in 3-space

having an equation of the form f .x; y; z/ D 0. For this routine you must specify

ranges for all three variables;

> implicitplot3d(x^2+y^2-z^2-1, x=-4..4, y=-4..4,

z=-3..3, axes=boxed);

plots the hyperboloid z2
D x2

C y2
� 1.

Finally, we observe that Maple is no more capable than we are of drawing graphs

of functions of three or more variables, since it doesn’t have four-dimensional plot

capability. The best we can do is plot a set of level surfaces for such a function:

> implicitplot3d(fz-x^2-2,z-x^2,z-x^2+2g,x=-2..2,

y=-2..2, z=-2..5, axes=boxed);

It is possible to construct a sequence of plot structures and assign them to, say, the

elements of a list variable, without actually plotting them. Then all the plots can be

plotted simultaneously using the display function.

> for c from -1 to 1 do

p[c] := implicitplot3d(z^2-x^2-y^2-2*c, x=-3..3,

y=-3..3, z=0..2, color=COLOR(RGB,(1+c)/2,(1-c)/2,1))

od:

> display([seq(p[c],c=-1..1)], axes=boxed,

orientation=[30,40]);

Note that the command creating the plots is terminated with a colon rather than the

usual semicolon. If you don’t suppress the output in this way, you will get vast amounts

of numerical output as the plots are constructed. The color=... option is an attempt

to give the three plots different colours so they can be distinguished from each other.

E X E R C I S E S 12.1

Specify the domains of the functions in Exercises 1–10.

1. f .x; y/ D
x C y

x � y
2. f .x; y/ D

p

xy

3. f .x; y/ D
x

x2
C y2

4. f .x; y/ D
xy

x2
� y2

5. f .x; y/ D
p

4x2
C 9y2

� 36
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6. f .x; y/ D
1

p

x2
� y2

7. f .x; y/ D ln.1C xy/

8. f .x; y/ D sin�1
.x C y/

9. f .x; y; z/ D
xyz

x2
C y2

C z2

10. f .x; y; z/ D
exyz

p

xyz

Sketch the graphs of the functions in Exercises 11–18.

11. f .x; y/ D x; .0 � x � 2; 0 � y � 3/

12. f .x; y/ D sinx; .0 � x � 2�; 0 � y � 1/

13. f .x; y/ D y2
; .�1 � x � 1; �1 � y � 1/

14. f .x; y/ D 4 � x2
� y

2
; .x

2
C y

2
� 4; x � 0; y � 0/

15. f .x; y/ D
p

x2
C y2 16. f .x; y/ D 4 � x2

17. f .x; y/ D jxj C jyj 18. f .x; y/ D 6 � x � 2y

Sketch some of the level curves of the functions in

Exercises 19–26.

19. f .x; y/ D x � y 20. f .x; y/ D x2
C 2y

2

21. f .x; y/ D xy 22. f .x; y/ D
x2

y

23. f .x; y/ D
x � y

x C y
24. f .x; y/ D

y

x2
C y2

25. f .x; y/ D xe�y 26. f .x; y/ D

s

1

y
� x

2

Exercises 27–28 refer to Figure 12.11, which shows contours of a

hilly region with heights given in metres.
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Figure 12.11

27. At which of the points A or B is the landscape steeper? How

do you know?

28. Describe the topography of the region near point C .

y

x

y

x

y

x

y

x

C D5
C D3

C D�5
C D0

C D�5 C D0

C D10

C D5

(a) (b)

(d)(c)

Figure 12.12

Describe the graphs of the functions f .x; y/ for which families of

level curves f .x; y/ D C are shown in the figures referred to in

Exercises 29–32. Assume that each family corresponds to equally

spaced values of C and that the behaviour of the family is

representative of all such families for the function.

29. See Figure 12.12(a). 30. See Figure 12.12(b).

31. See Figure 12.12(c). 32. See Figure 12.12(d).

33. Are the curves y D .x � C/2 level curves of a function

f .x; y/? What property must a family of curves in a region of

the xy-plane have to be the family of level curves of a

function defined in the region?

34. If we assume z � 0, the equation 4z2
D .x � z/2 C .y � z/2

defines z as a function of x and y. Sketch some level curves of

this function. Describe its graph.

35. Find f .x; y/ if each level curve f .x; y/ D C is a circle

centred at the origin and having radius

(a) C (b) C 2 (c)
p

C (d) lnC .

36. Find f .x; y; z/ if for each constant C the level surface

f .x; y; z/ D C is a plane having intercepts C 3, 2C 3, and

3C 3 on the x-axis, the y-axis, and the z-axis, respectively.

Describe the level surfaces of the functions specified in

Exercises 37–41.

37. f .x; y; z/ D x2
C y

2
C z

2

38. f .x; y; z/ D x C 2y C 3z

39. f .x; y; z/ D x2
C y

2

40. f .x; y; z/ D
x2
C y2

z2

41. f .x; y; z/ D jxj C jyj C jzj

42. Describe the “level hypersurfaces” of the function

f .x; y; z; t/ D x
2
C y

2
C z

2
C t

2
:
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by contours on which the value of the function is constant. If you don’t get enough

contours by default, you can include a contours=n option to specify the number

you want.

> contourplot3d(f, x=-6..6, y=-6..6, axes=boxed,

contours=24);

The contours are the projections of the level curves onto the graph of the surface.

Alternatively, you can get a two-dimensional plot of the level curves themselves using

contourplot:

> contourplot(f, x=-6..6, y=-6..6, axes=normal,

contours=24);

Other options you may want to include with plot3d or contourplot3d are

(a) view=zmin..zmax to specify the range of values of the function (i.e., z) to

show in the plot.

(b) grid=[m,n] to specify the number of x and y values at which to evaluate the

function. If your plot doesn’t look smooth enough, try m D n D 20 or 30 or even

higher values.

The graph of an equation, f .x; y/ D 0, in the xy-plane can be generated without

solving the equation for x or y first by using implicitplot.

> implicitplot(x^3-y^2-5*x*y-x-5, x=-6..7, y=-5..6);

will produce the graph of x3
� y2

� 5xy � x � 5 D 0 on the rectangle �6 � x � 7,

�5 � y � 6. There is also an implicitplot3d routine to plot the surface in 3-space

having an equation of the form f .x; y; z/ D 0. For this routine you must specify

ranges for all three variables;

> implicitplot3d(x^2+y^2-z^2-1, x=-4..4, y=-4..4,

z=-3..3, axes=boxed);

plots the hyperboloid z2
D x2

C y2
� 1.

Finally, we observe that Maple is no more capable than we are of drawing graphs

of functions of three or more variables, since it doesn’t have four-dimensional plot

capability. The best we can do is plot a set of level surfaces for such a function:

> implicitplot3d(fz-x^2-2,z-x^2,z-x^2+2g,x=-2..2,

y=-2..2, z=-2..5, axes=boxed);

It is possible to construct a sequence of plot structures and assign them to, say, the

elements of a list variable, without actually plotting them. Then all the plots can be

plotted simultaneously using the display function.

> for c from -1 to 1 do

p[c] := implicitplot3d(z^2-x^2-y^2-2*c, x=-3..3,

y=-3..3, z=0..2, color=COLOR(RGB,(1+c)/2,(1-c)/2,1))

od:

> display([seq(p[c],c=-1..1)], axes=boxed,

orientation=[30,40]);

Note that the command creating the plots is terminated with a colon rather than the

usual semicolon. If you don’t suppress the output in this way, you will get vast amounts

of numerical output as the plots are constructed. The color=... option is an attempt

to give the three plots different colours so they can be distinguished from each other.

E X E R C I S E S 12.1

Specify the domains of the functions in Exercises 1–10.

1. f .x; y/ D
x C y

x � y
2. f .x; y/ D

p

xy

3. f .x; y/ D
x

x2
C y2

4. f .x; y/ D
xy

x2
� y2

5. f .x; y/ D
p

4x2
C 9y2

� 36
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6. f .x; y/ D
1

p

x2
� y2

7. f .x; y/ D ln.1C xy/

8. f .x; y/ D sin�1
.x C y/

9. f .x; y; z/ D
xyz

x2
C y2

C z2

10. f .x; y; z/ D
exyz

p

xyz

Sketch the graphs of the functions in Exercises 11–18.

11. f .x; y/ D x; .0 � x � 2; 0 � y � 3/

12. f .x; y/ D sinx; .0 � x � 2�; 0 � y � 1/

13. f .x; y/ D y2
; .�1 � x � 1; �1 � y � 1/

14. f .x; y/ D 4 � x2
� y

2
; .x

2
C y

2
� 4; x � 0; y � 0/

15. f .x; y/ D
p

x2
C y2 16. f .x; y/ D 4 � x2

17. f .x; y/ D jxj C jyj 18. f .x; y/ D 6 � x � 2y

Sketch some of the level curves of the functions in

Exercises 19–26.

19. f .x; y/ D x � y 20. f .x; y/ D x2
C 2y

2

21. f .x; y/ D xy 22. f .x; y/ D
x2

y

23. f .x; y/ D
x � y

x C y
24. f .x; y/ D

y

x2
C y2

25. f .x; y/ D xe�y 26. f .x; y/ D

s

1

y
� x

2

Exercises 27–28 refer to Figure 12.11, which shows contours of a

hilly region with heights given in metres.
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Figure 12.11

27. At which of the points A or B is the landscape steeper? How

do you know?

28. Describe the topography of the region near point C .

y

x

y

x

y

x

y

x
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Figure 12.12

Describe the graphs of the functions f .x; y/ for which families of

level curves f .x; y/ D C are shown in the figures referred to in

Exercises 29–32. Assume that each family corresponds to equally

spaced values of C and that the behaviour of the family is

representative of all such families for the function.

29. See Figure 12.12(a). 30. See Figure 12.12(b).

31. See Figure 12.12(c). 32. See Figure 12.12(d).

33. Are the curves y D .x � C/2 level curves of a function

f .x; y/? What property must a family of curves in a region of

the xy-plane have to be the family of level curves of a

function defined in the region?

34. If we assume z � 0, the equation 4z2
D .x � z/2 C .y � z/2

defines z as a function of x and y. Sketch some level curves of

this function. Describe its graph.

35. Find f .x; y/ if each level curve f .x; y/ D C is a circle

centred at the origin and having radius

(a) C (b) C 2 (c)
p

C (d) lnC .

36. Find f .x; y; z/ if for each constant C the level surface

f .x; y; z/ D C is a plane having intercepts C 3, 2C 3, and

3C 3 on the x-axis, the y-axis, and the z-axis, respectively.

Describe the level surfaces of the functions specified in

Exercises 37–41.

37. f .x; y; z/ D x2
C y

2
C z

2

38. f .x; y; z/ D x C 2y C 3z

39. f .x; y; z/ D x2
C y

2

40. f .x; y; z/ D
x2
C y2

z2

41. f .x; y; z/ D jxj C jyj C jzj

42. Describe the “level hypersurfaces” of the function

f .x; y; z; t/ D x
2
C y

2
C z

2
C t

2
:
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Use Maple or other computer graphing software to plot the graphs

and the level curves of the functions in Exercises 43–48.

G 43.
1

1C x2
C y2

G 44.
cosx

1C y2

G 45.
y

1C x2
C y2

G 46.
x

.x2
� 1/2 C y2

G 47. xy G 48.
1

xy

12.2 Limits and Continuity

Before reading this section you should review the concepts of neighbourhood, open

and closed sets, and boundary and interior points introduced in Section 10.1.

The concept of the limit of a function of several variables is similar to that for

functions of one variable. For clarity we present the definition for functions of two

variables only; the general case is similar.

We might say that f .x; y/ approaches the limit L as the point .x; y/ approaches

the point .a; b/, and write

lim
.x;y/!.a;b/

f .x; y/ D L;

if all points of a neighbourhood of .a; b/, except possibly the point .a; b/ itself, be-

long to the domain of f; and if f .x; y/ approaches L as .x; y/ approaches .a; b/.

However, it is more convenient to define the limit in such a way that .a; b/ can be a

boundary point of the domain of f: Thus, our formal definition will generalize the

one-dimensional notion of one-sided limit as well.

D E F I N I T I O N

2

Definition of Limit

We say that lim
.x;y/!.a;b/

f .x; y/ D L, provided that

(i) every neighbourhood of .a; b/ contains points of the domain of f differ-

ent from .a; b/, and

(ii) for every positive number � there exists a positive number ı D ı.�/ such

that jf .x; y/� Lj < � holds whenever .x; y/ is in the domain of f and

satisfies 0 <
p

.x � a/2 C .y � b/2 < ı:

Condition (i) is included in Definition 2 because it is not appropriate to consider limits

at isolated points of the domain of f; that is, points with neighbourhoods that contain

no other points of the domain. As noted in the marginal note following Definition 8 in

Section 1.5, the version of the above definition for functions of one variable is more

general than that older definition. (See Exercise 24 below.)

If a limit exists it is unique. For a single-variable function f; the existence of

limx!a f .x/ implies that f .x/ approaches the same finite number as x approaches a

from either the right or the left. Similarly, for a function of two variables, we can have

lim.x;y/!.a;b/ f .x; y/ D L only if f .x; y/ approaches the same number L no matter

how .x; y/ approaches .a; b/ in the domain of f: In particular, .x; y/ can approach

.a; b/ along any curve that lies in D.f /. It is not necessary that L D f .a; b/ even if

f .a; b/ is defined. The examples below illustrate these assertions.

All the usual laws of limits extend to functions of several variables in the obvious

way. For example, if lim.x;y/!.a;b/ f .x; y/ D L, lim.x;y/!.a;b/ g.x; y/ D M; and

every neighbourhood of .a; b/ contains points in D.f /\D.g/ other than .a; b/, then
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lim
.x;y/!.a;b/

�

f .x; y/˙ g.x; y/
�

D L˙M;

lim
.x;y/!.a;b/

f .x; y/ g.x; y/ D LM;

lim
.x;y/!.a;b/

f .x; y/

g.x; y/
D

L

M
; provided M ¤ 0:

Also, if F.t/ is continuous at t D L, then

lim
.x;y/!.a;b/

F
�

f .x; y/
�

D F.L/:

E X A M P L E 1
(a) lim

.x;y/!.2;3/

�

2x � y
2
�

D 4 � 9 D �5;

(b) lim
.x;y/!.a;b/

x
2
y D a

2
b;

(c) lim
.x;y/!.�=3;2/

y sin

�

x

y

�

D 2 sin
�

�

6

�

D 1:

E X A M P L E 2
The function f .x; y/ D

p

1 � x2
� y2 has limit f .a; b/ at all

points .a; b/ of its domain, the closed disk x2
C y2

� 1, and is

therefore considered to be continuous on its domain. Of course, .x; y/ can approach

points of the bounding circle x2
C y

2
D 1 only from within the disk.

The following examples show that the requirement that f .x; y/ approach the same

limit no matter how .x; y/ approaches .a; b/ can be very restrictive, and makes limits

in two or more variables much more subtle than in the single-variable case.

E X A M P L E 3 Investigate the limiting behaviour of f .x; y/ D
2xy

x2
C y2

as .x; y/

approaches .0; 0/.

Solution Note that f .x; y/ is defined at all points of the xy-plane except the origin

.0; 0/. We can still ask whether lim.x;y/!.0;0/ f .x; y/ exists. If we let .x; y/ approach

.0; 0/ along the x-axis (y D 0), then f .x; y/ D f .x; 0/ ! 0 (because f .x; 0/ D 0

identically). Thus, lim.x;y/!.0;0/ f .x; y/ must be 0 if it exists at all. Similarly, at all

points of the y-axis we have f .x; y/ D f .0; y/ D 0. However, at points of the line

x D y, f has a different constant value; f .x; x/ D 1. Since the limit of f .x; y/ is 1

as .x; y/ approaches .0; 0/ along this line, it follows that f .x; y/ cannot have a limit

at the origin. That is,

lim
.x;y/!.0;0/

2xy

x2
C y2

does not exist:

Observe that f .x; y/ has a constant value on any ray from the origin (on the ray y D

kx the value is 2k=.1Ck2/), but these values differ on different rays. The level curves

of f are the rays from the origin (with the origin itself removed). It is difficult to sketch

the graph of f near the origin. The first octant part of the graph is the “hood-shaped”

surface in Figure 12.13.
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Use Maple or other computer graphing software to plot the graphs

and the level curves of the functions in Exercises 43–48.

G 43.
1

1C x2
C y2

G 44.
cosx

1C y2

G 45.
y

1C x2
C y2

G 46.
x

.x2
� 1/2 C y2

G 47. xy G 48.
1

xy

12.2 Limits and Continuity

Before reading this section you should review the concepts of neighbourhood, open

and closed sets, and boundary and interior points introduced in Section 10.1.

The concept of the limit of a function of several variables is similar to that for

functions of one variable. For clarity we present the definition for functions of two

variables only; the general case is similar.

We might say that f .x; y/ approaches the limit L as the point .x; y/ approaches

the point .a; b/, and write

lim
.x;y/!.a;b/

f .x; y/ D L;

if all points of a neighbourhood of .a; b/, except possibly the point .a; b/ itself, be-

long to the domain of f; and if f .x; y/ approaches L as .x; y/ approaches .a; b/.

However, it is more convenient to define the limit in such a way that .a; b/ can be a

boundary point of the domain of f: Thus, our formal definition will generalize the

one-dimensional notion of one-sided limit as well.

D E F I N I T I O N

2

Definition of Limit

We say that lim
.x;y/!.a;b/

f .x; y/ D L, provided that

(i) every neighbourhood of .a; b/ contains points of the domain of f differ-

ent from .a; b/, and

(ii) for every positive number � there exists a positive number ı D ı.�/ such

that jf .x; y/� Lj < � holds whenever .x; y/ is in the domain of f and

satisfies 0 <
p

.x � a/2 C .y � b/2 < ı:

Condition (i) is included in Definition 2 because it is not appropriate to consider limits

at isolated points of the domain of f; that is, points with neighbourhoods that contain

no other points of the domain. As noted in the marginal note following Definition 8 in

Section 1.5, the version of the above definition for functions of one variable is more

general than that older definition. (See Exercise 24 below.)

If a limit exists it is unique. For a single-variable function f; the existence of

limx!a f .x/ implies that f .x/ approaches the same finite number as x approaches a

from either the right or the left. Similarly, for a function of two variables, we can have

lim.x;y/!.a;b/ f .x; y/ D L only if f .x; y/ approaches the same number L no matter

how .x; y/ approaches .a; b/ in the domain of f: In particular, .x; y/ can approach

.a; b/ along any curve that lies in D.f /. It is not necessary that L D f .a; b/ even if

f .a; b/ is defined. The examples below illustrate these assertions.

All the usual laws of limits extend to functions of several variables in the obvious

way. For example, if lim.x;y/!.a;b/ f .x; y/ D L, lim.x;y/!.a;b/ g.x; y/ D M; and

every neighbourhood of .a; b/ contains points in D.f /\D.g/ other than .a; b/, then
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lim
.x;y/!.a;b/

�

f .x; y/˙ g.x; y/
�

D L˙M;

lim
.x;y/!.a;b/

f .x; y/ g.x; y/ D LM;

lim
.x;y/!.a;b/

f .x; y/

g.x; y/
D

L

M
; provided M ¤ 0:

Also, if F.t/ is continuous at t D L, then

lim
.x;y/!.a;b/

F
�

f .x; y/
�

D F.L/:

E X A M P L E 1
(a) lim

.x;y/!.2;3/

�

2x � y
2
�

D 4 � 9 D �5;

(b) lim
.x;y/!.a;b/

x
2
y D a

2
b;

(c) lim
.x;y/!.�=3;2/

y sin

�

x

y

�

D 2 sin
�

�

6

�

D 1:

E X A M P L E 2
The function f .x; y/ D

p

1 � x2
� y2 has limit f .a; b/ at all

points .a; b/ of its domain, the closed disk x2
C y2

� 1, and is

therefore considered to be continuous on its domain. Of course, .x; y/ can approach

points of the bounding circle x2
C y

2
D 1 only from within the disk.

The following examples show that the requirement that f .x; y/ approach the same

limit no matter how .x; y/ approaches .a; b/ can be very restrictive, and makes limits

in two or more variables much more subtle than in the single-variable case.

E X A M P L E 3 Investigate the limiting behaviour of f .x; y/ D
2xy

x2
C y2

as .x; y/

approaches .0; 0/.

Solution Note that f .x; y/ is defined at all points of the xy-plane except the origin

.0; 0/. We can still ask whether lim.x;y/!.0;0/ f .x; y/ exists. If we let .x; y/ approach

.0; 0/ along the x-axis (y D 0), then f .x; y/ D f .x; 0/ ! 0 (because f .x; 0/ D 0

identically). Thus, lim.x;y/!.0;0/ f .x; y/ must be 0 if it exists at all. Similarly, at all

points of the y-axis we have f .x; y/ D f .0; y/ D 0. However, at points of the line

x D y, f has a different constant value; f .x; x/ D 1. Since the limit of f .x; y/ is 1

as .x; y/ approaches .0; 0/ along this line, it follows that f .x; y/ cannot have a limit

at the origin. That is,

lim
.x;y/!.0;0/

2xy

x2
C y2

does not exist:

Observe that f .x; y/ has a constant value on any ray from the origin (on the ray y D

kx the value is 2k=.1Ck2/), but these values differ on different rays. The level curves

of f are the rays from the origin (with the origin itself removed). It is difficult to sketch

the graph of f near the origin. The first octant part of the graph is the “hood-shaped”

surface in Figure 12.13.
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x

y

z

z D
2xy

x2
C y2

Figure 12.13 f .x; y/ has different limits as .x; y/! .0; 0/

along different straight lines. The line y D x; z D 1 lies on the

graph.

x

y

z

z D
2x2y

x4
C y2

Figure 12.14 f .x; y/ has the same limit 0 as .x; y/! .0; 0/

along any straight line but has limit 1 as .x; y/! .0; 0/ along

y D x2. The curve y D x2; z D 1 lies on the graph.

E X A M P L E 4 Investigate the limiting behaviour of f .x; y/ D
2x2y

x4
C y2

as .x; y/

approaches .0; 0/.

Solution As in Example 3, f .x; y/ vanishes identically on the coordinate axes, so

lim.x;y/!.0;0/ f .x; y/ must be 0 if it exists at all. If we examine f .x; y/ at points of

the ray y D kx, we obtain

f .x; kx/ D
2kx3

x4
C k2x2

D

2kx

x2
C k2

! 0; as x ! 0 .k ¤ 0/:

Thus, f .x; y/ ! 0 as .x; y/ ! .0; 0/ along any straight line through the origin. We

might be tempted to conclude, therefore, that lim.x;y/!.0;0/ f .x; y/ D 0, but this is

incorrect. Observe the behaviour of f .x; y/ along the curve y D x2:

f .x; x
2
/ D

2x
4

x4
C x4

D 1:

Thus, f .x; y/ does not approach 0 as .x; y/ approaches the origin along this curve, so

lim.x;y/!.0;0/ f .x; y/ does not exist. The level curves of f are pairs of parabolas of

the form y D kx2, y D x2=k with the origin removed. See Figure 12.14 for the first

octant part of the graph of f:

E X A M P L E 5 Show that the function f .x; y/ D
x2y

x2
C y2

does have a limit at

the origin; specifically,

lim
.x;y/!.0;0/

x2y

x2
C y2

D 0:

Solution This function is also defined everywhere except at the origin. Observe that

since x2
� x2

C y2, we have

jf .x; y/� 0j D

ˇ

ˇ

ˇ

ˇ

x2y

x2
C y2

ˇ

ˇ

ˇ

ˇ

� jyj �

p

x2
C y2;

which approaches zero as .x; y/ ! .0; 0/. (See Figure 12.15.) Formally, if � > 0 is

given and we take ı D �, then jf .x; y/ � 0j < � whenever 0 <
p

x2
C y2 < ı, so

f .x; y/ has limit 0 as .x; y/! .0; 0/ by Definition 2.

As for functions of one variable, continuity of a function f at a point of its domain is

defined directly in terms of the limit. (See, for instance, Example 2.)
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Figure 12.15 lim
.x;y/!.0;0/

x2y

x2
C y2

D 0

x

y

z

z D
x2y

x2
C y2

D E F I N I T I O N

3

The function f .x; y/ is continuous at the point .a; b/ if

lim
.x;y/!.a;b/

f .x; y/ D f .a; b/:

It remains true that sums, differences, products, quotients, and compositions of con-

tinuous functions are continuous. The functions of Examples 3 and 4 above are con-

tinuous wherever they are defined, that is, at all points except the origin. There is no

way to define f .0; 0/ so that these functions become continuous at the origin. They

show that the continuity of the single-variable functions f .x; b/ at x D a and f .a; y/

at y D b does not imply that f .x; y/ is continuous at .a; b/. In fact, even if f .x; y/

is continuous along every straight line through .a; b/, it still need not be continuous

at .a; b/. (See Exercises 16–17 below.) Note, however, that the function f .x; y/ of

Example 5, although not defined at the origin, has a continuous extension to that point.

If we extend the domain of f by defining f .0; 0/ D lim.x;y/!.0;0/ f .x; y/ D 0, then

f is continuous on the whole xy-plane.

As for functions of one variable, the existence of a limit of a function at a point

does not imply that the function is continuous at that point. The function

f .x; y/ D

�

0 if .x; y/ ¤ .0; 0/

1 if .x; y/ D .0; 0/

satisfies lim.x;y/!.0;0/ f .x; y/ D 0, which is not equal to f .0; 0/, so f is not contin-

uous at .0; 0/. Of course, we can make f continuous at .0; 0/ by redefining its value at

that point to be 0.

E X E R C I S E S 12.2

In Exercises 1–12, evaluate the indicated limit or explain why it

does not exist.

1. lim
.x;y/!.2;�1/

xy C x
2 2. lim

.x;y/!.0;0/

p

x2
C y2

3. lim
.x;y/!.0;0/

x2
C y2

y
4. lim

.x;y/!.0;0/

x

x2
C y2

5. lim
.x;y/!.1;�/

cos.xy/

1 � x � cosy
6. lim

.x;y/!.0;1/

x2.y � 1/2

x2
C .y � 1/2

7. lim
.x;y/!.0;0/

y3

x2
C y2

8. lim
.x;y/!.0;0/

sin.x � y/

cos.x C y/

9. lim
.x;y/!.0;0/

sin.xy/

x2
C y2

10. lim
.x;y/!.1;2/

2x2
� xy

4x2
� y2

11. lim
.x;y/!.0;0/

x
2
y

2

x2
C y4

12. lim
.x;y/!.0;0/

x
2
y

2

2x4
C y4

13. How can the function

f .x; y/ D
x2
C y2

� x3y3

x2
C y2

; .x; y/ ¤ .0; 0/;

be defined at the origin so that it becomes continuous at all

points of the xy-plane?

14. How can the function

f .x; y/ D
x3
� y3

x � y
; .x ¤ y/;
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x

y

z

z D
2xy

x2
C y2

Figure 12.13 f .x; y/ has different limits as .x; y/! .0; 0/

along different straight lines. The line y D x; z D 1 lies on the

graph.

x

y

z

z D
2x2y

x4
C y2

Figure 12.14 f .x; y/ has the same limit 0 as .x; y/! .0; 0/

along any straight line but has limit 1 as .x; y/! .0; 0/ along

y D x2. The curve y D x2; z D 1 lies on the graph.

E X A M P L E 4 Investigate the limiting behaviour of f .x; y/ D
2x2y

x4
C y2

as .x; y/

approaches .0; 0/.

Solution As in Example 3, f .x; y/ vanishes identically on the coordinate axes, so

lim.x;y/!.0;0/ f .x; y/ must be 0 if it exists at all. If we examine f .x; y/ at points of

the ray y D kx, we obtain

f .x; kx/ D
2kx3

x4
C k2x2

D

2kx

x2
C k2

! 0; as x ! 0 .k ¤ 0/:

Thus, f .x; y/ ! 0 as .x; y/ ! .0; 0/ along any straight line through the origin. We

might be tempted to conclude, therefore, that lim.x;y/!.0;0/ f .x; y/ D 0, but this is

incorrect. Observe the behaviour of f .x; y/ along the curve y D x2:

f .x; x
2
/ D

2x
4

x4
C x4

D 1:

Thus, f .x; y/ does not approach 0 as .x; y/ approaches the origin along this curve, so

lim.x;y/!.0;0/ f .x; y/ does not exist. The level curves of f are pairs of parabolas of

the form y D kx2, y D x2=k with the origin removed. See Figure 12.14 for the first

octant part of the graph of f:

E X A M P L E 5 Show that the function f .x; y/ D
x2y

x2
C y2

does have a limit at

the origin; specifically,

lim
.x;y/!.0;0/

x2y

x2
C y2

D 0:

Solution This function is also defined everywhere except at the origin. Observe that

since x2
� x2

C y2, we have

jf .x; y/� 0j D

ˇ

ˇ

ˇ

ˇ

x2y

x2
C y2

ˇ

ˇ

ˇ

ˇ

� jyj �

p

x2
C y2;

which approaches zero as .x; y/ ! .0; 0/. (See Figure 12.15.) Formally, if � > 0 is

given and we take ı D �, then jf .x; y/ � 0j < � whenever 0 <
p

x2
C y2 < ı, so

f .x; y/ has limit 0 as .x; y/! .0; 0/ by Definition 2.

As for functions of one variable, continuity of a function f at a point of its domain is

defined directly in terms of the limit. (See, for instance, Example 2.)
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Figure 12.15 lim
.x;y/!.0;0/

x2y

x2
C y2

D 0

x

y

z

z D
x2y

x2
C y2

D E F I N I T I O N

3

The function f .x; y/ is continuous at the point .a; b/ if

lim
.x;y/!.a;b/

f .x; y/ D f .a; b/:

It remains true that sums, differences, products, quotients, and compositions of con-

tinuous functions are continuous. The functions of Examples 3 and 4 above are con-

tinuous wherever they are defined, that is, at all points except the origin. There is no

way to define f .0; 0/ so that these functions become continuous at the origin. They

show that the continuity of the single-variable functions f .x; b/ at x D a and f .a; y/

at y D b does not imply that f .x; y/ is continuous at .a; b/. In fact, even if f .x; y/

is continuous along every straight line through .a; b/, it still need not be continuous

at .a; b/. (See Exercises 16–17 below.) Note, however, that the function f .x; y/ of

Example 5, although not defined at the origin, has a continuous extension to that point.

If we extend the domain of f by defining f .0; 0/ D lim.x;y/!.0;0/ f .x; y/ D 0, then

f is continuous on the whole xy-plane.

As for functions of one variable, the existence of a limit of a function at a point

does not imply that the function is continuous at that point. The function

f .x; y/ D

�

0 if .x; y/ ¤ .0; 0/

1 if .x; y/ D .0; 0/

satisfies lim.x;y/!.0;0/ f .x; y/ D 0, which is not equal to f .0; 0/, so f is not contin-

uous at .0; 0/. Of course, we can make f continuous at .0; 0/ by redefining its value at

that point to be 0.

E X E R C I S E S 12.2

In Exercises 1–12, evaluate the indicated limit or explain why it

does not exist.

1. lim
.x;y/!.2;�1/

xy C x
2 2. lim

.x;y/!.0;0/

p

x2
C y2

3. lim
.x;y/!.0;0/

x2
C y2

y
4. lim

.x;y/!.0;0/

x

x2
C y2

5. lim
.x;y/!.1;�/

cos.xy/

1 � x � cosy
6. lim

.x;y/!.0;1/

x2.y � 1/2

x2
C .y � 1/2

7. lim
.x;y/!.0;0/

y3

x2
C y2

8. lim
.x;y/!.0;0/

sin.x � y/

cos.x C y/

9. lim
.x;y/!.0;0/

sin.xy/

x2
C y2

10. lim
.x;y/!.1;2/

2x2
� xy

4x2
� y2

11. lim
.x;y/!.0;0/

x
2
y

2

x2
C y4

12. lim
.x;y/!.0;0/

x
2
y

2

2x4
C y4

13. How can the function

f .x; y/ D
x2
C y2

� x3y3

x2
C y2

; .x; y/ ¤ .0; 0/;

be defined at the origin so that it becomes continuous at all

points of the xy-plane?

14. How can the function

f .x; y/ D
x3
� y3

x � y
; .x ¤ y/;
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be defined along the line x D y so that the resulting function

is continuous on the whole xy-plane?

15. What is the domain of

f .x; y/ D
x � y

x2
� y2

‹

Does f .x; y/ have a limit as .x; y/! .1; 1/? Can the domain

of f be extended so that the resulting function is continuous

at .1; 1/? Can the domain be extended so that the resulting

function is continuous everywhere in the xy-plane?

16.A Given a function f .x; y/ and a point .a; b/ in its domain,

define single-variable functions g and h as follows:

g.x/ D f .x; b/; h.y/ D f .a; y/:

If g is continuous at x D a and h is continuous at y D b, does

it follow that f is continuous at .a; b/? Conversely, does the

continuity of f at .a; b/ guarantee the continuity of g at a and

the continuity of h at b? Justify your answers.

17.A Let u D uiC vj be a unit vector, and let

fu.t/ D f .aC tu; b C tv/

be the single-variable function obtained by restricting the

domain of f .x; y/ to points of the straight line through .a; b/

parallel to u. If fu.t/ is continuous at t D 0 for every unit

vector u, does it follow that f is continuous at .a; b/?

Conversely, does the continuity of f at .a; b/ guarantee the

continuity of fu.t/ at t D 0? Justify your answers.

18.A What condition must the nonnegative integersm, n, and p

satisfy to guarantee that lim.x;y/!.0;0/ x
m
y

n
=.x

2
C y

2
/
p

exists? Prove your answer.

19.A What condition must the constants a, b, and c satisfy to

guarantee that lim.x;y/!.0;0/ xy=.ax
2
C bxy C cy2/ exists?

Prove your answer.

20.A Can the function f .x; y/ D
sinx sin3

y

1 � cos.x2
C y2/

be defined at

.0; 0/ in such a way that it becomes continuous there? If so,

how?

G 21. Use two- and three-dimensional mathematical graphing

software to examine the graph and level curves of the function

f .x; y/ of Example 3 on the region �1 � x � 1,

�1 � y � 1, .x; y/ ¤ .0; 0/. How would you describe the

behaviour of the graph near .x; y/ D .0; 0/?

G 22. Use two- and three-dimensional mathematical graphing

software to examine the graph and level curves of the function

f .x; y/ of Example 4 on the region �1 � x � 1,

�1 � y � 1, .x; y/ ¤ .0; 0/. How would you describe the

behaviour of the graph near .x; y/ D .0; 0/?

23. The graph of a single-variable function f .x/ that is

continuous on an interval is a curve that has no breaks in it

there and that intersects any vertical line through a point in the

interval exactly once. What analogous statement can you

make about the graph of a bivariate function f .x; y/ that is

continuous on a region of the xy-plane?

24. (a) State explicitly the version of Definition 2 that applies to a

function f of a single variable x.

(b) Let f be a function with domain the set of numbers 1=n

for n D 1; 2; 3; : : : and having values given by

f .1=n/ D .n � 1/=n. According to part (a) does

limx!1 f .x/ exist? What about limx!0 f .x/? Evaluate

whichever of these limits does exist.

(c) Which of the two limits in .b/ exist by Definition 8 in

Section 1.5?

12.3 Partial Derivatives
In this section we begin the process of extending the concepts and techniques of single-

variable calculus to functions of more than one variable. It is convenient to begin by

considering the rate of change of such functions with respect to one variable at a time.

Thus, a function of n variables has n first-order partial derivatives, one with respect to

each of its independent variables. For a function of two variables, we make this precise

in the following definition:

D E F I N I T I O N

4

The first partial derivatives of the function f .x; y/ with respect to the

variables x and y are the functions f1.x; y/ and f2.x; y/ given by

f1.x; y/ D lim
h!0

f .x C h; y/ � f .x; y/

h
;

f2.x; y/ D lim
k!0

f .x; y C k/� f .x; y/

k
;

provided these limits exist.

Each of the two partial derivatives is the limit of a Newton quotient in one of the vari-

ables. Observe that f1.x; y/ is just the ordinary first derivative of f .x; y/ considered

as a function of x only, regarding y as a constant parameter. Similarly, f2.x; y/ is the

first derivative of f .x; y/ considered as a function of y alone, with x held fixed.
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E X A M P L E 1
If f .x; y/ D x2 siny, then

f1.x; y/ D 2x siny and f2.x; y/ D x
2 cos y:

The subscripts 1 and 2 in the notations for the partial derivatives refer to the first and

second variables of f: For functions of one variable we use the notation f 0 for the

derivative; the prime (0) denotes differentiation with respect to the only variable on

which f depends. For functions f of two variables, we use f1 or f2 to show the

variable of differentiation. Do not confuse these subscripts with subscripts used for

other purposes (e.g., to denote the components of vectors).

The partial derivative f1.a; b/measures the rate of change of f .x; y/with respect

to x at x D a while y is held fixed at b. In graphical terms, the surface z D f .x; y/

intersects the vertical plane y D b in a curve. If we take horizontal and vertical

lines through the point .0; b; 0/ as coordinate axes in the plane y D b, then the curve

has equation z D f .x; b/, and its slope at x D a is f1.a; b/. (See Figure 12.16.)

Similarly, f2.a; b/ represents the rate of change of f with respect to y at y D b with

x held fixed at a. The surface z D f .x; y/ intersects the vertical plane x D a in a

curve z D f .a; y/ whose slope at y D b is f2.a; b/. (See Figure 12.17.)

x

y

z

plane y D b

z D f .x; y/

b

a

�

a; b; f .a; b/

�

Figure 12.16 f1.a; b/ is the slope of the red curve of

intersection of the red surface z D f .x; y/ and the blue

vertical plane y D b at x D a

x

y

z

plane x D a

z D f .x; y/

b

a

�

a; b; f .a; b/

�

Figure 12.17 f2.a; b/ is the slope of the red curve of

intersection of the red surface z D f .x; y/ and the blue

vertical plane x D a at y D b

Various notations can be used to denote the partial derivatives of z D f .x; y/

considered as functions of x and y:

Notations for first partial derivatives

@z

@x
D

@

@x
f .x; y/ D f1.x; y/ D D1f .x; y/

@z

@y
D

@

@y
f .x; y/ D f2.x; y/ D D2f .x; y/

The symbol @=@x should be read as “partial with respect to x” so @z=@x is “partial

z with respect to x.” The reason for distinguishing @ (pronounced “die”) from the d

of ordinary derivatives of single-variable functions will be made clear later. Similar

notations can be used to denote the values of partial derivatives at a particular point

.a; b/:
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be defined along the line x D y so that the resulting function

is continuous on the whole xy-plane?

15. What is the domain of

f .x; y/ D
x � y

x2
� y2

‹

Does f .x; y/ have a limit as .x; y/! .1; 1/? Can the domain

of f be extended so that the resulting function is continuous

at .1; 1/? Can the domain be extended so that the resulting

function is continuous everywhere in the xy-plane?

16.A Given a function f .x; y/ and a point .a; b/ in its domain,

define single-variable functions g and h as follows:

g.x/ D f .x; b/; h.y/ D f .a; y/:

If g is continuous at x D a and h is continuous at y D b, does

it follow that f is continuous at .a; b/? Conversely, does the

continuity of f at .a; b/ guarantee the continuity of g at a and

the continuity of h at b? Justify your answers.

17.A Let u D uiC vj be a unit vector, and let

fu.t/ D f .aC tu; b C tv/

be the single-variable function obtained by restricting the

domain of f .x; y/ to points of the straight line through .a; b/

parallel to u. If fu.t/ is continuous at t D 0 for every unit

vector u, does it follow that f is continuous at .a; b/?

Conversely, does the continuity of f at .a; b/ guarantee the

continuity of fu.t/ at t D 0? Justify your answers.

18.A What condition must the nonnegative integersm, n, and p

satisfy to guarantee that lim.x;y/!.0;0/ x
m
y

n
=.x

2
C y

2
/
p

exists? Prove your answer.

19.A What condition must the constants a, b, and c satisfy to

guarantee that lim.x;y/!.0;0/ xy=.ax
2
C bxy C cy2/ exists?

Prove your answer.

20.A Can the function f .x; y/ D
sinx sin3

y

1 � cos.x2
C y2/

be defined at

.0; 0/ in such a way that it becomes continuous there? If so,

how?

G 21. Use two- and three-dimensional mathematical graphing

software to examine the graph and level curves of the function

f .x; y/ of Example 3 on the region �1 � x � 1,

�1 � y � 1, .x; y/ ¤ .0; 0/. How would you describe the

behaviour of the graph near .x; y/ D .0; 0/?

G 22. Use two- and three-dimensional mathematical graphing

software to examine the graph and level curves of the function

f .x; y/ of Example 4 on the region �1 � x � 1,

�1 � y � 1, .x; y/ ¤ .0; 0/. How would you describe the

behaviour of the graph near .x; y/ D .0; 0/?

23. The graph of a single-variable function f .x/ that is

continuous on an interval is a curve that has no breaks in it

there and that intersects any vertical line through a point in the

interval exactly once. What analogous statement can you

make about the graph of a bivariate function f .x; y/ that is

continuous on a region of the xy-plane?

24. (a) State explicitly the version of Definition 2 that applies to a

function f of a single variable x.

(b) Let f be a function with domain the set of numbers 1=n

for n D 1; 2; 3; : : : and having values given by

f .1=n/ D .n � 1/=n. According to part (a) does

limx!1 f .x/ exist? What about limx!0 f .x/? Evaluate

whichever of these limits does exist.

(c) Which of the two limits in .b/ exist by Definition 8 in

Section 1.5?

12.3 Partial Derivatives
In this section we begin the process of extending the concepts and techniques of single-

variable calculus to functions of more than one variable. It is convenient to begin by

considering the rate of change of such functions with respect to one variable at a time.

Thus, a function of n variables has n first-order partial derivatives, one with respect to

each of its independent variables. For a function of two variables, we make this precise

in the following definition:

D E F I N I T I O N

4

The first partial derivatives of the function f .x; y/ with respect to the

variables x and y are the functions f1.x; y/ and f2.x; y/ given by

f1.x; y/ D lim
h!0

f .x C h; y/ � f .x; y/

h
;

f2.x; y/ D lim
k!0

f .x; y C k/� f .x; y/

k
;

provided these limits exist.

Each of the two partial derivatives is the limit of a Newton quotient in one of the vari-

ables. Observe that f1.x; y/ is just the ordinary first derivative of f .x; y/ considered

as a function of x only, regarding y as a constant parameter. Similarly, f2.x; y/ is the

first derivative of f .x; y/ considered as a function of y alone, with x held fixed.
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E X A M P L E 1
If f .x; y/ D x2 siny, then

f1.x; y/ D 2x siny and f2.x; y/ D x
2 cos y:

The subscripts 1 and 2 in the notations for the partial derivatives refer to the first and

second variables of f: For functions of one variable we use the notation f 0 for the

derivative; the prime (0) denotes differentiation with respect to the only variable on

which f depends. For functions f of two variables, we use f1 or f2 to show the

variable of differentiation. Do not confuse these subscripts with subscripts used for

other purposes (e.g., to denote the components of vectors).

The partial derivative f1.a; b/measures the rate of change of f .x; y/with respect

to x at x D a while y is held fixed at b. In graphical terms, the surface z D f .x; y/

intersects the vertical plane y D b in a curve. If we take horizontal and vertical

lines through the point .0; b; 0/ as coordinate axes in the plane y D b, then the curve

has equation z D f .x; b/, and its slope at x D a is f1.a; b/. (See Figure 12.16.)

Similarly, f2.a; b/ represents the rate of change of f with respect to y at y D b with

x held fixed at a. The surface z D f .x; y/ intersects the vertical plane x D a in a

curve z D f .a; y/ whose slope at y D b is f2.a; b/. (See Figure 12.17.)

x

y

z

plane y D b

z D f .x; y/

b

a

�

a; b; f .a; b/

�

Figure 12.16 f1.a; b/ is the slope of the red curve of

intersection of the red surface z D f .x; y/ and the blue

vertical plane y D b at x D a

x

y

z

plane x D a

z D f .x; y/

b

a

�

a; b; f .a; b/

�

Figure 12.17 f2.a; b/ is the slope of the red curve of

intersection of the red surface z D f .x; y/ and the blue

vertical plane x D a at y D b

Various notations can be used to denote the partial derivatives of z D f .x; y/

considered as functions of x and y:

Notations for first partial derivatives

@z

@x
D

@

@x
f .x; y/ D f1.x; y/ D D1f .x; y/

@z

@y
D

@

@y
f .x; y/ D f2.x; y/ D D2f .x; y/

The symbol @=@x should be read as “partial with respect to x” so @z=@x is “partial

z with respect to x.” The reason for distinguishing @ (pronounced “die”) from the d

of ordinary derivatives of single-variable functions will be made clear later. Similar

notations can be used to denote the values of partial derivatives at a particular point

.a; b/:
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Values of partial derivatives

@z

@x

ˇ

ˇ

ˇ

ˇ

.a;b/

D

�

@

@x
f .x; y/

�
ˇ

ˇ

ˇ

ˇ

.a;b/

D f1.a; b/ D D1f .a; b/

@z

@y

ˇ

ˇ

ˇ

ˇ

.a;b/

D

�

@

@y
f .x; y/

�
ˇ

ˇ

ˇ

ˇ

.a;b/

D f2.a; b/ D D2f .a; b/

Some authors prefer to use fx , Dxf; or @f=@x, and fy , Dyf; or @f=@y, instead

BEWARE! Read the paragraph

at the right carefully. It explains

why, at least for the time being, we

are using subscripts 1 and 2 instead

of subscripts x and y for the partial

derivatives of f .x; y/. Later on, and

especially when we are discussing

partial differential equations or

dealing with vector-valued functions

for which numerical subscripts

normally represent components, we

will prefer to use letter subscripts for

partial derivatives.

of f1 and f2. However, this can lead to problems of ambiguity when compositions of

functions arise. For instance, suppose f .x; y/ D x2y. What should fx.x
2; xy/mean?

By f1.x
2
; xy/ we clearly mean to evaluate the partial derivative of f .u; v/ D u

2
v

with respect to its first variable u and evaluate the result at u D x2 and v D xy:

f1.x
2
; xy/ D

�

@

@u
f .u; v/

�
ˇ

ˇ

ˇ

ˇ

uDx2;vDxy

D 2uv

ˇ

ˇ

ˇ

ˇ

uDx2;vDxy

D .2/.x
2
/.xy/ D 2x

3
y:

But does fx.x
2; xy/ mean the same thing? One could argue that

fx.x
2
; xy/ D

@

@x

�

f .x
2
; xy/

�

D

@

@x

�

.x
2
/
2
.xy/

�

D

@

@x
.x

5
y/ D 5x

4
y:

In order to avoid such ambiguities we usually prefer to use f1 and f2 instead of fx and

fy . (However, in some situations where no confusion is likely to occur we may still

use the notations fx and fy , and also Dxf; Dyf; @f=@x, and @f=@y.)

All the standard differentiation rules for sums, products, reciprocals, and quotients

continue to apply to partial derivatives.

E X A M P L E 2
Find @z=@x and @z=@y if z D x3y2

C x4y C y4.

Solution @z=@x D 3x2y2
C 4x3y and @z=@y D 2x3y C x4

C 4y3.

E X A M P L E 3
Find f1.0; �/ if f .x; y/ D exy cos.x C y/.

Solution f1.x; y/ D y e
xy cos.x C y/� exy sin.x C y/;

f1.0; �/ D � e
0 cos.�/ � e0 sin.�/ D ��:

The single-variable version of the Chain Rule also continues to apply to, say, f
�

g.x; y/
�

,

where f is a function of only one variable having derivative f 0:

@

@x
f
�

g.x; y/
�

D f
0�
g.x; y/

�

g1.x; y/;
@

@y
f
�

g.x; y/
�

D f
0�
g.x; y/

�

g2.x; y/:

We will develop versions of the Chain Rule for more complicated compositions of

multivariate functions in Section 12.5.

E X A M P L E 4
If f is an everywhere differentiable function of one variable, show

that z D f .x=y/ satisfies the partial differential equation

x
@z

@x
C y

@z

@y
D 0:
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Solution By the (single-variable) Chain Rule,

@z

@x
D f

0
�

x

y

��

1

y

�

and
@z

@y
D f

0
�

x

y

��

�x

y2

�

:

Hence,

x
@z

@x
C y

@z

@y
D f

0
�

x

y

��

x �
1

y
C y �

�x

y2

�

D 0:

Definition 4 can be extended in the obvious way to cover functions of more than two

variables. If f is a function of n variables x1; x2; : : : ; xn, then f has n first partial

derivatives, f1.x1; x2; : : : ; xn/, f2.x1; x2; : : : ; xn/, : : : , fn.x1; x2; : : : ; xn/, one with

respect to each variable.

E X A M P L E 5 @

@z

�

2xy

1C xz C yz

�

D �

2xy

.1C xz C yz/2
.x C y/:

Again, all the standard differentiation rules are applied to calculate partial derivatives.

Remark If a single-variable function f .x/ has a derivative f 0
.a/ at x D a, then f is

necessarily continuous at x D a. This property does not extend to partial derivatives.

Even if all the first partial derivatives of a function of several variables exist at a point,

the function may still fail to be continuous at that point. See Exercise 36 below.

Tangent Planes and Normal Lines
If the graph z D f .x; y/ is a “smooth” surface near the point P with coordinates
�

a; b; f .a; b/
�

, then that graph will have a tangent plane and a normal line at P: The

normal line is the line through P that is perpendicular to the surface; for instance, a

line joining a point on a sphere to the centre of the sphere is normal to the sphere. Any

nonzero vector that is parallel to the normal line at P is called a normal vector to the

surface at P: The tangent plane to the surface z D f .x; y/ at P is the plane through

P that is perpendicular to the normal line at P:

Let us assume that the surface z D f .x; y/ has a nonvertical tangent plane (and

therefore a nonhorizontal normal line) at point P . (Later in this chapter we will state

precise conditions that guarantee that the graph of a function has a nonvertical tangent

plane at a point.) The tangent plane intersects the vertical plane y D b in a straight line

that is tangent atP to the curve of intersection of the surface z D f .x; y/ and the plane

y D b. (See Figures 12.16 and 12.18.) This line has slope f1.a; b/, so it is parallel to

the vector T1 D iCf1.a; b/k. Similarly, the tangent plane intersects the vertical plane

x D a in a straight line having slope f2.a; b/. This line is therefore parallel to the

vector T2 D jC f2.a; b/k. It follows that the tangent plane, and therefore the surface

z D f .x; y/ itself, has normal vector

n D T2 �T1 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

0 1 f2.a; b/

1 0 f1.a; b/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D f1.a; b/iC f2.a; b/j � k:

A normal vector to z D f .x; y/ at
�

a; b; f .a; b/
�

is

n D f1.a; b/iC f2.a; b/j � k.
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Values of partial derivatives

@z

@x

ˇ

ˇ

ˇ

ˇ

.a;b/

D

�

@

@x
f .x; y/

�
ˇ

ˇ

ˇ

ˇ

.a;b/

D f1.a; b/ D D1f .a; b/

@z

@y

ˇ

ˇ

ˇ

ˇ

.a;b/

D

�

@

@y
f .x; y/

�
ˇ

ˇ

ˇ

ˇ

.a;b/

D f2.a; b/ D D2f .a; b/

Some authors prefer to use fx , Dxf; or @f=@x, and fy , Dyf; or @f=@y, instead

BEWARE! Read the paragraph

at the right carefully. It explains

why, at least for the time being, we

are using subscripts 1 and 2 instead

of subscripts x and y for the partial

derivatives of f .x; y/. Later on, and

especially when we are discussing

partial differential equations or

dealing with vector-valued functions

for which numerical subscripts

normally represent components, we

will prefer to use letter subscripts for

partial derivatives.

of f1 and f2. However, this can lead to problems of ambiguity when compositions of

functions arise. For instance, suppose f .x; y/ D x2y. What should fx.x
2; xy/mean?

By f1.x
2
; xy/ we clearly mean to evaluate the partial derivative of f .u; v/ D u

2
v

with respect to its first variable u and evaluate the result at u D x2 and v D xy:

f1.x
2
; xy/ D

�

@

@u
f .u; v/

�
ˇ

ˇ

ˇ

ˇ

uDx2;vDxy

D 2uv

ˇ

ˇ

ˇ

ˇ

uDx2;vDxy

D .2/.x
2
/.xy/ D 2x

3
y:

But does fx.x
2; xy/ mean the same thing? One could argue that

fx.x
2
; xy/ D

@

@x

�

f .x
2
; xy/

�

D

@

@x

�

.x
2
/
2
.xy/

�

D

@

@x
.x

5
y/ D 5x

4
y:

In order to avoid such ambiguities we usually prefer to use f1 and f2 instead of fx and

fy . (However, in some situations where no confusion is likely to occur we may still

use the notations fx and fy , and also Dxf; Dyf; @f=@x, and @f=@y.)

All the standard differentiation rules for sums, products, reciprocals, and quotients

continue to apply to partial derivatives.

E X A M P L E 2
Find @z=@x and @z=@y if z D x3y2

C x4y C y4.

Solution @z=@x D 3x2y2
C 4x3y and @z=@y D 2x3y C x4

C 4y3.

E X A M P L E 3
Find f1.0; �/ if f .x; y/ D exy cos.x C y/.

Solution f1.x; y/ D y e
xy cos.x C y/� exy sin.x C y/;

f1.0; �/ D � e
0 cos.�/ � e0 sin.�/ D ��:

The single-variable version of the Chain Rule also continues to apply to, say, f
�

g.x; y/
�

,

where f is a function of only one variable having derivative f 0:

@

@x
f
�

g.x; y/
�

D f
0�
g.x; y/

�

g1.x; y/;
@

@y
f
�

g.x; y/
�

D f
0�
g.x; y/

�

g2.x; y/:

We will develop versions of the Chain Rule for more complicated compositions of

multivariate functions in Section 12.5.

E X A M P L E 4
If f is an everywhere differentiable function of one variable, show

that z D f .x=y/ satisfies the partial differential equation

x
@z

@x
C y

@z

@y
D 0:
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Solution By the (single-variable) Chain Rule,

@z

@x
D f

0
�

x

y

��

1

y

�

and
@z

@y
D f

0
�

x

y

��

�x

y2

�

:

Hence,

x
@z

@x
C y

@z

@y
D f

0
�

x

y

��

x �
1

y
C y �

�x

y2

�

D 0:

Definition 4 can be extended in the obvious way to cover functions of more than two

variables. If f is a function of n variables x1; x2; : : : ; xn, then f has n first partial

derivatives, f1.x1; x2; : : : ; xn/, f2.x1; x2; : : : ; xn/, : : : , fn.x1; x2; : : : ; xn/, one with

respect to each variable.

E X A M P L E 5 @

@z

�

2xy

1C xz C yz

�

D �

2xy

.1C xz C yz/2
.x C y/:

Again, all the standard differentiation rules are applied to calculate partial derivatives.

Remark If a single-variable function f .x/ has a derivative f 0
.a/ at x D a, then f is

necessarily continuous at x D a. This property does not extend to partial derivatives.

Even if all the first partial derivatives of a function of several variables exist at a point,

the function may still fail to be continuous at that point. See Exercise 36 below.

Tangent Planes and Normal Lines
If the graph z D f .x; y/ is a “smooth” surface near the point P with coordinates
�

a; b; f .a; b/
�

, then that graph will have a tangent plane and a normal line at P: The

normal line is the line through P that is perpendicular to the surface; for instance, a

line joining a point on a sphere to the centre of the sphere is normal to the sphere. Any

nonzero vector that is parallel to the normal line at P is called a normal vector to the

surface at P: The tangent plane to the surface z D f .x; y/ at P is the plane through

P that is perpendicular to the normal line at P:

Let us assume that the surface z D f .x; y/ has a nonvertical tangent plane (and

therefore a nonhorizontal normal line) at point P . (Later in this chapter we will state

precise conditions that guarantee that the graph of a function has a nonvertical tangent

plane at a point.) The tangent plane intersects the vertical plane y D b in a straight line

that is tangent atP to the curve of intersection of the surface z D f .x; y/ and the plane

y D b. (See Figures 12.16 and 12.18.) This line has slope f1.a; b/, so it is parallel to

the vector T1 D iCf1.a; b/k. Similarly, the tangent plane intersects the vertical plane

x D a in a straight line having slope f2.a; b/. This line is therefore parallel to the

vector T2 D jC f2.a; b/k. It follows that the tangent plane, and therefore the surface

z D f .x; y/ itself, has normal vector

n D T2 �T1 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

0 1 f2.a; b/

1 0 f1.a; b/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D f1.a; b/iC f2.a; b/j � k:

A normal vector to z D f .x; y/ at
�

a; b; f .a; b/
�

is

n D f1.a; b/iC f2.a; b/j � k.
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Figure 12.18 The tangent plane and a

normal vector to z D f .x; y/ at

P D

�

a; b; f .a; b/

�

. In this figure the

graph of f is red, the tangent plane is blue,

and the normal to both at P is red. The

normal is the cross product of the tangent

vectors (T2/ in the blue vertical plane

x D a and (T1/ in the green vertical plane

y D b.

x

y

z

tangent plane

plane x D a

plane y D b

T2

n

T1

P

Since the tangent plane passes through P D .a; b; f .a; b//, it has equation

f1.a; b/.x � a/C f2.a; b/.y � b/� .z � f .a; b// D 0;

or, equivalently,

An equation of the tangent plane to z D f .x; y/ at
�

a; b; f .a; b/
�

is

z D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/.

We shall obtain this result by a different method in Section 12.7.

The normal line to z D f .x; y/ at
�

a; b; f .a; b/
�

has direction vector f1.a; b/iC

f2.a; b/j � k and so has equations

x � a

f1.a; b/
D

y � b

f2.a; b/
D

z � f .a; b/

�1

with suitable modifications if either f1.a; b/ D 0 or f2.a; b/ D 0.

E X A M P L E 6
Find a normal vector and equations of the tangent plane and nor-

mal line to the graph z D sin.xy/ at the point where x D �=3 and

y D �1.

Solution The point on the graph has coordinates .�=3;�1;�
p

3=2/. Now

@z

@x
D y cos.xy/ and

@z

@y
D x cos.xy/:

At .�=3;�1/ we have @z=@x D �1=2 and @z=@y D �=6. Therefore, the surface has

normal vector n D �.1=2/iC .�=6/j � k and tangent plane

z D
�

p

3

2
�

1

2

�

x �
�

3

�

C

�

6
.y C 1/;

or, more simply, 3x � �y C 6z D 2� � 3
p

3. The normal line has equation

x �
�

3

�1

2

D

y C 1

�

6

D

z C

p

3

2

�1
or

6x � 2�

�3
D

6y C 6

�
D

6z C 3
p

3

�6
:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 695 October 17, 2016

SECTION 12.3: Partial Derivatives 695

E X A M P L E 7
What horizontal plane is tangent to the surface

z D x
2
� 4xy � 2y

2
C 12x � 12y � 1;

and what is the point of tangency?

Solution A plane is horizontal only if its equation is of the form z D k, that is, it is

independent of x and y. Therefore, we must have @z=@x D @z=@y D 0 at the point of

tangency. The equations

@z

@x
D 2x � 4y C 12 D 0

@z

@y
D �4x � 4y � 12 D 0

have solution x D �4, y D 1. For these values we have z D �31, so the required

tangent plane has equation z D �31 and the point of tangency is .�4; 1;�31/.

Distance from a Point to a Surface: A Geometric Example

E X A M P L E 8
Find the distance from the point .3; 0; 0/ to the hyperbolic paraboloid

with equation z D x2
� y2.

Solution This is an optimization problem of a sort we will deal with in a more sys-

tematic way in the next chapter. However, such problems involving minimizing dis-

tances from points to surfaces can sometimes be solved using geometric methods.

If Q D .X; Y;Z/ is the point on the surface z D x2
� y2 that is closest to

P D .3; 0; 0/, then the vector
��!

PQ D .X � 3/i C Y j C Zk must be normal to the

surface at Q. (See Figure 12.19(a).) Using the partial derivatives of z D x2
� y2, we

know that the vector n D 2X i � 2Y j � k is normal to the surface at Q. Thus,
��!

PQ

must be parallel to n, and
��!

PQ D tn for some scalar t . Separated into components, this

vector equation states that

X � 3 D 2Xt; Y D �2Y t; and Z D �t:

The middle equation implies that either Y D 0 or t D �1
2

. We must consider both of

these possibilities.

CASE I If Y D 0, then

X D
3

1 � 2t
and Z D �t:

Figure 12.19

(a) If Q is the point on z D x2
� y

2

closest to P; then
��!

PQ is normal

to the surface at Q

(b) Equation �t D
9

.1 � 2t/2
has

only one real root, t D �1

x

y

z

Q

P

z D x2
� y2

y D �t

y D
9

.1 � 2t/2

y

�1

1

2

3

t�3 �2 �1 1 2

(a) (b)
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Figure 12.18 The tangent plane and a

normal vector to z D f .x; y/ at

P D

�

a; b; f .a; b/

�

. In this figure the

graph of f is red, the tangent plane is blue,

and the normal to both at P is red. The

normal is the cross product of the tangent

vectors (T2/ in the blue vertical plane

x D a and (T1/ in the green vertical plane

y D b.

x

y

z

tangent plane

plane x D a

plane y D b

T2

n

T1

P

Since the tangent plane passes through P D .a; b; f .a; b//, it has equation

f1.a; b/.x � a/C f2.a; b/.y � b/� .z � f .a; b// D 0;

or, equivalently,

An equation of the tangent plane to z D f .x; y/ at
�

a; b; f .a; b/
�

is

z D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/.

We shall obtain this result by a different method in Section 12.7.

The normal line to z D f .x; y/ at
�

a; b; f .a; b/
�

has direction vector f1.a; b/iC

f2.a; b/j � k and so has equations

x � a

f1.a; b/
D

y � b

f2.a; b/
D

z � f .a; b/

�1

with suitable modifications if either f1.a; b/ D 0 or f2.a; b/ D 0.

E X A M P L E 6
Find a normal vector and equations of the tangent plane and nor-

mal line to the graph z D sin.xy/ at the point where x D �=3 and

y D �1.

Solution The point on the graph has coordinates .�=3;�1;�
p

3=2/. Now

@z

@x
D y cos.xy/ and

@z

@y
D x cos.xy/:

At .�=3;�1/ we have @z=@x D �1=2 and @z=@y D �=6. Therefore, the surface has

normal vector n D �.1=2/iC .�=6/j � k and tangent plane

z D
�

p

3

2
�

1

2

�

x �
�

3

�

C

�

6
.y C 1/;

or, more simply, 3x � �y C 6z D 2� � 3
p

3. The normal line has equation

x �
�

3

�1

2

D

y C 1

�

6

D

z C

p

3

2

�1
or

6x � 2�

�3
D

6y C 6

�
D

6z C 3
p

3

�6
:
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E X A M P L E 7
What horizontal plane is tangent to the surface

z D x
2
� 4xy � 2y

2
C 12x � 12y � 1;

and what is the point of tangency?

Solution A plane is horizontal only if its equation is of the form z D k, that is, it is

independent of x and y. Therefore, we must have @z=@x D @z=@y D 0 at the point of

tangency. The equations

@z

@x
D 2x � 4y C 12 D 0

@z

@y
D �4x � 4y � 12 D 0

have solution x D �4, y D 1. For these values we have z D �31, so the required

tangent plane has equation z D �31 and the point of tangency is .�4; 1;�31/.

Distance from a Point to a Surface: A Geometric Example

E X A M P L E 8
Find the distance from the point .3; 0; 0/ to the hyperbolic paraboloid

with equation z D x2
� y2.

Solution This is an optimization problem of a sort we will deal with in a more sys-

tematic way in the next chapter. However, such problems involving minimizing dis-

tances from points to surfaces can sometimes be solved using geometric methods.

If Q D .X; Y;Z/ is the point on the surface z D x2
� y2 that is closest to

P D .3; 0; 0/, then the vector
��!

PQ D .X � 3/i C Y j C Zk must be normal to the

surface at Q. (See Figure 12.19(a).) Using the partial derivatives of z D x2
� y2, we

know that the vector n D 2X i � 2Y j � k is normal to the surface at Q. Thus,
��!

PQ

must be parallel to n, and
��!

PQ D tn for some scalar t . Separated into components, this

vector equation states that

X � 3 D 2Xt; Y D �2Y t; and Z D �t:

The middle equation implies that either Y D 0 or t D �1
2

. We must consider both of

these possibilities.

CASE I If Y D 0, then

X D
3

1 � 2t
and Z D �t:

Figure 12.19

(a) If Q is the point on z D x2
� y

2

closest to P; then
��!

PQ is normal

to the surface at Q

(b) Equation �t D
9

.1 � 2t/2
has

only one real root, t D �1

x

y

z

Q

P

z D x2
� y2

y D �t

y D
9

.1 � 2t/2

y

�1

1

2

3

t�3 �2 �1 1 2

(a) (b)
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But Z D X2
� Y 2, so we must have

�t D
9

.1 � 2t/2
:

This is a cubic equation in t , so we might expect to have to solve it numerically, for

instance, by using Newton’s Method. However, if we try small integer values of t ,

we will quickly discover that t D �1 is a solution. The graphs of both sides of the

equation are shown in Figure 12.19(b). They show that t D �1 is the only real solution.

Calculating the corresponding values of X and Z, we obtain .1; 0; 1/ as a candidate

for Q. The distance from this point to P is
p

5.

CASE II If t D �1=2, then X D 3=2, Z D 1=2, and Y D ˙
p

X2
�Z D ˙

p

7=2,

and the distance from these points to P is
p

17=2.

Since 17
4
< 5, the points .3=2;˙

p

7=2; 1=2/ are the points on z D x2
�y2 closest

to .3; 0; 0/, and the distance from .3; 0; 0/ to the surface is
p

17=2 units.

E X E R C I S E S 12.3

In Exercises 1–10, find all the first partial derivatives of the

function specified, and evaluate them at the given point.

1. f .x; y/ D x � y C 2; .3; 2/

2. f .x; y/ D xy C x2
; .2; 0/

3. f .x; y; z/ D x3
y

4
z

5
; .0;�1;�1/

4. g.x; y; z/ D
xz

y C z
; .1; 1; 1/

5. z D tan�1
�

y

x

�

; .�1; 1/

6. w D ln.1C exyz
/; .2; 0;�1/

7. f .x; y/ D sin.x
p

y/;

�

�

3
; 4

�

8. f .x; y/ D
1

p

x2
C y2

; .�3; 4/

9. w D x.y ln z/
; .e; 2; e/

10. g.x1; x2; x3; x4/ D
x1 � x

2
2

x3 C x
2
4

; .3; 1;�1;�2/

In Exercises 11–12, calculate the first partial derivatives of the

given functions at .0; 0/. You will have to use Definition 4.

11. f .x; y/ D

8

<

:

2x
3
� y

3

x2
C 3y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

12. f .x; y/ D

8

<

:

x2
� 2y2

x � y
; if x ¤ y

0; if x D y.

In Exercises 13–22, find equations of the tangent plane and normal

line to the graph of the given function at the point with specified

values of x and y.

13. f .x; y/ D x2
� y

2 at .�2; 1/

14. f .x; y/ D
x � y

x C y
at .1; 1/

15. f .x; y/ D cos.x=y/ at .�; 4/

16. f .x; y/ D exy at .2; 0/

17. f .x; y/ D
x

x2
C y2

at .1; 2/

18. f .x; y/ D y e�x2

at .0; 1/

19. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

20. f .x; y/ D
2xy

x2
C y2

at .0; 2/

21. f .x; y/ D tan�1
.y=x/ at .1;�1/

22. f .x; y/ D
p

1C x3y2 at .2; 1/

23. Find the coordinates of all points on the surface with equation

z D x4
� 4xy3

C 6y2
� 2 where the surface has a horizontal

tangent plane.

24. Find all horizontal planes that are tangent to the surface with

equation z D xye�.x2Cy2/=2. At what points are they

tangent?

In Exercises 25–31, show that the given function satisfies the given

partial differential equation.

25.P z D x e
y
; x

@z

@x
D

@z

@y

26.P z D
x C y

x � y
; x

@z

@x
C y

@z

@y
D 0

27.P z D

p

x2
C y2; x

@z

@x
C y

@z

@y
D z

28.P w D x
2
C yz; x

@w

@x
C y

@w

@y
C z

@w

@z
D 2w

29.P w D
1

x2
C y2

C z2
; x

@w

@x
C y

@w

@y
C z

@w

@z
D �2w

30.P z D f .x2
C y2/, where f is any differentiable function of

one variable,

y
@z

@x
� x

@z

@y
D 0:

31.P z D f .x2
� y2/, where f is any differentiable function of

one variable,

y
@z

@x
C x

@z

@y
D 0:
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32. Give a formal definition of the three first partial derivatives of

the function f .x; y; z/.

33. What is an equation of the “tangent hyperplane” to the graph

w D f .x; y; z/ at
�

a; b; c; f .a; b; c/

�

?

34.I Find the distance from the point .1; 1; 0/ to the circular

paraboloid with equation z D x2
C y2.

35.I Find the distance from the point .0; 0; 1/ to the elliptic

paraboloid having equation z D x2
C 2y2.

36.I Let f .x; y/ D

8

<

:

2xy

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Note that f is not continuous at .0; 0/. (See Example 3 of

Section 12.2.) Therefore, its graph is not smooth there. Show,

however, that f1.0; 0/ and f2.0; 0/ both exist. Hence, the

existence of partial derivatives does not imply that a function

of several variables is continuous. This is in contrast to the

single-variable case.

37. Determine f1.0; 0/ and f2.0; 0/ if they exist, where

f .x; y/ D

8

<

:

.x3
C y/ sin

1

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

38. Calculate f1.x; y/ for the function in Exercise 37. Is f1.x; y/

continuous at .0; 0/?

39.I Let f .x; y/ D

8

<

:

x3
� y3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Calculate f1.x; y/ and f2.x; y/ at all points .x; y/ in the

plane. Is f continuous at .0; 0/? Are f1 and f2 continuous at

.0; 0/?

40.I Let f .x; y; z/ D

8

<

:

xy2z

x4
C y4

C z4
; if .x; y; z/ ¤ .0; 0; 0/

0; if .x; y; z/ D .0; 0; 0/.

Find f1.0; 0; 0/, f2.0; 0; 0/, and f3.0; 0; 0/. Is f continuous

at .0; 0; 0/? Are f1, f2, and f3 continuous at .0; 0; 0/?

12.4 Higher-Order Derivatives

Partial derivatives of second and higher orders are calculated by taking partial deriva-

tives of already calculated partial derivatives. The order in which the differentiations

are performed is indicated in the notations used. If z D f .x; y/, we can calculate four

partial derivatives of second order, namely, two pure second partial derivatives with

respect to x or y,

@2z

@x2
D

@

@x

@z

@x
D f11.x; y/ D fxx.x; y/;

@2z

@y2
D

@

@y

@z

@y
D f22.x; y/ D fyy.x; y/;

and two mixed second partial derivatives with respect to x and y,

@2z

@x@y
D

@

@x

@z

@y
D f21.x; y/ D fyx.x; y/;

@2z

@y@x
D

@

@y

@z

@x
D f12.x; y/ D fxy.x; y/:

Again, we remark that the notations f11, f12, f21, and f22 are usually preferable

to fxx , fxy , fyx, and fyy , although the latter are often used in partial differential

equations. Note that f12 indicates differentiation of f first with respect to its first

variable and then with respect to its second variable; f21 indicates the opposite order

of differentiation. The subscript closest to f indicates which differentiation occurs

first.

Similarly, if w D f .x; y; z/, then

@5w

@y@x@y2@z
D

@

@y

@

@x

@

@y

@

@y

@w

@z
D f32212.x; y; z/ D fzyyxy.x; y; z/:
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But Z D X2
� Y 2, so we must have

�t D
9

.1 � 2t/2
:

This is a cubic equation in t , so we might expect to have to solve it numerically, for

instance, by using Newton’s Method. However, if we try small integer values of t ,

we will quickly discover that t D �1 is a solution. The graphs of both sides of the

equation are shown in Figure 12.19(b). They show that t D �1 is the only real solution.

Calculating the corresponding values of X and Z, we obtain .1; 0; 1/ as a candidate

for Q. The distance from this point to P is
p

5.

CASE II If t D �1=2, then X D 3=2, Z D 1=2, and Y D ˙
p

X2
�Z D ˙

p

7=2,

and the distance from these points to P is
p

17=2.

Since 17
4
< 5, the points .3=2;˙

p

7=2; 1=2/ are the points on z D x2
�y2 closest

to .3; 0; 0/, and the distance from .3; 0; 0/ to the surface is
p

17=2 units.

E X E R C I S E S 12.3

In Exercises 1–10, find all the first partial derivatives of the

function specified, and evaluate them at the given point.

1. f .x; y/ D x � y C 2; .3; 2/

2. f .x; y/ D xy C x2
; .2; 0/

3. f .x; y; z/ D x3
y

4
z

5
; .0;�1;�1/

4. g.x; y; z/ D
xz

y C z
; .1; 1; 1/

5. z D tan�1
�

y

x

�

; .�1; 1/

6. w D ln.1C exyz
/; .2; 0;�1/

7. f .x; y/ D sin.x
p

y/;

�

�

3
; 4

�

8. f .x; y/ D
1

p

x2
C y2

; .�3; 4/

9. w D x.y ln z/
; .e; 2; e/

10. g.x1; x2; x3; x4/ D
x1 � x

2
2

x3 C x
2
4

; .3; 1;�1;�2/

In Exercises 11–12, calculate the first partial derivatives of the

given functions at .0; 0/. You will have to use Definition 4.

11. f .x; y/ D

8

<

:

2x
3
� y

3

x2
C 3y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

12. f .x; y/ D

8

<

:

x2
� 2y2

x � y
; if x ¤ y

0; if x D y.

In Exercises 13–22, find equations of the tangent plane and normal

line to the graph of the given function at the point with specified

values of x and y.

13. f .x; y/ D x2
� y

2 at .�2; 1/

14. f .x; y/ D
x � y

x C y
at .1; 1/

15. f .x; y/ D cos.x=y/ at .�; 4/

16. f .x; y/ D exy at .2; 0/

17. f .x; y/ D
x

x2
C y2

at .1; 2/

18. f .x; y/ D y e�x2

at .0; 1/

19. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

20. f .x; y/ D
2xy

x2
C y2

at .0; 2/

21. f .x; y/ D tan�1
.y=x/ at .1;�1/

22. f .x; y/ D
p

1C x3y2 at .2; 1/

23. Find the coordinates of all points on the surface with equation

z D x4
� 4xy3

C 6y2
� 2 where the surface has a horizontal

tangent plane.

24. Find all horizontal planes that are tangent to the surface with

equation z D xye�.x2Cy2/=2. At what points are they

tangent?

In Exercises 25–31, show that the given function satisfies the given

partial differential equation.

25.P z D x e
y
; x

@z

@x
D

@z

@y

26.P z D
x C y

x � y
; x

@z

@x
C y

@z

@y
D 0

27.P z D

p

x2
C y2; x

@z

@x
C y

@z

@y
D z

28.P w D x
2
C yz; x

@w

@x
C y

@w

@y
C z

@w

@z
D 2w

29.P w D
1

x2
C y2

C z2
; x

@w

@x
C y

@w

@y
C z

@w

@z
D �2w

30.P z D f .x2
C y2/, where f is any differentiable function of

one variable,

y
@z

@x
� x

@z

@y
D 0:

31.P z D f .x2
� y2/, where f is any differentiable function of

one variable,

y
@z

@x
C x

@z

@y
D 0:
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32. Give a formal definition of the three first partial derivatives of

the function f .x; y; z/.

33. What is an equation of the “tangent hyperplane” to the graph

w D f .x; y; z/ at
�

a; b; c; f .a; b; c/

�

?

34.I Find the distance from the point .1; 1; 0/ to the circular

paraboloid with equation z D x2
C y2.

35.I Find the distance from the point .0; 0; 1/ to the elliptic

paraboloid having equation z D x2
C 2y2.

36.I Let f .x; y/ D

8

<

:

2xy

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Note that f is not continuous at .0; 0/. (See Example 3 of

Section 12.2.) Therefore, its graph is not smooth there. Show,

however, that f1.0; 0/ and f2.0; 0/ both exist. Hence, the

existence of partial derivatives does not imply that a function

of several variables is continuous. This is in contrast to the

single-variable case.

37. Determine f1.0; 0/ and f2.0; 0/ if they exist, where

f .x; y/ D

8

<

:

.x3
C y/ sin

1

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

38. Calculate f1.x; y/ for the function in Exercise 37. Is f1.x; y/

continuous at .0; 0/?

39.I Let f .x; y/ D

8

<

:

x3
� y3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Calculate f1.x; y/ and f2.x; y/ at all points .x; y/ in the

plane. Is f continuous at .0; 0/? Are f1 and f2 continuous at

.0; 0/?

40.I Let f .x; y; z/ D

8

<

:

xy2z

x4
C y4

C z4
; if .x; y; z/ ¤ .0; 0; 0/

0; if .x; y; z/ D .0; 0; 0/.

Find f1.0; 0; 0/, f2.0; 0; 0/, and f3.0; 0; 0/. Is f continuous

at .0; 0; 0/? Are f1, f2, and f3 continuous at .0; 0; 0/?

12.4 Higher-Order Derivatives

Partial derivatives of second and higher orders are calculated by taking partial deriva-

tives of already calculated partial derivatives. The order in which the differentiations

are performed is indicated in the notations used. If z D f .x; y/, we can calculate four

partial derivatives of second order, namely, two pure second partial derivatives with

respect to x or y,

@2z

@x2
D

@

@x

@z

@x
D f11.x; y/ D fxx.x; y/;

@2z

@y2
D

@

@y

@z

@y
D f22.x; y/ D fyy.x; y/;

and two mixed second partial derivatives with respect to x and y,

@2z

@x@y
D

@

@x

@z

@y
D f21.x; y/ D fyx.x; y/;

@2z

@y@x
D

@

@y

@z

@x
D f12.x; y/ D fxy.x; y/:

Again, we remark that the notations f11, f12, f21, and f22 are usually preferable

to fxx , fxy , fyx, and fyy , although the latter are often used in partial differential

equations. Note that f12 indicates differentiation of f first with respect to its first

variable and then with respect to its second variable; f21 indicates the opposite order

of differentiation. The subscript closest to f indicates which differentiation occurs

first.

Similarly, if w D f .x; y; z/, then

@5w

@y@x@y2@z
D

@

@y

@

@x

@

@y

@

@y

@w

@z
D f32212.x; y; z/ D fzyyxy.x; y; z/:
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E X A M P L E 1
Find the four second partial derivatives of f .x; y/ D x3y4.

Solution

f1.x; y/ D 3x
2
y

4
;

f11.x; y/ D
@

@x
.3x

2
y

4
/ D 6xy

4
;

f12.x; y/ D
@

@y
.3x

2
y

4
/ D 12x

2
y

3
;

f2.x; y/ D 4x
3
y

3
;

f21.x; y/ D
@

@x
.4x

3
y

3
/ D 12x

2
y

3
;

f22.x; y/ D
@

@y
.4x

3
y

3
/ D 12x

3
y

2
:

E X A M P L E 2
Calculate f223.x; y; z/, f232.x; y; z/, and f322.x; y; z/ for the

function f .x; y; z/ D ex�2yC3z .

Solution

f223.x; y; z/ D
@

@z

@

@y

@

@y
e

x�2yC3z

D

@

@z

@

@y

�

�2e
x�2yC3z

�

D

@

@z

�

4e
x�2yC3z

�

D 12 e
x�2yC3z

;

f232.x; y; z/ D
@

@y

@

@z

@

@y
e

x�2yC3z

D

@

@y

@

@z

�

�2e
x�2yC3z

�

D

@

@y

�

�6e
x�2yC3z

�

D 12 e
x�2yC3z

;

f322.x; y; z/ D
@

@y

@

@y

@

@z
e

x�2yC3z

D

@

@y

@

@y

�

3e
x�2yC3z

�

D

@

@y

�

�6e
x�2yC3z

�

D 12 e
x�2yC3z

:

In both of the examples above observe that the mixed partial derivatives taken with

respect to the same variables but in different orders turned out to be equal. This is

not a coincidence. It will always occur for sufficiently smooth functions. In particular,

the mixed partial derivatives involved are required to be continuous. The following

theorem presents a more precise statement of this important phenomenon.

T H E O R E M

1

Equality of mixed partials

Suppose that two mixed nth-order partial derivatives of a function f involve the same

differentiations but in different orders. If those partials are continuous at a point P;

and if f and all partials of f of order less than n are continuous in a neighbourhood

of P; then the two mixed partials are equal at the point P:
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PROOF We shall prove only a representative special case, showing the equality of

f12.a; b/ and f21.a; b/ for a function f of two variables, provided f12 and f21 are

defined and f1, f2, and f are continuous throughout a disk of positive radius centred

at .a; b/, and f12 and f21 are continuous at .a; b/. Let h and k have sufficiently small

absolute values that the point .aC h; b C k/ lies in this disk. Then so do all points of

the rectangle with sides parallel to the coordinate axes and diagonally opposite corners

at .a; b/ and .aC h; b C k/. (See Figure 12.20.)

.a;b/ .aCh;b/

.a;bCk/

.aCh;bCk/

Figure 12.20 A rectangle contained in the

disk where f and certain partials are

continuous

Let Q D f .a C h; b C k/ � f .a C h; b/ � f .a; b C k/ C f .a; b/ and define

single-variable functions u.x/ and v.y/ by

u.x/ D f .x; b C k/� f .x; b/ and v.y/ D f .aC h; y/ � f .a; y/:

Evidently, Q D u.a C h/ � u.a/ and also Q D v.b C k/ � v.b/. By the (single-

variable) Mean-Value Theorem, there exists a number �1 satisfying 0 < �1 < 1 (so

that aC �1h lies between a and aC h) such that

Q D u.aCh/�u.a/ D hu
0
.aC�1h/ D h

�

f1.aC�1h; bCk/�f1.aC�1h; b/
�

:

Now we apply the Mean-Value Theorem again, this time to f1 considered as a function

of its second variable, and obtain another number �2 satisfying 0 < �2 < 1 such that

f1.aC �1h; b C k/ � f1.aC �1h; b/ D k f12.aC �1h; b C �2k/:

Thus, Q D hk f12.a C �1h; b C �2k/. Two similar applications of the Mean-Value

BEWARE! The Mean-Value

Theorem is used four times in this

proof, each time to write a

difference of the form

g.p Cm/ � g.p/ in the form

g0.c/m, where c is some number

between p and p Cm. It is

convenient to write c in the form

p C �m, where � is some number

between 0 and 1.

Theorem to Q D v.b C k/ � v.b/ lead to Q D hk f21.aC �3h; b C �4k/, where �3

and �4 are two numbers each between 0 and 1. Equating these two expressions for Q

and cancelling the common factor hk, we obtain

f12.aC �1h; b C �2k/ D f21.aC �3h; b C �4k/:

Since f12 and f21 are continuous at .a; b/, we can let h and k approach zero to obtain

f12.a; b/ D f21.a; b/, as required.

Exercise 16 below develops an example of a function for which f12 and f21 exist but

are not continuous at .0; 0/, and for which f12.0; 0/ ¤ f21.0; 0/.

M Remark Partial Derivatives in Maple When you use the Maple function diff to

calculate a derivative, you must include the name of the variable of differentiation.

For example, diff(x^2+y^3, x)gives the result 2x. It doesn’t matter that the

function being differentiated depends on more than one variable since you are telling

Maple to differentiate with respect to x. If you wanted the derivative with respect to y,

you would input diff(x^2+y^3,y)and the output would be 3y2. In this context,

there is no distinction between ordinary and partial derivatives. There is, however, a

difference when you want to apply a differential operator to a function f: If f is a

function of one variable, you can denote its derivative f 0 in Maple by D(f). For

example,

> f := x -> sin(2*x); fprime := D(f);

f WD x ! sin.2 x/

fprime WD x ! 2 cos.2 x/

The input fprime(Pi/6) will now give the output 1, as expected.

If f is a function of two (or more) variables, then D(f) no longer makes sense; do

we mean f1 or f2? We distinguish the two (or more) first partials by using subscripts

with D.
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E X A M P L E 1
Find the four second partial derivatives of f .x; y/ D x3y4.

Solution

f1.x; y/ D 3x
2
y

4
;

f11.x; y/ D
@

@x
.3x

2
y

4
/ D 6xy

4
;

f12.x; y/ D
@

@y
.3x

2
y

4
/ D 12x

2
y

3
;

f2.x; y/ D 4x
3
y

3
;

f21.x; y/ D
@

@x
.4x

3
y

3
/ D 12x

2
y

3
;

f22.x; y/ D
@

@y
.4x

3
y

3
/ D 12x

3
y

2
:

E X A M P L E 2
Calculate f223.x; y; z/, f232.x; y; z/, and f322.x; y; z/ for the

function f .x; y; z/ D ex�2yC3z .

Solution

f223.x; y; z/ D
@

@z

@

@y

@

@y
e

x�2yC3z

D

@

@z

@

@y

�

�2e
x�2yC3z

�

D

@

@z

�

4e
x�2yC3z

�

D 12 e
x�2yC3z

;

f232.x; y; z/ D
@

@y

@

@z

@

@y
e

x�2yC3z

D

@

@y

@

@z

�

�2e
x�2yC3z

�

D

@

@y

�

�6e
x�2yC3z

�

D 12 e
x�2yC3z

;

f322.x; y; z/ D
@

@y

@

@y

@

@z
e

x�2yC3z

D

@

@y

@

@y

�

3e
x�2yC3z

�

D

@

@y

�

�6e
x�2yC3z

�

D 12 e
x�2yC3z

:

In both of the examples above observe that the mixed partial derivatives taken with

respect to the same variables but in different orders turned out to be equal. This is

not a coincidence. It will always occur for sufficiently smooth functions. In particular,

the mixed partial derivatives involved are required to be continuous. The following

theorem presents a more precise statement of this important phenomenon.

T H E O R E M

1

Equality of mixed partials

Suppose that two mixed nth-order partial derivatives of a function f involve the same

differentiations but in different orders. If those partials are continuous at a point P;

and if f and all partials of f of order less than n are continuous in a neighbourhood

of P; then the two mixed partials are equal at the point P:
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PROOF We shall prove only a representative special case, showing the equality of

f12.a; b/ and f21.a; b/ for a function f of two variables, provided f12 and f21 are

defined and f1, f2, and f are continuous throughout a disk of positive radius centred

at .a; b/, and f12 and f21 are continuous at .a; b/. Let h and k have sufficiently small

absolute values that the point .aC h; b C k/ lies in this disk. Then so do all points of

the rectangle with sides parallel to the coordinate axes and diagonally opposite corners

at .a; b/ and .aC h; b C k/. (See Figure 12.20.)

.a;b/ .aCh;b/

.a;bCk/

.aCh;bCk/

Figure 12.20 A rectangle contained in the

disk where f and certain partials are

continuous

Let Q D f .a C h; b C k/ � f .a C h; b/ � f .a; b C k/ C f .a; b/ and define

single-variable functions u.x/ and v.y/ by

u.x/ D f .x; b C k/� f .x; b/ and v.y/ D f .aC h; y/ � f .a; y/:

Evidently, Q D u.a C h/ � u.a/ and also Q D v.b C k/ � v.b/. By the (single-

variable) Mean-Value Theorem, there exists a number �1 satisfying 0 < �1 < 1 (so

that aC �1h lies between a and aC h) such that

Q D u.aCh/�u.a/ D hu
0
.aC�1h/ D h

�

f1.aC�1h; bCk/�f1.aC�1h; b/
�

:

Now we apply the Mean-Value Theorem again, this time to f1 considered as a function

of its second variable, and obtain another number �2 satisfying 0 < �2 < 1 such that

f1.aC �1h; b C k/ � f1.aC �1h; b/ D k f12.aC �1h; b C �2k/:

Thus, Q D hk f12.a C �1h; b C �2k/. Two similar applications of the Mean-Value

BEWARE! The Mean-Value

Theorem is used four times in this

proof, each time to write a

difference of the form

g.p Cm/ � g.p/ in the form

g0.c/m, where c is some number

between p and p Cm. It is

convenient to write c in the form

p C �m, where � is some number

between 0 and 1.

Theorem to Q D v.b C k/ � v.b/ lead to Q D hk f21.aC �3h; b C �4k/, where �3

and �4 are two numbers each between 0 and 1. Equating these two expressions for Q

and cancelling the common factor hk, we obtain

f12.aC �1h; b C �2k/ D f21.aC �3h; b C �4k/:

Since f12 and f21 are continuous at .a; b/, we can let h and k approach zero to obtain

f12.a; b/ D f21.a; b/, as required.

Exercise 16 below develops an example of a function for which f12 and f21 exist but

are not continuous at .0; 0/, and for which f12.0; 0/ ¤ f21.0; 0/.

M Remark Partial Derivatives in Maple When you use the Maple function diff to

calculate a derivative, you must include the name of the variable of differentiation.

For example, diff(x^2+y^3, x)gives the result 2x. It doesn’t matter that the

function being differentiated depends on more than one variable since you are telling

Maple to differentiate with respect to x. If you wanted the derivative with respect to y,

you would input diff(x^2+y^3,y)and the output would be 3y2. In this context,

there is no distinction between ordinary and partial derivatives. There is, however, a

difference when you want to apply a differential operator to a function f: If f is a

function of one variable, you can denote its derivative f 0 in Maple by D(f). For

example,

> f := x -> sin(2*x); fprime := D(f);

f WD x ! sin.2 x/

fprime WD x ! 2 cos.2 x/

The input fprime(Pi/6) will now give the output 1, as expected.

If f is a function of two (or more) variables, then D(f) no longer makes sense; do

we mean f1 or f2? We distinguish the two (or more) first partials by using subscripts

with D.
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> f := (x,y) -> exp(3*y)*sin(2*x);

f WD .x; y/! e.3y/
� sin.2 x/

> fone := D[1](f); ftwo := D[2](f);

fone WD .x; y/! 2e.3y/
� cos.2 x/

f two WD .x; y/! 3e.3y/
� sin.2 x/

Higher-order partials are denoted with multiple subscripts (within one set of square

brackets).

> D[1,1,2](f)(Pi/4, 0);

�12

You don’t need to worry about the order of the subscripts in a mixed partial. Maple

assumes the partials are continuous, even if it doesn’t know what the function is. Even

if g has not been assigned any meaning during the current Maple session, the input

D[1,2](g)(x,y)-D[2,1](g)(x,y); produces the output 0.

The Laplace and Wave Equations
Many important and interesting phenomena are modelled by functions of several vari-

ables that satisfy certain partial differential equations. In the following examples we

encounter two particular partial differential equations that arise frequently in mathe-

matics and the physical sciences. Exercises 17–19 below introduce another such equa-

tion with important applications.

E X A M P L E 3
Show that for any real number k the functions

z D e
kx cos.ky/ and z D e

kx sin.ky/

satisfy the partial differential equation

@
2
z

@x2
C

@
2
z

@y2
D 0

at every point in the xy-plane.

Solution For z D ekx cos.ky/ we have

@z

@x
D k e

kx cos.ky/;

@2z

@x2
D k

2
e

kx cos.ky/;

@z

@y
D �k e

kx sin.ky/;

@2z

@y2
D �k

2
e

kx cos.ky/:

Thus,

@2z

@x2
C

@2z

@y2
D k

2
e

kx cos.ky/ � k2
e

kx cos.ky/ D 0:

The calculation for z D ekx sin.ky/ is similar.

Remark The partial differential equation in the above example is called the (two-

dimensional) Laplace equation. A function of two variables having continuous sec-

ond partial derivatives in a region of the plane is said to be harmonic there if it satisfies

Laplace’s equation. Such functions play a critical role in the theory of differentiable

functions of a complex variable (see Appendix II) and are used to model various phys-

ical quantities such as steady-state temperature distributions, fluid flows, and electric

and magnetic potential fields. Harmonic functions have many interesting properties.
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They have derivatives of all orders, and they are analytic; that is, they are the sums of

their (multivariable) Taylor series. Moreover, a harmonic function can achieve max-

imum and minimum values only on the boundary of its domain. Laplace’s equation,

and therefore harmonic functions, can be considered in any number of dimensions.

(See Exercises 13 and 14 below.)

E X A M P L E 4
If f and g are any twice-differentiable functions of one variable,

show that

w D f .x � ct/C g.x C ct/

satisfies the partial differential equation

@
2
w

@t2
D c

2 @
2
w

@x2
:

Solution Using the Chain Rule for functions of one variable, we obtain

@w

@t
D �c f

0
.x � ct/C c g

0
.x C ct/;

@2w

@t2
D c

2
f

00
.x � ct/C c

2
g

00
.x C ct/;

@w

@x
D f

0
.x � ct/C g

0
.x C ct/;

@2w

@x2
D f

00
.x � ct/C g

00
.x C ct/:

Thus, w satisfies the given differential equation.

Remark The partial differential equation in the above example is called the (one-

dimensional) wave equation. If t measures time, then f .x � ct/ represents a wave-

form travelling to the right along the x-axis with speed c. (See Figure 12.21.) Simi-

larly, g.x C ct/ represents a waveform travelling to the left with speed c. Unlike the

solutions of Laplace’s equation that must be infinitely differentiable, solutions of the

wave equation need only have enough derivatives to satisfy the differential equation.

The functions f and g are otherwise arbitrary.

Figure 12.21 w D f .x � ct/ represents a

waveform moving to the right with speed c

w

x

x

x

time t D 0

w D f .x/

time t D 1

w D f .x � c/

time t D 2

w D f .x � 2c/

c

2c
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> f := (x,y) -> exp(3*y)*sin(2*x);

f WD .x; y/! e.3y/
� sin.2 x/

> fone := D[1](f); ftwo := D[2](f);

fone WD .x; y/! 2e.3y/
� cos.2 x/

f two WD .x; y/! 3e.3y/
� sin.2 x/

Higher-order partials are denoted with multiple subscripts (within one set of square

brackets).

> D[1,1,2](f)(Pi/4, 0);

�12

You don’t need to worry about the order of the subscripts in a mixed partial. Maple

assumes the partials are continuous, even if it doesn’t know what the function is. Even

if g has not been assigned any meaning during the current Maple session, the input

D[1,2](g)(x,y)-D[2,1](g)(x,y); produces the output 0.

The Laplace and Wave Equations
Many important and interesting phenomena are modelled by functions of several vari-

ables that satisfy certain partial differential equations. In the following examples we

encounter two particular partial differential equations that arise frequently in mathe-

matics and the physical sciences. Exercises 17–19 below introduce another such equa-

tion with important applications.

E X A M P L E 3
Show that for any real number k the functions

z D e
kx cos.ky/ and z D e

kx sin.ky/

satisfy the partial differential equation

@
2
z

@x2
C

@
2
z

@y2
D 0

at every point in the xy-plane.

Solution For z D ekx cos.ky/ we have

@z

@x
D k e

kx cos.ky/;

@2z

@x2
D k

2
e

kx cos.ky/;

@z

@y
D �k e

kx sin.ky/;

@2z

@y2
D �k

2
e

kx cos.ky/:

Thus,

@2z

@x2
C

@2z

@y2
D k

2
e

kx cos.ky/ � k2
e

kx cos.ky/ D 0:

The calculation for z D ekx sin.ky/ is similar.

Remark The partial differential equation in the above example is called the (two-

dimensional) Laplace equation. A function of two variables having continuous sec-

ond partial derivatives in a region of the plane is said to be harmonic there if it satisfies

Laplace’s equation. Such functions play a critical role in the theory of differentiable

functions of a complex variable (see Appendix II) and are used to model various phys-

ical quantities such as steady-state temperature distributions, fluid flows, and electric

and magnetic potential fields. Harmonic functions have many interesting properties.
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They have derivatives of all orders, and they are analytic; that is, they are the sums of

their (multivariable) Taylor series. Moreover, a harmonic function can achieve max-

imum and minimum values only on the boundary of its domain. Laplace’s equation,

and therefore harmonic functions, can be considered in any number of dimensions.

(See Exercises 13 and 14 below.)

E X A M P L E 4
If f and g are any twice-differentiable functions of one variable,

show that

w D f .x � ct/C g.x C ct/

satisfies the partial differential equation

@
2
w

@t2
D c

2 @
2
w

@x2
:

Solution Using the Chain Rule for functions of one variable, we obtain

@w

@t
D �c f

0
.x � ct/C c g

0
.x C ct/;

@2w

@t2
D c

2
f

00
.x � ct/C c

2
g

00
.x C ct/;

@w

@x
D f

0
.x � ct/C g

0
.x C ct/;

@2w

@x2
D f

00
.x � ct/C g

00
.x C ct/:

Thus, w satisfies the given differential equation.

Remark The partial differential equation in the above example is called the (one-

dimensional) wave equation. If t measures time, then f .x � ct/ represents a wave-

form travelling to the right along the x-axis with speed c. (See Figure 12.21.) Simi-

larly, g.x C ct/ represents a waveform travelling to the left with speed c. Unlike the

solutions of Laplace’s equation that must be infinitely differentiable, solutions of the

wave equation need only have enough derivatives to satisfy the differential equation.

The functions f and g are otherwise arbitrary.

Figure 12.21 w D f .x � ct/ represents a

waveform moving to the right with speed c

w

x

x

x

time t D 0

w D f .x/

time t D 1

w D f .x � c/

time t D 2

w D f .x � 2c/

c

2c
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E X E R C I S E S 12.4

In Exercises 1–6, find all the second partial derivatives of the given

function.

1. z D x2
.1C y

2
/ 2. f .x; y/ D x2

C y
2

3. w D x3
y

3
z

3 4. z D
p

3x2
C y2

5. z D x ey
� y e

x

6. f .x; y/ D ln
�

1C sin.xy/
�

7. How many mixed partial derivatives of order 3 can a function

of three variables have? If they are all continuous, how many

different values can they have at one point? Find the mixed

partials of order 3 for f .x; y; z/ D x exy cos.xz/ that involve

two differentiations with respect to z and one with respect

to x.

Show that the functions in Exercises 8–12 are harmonic in the

plane regions indicated.

8. f .x; y/ D A.x2
� y2/C Bxy in the whole plane (A and B

are constants.)

9. f .x; y/ D 3x2y � y3 in the whole plane (Can you think of

another polynomial of degree 3 in x and y that is also

harmonic?)

10. f .x; y/ D
x

x2
C y2

everywhere except at the origin

11. f .x; y/ D ln.x2
C y2/ everywhere except at the origin

12. tan�1.y=x/ except at points on the y-axis

13.P Show that w D e3xC4y sin.5z/ is harmonic in all of R
3
, that

is, it satisfies everywhere the 3-dimensional Laplace equation

@2w

@x2
C

@2w

@y2
C

@2w

@z2
D 0:

14.P Assume that f .x; y/ is harmonic in the xy-plane. Show that

each of the functions z f .x; y/, x f .y; z/, and y f .z; x/ is

harmonic in the whole of R
3
. What condition should the

constants a, b, and c satisfy to ensure that f .ax C by; cz/ is

harmonic in R
3
?

15.P Let the functions u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann

equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Show that u and v are both harmonic.

16.I Let F.x; y/ D

8

<

:

2xy.x2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/

Calculate F1.x; y/, F2.x; y/, F12.x; y/, and F21.x; y/ at

points .x; y/ ¤ .0; 0/. Also calculate these derivatives at

.0; 0/. Observe that F21.0; 0/ D 2 and F12.0; 0/ D �2. Does

this result contradict Theorem 1? Explain why.

The heat (diffusion) equation

17.P Show that the function u.x; t/ D t�1=2
e

�x2=4t satisfies the

partial differential equation

@u

@t
D

@2u

@x2
:

This equation is called the one-dimensional heat equation

because it models heat diffusion in an insulated rod (with

u.x; t/ representing the temperature at position x at time t )

and other similar phenomena.

18.P Show that the function u.x; y; t/ D t�1
e

�.x2Cy2/=4t satisfies

the two-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
:

19.P By comparing the results of Exercises 17 and 18, guess a

solution to the three-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

Verify your guess. (If you’re feeling lazy, use Maple.)

Biharmonic functions

A function u.x; y/ with continuous partials of fourth order is

biharmonic if
@2u

@x2
C

@2u

@y2
is a harmonic function.

20.P Show that u.x; y/ is biharmonic if and only if it satisfies the

biharmonic equation

@4u

@x4
C 2

@4u

@x2@y2
C

@4u

@y4
D 0

21. Verify that u.x; y/ D x4
� 3x2y2 is biharmonic.

22. Show that if u.x; y/ is harmonic, then v.x; y/ D xu.x; y/

and w.x; y/ D yu.x; y/ are biharmonic.

Use the result of Exercise 22 to show that the functions in

Exercises 23–25 are biharmonic.

23. x ex siny 24. y ln.x2
C y

2
/

25.
xy

x2
C y2

26.P Propose a definition of a biharmonic function of three

variables, and prove results analogous to those of Exercises 20

and 22 for biharmonic functions u.x; y; z/.

M 27. Use Maple to verify directly that the function of Exercise 25 is

biharmonic.
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12.5 The Chain Rule
The Chain Rule for functions of one variable is a formula that gives the derivative of a

composition f
�

g.x/
�

of two functions f and g:

d

dx
f
�

g.x/
�

D f
0�
g.x/

�

g
0
.x/:

The situation for several variables is more complicated. If f depends on more than

one variable, and any of those variables can be functions of one or more other vari-

ables, we cannot expect a simple formula for partial derivatives of the composition to

cover all possible cases. We must come to think of the Chain Rule as a procedure for

differentiating compositions rather than as a formula for their derivatives. In order to

motivate a formulation of the Chain Rule for functions of two variables, we begin with

a concrete example.

E X A M P L E 1
Suppose you are hiking in a mountainous region for which you

have a map. Let .x; y/ be the coordinates of your position on

the map (i.e., the horizontal coordinates of your actual position in the region). Let

z D f .x; y/ denote the height of land (above sea level, say) at position .x; y/. Suppose

you are walking along a trail so that your position at time t is given by x D u.t/ and

y D v.t/. (These are parametric equations of the trail on the map.) At time t your

altitude above sea level is given by the composite function

z D f
�

u.t/; v.t/
�

D g.t/;

a function of only one variable. How fast is your altitude changing with respect to time

at time t?

Solution The answer is the derivative of g.t/:

g
0
.t/ D lim

h!0

g.t C h/ � g.t/

h
D lim

h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t/
�

h

D lim
h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t C h/
�

h

C lim
h!0

f
�

u.t/; v.t C h/
�

� f
�

u.t/; v.t/
�

h
:

We added 0 to the numerator of the Newton quotient in a creative way so as to separate

the quotient into the sum of two quotients, in the first of which the difference of values

of f involves only the first variable of f; and in the second of which the difference

involves only the second variable of f: The single-variable Chain Rule suggests that

the sum of the two limits above is

g
0
.t/ D f1

�

u.t/; v.t/
�

u
0
.t/C f2

�

u.t/; v.t/
�

v
0
.t/:

The above formula is the Chain Rule for
d

dt
f
�

u.t/; v.t/
�

. In terms of Leibniz notation

we have

A version of the Chain Rule

If z is a function of x and y with continuous first partial derivatives, and if x

and y are differentiable functions of t , then

dz

dt
D

@z

@x

dx

dt
C

@z

@y

dy

dt
:
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E X E R C I S E S 12.4

In Exercises 1–6, find all the second partial derivatives of the given

function.

1. z D x2
.1C y

2
/ 2. f .x; y/ D x2

C y
2

3. w D x3
y

3
z

3 4. z D
p

3x2
C y2

5. z D x ey
� y e

x

6. f .x; y/ D ln
�

1C sin.xy/
�

7. How many mixed partial derivatives of order 3 can a function

of three variables have? If they are all continuous, how many

different values can they have at one point? Find the mixed

partials of order 3 for f .x; y; z/ D x exy cos.xz/ that involve

two differentiations with respect to z and one with respect

to x.

Show that the functions in Exercises 8–12 are harmonic in the

plane regions indicated.

8. f .x; y/ D A.x2
� y2/C Bxy in the whole plane (A and B

are constants.)

9. f .x; y/ D 3x2y � y3 in the whole plane (Can you think of

another polynomial of degree 3 in x and y that is also

harmonic?)

10. f .x; y/ D
x

x2
C y2

everywhere except at the origin

11. f .x; y/ D ln.x2
C y2/ everywhere except at the origin

12. tan�1.y=x/ except at points on the y-axis

13.P Show that w D e3xC4y sin.5z/ is harmonic in all of R
3
, that

is, it satisfies everywhere the 3-dimensional Laplace equation

@2w

@x2
C

@2w

@y2
C

@2w

@z2
D 0:

14.P Assume that f .x; y/ is harmonic in the xy-plane. Show that

each of the functions z f .x; y/, x f .y; z/, and y f .z; x/ is

harmonic in the whole of R
3
. What condition should the

constants a, b, and c satisfy to ensure that f .ax C by; cz/ is

harmonic in R
3
?

15.P Let the functions u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann

equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Show that u and v are both harmonic.

16.I Let F.x; y/ D

8

<

:

2xy.x2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/

Calculate F1.x; y/, F2.x; y/, F12.x; y/, and F21.x; y/ at

points .x; y/ ¤ .0; 0/. Also calculate these derivatives at

.0; 0/. Observe that F21.0; 0/ D 2 and F12.0; 0/ D �2. Does

this result contradict Theorem 1? Explain why.

The heat (diffusion) equation

17.P Show that the function u.x; t/ D t�1=2
e

�x2=4t satisfies the

partial differential equation

@u

@t
D

@2u

@x2
:

This equation is called the one-dimensional heat equation

because it models heat diffusion in an insulated rod (with

u.x; t/ representing the temperature at position x at time t )

and other similar phenomena.

18.P Show that the function u.x; y; t/ D t�1
e

�.x2Cy2/=4t satisfies

the two-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
:

19.P By comparing the results of Exercises 17 and 18, guess a

solution to the three-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

Verify your guess. (If you’re feeling lazy, use Maple.)

Biharmonic functions

A function u.x; y/ with continuous partials of fourth order is

biharmonic if
@2u

@x2
C

@2u

@y2
is a harmonic function.

20.P Show that u.x; y/ is biharmonic if and only if it satisfies the

biharmonic equation

@4u

@x4
C 2

@4u

@x2@y2
C

@4u

@y4
D 0

21. Verify that u.x; y/ D x4
� 3x2y2 is biharmonic.

22. Show that if u.x; y/ is harmonic, then v.x; y/ D xu.x; y/

and w.x; y/ D yu.x; y/ are biharmonic.

Use the result of Exercise 22 to show that the functions in

Exercises 23–25 are biharmonic.

23. x ex siny 24. y ln.x2
C y

2
/

25.
xy

x2
C y2

26.P Propose a definition of a biharmonic function of three

variables, and prove results analogous to those of Exercises 20

and 22 for biharmonic functions u.x; y; z/.

M 27. Use Maple to verify directly that the function of Exercise 25 is

biharmonic.
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12.5 The Chain Rule
The Chain Rule for functions of one variable is a formula that gives the derivative of a

composition f
�

g.x/
�

of two functions f and g:

d

dx
f
�

g.x/
�

D f
0�
g.x/

�

g
0
.x/:

The situation for several variables is more complicated. If f depends on more than

one variable, and any of those variables can be functions of one or more other vari-

ables, we cannot expect a simple formula for partial derivatives of the composition to

cover all possible cases. We must come to think of the Chain Rule as a procedure for

differentiating compositions rather than as a formula for their derivatives. In order to

motivate a formulation of the Chain Rule for functions of two variables, we begin with

a concrete example.

E X A M P L E 1
Suppose you are hiking in a mountainous region for which you

have a map. Let .x; y/ be the coordinates of your position on

the map (i.e., the horizontal coordinates of your actual position in the region). Let

z D f .x; y/ denote the height of land (above sea level, say) at position .x; y/. Suppose

you are walking along a trail so that your position at time t is given by x D u.t/ and

y D v.t/. (These are parametric equations of the trail on the map.) At time t your

altitude above sea level is given by the composite function

z D f
�

u.t/; v.t/
�

D g.t/;

a function of only one variable. How fast is your altitude changing with respect to time

at time t?

Solution The answer is the derivative of g.t/:

g
0
.t/ D lim

h!0

g.t C h/ � g.t/

h
D lim

h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t/
�

h

D lim
h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t C h/
�

h

C lim
h!0

f
�

u.t/; v.t C h/
�

� f
�

u.t/; v.t/
�

h
:

We added 0 to the numerator of the Newton quotient in a creative way so as to separate

the quotient into the sum of two quotients, in the first of which the difference of values

of f involves only the first variable of f; and in the second of which the difference

involves only the second variable of f: The single-variable Chain Rule suggests that

the sum of the two limits above is

g
0
.t/ D f1

�

u.t/; v.t/
�

u
0
.t/C f2

�

u.t/; v.t/
�

v
0
.t/:

The above formula is the Chain Rule for
d

dt
f
�

u.t/; v.t/
�

. In terms of Leibniz notation

we have

A version of the Chain Rule

If z is a function of x and y with continuous first partial derivatives, and if x

and y are differentiable functions of t , then

dz

dt
D

@z

@x

dx

dt
C

@z

@y

dy

dt
:
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Note that there are two terms in the expression for dz=dt (or g0.t/), one arising from

each variable of f that depends on t .

Now consider a function f of two variables, x and y, each of which is in turn a

function of two other variables, s and t :

z D f .x; y/; where x D u.s; t/ and y D v.s; t/:

We can form the composite function

z D f
�

u.s; t/; v.s; t/
�

D g.s; t/:

For instance, if f .x; y/ D x2
C 3y, where u.s; t/ D st2 and v.s; t/ D s � t , then

g.s; t/ D s2t4 C 3.s � t/.

Let us assume that f; u, and v have first partial derivatives with respect to their

respective variables and that those of f are continuous. Then g has first partial deriva-

tives given by

g1.s; t/ D f1

�

u.s; t/; v.s; t/
�

u1.s; t/C f2

�

u.s; t/; v.s; t/
�

v1.s; t/;

g2.s; t/ D f1

�

u.s; t/; v.s; t/
�

u2.s; t/C f2

�

u.s; t/; v.s; t/
�

v2.s; t/:

These formulas can be expressed more simply using Leibniz notation:

Another version of the Chain Rule

If z is a function of x and y with continuous first partial derivatives, and if x

and y depend on s and t , then

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s
;

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t
:

This can be deduced from the version obtained in Example 1 by allowing u and v there

to depend on two variables, but holding one of them fixed while we differentiate with

respect to the other. A more formal proof of this simple but representative case of the

Chain Rule will be given in the next section.

The two equations in the box above can be combined into a single matrix equation:

�

@z

@s

@z

@t

�

D

�

@z

@x

@z

@y

�

0

B

B

@

@x

@s

@x

@t

@y

@s

@y

@t

1

C

C

A

:

We will comment on the significance of this matrix form at the end of the next section.

In general, if z is a function of several “primary” variables, and each of these

depends on some “secondary” variables, then the partial derivative of z with respect

to one of the secondary variables will have several terms, one for the contribution to

the derivative arising from each of the primary variables on which z depends.

Remark Note the significance of the various subscripts denoting partial derivatives

in the functional form of the Chain Rule:

g1.s; t/ D f1

�

u.s; t/; v.s; t/
�

u1.s; t/C f2

�

u.s; t/; v.s; t/
�

v1.s; t/:

The “1” in g1.s; t/ refers to differentiation with respect to s, the first variable on which

g depends. By contrast, the “1” in f1.u.s; t/; v.s; t// refers to differentiation with

respect to x, the first variable on which f depends. (This derivative is then evaluated

at x D u.s; t/; y D v.s; t/.)

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 705 October 17, 2016

SECTION 12.5: The Chain Rule 705

E X A M P L E 2 If z D sin.x2y/, where x D st2 and y D s2
C

1

t
, find @z=@s and

@z=@t

(a) by direct substitution and the single-variable form of the Chain Rule, and

(b) by using the (two-variable) Chain Rule.

Solution

(a) By direct substitution:

z D sin

�

.st
2
/
2
�

s
2
C

1

t

�

�

D sin.s4
t
4
C s

2
t
3
/;

@z

@s
D .4s

3
t
4
C 2st

3
/ cos.s4

t
4
C s

2
t
3
/;

@z

@t
D .4s

4
t
3
C 3s

2
t
2
/ cos.s4

t
4
C s

2
t
3
/:

(b) Using the Chain Rule:

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s

D

�

2xy cos.x2
y/
�

t
2
C

�

x
2 cos.x2

y/
�

2s

D

�

2st
2

�

s
2
C

1

t

�

t
2
C 2s

3
t
4

�

cos.s4
t
4
C s

2
t
3
/

D .4s
3
t
4
C 2st

3
/ cos.s4

t
4
C s

2
t
3
/;

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t

D

�

2xy cos.x2
y/
�

2st C
�

x
2 cos.x2

y/
�

�

�1

t2

�

D

�

2st
2
.s

2
C

1

t
/2st C s

2
t
4

�

�1

t2

��

cos.s4
t
4
C s

2
t
3
/

D .4s
4
t
3
C 3s

2
t
2
/ cos.s4

t
4
C s

2
t
3
/:

Note that we still had to use direct substitution on the derivatives obtained in (b)

in order to show that the values were the same as those obtained in (a).

E X A M P L E 3 Find
@

@x
f .x

2
y; x C 2y/ and

@

@y
f .x

2
y; x C 2y/ in terms of the

partial derivatives of f; assuming that these partial derivatives are

continuous.

Solution We have

@

@x
f .x

2
y; x C 2y/ D f1.x

2
y; x C 2y/

@

@x
.x

2
y/C f2.x

2
y; x C 2y/

@

@x
.x C 2y/

D 2xyf1.x
2
y; x C 2y/C f2.x

2
y; x C 2y/;

@

@y
f .x

2
y; x C 2y/ D f1.x

2
y; x C 2y/

@

@y
.x

2
y/C f2.x

2
y; x C 2y/

@

@y
.x C 2y/

D x
2
f1.x

2
y; x C 2y/C 2f2.x

2
y; x C 2y/:

E X A M P L E 4
Express the partial derivatives of z D h.s; t/ D f

�

g.s; t/
�

in

terms of the derivative f 0 of f and the partial derivatives of g.
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Note that there are two terms in the expression for dz=dt (or g0.t/), one arising from

each variable of f that depends on t .

Now consider a function f of two variables, x and y, each of which is in turn a

function of two other variables, s and t :

z D f .x; y/; where x D u.s; t/ and y D v.s; t/:

We can form the composite function

z D f
�

u.s; t/; v.s; t/
�

D g.s; t/:

For instance, if f .x; y/ D x2
C 3y, where u.s; t/ D st2 and v.s; t/ D s � t , then

g.s; t/ D s2t4 C 3.s � t/.

Let us assume that f; u, and v have first partial derivatives with respect to their

respective variables and that those of f are continuous. Then g has first partial deriva-

tives given by

g1.s; t/ D f1

�

u.s; t/; v.s; t/
�

u1.s; t/C f2

�

u.s; t/; v.s; t/
�

v1.s; t/;

g2.s; t/ D f1

�

u.s; t/; v.s; t/
�

u2.s; t/C f2

�

u.s; t/; v.s; t/
�

v2.s; t/:

These formulas can be expressed more simply using Leibniz notation:

Another version of the Chain Rule

If z is a function of x and y with continuous first partial derivatives, and if x

and y depend on s and t , then

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s
;

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t
:

This can be deduced from the version obtained in Example 1 by allowing u and v there

to depend on two variables, but holding one of them fixed while we differentiate with

respect to the other. A more formal proof of this simple but representative case of the

Chain Rule will be given in the next section.

The two equations in the box above can be combined into a single matrix equation:

�

@z

@s

@z

@t

�

D

�

@z

@x

@z

@y

�

0

B

B

@

@x

@s

@x

@t

@y

@s

@y

@t

1

C

C

A

:

We will comment on the significance of this matrix form at the end of the next section.

In general, if z is a function of several “primary” variables, and each of these

depends on some “secondary” variables, then the partial derivative of z with respect

to one of the secondary variables will have several terms, one for the contribution to

the derivative arising from each of the primary variables on which z depends.

Remark Note the significance of the various subscripts denoting partial derivatives

in the functional form of the Chain Rule:

g1.s; t/ D f1

�

u.s; t/; v.s; t/
�

u1.s; t/C f2

�

u.s; t/; v.s; t/
�

v1.s; t/:

The “1” in g1.s; t/ refers to differentiation with respect to s, the first variable on which

g depends. By contrast, the “1” in f1.u.s; t/; v.s; t// refers to differentiation with

respect to x, the first variable on which f depends. (This derivative is then evaluated

at x D u.s; t/; y D v.s; t/.)
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E X A M P L E 2 If z D sin.x2y/, where x D st2 and y D s2
C

1

t
, find @z=@s and

@z=@t

(a) by direct substitution and the single-variable form of the Chain Rule, and

(b) by using the (two-variable) Chain Rule.

Solution

(a) By direct substitution:

z D sin

�

.st
2
/
2
�

s
2
C

1

t

�

�

D sin.s4
t
4
C s

2
t
3
/;

@z

@s
D .4s

3
t
4
C 2st

3
/ cos.s4

t
4
C s

2
t
3
/;

@z

@t
D .4s

4
t
3
C 3s

2
t
2
/ cos.s4

t
4
C s

2
t
3
/:

(b) Using the Chain Rule:

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s

D

�

2xy cos.x2
y/
�

t
2
C

�

x
2 cos.x2

y/
�

2s

D

�

2st
2

�

s
2
C

1

t

�

t
2
C 2s

3
t
4

�

cos.s4
t
4
C s

2
t
3
/

D .4s
3
t
4
C 2st

3
/ cos.s4

t
4
C s

2
t
3
/;

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t

D

�

2xy cos.x2
y/
�

2st C
�

x
2 cos.x2

y/
�

�

�1

t2

�

D

�

2st
2
.s

2
C

1

t
/2st C s

2
t
4

�

�1

t2

��

cos.s4
t
4
C s

2
t
3
/

D .4s
4
t
3
C 3s

2
t
2
/ cos.s4

t
4
C s

2
t
3
/:

Note that we still had to use direct substitution on the derivatives obtained in (b)

in order to show that the values were the same as those obtained in (a).

E X A M P L E 3 Find
@

@x
f .x

2
y; x C 2y/ and

@

@y
f .x

2
y; x C 2y/ in terms of the

partial derivatives of f; assuming that these partial derivatives are

continuous.

Solution We have

@

@x
f .x

2
y; x C 2y/ D f1.x

2
y; x C 2y/

@

@x
.x

2
y/C f2.x

2
y; x C 2y/

@

@x
.x C 2y/

D 2xyf1.x
2
y; x C 2y/C f2.x

2
y; x C 2y/;

@

@y
f .x

2
y; x C 2y/ D f1.x

2
y; x C 2y/

@

@y
.x

2
y/C f2.x

2
y; x C 2y/

@

@y
.x C 2y/

D x
2
f1.x

2
y; x C 2y/C 2f2.x

2
y; x C 2y/:

E X A M P L E 4
Express the partial derivatives of z D h.s; t/ D f

�

g.s; t/
�

in

terms of the derivative f 0 of f and the partial derivatives of g.
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Solution The partial derivatives of h can be calculated using the single-variable ver-

sion of the Chain Rule: if x D g.s; t/, then z D f .x/ and

h1.s; t/ D
@z

@s
D

dz

dx

@x

@s
D f

0�
g.s; t/

�

g1.s; t/;

h2.s; t/ D
@z

@t
D

dz

dx

@x

@t
D f

0�
g.s; t/

�

g2.s; t/:

The following example involves a hybrid application of the Chain Rule to a function

that depends both directly and indirectly on the variable of differentiation.

E X A M P L E 5
Find dz=dt , where z D f .x; y; t/, x D g.t/, and y D h.t/.

(Assume that f; g, and h all have continuous derivatives.)

Solution Since z depends on t through each of the three variables of f; there will be

three terms in the appropriate Chain Rule:

dz

dt
D

@z

@x

dx

dt
C

@z

@y

dy

dt
C

@z

@t

D f1.x; y; t/g
0
.t/C f2.x; y; t/h

0
.t/C f3.x; y; t/:

Remark In the above example we can easily distinguish between the meanings of the

symbols dz=dt and @z=@t . If, however, we had been dealing with the situation

z D f .x; y; s; t/; where x D g.s; t/ and y D h.s; t/;

then the meaning of the symbol @z=@t would be unclear; it could refer to the simple

partial derivative of f with respect to its fourth primary variable (i.e., f4.x; y; s; t/),

or it could refer to the derivative of the composite function f .g.s; t/; h.s; t/; s; t/.

Three of the four primary variables of f depend on t and, therefore, contribute to the

rate of change of z with respect to t . The partial derivative f4.x; y; s; t/ denotes the

contribution of only one of these three variables. It is conventional to use @z=@t to

denote the whole derivative of the composite function with respect to the secondary

variable t :

@z

@t
D

@

@t
f .g.s; t/; h.s; t/; s; t/

D f1.x; y; s; t/g2.s; t/C f2.x; y; s; t/h2.s; t/C f4.x; y; s; t/:

When it is necessary, we can denote the contribution coming from the primary variable

t by

�

@z

@t

�

x;y;s

D

@

@t
f .x; y; s; t/ D f4.x; y; s; t/:

Here, the subscripts denote those primary variables of f being held fixed, that is,

whose contributions to the rate of change of z with respect to t are being ignored. Of

course, in the situation described above, .@z=@t/s means the same as @z=@t .

In applications, the variables that contribute to a particular partial derivative will

usually be clear from the context. The following example contains such an application.

This is an example of a procedure called differentiation following the motion.

E X A M P L E 6
Atmospheric temperature depends on position and time. If we de-

note position by three spatial coordinates x, y, and z (measured in

kilometres) and time by t (measured in hours), then the temperature T ıC is a function

of four variables, T .x; y; z; t/.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 707 October 17, 2016

SECTION 12.5: The Chain Rule 707

(a) If a thermometer is attached to a weather balloon that moves through the atmo-

sphere on a path with parametric equations x D f .t/, y D g.t/, and z D h.t/,

what is the rate of change at time t of the temperature T recorded by the ther-

mometer?

(b) Find the rate of change of the recorded temperature at time t D 1 if

T .x; y; z; t/ D
xy

1C z
.1C t/;

and if the balloon moves along the curve

x D t; y D 2t; z D t � t
2
:

Solution

(a) Here, the rate of change of the thermometer reading depends on the change in

position of the thermometer as well as increasing time. Thus, none of the four

variables of T can be ignored in the differentiation. The rate is given by

dT

dt
D

@T

@x

dx

dt
C

@T

@y

dy

dt
C

@T

@z

dz

dt
C

@T

@t
:

The term @T=@t refers only to the rate of change of the temperature with respect

to time at a fixed position in the atmosphere. The other three terms arise from the

motion of the balloon.

(b) The values of the three coordinates and their derivatives at t D 1 are x D 1,

y D 2, z D 0, dx=dt D 1, dy=dt D 2, and dz=dt D �1. Also, at t D 1,

@T

@x
D

y

1C z
.1C t/ D 4;

@T

@y
D

x

1C z
.1C t/ D 2;

@T

@z
D

�xy

.1C z/2
.1C t/ D �4;

@T

@t
D

xy

1C z
D 2:

Thus,

dT

dt

ˇ

ˇ

ˇ

ˇ

tD1

D .4/.1/C .2/.2/C .�4/.�1/C 2 D 14:

The recorded temperature is increasing at a rate of 14 ıC/h at time t D 1.

The discussion and examples above show that the Chain Rule for functions of several

variables can take different forms depending on the numbers of variables of the various

functions being composed. As an aid in determining the correct form of the Chain

Rule in a given situation you can construct a chart showing which variables depend

T

x y z t

t t t

Figure 12.22 Chart showing the

dependence of T on t in Example 6

on which. Figure 12.22 shows such a chart for the temperature function of Example 6.

The Chain Rule for dT=dt involves a term for every route from T to t in the chart.

The route from T through x to t produces the term
@T

@x

dx

dt
and so on.

E X A M P L E 7
Write the appropriate version of the Chain Rule for @z=@x, where

z depends on u, v, and r ; u and v depend on x, y, and r ; and r

depends on x and y.

z

u v r

x y r x y r x y

x y x y

Figure 12.23 Dependence chart for

Example 7

Solution The appropriate chart is shown in Figure 12.23. There are five routes from

z to x:

@z

@x
D

@z

@u

@u

@x
C

@z

@u

@u

@r

@r

@x
C

@z

@v

@v

@x
C

@z

@v

@v

@r

@r

@x
C

@z

@r

@r

@x
:
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Solution The partial derivatives of h can be calculated using the single-variable ver-

sion of the Chain Rule: if x D g.s; t/, then z D f .x/ and

h1.s; t/ D
@z

@s
D

dz

dx

@x

@s
D f

0�
g.s; t/

�

g1.s; t/;

h2.s; t/ D
@z

@t
D

dz

dx

@x

@t
D f

0�
g.s; t/

�

g2.s; t/:

The following example involves a hybrid application of the Chain Rule to a function

that depends both directly and indirectly on the variable of differentiation.

E X A M P L E 5
Find dz=dt , where z D f .x; y; t/, x D g.t/, and y D h.t/.

(Assume that f; g, and h all have continuous derivatives.)

Solution Since z depends on t through each of the three variables of f; there will be

three terms in the appropriate Chain Rule:

dz

dt
D

@z

@x

dx

dt
C

@z

@y

dy

dt
C

@z

@t

D f1.x; y; t/g
0
.t/C f2.x; y; t/h

0
.t/C f3.x; y; t/:

Remark In the above example we can easily distinguish between the meanings of the

symbols dz=dt and @z=@t . If, however, we had been dealing with the situation

z D f .x; y; s; t/; where x D g.s; t/ and y D h.s; t/;

then the meaning of the symbol @z=@t would be unclear; it could refer to the simple

partial derivative of f with respect to its fourth primary variable (i.e., f4.x; y; s; t/),

or it could refer to the derivative of the composite function f .g.s; t/; h.s; t/; s; t/.

Three of the four primary variables of f depend on t and, therefore, contribute to the

rate of change of z with respect to t . The partial derivative f4.x; y; s; t/ denotes the

contribution of only one of these three variables. It is conventional to use @z=@t to

denote the whole derivative of the composite function with respect to the secondary

variable t :

@z

@t
D

@

@t
f .g.s; t/; h.s; t/; s; t/

D f1.x; y; s; t/g2.s; t/C f2.x; y; s; t/h2.s; t/C f4.x; y; s; t/:

When it is necessary, we can denote the contribution coming from the primary variable

t by

�

@z

@t

�

x;y;s

D

@

@t
f .x; y; s; t/ D f4.x; y; s; t/:

Here, the subscripts denote those primary variables of f being held fixed, that is,

whose contributions to the rate of change of z with respect to t are being ignored. Of

course, in the situation described above, .@z=@t/s means the same as @z=@t .

In applications, the variables that contribute to a particular partial derivative will

usually be clear from the context. The following example contains such an application.

This is an example of a procedure called differentiation following the motion.

E X A M P L E 6
Atmospheric temperature depends on position and time. If we de-

note position by three spatial coordinates x, y, and z (measured in

kilometres) and time by t (measured in hours), then the temperature T ıC is a function

of four variables, T .x; y; z; t/.
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(a) If a thermometer is attached to a weather balloon that moves through the atmo-

sphere on a path with parametric equations x D f .t/, y D g.t/, and z D h.t/,

what is the rate of change at time t of the temperature T recorded by the ther-

mometer?

(b) Find the rate of change of the recorded temperature at time t D 1 if

T .x; y; z; t/ D
xy

1C z
.1C t/;

and if the balloon moves along the curve

x D t; y D 2t; z D t � t
2
:

Solution

(a) Here, the rate of change of the thermometer reading depends on the change in

position of the thermometer as well as increasing time. Thus, none of the four

variables of T can be ignored in the differentiation. The rate is given by

dT

dt
D

@T

@x

dx

dt
C

@T

@y

dy

dt
C

@T

@z

dz

dt
C

@T

@t
:

The term @T=@t refers only to the rate of change of the temperature with respect

to time at a fixed position in the atmosphere. The other three terms arise from the

motion of the balloon.

(b) The values of the three coordinates and their derivatives at t D 1 are x D 1,

y D 2, z D 0, dx=dt D 1, dy=dt D 2, and dz=dt D �1. Also, at t D 1,

@T

@x
D

y

1C z
.1C t/ D 4;

@T

@y
D

x

1C z
.1C t/ D 2;

@T

@z
D

�xy

.1C z/2
.1C t/ D �4;

@T

@t
D

xy

1C z
D 2:

Thus,

dT

dt

ˇ

ˇ

ˇ

ˇ

tD1

D .4/.1/C .2/.2/C .�4/.�1/C 2 D 14:

The recorded temperature is increasing at a rate of 14 ıC/h at time t D 1.

The discussion and examples above show that the Chain Rule for functions of several

variables can take different forms depending on the numbers of variables of the various

functions being composed. As an aid in determining the correct form of the Chain

Rule in a given situation you can construct a chart showing which variables depend

T

x y z t

t t t

Figure 12.22 Chart showing the

dependence of T on t in Example 6

on which. Figure 12.22 shows such a chart for the temperature function of Example 6.

The Chain Rule for dT=dt involves a term for every route from T to t in the chart.

The route from T through x to t produces the term
@T

@x

dx

dt
and so on.

E X A M P L E 7
Write the appropriate version of the Chain Rule for @z=@x, where

z depends on u, v, and r ; u and v depend on x, y, and r ; and r

depends on x and y.

z

u v r

x y r x y r x y

x y x y

Figure 12.23 Dependence chart for

Example 7

Solution The appropriate chart is shown in Figure 12.23. There are five routes from

z to x:

@z

@x
D

@z

@u

@u

@x
C

@z

@u

@u

@r

@r

@x
C

@z

@v

@v

@x
C

@z

@v

@v

@r

@r

@x
C

@z

@r

@r

@x
:
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Homogeneous Functions
A function f .x1; : : : ; xn/ is said to be positively homogeneous of degree k if, for

every point .x1; x2; : : : ; xn/ in its domain and every real number t > 0, we have

f .tx1; tx2; : : : ; txn/ D t
k
f .x1; : : : ; xn/:

For example,

f .x; y/ D x2
C xy � y2 is positively homogeneous of degree 2;

f .x; y/ D
p

x2
C y2 is positively homogeneous of degree 1;

f .x; y/ D
2xy

x2
C y2

is positively homogeneous of degree 0;

f .x; y; z/ D
x � y C 5z

yz � z2
is positively homogeneous of degree �1;

f .x; y/ D x2
C y is not positively homogeneous:

Observe that a positively homogeneous function of degree 0 remains constant along

rays from the origin. More generally, along such rays a positively homogeneous func-

tion of degree k grows or decays proportionally to the kth power of distance from the

origin.

T H E O R E M

2

Euler’s Theorem

If f .x1; : : : ; xn/ has continuous first partial derivatives and is positively homogeneous

of degree k, then

n
X

iD1

xifi .x1; : : : ; xn/ D kf .x1; : : : ; xn/:

PROOF Differentiate the equation f .tx1; tx2; : : : ; txn/ D t
k
f .x1; : : : ; xn/ with re-

spect to t to get

x1f1.tx1; : : : ; txn/C x2f2.tx1; : : : ; txn/C : : :C xnfn.tx1; : : : ; txn/

D k t
k�1

f .x1; : : : ; xn/:

Now substitute t D 1 to get the desired result.

Note that Exercises 26–29 in Section 12.3 illustrate this theorem.

Higher-Order Derivatives
Applications of the Chain Rule to higher-order derivatives can become quite compli-

cated. It is important to keep in mind at each stage which variables are independent of

one another.

E X A M P L E 8 Calculate
@2

@x@y
f .x

2
� y

2
; xy/ in terms of partial derivatives of

the function f: Assume that the second-order partials of f are

continuous.

Solution In this problem symbols for the primary variables on which f depends are
x yyx

u v

f

Figure 12.24 Chart showing the

dependence of f on x and y through the

primary variables u and v in Example 8

not stated explicitly. Let them be u and v. (See Figure 12.24.) The problem therefore

asks us to find

@2

@x@y
f .u; v/; where u D x

2
� y

2 and v D xy:
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First differentiate with respect to y:

@

@y
f .u; v/ D �2yf1.u; v/C xf2.u; v/:

Now differentiate this result with respect to x. Note that the second term on the right

is a product of two functions of x, so we need to use the Product Rule:

@2

@x@y
f .u; v/ D� 2y

�

2xf11.u; v/C yf12.u; v/

�

C f2.u; v/C x

�

2xf21.u; v/C yf22.u; v/

�

Df2.u; v/ � 4xyf11.u; v/C 2.x
2
� y

2
/f12.u; v/C xyf22.u; v/:

In the last step we have used the fact that the mixed partials of f are continuous, so we

could equate f12 and f21.

Review the above calculation very carefully and make sure you understand what is

being done at each step. Note that all the derivatives of f that appear are evaluated at

.u; v/ D .x2
� y2; xy/, not at .x; y/, because x and y are not themselves the primary

variables on which f depends.

Remark The kind of calculation done in the above example (and the following ones)

is easily carried out by a computer algebra system. In Maple:

> g := (x,y) -> f(x^2 - y^2, x*y):

simplify(D[1,2](g)(x,y));

�4yD1;1.f /.x
2
� y

2
; xy/x � 2 �D1;2.f /.x

2
� y

2
; xy/y

2

C 2D1;2.f /.x
2
� y

2
; xy/x

2

C xD2;2.f /.x
2
� y

2
; xy/y CD2.f /.x

2
� y

2
; xy/

which, on close inspection, is the same answer we calculated in the example.

E X A M P L E 9
If f .x; y/ is harmonic, show that f .x2

� y2; 2xy/ is also har-

monic.

Solution Let u D x2
� y2 and v D 2xy. If z D f .u; v/, then

@z

@x
D 2xf1.u; v/C 2yf2.u; v/;

@z

@y
D �2yf1.u; v/C 2xf2.u; v/;

@2z

@x2
D 2f1.u; v/C 2x

�

2xf11.u; v/C 2yf12.u; v/
�

C 2y
�

2xf21.u; v/C 2yf22.u; v/
�

D 2f1.u; v/C 4x
2
f11.u; v/C 8xyf12.u; v/C 4y

2
f22.u; v/;

@2z

@y2
D �2f1.u; v/ � 2y

�

�2yf11.u; v/C 2xf12.u; v/
�

C 2x
�

�2yf21.u; v/C 2xf22.u; v/
�

D �2f1.u; v/C 4y
2
f11.u; v/ � 8xyf12.u; v/C 4x

2
f22.u; v/:

Therefore,

@2z

@x2
C

@2z

@y2
D 4.x

2
C y

2
/
�

f11.u; v/C f22.u; v/
�

D 0
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Homogeneous Functions
A function f .x1; : : : ; xn/ is said to be positively homogeneous of degree k if, for

every point .x1; x2; : : : ; xn/ in its domain and every real number t > 0, we have

f .tx1; tx2; : : : ; txn/ D t
k
f .x1; : : : ; xn/:

For example,

f .x; y/ D x2
C xy � y2 is positively homogeneous of degree 2;

f .x; y/ D
p

x2
C y2 is positively homogeneous of degree 1;

f .x; y/ D
2xy

x2
C y2

is positively homogeneous of degree 0;

f .x; y; z/ D
x � y C 5z

yz � z2
is positively homogeneous of degree �1;

f .x; y/ D x2
C y is not positively homogeneous:

Observe that a positively homogeneous function of degree 0 remains constant along

rays from the origin. More generally, along such rays a positively homogeneous func-

tion of degree k grows or decays proportionally to the kth power of distance from the

origin.

T H E O R E M

2

Euler’s Theorem

If f .x1; : : : ; xn/ has continuous first partial derivatives and is positively homogeneous

of degree k, then

n
X

iD1

xifi .x1; : : : ; xn/ D kf .x1; : : : ; xn/:

PROOF Differentiate the equation f .tx1; tx2; : : : ; txn/ D t
k
f .x1; : : : ; xn/ with re-

spect to t to get

x1f1.tx1; : : : ; txn/C x2f2.tx1; : : : ; txn/C : : :C xnfn.tx1; : : : ; txn/

D k t
k�1

f .x1; : : : ; xn/:

Now substitute t D 1 to get the desired result.

Note that Exercises 26–29 in Section 12.3 illustrate this theorem.

Higher-Order Derivatives
Applications of the Chain Rule to higher-order derivatives can become quite compli-

cated. It is important to keep in mind at each stage which variables are independent of

one another.

E X A M P L E 8 Calculate
@2

@x@y
f .x

2
� y

2
; xy/ in terms of partial derivatives of

the function f: Assume that the second-order partials of f are

continuous.

Solution In this problem symbols for the primary variables on which f depends are
x yyx

u v

f

Figure 12.24 Chart showing the

dependence of f on x and y through the

primary variables u and v in Example 8

not stated explicitly. Let them be u and v. (See Figure 12.24.) The problem therefore

asks us to find

@2

@x@y
f .u; v/; where u D x

2
� y

2 and v D xy:
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First differentiate with respect to y:

@

@y
f .u; v/ D �2yf1.u; v/C xf2.u; v/:

Now differentiate this result with respect to x. Note that the second term on the right

is a product of two functions of x, so we need to use the Product Rule:

@2

@x@y
f .u; v/ D� 2y

�

2xf11.u; v/C yf12.u; v/

�

C f2.u; v/C x

�

2xf21.u; v/C yf22.u; v/

�

Df2.u; v/ � 4xyf11.u; v/C 2.x
2
� y

2
/f12.u; v/C xyf22.u; v/:

In the last step we have used the fact that the mixed partials of f are continuous, so we

could equate f12 and f21.

Review the above calculation very carefully and make sure you understand what is

being done at each step. Note that all the derivatives of f that appear are evaluated at

.u; v/ D .x2
� y2; xy/, not at .x; y/, because x and y are not themselves the primary

variables on which f depends.

Remark The kind of calculation done in the above example (and the following ones)

is easily carried out by a computer algebra system. In Maple:

> g := (x,y) -> f(x^2 - y^2, x*y):

simplify(D[1,2](g)(x,y));

�4yD1;1.f /.x
2
� y

2
; xy/x � 2 �D1;2.f /.x

2
� y

2
; xy/y

2

C 2D1;2.f /.x
2
� y

2
; xy/x

2

C xD2;2.f /.x
2
� y

2
; xy/y CD2.f /.x

2
� y

2
; xy/

which, on close inspection, is the same answer we calculated in the example.

E X A M P L E 9
If f .x; y/ is harmonic, show that f .x2

� y2; 2xy/ is also har-

monic.

Solution Let u D x2
� y2 and v D 2xy. If z D f .u; v/, then

@z

@x
D 2xf1.u; v/C 2yf2.u; v/;

@z

@y
D �2yf1.u; v/C 2xf2.u; v/;

@2z

@x2
D 2f1.u; v/C 2x

�

2xf11.u; v/C 2yf12.u; v/
�

C 2y
�

2xf21.u; v/C 2yf22.u; v/
�

D 2f1.u; v/C 4x
2
f11.u; v/C 8xyf12.u; v/C 4y

2
f22.u; v/;

@2z

@y2
D �2f1.u; v/ � 2y

�

�2yf11.u; v/C 2xf12.u; v/
�

C 2x
�

�2yf21.u; v/C 2xf22.u; v/
�

D �2f1.u; v/C 4y
2
f11.u; v/ � 8xyf12.u; v/C 4x

2
f22.u; v/:

Therefore,

@2z

@x2
C

@2z

@y2
D 4.x

2
C y

2
/
�

f11.u; v/C f22.u; v/
�

D 0
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because f is harmonic. Thus, z D f .x2
� y2; 2xy/ is a harmonic function of x

and y.

In the following example we show that the two-dimensional Laplace differential equation

(see Example 3 in Section 12.4) takes the form

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D 0

when stated for a function z expressed in terms of polar coordinates r and � .

E X A M P L E 10
(Laplace’s equation in polar coordinates) If z D f .x; y/ has

continuous partial derivatives of second order, and if x D r cos �

and y D r sin � , show that

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

Solution It is possible to do this in two different ways; we can start with either side

and use the Chain Rule to show that it is equal to the other side. Here, we will calculate

the partial derivatives with respect to r and � that appear on the left side and express

them in terms of partial derivatives with respect to x and y. The other approach,

involving expressing partial derivatives with respect to x and y in terms of partial

derivatives with respect to r and � , is a little more difficult. (See Exercise 24 at the

end of this section.) However, we would have to do it that way if we were not given the

form of the differential equation in polar coordinates and had to find it.

First, note that

@x

@r
D cos �;

@x

@�
D �r sin �;

@y

@r
D sin �;

@y

@�
D r cos �:

Thus,

BEWARE! This is a difficult but

important example. Examine each

step carefully to make sure you

understand what is being done.

@z

@r
D

@z

@x

@x

@r
C

@z

@y

@y

@r
D cos �

@z

@x
C sin �

@z

@y
:

Now differentiate with respect to r again. Remember that r and � are independent

variables, so the factors cos � and sin � can be regarded as constants. However, @z=@x

and @z=@y depend on x and y and, therefore, on r and � .

@2z

@r2
D cos �

@

@r

@z

@x
C sin �

@

@r

@z

@y

D cos �
�

cos �
@2z

@x2
C sin �

@2z

@y@x

�

C sin �
�

cos �
@2z

@x@y
C sin �

@2z

@y2

�

D cos2
�
@2z

@x2
C 2 cos � sin �

@2z

@x@y
C sin2

�
@2z

@y2
:

We have used the equality of mixed partials in the last line. Similarly,

@z

@�
D �r sin �

@z

@x
C r cos �

@z

@y
:
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When we differentiate a second time with respect to � , we can regard r as constant,

but each term above is still a product of two functions that depend on � . Thus,

@2z

@�2
D� r

�

cos �
@z

@x
C sin �

@

@�

@z

@x

�

C r

�

� sin �
@z

@y
C cos �

@

@�

@z

@y

�

D� r
@z

@r
� r sin �

�

�r sin �
@2
z

@x2
C r cos �

@
2
z

@y@x

�

C r cos �
�

�r sin �
@2z

@x@y
C r cos �

@2z

@y2

�

D� r
@z

@r
C r

2
�

sin2
�
@2z

@x2
� 2 sin � cos �

@2z

@x@y
C cos2

�
@2z

@y2

�

:

Combining these results, we obtain the desired formula:

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

E X E R C I S E S 12.5

In Exercises 1–4, write appropriate versions of the Chain Rule for

the indicated derivatives.

1. @w=@t if w D f .x; y; z/, where x D g.s; t/, y D h.s; t/, and

z D k.s; t/

2. @w=@t if w D f .x; y; z/, where x D g.s/, y D h.s; t/, and

z D k.t/

3. @z=@u if z D g.x; y/, where y D f .x/ and x D h.u; v/

4. dw=dt if w D f .x; y/, x D g.r; s/, y D h.r; t/, r D k.s; t/,

and s D m.t/

5. If w D f .x; y; z/, where x D g.y; z/ and y D h.z/, state

appropriate versions of the Chain Rule for
dw

dz
,

�

@w

@z

�

x

,

and

�

@w

@z

�

x;y

.

6. Use two different methods to calculate @u=@t if

u D
p

x2
C y2, x D est , and y D 1C s2 cos t .

7. Use two different methods to calculate @z=@x if

z D tan�1.u=v/, u D 2x C y, and v D 3x � y.

8. Use two methods to calculate dz=dt given that z D txy2,

x D t C ln.y C t2/, and y D et .

In Exercises 9–12, find the indicated derivatives, assuming that the

function f .x; y/ has continuous first partial derivatives.

9.
@

@x
f .2x; 3y/ 10.

@

@x
f .2y; 3x/

11.
@

@x
f .y

2
; x

2
/ 12.

@

@y
f

�

yf .x; t/; f .y; t/

�

13. Suppose that the temperature T in a certain liquid varies with

depth z and time t according to the formula T D e�tz. Find

the rate of change of temperature with respect to time at a

point that is moving through the liquid so that at time t its

depth is f .t/. What is this rate if f .t/ D et ? What is

happening in this case?

14. Suppose the strengthE of an electric field in space varies with

position .x; y; z/ and time t according to the formula

E D f .x; y; z; t/. Find the rate of change with respect to time

of the electric field strength measured by an instrument

moving along the helix x D sin t , y D cos t , z D t .

In Exercises 15–20, assume that f has continuous partial

derivatives of all orders.

15. If z D f .x; y/, where x D 2s C 3t and y D 3s � 2t , find

(a)
@

2
z

@s2
; .b/

@
2
z

@s@t
; and .c/

@
2
z

@t2
:

16. If f .x; y/ is harmonic, show that f

�

x

x2
C y2

;
�y

x2
C y2

�

is

also harmonic.

17. If x D t sin s and y D t cos s, find
@2

@s@t
f .x; y/.

18. Find
@3

@x@y2
f .2x C 3y; xy/ in terms of partial derivatives of

the function f:

19. Find
@2

@y@x
f .y

2
; xy;�x

2
/ in terms of partial derivatives of

the function f:

20. Find
@3

@t2@s
f .s

2
� t; s C t

2
/ in terms of partial derivatives of

the function f:

21. Suppose that u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Suppose also that f .u; v/ is a harmonic function of u and v.

Show that f
�

u.x; y/; v.x; y/

�

is a harmonic function of x

and y. Hint: u and v are harmonic functions by Exercise 15 in

Section 12.4.
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because f is harmonic. Thus, z D f .x2
� y2; 2xy/ is a harmonic function of x

and y.

In the following example we show that the two-dimensional Laplace differential equation

(see Example 3 in Section 12.4) takes the form

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D 0

when stated for a function z expressed in terms of polar coordinates r and � .

E X A M P L E 10
(Laplace’s equation in polar coordinates) If z D f .x; y/ has

continuous partial derivatives of second order, and if x D r cos �

and y D r sin � , show that

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

Solution It is possible to do this in two different ways; we can start with either side

and use the Chain Rule to show that it is equal to the other side. Here, we will calculate

the partial derivatives with respect to r and � that appear on the left side and express

them in terms of partial derivatives with respect to x and y. The other approach,

involving expressing partial derivatives with respect to x and y in terms of partial

derivatives with respect to r and � , is a little more difficult. (See Exercise 24 at the

end of this section.) However, we would have to do it that way if we were not given the

form of the differential equation in polar coordinates and had to find it.

First, note that

@x

@r
D cos �;

@x

@�
D �r sin �;

@y

@r
D sin �;

@y

@�
D r cos �:

Thus,

BEWARE! This is a difficult but

important example. Examine each

step carefully to make sure you

understand what is being done.

@z

@r
D

@z

@x

@x

@r
C

@z

@y

@y

@r
D cos �

@z

@x
C sin �

@z

@y
:

Now differentiate with respect to r again. Remember that r and � are independent

variables, so the factors cos � and sin � can be regarded as constants. However, @z=@x

and @z=@y depend on x and y and, therefore, on r and � .

@2z

@r2
D cos �

@

@r

@z

@x
C sin �

@

@r

@z

@y

D cos �
�

cos �
@2z

@x2
C sin �

@2z

@y@x

�

C sin �
�

cos �
@2z

@x@y
C sin �

@2z

@y2

�

D cos2
�
@2z

@x2
C 2 cos � sin �

@2z

@x@y
C sin2

�
@2z

@y2
:

We have used the equality of mixed partials in the last line. Similarly,

@z

@�
D �r sin �

@z

@x
C r cos �

@z

@y
:
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When we differentiate a second time with respect to � , we can regard r as constant,

but each term above is still a product of two functions that depend on � . Thus,

@2z

@�2
D� r

�

cos �
@z

@x
C sin �

@

@�

@z

@x

�

C r

�

� sin �
@z

@y
C cos �

@

@�

@z

@y

�

D� r
@z

@r
� r sin �

�

�r sin �
@

2
z

@x2
C r cos �

@
2
z

@y@x

�

C r cos �
�

�r sin �
@2z

@x@y
C r cos �

@2z

@y2

�

D� r
@z

@r
C r

2
�

sin2
�
@2z

@x2
� 2 sin � cos �

@2z

@x@y
C cos2

�
@2z

@y2

�

:

Combining these results, we obtain the desired formula:

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

E X E R C I S E S 12.5

In Exercises 1–4, write appropriate versions of the Chain Rule for

the indicated derivatives.

1. @w=@t if w D f .x; y; z/, where x D g.s; t/, y D h.s; t/, and

z D k.s; t/

2. @w=@t if w D f .x; y; z/, where x D g.s/, y D h.s; t/, and

z D k.t/

3. @z=@u if z D g.x; y/, where y D f .x/ and x D h.u; v/

4. dw=dt if w D f .x; y/, x D g.r; s/, y D h.r; t/, r D k.s; t/,

and s D m.t/

5. If w D f .x; y; z/, where x D g.y; z/ and y D h.z/, state

appropriate versions of the Chain Rule for
dw

dz
,

�

@w

@z

�

x

,

and

�

@w

@z

�

x;y

.

6. Use two different methods to calculate @u=@t if

u D
p

x2
C y2, x D est , and y D 1C s2 cos t .

7. Use two different methods to calculate @z=@x if

z D tan�1.u=v/, u D 2x C y, and v D 3x � y.

8. Use two methods to calculate dz=dt given that z D txy2,

x D t C ln.y C t2/, and y D et .

In Exercises 9–12, find the indicated derivatives, assuming that the

function f .x; y/ has continuous first partial derivatives.

9.
@

@x
f .2x; 3y/ 10.

@

@x
f .2y; 3x/

11.
@

@x
f .y

2
; x

2
/ 12.

@

@y
f

�

yf .x; t/; f .y; t/

�

13. Suppose that the temperature T in a certain liquid varies with

depth z and time t according to the formula T D e�tz. Find

the rate of change of temperature with respect to time at a

point that is moving through the liquid so that at time t its

depth is f .t/. What is this rate if f .t/ D et ? What is

happening in this case?

14. Suppose the strengthE of an electric field in space varies with

position .x; y; z/ and time t according to the formula

E D f .x; y; z; t/. Find the rate of change with respect to time

of the electric field strength measured by an instrument

moving along the helix x D sin t , y D cos t , z D t .

In Exercises 15–20, assume that f has continuous partial

derivatives of all orders.

15. If z D f .x; y/, where x D 2s C 3t and y D 3s � 2t , find

(a)
@

2
z

@s2
; .b/

@
2
z

@s@t
; and .c/

@
2
z

@t2
:

16. If f .x; y/ is harmonic, show that f

�

x

x2
C y2

;
�y

x2
C y2

�

is

also harmonic.

17. If x D t sin s and y D t cos s, find
@2

@s@t
f .x; y/.

18. Find
@3

@x@y2
f .2x C 3y; xy/ in terms of partial derivatives of

the function f:

19. Find
@2

@y@x
f .y

2
; xy;�x

2
/ in terms of partial derivatives of

the function f:

20. Find
@3

@t2@s
f .s

2
� t; s C t

2
/ in terms of partial derivatives of

the function f:

21. Suppose that u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Suppose also that f .u; v/ is a harmonic function of u and v.

Show that f
�

u.x; y/; v.x; y/

�

is a harmonic function of x

and y. Hint: u and v are harmonic functions by Exercise 15 in

Section 12.4.
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22. If r2
D x2

C y2
C z2, verify that u.x; y; z/ D 1=r is

harmonic throughout R
3

except at the origin.

23.I If x D es cos t , y D es sin t , and z D u.x; y/ D v.s; t/, show

that

@2z

@s2
C

@2z

@t2
D .x

2
C y

2
/

 

@2z

@x2
C

@2z

@y2

!

:

24.I (Converting Laplace’s equation to polar coordinates) The

transformation to polar coordinates, x D r cos � , y D r sin � ,

implies that r2
D x2

C y2 and tan � D y=x. Use these

equations to show that

@r

@x
D cos �

@�

@x
D �

sin �

r

@r

@y
D sin �

@�

@y
D

cos �

r
:

Use these formulas to help you express
@2u

@x2
C

@2u

@y2
in terms

of partials of u with respect to r and � , and hence re-prove the

formula for the Laplace differential equation in polar

coordinates given in Example 10.

25. If u.x; y/ D r2 ln r , where r2
D x2

C y2, verify that u is a

biharmonic function by showing that

�

@2

@x2
C

@2

@y2

��

@2u

@x2
C

@2u

@y2

�

D 0:

26. If f .x; y/ is positively homogeneous of degree k and has

continuous partial derivatives of second order, show that

x
2
f11.x; y/C 2xyf12.x; y/C y

2
f22.x; y/

D k.k � 1/f .x; y/:

27.I Generalize the result of Exercise 26 to functions of n

variables.

28.I Generalize the results of Exercises 26 and 27 to expressions

involving mth-order partial derivatives of the function f:

Exercises 29–30 revisit Exercise 16 of Section 12.4. Let

F.x; y/ D

8

ˆ

<

ˆ

:

2xy.x
2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

29. (a) Show that F.x; y/ D �F.y; x/ for all .x; y/.

(b) Show that F1.x; y/ D �F2.y; x/ and

F12.x; y/ D �F21.y; x/ for .x; y/ ¤ .0; 0/.

(c) Show that F1.0; y/ D �2y for all y and, hence, that

F12.0; 0/ D �2.

(d) Deduce that F2.x; 0/ D 2x and F21.0; 0/ D 2.

30. (a) Use Exercise 29(b) to find F12.x; x/ for x ¤ 0.

(b) Is F12.x; y/ continuous at .0; 0/? Why?

31.P Use the change of variables � D x C ct , � D x to transform

the partial differential equation

@u

@t
D c

@u

@x
; .c D constant/;

into the simpler equation @v=@� D 0, where

v.�; �/ D v.x C ct; x/ D u.x; t/. This equation says that

v.�; �/ does not depend on �, so v D f .�/ for some arbitrary

differentiable function f: What is the corresponding “general

solution” u.x; t/ of the original partial differential equation?

32.P Having considered Exercise 31, guess a “general solution”

w.r; s/ of the second-order partial differential equation

@
2

@r@s
w.r; s/ D 0:

Your answer should involve two arbitrary functions.

33.P Use the change of variables r D x C ct , s D x � ct ,

w.r; s/ D u.x; t/ to transform the one-dimensional wave

equation

@2u

@t2
D c

2 @
2u

@x2

to a simpler form. Now use the result of Exercise 32 to find

the general solution of this wave equation in the form given in

Example 4 in Section 12.4.

34.P Show that the initial-value problem for the one-dimensional

wave equation

8

<

:

ut t .x; t/ D c
2uxx.x; t/

u.x; 0/ D p.x/

ut .x; 0/ D q.x/

has the solution

u.x; t/ D
1

2

�

p.x�ct/Cp.xCct/

�

C

1

2c

Z xCct

x�ct

q.s/ ds:

(Note that we have used subscripts x and t instead of 1 and 2

to denote the partial derivatives here. This is common usage

in dealing with partial differential equations.)

Remark The initial-value problem in Exercise 34 gives the

small lateral displacement u.x; t/ at position x at time t of a

vibrating string held under tension along the x-axis. The function

p.x/ gives the initial displacement at position x, that is, the

displacement at time t D 0. Similarly, q.x/ gives the initial

velocity at position x. Observe that the position at time t depends

only on values of these initial data at points no further than ct

units away. This is consistent with the previous observation that

the solutions of the wave equation represent waves travelling with

speed c.

Redo the examples and exercises listed in Exercises 35–40

using Maple to do the calculations.

M 35. Example 10 M 36. Exercise 16

M 37. Exercise 19 M 38. Exercise 20

M 39. Exercise 23 M 40. Exercise 34
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12.6 Linear Approximations, Differentiability, and Differentials

As observed in Section 4.9, the tangent line to the graph y D f .x/ at x D a provides
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 12.25 The linearization of f at

x D a

a convenient approximation for values of f .x/ for x near a (see Figure 12.25):

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/:

Here, L.x/ is the linearization of f at a; its graph is the tangent line to y D f .x/

there. The mere existence of f 0.a/ is sufficient to guarantee that the error in the

approximation (the vertical distance between the curve and tangent at x) is small com-

pared with the distance h D x � a between a and x, that is,

lim
h!0

f .aC h/ �L.aC h/

h
D lim

h!0

f .aC h/ � f .a/ � f 0.a/h

h

D lim
h!0

f .aC h/ � f .a/

h
� f

0
.a/

D f
0
.a/ � f

0
.a/ D 0:

Similarly, the tangent plane to the graph of z D f .x; y/ at .a; b/ is z D L.x; y/,

where

L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/

is the linearization of f at .a; b/. We can use L.x; y/ to approximate values of

f .x; y/ near .a; b/:

f .x; y/ � L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 1
Find an approximate value for f .x; y/ D

p

2x2
C e2y at .2:2;�0:2/.

Solution It is convenient to use the linearization at .2; 0/, where the values of f and

its partials are easily evaluated:

f1.x; y/ D
2x

p

2x2
C e2y

;

f2.x; y/ D
e2y

p

2x2
C e2y

;

f .2; 0/ D 3;

f1.2; 0/ D
4

3
;

f2.2; 0/ D
1

3
:

Thus, L.x; y/ D 3C
4

3
.x � 2/C

1

3
.y � 0/, and

f .2:2;�0:2/ � L.2:2;�0:2/ D 3C
4

3
.2:2 � 2/C

1

3
.�0:2 � 0/ D 3:2 :

(For the sake of comparison, f .2:2;�0:2/ � 3:2172 to 4 decimal places.)

Unlike the single-variable case, the mere existence of the partial derivatives f1.a; b/

and f2.a; b/ does not even imply that f is continuous at .a; b/, let alone that the

error in the linearization is small compared with the distance
p

.x � a/2 C .y � b/2

between .a; b/ and .x; y/. We adopt this latter condition as our definition of what it

means for a function of two variables to be differentiable at a point.
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22. If r2
D x2

C y2
C z2, verify that u.x; y; z/ D 1=r is

harmonic throughout R
3

except at the origin.

23.I If x D es cos t , y D es sin t , and z D u.x; y/ D v.s; t/, show

that

@2z

@s2
C

@2z

@t2
D .x

2
C y

2
/

 

@2z

@x2
C

@2z

@y2

!

:

24.I (Converting Laplace’s equation to polar coordinates) The

transformation to polar coordinates, x D r cos � , y D r sin � ,

implies that r2
D x2

C y2 and tan � D y=x. Use these

equations to show that

@r

@x
D cos �

@�

@x
D �

sin �

r

@r

@y
D sin �

@�

@y
D

cos �

r
:

Use these formulas to help you express
@2u

@x2
C

@2u

@y2
in terms

of partials of u with respect to r and � , and hence re-prove the

formula for the Laplace differential equation in polar

coordinates given in Example 10.

25. If u.x; y/ D r2 ln r , where r2
D x2

C y2, verify that u is a

biharmonic function by showing that

�

@2

@x2
C

@2

@y2

��

@2u

@x2
C

@2u

@y2

�

D 0:

26. If f .x; y/ is positively homogeneous of degree k and has

continuous partial derivatives of second order, show that

x
2
f11.x; y/C 2xyf12.x; y/C y

2
f22.x; y/

D k.k � 1/f .x; y/:

27.I Generalize the result of Exercise 26 to functions of n

variables.

28.I Generalize the results of Exercises 26 and 27 to expressions

involving mth-order partial derivatives of the function f:

Exercises 29–30 revisit Exercise 16 of Section 12.4. Let

F.x; y/ D

8

ˆ

<

ˆ

:

2xy.x
2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

29. (a) Show that F.x; y/ D �F.y; x/ for all .x; y/.

(b) Show that F1.x; y/ D �F2.y; x/ and

F12.x; y/ D �F21.y; x/ for .x; y/ ¤ .0; 0/.

(c) Show that F1.0; y/ D �2y for all y and, hence, that

F12.0; 0/ D �2.

(d) Deduce that F2.x; 0/ D 2x and F21.0; 0/ D 2.

30. (a) Use Exercise 29(b) to find F12.x; x/ for x ¤ 0.

(b) Is F12.x; y/ continuous at .0; 0/? Why?

31.P Use the change of variables � D x C ct , � D x to transform

the partial differential equation

@u

@t
D c

@u

@x
; .c D constant/;

into the simpler equation @v=@� D 0, where

v.�; �/ D v.x C ct; x/ D u.x; t/. This equation says that

v.�; �/ does not depend on �, so v D f .�/ for some arbitrary

differentiable function f: What is the corresponding “general

solution” u.x; t/ of the original partial differential equation?

32.P Having considered Exercise 31, guess a “general solution”

w.r; s/ of the second-order partial differential equation

@
2

@r@s
w.r; s/ D 0:

Your answer should involve two arbitrary functions.

33.P Use the change of variables r D x C ct , s D x � ct ,

w.r; s/ D u.x; t/ to transform the one-dimensional wave

equation

@2u

@t2
D c

2 @
2u

@x2

to a simpler form. Now use the result of Exercise 32 to find

the general solution of this wave equation in the form given in

Example 4 in Section 12.4.

34.P Show that the initial-value problem for the one-dimensional

wave equation

8

<

:

ut t .x; t/ D c
2uxx.x; t/

u.x; 0/ D p.x/

ut .x; 0/ D q.x/

has the solution

u.x; t/ D
1

2

�

p.x�ct/Cp.xCct/

�

C

1

2c

Z xCct

x�ct

q.s/ ds:

(Note that we have used subscripts x and t instead of 1 and 2

to denote the partial derivatives here. This is common usage

in dealing with partial differential equations.)

Remark The initial-value problem in Exercise 34 gives the

small lateral displacement u.x; t/ at position x at time t of a

vibrating string held under tension along the x-axis. The function

p.x/ gives the initial displacement at position x, that is, the

displacement at time t D 0. Similarly, q.x/ gives the initial

velocity at position x. Observe that the position at time t depends

only on values of these initial data at points no further than ct

units away. This is consistent with the previous observation that

the solutions of the wave equation represent waves travelling with

speed c.

Redo the examples and exercises listed in Exercises 35–40

using Maple to do the calculations.

M 35. Example 10 M 36. Exercise 16

M 37. Exercise 19 M 38. Exercise 20

M 39. Exercise 23 M 40. Exercise 34
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12.6 Linear Approximations, Differentiability, and Differentials

As observed in Section 4.9, the tangent line to the graph y D f .x/ at x D a provides
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 12.25 The linearization of f at

x D a

a convenient approximation for values of f .x/ for x near a (see Figure 12.25):

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/:

Here, L.x/ is the linearization of f at a; its graph is the tangent line to y D f .x/

there. The mere existence of f 0.a/ is sufficient to guarantee that the error in the

approximation (the vertical distance between the curve and tangent at x) is small com-

pared with the distance h D x � a between a and x, that is,

lim
h!0

f .aC h/ �L.aC h/

h
D lim

h!0

f .aC h/ � f .a/ � f 0.a/h

h

D lim
h!0

f .aC h/ � f .a/

h
� f

0
.a/

D f
0
.a/ � f

0
.a/ D 0:

Similarly, the tangent plane to the graph of z D f .x; y/ at .a; b/ is z D L.x; y/,

where

L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/

is the linearization of f at .a; b/. We can use L.x; y/ to approximate values of

f .x; y/ near .a; b/:

f .x; y/ � L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 1
Find an approximate value for f .x; y/ D

p

2x2
C e2y at .2:2;�0:2/.

Solution It is convenient to use the linearization at .2; 0/, where the values of f and

its partials are easily evaluated:

f1.x; y/ D
2x

p

2x2
C e2y

;

f2.x; y/ D
e2y

p

2x2
C e2y

;

f .2; 0/ D 3;

f1.2; 0/ D
4

3
;

f2.2; 0/ D
1

3
:

Thus, L.x; y/ D 3C
4

3
.x � 2/C

1

3
.y � 0/, and

f .2:2;�0:2/ � L.2:2;�0:2/ D 3C
4

3
.2:2 � 2/C

1

3
.�0:2 � 0/ D 3:2 :

(For the sake of comparison, f .2:2;�0:2/ � 3:2172 to 4 decimal places.)

Unlike the single-variable case, the mere existence of the partial derivatives f1.a; b/

and f2.a; b/ does not even imply that f is continuous at .a; b/, let alone that the

error in the linearization is small compared with the distance
p

.x � a/2 C .y � b/2

between .a; b/ and .x; y/. We adopt this latter condition as our definition of what it

means for a function of two variables to be differentiable at a point.
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D E F I N I T I O N

5

We say that the function f .x; y/ is differentiable at the point .a; b/ if

lim
.h;k/!.0;0/

f .aC h; b C k/� f .a; b/ � hf1.a; b/ � kf2.a; b/
p

h2
C k2

D 0:

This definition and the following theorems can be generalized to functions of any num-

ber of variables in the obvious way. For the sake of simplicity, we state them for the

two-variable case only.

The function f .x; y/ is differentiable at the point .a; b/ if and only if the surface

z D f .x; y/ has a nonvertical tangent plane at .a; b/. This implies that f1.a; b/ and

f2.a; b/ must exist and that f must be continuous at .a; b/. (Recall, however, that the

existence of the partial derivatives does not even imply that f is continuous, let alone

differentiable.) In particular, the function is continuous wherever it is differentiable.

We will prove a two-variable version of the Mean-Value Theorem and use it to show

that functions are differentiable wherever they have continuous first partial derivatives.

T H E O R E M

3

A Mean-Value Theorem

If f1.x; y/ and f2.x; y/ are continuous in a neighbourhood of the point .a; b/, and if

the absolute values of h and k are sufficiently small, then there exist numbers �1 and

�2, each between 0 and 1, such that

f .aC h; b C k/� f .a; b/ D hf1.aC �1h; b C k/C kf2.a; b C �2k/:

PROOF The proof of this theorem is very similar to that of Theorem 1 in Section 12.4,

so we give only a sketch here. The reader can fill in the details. Write

f .aCh; bCk/�f .a; b/ D
�

f .aCh; bCk/�f .a; bCk/
�

C

�

f .a; bCk/�f .a; b/
�

;

and then apply the single-variable Mean-Value Theorem separately to f .x; b C k/ on

the interval between a and aC h, and to f .a; y/ on the interval between b and b C k

to get the desired result.

T H E O R E M

4

If f1 and f2 are continuous in a neighbourhood of the point .a; b/, then f is differen-

tiable at .a; b/.

PROOF Using Theorem 3 and the facts that

ˇ

ˇ

ˇ

ˇ

h
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

� 1 and

ˇ

ˇ

ˇ

ˇ

k
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

� 1;

we estimate

ˇ

ˇ

ˇ

ˇ

f .aC h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

h
p

h2
C k2

�

f1.aC �1h; b C k/ � f1.a; b/

�

C

k
p

h2
C k2

�

f2.a; b C �2k/ � f2.a; b/

�

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇf1.aC �1h; b C k/� f1.a; b/
ˇ

ˇ

C

ˇ

ˇf2.a; b C �2k/� f2.a; b/
ˇ

ˇ:
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Since f1 and f2 are continuous at .a; b/, each of these latter terms approaches 0 as h

and k approach 0. This is what we needed to prove.

We illustrate differentiability with an example where we can calculate directly the error

in the tangent plane approximation.

E X A M P L E 2
Calculate f .x C h; y C k/� f .x; y/� f1.x; y/h� f2.x; y/k if

f .x; y/ D x3
C xy2.

Solution Since f1.x; y/ D 3x
2
C y2 and f2.x; y/ D 2xy, we have

f .x C h; y C k/� f .x; y/� f1.x; y/h � f2.x; y/k

D .x C h/
3
C .x C h/.y C k/

2
� x

3
� xy

2
� .3x

2
C y

2
/h � 2xyk

D 3xh
2
C h

3
C 2yhk C hk

2
C xk

2
:

Observe that the result above is a polynomial in h and k with no term of degree less

than 2 in these variables. Therefore, this difference approaches zero like the square

of the distance
p

h2
C k2 from .x; y/ to .x C h; y C k/ as .h; k/ ! .0; 0/, so the

condition for differentiability is certainly satisfied:

lim
.h;k/!.0;0/

3xh2
C h3

C 2yhk C hk2
C xk2

p

h2
C k2

D 0:

This quadratic behaviour is the case for any function f with continuous second partial

derivatives. (See Exercise 23 below.)

Proof of the Chain Rule
We are now able to give a formal statement and proof of a simple but representative

case of the Chain Rule for multivariate functions.

T H E O R E M

5

A Chain Rule

Let z D f .x; y/, where x D u.s; t/ and y D v.s; t/. Suppose that

(i) u.a; b/ D p and v.a; b/ D q,

(ii) the first partial derivatives of u and v exist at the point .a; b/, and

(iii) f is differentiable at the point .p; q/. Then z D w.s; t/ D f .u.s; t/; v.s; t//

has first partial derivatives with respect to s and t at .a; b/, and

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/;

w2.a; b/ D f1.p; q/u2.a; b/C f2.p; q/v2.a; b/:

That is,

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s
and

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t
:

PROOF Define a functionE of two variables as follows: E.0; 0/ D 0, and if .h; k/ ¤

.0; 0/, then

E.h; k/ D
f .p C h; q C k/� f .p; q/ � hf1.p; q/ � kf2.p; q/

p

h2
C k2

:
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D E F I N I T I O N

5

We say that the function f .x; y/ is differentiable at the point .a; b/ if

lim
.h;k/!.0;0/

f .aC h; b C k/� f .a; b/ � hf1.a; b/ � kf2.a; b/
p

h2
C k2

D 0:

This definition and the following theorems can be generalized to functions of any num-

ber of variables in the obvious way. For the sake of simplicity, we state them for the

two-variable case only.

The function f .x; y/ is differentiable at the point .a; b/ if and only if the surface

z D f .x; y/ has a nonvertical tangent plane at .a; b/. This implies that f1.a; b/ and

f2.a; b/ must exist and that f must be continuous at .a; b/. (Recall, however, that the

existence of the partial derivatives does not even imply that f is continuous, let alone

differentiable.) In particular, the function is continuous wherever it is differentiable.

We will prove a two-variable version of the Mean-Value Theorem and use it to show

that functions are differentiable wherever they have continuous first partial derivatives.

T H E O R E M

3

A Mean-Value Theorem

If f1.x; y/ and f2.x; y/ are continuous in a neighbourhood of the point .a; b/, and if

the absolute values of h and k are sufficiently small, then there exist numbers �1 and

�2, each between 0 and 1, such that

f .aC h; b C k/� f .a; b/ D hf1.aC �1h; b C k/C kf2.a; b C �2k/:

PROOF The proof of this theorem is very similar to that of Theorem 1 in Section 12.4,

so we give only a sketch here. The reader can fill in the details. Write

f .aCh; bCk/�f .a; b/ D
�

f .aCh; bCk/�f .a; bCk/
�

C

�

f .a; bCk/�f .a; b/
�

;

and then apply the single-variable Mean-Value Theorem separately to f .x; b C k/ on

the interval between a and aC h, and to f .a; y/ on the interval between b and b C k

to get the desired result.

T H E O R E M

4

If f1 and f2 are continuous in a neighbourhood of the point .a; b/, then f is differen-

tiable at .a; b/.

PROOF Using Theorem 3 and the facts that

ˇ

ˇ

ˇ

ˇ

h
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

� 1 and

ˇ

ˇ

ˇ

ˇ

k
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

� 1;

we estimate

ˇ

ˇ

ˇ

ˇ

f .aC h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/
p

h2
C k2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

h
p

h2
C k2

�

f1.aC �1h; b C k/ � f1.a; b/

�

C

k
p

h2
C k2

�

f2.a; b C �2k/ � f2.a; b/

�

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇf1.aC �1h; b C k/� f1.a; b/
ˇ

ˇ

C

ˇ

ˇf2.a; b C �2k/� f2.a; b/
ˇ

ˇ:
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Since f1 and f2 are continuous at .a; b/, each of these latter terms approaches 0 as h

and k approach 0. This is what we needed to prove.

We illustrate differentiability with an example where we can calculate directly the error

in the tangent plane approximation.

E X A M P L E 2
Calculate f .x C h; y C k/� f .x; y/� f1.x; y/h� f2.x; y/k if

f .x; y/ D x3
C xy2.

Solution Since f1.x; y/ D 3x
2
C y2 and f2.x; y/ D 2xy, we have

f .x C h; y C k/� f .x; y/� f1.x; y/h � f2.x; y/k

D .x C h/
3
C .x C h/.y C k/

2
� x

3
� xy

2
� .3x

2
C y

2
/h � 2xyk

D 3xh
2
C h

3
C 2yhk C hk

2
C xk

2
:

Observe that the result above is a polynomial in h and k with no term of degree less

than 2 in these variables. Therefore, this difference approaches zero like the square

of the distance
p

h2
C k2 from .x; y/ to .x C h; y C k/ as .h; k/ ! .0; 0/, so the

condition for differentiability is certainly satisfied:

lim
.h;k/!.0;0/

3xh2
C h3

C 2yhk C hk2
C xk2

p

h2
C k2

D 0:

This quadratic behaviour is the case for any function f with continuous second partial

derivatives. (See Exercise 23 below.)

Proof of the Chain Rule
We are now able to give a formal statement and proof of a simple but representative

case of the Chain Rule for multivariate functions.

T H E O R E M

5

A Chain Rule

Let z D f .x; y/, where x D u.s; t/ and y D v.s; t/. Suppose that

(i) u.a; b/ D p and v.a; b/ D q,

(ii) the first partial derivatives of u and v exist at the point .a; b/, and

(iii) f is differentiable at the point .p; q/. Then z D w.s; t/ D f .u.s; t/; v.s; t//

has first partial derivatives with respect to s and t at .a; b/, and

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/;

w2.a; b/ D f1.p; q/u2.a; b/C f2.p; q/v2.a; b/:

That is,

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s
and

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t
:

PROOF Define a functionE of two variables as follows: E.0; 0/ D 0, and if .h; k/ ¤

.0; 0/, then

E.h; k/ D
f .p C h; q C k/� f .p; q/ � hf1.p; q/ � kf2.p; q/

p

h2
C k2

:
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Observe that E.h; k/ is continuous at .0; 0/ because f is differentiable at .p; q/.

Now,

f .p C h; q C k/� f .p; q/ D hf1.p; q/C kf2.p; q/C

p

h2
C k2E.h; k/:

In this formula put h D u.aC�; b/�u.a; b/ and k D v.aC�; b/�v.a; b/ and divide

by � to obtain

w.aC �; b/ � w.a; b/

�
D

f .u.aC �; b/; v.a C �; b// � f .u.a; b/; v.a; b//

�

D

f .p C h; q C k/ � f .p; q/

�

D f1.p; q/
h

�
C f2.p; q/

k

�
C

r

�

h

�

�2

C

�

k

�

�2

E.h; k/:

We want to let � approach 0 in this formula. Note that

lim
�!0

h

�
D lim

�!0

u.aC �; b/ � u.a; b/

�
D u1.a; b/;

and, similarly, lim�!0.k=�/ D v1.a; b/. Since .h; k/! .0; 0/ if � ! 0, we have

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/:

The proof for w2 is similar.

Differentials
If the first partial derivatives of a function z D f .x1; : : : ; xn/ exist at a point, we may

construct a differential dz or df of the function at that point in a manner similar to

that used for functions of one variable:

dz D df D
@z

@x1

dx1 C
@z

@x2

dx2 C � � � C
@z

@xn

dxn

D f1.x1; : : : ; xn/ dx1 C � � � C fn.x1; : : : ; xn/ dxn:

Here, the differential dz is considered to be a function of the 2n independent variables

x1, x2, : : : , xn, dx1, dx2, : : : , dxn.

For a differentiable function f; the differential df is an approximation to the

change �f in value of the function given by

�f D f .x1 C dx1; : : : ; xn C dxn/ � f .x1; : : : ; xn/:

The error in this approximation is small compared with the distance between the two

points in the domain of f I that is,

�f � df
p

.dx1/
2
C � � � C .dxn/

2
! 0 if all dxi ! 0; .1 � i � n/:

In this sense, differentials are just another way of looking at linearization.

E X A M P L E 3 Estimate the percentage change in the period T D 2�

s

L

g
of a

simple pendulum if the length, L, of the pendulum increases by

2% and the acceleration of gravity, g, decreases by 0.6%.
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Solution We calculate the differential of T :

dT D
@T

@L
dLC

@T

@g
dg

D

2�

2
p

Lg
dL �

2�
p

L

2g3=2
dg:

We are given that dL D
2

100
L and dg D �

6

1;000
g. Thus,

dT D
1

100
2�

s

L

g
�

�

�

6

1;000

�

2�

2

s

L

g
D

13

1;000
T:

Therefore, the period T of the pendulum increases by 1.3%.

Functions from n-Space to m -Space
(This is an optional topic.) A vector f D .f1; f2; : : : ; fm/ ofm functions, each depend-

ing on n variables .x1; x2; : : : ; xn/, defines a transformation (i.e., a function) from R
n

to R
m; specifically, if x D .x1; x2; : : : ; xn/ is a point in R

n, and

y1 D f1.x1; x2; : : : ; xn/

y2 D f2.x1; x2; : : : ; xn/

:
:
:

ym D fm.x1; x2; : : : ; xn/;

then y D .y1; y2; : : : ; ym/ is the point in R
m that corresponds to x under the

transformation f. We can write these equations more compactly as

y D f.x/:

Information about the rate of change of y with respect to x is contained in the various

partial derivatives @yi=@xj , .1 � i � m; 1 � j � n/, and is conveniently organized

into an m � n matrix, Df.x/, called the Jacobian matrix of the transformation f:

Df.x/ D

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

If the partial derivatives in the Jacobian matrix are continuous, we say that f is differ-

entiable at x. In this case the linear transformation (see Section 10.7) represented by

the Jacobian matrix is called the derivative of the transformation f.

Remark We can regard the scalar-valued function of two variables, f .x; y/ say, as

a transformation from R
2 to R. Its derivative is then the linear transformation with

matrix

Df .x; y/ D
�

f1.x; y/; f2.x; y/
�

:

It is not our purpose to enter into a study of such vector-valued functions of a vector

variable at this point, but we can observe here that the Jacobian matrix of the compo-

sition of two such transformations is the matrix product of their Jacobian matrices.
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Observe that E.h; k/ is continuous at .0; 0/ because f is differentiable at .p; q/.

Now,

f .p C h; q C k/� f .p; q/ D hf1.p; q/C kf2.p; q/C

p

h2
C k2E.h; k/:

In this formula put h D u.aC�; b/�u.a; b/ and k D v.aC�; b/�v.a; b/ and divide

by � to obtain

w.aC �; b/ � w.a; b/

�
D

f .u.aC �; b/; v.a C �; b// � f .u.a; b/; v.a; b//

�

D

f .p C h; q C k/ � f .p; q/

�

D f1.p; q/
h

�
C f2.p; q/

k

�
C

r

�

h

�

�2

C

�

k

�

�2

E.h; k/:

We want to let � approach 0 in this formula. Note that

lim
�!0

h

�
D lim

�!0

u.aC �; b/ � u.a; b/

�
D u1.a; b/;

and, similarly, lim�!0.k=�/ D v1.a; b/. Since .h; k/! .0; 0/ if � ! 0, we have

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/:

The proof for w2 is similar.

Differentials
If the first partial derivatives of a function z D f .x1; : : : ; xn/ exist at a point, we may

construct a differential dz or df of the function at that point in a manner similar to

that used for functions of one variable:

dz D df D
@z

@x1

dx1 C
@z

@x2

dx2 C � � � C
@z

@xn

dxn

D f1.x1; : : : ; xn/ dx1 C � � � C fn.x1; : : : ; xn/ dxn:

Here, the differential dz is considered to be a function of the 2n independent variables

x1, x2, : : : , xn, dx1, dx2, : : : , dxn.

For a differentiable function f; the differential df is an approximation to the

change �f in value of the function given by

�f D f .x1 C dx1; : : : ; xn C dxn/ � f .x1; : : : ; xn/:

The error in this approximation is small compared with the distance between the two

points in the domain of f I that is,

�f � df
p

.dx1/
2
C � � � C .dxn/

2
! 0 if all dxi ! 0; .1 � i � n/:

In this sense, differentials are just another way of looking at linearization.

E X A M P L E 3 Estimate the percentage change in the period T D 2�

s

L

g
of a

simple pendulum if the length, L, of the pendulum increases by

2% and the acceleration of gravity, g, decreases by 0.6%.
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Solution We calculate the differential of T :

dT D
@T

@L
dLC

@T

@g
dg

D

2�

2
p

Lg
dL �

2�
p

L

2g3=2
dg:

We are given that dL D
2

100
L and dg D �

6

1;000
g. Thus,

dT D
1

100
2�

s

L

g
�

�

�

6

1;000

�

2�

2

s

L

g
D

13

1;000
T:

Therefore, the period T of the pendulum increases by 1.3%.

Functions from n-Space to m -Space
(This is an optional topic.) A vector f D .f1; f2; : : : ; fm/ ofm functions, each depend-

ing on n variables .x1; x2; : : : ; xn/, defines a transformation (i.e., a function) from R
n

to R
m; specifically, if x D .x1; x2; : : : ; xn/ is a point in R

n, and

y1 D f1.x1; x2; : : : ; xn/

y2 D f2.x1; x2; : : : ; xn/

:
:
:

ym D fm.x1; x2; : : : ; xn/;

then y D .y1; y2; : : : ; ym/ is the point in R
m that corresponds to x under the

transformation f. We can write these equations more compactly as

y D f.x/:

Information about the rate of change of y with respect to x is contained in the various

partial derivatives @yi=@xj , .1 � i � m; 1 � j � n/, and is conveniently organized

into an m � n matrix, Df.x/, called the Jacobian matrix of the transformation f:

Df.x/ D

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

If the partial derivatives in the Jacobian matrix are continuous, we say that f is differ-

entiable at x. In this case the linear transformation (see Section 10.7) represented by

the Jacobian matrix is called the derivative of the transformation f.

Remark We can regard the scalar-valued function of two variables, f .x; y/ say, as

a transformation from R
2 to R. Its derivative is then the linear transformation with

matrix

Df .x; y/ D
�

f1.x; y/; f2.x; y/
�

:

It is not our purpose to enter into a study of such vector-valued functions of a vector

variable at this point, but we can observe here that the Jacobian matrix of the compo-

sition of two such transformations is the matrix product of their Jacobian matrices.
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To see this, let y D f.x/ be a transformation from R
n to R

m as described above,

and let z D g.y/ be another such transformation from R
m to R

k given by

z1 D g1.y1; y2; : : : ; ym/

z2 D g2.y1; y2; : : : ; ym/

:
:
:

zk D gk.y1; y2; : : : ; ym/;

which has the k �m Jacobian matrix

Dg.y/ D

0

B

B

B

B

B

B

B

B

@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1

C

C

C

C

C

C

C

C

A

:

Then the composition z D g ı f.x/ D g
�

f.x/
�

given by

z1 D g1

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

z2 D g2

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

:
:
:

zk D gk

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

has, according to the Chain Rule, the k � n Jacobian matrix

0

B

B

B

B

B

B

B

B

@

@z1

@x1

@z1

@x2

� � �

@z1

@xn
@z2

@x1

@z2

@x2

� � �

@z2

@xn
:
:
:

:
:
:

:
:
:

@zk

@x1

@zk

@x2

� � �

@zk

@xn

1

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

B

@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

This is, in fact, the Chain Rule for compositions of transformations:

D.g ı f/.x/ D Dg
�

f.x/
�

Df.x/;

and exactly mimics the one-variable Chain Rule D.g ı f /.x/ D Dg
�

f .x/
�

Df .x/.

The transformation y D f.x/ also defines a vector dy of differentials of the vari-

ables yi in terms of the vector dx of differentials of the variables xj . Writing dy and

dx as column vectors we have

dy D

0

B

B

B

@

dy1

dy2

:
:
:

dym

1

C

C

C

A

D

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

0

B

B

@

dx1

dx2
:
:
:

dxn

1

C

C

A

D Df.x/dx:
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E X A M P L E 4
Find the Jacobian matrix Df.1; 0/ for the transformation from R

2

to R
3 given by

f.x; y/ D
�

xe
y
C cos.�y/; x2

; x � e
y
�

and use it to find an approximate value for f.1:02; 0:01/.

Solution Df.x; y/ is the 3�2matrix whose j th row consists of the partial derivatives

of the j th component of f with respect to x and y. Thus,

Df.1; 0/ D

0

@

ey xey
� � sin.�y/

2x 0

1 �ey

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.1;0/

D

0

@

1 1

2 0

1 �1

1

A :

Since f.1; 0/ D .2; 1; 0/ and dx D

�

0:02

0:01

�

, we have

d f D Df.1; 0/ dx D

0

@

1 1

2 0

1 �1

1

A

�

0:02

0:01

�

D

0

@

0:03

0:04

0:01

1

A :

Therefore, f.1:02; 0:01/ � .2:03; 1:04; 0:01/.

For transformations between spaces of the same dimension (say from R
n to R

n), the

corresponding Jacobian matrices are square and have determinants. These Jacobian

determinants will play an important role in our consideration of implicit functions and

inverse functions in Section 12.8 and in changes of variables in multiple integrals in

Chapter 14.

Maple’s VectorCalculus package has a function Jacobian that takes two inputs,

a list (or vector) of expressions and a list of variables, and produces the Jacobian ma-

trix of the partial derivatives of those expressions with respect to the variables. For

example,

> with(VectorCalculus):

> Jacobian([x*y*exp(z), (x+2*y)*cos(z)],[x,y,z]);
�

yez xez xyez

cos.z/ 2 cos.z/ �.x C 2y/ sin.z/

�

VectorCalculus has only been included since Maple 8. If you have an earlier release,

use linalg instead, and the function jacobian.

E Differentials in Applications
Differentials are sometimes used as an alternative representation for differentiable

functions. This is particularly so in the field of thermodynamics. In thermodynamics,

physical states of thermodynamic equilibrium are expressed mathematically in terms

of the existence of a function,

E D E.S; V;N1; : : : ; Nn/;

whereE is internal energy, S is entropy, V is volume, and theNi are numbers of atoms

or molecules of type i .

These quantities are interpreted physically, but they are just independent variables

in a function to which normal mathematical rules apply. Discussion of the physical

meaning of a quantity like entropy, for example, is largely beyond the scope of this

book. (One might remark that entropy is a logarithmic measure of the number of

underlying physical states that appear indistinguishable on human scales, but such a

description is completely unnecessary for this discussion.) E.S; V;N1; : : : ; Nn/ is

known as a function of state. Any explicit equation relating thermodynamic variables

is also known as an equation of state.
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To see this, let y D f.x/ be a transformation from R
n to R

m as described above,

and let z D g.y/ be another such transformation from R
m to R

k given by

z1 D g1.y1; y2; : : : ; ym/

z2 D g2.y1; y2; : : : ; ym/

:
:
:

zk D gk.y1; y2; : : : ; ym/;

which has the k �m Jacobian matrix

Dg.y/ D

0

B

B

B

B

B

B

B

B

@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1

C

C

C

C

C

C

C

C

A

:

Then the composition z D g ı f.x/ D g
�

f.x/
�

given by

z1 D g1

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

z2 D g2

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

:
:
:

zk D gk

�

f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/
�

has, according to the Chain Rule, the k � n Jacobian matrix

0

B

B

B

B

B

B

B

B

@

@z1

@x1

@z1

@x2

� � �

@z1

@xn
@z2

@x1

@z2

@x2

� � �

@z2

@xn
:
:
:

:
:
:

:
:
:

@zk

@x1

@zk

@x2

� � �

@zk

@xn

1

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

B

@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

This is, in fact, the Chain Rule for compositions of transformations:

D.g ı f/.x/ D Dg
�

f.x/
�

Df.x/;

and exactly mimics the one-variable Chain Rule D.g ı f /.x/ D Dg
�

f .x/
�

Df .x/.

The transformation y D f.x/ also defines a vector dy of differentials of the vari-

ables yi in terms of the vector dx of differentials of the variables xj . Writing dy and

dx as column vectors we have

dy D

0

B

B

B

@

dy1

dy2

:
:
:

dym

1

C

C

C

A

D

0

B

B

B

B

B

B

B

B

@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1

C

C

C

C

C

C

C

C

A

0

B

B

@

dx1

dx2
:
:
:

dxn

1

C

C

A

D Df.x/dx:
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E X A M P L E 4
Find the Jacobian matrix Df.1; 0/ for the transformation from R

2

to R
3 given by

f.x; y/ D
�

xe
y
C cos.�y/; x2

; x � e
y
�

and use it to find an approximate value for f.1:02; 0:01/.

Solution Df.x; y/ is the 3�2matrix whose j th row consists of the partial derivatives

of the j th component of f with respect to x and y. Thus,

Df.1; 0/ D

0

@

ey xey
� � sin.�y/

2x 0

1 �ey

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.1;0/

D

0

@

1 1

2 0

1 �1

1

A :

Since f.1; 0/ D .2; 1; 0/ and dx D

�

0:02

0:01

�

, we have

d f D Df.1; 0/ dx D

0

@

1 1

2 0

1 �1

1

A

�

0:02

0:01

�

D

0

@

0:03

0:04

0:01

1

A :

Therefore, f.1:02; 0:01/ � .2:03; 1:04; 0:01/.

For transformations between spaces of the same dimension (say from R
n to R

n), the

corresponding Jacobian matrices are square and have determinants. These Jacobian

determinants will play an important role in our consideration of implicit functions and

inverse functions in Section 12.8 and in changes of variables in multiple integrals in

Chapter 14.

Maple’s VectorCalculus package has a function Jacobian that takes two inputs,

a list (or vector) of expressions and a list of variables, and produces the Jacobian ma-

trix of the partial derivatives of those expressions with respect to the variables. For

example,

> with(VectorCalculus):

> Jacobian([x*y*exp(z), (x+2*y)*cos(z)],[x,y,z]);
�

yez xez xyez

cos.z/ 2 cos.z/ �.x C 2y/ sin.z/

�

VectorCalculus has only been included since Maple 8. If you have an earlier release,

use linalg instead, and the function jacobian.

E Differentials in Applications
Differentials are sometimes used as an alternative representation for differentiable

functions. This is particularly so in the field of thermodynamics. In thermodynamics,

physical states of thermodynamic equilibrium are expressed mathematically in terms

of the existence of a function,

E D E.S; V;N1; : : : ; Nn/;

whereE is internal energy, S is entropy, V is volume, and theNi are numbers of atoms

or molecules of type i .

These quantities are interpreted physically, but they are just independent variables

in a function to which normal mathematical rules apply. Discussion of the physical

meaning of a quantity like entropy, for example, is largely beyond the scope of this

book. (One might remark that entropy is a logarithmic measure of the number of

underlying physical states that appear indistinguishable on human scales, but such a

description is completely unnecessary for this discussion.) E.S; V;N1; : : : ; Nn/ is

known as a function of state. Any explicit equation relating thermodynamic variables

is also known as an equation of state.
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Thermodynamics allows for any number of such variables to define the state.

There can be others than those indicated for different physical systems. All such vari-

ables are additive in that, for example, the energy of two physical systems together is

simply the sum of the energies of each system. The same is true for volume, entropy,

and number. These additive variables are called extensive variables. In thermodynam-

ics they are referred to as state variables or as state functions. That is because any one

of the other variables can be expressed as a function of E and the remaining variables.

For example, S D S.E; V;N1; : : : ; Nn/.

Differentials appear in thermodynamics as the normal way to express the existence

of a state function. In writing

dE D
@E

@S
dS C

@E

@V
dV C

@E

@N1

dN1 C � � � C
@E

@Nn

dNn;

we are saying that E depends on the variables whose differentials appear on the right

side of the equation. In fact, everything is so effectively done with differentials that

often no explicit function E is needed or even known.

Historically, the differential was also meant to convey an intuitive sense of change

in time, even though mathematically it is simply the differential of a function. In

fact, this historical interpretation can be quite confusing, because, paradoxically, the

existence of the function of state, and its differential, means the physical system is in

thermodynamic equilibrium, which can be described as a time-independent condition

of a physical system. If it were not in (timeless) thermodynamic equilibrium, there

would be no state function and no corresponding differentials. The resolution of the

paradox is to stick to the mathematics, remembering that the differential only depicts

a change in the values of variables and not any external process.

So, for example, the state equation has nothing to do with whether some process is

slow or not. Differentials in this case do not suggest a physical process any more than

the differential of any other function does. The differential only expresses the content

of the function, so it has nothing to do with the physical processes that cause changes,

or with whether any change is carried out slowly (reversible processes) or not.

The partial derivatives that appear in the differential form of the state equation

also have explicit physical interpretations:
@E

@S
is temperature T; �

@E

@V
is pressure P;

and the quantities
@E

@Ni

are known as chemical potentials, �i . These partial derivatives

represent slopes on the graph of the function of state, and as such they are not additive.

It makes no sense, for example, to add temperatures. Physically, these slopes define

a condition rather than an amount. These nonadditive quantities are called intensive

variables.

With these definitions substituted, the differential form of the equation of state

becomes

dE D T dS � P dV C �1 dN1 C � � � C �n dNn;

which is known as the Gibbs equation. However, despite the special treatment, this ex-

pression remains simply the differential of E.S; V;N1; : : : ; Nn/. The Gibbs equation

is a fundamental starting point in many thermodynamical problems.

Another related, and well-known, equation of differentials is the Gibbs-Duhem

equation,

0 D S dT � V dP CN1 d�1 C � � � C Nn d�n:

This remarkable equation indicates that the intensive variables of thermodynamics are

not independent of each other. It holds because the additivity of the extensive vari-

ables implies that the function of state, E D E.S; V;N1; : : : ; Nn/, is homogeneous of

degree 1. (See Exercise 24 at the end of this section.)
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E Differentials and Legendre Transformations
It is often useful to shift the dependence of a function on one or more of its indepen-

dent variables to dependence on, instead, the derivatives of the function with respect to

these variables. Consider, for example, the function y D f .x/, and denote its deriva-

tive by p; that is, p D f 0.x/. If we let u D px � f .x/ and calculate the differential

of u, treating x and p as independent variables, we obtain

du D p dx C x dp � f
0
.x/ dx D p dx C x dp � p dx D x dp:

Since there is no dx term remaining in this differential, u does not depend explicitly

on x, but only on p. Let us therefore define f �.p/ D u D px � f .x/. f �.p/ is

called the Legendre transformation of f .x/ with respect to x, and the two variables x

and p are said to be conjugate to one another. Observe that

f .x/C f
�
.p/ D px;

and the symmetry of this equation indicates that f must also be the Legendre trans-

formation of f �; f ��
D f: In fact, taking the partial derivatives of the equation with

respect to x and p we obtain the symmetric relationships

f
0
.x/ D p and .f

�
/
0
.p/ D x

from which it is apparent that f 0 and .f �/0 are inverse functions;

f
0�
.f

�
/
0
.p/

�

D p; .f
�
/
0�
f

0
.x/
�

D x:

Remark The above definition of f � clearly shows the symmetry in its relationship

with f: An alternative transformation, �f �.p/ (i.e., the function f .x/ � px) shifts

dependence between a variable and the derivative of the function just as effectively,

although it does not share this symmetry. In some fields, particularly thermodynamics,

this alternative is known as the Legendre transformation instead.

E X A M P L E 5
Calculate the Legendre transformation f �.p/ of the function

f .x/ D ex .

Solution Here p D f 0.x/ D ex , so x D lnp. Therefore,

f
�
.p/ D px � f .x/ D p lnp � p:

For functions of several variables, Legendre transformations can be taken with

respect to one or more of the independent variables. If u D f .x; y/, p D f1.x; y/,

and q D f2.x; y/, and if w D px C qy � u, then

dw D p dx C x dp C q dy C y dq � f1.x; y/ dx � f2.x; y/ dy D x dp C y dq

and w does not depend explicitly on x or y, but only on p and q. We can call w.p; q/

(or�w.p; q/ if we are doing thermodynamics) the Legendre transformation of f .x; y/

with respect to x and y, and treat both fx; pg and fy; qg as conjugate pairs of variables.

Observe that

f1.x; y/ D p

f2.x; y/ D q
and

w1.p; q/ D x

w2.p; q/ D y:

Returning to thermodynamics, the Gibbs equation tells us that E depends on S ,

V , and Ni . Since T D
@E

@S
, T and S are conjugate and we can express energy in terms

of temperature rather than entropy by using an (alternative) Legendre transformation.

Let F D E � TS . Then

dF D dE � S dT � T dS D �S dT � P dV C �1 dN1 C � � � C �n dNn:
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Thermodynamics allows for any number of such variables to define the state.

There can be others than those indicated for different physical systems. All such vari-

ables are additive in that, for example, the energy of two physical systems together is

simply the sum of the energies of each system. The same is true for volume, entropy,

and number. These additive variables are called extensive variables. In thermodynam-

ics they are referred to as state variables or as state functions. That is because any one

of the other variables can be expressed as a function of E and the remaining variables.

For example, S D S.E; V;N1; : : : ; Nn/.

Differentials appear in thermodynamics as the normal way to express the existence

of a state function. In writing

dE D
@E

@S
dS C

@E

@V
dV C

@E

@N1

dN1 C � � � C
@E

@Nn

dNn;

we are saying that E depends on the variables whose differentials appear on the right

side of the equation. In fact, everything is so effectively done with differentials that

often no explicit function E is needed or even known.

Historically, the differential was also meant to convey an intuitive sense of change

in time, even though mathematically it is simply the differential of a function. In

fact, this historical interpretation can be quite confusing, because, paradoxically, the

existence of the function of state, and its differential, means the physical system is in

thermodynamic equilibrium, which can be described as a time-independent condition

of a physical system. If it were not in (timeless) thermodynamic equilibrium, there

would be no state function and no corresponding differentials. The resolution of the

paradox is to stick to the mathematics, remembering that the differential only depicts

a change in the values of variables and not any external process.

So, for example, the state equation has nothing to do with whether some process is

slow or not. Differentials in this case do not suggest a physical process any more than

the differential of any other function does. The differential only expresses the content

of the function, so it has nothing to do with the physical processes that cause changes,

or with whether any change is carried out slowly (reversible processes) or not.

The partial derivatives that appear in the differential form of the state equation

also have explicit physical interpretations:
@E

@S
is temperature T; �

@E

@V
is pressure P;

and the quantities
@E

@Ni

are known as chemical potentials, �i . These partial derivatives

represent slopes on the graph of the function of state, and as such they are not additive.

It makes no sense, for example, to add temperatures. Physically, these slopes define

a condition rather than an amount. These nonadditive quantities are called intensive

variables.

With these definitions substituted, the differential form of the equation of state

becomes

dE D T dS � P dV C �1 dN1 C � � � C �n dNn;

which is known as the Gibbs equation. However, despite the special treatment, this ex-

pression remains simply the differential of E.S; V;N1; : : : ; Nn/. The Gibbs equation

is a fundamental starting point in many thermodynamical problems.

Another related, and well-known, equation of differentials is the Gibbs-Duhem

equation,

0 D S dT � V dP CN1 d�1 C � � � C Nn d�n:

This remarkable equation indicates that the intensive variables of thermodynamics are

not independent of each other. It holds because the additivity of the extensive vari-

ables implies that the function of state, E D E.S; V;N1; : : : ; Nn/, is homogeneous of

degree 1. (See Exercise 24 at the end of this section.)
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E Differentials and Legendre Transformations
It is often useful to shift the dependence of a function on one or more of its indepen-

dent variables to dependence on, instead, the derivatives of the function with respect to

these variables. Consider, for example, the function y D f .x/, and denote its deriva-

tive by p; that is, p D f 0.x/. If we let u D px � f .x/ and calculate the differential

of u, treating x and p as independent variables, we obtain

du D p dx C x dp � f
0
.x/ dx D p dx C x dp � p dx D x dp:

Since there is no dx term remaining in this differential, u does not depend explicitly

on x, but only on p. Let us therefore define f �.p/ D u D px � f .x/. f �.p/ is

called the Legendre transformation of f .x/ with respect to x, and the two variables x

and p are said to be conjugate to one another. Observe that

f .x/C f
�
.p/ D px;

and the symmetry of this equation indicates that f must also be the Legendre trans-

formation of f �; f ��
D f: In fact, taking the partial derivatives of the equation with

respect to x and p we obtain the symmetric relationships

f
0
.x/ D p and .f

�
/
0
.p/ D x

from which it is apparent that f 0 and .f �/0 are inverse functions;

f
0�
.f

�
/
0
.p/

�

D p; .f
�
/
0�
f

0
.x/
�

D x:

Remark The above definition of f � clearly shows the symmetry in its relationship

with f: An alternative transformation, �f �.p/ (i.e., the function f .x/ � px) shifts

dependence between a variable and the derivative of the function just as effectively,

although it does not share this symmetry. In some fields, particularly thermodynamics,

this alternative is known as the Legendre transformation instead.

E X A M P L E 5
Calculate the Legendre transformation f �.p/ of the function

f .x/ D ex .

Solution Here p D f 0.x/ D ex , so x D lnp. Therefore,

f
�
.p/ D px � f .x/ D p lnp � p:

For functions of several variables, Legendre transformations can be taken with

respect to one or more of the independent variables. If u D f .x; y/, p D f1.x; y/,

and q D f2.x; y/, and if w D px C qy � u, then

dw D p dx C x dp C q dy C y dq � f1.x; y/ dx � f2.x; y/ dy D x dp C y dq

and w does not depend explicitly on x or y, but only on p and q. We can call w.p; q/

(or�w.p; q/ if we are doing thermodynamics) the Legendre transformation of f .x; y/

with respect to x and y, and treat both fx; pg and fy; qg as conjugate pairs of variables.

Observe that

f1.x; y/ D p

f2.x; y/ D q
and

w1.p; q/ D x

w2.p; q/ D y:

Returning to thermodynamics, the Gibbs equation tells us that E depends on S ,

V , and Ni . Since T D
@E

@S
, T and S are conjugate and we can express energy in terms

of temperature rather than entropy by using an (alternative) Legendre transformation.

Let F D E � TS . Then

dF D dE � S dT � T dS D �S dT � P dV C �1 dN1 C � � � C �n dNn:
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Thus, F D F.T; V;N1; : : : ; Nn/: F is known as the Helmholtz free energy, which is

called a thermodynamic potential. It can be more practical to use F; which depends

explicitly on T; rather than E when an experiment is run at constant temperature.

Legendre transformations can be done in terms of any or all of the conjugate pairs.

In the case of the Helmholtz free energy, only the conjugates T and S are used. Other

specific Legendre transformations lead to other thermodynamic potentials. For exam-

ple, the Gibbs free energy, G D E � TS C PV; is widely used in chemistry, where

processes normally take place at constant temperature and pressure. (See Exercise 30

below.)

Legendre transformations are very important in other areas of classical and mod-

ern physics. Historically, they appear in classical mechanics, where the functional

expression of the energy, known as the Hamiltonian, is expressed in terms of Legendre

transformations of a function known as the Lagrangian. (See Exercise 32 for a problem

developing this relationship.) These notions extend to modern physics, which is often

cast in terms of Lagrangians.

E X E R C I S E S 12.6

In Exercises 1–6, use suitable linearizations to find approximate

values for the given functions at the points indicated.

1. f .x; y/ D x2
y

3 at .3:1; 0:9/

2. f .x; y/ D tan�1
�

y

x

�

at .3:01; 2:99/

3. f .x; y/ D sin.�xy C lny/ at .0:01; 1:05/

4. f .x; y/ D
24

x2
C xy C y2

at .2:1; 1:8/

5. f .x; y; z/ D
p

x C 2y C 3z at .1:9; 1:8; 1:1/

6. f .x; y/ D x eyCx2

at .2:05;�3:92/

In Exercises 7–10, write the differential of the given function and

use it to estimate the value of the function at the given point by

starting with a known value at a nearby point.

7. z D x2
e

3y
; at x D 3:05; y D �0:02

8. g.s; t/ D s2
=t; g.2:1; 1:9/

9. F.x; y; z/ D
p

x2
C y C 2C z2; F .0:7; 2:6; 1:7/

10. u D x sin.x C y/; at x D
�

2
C

1

20
; y D

�

2
�

1

30

11. The edges of a rectangular box are each measured to within an

accuracy of 1% of their values. What is the approximate

maximum percentage error in

(a) the calculated volume of the box,

(b) the calculated area of one of the faces of the box, and

(c) the calculated length of a diagonal of the box?

C 12. The radius and height of a right-circular conical tank are

measured to be 25 ft and 21 ft, respectively. Each measure-

ment is accurate to within 0.5 in. By about how much can the

calculated volume of the tank be in error?

C 13. By approximately how much can the calculated area of the

conical surface of the tank in Exercise 12 be in error?

C 14. Two sides and the contained angle of a triangular plot of land

are measured to be 224 m, 158 m, and 64ı, respectively. The

length measurements were accurate to within 0.4 m and the

angle measurement to within 2ı. What is the approximate

maximum percentage error if the area of the plot is calculated

from these measurements?

C 15. The angle of elevation of the top of a tower is measured at two

points A and B on the ground in the same direction from the

base of the tower. The angles are 50ı at A and 35ı at B , each

measured to within 1ı. The distance AB is measured to be

100 m with error at most 0.1%. What is the calculated height

of the building, and by about how much can it be in error? To

which of the three measurements is the calculated height most

sensitive?

C 16. By approximately what percentage will the value of

w D
x2y3

z4
increase or decrease if x increases by 1%, y

increases by 2%, and z increases by 3%?

17. Find the Jacobian matrix for the transformation

f.r; �/ D .x; y/, where

x D r cos � and y D r sin �:

(Although .r; �/ can be regarded as polar coordinates in the

xy-plane, they are Cartesian coordinates in their own

r� -plane.)

18. Find the Jacobian matrix for the transformation

f.R; �; �/ D .x; y; z/, where

x D R sin� cos �; y D R sin� sin �; z D R cos�:

Here, .R; �; �/ are spherical coordinates in xyz-space, as

introduced in Section 10.6.

19. Find the Jacobian matrix Df.x; y; z/ for the transformation of

R
3

to R
2

given by

f.x; y; z/ D .x2
C yz; y

2
� x ln z/:

Use Df.2; 2; 1/ to help you find an approximate value for

f.1:98; 2:01; 1:03/.

20. Find the Jacobian matrix Dg.1; 3; 3/ for the transformation of

R
3

to R
3

given by

g.r; s; t/ D .r2
s; r

2
t; s

2
� t

2
/
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and use the result to find an approximate value for

g.0:99; 3:02; 2:97/.

21. Prove that if f .x; y/ is differentiable at .a; b/, then f .x; y/ is

continuous at .a; b/.

22.A Prove the following version of the Mean-Value Theorem: If

f .x; y/ has first partial derivatives continuous near every

point of the straight line segment joining the points .a; b/ and

.aC h; b C k/, then there exists a number � satisfying

0 < � < 1 such that

f .aC h; b C k/ Df .a; b/C hf1.aC �h; b C �k/

C kf2.aC �h; b C �k/:

(Hint: Apply the single-variable Mean-Value Theorem to

g.t/ D f .aC th; b C tk/.) Why could we not have used this

result in place of Theorem 3 to prove Theorem 4 and hence

the version of the Chain Rule given in this section?

23.A Generalize Exercise 22 as follows: show that, if f .x; y/ has

continuous partial derivatives of second order near the point

.a; b/, then there exists a number � satisfying 0 < � < 1 such

that, for h and k sufficiently small in absolute value,

f .aC h; b C k/ Df .a; b/C hf1.a; b/C kf2.a; b/

C h
2
f11.aC �h; b C �k/

C 2hkf12.aC �h; b C �k/

C k
2
f22.aC �h; b C �k/:

Hence, show that there is a constantK such that for all

values of h and k that are sufficiently small in absolute

value,
ˇ

ˇ

ˇ
f .a C h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/

ˇ

ˇ

ˇ

� K.h2
C k2/.

Thermodynamics and Legendre Transformations

24.A Use the Gibbs equation

dE D T dS � P dV C �1 dN1 C � � � C �n dNn

and the fact that, being additive in its extensive variables,

E D E.S; V;N1; : : : ; Nn/ is necessarily homogeneous of

degree 1, to establish the Gibbs-Duhem equation

0 D S dT � V dP CN1 d�1 C � � � CNn d�n:

(Hint: Use Euler’s Theorem, Theorem 2 of Section 12.5.)

25.A The equation of state for an ideal gas in the form of

E D E.S; V;N /, using extensive variables only, is rarely

quoted. It is

E D
3h2N

4�m

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

:

However, it is common to see PV D NkT; or E D 3
2
NkT

instead. Here k is the Boltzmann constant, h is Planck’s

constant, and m is the mass of one atom. Deduce these

common forms from the explicit formula for E given as a

function of S , V; and N .

26.A If f 00.x/ > 0 for all x, show that the Legendre transformation

f �.p/ is the maximum value of the function g.x/ D px � f .x/

considered as a function of x alone with p fixed.

In Exercises 27–29 give an explicit formula for the Legendre

transformation f �.p/ of the given function f .x/.

27. f .x/ D x2 28. f .x/ D x4

29. f .x/ D ln.2C 3x/

30. Use differentials to show that the Gibbs free energy,

G D E � TS C PV , depends on T and P alone when the

numbers of molecules of each type are fixed. Determine the

partial derivatives of G with respect to the new variables T

and P:

31. Entropy can be written as a function, S D S.E; V;N1; � � � ; Nn/.

Legendre transformations can be performed on it too,

although they are not so well-known. The resulting functions

are called Massieu-Planck functions. Show that one of these,

the Massieu’s potential, ˆ D S � 1
T
E, depends on

temperature instead of energy.

32.I In classical mechanics, the energy of a system is expressed in

terms of a function called the Hamiltonian. When the energy

is independent of time, the Hamiltonian depends only on the

positions, qi , and the momenta, pi , of the particles in the

system, that is, H D H.q1; � � � ; qn; p1; � � � ; pn/. There is also

another function, called the Lagrangian, that depends on the

positions qi and the velocities Pqi , that is,

L D L.q1; � � � ; qn; Pq1; � � � ; Pqn/, such that the Hamiltonian is a

Legendre transformation of the Lagrangian with respect to the

velocity variables:

H.q1; � � � ; qn; p1; � � � ; pn/

D

X

i

pi Pqi � L.q1; � � � ; qn; Pq1; � � � ; Pqn/:

(a) What variables are conjugate in this Legendre

transformation? What partial derivatives of L are

implicitly determined by it?

(b) In the absence of external forces, the principle of least

action requires that
@L

@qi

D Ppi . By taking the differential

of H and using the result of part (a), show that
@H

@qi

D � Ppi and
@H

@pi

D Pqi . These are known as

Hamilton’s equations.

(c) Use Hamilton’s equations to show that the Hamiltonian,
1
2
.q2
C p2/, represents a harmonic oscillator because it is

equivalent to the differential equation Rq C q D 0.
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Thus, F D F.T; V;N1; : : : ; Nn/: F is known as the Helmholtz free energy, which is

called a thermodynamic potential. It can be more practical to use F; which depends

explicitly on T; rather than E when an experiment is run at constant temperature.

Legendre transformations can be done in terms of any or all of the conjugate pairs.

In the case of the Helmholtz free energy, only the conjugates T and S are used. Other

specific Legendre transformations lead to other thermodynamic potentials. For exam-

ple, the Gibbs free energy, G D E � TS C PV; is widely used in chemistry, where

processes normally take place at constant temperature and pressure. (See Exercise 30

below.)

Legendre transformations are very important in other areas of classical and mod-

ern physics. Historically, they appear in classical mechanics, where the functional

expression of the energy, known as the Hamiltonian, is expressed in terms of Legendre

transformations of a function known as the Lagrangian. (See Exercise 32 for a problem

developing this relationship.) These notions extend to modern physics, which is often

cast in terms of Lagrangians.

E X E R C I S E S 12.6

In Exercises 1–6, use suitable linearizations to find approximate

values for the given functions at the points indicated.

1. f .x; y/ D x2
y

3 at .3:1; 0:9/

2. f .x; y/ D tan�1
�

y

x

�

at .3:01; 2:99/

3. f .x; y/ D sin.�xy C lny/ at .0:01; 1:05/

4. f .x; y/ D
24

x2
C xy C y2

at .2:1; 1:8/

5. f .x; y; z/ D
p

x C 2y C 3z at .1:9; 1:8; 1:1/

6. f .x; y/ D x eyCx2

at .2:05;�3:92/

In Exercises 7–10, write the differential of the given function and

use it to estimate the value of the function at the given point by

starting with a known value at a nearby point.

7. z D x2
e

3y
; at x D 3:05; y D �0:02

8. g.s; t/ D s2
=t; g.2:1; 1:9/

9. F.x; y; z/ D
p

x2
C y C 2C z2; F .0:7; 2:6; 1:7/

10. u D x sin.x C y/; at x D
�

2
C

1

20
; y D

�

2
�

1

30

11. The edges of a rectangular box are each measured to within an

accuracy of 1% of their values. What is the approximate

maximum percentage error in

(a) the calculated volume of the box,

(b) the calculated area of one of the faces of the box, and

(c) the calculated length of a diagonal of the box?

C 12. The radius and height of a right-circular conical tank are

measured to be 25 ft and 21 ft, respectively. Each measure-

ment is accurate to within 0.5 in. By about how much can the

calculated volume of the tank be in error?

C 13. By approximately how much can the calculated area of the

conical surface of the tank in Exercise 12 be in error?

C 14. Two sides and the contained angle of a triangular plot of land

are measured to be 224 m, 158 m, and 64ı, respectively. The

length measurements were accurate to within 0.4 m and the

angle measurement to within 2ı. What is the approximate

maximum percentage error if the area of the plot is calculated

from these measurements?

C 15. The angle of elevation of the top of a tower is measured at two

points A and B on the ground in the same direction from the

base of the tower. The angles are 50ı at A and 35ı at B , each

measured to within 1ı. The distance AB is measured to be

100 m with error at most 0.1%. What is the calculated height

of the building, and by about how much can it be in error? To

which of the three measurements is the calculated height most

sensitive?

C 16. By approximately what percentage will the value of

w D
x2y3

z4
increase or decrease if x increases by 1%, y

increases by 2%, and z increases by 3%?

17. Find the Jacobian matrix for the transformation

f.r; �/ D .x; y/, where

x D r cos � and y D r sin �:

(Although .r; �/ can be regarded as polar coordinates in the

xy-plane, they are Cartesian coordinates in their own

r� -plane.)

18. Find the Jacobian matrix for the transformation

f.R; �; �/ D .x; y; z/, where

x D R sin� cos �; y D R sin� sin �; z D R cos�:

Here, .R; �; �/ are spherical coordinates in xyz-space, as

introduced in Section 10.6.

19. Find the Jacobian matrix Df.x; y; z/ for the transformation of

R
3

to R
2

given by

f.x; y; z/ D .x2
C yz; y

2
� x ln z/:

Use Df.2; 2; 1/ to help you find an approximate value for

f.1:98; 2:01; 1:03/.

20. Find the Jacobian matrix Dg.1; 3; 3/ for the transformation of

R
3

to R
3

given by

g.r; s; t/ D .r2
s; r

2
t; s

2
� t

2
/
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and use the result to find an approximate value for

g.0:99; 3:02; 2:97/.

21. Prove that if f .x; y/ is differentiable at .a; b/, then f .x; y/ is

continuous at .a; b/.

22.A Prove the following version of the Mean-Value Theorem: If

f .x; y/ has first partial derivatives continuous near every

point of the straight line segment joining the points .a; b/ and

.aC h; b C k/, then there exists a number � satisfying

0 < � < 1 such that

f .aC h; b C k/ Df .a; b/C hf1.aC �h; b C �k/

C kf2.aC �h; b C �k/:

(Hint: Apply the single-variable Mean-Value Theorem to

g.t/ D f .aC th; b C tk/.) Why could we not have used this

result in place of Theorem 3 to prove Theorem 4 and hence

the version of the Chain Rule given in this section?

23.A Generalize Exercise 22 as follows: show that, if f .x; y/ has

continuous partial derivatives of second order near the point

.a; b/, then there exists a number � satisfying 0 < � < 1 such

that, for h and k sufficiently small in absolute value,

f .aC h; b C k/ Df .a; b/C hf1.a; b/C kf2.a; b/

C h
2
f11.aC �h; b C �k/

C 2hkf12.aC �h; b C �k/

C k
2
f22.aC �h; b C �k/:

Hence, show that there is a constantK such that for all

values of h and k that are sufficiently small in absolute

value,
ˇ

ˇ

ˇ
f .a C h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/

ˇ

ˇ

ˇ

� K.h2
C k2/.

Thermodynamics and Legendre Transformations

24.A Use the Gibbs equation

dE D T dS � P dV C �1 dN1 C � � � C �n dNn

and the fact that, being additive in its extensive variables,

E D E.S; V;N1; : : : ; Nn/ is necessarily homogeneous of

degree 1, to establish the Gibbs-Duhem equation

0 D S dT � V dP CN1 d�1 C � � � CNn d�n:

(Hint: Use Euler’s Theorem, Theorem 2 of Section 12.5.)

25.A The equation of state for an ideal gas in the form of

E D E.S; V;N /, using extensive variables only, is rarely

quoted. It is

E D
3h2N

4�m

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

:

However, it is common to see PV D NkT; or E D 3
2
NkT

instead. Here k is the Boltzmann constant, h is Planck’s

constant, and m is the mass of one atom. Deduce these

common forms from the explicit formula for E given as a

function of S , V; and N .

26.A If f 00.x/ > 0 for all x, show that the Legendre transformation

f �.p/ is the maximum value of the function g.x/ D px � f .x/

considered as a function of x alone with p fixed.

In Exercises 27–29 give an explicit formula for the Legendre

transformation f �.p/ of the given function f .x/.

27. f .x/ D x2 28. f .x/ D x4

29. f .x/ D ln.2C 3x/

30. Use differentials to show that the Gibbs free energy,

G D E � TS C PV , depends on T and P alone when the

numbers of molecules of each type are fixed. Determine the

partial derivatives of G with respect to the new variables T

and P:

31. Entropy can be written as a function, S D S.E; V;N1; � � � ; Nn/.

Legendre transformations can be performed on it too,

although they are not so well-known. The resulting functions

are called Massieu-Planck functions. Show that one of these,

the Massieu’s potential, ˆ D S � 1
T
E, depends on

temperature instead of energy.

32.I In classical mechanics, the energy of a system is expressed in

terms of a function called the Hamiltonian. When the energy

is independent of time, the Hamiltonian depends only on the

positions, qi , and the momenta, pi , of the particles in the

system, that is, H D H.q1; � � � ; qn; p1; � � � ; pn/. There is also

another function, called the Lagrangian, that depends on the

positions qi and the velocities Pqi , that is,

L D L.q1; � � � ; qn; Pq1; � � � ; Pqn/, such that the Hamiltonian is a

Legendre transformation of the Lagrangian with respect to the

velocity variables:

H.q1; � � � ; qn; p1; � � � ; pn/

D

X

i

pi Pqi � L.q1; � � � ; qn; Pq1; � � � ; Pqn/:

(a) What variables are conjugate in this Legendre

transformation? What partial derivatives of L are

implicitly determined by it?

(b) In the absence of external forces, the principle of least

action requires that
@L

@qi

D Ppi . By taking the differential

of H and using the result of part (a), show that
@H

@qi

D � Ppi and
@H

@pi

D Pqi . These are known as

Hamilton’s equations.

(c) Use Hamilton’s equations to show that the Hamiltonian,
1
2
.q2
C p2/, represents a harmonic oscillator because it is

equivalent to the differential equation Rq C q D 0.
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12.7 Gradients and Directional Derivatives
A first partial derivative of a function of several variables gives the rate of change of

that function with respect to distance measured in the direction of one of the coordinate

axes. In this section we will develop a method for finding the rate of change of such

a function with respect to distance measured in any direction in the domain of the

function.

To begin, it is useful to combine the first partial derivatives of a function into a

single vector function called a gradient. For simplicity, we will develop and interpret

the gradient for functions of two variables. Extension to functions of three or more

variables is straightforward and will be discussed later in this section.

D E F I N I T I O N

6

At any point .x; y/ where the first partial derivatives of the function f .x; y/

exist, we define the gradient vector rf .x; y/ D grad f .x; y/ by

rf .x; y/ D grad f .x; y/ D f1.x; y/iC f2.x; y/j:

Recall that i and j denote the unit basis vectors from the origin to the points .1; 0/

and .0; 1/, respectively. The symbol r, called del or nabla, is a vector differential

operator:

r D i
@

@x
C j

@

@y
:

We can apply this operator to a function f .x; y/ by writing the operator to the left of

the function. The result is the gradient of the function

rf .x; y/ D

�

i
@

@x
C j

@

@y

�

f .x; y/ D f1.x; y/iC f2.x; y/j:

We will make extensive use of the del operator in Chapter 16.

E X A M P L E 1
If f .x; y/ D x2

C y2, then rf .x; y/ D 2xiC 2yj. In particular,

rf .1; 2/ D 2i C 4j. Observe that this vector is perpendicular to

the tangent line xC 2y D 5 to the circle x2
C y

2
D 5 at .1; 2/. This circle is the level

curve of f that passes through the point .1; 2/. (See Figure 12.26.) As the following

theorem shows, this perpendicularity is not a coincidence.

Figure 12.26 The gradient of

f .x; y/ D x2
C y2 at .1; 2/ is normal to

the level curve of f through .1; 2/

y

x

2iC 4j

x C 2y D 5

x2
C y2

D 5

.1; 2/

T H E O R E M

6

If f .x; y/ is differentiable at the point .a; b/ and rf .a; b/ ¤ 0, then rf .a; b/ is a

normal vector to the level curve of f that passes through .a; b/.
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PROOF Let r D r.t/ D x.t/i C y.t/j be a parametrization of the level curve of f

such that x.0/ D a and y.0/ D b. Then for all t near 0, f
�

x.t/; y.t/
�

D f .a; b/.

Differentiating this equation with respect to t using the Chain Rule, we obtain

f1

�

x.t/; y.t/
� dx

dt
C f2

�

x.t/; y.t/
� dy

dt
D 0:

At t D 0 this says that rf .a; b/ �
dr

dt

ˇ

ˇ

ˇ

tD0
D 0; that is, rf is perpendicular to the

tangent vector dr=dt to the level curve at .a; b/.

Directional Derivatives
The first partial derivatives f1.a; b/ and f2.a; b/ give the rates of change of f .x; y/

at .a; b/ measured in the directions of the positive x- and y-axes, respectively. If we

want to know how fast f .x; y/ changes value as we move through the domain of f at

.a; b/ in some other direction, we require a more general directional derivative. We

can specify the direction by means of a nonzero vector. It is most convenient to use a

unit vector.

D E F I N I T I O N

7

Let u D ui C vj be a unit vector, so that u2
C v2

D 1. The directional

derivative of f .x; y/ at .a; b/ in the direction of u is the rate of change of

f .x; y/with respect to distance measured at .a; b/ along a ray in the direction

of u in the xy-plane. (See Figure 12.27.) This directional derivative is given

by

Duf .a; b/ D lim
h!0C

f .aC hu; b C hv/ � f .a; b/

h
:

It is also given by

Duf .a; b/ D
d

dt
f .aC tu; b C tv/

ˇ

ˇ

ˇ

ˇ

tD0

if the derivative on the right side exists.

Remark This is nothing more than the basic derivative in one variable disguised by

the complications arising when u is not parallel to either coordinate axis. The line L

through .a; b/ parallel to u is given by the position vector r.t/ D aiC bjC tu. If we

regard L as a single coordinate axis with position on it given by the coordinate t and

ignore the rest of the two-dimensional space, then f .x.t/; y.t// D g.t/ along L and

Duf .x.t/; y.t// D
d

dt
f
�

x.t/; y.t/
�

D

dg.t/

dt
;

for any t alongL. Similarly, if we return to the original axes and choose a direction par-

allel to either of them, then the directional derivatives become the corresponding first

partials: Dif .a; b/ D f1.a; b/, Djf .a; b/ D f2.a; b/, D�if .a; b/ D �f1.a; b/,

and D�jf .a; b/ D �f2.a; b/. The following theorem shows how the gradient can be

used to calculate any directional derivative.

x

y

z

u
.a;b/L

C

zDf .x;y/

T

.a;b;f .a;b//

Figure 12.27 Unit vector u determines a

line L through .a; b/ in the domain of f .

The vertical plane containing L intersects

the graph of f in a curve C whose tangent

T at .a; b; f .a; b// has slope Duf .a; b/

T H E O R E M

7

Using the gradient to find directional derivatives

If f is differentiable at .a; b/ and u D ui C vj is a unit vector, then the directional

derivative of f at .a; b/ in the direction of u is given by

Duf .a; b/ D u � rf .a; b/:
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12.7 Gradients and Directional Derivatives
A first partial derivative of a function of several variables gives the rate of change of

that function with respect to distance measured in the direction of one of the coordinate

axes. In this section we will develop a method for finding the rate of change of such

a function with respect to distance measured in any direction in the domain of the

function.

To begin, it is useful to combine the first partial derivatives of a function into a

single vector function called a gradient. For simplicity, we will develop and interpret

the gradient for functions of two variables. Extension to functions of three or more

variables is straightforward and will be discussed later in this section.

D E F I N I T I O N

6

At any point .x; y/ where the first partial derivatives of the function f .x; y/

exist, we define the gradient vector rf .x; y/ D grad f .x; y/ by

rf .x; y/ D grad f .x; y/ D f1.x; y/iC f2.x; y/j:

Recall that i and j denote the unit basis vectors from the origin to the points .1; 0/

and .0; 1/, respectively. The symbol r, called del or nabla, is a vector differential

operator:

r D i
@

@x
C j

@

@y
:

We can apply this operator to a function f .x; y/ by writing the operator to the left of

the function. The result is the gradient of the function

rf .x; y/ D

�

i
@

@x
C j

@

@y

�

f .x; y/ D f1.x; y/iC f2.x; y/j:

We will make extensive use of the del operator in Chapter 16.

E X A M P L E 1
If f .x; y/ D x2

C y2, then rf .x; y/ D 2xiC 2yj. In particular,

rf .1; 2/ D 2i C 4j. Observe that this vector is perpendicular to

the tangent line xC 2y D 5 to the circle x2
C y

2
D 5 at .1; 2/. This circle is the level

curve of f that passes through the point .1; 2/. (See Figure 12.26.) As the following

theorem shows, this perpendicularity is not a coincidence.

Figure 12.26 The gradient of

f .x; y/ D x2
C y2 at .1; 2/ is normal to

the level curve of f through .1; 2/

y

x

2iC 4j

x C 2y D 5

x2
C y2

D 5

.1; 2/

T H E O R E M

6

If f .x; y/ is differentiable at the point .a; b/ and rf .a; b/ ¤ 0, then rf .a; b/ is a

normal vector to the level curve of f that passes through .a; b/.
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PROOF Let r D r.t/ D x.t/i C y.t/j be a parametrization of the level curve of f

such that x.0/ D a and y.0/ D b. Then for all t near 0, f
�

x.t/; y.t/
�

D f .a; b/.

Differentiating this equation with respect to t using the Chain Rule, we obtain

f1

�

x.t/; y.t/
� dx

dt
C f2

�

x.t/; y.t/
� dy

dt
D 0:

At t D 0 this says that rf .a; b/ �
dr

dt

ˇ

ˇ

ˇ

tD0
D 0; that is, rf is perpendicular to the

tangent vector dr=dt to the level curve at .a; b/.

Directional Derivatives
The first partial derivatives f1.a; b/ and f2.a; b/ give the rates of change of f .x; y/

at .a; b/ measured in the directions of the positive x- and y-axes, respectively. If we

want to know how fast f .x; y/ changes value as we move through the domain of f at

.a; b/ in some other direction, we require a more general directional derivative. We

can specify the direction by means of a nonzero vector. It is most convenient to use a

unit vector.

D E F I N I T I O N

7

Let u D ui C vj be a unit vector, so that u2
C v2

D 1. The directional

derivative of f .x; y/ at .a; b/ in the direction of u is the rate of change of

f .x; y/with respect to distance measured at .a; b/ along a ray in the direction

of u in the xy-plane. (See Figure 12.27.) This directional derivative is given

by

Duf .a; b/ D lim
h!0C

f .aC hu; b C hv/ � f .a; b/

h
:

It is also given by

Duf .a; b/ D
d

dt
f .aC tu; b C tv/

ˇ

ˇ

ˇ

ˇ

tD0

if the derivative on the right side exists.

Remark This is nothing more than the basic derivative in one variable disguised by

the complications arising when u is not parallel to either coordinate axis. The line L

through .a; b/ parallel to u is given by the position vector r.t/ D aiC bjC tu. If we

regard L as a single coordinate axis with position on it given by the coordinate t and

ignore the rest of the two-dimensional space, then f .x.t/; y.t// D g.t/ along L and

Duf .x.t/; y.t// D
d

dt
f
�

x.t/; y.t/
�

D

dg.t/

dt
;

for any t alongL. Similarly, if we return to the original axes and choose a direction par-

allel to either of them, then the directional derivatives become the corresponding first

partials: Dif .a; b/ D f1.a; b/, Djf .a; b/ D f2.a; b/, D�if .a; b/ D �f1.a; b/,

and D�jf .a; b/ D �f2.a; b/. The following theorem shows how the gradient can be

used to calculate any directional derivative.

x

y

z

u
.a;b/L

C

zDf .x;y/

T

.a;b;f .a;b//

Figure 12.27 Unit vector u determines a

line L through .a; b/ in the domain of f .

The vertical plane containing L intersects

the graph of f in a curve C whose tangent

T at .a; b; f .a; b// has slope Duf .a; b/

T H E O R E M

7

Using the gradient to find directional derivatives

If f is differentiable at .a; b/ and u D ui C vj is a unit vector, then the directional

derivative of f at .a; b/ in the direction of u is given by

Duf .a; b/ D u � rf .a; b/:
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PROOF By the Chain Rule:

Duf .a; b/ D
d

dt
f .aC tu; b C tv/

ˇ

ˇ

ˇ

ˇ

tD0

D uf1.a; b/C vf2.a; b/ D u � rf .a; b/:

We already know that having partial derivatives at a point does not imply that a func-

tion is continuous there, let alone that it is differentiable. The same can be said about

directional derivatives. It is possible for a function to have a directional derivative

in every direction at a given point and still not be continuous at that point. See

Exercise 37 for an example of such a function.

Given any nonzero vector v, we can always obtain a unit vector in the same di-

rection by dividing v by its length. The directional derivative of f at .a; b/ in the

direction of v is therefore given by

Dv=jvjf .a; b/ D
v

jvj
� rf .a; b/:

Remark When trying to understand why u must be a unit vector for calculating a

directional derivative by the formula in Theorem 7, it helps to think of the directional

derivative as a simple derivative with respect to a parameter t along the line L, de-

scribed by a position vector r.t/ as described in the remark preceeding the statement

of the theorem. As in that remark, we have

dg.t/

dt
D

df .x.t/; y.t//

dt
D f1.x; y/x

0
.t/C f2.x; y/y

0
.t/ D rf �

dr.t/

dt
:

While this is true for any parameter t , a directional derivative along L is the rate of

change with respect to distance or arc length, s D t . Given the formula for arc length

in terms of a parameter from Section 8.4, it follows that r 0.t/ must be a unit vector:

juj D

ˇ

ˇ

ˇ

ˇ

dr.t/

dt

ˇ

ˇ

ˇ

ˇ

D

q

�

x 0.t/
�2
C

�

y 0.t/
�2
D

ds

dt
D 1:

E X A M P L E 2
Find the rate of change of f .x; y/ D y4

C 2xy3
C x2y2 at .0; 1/

measured in each of the following directions:

(a) iC 2j, (b) j � 2i, (c) 3i, (d) iC j.

Solution We calculate

rf .x; y/ D .2y
3
C 2xy

2
/iC .4y3

C 6xy
2
C 2x

2
y/j;

rf .0; 1/ D 2iC 4j:

(a) The unit vector in the direction of iC2j is
iC 2j
p

5
. Thus, the directional derivative

of f at .0; 1/ in that direction is

iC 2j
p

5
� .2iC 4j/ D

2C 8
p

5
D 2
p

5:

Observe that i C 2j points in the same direction as rf .0; 1/ so the directional

derivative is positive and equal to the length of rf .0; 1/.

(b) The unit vector in the direction of j� 2i is
j � 2i
p

5
. Thus, the directional derivative

of f at .0; 1/ in that direction is

�2iC j
p

5
� .2iC 4j/ D

�4C 4
p

5
D 0:
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Since j � 2i is perpendicular to rf .0; 1/, it is tangent to the level curve of f

through .0; 1/, so the directional derivative in that direction is zero.

(c) The unit vector in the direction of 3i is just i, so the directional derivative of f at

.0; 1/ in that direction is

i � .2iC 4j/ D 2:

As noted previously, the directional derivative of f in the direction of the positive

x-axis is just f1.0; 1/.

(d) The unit vector in the direction of iC j is
iC j
p

2
, so the directional derivative of f

at .0; 1/ in that direction is

iC j
p

2
� .2iC 4j/ D

2C 4
p

2
D 3
p

2:

If we move along the surface z D f .x; y/ through the point .0; 1; 1/ in a direction

making horizontal angles of 45ı with the positive directions of the x- and y-axes,

we would be rising at a rate of 3
p

2 vertical units per horizontal unit moved.

Remark A direction in the plane can be specified by a polar angle. The direction

making angle � with the positive direction of the x-axis corresponds to the unit vector

(see Figure 12.28)
y

x

.cos �; sin�/

�

vector u�

Figure 12.28 The unit vector specified by

a polar angle �

u� D cos� iC sin� j;

so the directional derivative of f at .x; y/ in that direction is

D�f .x; y/ D Du�
f .x; y/ D u� � rf .x; y/ D f1.x; y/ cos� C f2.x; y/ sin�:

Note the use of the symbol D�f .x; y/ to denote a derivative of f with respect to

distance measured in the direction �.

As observed in the previous example, Theorem 7 provides a useful interpretation

for the gradient vector. For any unit vector u we have

Duf .a; b/ D u � rf .a; b/ D jrf .a; b/j cos �;

where � is the angle between the vectors u and rf .a; b/. Since cos � only takes

on values between �1 and 1, Duf .a; b/ only takes on values between �jrf .a; b/j

and jrf .a; b/j. Moreover, Duf .a; b/ D �jrf .a; b/j if and only if u points in the

opposite direction to rf .a; b/ (so that cos � D �1), and Duf .a; b/ D jrf .a; b/j

if and only if u points in the same direction as rf .a; b/ (so that cos � D 1). The

directional derivative is zero in the direction � D �=2; this is the direction of the

(tangent line to the) level curve of f through .a; b/.

We summarize these properties of the gradient as follows:

Geometric properties of the gradient vector

(i) At .a; b/, f .x; y/ increases most rapidly in the direction of the gradient

vector rf .a; b/. The maximum rate of increase is jrf .a; b/j.

(ii) At .a; b/, f .x; y/ decreases most rapidly in the direction of �rf .a; b/.

The maximum rate of decrease is jrf .a; b/j.

(iii) The rate of change of f .x; y/ at .a; b/ is zero in directions tangent to the

level curve of f that passes through .a; b/.

Look again at the topographic map in Figure 12.6 in Section 12.1. The streams on

the map flow in the direction of steepest descent, that is, in the direction of �rf;

where f measures the elevation of land. The streams therefore cross the contours (the

level curves of f ) at right angles. Like the stream, an experienced skier might choose

a downhill path close to the direction of the negative gradient, while a novice skier

would prefer to stay closer to the level curves.
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PROOF By the Chain Rule:

Duf .a; b/ D
d

dt
f .aC tu; b C tv/

ˇ

ˇ

ˇ

ˇ

tD0

D uf1.a; b/C vf2.a; b/ D u � rf .a; b/:

We already know that having partial derivatives at a point does not imply that a func-

tion is continuous there, let alone that it is differentiable. The same can be said about

directional derivatives. It is possible for a function to have a directional derivative

in every direction at a given point and still not be continuous at that point. See

Exercise 37 for an example of such a function.

Given any nonzero vector v, we can always obtain a unit vector in the same di-

rection by dividing v by its length. The directional derivative of f at .a; b/ in the

direction of v is therefore given by

Dv=jvjf .a; b/ D
v

jvj
� rf .a; b/:

Remark When trying to understand why u must be a unit vector for calculating a

directional derivative by the formula in Theorem 7, it helps to think of the directional

derivative as a simple derivative with respect to a parameter t along the line L, de-

scribed by a position vector r.t/ as described in the remark preceeding the statement

of the theorem. As in that remark, we have

dg.t/

dt
D

df .x.t/; y.t//

dt
D f1.x; y/x

0
.t/C f2.x; y/y

0
.t/ D rf �

dr.t/

dt
:

While this is true for any parameter t , a directional derivative along L is the rate of

change with respect to distance or arc length, s D t . Given the formula for arc length

in terms of a parameter from Section 8.4, it follows that r 0.t/ must be a unit vector:

juj D

ˇ

ˇ

ˇ

ˇ

dr.t/

dt

ˇ

ˇ

ˇ

ˇ

D

q

�

x 0.t/
�2
C

�

y 0.t/
�2
D

ds

dt
D 1:

E X A M P L E 2
Find the rate of change of f .x; y/ D y4

C 2xy3
C x2y2 at .0; 1/

measured in each of the following directions:

(a) iC 2j, (b) j � 2i, (c) 3i, (d) iC j.

Solution We calculate

rf .x; y/ D .2y
3
C 2xy

2
/iC .4y3

C 6xy
2
C 2x

2
y/j;

rf .0; 1/ D 2iC 4j:

(a) The unit vector in the direction of iC2j is
iC 2j
p

5
. Thus, the directional derivative

of f at .0; 1/ in that direction is

iC 2j
p

5
� .2iC 4j/ D

2C 8
p

5
D 2
p

5:

Observe that i C 2j points in the same direction as rf .0; 1/ so the directional

derivative is positive and equal to the length of rf .0; 1/.

(b) The unit vector in the direction of j� 2i is
j � 2i
p

5
. Thus, the directional derivative

of f at .0; 1/ in that direction is

�2iC j
p

5
� .2iC 4j/ D

�4C 4
p

5
D 0:
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Since j � 2i is perpendicular to rf .0; 1/, it is tangent to the level curve of f

through .0; 1/, so the directional derivative in that direction is zero.

(c) The unit vector in the direction of 3i is just i, so the directional derivative of f at

.0; 1/ in that direction is

i � .2iC 4j/ D 2:

As noted previously, the directional derivative of f in the direction of the positive

x-axis is just f1.0; 1/.

(d) The unit vector in the direction of iC j is
iC j
p

2
, so the directional derivative of f

at .0; 1/ in that direction is

iC j
p

2
� .2iC 4j/ D

2C 4
p

2
D 3
p

2:

If we move along the surface z D f .x; y/ through the point .0; 1; 1/ in a direction

making horizontal angles of 45ı with the positive directions of the x- and y-axes,

we would be rising at a rate of 3
p

2 vertical units per horizontal unit moved.

Remark A direction in the plane can be specified by a polar angle. The direction

making angle � with the positive direction of the x-axis corresponds to the unit vector

(see Figure 12.28)
y

x

.cos �; sin�/

�

vector u�

Figure 12.28 The unit vector specified by

a polar angle �

u� D cos� iC sin� j;

so the directional derivative of f at .x; y/ in that direction is

D�f .x; y/ D Du�
f .x; y/ D u� � rf .x; y/ D f1.x; y/ cos� C f2.x; y/ sin�:

Note the use of the symbol D�f .x; y/ to denote a derivative of f with respect to

distance measured in the direction �.

As observed in the previous example, Theorem 7 provides a useful interpretation

for the gradient vector. For any unit vector u we have

Duf .a; b/ D u � rf .a; b/ D jrf .a; b/j cos �;

where � is the angle between the vectors u and rf .a; b/. Since cos � only takes

on values between �1 and 1, Duf .a; b/ only takes on values between �jrf .a; b/j

and jrf .a; b/j. Moreover, Duf .a; b/ D �jrf .a; b/j if and only if u points in the

opposite direction to rf .a; b/ (so that cos � D �1), and Duf .a; b/ D jrf .a; b/j

if and only if u points in the same direction as rf .a; b/ (so that cos � D 1). The

directional derivative is zero in the direction � D �=2; this is the direction of the

(tangent line to the) level curve of f through .a; b/.

We summarize these properties of the gradient as follows:

Geometric properties of the gradient vector

(i) At .a; b/, f .x; y/ increases most rapidly in the direction of the gradient

vector rf .a; b/. The maximum rate of increase is jrf .a; b/j.

(ii) At .a; b/, f .x; y/ decreases most rapidly in the direction of �rf .a; b/.

The maximum rate of decrease is jrf .a; b/j.

(iii) The rate of change of f .x; y/ at .a; b/ is zero in directions tangent to the

level curve of f that passes through .a; b/.

Look again at the topographic map in Figure 12.6 in Section 12.1. The streams on

the map flow in the direction of steepest descent, that is, in the direction of �rf;

where f measures the elevation of land. The streams therefore cross the contours (the

level curves of f ) at right angles. Like the stream, an experienced skier might choose

a downhill path close to the direction of the negative gradient, while a novice skier

would prefer to stay closer to the level curves.
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E X A M P L E 3
The temperature at position .x; y/ in a region of the xy-plane is

T
ıC, where

T .x; y/ D x
2
e

�y
:

In what direction at the point .2; 1/ does the temperature increase most rapidly? What

is the rate of increase of f in that direction?

Solution We have

rT .x; y/ D 2x e
�y i � x2

e
�yj;

rT .2; 1/ D
4

e
i �

4

e
j D

4

e
.i � j/:

At .2; 1/, T .x; y/ increases most rapidly in the direction of the vector i � j. The rate

of increase in this direction is jrT .2; 1/j D 4
p

2=e ıC/unit distance.

E X A M P L E 4
A hiker is standing beside a stream on the side of a mountain,

examining her map of the region. The height of land (in metres) at

any point .x; y/ is given by the function

h.x; y/ D
20;000

3C x2
C 2y2

;

where x and y (in kilometres) denote the coordinates of the point on the hiker’s map.

The hiker is at the point .3; 2/.

(a) What is the direction of flow of the stream at .3; 2/ on the hiker’s map? How fast

is the stream descending at her location?

(b) Find the equation of the path of the stream on the hiker’s map.

(c) At what angle to the path of the stream (on the map) should the hiker set out if she

wishes to climb at a 15ı inclination to the horizontal?

(d) Make a sketch of the hiker’s map, showing some curves of constant elevation, and

showing the stream.

Solution

(a) We begin by calculating the gradient of h and its length at .3; 2/:

rh.x; y/ D �
20;000

.3C x2
C 2y2/2

.2xiC 4yj/;

rh.3; 2/ D �100.3iC 4j/;

jrh.3; 2/j D 500:

The stream is flowing in the direction whose horizontal projection at .3; 2/ is

�rh.3; 2/, that is, in the horizontal direction of the vector 3iC 4j. The stream is

descending at a rate of 500 m/km, that is, 0.5 m per horizontal metre travelled.

(b) Coordinates on the map are the coordinates .x; y/ in the domain of the height

function h. We can find an equation of the path of the stream on a map of the

region by setting up a differential equation for a change of position along the path.

If the vector dr D dx iC dy j is tangent to the path of the stream at point .x; y/

on the map, then dr is parallel to rh.x; y/. Hence, the components of these two

vectors are proportional:

dx

2x
D

dy

4y
or

dy

y
D

2dx

x
:
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Integrating both sides of this equation, we get lny D 2 ln x C lnC , or y D Cx2.

Since the path of the stream passes through .3; 2/, we have C D 2=9 and the

equation is 9y D 2x2.

(c) Suppose the hiker moves away from .3; 2/ in the direction of the unit vector u.

She will be ascending at an inclination of 15ı if the directional derivative of h in

the direction of u is 1;000 tan 15ı
� 268. (The 1,000 compensates for the fact that

the vertical units are metres while the horizontal units are kilometres.) If � is the

angle between u and the upstream direction, then

500 cos � D jrh.3; 2/j cos � D Duh.3; 2/ � 268:

Hence, cos � � 0:536 and � � 57:6ı. She should set out in a direction making a

horizontal angle of about 58ı with the upstream direction.

(d) A suitable sketch of the map is given in Figure 12.29.

Figure 12.29 The hiker’s map. Unlike

most mountains, this one has perfectly

elliptical contours.

y

x

.3; 2/

streamh D 0:5

h D 1

h D 2

h D 5

E X A M P L E 5
Find the second directional derivative of f .x; y/ in the direction

making angle � with the positive x-axis.

Solution As observed earlier, the first directional derivative is

D�f .x; y/ D .cos� iC sin� j/ � rf .x; y/ D f1.x; y/ cos� C f2.x; y/ sin�:

The second directional derivative is therefore

D
2
�f .x; y/ D D�

�

D�f .x; y/
�

D .cos� iC sin� j/ � r
�

f1.x; y/ cos� C f2.x; y/ sin�
�

D

�

f11.x; y/ cos� C f21.x; y/ sin�
�

cos�

C

�

f12.x; y/ cos� C f22.x; y/ sin�
�

sin�

D f11.x; y/ cos2
� C 2f12.x; y/ cos� sin� C f22.x; y/ sin2

�:

Note that if � D 0 or � D � (so the directional derivative is in a direction parallel

to the x-axis), then D2
�f .x; y/ D f11.x; y/. Similarly, D2

�f .x; y/ D f22.x; y/ if

� D �=2 or 3�=2.

Rates Perceived by a Moving Observer
Suppose that an observer is moving around in the xy-plane measuring the value of

a function f .x; y/ defined in the plane as he passes through each point .x; y/. (For

instance, f .x; y/ might be the temperature at .x; y/.) If the observer is moving with

velocity v at the instant when he passes through the point .a; b/, how fast would he

observe f .x; y/ to be changing at that moment?
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E X A M P L E 3
The temperature at position .x; y/ in a region of the xy-plane is

T
ıC, where

T .x; y/ D x
2
e

�y
:

In what direction at the point .2; 1/ does the temperature increase most rapidly? What

is the rate of increase of f in that direction?

Solution We have

rT .x; y/ D 2x e
�y i � x2

e
�yj;

rT .2; 1/ D
4

e
i �

4

e
j D

4

e
.i � j/:

At .2; 1/, T .x; y/ increases most rapidly in the direction of the vector i � j. The rate

of increase in this direction is jrT .2; 1/j D 4
p

2=e ıC/unit distance.

E X A M P L E 4
A hiker is standing beside a stream on the side of a mountain,

examining her map of the region. The height of land (in metres) at

any point .x; y/ is given by the function

h.x; y/ D
20;000

3C x2
C 2y2

;

where x and y (in kilometres) denote the coordinates of the point on the hiker’s map.

The hiker is at the point .3; 2/.

(a) What is the direction of flow of the stream at .3; 2/ on the hiker’s map? How fast

is the stream descending at her location?

(b) Find the equation of the path of the stream on the hiker’s map.

(c) At what angle to the path of the stream (on the map) should the hiker set out if she

wishes to climb at a 15ı inclination to the horizontal?

(d) Make a sketch of the hiker’s map, showing some curves of constant elevation, and

showing the stream.

Solution

(a) We begin by calculating the gradient of h and its length at .3; 2/:

rh.x; y/ D �
20;000

.3C x2
C 2y2/2

.2xiC 4yj/;

rh.3; 2/ D �100.3iC 4j/;

jrh.3; 2/j D 500:

The stream is flowing in the direction whose horizontal projection at .3; 2/ is

�rh.3; 2/, that is, in the horizontal direction of the vector 3iC 4j. The stream is

descending at a rate of 500 m/km, that is, 0.5 m per horizontal metre travelled.

(b) Coordinates on the map are the coordinates .x; y/ in the domain of the height

function h. We can find an equation of the path of the stream on a map of the

region by setting up a differential equation for a change of position along the path.

If the vector dr D dx iC dy j is tangent to the path of the stream at point .x; y/

on the map, then dr is parallel to rh.x; y/. Hence, the components of these two

vectors are proportional:

dx

2x
D

dy

4y
or

dy

y
D

2dx

x
:
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Integrating both sides of this equation, we get lny D 2 ln x C lnC , or y D Cx2.

Since the path of the stream passes through .3; 2/, we have C D 2=9 and the

equation is 9y D 2x2.

(c) Suppose the hiker moves away from .3; 2/ in the direction of the unit vector u.

She will be ascending at an inclination of 15ı if the directional derivative of h in

the direction of u is 1;000 tan 15ı
� 268. (The 1,000 compensates for the fact that

the vertical units are metres while the horizontal units are kilometres.) If � is the

angle between u and the upstream direction, then

500 cos � D jrh.3; 2/j cos � D Duh.3; 2/ � 268:

Hence, cos � � 0:536 and � � 57:6ı. She should set out in a direction making a

horizontal angle of about 58ı with the upstream direction.

(d) A suitable sketch of the map is given in Figure 12.29.

Figure 12.29 The hiker’s map. Unlike

most mountains, this one has perfectly

elliptical contours.

y

x

.3; 2/

streamh D 0:5

h D 1

h D 2

h D 5

E X A M P L E 5
Find the second directional derivative of f .x; y/ in the direction

making angle � with the positive x-axis.

Solution As observed earlier, the first directional derivative is

D�f .x; y/ D .cos� iC sin� j/ � rf .x; y/ D f1.x; y/ cos� C f2.x; y/ sin�:

The second directional derivative is therefore

D
2
�f .x; y/ D D�

�

D�f .x; y/
�

D .cos� iC sin� j/ � r
�

f1.x; y/ cos� C f2.x; y/ sin�
�

D

�

f11.x; y/ cos� C f21.x; y/ sin�
�

cos�

C

�

f12.x; y/ cos� C f22.x; y/ sin�
�

sin�

D f11.x; y/ cos2
� C 2f12.x; y/ cos� sin� C f22.x; y/ sin2

�:

Note that if � D 0 or � D � (so the directional derivative is in a direction parallel

to the x-axis), then D2
�f .x; y/ D f11.x; y/. Similarly, D2

�f .x; y/ D f22.x; y/ if

� D �=2 or 3�=2.

Rates Perceived by a Moving Observer
Suppose that an observer is moving around in the xy-plane measuring the value of

a function f .x; y/ defined in the plane as he passes through each point .x; y/. (For

instance, f .x; y/ might be the temperature at .x; y/.) If the observer is moving with

velocity v at the instant when he passes through the point .a; b/, how fast would he

observe f .x; y/ to be changing at that moment?
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At the moment in question the observer is moving in the direction of the unit

vector v=jvj. The rate of change of f .x; y/ at .a; b/ in that direction is

Dv=jvjf .a; b/ D
v

jvj
� rf .a; b/

measured in units of f per unit distance in the xy-plane. To convert this rate to units

of f per unit time, we must multiply by the speed of the observer, jvj units of distance

per unit time. Thus, the time rate of change of f .x; y/ as measured by the observer

passing through .a; b/ is

jvj
v

jvj
� rf .a; b/ D v � rf .a; b/:

It is natural to extend our use of the symbol Dvf .a; b/ to represent this rate even

though v is not (necessarily) a unit vector. Thus, we have established the following

principle:

The rate of change of f .x; y/ at .a; b/ as measured by an observer moving

through .a; b/ with velocity v is

Dvf .a; b/ D v � rf .a; b/

units of f per unit time.

If the hiker in Example 4 moves away from .3; 2/ with horizontal velocity v D �i � j

km/h, then she will be rising at a rate of

v � rh.3; 2/ D .�i � j/ �

�

�

1

10
.3iC 4j/

�

D

7

10
km/h:

As defined here, Dvf is the spatial component of the derivative of f following the

motion. See Example 6 in Section 12.5. The rate of change of the reading on the

moving thermometer in that example can be expressed as

dT

dt
D DvT .x; y; z; t/C

@T

@t
;

where v is the velocity of the moving thermometer andDvT D v�rT: The gradient is

being taken with respect to the three spatial variables only. (See below for the gradient

in 3-space.)

The Gradient in Three and More Dimensions
By analogy with the two-dimensional case, a function f .x1; x2; : : : ; xn/ of n variables

possessing first partial derivatives has gradient given by

rf .x1; x2; : : : ; xn/ D
@f

@x1

e1 C
@f

@x2

e2 C � � � C
@f

@xn

en;

where ej is the unit vector from the origin to the unit point on the j th coordinate axis.

In particular, for a function of three variables,

rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k:

The level surface of f .x; y; z/ passing through .a; b; c/ has a tangent plane there if f

is differentiable at .a; b; c/ and rf .a; b; c/ ¤ 0.

For functions of any number of variables, the vector rf .P0/ is normal to the

“level surface” of f passing through the pointP0 (i.e., the (hyper)surface with equation

f .x1; : : : ; xn/ D f .P0/), and, if f is differentiable at P0, the rate of change of f at

P0 in the direction of the unit vector u is given by u � rf .P0/. Equations of tangent

planes to surfaces in 3-space can be found easily with the aid of gradients.
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E X A M P L E 6
Let f .x; y; z/ D x2

C y2
C z2.

(a) Find rf .x; y; z/ and rf .1;�1; 2/.

(b) Find an equation of the tangent plane to the sphere x2
C y

2
C z

2
D 6 at the point

.1;�1; 2/.

(c) What is the maximum rate of increase of f at .1;�1; 2/?

(d) What is the rate of change with respect to distance of f at .1;�1; 2/ measured in

the direction from that point toward the point .3; 1; 1/?

Solution

(a) rf .x; y; z/ D 2xiC 2yjC 2zk, so rf .1;�1; 2/ D 2i � 2jC 4k.

(b) The required tangent plane hasrf .1;�1; 2/ as normal. (See Figure 12.30.) There-

fore, its equation is given by 2.x � 1/� 2.y C 1/C 4.z � 2/ D 0 or, more simply,

x � y C 2z D 6.

(c) The maximum rate of increase of f at .1;�1; 2/ is jrf .1;�1; 2/j D 2
p

6, and it

occurs in the direction of the vector i � jC 2k.

(d) The direction from .1;�1; 2/ toward .3; 1; 1/ is specified by 2iC 2j� k. The rate

of change of f with respect to distance in this direction is

2iC 2j � k
p

4C 4C 1
� .2i � 2jC 4k/ D

4 � 4� 4

3
D �

4

3
I

that is, f decreases at rate 4=3 of a unit per horizontal unit moved.

x

y

z

x�yC2zD6

2i�2jC4k

x2Cy2Cz2D6

.1;�1;2/

Figure 12.30 The level surface f .x; y; z/ D 6 for Example 6 and its

tangent plane at .1;�1; 2/

x

y

z

zDf .a;b/Cf1.a;b/.x�a/Cf2 .a;b/.y�b/

.a;b;f .a;b//

rg.a;b;c/

zDf .x;y/

Figure 12.31 The gradient of f .x; y/� z at .a; b; f .a; b// is normal

to the tangent plane to z D f .x; y/ at that point. See Example 7.

E X A M P L E 7
The graph of a function f .x; y/ of two variables is the graph of

the equation z D f .x; y/ in 3-space. This surface is also the level

surface g.x; y; z/ D 0 of the 3-variable function

g.x; y; z/ D f .x; y/� z:

If f is differentiable at .a; b/ and c D f .a; b/, then g is differentiable at .a; b; c/, and

rg.a; b; c/ D f1.a; b/iC f2.a; b/j � k

is normal to g.x; y; z/ D 0 at .a; b; c/. (Note that rg.a; b; c/ ¤ 0, since its z compo-

nent is �1.) It follows that the graph of f has nonvertical tangent plane at .a; b/ given

by

f1.a; b/.x � a/C f2.a; b/.y � b/� .z � c/ D 0;

9780134154367_Calculus   750 05/12/16   4:14 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 730 October 17, 2016

730 CHAPTER 12 Partial Differentiation

At the moment in question the observer is moving in the direction of the unit

vector v=jvj. The rate of change of f .x; y/ at .a; b/ in that direction is

Dv=jvjf .a; b/ D
v

jvj
� rf .a; b/

measured in units of f per unit distance in the xy-plane. To convert this rate to units

of f per unit time, we must multiply by the speed of the observer, jvj units of distance

per unit time. Thus, the time rate of change of f .x; y/ as measured by the observer

passing through .a; b/ is

jvj
v

jvj
� rf .a; b/ D v � rf .a; b/:

It is natural to extend our use of the symbol Dvf .a; b/ to represent this rate even

though v is not (necessarily) a unit vector. Thus, we have established the following

principle:

The rate of change of f .x; y/ at .a; b/ as measured by an observer moving

through .a; b/ with velocity v is

Dvf .a; b/ D v � rf .a; b/

units of f per unit time.

If the hiker in Example 4 moves away from .3; 2/ with horizontal velocity v D �i � j

km/h, then she will be rising at a rate of

v � rh.3; 2/ D .�i � j/ �

�

�

1

10
.3iC 4j/

�

D

7

10
km/h:

As defined here, Dvf is the spatial component of the derivative of f following the

motion. See Example 6 in Section 12.5. The rate of change of the reading on the

moving thermometer in that example can be expressed as

dT

dt
D DvT .x; y; z; t/C

@T

@t
;

where v is the velocity of the moving thermometer andDvT D v�rT: The gradient is

being taken with respect to the three spatial variables only. (See below for the gradient

in 3-space.)

The Gradient in Three and More Dimensions
By analogy with the two-dimensional case, a function f .x1; x2; : : : ; xn/ of n variables

possessing first partial derivatives has gradient given by

rf .x1; x2; : : : ; xn/ D
@f

@x1

e1 C
@f

@x2

e2 C � � � C
@f

@xn

en;

where ej is the unit vector from the origin to the unit point on the j th coordinate axis.

In particular, for a function of three variables,

rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k:

The level surface of f .x; y; z/ passing through .a; b; c/ has a tangent plane there if f

is differentiable at .a; b; c/ and rf .a; b; c/ ¤ 0.

For functions of any number of variables, the vector rf .P0/ is normal to the

“level surface” of f passing through the pointP0 (i.e., the (hyper)surface with equation

f .x1; : : : ; xn/ D f .P0/), and, if f is differentiable at P0, the rate of change of f at

P0 in the direction of the unit vector u is given by u � rf .P0/. Equations of tangent

planes to surfaces in 3-space can be found easily with the aid of gradients.
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E X A M P L E 6
Let f .x; y; z/ D x2

C y2
C z2.

(a) Find rf .x; y; z/ and rf .1;�1; 2/.

(b) Find an equation of the tangent plane to the sphere x2
C y

2
C z

2
D 6 at the point

.1;�1; 2/.

(c) What is the maximum rate of increase of f at .1;�1; 2/?

(d) What is the rate of change with respect to distance of f at .1;�1; 2/ measured in

the direction from that point toward the point .3; 1; 1/?

Solution

(a) rf .x; y; z/ D 2xiC 2yjC 2zk, so rf .1;�1; 2/ D 2i � 2jC 4k.

(b) The required tangent plane hasrf .1;�1; 2/ as normal. (See Figure 12.30.) There-

fore, its equation is given by 2.x � 1/� 2.y C 1/C 4.z � 2/ D 0 or, more simply,

x � y C 2z D 6.

(c) The maximum rate of increase of f at .1;�1; 2/ is jrf .1;�1; 2/j D 2
p

6, and it

occurs in the direction of the vector i � jC 2k.

(d) The direction from .1;�1; 2/ toward .3; 1; 1/ is specified by 2iC 2j� k. The rate

of change of f with respect to distance in this direction is

2iC 2j � k
p

4C 4C 1
� .2i � 2jC 4k/ D

4 � 4� 4

3
D �

4

3
I

that is, f decreases at rate 4=3 of a unit per horizontal unit moved.

x

y

z

x�yC2zD6

2i�2jC4k

x2Cy2Cz2D6

.1;�1;2/

Figure 12.30 The level surface f .x; y; z/ D 6 for Example 6 and its

tangent plane at .1;�1; 2/

x

y

z

zDf .a;b/Cf1.a;b/.x�a/Cf2 .a;b/.y�b/

.a;b;f .a;b//

rg.a;b;c/

zDf .x;y/

Figure 12.31 The gradient of f .x; y/� z at .a; b; f .a; b// is normal

to the tangent plane to z D f .x; y/ at that point. See Example 7.

E X A M P L E 7
The graph of a function f .x; y/ of two variables is the graph of

the equation z D f .x; y/ in 3-space. This surface is also the level

surface g.x; y; z/ D 0 of the 3-variable function

g.x; y; z/ D f .x; y/� z:

If f is differentiable at .a; b/ and c D f .a; b/, then g is differentiable at .a; b; c/, and

rg.a; b; c/ D f1.a; b/iC f2.a; b/j � k

is normal to g.x; y; z/ D 0 at .a; b; c/. (Note that rg.a; b; c/ ¤ 0, since its z compo-

nent is �1.) It follows that the graph of f has nonvertical tangent plane at .a; b/ given

by

f1.a; b/.x � a/C f2.a; b/.y � b/� .z � c/ D 0;
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or

BEWARE! Make sure you

understand the difference between

the graph of a function and a level

curve or level surface of that

function. (See the discussion

following this example.) Here, the

surface z D f .x; y/ is the graph of

the function f; but it is also a level

surface of a different function g.

z D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

(See Figure 12.31.) This result was obtained by a different argument in Section 12.3.

Students sometimes confuse graphs of functions with level curves or surfaces of those

functions. In the above example, we are talking about a level surface of the function

g.x; y; z/ that happens to coincide with the graph of a different function, f .x; y/. Do

not confuse that surface with the graph of g, which is a three-dimensional hypersurface

in 4-space having equationw D g.x; y; z/. Similarly, do not confuse the tangent plane

to the graph of f .x; y/ (i.e., the plane obtained in the above example) with the tangent

line to the level curve of f .x; y/ passing through .a; b/ and lying in the xy-plane. This

line has an equation involving only x and y: f1.a; b/.x � a/C f2.a; b/.y � b/ D 0.

E X A M P L E 8
Find a vector tangent to the curve of intersection of the two sur-

faces z D x2
� y2 and xyz C 30 D 0 at the point .�3; 2; 5/.

Solution The coordinates of the given point satisfy the equations of both surfaces so

the point lies on the curve of intersection of the two surfaces. A vector tangent to this

curve at that point will be perpendicular to the normals to both surfaces, that is, to the

vectors

n1 D r.x
2
� y

2
� z/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 2xi � 2yj � k

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D �6i � 4j � k;

n2 D r.xyz C 30/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D .yziC xzjC xyk/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 10i � 15j � 6k:

For the tangent vector T we can therefore use the cross product of these normals:

T D n1 � n2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�6 �4 �1

10 �15 �6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 9i � 46jC 130k:

M Remark Maple’s VectorCalculus package defines a function Gradient that takes a

pair of arguments—an expression and a list of variables—and produces the gradient of

the expression with respect to those variables:

> with(VectorCalculus):

> f := x^2+y^3+z^4; G := Gradient(f, [x,y,z]);

f WD x2
C y3

C z4

G WD 2 x Nex C 3 y
2
Ney C 4 z

3
Nez

Although the result for G looks like a vector, it is actually something different, namely

a vector field, which is a vector-valued function of a vector variable. This fact is

conveyed by the bars that appear over the basis vectors in the output. We will deal

extensively with vector fields in Chapters 15 and 16 and will say little about them here

except to note that evaluating the Gradient at a particular point requires the evalVF

function, which takes two arguments: a vector field and a vector at which to evaluate

it.

> evalVF(G,<2,3,-1>);

4 ex C 27 ey � 4 ez

Observe that the output is a vector, not a vector field; there are no bars on the basis

vectors.

If you want to define a gradient function (let us call it grad) such that you would

get the above value by using the input grad(f)(2,3,-1), you could use

> grad := g -> ((u,v,w) ->

> evalVF(Gradient(g,[x,y,z]),<u,v,w>));
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E X E R C I S E S 12.7

In Exercises 1–6, find:

(a) the gradient of the given function at the point indicated,

(b) an equation of the plane tangent to the graph of the given

function at the point whose x and y coordinates are given, and

(c) an equation of the straight line tangent, at the given point, to

the level curve of the given function passing through that

point.

1. f .x; y/ D x2
� y

2 at .2;�1/

2. f .x; y/ D
x � y

x C y
at .1; 1/

3. f .x; y/ D
x

x2
C y2

at .1; 2/

4. f .x; y/ D exy at .2; 0/

5. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

6. f .x; y/ D
p

1C xy2 at .2;�2/

In Exercises 7–9, find an equation of the tangent plane to the level

surface of the given function that passes through the given point.

7. f .x; y; z/ D x2
y C y

2
z C z

2
x at .1;�1; 1/

8. f .x; y; z/ D cos.x C 2y C 3z/ at
�

�

2
; �; �

�

9. f .x; y; z/ D y e�x2

sin z at .0; 1; �=3/

In Exercises 10–13, find the rate of change of the given function at

the given point in the specified direction.

10. f .x; y/ D 3x � 4y at .0; 2/ in the direction of the vector �2i

11. f .x; y/ D x2y at .�1;�1/ in the direction of the vector

iC 2j

12. f .x; y/ D
x

1C y
at .0; 0/ in the direction of the vector i � j

13. f .x; y/ D x2
C y2 at .1;�2/ in the direction making a

(positive) angle of 60ı with the positive x-axis

14. Let f .x; y/ D ln jrj, where r D xiC yj. Show that

rf D
r

jrj2
.

15. Let f .x; y; z/ D jrj�n, where r D xiC yjC zk. Show that

rf D
�nr

jrjnC2
.

16.A Show that, in terms of polar coordinates .r; �/ (where

x D r cos � and y D r sin � ), the gradient of a function

f .r; �/ is given by

rf D
@f

@r
OrC

1

r

@f

@�

O�;

where Or is a unit vector in the direction of the position vector

r D x iC y j, and O� is a unit vector at right angles to Or in the

direction of increasing � .

17. In what directions at the point .2; 0/ does the function

f .x; y/ D xy have rate of change �1? Are there directions in

which the rate is �3? How about �2?

18. In what directions at the point .a; b; c/ does the function

f .x; y; z/ D x2
C y2

� z2 increase at half of its maximal rate

at that point?

19. Find rf .a; b/ for the differentiable function f .x; y/ given

the directional derivatives

D
.iCj/=

p
2
f .a; b/ D 3

p

2 and D.3i�4j/=5f .a; b/ D 5:

20. If f .x; y/ is differentiable at .a; b/, what condition should

angles �1 and �2 satisfy in order that the gradient rf .a; b/

can be determined from the values of the directional

derivativesD�1
f .a; b/ and D�2

f .a; b/?

21. The temperature T .x; y/ at points of the xy-plane is given by

T .x; y/ D x2
� 2y2.

(a) Draw a contour diagram for T showing some isotherms

(curves of constant temperature).

(b) In what direction should an ant at position .2;�1/ move

if it wishes to cool off as quickly as possible?

(c) If the ant moves in that direction at speed k (units

distance per unit time), at what rate does it experience the

decrease of temperature?

(d) At what rate would the ant experience the decrease of

temperature if it moved from .2;�1/ at speed k in the

direction of the vector �i � 2j?

(e) Along what curve through .2;�1/ should the ant move in

order to continue to experience maximum rate of cooling?

22. Find an equation of the curve in the xy-plane that passes

through the point .1; 1/ and intersects all level curves of the

function f .x; y/ D x4
C y2 at right angles.

23. Find an equation of the curve in the xy-plane that passes

through the point .2;�1/ and that intersects every curve with

equation of the form x
2
y

3
D K at right angles.

24. Find the second directional derivative of e�x2�y2
at the point

.a; b/ ¤ .0; 0/ in the direction directly away from the origin.

25. Find the second directional derivative of f .x; y; z/ D xyz at

.2; 3; 1/ in the direction of the vector i� j � k.

26. Find a vector tangent to the curve of intersection of the two

cylinders x2
C y

2
D 2 and y2

C z
2
D 2 at the point

.1;�1; 1/.

27. Repeat Exercise 26 for the surfaces x C y C z D 6 and

x2
C y2

C z2
D 14 and the point .1; 2; 3/.

28. The temperature in 3-space is given by

T .x; y; z/ D x
2
� y

2
C z

2
C xz

2
:

At time t D 0 a fly passes through the point .1; 1; 2/, flying

along the curve of intersection of the surfaces z D 3x2
� y2

and 2x2
C 2y2

� z2
D 0. If the fly’s speed is 7, what rate of

temperature change does it experience at t D 0?

29.A State and prove a version of Theorem 6 for a function of three

variables.

30. What is the level surface of f .x; y; z/ D cos.x C 2y C 3z/

that passes through .�; �; �/? What is the tangent plane to

that level surface at that point? (Compare this exercise with

Exercise 8 above.)

31.A If rf .x; y/ D 0 throughout the disk x2
C y2 < r2, prove

that f .x; y/ is constant throughout the disk.

32.A Theorem 6 implies that the level curve of f .x; y/ passing

through .a; b/ is smooth (has a tangent line) at .a; b/ provided

f is differentiable at .a; b/ and satisfies rf .a; b/ ¤ 0. Show

that the level curve need not be smooth at .a; b/ if

rf .a; b/ D 0. (Hint: Consider f .x; y/ D y3
�x2 at .0; 0/.)
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or

BEWARE! Make sure you

understand the difference between

the graph of a function and a level

curve or level surface of that

function. (See the discussion

following this example.) Here, the

surface z D f .x; y/ is the graph of

the function f; but it is also a level

surface of a different function g.

z D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

(See Figure 12.31.) This result was obtained by a different argument in Section 12.3.

Students sometimes confuse graphs of functions with level curves or surfaces of those

functions. In the above example, we are talking about a level surface of the function

g.x; y; z/ that happens to coincide with the graph of a different function, f .x; y/. Do

not confuse that surface with the graph of g, which is a three-dimensional hypersurface

in 4-space having equationw D g.x; y; z/. Similarly, do not confuse the tangent plane

to the graph of f .x; y/ (i.e., the plane obtained in the above example) with the tangent

line to the level curve of f .x; y/ passing through .a; b/ and lying in the xy-plane. This

line has an equation involving only x and y: f1.a; b/.x � a/C f2.a; b/.y � b/ D 0.

E X A M P L E 8
Find a vector tangent to the curve of intersection of the two sur-

faces z D x2
� y2 and xyz C 30 D 0 at the point .�3; 2; 5/.

Solution The coordinates of the given point satisfy the equations of both surfaces so

the point lies on the curve of intersection of the two surfaces. A vector tangent to this

curve at that point will be perpendicular to the normals to both surfaces, that is, to the

vectors

n1 D r.x
2
� y

2
� z/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 2xi � 2yj � k

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D �6i � 4j � k;

n2 D r.xyz C 30/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D .yziC xzjC xyk/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 10i � 15j � 6k:

For the tangent vector T we can therefore use the cross product of these normals:

T D n1 � n2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�6 �4 �1

10 �15 �6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 9i � 46jC 130k:

M Remark Maple’s VectorCalculus package defines a function Gradient that takes a

pair of arguments—an expression and a list of variables—and produces the gradient of

the expression with respect to those variables:

> with(VectorCalculus):

> f := x^2+y^3+z^4; G := Gradient(f, [x,y,z]);

f WD x2
C y3

C z4

G WD 2 x Nex C 3 y
2
Ney C 4 z

3
Nez

Although the result for G looks like a vector, it is actually something different, namely

a vector field, which is a vector-valued function of a vector variable. This fact is

conveyed by the bars that appear over the basis vectors in the output. We will deal

extensively with vector fields in Chapters 15 and 16 and will say little about them here

except to note that evaluating the Gradient at a particular point requires the evalVF

function, which takes two arguments: a vector field and a vector at which to evaluate

it.

> evalVF(G,<2,3,-1>);

4 ex C 27 ey � 4 ez

Observe that the output is a vector, not a vector field; there are no bars on the basis

vectors.

If you want to define a gradient function (let us call it grad) such that you would

get the above value by using the input grad(f)(2,3,-1), you could use

> grad := g -> ((u,v,w) ->

> evalVF(Gradient(g,[x,y,z]),<u,v,w>));
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E X E R C I S E S 12.7

In Exercises 1–6, find:

(a) the gradient of the given function at the point indicated,

(b) an equation of the plane tangent to the graph of the given

function at the point whose x and y coordinates are given, and

(c) an equation of the straight line tangent, at the given point, to

the level curve of the given function passing through that

point.

1. f .x; y/ D x2
� y

2 at .2;�1/

2. f .x; y/ D
x � y

x C y
at .1; 1/

3. f .x; y/ D
x

x2
C y2

at .1; 2/

4. f .x; y/ D exy at .2; 0/

5. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

6. f .x; y/ D
p

1C xy2 at .2;�2/

In Exercises 7–9, find an equation of the tangent plane to the level

surface of the given function that passes through the given point.

7. f .x; y; z/ D x2
y C y

2
z C z

2
x at .1;�1; 1/

8. f .x; y; z/ D cos.x C 2y C 3z/ at
�

�

2
; �; �

�

9. f .x; y; z/ D y e�x2

sin z at .0; 1; �=3/

In Exercises 10–13, find the rate of change of the given function at

the given point in the specified direction.

10. f .x; y/ D 3x � 4y at .0; 2/ in the direction of the vector �2i

11. f .x; y/ D x2y at .�1;�1/ in the direction of the vector

iC 2j

12. f .x; y/ D
x

1C y
at .0; 0/ in the direction of the vector i � j

13. f .x; y/ D x2
C y2 at .1;�2/ in the direction making a

(positive) angle of 60ı with the positive x-axis

14. Let f .x; y/ D ln jrj, where r D xiC yj. Show that

rf D
r

jrj2
.

15. Let f .x; y; z/ D jrj�n, where r D xiC yjC zk. Show that

rf D
�nr

jrjnC2
.

16.A Show that, in terms of polar coordinates .r; �/ (where

x D r cos � and y D r sin � ), the gradient of a function

f .r; �/ is given by

rf D
@f

@r
OrC

1

r

@f

@�

O�;

where Or is a unit vector in the direction of the position vector

r D x iC y j, and O� is a unit vector at right angles to Or in the

direction of increasing � .

17. In what directions at the point .2; 0/ does the function

f .x; y/ D xy have rate of change �1? Are there directions in

which the rate is �3? How about �2?

18. In what directions at the point .a; b; c/ does the function

f .x; y; z/ D x2
C y2

� z2 increase at half of its maximal rate

at that point?

19. Find rf .a; b/ for the differentiable function f .x; y/ given

the directional derivatives

D
.iCj/=

p
2
f .a; b/ D 3

p

2 and D.3i�4j/=5f .a; b/ D 5:

20. If f .x; y/ is differentiable at .a; b/, what condition should

angles �1 and �2 satisfy in order that the gradient rf .a; b/

can be determined from the values of the directional

derivativesD�1
f .a; b/ and D�2

f .a; b/?

21. The temperature T .x; y/ at points of the xy-plane is given by

T .x; y/ D x2
� 2y2.

(a) Draw a contour diagram for T showing some isotherms

(curves of constant temperature).

(b) In what direction should an ant at position .2;�1/ move

if it wishes to cool off as quickly as possible?

(c) If the ant moves in that direction at speed k (units

distance per unit time), at what rate does it experience the

decrease of temperature?

(d) At what rate would the ant experience the decrease of

temperature if it moved from .2;�1/ at speed k in the

direction of the vector �i � 2j?

(e) Along what curve through .2;�1/ should the ant move in

order to continue to experience maximum rate of cooling?

22. Find an equation of the curve in the xy-plane that passes

through the point .1; 1/ and intersects all level curves of the

function f .x; y/ D x4
C y2 at right angles.

23. Find an equation of the curve in the xy-plane that passes

through the point .2;�1/ and that intersects every curve with

equation of the form x
2
y

3
D K at right angles.

24. Find the second directional derivative of e�x2�y2
at the point

.a; b/ ¤ .0; 0/ in the direction directly away from the origin.

25. Find the second directional derivative of f .x; y; z/ D xyz at

.2; 3; 1/ in the direction of the vector i� j � k.

26. Find a vector tangent to the curve of intersection of the two

cylinders x2
C y

2
D 2 and y2

C z
2
D 2 at the point

.1;�1; 1/.

27. Repeat Exercise 26 for the surfaces x C y C z D 6 and

x2
C y2

C z2
D 14 and the point .1; 2; 3/.

28. The temperature in 3-space is given by

T .x; y; z/ D x
2
� y

2
C z

2
C xz

2
:

At time t D 0 a fly passes through the point .1; 1; 2/, flying

along the curve of intersection of the surfaces z D 3x2
� y2

and 2x2
C 2y2

� z2
D 0. If the fly’s speed is 7, what rate of

temperature change does it experience at t D 0?

29.A State and prove a version of Theorem 6 for a function of three

variables.

30. What is the level surface of f .x; y; z/ D cos.x C 2y C 3z/

that passes through .�; �; �/? What is the tangent plane to

that level surface at that point? (Compare this exercise with

Exercise 8 above.)

31.A If rf .x; y/ D 0 throughout the disk x2
C y2 < r2, prove

that f .x; y/ is constant throughout the disk.

32.A Theorem 6 implies that the level curve of f .x; y/ passing

through .a; b/ is smooth (has a tangent line) at .a; b/ provided

f is differentiable at .a; b/ and satisfies rf .a; b/ ¤ 0. Show

that the level curve need not be smooth at .a; b/ if

rf .a; b/ D 0. (Hint: Consider f .x; y/ D y3
�x2 at .0; 0/.)

9780134154367_Calculus   753 05/12/16   4:15 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 734 October 17, 2016

734 CHAPTER 12 Partial Differentiation

33.A If v is a nonzero vector, express Dv.Dvf / in terms of the

components of v and the second partials of f: What is the

interpretation of this quantity for a moving observer?

34.I An observer moves so that his position, velocity, and

acceleration at time t are given by the formulas

r.t/ D x.t/ iC y.t/ jC z.t/ k, v.t/ D dr=dt , and

a.t/ D dv=dt . If the temperature in the vicinity of the

observer depends only on position, T D T .x; y; z/, express

the second time derivative of temperature as measured by the

observer in terms of Dv and Da.

35.I Repeat Exercise 34 but with T depending explicitly on time as

well as position: T D T .x; y; z; t/.

36. Let f .x; y/ D

8

<

:

sin.xy/
p

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

(a) Calculate rf .0; 0/.

(b) Use the definition of directional derivative to calculate

Duf .0; 0/, where u D .iC j/=
p

2.

(c) Is f .x; y/ differentiable at .0; 0/? Why?

37.A Let f .x; y/ D

�

2x2y=.x4
C y2/; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.
Use the definition of directional derivative as a limit

(Definition 7) to show that Duf .0; 0/ exists for every unit

vector u D uiC vj in the plane. Specifically, show that

Duf .0; 0/ D 0 if v D 0, and Duf .0; 0/ D 2u
2=v if v ¤ 0.

However, as was shown in Example 4 in Section 12.2, f .x; y/

has no limit as .x; y/! .0; 0/, so it is not continuous there.

Even if a function has directional derivatives in all directions

at a point, it may not be continuous at that point.

12.8 Implicit Functions

When we study the calculus of functions of one variable, we encounter examples of

functions that are defined implicitly as solutions of equations in two variables. Sup-

pose, for example, that F.x; y/ D 0 is such an equation. Suppose that the point .a; b/

satisfies the equation and that F has continuous first partial derivatives (and so is dif-

ferentiable) at all points near .a; b/. Can the equation be solved for y as a function

of x near .a; b/? That is, does there exist a function y.x/ defined in some interval

I D .a � h; aC h/ (where h > 0) satisfying y.a/ D b and such that

F

�

x; y.x/

�

D 0

holds for all x in the interval I ? If there is such a function y.x/, we can try to find its

derivative at x D a by differentiating the equation F.x; y/ D 0 implicitly with respect

to x, and evaluating the result at .a; b/:

F1.x; y/C F2.x; y/
dy

dx
D 0;

so that

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D �

F1.a; b/

F2.a; b/
; provided F2.a; b/ ¤ 0:

Observe, however, that the condition F2.a; b/ ¤ 0 required for the calculation of

y
0
.a/ will itself guarantee that the solution y.x/ exists. This condition, together with

the differentiability of F.x; y/ near .a; b/, implies that the level curve F.x; y/ D

F.a; b/ has nonvertical tangent lines near .a; b/, so some part of the level curve near

.a; b/ must be the graph of a function of x. (See Figure 12.32; the part of the curve

F.x; y/ D 0 in the shaded disk centred at P0 D .a; b/ is the graph of a function y.x/

because vertical lines meet that part of the curve only once. The only points on the

curve where a disk with that property cannot be drawn are the three points V1, V2,

and V3, where the curve has a vertical tangent, that is, where F2.x; y/ D 0.) This is

a special case of the Implicit Function Theorem, which we will state more generally

later in this section.

y

x

.a; b/

P0

V1

V2

V3

F.x; y/ D 0

Figure 12.32 The equation F.x; y/ D 0

can be solved for y as a function of x near

P0 or near any other point except the three

points V1, V2, and V3, where the curve has

vertical tangent lines

A similar situation holds for equations involving several variables. We can, for

example, ask whether the equation

F.x; y; z/ D 0
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defines z as a function of x and y (say, z D z.x; y/) near some point P0 with coordi-

nates .x0; y0; z0/ satisfying the equation. If so, and if F has continuous first partials

near P0, then the partial derivatives of z can be found at .x0; y0/ by implicit differen-

tiation of the equation F.x; y; z/ D 0 with respect to x and y:

F1.x; y; z/C F3.x; y; z/
@z

@x
D 0 and F2.x; y; z/C F3.x; y; z/

@z

@y
D 0;

so that

@z

@x

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D �

F1.x0; y0; z0/

F3.x0; y0; z0/
and

@z

@y

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D �

F2.x0; y0; z0/

F3.x0; y0; z0/
;

provided F3.x0; y0; z0/ ¤ 0. Since F3 is the z component of the gradient of F; this

condition implies that the level surface of F through P0 does not have a horizontal

normal vector, so it is not vertical (i.e., it is not parallel to the z-axis). Therefore, part

of the surface near P0 must indeed be the graph of a function z D z.x; y/. Similarly,

F.x; y; z/ D 0 can be solved for x as a function of y and z near points where F1 ¤ 0

and for y D y.x; z/ near points where F2 ¤ 0.

E X A M P L E 1
Near what points on the sphere x2

Cy2
Cz2

D 1 can the equation

of the sphere be solved for z as a function of x and y? Find @z=@x

and @z=@y at such points.

Solution The sphere is the level surface F.x; y; z/ D 0 of the function

F.x; y; z/ D x
2
C y

2
C z

2
� 1:

The above equation can be solved for z D z.x; y/ near P0 D .x0; y0; z0/, provided

that P0 is not on the equator of the sphere, that is, the circle x2
C y2

D 1, z D 0.

The equator consists of those points that satisfy F3.x; y; z/ D 0. If P0 is not on the

equator, then it is on either the upper or the lower hemisphere. The upper hemisphere

has equation z D z.x; y/ D
p

1 � x2
� y2, and the lower hemisphere has equation

z D z.x; y/ D �
p

1 � x2
� y2.

If z ¤ 0, we can calculate the partial derivatives of the solution z D z.x; y/ by

implicitly differentiating the equation of the sphere: x2
C y2

C z2
D 1:

2x C 2z
@z

@x
D 0; so

@z

@x
D �

x

z
;

2y C 2z
@z

@y
D 0; so

@z

@y
D �

y

z
:

Systems of Equations
Experience with linear equations shows us that systems of such equations can generally

be solved for as many variables as there are equations in the system. We would expect,

therefore, that a pair of equations in several variables might determine two of those

variables as functions of the remaining ones. For instance, we might expect the two

equations

�

F.x; y; z; w/ D 0

G.x; y; z; w/ D 0

to possess, near some point that satisfies them, solutions of one or more of the forms

�

x D x.z;w/

y D y.z;w/;

�

x D x.y;w/

z D z.y;w/;

�

x D x.y; z/

w D w.y; z/;
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33.A If v is a nonzero vector, express Dv.Dvf / in terms of the

components of v and the second partials of f: What is the

interpretation of this quantity for a moving observer?

34.I An observer moves so that his position, velocity, and

acceleration at time t are given by the formulas

r.t/ D x.t/ iC y.t/ jC z.t/ k, v.t/ D dr=dt , and

a.t/ D dv=dt . If the temperature in the vicinity of the

observer depends only on position, T D T .x; y; z/, express

the second time derivative of temperature as measured by the

observer in terms of Dv and Da.

35.I Repeat Exercise 34 but with T depending explicitly on time as

well as position: T D T .x; y; z; t/.

36. Let f .x; y/ D

8

<

:

sin.xy/
p

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

(a) Calculate rf .0; 0/.

(b) Use the definition of directional derivative to calculate

Duf .0; 0/, where u D .iC j/=
p

2.

(c) Is f .x; y/ differentiable at .0; 0/? Why?

37.A Let f .x; y/ D

�

2x2y=.x4
C y2/; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.
Use the definition of directional derivative as a limit

(Definition 7) to show that Duf .0; 0/ exists for every unit

vector u D uiC vj in the plane. Specifically, show that

Duf .0; 0/ D 0 if v D 0, and Duf .0; 0/ D 2u
2=v if v ¤ 0.

However, as was shown in Example 4 in Section 12.2, f .x; y/

has no limit as .x; y/! .0; 0/, so it is not continuous there.

Even if a function has directional derivatives in all directions

at a point, it may not be continuous at that point.

12.8 Implicit Functions

When we study the calculus of functions of one variable, we encounter examples of

functions that are defined implicitly as solutions of equations in two variables. Sup-

pose, for example, that F.x; y/ D 0 is such an equation. Suppose that the point .a; b/

satisfies the equation and that F has continuous first partial derivatives (and so is dif-

ferentiable) at all points near .a; b/. Can the equation be solved for y as a function

of x near .a; b/? That is, does there exist a function y.x/ defined in some interval

I D .a � h; aC h/ (where h > 0) satisfying y.a/ D b and such that

F

�

x; y.x/

�

D 0

holds for all x in the interval I ? If there is such a function y.x/, we can try to find its

derivative at x D a by differentiating the equation F.x; y/ D 0 implicitly with respect

to x, and evaluating the result at .a; b/:

F1.x; y/C F2.x; y/
dy

dx
D 0;

so that

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D �

F1.a; b/

F2.a; b/
; provided F2.a; b/ ¤ 0:

Observe, however, that the condition F2.a; b/ ¤ 0 required for the calculation of

y
0
.a/ will itself guarantee that the solution y.x/ exists. This condition, together with

the differentiability of F.x; y/ near .a; b/, implies that the level curve F.x; y/ D

F.a; b/ has nonvertical tangent lines near .a; b/, so some part of the level curve near

.a; b/ must be the graph of a function of x. (See Figure 12.32; the part of the curve

F.x; y/ D 0 in the shaded disk centred at P0 D .a; b/ is the graph of a function y.x/

because vertical lines meet that part of the curve only once. The only points on the

curve where a disk with that property cannot be drawn are the three points V1, V2,

and V3, where the curve has a vertical tangent, that is, where F2.x; y/ D 0.) This is

a special case of the Implicit Function Theorem, which we will state more generally

later in this section.

y

x

.a; b/

P0

V1

V2

V3

F.x; y/ D 0

Figure 12.32 The equation F.x; y/ D 0

can be solved for y as a function of x near

P0 or near any other point except the three

points V1, V2, and V3, where the curve has

vertical tangent lines

A similar situation holds for equations involving several variables. We can, for

example, ask whether the equation

F.x; y; z/ D 0
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defines z as a function of x and y (say, z D z.x; y/) near some point P0 with coordi-

nates .x0; y0; z0/ satisfying the equation. If so, and if F has continuous first partials

near P0, then the partial derivatives of z can be found at .x0; y0/ by implicit differen-

tiation of the equation F.x; y; z/ D 0 with respect to x and y:

F1.x; y; z/C F3.x; y; z/
@z

@x
D 0 and F2.x; y; z/C F3.x; y; z/

@z

@y
D 0;

so that

@z

@x

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D �

F1.x0; y0; z0/

F3.x0; y0; z0/
and

@z

@y

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D �

F2.x0; y0; z0/

F3.x0; y0; z0/
;

provided F3.x0; y0; z0/ ¤ 0. Since F3 is the z component of the gradient of F; this

condition implies that the level surface of F through P0 does not have a horizontal

normal vector, so it is not vertical (i.e., it is not parallel to the z-axis). Therefore, part

of the surface near P0 must indeed be the graph of a function z D z.x; y/. Similarly,

F.x; y; z/ D 0 can be solved for x as a function of y and z near points where F1 ¤ 0

and for y D y.x; z/ near points where F2 ¤ 0.

E X A M P L E 1
Near what points on the sphere x2

Cy2
Cz2

D 1 can the equation

of the sphere be solved for z as a function of x and y? Find @z=@x

and @z=@y at such points.

Solution The sphere is the level surface F.x; y; z/ D 0 of the function

F.x; y; z/ D x
2
C y

2
C z

2
� 1:

The above equation can be solved for z D z.x; y/ near P0 D .x0; y0; z0/, provided

that P0 is not on the equator of the sphere, that is, the circle x2
C y2

D 1, z D 0.

The equator consists of those points that satisfy F3.x; y; z/ D 0. If P0 is not on the

equator, then it is on either the upper or the lower hemisphere. The upper hemisphere

has equation z D z.x; y/ D
p

1 � x2
� y2, and the lower hemisphere has equation

z D z.x; y/ D �
p

1 � x2
� y2.

If z ¤ 0, we can calculate the partial derivatives of the solution z D z.x; y/ by

implicitly differentiating the equation of the sphere: x2
C y2

C z2
D 1:

2x C 2z
@z

@x
D 0; so

@z

@x
D �

x

z
;

2y C 2z
@z

@y
D 0; so

@z

@y
D �

y

z
:

Systems of Equations
Experience with linear equations shows us that systems of such equations can generally

be solved for as many variables as there are equations in the system. We would expect,

therefore, that a pair of equations in several variables might determine two of those

variables as functions of the remaining ones. For instance, we might expect the two

equations

�

F.x; y; z; w/ D 0

G.x; y; z; w/ D 0

to possess, near some point that satisfies them, solutions of one or more of the forms

�

x D x.z;w/

y D y.z;w/;

�

x D x.y;w/

z D z.y;w/;

�

x D x.y; z/

w D w.y; z/;
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�

y D y.x;w/

z D z.x;w/;

�

y D y.x; z/

w D w.x; z/;

�

z D z.x; y/

w D w.x; y/:

Where such solutions exist, we should be able to differentiate the given system of

equations implicitly to find partial derivatives of the solutions.

If you are given a single equation F.x; y; z/ D 0 and asked to find @x=@z, you

would understand that x is intended to be a function of the remaining variables y and

z, so there would be no chance of misinterpreting which variable is to be held constant

in calculating the partial derivative. Suppose, however, that you are asked to calculate

@x=@z given the system F.x; y; z; w/ D 0, G.x; y; z;w/ D 0. The question implies

that x is one of the dependent variables and z is one of the independent variables, but

does not imply which of y and w is the other dependent variable and which is the other

independent variable. In short, which of the situations
�

x D x.z;w/

y D y.z;w/
and

�

x D x.y; z/

w D w.y; z/

are we dealing with? As it stands, the question is ambiguous. To avoid this ambiguity,

we can specify in the notation for the partial derivative which variable is to be regarded

as the other independent variable and therefore held fixed during the differentiation.

Thus,

�

@x

@z

�

w

implies the interpretation

�

x D x.z;w/

y D y.z;w/;
�

@x

@z

�

y

implies the interpretation

�

x D x.y; z/

w D w.y; z/:

E X A M P L E 2
Given the equations F.x; y; z; w/ D 0 and G.x; y; z;w/ D 0,

where F and G have continuous first partial derivatives, calculate

.@x=@z/w .

Solution We differentiate the two equations with respect to z, regarding x and y as

functions of z and w, and holding w fixed:

F1

@x

@z
C F2

@y

@z
C F3 D 0

G1

@x

@z
CG2

@y

@z
C G3 D 0

(Note that the terms F4.@w=@z/ and G4.@w=@z/ are not present because w and z are

independent variables, andw is being held fixed during the differentiation.) The pair of

equations above is linear in @x=@z and @y=@z. Eliminating @y=@z (or using Cramer’s

Rule, Theorem 6 of Section 10.7), we obtain
�

@x

@z

�

w

D �

F3G2 � F2G3

F1G2 � F2G1

:

In the light of the examples considered above, you should not be too surprised to

learn that the nonvanishing of the denominator F1G2 � F2G1 at some point P0 D

.x0; y0; z0; w0/ satisfying the system F D 0, G D 0 is sufficient to guarantee that the

system does indeed have a solution of the form x D x.z;w/, y D y.z;w/ near P0.

We will not, however, attempt to prove this fact here.

E X A M P L E 3
Let x, y, u, and v be related by the equations

�

u D x2
C xy � y2

v D 2xy C y2:

Find (a) .@x=@u/v and (b) .@x=@u/y at the point where x D 2 and y D �1.
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Solution

(a) To calculate .@x=@u/v we regard x and y as functions of u and v and differentiate

the given equations with respect to u, holding v constant:

1 D
@u

@u
D .2x C y/

@x

@u
C .x � 2y/

@y

@u

0 D
@v

@u
D 2y

@x

@u
C .2x C 2y/

@y

@u

At x D 2, y D �1 we have

1 D 3
@x

@u
C 4

@y

@u

0 D �2
@x

@u
C 2

@y

@u
:

Eliminating @y=@u leads to the result .@x=@u/v D 1=7.

(b) To calculate .@x=@u/y we regard x and v as functions of y and u and differentiate

the given equations with respect to u, holding y constant:

1 D
@u

@u
D .2x C y/

@x

@u
;

@v

@u
D 2y

@x

@u
:

At x D 2, y D �1 the first equation immediately gives .@x=@u/y D 1=3.

E Choosing Dependent and Independent Variables
Some applications involve several variables that must satisfy a smaller number of equa-

tions. The question naturally arises concerning which variables should be considered

independent. Typically, if there are n equations to be satisfied by n C m variables,

we can choose any n of the variables to be considered as functions of the remaining

m independent variables; in theory, at least, it is possible to solve the n equations for

any n of the variables. However, applications often come with conventions that prefer

one set of variables over others. For example, in Section 12.6 we introduced the exten-

sive variables in thermodynamics, which are referred to as proper variables by some

authors. In mechanics there are also preferred variables, which are called canonical.

However, as alternative selections of independent and dependent variables are

mathematically sound, and often useful, they cannot be excluded by such conventions.

As discussed in Section 12.6, a single component gas involves seven variables, energy

E, entropy S , volume V; temperature T; pressure P; number N of molecules, and

chemical potential, �. Among these seven variables there hold four equations. In the

usual formulation E is a function of three independent variables S , V; and N , while

P; T; and � are partial derivatives of that function and so functions of the same three

independent variables:

E D f .S; V;N /; T D
@E

@S
D f1.S; V;N /;

P D �
@E

@V
D �f2.S; V;N /; � D

@E

@N
D f3.S; V;N /:

But it is just as reasonable (and sometimes preferable) to consider the independent

variables to be T; V; and N with the other four variables being dependent on these

three. In particular, we would have E D g.T; V;N / and similar representations would

hold for S , P; and �. Confusion arises because f and g are sometimes casually

written as if they are the same function (e.g., E D E.S; V;N / or E D E.T; V;N /).

They normally are not the same function. As shown in Exercise 25 of Section 12.6, the

energy of an ideal gas can be written both as

E D f .S; V;N / D
3h2N

4�m

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

.�/
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�

y D y.x;w/

z D z.x;w/;

�

y D y.x; z/

w D w.x; z/;

�

z D z.x; y/

w D w.x; y/:

Where such solutions exist, we should be able to differentiate the given system of

equations implicitly to find partial derivatives of the solutions.

If you are given a single equation F.x; y; z/ D 0 and asked to find @x=@z, you

would understand that x is intended to be a function of the remaining variables y and

z, so there would be no chance of misinterpreting which variable is to be held constant

in calculating the partial derivative. Suppose, however, that you are asked to calculate

@x=@z given the system F.x; y; z; w/ D 0, G.x; y; z;w/ D 0. The question implies

that x is one of the dependent variables and z is one of the independent variables, but

does not imply which of y and w is the other dependent variable and which is the other

independent variable. In short, which of the situations
�

x D x.z;w/

y D y.z;w/
and

�

x D x.y; z/

w D w.y; z/

are we dealing with? As it stands, the question is ambiguous. To avoid this ambiguity,

we can specify in the notation for the partial derivative which variable is to be regarded

as the other independent variable and therefore held fixed during the differentiation.

Thus,

�

@x

@z

�

w

implies the interpretation

�

x D x.z;w/

y D y.z;w/;
�

@x

@z

�

y

implies the interpretation

�

x D x.y; z/

w D w.y; z/:

E X A M P L E 2
Given the equations F.x; y; z; w/ D 0 and G.x; y; z;w/ D 0,

where F and G have continuous first partial derivatives, calculate

.@x=@z/w .

Solution We differentiate the two equations with respect to z, regarding x and y as

functions of z and w, and holding w fixed:

F1

@x

@z
C F2

@y

@z
C F3 D 0

G1

@x

@z
CG2

@y

@z
C G3 D 0

(Note that the terms F4.@w=@z/ and G4.@w=@z/ are not present because w and z are

independent variables, andw is being held fixed during the differentiation.) The pair of

equations above is linear in @x=@z and @y=@z. Eliminating @y=@z (or using Cramer’s

Rule, Theorem 6 of Section 10.7), we obtain
�

@x

@z

�

w

D �

F3G2 � F2G3

F1G2 � F2G1

:

In the light of the examples considered above, you should not be too surprised to

learn that the nonvanishing of the denominator F1G2 � F2G1 at some point P0 D

.x0; y0; z0; w0/ satisfying the system F D 0, G D 0 is sufficient to guarantee that the

system does indeed have a solution of the form x D x.z;w/, y D y.z;w/ near P0.

We will not, however, attempt to prove this fact here.

E X A M P L E 3
Let x, y, u, and v be related by the equations

�

u D x2
C xy � y2

v D 2xy C y2:

Find (a) .@x=@u/v and (b) .@x=@u/y at the point where x D 2 and y D �1.
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Solution

(a) To calculate .@x=@u/v we regard x and y as functions of u and v and differentiate

the given equations with respect to u, holding v constant:

1 D
@u

@u
D .2x C y/

@x

@u
C .x � 2y/

@y

@u

0 D
@v

@u
D 2y

@x

@u
C .2x C 2y/

@y

@u

At x D 2, y D �1 we have

1 D 3
@x

@u
C 4

@y

@u

0 D �2
@x

@u
C 2

@y

@u
:

Eliminating @y=@u leads to the result .@x=@u/v D 1=7.

(b) To calculate .@x=@u/y we regard x and v as functions of y and u and differentiate

the given equations with respect to u, holding y constant:

1 D
@u

@u
D .2x C y/

@x

@u
;

@v

@u
D 2y

@x

@u
:

At x D 2, y D �1 the first equation immediately gives .@x=@u/y D 1=3.

E Choosing Dependent and Independent Variables
Some applications involve several variables that must satisfy a smaller number of equa-

tions. The question naturally arises concerning which variables should be considered

independent. Typically, if there are n equations to be satisfied by n C m variables,

we can choose any n of the variables to be considered as functions of the remaining

m independent variables; in theory, at least, it is possible to solve the n equations for

any n of the variables. However, applications often come with conventions that prefer

one set of variables over others. For example, in Section 12.6 we introduced the exten-

sive variables in thermodynamics, which are referred to as proper variables by some

authors. In mechanics there are also preferred variables, which are called canonical.

However, as alternative selections of independent and dependent variables are

mathematically sound, and often useful, they cannot be excluded by such conventions.

As discussed in Section 12.6, a single component gas involves seven variables, energy

E, entropy S , volume V; temperature T; pressure P; number N of molecules, and

chemical potential, �. Among these seven variables there hold four equations. In the

usual formulation E is a function of three independent variables S , V; and N , while

P; T; and � are partial derivatives of that function and so functions of the same three

independent variables:

E D f .S; V;N /; T D
@E

@S
D f1.S; V;N /;

P D �
@E

@V
D �f2.S; V;N /; � D

@E

@N
D f3.S; V;N /:

But it is just as reasonable (and sometimes preferable) to consider the independent

variables to be T; V; and N with the other four variables being dependent on these

three. In particular, we would have E D g.T; V;N / and similar representations would

hold for S , P; and �. Confusion arises because f and g are sometimes casually

written as if they are the same function (e.g., E D E.S; V;N / or E D E.T; V;N /).

They normally are not the same function. As shown in Exercise 25 of Section 12.6, the

energy of an ideal gas can be written both as

E D f .S; V;N / D
3h2N

4�m

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

.�/
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and

E D g.T; V;N / D
3

2
NkT:

Clearly, f and g are different functions, in different variables, that nevertheless pro-

duce the same energy. Observe, also, that while g is allowed to depend on V it is

actually independent of V; while f is not. These functions may produce the same

value, but the differences in their partial derivatives cannot be overlooked. We have
�

@E

@V

�

S;N

D �P; and

�

@E

@V

�

T;N

D 0:

Thus, it is necessary to specify what variables are independent in the notation for

the partial derivative, if it is not otherwise completely clear. The energy of an ideal

gas will not change with volume, provided the temperature and number of molecules

remain constant. On the other hand, energy will decrease as volume increases if the

entropy and number of molecules remain constant.

E X A M P L E 4
Use the explicit formula (�) for E D f .S; V;N / and the defini-

tions of T and P as partial derivatives of f to calculate

�

@P

@S

�

V;N

and

�

@T

@V

�

S;N

, thus showing that these partial derivatives differ only in sign.

Solution Using formula .�/ we obtain

P D �
@E

@V
D �f2.S; V;N / D �

3h2N 5=3

4�m

�

�

2

3
V

�5=3

�

e

�

2S
3N k

� 5
3

�

D

h2

2�m

�

N

V

�5=3

e

�

2S
3N k

� 5
3

�

;

so that
�

@P

@S

�

V;N

D

2

3Nk

h2

2�m

�

N

V

�5=3

e

�

2S
3N k

� 5
3

�

D

2

3Nk
P:

Similarly,

T D
@E

@S
D f1.S; V;N / D

2

3Nk
E D

h2

2�mk

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

;

so that
�

@T

@V

�

S;N

D �

2

3

h
2

2�mk

 

N
2=3

V 5=3

!

e

�

2S
3N k

� 5
3

�

D �

2

3Nk
P:

Therefore,

�

@P

@S

�

V;N

D �

�

@T

@V

�

S;N

.

It is no accident that

�

@T

@V

�

S;N

D �

�

@P

@S

�

V;N

. Since T D f1.S; V;N / and

P D �f2.S; V;N /, equality of mixed partials (Theorem 1 of Section 12.4) assures

us that
�

@T

@V

�

S;N

D f12.S; V;N / D f21.S; V;N / D �

�

@P

@S

�

V;N

:

This is one of the general relationships between partial derivatives in thermodynamics

known as the Maxwell relations. Note that the subscripts S , V; andN in the two partial

derivatives involved tell us that we are regarding those three variables as the indepen-

dent variables on which the remaining variables T; P; E, and � depend. There are

three more Maxwell relations that can be derived in terms of the Legendre transfor-

mations of E (with N held fixed) introduced in Section 12.6. These are presented in

Exercises 32–34 at the end of this section.
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Jacobian Determinants
Partial derivatives obtained by implicit differentiation of systems of equations are frac-

tions, the numerators and denominators of which are conveniently expressed in terms

of certain determinants called Jacobians.

D E F I N I T I O N

8

The Jacobian determinant (or simply the Jacobian) of the two functions,

u D u.x; y/ and v D v.x; y/, with respect to two variables, x and y, is the

determinant

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@u

@x

@u

@y

@v

@x

@v

@y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Similarly, the Jacobian of two functions F.x; y; : : :/ and G.x; y; : : :/, with

respect to the variables x and y, is the determinant

@.F;G/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@F

@x

@F

@y

@G

@x

@G

@y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

F1 F2

G1 G2

ˇ

ˇ

ˇ

ˇ

:

The definition above can be extended in the obvious way to give the Jacobian of n

functions (or variables) with respect to n variables. For example, the Jacobian of three

functions, F; G, andH , with respect to three variables, x, y, and z, is the determinant

@.F;G;H/

@.x; y; z/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F1 F2 F3

G1 G2 G3

H1 H2 H3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Jacobians are the determinants of the square Jacobian matrices corresponding to trans-

formations of R
n to R

n as discussed briefly in Section 12.6.

E X A M P L E 5
In terms of Jacobians, the value of .@x=@z/w , obtained from the

system of equations

F.x; y; z; w/ D 0; G.x; y; z; w/ D 0

in Example 2 can be expressed in the form

�

@x

@z

�

w

D �

@.F;G/

@.z; y/

@.F;G/

@.x; y/

:

Observe the pattern here. The denominator is the Jacobian of F and G with respect to

the two dependent variables, x and y. The numerator is the same Jacobian except that

the dependent variable x is replaced by the independent variable z.

The pattern observed above is general. We state it formally in the Implicit Function

Theorem below.

The Implicit Function Theorem
The Implicit Function Theorem guarantees that systems of equations can be solved for

certain variables as functions of other variables under certain circumstances, and it

provides formulas for the partial derivatives of the solution functions. Before stating

it, we consider a simple illustrative example.
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and

E D g.T; V;N / D
3

2
NkT:

Clearly, f and g are different functions, in different variables, that nevertheless pro-

duce the same energy. Observe, also, that while g is allowed to depend on V it is

actually independent of V; while f is not. These functions may produce the same

value, but the differences in their partial derivatives cannot be overlooked. We have
�

@E

@V

�

S;N

D �P; and

�

@E

@V

�

T;N

D 0:

Thus, it is necessary to specify what variables are independent in the notation for

the partial derivative, if it is not otherwise completely clear. The energy of an ideal

gas will not change with volume, provided the temperature and number of molecules

remain constant. On the other hand, energy will decrease as volume increases if the

entropy and number of molecules remain constant.

E X A M P L E 4
Use the explicit formula (�) for E D f .S; V;N / and the defini-

tions of T and P as partial derivatives of f to calculate

�

@P

@S

�

V;N

and

�

@T

@V

�

S;N

, thus showing that these partial derivatives differ only in sign.

Solution Using formula .�/ we obtain

P D �
@E

@V
D �f2.S; V;N / D �

3h2N 5=3

4�m

�

�

2

3
V

�5=3

�

e

�

2S
3N k

� 5
3

�

D

h2

2�m

�

N

V

�5=3

e

�

2S
3N k

� 5
3

�

;

so that
�

@P

@S

�

V;N

D

2

3Nk

h2

2�m

�

N

V

�5=3

e

�

2S
3N k

� 5
3

�

D

2

3Nk
P:

Similarly,

T D
@E

@S
D f1.S; V;N / D

2

3Nk
E D

h2

2�mk

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

;

so that
�

@T

@V

�

S;N

D �

2

3

h
2

2�mk

 

N
2=3

V 5=3

!

e

�

2S
3N k

� 5
3

�

D �

2

3Nk
P:

Therefore,

�

@P

@S

�

V;N

D �

�

@T

@V

�

S;N

.

It is no accident that

�

@T

@V

�

S;N

D �

�

@P

@S

�

V;N

. Since T D f1.S; V;N / and

P D �f2.S; V;N /, equality of mixed partials (Theorem 1 of Section 12.4) assures

us that
�

@T

@V

�

S;N

D f12.S; V;N / D f21.S; V;N / D �

�

@P

@S

�

V;N

:

This is one of the general relationships between partial derivatives in thermodynamics

known as the Maxwell relations. Note that the subscripts S , V; andN in the two partial

derivatives involved tell us that we are regarding those three variables as the indepen-

dent variables on which the remaining variables T; P; E, and � depend. There are

three more Maxwell relations that can be derived in terms of the Legendre transfor-

mations of E (with N held fixed) introduced in Section 12.6. These are presented in

Exercises 32–34 at the end of this section.
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Jacobian Determinants
Partial derivatives obtained by implicit differentiation of systems of equations are frac-

tions, the numerators and denominators of which are conveniently expressed in terms

of certain determinants called Jacobians.

D E F I N I T I O N

8

The Jacobian determinant (or simply the Jacobian) of the two functions,

u D u.x; y/ and v D v.x; y/, with respect to two variables, x and y, is the

determinant

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@u

@x

@u

@y

@v

@x

@v

@y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Similarly, the Jacobian of two functions F.x; y; : : :/ and G.x; y; : : :/, with

respect to the variables x and y, is the determinant

@.F;G/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@F

@x

@F

@y

@G

@x

@G

@y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

F1 F2

G1 G2

ˇ

ˇ

ˇ

ˇ

:

The definition above can be extended in the obvious way to give the Jacobian of n

functions (or variables) with respect to n variables. For example, the Jacobian of three

functions, F; G, andH , with respect to three variables, x, y, and z, is the determinant

@.F;G;H/

@.x; y; z/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F1 F2 F3

G1 G2 G3

H1 H2 H3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Jacobians are the determinants of the square Jacobian matrices corresponding to trans-

formations of R
n to R

n as discussed briefly in Section 12.6.

E X A M P L E 5
In terms of Jacobians, the value of .@x=@z/w , obtained from the

system of equations

F.x; y; z; w/ D 0; G.x; y; z; w/ D 0

in Example 2 can be expressed in the form

�

@x

@z

�

w

D �

@.F;G/

@.z; y/

@.F;G/

@.x; y/

:

Observe the pattern here. The denominator is the Jacobian of F and G with respect to

the two dependent variables, x and y. The numerator is the same Jacobian except that

the dependent variable x is replaced by the independent variable z.

The pattern observed above is general. We state it formally in the Implicit Function

Theorem below.

The Implicit Function Theorem
The Implicit Function Theorem guarantees that systems of equations can be solved for

certain variables as functions of other variables under certain circumstances, and it

provides formulas for the partial derivatives of the solution functions. Before stating

it, we consider a simple illustrative example.

9780134154367_Calculus   759 05/12/16   4:16 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 740 October 17, 2016

740 CHAPTER 12 Partial Differentiation

E X A M P L E 6
Consider the system of linear equations

F.x; y; s; t/ D a1x C b1y C c1s C d1t C e1 D 0

G.x; y; s; t/ D a2x C b2y C c2s C d2t C e2 D 0:

This system can be written in matrix form:

A

�

x

y

�

C C

�

s

t

�

CE D

�

0

0

�

;

where

A D

�

a1 b1

a2 b2

�

; C D

�

c1 d1

c2 d2

�

; and E D

�

e1

e2

�

:

The equations can be solved for x and y as functions of s and t provided det(A)¤ 0;

this implies the existence of the inverse matrix A
�1 (Theorem 4 of Section 10.7), so

�

x

y

�

D �A
�1

�

C

�

s

t

�

CE

�

:

Observe that det.A/ D @.F;G/=@.x; y/, so the nonvanishing of this Jacobian guar-

antees that the equations can be solved for x and y.

T H E O R E M

8

The Implicit Function Theorem

Consider a system of n equations in nCm variables,

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

F.1/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0

F.2/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0

:
:
:

F.n/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0;

and a point P0 D .a1; a2; : : : ; am; b1; b2; : : : ; bn/ that satisfies the system. Suppose

each of the functions F.i/ has continuous first partial derivatives with respect to each

of the variables xj and yk , (i D 1; : : : ; n, j D 1; : : : ; m, k D 1; : : : ; n), near P0.

Finally, suppose that

@.F.1/; F.2/; : : : ; F.n//

@.y1; y2; : : : ; yn/

ˇ

ˇ

ˇ

ˇ

P0

¤ 0:

Then the system can be solved for y1; y2; : : : ; yn as functions of x1; x2; : : : ; xm near

P0. That is, there exist functions

�1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

such that

�j .a1; : : : ; am/ D bj ; .j D 1; : : : ; n/;

and such that the equations
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F.1/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

F.2/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

:
:
:

F.n/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

hold for all .x1; : : : ; xm/ sufficiently near .a1; : : : ; am/. Moreover,

@�i

@xj

D

�

@yi

@xj

�

x1;:::;xj �1;xj C1;:::;xm

D �

@.F.1/; F.2/; : : : ; F.n//

@.y1; : : : ; xj ; : : : ; yn/

@.F.1/; F.2/; : : : ; F.n//

@.y1; : : : ; yi ; : : : ; yn/

:

Remark The formula for the partial derivatives is a consequence of Cramer’s Rule

(Theorem 6 of Section 10.7) applied to the n linear equations in the n unknowns

@y1=@xj ; : : : ; @yn=@xj obtained by differentiating each of the equations in the given

system with respect to xj .

E X A M P L E 7
Show that the system

�

xy2
C xzuC yv2

D 3

x3yz C 2xv � u2v2
D 2

can be solved for .u; v/ as a (vector) function of .x; y; z/ near the point P0 where

.x; y; z; u; v/ D .1; 1; 1; 1; 1/, and find the value of @v=@y for the solution at .x; y; z/ D

.1; 1; 1/.

Solution Let

�

F.x; y; z; u; v/ D xy2
C xzuC yv2

� 3

G.x; y; z; u; v/ D x3yz C 2xv � u2v2
� 2

. Then

@.F;G/

@.u; v/

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

xz 2yv

�2uv2 2x � 2u2v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

1 2

�2 0

ˇ

ˇ

ˇ

ˇ

D 4:

Since this Jacobian is not zero, the Implicit Function Theorem assures us that the

given equations can be solved for u and v as functions of x, y, and z, that is, for

.u; v/ D f.x; y; z/. Since

@.F;G/

@.u; y/

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

xz 2xy C v2

�2uv
2

x
3
z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

1 3

�2 1

ˇ

ˇ

ˇ

ˇ

D 7;

we have

�

@v

@y

�

x;z

D �

@.F;G/

@.u; y/

@.F;G/

@.u; v/

ˇ

ˇ

ˇ

ˇ

P0

D �

7

4
:

Remark If all we wanted in this example was to calculate @v=@y, it would have been

easier to use the technique of Example 3 and differentiate the given equations directly

with respect to y, holding x and z fixed.

E X A M P L E 8
If the equations x D u2

C v2 and y D uv are solved for u and v

in terms of x and y, find, where possible,

@u

@x
;

@u

@y
;

@v

@x
; and

@v

@y
:

Hence, show that
@.u; v/

@.x; y/
D 1

�

@.x; y/

@.u; v/
, provided the denominator is not zero.
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Consider the system of linear equations

F.x; y; s; t/ D a1x C b1y C c1s C d1t C e1 D 0

G.x; y; s; t/ D a2x C b2y C c2s C d2t C e2 D 0:

This system can be written in matrix form:

A

�

x

y

�

C C

�

s

t

�

CE D

�

0

0

�

;

where

A D

�

a1 b1

a2 b2

�

; C D

�

c1 d1

c2 d2

�

; and E D

�

e1

e2

�

:

The equations can be solved for x and y as functions of s and t provided det(A)¤ 0;

this implies the existence of the inverse matrix A
�1 (Theorem 4 of Section 10.7), so

�

x

y

�

D �A
�1

�

C

�

s

t

�

CE

�

:

Observe that det.A/ D @.F;G/=@.x; y/, so the nonvanishing of this Jacobian guar-

antees that the equations can be solved for x and y.

T H E O R E M

8

The Implicit Function Theorem

Consider a system of n equations in nCm variables,

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

F.1/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0

F.2/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0

:
:
:

F.n/.x1; x2; : : : ; xm; y1; y2; : : : ; yn/ D 0;

and a point P0 D .a1; a2; : : : ; am; b1; b2; : : : ; bn/ that satisfies the system. Suppose

each of the functions F.i/ has continuous first partial derivatives with respect to each

of the variables xj and yk , (i D 1; : : : ; n, j D 1; : : : ; m, k D 1; : : : ; n), near P0.

Finally, suppose that

@.F.1/; F.2/; : : : ; F.n//

@.y1; y2; : : : ; yn/

ˇ

ˇ

ˇ

ˇ

P0

¤ 0:

Then the system can be solved for y1; y2; : : : ; yn as functions of x1; x2; : : : ; xm near

P0. That is, there exist functions

�1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

such that

�j .a1; : : : ; am/ D bj ; .j D 1; : : : ; n/;

and such that the equations
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F.1/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

F.2/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

:
:
:

F.n/

�

x1; : : : ; xm; �1.x1; : : : ; xm/; : : : ; �n.x1; : : : ; xm/

�

D 0;

hold for all .x1; : : : ; xm/ sufficiently near .a1; : : : ; am/. Moreover,

@�i

@xj

D

�

@yi

@xj

�

x1;:::;xj �1;xj C1;:::;xm

D �

@.F.1/; F.2/; : : : ; F.n//

@.y1; : : : ; xj ; : : : ; yn/

@.F.1/; F.2/; : : : ; F.n//

@.y1; : : : ; yi ; : : : ; yn/

:

Remark The formula for the partial derivatives is a consequence of Cramer’s Rule

(Theorem 6 of Section 10.7) applied to the n linear equations in the n unknowns

@y1=@xj ; : : : ; @yn=@xj obtained by differentiating each of the equations in the given

system with respect to xj .

E X A M P L E 7
Show that the system

�

xy2
C xzuC yv2

D 3

x3yz C 2xv � u2v2
D 2

can be solved for .u; v/ as a (vector) function of .x; y; z/ near the point P0 where

.x; y; z; u; v/ D .1; 1; 1; 1; 1/, and find the value of @v=@y for the solution at .x; y; z/ D

.1; 1; 1/.

Solution Let

�

F.x; y; z; u; v/ D xy2
C xzuC yv2

� 3

G.x; y; z; u; v/ D x3yz C 2xv � u2v2
� 2

. Then

@.F;G/

@.u; v/

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

xz 2yv

�2uv2 2x � 2u2v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

1 2

�2 0

ˇ

ˇ

ˇ

ˇ

D 4:

Since this Jacobian is not zero, the Implicit Function Theorem assures us that the

given equations can be solved for u and v as functions of x, y, and z, that is, for

.u; v/ D f.x; y; z/. Since

@.F;G/

@.u; y/

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

xz 2xy C v2

�2uv
2

x
3
z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P0

D

ˇ

ˇ

ˇ

ˇ

1 3

�2 1

ˇ

ˇ

ˇ

ˇ

D 7;

we have

�

@v

@y

�

x;z

D �

@.F;G/

@.u; y/

@.F;G/

@.u; v/

ˇ

ˇ

ˇ

ˇ

P0

D �

7

4
:

Remark If all we wanted in this example was to calculate @v=@y, it would have been

easier to use the technique of Example 3 and differentiate the given equations directly

with respect to y, holding x and z fixed.

E X A M P L E 8
If the equations x D u2

C v2 and y D uv are solved for u and v

in terms of x and y, find, where possible,

@u

@x
;

@u

@y
;

@v

@x
; and

@v

@y
:

Hence, show that
@.u; v/

@.x; y/
D 1

�

@.x; y/

@.u; v/
, provided the denominator is not zero.
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Solution The given equations can be rewritten in the form

F.u; v; x; y/ D u
2
C v

2
� x D 0

G.u; v; x; y/ D uv � y D 0:

Let

J D
@.F;G/

@.u; v/
D

ˇ

ˇ

ˇ

ˇ

2u 2v

v u

ˇ

ˇ

ˇ

ˇ

D 2.u
2
� v

2
/ D

@.x; y/

@.u; v/
:

If u2
¤ v2, then J ¤ 0 and we can calculate the required partial derivatives:

@u

@x
D �

1

J

@.F;G/

@.x; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

�1 2v

0 u

ˇ

ˇ

ˇ

ˇ

D

u

2.u2
� v2/

@u

@y
D �

1

J

@.F;G/

@.y; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

0 2v

�1 u

ˇ

ˇ

ˇ

ˇ

D

�2v

2.u2
� v2/

@v

@x
D �

1

J

@.F;G/

@.u; x/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u �1

v 0

ˇ

ˇ

ˇ

ˇ

D

�v

2.u2
� v2/

@v

@y
D �

1

J

@.F;G/

@.u; y/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u 0

v �1

ˇ

ˇ

ˇ

ˇ

D

2u

2.u2
� v2/

:

Thus,

@.u; v/

@.x; y/
D

1

J 2

ˇ

ˇ

ˇ

ˇ

u �2v

�v 2u

ˇ

ˇ

ˇ

ˇ

D

J

J 2
D

1

J
D

1

@.x; y/

@.u; v/

:

Remark Note in the above example that @u=@x ¤ 1=.@x=@u/. This should be con-

trasted with the single-variable situation where, if y D f .x/ and dy=dx ¤ 0, then

x D f �1.y/ and dx=dy D 1=.dy=dx/. This is another reason for distinguishing

between @ and d . It is the Jacobian rather than any single partial derivative that takes

the place of the ordinary derivative in such situations.

Remark Let us look briefly at the general case of invertible transformations from R
n

to R
n. Suppose that y D f.x/ and z D g.y/ are both functions from R

n to R
n whose

components have continuous first partial derivatives. As shown in Section 12.6, the

Chain Rule implies that
0

B

B

B

B

@

@z1

@x1

� � �

@z1

@xn
:
:
:

: : :
:
:
:

@zn

@x1

� � �

@zn

@xn

1

C

C

C

C

A

D

0

B

B

B

B

@

@z1

@y1

� � �

@z1

@yn

:
:
:

: : :
:
:
:

@zn

@y1

� � �

@zn

@yn

1

C

C

C

C

A

0

B

B

B

B

@

@y1

@x1

� � �

@y1

@xn
:
:
:

: : :
:
:
:

@yn

@x1

� � �

@yn

@xn

1

C

C

C

C

A

:

This is just the Chain Rule for the composition z D g
�

f.x/
�

. It follows from Theorem

3(b) of Section 10.7 that the determinants of these matrices satisfy a similar equation:

@.z1 � � � zn/

@.x1 � � � xn/
D

@.z1 � � � zn/

@.y1 � � � yn/

@.y1 � � � yn/

@.x1 � � � xn/
:

If f is one-to-one and g is the inverse of f, then z D g
�

f.x/
�

D x and

@.z1 � � � zn/=@.x1 � � � xn/ D 1, the determinant of the identity matrix. Thus,

@.x1 � � � xn/

@.y1 � � � yn/
D

1

@.y1 � � � yn/

@.x1 � � � xn/

:

In fact, the nonvanishing of either of these determinants is sufficient to guarantee that

f is one-to-one and has an inverse. This is a special case of the Implicit Function

Theorem.

We will encounter Jacobians again when we study transformations of coordinates

in multiple integrals in Chapter 14.
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E X E R C I S E S 12.8

In Exercises 1–12, calculate the indicated derivative from the given

equation(s). What condition on the variables will guarantee the

existence of a solution that has the indicated derivative? Assume

that any general functions F; G, and H have continuous first

partial derivatives.

1.
dx

dy
if xy3

C x
4
y D 2 2.

@x

@y
if xy3

D y � z

3.
@z

@y
if z2
C xy

3
D

xz

y
4.
@y

@z
if eyz

� x
2
z lny D �

5.
@x

@w
if x2

y
2
C y

2
z

2
C z

2
t
2
C t

2
w

2
� xw D 0

6.
dy

dx
if F.x; y; x2

� y
2
/ D 0

7.
@u

@x
if G.x; y; z; u; v/ D 0

8.
@z

@x
if F.x2

� z
2
; y

2
C xz/ D 0

9.
@w

@t
if H.u2

w; v
2
t; wt/ D 0

10.

 

@y

@x

!

u

if xyuv D 1 and x C y C uC v D 0

11.

 

@x

@y

!

z

if x2
C y

2
C z

2
Cw

2
D 1, and

x C 2y C 3z C 4w D 2

12.
du

dx
if x2

y C y
2
u � u

3
D 0 and x2

C yu D 1

13. If x D u3
C v3 and y D uv � v2 are solved for u and v in

terms of x and y, evaluate

@u

@x
;

@u

@y
;

@v

@x
;

@v

@y
; and

@.u; v/

@.x; y/

at the point where u D 1 and v D 1.

14. Near what points .r; s/ can the transformation

x D r
2
C 2s; y D s

2
� 2r

be solved for r and s as functions of x and y? Calculate the

values of the first partial derivatives of the solution at the

origin.

15. Evaluate the Jacobian @.x; y/=@.r; �/ for the transformation to

polar coordinates: x D r cos � , y D r sin � . Near what points

.r; �/ is the transformation one-to-one and therefore invertible

to give r and � as functions of x and y?

16. Evaluate the Jacobian @.x; y; z/=@.R; �; �/, where

x D R sin� cos �; y D R sin� sin �; and z D R cos�:

This is the transformation from Cartesian to spherical

coordinates in 3-space that we discussed in Section 10.6. Near

what points is the transformation one-to-one and hence

invertible to give R, �, and � as functions of x, y, and z?

17. Show that the equations

8

<

:

xy
2
C zuC v

2
D 3

x3z C 2y � uv D 2

xuC yv � xyz D 1

can be solved for x, y, and z as functions of u and v near the

point P0 where .x; y; z; u; v/ D .1; 1; 1; 1; 1/, and find

.@y=@u/v at .u; v/ D .1; 1/.

18. Show that the equations

�

xey
C uz � cos v D 2

u cos y C x2v � yz2
D 1

can be

solved for u and v as functions of x, y, and z near the point

P0 where .x; y; z/ D .2; 0; 1/ and .u; v/ D .1; 0/, and find

.@u=@z/x;y at .x; y; z/ D .2; 0; 1/.

19. Find dx=dy from the system

F.x; y; z; w/ D 0; G.x; y; z;w/ D 0; H.x; y; z; w/ D 0:

20. Given the system

F.x; y; z; u; v/ D 0

G.x; y; z; u; v/ D 0

H.x; y; z; u; v/ D 0;

how many possible interpretations are there for @x=@y?

Evaluate them.

21. Given the system

F.x1; x2; : : : ; x8/ D 0

G.x1; x2; : : : ; x8/ D 0

H.x1; x2; : : : ; x8/ D 0;

how many possible interpretations are there for the partial
@x1

@x2

? Evaluate

�

@x1

@x2

�

x4;x6;x7;x8

.

22. If F.x; y; z/ D 0 determines z as a function of x and y,

calculate @2z=@x2, @2z=@x@y, and @2z=@y2 in terms of the

partial derivatives of F:

23. If x D uC v, y D uv, and z D u2
C v2 define z as a

function of x and y, find @z=@x, @z=@y, and @2z=@x@y.

24. A certain gas satisfies the law pV D T �
4p

T 2
,

where p D pressure, V D volume, and T D temperature.

(a) Calculate @T=@p and @T=@V at the point where

p D V D 1 and T D 2.

(b) If measurements of p and V yield the values

p D 1˙ 0:001 and V D 1˙ 0:002, find the approximate

maximum error in the calculated value T D 2.

25. If F.x; y; z/ D 0, show that

 

@x

@y

!

z

 

@y

@z

!

x

 

@z

@x

!

y

D �1.

Derive analogous results for F.x; y; z; u/ D 0 and for

F.x; y; z; u; v/ D 0. What is the general case?

26.I If the equations F.x; y; u; v/ D 0 and G.x; y; u; v/ D 0 are

solved for x and y as functions of u and v, show that

@.x; y/

@.u; v/
D

@.F;G/

@.u; v/

,

@.F;G/

@.x; y/
:
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Solution The given equations can be rewritten in the form

F.u; v; x; y/ D u
2
C v

2
� x D 0

G.u; v; x; y/ D uv � y D 0:

Let

J D
@.F;G/

@.u; v/
D

ˇ

ˇ

ˇ

ˇ

2u 2v

v u

ˇ

ˇ

ˇ

ˇ

D 2.u
2
� v

2
/ D

@.x; y/

@.u; v/
:

If u2
¤ v2, then J ¤ 0 and we can calculate the required partial derivatives:

@u

@x
D �

1

J

@.F;G/

@.x; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

�1 2v

0 u

ˇ

ˇ

ˇ

ˇ

D

u

2.u2
� v2/

@u

@y
D �

1

J

@.F;G/

@.y; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

0 2v

�1 u

ˇ

ˇ

ˇ

ˇ

D

�2v

2.u2
� v2/

@v

@x
D �

1

J

@.F;G/

@.u; x/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u �1

v 0

ˇ

ˇ

ˇ

ˇ

D

�v

2.u2
� v2/

@v

@y
D �

1

J

@.F;G/

@.u; y/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u 0

v �1

ˇ

ˇ

ˇ

ˇ

D

2u

2.u2
� v2/

:

Thus,

@.u; v/

@.x; y/
D

1

J 2

ˇ

ˇ

ˇ

ˇ

u �2v

�v 2u

ˇ

ˇ

ˇ

ˇ

D

J

J 2
D

1

J
D

1

@.x; y/

@.u; v/

:

Remark Note in the above example that @u=@x ¤ 1=.@x=@u/. This should be con-

trasted with the single-variable situation where, if y D f .x/ and dy=dx ¤ 0, then

x D f �1.y/ and dx=dy D 1=.dy=dx/. This is another reason for distinguishing

between @ and d . It is the Jacobian rather than any single partial derivative that takes

the place of the ordinary derivative in such situations.

Remark Let us look briefly at the general case of invertible transformations from R
n

to R
n. Suppose that y D f.x/ and z D g.y/ are both functions from R

n to R
n whose

components have continuous first partial derivatives. As shown in Section 12.6, the

Chain Rule implies that
0

B

B

B

B

@

@z1

@x1

� � �

@z1

@xn
:
:
:

: : :
:
:
:

@zn

@x1

� � �

@zn

@xn

1

C

C

C

C

A

D

0

B

B

B

B

@

@z1

@y1

� � �

@z1

@yn

:
:
:

: : :
:
:
:

@zn

@y1

� � �

@zn

@yn

1

C

C

C

C

A

0

B

B

B

B

@

@y1

@x1

� � �

@y1

@xn
:
:
:

: : :
:
:
:

@yn

@x1

� � �

@yn

@xn

1

C

C

C

C

A

:

This is just the Chain Rule for the composition z D g
�

f.x/
�

. It follows from Theorem

3(b) of Section 10.7 that the determinants of these matrices satisfy a similar equation:

@.z1 � � � zn/

@.x1 � � � xn/
D

@.z1 � � � zn/

@.y1 � � � yn/

@.y1 � � � yn/

@.x1 � � � xn/
:

If f is one-to-one and g is the inverse of f, then z D g
�

f.x/
�

D x and

@.z1 � � � zn/=@.x1 � � � xn/ D 1, the determinant of the identity matrix. Thus,

@.x1 � � � xn/

@.y1 � � � yn/
D

1

@.y1 � � � yn/

@.x1 � � � xn/

:

In fact, the nonvanishing of either of these determinants is sufficient to guarantee that

f is one-to-one and has an inverse. This is a special case of the Implicit Function

Theorem.

We will encounter Jacobians again when we study transformations of coordinates

in multiple integrals in Chapter 14.
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E X E R C I S E S 12.8

In Exercises 1–12, calculate the indicated derivative from the given

equation(s). What condition on the variables will guarantee the

existence of a solution that has the indicated derivative? Assume

that any general functions F; G, and H have continuous first

partial derivatives.

1.
dx

dy
if xy3

C x
4
y D 2 2.

@x

@y
if xy3

D y � z

3.
@z

@y
if z2
C xy

3
D

xz

y
4.
@y

@z
if eyz

� x
2
z lny D �

5.
@x

@w
if x2

y
2
C y

2
z

2
C z

2
t
2
C t

2
w

2
� xw D 0

6.
dy

dx
if F.x; y; x2

� y
2
/ D 0

7.
@u

@x
if G.x; y; z; u; v/ D 0

8.
@z

@x
if F.x2

� z
2
; y

2
C xz/ D 0

9.
@w

@t
if H.u2

w; v
2
t; wt/ D 0

10.

 

@y

@x

!

u

if xyuv D 1 and x C y C uC v D 0

11.

 

@x

@y

!

z

if x2
C y

2
C z

2
Cw

2
D 1, and

x C 2y C 3z C 4w D 2

12.
du

dx
if x2

y C y
2
u � u

3
D 0 and x2

C yu D 1

13. If x D u3
C v3 and y D uv � v2 are solved for u and v in

terms of x and y, evaluate

@u

@x
;

@u

@y
;

@v

@x
;

@v

@y
; and

@.u; v/

@.x; y/

at the point where u D 1 and v D 1.

14. Near what points .r; s/ can the transformation

x D r
2
C 2s; y D s

2
� 2r

be solved for r and s as functions of x and y? Calculate the

values of the first partial derivatives of the solution at the

origin.

15. Evaluate the Jacobian @.x; y/=@.r; �/ for the transformation to

polar coordinates: x D r cos � , y D r sin � . Near what points

.r; �/ is the transformation one-to-one and therefore invertible

to give r and � as functions of x and y?

16. Evaluate the Jacobian @.x; y; z/=@.R; �; �/, where

x D R sin� cos �; y D R sin� sin �; and z D R cos�:

This is the transformation from Cartesian to spherical

coordinates in 3-space that we discussed in Section 10.6. Near

what points is the transformation one-to-one and hence

invertible to give R, �, and � as functions of x, y, and z?

17. Show that the equations

8

<

:

xy
2
C zuC v

2
D 3

x3z C 2y � uv D 2

xuC yv � xyz D 1

can be solved for x, y, and z as functions of u and v near the

point P0 where .x; y; z; u; v/ D .1; 1; 1; 1; 1/, and find

.@y=@u/v at .u; v/ D .1; 1/.

18. Show that the equations

�

xey
C uz � cos v D 2

u cos y C x2v � yz2
D 1

can be

solved for u and v as functions of x, y, and z near the point

P0 where .x; y; z/ D .2; 0; 1/ and .u; v/ D .1; 0/, and find

.@u=@z/x;y at .x; y; z/ D .2; 0; 1/.

19. Find dx=dy from the system

F.x; y; z; w/ D 0; G.x; y; z;w/ D 0; H.x; y; z; w/ D 0:

20. Given the system

F.x; y; z; u; v/ D 0

G.x; y; z; u; v/ D 0

H.x; y; z; u; v/ D 0;

how many possible interpretations are there for @x=@y?

Evaluate them.

21. Given the system

F.x1; x2; : : : ; x8/ D 0

G.x1; x2; : : : ; x8/ D 0

H.x1; x2; : : : ; x8/ D 0;

how many possible interpretations are there for the partial
@x1

@x2

? Evaluate

�

@x1

@x2

�

x4;x6;x7;x8

.

22. If F.x; y; z/ D 0 determines z as a function of x and y,

calculate @2z=@x2, @2z=@x@y, and @2z=@y2 in terms of the

partial derivatives of F:

23. If x D uC v, y D uv, and z D u2
C v2 define z as a

function of x and y, find @z=@x, @z=@y, and @2z=@x@y.

24. A certain gas satisfies the law pV D T �
4p

T 2
,

where p D pressure, V D volume, and T D temperature.

(a) Calculate @T=@p and @T=@V at the point where

p D V D 1 and T D 2.

(b) If measurements of p and V yield the values

p D 1˙ 0:001 and V D 1˙ 0:002, find the approximate

maximum error in the calculated value T D 2.

25. If F.x; y; z/ D 0, show that

 

@x

@y

!

z

 

@y

@z

!

x

 

@z

@x

!

y

D �1.

Derive analogous results for F.x; y; z; u/ D 0 and for

F.x; y; z; u; v/ D 0. What is the general case?

26.I If the equations F.x; y; u; v/ D 0 and G.x; y; u; v/ D 0 are

solved for x and y as functions of u and v, show that

@.x; y/

@.u; v/
D

@.F;G/

@.u; v/

,

@.F;G/

@.x; y/
:
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27.I If the equations x D f .u; v/, y D g.u; v/ can be solved for u

and v in terms of x and y, show that

@.u; v/

@.x; y/
D 1

,

@.x; y/

@.u; v/
:

Hint: Use the result of Exercise 26.

28.I If x D f .u; v/, y D g.u; v/, u D h.r; s/, and v D k.r; s/,

then x and y can be expressed as functions of r and s. Verify

by direct calculation that

@.x; y/

@.r; s/
D

@.x; y/

@.u; v/

@.u; v/

@.r; s/
:

This is a special case of the Chain Rule for Jacobians.

29.I Two functions, f .x; y/ and g.x; y/, are said to be

functionally dependent if one is a function of the other; that is,

if there exists a single-variable function k.t/ such that

f .x; y/ D k

�

g.x; y/

�

for all x and y. Show that in this case

@.f; g/=@.x; y/ vanishes identically. Assume that all

necessary derivatives exist.

30.I Prove the converse of Exercise 29 as follows: Let u D f .x; y/

and v D g.x; y/, and suppose that

@.u; v/=@.x; y/ D @.f; g/=@.x; y/ is identically zero for all x

and y. Show that .@u=@x/v is identically zero. Hence u,

considered as a function of x and v, is independent of x; that

is, u D k.v/ for some function k of one variable. Why does

this imply that f and g are functionally dependent?

Thermodynamics Problems

31. Use the different versions of the equation of state, presented in

this section, to determine explicit functions u and v such that

S D u.E; V;N / and S D v.T; V;N /.

In Exercises 32–34, verify the given Maxwell relation by using a

suitable Legendre transformation (see the Thermodynamics

subsection of Section 12.6) to involve the appropriate set of

independent variables.

32.I

�

@P

@T

�

V;N

D

�

@S

@V

�

T;N

33.I

�

@V

@S

�

P;N

D

�

@T

@P

�

S;N

34.I

�

@S

@P

�

T;N

D �

�

@V

@T

�

P;N

12.9 Taylor’s Formula, Taylor Series, and Approximations

As is the case for functions of one variable, power series representations and their

partial sums (Taylor polynomials) can provide an efficient method for determining the

behaviour of a smooth function of several variables near a point in its domain. In this

section we will look briefly at the extension of Taylor’s formula and Taylor series to

such functions. We will do this for functions of n variables as it is no more difficult to

do this than to treat the special case n D 2.

As a starting point, recall Taylor’s formula for a function F.t/ with continuous

derivatives of order up to m C 1 on the interval Œ0; 1�. (See Theorem 12 in Section

4.10, and put f D F; a D 0, x D h D 1, and s D � in the version of Taylor’s formula

given there.)

F.1/ D F.0/C F
0
.0/C

F
00
.0/

2Š
C � � � C

F
.m/
.0/

mŠ
C

F
.mC1/

.�/

.mC 1/Š
;

where � is some number between 0 and 1. (The last term in the formula is the Lagrange

form of the remainder.)

Now suppose that a D .a1; a2; : : : ; an/ and h D .h1; h2; : : : ; hn/ belong to R
n. If

To simplify the manipulation of

many variables, irrespective of

how many there are, it is con-

venient to introduce the idea of a

function of a vector, which is an

intuitively straightforward

extension from functions of

scalars. If x has components

.x1; x2; : : : ; xn/, then f .x/ just

means f .x1; x2; : : : ; xn/, a

function of n variables.

f is a function of x 2 R
n that has continuous partial derivatives of orders up tomC 1

in an open set containing the line segment joining a and aC h, we can apply the above

formula to

F.t/ D f .aC th/; .0 � t � 1/:

By the Chain Rule we will have

F
0
.t/ D h1fh1

.aC th/C h2fh2
.aC th/C � � � C hnfhn

.aC th/

D .h � r/f .aC th/;
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where

.h � r/f .aC th/ D
�

.h1D1 C h2D2 C � � � C hnDn/f .x/
�

ˇ

ˇ

ˇ

xDaCth

and Dj D @=@xj , (1 � p � n). Similarly,

F
00
.t/ D h1h1f11.aC th/C h1h2f12.aC th/C � � � C hnhnfnn.aC th/

D

�

h � r
�2
f .aC th/

:
:
:

F
.j /
.t/ D

�

h � r
�j
f .aC th/

Thus, F.1/ D f .a C h/; F.0/ D f .a/; and F
.j /
.0/ D .h � r/j f .a/. The

Taylor formula given above thus says that

f .aC h/ D f .a/C h � rf .a/C
.h � r/2f .a/

2Š
C � � � C

.h � r/mf .a/

mŠ

C

.h � r/mC1f .aC �h/

.mC 1/Š

D

m
X

j D0

.h � r/jf .a/

j Š
C

.h � r/mC1f .aC �h/

.mC 1/Š

D Pm.h/CRm.h; �/:

This is Taylor’s formula for f about x D a. Pm.h/ is a polynomial of degree m in

the components of h. Pm.h/ is called the mth degree Taylor polynomial of f about

x D a. The term corresponding to j in the summation defining Pm is, if not zero,

a polynomial of degree exactly j in the components of h, whose coefficients are j th

order partial derivatives of f evaluated at x D a. The remainder term Rm.h; �/ is

also a polynomial in the components of h, each of whose terms if not zero has degree

exactlymC1, but its coefficients are .mC1/st order partial derivatives of f evaluated

at an indeterminate point aC �h along the line segment between a and aC h.

Sometimes it is useful to replace the explicit remainder in Taylor’s formula with a

Big-O term that is bounded by a multiple of jhjmC1 as jhj ! 0. (See Section 4.10.)

f .aCh/ D f .a/Ch�rf .a/C
.h � r/2f .a/

2Š
C� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/:

If all partial derivatives of f are continuous, and if there exists a positive number

r such that whenever jhj < r we have for all � 2 Œ0; 1�,

lim
m!1

RmC1.h; �/ D 0;

then we can represent f .aC h/ as the sum of the Taylor series

f .aC h/ D

1
X

j D0

.h � r/jf .a/

j Š
:

Remark An alternative approach is to develop Taylor’s formula with directional

derivatives. Following Section 12.7, a function g.s/ is introduced, where s � s0 is

distance, measured along a line L in direction u, from the point on L corresponding to

s D s0. As in Section 4.10, a Taylor formula for g.s/ is

g.s/ D g.s0/Cg
0
.s0/.s�s0/C

1

2
g

00
.s0/.s�s0/

2
C� � �C

1

2
g

.m/
.s0/.s�s0/

2
CO

�

js�s0j
mC1

/:

Since d=ds D u�r is the directional derivative operation in direction u, the directional

derivative extends to all orders in the Taylor expansion in s. We may choose g.s/ D

f .aC .s � s0/u/, where .s � s0/u D h. It follows that jhjn D js � s0j
n and

g.s/ D f .aCh/ D f .a/C.h�r/f .a/C
.h � r/2f .a/

2Š
� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/

as above.
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27.I If the equations x D f .u; v/, y D g.u; v/ can be solved for u

and v in terms of x and y, show that

@.u; v/

@.x; y/
D 1

,

@.x; y/

@.u; v/
:

Hint: Use the result of Exercise 26.

28.I If x D f .u; v/, y D g.u; v/, u D h.r; s/, and v D k.r; s/,

then x and y can be expressed as functions of r and s. Verify

by direct calculation that

@.x; y/

@.r; s/
D

@.x; y/

@.u; v/

@.u; v/

@.r; s/
:

This is a special case of the Chain Rule for Jacobians.

29.I Two functions, f .x; y/ and g.x; y/, are said to be

functionally dependent if one is a function of the other; that is,

if there exists a single-variable function k.t/ such that

f .x; y/ D k

�

g.x; y/

�

for all x and y. Show that in this case

@.f; g/=@.x; y/ vanishes identically. Assume that all

necessary derivatives exist.

30.I Prove the converse of Exercise 29 as follows: Let u D f .x; y/

and v D g.x; y/, and suppose that

@.u; v/=@.x; y/ D @.f; g/=@.x; y/ is identically zero for all x

and y. Show that .@u=@x/v is identically zero. Hence u,

considered as a function of x and v, is independent of x; that

is, u D k.v/ for some function k of one variable. Why does

this imply that f and g are functionally dependent?

Thermodynamics Problems

31. Use the different versions of the equation of state, presented in

this section, to determine explicit functions u and v such that

S D u.E; V;N / and S D v.T; V;N /.

In Exercises 32–34, verify the given Maxwell relation by using a

suitable Legendre transformation (see the Thermodynamics

subsection of Section 12.6) to involve the appropriate set of

independent variables.

32.I

�

@P

@T

�

V;N

D

�

@S

@V

�

T;N

33.I

�

@V

@S

�

P;N

D

�

@T

@P

�

S;N

34.I

�

@S

@P

�

T;N

D �

�

@V

@T

�

P;N

12.9 Taylor’s Formula, Taylor Series, and Approximations

As is the case for functions of one variable, power series representations and their

partial sums (Taylor polynomials) can provide an efficient method for determining the

behaviour of a smooth function of several variables near a point in its domain. In this

section we will look briefly at the extension of Taylor’s formula and Taylor series to

such functions. We will do this for functions of n variables as it is no more difficult to

do this than to treat the special case n D 2.

As a starting point, recall Taylor’s formula for a function F.t/ with continuous

derivatives of order up to m C 1 on the interval Œ0; 1�. (See Theorem 12 in Section

4.10, and put f D F; a D 0, x D h D 1, and s D � in the version of Taylor’s formula

given there.)

F.1/ D F.0/C F
0
.0/C

F
00
.0/

2Š
C � � � C

F
.m/
.0/

mŠ
C

F
.mC1/

.�/

.mC 1/Š
;

where � is some number between 0 and 1. (The last term in the formula is the Lagrange

form of the remainder.)

Now suppose that a D .a1; a2; : : : ; an/ and h D .h1; h2; : : : ; hn/ belong to R
n. If

To simplify the manipulation of

many variables, irrespective of

how many there are, it is con-

venient to introduce the idea of a

function of a vector, which is an

intuitively straightforward

extension from functions of

scalars. If x has components

.x1; x2; : : : ; xn/, then f .x/ just

means f .x1; x2; : : : ; xn/, a

function of n variables.

f is a function of x 2 R
n that has continuous partial derivatives of orders up tomC 1

in an open set containing the line segment joining a and aC h, we can apply the above

formula to

F.t/ D f .aC th/; .0 � t � 1/:

By the Chain Rule we will have

F
0
.t/ D h1fh1

.aC th/C h2fh2
.aC th/C � � � C hnfhn

.aC th/

D .h � r/f .aC th/;

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 745 October 17, 2016

SECTION 12.9: Taylor’s Formula, Taylor Series, and Approximations 745

where

.h � r/f .aC th/ D
�

.h1D1 C h2D2 C � � � C hnDn/f .x/
�

ˇ

ˇ

ˇ

xDaCth

and Dj D @=@xj , (1 � p � n). Similarly,

F
00
.t/ D h1h1f11.aC th/C h1h2f12.aC th/C � � � C hnhnfnn.aC th/

D

�

h � r
�2
f .aC th/

:
:
:

F
.j /
.t/ D

�

h � r
�j
f .aC th/

Thus, F.1/ D f .a C h/; F.0/ D f .a/; and F
.j /
.0/ D .h � r/j f .a/. The

Taylor formula given above thus says that

f .aC h/ D f .a/C h � rf .a/C
.h � r/2f .a/

2Š
C � � � C

.h � r/mf .a/

mŠ

C

.h � r/mC1f .aC �h/

.mC 1/Š

D

m
X

j D0

.h � r/jf .a/

j Š
C

.h � r/mC1f .aC �h/

.mC 1/Š

D Pm.h/CRm.h; �/:

This is Taylor’s formula for f about x D a. Pm.h/ is a polynomial of degree m in

the components of h. Pm.h/ is called the mth degree Taylor polynomial of f about

x D a. The term corresponding to j in the summation defining Pm is, if not zero,

a polynomial of degree exactly j in the components of h, whose coefficients are j th

order partial derivatives of f evaluated at x D a. The remainder term Rm.h; �/ is

also a polynomial in the components of h, each of whose terms if not zero has degree

exactlymC1, but its coefficients are .mC1/st order partial derivatives of f evaluated

at an indeterminate point aC �h along the line segment between a and aC h.

Sometimes it is useful to replace the explicit remainder in Taylor’s formula with a

Big-O term that is bounded by a multiple of jhjmC1 as jhj ! 0. (See Section 4.10.)

f .aCh/ D f .a/Ch�rf .a/C
.h � r/2f .a/

2Š
C� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/:

If all partial derivatives of f are continuous, and if there exists a positive number

r such that whenever jhj < r we have for all � 2 Œ0; 1�,

lim
m!1

RmC1.h; �/ D 0;

then we can represent f .aC h/ as the sum of the Taylor series

f .aC h/ D

1
X

j D0

.h � r/jf .a/

j Š
:

Remark An alternative approach is to develop Taylor’s formula with directional

derivatives. Following Section 12.7, a function g.s/ is introduced, where s � s0 is

distance, measured along a line L in direction u, from the point on L corresponding to

s D s0. As in Section 4.10, a Taylor formula for g.s/ is

g.s/ D g.s0/Cg
0
.s0/.s�s0/C

1

2
g

00
.s0/.s�s0/

2
C� � �C

1

2
g

.m/
.s0/.s�s0/

2
CO

�

js�s0j
mC1

/:

Since d=ds D u�r is the directional derivative operation in direction u, the directional

derivative extends to all orders in the Taylor expansion in s. We may choose g.s/ D

f .aC .s � s0/u/, where .s � s0/u D h. It follows that jhjn D js � s0j
n and

g.s/ D f .aCh/ D f .a/C.h�r/f .a/C
.h � r/2f .a/

2Š
� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/

as above.
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E X A M P L E 1
Let us illustrate the above ideas with a simple special case. If f

is a function of two variables, x and y, having continuous partial

derivatives of order up to 4 in the disk .x � a/2 C .y � b/2 � r2, then for h D .h; k/

in R
2 satisfying h2

C k2 < r we have

We stress that the expression

.hD1 C kD2/
j f .a; b/ means

first calculate

.hD1 C kD2/
j f .x; y/ and then

evaluate the result at

.x; y/ D .a; b/.

f .aC h; b C k/ D P3.h; k/CR3.h; k; �/

D f .a; b/C .hD1 C kD2/f .a; b/C
1

2Š
.hD1 C kD2/

2
f .a; b/

C

1

3Š
.hD1 C kD2/

3
f .a; b/CR3.h; k; �/

D f .a; b/C hf1.a; b/C kf2.a; b/

C

1

2Š

�

h
2
f11.a; b/C 2hkf12.a; b/C k

2
f22.a; b/

�

C

1

3Š

�

h
3
f111.a; b/C 3h

2
kf112.a; b/C 3hk

2
f122.a; b/C k

3
f222.a; b/

�

CR3.h; k; �/;

where R3.h; k; �/ D
1

4Š
.hD1 C kD2/

4
f .aC �h; b C �k/ D O

�

.h
2
C k

2
/
2
�

:

Note that since 0 < � < 1, all the 4th-order partial derivatives of f are bounded on

the line segment from .a; b/ to .a C �h; b C �k/. This is why the remainder term is

O
�

.h2
C k2/2

�

.

As for functions of one variable, the Taylor polynomial of degree m provides the

“best” nth-degree polynomial approximation to f .x; y/ near .a; b/. For n D 1 this

approximation reduces to the tangent plane approximation

f .x; y/ � f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 2
Find a second-degree polynomial approximation to the function

f .x; y/ D
p

x2
C y3 near the point .1; 2/, and use it to estimate

the value of
p

.1:02/2 C .1:97/3.

Solution For the second-degree approximation we need the values of the partial

derivatives of f up to second order at .1; 2/. We have

f .x; y/ D

p

x2
C y3

f1.x; y/ D
x

p

x2
C y3

f2.x; y/ D
3y2

2
p

x2
C y3

f11.x; y/ D
y3

.x2
C y3/3=2

f12.x; y/ D
�3xy2

2.x2
C y3/3=2

f22.x; y/ D
12x2y C 3y4

4.x2
C y3/3=2

f .1; 2/ D 3

f1.1; 2/ D
1

3

f2.1; 2/ D 2

f11.1; 2/ D
8

27

f12.1; 2/ D �
2

9

f22.1; 2/ D
2

3
:

Thus,

f .1C h; 2C k/ � 3C
1

3
hC 2k C

1

2Š

�

8

27
h

2
C 2

�

�

2

9

�

hk C
2

3
k

2
�

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 747 October 17, 2016

SECTION 12.9: Taylor’s Formula, Taylor Series, and Approximations 747

or, setting x D 1C h and y D 2C k,

f .x; y/ D 3C
1

3
.x�1/C2.y�2/C

4

27
.x�1/

2
�

2

9
.x�1/.y�2/C

1

3
.y�2/

2
:

This is the required second-degree Taylor polynomial for f near .1; 2/. Therefore,

p

.1:02/2 C .1:97/3 D f .1C 0:02; 2 � 0:03/

� 3C
1

3
.0:02/C 2.�0:03/C

4

27
.0:02/

2

�

2

9
.0:02/.�0:03/C

1

3
.�0:03/

2

� 2:947 159 3 :

(For comparison purposes the true value is 2:947 163 6 : : : The approximation is accu-

rate to 6 significant figures.)

As observed for functions of one variable, it is not usually necessary to calculate

derivatives in order to determine the coefficients in a Taylor series or Taylor poly-

nomial. It is often much easier to perform algebraic manipulations on known series.

For instance, the above example could have been done by writing f in the form

f .1C h; 2C k/ D

p

.1C h/2 C .2C k/3

D

p

9C 2hC h2
C 12k C 6k2

C k3

D 3

r

1C
2hC h2

C 12k C 6k2
C k3

9

and then applying the binomial expansion

p

1C t D 1C
1

2
t C

1

2Š

�

1

2

��

�

1

2

�

t
2
C � � �

with t D
2hC h2

C 12k C 6k2
C k3

9
to obtain the terms up to second degree in the

variables h and k.

E X A M P L E 3
Find the Taylor polynomial of degree 3 in powers of x and y for

the function f .x; y/ D ex�2y .

Solution The required Taylor polynomial will be the Taylor polynomial of degree 3

for et evaluated at t D x � 2y:

P3.x; y/ D 1C .x � 2y/C
1

2Š
.x � 2y/

2
C

1

3Š
.x � 2y/

3

D 1C x � 2y C
1

2
x

2
� 2xy C 2y

2
C

1

6
x

3
� x

2
y C 2xy

2
�

4

3
y

3
:

M Remark Maple can, of course, be used to compute multivariate Taylor polynomials

with its function mtaylor, which, depending on the Maple version, may have to be read

in from the Maple library before it can be used if it is not part of the Maple kernel.

> readlib(mtaylor):

Arguments fed to mtaylor are as follows:

(a) an expression involving the expansion variables
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E X A M P L E 1
Let us illustrate the above ideas with a simple special case. If f

is a function of two variables, x and y, having continuous partial

derivatives of order up to 4 in the disk .x � a/2 C .y � b/2 � r2, then for h D .h; k/

in R
2 satisfying h2

C k2 < r we have

We stress that the expression

.hD1 C kD2/
j f .a; b/ means

first calculate

.hD1 C kD2/
j f .x; y/ and then

evaluate the result at

.x; y/ D .a; b/.

f .aC h; b C k/ D P3.h; k/CR3.h; k; �/

D f .a; b/C .hD1 C kD2/f .a; b/C
1

2Š
.hD1 C kD2/

2
f .a; b/

C

1

3Š
.hD1 C kD2/

3
f .a; b/CR3.h; k; �/

D f .a; b/C hf1.a; b/C kf2.a; b/

C

1

2Š

�

h
2
f11.a; b/C 2hkf12.a; b/C k

2
f22.a; b/

�

C

1

3Š

�

h
3
f111.a; b/C 3h

2
kf112.a; b/C 3hk

2
f122.a; b/C k

3
f222.a; b/

�

CR3.h; k; �/;

where R3.h; k; �/ D
1

4Š
.hD1 C kD2/

4
f .aC �h; b C �k/ D O

�

.h
2
C k

2
/
2
�

:

Note that since 0 < � < 1, all the 4th-order partial derivatives of f are bounded on

the line segment from .a; b/ to .a C �h; b C �k/. This is why the remainder term is

O
�

.h2
C k2/2

�

.

As for functions of one variable, the Taylor polynomial of degree m provides the

“best” nth-degree polynomial approximation to f .x; y/ near .a; b/. For n D 1 this

approximation reduces to the tangent plane approximation

f .x; y/ � f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 2
Find a second-degree polynomial approximation to the function

f .x; y/ D
p

x2
C y3 near the point .1; 2/, and use it to estimate

the value of
p

.1:02/2 C .1:97/3.

Solution For the second-degree approximation we need the values of the partial

derivatives of f up to second order at .1; 2/. We have

f .x; y/ D

p

x2
C y3

f1.x; y/ D
x

p

x2
C y3

f2.x; y/ D
3y2

2
p

x2
C y3

f11.x; y/ D
y3

.x2
C y3/3=2

f12.x; y/ D
�3xy2

2.x2
C y3/3=2

f22.x; y/ D
12x2y C 3y4

4.x2
C y3/3=2

f .1; 2/ D 3

f1.1; 2/ D
1

3

f2.1; 2/ D 2

f11.1; 2/ D
8

27

f12.1; 2/ D �
2

9

f22.1; 2/ D
2

3
:

Thus,

f .1C h; 2C k/ � 3C
1

3
hC 2k C

1

2Š

�

8

27
h

2
C 2

�

�

2

9

�

hk C
2

3
k

2
�
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or, setting x D 1C h and y D 2C k,

f .x; y/ D 3C
1

3
.x�1/C2.y�2/C

4

27
.x�1/

2
�

2

9
.x�1/.y�2/C

1

3
.y�2/

2
:

This is the required second-degree Taylor polynomial for f near .1; 2/. Therefore,

p

.1:02/2 C .1:97/3 D f .1C 0:02; 2 � 0:03/

� 3C
1

3
.0:02/C 2.�0:03/C

4

27
.0:02/

2

�

2

9
.0:02/.�0:03/C

1

3
.�0:03/

2

� 2:947 159 3 :

(For comparison purposes the true value is 2:947 163 6 : : : The approximation is accu-

rate to 6 significant figures.)

As observed for functions of one variable, it is not usually necessary to calculate

derivatives in order to determine the coefficients in a Taylor series or Taylor poly-

nomial. It is often much easier to perform algebraic manipulations on known series.

For instance, the above example could have been done by writing f in the form

f .1C h; 2C k/ D

p

.1C h/2 C .2C k/3

D

p

9C 2hC h2
C 12k C 6k2

C k3

D 3

r

1C
2hC h2

C 12k C 6k2
C k3

9

and then applying the binomial expansion

p

1C t D 1C
1

2
t C

1

2Š

�

1

2

��

�

1

2

�

t
2
C � � �

with t D
2hC h2

C 12k C 6k2
C k3

9
to obtain the terms up to second degree in the

variables h and k.

E X A M P L E 3
Find the Taylor polynomial of degree 3 in powers of x and y for

the function f .x; y/ D ex�2y .

Solution The required Taylor polynomial will be the Taylor polynomial of degree 3

for et evaluated at t D x � 2y:

P3.x; y/ D 1C .x � 2y/C
1

2Š
.x � 2y/

2
C

1

3Š
.x � 2y/

3

D 1C x � 2y C
1

2
x

2
� 2xy C 2y

2
C

1

6
x

3
� x

2
y C 2xy

2
�

4

3
y

3
:

M Remark Maple can, of course, be used to compute multivariate Taylor polynomials

with its function mtaylor, which, depending on the Maple version, may have to be read

in from the Maple library before it can be used if it is not part of the Maple kernel.

> readlib(mtaylor):

Arguments fed to mtaylor are as follows:

(a) an expression involving the expansion variables
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(b) a list whose elements are either variable names or equations of the form

variable=value giving the coordinates of the point about which the expan-

sion is calculated. (Just naming a variable is equivalent to using the equation

variable=0.)

(c) (optionally) a positive integer m forcing the order of the computed Taylor poly-

nomial to be less thanm. Ifm is not specified, the value of Maple’s global variable

“Order” is used. The default value is 6.

A few examples should suffice.

> mtaylor(cos(x+y^2),[x,y]);

1 �
1

2
x

2
� y

2
x C

1

24
x

4
�

1

2
y

4
C

1

6
y

2
x

3

> mtaylor(cos(x+y^2),[x=Pi,y],5);

�1C
1

2
.x � �/

2
C y

2
.x � �/ �

1

24
.x � �/

4
C

1

2
y

4

> mtaylor(g(x,y),[x=a,y=b],3);

g.a; b/CD1.g/.a; b/.x � a/CD2.g/.a; b/.y � b/C
1

2
D1;1.g/.a; b/.x � a/

2

C .x � a/D1;2.g/.a; b/.y � b/C
1

2
D2;2.g/.a; b/.y � b/

2

The function mtaylor can be a bit quirky. It has a tendency to expand linear terms;

for example, in an expansion about x D 1 and y D �2, it may rewrite terms 2C .x �

1/C 2.y C 2/ in the form 5C x C 2y.

Approximating Implicit Functions
In the previous section we saw how to determine whether an equation in several vari-

ables could be solved for one of those variables as a function of the others. Even when

such a solution is known to exist, it may not be possible to find an exact formula for it.

However, if the equation involves only smooth functions, then the solution will have a

Taylor series. We can determine at least the first several coefficients in that series and

thus obtain a useful approximation to the solution. The following example shows the

technique.

E X A M P L E 4
Show that the equation sin.x C y/ D xy C 2x has a solution of

the form y D f .x/ near x D 0 satisfying f .0/ D 0, and find the

terms up to fourth degree for the Taylor series for f .x/ in powers of x.

Solution The given equation can be written in the form F.x; y/ D 0, where

F.x; y/ D sin.x C y/ � xy � 2x:

Since F.0; 0/ D 0 and F2.0; 0/ D cos.0/ D 1 ¤ 0, the equation has a solution

y D f .x/ near x D 0 satisfying f .0/ D 0 by the Implicit Function Theorem. It is not

possible to calculate f .x/ exactly, but it will have a Maclaurin series of the form

y D f .x/ D a1x C a2x
2
C a3x

3
C a4x

4
C � � � :

(There is no constant term because f .0/ D 0.) We can substitute this series into

the given equation and keep track of terms up to degree 4 in order to calculate the

coefficients a1, a2, a3, and a4. For the left side we use the Maclaurin series for sin to
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obtain

sin.x C y/ D sin
�

.1C a1/x C a2x
2
C a3x

3
C a4x

4
C � � �

�

D .1C a1/x C a2x
2
C a3x

3
C a4x

4
C � � �

�

1

3Š

�

.1C a1/x C a2x
2
C � � �

�3

C � � �

D .1C a1/x C a2x
2
C

�

a3 �
1

6
.1C a1/

3
�

x
3

C

�

a4 �
3

6
.1C a1/

2
a2

�

x
4
C � � � :

The right side is xy C 2x D 2x C a1x
2
C a2x

3
C a3x

4
C � � �. Equating coefficients

of like powers of x, we obtain

1C a1 D 2

a2 D a1

a3 �
1

6
.1C a1/

3
D a2

a4 �
1

2
.1C a1/

2
a2 D a3

a1 D 1

a2 D 1

a3 D
7

3

a4 D
13

3
:

Thus,

y D f .x/ D x C x
2
C

7

3
x

3
C

13

3
x

4
C � � � :

(We could have obtained more terms in the series by keeping track of higher powers of

x in the substitution process.)

Remark From the series for f .x/ obtained above, we can determine the values of

the first four derivatives of f at x D 0. Remember that

ak D
f .k/.0/

kŠ
:

We have, therefore,

f
0
.0/ D a1 D 1

f
000
.0/ D 3Ša3 D 14

f
00
.0/ D 2Ša2 D 2

f
.4/
.0/ D 4Ša4 D 104:

We could have done the example by first calculating these derivatives by implicit dif-

ferentiation of the given equation and then determining the series coefficients from

them. This would have been a much more difficult way to do it. (Try it and see.)

E X E R C I S E S 12.9

In Exercises 1–6, find the Taylor series for the given function about

the indicated point.

1. f .x; y/ D
1

2C xy2
; .0; 0/

2. f .x; y/ D ln.1C x C y C xy/; .0; 0/

3. f .x; y/ D tan�1
.x C xy/; .0;�1/

4. f .x; y/ D x2
C xy C y

3
; .1;�1/

5. f .x; y/ D ex2Cy2

; .0; 0/

6. f .x; y/ D sin.2x C 3y/; .0; 0/

In Exercises 7–12, find Taylor polynomials of the indicated degree

for the given functions near the given point. After calculating them

by hand, try to get the same results using Maple’s mtaylor

function.
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(b) a list whose elements are either variable names or equations of the form

variable=value giving the coordinates of the point about which the expan-

sion is calculated. (Just naming a variable is equivalent to using the equation

variable=0.)

(c) (optionally) a positive integer m forcing the order of the computed Taylor poly-

nomial to be less thanm. Ifm is not specified, the value of Maple’s global variable

“Order” is used. The default value is 6.

A few examples should suffice.

> mtaylor(cos(x+y^2),[x,y]);

1 �
1

2
x

2
� y

2
x C

1

24
x

4
�

1

2
y

4
C

1

6
y

2
x

3

> mtaylor(cos(x+y^2),[x=Pi,y],5);

�1C
1

2
.x � �/

2
C y

2
.x � �/ �

1

24
.x � �/

4
C

1

2
y

4

> mtaylor(g(x,y),[x=a,y=b],3);

g.a; b/CD1.g/.a; b/.x � a/CD2.g/.a; b/.y � b/C
1

2
D1;1.g/.a; b/.x � a/

2

C .x � a/D1;2.g/.a; b/.y � b/C
1

2
D2;2.g/.a; b/.y � b/

2

The function mtaylor can be a bit quirky. It has a tendency to expand linear terms;

for example, in an expansion about x D 1 and y D �2, it may rewrite terms 2C .x �

1/C 2.y C 2/ in the form 5C x C 2y.

Approximating Implicit Functions
In the previous section we saw how to determine whether an equation in several vari-

ables could be solved for one of those variables as a function of the others. Even when

such a solution is known to exist, it may not be possible to find an exact formula for it.

However, if the equation involves only smooth functions, then the solution will have a

Taylor series. We can determine at least the first several coefficients in that series and

thus obtain a useful approximation to the solution. The following example shows the

technique.

E X A M P L E 4
Show that the equation sin.x C y/ D xy C 2x has a solution of

the form y D f .x/ near x D 0 satisfying f .0/ D 0, and find the

terms up to fourth degree for the Taylor series for f .x/ in powers of x.

Solution The given equation can be written in the form F.x; y/ D 0, where

F.x; y/ D sin.x C y/ � xy � 2x:

Since F.0; 0/ D 0 and F2.0; 0/ D cos.0/ D 1 ¤ 0, the equation has a solution

y D f .x/ near x D 0 satisfying f .0/ D 0 by the Implicit Function Theorem. It is not

possible to calculate f .x/ exactly, but it will have a Maclaurin series of the form

y D f .x/ D a1x C a2x
2
C a3x

3
C a4x

4
C � � � :

(There is no constant term because f .0/ D 0.) We can substitute this series into

the given equation and keep track of terms up to degree 4 in order to calculate the

coefficients a1, a2, a3, and a4. For the left side we use the Maclaurin series for sin to
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obtain

sin.x C y/ D sin
�

.1C a1/x C a2x
2
C a3x

3
C a4x

4
C � � �

�

D .1C a1/x C a2x
2
C a3x

3
C a4x

4
C � � �

�

1

3Š

�

.1C a1/x C a2x
2
C � � �

�3

C � � �

D .1C a1/x C a2x
2
C

�

a3 �
1

6
.1C a1/

3
�

x
3

C

�

a4 �
3

6
.1C a1/

2
a2

�

x
4
C � � � :

The right side is xy C 2x D 2x C a1x
2
C a2x

3
C a3x

4
C � � �. Equating coefficients

of like powers of x, we obtain

1C a1 D 2

a2 D a1

a3 �
1

6
.1C a1/

3
D a2

a4 �
1

2
.1C a1/

2
a2 D a3

a1 D 1

a2 D 1

a3 D
7

3

a4 D
13

3
:

Thus,

y D f .x/ D x C x
2
C

7

3
x

3
C

13

3
x

4
C � � � :

(We could have obtained more terms in the series by keeping track of higher powers of

x in the substitution process.)

Remark From the series for f .x/ obtained above, we can determine the values of

the first four derivatives of f at x D 0. Remember that

ak D
f .k/.0/

kŠ
:

We have, therefore,

f
0
.0/ D a1 D 1

f
000
.0/ D 3Ša3 D 14

f
00
.0/ D 2Ša2 D 2

f
.4/
.0/ D 4Ša4 D 104:

We could have done the example by first calculating these derivatives by implicit dif-

ferentiation of the given equation and then determining the series coefficients from

them. This would have been a much more difficult way to do it. (Try it and see.)

E X E R C I S E S 12.9

In Exercises 1–6, find the Taylor series for the given function about

the indicated point.

1. f .x; y/ D
1

2C xy2
; .0; 0/

2. f .x; y/ D ln.1C x C y C xy/; .0; 0/

3. f .x; y/ D tan�1
.x C xy/; .0;�1/

4. f .x; y/ D x2
C xy C y

3
; .1;�1/

5. f .x; y/ D ex2Cy2

; .0; 0/

6. f .x; y/ D sin.2x C 3y/; .0; 0/

In Exercises 7–12, find Taylor polynomials of the indicated degree

for the given functions near the given point. After calculating them

by hand, try to get the same results using Maple’s mtaylor

function.
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7. f .x; y/ D
1

2C x � 2y
, degree 3, near .2; 1/

8. f .x; y/ D ln.x2
C y2/, degree 3, near .1; 0/

9. f .x; y/ D

Z xCy2

0

e
�t2

dt , degree 3, near .0; 0/

10. f .x; y/ D cos.x C siny/, degree 4, near .0; 0/

11. f .x; y/ D
sinx

y
, degree 2, near .�

2
; 1/

12. f .x; y/ D
1C x

1C x2
C y4

, degree 2, near .0; 0/

In Exercises 13–14, show that, for x near the indicated point

x D a, the given equation has a solution of the form y D f .x/

taking on the indicated value at that point. Find the first three

nonzero terms of the Taylor series for f .x/ in powers of x � a.

13.I x siny D y C sinx, near x D 0, with f .0/ D 0

14.I
p

1C xy D 1C x C ln.1C y/, near x D 0, with f .0/ D 0

15.I Show that the equation x C 2y C z C e2z
D 1 has a solution

of the form z D f .x; y/ near x D 0, y D 0, where

f .0; 0/ D 0. Find the Taylor polynomial of degree 2 for

f .x; y/ in powers of x and y.

16.I Use series methods to find the value of the partial derivative

f112.0; 0/ given that f .x; y/ D arctan .x C y/.

17.I Use series methods to evaluate

@4n

@x2n@y2n

1

1C x2
C y2

ˇ

ˇ

ˇ

ˇ

ˇ

.0;0/

:

C H A P T E R R E V I E W

Key Ideas

� What do the following sentences and phrases mean?

˘ S is the graph of f .x; y/.

˘ C is a level curve of f .x; y/.

˘ lim.x;y/!.a;b/ f .x; y/ D L.

˘ f .x; y/ is continuous at .a; b/.

˘ the partial derivative .@=@x/f .x; y/

˘ the tangent plane to z D f .x; y/ at .a; b/

˘ pure second partials ˘ mixed second partials

˘ f .x; y/ is a harmonic function.

˘ L.x; y/ is the linearization of f .x; y/ at .a; b/.

˘ the differential of z D f .x; y/

˘ f .x; y/ is differentiable at .a; b/.

˘ the gradient of f .x; y/ at .a; b/

˘ the directional derivative of f .x; y/ at .a; b/ in direction v

˘ the Jacobian determinant @.x; y/=@.u; v/

� Under what conditions are two mixed partial derivatives

equal?

� State the Chain Rule for z D f .x; y/, where x D g.u; v/,

and y D h.u; v/.

� Describe the process of calculating partial derivatives of im-

plicitly defined functions.

� What is the Taylor series of f .x; y/ about .a; b/?

Review Exercises

1. Sketch some level curves of the function x C
4y2

x
.

2. Sketch some isotherms (curves of constant temperature) for the

temperature function

T D
140C 30x2

� 60x C 120y2

8C x2
� 2x C 4y2

ıC:

What is the coolest location?

G 3. Sketch some level curves of the polynomial function f .x; y/ D

x3
� 3xy2. Why do you think the graph of this function is

called a monkey saddle?

4. Let f .x; y/ D

8

<

:

x3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.
Calculate each of the following partial derivatives or explain

why it does not exist: f1.0; 0/, f2.0; 0/, f21.0; 0/, f12.0; 0/.

5. Let f .x; y/ D
x3
� y3

x2
� y2

. Where is f .x; y/ continuous? To

what additional set of points does f .x; y/ have a continuous

extension? In particular, can f be extended to be continuous

at the origin? Can f be defined at the origin in such a way that

its first partial derivatives exist there?

6. The surface S is the graph of the function z D f .x; y/, where

f .x; y/ D ex2�2x�4y2C5.

(a) Find an equation of the tangent plane to S at the point

.1;�1; 1/.

(b) Sketch a representative sample of the level curves of the

function f .x; y/.

7. Consider the surface S with equation x2
C y2

C 4z2
D 16.

(a) Find an equation for the tangent plane to S at the point

.a; b; c/ on S.

(b) For which points .a; b; c/ on S does the tangent plane to S

at .a; b; c/ pass through the point .0; 0; 4/? Describe this

set of points geometrically.

(c) For which points .a; b; c/ on S is the tangent plane to S at

.a; b; c/ parallel to the plane x C y C 2
p

2z D 97?

8. Two variable resistors,R1 and R2, are connected in parallel so

that their combined resistance, R, is given by

1

R
D

1

R1

C

1

R2

:

If R1 D 100 ohms ˙5% and R2 D 25 ohms ˙2%, by ap-

proximately what percentage can the calculated value of their

combined resistance R D 20 ohms be in error?

9. You have measured two sides of a triangular field and the angle

between them. The side measurements are 150 m and 200 m,

each accurate to within˙1 m. The angle measurement is 30ı,

accurate to within ˙2ı. What area do you calculate for the

field, and what is your estimate of the maximum percentage

error in this area?

10. Suppose that T .x; y; z/ D x3yCy3zCz3x gives the temper-

ature at the point .x; y; z/ in 3-space.
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(a) Calculate the directional derivative of T at .2;�1; 0/ in

the direction toward the point .1; 1; 2/.

(b) A fly is moving through space with constant speed 5. At

time t D 0 the fly crosses the surface 2x2
C 3y2

C z2
D

11 at right angles at the point .2;�1; 0/, moving in the

direction of increasing temperature. Find dT=dt at t D 0

as experienced by the fly.

11. Consider the function f .x; y; z/ D x2y C yz C z2.

(a) Find the directional derivative of f at .1;�1; 1/ in the di-

rection of the vector iC k.

(b) An ant is crawling on the plane x C y C z D 1 through

.1;�1; 1/. Suppose it crawls so as to keep f constant. In

what direction is it going as it passes through .1;�1; 1/?

(c) Another ant crawls on the plane x C y C z D 1, moving

in the direction of the greatest rate of increase of f: Find

its direction as it goes through .1;�1; 1/.

12. Let f .x; y; z/ D .x2
C z2/ sin

�xy

2
C yz

2. Let P0 be the

point .1; 1;�1/.

(a) Find the gradient of f at P0.

(b) Find the linearization L.x; y; z/ of f at P0.

(c) Find an equation for the tangent plane at P0 to the level

surface of f through P0.

(d) If a bird flies through P0 with speed 5, heading directly

toward the point .2;�1; 1/, what is the rate of change of f

as seen by the bird as it passes through P0?

(e) In what direction from P0 should the bird fly at speed 5 to

experience the greatest rate of increase of f ?

13. Verify that for any constant, k, the function

u.x; y/ D k

�

ln cos.x=k/� ln cos.y=k/
�

satisfies the minimal

surface equation

.1C u
2
x/uyy � uuxuyuxy C .1C u

2
y/uxx D 0:

14. The equations F.x; y; z/ D 0 and G.x; y; z/ D 0 can define

any two of the variables x, y, and z as functions of the remain-

ing variable. Show that

dx

dy

dy

dz

dz

dx
D 1:

15. The equations

�

x D u3
� uv

y D 3uv C 2v2 define u and v as functions of

x and y near the point P where .u; v; x; y/ D .�1; 2; 1; 2/.

(a) Find
@u

@x
and

@u

@y
at P:

(b) Find the approximate value of u when x D 1:02 and y D

1:97.

16. The equations

�

u D x
2
C y

2

v D x2
� 2xy2 define x and y implicitly as

functions of u and v for values of .x; y/ near .1; 2/ and values

of .u; v/ near .5;�7/.

(a) Find
@x

@u
and

@y

@u
at .u; v/ D .5;�7/.

(b) If z D ln.y2
� x

2
/, find

@z

@u
at .u; v/ D .5;�7/.

Challenging Problems

1. (a) If the graph of a function f .x; y/ that is differentiable at

.a; b/ contains part of a straight line through .a; b/, show

that the line lies in the tangent plane to z D f .x; y/ at

.a; b/.

(b) If g.t/ is a differentiable function of t , describe the surface

z D yg.x=y/ and show that all its tangent planes pass

through the origin.

2. A particle moves in 3-space in such a way that its direction of

motion at any point is perpendicular to the level surface of

f .x; y; z/ D 4 � x
2
� 2y

2
C 3z

2

through that point. If the path of the particle passes through the

point .1; 1; 8/, show that it also passes through .2; 4; 1/. Does

it pass through .3; 7; 0/?

M 3. (The Laplace operator in spherical coordinates) If u.x; y; z/

has continuous second partial derivatives and

v.R; �; �/ D u.R sin� cos �;R sin� sin �; R cos�/;

show that

@
2
v

@R2
C

2

R

@v

@R
C

cot�

R2

@v

@�
C

1

R2

@
2
v

@�2
C

1

R2 sin2
�

@
2
v

@�2

D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

You can do this by hand, but it is a lot easier using computer

algebra.

4. (Spherically expanding waves) If f is a twice differentiable

function of one variable and R D
p

x2
C y2

C z2, show

that u.x; y; z; t/ D
f .R � ct/

R
satisfies the three-dimensional

wave equation

@2u

@t2
D c

2

�

@2u

@x2
C

@2u

@y2
C

@2u

@z2

�

:

What is the geometric significance of this solution as a func-

tion of increasing time t? Hint: You may want to use the re-

sult of Exercise 3. In this case v.R; �; �/ is independent of �

and � .
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7. f .x; y/ D
1

2C x � 2y
, degree 3, near .2; 1/

8. f .x; y/ D ln.x2
C y2/, degree 3, near .1; 0/

9. f .x; y/ D

Z xCy2

0

e
�t2

dt , degree 3, near .0; 0/

10. f .x; y/ D cos.x C siny/, degree 4, near .0; 0/

11. f .x; y/ D
sinx

y
, degree 2, near .�

2
; 1/

12. f .x; y/ D
1C x

1C x2
C y4

, degree 2, near .0; 0/

In Exercises 13–14, show that, for x near the indicated point

x D a, the given equation has a solution of the form y D f .x/

taking on the indicated value at that point. Find the first three

nonzero terms of the Taylor series for f .x/ in powers of x � a.

13.I x siny D y C sinx, near x D 0, with f .0/ D 0

14.I
p

1C xy D 1C x C ln.1C y/, near x D 0, with f .0/ D 0

15.I Show that the equation x C 2y C z C e2z
D 1 has a solution

of the form z D f .x; y/ near x D 0, y D 0, where

f .0; 0/ D 0. Find the Taylor polynomial of degree 2 for

f .x; y/ in powers of x and y.

16.I Use series methods to find the value of the partial derivative

f112.0; 0/ given that f .x; y/ D arctan .x C y/.

17.I Use series methods to evaluate

@4n

@x2n@y2n

1

1C x2
C y2

ˇ

ˇ

ˇ

ˇ

ˇ

.0;0/

:

C H A P T E R R E V I E W

Key Ideas

� What do the following sentences and phrases mean?

˘ S is the graph of f .x; y/.

˘ C is a level curve of f .x; y/.

˘ lim.x;y/!.a;b/ f .x; y/ D L.

˘ f .x; y/ is continuous at .a; b/.

˘ the partial derivative .@=@x/f .x; y/

˘ the tangent plane to z D f .x; y/ at .a; b/

˘ pure second partials ˘ mixed second partials

˘ f .x; y/ is a harmonic function.

˘ L.x; y/ is the linearization of f .x; y/ at .a; b/.

˘ the differential of z D f .x; y/

˘ f .x; y/ is differentiable at .a; b/.

˘ the gradient of f .x; y/ at .a; b/

˘ the directional derivative of f .x; y/ at .a; b/ in direction v

˘ the Jacobian determinant @.x; y/=@.u; v/

� Under what conditions are two mixed partial derivatives

equal?

� State the Chain Rule for z D f .x; y/, where x D g.u; v/,

and y D h.u; v/.

� Describe the process of calculating partial derivatives of im-

plicitly defined functions.

� What is the Taylor series of f .x; y/ about .a; b/?

Review Exercises

1. Sketch some level curves of the function x C
4y2

x
.

2. Sketch some isotherms (curves of constant temperature) for the

temperature function

T D
140C 30x2

� 60x C 120y2

8C x2
� 2x C 4y2

ıC:

What is the coolest location?

G 3. Sketch some level curves of the polynomial function f .x; y/ D

x3
� 3xy2. Why do you think the graph of this function is

called a monkey saddle?

4. Let f .x; y/ D

8

<

:

x3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.
Calculate each of the following partial derivatives or explain

why it does not exist: f1.0; 0/, f2.0; 0/, f21.0; 0/, f12.0; 0/.

5. Let f .x; y/ D
x3
� y3

x2
� y2

. Where is f .x; y/ continuous? To

what additional set of points does f .x; y/ have a continuous

extension? In particular, can f be extended to be continuous

at the origin? Can f be defined at the origin in such a way that

its first partial derivatives exist there?

6. The surface S is the graph of the function z D f .x; y/, where

f .x; y/ D ex2�2x�4y2C5.

(a) Find an equation of the tangent plane to S at the point

.1;�1; 1/.

(b) Sketch a representative sample of the level curves of the

function f .x; y/.

7. Consider the surface S with equation x2
C y2

C 4z2
D 16.

(a) Find an equation for the tangent plane to S at the point

.a; b; c/ on S.

(b) For which points .a; b; c/ on S does the tangent plane to S

at .a; b; c/ pass through the point .0; 0; 4/? Describe this

set of points geometrically.

(c) For which points .a; b; c/ on S is the tangent plane to S at

.a; b; c/ parallel to the plane x C y C 2
p

2z D 97?

8. Two variable resistors,R1 and R2, are connected in parallel so

that their combined resistance, R, is given by

1

R
D

1

R1

C

1

R2

:

If R1 D 100 ohms ˙5% and R2 D 25 ohms ˙2%, by ap-

proximately what percentage can the calculated value of their

combined resistance R D 20 ohms be in error?

9. You have measured two sides of a triangular field and the angle

between them. The side measurements are 150 m and 200 m,

each accurate to within˙1 m. The angle measurement is 30ı,

accurate to within ˙2ı. What area do you calculate for the

field, and what is your estimate of the maximum percentage

error in this area?

10. Suppose that T .x; y; z/ D x3yCy3zCz3x gives the temper-

ature at the point .x; y; z/ in 3-space.
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(a) Calculate the directional derivative of T at .2;�1; 0/ in

the direction toward the point .1; 1; 2/.

(b) A fly is moving through space with constant speed 5. At

time t D 0 the fly crosses the surface 2x2
C 3y2

C z2
D

11 at right angles at the point .2;�1; 0/, moving in the

direction of increasing temperature. Find dT=dt at t D 0

as experienced by the fly.

11. Consider the function f .x; y; z/ D x2y C yz C z2.

(a) Find the directional derivative of f at .1;�1; 1/ in the di-

rection of the vector iC k.

(b) An ant is crawling on the plane x C y C z D 1 through

.1;�1; 1/. Suppose it crawls so as to keep f constant. In

what direction is it going as it passes through .1;�1; 1/?

(c) Another ant crawls on the plane x C y C z D 1, moving

in the direction of the greatest rate of increase of f: Find

its direction as it goes through .1;�1; 1/.

12. Let f .x; y; z/ D .x2
C z2/ sin

�xy

2
C yz

2. Let P0 be the

point .1; 1;�1/.

(a) Find the gradient of f at P0.

(b) Find the linearization L.x; y; z/ of f at P0.

(c) Find an equation for the tangent plane at P0 to the level

surface of f through P0.

(d) If a bird flies through P0 with speed 5, heading directly

toward the point .2;�1; 1/, what is the rate of change of f

as seen by the bird as it passes through P0?

(e) In what direction from P0 should the bird fly at speed 5 to

experience the greatest rate of increase of f ?

13. Verify that for any constant, k, the function

u.x; y/ D k

�

ln cos.x=k/� ln cos.y=k/
�

satisfies the minimal

surface equation

.1C u
2
x/uyy � uuxuyuxy C .1C u

2
y/uxx D 0:

14. The equations F.x; y; z/ D 0 and G.x; y; z/ D 0 can define

any two of the variables x, y, and z as functions of the remain-

ing variable. Show that

dx

dy

dy

dz

dz

dx
D 1:

15. The equations

�

x D u3
� uv

y D 3uv C 2v2 define u and v as functions of

x and y near the point P where .u; v; x; y/ D .�1; 2; 1; 2/.

(a) Find
@u

@x
and

@u

@y
at P:

(b) Find the approximate value of u when x D 1:02 and y D

1:97.

16. The equations

�

u D x
2
C y

2

v D x2
� 2xy2 define x and y implicitly as

functions of u and v for values of .x; y/ near .1; 2/ and values

of .u; v/ near .5;�7/.

(a) Find
@x

@u
and

@y

@u
at .u; v/ D .5;�7/.

(b) If z D ln.y2
� x

2
/, find

@z

@u
at .u; v/ D .5;�7/.

Challenging Problems

1. (a) If the graph of a function f .x; y/ that is differentiable at

.a; b/ contains part of a straight line through .a; b/, show

that the line lies in the tangent plane to z D f .x; y/ at

.a; b/.

(b) If g.t/ is a differentiable function of t , describe the surface

z D yg.x=y/ and show that all its tangent planes pass

through the origin.

2. A particle moves in 3-space in such a way that its direction of

motion at any point is perpendicular to the level surface of

f .x; y; z/ D 4 � x
2
� 2y

2
C 3z

2

through that point. If the path of the particle passes through the

point .1; 1; 8/, show that it also passes through .2; 4; 1/. Does

it pass through .3; 7; 0/?

M 3. (The Laplace operator in spherical coordinates) If u.x; y; z/

has continuous second partial derivatives and

v.R; �; �/ D u.R sin� cos �;R sin� sin �; R cos�/;

show that

@
2
v

@R2
C

2

R

@v

@R
C

cot�

R2

@v

@�
C

1

R2

@
2
v

@�2
C

1

R2 sin2
�

@
2
v

@�2

D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

You can do this by hand, but it is a lot easier using computer

algebra.

4. (Spherically expanding waves) If f is a twice differentiable

function of one variable and R D
p

x2
C y2

C z2, show

that u.x; y; z; t/ D
f .R � ct/

R
satisfies the three-dimensional

wave equation

@2u

@t2
D c

2

�

@2u

@x2
C

@2u

@y2
C

@2u

@z2

�

:

What is the geometric significance of this solution as a func-

tion of increasing time t? Hint: You may want to use the re-

sult of Exercise 3. In this case v.R; �; �/ is independent of �

and � .
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C H A P T E R 13

Applications of

Partial Derivatives

“
I don’t know what I may seem to the world, but as to myself, I seem

to have been only like a boy playing on the sea-shore and diverting

myself in now and then finding a smoother pebble or a prettier shell

than ordinary, whilst the great ocean of truth lay all undiscovered

before me.

”Isaac Newton 1642–1727

Introduction In this chapter we will discuss some of the ways partial

derivatives contribute to the understanding and solution

of problems in applied mathematics. Many such problems can be put in the context of

determining maximum or minimum values for functions of several variables, and the

first four sections of this chapter deal with that subject. The remaining sections discuss

some miscellaneous problems involving the differentiation of functions with respect

to parameters, and also Newton’s Method for approximating solutions of systems of

nonlinear equations. Much of the material in this chapter may be considered optional.

Only Sections 13.1–13.3 contain core material, and even parts of those sections can be

omitted (e.g., the discussion of linear programming in Section 13.2).

13.1 Extreme Values
The function f .x; y/ D x2

C y2, part of whose graph is shown in Figure 13.1, has a

x

y

z

z D x2
C y2

Figure 13.1 x2
C y2 has minimum value

0 at the origin

minimum value of 0; this value occurs at the origin .0; 0/ where the graph has a hor-

izontal tangent plane. Similarly, the function g.x; y/ D 1 � x2
� y2, part of whose

graph appears in Figure 13.2, has a maximum value of 1 at .0; 0/. What techniques

could be used to discover these facts if they were not evident from a diagram? Finding

maximum and minimum values of functions of several variables is, like its single-

variable counterpart, the crux of many applications of advanced calculus to problems

that arise in other disciplines. Unfortunately, this problem is often much more com-

plicated than in the single-variable case. Our discussion will begin by developing the

techniques for functions of two variables. Some of the techniques extend to functions

of more variables in obvious ways. The extension of those that do not will be discussed

later in this section.

Let us begin by reviewing what we know about the single-variable case. Recall

that a function f .x/ has a local maximum value (or a local minimum value) at a point

a in its domain if f .x/ � f .a/ (or f .x/ � f .a/) for all x in the domain of f that

are sufficiently close to a. If the appropriate inequality holds for all x in the domain

of f; then we say that f has an absolute maximum (or absolute minimum) value at a.

Moreover, such local or absolute extreme values can occur only at points of one of the

following three types:
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(a) critical points, where f 0.x/ D 0,

x

y

z

1 z D 1 � x2
� y2

Figure 13.2 1 � x2
� y2 has maximum

value 1 at the origin

(b) singular points, where f 0.x/ does not exist, or

(c) endpoints of the domain of f:

A similar situation exists for functions of several variables. We say that a function of

two variables has a local maximum or relative maximum value at the point .a; b/

in its domain if f .x; y/ � f .a; b/ for all points .x; y/ in the domain of f that are

sufficiently close to the point .a; b/. If the inequality holds for all .x; y/ in the domain

of f; then we say that f has a global maximum or absolute maximum value at .a; b/.

Similar definitions hold for local (relative) and absolute (global) minimum values. In

practice, the word absolute or global is usually omitted, and we refer simply to the

maximum or the minimum value of f:

The following theorem shows that there are three possibilities for points where

extreme values can occur, analogous to those for the single-variable case.

T H E O R E M

1

Necessary conditions for extreme values

A function f .x; y/ can have a local or absolute extreme value at a point .a; b/ in its

domain only if .a; b/ is one of the following:

(a) a critical point of f; that is, a point satisfying rf .a; b/ D 0,

(b) a singular point of f; that is, a point where rf .a; b/ does not exist, or

(c) a boundary point of the domain of f:

PROOF Suppose that .a; b/ belongs to the domain of f: If .a; b/ is not on the bound-

ary of the domain of f; then it must belong to the interior of that domain, and if .a; b/

is not a singular point of f; then rf .a; b/ exists. Finally, if .a; b/ is not a critical point

of f; then rf .a; b/ ¤ 0, so f has a positive directional derivative in the direction of

rf .a; b/ and a negative directional derivative in the direction of �rf .a; b/; that is,

f is increasing as we move from .a; b/ in one direction and decreasing as we move in

the opposite direction. Hence, f cannot have either a maximum or a minimum value

at .a; b/. Therefore, any point where an extreme value occurs must be either a critical

point or a singular point of f; or a boundary point of the domain of f:

Note that Theorem 1 remains valid with unchanged proof for functions of any number

of variables. Of course, Theorem 1 does not guarantee that a given function will have

any extreme values. It only tells us where to look to find any that may exist. Theorem 2,

below, provides conditions that guarantee the existence of absolute maximum and min-

imum values for a continuous function. It is analogous to the Max-Min Theorem for

functions of one variable. The proof is beyond the scope of this book; an interested

student should consult an elementary text on mathematical analysis.

A set in R
n is bounded if it is contained inside some ball x2

1Cx
2
2C� � �Cx

2
n � R

2

of finite radius R. A set on the real line is bounded if it is contained in an interval of

finite length.

T H E O R E M

2

Sufficient conditions for extreme values

If f is a continuous function of n variables whose domain is a closed and bounded set

in R
n, then the range of f is a bounded set of real numbers, and there are points in its

domain where f takes on absolute maximum and minimum values.

E X A M P L E 1
The function f .x; y/ D x2

C y2 (see Figure 13.1) has a critical

point at .0; 0/, since rf D 2xi C 2yj and both components of
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“
I don’t know what I may seem to the world, but as to myself, I seem

to have been only like a boy playing on the sea-shore and diverting

myself in now and then finding a smoother pebble or a prettier shell

than ordinary, whilst the great ocean of truth lay all undiscovered

before me.

”Isaac Newton 1642–1727

Introduction In this chapter we will discuss some of the ways partial

derivatives contribute to the understanding and solution

of problems in applied mathematics. Many such problems can be put in the context of

determining maximum or minimum values for functions of several variables, and the

first four sections of this chapter deal with that subject. The remaining sections discuss

some miscellaneous problems involving the differentiation of functions with respect

to parameters, and also Newton’s Method for approximating solutions of systems of

nonlinear equations. Much of the material in this chapter may be considered optional.

Only Sections 13.1–13.3 contain core material, and even parts of those sections can be

omitted (e.g., the discussion of linear programming in Section 13.2).

13.1 Extreme Values
The function f .x; y/ D x2

C y2, part of whose graph is shown in Figure 13.1, has a

x

y

z

z D x2
C y2

Figure 13.1 x2
C y2 has minimum value

0 at the origin

minimum value of 0; this value occurs at the origin .0; 0/ where the graph has a hor-

izontal tangent plane. Similarly, the function g.x; y/ D 1 � x2
� y2, part of whose

graph appears in Figure 13.2, has a maximum value of 1 at .0; 0/. What techniques

could be used to discover these facts if they were not evident from a diagram? Finding

maximum and minimum values of functions of several variables is, like its single-

variable counterpart, the crux of many applications of advanced calculus to problems

that arise in other disciplines. Unfortunately, this problem is often much more com-

plicated than in the single-variable case. Our discussion will begin by developing the

techniques for functions of two variables. Some of the techniques extend to functions

of more variables in obvious ways. The extension of those that do not will be discussed

later in this section.

Let us begin by reviewing what we know about the single-variable case. Recall

that a function f .x/ has a local maximum value (or a local minimum value) at a point

a in its domain if f .x/ � f .a/ (or f .x/ � f .a/) for all x in the domain of f that

are sufficiently close to a. If the appropriate inequality holds for all x in the domain

of f; then we say that f has an absolute maximum (or absolute minimum) value at a.

Moreover, such local or absolute extreme values can occur only at points of one of the

following three types:
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(a) critical points, where f 0.x/ D 0,

x

y

z

1 z D 1 � x2
� y2

Figure 13.2 1 � x2
� y2 has maximum

value 1 at the origin

(b) singular points, where f 0.x/ does not exist, or

(c) endpoints of the domain of f:

A similar situation exists for functions of several variables. We say that a function of

two variables has a local maximum or relative maximum value at the point .a; b/

in its domain if f .x; y/ � f .a; b/ for all points .x; y/ in the domain of f that are

sufficiently close to the point .a; b/. If the inequality holds for all .x; y/ in the domain

of f; then we say that f has a global maximum or absolute maximum value at .a; b/.

Similar definitions hold for local (relative) and absolute (global) minimum values. In

practice, the word absolute or global is usually omitted, and we refer simply to the

maximum or the minimum value of f:

The following theorem shows that there are three possibilities for points where

extreme values can occur, analogous to those for the single-variable case.

T H E O R E M

1

Necessary conditions for extreme values

A function f .x; y/ can have a local or absolute extreme value at a point .a; b/ in its

domain only if .a; b/ is one of the following:

(a) a critical point of f; that is, a point satisfying rf .a; b/ D 0,

(b) a singular point of f; that is, a point where rf .a; b/ does not exist, or

(c) a boundary point of the domain of f:

PROOF Suppose that .a; b/ belongs to the domain of f: If .a; b/ is not on the bound-

ary of the domain of f; then it must belong to the interior of that domain, and if .a; b/

is not a singular point of f; then rf .a; b/ exists. Finally, if .a; b/ is not a critical point

of f; then rf .a; b/ ¤ 0, so f has a positive directional derivative in the direction of

rf .a; b/ and a negative directional derivative in the direction of �rf .a; b/; that is,

f is increasing as we move from .a; b/ in one direction and decreasing as we move in

the opposite direction. Hence, f cannot have either a maximum or a minimum value

at .a; b/. Therefore, any point where an extreme value occurs must be either a critical

point or a singular point of f; or a boundary point of the domain of f:

Note that Theorem 1 remains valid with unchanged proof for functions of any number

of variables. Of course, Theorem 1 does not guarantee that a given function will have

any extreme values. It only tells us where to look to find any that may exist. Theorem 2,

below, provides conditions that guarantee the existence of absolute maximum and min-

imum values for a continuous function. It is analogous to the Max-Min Theorem for

functions of one variable. The proof is beyond the scope of this book; an interested

student should consult an elementary text on mathematical analysis.

A set in R
n is bounded if it is contained inside some ball x2

1Cx
2
2C� � �Cx

2
n � R

2

of finite radius R. A set on the real line is bounded if it is contained in an interval of

finite length.

T H E O R E M

2

Sufficient conditions for extreme values

If f is a continuous function of n variables whose domain is a closed and bounded set

in R
n, then the range of f is a bounded set of real numbers, and there are points in its

domain where f takes on absolute maximum and minimum values.

E X A M P L E 1
The function f .x; y/ D x2

C y2 (see Figure 13.1) has a critical

point at .0; 0/, since rf D 2xi C 2yj and both components of
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rf vanish at .0; 0/. Since

f .x; y/ > 0 D f .0; 0/ if .x; y/ ¤ .0; 0/;

f must have (absolute) minimum value 0 at that point. If the domain of f is not

restricted, f has no maximum value. Similarly, g.x; y/ D 1� x2
� y2 has (absolute)

maximum value 1 at its critical point .0; 0/. (See Figure 13.2.)

E X A M P L E 2
The function h.x; y/ D y2

� x2 also has a critical point at .0; 0/

but has neither a local maximum nor a local minimum value at that

point. Observe that h.0; 0/ D 0 but h.x; 0/ < 0 and h.0; y/ > 0 for all nonzero values

of x and y. (See Figure 13.3.) The graph of h is a hyperbolic paraboloid. In view of

the shape of this surface, we call the critical point .0; 0/ a saddle point of h.

x

y

z

z D y2
� x2

Figure 13.3 y2
� x2 has a saddle point at

.0; 0/

In general, we will somewhat loosely call any interior critical point of the domain of a

function f of several variables a saddle point if f does not have a local maximum or

minimum value there. Even for functions of two variables, the graph will not always

look like a saddle near a saddle point. For instance, the function f .x; y/ D �x3 has a

whole line of saddle points along the y-axis (see Figure 13.4), although its graph does

not resemble a saddle anywhere. These points resemble inflection points of a function

of one variable. Saddle points are higher-dimensional analogues of such horizontal

inflection points.

E X A M P L E 3
The function f .x; y/ D

p

x2
C y2 has no critical points but does

have a singular point at .0; 0/ where it has a local (and abso-

lute) minimum value, zero. The graph of f is (one nappe of) a circular cone. (See

x

y

z

z D �x3

Figure 13.4 A line of saddle points

Figure 13.5(a).)

E X A M P L E 4
The function f .x; y/ D 1 � x is defined everywhere in the

xy-plane and has no critical or singular points. (rf .x; y/ D �i

at every point .x; y/.) Therefore, f has no extreme values. However, if we restrict

the domain of f to the points in the disk x2
C y

2
� 1 (a closed bounded set in the

xy-plane), then f does have absolute maximum and minimum values, as it must by

Theorem 2. The maximum value is 2 at the boundary point .�1; 0/ and the minimum

value is 0 at .1; 0/. (See Figure 13.5(b).)

Figure 13.5

(a)
p

x2
C y2 has a minimum value

at the singular point .0; 0/

(b) When restricted to the disk

x
2
C y

2
� 1, the function 1 � x has

maximum and minimum values at

boundary points

x

y

z

z D
p

x2
C y2

x y

z .�1; 0; 2/

1

z D 1 � x

1 x2
C y2

D 1

(a) (b)

Classifying Critical Points
The above examples were very simple ones; it was immediately obvious in each case

whether the function had a local maximum, local minimum, or a saddle point at the

critical or singular point. For more complicated functions, it may be harder to classify

the interior critical points. In theory, such a classification can always be made by

considering the difference
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�f D f .aC h; b C k/� f .a; b/

for small values of h and k, where .a; b/ is the critical point in question. If the dif-

ference is always nonnegative (or nonpositive) for small h and k, then f must have a

local minimum (or maximum) at .a; b/; if the difference is negative for some points

.h; k/ arbitrarily near .0; 0/ and positive for others, then f must have a saddle point at

.a; b/.

E X A M P L E 5
Find and classify the critical points of f .x; y/ D 2x3

�6xyC3y2.

Solution The critical points must satisfy the system of equations:

0 D f1.x; y/ D 6x
2
� 6y

0 D f2.x; y/ D �6x C 6y

” x
2
D y

” x D y:

Together, these equations imply that x2
D x so that x D 0 or x D 1. Therefore, the

critical points are .0; 0/ and .1; 1/.

Consider .0; 0/. Here �f is given by

�f D f .h; k/ � f .0; 0/ D 2h
3
� 6hk C 3k

2
:

Since f .h; 0/ � f .0; 0/ D 2h3 is positive for small positive h and negative for small

negative h, f cannot have a maximum or minimum value at .0; 0/. Therefore, .0; 0/ is

a saddle point.

Now consider .1; 1/. Here �f is given by

�f D f .1C h; 1C k/ � f .1; 1/

D 2.1C h/
3
� 6.1C h/.1C k/C 3.1C k/

2
� .�1/

D 2C 6hC 6h
2
C 2h

3
� 6 � 6h � 6k � 6hk C 3C 6k C 3k

2
C 1

D 6h
2
� 6hk C 3k

2
C 2h

3

D 3.h � k/
2
C h

2
.3C 2h/:

Both terms in the latter expression are nonnegative if jhj < 3=2, and they are not both

zero unless h D k D 0. Hence,�f > 0 for small h and k, and f has a local minimum

value �1 at .1; 1/.

The method used to classify critical points in the above example takes on a “brute

force” aspect if the function involved is more complicated. However, there is a second

derivative test similar to that for functions of one variable. The n-variable version

is the subject of the following theorem, the proof of which is based on properties of

quadratic forms presented in Section 10.7.

T H E O R E M

3

A second derivative test

Suppose that a D .a1; a2; : : : ; an/ is a critical point of f .x/ D f .x1; x2; : : : ; xn/ and

is interior to the domain of f . Also, suppose that all the second partial derivatives of

f are continuous throughout a neighbourhood of a, so that the Hessian matrix

H .x/ D

0

B

B

B

@

f11.x/ f12.x/ � � � f1n.x/

f21.x/ f22.x/ � � � f2n.x/
:
:
:

:
:
:

: : :
:
:
:

fn1.x/ fn2.x/ � � � fnn.x/

1

C

C

C

A

is also continuous in that neighbourhood. Note that the continuity of the partials guar-

antees that H is a symmetric matrix.
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rf vanish at .0; 0/. Since

f .x; y/ > 0 D f .0; 0/ if .x; y/ ¤ .0; 0/;

f must have (absolute) minimum value 0 at that point. If the domain of f is not

restricted, f has no maximum value. Similarly, g.x; y/ D 1� x2
� y2 has (absolute)

maximum value 1 at its critical point .0; 0/. (See Figure 13.2.)

E X A M P L E 2
The function h.x; y/ D y2

� x2 also has a critical point at .0; 0/

but has neither a local maximum nor a local minimum value at that

point. Observe that h.0; 0/ D 0 but h.x; 0/ < 0 and h.0; y/ > 0 for all nonzero values

of x and y. (See Figure 13.3.) The graph of h is a hyperbolic paraboloid. In view of

the shape of this surface, we call the critical point .0; 0/ a saddle point of h.

x

y

z

z D y2
� x2

Figure 13.3 y2
� x2 has a saddle point at

.0; 0/

In general, we will somewhat loosely call any interior critical point of the domain of a

function f of several variables a saddle point if f does not have a local maximum or

minimum value there. Even for functions of two variables, the graph will not always

look like a saddle near a saddle point. For instance, the function f .x; y/ D �x3 has a

whole line of saddle points along the y-axis (see Figure 13.4), although its graph does

not resemble a saddle anywhere. These points resemble inflection points of a function

of one variable. Saddle points are higher-dimensional analogues of such horizontal

inflection points.

E X A M P L E 3
The function f .x; y/ D

p

x2
C y2 has no critical points but does

have a singular point at .0; 0/ where it has a local (and abso-

lute) minimum value, zero. The graph of f is (one nappe of) a circular cone. (See

x

y

z

z D �x3

Figure 13.4 A line of saddle points

Figure 13.5(a).)

E X A M P L E 4
The function f .x; y/ D 1 � x is defined everywhere in the

xy-plane and has no critical or singular points. (rf .x; y/ D �i

at every point .x; y/.) Therefore, f has no extreme values. However, if we restrict

the domain of f to the points in the disk x2
C y

2
� 1 (a closed bounded set in the

xy-plane), then f does have absolute maximum and minimum values, as it must by

Theorem 2. The maximum value is 2 at the boundary point .�1; 0/ and the minimum

value is 0 at .1; 0/. (See Figure 13.5(b).)

Figure 13.5

(a)
p

x2
C y2 has a minimum value

at the singular point .0; 0/

(b) When restricted to the disk

x
2
C y

2
� 1, the function 1 � x has

maximum and minimum values at

boundary points

x

y

z

z D
p

x2
C y2

x y

z .�1; 0; 2/

1

z D 1 � x

1 x2
C y2

D 1

(a) (b)

Classifying Critical Points
The above examples were very simple ones; it was immediately obvious in each case

whether the function had a local maximum, local minimum, or a saddle point at the

critical or singular point. For more complicated functions, it may be harder to classify

the interior critical points. In theory, such a classification can always be made by

considering the difference
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�f D f .aC h; b C k/� f .a; b/

for small values of h and k, where .a; b/ is the critical point in question. If the dif-

ference is always nonnegative (or nonpositive) for small h and k, then f must have a

local minimum (or maximum) at .a; b/; if the difference is negative for some points

.h; k/ arbitrarily near .0; 0/ and positive for others, then f must have a saddle point at

.a; b/.

E X A M P L E 5
Find and classify the critical points of f .x; y/ D 2x3

�6xyC3y2.

Solution The critical points must satisfy the system of equations:

0 D f1.x; y/ D 6x
2
� 6y

0 D f2.x; y/ D �6x C 6y

” x
2
D y

” x D y:

Together, these equations imply that x2
D x so that x D 0 or x D 1. Therefore, the

critical points are .0; 0/ and .1; 1/.

Consider .0; 0/. Here �f is given by

�f D f .h; k/ � f .0; 0/ D 2h
3
� 6hk C 3k

2
:

Since f .h; 0/ � f .0; 0/ D 2h3 is positive for small positive h and negative for small

negative h, f cannot have a maximum or minimum value at .0; 0/. Therefore, .0; 0/ is

a saddle point.

Now consider .1; 1/. Here �f is given by

�f D f .1C h; 1C k/ � f .1; 1/

D 2.1C h/
3
� 6.1C h/.1C k/C 3.1C k/

2
� .�1/

D 2C 6hC 6h
2
C 2h

3
� 6 � 6h � 6k � 6hk C 3C 6k C 3k

2
C 1

D 6h
2
� 6hk C 3k

2
C 2h

3

D 3.h � k/
2
C h

2
.3C 2h/:

Both terms in the latter expression are nonnegative if jhj < 3=2, and they are not both

zero unless h D k D 0. Hence,�f > 0 for small h and k, and f has a local minimum

value �1 at .1; 1/.

The method used to classify critical points in the above example takes on a “brute

force” aspect if the function involved is more complicated. However, there is a second

derivative test similar to that for functions of one variable. The n-variable version

is the subject of the following theorem, the proof of which is based on properties of

quadratic forms presented in Section 10.7.

T H E O R E M

3

A second derivative test

Suppose that a D .a1; a2; : : : ; an/ is a critical point of f .x/ D f .x1; x2; : : : ; xn/ and

is interior to the domain of f . Also, suppose that all the second partial derivatives of

f are continuous throughout a neighbourhood of a, so that the Hessian matrix

H .x/ D

0

B

B

B

@

f11.x/ f12.x/ � � � f1n.x/

f21.x/ f22.x/ � � � f2n.x/
:
:
:

:
:
:

: : :
:
:
:

fn1.x/ fn2.x/ � � � fnn.x/

1

C

C

C

A

is also continuous in that neighbourhood. Note that the continuity of the partials guar-

antees that H is a symmetric matrix.
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(a) If H .a/ is positive definite, then f has a local minimum at a.

(b) If H .a/ is negative definite, then f has a local maximum at a.

(c) If H .a/ is indefinite, then f has a saddle point at a.

(d) If H .a/ is neither positive nor negative definite, nor indefinite, this test gives no

information.

PROOF Let g.t/ D f .aC th/ for 0 � t � 1, where h is an n-vector. Then

g
0
.t/ D

n
X

iD1

fi .aC th/ hi

g
00
.t/ D

n
X

iD1

n
X

j D1

fij .aC th/ hi hj D hT
H .aC th/h:

(In the latter expression, h is being treated as a column vector.) We apply Taylor’s

Formula with Lagrange remainder to g to write

g.1/ D g.0/C g
0
.0/C

1

2
g

00
.�/

for some � between 0 and 1. Thus,

f .aC h/ D f .a/C

n
X

iD1

fi .a/ hi C
1

2
hT

H .aC �h/h:

Since a is a critical point of f; fi .a/ D 0 for 1 � i � n, so

f .aC h/ � f .a/ D
1

2
hT

H .aC �h/h:

If H .a/ is positive definite, then, by the continuity of H , so is H .a C �h/ for jhj

sufficiently small. Therefore, f .aC h/ � f .a/ > 0 for nonzero h, proving (a).

Parts (b) and (c) are proved similarly. The functions f .x; y/ D x4
Cy4, g.x; y/ D

�x4
� y4, and h.x; y/ D x4

� y4 all fall under part (d) and show that in this case a

function can have a minimum, a maximum, or a saddle point.

Remark As mentioned in Section 12.9, the second derivative term hT
H .aC th/h is

a second directional derivative. It can be thought of as a simple second derivative with

respect to a single variable along a line L through a lying in the domain of f in the

direction given by h. This direction is not necessarily parallel to the given coordinate

axes. Viewed as a simple second derivative, Theorem 9 from Section 4.5 tells us that

the sign of this term determines the concavity of the curve in which the vertical plane

containing L intersects the graph of f: This concavity makes sense even if a is not a

critical point of f; and can vary as the direction of h changes. Therefore the Hessian

can tell us about the concavity of the entire surface.

E X A M P L E 6
Find and classify the critical points of the function

f .x; y; z/ D x2y C y2z C z2
� 2x.

Solution The equations that determine the critical points are

0 D f1.x; y; z/ D 2xy � 2;

0 D f2.x; y; z/ D x
2
C 2yz;

0 D f3.x; y; z/ D y
2
C 2z:
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The third equation implies z D �y2=2, and the second then implies y3
D x2. From

the first equation we get y5=2
D 1. Thus, y D 1 and z D �1

2
. Since xy D 1, we must

have x D 1. The only critical point is P D .1; 1;�
1
2
/. Evaluating the second partial

derivatives of f at this point, we obtain the Hessian matrix

H D

0

@

2 2 0

2 �1 2

0 2 2

1

A :

Since

2 > 0;

ˇ

ˇ

ˇ

ˇ

2 2

2 �1

ˇ

ˇ

ˇ

ˇ

D �6 < 0;

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 0

2 �1 2

0 2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �20 < 0;

H is indefinite by Theorem 8 of Section 10.7, so P is a saddle point of f:

Remark Applying the test (given in Theorem 8 of Section 10.7) for positive or nega-

tive definiteness or indefiniteness of a real symmetric matrix to the Hessian matrix for

a function of two variables, we can paraphrase the second derivative test Theorem 3

for such a function:

Suppose that .a; b/ is a critical point of the function f .x; y/ that is interior to the

domain of f . Suppose also that the second partial derivatives of f are continuous in

a neighbourhood of .a; b/ and have at that point the values

A D f11.a; b/; B D f12.a; b/ D f21.a; b/; and C D f22.a; b/:

(a) If B2
�AC < 0 and A > 0, then f has a local minimum value at .a; b/.

(b) If B2
�AC < 0 and A < 0, then f has a local maximum value at .a; b/.

(c) If B2
�AC > 0, then f has a saddle point at .a; b/.

(d) If B2
�AC D 0, this test provides no information; f may have a local maximum

or a local minimum value or a saddle point at .a; b/.

E X A M P L E 7
Reconsider Example 5 and use the second derivative test to

classify the two critical points .0; 0/ and .1; 1/ of

f .x; y/ D 2x
3
� 6xy C 3y

2
:

Solution We have

f11.x; y/ D 12x; f12.x; y/ D �6; and f22.x; y/ D 6:

At .0; 0/ we therefore have

A D 0; B D �6; C D 6; and B
2
� AC D 36 > 0;

so .0; 0/ is a saddle point. At .1; 1/ we have

A D 12 > 0; B D �6; C D 6; and B
2
�AC D �36 < 0;

so f must have a local minimum at .1; 1/.

E X A M P L E 8
Find and classify the critical points of

f .x; y/ D xy e
�.x2Cy2/=2

:

Does f have absolute maximum and minimum values? Why?
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(a) If H .a/ is positive definite, then f has a local minimum at a.

(b) If H .a/ is negative definite, then f has a local maximum at a.

(c) If H .a/ is indefinite, then f has a saddle point at a.

(d) If H .a/ is neither positive nor negative definite, nor indefinite, this test gives no

information.

PROOF Let g.t/ D f .aC th/ for 0 � t � 1, where h is an n-vector. Then

g
0
.t/ D

n
X

iD1

fi .aC th/ hi

g
00
.t/ D

n
X

iD1

n
X

j D1

fij .aC th/ hi hj D hT
H .aC th/h:

(In the latter expression, h is being treated as a column vector.) We apply Taylor’s

Formula with Lagrange remainder to g to write

g.1/ D g.0/C g
0
.0/C

1

2
g

00
.�/

for some � between 0 and 1. Thus,

f .aC h/ D f .a/C

n
X

iD1

fi .a/ hi C
1

2
hT

H .aC �h/h:

Since a is a critical point of f; fi .a/ D 0 for 1 � i � n, so

f .aC h/ � f .a/ D
1

2
hT

H .aC �h/h:

If H .a/ is positive definite, then, by the continuity of H , so is H .a C �h/ for jhj

sufficiently small. Therefore, f .aC h/ � f .a/ > 0 for nonzero h, proving (a).

Parts (b) and (c) are proved similarly. The functions f .x; y/ D x4
Cy4, g.x; y/ D

�x4
� y4, and h.x; y/ D x4

� y4 all fall under part (d) and show that in this case a

function can have a minimum, a maximum, or a saddle point.

Remark As mentioned in Section 12.9, the second derivative term hT
H .aC th/h is

a second directional derivative. It can be thought of as a simple second derivative with

respect to a single variable along a line L through a lying in the domain of f in the

direction given by h. This direction is not necessarily parallel to the given coordinate

axes. Viewed as a simple second derivative, Theorem 9 from Section 4.5 tells us that

the sign of this term determines the concavity of the curve in which the vertical plane

containing L intersects the graph of f: This concavity makes sense even if a is not a

critical point of f; and can vary as the direction of h changes. Therefore the Hessian

can tell us about the concavity of the entire surface.

E X A M P L E 6
Find and classify the critical points of the function

f .x; y; z/ D x2y C y2z C z2
� 2x.

Solution The equations that determine the critical points are

0 D f1.x; y; z/ D 2xy � 2;

0 D f2.x; y; z/ D x
2
C 2yz;

0 D f3.x; y; z/ D y
2
C 2z:
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The third equation implies z D �y2=2, and the second then implies y3
D x2. From

the first equation we get y5=2
D 1. Thus, y D 1 and z D �1

2
. Since xy D 1, we must

have x D 1. The only critical point is P D .1; 1;�
1
2
/. Evaluating the second partial

derivatives of f at this point, we obtain the Hessian matrix

H D

0

@

2 2 0

2 �1 2

0 2 2

1

A :

Since

2 > 0;

ˇ

ˇ

ˇ

ˇ

2 2

2 �1

ˇ

ˇ

ˇ

ˇ

D �6 < 0;

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 2 0

2 �1 2

0 2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �20 < 0;

H is indefinite by Theorem 8 of Section 10.7, so P is a saddle point of f:

Remark Applying the test (given in Theorem 8 of Section 10.7) for positive or nega-

tive definiteness or indefiniteness of a real symmetric matrix to the Hessian matrix for

a function of two variables, we can paraphrase the second derivative test Theorem 3

for such a function:

Suppose that .a; b/ is a critical point of the function f .x; y/ that is interior to the

domain of f . Suppose also that the second partial derivatives of f are continuous in

a neighbourhood of .a; b/ and have at that point the values

A D f11.a; b/; B D f12.a; b/ D f21.a; b/; and C D f22.a; b/:

(a) If B2
�AC < 0 and A > 0, then f has a local minimum value at .a; b/.

(b) If B2
�AC < 0 and A < 0, then f has a local maximum value at .a; b/.

(c) If B2
�AC > 0, then f has a saddle point at .a; b/.

(d) If B2
�AC D 0, this test provides no information; f may have a local maximum

or a local minimum value or a saddle point at .a; b/.

E X A M P L E 7
Reconsider Example 5 and use the second derivative test to

classify the two critical points .0; 0/ and .1; 1/ of

f .x; y/ D 2x
3
� 6xy C 3y

2
:

Solution We have

f11.x; y/ D 12x; f12.x; y/ D �6; and f22.x; y/ D 6:

At .0; 0/ we therefore have

A D 0; B D �6; C D 6; and B
2
� AC D 36 > 0;

so .0; 0/ is a saddle point. At .1; 1/ we have

A D 12 > 0; B D �6; C D 6; and B
2
�AC D �36 < 0;

so f must have a local minimum at .1; 1/.

E X A M P L E 8
Find and classify the critical points of

f .x; y/ D xy e
�.x2Cy2/=2

:

Does f have absolute maximum and minimum values? Why?
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Solution We begin by calculating the first- and second-order partial derivatives of

the function f :

f1.x; y/ D y.1� x
2
/ e

�.x2Cy2/=2
;

f2.x; y/ D x.1� y
2
/ e

�.x2Cy2/=2
;

f11.x; y/ D xy.x
2
� 3/ e

�.x2Cy2/=2
;

f12.x; y/ D .1 � x
2
/.1 � y

2
/ e

�.x2Cy2/=2
;

f22.x; y/ D xy.y
2
� 3/ e

�.x2Cy2/=2
:

At any critical point f1 D 0 and f2 D 0, so the critical points are the solutions of the

system of equations

y.1 � x
2
/ D 0 .A/

x.1� y
2
/ D 0: .B/

Equation (A) says that y D 0 or x D ˙1. If y D 0, then equation (B) says that

x D 0. If either x D �1 or x D 1, then equation (B) forces y D ˙1. Thus, there are

five points satisfying both equations: .0; 0/, .1; 1/, .1;�1/, .�1; 1/, and .�1;�1/. We

classify them using the second derivative test.

At .0; 0/ we have A D C D 0, B D 1, so that B2
� AC D 1 > 0. Thus, f has a

saddle point at .0; 0/.

At .1; 1/ and .�1;�1/ we have A D C D �2=e < 0, B D 0. It follows that

B2
� AC D �4=e2 < 0. Thus, f has local maximum values at these points. The

value of f is 1=e at each point.

At .1;�1/ and .�1; 1/ we have A D C D 2=e > 0, B D 0. If follows that

B2
� AC D �4=e2 < 0. Thus, f has local minimum values at these points. The

value of f at each of them is �1=e.

Indeed, f has absolute maximum and minimum values, namely, the values ob-

tained above as local extrema. To see why, observe that f .x; y/ approaches 0 as the

point .x; y/ recedes to infinity in any direction because the negative exponential dom-

inates the power factor xy for large x2
C y

2. Pick a number between 0 and the local

maximum value 1=e found above, say, the number 1=.2e/. For some R, we must have

jf .x; y/j � 1=.2e/ whenever x2
C y2

� R2. On the closed disk x2
C y2

� R2, f

must have absolute maximum and minimum values by Theorem 2. These cannot occur

on the boundary circle x2
C y2

D R2 because jf j is smaller there (� 1=.2e/) than it

is at the critical points considered above. Since f has no singular points, the absolute

maximum and minimum values for the disk, and therefore for the whole plane, must

occur at those critical points.

E X A M P L E 9
Find the shape of a rectangular box with no top having given vol-

ume V and the least possible total surface area of its five faces.

Solution If the horizontal dimensions of the box are x, y, and its height is z (see

Figure 13.6), then we want to minimize

x

z

y

Figure 13.6 Dimensions of a box

S D xy C 2yz C 2xz

subject to the restriction that xyz D V; the required volume. We can use this restriction

to reduce the number of variables on which S depends, for instance, by substituting

z D
V

xy
:
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Then S becomes a function of the two variables x and y:

S D S.x; y/ D xy C
2V

x
C

2V

y
:

A real box has positive dimensions, so the domain of S should consist of only those

points .x; y/ that satisfy x > 0 and y > 0. If either x or y approaches 0 or1, then

S !1, so the minimum value of S must occur at a critical point. (S has no singular

points.) For critical points we solve the equations

0 D
@S

@x
D y �

2V

x2
” x

2
y D 2V;

0 D
@S

@y
D x �

2V

y2
” xy

2
D 2V:

Thus, x2y � xy2
D 0, or xy.x � y/ D 0. Since x > 0 and y > 0, this implies that

x D y. Therefore, x3
D 2V , x D y D .2V /1=3, and z D V=.xy/ D 2�2=3V 1=3

D

x=2. Since there is only one critical point, it must minimize S . (Why?) The box

having minimal surface area has a square base but is only half as high as its horizontal

dimensions.

Remark The preceding problem is a constrained extreme-value problem in three

variables; the equation xyz D V is a constraint limiting the freedom of x, y, and z.

We used the constraint to eliminate one variable, z, and so to reduce the problem to a

free (i.e., unconstrained) problem in two variables. In Section 13.3 we will develop a

more powerful method for solving constrained extreme-value problems.

E X E R C I S E S 13.1

In Exercises 1–17, find and classify the critical points of the given

functions.

1. f .x; y/ D x2
C 2y

2
� 4x C 4y

2. f .x; y/ D xy � x C y 3. f .x; y/ D x3
C y

3
� 3xy

4. f .x; y/ D x4
C y

4
� 4xy 5. f .x; y/ D

x

y
C

8

x
� y

6. f .x; y/ D cos.x C y/ 7. f .x; y/ D x siny

8. f .x; y/ D cosx C cos y 9. f .x; y/ D x2
y e

�.x2Cy2/

10. f .x; y/ D
xy

2C x4
C y4

11. f .x; y/ D x e�x3Cy3

12. f .x; y/ D
x2

x2
C y2

13. f .x; y/ D
xy

x2
C y2

14. f .x; y/ D
1

1 � x C y C x2
C y2

15. f .x; y/ D

�

1C
1

x

��

1C
1

y

��

1

x
C

1

y

�

16.I f .x; y; z/ D xyz � x
2
� y

2
� z

2

17.I f .x; y; z/ D xy C x
2
z � x

2
� y � z

2

18.I Show that f .x; y; z/ D 4xyz � x4
� y4

� z4 has a local

maximum value at the point .1; 1; 1/.

19. Find the maximum and minimum values of

f .x; y/ D xy e�x
2�y4

.

20. Find the maximum and minimum values of

f .x; y/ D
x

.1C x2
C y2/

.

21.I Find the maximum and minimum values of

f .x; y; z/ D xyz e�x
2�y2�z2

. How do you know that such

extreme values exist?

22. Find the minimum value of f .x; y/ D x C 8y C
1

xy
in the

first quadrant x > 0, y > 0. How do you know that a

minimum exists?

23. Postal regulations require that the sum of the height and girth

(horizontal perimeter) of a package should not exceed L units.

Find the largest volume of a rectangular box that can satisfy

this requirement.

24. The material used to make the bottom of a rectangular box is

twice as expensive per unit area as the material used to make

the top or side walls. Find the dimensions of the box of given

volume V for which the cost of materials is minimum.

25. Find the volume of the largest rectangular box (with faces

parallel to the coordinate planes) that can be inscribed inside
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Solution We begin by calculating the first- and second-order partial derivatives of

the function f :

f1.x; y/ D y.1� x
2
/ e

�.x2Cy2/=2
;

f2.x; y/ D x.1� y
2
/ e

�.x2Cy2/=2
;

f11.x; y/ D xy.x
2
� 3/ e

�.x2Cy2/=2
;

f12.x; y/ D .1 � x
2
/.1 � y

2
/ e

�.x2Cy2/=2
;

f22.x; y/ D xy.y
2
� 3/ e

�.x2Cy2/=2
:

At any critical point f1 D 0 and f2 D 0, so the critical points are the solutions of the

system of equations

y.1 � x
2
/ D 0 .A/

x.1� y
2
/ D 0: .B/

Equation (A) says that y D 0 or x D ˙1. If y D 0, then equation (B) says that

x D 0. If either x D �1 or x D 1, then equation (B) forces y D ˙1. Thus, there are

five points satisfying both equations: .0; 0/, .1; 1/, .1;�1/, .�1; 1/, and .�1;�1/. We

classify them using the second derivative test.

At .0; 0/ we have A D C D 0, B D 1, so that B2
� AC D 1 > 0. Thus, f has a

saddle point at .0; 0/.

At .1; 1/ and .�1;�1/ we have A D C D �2=e < 0, B D 0. It follows that

B2
� AC D �4=e2 < 0. Thus, f has local maximum values at these points. The

value of f is 1=e at each point.

At .1;�1/ and .�1; 1/ we have A D C D 2=e > 0, B D 0. If follows that

B2
� AC D �4=e2 < 0. Thus, f has local minimum values at these points. The

value of f at each of them is �1=e.

Indeed, f has absolute maximum and minimum values, namely, the values ob-

tained above as local extrema. To see why, observe that f .x; y/ approaches 0 as the

point .x; y/ recedes to infinity in any direction because the negative exponential dom-

inates the power factor xy for large x2
C y

2. Pick a number between 0 and the local

maximum value 1=e found above, say, the number 1=.2e/. For some R, we must have

jf .x; y/j � 1=.2e/ whenever x2
C y2

� R2. On the closed disk x2
C y2

� R2, f

must have absolute maximum and minimum values by Theorem 2. These cannot occur

on the boundary circle x2
C y2

D R2 because jf j is smaller there (� 1=.2e/) than it

is at the critical points considered above. Since f has no singular points, the absolute

maximum and minimum values for the disk, and therefore for the whole plane, must

occur at those critical points.

E X A M P L E 9
Find the shape of a rectangular box with no top having given vol-

ume V and the least possible total surface area of its five faces.

Solution If the horizontal dimensions of the box are x, y, and its height is z (see

Figure 13.6), then we want to minimize

x

z

y

Figure 13.6 Dimensions of a box

S D xy C 2yz C 2xz

subject to the restriction that xyz D V; the required volume. We can use this restriction

to reduce the number of variables on which S depends, for instance, by substituting

z D
V

xy
:
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Then S becomes a function of the two variables x and y:

S D S.x; y/ D xy C
2V

x
C

2V

y
:

A real box has positive dimensions, so the domain of S should consist of only those

points .x; y/ that satisfy x > 0 and y > 0. If either x or y approaches 0 or1, then

S !1, so the minimum value of S must occur at a critical point. (S has no singular

points.) For critical points we solve the equations

0 D
@S

@x
D y �

2V

x2
” x

2
y D 2V;

0 D
@S

@y
D x �

2V

y2
” xy

2
D 2V:

Thus, x2y � xy2
D 0, or xy.x � y/ D 0. Since x > 0 and y > 0, this implies that

x D y. Therefore, x3
D 2V , x D y D .2V /1=3, and z D V=.xy/ D 2�2=3V 1=3

D

x=2. Since there is only one critical point, it must minimize S . (Why?) The box

having minimal surface area has a square base but is only half as high as its horizontal

dimensions.

Remark The preceding problem is a constrained extreme-value problem in three

variables; the equation xyz D V is a constraint limiting the freedom of x, y, and z.

We used the constraint to eliminate one variable, z, and so to reduce the problem to a

free (i.e., unconstrained) problem in two variables. In Section 13.3 we will develop a

more powerful method for solving constrained extreme-value problems.

E X E R C I S E S 13.1

In Exercises 1–17, find and classify the critical points of the given

functions.

1. f .x; y/ D x2
C 2y

2
� 4x C 4y

2. f .x; y/ D xy � x C y 3. f .x; y/ D x3
C y

3
� 3xy

4. f .x; y/ D x4
C y

4
� 4xy 5. f .x; y/ D

x

y
C

8

x
� y

6. f .x; y/ D cos.x C y/ 7. f .x; y/ D x siny

8. f .x; y/ D cosx C cos y 9. f .x; y/ D x2
y e

�.x2Cy2/

10. f .x; y/ D
xy

2C x4
C y4

11. f .x; y/ D x e�x3Cy3

12. f .x; y/ D
x2

x2
C y2

13. f .x; y/ D
xy

x2
C y2

14. f .x; y/ D
1

1 � x C y C x2
C y2

15. f .x; y/ D

�

1C
1

x

��

1C
1

y

��

1

x
C

1

y

�

16.I f .x; y; z/ D xyz � x
2
� y

2
� z

2

17.I f .x; y; z/ D xy C x
2
z � x

2
� y � z

2

18.I Show that f .x; y; z/ D 4xyz � x4
� y4

� z4 has a local

maximum value at the point .1; 1; 1/.

19. Find the maximum and minimum values of

f .x; y/ D xy e�x
2�y4

.

20. Find the maximum and minimum values of

f .x; y/ D
x

.1C x2
C y2/

.

21.I Find the maximum and minimum values of

f .x; y; z/ D xyz e�x
2�y2�z2

. How do you know that such

extreme values exist?

22. Find the minimum value of f .x; y/ D x C 8y C
1

xy
in the

first quadrant x > 0, y > 0. How do you know that a

minimum exists?

23. Postal regulations require that the sum of the height and girth

(horizontal perimeter) of a package should not exceed L units.

Find the largest volume of a rectangular box that can satisfy

this requirement.

24. The material used to make the bottom of a rectangular box is

twice as expensive per unit area as the material used to make

the top or side walls. Find the dimensions of the box of given

volume V for which the cost of materials is minimum.

25. Find the volume of the largest rectangular box (with faces

parallel to the coordinate planes) that can be inscribed inside
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the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1:

26. Find the three positive numbers a, b, and c, whose sum is 30

and for which the expression ab2c3 is maximum.

27. Find the critical points of the function z D g.x; y/ that

satisfies the equation e2zx�x2
� 3e2zyCy2

D 2.

28.I Classify the critical points of the function g in the previous

exercise.

29.I Let f .x; y/ D .y � x2/.y � 3x2/. Show that the origin is a

critical point of f and that the restriction of f to every

straight line through the origin has a local minimum value at

the origin. (That is, show that f .x; kx/ has a local minimum

value at x D 0 for every k and that f .0; y/ has a local

minimum value at y D 0.) Does f .x; y/ have a local

minimum value at the origin? What happens to f on the

curve y D 2x2? What does the second derivative test say

about this situation?

30.A Verify by completing the square (i.e., without appealing to

Theorem 8 of Section 10.7) that the quadratic form

Q.u; v/ D
�

x; y
�

�

A B

B C

��

x

y

�

D Au
2
C2BuvCCv

2

is positive definite if A > 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, negative

definite if A < 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, and indefinite if
ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

< 0. This gives independent confirmation of the

assertion in the remark preceding Example 7.

31.I State and prove (using square completion arguments rather

than appealing to Theorem 8 of Section 10.7) a result

analogous to that of Exercise 30 for a quadratic form

Q.u; v;w/ involving three variables. What are the

implications of this for a critical point .a; b; c/ of a function

f .x; y; z/ all of whose second partial derivatives are known at

.a; b; c/?

13.2 Extreme Values of Functions Defined on Restricted Domains
Much of the previous section was concerned with techniques for determining whether

a critical point of a function provides a local maximum or minimum value or is a

saddle point. In this section we address the problem of determining absolute maximum

and minimum values for functions that have them—usually functions whose domains

are restricted to subsets of R
2 (or R

n) having nonempty interiors. In Example 8 of

How to find extreme values of a

continuous function f on a

closed, bounded domain D

1. Find any critical or singular

points of f in the interior of

D.

2. Find any points on the

boundary of D where f

might have extreme values.

To do this you can

parametrize the whole

boundary, or parts of it, and

express f as a function of

the parameter(s). If you

break the boundary into

pieces, you must consider

the endpoints of those

pieces. Section 13.3 will

present another alternative

for analyzing f on the

boundary of D.

3. Evaluate f at all the points

found in steps 1 and 2.

Section 13.1 we had to prove that the given function had absolute extreme values. If,

however, we are dealing with a continuous function on a domain that is closed and

bounded, then we can rely on Theorem 2 to guarantee the existence of such extreme

values, but we will always have to check boundary points as well as any interior critical

or singular points to find them. The following examples illustrate the technique.

E X A M P L E 1
Find the maximum and minimum values of f .x; y/ D 2xy on the

closed disk x2
C y2

� 4. (See Figure 13.7.)

Solution Since f is continuous and the disk is closed, f must have absolute maxi-

mum and minimum values at some points of the disk. The first partial derivatives of

f are

f1.x; y/ D 2y and f2.x; y/ D 2x;

so there are no singular points, and the only critical point is .0; 0/, where f has the

value 0.

We must still consider values of f on the boundary circle x2
C y2

D 4. We

can express f as a function of a single variable on this circle by using a convenient

parametrization of the circle, say,

x D 2 cos t; y D 2 sin t; .�� � t � �/:

We have

f

�

2 cos t; 2 sin t
�

D 8 cos t sin t D g.t/:
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We must find any extreme values of g.t/. We can do this in either of two ways. If we

rewrite g.t/ D 4 sin 2t , it is clear that g.t/ has maximum value 4 (at t D �
4

and �3�
4

)

and minimum value �4 (at t D ��
4

and 3�
4

). Alternatively, we can differentiate g to

find its critical points:

0 D g
0
.t/ D �8 sin2

t C 8 cos2
t ” tan2

t D 1

” t D ˙
�

4
or ˙

3�

4
;

which again yield the maximum value 4 and the minimum value �4. (It is not neces-

sary to check the endpoints t D �� and t D � ; since g is everywhere differentiable

and is periodic with period � , any absolute maximum or minimum will occur at a

critical point.)

In any event, f has maximum value 4 at the boundary points .
p

2;
p

2/ and

.�
p

2;�
p

2/ and minimum value �4 at the boundary points .
p

2;�
p

2/ and

.�
p

2;
p

2/. It is easily shown by the second derivative test (or otherwise) that the

interior critical point .0; 0/ is a saddle point. (See Figure 13.7.)

y

x

x2
C y2

� 4

.
p

2;
p

2/

.0;0/

.
p

2;�
p

2/.�
p

2;�
p

2/

.�
p

2;
p

2/

Figure 13.7 Points that are candidates for

extreme values in Example 1

E X A M P L E 2
Find the extreme values of the function f .x; y/ D x2ye�.xCy/ on

the triangular region T given by x � 0, y � 0, and x C y � 4.

Solution First, we look for critical points:

0 D f1.x; y/ D xy.2� x/e
�.xCy/

0 D f2.x; y/ D x
2
.1 � y/e

�.xCy/

” x D 0; y D 0; or x D 2;

” x D 0 or y D 1:

The critical points are .0; y/ for any y and .2; 1/. Only .2; 1/ is an interior point of

T: (See Figure 13.8.) f .2; 1/ D 4=e3
� 0:199. The boundary of T consists of three

straight line segments. On two of these, the coordinate axes, f is identically zero. The

third segment is given by

y D 4 � x; 0 � x � 4;

so the values of f on this segment can be expressed as a function of x alone:

y

x

4

x C y D 4

�

8
3

;
4
3

�

4

.2;1/

T

Figure 13.8 Points of interest in

Example 2

g.x/ D f .x; 4 � x/ D x
2
.4 � x/e

�4
; 0 � x � 4:

Note that g.0/ D g.4/ D 0 and g.x/ > 0 if 0 < x < 4. The critical points of g are

given by 0 D g0
.x/ D .8x � 3x

2
/e

�4, so they are x D 0 and x D 8=3. We have

g

�

8

3

�

D f

�

8

3
;
4

3

�

D

256

27
e

�4
� 0:174 < f .2; 1/:

We conclude that the maximum value of f over the region T is 4=e3 and that it occurs

at the interior critical point .2; 1/. The minimum value of f is zero and occurs at all

points of the two perpendicular boundary segments. Note that f has neither a local

maximum nor a local minimum at the boundary point .8=3; 4=3/, although g has a

local maximum there. Of course, that point is not a saddle point of f either; it is not a

critical point of f:

E X A M P L E 3
Among all triangles with vertices on a given circle, find those that

have the largest area.
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the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1:

26. Find the three positive numbers a, b, and c, whose sum is 30

and for which the expression ab2c3 is maximum.

27. Find the critical points of the function z D g.x; y/ that

satisfies the equation e2zx�x2
� 3e2zyCy2

D 2.

28.I Classify the critical points of the function g in the previous

exercise.

29.I Let f .x; y/ D .y � x2/.y � 3x2/. Show that the origin is a

critical point of f and that the restriction of f to every

straight line through the origin has a local minimum value at

the origin. (That is, show that f .x; kx/ has a local minimum

value at x D 0 for every k and that f .0; y/ has a local

minimum value at y D 0.) Does f .x; y/ have a local

minimum value at the origin? What happens to f on the

curve y D 2x2? What does the second derivative test say

about this situation?

30.A Verify by completing the square (i.e., without appealing to

Theorem 8 of Section 10.7) that the quadratic form

Q.u; v/ D
�

x; y
�

�

A B

B C

��

x

y

�

D Au
2
C2BuvCCv

2

is positive definite if A > 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, negative

definite if A < 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, and indefinite if
ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

< 0. This gives independent confirmation of the

assertion in the remark preceding Example 7.

31.I State and prove (using square completion arguments rather

than appealing to Theorem 8 of Section 10.7) a result

analogous to that of Exercise 30 for a quadratic form

Q.u; v;w/ involving three variables. What are the

implications of this for a critical point .a; b; c/ of a function

f .x; y; z/ all of whose second partial derivatives are known at

.a; b; c/?

13.2 Extreme Values of Functions Defined on Restricted Domains
Much of the previous section was concerned with techniques for determining whether

a critical point of a function provides a local maximum or minimum value or is a

saddle point. In this section we address the problem of determining absolute maximum

and minimum values for functions that have them—usually functions whose domains

are restricted to subsets of R
2 (or R

n) having nonempty interiors. In Example 8 of

How to find extreme values of a

continuous function f on a

closed, bounded domain D

1. Find any critical or singular

points of f in the interior of

D.

2. Find any points on the

boundary of D where f

might have extreme values.

To do this you can

parametrize the whole

boundary, or parts of it, and

express f as a function of

the parameter(s). If you

break the boundary into

pieces, you must consider

the endpoints of those

pieces. Section 13.3 will

present another alternative

for analyzing f on the

boundary of D.

3. Evaluate f at all the points

found in steps 1 and 2.

Section 13.1 we had to prove that the given function had absolute extreme values. If,

however, we are dealing with a continuous function on a domain that is closed and

bounded, then we can rely on Theorem 2 to guarantee the existence of such extreme

values, but we will always have to check boundary points as well as any interior critical

or singular points to find them. The following examples illustrate the technique.

E X A M P L E 1
Find the maximum and minimum values of f .x; y/ D 2xy on the

closed disk x2
C y2

� 4. (See Figure 13.7.)

Solution Since f is continuous and the disk is closed, f must have absolute maxi-

mum and minimum values at some points of the disk. The first partial derivatives of

f are

f1.x; y/ D 2y and f2.x; y/ D 2x;

so there are no singular points, and the only critical point is .0; 0/, where f has the

value 0.

We must still consider values of f on the boundary circle x2
C y2

D 4. We

can express f as a function of a single variable on this circle by using a convenient

parametrization of the circle, say,

x D 2 cos t; y D 2 sin t; .�� � t � �/:

We have

f

�

2 cos t; 2 sin t
�

D 8 cos t sin t D g.t/:
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We must find any extreme values of g.t/. We can do this in either of two ways. If we

rewrite g.t/ D 4 sin 2t , it is clear that g.t/ has maximum value 4 (at t D �
4

and �3�
4

)

and minimum value �4 (at t D ��
4

and 3�
4

). Alternatively, we can differentiate g to

find its critical points:

0 D g
0
.t/ D �8 sin2

t C 8 cos2
t ” tan2

t D 1

” t D ˙
�

4
or ˙

3�

4
;

which again yield the maximum value 4 and the minimum value �4. (It is not neces-

sary to check the endpoints t D �� and t D � ; since g is everywhere differentiable

and is periodic with period � , any absolute maximum or minimum will occur at a

critical point.)

In any event, f has maximum value 4 at the boundary points .
p

2;
p

2/ and

.�
p

2;�
p

2/ and minimum value �4 at the boundary points .
p

2;�
p

2/ and

.�
p

2;
p

2/. It is easily shown by the second derivative test (or otherwise) that the

interior critical point .0; 0/ is a saddle point. (See Figure 13.7.)

y

x

x2
C y2

� 4

.
p

2;
p

2/

.0;0/

.
p

2;�
p

2/.�
p

2;�
p

2/

.�
p

2;
p

2/

Figure 13.7 Points that are candidates for

extreme values in Example 1

E X A M P L E 2
Find the extreme values of the function f .x; y/ D x2ye�.xCy/ on

the triangular region T given by x � 0, y � 0, and x C y � 4.

Solution First, we look for critical points:

0 D f1.x; y/ D xy.2� x/e
�.xCy/

0 D f2.x; y/ D x
2
.1 � y/e

�.xCy/

” x D 0; y D 0; or x D 2;

” x D 0 or y D 1:

The critical points are .0; y/ for any y and .2; 1/. Only .2; 1/ is an interior point of

T: (See Figure 13.8.) f .2; 1/ D 4=e3
� 0:199. The boundary of T consists of three

straight line segments. On two of these, the coordinate axes, f is identically zero. The

third segment is given by

y D 4 � x; 0 � x � 4;

so the values of f on this segment can be expressed as a function of x alone:

y

x

4

x C y D 4

�

8
3

;
4
3

�

4

.2;1/

T

Figure 13.8 Points of interest in

Example 2

g.x/ D f .x; 4 � x/ D x
2
.4 � x/e

�4
; 0 � x � 4:

Note that g.0/ D g.4/ D 0 and g.x/ > 0 if 0 < x < 4. The critical points of g are

given by 0 D g0
.x/ D .8x � 3x

2
/e

�4, so they are x D 0 and x D 8=3. We have

g

�

8

3

�

D f

�

8

3
;
4

3

�

D

256

27
e

�4
� 0:174 < f .2; 1/:

We conclude that the maximum value of f over the region T is 4=e3 and that it occurs

at the interior critical point .2; 1/. The minimum value of f is zero and occurs at all

points of the two perpendicular boundary segments. Note that f has neither a local

maximum nor a local minimum at the boundary point .8=3; 4=3/, although g has a

local maximum there. Of course, that point is not a saddle point of f either; it is not a

critical point of f:

E X A M P L E 3
Among all triangles with vertices on a given circle, find those that

have the largest area.
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Solution Intuition tells us that the equilateral triangles must have the largest area.

However, proving this can be quite difficult unless a good choice of variables in which

to set up the problem analytically is made. With a suitable choice of units and axes

we can assume the circle is x2
C y2

D 1 and that one vertex of the triangle is the

point P with coordinates .1; 0/. Let the other two vertices, Q and R, be as shown in

Figure 13.9. There is no harm in assuming thatQ lies on the upper semicircle andR on

the lower, and that the origin O is inside triangle PQR. Let PQ and PR make angles

� and �, respectively, with the negative direction of the x-axis. Clearly 0 � � � �=2

and 0 � � � �=2. The lines from O to Q and R make equal angles  with the line

QR, where 2� C 2� C 2 D � . Dropping perpendiculars from O to the three sides

of the triangle PQR, we can write the area A of the triangle as the sum of the areas of

six small, right-angled triangles:

A D 2 �
1

2
sin � cos � C 2 �

1

2
sin� cos� C 2 �

1

2
sin cos 

D

1

2

�

sin 2� C sin 2� C sin 2 
�

:

Since 2 D � � 2.� C �/, we express A as a function of the two variables � and �:

A D A.�; �/ D
1

2

�

sin 2� C sin 2� C sin 2.� C �/
�

:

Figure 13.9 Where should Q and R be to

ensure that triangle PQR has maximum

area?
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the triangle and is positive elsewhere. (See Figure 13.10.) We show that the maximum

value of A.�; �/ on any edge of the triangle is 1 and occurs at the midpoint of that

edge. On the edge � D 0 we have

A.0; �/ D
1

2

�

sin 2� C sin 2�
�

D sin 2� � 1 D A.0; �=4/:

Similarly, on � D 0, A.�; 0/ � 1 D A.�=4; 0/. On the edge � C � D �=2 we have

A

�

�;
�

2
� �

�

D

1

2

�

sin 2� C sin.� � 2�/
�
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�
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We must now check for any interior critical points of A.�; �/. (There are no singular

points.) For critical points we have

0 D
@A

@�
D cos 2� C cos.2� C 2�/;

0 D
@A

@�
D cos 2� C cos.2� C 2�/;

so the critical points satisfy cos 2� D cos 2� and, hence, � D �. We now substitute

this equation into either of the above equations to determine � :

cos 2� C cos 4� D 0

2 cos2
2� C cos 2� � 1 D 0

.2 cos 2� � 1/.cos 2� C 1/ D 0

cos 2� D
1

2
or cos 2� D �1:

The only solution leading to an interior point of the domain of A is � D � D �=6.

Note that

A

�

�

6
;
�

6

�

D

1

2

 p

3

2
C

p

3

2
C

p

3

2

!

D

3
p

3

4
> 1I

this interior critical point maximizes the area of the inscribed triangle. Finally, observe

that for � D � D �=6, we also have  D �=6, so the largest triangle is indeed

equilateral.

Remark Since the area A of the inscribed triangle must have a maximum value (A is

continuous and its domain is closed and bounded), a strictly geometric argument can

be used to show that the largest triangle is equilateral. If an inscribed triangle has two

unequal sides, its area can be made larger by moving the common vertex of these two

sides along the circle to increase its perpendicular distance from the opposite side of

the triangle.

E Linear Programming
Linear programming is a branch of linear algebra that develops systematic techniques

for finding maximum or minimum values of a linear function subject to several lin-

ear inequality constraints. Such problems arise frequently in management science

and operations research. Because of their linear nature they do not usually involve

calculus in their solution; linear programming is frequently presented in courses on

finite mathematics. We will not attempt any formal study of linear programming here,

but we will make a few observations for comparison with the more general nonlinear

extreme-value problems considered above that involve calculus in their solution.

The inequality ax C by � c is an example of a linear inequality in two variables.

The solution set of this inequality consists of a half-plane lying on one side of the

straight line ax C by D c. The solution set of a system of several two-variable linear

inequalities is an intersection of such half-planes, so it is a convex region of the plane

bounded by a polygonal line. If it is a bounded set, then it is a convex polygon together

with its interior. (A set is called convex if it contains the entire line segment between

any two of its points. On the real line the convex sets are intervals.)

Let us examine a simple concrete example that involves only two variables and a

few constraints.

E X A M P L E 4
Find the maximum value of F.x; y/ D 2x C 7y subject to the

constraints x C 2y � 6; 2x C y � 6; x � 0; and y � 0.
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Solution Intuition tells us that the equilateral triangles must have the largest area.

However, proving this can be quite difficult unless a good choice of variables in which

to set up the problem analytically is made. With a suitable choice of units and axes

we can assume the circle is x2
C y2

D 1 and that one vertex of the triangle is the

point P with coordinates .1; 0/. Let the other two vertices, Q and R, be as shown in

Figure 13.9. There is no harm in assuming thatQ lies on the upper semicircle andR on

the lower, and that the origin O is inside triangle PQR. Let PQ and PR make angles

� and �, respectively, with the negative direction of the x-axis. Clearly 0 � � � �=2

and 0 � � � �=2. The lines from O to Q and R make equal angles  with the line

QR, where 2� C 2� C 2 D � . Dropping perpendiculars from O to the three sides

of the triangle PQR, we can write the area A of the triangle as the sum of the areas of

six small, right-angled triangles:
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the triangle and is positive elsewhere. (See Figure 13.10.) We show that the maximum

value of A.�; �/ on any edge of the triangle is 1 and occurs at the midpoint of that

edge. On the edge � D 0 we have

A.0; �/ D
1

2

�

sin 2� C sin 2�
�

D sin 2� � 1 D A.0; �=4/:

Similarly, on � D 0, A.�; 0/ � 1 D A.�=4; 0/. On the edge � C � D �=2 we have
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We must now check for any interior critical points of A.�; �/. (There are no singular

points.) For critical points we have

0 D
@A

@�
D cos 2� C cos.2� C 2�/;

0 D
@A

@�
D cos 2� C cos.2� C 2�/;

so the critical points satisfy cos 2� D cos 2� and, hence, � D �. We now substitute

this equation into either of the above equations to determine � :

cos 2� C cos 4� D 0

2 cos2
2� C cos 2� � 1 D 0

.2 cos 2� � 1/.cos 2� C 1/ D 0

cos 2� D
1

2
or cos 2� D �1:

The only solution leading to an interior point of the domain of A is � D � D �=6.

Note that
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this interior critical point maximizes the area of the inscribed triangle. Finally, observe

that for � D � D �=6, we also have  D �=6, so the largest triangle is indeed

equilateral.

Remark Since the area A of the inscribed triangle must have a maximum value (A is

continuous and its domain is closed and bounded), a strictly geometric argument can

be used to show that the largest triangle is equilateral. If an inscribed triangle has two

unequal sides, its area can be made larger by moving the common vertex of these two

sides along the circle to increase its perpendicular distance from the opposite side of

the triangle.

E Linear Programming
Linear programming is a branch of linear algebra that develops systematic techniques

for finding maximum or minimum values of a linear function subject to several lin-

ear inequality constraints. Such problems arise frequently in management science

and operations research. Because of their linear nature they do not usually involve

calculus in their solution; linear programming is frequently presented in courses on

finite mathematics. We will not attempt any formal study of linear programming here,

but we will make a few observations for comparison with the more general nonlinear

extreme-value problems considered above that involve calculus in their solution.

The inequality ax C by � c is an example of a linear inequality in two variables.

The solution set of this inequality consists of a half-plane lying on one side of the

straight line ax C by D c. The solution set of a system of several two-variable linear

inequalities is an intersection of such half-planes, so it is a convex region of the plane

bounded by a polygonal line. If it is a bounded set, then it is a convex polygon together

with its interior. (A set is called convex if it contains the entire line segment between

any two of its points. On the real line the convex sets are intervals.)

Let us examine a simple concrete example that involves only two variables and a

few constraints.

E X A M P L E 4
Find the maximum value of F.x; y/ D 2x C 7y subject to the

constraints x C 2y � 6; 2x C y � 6; x � 0; and y � 0.
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Solution The solution set S of the system of four constraint inequalities is shown in

Figure 13.11. It is the quadrilateral region with vertices .0; 0/, .3; 0/, .2; 2/, and .0; 3/.

Several level curves of the linear function F are also shown in the figure. They are

parallel straight lines with slope �2
7

. We want the line that gives F the greatest value

and that still intersects S. Evidently this is the line F D 21 that passes through the

vertex .0; 3/ of S. The maximum value of F subject to the constraints is 21.

Figure 13.11 The shaded region is the

solution set for the constraint inequalities

in Example 4

y

x

3

3

.2;2/

x C 2y D 6

2x C y D 6

F D 35

F D 28

F D 21

F D 14

F D 7

F D 0
F D �7

S

As this simple example illustrates, a linear function with domain restricted by linear

inequalities does not achieve maximum or minimum values at points in the interior

of its domain (if that domain has an interior). Any such extreme value occurs at a

boundary point of the domain or a set of such boundary points. Where an extreme value

occurs at a set of boundary points, that set will always contain at least one vertex. This

phenomenon holds in general for extreme-value problems for linear functions in any

number of variables with domains restricted by any number of linear inequalities. For

problems involving three variables the domain will be a convex region of R
3 bounded

by planes. For a problem involving n variables the domain will be a convex region

in R
n bounded by .n � 1/-dimensional hyperplanes. Such polyhedral regions still

have vertices (where n hyperplanes intersect), and maximum or minimum values of

linear functions subject to the constraints will still occur at subsets of the boundary

containing such vertices. These problems can therefore be solved by evaluating the

linear function to be extremized (it is called the objective function) at all the vertices

and selecting the greatest or least value.

In practice, linear programming problems can involve hundreds or even thousands

of variables and even more constraints. Such problems need to be solved with com-

puters, but even then it is extremely inefficient, if not impossible, to calculate all the

vertices of the constraint solution set and the values of the objective function at them.

Much of the study of linear programming therefore centres on devising techniques for

getting to (or at least near) the optimizing vertex in as few steps as possible. Usually,

this involves criteria whereby large numbers of vertices can be rejected on geometric

grounds. We will not delve into such techniques here but will content ourselves with

one more example to illustrate, in a very simple case, how the underlying geometry of

a problem can be used to reduce the number of vertices that must be considered.

E X A M P L E 5
A tailor has 230 m of a certain fabric and has orders for up to 20

suits, up to 30 jackets, and up to 40 pairs of slacks to be made from

the fabric. Each suit requires 6 m, each jacket 3 m, and each pair of slacks 2 m of the

fabric. If the tailor’s profit is $20 per suit, $14 per jacket, and $12 per pair of slacks,

how many of each should he make to realize the maximum profit from his supply of

the fabric?
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Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his profit

will be

P D 20x C 14y C 12z:

The constraints posed in the problem are

x � 0;

y � 0;

z � 0;

x � 20;

y � 30;

z � 40;

6x C 3y C 2z � 230:

The last inequality is due to the limited supply of fabric. The solution set is shown in

Figure 13.12. It has 10 vertices, A;B; : : : ; J: Since P increases in the direction of the

vector rP D 20iC 14jC 12k, which points into the first octant, its maximum value

cannot occur at any of the vertices A;B; : : : ; G. (Think about why.) Thus, we need

look only at the vertices H , I; and J .

H D .20; 10; 40/; P D 1;020 at H:

I D .10; 30; 40/; P D 1;100 at I:

J D .20; 30; 10/; P D 940 at J:

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize the

maximum profit, $1,100, from the fabric.

x

y

z

40
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G H

20

B
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D

I

J

Figure 13.12 The convex set of points

satisfying the constraints in Example 5

E X E R C I S E S 13.2

1. Find the maximum and minimum values of

f .x; y/ D x � x2
C y2 on the rectangle 0 � x � 2,

0 � y � 1.

2. Find the maximum and minimum values of

f .x; y/ D xy � 2x on the rectangle �1 � x � 1, 0 � y � 1.

3. Find the maximum and minimum values of

f .x; y/ D xy � y2 on the disk x2
C y2

� 1.

4. Find the maximum and minimum values of f .x; y/ D x C 2y

on the disk x2
C y2

� 1.

5. Find the maximum and minimum values of

f .x; y/ D xy � x3y2 over the square 0 � x � 1, 0 � y � 1.

6. Find the maximum and minimum values of

f .x; y/ D xy.1 � x � y/ over the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/.

7. Find the maximum and minimum values of

f .x; y/ D sinx cosy on the closed triangular region bounded

by the coordinate axes and the line x C y D 2� .

8. Find the maximum value of f .x; y/ D sinx siny sin.x C y/

over the triangle bounded by the coordinate axes and the line

x C y D � .

9. The temperature at all points in the disk x2
C y2

� 1 is given

by T D .x C y/ e�x2�y2

. Find the maximum and minimum

temperatures at points of the disk.

10. Find the maximum and minimum values of

f .x; y/ D
x � y

1C x2
C y2

on the upper half-plane y � 0.

11. Find the maximum and minimum values of xy2
C yz2 over

the ball x2
C y2

C z2
� 1.

12. Find the maximum and minimum values of xz C yz over the

ball x2
C y2

C z2
� 1.

13. Consider the function f .x; y/ D xy e�xy with domain the

first quadrant: x � 0; y � 0. Show that

limx!1 f .x; kx/ D 0. Does f have a limit as .x; y/ recedes

arbitrarily far from the origin in the first quadrant? Does f

have a maximum value in the first quadrant?

14. Repeat Exercise 13 for the function f .x; y/ D xy2 e�xy .

15. In a certain community there are two breweries in competition,

so that sales of each negatively affect the profits of the other. If

brewery A produces x litres of beer per month and brewery B

produces y litres per month, then brewery A’s monthly profit

$P and brewery B’s monthly profit $Q are assumed to be

P D 2x �
2x

2
C y

2

106
;

Q D 2y �
4y2
C x2

2 � 106
:

Find the sum of the profits of the two breweries if each

brewery independently sets its own production level to

maximize its own profit and assumes its competitor does

likewise. Find the sum of the profits if the two breweries

cooperate to determine their respective productions to

maximize that sum.
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Solution The solution set S of the system of four constraint inequalities is shown in

Figure 13.11. It is the quadrilateral region with vertices .0; 0/, .3; 0/, .2; 2/, and .0; 3/.

Several level curves of the linear function F are also shown in the figure. They are

parallel straight lines with slope �2
7

. We want the line that gives F the greatest value

and that still intersects S. Evidently this is the line F D 21 that passes through the

vertex .0; 3/ of S. The maximum value of F subject to the constraints is 21.

Figure 13.11 The shaded region is the

solution set for the constraint inequalities

in Example 4
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As this simple example illustrates, a linear function with domain restricted by linear

inequalities does not achieve maximum or minimum values at points in the interior

of its domain (if that domain has an interior). Any such extreme value occurs at a

boundary point of the domain or a set of such boundary points. Where an extreme value

occurs at a set of boundary points, that set will always contain at least one vertex. This

phenomenon holds in general for extreme-value problems for linear functions in any

number of variables with domains restricted by any number of linear inequalities. For

problems involving three variables the domain will be a convex region of R
3 bounded

by planes. For a problem involving n variables the domain will be a convex region

in R
n bounded by .n � 1/-dimensional hyperplanes. Such polyhedral regions still

have vertices (where n hyperplanes intersect), and maximum or minimum values of

linear functions subject to the constraints will still occur at subsets of the boundary

containing such vertices. These problems can therefore be solved by evaluating the

linear function to be extremized (it is called the objective function) at all the vertices

and selecting the greatest or least value.

In practice, linear programming problems can involve hundreds or even thousands

of variables and even more constraints. Such problems need to be solved with com-

puters, but even then it is extremely inefficient, if not impossible, to calculate all the

vertices of the constraint solution set and the values of the objective function at them.

Much of the study of linear programming therefore centres on devising techniques for

getting to (or at least near) the optimizing vertex in as few steps as possible. Usually,

this involves criteria whereby large numbers of vertices can be rejected on geometric

grounds. We will not delve into such techniques here but will content ourselves with

one more example to illustrate, in a very simple case, how the underlying geometry of

a problem can be used to reduce the number of vertices that must be considered.

E X A M P L E 5
A tailor has 230 m of a certain fabric and has orders for up to 20

suits, up to 30 jackets, and up to 40 pairs of slacks to be made from

the fabric. Each suit requires 6 m, each jacket 3 m, and each pair of slacks 2 m of the

fabric. If the tailor’s profit is $20 per suit, $14 per jacket, and $12 per pair of slacks,

how many of each should he make to realize the maximum profit from his supply of

the fabric?
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Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his profit

will be

P D 20x C 14y C 12z:

The constraints posed in the problem are

x � 0;

y � 0;

z � 0;

x � 20;

y � 30;

z � 40;

6x C 3y C 2z � 230:

The last inequality is due to the limited supply of fabric. The solution set is shown in

Figure 13.12. It has 10 vertices, A;B; : : : ; J: Since P increases in the direction of the

vector rP D 20iC 14jC 12k, which points into the first octant, its maximum value

cannot occur at any of the vertices A;B; : : : ; G. (Think about why.) Thus, we need

look only at the vertices H , I; and J .

H D .20; 10; 40/; P D 1;020 at H:

I D .10; 30; 40/; P D 1;100 at I:

J D .20; 30; 10/; P D 940 at J:

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize the

maximum profit, $1,100, from the fabric.
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Figure 13.12 The convex set of points

satisfying the constraints in Example 5

E X E R C I S E S 13.2

1. Find the maximum and minimum values of

f .x; y/ D x � x2
C y2 on the rectangle 0 � x � 2,

0 � y � 1.

2. Find the maximum and minimum values of

f .x; y/ D xy � 2x on the rectangle �1 � x � 1, 0 � y � 1.

3. Find the maximum and minimum values of

f .x; y/ D xy � y2 on the disk x2
C y2

� 1.

4. Find the maximum and minimum values of f .x; y/ D x C 2y

on the disk x2
C y2

� 1.

5. Find the maximum and minimum values of

f .x; y/ D xy � x3y2 over the square 0 � x � 1, 0 � y � 1.

6. Find the maximum and minimum values of

f .x; y/ D xy.1 � x � y/ over the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/.

7. Find the maximum and minimum values of

f .x; y/ D sinx cosy on the closed triangular region bounded

by the coordinate axes and the line x C y D 2� .

8. Find the maximum value of f .x; y/ D sinx siny sin.x C y/

over the triangle bounded by the coordinate axes and the line

x C y D � .

9. The temperature at all points in the disk x2
C y2

� 1 is given

by T D .x C y/ e�x2�y2

. Find the maximum and minimum

temperatures at points of the disk.

10. Find the maximum and minimum values of

f .x; y/ D
x � y

1C x2
C y2

on the upper half-plane y � 0.

11. Find the maximum and minimum values of xy2
C yz2 over

the ball x2
C y2

C z2
� 1.

12. Find the maximum and minimum values of xz C yz over the

ball x2
C y2

C z2
� 1.

13. Consider the function f .x; y/ D xy e�xy with domain the

first quadrant: x � 0; y � 0. Show that

limx!1 f .x; kx/ D 0. Does f have a limit as .x; y/ recedes

arbitrarily far from the origin in the first quadrant? Does f

have a maximum value in the first quadrant?

14. Repeat Exercise 13 for the function f .x; y/ D xy2 e�xy .

15. In a certain community there are two breweries in competition,

so that sales of each negatively affect the profits of the other. If

brewery A produces x litres of beer per month and brewery B

produces y litres per month, then brewery A’s monthly profit

$P and brewery B’s monthly profit $Q are assumed to be

P D 2x �
2x

2
C y

2

106
;

Q D 2y �
4y2
C x2

2 � 106
:

Find the sum of the profits of the two breweries if each

brewery independently sets its own production level to

maximize its own profit and assumes its competitor does

likewise. Find the sum of the profits if the two breweries

cooperate to determine their respective productions to

maximize that sum.
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16.I Equal angle bends are made at equal distances from the two

ends of a 100 m long straight length of fence so the resulting

three-segment fence can be placed along an existing wall to

make an enclosure of trapezoidal shape. What is the largest

possible area for such an enclosure?

17. MaximizeQ.x; y/ D 2x C 3y subject to the constraints

x � 0, y � 0, y � 5, x C 2y � 12, and 4x C y � 12.

18. Minimize F.x; y; z/ D 2x C 3y C 4z subject to the

constraints x � 0, y � 0, z � 0, x C y � 2, y C z � 2, and

x C z � 2.

19. A textile manufacturer produces two grades of fabric

containing wool, cotton, and polyester. The deluxe grade has

composition (by weight) 20% wool, 50% cotton, and 30%

polyester, and it sells for $3 per kilogram. The standard grade

has composition 10% wool, 40% cotton, and 50% polyester,

and it sells for $2 per kilogram. If he has in stock 2,000 kg of

wool and 6,000 kg each of cotton and polyester, how many

kilograms of fabric of each grade should he manufacture to

maximize his revenue?

20. A 10-hectare parcel of land is zoned for building densities of 6

detached houses per hectare, 8 duplex units per hectare, or 12

apartments per hectare. The developer who owns the land can

make a profit of $40,000 per house, $20,000 per duplex unit,

and $16,000 per apartment that he builds. Municipal bylaws

require him to build at least as many apartments as the total of

houses and duplex units. How many of each type of dwelling

should he build to maximize his profit?

13.3 Lagrange Multipliers

A constrained extreme-value problem is one in which the variables of the function to

be maximized or minimized are not completely independent of one another, but must

satisfy one or more constraint equations or inequalities. For instance, the problems

maximize f .x; y/ subject to g.x; y/ D C

and

minimize f .x; y; z; w/ subject to g.x; y; z; w/ D C1;

and h.x; y; z; w/ D C2

have, respectively, one and two constraint equations, while the problem

maximize f .x; y; z/ subject to g.x; y; z/ � C

has a single constraint inequality.

Generally, inequality constraints can be regarded as restricting the domain of the

function to be extremized to a smaller set that still has interior points. Section 13.2 was

devoted to such problems. In each of the first three examples of that section we looked

for free (i.e., unconstrained) extreme values in the interior of the domain, and we also

examined the boundary of the domain, which was specified by one or more constraint

equations. In Example 1 we parametrized the boundary and expressed the function

to be extremized as a function of the parameter, thus reducing the boundary case to

a free problem in one variable instead of a constrained problem in two variables. In

Example 2 the boundary consisted of three line segments, on two of which the function

was obviously zero. We solved the equation for the third boundary segment for y

in terms of x, again in order to express the values of f .x; y/ on that segment as a

function of one free variable. A similar approach was used in Example 3 to deal with

the triangular boundary of the domain of the area function A.�; �/.

The reduction of extremization problems with equation constraints to free prob-

lems with fewer independent variables is only feasible when the constraint equations

can be solved either explicitly for some variables in terms of others or parametrically

for all variables in terms of some parameters. It is often very difficult or impossible to

solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers
A technique for finding extreme values of f .x; y/ subject to the equality constraint

g.x; y/ D 0 is based on the following theorem:
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Suppose that f and g have continuous first partial derivatives near the point

P0 D .x0; y0/ on the curve C with equation g.x; y/ D 0. Suppose also that, when

restricted to points on C, the function f .x; y/ has a local maximum or minimum value

at P0. Finally, suppose that

(i) P0 is not an endpoint of C, and

(ii) rg.P0/ ¤ 0.
Then there exists a number �0 such that .x0; y0; �0/ is a critical point of the

Lagrange function

L.x; y; �/ D f .x; y/C �g.x; y/:

PROOF Together, (i) and (ii) imply that C is smooth enough to have a tangent line at

P0 and thatrg.P0/ is normal to that tangent line. Ifrf .P0/ is not parallel torg.P0/,

then rf .P0/ has a nonzero vector projection v along the tangent line to C at P0. (See

Figure 13.13.) Therefore, f has a positive directional derivative at P0 in the direction

of v and a negative directional derivative in the opposite direction. Thus, f .x; y/

increases or decreases as we move away from P0 along C in the direction of v or �v,

and f cannot have a maximum or minimum value at P0. Since we are assuming that f

does have an extreme value at P0, it must be that rf .P0/ is parallel to rg.P0/. Since

rg.P0/ ¤ 0, there must exist a real number �0 such that rf .P0/ D ��0rg.P0/, or

r.f C �0g/.P0/ D 0:

The two components of the above vector equation assert that @L=@x D 0 and @L=@y D

0 at .x0; y0; �0/. The third equation that must be satisfied by a critical point of L is

@L=@� D g.x; y/ D 0. This is satisfied at .x0; y0; �0/ because P0 lies on C. Thus,

.x0; y0; �0/ is a critical point of L.x; y; �/.

rf .P0/

rg.P0/

CP0

v

g.x; y/ D 0

Figure 13.13 If rf .P0/ is not a multiple

of rg.P0/, then rf .P0/ has a nonzero

projection v tangent to the level curve of g

through P0

Theorem 4 suggests that to find candidates for points on the curve g.x; y/ D 0 at which

f .x; y/ is maximum or minimum, we should look for critical points of the Lagrange

function

L.x; y; �/ D f .x; y/C �g.x; y/:

At any critical point of L we must have

0 D
@L

@x
D f1.x; y/C �g1.x; y/;

0 D
@L

@y
D f2.x; y/C �g2.x; y/;

9

>

>

=

>

>

;

that is, rf is parallel to rg,

and 0 D
@L

@�
D g.x; y/; the constraint equation:

Note that it is assumed that the constrained problem does, in fact, have a solution.

Theorem 4 does not guarantee that a solution exists; it only provides a means for find-

ing a solution already known to exist. It is usually necessary to satisfy yourself that

the problem you are trying to solve has a solution before using this method to find the

solution.

Let us put the method to a concrete test:

E X A M P L E 1
Find the shortest distance from the origin to the curve x2y D 16.
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16.I Equal angle bends are made at equal distances from the two

ends of a 100 m long straight length of fence so the resulting

three-segment fence can be placed along an existing wall to

make an enclosure of trapezoidal shape. What is the largest

possible area for such an enclosure?

17. MaximizeQ.x; y/ D 2x C 3y subject to the constraints

x � 0, y � 0, y � 5, x C 2y � 12, and 4x C y � 12.

18. Minimize F.x; y; z/ D 2x C 3y C 4z subject to the

constraints x � 0, y � 0, z � 0, x C y � 2, y C z � 2, and

x C z � 2.

19. A textile manufacturer produces two grades of fabric

containing wool, cotton, and polyester. The deluxe grade has

composition (by weight) 20% wool, 50% cotton, and 30%

polyester, and it sells for $3 per kilogram. The standard grade

has composition 10% wool, 40% cotton, and 50% polyester,

and it sells for $2 per kilogram. If he has in stock 2,000 kg of

wool and 6,000 kg each of cotton and polyester, how many

kilograms of fabric of each grade should he manufacture to

maximize his revenue?

20. A 10-hectare parcel of land is zoned for building densities of 6

detached houses per hectare, 8 duplex units per hectare, or 12

apartments per hectare. The developer who owns the land can

make a profit of $40,000 per house, $20,000 per duplex unit,

and $16,000 per apartment that he builds. Municipal bylaws

require him to build at least as many apartments as the total of

houses and duplex units. How many of each type of dwelling

should he build to maximize his profit?

13.3 Lagrange Multipliers

A constrained extreme-value problem is one in which the variables of the function to

be maximized or minimized are not completely independent of one another, but must

satisfy one or more constraint equations or inequalities. For instance, the problems

maximize f .x; y/ subject to g.x; y/ D C

and

minimize f .x; y; z; w/ subject to g.x; y; z; w/ D C1;

and h.x; y; z; w/ D C2

have, respectively, one and two constraint equations, while the problem

maximize f .x; y; z/ subject to g.x; y; z/ � C

has a single constraint inequality.

Generally, inequality constraints can be regarded as restricting the domain of the

function to be extremized to a smaller set that still has interior points. Section 13.2 was

devoted to such problems. In each of the first three examples of that section we looked

for free (i.e., unconstrained) extreme values in the interior of the domain, and we also

examined the boundary of the domain, which was specified by one or more constraint

equations. In Example 1 we parametrized the boundary and expressed the function

to be extremized as a function of the parameter, thus reducing the boundary case to

a free problem in one variable instead of a constrained problem in two variables. In

Example 2 the boundary consisted of three line segments, on two of which the function

was obviously zero. We solved the equation for the third boundary segment for y

in terms of x, again in order to express the values of f .x; y/ on that segment as a

function of one free variable. A similar approach was used in Example 3 to deal with

the triangular boundary of the domain of the area function A.�; �/.

The reduction of extremization problems with equation constraints to free prob-

lems with fewer independent variables is only feasible when the constraint equations

can be solved either explicitly for some variables in terms of others or parametrically

for all variables in terms of some parameters. It is often very difficult or impossible to

solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers
A technique for finding extreme values of f .x; y/ subject to the equality constraint

g.x; y/ D 0 is based on the following theorem:
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Suppose that f and g have continuous first partial derivatives near the point

P0 D .x0; y0/ on the curve C with equation g.x; y/ D 0. Suppose also that, when

restricted to points on C, the function f .x; y/ has a local maximum or minimum value

at P0. Finally, suppose that

(i) P0 is not an endpoint of C, and

(ii) rg.P0/ ¤ 0.
Then there exists a number �0 such that .x0; y0; �0/ is a critical point of the

Lagrange function

L.x; y; �/ D f .x; y/C �g.x; y/:

PROOF Together, (i) and (ii) imply that C is smooth enough to have a tangent line at

P0 and thatrg.P0/ is normal to that tangent line. Ifrf .P0/ is not parallel torg.P0/,

then rf .P0/ has a nonzero vector projection v along the tangent line to C at P0. (See

Figure 13.13.) Therefore, f has a positive directional derivative at P0 in the direction

of v and a negative directional derivative in the opposite direction. Thus, f .x; y/

increases or decreases as we move away from P0 along C in the direction of v or �v,

and f cannot have a maximum or minimum value at P0. Since we are assuming that f

does have an extreme value at P0, it must be that rf .P0/ is parallel to rg.P0/. Since

rg.P0/ ¤ 0, there must exist a real number �0 such that rf .P0/ D ��0rg.P0/, or

r.f C �0g/.P0/ D 0:

The two components of the above vector equation assert that @L=@x D 0 and @L=@y D

0 at .x0; y0; �0/. The third equation that must be satisfied by a critical point of L is

@L=@� D g.x; y/ D 0. This is satisfied at .x0; y0; �0/ because P0 lies on C. Thus,

.x0; y0; �0/ is a critical point of L.x; y; �/.

rf .P0/

rg.P0/

CP0

v

g.x; y/ D 0

Figure 13.13 If rf .P0/ is not a multiple

of rg.P0/, then rf .P0/ has a nonzero

projection v tangent to the level curve of g

through P0

Theorem 4 suggests that to find candidates for points on the curve g.x; y/ D 0 at which

f .x; y/ is maximum or minimum, we should look for critical points of the Lagrange

function

L.x; y; �/ D f .x; y/C �g.x; y/:

At any critical point of L we must have

0 D
@L

@x
D f1.x; y/C �g1.x; y/;

0 D
@L

@y
D f2.x; y/C �g2.x; y/;

9

>

>

=

>

>

;

that is, rf is parallel to rg,

and 0 D
@L

@�
D g.x; y/; the constraint equation:

Note that it is assumed that the constrained problem does, in fact, have a solution.

Theorem 4 does not guarantee that a solution exists; it only provides a means for find-

ing a solution already known to exist. It is usually necessary to satisfy yourself that

the problem you are trying to solve has a solution before using this method to find the

solution.

Let us put the method to a concrete test:

E X A M P L E 1
Find the shortest distance from the origin to the curve x2y D 16.
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Solution The graph of x2y D 16 is shown in Figure 13.14. There appear to be two

points on the curve that are closest to the origin and no points that are farthest from the

origin. (The curve is unbounded.) To find the closest points it is sufficient to minimize

the square of the distance from the point .x; y/ on the curve to the origin. (It is easier

to work with the square of the distance rather than the distance itself, which involves a

square root and so is harder to differentiate.) Thus, we want to solve the problem

minimize f .x; y/ D x
2
C y

2 subject to g.x; y/ D x
2
y � 16 D 0:

Let L.x; y; �/ D x2
C y2

C �.x2y � 16/. For critical points of L we want

0 D
@L

@x
D 2x C 2�xy D 2x.1C �y/ (A)

0 D
@L

@y
D 2y C �x

2 (B)

0 D
@L

@�
D x

2
y � 16: (C)

Equation (A) requires that either x D 0 or �y D �1. However, x D 0 is inconsistent

with equation (C). Therefore �y D �1. From equation (B) we now have

y

x

x
2
y D 16

P

2 5

Figure 13.14 The level curve of the

function representing the square of distance

from the origin is tangent to the curve

x
2
y D 16 at the two points on that curve

that are closest to the origin

0 D 2y
2
C �yx

2
D 2y

2
� x

2
:

Thus, x D ˙
p

2y, and (C) now gives 2y3
D 16, so y D 2. There are, therefore,

two candidates for points on x2y D 16 closest to the origin, .˙2
p

2; 2/. Both of

these points are at distance
p

8C 4 D 2
p

3 units from the origin, so this must be the

minimum distance from the origin to the curve. Some level curves of x2
C y2 are

shown, along with the constraint curve x2y D 16, in Figure 13.14. Observe how the

constraint curve is tangent to the level curve passing through the minimizing points

.˙2
p

2; 2/, reflecting the fact that the two curves have parallel normals there.

Remark In the above example we could, of course, have solved the constraint equa-

tion for y D 16=x2, substituted into f; and thus reduced the problem to one of finding

the (unconstrained) minimum value of

F.x/ D f

�

x;
16

x2

�

D x
2
C

256

x4
:

The reader is invited to verify that this gives the same result.

The number � that occurs in the Lagrange function is called a Lagrange multi-

plier. The technique for solving an extreme-value problem with equation constraints

by looking for critical points of an unconstrained problem in more variables (the orig-

inal variables plus a Lagrange multiplier corresponding to each constraint equation)

is called the method of Lagrange multipliers. It can be expected to give results as

long as the function to be maximized or minimized (called the objective function or

cost function) and the constraint equations have smooth graphs in a neighbourhood of

the points where the extreme values occur, and these points are not on edges of those

graphs. See Example 3 and Exercise 26 below.

E X A M P L E 2
Find the points on the curve 17x2

C 12xy C 8y2
D 100 that are

closest to and farthest away from the origin.

Solution The quadratic form on the left side of the equation above is positive definite,

as can be seen by completing a square. Hence, the curve is bounded and must have

points closest to and farthest from the origin. (In fact, the curve is an ellipse with

centre at the origin and oblique principal axes. The problem asks us to find the ends of

the major and minor axes.)

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 769 October 5, 2016

SECTION 13.3: Lagrange Multipliers 769

Again, we want to extremize x2
C y2 subject to an equation constraint. The

Lagrange function in this case is

L.x; y; �/ D x
2
C y

2
C �.17x

2
C 12xy C 8y

2
� 100/;

and its critical points are given by

0 D
@L

@x
D 2x C �.34x C 12y/ .A/

0 D
@L

@y
D 2y C �.12x C 16y/ .B/

0 D
@L

@�
D 17x

2
C 12xy C 8y

2
� 100: .C/

Solving each of equations (A) and (B) for � and equating the two expressions for �

obtained, we get

�2x

34x C 12y
D

�2y

12x C 16y
or 12x

2
C 16xy D 34xy C 12y

2
:

This equation simplifies to

2x
2
� 3xy � 2y

2
D 0: (D)

We multiply equation (D) by 4 and add the result to equation (C) to get 25x2
D 100,

so that x D ˙2. Finally, we substitute each of these values of x into (D) and obtain

(for each) two values of y from the resulting quadratics:

For x D 2 W y
2
C 3y � 4 D 0;

.y � 1/.y C 4/ D 0:

For x D �2 W y
2
� 3y � 4 D 0;

.y C 1/.y � 4/ D 0:

We therefore obtain four candidate points: .2; 1/, .�2;�1/, .2;�4/, and .�2; 4/. The

y

x

17x2C12xyC8y2D100

.2;1/

.2;�4/

.�2;�1/

.�2;4/

Figure 13.15 The points on the ellipse

that are closest to and farthest from the

origin

first two points are closest to the origin (they are the ends of the minor axis of the

ellipse); the other two are farthest from the origin (the ends of the major axis). (See

Figure 13.15.)

Considering the geometric underpinnings of the method of Lagrange multipliers, we

would not expect the method to work if the level curves of the functions involved are

not smooth or if the maximum or minimum occurs at an endpoint of the constraint

curve. One of the pitfalls of the method is that the level curves of functions may not be

smooth, even though the functions themselves have partial derivatives. Problems can

occur where a gradient vanishes, as the following example shows.

E X A M P L E 3
Find the minimum value of f .x; y/ D y subject to the constraint

equation g.x; y/ D y3
� x

2
D 0.

Solution The curve y3
D x2, called a semicubical parabola, has a cusp at the origin.

(See Figure 13.16.) Clearly, f .x; y/ D y has minimum value 0 at that point. Suppose,

however, that we try to solve the problem using the method of Lagrange multipliers.

The Lagrange function here is

L.x; y; �/ D y C �.y
3
� x

2
/;

which has critical points given by

�2�x D 0;

1C 3�y
2
D 0;

y
3
� x

2
D 0:

Observe that y D 0 cannot satisfy the second equation, and, in fact, the three equations

y

x

y3
D x2

Figure 13.16 The minimum of y occurs

at a point on the curve where the curve has

no tangent line

have no solution .x; y; �/. (The first equation implies either � D 0 or x D 0, but

neither of these is consistent with the other two equations.)
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Solution The graph of x2y D 16 is shown in Figure 13.14. There appear to be two

points on the curve that are closest to the origin and no points that are farthest from the

origin. (The curve is unbounded.) To find the closest points it is sufficient to minimize

the square of the distance from the point .x; y/ on the curve to the origin. (It is easier

to work with the square of the distance rather than the distance itself, which involves a

square root and so is harder to differentiate.) Thus, we want to solve the problem

minimize f .x; y/ D x
2
C y

2 subject to g.x; y/ D x
2
y � 16 D 0:

Let L.x; y; �/ D x2
C y2

C �.x2y � 16/. For critical points of L we want

0 D
@L

@x
D 2x C 2�xy D 2x.1C �y/ (A)

0 D
@L

@y
D 2y C �x

2 (B)

0 D
@L

@�
D x

2
y � 16: (C)

Equation (A) requires that either x D 0 or �y D �1. However, x D 0 is inconsistent

with equation (C). Therefore �y D �1. From equation (B) we now have

y

x

x
2
y D 16

P

2 5

Figure 13.14 The level curve of the

function representing the square of distance

from the origin is tangent to the curve

x
2
y D 16 at the two points on that curve

that are closest to the origin

0 D 2y
2
C �yx

2
D 2y

2
� x

2
:

Thus, x D ˙
p

2y, and (C) now gives 2y3
D 16, so y D 2. There are, therefore,

two candidates for points on x2y D 16 closest to the origin, .˙2
p

2; 2/. Both of

these points are at distance
p

8C 4 D 2
p

3 units from the origin, so this must be the

minimum distance from the origin to the curve. Some level curves of x2
C y2 are

shown, along with the constraint curve x2y D 16, in Figure 13.14. Observe how the

constraint curve is tangent to the level curve passing through the minimizing points

.˙2
p

2; 2/, reflecting the fact that the two curves have parallel normals there.

Remark In the above example we could, of course, have solved the constraint equa-

tion for y D 16=x2, substituted into f; and thus reduced the problem to one of finding

the (unconstrained) minimum value of

F.x/ D f

�

x;
16

x2

�

D x
2
C

256

x4
:

The reader is invited to verify that this gives the same result.

The number � that occurs in the Lagrange function is called a Lagrange multi-

plier. The technique for solving an extreme-value problem with equation constraints

by looking for critical points of an unconstrained problem in more variables (the orig-

inal variables plus a Lagrange multiplier corresponding to each constraint equation)

is called the method of Lagrange multipliers. It can be expected to give results as

long as the function to be maximized or minimized (called the objective function or

cost function) and the constraint equations have smooth graphs in a neighbourhood of

the points where the extreme values occur, and these points are not on edges of those

graphs. See Example 3 and Exercise 26 below.

E X A M P L E 2
Find the points on the curve 17x2

C 12xy C 8y2
D 100 that are

closest to and farthest away from the origin.

Solution The quadratic form on the left side of the equation above is positive definite,

as can be seen by completing a square. Hence, the curve is bounded and must have

points closest to and farthest from the origin. (In fact, the curve is an ellipse with

centre at the origin and oblique principal axes. The problem asks us to find the ends of

the major and minor axes.)
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Again, we want to extremize x2
C y2 subject to an equation constraint. The

Lagrange function in this case is

L.x; y; �/ D x
2
C y

2
C �.17x

2
C 12xy C 8y

2
� 100/;

and its critical points are given by

0 D
@L

@x
D 2x C �.34x C 12y/ .A/

0 D
@L

@y
D 2y C �.12x C 16y/ .B/

0 D
@L

@�
D 17x

2
C 12xy C 8y

2
� 100: .C/

Solving each of equations (A) and (B) for � and equating the two expressions for �

obtained, we get

�2x

34x C 12y
D

�2y

12x C 16y
or 12x

2
C 16xy D 34xy C 12y

2
:

This equation simplifies to

2x
2
� 3xy � 2y

2
D 0: (D)

We multiply equation (D) by 4 and add the result to equation (C) to get 25x2
D 100,

so that x D ˙2. Finally, we substitute each of these values of x into (D) and obtain

(for each) two values of y from the resulting quadratics:

For x D 2 W y
2
C 3y � 4 D 0;

.y � 1/.y C 4/ D 0:

For x D �2 W y
2
� 3y � 4 D 0;

.y C 1/.y � 4/ D 0:

We therefore obtain four candidate points: .2; 1/, .�2;�1/, .2;�4/, and .�2; 4/. The

y

x

17x2C12xyC8y2D100

.2;1/

.2;�4/

.�2;�1/

.�2;4/

Figure 13.15 The points on the ellipse

that are closest to and farthest from the

origin

first two points are closest to the origin (they are the ends of the minor axis of the

ellipse); the other two are farthest from the origin (the ends of the major axis). (See

Figure 13.15.)

Considering the geometric underpinnings of the method of Lagrange multipliers, we

would not expect the method to work if the level curves of the functions involved are

not smooth or if the maximum or minimum occurs at an endpoint of the constraint

curve. One of the pitfalls of the method is that the level curves of functions may not be

smooth, even though the functions themselves have partial derivatives. Problems can

occur where a gradient vanishes, as the following example shows.

E X A M P L E 3
Find the minimum value of f .x; y/ D y subject to the constraint

equation g.x; y/ D y3
� x

2
D 0.

Solution The curve y3
D x2, called a semicubical parabola, has a cusp at the origin.

(See Figure 13.16.) Clearly, f .x; y/ D y has minimum value 0 at that point. Suppose,

however, that we try to solve the problem using the method of Lagrange multipliers.

The Lagrange function here is

L.x; y; �/ D y C �.y
3
� x

2
/;

which has critical points given by

�2�x D 0;

1C 3�y
2
D 0;

y
3
� x

2
D 0:

Observe that y D 0 cannot satisfy the second equation, and, in fact, the three equations

y

x

y3
D x2

Figure 13.16 The minimum of y occurs

at a point on the curve where the curve has

no tangent line

have no solution .x; y; �/. (The first equation implies either � D 0 or x D 0, but

neither of these is consistent with the other two equations.)
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Remark The method of Lagrange multipliers breaks down in the above example

because rg D 0 at the solution point, and therefore the curve g.x; y/ D 0 need not be

smooth there. (In this case, it isn’t smooth!) The geometric condition that rf should

be parallel to rg at the solution point is meaningless in this case. When applying the

method of Lagrange multipliers, be aware that an extreme value may occur at

(i) a critical point of the Lagrange function,

(ii) a point where rg D 0,

(iii) a point where rf or rg does not exist, or

(iv) an “endpoint” of the constraint set.

This situation is similar to that for extreme values of a function f of one variable,

which can occur at a critical point of f , a singular point of f , or an endpoint of the

domain of f:

E X A M P L E 4
Find the maximum and minimum values of f .x; y; z/ D xy2z3

on the ball x2
C y

2
C z

2
� 1.

Solution Since f1.x; y; z/ D y2z3
D 0 only if either y D 0 or z D 0, there can be

no critical points of f where f .x; y; z/ ¤ 0. Evidently .x; y; z/ is positive at some

points in the ball, and negative at others, so no interior critical points can provide a

maximum or minimum value for f on the ball. Therefore, these extreme values must

occur on the boundary sphere x2
C y2

C z2
D 1. To find them we look for critical

points of the Lagrange function

L.x; y; z; �/ D xy
2
z

3
C �.x

2
C y

2
C z

2
� 1/; x ¤ 0; y ¤ 0; z;¤ 0:

Thus we calculate:

0 D
@L

@x
D y

2
z

3
C 2�x ”

y2z3

x
D �2�

0 D
@L

@y
D 2xyz

3
C 2�y ” 2xz

3
D �2�

0 D
@L

@z
D 3xy

2
z

2
C 2�z ” 3xy

2
z D �2�

0 D
@L

@�
D x

2
C y

2
C z

2
� 1:

Eliminating � from pairs of the first three equations leads to

y2z3

x
D 2xz

3
D 3xy

2
z;

which, since none of x, y, and z can be zero, shows that at a critical point we must

have y2
D 2x2 and z2

D .3=2/y2
D 3x2. Substituting these into the final (constraint)

equation above, we obtain x2
C 2x2

C 3x2
D 1, so

x
2
D

1

6
; y

2
D

1

3
; z

2
D

1

2
:

Each of these squares has two square roots, leading to eight critical points .x; y; z/ for

L, one in each octant of R
3. At the one in the first octant (and at three others) f has

the value

f .x; y; z/ D

�

1
p

6

��

1

3

��

1

2
p

2

�

D

1

6
p

3
:

This is the maximum value of f on the ball. The minimum value is �1=.6
p

3/ and it

occurs at the remaining four critical points of f:
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Problems with More than One Constraint
Next, consider a three-dimensional problem requiring us to find a maximum or mini-

mum value of a function of three variables subject to two equation constraints:

extremize f .x; y; z/ subject to g.x; y; z/ D 0 and h.x; y; z/ D 0:

Again, we assume that the problem has a solution, say, at the point P0 D .x0; y0; z0/,

and that the functions f; g, and h have continuous first partial derivatives near P0.

Also, we assume that T D rg.P0/�rh.P0/ ¤ 0. These conditions imply that the

surfaces g.x; y; z/ D 0 and h.x; y; z/ D 0 are smooth near P0 and are not tangent

to each other there, so they must intersect in a curve C that is smooth near P0. The

curve C has tangent vector T at P0. The same geometric argument used in the proof

of Theorem 4 again shows that rf .P0/ must be perpendicular to T. (If not, then it

would have a nonzero vector projection along T, and f would have nonzero direc-

tional derivatives in the directions ˙T and would therefore increase and decrease as

we moved away from P0 along C in opposite directions.)

Since rg.P0/ and rh.P0/ are nonzero and both are perpendicular to T (see

Figure 13.17), rf .P0/ must lie in the plane spanned by these two vectors and hence

must be a linear combination of them:

rf .x0; y0; z0/ D ��0rg.x0; y0; z0/ � �0rh.x0; y0; z0/

for some constants �0 and �0. It follows that .x0; y0; z0; �0; �0/ is a critical point of

the Lagrange function

L.x; y; z; �; �/ D f .x; y; z/C �g.x; y; z/C �h.x; y; z/:

Figure 13.17 At P0, rf , rg, and rh are

all perpendicular to T. Thus, rf is in the

plane spanned by rg and rh.

rf .P0/rg.P0/

rh.P0/

g D 0

h D 0

T

P0
C

We look for triples .x; y; z/ that extremize f .x; y; z/ subject to the two constraints

g.x; y; z/ D 0 and h.x; y; z/ D 0 among the points .x; y; z; �; �/ that are critical

points of the above Lagrange function, and we therefore solve the system of equations

f1.x; y; z/C �g1.x; y; z/C �h1.x; y; z/ D 0;

f2.x; y; z/C �g2.x; y; z/C �h2.x; y; z/ D 0;

f3.x; y; z/C �g3.x; y; z/C �h3.x; y; z/ D 0;

g.x; y; z/ D 0;

h.x; y; z/ D 0:
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Remark The method of Lagrange multipliers breaks down in the above example

because rg D 0 at the solution point, and therefore the curve g.x; y/ D 0 need not be

smooth there. (In this case, it isn’t smooth!) The geometric condition that rf should

be parallel to rg at the solution point is meaningless in this case. When applying the

method of Lagrange multipliers, be aware that an extreme value may occur at

(i) a critical point of the Lagrange function,

(ii) a point where rg D 0,

(iii) a point where rf or rg does not exist, or

(iv) an “endpoint” of the constraint set.

This situation is similar to that for extreme values of a function f of one variable,

which can occur at a critical point of f , a singular point of f , or an endpoint of the

domain of f:

E X A M P L E 4
Find the maximum and minimum values of f .x; y; z/ D xy2z3

on the ball x2
C y

2
C z

2
� 1.

Solution Since f1.x; y; z/ D y2z3
D 0 only if either y D 0 or z D 0, there can be

no critical points of f where f .x; y; z/ ¤ 0. Evidently .x; y; z/ is positive at some

points in the ball, and negative at others, so no interior critical points can provide a

maximum or minimum value for f on the ball. Therefore, these extreme values must

occur on the boundary sphere x2
C y2

C z2
D 1. To find them we look for critical

points of the Lagrange function

L.x; y; z; �/ D xy
2
z

3
C �.x

2
C y

2
C z

2
� 1/; x ¤ 0; y ¤ 0; z;¤ 0:

Thus we calculate:

0 D
@L

@x
D y

2
z

3
C 2�x ”

y2z3

x
D �2�

0 D
@L

@y
D 2xyz

3
C 2�y ” 2xz

3
D �2�

0 D
@L

@z
D 3xy

2
z

2
C 2�z ” 3xy

2
z D �2�

0 D
@L

@�
D x

2
C y

2
C z

2
� 1:

Eliminating � from pairs of the first three equations leads to

y2z3

x
D 2xz

3
D 3xy

2
z;

which, since none of x, y, and z can be zero, shows that at a critical point we must

have y2
D 2x2 and z2

D .3=2/y2
D 3x2. Substituting these into the final (constraint)

equation above, we obtain x2
C 2x2

C 3x2
D 1, so

x
2
D

1

6
; y

2
D

1

3
; z

2
D

1

2
:

Each of these squares has two square roots, leading to eight critical points .x; y; z/ for

L, one in each octant of R
3. At the one in the first octant (and at three others) f has

the value

f .x; y; z/ D

�

1
p

6

��

1

3

��

1

2
p

2

�

D

1

6
p

3
:

This is the maximum value of f on the ball. The minimum value is �1=.6
p

3/ and it

occurs at the remaining four critical points of f:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 771 October 5, 2016

SECTION 13.3: Lagrange Multipliers 771

Problems with More than One Constraint
Next, consider a three-dimensional problem requiring us to find a maximum or mini-

mum value of a function of three variables subject to two equation constraints:

extremize f .x; y; z/ subject to g.x; y; z/ D 0 and h.x; y; z/ D 0:

Again, we assume that the problem has a solution, say, at the point P0 D .x0; y0; z0/,

and that the functions f; g, and h have continuous first partial derivatives near P0.

Also, we assume that T D rg.P0/�rh.P0/ ¤ 0. These conditions imply that the

surfaces g.x; y; z/ D 0 and h.x; y; z/ D 0 are smooth near P0 and are not tangent

to each other there, so they must intersect in a curve C that is smooth near P0. The

curve C has tangent vector T at P0. The same geometric argument used in the proof

of Theorem 4 again shows that rf .P0/ must be perpendicular to T. (If not, then it

would have a nonzero vector projection along T, and f would have nonzero direc-

tional derivatives in the directions ˙T and would therefore increase and decrease as

we moved away from P0 along C in opposite directions.)

Since rg.P0/ and rh.P0/ are nonzero and both are perpendicular to T (see

Figure 13.17), rf .P0/ must lie in the plane spanned by these two vectors and hence

must be a linear combination of them:

rf .x0; y0; z0/ D ��0rg.x0; y0; z0/ � �0rh.x0; y0; z0/

for some constants �0 and �0. It follows that .x0; y0; z0; �0; �0/ is a critical point of

the Lagrange function

L.x; y; z; �; �/ D f .x; y; z/C �g.x; y; z/C �h.x; y; z/:

Figure 13.17 At P0, rf , rg, and rh are

all perpendicular to T. Thus, rf is in the

plane spanned by rg and rh.

rf .P0/rg.P0/

rh.P0/

g D 0

h D 0

T

P0
C

We look for triples .x; y; z/ that extremize f .x; y; z/ subject to the two constraints

g.x; y; z/ D 0 and h.x; y; z/ D 0 among the points .x; y; z; �; �/ that are critical

points of the above Lagrange function, and we therefore solve the system of equations

f1.x; y; z/C �g1.x; y; z/C �h1.x; y; z/ D 0;

f2.x; y; z/C �g2.x; y; z/C �h2.x; y; z/ D 0;

f3.x; y; z/C �g3.x; y; z/C �h3.x; y; z/ D 0;

g.x; y; z/ D 0;

h.x; y; z/ D 0:
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Solving such a system can be very difficult. It should be noted that, in using the method

of Lagrange multipliers instead of solving the constraint equations, we have traded the

problem of having to solve two equations for two variables as functions of a third one

for a problem of having to solve five equations for numerical values of five unknowns.

E X A M P L E 5
Find the maximum and minimum values of f .x; y; z/ D xyC 2z

on the circle that is the intersection of the plane x C y C z D 0

and the sphere x2
C y2

C z2
D 24.

Solution The function f is continuous, and the circle is a closed bounded set in

3-space. Therefore, maximum and minimum values must exist. We look for critical

points of the Lagrange function

L D xy C 2z C �.x C y C z/C �.x
2
C y

2
C z

2
� 24/:

Setting the first partial derivatives of L equal to zero, we obtain

y C �C 2�x D 0; .A/

x C �C 2�y D 0; .B/

2C �C 2�z D 0; .C/

x C y C z D 0; .D/

x
2
C y

2
C z

2
� 24 D 0: .E/

Subtracting (A) from (B) we get .x � y/.1 � 2�/ D 0. Therefore, either � D 1
2

or

When none of the equations

factors, try to combine two or

more of them to produce an

equation that does factor.

x D y. We analyze both possibilities.

CASE I If � D 1
2

, we obtain from (B) and (C)

x C �C y D 0 and 2C �C z D 0:

Thus, x C y D 2 C z. Combining this with (D), we get z D �1 and x C y D 1.

Now, by (E), x2
C y2

D 24 � z2
D 23. Since x2

C y2
C 2xy D .x C y/2 D 1,

we have 2xy D 1 � 23 D �22 and xy D �11. Now .x � y/2 D x2
C y2

� 2xy D

23C 22 D 45, so x � y D ˙3
p

5. Combining this with x C y D 1, we obtain two

critical points arising from � D
1
2

, namely,
�

.1 C 3
p

5/=2; .1 � 3
p

5/=2;�1

�

and
�

.1 � 3
p

5/=2; .1C 3
p

5/=2;�1

�

. At both of these points we find that f .x; y; z/ D

xy C 2z D �11 � 2 D �13.

CASE II If x D y, then (D) implies that z D �2x, and (E) then gives 6x2
D 24, so

x D ˙2. Therefore, points .2; 2;�4/ and .�2;�2; 4/ must be considered. We have

f .2; 2;�4/ D 4 � 8 D �4 and f .�2;�2; 4/ D 4C 8 D 12.

We conclude that the maximum value of f on the circle is 12, and the minimum

value is �13.
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E X E R C I S E S 13.3

1. Use the method of Lagrange multipliers to maximize x3y5

subject to the constraint x C y D 8.

2. Find the shortest distance from the point .3; 0/ to the parabola

y D x
2

(a) by reducing to an unconstrained problem in one variable,

and

(b) by using the method of Lagrange multipliers.

3. Find the distance from the origin to the plane

x C 2y C 2z D 3

(a) using a geometric argument (no calculus),

(b) by reducing the problem to an unconstrained problem in

two variables, and

(c) using the method of Lagrange multipliers.

4. Find the maximum and minimum values of the function

f .x; y; z/ D x C y � z over the sphere x2
C y2

C z2
D 1.

5. Use the Lagrange multiplier method to find the greatest and

least distances from the point .2; 1;�2/ to the sphere with

equation x2
C y2

C z2
D 1. (Of course, the answer could be

obtained more easily using a simple geometric argument.)

6. Find the shortest distance from the origin to the surface

xyz2
D 2.

7. Find a, b, and c so that the volume V D 4�abc=3 of an

ellipsoid
x

2

a2
C

y
2

b2
C

z
2

c2
D 1 passing through the point

.1; 2; 1/ is as small as possible.

8. Find the ends of the major and minor axes of the ellipse

3x2
C 2xy C 3y2

D 16.

9. Find the maximum and minimum values of f .x; y; z/ D xyz

on the sphere x2
C y2

C z2
D 12.

10. Find the maximum and minimum values of x C 2y � 3z over

the ellipsoid x2
C 4y2

C 9z2
� 108.

11. Find the distance from the origin to the surface xy2z4
D 32.

12. Find the maximum value of
Pn

iD1 xi on the n-sphere
Pn

iD1 x
2
i D 1 in R

n
.

13. Find the maximum and minimum values of the function

f .x; y; z/ D x over the curve of intersection of the plane

z D x C y and the ellipsoid x2
C 2y2

C 2z2
D 8.

14. Find the maximum and minimum values of

f .x; y; z/ D x2
C y2

C z2 on the ellipse formed by the

intersection of the cone z2
D x

2
C y

2 and the plane

x � 2z D 3.

15. Find the maximum and minimum values of

f .x; y; z/ D 4� z on the ellipse formed by the intersection of

the cylinder x2
C y2

D 8 and the plane x C y C z D 1.

16. Find the maximum and minimum values of

f .x; y; z/ D x C y
2
z subject to the constraints y2

C z
2
D 2

and z D x.

17.I Use the method of Lagrange multipliers to find the shortest

distance between the straight lines x D y D z and

x D �y; z D 2. (There are, of course, much easier ways to

get the answer. This is an object lesson in the folly of shooting

sparrows with cannons.)

18. Find the most economical shape of a rectangular box with no

top.

19. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner lies on the plane

4x C 2y C z D 2.

20. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner is on the first octant part of

the surface xy C 2yz C 3xz D 18.

21. A rectangular box having no top and having a prescribed

volume Vm3 is to be constructed using two different

materials. The material used for the bottom and front of the

box is five times as costly (per square metre) as the material

used for the back and the other two sides. What should be the

dimensions of the box to minimize the cost of materials?

22.I Find the maximum and minimum values of xy C z2 on the

ball x2
C y2

C z2
� 1. Use Lagrange multipliers to treat the

boundary case.

23.I Repeat Exercise 22 but handle the boundary case by

parametrizing the sphere x2
C y2

C z2
D 1 using

x D sin� cos �; y D sin� sin �; z D cos�;

where 0 � � � � and 0 � � � 2� .

24.A If ˛, ˇ, and  are the angles of a triangle, show that

sin
˛

2
sin

ˇ

2
sin



2
�

1

8
:

For what triangles does equality occur?

25.I Suppose that f and g have continuous first partial derivatives

throughout the xy-plane, and suppose that g2.a; b/ ¤ 0. This

implies that the equation g.x; y/ D g.a; b/ defines y

implicitly as a function of x near the point .a; b/. Use the

Chain Rule to show that if f .x; y/ has a local extreme value at

.a; b/ subject to the constraint g.x; y/ D g.a; b/, then for

some number � the point .a; b; �/ is a critical point of the

function

L.x; y; �/ D f .x; y/C �g.x; y/:

This constitutes a more formal justification of the method of

Lagrange multipliers in this case.

26.A What is the shortest distance from the point .0;�1/ to the

curve y D
p

1 � x2? Can this problem be solved by the

Lagrange multiplier method? Why?

27.A Example 3 showed that the method of Lagrange multipliers

might fail to find a point that extremizes f .x; y/ subject to the

constraint g.x; y/ D 0 if rg D 0 at the extremizing point.

Can the method also fail if rf D 0 at the extremizing point?

Why?
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Solving such a system can be very difficult. It should be noted that, in using the method

of Lagrange multipliers instead of solving the constraint equations, we have traded the

problem of having to solve two equations for two variables as functions of a third one

for a problem of having to solve five equations for numerical values of five unknowns.

E X A M P L E 5
Find the maximum and minimum values of f .x; y; z/ D xyC 2z

on the circle that is the intersection of the plane x C y C z D 0

and the sphere x2
C y2

C z2
D 24.

Solution The function f is continuous, and the circle is a closed bounded set in

3-space. Therefore, maximum and minimum values must exist. We look for critical

points of the Lagrange function

L D xy C 2z C �.x C y C z/C �.x
2
C y

2
C z

2
� 24/:

Setting the first partial derivatives of L equal to zero, we obtain

y C �C 2�x D 0; .A/

x C �C 2�y D 0; .B/

2C �C 2�z D 0; .C/

x C y C z D 0; .D/

x
2
C y

2
C z

2
� 24 D 0: .E/

Subtracting (A) from (B) we get .x � y/.1 � 2�/ D 0. Therefore, either � D 1
2

or

When none of the equations

factors, try to combine two or

more of them to produce an

equation that does factor.

x D y. We analyze both possibilities.

CASE I If � D 1
2

, we obtain from (B) and (C)

x C �C y D 0 and 2C �C z D 0:

Thus, x C y D 2 C z. Combining this with (D), we get z D �1 and x C y D 1.

Now, by (E), x2
C y2

D 24 � z2
D 23. Since x2

C y2
C 2xy D .x C y/2 D 1,

we have 2xy D 1 � 23 D �22 and xy D �11. Now .x � y/2 D x2
C y2

� 2xy D

23C 22 D 45, so x � y D ˙3
p

5. Combining this with x C y D 1, we obtain two

critical points arising from � D
1
2

, namely,
�

.1 C 3
p

5/=2; .1 � 3
p

5/=2;�1

�

and
�

.1 � 3
p

5/=2; .1C 3
p

5/=2;�1

�

. At both of these points we find that f .x; y; z/ D

xy C 2z D �11 � 2 D �13.

CASE II If x D y, then (D) implies that z D �2x, and (E) then gives 6x2
D 24, so

x D ˙2. Therefore, points .2; 2;�4/ and .�2;�2; 4/ must be considered. We have

f .2; 2;�4/ D 4 � 8 D �4 and f .�2;�2; 4/ D 4C 8 D 12.

We conclude that the maximum value of f on the circle is 12, and the minimum

value is �13.
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E X E R C I S E S 13.3

1. Use the method of Lagrange multipliers to maximize x3y5

subject to the constraint x C y D 8.

2. Find the shortest distance from the point .3; 0/ to the parabola

y D x
2

(a) by reducing to an unconstrained problem in one variable,

and

(b) by using the method of Lagrange multipliers.

3. Find the distance from the origin to the plane

x C 2y C 2z D 3

(a) using a geometric argument (no calculus),

(b) by reducing the problem to an unconstrained problem in

two variables, and

(c) using the method of Lagrange multipliers.

4. Find the maximum and minimum values of the function

f .x; y; z/ D x C y � z over the sphere x2
C y2

C z2
D 1.

5. Use the Lagrange multiplier method to find the greatest and

least distances from the point .2; 1;�2/ to the sphere with

equation x2
C y2

C z2
D 1. (Of course, the answer could be

obtained more easily using a simple geometric argument.)

6. Find the shortest distance from the origin to the surface

xyz2
D 2.

7. Find a, b, and c so that the volume V D 4�abc=3 of an

ellipsoid
x

2

a2
C

y
2

b2
C

z
2

c2
D 1 passing through the point

.1; 2; 1/ is as small as possible.

8. Find the ends of the major and minor axes of the ellipse

3x2
C 2xy C 3y2

D 16.

9. Find the maximum and minimum values of f .x; y; z/ D xyz

on the sphere x2
C y2

C z2
D 12.

10. Find the maximum and minimum values of x C 2y � 3z over

the ellipsoid x2
C 4y2

C 9z2
� 108.

11. Find the distance from the origin to the surface xy2z4
D 32.

12. Find the maximum value of
Pn

iD1 xi on the n-sphere
Pn

iD1 x
2
i D 1 in R

n
.

13. Find the maximum and minimum values of the function

f .x; y; z/ D x over the curve of intersection of the plane

z D x C y and the ellipsoid x2
C 2y2

C 2z2
D 8.

14. Find the maximum and minimum values of

f .x; y; z/ D x2
C y2

C z2 on the ellipse formed by the

intersection of the cone z2
D x

2
C y

2 and the plane

x � 2z D 3.

15. Find the maximum and minimum values of

f .x; y; z/ D 4� z on the ellipse formed by the intersection of

the cylinder x2
C y2

D 8 and the plane x C y C z D 1.

16. Find the maximum and minimum values of

f .x; y; z/ D x C y
2
z subject to the constraints y2

C z
2
D 2

and z D x.

17.I Use the method of Lagrange multipliers to find the shortest

distance between the straight lines x D y D z and

x D �y; z D 2. (There are, of course, much easier ways to

get the answer. This is an object lesson in the folly of shooting

sparrows with cannons.)

18. Find the most economical shape of a rectangular box with no

top.

19. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner lies on the plane

4x C 2y C z D 2.

20. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner is on the first octant part of

the surface xy C 2yz C 3xz D 18.

21. A rectangular box having no top and having a prescribed

volume Vm3 is to be constructed using two different

materials. The material used for the bottom and front of the

box is five times as costly (per square metre) as the material

used for the back and the other two sides. What should be the

dimensions of the box to minimize the cost of materials?

22.I Find the maximum and minimum values of xy C z2 on the

ball x2
C y2

C z2
� 1. Use Lagrange multipliers to treat the

boundary case.

23.I Repeat Exercise 22 but handle the boundary case by

parametrizing the sphere x2
C y2

C z2
D 1 using

x D sin� cos �; y D sin� sin �; z D cos�;

where 0 � � � � and 0 � � � 2� .

24.A If ˛, ˇ, and  are the angles of a triangle, show that

sin
˛

2
sin

ˇ

2
sin



2
�

1

8
:

For what triangles does equality occur?

25.I Suppose that f and g have continuous first partial derivatives

throughout the xy-plane, and suppose that g2.a; b/ ¤ 0. This

implies that the equation g.x; y/ D g.a; b/ defines y

implicitly as a function of x near the point .a; b/. Use the

Chain Rule to show that if f .x; y/ has a local extreme value at

.a; b/ subject to the constraint g.x; y/ D g.a; b/, then for

some number � the point .a; b; �/ is a critical point of the

function

L.x; y; �/ D f .x; y/C �g.x; y/:

This constitutes a more formal justification of the method of

Lagrange multipliers in this case.

26.A What is the shortest distance from the point .0;�1/ to the

curve y D
p

1 � x2? Can this problem be solved by the

Lagrange multiplier method? Why?

27.A Example 3 showed that the method of Lagrange multipliers

might fail to find a point that extremizes f .x; y/ subject to the

constraint g.x; y/ D 0 if rg D 0 at the extremizing point.

Can the method also fail if rf D 0 at the extremizing point?

Why?
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13.4 Lagrange Multipliers in n-Space

In this section we will show how the method of Lagrange multipliers extends to the

problem of finding local extreme values of a function f of n real variables, that is, of

a vector variable x D .x1; x2; : : : ; xn/,

f .x/ D f .x1; x2; : : : ; xn/;

subject to m � n � 1 constraints

Here the indices on g denote

different functions, not partial

derivatives.

g1.x/ D 0; g2.x/ D 0; : : : ; gm.x/ D 0;

where 1 � m � n � 1.

In what follows we will assume that f and each of the functions gi , .1 � i � m/,

is smooth in the sense that its partial derivatives of orders up to 3 are all continuous.

We also assume that for each i , the gradient rgi ¤ 0 at any point x where gi .x/ D 0.

This means that for each i , the set of points x in R
n satisfying gi .x/ D 0 is a smooth

hypersurface of dimension n � 1 (called an .n � 1/-dimensional manifold).

In R
2

a manifold of dimension 1

is just a curve. In R
3

a manifold

of dimension 1 is a curve; a

manifold of dimension 2 is a

surface. We are introducing the

term manifold here to avoid

having to use different terms to

distinguish between curves,

surfaces, and smooth subsets of

dimension up to n � 1 in an

n-dimensional space R
n

.

The intersection M of allm of these manifolds (i.e., the set of points satisfying all

m constraint equations) will be a surface in R
n called the constraint manifold for the

extremization problem. M will have dimension n �m provided that the set of normal

vectors rgi .x/, .1 � i � m/, is linearly independent at each point x on M; that is, if

an equation of the form

c1rg1.a/C c2rg2.a/C � � � C cmrgm.a/ D 0

holds, then every coefficient ci D 0 for 1 � i � m. The subspace of R
n spanned by

the m gradient vectors rgi .a/, .1 � i � m/, is the m-dimensional space N normal to

M at a. In particular, if m D 1, then M has dimension n � 1 and the normal space N

has dimension 1. If m D n � 1, then M has dimension 1 (and so is a curve in R
n) and

the normal space N is an .n � 1/-dimensional hyperplane perpendicular to that curve

at the point a. The tangent space T to M at a is the subspace of R
n consisting of all

The concept of a tangent space T

is simply the extension to higher

dimensions of the tangent line in

Section 2.1 and the tangent plane

in Section 12.3. Similarly, the

normal space N extends the

concept of normal line or normal

plane.

vectors perpendicular to the normal space N . Equivalently, T consists of all points on

lines through a that are tangent to M at a. Like M, its tangent space T has dimension

n �m. For example, in R
3, the normal space to a surface (two-dimensional manifold)

at a point is just the normal line to the surface at that point. The tangent space is the

plane perpendicular to the normal line at that point. Similarly, the normal space to a

curve (one-dimensional manifold) at a point is the plane normal to the curve at that

point and the tangent space is the tangent line to the curve there. (See Section 17.3 for

more discussion of these ideas.)

Under the conditions described above, we will show that if f; when restricted to

points on the constraint manifold M, has a local extreme value at point a, then a must

be a critical point of the Lagrange function

BEWARE! We are simplifying

notation a bit here; of course L.x/

depends on the numbers �1; : : : ; �m

as well as x, but its partial derivative

with respect to �i is gi .x/, so it just

returns the constraint equations

when calculating its critical points,

just as was the case in the examples

of the previous section.

L.x/ D f .x/C

m
X

iD1

�igi .x/

for some values of the m Lagrange multipliers �1, �2, : : : ,�m. Then we will show

that if a is any critical point of L on M, the n � n Hessian matrix of second par-

tial derivatives of L can be reduced to an .n � m/ � .n � m/ Hessian matrix on the

.n �m/-dimensional space T tangent to M at a to provide a second derivative test for

classifying the critical point a. This test is presented in the following theorem. It is

analagous to the test for unconstrained extrema given in Theorem 3 in Section 13.1.1

1 This discussion is similar to the presentation of M. A. H. Nerenberg’s paper: “The

Second Derivative Test for Constrained Extremum Problems,” Int. J. Math. Educ. Sci.

Technol., 1991, Vol. 22.
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Suppose that the functions f .x/ and gi .x/ for 1 � i � m have continuous partial

derivatives of order up to 3 in a neighbourhood of point a on the constraint manifold

M having equations gi .x/ D 0, .1 � i � m/. Suppose also that the m vectors rgi .a/

are linearly independent in R
n.

(a) Necessary conditions for a local extreme value: If f; when restricted to points

on M, has a local maximum or a local minimum value at a, then there exist num-

bers �1; �2; : : : ; �m such that a is a critical point of the Lagrange function

L.x/ D f .x/C

n
X

iD1

�igi .x/: (*)

(b) Second derivative test: Suppose a Lagrange function of the type (*) has a critical

point at a on M. Let H be the Hessian matrix of second partial derivatives of L

with respect to the components of x, evaluated at x D a:

H D

0

B

B

B

@

L11.a/ L12.a/ � � � L1n.a/

L21.a/ L22.a/ � � � L2n.a/
:
:
:

:
:
:

: : :
:
:
:

Ln1.a/ Ln2.a/ � � � Lnn.a/

1

C

C

C

A

:

Let u D .u1; u2; : : : ; un/ belong to the space T tangent to M at a. For purposes

of matrix multiplication we regard u as a column vector having transpose uT, a

row vector. If the quadratic form

Q.u/ D

n
X

iD1

n
X

j D1

Lij .a/ ui uj D uT
H u

is positive (or negative) definite when restricted to vectors u 2 T , then the restric-

tion of f to M has a local minimum (or a local maximum) at x D a.

(c) The restricted Hessian: If H is positive definite (or negative definite) on R
n,

then Q.u/ will be positive (or negative) definite on all of R
n, and so on T . If

not, we can calculate a Hessian matrix restricted to T as follows. Since M has

dimension n � m, so does T . Let u1;u2; : : : ;un�m be an orthonormal basis for

T , that is, a basis consisting of mutually perpendicular unit vectors. Let E be the

n� .n�m/ matrix whose i th column consists of the components of the vector ui ,

.1 � i � n�m/. If E
T is the .n�m/�n transpose of E, then the .n�m/�.n�m/

matrix

H T D E
T

H E

defines a quadratic form on T that restricts H to T . Any vector u 2 T can be

written u D
Pn�m

iD1 ui ui : Then

Q.u/ D uT
H u D

n�m
X

iD1

n�m
X

j D1

�

H T

�

ij
ui uj ;

where
�

H T

�

ij
is the element in the i th row and j th column of H T . When re-

stricted to M, f will have a local minimum, a local maximum, or saddle behaviour

at a if H T is positive definite, negative definite, or indefinite. (See, for example,

Theorem 7 or Theorem 8 of Section 10.7.) If H T is neither definite nor indefinite,

this test will give no information about the nature of the critical point a.
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13.4 Lagrange Multipliers in n-Space

In this section we will show how the method of Lagrange multipliers extends to the

problem of finding local extreme values of a function f of n real variables, that is, of

a vector variable x D .x1; x2; : : : ; xn/,

f .x/ D f .x1; x2; : : : ; xn/;

subject to m � n � 1 constraints

Here the indices on g denote

different functions, not partial

derivatives.

g1.x/ D 0; g2.x/ D 0; : : : ; gm.x/ D 0;

where 1 � m � n � 1.

In what follows we will assume that f and each of the functions gi , .1 � i � m/,

is smooth in the sense that its partial derivatives of orders up to 3 are all continuous.

We also assume that for each i , the gradient rgi ¤ 0 at any point x where gi .x/ D 0.

This means that for each i , the set of points x in R
n satisfying gi .x/ D 0 is a smooth

hypersurface of dimension n � 1 (called an .n � 1/-dimensional manifold).

In R
2

a manifold of dimension 1

is just a curve. In R
3

a manifold

of dimension 1 is a curve; a

manifold of dimension 2 is a

surface. We are introducing the

term manifold here to avoid

having to use different terms to

distinguish between curves,

surfaces, and smooth subsets of

dimension up to n � 1 in an

n-dimensional space R
n

.

The intersection M of allm of these manifolds (i.e., the set of points satisfying all

m constraint equations) will be a surface in R
n called the constraint manifold for the

extremization problem. M will have dimension n �m provided that the set of normal

vectors rgi .x/, .1 � i � m/, is linearly independent at each point x on M; that is, if

an equation of the form

c1rg1.a/C c2rg2.a/C � � � C cmrgm.a/ D 0

holds, then every coefficient ci D 0 for 1 � i � m. The subspace of R
n spanned by

the m gradient vectors rgi .a/, .1 � i � m/, is the m-dimensional space N normal to

M at a. In particular, if m D 1, then M has dimension n � 1 and the normal space N

has dimension 1. If m D n � 1, then M has dimension 1 (and so is a curve in R
n) and

the normal space N is an .n � 1/-dimensional hyperplane perpendicular to that curve

at the point a. The tangent space T to M at a is the subspace of R
n consisting of all

The concept of a tangent space T

is simply the extension to higher

dimensions of the tangent line in

Section 2.1 and the tangent plane

in Section 12.3. Similarly, the

normal space N extends the

concept of normal line or normal

plane.

vectors perpendicular to the normal space N . Equivalently, T consists of all points on

lines through a that are tangent to M at a. Like M, its tangent space T has dimension

n �m. For example, in R
3, the normal space to a surface (two-dimensional manifold)

at a point is just the normal line to the surface at that point. The tangent space is the

plane perpendicular to the normal line at that point. Similarly, the normal space to a

curve (one-dimensional manifold) at a point is the plane normal to the curve at that

point and the tangent space is the tangent line to the curve there. (See Section 17.3 for

more discussion of these ideas.)

Under the conditions described above, we will show that if f; when restricted to

points on the constraint manifold M, has a local extreme value at point a, then a must

be a critical point of the Lagrange function

BEWARE! We are simplifying

notation a bit here; of course L.x/

depends on the numbers �1; : : : ; �m

as well as x, but its partial derivative

with respect to �i is gi .x/, so it just

returns the constraint equations

when calculating its critical points,

just as was the case in the examples

of the previous section.

L.x/ D f .x/C

m
X

iD1

�igi .x/

for some values of the m Lagrange multipliers �1, �2, : : : ,�m. Then we will show

that if a is any critical point of L on M, the n � n Hessian matrix of second par-

tial derivatives of L can be reduced to an .n � m/ � .n � m/ Hessian matrix on the

.n �m/-dimensional space T tangent to M at a to provide a second derivative test for

classifying the critical point a. This test is presented in the following theorem. It is

analagous to the test for unconstrained extrema given in Theorem 3 in Section 13.1.1

1 This discussion is similar to the presentation of M. A. H. Nerenberg’s paper: “The

Second Derivative Test for Constrained Extremum Problems,” Int. J. Math. Educ. Sci.

Technol., 1991, Vol. 22.
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Suppose that the functions f .x/ and gi .x/ for 1 � i � m have continuous partial

derivatives of order up to 3 in a neighbourhood of point a on the constraint manifold

M having equations gi .x/ D 0, .1 � i � m/. Suppose also that the m vectors rgi .a/

are linearly independent in R
n.

(a) Necessary conditions for a local extreme value: If f; when restricted to points

on M, has a local maximum or a local minimum value at a, then there exist num-

bers �1; �2; : : : ; �m such that a is a critical point of the Lagrange function

L.x/ D f .x/C

n
X

iD1

�igi .x/: (*)

(b) Second derivative test: Suppose a Lagrange function of the type (*) has a critical

point at a on M. Let H be the Hessian matrix of second partial derivatives of L

with respect to the components of x, evaluated at x D a:

H D

0

B

B

B

@

L11.a/ L12.a/ � � � L1n.a/

L21.a/ L22.a/ � � � L2n.a/
:
:
:

:
:
:

: : :
:
:
:

Ln1.a/ Ln2.a/ � � � Lnn.a/

1

C

C

C

A

:

Let u D .u1; u2; : : : ; un/ belong to the space T tangent to M at a. For purposes

of matrix multiplication we regard u as a column vector having transpose uT, a

row vector. If the quadratic form

Q.u/ D

n
X

iD1

n
X

j D1

Lij .a/ ui uj D uT
H u

is positive (or negative) definite when restricted to vectors u 2 T , then the restric-

tion of f to M has a local minimum (or a local maximum) at x D a.

(c) The restricted Hessian: If H is positive definite (or negative definite) on R
n,

then Q.u/ will be positive (or negative) definite on all of R
n, and so on T . If

not, we can calculate a Hessian matrix restricted to T as follows. Since M has

dimension n � m, so does T . Let u1;u2; : : : ;un�m be an orthonormal basis for

T , that is, a basis consisting of mutually perpendicular unit vectors. Let E be the

n� .n�m/ matrix whose i th column consists of the components of the vector ui ,

.1 � i � n�m/. If E
T is the .n�m/�n transpose of E, then the .n�m/�.n�m/

matrix

H T D E
T

H E

defines a quadratic form on T that restricts H to T . Any vector u 2 T can be

written u D
Pn�m

iD1 ui ui : Then

Q.u/ D uT
H u D

n�m
X

iD1

n�m
X

j D1

�

H T

�

ij
ui uj ;

where
�

H T

�

ij
is the element in the i th row and j th column of H T . When re-

stricted to M, f will have a local minimum, a local maximum, or saddle behaviour

at a if H T is positive definite, negative definite, or indefinite. (See, for example,

Theorem 7 or Theorem 8 of Section 10.7.) If H T is neither definite nor indefinite,

this test will give no information about the nature of the critical point a.

9780134154367_Calculus   795 05/12/16   4:25 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 776 October 5, 2016

776 CHAPTER 13 Applications of Partial Derivatives

PROOF (a) If rf .a/ does not lie in the normal space N to M at a, then it will

have a nonzero projection v on T , and f will have a positive directional derivative

at a in the direction of v and a negative directional derivative in the direction of �v,

contradicting the assumption that when restricted to M, f has a local extreme value at

a. Thus, rf .a/ 2 N . Since the m vectors rgi .a/ span N , there must exist numbers

�i , .1 � i � m/ such that

rf .a/ D �

m
X

iD1

�irgi .a/

and so a is a critical point of the Lagrangian function .�/.

(b) Now let a and a C h be two points on M and suppose that a is a critical

point of the Lagrange function .�/ for some values of the multipliers �i , .1 � i � m/.

Because of the smoothness assumptions made on f and the constraint functions gi ,

Taylor’s Formula (Section 12.9) gives

f .aC h/ � f .a/ D h � rf .a/C
1

2
.h � r/2f .a/CO.jhj3/;

gi .aC h/ � gi .a/ D h � rgi .a/C
1

2
.h � r/2gi .a/CO.jhj

3
/; .1 � i � m/:

Noting that gi .a C h/ � gi .a/ D 0 and rL.a/ D 0, multiplying the second formula

above by �i , summing, and adding the result to the first formula, we get

f .aC h/� f .a/ D
1

2
.h � r/

2
L.a/CO.jhj3/

D

1

2

n
X

iD1

n
X

j D1

hi hj Lij .a/

D hT
H hCO.jhj3/;

where, in the final quadratic form expression, we are regarding h as a column vec-

tor with transpose hT. Now let h D te D t
�

eT C eN

�

, where e is a unit vector,

and eT and eN are its projections onto T and N , respectively. The smoothness of

M shows that the angle � between e and eN approaches �=2 as t ! 0. Accord-

ingly, limt!0 jeT j D 1 and limt!0 jeN j D 0. For small enough positive t , therefore,

jhN j < t jhj D t
2. Thus,

f .aC h/� f .a/ D
1

2

�

hT C hN

�T
H .hT C hN /CO.jhj3/

D

t
2

2
uT

T
H uT CO.t

3
/:

For small t the t2 term dominates theO.t3/ term, which now also contains three terms

from the previous line that involve at least one copy of hN . Hence f;when restricted to

M, will have a minimum (or maximum) value at a if the Hessian matrix H is positive

(or negative) definite on T .

(c) Observe that the element in the i th row and j th column of H T is

�

H T

�

ij
D uT

i H uj :

If u D u1u1 C u2u2 C � � � C un�mun�m is an arbitrary vector in T , then

Q.u/ D uT
H u D

n�m
X

iD1

n�m
X

j D1

ui uj uT
i H uj D

n�m
X

iD1

n�m
X

j D1

�

H T

�

ij
ui uj :

Thus, Q is positive definite (or negative definite, or indefinite) on T provided the

restricted Hessian matrix H T is positive definite (or negative definite, or indefinite).

This completes the proof.
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Remark Supposem D n�1 so that M is a one-dimensional curve in R
n. Its tangent

space T at a is a one-dimensional straight line, spanned by a single nonzero vector u

that is normal to the n�1 gradients rgi .a/. In this case, the test boils down to looking

at the sign of a single number, uT
H u. For example, if n D 2 and m D 1, so that

x D .x; y/ and a D .a; b/, then u must be normal to rg.a/ D gx.a; b/iC gy.a; b/j.

Evidently, u D gy i � gxj will do, and we examine the number

Q D .gy ;�gx/

�

Lxx Lxy

Lyx Lyy

��

gy

�gx

�

D

�

gyLxx � 2gxgyLxy C gxLyy

�

ˇ

ˇ

.a;b/
:

If Q > 0 (Q < 0), then there will be a local minimum (maximum) at .a; b/.

The following examples illustrate the use of Theorem 5 in classifying critical

points for constrained extrema.

E X A M P L E 1
The entropy S of a system that can exist in n states is given by

S D �
Pn

iD1 pi lnpi ; where each pi satisfies 0 < pi < 1 and is

the probability the system is in the i th state. S is subject to two constraints:
Pn

iD1 pi D

1 and
Pn

iD1 piEi D E, where the Ei and E are constants. (Ei is the energy of the

i th state and E is the average energy.) Show that attempting to extremize S subject to

these constraints leads to a maximum value for S .

Solution The Lagrange fuction for this problem is

L.p1; : : : ; pn/ D �

 

n
X

iD1

pi lnpi

!

C�

" 

n
X

iD1

pi

!

� 1

#

C�

" 

n
X

iD1

piEi

!

�E

#

:

The critical points are given by

@L

@pi

D � lnpi � 1C �C �Ei ; .1 � i � n/

and the two constraint equations. Solving the first equation for pi , we obtain

pi D C exp.�Ei / for 1 � i � n, where the constants C and � can be found by

substituting these values into the two constraint equations and solving. There is just

the one critical point. Observe that

@2S

@pi@pj

D

8

<

:

�

1

pi

if i D j

0 if i ¤ j

and so the (unconstrained) Hessian matrix H has its only nonzero elements on the

main diagonal, and these are all negative at the critical point. Accordingly, H is neg-

ative definite (by either of Theorems 7 and 8 of Section 10.7), and we don’t need to

worry about restricting H to the (tangent space to) the constraint manifold. The criti-

cal point gives S a local maximum value. Since, limpi !0C pi lnpi D 0 and there are

no other critical points, the local maximum must, in fact, be an absolute maximum.

E X A M P L E 2
Find the minimum distance between the circle x2

C y
2
D 2 and

the line x C y D 4.

Solution We really don’t need to use such fancy theory to solve this problem. It is

geometrically evident in Figure 13.18 that the two closest points are B D .1; 1/ on

the circle and A D .2; 2/ on the line. We shall, however, treat it as a problem of

minimizing (the square of) the distance between two arbitrary points, .x1; y1/ on the

circle and .x2; y2/ on the line:

y

x
C

B

A

x C y D 4

x2
C y2

D 2

Figure 13.18 Clearly the distance

between the circle and the line is
p

2 units,

the distance between B D .1; 1/ and

A D .2; 2/

9780134154367_Calculus   796 05/12/16   4:25 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 776 October 5, 2016

776 CHAPTER 13 Applications of Partial Derivatives

PROOF (a) If rf .a/ does not lie in the normal space N to M at a, then it will

have a nonzero projection v on T , and f will have a positive directional derivative

at a in the direction of v and a negative directional derivative in the direction of �v,

contradicting the assumption that when restricted to M, f has a local extreme value at

a. Thus, rf .a/ 2 N . Since the m vectors rgi .a/ span N , there must exist numbers

�i , .1 � i � m/ such that

rf .a/ D �

m
X

iD1

�irgi .a/

and so a is a critical point of the Lagrangian function .�/.

(b) Now let a and a C h be two points on M and suppose that a is a critical

point of the Lagrange function .�/ for some values of the multipliers �i , .1 � i � m/.

Because of the smoothness assumptions made on f and the constraint functions gi ,

Taylor’s Formula (Section 12.9) gives

f .aC h/ � f .a/ D h � rf .a/C
1

2
.h � r/2f .a/CO.jhj3/;

gi .aC h/ � gi .a/ D h � rgi .a/C
1

2
.h � r/2gi .a/CO.jhj

3
/; .1 � i � m/:

Noting that gi .a C h/ � gi .a/ D 0 and rL.a/ D 0, multiplying the second formula

above by �i , summing, and adding the result to the first formula, we get

f .aC h/� f .a/ D
1

2
.h � r/

2
L.a/CO.jhj3/

D

1

2

n
X

iD1

n
X

j D1

hi hj Lij .a/

D hT
H hCO.jhj3/;

where, in the final quadratic form expression, we are regarding h as a column vec-

tor with transpose hT. Now let h D te D t
�

eT C eN

�

, where e is a unit vector,

and eT and eN are its projections onto T and N , respectively. The smoothness of

M shows that the angle � between e and eN approaches �=2 as t ! 0. Accord-

ingly, limt!0 jeT j D 1 and limt!0 jeN j D 0. For small enough positive t , therefore,

jhN j < t jhj D t
2. Thus,

f .aC h/� f .a/ D
1

2

�

hT C hN

�T
H .hT C hN /CO.jhj3/

D

t
2

2
uT

T
H uT CO.t

3
/:

For small t the t2 term dominates theO.t3/ term, which now also contains three terms

from the previous line that involve at least one copy of hN . Hence f;when restricted to

M, will have a minimum (or maximum) value at a if the Hessian matrix H is positive

(or negative) definite on T .

(c) Observe that the element in the i th row and j th column of H T is

�

H T

�

ij
D uT

i H uj :

If u D u1u1 C u2u2 C � � � C un�mun�m is an arbitrary vector in T , then

Q.u/ D uT
H u D

n�m
X

iD1

n�m
X

j D1

ui uj uT
i H uj D

n�m
X

iD1

n�m
X

j D1

�

H T

�

ij
ui uj :

Thus, Q is positive definite (or negative definite, or indefinite) on T provided the

restricted Hessian matrix H T is positive definite (or negative definite, or indefinite).

This completes the proof.
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Remark Supposem D n�1 so that M is a one-dimensional curve in R
n. Its tangent

space T at a is a one-dimensional straight line, spanned by a single nonzero vector u

that is normal to the n�1 gradients rgi .a/. In this case, the test boils down to looking

at the sign of a single number, uT
H u. For example, if n D 2 and m D 1, so that

x D .x; y/ and a D .a; b/, then u must be normal to rg.a/ D gx.a; b/iC gy.a; b/j.

Evidently, u D gy i � gxj will do, and we examine the number

Q D .gy ;�gx/

�

Lxx Lxy

Lyx Lyy

��

gy

�gx

�

D

�

gyLxx � 2gxgyLxy C gxLyy

�

ˇ

ˇ

.a;b/
:

If Q > 0 (Q < 0), then there will be a local minimum (maximum) at .a; b/.

The following examples illustrate the use of Theorem 5 in classifying critical

points for constrained extrema.

E X A M P L E 1
The entropy S of a system that can exist in n states is given by

S D �
Pn

iD1 pi lnpi ; where each pi satisfies 0 < pi < 1 and is

the probability the system is in the i th state. S is subject to two constraints:
Pn

iD1 pi D

1 and
Pn

iD1 piEi D E, where the Ei and E are constants. (Ei is the energy of the

i th state and E is the average energy.) Show that attempting to extremize S subject to

these constraints leads to a maximum value for S .

Solution The Lagrange fuction for this problem is

L.p1; : : : ; pn/ D �

 

n
X

iD1

pi lnpi

!

C�

" 

n
X

iD1

pi

!

� 1

#

C�

" 

n
X

iD1

piEi

!

�E

#

:

The critical points are given by

@L

@pi

D � lnpi � 1C �C �Ei ; .1 � i � n/

and the two constraint equations. Solving the first equation for pi , we obtain

pi D C exp.�Ei / for 1 � i � n, where the constants C and � can be found by

substituting these values into the two constraint equations and solving. There is just

the one critical point. Observe that

@2S

@pi@pj

D

8

<

:

�

1

pi

if i D j

0 if i ¤ j

and so the (unconstrained) Hessian matrix H has its only nonzero elements on the

main diagonal, and these are all negative at the critical point. Accordingly, H is neg-

ative definite (by either of Theorems 7 and 8 of Section 10.7), and we don’t need to

worry about restricting H to the (tangent space to) the constraint manifold. The criti-

cal point gives S a local maximum value. Since, limpi !0C pi lnpi D 0 and there are

no other critical points, the local maximum must, in fact, be an absolute maximum.

E X A M P L E 2
Find the minimum distance between the circle x2

C y
2
D 2 and

the line x C y D 4.

Solution We really don’t need to use such fancy theory to solve this problem. It is

geometrically evident in Figure 13.18 that the two closest points are B D .1; 1/ on

the circle and A D .2; 2/ on the line. We shall, however, treat it as a problem of

minimizing (the square of) the distance between two arbitrary points, .x1; y1/ on the

circle and .x2; y2/ on the line:

y

x
C

B

A

x C y D 4

x2
C y2

D 2

Figure 13.18 Clearly the distance

between the circle and the line is
p

2 units,

the distance between B D .1; 1/ and

A D .2; 2/
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minimize S D .x1 � x2/
2
C .y1 � y2/

2

subject to x
2
1 C y

2
1 � 2 D 0 and x2 C y2 � 4 D 0:

The Lagrange function is

L D .x1 � x2/
2
C .y1 � y2/

2
C �.x

2
1 C y

2
1 � 2/C �.x2 C y2 � 4/:

Since S and the constraint functions involve four variables, this is a problem in R
4.

Since there are two constraints, L depends on six variables, so its critical points satisfy

0 D
@L

@x1

D 2.x1 � x2/C 2�x1

0 D
@L

@y1

D 2.y1 � y2/C 2�y1

0 D
@L

@x2

D �2.x1 � x2/C �

0 D
@L

@y2

D �2.y1 � y2/C �

0 D
@L

@�
D x

2
1 C y

2
1 � 2

0 D
@L

@�
D x2 C y2 � 4:

We leave it to the reader to show that L.x1; y1; x2; y2; �; �/ has two critical points:

P D .1; 1; 2; 2;�1;�2/ and Q D .�1;�1; 2; 2; 3;�2/. The Hessian matrices at P

and Q are

H .P / D

0

B

B

@

4 0 �2 0

0 4 0 �2

�2 0 2 0

0 �2 0 2

1

C

C

A

; H .Q/ D

0

B

B

@

�4 0 �2 0

0 �4 0 �2

�2 0 2 0

0 �2 0 2

1

C

C

A

:

In order to calculate the restrictions of these Hessians to the space tangent to the con-

straint manifold at each of P and Q, we need orthonormal bases for those tangent

spaces. Let e1, e2, e3, and e4 be the standard basis vectors for the space R
4 of co-

ordinates .x1; y1; x2; y2/. As luck would have it, the normal vectors at P and Q are

r.x2
C y2

� 2/ D 2xe1C 2ye2 D ˙2.e1C e2/ and r.xC y � 4/ D e3C e4, so the

normal spaces at both points are the same two-dimensional subspace of R
4, and the

two perpendicular unit vectors

u1 D
e1 � e2
p

2
and u2 D

e3 � e4
p

2
;

being perpendicular to both those normals, constitute an orthonormal basis for the

two-dimensional tangent space at each point. At both points we can use

E D
1
p

2

0

B

B

@

1 0

�1 0

0 1

0 �1

1

C

C

A

:

The restriction of H to the tangent space at P is

H .P /T D E
T
H .P /E D

�

4 �2

�2 2

�

;
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and that at Q is

H .Q/T D E
T
H .Q/E D

�

�4 �2

�2 2

�

:

The eigenvalues of these 2 � 2 matrices are easily calculated. (See Section 10.7.) For

H .P /T they are 3 ˙
p

5, both positive. Therefore, H .P /T is positive definite by

Theorem 7 of Section 10.7, and S has a local minimum value at P: It is also the

absolute minimum, as observed in Figure 13.18. The minimum distance is the distance

from A D .2; 2/ to B D .1; 1/, that is,
p

2 units.

For H .Q/T the eigenvalues are�1˙
p

13, which have opposite signs. Therefore,

H .Q/T is indefinite and S has neither a local minimum nor a local maximum at Q.

At first this may seem strange; it may appear that S should have a local maximum at

Q; if point C in the figure moves along the circle away from .�1;�1/, its distance

from A D .2; 2/ is decreasing. However, if A moves along the line away from .2; 2/,

its distance from C D .�1;�1/ is increasing. Thus, Q really is a saddle point of the

constrained problem. Of course, there is no absolute maximum distance since the line

is unbounded.

Using Maple to Solve Constrained Extremal Problems
As the previous example indicates, the classification of critical points for constrained

problems can be quite computationally intensive. Our next example will show how to

make use of Maple to relieve some of the burden.

E X A M P L E 3
Find and classify the critical points of the Lagrange function for

the problem

extremize F.x; y; z/ D x
3
C y

3
C z

3 subject to
1

x
C

1

y
C

1

z
D 1:

Solution We begin by loading two Maple packages defining routines useful in what

follows

> with(LinearAlgebra): with(VectorCalculus):

The colons suppress output from these with commands. We will not reproduce here

the results of the next few commands either, as their output just restates the input. First

we define expressions for F and G and the Lagrange function L. We do not need these

to be Maple functions, so we just set them up as expressions.

> F := x^3 + y^3 + z^3;

> G := (1/x) + (1/y) + (1/z);

> L := F + lambda*(G - 1);

Newer versions of Maple will use the symbol � in place of lambda in the output.

Some of the commands used below require us to list the variables to which the com-

mand should be applied. We require two sets of variables, the space variables x; y; z,

and all variables, which includes the � as well.

> spvars := [x, y, z]; allvars := [x, y, z, lambda];

Now we can get down to business. We calculate the gradient of L with respect to

all four variables. The list allvars is required by the Gradient command in the

VectorCalculus package.

> GrL := Gradient(L, allvars);

GrL WD

�

3x2
�

�

x2

�

Nex C

�

3y2
�

�

y2

�

Ney C

�

3z2
�

�

z2

�

Nez C

�

1

x
C

1

y
C

1

z
� 1

�

Ne�

In the output above the vectors Nex , Ney , Nez , and Ne� denote the standard basis in the

4-space of variables x, y, z, and �. To find the critical points of L we need to solve

a set of four equations obtained by setting the four components of GrL equal to zero.

We construct the list of these equations as follows.
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minimize S D .x1 � x2/
2
C .y1 � y2/

2

subject to x
2
1 C y

2
1 � 2 D 0 and x2 C y2 � 4 D 0:

The Lagrange function is

L D .x1 � x2/
2
C .y1 � y2/

2
C �.x

2
1 C y

2
1 � 2/C �.x2 C y2 � 4/:

Since S and the constraint functions involve four variables, this is a problem in R
4.

Since there are two constraints, L depends on six variables, so its critical points satisfy

0 D
@L

@x1

D 2.x1 � x2/C 2�x1

0 D
@L

@y1

D 2.y1 � y2/C 2�y1

0 D
@L

@x2

D �2.x1 � x2/C �

0 D
@L

@y2

D �2.y1 � y2/C �

0 D
@L

@�
D x

2
1 C y

2
1 � 2

0 D
@L

@�
D x2 C y2 � 4:

We leave it to the reader to show that L.x1; y1; x2; y2; �; �/ has two critical points:

P D .1; 1; 2; 2;�1;�2/ and Q D .�1;�1; 2; 2; 3;�2/. The Hessian matrices at P

and Q are

H .P / D

0

B

B

@

4 0 �2 0

0 4 0 �2

�2 0 2 0

0 �2 0 2

1

C

C

A

; H .Q/ D

0

B

B

@

�4 0 �2 0

0 �4 0 �2

�2 0 2 0

0 �2 0 2

1

C

C

A

:

In order to calculate the restrictions of these Hessians to the space tangent to the con-

straint manifold at each of P and Q, we need orthonormal bases for those tangent

spaces. Let e1, e2, e3, and e4 be the standard basis vectors for the space R
4 of co-

ordinates .x1; y1; x2; y2/. As luck would have it, the normal vectors at P and Q are

r.x2
C y2

� 2/ D 2xe1C 2ye2 D ˙2.e1C e2/ and r.xC y � 4/ D e3C e4, so the

normal spaces at both points are the same two-dimensional subspace of R
4, and the

two perpendicular unit vectors

u1 D
e1 � e2
p

2
and u2 D

e3 � e4
p

2
;

being perpendicular to both those normals, constitute an orthonormal basis for the

two-dimensional tangent space at each point. At both points we can use

E D
1
p

2

0

B

B

@

1 0

�1 0

0 1

0 �1

1

C

C

A

:

The restriction of H to the tangent space at P is

H .P /T D E
T
H .P /E D

�

4 �2

�2 2

�

;

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 779 October 5, 2016

SECTION 13.4: Lagrange Multipliers in n-Space 779

and that at Q is

H .Q/T D E
T
H .Q/E D

�

�4 �2

�2 2

�

:

The eigenvalues of these 2 � 2 matrices are easily calculated. (See Section 10.7.) For

H .P /T they are 3 ˙
p

5, both positive. Therefore, H .P /T is positive definite by

Theorem 7 of Section 10.7, and S has a local minimum value at P: It is also the

absolute minimum, as observed in Figure 13.18. The minimum distance is the distance

from A D .2; 2/ to B D .1; 1/, that is,
p

2 units.

For H .Q/T the eigenvalues are�1˙
p

13, which have opposite signs. Therefore,

H .Q/T is indefinite and S has neither a local minimum nor a local maximum at Q.

At first this may seem strange; it may appear that S should have a local maximum at

Q; if point C in the figure moves along the circle away from .�1;�1/, its distance

from A D .2; 2/ is decreasing. However, if A moves along the line away from .2; 2/,

its distance from C D .�1;�1/ is increasing. Thus, Q really is a saddle point of the

constrained problem. Of course, there is no absolute maximum distance since the line

is unbounded.

Using Maple to Solve Constrained Extremal Problems
As the previous example indicates, the classification of critical points for constrained

problems can be quite computationally intensive. Our next example will show how to

make use of Maple to relieve some of the burden.

E X A M P L E 3
Find and classify the critical points of the Lagrange function for

the problem

extremize F.x; y; z/ D x
3
C y

3
C z

3 subject to
1

x
C

1

y
C

1

z
D 1:

Solution We begin by loading two Maple packages defining routines useful in what

follows

> with(LinearAlgebra): with(VectorCalculus):

The colons suppress output from these with commands. We will not reproduce here

the results of the next few commands either, as their output just restates the input. First

we define expressions for F and G and the Lagrange function L. We do not need these

to be Maple functions, so we just set them up as expressions.

> F := x^3 + y^3 + z^3;

> G := (1/x) + (1/y) + (1/z);

> L := F + lambda*(G - 1);

Newer versions of Maple will use the symbol � in place of lambda in the output.

Some of the commands used below require us to list the variables to which the com-

mand should be applied. We require two sets of variables, the space variables x; y; z,

and all variables, which includes the � as well.

> spvars := [x, y, z]; allvars := [x, y, z, lambda];

Now we can get down to business. We calculate the gradient of L with respect to

all four variables. The list allvars is required by the Gradient command in the

VectorCalculus package.

> GrL := Gradient(L, allvars);

GrL WD

�

3x2
�

�

x2

�

Nex C

�

3y2
�

�

y2

�

Ney C

�

3z2
�

�

z2

�

Nez C

�

1

x
C

1

y
C

1

z
� 1

�

Ne�

In the output above the vectors Nex , Ney , Nez , and Ne� denote the standard basis in the

4-space of variables x, y, z, and �. To find the critical points of L we need to solve

a set of four equations obtained by setting the four components of GrL equal to zero.

We construct the list of these equations as follows.
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> eqns := [seq(GrL[i]=0, i=1..4)];

eqns WD

�

3x2
�

�

x2
D 0; 3y

2
�

�

y2
D 0; 3z

2
�

�

z2
D 0;

1

x
C

1

y
C

1

z
� 1 D 0

�

We now attempt to solve these equations for all four variables using Maple’s solve

command.

> solns := solve(eqns,allvars);

This command produces several lines of output, not all of which we reproduce here.

The output consists of a list of eight lists, each of which provides one solution for the

four variables. Only four of those solutions consist entirely of real numbers (in fact, in-

tegers). The other four involve expressions like RootOf(_Z^2+1) and RootOf(5-

2_Z+_Z^2), both of which represent complex numbers and are of no use to us. The

four real critical points of L are

Œx D 3; y D 3; z D 3; � D 343�;

Œx D 1; y D �1; z D 1; � D 3�;

Œx D 1; y D 1; z D �1; � D 3�;

Œx D �1; y D 1; z D 1; � D 3�;

that is, the points P D .3; 3; 3; 343/, Q D .1; 1;�1; 3/, R D .1;�1; 1; 3/, and

S D .�1; 1; 1; 3/. When we did this calculation, the four real solutions were the

first, second, fourth, and fifth ones in the solns list. Thus, P was solns[1] and Q

was solns[2]. Now we need to classify these four points. By the symmetry of F

and G in the spatial variables x, y, and z, the points Q, R and S will be of the same

type, so we need only look at P and Q. The VectorCalculus package has a function

for calculating Hessian matrices.

> H := Hessian(L, spvars);

H WD

0

B

B

B

B

B

@

6x C
2�

x3
0 0

0 6y C
2�

y3
0

0 0 6z C
2�

z3

1

C

C

C

C

C

A

At P and Q these Hessians are, respectively,

> HP := eval(H, solns[1]); HQ := eval(H, solns[2]):

HP WD

0

@

36 0 0

0 36 0

0 0 36

1

A

HQ WD

0

@

12 0 0

0 12 0

0 0 �12

1

A

Both matrices are diagonal, so the diagonal elements are the eigenvalues. HP is pos-

itive definite, so the constrained problem must have a local minimum at P: However,

HQ is indefinite so we have to consider the restriction of HQ to the tangent plane T

to the constraint manifold at Q to determine the nature of Q. A vector normal to T is

given by

> NQ := subs([x=1,y=1,z=-1],Gradient(G,spvars));

NQ WD �Nex � Ney � Nez

We need two linearly independent vectors each normal to NQ. Evidently, two such

vectors are

> v1 := <1,-1,0>; v2 := <1,0,-1>;

v1 WD Nex � Ney
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v2 WD Nex � Nez

We can now use the GramSchmidt function in the Linear Algebra package to generate

an orthonormal basis for T .

> B := GramSchmidt([v1, v2], normalized);

B WD

2

6

6

6

6

4

2

6

6

6

4

1

2

p

2

�

1

2

p

2

0

3

7

7

7

5

;

2

6

6

6

6

4

1

6

p

6

1

6

p

6

�

1

3

p

6

3

7

7

7

7

5

3

7

7

7

7

5

Now we convert B into the matrix E needed for calculating the restricted Hessian at

Q.

> E := convert(B, Matrix);

E WD

2

6

6

6

6

4

1

2

p

2
1

6

p

6

�

1

2

p

2
1

6

p

6

0 �

1

3

p

6

3

7

7

7

7

5

The transpose of E is Transpose(E), so the restricted Hessian at Q is given by

> HQT := (Transpose(E)).HQ.E;

HQT WD

�

12 0

0 �4

�

This matrix is diagonal and clearly indefinite, so we conclude that F; when restricted

to the constraint manifold, has saddle behaviour rather than a local maximum or mini-

mum at Q, and by symmetry also at R and S .

Remark There are two places in the above use of Maple where difficulties can arise

for other constrained problems. First, depending on the functions involved, Maple’s

solve routine may not be able to solve the system of equations for a critical point of

the Lagrange function. If so, you should try the floating point fsolve routine, but

this may only give one solution even if there are many. Second, if F is a function of

n variables, and is subject to m � n constraints, the tangent to the constraint manifold

will have dimension n �m and you will need to first find m � n linearly independent

vectors, each normal to the m gradients of the constraint functions, in order to apply

the GramSchmidt routine to generate an orthonormal basis for T . This can usually

be done by solving an underdetermined system of m linear equations in n unknowns.

Significance of Lagrange Multiplier Values
It would seem that the actual value of a Lagrange multiplier is of little significance for

the process of solving constrained extreme-value problems. However, it is significant

if we want to determine the sensitivity of the extreme value to changes in the value of

a parameter on which a constraint function depends.

Consider, for example, the problem of extremizing f .x; y/ subject to the con-

straint g.x; y; p/ D 0. Here p is a parameter in the constraint equation that is beyond

our control and so does not enter into the process of finding the extreme value of f:

If f has an extreme value at .a; b/, then for some �, .a; b; �/ is a critical point of the

Lagrange function

L D f .x; y/C �g.x; y; p/
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> eqns := [seq(GrL[i]=0, i=1..4)];

eqns WD

�

3x2
�

�

x2
D 0; 3y

2
�

�

y2
D 0; 3z

2
�

�

z2
D 0;

1

x
C

1

y
C

1

z
� 1 D 0

�

We now attempt to solve these equations for all four variables using Maple’s solve

command.

> solns := solve(eqns,allvars);

This command produces several lines of output, not all of which we reproduce here.

The output consists of a list of eight lists, each of which provides one solution for the

four variables. Only four of those solutions consist entirely of real numbers (in fact, in-

tegers). The other four involve expressions like RootOf(_Z^2+1) and RootOf(5-

2_Z+_Z^2), both of which represent complex numbers and are of no use to us. The

four real critical points of L are

Œx D 3; y D 3; z D 3; � D 343�;

Œx D 1; y D �1; z D 1; � D 3�;

Œx D 1; y D 1; z D �1; � D 3�;

Œx D �1; y D 1; z D 1; � D 3�;

that is, the points P D .3; 3; 3; 343/, Q D .1; 1;�1; 3/, R D .1;�1; 1; 3/, and

S D .�1; 1; 1; 3/. When we did this calculation, the four real solutions were the

first, second, fourth, and fifth ones in the solns list. Thus, P was solns[1] and Q

was solns[2]. Now we need to classify these four points. By the symmetry of F

and G in the spatial variables x, y, and z, the points Q, R and S will be of the same

type, so we need only look at P and Q. The VectorCalculus package has a function

for calculating Hessian matrices.

> H := Hessian(L, spvars);

H WD

0

B

B

B

B

B

@

6x C
2�

x3
0 0

0 6y C
2�

y3
0

0 0 6z C
2�

z3

1

C

C

C

C

C

A

At P and Q these Hessians are, respectively,

> HP := eval(H, solns[1]); HQ := eval(H, solns[2]):

HP WD

0

@

36 0 0

0 36 0

0 0 36

1

A

HQ WD

0

@

12 0 0

0 12 0

0 0 �12

1

A

Both matrices are diagonal, so the diagonal elements are the eigenvalues. HP is pos-

itive definite, so the constrained problem must have a local minimum at P: However,

HQ is indefinite so we have to consider the restriction of HQ to the tangent plane T

to the constraint manifold at Q to determine the nature of Q. A vector normal to T is

given by

> NQ := subs([x=1,y=1,z=-1],Gradient(G,spvars));

NQ WD �Nex � Ney � Nez

We need two linearly independent vectors each normal to NQ. Evidently, two such

vectors are

> v1 := <1,-1,0>; v2 := <1,0,-1>;

v1 WD Nex � Ney
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v2 WD Nex � Nez

We can now use the GramSchmidt function in the Linear Algebra package to generate

an orthonormal basis for T .

> B := GramSchmidt([v1, v2], normalized);

B WD

2

6

6

6

6

4

2

6

6

6

4

1

2

p

2

�

1

2

p

2

0

3

7

7

7

5

;

2

6

6

6

6

4

1

6

p

6

1

6

p

6

�

1

3

p

6

3

7

7

7

7

5

3

7

7

7

7

5

Now we convert B into the matrix E needed for calculating the restricted Hessian at

Q.

> E := convert(B, Matrix);

E WD

2

6

6

6

6

4

1

2

p

2
1

6

p

6

�

1

2

p

2
1

6

p

6

0 �

1

3

p

6

3

7

7

7

7

5

The transpose of E is Transpose(E), so the restricted Hessian at Q is given by

> HQT := (Transpose(E)).HQ.E;

HQT WD

�

12 0

0 �4

�

This matrix is diagonal and clearly indefinite, so we conclude that F; when restricted

to the constraint manifold, has saddle behaviour rather than a local maximum or mini-

mum at Q, and by symmetry also at R and S .

Remark There are two places in the above use of Maple where difficulties can arise

for other constrained problems. First, depending on the functions involved, Maple’s

solve routine may not be able to solve the system of equations for a critical point of

the Lagrange function. If so, you should try the floating point fsolve routine, but

this may only give one solution even if there are many. Second, if F is a function of

n variables, and is subject to m � n constraints, the tangent to the constraint manifold

will have dimension n �m and you will need to first find m � n linearly independent

vectors, each normal to the m gradients of the constraint functions, in order to apply

the GramSchmidt routine to generate an orthonormal basis for T . This can usually

be done by solving an underdetermined system of m linear equations in n unknowns.

Significance of Lagrange Multiplier Values
It would seem that the actual value of a Lagrange multiplier is of little significance for

the process of solving constrained extreme-value problems. However, it is significant

if we want to determine the sensitivity of the extreme value to changes in the value of

a parameter on which a constraint function depends.

Consider, for example, the problem of extremizing f .x; y/ subject to the con-

straint g.x; y; p/ D 0. Here p is a parameter in the constraint equation that is beyond

our control and so does not enter into the process of finding the extreme value of f:

If f has an extreme value at .a; b/, then for some �, .a; b; �/ is a critical point of the

Lagrange function

L D f .x; y/C �g.x; y; p/
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and so a, b, and � are determined by the three equations

f1.a; b/ D ��g1.a; b; p/

f2.a; b/ D ��g2.a; b; p/

g.a; b; p/ D 0:

The solution of these equations for a, b, and � results in all three being functions of p.

How does the extreme value f .a; b/ change if p changes? Observe that

d

dp
f .a; b/ D f1.a; b/

da

dp
C f2.a; b/

db

dp

D ��

�

g1.a; b/
da

dp
C g2.a; b/

db

dp

�

:

But, since g.a; b; p/ D 0, we have

0 D
d

dp
g.a; b; p/ D g1.a; b/

da

dp
C g2.a; b/

db

dp
C g3.a; b; p/:

Thus,

d

dp
f .a; b/ D �g3.a; b; p/:

The extreme value of f changes at a rate � times the rate of change of the function g

with respect to the parameter p at the point where the extreme value occurs.

E Nonlinear Programming
When we looked for extreme values of functions f on restricted domains R in Section

13.2, we had to look separately for critical points of f in the interior of R and then

for critical points of the restriction of f to the boundary of R. The interior of R is

typically specified by one or more inequality constraints of the form g < 0, while the

boundary corresponds to equation constraints of the form g D 0 (for which Lagrange

multipliers can be used).

It is possible to unify these approaches into a single method for finding extreme

values of functions defined on regions specified by inequalities of the form g � 0.

Consider, for example, the problem of finding extreme values of f .x; y/ over the

region R specified by g.x; y/ � 0. We can proceed by trying to find critical points of

the four-variable function

L.x; y; �; u/ D f .x; y/C �
�

g.x; y/C u
2
�

:

Such critical points must satisfy the four equations

0 D
@L

@x
D f1.x; y/C �g1.x; y/; .A/

0 D
@L

@y
D f2.x; y/C �g2.x; y/; .B/

0 D
@L

@�
D g.x; y/C u

2
; .C/

0 D
@L

@u
D 2�u: .D/
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Suppose that .x; y; �; u/ satisfies these equations. We consider two cases:

CASE I u ¤ 0. Then (D) implies that � D 0, (C) implies that g.x; y/ D �u2 < 0,

and (A) and (B) imply that f1.x; y/ D 0 and f2.x; y/ D 0. Thus, .x; y/ is an interior

critical point of f:

CASE II u D 0. Then (C) implies that g.x; y/ D 0, and (A) and (B) imply that

rf .x; y/ D ��rg.x; y/, so that .x; y/ is a boundary point candidate for the location

of the extreme value.

This technique can be extended to the problem of finding extreme values of a

function of n variables, x D .x1; x2; : : : ; xn/, over the intersection R of m regions Rj

defined by inequality constraints of the form gj .x/ � 0, for example

extremize f .x/ subject to g1.x/ � 0; : : : gm.x/ � 0:

In this case we look for critical points of the .nC 2m/-variable Lagrange function

L.x; �1; : : : ; �m; u1; : : : ; um/ D f .x/C

m
X

j D1

�j

�

gj .x/C u
2
j

�

:

The critical points will satisfy nC 2m equations

rf .x/ D �

m
X

j D1

�jrgj .x/; (n equations)

gj .x/ D �u
2
j ; .1 � j � m/; (m equations)

2�juj D 0; .1 � j � m/: (m equations)

The lastm equations show that �j D 0 for any j for which uj ¤ 0. If all uj ¤ 0, then

x is a critical point of f interior to R. Otherwise, some of the uj will be zero, say,

those corresponding to j in a subset J of f1; 2; : : : ; mg. In this case, x will lie on the

part of the boundary of R consisting of points lying on the boundaries of each of the

regionsRj for which j 2 J , andrf will be a linear combination of the corresponding

gradients rgj :

rf .x/ D �
X

j 2J

�jrgj .x/:

These are known as Kuhn-Tucker conditions, and this technique for solving extreme-

value problems on restricted domains is called nonlinear programming.

E X E R C I S E S 13.4

1. Find the maximum and minimum values of the n-variable

function x1 C x2 C � � � C xn subject to the constraint

x
2
1 C x

2
2 C � � � C x

2
n D 1.

2. Repeat Exercise 1 for the function x1 C 2x2 C 3x3 C � � � C nxn

with the same constraint.

3. Find a finite local extreme value of S D
P10

iD1 x
2
i subject to

the two constraints
P10

iD1 xi D 10 and
P10

iD1 ixi D 55. Is the

extreme value a local maximum or a local minimum? Is it

absolute?

4. Repeat Exercise 3 except replace the second constraint with
P10

iD1 ixi D 60.

5.I Find and classify the three critical points for the Lagrange

function

L.x; y; u; v; �; �/ D S C �.y � x
2
/C �.v � 2u

2
� 1/

corresponding to the problem

extremize S D .x � u/
2
C .y � v/

2

subject to y D x
2 and v D 2u

2
C 1:

What is the minimum distance between the curves y D x2

and y D 2x2
C 1?

13.5 The Method of Least Squares

Important optimization problems arise in the statistical analysis of experimental data.

Frequently, experiments are designed to measure the values of one or more quantities
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and so a, b, and � are determined by the three equations

f1.a; b/ D ��g1.a; b; p/

f2.a; b/ D ��g2.a; b; p/

g.a; b; p/ D 0:

The solution of these equations for a, b, and � results in all three being functions of p.

How does the extreme value f .a; b/ change if p changes? Observe that

d

dp
f .a; b/ D f1.a; b/

da

dp
C f2.a; b/

db

dp

D ��

�

g1.a; b/
da

dp
C g2.a; b/

db

dp

�

:

But, since g.a; b; p/ D 0, we have

0 D
d

dp
g.a; b; p/ D g1.a; b/

da

dp
C g2.a; b/

db

dp
C g3.a; b; p/:

Thus,

d

dp
f .a; b/ D �g3.a; b; p/:

The extreme value of f changes at a rate � times the rate of change of the function g

with respect to the parameter p at the point where the extreme value occurs.

E Nonlinear Programming
When we looked for extreme values of functions f on restricted domains R in Section

13.2, we had to look separately for critical points of f in the interior of R and then

for critical points of the restriction of f to the boundary of R. The interior of R is

typically specified by one or more inequality constraints of the form g < 0, while the

boundary corresponds to equation constraints of the form g D 0 (for which Lagrange

multipliers can be used).

It is possible to unify these approaches into a single method for finding extreme

values of functions defined on regions specified by inequalities of the form g � 0.

Consider, for example, the problem of finding extreme values of f .x; y/ over the

region R specified by g.x; y/ � 0. We can proceed by trying to find critical points of

the four-variable function

L.x; y; �; u/ D f .x; y/C �
�

g.x; y/C u
2
�

:

Such critical points must satisfy the four equations

0 D
@L

@x
D f1.x; y/C �g1.x; y/; .A/

0 D
@L

@y
D f2.x; y/C �g2.x; y/; .B/

0 D
@L

@�
D g.x; y/C u

2
; .C/

0 D
@L

@u
D 2�u: .D/
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Suppose that .x; y; �; u/ satisfies these equations. We consider two cases:

CASE I u ¤ 0. Then (D) implies that � D 0, (C) implies that g.x; y/ D �u2 < 0,

and (A) and (B) imply that f1.x; y/ D 0 and f2.x; y/ D 0. Thus, .x; y/ is an interior

critical point of f:

CASE II u D 0. Then (C) implies that g.x; y/ D 0, and (A) and (B) imply that

rf .x; y/ D ��rg.x; y/, so that .x; y/ is a boundary point candidate for the location

of the extreme value.

This technique can be extended to the problem of finding extreme values of a

function of n variables, x D .x1; x2; : : : ; xn/, over the intersection R of m regions Rj

defined by inequality constraints of the form gj .x/ � 0, for example

extremize f .x/ subject to g1.x/ � 0; : : : gm.x/ � 0:

In this case we look for critical points of the .nC 2m/-variable Lagrange function

L.x; �1; : : : ; �m; u1; : : : ; um/ D f .x/C

m
X

j D1

�j

�

gj .x/C u
2
j

�

:

The critical points will satisfy nC 2m equations

rf .x/ D �

m
X

j D1

�jrgj .x/; (n equations)

gj .x/ D �u
2
j ; .1 � j � m/; (m equations)

2�juj D 0; .1 � j � m/: (m equations)

The lastm equations show that �j D 0 for any j for which uj ¤ 0. If all uj ¤ 0, then

x is a critical point of f interior to R. Otherwise, some of the uj will be zero, say,

those corresponding to j in a subset J of f1; 2; : : : ; mg. In this case, x will lie on the

part of the boundary of R consisting of points lying on the boundaries of each of the

regionsRj for which j 2 J , andrf will be a linear combination of the corresponding

gradients rgj :

rf .x/ D �
X

j 2J

�jrgj .x/:

These are known as Kuhn-Tucker conditions, and this technique for solving extreme-

value problems on restricted domains is called nonlinear programming.

E X E R C I S E S 13.4

1. Find the maximum and minimum values of the n-variable

function x1 C x2 C � � � C xn subject to the constraint

x
2
1 C x

2
2 C � � � C x

2
n D 1.

2. Repeat Exercise 1 for the function x1 C 2x2 C 3x3 C � � � C nxn

with the same constraint.

3. Find a finite local extreme value of S D
P10

iD1 x
2
i subject to

the two constraints
P10

iD1 xi D 10 and
P10

iD1 ixi D 55. Is the

extreme value a local maximum or a local minimum? Is it

absolute?

4. Repeat Exercise 3 except replace the second constraint with
P10

iD1 ixi D 60.

5.I Find and classify the three critical points for the Lagrange

function

L.x; y; u; v; �; �/ D S C �.y � x
2
/C �.v � 2u

2
� 1/

corresponding to the problem

extremize S D .x � u/
2
C .y � v/

2

subject to y D x
2 and v D 2u

2
C 1:

What is the minimum distance between the curves y D x2

and y D 2x2
C 1?

13.5 The Method of Least Squares

Important optimization problems arise in the statistical analysis of experimental data.

Frequently, experiments are designed to measure the values of one or more quantities
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supposed to be constant, or to demonstrate a supposed functional relationship between

variable quantities. Experimental error is usually present in the measurements, and

experiments need to be repeated several times in order to arrive at mean or average

values of the quantities being measured.

Consider a very simple example. An experiment to measure a certain physical

constant c is repeated n times, yielding the values c1; c2; : : : ; cn. If none of the mea-

surements is suspected of being faulty, intuition tells us that we should use the mean

value Nc D .c1 C c2 C � � � C cn/=n as the value of c determined by the experiments.

Let us see how this intuition can be justified.

Various methods for determining c from the data values are possible. We could,

for instance, choose c to minimize the sum T of its distances from the data points:

T D jc � c1j C jc � c2j C � � � C jc � cnj:

This is unsatisfactory for a number of reasons. Since absolute values have singular

points, it is difficult to determine the minimizing value of c. More importantly, c may

not be determined uniquely. If n D 2, any point in the interval between c1 and c2 will

give the same minimum value to T: (See Exercise 24 below for a generalization of this

phenomenon.)

A more promising approach is to minimize the sum S of squares of the distances

from c to the data points:

S D .c � c1/
2
C .c � c2/

2
C � � � C .c � cn/

2
D

n
X

iD1

.c � ci /
2
:

S is known as the cost function or objective function. It is well known in the theory

of optimization that the objective function is not unique, and that the outcome depends

on the choice of objective function. There is no reason why, for example, we could not

choose to minimize the sum of the fourth powers of the distances from c to the data

points instead. However, the second power is both convenient and traditional. In this

type of analysis, we simply hope that other cost functions will produce results that are

not too different.

S is convenient because second-degree polynomials have linear derivatives, mean-

ing that the emerging expressions are linear equations, about which so much powerful

and straightforward mathematical machinery is easily available. To see this, we note

that S.c/ is smooth, and its (unconstrained) minimum value will occur at a critical

point Nc given by

0 D
dS

dc

ˇ

ˇ

ˇ

ˇ

cD Nc
D

n
X

iD1

2. Nc � ci / D 2n Nc � 2

n
X

iD1

ci :

Thus, Nc is the mean of the data values:

Nc D
1

n

n
X

iD1

ci D
c1 C c2 C � � � C cn

n
:

The technique used to obtain Nc above is an example of what is called the method

of least squares. It has the following geometric interpretation. If the data values

c1; c2; : : : ; cn are regarded as components of a vector c in R
n, and w is the vector with

components 1; 1; : : : ; 1, then the vector projection of c in the direction of w,

cw D
c � w

jwj2
w D

c1 C c2 C � � � C cn

n
w;

has all its components equal to the average of the data values. Thus, determining c from

the data by the method of least squares corresponds to finding the vector projection of

the data vector onto the one-dimensional subspace of R
n spanned by w. Had there

been no error in the measurements ci , then c would have been equal to cw.
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Linear Regression
In scientific investigations it is often believed that the response of a system is a certain

kind of function of one or more input variables. An investigator can set up an exper-

iment to measure the response of the system for various values of those variables in

order to determine the parameters of the function.

For example, suppose that the response y of a system is suspected to depend on

the input x according to the linear relationship

y D ax C b;

where the values of a and b are unknown. An experiment set up to measure values of

y corresponding to several values of x yields n data points, .xi ; yi /, i D 1; 2; : : : ; n.

If the supposed linear relationship is valid, these data points should lie approximately

along a straight line, but not exactly on one because of experimental error. Suppose

the points are as shown in Figure 13.19. The linear relationship seems reasonable in

this case. We want to find values of a and b so that the straight line y D axC b “best”

fits the data.

Figure 13.19 Fitting a straight line

through experimental data

y

x

.x1;y1/

.xn;yn/

.x2 ;y2/

y D ax C b

In this situation the method of least squares requires that a and b be chosen to minimize

the sum S of the squares of the vertical displacements of the data points from the line:

S D

n
X

iD1

.yi � axi � b/
2
:

This is an unconstrained minimum problem in two variables, a and b. The minimum

will occur at a critical point of S that satisfies

0 D
@S

@a
D �2

n
X

iD1

xi .yi � axi � b/;

0 D
@S

@b
D �2

n
X

iD1

.yi � axi � b/:

These equations can be rewritten

 

n
X

iD1

x
2
i

!

a C

 

n
X

iD1

xi

!

a C

 

n
X

iD1

xi

!

b D

n
X

iD1

xiyi ;

n b D

n
X

iD1

yi :

Solving this pair of linear equations, we obtain the desired parameters:
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supposed to be constant, or to demonstrate a supposed functional relationship between

variable quantities. Experimental error is usually present in the measurements, and

experiments need to be repeated several times in order to arrive at mean or average

values of the quantities being measured.

Consider a very simple example. An experiment to measure a certain physical

constant c is repeated n times, yielding the values c1; c2; : : : ; cn. If none of the mea-

surements is suspected of being faulty, intuition tells us that we should use the mean

value Nc D .c1 C c2 C � � � C cn/=n as the value of c determined by the experiments.

Let us see how this intuition can be justified.

Various methods for determining c from the data values are possible. We could,

for instance, choose c to minimize the sum T of its distances from the data points:

T D jc � c1j C jc � c2j C � � � C jc � cnj:

This is unsatisfactory for a number of reasons. Since absolute values have singular

points, it is difficult to determine the minimizing value of c. More importantly, c may

not be determined uniquely. If n D 2, any point in the interval between c1 and c2 will

give the same minimum value to T: (See Exercise 24 below for a generalization of this

phenomenon.)

A more promising approach is to minimize the sum S of squares of the distances

from c to the data points:

S D .c � c1/
2
C .c � c2/

2
C � � � C .c � cn/

2
D

n
X

iD1

.c � ci /
2
:

S is known as the cost function or objective function. It is well known in the theory

of optimization that the objective function is not unique, and that the outcome depends

on the choice of objective function. There is no reason why, for example, we could not

choose to minimize the sum of the fourth powers of the distances from c to the data

points instead. However, the second power is both convenient and traditional. In this

type of analysis, we simply hope that other cost functions will produce results that are

not too different.

S is convenient because second-degree polynomials have linear derivatives, mean-

ing that the emerging expressions are linear equations, about which so much powerful

and straightforward mathematical machinery is easily available. To see this, we note

that S.c/ is smooth, and its (unconstrained) minimum value will occur at a critical

point Nc given by

0 D
dS

dc

ˇ

ˇ

ˇ

ˇ

cD Nc
D

n
X

iD1

2. Nc � ci / D 2n Nc � 2

n
X

iD1

ci :

Thus, Nc is the mean of the data values:

Nc D
1

n

n
X

iD1

ci D
c1 C c2 C � � � C cn

n
:

The technique used to obtain Nc above is an example of what is called the method

of least squares. It has the following geometric interpretation. If the data values

c1; c2; : : : ; cn are regarded as components of a vector c in R
n, and w is the vector with

components 1; 1; : : : ; 1, then the vector projection of c in the direction of w,

cw D
c � w

jwj2
w D

c1 C c2 C � � � C cn

n
w;

has all its components equal to the average of the data values. Thus, determining c from

the data by the method of least squares corresponds to finding the vector projection of

the data vector onto the one-dimensional subspace of R
n spanned by w. Had there

been no error in the measurements ci , then c would have been equal to cw.
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Linear Regression
In scientific investigations it is often believed that the response of a system is a certain

kind of function of one or more input variables. An investigator can set up an exper-

iment to measure the response of the system for various values of those variables in

order to determine the parameters of the function.

For example, suppose that the response y of a system is suspected to depend on

the input x according to the linear relationship

y D ax C b;

where the values of a and b are unknown. An experiment set up to measure values of

y corresponding to several values of x yields n data points, .xi ; yi /, i D 1; 2; : : : ; n.

If the supposed linear relationship is valid, these data points should lie approximately

along a straight line, but not exactly on one because of experimental error. Suppose

the points are as shown in Figure 13.19. The linear relationship seems reasonable in

this case. We want to find values of a and b so that the straight line y D axC b “best”

fits the data.

Figure 13.19 Fitting a straight line

through experimental data

y

x

.x1;y1/

.xn;yn/

.x2 ;y2/

y D ax C b

In this situation the method of least squares requires that a and b be chosen to minimize

the sum S of the squares of the vertical displacements of the data points from the line:

S D

n
X

iD1

.yi � axi � b/
2
:

This is an unconstrained minimum problem in two variables, a and b. The minimum

will occur at a critical point of S that satisfies

0 D
@S

@a
D �2

n
X

iD1

xi .yi � axi � b/;

0 D
@S

@b
D �2

n
X

iD1

.yi � axi � b/:

These equations can be rewritten

 

n
X

iD1

x
2
i

!

a C

 

n
X

iD1

xi

!

a C

 

n
X

iD1

xi

!

b D

n
X

iD1

xiyi ;

n b D

n
X

iD1

yi :

Solving this pair of linear equations, we obtain the desired parameters:
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a D

n

 

n
X

iD1

xiyi

!

�

 

n
X

iD1

xi

! 

n
X

iD1

yi

!

n

 

n
X

iD1

x
2
i

!

�

 

n
X

iD1

xi

!2
D

xy � Nx Ny

x2
� . Nx/2

;

b D

 

n
X

iD1

x
2
i

! 

n
X

iD1

yi

!

�

 

n
X

iD1

xi

! 

n
X

iD1

xiyi

!

n

 

n
X

iD1

x
2
i

!

�

 

n
X

iD1

xi

!2
D

x2
Ny � Nx xy

x2
� . Nx/2

:

In these formulas, we have used a bar to indicate the mean value of a quantity; thus,

xy D .1=n/
Pn

iD1 xiyi , and so on.

This procedure for fitting the “best” straight line through data points by the method

of least squares is called linear regression, and the line y D ax C b obtained in this

way is called the empirical regression line corresponding to the data. Some scientific

calculators with statistical features provide for linear regression by accumulating the

sums of xi , yi , x
2
i , and xiyi in various registers and keeping track of the number n

of data points entered in another register. At any time it has available the information

necessary to calculate a and b and the value of y corresponding to any given x.

E X A M P L E 1
Find the empirical regression line for the data .x; y/ D .0; 2:10/,

.1; 1:92/, .2; 1:84/, and .3; 1:71/, .4; 1:64/. What is the predicted

value of y at x D 5?

Solution We have

Nx D
0C 1C 2C 3C 4

5
D 2;

Ny D
2:10C 1:92C 1:84C 1:71C 1:64

5
D 1:842;

xy D
.0/.2:10/C .1/.1:92/ C .2/.1:84/C .3/.1:71/C .4/.1:64/

5
D 3:458;

x2
D

0
2
C 1

2
C 2

2
C 3

2
C 4

2

5
D 6:

Therefore,

a D
3:458 � .2/.1:842/

6 � 22
D �0:113;

b D
.6/.1:842/ � .2/.3:458/

6 � 22
D 2:068;

and the empirical regression line is

y D 2:068 � 0:113x:

The predicted value of y at x D 5 is 2:068 � 0:113 � 5 D 1:503.

Remark Linear regression can also be interpreted in terms of vector projection. The

data points define two vectors x and y in R
n with components x1; x2; : : : ; xn and

y1; y2; : : : ; yn, respectively. Let w be the vector with components 1; 1; : : : ; 1. Finding

the coefficients a and b for the regression line corresponds to finding the orthogonal

projection of y onto the two-dimensional subspace (plane) in R
n spanned by x and w.
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(See Figure 13.20.) This projection is p D axCbw. In fact, the two equations obtained

above by setting the partial derivatives of S equal to zero are just the two conditions

x

w

p

y � p
y

Figure 13.20 p D axC bw is the

projection of y onto the plane spanned by x

and w

.y � p/ � x D 0;

.y � p/ � w D 0;

stating that y minus its projection onto the subspace is perpendicular to the subspace.

The angle between y and this p provides a measure of how well the empirical regression

line fits the data; the smaller the angle, the better the fit.

Linear regression can be used to find specific functional relationships of types

other than linear if suitable transformations are applied to the data.

E X A M P L E 2
Find the values of constantsK and s for which the curve y D Kxs

best fits the experimental data points .xi ; yi /, i D 1; 2; : : : ; n.

(Assume all data values are positive.)

Solution Observe that the required functional form corresponds to a linear relation-

ship between lny and lnx:

lny D lnK C s ln x:

If we determine the parameters a and b of the empirical regression line � D a� C b

corresponding to the transformed data .�i ; �i / D .ln xi ; ln yi /, then s D a andK D eb

are the required values.

Remark It should be stressed that the constants K and s obtained by the method

used in the solution above are not the same as those that would be obtained by di-

rect application of the least squares method to the untransformed problem, that is, by

minimizing
Pn

iD1.yi �Kx
s
i /

2. This latter problem cannot readily be solved. (Try it!)

Generally, the method of least squares is applied to fit an equation in which the

response is expressed as a sum of constants times functions of one or more input vari-

ables. The constants are determined as critical points of the sum of squared deviations

of the actual response values from the values predicted by the equation.

Applications of the Least Squares Method to Integrals
The method of least squares can be used to find approximations to reasonably well-

behaved (say, piecewise continuous) functions as sums of constants times specified

functions. The idea is to choose the constants to minimize the integral of the square of

the difference.

For example, suppose we want to approximate the continuous function f .x/ over

the interval Œ0; 1� by a linear function g.x/ D px C q. The method of least squares

would require that p and q be chosen to minimize the integral

I.p; q/ D

Z 1

0

�

f .x/� px � q

�2

dx:

Assuming that we can “differentiate through the integral” (we will investigate this issue

in Section 13.6), the critical point of I.p; q/ can be found from

0 D
@I

@p
D �2

Z 1

0

x

�

f .x/� px � q

�

dx;

0 D
@I

@q
D �2

Z 1

0

�

f .x/� px � q

�

dx:
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a D

n

 

n
X

iD1

xiyi

!

�

 

n
X

iD1

xi

! 

n
X

iD1

yi

!

n

 

n
X

iD1

x
2
i

!

�

 

n
X

iD1

xi

!2
D

xy � Nx Ny

x2
� . Nx/2

;

b D

 

n
X

iD1

x
2
i

! 

n
X

iD1

yi

!

�

 

n
X

iD1

xi

! 

n
X

iD1

xiyi

!

n

 

n
X

iD1

x
2
i

!

�

 

n
X

iD1

xi

!2
D

x2
Ny � Nx xy

x2
� . Nx/2

:

In these formulas, we have used a bar to indicate the mean value of a quantity; thus,

xy D .1=n/
Pn

iD1 xiyi , and so on.

This procedure for fitting the “best” straight line through data points by the method

of least squares is called linear regression, and the line y D ax C b obtained in this

way is called the empirical regression line corresponding to the data. Some scientific

calculators with statistical features provide for linear regression by accumulating the

sums of xi , yi , x
2
i , and xiyi in various registers and keeping track of the number n

of data points entered in another register. At any time it has available the information

necessary to calculate a and b and the value of y corresponding to any given x.

E X A M P L E 1
Find the empirical regression line for the data .x; y/ D .0; 2:10/,

.1; 1:92/, .2; 1:84/, and .3; 1:71/, .4; 1:64/. What is the predicted

value of y at x D 5?

Solution We have

Nx D
0C 1C 2C 3C 4

5
D 2;

Ny D
2:10C 1:92C 1:84C 1:71C 1:64

5
D 1:842;

xy D
.0/.2:10/C .1/.1:92/ C .2/.1:84/C .3/.1:71/C .4/.1:64/

5
D 3:458;

x2
D

0
2
C 1

2
C 2

2
C 3

2
C 4

2

5
D 6:

Therefore,

a D
3:458 � .2/.1:842/

6 � 22
D �0:113;

b D
.6/.1:842/ � .2/.3:458/

6 � 22
D 2:068;

and the empirical regression line is

y D 2:068 � 0:113x:

The predicted value of y at x D 5 is 2:068 � 0:113 � 5 D 1:503.

Remark Linear regression can also be interpreted in terms of vector projection. The

data points define two vectors x and y in R
n with components x1; x2; : : : ; xn and

y1; y2; : : : ; yn, respectively. Let w be the vector with components 1; 1; : : : ; 1. Finding

the coefficients a and b for the regression line corresponds to finding the orthogonal

projection of y onto the two-dimensional subspace (plane) in R
n spanned by x and w.
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(See Figure 13.20.) This projection is p D axCbw. In fact, the two equations obtained

above by setting the partial derivatives of S equal to zero are just the two conditions

x

w

p

y � p
y

Figure 13.20 p D axC bw is the

projection of y onto the plane spanned by x

and w

.y � p/ � x D 0;

.y � p/ � w D 0;

stating that y minus its projection onto the subspace is perpendicular to the subspace.

The angle between y and this p provides a measure of how well the empirical regression

line fits the data; the smaller the angle, the better the fit.

Linear regression can be used to find specific functional relationships of types

other than linear if suitable transformations are applied to the data.

E X A M P L E 2
Find the values of constantsK and s for which the curve y D Kxs

best fits the experimental data points .xi ; yi /, i D 1; 2; : : : ; n.

(Assume all data values are positive.)

Solution Observe that the required functional form corresponds to a linear relation-

ship between lny and lnx:

lny D lnK C s ln x:

If we determine the parameters a and b of the empirical regression line � D a� C b

corresponding to the transformed data .�i ; �i / D .ln xi ; ln yi /, then s D a andK D eb

are the required values.

Remark It should be stressed that the constants K and s obtained by the method

used in the solution above are not the same as those that would be obtained by di-

rect application of the least squares method to the untransformed problem, that is, by

minimizing
Pn

iD1.yi �Kx
s
i /

2. This latter problem cannot readily be solved. (Try it!)

Generally, the method of least squares is applied to fit an equation in which the

response is expressed as a sum of constants times functions of one or more input vari-

ables. The constants are determined as critical points of the sum of squared deviations

of the actual response values from the values predicted by the equation.

Applications of the Least Squares Method to Integrals
The method of least squares can be used to find approximations to reasonably well-

behaved (say, piecewise continuous) functions as sums of constants times specified

functions. The idea is to choose the constants to minimize the integral of the square of

the difference.

For example, suppose we want to approximate the continuous function f .x/ over

the interval Œ0; 1� by a linear function g.x/ D px C q. The method of least squares

would require that p and q be chosen to minimize the integral

I.p; q/ D

Z 1

0

�

f .x/� px � q

�2

dx:

Assuming that we can “differentiate through the integral” (we will investigate this issue

in Section 13.6), the critical point of I.p; q/ can be found from

0 D
@I

@p
D �2

Z 1

0

x

�

f .x/� px � q

�

dx;

0 D
@I

@q
D �2

Z 1

0

�

f .x/� px � q

�

dx:
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Thus,

p

3
C

q

2
D

Z 1

0

xf .x/ dx;

p

2
C q D

Z 1

0

f .x/ dx;

and solving this linear system for p and q we get

p D

Z 1

0

.12x � 6/f .x/ dx;

q D

Z 1

0

.4 � 6x/f .x/ dx:

The following example concerns the approximation of a function by a trigonomet-

ric polynomial. Such approximations form the basis for the study of Fourier series,

which are of fundamental importance in the solution of boundary-value problems for

the Laplace, heat, and wave equations and other partial differential equations that arise

in applied mathematics. (See Section 9.9.)

E X A M P L E 3
Use a least squares integral to approximate f .x/ by the sum

n
X

kD1

bk sin kx

on the interval 0 � x � � .

Solution We want to choose the constants to minimize

I D

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�2

dx:

For each 1 � j � n, we have

0 D
@I

@bj

D �2

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�

sin jx dx:

Thus,

n
X

kD1

bk

Z �

0

sin kx sin jx dx D

Z �

0

f .x/ sin jx dx:

However, if j ¤ k, then sinkx sin jx is an even function, so that

Z �

0

sin kx sin jx dx D
1

2

Z �

��

sin kx sin jx dx

D

1

4

Z �

��

�

cos.k � j /x � cos.k C j /x
�

dx D 0:

If j D k, then we have

Z �

0

sin2
jx dx D

1

2

Z �

0

.1 � cos 2jx/ dx D
�

2
;

so that

bj D
2

�

Z �

0

f .x/ sin jx dx:
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Remark The series

1
X

kD1

bk sin kx; where bk D
2

�

Z �

0

f .x/ sin kx dx; k D 1; 2; : : : ;

is called the Fourier sine series representation of f .x/ on the interval .0; �/. If f is

continuous on Œ0; ��, it can be shown that

lim
n!1

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�2

dx D 0;

but more than just continuity is required of f to ensure that this Fourier sine series

converges to f .x/ at each point of .0; �/. Such questions are studied in harmonic

analysis. Similarly, the series

a0

2
C

1
X

kD1

ak cos kx; where ak D
2

�

Z �

0

f .x/ cos kx dx; k D 0; 1; 2; : : : ;

is called the Fourier cosine series representation of f .x/ on the interval .0; �/.

Remark Representing a function as the sum of a Fourier series is analogous to rep-

resenting a vector as a linear combination of basis vectors. If we think of continuous

functions on the interval Œ0; �� as “vectors” with addition and scalar multiplication

defined pointwise:

.f C g/.x/ D f .x/C g.x/; .cf /.x/ D cf .x/;

and with the “dot product” defined as

f � g D

Z �

0

f .x/g.x/ dx;

then the functions ek.x/ D
p

2=� sin kx form a “basis.” As shown in the example

above, ej � ej D 1, and if k ¤ j , then ek � ej D 0. Thus, these “basis vectors” are

“mutually perpendicular unit vectors.” The Fourier sine coefficients bj of a function

f are the components of f with respect to that basis.

E X E R C I S E S 13.5

1. A generator is to be installed in a factory to supply power to n

machines located at positions .xi ; yi /, i D 1; 2; : : : ; n. Where

should the generator be located to minimize the sum of the

squares of its distances from the machines?

2. The relationship y D ax2 is known to hold between certain

variables. Given the experimental data .xi ; yi /,

i D 1; 2; : : : ; n, determine a value for a by the method of least

squares.

3. Repeat Exercise 2 but with the relationship y D aex .

4. Use the method of least squares to find the plane

z D ax C by C c that best fits the data .xi ; yi ; zi /,

i D 1; 2; : : : ; n.

5. Repeat Exercise 4 using a vector projection argument instead

of the method of least squares.

In Exercises 6–11, show how to adapt linear regression to

determine the two parameters p and q so that the given

relationship fits the experimental data .xi ; yi /, i D 1; 2; : : : ; n. In

which of these situations are the values of p and q obtained

identical to those obtained by direct application of the method of

least squares with no change of variable?

6. y D p C qx2 7. y D peqx

8. y D ln.p C qx/ 9. y D px C qx2

10. y D
p

px C q 11. y D pex
C qe

�x

12. Find the parabola of the form y D p C qx2 that best fits the

data .x; y/ D .1; 0:11/, .2; 1:62/, .3; 4:07/, .4; 7:55/,

.6; 17:63/, and .7; 24:20/. No value of y was measured at

x D 5. What value would you predict at this point?
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Thus,

p

3
C

q

2
D

Z 1

0

xf .x/ dx;

p

2
C q D

Z 1

0

f .x/ dx;

and solving this linear system for p and q we get

p D

Z 1

0

.12x � 6/f .x/ dx;

q D

Z 1

0

.4 � 6x/f .x/ dx:

The following example concerns the approximation of a function by a trigonomet-

ric polynomial. Such approximations form the basis for the study of Fourier series,

which are of fundamental importance in the solution of boundary-value problems for

the Laplace, heat, and wave equations and other partial differential equations that arise

in applied mathematics. (See Section 9.9.)

E X A M P L E 3
Use a least squares integral to approximate f .x/ by the sum

n
X

kD1

bk sin kx

on the interval 0 � x � � .

Solution We want to choose the constants to minimize

I D

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�2

dx:

For each 1 � j � n, we have

0 D
@I

@bj

D �2

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�

sin jx dx:

Thus,

n
X

kD1

bk

Z �

0

sin kx sin jx dx D

Z �

0

f .x/ sin jx dx:

However, if j ¤ k, then sinkx sin jx is an even function, so that

Z �

0

sin kx sin jx dx D
1

2

Z �

��

sin kx sin jx dx

D

1

4

Z �

��

�

cos.k � j /x � cos.k C j /x
�

dx D 0:

If j D k, then we have

Z �

0

sin2
jx dx D

1

2

Z �

0

.1 � cos 2jx/ dx D
�

2
;

so that

bj D
2

�

Z �

0

f .x/ sin jx dx:
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Remark The series

1
X

kD1

bk sin kx; where bk D
2

�

Z �

0

f .x/ sin kx dx; k D 1; 2; : : : ;

is called the Fourier sine series representation of f .x/ on the interval .0; �/. If f is

continuous on Œ0; ��, it can be shown that

lim
n!1

Z �

0

�

f .x/�

n
X

kD1

bk sin kx

�2

dx D 0;

but more than just continuity is required of f to ensure that this Fourier sine series

converges to f .x/ at each point of .0; �/. Such questions are studied in harmonic

analysis. Similarly, the series

a0

2
C

1
X

kD1

ak cos kx; where ak D
2

�

Z �

0

f .x/ cos kx dx; k D 0; 1; 2; : : : ;

is called the Fourier cosine series representation of f .x/ on the interval .0; �/.

Remark Representing a function as the sum of a Fourier series is analogous to rep-

resenting a vector as a linear combination of basis vectors. If we think of continuous

functions on the interval Œ0; �� as “vectors” with addition and scalar multiplication

defined pointwise:

.f C g/.x/ D f .x/C g.x/; .cf /.x/ D cf .x/;

and with the “dot product” defined as

f � g D

Z �

0

f .x/g.x/ dx;

then the functions ek.x/ D
p

2=� sin kx form a “basis.” As shown in the example

above, ej � ej D 1, and if k ¤ j , then ek � ej D 0. Thus, these “basis vectors” are

“mutually perpendicular unit vectors.” The Fourier sine coefficients bj of a function

f are the components of f with respect to that basis.

E X E R C I S E S 13.5

1. A generator is to be installed in a factory to supply power to n

machines located at positions .xi ; yi /, i D 1; 2; : : : ; n. Where

should the generator be located to minimize the sum of the

squares of its distances from the machines?

2. The relationship y D ax2 is known to hold between certain

variables. Given the experimental data .xi ; yi /,

i D 1; 2; : : : ; n, determine a value for a by the method of least

squares.

3. Repeat Exercise 2 but with the relationship y D aex .

4. Use the method of least squares to find the plane

z D ax C by C c that best fits the data .xi ; yi ; zi /,

i D 1; 2; : : : ; n.

5. Repeat Exercise 4 using a vector projection argument instead

of the method of least squares.

In Exercises 6–11, show how to adapt linear regression to

determine the two parameters p and q so that the given

relationship fits the experimental data .xi ; yi /, i D 1; 2; : : : ; n. In

which of these situations are the values of p and q obtained

identical to those obtained by direct application of the method of

least squares with no change of variable?

6. y D p C qx2 7. y D peqx

8. y D ln.p C qx/ 9. y D px C qx2

10. y D
p

px C q 11. y D pex
C qe

�x

12. Find the parabola of the form y D p C qx2 that best fits the

data .x; y/ D .1; 0:11/, .2; 1:62/, .3; 4:07/, .4; 7:55/,

.6; 17:63/, and .7; 24:20/. No value of y was measured at

x D 5. What value would you predict at this point?
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13. Use the method of least squares to find constants a, b, and c

so that the relationship y D ax2
C bx C c best describes the

experimental data .xi ; yi /, i D 1; 2; : : : ; n, .n � 3/. How is

this situation interpreted in terms of vector projection?

14. How can the result of Exercise 13 be used to fit a curve of the

form y D pex
C q C re�x through the same data points?

15. Find the value of the constant a for which the function

f .x/ D ax2 best approximates the function g.x/ D x3 on the

interval Œ0; 1�, in the sense that the integral

I D

Z 1

0

�

f .x/ � g.x/

�2

dx

is minimized. What is the minimum value of I?

16. Find a to minimize I D
R �

0

�

ax.� � x/ � sinx
�2

dx. What

is the minimum value of the integral?

17. Repeat Exercise 15 with the function f .x/ D ax2
C b and the

same g. Find a and b.

18. Find a, b, and c to minimize
R 1

0 .x
3
� ax2

� bx � c/2 dx.

What is the minimum value of the integral?

19. Find a and b to minimize
R �

0 .sinx � ax2
� bx/2 dx.

20.I Find a, b, and c to minimize the integral

J D

Z 1

�1

�

x � a sin�x � b sin 2�x � c sin 3�x
�2

dx:

21.I Find constants aj , j D 0; 1; : : : ; n, to minimize

Z �

0

 

f .x/ �
a0

2
�

n
X

kD1

ak cos kx

!2

dx:

22. Find the Fourier sine series for the function f .x/ D x on

0 < x < � . Assuming the series does converge to x on the

interval .0; �/, to what function would you expect the series to

converge on .��; 0/?

23. Repeat Exercise 22 but obtaining instead a Fourier cosine

series.

24. Suppose x1; x2; : : : ; xn satisfy xi � xj whenever i < j . Find

x that minimizes
Pn

iD1 jx � xi j. Treat the cases n odd and n

even separately. For what values of n is x unique? Hint: Use

no calculus in this problem.

13.6 Parametric Problems
In this section we will briefly examine three unrelated situations in which we want

to differentiate a function with respect to a parameter rather than one of the basic

variables of the function. Such situations arise frequently in mathematics and its ap-

plications.

Differentiating Integrals with Parameters
The Fundamental Theorem of Calculus shows how to differentiate a definite integral

with respect to the upper limit of integration:

d

dx

Z x

a

f .t/ dt D f .x/:

We are going to look at a different problem about differentiating integrals. If the

integrand of a definite integral also depends on variables other than the variable of

integration, then the integral will be a function of those other variables. How are we to

find the derivative of such a function? For instance, consider the function F.x/ defined

by

F.x/ D

Z b

a

f .x; t/ dt:

We would like to be able to calculate F 0.x/ by taking the derivative inside the integral:

F
0
.x/ D

d

dx

Z b

a

f .x; t/ dt D

Z b

a

@

@x
f .x; t/ dt:
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Observe that we use d=dx outside the integral and @=@x inside; this is because the

integral is a function of x only, but the integrand f is a function of both x and t . If

the integrand depends on more than one parameter, then partial derivatives would be

needed inside and outside the integral:

@

@x

Z b

a

f .x; y; t/ dt D

Z b

a

@

@x
f .x; y; t/ dt:

The operation of taking a derivative with respect to a parameter inside the integral, or

differentiating through the integral, as it is usually called, seems plausible. We dif-

ferentiate sums term by term, and integrals are the limits of sums. However, both the

differentiation and integration operations involve the taking of limits (limits of New-

ton quotients for derivatives, limits of Riemann sums for integrals). Differentiating

through the integral requires changing the order in which the two limits are taken and,

therefore, requires justification.

We have already seen another example of change of order of limits. When we

assert that two mixed partial derivatives with respect to the same variables are equal,

@
2
f

@x@y
D

@
2
f

@y@x
;

we are, in fact, saying that limits corresponding to differentiation with respect to x and

y can be taken in either order with the same result. This is not true in general; we

proved it under the assumption that both of the mixed partials were continuous. (See

Theorem 1 and Exercise 16 of Section 12.4.) In general, some assumptions are required

to justify the interchange of limits. The following theorem gives one set of conditions

that justify the interchange of limits involved in differentiating through the integral.

T H E O R E M

6

Differentiating through an integral

Suppose that for every x satisfying c < x < d , the following conditions hold:

(i) the integrals

Z b

a

f .x; t/ dt and

Z b

a

f1.x; t/ dt

both exist (either as proper or convergent improper integrals).

(ii) f11.x; t/ exists and satisfies

jf11.x; t/j � g.t/; a < t < b;

where

Z b

a

g.t/ dt D K <1:

Then for each x satisfying c < x < d , we have

d

dx

Z b

a

f .x; t/ dt D

Z b

a

@

@x
f .x; t/ dt:

PROOF Let

F.x/ D

Z b

a

f .x; t/ dt:
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13. Use the method of least squares to find constants a, b, and c

so that the relationship y D ax2
C bx C c best describes the

experimental data .xi ; yi /, i D 1; 2; : : : ; n, .n � 3/. How is

this situation interpreted in terms of vector projection?

14. How can the result of Exercise 13 be used to fit a curve of the

form y D pex
C q C re�x through the same data points?

15. Find the value of the constant a for which the function

f .x/ D ax2 best approximates the function g.x/ D x3 on the

interval Œ0; 1�, in the sense that the integral

I D

Z 1

0

�

f .x/ � g.x/

�2

dx

is minimized. What is the minimum value of I?

16. Find a to minimize I D
R �

0

�

ax.� � x/ � sinx
�2

dx. What

is the minimum value of the integral?

17. Repeat Exercise 15 with the function f .x/ D ax2
C b and the

same g. Find a and b.

18. Find a, b, and c to minimize
R 1

0 .x
3
� ax2

� bx � c/2 dx.

What is the minimum value of the integral?

19. Find a and b to minimize
R �

0 .sinx � ax2
� bx/2 dx.

20.I Find a, b, and c to minimize the integral

J D

Z 1

�1

�

x � a sin�x � b sin 2�x � c sin 3�x
�2

dx:

21.I Find constants aj , j D 0; 1; : : : ; n, to minimize

Z �

0

 

f .x/ �
a0

2
�

n
X

kD1

ak cos kx

!2

dx:

22. Find the Fourier sine series for the function f .x/ D x on

0 < x < � . Assuming the series does converge to x on the

interval .0; �/, to what function would you expect the series to

converge on .��; 0/?

23. Repeat Exercise 22 but obtaining instead a Fourier cosine

series.

24. Suppose x1; x2; : : : ; xn satisfy xi � xj whenever i < j . Find

x that minimizes
Pn

iD1 jx � xi j. Treat the cases n odd and n

even separately. For what values of n is x unique? Hint: Use

no calculus in this problem.

13.6 Parametric Problems
In this section we will briefly examine three unrelated situations in which we want

to differentiate a function with respect to a parameter rather than one of the basic

variables of the function. Such situations arise frequently in mathematics and its ap-

plications.

Differentiating Integrals with Parameters
The Fundamental Theorem of Calculus shows how to differentiate a definite integral

with respect to the upper limit of integration:

d

dx

Z x

a

f .t/ dt D f .x/:

We are going to look at a different problem about differentiating integrals. If the

integrand of a definite integral also depends on variables other than the variable of

integration, then the integral will be a function of those other variables. How are we to

find the derivative of such a function? For instance, consider the function F.x/ defined

by

F.x/ D

Z b

a

f .x; t/ dt:

We would like to be able to calculate F 0.x/ by taking the derivative inside the integral:

F
0
.x/ D

d

dx

Z b

a

f .x; t/ dt D

Z b

a

@

@x
f .x; t/ dt:
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Observe that we use d=dx outside the integral and @=@x inside; this is because the

integral is a function of x only, but the integrand f is a function of both x and t . If

the integrand depends on more than one parameter, then partial derivatives would be

needed inside and outside the integral:

@

@x

Z b

a

f .x; y; t/ dt D

Z b

a

@

@x
f .x; y; t/ dt:

The operation of taking a derivative with respect to a parameter inside the integral, or

differentiating through the integral, as it is usually called, seems plausible. We dif-

ferentiate sums term by term, and integrals are the limits of sums. However, both the

differentiation and integration operations involve the taking of limits (limits of New-

ton quotients for derivatives, limits of Riemann sums for integrals). Differentiating

through the integral requires changing the order in which the two limits are taken and,

therefore, requires justification.

We have already seen another example of change of order of limits. When we

assert that two mixed partial derivatives with respect to the same variables are equal,

@
2
f

@x@y
D

@
2
f

@y@x
;

we are, in fact, saying that limits corresponding to differentiation with respect to x and

y can be taken in either order with the same result. This is not true in general; we

proved it under the assumption that both of the mixed partials were continuous. (See

Theorem 1 and Exercise 16 of Section 12.4.) In general, some assumptions are required

to justify the interchange of limits. The following theorem gives one set of conditions

that justify the interchange of limits involved in differentiating through the integral.

T H E O R E M

6

Differentiating through an integral

Suppose that for every x satisfying c < x < d , the following conditions hold:

(i) the integrals

Z b

a

f .x; t/ dt and

Z b

a

f1.x; t/ dt

both exist (either as proper or convergent improper integrals).

(ii) f11.x; t/ exists and satisfies

jf11.x; t/j � g.t/; a < t < b;

where

Z b

a

g.t/ dt D K <1:

Then for each x satisfying c < x < d , we have

d

dx

Z b

a

f .x; t/ dt D

Z b

a

@

@x
f .x; t/ dt:

PROOF Let

F.x/ D

Z b

a

f .x; t/ dt:
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If c < x < d , h ¤ 0, and jhj is sufficiently small that c < x C h < d , then, by

Taylor’s Formula,

f .x C h; t/ D f .x; t/C hf1.x; t/C
h2

2
f11.x C �h; t/

for some � between 0 and 1. Therefore,
ˇ

ˇ

ˇ

ˇ

F.x C h/ � F.x/

h
�

Z b

a

f1.x; t/ dt

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x C h; t/ � f .x; t/

h
dt �

Z b

a

f1.x; t/ dt

ˇ

ˇ

ˇ

ˇ

�

Z b

a

ˇ

ˇ

ˇ

ˇ

f .x C h; t/ � f .x; t/

h
� f1.x; t/

ˇ

ˇ

ˇ

ˇ

dt

D

Z b

a

ˇ

ˇ

ˇ

h

2
f11.x C �h; t/

ˇ

ˇ

ˇ
dt

�

h

2

Z b

a

g.t/ dt D
Kh

2
! 0 as h! 0:

Therefore,

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h
D

Z b

a

f1.x; t/ dt;

which is the desired result.

Remark It can be shown that the conclusion of Theorem 6 also holds under the sole

assumption that f1.x; t/ is continuous on the closed, bounded rectangle c � x �

d; a � t � b. We cannot prove this here; the proof depends on a subtle property

called uniform continuity possessed by continuous functions on closed bounded sets in

R
n. (See Appendix IV for the case n D 1.) In any event, Theorem 6 is more useful for

our purposes because it allows for improper integrals.

E X A M P L E 1 Evaluate

Z 1

0

t
n
e

�t
dt .

Solution Starting with the convergent improper integral
Z 1

0

e
�s
ds D lim

R!1

e
�s

�1

ˇ

ˇ

ˇ

ˇ

R

0

D lim
R!1

.1 � e
�R
/ D 1;

we introduce a parameter by substituting s D xt; ds D x dt (where x > 0) and get
Z 1

0

e
�xt

dt D
1

x
:

Now differentiate n times (each resulting integral converges):
Z 1

0

�t e
�xt

dt D �
1

x2
;

Z 1

0

.�t/
2
e

�xt
dt D .�1/

2 2

x3
;

:
:
:

Z 1

0

.�t/
n
e

�xt
dt D .�1/

n nŠ

xnC1
:

Putting x D 1, we get
Z 1

0

t
n
e

�t
dt D nŠ:

Note that this result could be obtained by integration by parts (n times) or a reduction

formula. This method is a little easier.
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Remark The reader should check that the function f .x; t/ D tk e�xt satisfies the

conditions of Theorem 6 for x > 0 and k � 0. We will normally not make a point of

this.

E X A M P L E 2 Evaluate F.x; y/ D

Z 1

0

e�xt
� e�yt

t
dt for x > 0; y > 0.

Solution We have

@F

@x
D �

Z 1

0

e
�xt

dt D �
1

x
and

@F

@y
D

Z 1

0

e
�yt

dt D
1

y
:

It follows that

F.x; y/ D � ln x C C1.y/ and F.x; y/ D lny C C2.x/:

Comparing these two formulas for F , we are forced to conclude that

C1.y/ D ln y C C for some constant C . Therefore,

F.x; y/ D ln y � ln x C C D ln
y

x
C C:

Since F.1; 1/ D 0, we must have C D 0 and F.x; y/ D ln.y=x/.

Remark We can combine Theorem 6 and the Fundamental Theorem of Calculus

to differentiate an integral with respect to a parameter that appears in the limits of

integration as well as in the integrand. If

F.x; b; a/ D

Z b

a

f .x; t/ dt;

then, by the Chain Rule,

d

dx
F
�

x; b.x/; a.x/
�

D

@F

@x
C

@F

@b

db

dx
C

@F

@a

da

dx
:

Accordingly, we have

d

dx

Z b.x/

a.x/

f .x; t/ dt

D

Z b.x/

a.x/

@

@x
f .x; t/ dt C f

�

x; b.x/
�

b
0
.x/ � f

�

x; a.x/
�

a
0
.x/:

We require that a.x/ and b.x/ be differentiable at x, and for the application of Theorem 6,

that a � a.x/ � b and a � b.x/ � b for all x satisfying c < x < d .

E X A M P L E 3
Solve the integral equation

f .x/ D a �

Z x

b

.x � t/f .t/ dt:

Solution Assume, for the moment, that the equation has a sufficiently well-behaved

solution to allow for differentiation through the integral. Differentiating twice, we get

f
0
.x/ D �.x � x/f .x/�

Z x

b

f .t/ dt D �

Z x

b

f .t/ dt;

f
00
.x/ D �f .x/:
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If c < x < d , h ¤ 0, and jhj is sufficiently small that c < x C h < d , then, by

Taylor’s Formula,

f .x C h; t/ D f .x; t/C hf1.x; t/C
h2

2
f11.x C �h; t/

for some � between 0 and 1. Therefore,
ˇ

ˇ

ˇ

ˇ

F.x C h/ � F.x/

h
�

Z b

a

f1.x; t/ dt

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x C h; t/ � f .x; t/

h
dt �

Z b

a

f1.x; t/ dt

ˇ

ˇ

ˇ

ˇ

�

Z b

a

ˇ

ˇ

ˇ

ˇ

f .x C h; t/ � f .x; t/

h
� f1.x; t/

ˇ

ˇ

ˇ

ˇ

dt

D

Z b

a

ˇ

ˇ

ˇ

h

2
f11.x C �h; t/

ˇ

ˇ

ˇ
dt

�

h

2

Z b

a

g.t/ dt D
Kh

2
! 0 as h! 0:

Therefore,

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h
D

Z b

a

f1.x; t/ dt;

which is the desired result.

Remark It can be shown that the conclusion of Theorem 6 also holds under the sole

assumption that f1.x; t/ is continuous on the closed, bounded rectangle c � x �

d; a � t � b. We cannot prove this here; the proof depends on a subtle property

called uniform continuity possessed by continuous functions on closed bounded sets in

R
n. (See Appendix IV for the case n D 1.) In any event, Theorem 6 is more useful for

our purposes because it allows for improper integrals.

E X A M P L E 1 Evaluate

Z 1

0

t
n
e

�t
dt .

Solution Starting with the convergent improper integral
Z 1

0

e
�s
ds D lim

R!1

e
�s

�1

ˇ

ˇ

ˇ

ˇ

R

0

D lim
R!1

.1 � e
�R
/ D 1;

we introduce a parameter by substituting s D xt; ds D x dt (where x > 0) and get
Z 1

0

e
�xt

dt D
1

x
:

Now differentiate n times (each resulting integral converges):
Z 1

0

�t e
�xt

dt D �
1

x2
;

Z 1

0

.�t/
2
e

�xt
dt D .�1/

2 2

x3
;

:
:
:

Z 1

0

.�t/
n
e

�xt
dt D .�1/

n nŠ

xnC1
:

Putting x D 1, we get
Z 1

0

t
n
e

�t
dt D nŠ:

Note that this result could be obtained by integration by parts (n times) or a reduction

formula. This method is a little easier.
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Remark The reader should check that the function f .x; t/ D tk e�xt satisfies the

conditions of Theorem 6 for x > 0 and k � 0. We will normally not make a point of

this.

E X A M P L E 2 Evaluate F.x; y/ D

Z 1

0

e�xt
� e�yt

t
dt for x > 0; y > 0.

Solution We have

@F

@x
D �

Z 1

0

e
�xt

dt D �
1

x
and

@F

@y
D

Z 1

0

e
�yt

dt D
1

y
:

It follows that

F.x; y/ D � ln x C C1.y/ and F.x; y/ D lny C C2.x/:

Comparing these two formulas for F , we are forced to conclude that

C1.y/ D ln y C C for some constant C . Therefore,

F.x; y/ D ln y � ln x C C D ln
y

x
C C:

Since F.1; 1/ D 0, we must have C D 0 and F.x; y/ D ln.y=x/.

Remark We can combine Theorem 6 and the Fundamental Theorem of Calculus

to differentiate an integral with respect to a parameter that appears in the limits of

integration as well as in the integrand. If

F.x; b; a/ D

Z b

a

f .x; t/ dt;

then, by the Chain Rule,

d

dx
F
�

x; b.x/; a.x/
�

D

@F

@x
C

@F

@b

db

dx
C

@F

@a

da

dx
:

Accordingly, we have

d

dx

Z b.x/

a.x/

f .x; t/ dt

D

Z b.x/

a.x/

@

@x
f .x; t/ dt C f

�

x; b.x/
�

b
0
.x/ � f

�

x; a.x/
�

a
0
.x/:

We require that a.x/ and b.x/ be differentiable at x, and for the application of Theorem 6,

that a � a.x/ � b and a � b.x/ � b for all x satisfying c < x < d .

E X A M P L E 3
Solve the integral equation

f .x/ D a �

Z x

b

.x � t/f .t/ dt:

Solution Assume, for the moment, that the equation has a sufficiently well-behaved

solution to allow for differentiation through the integral. Differentiating twice, we get

f
0
.x/ D �.x � x/f .x/�

Z x

b

f .t/ dt D �

Z x

b

f .t/ dt;

f
00
.x/ D �f .x/:
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The latter equation is the differential equation of simple harmonic motion. Observe

that the given equation for f and that for f 0 imply the initial conditions

f .b/ D a and f
0
.b/ D 0:

Accordingly, we write the general solution of f 00.x/ D �f .x/ in the form

f .x/ D A cos.x � b/C B sin.x � b/:

The initial conditions then imply A D a and B D 0, so the required solution is

f .x/ D a cos.x � b/. Finally, we note that this function is indeed smooth enough

to allow the differentiations through the integral and is, therefore, the solution of the

given integral equation. (If you wish, verify it in the integral equation.)

Envelopes
An equation f .x; y; c/ D 0 that involves a parameter c as well as the variables x and

y represents a family of curves in the xy-plane. Consider, for instance, the family

f .x; y; c/ D
x

c
C cy � 2 D 0:

This family consists of straight lines with intercepts .2c; 2=c/ on the coordinate axes.

Several of these lines are sketched in Figure 13.21. It appears that there is a curve to

which all these lines are tangent. This curve is called the envelope of the family of

lines.

In general, a curve C is called the envelope of the family of curves with equations

f .x; y; c/ D 0 if, for each value of c, the curve f .x; y; c/ D 0 is tangent to C at some

point depending on c.

For the family of lines in Figure 13.21 it appears that the envelope may be the

rectangular hyperbola xy D 1. We will verify this after developing a method for

determining the equation of the envelope of a family of curves. We assume that the

function f .x; y; c/ has continuous first partials and that the envelope is a smooth curve.

Figure 13.21 A family of straight lines

and their envelope

y

x

cD�0:5

cD�0:75

cD�1

cD�1:5

cD�2

cD0:5

cD0:75

cD1

envelope

cD1:5

cD2

envelope

For each c, the curve f .x; y; c/ D 0 is tangent to the envelope at a point .x; y/ that

BEWARE! This is a subtle

argument. Take your time and try to

understand each step in the

development.

depends on c. Let us express this dependence in the explicit form x D g.c/; y D h.c/;

these equations are parametric equations of the envelope. Since .x; y/ lies on the curve

f .x; y; c/ D 0, we have

f
�

g.c/; h.c/; c
�

D 0:
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Differentiating this equation with respect to c, we obtain

f1g
0
.c/C f2h

0
.c/C f3 D 0; .�/

where the partials of f are evaluated at
�

g.c/; h.c/; c
�

.

The slope of the curve f .x; y; c/ D 0 at
�

g.c/; h.c/; c
�

can be obtained by differ-

entiating its equation implicitly with respect to x:

f1 C f2

dy

dx
D 0:

On the other hand, the slope of the envelope x D g.c/; y D h.c/ at that point is

dy=dx D h
0
.c/=g

0
.c/. Since the curve and the envelope are tangent at f

�

g.c/; h.c/; c
�

,

these slopes must be equal. Therefore,

f1 C f2

h
0
.c/

g0.c/
D 0; so f1g

0
.c/C f2h

0
.c/ D 0:

Combining this with equation .�/ we get f3.x; y; c/ D 0 at all points of the envelope.

The equation of the envelope can be found by eliminating c between the two

equations

f .x; y; c/ D 0 and
@

@c
f .x; y; c/ D 0:

E X A M P L E 4
Find the envelope of the family of straight lines

f .x; y; c/ D
x

c
C cy � 2 D 0:

Solution We eliminate c between the equations

f .x; y; c/ D
x

c
C cy � 2 D 0 and f3.x; y; c/ D �

x

c2
C y D 0:

These equations can be easily solved and give x D c and y D 1=c. Hence, they imply

that the envelope is xy D 1, as we conjectured earlier.

E X A M P L E 5
Find the envelope of the family of circles

.x � c/
2
C y

2
D c:

Solution Here, f .x; y; c/ D .x � c/2 C y2
� c. The equation of the envelope is

obtained by eliminating c from the pair of equations

f .x; y; c/ D .x � c/
2
C y

2
� c D 0;

@

@c
f .x; y; c/ D �2.x � c/ � 1 D 0:

From the second equation, x D c � 1
2

, and then from the first, y2
D c �

1
4

. Hence, the

envelope is the parabola

x D y
2
�

1

4
:

This envelope and some of the circles in the family are sketched in Figure 13.22.
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The latter equation is the differential equation of simple harmonic motion. Observe

that the given equation for f and that for f 0 imply the initial conditions

f .b/ D a and f
0
.b/ D 0:

Accordingly, we write the general solution of f 00.x/ D �f .x/ in the form

f .x/ D A cos.x � b/C B sin.x � b/:

The initial conditions then imply A D a and B D 0, so the required solution is

f .x/ D a cos.x � b/. Finally, we note that this function is indeed smooth enough

to allow the differentiations through the integral and is, therefore, the solution of the

given integral equation. (If you wish, verify it in the integral equation.)

Envelopes
An equation f .x; y; c/ D 0 that involves a parameter c as well as the variables x and

y represents a family of curves in the xy-plane. Consider, for instance, the family

f .x; y; c/ D
x

c
C cy � 2 D 0:

This family consists of straight lines with intercepts .2c; 2=c/ on the coordinate axes.

Several of these lines are sketched in Figure 13.21. It appears that there is a curve to

which all these lines are tangent. This curve is called the envelope of the family of

lines.

In general, a curve C is called the envelope of the family of curves with equations

f .x; y; c/ D 0 if, for each value of c, the curve f .x; y; c/ D 0 is tangent to C at some

point depending on c.

For the family of lines in Figure 13.21 it appears that the envelope may be the

rectangular hyperbola xy D 1. We will verify this after developing a method for

determining the equation of the envelope of a family of curves. We assume that the

function f .x; y; c/ has continuous first partials and that the envelope is a smooth curve.

Figure 13.21 A family of straight lines

and their envelope

y

x

cD�0:5

cD�0:75

cD�1

cD�1:5

cD�2

cD0:5

cD0:75

cD1

envelope

cD1:5

cD2

envelope

For each c, the curve f .x; y; c/ D 0 is tangent to the envelope at a point .x; y/ that

BEWARE! This is a subtle

argument. Take your time and try to

understand each step in the

development.

depends on c. Let us express this dependence in the explicit form x D g.c/; y D h.c/;

these equations are parametric equations of the envelope. Since .x; y/ lies on the curve

f .x; y; c/ D 0, we have

f
�

g.c/; h.c/; c
�

D 0:
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Differentiating this equation with respect to c, we obtain

f1g
0
.c/C f2h

0
.c/C f3 D 0; .�/

where the partials of f are evaluated at
�

g.c/; h.c/; c
�

.

The slope of the curve f .x; y; c/ D 0 at
�

g.c/; h.c/; c
�

can be obtained by differ-

entiating its equation implicitly with respect to x:

f1 C f2

dy

dx
D 0:

On the other hand, the slope of the envelope x D g.c/; y D h.c/ at that point is

dy=dx D h
0
.c/=g

0
.c/. Since the curve and the envelope are tangent at f

�

g.c/; h.c/; c
�

,

these slopes must be equal. Therefore,

f1 C f2

h
0
.c/

g0.c/
D 0; so f1g

0
.c/C f2h

0
.c/ D 0:

Combining this with equation .�/ we get f3.x; y; c/ D 0 at all points of the envelope.

The equation of the envelope can be found by eliminating c between the two

equations

f .x; y; c/ D 0 and
@

@c
f .x; y; c/ D 0:

E X A M P L E 4
Find the envelope of the family of straight lines

f .x; y; c/ D
x

c
C cy � 2 D 0:

Solution We eliminate c between the equations

f .x; y; c/ D
x

c
C cy � 2 D 0 and f3.x; y; c/ D �

x

c2
C y D 0:

These equations can be easily solved and give x D c and y D 1=c. Hence, they imply

that the envelope is xy D 1, as we conjectured earlier.

E X A M P L E 5
Find the envelope of the family of circles

.x � c/
2
C y

2
D c:

Solution Here, f .x; y; c/ D .x � c/2 C y2
� c. The equation of the envelope is

obtained by eliminating c from the pair of equations

f .x; y; c/ D .x � c/
2
C y

2
� c D 0;

@

@c
f .x; y; c/ D �2.x � c/ � 1 D 0:

From the second equation, x D c � 1
2

, and then from the first, y2
D c �

1
4

. Hence, the

envelope is the parabola

x D y
2
�

1

4
:

This envelope and some of the circles in the family are sketched in Figure 13.22.
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Figure 13.22 Circles .x � c/2 C y2
D c

and their envelope

y

x

cD1

cD2

cD3

cD0:5

cD0:25

envelope

A similar technique can be used to find the envelope of a family of surfaces. This will

be a surface tangent to each member of the family.

E X A M P L E 6
(The Mach cone) Suppose that sound travels at speed c in still

air and that a supersonic aircraft is travelling at speed v > c along

the x-axis, so that its position at time t is .vt; 0; 0/. Find the envelope at time t of the

sound waves created by the aircraft at previous times. See Figure 13.23.

Figure 13.23 The Mach cone

xvt

Solution The sound created by the aircraft at time � < t spreads out as a spherical

wave front at speed c. The centre of this wave front is .v�; 0; 0/, the position of the

aircraft at time � . At time t the radius of this wave front is c.t � �/, so its equation is

f .x; y; z; �/ D .x � v�/
2
C y

2
C z

2
� c

2
.t � �/

2
D 0: .�/

At time t the envelope of all these wave fronts created at earlier times � is obtained by

eliminating the parameter � from the above equation and the equation

@

@�
f .x; y; z; �/ D �2v.x � v�/C 2c

2
.t � �/ D 0:

Solving this latter equation for � , we get � D
vx � c2t

v2
� c2

. Thus,

x � v� D x �
v2x � vc2t

v2
� c2

D

c2

v2
� c2

.vt � x/

t � � D t �
vx � c2t

v2
� c2

D

v

v2
� c2

.vt � x/:
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We substitute these two expressions into equation .�/ to eliminate � :

c
4

.v2
� c2/2

.vt � x/
2
C y

2
C z

2
�

c
2
v

2

.v2
� c2/2

.vt � x/
2
D 0

y
2
C z

2
D

c2

.v2
� c2/2

.v
2
� c

2
/.vt � x/

2
D

c2

v2
� c2

.vt � x/
2
:

The envelope is the cone

x D vt �

p

v2
� c2

c

p

y2
C z2;

which extends backward in the x direction from its vertex at .vt; 0; 0/, the position of

the aircraft at time t . This is called the Mach cone. The sound of the aircraft cannot

be heard at any point until the cone reaches that point.

Equations with Perturbations
In applied mathematics one frequently encounters intractable equations for which at

least approximate solutions are desired. Sometimes such equations result from adding

an extra term to what would otherwise be a simple and easily solved equation. This

extra term is called a perturbation of the simpler equation. Often the perturbation

has a coefficient smaller than the other terms in the equation; that is, it is a small

perturbation. If this is the case, you can find approximate solutions to the perturbed

equation by replacing the small coefficient by a parameter and calculating Maclaurin

polynomials in that parameter. One example should serve to clarify the method.

E X A M P L E 7
Find an approximate solution of the equation

y C
1

50
ln.1C y/ D x2

:

Solution Without the logarithm term, the equation would clearly have the solution

y D x
2. Let us replace the coefficient 1=50 with the parameter � and look for a

solution y D y.x; �/ to the equation

y C � ln.1C y/ D x2 (*)

in the form

y D y.x; �/ D y.x; 0/C �y�.x; 0/C
�2

2Š
y��.x; 0/C � � � ;

where the subscripts � denote derivatives with respect to �. We shall calculate the

terms up to second order in �. Evidently y.x; 0/ D x2. Differentiating equation (*)

twice with respect to � and evaluating the results at � D 0, we obtain

@y

@�
C ln.1C y/C

�

1C y

@y

@�
D 0;

@2y

@�2
C

2

1C y

@y

@�
C �

@

@�

�

1

1C y

@y

@�

�

D 0;

y�.x; 0/ D � ln.1C x2
/;

y��.x; 0/ D
2

1C x2
ln.1C x2

/:

Hence,

y.x; �/ D x
2
� � ln.1C x2

/C
�2

1C x2
ln.1C x2

/C � � � ;
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Figure 13.22 Circles .x � c/2 C y2
D c

and their envelope

y

x

cD1

cD2

cD3

cD0:5

cD0:25

envelope

A similar technique can be used to find the envelope of a family of surfaces. This will

be a surface tangent to each member of the family.

E X A M P L E 6
(The Mach cone) Suppose that sound travels at speed c in still

air and that a supersonic aircraft is travelling at speed v > c along

the x-axis, so that its position at time t is .vt; 0; 0/. Find the envelope at time t of the

sound waves created by the aircraft at previous times. See Figure 13.23.

Figure 13.23 The Mach cone

xvt

Solution The sound created by the aircraft at time � < t spreads out as a spherical

wave front at speed c. The centre of this wave front is .v�; 0; 0/, the position of the

aircraft at time � . At time t the radius of this wave front is c.t � �/, so its equation is

f .x; y; z; �/ D .x � v�/
2
C y

2
C z

2
� c

2
.t � �/

2
D 0: .�/

At time t the envelope of all these wave fronts created at earlier times � is obtained by

eliminating the parameter � from the above equation and the equation

@

@�
f .x; y; z; �/ D �2v.x � v�/C 2c

2
.t � �/ D 0:

Solving this latter equation for � , we get � D
vx � c2t

v2
� c2

. Thus,

x � v� D x �
v2x � vc2t

v2
� c2

D

c2

v2
� c2

.vt � x/

t � � D t �
vx � c2t

v2
� c2

D

v

v2
� c2

.vt � x/:
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We substitute these two expressions into equation .�/ to eliminate � :

c
4

.v2
� c2/2

.vt � x/
2
C y

2
C z

2
�

c
2
v

2

.v2
� c2/2

.vt � x/
2
D 0

y
2
C z

2
D

c2

.v2
� c2/2

.v
2
� c

2
/.vt � x/

2
D

c2

v2
� c2

.vt � x/
2
:

The envelope is the cone

x D vt �

p

v2
� c2

c

p

y2
C z2;

which extends backward in the x direction from its vertex at .vt; 0; 0/, the position of

the aircraft at time t . This is called the Mach cone. The sound of the aircraft cannot

be heard at any point until the cone reaches that point.

Equations with Perturbations
In applied mathematics one frequently encounters intractable equations for which at

least approximate solutions are desired. Sometimes such equations result from adding

an extra term to what would otherwise be a simple and easily solved equation. This

extra term is called a perturbation of the simpler equation. Often the perturbation

has a coefficient smaller than the other terms in the equation; that is, it is a small

perturbation. If this is the case, you can find approximate solutions to the perturbed

equation by replacing the small coefficient by a parameter and calculating Maclaurin

polynomials in that parameter. One example should serve to clarify the method.

E X A M P L E 7
Find an approximate solution of the equation

y C
1

50
ln.1C y/ D x2

:

Solution Without the logarithm term, the equation would clearly have the solution

y D x
2. Let us replace the coefficient 1=50 with the parameter � and look for a

solution y D y.x; �/ to the equation

y C � ln.1C y/ D x2 (*)

in the form

y D y.x; �/ D y.x; 0/C �y�.x; 0/C
�2

2Š
y��.x; 0/C � � � ;

where the subscripts � denote derivatives with respect to �. We shall calculate the

terms up to second order in �. Evidently y.x; 0/ D x2. Differentiating equation (*)

twice with respect to � and evaluating the results at � D 0, we obtain

@y

@�
C ln.1C y/C

�

1C y

@y

@�
D 0;

@2y

@�2
C

2

1C y

@y

@�
C �

@

@�

�

1

1C y

@y

@�

�

D 0;

y�.x; 0/ D � ln.1C x2
/;

y��.x; 0/ D
2

1C x2
ln.1C x2

/:

Hence,

y.x; �/ D x
2
� � ln.1C x2

/C
�2

1C x2
ln.1C x2

/C � � � ;
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and the given equation has the approximate solution

y � x
2
�

ln.1C x2/

50
C

ln.1C x2/

2;500.1C x2/
:

Similar perturbation techniques can be used for systems of equations and for differen-

tial equations.

E X E R C I S E S 13.6

1. Let F.x/ D

Z 1

0

t
x
dt D

1

x C 1
for x > �1. By repeated

differentiation of F , evaluate the integral

Z 1

0

t
x
.ln t /n dt:

2. By replacing t with xt in the well-known integral

Z 1

�1
e

�t2

dt D
p

�;

and differentiating with respect to x, evaluate

Z 1

�1
t
2
e

�t2

dt and

Z 1

�1
t
4
e

�t2

dt:

3. Evaluate

Z 1

�1

e�xt2
� e�yt2

t2
dt for x > 0; y > 0.

4. Evaluate

Z 1

0

tx � ty

ln t
dt for x > �1; y > �1.

5. Given that

Z 1

0

e
�xt sin t dt D

1

1C x2
for x > 0 (which can

be shown by integration by parts), evaluate

Z 1

0

te
�xt sin t dt and

Z 1

0

t
2
e

�xt sin t dt:

6.I Referring to Exercise 5, for x > 0 evaluate

F.x/ D

Z 1

0

e
�xt sin t

t
dt:

Show that limx!1 F.x/ D 0 and hence evaluate the integral

Z 1

0

sin t

t
dt D lim

x!0
F.x/:

7. Evaluate

Z 1

0

dt

x2
C t2

and use the result to help you evaluate

Z 1

0

dt

.x2
C t2/2

and

Z 1

0

dt

.x2
C t2/3

:

8.I Evaluate

Z x

0

dt

x2
C t2

and use the result to help you evaluate

Z x

0

dt

.x2
C t2/2

and

Z x

0

dt

.x2
C t2/3

:

9. Find f .nC1/.a/ if f .x/ D 1C

Z x

a

.x � t /
n
f .t/ dt .

Solve the integral equations in Exercises 10–12.

10. f .x/ D Cx CD C

Z x

0

.x � t /f .t/ dt

11. f .x/ D x C

Z x

0

.x � 2t/f .t/ dt

12. f .x/ D 1C

Z 1

0

.x C t /f .t/ dt

Find the envelopes of the families of curves in Exercises 13–18.

13. y D 2cx � c2 14. y � .x � c/ cos c D sin c

15. x cos c C y sin c D 1 16.
x

cos c
C

y

sin c
D 1

17. y D c C .x � c/2 18. .x � c/2 C .y � c/2 D 1

19. Does every one-parameter family of curves in the plane have

an envelope? Try to find the envelope of y D x2
C c.

20. For what values of k does the family of curves

x2
C .y � c/2 D kc2 have an envelope?

21. Try to find the envelope of the family y3
D .x C c/2. Are the

curves of the family tangent to the envelope? What have you

actually found in this case? Compare with Example 3 of

Section 13.3.

22.I Show that if a two-parameter family of surfaces

f .x; y; z; �; �/ D 0 has an envelope, then the equation of that

envelope can be obtained by eliminating � and � from the

three equations

f .x; y; z; �; �/ D 0;

@

@�
f .x; y; z; �; �/ D 0;

@

@�
f .x; y; z; �; �/ D 0:

23. Find the envelope of the two-parameter family of planes

x sin� cos�C y sin� sin�C z cos� D 1:

24. Find the envelope of the two-parameter family of spheres

.x � �/
2
C .y � �/

2
C z

2
D

�2
C �2

2
:
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In Exercises 25–27, find the terms up to second power in � in the

solution y of the given equation.

25. y C � sin�y D x 26. y2
C �e

�y2

D 1C x
2

27. 2y C
�x

1C y2
D 1

28. Use perturbation methods to evaluate y with error less than

10�8 given that y C .y5=100/ D 1=2.

29.I Use perturbation methods to find approximate values for x

and y from the system x C 2y C
1

100
e

�x
D 3,

x � y C
1

100
e

�y
D 0. Calculate all terms up to second order

in � D 1=100.

13.7 Newton’s Method
A frequently encountered problem in applied mathematics is to determine, to some

desired degree of accuracy, a root (i.e., a solution r) of an equation of the form

f .r/ D 0:

Such a root is called a zero of the function f: In Section 4.2 we introduced Newton’s

Method, a simple but powerful method for determining roots of functions that are

sufficiently smooth. The method involves guessing an approximate value x0 for a root

r of the function f; and then calculating successive approximations x1, x2, : : : , using

the formula

xnC1 D xn �
f .xn/

f 0.xn/
; n D 0; 1; 2; � � � :

If the initial guess x0 is not too far from r , and if jf 0
.x/j is not too small and jf 00

.x/j is

not too large near r , then the successive approximations x1, x2, : : :will converge very

rapidly to r . Recall that each new approximation xnC1 is obtained as the x-intercept

of the tangent line drawn to the graph of f at the previous approximation, xn. The

tangent line to the graph y D f .x/ at x D xn has equation

y � f .xn/ D f
0
.xn/.x � xn/:

(See Figure 13.24.) The x-intercept, xnC1, of this line is determined by setting y D 0,

x D xnC1 in this equation, so is given by the formula in the shaded box above.

y

xxn

xnC1

r

y D f .x/

Figure 13.24 xnC1 is the x-intercept of

the tangent at xn

Newton’s Method can be extended to finding solutions of systems of m equations

in m variables. We will show here how to adapt the method to find approximations to

a solution .x; y/ of the pair of equations

�

f .x; y/ D 0

g.x; y/ D 0;

starting from an initial guess .x0; y0/. Under auspicious circumstances, we will ob-

serve the same rapid convergence of approximations to the root that typifies the single-

variable case.

The idea is as follows. The two surfaces z D f .x; y/ and z D g.x; y/ intersect

in a curve which itself intersects the xy-plane at the point whose coordinates are the

desired solution. If .x0; y0/ is near that point, then the tangent planes to the two

surfaces at .x0; y0/ will intersect in a straight line. This line meets the xy-plane at a

point .x1; y1/ that should be even closer to the solution point than was .x0; y0/. We

can easily determine .x1; y1/. The tangent planes to z D f .x; y/ and z D g.x; y/ at

.x0; y0/ have equations

z D f .x0; y0/C f1.x0; y0/.x � x0/C f2.x0; y0/.y � y0/;

z D g.x0; y0/C g1.x0; y0/.x � x0/C g2.x0; y0/.y � y0/:
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and the given equation has the approximate solution

y � x
2
�

ln.1C x2/

50
C

ln.1C x2/

2;500.1C x2/
:

Similar perturbation techniques can be used for systems of equations and for differen-

tial equations.

E X E R C I S E S 13.6

1. Let F.x/ D

Z 1

0

t
x
dt D

1

x C 1
for x > �1. By repeated

differentiation of F , evaluate the integral

Z 1

0

t
x
.ln t /n dt:

2. By replacing t with xt in the well-known integral

Z 1

�1
e

�t2

dt D
p

�;

and differentiating with respect to x, evaluate

Z 1

�1
t
2
e

�t2

dt and

Z 1

�1
t
4
e

�t2

dt:

3. Evaluate

Z 1

�1

e�xt2
� e�yt2

t2
dt for x > 0; y > 0.

4. Evaluate

Z 1

0

tx � ty

ln t
dt for x > �1; y > �1.

5. Given that

Z 1

0

e
�xt sin t dt D

1

1C x2
for x > 0 (which can

be shown by integration by parts), evaluate

Z 1

0

te
�xt sin t dt and

Z 1

0

t
2
e

�xt sin t dt:

6.I Referring to Exercise 5, for x > 0 evaluate

F.x/ D

Z 1

0

e
�xt sin t

t
dt:

Show that limx!1 F.x/ D 0 and hence evaluate the integral

Z 1

0

sin t

t
dt D lim

x!0
F.x/:

7. Evaluate

Z 1

0

dt

x2
C t2

and use the result to help you evaluate

Z 1

0

dt

.x2
C t2/2

and

Z 1

0

dt

.x2
C t2/3

:

8.I Evaluate

Z x

0

dt

x2
C t2

and use the result to help you evaluate

Z x

0

dt

.x2
C t2/2

and

Z x

0

dt

.x2
C t2/3

:

9. Find f .nC1/.a/ if f .x/ D 1C

Z x

a

.x � t /
n
f .t/ dt .

Solve the integral equations in Exercises 10–12.

10. f .x/ D Cx CD C

Z x

0

.x � t /f .t/ dt

11. f .x/ D x C

Z x

0

.x � 2t/f .t/ dt

12. f .x/ D 1C

Z 1

0

.x C t /f .t/ dt

Find the envelopes of the families of curves in Exercises 13–18.

13. y D 2cx � c2 14. y � .x � c/ cos c D sin c

15. x cos c C y sin c D 1 16.
x

cos c
C

y

sin c
D 1

17. y D c C .x � c/2 18. .x � c/2 C .y � c/2 D 1

19. Does every one-parameter family of curves in the plane have

an envelope? Try to find the envelope of y D x2
C c.

20. For what values of k does the family of curves

x2
C .y � c/2 D kc2 have an envelope?

21. Try to find the envelope of the family y3
D .x C c/2. Are the

curves of the family tangent to the envelope? What have you

actually found in this case? Compare with Example 3 of

Section 13.3.

22.I Show that if a two-parameter family of surfaces

f .x; y; z; �; �/ D 0 has an envelope, then the equation of that

envelope can be obtained by eliminating � and � from the

three equations

f .x; y; z; �; �/ D 0;

@

@�
f .x; y; z; �; �/ D 0;

@

@�
f .x; y; z; �; �/ D 0:

23. Find the envelope of the two-parameter family of planes

x sin� cos�C y sin� sin�C z cos� D 1:

24. Find the envelope of the two-parameter family of spheres

.x � �/
2
C .y � �/

2
C z

2
D

�2
C �2

2
:
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In Exercises 25–27, find the terms up to second power in � in the

solution y of the given equation.

25. y C � sin�y D x 26. y2
C �e

�y2

D 1C x
2

27. 2y C
�x

1C y2
D 1

28. Use perturbation methods to evaluate y with error less than

10�8 given that y C .y5=100/ D 1=2.

29.I Use perturbation methods to find approximate values for x

and y from the system x C 2y C
1

100
e

�x
D 3,

x � y C
1

100
e

�y
D 0. Calculate all terms up to second order

in � D 1=100.

13.7 Newton’s Method
A frequently encountered problem in applied mathematics is to determine, to some

desired degree of accuracy, a root (i.e., a solution r) of an equation of the form

f .r/ D 0:

Such a root is called a zero of the function f: In Section 4.2 we introduced Newton’s

Method, a simple but powerful method for determining roots of functions that are

sufficiently smooth. The method involves guessing an approximate value x0 for a root

r of the function f; and then calculating successive approximations x1, x2, : : : , using

the formula

xnC1 D xn �
f .xn/

f 0.xn/
; n D 0; 1; 2; � � � :

If the initial guess x0 is not too far from r , and if jf 0
.x/j is not too small and jf 00

.x/j is

not too large near r , then the successive approximations x1, x2, : : :will converge very

rapidly to r . Recall that each new approximation xnC1 is obtained as the x-intercept

of the tangent line drawn to the graph of f at the previous approximation, xn. The

tangent line to the graph y D f .x/ at x D xn has equation

y � f .xn/ D f
0
.xn/.x � xn/:

(See Figure 13.24.) The x-intercept, xnC1, of this line is determined by setting y D 0,

x D xnC1 in this equation, so is given by the formula in the shaded box above.

y

xxn

xnC1

r

y D f .x/

Figure 13.24 xnC1 is the x-intercept of

the tangent at xn

Newton’s Method can be extended to finding solutions of systems of m equations

in m variables. We will show here how to adapt the method to find approximations to

a solution .x; y/ of the pair of equations

�

f .x; y/ D 0

g.x; y/ D 0;

starting from an initial guess .x0; y0/. Under auspicious circumstances, we will ob-

serve the same rapid convergence of approximations to the root that typifies the single-

variable case.

The idea is as follows. The two surfaces z D f .x; y/ and z D g.x; y/ intersect

in a curve which itself intersects the xy-plane at the point whose coordinates are the

desired solution. If .x0; y0/ is near that point, then the tangent planes to the two

surfaces at .x0; y0/ will intersect in a straight line. This line meets the xy-plane at a

point .x1; y1/ that should be even closer to the solution point than was .x0; y0/. We

can easily determine .x1; y1/. The tangent planes to z D f .x; y/ and z D g.x; y/ at

.x0; y0/ have equations

z D f .x0; y0/C f1.x0; y0/.x � x0/C f2.x0; y0/.y � y0/;

z D g.x0; y0/C g1.x0; y0/.x � x0/C g2.x0; y0/.y � y0/:
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The line of intersection of these two planes meets the xy-plane at the point .x1; y1/

satisfying

f1.x0; y0/.x1 � x0/C f2.x0; y0/.y1 � y0/C f .x0; y0/ D 0;

g1.x0; y0/.x1 � x0/C g2.x0; y0/.y1 � y0/C g.x0; y0/ D 0:

Solving these two equations for x1 and y1, we obtain

x1 D x0 �
fg2 � f2g

f1g2 � f2g1

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D x0 �

ˇ

ˇ

ˇ

ˇ

f f2

g g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.x0;y0/

;

y1 D y0 �
f1g � fg1

f1g2 � f2g1

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D y0 �

ˇ

ˇ

ˇ

ˇ

f1 f

g1 g

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.x0;y0/

:

Observe that the denominator in each of these expressions is the Jacobian determinant

@.f; g/=@.x; y/
ˇ

ˇ

.x0;y0/
. This is another instance where the Jacobian is the appropriate

multivariable analogue of the derivative of a function of one variable.

Continuing in this way, we generate successive approximations .xn; yn/ according

to the formulas

xnC1 D xn �

ˇ

ˇ

ˇ

ˇ

f f2

g g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.xn;yn/

;

ynC1 D yn �

ˇ

ˇ

ˇ

ˇ

f1 f

g1 g

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.xn;yn/

:

We stop when the desired accuracy has been achieved.

E X A M P L E 1
Find the root of the system of equations x.1 C y2/ � 1 D 0,

y.1C x2/ � 2 D 0 with sufficient accuracy to ensure that the left

sides of the equations vanish to the sixth decimal place.

Solution A sketch of the graphs of the two equations (see Figure 13.25) in the

xy-plane indicates that the system has only one root near the point .0:2; 1:8/. Ap-

plication of Newton’s Method requires successive computations of the quantities

f .x; y/ D x.1C y
2
/ � 1;

g.x; y/ D y.1C x
2
/ � 2;

f1.x; y/ D 1C y
2
;

g1.x; y/ D 2xy;

f2.x; y/ D 2xy;

g2.x; y/ D 1C x
2
:

Using a calculator or computer, we can calculate successive values of .xn; yn/ starting

from x0 D 0:2, y0 D 1:8:

y

x

x.1Cy2/D1

y.1Cx2/D2

1

2

Figure 13.25 The two graphs intersect

near .0:2; 1:8/

Table 1. Root near .0:2; 1:8/

n xn yn f .xn; yn/ g.xn; yn/

0 0:200 000 1:800 000 �0:152 000 �0:128 000

1 0:216 941 1:911 349 0:009 481 0:001 303

2 0:214 827 1:911 779 �0:000 003 0:000 008

3 0:214 829 1:911 769 0:000 000 0:000 000
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The values in Table 1 were calculated sequentially in a spreadsheet by the method

suggested below. They were rounded for inclusion in the table, but the unrounded

values were used in subsequent calculations. If you actually use the (rounded) values

of xn and yn given in the table to calculate f .xn; yn/ and g.xn; yn/, your results may

vary slightly.

The desired approximations to the root are the xn and yn values in the last line of

the above table. Note the rapidity of convergence. However, many function evaluations

are needed for each iteration of the method. For large systems, Newton’s Method is

computationally too inefficient to be practical. Other methods requiring more iterations

but many fewer calculations per iteration are used in practice.

Implementing Newton’s Method Using a Spreadsheet
A computer spreadsheet is an ideal environment in which to calculate Newton’s Method

approximations. For a pair of equations in two unknowns such as the system in

Example 1, you can proceed as follows:

(i) In the first nine cells of the first row (A1–I1) put the labels n, x, y, f, g, f1,

f2, g1, and g2.

(ii) In cells A2–A9 put the numbers 0, 1, 2, : : : , 7.

(iii) In cells B2 and C2 put the starting values x0 and y0.

(iv) In cells D2–I2 put formulas for calculating f .x; y/, g.x; y/, : : : , g2.x; y/ in

terms of values of x and y assumed to be in B2 and C2.

(v) In cells B3 and C3 store the Newton’s Method formulas for calculating x1

and y1 in terms of the values x0 and y0, using values calculated in the second

row. For instance, cell B3 should contain the formula

+B2-(D2�I2-G2�E2)/(F2�I2-G2�H2):

(vi) Replicate the formulas in cells D2–I2 to cells D3–I3.

(vii) Replicate the formulas in cells B3–I3 to the cells B4–I9.

You can now inspect the successive approximations xn and yn in columns B and C. To

use different starting values, just replace the numbers in cells B2 and C2. To solve a

different system of (two) equations, replace the contents of cells D2–I2. You may wish

to save this spreadsheet for reuse with the exercises below or other systems you may

want to solve later.

Remark While a detailed analysis of the convergence of Newton’s Method approx-

imations is beyond the scope of this book, a few observations can be made. At each

step in the approximation process we must divide by J , the Jacobian determinant of

f and g with respect to x and y evaluated at the most recently obtained approxima-

tion. Assuming that the functions and partial derivatives involved in the formulas are

continuous, the larger the value of J at the actual solution, the more likely are the

approximations to converge to the solution, and to do so rapidly. If J vanishes (or is

very small) at the solution, the successive approximations may not converge, even if

the initial guess is quite close to the solution. Even if the first partials of f and g are

large at the solution, their Jacobian may be small if their gradients are nearly parallel

there. Thus, we cannot expect convergence to be rapid when the curves f .x; y/ D 0

and g.x; y/ D 0 intersect at a very small angle.

Newton’s Method can be applied to systems of m equations in m variables; the

formulas are the obvious generalizations of those for two functions given above.
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The line of intersection of these two planes meets the xy-plane at the point .x1; y1/

satisfying

f1.x0; y0/.x1 � x0/C f2.x0; y0/.y1 � y0/C f .x0; y0/ D 0;

g1.x0; y0/.x1 � x0/C g2.x0; y0/.y1 � y0/C g.x0; y0/ D 0:

Solving these two equations for x1 and y1, we obtain

x1 D x0 �
fg2 � f2g

f1g2 � f2g1

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D x0 �

ˇ

ˇ

ˇ

ˇ

f f2

g g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.x0;y0/

;

y1 D y0 �
f1g � fg1

f1g2 � f2g1

ˇ

ˇ

ˇ

ˇ

.x0;y0/

D y0 �

ˇ

ˇ

ˇ

ˇ

f1 f

g1 g

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.x0;y0/

:

Observe that the denominator in each of these expressions is the Jacobian determinant

@.f; g/=@.x; y/
ˇ

ˇ

.x0;y0/
. This is another instance where the Jacobian is the appropriate

multivariable analogue of the derivative of a function of one variable.

Continuing in this way, we generate successive approximations .xn; yn/ according

to the formulas

xnC1 D xn �

ˇ

ˇ

ˇ

ˇ

f f2

g g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.xn;yn/

;

ynC1 D yn �

ˇ

ˇ

ˇ

ˇ

f1 f

g1 g

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1 f2

g1 g2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.xn;yn/

:

We stop when the desired accuracy has been achieved.

E X A M P L E 1
Find the root of the system of equations x.1 C y2/ � 1 D 0,

y.1C x2/ � 2 D 0 with sufficient accuracy to ensure that the left

sides of the equations vanish to the sixth decimal place.

Solution A sketch of the graphs of the two equations (see Figure 13.25) in the

xy-plane indicates that the system has only one root near the point .0:2; 1:8/. Ap-

plication of Newton’s Method requires successive computations of the quantities

f .x; y/ D x.1C y
2
/ � 1;

g.x; y/ D y.1C x
2
/ � 2;

f1.x; y/ D 1C y
2
;

g1.x; y/ D 2xy;

f2.x; y/ D 2xy;

g2.x; y/ D 1C x
2
:

Using a calculator or computer, we can calculate successive values of .xn; yn/ starting

from x0 D 0:2, y0 D 1:8:

y

x

x.1Cy2/D1

y.1Cx2/D2

1

2

Figure 13.25 The two graphs intersect

near .0:2; 1:8/

Table 1. Root near .0:2; 1:8/

n xn yn f .xn; yn/ g.xn; yn/

0 0:200 000 1:800 000 �0:152 000 �0:128 000

1 0:216 941 1:911 349 0:009 481 0:001 303

2 0:214 827 1:911 779 �0:000 003 0:000 008

3 0:214 829 1:911 769 0:000 000 0:000 000
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The values in Table 1 were calculated sequentially in a spreadsheet by the method

suggested below. They were rounded for inclusion in the table, but the unrounded

values were used in subsequent calculations. If you actually use the (rounded) values

of xn and yn given in the table to calculate f .xn; yn/ and g.xn; yn/, your results may

vary slightly.

The desired approximations to the root are the xn and yn values in the last line of

the above table. Note the rapidity of convergence. However, many function evaluations

are needed for each iteration of the method. For large systems, Newton’s Method is

computationally too inefficient to be practical. Other methods requiring more iterations

but many fewer calculations per iteration are used in practice.

Implementing Newton’s Method Using a Spreadsheet
A computer spreadsheet is an ideal environment in which to calculate Newton’s Method

approximations. For a pair of equations in two unknowns such as the system in

Example 1, you can proceed as follows:

(i) In the first nine cells of the first row (A1–I1) put the labels n, x, y, f, g, f1,

f2, g1, and g2.

(ii) In cells A2–A9 put the numbers 0, 1, 2, : : : , 7.

(iii) In cells B2 and C2 put the starting values x0 and y0.

(iv) In cells D2–I2 put formulas for calculating f .x; y/, g.x; y/, : : : , g2.x; y/ in

terms of values of x and y assumed to be in B2 and C2.

(v) In cells B3 and C3 store the Newton’s Method formulas for calculating x1

and y1 in terms of the values x0 and y0, using values calculated in the second

row. For instance, cell B3 should contain the formula

+B2-(D2�I2-G2�E2)/(F2�I2-G2�H2):

(vi) Replicate the formulas in cells D2–I2 to cells D3–I3.

(vii) Replicate the formulas in cells B3–I3 to the cells B4–I9.

You can now inspect the successive approximations xn and yn in columns B and C. To

use different starting values, just replace the numbers in cells B2 and C2. To solve a

different system of (two) equations, replace the contents of cells D2–I2. You may wish

to save this spreadsheet for reuse with the exercises below or other systems you may

want to solve later.

Remark While a detailed analysis of the convergence of Newton’s Method approx-

imations is beyond the scope of this book, a few observations can be made. At each

step in the approximation process we must divide by J , the Jacobian determinant of

f and g with respect to x and y evaluated at the most recently obtained approxima-

tion. Assuming that the functions and partial derivatives involved in the formulas are

continuous, the larger the value of J at the actual solution, the more likely are the

approximations to converge to the solution, and to do so rapidly. If J vanishes (or is

very small) at the solution, the successive approximations may not converge, even if

the initial guess is quite close to the solution. Even if the first partials of f and g are

large at the solution, their Jacobian may be small if their gradients are nearly parallel

there. Thus, we cannot expect convergence to be rapid when the curves f .x; y/ D 0

and g.x; y/ D 0 intersect at a very small angle.

Newton’s Method can be applied to systems of m equations in m variables; the

formulas are the obvious generalizations of those for two functions given above.
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E X E R C I S E S 13.7

Find the solutions of the systems in Exercises 1–6, so that the

left-hand sides of the equations vanish up to 6 decimal places.

These can be done with the aid of a scientific calculator, but that

approach will be very time consuming. It is much easier to

program the Newton’s Method formulas on a computer to generate

the required approximations. In each case try to determine

reasonable initial guesses by sketching graphs of the equations.

M 1. y � ex
D 0; x � siny D 0

M 2. x2
C y

2
� 1 D 0; y � e

x
D 0 (two solutions)

M 3. x4
C y

2
� 16 D 0; xy � 1 D 0 (four solutions)

M 4. x2
� xy C 2y

2
D 10; x

3
y

2
D 2 (four solutions)

M 5. y � sinx D 0; x
2
C .y C 1/

2
� 2 D 0 (two solutions)

M 6. sinx C siny � 1 D 0; y
2
� x

3
D 0 (two solutions)

7.A Write formulas for obtaining successive Newton’s Method

f .x; y; z/ D 0; g.x; y; z/ D 0; h.x; y; z/ D 0;

starting from an initial guess .x0; y0; z0/.

M 8. Use the formulas from Exercise 7 to find the first octant

intersection point of the surfaces y2
C z2

D 3, x2
C z2

D 2,

and x2
� z D 0.

M 9. The equations y � x2
D 0 and y � x3

D 0 evidently have the

solutions x D y D 0 and x D y D 1. Try to obtain these

solutions using the two-variable form of Newton’s Method

with starting values

(a) x0 D y0 D 0:1, and (b) x0 D y0 D 0:9.

How many iterations are required to obtain 6-decimal-place

accuracy for the appropriate solution in each case?

How do you account for the difference in the behaviour of

Newton’s Method for these equations near .0; 0/ and .1; 1/?

13.8 Calculations with Maple

The calculations involved in solving systems of equations involving several variables

can be very lengthy, even if the number of variables is small. In particular, locating

critical points of a function of n variables involves solving a system of n (usually non-

linear) equations in n unknowns. In such situations the effective use of a computer

algebra system like Maple can be very helpful. In this optional (and brief) section we

present examples of how to use Maple’s “fsolve” routine to solve systems of nonlin-

ear equations and to find and classify critical points and thereby solve extreme-value

problems.

Solving Systems of Equations
Maple has a procedure called fsolve built into its kernel (no package needs to be loaded

to access it) that attempts to find floating-point real solutions to systems n equations

in n variables. (For a single polynomial equation in one variable it will try to find

all the real roots, but it may miss some.) For our purposes, an equation consists of

either a single expression f in the variables (in which case the equation is taken to be

f D 0) or else two expressions joined by an equal sign, as in f D g. The procedure

takes two or three arguments. The first is a set of n equations, enclosed in braces and

separated by commas. The second argument is a set (also enclosed in braces) listing

the n variables for which the equations are to be solved. (The number of variables in

the equations must equal the number of equations.) The elements of the second set

may consist of equations of the form “variable = initial guess,” where the initial guess

is a number we have reason to believe is close to the actual solution. It may not always

be possible to make a good initial guess at the values of the variables, so, if we like,

we can include a third argument specifing intervals of values of the variables in which

to search for a solution. For example, to find a solution to the system x2
C y3

D 3,

x sin.y/ � y cos.x/ D 0 near .1; 2/, we could try

> Digits := 6:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)}, {x=1, y=2});

fx D 0:909510; y D 1:47404g
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If we had been unable to specify an initial guess, but instead had looked for a solution

with x and y in Œ0; 2�, we would have got the same answer:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..2, y=0..2});

fx D 0:909510; y D 1:47404g

In fact, not specifying an initial guess or even search intervals would have led to the

same outcome:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)}, {x,y});

fy D 1:47404; x D 0:909510g;

although, for its own private reasons, Maple chose to report the values of x and y in

the opposite order this time. Had we specified a different search interval, we might

have got a different result:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..2, y=0..1});

fy D 0:; x D 1:73205g

or even no solution at all, if there is in fact no solution in the given intervals.

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..1, y=0..1});

fsolve.fx2
C y2

D 3; s sin.y/� y sin.x/g; fx; yg; fx D .0::1/; y D .0::1/g/

Using fsolve efficiently usually requires us to have some idea where solutions can

be found. If the number of variables is 2 or 3, Maple’s graphical routines can often be

used to help us find approximate locations of solutions.

E X A M P L E 1
Solve the system

8

ˆ

<

ˆ

:

x
2
C y

4
D 1

z D x
3
y

e
x
D 2y � z:

Solution We begin by defining the set of equations.

> eqns := {x^2+y^4=1, z=x^3*y, exp(x)=2*y-z};

eqns WD
˚

x2
C y4

D 1; z D x3 y; ex
D 2y � z

�

What are we to use for initial guesses? The first equation cannot be satisfied by

any points outside the square �1 � x � 1, �1 � y � 1, so we need only consider

starting values for x and y inside this square. The second equation then forces z to lie

between �1 and 1. We could just try many initial guesses that satisfy these conditions

and see what we get using fsolve. Alternatively, we can make several implicit plots of

the three equations for fixed values of z between �1 and 1, looking for cases where the

three curves come close to having a common intersection point:

> with(plots):

for z from -1 by .2 to 1 do print("z =", z);

implicitplot({x^2+y^4-1, z-x^3*y, exp(x)-2*y+z},

x=-1.5 .. 1.5, y=-1.5 .. 1.5) od;

These commands produce 11 graphs of the three equations, considered as depend-

ing on x and y for z values ranging from �1 to 1 in steps of 0:2. Two of them

are shown in Figure 13.26 and Figure 13.27. They correspond to z D �0:2 and

z D 0:2 and indicate that the three equations likely have solutions near .�1; 0:2;�0:2/

and .0:5; 0:9; 0:2/. We run fsolve with these starting values and then substitute the

resulting output into the three equations to check that the equations are satisfied. We

limit Maple’s output to 6 significant figures rather than the default 10:
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E X E R C I S E S 13.7

Find the solutions of the systems in Exercises 1–6, so that the

left-hand sides of the equations vanish up to 6 decimal places.

These can be done with the aid of a scientific calculator, but that

approach will be very time consuming. It is much easier to

program the Newton’s Method formulas on a computer to generate

the required approximations. In each case try to determine

reasonable initial guesses by sketching graphs of the equations.

M 1. y � ex
D 0; x � siny D 0

M 2. x2
C y

2
� 1 D 0; y � e

x
D 0 (two solutions)

M 3. x4
C y

2
� 16 D 0; xy � 1 D 0 (four solutions)

M 4. x2
� xy C 2y

2
D 10; x

3
y

2
D 2 (four solutions)

M 5. y � sinx D 0; x
2
C .y C 1/

2
� 2 D 0 (two solutions)

M 6. sinx C siny � 1 D 0; y
2
� x

3
D 0 (two solutions)

7.A Write formulas for obtaining successive Newton’s Method

f .x; y; z/ D 0; g.x; y; z/ D 0; h.x; y; z/ D 0;

starting from an initial guess .x0; y0; z0/.

M 8. Use the formulas from Exercise 7 to find the first octant

intersection point of the surfaces y2
C z2

D 3, x2
C z2

D 2,

and x2
� z D 0.

M 9. The equations y � x2
D 0 and y � x3

D 0 evidently have the

solutions x D y D 0 and x D y D 1. Try to obtain these

solutions using the two-variable form of Newton’s Method

with starting values

(a) x0 D y0 D 0:1, and (b) x0 D y0 D 0:9.

How many iterations are required to obtain 6-decimal-place

accuracy for the appropriate solution in each case?

How do you account for the difference in the behaviour of

Newton’s Method for these equations near .0; 0/ and .1; 1/?

13.8 Calculations with Maple

The calculations involved in solving systems of equations involving several variables

can be very lengthy, even if the number of variables is small. In particular, locating

critical points of a function of n variables involves solving a system of n (usually non-

linear) equations in n unknowns. In such situations the effective use of a computer

algebra system like Maple can be very helpful. In this optional (and brief) section we

present examples of how to use Maple’s “fsolve” routine to solve systems of nonlin-

ear equations and to find and classify critical points and thereby solve extreme-value

problems.

Solving Systems of Equations
Maple has a procedure called fsolve built into its kernel (no package needs to be loaded

to access it) that attempts to find floating-point real solutions to systems n equations

in n variables. (For a single polynomial equation in one variable it will try to find

all the real roots, but it may miss some.) For our purposes, an equation consists of

either a single expression f in the variables (in which case the equation is taken to be

f D 0) or else two expressions joined by an equal sign, as in f D g. The procedure

takes two or three arguments. The first is a set of n equations, enclosed in braces and

separated by commas. The second argument is a set (also enclosed in braces) listing

the n variables for which the equations are to be solved. (The number of variables in

the equations must equal the number of equations.) The elements of the second set

may consist of equations of the form “variable = initial guess,” where the initial guess

is a number we have reason to believe is close to the actual solution. It may not always

be possible to make a good initial guess at the values of the variables, so, if we like,

we can include a third argument specifing intervals of values of the variables in which

to search for a solution. For example, to find a solution to the system x2
C y3

D 3,

x sin.y/ � y cos.x/ D 0 near .1; 2/, we could try

> Digits := 6:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)}, {x=1, y=2});

fx D 0:909510; y D 1:47404g
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If we had been unable to specify an initial guess, but instead had looked for a solution

with x and y in Œ0; 2�, we would have got the same answer:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..2, y=0..2});

fx D 0:909510; y D 1:47404g

In fact, not specifying an initial guess or even search intervals would have led to the

same outcome:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)}, {x,y});

fy D 1:47404; x D 0:909510g;

although, for its own private reasons, Maple chose to report the values of x and y in

the opposite order this time. Had we specified a different search interval, we might

have got a different result:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..2, y=0..1});

fy D 0:; x D 1:73205g

or even no solution at all, if there is in fact no solution in the given intervals.

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)},

{x,y}, {x=0..1, y=0..1});

fsolve.fx2
C y2

D 3; s sin.y/� y sin.x/g; fx; yg; fx D .0::1/; y D .0::1/g/

Using fsolve efficiently usually requires us to have some idea where solutions can

be found. If the number of variables is 2 or 3, Maple’s graphical routines can often be

used to help us find approximate locations of solutions.

E X A M P L E 1
Solve the system

8

ˆ

<

ˆ

:

x
2
C y

4
D 1

z D x
3
y

e
x
D 2y � z:

Solution We begin by defining the set of equations.

> eqns := {x^2+y^4=1, z=x^3*y, exp(x)=2*y-z};

eqns WD
˚

x2
C y4

D 1; z D x3 y; ex
D 2y � z

�

What are we to use for initial guesses? The first equation cannot be satisfied by

any points outside the square �1 � x � 1, �1 � y � 1, so we need only consider

starting values for x and y inside this square. The second equation then forces z to lie

between �1 and 1. We could just try many initial guesses that satisfy these conditions

and see what we get using fsolve. Alternatively, we can make several implicit plots of

the three equations for fixed values of z between �1 and 1, looking for cases where the

three curves come close to having a common intersection point:

> with(plots):

for z from -1 by .2 to 1 do print("z =", z);

implicitplot({x^2+y^4-1, z-x^3*y, exp(x)-2*y+z},

x=-1.5 .. 1.5, y=-1.5 .. 1.5) od;

These commands produce 11 graphs of the three equations, considered as depend-

ing on x and y for z values ranging from �1 to 1 in steps of 0:2. Two of them

are shown in Figure 13.26 and Figure 13.27. They correspond to z D �0:2 and

z D 0:2 and indicate that the three equations likely have solutions near .�1; 0:2;�0:2/

and .0:5; 0:9; 0:2/. We run fsolve with these starting values and then substitute the

resulting output into the three equations to check that the equations are satisfied. We

limit Maple’s output to 6 significant figures rather than the default 10:

9780134154367_Calculus   823 05/12/16   4:31 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 13 – page 804 October 5, 2016

804 CHAPTER 13 Applications of Partial Derivatives

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

y

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4x

Figure 13.26 z D �0:2

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

y

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4x

Figure 13.27 z D 0:2

> Digits := 6:

vars := {x=-1, y=0.2, z=-0.2}:

sols := fsolve(eqns,vars);

evalf(subs(sols,eqns));

sols := fx D �:999887; y D 0:122654; z D �:122613g

f�:122613 D �:122612; 1:00000 D 1:; 0:367921 D 0:367921g

> vars := {x=0.5, y=0.9, z=0.2}:

sols := fsolve(eqns,vars);

evalf(subs(sols,eqns));

sols := fz D 0:138432; x D 0:531836; y D 0:920243g

f0:138432 D 0:138432; 1:00000 D 1:; 1:70205 D 1:70206g

We have found the two solutions to 6 significant digits.

Finding and Classifying Critical Points
Finding the critical points of a function of several variables amounts to solving the

system of equations obtained by setting the first partial derivatives of the function to

zero. The following example illustrates how this can be accomplished using Maple’s

fsolve routine. Since we also want to classify the critical points, we will find the

eigenvalues of the Hessian matrix of the function at each critical point to determine

whether that matrix is positive definite, negative definite, or indefinite.

Because the VectorCalculus package contains a procedure Hessian for calculat-

ing the Hessian matrix and the LinearAlgebra package contains a procedure Eigen-

values for determining the eigenvalues of a square matrix, we will either have to load

both these packages or else call the procedures using VectorCalculus[Hessian]

and LinearAlgebra[Eigenvalues], respectively. As we need nothing else

from these packages here, we will do it the latter way. If you have a version earlier

than Maple 8, be aware that the older linalg package has procedures hessian and

eigenvals that will do the same job.

E X A M P L E 2
Find and classify the critical points of

.x
2
C xy C 5y

2
C x � y/e

�.x2Cy2/
:

Solution We begin by defining f to be the expression above, which involves only

the two variables x and y. We don’t need f to be a function, so just define it as an

expression.

> f := (x^2+x*y+5*y^2+x-y)*exp(-(x^2+y^2));
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f WD .x2
C xy C 5y2

C x � y/e�.x2Cy2/

Next, we define H to be the Hessian matrix for f with respect to the variables x and

y. Since this produces several lines of output, we will suppress the output.

> H := VectorCalculus[Hessian](f,[x,y]):

The equations we want to solve to find the critical points of f are

> eqns := {diff(f,x)=0, diff(f,y)=0}:

Again we have surpressed output. We could have omitted the “ D 0” from each equa-

tion; it would have been assumed.

Now comes the hard part: where do we look for solutions? Plotting some level

curves of f can suggest likely locations for critical points.

> plots[contourplot](f,x=-3..3, y=-3..3, grid=[50,50],

contours=16);

Figure 13.28 Contours of f .x; y/ in

Example 2

–2

–1

0

1

2

y

–2 –1 1 2x

The contour plot (Figure 13.28) suggests that there are five critical points, three local

extrema near .0:3; 1/, .0;�1/, and .�0:6; 0:1/ and two saddle points near .1; 0/ and

.�1:6; 0:2/. We use each of these as initial guesses with fsolve. For each we first run

fsolve to find the critical point. Then we find the value of f at that point. Finally,

we calculate the eigenvalues of the Hessian of f to determine the nature of the critical

point. We set Maple for 6 significant figures again.

> Digits := 6:

(a) Near the point .0:3; 1/:

> sols := fsolve(eqns,{x=0.3, y=1}); evalf(subs(sols,f));

sols := fx D 0:275057; y D 1:00132g

1:57773

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

�2:41894

�6:61497

�

Since both eigenvalues are negative, f has a local maximum value 1:577 73 at the

critical point .0:275 057; 1:001 32/.

(b) Near the point .0;�1/:

> sols := fsolve(eqns,{x=0, y=-1}); evalf(subs(sols,f));
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> Digits := 6:

vars := {x=-1, y=0.2, z=-0.2}:

sols := fsolve(eqns,vars);

evalf(subs(sols,eqns));

sols := fx D �:999887; y D 0:122654; z D �:122613g

f�:122613 D �:122612; 1:00000 D 1:; 0:367921 D 0:367921g

> vars := {x=0.5, y=0.9, z=0.2}:

sols := fsolve(eqns,vars);

evalf(subs(sols,eqns));

sols := fz D 0:138432; x D 0:531836; y D 0:920243g

f0:138432 D 0:138432; 1:00000 D 1:; 1:70205 D 1:70206g

We have found the two solutions to 6 significant digits.

Finding and Classifying Critical Points
Finding the critical points of a function of several variables amounts to solving the

system of equations obtained by setting the first partial derivatives of the function to

zero. The following example illustrates how this can be accomplished using Maple’s

fsolve routine. Since we also want to classify the critical points, we will find the

eigenvalues of the Hessian matrix of the function at each critical point to determine

whether that matrix is positive definite, negative definite, or indefinite.

Because the VectorCalculus package contains a procedure Hessian for calculat-

ing the Hessian matrix and the LinearAlgebra package contains a procedure Eigen-

values for determining the eigenvalues of a square matrix, we will either have to load

both these packages or else call the procedures using VectorCalculus[Hessian]

and LinearAlgebra[Eigenvalues], respectively. As we need nothing else

from these packages here, we will do it the latter way. If you have a version earlier

than Maple 8, be aware that the older linalg package has procedures hessian and

eigenvals that will do the same job.

E X A M P L E 2
Find and classify the critical points of

.x
2
C xy C 5y

2
C x � y/e

�.x2Cy2/
:

Solution We begin by defining f to be the expression above, which involves only

the two variables x and y. We don’t need f to be a function, so just define it as an

expression.

> f := (x^2+x*y+5*y^2+x-y)*exp(-(x^2+y^2));
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f WD .x2
C xy C 5y2

C x � y/e�.x2Cy2/

Next, we define H to be the Hessian matrix for f with respect to the variables x and

y. Since this produces several lines of output, we will suppress the output.

> H := VectorCalculus[Hessian](f,[x,y]):

The equations we want to solve to find the critical points of f are

> eqns := {diff(f,x)=0, diff(f,y)=0}:

Again we have surpressed output. We could have omitted the “ D 0” from each equa-

tion; it would have been assumed.

Now comes the hard part: where do we look for solutions? Plotting some level

curves of f can suggest likely locations for critical points.

> plots[contourplot](f,x=-3..3, y=-3..3, grid=[50,50],

contours=16);

Figure 13.28 Contours of f .x; y/ in

Example 2
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The contour plot (Figure 13.28) suggests that there are five critical points, three local

extrema near .0:3; 1/, .0;�1/, and .�0:6; 0:1/ and two saddle points near .1; 0/ and

.�1:6; 0:2/. We use each of these as initial guesses with fsolve. For each we first run

fsolve to find the critical point. Then we find the value of f at that point. Finally,

we calculate the eigenvalues of the Hessian of f to determine the nature of the critical

point. We set Maple for 6 significant figures again.

> Digits := 6:

(a) Near the point .0:3; 1/:

> sols := fsolve(eqns,{x=0.3, y=1}); evalf(subs(sols,f));

sols := fx D 0:275057; y D 1:00132g

1:57773

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

�2:41894

�6:61497

�

Since both eigenvalues are negative, f has a local maximum value 1:577 73 at the

critical point .0:275 057; 1:001 32/.

(b) Near the point .0;�1/:

> sols := fsolve(eqns,{x=0, y=-1}); evalf(subs(sols,f));
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sols := fy D �:955506; x D 0:00492113g

2:21553

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

�3:58875

�8:54885

�

Since both eigenvalues are negative, f has a local maximum value 2:215 533 at

the critical point .0:004 921 13;�0:955 506/.

(c) Near the point .�0:6; 0:1/:

> sols := fsolve(eqns,{x=-0.6, y=0.1});

evalf(subs(sols,f));

sols := fy D 0:132977; x D �:421365g

�:283329

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

8:90194

2:32438

�

Since both eigenvalues are positive, f has a local minimum value �0:283 329 at

the critical point .�0:421 365; 0:132 977/.

(d) Near the point .1; 0/:

> sols := fsolve(eqns,{x=1, y=0}); evalf(subs(sols,f));

sols := fy D 0:0207852; x D 0:858435g

0:762810

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

3:28636

�2:84680

�

Since the Hessian has both positive and negative eigenvalues, f has a saddle point

at .0:858 435; 0:020 785 2/. Its value there is 0:762 810.

(e) Near the point .�1:6; 0:2/:

> sols := fsolve(eqns,{x=-1.6, y=0.2});

evalf(subs(sols,f));

sols := fy D 0:292686; x D �1:58082g

0:0445843

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

0:673365

�:407579

�

Since the Hessian has both positive and negative eigenvalues, f has a saddle point

at .�1:580 82; 0:292 686/. Its value there is 0:044 584 3.

The negative exponential in the definition of f ensures that f ! 0 as x2
C y2

!1.

Assuming that we have found all the critical points of f; the value at the critical point

in (b) must be an absolute maximum and that in (c) must be an absolute minimum.

Remark The most difficult part of using fsolve for large systems is determining

suitable starting values for the roots or critical points. Graphical means are really only

suitable for small systems (one, two, or three equations), and even then it is important

to analyze the equations or functions involved for clues on where the roots or critical

points may be. Here are some possibilities to consider:
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1. Sometimes some of the equations will be simple enough that they can be solved for

some variables and thus used to reduce the size of the system. We could have used

the second equation in Example 1 to eliminate z from the first and third equations

and, hence, reduced the system to two equations in two unknowns.

2. The system might result from adding a small extra term to a simpler system, the

location of whose roots is known. In this case you can use those known roots as

initial guesses.

3. Always be alert for equations limiting the possible values of some variables. For

instance, in Example 1 the equation x2
C y4

D 1 limited x and y to the interval

Œ�1; 1�.

E X E R C I S E S 13.8

In Exercises 1–2, solve the given systems of equations by using

Maple’s fsolve routine. Quote the solutions to 5 significant

figures. Be alert for simple substitutions that can reduce the

number of equations that must be fed to fsolve.

M 1.

8

ˆ

<

ˆ

:

x
2
C y

2
C z

2
D 1

z D xy

6xz D 1

M 2.

8

ˆ

<

ˆ

:

x
4
C y

2
C z

2
D 1

y D sin z

z C z
3
C z

4
D x C y

In Exercises 3–6, use fsolve to calculate the requested results.

In each case quote the results to 5 significant digits.

M 3. Find the maximum and minimum values and their locations

for f .x; y/ D .xy � x � 2y/=..1C x2
C y2/2/. Use a

contour plot to help you determine suitable starting points.

M 4. Evidently, f D 1 � 10x4
� 8y4

� 7z4 has maximum value 1

at .0; 0; 0/. Find the absolute maximum value of h D f C g,

where g D yz � xyz � x � 2y C z by starting at various

points near .0; 0; 0/.

M 5. Find the minimum value of

f D x
2
C y

2
C z

2
C 0:2xy � 0:3xz C 4x � y:

M 6. Find the maximum and minimum values of

f .x; y; z/ D
x C 1:1y � 0:9z C 1

1C x2
C y2

C z2
:

13.9 Entropy in Statistical Mechanics and Information Theory

Entropy was introduced in Chapter 12 as an independent variable in a function that

determines internal energy. Many feel compelled to ask what entropy means physically.

It is curious that when carefully examined, thermodynamic energy is no less intuitively

mysterious from a physical point of view, but few feel moved to subject it to the same

level of scrutiny. Nonetheless, physicists have delved extensively into the microscopic

origins of both of these quantities through the subject of statistical mechanics.

This section presents gateway applications (marked E) that pertain to entropy

and represent entries into two distinct fields without attempting comprehensive treat-

ments. First, elementary multivariate calculus leads to a statistical mechanical view of

entropy. This not only turns out to be surprisingly simple, but it also has an unantici-

pated broad scope, as often happens with mathematics. An important example of this is

the distinct field of information theory where entropy becomes the central object. As

an entry to the subject, we illustrate with the elementary example of data compression.

E Boltzmann Entropy
The main city graveyard of Vienna is a fascinating place. It is the final resting place

of many important historical figures, including the famous scientist Ludwig Boltz-

mann. His tombstone has an equation carved into it that relates a quantity S , known as

entropy, to a single quantityW; known as statistical weight.W represents the number

of ways that atomic and molecular positions and momenta can be rearranged without
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sols := fy D �:955506; x D 0:00492113g

2:21553

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

�3:58875

�8:54885

�

Since both eigenvalues are negative, f has a local maximum value 2:215 533 at

the critical point .0:004 921 13;�0:955 506/.

(c) Near the point .�0:6; 0:1/:

> sols := fsolve(eqns,{x=-0.6, y=0.1});

evalf(subs(sols,f));

sols := fy D 0:132977; x D �:421365g

�:283329

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

8:90194

2:32438

�

Since both eigenvalues are positive, f has a local minimum value �0:283 329 at

the critical point .�0:421 365; 0:132 977/.

(d) Near the point .1; 0/:

> sols := fsolve(eqns,{x=1, y=0}); evalf(subs(sols,f));

sols := fy D 0:0207852; x D 0:858435g

0:762810

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

3:28636

�2:84680

�

Since the Hessian has both positive and negative eigenvalues, f has a saddle point

at .0:858 435; 0:020 785 2/. Its value there is 0:762 810.

(e) Near the point .�1:6; 0:2/:

> sols := fsolve(eqns,{x=-1.6, y=0.2});

evalf(subs(sols,f));

sols := fy D 0:292686; x D �1:58082g

0:0445843

> LinearAlgebra[Eigenvalues](subs(sols,H));

�

0:673365

�:407579

�

Since the Hessian has both positive and negative eigenvalues, f has a saddle point

at .�1:580 82; 0:292 686/. Its value there is 0:044 584 3.

The negative exponential in the definition of f ensures that f ! 0 as x2
C y2

!1.

Assuming that we have found all the critical points of f; the value at the critical point

in (b) must be an absolute maximum and that in (c) must be an absolute minimum.

Remark The most difficult part of using fsolve for large systems is determining

suitable starting values for the roots or critical points. Graphical means are really only

suitable for small systems (one, two, or three equations), and even then it is important

to analyze the equations or functions involved for clues on where the roots or critical

points may be. Here are some possibilities to consider:
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1. Sometimes some of the equations will be simple enough that they can be solved for

some variables and thus used to reduce the size of the system. We could have used

the second equation in Example 1 to eliminate z from the first and third equations

and, hence, reduced the system to two equations in two unknowns.

2. The system might result from adding a small extra term to a simpler system, the

location of whose roots is known. In this case you can use those known roots as

initial guesses.

3. Always be alert for equations limiting the possible values of some variables. For

instance, in Example 1 the equation x2
C y4

D 1 limited x and y to the interval

Œ�1; 1�.

E X E R C I S E S 13.8

In Exercises 1–2, solve the given systems of equations by using

Maple’s fsolve routine. Quote the solutions to 5 significant

figures. Be alert for simple substitutions that can reduce the

number of equations that must be fed to fsolve.

M 1.

8

ˆ

<

ˆ

:

x
2
C y

2
C z

2
D 1

z D xy

6xz D 1

M 2.

8

ˆ

<

ˆ

:

x
4
C y

2
C z

2
D 1

y D sin z

z C z
3
C z

4
D x C y

In Exercises 3–6, use fsolve to calculate the requested results.

In each case quote the results to 5 significant digits.

M 3. Find the maximum and minimum values and their locations

for f .x; y/ D .xy � x � 2y/=..1C x2
C y2/2/. Use a

contour plot to help you determine suitable starting points.

M 4. Evidently, f D 1 � 10x4
� 8y4

� 7z4 has maximum value 1

at .0; 0; 0/. Find the absolute maximum value of h D f C g,

where g D yz � xyz � x � 2y C z by starting at various

points near .0; 0; 0/.

M 5. Find the minimum value of

f D x
2
C y

2
C z

2
C 0:2xy � 0:3xz C 4x � y:

M 6. Find the maximum and minimum values of

f .x; y; z/ D
x C 1:1y � 0:9z C 1

1C x2
C y2

C z2
:

13.9 Entropy in Statistical Mechanics and Information Theory

Entropy was introduced in Chapter 12 as an independent variable in a function that

determines internal energy. Many feel compelled to ask what entropy means physically.

It is curious that when carefully examined, thermodynamic energy is no less intuitively

mysterious from a physical point of view, but few feel moved to subject it to the same

level of scrutiny. Nonetheless, physicists have delved extensively into the microscopic

origins of both of these quantities through the subject of statistical mechanics.

This section presents gateway applications (marked E) that pertain to entropy

and represent entries into two distinct fields without attempting comprehensive treat-

ments. First, elementary multivariate calculus leads to a statistical mechanical view of

entropy. This not only turns out to be surprisingly simple, but it also has an unantici-

pated broad scope, as often happens with mathematics. An important example of this is

the distinct field of information theory where entropy becomes the central object. As

an entry to the subject, we illustrate with the elementary example of data compression.

E Boltzmann Entropy
The main city graveyard of Vienna is a fascinating place. It is the final resting place

of many important historical figures, including the famous scientist Ludwig Boltz-

mann. His tombstone has an equation carved into it that relates a quantity S , known as

entropy, to a single quantityW; known as statistical weight.W represents the number

of ways that atomic and molecular positions and momenta can be rearranged without
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apparently changing how a physical system appears to us in our everyday world.

Entropy is how we keep track of all of these invisible possibilities in thermo-

dynamics. It has the key property that the overall entropy of two completely inde-

pendent physical systems is just the sum of the entropies of each system evaluated

separately. On the other hand, the number of ways one system can be arranged is in-

dependent of the other system, so the overall statistical weight of the independent pair

of systems viewed as a whole is just the product of the statistical weights from each

system. The size of the statistical weights are so large in reality that one can very ef-

fectively treat them as continuous variables and entropy as a differentiable function of

them. We will use these properties to deduce the unique equation, valid for all systems,

that you will find on Boltzmann’s tombstone when you make your visit to the main city

graveyard of Vienna.

We seek a unique function of the form S D f .W / valid for all physical systems.

Accordingly, two independent systems, labelled 1 and 2, will have entropies given by

S1 D f .W1/ and S2 D f .W2/ in terms of their statistical weights W1 and W2.

Because of additivity, S D S1 C S2. Because of independence, for every state in

system 1 there are W2 states in independent system 2, so the number of states for both

systems combined is W D W1W2. Thus, S D f .W / D f .W1W2/. Since S1 does not

depend on W2 and S2 does not depend on W1, it follows that

dS1

dW1

D

@S

@W1

D f
0
.W /W2 and

dS2

dW2

D

@S

@W2

D f
0
.W /W1;

and so

W1

dS1

dW1

D W2

dS2

dW2

:

Since the left side of this equation is independent of W2 and the right side is indepen-

dent of W1, both sides sides must be independent of both variables and so must be a

constant k. Hence, S1 D k lnW1CC1 and S2 D k lnW2CC2: The only way to make

the function of statistical weight independent of the system is to require that entropy

vanish when there is only one way to arrange the system; that is, when the statistical

weight is 1, the entropy must be 0, and C1 D C2 D 0 (see Exercise 1 below). Thus,

generally,

S D k lnW;

which is Boltzmann’s epitaph. A quibble is that the actual epitaph precedes the use of

the ln notation for the natural logarithm. So what is actually carved in the stone is

S D k:logeW

where the unorthodox “period” so carved clearly denotes multiplication.

The positive constant k is known as the Boltzmann constant, which is regarded

as one of the fundamental constants of nature. If entropy has units of energy per

temperature, as we deduce from the definition of temperature in Chapter 12, then those

are also the units of k. In modern physics, k is often written kB to distinguish it

from other uses for the symbol. But because temperature scales are discretionary to an

extent, k can just as easily be set to 1 with suitable units.

E Shannon Entropy
An equivalent form of entropy can be expressed in terms of probabilities. We intro-

duced it in Example 1 of Section 13.4. Although this form originated in physics, also

dating back to Boltzmann, it was made most famous by Claude Shannon in the 1950s in

his creation, information theory. Thus, it became widely known as Shannon entropy.

We adopt this slightly ahistorical usage for that reason.
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To deduce this form, first consider an ensemble ofM identical systems, each with

entropy S . Each system has the same internal probability pi of being in any particular

state i . The number of systems in state i is Mpi = mi , where
P

i pi D 1. The number

of ways that the collection of M systems can have m1 systems in state 1, m2 systems

in state 2, etc., is

WM D
MŠ

m1Šm2Š � � � mi Š � � �
:

By additivity, the combined entropy of the M systems is

SM D MS D k lnWM D k.lnMŠ �

X

i

lnmi Š/:

If we use the Modified Stirling Formula lnmŠ � m lnm�m (see Exercise 45 of Section

9.6) to approximate the factorials, the above expression becomes

SM DMS � k

 

M lnM �M �
X

i

.mi lnmi �mi /

!

D k

 

M lnM �M �
X

i

.Mpi lnMpi �Mpi /

!

D k

 

M lnM �M � .M lnM �M/

X

i

pi �

X

i

.Mpi lnpi /

!

;

so that, on division by M , we get

S D �k

X

i

pi ln pi :

Example 1 in Section 13.4 illustrated this with two constraints. This representa-

tion of entropy also retains a useful maximum property when constrained in terms of

probability alone. For example, consider the problem

extremize: S D �k

n
X

iD1

pi lnpi where

n
X

iD1

pi D 1

The maximum value occurs when all the probabilities pi are equal to 1=n. We expect a

maximum principle to persist because in Example 1 of Section 13.4 it became apparent

that any attempt to find a critical point of the entropy of the system led to a maximum

value of the entropy.

E Information Theory
The joining of probability with the maximum property of entropy led, amazingly, to

an understanding of the general limits of transmission and encoding of signals, which

was the origin of the subject of information theory. In information theory, entropy is

expressed in a superficially different manner than it is in statistical mechanics. Instead

of the natural logarithm, log to the base 2 is normally, but not necessarily, used and the

constant is set to 1,

S D H.p1; : : : ; pN / D �

N
X

iD1

pi log2 pi ; where

N
X

iD1

pi D 1:

H is the customary notation for the Shannon or information entropy (or just informa-

tion). It is a common problem that one must dress up universal concepts in different

clothes as they pass between different fields. Although H has been widely adopted by

users of information theory, its use to denote entropy in this probabilistic form actu-

ally dates back to Boltzmann, who articulated his early ideas in his historically famous

“H -theorem.” In this form, H can be viewed as the mean value of log21=pi , which is

called the self information or the surprisal.
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apparently changing how a physical system appears to us in our everyday world.

Entropy is how we keep track of all of these invisible possibilities in thermo-

dynamics. It has the key property that the overall entropy of two completely inde-

pendent physical systems is just the sum of the entropies of each system evaluated

separately. On the other hand, the number of ways one system can be arranged is in-

dependent of the other system, so the overall statistical weight of the independent pair

of systems viewed as a whole is just the product of the statistical weights from each

system. The size of the statistical weights are so large in reality that one can very ef-

fectively treat them as continuous variables and entropy as a differentiable function of

them. We will use these properties to deduce the unique equation, valid for all systems,

that you will find on Boltzmann’s tombstone when you make your visit to the main city

graveyard of Vienna.

We seek a unique function of the form S D f .W / valid for all physical systems.

Accordingly, two independent systems, labelled 1 and 2, will have entropies given by

S1 D f .W1/ and S2 D f .W2/ in terms of their statistical weights W1 and W2.

Because of additivity, S D S1 C S2. Because of independence, for every state in

system 1 there are W2 states in independent system 2, so the number of states for both

systems combined is W D W1W2. Thus, S D f .W / D f .W1W2/. Since S1 does not

depend on W2 and S2 does not depend on W1, it follows that

dS1

dW1

D

@S

@W1

D f
0
.W /W2 and

dS2

dW2

D

@S

@W2

D f
0
.W /W1;

and so

W1

dS1

dW1

D W2

dS2

dW2

:

Since the left side of this equation is independent of W2 and the right side is indepen-

dent of W1, both sides sides must be independent of both variables and so must be a

constant k. Hence, S1 D k lnW1CC1 and S2 D k lnW2CC2: The only way to make

the function of statistical weight independent of the system is to require that entropy

vanish when there is only one way to arrange the system; that is, when the statistical

weight is 1, the entropy must be 0, and C1 D C2 D 0 (see Exercise 1 below). Thus,

generally,

S D k lnW;

which is Boltzmann’s epitaph. A quibble is that the actual epitaph precedes the use of

the ln notation for the natural logarithm. So what is actually carved in the stone is

S D k:logeW

where the unorthodox “period” so carved clearly denotes multiplication.

The positive constant k is known as the Boltzmann constant, which is regarded

as one of the fundamental constants of nature. If entropy has units of energy per

temperature, as we deduce from the definition of temperature in Chapter 12, then those

are also the units of k. In modern physics, k is often written kB to distinguish it

from other uses for the symbol. But because temperature scales are discretionary to an

extent, k can just as easily be set to 1 with suitable units.

E Shannon Entropy
An equivalent form of entropy can be expressed in terms of probabilities. We intro-

duced it in Example 1 of Section 13.4. Although this form originated in physics, also

dating back to Boltzmann, it was made most famous by Claude Shannon in the 1950s in

his creation, information theory. Thus, it became widely known as Shannon entropy.

We adopt this slightly ahistorical usage for that reason.
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To deduce this form, first consider an ensemble ofM identical systems, each with

entropy S . Each system has the same internal probability pi of being in any particular

state i . The number of systems in state i is Mpi = mi , where
P

i pi D 1. The number

of ways that the collection of M systems can have m1 systems in state 1, m2 systems

in state 2, etc., is

WM D
MŠ

m1Šm2Š � � � mi Š � � �
:

By additivity, the combined entropy of the M systems is

SM D MS D k lnWM D k.lnMŠ �

X

i

lnmi Š/:

If we use the Modified Stirling Formula lnmŠ � m lnm�m (see Exercise 45 of Section

9.6) to approximate the factorials, the above expression becomes

SM DMS � k

 

M lnM �M �
X

i

.mi lnmi �mi /

!

D k

 

M lnM �M �
X

i

.Mpi lnMpi �Mpi /

!

D k

 

M lnM �M � .M lnM �M/

X

i

pi �

X

i

.Mpi lnpi /

!

;

so that, on division by M , we get

S D �k

X

i

pi ln pi :

Example 1 in Section 13.4 illustrated this with two constraints. This representa-

tion of entropy also retains a useful maximum property when constrained in terms of

probability alone. For example, consider the problem

extremize: S D �k

n
X

iD1

pi lnpi where

n
X

iD1

pi D 1

The maximum value occurs when all the probabilities pi are equal to 1=n. We expect a

maximum principle to persist because in Example 1 of Section 13.4 it became apparent

that any attempt to find a critical point of the entropy of the system led to a maximum

value of the entropy.

E Information Theory
The joining of probability with the maximum property of entropy led, amazingly, to

an understanding of the general limits of transmission and encoding of signals, which

was the origin of the subject of information theory. In information theory, entropy is

expressed in a superficially different manner than it is in statistical mechanics. Instead

of the natural logarithm, log to the base 2 is normally, but not necessarily, used and the

constant is set to 1,

S D H.p1; : : : ; pN / D �

N
X

iD1

pi log2 pi ; where

N
X

iD1

pi D 1:

H is the customary notation for the Shannon or information entropy (or just informa-

tion). It is a common problem that one must dress up universal concepts in different

clothes as they pass between different fields. Although H has been widely adopted by

users of information theory, its use to denote entropy in this probabilistic form actu-

ally dates back to Boltzmann, who articulated his early ideas in his historically famous

“H -theorem.” In this form, H can be viewed as the mean value of log21=pi , which is

called the self information or the surprisal.
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Of course, these superficial changes do not alter the basic properties of entropy.

H still has the maximum property, and it is still additive. That is, two independent

systems with entropies H1 and H2 can be regarded as a single system with entropy

H1 CH2. The proof of this is left as an exercise. (See Exercise 3.)

If one has a sequence of n bits to represent a number in base 2, then there are 2n

possible numbers, and the probability, when all probabilities are the same, of any one

number is 2�n. This is the maximum entropy scenario. In this case for n bits,

H D �

2n
X

iD1

2
�n log2 2

�n
D n:

Thus, the maximum information entropy is nothing more than the number of bits in

the sequence.

We can use a string of bits to send a message, even though we send messages with

an alphabet instead of bits. We can imagine a message as being a string of x characters.

Each character is drawn from an alphabet of y letters. If all letters are equally likely,

the number of possible messages is yx . This means that the entropy of the message

string is

Hm D �

yx
X

iD1

y
�x log2 y

�x
D �y

x
y

�x
.�x/ log2 y D x log2 y:

On the other hand, the entropy of each letter is given by

Hl D �

y
X

iD1

y
�1 log2 y

�1
D �y y

�1
.�1/ log2 y D log2 y:

By the additivity of entropy, since the message consists of x such letters, it’s entropy

must satisfy

Hm D xHl D x log2 y;

agreeing with the earlier calculation.

We can use a bit string to assign a specific string of bits to represent one mem-

ber of an alphabet. The now-classical example is ASCII (American Standard Code for

Information Interchange), which in its original form had 27
D 128 characters in its al-

phabet. This included the regular English alphabet in upper- and lower-case, numbers,

punctuation marks, and other special characters. For ASCII, in the unlikely case where

all characters were equally probable, the entropy of our x-character message would be

Hm D 7x. More generally, for an m-bit alphabet (i.e., y D 2m),

Hm D mx:

Thus, what seemed to be the maximum entropy for the message string turns out to be

equivalent to the maximum entropy of the entire binary string, since mx D n.

The relationship between entropy and bit string length only holds in the case of

equal probabilities with symbols represented by equal numbers of bits. We could, for

example, change the probability structure by making some of the characters in the

alphabet more likely than others, while using the same rules for sending the message

in terms of bits. In that case, the number of bits would be unchanged, but the entropy

would not be given by the length of the bit string any longer. Instead of the length of

the string, the entropy is given by

H D �x

y
X

iD1

pi log2 pi :
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Here pi is the probability of character i in an alphabet of y characters forming a mes-

sage string of x characters.

This allows the possibility of compression. We might, on average, send a partic-

ular message with fewer than mx bits. This can be done quite simply by allowing the

alphabet to be represented by unique bit strings of varying size. The improbable char-

acters are assigned to longer bit strings, while the probable ones are assigned to shorter

ones. A theorem from information theory says that the best compression possible is

given by

�

Py
iD1 pi log2 pi

log2y
;

which is just the ratio of entropies.

E X A M P L E 1
Suppose our alphabet has only y D 8 characters, using the letters

A through H for convenience. Then log2 y D 3, and we must

use an average of 3 bits per character. Suppose, however, that the probabilities of the

characters are as follows:

char A B C D E F G H

prob
1

4

1

4

1

8

1

8

1

8

1

16

1

32

1

32

Note that the sum of the probabilities is indeed 1. Then the best compression is

1

3

�

2

4
C

2

4
C

3

8
C

3

8
C

3

8
C

4

16
C

5

32
C

5

32

�

� 0:896

using three figures of accuracy.

If we represent A by the string 10, B by 11, C by 001, D by 000, E by 010, F by 0111,

G by 01101, and H by 01100, any string of bits can be uniquely decoded by a simple

algorithm. One such algorithm for decoding the string character by character is:

Read the first two bits.

If 1 0 then A (done)

If 1 1 then B (done)

If 0 0 then read the 3rd bit

If 1 then C (done)

If 0 then D (done)

If 0 1 then read the 3rd bit

If 0 then E (done)

If 1 then read the 4th bit

If 1 then F (done)

If 0 then read the 5th bit

If 1 then G (done)

If 0 then H (done)

Repeat the above starting with the first unread bits for remaining characters. Here, in

conformance to the entropy structure for average string length 3 bits, 2 bits correspond

to the most probable letters while 5 bits represent the least. The optimal encoding

scheme is not unique; all that is needed to be optimal is to assign the numbers of bits in

such a way that the correct encoding can be deduced. If we use this encoding structure,

we will on average have 89.6% of the message length of a scheme that assigns exactly

3 bits to every one of the characters in the 8-character alphabet.

Compression is just one simple application. There are also many other important

results of information theory such as the transmission capacity on noisy channels, data

analysis methods, and much more.
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Of course, these superficial changes do not alter the basic properties of entropy.

H still has the maximum property, and it is still additive. That is, two independent

systems with entropies H1 and H2 can be regarded as a single system with entropy

H1 CH2. The proof of this is left as an exercise. (See Exercise 3.)

If one has a sequence of n bits to represent a number in base 2, then there are 2n

possible numbers, and the probability, when all probabilities are the same, of any one

number is 2�n. This is the maximum entropy scenario. In this case for n bits,

H D �

2n
X

iD1

2
�n log2 2

�n
D n:

Thus, the maximum information entropy is nothing more than the number of bits in

the sequence.

We can use a string of bits to send a message, even though we send messages with

an alphabet instead of bits. We can imagine a message as being a string of x characters.

Each character is drawn from an alphabet of y letters. If all letters are equally likely,

the number of possible messages is yx . This means that the entropy of the message

string is

Hm D �

yx
X

iD1

y
�x log2 y

�x
D �y

x
y

�x
.�x/ log2 y D x log2 y:

On the other hand, the entropy of each letter is given by

Hl D �

y
X

iD1

y
�1 log2 y

�1
D �y y

�1
.�1/ log2 y D log2 y:

By the additivity of entropy, since the message consists of x such letters, it’s entropy

must satisfy

Hm D xHl D x log2 y;

agreeing with the earlier calculation.

We can use a bit string to assign a specific string of bits to represent one mem-

ber of an alphabet. The now-classical example is ASCII (American Standard Code for

Information Interchange), which in its original form had 27
D 128 characters in its al-

phabet. This included the regular English alphabet in upper- and lower-case, numbers,

punctuation marks, and other special characters. For ASCII, in the unlikely case where

all characters were equally probable, the entropy of our x-character message would be

Hm D 7x. More generally, for an m-bit alphabet (i.e., y D 2m),

Hm D mx:

Thus, what seemed to be the maximum entropy for the message string turns out to be

equivalent to the maximum entropy of the entire binary string, since mx D n.

The relationship between entropy and bit string length only holds in the case of

equal probabilities with symbols represented by equal numbers of bits. We could, for

example, change the probability structure by making some of the characters in the

alphabet more likely than others, while using the same rules for sending the message

in terms of bits. In that case, the number of bits would be unchanged, but the entropy

would not be given by the length of the bit string any longer. Instead of the length of

the string, the entropy is given by

H D �x

y
X

iD1

pi log2 pi :
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Here pi is the probability of character i in an alphabet of y characters forming a mes-

sage string of x characters.

This allows the possibility of compression. We might, on average, send a partic-

ular message with fewer than mx bits. This can be done quite simply by allowing the

alphabet to be represented by unique bit strings of varying size. The improbable char-

acters are assigned to longer bit strings, while the probable ones are assigned to shorter

ones. A theorem from information theory says that the best compression possible is

given by

�

Py
iD1 pi log2 pi

log2y
;

which is just the ratio of entropies.

E X A M P L E 1
Suppose our alphabet has only y D 8 characters, using the letters

A through H for convenience. Then log2 y D 3, and we must

use an average of 3 bits per character. Suppose, however, that the probabilities of the

characters are as follows:

char A B C D E F G H

prob
1

4

1

4

1

8

1

8

1

8

1

16

1

32

1

32

Note that the sum of the probabilities is indeed 1. Then the best compression is

1

3

�

2

4
C

2

4
C

3

8
C

3

8
C

3

8
C

4

16
C

5

32
C

5

32

�

� 0:896

using three figures of accuracy.

If we represent A by the string 10, B by 11, C by 001, D by 000, E by 010, F by 0111,

G by 01101, and H by 01100, any string of bits can be uniquely decoded by a simple

algorithm. One such algorithm for decoding the string character by character is:

Read the first two bits.

If 1 0 then A (done)

If 1 1 then B (done)

If 0 0 then read the 3rd bit

If 1 then C (done)

If 0 then D (done)

If 0 1 then read the 3rd bit

If 0 then E (done)

If 1 then read the 4th bit

If 1 then F (done)

If 0 then read the 5th bit

If 1 then G (done)

If 0 then H (done)

Repeat the above starting with the first unread bits for remaining characters. Here, in

conformance to the entropy structure for average string length 3 bits, 2 bits correspond

to the most probable letters while 5 bits represent the least. The optimal encoding

scheme is not unique; all that is needed to be optimal is to assign the numbers of bits in

such a way that the correct encoding can be deduced. If we use this encoding structure,

we will on average have 89.6% of the message length of a scheme that assigns exactly

3 bits to every one of the characters in the 8-character alphabet.

Compression is just one simple application. There are also many other important

results of information theory such as the transmission capacity on noisy channels, data

analysis methods, and much more.
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E X E R C I S E S 13.9

1. Using properties of entropy, show that the only value for the

universal constant C that satisfies the expression

S D k lnW C C for all independent physical systems is

C D 0.

2. Prove the form of the maximum property of entropy made in

the text: If k > 0, 0 � pi � 1 for 1 � i � n, and
Pn

iD1 pi D 1, then �k
Pn

iD1 pi lnpi has a maximum value

when pi D 1=n for each i .

3.I Given two independent systems with information entropies

H1 D �

I
X

iD1

pi log2 pi I

I
X

iD1

pi D 1;

H2 D �

J
X

j D1

qj log2 qj I

J
X

j D1

qj D 1;

show that the sum of the entropies is also the entropy for the

system

H D �

K
X

kD1

�k log2 �k I

K
X

kD1

�k D 1;

formed by interpreting both independent systems as

subsystems of a single larger system. Hint: For each .i; j /

satisfying 1 � i � I and 1 � j � J , there is a unique

k D i C I.j � 1/ satisfying 1 � k � K D IJ . Show that

H1 CH2 D H , provided �k D piqj .

4. Find an optimal binary compression for a 4-character alphabet

a; b; c; d with probabilities 1=2; 1=4; 1=8; 1=8, and state the

average compression.

5.I The statistical weight W for N distinct atoms distributed

among N states is just NŠ. But suppose these states form M

groupings, each grouping with distinct energy �i per atom,

such that the atoms within each grouping may be exchanged

without observable consequence. The physical condition of

the system can then be specified by knowing only the number

of atoms in each of these groupings, n1; n2; : : : ; nM , where
PM

iD1 ni D N . The statistical weight then becomes

NŠ

n1Šn2Š � � �nM Š
:

Assuming all ni are large, use the Modified Stirling

approximation lnnŠ � n lnn � n to show that maximizing the

entropy S D k lnW subject to the constraints of having a

fixed total number N of atoms, and a fixed total energy
PM

iD1 ni�i D E, leads to the relationship

ni D Ae
�B�i ;

where the constants A and B are determined by the values of

the Lagrange multipliers for the constrained extremal problem

for S , and hence by the two constraints.

6.I The result of the previous problem holds for other classes of

particles, for instance, molecules of an ideal gas, provided the

energies of the particles are mainly the kinetic energies of

their translational motions. In that result, we can let N and M

grow very large in such a way that the largest gap between

adjacent values of �j approaches zero in length. In the limit,

the kinetic energy of each atom is a function of its mass m and

speed v: � D 1
2
mv2.

Consider for the moment only the part of the kinetic

energy of the particle due to its velocity ui in the x direction.

The number of atoms for which the x-component of velocity

is u will be given by a density function n.u/ satisfying, by the

result of the previous exercise,

n.u/ D Ae
�Bmu2=2

:

(a) Show that p.u/ D
n.u/

N
is a normally distributed probability

density function. What are the values of the mean and

variance of u? (See Definition 7 in Section 7.8 and the

following discussion.) Express the value of A in terms of B ,

m, and N .

(b) Find the expectation of u2 for the random variable u, and

hence the expected value of the part of the kinetic energy of a

random particle in our system due to its motion in the x

direction. What is the expected value of the total kinetic

energy of a random particle in the system, and of all the

particles?

(c) Use the formula E D
3

2
NkT (from Exercise 25 of Section

12.6 or the discussion preceding Example 4 in Section 12.8),

expressing the energy of an ideal gas at absolute temperature

T and consisting of N molecules, to find the value of B .

(Here k is the Boltzmann constant.) Hence, show that the

probability density function for the number of particles having

velocity v in an ideal gas is

p.v/ D
�

m

2�kT

�
3
2
e

� m.jvj
2/

2kT :

This is known as the Maxwell-Boltzmann distribution.

C H A P T E R R E V I E W

Key Ideas

� What is meant by the following terms?

˘ a critical point of f .x; y/

˘ a singular point of f .x; y/

˘ an absolute maximum value of f .x; y/

˘ a local minimum value of f .x; y/

˘ a saddle point of f .x; y/

˘ a quadratic form
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˘ a constraint

˘ linear programming

˘ an envelope of a family of curves

� State the second derivative test for a critical point of f .x; y/.

� Describe the method of Lagrange multipliers.

� Describe the method of least squares.

� Describe Newton’s Method for two equations.

Review Exercises

In Exercises 1–4, find and classify all the critical points of the given

functions.

1. xy e�xCy 2. x2
y � 2xy

2
C 2xy

3.
1

x
C

4

y
C

9

4 � x � y
4. x2

y.2 � x � y/

5. Let f .x; y; z/ D x2
Cy2

Cz2
C

1

x2
C y2

C z2
. Does f have

a minimum value? If so, what is it and where is it assumed?

6. Show that x2
C y2

C z2
� xy � xz � yz has a local minimum

value at .0; 0; 0/. Is the minimum value assumed anywhere

else?

7. Find the absolute maximum and minimum values of f .x; y/ D

xye�x2�4y2

. Justify your answer.

8. Let f .x; y/ D .4x2
� y2/e�x2Cy2

.

(a) Find the maximum and minimum values of f .x; y/ on the

xy-plane.

(b) Find the maximum and minimum values of f .x; y/ on the

wedge-shaped region 0 � y � 3x.

9. A wire of lengthL cm is cut into at most three pieces, and each

piece is bent into a square. What is the (a) minimum and (b)

maximum of the sum of the areas of the squares?

10. A delivery service will accept parcels in the shape of rectangu-

lar boxes the sum of whose girth and height is at most 120 in.

(The girth is the perimeter of a horizontal cross-section.) What

is the largest possible volume of such a box?

11. Find the area of the smallest ellipse
x2

a2
C

y2

b2
D 1 that contains

the rectangle �1 � x � 1, �2 � y � 2.

12. Find the volume of the smallest ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1

that contains the rectangular box �1 � x � 1, �2 � y � 2,

�3 � z � 3.

13. Find the volume of the smallest region of the form

0 � z � a

�

1 �
x2

b2
�

y2

c2

�

that contains the box �1 � x � 1, �2 � y � 2, 0 � z � 2.

14. A window has the shape of a rectangle surmounted by an

isosceles triangle. What are the dimensions x, y, and z of the

window (see Figure 13.29) if its perimeter is L and its area is

maximum?

z

yy

z

x

Figure 13.29

15. A widget manufacturer determines that if she manufactures x

thousands of widgets per month and sells the widgets for y

dollars each, then her monthly profit (in thousands of dollars)

will be P D xy �
1

27
x

2
y

3
� x. If her factory is capable of

producing at most 3,000 widgets per month, and government

regulations prevent her from charging more than $2 per widget,

how many should she manufacture, and how much should she

charge for each, to maximize her monthly profit?

16. Find the envelope of the family of curves y D .x�c/3C3c.

17. Find an approximate solution y.x; �/ of the equation

y C �xey
D �2x having terms up to second degree in �.

18. (a) Calculate G 0.y/ if G.y/ D

Z 1

0

tan�1.xy/

x
dx:

(b) Evaluate

Z 1

0

tan�1.�x/ � tan�1x

x
dx. Hint: This inte-

gral is G.�/ �G.1/.

Challenging Problems

1. (Fourier series)

Show that the constants ak , .k D 0; 1; 2; : : : ; n/, and bk , .k D

1; 2; : : : ; n/, which minimize the integral

In D

Z �

��

"

f .x/ �
a0

2
�

n
X

kD0

�

ak cos kx C bk sin kx
�

#2

dx;

are given by

ak D
1

�

Z �

�

f .x/ cos kx dx; bk D
1

�

Z �

�

f .x/ sin kx dx:

Note that these numbers, called the Fourier coefficients of f

on Œ��; ��, do not depend on n. If they can be calculated for

all positive integers k, then the series

a0

2
C

1
X

kD0

�

ak cos kx C bk sin kx
�

is called the (full-range) Fourier series of f on Œ��; ��. (See

Section 9.9.)

2. This is a continuation of Problem 1. Find the (full range)

Fourier coefficients ak and bk of

f .x/ D

�

0 if �� � x < 0

x if 0 � x � � .

What is the minimum value of In in this case? How does it

behave as n!1?
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E X E R C I S E S 13.9

1. Using properties of entropy, show that the only value for the

universal constant C that satisfies the expression

S D k lnW C C for all independent physical systems is

C D 0.

2. Prove the form of the maximum property of entropy made in

the text: If k > 0, 0 � pi � 1 for 1 � i � n, and
Pn

iD1 pi D 1, then �k
Pn

iD1 pi lnpi has a maximum value

when pi D 1=n for each i .

3.I Given two independent systems with information entropies

H1 D �

I
X

iD1

pi log2 pi I

I
X

iD1

pi D 1;

H2 D �

J
X

j D1

qj log2 qj I

J
X

j D1

qj D 1;

show that the sum of the entropies is also the entropy for the

system

H D �

K
X

kD1

�k log2 �k I

K
X

kD1

�k D 1;

formed by interpreting both independent systems as

subsystems of a single larger system. Hint: For each .i; j /

satisfying 1 � i � I and 1 � j � J , there is a unique

k D i C I.j � 1/ satisfying 1 � k � K D IJ . Show that

H1 CH2 D H , provided �k D piqj .

4. Find an optimal binary compression for a 4-character alphabet

a; b; c; d with probabilities 1=2; 1=4; 1=8; 1=8, and state the

average compression.

5.I The statistical weight W for N distinct atoms distributed

among N states is just NŠ. But suppose these states form M

groupings, each grouping with distinct energy �i per atom,

such that the atoms within each grouping may be exchanged

without observable consequence. The physical condition of

the system can then be specified by knowing only the number

of atoms in each of these groupings, n1; n2; : : : ; nM , where
PM

iD1 ni D N . The statistical weight then becomes

NŠ

n1Šn2Š � � �nM Š
:

Assuming all ni are large, use the Modified Stirling

approximation lnnŠ � n lnn � n to show that maximizing the

entropy S D k lnW subject to the constraints of having a

fixed total number N of atoms, and a fixed total energy
PM

iD1 ni�i D E, leads to the relationship

ni D Ae
�B�i ;

where the constants A and B are determined by the values of

the Lagrange multipliers for the constrained extremal problem

for S , and hence by the two constraints.

6.I The result of the previous problem holds for other classes of

particles, for instance, molecules of an ideal gas, provided the

energies of the particles are mainly the kinetic energies of

their translational motions. In that result, we can let N and M

grow very large in such a way that the largest gap between

adjacent values of �j approaches zero in length. In the limit,

the kinetic energy of each atom is a function of its mass m and

speed v: � D 1
2
mv2.

Consider for the moment only the part of the kinetic

energy of the particle due to its velocity ui in the x direction.

The number of atoms for which the x-component of velocity

is u will be given by a density function n.u/ satisfying, by the

result of the previous exercise,

n.u/ D Ae
�Bmu2=2

:

(a) Show that p.u/ D
n.u/

N
is a normally distributed probability

density function. What are the values of the mean and

variance of u? (See Definition 7 in Section 7.8 and the

following discussion.) Express the value of A in terms of B ,

m, and N .

(b) Find the expectation of u2 for the random variable u, and

hence the expected value of the part of the kinetic energy of a

random particle in our system due to its motion in the x

direction. What is the expected value of the total kinetic

energy of a random particle in the system, and of all the

particles?

(c) Use the formula E D
3

2
NkT (from Exercise 25 of Section

12.6 or the discussion preceding Example 4 in Section 12.8),

expressing the energy of an ideal gas at absolute temperature

T and consisting of N molecules, to find the value of B .

(Here k is the Boltzmann constant.) Hence, show that the

probability density function for the number of particles having

velocity v in an ideal gas is

p.v/ D
�

m

2�kT

�
3
2
e

� m.jvj
2/

2kT :

This is known as the Maxwell-Boltzmann distribution.

C H A P T E R R E V I E W

Key Ideas

� What is meant by the following terms?

˘ a critical point of f .x; y/

˘ a singular point of f .x; y/

˘ an absolute maximum value of f .x; y/

˘ a local minimum value of f .x; y/

˘ a saddle point of f .x; y/

˘ a quadratic form
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˘ a constraint

˘ linear programming

˘ an envelope of a family of curves

� State the second derivative test for a critical point of f .x; y/.

� Describe the method of Lagrange multipliers.

� Describe the method of least squares.

� Describe Newton’s Method for two equations.

Review Exercises

In Exercises 1–4, find and classify all the critical points of the given

functions.

1. xy e�xCy 2. x2
y � 2xy

2
C 2xy

3.
1

x
C

4

y
C

9

4 � x � y
4. x2

y.2 � x � y/

5. Let f .x; y; z/ D x2
Cy2

Cz2
C

1

x2
C y2

C z2
. Does f have

a minimum value? If so, what is it and where is it assumed?

6. Show that x2
C y2

C z2
� xy � xz � yz has a local minimum

value at .0; 0; 0/. Is the minimum value assumed anywhere

else?

7. Find the absolute maximum and minimum values of f .x; y/ D

xye�x2�4y2

. Justify your answer.

8. Let f .x; y/ D .4x2
� y2/e�x2Cy2

.

(a) Find the maximum and minimum values of f .x; y/ on the

xy-plane.

(b) Find the maximum and minimum values of f .x; y/ on the

wedge-shaped region 0 � y � 3x.

9. A wire of lengthL cm is cut into at most three pieces, and each

piece is bent into a square. What is the (a) minimum and (b)

maximum of the sum of the areas of the squares?

10. A delivery service will accept parcels in the shape of rectangu-

lar boxes the sum of whose girth and height is at most 120 in.

(The girth is the perimeter of a horizontal cross-section.) What

is the largest possible volume of such a box?

11. Find the area of the smallest ellipse
x2

a2
C

y2

b2
D 1 that contains

the rectangle �1 � x � 1, �2 � y � 2.

12. Find the volume of the smallest ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1

that contains the rectangular box �1 � x � 1, �2 � y � 2,

�3 � z � 3.

13. Find the volume of the smallest region of the form

0 � z � a

�

1 �
x2

b2
�

y2

c2

�

that contains the box �1 � x � 1, �2 � y � 2, 0 � z � 2.

14. A window has the shape of a rectangle surmounted by an

isosceles triangle. What are the dimensions x, y, and z of the

window (see Figure 13.29) if its perimeter is L and its area is

maximum?

z

yy

z

x

Figure 13.29

15. A widget manufacturer determines that if she manufactures x

thousands of widgets per month and sells the widgets for y

dollars each, then her monthly profit (in thousands of dollars)

will be P D xy �
1

27
x

2
y

3
� x. If her factory is capable of

producing at most 3,000 widgets per month, and government

regulations prevent her from charging more than $2 per widget,

how many should she manufacture, and how much should she

charge for each, to maximize her monthly profit?

16. Find the envelope of the family of curves y D .x�c/3C3c.

17. Find an approximate solution y.x; �/ of the equation

y C �xey
D �2x having terms up to second degree in �.

18. (a) Calculate G 0.y/ if G.y/ D

Z 1

0

tan�1.xy/

x
dx:

(b) Evaluate

Z 1

0

tan�1.�x/ � tan�1x

x
dx. Hint: This inte-

gral is G.�/ �G.1/.

Challenging Problems

1. (Fourier series)

Show that the constants ak , .k D 0; 1; 2; : : : ; n/, and bk , .k D

1; 2; : : : ; n/, which minimize the integral

In D

Z �

��

"

f .x/ �
a0

2
�

n
X

kD0

�

ak cos kx C bk sin kx
�

#2

dx;

are given by

ak D
1

�

Z �

�

f .x/ cos kx dx; bk D
1

�

Z �

�

f .x/ sin kx dx:

Note that these numbers, called the Fourier coefficients of f

on Œ��; ��, do not depend on n. If they can be calculated for

all positive integers k, then the series

a0

2
C

1
X

kD0

�

ak cos kx C bk sin kx
�

is called the (full-range) Fourier series of f on Œ��; ��. (See

Section 9.9.)

2. This is a continuation of Problem 1. Find the (full range)

Fourier coefficients ak and bk of

f .x/ D

�

0 if �� � x < 0

x if 0 � x � � .

What is the minimum value of In in this case? How does it

behave as n!1?
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3.I Evaluate

Z x

0

ln.tx C 1/

1C t2
dt .

4.I (Steiner’s problem) The problem of finding a point in the

plane (or a higher-dimensional space) that minimizes the sum

of its distances from n given points is very difficult. The case

n D 3 is known as Steiner’s problem. If P1P2P3 is a trian-

gle whose largest angle is less than 120ı, there is a point Q

inside the triangle so that the lines QP1, QP2, and QP3 make

equal 120ı angles with one another. Show that the sum of the

distances from the vertices of the triangle to a point P is min-

imum when P D Q. Hint: First show that if P D .x; y/ and

Pi D .xi ; yi /, then

d jPPi j

dx
D cos �i and

d jPPi j

dy
D sin �i ;

where �i is the angle between
��!

PiP and the positive direction

of the x-axis. Hence, show that the minimal point P satisfies

two trigonometric equations involving �1, �2, and �3. Then

try to show that any two of those angles differ by ˙2�=3.

Where should P be taken if the triangle has an angle of 120ı

or greater?
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C H A P T E R 14

Multiple

Integration

“
“Do you know what a mathematician is?” Lord Kelvin asked a class.

He then stepped to the board and wrote

Z 1

�1
e

�x2

dx D
p

�:

Putting his finger on what he had written, he turned to the class. “A

mathematician is one to whom that is as obvious as that ‘twice two

makes four’ is to you.”

”William Thomson Kelvin 1824–1907

anecdote from Men of Mathematics by E. Bell

Introduction In this chapter we extend the concept of the definite inte-

gral to functions of several variables. Defined as limits of

Riemann sums, like the one-dimensional definite integral, such multiple integrals can

be evaluated using successive single definite integrals. They are used to represent and

calculate quantities specified in terms of densities in regions of the plane or spaces of

higher dimension. In the simplest instance, the volume of a three-dimensional region

is given by a double integral of its height over the two-dimensional plane region that

is its base.

14.1 Double Integrals

The definition of the definite integral,
R b

a
f .x/ dx, is motivated by the standard area

x

y

z

z D f .x; y/

S

D

Figure 14.1 A solid region S lying above

domain D in the xy-plane and below the

surface z D f .x; y/

problem, namely, the problem of finding the area of the plane region bounded by the

curve y D f .x/, the x-axis, and the lines x D a and x D b. Similarly, we can

motivate the double integral of a function of two variables over a domain D in the

plane by means of the standard volume problem of finding the volume of the three-

dimensional region S bounded by the surface z D f .x; y/, the xy-plane, and the

cylinder parallel to the z-axis passing through the boundary ofD. (See Figure 14.1. D

is called the domain of integration.) We will call such a three-dimensional region S

a “solid,” although we are not implying that it is filled with any particular substance.

We will define the double integral of f .x; y/ over the domain D,

ZZ

D

f .x; y/ dA;

in such a way that its value will give the volume of the solid S whenever D is a

“reasonable” domain and f is a “reasonable” function with positive values.
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3.I Evaluate

Z x

0

ln.tx C 1/

1C t2
dt .

4.I (Steiner’s problem) The problem of finding a point in the

plane (or a higher-dimensional space) that minimizes the sum

of its distances from n given points is very difficult. The case

n D 3 is known as Steiner’s problem. If P1P2P3 is a trian-

gle whose largest angle is less than 120ı, there is a point Q

inside the triangle so that the lines QP1, QP2, and QP3 make

equal 120ı angles with one another. Show that the sum of the

distances from the vertices of the triangle to a point P is min-

imum when P D Q. Hint: First show that if P D .x; y/ and

Pi D .xi ; yi /, then

d jPPi j

dx
D cos �i and

d jPPi j

dy
D sin �i ;

where �i is the angle between
��!

PiP and the positive direction

of the x-axis. Hence, show that the minimal point P satisfies

two trigonometric equations involving �1, �2, and �3. Then

try to show that any two of those angles differ by ˙2�=3.

Where should P be taken if the triangle has an angle of 120ı

or greater?
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C H A P T E R 14

Multiple

Integration

“
“Do you know what a mathematician is?” Lord Kelvin asked a class.

He then stepped to the board and wrote

Z 1

�1
e

�x2

dx D
p

�:

Putting his finger on what he had written, he turned to the class. “A

mathematician is one to whom that is as obvious as that ‘twice two

makes four’ is to you.”

”William Thomson Kelvin 1824–1907

anecdote from Men of Mathematics by E. Bell

Introduction In this chapter we extend the concept of the definite inte-

gral to functions of several variables. Defined as limits of

Riemann sums, like the one-dimensional definite integral, such multiple integrals can

be evaluated using successive single definite integrals. They are used to represent and

calculate quantities specified in terms of densities in regions of the plane or spaces of

higher dimension. In the simplest instance, the volume of a three-dimensional region

is given by a double integral of its height over the two-dimensional plane region that

is its base.

14.1 Double Integrals

The definition of the definite integral,
R b

a
f .x/ dx, is motivated by the standard area

x

y

z

z D f .x; y/

S

D

Figure 14.1 A solid region S lying above

domain D in the xy-plane and below the

surface z D f .x; y/

problem, namely, the problem of finding the area of the plane region bounded by the

curve y D f .x/, the x-axis, and the lines x D a and x D b. Similarly, we can

motivate the double integral of a function of two variables over a domain D in the

plane by means of the standard volume problem of finding the volume of the three-

dimensional region S bounded by the surface z D f .x; y/, the xy-plane, and the

cylinder parallel to the z-axis passing through the boundary ofD. (See Figure 14.1. D

is called the domain of integration.) We will call such a three-dimensional region S

a “solid,” although we are not implying that it is filled with any particular substance.

We will define the double integral of f .x; y/ over the domain D,

ZZ

D

f .x; y/ dA;

in such a way that its value will give the volume of the solid S whenever D is a

“reasonable” domain and f is a “reasonable” function with positive values.
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Let us start with the case where D is a closed rectangle with sides parallel to the

coordinate axes in the xy-plane, and f is a bounded function on D. If D consists of

the points .x; y/ such that a � x � b and c � y � d , we can form a partition P

ofD into small rectangles by partitioning each of the intervals Œa; b� and Œc; d �, say by

points

a D x0 < x1 < x2 < � � � < xm�1 < xm D b;

c D y0 < y1 < y2 < � � � < yn�1 < yn D d:

The partition P ofD then consists of themn rectangles Rij .1 � i � m; 1 � j � n/,

consisting of points .x; y/ for which xi�1 � x � xi and yj �1 � y � yj . (See

Figure 14.2.)

Figure 14.2 A partition of D (the large

shaded rectangle) into smaller rectangles

Rij .1 � i � m; 1 � j � n/

y

xx0 x1 x2 x3 xi�1 xi xm�1 xm

D bD a

c D y0

y1

y2

y3

yj �1

yj
Rij

.x�

mn;y�

mn/

.x�

ij
;y�

ij
/

.x�

11
;y�

11
/

.x�

21
;y�

21
/

.x�

12
;y�

12
/

yn�1

d D yn

R11

Rmn

The rectangle Rij has area

�Aij D �xi�yj D .xi � xi�1/.yj � yj �1/

and diameter (i.e., diagonal length)

diam.Rij / D

q

.�xi /
2
C .�yj /

2
D

q

.xi � xi�1/
2
C .yj � yj �1/

2:

The norm of the partition P is the largest of these subrectangle diameters:

kP k D max
1�i�m

1�j �n

diam.Rij /:

Now we pick an arbitrary point .x�
ij ; y

�
ij / in each of the rectangles Rij and form the

Riemann sum

R.f;P / D

m
X

iD1

n
X

j D1

f .x
�
ij ; y

�
ij /�Aij ;

which is the sum of mn terms, one for each rectangle in the partition. (Here, the

double summation indicates the sum as i goes from 1 to m of terms, each of which

is itself a sum as j goes from 1 to n.) The term corresponding to rectangle Rij is, if

f .x
�
ij ; y

�
ij / � 0, the volume of the rectangular box whose base isRij and whose height

is the value of f at .x�
ij ; y

�
ij /. (See Figure 14.3.) Therefore, for positive functions f;

the Riemann sum R.f;P / approximates the volume above D and under the graph of

f: The double integral of f over D is defined to be the limit of such Riemann sums,

provided the limit exists as kP k ! 0 independently of how the points .x�
ij ; y

�
ij / are

chosen. We make this precise in the following definition.
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Figure 14.3 A rectangular box above

rectangle Rij . The Riemann sum is a sum

of volumes of such boxes. x

y

z

z D f .x; y/

Rij

.x�

ij
;y�

ij
/

D E F I N I T I O N

1

The double integral over a rectangle

We say that f is integrable over the rectangle D and has double integral

I D

ZZ

D

f .x; y/ dA;

if for every positive number � there exists a number ı depending on �, such

that

jR.f;P / � I j < �

holds for every partition P ofD satisfying kP k < ı and for all choices of the

points .x�
ij ; y

�
ij / in the subrectangles of P:

The dA that appears in the expression for the double integral is an area element. It

represents the limit of the �A D �x�y in the Riemann sum and can also be written

dx dy or dy dx, the order being unimportant. When we evaluate double integrals by

iteration in the next section, dA will be replaced with a product of differentials dx and

dy, and the order will be important.

As is true for functions of one variable, functions that are continuous on D are

integrable on D. Of course, many bounded but discontinuous functions are also inte-

grable, but an exact description of the class of integrable functions is beyond the scope

of this text.

E X A M P L E 1
Let D be the square 0 � x � 1, 0 � y � 1. Use a Riemann sum

corresponding to the partition of D into four smaller squares with

points selected at the centre of each to find an approximate value for

ZZ

D

.x
2
C y/ dA:

Solution The required partition P is formed by the lines x D 1=2 and y D 1=2,

which divide D into four squares, each of area �A D 1=4. The centres of these

squares are the points
�

1
4
;

1
4

�

,
�

1
4
;

3
4

�

,
�

3
4
;

1
4

�

, and
�

3
4
;

3
4

�

. (See Figure 14.4.) Therefore,

y

x

�

1
4 ;

3
4

� �

3
4 ;

3
4

�

�

1
4 ;

1
4

� �

3
4 ;

1
4

�

0.5 1

0.5

1

Figure 14.4 The partitioned square of

Example 1
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Let us start with the case where D is a closed rectangle with sides parallel to the

coordinate axes in the xy-plane, and f is a bounded function on D. If D consists of

the points .x; y/ such that a � x � b and c � y � d , we can form a partition P

ofD into small rectangles by partitioning each of the intervals Œa; b� and Œc; d �, say by

points

a D x0 < x1 < x2 < � � � < xm�1 < xm D b;

c D y0 < y1 < y2 < � � � < yn�1 < yn D d:

The partition P ofD then consists of themn rectangles Rij .1 � i � m; 1 � j � n/,

consisting of points .x; y/ for which xi�1 � x � xi and yj �1 � y � yj . (See

Figure 14.2.)

Figure 14.2 A partition of D (the large

shaded rectangle) into smaller rectangles

Rij .1 � i � m; 1 � j � n/

y

xx0 x1 x2 x3 xi�1 xi xm�1 xm

D bD a

c D y0

y1

y2

y3

yj �1

yj
Rij

.x�

mn;y�

mn/

.x�

ij
;y�

ij
/

.x�

11
;y�

11
/

.x�

21
;y�

21
/

.x�

12
;y�

12
/

yn�1

d D yn

R11

Rmn

The rectangle Rij has area

�Aij D �xi�yj D .xi � xi�1/.yj � yj �1/

and diameter (i.e., diagonal length)

diam.Rij / D

q

.�xi /
2
C .�yj /

2
D

q

.xi � xi�1/
2
C .yj � yj �1/

2:

The norm of the partition P is the largest of these subrectangle diameters:

kP k D max
1�i�m

1�j �n

diam.Rij /:

Now we pick an arbitrary point .x�
ij ; y

�
ij / in each of the rectangles Rij and form the

Riemann sum

R.f;P / D

m
X

iD1

n
X

j D1

f .x
�
ij ; y

�
ij /�Aij ;

which is the sum of mn terms, one for each rectangle in the partition. (Here, the

double summation indicates the sum as i goes from 1 to m of terms, each of which

is itself a sum as j goes from 1 to n.) The term corresponding to rectangle Rij is, if

f .x
�
ij ; y

�
ij / � 0, the volume of the rectangular box whose base isRij and whose height

is the value of f at .x�
ij ; y

�
ij /. (See Figure 14.3.) Therefore, for positive functions f;

the Riemann sum R.f;P / approximates the volume above D and under the graph of

f: The double integral of f over D is defined to be the limit of such Riemann sums,

provided the limit exists as kP k ! 0 independently of how the points .x�
ij ; y

�
ij / are

chosen. We make this precise in the following definition.
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Figure 14.3 A rectangular box above

rectangle Rij . The Riemann sum is a sum

of volumes of such boxes. x

y

z

z D f .x; y/

Rij

.x�

ij
;y�

ij
/

D E F I N I T I O N

1

The double integral over a rectangle

We say that f is integrable over the rectangle D and has double integral

I D

ZZ

D

f .x; y/ dA;

if for every positive number � there exists a number ı depending on �, such

that

jR.f;P / � I j < �

holds for every partition P ofD satisfying kP k < ı and for all choices of the

points .x�
ij ; y

�
ij / in the subrectangles of P:

The dA that appears in the expression for the double integral is an area element. It

represents the limit of the �A D �x�y in the Riemann sum and can also be written

dx dy or dy dx, the order being unimportant. When we evaluate double integrals by

iteration in the next section, dA will be replaced with a product of differentials dx and

dy, and the order will be important.

As is true for functions of one variable, functions that are continuous on D are

integrable on D. Of course, many bounded but discontinuous functions are also inte-

grable, but an exact description of the class of integrable functions is beyond the scope

of this text.

E X A M P L E 1
Let D be the square 0 � x � 1, 0 � y � 1. Use a Riemann sum

corresponding to the partition of D into four smaller squares with

points selected at the centre of each to find an approximate value for

ZZ

D

.x
2
C y/ dA:

Solution The required partition P is formed by the lines x D 1=2 and y D 1=2,

which divide D into four squares, each of area �A D 1=4. The centres of these

squares are the points
�

1
4
;

1
4

�

,
�

1
4
;

3
4

�

,
�

3
4
;

1
4

�

, and
�

3
4
;

3
4

�

. (See Figure 14.4.) Therefore,

y

x

�

1
4 ;

3
4

� �

3
4 ;

3
4

�

�

1
4 ;

1
4

� �

3
4 ;

1
4

�

0.5 1

0.5

1

Figure 14.4 The partitioned square of

Example 1
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the required approximation is

ZZ

D

.x
2
C y/ dA �R.x

2
C y;P / D

�

1

16
C

1

4

�

1

4
C

�

1

16
C

3

4

�

1

4

C

�

9

16
C

1

4

�

1

4
C

�

9

16
C

3

4

�

1

4
D

13

16
D 0:8125:

Double Integrals over More General Domains
It is often necessary to use double integrals of bounded functions f .x; y/ over domains

that are not rectangles. If the domain D is bounded, we can choose a rectangle R

with sides parallel to the coordinate axes such that D is contained inside R. (See

Figure 14.5.) If f .x; y/ is defined on D, we can extend its domain to be R by defining

f .x; y/ D 0 for points in R that are outside of D. The integral of f over D can then

be defined to be the integral of the extended function over the rectangle R.

y

x

D

R

Figure 14.5 Bounded domain D is a

subset of rectangle R

D E F I N I T I O N

2

If f .x; y/ is defined and bounded on domain D, let Of be the extension of f

that is zero everywhere outside D:

Of .x; y/ D

�

f .x; y/; if .x; y/ belongs to D

0; if .x; y/ does not belong to D.

IfD is a bounded domain, then it is contained in some rectangle R with sides

parallel to the coordinate axes. If Of is integrable over R, we say that f is

integrable over D and define the double integral of f over D to be

ZZ

D

f .x; y/ dA D

ZZ

R

Of .x; y/ dA:

This definition makes sense because the values of Of in the part of R outside of D are

all zero, so do not contribute anything to the value of the integral. However, even if

f is continuous on D, Of will not be continuous on R unless f .x; y/ ! 0 as .x; y/

approaches the boundary of D. Nevertheless, if f and D are “well-behaved,” the

integral will exist. We cannot delve too deeply into what constitutes well-behaved, but

assert, without proof, the following theorem that will assure us that most of the double

integrals we encounter do, in fact, exist.

T H E O R E M

1

If f is continuous on a closed, bounded domainD whose boundary consists of finitely

many curves of finite length, then f is integrable on D.

According to Theorem 2 of Section 13.1, a continuous function is bounded if its domain

is closed and bounded. Generally, however, it is not necessary to restrict our domains

to be closed. If D is a bounded domain and int(D) is its interior (an open set), and if

f is integrable on D, then

ZZ

D

f .x; y/ dA D

ZZ

int.D/

f .x; y/ dA:

We will discuss improper double integrals of unbounded functions or over unbounded

domains in Section 14.3.

Properties of the Double Integral
Some properties of double integrals are analogous to properties of the one-dimensional

definite integral and require little comment: if f and g are integrable over D, and if L

and M are constants, then
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(a)

ZZ

D

f .x; y/ dA D 0 if D has zero area.

(b) Area of a domain:

ZZ

D

1 dA D area of D (because it is the volume

of a cylinder with base D and height 1).

(c) Integrals representing volumes:

If f .x; y/ � 0 on D, then

ZZ

D

f .x; y/ dA D V � 0, where V is

the volume of the solid lying vertically above D and below the surface

z D f .x; y/.

(d) If f .x; y/ � 0 on D, then

ZZ

D

f .x; y/ dA D �V � 0, where V is

the volume of the solid lying vertically below D and above the surface

z D f .x; y/.

(e) Linear dependence on the integrand:
ZZ

D

�

Lf .x; y/CMg.x; y/

�

dA D L

ZZ

D

f .x; y/ dACM

ZZ

D

g.x; y/ dA.

(f) Inequalities are preserved:

If f .x; y/ � g.x; y/ on D, then

ZZ

D

f .x; y/ dA �

ZZ

D

g.x; y/ dA.

(g) The triangle inequality:

ˇ

ˇ

ˇ

ˇ

ZZ

D

f .x; y/ dA

ˇ

ˇ

ˇ

ˇ

�

ZZ

D

jf .x; y/j dA.

(h) Additivity of domains: If D1, D2, : : : , Dk are nonoverlapping do-

mains on each of which f is integrable, then f is integrable over the

union D D D1 [D2 [ � � � [Dk and

ZZ

D

f .x; y/ dA D

k
X

j D1

ZZ

Dj

f .x; y/ dA:

Nonoverlapping domains can share boundary points but not interior points.

Double Integrals by Inspection
As yet, we have not said anything about how to evaluate a double integral. The main

technique for doing this, called iteration, will be developed in the next section, but it is

worth pointing out that double integrals can sometimes be evaluated using symmetry

arguments or by interpreting them as volumes that we already know.

E X A M P L E 2
If R is the rectangle a � x � b, c � y � d , then

ZZ

R

3 dA D 3 � area of R D 3.b � a/.d � c/:

Here, the integrand is f .x; y/ D 3, and the integral is equal to the volume of the solid

box of height 3 whose base is the rectangle R. (See Figure 14.6.)

y

xa b

c

d

R

Figure 14.6 The base of a rectangular box

E X A M P L E 3 Evaluate I D

ZZ

x2Cy2�1

.sin x C y3
C 4/ dA:
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the required approximation is

ZZ

D

.x
2
C y/ dA �R.x

2
C y;P / D

�

1

16
C

1

4

�

1

4
C

�

1

16
C

3

4

�

1

4

C

�

9

16
C

1

4

�

1

4
C

�

9

16
C

3

4

�

1

4
D

13

16
D 0:8125:

Double Integrals over More General Domains
It is often necessary to use double integrals of bounded functions f .x; y/ over domains

that are not rectangles. If the domain D is bounded, we can choose a rectangle R

with sides parallel to the coordinate axes such that D is contained inside R. (See

Figure 14.5.) If f .x; y/ is defined on D, we can extend its domain to be R by defining

f .x; y/ D 0 for points in R that are outside of D. The integral of f over D can then

be defined to be the integral of the extended function over the rectangle R.

y

x

D

R

Figure 14.5 Bounded domain D is a

subset of rectangle R

D E F I N I T I O N

2

If f .x; y/ is defined and bounded on domain D, let Of be the extension of f

that is zero everywhere outside D:

Of .x; y/ D

�

f .x; y/; if .x; y/ belongs to D

0; if .x; y/ does not belong to D.

IfD is a bounded domain, then it is contained in some rectangle R with sides

parallel to the coordinate axes. If Of is integrable over R, we say that f is

integrable over D and define the double integral of f over D to be

ZZ

D

f .x; y/ dA D

ZZ

R

Of .x; y/ dA:

This definition makes sense because the values of Of in the part of R outside of D are

all zero, so do not contribute anything to the value of the integral. However, even if

f is continuous on D, Of will not be continuous on R unless f .x; y/ ! 0 as .x; y/

approaches the boundary of D. Nevertheless, if f and D are “well-behaved,” the

integral will exist. We cannot delve too deeply into what constitutes well-behaved, but

assert, without proof, the following theorem that will assure us that most of the double

integrals we encounter do, in fact, exist.

T H E O R E M

1

If f is continuous on a closed, bounded domainD whose boundary consists of finitely

many curves of finite length, then f is integrable on D.

According to Theorem 2 of Section 13.1, a continuous function is bounded if its domain

is closed and bounded. Generally, however, it is not necessary to restrict our domains

to be closed. If D is a bounded domain and int(D) is its interior (an open set), and if

f is integrable on D, then

ZZ

D

f .x; y/ dA D

ZZ

int.D/

f .x; y/ dA:

We will discuss improper double integrals of unbounded functions or over unbounded

domains in Section 14.3.

Properties of the Double Integral
Some properties of double integrals are analogous to properties of the one-dimensional

definite integral and require little comment: if f and g are integrable over D, and if L

and M are constants, then
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(a)

ZZ

D

f .x; y/ dA D 0 if D has zero area.

(b) Area of a domain:

ZZ

D

1 dA D area of D (because it is the volume

of a cylinder with base D and height 1).

(c) Integrals representing volumes:

If f .x; y/ � 0 on D, then

ZZ

D

f .x; y/ dA D V � 0, where V is

the volume of the solid lying vertically above D and below the surface

z D f .x; y/.

(d) If f .x; y/ � 0 on D, then

ZZ

D

f .x; y/ dA D �V � 0, where V is

the volume of the solid lying vertically below D and above the surface

z D f .x; y/.

(e) Linear dependence on the integrand:
ZZ

D

�

Lf .x; y/CMg.x; y/

�

dA D L

ZZ

D

f .x; y/ dACM

ZZ

D

g.x; y/ dA.

(f) Inequalities are preserved:

If f .x; y/ � g.x; y/ on D, then

ZZ

D

f .x; y/ dA �

ZZ

D

g.x; y/ dA.

(g) The triangle inequality:

ˇ

ˇ

ˇ

ˇ

ZZ

D

f .x; y/ dA

ˇ

ˇ

ˇ

ˇ

�

ZZ

D

jf .x; y/j dA.

(h) Additivity of domains: If D1, D2, : : : , Dk are nonoverlapping do-

mains on each of which f is integrable, then f is integrable over the

union D D D1 [D2 [ � � � [Dk and

ZZ

D

f .x; y/ dA D

k
X

j D1

ZZ

Dj

f .x; y/ dA:

Nonoverlapping domains can share boundary points but not interior points.

Double Integrals by Inspection
As yet, we have not said anything about how to evaluate a double integral. The main

technique for doing this, called iteration, will be developed in the next section, but it is

worth pointing out that double integrals can sometimes be evaluated using symmetry

arguments or by interpreting them as volumes that we already know.

E X A M P L E 2
If R is the rectangle a � x � b, c � y � d , then

ZZ

R

3 dA D 3 � area of R D 3.b � a/.d � c/:

Here, the integrand is f .x; y/ D 3, and the integral is equal to the volume of the solid

box of height 3 whose base is the rectangle R. (See Figure 14.6.)

y

xa b

c

d

R

Figure 14.6 The base of a rectangular box

E X A M P L E 3 Evaluate I D

ZZ

x2Cy2�1

.sin x C y3
C 4/ dA:
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Solution The integral can be expressed as the sum of three integrals by property (e)

of double integrals:

I D

ZZ

x2Cy2�1

sinx dAC

ZZ

x2Cy2�1

y
3
dAC

ZZ

x2Cy2�1

4 dA

D I1 C I2 C I3:

The domain of integration (Figure 14.7) is a circular disk of radius 1 centred at the

origin. Since f .x; y/ D sin x is an odd function of x, its graph bounds as much

volume below the xy-plane in the region x < 0 as it does above the xy-plane in the

region x > 0. These two contributions to the double integral cancel, so I1 D 0. Note

that symmetry of both the domain and the integrand is necessary for this argument.

Similarly, I2 D 0 because y3 is an odd function and D is symmetric about the

x-axis.

x
2
C y

2
D 1

y

x

D

Figure 14.7 The disk is symmetric about

both coordinate axes

Finally,

I3 D

ZZ

D

4 dA D 4 � area of D D 4�:

Thus, I D 0C 0C 4� D 4� .

E X A M P L E 4
If D is the disk of Example 3, the integral

ZZ

D

p

1� x2
� y2 dA

represents the volume of a hemisphere of radius 1 and so has the value 2�=3.

When evaluating double integrals, always be alert for situations such as those in the

above examples. You can save much time by not trying to calculate an integral whose

value should be obvious without calculation.

E X E R C I S E S 14.1
y

x1 2 3

1

2

Figure 14.8

Exercises 1–6 refer to the double integral

I D

ZZ

D

.5 � x � y/ dA;

where D is the rectangle 0 � x � 3, 0 � y � 2. P is the partition

of D into six squares of side 1 as shown in Figure 14.8. In

Exercises 1–5, calculate the Riemann sums for I corresponding to

the given choices of points .x�
ij ; y

�
ij /.

1. .x�
ij ; y

�
ij / is the upper-left corner of each square.

2. .x�
ij ; y

�
ij / is the upper-right corner of each square.

3. .x�
ij ; y

�
ij / is the lower-left corner of each square.

4. .x�
ij ; y

�
ij / is the lower-right corner of each square.

5. .x�
ij ; y

�
ij / is the centre of each square.

6. Evaluate I by interpreting it as a volume.

In Exercises 7–10, D is the disk x2
C y2

� 25, and P is the

partition of the square �5 � x � 5, �5 � y � 5 into one hundred

1 � 1 squares, as shown in Figure 14.9. Approximate the double

integral

J D

ZZ

D

f .x; y/ dA;

where f .x; y/ D 1 by calculating the Riemann sums R.f; P /

corresponding to the indicated choice of points in the small

squares. Hint: Using symmetry will make the job easier.
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y

x�5

�5

5

5

Figure 14.9

7. .x�
ij ; y

�
ij / is the corner of each square closest to the origin.

8. .x�
ij ; y

�
ij / is the corner of each square farthest from the origin.

9. .x�
ij ; y

�
ij / is the centre of each square.

10. Evaluate J .

C 11. Repeat Exercise 5 using the integrand ex instead of 5� x � y.

C 12. Repeat Exercise 9 using f .x; y/ D x2
C y2 instead of

f .x; y/ D 1.

In Exercises 13–22, evaluate the given double integral by

inspection.

13.

ZZ

R

dA, where R is the rectangle �1 � x � 3,

�4 � y � 1

14.

ZZ

D

.x C 3/ dA, where D is the half-disk

0 � y �
p

4 � x2

15.

ZZ

T

.x C y/ dA, where T is the parallelogram having the

points .2; 2/, .1;�1/, .�2;�2/, and .�1; 1/ as vertices

16.

ZZ

jxjCjyj�1

�

x
3 cos.y2

/C 3 siny � �
�

dA

17.

ZZ

x2Cy2�1

.4x
2
y

3
� x C 5/ dA

18.

ZZ

x2Cy2�a2

p

a2
� x2

� y2 dA

19.

ZZ

x2Cy2�a2

.a �

p

x2
C y2/ dA

20.

ZZ

S

.x C y/ dA, where S is the square 0 � x � a, 0 � y � a

21.

ZZ

T

.1 � x � y/ dA, where T is the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/

22.

ZZ

R

p

b2
� y2 dA, where R is the rectangle

0 � x � a, 0 � y � b

14.2 Iteration of Double Integrals in Cartesian Coordinates

The existence of the double integral
RR

D
f .x; y/ dA depends on f and the domain

D. As we shall see, evaluation of double integrals is easiest when the domain of

integration is of simple type.

y

x

y D d.x/

D

y D c.x/

a b

Figure 14.10 A y-simple domain

y

x

x D b.y/

D

x D a.y/

d

c

Figure 14.11 An x-simple domain

We say that the domain D in the xy-plane is y-simple if it is bounded by two vertical

lines x D a and x D b, and two continuous graphs y D c.x/ and y D d.x/ between

these lines. (See Figure 14.10.) Lines parallel to the y-axis intersect a y-simple domain

in an interval (possibly a single point) if at all. Similarly,D is x-simple if it is bounded

by horizontal lines y D c and y D d , and two continuous graphs x D a.y/ and

x D b.y/ between these lines. (See Figure 14.11.) Many of the domains over which we

will take integrals are y-simple, x-simple, or both. For example, rectangles, triangles,

and disks are both x-simple and y-simple. Those domains that are neither one nor

the other will usually be unions of finitely many nonoverlapping subdomains that are
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Solution The integral can be expressed as the sum of three integrals by property (e)

of double integrals:

I D

ZZ

x2Cy2�1

sinx dAC

ZZ

x2Cy2�1

y
3
dAC

ZZ

x2Cy2�1

4 dA

D I1 C I2 C I3:

The domain of integration (Figure 14.7) is a circular disk of radius 1 centred at the

origin. Since f .x; y/ D sin x is an odd function of x, its graph bounds as much

volume below the xy-plane in the region x < 0 as it does above the xy-plane in the

region x > 0. These two contributions to the double integral cancel, so I1 D 0. Note

that symmetry of both the domain and the integrand is necessary for this argument.

Similarly, I2 D 0 because y3 is an odd function and D is symmetric about the

x-axis.

x
2
C y

2
D 1

y

x

D

Figure 14.7 The disk is symmetric about

both coordinate axes

Finally,

I3 D

ZZ

D

4 dA D 4 � area of D D 4�:

Thus, I D 0C 0C 4� D 4� .

E X A M P L E 4
If D is the disk of Example 3, the integral

ZZ

D

p

1� x2
� y2 dA

represents the volume of a hemisphere of radius 1 and so has the value 2�=3.

When evaluating double integrals, always be alert for situations such as those in the

above examples. You can save much time by not trying to calculate an integral whose

value should be obvious without calculation.

E X E R C I S E S 14.1
y

x1 2 3

1

2

Figure 14.8

Exercises 1–6 refer to the double integral

I D

ZZ

D

.5 � x � y/ dA;

where D is the rectangle 0 � x � 3, 0 � y � 2. P is the partition

of D into six squares of side 1 as shown in Figure 14.8. In

Exercises 1–5, calculate the Riemann sums for I corresponding to

the given choices of points .x�
ij ; y

�
ij /.

1. .x�
ij ; y

�
ij / is the upper-left corner of each square.

2. .x�
ij ; y

�
ij / is the upper-right corner of each square.

3. .x�
ij ; y

�
ij / is the lower-left corner of each square.

4. .x�
ij ; y

�
ij / is the lower-right corner of each square.

5. .x�
ij ; y

�
ij / is the centre of each square.

6. Evaluate I by interpreting it as a volume.

In Exercises 7–10, D is the disk x2
C y2

� 25, and P is the

partition of the square �5 � x � 5, �5 � y � 5 into one hundred

1 � 1 squares, as shown in Figure 14.9. Approximate the double

integral

J D

ZZ

D

f .x; y/ dA;

where f .x; y/ D 1 by calculating the Riemann sums R.f; P /

corresponding to the indicated choice of points in the small

squares. Hint: Using symmetry will make the job easier.
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y

x�5

�5

5

5

Figure 14.9

7. .x�
ij ; y

�
ij / is the corner of each square closest to the origin.

8. .x�
ij ; y

�
ij / is the corner of each square farthest from the origin.

9. .x�
ij ; y

�
ij / is the centre of each square.

10. Evaluate J .

C 11. Repeat Exercise 5 using the integrand ex instead of 5� x � y.

C 12. Repeat Exercise 9 using f .x; y/ D x2
C y2 instead of

f .x; y/ D 1.

In Exercises 13–22, evaluate the given double integral by

inspection.

13.

ZZ

R

dA, where R is the rectangle �1 � x � 3,

�4 � y � 1

14.

ZZ

D

.x C 3/ dA, where D is the half-disk

0 � y �
p

4 � x2

15.

ZZ

T

.x C y/ dA, where T is the parallelogram having the

points .2; 2/, .1;�1/, .�2;�2/, and .�1; 1/ as vertices

16.

ZZ

jxjCjyj�1

�

x
3 cos.y2

/C 3 siny � �
�

dA

17.

ZZ

x2Cy2�1

.4x
2
y

3
� x C 5/ dA

18.

ZZ

x2Cy2�a2

p

a2
� x2

� y2 dA

19.

ZZ

x2Cy2�a2

.a �

p

x2
C y2/ dA

20.

ZZ

S

.x C y/ dA, where S is the square 0 � x � a, 0 � y � a

21.

ZZ

T

.1 � x � y/ dA, where T is the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/

22.

ZZ

R

p

b2
� y2 dA, where R is the rectangle

0 � x � a, 0 � y � b

14.2 Iteration of Double Integrals in Cartesian Coordinates

The existence of the double integral
RR

D
f .x; y/ dA depends on f and the domain

D. As we shall see, evaluation of double integrals is easiest when the domain of

integration is of simple type.

y

x

y D d.x/

D

y D c.x/

a b

Figure 14.10 A y-simple domain

y

x

x D b.y/

D

x D a.y/

d

c

Figure 14.11 An x-simple domain

We say that the domain D in the xy-plane is y-simple if it is bounded by two vertical

lines x D a and x D b, and two continuous graphs y D c.x/ and y D d.x/ between

these lines. (See Figure 14.10.) Lines parallel to the y-axis intersect a y-simple domain

in an interval (possibly a single point) if at all. Similarly,D is x-simple if it is bounded

by horizontal lines y D c and y D d , and two continuous graphs x D a.y/ and

x D b.y/ between these lines. (See Figure 14.11.) Many of the domains over which we

will take integrals are y-simple, x-simple, or both. For example, rectangles, triangles,

and disks are both x-simple and y-simple. Those domains that are neither one nor

the other will usually be unions of finitely many nonoverlapping subdomains that are
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both x-simple and y-simple. We will call such domains regular. The shaded region

in Figure 14.12 is divided into four subregions, each of which is both x-simple and

y-simple.
y

x

D

Figure 14.12 A regular domain

It can be shown that a bounded, continuous function f .x; y/ is integrable over a

bounded x-simple or y-simple domain and, therefore, over any regular domain.

Unlike the examples in the previous section, most double integrals cannot be eval-

uated by inspection. We need a technique for evaluating double integrals similar to the

technique for evaluating single definite integrals in terms of antiderivatives. Since the

double integral represents a volume, we can evaluate it for simple domains by a slicing

technique.

Suppose, for instance, that D is y-simple and is bounded by x D a, x D b,

y D c.x/, and y D d.x/, as shown in Figure 14.13(a). Then
RR

D
f .x; y/ dA represents

(at least for positive f ) the volume of the solid region inside the vertical cylinder

through the boundary of D and between the xy-plane and the surface z D f .x; y/.

Consider the cross-section of this solid in the vertical plane perpendicular to the x-axis

at position x. Note that x is constant in that plane. If we use the projections of the

y- and z-axes onto the plane as coordinate axes there, the cross-section is a plane

region bounded by vertical lines y D c.x/ and y D d.x/, by the horizontal line

z D 0, and by the curve z D f .x; y/. The area of the cross-section is therefore given

by

A.x/ D

Z d.x/

c.x/

f .x; y/ dy:

The double integral
RR

D
f .x; y/ dA is obtained by summing the volumes of “thin”

slices of area A.x/ and thickness dx between x D a and x D b and is therefore given

by

RELAX! Do not be confused by

the position of the dx in the

formula .�/. Although up until

now we have been in the habit of

writing the integral of a function

A.x/ from x D a to x D b in the

form

Z b

a

A.x/ dx; there is no

reason we cannot write the dx

before instead of after the A.x/:
Z b

a

A.x/ dx D

Z b

a

dx A.x/:

When A.x/ is itself an integral

in a different variable, as it is in

.�/, writing the dx closer to its

own integral sign can be useful.

It is still understood that the y

integral must be done first as its

integrand and limits can both

depend on x so the result will be

a function A.x/ of x.

ZZ

D

f .x; y/ dA D

Z b

a

A.x/ dx D

Z b

a

�Z d.x/

c.x/

f .x; y/ dy

�

dx:

Notationally, it is common to omit the large parentheses and write

ZZ

D

f .x; y/ dA D

Z b

a

Z d.x/

c.x/

f .x; y/ dy dx;

or

ZZ

D

f .x; y/ dA D

Z b

a

dx

Z d.x/

c.x/

f .x; y/ dy: .�/

The latter form .�/ shows more clearly which variable corresponds to which limits of

integration.

Figure 14.13

(a) In integrals over y-simple

domains, slices should be

perpendicular to the x-axis

(b) In integrals over x-simple

domains, slices should be

perpendicular to the y-axis

x

y

z

a
x

b y D c.x/

y D d.x/

z D f .x; y/

x

y

z

c y

d

x D a.y/

z D f .x; y/

x D b.y/

(a) (b)
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The expressions on the right-hand sides of the above formulas are called iterated

integrals. Iteration is the process of reducing the problem of evaluating a double

(or multiple) integral to one of evaluating two (or more) successive single definite

integrals. In the above iteration, the integral

Z d.x/

c.x/

f .x; y/ dy

is called the inner integral since it must be evaluated first. It is evaluated using standard

techniques, treating x as a constant. The result of this evaluation is a function of x

alone (note that both the integrand and the limits of the inner integral can depend on

x) and is the integrand of the outer integral in which x is the variable of integration.

For double integrals over x-simple domains, we can slice perpendicularly to the

y-axis and obtain an iterated integral with the outer integral in the y direction. (See

Figure 14.13(b).) We summarize the above discussion in the following theorem whose

formal proof we will, however, not give.

T H E O R E M

2

Iteration of double integrals

If f .x; y/ is continuous on the bounded y-simple domain D given by a � x � b and

c.x/ � y � d.x/, then

ZZ

D

f .x; y/ dA D

Z b

a

dx

Z d.x/

c.x/

f .x; y/ dy:

Similarly, if f is continuous on the x-simple domain D given by c � y � d and

a.y/ � x � b.y/, then

In scientific literature, double

integrals and integrals in higher

dimensional spaces are often

represented with a single integral

sign, for instance,

Z

D

f .x; y/ dx dy:

We will use multiple integral

signs in Chapters 14–16, but will

use single integral signs in

Chapter 17, where integrals in

R
n

are considered.

ZZ

D

f .x; y/ dA D

Z d

c

dy

Z b.y/

a.y/

f .x; y/ dx:

Remark The symbol dA in the double integral is replaced in the iterated integrals

by the dx and the dy. Accordingly, dA is frequently written dx dy or dy dx even in

the double integral. The three expressions

ZZ

D

f .x; y/ dx dy;

ZZ

D

f .x; y/ dy dx; and

ZZ

D

f .x; y/ dA

all stand for the double integral of f over D. Only when the double integral is iterated

does the order of dx and dy become important. Later in this chapter we will iterate

double integrals in polar coordinates, and dA will take the form r dr d� .

It is not always necessary to make a three-dimensional sketch of the solid volume

represented by a double integral. In order to iterate the integral properly (in one direc-

tion or the other) it is usually sufficient to make a sketch of the domain D over which

the integral is taken. The direction of iteration can be shown by a line along which the

inner integral is taken. The following examples illustrate this.

E X A M P L E 1
Find the volume of the solid lying above the square Q defined by

0 � x � 1 and 1 � y � 2 and below the plane z D 4 � x � y.

Solution The square Q is both x-simple and y-simple, so the double integral giving

the volume can be iterated in either direction. We will do it both ways just for practice.

The horizontal line at height y in Figure 14.14 suggests that we first integrate with

respect to x along this line (from 0 to 1) and then integrate the result with respect to y

from 1 to 2. Iterating the double integral in this direction, we calculate

y

x1

Q

1

2

y

Figure 14.14 The horizontal line through

Q indicates iteration with the inner integral

in the x direction
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both x-simple and y-simple. We will call such domains regular. The shaded region

in Figure 14.12 is divided into four subregions, each of which is both x-simple and

y-simple.
y

x

D

Figure 14.12 A regular domain

It can be shown that a bounded, continuous function f .x; y/ is integrable over a

bounded x-simple or y-simple domain and, therefore, over any regular domain.

Unlike the examples in the previous section, most double integrals cannot be eval-

uated by inspection. We need a technique for evaluating double integrals similar to the

technique for evaluating single definite integrals in terms of antiderivatives. Since the

double integral represents a volume, we can evaluate it for simple domains by a slicing

technique.

Suppose, for instance, that D is y-simple and is bounded by x D a, x D b,

y D c.x/, and y D d.x/, as shown in Figure 14.13(a). Then
RR

D
f .x; y/ dA represents

(at least for positive f ) the volume of the solid region inside the vertical cylinder

through the boundary of D and between the xy-plane and the surface z D f .x; y/.

Consider the cross-section of this solid in the vertical plane perpendicular to the x-axis

at position x. Note that x is constant in that plane. If we use the projections of the

y- and z-axes onto the plane as coordinate axes there, the cross-section is a plane

region bounded by vertical lines y D c.x/ and y D d.x/, by the horizontal line

z D 0, and by the curve z D f .x; y/. The area of the cross-section is therefore given

by

A.x/ D

Z d.x/

c.x/

f .x; y/ dy:

The double integral
RR

D
f .x; y/ dA is obtained by summing the volumes of “thin”

slices of area A.x/ and thickness dx between x D a and x D b and is therefore given

by

RELAX! Do not be confused by

the position of the dx in the

formula .�/. Although up until

now we have been in the habit of

writing the integral of a function

A.x/ from x D a to x D b in the

form

Z b

a

A.x/ dx; there is no

reason we cannot write the dx

before instead of after the A.x/:
Z b

a

A.x/ dx D

Z b

a

dx A.x/:

When A.x/ is itself an integral

in a different variable, as it is in

.�/, writing the dx closer to its

own integral sign can be useful.

It is still understood that the y

integral must be done first as its

integrand and limits can both

depend on x so the result will be

a function A.x/ of x.

ZZ

D

f .x; y/ dA D

Z b

a

A.x/ dx D

Z b

a

�Z d.x/

c.x/

f .x; y/ dy

�

dx:

Notationally, it is common to omit the large parentheses and write

ZZ

D

f .x; y/ dA D

Z b

a

Z d.x/

c.x/

f .x; y/ dy dx;

or

ZZ

D

f .x; y/ dA D

Z b

a

dx

Z d.x/

c.x/

f .x; y/ dy: .�/

The latter form .�/ shows more clearly which variable corresponds to which limits of

integration.

Figure 14.13

(a) In integrals over y-simple

domains, slices should be

perpendicular to the x-axis

(b) In integrals over x-simple

domains, slices should be

perpendicular to the y-axis

x

y

z

a
x

b y D c.x/

y D d.x/

z D f .x; y/

x

y

z

c y

d

x D a.y/

z D f .x; y/

x D b.y/

(a) (b)
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The expressions on the right-hand sides of the above formulas are called iterated

integrals. Iteration is the process of reducing the problem of evaluating a double

(or multiple) integral to one of evaluating two (or more) successive single definite

integrals. In the above iteration, the integral

Z d.x/

c.x/

f .x; y/ dy

is called the inner integral since it must be evaluated first. It is evaluated using standard

techniques, treating x as a constant. The result of this evaluation is a function of x

alone (note that both the integrand and the limits of the inner integral can depend on

x) and is the integrand of the outer integral in which x is the variable of integration.

For double integrals over x-simple domains, we can slice perpendicularly to the

y-axis and obtain an iterated integral with the outer integral in the y direction. (See

Figure 14.13(b).) We summarize the above discussion in the following theorem whose

formal proof we will, however, not give.

T H E O R E M

2

Iteration of double integrals

If f .x; y/ is continuous on the bounded y-simple domain D given by a � x � b and

c.x/ � y � d.x/, then

ZZ

D

f .x; y/ dA D

Z b

a

dx

Z d.x/

c.x/

f .x; y/ dy:

Similarly, if f is continuous on the x-simple domain D given by c � y � d and

a.y/ � x � b.y/, then

In scientific literature, double

integrals and integrals in higher

dimensional spaces are often

represented with a single integral

sign, for instance,

Z

D

f .x; y/ dx dy:

We will use multiple integral

signs in Chapters 14–16, but will

use single integral signs in

Chapter 17, where integrals in

R
n

are considered.

ZZ

D

f .x; y/ dA D

Z d

c

dy

Z b.y/

a.y/

f .x; y/ dx:

Remark The symbol dA in the double integral is replaced in the iterated integrals

by the dx and the dy. Accordingly, dA is frequently written dx dy or dy dx even in

the double integral. The three expressions

ZZ

D

f .x; y/ dx dy;

ZZ

D

f .x; y/ dy dx; and

ZZ

D

f .x; y/ dA

all stand for the double integral of f over D. Only when the double integral is iterated

does the order of dx and dy become important. Later in this chapter we will iterate

double integrals in polar coordinates, and dA will take the form r dr d� .

It is not always necessary to make a three-dimensional sketch of the solid volume

represented by a double integral. In order to iterate the integral properly (in one direc-

tion or the other) it is usually sufficient to make a sketch of the domain D over which

the integral is taken. The direction of iteration can be shown by a line along which the

inner integral is taken. The following examples illustrate this.

E X A M P L E 1
Find the volume of the solid lying above the square Q defined by

0 � x � 1 and 1 � y � 2 and below the plane z D 4 � x � y.

Solution The square Q is both x-simple and y-simple, so the double integral giving

the volume can be iterated in either direction. We will do it both ways just for practice.

The horizontal line at height y in Figure 14.14 suggests that we first integrate with

respect to x along this line (from 0 to 1) and then integrate the result with respect to y

from 1 to 2. Iterating the double integral in this direction, we calculate

y

x1

Q

1

2

y

Figure 14.14 The horizontal line through

Q indicates iteration with the inner integral

in the x direction
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Volume above Q D

ZZ

Q

.4 � x � y/ dA

D

Z 2

1

dy

Z 1

0

.4 � x � y/ dx

D

Z 2

1

dy

�

4x �
x2

2
� xy

�

ˇ

ˇ

ˇ

ˇ

xD1

xD0

D

Z 2

1

�

7

2
� y

�

dy

D

�

7y

2
�

y2

2

�

ˇ

ˇ

ˇ

ˇ

2

1

D 2 cubic units:

Using the opposite iteration, as illustrated in Figure 14.15, we calculate

y

x1

Q

1

2

x

Figure 14.15 The vertical line through Q

indicates iteration with the inner integral in

the y direction

Volume above Q D

ZZ

Q

.4 � x � y/ dA

D

Z 1

0

dx

Z 2

1

.4 � x � y/ dy

D

Z 1

0

dx

�

4y � xy �
y2

2

�

ˇ

ˇ

ˇ

ˇ

yD2

yD1

D

Z 1

0

�

5

2
� x

�

dx

D

�

5x

2
�

x2

2

�

ˇ

ˇ

ˇ

ˇ

1

0

D 2 cubic units:

It is comforting to get the same answer both ways! Note that because Q is a rectangle

with sides parallel to the coordinate axes, the limits of the inner integrals do not depend

on the variables of the outer integrals in either iteration. This cannot be expected to

happen with more general domains.

E X A M P L E 2 Evaluate

ZZ

T

xy dA over the triangle T with vertices .0; 0/, .1; 0/,

and .1; 1/.

Solution The triangle T is shown in Figure 14.16. It is both x-simple and y-simple.

Using the iteration corresponding to slicing in the direction shown in the figure, we

obtain:

y

x

.1; 1/

1

y D x

T

x

Figure 14.16 The triangular domain T

with vertical line indicating iteration with

inner integral in the y direction

ZZ

T

xy dA D

Z 1

0

dx

Z x

0

xy dy

D

Z 1

0

dx

�

xy2

2

�

ˇ

ˇ

ˇ

ˇ

yDx

yD0

D

Z 1

0

x
3

2
dx D

x
4

8

ˇ

ˇ

ˇ

ˇ

1

0

D

1

8
:
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Iteration in the other direction (Figure 14.17) leads to the same value:
ZZ

T

xy dA D

Z 1

0

dy

Z 1

y

xy dx

D

Z 1

0

dy

�

yx2

2

�

ˇ

ˇ

ˇ

ˇ

xD1

xDy

D

Z 1

0

y

2
.1 � y

2
/ dy

D

�

y2

4
�

y4

8

�

ˇ

ˇ

ˇ

ˇ

1

0

D

1

8
:

y

x

.1; 1/

1

y D x

T

y

Figure 14.17 The triangular domain T

with horizontal line indicating iteration

with inner integral in the x direction

In both of the examples above, the double integral could be evaluated easily using

either possible iteration. (We did them both ways just to illustrate that fact.) It often

occurs, however, that a double integral is easily evaluated if iterated in one direction

and very difficult, or impossible, if iterated in the other direction. Sometimes you will

even encounter iterated integrals whose evaluation requires that they be expressed as

double integrals and then reiterated in the opposite direction.

E X A M P L E 3 Evaluate the iterated integral I D

Z 1

0

dx

Z 1

p
x

e
y3

dy:

Solution We cannot antidifferentiate ey3
to evaluate the inner integral in this iter-

ation, so we express I as a double integral and identify the region over which it is

taken:

I D

ZZ

D

e
y3

dA;

where D is the region shown in Figure 14.18. Reiterating with the x integration on the

inside we get

y

x

D

1

x D y2

or y D
p

x

.1; 1/

Figure 14.18 The region corresponding

to the iterated integral in Example 3

I D

Z 1

0

dy

Z y2

0

e
y3

dx

D

Z 1

0

e
y3

dy

Z y2

0

dx

D

Z 1

0

y
2
e

y3

dy D
ey3

3

ˇ

ˇ

ˇ

ˇ

1

0

D

e � 1

3
:

The following is an example of the calculation of the volume of a somewhat awkward

solid. Even though it is not always necessary to sketch solids to find their volumes, you

are encouraged to sketch them whenever possible. When we encounter triple integrals

over three-dimensional regions later in this chapter, it will usually be necessary to

sketch the regions. Get as much practice as you can.

E X A M P L E 4
Sketch and find the volume of the solid bounded by the planes

y D 0, z D 0, and z D a � x C y and the parabolic cylinder

y D a � .x2=a/, where a is a positive constant.

Solution The solid is shown in Figure 14.19. Its base is the parabolic segment D in

the xy-plane bounded by y D 0 and y D a � .x2=a/, so the volume of the solid is

given by

V D

ZZ

D

.a � x C y/ dA D

ZZ

D

.aC y/ dA:

(Note how we used symmetry to drop the x term from the integrand. This term is an

odd function of x, and D is symmetric about the y-axis.) Iterating the double integral

in the direction suggested by the slice shown in the figure, we obtain
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Volume above Q D

ZZ

Q

.4 � x � y/ dA

D

Z 2

1

dy

Z 1

0

.4 � x � y/ dx

D

Z 2

1

dy

�

4x �
x2

2
� xy

�

ˇ

ˇ

ˇ

ˇ

xD1

xD0

D

Z 2

1

�

7

2
� y

�

dy

D

�

7y

2
�

y2

2

�

ˇ

ˇ

ˇ

ˇ

2

1

D 2 cubic units:

Using the opposite iteration, as illustrated in Figure 14.15, we calculate

y

x1

Q

1

2

x

Figure 14.15 The vertical line through Q

indicates iteration with the inner integral in

the y direction

Volume above Q D

ZZ

Q

.4 � x � y/ dA

D

Z 1

0

dx

Z 2

1

.4 � x � y/ dy

D

Z 1

0

dx

�

4y � xy �
y2

2

�

ˇ

ˇ

ˇ

ˇ

yD2

yD1

D

Z 1

0

�

5

2
� x

�

dx

D

�

5x

2
�

x2

2

�

ˇ

ˇ

ˇ

ˇ

1

0

D 2 cubic units:

It is comforting to get the same answer both ways! Note that because Q is a rectangle

with sides parallel to the coordinate axes, the limits of the inner integrals do not depend

on the variables of the outer integrals in either iteration. This cannot be expected to

happen with more general domains.

E X A M P L E 2 Evaluate

ZZ

T

xy dA over the triangle T with vertices .0; 0/, .1; 0/,

and .1; 1/.

Solution The triangle T is shown in Figure 14.16. It is both x-simple and y-simple.

Using the iteration corresponding to slicing in the direction shown in the figure, we

obtain:

y

x

.1; 1/

1

y D x

T

x

Figure 14.16 The triangular domain T

with vertical line indicating iteration with

inner integral in the y direction

ZZ

T

xy dA D

Z 1

0

dx

Z x

0

xy dy

D

Z 1

0

dx

�

xy2

2

�

ˇ

ˇ

ˇ

ˇ

yDx

yD0

D

Z 1

0

x
3

2
dx D

x
4

8

ˇ

ˇ

ˇ

ˇ

1

0

D

1

8
:
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Iteration in the other direction (Figure 14.17) leads to the same value:
ZZ

T

xy dA D

Z 1

0

dy

Z 1

y

xy dx

D

Z 1

0

dy

�

yx2

2

�

ˇ

ˇ

ˇ

ˇ

xD1

xDy

D

Z 1

0

y

2
.1 � y

2
/ dy

D

�

y2

4
�

y4

8

�

ˇ

ˇ

ˇ

ˇ

1

0

D

1

8
:

y

x

.1; 1/

1

y D x

T

y

Figure 14.17 The triangular domain T

with horizontal line indicating iteration

with inner integral in the x direction

In both of the examples above, the double integral could be evaluated easily using

either possible iteration. (We did them both ways just to illustrate that fact.) It often

occurs, however, that a double integral is easily evaluated if iterated in one direction

and very difficult, or impossible, if iterated in the other direction. Sometimes you will

even encounter iterated integrals whose evaluation requires that they be expressed as

double integrals and then reiterated in the opposite direction.

E X A M P L E 3 Evaluate the iterated integral I D

Z 1

0

dx

Z 1

p
x

e
y3

dy:

Solution We cannot antidifferentiate ey3
to evaluate the inner integral in this iter-

ation, so we express I as a double integral and identify the region over which it is

taken:

I D

ZZ

D

e
y3

dA;

where D is the region shown in Figure 14.18. Reiterating with the x integration on the

inside we get

y

x

D

1

x D y2

or y D
p

x

.1; 1/

Figure 14.18 The region corresponding

to the iterated integral in Example 3

I D

Z 1

0

dy

Z y2

0

e
y3

dx

D

Z 1

0

e
y3

dy

Z y2

0

dx

D

Z 1

0

y
2
e

y3

dy D
ey3

3

ˇ

ˇ

ˇ

ˇ

1

0

D

e � 1

3
:

The following is an example of the calculation of the volume of a somewhat awkward

solid. Even though it is not always necessary to sketch solids to find their volumes, you

are encouraged to sketch them whenever possible. When we encounter triple integrals

over three-dimensional regions later in this chapter, it will usually be necessary to

sketch the regions. Get as much practice as you can.

E X A M P L E 4
Sketch and find the volume of the solid bounded by the planes

y D 0, z D 0, and z D a � x C y and the parabolic cylinder

y D a � .x2=a/, where a is a positive constant.

Solution The solid is shown in Figure 14.19. Its base is the parabolic segment D in

the xy-plane bounded by y D 0 and y D a � .x2=a/, so the volume of the solid is

given by

V D

ZZ

D

.a � x C y/ dA D

ZZ

D

.aC y/ dA:

(Note how we used symmetry to drop the x term from the integrand. This term is an

odd function of x, and D is symmetric about the y-axis.) Iterating the double integral

in the direction suggested by the slice shown in the figure, we obtain
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Figure 14.19 The solid in Example 4,

sliced perpendicularly to the x-axis x

y

z

z D a � x C y

y D a �
x2

a

a
D

�a
x

V D

Z a

�a

dx

Z a�.x2=a/

0

.aC y/ dy

D

Z a

�a

�

ay C
y2

2

�

ˇ

ˇ

ˇ

ˇ

yDa�.x2=a/

yD0

dx

D

Z a

�a

h

a
2
� x

2
C

1

2

�

a
2
� 2x

2
C

x4

a2

�i

dx

D 2

Z a

0

h

3

2
a

2
� 2x

2
C

x4

2a2

i

dx

D

�

3a
2
x �

4x3

3
C

x5

5a2

�

ˇ

ˇ

ˇ

ˇ

a

0

D 3a
3
�

4

3
a

3
C

1

5
a

3
D

28

15
a

3 cubic units:

Remark Maple’s int routine can be nested to evaluate iterated double (or multiple)

integrals symbolically. For instance, the iterated integral for the volume V calculated

in Example 4 above can be calculated via the Maple command

> V = int(int(a+y, y=0..a - x^2/a), x=-a..a);

V D
28

15
a

3
:

Recall that “int” has an inert form “Int,” which prints the integral without attempting

to evaluate it symbolically. For instance, we can print an equation for the reiterated

integral in the solution of Example 3 using the command

> Int(Int(exp(y^3),x=0..y^2),y=0..1)

=int(int(exp(y^3),x=0..y^2),y=0..1);

Z 1

0

Z y2

0

e
.y3/

dx dy D
1

3
e �

1

3

If you want Maple to approximate an iterated integral without first trying to evaluate it

symbolically, just ask it to evalf the inert form.

> evalf(Int(Int(exp(y^3),x=0..y^2),y=0..1));

:5727606095
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Of course, Maple can’t evaluate all integrals in symbolic form. If we replace exp.y3/

in the iterated integral above with exp.x3
/, recent versions of Maple will just return

the inert form as the answer, being unable to calculate the inner integral.

> Int(Int(exp(x^3),x=0..y^2),y=0..1)

=int(int(exp(x^3),x=0..y^2),y=0..1);

Z 1

0

Z y2

0

e
.x3/

dx dy D

Z 1

0

Z y2

0

e
.x3/

dx dy

Again, we can force numerical approximation by using evalf on the inert form.

> Int(Int(exp(x^3),x=0..y^2),y=0..1)

=evalf(Int(Int(exp(x^3),x=0..y^2),y=0..1));

Z 1

0

Z y2

0

e
.x3/

dx dy D :3668032540

In recent versions of Maple it is not necessary to use the inert form of the integral with

evalf, but some earlier versions could produce strange values (e.g., complex num-

bers for values of evidently real integrals) if you did not use the inert form. Software

like Maple is constantly being revised and tweaked so that in unusual circumstances

different versions of the software can lead to different results.

E X E R C I S E S 14.2

In Exercises 1–4, calculate the given iterated integrals.

1.

Z 1

0

dx

Z x

0

.xy C y
2
/ dy 2.

Z 1

0

Z y

0

.xy C y
2
/ dx dy

3.

Z �

0

Z x

�x

cosy dy dx 4.

Z 2

0

dy

Z y

0

y
2
e

xy
dx

In Exercises 5–14, evaluate the double integrals by iteration.

5.

ZZ

R

.x
2
C y

2
/ dA, where R is the rectangle 0 � x � a,

0 � y � b

6.

ZZ

R

x
2
y

2
dA, where R is the rectangle of Exercise 5

7.

ZZ

S

.sinx C cos y/ dA, where S is the square

0 � x � �=2, 0 � y � �=2

8.

ZZ

T

.x � 3y/ dA, where T is the triangle with vertices .0; 0/,

.a; 0/, and .0; b/

9.

ZZ

R

xy
2
dA, where R is the finite region in the first quadrant

bounded by the curves y D x2 and x D y2

10.

ZZ

D

x cosy dA, where D is the finite region in the first

quadrant bounded by the coordinate axes and the curve

y D 1 � x2

11.

ZZ

D

lnx dA, where D is the finite region in the first quadrant

bounded by the line 2x C 2y D 5 and the hyperbola xy D 1

12.

ZZ

T

p

a2
� y2 dA, where T is the triangle with vertices

.0; 0/, .a; 0/, and .a; a/

13.

ZZ

R

x

y
e

y
dA, where R is the region

0 � x � 1, x2
� y � x

14.

ZZ

T

xy

1C x4
dA, where T is the triangle with vertices .0; 0/,

.1; 0/, and .1; 1/

In Exercises 15–18, sketch the domain of integration and evaluate

the given iterated integrals.

15.

Z 1

0

dy

Z 1

y

e
�x2

dx 16.

Z �=2

0

dy

Z �=2

y

sinx

x
dx

17.

Z 1

0

dx

Z 1

x

y�

x2
C y2

dy .� > 0/

18.

Z 1

0

dx

Z x1=3

x

p

1 � y4 dy

In Exercises 19–28, find the volumes of the indicated solids.

19. Under z D 1 � x2 and above the region 0 � x � 1,

0 � y � x

20. Under z D 1 � x2 and above the region 0 � y � 1,

0 � x � y

21. Under z D 1 � x2
� y2 and above the region x � 0, y � 0,

x C y � 1

22. Under z D 1 � y2 and above z D x2

23. Under the surface z D 1=.x C y/ and above the region in the

xy-plane bounded by x D 1, x D 2, y D 0, and y D x

24. Under the surface z D x2 sin.y4
/ and above the triangle in the

xy-plane with vertices .0; 0/, .0; �1=4/, and .�1=4; �1=4/

25. Above the xy-plane and under the surface

z D 1 � x2
� 2y2
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Figure 14.19 The solid in Example 4,

sliced perpendicularly to the x-axis x

y

z

z D a � x C y

y D a �
x2

a

a
D

�a
x

V D

Z a

�a

dx

Z a�.x2=a/

0

.aC y/ dy

D

Z a

�a

�

ay C
y2

2

�

ˇ

ˇ

ˇ

ˇ

yDa�.x2=a/

yD0

dx

D

Z a

�a

h

a
2
� x

2
C

1

2

�

a
2
� 2x

2
C

x4

a2

�i

dx

D 2

Z a

0

h

3

2
a

2
� 2x

2
C

x4

2a2

i

dx

D

�

3a
2
x �

4x3

3
C

x5

5a2

�

ˇ

ˇ

ˇ

ˇ

a

0

D 3a
3
�

4

3
a

3
C

1

5
a

3
D

28

15
a

3 cubic units:

Remark Maple’s int routine can be nested to evaluate iterated double (or multiple)

integrals symbolically. For instance, the iterated integral for the volume V calculated

in Example 4 above can be calculated via the Maple command

> V = int(int(a+y, y=0..a - x^2/a), x=-a..a);

V D
28

15
a

3
:

Recall that “int” has an inert form “Int,” which prints the integral without attempting

to evaluate it symbolically. For instance, we can print an equation for the reiterated

integral in the solution of Example 3 using the command

> Int(Int(exp(y^3),x=0..y^2),y=0..1)

=int(int(exp(y^3),x=0..y^2),y=0..1);

Z 1

0

Z y2

0

e
.y3/

dx dy D
1

3
e �

1

3

If you want Maple to approximate an iterated integral without first trying to evaluate it

symbolically, just ask it to evalf the inert form.

> evalf(Int(Int(exp(y^3),x=0..y^2),y=0..1));

:5727606095
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Of course, Maple can’t evaluate all integrals in symbolic form. If we replace exp.y3/

in the iterated integral above with exp.x3
/, recent versions of Maple will just return

the inert form as the answer, being unable to calculate the inner integral.

> Int(Int(exp(x^3),x=0..y^2),y=0..1)

=int(int(exp(x^3),x=0..y^2),y=0..1);

Z 1

0

Z y2

0

e
.x3/

dx dy D

Z 1

0

Z y2

0

e
.x3/

dx dy

Again, we can force numerical approximation by using evalf on the inert form.

> Int(Int(exp(x^3),x=0..y^2),y=0..1)

=evalf(Int(Int(exp(x^3),x=0..y^2),y=0..1));

Z 1

0

Z y2

0

e
.x3/

dx dy D :3668032540

In recent versions of Maple it is not necessary to use the inert form of the integral with

evalf, but some earlier versions could produce strange values (e.g., complex num-

bers for values of evidently real integrals) if you did not use the inert form. Software

like Maple is constantly being revised and tweaked so that in unusual circumstances

different versions of the software can lead to different results.

E X E R C I S E S 14.2

In Exercises 1–4, calculate the given iterated integrals.

1.

Z 1

0

dx

Z x

0

.xy C y
2
/ dy 2.

Z 1

0

Z y

0

.xy C y
2
/ dx dy

3.

Z �

0

Z x

�x

cosy dy dx 4.

Z 2

0

dy

Z y

0

y
2
e

xy
dx

In Exercises 5–14, evaluate the double integrals by iteration.

5.

ZZ

R

.x
2
C y

2
/ dA, where R is the rectangle 0 � x � a,

0 � y � b

6.

ZZ

R

x
2
y

2
dA, where R is the rectangle of Exercise 5

7.

ZZ

S

.sinx C cos y/ dA, where S is the square

0 � x � �=2, 0 � y � �=2

8.

ZZ

T

.x � 3y/ dA, where T is the triangle with vertices .0; 0/,

.a; 0/, and .0; b/

9.

ZZ

R

xy
2
dA, where R is the finite region in the first quadrant

bounded by the curves y D x2 and x D y2

10.

ZZ

D

x cosy dA, where D is the finite region in the first

quadrant bounded by the coordinate axes and the curve

y D 1 � x2

11.

ZZ

D

lnx dA, where D is the finite region in the first quadrant

bounded by the line 2x C 2y D 5 and the hyperbola xy D 1

12.

ZZ

T

p

a2
� y2 dA, where T is the triangle with vertices

.0; 0/, .a; 0/, and .a; a/

13.

ZZ

R

x

y
e

y
dA, where R is the region

0 � x � 1, x2
� y � x

14.

ZZ

T

xy

1C x4
dA, where T is the triangle with vertices .0; 0/,

.1; 0/, and .1; 1/

In Exercises 15–18, sketch the domain of integration and evaluate

the given iterated integrals.

15.

Z 1

0

dy

Z 1

y

e
�x2

dx 16.

Z �=2

0

dy

Z �=2

y

sinx

x
dx

17.

Z 1

0

dx

Z 1

x

y�

x2
C y2

dy .� > 0/

18.

Z 1

0

dx

Z x1=3

x

p

1 � y4 dy

In Exercises 19–28, find the volumes of the indicated solids.

19. Under z D 1 � x2 and above the region 0 � x � 1,

0 � y � x

20. Under z D 1 � x2 and above the region 0 � y � 1,

0 � x � y

21. Under z D 1 � x2
� y2 and above the region x � 0, y � 0,

x C y � 1

22. Under z D 1 � y2 and above z D x2

23. Under the surface z D 1=.x C y/ and above the region in the

xy-plane bounded by x D 1, x D 2, y D 0, and y D x

24. Under the surface z D x2 sin.y4
/ and above the triangle in the

xy-plane with vertices .0; 0/, .0; �1=4/, and .�1=4; �1=4/

25. Above the xy-plane and under the surface

z D 1 � x2
� 2y2
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26. Above the triangle with vertices .0; 0/, .a; 0/, and .0; b/, and

under the plane z D 2 � .x=a/ � .y=b/

27. Inside the two cylinders x2
C y2

D a2 and y2
C z2

D a2

28. Inside the cylinder x2
C 2y2

D 8, above the plane z D y � 4,

and below the plane z D 8 � x

29.A Suppose that f .x; t/ and f1.x; t/ are continuous on the

rectangle a � x � b and c � t � d . Let

g.x/ D

Z d

c

f .x; t/ dt and G.x/ D

Z d

c

f1.x; t/ dt:

Show that g0.x/ D G.x/ for a < x < b. Hint: Evaluate
R x

a G.u/ du by reversing the order of iteration. Then

differentiate the result. This is a different version of Theorem

6 of Section 13.6.

30.A Let F 0.x/ D f .x/ and G 0.x/ D g.x/ on the interval

a � x � b. Let T be the triangle with vertices .a; a/, .b; a/,

and .b; b/. By iterating
RR

T f .x/g.y/ dA in both directions,

show that
Z b

a

f .x/G.x/ dx

D F.b/G.b/ � F.a/G.a/ �

Z b

a

g.y/F.y/ dy:

(This is an alternative derivation of the formula for integration

by parts.)

M 31. Use Maple’s int routine or similar routines in other computer

algebra systems to evaluate the iterated integrals in

Exercises 1–4 or the iterated integrals you constructed in the

remaining exercises above.

14.3 Improper Integrals and a Mean-Value Theorem

To simplify matters, the definition of the double integral given in Section 14.1 required

that the domain D be bounded and that the integrand f be bounded on D. As in

the single-variable case, improper double integrals can arise if either the domain of

integration is unbounded or the integrand is unbounded near any point of the domain

or its boundary.

Improper Integrals of Positive Functions
An improper integral of a function f satisfying f .x; y/ � 0 on the domain D must

either exist (i.e., converge to a finite value) or be infinite (diverge to infinity). Conver-

gence or divergence of improper double integrals of such nonnegative functions can

be determined by iterating them and determining the convergence or divergence of any

single improper integrals that result.

E X A M P L E 1 Evaluate I D

ZZ

R

e
�x2

dA. Here, R is the region where x � 0

and �x � y � x. (See Figure 14.20.)

y

x

R

y D x

y D �x

Figure 14.20 An unbounded sector of the

plane

Solution We iterate with the outer integral in the x direction:

I D

Z 1

0

dx

Z x

�x

e
�x2

dy

D

Z 1

0

e
�x2

dx

Z x

�x

dy

D 2

Z 1

0

xe
�x2

dx:

This is an improper integral that can be expressed as a limit:

I D 2 lim
r!1

Z r

0

xe
�x2

dx

D 2 lim
r!1

�

�

1

2
e

�x2

�
ˇ

ˇ

ˇ

ˇ

r

0

D lim
r!1

.1 � e
�r2

/ D 1:

The given integral converges; its value is 1.
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E X A M P L E 2
IfD is the region lying above the x-axis, under the curve y D 1=x,

and to the right of the line x D 1, determine whether the double

integral

ZZ

D

dA

x C y

converges or diverges.

Solution The region D is sketched in Figure 14.21. We have
y

x

.1; 1/

y D
1

x

D

1

Figure 14.21 The domain of the

integrand in Example 2

ZZ

D

dA

x C y
D

Z 1

1

dx

Z 1=x

0

dy

x C y

D

Z 1

1

ln.x C y/

ˇ

ˇ

ˇ

ˇ

yD1=x

yD0

dx

D

Z 1

1

�

ln
�

x C
1

x

�

� lnx

�

dx

D

Z 1

1

ln

�x C
1

x

x

�

dx D

Z 1

1

ln
�

1C
1

x2

�

dx:

It happens that this integral can be evaluated exactly (see Exercise 28 below), but we

are only asked to determine whether it converges, and that is more easily accomplished

by estimating it. Since 0 < ln.1C u/ < u if u > 0, we have

0 <

ZZ

D

dA

x C y
<

Z 1

1

1

x2
dx D 1:

Therefore, the given integral converges, and its value lies between 0 and 1.

E X A M P L E 3 Evaluate

ZZ

D

1

.x C y/2
dA, where D is the region 0 � x � 1,

0 � y � x2.

Solution The integral is improper because the integrand is unbounded as .x; y/ ap-

proaches .0; 0/, a boundary point of D. (See Figure 14.22.) Nevertheless, iteration

leads to a proper integral:

ZZ

D

1

.x C y/2
dA D lim

c!0C

Z 1

c

dx

Z x2

0

1

.x C y/2
dy

D lim
c!0C

Z 1

c

dx

�

�

1

x C y

�
ˇ

ˇ

ˇ

ˇ

yDx2

yD0

D lim
c!0C

Z 1

c

�

1

x
�

1

x2
C x

�

dx

D

Z 1

0

1

x C 1
dx D ln.x C 1/

ˇ

ˇ

ˇ

1

0
D ln 2:

y

x

D

1

y D x2

.1; 1/

Figure 14.22 The function
1

.x C y/2
is

unbounded on D

E X A M P L E 4 Determine the convergence or divergence of I D

ZZ

D

dA

xy
, where

D is the bounded region in the first quadrant lying between the line

y D x and the parabola y D x2.
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26. Above the triangle with vertices .0; 0/, .a; 0/, and .0; b/, and

under the plane z D 2 � .x=a/ � .y=b/

27. Inside the two cylinders x2
C y2

D a2 and y2
C z2

D a2

28. Inside the cylinder x2
C 2y2

D 8, above the plane z D y � 4,

and below the plane z D 8 � x

29.A Suppose that f .x; t/ and f1.x; t/ are continuous on the

rectangle a � x � b and c � t � d . Let

g.x/ D

Z d

c

f .x; t/ dt and G.x/ D

Z d

c

f1.x; t/ dt:

Show that g0.x/ D G.x/ for a < x < b. Hint: Evaluate
R x

a G.u/ du by reversing the order of iteration. Then

differentiate the result. This is a different version of Theorem

6 of Section 13.6.

30.A Let F 0.x/ D f .x/ and G 0.x/ D g.x/ on the interval

a � x � b. Let T be the triangle with vertices .a; a/, .b; a/,

and .b; b/. By iterating
RR

T f .x/g.y/ dA in both directions,

show that
Z b

a

f .x/G.x/ dx

D F.b/G.b/ � F.a/G.a/ �

Z b

a

g.y/F.y/ dy:

(This is an alternative derivation of the formula for integration

by parts.)

M 31. Use Maple’s int routine or similar routines in other computer

algebra systems to evaluate the iterated integrals in

Exercises 1–4 or the iterated integrals you constructed in the

remaining exercises above.

14.3 Improper Integrals and a Mean-Value Theorem

To simplify matters, the definition of the double integral given in Section 14.1 required

that the domain D be bounded and that the integrand f be bounded on D. As in

the single-variable case, improper double integrals can arise if either the domain of

integration is unbounded or the integrand is unbounded near any point of the domain

or its boundary.

Improper Integrals of Positive Functions
An improper integral of a function f satisfying f .x; y/ � 0 on the domain D must

either exist (i.e., converge to a finite value) or be infinite (diverge to infinity). Conver-

gence or divergence of improper double integrals of such nonnegative functions can

be determined by iterating them and determining the convergence or divergence of any

single improper integrals that result.

E X A M P L E 1 Evaluate I D

ZZ

R

e
�x2

dA. Here, R is the region where x � 0

and �x � y � x. (See Figure 14.20.)

y

x

R

y D x

y D �x

Figure 14.20 An unbounded sector of the

plane

Solution We iterate with the outer integral in the x direction:

I D

Z 1

0

dx

Z x

�x

e
�x2

dy

D

Z 1

0

e
�x2

dx

Z x

�x

dy

D 2

Z 1

0

xe
�x2

dx:

This is an improper integral that can be expressed as a limit:

I D 2 lim
r!1

Z r

0

xe
�x2

dx

D 2 lim
r!1

�

�

1

2
e

�x2

�
ˇ

ˇ

ˇ

ˇ

r

0

D lim
r!1

.1 � e
�r2

/ D 1:

The given integral converges; its value is 1.
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E X A M P L E 2
IfD is the region lying above the x-axis, under the curve y D 1=x,

and to the right of the line x D 1, determine whether the double

integral

ZZ

D

dA

x C y

converges or diverges.

Solution The region D is sketched in Figure 14.21. We have
y

x

.1; 1/

y D
1

x

D

1

Figure 14.21 The domain of the

integrand in Example 2

ZZ

D

dA

x C y
D

Z 1

1

dx

Z 1=x

0

dy

x C y

D

Z 1

1

ln.x C y/

ˇ

ˇ

ˇ

ˇ

yD1=x

yD0

dx

D

Z 1

1

�

ln
�

x C
1

x

�

� lnx

�

dx

D

Z 1

1

ln

�x C
1

x

x

�

dx D

Z 1

1

ln
�

1C
1

x2

�

dx:

It happens that this integral can be evaluated exactly (see Exercise 28 below), but we

are only asked to determine whether it converges, and that is more easily accomplished

by estimating it. Since 0 < ln.1C u/ < u if u > 0, we have

0 <

ZZ

D

dA

x C y
<

Z 1

1

1

x2
dx D 1:

Therefore, the given integral converges, and its value lies between 0 and 1.

E X A M P L E 3 Evaluate

ZZ

D

1

.x C y/2
dA, where D is the region 0 � x � 1,

0 � y � x2.

Solution The integral is improper because the integrand is unbounded as .x; y/ ap-

proaches .0; 0/, a boundary point of D. (See Figure 14.22.) Nevertheless, iteration

leads to a proper integral:

ZZ

D

1

.x C y/2
dA D lim

c!0C

Z 1

c

dx

Z x2

0

1

.x C y/2
dy

D lim
c!0C

Z 1

c

dx

�

�

1

x C y

�
ˇ

ˇ

ˇ

ˇ

yDx2

yD0

D lim
c!0C

Z 1

c

�

1

x
�

1

x2
C x

�

dx

D

Z 1

0

1

x C 1
dx D ln.x C 1/

ˇ

ˇ

ˇ

1

0
D ln 2:

y

x

D

1

y D x2

.1; 1/

Figure 14.22 The function
1

.x C y/2
is

unbounded on D

E X A M P L E 4 Determine the convergence or divergence of I D

ZZ

D

dA

xy
, where

D is the bounded region in the first quadrant lying between the line

y D x and the parabola y D x2.
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Solution The domain D is shown in Figure 14.23. Again, the integral is improper

because the integrand 1=.xy/ is unbounded as .x; y/ approaches the boundary point

.0; 0/. We have

I D

ZZ

D

dA

xy
D

Z 1

0

dx

x

Z x

x2

dy

y

D

Z 1

0

1

x
.ln x � lnx2

/ dx D �

Z 1

0

ln x

x
dx:

If we substitute x D e�t in this integral, we obtain

I D �

Z 0

1

�t

e�t
.�e

�t
/ dt D

Z 1

0

t dt;

which diverges to infinity.

y

x

D

y D x

.1; 1/

y D x
2

Figure 14.23
1

xy
is unbounded

on the domain D

Remark In each of the examples above, the integrand was nonnegative on the do-

main of integration. Nonpositive integrands could have been handled similarly, but

we cannot deal here with the convergence of general improper double integrals with

integrands f .x; y/ that take both positive and negative values on the domain D of the

integral. We remark, however, that such an integral cannot converge unless

ZZ

E

f .x; y/ dA

is finite for every bounded, regular subdomain E of D. We cannot, in general, de-

termine the convergence of the given integral by looking at the convergence of itera-

tions. The double integral may diverge even if its iterations converge. (See Exercise

21 below.) In fact, opposite iterations may even give different values. This happens

because of cancellation of infinite volumes of opposite sign. (Similar behaviour in

one dimension is exemplified by the integral
R 1

�1
dx=x, which does not exist, although

it represents the difference between “equal” but infinite areas.) It can be shown (for

a large class of functions containing, for example, continuous functions) that an im-

proper double integral of f .x; y/ over D converges if the integral of jf .x; y/j over D

converges:

ZZ

D

jf .x; y/j dA converges )

ZZ

D

f .x; y/ dA converges:

In this case any iterations will converge to the same value. Such double integrals are

called absolutely convergent by analogy with absolutely convergent infinite series.

A Mean-Value Theorem for Double Integrals
Let D be a set in the xy-plane that is closed and bounded and has positive area A D
RR

D
dA. Suppose that f .x; y/ is continuous on D. Then there exist points .x1; y1/

and .x2; y2/ in D where f assumes minimum and maximum values (see Theorem 2

of Section 13.1); that is,

f .x1; y1/ � f .x; y/ � f .x2; y2/

for all points .x; y/ in D. If we integrate this inequality over D, we obtain

f .x1; y1/A D

ZZ

D

f .x1; y1/ dA

�

ZZ

D

f .x; y/ dA �

ZZ

D

f .x2; y2/ dA D f .x2; y2/A:
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Therefore, dividing by A, we find that the number

Nf D
1

A

ZZ

D

f .x; y/ dA

lies between the minimum and maximum values of f on D:

f .x1; y1/ �
Nf � f .x2; y2/:

A setD in the plane is said to be connected if any two points in it can be joined by

a continuous parametric curve x D x.t/, y D y.t/, .0 � t � 1/, lying in D. Suppose

this curve joins .x1; y1/ (where t D 0) and .x2; y2/ (where t D 1). Let g.t/ satisfy

g.t/ D f
�

x.t/; y.t/
�

; 0 � t � 1:

Then g is continuous and takes the values f .x1; y1/ at t D 0 and f .x2; y2/ at t D 1.

By the Intermediate-Value Theorem there exists a number t0 between 0 and 1 such that
Nf D g.t0/ D f .x0; y0/, where x0 D x.t0/ and y0 D y.t0/. Thus, we have found a

point .x0; y0/ in D such that

1

area of D

ZZ

D

f .x; y/ dA D f .x0; y0/:

We have therefore proved the following version of the Mean-Value Theorem.

T H E O R E M

3

A Mean-Value Theorem for double integrals

If the function f .x; y/ is continuous on a closed, bounded, connected set D in the

xy-plane, then there exists a point .x0; y0/ in D such that

ZZ

D

f .x; y/ dA D f .x0; y0/ � .area of D/:

By analogy with the definition of average value for one-variable functions, we make

the following definition:

D E F I N I T I O N

3

The average value or mean value of an integrable function f .x; y/ over the

set D is the number

Nf D
1

area of D

ZZ

D

f .x; y/ dA:

If f .x; y/ � 0 on D, then the cylinder with base D and constant height Nf has volume

equal to that of the solid region lying above D and below the surface z D f .x; y/. It

is often very useful to interpret a double integral in terms of the average value of the

function which is its integrand.

E X A M P L E 5
The average value of x over a domain D having area A is

Nx D
1

A

ZZ

D

x dA:

Of course, Nx is just the x-coordinate of the centroid of the region D.

E X A M P L E 6
A large number of points .x; y/ are chosen at random in the trian-

gle T with vertices .0; 0/, .1; 0/, and .1; 1/. What is the approxi-

mate average value of x2
C y2 for these points?
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Solution The domain D is shown in Figure 14.23. Again, the integral is improper

because the integrand 1=.xy/ is unbounded as .x; y/ approaches the boundary point

.0; 0/. We have

I D

ZZ

D

dA

xy
D

Z 1

0

dx

x

Z x

x2

dy

y

D

Z 1

0

1

x
.ln x � lnx2

/ dx D �

Z 1

0

ln x

x
dx:

If we substitute x D e�t in this integral, we obtain

I D �

Z 0

1

�t

e�t
.�e

�t
/ dt D

Z 1

0

t dt;

which diverges to infinity.

y

x

D

y D x

.1; 1/

y D x
2

Figure 14.23
1

xy
is unbounded

on the domain D

Remark In each of the examples above, the integrand was nonnegative on the do-

main of integration. Nonpositive integrands could have been handled similarly, but

we cannot deal here with the convergence of general improper double integrals with

integrands f .x; y/ that take both positive and negative values on the domain D of the

integral. We remark, however, that such an integral cannot converge unless

ZZ

E

f .x; y/ dA

is finite for every bounded, regular subdomain E of D. We cannot, in general, de-

termine the convergence of the given integral by looking at the convergence of itera-

tions. The double integral may diverge even if its iterations converge. (See Exercise

21 below.) In fact, opposite iterations may even give different values. This happens

because of cancellation of infinite volumes of opposite sign. (Similar behaviour in

one dimension is exemplified by the integral
R 1

�1
dx=x, which does not exist, although

it represents the difference between “equal” but infinite areas.) It can be shown (for

a large class of functions containing, for example, continuous functions) that an im-

proper double integral of f .x; y/ over D converges if the integral of jf .x; y/j over D

converges:

ZZ

D

jf .x; y/j dA converges )

ZZ

D

f .x; y/ dA converges:

In this case any iterations will converge to the same value. Such double integrals are

called absolutely convergent by analogy with absolutely convergent infinite series.

A Mean-Value Theorem for Double Integrals
Let D be a set in the xy-plane that is closed and bounded and has positive area A D
RR

D
dA. Suppose that f .x; y/ is continuous on D. Then there exist points .x1; y1/

and .x2; y2/ in D where f assumes minimum and maximum values (see Theorem 2

of Section 13.1); that is,

f .x1; y1/ � f .x; y/ � f .x2; y2/

for all points .x; y/ in D. If we integrate this inequality over D, we obtain

f .x1; y1/A D

ZZ

D

f .x1; y1/ dA

�

ZZ

D

f .x; y/ dA �

ZZ

D

f .x2; y2/ dA D f .x2; y2/A:
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Therefore, dividing by A, we find that the number

Nf D
1

A

ZZ

D

f .x; y/ dA

lies between the minimum and maximum values of f on D:

f .x1; y1/ �
Nf � f .x2; y2/:

A setD in the plane is said to be connected if any two points in it can be joined by

a continuous parametric curve x D x.t/, y D y.t/, .0 � t � 1/, lying in D. Suppose

this curve joins .x1; y1/ (where t D 0) and .x2; y2/ (where t D 1). Let g.t/ satisfy

g.t/ D f
�

x.t/; y.t/
�

; 0 � t � 1:

Then g is continuous and takes the values f .x1; y1/ at t D 0 and f .x2; y2/ at t D 1.

By the Intermediate-Value Theorem there exists a number t0 between 0 and 1 such that
Nf D g.t0/ D f .x0; y0/, where x0 D x.t0/ and y0 D y.t0/. Thus, we have found a

point .x0; y0/ in D such that

1

area of D

ZZ

D

f .x; y/ dA D f .x0; y0/:

We have therefore proved the following version of the Mean-Value Theorem.

T H E O R E M

3

A Mean-Value Theorem for double integrals

If the function f .x; y/ is continuous on a closed, bounded, connected set D in the

xy-plane, then there exists a point .x0; y0/ in D such that

ZZ

D

f .x; y/ dA D f .x0; y0/ � .area of D/:

By analogy with the definition of average value for one-variable functions, we make

the following definition:

D E F I N I T I O N

3

The average value or mean value of an integrable function f .x; y/ over the

set D is the number

Nf D
1

area of D

ZZ

D

f .x; y/ dA:

If f .x; y/ � 0 on D, then the cylinder with base D and constant height Nf has volume

equal to that of the solid region lying above D and below the surface z D f .x; y/. It

is often very useful to interpret a double integral in terms of the average value of the

function which is its integrand.

E X A M P L E 5
The average value of x over a domain D having area A is

Nx D
1

A

ZZ

D

x dA:

Of course, Nx is just the x-coordinate of the centroid of the region D.

E X A M P L E 6
A large number of points .x; y/ are chosen at random in the trian-

gle T with vertices .0; 0/, .1; 0/, and .1; 1/. What is the approxi-

mate average value of x2
C y2 for these points?

9780134154367_Calculus   851 05/12/16   4:37 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 14 – page 832 October 17, 2016

832 CHAPTER 14 Multiple Integration

Solution The approximate average value of x2
C y2 for the randomly chosen points

will be the average value of that function over the triangle, namely,

1

1=2

ZZ

T

.x
2
C y

2
/ dA D 2

Z 1

0

dx

Z x

0

.x
2
C y

2
/ dy

D 2

Z 1

0

�

x
2
y C

1

3
y

3

�
ˇ

ˇ

ˇ

ˇ

yDx

yD0

dx D
8

3

Z 1

0

x
3
dx D

2

3
:

E X A M P L E 7
Let .a; b/ be an interior point of a domain D on which f .x; y/ is

continuous. For sufficiently small positive r , the closed circular

disk Dr with centre at .a; b/ and radius r is contained in D. Show that

lim
r!0

1

�r2

ZZ

Dr

f .x; y/ dA D f .a; b/:

Solution If Dr is contained in D, then by Theorem 3

1

�r2

ZZ

Dr

f .x; y/ dA D f .x0; y0/

for some point .x0; y0/ in Dr . As r ! 0, the point .x0; y0/ approaches .a; b/. Since

f is continuous at .a; b/, we have f .x0; y0/! f .a; b/. Thus,

lim
r!0

1

�r2

ZZ

Dr

f .x; y/ dA D f .a; b/:

E X E R C I S E S 14.3

In Exercises 1–12, determine whether the given integral converges

or diverges. Try to evaluate those that converge.

1.

ZZ

Q

e
�x�y

dA, where Q is the first quadrant of the xy-plane

2.

ZZ

Q

dA

.1C x2/.1C y2/
, where Q is the first quadrant of the

xy-plane

3.

ZZ

S

y

1C x2
dA, where S is the strip 0 < y < 1 in the

xy-plane

4.

ZZ

T

1

x
p

y
dA over the triangle T with vertices .0; 0/, .1; 1/,

and .1; 2/

5.

ZZ

Q

x
2
C y

2

.1C x2/.1C y2/
dA, where Q is the first quadrant of

the xy-plane

6.

ZZ

H

1

1C x C y
dA, whereH is the half-strip 0 � x <1,

0 < y < 1

7.

ZZ

R
2
e

�.jxjCjyj/
dA 8.

ZZ

R
2
e

�jxCyj
dA

9.

ZZ

T

1

x3
e

�y=x
dA, where T is the region satisfying

x � 1 and 0 � y � x

10.

ZZ

T

dA

x2
C y2

, where T is the region in Exercise 9

11.I

ZZ

Q

e
�xy

dA, where Q is the first quadrant of the xy-plane

12.

ZZ

R

1

x
sin

1

x
dA, where R is the region 2=� � x <1,

0 � y � 1=x

13. Evaluate

I D

ZZ

S

dA

x C y
;

where S is the square 0 � x � 1, 0 � y � 1,

(a) by direct iteration of the double integral,

(b) by using the symmetry of the integrand and the domain to

write

I D 2

ZZ

T

dA

x C y
;

where T is the triangle with vertices .0; 0/, .1; 0/, and

.1; 1/.

14. Find the volume of the solid lying above the square S of

Exercise 13 and under the surface z D 2xy=.x2
C y2/.
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In Exercises 15–20, a and b are given real numbers, Dk is the

region 0 � x � 1, 0 � y � xk , and Rk is the region 1 � x <1,

0 � y � xk . Find all real values of k for which the given integral

converges.

15.

ZZ

Dk

dA

xa
16.

ZZ

Dk

y
b
dA

17.

ZZ

Rk

x
a
dA 18.

ZZ

Rk

dA

yb

19.

ZZ

Dk

x
a
y

b
dA 20.

ZZ

Rk

x
a
y

b
dA

21.I Evaluate both iterations of the improper integral

ZZ

S

x � y

.x C y/3
dA;

where S is the square 0 < x < 1, 0 < y < 1. Show that the

above improper double integral does not exist by considering

ZZ

T

x � y

.x C y/3
dA;

where T is that part of the square S lying under the line

x D y.

In Exercises 22–24, find the average value of the given function

over the given region.

22. x2 over the rectangle a � x � b, c � y � d

23. x2
C y2 over the triangle 0 � x � a, 0 � y � a � x

24. 1=x over the region 0 � x � 1, x2
� y �

p

x

25. Find the average distance from points in the quarter-disk

x2
C y2

� a2, x � 0, y � 0, to the line x C y D 0.

26. Does f .x; y/ D x have an average value over the region

0 � x <1, 0 � y �
1

1C x2
? If so, what is it?

27. Does f .x; y/ D xy have an average value over the region

0 � x <1, 0 � y �
1

1C x2
? If so, what is it?

28.I Find the exact value of the integral in Example 2. Hint:

Integrate by parts in
R1

1 ln
�

1C .1=x2/

�

dx.

29.A Let .a; b/ be an interior point of a domain D on which the

function f .x; y/ is continuous. For small enough h2
C k2 the

rectangle Rhk with vertices .a; b/, .aC h; b/, .a; b C k/, and

.aC h; b C k/ is contained in D. Show that

lim
.h;k/!.0;0/

1

hk

ZZ

Rhk

f .x; y/ D f .a; b/:

Hint: See Example 7.

30.A (Another proof of equality of mixed partials) Suppose that

f12.x; y/ and f21.x; y/ are continuous in a neighbourhood of

the point .a; b/. Without assuming the equality of these mixed

partial derivatives, show that

ZZ

R

f12.x; y/ dA D

ZZ

R

f21.x; y/ dA;

where R is the rectangle with vertices .a; b/, .aC h; b/,

.a; b C k/, and .aC h; b C k/ and h2
C k2 is sufficiently

small. Now use the result of Exercise 29 to show that

f12.a; b/ D f21.a; b/. (This reproves Theorem 1 of

Section 12.4. However, in that theorem we only assumed

continuity of the mixed partials at .a; b/. Here, we assume the

continuity at all points sufficiently near .a; b/.)

14.4 Double Integrals in Polar Coordinates

For many applications of double integrals, either the domain of integration, the inte-

grand function, or both may be more easily expressed in terms of polar coordinates

than in terms of Cartesian coordinates. Recall that a point P with Cartesian coordi-

nates .x; y/ can also be located by its polar coordinates Œr; ��, where r is the distance

from P to the originO; and � is the angleOP makes with the positive direction of the

x-axis. (Positive angles � are measured counterclockwise.) The polar and Cartesian

coordinates of P are related by the transformations (see Figure 14.24)

x D r cos �;

y D r sin �;

r
2
D x

2
C y

2
;

tan � D y=x:

Consider the problem of finding the volume V of the solid region lying above the

xy-plane and beneath the paraboloid z D 1�x2
�y2. Since the paraboloid intersects

y

x

Œr;��

.x;y/

y

x

r

�

Figure 14.24 Polar–Cartesian conversions

the xy-plane in the circle x2
C y2

D 1, the volume is given in Cartesian coordinates

by

V D

ZZ

x2Cy2�1

.1 � x
2
� y

2
/ dA D

Z 1

�1

dx

Z

p
1�x2

�
p

1�x2

.1 � x
2
� y

2
/ dy:
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Solution The approximate average value of x2
C y2 for the randomly chosen points

will be the average value of that function over the triangle, namely,

1

1=2

ZZ

T

.x
2
C y

2
/ dA D 2

Z 1

0

dx

Z x

0

.x
2
C y

2
/ dy

D 2

Z 1

0

�

x
2
y C

1

3
y

3

�
ˇ

ˇ

ˇ

ˇ

yDx

yD0

dx D
8

3

Z 1

0

x
3
dx D

2

3
:

E X A M P L E 7
Let .a; b/ be an interior point of a domain D on which f .x; y/ is

continuous. For sufficiently small positive r , the closed circular

disk Dr with centre at .a; b/ and radius r is contained in D. Show that

lim
r!0

1

�r2

ZZ

Dr

f .x; y/ dA D f .a; b/:

Solution If Dr is contained in D, then by Theorem 3

1

�r2

ZZ

Dr

f .x; y/ dA D f .x0; y0/

for some point .x0; y0/ in Dr . As r ! 0, the point .x0; y0/ approaches .a; b/. Since

f is continuous at .a; b/, we have f .x0; y0/! f .a; b/. Thus,

lim
r!0

1

�r2

ZZ

Dr

f .x; y/ dA D f .a; b/:

E X E R C I S E S 14.3

In Exercises 1–12, determine whether the given integral converges

or diverges. Try to evaluate those that converge.

1.

ZZ

Q

e
�x�y

dA, where Q is the first quadrant of the xy-plane

2.

ZZ

Q

dA

.1C x2/.1C y2/
, where Q is the first quadrant of the

xy-plane

3.

ZZ

S

y

1C x2
dA, where S is the strip 0 < y < 1 in the

xy-plane

4.

ZZ

T

1

x
p

y
dA over the triangle T with vertices .0; 0/, .1; 1/,

and .1; 2/

5.

ZZ

Q

x
2
C y

2

.1C x2/.1C y2/
dA, where Q is the first quadrant of

the xy-plane

6.

ZZ

H

1

1C x C y
dA, whereH is the half-strip 0 � x <1,

0 < y < 1

7.

ZZ

R
2
e

�.jxjCjyj/
dA 8.

ZZ

R
2
e

�jxCyj
dA

9.

ZZ

T

1

x3
e

�y=x
dA, where T is the region satisfying

x � 1 and 0 � y � x

10.

ZZ

T

dA

x2
C y2

, where T is the region in Exercise 9

11.I

ZZ

Q

e
�xy

dA, where Q is the first quadrant of the xy-plane

12.

ZZ

R

1

x
sin

1

x
dA, where R is the region 2=� � x <1,

0 � y � 1=x

13. Evaluate

I D

ZZ

S

dA

x C y
;

where S is the square 0 � x � 1, 0 � y � 1,

(a) by direct iteration of the double integral,

(b) by using the symmetry of the integrand and the domain to

write

I D 2

ZZ

T

dA

x C y
;

where T is the triangle with vertices .0; 0/, .1; 0/, and

.1; 1/.

14. Find the volume of the solid lying above the square S of

Exercise 13 and under the surface z D 2xy=.x2
C y2/.
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In Exercises 15–20, a and b are given real numbers, Dk is the

region 0 � x � 1, 0 � y � xk , and Rk is the region 1 � x <1,

0 � y � xk . Find all real values of k for which the given integral

converges.

15.

ZZ

Dk

dA

xa
16.

ZZ

Dk

y
b
dA

17.

ZZ

Rk

x
a
dA 18.

ZZ

Rk

dA

yb

19.

ZZ

Dk

x
a
y

b
dA 20.

ZZ

Rk

x
a
y

b
dA

21.I Evaluate both iterations of the improper integral

ZZ

S

x � y

.x C y/3
dA;

where S is the square 0 < x < 1, 0 < y < 1. Show that the

above improper double integral does not exist by considering

ZZ

T

x � y

.x C y/3
dA;

where T is that part of the square S lying under the line

x D y.

In Exercises 22–24, find the average value of the given function

over the given region.

22. x2 over the rectangle a � x � b, c � y � d

23. x2
C y2 over the triangle 0 � x � a, 0 � y � a � x

24. 1=x over the region 0 � x � 1, x2
� y �

p

x

25. Find the average distance from points in the quarter-disk

x2
C y2

� a2, x � 0, y � 0, to the line x C y D 0.

26. Does f .x; y/ D x have an average value over the region

0 � x <1, 0 � y �
1

1C x2
? If so, what is it?

27. Does f .x; y/ D xy have an average value over the region

0 � x <1, 0 � y �
1

1C x2
? If so, what is it?

28.I Find the exact value of the integral in Example 2. Hint:

Integrate by parts in
R1

1 ln
�

1C .1=x2/

�

dx.

29.A Let .a; b/ be an interior point of a domain D on which the

function f .x; y/ is continuous. For small enough h2
C k2 the

rectangle Rhk with vertices .a; b/, .aC h; b/, .a; b C k/, and

.aC h; b C k/ is contained in D. Show that

lim
.h;k/!.0;0/

1

hk

ZZ

Rhk

f .x; y/ D f .a; b/:

Hint: See Example 7.

30.A (Another proof of equality of mixed partials) Suppose that

f12.x; y/ and f21.x; y/ are continuous in a neighbourhood of

the point .a; b/. Without assuming the equality of these mixed

partial derivatives, show that

ZZ

R

f12.x; y/ dA D

ZZ

R

f21.x; y/ dA;

where R is the rectangle with vertices .a; b/, .aC h; b/,

.a; b C k/, and .aC h; b C k/ and h2
C k2 is sufficiently

small. Now use the result of Exercise 29 to show that

f12.a; b/ D f21.a; b/. (This reproves Theorem 1 of

Section 12.4. However, in that theorem we only assumed

continuity of the mixed partials at .a; b/. Here, we assume the

continuity at all points sufficiently near .a; b/.)

14.4 Double Integrals in Polar Coordinates

For many applications of double integrals, either the domain of integration, the inte-

grand function, or both may be more easily expressed in terms of polar coordinates

than in terms of Cartesian coordinates. Recall that a point P with Cartesian coordi-

nates .x; y/ can also be located by its polar coordinates Œr; ��, where r is the distance

from P to the originO; and � is the angleOP makes with the positive direction of the

x-axis. (Positive angles � are measured counterclockwise.) The polar and Cartesian

coordinates of P are related by the transformations (see Figure 14.24)

x D r cos �;

y D r sin �;

r
2
D x

2
C y

2
;

tan � D y=x:

Consider the problem of finding the volume V of the solid region lying above the

xy-plane and beneath the paraboloid z D 1�x2
�y2. Since the paraboloid intersects

y

x

Œr;��

.x;y/

y

x

r

�

Figure 14.24 Polar–Cartesian conversions

the xy-plane in the circle x2
C y2

D 1, the volume is given in Cartesian coordinates

by

V D

ZZ

x2Cy2�1

.1 � x
2
� y

2
/ dA D

Z 1

�1

dx

Z

p
1�x2

�
p

1�x2

.1 � x
2
� y

2
/ dy:
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Evaluating this iterated integral would require considerable effort. However, we can

express the same volume in terms of polar coordinates as

V D

ZZ

r�1

.1 � r
2
/ dA:

In order to iterate this integral, we have to know the form that the area element dA

takes in polar coordinates.

Figure 14.25

(a) dA D dx dy in Cartesian coordinates

(b) dA D r dr d� in polar coordinates

y

x

dydA
y

y C dy

dx

x x C dx

y

x

dA

r r C dr

r d�
dr

d�

�

(a) (b)

In the Cartesian formula for V; the area element dA D dx dy represents the area

of the “infinitesimal” region bounded by the coordinate lines at x, x C dx, y, and

y C dy. (See Figure 14.25(a).) In the polar formula, the area element dA should rep-

resent the area of the “infinitesimal” region bounded by the coordinate circles with

radii r and r C dr , and coordinate rays from the origin at angles � and � C d� . (See

Figure 14.25(b).) Observe that dA is approximately the area of a rectangle with dimen-

sions dr and r d� . The error in this approximation becomes negligible compared with

the size of dA as dr and d� approach zero. Thus, in transforming a double integral

between Cartesian and polar coordinates, the area element transforms according to the

formula

dx dy D dA D r dr d�:

In order to iterate the polar form of the double integral for V considered above, we

can regard the domain of integration as a set in a plane having Cartesian coordinates r

and � . In the xy Cartesian plane the domain is a disk r � 1 (see Figure 14.26), but in

the r� Cartesian plane (with perpendicular r- and �-axes) the domain is the rectangle

R specified by 0 � r � 1 and 0 � � � 2� . (See Figure 14.27.) The area element

in the r�-plane is dA�
D dr d� , so area is not preserved under the transformation to

y

x

x2
C y2

D 1

or r D 1

1

Figure 14.26 The domain in the xy-plane

polar coordinates (dA D r dA�). Thus, the polar integral for V is really a Cartesian

integral in the r�-plane, with integrand modified by the inclusion of an extra factor r to

compensate for the change of area. It can be evaluated by standard iteration methods:

V D

ZZ

R

.1 � r
2
/r dA

�
D

Z 2�

0

d�

Z 1

0

.1 � r
2
/r dr

D

Z 2�

0

�

r2

2
�

r4

4

�

ˇ

ˇ

ˇ

ˇ

1

0

d� D
�

2
units3

:

r D 1

� D 2�R

r

�

Figure 14.27 The domain in the r� -plane

Remark It is not necessary to sketch the region R in the r�-plane. We are used

to thinking of polar coordinates in terms of distances and angles in the xy-plane and

can easily understand from looking at the disk in Figure 14.26 that the iteration of the

integral in polar coordinates corresponds to 0 � � � 2� and 0 � r � 1. That is, we

should be able to write the iteration

V D

Z 2�

0

d�

Z 1

0

.1 � r
2
/r dr

directly from consideration of the domain of integration in the xy-plane.
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E X A M P L E 1
If R is that part of the annulus 0 < a2

� x2
C y2

� b2 lying in

the first quadrant and below the line y D x, evaluate

I D

ZZ

R

y2

x2
dA:

Solution Figure 14.28 shows the region R. It is specified in polar coordinates by

0 � � � �=4 and a � r � b. Since

y2

x2
D

r2 sin2
�

r2 cos2 �
D tan2

�;

we have

y

x

�=4

R

a b

y D x

Figure 14.28 Region R corresponds to a

rectangle in the r� -plane

I D

Z �=4

0

tan2
� d�

Z b

a

r dr

D

1

2
.b

2
� a

2
/

Z �=4

0

�

sec2
� � 1

�

d�

D

1

2
.b

2
� a

2
/.tan � � �/

ˇ

ˇ

ˇ

ˇ

�=4

0

D

1

2
.b

2
� a

2
/

�

1�
�

4

�

D

4 � �

8
.b

2
� a

2
/:

E X A M P L E 2
(Area of a polar region) Derive the formula for the area of the

polar regionR bounded by the curve r D f .�/ and the rays � D ˛

and � D ˇ. (See Figure 14.29.)

Solution The area A of R is numerically equal to the volume of a cylinder of height

1 above the region R:

A D

ZZ

R

dx dy D

ZZ

R

r dr d�

D

Z ˇ

˛

d�

Z f .�/

0

r dr D
1

2

Z ˇ

˛

�

f .�/

�2

d�:

Observe that the inner integral in the iteration involves integrating r along the ray

specified by � from 0 to f .�/.

y

x

R

ˇ

˛

r D f .�/

Figure 14.29 A standard area problem for

polar coordinates

There is no firm rule as to whether one should or should not convert a double integral

from Cartesian to polar coordinates. In Example 1 above, the conversion was strongly

suggested by the shape of the domain but was also indicated by the fact that the inte-

grand, y2=x2, becomes a function of � alone when converted to polar coordinates. It

is usually wise to switch to polar coordinates if the switch simplifies the iteration (i.e.,

if the domain is “simpler” when expressed in terms of polar coordinates), even if the

form of the integrand is made more complicated.

E X A M P L E 3
Find the volume of the solid lying in the first octant, inside the

cylinder x2
C y2

D a2, and under the plane z D y.

Solution The solid is shown in Figure 14.30. The base is a quarter disk, which is

expressed in polar coordinates by the inequalities 0 � � � �=2 and 0 � r � a. The

height is given by z D y D r sin � . The solid has volume

V D

Z �=2

0

d�

Z a

0

.r sin �/r dr D

Z �=2

0

sin � d�

Z a

0

r
2
dr D

1

3
a

3 units3:
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Evaluating this iterated integral would require considerable effort. However, we can

express the same volume in terms of polar coordinates as

V D

ZZ

r�1

.1 � r
2
/ dA:

In order to iterate this integral, we have to know the form that the area element dA

takes in polar coordinates.

Figure 14.25

(a) dA D dx dy in Cartesian coordinates

(b) dA D r dr d� in polar coordinates

y

x

dydA
y

y C dy

dx

x x C dx

y

x

dA

r r C dr

r d�
dr

d�

�

(a) (b)

In the Cartesian formula for V; the area element dA D dx dy represents the area

of the “infinitesimal” region bounded by the coordinate lines at x, x C dx, y, and

y C dy. (See Figure 14.25(a).) In the polar formula, the area element dA should rep-

resent the area of the “infinitesimal” region bounded by the coordinate circles with

radii r and r C dr , and coordinate rays from the origin at angles � and � C d� . (See

Figure 14.25(b).) Observe that dA is approximately the area of a rectangle with dimen-

sions dr and r d� . The error in this approximation becomes negligible compared with

the size of dA as dr and d� approach zero. Thus, in transforming a double integral

between Cartesian and polar coordinates, the area element transforms according to the

formula

dx dy D dA D r dr d�:

In order to iterate the polar form of the double integral for V considered above, we

can regard the domain of integration as a set in a plane having Cartesian coordinates r

and � . In the xy Cartesian plane the domain is a disk r � 1 (see Figure 14.26), but in

the r� Cartesian plane (with perpendicular r- and �-axes) the domain is the rectangle

R specified by 0 � r � 1 and 0 � � � 2� . (See Figure 14.27.) The area element

in the r�-plane is dA�
D dr d� , so area is not preserved under the transformation to

y

x

x2
C y2

D 1

or r D 1

1

Figure 14.26 The domain in the xy-plane

polar coordinates (dA D r dA�). Thus, the polar integral for V is really a Cartesian

integral in the r�-plane, with integrand modified by the inclusion of an extra factor r to

compensate for the change of area. It can be evaluated by standard iteration methods:

V D

ZZ

R

.1 � r
2
/r dA

�
D

Z 2�

0

d�

Z 1

0

.1 � r
2
/r dr

D

Z 2�

0

�

r2

2
�

r4

4

�

ˇ

ˇ

ˇ

ˇ

1

0

d� D
�

2
units3

:

r D 1

� D 2�R

r

�

Figure 14.27 The domain in the r� -plane

Remark It is not necessary to sketch the region R in the r�-plane. We are used

to thinking of polar coordinates in terms of distances and angles in the xy-plane and

can easily understand from looking at the disk in Figure 14.26 that the iteration of the

integral in polar coordinates corresponds to 0 � � � 2� and 0 � r � 1. That is, we

should be able to write the iteration

V D

Z 2�

0

d�

Z 1

0

.1 � r
2
/r dr

directly from consideration of the domain of integration in the xy-plane.
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E X A M P L E 1
If R is that part of the annulus 0 < a2

� x2
C y2

� b2 lying in

the first quadrant and below the line y D x, evaluate

I D

ZZ

R

y2

x2
dA:

Solution Figure 14.28 shows the region R. It is specified in polar coordinates by

0 � � � �=4 and a � r � b. Since

y2

x2
D

r2 sin2
�

r2 cos2 �
D tan2

�;

we have

y

x

�=4

R

a b

y D x

Figure 14.28 Region R corresponds to a

rectangle in the r� -plane

I D

Z �=4

0

tan2
� d�

Z b

a

r dr

D

1

2
.b

2
� a

2
/

Z �=4

0

�

sec2
� � 1

�

d�

D

1

2
.b

2
� a

2
/.tan � � �/

ˇ

ˇ

ˇ

ˇ

�=4

0

D

1

2
.b

2
� a

2
/

�

1�
�

4

�

D

4 � �

8
.b

2
� a

2
/:

E X A M P L E 2
(Area of a polar region) Derive the formula for the area of the

polar regionR bounded by the curve r D f .�/ and the rays � D ˛

and � D ˇ. (See Figure 14.29.)

Solution The area A of R is numerically equal to the volume of a cylinder of height

1 above the region R:

A D

ZZ

R

dx dy D

ZZ

R

r dr d�

D

Z ˇ

˛

d�

Z f .�/

0

r dr D
1

2

Z ˇ

˛

�

f .�/

�2

d�:

Observe that the inner integral in the iteration involves integrating r along the ray

specified by � from 0 to f .�/.

y

x

R

ˇ

˛

r D f .�/

Figure 14.29 A standard area problem for

polar coordinates

There is no firm rule as to whether one should or should not convert a double integral

from Cartesian to polar coordinates. In Example 1 above, the conversion was strongly

suggested by the shape of the domain but was also indicated by the fact that the inte-

grand, y2=x2, becomes a function of � alone when converted to polar coordinates. It

is usually wise to switch to polar coordinates if the switch simplifies the iteration (i.e.,

if the domain is “simpler” when expressed in terms of polar coordinates), even if the

form of the integrand is made more complicated.

E X A M P L E 3
Find the volume of the solid lying in the first octant, inside the

cylinder x2
C y2

D a2, and under the plane z D y.

Solution The solid is shown in Figure 14.30. The base is a quarter disk, which is

expressed in polar coordinates by the inequalities 0 � � � �=2 and 0 � r � a. The

height is given by z D y D r sin � . The solid has volume

V D

Z �=2

0

d�

Z a

0

.r sin �/r dr D

Z �=2

0

sin � d�

Z a

0

r
2
dr D

1

3
a

3 units3:
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Figure 14.30 This volume is easily

calculated using iteration in polar

coordinates x

y

z

x2
C y2

D a2

.0; a; a/

.0; a; 0/

z D y

.a; 0; 0/

The following example establishes the value of a definite integral that plays a very

important role in probability theory and statistics. (See the quotation on the first page

of this chapter.) It is interesting that this single-variable integral cannot be evaluated

by the techniques of single-variable calculus.

E X A M P L E 4
(A Very Important Integral) Show that

Z 1

�1
e

�x2

dx D
p

�:

Solution The improper integral (call it I ) converges, and its value does not depend

on what symbol we use for the variable of integration. Therefore, we can express the

square of the integral as a product of two identical integrals but with their variables

of integration named differently. We then interpret this product as an improper double

integral and reiterate it in polar coordinates:

I
2
D

�Z 1

�1
e

�x2

dx

�2

D

Z 1

�1
e

�x2

dx

Z 1

�1
e

�y2

dy

D

ZZ

R
2
e

�.x2Cy2/
dA

D

Z 2�

0

d�

Z 1

0

e
�r2

r dr

D 2� lim
R!1

�

�

1

2
e

�r2
�

ˇ

ˇ

ˇ

ˇ

R

0

D �:

Thus, I D
p

� , as asserted.

Note that the r integral in the iteration above is a convergent improper integral; it

was evaluated with the aid of the substitution u D r2.

As our final example of iteration in polar coordinates, let us try something a little more

demanding.

E X A M P L E 5
Find the volume of the solid region lying inside both the sphere

x
2
C y2

C z2
D 4a2 and the cylinder x2

C y2
D 2ay, where

a > 0.

Solution The sphere is centred at the origin and has radius 2a. The equation of the

cylinder becomes

x
2
C .y � a/

2
D a

2
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if we complete the square in the y terms. Thus, it is a vertical circular cylinder of

radius a having its axis along the vertical line through .0; a; 0/. The z-axis lies on the

cylinder. One-quarter of the required volume lies in the first octant. This part is shown

in Figure 14.31.

Figure 14.31 The first octant part of the

intersection of the cylinder x2
C y

2
D 2ay

and the sphere x2
C y2

C z2
D 4a2

x

y

z

2a

2a

2a

x2
C y2

D 2ay

x2
C y2

C z2
D 4a2

If we use polar coordinates in the xy-plane, then the sphere has equation

r
2
C z

2
D 4a

2 and the cylinder has equation r2
D 2ar sin � or, more simply,

r D 2a sin � . The first octant portion of the volume lies above the region specified

by the inequalities 0 � � � �=2 and 0 � r � 2a sin � . Therefore, the total volume is

V D 4

Z �=2

0

d�

Z 2a sin �

0

p

4a2
� r2 r dr Let u D 4a2

� r2

D 2

Z �=2

0

d�

Z 4a2

4a2 cos2 �

p

udu

D

4

3

Z �=2

0

.8a
3
� 8a

3 cos3
�/ d� Let v D sin �

D

16

3
�a

3
�

32

3
a

3

Z 1

0

.1 � v
2
/ dv

D

16

3
�a

3
�

64

9
a

3
D

16

9
.3� � 4/a

3 cubic units:

Change of Variables in Double Integrals
The transformation of a double integral to polar coordinates is just a special case of

a general change of variables formula for double integrals. Suppose that x and y are

expressed as functions of two other variables u and v by the equations

x D x.u; v/

y D y.u; v/:

We regard these equations as defining a transformation (or mapping) from points

.u; v/ in a uv-Cartesian plane to points .x; y/ in the xy-plane. (See Figure 14.32.) We

say that the transformation is one-to-one from the set S in the uv-plane onto the set D

in the xy-plane provided:
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Figure 14.30 This volume is easily

calculated using iteration in polar

coordinates x

y

z

x2
C y2

D a2

.0; a; a/

.0; a; 0/

z D y

.a; 0; 0/

The following example establishes the value of a definite integral that plays a very

important role in probability theory and statistics. (See the quotation on the first page

of this chapter.) It is interesting that this single-variable integral cannot be evaluated

by the techniques of single-variable calculus.

E X A M P L E 4
(A Very Important Integral) Show that

Z 1

�1
e

�x2

dx D
p

�:

Solution The improper integral (call it I ) converges, and its value does not depend

on what symbol we use for the variable of integration. Therefore, we can express the

square of the integral as a product of two identical integrals but with their variables

of integration named differently. We then interpret this product as an improper double

integral and reiterate it in polar coordinates:

I
2
D

�Z 1

�1
e

�x2

dx

�2

D

Z 1

�1
e

�x2

dx

Z 1

�1
e

�y2

dy

D

ZZ

R
2
e

�.x2Cy2/
dA

D

Z 2�

0

d�

Z 1

0

e
�r2

r dr

D 2� lim
R!1

�

�

1

2
e

�r2
�

ˇ

ˇ

ˇ

ˇ

R

0

D �:

Thus, I D
p

� , as asserted.

Note that the r integral in the iteration above is a convergent improper integral; it

was evaluated with the aid of the substitution u D r2.

As our final example of iteration in polar coordinates, let us try something a little more

demanding.

E X A M P L E 5
Find the volume of the solid region lying inside both the sphere

x
2
C y2

C z2
D 4a2 and the cylinder x2

C y2
D 2ay, where

a > 0.

Solution The sphere is centred at the origin and has radius 2a. The equation of the

cylinder becomes

x
2
C .y � a/

2
D a

2
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if we complete the square in the y terms. Thus, it is a vertical circular cylinder of

radius a having its axis along the vertical line through .0; a; 0/. The z-axis lies on the

cylinder. One-quarter of the required volume lies in the first octant. This part is shown

in Figure 14.31.

Figure 14.31 The first octant part of the

intersection of the cylinder x2
C y

2
D 2ay

and the sphere x2
C y2

C z2
D 4a2

x

y

z

2a

2a

2a

x2
C y2

D 2ay

x2
C y2

C z2
D 4a2

If we use polar coordinates in the xy-plane, then the sphere has equation

r
2
C z

2
D 4a

2 and the cylinder has equation r2
D 2ar sin � or, more simply,

r D 2a sin � . The first octant portion of the volume lies above the region specified

by the inequalities 0 � � � �=2 and 0 � r � 2a sin � . Therefore, the total volume is

V D 4

Z �=2

0

d�

Z 2a sin �

0

p

4a2
� r2 r dr Let u D 4a2

� r2

D 2

Z �=2

0

d�

Z 4a2

4a2 cos2 �

p

udu

D

4

3

Z �=2

0

.8a
3
� 8a

3 cos3
�/ d� Let v D sin �

D

16

3
�a

3
�

32

3
a

3

Z 1

0

.1 � v
2
/ dv

D

16

3
�a

3
�

64

9
a

3
D

16

9
.3� � 4/a

3 cubic units:

Change of Variables in Double Integrals
The transformation of a double integral to polar coordinates is just a special case of

a general change of variables formula for double integrals. Suppose that x and y are

expressed as functions of two other variables u and v by the equations

x D x.u; v/

y D y.u; v/:

We regard these equations as defining a transformation (or mapping) from points

.u; v/ in a uv-Cartesian plane to points .x; y/ in the xy-plane. (See Figure 14.32.) We

say that the transformation is one-to-one from the set S in the uv-plane onto the set D

in the xy-plane provided:

9780134154367_Calculus   857 05/12/16   4:39 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 14 – page 838 October 17, 2016

838 CHAPTER 14 Multiple Integration

(i) every point in S gets mapped to a point inD,

(ii) every point in D is the image of a point in S , and

(iii) different points in S get mapped to different points in D.

If the transformation is one-to-one, the defining equations can be solved for u and v as

functions of x and y, and the resulting inverse transformation,

u D u.x; y/

v D v.x; y/;

is one-to-one from D onto S .

Let us assume that the functions x.u; v/ and y.u; v/ have continuous first partial

derivatives and that the Jacobian determinant

@.x; y/

@.u; v/
¤ 0 at .u; v/:

As noted in Section 12.8, the Implicit Function Theorem implies that the transforma-

tion is one-to-one near .u; v/ and the inverse transformation also has continuous first

partial derivatives and nonzero Jacobian satisfying

v

u

y

x

u0

v0

u D u0
D

v D v0

.u0; v0/

.x0; y0/

S

Figure 14.32 Under the transformation
(

x D x.u; v/

y D y.u; v/
the lines u D u0 and

v D v0 in the uv-plane get mapped to the

curves

(

x D x.u0; v/

y D y.u0; v/
and

(

x D x.u; v0/

y D y.u; v0/
in the xy-plane, which we

still label as u D u0 and v D v0. The point

.u0; v0/ is mapped to the point .x0; y0/.

@.u; v/

@.x; y/
D

1

@.x; y/

@.u; v/

on D.

E X A M P L E 6
The transformation x D r cos � , y D r sin � to polar coordinates

has Jacobian

@.x; y/

@.r; �/
D

ˇ

ˇ

ˇ

ˇ

cos � �r sin �

sin � r cos �

ˇ

ˇ

ˇ

ˇ

D r:

Near any point except the origin (where r D 0) the transformation is one-to-one. (In

fact, it is one-to-one from any set in the r�-plane that does not contain more than one

point where r D 0 and lies in, say, the strip 0 � � < 2� .)

A one-to-one transformation can be used to transform the double integral
ZZ

D

f .x; y/ dA

to a double integral over the corresponding set S in the uv-plane. Under the trans-

formation, the integrand f .x; y/ becomes g.u; v/ D f
�

x.u; v/; y.u; v/
�

. We must

discover how to express the area element dA D dx dy in terms of the area element

dudv in the uv-plane.

If the value of u is fixed, say u D c, the equations

x D x.c; v/ and y D y.c; v/

define a parametric curve (with v as parameter) in the xy-plane. This curve is called a

u-curve corresponding to the value u D c. Similarly, for fixed v D c the equations

x D x.u; c/ and y D y.u; c/

define a parametric curve (with parameter u) called a v-curve. Consider the differ-

ential area element bounded by the u-curves corresponding to nearby values u and

u C du and the v-curves corresponding to nearby values v and v C dv. Since these

curves are smooth, for small values of du and dv the area element is approximately a

parallelogram, and its area is approximately

dA D j
��!

PQ�
�!

PRj;

where P ,Q, and R are the points shown in Figure 14.33. The error in this approxima-

tion becomes negligible compared with dA as du and dv approach zero.
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Figure 14.33 The image in the

xy-plane of the area element du dv in the

uv-plane

y

x

dA

u

uC du

v

v C dv

R

P

Q

Now
��!

PQ D dx iC dy j, where

dx D
@x

@u
duC

@x

@v
dv and dy D

@y

@u
duC

@y

@v
dv:

However, dv D 0 along the v-curve PQ, so

��!

PQ D
@x

@u
du iC

@y

@u
du j:

Similarly,

�!

PR D
@x

@v
dv iC

@y

@v
dv j:

Hence,

dA D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@x

@u
du

@y

@u
du 0

@x

@v
dv

@y

@v
dv 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudvI

that is, the absolute value of the Jacobian @.x; y/=@.u; v/ is the ratio between corre-

sponding area elements in the xy-plane and the uv-plane:

dA D dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv:

The following theorem summarizes the change of variables procedure for a double

integral.

T H E O R E M

4

Change of variables formula for double integrals

Let x D x.u; v/, y D y.u; v/ be a one-to-one transformation from a domain S in the

uv-plane onto a domain D in the xy-plane. Suppose that the functions x and y, and

their first partial derivatives with respect to u and v, are continuous in S . If f .x; y/ is

integrable on D, and if g.u; v/ D f .x.u; v/; y.u; v//, then g is integrable on S and

ZZ

D

f .x; y/ dx dy D

ZZ

S

g.u; v/

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv:
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(i) every point in S gets mapped to a point inD,

(ii) every point in D is the image of a point in S , and

(iii) different points in S get mapped to different points in D.

If the transformation is one-to-one, the defining equations can be solved for u and v as

functions of x and y, and the resulting inverse transformation,

u D u.x; y/

v D v.x; y/;

is one-to-one from D onto S .

Let us assume that the functions x.u; v/ and y.u; v/ have continuous first partial

derivatives and that the Jacobian determinant

@.x; y/

@.u; v/
¤ 0 at .u; v/:

As noted in Section 12.8, the Implicit Function Theorem implies that the transforma-

tion is one-to-one near .u; v/ and the inverse transformation also has continuous first

partial derivatives and nonzero Jacobian satisfying

v

u

y

x

u0

v0

u D u0
D

v D v0

.u0; v0/

.x0; y0/

S

Figure 14.32 Under the transformation
(

x D x.u; v/

y D y.u; v/
the lines u D u0 and

v D v0 in the uv-plane get mapped to the

curves

(

x D x.u0; v/

y D y.u0; v/
and

(

x D x.u; v0/

y D y.u; v0/
in the xy-plane, which we

still label as u D u0 and v D v0. The point

.u0; v0/ is mapped to the point .x0; y0/.

@.u; v/

@.x; y/
D

1

@.x; y/

@.u; v/

on D.

E X A M P L E 6
The transformation x D r cos � , y D r sin � to polar coordinates

has Jacobian

@.x; y/

@.r; �/
D

ˇ

ˇ

ˇ

ˇ

cos � �r sin �

sin � r cos �

ˇ

ˇ

ˇ

ˇ

D r:

Near any point except the origin (where r D 0) the transformation is one-to-one. (In

fact, it is one-to-one from any set in the r�-plane that does not contain more than one

point where r D 0 and lies in, say, the strip 0 � � < 2� .)

A one-to-one transformation can be used to transform the double integral
ZZ

D

f .x; y/ dA

to a double integral over the corresponding set S in the uv-plane. Under the trans-

formation, the integrand f .x; y/ becomes g.u; v/ D f
�

x.u; v/; y.u; v/
�

. We must

discover how to express the area element dA D dx dy in terms of the area element

dudv in the uv-plane.

If the value of u is fixed, say u D c, the equations

x D x.c; v/ and y D y.c; v/

define a parametric curve (with v as parameter) in the xy-plane. This curve is called a

u-curve corresponding to the value u D c. Similarly, for fixed v D c the equations

x D x.u; c/ and y D y.u; c/

define a parametric curve (with parameter u) called a v-curve. Consider the differ-

ential area element bounded by the u-curves corresponding to nearby values u and

u C du and the v-curves corresponding to nearby values v and v C dv. Since these

curves are smooth, for small values of du and dv the area element is approximately a

parallelogram, and its area is approximately

dA D j
��!

PQ�
�!

PRj;

where P ,Q, and R are the points shown in Figure 14.33. The error in this approxima-

tion becomes negligible compared with dA as du and dv approach zero.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 14 – page 839 October 17, 2016

SECTION 14.4: Double Integrals in Polar Coordinates 839

Figure 14.33 The image in the

xy-plane of the area element du dv in the

uv-plane
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x

dA

u

uC du

v

v C dv

R

P

Q

Now
��!

PQ D dx iC dy j, where

dx D
@x

@u
duC

@x

@v
dv and dy D

@y

@u
duC

@y

@v
dv:

However, dv D 0 along the v-curve PQ, so

��!

PQ D
@x

@u
du iC

@y

@u
du j:

Similarly,

�!

PR D
@x

@v
dv iC

@y

@v
dv j:

Hence,

dA D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@x

@u
du

@y

@u
du 0

@x

@v
dv

@y

@v
dv 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudvI

that is, the absolute value of the Jacobian @.x; y/=@.u; v/ is the ratio between corre-

sponding area elements in the xy-plane and the uv-plane:

dA D dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv:

The following theorem summarizes the change of variables procedure for a double

integral.

T H E O R E M

4

Change of variables formula for double integrals

Let x D x.u; v/, y D y.u; v/ be a one-to-one transformation from a domain S in the

uv-plane onto a domain D in the xy-plane. Suppose that the functions x and y, and

their first partial derivatives with respect to u and v, are continuous in S . If f .x; y/ is

integrable on D, and if g.u; v/ D f .x.u; v/; y.u; v//, then g is integrable on S and

ZZ

D

f .x; y/ dx dy D

ZZ

S

g.u; v/

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv:
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Remark It is not necessary that S or D be closed or that the transformation be one-

to-one on the boundary of S . The transformation to polar coordinates maps the rect-

angle 0 < r < 1, 0 � � < 2� one-to-one onto the punctured disk 0 < x2
C y2 < 1

and, as in the first example in this section, we can transform an integral over the closed

disk x2
C y2

� 1 to one over the closed rectangle 0 � r � 1, 0 � � � 2� .

E X A M P L E 7
Use an appropriate change of variables to find the area of the el-

liptic disk E given by

x2

a2
C

y2

b2
� 1:

Solution Under the transformation x D au, y D bv, the elliptic disk E is the one-

to-one image of the circular diskD given by u2
Cv2

� 1. Assuming a > 0 and b > 0,

we have

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 0

0 b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dudv D ab dudv:

Therefore, the area of E is given by

ZZ

E

1 dx dy D

ZZ

D

ab dudv D ab � .area of D/ D �ab square units:

It is often tempting to try to use the change of variable formula to transform the domain

of a double integral into a rectangle so that iteration will be easy. As the following

example shows, this usually involves defining the inverse transformation (u and v in

terms of x and y). Remember that inverse transformations have reciprocal Jacobians.

E X A M P L E 8
Find the area of the finite plane region bounded by the four parabo-

las y D x2, y D 2x2, x D y2, and x D 3y2.

Solution The region, call it D, is sketched in Figure 14.34. Let

u D
x

2

y
and v D

y
2

x
:

Then the region D corresponds to the rectangle R in the uv-plane given by

y

x

x D 3y2

y D x
2

x D y2

y D 2x2

D

Figure 14.34 The region D of Example 8
1
2
� u � 1 and 1

3
� v � 1. (See Figure 14.35.) Since

v

u

R

1/2 1

1/3

2/3

1

Figure 14.35 The transformed region R

for Example 8

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

2x=y �x2=y2

�y2=x2 2y=x

ˇ

ˇ

ˇ

ˇ

D 4 � 1 D 3;

we have

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

D

1

3

and so the area of D is given by

ZZ

D

dx dy D

ZZ

R

1

3
du dv D

1

3
�

1

2
�

2

3
D

1

9
square units:

E X A M P L E 9 Evaluate I D

ZZ

D

y

x
dx dy, where D is the shaded region in

Figure 14.36.
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Solution We use the change of variables u D x2
C 4y2, v D y=x, so that the region

R in the uv-plane that corresponds to D is the rectangle 0 � u � 4, 0 � v � 1. (See

Figure 14.37.) Since

y

1

x1 2

D

x2
C 4y2

D 4

y D x

Figure 14.36 Domain D, Example 9

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

2x 8y

�y=x
2

1=x

ˇ

ˇ

ˇ

ˇ

D 2C 8
y

2

x2
D 2C 8v

2
;

we have
@.x; y/

@.u; v/
D

1

2C 8v2
, and so

v

1

u1 2 3 4

R

Figure 14.37 Region R, Example 9

I D

ZZ

R

v

2C 8v2
dudv D

Z 4

0

du

Z 1

0

v

2C 8v2
dv w D 2C 8v2;

dw D 16v dv

D

4

16

Z 1

2

0
dw

w
D

1

4
.ln 10 � ln 2/ D

1

4
ln 5:

E X A M P L E 10
Evaluate

y

1

x1 2

y D 2 � x

T

y D x

.1; 1/

Figure 14.38 The domain T of

Example 10

I D

ZZ

T

.x C y/
3
dx dy

over the triangle T with vertices .0; 0/, .1; 1/, and .2; 0/.

Solution The triangle is shown in Figure 14.38. The transformation u D y � x,

v D y C x is linear, so its image in the uv-plane is also a triangle R, this one with

vertices .0; 0/, .0; 2/, and .�2; 2/. (See Figure 14.39.) Since

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

�1 1

1 1

ˇ

ˇ

ˇ

ˇ

D �2;

we have
v

1

2

u�2 �1 1

.�2; 2/

R

Figure 14.39 The transformed region R

for Example 10

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D
1

2
du dv

and we can calculate I as

I D
1

2

ZZ

R

v
3
dudv D

1

2

Z 2

0

v
3
dv

Z 0

�v

du D
1

2

Z 2

0

v
4
dv D

16

5
:

The following example shows what can happen if a transformation of the domain of a

double integral is not one-to-one.

E X A M P L E 11
Let D be the square 0 � x � 1, 0 � y � 1 in the xy-plane (see

Figure 14.40), and let S be the square 0 � u � 1, 0 � v � 1 in

the uv-plane. Show that the transformation

x D 4u � 4u
2
; y D v

maps S onto D, and use it to transform the integral I D

ZZ

D

dx dy. Compare the

value of I with that of the transformed integral.

y

0.5

1.0

1.5

x�0:5 0.5 1.0 1.5

D

Figure 14.40 The square domain D of

Example 11
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Remark It is not necessary that S or D be closed or that the transformation be one-

to-one on the boundary of S . The transformation to polar coordinates maps the rect-

angle 0 < r < 1, 0 � � < 2� one-to-one onto the punctured disk 0 < x2
C y2 < 1

and, as in the first example in this section, we can transform an integral over the closed

disk x2
C y2

� 1 to one over the closed rectangle 0 � r � 1, 0 � � � 2� .

E X A M P L E 7
Use an appropriate change of variables to find the area of the el-

liptic disk E given by

x2

a2
C

y2

b2
� 1:

Solution Under the transformation x D au, y D bv, the elliptic disk E is the one-

to-one image of the circular diskD given by u2
Cv2

� 1. Assuming a > 0 and b > 0,

we have

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 0

0 b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dudv D ab dudv:

Therefore, the area of E is given by

ZZ

E

1 dx dy D

ZZ

D

ab dudv D ab � .area of D/ D �ab square units:

It is often tempting to try to use the change of variable formula to transform the domain

of a double integral into a rectangle so that iteration will be easy. As the following

example shows, this usually involves defining the inverse transformation (u and v in

terms of x and y). Remember that inverse transformations have reciprocal Jacobians.

E X A M P L E 8
Find the area of the finite plane region bounded by the four parabo-

las y D x2, y D 2x2, x D y2, and x D 3y2.

Solution The region, call it D, is sketched in Figure 14.34. Let

u D
x

2

y
and v D

y
2

x
:

Then the region D corresponds to the rectangle R in the uv-plane given by

y

x

x D 3y2

y D x
2

x D y2

y D 2x2

D

Figure 14.34 The region D of Example 8
1
2
� u � 1 and 1

3
� v � 1. (See Figure 14.35.) Since

v

u

R

1/2 1

1/3

2/3

1

Figure 14.35 The transformed region R

for Example 8

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

2x=y �x2=y2

�y2=x2 2y=x

ˇ

ˇ

ˇ

ˇ

D 4 � 1 D 3;

we have

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

D

1

3

and so the area of D is given by

ZZ

D

dx dy D

ZZ

R

1

3
du dv D

1

3
�

1

2
�

2

3
D

1

9
square units:

E X A M P L E 9 Evaluate I D

ZZ

D

y

x
dx dy, where D is the shaded region in

Figure 14.36.
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Solution We use the change of variables u D x2
C 4y2, v D y=x, so that the region

R in the uv-plane that corresponds to D is the rectangle 0 � u � 4, 0 � v � 1. (See

Figure 14.37.) Since

y

1

x1 2

D

x2
C 4y2

D 4

y D x

Figure 14.36 Domain D, Example 9

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

2x 8y

�y=x
2

1=x

ˇ

ˇ

ˇ

ˇ

D 2C 8
y

2

x2
D 2C 8v

2
;

we have
@.x; y/

@.u; v/
D

1

2C 8v2
, and so

v

1

u1 2 3 4

R

Figure 14.37 Region R, Example 9

I D

ZZ

R

v

2C 8v2
dudv D

Z 4

0

du

Z 1

0

v

2C 8v2
dv w D 2C 8v2;

dw D 16v dv

D

4

16

Z 1

2

0
dw

w
D

1

4
.ln 10 � ln 2/ D

1

4
ln 5:

E X A M P L E 10
Evaluate

y

1

x1 2

y D 2 � x

T

y D x

.1; 1/

Figure 14.38 The domain T of

Example 10

I D

ZZ

T

.x C y/
3
dx dy

over the triangle T with vertices .0; 0/, .1; 1/, and .2; 0/.

Solution The triangle is shown in Figure 14.38. The transformation u D y � x,

v D y C x is linear, so its image in the uv-plane is also a triangle R, this one with

vertices .0; 0/, .0; 2/, and .�2; 2/. (See Figure 14.39.) Since

@.u; v/

@.x; y/
D

ˇ

ˇ

ˇ

ˇ

�1 1

1 1

ˇ

ˇ

ˇ

ˇ

D �2;

we have
v

1

2

u�2 �1 1

.�2; 2/

R

Figure 14.39 The transformed region R

for Example 10

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D
1

2
du dv

and we can calculate I as

I D
1

2

ZZ

R

v
3
dudv D

1

2

Z 2

0

v
3
dv

Z 0

�v

du D
1

2

Z 2

0

v
4
dv D

16

5
:

The following example shows what can happen if a transformation of the domain of a

double integral is not one-to-one.

E X A M P L E 11
Let D be the square 0 � x � 1, 0 � y � 1 in the xy-plane (see

Figure 14.40), and let S be the square 0 � u � 1, 0 � v � 1 in

the uv-plane. Show that the transformation

x D 4u � 4u
2
; y D v

maps S onto D, and use it to transform the integral I D

ZZ

D

dx dy. Compare the

value of I with that of the transformed integral.

y

0.5

1.0

1.5

x�0:5 0.5 1.0 1.5

D

Figure 14.40 The square domain D of

Example 11
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Solution Since x D 4u � 4u2
D 1 � .1 � 2u/2, the minimum value of x on the

interval 0 � u � 1 is 0 (at u D 0 and u D 1), and the maximum value is 1 (at u D 1
2

).

Therefore, x D 4u � 4u2 maps the interval 0 � u � 1 onto the interval 0 � x � 1.

Since y D v clearly maps 0 � v � 1 onto 0 � y � 1, the given transformation maps

S onto D. Since
v

0.5

1.0

1.5

u�0:5 0.5 1.0 1.5

SR

Figure 14.41 The square S and its left

half, the rectangle R, for Example 11

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4 � 8u 0

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ dudv D j4� 8uj dudv;

transforming I leads to the integral

J D

ZZ

S

j4� 8uj dudv D 4

Z 1

0

dv

Z 1

0

j1� 2uj du D 8

Z 1=2

0

.1� 2u/ du D 2:

However, I D

ZZ

D

dx dy D area of D D 1: The reason that J ¤ I is that the

transformation is not one-to-one from S ontoD; it actually maps S ontoD twice. The

rectangle R defined by 0 � u � 1
2

and 0 � v � 1 (i.e., the left half of S , as shown in

Figure 14.41), is mapped one-to-one onto D by the transformation, so the appropriate

transformed integral is
RR

R
j4 � 8uj dudv, which is equal to I .

E X E R C I S E S 14.4

In Exercises 1–6, evaluate the given double integral over the disk

D given by x2
C y

2
� a

2, where a > 0.

1.

ZZ

D

.x
2
C y

2
/ dA 2.

ZZ

D

p

x2
C y2 dA

3.

ZZ

D

1
p

x2
C y2

dA 4.

ZZ

D

jxj dA

5.

ZZ

D

x
2
dA 6.

ZZ

D

x
2
y

2
dA

In Exercises 7–10, evaluate the given double integral over the

quarter-disk Q given by x � 0, y � 0, and x2
C y2

� a2, where

a > 0.

7.

ZZ

Q

y dA 8.

ZZ

Q

.x C y/ dA

9.

ZZ

Q

e
x2Cy2

dA 10.

ZZ

Q

2xy

x2
C y2

dA

11. Evaluate

ZZ

S

.x C y/ dA, where S is the region in the first

quadrant lying inside the disk x2
C y2

� a2 and under the

line y D
p

3x.

12. Find

ZZ

S

x dA, where S is the disk segment x2
C y

2
� 2,

x � 1.

13. Evaluate

ZZ

T

.x
2
C y

2
/ dA, where T is the triangle with

vertices .0; 0/, .1; 0/, and .1; 1/.

14. Evaluate

ZZ

x2Cy2�1

ln.x2
C y

2
/ dA.

15. Find the average distance from the origin to points in the disk

x2
C y2

� a2.

16. Find the average value of e�.x2Cy2/ over the annular region

0 < a �
p

x2
C y2

� b.

17. For what values of k, and to what value, does the integral
ZZ

x2Cy2�1

dA

.x2
C y2/k

converge?

18. For what values of k, and to what value, does the integral
ZZ

R
2

dA

.1C x2
C y2/k

converge?

19. Evaluate

ZZ

D

xy dA, where D is the plane region satisfying

x � 0, 0 � y � x, and x2
C y2

� a2.

20. Evaluate

ZZ

C

y dA, where C is the upper half of the cardioid

disk r � 1C cos � .

21. Find the volume lying between the paraboloids z D x2
C y2

and 3z D 4 � x2
� y2.

22. Find the volume lying inside both the sphere

x2
C y2

C z2
D a2 and the cylinder x2

C y2
D ax.

23. Find the volume lying inside both the sphere

x
2
C y

2
C z

2
D 2a

2 and the cylinder x2
C y

2
D a

2.

24. Find the volume of the region lying above the xy-plane, inside

the cylinder x2
C y2

D 4, and below the plane

z D x C y C 4.

25.I Find the volume of the region lying inside all three of the

circular cylinders x2
C y2

D a2, x2
C z2

D a2, and

y
2
C z

2
D a

2. Hint: Make a good sketch of the first octant

part of the region, and use symmetry whenever possible.

26. Find the volume of the region lying inside the circular cylinder

x2
C y2

D 2y and inside the parabolic cylinder z2
D y.

27.I Many points are chosen at random in the disk x2
C y2

� 1.

Find the approximate average value of the distance from these

points to the nearest side of the smallest square that contains

the disk.
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28.I Find the average value of x over the segment of the disk

x2
C y2

� 4 lying to the right of x D 1. What is the centroid

of the segment?

29. Find the volume enclosed by the ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1:

30. Find the volume of the region in the first octant below the

paraboloid

z D 1 �
x2

a2
�

y2

b2
:

Hint: Use the change of variables x D au, y D bv.

31.I Evaluate

ZZ

jxjCjyj�a

e
xCy

dA.

32. Find

ZZ

P

.x
2
C y

2
/ dA, where P is the parallelogram

bounded by the lines x C y D 1, x C y D 2, 3x C 4y D 5,

and 3x C 4y D 6.

33. Find the area of the region in the first quadrant bounded by the

curves xy D 1, xy D 4, y D x, and y D 2x.

34. Evaluate

ZZ

R

.x
2
C y

2
/ dA, where R is the region in the first

quadrant bounded by y D 0, y D x, xy D 1, and

x2
� y2

D 1.

35.I Let T be the triangle with vertices .0; 0/, .1; 0/, and .0; 1/.

Evaluate the integral

ZZ

T

e
.y�x/=.yCx/

dA

(a) by transforming to polar coordinates, and

(b) by using the transformation u D y � x, v D y C x.

36. Use the method of Example 7 to find the area of the region

inside the ellipse 4x2
C 9y2

D 36 and above the line

2x C 3y D 6.

37.A (The error function) The error function, Erf(x), is defined for

x � 0 by

Erf.x/ D
2
p

�

Z x

0

e
�t2

dt:

Show that

�

Erf.x/

�2

D

4

�

Z �=4

0

�

1� e
�x2= cos2 �

�

d� .

Hence, deduce that Erf.x/ �
p

1 � e�x2
.

38.A (The gamma and beta functions) The gamma function �.x/

and the beta function B.x; y/ are defined by

�.x/ D

Z 1

0

t
x�1

e
�t
dt; .x > 0/;

B.x; y/ D

Z 1

0

t
x�1

.1 � t /
y�1

dt; .x > 0; y > 0/:

The gamma function satisfies

�.x C 1/ D x�.x/ and

�.nC 1/ D nŠ; .n D 0; 1; 2; : : :/:

Deduce the following further properties of these functions:

(a) �.x/ D 2

Z 1

0

s
2x�1

e
�s2

ds; .x > 0/,

(b) �

�

1

2

�

D

p

�; �

�

3

2

�

D

1

2

p

� ,

(c) If x > 0 and y > 0, then

B.x; y/ D 2

Z �=2

0

cos2x�1
� sin2y�1

� d�;

(d) B.x; y/ D
�.x/�.y/

�.x C y/
.

14.5 Triple Integrals

Now that we have seen how to extend definite integration to two-dimensional domains,

the extension to three (or more) dimensions is straightforward. For a bounded function

f .x; y; z/ defined on a rectangular box B (x0 � x � x1, y0 � y � y1, z0 � z � z1),

the triple integral of f over B ,

Again, we remark that triple and

other multiple integrals are often

represented with a single integral

sign, for example,

Z

R

f .x; y; z/ dx dy dz;

in scientific literature, and in

Chapter 17 of this book.

ZZZ

B

f .x; y; z/ dV or

ZZZ

B

f .x; y; z/ dx dy dz;

can be defined as a suitable limit of Riemann sums corresponding to partitions of B

into subboxes by planes parallel to each of the coordinate planes. We omit the details.

Triple integrals over more general domains are defined by extending the function to be

zero outside the domain and integrating over a rectangular box containing the domain.

All the properties of double integrals mentioned in Section 14.1 have analogues

for triple integrals. In particular, a continuous function is integrable over a closed,

bounded domain. If f .x; y; z/ D 1 on the domain D, then the triple integral gives the
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Solution Since x D 4u � 4u2
D 1 � .1 � 2u/2, the minimum value of x on the

interval 0 � u � 1 is 0 (at u D 0 and u D 1), and the maximum value is 1 (at u D 1
2

).

Therefore, x D 4u � 4u2 maps the interval 0 � u � 1 onto the interval 0 � x � 1.

Since y D v clearly maps 0 � v � 1 onto 0 � y � 1, the given transformation maps

S onto D. Since
v

0.5

1.0

1.5

u�0:5 0.5 1.0 1.5

SR

Figure 14.41 The square S and its left

half, the rectangle R, for Example 11

dx dy D

ˇ

ˇ

ˇ

ˇ

@.x; y/

@.u; v/

ˇ

ˇ

ˇ

ˇ

dudv D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4 � 8u 0

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ dudv D j4� 8uj dudv;

transforming I leads to the integral

J D

ZZ

S

j4� 8uj dudv D 4

Z 1

0

dv

Z 1

0

j1� 2uj du D 8

Z 1=2

0

.1� 2u/ du D 2:

However, I D

ZZ

D

dx dy D area of D D 1: The reason that J ¤ I is that the

transformation is not one-to-one from S ontoD; it actually maps S ontoD twice. The

rectangle R defined by 0 � u � 1
2

and 0 � v � 1 (i.e., the left half of S , as shown in

Figure 14.41), is mapped one-to-one onto D by the transformation, so the appropriate

transformed integral is
RR

R
j4 � 8uj dudv, which is equal to I .

E X E R C I S E S 14.4

In Exercises 1–6, evaluate the given double integral over the disk

D given by x2
C y

2
� a

2, where a > 0.

1.

ZZ

D

.x
2
C y

2
/ dA 2.

ZZ

D

p

x2
C y2 dA

3.

ZZ

D

1
p

x2
C y2

dA 4.

ZZ

D

jxj dA

5.

ZZ

D

x
2
dA 6.

ZZ

D

x
2
y

2
dA

In Exercises 7–10, evaluate the given double integral over the

quarter-disk Q given by x � 0, y � 0, and x2
C y2

� a2, where

a > 0.

7.

ZZ

Q

y dA 8.

ZZ

Q

.x C y/ dA

9.

ZZ

Q

e
x2Cy2

dA 10.

ZZ

Q

2xy

x2
C y2

dA

11. Evaluate

ZZ

S

.x C y/ dA, where S is the region in the first

quadrant lying inside the disk x2
C y2

� a2 and under the

line y D
p

3x.

12. Find

ZZ

S

x dA, where S is the disk segment x2
C y

2
� 2,

x � 1.

13. Evaluate

ZZ

T

.x
2
C y

2
/ dA, where T is the triangle with

vertices .0; 0/, .1; 0/, and .1; 1/.

14. Evaluate

ZZ

x2Cy2�1

ln.x2
C y

2
/ dA.

15. Find the average distance from the origin to points in the disk

x2
C y2

� a2.

16. Find the average value of e�.x2Cy2/ over the annular region

0 < a �
p

x2
C y2

� b.

17. For what values of k, and to what value, does the integral
ZZ

x2Cy2�1

dA

.x2
C y2/k

converge?

18. For what values of k, and to what value, does the integral
ZZ

R
2

dA

.1C x2
C y2/k

converge?

19. Evaluate

ZZ

D

xy dA, where D is the plane region satisfying

x � 0, 0 � y � x, and x2
C y2

� a2.

20. Evaluate

ZZ

C

y dA, where C is the upper half of the cardioid

disk r � 1C cos � .

21. Find the volume lying between the paraboloids z D x2
C y2

and 3z D 4 � x2
� y2.

22. Find the volume lying inside both the sphere

x2
C y2

C z2
D a2 and the cylinder x2

C y2
D ax.

23. Find the volume lying inside both the sphere

x
2
C y

2
C z

2
D 2a

2 and the cylinder x2
C y

2
D a

2.

24. Find the volume of the region lying above the xy-plane, inside

the cylinder x2
C y2

D 4, and below the plane

z D x C y C 4.

25.I Find the volume of the region lying inside all three of the

circular cylinders x2
C y2

D a2, x2
C z2

D a2, and

y
2
C z

2
D a

2. Hint: Make a good sketch of the first octant

part of the region, and use symmetry whenever possible.

26. Find the volume of the region lying inside the circular cylinder

x2
C y2

D 2y and inside the parabolic cylinder z2
D y.

27.I Many points are chosen at random in the disk x2
C y2

� 1.

Find the approximate average value of the distance from these

points to the nearest side of the smallest square that contains

the disk.
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28.I Find the average value of x over the segment of the disk

x2
C y2

� 4 lying to the right of x D 1. What is the centroid

of the segment?

29. Find the volume enclosed by the ellipsoid

x2

a2
C

y2

b2
C

z2

c2
D 1:

30. Find the volume of the region in the first octant below the

paraboloid

z D 1 �
x2

a2
�

y2

b2
:

Hint: Use the change of variables x D au, y D bv.

31.I Evaluate

ZZ

jxjCjyj�a

e
xCy

dA.

32. Find

ZZ

P

.x
2
C y

2
/ dA, where P is the parallelogram

bounded by the lines x C y D 1, x C y D 2, 3x C 4y D 5,

and 3x C 4y D 6.

33. Find the area of the region in the first quadrant bounded by the

curves xy D 1, xy D 4, y D x, and y D 2x.

34. Evaluate

ZZ

R

.x
2
C y

2
/ dA, where R is the region in the first

quadrant bounded by y D 0, y D x, xy D 1, and

x2
� y2

D 1.

35.I Let T be the triangle with vertices .0; 0/, .1; 0/, and .0; 1/.

Evaluate the integral

ZZ

T

e
.y�x/=.yCx/

dA

(a) by transforming to polar coordinates, and

(b) by using the transformation u D y � x, v D y C x.

36. Use the method of Example 7 to find the area of the region

inside the ellipse 4x2
C 9y2

D 36 and above the line

2x C 3y D 6.

37.A (The error function) The error function, Erf(x), is defined for

x � 0 by

Erf.x/ D
2
p

�

Z x

0

e
�t2

dt:

Show that

�

Erf.x/

�2

D

4

�

Z �=4

0

�

1� e
�x2= cos2 �

�

d� .

Hence, deduce that Erf.x/ �
p

1 � e�x2
.

38.A (The gamma and beta functions) The gamma function �.x/

and the beta function B.x; y/ are defined by

�.x/ D

Z 1

0

t
x�1

e
�t
dt; .x > 0/;

B.x; y/ D

Z 1

0

t
x�1

.1 � t /
y�1

dt; .x > 0; y > 0/:

The gamma function satisfies

�.x C 1/ D x�.x/ and

�.nC 1/ D nŠ; .n D 0; 1; 2; : : :/:

Deduce the following further properties of these functions:

(a) �.x/ D 2

Z 1

0

s
2x�1

e
�s2

ds; .x > 0/,

(b) �

�

1

2

�

D

p

�; �

�

3

2

�

D

1

2

p

� ,

(c) If x > 0 and y > 0, then

B.x; y/ D 2

Z �=2

0

cos2x�1
� sin2y�1

� d�;

(d) B.x; y/ D
�.x/�.y/

�.x C y/
.

14.5 Triple Integrals

Now that we have seen how to extend definite integration to two-dimensional domains,

the extension to three (or more) dimensions is straightforward. For a bounded function

f .x; y; z/ defined on a rectangular box B (x0 � x � x1, y0 � y � y1, z0 � z � z1),

the triple integral of f over B ,

Again, we remark that triple and

other multiple integrals are often

represented with a single integral

sign, for example,

Z

R

f .x; y; z/ dx dy dz;

in scientific literature, and in

Chapter 17 of this book.

ZZZ

B

f .x; y; z/ dV or

ZZZ

B

f .x; y; z/ dx dy dz;

can be defined as a suitable limit of Riemann sums corresponding to partitions of B

into subboxes by planes parallel to each of the coordinate planes. We omit the details.

Triple integrals over more general domains are defined by extending the function to be

zero outside the domain and integrating over a rectangular box containing the domain.

All the properties of double integrals mentioned in Section 14.1 have analogues

for triple integrals. In particular, a continuous function is integrable over a closed,

bounded domain. If f .x; y; z/ D 1 on the domain D, then the triple integral gives the
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volume of D:

Volume of D D

ZZZ

D

dV:

The triple integral of a positive function f .x; y; z/ can be interpreted as the “hyper-

volume” (i.e., the four-dimensional volume) of a region in 4-space having the set D as

its three-dimensional “base” and having its top on the hypersurface w D f .x; y; z/.

This is not a particularly useful interpretation; many more useful ones arise in appli-

cations. For instance, if �.x; y; z/ represents the density (mass per unit volume) at

position .x; y; z/ in a substance occupying the domain D in 3-space, then the mass

m of the solid is the “sum” of mass elements dm D �.x; y; z/ dV occupying volume

elements dV :

mass D

ZZZ

D

�.x; y; z/ dV:

Some triple integrals can be evaluated by inspection, using symmetry and known vol-

umes.

E X A M P L E 1
Evaluate

ZZZ

x2Cy2Cz2�a2

.2C x � sin z/ dV:

Solution The domain of integration is the ball of radius a centred at the origin. The

integral of 2 over this ball is twice the ball’s volume, that is, 8�a3=3. The integrals

of x and sin z over the ball are both zero, since both functions are odd in one of the

variables and the domain is symmetric about each coordinate plane. (For instance, for

every volume element dV in the half of the ball where x > 0, there is a correspond-

ing element in the other half where x has the same size but the opposite sign. The

contributions from these two elements cancel one another.) Thus,
ZZZ

x2Cy2Cz2�a2

.2C x � sin z/ dV D
8

3
�a

3
C 0C 0 D

8

3
�a

3
:

Most triple integrals are evaluated by an iteration procedure similar to that used for

double integrals. We slice the domain D with a plane parallel to one of the coordinate

planes, double integrate the function with respect to two variables over that slice, and

then integrate the result with respect to the remaining variable. Some examples should

clarify the procedure.

E X A M P L E 2
Let B be the rectangular box 0 � x � a, 0 � y � b, 0 � z � c.

Evaluate

I D

ZZZ

B

.xy
2
C z

3
/ dV:

Solution As indicated in Figure 14.42(a), we will slice with planes perpendicular to

the z-axis, so the z integral will be outermost in the iteration. The slices are rectangles,

so the double integrals over them can be immediately iterated also. We do it with the

y integral outer and the x integral inner, as suggested by the line shown in the slice.

I D

Z c

0

dz

Z b

0

dy

Z a

0

.xy
2
C z

3
/ dx

D

Z c

0

dz

Z b

0

dy

�

x2y2

2
C xz

3

�
ˇ

ˇ

ˇ

ˇ

xDa

xD0

D

Z c

0

dz

Z b

0

�

a2y2

2
C az

3

�

dy

D

Z c

0

dz

�

a2y3

6
C ayz

3

�
ˇ

ˇ

ˇ

ˇ

yDb

yD0
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D

Z c

0

�

a2b3

6
C abz

3

�

dz

D

�

a2b3z

6
C

abz4

4

�
ˇ

ˇ

ˇ

ˇ

zDc

zD0

D

a2b3c

6
C

abc4

4
:

Figure 14.42

(a) The iteration in Example 2

(b) The iteration in Example 3

x

y

z

y

c

b

B

a

z

x

y

z

1

1

z D 1 � x � y

T

y D 1 � x; z D 0

x
y

1

T .x/

(a) (b)

E X A M P L E 3
If T is the tetrahedron with vertices .0; 0; 0/, .1; 0; 0/, .0; 1; 0/,

and .0; 0; 1/, evaluate I D

ZZZ

T

y dV:

Solution The tetrahedron is shown in Figure 14.42(b). The plane slice in the plane

normal to the x-axis at position x is the triangle T .x/ shown in that figure; x is constant

and y and z are variables in the slice. The double integral of y over T .x/ is a function

of x. We evaluate it by integrating first in the z direction and then in the y direction as

suggested by the vertical line shown in the slice:

ZZ

T .x/

y dA D

Z 1�x

0

dy

Z 1�x�y

0

y dz

D

Z 1�x

0

y.1 � x � y/ dy

D

�

.1 � x/
y2

2
�

y3

3

�

ˇ

ˇ

ˇ

ˇ

1�x

0

D

1

6
.1 � x/

3
:

The value of the triple integral I is the integral of this expression with respect to the

remaining variable x, to sum the contributions from all such slices between x D 0 and

x D 1:

I D

Z 1

0

1

6
.1 � x/

3
dx D �

1

24
.1 � x/

4

ˇ

ˇ

ˇ

ˇ

1

0

D

1

24
:

In the above solution we carried out the iteration in two steps in order to show the

procedure clearly. In practice, triple integrals are iterated in one step, with no explicit

mention made of the double integral over the slice. Thus, using the iteration suggested

by Figure 14.42(b), we would immediately write

I D

Z 1

0

dx

Z 1�x

0

dy

Z 1�x�y

0

y dz:
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volume of D:

Volume of D D

ZZZ

D

dV:

The triple integral of a positive function f .x; y; z/ can be interpreted as the “hyper-

volume” (i.e., the four-dimensional volume) of a region in 4-space having the set D as

its three-dimensional “base” and having its top on the hypersurface w D f .x; y; z/.

This is not a particularly useful interpretation; many more useful ones arise in appli-

cations. For instance, if �.x; y; z/ represents the density (mass per unit volume) at

position .x; y; z/ in a substance occupying the domain D in 3-space, then the mass

m of the solid is the “sum” of mass elements dm D �.x; y; z/ dV occupying volume

elements dV :

mass D

ZZZ

D

�.x; y; z/ dV:

Some triple integrals can be evaluated by inspection, using symmetry and known vol-

umes.

E X A M P L E 1
Evaluate

ZZZ

x2Cy2Cz2�a2

.2C x � sin z/ dV:

Solution The domain of integration is the ball of radius a centred at the origin. The

integral of 2 over this ball is twice the ball’s volume, that is, 8�a3=3. The integrals

of x and sin z over the ball are both zero, since both functions are odd in one of the

variables and the domain is symmetric about each coordinate plane. (For instance, for

every volume element dV in the half of the ball where x > 0, there is a correspond-

ing element in the other half where x has the same size but the opposite sign. The

contributions from these two elements cancel one another.) Thus,
ZZZ

x2Cy2Cz2�a2

.2C x � sin z/ dV D
8

3
�a

3
C 0C 0 D

8

3
�a

3
:

Most triple integrals are evaluated by an iteration procedure similar to that used for

double integrals. We slice the domain D with a plane parallel to one of the coordinate

planes, double integrate the function with respect to two variables over that slice, and

then integrate the result with respect to the remaining variable. Some examples should

clarify the procedure.

E X A M P L E 2
Let B be the rectangular box 0 � x � a, 0 � y � b, 0 � z � c.

Evaluate

I D

ZZZ

B

.xy
2
C z

3
/ dV:

Solution As indicated in Figure 14.42(a), we will slice with planes perpendicular to

the z-axis, so the z integral will be outermost in the iteration. The slices are rectangles,

so the double integrals over them can be immediately iterated also. We do it with the

y integral outer and the x integral inner, as suggested by the line shown in the slice.

I D

Z c

0

dz

Z b

0

dy

Z a

0

.xy
2
C z

3
/ dx

D

Z c

0

dz

Z b

0

dy

�

x2y2

2
C xz

3

�
ˇ

ˇ

ˇ

ˇ

xDa

xD0

D

Z c

0

dz

Z b

0

�

a2y2

2
C az

3

�

dy

D

Z c

0

dz

�

a2y3

6
C ayz

3

�
ˇ

ˇ

ˇ

ˇ

yDb

yD0
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D

Z c

0

�

a2b3

6
C abz

3

�

dz

D

�

a2b3z

6
C

abz4

4

�
ˇ

ˇ

ˇ

ˇ

zDc

zD0

D

a2b3c

6
C

abc4

4
:

Figure 14.42

(a) The iteration in Example 2

(b) The iteration in Example 3

x

y

z

y

c

b

B

a

z

x

y

z

1

1

z D 1 � x � y

T

y D 1 � x; z D 0

x
y

1

T .x/

(a) (b)

E X A M P L E 3
If T is the tetrahedron with vertices .0; 0; 0/, .1; 0; 0/, .0; 1; 0/,

and .0; 0; 1/, evaluate I D

ZZZ

T

y dV:

Solution The tetrahedron is shown in Figure 14.42(b). The plane slice in the plane

normal to the x-axis at position x is the triangle T .x/ shown in that figure; x is constant

and y and z are variables in the slice. The double integral of y over T .x/ is a function

of x. We evaluate it by integrating first in the z direction and then in the y direction as

suggested by the vertical line shown in the slice:

ZZ

T .x/

y dA D

Z 1�x

0

dy

Z 1�x�y

0

y dz

D

Z 1�x

0

y.1 � x � y/ dy

D

�

.1 � x/
y2

2
�

y3

3

�

ˇ

ˇ

ˇ

ˇ

1�x

0

D

1

6
.1 � x/

3
:

The value of the triple integral I is the integral of this expression with respect to the

remaining variable x, to sum the contributions from all such slices between x D 0 and

x D 1:

I D

Z 1

0

1

6
.1 � x/

3
dx D �

1

24
.1 � x/

4

ˇ

ˇ

ˇ

ˇ

1

0

D

1

24
:

In the above solution we carried out the iteration in two steps in order to show the

procedure clearly. In practice, triple integrals are iterated in one step, with no explicit

mention made of the double integral over the slice. Thus, using the iteration suggested

by Figure 14.42(b), we would immediately write

I D

Z 1

0

dx

Z 1�x

0

dy

Z 1�x�y

0

y dz:
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The evaluation proceeds as above, starting with the right (i.e., inner) integral, followed

by the middle integral and then the left (outer) integral. The triple integral represents

the “sum” of elements y dV over the three-dimensional region T: The above iteration

corresponds to “summing” (i.e., integrating) first along a vertical line (the z integral),

then summing these one-dimensional sums in the y direction to get the double sum

of all elements in the plane slice, and finally summing these double sums in the x

direction to add up the contributions from all the slices. The iteration can be carried out

in other directions; there are six possible iterations corresponding to different orders

of doing the x, y, and z integrals. The other five are

I D

Z 1

0

dx

Z 1�x

0

dz

Z 1�x�z

0

y dy;

I D

Z 1

0

dy

Z 1�y

0

dx

Z 1�x�y

0

y dz;

I D

Z 1

0

dy

Z 1�y

0

dz

Z 1�y�z

0

y dx;

I D

Z 1

0

dz

Z 1�z

0

dx

Z 1�x�z

0

y dy;

I D

Z 1

0

dz

Z 1�z

0

dy

Z 1�y�z

0

y dx:

You should verify these by drawing diagrams analogous to Figure 14.42(b). Of course,

all six iterations give the same result.

It is sometimes difficult to visualize the region of 3-space over which a given triple

integral is taken. In such situations try to determine the projection of that region on

one or other of the coordinate planes. For instance, if a region R is bounded by two

surfaces with given equations, combining these equations to eliminate one variable

will yield the equation of a cylinder (not necessarily circular) with axis parallel to the

axis of the eliminated variable. This cylinder will then determine the projection of R

onto the coordinate plane perpendicular to that axis. The following example illustrates

the use of this technique to find a volume bounded by two surfaces. The volume is

expressed as a triple integral with unit integrand.

E X A M P L E 4
Find the volume of the region R lying below the plane z D 3� 2y

and above the paraboloid z D x2
C y2.

Solution The region R is shown in Figure 14.43. The two surfaces bounding R in-

tersect on the vertical cylinder x2
C y2

D 3 � 2y, or x2
C .y C 1/2 D 4. If D is the

circular disk in which this cylinder intersects the xy-plane, then partial iteration gives

V D

ZZZ

R

dV D

ZZ

D

dx dy

Z 3�2y

x2Cy2

dz:

Figure 14.43 shows a slice of R corresponding to a further iteration of the double

integral over D:

V D

Z 1

�3

dy

Z

p

3�2y�y2

�
p

3�2y�y2

dx

Z 3�2y

x2Cy2

dz;

but there is an easier way to iterate the double integral. Since D is a circular disk of

radius 2 and centre .0;�1/, we can use polar coordinates with centre at that point (i.e.,

x D r cos � , y D �1C r sin �). Thus,

V D

ZZ

D

.3 � 2y � x
2
� y

2
/ dx dy

D

ZZ

D

�

4 � x
2
� .y C 1/

2
�

dx dy

D

Z 2�

0

d�

Z 2

0

.4 � r
2
/r dr D 2�

�

2r
2
�

r4

4

�
ˇ

ˇ

ˇ

ˇ

2

0

D 8� cubic units:
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Figure 14.43 The volume above a

paraboloid and under a slanting plane x

y

z

z D 3 � 2y

1

x2
C .y C 1/2 D 4

y

D

z D x2
C y2

�3

R

As was the case for double integrals, it is sometimes necessary to reiterate a given

iterated integral so that the integrations are performed in a different order. This task

is most easily accomplished if we can translate the given iteration into a sketch of the

region of integration. The ability to deduce the shape of the region from the limits in

the iterated integral is a skill that you can acquire with a little practice. You should first

determine the projection of the region on a coordinate plane, namely, the plane of the

two variables in the outer integrals of the given iteration.

It is also possible to reiterate an iterated integral in a different order by manipulat-

ing the limits of integration algebraically. We will illustrate both approaches (graphical

and algebraic) in the following examples.

E X A M P L E 5
Express the iterated integral

I D

Z 1

0

dy

Z 1

y

dz

Z z

0

f .x; y; z/ dx

as a triple integral, and sketch the region over which it is taken. Reiterate the integral

in such a way that the integrations are performed in the following order: first y, then

z, then x (i.e., the opposite order to the given iteration).

Solution We express I as an uniterated triple integral:

I D

ZZZ

R

f .x; y; z/ dV:

The outer integral in the given iteration shows that the regionR lies between the planes

y D 0 and y D 1. For each such value of y, z must lie between y and 1. Therefore,

R lies below the plane z D 1 and above the plane z D y, and the projection of R onto

the yz-plane is the triangle with vertices .0; 0; 0/, .0; 0; 1/, and .0; 1; 1/. Through any

point .0; y; z/ in this triangle, a line parallel to the x-axis intersects R between x D 0

and x D z. Thus, the solid is bounded by the five planes x D 0, y D 0, z D 1, y D z,

and z D x. It is sketched in Figure 14.44(a), with slice and line corresponding to the

given iteration.
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The evaluation proceeds as above, starting with the right (i.e., inner) integral, followed

by the middle integral and then the left (outer) integral. The triple integral represents

the “sum” of elements y dV over the three-dimensional region T: The above iteration

corresponds to “summing” (i.e., integrating) first along a vertical line (the z integral),

then summing these one-dimensional sums in the y direction to get the double sum

of all elements in the plane slice, and finally summing these double sums in the x

direction to add up the contributions from all the slices. The iteration can be carried out

in other directions; there are six possible iterations corresponding to different orders

of doing the x, y, and z integrals. The other five are

I D

Z 1

0

dx

Z 1�x

0

dz

Z 1�x�z

0

y dy;

I D

Z 1

0

dy

Z 1�y

0

dx

Z 1�x�y

0

y dz;

I D

Z 1

0

dy

Z 1�y

0

dz

Z 1�y�z

0

y dx;

I D

Z 1

0

dz

Z 1�z

0

dx

Z 1�x�z

0

y dy;

I D

Z 1

0

dz

Z 1�z

0

dy

Z 1�y�z

0

y dx:

You should verify these by drawing diagrams analogous to Figure 14.42(b). Of course,

all six iterations give the same result.

It is sometimes difficult to visualize the region of 3-space over which a given triple

integral is taken. In such situations try to determine the projection of that region on

one or other of the coordinate planes. For instance, if a region R is bounded by two

surfaces with given equations, combining these equations to eliminate one variable

will yield the equation of a cylinder (not necessarily circular) with axis parallel to the

axis of the eliminated variable. This cylinder will then determine the projection of R

onto the coordinate plane perpendicular to that axis. The following example illustrates

the use of this technique to find a volume bounded by two surfaces. The volume is

expressed as a triple integral with unit integrand.

E X A M P L E 4
Find the volume of the region R lying below the plane z D 3� 2y

and above the paraboloid z D x2
C y2.

Solution The region R is shown in Figure 14.43. The two surfaces bounding R in-

tersect on the vertical cylinder x2
C y2

D 3 � 2y, or x2
C .y C 1/2 D 4. If D is the

circular disk in which this cylinder intersects the xy-plane, then partial iteration gives

V D

ZZZ

R

dV D

ZZ

D

dx dy

Z 3�2y

x2Cy2

dz:

Figure 14.43 shows a slice of R corresponding to a further iteration of the double

integral over D:

V D

Z 1

�3

dy

Z

p

3�2y�y2

�
p

3�2y�y2

dx

Z 3�2y

x2Cy2

dz;

but there is an easier way to iterate the double integral. Since D is a circular disk of

radius 2 and centre .0;�1/, we can use polar coordinates with centre at that point (i.e.,

x D r cos � , y D �1C r sin �). Thus,

V D

ZZ

D

.3 � 2y � x
2
� y

2
/ dx dy

D

ZZ

D

�

4 � x
2
� .y C 1/

2
�

dx dy

D

Z 2�

0

d�

Z 2

0

.4 � r
2
/r dr D 2�

�

2r
2
�

r4

4

�
ˇ

ˇ

ˇ

ˇ

2

0

D 8� cubic units:
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Figure 14.43 The volume above a

paraboloid and under a slanting plane x

y

z

z D 3 � 2y

1

x2
C .y C 1/2 D 4

y

D

z D x2
C y2

�3

R

As was the case for double integrals, it is sometimes necessary to reiterate a given

iterated integral so that the integrations are performed in a different order. This task

is most easily accomplished if we can translate the given iteration into a sketch of the

region of integration. The ability to deduce the shape of the region from the limits in

the iterated integral is a skill that you can acquire with a little practice. You should first

determine the projection of the region on a coordinate plane, namely, the plane of the

two variables in the outer integrals of the given iteration.

It is also possible to reiterate an iterated integral in a different order by manipulat-

ing the limits of integration algebraically. We will illustrate both approaches (graphical

and algebraic) in the following examples.

E X A M P L E 5
Express the iterated integral

I D

Z 1

0

dy

Z 1

y

dz

Z z

0

f .x; y; z/ dx

as a triple integral, and sketch the region over which it is taken. Reiterate the integral

in such a way that the integrations are performed in the following order: first y, then

z, then x (i.e., the opposite order to the given iteration).

Solution We express I as an uniterated triple integral:

I D

ZZZ

R

f .x; y; z/ dV:

The outer integral in the given iteration shows that the regionR lies between the planes

y D 0 and y D 1. For each such value of y, z must lie between y and 1. Therefore,

R lies below the plane z D 1 and above the plane z D y, and the projection of R onto

the yz-plane is the triangle with vertices .0; 0; 0/, .0; 0; 1/, and .0; 1; 1/. Through any

point .0; y; z/ in this triangle, a line parallel to the x-axis intersects R between x D 0

and x D z. Thus, the solid is bounded by the five planes x D 0, y D 0, z D 1, y D z,

and z D x. It is sketched in Figure 14.44(a), with slice and line corresponding to the

given iteration.
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Figure 14.44

(a) The solid region for the triple integral

in Example 5 sliced corresponding to

the given iteration

(b) The same solid sliced to conform to

the desired iteration

x

y

z

1

y
.0;1;1/

z

.1;1;1/

zDy
zDx

.1;0;1/

x

y

z

.1;1;1/

zDy
zDx

.1;0;1/

.0;1;1/x

z

(a) (b)

The required iteration corresponds to the slice and line shown in Figure 14.44(b).

Therefore, it is

I D

Z 1

0

dx

Z 1

x

dz

Z z

0

f .x; y; z/ dy:

E X A M P L E 6
Use algebra to write an iteration of the integral

I D

Z 1

0

dx

Z 1

x

dy

Z y

x

f .x; y; z/ dz

with the order of integrations reversed.

Solution From the given iteration we can write three sets of inequalities satisfied by

the outer variable x, the middle variable y, and the inner variable z. We write these in

order as follows:

0 � x � 1 inequalities for x

x � y � 1 inequalities for y

x � z � y inequalities for z.

Note that the limits for each variable can be constant or can depend only on variables

whose inequalities are on lines above the line for that variable. (In this case, the limits

for x must both be constant, those for y can depend on x, and those for z can depend

on both x and y.) This is a requirement for iterated integrals; outer integrals cannot

depend on the variables of integration of the inner integrals.

We want to construct an equivalent set of inequalities with those for z on the top

line, then those for y, then those for x on the bottom line. The limits for z must be

constants. From the inequalities above we determine that 0 � x � z and z � y � 1.

Thus, z must satisfy 0 � z � 1. The inequalities for y can depend on z. Since z � y

and y � 1, we have z � y � 1. Finally, the limits for x can depend on both y and z.

We have 0 � x, x � y, and x � z. Since we have already determined that z � y, we

must have 0 � x � z. Thus, the revised inequalities are

0 � z � 1 inequalities for z

z � y � 1 inequalities for y

0 � x � z inequalities for x

and the required iteration is

I D

Z 1

0

dz

Z 1

z

dy

Z z

0

f .x; y; z/ dx:
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E X E R C I S E S 14.5

In Exercises 1–12, evaluate the triple integrals over the indicated

region. Be alert for simplifications and auspicious orders of

iteration.

1.

ZZZ

R

.1C 2x � 3y/ dV; over the box �a � x � a,

�b � y � b, �c � z � c

2.

ZZZ

B

xyz dV; over the box B given by 0 � x � 1,

�2 � y � 0, 1 � z � 4

3.

ZZZ

D

.3C 2xy/ dV; over the solid hemispherical dome D

given by x2
C y2

C z2
� 4 and z � 0

4.

ZZZ

R

x dV; over the tetrahedron bounded by the coordinate

planes and the plane
x

a
C

y

b
C

z

c
D 1

5.

ZZZ

R

.x
2
C y

2
/ dV; over the cube 0 � x; y; z � 1

6.

ZZZ

R

.x
2
C y

2
C z

2
/ dV; over the cube of Exercise 5

7.

ZZZ

R

.xy C z
2
/ dV; over the set 0 � z � 1 � jxj � jyj

8.

ZZZ

R

yz
2
e

�xyz
dV; over the cube 0 � x; y; z � 1

9.

ZZZ

R

sin.�y3
/ dV; over the pyramid with vertices .0; 0; 0/,

.0; 1; 0/, .1; 1; 0/, .1; 1; 1/, and .0; 1; 1/

10.

ZZZ

R

y dV; over that part of the cube 0 � x; y; z � 1 lying

above the plane y C z D 1 and below the plane

x C y C z D 2

11.

ZZZ

R

1

.x C y C z/3
dV; over the region bounded by the six

planes z D 1, z D 2, y D 0, y D z, x D 0, and x D y C z

12.

ZZZ

R

cos x cosy cos z dV; over the tetrahedron defined by

x � 0, y � 0, z � 0, and x C y C z � �

13. Evaluate

ZZZ

R
3
e

�x2�2y2�3z2

dV . Hint: Use the result of

Example 4 of Section 14.4.

14. Find the volume of the region lying inside the cylinder

x2
C 4y2

D 4, above the xy-plane, and below the plane

z D 2C x.

15. Find

ZZZ

T

x dV; where T is the tetrahedron bounded by the

planes x D 1, y D 1, z D 1, and x C y C z D 2.

16. Sketch the region R in the first octant of 3-space that has finite

volume and is bounded by the surfaces x D 0, z D 0,

x C y D 1, and z D y2. Write six different iterations of the

triple integral of f .x; y; z/ over R.

In Exercises 17–20, express the given iterated integral as a triple

integral and sketch the region over which it is taken. Reiterate the

integral so that the outermost integral is with respect to x and the

innermost is with respect to z.

17.

Z 1

0

dz

Z 1�z

0

dy

Z 1

0

f .x; y; z/ dx

18.

Z 1

0

dz

Z 1

z

dy

Z y

0

f .x; y; z/ dx

19.

Z 1

0

dz

Z 1

z

dx

Z x�z

0

f .x; y; z/ dy

20.

Z 1

0

dy

Z

p

1�y2

0

dz

Z 1

y2Cz2

f .x; y; z/ dx

21. Repeat Exercise 17 using the method of Example 6.

22. Repeat Exercise 18 using the method of Example 6.

23. Repeat Exercise 19 using the method of Example 6.

24. Repeat Exercise 20 using the method of Example 6.

25. Rework Example 5 using the method of Example 6.

26. Rework Example 6 using the method of Example 5.

In Exercises 27–28, evaluate the given iterated integral by

reiterating it in a different order. (You will need to make a good

sketch of the region.)

27.I

Z 1

0

dz

Z 1

z

dx

Z x

0

e
x3

dy

28.I

Z 1

0

dx

Z 1�x

0

dy

Z 1

y

sin.�z/

z.2 � z/
dz

29.A Define the average value of an integrable function f .x; y; z/

over a region R of 3-space. Find the average value of

x
2
C y

2
C z

2 over the cube 0 � x � 1, 0 � y � 1,

0 � z � 1.

30.A State a Mean-Value Theorem for triple integrals analogous to

Theorem 3 of Section 14.3. Use it to prove that if f .x; y; z/ is

continuous near the point .a; b; c/ and if B�.a; b; c/ is the ball

of radius � centred at .a; b; c/, then

lim
�!0

3

4��3

ZZZ

B�.a;b;c/

f .x; y; z/ dV D f .a; b; c/:

14.6 Change of Variables in Triple Integrals

The change of variables formula for a double integral extends to triple (and higher-

order) integrals. Consider the transformation
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Figure 14.44

(a) The solid region for the triple integral

in Example 5 sliced corresponding to

the given iteration

(b) The same solid sliced to conform to

the desired iteration

x

y

z

1

y
.0;1;1/

z

.1;1;1/

zDy
zDx

.1;0;1/

x

y

z

.1;1;1/

zDy
zDx

.1;0;1/

.0;1;1/x

z

(a) (b)

The required iteration corresponds to the slice and line shown in Figure 14.44(b).

Therefore, it is

I D

Z 1

0

dx

Z 1

x

dz

Z z

0

f .x; y; z/ dy:

E X A M P L E 6
Use algebra to write an iteration of the integral

I D

Z 1

0

dx

Z 1

x

dy

Z y

x

f .x; y; z/ dz

with the order of integrations reversed.

Solution From the given iteration we can write three sets of inequalities satisfied by

the outer variable x, the middle variable y, and the inner variable z. We write these in

order as follows:

0 � x � 1 inequalities for x

x � y � 1 inequalities for y

x � z � y inequalities for z.

Note that the limits for each variable can be constant or can depend only on variables

whose inequalities are on lines above the line for that variable. (In this case, the limits

for x must both be constant, those for y can depend on x, and those for z can depend

on both x and y.) This is a requirement for iterated integrals; outer integrals cannot

depend on the variables of integration of the inner integrals.

We want to construct an equivalent set of inequalities with those for z on the top

line, then those for y, then those for x on the bottom line. The limits for z must be

constants. From the inequalities above we determine that 0 � x � z and z � y � 1.

Thus, z must satisfy 0 � z � 1. The inequalities for y can depend on z. Since z � y

and y � 1, we have z � y � 1. Finally, the limits for x can depend on both y and z.

We have 0 � x, x � y, and x � z. Since we have already determined that z � y, we

must have 0 � x � z. Thus, the revised inequalities are

0 � z � 1 inequalities for z

z � y � 1 inequalities for y

0 � x � z inequalities for x

and the required iteration is

I D

Z 1

0

dz

Z 1

z

dy

Z z

0

f .x; y; z/ dx:
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E X E R C I S E S 14.5

In Exercises 1–12, evaluate the triple integrals over the indicated

region. Be alert for simplifications and auspicious orders of

iteration.

1.

ZZZ

R

.1C 2x � 3y/ dV; over the box �a � x � a,

�b � y � b, �c � z � c

2.

ZZZ

B

xyz dV; over the box B given by 0 � x � 1,

�2 � y � 0, 1 � z � 4

3.

ZZZ

D

.3C 2xy/ dV; over the solid hemispherical dome D

given by x2
C y2

C z2
� 4 and z � 0

4.

ZZZ

R

x dV; over the tetrahedron bounded by the coordinate

planes and the plane
x

a
C

y

b
C

z

c
D 1

5.

ZZZ

R

.x
2
C y

2
/ dV; over the cube 0 � x; y; z � 1

6.

ZZZ

R

.x
2
C y

2
C z

2
/ dV; over the cube of Exercise 5

7.

ZZZ

R

.xy C z
2
/ dV; over the set 0 � z � 1 � jxj � jyj

8.

ZZZ

R

yz
2
e

�xyz
dV; over the cube 0 � x; y; z � 1

9.

ZZZ

R

sin.�y3
/ dV; over the pyramid with vertices .0; 0; 0/,

.0; 1; 0/, .1; 1; 0/, .1; 1; 1/, and .0; 1; 1/

10.

ZZZ

R

y dV; over that part of the cube 0 � x; y; z � 1 lying

above the plane y C z D 1 and below the plane

x C y C z D 2

11.

ZZZ

R

1

.x C y C z/3
dV; over the region bounded by the six

planes z D 1, z D 2, y D 0, y D z, x D 0, and x D y C z

12.

ZZZ

R

cos x cosy cos z dV; over the tetrahedron defined by

x � 0, y � 0, z � 0, and x C y C z � �

13. Evaluate

ZZZ

R
3
e

�x2�2y2�3z2

dV . Hint: Use the result of

Example 4 of Section 14.4.

14. Find the volume of the region lying inside the cylinder

x2
C 4y2

D 4, above the xy-plane, and below the plane

z D 2C x.

15. Find

ZZZ

T

x dV; where T is the tetrahedron bounded by the

planes x D 1, y D 1, z D 1, and x C y C z D 2.

16. Sketch the region R in the first octant of 3-space that has finite

volume and is bounded by the surfaces x D 0, z D 0,

x C y D 1, and z D y2. Write six different iterations of the

triple integral of f .x; y; z/ over R.

In Exercises 17–20, express the given iterated integral as a triple

integral and sketch the region over which it is taken. Reiterate the

integral so that the outermost integral is with respect to x and the

innermost is with respect to z.

17.

Z 1

0

dz

Z 1�z

0

dy

Z 1

0

f .x; y; z/ dx

18.

Z 1

0

dz

Z 1

z

dy

Z y

0

f .x; y; z/ dx

19.

Z 1

0

dz

Z 1

z

dx

Z x�z

0

f .x; y; z/ dy

20.

Z 1

0

dy

Z

p

1�y2

0

dz

Z 1

y2Cz2

f .x; y; z/ dx

21. Repeat Exercise 17 using the method of Example 6.

22. Repeat Exercise 18 using the method of Example 6.

23. Repeat Exercise 19 using the method of Example 6.

24. Repeat Exercise 20 using the method of Example 6.

25. Rework Example 5 using the method of Example 6.

26. Rework Example 6 using the method of Example 5.

In Exercises 27–28, evaluate the given iterated integral by

reiterating it in a different order. (You will need to make a good

sketch of the region.)

27.I

Z 1

0

dz

Z 1

z

dx

Z x

0

e
x3

dy

28.I

Z 1

0

dx

Z 1�x

0

dy

Z 1

y

sin.�z/

z.2 � z/
dz

29.A Define the average value of an integrable function f .x; y; z/

over a region R of 3-space. Find the average value of

x
2
C y

2
C z

2 over the cube 0 � x � 1, 0 � y � 1,

0 � z � 1.

30.A State a Mean-Value Theorem for triple integrals analogous to

Theorem 3 of Section 14.3. Use it to prove that if f .x; y; z/ is

continuous near the point .a; b; c/ and if B�.a; b; c/ is the ball

of radius � centred at .a; b; c/, then

lim
�!0

3

4��3

ZZZ

B�.a;b;c/

f .x; y; z/ dV D f .a; b; c/:

14.6 Change of Variables in Triple Integrals

The change of variables formula for a double integral extends to triple (and higher-

order) integrals. Consider the transformation
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x D x.u; v;w/;

y D y.u; v;w/;

z D z.u; v;w/;

where x, y, and z have continuous first partial derivatives with respect to u, v, and w.

Near any point where the Jacobian @.x; y; z/=@.u; v;w/ is nonzero, the transformation

scales volume elements according to the formula

dV D dx dy dz D

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

dudv dw:

Thus, if the transformation is one-to-one from a domain S in uvw-space onto a domain

D in xyz-space, and if

g.u; v;w/ D f
�

x.u; v;w/; y.u; v;w/; z.u; v;w/
�

;

then

ZZZ

D

f .x; y; z/ dx dy dz D

ZZZ

S

g.u; v;w/

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

dudv dw:

The proof is similar to that of the two-dimensional case given in Section 14.4. See

Exercise 21 at the end of this section.

E X A M P L E 1
Under the change of variables x D au, y D bv, z D cw, where

a; b; c > 0, the solid ellipsoid E given by

x2

a2
C

y2

b2
C

z2

c2
� 1

becomes the ball B given by u2
C v2

C w2
� 1. The Jacobian of this transformation

is

@.x; y; z/

@.u; v;w/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 0 0

0 b 0

0 0 c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D abc;

so the volume of the ellipsoid is given by

Volume of E D

ZZZ

E

dx dy dz

D

ZZZ

B

abc du dv dw D abc � .Volume of B/

D

4

3
�abc cubic units.

Cylindrical Coordinates
In Section 10.6 we introduced the system of cylindrical coordinates r , � , z in 3-space,

related to Cartesian coordinates by the transformation

x D r cos �; y D r sin �; z D z:
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The geometric significance of these coordinates are shown in Figure 14.45, and the

coordinate surfaces are illustrated in Figure 14.46.

x

y

z

y

P D .x; y; z/

D Œr; �; z�

z

r

d

O

x
�

Figure 14.45 The cylindrical coordinates of a point

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 14.46 The coordinate surfaces for cylindrical

coordinates

As noted previously, cylindrical coordinates lend themselves to representing do-

mains that are bounded by such surfaces and, in general, to problems with axial sym-

metry (around the z-axis).

The volume element in cylindrical coordinates is

dV D r dr d� dz;

which is easily seen by examining the infinitesimal “box” bounded by the coordinate

surfaces corresponding to values r , rCdr , � , �Cd� , z, and zCdz (see Figure 14.47)

or by calculating the Jacobian

@.x; y; z/

@.r; �; z/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos � �r sin � 0

sin � r cos � 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D r:

Figure 14.47 The volume element in

cylindrical coordinates

x

y

z

dr

dz

�
d�

r d�

dV D r dr d� dz

r

E X A M P L E 2 Evaluate

ZZZ

D

.x
2
C y

2
/ dV over the first octant region bounded

by the cylinders x2
C y

2
D 1 and x2

C y
2
D 4 and the planes

z D 0, z D 1, x D 0, and x D y.

Solution In terms of cylindrical coordinates, the region is bounded by r D 1, r D 2,

� D �=4, � D �=2, z D 0, and z D 1. (See Figure 14.48. It is a rectangular
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x D x.u; v;w/;

y D y.u; v;w/;

z D z.u; v;w/;

where x, y, and z have continuous first partial derivatives with respect to u, v, and w.

Near any point where the Jacobian @.x; y; z/=@.u; v;w/ is nonzero, the transformation

scales volume elements according to the formula

dV D dx dy dz D

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

dudv dw:

Thus, if the transformation is one-to-one from a domain S in uvw-space onto a domain

D in xyz-space, and if

g.u; v;w/ D f
�

x.u; v;w/; y.u; v;w/; z.u; v;w/
�

;

then

ZZZ

D

f .x; y; z/ dx dy dz D

ZZZ

S

g.u; v;w/

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

dudv dw:

The proof is similar to that of the two-dimensional case given in Section 14.4. See

Exercise 21 at the end of this section.

E X A M P L E 1
Under the change of variables x D au, y D bv, z D cw, where

a; b; c > 0, the solid ellipsoid E given by

x2

a2
C

y2

b2
C

z2

c2
� 1

becomes the ball B given by u2
C v2

C w2
� 1. The Jacobian of this transformation

is

@.x; y; z/

@.u; v;w/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 0 0

0 b 0

0 0 c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D abc;

so the volume of the ellipsoid is given by

Volume of E D

ZZZ

E

dx dy dz

D

ZZZ

B

abc du dv dw D abc � .Volume of B/

D

4

3
�abc cubic units.

Cylindrical Coordinates
In Section 10.6 we introduced the system of cylindrical coordinates r , � , z in 3-space,

related to Cartesian coordinates by the transformation

x D r cos �; y D r sin �; z D z:
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The geometric significance of these coordinates are shown in Figure 14.45, and the

coordinate surfaces are illustrated in Figure 14.46.

x

y

z

y

P D .x; y; z/

D Œr; �; z�

z

r

d

O

x
�

Figure 14.45 The cylindrical coordinates of a point

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 14.46 The coordinate surfaces for cylindrical

coordinates

As noted previously, cylindrical coordinates lend themselves to representing do-

mains that are bounded by such surfaces and, in general, to problems with axial sym-

metry (around the z-axis).

The volume element in cylindrical coordinates is

dV D r dr d� dz;

which is easily seen by examining the infinitesimal “box” bounded by the coordinate

surfaces corresponding to values r , rCdr , � , �Cd� , z, and zCdz (see Figure 14.47)

or by calculating the Jacobian

@.x; y; z/

@.r; �; z/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos � �r sin � 0

sin � r cos � 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D r:

Figure 14.47 The volume element in

cylindrical coordinates

x

y

z

dr

dz

�
d�

r d�

dV D r dr d� dz

r

E X A M P L E 2 Evaluate

ZZZ

D

.x
2
C y

2
/ dV over the first octant region bounded

by the cylinders x2
C y

2
D 1 and x2

C y
2
D 4 and the planes

z D 0, z D 1, x D 0, and x D y.

Solution In terms of cylindrical coordinates, the region is bounded by r D 1, r D 2,

� D �=4, � D �=2, z D 0, and z D 1. (See Figure 14.48. It is a rectangular
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coordinate box in r�z-space.) Since the integrand is x2
C y2

D r2, the integral is

x

y

z

D

rD1

rD2

yDx

zD1

�=4

Figure 14.48

ZZZ

D

.x
2
C y

2
/ dV D

Z 1

0

dz

Z �=2

�=4

d�

Z 2

1

r
2
r dr

D .1 � 0/

�

�

2
�

�

4

�

�

24

4
�

14

4

�

D

15

16
�:

This integral would have been much more difficult to evaluate using Cartesian coordi-

nates.

E X A M P L E 3
Use a triple integral to find the volume of the solid region inside

the sphere x2
Cy

2
Cz

2
D 6 and above the paraboloid z D x2

Cy
2.

Solution One-quarter of the required volume lies in the first octant. (See region R in

Figure 14.49.) The two surfaces intersect on the vertical cylinder

6 � x
2
� y

2
D z

2
D .x

2
C y

2
/
2
;

or, in terms of cylindrical coordinates, 6� r2
D r4, that is,

r
4
C r

2
� 6 D 0

.r
2
C 3/.r

2
� 2/ D 0:

The only relevant solution to this equation is r D
p

2. Thus, the required volume lies

above the disk D of radius
p

2 centred at the origin in the xy-plane. The total volume

V of the region is

x

y

z

R

p
2

D

zDx2Cy2

x2Cy2Cz2D6

Figure 14.49 This figure shows

one-quarter of the solid region R and its

projection, one-quarter of the disk D in the

xy-plane for Example 3

V D

ZZZ

R

dV D

Z 2�

0

d�

Z

p
2

0

r dr

Z

p
6�r2

r2

dz

D 2�

Z

p
2

0

�

r

p

6 � r2
� r

3
�

dr

D 2�

�

�

1

3
.6 � r

2
/
3=2
�

r4

4

�
ˇ

ˇ

ˇ

ˇ

p
2

0

D 2�

"

6
p

6

3
�

8

3
� 1

#

D

2�

3
.6
p

6 � 11/ cubic units:

Spherical Coordinates
Also introduced in Section 10.6 is the system of spherical coordinates related to Carte-

sian coordinates x, y, z, and cylindrical coordinates r , � , z by the equations

x D R sin� cos �

y D R sin� sin �

z D R cos�;

R
2
D x

2
C y

2
C z

2
D r

2
C z

2
;

r D

p

x2
C y2

D R sin�;

tan� D
r

z
D

p

x2
C y2

z
and tan � D

y

x
:
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These relationships are illustraded in Figure 14.50, and the coordinate surfaces in

spherical coordinates are illustrated in Figure 14.51.

x

y

z

y

P D .x; y; z/

D ŒR; �; ��

z

r�

R

x

O

�

�

Figure 14.50 The spherical coordinates of a point

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 14.51 The coordinate surfaces for spherical

coordinates

The volume element in spherical coordinates is

dV D R
2 sin� dR d� d�:

To see this, observe that the infinitesimal coordinate box bounded by the coordinate

surfaces corresponding to valuesR,RCdR, �, �Cd�, � , and �Cd� has dimensions

dR, Rd�, and R sin� d� . (See Figure 14.52.)

Figure 14.52 The volume element in

spherical coordinates

x

y

z

d�

�

R sin � d�

dR

R d�

dV DR2 sin � dR d� d�

R

d��

ŒR;�;��

Alternatively, the Jacobian of the transformation can be calculated:

@.x; y; z/

@.R; �; �/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin� cos � R cos� cos � �R sin� sin �

sin� sin � R cos� sin � R sin� cos �

cos� �R sin� 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D cos�

ˇ

ˇ

ˇ

ˇ

R cos� cos � �R sin� sin �

R cos� sin � R sin� cos �

ˇ

ˇ

ˇ

ˇ

CR sin�

ˇ

ˇ

ˇ

ˇ

sin� cos � �R sin� sin �

sin� sin � R sin� cos �

ˇ

ˇ

ˇ

ˇ

D cos�.R2 sin� cos�/CR sin�.R sin2
�/

D R
2 sin�:
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coordinate box in r�z-space.) Since the integrand is x2
C y2

D r2, the integral is

x

y

z

D

rD1

rD2

yDx

zD1

�=4

Figure 14.48

ZZZ

D

.x
2
C y

2
/ dV D

Z 1

0

dz

Z �=2

�=4

d�

Z 2

1

r
2
r dr

D .1 � 0/

�

�

2
�

�

4

�

�

24

4
�

14

4

�

D

15

16
�:

This integral would have been much more difficult to evaluate using Cartesian coordi-

nates.

E X A M P L E 3
Use a triple integral to find the volume of the solid region inside

the sphere x2
Cy

2
Cz

2
D 6 and above the paraboloid z D x2

Cy
2.

Solution One-quarter of the required volume lies in the first octant. (See region R in

Figure 14.49.) The two surfaces intersect on the vertical cylinder

6 � x
2
� y

2
D z

2
D .x

2
C y

2
/
2
;

or, in terms of cylindrical coordinates, 6� r2
D r4, that is,

r
4
C r

2
� 6 D 0

.r
2
C 3/.r

2
� 2/ D 0:

The only relevant solution to this equation is r D
p

2. Thus, the required volume lies

above the disk D of radius
p

2 centred at the origin in the xy-plane. The total volume

V of the region is

x

y

z

R

p
2

D

zDx2Cy2

x2Cy2Cz2D6

Figure 14.49 This figure shows

one-quarter of the solid region R and its

projection, one-quarter of the disk D in the

xy-plane for Example 3

V D

ZZZ

R

dV D

Z 2�

0

d�

Z

p
2

0

r dr

Z

p
6�r2

r2

dz

D 2�

Z

p
2

0

�

r

p

6 � r2
� r

3
�

dr

D 2�

�

�

1

3
.6 � r

2
/
3=2
�

r4

4

�
ˇ

ˇ

ˇ

ˇ

p
2

0

D 2�

"

6
p

6

3
�

8

3
� 1

#

D

2�

3
.6
p

6 � 11/ cubic units:

Spherical Coordinates
Also introduced in Section 10.6 is the system of spherical coordinates related to Carte-

sian coordinates x, y, z, and cylindrical coordinates r , � , z by the equations

x D R sin� cos �

y D R sin� sin �

z D R cos�;

R
2
D x

2
C y

2
C z

2
D r

2
C z

2
;

r D

p

x2
C y2

D R sin�;

tan� D
r

z
D

p

x2
C y2

z
and tan � D

y

x
:
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These relationships are illustraded in Figure 14.50, and the coordinate surfaces in

spherical coordinates are illustrated in Figure 14.51.

x

y

z

y

P D .x; y; z/

D ŒR; �; ��

z

r�

R

x

O

�

�

Figure 14.50 The spherical coordinates of a point

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 14.51 The coordinate surfaces for spherical

coordinates

The volume element in spherical coordinates is

dV D R
2 sin� dR d� d�:

To see this, observe that the infinitesimal coordinate box bounded by the coordinate

surfaces corresponding to valuesR,RCdR, �, �Cd�, � , and �Cd� has dimensions

dR, Rd�, and R sin� d� . (See Figure 14.52.)

Figure 14.52 The volume element in

spherical coordinates

x

y

z

d�

�

R sin � d�

dR

R d�

dV DR2 sin � dR d� d�

R

d��

ŒR;�;��

Alternatively, the Jacobian of the transformation can be calculated:

@.x; y; z/

@.R; �; �/
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin� cos � R cos� cos � �R sin� sin �

sin� sin � R cos� sin � R sin� cos �

cos� �R sin� 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D cos�

ˇ

ˇ

ˇ

ˇ

R cos� cos � �R sin� sin �

R cos� sin � R sin� cos �

ˇ

ˇ

ˇ

ˇ

CR sin�

ˇ

ˇ

ˇ

ˇ

sin� cos � �R sin� sin �

sin� sin � R sin� cos �

ˇ

ˇ

ˇ

ˇ

D cos�.R2 sin� cos�/CR sin�.R sin2
�/

D R
2 sin�:
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Spherical coordinates are suited to problems involving spherical symmetry and, in

particular, to regions bounded by spheres centred at the origin, circular cones with

axes along the z-axis, and vertical planes containing the z-axis.

E X A M P L E 4
A solid half-ball H of radius a has density � (mass per unit vol-

ume) depending on the distanceR from the centre of the base disk.

The density is given by � D k.2a � R/, where k is a constant. Find the mass of the

half-ball.

Solution Choosing coordinates with origin at the centre of the base, so that the half-

ball lies above the xy-plane, we calculate the mass m as follows:

m D

ZZZ

H

k.2a �R/dV D

ZZZ

H

k.2a � R/R
2 sin� dR d� d�

D k

Z 2�

0

d�

Z �=2

0

sin� d�

Z a

0

.2a � R/R
2
dR

D 2k� � 1 �

�

2a

3
R

3
�

1

4
R

4
�

ˇ

ˇ

ˇ

ˇ

a

0

D

5

6
�ka

4 units:

Remark In the above example, both the integrand and the region of integration ex-

hibited spherical symmetry, so the choice of spherical coordinates to carry out the

integration was most appropriate. The mass could have been evaluated in cylindrical

coordinates. The iteration in that system is

m D

Z 2�

0

d�

Z a

0

r dr

Z

p
a2�r2

0

k

�

2a �

p

r2
C z2

�

dz

and is difficult to evaluate. It is even more difficult in Cartesian coordinates:

m D 4

Z a

0

dx

Z

p
a2�x2

0

dy

Z

p

a2�x2�y2

0

k

�

2a �

p

x2
C y2

C z2
�

dz:

The choice of coordinate system can greatly affect the difficulty of computation of a

multiple integral.

Many problems will have elements of spherical and axial symmetry. In such cases

it may not be clear whether it would be better to use spherical or cylindrical coordi-

nates. In such doubtful cases the integrand is usually the best guide. Use cylindri-

cal or spherical coordinates according to whether the integrand involves x2
C y2 or

x2
C y2

C z2.

E X A M P L E 5
The moment of inertia about the z-axis of a solid of density �

occupying the region R is given by the integral

I D

ZZZ

R

.x
2
C y

2
/� dV:

(See Section 14.7.) Calculate that moment of inertia for a solid of unit density oc-

cupying the region inside the sphere x2
C y2

C z2
D 4a2 and outside the cylinder

x
2
C y

2
D a

2.

Solution See Figure 14.53. In terms of spherical coordinates the required moment of

inertia is

I D 2

Z 2�

0

d�

Z �=2

�=6

sin� d�

Z 2a

a= sin �

R
2 sin2

� R
2
dR:
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In terms of cylindrical coordinates it is

I D 2

Z 2�

0

d�

Z 2a

a

r dr

Z

p
4a2�r2

0

r
2
dz:

The latter formula looks somewhat easier to evaluate. We continue with it. Evaluating

the � and z integrals, we get

I D 4�

Z 2a

a

r
3
p

4a2
� r2 dr:

Making the substitution u D 4a2
� r2, du D �2r dr , we obtain

I D 2�

Z 3a2

0

.4a
2
� u/
p

udu D 2�

�

4a
2 u

3=2

3=2
�

u
5=2

5=2

�
ˇ

ˇ

ˇ

ˇ

3a2

0

D

44

5

p

3�a
5
:

Figure 14.53 A solid ball with a

cylindrical hole through it

x

y

z

a

2a

x2
C y2

C z2
D 4a2

x2
C y2

D a2

p

3a

E X E R C I S E S 14.6

In Exercises 1–9, find the volumes of the indicated regions.

1. Inside the cone z D
p

x2
C y2 and inside the sphere

x2
C y2

C z2
D a2

2. Above the surface z D .x2
C y2/1=4 and inside the sphere

x
2
C y

2
C z

2
D 2

3. Between the paraboloids z D 10 � x2
� y

2 and

z D 2.x2
C y2

� 1/

4. Inside the paraboloid z D x2
C y2 and inside the sphere

x2
C y2

C z2
D 12

5. Above the xy-plane, inside the cone z D 2a �
p

x2
C y2,

and inside the cylinder x2
C y2

D 2ay

6. Above the xy-plane, under the paraboloid z D 1 � x2
� y2,

and in the wedge �x � y �
p

3x

7. In the first octant, between the planes y D 0 and y D x, and

inside the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1. Hint: Use the change

of variables suggested in Example 1.

8. Bounded by the hyperboloid
x2

a2
C

y2

b2
�

z2

c2
D 1 and the

planes z D �c and z D c

9. Above the xy-plane and below the paraboloid

z D 1 �
x

2

a2
�

y
2

b2

10. Evaluate

ZZZ

R

.x
2
C y

2
C z

2
/ dV; where R is the cylinder

0 � x2
C y2

� a2, 0 � z � h.

11. Find

ZZZ

B

.x
2
C y

2
/ dV; where B is the ball given by

x2
C y2

C z2
� a2.

12. Find

ZZZ

B

.x
2
C y

2
C z

2
/ dV; where B is the ball of Exercise

11.

13. Find

ZZZ

R

.x
2
C y

2
C z

2
/ dV; where R is the region that lies

above the cone z D c
p

x2
C y2 and inside the sphere

x2
C y2

C z2
D a2.

14. Evaluate

ZZZ

R

.x
2
C y

2
/ dV over the region R of

Exercise 13.
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Spherical coordinates are suited to problems involving spherical symmetry and, in

particular, to regions bounded by spheres centred at the origin, circular cones with

axes along the z-axis, and vertical planes containing the z-axis.

E X A M P L E 4
A solid half-ball H of radius a has density � (mass per unit vol-

ume) depending on the distanceR from the centre of the base disk.

The density is given by � D k.2a � R/, where k is a constant. Find the mass of the

half-ball.

Solution Choosing coordinates with origin at the centre of the base, so that the half-

ball lies above the xy-plane, we calculate the mass m as follows:

m D

ZZZ

H

k.2a �R/dV D

ZZZ

H

k.2a � R/R
2 sin� dR d� d�

D k

Z 2�

0

d�

Z �=2

0

sin� d�

Z a

0

.2a � R/R
2
dR

D 2k� � 1 �

�

2a

3
R

3
�

1

4
R

4
�

ˇ

ˇ

ˇ

ˇ

a

0

D

5

6
�ka

4 units:

Remark In the above example, both the integrand and the region of integration ex-

hibited spherical symmetry, so the choice of spherical coordinates to carry out the

integration was most appropriate. The mass could have been evaluated in cylindrical

coordinates. The iteration in that system is

m D

Z 2�

0

d�

Z a

0

r dr

Z

p
a2�r2

0

k

�

2a �

p

r2
C z2

�

dz

and is difficult to evaluate. It is even more difficult in Cartesian coordinates:

m D 4

Z a

0

dx

Z

p
a2�x2

0

dy

Z

p

a2�x2�y2

0

k

�

2a �

p

x2
C y2

C z2
�

dz:

The choice of coordinate system can greatly affect the difficulty of computation of a

multiple integral.

Many problems will have elements of spherical and axial symmetry. In such cases

it may not be clear whether it would be better to use spherical or cylindrical coordi-

nates. In such doubtful cases the integrand is usually the best guide. Use cylindri-

cal or spherical coordinates according to whether the integrand involves x2
C y2 or

x2
C y2

C z2.

E X A M P L E 5
The moment of inertia about the z-axis of a solid of density �

occupying the region R is given by the integral

I D

ZZZ

R

.x
2
C y

2
/� dV:

(See Section 14.7.) Calculate that moment of inertia for a solid of unit density oc-

cupying the region inside the sphere x2
C y2

C z2
D 4a2 and outside the cylinder

x
2
C y

2
D a

2.

Solution See Figure 14.53. In terms of spherical coordinates the required moment of

inertia is

I D 2

Z 2�

0

d�

Z �=2

�=6

sin� d�

Z 2a

a= sin �

R
2 sin2

� R
2
dR:
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In terms of cylindrical coordinates it is

I D 2

Z 2�

0

d�

Z 2a

a

r dr

Z

p
4a2�r2

0

r
2
dz:

The latter formula looks somewhat easier to evaluate. We continue with it. Evaluating

the � and z integrals, we get

I D 4�

Z 2a

a

r
3
p

4a2
� r2 dr:

Making the substitution u D 4a2
� r2, du D �2r dr , we obtain

I D 2�

Z 3a2

0

.4a
2
� u/
p

udu D 2�

�

4a
2 u

3=2

3=2
�

u
5=2

5=2

�
ˇ

ˇ

ˇ

ˇ

3a2

0

D

44

5

p

3�a
5
:

Figure 14.53 A solid ball with a

cylindrical hole through it

x

y

z

a

2a

x2
C y2

C z2
D 4a2

x2
C y2

D a2

p

3a

E X E R C I S E S 14.6

In Exercises 1–9, find the volumes of the indicated regions.

1. Inside the cone z D
p

x2
C y2 and inside the sphere

x2
C y2

C z2
D a2

2. Above the surface z D .x2
C y2/1=4 and inside the sphere

x
2
C y

2
C z

2
D 2

3. Between the paraboloids z D 10 � x2
� y

2 and

z D 2.x2
C y2

� 1/

4. Inside the paraboloid z D x2
C y2 and inside the sphere

x2
C y2

C z2
D 12

5. Above the xy-plane, inside the cone z D 2a �
p

x2
C y2,

and inside the cylinder x2
C y2

D 2ay

6. Above the xy-plane, under the paraboloid z D 1 � x2
� y2,

and in the wedge �x � y �
p

3x

7. In the first octant, between the planes y D 0 and y D x, and

inside the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1. Hint: Use the change

of variables suggested in Example 1.

8. Bounded by the hyperboloid
x2

a2
C

y2

b2
�

z2

c2
D 1 and the

planes z D �c and z D c

9. Above the xy-plane and below the paraboloid

z D 1 �
x

2

a2
�

y
2

b2

10. Evaluate

ZZZ

R

.x
2
C y

2
C z

2
/ dV; where R is the cylinder

0 � x2
C y2

� a2, 0 � z � h.

11. Find

ZZZ

B

.x
2
C y

2
/ dV; where B is the ball given by

x2
C y2

C z2
� a2.

12. Find

ZZZ

B

.x
2
C y

2
C z

2
/ dV; where B is the ball of Exercise

11.

13. Find

ZZZ

R

.x
2
C y

2
C z

2
/ dV; where R is the region that lies

above the cone z D c
p

x2
C y2 and inside the sphere

x2
C y2

C z2
D a2.

14. Evaluate

ZZZ

R

.x
2
C y

2
/ dV over the region R of

Exercise 13.
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15. Find

ZZZ

R

z dV; over the region R satisfying

x2
C y2

� z �
p

2� x2
� y2.

16. Find

ZZZ

R

x dV and

ZZZ

R

z dV; over that part of the

hemisphere 0 � z �
p

a2
� x2

� y2 that lies in the first

octant.

17.I Find

ZZZ

R

x dV and

ZZZ

R

z dV , over that part of the cone

0 � z � h

 

1 �

p

x2
C y2

a

!

that lies in the first octant.

18.I Find the volume of the region inside the ellipsoid

x
2

a2
C

y2

b2
C

z2

c2
D 1 and above the plane z D b � y.

19. Show that for cylindrical coordinates the Laplace equation

@2u

@x2
C

@2u

@y2
C

@2u

@z2
D 0 is given by

@2u

@r2
C

1

r

@u

@r
C

1

r2

@2u

@�2
C

@2u

@z2
D 0:

20.I Show that the Laplace equation in spherical coordinates is

@2u

@R2
C

2

R

@u

@R
C

cot�

R2

@u

@�
C

1

R2

@2u

@�2
C

1

R2 sin2
�

@2u

@�2
D 0:

21.I If x, y, and z are functions of u, v, and w with continuous

first partial derivatives and nonvanishing Jacobian at .u; v;w/,

show that they map an infinitesimal volume element in

uvw-space bounded by the coordinate planes u, uC du, v,

v C dv, w, and w C dw into an infinitesimal “parallelepiped”

in xyz-space having volume

dx dy dz D

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

du dv dw.

Hint: Adapt the two-dimensional argument given in

Section 14.4. What three vectors from the point

P D .x.u; v;w/; y.u; v;w/; z.u; v;w// span the

parallelepiped?

14.7 Applications of Multiple Integrals

When we express the volume V of a region R in 3-space as an integral,

V D

ZZZ

R

dV;

we are regarding V as a “sum” of infinitely many infinitesimal elements of volume, that

is, as the limit of the sum of volumes of smaller and smaller nonoverlapping subregions

into which we subdivide R. This idea of representing sums of infinitesimal elements

of quantities by integrals has many applications.

For example, if a rigid body of constant density � g/cm3 occupies a volume V cm3,

then its mass is m D �V g. If the density is not constant but varies continuously over

the region R of 3-space occupied by the rigid body, say � D �.x; y; z/, we can still

regard the density as being constant on an infinitesimal element of R having volume

dV: The mass of this element is therefore dm D �.x; y; z/ dV; and the mass of the

whole body is calculated by integrating these mass elements over R:

m D

ZZZ

R

�.x; y; z/ dV:

Similar formulas apply when the rigid body is one- or two-dimensional, and its density

is given in units of mass per unit length or per unit area. In such cases single or double

integrals are needed to sum the individual elements of mass. All this works because

mass is “additive”; that is, the mass of a composite object is the sum of the masses of

the parts that compose the object. The surface areas, gravitational forces, moments,

and energies we consider in this section all have this additivity property.

The Surface Area of a Graph
We can use a double integral over a domain D in the xy-plane to add up surface

area elements and thereby calculate the total area of the surface S with equation
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z D f .x; y/ defined for .x; y/ in D. We assume that f has continuous first partial

derivatives in D, so that S is smooth and has a nonvertical tangent plane at P D
�

x; y; f .x; y/
�

for any .x; y/ in D. The vector

n D �f1.x; y/i � f2.x; y/jC k

is an upward normal to S at P: An area element dA at position .x; y/ in the xy-plane

has a vertical projection onto S whose area dS is sec  times the area dA, where  is

the angle between n and k. (See Figure 14.54.)

Figure 14.54 The surface area element

dS on the surface z D f .x; y/ is sec 

times as large as its vertical projection dA

onto the xy-plane x

y

z



k n

z D f .x; y/
dS

S

dx
dy

dA

Since

cos  D
n � k

jnjjkj
D

1
q

1C
�

f1.x; y/
�2
C

�

f2.x; y/
�2
;

we have

dS D

s

1C

�

@z

@x

�2

C

�

@z

@y

�2

dA:

Therefore, the area of S is

S D

ZZ

D

s

1C

�

@z

@x

�2

C

�

@z

@y

�2

dA:

E X A M P L E 1
Find the area of that part of the hyperbolic paraboloid z D x2

�y2

that lies inside the cylinder x2
C y2

D a2.

Solution Since @z=@x D 2x and @z=@y D �2y, the surface area element is

dS D

p

1C 4x2
C 4y2 dA D

p

1C 4r2 r dr d�:

The required surface area is the integral of dS over the disk r � a:

S D

Z 2�

0

d�

Z a

0

p

1C 4r2 r dr Let u D 1C 4r2

D .2�/
1

8

Z 1C4a2

1

p

udu

D

�

4

�

2

3

�

u
3=2

ˇ

ˇ

ˇ

ˇ

1C4a2

1

D

�

6

�

.1C 4a
2
/
3=2
� 1

�

square units:
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15. Find

ZZZ

R

z dV; over the region R satisfying

x2
C y2

� z �
p

2� x2
� y2.

16. Find

ZZZ

R

x dV and

ZZZ

R

z dV; over that part of the

hemisphere 0 � z �
p

a2
� x2

� y2 that lies in the first

octant.

17.I Find

ZZZ

R

x dV and

ZZZ

R

z dV , over that part of the cone

0 � z � h

 

1 �

p

x2
C y2

a

!

that lies in the first octant.

18.I Find the volume of the region inside the ellipsoid

x
2

a2
C

y2

b2
C

z2

c2
D 1 and above the plane z D b � y.

19. Show that for cylindrical coordinates the Laplace equation

@2u

@x2
C

@2u

@y2
C

@2u

@z2
D 0 is given by

@2u

@r2
C

1

r

@u

@r
C

1

r2

@2u

@�2
C

@2u

@z2
D 0:

20.I Show that the Laplace equation in spherical coordinates is

@2u

@R2
C

2

R

@u

@R
C

cot�

R2

@u

@�
C

1

R2

@2u

@�2
C

1

R2 sin2
�

@2u

@�2
D 0:

21.I If x, y, and z are functions of u, v, and w with continuous

first partial derivatives and nonvanishing Jacobian at .u; v;w/,

show that they map an infinitesimal volume element in

uvw-space bounded by the coordinate planes u, uC du, v,

v C dv, w, and w C dw into an infinitesimal “parallelepiped”

in xyz-space having volume

dx dy dz D

ˇ

ˇ

ˇ

ˇ

@.x; y; z/

@.u; v;w/

ˇ

ˇ

ˇ

ˇ

du dv dw.

Hint: Adapt the two-dimensional argument given in

Section 14.4. What three vectors from the point

P D .x.u; v;w/; y.u; v;w/; z.u; v;w// span the

parallelepiped?

14.7 Applications of Multiple Integrals

When we express the volume V of a region R in 3-space as an integral,

V D

ZZZ

R

dV;

we are regarding V as a “sum” of infinitely many infinitesimal elements of volume, that

is, as the limit of the sum of volumes of smaller and smaller nonoverlapping subregions

into which we subdivide R. This idea of representing sums of infinitesimal elements

of quantities by integrals has many applications.

For example, if a rigid body of constant density � g/cm3 occupies a volume V cm3,

then its mass is m D �V g. If the density is not constant but varies continuously over

the region R of 3-space occupied by the rigid body, say � D �.x; y; z/, we can still

regard the density as being constant on an infinitesimal element of R having volume

dV: The mass of this element is therefore dm D �.x; y; z/ dV; and the mass of the

whole body is calculated by integrating these mass elements over R:

m D

ZZZ

R

�.x; y; z/ dV:

Similar formulas apply when the rigid body is one- or two-dimensional, and its density

is given in units of mass per unit length or per unit area. In such cases single or double

integrals are needed to sum the individual elements of mass. All this works because

mass is “additive”; that is, the mass of a composite object is the sum of the masses of

the parts that compose the object. The surface areas, gravitational forces, moments,

and energies we consider in this section all have this additivity property.

The Surface Area of a Graph
We can use a double integral over a domain D in the xy-plane to add up surface

area elements and thereby calculate the total area of the surface S with equation
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z D f .x; y/ defined for .x; y/ in D. We assume that f has continuous first partial

derivatives in D, so that S is smooth and has a nonvertical tangent plane at P D
�

x; y; f .x; y/
�

for any .x; y/ in D. The vector

n D �f1.x; y/i � f2.x; y/jC k

is an upward normal to S at P: An area element dA at position .x; y/ in the xy-plane

has a vertical projection onto S whose area dS is sec  times the area dA, where  is

the angle between n and k. (See Figure 14.54.)

Figure 14.54 The surface area element

dS on the surface z D f .x; y/ is sec 

times as large as its vertical projection dA

onto the xy-plane x

y

z



k n

z D f .x; y/
dS

S

dx
dy

dA

Since

cos  D
n � k

jnjjkj
D

1
q

1C
�

f1.x; y/
�2
C

�

f2.x; y/
�2
;

we have

dS D

s

1C

�

@z

@x

�2

C

�

@z

@y

�2

dA:

Therefore, the area of S is

S D

ZZ

D

s

1C

�

@z

@x

�2

C

�

@z

@y

�2

dA:

E X A M P L E 1
Find the area of that part of the hyperbolic paraboloid z D x2

�y2

that lies inside the cylinder x2
C y2

D a2.

Solution Since @z=@x D 2x and @z=@y D �2y, the surface area element is

dS D

p

1C 4x2
C 4y2 dA D

p

1C 4r2 r dr d�:

The required surface area is the integral of dS over the disk r � a:

S D

Z 2�

0

d�

Z a

0

p

1C 4r2 r dr Let u D 1C 4r2

D .2�/
1

8

Z 1C4a2

1

p

udu

D

�

4

�

2

3

�

u
3=2

ˇ

ˇ

ˇ

ˇ

1C4a2

1

D

�

6

�

.1C 4a
2
/
3=2
� 1

�

square units:
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The Gravitational Attraction of a Disk
Newton’s universal law of gravitation asserts that two point masses m1 and m2, sepa-

rated by a distance s, attract one another with a force

F D
km1m2

s2
;

k being a universal constant. The force on each mass is directed toward the other, along

the line joining the two masses. Suppose that a flat disk D of radius a, occupying the

region x2
C y2

� a2 of the xy-plane, has constant areal density � (units of mass

per unit area). Let us calculate the total force of attraction that this disk exerts upon a

mass m located at the point .0; 0; b/ on the positive z-axis. The total force is a vector

quantity. Although the various mass elements on the disk are in different directions

from the mass m, symmetry indicates that the net force will be in the direction toward

the centre of the disk, that is, toward the origin. Thus, the total force will be �F k,

where F is the magnitude of the force.

We will calculate F by integrating the vertical component dF of the force of

attraction on m due to the mass � dA in an area element dA on the disk. If the area

element is at the point with polar coordinates Œr; ��, and if the line from this point to

.0; 0; b/ makes angle  with the z-axis as shown in Figure 14.55, then the vertical

component of the force of attraction of the mass element � dA on m is

dF D
km� dA

r2
C b2

cos  D km�b
dA

.r2
C b2/3=2

:

Figure 14.55 Each mass element � dA

attracts m along a different line
x

y

z

dA

.0; 0; b/

a

D

 

r

p

r2
C b2

Accordingly, the total vertical force of attraction of the disk on m is

F D km�b

ZZ

D

dA

.r2
C b2/3=2

D km�b

Z 2�

0

d�

Z a

0

r dr

.r2
C b2/3=2

Let u D r2
C b2

D �km�b

Z a2Cb2

b2

u
�3=2

du

D �km�b

�

�2
p

u

�
ˇ

ˇ

ˇ

ˇ

a2Cb2

b2

D 2�km�

�

1 �
b

p

a2
C b2

�

:

Remark If we let a approach infinity in the above formula, we obtain the formula

F D 2�km� for the force of attraction of a plane of areal density � on a mass m

located at distance b from the plane. Observe that F does not depend on b. Try to

reason on physical grounds why this should be so.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 14 – page 859 October 17, 2016

SECTION 14.7: Applications of Multiple Integrals 859

Remark The force of attraction on a point mass due to suitably symmetric solid

objects (such as balls, cylinders, and cones) having constant density � (units of mass

per unit volume) can be found by integrating elements of force contributed by thin,

disk-shaped slices of the solid. See Exercises 14–17.

Moments and Centres of Mass
The centre of mass of a rigid body is that point (fixed in the body) at which the body

can be supported so that in the presence of a constant gravitational field it will not

experience any unbalanced torques that will cause it to rotate. The torques experienced

by a mass element dm in the body can be expressed in terms of the moments of dm

about the three coordinate planes. If the body occupies a region R in 3-space and has

continuous volume density �.x; y; z/, then the mass element dm D �.x; y; z/ dV that

occupies the volume element dV is said to have moments .x � x0/ dm, .y � y0/ dm,

and .z � z0/ dm about the planes x D x0, y D y0, and z D z0, respectively. Thus,

the total moments of the body about these three planes are

MxDx0
D

ZZZ

R

.x � x0/�.x; y; z/ dV DMxD0 � x0m

MyDy0
D

ZZZ

R

.y � y0/�.x; y; z/ dV D MyD0 � y0m

MzDz0
D

ZZZ

R

.z � z0/�.x; y; z/ dV D MzD0 � z0m;

where m D
RRR

R � dV is the mass of the body and MxD0, MyD0, and MzD0 are the

moments about the coordinate planes x D 0, y D 0, and z D 0, respectively. The

centre of mass NP D . Nx; Ny; Nz/ of the body is that point for which MxD Nx , MyD Ny , and

MzDNz are all equal to zero. Thus,

Centre of mass

The centre of mass of a solid occupying region R of 3-space and having

continuous density �.x; y; z/ (units of mass per unit volume) is the point

. Nx; Ny; Nz/ with coordinates given by

Nx D
MxD0

m
D

ZZZ

R

x� dV

ZZZ

R

� dV

; Ny D
MyD0

m
D

ZZZ

R

y� dV

ZZZ

R

� dV

;

Nz D
MzD0

m
D

ZZZ

R

z� dV

ZZZ

R

� dV

:

These formulas can be combined into a single vector formula for the position vector

r D NxiC NyjC Nzk of the centre of mass in terms of the position vector r D xiCyjCzk

of an arbitrary point in R,

r D
MxD0iCMyD0jCMzD0k

m
D

ZZZ

R

� r dV

ZZZ

R

� dV

;

where the integral of the vector function � r is understood to mean the vector whose

components are the integrals of the components of � r.
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The Gravitational Attraction of a Disk
Newton’s universal law of gravitation asserts that two point masses m1 and m2, sepa-

rated by a distance s, attract one another with a force

F D
km1m2

s2
;

k being a universal constant. The force on each mass is directed toward the other, along

the line joining the two masses. Suppose that a flat disk D of radius a, occupying the

region x2
C y2

� a2 of the xy-plane, has constant areal density � (units of mass

per unit area). Let us calculate the total force of attraction that this disk exerts upon a

mass m located at the point .0; 0; b/ on the positive z-axis. The total force is a vector

quantity. Although the various mass elements on the disk are in different directions

from the mass m, symmetry indicates that the net force will be in the direction toward

the centre of the disk, that is, toward the origin. Thus, the total force will be �F k,

where F is the magnitude of the force.

We will calculate F by integrating the vertical component dF of the force of

attraction on m due to the mass � dA in an area element dA on the disk. If the area

element is at the point with polar coordinates Œr; ��, and if the line from this point to

.0; 0; b/ makes angle  with the z-axis as shown in Figure 14.55, then the vertical

component of the force of attraction of the mass element � dA on m is

dF D
km� dA

r2
C b2

cos  D km�b
dA

.r2
C b2/3=2

:

Figure 14.55 Each mass element � dA

attracts m along a different line
x

y

z

dA

.0; 0; b/

a

D

 

r

p

r2
C b2

Accordingly, the total vertical force of attraction of the disk on m is

F D km�b

ZZ

D

dA

.r2
C b2/3=2

D km�b

Z 2�

0

d�

Z a

0

r dr

.r2
C b2/3=2

Let u D r2
C b2

D �km�b

Z a2Cb2

b2

u
�3=2

du

D �km�b

�

�2
p

u

�
ˇ

ˇ

ˇ

ˇ

a2Cb2

b2

D 2�km�

�

1 �
b

p

a2
C b2

�

:

Remark If we let a approach infinity in the above formula, we obtain the formula

F D 2�km� for the force of attraction of a plane of areal density � on a mass m

located at distance b from the plane. Observe that F does not depend on b. Try to

reason on physical grounds why this should be so.
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Remark The force of attraction on a point mass due to suitably symmetric solid

objects (such as balls, cylinders, and cones) having constant density � (units of mass

per unit volume) can be found by integrating elements of force contributed by thin,

disk-shaped slices of the solid. See Exercises 14–17.

Moments and Centres of Mass
The centre of mass of a rigid body is that point (fixed in the body) at which the body

can be supported so that in the presence of a constant gravitational field it will not

experience any unbalanced torques that will cause it to rotate. The torques experienced

by a mass element dm in the body can be expressed in terms of the moments of dm

about the three coordinate planes. If the body occupies a region R in 3-space and has

continuous volume density �.x; y; z/, then the mass element dm D �.x; y; z/ dV that

occupies the volume element dV is said to have moments .x � x0/ dm, .y � y0/ dm,

and .z � z0/ dm about the planes x D x0, y D y0, and z D z0, respectively. Thus,

the total moments of the body about these three planes are

MxDx0
D

ZZZ

R

.x � x0/�.x; y; z/ dV DMxD0 � x0m

MyDy0
D

ZZZ

R

.y � y0/�.x; y; z/ dV D MyD0 � y0m

MzDz0
D

ZZZ

R

.z � z0/�.x; y; z/ dV D MzD0 � z0m;

where m D
RRR

R � dV is the mass of the body and MxD0, MyD0, and MzD0 are the

moments about the coordinate planes x D 0, y D 0, and z D 0, respectively. The

centre of mass NP D . Nx; Ny; Nz/ of the body is that point for which MxD Nx , MyD Ny , and

MzDNz are all equal to zero. Thus,

Centre of mass

The centre of mass of a solid occupying region R of 3-space and having

continuous density �.x; y; z/ (units of mass per unit volume) is the point

. Nx; Ny; Nz/ with coordinates given by

Nx D
MxD0

m
D

ZZZ

R

x� dV

ZZZ

R

� dV

; Ny D
MyD0

m
D

ZZZ

R

y� dV

ZZZ

R

� dV

;

Nz D
MzD0

m
D

ZZZ

R

z� dV

ZZZ

R

� dV

:

These formulas can be combined into a single vector formula for the position vector

r D NxiC NyjC Nzk of the centre of mass in terms of the position vector r D xiCyjCzk

of an arbitrary point in R,

r D
MxD0iCMyD0jCMzD0k

m
D

ZZZ

R

� r dV

ZZZ

R

� dV

;

where the integral of the vector function � r is understood to mean the vector whose

components are the integrals of the components of � r.
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Remark Similar expressions hold for distributions of mass over regions in the plane

or over intervals on a line. We use the appropriate areal or line densities and double or

single definite integrals.

Remark If the density is constant, it cancels out of the expressions for the centre of

mass. In this case the centre of mass is a geometric property of the region R and is

called the centroid or centre of gravity of that region.

E X A M P L E 2
Find the centroid of the tetrahedron T bounded by the coordinate

planes and the plane

x

a
C

y

b
C

z

c
D 1:

Solution The density is assumed to be constant, so we may take it to be unity. The

mass of T is thus equal to its volume: m D V D abc=6. The moment of T about the

yz-plane is (see Figure 14.56):

MxD0 D

ZZZ

T

x dV

D

Z a

0

x dx

Z b.1� x
a /

0

dy

Z c.1� x
a � y

b
/

0

dz

D c

Z a

0

x dx

Z b.1� x
a /

0

�

1 �
x

a
�

y

b

�

dy

D c

Z a

0

x

�

�

1 �
x

a

�

y �
y

2

2b

�
ˇ

ˇ

ˇ

ˇ

yDb.1� x
a

/

yD0

dx

D

bc

2

Z a

0

x

�

1 �
x

a

�2

dx

D

bc

2

�

x
2

2
�

2

3

x
3

a
C

x
4

4a2

�
ˇ

ˇ

ˇ

ˇ

a

0

D

a
2
bc

24
:

Thus, Nx D MxD0=m D a=4. By symmetry, the centroid of T is

�

a

4
;
b

4
;
c

4

�

.

Figure 14.56 Iteration diagram for a triple

integral over the tetrahedron of Example 2

x

y

z

a

c

z D c

�

1 �
x

a
�

y

b

�

b

T

x
y

E X A M P L E 3
Find the centre of mass of a solid occupying the region S that

satisfies x � 0, y � 0, z � 0, and x2
C y2

C z2
� a2, if the

density at distance R from the origin is kR.
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Solution The mass of the solid is distributed symmetrically in the first octant part of

the ball R � a so that the centre of mass, . Nx; Ny; Nz/, must satisfy Nx D Ny D Nz. The mass

of the solid is

m D

ZZZ

S

kR dV D

Z �=2

0

d�

Z �=2

0

sin� d�

Z a

0

.kR/R
2
dR D

�ka
4

8
:

The moment about the xy-plane is

MzD0 D

ZZZ

S

zkR dV D

ZZZ

S

.kR/R cos� R2 sin� dR d� d�

D

k

2

Z �=2

0

d�

Z �=2

0

sin.2�/ d�

Z a

0

R
4
dR D

k�a5

20
:

Hence, Nz D
k�a5

20

�

k�a4

8
D

2a

5
, and the centre of mass is

�

2a

5
;
2a

5
;
2a

5

�

.

Moment of Inertia
The kinetic energy of a particle of mass m moving with speed v is

KE D
1

2
mv

2
:

The mass of the particle measures its inertia, which is twice the energy it has when its

speed is one unit.

If the particle is moving in a circle of radius D, its motion can be described in

terms of its angular speed, �, measured in radians per unit time. In one revolution

the particle travels a distance 2�D in time 2�=�. Thus, its (translational) speed v is

related to its angular speed by

v D �D:

Suppose that a rigid body is rotating with angular speed� about an axis L. If (at some

instant) the body occupies a region R and has density � D �.x; y; z/, then each mass

element dm D � dV in the body has kinetic energy

dKE D
1

2
v

2
dm D

1

2
��

2
D

2
dV;

where D D D.x; y; z/ is the perpendicular distance from the volume element dV to

the axis of rotation L. The total kinetic energy of the rotating body is therefore

KE D
1

2
�

2

ZZZ

R

D
2
� dV D

1

2
I�

2
;

where

I D

ZZZ

R

D
2
� dV:
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Remark Similar expressions hold for distributions of mass over regions in the plane

or over intervals on a line. We use the appropriate areal or line densities and double or

single definite integrals.

Remark If the density is constant, it cancels out of the expressions for the centre of

mass. In this case the centre of mass is a geometric property of the region R and is

called the centroid or centre of gravity of that region.

E X A M P L E 2
Find the centroid of the tetrahedron T bounded by the coordinate

planes and the plane

x

a
C

y

b
C

z

c
D 1:

Solution The density is assumed to be constant, so we may take it to be unity. The

mass of T is thus equal to its volume: m D V D abc=6. The moment of T about the

yz-plane is (see Figure 14.56):

MxD0 D

ZZZ

T

x dV

D

Z a

0

x dx

Z b.1� x
a /

0

dy

Z c.1� x
a � y

b
/

0

dz

D c

Z a

0

x dx

Z b.1� x
a /

0

�

1 �
x

a
�

y

b

�

dy

D c

Z a

0

x

�

�

1 �
x

a

�

y �
y

2

2b

�
ˇ

ˇ

ˇ

ˇ

yDb.1� x
a

/

yD0

dx

D

bc

2

Z a

0

x

�

1 �
x

a

�2

dx

D

bc

2

�

x
2

2
�

2

3

x
3

a
C

x
4

4a2

�
ˇ

ˇ

ˇ

ˇ

a

0

D

a
2
bc

24
:

Thus, Nx D MxD0=m D a=4. By symmetry, the centroid of T is

�

a

4
;
b

4
;
c

4

�

.

Figure 14.56 Iteration diagram for a triple

integral over the tetrahedron of Example 2

x

y

z

a

c

z D c

�

1 �
x

a
�

y

b

�

b

T

x
y

E X A M P L E 3
Find the centre of mass of a solid occupying the region S that

satisfies x � 0, y � 0, z � 0, and x2
C y2

C z2
� a2, if the

density at distance R from the origin is kR.
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Solution The mass of the solid is distributed symmetrically in the first octant part of

the ball R � a so that the centre of mass, . Nx; Ny; Nz/, must satisfy Nx D Ny D Nz. The mass

of the solid is

m D

ZZZ

S

kR dV D

Z �=2

0

d�

Z �=2

0

sin� d�

Z a

0

.kR/R
2
dR D

�ka
4

8
:

The moment about the xy-plane is

MzD0 D

ZZZ

S

zkR dV D

ZZZ

S

.kR/R cos� R2 sin� dR d� d�

D

k

2

Z �=2

0

d�

Z �=2

0

sin.2�/ d�

Z a

0

R
4
dR D

k�a5

20
:

Hence, Nz D
k�a5

20

�

k�a4

8
D

2a

5
, and the centre of mass is

�

2a

5
;
2a

5
;
2a

5

�

.

Moment of Inertia
The kinetic energy of a particle of mass m moving with speed v is

KE D
1

2
mv

2
:

The mass of the particle measures its inertia, which is twice the energy it has when its

speed is one unit.

If the particle is moving in a circle of radius D, its motion can be described in

terms of its angular speed, �, measured in radians per unit time. In one revolution

the particle travels a distance 2�D in time 2�=�. Thus, its (translational) speed v is

related to its angular speed by

v D �D:

Suppose that a rigid body is rotating with angular speed� about an axis L. If (at some

instant) the body occupies a region R and has density � D �.x; y; z/, then each mass

element dm D � dV in the body has kinetic energy

dKE D
1

2
v

2
dm D

1

2
��

2
D

2
dV;

where D D D.x; y; z/ is the perpendicular distance from the volume element dV to

the axis of rotation L. The total kinetic energy of the rotating body is therefore

KE D
1

2
�

2

ZZZ

R

D
2
� dV D

1

2
I�

2
;

where

I D

ZZZ

R

D
2
� dV:

9780134154367_Calculus   881 05/12/16   4:45 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 14 – page 862 October 17, 2016

862 CHAPTER 14 Multiple Integration

I is called the moment of inertia of the rotating body about the axis L. The moment

of inertia plays the same role in the expression for kinetic energy of rotation (in terms

of angular speed) that the mass does in the expression for kinetic energy of translation

(in terms of linear speed). The moment of inertia is twice the kinetic energy of the

body when it is rotating with unit angular speed.

If the entire mass of the rotating body were concentrated at a distanceD0 from the

axis of rotation, then its kinetic energy would be 1
2
mD

2
0�

2. The radius of gyration
ND is the value of D0 for which this energy is equal to the actual kinetic energy 1

2
I�2

of the rotating body. Thus, m ND2
D I , and the radius of gyration is

ND D
p

I=m D

0

B

B

@

ZZZ

R

D
2
� dV

ZZZ

R

� dV

1

C

C

A

1=2

:

E X A M P L E 4
(The acceleration of a rolling ball)

(a) Find the moment of inertia and radius of gyration of a solid ball of radius a and

constant density � about a diameter of that ball.

(b) With what linear acceleration will the ball roll (without slipping) down a plane

inclined at angle ˛ to the horizontal?

Solution

(a) We take the z-axis as the diameter and integrate in cylindrical coordinates over the

ball B of radius a centred at the origin. Since the density � is constant, we have

I D �

ZZZ

B

r
2
dV

D �

Z 2�

0

d�

Z a

0

r
3
dr

Z

p
a2�r2

�
p

a2�r2

dz

D 4��

Z a

0

r
3
p

a2
� r2 dr Let u D a2

� r2

D 2��

Z a2

0

.a
2
� u/
p

u du

D 2��

�

2

3
a

2
u

3=2
�

2

5
u

5=2
�

ˇ

ˇ

ˇ

ˇ

a2

0

D

8

15
��a

5
:

Since the mass of the ball is m D 4
3
��a3, the radius of gyration is

ND D

r

I

m
D

r

2

5
a:

(b) We can determine the acceleration of the ball by using conservation of total

(kinetic plus potential) energy. When the ball is rolling down the plane with speed

v, its centre is moving with speed v and losing height at a rate v sin˛. (See

Figure 14.57.) Since the ball is not slipping, it is rotating about a horizontal axis

through its centre with angular speed � D v=a. Hence, its kinetic energy (due to

translation and rotation) is

KE D
1

2
mv

2
C

1

2
I�

2

D

1

2
mv

2
C

1

2

2

5
ma

2 v
2

a2
D

7

10
mv

2
:
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Figure 14.57 The actual velocity and the

vertical velocity of a ball rolling down an

incline as in Example 4

˛

˛

v sin ˛

a

˛

v

When the centre of the ball is at height h (above some reference height), the ball has

(gravitational) potential energy

PE D mgh:

(This is the work that must be done against a constant gravitational force F D mg to

raise it to height h.) Since total energy is conserved,

7

10
mv

2
Cmgh D constant.

Differentiating with respect to time t , we obtain

0 D
7

10
m2v

dv

dt
Cmg

dh

dt
D

7

5
mv

dv

dt
�mgv sin˛:

Thus, the ball rolls down the incline with acceleration
dv

dt
D

5

7
g sin˛.

Remark Integrals of higher multiplicity. Just like higher-order derivatives, it is

easy to imagine the need for multiple integrations beyond just triple integrals. For

instance, in physics we must consider both position and momentum of a particle to

understand its behaviour. Each of these requires three coordinates, so a total of six

coordinates are needed. Integrals may have to be taken over all six.

Suppose we know that the number of particles per unit interval in three space coor-

dinates, x1; x2; x3, and per unit momentum in three momentum coordinates p1; p2; p3,

is N.x1; x2; x3; p1; p2; p3/. If the energy, �.p1; p2; p3/, per particle is defined by its

momentum, then the total energy of the system of particles is given by the repeated

integral
Z Z Z Z Z Z

N� dx1 dx2 dx3 dp1 dp2 dp3;

where the domain of integration is over the entire six-dimensional space. Clearly, this

notation is a bit clumsy.

Of course, we don’t stop with six dimensions. The numbers of integrations can be

arbitrarily large. In kinetic theory, for example, one may imagine spaces where there

are six coordinates for every particle. If the number of particles is typically very large

(e.g., 1023), integrals over that space might involve 6 � 1023 integrations. Clearly,

writing an integration sign for each coordinate is not just clumsy—it is impossible and

pointless in such cases.

One alternative is to represent the integral of function f .x/ D f .x1; x2; : : : ; xn/

over a domain D in n-dimensional space as
Z

� � �

Z

D

f .x/ dx or

Z

� � �

Z

D

f .x/ dV;
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I is called the moment of inertia of the rotating body about the axis L. The moment

of inertia plays the same role in the expression for kinetic energy of rotation (in terms

of angular speed) that the mass does in the expression for kinetic energy of translation

(in terms of linear speed). The moment of inertia is twice the kinetic energy of the

body when it is rotating with unit angular speed.

If the entire mass of the rotating body were concentrated at a distanceD0 from the

axis of rotation, then its kinetic energy would be 1
2
mD

2
0�

2. The radius of gyration
ND is the value of D0 for which this energy is equal to the actual kinetic energy 1

2
I�2

of the rotating body. Thus, m ND2
D I , and the radius of gyration is

ND D
p

I=m D

0

B

B

@

ZZZ

R

D
2
� dV

ZZZ

R

� dV

1

C

C

A

1=2

:

E X A M P L E 4
(The acceleration of a rolling ball)

(a) Find the moment of inertia and radius of gyration of a solid ball of radius a and

constant density � about a diameter of that ball.

(b) With what linear acceleration will the ball roll (without slipping) down a plane

inclined at angle ˛ to the horizontal?

Solution

(a) We take the z-axis as the diameter and integrate in cylindrical coordinates over the

ball B of radius a centred at the origin. Since the density � is constant, we have

I D �

ZZZ

B

r
2
dV

D �

Z 2�

0

d�

Z a

0

r
3
dr

Z

p
a2�r2

�
p

a2�r2

dz

D 4��

Z a

0

r
3
p

a2
� r2 dr Let u D a2

� r2

D 2��

Z a2

0

.a
2
� u/
p

u du

D 2��

�

2

3
a

2
u

3=2
�

2

5
u

5=2
�

ˇ

ˇ

ˇ

ˇ

a2

0

D

8

15
��a

5
:

Since the mass of the ball is m D 4
3
��a3, the radius of gyration is

ND D

r

I

m
D

r

2

5
a:

(b) We can determine the acceleration of the ball by using conservation of total

(kinetic plus potential) energy. When the ball is rolling down the plane with speed

v, its centre is moving with speed v and losing height at a rate v sin˛. (See

Figure 14.57.) Since the ball is not slipping, it is rotating about a horizontal axis

through its centre with angular speed � D v=a. Hence, its kinetic energy (due to

translation and rotation) is

KE D
1

2
mv

2
C

1

2
I�

2

D

1

2
mv

2
C

1

2

2

5
ma

2 v
2

a2
D

7

10
mv

2
:
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Figure 14.57 The actual velocity and the

vertical velocity of a ball rolling down an

incline as in Example 4

˛

˛

v sin ˛

a

˛

v

When the centre of the ball is at height h (above some reference height), the ball has

(gravitational) potential energy

PE D mgh:

(This is the work that must be done against a constant gravitational force F D mg to

raise it to height h.) Since total energy is conserved,

7

10
mv

2
Cmgh D constant.

Differentiating with respect to time t , we obtain

0 D
7

10
m2v

dv

dt
Cmg

dh

dt
D

7

5
mv

dv

dt
�mgv sin˛:

Thus, the ball rolls down the incline with acceleration
dv

dt
D

5

7
g sin˛.

Remark Integrals of higher multiplicity. Just like higher-order derivatives, it is

easy to imagine the need for multiple integrations beyond just triple integrals. For

instance, in physics we must consider both position and momentum of a particle to

understand its behaviour. Each of these requires three coordinates, so a total of six

coordinates are needed. Integrals may have to be taken over all six.

Suppose we know that the number of particles per unit interval in three space coor-

dinates, x1; x2; x3, and per unit momentum in three momentum coordinates p1; p2; p3,

is N.x1; x2; x3; p1; p2; p3/. If the energy, �.p1; p2; p3/, per particle is defined by its

momentum, then the total energy of the system of particles is given by the repeated

integral
Z Z Z Z Z Z

N� dx1 dx2 dx3 dp1 dp2 dp3;

where the domain of integration is over the entire six-dimensional space. Clearly, this

notation is a bit clumsy.

Of course, we don’t stop with six dimensions. The numbers of integrations can be

arbitrarily large. In kinetic theory, for example, one may imagine spaces where there

are six coordinates for every particle. If the number of particles is typically very large

(e.g., 1023), integrals over that space might involve 6 � 1023 integrations. Clearly,

writing an integration sign for each coordinate is not just clumsy—it is impossible and

pointless in such cases.

One alternative is to represent the integral of function f .x/ D f .x1; x2; : : : ; xn/

over a domain D in n-dimensional space as
Z

� � �

Z

D

f .x/ dx or

Z

� � �

Z

D

f .x/ dV;
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where dx D dV D dx1 dx2 � � � dxn. But the dots really don’t convey anything new,

so the integral is often written

Z

D

f .x/ dV; or even

Z

f .x/ dV;

where the space and domain of the integration are simply described in the surrounding

text. This is the common approach for all types of integrals in advanced texts. However,

for introductory material with three or fewer iterations of integration, it remains helpful

to denote numbers of integrations involved symbolically.

E X E R C I S E S 14.7

Surface area problems

Use double integrals to calculate the areas of the surfaces in

Exercises 1–9.

1. The part of the plane z D 2x C 2y inside the cylinder

x2
C y2

D 1

2. The part of the plane 5z D 3x � 4y inside the elliptic cylinder

x2
C 4y2

D 4

3. The hemisphere z D
p

a2
� x2

� y2

4. The half-ellipsoidal surface z D 2
p

1 � x2
� y2

5. The conical surface 3z2
D x

2
C y

2, 0 � z � 2

6. The paraboloid z D 1 � x2
� y

2 in the first octant

7. The part of the surface z D y2 above the triangle with vertices

.0; 0/, .0; 1/, and .1; 1/

8. The part of the surface z D
p

x above the region 0 � x � 1,

0 � y �
p

x

9. The part of the cylindrical surface x2
C z2

D 4 that lies above

the region 0 � x � 2, 0 � y � x

10. Show that the parts of the surfaces z D 2xy and z D x2
C y2

that lie in the same vertical cylinder have the same area.

C 11. Show that the area S of the part of the paraboloid

z D
1
2
.x2
C y2/ lying above the square �1 � x � 1,

�1 � y � 1 is given by

S D
8

3

Z �=4

0

.1C sec2
�/

3=2
d� �

2�

3
;

and use numerical methods to evaluate the area to 3 decimal

places.

x
y

z

Figure 14.58

12.I The canopy shown in Figure 14.58 is the part of the

hemisphere of radius
p

2 centred at the origin that lies above

the square �1 � x � 1, �1 � y � 1. Find its area. Hint: It is

possible to get an exact solution by first finding the area of the

part of the sphere x2
C y

2
C z

2
D 2 that lies above the plane

z D 1. If you do the problem directly by integrating the

surface area element over the square, you may encounter an

integral that you can’t evaluate exactly, and you will have to

use numerical methods.

Mass and gravitational attraction

13. Find the mass of a spherical planet of radius a whose density

at distance R from the centre is � D A=.B CR2/.

In Exercises 14–17, find the gravitational attraction that the given

object exerts on a mass m located at .0; 0; b/. Assume the object

has constant density �. In each case you can obtain the answer by

integrating the contributions made by disks of thickness dz,

making use of the formula for the attraction exerted by the disk

obtained in the text.

14. The ball x2
C y2

C z2
� a2, where a < b

15. The cylinder x2
C y2

� a2, 0 � z � h, where h < b

16. The cone 0 � z � b � .
p

x2
C y2/=a

17. The half-ball 0 � z �
p

a2
� x2

� y2, where a < b

Centres of mass and centroids

18. Find the centre of mass of an object occupying the cube

0 � x; y; z � a with density given by � D x2
C y2

C z2.

Find the centroids of the regions in Exercises 19–22.

19. The prism x � 0, y � 0, x C y � 1, 0 � z � 1

20. The unbounded region 0 � z � e�.x2Cy2/

21. The first octant part of the ball x2
C y

2
C z

2
� a

2

22. The region inside the cube 0 � x; y; z � 1 and under the

plane x C y C z D 2

Moments of inertia

23. Explain in physical terms why the acceleration of the ball

rolling down the incline in Example 4 does not approach g

(the acceleration due to gravity) as the angle of incline, ˛,

approaches 90ı.

Find the moments of inertia and radii of gyration of the solid

objects in Exercises 24–32. Assume constant density in all cases.

24. A circular cylinder of base radius a and height h about the

axis of the cylinder

25. A circular cylinder of base radius a and height h about a

diameter of the base of the cylinder

26. A right circular cone of base radius a and height h about the

axis of the cone

27. A right circular cone of base radius a and height h about a

diameter of the base of the cone
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28. A cube of edge length a about an edge of the cube

29. A cube of edge length a about a diagonal of a face of the cube

30. A cube of edge length a about a diagonal of the cube

31. The rectangular box �a � x � a, �b � y � b, �c � z � c

about the z-axis

32. The region between the two concentric cylinders

x2
C y2

D a2 and x2
C y2

D b2 (where 0 < a < b) and

between z D 0 and z D c about the z-axis

33. A ball of radius a has constant density �. A cylindrical hole of

radius b < a is drilled through the centre of the ball. Find the

mass of the remaining part of the ball and its moment of

inertia about the axis of the hole.

34. With what acceleration will a solid cylinder of base radius a,

height h, and constant density � roll (without slipping) down a

plane inclined at angle ˛ to the horizontal?

35. Repeat Exercise 34 for the ball with the cylindrical hole in

Exercise 33. Assume that the axis of the hole remains

horizontal while the ball rolls.

36.I A rigid pendulum of mass m swings about point A on a

horizontal axis. Its moment of inertia about that axis is I . The

centre of mass C of the pendulum is at distance a from A.

When the pendulum hangs at rest, C is directly under A.

(Why?) Suppose the pendulum is swinging. Let � D �.t/

measure the angular displacement of the line AC from the

vertical at time t . (� D 0 when the pendulum is in its rest

position.) Use a conservation of energy argument similar to

that in Example 4 to show that

1

2
I

�

d�

dt

�2

�mga cos � D constant

and, hence, differentiating with respect to t , that

d2�

dt2
C

mga

I
sin � D 0:

This is a nonlinear differential equation, and it is not easily

solved. However, for small oscillations (j� j small) we can use

the approximation sin � � � . In this case the differential

equation is that of simple harmonic motion. What is the

period?

37.I Let L0 be a straight line passing through the centre of mass of

a rigid body B of mass m. Let Lk be a straight line parallel to

and k units distant from L0. If I0 and Ik are the moments of

inertia of B about L0 and Lk , respectively, show that

Ik D I0 C k
2m. Hence, a body always has smallest moment

of inertia about an axis through its centre of mass. Hint:

Assume that the z-axis coincides with L0 and that Lk passes

through the point .k; 0; 0/.

38.I Reestablish the expression for the total kinetic energy of the

rolling ball in Example 4 by regarding the ball at any instant as

rotating about a horizontal line through its point of contact

with the inclined plane. Use the result of Exercise 37.

39.I (Products of inertia) A rigid body with density � is placed

with its centre of mass at the origin and occupies a region R

of 3-space. Suppose the six second moments Pxx , Pyy , Pzz ,

Pxy , Pxz , and Pyz are all known, where

Pxx D

ZZZ

R

x
2
� dV; Pxy D

ZZZ

R

xy� dV; � � � :

(There exist tables giving these six moments for bodies of

many standard shapes. They are called products of inertia.)

Show how to express the moment of inertia of the body about

any axis through the origin in terms of these six second

moments. (If this result is combined with that of Exercise 37,

the moment of inertia about any axis can be found.)

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ a Riemann sum for f .x; y/ on a � x � b, c � y � d

˘ f .x; y/ is integrable on a � x � b, c � y � d

˘ the double integral of f .x; y/ over a � x � b, c � y � d

˘ iteration of a double integral

˘ the average value of f .x; y/ over region R

˘ the area element in polar coordinates

˘ a triple integral

˘ the volume element in cylindrical coordinates

˘ the volume element in spherical coordinates

˘ the surface area of the graph of z D f .x; y/

˘ the moment of inertia of a solid about an axis

� Describe how to change variables in a double integral.

� How do you calculate the centroid of a solid region?

� How do you calculate the moment of inertia of a solid about

an axis?

Review Exercises

1. Evaluate

ZZ

R

.x C y/ dA, over the first-quadrant region lying

under x D y2 and above y D x2.

2. Evaluate

ZZ

P

.x
2
Cy

2
/ dA, where P is the parallelogram with

vertices .0; 0/, .2; 0/, .3; 1/, and .1; 1/.

3. Find

ZZ

S

.y=x/ dA, where S is the part of the disk x2
Cy2

� 4

in the first quadrant and under the line y D x.

4. Consider the iterated integral

I D

Z

p
3

0

dy

Z

p

4�y2

y=
p

3

e
�x2�y2

dx:
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where dx D dV D dx1 dx2 � � � dxn. But the dots really don’t convey anything new,

so the integral is often written

Z

D

f .x/ dV; or even

Z

f .x/ dV;

where the space and domain of the integration are simply described in the surrounding

text. This is the common approach for all types of integrals in advanced texts. However,

for introductory material with three or fewer iterations of integration, it remains helpful

to denote numbers of integrations involved symbolically.

E X E R C I S E S 14.7

Surface area problems

Use double integrals to calculate the areas of the surfaces in

Exercises 1–9.

1. The part of the plane z D 2x C 2y inside the cylinder

x2
C y2

D 1

2. The part of the plane 5z D 3x � 4y inside the elliptic cylinder

x2
C 4y2

D 4

3. The hemisphere z D
p

a2
� x2

� y2

4. The half-ellipsoidal surface z D 2
p

1 � x2
� y2

5. The conical surface 3z2
D x

2
C y

2, 0 � z � 2

6. The paraboloid z D 1 � x2
� y

2 in the first octant

7. The part of the surface z D y2 above the triangle with vertices

.0; 0/, .0; 1/, and .1; 1/

8. The part of the surface z D
p

x above the region 0 � x � 1,

0 � y �
p

x

9. The part of the cylindrical surface x2
C z2

D 4 that lies above

the region 0 � x � 2, 0 � y � x

10. Show that the parts of the surfaces z D 2xy and z D x2
C y2

that lie in the same vertical cylinder have the same area.

C 11. Show that the area S of the part of the paraboloid

z D
1
2
.x2
C y2/ lying above the square �1 � x � 1,

�1 � y � 1 is given by

S D
8

3

Z �=4

0

.1C sec2
�/

3=2
d� �

2�

3
;

and use numerical methods to evaluate the area to 3 decimal

places.

x
y

z

Figure 14.58

12.I The canopy shown in Figure 14.58 is the part of the

hemisphere of radius
p

2 centred at the origin that lies above

the square �1 � x � 1, �1 � y � 1. Find its area. Hint: It is

possible to get an exact solution by first finding the area of the

part of the sphere x2
C y

2
C z

2
D 2 that lies above the plane

z D 1. If you do the problem directly by integrating the

surface area element over the square, you may encounter an

integral that you can’t evaluate exactly, and you will have to

use numerical methods.

Mass and gravitational attraction

13. Find the mass of a spherical planet of radius a whose density

at distance R from the centre is � D A=.B CR2/.

In Exercises 14–17, find the gravitational attraction that the given

object exerts on a mass m located at .0; 0; b/. Assume the object

has constant density �. In each case you can obtain the answer by

integrating the contributions made by disks of thickness dz,

making use of the formula for the attraction exerted by the disk

obtained in the text.

14. The ball x2
C y2

C z2
� a2, where a < b

15. The cylinder x2
C y2

� a2, 0 � z � h, where h < b

16. The cone 0 � z � b � .
p

x2
C y2/=a

17. The half-ball 0 � z �
p

a2
� x2

� y2, where a < b

Centres of mass and centroids

18. Find the centre of mass of an object occupying the cube

0 � x; y; z � a with density given by � D x2
C y2

C z2.

Find the centroids of the regions in Exercises 19–22.

19. The prism x � 0, y � 0, x C y � 1, 0 � z � 1

20. The unbounded region 0 � z � e�.x2Cy2/

21. The first octant part of the ball x2
C y

2
C z

2
� a

2

22. The region inside the cube 0 � x; y; z � 1 and under the

plane x C y C z D 2

Moments of inertia

23. Explain in physical terms why the acceleration of the ball

rolling down the incline in Example 4 does not approach g

(the acceleration due to gravity) as the angle of incline, ˛,

approaches 90ı.

Find the moments of inertia and radii of gyration of the solid

objects in Exercises 24–32. Assume constant density in all cases.

24. A circular cylinder of base radius a and height h about the

axis of the cylinder

25. A circular cylinder of base radius a and height h about a

diameter of the base of the cylinder

26. A right circular cone of base radius a and height h about the

axis of the cone

27. A right circular cone of base radius a and height h about a

diameter of the base of the cone
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28. A cube of edge length a about an edge of the cube

29. A cube of edge length a about a diagonal of a face of the cube

30. A cube of edge length a about a diagonal of the cube

31. The rectangular box �a � x � a, �b � y � b, �c � z � c

about the z-axis

32. The region between the two concentric cylinders

x2
C y2

D a2 and x2
C y2

D b2 (where 0 < a < b) and

between z D 0 and z D c about the z-axis

33. A ball of radius a has constant density �. A cylindrical hole of

radius b < a is drilled through the centre of the ball. Find the

mass of the remaining part of the ball and its moment of

inertia about the axis of the hole.

34. With what acceleration will a solid cylinder of base radius a,

height h, and constant density � roll (without slipping) down a

plane inclined at angle ˛ to the horizontal?

35. Repeat Exercise 34 for the ball with the cylindrical hole in

Exercise 33. Assume that the axis of the hole remains

horizontal while the ball rolls.

36.I A rigid pendulum of mass m swings about point A on a

horizontal axis. Its moment of inertia about that axis is I . The

centre of mass C of the pendulum is at distance a from A.

When the pendulum hangs at rest, C is directly under A.

(Why?) Suppose the pendulum is swinging. Let � D �.t/

measure the angular displacement of the line AC from the

vertical at time t . (� D 0 when the pendulum is in its rest

position.) Use a conservation of energy argument similar to

that in Example 4 to show that

1

2
I

�

d�

dt

�2

�mga cos � D constant

and, hence, differentiating with respect to t , that

d2�

dt2
C

mga

I
sin � D 0:

This is a nonlinear differential equation, and it is not easily

solved. However, for small oscillations (j� j small) we can use

the approximation sin � � � . In this case the differential

equation is that of simple harmonic motion. What is the

period?

37.I Let L0 be a straight line passing through the centre of mass of

a rigid body B of mass m. Let Lk be a straight line parallel to

and k units distant from L0. If I0 and Ik are the moments of

inertia of B about L0 and Lk , respectively, show that

Ik D I0 C k
2m. Hence, a body always has smallest moment

of inertia about an axis through its centre of mass. Hint:

Assume that the z-axis coincides with L0 and that Lk passes

through the point .k; 0; 0/.

38.I Reestablish the expression for the total kinetic energy of the

rolling ball in Example 4 by regarding the ball at any instant as

rotating about a horizontal line through its point of contact

with the inclined plane. Use the result of Exercise 37.

39.I (Products of inertia) A rigid body with density � is placed

with its centre of mass at the origin and occupies a region R

of 3-space. Suppose the six second moments Pxx , Pyy , Pzz ,

Pxy , Pxz , and Pyz are all known, where

Pxx D

ZZZ

R

x
2
� dV; Pxy D

ZZZ

R

xy� dV; � � � :

(There exist tables giving these six moments for bodies of

many standard shapes. They are called products of inertia.)

Show how to express the moment of inertia of the body about

any axis through the origin in terms of these six second

moments. (If this result is combined with that of Exercise 37,

the moment of inertia about any axis can be found.)

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ a Riemann sum for f .x; y/ on a � x � b, c � y � d

˘ f .x; y/ is integrable on a � x � b, c � y � d

˘ the double integral of f .x; y/ over a � x � b, c � y � d

˘ iteration of a double integral

˘ the average value of f .x; y/ over region R

˘ the area element in polar coordinates

˘ a triple integral

˘ the volume element in cylindrical coordinates

˘ the volume element in spherical coordinates

˘ the surface area of the graph of z D f .x; y/

˘ the moment of inertia of a solid about an axis

� Describe how to change variables in a double integral.

� How do you calculate the centroid of a solid region?

� How do you calculate the moment of inertia of a solid about

an axis?

Review Exercises

1. Evaluate

ZZ

R

.x C y/ dA, over the first-quadrant region lying

under x D y2 and above y D x2.

2. Evaluate

ZZ

P

.x
2
Cy

2
/ dA, where P is the parallelogram with

vertices .0; 0/, .2; 0/, .3; 1/, and .1; 1/.

3. Find

ZZ

S

.y=x/ dA, where S is the part of the disk x2
Cy2

� 4

in the first quadrant and under the line y D x.

4. Consider the iterated integral

I D

Z

p
3

0

dy

Z

p

4�y2

y=
p

3

e
�x2�y2

dx:
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(a) Write I as a double integral

ZZ

R

e
�x2�y2

dA, and sketch

the region R over which the double integral is taken.

(b) Write I as an iterated integral with the order of integra-

tions reversed from that of the given iteration.

(c) Write I as an iterated integral in polar coordinates.

(d) Evaluate I .

5. Find the constant k > 0 such that the volume of the region

lying inside the sphere x2
C y2

C z2
D a2 and above the cone

z D k
p

x2
C y2 is one-quarter of the volume contained by the

whole sphere.

6. Reiterate the integral

I D

Z 2

0

dy

Z y

0

f .x; y/ dx C

Z 6

2

dy

Z

p
6�y

0

f .x; y/ dx

with the y integral on the inside.

7. Let J D

Z 1

0

dz

Z z

0

dy

Z y

0

f .x; y; z/ dx. Express J as an

iterated integral where the integrations are to be performed in

the following order: first z, then y, then x.

8. An object in the shape of a right-circular cone has height 10 m

and base radius 5 m. Its density is proportional to the square

of the distance from the base and equals 3,000 kg/m3 at the

vertex.

(a) Find the mass of the object.

(b) Express the moment of inertia of the object about its cen-

tral axis as an iterated integral.

9. Find the average value of f .t/ D

Z a

t

e
�x2

dx over the interval

0 � t � a.

10. Find the average value of the function f .x; y/ D bxC yc over

the quarter-disk x � 0, y � 0, x2
C y2

� 4. (Recall that bxc

denotes the greatest integer less than or equal to x.)

11. Let D be the smaller of the two solid regions bounded by the

surfaces

z D
x2
C y2

a
and x

2
C y

2
C z

2
D 6a

2
;

where a is a positive constant. Find

ZZZ

D

.x
2
C y

2
/ dV:

12. Find the moment of inertia about the z-axis of a solid V of

density 1 if V is specified by the inequalities

0 � z �
p

x2
C y2 and x2

C y
2
� 2ay, where a > 0.

13. The rectangular solid 0 � x � 1, 0 � y � 2, 0 � z � 1 is

cut into two pieces by the plane 2xC yC z D 2. Let D be the

piece that includes the origin. Find the volume ofD and Nz, the

z-coordinate of the centroid of D.

14. A solid S consists of those points .x; y; z/ that lie in the first

octant and satisfy x C y C 2z � 2 and y C z � 1. Find the

volume of S and the x-coordinate of its centroid.

15. Find

ZZZ

S

z dV , where S is the portion of the first octant that

is above the plane xC y � z D 1 and below the plane z D 1.

16. Find the area of that part of the plane z D 2x that lies inside

the paraboloid z D x2
C y

2.

C 17. Find the area of that part of the paraboloid z D x2
C y2 that

lies below the plane z D 2x. Express the answer as a single

integral, and evaluate it to 3 decimal places.

18.I Find the volume of the smaller of the two regions into which

the plane x C y C z D 1 divides the interior of the ellipsoid

x2
C 4y2

C 9z2
D 36. Hint: First change variables so that

the ellipsoid becomes a ball. Then replace the plane by a plane

with a simpler equation passing the same distance from the ori-

gin.

Challenging Problems

1. The plane .x=a/C .y=b/C .z=c/ D 1 (where a > 0, b > 0,

and c > 0) divides the solid ellipsoid

x2

a2
C

y2

b2
C

z2

c2
� 1

into two unequal pieces. Find the volume of the smaller

piece.

2. Find the area of the part of the plane .x=a/C .y=b/C .z=c/ D 1

(where a > 0, b > 0, and c > 0) that lies inside the ellipsoid

x2

a2
C

y2

b2
C

z2

c2
� 1:

3. (a) Expand 1=.1� xy/ as a geometric series, and hence show

that

Z 1

0

Z 1

0

1

1 � xy
dx dy D

1
X

nD1

1

n2
:

(b) Similarly, express the following integrals as sums of

series:

(i)

Z 1

0

Z 1

0

1

1C xy
dx dy,

(ii)

Z 1

0

Z 1

0

Z 1

0

1

1 � xyz
dx dy dz,

(iii)

Z 1

0

Z 1

0

Z 1

0

1

1C xyz
dx dy dz.

4.I Let P be the parallelepiped bounded by the three pairs of par-

allel planes a�r D 0, a�r D d1 > 0, b�r D 0, b�r D d2 > 0,

c � r D 0, and c � r D d3 > 0, where a, b, and c are constant

vectors, and r D xiC yjC zk. Show that

ZZZ

P

.a � r/.b � r/.c � r/ dx dy dz D
.d1d2d3/

2

8ja � .b � c/j:

Hint: Make the change of variables u D a � r, v D b � r,

w D c � r.

M 5. A hole whose cross-section is a square of side 2 is punched

through the middle of a ball of radius 2. Find the volume of the

remaining part of the ball.

6.I Find the volume bounded by the surface with equation

x2=3
C y2=3

C z2=3
D a2=3.

7.I Find the volume bounded by the surface

jxj
1=3
C jyj

1=3
C jzj

1=3
D jaj

1=3.
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C H A P T E R 15

Vector Fields

“
“Take some more tea,” the March Hare said to Alice, very earnestly.

“I’ve had nothing yet,” Alice replied, in an offended tone, “so I can’t

take more.”

“You mean you can’t take less,” said the Hatter: “it’s very easy to take

more than nothing.”

”Lewis Carroll (Charles Lutwidge Dodgson) 1832–1898

from Alice’s Adventures in Wonderland

Introduction This chapter and the next are concerned mainly with

vector-valued functions of a vector variable, typically

functions whose domains and ranges lie in the plane or in 3-space. Such functions

are frequently called vector fields. Applications of vector fields often involve integrals

taken not along axes or over regions in the plane or 3-space, but rather over curves

and surfaces. We will introduce such line and surface integrals in this chapter. The

next chapter will be devoted to developing versions of the Fundamental Theorem of

Calculus for integrals of vector fields.

15.1 Vector and Scalar Fields
A function whose domain and range are subsets of Euclidean 3-space, R

3, is called

a vector field. Thus, a vector field F associates a vector F.x; y; z/ with each point

.x; y; z/ in its domain. The three components of F are scalar-valued (real-valued)

functions F1.x; y; z/, F2.x; y; z/, and F3.x; y; z/, and F.x; y; z/ can be expressed in

terms of the standard basis in R
3 as

F.x; y; z/ D F1.x; y; z/iC F2.x; y; z/jC F3.x; y; z/k:

(Note that the subscripts here represent components of a vector, not partial derivatives.)

If F3.x; y; z/ D 0 and F1 and F2 are independent of z, then F reduces to

F.x; y/ D F1.x; y/iC F2.x; y/j

and so is called a plane vector field, or a vector field in the xy-plane. We will fre-

quently make use of position vectors in the arguments of vector fields. The position

vector of .x; y; z/ is r D xi C yj C zk, and we can write F.r/ as a shorthand for

F.x; y; z/. In the context of discussion of vector fields, a scalar-valued function of a

vector variable (i.e., a function of several real variables as considered in the context of

Chapters 12–14) is frequently called a scalar field. Thus, the components of a vector

field are scalar fields.

Many of the results we prove about vector fields require that the field be smooth

in some sense. We will call a vector field smooth wherever its component scalar fields

have continuous partial derivatives of all orders. (For most purposes, however, second

order would be sufficient.)
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(a) Write I as a double integral

ZZ

R

e
�x2�y2

dA, and sketch

the region R over which the double integral is taken.

(b) Write I as an iterated integral with the order of integra-

tions reversed from that of the given iteration.

(c) Write I as an iterated integral in polar coordinates.

(d) Evaluate I .

5. Find the constant k > 0 such that the volume of the region

lying inside the sphere x2
C y2

C z2
D a2 and above the cone

z D k
p

x2
C y2 is one-quarter of the volume contained by the

whole sphere.

6. Reiterate the integral

I D

Z 2

0

dy

Z y

0

f .x; y/ dx C

Z 6

2

dy

Z

p
6�y

0

f .x; y/ dx

with the y integral on the inside.

7. Let J D

Z 1

0

dz

Z z

0

dy

Z y

0

f .x; y; z/ dx. Express J as an

iterated integral where the integrations are to be performed in

the following order: first z, then y, then x.

8. An object in the shape of a right-circular cone has height 10 m

and base radius 5 m. Its density is proportional to the square

of the distance from the base and equals 3,000 kg/m3 at the

vertex.

(a) Find the mass of the object.

(b) Express the moment of inertia of the object about its cen-

tral axis as an iterated integral.

9. Find the average value of f .t/ D

Z a

t

e
�x2

dx over the interval

0 � t � a.

10. Find the average value of the function f .x; y/ D bxC yc over

the quarter-disk x � 0, y � 0, x2
C y2

� 4. (Recall that bxc

denotes the greatest integer less than or equal to x.)

11. Let D be the smaller of the two solid regions bounded by the

surfaces

z D
x2
C y2

a
and x

2
C y

2
C z

2
D 6a

2
;

where a is a positive constant. Find

ZZZ

D

.x
2
C y

2
/ dV:

12. Find the moment of inertia about the z-axis of a solid V of

density 1 if V is specified by the inequalities

0 � z �
p

x2
C y2 and x2

C y
2
� 2ay, where a > 0.

13. The rectangular solid 0 � x � 1, 0 � y � 2, 0 � z � 1 is

cut into two pieces by the plane 2xC yC z D 2. Let D be the

piece that includes the origin. Find the volume ofD and Nz, the

z-coordinate of the centroid of D.

14. A solid S consists of those points .x; y; z/ that lie in the first

octant and satisfy x C y C 2z � 2 and y C z � 1. Find the

volume of S and the x-coordinate of its centroid.

15. Find

ZZZ

S

z dV , where S is the portion of the first octant that

is above the plane xC y � z D 1 and below the plane z D 1.

16. Find the area of that part of the plane z D 2x that lies inside

the paraboloid z D x2
C y

2.

C 17. Find the area of that part of the paraboloid z D x2
C y2 that

lies below the plane z D 2x. Express the answer as a single

integral, and evaluate it to 3 decimal places.

18.I Find the volume of the smaller of the two regions into which

the plane x C y C z D 1 divides the interior of the ellipsoid

x2
C 4y2

C 9z2
D 36. Hint: First change variables so that

the ellipsoid becomes a ball. Then replace the plane by a plane

with a simpler equation passing the same distance from the ori-

gin.

Challenging Problems

1. The plane .x=a/C .y=b/C .z=c/ D 1 (where a > 0, b > 0,

and c > 0) divides the solid ellipsoid

x2

a2
C

y2

b2
C

z2

c2
� 1

into two unequal pieces. Find the volume of the smaller

piece.

2. Find the area of the part of the plane .x=a/C .y=b/C .z=c/ D 1

(where a > 0, b > 0, and c > 0) that lies inside the ellipsoid

x2

a2
C

y2

b2
C

z2

c2
� 1:

3. (a) Expand 1=.1� xy/ as a geometric series, and hence show

that

Z 1

0

Z 1

0

1

1 � xy
dx dy D

1
X

nD1

1

n2
:

(b) Similarly, express the following integrals as sums of

series:

(i)

Z 1

0

Z 1

0

1

1C xy
dx dy,

(ii)

Z 1

0

Z 1

0

Z 1

0

1

1 � xyz
dx dy dz,

(iii)

Z 1

0

Z 1

0

Z 1

0

1

1C xyz
dx dy dz.

4.I Let P be the parallelepiped bounded by the three pairs of par-

allel planes a�r D 0, a�r D d1 > 0, b�r D 0, b�r D d2 > 0,

c � r D 0, and c � r D d3 > 0, where a, b, and c are constant

vectors, and r D xiC yjC zk. Show that

ZZZ

P

.a � r/.b � r/.c � r/ dx dy dz D
.d1d2d3/

2

8ja � .b � c/j:

Hint: Make the change of variables u D a � r, v D b � r,

w D c � r.

M 5. A hole whose cross-section is a square of side 2 is punched

through the middle of a ball of radius 2. Find the volume of the

remaining part of the ball.

6.I Find the volume bounded by the surface with equation

x2=3
C y2=3

C z2=3
D a2=3.

7.I Find the volume bounded by the surface

jxj
1=3
C jyj

1=3
C jzj

1=3
D jaj

1=3.
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Vector Fields

“
“Take some more tea,” the March Hare said to Alice, very earnestly.

“I’ve had nothing yet,” Alice replied, in an offended tone, “so I can’t

take more.”

“You mean you can’t take less,” said the Hatter: “it’s very easy to take

more than nothing.”

”Lewis Carroll (Charles Lutwidge Dodgson) 1832–1898

from Alice’s Adventures in Wonderland

Introduction This chapter and the next are concerned mainly with

vector-valued functions of a vector variable, typically

functions whose domains and ranges lie in the plane or in 3-space. Such functions

are frequently called vector fields. Applications of vector fields often involve integrals

taken not along axes or over regions in the plane or 3-space, but rather over curves

and surfaces. We will introduce such line and surface integrals in this chapter. The

next chapter will be devoted to developing versions of the Fundamental Theorem of

Calculus for integrals of vector fields.

15.1 Vector and Scalar Fields
A function whose domain and range are subsets of Euclidean 3-space, R

3, is called

a vector field. Thus, a vector field F associates a vector F.x; y; z/ with each point

.x; y; z/ in its domain. The three components of F are scalar-valued (real-valued)

functions F1.x; y; z/, F2.x; y; z/, and F3.x; y; z/, and F.x; y; z/ can be expressed in

terms of the standard basis in R
3 as

F.x; y; z/ D F1.x; y; z/iC F2.x; y; z/jC F3.x; y; z/k:

(Note that the subscripts here represent components of a vector, not partial derivatives.)

If F3.x; y; z/ D 0 and F1 and F2 are independent of z, then F reduces to

F.x; y/ D F1.x; y/iC F2.x; y/j

and so is called a plane vector field, or a vector field in the xy-plane. We will fre-

quently make use of position vectors in the arguments of vector fields. The position

vector of .x; y; z/ is r D xi C yj C zk, and we can write F.r/ as a shorthand for

F.x; y; z/. In the context of discussion of vector fields, a scalar-valued function of a

vector variable (i.e., a function of several real variables as considered in the context of

Chapters 12–14) is frequently called a scalar field. Thus, the components of a vector

field are scalar fields.

Many of the results we prove about vector fields require that the field be smooth

in some sense. We will call a vector field smooth wherever its component scalar fields

have continuous partial derivatives of all orders. (For most purposes, however, second

order would be sufficient.)

9780134154367_Calculus   887 05/12/16   4:46 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 15 – page 868 October 17, 2016

868 CHAPTER 15 Vector Fields

Vector fields arise in many situations in applied mathematics. Let us list some:

(a) The gravitational field F.x; y; z/ due to some object is the force of attraction that

the object exerts on a unit mass located at position .x; y; z/.

(b) The electrostatic force field E.x; y; z/ due to an electrically charged object is the

electrical force that the object exerts on a unit charge at position .x; y; z/. (The

force may be either an attraction or a repulsion.)

(c) The velocity field v.x; y; z/ in a moving fluid (or solid) is the velocity of motion

of the particle at position .x; y; z/. If the motion is not “steady state,” then the

velocity field will also depend on time: v D v.x; y; z; t/.

(d) The gradient rf .x; y; z/ of any scalar field f gives the direction and magnitude

of the greatest rate of increase of f at .x; y; z/. In particular, a temperature gradi-

ent, rT .x; y; z/, is a vector field giving the direction and magnitude of the great-

est rate of increase of temperature T at the point .x; y; z/ in a heat-conducting

medium. Pressure gradients provide similar information about the variation of

pressure in a fluid such as an air mass or an ocean.

(e) The unit radial and unit transverse vectors Or and O� are examples of vector fields in

the xy-plane. Both are defined at all points of the plane except the origin.

E X A M P L E 1
(The gravitational field of a point mass) The gravitational force

field due to a point mass m located at point P0 having position

vector r0 is

F.x; y; z/ D F.r/ D
�km

jr � r0j
3
.r � r0/

D �km
.x � x0/iC .y � y0/jC .z � z0/k

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

;

where k > 0 is a constant. F points toward the point r0 and has magnitude

jFj D km=jr� r0j
2
:

Some vectors in a plane section of the field are shown graphically in Figure 15.1. Each

represents the value of the field at the position of its tail. The lengths of the vectors

indicate that the strength of the force increases the closer you get to P0. However,

the vectors have a schematic meaning relative to each other; they do not imply actual

distances in the plane.

P0

Figure 15.1 The gravitational field of a point mass

located at P0

y

x

Figure 15.2 The velocity field of a rigid body rotating

about the z-axis
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Remark The electrostatic field F due to a point charge q at P0 is given by the same

formula as the gravitational field above, except with �m replaced by q. The reason

for the opposite sign is that like charges repel each other whereas masses attract each

other.

E X A M P L E 2
The velocity field of a solid rotating about the z-axis with angular

velocity � D �k is

v.x; y; z/ D v.r/ D �� r D ��yiC�xj:

Being the same in all planes normal to the z-axis, v can be regarded as a plane vector

field. Some vectors of the field are shown in Figure 15.2.

Field Lines (Integral Curves, Trajectories, Streamlines)
The graphical representations of vector fields such as those shown in Figures 15.1 and

15.2 and the wind velocity field over a hill shown in Figure 15.3 suggest a pattern of

motion through space or in the plane. Whether or not the field is a velocity field, we

can interpret it as such and ask what path will be followed by a corresponding particle,

initially at some point, whose velocity is given by the field. The path will be a curve

to which the field is tangent at every point. Such curves are called field lines, integral

curves, or trajectories for the given vector field. In the specific case where the vector

field gives the velocity in a fluid flow, the field lines are also called streamlines or flow

lines of the flow; some of these are shown for the air flow in Figure 15.3. For a force

field, the field lines are called lines of force.

Figure 15.3 The velocity field and some

streamlines of wind blowing over a hill

The field lines of F do not depend on the magnitude of F at any point but only on

the direction of the field. If the field line through some point has parametric equation

r D r.t/, then its tangent vector dr=dt must be parallel to F.r.t// for all t . Thus,

dr

dt
D �.t/F

�

r.t/
�

:

For some vector fields, this differential equation can be integrated to find the field lines.

If we break the equation into components,

dx

dt
D �.t/F1.x; y; z/;

dy

dt
D �.t/F2.x; y; z/;

dz

dt
D �.t/F3.x; y; z/;

we can obtain equivalent differential expressions for �.t/ dt and hence write the dif-

ferential equation for the field lines in the form

dx

F1.x; y; z/
D

dy

F2.x; y; z/
D

dz

F3.x; y; z/
:
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Vector fields arise in many situations in applied mathematics. Let us list some:

(a) The gravitational field F.x; y; z/ due to some object is the force of attraction that

the object exerts on a unit mass located at position .x; y; z/.

(b) The electrostatic force field E.x; y; z/ due to an electrically charged object is the

electrical force that the object exerts on a unit charge at position .x; y; z/. (The

force may be either an attraction or a repulsion.)

(c) The velocity field v.x; y; z/ in a moving fluid (or solid) is the velocity of motion

of the particle at position .x; y; z/. If the motion is not “steady state,” then the

velocity field will also depend on time: v D v.x; y; z; t/.

(d) The gradient rf .x; y; z/ of any scalar field f gives the direction and magnitude

of the greatest rate of increase of f at .x; y; z/. In particular, a temperature gradi-

ent, rT .x; y; z/, is a vector field giving the direction and magnitude of the great-

est rate of increase of temperature T at the point .x; y; z/ in a heat-conducting

medium. Pressure gradients provide similar information about the variation of

pressure in a fluid such as an air mass or an ocean.

(e) The unit radial and unit transverse vectors Or and O� are examples of vector fields in

the xy-plane. Both are defined at all points of the plane except the origin.

E X A M P L E 1
(The gravitational field of a point mass) The gravitational force

field due to a point mass m located at point P0 having position

vector r0 is

F.x; y; z/ D F.r/ D
�km

jr � r0j
3
.r � r0/

D �km
.x � x0/iC .y � y0/jC .z � z0/k

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

;

where k > 0 is a constant. F points toward the point r0 and has magnitude

jFj D km=jr� r0j
2
:

Some vectors in a plane section of the field are shown graphically in Figure 15.1. Each

represents the value of the field at the position of its tail. The lengths of the vectors

indicate that the strength of the force increases the closer you get to P0. However,

the vectors have a schematic meaning relative to each other; they do not imply actual

distances in the plane.

P0

Figure 15.1 The gravitational field of a point mass

located at P0

y

x

Figure 15.2 The velocity field of a rigid body rotating

about the z-axis
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Remark The electrostatic field F due to a point charge q at P0 is given by the same

formula as the gravitational field above, except with �m replaced by q. The reason

for the opposite sign is that like charges repel each other whereas masses attract each

other.

E X A M P L E 2
The velocity field of a solid rotating about the z-axis with angular

velocity � D �k is

v.x; y; z/ D v.r/ D �� r D ��yiC�xj:

Being the same in all planes normal to the z-axis, v can be regarded as a plane vector

field. Some vectors of the field are shown in Figure 15.2.

Field Lines (Integral Curves, Trajectories, Streamlines)
The graphical representations of vector fields such as those shown in Figures 15.1 and

15.2 and the wind velocity field over a hill shown in Figure 15.3 suggest a pattern of

motion through space or in the plane. Whether or not the field is a velocity field, we

can interpret it as such and ask what path will be followed by a corresponding particle,

initially at some point, whose velocity is given by the field. The path will be a curve

to which the field is tangent at every point. Such curves are called field lines, integral

curves, or trajectories for the given vector field. In the specific case where the vector

field gives the velocity in a fluid flow, the field lines are also called streamlines or flow

lines of the flow; some of these are shown for the air flow in Figure 15.3. For a force

field, the field lines are called lines of force.

Figure 15.3 The velocity field and some

streamlines of wind blowing over a hill

The field lines of F do not depend on the magnitude of F at any point but only on

the direction of the field. If the field line through some point has parametric equation

r D r.t/, then its tangent vector dr=dt must be parallel to F.r.t// for all t . Thus,

dr

dt
D �.t/F

�

r.t/
�

:

For some vector fields, this differential equation can be integrated to find the field lines.

If we break the equation into components,

dx

dt
D �.t/F1.x; y; z/;

dy

dt
D �.t/F2.x; y; z/;

dz

dt
D �.t/F3.x; y; z/;

we can obtain equivalent differential expressions for �.t/ dt and hence write the dif-

ferential equation for the field lines in the form

dx

F1.x; y; z/
D

dy

F2.x; y; z/
D

dz

F3.x; y; z/
:
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If multiplication of these differential equations by some function puts them in the form

P.x/ dx D Q.y/ dy D R.z/ dz;

then we can integrate all three expressions to find the field lines.

E X A M P L E 3
Find the field lines of the gravitational force field of Example 1:

F.x; y; z/ D �km
.x � x0/iC .y � y0/jC .z � z0/k

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

:

Solution The vector in the numerator of the fraction gives the direction of F. There-

fore, the field lines satisfy the system

dx

x � x0

D

dy

y � y0

D

dz

z � z0

:

Integrating all three expressions leads to

ln jx � x0j C lnC1 D ln jy � y0j C lnC2 D ln jz � z0j C lnC3;

or, on taking exponentials,

C1.x � x0/ D C2.y � y0/ D C3.z � z0/:

This represents two families of planes all passing through P0 D .x0; y0; z0/. The field

lines are the intersections of planes from each of the families, so they are straight lines

through the point P0. (This is a two-parameter family of lines; any one of the constants

Ci that is nonzero can be divided out of the equations above.) The nature of the field

lines should also be apparent from the plot of the vector field in Figure 15.1.

E X A M P L E 4
Find the field lines of the velocity field v D �.�yi C xj/ of

Example 2.

Solution The field lines satisfy the differential equation

dx

�y
D

dy

x
:

We can separate variables in this equation to get x dx D �y dy. Integration then gives

x2=2 D �y2=2 C C=2, or x2
C y2

D C . Thus, the field lines are circles centred at

the origin in the xy-plane, as is also apparent from the vector field plot in Figure 15.2.

If we regard v as a vector field in 3-space, we find that the field lines are horizontal

circles centred on the z-axis:

x
2
C y

2
D C1; z D C2:

Our ability to find field lines depends on our ability to solve differential equations and,

in 3-space, systems of differential equations.

E X A M P L E 5
Find the field lines of F D xziC 2x2zjC x2k.

Solution The field lines satisfy
dx

xz
D

dy

2x2z
D

dz

x2
, or, equivalently

dy D 2x dx and dy D 2z dz:

The field lines are the curves of intersection of the two families y D x2
C C1 and

y D z
2
C C2 of parabolic cylinders.
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Vector Fields in Polar Coordinates
A vector field in the plane can be expressed in terms of polar coordinates in the form

F D F.r; �/ D Fr .r; �/OrC F� .r; �/
O�;

where Or and O�, defined everywhere except at the origin by

Or D cos � iC sin �j

O� D � sin � iC cos �j;

are unit vectors in the direction of increasing r and � at Œr; ��. Note that d Or=d� D O�

and that O� is just Or rotated 90ı counterclockwise. Also note that we are using Fr and

F� to denote the components of F with respect to the basis fOr; O�g; the subscripts do

not indicate partial derivatives. Here, Fr .r; �/ is called the radial component of F, and

F� .r; �/ is called the transverse component.

A curve with polar equation r D r.�/ can be expressed in vector parametric form,

r D r Or;

as we did in Section 11.6. This curve is a field line of F if its differential tangent vector

dr D dr OrC r
d Or

d�
d� D dr OrC r d� O�

is parallel to the field vector F.r; �/ at any point except the origin, that is, if r D f .�/

satisfies the differential equation

dr

Fr .r; �/
D

r d�

F� .r; �/
:

In specific cases we can find the field lines by solving this equation.

E X A M P L E 6
Sketch the vector field F.r; �/ D Or C O� , and find its field lines.

Sketch several field lines.

Solution At each point Œr; ��, the field vector bisects the angle between Or and O� ,

making a counterclockwise angle of 45ı with Or. All of the vectors in the field have

the same length,
p

2. Some of them are shown in Figure 15.4(a). They suggest that

the field lines will spiral outward from the origin. Since Fr .r; �/ D F� .r; �/ D 1

for this field, the field lines satisfy dr D r d� , or, dividing by d� , dr=d� D r .

This is the differential equation of exponential growth and has solution r D Ke� , or,

equivalently, r D e�C˛ , where ˛ D lnK is a constant. Several such curves are shown

in Figure 15.4(b).

Figure 15.4

(a) The vector field F D OrC O�

(b) Field lines of F D OrC O�

y

x

y

x

(a) (b)
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If multiplication of these differential equations by some function puts them in the form

P.x/ dx D Q.y/ dy D R.z/ dz;

then we can integrate all three expressions to find the field lines.

E X A M P L E 3
Find the field lines of the gravitational force field of Example 1:

F.x; y; z/ D �km
.x � x0/iC .y � y0/jC .z � z0/k

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

:

Solution The vector in the numerator of the fraction gives the direction of F. There-

fore, the field lines satisfy the system

dx

x � x0

D

dy

y � y0

D

dz

z � z0

:

Integrating all three expressions leads to

ln jx � x0j C lnC1 D ln jy � y0j C lnC2 D ln jz � z0j C lnC3;

or, on taking exponentials,

C1.x � x0/ D C2.y � y0/ D C3.z � z0/:

This represents two families of planes all passing through P0 D .x0; y0; z0/. The field

lines are the intersections of planes from each of the families, so they are straight lines

through the point P0. (This is a two-parameter family of lines; any one of the constants

Ci that is nonzero can be divided out of the equations above.) The nature of the field

lines should also be apparent from the plot of the vector field in Figure 15.1.

E X A M P L E 4
Find the field lines of the velocity field v D �.�yi C xj/ of

Example 2.

Solution The field lines satisfy the differential equation

dx

�y
D

dy

x
:

We can separate variables in this equation to get x dx D �y dy. Integration then gives

x2=2 D �y2=2 C C=2, or x2
C y2

D C . Thus, the field lines are circles centred at

the origin in the xy-plane, as is also apparent from the vector field plot in Figure 15.2.

If we regard v as a vector field in 3-space, we find that the field lines are horizontal

circles centred on the z-axis:

x
2
C y

2
D C1; z D C2:

Our ability to find field lines depends on our ability to solve differential equations and,

in 3-space, systems of differential equations.

E X A M P L E 5
Find the field lines of F D xziC 2x2zjC x2k.

Solution The field lines satisfy
dx

xz
D

dy

2x2z
D

dz

x2
, or, equivalently

dy D 2x dx and dy D 2z dz:

The field lines are the curves of intersection of the two families y D x2
C C1 and

y D z
2
C C2 of parabolic cylinders.
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Vector Fields in Polar Coordinates
A vector field in the plane can be expressed in terms of polar coordinates in the form

F D F.r; �/ D Fr .r; �/OrC F� .r; �/
O�;

where Or and O�, defined everywhere except at the origin by

Or D cos � iC sin �j

O� D � sin � iC cos �j;

are unit vectors in the direction of increasing r and � at Œr; ��. Note that d Or=d� D O�

and that O� is just Or rotated 90ı counterclockwise. Also note that we are using Fr and

F� to denote the components of F with respect to the basis fOr; O�g; the subscripts do

not indicate partial derivatives. Here, Fr .r; �/ is called the radial component of F, and

F� .r; �/ is called the transverse component.

A curve with polar equation r D r.�/ can be expressed in vector parametric form,

r D r Or;

as we did in Section 11.6. This curve is a field line of F if its differential tangent vector

dr D dr OrC r
d Or

d�
d� D dr OrC r d� O�

is parallel to the field vector F.r; �/ at any point except the origin, that is, if r D f .�/

satisfies the differential equation

dr

Fr .r; �/
D

r d�

F� .r; �/
:

In specific cases we can find the field lines by solving this equation.

E X A M P L E 6
Sketch the vector field F.r; �/ D Or C O� , and find its field lines.

Sketch several field lines.

Solution At each point Œr; ��, the field vector bisects the angle between Or and O� ,

making a counterclockwise angle of 45ı with Or. All of the vectors in the field have

the same length,
p

2. Some of them are shown in Figure 15.4(a). They suggest that

the field lines will spiral outward from the origin. Since Fr .r; �/ D F� .r; �/ D 1

for this field, the field lines satisfy dr D r d� , or, dividing by d� , dr=d� D r .

This is the differential equation of exponential growth and has solution r D Ke� , or,

equivalently, r D e�C˛ , where ˛ D lnK is a constant. Several such curves are shown

in Figure 15.4(b).

Figure 15.4

(a) The vector field F D OrC O�

(b) Field lines of F D OrC O�

y

x

y

x

(a) (b)
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Nonlinear Systems and Liapunov Functions
Many differential equations that arise in applications are nonlinear and cannot easily be

solved. However, such an equation can sometimes be associated with a vector field in

such a way that useful information about the behaviour of solutions of the differential

equation can be obtained by examining the vector field.

An example is the Van der Pol equation x 00
��.1�x

2
/x

0
Cx D 0, which arises in

connection with electrical circuits, where the independent variable on which x depends

is time. If we take the constant � D �1, this equation can be rewritten as a first-order

system of equations by substituting x 0
D y. The first-order system is

(

x
0
D y

y
0
D �x C y.x

2
� 1/;

and is associated with the vector field

F D x 0 iC y 0 j D y iC
�

.�x C y.x
2
� 1/

�

j:

We examine what the structure of this field implies about the solutions .x; y/ of the

linear system and hence about the Van der Pol equation.

One definitive property that fields and their associated trajectories have is the lo-

cation and nature of “fixed points,” which are the zeros of the vector field, or crit-

ical points of the first-order system. Since the “velocity” F.x; y/ D 0 D 0i C 0j

there, movement along trajectories must stop at those points. Fixed points provide

important insight into the solutions of differential equations and their visualization,

helping us to have confidence in approximate solution methods. A key property of a

fixed point is whether it is stable or not. Generally speaking, stability of a fixed point

means that all trajectories near a fixed point trap any “particle” travelling on them so

that it remains near the fixed point (weak stability), or, more stringently, so that it

approaches the fixed point (asymptotic stability). For the case of the Van der Pol

equation, .x; y/ D .0; 0/ is clearly a fixed point.

Can we determine whether the fixed points of fields are stable or not, without solv-

ing the differential equations, and without resorting to approximate methods such as

those used with computers? One powerful method for doing so is to use a Liapunov

function in conjunction with the vector field. A Liapunov function is a positive func-

tion V.x; y/ that is decreasing toward the fixed point and that vanishes at the fixed

point. One can always define many such functions for any point, but a Liapunov func-

tion must not only decrease, but must decrease along every trajectory of the vector field

approaching the fixed point. Thus, for weak stability, we require dV=dt D rV �F � 0

near the fixed point, and for asymptotic stability, we require dV=dt < 0 near the fixed

point. Since rV is an outward normal to level curves of V that surround the fixed

point, it follows for asymptotic stability that F points inward, across level curves of

the Liapunov function, and thus “particles” moving along its trajectories get trapped in

successively smaller domains surrounding the fixed point as t increases. Clearly, if the

derivative is positive instead of negative, the fixed point is certainly unstable.

The mere existence of a Liapunov function with a negative derivative along tra-

jectories of a vector field confirms stability of a fixed point. The entire test depends

on a matter of existence. If a Liapunov function is not found, this does not prove or

disprove stability.

E X A M P L E 7
(A Liapunov function for a Van der Pol equation) Show that

the point .0; 0/ is an asymptotically stable fixed point of the Van

der Pol vector field (case � D �1) given above.

Solution Substituting .x; y/ D .0; 0/ into the vector field expressions of the Van der

Pol equation yields F D x 0iC y 0j D yiC .�x C y.x2
� 1//j D 0iC 0j D 0, which

confirms that .0; 0/ is a fixed point.
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Note that a poor guess at a Liapunov function would be V.x; y/ D 2x2
C y2.

While it is positive and vanishes at .0; 0/, it fails to meet the requirement that its time

derivative is always negative near .0; 0/: for instance, at points .2y; y/ arbitrarily close

to .0; 0/, we have

dV

dt
D 4xy C 2y

�

�x C y.x
2
� 1/

�

D 2y
2
C 8y

4
> 0:

We can do better with V.x; y/ D x2
C y2. In this case,

dV

dt
D 2xx

0
C 2yy

0
D 2xy C 2y

�

�x C y.x
2
� 1/

�

D 2y
2
.x

2
� 1/ � 0

whenever x2
< 1. This shows that the fixed point .0; 0/ is at least weakly stable, but it

does not imply asymptotic stability because dV=dt D 0 if y D 0.

We could try something more general, like V.x; y/ D ax2
C bxy C cy2 and

attempt to choose the values of a > 0, c > 0, and b satisfying b2 < 4ac (why?) so

that whenever .x; y/ is sufficiently close (but not equal) to .0; 0/, we have dV=dt < 0.

It turns out that we can make V.x; y/ D x2
C xy C y2 work. For this V; we have

V.x; y/ D

�

x C
y

2

�2

C

3y2

4
> 0 if.x; y/ ¤ .0; 0/

dV

dt
D 2x

dx

dt
C y

dx

dt
C x

dy

dt
C 2y

dy

dt

D 2xy C y
2
� x

2
C xy.x

2
� 1/ � 2xy C 2y

2
.x

2
� 1/:

If x2 <
1

4
, then �1 � x2

�1 � �
3

4
, xy.x2

�1/ � jxjjyj, and 2y2.x2
�1/ � �

3

2
y

2.

Hence,

dV

dt
� �

1

2
y

2
� x

2
C jxjjyj D �

�

jxj C
jyj

2

�2

�

y
2

4
< 0;

unless .x; y/ D .0; 0/. Thus, .0; 0/ is asymptotically stable.

Remark Sometimes the search for Liapunov functions can be very difficult, involv-

ing the use of computers to search for and then test candidate functions.

E X E R C I S E S 15.1

In Exercises 1–8, sketch the given plane vector field and determine

its field lines.

1. F.x; y/ D xiC xj 2. F.x; y/ D xiC yj

3. F.x; y/ D yiC xj 4. F.x; y/ D iC sinx j

5. F.x; y/ D ex iC e�xj 6. F.x; y/ D r.x2
� y/

7. F.x; y/ D r ln.x2
C y

2
/ 8. F.x; y/ D cosy i � cos x j

In Exercises 9–16, describe the streamlines of the given velocity

fields.

9. v.x; y; z/ D yi � yj � yk

10. v.x; y; z/ D xiC yj � xk

11. v.x; y; z/ D yi � xjC k

12. v.x; y; z/ D
xiC yj

.1C z2/.x2
C y2/

13. v.x; y; z/ D xziC yzjC xk

14. v.x; y; z/ D exyz
.xiC y2jC zk/

15. v.x; y/ D x2i� yj

16.I v.x; y/ D xiC .x C y/j Hint: Let y D xv.x/.

In Exercises 17–20, determine the field lines of the given polar

vector fields.

17. F D OrC r O� 18. F D OrC � O�

19. F D 2OrC � O� 20. F D r Or � O�

21. Consider the Van der Pol equation with � D 1, so the

corresponding vector field is F D yiC
�

�x C y.1 � x2/

�

j.

Use V.x; y/ D x2
� xy C y2 as in Example 7 to determine

the stability of the the fixed point .0; 0/.
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Nonlinear Systems and Liapunov Functions
Many differential equations that arise in applications are nonlinear and cannot easily be

solved. However, such an equation can sometimes be associated with a vector field in

such a way that useful information about the behaviour of solutions of the differential

equation can be obtained by examining the vector field.

An example is the Van der Pol equation x 00
��.1�x

2
/x

0
Cx D 0, which arises in

connection with electrical circuits, where the independent variable on which x depends

is time. If we take the constant � D �1, this equation can be rewritten as a first-order

system of equations by substituting x 0
D y. The first-order system is

(

x
0
D y

y
0
D �x C y.x

2
� 1/;

and is associated with the vector field

F D x 0 iC y 0 j D y iC
�

.�x C y.x
2
� 1/

�

j:

We examine what the structure of this field implies about the solutions .x; y/ of the

linear system and hence about the Van der Pol equation.

One definitive property that fields and their associated trajectories have is the lo-

cation and nature of “fixed points,” which are the zeros of the vector field, or crit-

ical points of the first-order system. Since the “velocity” F.x; y/ D 0 D 0i C 0j

there, movement along trajectories must stop at those points. Fixed points provide

important insight into the solutions of differential equations and their visualization,

helping us to have confidence in approximate solution methods. A key property of a

fixed point is whether it is stable or not. Generally speaking, stability of a fixed point

means that all trajectories near a fixed point trap any “particle” travelling on them so

that it remains near the fixed point (weak stability), or, more stringently, so that it

approaches the fixed point (asymptotic stability). For the case of the Van der Pol

equation, .x; y/ D .0; 0/ is clearly a fixed point.

Can we determine whether the fixed points of fields are stable or not, without solv-

ing the differential equations, and without resorting to approximate methods such as

those used with computers? One powerful method for doing so is to use a Liapunov

function in conjunction with the vector field. A Liapunov function is a positive func-

tion V.x; y/ that is decreasing toward the fixed point and that vanishes at the fixed

point. One can always define many such functions for any point, but a Liapunov func-

tion must not only decrease, but must decrease along every trajectory of the vector field

approaching the fixed point. Thus, for weak stability, we require dV=dt D rV �F � 0

near the fixed point, and for asymptotic stability, we require dV=dt < 0 near the fixed

point. Since rV is an outward normal to level curves of V that surround the fixed

point, it follows for asymptotic stability that F points inward, across level curves of

the Liapunov function, and thus “particles” moving along its trajectories get trapped in

successively smaller domains surrounding the fixed point as t increases. Clearly, if the

derivative is positive instead of negative, the fixed point is certainly unstable.

The mere existence of a Liapunov function with a negative derivative along tra-

jectories of a vector field confirms stability of a fixed point. The entire test depends

on a matter of existence. If a Liapunov function is not found, this does not prove or

disprove stability.

E X A M P L E 7
(A Liapunov function for a Van der Pol equation) Show that

the point .0; 0/ is an asymptotically stable fixed point of the Van

der Pol vector field (case � D �1) given above.

Solution Substituting .x; y/ D .0; 0/ into the vector field expressions of the Van der

Pol equation yields F D x 0iC y 0j D yiC .�x C y.x2
� 1//j D 0iC 0j D 0, which

confirms that .0; 0/ is a fixed point.
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Note that a poor guess at a Liapunov function would be V.x; y/ D 2x2
C y2.

While it is positive and vanishes at .0; 0/, it fails to meet the requirement that its time

derivative is always negative near .0; 0/: for instance, at points .2y; y/ arbitrarily close

to .0; 0/, we have

dV

dt
D 4xy C 2y

�

�x C y.x
2
� 1/

�

D 2y
2
C 8y

4
> 0:

We can do better with V.x; y/ D x2
C y2. In this case,

dV

dt
D 2xx

0
C 2yy

0
D 2xy C 2y

�

�x C y.x
2
� 1/

�

D 2y
2
.x

2
� 1/ � 0

whenever x2
< 1. This shows that the fixed point .0; 0/ is at least weakly stable, but it

does not imply asymptotic stability because dV=dt D 0 if y D 0.

We could try something more general, like V.x; y/ D ax2
C bxy C cy2 and

attempt to choose the values of a > 0, c > 0, and b satisfying b2 < 4ac (why?) so

that whenever .x; y/ is sufficiently close (but not equal) to .0; 0/, we have dV=dt < 0.

It turns out that we can make V.x; y/ D x2
C xy C y2 work. For this V; we have

V.x; y/ D

�

x C
y

2

�2

C

3y2

4
> 0 if.x; y/ ¤ .0; 0/

dV

dt
D 2x

dx

dt
C y

dx

dt
C x

dy

dt
C 2y

dy

dt

D 2xy C y
2
� x

2
C xy.x

2
� 1/ � 2xy C 2y

2
.x

2
� 1/:

If x2 <
1

4
, then �1 � x2

�1 � �
3

4
, xy.x2

�1/ � jxjjyj, and 2y2.x2
�1/ � �

3

2
y

2.

Hence,

dV

dt
� �

1

2
y

2
� x

2
C jxjjyj D �

�

jxj C
jyj

2

�2

�

y
2

4
< 0;

unless .x; y/ D .0; 0/. Thus, .0; 0/ is asymptotically stable.

Remark Sometimes the search for Liapunov functions can be very difficult, involv-

ing the use of computers to search for and then test candidate functions.

E X E R C I S E S 15.1

In Exercises 1–8, sketch the given plane vector field and determine

its field lines.

1. F.x; y/ D xiC xj 2. F.x; y/ D xiC yj

3. F.x; y/ D yiC xj 4. F.x; y/ D iC sinx j

5. F.x; y/ D ex iC e�xj 6. F.x; y/ D r.x2
� y/

7. F.x; y/ D r ln.x2
C y

2
/ 8. F.x; y/ D cosy i � cos x j

In Exercises 9–16, describe the streamlines of the given velocity

fields.

9. v.x; y; z/ D yi � yj � yk

10. v.x; y; z/ D xiC yj � xk

11. v.x; y; z/ D yi � xjC k

12. v.x; y; z/ D
xiC yj

.1C z2/.x2
C y2/

13. v.x; y; z/ D xziC yzjC xk

14. v.x; y; z/ D exyz
.xiC y2jC zk/

15. v.x; y/ D x2i� yj

16.I v.x; y/ D xiC .x C y/j Hint: Let y D xv.x/.

In Exercises 17–20, determine the field lines of the given polar

vector fields.

17. F D OrC r O� 18. F D OrC � O�

19. F D 2OrC � O� 20. F D r Or � O�

21. Consider the Van der Pol equation with � D 1, so the

corresponding vector field is F D yiC
�

�x C y.1 � x2/

�

j.

Use V.x; y/ D x2
� xy C y2 as in Example 7 to determine

the stability of the the fixed point .0; 0/.
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22. Consider the vector field of the Van der Pol equation when

� D 0. Use the Liapunov function, V.x; y/ D x2
C y2, to

attempt to determine the stability of the fixed point (0,0).

Explain the result.

23. In Example 7, using the simpler Liapunov function,

V.x; y/ D x2
C y2, we found V 0

D 2y2.x2
� 1/ � 0. This

was not sufficient to establish asymptotic stability in itself

because V 0
D 0 occurs when y D 0. Zeros of V 0 form a

curve, in this case given by the entire x-axis, which all occur

when x 0
D 0. Curves defined by one component of the vector

field vanishing are known as nullclines. The zeros of V 0 occur

on one nullcline (i.e., y D 0). Write an expression for another

nullcline of the Van der Pol vector field of Example 7.

24. Give an alternative solution to Example 7 by using the fact

that the simpler Liapunov function in the previous exercise is

given by V D r2 in polar coordinates. Show explicitly that all

trajectories of the Van der Pol field (for � D �1) crossing the

x-axis stop moving toward .0; 0/ by showing that r.t/ has a

critical point. Then classify the associated critical point of

r.t/ to demonstrate asymptotic stability.

25. Consider the system

(

x
0
D y

y
0
D �x � �x

2
y:

Show that the sign of � determines whether (0,0) is a stable

fixed point or not. Try V D .x2
C y2/=2 as a Liapunov

function.

26. For the system in Exercise 25, write the associated vector field

and determine its nullclines.

15.2 Conservative Fields
Since the gradient of a scalar field is a vector field, it is natural to ask whether every

vector field is the gradient of a scalar field. Given a vector field F.x; y; z/, does there

exist a scalar field �.x; y; z/ such that

F.x; y; z/ D r�.x; y; z/ D
@�

@x
iC

@�

@y
jC

@�

@z
k ‹

The answer in general is “no.” Only special vector fields can be written in this way.

D E F I N I T I O N

1

If F.x; y; z/ D r�.x; y; z/ in a domain D, then we say that F is a conser-

vative vector field in D, and we call the function � a (scalar) potential for F

on D. Similar definitions hold in the plane or in n-space.

Like antiderivatives, potentials are not determined uniquely; arbitrary constants can be

added to them. Note that F is conservative in a domain D if and only if F D r� at

every point of D; the potential � cannot have any singular points in D.

The equation F1.x; y; z/ dxCF2.x; y; z/ dyCF3.x; y; z/ dz D 0 is called an ex-

act differential equation if the left side is the differential of a scalar function �.x; y; z/:

d� D F1.x; y; z/ dx C F2.x; y; z/ dy C F3.x; y; z/ dz:

In this case the differential equation has solutions given by �.x; y; z/ D C (constant).

(See Section 18.2 for a discussion of exact equations in the plane.) Observe that the

differential equation is exact if and only if the vector field F D F1i C F2j C F3k is

conservative and that � is the potential of F.

Being scalar fields rather than vector fields, potentials for conservative vector

fields are easier to manipulate algebraically than the vector fields themselves. For

instance, a sum of potential functions is the potential function for the sum of the cor-

responding vector fields. A vector field can always be computed from its potential

function by taking the gradient.

E X A M P L E 1
(The gravitational field of a point mass is conservative) Show

that the gravitational field F.r/ D �km.r � r0/=jr � r0j
3 of Ex-

ample 1 in Section 15.1 is conservative wherever it is defined (i.e., everywhere in R
3

except at r0), by showing that
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�.x; y; z/ D
km

jr � r0j
D

km
p

.x � x0/
2
C .y � y0/

2
C .z � z0/

2

is a potential function for F.

Solution Observe that

@�

@x
D

�km.x � x0/

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

D

�km.x � x0/

jr � r0j
3
D F1.r/;

and similar formulas hold for the other partial derivatives of the function �. It follows

that r�.x; y; z/ D F.x; y; z/ for .x; y; z/ ¤ .x0; y0; z0/, and F is conservative except

at r0.

Remark It is not necessary to write the expression km=jr� r0j in terms of the com-

ponents of r � r0 as we did in Example 1 in order to calculate its partial derivatives.

Here is a useful formula for the derivative of the length of a vector function F with

respect to a variable x:

@

@x
jFj D

F �

�

@

@x
F

�

jFj
:

To see why this is true, express jFj D
p

F � F, and calculate its derivative using the

Chain Rule and the Product Rule:

@

@x
jFj D

@

@x

p

F � F D
1

2
p

F � F
2F �

�

@

@x
F

�

D

F �
�

@

@x
F
�

jFj
:

Compare this with the derivative of an absolute value of a function of one variable:

d

dx
jf .x/j D sgn.f .x// f 0

.x/ D
f .x/

jf .x/j
f

0
.x/:

In the context of Example 1, we have

@

@x

km

jr� r0j
D

�km

jr � r0j
2

@

@x
jr� r0j D

�km

jr� r0j
2

.r � r0/ � i

jr � r0j
D

�km.x � x0/

jr� r0j
3

;

with similar expressions for the other partials of km=jr� r0j.

E X A M P L E 2
Show that the velocity field v D ��yiC�xj of rigid body rota-

tion about the z-axis (see Example 2 of Section 15.1) is not con-

servative if � ¤ 0.

Solution There are two ways to show that no potential for v can exist. One way is to

try to find a potential �.x; y/ for the vector field. We require

@�

@x
D ��y and

@�

@y
D �x:

The first of these equations implies that �.x; y/ D ��xy C C1.y/. (We have inte-

grated with respect to x; the constant can still depend on y.) Similarly, the second

equation implies that �.x; y/ D �xy C C2.x/. Therefore, we must have ��xy C

C1.y/ D �xyCC2.x/, or 2�xy D C1.y/�C2.x/ for all .x; y/. This is not possible

for any choice of the single-variable functions C1.y/ and C2.x/ unless � D 0.
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22. Consider the vector field of the Van der Pol equation when

� D 0. Use the Liapunov function, V.x; y/ D x2
C y2, to

attempt to determine the stability of the fixed point (0,0).

Explain the result.

23. In Example 7, using the simpler Liapunov function,

V.x; y/ D x2
C y2, we found V 0

D 2y2.x2
� 1/ � 0. This

was not sufficient to establish asymptotic stability in itself

because V 0
D 0 occurs when y D 0. Zeros of V 0 form a

curve, in this case given by the entire x-axis, which all occur

when x 0
D 0. Curves defined by one component of the vector

field vanishing are known as nullclines. The zeros of V 0 occur

on one nullcline (i.e., y D 0). Write an expression for another

nullcline of the Van der Pol vector field of Example 7.

24. Give an alternative solution to Example 7 by using the fact

that the simpler Liapunov function in the previous exercise is

given by V D r2 in polar coordinates. Show explicitly that all

trajectories of the Van der Pol field (for � D �1) crossing the

x-axis stop moving toward .0; 0/ by showing that r.t/ has a

critical point. Then classify the associated critical point of

r.t/ to demonstrate asymptotic stability.

25. Consider the system

(

x
0
D y

y
0
D �x � �x

2
y:

Show that the sign of � determines whether (0,0) is a stable

fixed point or not. Try V D .x2
C y2/=2 as a Liapunov

function.

26. For the system in Exercise 25, write the associated vector field

and determine its nullclines.

15.2 Conservative Fields
Since the gradient of a scalar field is a vector field, it is natural to ask whether every

vector field is the gradient of a scalar field. Given a vector field F.x; y; z/, does there

exist a scalar field �.x; y; z/ such that

F.x; y; z/ D r�.x; y; z/ D
@�

@x
iC

@�

@y
jC

@�

@z
k ‹

The answer in general is “no.” Only special vector fields can be written in this way.

D E F I N I T I O N

1

If F.x; y; z/ D r�.x; y; z/ in a domain D, then we say that F is a conser-

vative vector field in D, and we call the function � a (scalar) potential for F

on D. Similar definitions hold in the plane or in n-space.

Like antiderivatives, potentials are not determined uniquely; arbitrary constants can be

added to them. Note that F is conservative in a domain D if and only if F D r� at

every point of D; the potential � cannot have any singular points in D.

The equation F1.x; y; z/ dxCF2.x; y; z/ dyCF3.x; y; z/ dz D 0 is called an ex-

act differential equation if the left side is the differential of a scalar function �.x; y; z/:

d� D F1.x; y; z/ dx C F2.x; y; z/ dy C F3.x; y; z/ dz:

In this case the differential equation has solutions given by �.x; y; z/ D C (constant).

(See Section 18.2 for a discussion of exact equations in the plane.) Observe that the

differential equation is exact if and only if the vector field F D F1i C F2j C F3k is

conservative and that � is the potential of F.

Being scalar fields rather than vector fields, potentials for conservative vector

fields are easier to manipulate algebraically than the vector fields themselves. For

instance, a sum of potential functions is the potential function for the sum of the cor-

responding vector fields. A vector field can always be computed from its potential

function by taking the gradient.

E X A M P L E 1
(The gravitational field of a point mass is conservative) Show

that the gravitational field F.r/ D �km.r � r0/=jr � r0j
3 of Ex-

ample 1 in Section 15.1 is conservative wherever it is defined (i.e., everywhere in R
3

except at r0), by showing that
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�.x; y; z/ D
km

jr � r0j
D

km
p

.x � x0/
2
C .y � y0/

2
C .z � z0/

2

is a potential function for F.

Solution Observe that

@�

@x
D

�km.x � x0/

�

.x � x0/
2
C .y � y0/

2
C .z � z0/

2
�3=2

D

�km.x � x0/

jr � r0j
3
D F1.r/;

and similar formulas hold for the other partial derivatives of the function �. It follows

that r�.x; y; z/ D F.x; y; z/ for .x; y; z/ ¤ .x0; y0; z0/, and F is conservative except

at r0.

Remark It is not necessary to write the expression km=jr� r0j in terms of the com-

ponents of r � r0 as we did in Example 1 in order to calculate its partial derivatives.

Here is a useful formula for the derivative of the length of a vector function F with

respect to a variable x:

@

@x
jFj D

F �

�

@

@x
F

�

jFj
:

To see why this is true, express jFj D
p

F � F, and calculate its derivative using the

Chain Rule and the Product Rule:

@

@x
jFj D

@

@x

p

F � F D
1

2
p

F � F
2F �

�

@

@x
F

�

D

F �
�

@

@x
F
�

jFj
:

Compare this with the derivative of an absolute value of a function of one variable:

d

dx
jf .x/j D sgn.f .x// f 0

.x/ D
f .x/

jf .x/j
f

0
.x/:

In the context of Example 1, we have

@

@x

km

jr� r0j
D

�km

jr � r0j
2

@

@x
jr� r0j D

�km

jr� r0j
2

.r � r0/ � i

jr � r0j
D

�km.x � x0/

jr� r0j
3

;

with similar expressions for the other partials of km=jr� r0j.

E X A M P L E 2
Show that the velocity field v D ��yiC�xj of rigid body rota-

tion about the z-axis (see Example 2 of Section 15.1) is not con-

servative if � ¤ 0.

Solution There are two ways to show that no potential for v can exist. One way is to

try to find a potential �.x; y/ for the vector field. We require

@�

@x
D ��y and

@�

@y
D �x:

The first of these equations implies that �.x; y/ D ��xy C C1.y/. (We have inte-

grated with respect to x; the constant can still depend on y.) Similarly, the second

equation implies that �.x; y/ D �xy C C2.x/. Therefore, we must have ��xy C

C1.y/ D �xyCC2.x/, or 2�xy D C1.y/�C2.x/ for all .x; y/. This is not possible

for any choice of the single-variable functions C1.y/ and C2.x/ unless � D 0.
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Alternatively, if v has a potential �, then we can form the mixed partial derivatives

of � from the two equations above and get

@2�

@y@x
D �� and

@2�

@x@y
D �:

This is not possible if � ¤ 0 because the smoothness of v implies that its potential

should be smooth, so the mixed partials should be equal. Thus, no such � can exist; v

is not conservative.

Example 2 suggests a condition that must be satisfied by any conservative plane vector

field.

BEWARE! Do not confuse this

necessary condition with a

sufficient condition to guarantee

that F is conservative. We will show

later that more than just

@F1=@y D @F2=@x on D is

necessary to guarantee that F is

conservative on D.

Necessary condition for a conservative plane vector field

If F.x; y/ D F1.x; y/iCF2.x; y/j is a conservative vector field in a domain

D of the xy-plane, then the condition

@

@y
F1.x; y/ D

@

@x
F2.x; y/

must be satisfied at all points of D.

To see this, observe that

F1iC F2j D F D r� D
@�

@x
iC

@�

@y
j

implies the two scalar equations

F1 D
@�

@x
and F2 D

@�

@y
;

and since the mixed partial derivatives of � should be equal,

@F1

@y
D

@2�

@y@x
D

@2�

@x@y
D

@F2

@x
:

A similar condition can be obtained for vector fields in 3-space.

Necessary conditions for a conservative vector field in 3-space

If F.x; y; z/ D F1.x; y; z/i C F2.x; y; z/j C F3.x; y; z/k is a conservative

vector field in a domain D in 3-space, then we must have, everywhere in D,

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
;

@F2

@z
D

@F3

@y
:

Equipotential Surfaces and Curves
If �.x; y; z/ is a potential function for the conservative vector field F, then the level

surfaces �.x; y; z/ D C of � are called equipotential surfaces of F. Since F D r�

is normal to these surfaces (wherever it does not vanish), the field lines of F always

intersect the equipotential surfaces at right angles. For instance, the equipotential sur-

faces of the gravitational force field of a point mass are spheres centred at the point;

these spheres are normal to the field lines, which are straight lines passing through the

point. Similarly, for a conservative plane vector field, the level curves of the potential

function are called equipotential curves of the vector field. They are the orthogonal

trajectories of the field lines; that is, they intersect the field lines at right angles.
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E X A M P L E 3
Show that the vector field F.x; y/ D xi � yj is conservative and

find a potential function for it. Describe the field lines and the

equipotential curves.

Solution Since @F1=@y D 0 D @F2=@x everywhere in R
2, we would expect F to be

conservative. Any potential function � must satisfy

@�

@x
D F1 D x and

@�

@y
D F2 D �y:

The first of these equations gives

�.x; y/ D

Z

x dx D
1

2
x

2
C C1.y/:

Observe that, since the integral is taken with respect to x, the “constant” of integration

is allowed to depend on the other variable. Now we use the second equation to get

�y D
@�

@y
D C1

0
.y/ ) C1.y/ D �

1

2
y

2
C C2:

Thus, F is conservative and, for any constant C2,

�.x; y/ D
x2
� y2

2
C C2

is a potential function for F. The field lines of F satisfy

dx

x
D �

dy

y
) ln jxj D � ln jyj C lnC3 ) xy D C3:

The field lines of F are thus rectangular hyperbolas with the coordinate axes as asymp-

totes. The equipotential curves constitute another family of rectangular hyperbolas,

x2
� y2

D C4, with the lines x D ˙y as asymptotes. Curves of the two families

intersect at right angles. (See Figure 15.5.) Note, however, that F does not specify a

direction at the origin and the orthogonality breaks down there; in fact, neither family

has a unique curve through that point.

Figure 15.5 The field lines (violet) and

equipotential curves (green) for the field

F D xi � yj

y

x

Remark In the above example we constructed the potential � by first integrating

@�=@x D F1. We could equally well have started by integrating @�=@y D F2, in

which case the constant of integration would have depended on x. In the end, the same

� would have emerged.
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Alternatively, if v has a potential �, then we can form the mixed partial derivatives

of � from the two equations above and get

@2�

@y@x
D �� and

@2�

@x@y
D �:

This is not possible if � ¤ 0 because the smoothness of v implies that its potential

should be smooth, so the mixed partials should be equal. Thus, no such � can exist; v

is not conservative.

Example 2 suggests a condition that must be satisfied by any conservative plane vector

field.

BEWARE! Do not confuse this

necessary condition with a

sufficient condition to guarantee

that F is conservative. We will show

later that more than just

@F1=@y D @F2=@x on D is

necessary to guarantee that F is

conservative on D.

Necessary condition for a conservative plane vector field

If F.x; y/ D F1.x; y/iCF2.x; y/j is a conservative vector field in a domain

D of the xy-plane, then the condition

@

@y
F1.x; y/ D

@

@x
F2.x; y/

must be satisfied at all points of D.

To see this, observe that

F1iC F2j D F D r� D
@�

@x
iC

@�

@y
j

implies the two scalar equations

F1 D
@�

@x
and F2 D

@�

@y
;

and since the mixed partial derivatives of � should be equal,

@F1

@y
D

@2�

@y@x
D

@2�

@x@y
D

@F2

@x
:

A similar condition can be obtained for vector fields in 3-space.

Necessary conditions for a conservative vector field in 3-space

If F.x; y; z/ D F1.x; y; z/i C F2.x; y; z/j C F3.x; y; z/k is a conservative

vector field in a domain D in 3-space, then we must have, everywhere in D,

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
;

@F2

@z
D

@F3

@y
:

Equipotential Surfaces and Curves
If �.x; y; z/ is a potential function for the conservative vector field F, then the level

surfaces �.x; y; z/ D C of � are called equipotential surfaces of F. Since F D r�

is normal to these surfaces (wherever it does not vanish), the field lines of F always

intersect the equipotential surfaces at right angles. For instance, the equipotential sur-

faces of the gravitational force field of a point mass are spheres centred at the point;

these spheres are normal to the field lines, which are straight lines passing through the

point. Similarly, for a conservative plane vector field, the level curves of the potential

function are called equipotential curves of the vector field. They are the orthogonal

trajectories of the field lines; that is, they intersect the field lines at right angles.
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E X A M P L E 3
Show that the vector field F.x; y/ D xi � yj is conservative and

find a potential function for it. Describe the field lines and the

equipotential curves.

Solution Since @F1=@y D 0 D @F2=@x everywhere in R
2, we would expect F to be

conservative. Any potential function � must satisfy

@�

@x
D F1 D x and

@�

@y
D F2 D �y:

The first of these equations gives

�.x; y/ D

Z

x dx D
1

2
x

2
C C1.y/:

Observe that, since the integral is taken with respect to x, the “constant” of integration

is allowed to depend on the other variable. Now we use the second equation to get

�y D
@�

@y
D C1

0
.y/ ) C1.y/ D �

1

2
y

2
C C2:

Thus, F is conservative and, for any constant C2,

�.x; y/ D
x2
� y2

2
C C2

is a potential function for F. The field lines of F satisfy

dx

x
D �

dy

y
) ln jxj D � ln jyj C lnC3 ) xy D C3:

The field lines of F are thus rectangular hyperbolas with the coordinate axes as asymp-

totes. The equipotential curves constitute another family of rectangular hyperbolas,

x2
� y2

D C4, with the lines x D ˙y as asymptotes. Curves of the two families

intersect at right angles. (See Figure 15.5.) Note, however, that F does not specify a

direction at the origin and the orthogonality breaks down there; in fact, neither family

has a unique curve through that point.

Figure 15.5 The field lines (violet) and

equipotential curves (green) for the field

F D xi � yj

y

x

Remark In the above example we constructed the potential � by first integrating

@�=@x D F1. We could equally well have started by integrating @�=@y D F2, in

which case the constant of integration would have depended on x. In the end, the same

� would have emerged.
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E X A M P L E 4
Decide whether the vector field

F D
�

xy � sin z
�

iC
�

1

2
x

2
�

ey

z

�

jC
�

ey

z2
� x cos z

�

k

is conservative in D D f.x; y; z/ W z ¤ 0g, and find a potential if it is.

Solution Note that F is not defined when z D 0. However, since

@F1

@y
D x D

@F2

@x
;

@F1

@z
D � cos z D

@F3

@x
; and

@F2

@z
D

ey

z2
D

@F3

@y
;

F may still be conservative in domains not intersecting the xy-plane z D 0. If so, its

potential � should satisfy

@�

@x
D xy � sin z;

@�

@y
D

1

2
x

2
�

ey

z
; and

@�

@z
D

ey

z2
� x cos z: .�/

From the first equation of .�/,

�.x; y; z/ D

Z

.xy � sin z/ dx D
1

2
x

2
y � x sin z C C1.y; z/:

(Again, note that the constant of integration can be a function of any parameters of

the integrand; it is constant only with respect to the variable of integration.) Using the

second equation of .�/, we obtain

1

2
x

2
�

ey

z
D

@�

@y
D

1

2
x

2
C

@C1.y; z/

@y
:

Thus,

C1.y; z/ D �

Z

ey

z
dy D �

ey

z
C C2.z/

and

�.x; y; z/ D
1

2
x

2
y � x sin z �

ey

z
C C2.z/:

Finally, using the third equation of .�/,

ey

z2
� x cos z D

@�

@z
D �x cos z C

ey

z2
C C2

0
.z/:

Thus, C2
0
.z/ D 0 and C2.z/ D C (a constant). Indeed, F is conservative and, for any

constant C ,

�.x; y; z/ D
1

2
x

2
y � x sin z �

e
y

z
C C

is a potential function for F in the given domain D. C may have different values in the

two regions z > 0 and z < 0 whose union constitutes D.

Remark If, in the above solution, the differential equation for C1.y; z/ had involved

x or if that for C2.z/ had involved either x or y, we would not have been able to find

�. This did not happen because of the three conditions on the partials of F1, F2, and

F3 verified at the outset.
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Remark The existence of a potential for a vector field depends on the topology of

the domain of the field (i.e., whether the domain has holes in it and what kind of

holes) as well as on the structure of the components of the field itself. (Even if the

necessary conditions given above are satisfied, a vector field may not be conservative

in a domain that has holes.) We will be probing further into the nature of conservative

vector fields in Section 15.4 and in the next chapter; we will eventually show that the

above necessary conditions are also sufficient to guarantee that F is conservative if the

domain of F satisfies certain conditions. At this point, however, we give an example

in which a plane vector field fails to be conservative on a domain where the necessary

condition is, nevertheless, satisfied.

E X A M P L E 5
For .x; y/ ¤ .0; 0/, define a vector field F.x; y/ and a scalar field

�.x; y/ as follows:

F.x; y/ D

�

�y

x2
C y2

�

iC

�

x

x2
C y2

�

j

�.x; y/ D the polar angle � of .x; y/ such that 0 � � < 2� .

Thus, x D r cos �.x; y/ and y D r sin �.x; y/, where r2
D x2

C y2. Verify the

following:

(a)
@

@y
F1.x; y/ D

@

@x
F2.x; y/ for .x; y/ ¤ .0; 0/.

(b) r�.x; y/ D F.x; y/ for all .x; y/ ¤ .0; 0/ such that 0 < � < 2� .

(c) F is not conservative on the whole xy-plane excluding the origin.

Solution

(a) We have F1 D
�y

x2
C y2

and F2 D
x

x2
C y2

. Thus,

@

@y
F1.x; y/ D

@

@y

�

�

y

x2
C y2

�

D

y2
� x2

.x2
C y2/2

D

@

@x

�

x

x2
C y2

�

D

@

@x
F2.x; y/

for all .x; y/ ¤ .0; 0/.

(b) Differentiate the equations x D r cos � and y D r sin � implicitly with respect to

x to obtain

1 D
@x

@x
D

@r

@x
cos � � r sin �

@�

@x
;

0 D
@y

@x
D

@r

@x
sin � C r cos �

@�

@x
:

Eliminating @r=@x from this pair of equations and solving for @�=@x leads to

@�

@x
D �

r sin �

r2
D �

y

x2
C y2

D F1:

Similarly, differentiation with respect to y produces

@�

@y
D

x

x2
C y2

D F2:

These formulas hold only if 0 < � < 2� ; � is not even continuous on the positive

x-axis; if x > 0, then

lim
y!0C

�.x; y/ D 0 but lim
y!0�

�.x; y/ D 2�:
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E X A M P L E 4
Decide whether the vector field

F D
�

xy � sin z
�

iC
�

1

2
x

2
�

ey

z

�

jC
�

ey

z2
� x cos z

�

k

is conservative in D D f.x; y; z/ W z ¤ 0g, and find a potential if it is.

Solution Note that F is not defined when z D 0. However, since

@F1

@y
D x D

@F2

@x
;

@F1

@z
D � cos z D

@F3

@x
; and

@F2

@z
D

ey

z2
D

@F3

@y
;

F may still be conservative in domains not intersecting the xy-plane z D 0. If so, its

potential � should satisfy

@�

@x
D xy � sin z;

@�

@y
D

1

2
x

2
�

ey

z
; and

@�

@z
D

ey

z2
� x cos z: .�/

From the first equation of .�/,

�.x; y; z/ D

Z

.xy � sin z/ dx D
1

2
x

2
y � x sin z C C1.y; z/:

(Again, note that the constant of integration can be a function of any parameters of

the integrand; it is constant only with respect to the variable of integration.) Using the

second equation of .�/, we obtain

1

2
x

2
�

ey

z
D

@�

@y
D

1

2
x

2
C

@C1.y; z/

@y
:

Thus,

C1.y; z/ D �

Z

ey

z
dy D �

ey

z
C C2.z/

and

�.x; y; z/ D
1

2
x

2
y � x sin z �

ey

z
C C2.z/:

Finally, using the third equation of .�/,

ey

z2
� x cos z D

@�

@z
D �x cos z C

ey

z2
C C2

0
.z/:

Thus, C2
0
.z/ D 0 and C2.z/ D C (a constant). Indeed, F is conservative and, for any

constant C ,

�.x; y; z/ D
1

2
x

2
y � x sin z �

e
y

z
C C

is a potential function for F in the given domain D. C may have different values in the

two regions z > 0 and z < 0 whose union constitutes D.

Remark If, in the above solution, the differential equation for C1.y; z/ had involved

x or if that for C2.z/ had involved either x or y, we would not have been able to find

�. This did not happen because of the three conditions on the partials of F1, F2, and

F3 verified at the outset.
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Remark The existence of a potential for a vector field depends on the topology of

the domain of the field (i.e., whether the domain has holes in it and what kind of

holes) as well as on the structure of the components of the field itself. (Even if the

necessary conditions given above are satisfied, a vector field may not be conservative

in a domain that has holes.) We will be probing further into the nature of conservative

vector fields in Section 15.4 and in the next chapter; we will eventually show that the

above necessary conditions are also sufficient to guarantee that F is conservative if the

domain of F satisfies certain conditions. At this point, however, we give an example

in which a plane vector field fails to be conservative on a domain where the necessary

condition is, nevertheless, satisfied.

E X A M P L E 5
For .x; y/ ¤ .0; 0/, define a vector field F.x; y/ and a scalar field

�.x; y/ as follows:

F.x; y/ D

�

�y

x2
C y2

�

iC

�

x

x2
C y2

�

j

�.x; y/ D the polar angle � of .x; y/ such that 0 � � < 2� .

Thus, x D r cos �.x; y/ and y D r sin �.x; y/, where r2
D x2

C y2. Verify the

following:

(a)
@

@y
F1.x; y/ D

@

@x
F2.x; y/ for .x; y/ ¤ .0; 0/.

(b) r�.x; y/ D F.x; y/ for all .x; y/ ¤ .0; 0/ such that 0 < � < 2� .

(c) F is not conservative on the whole xy-plane excluding the origin.

Solution

(a) We have F1 D
�y

x2
C y2

and F2 D
x

x2
C y2

. Thus,

@

@y
F1.x; y/ D

@

@y

�

�

y

x2
C y2

�

D

y2
� x2

.x2
C y2/2

D

@

@x

�

x

x2
C y2

�

D

@

@x
F2.x; y/

for all .x; y/ ¤ .0; 0/.

(b) Differentiate the equations x D r cos � and y D r sin � implicitly with respect to

x to obtain

1 D
@x

@x
D

@r

@x
cos � � r sin �

@�

@x
;

0 D
@y

@x
D

@r

@x
sin � C r cos �

@�

@x
:

Eliminating @r=@x from this pair of equations and solving for @�=@x leads to

@�

@x
D �

r sin �

r2
D �

y

x2
C y2

D F1:

Similarly, differentiation with respect to y produces

@�

@y
D

x

x2
C y2

D F2:

These formulas hold only if 0 < � < 2� ; � is not even continuous on the positive

x-axis; if x > 0, then

lim
y!0C

�.x; y/ D 0 but lim
y!0�

�.x; y/ D 2�:
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Thus, r� D F holds everywhere in the plane, except at points .x; 0/ where x � 0.

(c) Suppose that F is conservative on the whole plane excluding the origin. Then

F D r� there, for some scalar function �.x; y/. Then r.� � �/ D 0 for 0 <

� < 2� , and � � � D C (constant), or � D � C C . The left side of this equation

is discontinuous along the positive x-axis but the right side is not. Therefore, the

two sides cannot be equal. This contradiction shows that F cannot be conservative

on the whole plane, excluding the origin.

Remark Observe that the origin .0; 0/ is a hole in the domain of F in the above

example. While F satisfies the necessary condition for being conservative everywhere

except at this hole, you must remove from the domain of F a half-line (ray), or, more

generally, a curve from the origin to infinity in order to get a potential function for

F. F is not conservative on any domain containing a curve that surrounds the origin.

Exercises 22–24 of Section 15.4 will shed further light on this situation.

Sources, Sinks, and Dipoles
Imagine that 3-space is filled with an incompressible fluid emitted by a point source

at the origin at a volume rate dV=dt D 4�m. (We say that the origin is a source of

strength m.) By symmetry, the fluid flows outward on radial lines from the origin with

equal speed at equal distances from the origin in all directions, and the fluid emitted at

the origin at some instant t D 0 will at later time t be spread over a spherical surface

of radius r D r.t/. All the fluid inside that sphere was emitted in the time interval

Œ0; t �, so we have

4

3
�r

3
D 4�mt:

Differentiating this equation with respect to t we obtain r2.dr=dt/ D m, and the

outward speed of the fluid at distance r from the origin is v.r/ D m=r2. The velocity

field of the moving fluid is therefore

v.r/ D v.r/
r

jrj
D

m

r3
r:

This velocity field is conservative (except at the origin) and has potential

�.r/ D �
m

r
:

A sink is a negative source. A sink of strength m at the origin (which annihilates

or sucks up fluid at a rate dV=dt D 4�m) has velocity field and potential given by

v.r/ D �
m

r3
r and �.r/ D

m

r
:

The potentials or velocity fields of sources or sinks located at other points are

obtained by translation of these formulas; for instance, the velocity field of a source of

strength m at the point with position vector r0 is

v.r/ D �r
�

m

jr � r0j

�

D

m

jr� r0j
3
.r � r0/:

This should be compared with the gravitational force field due to a mass m at the

origin. The two are the same except for sign and a constant related to units of measure-

ment. For this reason we regard a point mass as a sink for its own gravitational field.

Similarly, the electrostatic field due to a point charge q at r0 is the field of a source

(or sink if q < 0) of strength proportional to q; if units of measurement are suitably

chosen we have

E.r/ D �r
�

q

jr� r0j

�

D

q

jr � r0j
3
.r � r0/:
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In general, the field lines of a vector field converge at a source or sink of that field.

A dipole is a system consisting of a source and a sink of equal strengthm separated

by a short distance `. The product � D m` is called the dipole moment, and the line

containing the source and sink is called the axis of the dipole. Real physical dipoles,

such as magnets, are frequently modelled by ideal dipoles that are the limits of such

real dipoles as m ! 1 and ` ! 0 in such a way that the dipole moment � remains

constant.

E X A M P L E 6
Calculate the velocity field, v.x; y; z/, associated with a dipole of

moment � located at the origin and having axis along the z-axis.

Solution We start with a source of strength m at position .0; 0; `=2/ and a sink of

strength m at .0; 0;�`=2/. The potential of this system is

�.r/ D �m

 

1
ˇ

ˇr� 1
2
`k
ˇ

ˇ

�

1
ˇ

ˇrC 1
2
`k
ˇ

ˇ

!

:

The potential of the ideal dipole is the limit of the potential of this system as m!1

and `! 0 in such a way that m` D �:

�.r/ D lim
`!0

m`D�

�m

 
ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

ˇ

ˇrC 1
2
`k
ˇ

ˇ

ˇ

ˇr � 1
2
`k
ˇ

ˇ

!

D �

�

jrj2
lim
`!0

ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

`

(now use l’Hôpital’s Rule and the rule for differentiating lengths of vectors)

D �

�

jrj2
lim
`!0

�

rC 1
2
`k
�

�
1
2

k
ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

�

r � 1
2
`k
�

�

�

�
1
2

k
�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

1

D �

�

jrj2
lim
`!0

 

1
2
z C

1
4
`

ˇ

ˇrC 1
2
`k
ˇ

ˇ

C

1
2
z �

1
4
`

ˇ

ˇr � 1
2
`k
ˇ

ˇ

!

D �

�z

jrj3
:

The required velocity field is the gradient of this potential. We have

@�

@x
D

3�z

jrj4

r � i

jrj
D

3�xz

jrj5

@�

@y
D

3�yz

jrj5

@�

@z
D �

�

jrj3
C

3�z
2

jrj5
D

�.2z
2
� x

2
� y

2
/

jrj5

v.r/ D r�.r/ D
�

jrj5

�

3xziC 3yzjC .2z2
� x

2
� y

2
/k
�

:

Some streamlines for a plane cross-section containing the z-axis are shown in Figure 15.6.
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Thus, r� D F holds everywhere in the plane, except at points .x; 0/ where x � 0.

(c) Suppose that F is conservative on the whole plane excluding the origin. Then

F D r� there, for some scalar function �.x; y/. Then r.� � �/ D 0 for 0 <

� < 2� , and � � � D C (constant), or � D � C C . The left side of this equation

is discontinuous along the positive x-axis but the right side is not. Therefore, the

two sides cannot be equal. This contradiction shows that F cannot be conservative

on the whole plane, excluding the origin.

Remark Observe that the origin .0; 0/ is a hole in the domain of F in the above

example. While F satisfies the necessary condition for being conservative everywhere

except at this hole, you must remove from the domain of F a half-line (ray), or, more

generally, a curve from the origin to infinity in order to get a potential function for

F. F is not conservative on any domain containing a curve that surrounds the origin.

Exercises 22–24 of Section 15.4 will shed further light on this situation.

Sources, Sinks, and Dipoles
Imagine that 3-space is filled with an incompressible fluid emitted by a point source

at the origin at a volume rate dV=dt D 4�m. (We say that the origin is a source of

strength m.) By symmetry, the fluid flows outward on radial lines from the origin with

equal speed at equal distances from the origin in all directions, and the fluid emitted at

the origin at some instant t D 0 will at later time t be spread over a spherical surface

of radius r D r.t/. All the fluid inside that sphere was emitted in the time interval

Œ0; t �, so we have

4

3
�r

3
D 4�mt:

Differentiating this equation with respect to t we obtain r2.dr=dt/ D m, and the

outward speed of the fluid at distance r from the origin is v.r/ D m=r2. The velocity

field of the moving fluid is therefore

v.r/ D v.r/
r

jrj
D

m

r3
r:

This velocity field is conservative (except at the origin) and has potential

�.r/ D �
m

r
:

A sink is a negative source. A sink of strength m at the origin (which annihilates

or sucks up fluid at a rate dV=dt D 4�m) has velocity field and potential given by

v.r/ D �
m

r3
r and �.r/ D

m

r
:

The potentials or velocity fields of sources or sinks located at other points are

obtained by translation of these formulas; for instance, the velocity field of a source of

strength m at the point with position vector r0 is

v.r/ D �r
�

m

jr � r0j

�

D

m

jr� r0j
3
.r � r0/:

This should be compared with the gravitational force field due to a mass m at the

origin. The two are the same except for sign and a constant related to units of measure-

ment. For this reason we regard a point mass as a sink for its own gravitational field.

Similarly, the electrostatic field due to a point charge q at r0 is the field of a source

(or sink if q < 0) of strength proportional to q; if units of measurement are suitably

chosen we have

E.r/ D �r
�

q

jr� r0j

�

D

q

jr � r0j
3
.r � r0/:
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In general, the field lines of a vector field converge at a source or sink of that field.

A dipole is a system consisting of a source and a sink of equal strengthm separated

by a short distance `. The product � D m` is called the dipole moment, and the line

containing the source and sink is called the axis of the dipole. Real physical dipoles,

such as magnets, are frequently modelled by ideal dipoles that are the limits of such

real dipoles as m ! 1 and ` ! 0 in such a way that the dipole moment � remains

constant.

E X A M P L E 6
Calculate the velocity field, v.x; y; z/, associated with a dipole of

moment � located at the origin and having axis along the z-axis.

Solution We start with a source of strength m at position .0; 0; `=2/ and a sink of

strength m at .0; 0;�`=2/. The potential of this system is

�.r/ D �m

 

1
ˇ

ˇr� 1
2
`k
ˇ

ˇ

�

1
ˇ

ˇrC 1
2
`k
ˇ

ˇ

!

:

The potential of the ideal dipole is the limit of the potential of this system as m!1

and `! 0 in such a way that m` D �:

�.r/ D lim
`!0

m`D�

�m

 
ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

ˇ

ˇrC 1
2
`k
ˇ

ˇ

ˇ

ˇr � 1
2
`k
ˇ

ˇ

!

D �

�

jrj2
lim
`!0

ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

`

(now use l’Hôpital’s Rule and the rule for differentiating lengths of vectors)

D �

�

jrj2
lim
`!0

�

rC 1
2
`k
�

�
1
2

k
ˇ

ˇrC 1
2
`k
ˇ

ˇ

�

�

r � 1
2
`k
�

�

�

�
1
2

k
�

ˇ

ˇr � 1
2
`k
ˇ

ˇ

1

D �

�

jrj2
lim
`!0

 

1
2
z C

1
4
`

ˇ

ˇrC 1
2
`k
ˇ

ˇ

C

1
2
z �

1
4
`

ˇ

ˇr � 1
2
`k
ˇ

ˇ

!

D �

�z

jrj3
:

The required velocity field is the gradient of this potential. We have

@�

@x
D

3�z

jrj4

r � i

jrj
D

3�xz

jrj5

@�

@y
D

3�yz

jrj5

@�

@z
D �

�

jrj3
C

3�z
2

jrj5
D

�.2z
2
� x

2
� y

2
/

jrj5

v.r/ D r�.r/ D
�

jrj5

�

3xziC 3yzjC .2z2
� x

2
� y

2
/k
�

:

Some streamlines for a plane cross-section containing the z-axis are shown in Figure 15.6.
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Figure 15.6 Streamlines of a dipole

z

x

E X E R C I S E S 15.2

In Exercises 1–6, determine whether the given vector field is

conservative, and find a potential if it is.

1. F.x; y; z/ D xi � 2yjC 3zk

2. F.x; y; z/ D yiC xjC z2k

3. F.x; y/ D
xi � yj

x2
C y2

4. F.x; y/ D
xiC yj

x2
C y2

5. F.x; y; z/ D .2xy � z2
/iC .2yz C x2

/j � .2zx � y2
/k

6. F.x; y; z/ D ex2Cy2Cz2

.xziC yzjC xyk/

7. Find the three-dimensional vector field with potential

�.r/ D
1

jr � r0j
2

.

8. Calculate r ln jrj, where r D xiC yjC zk.

9.I Show that the vector field

F.x; y; z/ D
2x

z
iC

2y

z
j �

x2
C y2

z2
k

is conservative, and find its potential. Describe the

equipotential surfaces. Find the field lines of F.

10.I Repeat Exercise 9 for the field

F.x; y; z/ D
2x

z
iC

2y

z
jC

�

1 �
x2
C y2

z2

�

k:

11.I Find the velocity field due to two sources of strengthm, one

located at .0; 0; `/ and the other at .0; 0;�`/. Where is the

velocity zero? Find the velocity at any point .x; y; 0/ in the

xy-plane. Where in the xy-plane is the speed greatest?

12.I Find the velocity field for a system consisting of a source of

strength 2 at the origin and a sink of strength 1 at .0; 0; 1/.

Show that the velocity is vertical at all points of a certain

sphere. Sketch the streamlines of the flow.

Exercises 13–18 provide an analysis of two-dimensional sources

and dipoles similar to that developed for three dimensions in the

text.

13. In 3-space filled with an incompressible fluid, we say that the

z-axis is a line source of strengthm if every interval �z

along that axis emits fluid at volume rate dV=dt D 2�m�z.

The fluid then spreads out symmetrically in all directions

perpendicular to the z-axis. Show that the velocity field of the

flow is

v D
m

x2
C y2

.xiC yj/:

14. The flow in Exercise 13 is two-dimensional because v depends

only on x and y and has no component in the z direction.

Regarded as a plane vector field, it is the field of a two-

dimensional point source of strengthm located at the origin

(i.e., fluid is emitted at the origin at the areal rate

dA=dt D 2�m). Show that the vector field is conservative,

and find a potential function �.x; y/ for it.

15.I Find the potential, �, and the field, F D r�, for a two-

dimensional dipole at the origin, with axis in the y direction

and dipole moment �. Such a dipole is the limit of a system

consisting of a source of strengthm at .0; `=2/ and a sink of

strengthm at .0;�`=2/, as `! 0 and m!1 such that

m` D �.

16. Show that the equipotential curves of the two-dimensional

dipole in Exercise 15 are circles tangent to the x-axis at the

origin.

17.I Show that the streamlines (field lines) of the two-dimensional

dipole in Exercises 15 and 16 are circles tangent to the y-axis

at the origin. Hint: It is possible to do this geometrically. If

you choose to do it by setting up a differential equation, you

may find the change of dependent variable

y D vx;
dy

dx
D v C x

dv

dx

useful for integrating the equation.

18.I Show that the velocity field of a line source of strength 2m can

be found by integrating the (three-dimensional) velocity field

of a point source of strengthmdz at .0; 0; z/ over the whole

z-axis. Why does the integral correspond to a line source of

strength 2m rather than strengthm? Can the potential of the

line source be obtained by integrating the potentials of the

point sources?
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19. Show that the gradient of a function expressed in terms of

polar coordinates in the plane is

r�.r; �/ D
@�

@r
OrC

1

r

@�

@�

O� :

(This is a repeat of Exercise 16 in Section 12.7.)

20. Use the result of Exercise 19 to show that a necessary

condition for the vector field

F.r; �/ D Fr .r; �/OrC F� .r; �/
O�

(expressed in terms of polar coordinates) to be conservative is

that

@Fr

@�
� r

@F�

@r
D F� :

21. Show that F D r sin 2� OrC r cos 2� O� is conservative, and find

a potential for it.

22. For what values of the constants ˛ and ˇ is the vector field

F D r2 cos � OrC ˛rˇ sin � O�

conservative? Find a potential for F if ˛ and ˇ have these

values.

15.3 Line Integrals

The definite integral,
R b

a
f .x/ dx, represents the total amount of a quantity distributed

along the x-axis between a and b in terms of the line density, f .x/, of that quantity

at point x. The amount of the quantity in an infinitesimal interval of length dx at x

is f .x/ dx, and the integral adds up these infinitesimal contributions (or elements)

to give the total amount of the quantity. Similarly, the integrals
RR

D
f .x; y/ dA and

RRR

R f .x; y; z/ dV represent the total amounts of quantities distributed over regions

D in the plane and R in 3-space in terms of the areal or volume densities of these

quantities.

It may happen that a quantity is distributed with specified line density along a

curve in the plane or in 3-space, or with specified areal density over a surface in

3-space. In such cases we require line integrals or surface integrals to add up the

contributing elements and calculate the total quantity. We examine line integrals in

this section and the next and surface integrals in Sections 15.5 and 15.6.

Let C be a bounded, continuous parametric curve in R
3. Recall (from Section 11.1)

that C is a smooth curve if it has a parametrization of the form

r D r.t/ D x.t/iC y.t/jC z.t/k; t in interval I;

with “velocity” vector v D dr=dt continuous and nonzero. We will call C a smooth

arc if it is a smooth curve with finite parameter interval I D Œa; b�.

In Section 11.3 we saw how to calculate the length of C by subdividing it into short

arcs using points corresponding to parameter values

a D t0 < t1 < t2 < � � � < tn�1 < tn D b;

adding up the lengths j�ri j D jri � ri�1j of line segments joining these points, and

taking the limit as the maximum distance between adjacent points approached zero.

The length was denoted

Z

C

ds

and is a special example of a line integral along C having integrand 1.

The line integral of a general function f .x; y; z/ can be defined similarly. We

choose a point .x�
i ; y

�
i ; z

�
i / on the i th subarc and form the Riemann sum

Sn D

n
X

iD1

f .x
�
i ; y

�
i ; z

�
i / j�ri j:
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Figure 15.6 Streamlines of a dipole

z

x

E X E R C I S E S 15.2

In Exercises 1–6, determine whether the given vector field is

conservative, and find a potential if it is.

1. F.x; y; z/ D xi � 2yjC 3zk

2. F.x; y; z/ D yiC xjC z2k

3. F.x; y/ D
xi � yj

x2
C y2

4. F.x; y/ D
xiC yj

x2
C y2

5. F.x; y; z/ D .2xy � z2
/iC .2yz C x2

/j � .2zx � y2
/k

6. F.x; y; z/ D ex2Cy2Cz2

.xziC yzjC xyk/

7. Find the three-dimensional vector field with potential

�.r/ D
1

jr � r0j
2

.

8. Calculate r ln jrj, where r D xiC yjC zk.

9.I Show that the vector field

F.x; y; z/ D
2x

z
iC

2y

z
j �

x2
C y2

z2
k

is conservative, and find its potential. Describe the

equipotential surfaces. Find the field lines of F.

10.I Repeat Exercise 9 for the field

F.x; y; z/ D
2x

z
iC

2y

z
jC

�

1 �
x2
C y2

z2

�

k:

11.I Find the velocity field due to two sources of strengthm, one

located at .0; 0; `/ and the other at .0; 0;�`/. Where is the

velocity zero? Find the velocity at any point .x; y; 0/ in the

xy-plane. Where in the xy-plane is the speed greatest?

12.I Find the velocity field for a system consisting of a source of

strength 2 at the origin and a sink of strength 1 at .0; 0; 1/.

Show that the velocity is vertical at all points of a certain

sphere. Sketch the streamlines of the flow.

Exercises 13–18 provide an analysis of two-dimensional sources

and dipoles similar to that developed for three dimensions in the

text.

13. In 3-space filled with an incompressible fluid, we say that the

z-axis is a line source of strengthm if every interval �z

along that axis emits fluid at volume rate dV=dt D 2�m�z.

The fluid then spreads out symmetrically in all directions

perpendicular to the z-axis. Show that the velocity field of the

flow is

v D
m

x2
C y2

.xiC yj/:

14. The flow in Exercise 13 is two-dimensional because v depends

only on x and y and has no component in the z direction.

Regarded as a plane vector field, it is the field of a two-

dimensional point source of strengthm located at the origin

(i.e., fluid is emitted at the origin at the areal rate

dA=dt D 2�m). Show that the vector field is conservative,

and find a potential function �.x; y/ for it.

15.I Find the potential, �, and the field, F D r�, for a two-

dimensional dipole at the origin, with axis in the y direction

and dipole moment �. Such a dipole is the limit of a system

consisting of a source of strengthm at .0; `=2/ and a sink of

strengthm at .0;�`=2/, as `! 0 and m!1 such that

m` D �.

16. Show that the equipotential curves of the two-dimensional

dipole in Exercise 15 are circles tangent to the x-axis at the

origin.

17.I Show that the streamlines (field lines) of the two-dimensional

dipole in Exercises 15 and 16 are circles tangent to the y-axis

at the origin. Hint: It is possible to do this geometrically. If

you choose to do it by setting up a differential equation, you

may find the change of dependent variable

y D vx;
dy

dx
D v C x

dv

dx

useful for integrating the equation.

18.I Show that the velocity field of a line source of strength 2m can

be found by integrating the (three-dimensional) velocity field

of a point source of strengthmdz at .0; 0; z/ over the whole

z-axis. Why does the integral correspond to a line source of

strength 2m rather than strengthm? Can the potential of the

line source be obtained by integrating the potentials of the

point sources?
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19. Show that the gradient of a function expressed in terms of

polar coordinates in the plane is

r�.r; �/ D
@�

@r
OrC

1

r

@�

@�

O� :

(This is a repeat of Exercise 16 in Section 12.7.)

20. Use the result of Exercise 19 to show that a necessary

condition for the vector field

F.r; �/ D Fr .r; �/OrC F� .r; �/
O�

(expressed in terms of polar coordinates) to be conservative is

that

@Fr

@�
� r

@F�

@r
D F� :

21. Show that F D r sin 2� OrC r cos 2� O� is conservative, and find

a potential for it.

22. For what values of the constants ˛ and ˇ is the vector field

F D r2 cos � OrC ˛rˇ sin � O�

conservative? Find a potential for F if ˛ and ˇ have these

values.

15.3 Line Integrals

The definite integral,
R b

a
f .x/ dx, represents the total amount of a quantity distributed

along the x-axis between a and b in terms of the line density, f .x/, of that quantity

at point x. The amount of the quantity in an infinitesimal interval of length dx at x

is f .x/ dx, and the integral adds up these infinitesimal contributions (or elements)

to give the total amount of the quantity. Similarly, the integrals
RR

D
f .x; y/ dA and

RRR

R f .x; y; z/ dV represent the total amounts of quantities distributed over regions

D in the plane and R in 3-space in terms of the areal or volume densities of these

quantities.

It may happen that a quantity is distributed with specified line density along a

curve in the plane or in 3-space, or with specified areal density over a surface in

3-space. In such cases we require line integrals or surface integrals to add up the

contributing elements and calculate the total quantity. We examine line integrals in

this section and the next and surface integrals in Sections 15.5 and 15.6.

Let C be a bounded, continuous parametric curve in R
3. Recall (from Section 11.1)

that C is a smooth curve if it has a parametrization of the form

r D r.t/ D x.t/iC y.t/jC z.t/k; t in interval I;

with “velocity” vector v D dr=dt continuous and nonzero. We will call C a smooth

arc if it is a smooth curve with finite parameter interval I D Œa; b�.

In Section 11.3 we saw how to calculate the length of C by subdividing it into short

arcs using points corresponding to parameter values

a D t0 < t1 < t2 < � � � < tn�1 < tn D b;

adding up the lengths j�ri j D jri � ri�1j of line segments joining these points, and

taking the limit as the maximum distance between adjacent points approached zero.

The length was denoted

Z

C

ds

and is a special example of a line integral along C having integrand 1.

The line integral of a general function f .x; y; z/ can be defined similarly. We

choose a point .x�
i ; y

�
i ; z

�
i / on the i th subarc and form the Riemann sum

Sn D

n
X

iD1

f .x
�
i ; y

�
i ; z

�
i / j�ri j:
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If this sum has a limit as max j�ri j ! 0, independent of the particular choices of the

points .x�
i ; y

�
i ; z

�
i /, then we call this limit the line integral of f along C and denote it

Z

C

f .x; y; z/ ds:

If C is a smooth arc and if f is continuous on C, then the limit will certainly exist;

its value is given by a definite integral of a continuous function, as shown in the next

paragraph. It will also exist (for continuous f ) if C is piecewise smooth, consisting of

finitely many smooth arcs linked end to end; in this case the line integral of f along

C is the sum of the line integrals of f along each of the smooth arcs. Improper line

integrals can also be considered, where f has discontinuities or where the length of a

curve is not finite.

Evaluating Line Integrals
The length of C was evaluated by expressing the arc length element ds D jdr=dt j dt

in terms of a parametrization r D r.t/, (a � t � b) of the curve, and integrating this

from t D a to t D b:

length of C D

Z

C

ds D

Z b

a

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt:

More general line integrals are evaluated similarly:

Z

C

f .x; y; z/ ds D

Z b

a

f
�

r.t/
�

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt:

Of course, all of the above discussion applies equally well to line integrals of functions

f .x; y/ along curves C in the xy-plane.

Remark It should be noted that the value of the line integral of a function f along

a curve C depends on f and C but not on the particular way C is parametrized. If

r D r�
.u/, ˛ � u � ˇ, is another parametrization of the same smooth curve C, then

any point r.t/ on C can be expressed in terms of the new parametrization as r�.u/,

where u depends on t : u D u.t/. If r�.u/ traces C in the same direction as r.t/, then

u.a/ D ˛, u.b/ D ˇ, and du=dt � 0; if r�.u/ traces C in the opposite direction, then

u.a/ D ˇ, u.b/ D ˛, and du=dt � 0. In either event,

Z b

a

f
�

r.t/
�

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z b

a

f
�

r�
.u.t//

�

ˇ

ˇ

ˇ

ˇ

dr�

du

du

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z ˇ

˛

f
�

r�
.u/
�

ˇ

ˇ

ˇ

ˇ

dr�

du

ˇ

ˇ

ˇ

ˇ

du:

Thus, the line integral is independent of parametrization of the curve C. The following

example illustrates this fact.

E X A M P L E 1 Evaluate I D

Z

C

.x
2
C y

2
/ ds, where C is the straight line from

the origin to the point .2; 1/.

Solution C can be parametrized x D 2t , y D t , for 0 � t � 1, that is,

r D 2t iC tj; 0 � t � 1; so that ds D

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D j2iC jj dt D
p

5 dt:

Thus, we have

I D

Z 1

0

.4t
2
C t

2
/
p

5 dt D 5
p

5

Z 1

0

t
2
dt D

5
p

5

3
:
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E X A M P L E 2
A circle of radius a > 0 has centre at the origin in the xy-plane.

Let C be the half of this circle lying in the half-plane y � 0. Use

two different parametrizations of C to find the moment of C about y D 0.

Solution We are asked to calculate

Z

C

y ds.

C can be parametrized as r D a cos t iC a sin tj, .0 � t � �/. Therefore,

dr

dt
D �a sin t iC a cos tj and

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

D a;

and the moment of C about y D 0 is

Z

C

y ds D

Z �

0

a sin t a dt D �a2 cos t

ˇ

ˇ

ˇ

ˇ

�

0

D 2a
2
:

C can also be parametrized r D xiC
p

a2
� x2j, .�a � x � a/, for which we have

dr

dx
D i �

x
p

a2
� x2

j;

ˇ

ˇ

ˇ

ˇ

dr

dx

ˇ

ˇ

ˇ

ˇ

D

s

1C
x2

a2
� x2

D

a
p

a2
� x2

:

Thus, the moment of C about y D 0 is

Z

C

y ds D

Z a

�a

p

a2
� x2

a
p

a2
� x2

dx D a

Z a

�a

dx D 2a
2
:

It is comforting to get the same answer using different parametrizations. Unlike the

line integrals of vector fields considered in the next section, the line integrals of scalar

fields considered here do not depend on the direction (orientation) of C. The two

parametrizations of the semicircle were in opposite directions but still gave the same

result.

Line integrals frequently lead to definite integrals that are very difficult or impossible

to evaluate without using numerical techniques. Only very simple curves and ones

that have been contrived to lead to simple expressions for ds are amenable to exact

calculation of line integrals.

E X A M P L E 3
Find the centroid of the circular helix C given by

r D a cos t iC a sin t jC bt k; 0 � t � 2�:

Solution As we observed in Example 6 of Section 11.3, for this helix ds D
p

a2
C b2 dt .

On the helix we have z D bt , so its moment about z D 0 is

MzD0 D

Z

C

z ds D b

p

a2
C b2

Z 2�

0

t dt D 2�
2
b

p

a2
C b2:

Since the helix has length L D 2�
p

a2
C b2, the z-component of its centroid is

MzD0=L D �b. The moments of the helix about x D 0 and y D 0 are

MxD0 D

Z

C

x ds D a

p

a2
C b2

Z 2�

0

cos t dt D 0;

MyD0 D

Z

C

y ds D a

p

a2
C b2

Z 2�

0

sin t dt D 0:
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If this sum has a limit as max j�ri j ! 0, independent of the particular choices of the

points .x�
i ; y

�
i ; z

�
i /, then we call this limit the line integral of f along C and denote it

Z

C

f .x; y; z/ ds:

If C is a smooth arc and if f is continuous on C, then the limit will certainly exist;

its value is given by a definite integral of a continuous function, as shown in the next

paragraph. It will also exist (for continuous f ) if C is piecewise smooth, consisting of

finitely many smooth arcs linked end to end; in this case the line integral of f along

C is the sum of the line integrals of f along each of the smooth arcs. Improper line

integrals can also be considered, where f has discontinuities or where the length of a

curve is not finite.

Evaluating Line Integrals
The length of C was evaluated by expressing the arc length element ds D jdr=dt j dt

in terms of a parametrization r D r.t/, (a � t � b) of the curve, and integrating this

from t D a to t D b:

length of C D

Z

C

ds D

Z b

a

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt:

More general line integrals are evaluated similarly:

Z

C

f .x; y; z/ ds D

Z b

a

f
�

r.t/
�

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt:

Of course, all of the above discussion applies equally well to line integrals of functions

f .x; y/ along curves C in the xy-plane.

Remark It should be noted that the value of the line integral of a function f along

a curve C depends on f and C but not on the particular way C is parametrized. If

r D r�
.u/, ˛ � u � ˇ, is another parametrization of the same smooth curve C, then

any point r.t/ on C can be expressed in terms of the new parametrization as r�.u/,

where u depends on t : u D u.t/. If r�.u/ traces C in the same direction as r.t/, then

u.a/ D ˛, u.b/ D ˇ, and du=dt � 0; if r�.u/ traces C in the opposite direction, then

u.a/ D ˇ, u.b/ D ˛, and du=dt � 0. In either event,

Z b

a

f
�

r.t/
�

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z b

a

f
�

r�
.u.t//

�

ˇ

ˇ

ˇ

ˇ

dr�

du

du

dt

ˇ

ˇ

ˇ

ˇ

dt D

Z ˇ

˛

f
�

r�
.u/
�

ˇ

ˇ

ˇ

ˇ

dr�

du

ˇ

ˇ

ˇ

ˇ

du:

Thus, the line integral is independent of parametrization of the curve C. The following

example illustrates this fact.

E X A M P L E 1 Evaluate I D

Z

C

.x
2
C y

2
/ ds, where C is the straight line from

the origin to the point .2; 1/.

Solution C can be parametrized x D 2t , y D t , for 0 � t � 1, that is,

r D 2t iC tj; 0 � t � 1; so that ds D

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

dt D j2iC jj dt D
p

5 dt:

Thus, we have

I D

Z 1

0

.4t
2
C t

2
/
p

5 dt D 5
p

5

Z 1

0

t
2
dt D

5
p

5

3
:
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E X A M P L E 2
A circle of radius a > 0 has centre at the origin in the xy-plane.

Let C be the half of this circle lying in the half-plane y � 0. Use

two different parametrizations of C to find the moment of C about y D 0.

Solution We are asked to calculate

Z

C

y ds.

C can be parametrized as r D a cos t iC a sin tj, .0 � t � �/. Therefore,

dr

dt
D �a sin t iC a cos tj and

ˇ

ˇ

ˇ

ˇ

dr

dt

ˇ

ˇ

ˇ

ˇ

D a;

and the moment of C about y D 0 is

Z

C

y ds D

Z �

0

a sin t a dt D �a2 cos t

ˇ

ˇ

ˇ

ˇ

�

0

D 2a
2
:

C can also be parametrized r D xiC
p

a2
� x2j, .�a � x � a/, for which we have

dr

dx
D i �

x
p

a2
� x2

j;

ˇ

ˇ

ˇ

ˇ

dr

dx

ˇ

ˇ

ˇ

ˇ

D

s

1C
x2

a2
� x2

D

a
p

a2
� x2

:

Thus, the moment of C about y D 0 is

Z

C

y ds D

Z a

�a

p

a2
� x2

a
p

a2
� x2

dx D a

Z a

�a

dx D 2a
2
:

It is comforting to get the same answer using different parametrizations. Unlike the

line integrals of vector fields considered in the next section, the line integrals of scalar

fields considered here do not depend on the direction (orientation) of C. The two

parametrizations of the semicircle were in opposite directions but still gave the same

result.

Line integrals frequently lead to definite integrals that are very difficult or impossible

to evaluate without using numerical techniques. Only very simple curves and ones

that have been contrived to lead to simple expressions for ds are amenable to exact

calculation of line integrals.

E X A M P L E 3
Find the centroid of the circular helix C given by

r D a cos t iC a sin t jC bt k; 0 � t � 2�:

Solution As we observed in Example 6 of Section 11.3, for this helix ds D
p

a2
C b2 dt .

On the helix we have z D bt , so its moment about z D 0 is

MzD0 D

Z

C

z ds D b

p

a2
C b2

Z 2�

0

t dt D 2�
2
b

p

a2
C b2:

Since the helix has length L D 2�
p

a2
C b2, the z-component of its centroid is

MzD0=L D �b. The moments of the helix about x D 0 and y D 0 are

MxD0 D

Z

C

x ds D a

p

a2
C b2

Z 2�

0

cos t dt D 0;

MyD0 D

Z

C

y ds D a

p

a2
C b2

Z 2�

0

sin t dt D 0:
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Thus, the centroid is .0; 0; �b/.

Sometimes a curve, along which a line integral is to be taken, is specified as the inter-

section of two surfaces with given equations. It is normally necessary to parametrize

the curve in order to evaluate a line integral. Recall from Section 11.3 that if one of

the surfaces is a cylinder parallel to one of the coordinate axes, it is usually easiest to

begin by parametrizing that cylinder. (Otherwise, combine the equations to eliminate

one variable and thus obtain such a cylinder on which the curve lies.)

E X A M P L E 4
Find the mass of a wire lying along the first octant part C of the

curve of intersection of the elliptic paraboloid z D 2 � x2
� 2y2

and the parabolic cylinder z D x2 between .0; 1; 0/ and .1; 0; 1/ (see Figure 15.7) if

the density of the wire at position .x; y; z/ is ı.x; y; z/ D xy.

Figure 15.7 The curve of intersection of

z D x
2 and z D 2 � x2

� 2y
2 x y

z

C

z D x2

z D 2 � x2
� 2y2

.0; 1; 0/

.1; 0; 1/

Solution We need a convenient parametrization of C. Since the curve C lies on the

cylinder z D x2 and x goes from 0 to 1, we can let x D t and z D t2. Thus,

2y
2
D 2� x

2
� z D 2� 2t

2, so y2
D 1� t

2. Since C lies in the first octant, it can be

parametrized by

x D t; y D

p

1 � t2; z D t
2
; .0 � t � 1/:

Then dx=dt D 1, dy=dt D �t=
p

1 � t2, and dz=dt D 2t , so

ds D

r

1C
t2

1 � t2
C 4t2 dt D

p

1C 4t2 � 4t4

p

1 � t2
dt:

Hence, the mass of the wire is

m D

Z

C

xy ds D

Z 1

0

t

p

1 � t2

p

1C 4t2 � 4t4

p

1 � t2
dt

D

Z 1

0

t

p

1C 4t2 � 4t4 dt Let u D t2

D

1

2

Z 1

0

p

1C 4u � 4u2 du

D

1

2

Z 1

0

p

2 � .2u � 1/2 du Let v D 2u � 1

D

1

4

Z 1

�1

p

2 � v2 dv D
1

2

Z 1

0

p

2 � v2 dv

D

1

2

�

�

4
C

1

2

�

D

� C 2

8
:
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(The final integral above was evaluated by interpreting it as the area of part of a circle.

You are invited to supply the details. It can also be done by the substitution v D
p

2 sinw.)

E X E R C I S E S 15.3

In Exercises 1–2, evaluate the given line integral over the specified

curve C.

1.

Z

C

.x C y/ ds; r D at iC bt jC ctk; 0 � t � m.

2.

Z

C

y ds; r D t2iC t jC t2k; 0 � t � m.

3. Show that the curve C given by

r D a cos t sin t iC a sin2
t jC a cos t k; .0 � t �

�
2
/;

lies on a sphere centred at the origin. Find

Z

C

z ds.

4. Let C be the conical helix with parametric equations

x D t cos t , y D t sin t , z D t , .0 � t � 2�/. Find

Z

C

z ds.

5. Find the mass of a wire along the curve

r D 3t iC 3t2jC 2t3k; .0 � t � 1/;

if the density at r.t/ is 1C t g/unit length.

6. Show that the curve C in Example 4 also has parametrization

x D cos t , y D sin t , z D cos2 t , .0 � t � �=2/, and

recalculate the mass of the wire in that example using this

parametrization.

7. Find the moment of inertia about the z-axis (i.e., the value of

ı

Z

C

.x
2
C y

2
/ ds) for a wire of constant density ı lying along

the curve C: r D et cos t iC et sin t jC tk, from t D 0 to

t D 2� .

8. Evaluate

Z

C

e
z
ds, where C is the curve in Exercise 7.

9. Find

Z

C

x
2
ds along the line of intersection of the two planes

x � y C z D 0 and x C y C 2z D 0 from the origin to the

point .3; 1;�2/.

10. Find

Z

C

p

1C 4x2z2 ds, where C is the curve of intersection

of the surfaces x2
C z2

D 1 and y D x2.

11. Find the mass and centre of mass of a wire bent in the shape of

the circular helix x D cos t , y D sin t , z D t , .0 � t � 2�/, if

the wire has line density given by ı.x; y; z/ D z.

12. Repeat Exercise 11 for the part of the wire corresponding to

0 � t � � .

13. Find the moment of inertia about the y-axis of the curve

x D e
t , y D

p

2 t , z D e�t , .0 � t � 1/, that is,

Z

C

.x
2
C z

2
/ ds:

14. Find the centroid of the curve in Exercise 13.

15.I Find

Z

C

x ds along the first octant part of the curve of

intersection of the cylinder x2
C y2

D a2 and the plane

z D x.

16.I Find

Z

C

z ds along the part of the curve x2
C y2

C z2
D 1,

x C y D 1, where z � 0.

17.I Find

Z

C

ds

.2y2
C 1/3=2

, where C is the parabola

z2
D x

2
C y2, x C z D 1. Hint: Use y D t as parameter.

18. Express as a definite integral, but do not try to evaluate, the

value of

Z

C

xyz ds, where C is the curve y D x2, z D y2

from .0; 0; 0/ to .2; 4; 16/.

19.I The function

E.k; �/ D

Z �

0

p

1 � k2 sin2
t dt

is called the elliptic integral function of the second kind.

The complete elliptic integral of the second kind is the

function E.k/ D E.k; �=2/. In terms of these functions,

express the length of one complete revolution of the elliptic

helix

x D a cos t; y D b sin t; z D ct;

where 0 < a < b. What is the length of that part of the helix

lying between t D 0 and t D T; where 0 < T < �=2?

20.I Evaluate

Z

L

ds

x2
C y2

, where L is the entire straight line with

equation Ax C By D C , where C ¤ 0. Hint: Use the

symmetry of the integrand to replace the line with a line

having a simpler equation but giving the same value to the

integral.
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Thus, the centroid is .0; 0; �b/.

Sometimes a curve, along which a line integral is to be taken, is specified as the inter-

section of two surfaces with given equations. It is normally necessary to parametrize

the curve in order to evaluate a line integral. Recall from Section 11.3 that if one of

the surfaces is a cylinder parallel to one of the coordinate axes, it is usually easiest to

begin by parametrizing that cylinder. (Otherwise, combine the equations to eliminate

one variable and thus obtain such a cylinder on which the curve lies.)

E X A M P L E 4
Find the mass of a wire lying along the first octant part C of the

curve of intersection of the elliptic paraboloid z D 2 � x2
� 2y2

and the parabolic cylinder z D x2 between .0; 1; 0/ and .1; 0; 1/ (see Figure 15.7) if

the density of the wire at position .x; y; z/ is ı.x; y; z/ D xy.

Figure 15.7 The curve of intersection of

z D x
2 and z D 2 � x2

� 2y
2 x y

z

C

z D x2

z D 2 � x2
� 2y2

.0; 1; 0/

.1; 0; 1/

Solution We need a convenient parametrization of C. Since the curve C lies on the

cylinder z D x2 and x goes from 0 to 1, we can let x D t and z D t2. Thus,

2y
2
D 2� x

2
� z D 2� 2t

2, so y2
D 1� t

2. Since C lies in the first octant, it can be

parametrized by

x D t; y D

p

1 � t2; z D t
2
; .0 � t � 1/:

Then dx=dt D 1, dy=dt D �t=
p

1 � t2, and dz=dt D 2t , so

ds D

r

1C
t2

1 � t2
C 4t2 dt D

p

1C 4t2 � 4t4

p

1 � t2
dt:

Hence, the mass of the wire is

m D

Z

C

xy ds D

Z 1

0

t

p

1 � t2

p

1C 4t2 � 4t4

p

1 � t2
dt

D

Z 1

0

t

p

1C 4t2 � 4t4 dt Let u D t2

D

1

2

Z 1

0

p

1C 4u � 4u2 du

D

1

2

Z 1

0

p

2 � .2u � 1/2 du Let v D 2u � 1

D

1

4

Z 1

�1

p

2 � v2 dv D
1

2

Z 1

0

p

2 � v2 dv

D

1

2

�

�

4
C

1

2

�

D

� C 2

8
:
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(The final integral above was evaluated by interpreting it as the area of part of a circle.

You are invited to supply the details. It can also be done by the substitution v D
p

2 sinw.)

E X E R C I S E S 15.3

In Exercises 1–2, evaluate the given line integral over the specified

curve C.

1.

Z

C

.x C y/ ds; r D at iC bt jC ctk; 0 � t � m.

2.

Z

C

y ds; r D t2iC t jC t2k; 0 � t � m.

3. Show that the curve C given by

r D a cos t sin t iC a sin2
t jC a cos t k; .0 � t �

�
2
/;

lies on a sphere centred at the origin. Find

Z

C

z ds.

4. Let C be the conical helix with parametric equations

x D t cos t , y D t sin t , z D t , .0 � t � 2�/. Find

Z

C

z ds.

5. Find the mass of a wire along the curve

r D 3t iC 3t2jC 2t3k; .0 � t � 1/;

if the density at r.t/ is 1C t g/unit length.

6. Show that the curve C in Example 4 also has parametrization

x D cos t , y D sin t , z D cos2 t , .0 � t � �=2/, and

recalculate the mass of the wire in that example using this

parametrization.

7. Find the moment of inertia about the z-axis (i.e., the value of

ı

Z

C

.x
2
C y

2
/ ds) for a wire of constant density ı lying along

the curve C: r D et cos t iC et sin t jC tk, from t D 0 to

t D 2� .

8. Evaluate

Z

C

e
z
ds, where C is the curve in Exercise 7.

9. Find

Z

C

x
2
ds along the line of intersection of the two planes

x � y C z D 0 and x C y C 2z D 0 from the origin to the

point .3; 1;�2/.

10. Find

Z

C

p

1C 4x2z2 ds, where C is the curve of intersection

of the surfaces x2
C z2

D 1 and y D x2.

11. Find the mass and centre of mass of a wire bent in the shape of

the circular helix x D cos t , y D sin t , z D t , .0 � t � 2�/, if

the wire has line density given by ı.x; y; z/ D z.

12. Repeat Exercise 11 for the part of the wire corresponding to

0 � t � � .

13. Find the moment of inertia about the y-axis of the curve

x D e
t , y D

p

2 t , z D e�t , .0 � t � 1/, that is,

Z

C

.x
2
C z

2
/ ds:

14. Find the centroid of the curve in Exercise 13.

15.I Find

Z

C

x ds along the first octant part of the curve of

intersection of the cylinder x2
C y2

D a2 and the plane

z D x.

16.I Find

Z

C

z ds along the part of the curve x2
C y2

C z2
D 1,

x C y D 1, where z � 0.

17.I Find

Z

C

ds

.2y2
C 1/3=2

, where C is the parabola

z2
D x

2
C y2, x C z D 1. Hint: Use y D t as parameter.

18. Express as a definite integral, but do not try to evaluate, the

value of

Z

C

xyz ds, where C is the curve y D x2, z D y2

from .0; 0; 0/ to .2; 4; 16/.

19.I The function

E.k; �/ D

Z �

0

p

1 � k2 sin2
t dt

is called the elliptic integral function of the second kind.

The complete elliptic integral of the second kind is the

function E.k/ D E.k; �=2/. In terms of these functions,

express the length of one complete revolution of the elliptic

helix

x D a cos t; y D b sin t; z D ct;

where 0 < a < b. What is the length of that part of the helix

lying between t D 0 and t D T; where 0 < T < �=2?

20.I Evaluate

Z

L

ds

x2
C y2

, where L is the entire straight line with

equation Ax C By D C , where C ¤ 0. Hint: Use the

symmetry of the integrand to replace the line with a line

having a simpler equation but giving the same value to the

integral.
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15.4 Line Integrals of Vector Fields

In elementary physics the work done by a constant force of magnitude F in moving

an object a distance d is defined to be the product of F and d : W D Fd . There

is, however, a catch to this: it is understood that the force is exerted in the direction

of motion of the object. If the object moves in a direction different from that of the

force (because of some other forces acting on it), then the work done by the particular

force is the product of the distance moved and the component of the force in the di-

rection of motion. For instance, the work done by gravity in causing a 10 kg crate to

slide 5 m down a ramp inclined at 45ı to the horizontal is W D 50g=
p

2 N�m (where

g D 9:8 m/s2), since the scalar projection of the 10g N gravitational force on the crate

in the direction of the ramp is 10g=
p

2 N.

The work done by a variable force F.x; y; z/ D F.r/, which depends continu-

ously on position, in moving an object along a smooth curve C is the integral of work

elements dW: The element dW corresponding to arc length element ds at position r

on C is ds times the tangential component of the force F.r/ along C in the direction of

motion (see Figure 15.8); since OT D dr=ds is the unit tangent to C,

dW D F.r/ � OT ds D F � dr:

Thus, the total work done by F in moving the object along C is
F

� OT

C
ds

Figure 15.8 dW D jFj cos � ds

D F � OT ds

W D

Z

C

F � OT ds D

Z

C

F � dr D

Z

C

F1 dx C F2 dy C F3 dz:

In general, if F D F1iC F2jC F3k is a continuous vector field, and C is an oriented

smooth curve, then the line integral of the tangential component of F along C is

Z

C

F � dr D

Z

C

F � OT ds

D

Z

C

F1.x; y; z/ dx C F2.x; y; z/ dy C F3.x; y; z/ dz:

Such a line integral is sometimes called, somewhat improperly, the line integral of F

along C. (It is not the line integral of F, which should have a vector value, but rather

the line integral of the tangential component of F, which has a scalar value.) Unlike

the line integral considered in the previous section, this line integral depends on the

direction of the orientation of C; reversing the direction of C causes this line integral

to change sign.

If C is a closed curve, the line integral of the tangential component of F around C

is also called the circulation of F around C. The fact that the curve is closed is often

indicated by a small circle drawn on the integral sign;
I

C

F � dr denotes the circulation of F around the closed curve C.

Like the line integrals studied in the previous section, a line integral of a continu-

ous vector field is converted into an ordinary definite integral by using a parametriza-

tion of the path of integration. For a smooth arc r D r.t/ D x.t/i C y.t/j C z.t/k,

.a � t � b/, we have

Z

C

F � dr D

Z b

a

F �
dr

dt
dt

D

Z b

a

�

F1

�

x.t/; y.t/; z.t/

�

dx

dt
C F2

�

x.t/; y.t/; z.t/

�

dy

dt

C F3

�

x.t/; y.t/; z.t/

�

dz

dt

�

dt:
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Although this type of line integral changes sign if the orientation of C is reversed,

it is otherwise independent of the particular parametrization used for C. Again, a line

integral over a piecewise smooth path is the sum of the line integrals over the individual

smooth arcs constituting that path.

E X A M P L E 1
Let F.x; y/ D y2iC 2xyj. Evaluate the line integral

Z

C

F � dr

from .0; 0/ to .1; 1/ along

(a) the straight line y D x,

(b) the curve y D x2, and

(c) the piecewise smooth path consisting of the straight line segments from .0; 0/ to

.0; 1/ and from .0; 1/ to .1; 1/.

Solution The three paths are shown in Figure 15.9. The straight path (a) can be
y

x

.1; 1/(c)

(c) (a)

(b)

Figure 15.9 Three paths from .0; 0/ to

.1; 1/

parametrized r D t iC tj, 0 � t � 1. Thus, dr D dt iC dtj and

F � dr D .t2iC 2t2j/ � .iC j/dt D 3t2 dt:

Therefore,

Z

C

F � dr D

Z 1

0

3t
2
dt D t

3

ˇ

ˇ

ˇ

ˇ

1

0

D 1:

The parabolic path (b) can be parametrized r D t i C t
2j, 0 � t � 1, so that

dr D dt iC 2t dtj. Thus,

F � dr D .t4iC 2t3j/ � .iC 2tj/ dt D 5t4 dt;

and

Z

C

F � dr D

Z 1

0

5t
4
dt D t

5

ˇ

ˇ

ˇ

ˇ

1

0

D 1:

The third path (c) is made up of two segments, and we parametrize each separately.

Let us use y as the parameter on the vertical segment (where x D 0 and dx D 0) and

x as the parameter on the horizontal segment (where y D 1 and dy D 0):

Z

C

F � dr D

Z

C

y
2
dx C 2xy dy

D

Z 1

0

.0/ dy C

Z 1

0

.1/ dx D 1:

In view of these results, we might ask whether
R

C
F � dr is the same along every path

from .0; 0/ to .1; 1/.

E X A M P L E 2
Let F D yi � xj. Find

R

C
F � dr from .1; 0/ to .0;�1/ along

(a) the straight line segment joining these points and

(b) three-quarters of the circle of unit radius centred at the origin and traversed coun-

terclockwise.
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15.4 Line Integrals of Vector Fields

In elementary physics the work done by a constant force of magnitude F in moving

an object a distance d is defined to be the product of F and d : W D Fd . There

is, however, a catch to this: it is understood that the force is exerted in the direction

of motion of the object. If the object moves in a direction different from that of the

force (because of some other forces acting on it), then the work done by the particular

force is the product of the distance moved and the component of the force in the di-

rection of motion. For instance, the work done by gravity in causing a 10 kg crate to

slide 5 m down a ramp inclined at 45ı to the horizontal is W D 50g=
p

2 N�m (where

g D 9:8 m/s2), since the scalar projection of the 10g N gravitational force on the crate

in the direction of the ramp is 10g=
p

2 N.

The work done by a variable force F.x; y; z/ D F.r/, which depends continu-

ously on position, in moving an object along a smooth curve C is the integral of work

elements dW: The element dW corresponding to arc length element ds at position r

on C is ds times the tangential component of the force F.r/ along C in the direction of

motion (see Figure 15.8); since OT D dr=ds is the unit tangent to C,

dW D F.r/ � OT ds D F � dr:

Thus, the total work done by F in moving the object along C is
F

� OT

C
ds

Figure 15.8 dW D jFj cos � ds

D F � OT ds

W D

Z

C

F � OT ds D

Z

C

F � dr D

Z

C

F1 dx C F2 dy C F3 dz:

In general, if F D F1iC F2jC F3k is a continuous vector field, and C is an oriented

smooth curve, then the line integral of the tangential component of F along C is

Z

C

F � dr D

Z

C

F � OT ds

D

Z

C

F1.x; y; z/ dx C F2.x; y; z/ dy C F3.x; y; z/ dz:

Such a line integral is sometimes called, somewhat improperly, the line integral of F

along C. (It is not the line integral of F, which should have a vector value, but rather

the line integral of the tangential component of F, which has a scalar value.) Unlike

the line integral considered in the previous section, this line integral depends on the

direction of the orientation of C; reversing the direction of C causes this line integral

to change sign.

If C is a closed curve, the line integral of the tangential component of F around C

is also called the circulation of F around C. The fact that the curve is closed is often

indicated by a small circle drawn on the integral sign;
I

C

F � dr denotes the circulation of F around the closed curve C.

Like the line integrals studied in the previous section, a line integral of a continu-

ous vector field is converted into an ordinary definite integral by using a parametriza-

tion of the path of integration. For a smooth arc r D r.t/ D x.t/i C y.t/j C z.t/k,

.a � t � b/, we have

Z

C

F � dr D

Z b

a

F �
dr

dt
dt

D

Z b

a

�

F1

�

x.t/; y.t/; z.t/

�

dx

dt
C F2

�

x.t/; y.t/; z.t/

�

dy

dt

C F3

�

x.t/; y.t/; z.t/

�

dz

dt

�

dt:
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Although this type of line integral changes sign if the orientation of C is reversed,

it is otherwise independent of the particular parametrization used for C. Again, a line

integral over a piecewise smooth path is the sum of the line integrals over the individual

smooth arcs constituting that path.

E X A M P L E 1
Let F.x; y/ D y2iC 2xyj. Evaluate the line integral

Z

C

F � dr

from .0; 0/ to .1; 1/ along

(a) the straight line y D x,

(b) the curve y D x2, and

(c) the piecewise smooth path consisting of the straight line segments from .0; 0/ to

.0; 1/ and from .0; 1/ to .1; 1/.

Solution The three paths are shown in Figure 15.9. The straight path (a) can be
y

x

.1; 1/(c)

(c) (a)

(b)

Figure 15.9 Three paths from .0; 0/ to

.1; 1/

parametrized r D t iC tj, 0 � t � 1. Thus, dr D dt iC dtj and

F � dr D .t2iC 2t2j/ � .iC j/dt D 3t2 dt:

Therefore,

Z

C

F � dr D

Z 1

0

3t
2
dt D t

3

ˇ

ˇ

ˇ

ˇ

1

0

D 1:

The parabolic path (b) can be parametrized r D t i C t
2j, 0 � t � 1, so that

dr D dt iC 2t dtj. Thus,

F � dr D .t4iC 2t3j/ � .iC 2tj/ dt D 5t4 dt;

and

Z

C

F � dr D

Z 1

0

5t
4
dt D t

5

ˇ

ˇ

ˇ

ˇ

1

0

D 1:

The third path (c) is made up of two segments, and we parametrize each separately.

Let us use y as the parameter on the vertical segment (where x D 0 and dx D 0) and

x as the parameter on the horizontal segment (where y D 1 and dy D 0):

Z

C

F � dr D

Z

C

y
2
dx C 2xy dy

D

Z 1

0

.0/ dy C

Z 1

0

.1/ dx D 1:

In view of these results, we might ask whether
R

C
F � dr is the same along every path

from .0; 0/ to .1; 1/.

E X A M P L E 2
Let F D yi � xj. Find

R

C
F � dr from .1; 0/ to .0;�1/ along

(a) the straight line segment joining these points and

(b) three-quarters of the circle of unit radius centred at the origin and traversed coun-

terclockwise.
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Solution Both paths are shown in Figure 15.10. The straight path (a) can be para-

metrized:

r D .1 � t/i � tj; 0 � t � 1:

Thus, dr D �dt i � dtj, and

y

x

1

(a)

�1

(b)

Figure 15.10 Two paths from .1; 0/ to

.0;�1/

Z

C

F � dr D

Z 1

0

�

.�t/.�dt/ � .1 � t/.�dt/

�

D

Z 1

0

dt D 1:

The circular path (b) can be parametrized:

r D cos t iC sin t j; 0 � t �
3�

2
;

so that dr D � sin t dt iC cos t dtj. Therefore,

F � dr D � sin2
t dt � cos2

t dt D �dt;

and we have

Z

C

F � dr D �

Z 3�=2

0

dt D �
3�

2
:

In this case the line integral depends on the path from .1; 0/ to .0;�1/ along which the

integral is taken.

Some readers may have noticed that in Example 1 above the vector field F is con-

servative, while in Example 2 it is not. Theorem 1 below confirms the link between

independence of path for a line integral of the tangential component of a vector field

and the existence of a scalar potential function for that field. This and subsequent the-

orems require specific assumptions on the nature of the domain of the vector field F,

so we need to formulate some topological definitions.

Connected and Simply Connected Domains
Recall that a set S in the plane (or in 3-space) is open if every point in S is the centre of

a disk (or a ball) having positive radius and contained in S . If S is open and B is a set

(possibly empty) of boundary points of S , then the setD D S [B is called a domain.

A domain can be open or closed or neither, but cannot contain isolated points; it must

have interior points near any of its boundary points. (See Section 10.1 for a discussion

of open and closed sets and interior and boundary points.)

D E F I N I T I O N

2

A domain D is said to be connected if every pair of points P and Q in D

can be joined by a piecewise smooth curve lying inD.

For instance, the set of points .x; y/ in the plane satisfying x > 0, y > 0, and x2
C

y2
� 4 is a connected domain, but the set of points satisfying jxj > 1 is not connected.

(There is no path from .�2; 0/ to .2; 0/ lying entirely in jxj > 1.) The set of points

.x; y; z/ in 3-space satisfying 0 < z < 1 is a connected domain, but the set satisfying

z ¤ 0 is not.

A closed curve is simple if it has no self-intersections other than beginning and

ending at the same point. (For example, a circle is a simple closed curve.) Imagine an

elastic band stretched in the shape of such a curve. If the elastic is infinitely shrinkable,

it can contract down to a single point.

D E F I N I T I O N

3

A simply connected domainD is a connected domain in which every simple

closed curve can be continuously shrunk to a point inD without any part ever

passing out of D.
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y

x

D

Figure 15.11 A simply connected

domain

y

x

D

Figure 15.12 A connected domain

that is not simply connected

y

x

DD

Figure 15.13 A domain that is not

connected

Figure 15.11 shows a simply connected domain in the plane. Figure 15.12 shows a

connected but not simply connected domain. (A closed curve surrounding the hole

cannot be shrunk to a point without passing out of D.) The domain in Figure 15.13 is

not even connected. It has two components; points in different components cannot be

joined by a curve that lies in D.

In the plane, a simply connected domain D can have no holes, not even a hole

consisting of a single point. The interior of every non–self-intersecting closed curve in

such a domain D lies in D. For instance, the domain of the function 1=.x2
C y2/ is

not simply connected because the origin does not belong to it. (The origin is a “hole”

in that domain.) In 3-space, a simply connected domain can have holes. The set of all

points in R
3 different from the origin is simply connected, as is the exterior of a ball.

But the set of all points in R
3 satisfying x2

C y2 > 0 is not simply connected. Neither

is the interior of a doughnut (a torus). In general, each of the following conditions

characterizes simply connected domains D:

(i) Any simple closed curve in D is the boundary of a “surface” lying in D.

(ii) If C1 and C2 are two curves in D having the same endpoints, then C1 can be

continuously deformed into C2 while remaining in D throughout the defor-

mation process.

Independence of Path

T H E O R E M

1

Independence of path

LetD be an open, connected domain, and let F be a smooth vector field defined onD.

Then the following three statements are equivalent in the sense that, if any one of them

is true, so are the other two:

(a) F is conservative in D.

(b)

I

C

F � dr D 0 for every piecewise smooth, closed curve C in D.

(c) Given any two points P0 and P1 in D,

Z

C

F � dr has the same value for all piece-

wise smooth curves in D starting at P0 and ending at P1.

PROOF We will show that (a) implies (b), that (b) implies (c), and that (c) implies

We require the domain D to be

open in this theorem to ensure

that partial derivatives can be

defined at any point of D

(a). It then follows that any one implies the other two.

Suppose (a) is true. Then F D r� for some scalar potential function � defined in

D. Therefore,

F � dr D
�

@�

@x
iC

@�

@y
jC

@�

@z
k
�

�

�

dx iC dy jC dzk
�

D

@�

@x
dx C

@�

@y
dy C

@�

@z
dz D d�:
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Solution Both paths are shown in Figure 15.10. The straight path (a) can be para-

metrized:

r D .1 � t/i � tj; 0 � t � 1:

Thus, dr D �dt i � dtj, and

y

x

1

(a)

�1

(b)

Figure 15.10 Two paths from .1; 0/ to

.0;�1/

Z

C

F � dr D

Z 1

0

�

.�t/.�dt/ � .1 � t/.�dt/

�

D

Z 1

0

dt D 1:

The circular path (b) can be parametrized:

r D cos t iC sin t j; 0 � t �
3�

2
;

so that dr D � sin t dt iC cos t dtj. Therefore,

F � dr D � sin2
t dt � cos2

t dt D �dt;

and we have

Z

C

F � dr D �

Z 3�=2

0

dt D �
3�

2
:

In this case the line integral depends on the path from .1; 0/ to .0;�1/ along which the

integral is taken.

Some readers may have noticed that in Example 1 above the vector field F is con-

servative, while in Example 2 it is not. Theorem 1 below confirms the link between

independence of path for a line integral of the tangential component of a vector field

and the existence of a scalar potential function for that field. This and subsequent the-

orems require specific assumptions on the nature of the domain of the vector field F,

so we need to formulate some topological definitions.

Connected and Simply Connected Domains
Recall that a set S in the plane (or in 3-space) is open if every point in S is the centre of

a disk (or a ball) having positive radius and contained in S . If S is open and B is a set

(possibly empty) of boundary points of S , then the setD D S [B is called a domain.

A domain can be open or closed or neither, but cannot contain isolated points; it must

have interior points near any of its boundary points. (See Section 10.1 for a discussion

of open and closed sets and interior and boundary points.)

D E F I N I T I O N

2

A domain D is said to be connected if every pair of points P and Q in D

can be joined by a piecewise smooth curve lying inD.

For instance, the set of points .x; y/ in the plane satisfying x > 0, y > 0, and x2
C

y2
� 4 is a connected domain, but the set of points satisfying jxj > 1 is not connected.

(There is no path from .�2; 0/ to .2; 0/ lying entirely in jxj > 1.) The set of points

.x; y; z/ in 3-space satisfying 0 < z < 1 is a connected domain, but the set satisfying

z ¤ 0 is not.

A closed curve is simple if it has no self-intersections other than beginning and

ending at the same point. (For example, a circle is a simple closed curve.) Imagine an

elastic band stretched in the shape of such a curve. If the elastic is infinitely shrinkable,

it can contract down to a single point.

D E F I N I T I O N

3

A simply connected domainD is a connected domain in which every simple

closed curve can be continuously shrunk to a point inD without any part ever

passing out of D.
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y

x

D

Figure 15.11 A simply connected

domain

y

x

D

Figure 15.12 A connected domain

that is not simply connected

y

x

DD

Figure 15.13 A domain that is not

connected

Figure 15.11 shows a simply connected domain in the plane. Figure 15.12 shows a

connected but not simply connected domain. (A closed curve surrounding the hole

cannot be shrunk to a point without passing out of D.) The domain in Figure 15.13 is

not even connected. It has two components; points in different components cannot be

joined by a curve that lies in D.

In the plane, a simply connected domain D can have no holes, not even a hole

consisting of a single point. The interior of every non–self-intersecting closed curve in

such a domain D lies in D. For instance, the domain of the function 1=.x2
C y2/ is

not simply connected because the origin does not belong to it. (The origin is a “hole”

in that domain.) In 3-space, a simply connected domain can have holes. The set of all

points in R
3 different from the origin is simply connected, as is the exterior of a ball.

But the set of all points in R
3 satisfying x2

C y2 > 0 is not simply connected. Neither

is the interior of a doughnut (a torus). In general, each of the following conditions

characterizes simply connected domains D:

(i) Any simple closed curve in D is the boundary of a “surface” lying in D.

(ii) If C1 and C2 are two curves in D having the same endpoints, then C1 can be

continuously deformed into C2 while remaining in D throughout the defor-

mation process.

Independence of Path

T H E O R E M

1

Independence of path

LetD be an open, connected domain, and let F be a smooth vector field defined onD.

Then the following three statements are equivalent in the sense that, if any one of them

is true, so are the other two:

(a) F is conservative in D.

(b)

I

C

F � dr D 0 for every piecewise smooth, closed curve C in D.

(c) Given any two points P0 and P1 in D,

Z

C

F � dr has the same value for all piece-

wise smooth curves in D starting at P0 and ending at P1.

PROOF We will show that (a) implies (b), that (b) implies (c), and that (c) implies

We require the domain D to be

open in this theorem to ensure

that partial derivatives can be

defined at any point of D

(a). It then follows that any one implies the other two.

Suppose (a) is true. Then F D r� for some scalar potential function � defined in

D. Therefore,

F � dr D
�

@�

@x
iC

@�

@y
jC

@�

@z
k
�

�

�

dx iC dy jC dzk
�

D

@�

@x
dx C

@�

@y
dy C

@�

@z
dz D d�:

9780134154367_Calculus   911 05/12/16   4:51 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 15 – page 892 October 17, 2016

892 CHAPTER 15 Vector Fields

If C is any piecewise smooth, closed curve, parametrized, say, by r D r.t/,

.a � t � b/, then r.a/ D r.b/, and

Z

C

F � dr D

Z b

a

d�
�

r.t/
�

dt
dt D �

�

r.b/
�

� �
�

r.a/
�

D 0:

Thus, (a) implies (b).

C1

C2

P0

P1

�C2

Figure 15.14 C1 �C2 D C1C .�C2/ is a

closed curve

Now suppose (b) is true. Let P0 and P1 be two points in D, and let C1 and C2 be

two piecewise smooth curves in D from P0 to P1. Let C D C1 �C2 denote the closed

curve going from P0 to P1 along C1 and then back to P0 along C2 in the opposite

direction. (See Figure 15.14.) Since we are assuming that (b) is true, we have

0 D

I

C

F � dr D

Z

C1

F � dr �

Z

C2

F � dr:

Therefore,
Z

C1

F � dr D

Z

C2

F � dr;

and we have proved that (b) implies (c).

Finally, suppose that (c) is true. Let P0 D .x0; y0; z0/ be a fixed point in the

domain D, and let P D .x; y; z/ be an arbitrary point in that domain. Define a

function � by

�.x; y; z/ D

Z

C

F � dr;

where C is some piecewise smooth curve in D from P0 to P . (Under the hypotheses

of the theorem such a curve exists, and, since we are assuming (c), the integral has the

same value for all such curves. Therefore, � is well defined in D.) We will show that

r� D F and thus establish that F is conservative and has potential �.

It is sufficient to show that @�=@x D F1.x; y; z/; the other two components are

treated similarly. Since D is open, there is a ball of positive radius centred at P and

contained in D. Pick a point .x1; y; z/ in this ball having x1 < x. Note that the line

from this point to P is parallel to the x-axis. Since we are free to choose the curve

C in the integral defining �, let us choose it to consist of two segments: C1, which

is piecewise smooth and goes from .x0; y0; z0/ to .x1; y; z/, and C2, a straight line

segment from .x1; y; z/ to .x; y; z/. (See Figure 15.15.) Then

�.x; y; z/ D

Z

C1

F � drC

Z

C2

F � dr:

The first integral does not depend on x, so its derivative with respect to x is zero. The

straight line path for the second integral is parametrized by r D t iC yjC zk, where

x1 � t � x so dr D dt i. By the Fundamental Theorem of Calculus,

@�

@x
D

@

@x

Z

C2

F � dr D
@

@x

Z x

x1

F1.t; y; z/ dt D F1.x; y; z/;

which is what we wanted. Thus, F D r� is conservative, and (c) implies (a).

x

y

z

.x0;y0;z0/

.x1;y;z/

C1

C2

.x;y;z/

Figure 15.15 A special path from

P0 to P1

Remark It is very easy to evaluate the line integral of the tangential component of a

conservative vector field along a curve C, when you know a potential for F. If F D r�,

and C goes from P0 to P1, then

Z

C

F � dr D

Z

C

d� D �.P1/� �.P0/:

As noted above, the value of the integral depends only on the endpoints of C.
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Remark In the next chapter we will add another item to the list of three conditions

shown to be equivalent in Theorem 1, provided that the domainD is simply connected.

For such a domain, each of the above three conditions in the theorem is equivalent to

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
; and

@F2

@z
D

@F3

@y
:

We already know that these equations are satisfied on a domain where F is conserva-

tive. Theorem 4 of Section 16.2 states that if these three equations hold on a simply

connected domain, then F is conservative on that domain.

E X A M P L E 3
For what values of the constants A and B is the vector field

F D Ax sin.�y/iC
�

x
2 cos.�y/C Bye�z

�

jC y2
e

�zk

conservative? For this choice of A and B , evaluate

Z

C

F � dr, where C is

(a) the curve r D cos t iC sin 2tjC sin2
tk, .0 � t � 2�/, and

(b) the curve of intersection of the paraboloid z D x2
C 4y2 and the plane

z D 3x � 2y from .0; 0; 0/ to .1; 1=2; 2/.

Solution F cannot be conservative unless

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
; and

@F2

@z
D

@F3

@y
;

that is, unless

A�x cos.�y/ D 2x cos.�y/; 0 D 0; and � Bye
�z
D 2ye

�z
:

Thus, we require that A D 2=� and B D �2. In this case, it is easily checked that

F D r�; where �.x; y; z/ D
x2 sin.�y/

�
� y

2
e

�z
:

For the curve (a) we have r.0/ D i D r.2�/, so this curve is a closed curve, and

Z

C

F � dr D

I

C

r� � dr D 0:

Since the curve (b) starts at .0; 0; 0/ and ends at .1; 1=2; 2/, we have

Z

C

F � dr D

�

x2 sin.�y/

�
� y

2
e

�z

�
ˇ

ˇ

ˇ

ˇ

.1;1=2;2/

.0;0;0/

D

1

�
�

1

4e2
:

The following example shows how to exploit the fact that

Z

C

F � dr

is easily evaluated for conservative F, even if the F we want to integrate isn’t quite

conservative.

E X A M P L E 4 Evaluate I D

I

C

.e
x sin y C 3y/dx C .ex cos y C 2x � 2y/dy

counterclockwise around the ellipse 4x2
C y2

D 4.
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If C is any piecewise smooth, closed curve, parametrized, say, by r D r.t/,

.a � t � b/, then r.a/ D r.b/, and

Z

C

F � dr D

Z b

a

d�
�

r.t/
�

dt
dt D �

�

r.b/
�

� �
�

r.a/
�

D 0:

Thus, (a) implies (b).

C1

C2

P0

P1

�C2

Figure 15.14 C1 �C2 D C1C .�C2/ is a

closed curve

Now suppose (b) is true. Let P0 and P1 be two points in D, and let C1 and C2 be

two piecewise smooth curves in D from P0 to P1. Let C D C1 �C2 denote the closed

curve going from P0 to P1 along C1 and then back to P0 along C2 in the opposite

direction. (See Figure 15.14.) Since we are assuming that (b) is true, we have

0 D

I

C

F � dr D

Z

C1

F � dr �

Z

C2

F � dr:

Therefore,
Z

C1

F � dr D

Z

C2

F � dr;

and we have proved that (b) implies (c).

Finally, suppose that (c) is true. Let P0 D .x0; y0; z0/ be a fixed point in the

domain D, and let P D .x; y; z/ be an arbitrary point in that domain. Define a

function � by

�.x; y; z/ D

Z

C

F � dr;

where C is some piecewise smooth curve in D from P0 to P . (Under the hypotheses

of the theorem such a curve exists, and, since we are assuming (c), the integral has the

same value for all such curves. Therefore, � is well defined in D.) We will show that

r� D F and thus establish that F is conservative and has potential �.

It is sufficient to show that @�=@x D F1.x; y; z/; the other two components are

treated similarly. Since D is open, there is a ball of positive radius centred at P and

contained in D. Pick a point .x1; y; z/ in this ball having x1 < x. Note that the line

from this point to P is parallel to the x-axis. Since we are free to choose the curve

C in the integral defining �, let us choose it to consist of two segments: C1, which

is piecewise smooth and goes from .x0; y0; z0/ to .x1; y; z/, and C2, a straight line

segment from .x1; y; z/ to .x; y; z/. (See Figure 15.15.) Then

�.x; y; z/ D

Z

C1

F � drC

Z

C2

F � dr:

The first integral does not depend on x, so its derivative with respect to x is zero. The

straight line path for the second integral is parametrized by r D t iC yjC zk, where

x1 � t � x so dr D dt i. By the Fundamental Theorem of Calculus,

@�

@x
D

@

@x

Z

C2

F � dr D
@

@x

Z x

x1

F1.t; y; z/ dt D F1.x; y; z/;

which is what we wanted. Thus, F D r� is conservative, and (c) implies (a).

x

y

z

.x0;y0;z0/

.x1;y;z/

C1

C2

.x;y;z/

Figure 15.15 A special path from

P0 to P1

Remark It is very easy to evaluate the line integral of the tangential component of a

conservative vector field along a curve C, when you know a potential for F. If F D r�,

and C goes from P0 to P1, then

Z

C

F � dr D

Z

C

d� D �.P1/� �.P0/:

As noted above, the value of the integral depends only on the endpoints of C.
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Remark In the next chapter we will add another item to the list of three conditions

shown to be equivalent in Theorem 1, provided that the domainD is simply connected.

For such a domain, each of the above three conditions in the theorem is equivalent to

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
; and

@F2

@z
D

@F3

@y
:

We already know that these equations are satisfied on a domain where F is conserva-

tive. Theorem 4 of Section 16.2 states that if these three equations hold on a simply

connected domain, then F is conservative on that domain.

E X A M P L E 3
For what values of the constants A and B is the vector field

F D Ax sin.�y/iC
�

x
2 cos.�y/C Bye�z

�

jC y2
e

�zk

conservative? For this choice of A and B , evaluate

Z

C

F � dr, where C is

(a) the curve r D cos t iC sin 2tjC sin2
tk, .0 � t � 2�/, and

(b) the curve of intersection of the paraboloid z D x2
C 4y2 and the plane

z D 3x � 2y from .0; 0; 0/ to .1; 1=2; 2/.

Solution F cannot be conservative unless

@F1

@y
D

@F2

@x
;

@F1

@z
D

@F3

@x
; and

@F2

@z
D

@F3

@y
;

that is, unless

A�x cos.�y/ D 2x cos.�y/; 0 D 0; and � Bye
�z
D 2ye

�z
:

Thus, we require that A D 2=� and B D �2. In this case, it is easily checked that

F D r�; where �.x; y; z/ D
x2 sin.�y/

�
� y

2
e

�z
:

For the curve (a) we have r.0/ D i D r.2�/, so this curve is a closed curve, and

Z

C

F � dr D

I

C

r� � dr D 0:

Since the curve (b) starts at .0; 0; 0/ and ends at .1; 1=2; 2/, we have

Z

C

F � dr D

�

x2 sin.�y/

�
� y

2
e

�z

�
ˇ

ˇ

ˇ

ˇ

.1;1=2;2/

.0;0;0/

D

1

�
�

1

4e2
:

The following example shows how to exploit the fact that

Z

C

F � dr

is easily evaluated for conservative F, even if the F we want to integrate isn’t quite

conservative.

E X A M P L E 4 Evaluate I D

I

C

.e
x sin y C 3y/dx C .ex cos y C 2x � 2y/dy

counterclockwise around the ellipse 4x2
C y2

D 4.
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Solution I D

I

C

F � dr, where F is the vector field

F D
�

e
x siny C 3y

�

iC
�

e
x cos y C 2x � 2y

�

j:

This vector field is not conservative, but it would be if the 3y term in F1 were 2y

instead; specifically, if

�.x; y/ D e
x siny C 2xy � y2

;

then F D r� C yi, the sum of a conservative part and a nonconservative part. There-

fore, we have

I D

I

C

r� � drC

I

C

y dx:

The first integral is zero since r� is conservative and C is closed. For the second

integral we parametrize C by x D cos t , y D 2 sin t , (0 � t � 2�), and obtain

I D

I

C

y dx D �2

Z 2�

0

sin2
t dt D �2

Z 2�

0

1 � cos.2t/

2
dt D �2�:

E X E R C I S E S 15.4

In Exercises 1–6, evaluate the line integral of the tangential

component of the given vector field along the given curve.

1. F.x; y/ D xyi � x2j along y D x2 from .0; 0/ to .1; 1/

2. F.x; y/ D cos x i � yj along y D sinx from .0; 0/ to .�; 0/

3. F.x; y; z/ D yiC zj � xk along the straight line from

.0; 0; 0/ to .1; 1; 1/

4. F.x; y; z/ D zi � yjC 2xk along the curve x D t , y D t2,

z D t
3 from .0; 0; 0/ to .1; 1; 1/

5. F.x; y; z/ D yziC xzjC xyk from .�1; 0; 0/ to .1; 0; 0/

along either direction of the curve of intersection of the

cylinder x2
C y2

D 1 and the plane z D y

6. F.x; y; z/ D .x � z/iC .y � z/j � .x C y/k along the

polygonal path from .0; 0; 0/ to .1; 0; 0/ to .1; 1; 0/ to .1; 1; 1/

7. Find the work done by the force field

F D .x C y/iC .x � z/jC .z � y/k

in moving an object from .1; 0;�1/ to .0;�2; 3/ along any

smooth curve.

8. Evaluate

I

C

x
2
y

2
dx C x

3
y dy counterclockwise around the

square with vertices .0; 0/, .1; 0/, .1; 1/, and .0; 1/.

9. Evaluate

Z

C

e
xCy sin.y C z/ dx C exCy

�

sin.y C z/C cos.y C z/

�

dy

C e
xCy cos.y C z/ dz

along the straight line segment from (0,0,0) to .1; �
4
;

�
4
/.

10. The field F D .axyC z/iCx2jC .bxC 2z/k is conservative.

Find a and b, and find a potential for F. Also, evaluate
R

C
F � dr, where C is the curve from .1; 1; 0/ to .0; 0; 3/ that

lies on the intersection of the surfaces 2x C y C z D 3 and

9x2
C 9y2

C 2z2
D 18 in the octant x � 0, y � 0, z � 0.

11. Determine the values of A and B for which the vector field

F D Ax ln z iC By2
z jC

�

x2

z
C y

3

�

k

is conservative. If C is the straight line from .1; 1; 1/ to

.2; 1; 2/, find

Z

C

2x ln z dx C 2y2
z dy C y

3
dz:

12. Find the work done by the force field

F D .y2 cos x C z3
/iC .2y sinx � 4/jC .3xz2

C 2/k

in moving a particle along the curve x D sin�1
t , y D 1 � 2t ,

z D 3t � 1, .0 � t � 1/.

13. If C is the intersection of z D ln.1C x/ and y D x from

.0; 0; 0/ to .1; 1; ln 2/, evaluate

Z

C

�

2x sin.�y/ � ez
�

dx C

�

�x
2 cos.�y/ � 3ez

�

dy � xe
z
dz:

14.A Is each of the following sets a domain? a connected domain? a

simply connected domain?

(a) the set of points .x; y/ in the plane such that x > 0 and

y � 0
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(b) the set of points .x; y/ in the plane such that x D 0 and

y � 0

(c) the set of points .x; y/ in the plane such that x ¤ 0 and

y > 0

(d) the set of points .x; y; z/ in 3-space such that x2 > 1

(e) the set of points .x; y; z/ in 3-space such that

x2
C y2 > 1

(f) the set of points .x; y; z/ in 3-space such that

x
2
C y

2
C z

2
> 1

In Exercises 15–19, evaluate the closed line integrals

(a)

I

C

x dy ; (b)

I

C

y dx

around the given curves, all oriented counterclockwise.

15. The circle x2
C y

2
D a

2

16. The ellipse
x2

a2
C

y2

b2
D 1

17. The boundary of the half-disk x2
C y2

� a2, y � 0

18. The boundary of the square with vertices .0; 0/, .1; 0/, .1; 1/,

and .0; 1/

19. The triangle with vertices .0; 0/, .a; 0/, and .0; b/

20. On the basis of your results for Exercises 15–19, guess the

values of the closed line integrals

(a)

I

C

x dy ; (b)

I

C

y dx

for any non–self-intersecting closed curve in the xy-plane.

Prove your guess in the case that C bounds a region of the

plane that is both x-simple and y-simple. (See Section 14.2.)

21. If f and g are scalar fields with continuous first partial

derivatives in a connected domainD, show that

Z

C

f rg � drC

Z

C

grf � dr D f .Q/g.Q/� f .P /g.P /

for any piecewise smooth curve in D from P to Q.

22. Evaluate

1

2�

I

C

�y dx C x dy

x2
C y2

(a) counterclockwise around the circle x2
C y2

D a2,

(b) clockwise around the square with vertices .�1;�1/,

.�1; 1/, .1; 1/, and .1;�1/,

(c) counterclockwise around the boundary of the region

1 � x2
C y2

� 4, y � 0.

23.A Review Example 5 in Section 15.2 in which it was shown that

@

@y

�

�y

x2
C y2

�

D

@

@x

�

x

x2
C y2

�

;

for all .x; y/ ¤ .0; 0/. Why does this result, together with that

of Exercise 22, not contradict the final assertion in the remark

following Theorem 1?

24.I (Winding number) Let C be a piecewise smooth curve in the

xy-plane that does not pass through the origin. Let

� D �.x; y/ be the polar angle coordinate of the point

P D .x; y/ on C, not restricted to an interval of length 2� ,

but varying continuously as P moves from one end of C to the

other. As in Example 5 of Section 15.2, it happens that

r� D �
y

x2
C y2

iC
x

x2
C y2

j:

If, in addition, C is a closed curve, show that

w.C/ D
1

2�

I

C

x dy � y dx

x2
C y2

has an integer value. w is called the winding number of C

about the origin.

15.5 Surfaces and Surface Integrals

This section and the next are devoted to integrals of functions defined over surfaces in

3-space. Before we can begin, it is necessary to make more precise just what is meant

by the term “surface.” Until now we have been treating surfaces in an intuitive way,

either as the graphs of functions f .x; y/ or as the graphs of equations f .x; y; z/ D 0.

A smooth curve is a one-dimensional object because points on it can be located

by giving one coordinate (for instance, the distance from an endpoint). Therefore,

the curve can be defined as the range of a vector-valued function of one real variable.

A surface is a two-dimensional object; points on it can be located by using two co-

ordinates, and it can be defined as the range of a vector-valued function of two real

variables. We will call certain such functions parametric surfaces.
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Solution I D

I

C

F � dr, where F is the vector field

F D
�

e
x siny C 3y

�

iC
�

e
x cos y C 2x � 2y

�

j:

This vector field is not conservative, but it would be if the 3y term in F1 were 2y

instead; specifically, if

�.x; y/ D e
x siny C 2xy � y2

;

then F D r� C yi, the sum of a conservative part and a nonconservative part. There-

fore, we have

I D

I

C

r� � drC

I

C

y dx:

The first integral is zero since r� is conservative and C is closed. For the second

integral we parametrize C by x D cos t , y D 2 sin t , (0 � t � 2�), and obtain

I D

I

C

y dx D �2

Z 2�

0

sin2
t dt D �2

Z 2�

0

1 � cos.2t/

2
dt D �2�:

E X E R C I S E S 15.4

In Exercises 1–6, evaluate the line integral of the tangential

component of the given vector field along the given curve.

1. F.x; y/ D xyi � x2j along y D x2 from .0; 0/ to .1; 1/

2. F.x; y/ D cos x i � yj along y D sinx from .0; 0/ to .�; 0/

3. F.x; y; z/ D yiC zj � xk along the straight line from

.0; 0; 0/ to .1; 1; 1/

4. F.x; y; z/ D zi � yjC 2xk along the curve x D t , y D t2,

z D t
3 from .0; 0; 0/ to .1; 1; 1/

5. F.x; y; z/ D yziC xzjC xyk from .�1; 0; 0/ to .1; 0; 0/

along either direction of the curve of intersection of the

cylinder x2
C y2

D 1 and the plane z D y

6. F.x; y; z/ D .x � z/iC .y � z/j � .x C y/k along the

polygonal path from .0; 0; 0/ to .1; 0; 0/ to .1; 1; 0/ to .1; 1; 1/

7. Find the work done by the force field

F D .x C y/iC .x � z/jC .z � y/k

in moving an object from .1; 0;�1/ to .0;�2; 3/ along any

smooth curve.

8. Evaluate

I

C

x
2
y

2
dx C x

3
y dy counterclockwise around the

square with vertices .0; 0/, .1; 0/, .1; 1/, and .0; 1/.

9. Evaluate

Z

C

e
xCy sin.y C z/ dx C exCy

�

sin.y C z/C cos.y C z/

�

dy

C e
xCy cos.y C z/ dz

along the straight line segment from (0,0,0) to .1; �
4
;

�
4
/.

10. The field F D .axyC z/iCx2jC .bxC 2z/k is conservative.

Find a and b, and find a potential for F. Also, evaluate
R

C
F � dr, where C is the curve from .1; 1; 0/ to .0; 0; 3/ that

lies on the intersection of the surfaces 2x C y C z D 3 and

9x2
C 9y2

C 2z2
D 18 in the octant x � 0, y � 0, z � 0.

11. Determine the values of A and B for which the vector field

F D Ax ln z iC By2
z jC

�

x2

z
C y

3

�

k

is conservative. If C is the straight line from .1; 1; 1/ to

.2; 1; 2/, find

Z

C

2x ln z dx C 2y2
z dy C y

3
dz:

12. Find the work done by the force field

F D .y2 cos x C z3
/iC .2y sinx � 4/jC .3xz2

C 2/k

in moving a particle along the curve x D sin�1
t , y D 1 � 2t ,

z D 3t � 1, .0 � t � 1/.

13. If C is the intersection of z D ln.1C x/ and y D x from

.0; 0; 0/ to .1; 1; ln 2/, evaluate

Z

C

�

2x sin.�y/ � ez
�

dx C

�

�x
2 cos.�y/ � 3ez

�

dy � xe
z
dz:

14.A Is each of the following sets a domain? a connected domain? a

simply connected domain?

(a) the set of points .x; y/ in the plane such that x > 0 and

y � 0

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 15 – page 895 October 17, 2016

SECTION 15.5: Surfaces and Surface Integrals 895

(b) the set of points .x; y/ in the plane such that x D 0 and

y � 0

(c) the set of points .x; y/ in the plane such that x ¤ 0 and

y > 0

(d) the set of points .x; y; z/ in 3-space such that x2 > 1

(e) the set of points .x; y; z/ in 3-space such that

x2
C y2 > 1

(f) the set of points .x; y; z/ in 3-space such that

x
2
C y

2
C z

2
> 1

In Exercises 15–19, evaluate the closed line integrals

(a)

I

C

x dy ; (b)

I

C

y dx

around the given curves, all oriented counterclockwise.

15. The circle x2
C y

2
D a

2

16. The ellipse
x2

a2
C

y2

b2
D 1

17. The boundary of the half-disk x2
C y2

� a2, y � 0

18. The boundary of the square with vertices .0; 0/, .1; 0/, .1; 1/,

and .0; 1/

19. The triangle with vertices .0; 0/, .a; 0/, and .0; b/

20. On the basis of your results for Exercises 15–19, guess the

values of the closed line integrals

(a)

I

C

x dy ; (b)

I

C

y dx

for any non–self-intersecting closed curve in the xy-plane.

Prove your guess in the case that C bounds a region of the

plane that is both x-simple and y-simple. (See Section 14.2.)

21. If f and g are scalar fields with continuous first partial

derivatives in a connected domainD, show that

Z

C

f rg � drC

Z

C

grf � dr D f .Q/g.Q/� f .P /g.P /

for any piecewise smooth curve in D from P to Q.

22. Evaluate

1

2�

I

C

�y dx C x dy

x2
C y2

(a) counterclockwise around the circle x2
C y2

D a2,

(b) clockwise around the square with vertices .�1;�1/,

.�1; 1/, .1; 1/, and .1;�1/,

(c) counterclockwise around the boundary of the region

1 � x2
C y2

� 4, y � 0.

23.A Review Example 5 in Section 15.2 in which it was shown that

@

@y

�

�y

x2
C y2

�

D

@

@x

�

x

x2
C y2

�

;

for all .x; y/ ¤ .0; 0/. Why does this result, together with that

of Exercise 22, not contradict the final assertion in the remark

following Theorem 1?

24.I (Winding number) Let C be a piecewise smooth curve in the

xy-plane that does not pass through the origin. Let

� D �.x; y/ be the polar angle coordinate of the point

P D .x; y/ on C, not restricted to an interval of length 2� ,

but varying continuously as P moves from one end of C to the

other. As in Example 5 of Section 15.2, it happens that

r� D �
y

x2
C y2

iC
x

x2
C y2

j:

If, in addition, C is a closed curve, show that

w.C/ D
1

2�

I

C

x dy � y dx

x2
C y2

has an integer value. w is called the winding number of C

about the origin.

15.5 Surfaces and Surface Integrals

This section and the next are devoted to integrals of functions defined over surfaces in

3-space. Before we can begin, it is necessary to make more precise just what is meant

by the term “surface.” Until now we have been treating surfaces in an intuitive way,

either as the graphs of functions f .x; y/ or as the graphs of equations f .x; y; z/ D 0.

A smooth curve is a one-dimensional object because points on it can be located

by giving one coordinate (for instance, the distance from an endpoint). Therefore,

the curve can be defined as the range of a vector-valued function of one real variable.

A surface is a two-dimensional object; points on it can be located by using two co-

ordinates, and it can be defined as the range of a vector-valued function of two real

variables. We will call certain such functions parametric surfaces.
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Parametric Surfaces

D E F I N I T I O N

4

A parametric surface in 3-space is a continuous function r defined on some

rectangle R given by a � u � b, c � v � d in the uv-plane and having

values in 3-space:

r.u; v/ D x.u; v/iC y.u; v/jC z.u; v/k; .u; v/ in R:

Figure 15.16 A parametric surface S

defined on parameter region R. The

contour curves on S correspond to the

rulings of R.
x

y

z

a b

c

d

v

u

r.u; v/.u; v/

R

S

Actually, we think of the range of the function r.u; v/ as being the parametric surface.

It is a set S of points .x; y; z/ in 3-space whose position vectors are the vectors r.u; v/

for .u; v/ inR. (See Figure 15.16.) If r is one-to-one, then the surface does not intersect

itself. In this case r maps the boundary of the rectangle R (the four edges) onto a curve

in 3-space, which we call the boundary of the parametric surface. The requirement

that R be a rectangle is made only to simplify the discussion. Any connected, closed,

bounded set in the uv-plane, having well-defined area and consisting of an open set

together with its boundary points, would do as well. Thus, we will from time to time

consider parametric surfaces over closed disks, triangles, or other such domains in the

uv-plane. Being the range of a continuous function defined on a closed, bounded set,

a parametric surface is always bounded in 3-space.

E X A M P L E 1
The graph of z D f .x; y/, where f has the rectangle R as its

domain, can be represented as the parametric surface

r D r.u; v/ D uiC vjC f .u; v/k

for .u; v/ in R. Its scalar parametric equations are

x D u; y D v; z D f .u; v/; .u; v/ in R:

For such graphs it is sometimes convenient to identify the uv-plane with the xy-plane

and write the equation of the surface in the form

r D xiC yjC f .x; y/k; .x; y/ in R:

E X A M P L E 2
Describe the surface

r D a cosu sin v iC a sinu sin v jC a cos v k; .0 � u � 2�; 0 � v � �=2/;

where a > 0. What is its boundary?
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Solution Observe that if x D a cosu sin v, y D a sinu sin v, and z D a cos v, then

x
2
C y

2
C z

2
D a

2. Thus, the given parametric surface lies on the sphere of radius

a centred at the origin. (Observe that u and v are the spherical coordinates � and �

on the sphere.) The restrictions on u and v allow .x; y/ to be any point in the disk

x2
C y2

� a2 but force z � 0. Thus, the surface is the upper half of the sphere. The

given parametrization is one-to-one on the open rectangle 0 < u < 2� , 0 < v < �=2,

but not on the closed rectangle, since the edges u D 0 and u D 2� get mapped onto

the same points, and the entire edge v D 0 collapses to a single point. The boundary

of the surface is still the circle x2
C y2

D a2, z D 0, and corresponds to the edge

v D �=2 of the rectangle.

Remark Surface parametrizations that are one-to-one only in the interior of the para-

meter domain R are still reasonable representations of the surface. However, as in Ex-

ample 2, the boundary of the surface may be obtained from only part of the boundary

of R, or there may be no boundary at all, in which case the surface is called a closed

surface. For example, if the domain of r in Example 2 is extended to allow 0 � v � � ,

then the surface becomes the entire sphere of radius a centred at the origin. The sphere

is a closed surface, having no boundary curves.

Remark Like parametrizations of curves, parametrizations of surfaces are not unique.

The hemisphere in Example 2 can also be parametrized:

r.u; v/ D uiC vjC
p

a2
� u2

� v2k for u
2
C v

2
� a

2
:

Here, the domain of r is a closed disk of radius a.

E X A M P L E 3
(A tube around a curve) If r D F.t/, a � t � b, is a parametric

curve C in 3-space having unit normal ON.t/ and binormal OB.t/,

then the parametric surface

r D F.u/C s cos v ON.u/C s sin v OB.u/; a � u � b; 0 � v � 2�;

is a tube-shaped surface of radius s centred along the curve C. (Why?) Figure 15.17

shows such a tube, having radius s D 0:25, around the curve

r D
�

1C 0:3 cos.3t/
��

cos.2t/iC sin.2t/j
�

C 0:35 sin.3t/k; 0 � t � 2�:

This closed curve is called a trefoil knot.

Figure 15.17 A tube in the shape of a

trefoil knot

Composite Surfaces
If two parametric surfaces are joined together along part or all of their boundary curves,

the result is called a composite surface, or, thinking geometrically, just a surface. For

example, a sphere can be obtained by joining two hemispheres along their boundary

circles. In general, composite surfaces can be obtained by joining a finite number

of parametric surfaces pairwise along edges. The surface of a cube consists of the

six square faces joined in pairs along the edges of the cube. This surface is closed

since there are no unjoined edges to comprise the boundary. If the top square face is

removed, the remaining five form the surface of a cubical box with no top. The top

edges of the four side faces now constitute the boundary of this composite surface.

(See Figure 15.18.)

Surface Integrals
In order to define integrals of functions defined on a surface as limits of Riemann sums,

we need to refer to the areas of regions on the surface. It is more difficult to define

the area of a curved surface than it is to define the length of a curve. However, you

Figure 15.18 A composite surface

obtained by joining five smooth parametric

surfaces (squares) in pairs along edges.

The four unpaired edges at the tops of the

side faces make up the boundary of the

composite surface.
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Parametric Surfaces

D E F I N I T I O N

4

A parametric surface in 3-space is a continuous function r defined on some

rectangle R given by a � u � b, c � v � d in the uv-plane and having

values in 3-space:

r.u; v/ D x.u; v/iC y.u; v/jC z.u; v/k; .u; v/ in R:

Figure 15.16 A parametric surface S

defined on parameter region R. The

contour curves on S correspond to the

rulings of R.
x

y

z

a b

c

d

v

u

r.u; v/.u; v/

R

S

Actually, we think of the range of the function r.u; v/ as being the parametric surface.

It is a set S of points .x; y; z/ in 3-space whose position vectors are the vectors r.u; v/

for .u; v/ inR. (See Figure 15.16.) If r is one-to-one, then the surface does not intersect

itself. In this case r maps the boundary of the rectangle R (the four edges) onto a curve

in 3-space, which we call the boundary of the parametric surface. The requirement

that R be a rectangle is made only to simplify the discussion. Any connected, closed,

bounded set in the uv-plane, having well-defined area and consisting of an open set

together with its boundary points, would do as well. Thus, we will from time to time

consider parametric surfaces over closed disks, triangles, or other such domains in the

uv-plane. Being the range of a continuous function defined on a closed, bounded set,

a parametric surface is always bounded in 3-space.

E X A M P L E 1
The graph of z D f .x; y/, where f has the rectangle R as its

domain, can be represented as the parametric surface

r D r.u; v/ D uiC vjC f .u; v/k

for .u; v/ in R. Its scalar parametric equations are

x D u; y D v; z D f .u; v/; .u; v/ in R:

For such graphs it is sometimes convenient to identify the uv-plane with the xy-plane

and write the equation of the surface in the form

r D xiC yjC f .x; y/k; .x; y/ in R:

E X A M P L E 2
Describe the surface

r D a cosu sin v iC a sinu sin v jC a cos v k; .0 � u � 2�; 0 � v � �=2/;

where a > 0. What is its boundary?
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Solution Observe that if x D a cosu sin v, y D a sinu sin v, and z D a cos v, then

x
2
C y

2
C z

2
D a

2. Thus, the given parametric surface lies on the sphere of radius

a centred at the origin. (Observe that u and v are the spherical coordinates � and �

on the sphere.) The restrictions on u and v allow .x; y/ to be any point in the disk

x2
C y2

� a2 but force z � 0. Thus, the surface is the upper half of the sphere. The

given parametrization is one-to-one on the open rectangle 0 < u < 2� , 0 < v < �=2,

but not on the closed rectangle, since the edges u D 0 and u D 2� get mapped onto

the same points, and the entire edge v D 0 collapses to a single point. The boundary

of the surface is still the circle x2
C y2

D a2, z D 0, and corresponds to the edge

v D �=2 of the rectangle.

Remark Surface parametrizations that are one-to-one only in the interior of the para-

meter domain R are still reasonable representations of the surface. However, as in Ex-

ample 2, the boundary of the surface may be obtained from only part of the boundary

of R, or there may be no boundary at all, in which case the surface is called a closed

surface. For example, if the domain of r in Example 2 is extended to allow 0 � v � � ,

then the surface becomes the entire sphere of radius a centred at the origin. The sphere

is a closed surface, having no boundary curves.

Remark Like parametrizations of curves, parametrizations of surfaces are not unique.

The hemisphere in Example 2 can also be parametrized:

r.u; v/ D uiC vjC
p

a2
� u2

� v2k for u
2
C v

2
� a

2
:

Here, the domain of r is a closed disk of radius a.

E X A M P L E 3
(A tube around a curve) If r D F.t/, a � t � b, is a parametric

curve C in 3-space having unit normal ON.t/ and binormal OB.t/,

then the parametric surface

r D F.u/C s cos v ON.u/C s sin v OB.u/; a � u � b; 0 � v � 2�;

is a tube-shaped surface of radius s centred along the curve C. (Why?) Figure 15.17

shows such a tube, having radius s D 0:25, around the curve

r D
�

1C 0:3 cos.3t/
��

cos.2t/iC sin.2t/j
�

C 0:35 sin.3t/k; 0 � t � 2�:

This closed curve is called a trefoil knot.

Figure 15.17 A tube in the shape of a

trefoil knot

Composite Surfaces
If two parametric surfaces are joined together along part or all of their boundary curves,

the result is called a composite surface, or, thinking geometrically, just a surface. For

example, a sphere can be obtained by joining two hemispheres along their boundary

circles. In general, composite surfaces can be obtained by joining a finite number

of parametric surfaces pairwise along edges. The surface of a cube consists of the

six square faces joined in pairs along the edges of the cube. This surface is closed

since there are no unjoined edges to comprise the boundary. If the top square face is

removed, the remaining five form the surface of a cubical box with no top. The top

edges of the four side faces now constitute the boundary of this composite surface.

(See Figure 15.18.)

Surface Integrals
In order to define integrals of functions defined on a surface as limits of Riemann sums,

we need to refer to the areas of regions on the surface. It is more difficult to define

the area of a curved surface than it is to define the length of a curve. However, you

Figure 15.18 A composite surface

obtained by joining five smooth parametric

surfaces (squares) in pairs along edges.

The four unpaired edges at the tops of the

side faces make up the boundary of the

composite surface.
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will likely have a good idea of what area means for a region lying in a plane, and we

examined briefly the problem of finding the area of the graph of a function f .x; y/

in Section 14.7. We will avoid difficulties by assuming that all the surfaces we will

encounter are “smooth enough” that they can be subdivided into small pieces each of

which is approximately planar. We can then approximate the surface area of each piece

by a plane area and add up the approximations to get a Riemann sum approximation

to the area of the whole surface. We will make more precise definitions of “smooth

surface” and “surface area” later in this section. For the moment, we assume the reader

has an intuitive feel for what they mean.

Figure 15.19 A partition of a parametric

surface into many nonoverlapping pieces x

y

z

S1
S2

Sn

S

Let S be a smooth surface of finite area in R
3, and let f .x; y; z/ be a bounded

function defined at all points of S. If we subdivide S into small, nonoverlapping pieces,

say S1, S2, : : : ; Sn, where Si has area�Si (see Figure 15.19), we can form a Riemann

sum Rn for f on S by choosing arbitrary points .xi ; yi ; zi / in Si and letting

Rn D

n
X

iD1

f .xi ; yi ; zi /�Si :

If such Riemann sums have a unique limit as the diameters of all the pieces Si approach

zero, independently of how the points .xi ; yi ; zi / are chosen, then we say that f is

integrable on S and call the limit the surface integral of f over S, denoting it by

ZZ

S

f .x; y; z/ dS:

Smooth Surfaces, Normals, and Area Elements
A surface is smooth if it has a unique tangent plane at any nonboundary point P: A

nonzero vector n normal to that tangent plane at P is said to be normal to the surface

at P: The following somewhat technical definition makes this precise.

D E F I N I T I O N

5

A set S in 3-space is a smooth surface if any point P in S has a neighbour-

hood N (an open ball of positive radius centred at P ) that is the domain of a

smooth function g.x; y; z/ satisfying:

(i) N \ S D fQ 2 N W g.Q/ D 0g and

(ii) rg.Q/ ¤ 0, if Q is in N \ S .

For example, the cone x2
C y2

D z2, with the origin removed, is a smooth surface.

Note that r.x2
C y2

� z2/ D 0 at the origin, and the cone is not smooth there, since

it does not have a unique tangent plane.
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A parametric surface cannot satisfy the condition of the smoothness definition

at its boundary points but will be called smooth if that condition is satisfied at all

nonboundary points.

We can find the normal to a smooth parametric surface defined on parameter do-

main R as follows. If .u0; v0/ is a point in the interior of R, then r D r.u; v0/ and

r D r.u0; v/ are two curves on S, intersecting at r0 D r.u0; v0/ and having, at that

point, tangent vectors (see Figure 15.20)

@r

@u

ˇ

ˇ

ˇ

ˇ

.u0;v0/

and
@r

@v

ˇ

ˇ

ˇ

ˇ

.u0;v0/

;

Figure 15.20 An area element dS on a

parametric surface

r.u; v0/

r.u; v0 C dv/

r.u0 C du; v/

r.u0; v/

@r

@u
du

@r

@v
dv

r0

dS

respectively. Assuming these two tangent vectors are not parallel, their cross product n,

which is not zero, is normal to S at r0. Furthermore, the area element on S bounded by

the four curves r D r.u0; v/, r D r.u0C du; v/, r D r.u; v0/, and r D r.u; v0C dv/

is an infinitesimal parallelogram spanned by the vectors .@r=@u/ du and .@r=@v/ dv

(at .u0; v0)), and hence has area

dS D

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv:

Let us express the normal vector n and the area element dS in terms of the components

of r. Since

@r

@u
D

@x

@u
iC

@y

@u
jC

@z

@u
k and

@r

@v
D

@x

@v
iC

@y

@v
jC

@z

@v
k;

the normal vector to S at r.u; v/ is

n D
@r

@u
�

@r

@v
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@x

@u

@y

@u

@z

@u

@x

@v

@y

@v

@z

@v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k:

Also, the area element at a point r.u; v/ on the surface is given by

dS D

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv

D

s

�

@.y; z/

@.u; v/

�2

C

�

@.z; x/

@.u; v/

�2

C

�

@.x; y/

@.u; v/

�2

dudv:
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will likely have a good idea of what area means for a region lying in a plane, and we

examined briefly the problem of finding the area of the graph of a function f .x; y/

in Section 14.7. We will avoid difficulties by assuming that all the surfaces we will

encounter are “smooth enough” that they can be subdivided into small pieces each of

which is approximately planar. We can then approximate the surface area of each piece

by a plane area and add up the approximations to get a Riemann sum approximation

to the area of the whole surface. We will make more precise definitions of “smooth

surface” and “surface area” later in this section. For the moment, we assume the reader

has an intuitive feel for what they mean.

Figure 15.19 A partition of a parametric

surface into many nonoverlapping pieces x

y

z

S1
S2

Sn

S

Let S be a smooth surface of finite area in R
3, and let f .x; y; z/ be a bounded

function defined at all points of S. If we subdivide S into small, nonoverlapping pieces,

say S1, S2, : : : ; Sn, where Si has area�Si (see Figure 15.19), we can form a Riemann

sum Rn for f on S by choosing arbitrary points .xi ; yi ; zi / in Si and letting

Rn D

n
X

iD1

f .xi ; yi ; zi /�Si :

If such Riemann sums have a unique limit as the diameters of all the pieces Si approach

zero, independently of how the points .xi ; yi ; zi / are chosen, then we say that f is

integrable on S and call the limit the surface integral of f over S, denoting it by

ZZ

S

f .x; y; z/ dS:

Smooth Surfaces, Normals, and Area Elements
A surface is smooth if it has a unique tangent plane at any nonboundary point P: A

nonzero vector n normal to that tangent plane at P is said to be normal to the surface

at P: The following somewhat technical definition makes this precise.

D E F I N I T I O N

5

A set S in 3-space is a smooth surface if any point P in S has a neighbour-

hood N (an open ball of positive radius centred at P ) that is the domain of a

smooth function g.x; y; z/ satisfying:

(i) N \ S D fQ 2 N W g.Q/ D 0g and

(ii) rg.Q/ ¤ 0, if Q is in N \ S .

For example, the cone x2
C y2

D z2, with the origin removed, is a smooth surface.

Note that r.x2
C y2

� z2/ D 0 at the origin, and the cone is not smooth there, since

it does not have a unique tangent plane.
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A parametric surface cannot satisfy the condition of the smoothness definition

at its boundary points but will be called smooth if that condition is satisfied at all

nonboundary points.

We can find the normal to a smooth parametric surface defined on parameter do-

main R as follows. If .u0; v0/ is a point in the interior of R, then r D r.u; v0/ and

r D r.u0; v/ are two curves on S, intersecting at r0 D r.u0; v0/ and having, at that

point, tangent vectors (see Figure 15.20)

@r

@u

ˇ

ˇ

ˇ

ˇ

.u0;v0/

and
@r

@v

ˇ

ˇ

ˇ

ˇ

.u0;v0/

;

Figure 15.20 An area element dS on a

parametric surface

r.u; v0/

r.u; v0 C dv/

r.u0 C du; v/

r.u0; v/

@r

@u
du

@r

@v
dv

r0

dS

respectively. Assuming these two tangent vectors are not parallel, their cross product n,

which is not zero, is normal to S at r0. Furthermore, the area element on S bounded by

the four curves r D r.u0; v/, r D r.u0C du; v/, r D r.u; v0/, and r D r.u; v0C dv/

is an infinitesimal parallelogram spanned by the vectors .@r=@u/ du and .@r=@v/ dv

(at .u0; v0)), and hence has area

dS D

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv:

Let us express the normal vector n and the area element dS in terms of the components

of r. Since

@r

@u
D

@x

@u
iC

@y

@u
jC

@z

@u
k and

@r

@v
D

@x

@v
iC

@y

@v
jC

@z

@v
k;

the normal vector to S at r.u; v/ is

n D
@r

@u
�

@r

@v
D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@x

@u

@y

@u

@z

@u

@x

@v

@y

@v

@z

@v

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k:

Also, the area element at a point r.u; v/ on the surface is given by

dS D

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv

D

s

�

@.y; z/

@.u; v/

�2

C

�

@.z; x/

@.u; v/

�2

C

�

@.x; y/

@.u; v/

�2

dudv:
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The area of the surface itself is the “sum” of these area elements:

Area of S D

ZZ

S

dS:

In general, the surface integral of a function f .r/ D f .x; y; z/ over the surface S

defined by the parametric equations r D r.u; v/ for .u; v/ in the domain D of the

uv-plane is given by

ZZ

S

f dS D

ZZ

D

f
�

r.u; v/
�

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv

D

ZZ

D

f
�

x.u; v/; y.u; v/; z.u; v/
�

�

s

�

@.y; z/

@.u; v/

�2

C

�

@.z; x/

@.u; v/

�2

C

�

@.x; y/

@.u; v/

�2

dudv:

E X A M P L E 4
The graph z D g.x; y/ of a function g with continuous first partial

derivatives in a domain D of the xy-plane can be regarded as a

parametric surface S with parametrization

x D u; y D v; z D g.u; v/; .u; v/ in D:

In this case,

@.y; z/

@.u; v/
D �g1.u; v/;

@.z; x/

@.u; v/
D �g2.u; v/; and

@.x; y/

@.u; v/
D 1;

and, since the parameter region coincides with the domainD of g, the surface integral

of f .x; y; z/ over S can be expressed as a double integral over D:

ZZ

S

f .x; y; z/ dS

D

ZZ

D

f
�

x; y; g.x; y/
�

q

1C
�

g1.x; y/
�2
C

�

g2.x; y/
�2
dx dy:

As observed in Section 14.7, this formula can also be justified geometrically. The

vector n D �g1.x; y/i � g2.x; y/j C k is normal to S and makes angle  with the

positive z-axis, where

cos  D
n � k

jnj
D

1
q

1C
�

g1.x; y/
�2
C

�

g2.x; y/
�2
:
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Figure 15.21 The surface area element

dS and its projection onto the xy-plane x

y

z



k n D �g1i � g2jC k

z D g.x; y/
dS

S

dx
dy

dA

The surface area element dS must have area 1= cos  times the area dx dy of its per-

pendicular projection onto the xy-plane. (See Figure 15.21.)

Evaluating Surface Integrals
We illustrate the use of the formulas given above for dS in calculating surface integrals.

E X A M P L E 5 Evaluate

ZZ

S

z dS over the conical surface z D
p

x2
C y2 be-

tween z D 0 and z D 1.

Solution Since z2
D x2

Cy2 on the surface S, we have @z=@x D x=z and @z=@y D

y=z. Therefore,

x

y

z

z D
p

x2
C y2

n

k

45ı

Figure 15.22 dS D
p

2 dx dy on this

cone

dS D

r

1C
x2

z2
C

y2

z2
dx dy D

s

z2
C z2

z2
dx dy D

p

2 dx dy:

(Note that we could have anticipated this result, since the normal to the cone always

makes an angle of  D 45ı with the positive z-axis; see Figure 15.22. Therefore,

dS D dx dy= cos 45ı
D

p

2 dx dy.) Since z D
p

x2
C y2

D r on the conical

surface, it is easiest to carry out the integration in polar coordinates:
ZZ

S

z dS D
p

2

ZZ

x2Cy2�1

z dx dy

D

p

2

Z 2�

0

d�

Z 1

0

r
2
dr D

2
p

2�

3
:

E X A M P L E 6
Use polar coordinates in the uv-plane to find the moment of inter-

tia of the parametric surface S given by x D 2uv, y D u2
� v2,

z D u2
C v2, where u2

C v2
� 1.

Solution Let u D r cos � and v D r sin � so that x D 2uv D r2 sin.2�/, y D

u
2
� v

2
D r

2 cos.2�/, and z D r2. Note that using 0 � � � 2� would result in .r; �/

covering the disk r � 1 twice;1 we use 0 � � � � so as to cover it only once. By

direct calculation,

@.x; y/

@.r; �/
D �4r

3
;

@.y; z/

@.r; �/
D 4r

3 sin.2�/;
@.z; x/

@.r; �/
D 4r

3 cos.2�/;

1 Versions of this Example in previous editions failed to recognize that the given parametriza-

tion covered the surface twice and therefore gave double the correct moment of inertia. The

authors are grateful to Anders Olofsson for pointing this out.
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The area of the surface itself is the “sum” of these area elements:

Area of S D

ZZ

S

dS:

In general, the surface integral of a function f .r/ D f .x; y; z/ over the surface S

defined by the parametric equations r D r.u; v/ for .u; v/ in the domain D of the

uv-plane is given by

ZZ

S

f dS D

ZZ

D

f
�

r.u; v/
�

ˇ

ˇ

ˇ

ˇ

@r

@u
�

@r

@v

ˇ

ˇ

ˇ

ˇ

dudv

D

ZZ

D

f
�

x.u; v/; y.u; v/; z.u; v/
�

�

s

�

@.y; z/

@.u; v/

�2

C

�

@.z; x/

@.u; v/

�2

C

�

@.x; y/

@.u; v/

�2

dudv:

E X A M P L E 4
The graph z D g.x; y/ of a function g with continuous first partial

derivatives in a domain D of the xy-plane can be regarded as a

parametric surface S with parametrization

x D u; y D v; z D g.u; v/; .u; v/ in D:

In this case,

@.y; z/

@.u; v/
D �g1.u; v/;

@.z; x/

@.u; v/
D �g2.u; v/; and

@.x; y/

@.u; v/
D 1;

and, since the parameter region coincides with the domainD of g, the surface integral

of f .x; y; z/ over S can be expressed as a double integral over D:

ZZ

S

f .x; y; z/ dS

D

ZZ

D

f
�

x; y; g.x; y/
�

q

1C
�

g1.x; y/
�2
C

�

g2.x; y/
�2
dx dy:

As observed in Section 14.7, this formula can also be justified geometrically. The

vector n D �g1.x; y/i � g2.x; y/j C k is normal to S and makes angle  with the

positive z-axis, where

cos  D
n � k

jnj
D

1
q

1C
�

g1.x; y/
�2
C

�

g2.x; y/
�2
:
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Figure 15.21 The surface area element

dS and its projection onto the xy-plane x

y

z



k n D �g1i � g2jC k

z D g.x; y/
dS

S

dx
dy

dA

The surface area element dS must have area 1= cos  times the area dx dy of its per-

pendicular projection onto the xy-plane. (See Figure 15.21.)

Evaluating Surface Integrals
We illustrate the use of the formulas given above for dS in calculating surface integrals.

E X A M P L E 5 Evaluate

ZZ

S

z dS over the conical surface z D
p

x2
C y2 be-

tween z D 0 and z D 1.

Solution Since z2
D x2

Cy2 on the surface S, we have @z=@x D x=z and @z=@y D

y=z. Therefore,

x

y

z

z D
p

x2
C y2

n

k

45ı

Figure 15.22 dS D
p

2 dx dy on this

cone

dS D

r

1C
x2

z2
C

y2

z2
dx dy D

s

z2
C z2

z2
dx dy D

p

2 dx dy:

(Note that we could have anticipated this result, since the normal to the cone always

makes an angle of  D 45ı with the positive z-axis; see Figure 15.22. Therefore,

dS D dx dy= cos 45ı
D

p

2 dx dy.) Since z D
p

x2
C y2

D r on the conical

surface, it is easiest to carry out the integration in polar coordinates:
ZZ

S

z dS D
p

2

ZZ

x2Cy2�1

z dx dy

D

p

2

Z 2�

0

d�

Z 1

0

r
2
dr D

2
p

2�

3
:

E X A M P L E 6
Use polar coordinates in the uv-plane to find the moment of inter-

tia of the parametric surface S given by x D 2uv, y D u2
� v2,

z D u2
C v2, where u2

C v2
� 1.

Solution Let u D r cos � and v D r sin � so that x D 2uv D r2 sin.2�/, y D

u
2
� v

2
D r

2 cos.2�/, and z D r2. Note that using 0 � � � 2� would result in .r; �/

covering the disk r � 1 twice;1 we use 0 � � � � so as to cover it only once. By

direct calculation,

@.x; y/

@.r; �/
D �4r

3
;

@.y; z/

@.r; �/
D 4r

3 sin.2�/;
@.z; x/

@.r; �/
D 4r

3 cos.2�/;

1 Versions of this Example in previous editions failed to recognize that the given parametriza-

tion covered the surface twice and therefore gave double the correct moment of inertia. The

authors are grateful to Anders Olofsson for pointing this out.
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and so

dS D

q

16r6
C 16r6 sin2

.2�/C 16r6 cos2.2�/ dr; d� D 4
p

2 r
3
dr d�:

The required moment of inertia of S about the z-axis is therefore

ZZ

S

.x
2
C y

2
/ dS D

ZZ

S

r
4
dS D 4

p

2

Z 1

0

r
7
dr

Z �

0

d� D
�
p

2
:

Even though most surfaces we encounter can be easily parametrized, it is usually pos-

sible to obtain the surface area element dS geometrically rather than relying on the

parametric formula. As we have seen above, if a surface has a one-to-one projection

onto a region in the xy-plane, then the area element dS on the surface can be expressed

as

dS D

ˇ

ˇ

ˇ

ˇ

1

cos 

ˇ

ˇ

ˇ

ˇ

dx dy D
jnj

jn � kj
dx dy;

where  is the angle between the normal vector n to S and the positive z-axis. This

formula is useful no matter how we obtain n.

Consider a surface S with equation of the form G.x; y; z/ D 0. As we discovered

in Section 12.7, if G has continuous first partial derivatives that do not all vanish at a

point .x; y; z/ on S, then the nonzero vector

n D rG.x; y; z/

is normal to S at that point. Since n�k D G3.x; y; z/, if S has a one-to-one projection

onto the domain D in the xy-plane, then

dS D

ˇ

ˇ

ˇ

ˇ

rG.x; y; z/

G3.x; y; z/

ˇ

ˇ

ˇ

ˇ

dx dy;

and the surface integral of f .x; y; z/ over S can be expressed as a double integral over

the domain D:

ZZ

S

f .x; y; z/ dS D

ZZ

D

f
�

x; y; g.x; y/
�

ˇ

ˇ

ˇ

ˇ

rG.x; y; z/

G3.x; y; z/

ˇ

ˇ

ˇ

ˇ

dx dy:

Of course, there are analogous formulas for area elements of surfaces (and integrals

over surfaces) with one-to-one projections onto the xz-plane or the yz-plane. (G3 is

replaced by G2 and G1, respectively.)

E X A M P L E 7 Find the moment about z D 0, that is,

ZZ

S

z dS , where S is the

hyperbolic bowl z2
D 1C x2

C y2 between the planes z D 1 and

z D
p

5.

Solution S is given by G.x; y; z/ D 0, where G.x; y; z/ D x2
Cy2

� z2
C 1. It lies

above the disk x2
C y2

� 4 in the xy-plane. We have rG D 2xiC 2yj � 2zk, and

G3 D �2z. Hence, on S, we have

z dS D z

p

4x2
C 4y2

C 4z2

2z
dx dy D

p

1C 2.x2
C y2/ dx dy;

and the required moment is
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ZZ

S

z dS D

ZZ

x2Cy2�4

p

1C 2.x2
C y2/ dx dy

D

Z 2�

0

d�

Z 2

0

p

1C 2r2 r dr D
�

3
.1C 2r

2
/
3=2
ˇ

ˇ

ˇ

2

0
D

26�

3
:

The next example illustrates a technique that can often reduce the effort needed to

integrate over a cylindrical surface.

E X A M P L E 8
Find the area of that part of the cylinder x2

C y2
D 2ay that lies

inside the sphere x2
C y2

C z2
D 4a2.

Solution One quarter of the required area lies in the first octant. (See Figure 15.23.)

Since the cylinder is generated by vertical lines, we can express an area element dS on

it in terms of the length element ds along the curve C in the xy-plane having equation

x2
C y2

D 2ay:

dS D z ds D

p

4a2
� x2

� y2 ds:

In expressing dS this way, we have already integrated dz, so only a single integral is

needed to sum these area elements. Again, it is convenient to use polar coordinates in

the xy-plane. In terms of polar coordinates, the curve C has equation r D 2a sin � .

Thus, dr=d� D 2a cos � and ds D
p

r2
C .dr=d�/2 d� D 2a d� . Therefore, the

total surface area of that part of the cylinder that lies inside the sphere is given by

A D 4

Z �=2

0

p

4a2
� r2 2a d�

D 8a

Z �=2

0

p

4a2
� 4a2 sin2

� d�

D 16a
2

Z �=2

0

cos � d� D 16a2 square units:

Figure 15.23 An area element on a

cylinder. The z-coordinate has already

been integrated. x

y

z

2a

x2
C y2

C z2
D 4a2

2a

ds

dS

x
2
C y

2
D 2ay2a

Remark The area calculated in Example 8 can also be calculated by projecting the

cylindrical surface in Figure 15.23 into the yz-plane. (This is the only coordinate plane

you can use. Why?) See Exercise 6 below.

In spherical coordinates, � and � can be used as parameters on the spherical sur-

face R D a. The area element on that surface can therefore be expressed in terms of

these coordinates:
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and so

dS D

q

16r6
C 16r6 sin2

.2�/C 16r6 cos2.2�/ dr; d� D 4
p

2 r
3
dr d�:

The required moment of inertia of S about the z-axis is therefore

ZZ

S

.x
2
C y

2
/ dS D

ZZ

S

r
4
dS D 4

p

2

Z 1

0

r
7
dr

Z �

0

d� D
�
p

2
:

Even though most surfaces we encounter can be easily parametrized, it is usually pos-

sible to obtain the surface area element dS geometrically rather than relying on the

parametric formula. As we have seen above, if a surface has a one-to-one projection

onto a region in the xy-plane, then the area element dS on the surface can be expressed

as

dS D

ˇ

ˇ

ˇ

ˇ

1

cos 

ˇ

ˇ

ˇ

ˇ

dx dy D
jnj

jn � kj
dx dy;

where  is the angle between the normal vector n to S and the positive z-axis. This

formula is useful no matter how we obtain n.

Consider a surface S with equation of the form G.x; y; z/ D 0. As we discovered

in Section 12.7, if G has continuous first partial derivatives that do not all vanish at a

point .x; y; z/ on S, then the nonzero vector

n D rG.x; y; z/

is normal to S at that point. Since n�k D G3.x; y; z/, if S has a one-to-one projection

onto the domain D in the xy-plane, then

dS D

ˇ

ˇ

ˇ

ˇ

rG.x; y; z/

G3.x; y; z/

ˇ

ˇ

ˇ

ˇ

dx dy;

and the surface integral of f .x; y; z/ over S can be expressed as a double integral over

the domain D:

ZZ

S

f .x; y; z/ dS D

ZZ

D

f
�

x; y; g.x; y/
�

ˇ

ˇ

ˇ

ˇ

rG.x; y; z/

G3.x; y; z/

ˇ

ˇ

ˇ

ˇ

dx dy:

Of course, there are analogous formulas for area elements of surfaces (and integrals

over surfaces) with one-to-one projections onto the xz-plane or the yz-plane. (G3 is

replaced by G2 and G1, respectively.)

E X A M P L E 7 Find the moment about z D 0, that is,

ZZ

S

z dS , where S is the

hyperbolic bowl z2
D 1C x2

C y2 between the planes z D 1 and

z D
p

5.

Solution S is given by G.x; y; z/ D 0, where G.x; y; z/ D x2
Cy2

� z2
C 1. It lies

above the disk x2
C y2

� 4 in the xy-plane. We have rG D 2xiC 2yj � 2zk, and

G3 D �2z. Hence, on S, we have

z dS D z

p

4x2
C 4y2

C 4z2

2z
dx dy D

p

1C 2.x2
C y2/ dx dy;

and the required moment is
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ZZ

S

z dS D

ZZ

x2Cy2�4

p

1C 2.x2
C y2/ dx dy

D

Z 2�

0

d�

Z 2

0

p

1C 2r2 r dr D
�

3
.1C 2r

2
/
3=2
ˇ

ˇ

ˇ

2

0
D

26�

3
:

The next example illustrates a technique that can often reduce the effort needed to

integrate over a cylindrical surface.

E X A M P L E 8
Find the area of that part of the cylinder x2

C y2
D 2ay that lies

inside the sphere x2
C y2

C z2
D 4a2.

Solution One quarter of the required area lies in the first octant. (See Figure 15.23.)

Since the cylinder is generated by vertical lines, we can express an area element dS on

it in terms of the length element ds along the curve C in the xy-plane having equation

x2
C y2

D 2ay:

dS D z ds D

p

4a2
� x2

� y2 ds:

In expressing dS this way, we have already integrated dz, so only a single integral is

needed to sum these area elements. Again, it is convenient to use polar coordinates in

the xy-plane. In terms of polar coordinates, the curve C has equation r D 2a sin � .

Thus, dr=d� D 2a cos � and ds D
p

r2
C .dr=d�/2 d� D 2a d� . Therefore, the

total surface area of that part of the cylinder that lies inside the sphere is given by

A D 4

Z �=2

0

p

4a2
� r2 2a d�

D 8a

Z �=2

0

p

4a2
� 4a2 sin2

� d�

D 16a
2

Z �=2

0

cos � d� D 16a2 square units:

Figure 15.23 An area element on a

cylinder. The z-coordinate has already

been integrated. x

y

z

2a

x2
C y2

C z2
D 4a2

2a

ds

dS

x
2
C y

2
D 2ay2a

Remark The area calculated in Example 8 can also be calculated by projecting the

cylindrical surface in Figure 15.23 into the yz-plane. (This is the only coordinate plane

you can use. Why?) See Exercise 6 below.

In spherical coordinates, � and � can be used as parameters on the spherical sur-

face R D a. The area element on that surface can therefore be expressed in terms of

these coordinates:
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Area element on the sphere R D a: dS D a
2 sin� d� d�:

(See Figure 14.52 in Section 14.6 and Exercise 2 below.)

E X A M P L E 9 Find

ZZ

S

z
2
dS over the hemisphere z D

p

a2
� x2

� y2.

Solution Since z D a cos� and the hemisphere corresponds to 0 � � � 2� , and

0 � � �
�

2
, we have

ZZ

S

z
2
dS D

Z 2�

0

d�

Z �=2

0

a
2 cos2

� a
2 sin� d�

D 2�a
4
�

�

1

3
cos3

�

�

ˇ

ˇ

ˇ

ˇ

�=2

0

D

2�a4

3
:

Finally, if a composite surface S is composed of smooth parametric surfaces joined

pairwise along their edges, then we call S a piecewise smooth surface. The surface

integral of a function f over a piecewise smooth surface S is the sum of the surface

integrals of f over the individual smooth surfaces comprising S. We will encounter

an example of this in the next section.

The Attraction of a Spherical Shell
In Section 14.7 we calculated the gravitational attraction of a disk in the xy-plane

on a mass m located at position .0; 0; b/ on the z-axis. Here, we undertake a similar

calculation of the attractive force exerted onm by a spherical shell of radius a and areal

density � (units of mass per unit area) centred at the origin. This calculation would

be more difficult if we tried to do it by integrating the vertical component of the force

on m as we did in Section 14.7. It is greatly simplified if, instead, we use an integral

to find the total gravitational potential ˆ.0; 0; z/ due to the sphere at position .0; 0; z/

and then calculate the force on m as F D mrˆ.0; 0; b/.

By the Cosine Law, the distance from the point with spherical coordinates Œa; �; ��

to the point .0; 0; z/ on the positive z-axis (see Figure 15.24) is

�

dS

D

.0; 0; z/

y

z

x

a

Figure 15.24 The attraction of a sphere

D D

p

a2
C z2

� 2az cos�:

The area element dS D a
2 sin� d� d� at Œa; �; �� has mass dm D � dS , and its

gravitational potential at .0; 0; z/ (see Example 1 in Section 15.2) is

dˆ.0; 0; z/ D
k dm

D
D

k�a2 sin� d� d�
p

a2
C z2

� 2az cos�
:

For the total potential at .0; 0; z/ due to the sphere, we integrate dˆ over the surface

of the sphere. Making the change of variables u D a2
C z2

� 2az cos�, du D

2az sin� d�, we obtain

ˆ.0; 0; z/ D k�a
2

Z 2�

0

d�

Z �

0

sin� d�
p

a2
C z2

� 2az cos�

D 2�k�a
2

Z .zCa/2

.z�a/2

1
p

u

du

2az

D

2�k�a

z

p

u

ˇ

ˇ

ˇ

ˇ

.zCa/2

.z�a/2

D

2�k�a

z

�

z C a � jz � aj

�

D

�

4�k�a2=z if z > a

4�k�a if z < a.
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The potential is constant inside the sphere and decreases proportionally to 1=z outside.

The force on a mass m located at .0; 0; b/ is, therefore,

F D mrˆ.0; 0; b/ D

�

�.4�km�a
2
=b

2
/k if b > a

0 if b < a.

We are led to the somewhat surprising result that, if the mass m is anywhere inside the

sphere, the net force of attraction of the sphere on it is zero. This is to be expected at

the centre of the sphere, but away from the centre it appears that the larger forces due

to parts of the sphere close to m are exactly cancelled by smaller forces due to parts

farther away; these farther parts have larger area and therefore larger total mass. If m

is outside the sphere, the sphere attracts it with a force of magnitude

F D
kmM

b2
;

where M D 4��a2 is the total mass of the sphere. This is the same force that would

be exerted by a point mass with the same mass as the sphere and located at the centre

of the sphere.

Remark A solid ball of constant density, or density depending only on the distance

from the centre (for instance, a planet), can be regarded as being made up of mass

elements that are concentric spheres of constant density. Therefore, the attraction of

such a ball on a mass m located outside the ball will also be the same as if the whole

mass of the ball were concentrated at its centre. However, the attraction on a mass m

located somewhere inside the ball will be that produced by only the part of the ball

that is closer to the centre thanm is. The maximum force of attraction will occur when

m is right at the surface of the ball. If the density is constant, the magnitude of the

force increases linearly with the distance from the centre (why?) up to the surface

and then decreases with the square of the distance as m recedes from the ball. (See

Figure 15.25.)

Figure 15.25 The force of attraction of a

homogeneous solid ball on a particle

located at varying distances from the centre

of the ball

radius of ball distance from

centre of ball

force of attraction

Remark All of the above discussion also holds for the electrostatic attraction or re-

pulsion of a point charge by a uniform charge density over a spherical shell, which is

also governed by an inverse square law. In particular, there is no net electrostatic force

on a charge located inside the shell.

E X E R C I S E S 15.5

1. Verify that on the curve with polar equation r D g.�/ the arc

length element is given by

ds D

p

.g.�//2 C .g0.�//2 d�:

What is the area element on the vertical cylinder given in

terms of cylindrical coordinates by r D g.�/?
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Area element on the sphere R D a: dS D a
2 sin� d� d�:

(See Figure 14.52 in Section 14.6 and Exercise 2 below.)

E X A M P L E 9 Find

ZZ

S

z
2
dS over the hemisphere z D

p

a2
� x2

� y2.

Solution Since z D a cos� and the hemisphere corresponds to 0 � � � 2� , and

0 � � �
�

2
, we have

ZZ

S

z
2
dS D

Z 2�

0

d�

Z �=2

0

a
2 cos2

� a
2 sin� d�

D 2�a
4
�

�

1

3
cos3

�

�

ˇ

ˇ

ˇ

ˇ

�=2

0

D

2�a4

3
:

Finally, if a composite surface S is composed of smooth parametric surfaces joined

pairwise along their edges, then we call S a piecewise smooth surface. The surface

integral of a function f over a piecewise smooth surface S is the sum of the surface

integrals of f over the individual smooth surfaces comprising S. We will encounter

an example of this in the next section.

The Attraction of a Spherical Shell
In Section 14.7 we calculated the gravitational attraction of a disk in the xy-plane

on a mass m located at position .0; 0; b/ on the z-axis. Here, we undertake a similar

calculation of the attractive force exerted onm by a spherical shell of radius a and areal

density � (units of mass per unit area) centred at the origin. This calculation would

be more difficult if we tried to do it by integrating the vertical component of the force

on m as we did in Section 14.7. It is greatly simplified if, instead, we use an integral

to find the total gravitational potential ˆ.0; 0; z/ due to the sphere at position .0; 0; z/

and then calculate the force on m as F D mrˆ.0; 0; b/.

By the Cosine Law, the distance from the point with spherical coordinates Œa; �; ��

to the point .0; 0; z/ on the positive z-axis (see Figure 15.24) is

�

dS

D

.0; 0; z/

y

z

x

a

Figure 15.24 The attraction of a sphere

D D

p

a2
C z2

� 2az cos�:

The area element dS D a
2 sin� d� d� at Œa; �; �� has mass dm D � dS , and its

gravitational potential at .0; 0; z/ (see Example 1 in Section 15.2) is

dˆ.0; 0; z/ D
k dm

D
D

k�a2 sin� d� d�
p

a2
C z2

� 2az cos�
:

For the total potential at .0; 0; z/ due to the sphere, we integrate dˆ over the surface

of the sphere. Making the change of variables u D a2
C z2

� 2az cos�, du D

2az sin� d�, we obtain

ˆ.0; 0; z/ D k�a
2

Z 2�

0

d�

Z �

0

sin� d�
p

a2
C z2

� 2az cos�

D 2�k�a
2

Z .zCa/2

.z�a/2

1
p

u

du

2az

D

2�k�a

z

p

u

ˇ

ˇ

ˇ

ˇ

.zCa/2

.z�a/2

D

2�k�a

z

�

z C a � jz � aj

�

D

�

4�k�a2=z if z > a

4�k�a if z < a.
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The potential is constant inside the sphere and decreases proportionally to 1=z outside.

The force on a mass m located at .0; 0; b/ is, therefore,

F D mrˆ.0; 0; b/ D

�

�.4�km�a
2
=b

2
/k if b > a

0 if b < a.

We are led to the somewhat surprising result that, if the mass m is anywhere inside the

sphere, the net force of attraction of the sphere on it is zero. This is to be expected at

the centre of the sphere, but away from the centre it appears that the larger forces due

to parts of the sphere close to m are exactly cancelled by smaller forces due to parts

farther away; these farther parts have larger area and therefore larger total mass. If m

is outside the sphere, the sphere attracts it with a force of magnitude

F D
kmM

b2
;

where M D 4��a2 is the total mass of the sphere. This is the same force that would

be exerted by a point mass with the same mass as the sphere and located at the centre

of the sphere.

Remark A solid ball of constant density, or density depending only on the distance

from the centre (for instance, a planet), can be regarded as being made up of mass

elements that are concentric spheres of constant density. Therefore, the attraction of

such a ball on a mass m located outside the ball will also be the same as if the whole

mass of the ball were concentrated at its centre. However, the attraction on a mass m

located somewhere inside the ball will be that produced by only the part of the ball

that is closer to the centre thanm is. The maximum force of attraction will occur when

m is right at the surface of the ball. If the density is constant, the magnitude of the

force increases linearly with the distance from the centre (why?) up to the surface

and then decreases with the square of the distance as m recedes from the ball. (See

Figure 15.25.)

Figure 15.25 The force of attraction of a

homogeneous solid ball on a particle

located at varying distances from the centre

of the ball

radius of ball distance from

centre of ball

force of attraction

Remark All of the above discussion also holds for the electrostatic attraction or re-

pulsion of a point charge by a uniform charge density over a spherical shell, which is

also governed by an inverse square law. In particular, there is no net electrostatic force

on a charge located inside the shell.

E X E R C I S E S 15.5

1. Verify that on the curve with polar equation r D g.�/ the arc

length element is given by

ds D

p

.g.�//2 C .g0.�//2 d�:

What is the area element on the vertical cylinder given in

terms of cylindrical coordinates by r D g.�/?
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2. Verify that on the spherical surface x2
C y2

C z2
D a2 the

area element is given in terms of spherical coordinates by

dS D a2 sin� d� d� .

3. Find the area of the part of the plane Ax C By C Cz D D

lying inside the elliptic cylinder

x2

a2
C

y2

b2
D 1:

4. Find the area of the part of the sphere x2
C y2

C z2
D 4a2

that lies inside the cylinder x2
C y

2
D 2ay.

5. State formulas for the surface area element dS for the surface

with equation F.x; y; z/ D 0 valid for the case where the

surface has a one-to-one projection on (a) the xz-plane and (b)

the yz-plane.

6. Repeat the area calculation of Example 8 by projecting the

part of the surface shown in Figure 15.23 onto the yz-plane

and using the formula in Exercise 5(b).

7. Find

ZZ

S

x dS over the part of the parabolic cylinder

z D x2=2 that lies inside the first octant part of the cylinder

x2
C y2

D 1.

8. Find the area of the part of the cone z2
D x2

C y2 that lies

inside the cylinder x2
C y

2
D 2ay.

9. Find the area of the part of the cylinder x2
C y

2
D 2ay that

lies outside the cone z2
D x2

C y2.

10. Find the area of the part of the cylinder x2
C z2

D a2 that lies

inside the cylinder y2
C z2

D a2.

11.A A circular cylinder of radius a is circumscribed about a sphere

of radius a so that the cylinder is tangent to the sphere along

the equator. Two planes, each perpendicular to the axis of the

cylinder, intersect the sphere and the cylinder in circles. Show

that the area of that part of the sphere between the two planes

is equal to the area of the part of the cylinder between the two

planes. Thus, the area of the part of a sphere between two

parallel planes that intersect it depends only on the radius of

the sphere and the distance between the planes, and not on the

particular position of the planes.

12.I Let 0 < a < b. In terms of the elliptic integral functions

defined in Exercise 19 of Section 15.3, find the area of that

part of each of the cylinders x2
C z

2
D a

2 and y2
C z

2
D b

2

that lies inside the other cylinder.

13. Find

ZZ

S

y dS , where S is the part of the plane z D 1C y

that lies inside the cone z D
p

2.x2
C y2/.

14. Find

ZZ

S

y dS , where S is the part of the cone

z D
p

2.x2
C y2/ that lies below the plane z D 1C y.

15. Find

ZZ

S

xz dS , where S is the part of the surface z D x2

that lies in the first octant of 3-space and inside the paraboloid

z D 1 � 3x2
� y2.

16. Find the mass of the part of the surface z D
p

2xy that lies

above the region 0 � x � 5, 0 � y � 2, if the areal density of

the surface is �.x; y; z/ D kz.

17. Find the total charge on the surface

r D eu cos viC eu sin vjC uk; .0 � u � 1; 0 � v � �/;

if the charge density on the surface is ı D
p

1C e2u.

Exercises 18–19 concern spheroids, which are ellipsoids with two

of their three semi-axes equal, say a D b:

x2

a2
C

y2

a2
C

z2

c2
D 1:

18.I Find the surface area of a prolate spheroid, where 0 < a < c.

A prolate spheroid has its two shorter semi-axes equal, like an

American “pro football.”

19.I Find the surface area of an oblate spheroid, where 0 < c < a.

An oblate spheroid has its two longer semi-axes equal, like the

earth.

20.I Describe the parametric surface

x D au cos v; y D au sin v; z D bv;

.0 � u � 1; 0 � v � 2�/, and find its area.

21.I Evaluate

ZZ

P

dS

.x2
C y2

C z2/3=2
, where P is the plane with

equation Ax C By C Cz D D, .D ¤ 0/.

22. A spherical shell of radius a is centred at the origin. Find the

centroid of that part of the sphere that lies in the first octant.

23. Find the centre of mass of a right-circular conical shell of base

radius a, height h, and constant areal density � .

24.I Find the gravitational attraction of a hemispherical shell of

radius a and constant areal density � on a mass m located at

the centre of the base of the hemisphere.

25.I Find the gravitational attraction of a circular cylindrical shell

of radius a, height h, and constant areal density � on a massm

located on the axis of the cylinder b units above the base.

In Exercises 26–28, find the moment of inertia and radius of

gyration of the given object about the given axis. Assume constant

areal density � in each case.

26. A cylindrical shell of radius a and height h about the axis of

the cylinder

27. A spherical shell of radius a about a diameter

28. A right-circular conical shell of base radius a and height h

about the axis of the cone

29. With what acceleration will the spherical shell of Exercise 27

roll down a plane inclined at angle ˛ to the horizontal?

(Compare your result with that of Example 4(b) of

Section 14.7.)
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15.6 Oriented Surfaces and Flux Integrals

Surface integrals of normal components of vector fields play a very important role in

vector calculus, similar to the role played by line integrals of tangential components of

vector fields. Before we consider such surface integrals we need to define the orienta-

tion of a surface.

Oriented Surfaces
A smooth surface S in 3-space is said to be orientable if there exists a unit vector field
ON.P / defined on S that varies continuously as P ranges over S and that is everywhere

normal to S. Any such vector field ON.P / determines an orientation of S. The surface

must have two sides since ON.P / can have only one value at each point P: The side

out of which ON points is called the positive side; the other side is the negative side.

An oriented surface is a smooth surface together with a particular choice of orienting

unit normal vector field ON.P /.

For example, if we define ON on the smooth surface z D f .x; y/ by

ON D
�f1.x; y/i � f2.x; y/jC k

p

1C .f1.x; y//
2
C .f2.x; y//

2
;

then the top of the surface is the positive side. (See Figure 15.26.)

A smooth or piecewise smooth surface may be closed (i.e., it may have no bound-

ary), or it may have one or more boundary curves. (The unit normal vector field ON.P /

need not be defined at points of the boundary curves.)

An oriented surface S induces an orientation on any of its boundary curves C; if

we stand on the positive side of the surface S and walk around C in the direction of its

orientation, then S will be on our left side. (See Figure 15.26(a) and (b).)

Figure 15.26 The boundary

curves of an oriented surface are

themselves oriented with the surface

on the left

x

y

z

ON.P /

P

S

C

x

y

z

ON.P /

P

S

C

C

(a) (b)

A piecewise smooth surface is orientable if, whenever two smooth component

surfaces join along a common boundary curve C, they induce opposite orientations

along C. This forces the normals ON to be on the same side of adjacent components.

For instance, the surface of a cube is a piecewise smooth, closed surface, consisting of

six smooth surfaces (the square faces) joined along edges. (See Figure 15.27.) If all of

the faces are oriented so that their normals ON point out of the cube (or if they all point

into the cube), then the surface of the cube itself is oriented.
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2. Verify that on the spherical surface x2
C y2

C z2
D a2 the

area element is given in terms of spherical coordinates by

dS D a2 sin� d� d� .

3. Find the area of the part of the plane Ax C By C Cz D D

lying inside the elliptic cylinder

x2

a2
C

y2

b2
D 1:

4. Find the area of the part of the sphere x2
C y2

C z2
D 4a2

that lies inside the cylinder x2
C y

2
D 2ay.

5. State formulas for the surface area element dS for the surface

with equation F.x; y; z/ D 0 valid for the case where the

surface has a one-to-one projection on (a) the xz-plane and (b)

the yz-plane.

6. Repeat the area calculation of Example 8 by projecting the

part of the surface shown in Figure 15.23 onto the yz-plane

and using the formula in Exercise 5(b).

7. Find

ZZ

S

x dS over the part of the parabolic cylinder

z D x2=2 that lies inside the first octant part of the cylinder

x2
C y2

D 1.

8. Find the area of the part of the cone z2
D x2

C y2 that lies

inside the cylinder x2
C y

2
D 2ay.

9. Find the area of the part of the cylinder x2
C y

2
D 2ay that

lies outside the cone z2
D x2

C y2.

10. Find the area of the part of the cylinder x2
C z2

D a2 that lies

inside the cylinder y2
C z2

D a2.

11.A A circular cylinder of radius a is circumscribed about a sphere

of radius a so that the cylinder is tangent to the sphere along

the equator. Two planes, each perpendicular to the axis of the

cylinder, intersect the sphere and the cylinder in circles. Show

that the area of that part of the sphere between the two planes

is equal to the area of the part of the cylinder between the two

planes. Thus, the area of the part of a sphere between two

parallel planes that intersect it depends only on the radius of

the sphere and the distance between the planes, and not on the

particular position of the planes.

12.I Let 0 < a < b. In terms of the elliptic integral functions

defined in Exercise 19 of Section 15.3, find the area of that

part of each of the cylinders x2
C z

2
D a

2 and y2
C z

2
D b

2

that lies inside the other cylinder.

13. Find

ZZ

S

y dS , where S is the part of the plane z D 1C y

that lies inside the cone z D
p

2.x2
C y2/.

14. Find

ZZ

S

y dS , where S is the part of the cone

z D
p

2.x2
C y2/ that lies below the plane z D 1C y.

15. Find

ZZ

S

xz dS , where S is the part of the surface z D x2

that lies in the first octant of 3-space and inside the paraboloid

z D 1 � 3x2
� y2.

16. Find the mass of the part of the surface z D
p

2xy that lies

above the region 0 � x � 5, 0 � y � 2, if the areal density of

the surface is �.x; y; z/ D kz.

17. Find the total charge on the surface

r D eu cos viC eu sin vjC uk; .0 � u � 1; 0 � v � �/;

if the charge density on the surface is ı D
p

1C e2u.

Exercises 18–19 concern spheroids, which are ellipsoids with two

of their three semi-axes equal, say a D b:

x2

a2
C

y2

a2
C

z2

c2
D 1:

18.I Find the surface area of a prolate spheroid, where 0 < a < c.

A prolate spheroid has its two shorter semi-axes equal, like an

American “pro football.”

19.I Find the surface area of an oblate spheroid, where 0 < c < a.

An oblate spheroid has its two longer semi-axes equal, like the

earth.

20.I Describe the parametric surface

x D au cos v; y D au sin v; z D bv;

.0 � u � 1; 0 � v � 2�/, and find its area.

21.I Evaluate

ZZ

P

dS

.x2
C y2

C z2/3=2
, where P is the plane with

equation Ax C By C Cz D D, .D ¤ 0/.

22. A spherical shell of radius a is centred at the origin. Find the

centroid of that part of the sphere that lies in the first octant.

23. Find the centre of mass of a right-circular conical shell of base

radius a, height h, and constant areal density � .

24.I Find the gravitational attraction of a hemispherical shell of

radius a and constant areal density � on a mass m located at

the centre of the base of the hemisphere.

25.I Find the gravitational attraction of a circular cylindrical shell

of radius a, height h, and constant areal density � on a massm

located on the axis of the cylinder b units above the base.

In Exercises 26–28, find the moment of inertia and radius of

gyration of the given object about the given axis. Assume constant

areal density � in each case.

26. A cylindrical shell of radius a and height h about the axis of

the cylinder

27. A spherical shell of radius a about a diameter

28. A right-circular conical shell of base radius a and height h

about the axis of the cone

29. With what acceleration will the spherical shell of Exercise 27

roll down a plane inclined at angle ˛ to the horizontal?

(Compare your result with that of Example 4(b) of

Section 14.7.)
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15.6 Oriented Surfaces and Flux Integrals

Surface integrals of normal components of vector fields play a very important role in

vector calculus, similar to the role played by line integrals of tangential components of

vector fields. Before we consider such surface integrals we need to define the orienta-

tion of a surface.

Oriented Surfaces
A smooth surface S in 3-space is said to be orientable if there exists a unit vector field
ON.P / defined on S that varies continuously as P ranges over S and that is everywhere

normal to S. Any such vector field ON.P / determines an orientation of S. The surface

must have two sides since ON.P / can have only one value at each point P: The side

out of which ON points is called the positive side; the other side is the negative side.

An oriented surface is a smooth surface together with a particular choice of orienting

unit normal vector field ON.P /.

For example, if we define ON on the smooth surface z D f .x; y/ by

ON D
�f1.x; y/i � f2.x; y/jC k

p

1C .f1.x; y//
2
C .f2.x; y//

2
;

then the top of the surface is the positive side. (See Figure 15.26.)

A smooth or piecewise smooth surface may be closed (i.e., it may have no bound-

ary), or it may have one or more boundary curves. (The unit normal vector field ON.P /

need not be defined at points of the boundary curves.)

An oriented surface S induces an orientation on any of its boundary curves C; if

we stand on the positive side of the surface S and walk around C in the direction of its

orientation, then S will be on our left side. (See Figure 15.26(a) and (b).)

Figure 15.26 The boundary

curves of an oriented surface are

themselves oriented with the surface

on the left

x

y

z

ON.P /

P

S

C

x

y

z

ON.P /

P

S

C

C

(a) (b)

A piecewise smooth surface is orientable if, whenever two smooth component

surfaces join along a common boundary curve C, they induce opposite orientations

along C. This forces the normals ON to be on the same side of adjacent components.

For instance, the surface of a cube is a piecewise smooth, closed surface, consisting of

six smooth surfaces (the square faces) joined along edges. (See Figure 15.27.) If all of

the faces are oriented so that their normals ON point out of the cube (or if they all point

into the cube), then the surface of the cube itself is oriented.
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x

y

z

ON

ON

ON

Figure 15.27 The surface of the cube is orientable;

adjacent faces induce opposite orientations on their

common edge

P

Figure 15.28 The MRobius band is not orientable; it has

only one “side”

Not every surface can be oriented, even if it appears smooth. An orientable surface

must have two sides. For example, a MRobius band, consisting of a strip of paper with

ends joined together to form a loop, but with one end given a half twist before the

ends are joined, has only one side (make one and see), so it cannot be oriented. (See

Figure 15.28.) If a nonzero vector is moved around the band, starting at point P; so

that it is always normal to the surface, then it can return to its starting position pointing

in the opposite direction.

The Flux of a Vector Field Across a Surface
Suppose 3-space is filled with an incompressible fluid that flows with velocity field v.

Let S be an imaginary, smooth, oriented surface in 3-space. (We say S is imaginary

because it does not impede the motion of the fluid; it is fixed in space and the fluid can

move freely through it.) We calculate the rate at which fluid flows across S. Let dS be

a small area element at point P on the surface. The fluid crossing that element between

time t and time tCdt occupies a cylinder of base area dS and height jv.P /j dt cos � ,

where � is the angle between v.P / and the normal ON.P /. (See Figure 15.29.) This

cylinder has (signed) volume v.P /� ON.P / dS dt . The rate at which fluid crosses dS is

v.P /� ON.P / dS , and the total rate at which it crosses S is given by the surface integral

ZZ

S

v � ON dS or

ZZ

S

v � dS;

where we use dS to represent the vector surface area element ON dS .

Figure 15.29 The fluid crossing dS in

time dt fills the tube
x

y

z

�

ON
v dt

S

P
dS
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D E F I N I T I O N

6

Flux of a vector field across an oriented surface

Given any continuous vector field F, the flux of F across the orientable surface

S is integral of the normal component of F over S,

ZZ

S

F � ONdS or

ZZ

S

F � dS:

When the surface is closed, the flux integral can be denoted by

Z



Z

S

F � ON dS or

Z



Z

S

F � dS:

In this case we refer to the flux of F out of S if ON is the unit exterior normal, and the

flux into S if ON is the unit interior normal.

E X A M P L E 1
Find the flux of the vector field F D mr=jrj3 out of a sphere S of

radius a centred at the origin. (Here r D xiC yjC zk.)

Solution Since F is the field associated with a source of strength m at the origin

(which produces 4�m units of fluid per unit time at the origin), the answer must be

4�m. Let us calculate it anyway. We use spherical coordinates. At any point r on

the sphere, with spherical coordinates Œa; �; ��, the unit outward normal is Or D r=jrj.

Since the vector field is F D mOr=a2 on the sphere, and since an area element is dS D

a2 sin� d� d� , the flux of F out of the sphere is

Z



Z

S

�

m

a2
Or
�

� Or a2 sin� d� d� D m

Z 2�

0

d�

Z �

0

sin� d� D 4�m:

E X A M P L E 2
Calculate the total flux of F D xiC yjC zk outward through the

surface of the solid cylinder x2
C y2

� a2, �h � z � h.

Solution The cylinder is shown in Figure 15.30. Its surface consists of top and bot-

x

y

z
ON D k

ON

ON D �k

r D a

z D h

z D �h

Figure 15.30 The three components of

the surface of a solid cylinder with their

outward normals

tom disks and the cylindrical side wall. We calculate the flux of F out of each. Nat-

urally, we use cylindrical coordinates. On the top disk we have z D h, ON D k, and

dS D r dr d� . Therefore, F � ONdS D hr dr d� and

ZZ

top

F � ONdS D h

Z 2�

0

d�

Z a

0

r dr D �a
2
h:

On the bottom disk we have z D �h, ON D �k, and dS D r dr d� . Therefore,

F � ONdS D hr dr d� and
ZZ

bottom

F � ONdS D

ZZ

top

F � ON dS D �a2
h:

On the cylindrical wall F D a cos � i C a sin � j C zk, ON D cos � i C sin � j, and

dS D a d� dz. Thus, F � ONdS D a2 d� dz and

ZZ

cylwall

F � ON dS D a2

Z 2�

0

d�

Z h

�h

dz D 4�a
2
h:

The total flux of F out of the surface S of the cylinder is the sum of these three contri-

butions:
Z



Z

S

F � ON dS D 6�a2
h:
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x

y

z

ON

ON

ON

Figure 15.27 The surface of the cube is orientable;

adjacent faces induce opposite orientations on their

common edge

P

Figure 15.28 The MRobius band is not orientable; it has

only one “side”

Not every surface can be oriented, even if it appears smooth. An orientable surface

must have two sides. For example, a MRobius band, consisting of a strip of paper with

ends joined together to form a loop, but with one end given a half twist before the

ends are joined, has only one side (make one and see), so it cannot be oriented. (See

Figure 15.28.) If a nonzero vector is moved around the band, starting at point P; so

that it is always normal to the surface, then it can return to its starting position pointing

in the opposite direction.

The Flux of a Vector Field Across a Surface
Suppose 3-space is filled with an incompressible fluid that flows with velocity field v.

Let S be an imaginary, smooth, oriented surface in 3-space. (We say S is imaginary

because it does not impede the motion of the fluid; it is fixed in space and the fluid can

move freely through it.) We calculate the rate at which fluid flows across S. Let dS be

a small area element at point P on the surface. The fluid crossing that element between

time t and time tCdt occupies a cylinder of base area dS and height jv.P /j dt cos � ,

where � is the angle between v.P / and the normal ON.P /. (See Figure 15.29.) This

cylinder has (signed) volume v.P /� ON.P / dS dt . The rate at which fluid crosses dS is

v.P /� ON.P / dS , and the total rate at which it crosses S is given by the surface integral

ZZ

S

v � ON dS or

ZZ

S

v � dS;

where we use dS to represent the vector surface area element ON dS .

Figure 15.29 The fluid crossing dS in

time dt fills the tube
x

y

z

�

ON
v dt

S

P
dS
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D E F I N I T I O N

6

Flux of a vector field across an oriented surface

Given any continuous vector field F, the flux of F across the orientable surface

S is integral of the normal component of F over S,

ZZ

S

F � ONdS or

ZZ

S

F � dS:

When the surface is closed, the flux integral can be denoted by

Z



Z

S

F � ON dS or

Z



Z

S

F � dS:

In this case we refer to the flux of F out of S if ON is the unit exterior normal, and the

flux into S if ON is the unit interior normal.

E X A M P L E 1
Find the flux of the vector field F D mr=jrj3 out of a sphere S of

radius a centred at the origin. (Here r D xiC yjC zk.)

Solution Since F is the field associated with a source of strength m at the origin

(which produces 4�m units of fluid per unit time at the origin), the answer must be

4�m. Let us calculate it anyway. We use spherical coordinates. At any point r on

the sphere, with spherical coordinates Œa; �; ��, the unit outward normal is Or D r=jrj.

Since the vector field is F D mOr=a2 on the sphere, and since an area element is dS D

a2 sin� d� d� , the flux of F out of the sphere is

Z



Z

S

�

m

a2
Or
�

� Or a2 sin� d� d� D m

Z 2�

0

d�

Z �

0

sin� d� D 4�m:

E X A M P L E 2
Calculate the total flux of F D xiC yjC zk outward through the

surface of the solid cylinder x2
C y2

� a2, �h � z � h.

Solution The cylinder is shown in Figure 15.30. Its surface consists of top and bot-

x

y

z
ON D k

ON

ON D �k

r D a

z D h

z D �h

Figure 15.30 The three components of

the surface of a solid cylinder with their

outward normals

tom disks and the cylindrical side wall. We calculate the flux of F out of each. Nat-

urally, we use cylindrical coordinates. On the top disk we have z D h, ON D k, and

dS D r dr d� . Therefore, F � ONdS D hr dr d� and

ZZ

top

F � ONdS D h

Z 2�

0

d�

Z a

0

r dr D �a
2
h:

On the bottom disk we have z D �h, ON D �k, and dS D r dr d� . Therefore,

F � ONdS D hr dr d� and
ZZ

bottom

F � ONdS D

ZZ

top

F � ON dS D �a2
h:

On the cylindrical wall F D a cos � i C a sin � j C zk, ON D cos � i C sin � j, and

dS D a d� dz. Thus, F � ONdS D a2 d� dz and

ZZ

cylwall

F � ON dS D a2

Z 2�

0

d�

Z h

�h

dz D 4�a
2
h:

The total flux of F out of the surface S of the cylinder is the sum of these three contri-

butions:
Z



Z

S

F � ON dS D 6�a2
h:
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Calculating Flux Integrals
If S is a parametric surface given by r D r.u; v/ for .u; v/ in domain D in the uv-

plane, then, as shown in the previous section, the vector

n D
@r

@u
�

@r

@v
D

@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k

is normal to S, and dS D jnj dudv is an area element on S. Accordingly, the vector

area element for S is

dS D ONdS D ˙
n

jnj
jnj dudv D ˙n dudv;

where the sign must be chosen to reflect the desired orientation of S. The flux of

F D F1.x; y; z/ iC F2.x; y; z/ jC F3.x; y; z/k through S is given by

ZZ

S

F � dS D ˙

ZZ

D

F �

�

@r

@u
�

@r

@v

�

dudv

D ˙

ZZ

D

�

F1

@.y; z/

@.u; v/
C F2

@.z; x/

@.u; v/
C F3

@.x; y/

@.u; v/

�

dudv:

There are, of course, simpler versions of these formulas for surfaces of special

types. For instance, let S be a smooth, oriented surface with a one-to-one projection

onto a domain D in the xy-plane, and with equation of the form G.x; y; z/ D 0. In

Section 15.5 we showed that the surface area element on S could be written in the form

dS D

ˇ

ˇ

ˇ

ˇ

rG

G3

ˇ

ˇ

ˇ

ˇ

dx dy;

and hence surface integrals over S could be reduced to double integrals over the domain

D. Flux integrals can be treated likewise. Depending on the orientation of S, the unit

normal ON can be written as

ON D ˙
rG

jrGj
:

Thus, the vector area element dS can be written

dS D ONdS D ˙
rG.x; y; z/

G3.x; y; z/
dx dy:

The sign must be chosen to give S the desired orientation. If G3 > 0 and we want

the positive side of S to face upward, we should use the C sign. Of course, simi-

lar formulas apply for surfaces with one-to-one projections onto the other coordinate

planes.

E X A M P L E 3
Find the flux of ziC x2k upward through that part of the surface

z D x2
C y2 lying above the square R defined by �1 � x � 1

and �1 � y � 1.

Solution For F.x; y; z/ D z�x2
�y2 we have rF D �2xi�2yjCk and F3 D 1.

Thus,

dS D .�2xi � 2yjC k/ dx dy;
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and the required flux is
ZZ

S

.ziC x2k/ � dS D

ZZ

R

�

�2x.x
2
C y

2
/C x

2
�

dx dy

D

Z 1

�1

dx

Z 1

�1

.x
2
� 2x

3
� 2xy

2
/ dy

D

Z 1

�1

2x
2
dx D

4

3
:

(Two of the three terms in the double integral had zero integrals because of symmetry.)

For a surface S with equation z D f .x; y/ we have

ON D ˙

�

@f

@x
i �

@f

@y
jC k

s

1C

�

@f

@x

�2

C

�

@f

@y

�2
and

dS D

s

1C

�

@f

@x

�2

C

�

@f

@y

�2

dx dy;

so that the vector area element on S is given by

dS D ONdS D ˙

�

�

@f

@x
i �

@f

@y
jC k

�

dx dy:

Again, the C sign corresponds to an upward normal.

E X A M P L E 4
Find the flux of F D yi � xjC 4k upward through S, where S is

the part of the surface z D 1 � x2
� y2 lying in the first octant of

3-space.

Solution The vector area element corresponding to the upward normal on S is

dS D

�

�

@z

@x
i �

@z

@y
jC k

�

dx dy D .2xiC 2yjC k/ dx dy:

The projection of S onto the xy-plane is the quarter-circular diskQ given by x2
Cy

2
�

1, x � 0, and y � 0. Thus, the flux of F upward through S is
ZZ

S

F � dS D

ZZ

Q

.2xy � 2xy C 4/ dx dy

D 4 � .area of Q/ D �:

E X A M P L E 5 Find the flux of F D
2xiC 2yj

x2
C y2

Ck downward through the surface

S defined parametrically by

r D u cos viC u sin vjC u2k; .0 � u � 1; 0 � v � 2�/:

Solution First we calculate dS:

@r

@u
D cos viC sin vjC 2uk

@r

@v
D �u sin viC u cos vj

@r

@u
�

@r

@v
D �2u

2 cos vi � 2u2 sin vjC uk:
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Calculating Flux Integrals
If S is a parametric surface given by r D r.u; v/ for .u; v/ in domain D in the uv-

plane, then, as shown in the previous section, the vector

n D
@r

@u
�

@r

@v
D

@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k

is normal to S, and dS D jnj dudv is an area element on S. Accordingly, the vector

area element for S is

dS D ONdS D ˙
n

jnj
jnj dudv D ˙n dudv;

where the sign must be chosen to reflect the desired orientation of S. The flux of

F D F1.x; y; z/ iC F2.x; y; z/ jC F3.x; y; z/k through S is given by

ZZ

S

F � dS D ˙

ZZ

D

F �

�

@r

@u
�

@r

@v

�

dudv

D ˙

ZZ

D

�

F1

@.y; z/

@.u; v/
C F2

@.z; x/

@.u; v/
C F3

@.x; y/

@.u; v/

�

dudv:

There are, of course, simpler versions of these formulas for surfaces of special

types. For instance, let S be a smooth, oriented surface with a one-to-one projection

onto a domain D in the xy-plane, and with equation of the form G.x; y; z/ D 0. In

Section 15.5 we showed that the surface area element on S could be written in the form

dS D

ˇ

ˇ

ˇ

ˇ

rG

G3

ˇ

ˇ

ˇ

ˇ

dx dy;

and hence surface integrals over S could be reduced to double integrals over the domain

D. Flux integrals can be treated likewise. Depending on the orientation of S, the unit

normal ON can be written as

ON D ˙
rG

jrGj
:

Thus, the vector area element dS can be written

dS D ONdS D ˙
rG.x; y; z/

G3.x; y; z/
dx dy:

The sign must be chosen to give S the desired orientation. If G3 > 0 and we want

the positive side of S to face upward, we should use the C sign. Of course, simi-

lar formulas apply for surfaces with one-to-one projections onto the other coordinate

planes.

E X A M P L E 3
Find the flux of ziC x2k upward through that part of the surface

z D x2
C y2 lying above the square R defined by �1 � x � 1

and �1 � y � 1.

Solution For F.x; y; z/ D z�x2
�y2 we have rF D �2xi�2yjCk and F3 D 1.

Thus,

dS D .�2xi � 2yjC k/ dx dy;
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and the required flux is
ZZ

S

.ziC x2k/ � dS D

ZZ

R

�

�2x.x
2
C y

2
/C x

2
�

dx dy

D

Z 1

�1

dx

Z 1

�1

.x
2
� 2x

3
� 2xy

2
/ dy

D

Z 1

�1

2x
2
dx D

4

3
:

(Two of the three terms in the double integral had zero integrals because of symmetry.)

For a surface S with equation z D f .x; y/ we have

ON D ˙

�

@f

@x
i �

@f

@y
jC k

s

1C

�

@f

@x

�2

C

�

@f

@y

�2
and

dS D

s

1C

�

@f

@x

�2

C

�

@f

@y

�2

dx dy;

so that the vector area element on S is given by

dS D ONdS D ˙

�

�

@f

@x
i �

@f

@y
jC k

�

dx dy:

Again, the C sign corresponds to an upward normal.

E X A M P L E 4
Find the flux of F D yi � xjC 4k upward through S, where S is

the part of the surface z D 1 � x2
� y2 lying in the first octant of

3-space.

Solution The vector area element corresponding to the upward normal on S is

dS D

�

�

@z

@x
i �

@z

@y
jC k

�

dx dy D .2xiC 2yjC k/ dx dy:

The projection of S onto the xy-plane is the quarter-circular diskQ given by x2
Cy

2
�

1, x � 0, and y � 0. Thus, the flux of F upward through S is
ZZ

S

F � dS D

ZZ

Q

.2xy � 2xy C 4/ dx dy

D 4 � .area of Q/ D �:

E X A M P L E 5 Find the flux of F D
2xiC 2yj

x2
C y2

Ck downward through the surface

S defined parametrically by

r D u cos viC u sin vjC u2k; .0 � u � 1; 0 � v � 2�/:

Solution First we calculate dS:

@r

@u
D cos viC sin vjC 2uk

@r

@v
D �u sin viC u cos vj

@r

@u
�

@r

@v
D �2u

2 cos vi � 2u2 sin vjC uk:
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Since u � 0 on S, the latter expression is an upward normal. We want a downward

normal, so we use

dS D .2u2 cos viC 2u2 sin vj � uk/ du dv:

On S we have

F D
2xiC 2yj

x2
C y2

C k D
2u cos viC 2u sin vj

u2
C k;

so the downward flux of F through S is

ZZ

S

F � dS D

Z 2�

0

dv

Z 1

0

.4u � u/ du D 3�:

E X E R C I S E S 15.6

1. Find the flux of F D xiC zj out of the tetrahedron bounded

by the coordinate planes and the plane x C 2y C 3z D 6.

2. Find the flux of F D xiC yjC zk outward across the sphere

x2
C y2

C z2
D a2.

3. Find the flux of the vector field of Exercise 2 out of the surface

of the box 0 � x � a, 0 � y � b, 0 � z � c.

4. Find the flux of the vector field F D yiC zk out across the

boundary of the solid cone 0 � z � 1 �
p

x2
C y2.

5. Find the flux of F D xiC yjC zk upward through the part of

the surface z D a � x2
� y2 lying above plane z D b < a.

6. Find the flux of F D xiC xjC k upward through the part of

the surface z D x2
� y2 inside the cylinder x2

C y2
D a2.

7. Find the flux of F D y3iC z2jC xk downward through the

part of the surface z D 4� x2
� y

2 that lies above the plane

z D 2x C 1.

8. Find the flux of F D z2k upward through the part of the

sphere x2
C y2

C z2
D a2 in the first octant of 3-space.

9. Find the flux of F D xiC yj upward through the part of the

surface z D 2 � x2
� 2y2 that lies above the xy-plane.

10. Find the flux of F D 2xiC yjC zk upward through the

surface r D u2
viC uv2jC v3k, (0 � u � 1, 0 � v � 1).

11. Find the flux of F D xiC yjC z2k upward through the

surface u cos v iC u sin v jC u k, (0 � u � 2, 0 � v � �).

12. Find the flux of F D yzi� xzjC .x2
C y2/k upward through

the surface r D eu cos v iC eu sin v jC u k, where 0 � u � 1

and 0 � v � � .
13. Find the flux of F D mr=jrj3 out of the surface of the cube

�a � x; y; z � a.

14.I Find the flux of the vector field of Exercise 13 out of the box

1 � x; y; z � 2. Note: This problem can be solved very easily

using the Divergence Theorem of Section 16.4; the required

flux is, in fact, zero. However, the object here is to do it by

direct calculation of the surface integrals involved, and as such

it is quite difficult. By symmetry, it is sufficient to evaluate the

net flux out of the cube through any one of the three pairs of

opposite faces; that is, you must calculate the flux through

only two faces, say z D 1 and z D 2. Be prepared to work

very hard to evaluate these integrals! When they are done, you

may find the identities 2 arctan a D arctan
�

2a=.1 � a
2/

�

and

arctan aC arctan .1=a/�=2 useful for showing that the net

flux is zero.

15. Define the flux of a plane vector field across a piecewise

smooth curve. Find the flux of F D xiC yj outward across

(a) the circle x2
C y2

D a2, and

(b) the boundary of the square �1 � x; y � 1.

16. Find the flux of F D �.xiC yj/=.x2
C y2/ inward across

each of the two curves in the previous exercise.

17. If S is a smooth, oriented surface in 3-space and ON is the unit

vector field determining the orientation of S, show that the

flux of ON across S is the area of S.

18.I The Divergence Theorem presented in Section 16.4 implies

that the flux of a constant vector field across any oriented,

piecewise smooth, closed surface is zero. Prove this now for

(a) a rectangular box, and (b) a sphere.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ vector field

˘ scalar field

˘ field line

˘ conservative field
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˘ scalar potential

˘ equipotential

˘ a source

˘ a dipole

˘ connected domain

˘ simply connected

˘ parametric surface

˘ orientable surface

˘ the line integral of f along curve C

˘ the line integral of the tangential component of F along C

˘ the flux of a vector field through a surface

� How are the field lines of a conservative field related to its

equipotential curves or surfaces?

� How is a line integral of a scalar field calculated?

� How is a line integral of the tangential component of a vector

field calculated?

� When is a line integral between two points independent of the

path joining those points?

� How is a surface integral of a scalar field calculated?

� How do you calculate the flux of a vector field through a sur-

face?

Review Exercises

1. Find

Z

C

1

y
ds, where C is the curve

x D t; y D 2e
t
; z D e

2t
; .�1 � t � 1/:

2. Let C be the part of the curve of intersection of the surfaces

z D xCy2 and y D 2x from the origin to the point .2; 4; 18/.

Evaluate

Z

C

2y dx C x dy C 2 dz.

3. Find

ZZ

S

x dS , where S is that part of the cone z D
p

x2
C y2

in the region 0 � x � 1 � y2.

4. Find

ZZ

S

xyz dS over the part of the plane x C y C z D 1

lying in the first octant.

5. Find the flux of x2yi � 10xy2j upward through the surface

z D xy, 0 � x � 1, 0 � y � 1.

6. Find the flux of xiCyjCzk downward through the part of the

plane x C 2y C 3z D 6 lying in the first octant.

7. A bead of mass m slides down a wire in the shape of the curve

x D a sin t; y D a cos t; z D bt , where 0 � t � 6� .

(a) What is the work done by the gravitational force

F D �mgk on the bead during its descent?

(b) What is the work done against a resistance of constant

magnitude R which directly opposes the motion of the

bead during its descent?

8. For what values of the constants a, b, and c can you deter-

mine the value of the integral I of the tangential component of

F D .axy C 3yz/i C .x2
C 3xz C by2z/jC .bxy C cy3/k

along a curve from .0; 1;�1/ to .2; 1; 1/ without knowing ex-

actly which curve? What is the value of the integral?

9. Let F D .x2=y/iC yjC k.

(a) Find the field line of F that passes through .1; 1; 0/ and

show that it also passes through .e; e; 1/.

(b) Find

Z

C

F � dr, where C is the part of the field line in (a)

from .1; 1; 0/ to .e; e; 1/.

10. Consider the vector fields

F D .1C x/exCy iC .xexCy
C 2y/j � 2zk;

G D .1C x/exCy iC .xexCy
C 2z/j � 2yk:

(a) Show that F is conservative by finding a potential for it.

(b) Evaluate

Z

C

G � dr, where C is given by

r D .1 � t /et iC t jC 2tk; .0 � t � 1/;

by taking advantage of the similarity between F and G.

11. Find a plane vector field F.x; y/ that satisfies the following

conditions:

(i) The field lines of F are the curves xy D C .

(ii) jF.x; y/j D 1 if .x; y/ ¤ .0; 0/.

(iii) F.1; 1/ D .i � j/=
p

2.

(iv) F is continuous except at .0; 0/.

12. Let S be the part of the surface of the cylinder y2
C z2

D 16

that lies in the first octant and between the planes x D 0 and

x D 5. Find the flux of 3z2xi� xj � yk away from the x-axis

through S.

Challenging Problems

1.I Find the centroid of the surface

r D .2C cos v/.cosuiC sinuj/C sin vk;

where 0 � u � 2� and 0 � v � � . Describe this surface.

2.I A smooth surface S is given parametrically by

r D .cos 2u/.2C v cosu/i

C .sin 2u/.2C v cosu/jC v sinuk;

where 0 � u � 2� and �1 � v � 1. Show that for every

smooth vector field F on S,

ZZ

S

F � ON dS D 0;

where ON D ON.u; v/ is a unit normal vector field on S that de-

pends continuously on .u; v/. How do you explain this? Hint:

Try to describe what the surface S looks like.

3.I Recalculate the gravitational force exerted by a sphere of ra-

dius a and areal density � centred at the origin on a point

mass located at .0; 0; b/ by directly integrating the vertical

component of the force due to an area element dS , rather

than by integrating the potential as we did in the last part of

Section 15.5. You will have to be quite creative in dealing with

the resulting integral.
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Since u � 0 on S, the latter expression is an upward normal. We want a downward

normal, so we use

dS D .2u2 cos viC 2u2 sin vj � uk/ du dv:

On S we have

F D
2xiC 2yj

x2
C y2

C k D
2u cos viC 2u sin vj

u2
C k;

so the downward flux of F through S is

ZZ

S

F � dS D

Z 2�

0

dv

Z 1

0

.4u � u/ du D 3�:

E X E R C I S E S 15.6

1. Find the flux of F D xiC zj out of the tetrahedron bounded

by the coordinate planes and the plane x C 2y C 3z D 6.

2. Find the flux of F D xiC yjC zk outward across the sphere

x2
C y2

C z2
D a2.

3. Find the flux of the vector field of Exercise 2 out of the surface

of the box 0 � x � a, 0 � y � b, 0 � z � c.

4. Find the flux of the vector field F D yiC zk out across the

boundary of the solid cone 0 � z � 1 �
p

x2
C y2.

5. Find the flux of F D xiC yjC zk upward through the part of

the surface z D a � x2
� y2 lying above plane z D b < a.

6. Find the flux of F D xiC xjC k upward through the part of

the surface z D x2
� y2 inside the cylinder x2

C y2
D a2.

7. Find the flux of F D y3iC z2jC xk downward through the

part of the surface z D 4� x2
� y

2 that lies above the plane

z D 2x C 1.

8. Find the flux of F D z2k upward through the part of the

sphere x2
C y2

C z2
D a2 in the first octant of 3-space.

9. Find the flux of F D xiC yj upward through the part of the

surface z D 2 � x2
� 2y2 that lies above the xy-plane.

10. Find the flux of F D 2xiC yjC zk upward through the

surface r D u2
viC uv2jC v3k, (0 � u � 1, 0 � v � 1).

11. Find the flux of F D xiC yjC z2k upward through the

surface u cos v iC u sin v jC u k, (0 � u � 2, 0 � v � �).

12. Find the flux of F D yzi� xzjC .x2
C y2/k upward through

the surface r D eu cos v iC eu sin v jC u k, where 0 � u � 1

and 0 � v � � .
13. Find the flux of F D mr=jrj3 out of the surface of the cube

�a � x; y; z � a.

14.I Find the flux of the vector field of Exercise 13 out of the box

1 � x; y; z � 2. Note: This problem can be solved very easily

using the Divergence Theorem of Section 16.4; the required

flux is, in fact, zero. However, the object here is to do it by

direct calculation of the surface integrals involved, and as such

it is quite difficult. By symmetry, it is sufficient to evaluate the

net flux out of the cube through any one of the three pairs of

opposite faces; that is, you must calculate the flux through

only two faces, say z D 1 and z D 2. Be prepared to work

very hard to evaluate these integrals! When they are done, you

may find the identities 2 arctan a D arctan
�

2a=.1 � a
2/

�

and

arctan aC arctan .1=a/�=2 useful for showing that the net

flux is zero.

15. Define the flux of a plane vector field across a piecewise

smooth curve. Find the flux of F D xiC yj outward across

(a) the circle x2
C y2

D a2, and

(b) the boundary of the square �1 � x; y � 1.

16. Find the flux of F D �.xiC yj/=.x2
C y2/ inward across

each of the two curves in the previous exercise.

17. If S is a smooth, oriented surface in 3-space and ON is the unit

vector field determining the orientation of S, show that the

flux of ON across S is the area of S.

18.I The Divergence Theorem presented in Section 16.4 implies

that the flux of a constant vector field across any oriented,

piecewise smooth, closed surface is zero. Prove this now for

(a) a rectangular box, and (b) a sphere.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ vector field

˘ scalar field

˘ field line

˘ conservative field

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 15 – page 913 October 17, 2016

CHAPTER REVIEW 913

˘ scalar potential

˘ equipotential

˘ a source

˘ a dipole

˘ connected domain

˘ simply connected

˘ parametric surface

˘ orientable surface

˘ the line integral of f along curve C

˘ the line integral of the tangential component of F along C

˘ the flux of a vector field through a surface

� How are the field lines of a conservative field related to its

equipotential curves or surfaces?

� How is a line integral of a scalar field calculated?

� How is a line integral of the tangential component of a vector

field calculated?

� When is a line integral between two points independent of the

path joining those points?

� How is a surface integral of a scalar field calculated?

� How do you calculate the flux of a vector field through a sur-

face?

Review Exercises

1. Find

Z

C

1

y
ds, where C is the curve

x D t; y D 2e
t
; z D e

2t
; .�1 � t � 1/:

2. Let C be the part of the curve of intersection of the surfaces

z D xCy2 and y D 2x from the origin to the point .2; 4; 18/.

Evaluate

Z

C

2y dx C x dy C 2 dz.

3. Find

ZZ

S

x dS , where S is that part of the cone z D
p

x2
C y2

in the region 0 � x � 1 � y2.

4. Find

ZZ

S

xyz dS over the part of the plane x C y C z D 1

lying in the first octant.

5. Find the flux of x2yi � 10xy2j upward through the surface

z D xy, 0 � x � 1, 0 � y � 1.

6. Find the flux of xiCyjCzk downward through the part of the

plane x C 2y C 3z D 6 lying in the first octant.

7. A bead of mass m slides down a wire in the shape of the curve

x D a sin t; y D a cos t; z D bt , where 0 � t � 6� .

(a) What is the work done by the gravitational force

F D �mgk on the bead during its descent?

(b) What is the work done against a resistance of constant

magnitude R which directly opposes the motion of the

bead during its descent?

8. For what values of the constants a, b, and c can you deter-

mine the value of the integral I of the tangential component of

F D .axy C 3yz/i C .x2
C 3xz C by2z/jC .bxy C cy3/k

along a curve from .0; 1;�1/ to .2; 1; 1/ without knowing ex-

actly which curve? What is the value of the integral?

9. Let F D .x2=y/iC yjC k.

(a) Find the field line of F that passes through .1; 1; 0/ and

show that it also passes through .e; e; 1/.

(b) Find

Z

C

F � dr, where C is the part of the field line in (a)

from .1; 1; 0/ to .e; e; 1/.

10. Consider the vector fields

F D .1C x/exCy iC .xexCy
C 2y/j � 2zk;

G D .1C x/exCy iC .xexCy
C 2z/j � 2yk:

(a) Show that F is conservative by finding a potential for it.

(b) Evaluate

Z

C

G � dr, where C is given by

r D .1 � t /et iC t jC 2tk; .0 � t � 1/;

by taking advantage of the similarity between F and G.

11. Find a plane vector field F.x; y/ that satisfies the following

conditions:

(i) The field lines of F are the curves xy D C .

(ii) jF.x; y/j D 1 if .x; y/ ¤ .0; 0/.

(iii) F.1; 1/ D .i � j/=
p

2.

(iv) F is continuous except at .0; 0/.

12. Let S be the part of the surface of the cylinder y2
C z2

D 16

that lies in the first octant and between the planes x D 0 and

x D 5. Find the flux of 3z2xi� xj � yk away from the x-axis

through S.

Challenging Problems

1.I Find the centroid of the surface

r D .2C cos v/.cosuiC sinuj/C sin vk;

where 0 � u � 2� and 0 � v � � . Describe this surface.

2.I A smooth surface S is given parametrically by

r D .cos 2u/.2C v cosu/i

C .sin 2u/.2C v cosu/jC v sinuk;

where 0 � u � 2� and �1 � v � 1. Show that for every

smooth vector field F on S,

ZZ

S

F � ON dS D 0;

where ON D ON.u; v/ is a unit normal vector field on S that de-

pends continuously on .u; v/. How do you explain this? Hint:

Try to describe what the surface S looks like.

3.I Recalculate the gravitational force exerted by a sphere of ra-

dius a and areal density � centred at the origin on a point

mass located at .0; 0; b/ by directly integrating the vertical

component of the force due to an area element dS , rather

than by integrating the potential as we did in the last part of

Section 15.5. You will have to be quite creative in dealing with

the resulting integral.
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C H A P T E R 16

Vector Calculus

“
Mathematicians are like Frenchmen: whenever you

say something to them, they translate it into their

own language, and at once it is something entirely

different.

”Johann Wolfgang von Goethe 1749–1832

from Maxims and Reflections, 1829

Introduction In this chapter we develop two- and three-dimensional

analogues of the one-dimensional Fundamental Theorem

of Calculus. These analogues—Green’s Theorem, Gauss’s Divergence Theorem, and

Stokes’s Theorem—are of great importance both theoretically and in applications.

They are phrased in terms of certain differential operators, divergence and curl, which

are related to the gradient operator encountered in Section 12.7. The operators are in-

troduced and their properties are derived in Sections 16.1 and 16.2. The rest of the

chapter deals with the generalizations of the Fundamental Theorem of Calculus and

their applications.

16.1 Gradient, Divergence, and Curl

First-order information about the rate of change of a three-dimensional scalar field,

f .x; y; z/, is contained in the three first partial derivatives @f=@x, @f=@y, and @f=@z.

The gradient,

grad f .x; y; z/ D rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k;

collects this information into a single vector-valued “derivative” of f: We will develop

similar ways of conveying information about the rate of change of vector fields.

First-order information about the rate of change of the vector field

F.x; y; z/ D F1.x; y; z/iC F2.x; y; z/jC F3.x; y; z/k

is contained in nine first partial derivatives, three for each of the three components of

the vector field F:
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@F1

@x

@F1

@y

@F1

@z

@F2

@x

@F2

@y

@F2

@z

@F3

@x

@F3

@y

@F3

@z
:

(Again, we stress that F1, F2, and F3 denote the components of F, not partial deriva-

tives.) Two special combinations of these derivatives organize this information in par-

ticularly useful ways, as the gradient does for scalar fields. These are the divergence

of F (div F) and the curl of F (curl F), defined as follows:

Divergence and curl

div F D r � F D
@F1

@x
C

@F2

@y
C

@F3

@z
;

curl F D r �F

D

�

@F3

@y
�

@F2

@z

�

iC

�

@F1

@z
�

@F3

@x

�

jC

�

@F2

@x
�

@F1

@y

�

k

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@

@x

@

@y

@

@z

F1 F2 F3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Note that the divergence of a vector field is a scalar field, while the curl is another

vector field. Also observe the notation r � F and r �F, which we will sometimes use

instead of div F and curl F. This makes use of the vector differential operator

r D i
@

@x
C j

@

@y
C k

@

@z
;

frequently called del or nabla. Just as the gradient of the scalar field f can be regarded

as formal scalar multiplication of r and f; so also can the divergence and curl of F

be regarded as formal dot and cross products of r with F. When using r the order

BEWARE! Do not confuse the

scalar field r � F with the scalar

differential operator F � r. They are

quite different objects.

of “factors” is important; the quantities on which r acts must appear to the right of r.

For instance, r � F and F � r do not mean the same thing; the former is a scalar field

and the latter is a scalar differential operator:

F � r D F1

@

@x
C F2

@

@y
C F3

@

@z
:

E X A M P L E 1
Find the divergence and curl of the vector field

F D xyiC .y2
� z

2
/jC yzk:

Solution We have

div F D r � F D
@

@x
.xy/C

@

@y
.y

2
� z

2
/C

@

@z
.yz/ D y C 2y C y D 4y;

curl F D r �F D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@

@x

@

@y

@

@z

xy y2
� z2 yz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�

@

@y
.yz/�

@

@z
.y

2
� z

2
/

�

iC

�

@

@z
.xy/ �

@

@x
.yz/

�

j

C

�

@

@x
.y

2
� z

2
/ �

@

@y
.xy/

�

k D 3zi � xk:
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C H A P T E R 16

Vector Calculus

“
Mathematicians are like Frenchmen: whenever you

say something to them, they translate it into their

own language, and at once it is something entirely

different.

”Johann Wolfgang von Goethe 1749–1832

from Maxims and Reflections, 1829

Introduction In this chapter we develop two- and three-dimensional

analogues of the one-dimensional Fundamental Theorem

of Calculus. These analogues—Green’s Theorem, Gauss’s Divergence Theorem, and

Stokes’s Theorem—are of great importance both theoretically and in applications.

They are phrased in terms of certain differential operators, divergence and curl, which

are related to the gradient operator encountered in Section 12.7. The operators are in-

troduced and their properties are derived in Sections 16.1 and 16.2. The rest of the

chapter deals with the generalizations of the Fundamental Theorem of Calculus and

their applications.

16.1 Gradient, Divergence, and Curl

First-order information about the rate of change of a three-dimensional scalar field,

f .x; y; z/, is contained in the three first partial derivatives @f=@x, @f=@y, and @f=@z.

The gradient,

grad f .x; y; z/ D rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k;

collects this information into a single vector-valued “derivative” of f: We will develop

similar ways of conveying information about the rate of change of vector fields.

First-order information about the rate of change of the vector field

F.x; y; z/ D F1.x; y; z/iC F2.x; y; z/jC F3.x; y; z/k

is contained in nine first partial derivatives, three for each of the three components of

the vector field F:
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@F1

@x

@F1

@y

@F1

@z

@F2

@x

@F2

@y

@F2

@z

@F3

@x

@F3

@y

@F3

@z
:

(Again, we stress that F1, F2, and F3 denote the components of F, not partial deriva-

tives.) Two special combinations of these derivatives organize this information in par-

ticularly useful ways, as the gradient does for scalar fields. These are the divergence

of F (div F) and the curl of F (curl F), defined as follows:

Divergence and curl

div F D r � F D
@F1

@x
C

@F2

@y
C

@F3

@z
;

curl F D r �F

D

�

@F3

@y
�

@F2

@z

�

iC

�

@F1

@z
�

@F3

@x

�

jC

�

@F2

@x
�

@F1

@y

�

k

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@

@x

@

@y

@

@z

F1 F2 F3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Note that the divergence of a vector field is a scalar field, while the curl is another

vector field. Also observe the notation r � F and r �F, which we will sometimes use

instead of div F and curl F. This makes use of the vector differential operator

r D i
@

@x
C j

@

@y
C k

@

@z
;

frequently called del or nabla. Just as the gradient of the scalar field f can be regarded

as formal scalar multiplication of r and f; so also can the divergence and curl of F

be regarded as formal dot and cross products of r with F. When using r the order

BEWARE! Do not confuse the

scalar field r � F with the scalar

differential operator F � r. They are

quite different objects.

of “factors” is important; the quantities on which r acts must appear to the right of r.

For instance, r � F and F � r do not mean the same thing; the former is a scalar field

and the latter is a scalar differential operator:

F � r D F1

@

@x
C F2

@

@y
C F3

@

@z
:

E X A M P L E 1
Find the divergence and curl of the vector field

F D xyiC .y2
� z

2
/jC yzk:

Solution We have

div F D r � F D
@

@x
.xy/C

@

@y
.y

2
� z

2
/C

@

@z
.yz/ D y C 2y C y D 4y;

curl F D r �F D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@

@x

@

@y

@

@z

xy y2
� z2 yz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�

@

@y
.yz/�

@

@z
.y

2
� z

2
/

�

iC

�

@

@z
.xy/ �

@

@x
.yz/

�

j

C

�

@

@x
.y

2
� z

2
/ �

@

@y
.xy/

�

k D 3zi � xk:
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The divergence and curl of a two-dimensional vector field can also be defined: if

F.x; y/ D F1.x; y/iC F2.x; y/j, then

div F D
@F1

@x
C

@F2

@y
;

curl F D

�

@F2

@x
�

@F1

@y

�

k:

Note that the curl of a two-dimensional vector field is still a 3-vector and is perpen-

dicular to the plane of the field. Although div and grad are defined in all dimensions,

curl is defined only in three dimensions and in the plane (provided we allow values in

three dimensions).

E X A M P L E 2
Find the divergence and curl of F D xey i � yexj.

Solution We have

div F D r � F D
@

@x
.xe

y
/C

@

@y
.�ye

x
/ D e

y
� e

x
;

curl F D r �F D

�

@

@x
.�ye

x
/ �

@

@y
.xe

y
/

�

k

D �.ye
x
C xe

y
/k:

Interpretation of the Divergence
The value of the divergence of a vector field F at point P is, loosely speaking, a mea-

sure of the rate at which the field “diverges” or “spreads away” from P: This spreading

away can be measured by the flux out of a small closed surface surrounding P: For

instance, div F.P / is the limit of the flux per unit volume out of smaller and smaller

spheres centred at P:

T H E O R E M

1

The divergence as flux density

If ON is the unit outward normal on the sphere S� of radius � centred at point P; and if

F is a smooth three-dimensional vector field, then

div F.P / D lim
�!0C

3

4��3

Z



Z

S�

F � ON dS:

PROOF Without loss of generality we assume that P is at the origin. We want to

expand F D F1iC F2jC F3k in a Taylor series about the origin (a Maclaurin series).

As shown in Section 12.9 for a function of two variables, the Maclaurin series for a

scalar-valued function of three variables takes the form

f .x; y; z/ D f .0; 0; 0/C
@f

@x

ˇ

ˇ

ˇ

ˇ

.0;0;0/

x C
@f

@y

ˇ

ˇ

ˇ

ˇ

.0;0;0/

y C
@f

@z

ˇ

ˇ

ˇ

ˇ

.0;0;0/

z C � � � ;

where “� � �” represents terms of second and higher degree in x, y, and z. If we apply

this formula to the components of F, we obtain

F.x; y; z/ D F0 C Fx0 x C Fy0 y C Fz0 z C � � � ;
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where
So as not to confuse partial

derivatives with components of

vectors, we are using subscripts

x0, y0, and z0 here to denote the

values of the first partial

derivatives of F at .0; 0; 0/.

F0 D F.0; 0; 0/

Fx0 D
@F

@x

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@x
iC

@F2

@x
jC

@F3

@x
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

Fy0 D
@F

@y

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@y
iC

@F2

@y
jC

@F3

@y
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

Fz0 D
@F

@z

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@z
iC

@F2

@z
jC

@F3

@z
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

I

again, the “� � �” represents the second- and higher-degree terms in x, y, and z. The unit

normal on S� is ON D .xiC yjC zk/=�, so we have

F � ON D
1

�

�

F0 � i x C F0 � jy C F0 � k z

C Fx0 � i x2
C Fx0 � j xy C Fx0 � k xz

C Fy0 � i xy C Fy0 � j y2
C Fy0 � kyz

C Fz0 � i xz C Fz0 � jyz C Fz0 � k z2
C � � �

�

:

We integrate each term within the parentheses over S� . By symmetry,

Z



Z

S�

x dS D

Z



Z

S�

y dS D

Z



Z

S�

z dS D 0;

Z



Z

S�

xy dS D

Z



Z

S�

xz dS D

Z



Z

S�

yz dS D 0:

Also, by symmetry,

Z



Z

S�

x
2
dS D

Z



Z

S�

y
2
dS D

Z



Z

S�

z
2
dS

D

1

3

Z



Z

S�

.x
2
C y

2
C z

2
/ dS D

1

3
.�

2
/.4��

2
/ D

4

3
��

4
;

and the higher-degree terms have surface integrals involving �5 and higher powers.

Thus,

3

4��3

Z



Z

S�

F � ONdS D Fx0 � iC Fy0 � jC Fz0 � kC � .� � �/

D r � F.0; 0; 0/C � .� � �/

! r � F.0; 0; 0/

as � ! 0C. This is what we wanted to show.

Remark The spheres S� in the above theorem can be replaced by other contracting

families of piecewise smooth surfaces. For instance, ifB is the surface of a rectangular

box with dimensions �x, �y, and �z containing P; then

div F.P / D lim
�x;�y;�z!0

1

�x�y�z

Z



Z

B

F � ONdS:

See Exercise 12 below.
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The divergence and curl of a two-dimensional vector field can also be defined: if

F.x; y/ D F1.x; y/iC F2.x; y/j, then

div F D
@F1

@x
C

@F2

@y
;

curl F D

�

@F2

@x
�

@F1

@y

�

k:

Note that the curl of a two-dimensional vector field is still a 3-vector and is perpen-

dicular to the plane of the field. Although div and grad are defined in all dimensions,

curl is defined only in three dimensions and in the plane (provided we allow values in

three dimensions).

E X A M P L E 2
Find the divergence and curl of F D xey i � yexj.

Solution We have

div F D r � F D
@

@x
.xe

y
/C

@

@y
.�ye

x
/ D e

y
� e

x
;

curl F D r �F D

�

@

@x
.�ye

x
/ �

@

@y
.xe

y
/

�

k

D �.ye
x
C xe

y
/k:

Interpretation of the Divergence
The value of the divergence of a vector field F at point P is, loosely speaking, a mea-

sure of the rate at which the field “diverges” or “spreads away” from P: This spreading

away can be measured by the flux out of a small closed surface surrounding P: For

instance, div F.P / is the limit of the flux per unit volume out of smaller and smaller

spheres centred at P:

T H E O R E M

1

The divergence as flux density

If ON is the unit outward normal on the sphere S� of radius � centred at point P; and if

F is a smooth three-dimensional vector field, then

div F.P / D lim
�!0C

3

4��3

Z



Z

S�

F � ON dS:

PROOF Without loss of generality we assume that P is at the origin. We want to

expand F D F1iC F2jC F3k in a Taylor series about the origin (a Maclaurin series).

As shown in Section 12.9 for a function of two variables, the Maclaurin series for a

scalar-valued function of three variables takes the form

f .x; y; z/ D f .0; 0; 0/C
@f

@x

ˇ

ˇ

ˇ

ˇ

.0;0;0/

x C
@f

@y

ˇ

ˇ

ˇ

ˇ

.0;0;0/

y C
@f

@z

ˇ

ˇ

ˇ

ˇ

.0;0;0/

z C � � � ;

where “� � �” represents terms of second and higher degree in x, y, and z. If we apply

this formula to the components of F, we obtain

F.x; y; z/ D F0 C Fx0 x C Fy0 y C Fz0 z C � � � ;
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where
So as not to confuse partial

derivatives with components of

vectors, we are using subscripts

x0, y0, and z0 here to denote the

values of the first partial

derivatives of F at .0; 0; 0/.

F0 D F.0; 0; 0/

Fx0 D
@F

@x

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@x
iC

@F2

@x
jC

@F3

@x
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

Fy0 D
@F

@y

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@y
iC

@F2

@y
jC

@F3

@y
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

Fz0 D
@F

@z

ˇ

ˇ

ˇ

ˇ

.0;0;0/

D

�

@F1

@z
iC

@F2

@z
jC

@F3

@z
k

�
ˇ

ˇ

ˇ

ˇ

.0;0;0/

I

again, the “� � �” represents the second- and higher-degree terms in x, y, and z. The unit

normal on S� is ON D .xiC yjC zk/=�, so we have

F � ON D
1

�

�

F0 � i x C F0 � jy C F0 � k z

C Fx0 � i x2
C Fx0 � j xy C Fx0 � k xz

C Fy0 � i xy C Fy0 � j y2
C Fy0 � kyz

C Fz0 � i xz C Fz0 � jyz C Fz0 � k z2
C � � �

�

:

We integrate each term within the parentheses over S� . By symmetry,

Z



Z

S�

x dS D

Z



Z

S�

y dS D

Z



Z

S�

z dS D 0;

Z



Z

S�

xy dS D

Z



Z

S�

xz dS D

Z



Z

S�

yz dS D 0:

Also, by symmetry,

Z



Z

S�

x
2
dS D

Z



Z

S�

y
2
dS D

Z



Z

S�

z
2
dS

D

1

3

Z



Z

S�

.x
2
C y

2
C z

2
/ dS D

1

3
.�

2
/.4��

2
/ D

4

3
��

4
;

and the higher-degree terms have surface integrals involving �5 and higher powers.

Thus,

3

4��3

Z



Z

S�

F � ONdS D Fx0 � iC Fy0 � jC Fz0 � kC � .� � �/

D r � F.0; 0; 0/C � .� � �/

! r � F.0; 0; 0/

as � ! 0C. This is what we wanted to show.

Remark The spheres S� in the above theorem can be replaced by other contracting

families of piecewise smooth surfaces. For instance, ifB is the surface of a rectangular

box with dimensions �x, �y, and �z containing P; then

div F.P / D lim
�x;�y;�z!0

1

�x�y�z

Z



Z

B

F � ONdS:

See Exercise 12 below.
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Remark In two dimensions, the value div F.P / represents the limiting flux per unit

area outward across small, non–self-intersecting closed curves that enclose P: See

Exercise 13 at the end of this section.

Let us return again to the interpretation of a vector field as a velocity field of a

moving incompressible fluid. If the total flux of the velocity field outward across the

boundary surface of a domain is positive (or negative), then the fluid must be produced

(or annihilated) within that domain.

The vector field F D xi C yj C zk of Example 2 in Section 15.6 has constant

divergence, r � F D 3. In that example we showed that the flux of F out of a certain

cylinder of base radius a and height 2h is 6�a2h, which is three times the volume of

the cylinder. Exercises 2 and 3 of Section 15.6 confirm similar results for the flux of F

out of other domains. This leads to another interpretation for the divergence: div F.P /

is the source strength per unit volume of F at P: With this interpretation, we would

expect, even for a vector field F with nonconstant divergence, that the total flux of F

out of the surface S of a domain D would be equal to the total source strength of F

within D; that is,
Z



Z

S

F � ON dS D

ZZZ

D

r � F dV:

This is the Divergence Theorem, which we will prove in Section 16.4.

E X A M P L E 3
Verify that the vector field F D mr=jrj3, due to a source of strength

m at .0; 0; 0/, has zero divergence at all points in R
3 except the

origin. What would you expect to be the total flux of F outward across the boundary

surface of a domain D if the origin lies outside D? if the origin is inside D?

Solution Since

F.x; y; z/ D
m

r3

�

xiC yjC zk
�

; where r
2
D x

2
C y

2
C z

2
;

and since @r=@x D x=r , we have

@F1

@x
D m

@

@x

�

x

r3

�

D m
r3
� 3xr2

�

x
r

�

r6
D m

r2
� 3x2

r5
:

Similarly,

@F2

@y
D m

r
2
� 3y

2

r5
and

@F3

@z
D m

r
2
� 3z

2

r5
:

Adding these up, we get r � F.x; y; z/ D 0 if r > 0.

If the origin lies outside the domain D, then the source density of F in D is zero,

so we would expect the total flux of F out of D to be zero. If the origin lies inside D,

then D contains a source of strength m (producing 4�m cubic units of fluid per unit

time), so we would expect the flux out ofD to be 4�m. See Example 1 of Section 15.6

and also Exercises 13 and 14 of that section for specific examples.

Distributions and Delta Functions
It is very useful to represent masses, charges, or other physical properties as existing

at one point in space, or physical forces (impulses) occurring at one instant in time.

These are finite quantities but they must exist in zero space or take place over no time.

This sounds paradoxical, but the paradox can be formally resolved in the context of

integration through the theory of generalized functions (also called distributions).

Putting this into a specific context, suppose that �.x/ represents the line density (mass

per unit length) of mass distributed on the interval .a; b/ of the x-axis, then the total

mass so distributed is

m D

Z b

a

�.x/ dx:
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Now suppose that the only mass on the axis is a “point mass” m D 1 located at x D 0,

where a < 0 < b. Then at all other points x ¤ 0 on the interval, the density is

�.x/ D 0, but we must still have

Z b

a

�.x/ dx D m D 1;

so �.0/ must be infinite. This is an idealized situation—a mathematical model. No

actual function �.x/ can have such properties. Functions are undefined at singular

points. They do not have infinite values, moreover it is ambiguous to have area defined

by an infinite value traded off against a zero width. We have encountered such things

before, for example in indeterminate forms. But this time the indeterminacy is resolved

by the finiteness of the integral.

We can think of the density of a point mass 1 at x D 0 as the limit of large

y

x

n=2

y D dn.x/

�

1

n

1

n

area 1

Figure 16.1 The functions dn.x/

converge to ı.x/ as n!1

densities concentrated on small intervals. For instance, if

dn.x/ D

�

n=2 if jxj � 1=n

0 if jxj > 1=n

(see Figure 16.1), where .a; b/ and n are chosen such that a < �1=n < 1=n < b; then

for any smooth function f .x/ defined on .a; b/ we have

Z b

a

dn.x/ f .x/ dx D
n

2

Z 1=n

�1=n

f .x/ dx:

Replace f .x/ in the integral on the right with its Maclaurin series:

f .x/ D f .0/C
f 0.0/

1Š
x C

f 00.0/

2Š
x

2
C � � � :

Since

Z 1=n

�1=n

x
k
dx D

�

2=..k C 1/nkC1/ if k is even

0 if k is odd,

we can take the limit as n!1 and obtain

lim
n!1

Z b

a

dn.x/ f .x/ dx D f .0/:

Since dn is already defined outside of .a; b/, if f .x/ is smooth and also defined there,

then when x D 0 is outside of .a; b/

lim
n!1

Z b

a

dn.x/ f .x/ dx D 0:

D E F I N I T I O N

1

The Dirac distribution ı.x/ (also called the Dirac delta function, although

it is really not a function) is the “limit” of the sequence dn.x/ as n ! 1. It

is defined by the requirement that

Z b

a

ı.x/f .x/ dx D

n

f .0/ if 0 2 .a; b/

0 otherwise

for every smooth function f .x/ defined on a domain including .a; b/.

Remark Historically .a; b/ was .�1;1/, because of the origins of ı in Fourier

analysis on the infinite domain. Many modern treatments still adopt this picture,

not only because of this, but also because many typical distributions are defined on

.�1;1/. But there is no reason why distributions such as dn cannot be on finite

or semi-infinite domains. This less restrictive picture will prove of importance when

discussing integral transforms in Chapter 18.
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Remark In two dimensions, the value div F.P / represents the limiting flux per unit

area outward across small, non–self-intersecting closed curves that enclose P: See

Exercise 13 at the end of this section.

Let us return again to the interpretation of a vector field as a velocity field of a

moving incompressible fluid. If the total flux of the velocity field outward across the

boundary surface of a domain is positive (or negative), then the fluid must be produced

(or annihilated) within that domain.

The vector field F D xi C yj C zk of Example 2 in Section 15.6 has constant

divergence, r � F D 3. In that example we showed that the flux of F out of a certain

cylinder of base radius a and height 2h is 6�a2h, which is three times the volume of

the cylinder. Exercises 2 and 3 of Section 15.6 confirm similar results for the flux of F

out of other domains. This leads to another interpretation for the divergence: div F.P /

is the source strength per unit volume of F at P: With this interpretation, we would

expect, even for a vector field F with nonconstant divergence, that the total flux of F

out of the surface S of a domain D would be equal to the total source strength of F

within D; that is,
Z



Z

S

F � ON dS D

ZZZ

D

r � F dV:

This is the Divergence Theorem, which we will prove in Section 16.4.

E X A M P L E 3
Verify that the vector field F D mr=jrj3, due to a source of strength

m at .0; 0; 0/, has zero divergence at all points in R
3 except the

origin. What would you expect to be the total flux of F outward across the boundary

surface of a domain D if the origin lies outside D? if the origin is inside D?

Solution Since

F.x; y; z/ D
m

r3

�

xiC yjC zk
�

; where r
2
D x

2
C y

2
C z

2
;

and since @r=@x D x=r , we have

@F1

@x
D m

@

@x

�

x

r3

�

D m
r3
� 3xr2

�

x
r

�

r6
D m

r2
� 3x2

r5
:

Similarly,

@F2

@y
D m

r
2
� 3y

2

r5
and

@F3

@z
D m

r
2
� 3z

2

r5
:

Adding these up, we get r � F.x; y; z/ D 0 if r > 0.

If the origin lies outside the domain D, then the source density of F in D is zero,

so we would expect the total flux of F out of D to be zero. If the origin lies inside D,

then D contains a source of strength m (producing 4�m cubic units of fluid per unit

time), so we would expect the flux out ofD to be 4�m. See Example 1 of Section 15.6

and also Exercises 13 and 14 of that section for specific examples.

Distributions and Delta Functions
It is very useful to represent masses, charges, or other physical properties as existing

at one point in space, or physical forces (impulses) occurring at one instant in time.

These are finite quantities but they must exist in zero space or take place over no time.

This sounds paradoxical, but the paradox can be formally resolved in the context of

integration through the theory of generalized functions (also called distributions).

Putting this into a specific context, suppose that �.x/ represents the line density (mass

per unit length) of mass distributed on the interval .a; b/ of the x-axis, then the total

mass so distributed is

m D

Z b

a

�.x/ dx:
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Now suppose that the only mass on the axis is a “point mass” m D 1 located at x D 0,

where a < 0 < b. Then at all other points x ¤ 0 on the interval, the density is

�.x/ D 0, but we must still have

Z b

a

�.x/ dx D m D 1;

so �.0/ must be infinite. This is an idealized situation—a mathematical model. No

actual function �.x/ can have such properties. Functions are undefined at singular

points. They do not have infinite values, moreover it is ambiguous to have area defined

by an infinite value traded off against a zero width. We have encountered such things

before, for example in indeterminate forms. But this time the indeterminacy is resolved

by the finiteness of the integral.

We can think of the density of a point mass 1 at x D 0 as the limit of large

y

x

n=2

y D dn.x/

�

1

n

1

n

area 1

Figure 16.1 The functions dn.x/

converge to ı.x/ as n!1

densities concentrated on small intervals. For instance, if

dn.x/ D

�

n=2 if jxj � 1=n

0 if jxj > 1=n

(see Figure 16.1), where .a; b/ and n are chosen such that a < �1=n < 1=n < b; then

for any smooth function f .x/ defined on .a; b/ we have

Z b

a

dn.x/ f .x/ dx D
n

2

Z 1=n

�1=n

f .x/ dx:

Replace f .x/ in the integral on the right with its Maclaurin series:

f .x/ D f .0/C
f 0.0/

1Š
x C

f 00.0/

2Š
x

2
C � � � :

Since

Z 1=n

�1=n

x
k
dx D

�

2=..k C 1/nkC1/ if k is even

0 if k is odd,

we can take the limit as n!1 and obtain

lim
n!1

Z b

a

dn.x/ f .x/ dx D f .0/:

Since dn is already defined outside of .a; b/, if f .x/ is smooth and also defined there,

then when x D 0 is outside of .a; b/

lim
n!1

Z b

a

dn.x/ f .x/ dx D 0:

D E F I N I T I O N

1

The Dirac distribution ı.x/ (also called the Dirac delta function, although

it is really not a function) is the “limit” of the sequence dn.x/ as n ! 1. It

is defined by the requirement that

Z b

a

ı.x/f .x/ dx D

n

f .0/ if 0 2 .a; b/

0 otherwise

for every smooth function f .x/ defined on a domain including .a; b/.

Remark Historically .a; b/ was .�1;1/, because of the origins of ı in Fourier

analysis on the infinite domain. Many modern treatments still adopt this picture,

not only because of this, but also because many typical distributions are defined on

.�1;1/. But there is no reason why distributions such as dn cannot be on finite

or semi-infinite domains. This less restrictive picture will prove of importance when

discussing integral transforms in Chapter 18.
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Remark The notation of Definition 1, while well-established and traditional, is odd

because it defines the properties of an integral of ı without saying what ı is directly. To

do so requires a formal mathematical study of distributions, which is beyond the scope

of this book. For physical and engineering applications though, if we bear in mind

the origin of this object as the limit of an integral, rather than the integral of a limit,

despite the notation, there is no mathematical difficulty. Moreover, while the intuitive

idea of ı is very useful in idealized reasoning, Definition 1 implies that the picture is

never complete without integration. Generalized functions are always partnered with

an implied integration.

Remark Because the definition of ı is as the limit of dn, the pre-limit forms of ı

are not unique. For instance, one can approach the limit with a sequence of normal

probability densities whose standard deviations approach zero. A formal change of

variables shows that the delta function also satisfies

Z b

a

ı.t � x/f .t/ dt D

n

f .x/ if x 2 .a; b/

0 otherwise
:

E X A M P L E 4
In view of the fact that F.r/ D mr=jrj3 satisfies div F.x; y; z/ D 0

for .x; y; z/ ¤ .0; 0; 0/ but produces a flux of 4�m out of any

sphere centred at the origin, we can regard div F.x; y; z/ as a distribution

div F.x; y; z/ D 4�mı.x/ı.y/ı.z/:

In particular, integrating this distribution against f .x; y; z/ D 1 over R
3, we have

ZZZ

R
3

div F.x; y; z/ dV D 4�m

Z 1

�1
ı.x/ dx

Z 1

�1
ı.y/ dy

Z 1

�1
ı.z/ dz

D 4�m:

The integral can equally well be taken over any domain in R
3 that contains the origin

in its interior, and the result will be the same. If the origin is outside the domain, the

result will be zero. We will re-examine this situation after establishing the Divergence

Theorem in Section 16.4.

Interpretation of the Curl
Roughly speaking, curl F.P / measures the extent to which the vector field F “swirls”

around P:

E X A M P L E 5
Consider the velocity field

v D ��yiC�xj

of a solid rotating with angular speed � about the z-axis, that is, with angular velocity

� D �k. (See Figure 15.2 in Section 15.1.) Calculate the circulation of this field

around a circle C� in the xy-plane centred at any point .x0; y0/, having radius �, and

oriented counterclockwise. What is the relationship between this circulation and the

curl of v?

Solution The indicated circle has parametrization

r D .x0 C � cos t/iC .y0 C � sin t/j; .0 � t � 2�/;

and the circulation of v around it is given by
I

C�

v � dr D

Z 2�

0

�

��.y0 C � sin t/.�� sin t/C�.x0 C � cos t/.� cos t/
�

dt

D

Z 2�

0

�

��.y0 sin t C x0 cos t/C��2
�

dt

D 2���
2
:
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Since

curl v D r � v D
�

@

@x
.�x/�

@

@y
.��y/

�

k D 2�k D 2�;

the circulation is the product of .curl v/ �k and the area bounded by C� . Note that this

circulation is constant for circles of any fixed radius; it does not depend on the position

of the centre.

The calculations in the example above suggest that the curl of a vector field is a measure

of the circulation per unit area in planes normal to the curl. A more precise version

of this conjecture is stated in Theorem 2 below. We will not prove this theorem now

because a proof at this stage would be quite complicated. (However, see Exercise 14

below for a special case.) A simple proof can be based on Stokes’s Theorem; see

Exercise 13 in Section 16.5.

T H E O R E M

2

The curl as circulation density

If F is a smooth vector field and C� is a circle of radius � centred at point P and bound-

ing a disk S� with unit normal ON (and orientation inherited from C�; see Figure 16.2),

then

lim
�!0C

1

��2

I

C�

F � dr D ON � curl F.P /:

Example 5 also suggests the following definition for the local angular velocity of a

moving fluid:P

S�

C�

ON

Figure 16.2 Illustrating Theorem 2

The local angular velocity at point P in a fluid moving with velocity field

v.P / is given by

�.P / D
1

2
curl v.P /:

Theorem 2 states that the local angular velocity �.P / is that vector whose component

in the direction of any unit vector ON is one-half of the limiting circulation per unit area

around the (oriented) boundary circles of small circular disks centred at P and having

normal ON.

Not all vector fields with nonzero curl appear to circulate. The velocity field for

the rigid body rotation considered in Example 5 appears to circulate around the axis of

rotation, but the circulation around a circle in a plane perpendicular to that axis turned

out to be independent of the position of the circle; it depended only on its area. The

circle need not even surround the axis of rotation. The following example investigates

a fluid velocity field whose streamlines are straight lines but that still has nonzero,

constant curl and, therefore, constant local angular velocity.
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Remark The notation of Definition 1, while well-established and traditional, is odd

because it defines the properties of an integral of ı without saying what ı is directly. To

do so requires a formal mathematical study of distributions, which is beyond the scope

of this book. For physical and engineering applications though, if we bear in mind

the origin of this object as the limit of an integral, rather than the integral of a limit,

despite the notation, there is no mathematical difficulty. Moreover, while the intuitive

idea of ı is very useful in idealized reasoning, Definition 1 implies that the picture is

never complete without integration. Generalized functions are always partnered with

an implied integration.

Remark Because the definition of ı is as the limit of dn, the pre-limit forms of ı

are not unique. For instance, one can approach the limit with a sequence of normal

probability densities whose standard deviations approach zero. A formal change of

variables shows that the delta function also satisfies

Z b

a

ı.t � x/f .t/ dt D

n

f .x/ if x 2 .a; b/

0 otherwise
:

E X A M P L E 4
In view of the fact that F.r/ D mr=jrj3 satisfies div F.x; y; z/ D 0

for .x; y; z/ ¤ .0; 0; 0/ but produces a flux of 4�m out of any

sphere centred at the origin, we can regard div F.x; y; z/ as a distribution

div F.x; y; z/ D 4�mı.x/ı.y/ı.z/:

In particular, integrating this distribution against f .x; y; z/ D 1 over R
3, we have

ZZZ

R
3

div F.x; y; z/ dV D 4�m

Z 1

�1
ı.x/ dx

Z 1

�1
ı.y/ dy

Z 1

�1
ı.z/ dz

D 4�m:

The integral can equally well be taken over any domain in R
3 that contains the origin

in its interior, and the result will be the same. If the origin is outside the domain, the

result will be zero. We will re-examine this situation after establishing the Divergence

Theorem in Section 16.4.

Interpretation of the Curl
Roughly speaking, curl F.P / measures the extent to which the vector field F “swirls”

around P:

E X A M P L E 5
Consider the velocity field

v D ��yiC�xj

of a solid rotating with angular speed � about the z-axis, that is, with angular velocity

� D �k. (See Figure 15.2 in Section 15.1.) Calculate the circulation of this field

around a circle C� in the xy-plane centred at any point .x0; y0/, having radius �, and

oriented counterclockwise. What is the relationship between this circulation and the

curl of v?

Solution The indicated circle has parametrization

r D .x0 C � cos t/iC .y0 C � sin t/j; .0 � t � 2�/;

and the circulation of v around it is given by
I

C�

v � dr D

Z 2�

0

�

��.y0 C � sin t/.�� sin t/C�.x0 C � cos t/.� cos t/
�

dt

D

Z 2�

0

�

��.y0 sin t C x0 cos t/C��2
�

dt

D 2���
2
:
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Since

curl v D r � v D
�

@

@x
.�x/�

@

@y
.��y/

�

k D 2�k D 2�;

the circulation is the product of .curl v/ �k and the area bounded by C� . Note that this

circulation is constant for circles of any fixed radius; it does not depend on the position

of the centre.

The calculations in the example above suggest that the curl of a vector field is a measure

of the circulation per unit area in planes normal to the curl. A more precise version

of this conjecture is stated in Theorem 2 below. We will not prove this theorem now

because a proof at this stage would be quite complicated. (However, see Exercise 14

below for a special case.) A simple proof can be based on Stokes’s Theorem; see

Exercise 13 in Section 16.5.

T H E O R E M

2

The curl as circulation density

If F is a smooth vector field and C� is a circle of radius � centred at point P and bound-

ing a disk S� with unit normal ON (and orientation inherited from C�; see Figure 16.2),

then

lim
�!0C

1

��2

I

C�

F � dr D ON � curl F.P /:

Example 5 also suggests the following definition for the local angular velocity of a

moving fluid:P

S�

C�

ON

Figure 16.2 Illustrating Theorem 2

The local angular velocity at point P in a fluid moving with velocity field

v.P / is given by

�.P / D
1

2
curl v.P /:

Theorem 2 states that the local angular velocity �.P / is that vector whose component

in the direction of any unit vector ON is one-half of the limiting circulation per unit area

around the (oriented) boundary circles of small circular disks centred at P and having

normal ON.

Not all vector fields with nonzero curl appear to circulate. The velocity field for

the rigid body rotation considered in Example 5 appears to circulate around the axis of

rotation, but the circulation around a circle in a plane perpendicular to that axis turned

out to be independent of the position of the circle; it depended only on its area. The

circle need not even surround the axis of rotation. The following example investigates

a fluid velocity field whose streamlines are straight lines but that still has nonzero,

constant curl and, therefore, constant local angular velocity.
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Figure 16.3 The paddle wheel is not only

carried along but is set rotating by the flow

y

x

.x;y/

E X A M P L E 6
Consider the velocity field v D xj of a fluid moving in the xy-

plane. Evidently, particles of fluid are moving along lines parallel

to the y-axis. However, curl v.x; y/ D k, and �.x; y/ D
1
2

k. A small “paddle wheel”

of radius � (see Figure 16.3) placed with its centre at position .x; y/ in the fluid will

be carried along with the fluid at velocity xj but will also be set rotating with angular

velocity �.x; y/ D
1
2

k, which is independent of its position. This angular velocity is

due to the fact that the velocity of the fluid along the right side of the wheel exceeds

that along the left side.

E X E R C I S E S 16.1

In Exercises 1–11, calculate div F and curl F for the given vector

fields.

1. F D xiC yj 2. F D yiC xj

3. F D yiC zjC xk 4. F D yziC xzjC xyk

5. F D xiC xk 6. F D xy2i� yz2jC zx2k

7. F D f .x/iC g.y/jC h.z/k 8. F D f .z/i � f .z/j

9. F.r; �/ D r iC sin � j, where .r; �/ are polar coordinates in the

plane

10. F D Or D cos � iC sin � j

11. F D O� D � sin � iC cos � j

12.I Let F be a smooth, three-dimensional vector field. If Ba;b;c is

the surface of the box �a � x � a, �b � y � b,

�c � z � c, with outward normal ON, show that

lim
a;b;c!0C

1

8abc

Z



Z

Ba;b;c

F � ON dS D r � F.0; 0; 0/:

13.I Let F be a smooth two-dimensional vector field. If C� is the

circle of radius � centred at the origin, and ON is the unit

outward normal to C� , show that

lim
�!0C

1

��2

I

C�

F � ONds D div F.0; 0/:

14.I Prove Theorem 2 in the special case that C� is the circle in the

xy-plane with parametrization x D � cos � , y D � sin � ,

.0 � � � 2�/. In this case ON D k. Hint: Expand F.x; y; z/ in

a vector Taylor series about the origin, as in the proof of

Theorem 1, and calculate the circulation of individual terms

around C� .
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16.2 Some Identities Involving Grad, Div, and Curl

There are numerous identities involving the functions

grad f .x; y; z/ D rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k;

div F.x; y; z/ D r � F.x; y; z/ D
@F1

@x
C

@F2

@y
C

@F3

@z
;

curl F.x; y; z/ D r �F.x; y; z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
@

@x

@

@y

@

@z

F1 F2 F3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

and the Laplacian operator, r 2
D r � r, defined for a scalar field � by

r
2
� D r � r� D div grad � D

@2�

@x2
C

@2�

@y2
C

@2�

@z2
;

and for a vector field F D F1iC F2jC F3k by

r
2F D .r 2

F1/iC .r
2
F2/jC .r

2
F3/k:

(The Laplacian operator, r 2
D .@2=@x2/C .@2=@y2/C .@2=@z2/, is denoted by � in

some books.) Recall that a function � is called harmonic in a domain D if r 2
� D 0

throughout D. (See Section 12.4.)

We collect the most important identities together in the following theorem. Most

of them are forms of the Product Rule. We will prove a few of the identities to illustrate

the techniques involved (mostly brute-force calculation) and leave the rest as exercises.

Note that two of the identities involve quantities like .G � r/F; this represents the

vector obtained by applying the scalar differential operator G � r to the vector field F:

.G � r/F D G1

@F

@x
CG2

@F

@y
C G3

@F

@z
:

T H E O R E M

3

Vector differential identities

Let � and  be scalar fields and F and G be vector fields, all assumed to be suffi-

ciently smooth that all the partial derivatives in the identities are continuous. Then the

following identities hold:

.a/ r.� / D �r C  r�

.b/ r � .�F/ D .r�/ � FC �.r � F/

.c/ r � .�F/ D .r�/�FC �.r �F/

.d/ r � .F�G/ D .r �F/ �G� F � .r �G/

.e/ r � .F�G/ D .r �G/FC .G � r/F � .r � F/G � .F � r/G

.f/ r.F �G/ D F� .r �G/CG� .r �F/C .F � r/GC .G � r/F

.g/ r � .r �F/ D 0 .div curl D 0/

.h/ r � .r�/ D 0 .curl grad D 0/

.i/ r � .r �F/ D r.r � F/ � r 2F

.curl curl D grad div � Laplacian/
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Figure 16.3 The paddle wheel is not only

carried along but is set rotating by the flow

y

x

.x;y/

E X A M P L E 6
Consider the velocity field v D xj of a fluid moving in the xy-

plane. Evidently, particles of fluid are moving along lines parallel

to the y-axis. However, curl v.x; y/ D k, and �.x; y/ D
1
2

k. A small “paddle wheel”

of radius � (see Figure 16.3) placed with its centre at position .x; y/ in the fluid will

be carried along with the fluid at velocity xj but will also be set rotating with angular

velocity �.x; y/ D
1
2

k, which is independent of its position. This angular velocity is

due to the fact that the velocity of the fluid along the right side of the wheel exceeds

that along the left side.

E X E R C I S E S 16.1

In Exercises 1–11, calculate div F and curl F for the given vector

fields.

1. F D xiC yj 2. F D yiC xj

3. F D yiC zjC xk 4. F D yziC xzjC xyk

5. F D xiC xk 6. F D xy2i� yz2jC zx2k

7. F D f .x/iC g.y/jC h.z/k 8. F D f .z/i � f .z/j

9. F.r; �/ D r iC sin � j, where .r; �/ are polar coordinates in the

plane

10. F D Or D cos � iC sin � j

11. F D O� D � sin � iC cos � j

12.I Let F be a smooth, three-dimensional vector field. If Ba;b;c is

the surface of the box �a � x � a, �b � y � b,

�c � z � c, with outward normal ON, show that

lim
a;b;c!0C

1

8abc

Z



Z

Ba;b;c

F � ON dS D r � F.0; 0; 0/:

13.I Let F be a smooth two-dimensional vector field. If C� is the

circle of radius � centred at the origin, and ON is the unit

outward normal to C� , show that

lim
�!0C

1

��2

I

C�

F � ONds D div F.0; 0/:

14.I Prove Theorem 2 in the special case that C� is the circle in the

xy-plane with parametrization x D � cos � , y D � sin � ,

.0 � � � 2�/. In this case ON D k. Hint: Expand F.x; y; z/ in

a vector Taylor series about the origin, as in the proof of

Theorem 1, and calculate the circulation of individual terms

around C� .
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16.2 Some Identities Involving Grad, Div, and Curl

There are numerous identities involving the functions

grad f .x; y; z/ D rf .x; y; z/ D
@f

@x
iC

@f

@y
jC

@f

@z
k;

div F.x; y; z/ D r � F.x; y; z/ D
@F1

@x
C

@F2

@y
C

@F3

@z
;

curl F.x; y; z/ D r �F.x; y; z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
@

@x

@

@y

@

@z

F1 F2 F3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

and the Laplacian operator, r 2
D r � r, defined for a scalar field � by

r
2
� D r � r� D div grad � D

@2�

@x2
C

@2�

@y2
C

@2�

@z2
;

and for a vector field F D F1iC F2jC F3k by

r
2F D .r 2

F1/iC .r
2
F2/jC .r

2
F3/k:

(The Laplacian operator, r 2
D .@2=@x2/C .@2=@y2/C .@2=@z2/, is denoted by � in

some books.) Recall that a function � is called harmonic in a domain D if r 2
� D 0

throughout D. (See Section 12.4.)

We collect the most important identities together in the following theorem. Most

of them are forms of the Product Rule. We will prove a few of the identities to illustrate

the techniques involved (mostly brute-force calculation) and leave the rest as exercises.

Note that two of the identities involve quantities like .G � r/F; this represents the

vector obtained by applying the scalar differential operator G � r to the vector field F:

.G � r/F D G1

@F

@x
CG2

@F

@y
C G3

@F

@z
:

T H E O R E M

3

Vector differential identities

Let � and  be scalar fields and F and G be vector fields, all assumed to be suffi-

ciently smooth that all the partial derivatives in the identities are continuous. Then the

following identities hold:

.a/ r.� / D �r C  r�

.b/ r � .�F/ D .r�/ � FC �.r � F/

.c/ r � .�F/ D .r�/�FC �.r �F/

.d/ r � .F�G/ D .r �F/ �G� F � .r �G/

.e/ r � .F�G/ D .r �G/FC .G � r/F � .r � F/G � .F � r/G

.f/ r.F �G/ D F� .r �G/CG� .r �F/C .F � r/GC .G � r/F

.g/ r � .r �F/ D 0 .div curl D 0/

.h/ r � .r�/ D 0 .curl grad D 0/

.i/ r � .r �F/ D r.r � F/ � r 2F

.curl curl D grad div � Laplacian/
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Identities (a)–(f) are versions of the Product Rule and are first-order identities involving

only one application of r . Identities (g)–(i) are second-order identities. Identities (g)

and (h) are equivalent to the equality of mixed partial derivatives and are especially

important for the understanding of div and curl .

PROOF We will prove only identities (c), (e), and (g). The remaining proofs are

similar to these.

(c) The first component (i component) of r � .�F/ is

@

@y
.�F3/ �

@

@z
.�F2/ D

@�

@y
F3 �

@�

@z
F2 C �

@F3

@y
� �

@F2

@z
:

The first two terms on the right constitute the first component of .r�/�F, and

the last two terms constitute the first component of �.r �F/. Therefore, the first

components of both sides of identity (c) are equal. The equality of the other com-

ponents follows similarly.

(e) Again, it is sufficient to show that the first components of the vectors on both sides

of the identity are equal. To calculate the first component of r � .F�G/ we need

the second and third components of F�G, which are

.F�G/2 D F3G1 � F1G3 and .F�G/3 D F1G2 � F2G1:

The first component of r � .F�G/ is therefore

@

@y
.F1G2 � F2G1/ �

@

@z
.F3G1 � F1G3/

D

@F1

@y
G2 C F1

@G2

@y
�

@F2

@y
G1 � F2

@G1

@y
�

@F3

@z
G1

� F3

@G1

@z
C

@F1

@z
G3 C F1

@G3

@z
:

The first components of the four terms on the right side of identity (e) are

..r �G/F/1 D F1

@G1

@x
C F1

@G2

@y
C F1

@G3

@z

..G � r/F/1 D
@F1

@x
G1 C

@F1

@y
G2 C

@F1

@z
G3

�..r � F/G/1 D �
@F1

@x
G1 �

@F2

@y
G1 �

@F3

@z
G1

�..F � r/G/1 D �F1

@G1

@x
� F2

@G1

@y
� F3

@G1

@z
:

When we add up all the terms in these four expressions, some cancel out and we

are left with the same terms as in the first component of r � .F�G/.

(g) This is a straightforward calculation involving the equality of mixed partial deriva-

tives:

r � .r �F/ D
@

@x

�

@F3

@y
�

@F2

@z

�

C

@

@y

�

@F1

@z
�

@F3

@x

�

C

@

@z

�

@F2

@x
�

@F1

@y

�

D

@2F3

@x@y
�

@2F2

@x@z
C

@2F1

@y@z
�

@2F3

@y@x
C

@2F2

@z@x
�

@2F1

@z@y

D 0:
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Remark Two triple product identities for vectors were previously presented in Exer-

cises 18 and 23 of Section 10.3:

a � .b� c/ D b � .c� a/ D c � .a� b/;

a� .b� c/ D .a � c/b � .a � b/c:

While these are useful identities, they cannot be used to give simpler proofs of the

identities in Theorem 3 by replacing one or other of the vectors with r . (Why?)

Scalar and Vector Potentials
Two special terms are used to describe vector fields for which either the divergence or

the curl is identically zero.

D E F I N I T I O N

2

Solenoidal and irrotational vector fields

A vector field F is called solenoidal in a domain D if div F D 0 in D.

A vector field F is called irrotational in a domain D if curl F D 0 in D.

Part (h) of Theorem 3 says that F D grad �÷ curl F D 0. Thus,

Every conservative vector field is irrotational.

Part (g) of Theorem 3 says that F D curl G÷ div F D 0. Thus,

The curl of any vector field is solenoidal.

The converses of these assertions hold if the domain of F satisfies certain conditions.

T H E O R E M

4

If F is a smooth, irrotational vector field on a simply connected domain D, then F D

r� for some scalar potential function defined on D, so F is conservative.

T H E O R E M

5

If F is a smooth, solenoidal vector field on a domain D with the property that every

closed surface inD bounds a domain contained inD, then F D curl G for some vector

field G defined on D. Such a vector field G is called a vector potential of the vector

field F.

We cannot prove these results in their full generality at this point. However, both

theorems have simple proofs in the special case where the domain D is star-like. A

star-like domain is one for which there exists a point P0 such that the line segment

from P0 to any point P in D lies wholly in D. (See Figure 16.4.) Both proofs are

constructive in that they tell you how to find a potential.
P0

P

D

Figure 16.4 The line segment from P0 to

any point in D lies in D

PROOF of Theorem 4 for star-like domains. Without loss of generality, we can

assume that P0 is the origin. If P D .x; y; z/ is any point in D, then the straight line

segment

r.t/ D txiC tyjC tzk; .0 � t � 1/;

from P0 to P lies in D. Define the function � on D by

�.x; y; z/ D

Z 1

0

F
�

r.t/
�

�

dr

dt
dt

D

Z 1

0

�

xF1.�; �; �/C yF2.�; �; �/C zF3.�; �; �/

�

dt;
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Identities (a)–(f) are versions of the Product Rule and are first-order identities involving

only one application of r . Identities (g)–(i) are second-order identities. Identities (g)

and (h) are equivalent to the equality of mixed partial derivatives and are especially

important for the understanding of div and curl .

PROOF We will prove only identities (c), (e), and (g). The remaining proofs are

similar to these.

(c) The first component (i component) of r � .�F/ is

@

@y
.�F3/ �

@

@z
.�F2/ D

@�

@y
F3 �

@�

@z
F2 C �

@F3

@y
� �

@F2

@z
:

The first two terms on the right constitute the first component of .r�/�F, and

the last two terms constitute the first component of �.r �F/. Therefore, the first

components of both sides of identity (c) are equal. The equality of the other com-

ponents follows similarly.

(e) Again, it is sufficient to show that the first components of the vectors on both sides

of the identity are equal. To calculate the first component of r � .F�G/ we need

the second and third components of F�G, which are

.F�G/2 D F3G1 � F1G3 and .F�G/3 D F1G2 � F2G1:

The first component of r � .F�G/ is therefore

@

@y
.F1G2 � F2G1/ �

@

@z
.F3G1 � F1G3/

D

@F1

@y
G2 C F1

@G2

@y
�

@F2

@y
G1 � F2

@G1

@y
�

@F3

@z
G1

� F3

@G1

@z
C

@F1

@z
G3 C F1

@G3

@z
:

The first components of the four terms on the right side of identity (e) are

..r �G/F/1 D F1

@G1

@x
C F1

@G2

@y
C F1

@G3

@z

..G � r/F/1 D
@F1

@x
G1 C

@F1

@y
G2 C

@F1

@z
G3

�..r � F/G/1 D �
@F1

@x
G1 �

@F2

@y
G1 �

@F3

@z
G1

�..F � r/G/1 D �F1

@G1

@x
� F2

@G1

@y
� F3

@G1

@z
:

When we add up all the terms in these four expressions, some cancel out and we

are left with the same terms as in the first component of r � .F�G/.

(g) This is a straightforward calculation involving the equality of mixed partial deriva-

tives:

r � .r �F/ D
@

@x

�

@F3

@y
�

@F2

@z

�

C

@

@y

�

@F1

@z
�

@F3

@x

�

C

@

@z

�

@F2

@x
�

@F1

@y

�

D

@2F3

@x@y
�

@2F2

@x@z
C

@2F1

@y@z
�

@2F3

@y@x
C

@2F2

@z@x
�

@2F1

@z@y

D 0:
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Remark Two triple product identities for vectors were previously presented in Exer-

cises 18 and 23 of Section 10.3:

a � .b� c/ D b � .c� a/ D c � .a� b/;

a� .b� c/ D .a � c/b � .a � b/c:

While these are useful identities, they cannot be used to give simpler proofs of the

identities in Theorem 3 by replacing one or other of the vectors with r . (Why?)

Scalar and Vector Potentials
Two special terms are used to describe vector fields for which either the divergence or

the curl is identically zero.

D E F I N I T I O N

2

Solenoidal and irrotational vector fields

A vector field F is called solenoidal in a domain D if div F D 0 in D.

A vector field F is called irrotational in a domain D if curl F D 0 in D.

Part (h) of Theorem 3 says that F D grad �÷ curl F D 0. Thus,

Every conservative vector field is irrotational.

Part (g) of Theorem 3 says that F D curl G÷ div F D 0. Thus,

The curl of any vector field is solenoidal.

The converses of these assertions hold if the domain of F satisfies certain conditions.

T H E O R E M

4

If F is a smooth, irrotational vector field on a simply connected domain D, then F D

r� for some scalar potential function defined on D, so F is conservative.

T H E O R E M

5

If F is a smooth, solenoidal vector field on a domain D with the property that every

closed surface inD bounds a domain contained inD, then F D curl G for some vector

field G defined on D. Such a vector field G is called a vector potential of the vector

field F.

We cannot prove these results in their full generality at this point. However, both

theorems have simple proofs in the special case where the domain D is star-like. A

star-like domain is one for which there exists a point P0 such that the line segment

from P0 to any point P in D lies wholly in D. (See Figure 16.4.) Both proofs are

constructive in that they tell you how to find a potential.
P0

P

D

Figure 16.4 The line segment from P0 to

any point in D lies in D

PROOF of Theorem 4 for star-like domains. Without loss of generality, we can

assume that P0 is the origin. If P D .x; y; z/ is any point in D, then the straight line

segment

r.t/ D txiC tyjC tzk; .0 � t � 1/;

from P0 to P lies in D. Define the function � on D by

�.x; y; z/ D

Z 1

0

F
�

r.t/
�

�

dr

dt
dt

D

Z 1

0

�

xF1.�; �; �/C yF2.�; �; �/C zF3.�; �; �/

�

dt;
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where � D tx, � D ty, and � D tz. We calculate @�=@x, making use of the fact that

curl F D 0 to replace .@=@�/F2.�; �; �/ with .@=@�/F1.�; �; �/ and .@=@�/F3.�; �; �/

with .@=@�/F1.�; �; �/:

@�

@x
D

Z 1

0

�

F1.�; �; �/C tx
@F1

@�
C ty

@F2

@�
C tz

@F3

@�

�

dt

D

Z 1

0

�

F1.�; �; �/C tx
@F1

@�
C ty

@F1

@�
C tz

@F1

@�

�

dt

D

Z 1

0

d

dt

�

t F1.�; �; �/

�

dt

D

�

t F1.tx; ty; tz/

�

ˇ

ˇ

ˇ

ˇ

1

0

D F1.x; y; z/:

Similarly, @�=@y D F2 and @�=@z D F3. Thus, r� D F.

The details of the proof of Theorem 5 for star-like domains are similar to those of

Theorem 4, and we relegate the proof to Exercise 18 below.

Note that vector potentials, when they exist, are very nonunique. Since curl grad �

is identically zero (Theorem 3(h)), an arbitrary conservative field can be added to G

without changing the value of curl G. The following example illustrates just how

much freedom you have in making simplifying assumptions when trying to find a vec-

tor potential.

E X A M P L E 1
Show that the vector field F D .x2

Cyz/i�2y.xCz/jC.xyCz2/k

is solenoidal in R
3 and find a vector potential for it.

Solution Since div F D 2x � 2.x C z/C 2z D 0 in R
3, F is solenoidal. A vector

potential G for F must satisfy curl G D F; that is,

@G3

@y
�

@G2

@z
D x

2
C yz;

@G1

@z
�

@G3

@x
D �2xy � 2yz;

@G2

@x
�

@G1

@y
D xy C z

2
:

The three components of G have nine independent first partial derivatives, so there are

nine “degrees of freedom” involved in their determination. The three equations above

use up three of these nine degrees of freedom. That leaves six. Let us try to find a

solution G with G2 D 0 identically. This means that all three first partials of G2 are

zero, so we have used up three degrees of freedom in making this assumption. We have

three left. The first equation now implies that

G3 D

Z

.x
2
C yz/ dy D x

2
y C

1

2
y

2
z CM.x; z/:

(Since we were integrating with respect to y, the constant of integration can still de-

pend on x and z.) We make a second simplifying assumption, that M.x; z/ D 0. This

uses up two more degrees of freedom, leaving one. From the second equation we have

@G1

@z
D

@G3

@x
� 2xy � 2yz D 2xy � 2xy � 2yz D �2yz;

so

G1 D �2

Z

yz dz D �yz
2
CN.x; y/:
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We cannot assume thatN.x; y/ D 0 identically because that would require two degrees

of freedom and we have only one. However, the third equation implies

xy C z
2
D �

@G1

@y
D z

2
�

@N

@y
:

Thus, .@=@y/N.x; y/ D �xy; observe that the terms involving z have cancelled out.

This happened because div F D 0. Had F not been solenoidal, we could not have

determinedN as a function of x and y only from the above equation. As it is, however,

we have

N.x; y/ D �

Z

xy dy D �
1

2
xy

2
C P.x/:

We can use our last degree of freedom to choose P.x/ to be identically zero and hence

obtain

G D �
�

yz
2
C

xy2

2

�

iC
�

x
2
y C

y2z

2

�

k

as the required vector potential for F. You can check that curl G D F. Of course,

other choices of simplifying assumptions would have led to very different functions G,

which would have been equally correct.

In theoretical physics any particular choice of curl free term added to G is called a

“gauge,” and there is an elaborate theory known as “gauge theory,” which explores the

relative merits of such gauges and their relationships to each other.

Maple Calculations
The Maple VectorCalculus package defines routines for creating a vector field as well

as calculating the gradient of a scalar field and the divergences and curl of a vector

field. It will also calculate the Laplacian of a scalar or vector field and allow the use of

the “del” operator in dot and cross products. Some of these capabilities are restricted

to three-dimensional vector fields. Let us begin by loading the package and declaring

the type of coordinate system we will use and the names of the coordinates:

> with(VectorCalculus):

> SetCoordinates(’cartesian’[x,y,z]);

cartesianx;y;z

Setting the coordinates at the outset means we don’t have to do it every time we call

one of the procedures for handling vector fields, such as the Gradient procedure,

which we illustrated at the end of Section 12.7. To calculate the gradient of a scalar

expression in the variables x, y, and z, we could simply enter

> f := x^2 + x*y - z^3; G := Gradient(f);

f WD x
2
C xy � z

3

G WD .2x C y/ Nex C x Ney � 3z
2
Nez

Maple shows that the result G is a vector field rather than just a vector by placing

bars over the basis vectors. Maple treats vector fields and vectors as different kinds of

objects; you can, for example, add two vector fields or two vectors, but you can’t add a

vector to a vector field. A vector field is a vector-valued function of a vector variable.

To evaluate a vector field at a particular vector, you use the evalVF procedure:

> evalVF(G,<1,1,1>);

3 ex C ey � 3 ez
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where � D tx, � D ty, and � D tz. We calculate @�=@x, making use of the fact that

curl F D 0 to replace .@=@�/F2.�; �; �/ with .@=@�/F1.�; �; �/ and .@=@�/F3.�; �; �/

with .@=@�/F1.�; �; �/:

@�

@x
D

Z 1

0

�

F1.�; �; �/C tx
@F1

@�
C ty

@F2

@�
C tz

@F3

@�

�

dt

D

Z 1

0

�

F1.�; �; �/C tx
@F1

@�
C ty

@F1

@�
C tz

@F1

@�

�

dt

D

Z 1

0

d

dt

�

t F1.�; �; �/

�

dt

D

�

t F1.tx; ty; tz/

�

ˇ

ˇ

ˇ

ˇ

1

0

D F1.x; y; z/:

Similarly, @�=@y D F2 and @�=@z D F3. Thus, r� D F.

The details of the proof of Theorem 5 for star-like domains are similar to those of

Theorem 4, and we relegate the proof to Exercise 18 below.

Note that vector potentials, when they exist, are very nonunique. Since curl grad �

is identically zero (Theorem 3(h)), an arbitrary conservative field can be added to G

without changing the value of curl G. The following example illustrates just how

much freedom you have in making simplifying assumptions when trying to find a vec-

tor potential.

E X A M P L E 1
Show that the vector field F D .x2

Cyz/i�2y.xCz/jC.xyCz2/k

is solenoidal in R
3 and find a vector potential for it.

Solution Since div F D 2x � 2.x C z/C 2z D 0 in R
3, F is solenoidal. A vector

potential G for F must satisfy curl G D F; that is,

@G3

@y
�

@G2

@z
D x

2
C yz;

@G1

@z
�

@G3

@x
D �2xy � 2yz;

@G2

@x
�

@G1

@y
D xy C z

2
:

The three components of G have nine independent first partial derivatives, so there are

nine “degrees of freedom” involved in their determination. The three equations above

use up three of these nine degrees of freedom. That leaves six. Let us try to find a

solution G with G2 D 0 identically. This means that all three first partials of G2 are

zero, so we have used up three degrees of freedom in making this assumption. We have

three left. The first equation now implies that

G3 D

Z

.x
2
C yz/ dy D x

2
y C

1

2
y

2
z CM.x; z/:

(Since we were integrating with respect to y, the constant of integration can still de-

pend on x and z.) We make a second simplifying assumption, that M.x; z/ D 0. This

uses up two more degrees of freedom, leaving one. From the second equation we have

@G1

@z
D

@G3

@x
� 2xy � 2yz D 2xy � 2xy � 2yz D �2yz;

so

G1 D �2

Z

yz dz D �yz
2
CN.x; y/:
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We cannot assume thatN.x; y/ D 0 identically because that would require two degrees

of freedom and we have only one. However, the third equation implies

xy C z
2
D �

@G1

@y
D z

2
�

@N

@y
:

Thus, .@=@y/N.x; y/ D �xy; observe that the terms involving z have cancelled out.

This happened because div F D 0. Had F not been solenoidal, we could not have

determinedN as a function of x and y only from the above equation. As it is, however,

we have

N.x; y/ D �

Z

xy dy D �
1

2
xy

2
C P.x/:

We can use our last degree of freedom to choose P.x/ to be identically zero and hence

obtain

G D �
�

yz
2
C

xy2

2

�

iC
�

x
2
y C

y2z

2

�

k

as the required vector potential for F. You can check that curl G D F. Of course,

other choices of simplifying assumptions would have led to very different functions G,

which would have been equally correct.

In theoretical physics any particular choice of curl free term added to G is called a

“gauge,” and there is an elaborate theory known as “gauge theory,” which explores the

relative merits of such gauges and their relationships to each other.

Maple Calculations
The Maple VectorCalculus package defines routines for creating a vector field as well

as calculating the gradient of a scalar field and the divergences and curl of a vector

field. It will also calculate the Laplacian of a scalar or vector field and allow the use of

the “del” operator in dot and cross products. Some of these capabilities are restricted

to three-dimensional vector fields. Let us begin by loading the package and declaring

the type of coordinate system we will use and the names of the coordinates:

> with(VectorCalculus):

> SetCoordinates(’cartesian’[x,y,z]);

cartesianx;y;z

Setting the coordinates at the outset means we don’t have to do it every time we call

one of the procedures for handling vector fields, such as the Gradient procedure,

which we illustrated at the end of Section 12.7. To calculate the gradient of a scalar

expression in the variables x, y, and z, we could simply enter

> f := x^2 + x*y - z^3; G := Gradient(f);

f WD x
2
C xy � z

3

G WD .2x C y/ Nex C x Ney � 3z
2
Nez

Maple shows that the result G is a vector field rather than just a vector by placing

bars over the basis vectors. Maple treats vector fields and vectors as different kinds of

objects; you can, for example, add two vector fields or two vectors, but you can’t add a

vector to a vector field. A vector field is a vector-valued function of a vector variable.

To evaluate a vector field at a particular vector, you use the evalVF procedure:

> evalVF(G,<1,1,1>);

3 ex C ey � 3 ez
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You can define a vector field F with the VectorField procedure:

> F := VectorField(<x*y, 2*y*z, 3*x*z>);

F WD x y Nex C 2 y z Ney C 3 x z Nez

Then we can calculate the divergence or curl of F by using the Divergence or Curl

procedures, or by dot or cross products with the Del operator:

> Divergence(F); Del.F;

y C 2 z C 3 x

y C 2 z C 3 x

> Curl(F); Del &x F;

�2 y Nex � 3 z Ney � x Nez

�2 y Nex � 3 z Ney � x Nez

We can verify the identities in Theorem 3 by using arbitrary scalar and vector

fields:

> H := VectorField(<u(x,y,z),v(x,y,z),w(x,y,z)>);

H WD u.x; y; z/ Nex C v.x; y; z/ Ney C w.x; y; z/ Nez

> Divergence(Curl(H)); Curl(Gradient(u(x,y,z));

0

0 Nex

0 Nex is VectorCalculus’s way of denoting the zero vector field.

> Curl(Curl(H)) - Gradient(Divergence(H)) + Laplacian(H);

0 Nex

VectorCalculus also has procedures for finding the scalar potential of an irrota-

tional vector field and the vector potential of a solenoidal vector field:

> ScalarPotential(VectorField(<x,y,z>));

1

2
x

2
C

1

2
y

2
C

1

2
z

2

> VectorPotential(VectorField(<x^2, -x*y, -x*z>));

�x y z Nex � x
2 z Ney

Neither procedure gives any output if you fail to feed it a vector field satisfying the

appropriate condition (irrotational or solenoidal).

Finally, let us note that VectorCalculus is quite happy to deal with coordinate

systems other than ’cartesian’[x,y,z]. For instance,

> SetCoordinates(’cylindrical’[r,theta,z]);

cylindricalr;�;z

> Laplacian(u(r,theta,z));

�

@

@r
u.r; �; z/

�

C r

�

@2

@r2
u.r; �; z/

�

C

@2

@�2
u.r; �; z/

r
C r

�

@2

@z2
u.r; �; z/

�

r

which is not written as neatly as we would like, but is correct. Similarly, we can use co-

ordinate systems ’spherical’[rho,phi,theta] in 3-space and also

’polar’[r,theta] in the plane.
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E X E R C I S E S 16.2

1.A Prove part (a) of Theorem 3.

2.A Prove part (b) of Theorem 3.

3.A Prove part (d) of Theorem 3.

4.A Prove part (f) of Theorem 3.

5.A Prove part (h) of Theorem 3.

6.A Prove part (i) of Theorem 3.

7.A Given that the field lines of the vector field F.x; y; z/ are

parallel straight lines, can you conclude anything about div F?

about curl F?

8. Let r D xiC yjC zk and let c be a constant vector. Show that

r � .c� r/ D 0, r � .c� r/ D 2c, and r.c � r/ D c.

9. Let r D xiC yjC zk and let r D jrj. If f is a differentiable

function of one variable, show that

r � .f .r/r/ D rf 0
.r/C 3f .r/:

Find f .r/ if f .r/r is solenoidal for r ¤ 0.

10. If the smooth vector field F is both irrotational and solenoidal

on R
3
, show that the three components of F and the scalar

potential for F are all harmonic functions in R
3
.

11. If r D xiC yjC zk and F is smooth, show that

r � .F� r/ D F � .r � F/rCr.F � r/ � r� .r �F/:

In particular, if r � F D 0 and r �F D 0, then

r � .F� r/ D FCr.F � r/:

12. If � and  are harmonic functions, show that �r �  r� is

solenoidal.

13. If � and  are smooth scalar fields, show that

r � .�r / D �r � . r�/ D r� �r :

14. Verify the identity

r �

�

f .rg�rh/

�

D rf � .rg�rh/

for smooth scalar fields f; g, and h.

15. If the vector fields F and G are smooth and conservative, show

that F�G is solenoidal. Find a vector potential for F�G.

16. Find a vector potential for F D �yiC xj.

17. Show that F D xe2z iC ye2zj � e2zk is a solenoidal vector

field, and find a vector potential for it.

18.I Suppose div F D 0 in a domain D any point P of which can

by joined to the origin by a straight line segment in D. Let

r D txiC tyjC tzk, (0 � t � 1), be a parametrization of the

line segment from the origin to .x; y; z/ in D. If

G.x; y; z/ D

Z 1

0

tF.r.t//�
dr

dt
dt;

show that curl G D F throughoutD. Hint: It is enough to

check the first components of curl G and F. Proceed in a

manner similar to the proof of Theorem 4.

M 19. Use the Maple VectorCalculus package to verify the identities

(a)–(f) of Theorem 3. Hint: For expressions of the form

.F � r/G you will have to use

> F[1]*diff(G,x)+F[2]*diff(G,y)

> +F[3]*diff(G,z)

because Del cannot be applied to a vector field except via a

dot or cross product.

16.3 Green’s Theorem in the Plane

The Fundamental Theorem of Calculus,

Z b

a

d

dx
f .x/ dx D f .b/� f .a/;

expresses the integral, taken over the interval Œa; b�, of the derivative of a single-

variable function, f; as a sum of values of that function at the oriented boundary of

the interval Œa; b�, that is, at the two endpoints a and b, the former providing a negative

contribution and the latter a positive one. The line integral of a conservative vector

field over a curve C from A to B ,

Z

C

r� � dr D �.B/ � �.A/;

has a similar interpretation; r� is a derivative, and the curve C, although lying in

a two- or three-dimensional space, is intrinsically a one-dimensional object, and the

points A and B constitute its boundary.
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You can define a vector field F with the VectorField procedure:

> F := VectorField(<x*y, 2*y*z, 3*x*z>);

F WD x y Nex C 2 y z Ney C 3 x z Nez

Then we can calculate the divergence or curl of F by using the Divergence or Curl

procedures, or by dot or cross products with the Del operator:

> Divergence(F); Del.F;

y C 2 z C 3 x

y C 2 z C 3 x

> Curl(F); Del &x F;

�2 y Nex � 3 z Ney � x Nez

�2 y Nex � 3 z Ney � x Nez

We can verify the identities in Theorem 3 by using arbitrary scalar and vector

fields:

> H := VectorField(<u(x,y,z),v(x,y,z),w(x,y,z)>);

H WD u.x; y; z/ Nex C v.x; y; z/ Ney C w.x; y; z/ Nez

> Divergence(Curl(H)); Curl(Gradient(u(x,y,z));

0

0 Nex

0 Nex is VectorCalculus’s way of denoting the zero vector field.

> Curl(Curl(H)) - Gradient(Divergence(H)) + Laplacian(H);

0 Nex

VectorCalculus also has procedures for finding the scalar potential of an irrota-

tional vector field and the vector potential of a solenoidal vector field:

> ScalarPotential(VectorField(<x,y,z>));

1

2
x

2
C

1

2
y

2
C

1

2
z

2

> VectorPotential(VectorField(<x^2, -x*y, -x*z>));

�x y z Nex � x
2 z Ney

Neither procedure gives any output if you fail to feed it a vector field satisfying the

appropriate condition (irrotational or solenoidal).

Finally, let us note that VectorCalculus is quite happy to deal with coordinate

systems other than ’cartesian’[x,y,z]. For instance,

> SetCoordinates(’cylindrical’[r,theta,z]);

cylindricalr;�;z

> Laplacian(u(r,theta,z));

�

@

@r
u.r; �; z/

�

C r

�

@2

@r2
u.r; �; z/

�

C

@2

@�2
u.r; �; z/

r
C r

�

@2

@z2
u.r; �; z/

�

r

which is not written as neatly as we would like, but is correct. Similarly, we can use co-

ordinate systems ’spherical’[rho,phi,theta] in 3-space and also

’polar’[r,theta] in the plane.
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E X E R C I S E S 16.2

1.A Prove part (a) of Theorem 3.

2.A Prove part (b) of Theorem 3.

3.A Prove part (d) of Theorem 3.

4.A Prove part (f) of Theorem 3.

5.A Prove part (h) of Theorem 3.

6.A Prove part (i) of Theorem 3.

7.A Given that the field lines of the vector field F.x; y; z/ are

parallel straight lines, can you conclude anything about div F?

about curl F?

8. Let r D xiC yjC zk and let c be a constant vector. Show that

r � .c� r/ D 0, r � .c� r/ D 2c, and r.c � r/ D c.

9. Let r D xiC yjC zk and let r D jrj. If f is a differentiable

function of one variable, show that

r � .f .r/r/ D rf 0
.r/C 3f .r/:

Find f .r/ if f .r/r is solenoidal for r ¤ 0.

10. If the smooth vector field F is both irrotational and solenoidal

on R
3
, show that the three components of F and the scalar

potential for F are all harmonic functions in R
3
.

11. If r D xiC yjC zk and F is smooth, show that

r � .F� r/ D F � .r � F/rCr.F � r/ � r� .r �F/:

In particular, if r � F D 0 and r �F D 0, then

r � .F� r/ D FCr.F � r/:

12. If � and  are harmonic functions, show that �r �  r� is

solenoidal.

13. If � and  are smooth scalar fields, show that

r � .�r / D �r � . r�/ D r� �r :

14. Verify the identity

r �

�

f .rg�rh/

�

D rf � .rg�rh/

for smooth scalar fields f; g, and h.

15. If the vector fields F and G are smooth and conservative, show

that F�G is solenoidal. Find a vector potential for F�G.

16. Find a vector potential for F D �yiC xj.

17. Show that F D xe2z iC ye2zj � e2zk is a solenoidal vector

field, and find a vector potential for it.

18.I Suppose div F D 0 in a domain D any point P of which can

by joined to the origin by a straight line segment in D. Let

r D txiC tyjC tzk, (0 � t � 1), be a parametrization of the

line segment from the origin to .x; y; z/ in D. If

G.x; y; z/ D

Z 1

0

tF.r.t//�
dr

dt
dt;

show that curl G D F throughoutD. Hint: It is enough to

check the first components of curl G and F. Proceed in a

manner similar to the proof of Theorem 4.

M 19. Use the Maple VectorCalculus package to verify the identities

(a)–(f) of Theorem 3. Hint: For expressions of the form

.F � r/G you will have to use

> F[1]*diff(G,x)+F[2]*diff(G,y)

> +F[3]*diff(G,z)

because Del cannot be applied to a vector field except via a

dot or cross product.

16.3 Green’s Theorem in the Plane

The Fundamental Theorem of Calculus,

Z b

a

d

dx
f .x/ dx D f .b/� f .a/;

expresses the integral, taken over the interval Œa; b�, of the derivative of a single-

variable function, f; as a sum of values of that function at the oriented boundary of

the interval Œa; b�, that is, at the two endpoints a and b, the former providing a negative

contribution and the latter a positive one. The line integral of a conservative vector

field over a curve C from A to B ,

Z

C

r� � dr D �.B/ � �.A/;

has a similar interpretation; r� is a derivative, and the curve C, although lying in

a two- or three-dimensional space, is intrinsically a one-dimensional object, and the

points A and B constitute its boundary.
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Green’s Theorem is a two-dimensional version of the Fundamental Theorem of

Calculus that expresses the double integral of a certain kind of derivative of a two-

dimensional vector field F.x; y/, namely, the k-component of curl F, over a region

R in the xy-plane as a line integral (i.e., a “sum”) of the tangential component of F

around the curve C, which is the oriented boundary of R:
ZZ

R

curl F � k dA D

I

C

F � dr;

or, more explicitly,

ZZ

R

�

@F2

@x
�

@F1

@y

�

dx dy D

I

C

F1.x; y/ dx C F2.x; y/ dy:

For this formula to hold, C must be the oriented boundary of R considered as a surface

with orientation provided by ON D k. Thus, C is oriented with R on the left as we

move around C in the direction of its orientation. We will call such a curve positively

oriented with respect to R. In particular, if C is a simple closed curve bounding R,

then C is oriented counterclockwise. Of course, R may have holes, and the boundaries

of the holes will be oriented clockwise. In any case, the unit tangent OT and unit exterior

(pointing out of R) normal ON on C satisfy ON D OT�k. See Figure 16.5.

y

x

OT
ON

OT

ON
C

C

Figure 16.5 A plane domain with

positively oriented boundary

T H E O R E M

6

Green’s Theorem

LetR be a regular, closed region in the xy-plane whose boundary, C, consists of one or

more piecewise smooth, simple closed curves that are positively oriented with respect

to R. If F D F1.x; y/iC F2.x; y/j is a smooth vector field on R, then

I

C

F1.x; y/ dx C F2.x; y/ dy D

ZZ

R

�

@F2

@x
�

@F1

@y

�

dA:

PROOF Recall that a regular region can be divided into nonoverlapping subregions

that are both x-simple and y-simple. (See Section 14.2.) When two such regions share

a common boundary curve, they induce opposite orientations on that curve, so the

sum of the line integrals over the boundaries of the subregions is just the line integral

over the boundary of the whole region. (See Figure 16.6.) The double integrals over

the subregions also add to give the double integral over the whole region. It there-

fore suffices to show that the formula holds for a region R that is both x-simple and

y-simple.

y

x

R1
R2

Figure 16.6 Green’s Theorem holds for

the union of R1 and R2 if it holds for each

of those regions

Since R is y-simple, it is specified by inequalities of the form a � x � b, f .x/ �

y � g.x/, with the bottom boundary y D f .x/ oriented left to right and the upper

boundary y D g.x/ oriented right to left. (See Figure 16.7.) Thus,

�

ZZ

R

@F1

@y
dx dy D �

Z b

a

dx

Z g.x/

f .x/

@F1

@y
dy

D

Z b

a

�

�F1

�

x; g.x/
�

C F1

�

x; f .x/
�

�

dx:

On the other hand, since dx D 0 on the vertical sides of R, and the top boundary is

traversed from b to a, we have

y

x

R

y D g.x/

y D f .x/

C

a b

Figure 16.7
H

C
F1 dx D �

RR

R

@F1

@y
dA

for this y-simple region R

I

C

F1.x; y/ dx D

Z b

a

�

F1

�

x; f .x/
�

� F1

�

x; g.x/
�

�

dx D

ZZ

R

�

@F1

@y
dx dy:
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Similarly, since R is x-simple,

I

C

F2 dy D

ZZ

R

@F2

@x
dx dy, so

I

C

F1.x; y/ dx C F2.x; y/ dy D

ZZ

R

�

@F2

@x
�

@F1

@y

�

dA:

E X A M P L E 1
(Area bounded by a simple closed curve) For any of the three

vector fields

F D xj; F D �yi; and F D
1

2
.�yiC xj/;

we have .@F2=@x/ � .@F1=@y/ D 1. If C is a positively oriented, piecewise smooth,

simple closed curve bounding a region R in the plane, then, by Green’s Theorem,

I

C

x dy D �

I

C

y dx D
1

2

I

C

x dy � y dx D

ZZ

R

1 dA D area of R:

E X A M P L E 2
Use the result of the previous example to calculate the area of the

elliptic disk bounded by the curve C given by

r D 3.cos t C sin t/ iC 2.sin t � cos t/ j; 0 � t � 2�:

Solution The parametrization of C gives

x D 3.cos t C sin t/;

dx D 3.� sin t C cos t/ dt;

y D 2.sin t � cos t/;

dy D 2.cos t C sin t/ dt;

so that x dy � y dx D 6
�

.cos t C sin t/2 C .sin t � cos t/2
�

dt D 12 dt . Thus, by the

third formula for the area given in the previous example, the disk has

area D
1

2

Z

C

x dy � y dx

D

1

2

Z 2�

0

12 dt D 12� square units.

E X A M P L E 3 Evaluate I D

I

C

.x � y
3
/ dx C .y

3
C x

3
/ dy,

where C is the positively oriented boundary of the quarter-diskQ:

0 � x2
C y2

� a2, x � 0, y � 0.

Solution We use Green’s Theorem to calculate I :

I D

ZZ

Q

�

@

@x
.y

3
C x

3
/ �

@

@y
.x � y

3
/

�

dA

D 3

ZZ

Q

.x
2
C y

2
/ dA D 3

Z �=2

0

d�

Z a

0

r
3
dr D

3

8
�a

4
:

E X A M P L E 4
Let C be a positively oriented, simple closed curve in the xy-plane,

bounding a regionR and not passing through the origin. Show that

I

C

�y dx C x dy

x2
C y2

D

�

0 if the origin is outside R

2� if the origin is inside R.
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Green’s Theorem is a two-dimensional version of the Fundamental Theorem of

Calculus that expresses the double integral of a certain kind of derivative of a two-

dimensional vector field F.x; y/, namely, the k-component of curl F, over a region

R in the xy-plane as a line integral (i.e., a “sum”) of the tangential component of F

around the curve C, which is the oriented boundary of R:
ZZ

R

curl F � k dA D

I

C

F � dr;

or, more explicitly,

ZZ

R

�

@F2

@x
�

@F1

@y

�

dx dy D

I

C

F1.x; y/ dx C F2.x; y/ dy:

For this formula to hold, C must be the oriented boundary of R considered as a surface

with orientation provided by ON D k. Thus, C is oriented with R on the left as we

move around C in the direction of its orientation. We will call such a curve positively

oriented with respect to R. In particular, if C is a simple closed curve bounding R,

then C is oriented counterclockwise. Of course, R may have holes, and the boundaries

of the holes will be oriented clockwise. In any case, the unit tangent OT and unit exterior

(pointing out of R) normal ON on C satisfy ON D OT�k. See Figure 16.5.

y

x

OT
ON

OT

ON
C

C

Figure 16.5 A plane domain with

positively oriented boundary

T H E O R E M

6

Green’s Theorem

LetR be a regular, closed region in the xy-plane whose boundary, C, consists of one or

more piecewise smooth, simple closed curves that are positively oriented with respect

to R. If F D F1.x; y/iC F2.x; y/j is a smooth vector field on R, then

I

C

F1.x; y/ dx C F2.x; y/ dy D

ZZ

R

�

@F2

@x
�

@F1

@y

�

dA:

PROOF Recall that a regular region can be divided into nonoverlapping subregions

that are both x-simple and y-simple. (See Section 14.2.) When two such regions share

a common boundary curve, they induce opposite orientations on that curve, so the

sum of the line integrals over the boundaries of the subregions is just the line integral

over the boundary of the whole region. (See Figure 16.6.) The double integrals over

the subregions also add to give the double integral over the whole region. It there-

fore suffices to show that the formula holds for a region R that is both x-simple and

y-simple.

y

x

R1
R2

Figure 16.6 Green’s Theorem holds for

the union of R1 and R2 if it holds for each

of those regions

Since R is y-simple, it is specified by inequalities of the form a � x � b, f .x/ �

y � g.x/, with the bottom boundary y D f .x/ oriented left to right and the upper

boundary y D g.x/ oriented right to left. (See Figure 16.7.) Thus,

�

ZZ

R

@F1

@y
dx dy D �

Z b

a

dx

Z g.x/

f .x/

@F1

@y
dy

D

Z b

a

�

�F1

�

x; g.x/
�

C F1

�

x; f .x/
�

�

dx:

On the other hand, since dx D 0 on the vertical sides of R, and the top boundary is

traversed from b to a, we have

y

x

R

y D g.x/

y D f .x/

C

a b

Figure 16.7
H

C
F1 dx D �

RR

R

@F1

@y
dA

for this y-simple region R

I

C

F1.x; y/ dx D

Z b

a

�

F1

�

x; f .x/
�

� F1

�

x; g.x/
�

�

dx D

ZZ

R

�

@F1

@y
dx dy:
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Similarly, since R is x-simple,

I

C

F2 dy D

ZZ

R

@F2

@x
dx dy, so

I

C

F1.x; y/ dx C F2.x; y/ dy D

ZZ

R

�

@F2

@x
�

@F1

@y

�

dA:

E X A M P L E 1
(Area bounded by a simple closed curve) For any of the three

vector fields

F D xj; F D �yi; and F D
1

2
.�yiC xj/;

we have .@F2=@x/ � .@F1=@y/ D 1. If C is a positively oriented, piecewise smooth,

simple closed curve bounding a region R in the plane, then, by Green’s Theorem,

I

C

x dy D �

I

C

y dx D
1

2

I

C

x dy � y dx D

ZZ

R

1 dA D area of R:

E X A M P L E 2
Use the result of the previous example to calculate the area of the

elliptic disk bounded by the curve C given by

r D 3.cos t C sin t/ iC 2.sin t � cos t/ j; 0 � t � 2�:

Solution The parametrization of C gives

x D 3.cos t C sin t/;

dx D 3.� sin t C cos t/ dt;

y D 2.sin t � cos t/;

dy D 2.cos t C sin t/ dt;

so that x dy � y dx D 6
�

.cos t C sin t/2 C .sin t � cos t/2
�

dt D 12 dt . Thus, by the

third formula for the area given in the previous example, the disk has

area D
1

2

Z

C

x dy � y dx

D

1

2

Z 2�

0

12 dt D 12� square units.

E X A M P L E 3 Evaluate I D

I

C

.x � y
3
/ dx C .y

3
C x

3
/ dy,

where C is the positively oriented boundary of the quarter-diskQ:

0 � x2
C y2

� a2, x � 0, y � 0.

Solution We use Green’s Theorem to calculate I :

I D

ZZ

Q

�

@

@x
.y

3
C x

3
/ �

@

@y
.x � y

3
/

�

dA

D 3

ZZ

Q

.x
2
C y

2
/ dA D 3

Z �=2

0

d�

Z a

0

r
3
dr D

3

8
�a

4
:

E X A M P L E 4
Let C be a positively oriented, simple closed curve in the xy-plane,

bounding a regionR and not passing through the origin. Show that

I

C

�y dx C x dy

x2
C y2

D

�

0 if the origin is outside R

2� if the origin is inside R.
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Solution First, if .x; y/ ¤ .0; 0/, then, by direct calculation,

@

@x

�

x

x2
C y2

�

�

@

@y

�

�y

x2
C y2

�

D 0:

If the origin is not in R, then Green’s Theorem implies that
I

C

�y dx C x dy

x2
C y2

D

ZZ

R

�

@

@x

�

x

x2
C y2

�

�

@

@y

�

�y

x2
C y2

��

dx dy D 0:

Now suppose the origin is in R. Since it is assumed that the origin is not on C, it must

be an interior point of R. The interior of R is open, so there exists � > 0 such that the

circle C� of radius � centred at the origin is in the interior of R. Let C� be oriented

negatively (clockwise). By direct calculation (see Exercise 22(a) of Section 15.4) it is

easily shown that
I

C�

�y dx C x dy

x2
C y2

D �2�:

Together C and C� form the positively oriented boundary of a region R1 that excludes

the origin. (See Figure 16.8.) So, by Green’s Theorem,
I

C

�y dx C x dy

x2
C y2

C

I

C�

�y dx C x dy

x2
C y2

D 0:

The desired result now follows:
I

C

�y dx C x dy

x2
C y2

D �

I

C�

�y dx C x dy

x2
C y2

D �.�2�/ D 2�:

y

x

C�

C

R1

Figure 16.8 The origin does not lie in R1

The Two-Dimensional Divergence Theorem
The following theorem is an alternative formulation of the two-dimensional Funda-

mental Theorem of Calculus. In this case we express the double integral of div F (a

derivative of F) over R as a single integral of the outward normal component of F on

the boundary C of R.

T H E O R E M

7

The Divergence Theorem in the Plane

Let R be a regular, closed region in the xy-plane whose boundary, C, consists of one

or more piecewise smooth, simple closed curves. Let ON denote the unit outward (from

R) normal field on C. If F D F1.x; y/iCF2.x; y/j is a smooth vector field on R, then

ZZ

R

div F dA D

I

C

F � ONds:

PROOF As observed in the second paragraph of this section, ON D OT� k, where
OT is the unit tangent field in the positive direction on C. If OT D T1i C T2j, then
ON D T2i � T1j. (See Figure 16.9.) Now let G be the vector field with components

G1 D �F2 and G2 D F1. Then G � OT D F � ON and, by Green’s Theorem,
ZZ

R

div F dA D

ZZ

R

�

@F1

@x
C

@F2

@y

�

dA

D

ZZ

R

�

@G2

@x
�

@G1

@y

�

dA

D

I

C

G � dr D

I

C

G � OTds D

I

C

F � ON ds:

y

x

OT
ON

OT

ON
C

C

Figure 16.9 ON D OT� k
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E X E R C I S E S 16.3

1. Evaluate

I

C

.sinx C 3y2
/ dx C .2x � e

�y2

/ dy, where C is

the boundary of the half-disk x2
C y2

� a2, y � 0, oriented

counterclockwise.

2. Evaluate

I

C

.x
2
� xy/ dx C .xy � y

2
/ dy clockwise around

the triangle with vertices .0; 0/, .1; 1/, and .2; 0/.

3. Evaluate

I

C

�

x sin.y2
/� y

2

�

dxC

�

x
2
y cos.y2

/C 3x

�

dy,

where C is the counterclockwise boundary of the trapezoid

with vertices .0;�2/, .1;�1/, .1; 1/, and .0; 2/.

4. Evaluate

I

C

x
2
y dx � xy

2
dy, where C is the clockwise

boundary of the region 0 � y �
p

9 � x2.

5. Use a line integral to find the plane area enclosed by the curve

r D a cos3 t iC b sin3
t j, .0 � t � 2�/.

6. We deduced the two-dimensional Divergence Theorem from

Green’s Theorem. Reverse the argument and use the

two-dimensional Divergence Theorem to prove Green’s

Theorem.

7. Sketch the plane curve C: r D sin t iC sin 2t j, (0 � t � 2�).

Evaluate

I

C

F � dr, where F D yex2
iC x3ey j.

8. If C is the positively oriented boundary of a plane region R

having area A and centroid . Nx; Ny/, interpret geometrically the

line integral

I

C

F � dr, where (a) F D x2j, (b) F D xyi,

and (c) F D y2iC 3xyj.

9.I (Average values of harmonic functions) If u.x; y/ is

harmonic in a domain containing a disk of radius r with

boundary Cr , then the average value of u around the circle is

the value of u at the centre. Prove this by showing that the

derivative of the average value with respect to r is zero using

the Divergence Theorem and the harmonicity of u, and the

fact that the limit of the average value as r ! 0 is the value of

u at the centre.

16.4 The Divergence Theorem in 3-Space

The Divergence Theorem (also called Gauss’s Theorem) is one of two important ver-

sions of the Fundamental Theorem of Calculus in R
3. (The other is Stokes’s Theorem,

presented in the next section.)

In the Divergence Theorem, the integral of the derivative div F D r � F over

a domain in 3-space is expressed as the flux of F out of the surface of that domain.

It therefore closely resembles the two-dimensional version, Theorem 7, given in the

previous section. The theorem holds for a general class of domains in R
3 that are

bounded by piecewise smooth closed surfaces. However, we will restrict our statement

and proof of the theorem to domains of a special type. Extending the concept of an

x-simple plane domain defined in Section 14.2, we say the three-dimensional domain

D is x-simple if it is bounded by a piecewise smooth surface S and if every straight

line parallel to the x-axis and passing through an interior point ofD meets S at exactly

two points. Similar definitions hold for y-simple and z-simple, and we call the domain

D regular if it is a union of finitely many, nonoverlapping subdomains, each of which

is x-simple, y-simple, and z-simple.

T H E O R E M

8

The Divergence Theorem (Gauss’s Theorem)

LetD be a regular, three-dimensional domain whose boundary S is an oriented, closed

surface with unit normal field ON pointing out ofD. If F is a smooth vector field defined

on D, then

ZZZ

D

div F dV D

Z



Z

S

F � ONdS:

PROOF Since the domain D is a union of finitely many nonoverlapping domains

that are x-simple, y-simple, and z-simple, it is sufficient to prove the theorem for a

subdomain of D with this property. To see this, suppose, for instance, that D and S

are each divided into two parts, D1 and D2, and S1 and S2, by a surface S
� slicing

through D. (See Figure 16.10.) S
� is part of the boundary of both D1 and D2,
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Solution First, if .x; y/ ¤ .0; 0/, then, by direct calculation,

@

@x

�

x

x2
C y2

�

�

@

@y

�

�y

x2
C y2

�

D 0:

If the origin is not in R, then Green’s Theorem implies that
I

C

�y dx C x dy

x2
C y2

D

ZZ

R

�

@

@x

�

x

x2
C y2

�

�

@

@y

�

�y

x2
C y2

��

dx dy D 0:

Now suppose the origin is in R. Since it is assumed that the origin is not on C, it must

be an interior point of R. The interior of R is open, so there exists � > 0 such that the

circle C� of radius � centred at the origin is in the interior of R. Let C� be oriented

negatively (clockwise). By direct calculation (see Exercise 22(a) of Section 15.4) it is

easily shown that
I

C�

�y dx C x dy

x2
C y2

D �2�:

Together C and C� form the positively oriented boundary of a region R1 that excludes

the origin. (See Figure 16.8.) So, by Green’s Theorem,
I

C

�y dx C x dy

x2
C y2

C

I

C�

�y dx C x dy

x2
C y2

D 0:

The desired result now follows:
I

C

�y dx C x dy

x2
C y2

D �

I

C�

�y dx C x dy

x2
C y2

D �.�2�/ D 2�:

y

x

C�

C

R1

Figure 16.8 The origin does not lie in R1

The Two-Dimensional Divergence Theorem
The following theorem is an alternative formulation of the two-dimensional Funda-

mental Theorem of Calculus. In this case we express the double integral of div F (a

derivative of F) over R as a single integral of the outward normal component of F on

the boundary C of R.

T H E O R E M

7

The Divergence Theorem in the Plane

Let R be a regular, closed region in the xy-plane whose boundary, C, consists of one

or more piecewise smooth, simple closed curves. Let ON denote the unit outward (from

R) normal field on C. If F D F1.x; y/iCF2.x; y/j is a smooth vector field on R, then

ZZ

R

div F dA D

I

C

F � ONds:

PROOF As observed in the second paragraph of this section, ON D OT� k, where
OT is the unit tangent field in the positive direction on C. If OT D T1i C T2j, then
ON D T2i � T1j. (See Figure 16.9.) Now let G be the vector field with components

G1 D �F2 and G2 D F1. Then G � OT D F � ON and, by Green’s Theorem,
ZZ

R

div F dA D

ZZ

R

�

@F1

@x
C

@F2

@y

�

dA

D

ZZ

R

�

@G2

@x
�

@G1

@y

�

dA

D

I

C

G � dr D

I

C

G � OTds D

I

C

F � ON ds:

y

x

OT
ON

OT

ON
C

C

Figure 16.9 ON D OT� k
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E X E R C I S E S 16.3

1. Evaluate

I

C

.sinx C 3y2
/ dx C .2x � e

�y2

/ dy, where C is

the boundary of the half-disk x2
C y2

� a2, y � 0, oriented

counterclockwise.

2. Evaluate

I

C

.x
2
� xy/ dx C .xy � y

2
/ dy clockwise around

the triangle with vertices .0; 0/, .1; 1/, and .2; 0/.

3. Evaluate

I

C

�

x sin.y2
/� y

2

�

dxC

�

x
2
y cos.y2

/C 3x

�

dy,

where C is the counterclockwise boundary of the trapezoid

with vertices .0;�2/, .1;�1/, .1; 1/, and .0; 2/.

4. Evaluate

I

C

x
2
y dx � xy

2
dy, where C is the clockwise

boundary of the region 0 � y �
p

9 � x2.

5. Use a line integral to find the plane area enclosed by the curve

r D a cos3 t iC b sin3
t j, .0 � t � 2�/.

6. We deduced the two-dimensional Divergence Theorem from

Green’s Theorem. Reverse the argument and use the

two-dimensional Divergence Theorem to prove Green’s

Theorem.

7. Sketch the plane curve C: r D sin t iC sin 2t j, (0 � t � 2�).

Evaluate

I

C

F � dr, where F D yex2
iC x3ey j.

8. If C is the positively oriented boundary of a plane region R

having area A and centroid . Nx; Ny/, interpret geometrically the

line integral

I

C

F � dr, where (a) F D x2j, (b) F D xyi,

and (c) F D y2iC 3xyj.

9.I (Average values of harmonic functions) If u.x; y/ is

harmonic in a domain containing a disk of radius r with

boundary Cr , then the average value of u around the circle is

the value of u at the centre. Prove this by showing that the

derivative of the average value with respect to r is zero using

the Divergence Theorem and the harmonicity of u, and the

fact that the limit of the average value as r ! 0 is the value of

u at the centre.

16.4 The Divergence Theorem in 3-Space

The Divergence Theorem (also called Gauss’s Theorem) is one of two important ver-

sions of the Fundamental Theorem of Calculus in R
3. (The other is Stokes’s Theorem,

presented in the next section.)

In the Divergence Theorem, the integral of the derivative div F D r � F over

a domain in 3-space is expressed as the flux of F out of the surface of that domain.

It therefore closely resembles the two-dimensional version, Theorem 7, given in the

previous section. The theorem holds for a general class of domains in R
3 that are

bounded by piecewise smooth closed surfaces. However, we will restrict our statement

and proof of the theorem to domains of a special type. Extending the concept of an

x-simple plane domain defined in Section 14.2, we say the three-dimensional domain

D is x-simple if it is bounded by a piecewise smooth surface S and if every straight

line parallel to the x-axis and passing through an interior point ofD meets S at exactly

two points. Similar definitions hold for y-simple and z-simple, and we call the domain

D regular if it is a union of finitely many, nonoverlapping subdomains, each of which

is x-simple, y-simple, and z-simple.

T H E O R E M

8

The Divergence Theorem (Gauss’s Theorem)

LetD be a regular, three-dimensional domain whose boundary S is an oriented, closed

surface with unit normal field ON pointing out ofD. If F is a smooth vector field defined

on D, then

ZZZ

D

div F dV D

Z



Z

S

F � ONdS:

PROOF Since the domain D is a union of finitely many nonoverlapping domains

that are x-simple, y-simple, and z-simple, it is sufficient to prove the theorem for a

subdomain of D with this property. To see this, suppose, for instance, that D and S

are each divided into two parts, D1 and D2, and S1 and S2, by a surface S
� slicing

through D. (See Figure 16.10.) S
� is part of the boundary of both D1 and D2,
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ON1
ON2

D1 D2S
�

S1 S2

Figure 16.10 A union of abutting domains

x

y

z

ON

k

D

R

z D f .x; y/

z D g.x; y/

Figure 16.11 A z-simple domain

but the exterior normals, ON1 and ON2, of the two subdomains point in opposite directions

on either side of S
�. If the formula in the theorem holds for both subdomains,

ZZZ

D1

div F dV D

Z



Z

S1[S
�

F � ON1 dS

ZZZ

D2

div F dV D

Z



Z

S2[S
�

F � ON2 dS;

then, adding these equations, we get

ZZZ

D

div F dV D

Z



Z

S1[S2

F � ONdS D

Z



Z

S

F � ON dS I

the contributions from S
� cancel out because on that surface ON2 D �

ON1.

For the rest of this proof we assume, therefore, that D is x-, y-, and z-simple.

Since D is z-simple, it lies between the graphs of two functions defined on a region R

in the xy-plane; if .x; y; z/ is in D, then .x; y/ is in R and f .x; y/ � z � g.x; y/.

(See Figure 16.11.) We have

ZZZ

D

@F3

@z
dV D

ZZ

R
dx dy

Z g.x;y/

f .x;y/

@F3

@z
dz

D

ZZ

R

�

F3

�

x; y; g.x; y/
�

� F3

�

x; y; f .x; y/
�

�

dx dy:

Now
Z



Z

S

F � ON dS D

Z



Z

S

�

F1 i � ONC F2 j � ONC F3 k � ON
�

dS:

Only the last term involves F3, and it can be split into three integrals, over the top

surface z D g.x; y/, the bottom surface z D f .x; y/, and vertical side wall lying

above the boundary of R:

Z



Z

S

F3.x; y; z/k � ON dS D

�ZZ

top

C

ZZ

bottom

C

ZZ

side

�

F3.x; y; z/k � ONdS:

On the side wall, k � ON D 0, so that integral is zero. On the top surface, z D g.x; y/,

and the vector area element is

ONdS D

�

�

@g

@x
i �

@g

@y
jC k

�

dx dy:
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Accordingly,
ZZ

top

F3.x; y; z/k � ONdS D

ZZ

R
F3

�

x; y; g.x; y/
�

dx dy:

Similarly, we have
ZZ

bottom

F3.x; y; z/k � ONdS D �

ZZ

R
F3

�

x; y; f .x; y/
�

dx dyI

the negative sign occurs because ON points down rather than up on the bottom. Thus,

we have shown that
ZZZ

D

@F3

@z
dV D

Z



Z

S

F3 k � ONdS:

Similarly, because D is also x-simple and y-simple,

ZZZ

D

@F1

@x
dV D

Z



Z

S

F1 i � ONdS

ZZZ

D

@F2

@y
dV D

Z



Z

S

F2 j � ON dS:

Adding these three results, we get
ZZZ

D

div F dV D

Z



Z

S

F � ONdS:

The Divergence Theorem can be used in both directions to simplify explicit calcula-

tions of surface integrals or volumes. We give examples of each.

E X A M P L E 1
Let F D bxy2iC bx2yjC .x2

C y2/z2k, and let S be the closed

surface bounding the solid cylinder R defined by x2
C y2

� a2

and 0 � z � b. Find

Z



Z

S

F � dS.

Solution By the Divergence Theorem,
Z



Z

S

F � dS D

ZZZ

R

div F dV D

ZZZ

R

.x
2
C y

2
/.b C 2z/ dV

D

Z b

0

.b C 2z/ dz

Z 2�

0

d�

Z a

0

r
2
r dr

D .b
2
C b

2
/2�.a

4
=4/ D �a

4
b

2
:

E X A M P L E 2 Evaluate

Z



Z

S

.x
2
Cy

2
/ dS , where S is the sphere x2

Cy2
C z2

D

a2. Use the Divergence Theorem.

Solution On S we have

ON D
r

a
D

xiC yjC zk

a
:

We would like to choose F so that F� ON D x2
Cy2. Observe that F D a.xiCyj/ will

do. If B is the ball bounded by S, then
Z



Z

S

.x
2
C y

2
/ dS D

Z



Z

S

F � ONdS D

ZZZ

B

div F dV

D

ZZZ

B

2a dV D .2a/
4

3
�a

3
D

8

3
�a

4
:
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ON1
ON2

D1 D2S
�

S1 S2

Figure 16.10 A union of abutting domains

x

y

z

ON

k

D

R

z D f .x; y/

z D g.x; y/

Figure 16.11 A z-simple domain

but the exterior normals, ON1 and ON2, of the two subdomains point in opposite directions

on either side of S
�. If the formula in the theorem holds for both subdomains,

ZZZ

D1

div F dV D

Z



Z

S1[S
�

F � ON1 dS

ZZZ

D2

div F dV D

Z



Z

S2[S
�

F � ON2 dS;

then, adding these equations, we get

ZZZ

D

div F dV D

Z



Z

S1[S2

F � ONdS D

Z



Z

S

F � ON dS I

the contributions from S
� cancel out because on that surface ON2 D �

ON1.

For the rest of this proof we assume, therefore, that D is x-, y-, and z-simple.

Since D is z-simple, it lies between the graphs of two functions defined on a region R

in the xy-plane; if .x; y; z/ is in D, then .x; y/ is in R and f .x; y/ � z � g.x; y/.

(See Figure 16.11.) We have

ZZZ

D

@F3

@z
dV D

ZZ

R
dx dy

Z g.x;y/

f .x;y/

@F3

@z
dz

D

ZZ

R

�

F3

�

x; y; g.x; y/
�

� F3

�

x; y; f .x; y/
�

�

dx dy:

Now
Z



Z

S

F � ON dS D

Z



Z

S

�

F1 i � ONC F2 j � ONC F3 k � ON
�

dS:

Only the last term involves F3, and it can be split into three integrals, over the top

surface z D g.x; y/, the bottom surface z D f .x; y/, and vertical side wall lying

above the boundary of R:

Z



Z

S

F3.x; y; z/k � ON dS D

�ZZ

top

C

ZZ

bottom

C

ZZ

side

�

F3.x; y; z/k � ONdS:

On the side wall, k � ON D 0, so that integral is zero. On the top surface, z D g.x; y/,

and the vector area element is

ONdS D

�

�

@g

@x
i �

@g

@y
jC k

�

dx dy:
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Accordingly,
ZZ

top

F3.x; y; z/k � ONdS D

ZZ

R
F3

�

x; y; g.x; y/
�

dx dy:

Similarly, we have
ZZ

bottom

F3.x; y; z/k � ONdS D �

ZZ

R
F3

�

x; y; f .x; y/
�

dx dyI

the negative sign occurs because ON points down rather than up on the bottom. Thus,

we have shown that
ZZZ

D

@F3

@z
dV D

Z



Z

S

F3 k � ONdS:

Similarly, because D is also x-simple and y-simple,

ZZZ

D

@F1

@x
dV D

Z



Z

S

F1 i � ONdS

ZZZ

D

@F2

@y
dV D

Z



Z

S

F2 j � ON dS:

Adding these three results, we get
ZZZ

D

div F dV D

Z



Z

S

F � ONdS:

The Divergence Theorem can be used in both directions to simplify explicit calcula-

tions of surface integrals or volumes. We give examples of each.

E X A M P L E 1
Let F D bxy2iC bx2yjC .x2

C y2/z2k, and let S be the closed

surface bounding the solid cylinder R defined by x2
C y2

� a2

and 0 � z � b. Find

Z



Z

S

F � dS.

Solution By the Divergence Theorem,
Z



Z

S

F � dS D

ZZZ

R

div F dV D

ZZZ

R

.x
2
C y

2
/.b C 2z/ dV

D

Z b

0

.b C 2z/ dz

Z 2�

0

d�

Z a

0

r
2
r dr

D .b
2
C b

2
/2�.a

4
=4/ D �a

4
b

2
:

E X A M P L E 2 Evaluate

Z



Z

S

.x
2
Cy

2
/ dS , where S is the sphere x2

Cy2
C z2

D

a2. Use the Divergence Theorem.

Solution On S we have

ON D
r

a
D

xiC yjC zk

a
:

We would like to choose F so that F� ON D x2
Cy2. Observe that F D a.xiCyj/ will

do. If B is the ball bounded by S, then
Z



Z

S

.x
2
C y

2
/ dS D

Z



Z

S

F � ONdS D

ZZZ

B

div F dV

D

ZZZ

B

2a dV D .2a/
4

3
�a

3
D

8

3
�a

4
:
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E X A M P L E 3
By using the Divergence Theorem with F D xiCyjCzk, calculate

the volume of a cone having base area A and height h. The base

can be any smoothly bounded plane region.

Solution Let the vertex of the cone be at the origin and the base in the plane z D h

as shown in Figure 16.12. The solid cone C has surface consisting of two parts: the

conical wall S and the base region D that has area A. Since F.x; y; z/ points directly

away from the origin at any point .x; y; z/ ¤ .0; 0; 0/, we have F � ON D 0 on S. On

D, we have ON D k and z D h, so F � ON D z D h on the base of the cone. Since

div F.x; y; z/ D 1C 1C 1 D 3, we have, by the Divergence Theorem,

3V D

ZZZ

C

div F dV D

ZZ

S

F � ON dS C

ZZ

D

F � ONdS

D 0C h

ZZ

D

dS D Ah:

Thus, V D 1
3
Ah, the well-known formula for the volume of a cone.

x

y

z

ON D k

D z D h

ON

C

S

Figure 16.12 A cone with an arbitrarily shaped base

x

y

z

ON

ON
�

S
�

S

D�

Figure 16.13 A solid domain with a spherical cavity

E X A M P L E 4
Let S be the surface of an arbitrary regular domain D in 3-space

that contains the origin in its interior. Find
Z



Z

S

F � ON dS;

where F.r/ D mr=jrj3 and ON is the unit outward normal on S. (See Figure 16.13.)

Solution Since F and, therefore, div F are undefined at the origin, we cannot apply

the Divergence Theorem directly. To overcome this problem we use a little trick. Let

S
� be a small sphere centred at the origin bounding a ball contained wholly inD. (See

Figure 16.13.) Let ON
�

be the unit normal on S
� pointing into the sphere, and letD� be

that part of D that lies outside S
�. As shown in Example 3 of Section 16.1, div F D 0

on D�. Also,
Z



Z

S
�

F � ON
�
dS D �4�m

is the flux of F inward through the sphere S
�. (See Example 1 of Section 15.6.) There-

fore,

0 D

ZZZ

D�

div F dV D

Z



Z

S

F � ONdS C

Z



Z

S
�

F � ON
�
dS

D

Z



Z

S

F � ONdS � 4�m;

so

Z



Z

S

F � ON dS D 4�m:
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E X A M P L E 5
Find the flux of F D xiCy2jC zk upward through the first octant

part S of the cylindrical surface x2
C z

2
D a

2, 0 � y � b.

x

y

z

S4

S2

S1

S3

S

D

b

a

a

Figure 16.14 The boundary of domain D

has five faces, one curved and four planar

Solution S is one of five surfaces that form the boundary of the solid regionD shown

in Figure 16.14. The other four surfaces are planar: S1 lies in the plane z D 0, S2 lies

in the plane x D 0, S3 lies in the plane y D 0, and S4 lies in the plane y D b. Orient

all these surfaces with normal ON pointing out of D. On S1 we have ON D �k, so

F � ON D �z D 0 on S1. Similarly, F � ON D 0 on S2 and S3. On S4, y D b and ON D j,

so F � ON D y2
D b2 there. If Stot denotes the whole boundary of D, then

Z



Z

Stot

F � ONdS D

ZZ

S

F � ON dS C 0C 0C 0C

ZZ

S4

F � ON dS

D

ZZ

S

F � ON dS C
�a2b2

4
:

On the other hand, by the Divergence Theorem,

Z



Z

Stot

F � ON dS D

ZZZ

D

div F dV D

ZZZ

D

.2C 2y/ dV D 2V C 2V Ny;

where V D �a2b=4 is the volume of D, and Ny D b=2 is the y-coordinate of the

centroid of D. Combining these results, the flux of F upward through S is

ZZ

S

F � ON dS D
2�a2b

4

�

1C
b

2

�

�

�a2b2

4
D

�a2b

2
:

Among the examples above, Example 4 is the most significant and the one that best

represents the way that the Divergence Theorem is used in practice. It is predominantly

a theoretical tool, rather than a tool for calculation. We will look at some applications

in Section 16.6.

Variants of the Divergence Theorem
Other versions of the Fundamental Theorem of Calculus can be derived from the Di-

vergence Theorem. Two are given in the following theorem.

T H E O R E M

9

If D satisfies the conditions of the Divergence Theorem and has surface S, and if F is

a smooth vector field and � is a smooth scalar field, then

(a)

ZZZ

D

curl FdV D �

Z



Z

S

F� ONdS;

(b)

ZZZ

D

grad � dV D

Z



Z

S

� ONdS:

PROOF Observe that both of these formulas are equations of vectors. They are de-

rived by applying the Divergence Theorem to F� c and �c, respectively, where c is

an arbitrary constant vector. We give the details for formula (a) and leave (b) as an

exercise.

Using Theorem 3(d), we calculate

r � .F� c/ D .r �F/ � c � F � .r � c/ D .r �F/ � c:
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E X A M P L E 3
By using the Divergence Theorem with F D xiCyjCzk, calculate

the volume of a cone having base area A and height h. The base

can be any smoothly bounded plane region.

Solution Let the vertex of the cone be at the origin and the base in the plane z D h

as shown in Figure 16.12. The solid cone C has surface consisting of two parts: the

conical wall S and the base region D that has area A. Since F.x; y; z/ points directly

away from the origin at any point .x; y; z/ ¤ .0; 0; 0/, we have F � ON D 0 on S. On

D, we have ON D k and z D h, so F � ON D z D h on the base of the cone. Since

div F.x; y; z/ D 1C 1C 1 D 3, we have, by the Divergence Theorem,

3V D

ZZZ

C

div F dV D

ZZ

S

F � ON dS C

ZZ

D

F � ONdS

D 0C h

ZZ

D

dS D Ah:

Thus, V D 1
3
Ah, the well-known formula for the volume of a cone.

x

y

z

ON D k

D z D h

ON

C

S

Figure 16.12 A cone with an arbitrarily shaped base

x

y

z

ON

ON
�

S
�

S

D�

Figure 16.13 A solid domain with a spherical cavity

E X A M P L E 4
Let S be the surface of an arbitrary regular domain D in 3-space

that contains the origin in its interior. Find
Z



Z

S

F � ON dS;

where F.r/ D mr=jrj3 and ON is the unit outward normal on S. (See Figure 16.13.)

Solution Since F and, therefore, div F are undefined at the origin, we cannot apply

the Divergence Theorem directly. To overcome this problem we use a little trick. Let

S
� be a small sphere centred at the origin bounding a ball contained wholly inD. (See

Figure 16.13.) Let ON
�

be the unit normal on S
� pointing into the sphere, and letD� be

that part of D that lies outside S
�. As shown in Example 3 of Section 16.1, div F D 0

on D�. Also,
Z



Z

S
�

F � ON
�
dS D �4�m

is the flux of F inward through the sphere S
�. (See Example 1 of Section 15.6.) There-

fore,

0 D

ZZZ

D�

div F dV D

Z



Z

S

F � ONdS C

Z



Z

S
�

F � ON
�
dS

D

Z



Z

S

F � ONdS � 4�m;

so

Z



Z

S

F � ON dS D 4�m:
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E X A M P L E 5
Find the flux of F D xiCy2jC zk upward through the first octant

part S of the cylindrical surface x2
C z

2
D a

2, 0 � y � b.

x

y

z

S4

S2

S1

S3

S

D

b

a

a

Figure 16.14 The boundary of domain D

has five faces, one curved and four planar

Solution S is one of five surfaces that form the boundary of the solid regionD shown

in Figure 16.14. The other four surfaces are planar: S1 lies in the plane z D 0, S2 lies

in the plane x D 0, S3 lies in the plane y D 0, and S4 lies in the plane y D b. Orient

all these surfaces with normal ON pointing out of D. On S1 we have ON D �k, so

F � ON D �z D 0 on S1. Similarly, F � ON D 0 on S2 and S3. On S4, y D b and ON D j,

so F � ON D y2
D b2 there. If Stot denotes the whole boundary of D, then

Z



Z

Stot

F � ONdS D

ZZ

S

F � ON dS C 0C 0C 0C

ZZ

S4

F � ON dS

D

ZZ

S

F � ON dS C
�a2b2

4
:

On the other hand, by the Divergence Theorem,

Z



Z

Stot

F � ON dS D

ZZZ

D

div F dV D

ZZZ

D

.2C 2y/ dV D 2V C 2V Ny;

where V D �a2b=4 is the volume of D, and Ny D b=2 is the y-coordinate of the

centroid of D. Combining these results, the flux of F upward through S is

ZZ

S

F � ON dS D
2�a2b

4

�

1C
b

2

�

�

�a2b2

4
D

�a2b

2
:

Among the examples above, Example 4 is the most significant and the one that best

represents the way that the Divergence Theorem is used in practice. It is predominantly

a theoretical tool, rather than a tool for calculation. We will look at some applications

in Section 16.6.

Variants of the Divergence Theorem
Other versions of the Fundamental Theorem of Calculus can be derived from the Di-

vergence Theorem. Two are given in the following theorem.

T H E O R E M

9

If D satisfies the conditions of the Divergence Theorem and has surface S, and if F is

a smooth vector field and � is a smooth scalar field, then

(a)

ZZZ

D

curl FdV D �

Z



Z

S

F� ONdS;

(b)

ZZZ

D

grad � dV D

Z



Z

S

� ONdS:

PROOF Observe that both of these formulas are equations of vectors. They are de-

rived by applying the Divergence Theorem to F� c and �c, respectively, where c is

an arbitrary constant vector. We give the details for formula (a) and leave (b) as an

exercise.

Using Theorem 3(d), we calculate

r � .F� c/ D .r �F/ � c � F � .r � c/ D .r �F/ � c:
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Also, by the scalar triple product identity (see Exercise 18 of Section 10.3),

.F� c/ � ON D . ON�F/ � c D �.F� ON/ � c:

Therefore,

�ZZZ

D

curl FdV C

Z



Z

S

F� ONdS

�

� c

D

ZZZ

D

.r �F/ � cdV �

Z



Z

S

.F� c/ � ONdS

D

ZZZ

D

div .F� c/ dV �

Z



Z

S

.F� c/ � ONdS D 0:

Since c is arbitrary, the vector in the large parentheses must be the zero vector. (If

c � a D 0 for every vector c, then a D 0.) This establishes formula (a).

E X E R C I S E S 16.4

In Exercises 1–4, use the Divergence Theorem to calculate the flux

of the given vector field out of the sphere S with equation

x2
C y2

C z2
D a2, where a > 0.

1. F D xi � 2yjC 4zk 2. F D yez iC x2
e

zjC xyk

3. F D .x2
C y

2
/iC .y2

� z
2
/jC zk

4. F D x3iC 3yz2jC .3y2
z C x

2
/k

In Exercises 5–8, evaluate the flux of F D x2iC y2jC z2k

outward across the boundary of the given solid region.

5. The ball .x � 2/2 C y2
C .z � 3/2 � 9

6. The solid ellipsoid x2
C y2

C 4.z � 1/2 � 4

7. The tetrahedron x C y C z � 3, x � 0, y � 0, z � 0

8. The cylinder x2
C y2

� 2y, 0 � z � 4

9. Let A be the area of a region D forming part of the surface of

the sphere of radius R centred at the origin, and let V be the

volume of the solid cone C consisting of all points on line

segments joining the centre of the sphere to points in D. Show

that V D
1

3
AR by applying the Divergence Theorem to

F D xiC yjC zk.

10. Let �.x; y; z/ D xy C z2. Find the flux of r� upward

through the triangular planar surface S with vertices at

.a; 0; 0/, .0; b; 0/, and .0; 0; c/.

11. A conical domain with vertex .0; 0; b/ and axis along the

z-axis has as base a disk of radius a in the xy-plane. Find the

flux of

F D .x C y2
/iC .3x2

y C y
3
� x

3
/jC .z C 1/k

upward through the conical part of the surface of the domain.

12. Find the flux of F D .y C xz/iC .y C yz/j � .2x C z2/k

upward through the first octant part of the sphere

x2
C y2

C z2
D a2.

13. Let D be the region x2
C y2

C z2
� 4a2, x2

C y2
� a2. The

surface S of D consists of a cylindrical part, S1, and a

spherical part, S2. Evaluate the flux of

F D .x C yz/iC .y � xz/jC .z � ex siny/k

out of D through (a) the whole surface S, (b) the surface S1,

and (c) the surface S2.

14. Evaluate

ZZ

S

.3xz
2i � xj � yk/ � ONdS , where S is that part

of the cylinder y2
C z2

D 1 that lies in the first octant and

between the planes x D 0 and x D 1.

15. A solid region R has volume V and centroid at the point

. Nx; Ny; Nz/. Find the flux of

F D .x2
� x � 2y/iC .2y2

C 3y � z/j� .z2
� 4zC xy/k

out of R through its surface.

16. The plane x C y C z D 0 divides the cube �1 � x � 1,

�1 � y � 1, �1 � z � 1 into two parts. Let the lower part

(with one vertex at .�1;�1;�1/) be D. Sketch D. Note that

it has seven faces, one of which is hexagonal. Find the flux of

F D xiC yjC zk out of D through each of its faces.

17. Let F D .x2
C y C 2C z2/iC .ex2

C y2/jC .3C x/k. Let

a > 0, and let S be the part of the spherical surface

x2
C y2

C z2
D 2az C 3a2 that is above the xy-plane. Find

the flux of F outward across S.

18. A pile of wet sand having total volume 5� covers the disk

x2
C y2

� 1, z D 0. The momentum of water vapour is given

by F D grad� C �curl G, where � D x2
� y2

C z2 is the

water concentration, G D 1
3
.�y3iC x3jC z3k/, and � is a

constant. Find the flux of F upward through the top surface of

the sand pile.

In Exercises 19–29, D is a three-dimensional domain satisfying

the conditions of the Divergence Theorem, and S is its surface. ON

is the unit outward (from D) normal field on S. The functions �

and  are smooth scalar fields onD. Also, @�=@n denotes the first

directional derivative of � in the direction of ON at any point on S:

@�

@n
D r� � ON:

19.A Show that

Z



Z

S

curl F � ONdS D 0, where F is an arbitrary

smooth vector field.
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20.A Show that the volume V of D is given by

V D
1

3

Z



Z

S

.xiC yjC zk/ � ON dS:

21.A If D has volume V; show that

r D
1

2V

Z



Z

S

.x
2
C y

2
C z

2
/ ON dS

is the position vector of the centre of gravity of D.

22.A Show that

Z



Z

S

r� � ON dS D 0.

23.A If F is a smooth vector field on D, show that
ZZZ

D

�div FdV C

ZZZ

D

r� � F dV D

Z



Z

S

�F � ON dS:

Hint: Use Theorem 3(b) from Section 16.2.

Properties of the Laplacian operator

24. If r 2
� D 0 in D and �.x; y; z/ D 0 on S, show that

�.x; y; z/ D 0 in D. Hint: Let F D r� in Exercise 23.

25.A (Uniqueness for the Dirichlet problem) The Dirichlet

problem for the Laplacian operator is the boundary-value

problem
(

r
2
u.x; y; z/ D f .x; y; z/ on D

u.x; y; z/ D g.x; y; z/ on S;

where f and g are given functions defined on D and S,

respectively. Show that this problem can have at most one

solution u.x; y; z/. Hint: Suppose there are two solutions, u

and v, and apply Exercise 24 to their difference � D u � v.

26.A (The Neumann problem) If r 2
� D 0 in D and @�=@n D 0

on S, show that r�.x; y; z/ D 0 on D. The Neumann

problem for the Laplacian operator is the boundary-value

problem
8

<

:

r
2
u.x; y; z/ D f .x; y; z/ on D

@

@n
u.x; y; z/ D g.x; y; z/ on S,

where f and g are given functions defined on D and S,

respectively. Show that, if D is connected, then any two

solutions of the Neumann problem must differ by a constant

on D.

27.A Verify that

ZZZ

D

r
2
� dV D

Z



Z

S

@�

@n
dS .

28.A Verify that

ZZZ

D

�

�r
2
 �  r

2
�

�

dV

D

Z



Z

S

�

�
@ 

@n
�  

@�

@n

�

dS:

29.A By applying the Divergence Theorem to F D �c, where c is

an arbitrary constant vector, show that

ZZZ

D

r� dV D

Z



Z

S

� ON dS:

30.I Let P0 be a fixed point, and for each � > 0 let D� be a domain

with boundary S� satisfying the conditions of the Divergence

Theorem. Suppose that the maximum distance from P0 to

points P in D� approaches zero as � ! 0C. If D� has volume

vol.D�/, show that

lim
�!0C

1

vol.D�/

Z



Z

S�

F � ONdS D div F.P0/:

This generalizes Theorem 1 of Section 16.1.

16.5 Stokes’s Theorem

If we regard a region R in the xy-plane as a surface in 3-space with normal field
ON D k, then the Green’s Theorem formula (see Theorem 6 in Section 16.3) can be

written in the form

I

C

F � dr D

ZZ

R

curl F � ON dS;

where C is the boundary of R with orientation implied by the normal field. Stokes’s

Theorem, given below, extends this result to more general surfaces that are nonplanar.
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Also, by the scalar triple product identity (see Exercise 18 of Section 10.3),

.F� c/ � ON D . ON�F/ � c D �.F� ON/ � c:

Therefore,

�ZZZ

D

curl FdV C

Z



Z

S

F� ONdS

�

� c

D

ZZZ

D

.r �F/ � cdV �

Z



Z

S

.F� c/ � ONdS

D

ZZZ

D

div .F� c/ dV �

Z



Z

S

.F� c/ � ONdS D 0:

Since c is arbitrary, the vector in the large parentheses must be the zero vector. (If

c � a D 0 for every vector c, then a D 0.) This establishes formula (a).

E X E R C I S E S 16.4

In Exercises 1–4, use the Divergence Theorem to calculate the flux

of the given vector field out of the sphere S with equation

x2
C y2

C z2
D a2, where a > 0.

1. F D xi � 2yjC 4zk 2. F D yez iC x2
e

zjC xyk

3. F D .x2
C y

2
/iC .y2

� z
2
/jC zk

4. F D x3iC 3yz2jC .3y2
z C x

2
/k

In Exercises 5–8, evaluate the flux of F D x2iC y2jC z2k

outward across the boundary of the given solid region.

5. The ball .x � 2/2 C y2
C .z � 3/2 � 9

6. The solid ellipsoid x2
C y2

C 4.z � 1/2 � 4

7. The tetrahedron x C y C z � 3, x � 0, y � 0, z � 0

8. The cylinder x2
C y2

� 2y, 0 � z � 4

9. Let A be the area of a region D forming part of the surface of

the sphere of radius R centred at the origin, and let V be the

volume of the solid cone C consisting of all points on line

segments joining the centre of the sphere to points in D. Show

that V D
1

3
AR by applying the Divergence Theorem to

F D xiC yjC zk.

10. Let �.x; y; z/ D xy C z2. Find the flux of r� upward

through the triangular planar surface S with vertices at

.a; 0; 0/, .0; b; 0/, and .0; 0; c/.

11. A conical domain with vertex .0; 0; b/ and axis along the

z-axis has as base a disk of radius a in the xy-plane. Find the

flux of

F D .x C y2
/iC .3x2

y C y
3
� x

3
/jC .z C 1/k

upward through the conical part of the surface of the domain.

12. Find the flux of F D .y C xz/iC .y C yz/j � .2x C z2/k

upward through the first octant part of the sphere

x2
C y2

C z2
D a2.

13. Let D be the region x2
C y2

C z2
� 4a2, x2

C y2
� a2. The

surface S of D consists of a cylindrical part, S1, and a

spherical part, S2. Evaluate the flux of

F D .x C yz/iC .y � xz/jC .z � ex siny/k

out of D through (a) the whole surface S, (b) the surface S1,

and (c) the surface S2.

14. Evaluate

ZZ

S

.3xz
2i � xj � yk/ � ONdS , where S is that part

of the cylinder y2
C z2

D 1 that lies in the first octant and

between the planes x D 0 and x D 1.

15. A solid region R has volume V and centroid at the point

. Nx; Ny; Nz/. Find the flux of

F D .x2
� x � 2y/iC .2y2

C 3y � z/j� .z2
� 4zC xy/k

out of R through its surface.

16. The plane x C y C z D 0 divides the cube �1 � x � 1,

�1 � y � 1, �1 � z � 1 into two parts. Let the lower part

(with one vertex at .�1;�1;�1/) be D. Sketch D. Note that

it has seven faces, one of which is hexagonal. Find the flux of

F D xiC yjC zk out of D through each of its faces.

17. Let F D .x2
C y C 2C z2/iC .ex2

C y2/jC .3C x/k. Let

a > 0, and let S be the part of the spherical surface

x2
C y2

C z2
D 2az C 3a2 that is above the xy-plane. Find

the flux of F outward across S.

18. A pile of wet sand having total volume 5� covers the disk

x2
C y2

� 1, z D 0. The momentum of water vapour is given

by F D grad� C �curl G, where � D x2
� y2

C z2 is the

water concentration, G D 1
3
.�y3iC x3jC z3k/, and � is a

constant. Find the flux of F upward through the top surface of

the sand pile.

In Exercises 19–29, D is a three-dimensional domain satisfying

the conditions of the Divergence Theorem, and S is its surface. ON

is the unit outward (from D) normal field on S. The functions �

and  are smooth scalar fields onD. Also, @�=@n denotes the first

directional derivative of � in the direction of ON at any point on S:

@�

@n
D r� � ON:

19.A Show that

Z



Z

S

curl F � ONdS D 0, where F is an arbitrary

smooth vector field.
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20.A Show that the volume V of D is given by

V D
1

3

Z



Z

S

.xiC yjC zk/ � ON dS:

21.A If D has volume V; show that

r D
1

2V

Z



Z

S

.x
2
C y

2
C z

2
/ ON dS

is the position vector of the centre of gravity of D.

22.A Show that

Z



Z

S

r� � ON dS D 0.

23.A If F is a smooth vector field on D, show that
ZZZ

D

�div FdV C

ZZZ

D

r� � F dV D

Z



Z

S

�F � ON dS:

Hint: Use Theorem 3(b) from Section 16.2.

Properties of the Laplacian operator

24. If r 2
� D 0 in D and �.x; y; z/ D 0 on S, show that

�.x; y; z/ D 0 in D. Hint: Let F D r� in Exercise 23.

25.A (Uniqueness for the Dirichlet problem) The Dirichlet

problem for the Laplacian operator is the boundary-value

problem
(

r
2
u.x; y; z/ D f .x; y; z/ on D

u.x; y; z/ D g.x; y; z/ on S;

where f and g are given functions defined on D and S,

respectively. Show that this problem can have at most one

solution u.x; y; z/. Hint: Suppose there are two solutions, u

and v, and apply Exercise 24 to their difference � D u � v.

26.A (The Neumann problem) If r 2
� D 0 in D and @�=@n D 0

on S, show that r�.x; y; z/ D 0 on D. The Neumann

problem for the Laplacian operator is the boundary-value

problem
8

<

:

r
2
u.x; y; z/ D f .x; y; z/ on D

@

@n
u.x; y; z/ D g.x; y; z/ on S,

where f and g are given functions defined on D and S,

respectively. Show that, if D is connected, then any two

solutions of the Neumann problem must differ by a constant

on D.

27.A Verify that

ZZZ

D

r
2
� dV D

Z



Z

S

@�

@n
dS .

28.A Verify that

ZZZ

D

�

�r
2
 �  r

2
�

�

dV

D

Z



Z

S

�

�
@ 

@n
�  

@�

@n

�

dS:

29.A By applying the Divergence Theorem to F D �c, where c is

an arbitrary constant vector, show that

ZZZ

D

r� dV D

Z



Z

S

� ON dS:

30.I Let P0 be a fixed point, and for each � > 0 let D� be a domain

with boundary S� satisfying the conditions of the Divergence

Theorem. Suppose that the maximum distance from P0 to

points P in D� approaches zero as � ! 0C. If D� has volume

vol.D�/, show that

lim
�!0C

1

vol.D�/

Z



Z

S�

F � ONdS D div F.P0/:

This generalizes Theorem 1 of Section 16.1.

16.5 Stokes’s Theorem

If we regard a region R in the xy-plane as a surface in 3-space with normal field
ON D k, then the Green’s Theorem formula (see Theorem 6 in Section 16.3) can be

written in the form

I

C

F � dr D

ZZ

R

curl F � ON dS;

where C is the boundary of R with orientation implied by the normal field. Stokes’s

Theorem, given below, extends this result to more general surfaces that are nonplanar.
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Stokes’s Theorem

Let S be a piecewise smooth, oriented surface in 3-space, having unit normal field
ON and boundary C consisting of one or more piecewise smooth, closed curves with

orientation inherited from S. If F is a smooth vector field defined on an open set

containing S, then

I

C

F � dr D

ZZ

S

curl F � ONdS:

PROOF An argument similar to those given in the proofs of Green’s Theorem and the

Divergence Theorem shows that if S is decomposed into finitely many nonoverlapping

subsurfaces, then it is sufficient to prove that the formula above holds for each of

them. (If subsurfaces S1 and S2 meet along the curve C
�, then C

� inherits opposite

orientations as part of the boundaries of S1 and S2, so the line integrals along C
�

cancel out. See Figure 16.15(a).) We can subdivide S into enough smooth subsurfaces

that each one has a one-to-one normal projection onto a coordinate plane. We will

establish the formula for one such subsurface, which we will now call S.

Figure 16.15

(a) Stokes’s Theorem holds for a

composite surface consisting of

nonoverlapping subsurfaces for which

it is true

(b) A surface with a one-to-one

projection on the xy-plane

C
�

S2

S1

C ON

x

y

z

k

k
ON

z D g.x; y/

C

C
�

R

S

(a) (b)

Without loss of generality, assume that S has a one-to-one normal projection onto the

xy-plane and that its normal field ON points upward. Therefore, on S, z is a smooth

function of x and y, say z D g.x; y/, defined for .x; y/ in a region R of the xy-plane.

The boundaries C of S and C
� of R are both oriented counterclockwise as seen from a

point high on the z-axis. (See Figure 16.15(b).) The normal field on S is

ON D

�

@g

@x
i �

@g

@y
jC k

s

1C

�

@g

@x

�2

C

�

@g

@y

�2
;

and the surface area element on S is expressed in terms of the area element

dA D dx dy in the xy-plane as

dS D

s

1C

�

@g

@x

�2

C

�

@g

@y

�2

dA:

Therefore,

ZZ

S

curl F � ON dS D

ZZ

R

��

@F3

@y
�

@F2

@z

��

�

@g

@x

�

C

�

@F1

@z
�

@F3

@x

��

�

@g

@y

�

C

�

@F2

@x
�

@F1

@y

��

dA:
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Since z D g.x; y/ on C, we have dz D
@g

@x
dx C

@g

@y
dy. Thus,

I

C

F � dr D

I

C
�

�

F1.x; y; z/ dx C F2.x; y; z/ dy

C F3.x; y; z/

�

@g

@x
dx C

@g

@y
dy

��

D

I

C
�

��

F1.x; y; z/C F3.x; y; z/
@g

@x

�

dx

C

�

F2.x; y; z/C F3.x; y; z/
@g

@y

�

dy

�

:

We now apply Green’s Theorem in the xy-plane to obtain

I

C

F � dr D

ZZ

R

�

@

@x

�

F2.x; y; z/C F3.x; y; z/
@g

@y

�

�

@

@y

�

F1.x; y; z/C F3.x; y; z/
@g

@x

��

dA

D

ZZ

R

�

@F2

@x
C

@F2

@z

@g

@x
C

@F3

@x

@g

@y
C

@F3

@z

@g

@x

@g

@y
C F3

@2g

@x@y

�

@F1

@y
�

@F1

@z

@g

@y
�

@F3

@y

@g

@x
�

@F3

@z

@g

@y

@g

@x
� F3

@2g

@y@x

�

dA:

Observe that four terms in the final integrand cancel out, and the remaining terms

are equal to the terms in the expression for
RR

S
curl F � ON dS calculated above. This

completes the proof.

Remark If curl F D 0 on a domainD with the property that every piecewise smooth,

non–self-intersecting, closed curve inD is the boundary of a piecewise smooth surface

in D, then Stokes’s Theorem assures us that
H

C
F � dr D 0 for every such curve

C; therefore F must be conservative. A simply connected domain D does have the

property specified above. We will not attempt a formal proof of this topological fact

here, but it should seem plausible if you recall the definition of simple connectedness;

a closed curve C in a simply connected domain D must be able to shrink to a point in

D without ever passing out of D. In so shrinking, it traces out a surface in D. This is

why Theorem 4 of Section 16.2 is valid for simply connected domains.

E X A M P L E 1
Evaluate

H

C
F � dr, where F D �y3i C x

3j � z3k, and C is

the curve of intersection of the cylinder x2
C y2

D 1 and the

plane 2x C 2y C z D 3 oriented so as to have a counterclockwise projection onto the

xy-plane.

Solution C is the oriented boundary of an elliptic disk S that lies in the plane 2x C

2yC z D 3 and has the circular disk R: x2
C y2

� 1 as projection onto the xy-plane.

(See Figure 16.16.) On S we have

x y

z

S

C

R

Figure 16.16 C is the intersection of a

vertical cylinder and an oblique plane

ONdS D .2iC 2jC k/ dx dy:

Also,

curl F D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
@

@x

@

@y

@

@z

�y
3

x
3
�z

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 3.x
2
C y

2
/k:
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Stokes’s Theorem

Let S be a piecewise smooth, oriented surface in 3-space, having unit normal field
ON and boundary C consisting of one or more piecewise smooth, closed curves with

orientation inherited from S. If F is a smooth vector field defined on an open set

containing S, then

I

C

F � dr D

ZZ

S

curl F � ONdS:

PROOF An argument similar to those given in the proofs of Green’s Theorem and the

Divergence Theorem shows that if S is decomposed into finitely many nonoverlapping

subsurfaces, then it is sufficient to prove that the formula above holds for each of

them. (If subsurfaces S1 and S2 meet along the curve C
�, then C

� inherits opposite

orientations as part of the boundaries of S1 and S2, so the line integrals along C
�

cancel out. See Figure 16.15(a).) We can subdivide S into enough smooth subsurfaces

that each one has a one-to-one normal projection onto a coordinate plane. We will

establish the formula for one such subsurface, which we will now call S.

Figure 16.15

(a) Stokes’s Theorem holds for a

composite surface consisting of

nonoverlapping subsurfaces for which

it is true

(b) A surface with a one-to-one

projection on the xy-plane

C
�

S2

S1

C ON

x

y

z

k

k
ON

z D g.x; y/

C

C
�

R

S

(a) (b)

Without loss of generality, assume that S has a one-to-one normal projection onto the

xy-plane and that its normal field ON points upward. Therefore, on S, z is a smooth

function of x and y, say z D g.x; y/, defined for .x; y/ in a region R of the xy-plane.

The boundaries C of S and C
� of R are both oriented counterclockwise as seen from a

point high on the z-axis. (See Figure 16.15(b).) The normal field on S is

ON D

�

@g

@x
i �

@g

@y
jC k

s

1C

�

@g

@x

�2

C

�

@g

@y

�2
;

and the surface area element on S is expressed in terms of the area element

dA D dx dy in the xy-plane as

dS D

s

1C

�

@g

@x

�2

C

�

@g

@y

�2

dA:

Therefore,

ZZ

S

curl F � ON dS D

ZZ

R

��

@F3

@y
�

@F2

@z

��

�

@g

@x

�

C

�

@F1

@z
�

@F3

@x

��

�

@g

@y

�

C

�

@F2

@x
�

@F1

@y

��

dA:
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Since z D g.x; y/ on C, we have dz D
@g

@x
dx C

@g

@y
dy. Thus,

I

C

F � dr D

I

C
�

�

F1.x; y; z/ dx C F2.x; y; z/ dy

C F3.x; y; z/

�

@g

@x
dx C

@g

@y
dy

��

D

I

C
�

��

F1.x; y; z/C F3.x; y; z/
@g

@x

�

dx

C

�

F2.x; y; z/C F3.x; y; z/
@g

@y

�

dy

�

:

We now apply Green’s Theorem in the xy-plane to obtain

I

C

F � dr D

ZZ

R

�

@

@x

�

F2.x; y; z/C F3.x; y; z/
@g

@y

�

�

@

@y

�

F1.x; y; z/C F3.x; y; z/
@g

@x

��

dA

D

ZZ

R

�

@F2

@x
C

@F2

@z

@g

@x
C

@F3

@x

@g

@y
C

@F3

@z

@g

@x

@g

@y
C F3

@2g

@x@y

�

@F1

@y
�

@F1

@z

@g

@y
�

@F3

@y

@g

@x
�

@F3

@z

@g

@y

@g

@x
� F3

@2g

@y@x

�

dA:

Observe that four terms in the final integrand cancel out, and the remaining terms

are equal to the terms in the expression for
RR

S
curl F � ON dS calculated above. This

completes the proof.

Remark If curl F D 0 on a domainD with the property that every piecewise smooth,

non–self-intersecting, closed curve inD is the boundary of a piecewise smooth surface

in D, then Stokes’s Theorem assures us that
H

C
F � dr D 0 for every such curve

C; therefore F must be conservative. A simply connected domain D does have the

property specified above. We will not attempt a formal proof of this topological fact

here, but it should seem plausible if you recall the definition of simple connectedness;

a closed curve C in a simply connected domain D must be able to shrink to a point in

D without ever passing out of D. In so shrinking, it traces out a surface in D. This is

why Theorem 4 of Section 16.2 is valid for simply connected domains.

E X A M P L E 1
Evaluate

H

C
F � dr, where F D �y3i C x

3j � z3k, and C is

the curve of intersection of the cylinder x2
C y2

D 1 and the

plane 2x C 2y C z D 3 oriented so as to have a counterclockwise projection onto the

xy-plane.

Solution C is the oriented boundary of an elliptic disk S that lies in the plane 2x C

2yC z D 3 and has the circular disk R: x2
C y2

� 1 as projection onto the xy-plane.

(See Figure 16.16.) On S we have

x y

z

S

C

R

Figure 16.16 C is the intersection of a

vertical cylinder and an oblique plane

ONdS D .2iC 2jC k/ dx dy:

Also,

curl F D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
@

@x

@

@y

@

@z

�y
3

x
3
�z

3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 3.x
2
C y

2
/k:
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Thus, by Stokes’s Theorem,

I

C

F � dr D

ZZ

S

curl F � ONdS

D

ZZ

R

3.x
2
C y

2
/ dx dy D 2�

Z 1

0

3r
2
r dr D

3�

2
:

As with the Divergence Theorem, the principal importance of Stokes’s Theorem is as

a theoretical tool. However, it can also simplify the calculation of circulation integrals

such as the one in the previous example. It is not difficult to imagine integrals whose

evaluation would be impossibly difficult without the use of Stokes’s Theorem or the

Divergence Theorem. In the following example we use Stokes’s Theorem twice, but

the result could be obtained just as easily by using the Divergence Theorem.

E X A M P L E 2 Find I D

ZZ

S

curl F � ONdS , where S is that part of the sphere

x2
Cy2

C .z� 2/2 D 8 that lies above the xy-plane, ON is the unit

outward normal field on S, and

F D y2 cos xz iC x3
e

yzj � e�xyzk:

Solution The boundary, C, of S is the circle x2
C y2

D 4 in the xy-plane, oriented

counterclockwise as seen from the positive z-axis. (See Figure 16.17.) This curve is

also the oriented boundary of the plane disk D: x2
C y2

� 4, z D 0, with normal

field ON D k. Thus, two applications of Stokes’s Theorem give

x
y

z

k

ON

S

D

C

Figure 16.17 Part of a sphere and a disk

with the same boundary

I D

ZZ

S

curl F � ONdS D

I

C

F � dr D

ZZ

D

curl F � k dA:

On D we have

curl F � k D

�

@

@x

�

x
3
e

yz
�

�

@

@y

�

y
2 cos xz

�

�ˇ

ˇ

ˇ

ˇ

zD0

D 3x
2
� 2y:

By symmetry,

ZZ

D

y dA D 0, so

I D 3

ZZ

D

x
2
dA D 3

Z 2�

0

cos2
� d�

Z 2

0

r
3
dr D 12�:

Remark A surface S satisfying the conditions of Stokes’s Theorem may no longer

do so if a single point is removed from it. An isolated boundary point of a surface is

not an orientable curve, and Stokes’s Theorem may therefore break down for such a

surface. Consider, for example, the vector field

F D
O�

r
D �

y

x2
C y2

iC
x

x2
C y2

j;

which is defined on the punctured diskD satisfying 0 < x2
Cy2

� a2. (See Example 4

in Section 16.3.) If D is oriented with upward normal k, then its boundary consists of

the oriented, smooth, closed curve, C, given by x D a cos � , y D a sin � , .0 � � �

2�/, and the isolated point .0; 0/. We have

I

C

F � dr D

Z 2�

0

�

� sin �

a
iC

cos �

a
j

�

� .�a sin � iC a cos �j/ d�

D

Z 2�

0

.sin2
� C cos2

�/ d� D 2�:
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However,

curl F D

�

@

@x

�

x

x2
C y2

�

�

@

@y

�

�

y

x2
C y2

��

k D 0

identically on D. Thus,
ZZ

D

curl F � ON dS D 0;

and the conclusion of Stokes’s Theorem fails in this case.

E X E R C I S E S 16.5

1. Evaluate

I

C

xy dx C yz dy C zx dz around the triangle with

vertices .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/, oriented clockwise as

seen from the point .1; 1; 1/.

2. Evaluate

I

C

y dx � x dy C z
2
dz around the curve C of

intersection of the cylinders z D y2 and x2
C y

2
D 4,

oriented counterclockwise as seen from a point high on the

z-axis.

3. Evaluate

ZZ

S

curl F � ONdS , where S is the hemisphere

x2
C y2

C z2
D a2, z � 0 with outward normal, and

F D 3yi � 2xzjC .x2
� y2/k.

4. Evaluate

ZZ

S

curl F � ONdS , where S is the surface

x2
C y2

C 2.z � 1/2 D 6, z � 0, ON is the unit outward (away

from the origin) normal on S, and

F D .xz � y3 cos z/iC x3
e

zjC xyz ex2Cy2Cz2

k:

5. Use Stokes’s Theorem to show that

I

C

y dx C z dy C x dz D
p

3�a
2
;

where C is the suitably oriented intersection of the surfaces

x2
C y2

C z2
D a2 and x C y C z D 0.

6. Evaluate

I

C

F � dr around the curve

r D cos t iC sin t jC sin 2t k; .0 � t � 2�/;

where

F D .ex
� y

3
/iC .ey

C x
3
/jC ezk:

Hint: Show that C lies on the surface z D 2xy.

7. Find the circulation of F D �yiC x2jC zk around the

oriented boundary of the part of the paraboloid

z D 9 � x2
� y2 lying above the xy-plane and having normal

field pointing upward.

8. Evaluate

I

C

F � dr, where

F D yex iC .x2
C e

x
/jC z2

e
zk;

and C is the curve

r.t/ D .1C cos t /iC .1C sin t /jC .1 � cos t � sin t /k

for 0 � t � 2� . Hint: Use Stokes’s Theorem, observing that C

lies in a certain plane and has a circle as its projection onto the

xy-plane. The integral can also be evaluated by using the

techniques of Section 15.4.

9. Let C1 be the straight line joining .�1; 0; 0/ to .1; 0; 0/, and

let C2 be the semicircle x2
C y2

D 1, z D 0, y � 0. Let S be

a smooth surface joining C1 to C2 having upward normal, and

let

F D .˛x2
� z/iC .xy C y3

C z/jC ˇy2
.z C 1/k:

Find the values of ˛ and ˇ for which I D

ZZ

S

F � dS is

independent of the choice of S, and find the value of I for

these values of ˛ and ˇ.

10. Let C be the curve .x � 1/2 C 4y2
D 16, 2x C y C z D 3,

oriented counterclockwise when viewed from high on the

z-axis. Let

F D .z2
C y

2
C sinx2

/iC .2xy C z/j/C .xz C 2yz/k:

Evaluate

I

C

F � dr.

11.A If C is the oriented boundary of surface S, and � and  are

arbitrary smooth scalar fields, show that

I

C

�r � dr D �

I

C

 r� � dr

D

ZZ

S

.r� �r / � ONdS:

Is r� �r solenoidal? Find a vector potential for it.

12.A Let C be a piecewise smooth, simple closed plane curve in R
3
,

which lies in a plane with unit normal ON D aiC bjC ck and

has orientation inherited from that of the plane. Show that the

plane area enclosed by C is

1

2

I

C

.bz � cy/ dx C .cx � az/ dy C .ay � bx/ dz:

13.A Use Stokes’s Theorem to prove Theorem 2 of Section 16.1.
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Thus, by Stokes’s Theorem,

I

C

F � dr D

ZZ

S

curl F � ONdS

D

ZZ

R

3.x
2
C y

2
/ dx dy D 2�

Z 1

0

3r
2
r dr D

3�

2
:

As with the Divergence Theorem, the principal importance of Stokes’s Theorem is as

a theoretical tool. However, it can also simplify the calculation of circulation integrals

such as the one in the previous example. It is not difficult to imagine integrals whose

evaluation would be impossibly difficult without the use of Stokes’s Theorem or the

Divergence Theorem. In the following example we use Stokes’s Theorem twice, but

the result could be obtained just as easily by using the Divergence Theorem.

E X A M P L E 2 Find I D

ZZ

S

curl F � ONdS , where S is that part of the sphere

x2
Cy2

C .z� 2/2 D 8 that lies above the xy-plane, ON is the unit

outward normal field on S, and

F D y2 cos xz iC x3
e

yzj � e�xyzk:

Solution The boundary, C, of S is the circle x2
C y2

D 4 in the xy-plane, oriented

counterclockwise as seen from the positive z-axis. (See Figure 16.17.) This curve is

also the oriented boundary of the plane disk D: x2
C y2

� 4, z D 0, with normal

field ON D k. Thus, two applications of Stokes’s Theorem give

x
y

z

k

ON

S

D

C

Figure 16.17 Part of a sphere and a disk

with the same boundary

I D

ZZ

S

curl F � ONdS D

I

C

F � dr D

ZZ

D

curl F � k dA:

On D we have

curl F � k D

�

@

@x

�

x
3
e

yz
�

�

@

@y

�

y
2 cos xz

�

�ˇ

ˇ

ˇ

ˇ

zD0

D 3x
2
� 2y:

By symmetry,

ZZ

D

y dA D 0, so

I D 3

ZZ

D

x
2
dA D 3

Z 2�

0

cos2
� d�

Z 2

0

r
3
dr D 12�:

Remark A surface S satisfying the conditions of Stokes’s Theorem may no longer

do so if a single point is removed from it. An isolated boundary point of a surface is

not an orientable curve, and Stokes’s Theorem may therefore break down for such a

surface. Consider, for example, the vector field

F D
O�

r
D �

y

x2
C y2

iC
x

x2
C y2

j;

which is defined on the punctured diskD satisfying 0 < x2
Cy2

� a2. (See Example 4

in Section 16.3.) If D is oriented with upward normal k, then its boundary consists of

the oriented, smooth, closed curve, C, given by x D a cos � , y D a sin � , .0 � � �

2�/, and the isolated point .0; 0/. We have

I

C

F � dr D

Z 2�

0

�

� sin �

a
iC

cos �

a
j

�

� .�a sin � iC a cos �j/ d�

D

Z 2�

0

.sin2
� C cos2

�/ d� D 2�:
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However,

curl F D

�

@

@x

�

x

x2
C y2

�

�

@

@y

�

�

y

x2
C y2

��

k D 0

identically on D. Thus,
ZZ

D

curl F � ON dS D 0;

and the conclusion of Stokes’s Theorem fails in this case.

E X E R C I S E S 16.5

1. Evaluate

I

C

xy dx C yz dy C zx dz around the triangle with

vertices .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/, oriented clockwise as

seen from the point .1; 1; 1/.

2. Evaluate

I

C

y dx � x dy C z
2
dz around the curve C of

intersection of the cylinders z D y2 and x2
C y

2
D 4,

oriented counterclockwise as seen from a point high on the

z-axis.

3. Evaluate

ZZ

S

curl F � ONdS , where S is the hemisphere

x2
C y2

C z2
D a2, z � 0 with outward normal, and

F D 3yi � 2xzjC .x2
� y2/k.

4. Evaluate

ZZ

S

curl F � ONdS , where S is the surface

x2
C y2

C 2.z � 1/2 D 6, z � 0, ON is the unit outward (away

from the origin) normal on S, and

F D .xz � y3 cos z/iC x3
e

zjC xyz ex2Cy2Cz2

k:

5. Use Stokes’s Theorem to show that

I

C

y dx C z dy C x dz D
p

3�a
2
;

where C is the suitably oriented intersection of the surfaces

x2
C y2

C z2
D a2 and x C y C z D 0.

6. Evaluate

I

C

F � dr around the curve

r D cos t iC sin t jC sin 2t k; .0 � t � 2�/;

where

F D .ex
� y

3
/iC .ey

C x
3
/jC ezk:

Hint: Show that C lies on the surface z D 2xy.

7. Find the circulation of F D �yiC x2jC zk around the

oriented boundary of the part of the paraboloid

z D 9 � x2
� y2 lying above the xy-plane and having normal

field pointing upward.

8. Evaluate

I

C

F � dr, where

F D yex iC .x2
C e

x
/jC z2

e
zk;

and C is the curve

r.t/ D .1C cos t /iC .1C sin t /jC .1 � cos t � sin t /k

for 0 � t � 2� . Hint: Use Stokes’s Theorem, observing that C

lies in a certain plane and has a circle as its projection onto the

xy-plane. The integral can also be evaluated by using the

techniques of Section 15.4.

9. Let C1 be the straight line joining .�1; 0; 0/ to .1; 0; 0/, and

let C2 be the semicircle x2
C y2

D 1, z D 0, y � 0. Let S be

a smooth surface joining C1 to C2 having upward normal, and

let

F D .˛x2
� z/iC .xy C y3

C z/jC ˇy2
.z C 1/k:

Find the values of ˛ and ˇ for which I D

ZZ

S

F � dS is

independent of the choice of S, and find the value of I for

these values of ˛ and ˇ.

10. Let C be the curve .x � 1/2 C 4y2
D 16, 2x C y C z D 3,

oriented counterclockwise when viewed from high on the

z-axis. Let

F D .z2
C y

2
C sinx2

/iC .2xy C z/j/C .xz C 2yz/k:

Evaluate

I

C

F � dr.

11.A If C is the oriented boundary of surface S, and � and  are

arbitrary smooth scalar fields, show that

I

C

�r � dr D �

I

C

 r� � dr

D

ZZ

S

.r� �r / � ONdS:

Is r� �r solenoidal? Find a vector potential for it.

12.A Let C be a piecewise smooth, simple closed plane curve in R
3
,

which lies in a plane with unit normal ON D aiC bjC ck and

has orientation inherited from that of the plane. Show that the

plane area enclosed by C is

1

2

I

C

.bz � cy/ dx C .cx � az/ dy C .ay � bx/ dz:

13.A Use Stokes’s Theorem to prove Theorem 2 of Section 16.1.

9780134154367_Calculus   963 05/12/16   5:04 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 16 – page 944 October 17, 2016

944 CHAPTER 16 Vector Calculus

16.6 Some Physical Applications of Vector Calculus

In this section we will show how the theory developed in this chapter can be used

to model concrete applied mathematical problems. We will look at two areas of

application—fluid dynamics and electromagnetism—and will develop a few of the

fundamental vector equations underlying these disciplines. Our purpose is to illus-

trate the techniques of vector calculus in applied contexts, rather than to provide any

complete or even coherent introductions to the disciplines themselves.

E Fluid Dynamics
Suppose that a region of 3-space is filled with a fluid (liquid or gas) in motion. Two

approaches can be taken to describe the motion. We could attempt to determine the

position, r D r.a; b; c; t/ at any time t , of a “particle” of fluid that was located at

the point .a; b; c/ at time t D 0. This is the Lagrange approach. Alternatively, we

could attempt to determine the velocity, v.x; y; z; t/, the density, �.x; y; z; t/, and

other physical variables such as the pressure, p.x; y; z; t/, at any time t at any point

.x; y; z/ in the region occupied by the fluid. This is the Euler approach.

We will examine the latter method and describe how the Divergence Theorem

can be used to translate some fundamental physical laws into equivalent mathemat-

ical equations. We assume throughout that the velocity, density, and pressure vary

smoothly in all their variables and that the fluid is an ideal fluid, that is, nonviscous

(it doesn’t stick to itself), homogeneous, and isotropic (it has the same properties at all

points and in all directions). Such properties are not always shared by real fluids, so

we are dealing with a simplified mathematical model that does not always correspond

exactly to the behaviour of real fluids.

Consider an imaginary closed surface S in the fluid, bounding a domain D. We

call S “imaginary” because it is not a barrier that impedes the flow of the fluid in any

way; it is just a means to concentrate our attention on a particular part of the fluid. It is

fixed in space and does not move with the fluid. Let us assume that the fluid is being

neither created nor destroyed anywhere (in particular, there are no sources or sinks), so

the law of conservation of mass tells us that the rate of change of the mass of fluid in

D equals the rate at which fluid enters D across S.

The mass of fluid in volume element dV located at position .x; y; z/ at time t is

�.x; y; z; t/ dV; so the mass inD at time t is
RRR

D
� dV; which depends only on t . This

mass changes at rate

d

dt

ZZZ

D

� dV D

ZZZ

D

@�

@t
dV:

As we noted in Section 15.6, the volume of fluid passing out ofD through area element

dS at position .x; y; z/ in the interval from time t to t C dt is given by v.x; y; z; t/ �
ONdS dt , where ON is the unit normal at .x; y; z/ on S pointing out of D. Hence, the

mass crossing dS outward in that time interval is �v � ONdS dt , and the rate at which

mass is flowing out of D across S at time t is
Z



Z

S

�v � ONdS:

The rate at which mass is flowing into D is the negative of the above rate. Since mass

is conserved, we must have
ZZZ

D

@�

@t
dV D �

Z



Z

S

�v � ONdS D �

ZZZ

D

div .�v/ dV;

where we have used the Divergence Theorem to replace the surface integral with a

volume integral. Thus,
ZZZ

D

�

@�

@t
C div .�v/

�

dV D 0:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 16 – page 945 October 17, 2016

SECTION 16.6: Some Physical Applications of Vector Calculus 945

This equation must hold for any domain D in the fluid.

If a continuous function f satisfies
RRR

D f .P / dV D 0 for every domain D, then

f .P / D 0 at all points P; for if there were a point P0 such that f .P0/ ¤ 0 (say

f .P0/ > 0), then, by continuity, f would be positive at all points in some sufficiently

small ball B centred at P0, and
RRR

B
f .P / dV would be greater than 0. Applying this

principle, we must have

@�

@t
C div .�v/ D 0

throughout the fluid. This is called the equation of continuity for the fluid. It is

equivalent to conservation of mass. Observe that if the fluid is incompressible then �

is a constant, independent of both time and spatial position. In this case @�=@t D 0,

and div .�v/ D � div v. Therefore, the equation of continuity for an incompressible

fluid is simply

div v D 0:

The motion of the fluid is governed by Newton’s Second Law, which asserts that the

rate of change of momentum of any part of the fluid is equal to the sum of the forces

applied to that part. Again, let us consider the part of the fluid in a domain D. At any

time t its momentum is
RRR

D
�v dV and is changing at the rate

ZZZ

D

@

@t
.�v/ dV:

This change is due partly to momentum crossing S into or out of D (the momentum

of the fluid crossing S), partly to the pressure exerted on the fluid in D by the fluid

outside, and partly to any external body forces (such as gravity or electromagnetic

forces) acting on the fluid. Let us examine each of these causes in turn.

Momentum is transferred across S into D at the rate

�

Z



Z

S

v.�v � ON/ dS:

The pressure on the fluid inD is exerted across S in the direction of the inward normal

�
ON. Thus, this part of the force on the fluid in D is

�

Z



Z

S

p ON dS:

The body forces are best expressed in terms of the force density (force per unit mass),

F. The total body force on the fluid in D is therefore

ZZZ

D

�F dV:

Newton’s Second Law now implies that

ZZZ

D

@

@t
.�v/ dV D �

Z



Z

S

v.�v � ON/ dS �

Z



Z

S

p ON dS C

ZZZ

D

�F dV:

Again, we would like to convert the surface integrals to triple integrals over D. If we

use the results of Exercise 29 of Section 16.4 and Exercise 2 below, we get

Z



Z

S

p ON dS D

ZZZ

D

rp dV;

Z



Z

S

v.�v � ON/ dS D

ZZZ

D

�

�.v � r/vC v div .�v/
�

dV:
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16.6 Some Physical Applications of Vector Calculus

In this section we will show how the theory developed in this chapter can be used

to model concrete applied mathematical problems. We will look at two areas of

application—fluid dynamics and electromagnetism—and will develop a few of the

fundamental vector equations underlying these disciplines. Our purpose is to illus-

trate the techniques of vector calculus in applied contexts, rather than to provide any

complete or even coherent introductions to the disciplines themselves.

E Fluid Dynamics
Suppose that a region of 3-space is filled with a fluid (liquid or gas) in motion. Two

approaches can be taken to describe the motion. We could attempt to determine the

position, r D r.a; b; c; t/ at any time t , of a “particle” of fluid that was located at

the point .a; b; c/ at time t D 0. This is the Lagrange approach. Alternatively, we

could attempt to determine the velocity, v.x; y; z; t/, the density, �.x; y; z; t/, and

other physical variables such as the pressure, p.x; y; z; t/, at any time t at any point

.x; y; z/ in the region occupied by the fluid. This is the Euler approach.

We will examine the latter method and describe how the Divergence Theorem

can be used to translate some fundamental physical laws into equivalent mathemat-

ical equations. We assume throughout that the velocity, density, and pressure vary

smoothly in all their variables and that the fluid is an ideal fluid, that is, nonviscous

(it doesn’t stick to itself), homogeneous, and isotropic (it has the same properties at all

points and in all directions). Such properties are not always shared by real fluids, so

we are dealing with a simplified mathematical model that does not always correspond

exactly to the behaviour of real fluids.

Consider an imaginary closed surface S in the fluid, bounding a domain D. We

call S “imaginary” because it is not a barrier that impedes the flow of the fluid in any

way; it is just a means to concentrate our attention on a particular part of the fluid. It is

fixed in space and does not move with the fluid. Let us assume that the fluid is being

neither created nor destroyed anywhere (in particular, there are no sources or sinks), so

the law of conservation of mass tells us that the rate of change of the mass of fluid in

D equals the rate at which fluid enters D across S.

The mass of fluid in volume element dV located at position .x; y; z/ at time t is

�.x; y; z; t/ dV; so the mass inD at time t is
RRR

D
� dV; which depends only on t . This

mass changes at rate

d

dt

ZZZ

D

� dV D

ZZZ

D

@�

@t
dV:

As we noted in Section 15.6, the volume of fluid passing out ofD through area element

dS at position .x; y; z/ in the interval from time t to t C dt is given by v.x; y; z; t/ �
ONdS dt , where ON is the unit normal at .x; y; z/ on S pointing out of D. Hence, the

mass crossing dS outward in that time interval is �v � ONdS dt , and the rate at which

mass is flowing out of D across S at time t is
Z



Z

S

�v � ONdS:

The rate at which mass is flowing into D is the negative of the above rate. Since mass

is conserved, we must have
ZZZ

D

@�

@t
dV D �

Z



Z

S

�v � ONdS D �

ZZZ

D

div .�v/ dV;

where we have used the Divergence Theorem to replace the surface integral with a

volume integral. Thus,
ZZZ

D

�

@�

@t
C div .�v/

�

dV D 0:
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This equation must hold for any domain D in the fluid.

If a continuous function f satisfies
RRR

D f .P / dV D 0 for every domain D, then

f .P / D 0 at all points P; for if there were a point P0 such that f .P0/ ¤ 0 (say

f .P0/ > 0), then, by continuity, f would be positive at all points in some sufficiently

small ball B centred at P0, and
RRR

B
f .P / dV would be greater than 0. Applying this

principle, we must have

@�

@t
C div .�v/ D 0

throughout the fluid. This is called the equation of continuity for the fluid. It is

equivalent to conservation of mass. Observe that if the fluid is incompressible then �

is a constant, independent of both time and spatial position. In this case @�=@t D 0,

and div .�v/ D � div v. Therefore, the equation of continuity for an incompressible

fluid is simply

div v D 0:

The motion of the fluid is governed by Newton’s Second Law, which asserts that the

rate of change of momentum of any part of the fluid is equal to the sum of the forces

applied to that part. Again, let us consider the part of the fluid in a domain D. At any

time t its momentum is
RRR

D
�v dV and is changing at the rate

ZZZ

D

@

@t
.�v/ dV:

This change is due partly to momentum crossing S into or out of D (the momentum

of the fluid crossing S), partly to the pressure exerted on the fluid in D by the fluid

outside, and partly to any external body forces (such as gravity or electromagnetic

forces) acting on the fluid. Let us examine each of these causes in turn.

Momentum is transferred across S into D at the rate

�

Z



Z

S

v.�v � ON/ dS:

The pressure on the fluid inD is exerted across S in the direction of the inward normal

�
ON. Thus, this part of the force on the fluid in D is

�

Z



Z

S

p ON dS:

The body forces are best expressed in terms of the force density (force per unit mass),

F. The total body force on the fluid in D is therefore

ZZZ

D

�F dV:

Newton’s Second Law now implies that

ZZZ

D

@

@t
.�v/ dV D �

Z



Z

S

v.�v � ON/ dS �

Z



Z

S

p ON dS C

ZZZ

D

�F dV:

Again, we would like to convert the surface integrals to triple integrals over D. If we

use the results of Exercise 29 of Section 16.4 and Exercise 2 below, we get

Z



Z

S

p ON dS D

ZZZ

D

rp dV;

Z



Z

S

v.�v � ON/ dS D

ZZZ

D

�

�.v � r/vC v div .�v/
�

dV:
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Accordingly, we have

ZZZ

D

�

�
@v

@t
C v

@�

@t
C v div .�v/C �.v � r/vCrp � �F

�

dV D 0:

The second and third terms in the integrand cancel out by virtue of the continuity

equation. Since D is arbitrary, we must therefore have

�
@v

@t
C �.v � r/v D �rp C �F:

This is the equation of motion of the fluid. Observe that it is not a linear partial

differential equation; the second term on the left is not linear in v.

Electromagnetism
In 3-space there are defined two vector fields that determine the electric and magnetic

forces that would be experienced by a unit charge at a particular point if it is moving

with unit speed. (These vector fields are determined by electric charges and currents

present in the space.) A charge q0 at position r D xiC yjC zk moving with velocity

v0 experiences an electric force q0E.r/, where E is the electric field, and a magnetic

force q0v0 �B.r/, where B is the magnetic field. We will look briefly at each of these

fields but will initially restrict ourselves to considering static situations. Electric fields

produced by static charge distributions and magnetic fields produced by static electric

currents do not depend on time. Later we will consider the interaction between the two

fields when they are time-dependent.

E Electrostatics
Experimental evidence shows that the value of the electric field at any point r is the

vector sum of the fields caused by any elements of charge located in 3-space. A “point

charge” q at position s D �iC �jC �k generates the electric field

E.r/ D
q

4��0

r � s

jr � sj3
(Coulomb’s Law),

where �0 � 8:85 � 10�12 coulombs2/N�m2 is a physical constant called the permit-

tivity of free space. This is just the field due to a point source of strength q=4��0 at

s. Except at r D s the field is conservative, with potential

�.r/ D �
q

4��0

1

jr � sj
;

so for r ¤ s we have curl E D 0. Also div E D 0, except at r D s where it is infinite;

in terms of the Dirac distribution, div E D .q=�0/�.x � �/�.y � �/�.z � �/. (See

Section 16.1.) The flux of E outward across the surface S of any region R containing

q is

Z



Z

S

E � ONdS D
q

�0

;

by analogy with Example 4 of Section 16.4.

Given a charge distribution of density �.�; �; �/ in 3-space (so that the charge in

volume element dV D d� d� d� at s is dq D � dV ), the flux of E out of S due to the

charge in R is

Z



Z

S

E � ONdS D
1

�0

ZZZ

R

dq D
1

�0

ZZZ

R

� dV:
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If we apply the Divergence Theorem to the surface integral, we obtain

ZZZ

R

�

div E �
�

�0

�

dV D 0;

and since R is an arbitrary region,

div E D
�

�0

:

This is the differential form of Gauss’s Law. See Exercise 3 below.

The potential due to a charge distribution of density �.s/ in the region R is

�.r/ D �
1

4��0

ZZZ

R

�.s/

jr � sj
dV

D �

1

4��0

ZZZ

R

�.�; �; �/ d� d� d�
p

.x � �/2 C .y � �/2 C .z � �/2
:

If � is continuous and vanishes outside a bounded region, the triple integral is con-

vergent everywhere (see Exercise 4 below), so E D r� is conservative throughout

3-space. Thus, at all points,

curl E D 0:

Since div E D divr� D r 2
�, the potential � satisfies Poisson’s equation

r
2
� D

�

�0

:

In particular, � is harmonic in regions of space where no charge is distributed.

E Magnetostatics
Magnetic fields are produced by moving charges, that is, by currents. Suppose that

a constant electric current, I , is flowing in a filament along the curve F. It has been

determined experimentally that the magnetic fields produced at position r D xiCyjC

zk by the elements of current dI D I ds along the filament add vectorially and that

the element at position s D �iC �jC �k produces the field

dB.r/ D
�0I

4�

d s� .r � s/

jr� sj3
(the Biot–Savart Law),

where �0 � 1:26 � 10
�6 N/ampere2 is a physical constant called the permeability of

free space, and d s D OTds, OT being the unit tangent to F in the direction of the current.

Under the reasonable assumption that charge is not created or destroyed anywhere, the

filament F must form a closed circuit, and the total magnetic field at r due to the current

flowing in the circuit is

B D
�0I

4�

I

F

d s� .r � s/

jr� sj3
:

Let A be the vector field defined by

A.r/ D
�0I

4�

I

F

d s

jr � sj
;
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Accordingly, we have

ZZZ

D

�

�
@v

@t
C v

@�

@t
C v div .�v/C �.v � r/vCrp � �F

�

dV D 0:

The second and third terms in the integrand cancel out by virtue of the continuity

equation. Since D is arbitrary, we must therefore have

�
@v

@t
C �.v � r/v D �rp C �F:

This is the equation of motion of the fluid. Observe that it is not a linear partial

differential equation; the second term on the left is not linear in v.

Electromagnetism
In 3-space there are defined two vector fields that determine the electric and magnetic

forces that would be experienced by a unit charge at a particular point if it is moving

with unit speed. (These vector fields are determined by electric charges and currents

present in the space.) A charge q0 at position r D xiC yjC zk moving with velocity

v0 experiences an electric force q0E.r/, where E is the electric field, and a magnetic

force q0v0 �B.r/, where B is the magnetic field. We will look briefly at each of these

fields but will initially restrict ourselves to considering static situations. Electric fields

produced by static charge distributions and magnetic fields produced by static electric

currents do not depend on time. Later we will consider the interaction between the two

fields when they are time-dependent.

E Electrostatics
Experimental evidence shows that the value of the electric field at any point r is the

vector sum of the fields caused by any elements of charge located in 3-space. A “point

charge” q at position s D �iC �jC �k generates the electric field

E.r/ D
q

4��0

r � s

jr � sj3
(Coulomb’s Law),

where �0 � 8:85 � 10�12 coulombs2/N�m2 is a physical constant called the permit-

tivity of free space. This is just the field due to a point source of strength q=4��0 at

s. Except at r D s the field is conservative, with potential

�.r/ D �
q

4��0

1

jr � sj
;

so for r ¤ s we have curl E D 0. Also div E D 0, except at r D s where it is infinite;

in terms of the Dirac distribution, div E D .q=�0/�.x � �/�.y � �/�.z � �/. (See

Section 16.1.) The flux of E outward across the surface S of any region R containing

q is

Z



Z

S

E � ONdS D
q

�0

;

by analogy with Example 4 of Section 16.4.

Given a charge distribution of density �.�; �; �/ in 3-space (so that the charge in

volume element dV D d� d� d� at s is dq D � dV ), the flux of E out of S due to the

charge in R is

Z



Z

S

E � ONdS D
1

�0

ZZZ

R

dq D
1

�0

ZZZ

R

� dV:
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If we apply the Divergence Theorem to the surface integral, we obtain

ZZZ

R

�

div E �
�

�0

�

dV D 0;

and since R is an arbitrary region,

div E D
�

�0

:

This is the differential form of Gauss’s Law. See Exercise 3 below.

The potential due to a charge distribution of density �.s/ in the region R is

�.r/ D �
1

4��0

ZZZ

R

�.s/

jr � sj
dV

D �

1

4��0

ZZZ

R

�.�; �; �/ d� d� d�
p

.x � �/2 C .y � �/2 C .z � �/2
:

If � is continuous and vanishes outside a bounded region, the triple integral is con-

vergent everywhere (see Exercise 4 below), so E D r� is conservative throughout

3-space. Thus, at all points,

curl E D 0:

Since div E D divr� D r 2
�, the potential � satisfies Poisson’s equation

r
2
� D

�

�0

:

In particular, � is harmonic in regions of space where no charge is distributed.

E Magnetostatics
Magnetic fields are produced by moving charges, that is, by currents. Suppose that

a constant electric current, I , is flowing in a filament along the curve F. It has been

determined experimentally that the magnetic fields produced at position r D xiCyjC

zk by the elements of current dI D I ds along the filament add vectorially and that

the element at position s D �iC �jC �k produces the field

dB.r/ D
�0I

4�

d s� .r � s/

jr� sj3
(the Biot–Savart Law),

where �0 � 1:26 � 10
�6 N/ampere2 is a physical constant called the permeability of

free space, and d s D OTds, OT being the unit tangent to F in the direction of the current.

Under the reasonable assumption that charge is not created or destroyed anywhere, the

filament F must form a closed circuit, and the total magnetic field at r due to the current

flowing in the circuit is

B D
�0I

4�

I

F

d s� .r � s/

jr� sj3
:

Let A be the vector field defined by

A.r/ D
�0I

4�

I

F

d s

jr � sj
;
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for all r not on the filament F. If we make use of the fact that

r

�

1

jr� sj

�

D �

r � s

jr� sj3
;

and the vector identity r � .�F/ D .r�/�FC�.r �F/ (with F the vector d s, which

does not depend on r), we can calculate the curl of A:

r �A D
�0I

4�

I

F

r

�

1

jr� sj

�

� d s D
�0I

4@

I

F

�

r � s

jr � sj3
� d s D B.r/:

Thus, A is a vector potential for B, and div B D 0 at points off the filament. We can

also verify by calculation that curl B D 0 off the filament. (See Exercises 9–11 below.)

Imagine a circuit consisting of a straight filament along the z-axis with return at

infinite distance. The field B at a finite point will then just be due to the current along

the z-axis, where the current I is flowing in the direction of k, say. The currents in all

elements d s produce, at r, fields in the same direction, normal to the plane containing r

and the z-axis. (See Figure 16.18.) Therefore, the field strength B D jBj at a distance

.0; 0; �/

r � s

B

z

a

�

I

d s

Figure 16.18 The magnetic field due to

current in a vertical filament
a from the z-axis is obtained by integrating the elements

dB D
�0I

4�

sin � d�

a2
C .� � z/2

D

�0I

4�

a d�

�

a2
C .� � z/2

�3=2
:

We have

B D
�0Ia

4�

Z 1

�1

d�

�

a2
C .� � z/2

�3=2
.Let � � z D a tan�:/

D

�0I

4�a

Z �=2

��=2

cos� d� D
�0I

2�a
:

The field lines of B are evidently horizontal circles centred on the z-axis. If Ca is such

a circle, having radius a, then the circulation of B around Ca is
I

Ca

B � dr D
�0I

2�a
2�a D �0I:

Observe that the circulation calculated above is independent of a. In fact, if C is any

closed curve that encircles the z-axis once counterclockwise (as seen from above),

then C and �Ca comprise the oriented boundary of a washer-like surface S with a hole

in it through which the filament passes. Since curl B D 0 on S, Stokes’s Theorem

guarantees that
I

C

B � dr D

I

Ca

B � dr D �0I:

Furthermore, when C is very small (and therefore very close to the filament), most of

the contribution to the circulation of B around it comes from the part of the filament

that is very close to C. It therefore does not matter whether the filament is straight or

infinitely long. For any closed-loop filament carrying a current, the circulation of the

magnetic field around the oriented boundary of a surface through which the filament

passes is equal to �0 times the current flowing in the loop. This is Ampère’s Circuital

Law. The surface is oriented with normal on the side out of which the current is

flowing.

Now let us replace the filament with a more general current specified by a vector

density, J. This means that at any point s the current is flowing in the direction J.s/

and that the current crossing an area element dS with unit normal ON is J � ONdS . The

circulation of B around the boundary C of surface S is equal to the total current flowing

across S, so
I

C

B � dr D �0

ZZ

S

J � ON dS:
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By using Stokes’s Theorem, we can replace the line integral with another surface inte-

gral and so obtain

ZZ

S

.curl B� �0J/ � ONdS D 0:

Since S is arbitrary, we must have, at all points,

curl B D �0J;

which is the pointwise version of Ampère’s Circuital Law. It can be readily checked

that, if

A.r/ D
�0

4�

ZZZ

R

J.s/

jr � sj
dV;

then B D curl A (so that A is a vector potential for the magnetic field B). Here, R

is the region of 3-space where J is nonzero. If J is continuous and vanishes outside a

bounded set, then the triple integral converges for all r (see Exercise 4 below), and B

is everywhere solenoidal:

div B D 0:

E Maxwell’s Equations
The four equations obtained above for static electric and magnetic fields,

div E D �=�0

curl E D 0

div B D 0

curl B D �0 J;

require some modification if the fields E and B depend on time. Gauss’s Law div E D

�=�0 remains valid, as does div B D 0, which expresses the fact that there are no

known magnetic sources or sinks (i.e., magnetic monopoles). The field lines of B must

be closed curves.

It was observed by Michael Faraday that the circulation of an electric field around

a simple closed curve C corresponds to a change in the magnetic flux

ˆ D

ZZ

S

B � ON dS

through any oriented surface S having boundary C, according to the formula

dˆ

dt
D �

I

C

E � dr:

Applying Stokes’s Theorem to the line integral, we obtain

ZZ

S

curl E � ON dS D

I

C

E � dr D �
d

dt

ZZ

S

B � ONdS D �

ZZ

S

@B

@t
�
ONdS:

Since S is arbitrary, we obtain the differential form of Faraday’s Law:

curl E D �
@B

@t
:

The electric field is irrotational only if the magnetic field is constant in time.
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for all r not on the filament F. If we make use of the fact that

r

�

1

jr� sj

�

D �

r � s

jr� sj3
;

and the vector identity r � .�F/ D .r�/�FC�.r �F/ (with F the vector d s, which

does not depend on r), we can calculate the curl of A:

r �A D
�0I

4�

I

F

r

�

1

jr� sj

�

� d s D
�0I

4@

I

F

�

r � s

jr � sj3
� d s D B.r/:

Thus, A is a vector potential for B, and div B D 0 at points off the filament. We can

also verify by calculation that curl B D 0 off the filament. (See Exercises 9–11 below.)

Imagine a circuit consisting of a straight filament along the z-axis with return at

infinite distance. The field B at a finite point will then just be due to the current along

the z-axis, where the current I is flowing in the direction of k, say. The currents in all

elements d s produce, at r, fields in the same direction, normal to the plane containing r

and the z-axis. (See Figure 16.18.) Therefore, the field strength B D jBj at a distance

.0; 0; �/

r � s

B

z

a

�

I

d s

Figure 16.18 The magnetic field due to

current in a vertical filament
a from the z-axis is obtained by integrating the elements

dB D
�0I

4�

sin � d�

a2
C .� � z/2

D

�0I

4�

a d�

�

a2
C .� � z/2

�3=2
:

We have

B D
�0Ia

4�

Z 1

�1

d�

�

a2
C .� � z/2

�3=2
.Let � � z D a tan�:/

D

�0I

4�a

Z �=2

��=2

cos� d� D
�0I

2�a
:

The field lines of B are evidently horizontal circles centred on the z-axis. If Ca is such

a circle, having radius a, then the circulation of B around Ca is
I

Ca

B � dr D
�0I

2�a
2�a D �0I:

Observe that the circulation calculated above is independent of a. In fact, if C is any

closed curve that encircles the z-axis once counterclockwise (as seen from above),

then C and �Ca comprise the oriented boundary of a washer-like surface S with a hole

in it through which the filament passes. Since curl B D 0 on S, Stokes’s Theorem

guarantees that
I

C

B � dr D

I

Ca

B � dr D �0I:

Furthermore, when C is very small (and therefore very close to the filament), most of

the contribution to the circulation of B around it comes from the part of the filament

that is very close to C. It therefore does not matter whether the filament is straight or

infinitely long. For any closed-loop filament carrying a current, the circulation of the

magnetic field around the oriented boundary of a surface through which the filament

passes is equal to �0 times the current flowing in the loop. This is Ampère’s Circuital

Law. The surface is oriented with normal on the side out of which the current is

flowing.

Now let us replace the filament with a more general current specified by a vector

density, J. This means that at any point s the current is flowing in the direction J.s/

and that the current crossing an area element dS with unit normal ON is J � ONdS . The

circulation of B around the boundary C of surface S is equal to the total current flowing

across S, so
I

C

B � dr D �0

ZZ

S

J � ON dS:
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By using Stokes’s Theorem, we can replace the line integral with another surface inte-

gral and so obtain

ZZ

S

.curl B� �0J/ � ONdS D 0:

Since S is arbitrary, we must have, at all points,

curl B D �0J;

which is the pointwise version of Ampère’s Circuital Law. It can be readily checked

that, if

A.r/ D
�0

4�

ZZZ

R

J.s/

jr � sj
dV;

then B D curl A (so that A is a vector potential for the magnetic field B). Here, R

is the region of 3-space where J is nonzero. If J is continuous and vanishes outside a

bounded set, then the triple integral converges for all r (see Exercise 4 below), and B

is everywhere solenoidal:

div B D 0:

E Maxwell’s Equations
The four equations obtained above for static electric and magnetic fields,

div E D �=�0

curl E D 0

div B D 0

curl B D �0 J;

require some modification if the fields E and B depend on time. Gauss’s Law div E D

�=�0 remains valid, as does div B D 0, which expresses the fact that there are no

known magnetic sources or sinks (i.e., magnetic monopoles). The field lines of B must

be closed curves.

It was observed by Michael Faraday that the circulation of an electric field around

a simple closed curve C corresponds to a change in the magnetic flux

ˆ D

ZZ

S

B � ON dS

through any oriented surface S having boundary C, according to the formula

dˆ

dt
D �

I

C

E � dr:

Applying Stokes’s Theorem to the line integral, we obtain

ZZ

S

curl E � ON dS D

I

C

E � dr D �
d

dt

ZZ

S

B � ONdS D �

ZZ

S

@B

@t
�
ONdS:

Since S is arbitrary, we obtain the differential form of Faraday’s Law:

curl E D �
@B

@t
:

The electric field is irrotational only if the magnetic field is constant in time.

9780134154367_Calculus   969 05/12/16   5:05 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 16 – page 950 October 17, 2016

950 CHAPTER 16 Vector Calculus

The differential form of Ampère’s Law, curl B D �0 J, also requires modification.

If the electric field depends on time, then so will the current density J. Assuming

conservation of charge (charges are not produced or destroyed), we can show, by an

argument identical to that used to obtain the continuity equation for fluid motion earlier

in this section, that the rate of change of charge density satisfies

@�

@t
D �div J:

(See Exercise 5 below.) This is inconsistent with Ampère’s Law because div curl B D

0, while div J ¤ 0 when � depends on time. Note, however, that � D �0div E implies

that

�div J D
@�

@t
D �0div

@E

@t
;

so div
�

J C �0@E=@t
�

D 0. This suggests that, for the nonstatic case, Ampère’s Law

becomes

curl B D �0 JC �0�0

@E

@t
;

which indicates (as was discovered by Maxwell) that magnetic fields are not just pro-

duced by currents, but also by changing electric fields.

Together, the four equations

div E D �=�0

curl E D �
@B

@t

div B D 0

curl B D �0 JC �0�0

@E

@t

are known as Maxwell’s equations. They govern the way electric and magnetic

fields are produced in 3-space by the presence of charges and currents. Observe that
p

�0�0 D 1=c2, where c � 2:99 � 108 m/s, which is the speed of light in a vacuum.

(See Exercise 15.)

E X E R C I S E S 16.6

1. (A Archimedes’ principle) A solid occupying region R with

surface S is immersed in a liquid of constant density �. The

pressure at depth h in the liquid is �gh, so the pressure

satisfies rp D �g, where g is the (vector) constant

acceleration of gravity. Over each surface element dS on S

the pressure of the fluid exerts a force �p ON dS on the solid.

(a) Show that the resultant “buoyancy force” on the solid is

B D �

ZZZ

R

�gdV:

Thus, the buoyancy force has the same magnitude as, and

opposite direction to, the weight of the liquid displaced by

the solid. This is Archimedes’ principle.

(b) Extend the above result to the case where the solid is only

partly submerged in the fluid.

2. By breaking the vector F.G � ON/ into its separate components

and applying the Divergence Theorem to each separately,

show that
Z



Z

S

F.G � ON/ dS D

ZZZ

D

�

F div GC .G � r/F
�

dV;

where ON is the unit outward normal on the surface S of the

domain D.

3.A (Gauss’s Law) Show that the flux of the electric field E

outward through a closed surface S in 3-space is 1=�0 times

the total charge enclosed by S.

4. If s D �iC �jC �k and f .�; �; �/ is continuous on R
3

and

vanishes outside a bounded region, show that, for any fixed r,

ZZZ

R
3

jf .�; �; �/j

jr � sj
d� d� d� � constant:

This shows that the potentials for the electric and magnetic

fields corresponding to continuous charge and current

densities that vanish outside bounded regions exist every-

where in R
3
. Hint: Without loss of generality you can assume

r D 0 and use spherical coordinates.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 16 – page 951 October 17, 2016

SECTION 16.7: Orthogonal Curvilinear Coordinates 951

5. The electric charge density, �, in 3-space depends on time as

well as position if charge is moving around. The motion is

described by the current density, J. Derive the continuity

equation

@�

@t
D �div J

from the fact that charge is conserved.

6. If b is a constant vector, show that

r

�

1

jr � bj

�

D �

r � b

jr � bj3
:

7. If a and b are constant vectors, show that for r ¤ b,

div

 

a�
r � b

jr � bj3

!

D 0:

Hint: Use identities (d) and (h) from Theorem 3 of

Section 16.2.

8. Use the result of Exercise 7 to give an alternative proof that

div

I

F

d s� .r � s/

jr � sj3
D 0:

Note that div refers to the r variable.

9. If a and b are constant vectors, show that for r ¤ b,

curl

 

a�
r � b

jr � bj3

!

D �.a � r/
r � b

jr � bj3
:

Hint: Use identity (e) from Theorem 3 of Section 16.2.

10. If F is any smooth vector field, show that

I

F

.d s � r/F.s/ D 0

around any closed loop F. Hint: The gradients of the

components of F are conservative.

11. Verify that if r does not lie on F, then

curl

I

F

d s� .r � s/

jr � sj3
D 0:

Here, curl is taken with respect to the r variable.

12. Verify the formula curl A D B, where A is the magnetic

vector potential defined in terms of the steady-state current

density J.

13. If A is the vector potential for the magnetic field produced by

a steady current in a closed-loop filament, show that

div A D 0 off the filament.

14. If A is the vector potential for the magnetic field produced by

a steady, continuous current density, show that div A D 0

everywhere. Hence, show that A satisfies the vector Poisson

equation r 2A D �J.

15. Show that in a region of space containing no charges (� D 0)

and no currents (J D 0), both U D E and U D B satisfy the

wave equation

@2U

@t2
D c

2
r

2U;

where c D
p

1=.�0�0/ � 3 � 10
8 m/s.

16. As shown in this section, the static versions of Maxwell’s

equations needed revision when the fields E and B were

allowed to depend on time. Show that the expression

E D �r� is no longer consistent with Maxwell’s equations

because the E field is no longer irrotational. Why does

curl A D B continue to hold?

17. While the nonstatic Maxwell equations are not compatible

with E D �r�, show that they are compatible with the

equation

E D �r� �
@A

@t
:

18.A (Heat flow in 3-space) The internal energy, E, of a volume

element dV within a homogeneous solid is �cT dV; where �

and c are constants (the density and specific heat of the solid

material), and T D T .x; y; z; t/ is the temperature at time t at

position .x; y; z/ in the solid. Heat always flows in the

direction of the negative temperature gradient and at a rate

proportional to the size of that gradient. Thus, the rate of flow

of heat energy across a surface element dS with normal ON is

�krT � ONdS , where k is also a constant depending on the

material of the solid (the coefficient of thermal conductivity).

Use “conservation of heat energy” to show that for any region

R with surface S within the solid

�c

ZZZ

R

@T

@t
dV D k

Z



Z

S

rT � ON dS;

where ON is the unit outward normal on S. Hence, show that

heat flow within the solid is governed by the partial

differential equation

@T

@t
D

k

�c
r

2
T D

k

�c

�

@2T

@x2
C

@2T

@y2
C

@2T

@z2

�

:

16.7 Orthogonal Curvilinear Coordinates

In this optional section we will derive formulas for the gradient of a scalar field and

the divergence and curl of a vector field in terms of coordinate systems more general

than the Cartesian coordinate system used in the earlier sections of this chapter. In
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The differential form of Ampère’s Law, curl B D �0 J, also requires modification.

If the electric field depends on time, then so will the current density J. Assuming

conservation of charge (charges are not produced or destroyed), we can show, by an

argument identical to that used to obtain the continuity equation for fluid motion earlier

in this section, that the rate of change of charge density satisfies

@�

@t
D �div J:

(See Exercise 5 below.) This is inconsistent with Ampère’s Law because div curl B D

0, while div J ¤ 0 when � depends on time. Note, however, that � D �0div E implies

that

�div J D
@�

@t
D �0div

@E

@t
;

so div
�

J C �0@E=@t
�

D 0. This suggests that, for the nonstatic case, Ampère’s Law

becomes

curl B D �0 JC �0�0

@E

@t
;

which indicates (as was discovered by Maxwell) that magnetic fields are not just pro-

duced by currents, but also by changing electric fields.

Together, the four equations

div E D �=�0

curl E D �
@B

@t

div B D 0

curl B D �0 JC �0�0

@E

@t

are known as Maxwell’s equations. They govern the way electric and magnetic

fields are produced in 3-space by the presence of charges and currents. Observe that
p

�0�0 D 1=c2, where c � 2:99 � 108 m/s, which is the speed of light in a vacuum.

(See Exercise 15.)

E X E R C I S E S 16.6

1. (A Archimedes’ principle) A solid occupying region R with

surface S is immersed in a liquid of constant density �. The

pressure at depth h in the liquid is �gh, so the pressure

satisfies rp D �g, where g is the (vector) constant

acceleration of gravity. Over each surface element dS on S

the pressure of the fluid exerts a force �p ON dS on the solid.

(a) Show that the resultant “buoyancy force” on the solid is

B D �

ZZZ

R

�gdV:

Thus, the buoyancy force has the same magnitude as, and

opposite direction to, the weight of the liquid displaced by

the solid. This is Archimedes’ principle.

(b) Extend the above result to the case where the solid is only

partly submerged in the fluid.

2. By breaking the vector F.G � ON/ into its separate components

and applying the Divergence Theorem to each separately,

show that
Z



Z

S

F.G � ON/ dS D

ZZZ

D

�

F div GC .G � r/F
�

dV;

where ON is the unit outward normal on the surface S of the

domain D.

3.A (Gauss’s Law) Show that the flux of the electric field E

outward through a closed surface S in 3-space is 1=�0 times

the total charge enclosed by S.

4. If s D �iC �jC �k and f .�; �; �/ is continuous on R
3

and

vanishes outside a bounded region, show that, for any fixed r,

ZZZ

R
3

jf .�; �; �/j

jr � sj
d� d� d� � constant:

This shows that the potentials for the electric and magnetic

fields corresponding to continuous charge and current

densities that vanish outside bounded regions exist every-

where in R
3
. Hint: Without loss of generality you can assume

r D 0 and use spherical coordinates.
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5. The electric charge density, �, in 3-space depends on time as

well as position if charge is moving around. The motion is

described by the current density, J. Derive the continuity

equation

@�

@t
D �div J

from the fact that charge is conserved.

6. If b is a constant vector, show that

r

�

1

jr � bj

�

D �

r � b

jr � bj3
:

7. If a and b are constant vectors, show that for r ¤ b,

div

 

a�
r � b

jr � bj3

!

D 0:

Hint: Use identities (d) and (h) from Theorem 3 of

Section 16.2.

8. Use the result of Exercise 7 to give an alternative proof that

div

I

F

d s� .r � s/

jr � sj3
D 0:

Note that div refers to the r variable.

9. If a and b are constant vectors, show that for r ¤ b,

curl

 

a�
r � b

jr � bj3

!

D �.a � r/
r � b

jr � bj3
:

Hint: Use identity (e) from Theorem 3 of Section 16.2.

10. If F is any smooth vector field, show that

I

F

.d s � r/F.s/ D 0

around any closed loop F. Hint: The gradients of the

components of F are conservative.

11. Verify that if r does not lie on F, then

curl

I

F

d s� .r � s/

jr � sj3
D 0:

Here, curl is taken with respect to the r variable.

12. Verify the formula curl A D B, where A is the magnetic

vector potential defined in terms of the steady-state current

density J.

13. If A is the vector potential for the magnetic field produced by

a steady current in a closed-loop filament, show that

div A D 0 off the filament.

14. If A is the vector potential for the magnetic field produced by

a steady, continuous current density, show that div A D 0

everywhere. Hence, show that A satisfies the vector Poisson

equation r 2A D �J.

15. Show that in a region of space containing no charges (� D 0)

and no currents (J D 0), both U D E and U D B satisfy the

wave equation

@2U

@t2
D c

2
r

2U;

where c D
p

1=.�0�0/ � 3 � 10
8 m/s.

16. As shown in this section, the static versions of Maxwell’s

equations needed revision when the fields E and B were

allowed to depend on time. Show that the expression

E D �r� is no longer consistent with Maxwell’s equations

because the E field is no longer irrotational. Why does

curl A D B continue to hold?

17. While the nonstatic Maxwell equations are not compatible

with E D �r�, show that they are compatible with the

equation

E D �r� �
@A

@t
:

18.A (Heat flow in 3-space) The internal energy, E, of a volume

element dV within a homogeneous solid is �cT dV; where �

and c are constants (the density and specific heat of the solid

material), and T D T .x; y; z; t/ is the temperature at time t at

position .x; y; z/ in the solid. Heat always flows in the

direction of the negative temperature gradient and at a rate

proportional to the size of that gradient. Thus, the rate of flow

of heat energy across a surface element dS with normal ON is

�krT � ONdS , where k is also a constant depending on the

material of the solid (the coefficient of thermal conductivity).

Use “conservation of heat energy” to show that for any region

R with surface S within the solid

�c

ZZZ

R

@T

@t
dV D k

Z



Z

S

rT � ON dS;

where ON is the unit outward normal on S. Hence, show that

heat flow within the solid is governed by the partial

differential equation

@T

@t
D

k

�c
r

2
T D

k

�c

�

@2T

@x2
C

@2T

@y2
C

@2T

@z2

�

:

16.7 Orthogonal Curvilinear Coordinates

In this optional section we will derive formulas for the gradient of a scalar field and

the divergence and curl of a vector field in terms of coordinate systems more general

than the Cartesian coordinate system used in the earlier sections of this chapter. In
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particular, we will express these quantities in terms of the cylindrical and spherical

coordinate systems introduced in Section 14.6.

We denote by xyz-space the usual system of Cartesian coordinates .x; y; z/ in R
3.

A different system of coordinates Œu; v;w� in xyz-space can be defined by a continuous

transformation of the form

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/:

If the transformation is one-to-one from a region D in uvw-space onto a region R in

xyz-space, then a point P inR can be represented by a triple Œu; v;w�, the (Cartiesian)

coordinates of the unique pointQ in uvw-space that the transformation maps to P: In

this case we say that the transformation defines a curvilinear coordinate system in

R and call Œu; v;w� the curvilinear coordinates of P with respect to that system.

Note that Œu; v;w� are Cartesian coordinates in their own space (uvw-space); they are

curvilinear coordinates in xyz-space.

Typically, we relax the requirement that the transformation defining a curvilinear

coordinate system be one-to-one, that is, that every point P in R should have a unique

set of curvilinear coordinates. It is reasonable to require the transformation to be only

locally one-to-one. Thus, there may be more than one point Q that gets mapped to a

point P by the transformation, but only one in any suitably small subregion of D. For

example, in the plane polar coordinate system

x D r cos �; y D r sin �;

the transformation is locally one-to-one from D, the half of the r�-plane where 0 <

r < 1, to the region R consisting of all points in the xy-plane except the origin.

Although, say, Œ1; 0� and Œ1; 2�� are polar coordinates of the same point in the xy-

plane, they are not close together in D. Observe, however, that there is still a problem

with the origin, which can be represented by Œ0; �� for any � . Since the transformation

is not even locally one-to-one at r D 0, we regard the origin of the xy-plane as a

singular point for the polar coordinate system in the plane.

E X A M P L E 1
The cylindrical coordinate system Œr; �; z� in R

3 is defined by the

transformation

x D r cos �; y D r sin �; z D z;

where r � 0. (See Section 10.6.) This transformation maps the half-space D given

by r > 0 onto all of xyz-space excluding the z-axis, and it is locally one-to-one. We

regard Œr; �; z� as cylindrical polar coordinates in all of xyz-space but call points on

the z-axis singular points of the system since the points Œ0; �; z� are identical for any � .

E X A M P L E 2
The spherical coordinate system ŒR; �; �� is defined by the

transformation

x D R sin� cos �; y D R sin� sin �; z D R cos�;

where R � 0 and 0 � � � � . (See Section 10.6.) The transformation maps the

region D in R��-space given by R > 0, 0 < � < � in a locally one-to-one way onto

xyz-space excluding the z-axis. The point with Cartesian coordinates .0; 0; z/ can be

represented by the spherical coordinates Œ0; �; �� for arbitrary � and � if z D 0, by

Œz; 0; �� for arbitrary � if z > 0, and by Œjzj; �; �� for arbitrary � if z < 0. Thus, all

points of the z-axis are singular for the spherical coordinate system.
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Coordinate Surfaces and Coordinate Curves
Let Œu; v;w� be a curvilinear coordinate system in xyz-space, and let P0 be a non-

singular point for the system. Thus, the transformation

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/

is locally one-to-one near P0. Let P0 have curvilinear coordinates Œu0; v0; w0�. The

plane with equation u D u0 in uvw-space gets mapped by the transformation to a

surface in xyz-space passing through P0. We call this surface a u-surface and still

refer to it by the equation u D u0; it has parametric equations

x D x.u0; v; w/; y D y.u0; v; w/; z D z.u0; v; w/

with parameters v and w. Similarly, the v-surface v D v0 and the w-surface w D w0

pass through P0; they are the images of the planes v D v0 and w D w0 in uvw-space.

Orthogonal curvilinear coordinates

We say that Œu; v;w� is an orthogonal curvilinear coordinate system in

xyz-space if, for every nonsingular point P0 in xyz-space, each of the three

coordinate surfaces u D u0, v D v0, and w D w0 intersects the other two

at P0 at right angles.

It is tacitly assumed that the coordinate surfaces are smooth at all nonsingular points, so

we are really assuming that their normal vectors are mutually perpendicular.

Figure 16.19 shows the coordinate surfaces through P0 for a typical orthogonal curvi-

linear coordinate system.

Pairs of coordinate surfaces through a point intersect along a coordinate curve

through that point. For example, the coordinate surfaces v D v0 and w D w0 intersect

along the u-curve with parametric equations

x D x.u; v0; w0/; y D y.u; v0; w0/; and z D z.u; v0; w0/;

where the parameter is u. A unit vector Ou tangent to the u-curve through P0 is normal

to the coordinate surface u D u0 there. Similar statements hold for unit vectors Ov

and Ow. For an orthogonal curvilinear coordinate system, the three vectors Ou, Ov, and Ow

form a basis of mutually perpendicular unit vectors at any nonsingular point P0. (See

Figure 16.19.) We call this basis the local basis at P0.

Figure 16.19 u-, v-, and w-coordinate

surfaces and coordinate curves

x

y

z

w D w0

v D v0

Ou

Ov
u D u0

Ow

P0 D Œu0; v0; w0�
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particular, we will express these quantities in terms of the cylindrical and spherical

coordinate systems introduced in Section 14.6.

We denote by xyz-space the usual system of Cartesian coordinates .x; y; z/ in R
3.

A different system of coordinates Œu; v;w� in xyz-space can be defined by a continuous

transformation of the form

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/:

If the transformation is one-to-one from a region D in uvw-space onto a region R in

xyz-space, then a point P inR can be represented by a triple Œu; v;w�, the (Cartiesian)

coordinates of the unique pointQ in uvw-space that the transformation maps to P: In

this case we say that the transformation defines a curvilinear coordinate system in

R and call Œu; v;w� the curvilinear coordinates of P with respect to that system.

Note that Œu; v;w� are Cartesian coordinates in their own space (uvw-space); they are

curvilinear coordinates in xyz-space.

Typically, we relax the requirement that the transformation defining a curvilinear

coordinate system be one-to-one, that is, that every point P in R should have a unique

set of curvilinear coordinates. It is reasonable to require the transformation to be only

locally one-to-one. Thus, there may be more than one point Q that gets mapped to a

point P by the transformation, but only one in any suitably small subregion of D. For

example, in the plane polar coordinate system

x D r cos �; y D r sin �;

the transformation is locally one-to-one from D, the half of the r�-plane where 0 <

r < 1, to the region R consisting of all points in the xy-plane except the origin.

Although, say, Œ1; 0� and Œ1; 2�� are polar coordinates of the same point in the xy-

plane, they are not close together in D. Observe, however, that there is still a problem

with the origin, which can be represented by Œ0; �� for any � . Since the transformation

is not even locally one-to-one at r D 0, we regard the origin of the xy-plane as a

singular point for the polar coordinate system in the plane.

E X A M P L E 1
The cylindrical coordinate system Œr; �; z� in R

3 is defined by the

transformation

x D r cos �; y D r sin �; z D z;

where r � 0. (See Section 10.6.) This transformation maps the half-space D given

by r > 0 onto all of xyz-space excluding the z-axis, and it is locally one-to-one. We

regard Œr; �; z� as cylindrical polar coordinates in all of xyz-space but call points on

the z-axis singular points of the system since the points Œ0; �; z� are identical for any � .

E X A M P L E 2
The spherical coordinate system ŒR; �; �� is defined by the

transformation

x D R sin� cos �; y D R sin� sin �; z D R cos�;

where R � 0 and 0 � � � � . (See Section 10.6.) The transformation maps the

region D in R��-space given by R > 0, 0 < � < � in a locally one-to-one way onto

xyz-space excluding the z-axis. The point with Cartesian coordinates .0; 0; z/ can be

represented by the spherical coordinates Œ0; �; �� for arbitrary � and � if z D 0, by

Œz; 0; �� for arbitrary � if z > 0, and by Œjzj; �; �� for arbitrary � if z < 0. Thus, all

points of the z-axis are singular for the spherical coordinate system.
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Coordinate Surfaces and Coordinate Curves
Let Œu; v;w� be a curvilinear coordinate system in xyz-space, and let P0 be a non-

singular point for the system. Thus, the transformation

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/

is locally one-to-one near P0. Let P0 have curvilinear coordinates Œu0; v0; w0�. The

plane with equation u D u0 in uvw-space gets mapped by the transformation to a

surface in xyz-space passing through P0. We call this surface a u-surface and still

refer to it by the equation u D u0; it has parametric equations

x D x.u0; v; w/; y D y.u0; v; w/; z D z.u0; v; w/

with parameters v and w. Similarly, the v-surface v D v0 and the w-surface w D w0

pass through P0; they are the images of the planes v D v0 and w D w0 in uvw-space.

Orthogonal curvilinear coordinates

We say that Œu; v;w� is an orthogonal curvilinear coordinate system in

xyz-space if, for every nonsingular point P0 in xyz-space, each of the three

coordinate surfaces u D u0, v D v0, and w D w0 intersects the other two

at P0 at right angles.

It is tacitly assumed that the coordinate surfaces are smooth at all nonsingular points, so

we are really assuming that their normal vectors are mutually perpendicular.

Figure 16.19 shows the coordinate surfaces through P0 for a typical orthogonal curvi-

linear coordinate system.

Pairs of coordinate surfaces through a point intersect along a coordinate curve

through that point. For example, the coordinate surfaces v D v0 and w D w0 intersect

along the u-curve with parametric equations

x D x.u; v0; w0/; y D y.u; v0; w0/; and z D z.u; v0; w0/;

where the parameter is u. A unit vector Ou tangent to the u-curve through P0 is normal

to the coordinate surface u D u0 there. Similar statements hold for unit vectors Ov

and Ow. For an orthogonal curvilinear coordinate system, the three vectors Ou, Ov, and Ow

form a basis of mutually perpendicular unit vectors at any nonsingular point P0. (See

Figure 16.19.) We call this basis the local basis at P0.

Figure 16.19 u-, v-, and w-coordinate

surfaces and coordinate curves

x

y

z

w D w0

v D v0

Ou

Ov
u D u0

Ow

P0 D Œu0; v0; w0�
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E X A M P L E 3
For the cylindrical coordinate system (see Figure 16.20), the coor-

dinate surfaces are:

circular cylinders with axis along the z-axis (r-surfaces),

vertical half-planes radiating from the z-axis (�-surfaces),

horizontal planes (z-surfaces).

The coordinate curves are:

horizontal straight half-lines radiating from the z-axis (r-curves),

horizontal circles with centres on the z-axis (�-curves),

vertical straight lines (z-curves).

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 16.20 The coordinate surfaces for cylindrical

coordinates

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 16.21 The coordinate surfaces for spherical

coordinates

E X A M P L E 4
For the spherical coordinate system (see Figure 16.21), the coordi-

nate surfaces are:

spheres centred at the origin (R-surfaces),

vertical circular cones with vertices at the origin (�-surfaces),

vertical half-planes radiating from the z-axis (�-surfaces).

The coordinate curves are:

half-lines radiating from the origin (R-curves),

vertical semicircles with centres at the origin .�-curves),

horizontal circles with centres on the z-axis (�-curves).

Scale Factors and Differential Elements
For the rest of this section we assume that Œu; v;w� are orthogonal curvilinear coordi-

nates in xyz-space defined via the transformation

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/:

We also assume that the coordinate surfaces are smooth at any nonsingular point and

that the local basis vectors Ou, Ov, and Ow at any such point form a right-handed triad.

This is the case for both cylindrical and spherical coordinates. For spherical coordi-

nates, this is the reason we chose the order of the coordinates as ŒR; �; ��, rather than

ŒR; �; ��.

The position vector of a point P in xyz-space can be expressed in terms of the

curvilinear coordinates:

r D x.u; v;w/iC y.u; v;w/jC z.u; v;w/k:
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If we hold v D v0 and w D w0 fixed and let u vary, then r D r.u; v0; w0/ defines a

u-curve in xyz-space. At any point P on this curve, the vector

@r

@u
D

@x

@u
iC

@y

@u
jC

@z

@u
k

is tangent to the u-curve at P: In general, the three vectors

@r

@u
;

@r

@v
; and

@r

@w

are tangent, respectively, to the u-curve, the v-curve, and thew-curve through P: They

are also normal, respectively, to the u-surface, the v-surface, and thew-surface through

P; so they are mutually perpendicular. (See Figure 16.19.) The lengths of these tangent

vectors are called the scale factors of the coordinate system.

The scale factors of the orthogonal curvilinear coordinate system Œu; v;w�

are the three functions

hu D

ˇ

ˇ

ˇ

ˇ

@r

@u

ˇ

ˇ

ˇ

ˇ

; hv D

ˇ

ˇ

ˇ

ˇ

@r

@v

ˇ

ˇ

ˇ

ˇ

; hw D

ˇ

ˇ

ˇ

ˇ

@r

@w

ˇ

ˇ

ˇ

ˇ

:

The scale factors are nonzero at a nonsingular point P of the coordinate system, so

the local basis at P can be obtained by dividing the tangent vectors to the coordinate

curves by their lengths. As noted previously, we denote the local basis vectors by Ou, Ov,

and Ow. Thus,

@r

@u
D hu Ou;

@r

@v
D hv Ov; and

@r

@w
D hw Ow:

The basis vectors Ou, Ov, and Ow will form a right-handed triad provided we have chosen

a suitable order for the coordinates u, v, and w.

E X A M P L E 5
For cylindrical coordinates we have r D r cos � iC r sin �jC zk,

so

@r

@r
D cos � iC sin � j;

@r

@�
D �r sin � iC r cos � j; and

@r

@z
D k:

Thus, the scale factors for the cylindrical coordinate system are given by

hr D

ˇ

ˇ

ˇ

ˇ

@r

@r

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D r; and hz D

ˇ

ˇ

ˇ

ˇ

@r

@z

ˇ

ˇ

ˇ

ˇ

D 1;

and the local basis consists of the vectors

Or D cos � iC sin � j; O� D � sin � iC cos � j; Oz D k:

See Figure 16.22. The local basis is right-handed.
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E X A M P L E 3
For the cylindrical coordinate system (see Figure 16.20), the coor-

dinate surfaces are:

circular cylinders with axis along the z-axis (r-surfaces),

vertical half-planes radiating from the z-axis (�-surfaces),

horizontal planes (z-surfaces).

The coordinate curves are:

horizontal straight half-lines radiating from the z-axis (r-curves),

horizontal circles with centres on the z-axis (�-curves),

vertical straight lines (z-curves).

x

y

z

cylinder r D r0

plane z D z0

P D Œr0; �0; z0�

vertical half-plane
� D �0

Figure 16.20 The coordinate surfaces for cylindrical

coordinates

x

y

z

P D ŒR0; �0; �0�

cone � D �0

sphere R D R0

plane � D �0

Figure 16.21 The coordinate surfaces for spherical

coordinates

E X A M P L E 4
For the spherical coordinate system (see Figure 16.21), the coordi-

nate surfaces are:

spheres centred at the origin (R-surfaces),

vertical circular cones with vertices at the origin (�-surfaces),

vertical half-planes radiating from the z-axis (�-surfaces).

The coordinate curves are:

half-lines radiating from the origin (R-curves),

vertical semicircles with centres at the origin .�-curves),

horizontal circles with centres on the z-axis (�-curves).

Scale Factors and Differential Elements
For the rest of this section we assume that Œu; v;w� are orthogonal curvilinear coordi-

nates in xyz-space defined via the transformation

x D x.u; v;w/; y D y.u; v;w/; z D z.u; v;w/:

We also assume that the coordinate surfaces are smooth at any nonsingular point and

that the local basis vectors Ou, Ov, and Ow at any such point form a right-handed triad.

This is the case for both cylindrical and spherical coordinates. For spherical coordi-

nates, this is the reason we chose the order of the coordinates as ŒR; �; ��, rather than

ŒR; �; ��.

The position vector of a point P in xyz-space can be expressed in terms of the

curvilinear coordinates:

r D x.u; v;w/iC y.u; v;w/jC z.u; v;w/k:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 16 – page 955 October 17, 2016

SECTION 16.7: Orthogonal Curvilinear Coordinates 955

If we hold v D v0 and w D w0 fixed and let u vary, then r D r.u; v0; w0/ defines a

u-curve in xyz-space. At any point P on this curve, the vector

@r

@u
D

@x

@u
iC

@y

@u
jC

@z

@u
k

is tangent to the u-curve at P: In general, the three vectors

@r

@u
;

@r

@v
; and

@r

@w

are tangent, respectively, to the u-curve, the v-curve, and thew-curve through P: They

are also normal, respectively, to the u-surface, the v-surface, and thew-surface through

P; so they are mutually perpendicular. (See Figure 16.19.) The lengths of these tangent

vectors are called the scale factors of the coordinate system.

The scale factors of the orthogonal curvilinear coordinate system Œu; v;w�

are the three functions

hu D

ˇ

ˇ

ˇ

ˇ

@r

@u

ˇ

ˇ

ˇ

ˇ

; hv D

ˇ

ˇ

ˇ

ˇ

@r

@v

ˇ

ˇ

ˇ

ˇ

; hw D

ˇ

ˇ

ˇ

ˇ

@r

@w

ˇ

ˇ

ˇ

ˇ

:

The scale factors are nonzero at a nonsingular point P of the coordinate system, so

the local basis at P can be obtained by dividing the tangent vectors to the coordinate

curves by their lengths. As noted previously, we denote the local basis vectors by Ou, Ov,

and Ow. Thus,

@r

@u
D hu Ou;

@r

@v
D hv Ov; and

@r

@w
D hw Ow:

The basis vectors Ou, Ov, and Ow will form a right-handed triad provided we have chosen

a suitable order for the coordinates u, v, and w.

E X A M P L E 5
For cylindrical coordinates we have r D r cos � iC r sin �jC zk,

so

@r

@r
D cos � iC sin � j;

@r

@�
D �r sin � iC r cos � j; and

@r

@z
D k:

Thus, the scale factors for the cylindrical coordinate system are given by

hr D

ˇ

ˇ

ˇ

ˇ

@r

@r

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D r; and hz D

ˇ

ˇ

ˇ

ˇ

@r

@z

ˇ

ˇ

ˇ

ˇ

D 1;

and the local basis consists of the vectors

Or D cos � iC sin � j; O� D � sin � iC cos � j; Oz D k:

See Figure 16.22. The local basis is right-handed.
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x
y

z

r
Or

O�

Oz D k

P

Figure 16.22 The local basis for cylindrical

coordinates

x

y

z

O�

O�

OR

r

Figure 16.23 The local basis for spherical coordinates

E X A M P L E 6
For spherical coordinates we have

r D R sin� cos � iCR sin� sin �jCR cos �k:

Thus, the tangent vectors to the coordinate curves are

@r

@R
D sin� cos � iC sin� sin � jC cos� k;

@r

@�
D R cos� cos � iCR cos� sin � j � R sin� k;

@r

@�
D �R sin� sin � iCR sin� cos � j;

and the scale factors are given by

hR D

ˇ

ˇ

ˇ

ˇ

@r

@R

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R; and h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R sin�:

The local basis consists of the vectors

OR D sin� cos � iC sin� sin � jC cos� k

O� D cos� cos � iC cos� sin � j � sin� k

O� D � sin � iC cos � j:

See Figure 16.23. The local basis is right-handed.

The volume element in an orthogonal curvilinear coordinate system is the volume

of an infinitesimal coordinate box bounded by pairs of u-, v-, and w-surfaces corre-

sponding to values u and u C du, v and v C dv, and w and w C dw, respectively.

See Figure 16.24. Since these coordinate surfaces are assumed smooth, and since they

intersect at right angles, the coordinate box is rectangular and is spanned by the vectors

@r

@u
du D hu du Ou;

@r

@v
dv D hv dv Ov; and

@r

@w
dw D hw dw Ow:

Therefore, the volume element is given by

dV D huhvhw dudv dw:
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Figure 16.24 The volume element for

orthogonal curvilinear coordinates

hw dw Ow

hv dv Ov

hu du Ou

Œu; v;w�

Œu; v;w C dw�

ŒuC du; v;w�

Œu; v C dv;w�

dV

Furthermore, the surface area elements on the u-, v-, and w-surfaces are the areas of

the appropriate faces of the coordinate box:

Area elements on coordinate surfaces

dSu D hvhw dv dw; dSv D huhw dudw; dSw D huhv dudv.

The arc length elements along the u-, v-, and w-coordinate curves are the edges of the

coordinate box:

Arc length elements on coordinate curves

dsu D hu du; dsv D hv dv; dsw D hw dw.

E X A M P L E 7
For cylindrical coordinates, the volume element, as shown in

Section 14.6, is

dV D hrh�hz dr d� dz D r dr d� dz:

The surface area elements on the cylinder r = constant, the half-plane � = constant,

and the plane z = constant are, respectively,

dSr D r d� dz; dS� D dr dz; and dSz D r dr d�:

E X A M P L E 8
For spherical coordinates, the volume element, as developed in

Section 14.6, is

dV D hRh�h� dR d� d� D R
2 sin� dR d� d�:

The area element on the sphere R = constant is

dSR D h�h� d� d� D R
2 sin� d� d�:

The area element on the cone � = constant is

dS� D hRh� dR d� D R sin� dR d�:

The area element on the half-plane � = constant is

dS� D hRh� dR d� D RdR d�:
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x
y

z

r
Or

O�

Oz D k

P

Figure 16.22 The local basis for cylindrical

coordinates

x

y

z

O�

O�

OR

r

Figure 16.23 The local basis for spherical coordinates

E X A M P L E 6
For spherical coordinates we have

r D R sin� cos � iCR sin� sin �jCR cos �k:

Thus, the tangent vectors to the coordinate curves are

@r

@R
D sin� cos � iC sin� sin � jC cos� k;

@r

@�
D R cos� cos � iCR cos� sin � j � R sin� k;

@r

@�
D �R sin� sin � iCR sin� cos � j;

and the scale factors are given by

hR D

ˇ

ˇ

ˇ

ˇ

@r

@R

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R; and h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R sin�:

The local basis consists of the vectors

OR D sin� cos � iC sin� sin � jC cos� k

O� D cos� cos � iC cos� sin � j � sin� k

O� D � sin � iC cos � j:

See Figure 16.23. The local basis is right-handed.

The volume element in an orthogonal curvilinear coordinate system is the volume

of an infinitesimal coordinate box bounded by pairs of u-, v-, and w-surfaces corre-

sponding to values u and u C du, v and v C dv, and w and w C dw, respectively.

See Figure 16.24. Since these coordinate surfaces are assumed smooth, and since they

intersect at right angles, the coordinate box is rectangular and is spanned by the vectors

@r

@u
du D hu du Ou;

@r

@v
dv D hv dv Ov; and

@r

@w
dw D hw dw Ow:

Therefore, the volume element is given by

dV D huhvhw dudv dw:
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Figure 16.24 The volume element for

orthogonal curvilinear coordinates

hw dw Ow

hv dv Ov

hu du Ou

Œu; v;w�

Œu; v;w C dw�

ŒuC du; v;w�

Œu; v C dv;w�

dV

Furthermore, the surface area elements on the u-, v-, and w-surfaces are the areas of

the appropriate faces of the coordinate box:

Area elements on coordinate surfaces

dSu D hvhw dv dw; dSv D huhw dudw; dSw D huhv dudv.

The arc length elements along the u-, v-, and w-coordinate curves are the edges of the

coordinate box:

Arc length elements on coordinate curves

dsu D hu du; dsv D hv dv; dsw D hw dw.

E X A M P L E 7
For cylindrical coordinates, the volume element, as shown in

Section 14.6, is

dV D hrh�hz dr d� dz D r dr d� dz:

The surface area elements on the cylinder r = constant, the half-plane � = constant,

and the plane z = constant are, respectively,

dSr D r d� dz; dS� D dr dz; and dSz D r dr d�:

E X A M P L E 8
For spherical coordinates, the volume element, as developed in

Section 14.6, is

dV D hRh�h� dR d� d� D R
2 sin� dR d� d�:

The area element on the sphere R = constant is

dSR D h�h� d� d� D R
2 sin� d� d�:

The area element on the cone � = constant is

dS� D hRh� dR d� D R sin� dR d�:

The area element on the half-plane � = constant is

dS� D hRh� dR d� D RdR d�:
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Grad, Div, and Curl in Orthogonal Curvilinear Coordinates
The gradient rf of a scalar field f can be expressed in terms of the local basis at any

point P with curvilinear coordinates Œu; v;w� in the form

rf D fu OuC fv OvC fw Ow:

In order to determine the coefficients fu, fv , and fw in this formula, we will compare

two expressions for the directional derivative of f along an arbitrary curve in xyz-

space.

If the curve C has parametrization r D r.s/ in terms of arc length, then the direc-

tional derivative of f along C is given by

df

ds
D

@f

@u

du

ds
C

@f

@v

dv

ds
C

@f

@w

dw

ds
:

On the other hand, this directional derivative is also given by df=ds D rf � OT, where
OT is the unit tangent vector to C. We have

OT D
dr

ds
D

@r

@u

du

ds
C

@r

@v

dv

ds
C

@r

@w

dw

ds

D hu

du

ds
OuC hv

dv

ds
OvC hw

dw

ds
Ow:

Thus,

df

ds
D rf � OT D fuhu

du

ds
C fvhv

dv

ds
C fwhw

dw

ds
:

Comparing these two expressions for df=ds along C, we see that

fuhu D
@f

@u
; fvhv D

@f

@v
; fwhw D

@f

@w
:

Therefore, we have shown the following:

The gradient in orthogonal curvilinear coordinates is given by

rf D
1

hu

@f

@u
OuC

1

hv

@f

@v
OvC

1

hw

@f

@w
Ow:

E X A M P L E 9
In terms of cylindrical coordinates, the gradient of the scalar field

f .r; �; z/ is

rf .r; �; z/ D
@f

@r
OrC

1

r

@f

@�

O� C
@f

@z
k:

E X A M P L E 10
In terms of spherical coordinates, the gradient of the scalar field

f .R; �; �/ is

rf .R; �; �/ D
@f

@R

ORC
1

R

@f

@�

O�C
1

R sin�

@f

@�

O�:

Now consider a vector field F expressed in terms of the curvilinear coordinates:

F.u; v;w/ D Fu.u; v;w/ OuC Fv.u; v;w/OvC Fw.u; v;w/ Ow:
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The flux of F out of the infinitesimal coordinate box of Figure 16.24 is the sum of the

fluxes of F out of the three pairs of opposite surfaces of the box. The flux out of the

u-surfaces corresponding to u and uC du is

F.uC du; v;w/ � Ou dSu � F.u; v;w/ � Ou dSu

D

�

Fu.uC du; v;w/hv.uC du; v;w/hw .uC du; v;w/

� Fu.u; v;w/hv.u; v;w/hw .u; v;w/
�

dv dw

D

@

@u

�

hvhwFu

�

dudv dw:

Similar expressions hold for the fluxes out of the other pairs of coordinate surfaces.

The divergence at P of F is the flux per unit volume out of the infinitesimal coor-

dinate box at P: Thus, it is given by the following:

The divergence in orthogonal curvilinear coordinates

div F.u; v;w/ D
1

huhvhw

�

@

@u

�

hvhwFu.u; v;w/
�

C

@

@v

�

huhwFv.u; v;w/
�

C

@

@w

�

huhvFw .u; v;w/
�

�

:

E X A M P L E 11
For cylindrical coordinates, hr D hz D 1, and h� D r: Thus, the

divergence of F D Fr OrC F�
O� C Fzk is

div F D
1

r

�

@

@r

�

rFr

�

C

@

@�
F� C

@

@z

�

rFz

�

�

D

@Fr

@r
C

1

r
Fr C

1

r

@F�

@�
C

@Fz

@z
:

E X A M P L E 12
For spherical coordinates, hR D 1, h� D R, and h� D R sin�.

The divergence of the vector field F D FR
ORC F�

O�C F�
O� is

div F D
1

R2 sin�

�

@

@R

�

R
2 sin� FR

�

C

@

@�

�

R sin� F�

�

C

@

@�

�

RF�

�

�

D

1

R2

@

@R

�

R
2
FR

�

C

1

R sin�

@

@�

�

sin� F�

�

C

1

R sin�

@F�

@�

D

@FR

@R
C

2

R
FR C

1

R

@F�

@�
C

cot�

R
F� C

1

R sin�

@F�

@�
:

To calculate the curl of a vector field expressed in terms of orthogonal curvi-

linear coordinates we can make use of some previously obtained vector identities.

First, observe that the gradient of the scalar field f .u; v;w/ D u is Ou=hu, so that

Ou D huru. Similarly, Ov D hvrv and Ow D hwrw. Therefore, the vector field

F D Fu OuC Fv OvC Fw Ow

can be written in the form

F D FuhuruC Fvhvrv C Fwhwrw:
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Grad, Div, and Curl in Orthogonal Curvilinear Coordinates
The gradient rf of a scalar field f can be expressed in terms of the local basis at any

point P with curvilinear coordinates Œu; v;w� in the form

rf D fu OuC fv OvC fw Ow:

In order to determine the coefficients fu, fv , and fw in this formula, we will compare

two expressions for the directional derivative of f along an arbitrary curve in xyz-

space.

If the curve C has parametrization r D r.s/ in terms of arc length, then the direc-

tional derivative of f along C is given by

df

ds
D

@f

@u

du

ds
C

@f

@v

dv

ds
C

@f

@w

dw

ds
:

On the other hand, this directional derivative is also given by df=ds D rf � OT, where
OT is the unit tangent vector to C. We have

OT D
dr

ds
D

@r

@u

du

ds
C

@r

@v

dv

ds
C

@r

@w

dw

ds

D hu

du

ds
OuC hv

dv

ds
OvC hw

dw

ds
Ow:

Thus,

df

ds
D rf � OT D fuhu

du

ds
C fvhv

dv

ds
C fwhw

dw

ds
:

Comparing these two expressions for df=ds along C, we see that

fuhu D
@f

@u
; fvhv D

@f

@v
; fwhw D

@f

@w
:

Therefore, we have shown the following:

The gradient in orthogonal curvilinear coordinates is given by

rf D
1

hu

@f

@u
OuC

1

hv

@f

@v
OvC

1

hw

@f

@w
Ow:

E X A M P L E 9
In terms of cylindrical coordinates, the gradient of the scalar field

f .r; �; z/ is

rf .r; �; z/ D
@f

@r
OrC

1

r

@f

@�

O� C
@f

@z
k:

E X A M P L E 10
In terms of spherical coordinates, the gradient of the scalar field

f .R; �; �/ is

rf .R; �; �/ D
@f

@R

ORC
1

R

@f

@�

O�C
1

R sin�

@f

@�

O�:

Now consider a vector field F expressed in terms of the curvilinear coordinates:

F.u; v;w/ D Fu.u; v;w/ OuC Fv.u; v;w/OvC Fw.u; v;w/ Ow:
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The flux of F out of the infinitesimal coordinate box of Figure 16.24 is the sum of the

fluxes of F out of the three pairs of opposite surfaces of the box. The flux out of the

u-surfaces corresponding to u and uC du is

F.uC du; v;w/ � Ou dSu � F.u; v;w/ � Ou dSu

D

�

Fu.uC du; v;w/hv.uC du; v;w/hw .uC du; v;w/

� Fu.u; v;w/hv.u; v;w/hw .u; v;w/
�

dv dw

D

@

@u

�

hvhwFu

�

dudv dw:

Similar expressions hold for the fluxes out of the other pairs of coordinate surfaces.

The divergence at P of F is the flux per unit volume out of the infinitesimal coor-

dinate box at P: Thus, it is given by the following:

The divergence in orthogonal curvilinear coordinates

div F.u; v;w/ D
1

huhvhw

�

@

@u

�

hvhwFu.u; v;w/
�

C

@

@v

�

huhwFv.u; v;w/
�

C

@

@w

�

huhvFw .u; v;w/
�

�

:

E X A M P L E 11
For cylindrical coordinates, hr D hz D 1, and h� D r: Thus, the

divergence of F D Fr OrC F�
O� C Fzk is

div F D
1

r

�

@

@r

�

rFr

�

C

@

@�
F� C

@

@z

�

rFz

�

�

D

@Fr

@r
C

1

r
Fr C

1

r

@F�

@�
C

@Fz

@z
:

E X A M P L E 12
For spherical coordinates, hR D 1, h� D R, and h� D R sin�.

The divergence of the vector field F D FR
ORC F�

O�C F�
O� is

div F D
1

R2 sin�

�

@

@R

�

R
2 sin� FR

�

C

@

@�

�

R sin� F�

�

C

@

@�

�

RF�

�

�

D

1

R2

@

@R

�

R
2
FR

�

C

1

R sin�

@

@�

�

sin� F�

�

C

1

R sin�

@F�

@�

D

@FR

@R
C

2

R
FR C

1

R

@F�

@�
C

cot�

R
F� C

1

R sin�

@F�

@�
:

To calculate the curl of a vector field expressed in terms of orthogonal curvi-

linear coordinates we can make use of some previously obtained vector identities.

First, observe that the gradient of the scalar field f .u; v;w/ D u is Ou=hu, so that

Ou D huru. Similarly, Ov D hvrv and Ow D hwrw. Therefore, the vector field

F D Fu OuC Fv OvC Fw Ow

can be written in the form

F D FuhuruC Fvhvrv C Fwhwrw:
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Using the identity curl .f rg/ D rf � rg (see Exercise 13 of Section 16.2), we can

calculate the curl of each term in the expression above. We have

curl
�

Fuhuru
�

D r.Fuhu/ � ru

D

�

1

hu

@

@u
.Fuhu/ OuC

1

hv

@

@v
.Fuhu/OvC

1

hw

@

@w
.Fuhu/ Ow

�

�

Ou

hu

D

1

huhw

@

@w
.Fuhu/Ov �

1

huhv

@

@v
.Fuhu/ Ow

D

1

huhvhw

�

@

@w
.Fuhu/.hv Ov/ �

@

@v
.Fuhu/.hw Ow/

�

:

We have used the facts that Ou � Ou D 0, Ov � Ou D � Ow, and Ow � Ou D Ov to obtain

the result above. This is why we assumed that the curvilinear coordinate system was

right-handed.

Corresponding expressions can be calculated for the other two terms in the for-

mula for curl F. Combining the three terms, we conclude that the curl of

F D Fu OuC Fv OvC Fw Ow

is given by the following:

The curl in orthogonal curvilinear coordinates

curl F.u; v;w/ D
1

huhvhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

hu Ou hv Ov hw Ow

@

@u

@

@v

@

@w

Fuhu Fvhv Fwhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

E X A M P L E 13
For cylindrical coordinates, the curl of F D Fr OrC F�

O� C Fzk is

given by

curl F D
1

r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Or r O� k
@

@r

@

@�

@

@z

Fr rF� Fz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�

1

r

@Fz

@�
�

@F�

@z

�

OrC

�

@Fr

@z
�

@Fz

@r

�

O� C

�

@F�

@r
C

F�

r
�

1

r

@Fr

@�

�

k:

E X A M P L E 14
For spherical coordinates, the curl of F D FR

ORC F�
O� C F�

O� is

given by

curl F D
1

R2 sin�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

OR R O� R sin� O�

@

@R

@

@�

@

@�

FR RF� R sin�F�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

1

R sin�

�

@

@�
.sin�F� /�

@F�

@�

�

OR

C

1

R sin�

�

@FR

@�
� sin�

@

@R
.RF� /

�

O�

C

1

R

�

@

@R
.RF�/ �

@FR

@�

�

O�
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D

1

R sin�

�

.cos �/F� C .sin�/
@F�

@�
�

@F�

@�

�

OR

C

1

R sin�

�

@FR

@�
� .sin�/F� � .R sin�/

@F�

@R

�

O�

C

1

R

�

F� CR
@F�

@R
�

@FR

@�

�

O�:

E X E R C I S E S 16.7

In Exercises 1–2, calculate the gradients of the given scalar fields

expressed in terms of cylindrical or spherical coordinates.

1. f .r; �; z/ D r�z 2. f .R; �; �/ D R��

In Exercises 3–8, calculate div F and curl F for the given vector

fields expressed in terms of cylindrical coordinates or spherical

coordinates.

3. F.r; �; z/ D r Or 4. F.r; �; z/ D r O�

5. F.R; �; �/ D sin� OR 6. F.R; �; �/ D R O�

7. F.R; �; �/ D R O� 8. F.R; �; �/ D R2 OR

9. Let x D x.u; v/, y D y.u; v/ define orthogonal curvilinear

coordinates .u; v/ in the xy-plane. Find the scale factors,

local basis vectors, and area element for the system of

coordinates .u; v/.

10. Continuing Exercise 9, express the gradient of a scalar field

f .u; v/ and the divergence and curl of a vector field F.u; v/ in

terms of the curvilinear coordinates.

11. Express the gradient of the scalar field f .r; �/ and the

divergence and curl of a vector field F.r; �/ in terms of plane

polar coordinates .r; �/.

12. The transformation x D a coshu cos v, y D a sinhu sin v

defines elliptical coordinates in the xy-plane. This

coordinate system has singular points at x D ˙a, y D 0.

(a) Show that the v-curves, u = constant, are ellipses with

foci at the singular points.

(b) Show that the u-curves, v = constant, are hyperbolas with

foci at the singular points.

(c) Show that the u-curve and the v-curve through a

nonsingular point intersect at right angles.

(d) Find the scale factors hu and hv and the area element dA

for the elliptical coordinate system.

13. Describe the coordinate surfaces and coordinate curves of the

system of elliptical cylindrical coordinates in xyz-space

defined by

x D a coshu cos v; y D a sinhu sin v; z D z:

14. The Laplacian r 2f of a scalar field f can be calculated as

divrf: Use this method to calculate the Laplacian of the

function f .r; �; z/ expressed in terms of cylindrical

coordinates. (This repeats Exercise 19 of Section 14.6.)

15. Calculate the Laplacian r 2f D divrf for the function

f .R; �; �/, expressed in terms of spherical coordinates. (This

repeats Exercise 20 of Section 14.6 but is now much easier.)

16. Calculate the Laplacian r 2
f D divrf for a function

f .u; v;w/ expressed in terms of arbitrary orthogonal

curvilinear coordinates .u; v;w/.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms mean?

˘ the divergence of a vector field F

˘ the curl of a vector field F

˘ F is solenoidal

˘ F is irrotational

˘ a scalar potential

˘ a vector potential

˘ orthogonal curvilinear coordinates

� State the following theorems:

˘ the Divergence Theorem

˘ Green’s Theorem

˘ Stokes’s Theorem

Review Exercises

1. If F D x2zi C .y2z C 3y/j C x2k, find the flux of F across

the part of the ellipsoid x2
C y2

C 4z2
D 16, where z � 0,

oriented with upward normal.

2. Let S be the part of the cylinder x2
C y2

D 2ax between the

horizontal planes z D 0 and z D b, where b > 0. Find the flux

of F D xiC cos.z2/jC ezk outward through S.

3. Find

I

C
.3y

2
C 2xe

y2

/dx C .2x
2
ye

y2

/dy counterclockwise

around the boundary of the parallelogram with vertices .0; 0/,

.2; 0/, .3; 1/, and .1; 1/.
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Using the identity curl .f rg/ D rf � rg (see Exercise 13 of Section 16.2), we can

calculate the curl of each term in the expression above. We have

curl
�

Fuhuru
�

D r.Fuhu/ � ru

D

�

1

hu

@

@u
.Fuhu/ OuC

1

hv

@

@v
.Fuhu/OvC

1

hw

@

@w
.Fuhu/ Ow

�

�

Ou

hu

D

1

huhw

@

@w
.Fuhu/Ov �

1

huhv

@

@v
.Fuhu/ Ow

D

1

huhvhw

�

@

@w
.Fuhu/.hv Ov/ �

@

@v
.Fuhu/.hw Ow/

�

:

We have used the facts that Ou � Ou D 0, Ov � Ou D � Ow, and Ow � Ou D Ov to obtain

the result above. This is why we assumed that the curvilinear coordinate system was

right-handed.

Corresponding expressions can be calculated for the other two terms in the for-

mula for curl F. Combining the three terms, we conclude that the curl of

F D Fu OuC Fv OvC Fw Ow

is given by the following:

The curl in orthogonal curvilinear coordinates

curl F.u; v;w/ D
1

huhvhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

hu Ou hv Ov hw Ow

@

@u

@

@v

@

@w

Fuhu Fvhv Fwhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

E X A M P L E 13
For cylindrical coordinates, the curl of F D Fr OrC F�

O� C Fzk is

given by

curl F D
1

r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Or r O� k
@

@r

@

@�

@

@z

Fr rF� Fz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�

1

r

@Fz

@�
�

@F�

@z

�

OrC

�

@Fr

@z
�

@Fz

@r

�

O� C

�

@F�

@r
C

F�

r
�

1

r

@Fr

@�

�

k:

E X A M P L E 14
For spherical coordinates, the curl of F D FR

ORC F�
O� C F�

O� is

given by

curl F D
1

R2 sin�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

OR R O� R sin� O�

@

@R

@

@�

@

@�

FR RF� R sin�F�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

1

R sin�

�

@

@�
.sin�F� /�

@F�

@�

�

OR

C

1

R sin�

�

@FR

@�
� sin�

@

@R
.RF� /

�

O�

C

1

R

�

@

@R
.RF�/ �

@FR

@�

�

O�
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D

1

R sin�

�

.cos �/F� C .sin�/
@F�

@�
�

@F�

@�

�

OR

C

1

R sin�

�

@FR

@�
� .sin�/F� � .R sin�/

@F�

@R

�

O�

C

1

R

�

F� CR
@F�

@R
�

@FR

@�

�

O�:

E X E R C I S E S 16.7

In Exercises 1–2, calculate the gradients of the given scalar fields

expressed in terms of cylindrical or spherical coordinates.

1. f .r; �; z/ D r�z 2. f .R; �; �/ D R��

In Exercises 3–8, calculate div F and curl F for the given vector

fields expressed in terms of cylindrical coordinates or spherical

coordinates.

3. F.r; �; z/ D r Or 4. F.r; �; z/ D r O�

5. F.R; �; �/ D sin� OR 6. F.R; �; �/ D R O�

7. F.R; �; �/ D R O� 8. F.R; �; �/ D R2 OR

9. Let x D x.u; v/, y D y.u; v/ define orthogonal curvilinear

coordinates .u; v/ in the xy-plane. Find the scale factors,

local basis vectors, and area element for the system of

coordinates .u; v/.

10. Continuing Exercise 9, express the gradient of a scalar field

f .u; v/ and the divergence and curl of a vector field F.u; v/ in

terms of the curvilinear coordinates.

11. Express the gradient of the scalar field f .r; �/ and the

divergence and curl of a vector field F.r; �/ in terms of plane

polar coordinates .r; �/.

12. The transformation x D a coshu cos v, y D a sinhu sin v

defines elliptical coordinates in the xy-plane. This

coordinate system has singular points at x D ˙a, y D 0.

(a) Show that the v-curves, u = constant, are ellipses with

foci at the singular points.

(b) Show that the u-curves, v = constant, are hyperbolas with

foci at the singular points.

(c) Show that the u-curve and the v-curve through a

nonsingular point intersect at right angles.

(d) Find the scale factors hu and hv and the area element dA

for the elliptical coordinate system.

13. Describe the coordinate surfaces and coordinate curves of the

system of elliptical cylindrical coordinates in xyz-space

defined by

x D a coshu cos v; y D a sinhu sin v; z D z:

14. The Laplacian r 2f of a scalar field f can be calculated as

divrf: Use this method to calculate the Laplacian of the

function f .r; �; z/ expressed in terms of cylindrical

coordinates. (This repeats Exercise 19 of Section 14.6.)

15. Calculate the Laplacian r 2f D divrf for the function

f .R; �; �/, expressed in terms of spherical coordinates. (This

repeats Exercise 20 of Section 14.6 but is now much easier.)

16. Calculate the Laplacian r 2
f D divrf for a function

f .u; v;w/ expressed in terms of arbitrary orthogonal

curvilinear coordinates .u; v;w/.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms mean?

˘ the divergence of a vector field F

˘ the curl of a vector field F

˘ F is solenoidal

˘ F is irrotational

˘ a scalar potential

˘ a vector potential

˘ orthogonal curvilinear coordinates

� State the following theorems:

˘ the Divergence Theorem

˘ Green’s Theorem

˘ Stokes’s Theorem

Review Exercises

1. If F D x2zi C .y2z C 3y/j C x2k, find the flux of F across

the part of the ellipsoid x2
C y2

C 4z2
D 16, where z � 0,

oriented with upward normal.

2. Let S be the part of the cylinder x2
C y2

D 2ax between the

horizontal planes z D 0 and z D b, where b > 0. Find the flux

of F D xiC cos.z2/jC ezk outward through S.

3. Find

I

C
.3y

2
C 2xe

y2

/dx C .2x
2
ye

y2

/dy counterclockwise

around the boundary of the parallelogram with vertices .0; 0/,

.2; 0/, .3; 1/, and .1; 1/.
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4. If F D �ziCxjCyk, what are the possible values of

I

C
F�dr

around circles of radius a in the plane 2x C y C 2z D 7?

5. Let F be a smooth vector field in 3-space and suppose that, for

every a > 0, the flux of F out of the sphere of radius a centred

at the origin is �.a3
C 2a

4
/. Find the divergence of F at the

origin.

6. Let F D �yi C x cos.1 � x2
� y2/jC yzk. Find the flux of

curl F upward through a surface whose boundary is the curve

x2
C y2

D 1, z D 2.

7. Let F.r/ D r�r, where r D xiCyjCzk and r D jrj. For what

value(s) of � is F solenoidal on an open subset of 3-space? Is

F solenoidal on all of 3-space for any value of �?

8. Given that F satisfies curl F D �F on 3-space, where � is a

nonzero constant, show that r 2FC �2F D 0.

9. Let P be a polyhedron in 3-space having n planar faces, F1,

F2, : : : ; Fn. Let Ni be normal to Fi in the direction outward

from P , and let Ni have length equal to the area of face Fi .

Show that

n
X

iD1

Ni D 0:

Also, state a version of this result for a plane polygon P:

10. Around what simple, closed curve C in the xy-plane does the

vector field

F D .2y3
� 3y C xy

2
/iC .x � x3

C x
2
y/j

have the greatest circulation?

11. Through what closed, oriented surface in R
3

does the vector

field

F D .4x C 2x3
z/i � y.x2

C z
2
/j � .3x2

z
2
C 4y

2
z/k

have the greatest flux?

12. Find the maximum value of
I

C

F � dr;

where F D xy2i C .3z � xy2/j C .4y � x2y/k, and C is

a simple, closed curve in the plane x C y C z D 1 oriented

counterclockwise as seen from high on the z-axis. What curve

C gives this maximum?

Challenging Problems

1.A (The expanding universe) Let v be the large-scale velocity

field of matter in the universe. (Large-scale means on the scale

of intergalactic distances; small-scale motion such as that of

planetary systems about their suns, and even stars about galac-

tic centres, has been averaged out.) Assume that v is a smooth

vector field. According to present astronomical theory, the dis-

tance between any two points is increasing, and the rate of in-

crease is proportional to the distance between the points. The

constant of proportionality, C , is called Hubble’s constant. In

terms of v, if r1 and r2 are two points, then

�

v.r2/ � v.r1/

�

� .r2 � r1/ D C jr2 � r1j
2
:

Show that div v is constant, and find the value of the constant

in terms of Hubble’s constant. Hint: Find the flux of v.r/ out

of a sphere of radius � centred at r1 and take the limit as �

approaches zero.

2.A (Solid angle) Two rays from a point P determine an angle at

P whose measure in radians is equal to the length of the arc

of the circle of radius 1 with centre at P lying between the two

rays. Similarly, an arbitrarily shaped half-coneK with vertex at

P determines a solid angle at P whose measure in steradians

(stereo + radians) is the area of that part of the sphere of radius

1 with centre at P lying withinK. For example, the first octant

of R
3

is a half-cone with vertex at the origin. It determines a

solid angle at the origin measuring

4� �
1

8
D

�

2
steradians;

since the area of the unit sphere is 4� . (See Figure 16.25.)

solid angle

ON
K

P

S

Figure 16.25

(a) Find the steradian measure of the solid angle at the vertex

of a right-circular half-cone whose generators make angle

˛ with its central axis.

(b) If a smooth, oriented surface intersects the general half-

cone K but not at its vertex P; let S be the part of the

surface lying within K. Orient S with normal pointing

away from P: Show that the steradian measure of the solid

angle at P determined by K is the flux of r=jrj3 through

S, where r is the vector from P to the point .x; y; z/.

Integrals over moving domains

By the Fundamental Theorem of Calculus, the derivative with re-

spect to time t of an integral of f .x; t/ over a “moving interval”

Œa.t/; b.t/� is given by

d

dt

Z b.t/

a.t/

f .x; t/ dx D

Z b.t/

a.t/

@

@t
f .x; t/ dx

C f .b.t/; t/
db

dt
� f .a.t/; t/

da

dt
:

The next three problems, suggested by Luigi Quartapelle of the

Politecnico di Milano, provide various extensions of this one-

dimensional result to higher dimensions. The calculations are

somewhat lengthy, so you may want to get some help from Maple

or another computer algebra system. M
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3.I (Rate of change of circulation along a moving curve)

(a) Let F.r; t / be a smooth vector field in R
3

depending on a

parameter t , and let

G.s; t/ D F
�

r.s; t/; t
�

D F
�

x.s; t/; y.s; t/; z.x; t/; t

�

;

where r.s; t/ D x.s; t/iC y.s; t/jC z.s; t/k has continu-

ous partial derivatives of second order. Show that

@

@t

�

G �
@r

@s

�

�

@

@s

�

G �
@r

@t

�

D

@F

@t
�

@r

@s
C

�

.r � F/ �
@r

@t

�

�

@r

@s
:

Here, the curl r � F is taken with respect to the position

vector r.

(b) For fixed t (which you can think of as time), r D r.s; t/,

.a � s � b/, represents parametrically a curve Ct in R
3
.

The curve moves as t varies; the velocity of any point on

Ct is vC .s; t/ D @r=@t . Show that

d

dt

Z

Ct

F � dr D

Z

Ct

@F

@t
� drC

Z

Ct

�

.r � F/ � vC

�

� dr

C F
�

r.b; t/; t
�

� vC .b; t/ � F
�

r.a; t/; t
�

� vC .a; t/:

Hint: Write

d

dt

Z

Ct

F � dr D

Z b

a

@

@t

�

G �
@r

@s

�

ds

D

Z b

a

�

@

@s

�

G �
@r

@t

�

C

�

@

@t

�

G �
@r

@s

�

�

@

@s

�

G �
@r

@t

���

ds:

Now use the result of (a).

4.I (Rate of change of flux through a moving surface) Let St be

a moving surface in R
3

smoothly parametrized (for each t ) by

r D r.u; v; t/ D x.u; v; t/iC y.u; v; t/jC z.u; v; t/k;

where .u; v/ belongs to a parameter region R in the uv-plane.

Let F.r; t / D F1iCF2jCF3k be a smooth 3-vector function,

and let G.u; v; t/ D F.r.u; v; t/; t/.

(a) Show that

@

@t

�

G �

�

@r

@u
�

@r

@v

��

�

@

@u

�

G �

�

@r

@t
�

@r

@v

��

�

@

@v

�

G �

�

@r

@u
�

@r

@t

��

D

@F

@t
�

�

@r

@u
�

@r

@v

�

C .r � F/
@r

@t
�

�

@r

@u
�

@r

@v

�

:

(b) If Ct is the boundary of St with orientation corresponding

to that of St , use Green’s Theorem to show that
ZZ

R

�

@

@u

�

G �

�

@r

@t
�

@r

@v

��

C

@

@v

�

G �

�

@r

@u
�

@r

@t

���

du dv

D

I

Ct

�

F �
@r

@t

�

� dr:

(c) Combine the results of (a) and (b) to show that

d

dt

ZZ

St

F � ON dS

D

ZZ

St

@F

@t
�
ON dS C

ZZ

St

.r � F/vS �
ONdS

C

I

Ct

.F � vC / � dr;

where vS D @r=@t on St is the velocity of St , vC D @r=@t

on Ct is the velocity of Ct , and ON is the unit normal field

on St corresponding to its orientation.

5.I (Rate of change of integrals over moving volumes) Let St be

the position at time t of a smooth, closed surface in R
3

that

varies smoothly with t and bounds at any time t a region Dt .

If ON.r; t / denotes the unit outward (from Dt ) normal field on

St , and vS .r; t / is the velocity of the point r on St at time t ,

show that

d

dt

ZZZ

Dt

f dV D

ZZZ

Dt

@f

@t
dV C

Z



Z

St

f vS �
ONdS

holds for smooth functions f .r; t /. Hint: Let �Dt consist of

the points through which St passes as t increases to t C �t .

The volume element dV in �Dt can be expressed in terms of

the area element dS on St by

dV D v � ONdS �t:

Show that

1

�t

"

ZZZ

DtC�t

f .r; t C�t/ dV �

ZZZ

Dt

f .r; t / dV

#

D

ZZZ

Dt

f .r; t C�t/ � f .r; t /

�t
dV

C

1

�t

ZZZ

�Dt

f .r; t / dV

C

ZZZ

�Dt

f .r; t C�t/ � f .r; t /

�t
dV;

and show that the last integral! 0 as �t ! 0.
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4. If F D �ziCxjCyk, what are the possible values of

I

C
F�dr

around circles of radius a in the plane 2x C y C 2z D 7?

5. Let F be a smooth vector field in 3-space and suppose that, for

every a > 0, the flux of F out of the sphere of radius a centred

at the origin is �.a3
C 2a

4
/. Find the divergence of F at the

origin.

6. Let F D �yi C x cos.1 � x2
� y2/jC yzk. Find the flux of

curl F upward through a surface whose boundary is the curve

x2
C y2

D 1, z D 2.

7. Let F.r/ D r�r, where r D xiCyjCzk and r D jrj. For what

value(s) of � is F solenoidal on an open subset of 3-space? Is

F solenoidal on all of 3-space for any value of �?

8. Given that F satisfies curl F D �F on 3-space, where � is a

nonzero constant, show that r 2FC �2F D 0.

9. Let P be a polyhedron in 3-space having n planar faces, F1,

F2, : : : ; Fn. Let Ni be normal to Fi in the direction outward

from P , and let Ni have length equal to the area of face Fi .

Show that

n
X

iD1

Ni D 0:

Also, state a version of this result for a plane polygon P:

10. Around what simple, closed curve C in the xy-plane does the

vector field

F D .2y3
� 3y C xy

2
/iC .x � x3

C x
2
y/j

have the greatest circulation?

11. Through what closed, oriented surface in R
3

does the vector

field

F D .4x C 2x3
z/i � y.x2

C z
2
/j � .3x2

z
2
C 4y

2
z/k

have the greatest flux?

12. Find the maximum value of
I

C

F � dr;

where F D xy2i C .3z � xy2/j C .4y � x2y/k, and C is

a simple, closed curve in the plane x C y C z D 1 oriented

counterclockwise as seen from high on the z-axis. What curve

C gives this maximum?

Challenging Problems

1.A (The expanding universe) Let v be the large-scale velocity

field of matter in the universe. (Large-scale means on the scale

of intergalactic distances; small-scale motion such as that of

planetary systems about their suns, and even stars about galac-

tic centres, has been averaged out.) Assume that v is a smooth

vector field. According to present astronomical theory, the dis-

tance between any two points is increasing, and the rate of in-

crease is proportional to the distance between the points. The

constant of proportionality, C , is called Hubble’s constant. In

terms of v, if r1 and r2 are two points, then

�

v.r2/ � v.r1/

�

� .r2 � r1/ D C jr2 � r1j
2
:

Show that div v is constant, and find the value of the constant

in terms of Hubble’s constant. Hint: Find the flux of v.r/ out

of a sphere of radius � centred at r1 and take the limit as �

approaches zero.

2.A (Solid angle) Two rays from a point P determine an angle at

P whose measure in radians is equal to the length of the arc

of the circle of radius 1 with centre at P lying between the two

rays. Similarly, an arbitrarily shaped half-coneK with vertex at

P determines a solid angle at P whose measure in steradians

(stereo + radians) is the area of that part of the sphere of radius

1 with centre at P lying withinK. For example, the first octant

of R
3

is a half-cone with vertex at the origin. It determines a

solid angle at the origin measuring

4� �
1

8
D

�

2
steradians;

since the area of the unit sphere is 4� . (See Figure 16.25.)

solid angle

ON
K

P

S

Figure 16.25

(a) Find the steradian measure of the solid angle at the vertex

of a right-circular half-cone whose generators make angle

˛ with its central axis.

(b) If a smooth, oriented surface intersects the general half-

cone K but not at its vertex P; let S be the part of the

surface lying within K. Orient S with normal pointing

away from P: Show that the steradian measure of the solid

angle at P determined by K is the flux of r=jrj3 through

S, where r is the vector from P to the point .x; y; z/.

Integrals over moving domains

By the Fundamental Theorem of Calculus, the derivative with re-

spect to time t of an integral of f .x; t/ over a “moving interval”

Œa.t/; b.t/� is given by

d

dt

Z b.t/

a.t/

f .x; t/ dx D

Z b.t/

a.t/

@

@t
f .x; t/ dx

C f .b.t/; t/
db

dt
� f .a.t/; t/

da

dt
:

The next three problems, suggested by Luigi Quartapelle of the

Politecnico di Milano, provide various extensions of this one-

dimensional result to higher dimensions. The calculations are

somewhat lengthy, so you may want to get some help from Maple

or another computer algebra system. M
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3.I (Rate of change of circulation along a moving curve)

(a) Let F.r; t / be a smooth vector field in R
3

depending on a

parameter t , and let

G.s; t/ D F
�

r.s; t/; t
�

D F
�

x.s; t/; y.s; t/; z.x; t/; t

�

;

where r.s; t/ D x.s; t/iC y.s; t/jC z.s; t/k has continu-

ous partial derivatives of second order. Show that

@

@t

�

G �
@r

@s

�

�

@

@s

�

G �
@r

@t

�

D

@F

@t
�

@r

@s
C

�

.r � F/ �
@r

@t

�

�

@r

@s
:

Here, the curl r � F is taken with respect to the position

vector r.

(b) For fixed t (which you can think of as time), r D r.s; t/,

.a � s � b/, represents parametrically a curve Ct in R
3
.

The curve moves as t varies; the velocity of any point on

Ct is vC .s; t/ D @r=@t . Show that

d

dt

Z

Ct

F � dr D

Z

Ct

@F

@t
� drC

Z

Ct

�

.r � F/ � vC

�

� dr

C F
�

r.b; t/; t
�

� vC .b; t/ � F
�

r.a; t/; t
�

� vC .a; t/:

Hint: Write

d

dt

Z

Ct

F � dr D

Z b

a

@

@t

�

G �
@r

@s

�

ds

D

Z b

a

�

@

@s

�

G �
@r

@t

�

C

�

@

@t

�

G �
@r

@s

�

�

@

@s

�

G �
@r

@t

���

ds:

Now use the result of (a).

4.I (Rate of change of flux through a moving surface) Let St be

a moving surface in R
3

smoothly parametrized (for each t ) by

r D r.u; v; t/ D x.u; v; t/iC y.u; v; t/jC z.u; v; t/k;

where .u; v/ belongs to a parameter region R in the uv-plane.

Let F.r; t / D F1iCF2jCF3k be a smooth 3-vector function,

and let G.u; v; t/ D F.r.u; v; t/; t/.

(a) Show that

@

@t

�

G �

�

@r

@u
�

@r

@v

��

�

@

@u

�

G �

�

@r

@t
�

@r

@v

��

�

@

@v

�

G �

�

@r

@u
�

@r

@t

��

D

@F

@t
�

�

@r

@u
�

@r

@v

�

C .r � F/
@r

@t
�

�

@r

@u
�

@r

@v

�

:

(b) If Ct is the boundary of St with orientation corresponding

to that of St , use Green’s Theorem to show that
ZZ

R

�

@

@u

�

G �

�

@r

@t
�

@r

@v

��

C

@

@v

�

G �

�

@r

@u
�

@r

@t

���

du dv

D

I

Ct

�

F �
@r

@t

�

� dr:

(c) Combine the results of (a) and (b) to show that

d

dt

ZZ

St

F � ON dS

D

ZZ

St

@F

@t
�
ON dS C

ZZ

St

.r � F/vS �
ONdS

C

I

Ct

.F � vC / � dr;

where vS D @r=@t on St is the velocity of St , vC D @r=@t

on Ct is the velocity of Ct , and ON is the unit normal field

on St corresponding to its orientation.

5.I (Rate of change of integrals over moving volumes) Let St be

the position at time t of a smooth, closed surface in R
3

that

varies smoothly with t and bounds at any time t a region Dt .

If ON.r; t / denotes the unit outward (from Dt ) normal field on

St , and vS .r; t / is the velocity of the point r on St at time t ,

show that

d

dt

ZZZ

Dt

f dV D

ZZZ

Dt

@f

@t
dV C

Z



Z

St

f vS �
ONdS

holds for smooth functions f .r; t /. Hint: Let �Dt consist of

the points through which St passes as t increases to t C �t .

The volume element dV in �Dt can be expressed in terms of

the area element dS on St by

dV D v � ONdS �t:

Show that

1

�t

"

ZZZ

DtC�t

f .r; t C�t/ dV �

ZZZ

Dt

f .r; t / dV

#

D

ZZZ

Dt

f .r; t C�t/ � f .r; t /

�t
dV

C

1

�t

ZZZ

�Dt

f .r; t / dV

C

ZZZ

�Dt

f .r; t C�t/ � f .r; t /

�t
dV;

and show that the last integral! 0 as �t ! 0.
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C H A P T E R 17

Differential Forms
and Exterior Calculus

“
The miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful gift which we

neither understand nor deserve.

”Eugene P. Wigner 1902–1995

from The Unreasonable Effectiveness of Mathematics in the Natural Sciences (1960)

Introduction In S. P. Thompson’s classic 1914 text, Calculus Made

Easy (2nd ed.), he playfully described the “d” in a dif-

ferential as a “dreadful” symbol. He concluded it was best to think of “d” as an op-

eration that takes “a little bit of.” Thus, the ubiquitous intuition about differentials

being vaguely “small” has a long history that belies the historical, but ultimately suc-

cessful, struggle of mathematicians to escape from “infinitesimals.” Our definitions of

differentials in Sections 2.2 and 12.6 made it quite clear that differentials are just new

independent and dependent variables that can have any values, not just small ones. It is

only when we have used differentials to approximate the changes in values of functions

that we have thought of differentials as small in order that the errors in the approxi-

mations be small. We have also seen differentials used in contexts where smallness

is neither implied nor desirable, for example, in the applications in Sections 12.6 and

13.9.

This chapter focuses on differentials and develops a new kind of “calculus” called

exterior calculus that enables differentials to play a much greater role in applications

in the physical and other sciences. It amounts to a rethink of how calculus is tradi-

tionally done. Sections 17.1 and 17.2 set up the mechanics of “k-forms” and “differen-

tial forms” (which are fields of k-forms analogous to vector fields) and the operators

“wedge product” and “exterior derivative” that act on them. These are analogous to dif-

ferential calculus, while the remaining three sections constitute a rethink of integration.

Section 17.3 defines manifolds and bridges the classical multiple integral to integrals

of differential forms. A central issue in integration is orientation, which differential

forms naturally take into account in any dimension. This is the subject of Section 17.4.

Section 17.5 revisits the classical integration theorems of advanced calculus, showing

them in a unified light in the Generalized Stokes’s Theorem.

Differentials and Vectors
Differentials have properties similar to vectors. Consider the differential of the func-

tion f .x; y; z/ and its gradient rf :

df D
@f

@x
dx C

@f

@y
dy C

@f

@z
dz

rf D
@f

@x
i C

@f

@y
j C

@f

@z
k:

The expression for df appears to expand df as a linear combination of “basis vectors”

dx, dy, and dz, which play the same role that i, j, and k do in the expression for rf :
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they both imply direction as well as magnitude. We will come to regard differentials

as elements of vector spaces in this chapter.

The idea of a differential having direction (orientation) is implicit in the definition

of the definite integral in Chapter 5.
R b

a
f .x/ dx is the integral of the differential form

f .x/ dx over the interval Œa; b� oriented from a to b. Reversing this orientation results

in the integral changing sign:
R a

b
f .x/ dx D �

R b

a
f .x/ dx. Our definitions of double

and triple integrals in Chapter 14 involved no such “built-in” concept of orientation;

for instance, we treated the area element in R
2 as dA D dx dy D dy dx. This meant

that the orientation concept had to be artificially built in to the statements of two- and

three-dimensional versions of the Fundamental Theorem of Calculus in Chapter 16.

Other than representing the

dreaded “little bit of area,” dA

has no meaning; it is not the

differential of anything, and

neither is dx dy.

This deficiency will be remedied in this chapter by the introduction of a new kind of

product (the wedge product), where we will replace the inadequate product dx dy with

dx ^ dy, which is antisymmetric in the sense that dy ^ dx D �dx ^ dy. This will,

in turn, make it possible to define integrals over “manifolds” of any dimension and

obtain a single version of the Fundamental Theorem of Calculus that applies in any

dimension.

Derivatives versus Differentials
It is a peculiarity of the conventional language that, except in special cases, when we

speak of differential equations we are actually speaking of equations between deriva-

tives and not equations between differentials. Exterior calculus inverts this. The ex-

terior derivative defined in Section 17.2 is properly a kind of differential and not a

derivative as the term is conventionally used in calculus. The exterior derivative (i.e.,

“d”), together with the notion of products of forms, allows for a new kind of object.

One can, loosely speaking, take the differential of a differential in a meaningful way.

This is something completely new. By forming independent bases in their own vector

spaces, k-forms retain the ability to “separate” (into components) that vectors have.

Thus, differential equations can be replaced by equivalent equations in differentials of

k-forms.

17.1 k-Forms

In this section, we develop the notion of forms and their products, known as wedge

products. Let the n vectors e1 D .1; 0; 0; : : : ; 0/, e2 D .0; 1; 0; : : : ; 0/, : : : , and

en D .0; 0; 0; : : : ; 1/ be the standard basis for the n-dimensional real vector space

R
n. A function that maps a real vector space into R is called a “functional.” In phys-

ical examples, such as integrals for energy, functionals are commonly encountered on

vector spaces of functions (infinite dimensional function spaces), but in the following

definition we introduce a functional on the finite dimensional vector space R
n.

D E F I N I T I O N

1

A real-valued function � defined on R
n is called a 1-form (or a linear func-

tional) on R
n if, whenever x and y belong to R

n and a and b are real numbers,

then

�.axC by/ D a�.x/C b�.y/:

For example, if x D x1e1 C x2e2 C � � � C xnen, then the function � defined by

�.x/ D a1x1 C a2x2 C � � � C anxn D a � x

is a 1-form on R
n for any a 2 R

n. In fact, every 1-form on R
n is of this type, because,
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“
The miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful gift which we

neither understand nor deserve.

”Eugene P. Wigner 1902–1995

from The Unreasonable Effectiveness of Mathematics in the Natural Sciences (1960)

Introduction In S. P. Thompson’s classic 1914 text, Calculus Made

Easy (2nd ed.), he playfully described the “d” in a dif-

ferential as a “dreadful” symbol. He concluded it was best to think of “d” as an op-

eration that takes “a little bit of.” Thus, the ubiquitous intuition about differentials

being vaguely “small” has a long history that belies the historical, but ultimately suc-

cessful, struggle of mathematicians to escape from “infinitesimals.” Our definitions of

differentials in Sections 2.2 and 12.6 made it quite clear that differentials are just new

independent and dependent variables that can have any values, not just small ones. It is

only when we have used differentials to approximate the changes in values of functions

that we have thought of differentials as small in order that the errors in the approxi-

mations be small. We have also seen differentials used in contexts where smallness

is neither implied nor desirable, for example, in the applications in Sections 12.6 and

13.9.

This chapter focuses on differentials and develops a new kind of “calculus” called

exterior calculus that enables differentials to play a much greater role in applications

in the physical and other sciences. It amounts to a rethink of how calculus is tradi-

tionally done. Sections 17.1 and 17.2 set up the mechanics of “k-forms” and “differen-

tial forms” (which are fields of k-forms analogous to vector fields) and the operators

“wedge product” and “exterior derivative” that act on them. These are analogous to dif-

ferential calculus, while the remaining three sections constitute a rethink of integration.

Section 17.3 defines manifolds and bridges the classical multiple integral to integrals

of differential forms. A central issue in integration is orientation, which differential

forms naturally take into account in any dimension. This is the subject of Section 17.4.

Section 17.5 revisits the classical integration theorems of advanced calculus, showing

them in a unified light in the Generalized Stokes’s Theorem.

Differentials and Vectors
Differentials have properties similar to vectors. Consider the differential of the func-

tion f .x; y; z/ and its gradient rf :

df D
@f

@x
dx C

@f

@y
dy C

@f

@z
dz

rf D
@f

@x
i C

@f

@y
j C

@f

@z
k:

The expression for df appears to expand df as a linear combination of “basis vectors”

dx, dy, and dz, which play the same role that i, j, and k do in the expression for rf :
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they both imply direction as well as magnitude. We will come to regard differentials

as elements of vector spaces in this chapter.

The idea of a differential having direction (orientation) is implicit in the definition

of the definite integral in Chapter 5.
R b

a
f .x/ dx is the integral of the differential form

f .x/ dx over the interval Œa; b� oriented from a to b. Reversing this orientation results

in the integral changing sign:
R a

b
f .x/ dx D �

R b

a
f .x/ dx. Our definitions of double

and triple integrals in Chapter 14 involved no such “built-in” concept of orientation;

for instance, we treated the area element in R
2 as dA D dx dy D dy dx. This meant

that the orientation concept had to be artificially built in to the statements of two- and

three-dimensional versions of the Fundamental Theorem of Calculus in Chapter 16.

Other than representing the

dreaded “little bit of area,” dA

has no meaning; it is not the

differential of anything, and

neither is dx dy.

This deficiency will be remedied in this chapter by the introduction of a new kind of

product (the wedge product), where we will replace the inadequate product dx dy with

dx ^ dy, which is antisymmetric in the sense that dy ^ dx D �dx ^ dy. This will,

in turn, make it possible to define integrals over “manifolds” of any dimension and

obtain a single version of the Fundamental Theorem of Calculus that applies in any

dimension.

Derivatives versus Differentials
It is a peculiarity of the conventional language that, except in special cases, when we

speak of differential equations we are actually speaking of equations between deriva-

tives and not equations between differentials. Exterior calculus inverts this. The ex-

terior derivative defined in Section 17.2 is properly a kind of differential and not a

derivative as the term is conventionally used in calculus. The exterior derivative (i.e.,

“d”), together with the notion of products of forms, allows for a new kind of object.

One can, loosely speaking, take the differential of a differential in a meaningful way.

This is something completely new. By forming independent bases in their own vector

spaces, k-forms retain the ability to “separate” (into components) that vectors have.

Thus, differential equations can be replaced by equivalent equations in differentials of

k-forms.

17.1 k-Forms

In this section, we develop the notion of forms and their products, known as wedge

products. Let the n vectors e1 D .1; 0; 0; : : : ; 0/, e2 D .0; 1; 0; : : : ; 0/, : : : , and

en D .0; 0; 0; : : : ; 1/ be the standard basis for the n-dimensional real vector space

R
n. A function that maps a real vector space into R is called a “functional.” In phys-

ical examples, such as integrals for energy, functionals are commonly encountered on

vector spaces of functions (infinite dimensional function spaces), but in the following

definition we introduce a functional on the finite dimensional vector space R
n.

D E F I N I T I O N

1

A real-valued function � defined on R
n is called a 1-form (or a linear func-

tional) on R
n if, whenever x and y belong to R

n and a and b are real numbers,

then

�.axC by/ D a�.x/C b�.y/:

For example, if x D x1e1 C x2e2 C � � � C xnen, then the function � defined by

�.x/ D a1x1 C a2x2 C � � � C anxn D a � x

is a 1-form on R
n for any a 2 R

n. In fact, every 1-form on R
n is of this type, because,
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if � is an arbitrary 1-form on R
n and we let ai D �.ei /, then by linearity,

�.x/ D �

 

n
X

iD1

xi ei

!

D

n
X

iD1

xi�.ei / D x � a D a � x:

The set of all 1-forms on R
n is denoted ƒ1.R

n
/ and is a real vector space called

the dual space of R
n. If � and  are 1-forms and � D u� C v , where u and v

are real numbers, then, as noted above, �.x/ D a � x, and  .x/ D b � x for certain

n-vectors a and b, so

�.x/ D u�.x/C v .x/ D ua � xC vb � x D .uaC vb/ � x;

and � is a 1-form corresponding to the vector uaC vb.

Now we make an important definition that appears to give “differentials” a new

role to play, rather than just being new independent and dependent variables in a dif-

ferentiation process. Being a vector space, ƒ1.R
n
/ must itself have a basis.

D E F I N I T I O N

2

Differentials as basis vectors for 1-forms

For 1 � i � n, let dxi be the 1-form that assigns to v 2 R
n its i th component

vi :

dxi .v/ D vi for all v 2 R
n
:

Since any 1-form � on R
n can be written in the form

�.v/ D

n
X

iD1

�.ei / vi D

n
X

iD1

�.ei / dxi .v/;

we can therefore write � D

n
X

iD1

�.ei / dxi .

We have now departed from the

convention up to this point of

depicting differentials on both

sides of any equality. It is not

necessary that a 1-form be the

differential of some function.

Thus, the differentials dxi for 1 � i � n constitute a basis for ƒ1.R
n
/,

which we will call the standard basis. ƒ1.R
n
/ must therefore also be an

n-dimensional vector space.

Bilinear Forms and 2-Forms

The Cartesian product R
n
�R

n
D f.x; y/ W x; y 2 R

n
g is a vector space of dimension

2n. A bilinear form � on R
n is a map from R

n
� R

n into R such that �.x; y/ is linear

in x for each fixed y and linear in y for each fixed x; that is,

�.axC by; z/ D a�.x; z/C b�.y; z/

�.x; ayC bz/ D a�.x; y/C b�.x; z/

holds for all a; b 2 R and all x; y; z 2 R
n.

E X A M P L E 1
If x 2 R

n and y 2 R
n are row vectors (so that the transpose yT is

a column vector), and if A D .aij / is a real n � n matrix, then

�.x; y/ D x A yT
D

n
X

iD1

n
X

j D1

x1aijyj

is a bilinear form on R
n. In fact, every bilinear � form on R

n can be expressed in this

way, where aij D �.ei ; ej /.
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D E F I N I T I O N

3

A 2-form on R
n is a bilinear form on R

n that is also antisymmetric (or skew-

symmetric) in the sense that for every .x; y/ 2 R
n
� R

n,

�.y; x/ D ��.x; y/:

The set of all such 2-forms on R
n is denoted ƒ2.R

n
/ and is a vector space.

E X A M P L E 2
Let � and  be two 1-forms on R

n, (i.e., � and  belong to

ƒ1.R
n
/). Then the expression � D � ^  defined by

�.x; y/ D .� ^  /.x; y/ D

ˇ

ˇ

ˇ

ˇ

�.x/ �.y/

 .x/  .y/

ˇ

ˇ

ˇ

ˇ

D �.x/ .y/ � �.y/ .x/

is bilinear and antisymmetric, and so is a 2-form on R
n. (This follows at once from

properties of the determinant.) The symbol ^ is called a wedge product. This wedge

product is a function of two vectors. (Later we will encounter wedge products that have

more than two arguments.) For example, in terms of elementary 1-forms,

.dxi ^ dxj /.x; y/ D

ˇ

ˇ

ˇ

ˇ

xi yi

xj yj

ˇ

ˇ

ˇ

ˇ

D xiyj � xjyi :

Note that the antisymmetric property of the wedge product implies that �^� D 0

(the zero 2-form) for any � 2 ƒ1.R
n
/.

Let � 2 ƒ2.R
n
/, and let x D

Pn
iD1 xi ei and y D

Pn
j D1 yj ej belong to R

n. If

aij D �.ei ; ej /, then the numbers aij satisfy aj i D �aij and ai i D 0; that is, the

matrix .aij / is antisymmetric. Therefore, we have, using the bilinearity of �,

�.x; y/ D

n
X

iD1

n
X

j D1

xi yj �.ei ; ej / D

n
X

iD1

n
X

j D1

aij xi yj

D

X

1�i<j �n

�

aij xi yj � aij xj yi

�

D

X

1�i<j �n

aij

�

dxi ^ dxj

�

.x; y/:

Moreover, if
P

1�i<j �n aij dxi ^ dxj .x; y/ D 0 for all choices of n-vectors x and y,

then, taking x D ei and y D ej , we obtain aij D 0 for all choices of i and j satisfying

1 � i < j � n. Thus, we have proved the following:

T H E O R E M

1

The elementary 2-forms dxi ^ dxj , where 1 � i < j � n, constitute a basis for

ƒ2.R
n
/, which is therefore a real vector space having dimension

�

n

2

�

D

n.n � 1/

2
.

While we have been explicitly stating the functional dependence on two vectors x and

y to this point, we will take this as understood unless explicitly needed.

E X A M P L E 3
Let � and  be two 1-forms on R

3, say,

� D a1 dx1 C a2 dx2 C a3 dx3

 D b1 dx1 C b2 dx2 C b3 dx3:

Expand the 2-form � ^  in terms of the three basis vectors dx2 ^ dx3, dx3 ^ dx1

(which is just �dx1 ^ dx3), and dx1 ^ dx2 of ƒ2.R
3
/. What vector in R

3 does

the result correspond to if we regard the three basis vectors above as corresponding to

i D e1, j D e2, and k D e3 in R
3?
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if � is an arbitrary 1-form on R
n and we let ai D �.ei /, then by linearity,

�.x/ D �

 

n
X

iD1

xi ei

!

D

n
X

iD1

xi�.ei / D x � a D a � x:

The set of all 1-forms on R
n is denoted ƒ1.R

n
/ and is a real vector space called

the dual space of R
n. If � and  are 1-forms and � D u� C v , where u and v

are real numbers, then, as noted above, �.x/ D a � x, and  .x/ D b � x for certain

n-vectors a and b, so

�.x/ D u�.x/C v .x/ D ua � xC vb � x D .uaC vb/ � x;

and � is a 1-form corresponding to the vector uaC vb.

Now we make an important definition that appears to give “differentials” a new

role to play, rather than just being new independent and dependent variables in a dif-

ferentiation process. Being a vector space, ƒ1.R
n
/ must itself have a basis.

D E F I N I T I O N

2

Differentials as basis vectors for 1-forms

For 1 � i � n, let dxi be the 1-form that assigns to v 2 R
n its i th component

vi :

dxi .v/ D vi for all v 2 R
n
:

Since any 1-form � on R
n can be written in the form

�.v/ D

n
X

iD1

�.ei / vi D

n
X

iD1

�.ei / dxi .v/;

we can therefore write � D

n
X

iD1

�.ei / dxi .

We have now departed from the

convention up to this point of

depicting differentials on both

sides of any equality. It is not

necessary that a 1-form be the

differential of some function.

Thus, the differentials dxi for 1 � i � n constitute a basis for ƒ1.R
n
/,

which we will call the standard basis. ƒ1.R
n
/ must therefore also be an

n-dimensional vector space.

Bilinear Forms and 2-Forms

The Cartesian product R
n
�R

n
D f.x; y/ W x; y 2 R

n
g is a vector space of dimension

2n. A bilinear form � on R
n is a map from R

n
� R

n into R such that �.x; y/ is linear

in x for each fixed y and linear in y for each fixed x; that is,

�.axC by; z/ D a�.x; z/C b�.y; z/

�.x; ayC bz/ D a�.x; y/C b�.x; z/

holds for all a; b 2 R and all x; y; z 2 R
n.

E X A M P L E 1
If x 2 R

n and y 2 R
n are row vectors (so that the transpose yT is

a column vector), and if A D .aij / is a real n � n matrix, then

�.x; y/ D x A yT
D

n
X

iD1

n
X

j D1

x1aijyj

is a bilinear form on R
n. In fact, every bilinear � form on R

n can be expressed in this

way, where aij D �.ei ; ej /.
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D E F I N I T I O N

3

A 2-form on R
n is a bilinear form on R

n that is also antisymmetric (or skew-

symmetric) in the sense that for every .x; y/ 2 R
n
� R

n,

�.y; x/ D ��.x; y/:

The set of all such 2-forms on R
n is denoted ƒ2.R

n
/ and is a vector space.

E X A M P L E 2
Let � and  be two 1-forms on R

n, (i.e., � and  belong to

ƒ1.R
n
/). Then the expression � D � ^  defined by

�.x; y/ D .� ^  /.x; y/ D

ˇ

ˇ

ˇ

ˇ

�.x/ �.y/

 .x/  .y/

ˇ

ˇ

ˇ

ˇ

D �.x/ .y/ � �.y/ .x/

is bilinear and antisymmetric, and so is a 2-form on R
n. (This follows at once from

properties of the determinant.) The symbol ^ is called a wedge product. This wedge

product is a function of two vectors. (Later we will encounter wedge products that have

more than two arguments.) For example, in terms of elementary 1-forms,

.dxi ^ dxj /.x; y/ D

ˇ

ˇ

ˇ

ˇ

xi yi

xj yj

ˇ

ˇ

ˇ

ˇ

D xiyj � xjyi :

Note that the antisymmetric property of the wedge product implies that �^� D 0

(the zero 2-form) for any � 2 ƒ1.R
n
/.

Let � 2 ƒ2.R
n
/, and let x D

Pn
iD1 xi ei and y D

Pn
j D1 yj ej belong to R

n. If

aij D �.ei ; ej /, then the numbers aij satisfy aj i D �aij and ai i D 0; that is, the

matrix .aij / is antisymmetric. Therefore, we have, using the bilinearity of �,

�.x; y/ D

n
X

iD1

n
X

j D1

xi yj �.ei ; ej / D

n
X

iD1

n
X

j D1

aij xi yj

D

X

1�i<j �n

�

aij xi yj � aij xj yi

�

D

X

1�i<j �n

aij

�

dxi ^ dxj

�

.x; y/:

Moreover, if
P

1�i<j �n aij dxi ^ dxj .x; y/ D 0 for all choices of n-vectors x and y,

then, taking x D ei and y D ej , we obtain aij D 0 for all choices of i and j satisfying

1 � i < j � n. Thus, we have proved the following:

T H E O R E M

1

The elementary 2-forms dxi ^ dxj , where 1 � i < j � n, constitute a basis for

ƒ2.R
n
/, which is therefore a real vector space having dimension

�

n

2

�

D

n.n � 1/

2
.

While we have been explicitly stating the functional dependence on two vectors x and

y to this point, we will take this as understood unless explicitly needed.

E X A M P L E 3
Let � and  be two 1-forms on R

3, say,

� D a1 dx1 C a2 dx2 C a3 dx3

 D b1 dx1 C b2 dx2 C b3 dx3:

Expand the 2-form � ^  in terms of the three basis vectors dx2 ^ dx3, dx3 ^ dx1

(which is just �dx1 ^ dx3), and dx1 ^ dx2 of ƒ2.R
3
/. What vector in R

3 does

the result correspond to if we regard the three basis vectors above as corresponding to

i D e1, j D e2, and k D e3 in R
3?

9780134154367_Calculus   987 05/12/16   5:10 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 17 – page 968 October 19, 2016

968 CHAPTER 17 Differential Forms and Exterior Calculus

Solution We have

� ^  D a1b1 dx1 ^ dx1 C a1b2 dx1 ^ dx2 C a1b3 dx1 ^ dx3

C a2b1 dx2 ^ dx1 C a2b2 dx2 ^ dx2 C a2b3 dx2 ^ dx3

C a3b1 dx3 ^ dx1 C a3b2 dx3 ^ dx2 C a3b3 dx3 ^ dx3

D .a2b3 � a3b2/ dx2 ^ dx3 C .a3b1 � a1b3/ dx3 ^ dx1

C .a1b2 � a2b1/ dx1 ^ dx2:

The coefficients here are those of the cross product of a D a1i C a2j C a3k and

b D b1iC b2jC b3k in R
3. Thus, the wedge product mapping of ƒ1.R

3
/ � ƒ1.R

3
/

into ƒ2.R
3
/ corresponds to the cross product mapping of R

3
� R

3 into R
3.

Remark Note that n D 3 is a unique case in that it is the only one with the bases for

ƒ2.R
n
/ and ƒ1.R

n
/ having the same dimension. In a sense, this is what makes cross

products possible in R
3.

k-Forms

D E F I N I T I O N

4

A k-form on R
n is a multilinear antisymmetric functional � defined on the

Cartesian product .Rn
/k D R

n
� R

n
� � � � � R

n (k factors R
n). That is, �

maps .Rn
/k into R and satisfies the two conditions:

(a) multilinearity: �.v1; : : : ; vk/ is linear in each of the vectors vi with the

others held fixed.

�.v1; : : : ; vi�1; .auC bw/; viC1; : : : ; vk/

D a�.v1; : : : ; vi�1;u; viC1; : : : ; vk/

C b�.v1; : : : ; vi�1;w; viC1; : : : ; vk/

for all real numbers a and b and vectors u and w in R
n, and

(b) antisymmetry: if any two arguments of � have their positions switched,

the value of � changes sign.

�.v1; : : : ; vi ; : : : ; vj ; : : : vk/ D ��.v1; : : : ; vj ; : : : ; vi ; : : : vk/:

The vector space of all k-forms on R
n is denoted ƒk.R

n
/.

If k > 2, we need to extend the notion of antisymmetry to allow for exchanges involv-

ing more than two arguments. We call a rearrangement of the numbers f1; 2; 3; : : : ; kg

a permutation. Such permutations can always be constructed by successive reversals

of pairs of the numbers. The reversal .i; j / exchanges the numbers i and j (where

j ¤ i). Every permutation can be expressed as a “product of reversals.” For example,

the permutation � that maps f1; 2; 3g to f2; 3; 1g can be written as � D .1; 3/.1; 2/;

observe that �f1; 2; 3g D .1; 3/.1; 2/f1; 2; 3g D .1; 3/f2; 1; 3g D f2; 3; 1g, that is, �

first switches 1 and 2 (producing f2; 1; 3g) and then switches 1 and 3 to get f2; 3; 1g.

This use of sgn to denote the

sign for an even or odd

permutation should not be

confused with the signum

function of Section P.5, neither

should � , the permutation, be

confused with the number � .

Of course, such a representation is not unique; it is also true that � D .1; 3/.2; 3/.

However, if a permutation � can be expressed as a product of an even (or odd) number

of reversals, then all ways of expressing it as a product of reversals will involve an even

(or odd) number, and we say that the permutation itself is even (or odd). Accordingly,

we define the sign of the permutation � as

sgn .�/ D

�

1 if � is an even permutation

�1 if � is an odd permutation.

It follows that the antisymmetry property of a k-form � can be generalized as follows:

if � is any permutation of the numbers f1; 2; : : : ; kg, then
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�.v�.1/; v�.2/ : : : ; v�.k// D sgn .�/ �.v1; v2; : : : ; vk/:

We can now extend the definition of the wedge product to allow for k factors. Let

dxi be the 1-form introduced earlier in this section: dxi.x/ D xi for all x 2 R
n. We

define the elementary k-forms

.dxi1 ^ dxi2 ^ � � � ^ dxik /.v1; v2; : : : ; vk/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dxi1.v1/ dxi1.v2/ � � � dxi1.vk/

dxi2.v1/ dxi2.v2/ � � � dxi2.vk/

:
:
:

:
:
:

: : :
:
:
:

dxik .v1/ dxik .v2/ � � � dxik .vk/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1i1 v2i1 � � � vki1

v1i2 v2i2 � � � vki2
:
:
:

:
:
:

: : :
:
:
:

v1ik v2ik � � � vkik

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Remark While the above formula makes sense for all positive integers k, the result-

ing determinant will be zero if k > n. Since there are only n distinct 1-forms dxi , if

k > n at least two of the subscripts i1; i2; : : : ; ik will be equal and so the determinant

will have at least two identical rows. The same applies for k � n; if any two of the

factors in dxi1 ^ dxi2 ^ � � � ^ dxik are identical, then the wedge product is the zero

k-form.

Remark For k � n, let the numbers i1; i2; : : : ; ik satisfy 1 � i1 < i2 < � � � < ik �

n. If � is a permutation of those numbers, then

dx�.i1/ ^ dx�.i2/ ^ � � � ^ dx�.ik/ D sgn .�/ dxi1 ^ dxi2 ^ � � � ^ dxik :

As observed earlier for 2-forms, the collection of all wedge products of the form dxi1^

dxi2 ^ � � � ^ dxik , where i1; i2; : : : ; ik satisfy 1 � i1 < i2 < � � � < ik � n, constitute

a basis for ƒk.R
n
/, which therefore has dimension

�

n

k

�

D

nŠ

.n � k/Š kŠ
. In particular,

ƒn.R
n
/ has dimension 1; it is spanned by the single form dx1 ^ dx2 ^ � � � ^ dxn.

The wedge product of an arbitrary k-form � and `-form  can now be calculated

using the bases of ƒk.R
n
/ and ƒ`.R

n
/. If

� D

X

1�i1<i2���<ik�n

ai1i2���ikdxi1 ^ dxi2 ^ � � � ^ dxik

 D

X

1�j1<j2���<j`�n

bj1j2���j`
dxj1

^ dxj2
^ � � � ^ dxj`

;

then

�^ D

X

1�i1<���<ik �n

1�j1<���<j`�n

ai1i2 ���ik bj1j2 ���j`
dxi1^dxi2^� � �^dxik^dxj1

^dxj2
^� � �^dxj`

:

The result is a .k C `/-form. Any terms on the right side for which one of the dxi ’s is

identical to one of the dxj ’s will be zero. This will happen to all terms if k C ` > n.

Assuming that �, �1, and �2 are k-forms, that  is an `-form, that � is anm-form,

and that a and b are real numbers, then the wedge product has the following properties:

(a) It is linear in each of its arguments:

.a�1 C b�2/ ^  D a �1 ^  C b �2 ^  :
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Solution We have

� ^  D a1b1 dx1 ^ dx1 C a1b2 dx1 ^ dx2 C a1b3 dx1 ^ dx3

C a2b1 dx2 ^ dx1 C a2b2 dx2 ^ dx2 C a2b3 dx2 ^ dx3

C a3b1 dx3 ^ dx1 C a3b2 dx3 ^ dx2 C a3b3 dx3 ^ dx3

D .a2b3 � a3b2/ dx2 ^ dx3 C .a3b1 � a1b3/ dx3 ^ dx1

C .a1b2 � a2b1/ dx1 ^ dx2:

The coefficients here are those of the cross product of a D a1i C a2j C a3k and

b D b1iC b2jC b3k in R
3. Thus, the wedge product mapping of ƒ1.R

3
/ � ƒ1.R

3
/

into ƒ2.R
3
/ corresponds to the cross product mapping of R

3
� R

3 into R
3.

Remark Note that n D 3 is a unique case in that it is the only one with the bases for

ƒ2.R
n
/ and ƒ1.R

n
/ having the same dimension. In a sense, this is what makes cross

products possible in R
3.

k-Forms

D E F I N I T I O N

4

A k-form on R
n is a multilinear antisymmetric functional � defined on the

Cartesian product .Rn
/k D R

n
� R

n
� � � � � R

n (k factors R
n). That is, �

maps .Rn
/k into R and satisfies the two conditions:

(a) multilinearity: �.v1; : : : ; vk/ is linear in each of the vectors vi with the

others held fixed.

�.v1; : : : ; vi�1; .auC bw/; viC1; : : : ; vk/

D a�.v1; : : : ; vi�1;u; viC1; : : : ; vk/

C b�.v1; : : : ; vi�1;w; viC1; : : : ; vk/

for all real numbers a and b and vectors u and w in R
n, and

(b) antisymmetry: if any two arguments of � have their positions switched,

the value of � changes sign.

�.v1; : : : ; vi ; : : : ; vj ; : : : vk/ D ��.v1; : : : ; vj ; : : : ; vi ; : : : vk/:

The vector space of all k-forms on R
n is denoted ƒk.R

n
/.

If k > 2, we need to extend the notion of antisymmetry to allow for exchanges involv-

ing more than two arguments. We call a rearrangement of the numbers f1; 2; 3; : : : ; kg

a permutation. Such permutations can always be constructed by successive reversals

of pairs of the numbers. The reversal .i; j / exchanges the numbers i and j (where

j ¤ i). Every permutation can be expressed as a “product of reversals.” For example,

the permutation � that maps f1; 2; 3g to f2; 3; 1g can be written as � D .1; 3/.1; 2/;

observe that �f1; 2; 3g D .1; 3/.1; 2/f1; 2; 3g D .1; 3/f2; 1; 3g D f2; 3; 1g, that is, �

first switches 1 and 2 (producing f2; 1; 3g) and then switches 1 and 3 to get f2; 3; 1g.

This use of sgn to denote the

sign for an even or odd

permutation should not be

confused with the signum

function of Section P.5, neither

should � , the permutation, be

confused with the number � .

Of course, such a representation is not unique; it is also true that � D .1; 3/.2; 3/.

However, if a permutation � can be expressed as a product of an even (or odd) number

of reversals, then all ways of expressing it as a product of reversals will involve an even

(or odd) number, and we say that the permutation itself is even (or odd). Accordingly,

we define the sign of the permutation � as

sgn .�/ D

�

1 if � is an even permutation

�1 if � is an odd permutation.

It follows that the antisymmetry property of a k-form � can be generalized as follows:

if � is any permutation of the numbers f1; 2; : : : ; kg, then
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�.v�.1/; v�.2/ : : : ; v�.k// D sgn .�/ �.v1; v2; : : : ; vk/:

We can now extend the definition of the wedge product to allow for k factors. Let

dxi be the 1-form introduced earlier in this section: dxi.x/ D xi for all x 2 R
n. We

define the elementary k-forms

.dxi1 ^ dxi2 ^ � � � ^ dxik /.v1; v2; : : : ; vk/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dxi1.v1/ dxi1.v2/ � � � dxi1.vk/

dxi2.v1/ dxi2.v2/ � � � dxi2.vk/

:
:
:

:
:
:

: : :
:
:
:

dxik .v1/ dxik .v2/ � � � dxik .vk/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1i1 v2i1 � � � vki1

v1i2 v2i2 � � � vki2
:
:
:

:
:
:

: : :
:
:
:

v1ik v2ik � � � vkik

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Remark While the above formula makes sense for all positive integers k, the result-

ing determinant will be zero if k > n. Since there are only n distinct 1-forms dxi , if

k > n at least two of the subscripts i1; i2; : : : ; ik will be equal and so the determinant

will have at least two identical rows. The same applies for k � n; if any two of the

factors in dxi1 ^ dxi2 ^ � � � ^ dxik are identical, then the wedge product is the zero

k-form.

Remark For k � n, let the numbers i1; i2; : : : ; ik satisfy 1 � i1 < i2 < � � � < ik �

n. If � is a permutation of those numbers, then

dx�.i1/ ^ dx�.i2/ ^ � � � ^ dx�.ik/ D sgn .�/ dxi1 ^ dxi2 ^ � � � ^ dxik :

As observed earlier for 2-forms, the collection of all wedge products of the form dxi1^

dxi2 ^ � � � ^ dxik , where i1; i2; : : : ; ik satisfy 1 � i1 < i2 < � � � < ik � n, constitute

a basis for ƒk.R
n
/, which therefore has dimension

�

n

k

�

D

nŠ

.n � k/Š kŠ
. In particular,

ƒn.R
n
/ has dimension 1; it is spanned by the single form dx1 ^ dx2 ^ � � � ^ dxn.

The wedge product of an arbitrary k-form � and `-form  can now be calculated

using the bases of ƒk.R
n
/ and ƒ`.R

n
/. If

� D

X

1�i1<i2���<ik�n

ai1i2���ikdxi1 ^ dxi2 ^ � � � ^ dxik

 D

X

1�j1<j2���<j`�n

bj1j2���j`
dxj1

^ dxj2
^ � � � ^ dxj`

;

then

�^ D

X

1�i1<���<ik �n

1�j1<���<j`�n

ai1i2 ���ik bj1j2 ���j`
dxi1^dxi2^� � �^dxik^dxj1

^dxj2
^� � �^dxj`

:

The result is a .k C `/-form. Any terms on the right side for which one of the dxi ’s is

identical to one of the dxj ’s will be zero. This will happen to all terms if k C ` > n.

Assuming that �, �1, and �2 are k-forms, that  is an `-form, that � is anm-form,

and that a and b are real numbers, then the wedge product has the following properties:

(a) It is linear in each of its arguments:

.a�1 C b�2/ ^  D a �1 ^  C b �2 ^  :
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(b) It is associative,

.� ^  / ^ � D � ^ . ^ �/;

so this triple product can be written unambiguously as � ^  ^ �.

(c) It is skew-commutative,

� ^  D .�1/
k`
 ^ �:

E X A M P L E 4
We summarize the description of all k-forms on R

3 as follows:

(a) 1-forms ƒ1.R
3
/ has dimension 3. It consists of forms of the type

� D a1 dx1 C a2 dx2 C a3 dx3; where each ai 2 R.

(b) 2-forms ƒ2.R
3
/ also has dimension 3. It consists of forms of the type

 D b1 dx2 ^ dx3C b2 dx3 ^ dx1C b3 dx1 ^ dx2 where each bi 2 R.

(c) 3-forms ƒ3.R
3
/ has dimension 1. It consists of forms of the type

� D c dx1 ^ dx2 ^ dx3; where c 2 R.

(d) higher-order forms If k � 4, then ƒk.R
3
/ D f0g, the zero k-form that maps a

k-tuple of vectors in R
3 to the number 0.

E X A M P L E 5
Calculate and simplify � ^  , where

� D a1 dx1 C a2 dx2 C a3 dx3 2 ƒ1.R
3
/;

 D b1 dx2 ^ dx3 C b2 dx3 ^ dx1 C b3 dx1 ^ dx2 2 ƒ2.R
3
/:

Interpret the result in terms of the vectors a D a1iCa2jCa3k and b D b1iCb2jCb3k

in R
3.

Solution By linearity and skew-symmetry, we have

� ^  D a1b1 dx1 ^ dx2 ^ dx3 C a1b2 dx1 ^ dx3 ^ dx1 C a1b3 dx1 ^ dx1 ^ dx2

C a2b1 dx2 ^ dx2 ^ dx3 C a2b2 dx2 ^ dx3 ^ dx1 C a2b3 dx2 ^ dx1 ^ dx2

C a3b1 dx3 ^ dx2 ^ dx3 C a3b2 dx3 ^ dx3 ^ dx1 C a3b3 dx3 ^ dx1 ^ dx2

D .a1b1 C a2b2 C a3b3/ dx1 ^ dx2 ^ dx3

D .a � b/ dx1 ^ dx2 ^ dx3:

As a map from ƒ1.R
3
/ �ƒ2.R

3
/ into ƒ3.R

3
/, the wedge product corresponds to the

dot product in R
3.

Forms on a Vector Space
Everything said above about forms on R

n can be applied to any n-dimensional real

vector space provided we redefine the elementary forms so that dxi.v/ selects the

i th component of the vector v 2 V with respect to some particular basis of V: For

our purposes, we will be mainly interested in the case where V is an m-dimensional

subspace of R
n, where m < n. In this case, it is possible to restrict the elementary

forms dxi1 ^ � � � ^ dxik in ƒk.R
n
/ so that they apply only to vectors in V: In this

restriction, there will generally be fewer independent forms, because ƒk.V / will have

smaller dimension
�

m
k

�

than ƒk.R
n
/.
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For example, the set of points .x; y; z/ in R
3 satisfying x�yCz D 0 constitutes a

two-dimensional subspace V of R
3. Clearly, v1 D .a; b; b�a/ and v2 D .p; q; q�p/

belong to V: However, observe that the restrictions to V of three elementary 2-forms in

ƒ2.R
3
/ evaluate at these vectors to give dx^dy.v1; v2/ D aq�bp, dx^dz.v1; v2/ D

aq� bp, dy ^dz.v1; v2/ D aq� bp. There is only one independent elementary form

in ƒ2.V /, which has dimension
�

2
2

�

D 1.

E X E R C I S E S 17.1

In Exercises 1–4, calculate and simplify the wedge product of the

given forms � and  . Write the dxi ’s in the answers in increasing

subscript order.

1. � D a1 dx2 ^ dx3 C a2 dx3 ^ dx4 C a3 dx4 ^ dx1

 D b1 dx1 ^ dx2 C b2 dx3 ^ dx4

2. � D dx2 ^ dx3 ^ dx4

 D dx1 C dx3 C dx4

3. � D dx1 C 2 dx2 C 3 dx3 C 4 dx4 C 5 dx5

 D dx1 ^ dx2 ^ dx3 ^ dx4 C 2 dx2 ^ dx3 ^ dx4 ^ dx5

4. � D a1 dx1 C a2 dx2 C a3dx3 C a4 dx4

 D b1 dx2 ^ dx3 C b2 dx3 ^ dx4 C b3 dx4 ^ dx1 C b4 dx1 ^ dx2

5. For what values of k is the permutation � that maps

f1; 2; : : : ; kg to f2; 3; : : : ; k; 1g even? odd? Express � as a

product of reversals.

6.A Verify that if � is a k-form and  is an `-form, then

� ^  D .�1/k` ^ �.

7. Let u D .1; 1; 0; 0/, v D .1; 0; 1; 0/, and w D .1; 0; 0; 1/ in

R
4
. Evaluate (a) dx1 ^ dx2.u; v/

(b) dx1 ^ dx2 ^ dx3.u; v;w/

(c) dx3 ^ dx4 ^ dx1.u; v;w/

(d) dx3 ^ dx2 ^ dx4.u; v;w/

8. Let ei .1 � i � 4/ be the standard basis vectors for R
4
. Let

v1 D e1 C 2e2 C 3e3 � 4e4

v3 D 3e1 � 4e2

v2 D 2e1 C 3e2 � 4e3

v4 D 4e1

Evaluate �.v1; : : : ; v4/ if � D dx1 ^ dx2 ^ dx3 ^ dx4.

17.2 Differential Forms and the Exterior Derivative

Just as we extended the notion of vector to define vector fields as vector-valued func-

tions of position in a domain in R
2 or R

3, so we can also extend the notion of k-form to

define k-form fields as k-form-valued functions of position in a domain in R
n. These

fields will be called differential forms.

D E F I N I T I O N

5

For k � 1, a differential k-form on a domain D (an open set) in R
n is a

smooth function ˆ from D into ƒk.R
n
/. Thus, for each x 2 D, ˆ.x/ is a

k-form on R
n that can be expressed as a linear combination of the the

�

n
k

�

standard basis vectors of ƒk.R
n
/. The coefficients of this linear combination

(i.e., the coefficients of ˆ.x/) will be smooth real-valued functions of x:

ˆ.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik :

A differential 0-form on D is a smooth real-valued function f on D.

For simplicity, we take “smooth” to mean that the coefficients have continu-

ous partial derivatives of all orders (or at least all orders we need to calculate

in a given situation).

For k � 0, we denote the set of all differential k-forms on D by Fk.D/.

E X A M P L E 1
A differential 1-form on D � R

n can be expressed as

ˆ.x/ D

n
X

iD1

ai .x1; x2; : : : ; xn/ dxi ,
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(b) It is associative,

.� ^  / ^ � D � ^ . ^ �/;

so this triple product can be written unambiguously as � ^  ^ �.

(c) It is skew-commutative,

� ^  D .�1/
k`
 ^ �:

E X A M P L E 4
We summarize the description of all k-forms on R

3 as follows:

(a) 1-forms ƒ1.R
3
/ has dimension 3. It consists of forms of the type

� D a1 dx1 C a2 dx2 C a3 dx3; where each ai 2 R.

(b) 2-forms ƒ2.R
3
/ also has dimension 3. It consists of forms of the type

 D b1 dx2 ^ dx3C b2 dx3 ^ dx1C b3 dx1 ^ dx2 where each bi 2 R.

(c) 3-forms ƒ3.R
3
/ has dimension 1. It consists of forms of the type

� D c dx1 ^ dx2 ^ dx3; where c 2 R.

(d) higher-order forms If k � 4, then ƒk.R
3
/ D f0g, the zero k-form that maps a

k-tuple of vectors in R
3 to the number 0.

E X A M P L E 5
Calculate and simplify � ^  , where

� D a1 dx1 C a2 dx2 C a3 dx3 2 ƒ1.R
3
/;

 D b1 dx2 ^ dx3 C b2 dx3 ^ dx1 C b3 dx1 ^ dx2 2 ƒ2.R
3
/:

Interpret the result in terms of the vectors a D a1iCa2jCa3k and b D b1iCb2jCb3k

in R
3.

Solution By linearity and skew-symmetry, we have

� ^  D a1b1 dx1 ^ dx2 ^ dx3 C a1b2 dx1 ^ dx3 ^ dx1 C a1b3 dx1 ^ dx1 ^ dx2

C a2b1 dx2 ^ dx2 ^ dx3 C a2b2 dx2 ^ dx3 ^ dx1 C a2b3 dx2 ^ dx1 ^ dx2

C a3b1 dx3 ^ dx2 ^ dx3 C a3b2 dx3 ^ dx3 ^ dx1 C a3b3 dx3 ^ dx1 ^ dx2

D .a1b1 C a2b2 C a3b3/ dx1 ^ dx2 ^ dx3

D .a � b/ dx1 ^ dx2 ^ dx3:

As a map from ƒ1.R
3
/ �ƒ2.R

3
/ into ƒ3.R

3
/, the wedge product corresponds to the

dot product in R
3.

Forms on a Vector Space
Everything said above about forms on R

n can be applied to any n-dimensional real

vector space provided we redefine the elementary forms so that dxi.v/ selects the

i th component of the vector v 2 V with respect to some particular basis of V: For

our purposes, we will be mainly interested in the case where V is an m-dimensional

subspace of R
n, where m < n. In this case, it is possible to restrict the elementary

forms dxi1 ^ � � � ^ dxik in ƒk.R
n
/ so that they apply only to vectors in V: In this

restriction, there will generally be fewer independent forms, because ƒk.V / will have

smaller dimension
�

m
k

�

than ƒk.R
n
/.
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For example, the set of points .x; y; z/ in R
3 satisfying x�yCz D 0 constitutes a

two-dimensional subspace V of R
3. Clearly, v1 D .a; b; b�a/ and v2 D .p; q; q�p/

belong to V: However, observe that the restrictions to V of three elementary 2-forms in

ƒ2.R
3
/ evaluate at these vectors to give dx^dy.v1; v2/ D aq�bp, dx^dz.v1; v2/ D

aq� bp, dy ^dz.v1; v2/ D aq� bp. There is only one independent elementary form

in ƒ2.V /, which has dimension
�

2
2

�

D 1.

E X E R C I S E S 17.1

In Exercises 1–4, calculate and simplify the wedge product of the

given forms � and  . Write the dxi ’s in the answers in increasing

subscript order.

1. � D a1 dx2 ^ dx3 C a2 dx3 ^ dx4 C a3 dx4 ^ dx1

 D b1 dx1 ^ dx2 C b2 dx3 ^ dx4

2. � D dx2 ^ dx3 ^ dx4

 D dx1 C dx3 C dx4

3. � D dx1 C 2 dx2 C 3 dx3 C 4 dx4 C 5 dx5

 D dx1 ^ dx2 ^ dx3 ^ dx4 C 2 dx2 ^ dx3 ^ dx4 ^ dx5

4. � D a1 dx1 C a2 dx2 C a3dx3 C a4 dx4

 D b1 dx2 ^ dx3 C b2 dx3 ^ dx4 C b3 dx4 ^ dx1 C b4 dx1 ^ dx2

5. For what values of k is the permutation � that maps

f1; 2; : : : ; kg to f2; 3; : : : ; k; 1g even? odd? Express � as a

product of reversals.

6.A Verify that if � is a k-form and  is an `-form, then

� ^  D .�1/k` ^ �.

7. Let u D .1; 1; 0; 0/, v D .1; 0; 1; 0/, and w D .1; 0; 0; 1/ in

R
4
. Evaluate (a) dx1 ^ dx2.u; v/

(b) dx1 ^ dx2 ^ dx3.u; v;w/

(c) dx3 ^ dx4 ^ dx1.u; v;w/

(d) dx3 ^ dx2 ^ dx4.u; v;w/

8. Let ei .1 � i � 4/ be the standard basis vectors for R
4
. Let

v1 D e1 C 2e2 C 3e3 � 4e4

v3 D 3e1 � 4e2

v2 D 2e1 C 3e2 � 4e3

v4 D 4e1

Evaluate �.v1; : : : ; v4/ if � D dx1 ^ dx2 ^ dx3 ^ dx4.

17.2 Differential Forms and the Exterior Derivative

Just as we extended the notion of vector to define vector fields as vector-valued func-

tions of position in a domain in R
2 or R

3, so we can also extend the notion of k-form to

define k-form fields as k-form-valued functions of position in a domain in R
n. These

fields will be called differential forms.

D E F I N I T I O N

5

For k � 1, a differential k-form on a domain D (an open set) in R
n is a

smooth function ˆ from D into ƒk.R
n
/. Thus, for each x 2 D, ˆ.x/ is a

k-form on R
n that can be expressed as a linear combination of the the

�

n
k

�

standard basis vectors of ƒk.R
n
/. The coefficients of this linear combination

(i.e., the coefficients of ˆ.x/) will be smooth real-valued functions of x:

ˆ.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik :

A differential 0-form on D is a smooth real-valued function f on D.

For simplicity, we take “smooth” to mean that the coefficients have continu-

ous partial derivatives of all orders (or at least all orders we need to calculate

in a given situation).

For k � 0, we denote the set of all differential k-forms on D by Fk.D/.

E X A M P L E 1
A differential 1-form on D � R

n can be expressed as

ˆ.x/ D

n
X

iD1

ai .x1; x2; : : : ; xn/ dxi ,
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where the coefficients ai are functions of x 2 D. Of course, for any x 2 D, ˆ.x/ is a

1-form on R
n, whose value at v 2 R

n is given by

ˆ.x/.v/ D

n
X

iD1

ai .x/ dxi .v/ D

n
X

iD1

ai .x/ vi D a.x/ � v;

where a.x/ is the n-vector field with components ai .x/. More generally, if ‰ is the

differential k-form on D given by

‰ D ‰.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik ;

where the coefficients ai1i2 ���ik are functions of x 2 D, then the value of ‰.x/ at the

sequence of vectors fv1; v2; : : : ; vkg in R
n is

‰.x/.v1; : : : ; vk/ D

X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ .dxi1 ^ dxi2 ^ � � � ^ dxik /.v1; : : : ; vk/

D

X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1i1 v2i1 � � � vki1

v1i2 v2i2 � � � vki2
:
:
:

:
:
:

: : :
:
:
:

v1ik v2ik � � � vkik

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The wedge product of k-forms extends in the obvious way (pointwise on D) to

differential k-forms with the added requirement that if f is a differential 0-form onD,

then f ^ˆ D fˆ for any differential k-formˆ; the coefficients of f ^ˆ are just the

coefficients ofˆmultiplied by f: Observe that for any two differential formsˆ and ‰,

and any differential 0-form f; we have

.f ˆ/ ^‰ D f .ˆ ^‰/ D ˆ ^ .f ‰/:

The Exterior Derivative
The following definition is central to the study of differential forms; in a sense it jus-

tifies our use of the symbols dxi in the bases of the spaces of k-forms, and the use of

the term “differential k-form” to describe a form-field.

D E F I N I T I O N

6

The exterior derivative of a differential 0-form (that is, a function) f on

domain D � R
n is the differential 1-form df given by

df .x/ D

n
X

iD1

@f

@xi

dxi :

In ordinary calculus “d” denotes

the differential of a function (i.e.,

of a 0-form). Here we have

extended “d” to apply to any

differential form to give a new

form of one higher order. Do not

confuse “d” with “D,” which

can represent a derivative in

ordinary calculus.

If ˆ is an arbitrary differential k-form on D:

ˆ.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik ;

then its exterior derivative, dˆ, is the differential .k C 1/-form given by

dˆ.x/ D
X

1�i1<i2<���<ik�n

�

dai1i2 ���ik .x/
�

^ dxi1 ^ dxi2 ^ � � � ^ dxik :

The exterior differential operator d maps Fk.D/ into FkC1.D/.
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It is worth stressing that the exterior derivative of a differential 0-form f coincides

with the ordinary differential of f: The coefficients of df are just those of the gradient

grad .f /. If v 2 R
n, then

df .x/.v/ D

n
X

iD1

@f

@xi

dxi.v/ D

n
X

iD1

@f

@xi

vi D grad .f / � v;

illustrating again that a 1-form on R
n is just a dot product with a fixed vector. But it is

more remarkable that it yields a clear meaning to the differential of a differential. This

is something completely new.

T H E O R E M

2

Properties of the exterior derivative

If ˆ and ‰ are differential k-forms and � is a differential ` form on domain D � R
n,

and if a and b are real numbers, then

(a) d.aˆC b‰/ D a dˆC b d‰; that is, the operator d is linear from Fk.D/ into

FkC1.D/.

(b) d.ˆ ^�/ D .dˆ/ ^�C .�1/k ˆ ^ .d�/; (a Product Rule).

(c) d2ˆ D d.dˆ/ D f0g, the zero differential form. That is, d2
D 0.

d2f D ddf makes no sense in

terms of classical differentials. It

is only in the context of wedge

products and differential forms

that d2 makes sense. d2 maps

every differential k-form to the

zero .k C 2/-form.

PROOF The proofs of parts (a) and (b) are elementary and left as exercises for the

reader. For (c) we proceed as follows. If ˆ is a differential k-form, then ˆ.x/ is a sum

of terms of the form a.x/ dxi1 ^ dxi2 ^ : : :^ dxik . By part (a), it is sufficient to prove

that d2ˆ is zero for any one such term. We have

d
2
a.x/ dxi1 ^ dxi2 ^ : : : ^ dxik D d

0

@

n
X

j D1

@a

@xj

dxj

1

A ^ dxi1 ^ dxi2 ^ : : : ^ dxik

D

0

@

n
X

`D1

n
X

j D1

@2a

@x`@xj

dx` ^ dxj

1

A ^ dxi1 ^ dxi2 ^ : : : ^ dxik :

The expression in the large parentheses is zero because the smoothness assumption on

partial derivatives of a implies that

@2a

@x`@xj

D

@2a

@xj @x`

and dx` ^ dxj D �dxj ^ dx`:

Remark The power of wedge products and exterior derivatives begins to become

evident in the above proof, which holds only if the d -operator has been applied twice

to a differential form. It is clear that the exterior derivative of a general differential

form is not necessarily zero. We will, of course, have dˆ D 0 if ˆ is a differential

n-form on R
n. (Why?)

E X A M P L E 2
Letˆ D F1 dxCF2 dyCF3 dz belong to F1.R

3
/. Calculate and

simplify dˆ. What does the result correspond to if we identify

ˆ with the vector field F D F1i C F2j C F3k and the differential 2-form dˆ with

the vector field having components that are the coefficients of dy ^ dz, dz ^ dx, and

dx ^ dy?

9780134154367_Calculus   992 05/12/16   5:12 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 17 – page 972 October 19, 2016

972 CHAPTER 17 Differential Forms and Exterior Calculus

where the coefficients ai are functions of x 2 D. Of course, for any x 2 D, ˆ.x/ is a

1-form on R
n, whose value at v 2 R

n is given by

ˆ.x/.v/ D

n
X

iD1

ai .x/ dxi .v/ D

n
X

iD1

ai .x/ vi D a.x/ � v;

where a.x/ is the n-vector field with components ai .x/. More generally, if ‰ is the

differential k-form on D given by

‰ D ‰.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik ;

where the coefficients ai1i2 ���ik are functions of x 2 D, then the value of ‰.x/ at the

sequence of vectors fv1; v2; : : : ; vkg in R
n is

‰.x/.v1; : : : ; vk/ D

X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ .dxi1 ^ dxi2 ^ � � � ^ dxik /.v1; : : : ; vk/

D

X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1i1 v2i1 � � � vki1

v1i2 v2i2 � � � vki2
:
:
:

:
:
:

: : :
:
:
:

v1ik v2ik � � � vkik

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

The wedge product of k-forms extends in the obvious way (pointwise on D) to

differential k-forms with the added requirement that if f is a differential 0-form onD,

then f ^ˆ D fˆ for any differential k-formˆ; the coefficients of f ^ˆ are just the

coefficients ofˆmultiplied by f: Observe that for any two differential formsˆ and ‰,

and any differential 0-form f; we have

.f ˆ/ ^‰ D f .ˆ ^‰/ D ˆ ^ .f ‰/:

The Exterior Derivative
The following definition is central to the study of differential forms; in a sense it jus-

tifies our use of the symbols dxi in the bases of the spaces of k-forms, and the use of

the term “differential k-form” to describe a form-field.

D E F I N I T I O N

6

The exterior derivative of a differential 0-form (that is, a function) f on

domain D � R
n is the differential 1-form df given by

df .x/ D

n
X

iD1

@f

@xi

dxi :

In ordinary calculus “d” denotes

the differential of a function (i.e.,

of a 0-form). Here we have

extended “d” to apply to any

differential form to give a new

form of one higher order. Do not

confuse “d” with “D,” which

can represent a derivative in

ordinary calculus.

If ˆ is an arbitrary differential k-form on D:

ˆ.x/ D
X

1�i1<i2<���<ik�n

ai1i2 ���ik .x/ dxi1 ^ dxi2 ^ � � � ^ dxik ;

then its exterior derivative, dˆ, is the differential .k C 1/-form given by

dˆ.x/ D
X

1�i1<i2<���<ik�n

�

dai1i2 ���ik .x/
�

^ dxi1 ^ dxi2 ^ � � � ^ dxik :

The exterior differential operator d maps Fk.D/ into FkC1.D/.
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It is worth stressing that the exterior derivative of a differential 0-form f coincides

with the ordinary differential of f: The coefficients of df are just those of the gradient

grad .f /. If v 2 R
n, then

df .x/.v/ D

n
X

iD1

@f

@xi

dxi.v/ D

n
X

iD1

@f

@xi

vi D grad .f / � v;

illustrating again that a 1-form on R
n is just a dot product with a fixed vector. But it is

more remarkable that it yields a clear meaning to the differential of a differential. This

is something completely new.

T H E O R E M

2

Properties of the exterior derivative

If ˆ and ‰ are differential k-forms and � is a differential ` form on domain D � R
n,

and if a and b are real numbers, then

(a) d.aˆC b‰/ D a dˆC b d‰; that is, the operator d is linear from Fk.D/ into

FkC1.D/.

(b) d.ˆ ^�/ D .dˆ/ ^�C .�1/k ˆ ^ .d�/; (a Product Rule).

(c) d2ˆ D d.dˆ/ D f0g, the zero differential form. That is, d2
D 0.

d2f D ddf makes no sense in

terms of classical differentials. It

is only in the context of wedge

products and differential forms

that d2 makes sense. d2 maps

every differential k-form to the

zero .k C 2/-form.

PROOF The proofs of parts (a) and (b) are elementary and left as exercises for the

reader. For (c) we proceed as follows. If ˆ is a differential k-form, then ˆ.x/ is a sum

of terms of the form a.x/ dxi1 ^ dxi2 ^ : : :^ dxik . By part (a), it is sufficient to prove

that d2ˆ is zero for any one such term. We have

d
2
a.x/ dxi1 ^ dxi2 ^ : : : ^ dxik D d

0

@

n
X

j D1

@a

@xj

dxj

1

A ^ dxi1 ^ dxi2 ^ : : : ^ dxik

D

0

@

n
X

`D1

n
X

j D1

@2a

@x`@xj

dx` ^ dxj

1

A ^ dxi1 ^ dxi2 ^ : : : ^ dxik :

The expression in the large parentheses is zero because the smoothness assumption on

partial derivatives of a implies that

@2a

@x`@xj

D

@2a

@xj @x`

and dx` ^ dxj D �dxj ^ dx`:

Remark The power of wedge products and exterior derivatives begins to become

evident in the above proof, which holds only if the d -operator has been applied twice

to a differential form. It is clear that the exterior derivative of a general differential

form is not necessarily zero. We will, of course, have dˆ D 0 if ˆ is a differential

n-form on R
n. (Why?)

E X A M P L E 2
Letˆ D F1 dxCF2 dyCF3 dz belong to F1.R

3
/. Calculate and

simplify dˆ. What does the result correspond to if we identify

ˆ with the vector field F D F1i C F2j C F3k and the differential 2-form dˆ with

the vector field having components that are the coefficients of dy ^ dz, dz ^ dx, and

dx ^ dy?
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Solution Here we are using .x; y; z/ instead of .x1; x2; x3/ as coordinates in R
3. We

have

dˆ D dF1 ^ dx C dF2 ^ dy C dF3 ^ dz

D

@F1

@x
dx ^ dx C

@F1

@y
dy ^ dx C

@F1

@z
dz ^ dx

C

@F2

@x
dx ^ dy C

@F2

@y
dy ^ dy C

@F2

@z
dz ^ dy

C

@F3

@x
dx ^ dz C

@F3

@y
dy ^ dz C

@F3

@z
dz ^ dz

D

�

@F3

@y
�

@F2

@z

�

dy ^ dz C

�

@F1

@z
�

@F3

@x

�

dz ^ dx

C

�

@F2

@x
�

@F1

@y

�

dx ^ dy:

Thus, d maps F1.R
3
/ into F2.R

3
/ by taking the differential 1-form F1dx C F2dy C

F3dz into the differential 2-form whose coefficients are the components of the vector

field curl F, where F D F1iC F2jC F3k.

E X A M P L E 3
Let‰ D F1 dy^dzCF2 dz^dxCF3 dx^dy belong to F2.R

3
/.

Calculate and simplify d‰. What is the coefficient of dx^dy^dz

in terms of the vector field F D F1iC F2jC F3k?

Solution We have

d‰ D dF1 ^ dy ^ dz C dF2 ^ dz ^ dx C dF3 ^ dx ^ dy

D

@F1

@x
dx ^ dy ^ dz C

@F1

@y
dy ^ dy ^ dz C

@F1

@z
dz ^ dy ^ dz

C

@F2

@x
dx ^ dz ^ dx C

@F2

@y
dy ^ dz ^ dx C

@F2

@z
dz ^ dz ^ dx

C

@F3

@x
dx ^ dx ^ dy C

@F3

@y
dy ^ dx ^ dy C

@F3

@z
dz ^ dx ^ dy

D

�

@F1

@x
C

@F2

@y
C

@F3

@z

�

dx ^ dy ^ dz

D .div F/ dx ^ dy ^ dz:

Here d maps F2.R
3
/ into F3.R

3
/ by taking the differential 2-form with coefficients

F1, F2, and F3 to the 3-form with coefficient the divergence of the vector field F1iC

F2jC F3k.

E X A M P L E 4
In Section 12.6 we encountered the Gibbs form of the equation of

state for a thermodynamical system. For a system involving only

one type of molecule it is

dE D T dS � P dV C �dN;

where E is energy;
@E

@S
is temperature, T ; �

@E

@V
is pressure, P ; and

@E

@N
is the chem-

ical potential, �. Here V is volume, S is entropy, and N is the number of molecules.

Take the exterior derivative of this 1-form to find the Maxwell relation
@P

@S
D �

@T

@V
of

Example 4 in Section 12.8.
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Solution Here we are using .S; V;N / instead of .x1; x2; x3/ as independent vari-

ables. Following Example 2,

0 D d
2
E D dT ^ dS � dP ^ dV C d� ^ dN

D

@T

@S
dS ^ dS C

@T

@V
dV ^ dS C

@T

@N
dN ^ dS

�

@P

@S
dS ^ dV �

@P

@V
dV ^ dV �

@P

@N
dN ^ dV

C

@�

@S
dS ^ dN C

@�

@V
dV ^ dN C

@�

@N
dN ^ dN

D

�

@�

@V
C

@P

@N

�

dV ^ dN C

�

@T

@N
�

@�

@S

�

dN ^ dS

�

�

@P

@S
C

@T

@V

�

dS ^ dV:

Since the wedge products in the final line above are linearly independent, we conclude

that

@P

@S
D �

@T

@V
I

@T

@N
D

@�

@S
I

@�

@V
D �

@P

@N
:

The first of these is the Maxwell relation from Example 4 of Section 12.8. The other

two are additional relations not previously mentioned because Maxwell relations are

traditionally used for fixed N; but they are no less valid.

1-Forms and Legendre Transformations
As we saw in Chapter 12, thermodynamic variables come in conjugate pairs. For

S , V; and N in the energy 1-form in Example 4, T; �P; and � are the respective

conjugate variables. A conjugate variable is defined here as the function in front of

the differential of that variable that ensures the product has a positive sign. In Section

12.6 we found that Legendre transformations, such as F D E � TS , led to 1-forms in

a new quantity, which was the exterior derivative of a 0-form in a new set of variables.

Clearly,

dF D dE � T dS � S dT D �S dT � P dV C �dN;

so that F is a function of T; V; and N; instead of S , V; and N: The conjugate variables

are now �S , �P; and �. Note that the Legendre transformation introduces a sign

change for the new conjugate variable. See Section 12.6 for details.

Once we realize that, we can use Legendre transformations of E to construct a dif-

ferential 0-form that depends on any three of the six variables S , V , N , T , P , and �

that we may choose, provided the three chosen variables do not include a variable and

its conjugate (and we account for the sign change due to Legendre transformations).

It is easy to generate any of the many Maxwell relations using the properties of the

wedge product and the exterior derivative. Note that it is only necessary to know that

the differential 0-form exists and how many variables have been swapped between in-

dependent variables and conjugate variables, not what the new function is specifically,

because d2 will eliminate it. d2
D 0 helps explain why thermodynamic potentials,

as these Legendre transformations of energy are known, are better understood for their

properties under differential operations than for their actual values.

Deducing more Maxwell relations employing wedge products and exterior deriva-

tives is a topic for the exercises.
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Solution Here we are using .x; y; z/ instead of .x1; x2; x3/ as coordinates in R
3. We

have

dˆ D dF1 ^ dx C dF2 ^ dy C dF3 ^ dz

D

@F1

@x
dx ^ dx C

@F1

@y
dy ^ dx C

@F1

@z
dz ^ dx

C

@F2

@x
dx ^ dy C

@F2

@y
dy ^ dy C

@F2

@z
dz ^ dy

C

@F3

@x
dx ^ dz C

@F3

@y
dy ^ dz C

@F3

@z
dz ^ dz

D

�

@F3

@y
�

@F2

@z

�

dy ^ dz C

�

@F1

@z
�

@F3

@x

�

dz ^ dx

C

�

@F2

@x
�

@F1

@y

�

dx ^ dy:

Thus, d maps F1.R
3
/ into F2.R

3
/ by taking the differential 1-form F1dx C F2dy C

F3dz into the differential 2-form whose coefficients are the components of the vector

field curl F, where F D F1iC F2jC F3k.

E X A M P L E 3
Let‰ D F1 dy^dzCF2 dz^dxCF3 dx^dy belong to F2.R

3
/.

Calculate and simplify d‰. What is the coefficient of dx^dy^dz

in terms of the vector field F D F1iC F2jC F3k?

Solution We have

d‰ D dF1 ^ dy ^ dz C dF2 ^ dz ^ dx C dF3 ^ dx ^ dy

D

@F1

@x
dx ^ dy ^ dz C

@F1

@y
dy ^ dy ^ dz C

@F1

@z
dz ^ dy ^ dz

C

@F2

@x
dx ^ dz ^ dx C

@F2

@y
dy ^ dz ^ dx C

@F2

@z
dz ^ dz ^ dx

C

@F3

@x
dx ^ dx ^ dy C

@F3

@y
dy ^ dx ^ dy C

@F3

@z
dz ^ dx ^ dy

D

�

@F1

@x
C

@F2

@y
C

@F3

@z

�

dx ^ dy ^ dz

D .div F/ dx ^ dy ^ dz:

Here d maps F2.R
3
/ into F3.R

3
/ by taking the differential 2-form with coefficients

F1, F2, and F3 to the 3-form with coefficient the divergence of the vector field F1iC

F2jC F3k.

E X A M P L E 4
In Section 12.6 we encountered the Gibbs form of the equation of

state for a thermodynamical system. For a system involving only

one type of molecule it is

dE D T dS � P dV C �dN;

where E is energy;
@E

@S
is temperature, T ; �

@E

@V
is pressure, P ; and

@E

@N
is the chem-

ical potential, �. Here V is volume, S is entropy, and N is the number of molecules.

Take the exterior derivative of this 1-form to find the Maxwell relation
@P

@S
D �

@T

@V
of

Example 4 in Section 12.8.
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Solution Here we are using .S; V;N / instead of .x1; x2; x3/ as independent vari-

ables. Following Example 2,

0 D d
2
E D dT ^ dS � dP ^ dV C d� ^ dN

D

@T

@S
dS ^ dS C

@T

@V
dV ^ dS C

@T

@N
dN ^ dS

�

@P

@S
dS ^ dV �

@P

@V
dV ^ dV �

@P

@N
dN ^ dV

C

@�

@S
dS ^ dN C

@�

@V
dV ^ dN C

@�

@N
dN ^ dN

D

�

@�

@V
C

@P

@N

�

dV ^ dN C

�

@T

@N
�

@�

@S

�

dN ^ dS

�

�

@P

@S
C

@T

@V

�

dS ^ dV:

Since the wedge products in the final line above are linearly independent, we conclude

that

@P

@S
D �

@T

@V
I

@T

@N
D

@�

@S
I

@�

@V
D �

@P

@N
:

The first of these is the Maxwell relation from Example 4 of Section 12.8. The other

two are additional relations not previously mentioned because Maxwell relations are

traditionally used for fixed N; but they are no less valid.

1-Forms and Legendre Transformations
As we saw in Chapter 12, thermodynamic variables come in conjugate pairs. For

S , V; and N in the energy 1-form in Example 4, T; �P; and � are the respective

conjugate variables. A conjugate variable is defined here as the function in front of

the differential of that variable that ensures the product has a positive sign. In Section

12.6 we found that Legendre transformations, such as F D E � TS , led to 1-forms in

a new quantity, which was the exterior derivative of a 0-form in a new set of variables.

Clearly,

dF D dE � T dS � S dT D �S dT � P dV C �dN;

so that F is a function of T; V; and N; instead of S , V; and N: The conjugate variables

are now �S , �P; and �. Note that the Legendre transformation introduces a sign

change for the new conjugate variable. See Section 12.6 for details.

Once we realize that, we can use Legendre transformations of E to construct a dif-

ferential 0-form that depends on any three of the six variables S , V , N , T , P , and �

that we may choose, provided the three chosen variables do not include a variable and

its conjugate (and we account for the sign change due to Legendre transformations).

It is easy to generate any of the many Maxwell relations using the properties of the

wedge product and the exterior derivative. Note that it is only necessary to know that

the differential 0-form exists and how many variables have been swapped between in-

dependent variables and conjugate variables, not what the new function is specifically,

because d2 will eliminate it. d2
D 0 helps explain why thermodynamic potentials,

as these Legendre transformations of energy are known, are better understood for their

properties under differential operations than for their actual values.

Deducing more Maxwell relations employing wedge products and exterior deriva-

tives is a topic for the exercises.
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Maxwell’s Equations Revisited
James Clerk Maxwell is most famous for his four differential equations governing elec-

tromagnetism, which are known as Maxwell’s equations and are described in Section

16.6. These are not to be confused with the Maxwell relations of thermodynamics.

Maxwell’s equations are four partial differential equations in the magnetic field vector

B and the electric field vector E:

r �E D
�

�0

r �B D �0J C
1

c2

@E

@t

r � B D 0

r �E D �
@B

@t
;

where � and J are charge density and charge current density (i.e., current per unit area)

respectively, �0 and �0 are constants, and c D 1=
p

�0�0 is the speed of light.

E X A M P L E 5
Consider the two 2-forms constructed from the six components of

B and E within R
4 (known in physics as “space-time”) as follows:

F DBx dy ^ dz C By dz ^ dx C Bz dx ^ dy CEx dx ^ dt CEy dy ^ dt

CEz dz ^ dt

G D
Ex

c2
dy ^ dz C

Ey

c2
dz ^ dx C

Ez

c2
dx ^ dy � Bx dx ^ dt � By dy ^ dt

� Bz dz ^ dt

Show that the equation dF D 0 is equivalent to the last two Maxwell equations above.

The first two Maxwell equations are related to G in a somewhat more complicated

way. (See Exercise 17 for the details, and Exercise 18 for further implications of this

approach.)

Solution

dF Dd
�

Bx dy ^ dz C By dz ^ dx C Bz dx ^ dy C Ex dx ^ dt CEy dy ^ dt

CEz dz ^ dt
�

D

�

@Bx

@t
dt C

@Bx

@x
dx C

@Bx

@y
dy C

@Bx

@z
dz

�

^ dy ^ dz C : : :

There are six such terms in total. In each case only two terms in the brackets will sur-

vive when wedged with the associated 2-form because no wedge factors are repeated.

Grouping the surviving terms, we obtain only four distinct 3-forms in the expansion of

dF; namely,
�

@Bx

@x
C

@By

@y
C

@Bz

@z

�

dx ^ dy ^ dz C

�

@Bx

@t
C

@Ez

@y
�

@Ey

@z

�

dt ^ dy ^ dz

C

�

@By

@t
C

@Ex

@z
�

@Ez

@x

�

dt ^ dz ^ dx C

�

@Bz

@t
C

@Ey

@x
�

@Ex

@y

�

dt ^ dx ^ dy

The coefficients for the respective 3-forms vanish if the latter two of Maxwell’s equa-

tions hold. The first coefficient vanishes because r �B D 0 while the remaining three

represent the components of r �E C @B=@t . Thus, the latter two Maxwell equations

are equivalent to dF D 0. The remaining two Maxwell equations can be expressed in

the form dG D H , where H will be determined in Exercise 17.

Closed and Exact Forms
A differential k-form ˆ is said to be closed if dˆ D 0 (the zero .k C 1/-form).

Depending on the context, closed forms are analogous to irrotational or solenoidal

vector fields. Since d2
D 0, every exterior derivative is a closed form.
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A differential k-form ˆ is exact if ˆ D d‰ for some .k � 1/-form ‰. For k D 1,

exact forms are analogous to conservative vector fields.

Every exact differential form is closed. Depending on the domain of the form, the

converse of this statement may or may not be true. It is true for a smooth differential

k-form (where k � 1) defined on a domain in R
k that can be shrunk to a point. We will

not attempt to prove this here. A slightly weaker version is stated below for star-like

domains. (See the discussion following Theorems 4 and 5 in Section 16.2.)

T H E O R E M

3

Poincaré’s Lemma

Let ˆ be a smooth closed differential k-form defined on a star-like domain D in R
k .

Then ˆ is exact on D.

We will not attempt a full proof of this theorem either, but suggest a proof for the

special case k D 1 in Exercise 14 below.

E X E R C I S E S 17.2

In Exercises 1–4, calculate the exterior derivatives of the given

differential forms.

1. ˆ D x2 dx C y2 dz in R
3

2. f D x e2y sin.3z/ in R
3

3. ‰ D x1 dx2 ^ dx3 C x2 dx1 ^ dx4 C .x3 C x4/ dx1 ^ dx2

in R
4

4. ‚ D x1x2x3 dx1 ^ dx3 ^ dx5 C x3x4x5 dx2 ^ dx4 ^ dx5

5. Consider the differential 1-form:

ˆ D e
2y sin.3z/ dxC2x e2y sin.3z/ dyC3x e2y cos.3z/ dz.

Directly calculate dˆ. Why are you not surprised at the

result? (See Exercise 2.)

6. Repeat the previous exercise for the differential 3-form

ˆ D x1x3 dx1^dx2^dx3^dx5Cx4x5 dx2^dx3^dx4^dx5.

(See Exercise 4.)

7. Verify Theorem 2(a). 8. Verify Theorem 2(b).

9.A Generalize part (b) of Theorem 2 to a wedge product

ˆ ^‰ ^‚ of a differential k-form ˆ, `-form ‰, and m-form

‚.

10.A (A Leibniz Rule) Generalize the previous exercise to the

wedge product ˆ1 ^ˆ2 ^ � � � ^ˆm;where ˆi is a differential

ki -form for 1 � i � m.

11.A What vector differential identity (see Theorem 3 of Section

16.2) follows immediately from applying Theorem 2(c) and

Example 2 to the differential 0-form f on R
3
?

12.A What vector differential identity (see Theorem 3 of Section

16.2) follows immediately from applying Theorem 2(c) and

Example 3 to the differential 1-form F1dx C F2dy C F3dz

on R
3
?

Exercises 13–14 set up the proof of Poincaré’s Lemma for

differential 1-forms on star-like domains in R
k
:

13.A Let ˆ D
Pk

iD1 ai .x/ dxi be a differential 1-form in R
k
: If

dˆ D 0, the zero differential 2-form on R
k

, show that

@ai .x/

@xj

D

@aj .x/

@xi

for 1 � i; j � k:

14.A Let D be a domain in R
k

which is star-like with respect to a

point x0. (See the discussion following Theorems 4 and 5 in

Section 16.2.) If ˆ D
Pk

iD1 ai .x/ dxi is a differential 1-form

in D that satisfies dˆ D 0, show that ˆ D df for some

differential 0-form f: Hint: Specifically, show that the

function f defined for x 2 D by

f .x/ D

Z 1

0

k
X

iD1

xi ai

�

x0 C t .x � x0/

�

dt

satisfies df D ˆ.

15. The thermodynamic variables .S; V;N / and their respective

conjugates .T;�P;�/ were presented following Example 4.

Use the wedge product structure and the fact that Legendre

transformations (Section 12.6) ensure that an exact 1-form

exists for any three variables selected from either set,

excluding conjugate pairs, to determine how many equations

between partial derivatives (i.e., Maxwell relations) are

possible in the sense of Example 4.

16. Use exterior calculus and Legendre transformation consider-

ations to generate Maxwell relations corresponding to the

following wedge products:

(a) dT ^ dN (b) dS ^ d�

(c) dT ^ �dP (d) dT ^ dV

(e) � dP ^ dS

17. (a) Find the exterior derivative of G from Example 5.

(b) Find a 3-form, H; such that the equation dG D H implies

the first two Maxwell equations listed above Example 5.

Under what physical conditions is G a closed 2-form? What

does this imply about dF D 0?

18. (Conservation of charge) Take the exterior derivative of

dG D H to find a differential equation in charge density �

and charge current density J only, which expresses

conservation of charge. Use the fact that �0�0c
2
D 1:

19. According to Exercise 17 in Section 16.6, the vector potential

A and the scalar potential � satisfied E D �r� � @A
@t

and

B D r �A in the fully time-varying case. The components of

A and � may be combined to form a “four-vector” in

space-time known as an “electromagnetic four-potential”:

.Ax ; Ay ; Az ;��/. A 1-form is naturally created from the
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Maxwell’s Equations Revisited
James Clerk Maxwell is most famous for his four differential equations governing elec-

tromagnetism, which are known as Maxwell’s equations and are described in Section

16.6. These are not to be confused with the Maxwell relations of thermodynamics.

Maxwell’s equations are four partial differential equations in the magnetic field vector

B and the electric field vector E:

r �E D
�

�0

r �B D �0J C
1

c2

@E

@t

r � B D 0

r �E D �
@B

@t
;

where � and J are charge density and charge current density (i.e., current per unit area)

respectively, �0 and �0 are constants, and c D 1=
p

�0�0 is the speed of light.

E X A M P L E 5
Consider the two 2-forms constructed from the six components of

B and E within R
4 (known in physics as “space-time”) as follows:

F DBx dy ^ dz C By dz ^ dx C Bz dx ^ dy CEx dx ^ dt CEy dy ^ dt

CEz dz ^ dt

G D
Ex

c2
dy ^ dz C

Ey

c2
dz ^ dx C

Ez

c2
dx ^ dy � Bx dx ^ dt � By dy ^ dt

� Bz dz ^ dt

Show that the equation dF D 0 is equivalent to the last two Maxwell equations above.

The first two Maxwell equations are related to G in a somewhat more complicated

way. (See Exercise 17 for the details, and Exercise 18 for further implications of this

approach.)

Solution

dF Dd
�

Bx dy ^ dz C By dz ^ dx C Bz dx ^ dy C Ex dx ^ dt CEy dy ^ dt

CEz dz ^ dt
�

D

�

@Bx

@t
dt C

@Bx

@x
dx C

@Bx

@y
dy C

@Bx

@z
dz

�

^ dy ^ dz C : : :

There are six such terms in total. In each case only two terms in the brackets will sur-

vive when wedged with the associated 2-form because no wedge factors are repeated.

Grouping the surviving terms, we obtain only four distinct 3-forms in the expansion of

dF; namely,
�

@Bx

@x
C

@By

@y
C

@Bz

@z

�

dx ^ dy ^ dz C

�

@Bx

@t
C

@Ez

@y
�

@Ey

@z

�

dt ^ dy ^ dz

C

�

@By

@t
C

@Ex

@z
�

@Ez

@x

�

dt ^ dz ^ dx C

�

@Bz

@t
C

@Ey

@x
�

@Ex

@y

�

dt ^ dx ^ dy

The coefficients for the respective 3-forms vanish if the latter two of Maxwell’s equa-

tions hold. The first coefficient vanishes because r �B D 0 while the remaining three

represent the components of r �E C @B=@t . Thus, the latter two Maxwell equations

are equivalent to dF D 0. The remaining two Maxwell equations can be expressed in

the form dG D H , where H will be determined in Exercise 17.

Closed and Exact Forms
A differential k-form ˆ is said to be closed if dˆ D 0 (the zero .k C 1/-form).

Depending on the context, closed forms are analogous to irrotational or solenoidal

vector fields. Since d2
D 0, every exterior derivative is a closed form.
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A differential k-form ˆ is exact if ˆ D d‰ for some .k � 1/-form ‰. For k D 1,

exact forms are analogous to conservative vector fields.

Every exact differential form is closed. Depending on the domain of the form, the

converse of this statement may or may not be true. It is true for a smooth differential

k-form (where k � 1) defined on a domain in R
k that can be shrunk to a point. We will

not attempt to prove this here. A slightly weaker version is stated below for star-like

domains. (See the discussion following Theorems 4 and 5 in Section 16.2.)

T H E O R E M

3

Poincaré’s Lemma

Let ˆ be a smooth closed differential k-form defined on a star-like domain D in R
k .

Then ˆ is exact on D.

We will not attempt a full proof of this theorem either, but suggest a proof for the

special case k D 1 in Exercise 14 below.

E X E R C I S E S 17.2

In Exercises 1–4, calculate the exterior derivatives of the given

differential forms.

1. ˆ D x2 dx C y2 dz in R
3

2. f D x e2y sin.3z/ in R
3

3. ‰ D x1 dx2 ^ dx3 C x2 dx1 ^ dx4 C .x3 C x4/ dx1 ^ dx2

in R
4

4. ‚ D x1x2x3 dx1 ^ dx3 ^ dx5 C x3x4x5 dx2 ^ dx4 ^ dx5

5. Consider the differential 1-form:

ˆ D e
2y sin.3z/ dxC2x e2y sin.3z/ dyC3x e2y cos.3z/ dz.

Directly calculate dˆ. Why are you not surprised at the

result? (See Exercise 2.)

6. Repeat the previous exercise for the differential 3-form

ˆ D x1x3 dx1^dx2^dx3^dx5Cx4x5 dx2^dx3^dx4^dx5.

(See Exercise 4.)

7. Verify Theorem 2(a). 8. Verify Theorem 2(b).

9.A Generalize part (b) of Theorem 2 to a wedge product

ˆ ^‰ ^‚ of a differential k-form ˆ, `-form ‰, and m-form

‚.

10.A (A Leibniz Rule) Generalize the previous exercise to the

wedge product ˆ1 ^ˆ2 ^ � � � ^ˆm;where ˆi is a differential

ki -form for 1 � i � m.

11.A What vector differential identity (see Theorem 3 of Section

16.2) follows immediately from applying Theorem 2(c) and

Example 2 to the differential 0-form f on R
3
?

12.A What vector differential identity (see Theorem 3 of Section

16.2) follows immediately from applying Theorem 2(c) and

Example 3 to the differential 1-form F1dx C F2dy C F3dz

on R
3
?

Exercises 13–14 set up the proof of Poincaré’s Lemma for

differential 1-forms on star-like domains in R
k
:

13.A Let ˆ D
Pk

iD1 ai .x/ dxi be a differential 1-form in R
k
: If

dˆ D 0, the zero differential 2-form on R
k

, show that

@ai .x/

@xj

D

@aj .x/

@xi

for 1 � i; j � k:

14.A Let D be a domain in R
k

which is star-like with respect to a

point x0. (See the discussion following Theorems 4 and 5 in

Section 16.2.) If ˆ D
Pk

iD1 ai .x/ dxi is a differential 1-form

in D that satisfies dˆ D 0, show that ˆ D df for some

differential 0-form f: Hint: Specifically, show that the

function f defined for x 2 D by

f .x/ D

Z 1

0

k
X

iD1

xi ai

�

x0 C t .x � x0/

�

dt

satisfies df D ˆ.

15. The thermodynamic variables .S; V;N / and their respective

conjugates .T;�P;�/ were presented following Example 4.

Use the wedge product structure and the fact that Legendre

transformations (Section 12.6) ensure that an exact 1-form

exists for any three variables selected from either set,

excluding conjugate pairs, to determine how many equations

between partial derivatives (i.e., Maxwell relations) are

possible in the sense of Example 4.

16. Use exterior calculus and Legendre transformation consider-

ations to generate Maxwell relations corresponding to the

following wedge products:

(a) dT ^ dN (b) dS ^ d�

(c) dT ^ �dP (d) dT ^ dV

(e) � dP ^ dS

17. (a) Find the exterior derivative of G from Example 5.

(b) Find a 3-form, H; such that the equation dG D H implies

the first two Maxwell equations listed above Example 5.

Under what physical conditions is G a closed 2-form? What

does this imply about dF D 0?

18. (Conservation of charge) Take the exterior derivative of

dG D H to find a differential equation in charge density �

and charge current density J only, which expresses

conservation of charge. Use the fact that �0�0c
2
D 1:

19. According to Exercise 17 in Section 16.6, the vector potential

A and the scalar potential � satisfied E D �r� � @A
@t

and

B D r �A in the fully time-varying case. The components of

A and � may be combined to form a “four-vector” in

space-time known as an “electromagnetic four-potential”:

.Ax ; Ay ; Az ;��/. A 1-form is naturally created from the
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components of the four-potential, and the physical units in the

potential equation for E suggest the following configuration:

 D �� dt C Ax dx C Ay dy C Az dz:

Show that d D F and thus that dF D 0.

20. (The connection between F and G ) Instead of using

.x; y; z; t/ as coordinates in space-time, it is considered more

physically natural to use coordinates like .x; y; z; ct/ all four

of which have the same units (length). (Note: in theoretical

physics, it is sometimes convenient to choose physical units so

that c D 1 to avoid this issue.) Express the 2-forms F and G

using coordinate ct instead of t . Using the fact that the

elementary 2-forms from which F and G are constructed

form a basis in the six-dimensional vector space of 2-forms in

4 variables, show that the vectors F and G, having the same

components as the coefficients of F and G respectively,

satisfy F �G D 0. Thus, F and G are orthogonal, and in this

sense the first two of Maxwell’s equations listed above

Example 5 may be regarded as orthogonal to, and hence

independent of, the remaining two.

17.3 Integration on Manifolds

This section introduces the language of manifolds. It also introduces parametrizations

to link integrals of differential forms to specific iterated integrals. While the concepts

of vector calculus were adequate for extending the Fundamental Theorem of Calculus

to functions in R
2 and R

3, they do not lend themselves to higher-dimensional problems.

The natural setting for integration in R
n (which we will not encounter until Section

17.4) is the integral of a differential k-form ˆ over a k-dimensional manifold M:

This is a departure from notation

in classical integral calculus

because the “d” is hidden in ˆ.

Z

M
ˆ:

A brief discussion of manifolds in R
n and their tangent and normal spaces was given

in Section 13.4. We amplify this further here.

Smooth Manifolds
The graph of a function f from R

m into R
n is the set of all points .x; y/ 2 R

m
� R

n
D

R
mCn satisfying y D f.x/. The graph is smooth if all first-order partial derivatives of

all n components of f exist and are continuous. (See Section 12.6 for a brief discussion

of such functions.)

We need to introduce a general term like “manifold” because terms like “curve”

and “surface,” which worked in three or fewer dimensions, do not encompass all the

smooth objects in higher dimensions. Roughly speaking, a smooth manifold of dimen-

sion k in R
n (where k � n) is a subset M of R

n that is locally the graph of a smooth

.n � k/-vector-valued function of k variables. Let us make this more precise.

D E F I N I T I O N

7

A subset M of R
n is a smooth manifold of dimension k � n, or, more

simply, a k-manifold in R
n, if for every point x 2M there exists an open set

U in R
n containing x, and a smooth function f from U into R

n�k , such that

the following two conditions hold:

i) the part of M inside U is specified by the equation f.x/ D 0, and

ii) the linear transformation from R
n into R

n�k given by the Jacobian matrix

(see Section 12.6)

Df.x/ D

0

B

B

B

B

@

@f1

@x1

� � �

@f1

@xn
:
:
:

: : :
:
:
:

@fn�k

@x1

� � �

@fn�k

@xn

1

C

C

C

C

A

is onto R
n�k . (This is equivalent to asserting that the n � k rows of the

Jacobian matrix are linearly independent.)
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E X A M P L E 1
(a) The graph y D f .x1; x2; : : : ; xn/ of a smooth real-valued

function f is a smooth n-manifold in R
nC1, that is, a smooth

hypersurface in R
nC1.

(b) An open set M in R
n is a smooth n-manifold in R

n. Since M is open, we can

take U D M and use the trivial function f .x/ D 0 from M \ U into f0g, the

zero-dimensional subspace of R
n.

(c) Although x1=3 is not a smooth function on R, the curve y D x1=3 is a smooth

1-manifold in R
2 because it coincides with the curve x D y3, and y3 is a smooth

function on R.

(d) The sphere S with equation x2
Cy2

C z2
D 1 is a smooth 2-manifold in R

3. Any

point on the sphere is the centre of an open ball U whose radius is sufficiently

small that the projection of U onto at least one of the coordinate planes, say the

plane x D 0, lies inside S . The intersection U \ S will then be given by one of

the two equations x D ˙
p

1 � y2
� z2 and will be smooth.

There are two ways a smooth k-manifold M in R
n can be described:

Strictly speaking, the two ways

of describing smooth manifolds

given at the right need only apply

locally to pieces of the manifold

rather than to the manifold as a

whole. More about this in the

next section.

(a) By requiring that its points x D .x1; : : : ; xn/ satisfy a set of n � k independent

equations in .x1; : : : ; xn/:

f.x1; x2; : : : ; xn/ D 0; where f D .f1; f2; : : : fn�k/:

This was the method used to describe the constraint manifold in Section 13.4.

Each equation represents an .n� 1/-dimensional surface in R
n and so reduces the

dimension by 1. The equations are independent if the gradients r.fi /, .1 � i �

n � k/ are linearly independent at every point x 2M. In this case, the dimension

will be reduced by n � k and so it will be k.

(b) By using a parametrization, that is, a mapping x D p.u/ from an open set U � R
k

into R
n that satisfies

(i) p.u/ is one-to-one from U onto M, and

(ii) the linear transformation from R
k into R

n with Jacobian matrix

J.u/ D Dp.u/ D

0

B

B

B

B

@

@x1

@u1

� � �

@x1

@uk
:
:
:

: : :
:
:
:

@xn

@u1

� � �

@xn

@uk

1

C

C

C

C

A

is one-to-one. (See Section 12.6. This condition requires that the n � k ma-

trix J.u/ have k linearly independent columns for each u 2 U .) Later in

this section we will relax these conditions to allow slightly less restrictive

parametrizations to be used for integration purposes.

Both descriptions have their good and bad features. For the equations description,

it is easy to check whether a given point lies on the manifold, but hard to find a point

on it. For the parametric description, it is easy to find points on the manifold but hard

to check whether a given point lies on it.

E X A M P L E 2
Consider the two equations f .x; y; z/ D x2

C z2
� 1 D 0 and

g.x; y; z/ D xC y C z � 1 D 0 in R
3. Since r.f / D 2xiC 2zk

and r.g/ D iC jC k are never linearly dependent, the two equations define a smooth

manifold of dimension 3 � 2 D 1, that is, a smooth curve in R
3. (If you think about it

for a moment, you will realize that this curve is an ellipse.)
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components of the four-potential, and the physical units in the

potential equation for E suggest the following configuration:

 D �� dt C Ax dx C Ay dy C Az dz:

Show that d D F and thus that dF D 0.

20. (The connection between F and G ) Instead of using

.x; y; z; t/ as coordinates in space-time, it is considered more

physically natural to use coordinates like .x; y; z; ct/ all four

of which have the same units (length). (Note: in theoretical

physics, it is sometimes convenient to choose physical units so

that c D 1 to avoid this issue.) Express the 2-forms F and G

using coordinate ct instead of t . Using the fact that the

elementary 2-forms from which F and G are constructed

form a basis in the six-dimensional vector space of 2-forms in

4 variables, show that the vectors F and G, having the same

components as the coefficients of F and G respectively,

satisfy F �G D 0. Thus, F and G are orthogonal, and in this

sense the first two of Maxwell’s equations listed above

Example 5 may be regarded as orthogonal to, and hence

independent of, the remaining two.

17.3 Integration on Manifolds

This section introduces the language of manifolds. It also introduces parametrizations

to link integrals of differential forms to specific iterated integrals. While the concepts

of vector calculus were adequate for extending the Fundamental Theorem of Calculus

to functions in R
2 and R

3, they do not lend themselves to higher-dimensional problems.

The natural setting for integration in R
n (which we will not encounter until Section

17.4) is the integral of a differential k-form ˆ over a k-dimensional manifold M:

This is a departure from notation

in classical integral calculus

because the “d” is hidden in ˆ.

Z

M
ˆ:

A brief discussion of manifolds in R
n and their tangent and normal spaces was given

in Section 13.4. We amplify this further here.

Smooth Manifolds
The graph of a function f from R

m into R
n is the set of all points .x; y/ 2 R

m
� R

n
D

R
mCn satisfying y D f.x/. The graph is smooth if all first-order partial derivatives of

all n components of f exist and are continuous. (See Section 12.6 for a brief discussion

of such functions.)

We need to introduce a general term like “manifold” because terms like “curve”

and “surface,” which worked in three or fewer dimensions, do not encompass all the

smooth objects in higher dimensions. Roughly speaking, a smooth manifold of dimen-

sion k in R
n (where k � n) is a subset M of R

n that is locally the graph of a smooth

.n � k/-vector-valued function of k variables. Let us make this more precise.

D E F I N I T I O N

7

A subset M of R
n is a smooth manifold of dimension k � n, or, more

simply, a k-manifold in R
n, if for every point x 2M there exists an open set

U in R
n containing x, and a smooth function f from U into R

n�k , such that

the following two conditions hold:

i) the part of M inside U is specified by the equation f.x/ D 0, and

ii) the linear transformation from R
n into R

n�k given by the Jacobian matrix

(see Section 12.6)

Df.x/ D

0

B

B

B

B

@

@f1

@x1

� � �

@f1

@xn
:
:
:

: : :
:
:
:

@fn�k

@x1

� � �

@fn�k

@xn

1

C

C

C

C

A

is onto R
n�k . (This is equivalent to asserting that the n � k rows of the

Jacobian matrix are linearly independent.)
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E X A M P L E 1
(a) The graph y D f .x1; x2; : : : ; xn/ of a smooth real-valued

function f is a smooth n-manifold in R
nC1, that is, a smooth

hypersurface in R
nC1.

(b) An open set M in R
n is a smooth n-manifold in R

n. Since M is open, we can

take U D M and use the trivial function f .x/ D 0 from M \ U into f0g, the

zero-dimensional subspace of R
n.

(c) Although x1=3 is not a smooth function on R, the curve y D x1=3 is a smooth

1-manifold in R
2 because it coincides with the curve x D y3, and y3 is a smooth

function on R.

(d) The sphere S with equation x2
Cy2

C z2
D 1 is a smooth 2-manifold in R

3. Any

point on the sphere is the centre of an open ball U whose radius is sufficiently

small that the projection of U onto at least one of the coordinate planes, say the

plane x D 0, lies inside S . The intersection U \ S will then be given by one of

the two equations x D ˙
p

1 � y2
� z2 and will be smooth.

There are two ways a smooth k-manifold M in R
n can be described:

Strictly speaking, the two ways

of describing smooth manifolds

given at the right need only apply

locally to pieces of the manifold

rather than to the manifold as a

whole. More about this in the

next section.

(a) By requiring that its points x D .x1; : : : ; xn/ satisfy a set of n � k independent

equations in .x1; : : : ; xn/:

f.x1; x2; : : : ; xn/ D 0; where f D .f1; f2; : : : fn�k/:

This was the method used to describe the constraint manifold in Section 13.4.

Each equation represents an .n� 1/-dimensional surface in R
n and so reduces the

dimension by 1. The equations are independent if the gradients r.fi /, .1 � i �

n � k/ are linearly independent at every point x 2M. In this case, the dimension

will be reduced by n � k and so it will be k.

(b) By using a parametrization, that is, a mapping x D p.u/ from an open set U � R
k

into R
n that satisfies

(i) p.u/ is one-to-one from U onto M, and

(ii) the linear transformation from R
k into R

n with Jacobian matrix

J.u/ D Dp.u/ D

0

B

B

B

B

@

@x1

@u1

� � �

@x1

@uk
:
:
:

: : :
:
:
:

@xn

@u1

� � �

@xn

@uk

1

C

C

C

C

A

is one-to-one. (See Section 12.6. This condition requires that the n � k ma-

trix J.u/ have k linearly independent columns for each u 2 U .) Later in

this section we will relax these conditions to allow slightly less restrictive

parametrizations to be used for integration purposes.

Both descriptions have their good and bad features. For the equations description,

it is easy to check whether a given point lies on the manifold, but hard to find a point

on it. For the parametric description, it is easy to find points on the manifold but hard

to check whether a given point lies on it.

E X A M P L E 2
Consider the two equations f .x; y; z/ D x2

C z2
� 1 D 0 and

g.x; y; z/ D xC y C z � 1 D 0 in R
3. Since r.f / D 2xiC 2zk

and r.g/ D iC jC k are never linearly dependent, the two equations define a smooth

manifold of dimension 3 � 2 D 1, that is, a smooth curve in R
3. (If you think about it

for a moment, you will realize that this curve is an ellipse.)
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E X A M P L E 3
Show that the following parametric equations define a smooth

2-manifold in R
4:

.x1; x2; x3; x4/ D x D p.u/ D .u2
1Cu2; 2u1Cu

2
2; 3u1Cu2; u1/; .0 < u1; u2 < 1/

Solution The Jacobian matrix of the transformation x D p.u/ is

J D

0

B

B

B

B

B

B

B

B

B

@

@x1

@u1

@x1

@u2
@x2

@u1

@x2

@u2
@x3

@u1

@x3

@u2
@x4

@u1

@x4

@u2

1

C

C

C

C

C

C

C

C

C

A

D

0

B

B

@

2u1 1

2 2u2

3 1

1 0

1

C

C

A

:

Since all the partials in J are continuous, the transformation is smooth. Since all but

one of them is positive on the square .0; 1/ � .0; 1/, it is easily seen that the trans-

formation is one-to-one; different points .u1; u2/ in the square give different points in

R
4. Finally, since the last two rows of J are linearly independent for every .u1; u2/,

the range of the linear transformation Dp.u/ having matrix J is a two-dimensional

subspace of R
4. Thus, the range of the transformation is a 2-manifold in R

4.

At every point x on a smooth k-manifold M in R
n there will exist a k-dimensional

tangent space Tx.M/ consisting of all vectors in R
n that are tangent to M at x, and

also an .n� k/-dimensional normal space Nx.M/ consisting of all vectors in R
n that

are normal to the tangent space, and therefore to M at x.

For a manifold specified by n�k equations fi .x/ D 0, 1 � i � n � k, the normal

space will be spanned by the n � k gradient vectors of the functions fi evaluated at x.

For manifolds specified by a parametrization x.u/, the tangent space at x is spanned

by the k-vectors @x=@ui , .1 � i � k/.

BEWARE! In the rest of this

section, we are going to revert to the

classic approach (from Chapter 14)

to multiple integrals of functions as

limits of Riemann sums and extend

them to R
n

. In so doing we will be

writing volume elements dVn as

though they had meaning as

differentials, which they do not. In

Section 17.4, we will climb back on

the wagon and properly define the

integral of a differential form over a

manifold.

Integration in n Dimensions
The definition of a double integral given in Section 14.1 (or a triple integral in Section

14.5) can be extended to integrals of real-valued functions f .x/ D f .x1; x2; : : : ; xn/

over suitable domains in R
n. First, we consider the rectangular domain R D fx 2 R

n
W

ai � xi � bi ; 1 � i � ng, which we consider to have n-volume …n
iD1.bi � ai /. If

f is continuous on R, we define the integral of f over R to be the limit of a suitable

Riemann sum:

Z

R

f .x/ dVn D lim

N
X

iD1

f .xi / voln.Ri /;

where the sum is taken over a partition of R into N subrectangles Ri of volume

voln.Ri / and xi is a point in Ri . The limit is taken as N ! 1 in such a way that

the maximum dimension of the hyperrectangles Ri approaches zero. Note that we use

It is easier to write

Z

R

f .x/ dVn

than it is to write

Z Z

� � �

Z

R
„ † …

n

f .x/ dVn:

a single integral sign rather than an n-fold one, which is rather too awkward.

If f is defined in a domain D � R
n that is “sufficiently nice,” we can find a

hyperrectangle R containing D and define
Z

D

f .x/ dVn D

Z

R

Of .x/ dVn;

where Of is defined to be f .x/ if x 2 D and 0 otherwise. Even if f is continuous onD,

it will likely be discontinuous on the boundary @D of D, so “How nice is sufficiently

nice?” is a question that will have to be answered.

Some simple integrals over domains in R
n can be evaluated by the technique of

iteration used to evaluate double and triple integrals in Chapter 14.
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The “n-volume element” dVn that we warned about in this chapter’s introduction,

is also written as dx or dx1 dx2 : : : dxn sometimes. The latter notation is perhaps

even more unsatisfactory than dVn, as it suggests the differential of a vector, which it

certainly is not. However, it does indicate what variables are being integrated, which is

useful in this context. Another popular alternative (never used in this book, including

here) is to write dnx. This also has its problems, as we are not speaking of an n-fold

exterior derivative of x.

E X A M P L E 4 Evaluate

Z

Q

x1x2 � � � xn dx over the hypercube

Q D fx 2 R
n
W 0 � xi � 1; 0 � i � ng.

Solution This integral iterates into n identical single integrals:

Z

Q

x1x2 � � � xn dx D

Z 1

0

x1 dx1

Z 1

0

x2 dx2 � � �

Z 1

0

xn dxn D

�

1

2

�n

D

1

2n
:

Sets of k-Volume Zero
We are used to manifolds having zero area in R

2 (e.g., curves) or zero volume in R
3

(e.g., curves and surfaces). In higher dimensions we have no such classical terminol-

ogy for describing the “volume” of manifolds or their subsets, that may be zero in

higher dimensional spaces. Accordingly, we make the following definition.

D E F I N I T I O N

8

Sets of k-volume zero in R
n Let 1 � k � n. For each positive integer m,

letQm be a partition of R
n into n-dimensional cubes each having edge length

1=2m. If S is a bounded subset of R
n we say that S has k-volume 0 if

lim
m!1

X

Q2Qm
Q\S¤;

1

2km
D 0:

The sum is taken over only those cubes Q 2 Qm that contain points of S .

If S is unbounded, let Sr D fx 2 S W jxj � rg. We say that S has

k-volume zero if Sr has k-volume zero for every positive r .

It can be shown that a smooth m-manifold in R
n has k-volume 0 provided m < k � n.

If the boundary @D of a bounded open setD � R
n is a smooth .n�1/-manifold in

R
n, then @D has n-volume zero and will contribute nothing to the integral of a function

f continuous on the closed, bounded setD[@D. Thus,
R

D f .x/ dVn will exist in this

case.

Parametrizing and Integrating over a Smooth Manifold
In order to define integrals over a smooth k-manifold M in R

n, where k < n (such

as, for example, curves in R
2 and R

3, and surfaces in R
3), we need to parametrize

the manifold using a smooth, one-to-one mapping from an open set in R
k onto M.

This approach generalizes the technique used to evaluate line and surface integrals in

Chapter 15.

Unfortunately, the definition of parametrization given earlier in this section is a

bit too restrictive; it rules out, for example, the parametrization x D cosu cos v, y D

cosu sin v, z D sinu, 0 � u � � , �� < v � � of the sphere x2
C y2

C z2
D 1 in

R
3. We can fix this by slightly easing the restrictions on parametrizations as follows.
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E X A M P L E 3
Show that the following parametric equations define a smooth

2-manifold in R
4:

.x1; x2; x3; x4/ D x D p.u/ D .u2
1Cu2; 2u1Cu

2
2; 3u1Cu2; u1/; .0 < u1; u2 < 1/

Solution The Jacobian matrix of the transformation x D p.u/ is

J D

0

B

B

B

B

B

B

B

B

B

@

@x1

@u1

@x1

@u2
@x2

@u1

@x2

@u2
@x3

@u1

@x3

@u2
@x4

@u1

@x4

@u2

1

C

C

C

C

C

C

C

C

C

A

D

0

B

B

@

2u1 1

2 2u2

3 1

1 0

1

C

C

A

:

Since all the partials in J are continuous, the transformation is smooth. Since all but

one of them is positive on the square .0; 1/ � .0; 1/, it is easily seen that the trans-

formation is one-to-one; different points .u1; u2/ in the square give different points in

R
4. Finally, since the last two rows of J are linearly independent for every .u1; u2/,

the range of the linear transformation Dp.u/ having matrix J is a two-dimensional

subspace of R
4. Thus, the range of the transformation is a 2-manifold in R

4.

At every point x on a smooth k-manifold M in R
n there will exist a k-dimensional

tangent space Tx.M/ consisting of all vectors in R
n that are tangent to M at x, and

also an .n� k/-dimensional normal space Nx.M/ consisting of all vectors in R
n that

are normal to the tangent space, and therefore to M at x.

For a manifold specified by n�k equations fi .x/ D 0, 1 � i � n � k, the normal

space will be spanned by the n � k gradient vectors of the functions fi evaluated at x.

For manifolds specified by a parametrization x.u/, the tangent space at x is spanned

by the k-vectors @x=@ui , .1 � i � k/.

BEWARE! In the rest of this

section, we are going to revert to the

classic approach (from Chapter 14)

to multiple integrals of functions as

limits of Riemann sums and extend

them to R
n

. In so doing we will be

writing volume elements dVn as

though they had meaning as

differentials, which they do not. In

Section 17.4, we will climb back on

the wagon and properly define the

integral of a differential form over a

manifold.

Integration in n Dimensions
The definition of a double integral given in Section 14.1 (or a triple integral in Section

14.5) can be extended to integrals of real-valued functions f .x/ D f .x1; x2; : : : ; xn/

over suitable domains in R
n. First, we consider the rectangular domain R D fx 2 R

n
W

ai � xi � bi ; 1 � i � ng, which we consider to have n-volume …n
iD1.bi � ai /. If

f is continuous on R, we define the integral of f over R to be the limit of a suitable

Riemann sum:

Z

R

f .x/ dVn D lim

N
X

iD1

f .xi / voln.Ri /;

where the sum is taken over a partition of R into N subrectangles Ri of volume

voln.Ri / and xi is a point in Ri . The limit is taken as N ! 1 in such a way that

the maximum dimension of the hyperrectangles Ri approaches zero. Note that we use

It is easier to write

Z

R

f .x/ dVn

than it is to write

Z Z

� � �

Z

R
„ † …

n

f .x/ dVn:

a single integral sign rather than an n-fold one, which is rather too awkward.

If f is defined in a domain D � R
n that is “sufficiently nice,” we can find a

hyperrectangle R containing D and define
Z

D

f .x/ dVn D

Z

R

Of .x/ dVn;

where Of is defined to be f .x/ if x 2 D and 0 otherwise. Even if f is continuous onD,

it will likely be discontinuous on the boundary @D of D, so “How nice is sufficiently

nice?” is a question that will have to be answered.

Some simple integrals over domains in R
n can be evaluated by the technique of

iteration used to evaluate double and triple integrals in Chapter 14.
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The “n-volume element” dVn that we warned about in this chapter’s introduction,

is also written as dx or dx1 dx2 : : : dxn sometimes. The latter notation is perhaps

even more unsatisfactory than dVn, as it suggests the differential of a vector, which it

certainly is not. However, it does indicate what variables are being integrated, which is

useful in this context. Another popular alternative (never used in this book, including

here) is to write dnx. This also has its problems, as we are not speaking of an n-fold

exterior derivative of x.

E X A M P L E 4 Evaluate

Z

Q

x1x2 � � � xn dx over the hypercube

Q D fx 2 R
n
W 0 � xi � 1; 0 � i � ng.

Solution This integral iterates into n identical single integrals:

Z

Q

x1x2 � � � xn dx D

Z 1

0

x1 dx1

Z 1

0

x2 dx2 � � �

Z 1

0

xn dxn D

�

1

2

�n

D

1

2n
:

Sets of k-Volume Zero
We are used to manifolds having zero area in R

2 (e.g., curves) or zero volume in R
3

(e.g., curves and surfaces). In higher dimensions we have no such classical terminol-

ogy for describing the “volume” of manifolds or their subsets, that may be zero in

higher dimensional spaces. Accordingly, we make the following definition.

D E F I N I T I O N

8

Sets of k-volume zero in R
n Let 1 � k � n. For each positive integer m,

letQm be a partition of R
n into n-dimensional cubes each having edge length

1=2m. If S is a bounded subset of R
n we say that S has k-volume 0 if

lim
m!1

X

Q2Qm
Q\S¤;

1

2km
D 0:

The sum is taken over only those cubes Q 2 Qm that contain points of S .

If S is unbounded, let Sr D fx 2 S W jxj � rg. We say that S has

k-volume zero if Sr has k-volume zero for every positive r .

It can be shown that a smooth m-manifold in R
n has k-volume 0 provided m < k � n.

If the boundary @D of a bounded open setD � R
n is a smooth .n�1/-manifold in

R
n, then @D has n-volume zero and will contribute nothing to the integral of a function

f continuous on the closed, bounded setD[@D. Thus,
R

D f .x/ dVn will exist in this

case.

Parametrizing and Integrating over a Smooth Manifold
In order to define integrals over a smooth k-manifold M in R

n, where k < n (such

as, for example, curves in R
2 and R

3, and surfaces in R
3), we need to parametrize

the manifold using a smooth, one-to-one mapping from an open set in R
k onto M.

This approach generalizes the technique used to evaluate line and surface integrals in

Chapter 15.

Unfortunately, the definition of parametrization given earlier in this section is a

bit too restrictive; it rules out, for example, the parametrization x D cosu cos v, y D

cosu sin v, z D sinu, 0 � u � � , �� < v � � of the sphere x2
C y2

C z2
D 1 in

R
3. We can fix this by slightly easing the restrictions on parametrizations as follows.
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9

Smooth parametrization of a manifold

Let M � R
n be a smooth k-manifold in R

n. Let U be a subset of R
k having

boundary @U with k-volume 0. Let S be a subset of U with k-volume 0 such

that U � S D fx 2 U W x … Sg is open in R
k . Suppose p is a mapping from

U into R
n satisfying the following conditions:

(i) p.S/ has k-volume 0,

(ii) M � p.U /,

(iii) p.U � S/ �M,

(iv) p is one-to-one and differentiable on U � S , and

(v) the derivativeDp.u/ is one-to-one from R
k onto the tangent space Tp.u/.M/.

Then we say that p is a smooth parametrization of M over U; and that it is

a strict parametrization over U � S .

These conditions are satisfied for the parametrization of the unit sphere in the para-

graph preceding the definition if we take U D f.u; v/ W 0 � u � �; �� < v � �g

and S D f.u; v/ W u D 0 or u D � or v D �g.

As was done for surface integrals in Section 15.5, we can evaluate an integral

of a function f .x/ of n variables defined on a k-manifold M in R
n by transforming

it into an integral of a function of k variables over a domain in R
k . We do this by

using a smooth parametrization x D p.u/. A differential volume element dVk.u/ D

du1 du2 : : : duk at point u 2 R
k is a k-dimensional rectangular box with corner at u

spanned by the vectors du1 e1, du2 e2 � � � duk ek . The derivative Dp.u/ transforms

this volume element to a k-dimensional parallelogram in the tangent space Tp.u/.M/,

the k-volume of which provides the volume element dVk

�

p.u/
�

on M at p.u/.

D E F I N I T I O N

10

k-Parallelograms A k-parallelogram at y 2 R
n spanned by the k vectors

v1, : : : , vk is the set P k
y .v1; : : : ; vk/ of points x 2 R

n such that

x D yC

k
X

iD1

ti vi ; where 0 < ti < 1; 1 � i � k:

P k
y .v1; : : : ; vk/ is a k-manifold in R

n.

Remark The k-volume of P k
y .v1; : : : ; vk/ is given by

p

Gk.v1; : : : ; vk/, where

Gk.v1; : : : ; vk/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1 � v1 v2 � v1 � � � vk � v1

v1 � v2 v2 � v2 � � � vk � v2
:
:
:

:
:
:

: : :
:
:
:

v1 � vk v2 � vk � � � vk � vk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

See Exercises 7–9 for a suggestion on how to prove this fact. In particular, if n D k,

so that the vectors vi are all in R
k , then the k-volume of P k

y .v1; : : : ; vk/ is given by

jdet.A/j, where A is the k�k square matrix whose columns are the components of the

vectors vi ,

A D

0

B

B

@

:
:
:

:
:
: � � �

:
:
:

v1 v2 � � � vk
:
:
:

:
:
: � � �

:
:
:

1

C

C

A

because Gk.v1; : : : ; vk/ D det.ATA/ D
�

det.A/
�2

.
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The derivative of the transformation x D p.u/ is the linear transformation of R
k

to the tangent space Tp.u/.M/ given by the n � k Jacobian matrix

J.u/ D Dp.u/ D

0

B

B

B

B

@

@x1

@u1

� � �

@x1

@uk
:
:
:

: : :
:
:
:

@xn

@u1

� � �

@xn

@uk

1

C

C

C

C

A

:

The columns of this matrix are the k vectors that span the k-parallelogram, which

is the image of the k-cube spanned by the standard basis vectors in R
k under the

parametrization p. It follows that the k volume element at p.u/ on M is given by

dVk

�

p.u/
�

D

s

Gk

�

@p

@u1

;
@p

@u2

; � � � ;
@p

@uk

�

dVk.u/;

or, since the matrix J.u/T J.u/ is a square k � k matrix that has the same elements as

the determinant Gk ,

dVk

�

p.u/
�

D

q

det.J.u/T J.u// du1 du2 � � � duk:

Now suppose we want to integrate a function f .x/ D f .x1; x2; : : : ; xn/ over a

smooth k-manifold M parametrized by the mapping p as described in Definition 9.

We want to transform the integral of f over M to an equivalent integral of f
�

p.u/
�

over U in R
k . Since p.S/ has k-volume 0, it is sufficient to integrate f

�

p.u/
�

over

U � S , where p is one-to-one and differentiable. Thus,

Z

M
f .x/ dVk.x/ D

Z

U �S

f
�

p.u/
�

q

det.J.u/T J.u// du:

In particular, the k-volume of the k-manifold M is given by

Z

U �S

q

det.J.u/T J.u// du:

The same simplification observed above (when n D k) for the volume of a

k-parallelogram in R
k occurs if the k-manifold is “flat,” that is, if it is an open subset

of R
k . In this case, the parametrization p.u/ is just a transformation of coordinates in

R
k , and the Jacobian matrix of the derivative Dp.u/ is just a k�k square matrix J.u/

whose determinant is equal to that of its transpose. It follows that

det.J.u/T J.u// D
�

det.J.u//
�2
;

and so the transformed volume element is

jdet.J.u/j du D

ˇ

ˇ

ˇ

ˇ

@.x1; x2; : : : ; xk/

@.u1; u2; : : : ; uk/

ˇ

ˇ

ˇ

ˇ

du1 du2 � � � duk:

This is just the k-dimensional analogue of the general change-of-variables area and

volume elements for double and triple integrals given in Sections 14.4 and 14.6.
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9

Smooth parametrization of a manifold

Let M � R
n be a smooth k-manifold in R

n. Let U be a subset of R
k having

boundary @U with k-volume 0. Let S be a subset of U with k-volume 0 such

that U � S D fx 2 U W x … Sg is open in R
k . Suppose p is a mapping from

U into R
n satisfying the following conditions:

(i) p.S/ has k-volume 0,

(ii) M � p.U /,

(iii) p.U � S/ �M,

(iv) p is one-to-one and differentiable on U � S , and

(v) the derivativeDp.u/ is one-to-one from R
k onto the tangent space Tp.u/.M/.

Then we say that p is a smooth parametrization of M over U; and that it is

a strict parametrization over U � S .

These conditions are satisfied for the parametrization of the unit sphere in the para-

graph preceding the definition if we take U D f.u; v/ W 0 � u � �; �� < v � �g

and S D f.u; v/ W u D 0 or u D � or v D �g.

As was done for surface integrals in Section 15.5, we can evaluate an integral

of a function f .x/ of n variables defined on a k-manifold M in R
n by transforming

it into an integral of a function of k variables over a domain in R
k . We do this by

using a smooth parametrization x D p.u/. A differential volume element dVk.u/ D

du1 du2 : : : duk at point u 2 R
k is a k-dimensional rectangular box with corner at u

spanned by the vectors du1 e1, du2 e2 � � � duk ek . The derivative Dp.u/ transforms

this volume element to a k-dimensional parallelogram in the tangent space Tp.u/.M/,

the k-volume of which provides the volume element dVk

�

p.u/
�

on M at p.u/.

D E F I N I T I O N

10

k-Parallelograms A k-parallelogram at y 2 R
n spanned by the k vectors

v1, : : : , vk is the set P k
y .v1; : : : ; vk/ of points x 2 R

n such that

x D yC

k
X

iD1

ti vi ; where 0 < ti < 1; 1 � i � k:

P k
y .v1; : : : ; vk/ is a k-manifold in R

n.

Remark The k-volume of P k
y .v1; : : : ; vk/ is given by

p

Gk.v1; : : : ; vk/, where

Gk.v1; : : : ; vk/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1 � v1 v2 � v1 � � � vk � v1

v1 � v2 v2 � v2 � � � vk � v2
:
:
:

:
:
:

: : :
:
:
:

v1 � vk v2 � vk � � � vk � vk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

See Exercises 7–9 for a suggestion on how to prove this fact. In particular, if n D k,

so that the vectors vi are all in R
k , then the k-volume of P k

y .v1; : : : ; vk/ is given by

jdet.A/j, where A is the k�k square matrix whose columns are the components of the

vectors vi ,

A D

0

B

B

@

:
:
:

:
:
: � � �

:
:
:

v1 v2 � � � vk
:
:
:

:
:
: � � �

:
:
:

1

C

C

A

because Gk.v1; : : : ; vk/ D det.ATA/ D
�

det.A/
�2

.
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The derivative of the transformation x D p.u/ is the linear transformation of R
k

to the tangent space Tp.u/.M/ given by the n � k Jacobian matrix

J.u/ D Dp.u/ D

0

B

B

B

B

@

@x1

@u1

� � �

@x1

@uk
:
:
:

: : :
:
:
:

@xn

@u1

� � �

@xn

@uk

1

C

C

C

C

A

:

The columns of this matrix are the k vectors that span the k-parallelogram, which

is the image of the k-cube spanned by the standard basis vectors in R
k under the

parametrization p. It follows that the k volume element at p.u/ on M is given by

dVk

�

p.u/
�

D

s

Gk

�

@p

@u1

;
@p

@u2

; � � � ;
@p

@uk

�

dVk.u/;

or, since the matrix J.u/T J.u/ is a square k � k matrix that has the same elements as

the determinant Gk ,

dVk

�

p.u/
�

D

q

det.J.u/T J.u// du1 du2 � � � duk:

Now suppose we want to integrate a function f .x/ D f .x1; x2; : : : ; xn/ over a

smooth k-manifold M parametrized by the mapping p as described in Definition 9.

We want to transform the integral of f over M to an equivalent integral of f
�

p.u/
�

over U in R
k . Since p.S/ has k-volume 0, it is sufficient to integrate f

�

p.u/
�

over

U � S , where p is one-to-one and differentiable. Thus,

Z

M
f .x/ dVk.x/ D

Z

U �S

f
�

p.u/
�

q

det.J.u/T J.u// du:

In particular, the k-volume of the k-manifold M is given by

Z

U �S

q

det.J.u/T J.u// du:

The same simplification observed above (when n D k) for the volume of a

k-parallelogram in R
k occurs if the k-manifold is “flat,” that is, if it is an open subset

of R
k . In this case, the parametrization p.u/ is just a transformation of coordinates in

R
k , and the Jacobian matrix of the derivative Dp.u/ is just a k�k square matrix J.u/

whose determinant is equal to that of its transpose. It follows that

det.J.u/T J.u// D
�

det.J.u//
�2
;

and so the transformed volume element is

jdet.J.u/j du D

ˇ

ˇ

ˇ

ˇ

@.x1; x2; : : : ; xk/

@.u1; u2; : : : ; uk/

ˇ

ˇ

ˇ

ˇ

du1 du2 � � � duk:

This is just the k-dimensional analogue of the general change-of-variables area and

volume elements for double and triple integrals given in Sections 14.4 and 14.6.
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In Exercises 1–4, find the k-volumes of the k-parallelograms in R
4

spanned by the vectors with the given components.

1. k D 2, v1 D .1; 2; 1; 0/, v2 D .2;�1; 0;�1/

2. k D 2, v1 D .1; 1; 1; 1/, v2 D .1;�1;�1; 0/

3. k D 3, v1 D .1; 1; 0; 0/, v2 D .0; 1; 1; 0/, v3 D .0; 0; 1; 1/

4. k D 4, v1 D .1; 0; 0; 0/, v2 D .1; 1; 0; 0/, v3 D .0; 0; 1; 1/,

v4 D .1; 0; 1; 0/

5. Find

Z

M
.x1 C x2/ dV2.x/, where M is the 2-manifold in R

4

given parametrically by x D .u1 C u2; u1 � u2; u
2
1; 1C u2/

for 0 < u1 < 1, 0 < u2 < 1.

6. Find

Z

M

q

1C x2
1 C x

2
3 dV2.x/, where M is the 2-manifold

in R
4

given parametrically by

x D
�

u1 cos.u2/;
p

3u1; u1 sin.u2/; u2

�

for 0 < u1 < 1,

0 < u2 < �=2.

Exercises 7–9 provide a proof of the claim made concerning the

k-volume of a k-parallelogram in R
n

following Definition 10.

They concern the determinant function Gk.v1; : : : ; vk/ defined

there.

7. If v1, v2, : : : , vk are k vectors in R
n

, where n � k, and M is

the n � k matrix whose j th column consists of the

components of vj , show that det.MTM/ D Gk.v1; : : : ; vk/.

8. Show that the 2-volume (i.e., area A) of the parallelogram

spanned by the vectors v1 and v2 is given by

A D
p

G2.v1; v2/.

9.I Complete the proof of the formula for the k-volume of a

k-parallelogram spanned by the vectors v1, : : : , vk by

induction on k. The case k D 1 is trivial, and the case k D 2

is done in the previous exercise. A .k C 1/-parallelogram has

2.k C 1/ faces, each of which is a k-parallelogram. The

.k C 1/-volume of the .k C 1/-parallelogram is the k-volume

of one of its faces (say, spanned by v1, : : : , vk) multiplied by

the length h of the perpendicular projection of the remaining

edge vkC1 onto the k-dimensional subspace containing that

face. You will find Cramer’s Rule (Theorem 6 of Section 10.7)

useful in finding h2.

10.A Let ˆ be the k-form ˆ D dxi1 ^ dxi2 ^ � � � ^ dxik ,

1 � i1 < i2 < � � � < ik � n. Show that the k-volume of the

projection P of the k-parallelogram in R
n

spanned by the

vectors v1; v2; : : : ; vk in R
n

onto the k-dimensional

coordinate plane in R
n

spanned by ei1 , ei2 , : : : , eik is given by

jˆ.v1; v2; : : : ; vk/j.

17.4 Orientations, Boundaries, and Integration of Forms

Oriented Manifolds
As noted at the beginning of this chapter, it was the fact that an interval on the real line

has a natural orientation (left to right) that enabled us to formulate the Fundamental

Theorem of Calculus for functions of one variable. We now examine how to specify

the orientation of a manifold.

D E F I N I T I O N
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If V is a k-dimensional vector space, then any nonzero k-form ! on V de-

fines an orientation for V: Any k-dimensional vector space has only two

orientations. Sinceƒk.V / is one dimensional, any nonzero k-form on V will

be a multiple of ! by a nonzero real number, either positive or negative. The

positive multiples of ! provide the same orientation for V as !; the negative

multiples provide the opposite orientation for V:

For example, ! D dx1 ^ dx2 ^ � � � ^ dxn provides an orientation for R
n that gives the

value C1 to the standard basis e1; e2; : : : ; en. If n D 3, this orientation is shared by

any basis satisfying the “right-hand-rule.” (See Section 10.1.) We usually refer to the

orientation of R
n given by ! as the “positive” orientation.

The tangent space Tx.M/ at any point x on a smooth, k-manifold M in R
n is

itself a k-dimensional vector subspace of R
n and so has one of two possible orienta-

tions. If we can select a nonzero k-form on each such subspace in a way that varies

smoothly with x, they will constitute a smooth k-form field on M, which then orients

the manifold.
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Suppose that at each x on the k-manifold M, there exists a nonzero k-form

!x that varies smoothly with x and orients the tangent space Tx.M/, then we

say that M is orientable and that the differential k-form field !.x/ D !x
orients M.

E X A M P L E 1
(Orienting a curve in R

n) A smooth curve (1-manifold) C in

R
n is orientable if there exists a nonvanishing, smoothly varying

tangent vector field t.x/ on C. Since the tangent space Tx.C/ is one-dimensional, the

differential 1-form whose value at any x on C and any v 2 R
n is given by !.x/.v/ D

t.x/ � v orients C. It specifies the positive direction of C at x as the direction of t.x/.

The opposite (negative) direction would be specified by the nonvanishing tangent field

�t.x/.

E X A M P L E 2
(Orienting a hypersurface in R

n) A smooth .n � 1/-manifold

M in R
n (also called a hypersurface) is orientable if there exists a

nonvanishing, smoothly varying normal vector field n.x/ on M. For instance, if M is

specified by the single equation g.x/ D 0, and grad g.x/ ¤ 0 anywhere on M, then

n.x/ D grad g.x/ can provide an orientation for M. Since the tangent space Tx.M/ to

M at x has dimension n � 1, any n � 1 linearly independent vectors v1, v2, : : : , vn�1

in Tx.M/ will be perpendicular to n, and the differential .n � 1/-form

!.x/.v1; v2; : : : ; vn�1/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
: � � �

:
:
:

n.x/ v1 � � � vn�1

:
:
:

:
:
: � � �

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

orients M. It specifies a “positive side” of M, out of which n.x/ points, and a negative

side, out of which �n.x/ points.

E X A M P L E 3
(Orienting an open set in R

n) An open set M in R
n is an

n-manifold. At any point x 2 M, the tangent space Tx.M/ D

R
n and the normal space is zero-dimensional subspace f0g. The differential n-form

dx1 ^ dx2 ^ � � � ^ dxn defined for any vectors v1, v2, : : : , vn in R
n by

dx1 ^ dx2 ^ � � � ^ dxn.v1; v2; : : : ; vn/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
: � � �

:
:
:

v1 v2 � � � vn
:
:
:

:
:
: � � �

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

orients M. This would be considered to be the positive orientation of M

It is useful to regard a single point x in R
n as a zero-dimensional manifold. In this

When we say that an oriented

point isCx or �x, we don’t

intend the orientation signs “C”

or “�” to mean scalar multi-

plication of the vector x by 1 or

�1. Rather, we mean that the

value of a function f at Cx is

f .x/, while the value of f at �x

is �f .x/. This will be impor-

tant when we evaluate the

“integral” (i.e., sum) of a 0-form

over the oriented boundary of an

interval Œa; b� later in this

chapter.

case choosing an orientation comes down to choosing a sign to attach to the point. One

orientation of x is Cx; the opposite orientation is �x.

Not every smooth manifold is orientable. The Möbius band illustrated in Section

15.6 has only one side and is not orientable.

The following example illustrates how you can orient a k-manifold M in R
n, where

1 < k < n � 1. The idea is to find a basis of n � k vectors for the normal space at an

arbitrary point x on M and use them to define a differential k-form that orients M.

E X A M P L E 4
Find an orientation for the 2-manifold M in R

4 specified by the

equations f .x/ D x1 C x3 D 0 and g.x/ D x2 � x
2
4 D 0.

Solution At any point x satisfying the two equations, the vectors grad f D e1 C e3

and grad g D e2 � 2x4e4 are normal to M and are clearly linearly independent. Thus,
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E X E R C I S E S 17.3

In Exercises 1–4, find the k-volumes of the k-parallelograms in R
4

spanned by the vectors with the given components.

1. k D 2, v1 D .1; 2; 1; 0/, v2 D .2;�1; 0;�1/

2. k D 2, v1 D .1; 1; 1; 1/, v2 D .1;�1;�1; 0/

3. k D 3, v1 D .1; 1; 0; 0/, v2 D .0; 1; 1; 0/, v3 D .0; 0; 1; 1/

4. k D 4, v1 D .1; 0; 0; 0/, v2 D .1; 1; 0; 0/, v3 D .0; 0; 1; 1/,

v4 D .1; 0; 1; 0/

5. Find

Z

M
.x1 C x2/ dV2.x/, where M is the 2-manifold in R

4

given parametrically by x D .u1 C u2; u1 � u2; u
2
1; 1C u2/

for 0 < u1 < 1, 0 < u2 < 1.

6. Find

Z

M

q

1C x2
1 C x

2
3 dV2.x/, where M is the 2-manifold

in R
4

given parametrically by

x D
�

u1 cos.u2/;
p

3u1; u1 sin.u2/; u2

�

for 0 < u1 < 1,

0 < u2 < �=2.

Exercises 7–9 provide a proof of the claim made concerning the

k-volume of a k-parallelogram in R
n

following Definition 10.

They concern the determinant function Gk.v1; : : : ; vk/ defined

there.

7. If v1, v2, : : : , vk are k vectors in R
n

, where n � k, and M is

the n � k matrix whose j th column consists of the

components of vj , show that det.MTM/ D Gk.v1; : : : ; vk/.

8. Show that the 2-volume (i.e., area A) of the parallelogram

spanned by the vectors v1 and v2 is given by

A D
p

G2.v1; v2/.

9.I Complete the proof of the formula for the k-volume of a

k-parallelogram spanned by the vectors v1, : : : , vk by

induction on k. The case k D 1 is trivial, and the case k D 2

is done in the previous exercise. A .k C 1/-parallelogram has

2.k C 1/ faces, each of which is a k-parallelogram. The

.k C 1/-volume of the .k C 1/-parallelogram is the k-volume

of one of its faces (say, spanned by v1, : : : , vk) multiplied by

the length h of the perpendicular projection of the remaining

edge vkC1 onto the k-dimensional subspace containing that

face. You will find Cramer’s Rule (Theorem 6 of Section 10.7)

useful in finding h2.

10.A Let ˆ be the k-form ˆ D dxi1 ^ dxi2 ^ � � � ^ dxik ,

1 � i1 < i2 < � � � < ik � n. Show that the k-volume of the

projection P of the k-parallelogram in R
n

spanned by the

vectors v1; v2; : : : ; vk in R
n

onto the k-dimensional

coordinate plane in R
n

spanned by ei1 , ei2 , : : : , eik is given by

jˆ.v1; v2; : : : ; vk/j.

17.4 Orientations, Boundaries, and Integration of Forms

Oriented Manifolds
As noted at the beginning of this chapter, it was the fact that an interval on the real line

has a natural orientation (left to right) that enabled us to formulate the Fundamental

Theorem of Calculus for functions of one variable. We now examine how to specify

the orientation of a manifold.

D E F I N I T I O N

11

If V is a k-dimensional vector space, then any nonzero k-form ! on V de-

fines an orientation for V: Any k-dimensional vector space has only two

orientations. Sinceƒk.V / is one dimensional, any nonzero k-form on V will

be a multiple of ! by a nonzero real number, either positive or negative. The

positive multiples of ! provide the same orientation for V as !; the negative

multiples provide the opposite orientation for V:

For example, ! D dx1 ^ dx2 ^ � � � ^ dxn provides an orientation for R
n that gives the

value C1 to the standard basis e1; e2; : : : ; en. If n D 3, this orientation is shared by

any basis satisfying the “right-hand-rule.” (See Section 10.1.) We usually refer to the

orientation of R
n given by ! as the “positive” orientation.

The tangent space Tx.M/ at any point x on a smooth, k-manifold M in R
n is

itself a k-dimensional vector subspace of R
n and so has one of two possible orienta-

tions. If we can select a nonzero k-form on each such subspace in a way that varies

smoothly with x, they will constitute a smooth k-form field on M, which then orients

the manifold.
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Suppose that at each x on the k-manifold M, there exists a nonzero k-form

!x that varies smoothly with x and orients the tangent space Tx.M/, then we

say that M is orientable and that the differential k-form field !.x/ D !x
orients M.

E X A M P L E 1
(Orienting a curve in R

n) A smooth curve (1-manifold) C in

R
n is orientable if there exists a nonvanishing, smoothly varying

tangent vector field t.x/ on C. Since the tangent space Tx.C/ is one-dimensional, the

differential 1-form whose value at any x on C and any v 2 R
n is given by !.x/.v/ D

t.x/ � v orients C. It specifies the positive direction of C at x as the direction of t.x/.

The opposite (negative) direction would be specified by the nonvanishing tangent field

�t.x/.

E X A M P L E 2
(Orienting a hypersurface in R

n) A smooth .n � 1/-manifold

M in R
n (also called a hypersurface) is orientable if there exists a

nonvanishing, smoothly varying normal vector field n.x/ on M. For instance, if M is

specified by the single equation g.x/ D 0, and grad g.x/ ¤ 0 anywhere on M, then

n.x/ D grad g.x/ can provide an orientation for M. Since the tangent space Tx.M/ to

M at x has dimension n � 1, any n � 1 linearly independent vectors v1, v2, : : : , vn�1

in Tx.M/ will be perpendicular to n, and the differential .n � 1/-form

!.x/.v1; v2; : : : ; vn�1/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
: � � �

:
:
:

n.x/ v1 � � � vn�1

:
:
:

:
:
: � � �

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

orients M. It specifies a “positive side” of M, out of which n.x/ points, and a negative

side, out of which �n.x/ points.

E X A M P L E 3
(Orienting an open set in R

n) An open set M in R
n is an

n-manifold. At any point x 2 M, the tangent space Tx.M/ D

R
n and the normal space is zero-dimensional subspace f0g. The differential n-form

dx1 ^ dx2 ^ � � � ^ dxn defined for any vectors v1, v2, : : : , vn in R
n by

dx1 ^ dx2 ^ � � � ^ dxn.v1; v2; : : : ; vn/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
: � � �

:
:
:

v1 v2 � � � vn
:
:
:

:
:
: � � �

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

orients M. This would be considered to be the positive orientation of M

It is useful to regard a single point x in R
n as a zero-dimensional manifold. In this

When we say that an oriented

point isCx or �x, we don’t

intend the orientation signs “C”

or “�” to mean scalar multi-

plication of the vector x by 1 or

�1. Rather, we mean that the

value of a function f at Cx is

f .x/, while the value of f at �x

is �f .x/. This will be impor-

tant when we evaluate the

“integral” (i.e., sum) of a 0-form

over the oriented boundary of an

interval Œa; b� later in this

chapter.

case choosing an orientation comes down to choosing a sign to attach to the point. One

orientation of x is Cx; the opposite orientation is �x.

Not every smooth manifold is orientable. The Möbius band illustrated in Section

15.6 has only one side and is not orientable.

The following example illustrates how you can orient a k-manifold M in R
n, where

1 < k < n � 1. The idea is to find a basis of n � k vectors for the normal space at an

arbitrary point x on M and use them to define a differential k-form that orients M.

E X A M P L E 4
Find an orientation for the 2-manifold M in R

4 specified by the

equations f .x/ D x1 C x3 D 0 and g.x/ D x2 � x
2
4 D 0.

Solution At any point x satisfying the two equations, the vectors grad f D e1 C e3

and grad g D e2 � 2x4e4 are normal to M and are clearly linearly independent. Thus,
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they span the two-dimensional normal space to M at x. If u and v are linearly inde-

pendent vectors in the tangent space Tx.M/, then the differential 2-form

!.x/.u; v/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 u1 v1

0 1 u2 v2

1 0 u3 v3

0 �2x4 u4 v4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

defines an orientation for M. Observe the first two columns are the components of

the two independent normals, and the determinant depends smoothly on x. To verify

that it is never zero, observe that the vectors t D e1 � e3 and w D 2x4e2 C e4 are

perpendicular to each other and to each of the two normals. They must therefore span

the two-dimensional tangent space to M at x. Direct calculation shows that

!.x/.t;w/ D �2.1C 4x2
4/ < 0

for all x. If u D ˛tC ˇw and v D  tC ıw, where ˛ı � ˇ ¤ 0 so that u and v are

linearly independent, then

!.x/.u; v/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 ˛t1 C ˇw1  t1 C ıw1

0 1 ˛t2 C ˇw2  t2 C ıw2

1 0 ˛t3 C ˇw3  t3 C ıw3

0 �2x4 ˛t4 C ˇw4  t4 C ıw4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 t1 w1

0 1 t2 w2

1 0 t3 w3

0 �2x4 t4 w4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 0

0 1 0 0

0 0 ˛ 

0 0 ˇ ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.2C 4x
2
4/.˛ı � ˇ/;

since the determinant of a product is the product of the determinants. The result is

nonzero and has constant sign for all x 2 M, so ! orients M. If ˛ı � ˇ < 0, the

positive orientation will be given by using the ordered pair .t;w/ as a basis for the

tangent space Tx.M/. Otherwise, use .w; t/.

Pieces-with-Boundary of a Manifold
The extension of the Fundamental Theorem of Calculus (the Generalized Stokes’s The-

orem) that we will develop in the next section relates the integral of the exterior deriva-

tive dˆ of a differential .k � 1/-form ˆ over a subset M of an oriented

k-manifold in R
n to the integral of ˆ over the suitably oriented boundary @M of S :

R

M
dˆ D

R

@M
ˆ. We must now clarify some of these terms, in particular, the kind of

set M must be to enable the evaluation of integrals over its boundary. Boundaries of

open sets can be very pathological, and we will have to restrict them somehow.

A manifold M in R
n does not itself contain any boundary points, but a subset M

of M can have a boundary contained in M. Specifically, the boundary @M of M

in M consists of all points x 2 M such that every open set U � R
n containing x

also contains points y ¤ x in M and points y ¤ x that are in M but not in M . The

boundary may or may not be a subset of M .

E X A M P L E 5
(a) The sphere x2

Cy2
C z2

D 1 in R
3 (a smooth 2-manifold) has

no boundary, but its upper hemisphere (the subset H of the

sphere where z � 0) has a boundary @H consisting of all points on the circle

x2
C y2

D 1, z D 0. For this example, the boundary is a smooth manifold of

dimension 1, and H contains its boundary.

(b) All of R
2 is a 2-manifold M in R

2. It has no boundary, but the square subset

Q D f.x; y/ 2 R
2
W 0 � x � 1; 0 � y � 1g does have a boundary. @Q consists

of all points on the four edges of square. This boundary is not a smooth manifold,

but if we omit the four corners of the square, each of the remaining straight line

segments is a one-dimensional manifold in R
2. Again, @Q � Q.
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It would be nice if we only had to deal with boundaries that are smooth, but such an

assumption is too restrictive for our purposes.

D E F I N I T I O N

13

Smooth and nonsmooth boundary points Let M be a subset of a

k-manifold M in R
n. A point x on the boundary @M is a smooth bound-

ary point of M if there exists an open set U � R
n containing x, a smooth

function f mapping U into R
n�k , and a smooth function g mapping U into R,

such that:

(i) M \ U D fy 2 U W f.y/ D 0g,

(ii) M \ U D fy 2 U W f.y/ D 0 and g.y/ � 0g, and

(iii) If h.x/ D
�

f.x/; g.x/
�

, then Dh.x/ maps R
n onto R

n�kC1.

The set of all smooth boundary points ofM constitutes the smooth boundary

of M: The points of @M that are not smooth boundary points constitute the

nonsmooth boundary of M:

Remark The smooth boundary of a subsetM of a smooth k-manifold in R
n consists

of one or more smooth .k � 1/-manifolds in R
n.

D E F I N I T I O N

14

A piece-with-boundary of a k-manifold M in R
n is a closed (in R

n) subset

M of M satisfying

(i) the nonsmooth part of the boundary of M has .k � 1/-volume zero,

and

(ii) for every point x 2 @M; there is an open set U � R
n such that

fy 2 @M \ U g has finite .k � 1/-volume.

Evidently, both of the subsets in Example 5 above are pieces-with-boundary of their

respective manifolds. The smooth boundary of the hemisphere in part (a) is the whole

circle.1 The smooth boundary of the square region in part (b) consists of the four sides

of the square excluding the corner points, which are nonsmooth boundary points.

The tangent space to the smooth boundary @M of a piece-with-boundary M of

k-manifold M at x is a .k � 1/-dimensional subspace of the k-dimensional tangent

space to M at x. Therefore, there exists a one-dimensional space that is tangent to M

at x but normal to @M at x. This normal space is spanned by grad g.x/, where g is

the function in the definition of smooth boundary. Since g.x/ D 0 and g.y/ � 0 for

y 2M , grad g.x/ is a normal pointing intoM and �grad g.x/ is an outward pointing

normal. (Note that condition (iii) of Definition 13 guarantees that grad g.x/ ¤ 0.) We

always use an outer normal to orient the smooth boundary ofM; describing the result

as the orientation inherited from the orientation of M:

D E F I N I T I O N

15

Inherited orientation of the smooth boundary IfM is a piece-with-bound-

ary of an oriented (by !) k-manifold in R
n, the .k � 1/-dimensional

smooth boundary of M inherits the orientation @! given by the differential

.k � 1/-form

@!.x/.v1; : : : ; vk�1/ D !.x/.n.x/; v1; : : : ; vk�1/;

where n.x/ is a normal field on the smooth part of @M that points out of M:

We have already seen this situation when considering Green’s Theorem in R
2, Stokes’s

Theorem in R
3, and the Divergence Theorem in both R

2 and R
3 in Chapter 16. The

following examples confirm that the definition above gives the same result as the ori-

entations used there.

1 Like some other terms used here, “piece-with-boundary” was introduced by John

and Barbara Hubbard in their text Vector Calculus, Linear Algebra, and Differential

Forms, 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 2002.
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they span the two-dimensional normal space to M at x. If u and v are linearly inde-

pendent vectors in the tangent space Tx.M/, then the differential 2-form

!.x/.u; v/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 u1 v1

0 1 u2 v2

1 0 u3 v3

0 �2x4 u4 v4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

defines an orientation for M. Observe the first two columns are the components of

the two independent normals, and the determinant depends smoothly on x. To verify

that it is never zero, observe that the vectors t D e1 � e3 and w D 2x4e2 C e4 are

perpendicular to each other and to each of the two normals. They must therefore span

the two-dimensional tangent space to M at x. Direct calculation shows that

!.x/.t;w/ D �2.1C 4x2
4/ < 0

for all x. If u D ˛tC ˇw and v D  tC ıw, where ˛ı � ˇ ¤ 0 so that u and v are

linearly independent, then

!.x/.u; v/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 ˛t1 C ˇw1  t1 C ıw1

0 1 ˛t2 C ˇw2  t2 C ıw2

1 0 ˛t3 C ˇw3  t3 C ıw3

0 �2x4 ˛t4 C ˇw4  t4 C ıw4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 t1 w1

0 1 t2 w2

1 0 t3 w3

0 �2x4 t4 w4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 0

0 1 0 0

0 0 ˛ 

0 0 ˇ ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.2C 4x
2
4/.˛ı � ˇ/;

since the determinant of a product is the product of the determinants. The result is

nonzero and has constant sign for all x 2 M, so ! orients M. If ˛ı � ˇ < 0, the

positive orientation will be given by using the ordered pair .t;w/ as a basis for the

tangent space Tx.M/. Otherwise, use .w; t/.

Pieces-with-Boundary of a Manifold
The extension of the Fundamental Theorem of Calculus (the Generalized Stokes’s The-

orem) that we will develop in the next section relates the integral of the exterior deriva-

tive dˆ of a differential .k � 1/-form ˆ over a subset M of an oriented

k-manifold in R
n to the integral of ˆ over the suitably oriented boundary @M of S :

R

M
dˆ D

R

@M
ˆ. We must now clarify some of these terms, in particular, the kind of

set M must be to enable the evaluation of integrals over its boundary. Boundaries of

open sets can be very pathological, and we will have to restrict them somehow.

A manifold M in R
n does not itself contain any boundary points, but a subset M

of M can have a boundary contained in M. Specifically, the boundary @M of M

in M consists of all points x 2 M such that every open set U � R
n containing x

also contains points y ¤ x in M and points y ¤ x that are in M but not in M . The

boundary may or may not be a subset of M .

E X A M P L E 5
(a) The sphere x2

Cy2
C z2

D 1 in R
3 (a smooth 2-manifold) has

no boundary, but its upper hemisphere (the subset H of the

sphere where z � 0) has a boundary @H consisting of all points on the circle

x2
C y2

D 1, z D 0. For this example, the boundary is a smooth manifold of

dimension 1, and H contains its boundary.

(b) All of R
2 is a 2-manifold M in R

2. It has no boundary, but the square subset

Q D f.x; y/ 2 R
2
W 0 � x � 1; 0 � y � 1g does have a boundary. @Q consists

of all points on the four edges of square. This boundary is not a smooth manifold,

but if we omit the four corners of the square, each of the remaining straight line

segments is a one-dimensional manifold in R
2. Again, @Q � Q.
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It would be nice if we only had to deal with boundaries that are smooth, but such an

assumption is too restrictive for our purposes.

D E F I N I T I O N

13

Smooth and nonsmooth boundary points Let M be a subset of a

k-manifold M in R
n. A point x on the boundary @M is a smooth bound-

ary point of M if there exists an open set U � R
n containing x, a smooth

function f mapping U into R
n�k , and a smooth function g mapping U into R,

such that:

(i) M \ U D fy 2 U W f.y/ D 0g,

(ii) M \ U D fy 2 U W f.y/ D 0 and g.y/ � 0g, and

(iii) If h.x/ D
�

f.x/; g.x/
�

, then Dh.x/ maps R
n onto R

n�kC1.

The set of all smooth boundary points ofM constitutes the smooth boundary

of M: The points of @M that are not smooth boundary points constitute the

nonsmooth boundary of M:

Remark The smooth boundary of a subsetM of a smooth k-manifold in R
n consists

of one or more smooth .k � 1/-manifolds in R
n.

D E F I N I T I O N

14

A piece-with-boundary of a k-manifold M in R
n is a closed (in R

n) subset

M of M satisfying

(i) the nonsmooth part of the boundary of M has .k � 1/-volume zero,

and

(ii) for every point x 2 @M; there is an open set U � R
n such that

fy 2 @M \ U g has finite .k � 1/-volume.

Evidently, both of the subsets in Example 5 above are pieces-with-boundary of their

respective manifolds. The smooth boundary of the hemisphere in part (a) is the whole

circle.1 The smooth boundary of the square region in part (b) consists of the four sides

of the square excluding the corner points, which are nonsmooth boundary points.

The tangent space to the smooth boundary @M of a piece-with-boundary M of

k-manifold M at x is a .k � 1/-dimensional subspace of the k-dimensional tangent

space to M at x. Therefore, there exists a one-dimensional space that is tangent to M

at x but normal to @M at x. This normal space is spanned by grad g.x/, where g is

the function in the definition of smooth boundary. Since g.x/ D 0 and g.y/ � 0 for

y 2M , grad g.x/ is a normal pointing intoM and �grad g.x/ is an outward pointing

normal. (Note that condition (iii) of Definition 13 guarantees that grad g.x/ ¤ 0.) We

always use an outer normal to orient the smooth boundary ofM; describing the result

as the orientation inherited from the orientation of M:

D E F I N I T I O N

15

Inherited orientation of the smooth boundary IfM is a piece-with-bound-

ary of an oriented (by !) k-manifold in R
n, the .k � 1/-dimensional

smooth boundary of M inherits the orientation @! given by the differential

.k � 1/-form

@!.x/.v1; : : : ; vk�1/ D !.x/.n.x/; v1; : : : ; vk�1/;

where n.x/ is a normal field on the smooth part of @M that points out of M:

We have already seen this situation when considering Green’s Theorem in R
2, Stokes’s

Theorem in R
3, and the Divergence Theorem in both R

2 and R
3 in Chapter 16. The

following examples confirm that the definition above gives the same result as the ori-

entations used there.

1 Like some other terms used here, “piece-with-boundary” was introduced by John

and Barbara Hubbard in their text Vector Calculus, Linear Algebra, and Differential

Forms, 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 2002.
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E X A M P L E 6
A region R in R

2 bounded by one or more piecewise smooth

closed curves C is a piece-with-boundary of the 2-manifold R
2.

If we assume that R
2 is oriented by the 2-form ! D dx ^ dy so that !.i; j/ D 1,

then !.n; t/ will be positive whenever n is an outward (from R) normal to C and t is

a tangent to C in the direction of the orientation of C. See Figure 17.1. The positive

direction of C given by t is 90ı counterclockwise from the outward normal.

y

x

t n

t

n
C

C

R

Figure 17.1 The orientation of C

inherited from the standard orientation

of R

E X A M P L E 7
Let S be a smooth surface (2-manifold) in R

3. Let n D n1i C

n2jCn3k be a nonvanishing, smoothly varying normal vector field

on S. As suggested in Example 2 above, S can be oriented with the differential 2-form

!.x/.v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n1.x/ v11 v21

n2.x/ v12 v22

n3.x/ v13 v23

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for v1 and v2 in the tangent space to S at x.

If S is a piece-with-boundary of S having smooth boundary consisting of pieces of

curves (1-manifolds), the boundary @S inherits the orientation given by the differential

1-form @!.x/.v/ D !.x/.nout; v/, where nout is an outward (from S) normal to the

smooth boundary at x, and v is tangent to that boundary. It follows that @!.x/.v/ is

the value of the 3� 3 determinant whose columns, in order, are the components of the

normal field n orienting S, the components of nout (which is tangent to S but normal to

x

y

z

n

S

C

C
nout

nout

v
x

x v

Figure 17.2 Boundary orientation

inherited from the orientation of a smooth

surface in R
3

the boundary of S), and the components of v. Assuming that R
3 has the standard basis,

the vectors n, nout, and v form a right-handed triad, so the boundary orientation is such

that if we stand erect on the smooth boundary of S (head upward in the direction of n)

facing out of S (i.e., in the direction of nout), then the positive direction of the boundary

of S will be to our left. See Figure 17.2.

E X A M P L E 8
Consider a cube Q in R

3 with the standard orientation given by

! D dx^dy ^dz. @Q consists of 6 square faces (smooth bound-

ary) and 12 edges together with their endpoints (nonsmooth boundary). Each square

face is oriented with an outward normal n inherited from !. In turn, each square face

induces an orientation on its four edges. That orientation is counterclockwise as seen

from a point outside the cube in the direction of the normal for that face. Note that

every edge of the cube is part of the smooth boundary of two of the square faces, and

those faces induce opposite orientations on that edge. See Figure 17.3. This “can-

cellation” suggests the observation that the boundary of a boundary of a piece-with-

boundary is empty.

x

y

z

n D k

n D j

n D i

Figure 17.3 Orientations of three faces of

a cube in R
3
, and of their edges

We can calculate the orientation of the six faces of the cube. The front face of the

cube in Figure 17.3 has normal n D i. Accordingly, its orientation is given by

!front.v1; v2/ D !.i; v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 v11 v21

0 v12 v22

0 v13 v23

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D v12v23 � v13v22 D dy ^ dz.v1; v2/:

On the other hand, the normal for the back face is �i, so the orientation for that face is

!back.v1; v2/ D !.�i; v1; v2/ D �dy ^ dz.v1; v2/:

Observe that the sum of the front and back orientations is 0. A similar situation holds

for the sum of the orientations of the left and right side square faces, and the top and

bottom square faces. See Exercise 1 and Exercise 2.
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When the smooth boundary of a piece-with-boundary of a smooth, oriented

k-manifold consists of several disjoint pieces-with-boundary of .k � 1/-manifolds,

together with some nonsmooth sets where these .k � 1/-dimensional pieces join in

pairs, as is the case in Example 8, it is useful to write the smooth boundary as a “sum”

of these disjoint pieces, each with its proper orientation, given by aC or � sign.

E X A M P L E 9
Denote byQk

y.he1; : : : ; hek/ the k-cube in R
k having edge length

h > 0, one corner at y, and spanned by the given multiples of

the standard basis vectors in R
k . (This is by analogy with the definition of a k-par-

allelogram given in Definition 10.) The cube shown in Figure 17.3 is Q3

0
.hi; hj; hk/.

The cube Qk
y.he1; : : : ; hek/ has smooth oriented boundary consisting of 2k cubes of

dimension .k � 1/ oriented by the direction of their outward normals. The boundary

cubes come in pairs of opposite ones; for example, the pair with normals ˙ej are

(using a hat b to indicate a missing component)

Q
k�1
yCaej

.he1; : : : ;
bhej ; : : : ; hek/ and Q

k�1
y .he1; : : : ;

bhej ; : : : ; hek/;

and these have orientations given by

!.ej ; he1; : : : ;
bhej ; : : : ; hek/ D .�1/

j �1
h

k�1
!.e1; : : : ; ej ; : : : ; ek/; and

!.�ej ; he1; : : : ;
bhej ; : : : ; hek/ D �.�1/

j �1
h

k�1
!.e1; : : : ; ej ; : : : ; ek/:

The factors .�1/j �1 account for the fact that j � 1 simple transpositions are needed

to move the normals Cej and �ej into the missing positions in these orientations so

they are consistent with the standard positive orientation ! of R
k and, therefore, of the

given k-cube. Accordingly, the smooth oriented boundary of Qk
y.he1; : : : ; hek/ can

be expressed as the sum

@Q
k
y.he1; : : : ; hek/

D

k
X

j D1

.�1/
j �1

�

Q
k�1
yChej

.he1; : : : ;
bhej ; : : : ; hek/ �Q

k�1
y .he1; : : : ;

bhej ; : : : ; hek/

�

:

Remark A similar formula holds for the oriented boundary of a k-parallelogram in

R
k; just replace the Q’s with P ’s and the vectors aej with vj , 1 � j � k.

Integrating a Differential Form over a Manifold
As we did for functions in Section 17.3, we are going to define the integral of a smooth

differential k-form over a smooth k-manifold in R
n by using a parametrization of the

manifold over a set in R
k . Now, however, the orientation of the manifold must be

preserved by the parametrization.

D E F I N I T I O N

16

Orientation-preserving parametrizations Let M � R
n be a smooth

k-manifold in R
n oriented by the differential k-form !.x/. Suppose p is a

smooth parametrization of M over a subset U � R
k , and that it is strict on

U � S where S � U has k-volume zero (as specified in Definition 9 in

Section 17.3). We say that p is orientation preserving if for all u 2 U � S

!.p.u//

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

> 0:

If the inequality above is reversed, we say p is orientation reversing.
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E X A M P L E 6
A region R in R

2 bounded by one or more piecewise smooth

closed curves C is a piece-with-boundary of the 2-manifold R
2.

If we assume that R
2 is oriented by the 2-form ! D dx ^ dy so that !.i; j/ D 1,

then !.n; t/ will be positive whenever n is an outward (from R) normal to C and t is

a tangent to C in the direction of the orientation of C. See Figure 17.1. The positive

direction of C given by t is 90ı counterclockwise from the outward normal.

y

x

t n

t

n
C

C

R

Figure 17.1 The orientation of C

inherited from the standard orientation

of R

E X A M P L E 7
Let S be a smooth surface (2-manifold) in R

3. Let n D n1i C

n2jCn3k be a nonvanishing, smoothly varying normal vector field

on S. As suggested in Example 2 above, S can be oriented with the differential 2-form

!.x/.v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n1.x/ v11 v21

n2.x/ v12 v22

n3.x/ v13 v23

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for v1 and v2 in the tangent space to S at x.

If S is a piece-with-boundary of S having smooth boundary consisting of pieces of

curves (1-manifolds), the boundary @S inherits the orientation given by the differential

1-form @!.x/.v/ D !.x/.nout; v/, where nout is an outward (from S) normal to the

smooth boundary at x, and v is tangent to that boundary. It follows that @!.x/.v/ is

the value of the 3� 3 determinant whose columns, in order, are the components of the

normal field n orienting S, the components of nout (which is tangent to S but normal to

x

y

z

n

S

C

C
nout

nout

v
x

x v

Figure 17.2 Boundary orientation

inherited from the orientation of a smooth

surface in R
3

the boundary of S), and the components of v. Assuming that R
3 has the standard basis,

the vectors n, nout, and v form a right-handed triad, so the boundary orientation is such

that if we stand erect on the smooth boundary of S (head upward in the direction of n)

facing out of S (i.e., in the direction of nout), then the positive direction of the boundary

of S will be to our left. See Figure 17.2.

E X A M P L E 8
Consider a cube Q in R

3 with the standard orientation given by

! D dx^dy ^dz. @Q consists of 6 square faces (smooth bound-

ary) and 12 edges together with their endpoints (nonsmooth boundary). Each square

face is oriented with an outward normal n inherited from !. In turn, each square face

induces an orientation on its four edges. That orientation is counterclockwise as seen

from a point outside the cube in the direction of the normal for that face. Note that

every edge of the cube is part of the smooth boundary of two of the square faces, and

those faces induce opposite orientations on that edge. See Figure 17.3. This “can-

cellation” suggests the observation that the boundary of a boundary of a piece-with-

boundary is empty.

x

y

z

n D k

n D j

n D i

Figure 17.3 Orientations of three faces of

a cube in R
3
, and of their edges

We can calculate the orientation of the six faces of the cube. The front face of the

cube in Figure 17.3 has normal n D i. Accordingly, its orientation is given by

!front.v1; v2/ D !.i; v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 v11 v21

0 v12 v22

0 v13 v23

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D v12v23 � v13v22 D dy ^ dz.v1; v2/:

On the other hand, the normal for the back face is �i, so the orientation for that face is

!back.v1; v2/ D !.�i; v1; v2/ D �dy ^ dz.v1; v2/:

Observe that the sum of the front and back orientations is 0. A similar situation holds

for the sum of the orientations of the left and right side square faces, and the top and

bottom square faces. See Exercise 1 and Exercise 2.
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When the smooth boundary of a piece-with-boundary of a smooth, oriented

k-manifold consists of several disjoint pieces-with-boundary of .k � 1/-manifolds,

together with some nonsmooth sets where these .k � 1/-dimensional pieces join in

pairs, as is the case in Example 8, it is useful to write the smooth boundary as a “sum”

of these disjoint pieces, each with its proper orientation, given by aC or � sign.

E X A M P L E 9
Denote byQk

y.he1; : : : ; hek/ the k-cube in R
k having edge length

h > 0, one corner at y, and spanned by the given multiples of

the standard basis vectors in R
k . (This is by analogy with the definition of a k-par-

allelogram given in Definition 10.) The cube shown in Figure 17.3 is Q3

0
.hi; hj; hk/.

The cube Qk
y.he1; : : : ; hek/ has smooth oriented boundary consisting of 2k cubes of

dimension .k � 1/ oriented by the direction of their outward normals. The boundary

cubes come in pairs of opposite ones; for example, the pair with normals ˙ej are

(using a hat b to indicate a missing component)

Q
k�1
yCaej

.he1; : : : ;
bhej ; : : : ; hek/ and Q

k�1
y .he1; : : : ;

bhej ; : : : ; hek/;

and these have orientations given by

!.ej ; he1; : : : ;
bhej ; : : : ; hek/ D .�1/

j �1
h

k�1
!.e1; : : : ; ej ; : : : ; ek/; and

!.�ej ; he1; : : : ;
bhej ; : : : ; hek/ D �.�1/

j �1
h

k�1
!.e1; : : : ; ej ; : : : ; ek/:

The factors .�1/j �1 account for the fact that j � 1 simple transpositions are needed

to move the normals Cej and �ej into the missing positions in these orientations so

they are consistent with the standard positive orientation ! of R
k and, therefore, of the

given k-cube. Accordingly, the smooth oriented boundary of Qk
y.he1; : : : ; hek/ can

be expressed as the sum

@Q
k
y.he1; : : : ; hek/

D

k
X

j D1

.�1/
j �1

�

Q
k�1
yChej

.he1; : : : ;
bhej ; : : : ; hek/ �Q

k�1
y .he1; : : : ;

bhej ; : : : ; hek/

�

:

Remark A similar formula holds for the oriented boundary of a k-parallelogram in

R
k; just replace the Q’s with P ’s and the vectors aej with vj , 1 � j � k.

Integrating a Differential Form over a Manifold
As we did for functions in Section 17.3, we are going to define the integral of a smooth

differential k-form over a smooth k-manifold in R
n by using a parametrization of the

manifold over a set in R
k . Now, however, the orientation of the manifold must be

preserved by the parametrization.

D E F I N I T I O N

16

Orientation-preserving parametrizations Let M � R
n be a smooth

k-manifold in R
n oriented by the differential k-form !.x/. Suppose p is a

smooth parametrization of M over a subset U � R
k , and that it is strict on

U � S where S � U has k-volume zero (as specified in Definition 9 in

Section 17.3). We say that p is orientation preserving if for all u 2 U � S

!.p.u//

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

> 0:

If the inequality above is reversed, we say p is orientation reversing.
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The definition of the integral of a differential k-form over a k-manifold is similar

to that of a function over a manifold given in the previous section except that the k-form

now plays the role of both the integrand and the volume element.

D E F I N I T I O N

17

Integration of a differential k-form over a k-manifold

Let p, mapping U � R
k into R

n, be an orientation-preserving, smooth

parametrization of the k-manifold M � R
n oriented by the differential

k-form !. If ˆ is a smooth differential k-form defined in an open set in

R
n containing M, we define the integral of ˆ over M as

Z

M
ˆ D

Z

U

ˆ

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

du1 du2 � � � duk:

The following is a simple, but important, example.

E X A M P L E 10
If ˆ D f .x1; : : : ; xk/ dx1^ � � � ^dxk and M is a k-manifold (an

open set) in R
k , show that

Z

M
ˆ D

Z

M
f .x1; x2; : : : ; xk/ dx1 dx2 � � � dxk:

Solution We use the identity parametrization p.u/ given by xi D pi .u/ D ui , so that

@p.u/=@ui D ei , the i th standard basis vector in R
k . Observe that

dx1 ^ � � � ^ dxn.e1; : : : ; ek/ D 1 (the determinant of the k � k identity matrix),

so we have

Z

M
ˆ D

Z

M
f .u1; u2; : : : ; un/ du1 du2 � � � dun;

which is the desired result if we replace the ui ’s with xi ’s.

E X A M P L E 11
Let p.u/ be a parametrization of an .n � 1/-manifold (hypersur-

face) S in R
n over a domain U � R

n�1. Show that

n D

n
X

iD1

.�1/
i�1 @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
ei .�/

is normal to S at p.u/, and that

dS D dVn�1 D jnj du1 du2 : : : dun�1

is the “area element” (actually .n� 1/ volume element) on S expressed in terms of the

parameters u. The case n D 3 of this result was proved in Section 15.5.

Solution The vector n given by .�/ is just the expansion in minors about the first row

of the determinant

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e1 e2 � � � en
@x1

@u1

@x2

@u1

� � �

@xn

@u1
:
:
:

:
:
:

: : :
:
:
:

@x1

@un�1

@x2

@un�1

� � �

@xn

@un�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 17 – page 991 October 19, 2016

SECTION 17.5: The Generalized Stokes’s Theorem 991

The vectors vi D .@x=@ui / are the last n � 1 rows of the above determinant and

are linearly independent and tangent to S at p.u/. Hence, n is normal to each of

those vectors and so to S. Also, the n � 1 tangent vectors vi dui span an .n � 1/-

dimensional parallelogram that is the area element on S at p.u/ corresponding to the

element du1 du2 : : : dun�1 in R
n�1. This parallelogram has .n � 1/-volume dS D

jnj du1 du2 : : : dun�1 in R
n�1.

Remark If S D @M where M is an n-dimensional oriented manifold (open set) in

R
n with the standard orientation, then n is the normal on S pointing outward from M.

In this case, if F is a vector field in R
n and ON D n=jnj is the unit outward normal field

on S, then

F � ONdS D F � n du1 du2 � � � dun�1

D

n
X

iD1

.�1/
i�1
Fi

�

p.u/
� @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; ui�1/
du1 du2 � � � dun�1

is the flux of F out of M through the .n � 1/-volume element dS .

E X E R C I S E S 17.4

Exercises 1–4 refer to faces of the cube Q in R
3

considered in

Example 8.

1. Show that the orientation of the top face of Q is given by

dx ^ dy. What is the orientation of the bottom face?

2. Show that the orientation of the right face of Q is given by

dx ^ dz D �dz ^ dx. What is the orientation of the left

face?

3. Review the calculation of the orientations of the front and

back faces of the cube Q in Example 8. Show that

!front.v1; v2/ D dx.v1 � v2/ D �!back.v1; v2/:

4. As in the previous exercise, re-express the orientations of the

top and bottom faces of Q from Exercise 1 and the right and

left faces of Q from Exercise 2 as differential 1-forms

evaluated at the cross product of v1 and v2.

5. The 2-manifold M in R
4

given by the equations x1 C x2 D 0

and x3 C x4 D 0, where 0 < x1 < 1 and 0 < x3 < 1, has

normals e1 C e2 and e3 C e4. It is oriented by the 2-form

!.v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 v11 v21

1 0 v12 v22

0 1 v13 v23

0 1 v14 v24

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Is the parametrization

.x1; x2; x3; x4/ D x D p.u/ D .u1;�u1; u2;�u2/

orientation preserving for M? If not, give an example of a

parametrization that would be.

6. Using the orientation-preserving parametrization for the

manifold M of the previous exercise, evaluate

Z

M

ˆ where

ˆ D x2x4 dx1 ^ dx3.

7.I Let S be a piece-with-boundary of a smooth hypersurface

(.k � 1/-manifold) in R
k

given by equation

xi D gi .x1; : : : ; xi�1; xiC1; : : : ; xk/. Let

ˆ D dx1 ^ � � � ^ dxi�1 ^ dxiC1 ^ � � � ^ dxk . Show that
R

S ˆ

is (apart from sign due to the orientation of S) the

.k � 1/-volume of the projection of S on the coordinate

hyperplane xi D 0.

8.I Let M be a convex open set in R
k

with boundary @M , and let

ˆ be a constant .k � 1/-form on R
k

(i.e., all its coefficients

are constant). Show that
R

@M ˆ D 0. Hint: For each i , M can

be described as lying between two surfaces of the form

considered in the previous exercise, both of which have the

same projection Mi on xi D 0.

17.5 The Generalized Stokes’s Theorem
The previous four sections have developed much new machinery: forms and differen-

tial forms, the exterior derivative, manifolds and their boundaries and orientations, and

integrals of functions and differential forms over manifolds and their boundaries. This
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The definition of the integral of a differential k-form over a k-manifold is similar

to that of a function over a manifold given in the previous section except that the k-form

now plays the role of both the integrand and the volume element.

D E F I N I T I O N

17

Integration of a differential k-form over a k-manifold

Let p, mapping U � R
k into R

n, be an orientation-preserving, smooth

parametrization of the k-manifold M � R
n oriented by the differential

k-form !. If ˆ is a smooth differential k-form defined in an open set in

R
n containing M, we define the integral of ˆ over M as

Z

M
ˆ D

Z

U

ˆ

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

du1 du2 � � � duk:

The following is a simple, but important, example.

E X A M P L E 10
If ˆ D f .x1; : : : ; xk/ dx1^ � � � ^dxk and M is a k-manifold (an

open set) in R
k , show that

Z

M
ˆ D

Z

M
f .x1; x2; : : : ; xk/ dx1 dx2 � � � dxk:

Solution We use the identity parametrization p.u/ given by xi D pi .u/ D ui , so that

@p.u/=@ui D ei , the i th standard basis vector in R
k . Observe that

dx1 ^ � � � ^ dxn.e1; : : : ; ek/ D 1 (the determinant of the k � k identity matrix),

so we have

Z

M
ˆ D

Z

M
f .u1; u2; : : : ; un/ du1 du2 � � � dun;

which is the desired result if we replace the ui ’s with xi ’s.

E X A M P L E 11
Let p.u/ be a parametrization of an .n � 1/-manifold (hypersur-

face) S in R
n over a domain U � R

n�1. Show that

n D

n
X

iD1

.�1/
i�1 @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
ei .�/

is normal to S at p.u/, and that

dS D dVn�1 D jnj du1 du2 : : : dun�1

is the “area element” (actually .n� 1/ volume element) on S expressed in terms of the

parameters u. The case n D 3 of this result was proved in Section 15.5.

Solution The vector n given by .�/ is just the expansion in minors about the first row

of the determinant

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e1 e2 � � � en
@x1

@u1

@x2

@u1

� � �

@xn

@u1
:
:
:

:
:
:

: : :
:
:
:

@x1

@un�1

@x2

@un�1

� � �

@xn

@un�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
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The vectors vi D .@x=@ui / are the last n � 1 rows of the above determinant and

are linearly independent and tangent to S at p.u/. Hence, n is normal to each of

those vectors and so to S. Also, the n � 1 tangent vectors vi dui span an .n � 1/-

dimensional parallelogram that is the area element on S at p.u/ corresponding to the

element du1 du2 : : : dun�1 in R
n�1. This parallelogram has .n � 1/-volume dS D

jnj du1 du2 : : : dun�1 in R
n�1.

Remark If S D @M where M is an n-dimensional oriented manifold (open set) in

R
n with the standard orientation, then n is the normal on S pointing outward from M.

In this case, if F is a vector field in R
n and ON D n=jnj is the unit outward normal field

on S, then

F � ONdS D F � n du1 du2 � � � dun�1

D

n
X

iD1

.�1/
i�1
Fi

�

p.u/
� @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; ui�1/
du1 du2 � � � dun�1

is the flux of F out of M through the .n � 1/-volume element dS .

E X E R C I S E S 17.4

Exercises 1–4 refer to faces of the cube Q in R
3

considered in

Example 8.

1. Show that the orientation of the top face of Q is given by

dx ^ dy. What is the orientation of the bottom face?

2. Show that the orientation of the right face of Q is given by

dx ^ dz D �dz ^ dx. What is the orientation of the left

face?

3. Review the calculation of the orientations of the front and

back faces of the cube Q in Example 8. Show that

!front.v1; v2/ D dx.v1 � v2/ D �!back.v1; v2/:

4. As in the previous exercise, re-express the orientations of the

top and bottom faces of Q from Exercise 1 and the right and

left faces of Q from Exercise 2 as differential 1-forms

evaluated at the cross product of v1 and v2.

5. The 2-manifold M in R
4

given by the equations x1 C x2 D 0

and x3 C x4 D 0, where 0 < x1 < 1 and 0 < x3 < 1, has

normals e1 C e2 and e3 C e4. It is oriented by the 2-form

!.v1; v2/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 v11 v21

1 0 v12 v22

0 1 v13 v23

0 1 v14 v24

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Is the parametrization

.x1; x2; x3; x4/ D x D p.u/ D .u1;�u1; u2;�u2/

orientation preserving for M? If not, give an example of a

parametrization that would be.

6. Using the orientation-preserving parametrization for the

manifold M of the previous exercise, evaluate

Z

M

ˆ where

ˆ D x2x4 dx1 ^ dx3.

7.I Let S be a piece-with-boundary of a smooth hypersurface

(.k � 1/-manifold) in R
k

given by equation

xi D gi .x1; : : : ; xi�1; xiC1; : : : ; xk/. Let

ˆ D dx1 ^ � � � ^ dxi�1 ^ dxiC1 ^ � � � ^ dxk . Show that
R

S ˆ

is (apart from sign due to the orientation of S) the

.k � 1/-volume of the projection of S on the coordinate

hyperplane xi D 0.

8.I Let M be a convex open set in R
k

with boundary @M , and let

ˆ be a constant .k � 1/-form on R
k

(i.e., all its coefficients

are constant). Show that
R

@M ˆ D 0. Hint: For each i , M can

be described as lying between two surfaces of the form

considered in the previous exercise, both of which have the

same projection Mi on xi D 0.

17.5 The Generalized Stokes’s Theorem
The previous four sections have developed much new machinery: forms and differen-

tial forms, the exterior derivative, manifolds and their boundaries and orientations, and

integrals of functions and differential forms over manifolds and their boundaries. This
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has all been done with one ultimate goal in mind—namely, the provision of a general-

ized version of the Fundamental Theorem of Calculus that holds and appears the same

in any number of dimensions. Without further ado, here it is.

T H E O R E M

4

The Generalized Stokes’s Theorem (GST)

If M is a closed, bounded, piece-with-boundary of an oriented k-manifold M in R
n,

and ˆ is a smooth differential .k � 1/-form defined in an open set containing M; then

Z

M

dˆ D

Z

@M

ˆ;

where @M has the orientation inherited from M. It is understood that the boundary

integral is really taken over the smooth part of the boundary @M:

Remark While we will not prove this theorem in its full generality here, we will

prove it for a significant special case from which the general case can, with some

effort, be deduced. We will also give a somewhat handwaving argument that should

convince you of the validity of the general case. Then we will show how the major

theorems of vector calculus are all special cases of the Generalized Stokes’s Theorem.

Remark The requirement that M be bounded is not necessarily restrictive. If M

is the union of nonoverlapping, bounded pieces-with-boundary of M, we can add the

results of the theorem applied to the individual pieces to get the integral of dˆ over the

whole piece. Where two pieces abut along parts of their boundaries, those parts will

have opposite orientations inherited from M, so their contributions to the sum of the

boundary integrals will cancel, leaving only the contributions from the parts that are

part of the boundary of the union. If M is unbounded but the sums taken over those

bounded pieces contained in the ball of radius r in R
n approach limits as r !1, the

GST will still hold for M:

Remark Let us confirm that the Fundamental Theorem of Calculus really is a special

Again, we stress that if the

oriented boundary of @M

consists of the oriented points

�a and Cb, then

Z

@M

f D Cf .b/ � f .a/;

not f .b/C f .�a/.

case of the Generalized Stokes’s Theorem. Let M D Œa; b� be a subset of the 1-

manifold R oriented from a to b. The boundary @M of M consists of the two points a

and b, each of which is a zero-dimensional manifold; in this case the “outward” (from

M ) direction is C at b and � at a. Thus, @M D f�a; Cbg. If f is a smooth function

(a differential 0-form) on M; then its exterior derivative is df D f 0.x/ dx. We have

Z b

a

f
0
.x/ dx D

Z

M

df D

Z

@M

f D
�

Cf .b/
�

C

�

�f .a/
�

D f .b/� f .a/:

Proof of Theorem 4 for a k-Cube
Let ˆ be a differential .k � 1/-form on R

k . Then

ˆ D

k
X

iD1

ai .x1; : : : ; xk/ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk;

where, again, the hat b indicates a missing factor. The exterior derivative of ˆ is the

differential k-form given by

dˆ D

k
X

iD1

0

@

k
X

j D1

@ai

@xj

dxj

1

A ^ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk:
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The only nonzero terms in this double sum are those for which j D i , so we have

dˆ D

k
X

iD1

@ai

@xi

dxi ^ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk

D

k
X

iD1

.�1/
i�1 @ai

@xi

dx1 ^ � � � ^ dxi ^ � � � ^ dxk;

since i � 1 reversals are required to move dxi from the front of the list to fill in the

missing i th position.

Now let Q D Qk
y.he1; : : : ; hek/ be the cube of edge length h in R

k described in

Example 9 in Section 17.4. Then

Z

Q

dˆ D

k
X

iD1

.�1/
i�1

Z

Q

@ai

@xi

dx1 ^ � � � ^ dxk

D

k
X

iD1

.�1/
i�1

Z

Q

@ai

@xi

dx1 dx2 � � � dxk

by the result of Example 10 in Section 17.4. Let Qi be the projection of Q on the

coordinate plane with normal ei , that is, Qi D fx 2 R
k
W xi D 0 yj � xj �

yj C h; j ¤ ig. We can iterate the above integral to obtain

Z

Q

dˆ D

k
X

iD1

.�1/
i�1

Z

Qi

dx1 : : :
bdxi : : : dxn

Z yi Ch

yi

@ai

@xi

dxi

D

k
X

iD1

.�1/
i�1

Z

Qi

�

ai .x1; : : : ; yi C h; : : : ; xk/

� ai .x1; : : : ; yi ; : : : ; xk/

�

dx1 : : : ;
bdxi : : : dxk

D

Z

@Q

ˆ

because the k pairs of .k � 1/-cube faces of the oriented boundary @Q of Q are given

by

k
X

iD1

.�1/
i�1
�

Q
k�1
yChei

.he1; : : : ;
chei ; : : : ; hek/ �Q

k�1
y .he1; : : : ;

chei ; : : : ; hek/

�

:

Remark Although the proof above was carried out for a k-cube in R
k , the result

extends to a k-cube in R
n. If the cube is spanned by k mutually perpendicular unit

vectors, an invertible linear transformation of coordinates in R
n can be found that maps

those vectors to the first k basis vectors e1, : : : , ek so that the coordinates of x 2 Q

satisfy xi D constant in Q for i > k. If ˆ is a .k � 1/-form on Q, its coefficients

will not vary with those coordinates, and those of its exterior derivative dˆ will be a

multiple of dx1 ^ � � � ^ dxk.

Remark If the coefficients of the differential .k � 1/-form ˆ are smooth, and if, for

all small h > 0, the k-cube fQhg has edge length h and contains the point y, then

lim
h!0

1

hk

Z

@Qh

ˆ D lim
h!0

1

hk

Z

Qh

dˆ D dˆ.y/: .†/

Some writers use .†/ as the definition of the exterior derivative dˆ. Since Qh has

k-volume hk , the second equality is not surprising. But the .k � 1/-cubes (2k of

them) that form @Qk have total .k � 1/-volume 2khk�1, so it is more surprising that

limh!0.1=h
k/
R

@Qh
ˆ should be finite.
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has all been done with one ultimate goal in mind—namely, the provision of a general-

ized version of the Fundamental Theorem of Calculus that holds and appears the same

in any number of dimensions. Without further ado, here it is.

T H E O R E M

4

The Generalized Stokes’s Theorem (GST)

If M is a closed, bounded, piece-with-boundary of an oriented k-manifold M in R
n,

and ˆ is a smooth differential .k � 1/-form defined in an open set containing M; then

Z

M

dˆ D

Z

@M

ˆ;

where @M has the orientation inherited from M. It is understood that the boundary

integral is really taken over the smooth part of the boundary @M:

Remark While we will not prove this theorem in its full generality here, we will

prove it for a significant special case from which the general case can, with some

effort, be deduced. We will also give a somewhat handwaving argument that should

convince you of the validity of the general case. Then we will show how the major

theorems of vector calculus are all special cases of the Generalized Stokes’s Theorem.

Remark The requirement that M be bounded is not necessarily restrictive. If M

is the union of nonoverlapping, bounded pieces-with-boundary of M, we can add the

results of the theorem applied to the individual pieces to get the integral of dˆ over the

whole piece. Where two pieces abut along parts of their boundaries, those parts will

have opposite orientations inherited from M, so their contributions to the sum of the

boundary integrals will cancel, leaving only the contributions from the parts that are

part of the boundary of the union. If M is unbounded but the sums taken over those

bounded pieces contained in the ball of radius r in R
n approach limits as r !1, the

GST will still hold for M:

Remark Let us confirm that the Fundamental Theorem of Calculus really is a special

Again, we stress that if the

oriented boundary of @M

consists of the oriented points

�a and Cb, then

Z

@M

f D Cf .b/ � f .a/;

not f .b/C f .�a/.

case of the Generalized Stokes’s Theorem. Let M D Œa; b� be a subset of the 1-

manifold R oriented from a to b. The boundary @M of M consists of the two points a

and b, each of which is a zero-dimensional manifold; in this case the “outward” (from

M ) direction is C at b and � at a. Thus, @M D f�a; Cbg. If f is a smooth function

(a differential 0-form) on M; then its exterior derivative is df D f 0.x/ dx. We have

Z b

a

f
0
.x/ dx D

Z

M

df D

Z

@M

f D
�

Cf .b/
�

C

�

�f .a/
�

D f .b/� f .a/:

Proof of Theorem 4 for a k-Cube
Let ˆ be a differential .k � 1/-form on R

k . Then

ˆ D

k
X

iD1

ai .x1; : : : ; xk/ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk;

where, again, the hat b indicates a missing factor. The exterior derivative of ˆ is the

differential k-form given by

dˆ D

k
X

iD1

0

@

k
X

j D1

@ai

@xj

dxj

1

A ^ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk:
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The only nonzero terms in this double sum are those for which j D i , so we have

dˆ D

k
X

iD1

@ai

@xi

dxi ^ dx1 ^ � � � ^
bdxi ^ � � � ^ dxk

D

k
X

iD1

.�1/
i�1 @ai

@xi

dx1 ^ � � � ^ dxi ^ � � � ^ dxk;

since i � 1 reversals are required to move dxi from the front of the list to fill in the

missing i th position.

Now let Q D Qk
y.he1; : : : ; hek/ be the cube of edge length h in R

k described in

Example 9 in Section 17.4. Then

Z

Q

dˆ D

k
X

iD1

.�1/
i�1

Z

Q

@ai

@xi

dx1 ^ � � � ^ dxk

D

k
X

iD1

.�1/
i�1

Z

Q

@ai

@xi

dx1 dx2 � � � dxk

by the result of Example 10 in Section 17.4. Let Qi be the projection of Q on the

coordinate plane with normal ei , that is, Qi D fx 2 R
k
W xi D 0 yj � xj �

yj C h; j ¤ ig. We can iterate the above integral to obtain

Z

Q

dˆ D

k
X

iD1

.�1/
i�1

Z

Qi

dx1 : : :
bdxi : : : dxn

Z yi Ch

yi

@ai

@xi

dxi

D

k
X

iD1

.�1/
i�1

Z

Qi

�

ai .x1; : : : ; yi C h; : : : ; xk/

� ai .x1; : : : ; yi ; : : : ; xk/

�

dx1 : : : ;
bdxi : : : dxk

D

Z

@Q

ˆ

because the k pairs of .k � 1/-cube faces of the oriented boundary @Q of Q are given

by

k
X

iD1

.�1/
i�1
�

Q
k�1
yChei

.he1; : : : ;
chei ; : : : ; hek/ �Q

k�1
y .he1; : : : ;

chei ; : : : ; hek/

�

:

Remark Although the proof above was carried out for a k-cube in R
k , the result

extends to a k-cube in R
n. If the cube is spanned by k mutually perpendicular unit

vectors, an invertible linear transformation of coordinates in R
n can be found that maps

those vectors to the first k basis vectors e1, : : : , ek so that the coordinates of x 2 Q

satisfy xi D constant in Q for i > k. If ˆ is a .k � 1/-form on Q, its coefficients

will not vary with those coordinates, and those of its exterior derivative dˆ will be a

multiple of dx1 ^ � � � ^ dxk.

Remark If the coefficients of the differential .k � 1/-form ˆ are smooth, and if, for

all small h > 0, the k-cube fQhg has edge length h and contains the point y, then

lim
h!0

1

hk

Z

@Qh

ˆ D lim
h!0

1

hk

Z

Qh

dˆ D dˆ.y/: .†/

Some writers use .†/ as the definition of the exterior derivative dˆ. Since Qh has

k-volume hk , the second equality is not surprising. But the .k � 1/-cubes (2k of

them) that form @Qk have total .k � 1/-volume 2khk�1, so it is more surprising that

limh!0.1=h
k/
R

@Qh
ˆ should be finite.
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Completing the Proof
While we will not give a detailed proof of the GST here, we will make several obser-

vations about extending the proof to wider classes of domains.

(a) The proof above extends with minimal change to k-dimensional rectangles.

(b) An invertible linear transformation can map a k-parallelogram in R
n to a k-cube,

so the GST holds for k-parallelograms.

(c) Let M be a piece-with-boundary of a k-manifold. If M is a union of non-

overlapping k-cubes (or k-rectangles), then
R

M
dˆ will be the sum of the inte-

grals over those cubes. However, where two such cubes abut along parts of their

smooth boundaries, they induce opposite orientations, so that those contributions

to the boundary integral of ˆ will cancel and the sum of the integrals over the

boundaries of the cubes will reduce to the boundary integral on @M: This sug-

gests that we can approximate M by nonoverlapping cubes of small edge length h

and obtain
Z

M

dˆ �

X

i

Z

Qi

dˆ D

X

i

Z

@Q

ˆ �

Z

@M

ˆ: .�/

The error in the first approximation in .�/ approaches 0 as h ! 0 because the

number of cubes near the boundary grows of order h�.n�1/, while the volume of

each decreases of order hn. The error in the second approximation in .�/ cannot

be similarly argued to decrease with h because the .k � 1/-volumes of the uncan-

celled parts of the boundaries of the cubes may remain relatively larger than the

.k � 1/-volume of @M . However, we can exploit the assumed smoothness of ˆ

to compensate for this. Expanding (the coefficients of) ˆ in Taylor series about

a point y near the boundary @M we obtain ˆ.x/ D ˆ0.y/ C O.jx � yj/ for x

near y. If we can fill the region between @M and the set of cubes used above to

approximate
R

M
dˆ with convex sets of diameter of order h abutting the cubes

and numbering of order h�.n�1/, and use the fact that the integral of ˆ0 over the

boundary of such convex sets is zero (see Exercise 8 in the previous section), we

can still have the error in the second approximation decreasing of order h.

(d) Strict parametrization LetU be an open set in R
k and let x D p.u/ be a one-to-

one, orientation-preserving parametrization over U of a subset of M containing

the closed piece-with-boundary M . Suppose that M D p.Q/, where Q is a

closed k-cube in U with edges parallel to the standard basis vectors in R
k , and

that @M D p.@Q/. If ˆ is a smooth differential .k � 1/-form on M, then
Z

M

dˆ D

Z

Q

dˆ

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

du1 du2 � � � duk:

The 2k faces of Q consist of k pairs Bi of .k � 1/-dimensional cubes, with orien-

tation inherited from Q, and such that the coordinate xi is constant in each cube

of the pair Bi . It follows that
Z

@M

ˆ

D

k
X

iD1

.�1/
i�1

Z

Bi

ˆ

 

@p.u/

@u1

; : : : ;

1@p.u/

@ui

; : : : ;
@p.u/

@uk

!

du1 � � �
bdui � � � duk

D

Z

@M

ˆ:

E X A M P L E 1
Evaluate the integral of the differential form

ˆ D .x
2
1 C x

2
4/ dx1 ^ dx2 ^ dx3 C .x

2
1 C x

2
3/ dx2 ^ dx3 ^ dx4

over the oriented boundary of the spherical cylinder C in R
4 consisting of those points

x satisfying .x1 C 1/
2
C x

2
2 C x

2
3 � 9 and 0 � x4 � 1.
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Solution Direct evaluation of the integral of ˆ by parametrizing the “cylindrical

wall” .x1 C 1/
2
C x

2
2 C x

2
3 D 9, 0 � x4 � 1, and then doing the same with the ends

of the cylinder, .x1 C 1/
2
C x2

2 C x
2
3 � 9, x4 D 0 or x4 D 1, while not impossible,

would be somewhat time consuming. It is much easier to use the GST. Observe that

dˆ D 2x4 dx4 ^ dx1 ^ dx2 ^ dx3 C 2x1 dx1 ^ dx2 ^ dx3 ^ dx4

D 2.x1 � x4/ dx1 ^ dx2 ^ dx3 ^ dx4:

Since dx1 ^ � � � ^ dx4 provides the standard orientation for R
4, we have

When integrating a function

times an orienting differential

k-form in R
k
; the wedge

products can be dropped. (See

Example 10 in Section 17.4.) The

integral is a normal k-fold

integral that can be iterated by

the usual techniques.

Z

@C

ˆ D

Z

C

dˆ D

Z

C

2.x1 � x4/ dx1 dx2 dx3 dx4

D 2

Z

B

x1 dx1 dx2 dx3

Z 1

0

dx4 � 2

Z

B

dx1 dx2 dx3

Z 1

0

x4 dx4;

where B is the ball in R
3 with centre at .�1; 0; 0/ and radius 3, having volume

VB D
4

3
�3

3
D 36�:

The integral of x1 over B is VB times the x1-coordinate of the centroid (i.e., the centre)

of B . Accordingly,

Z

@C

D .2/.36�/.�1/

Z 1

0

dx4 � .2/.36�/

Z 1

0

x4 dx4 D �108�:

Sometimes it is helpful to use the GST to evaluate the integral of a form over only part

of the surface of a region.

E X A M P L E 2
Letˆ D yz dx^dyC zx dy^dzCxy dz^dx. Evaluate

R

P ˆ,

where P is the part of the plane x C y C z D 1 lying in the first

octant of R
3. Assume that P is oriented with upward normal.

Solution S is part of the boundary of the tetrahedron T with vertices at .0; 0; 0/,

.1; 0; 0/, .0; 1; 0/, and .0; 0; 1/. The other three parts of the boundary of T are triangles

in the three coordinate planes. Observe ˆ D 0 on each of those three triangles. (For

instance, on z D 0 we have dz D 0, so all three terms of ˆ are zero.) Since the

assumed normal on P is outward from T; we have
Z

P

ˆ D

Z

@T

ˆ D

Z

T

dˆ D

Z

T

.y C z C x/ dx ^ dy ^ dz:

By symmetry,

Z

P

ˆ D 3

Z

T

z dx dy dz D 3

Z 1

0

z dz

Z 1�z

0

dy

Z 1�y�z

0

dx D
1

8
:

(We have omitted the details of evaluating the iterated integral.)

The Classical Theorems of Vector Calculus

E X A M P L E 3
Line integrals of conservative fields Let C be a piece-with-

boundary of a smooth curve (1-manifold) in R
n oriented so that

C runs from a to b. Let f be continuously differentiable on an open set containing C .

Let OT be the unit tangent vector field on C in the direction of its orientation, and let ds

be the arc length element on C . Then
Z

C

grad f � OT ds D f .b/ � f .a/:
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Completing the Proof
While we will not give a detailed proof of the GST here, we will make several obser-

vations about extending the proof to wider classes of domains.

(a) The proof above extends with minimal change to k-dimensional rectangles.

(b) An invertible linear transformation can map a k-parallelogram in R
n to a k-cube,

so the GST holds for k-parallelograms.

(c) Let M be a piece-with-boundary of a k-manifold. If M is a union of non-

overlapping k-cubes (or k-rectangles), then
R

M
dˆ will be the sum of the inte-

grals over those cubes. However, where two such cubes abut along parts of their

smooth boundaries, they induce opposite orientations, so that those contributions

to the boundary integral of ˆ will cancel and the sum of the integrals over the

boundaries of the cubes will reduce to the boundary integral on @M: This sug-

gests that we can approximate M by nonoverlapping cubes of small edge length h

and obtain
Z

M

dˆ �

X

i

Z

Qi

dˆ D

X

i

Z

@Q

ˆ �

Z

@M

ˆ: .�/

The error in the first approximation in .�/ approaches 0 as h ! 0 because the

number of cubes near the boundary grows of order h�.n�1/, while the volume of

each decreases of order hn. The error in the second approximation in .�/ cannot

be similarly argued to decrease with h because the .k � 1/-volumes of the uncan-

celled parts of the boundaries of the cubes may remain relatively larger than the

.k � 1/-volume of @M . However, we can exploit the assumed smoothness of ˆ

to compensate for this. Expanding (the coefficients of) ˆ in Taylor series about

a point y near the boundary @M we obtain ˆ.x/ D ˆ0.y/ C O.jx � yj/ for x

near y. If we can fill the region between @M and the set of cubes used above to

approximate
R

M
dˆ with convex sets of diameter of order h abutting the cubes

and numbering of order h�.n�1/, and use the fact that the integral of ˆ0 over the

boundary of such convex sets is zero (see Exercise 8 in the previous section), we

can still have the error in the second approximation decreasing of order h.

(d) Strict parametrization LetU be an open set in R
k and let x D p.u/ be a one-to-

one, orientation-preserving parametrization over U of a subset of M containing

the closed piece-with-boundary M . Suppose that M D p.Q/, where Q is a

closed k-cube in U with edges parallel to the standard basis vectors in R
k , and

that @M D p.@Q/. If ˆ is a smooth differential .k � 1/-form on M, then
Z

M

dˆ D

Z

Q

dˆ

�

@p.u/

@u1

;
@p.u/

@u2

; : : : ;
@p.u/

@uk

�

du1 du2 � � � duk:

The 2k faces of Q consist of k pairs Bi of .k � 1/-dimensional cubes, with orien-

tation inherited from Q, and such that the coordinate xi is constant in each cube

of the pair Bi . It follows that
Z

@M

ˆ

D

k
X

iD1

.�1/
i�1

Z

Bi

ˆ

 

@p.u/

@u1

; : : : ;

1@p.u/

@ui

; : : : ;
@p.u/

@uk

!

du1 � � �
bdui � � � duk

D

Z

@M

ˆ:

E X A M P L E 1
Evaluate the integral of the differential form

ˆ D .x
2
1 C x

2
4/ dx1 ^ dx2 ^ dx3 C .x

2
1 C x

2
3/ dx2 ^ dx3 ^ dx4

over the oriented boundary of the spherical cylinder C in R
4 consisting of those points

x satisfying .x1 C 1/
2
C x

2
2 C x

2
3 � 9 and 0 � x4 � 1.
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Solution Direct evaluation of the integral of ˆ by parametrizing the “cylindrical

wall” .x1 C 1/
2
C x

2
2 C x

2
3 D 9, 0 � x4 � 1, and then doing the same with the ends

of the cylinder, .x1 C 1/
2
C x2

2 C x
2
3 � 9, x4 D 0 or x4 D 1, while not impossible,

would be somewhat time consuming. It is much easier to use the GST. Observe that

dˆ D 2x4 dx4 ^ dx1 ^ dx2 ^ dx3 C 2x1 dx1 ^ dx2 ^ dx3 ^ dx4

D 2.x1 � x4/ dx1 ^ dx2 ^ dx3 ^ dx4:

Since dx1 ^ � � � ^ dx4 provides the standard orientation for R
4, we have

When integrating a function

times an orienting differential

k-form in R
k
; the wedge

products can be dropped. (See

Example 10 in Section 17.4.) The

integral is a normal k-fold

integral that can be iterated by

the usual techniques.

Z

@C

ˆ D

Z

C

dˆ D

Z

C

2.x1 � x4/ dx1 dx2 dx3 dx4

D 2

Z

B

x1 dx1 dx2 dx3

Z 1

0

dx4 � 2

Z

B

dx1 dx2 dx3

Z 1

0

x4 dx4;

where B is the ball in R
3 with centre at .�1; 0; 0/ and radius 3, having volume

VB D
4

3
�3

3
D 36�:

The integral of x1 over B is VB times the x1-coordinate of the centroid (i.e., the centre)

of B . Accordingly,

Z

@C

D .2/.36�/.�1/

Z 1

0

dx4 � .2/.36�/

Z 1

0

x4 dx4 D �108�:

Sometimes it is helpful to use the GST to evaluate the integral of a form over only part

of the surface of a region.

E X A M P L E 2
Letˆ D yz dx^dyC zx dy^dzCxy dz^dx. Evaluate

R

P ˆ,

where P is the part of the plane x C y C z D 1 lying in the first

octant of R
3. Assume that P is oriented with upward normal.

Solution S is part of the boundary of the tetrahedron T with vertices at .0; 0; 0/,

.1; 0; 0/, .0; 1; 0/, and .0; 0; 1/. The other three parts of the boundary of T are triangles

in the three coordinate planes. Observe ˆ D 0 on each of those three triangles. (For

instance, on z D 0 we have dz D 0, so all three terms of ˆ are zero.) Since the

assumed normal on P is outward from T; we have
Z

P

ˆ D

Z

@T

ˆ D

Z

T

dˆ D

Z

T

.y C z C x/ dx ^ dy ^ dz:

By symmetry,

Z

P

ˆ D 3

Z

T

z dx dy dz D 3

Z 1

0

z dz

Z 1�z

0

dy

Z 1�y�z

0

dx D
1

8
:

(We have omitted the details of evaluating the iterated integral.)

The Classical Theorems of Vector Calculus

E X A M P L E 3
Line integrals of conservative fields Let C be a piece-with-

boundary of a smooth curve (1-manifold) in R
n oriented so that

C runs from a to b. Let f be continuously differentiable on an open set containing C .

Let OT be the unit tangent vector field on C in the direction of its orientation, and let ds

be the arc length element on C . Then
Z

C

grad f � OT ds D f .b/ � f .a/:
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Solution Let ˆ be the differential 0-form f .x/ so that

dˆ D

n
X

iD1

@f

@xi

dxi :

If C is parametrized by x D p.u/ for u 2 Œa; b� with p.a/ D a and p.b/ D b, then
OT.x/ D .dx=du/

ı

jdx=duj and ds D jdx=duj du, so that

Z

C

grad f � OTds D

Z

Œa;b�

grad f .p.u// �
dx

du
du

D

n
X

iD1

Z

Œa;b�

@f .p.u//

@xi

dxi

du
du

D

Z

C

dˆ D

Z

@C

ˆ D Cf .b/C
�

�f .a/
�

D f .b/� f .a/;

since @C is the 0-manifold consisting of the two oriented pointsCb and �a.

E X A M P L E 4
Stokes’s Theorem and Green’s Theorem Let S be a piece-

with-boundary of a smooth surface (2-manifold) in R
3, oriented

with unit normal field ON, and let C be the piecewise smooth closed bounding curve

of S with inherited orientation given by a unit tangent field OT. Let F D F1.x/ i C

F2.x/ jC F3.x/k have components that are continuously differentiable in an open set

in R
3 containing S . If dS and ds denote the area element on S and the arc length

element on C , then

Z

S

curl F � ON dS D

Z

C

F � OTds:

Solution Let ˆ D F1 dxCF2 dyCF3 dz. As shown in Example 2 in Section 17.2,

dˆ D

�

@F3

@y
�

@F2

@z

�

dy ^ dz C

�

@F1

@z
�

@F3

@x

�

dz ^ dx

C

�

@F2

@x
�

@F1

@y

�

dx ^ dy;

while curl F has the same components as dˆ has coefficients;

curl F D

�

@F3

@y
�

@F2

@z

�

iC

�

@F1

@z
�

@F3

@x

�

jC

�

@F2

@x
�

@F1

@y

�

k:

Now suppose x D p1.u; v/, y D p2.u; v/, z D p3.u; v/ is a smooth, orientation-

preserving parametrization of S over a set U in R
2 (the uv-plane). Then

dy ^ dz D

�

@y

@u
duC

@y

@v
dv

�

^

�

@z

@u
duC

@z

@v
dv

�

D

�

@y

@u

@z

@v
�

@z

@u

@y

@v

�

du ^ dv D
@.y; z/

@.u; v/
du ^ dv:

Similarly,

dz ^ dx D
@.z; x/

@.u; v/
du ^ dv and dx ^ dy D

@.x; y/

@.u; v/
du ^ dv:
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By Example 11 in Section 17.4, a normal vector and surface area element on S are

given by

n D
@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k

dS D jnj dudv:

Thus, dˆ D curl F � n du ^ dv D curl F � ONdS and

Z

S

F � ONdS D

Z

S

dˆ D

Z

C

ˆ

by the GST.

Now let x.t/ D x.t/ iC y.t/ jC z.t/k, a � t � b be an orientation-preserving

parametrization of C . Since C is a closed curve, x.a/ D x.b/. The unit tangent vector

in the direction of C is OT.t/ D .dx=dt/
ı

jdx=dt j and the arc length element on C is

jdx=dt j. Accordingly,

ˆ D F1

dx

dt
dt C F1

dy

dt
dt C F1

dz

dt
dt D F �

dx

dt
dt D F � OTds

and

Z

C

ˆ D

Z b

a

F.x.t// �
dx

dt
dt D

Z

C

F � OT ds:

Remark Green’s Theorem in R
2 is just a special case of Stokes’s Theorem where S

and C lie in the xy-plane, F is independent of z, and F3 D 0.

E X A M P L E 5
The Divergence Theorem LetM be an open set in R

n, equipped

with the standard orientation dx1 ^ � � � ^ dxn, and having a piece-

wise smooth .n � 1/-dimensional boundary manifold @M equipped with an outward

unit normal field ON. If F D
Pn

iD1 Fi .x/ ei is a smooth vector field defined onM; show

that the GST implies

Z

M

div F.x/ dx D

Z

@M

F � ONdS;

where div F.x/ D

n
X

j D1

@Fj .x/

@xj

and dS is the “area” (.n � 1/-volume) element on @M:

Solution Let ˆ D
Pn

iD1.�1/
i�1 Fi .x/ dx1 � � �

bdxi � � � dxn be a differential .n� 1/-

form on R
n. Then we have

dˆ D

n
X

iD1

.�1/
i�1

0

@

n
X

j D1

@Fi

@xj

dxj

1

A ^ dx1 � � �
bdxi � � � dxn

D

n
X

iD1

.�1/
i�1 @Fi

@xi

dxj ^ dx1 � � �
bdxi � � � dxn

D

 

n
X

iD1

@Fi

@xi

!

dx1 dx2 � � � dxn

D .div F/ dx1 dx2 � � � dxn:
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Solution Let ˆ be the differential 0-form f .x/ so that

dˆ D

n
X

iD1

@f

@xi

dxi :

If C is parametrized by x D p.u/ for u 2 Œa; b� with p.a/ D a and p.b/ D b, then
OT.x/ D .dx=du/

ı

jdx=duj and ds D jdx=duj du, so that

Z

C

grad f � OTds D

Z

Œa;b�

grad f .p.u// �
dx

du
du

D

n
X

iD1

Z

Œa;b�

@f .p.u//

@xi

dxi

du
du

D

Z

C

dˆ D

Z

@C

ˆ D Cf .b/C
�

�f .a/
�

D f .b/� f .a/;

since @C is the 0-manifold consisting of the two oriented pointsCb and �a.

E X A M P L E 4
Stokes’s Theorem and Green’s Theorem Let S be a piece-

with-boundary of a smooth surface (2-manifold) in R
3, oriented

with unit normal field ON, and let C be the piecewise smooth closed bounding curve

of S with inherited orientation given by a unit tangent field OT. Let F D F1.x/ i C

F2.x/ jC F3.x/k have components that are continuously differentiable in an open set

in R
3 containing S . If dS and ds denote the area element on S and the arc length

element on C , then

Z

S

curl F � ON dS D

Z

C

F � OTds:

Solution Let ˆ D F1 dxCF2 dyCF3 dz. As shown in Example 2 in Section 17.2,

dˆ D

�

@F3

@y
�

@F2

@z

�

dy ^ dz C

�

@F1

@z
�

@F3

@x

�

dz ^ dx

C

�

@F2

@x
�

@F1

@y

�

dx ^ dy;

while curl F has the same components as dˆ has coefficients;

curl F D

�

@F3

@y
�

@F2

@z

�

iC

�

@F1

@z
�

@F3

@x

�

jC

�

@F2

@x
�

@F1

@y

�

k:

Now suppose x D p1.u; v/, y D p2.u; v/, z D p3.u; v/ is a smooth, orientation-

preserving parametrization of S over a set U in R
2 (the uv-plane). Then

dy ^ dz D

�

@y

@u
duC

@y

@v
dv

�

^

�

@z

@u
duC

@z

@v
dv

�

D

�

@y

@u

@z

@v
�

@z

@u

@y

@v

�

du ^ dv D
@.y; z/

@.u; v/
du ^ dv:

Similarly,

dz ^ dx D
@.z; x/

@.u; v/
du ^ dv and dx ^ dy D

@.x; y/

@.u; v/
du ^ dv:
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By Example 11 in Section 17.4, a normal vector and surface area element on S are

given by

n D
@.y; z/

@.u; v/
iC

@.z; x/

@.u; v/
jC

@.x; y/

@.u; v/
k

dS D jnj dudv:

Thus, dˆ D curl F � n du ^ dv D curl F � ONdS and

Z

S

F � ONdS D

Z

S

dˆ D

Z

C

ˆ

by the GST.

Now let x.t/ D x.t/ iC y.t/ jC z.t/k, a � t � b be an orientation-preserving

parametrization of C . Since C is a closed curve, x.a/ D x.b/. The unit tangent vector

in the direction of C is OT.t/ D .dx=dt/
ı

jdx=dt j and the arc length element on C is

jdx=dt j. Accordingly,

ˆ D F1

dx

dt
dt C F1

dy

dt
dt C F1

dz

dt
dt D F �

dx

dt
dt D F � OTds

and

Z

C

ˆ D

Z b

a

F.x.t// �
dx

dt
dt D

Z

C

F � OT ds:

Remark Green’s Theorem in R
2 is just a special case of Stokes’s Theorem where S

and C lie in the xy-plane, F is independent of z, and F3 D 0.

E X A M P L E 5
The Divergence Theorem LetM be an open set in R

n, equipped

with the standard orientation dx1 ^ � � � ^ dxn, and having a piece-

wise smooth .n � 1/-dimensional boundary manifold @M equipped with an outward

unit normal field ON. If F D
Pn

iD1 Fi .x/ ei is a smooth vector field defined onM; show

that the GST implies

Z

M

div F.x/ dx D

Z

@M

F � ONdS;

where div F.x/ D

n
X

j D1

@Fj .x/

@xj

and dS is the “area” (.n � 1/-volume) element on @M:

Solution Let ˆ D
Pn

iD1.�1/
i�1 Fi .x/ dx1 � � �

bdxi � � � dxn be a differential .n� 1/-

form on R
n. Then we have

dˆ D

n
X

iD1

.�1/
i�1

0

@

n
X

j D1

@Fi

@xj

dxj

1

A ^ dx1 � � �
bdxi � � � dxn

D

n
X

iD1

.�1/
i�1 @Fi

@xi

dxj ^ dx1 � � �
bdxi � � � dxn

D

 

n
X

iD1

@Fi

@xi

!

dx1 dx2 � � � dxn

D .div F/ dx1 dx2 � � � dxn:
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Thus,

Z

M

div F dx1 dx2 � � � dxn D

Z

M

ˆ:

On the other hand, if @M has a smooth parametrization x D p.u/ over a domain

U � R
n�1, then using the formulas for the normal n and surface area element dS

given in Example 11 in Section 17.4, we have

F � ONdS D F � n du1 � � � dun�1

D

n
X

iD1

.�1/
i�1
Fi

�

p.u/
� @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
du1 � � � dun�1:

But this latter expression is just the parametrized version of ˆ, since

dx1 ^ � � � ^
bdxi ^ � � � ^ dxn D

@.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
du1 � � � dun�1:

Thus,

Z

@M

F � ONdS D

Z

@M

ˆ and the Divergence Theorem holds in R
n.

E X E R C I S E S 17.5

1. If ˆ is a constant differential .k � 1/-form defined in a

neighbourhood of a smooth k-manifold M in R
n

, show that
Z

@M

ˆ D 0 for any piece-with-boundary M of M. The GST

gives a simple proof of this assertion, first made under

restrictive conditions on M in Exercise 8 in Section 17.4.

2.A Let ˆ D
Pk

iD1.�1/
i�1 xi dx1 ^ � � � ^

bdxi ^ � � � ^ dxk and let

M be a piece-with-boundary of a k-manifold in R
n

(where

n � k). Show that the k-volume Vk.M/ of M is given by

Vk.M/ D
1

k

Z

@M

ˆ:

In Exercises 3–6, find the integral of the given differential form ˆ

over the oriented boundary of the given domainD.

3. ˆ D x dy ^ dz C yz dx ^ dz,

D D f.x; y; z/ 2 R
3
W 1 � x; y; z;� 1g

4. ˆ D .x1Cx
2
4/dx2^dx3^dx4C.x

2
2Cx3x4/dx1^dx3^dx4,

D D fx 2 R
4
W 0 � xi � i; 1 � i � 4g.

5. ˆ D x
3
1 dx2 ^ dx3 ^ dx4 � x

3
2 dx3 ^ dx4 ^ dx1

C x3 dx4 ^ dx1 ^ dx2;

D D fx 2 R
4
W x

2
1 C x

2
2 � 4; x

2
3 C x

2
4 � 9g:

6. ˆ D .x2
1 C � � � C x

2
6/ dx1 ^ dx3 ^ dx4 ^ dx5 ^ dx6,

D D fx 2 R
6
W x1; x2 � 0; x1 C x2 � 1; 0 �

x3; x4; x5; x6 � 1g.
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C H A P T E R 18

Ordinary

Differential Equations

“
In order to solve this differential equation you look

at it until the solution occurs to you.

”George Polyá 1887–1985

from How to Solve It Princeton, 1945

“
Science is a differential equation. Religion is a

boundary condition.

”Alan Turing 1912–1954

quoted in Theories of Everything by J. D. Barrow

Introduction A differential equation (or DE) is an equation that in-

volves one or more derivatives of an unknown function.

Solving a differential equation means finding functions that satisfy the differential

equation. The presence of derivatives routinely leads to nonunique solution functions.

Typically, but not necessarily, they exist as families of functions defined by free param-

eters (or even free functions when partial derivatives are involved). As specific values

of the parameters must be set to select one solution, such families have an infinite

number of solutions. These parameters do not appear in the originating differential

equations themselves. For example, we already know that antiderivatives differ from

each other, each defined by a particular integration constant. If G 0.t/ D g.t/, then

x D G.t/ C c, involving the integration constant c, implies the simple differential

equation

dx

dt
D g.t/:

Conversely, the integration constant can be eliminated by differentiation of the general

solution, x D G.t/ C c, where c is an arbitrary constant. The general solution is

a collection of all solutions of the differential equation. Any particular choice of c

produces a particular solution.

A differentiable family of functions implies a differential equation. For another

example, x D c1t C c2t
2, where c1 and c2 are arbitrary constants, implies the differ-

ential equation

t2

2

d2x

dt2
� t

dx

dt
C x D 0;
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Thus,

Z

M

div F dx1 dx2 � � � dxn D

Z

M

ˆ:

On the other hand, if @M has a smooth parametrization x D p.u/ over a domain

U � R
n�1, then using the formulas for the normal n and surface area element dS

given in Example 11 in Section 17.4, we have

F � ONdS D F � n du1 � � � dun�1

D

n
X

iD1

.�1/
i�1
Fi

�

p.u/
� @.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
du1 � � � dun�1:

But this latter expression is just the parametrized version of ˆ, since

dx1 ^ � � � ^
bdxi ^ � � � ^ dxn D

@.x1; : : : ; bxi ; : : : ; xn/

@.u1; : : : ; un�1/
du1 � � � dun�1:

Thus,

Z

@M

F � ONdS D

Z

@M

ˆ and the Divergence Theorem holds in R
n.

E X E R C I S E S 17.5

1. If ˆ is a constant differential .k � 1/-form defined in a

neighbourhood of a smooth k-manifold M in R
n

, show that
Z

@M

ˆ D 0 for any piece-with-boundary M of M. The GST

gives a simple proof of this assertion, first made under

restrictive conditions on M in Exercise 8 in Section 17.4.

2.A Let ˆ D
Pk

iD1.�1/
i�1 xi dx1 ^ � � � ^

bdxi ^ � � � ^ dxk and let

M be a piece-with-boundary of a k-manifold in R
n

(where

n � k). Show that the k-volume Vk.M/ of M is given by

Vk.M/ D
1

k

Z

@M

ˆ:

In Exercises 3–6, find the integral of the given differential form ˆ

over the oriented boundary of the given domainD.

3. ˆ D x dy ^ dz C yz dx ^ dz,

D D f.x; y; z/ 2 R
3
W 1 � x; y; z;� 1g

4. ˆ D .x1Cx
2
4/dx2^dx3^dx4C.x

2
2Cx3x4/dx1^dx3^dx4,

D D fx 2 R
4
W 0 � xi � i; 1 � i � 4g.

5. ˆ D x
3
1 dx2 ^ dx3 ^ dx4 � x

3
2 dx3 ^ dx4 ^ dx1

C x3 dx4 ^ dx1 ^ dx2;

D D fx 2 R
4
W x

2
1 C x

2
2 � 4; x

2
3 C x

2
4 � 9g:

6. ˆ D .x2
1 C � � � C x

2
6/ dx1 ^ dx3 ^ dx4 ^ dx5 ^ dx6,

D D fx 2 R
6
W x1; x2 � 0; x1 C x2 � 1; 0 �

x3; x4; x5; x6 � 1g.
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C H A P T E R 18

Ordinary

Differential Equations

“
In order to solve this differential equation you look

at it until the solution occurs to you.

”George Polyá 1887–1985

from How to Solve It Princeton, 1945

“
Science is a differential equation. Religion is a

boundary condition.

”Alan Turing 1912–1954

quoted in Theories of Everything by J. D. Barrow

Introduction A differential equation (or DE) is an equation that in-

volves one or more derivatives of an unknown function.

Solving a differential equation means finding functions that satisfy the differential

equation. The presence of derivatives routinely leads to nonunique solution functions.

Typically, but not necessarily, they exist as families of functions defined by free param-

eters (or even free functions when partial derivatives are involved). As specific values

of the parameters must be set to select one solution, such families have an infinite

number of solutions. These parameters do not appear in the originating differential

equations themselves. For example, we already know that antiderivatives differ from

each other, each defined by a particular integration constant. If G 0.t/ D g.t/, then

x D G.t/ C c, involving the integration constant c, implies the simple differential

equation

dx

dt
D g.t/:

Conversely, the integration constant can be eliminated by differentiation of the general

solution, x D G.t/ C c, where c is an arbitrary constant. The general solution is

a collection of all solutions of the differential equation. Any particular choice of c

produces a particular solution.

A differentiable family of functions implies a differential equation. For another

example, x D c1t C c2t
2, where c1 and c2 are arbitrary constants, implies the differ-

ential equation

t2

2

d2x

dt2
� t

dx

dt
C x D 0;
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as can be seen by differentiating x twice with respect to t , solving the resulting equa-

tions for c1 and c2, and substituting back into the given expression for x. The fam-

ily of solutions requires two values to identify any one particular solution in this

case. More generally, a family of functions could have n arbitrary constants x D

f .t; c1; c2; : : : ; cn/; implying a differential equation involving all derivatives up to or-

der n, which is then described as nth-order DE.

We know that capturing the movements of an object along the x-axis as time t

increases using a differential equation requires knowing the position, x, and the veloc-

ity, dx=dt , both at a given time. That sets two distinct values, c1 and c2, to select a

particular solution from any differential equation that captures that movement. Thus,

the differential equation describing motion (the equation of motion) will be second

order no matter what else. That is so in Newtonian mechanics, where the differential

equation for x, from Newton’s Second Law, is

m
d2x

dt2
D F.t/;

where d2
x=dt

2 is acceleration, and m is the mass of the object subjected to a force,

F.t/.

If one needs only one value to fix what the future will be, then the differential

equation will be first order. For example, suppose that only the biomass, m, at some

instant needs to be known in order for m to be determined for all time t , then a first-

order differential equation is implied. If, further, we suppose that the rate of growth is

proportional to the biomass, a specific first-order equation follows,

dm

dt
D km.t/;

which is the differential equation of exponential growth (or, if k < 0, exponential

decay).

The arbitrary constants in solution families may seem on first encounters with

differential equations like a nuisance arising while searching for specific answers. But

their distinctive character yields striking flexibility. It allows precise expressions for

universal laws while simultaneously allowing for local specifications external to the

equation. This extraordinary combination allows a universal but precise flexibility that

makes differential equations central to any human hopes to predict the future, because

if we have the true equation of motion and we are given all needed conditions at the

start (initial conditions), we will know the future via the particular solution satisfying

those conditions. Applied to the natural world in total this becomes a form of precise

determinism famously articulated by Pierre-Simon Laplace in the beginning of the

nineteenth century. While complications have arisen for the Laplacian picture since

then, it was not because of these properties of differential equations.

Differential equations with initial conditions would be enough to make this topic

central to modern science in and of itself, but if we set the conditions at different times

or (better) different places, the problem becomes known as a boundary-value problem

and the conditions are known as boundary conditions. This structure becomes the

mathematical backbone of quantum mechanics, let alone structures of all kinds from

physics to engineering. Alan Turing’s quip (quoted at the beginning of the chapter)

starts to make sense: the differential equation is the structure discovered by science,

and the boundary conditions are external to it.

Indeed, most of the existing mathematical literature is either directly involved with

differential equations or is motivated by problems arising in the study of such equa-

tions. Because of this, we have introduced various differential equations, terms for

their description, and techniques for their solution at several places throughout this

book, as they naturally arise in the development of calculus. This final chapter brings

these concepts together, uniting them in a full introductory treatment of ordinary dif-

ferential equations. Some material from earlier sections (notably Sections 7.9 and 3.7)

forms a natural part of this chapter; you will be referred back to these sections at ap-

propriate times.
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18.1 Classifying Differential Equations

Differential equations are classified in several ways. The most significant classification

is based on the number of variables with respect to which derivatives appear in the

equation. An ordinary differential equation (ODE) is one that involves derivatives

with respect to only one variable. Both of the examples given above are ordinary

differential equations. A partial differential equation (PDE) is one that involves

partial derivatives of the unknown function with respect to more than one variable.

For example, the one-dimensional wave equation

@2u

@t2
D c

2 @
2u

@x2

models the lateral displacement u.x; t/ at position x at time t of a stretched vibrating

string. (See Section 12.4.) We will not discuss partial differential equations in this

chapter.

Differential equations are also classified with respect to order. The order of a

differential equation is the order of the highest-order derivative present in the equation.

The one-dimensional wave equation is a second-order PDE. The following example

records the order of two ODEs.

E X A M P L E 1
d

2
y

dx2
C x

3
y D sin x has order 2,

d
3
y

dx3
C 4x

�

dy

dx

�2

D y
d

2
y

dx2
C e

y has order 3.

Like any equation, a differential equation can be written in the form F D 0, where

F is a function. For an ODE, the function F can depend on the independent variable

(usually called x or t), the unknown function (usually y), and any derivatives of the

unknown function up to the order of the equation. For instance, an nth-order ODE can

be written in the form

F.x; y; y
0
; y

00
; : : : ; y

.n/
/ D 0:

An important special class of differential equations consists of those that are linear.

An nth-order linear ODE has the form

an.x/y
.n/
.x/C an�1.x/y

.n�1/
.x/C � � �

C a2.x/y
00
.x/C a1.x/y

0
.x/C a0.x/y.x/ D f .x/:

Each term in the expression on the left side is the product of a coefficient that is a func-

tion of x, and a second factor that is either y or one of the derivatives of y. The term

on the right does not depend on y; it is called the nonhomogeneous term. Observe

that no term on the left side involves any power of y or its derivatives other than the

first power, and y and its derivatives are never multiplied together.

A linear ODE is said to be homogeneous if all of its terms involve the unknown

function y, that is, if f .x/ D 0. If f .x/ is not identically zero, the equation is non-

homogeneous.

E X A M P L E 2 In Example 1 the first DE,
d

2
y

dx2
C x

3
y D sinx, is linear. Here,

the coefficients are a2.x/ D 1, a1.x/ D 0, a0.x/ D x3, and the

nonhomogeneous term is f .x/ D sin x. Although it can be written in the form

d3y

dx3
C 4x

�

dy

dx

�2

� y
d2y

dx2
� e

y
D 0;
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as can be seen by differentiating x twice with respect to t , solving the resulting equa-

tions for c1 and c2, and substituting back into the given expression for x. The fam-

ily of solutions requires two values to identify any one particular solution in this

case. More generally, a family of functions could have n arbitrary constants x D

f .t; c1; c2; : : : ; cn/; implying a differential equation involving all derivatives up to or-

der n, which is then described as nth-order DE.

We know that capturing the movements of an object along the x-axis as time t

increases using a differential equation requires knowing the position, x, and the veloc-

ity, dx=dt , both at a given time. That sets two distinct values, c1 and c2, to select a

particular solution from any differential equation that captures that movement. Thus,

the differential equation describing motion (the equation of motion) will be second

order no matter what else. That is so in Newtonian mechanics, where the differential

equation for x, from Newton’s Second Law, is

m
d2x

dt2
D F.t/;

where d2
x=dt

2 is acceleration, and m is the mass of the object subjected to a force,

F.t/.

If one needs only one value to fix what the future will be, then the differential

equation will be first order. For example, suppose that only the biomass, m, at some

instant needs to be known in order for m to be determined for all time t , then a first-

order differential equation is implied. If, further, we suppose that the rate of growth is

proportional to the biomass, a specific first-order equation follows,

dm

dt
D km.t/;

which is the differential equation of exponential growth (or, if k < 0, exponential

decay).

The arbitrary constants in solution families may seem on first encounters with

differential equations like a nuisance arising while searching for specific answers. But

their distinctive character yields striking flexibility. It allows precise expressions for

universal laws while simultaneously allowing for local specifications external to the

equation. This extraordinary combination allows a universal but precise flexibility that

makes differential equations central to any human hopes to predict the future, because

if we have the true equation of motion and we are given all needed conditions at the

start (initial conditions), we will know the future via the particular solution satisfying

those conditions. Applied to the natural world in total this becomes a form of precise

determinism famously articulated by Pierre-Simon Laplace in the beginning of the

nineteenth century. While complications have arisen for the Laplacian picture since

then, it was not because of these properties of differential equations.

Differential equations with initial conditions would be enough to make this topic

central to modern science in and of itself, but if we set the conditions at different times

or (better) different places, the problem becomes known as a boundary-value problem

and the conditions are known as boundary conditions. This structure becomes the

mathematical backbone of quantum mechanics, let alone structures of all kinds from

physics to engineering. Alan Turing’s quip (quoted at the beginning of the chapter)

starts to make sense: the differential equation is the structure discovered by science,

and the boundary conditions are external to it.

Indeed, most of the existing mathematical literature is either directly involved with

differential equations or is motivated by problems arising in the study of such equa-

tions. Because of this, we have introduced various differential equations, terms for

their description, and techniques for their solution at several places throughout this

book, as they naturally arise in the development of calculus. This final chapter brings

these concepts together, uniting them in a full introductory treatment of ordinary dif-

ferential equations. Some material from earlier sections (notably Sections 7.9 and 3.7)

forms a natural part of this chapter; you will be referred back to these sections at ap-

propriate times.
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18.1 Classifying Differential Equations

Differential equations are classified in several ways. The most significant classification

is based on the number of variables with respect to which derivatives appear in the

equation. An ordinary differential equation (ODE) is one that involves derivatives

with respect to only one variable. Both of the examples given above are ordinary

differential equations. A partial differential equation (PDE) is one that involves

partial derivatives of the unknown function with respect to more than one variable.

For example, the one-dimensional wave equation

@2u

@t2
D c

2 @
2u

@x2

models the lateral displacement u.x; t/ at position x at time t of a stretched vibrating

string. (See Section 12.4.) We will not discuss partial differential equations in this

chapter.

Differential equations are also classified with respect to order. The order of a

differential equation is the order of the highest-order derivative present in the equation.

The one-dimensional wave equation is a second-order PDE. The following example

records the order of two ODEs.

E X A M P L E 1
d

2
y

dx2
C x

3
y D sin x has order 2,

d
3
y

dx3
C 4x

�

dy

dx

�2

D y
d

2
y

dx2
C e

y has order 3.

Like any equation, a differential equation can be written in the form F D 0, where

F is a function. For an ODE, the function F can depend on the independent variable

(usually called x or t), the unknown function (usually y), and any derivatives of the

unknown function up to the order of the equation. For instance, an nth-order ODE can

be written in the form

F.x; y; y
0
; y

00
; : : : ; y

.n/
/ D 0:

An important special class of differential equations consists of those that are linear.

An nth-order linear ODE has the form

an.x/y
.n/
.x/C an�1.x/y

.n�1/
.x/C � � �

C a2.x/y
00
.x/C a1.x/y

0
.x/C a0.x/y.x/ D f .x/:

Each term in the expression on the left side is the product of a coefficient that is a func-

tion of x, and a second factor that is either y or one of the derivatives of y. The term

on the right does not depend on y; it is called the nonhomogeneous term. Observe

that no term on the left side involves any power of y or its derivatives other than the

first power, and y and its derivatives are never multiplied together.

A linear ODE is said to be homogeneous if all of its terms involve the unknown

function y, that is, if f .x/ D 0. If f .x/ is not identically zero, the equation is non-

homogeneous.

E X A M P L E 2 In Example 1 the first DE,
d

2
y

dx2
C x

3
y D sinx, is linear. Here,

the coefficients are a2.x/ D 1, a1.x/ D 0, a0.x/ D x3, and the

nonhomogeneous term is f .x/ D sin x. Although it can be written in the form

d3y

dx3
C 4x

�

dy

dx

�2

� y
d2y

dx2
� e

y
D 0;
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the second equation is not linear (we say it is nonlinear) because the second term

involves the square of a derivative of y, the third term involves the product of y and

one of its derivatives, and the fourth term is not y times a function of x. The equation

.1C x
2
/
d

3
y

dx3
C sin x

d
2
y

dx2
� 4

dy

dx
C y D 0

is a linear equation of order 3. The coefficients are a3.x/ D 1C x2, a2.x/ D sin x,

a1.x/ D �4, and a0.x/ D 1. Since f .x/ D 0, this equation is homogeneous.

The following theorem states that any linear combination of solutions of a linear,

homogeneous DE is also a solution. This is an extremely important fact about lin-

ear, homogeneous DEs.

T H E O R E M

1

If y D y1.x/ and y D y2.x/ are two solutions of the linear, homogeneous DE

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D 0;

then so is the linear combination

y D Ay1.x/C By2.x/

for any values of the constants A and B .

PROOF We are given that

any
.n/
1 C an�1y

.n�1/
1 C � � � C a2y

00
1 C a1y

0
1 C a0y1 D 0 and

any
.n/
2 C an�1y

.n�1/
2 C � � � C a2y

00
2 C a1y

0
2 C a0y2 D 0:

Multiplying the first equation by A and the second by B and adding the two gives

an.Ay
.n/
1 C By

.n/
2 /C an�1.Ay

.n�1/
1 C By

.n�1/
2 /

C � � � C a2.Ay
00
1 C By

00
2 /C a1.Ay

0
1 C By

0
2/C a0.Ay1 C By2/ D 0:

Thus, y D Ay1.x/C By2.x/ is also a solution of the equation.

The same kind of proof can be used to verify the following theorem.

T H E O R E M

2

If y D y1.x/ is a solution of the linear, homogeneous equation

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D 0

and y D y2.x/ is a solution of the linear, nonhomogeneous equation

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D f .x/;

then y D y1.x/ C y2.x/ is also a solution of the same linear, nonhomogeneous

equation.

We will make extensive use of the two theorems above when we discuss second-order

linear equations in Sections 18.4–18.6.

E X A M P L E 3
Verify that y D sin 2x and y D cos 2x satisfy the DE y 00

C 4y D

0. Find a solution y.x/ of that DE that satisfies the initial condi-

tions y.0/ D 2 and y 0.0/ D �4.
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Solution If y D sin 2x, then y 00
D

d

dx
.2 cos 2x/ D �4 sin 2x D �4y. Thus,

y 00
C 4y D 0. A similar calculation shows that y D cos 2x also satisfies the DE. Since

the DE is linear and homogeneous, the function

y D A sin 2x C B cos 2x

is a solution for any values of the constants A and B . We want y.0/ D 2, so we need

2 D A sin 0C B cos 0 D B . Thus, B D 2. Also,

y
0
D 2A cos 2x � 2B sin 2x:

We want y 0.0/ D �4, so �4 D 2A cos 0 � 2B sin 0 D 2A. Thus, A D �2 and the

required solution is y D �2 sin 2x C 2 cos 2x.

Remark Let Pn.r/ be the nth-degree polynomial in the variable r given by

Pn.r/ D an.x/r
n
C an�1.x/r

n�1
C � � � C a2.x/r

2
C a1.x/r C a0.x/;

with coefficients depending on the variable x. We can write the nth-order linear ODE

with coefficients ak.x/, .0 � k � n/, and nonhomogeneous term f .x/ in the form

Pn.D/y.x/ D f .x/;

where D stands for the differential operator d=dx. The left side of the equation above

denotes the application of the nth-order differential operator

Pn.D/ D an.x/D
n
C an�1.x/D

n�1
C � � � C a2.x/D

2
C a1.x/D C a0.x/

to the function y.x/. For example,

ak.x/D
k
y.x/ D ak.x/

dky

dxk
:

It is often useful to write linear DEs in terms of differential operators in this way.

Remark Unfortunately, the term homogeneous is used in more than one way in the

study of differential equations. Certain ODEs that are not necessarily linear are called

homogeneous for a different reason than the one applying for linear equations above.

We will encounter equations of this type in Section 18.2.

E X E R C I S E S 18.1

In Exercises 1–10, state the order of the given DE and whether it is

linear or nonlinear. If it is linear, is it homogeneous or

nonhomogeneous?

1.
dy

dx
D 5y 2.

d
2
y

dx2
C x D y

3. y
dy

dx
D x 4. y 000

C xy
0
D x sinx

5. y 00
C x sinx y 0

D y 6. y 00
C 4y

0
� 3y D 2y

2

7.
d3y

dt3
C t

dy

dt
C t

2
y D t

3 8. cos x
dx

dt
C x sin t D 0

9. y.4/
C e

x
y

00
D x

3
y

0 10. x2
y

00
C e

x
y

0
D

1

y

11. Verify that y D cosx and y D sinx are solutions of the DE

y 00
C y D 0. Are any of the following functions solutions? (a)

sinx � cosx, (b) sin.x C 3/, (c) sin 2x. Justify your answers.

12. Verify that y D ex and y D e�x are solutions of the DE

y 00
� y D 0. Are any of the following functions solutions? (a)

coshx D 1
2
.ex
C e�x/, (b) cosx, (c) xe . Justify your

answers.

13. y1 D cos.kx/ is a solution of y 00
C k2y D 0. Guess and

verify another solution y2 that is not a multiple of y1. Then

find a solution that satisfies y.�=k/ D 3 and y 0.�=k/ D 3.
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the second equation is not linear (we say it is nonlinear) because the second term

involves the square of a derivative of y, the third term involves the product of y and

one of its derivatives, and the fourth term is not y times a function of x. The equation

.1C x
2
/
d

3
y

dx3
C sin x

d
2
y

dx2
� 4

dy

dx
C y D 0

is a linear equation of order 3. The coefficients are a3.x/ D 1C x2, a2.x/ D sin x,

a1.x/ D �4, and a0.x/ D 1. Since f .x/ D 0, this equation is homogeneous.

The following theorem states that any linear combination of solutions of a linear,

homogeneous DE is also a solution. This is an extremely important fact about lin-

ear, homogeneous DEs.

T H E O R E M

1

If y D y1.x/ and y D y2.x/ are two solutions of the linear, homogeneous DE

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D 0;

then so is the linear combination

y D Ay1.x/C By2.x/

for any values of the constants A and B .

PROOF We are given that

any
.n/
1 C an�1y

.n�1/
1 C � � � C a2y

00
1 C a1y

0
1 C a0y1 D 0 and

any
.n/
2 C an�1y

.n�1/
2 C � � � C a2y

00
2 C a1y

0
2 C a0y2 D 0:

Multiplying the first equation by A and the second by B and adding the two gives

an.Ay
.n/
1 C By

.n/
2 /C an�1.Ay

.n�1/
1 C By

.n�1/
2 /

C � � � C a2.Ay
00
1 C By

00
2 /C a1.Ay

0
1 C By

0
2/C a0.Ay1 C By2/ D 0:

Thus, y D Ay1.x/C By2.x/ is also a solution of the equation.

The same kind of proof can be used to verify the following theorem.

T H E O R E M

2

If y D y1.x/ is a solution of the linear, homogeneous equation

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D 0

and y D y2.x/ is a solution of the linear, nonhomogeneous equation

any
.n/
C an�1y

.n�1/
C � � � C a2y

00
C a1y

0
C a0y D f .x/;

then y D y1.x/ C y2.x/ is also a solution of the same linear, nonhomogeneous

equation.

We will make extensive use of the two theorems above when we discuss second-order

linear equations in Sections 18.4–18.6.

E X A M P L E 3
Verify that y D sin 2x and y D cos 2x satisfy the DE y 00

C 4y D

0. Find a solution y.x/ of that DE that satisfies the initial condi-

tions y.0/ D 2 and y 0.0/ D �4.
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Solution If y D sin 2x, then y 00
D

d

dx
.2 cos 2x/ D �4 sin 2x D �4y. Thus,

y 00
C 4y D 0. A similar calculation shows that y D cos 2x also satisfies the DE. Since

the DE is linear and homogeneous, the function

y D A sin 2x C B cos 2x

is a solution for any values of the constants A and B . We want y.0/ D 2, so we need

2 D A sin 0C B cos 0 D B . Thus, B D 2. Also,

y
0
D 2A cos 2x � 2B sin 2x:

We want y 0.0/ D �4, so �4 D 2A cos 0 � 2B sin 0 D 2A. Thus, A D �2 and the

required solution is y D �2 sin 2x C 2 cos 2x.

Remark Let Pn.r/ be the nth-degree polynomial in the variable r given by

Pn.r/ D an.x/r
n
C an�1.x/r

n�1
C � � � C a2.x/r

2
C a1.x/r C a0.x/;

with coefficients depending on the variable x. We can write the nth-order linear ODE

with coefficients ak.x/, .0 � k � n/, and nonhomogeneous term f .x/ in the form

Pn.D/y.x/ D f .x/;

where D stands for the differential operator d=dx. The left side of the equation above

denotes the application of the nth-order differential operator

Pn.D/ D an.x/D
n
C an�1.x/D

n�1
C � � � C a2.x/D

2
C a1.x/D C a0.x/

to the function y.x/. For example,

ak.x/D
k
y.x/ D ak.x/

dky

dxk
:

It is often useful to write linear DEs in terms of differential operators in this way.

Remark Unfortunately, the term homogeneous is used in more than one way in the

study of differential equations. Certain ODEs that are not necessarily linear are called

homogeneous for a different reason than the one applying for linear equations above.

We will encounter equations of this type in Section 18.2.

E X E R C I S E S 18.1

In Exercises 1–10, state the order of the given DE and whether it is

linear or nonlinear. If it is linear, is it homogeneous or

nonhomogeneous?

1.
dy

dx
D 5y 2.

d
2
y

dx2
C x D y

3. y
dy

dx
D x 4. y 000

C xy
0
D x sinx

5. y 00
C x sinx y 0

D y 6. y 00
C 4y

0
� 3y D 2y

2

7.
d3y

dt3
C t

dy

dt
C t

2
y D t

3 8. cos x
dx

dt
C x sin t D 0

9. y.4/
C e

x
y

00
D x

3
y

0 10. x2
y

00
C e

x
y

0
D

1

y

11. Verify that y D cosx and y D sinx are solutions of the DE

y 00
C y D 0. Are any of the following functions solutions? (a)

sinx � cosx, (b) sin.x C 3/, (c) sin 2x. Justify your answers.

12. Verify that y D ex and y D e�x are solutions of the DE

y 00
� y D 0. Are any of the following functions solutions? (a)

coshx D 1
2
.ex
C e�x/, (b) cosx, (c) xe . Justify your

answers.

13. y1 D cos.kx/ is a solution of y 00
C k2y D 0. Guess and

verify another solution y2 that is not a multiple of y1. Then

find a solution that satisfies y.�=k/ D 3 and y 0.�=k/ D 3.
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14. y1 D e
kx is a solution of y 00

� k2y D 0. Guess and verify

another solution y2 that is not a multiple of y1. Then find a

solution that satisfies y.1/ D 0 and y 0.1/ D 2.

15. Find a solution of y 00
C y D 0 that satisfies y.�=2/ D 2y.0/

and y.�=4/ D 3. Hint: See Exercise 11.

16. Find two values of r such that y D erx is a solution of

y 00
� y 0
� 2y D 0. Then find a solution of the equation that

satisfies y.0/ D 1, y 0.0/ D 2.

17. Verify that y D x is a solution of y 00
C y D x, and find a

solution y of this DE that satisfies y.�/ D 1 and y 0.�/ D 0.

Hint: Use Exercise 11 and Theorem 2.

18. Verify that y D �e is a solution of y 00
� y D e, and find a

solution y of this DE that satisfies y.1/ D 0 and y 0.1/ D 1.

Hint: Use Exercise 12 and Theorem 2.

18.2 Solving First-Order Equations

In this section we will develop techniques for solving several types of first-order ODEs,

specifically,

1. separable equations,

2. linear equations,

3. homogeneous equations, and

4. exact equations.

Most first-order equations are of the form

dy

dx
D f .x; y/:

Solving such differential equations typically involves integration; indeed, the process

of solving a DE is called integrating the DE. Nevertheless, solving DEs is usually more

complicated than just writing down an integral and evaluating it. The only kind of DE

that can be solved that way is the simplest kind of first-order, linear DE that can be

written in the form

dy

dx
D f .x/:

The solution is then just the antiderivative of f :

y D

Z

f .x/ dx:

Separable Equations
The next simplest kind of equation to solve is a so-called separable equation. A

separable equation is one of the form

dy

dx
D f .x/g.y/;

where the derivative dy=dx is a product of a function of x alone times a function of y

alone, rather than a more general function of the two variables x and y.

A thorough discussion of separable equations with examples and exer-

cises can be found in Section 7.9; we will not repeat it here. If you have

not studied that material, please do so now.
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First-Order Linear Equations
A first-order linear differential equation is one of the type

dy

dx
C p.x/y D q.x/;

where p.x/ and q.x/ are given functions, which we assume to be continuous. The

equation is homogeneous (in the sense described in Section 18.1) provided that q.x/ D

0 for all x. In that case, the given linear equation is separable,

dy

y
D �p.x/ dx;

which can be solved by integrating both sides. Nonhomogeneous first-order linear

equations can be solved by a procedure involving the calculation of an integrating

factor.

The technique for solving first-order linear differential equations, along

with several examples and exercises, can be found in Section 7.9. If you

have not studied that material, please do so now.

First-Order Homogeneous Equations
A first-order DE of the form

dy

dx
D f

�

y

x

�

is said to be homogeneous. This is a different use of the term homogeneous from that

in the previous section, which applied only to linear equations. Here, homogeneous

refers to the fact that y=x, and therefore g.x; y/ D f .y=x/ is homogeneous of degree

0 in the sense described after Example 7 in Section 12.5. Such a homogeneous equation

can be transformed into a separable equation (and therefore solved) by means of a

change of dependent variable. If we set

v D
y

x
; or equivalently y D xv.x/;

then we have

dy

dx
D v C x

dv

dx
;

and the original differential equation transforms into

dv

dx
D

f .v/ � v

x
;

which is separable.

E X A M P L E 1
Solve the equation

dy

dx
D

x2
C xy

xy C y2
:

Solution The equation is homogeneous. (Divide the numerator and denominator of

the right-hand side by x2 to see this.) If y D vx the equation becomes

v C x
dv

dx
D

1C v

v C v2
D

1

v
;
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14. y1 D e
kx is a solution of y 00

� k2y D 0. Guess and verify

another solution y2 that is not a multiple of y1. Then find a

solution that satisfies y.1/ D 0 and y 0.1/ D 2.

15. Find a solution of y 00
C y D 0 that satisfies y.�=2/ D 2y.0/

and y.�=4/ D 3. Hint: See Exercise 11.

16. Find two values of r such that y D erx is a solution of

y 00
� y 0
� 2y D 0. Then find a solution of the equation that

satisfies y.0/ D 1, y 0.0/ D 2.

17. Verify that y D x is a solution of y 00
C y D x, and find a

solution y of this DE that satisfies y.�/ D 1 and y 0.�/ D 0.

Hint: Use Exercise 11 and Theorem 2.

18. Verify that y D �e is a solution of y 00
� y D e, and find a

solution y of this DE that satisfies y.1/ D 0 and y 0.1/ D 1.

Hint: Use Exercise 12 and Theorem 2.

18.2 Solving First-Order Equations

In this section we will develop techniques for solving several types of first-order ODEs,

specifically,

1. separable equations,

2. linear equations,

3. homogeneous equations, and

4. exact equations.

Most first-order equations are of the form

dy

dx
D f .x; y/:

Solving such differential equations typically involves integration; indeed, the process

of solving a DE is called integrating the DE. Nevertheless, solving DEs is usually more

complicated than just writing down an integral and evaluating it. The only kind of DE

that can be solved that way is the simplest kind of first-order, linear DE that can be

written in the form

dy

dx
D f .x/:

The solution is then just the antiderivative of f :

y D

Z

f .x/ dx:

Separable Equations
The next simplest kind of equation to solve is a so-called separable equation. A

separable equation is one of the form

dy

dx
D f .x/g.y/;

where the derivative dy=dx is a product of a function of x alone times a function of y

alone, rather than a more general function of the two variables x and y.

A thorough discussion of separable equations with examples and exer-

cises can be found in Section 7.9; we will not repeat it here. If you have

not studied that material, please do so now.
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First-Order Linear Equations
A first-order linear differential equation is one of the type

dy

dx
C p.x/y D q.x/;

where p.x/ and q.x/ are given functions, which we assume to be continuous. The

equation is homogeneous (in the sense described in Section 18.1) provided that q.x/ D

0 for all x. In that case, the given linear equation is separable,

dy

y
D �p.x/ dx;

which can be solved by integrating both sides. Nonhomogeneous first-order linear

equations can be solved by a procedure involving the calculation of an integrating

factor.

The technique for solving first-order linear differential equations, along

with several examples and exercises, can be found in Section 7.9. If you

have not studied that material, please do so now.

First-Order Homogeneous Equations
A first-order DE of the form

dy

dx
D f

�

y

x

�

is said to be homogeneous. This is a different use of the term homogeneous from that

in the previous section, which applied only to linear equations. Here, homogeneous

refers to the fact that y=x, and therefore g.x; y/ D f .y=x/ is homogeneous of degree

0 in the sense described after Example 7 in Section 12.5. Such a homogeneous equation

can be transformed into a separable equation (and therefore solved) by means of a

change of dependent variable. If we set

v D
y

x
; or equivalently y D xv.x/;

then we have

dy

dx
D v C x

dv

dx
;

and the original differential equation transforms into

dv

dx
D

f .v/ � v

x
;

which is separable.

E X A M P L E 1
Solve the equation

dy

dx
D

x2
C xy

xy C y2
:

Solution The equation is homogeneous. (Divide the numerator and denominator of

the right-hand side by x2 to see this.) If y D vx the equation becomes

v C x
dv

dx
D

1C v

v C v2
D

1

v
;
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or

x
dv

dx
D

1 � v2

v
:

Separating variables and integrating, we calculate

Z

v dv

1 � v2
D

Z

dx

x
Let u D 1 � v2

�

1

2

Z

du

u
D

Z

dx

x

� ln juj D 2 ln jxj C C1 D lnC2x
2

.C1 D lnC2/

1

juj
D C2x

2

j1� v
2
j D

C3

x2
.C3 D 1=C2/

ˇ

ˇ

ˇ

ˇ

1 �
y2

x2

ˇ

ˇ

ˇ

ˇ

D

C3

x2
:

The solution is best expressed in the form x2
� y2

D C4. However, near points where

y ¤ 0, the equation can be solved for y as a function of x.

Exact Equations
A first-order differential equation expressed in differential form as

M.x; y/ dx CN.x; y/ dy D 0;

which is equivalent to
dy

dx
D �

M.x; y/

N.x; y/
, is said to be exact if the left-hand side is the

differential of a function �.x; y/:

d�.x; y/ DM.x; y/ dx CN.x; y/ dy:

The function � is called an integral function of the differential equation. The level

curves �.x; y/ D C of � are the solution curves of the differential equation. For

example, the differential equation

x dx C y dy D 0

has solution curves given by

x
2
C y

2
D C

since d.x2
C y2/ D 2.x dx C y dy/ D 0.

Remark The condition that the differential equation M dx C N dy D 0 should be

exact is just the condition that the vector field

F D M.x; y/ iCN.x; y/ j

should be conservative; the integral function of the differential equation is then the

potential function of the vector field. (See Section 15.2.)
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A necessary condition for the exactness of the DE M dx CN dy D 0 is that

@M

@y
D

@N

@x
I

this just says that the mixed partial derivatives
@2�

@x@y
and

@2�

@y@x
of the integral function

� must be equal.

Once you know that an equation is exact, you can often guess the integral function.

In any event, � can always be found by the same method used to find the potential of a

conservative vector field in Section 15.2.

E X A M P L E 2
Verify that the DE

.2x C sin y � ye�x
/ dx C .x cos y C cos y C e�x

/ dy D 0

is exact and find its solution curves.

Solution Here, M D 2x C sin y � ye�x and N D x cos y C cos y C e�x . Since

@M

@y
D cos y � e�x

D

@N

@x
;

the DE is exact. We want to find � so that

@�

@x
DM D 2x C sin y � ye�x and

@�

@y
D N D x cos y C cos y C e�x

:

Integrate the first equation with respect to x, being careful to allow the constant of

integration to depend on y:

�.x; y/ D

Z

.2x C siny � ye�x
/ dx D x

2
C x siny C ye�x

C C1.y/:

Now substitute this expression into the second equation:

x cos y C cos y C e�x
D

@�

@y
D x cos y C e�x

C C
0
1.y/:

Thus, C 0
1.y/ D cos y, and C1.y/ D sin y C C2. (It is because the original DE was

exact that the equation for C 0
1.y/ turned out to be independent of x; this had to happen

or we could not have found C1 as a function of y only.) Choosing C2 D 0, we find that

�.x; y/ D x
2
C x sin y C ye�x

C sin y is an integral function for the given DE. The

solution curves for the DE are the level curves

x
2
C x sin y C ye�x

C siny D C:

Integrating Factors
Any ordinary differential equation of order 1 and degree 1 can be expressed in dif-

ferential form: M dx C N dy D 0. However, this latter equation will usually not be

exact. It may be possible to multiply the equation by an integrating factor �.x; y/ so

that the resulting equation

�.x; y/M.x; y/ dx C �.x; y/N.x; y/ dy D 0

is exact. In general, such integrating factors are difficult to find; they must satisfy the

partial differential equation

M.x; y/
@�

@y
�N.x; y/

@�

@x
D �.x; y/

�

@N

@x
�

@M

@y

�

;
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or

x
dv

dx
D

1 � v2

v
:

Separating variables and integrating, we calculate

Z

v dv

1 � v2
D

Z

dx

x
Let u D 1 � v2

�

1

2

Z

du

u
D

Z

dx

x

� ln juj D 2 ln jxj C C1 D lnC2x
2

.C1 D lnC2/

1

juj
D C2x

2

j1� v
2
j D

C3

x2
.C3 D 1=C2/

ˇ

ˇ

ˇ

ˇ

1 �
y2

x2

ˇ

ˇ

ˇ

ˇ

D

C3

x2
:

The solution is best expressed in the form x2
� y2

D C4. However, near points where

y ¤ 0, the equation can be solved for y as a function of x.

Exact Equations
A first-order differential equation expressed in differential form as

M.x; y/ dx CN.x; y/ dy D 0;

which is equivalent to
dy

dx
D �

M.x; y/

N.x; y/
, is said to be exact if the left-hand side is the

differential of a function �.x; y/:

d�.x; y/ DM.x; y/ dx CN.x; y/ dy:

The function � is called an integral function of the differential equation. The level

curves �.x; y/ D C of � are the solution curves of the differential equation. For

example, the differential equation

x dx C y dy D 0

has solution curves given by

x
2
C y

2
D C

since d.x2
C y2/ D 2.x dx C y dy/ D 0.

Remark The condition that the differential equation M dx C N dy D 0 should be

exact is just the condition that the vector field

F D M.x; y/ iCN.x; y/ j

should be conservative; the integral function of the differential equation is then the

potential function of the vector field. (See Section 15.2.)
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A necessary condition for the exactness of the DE M dx CN dy D 0 is that

@M

@y
D

@N

@x
I

this just says that the mixed partial derivatives
@2�

@x@y
and

@2�

@y@x
of the integral function

� must be equal.

Once you know that an equation is exact, you can often guess the integral function.

In any event, � can always be found by the same method used to find the potential of a

conservative vector field in Section 15.2.

E X A M P L E 2
Verify that the DE

.2x C sin y � ye�x
/ dx C .x cos y C cos y C e�x

/ dy D 0

is exact and find its solution curves.

Solution Here, M D 2x C sin y � ye�x and N D x cos y C cos y C e�x . Since

@M

@y
D cos y � e�x

D

@N

@x
;

the DE is exact. We want to find � so that

@�

@x
DM D 2x C sin y � ye�x and

@�

@y
D N D x cos y C cos y C e�x

:

Integrate the first equation with respect to x, being careful to allow the constant of

integration to depend on y:

�.x; y/ D

Z

.2x C siny � ye�x
/ dx D x

2
C x siny C ye�x

C C1.y/:

Now substitute this expression into the second equation:

x cos y C cos y C e�x
D

@�

@y
D x cos y C e�x

C C
0
1.y/:

Thus, C 0
1.y/ D cos y, and C1.y/ D sin y C C2. (It is because the original DE was

exact that the equation for C 0
1.y/ turned out to be independent of x; this had to happen

or we could not have found C1 as a function of y only.) Choosing C2 D 0, we find that

�.x; y/ D x
2
C x sin y C ye�x

C sin y is an integral function for the given DE. The

solution curves for the DE are the level curves

x
2
C x sin y C ye�x

C siny D C:

Integrating Factors
Any ordinary differential equation of order 1 and degree 1 can be expressed in dif-

ferential form: M dx C N dy D 0. However, this latter equation will usually not be

exact. It may be possible to multiply the equation by an integrating factor �.x; y/ so

that the resulting equation

�.x; y/M.x; y/ dx C �.x; y/N.x; y/ dy D 0

is exact. In general, such integrating factors are difficult to find; they must satisfy the

partial differential equation

M.x; y/
@�

@y
�N.x; y/

@�

@x
D �.x; y/

�

@N

@x
�

@M

@y

�

;
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which follows from the necessary condition for exactness stated above. We will not try

to solve this equation here.

Sometimes it happens that a differential equation has an integrating factor depend-

ing on only one of the two variables. Suppose, for instance, that �.x/ is an integrating

factor forM dxCN dy D 0. Then�.x/must satisfy the ordinary differential equation

N.x; y/
d�

dx
D �.x/

�

@M

@y
�

@N

@x

�

;

or

1

�.x/

d�

dx
D

@M

@y
�

@N

@x

N.x; y/
:

This equation can be solved (by integration) for � as a function of x alone provided

that the right-hand side is independent of y.

E X A M P L E 3
Show that .x C y2/ dx C xy dy D 0 has an integrating factor

depending only on x, find it, and solve the equation.

Solution Here M D x C y2 and N D xy. Since

@M

@y
�

@N

@x

N.x; y/
D

2y � y

xy
D

1

x

does not depend on y, the equation has an integrating factor depending only on x. This

factor is given by d�=� D dx=x. Evidently, � D x is a suitable integrating factor; if

we multiply the given differential equation by x, we obtain

0 D .x
2
C xy

2
/ dx C x

2
y dy D d

�

x3

3
C

x2y2

2

�

:

The solution is therefore 2x3
C 3x2y2

D C .

Remark Of course, it may be possible to find an integrating factor depending on

y instead of x. See Exercises 17–19 below. It is also possible to look for integrat-

ing factors that depend on specific combinations of x and y, for instance, xy. See

Exercise 20.

E X E R C I S E S 18.2

See Section 7.9 for exercises on separable equations and linear

equations.

Solve the homogeneous differential equations in Exercises 1–6.

1.
dy

dx
D

x C y

x � y
2.

dy

dx
D

xy

x2
C 2y2

3.
dy

dx
D

x2
C xy C y2

x2
4.

dy

dx
D

x3
C 3xy2

3x2y C y3

5. x
dy

dx
D y C x cos2

�

y

x

�

6.
dy

dx
D

y

x
� e

�y=x

7. Find an equation of the curve in the xy-plane that passes

through the point .2; 3/ and has, at every point .x; y/ on it,

slope 2x=.1C y2
/.

8. Repeat Exercise 7 for the point .1; 3/ and slope 1C .2y=x/.

9. Show that the change of variables � D x � x0, � D y � y0

transforms the equation

dy

dx
D

ax C by C c

ex C fy C g

into the homogeneous equation

d�

d�
D

a� C b�

e� C f �
;
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provided .x0; y0/ is the solution of the system

ax C by C c D 0

ex C fy C g D 0:

10. Use the technique of Exercise 9 to solve the equation
dy

dx
D

x C 2y � 4

2x � y � 3
.

Show that the DEs in Exercises 11–14 are exact, and solve them.

11. .xy2
C y/ dx C .x

2
y C x/ dy D 0

12. .ex siny C 2x/ dx C .ex cos y C 2y/ dy D 0

13. exy
.1C xy/ dx C x

2
e

xy
dy D 0

14.

�

2x C 1 �
y2

x2

�

dx C
2y

x
dy D 0

Show that the DEs in Exercises 15–16 admit integrating factors

that are functions of x alone. Then solve the equations.

15. .x2
C 2y/ dx � x dy D 0

16. .xex
C x lny C y/ dx C

�

x
2

y
C x lnx C x siny

�

dy D 0

17. What condition must the coefficients M.x; y/ and N.x; y/

satisfy if the equationM dx CN dy D 0 is to have an

integrating factor of the form �.y/, and what DE must the

integrating factor satisfy?

18. Find an integrating factor of the form �.y/ for the equation

2y
2
.x C y

2
/ dx C xy.x C 6y

2
/ dy D 0;

and hence solve the equation. Hint: See Exercise 17.

19. Find an integrating factor of the form �.y/ for the equation

y dx � .2x C y3ey/ dy D 0, and hence solve the equation.

Hint: See Exercise 17.

20. What condition must the coefficients M.x; y/ and N.x; y/

satisfy if the equationM dx CN dy D 0 is to have an

integrating factor of the form �.xy/, and what DE must the

integrating factor satisfy?

21. Find an integrating factor of the form �.xy/ for the equation

�

x cos x C
y2

x

�

dx �

�

x sinx

y
C y

�

dy D 0;

and hence solve the equation. Hint: See Exercise 20.

18.3 Existence, Uniqueness, and Numerical Methods

A general first-order differential equation of the form

dy

dx
D f .x; y/

specifies a slope f .x; y/ at every point .x; y/ in the domain of f , and therefore rep-

resents a slope field. Such a slope field can be represented graphically by drawing

short line segments of the indicated slope at many points in the xy-plane. Slope fields

resemble vector fields, but the segments are usually drawn having the same length and

without arrowheads. Figure 18.1 portrays the slope field for the differential equation

dy

dx
D x � y:

Solving a typical initial-value problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

involves finding a function y D �.x/ such that

�
0
.x/ D f

�

x; �.x/
�

and �.x0/ D y0:

The graph of the equation y D �.x/ is a curve passing through .x0; y0/ that is tangent

to the slope-field at each point. Such curves are called solution curves of the differen-

tial equation. Figure 18.1 shows four solution curves for y 0
D x � y corresponding to

the initial conditions y.0/ D C , where C D �2, �1, 0, and 1.
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which follows from the necessary condition for exactness stated above. We will not try

to solve this equation here.

Sometimes it happens that a differential equation has an integrating factor depend-

ing on only one of the two variables. Suppose, for instance, that �.x/ is an integrating

factor forM dxCN dy D 0. Then�.x/must satisfy the ordinary differential equation

N.x; y/
d�

dx
D �.x/

�

@M

@y
�

@N

@x

�

;

or

1

�.x/

d�

dx
D

@M

@y
�

@N

@x

N.x; y/
:

This equation can be solved (by integration) for � as a function of x alone provided

that the right-hand side is independent of y.

E X A M P L E 3
Show that .x C y2/ dx C xy dy D 0 has an integrating factor

depending only on x, find it, and solve the equation.

Solution Here M D x C y2 and N D xy. Since

@M

@y
�

@N

@x

N.x; y/
D

2y � y

xy
D

1

x

does not depend on y, the equation has an integrating factor depending only on x. This

factor is given by d�=� D dx=x. Evidently, � D x is a suitable integrating factor; if

we multiply the given differential equation by x, we obtain

0 D .x
2
C xy

2
/ dx C x

2
y dy D d

�

x3

3
C

x2y2

2

�

:

The solution is therefore 2x3
C 3x2y2

D C .

Remark Of course, it may be possible to find an integrating factor depending on

y instead of x. See Exercises 17–19 below. It is also possible to look for integrat-

ing factors that depend on specific combinations of x and y, for instance, xy. See

Exercise 20.

E X E R C I S E S 18.2

See Section 7.9 for exercises on separable equations and linear

equations.

Solve the homogeneous differential equations in Exercises 1–6.

1.
dy

dx
D

x C y

x � y
2.

dy

dx
D

xy

x2
C 2y2

3.
dy

dx
D

x2
C xy C y2

x2
4.

dy

dx
D

x3
C 3xy2

3x2y C y3

5. x
dy

dx
D y C x cos2

�

y

x

�

6.
dy

dx
D

y

x
� e

�y=x

7. Find an equation of the curve in the xy-plane that passes

through the point .2; 3/ and has, at every point .x; y/ on it,

slope 2x=.1C y2
/.

8. Repeat Exercise 7 for the point .1; 3/ and slope 1C .2y=x/.

9. Show that the change of variables � D x � x0, � D y � y0

transforms the equation

dy

dx
D

ax C by C c

ex C fy C g

into the homogeneous equation

d�

d�
D

a� C b�

e� C f �
;
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provided .x0; y0/ is the solution of the system

ax C by C c D 0

ex C fy C g D 0:

10. Use the technique of Exercise 9 to solve the equation
dy

dx
D

x C 2y � 4

2x � y � 3
.

Show that the DEs in Exercises 11–14 are exact, and solve them.

11. .xy2
C y/ dx C .x

2
y C x/ dy D 0

12. .ex siny C 2x/ dx C .ex cos y C 2y/ dy D 0

13. exy
.1C xy/ dx C x

2
e

xy
dy D 0

14.

�

2x C 1 �
y2

x2

�

dx C
2y

x
dy D 0

Show that the DEs in Exercises 15–16 admit integrating factors

that are functions of x alone. Then solve the equations.

15. .x2
C 2y/ dx � x dy D 0

16. .xex
C x lny C y/ dx C

�

x
2

y
C x lnx C x siny

�

dy D 0

17. What condition must the coefficients M.x; y/ and N.x; y/

satisfy if the equationM dx CN dy D 0 is to have an

integrating factor of the form �.y/, and what DE must the

integrating factor satisfy?

18. Find an integrating factor of the form �.y/ for the equation

2y
2
.x C y

2
/ dx C xy.x C 6y

2
/ dy D 0;

and hence solve the equation. Hint: See Exercise 17.

19. Find an integrating factor of the form �.y/ for the equation

y dx � .2x C y3ey/ dy D 0, and hence solve the equation.

Hint: See Exercise 17.

20. What condition must the coefficients M.x; y/ and N.x; y/

satisfy if the equationM dx CN dy D 0 is to have an

integrating factor of the form �.xy/, and what DE must the

integrating factor satisfy?

21. Find an integrating factor of the form �.xy/ for the equation

�

x cos x C
y2

x

�

dx �

�

x sinx

y
C y

�

dy D 0;

and hence solve the equation. Hint: See Exercise 20.

18.3 Existence, Uniqueness, and Numerical Methods

A general first-order differential equation of the form

dy

dx
D f .x; y/

specifies a slope f .x; y/ at every point .x; y/ in the domain of f , and therefore rep-

resents a slope field. Such a slope field can be represented graphically by drawing

short line segments of the indicated slope at many points in the xy-plane. Slope fields

resemble vector fields, but the segments are usually drawn having the same length and

without arrowheads. Figure 18.1 portrays the slope field for the differential equation

dy

dx
D x � y:

Solving a typical initial-value problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

involves finding a function y D �.x/ such that

�
0
.x/ D f

�

x; �.x/
�

and �.x0/ D y0:

The graph of the equation y D �.x/ is a curve passing through .x0; y0/ that is tangent

to the slope-field at each point. Such curves are called solution curves of the differen-

tial equation. Figure 18.1 shows four solution curves for y 0
D x � y corresponding to

the initial conditions y.0/ D C , where C D �2, �1, 0, and 1.
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Figure 18.1 The slope field for the DE

y 0
D x � y and four solution curves for

this DE

y

x

1

�1

�2

The DE y 0
D x � y is linear and can be solved explicitly by the method of

Section 18.2. Indeed, the solution satisfying y.0/ D C is y D x � 1C .C C 1/e�x .

Most differential equations of the form y 0
D f .x; y/ cannot be solved for y as an

explicit function of x, so we must use numerical approximation methods to find the

value of a solution function �.x/ at particular points.

Existence and Uniqueness of Solutions
Even if we cannot calculate an explicit solution of an initial-value problem, it is impor-

tant to know when the problem has a solution and whether that solution is unique.

T H E O R E M

3

An existence and uniqueness theorem for first-order initial-value problems

Suppose that f .x; y/ and f2.x; y/ D .@=@y/f .x; y/ are continuous on a rectangle

R of the form a � x � b, c � y � d , containing the point .x0; y0/ in its interior.

Then there exists a number ı > 0 and a unique function �.x/ defined and having

a continuous derivative on the interval .x0 � ı; x0 C ı/ such that �.x0/ D y0 and

� 0.x/ D f
�

x; �.x/
�

for x0 � ı < x < x0 C ı. In other words, the initial-value

problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

.�/

has a unique solution on .x0 � ı; x0 C ı/.

We give only an outline of the proof here. Any solution y D �.x/ of the initial-value

problem .�/ must also satisfy the integral equation

�.x/ D y0 C

Z x

x0

f
�

t; �.t/
�

dt; .��/

and, conversely, any solution of the integral equation .��/must also satisfy the initial-

value problem .�/. A sequence of approximations �n.x/ to a solution of .��/ can be

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1011 November 18, 2016

SECTION 18.3: Existence, Uniqueness, and Numerical Methods 1011

constructed as follows:

�0.x/ D y0

�nC1.x/ D y0 C

Z x

x0

f
�

t; �n.t/
�

dt for n D 0; 1; 2; : : :

(These are called Picard iterations.) The proof of Theorem 3 involves showing that

lim
n!1

�n.x/ D �.x/

exists on an interval .x0 � ı; x0 C ı/ and that the resulting limit �.x/ satisfies the

integral equation .��/. The details can be found in more advanced texts on differential

equations and analysis.

Remark Some initial-value problems can have nonunique solutions. For example,

the functions y1.x/ D x
3 and y2.x/ D 0 both satisfy the initial-value problem

8

<

:

dy

dx
D 3y

2=3

y.0/ D 0:

In this case f .x; y/ D 3y2=3 is continuous on the whole xy-plane. However,

@f=@y D 2y
�1=3 is not continuous on the x-axis and is therefore not continuous on

any rectangle containing .0; 0/ in its interior. The conditions of Theorem 3 are not

satisfied, and the initial-value problem has a solution, but not a unique one.

Remark The unique solution y D �.x/ to the initial-value problem .�/ guaranteed

by Theorem 3 may not be defined on the whole interval Œa; b� because it can “es-

cape” from the rectangle R through the top or bottom edges. Even if f .x; y/ and

.@=@y/f .x; y/ are continuous on the whole xy-plane, the solution may not be defined

on the whole real line. For example,

y D
1

1� x
satisfies the initial-value problem

8

<

:

dy

dx
D y

2

y.0/ D 1

but only for x < 1. Starting from .0; 1/, we can follow the solution curve as far as

we want to the left of x D 0, but to the right of x D 0 the curve recedes to 1 as

x ! 1�. (See Figure 18.2.) It makes no sense to regard the part of the curve to the

right of x D 1 as part of the solution curve to the initial-value problem.

y

x

.0;1/

1

Figure 18.2 The solution to y 0
D y

2,

y.0/ D 1 is the part of the curve

y D 1=.1 � x/ to the left of the vertical

asymptote at x D 1

Numerical Methods
Suppose that the conditions of Theorem 3 are satisfied, so we know that the initial-

value problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

has a unique solution y D �.x/ on some interval containing x0. Even if we cannot

solve the differential equation and find �.x/ explicitly, we can still try to find approxi-

mate values yn for �.xn/ at a sequence of points

x0; x1 D x0 C h; x2 D x0 C 2h; x3 D x0 C 3h; : : :

starting at x0. Here, h > 0 (or h < 0) is called the step size of the approximation

scheme. In the remainder of this section we will describe three methods for construct-

ing the approximations fyng:
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Figure 18.1 The slope field for the DE

y 0
D x � y and four solution curves for

this DE

y

x

1

�1

�2

The DE y 0
D x � y is linear and can be solved explicitly by the method of

Section 18.2. Indeed, the solution satisfying y.0/ D C is y D x � 1C .C C 1/e�x .

Most differential equations of the form y 0
D f .x; y/ cannot be solved for y as an

explicit function of x, so we must use numerical approximation methods to find the

value of a solution function �.x/ at particular points.

Existence and Uniqueness of Solutions
Even if we cannot calculate an explicit solution of an initial-value problem, it is impor-

tant to know when the problem has a solution and whether that solution is unique.

T H E O R E M

3

An existence and uniqueness theorem for first-order initial-value problems

Suppose that f .x; y/ and f2.x; y/ D .@=@y/f .x; y/ are continuous on a rectangle

R of the form a � x � b, c � y � d , containing the point .x0; y0/ in its interior.

Then there exists a number ı > 0 and a unique function �.x/ defined and having

a continuous derivative on the interval .x0 � ı; x0 C ı/ such that �.x0/ D y0 and

� 0.x/ D f
�

x; �.x/
�

for x0 � ı < x < x0 C ı. In other words, the initial-value

problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

.�/

has a unique solution on .x0 � ı; x0 C ı/.

We give only an outline of the proof here. Any solution y D �.x/ of the initial-value

problem .�/ must also satisfy the integral equation

�.x/ D y0 C

Z x

x0

f
�

t; �.t/
�

dt; .��/

and, conversely, any solution of the integral equation .��/must also satisfy the initial-

value problem .�/. A sequence of approximations �n.x/ to a solution of .��/ can be
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constructed as follows:

�0.x/ D y0

�nC1.x/ D y0 C

Z x

x0

f
�

t; �n.t/
�

dt for n D 0; 1; 2; : : :

(These are called Picard iterations.) The proof of Theorem 3 involves showing that

lim
n!1

�n.x/ D �.x/

exists on an interval .x0 � ı; x0 C ı/ and that the resulting limit �.x/ satisfies the

integral equation .��/. The details can be found in more advanced texts on differential

equations and analysis.

Remark Some initial-value problems can have nonunique solutions. For example,

the functions y1.x/ D x
3 and y2.x/ D 0 both satisfy the initial-value problem

8

<

:

dy

dx
D 3y

2=3

y.0/ D 0:

In this case f .x; y/ D 3y2=3 is continuous on the whole xy-plane. However,

@f=@y D 2y
�1=3 is not continuous on the x-axis and is therefore not continuous on

any rectangle containing .0; 0/ in its interior. The conditions of Theorem 3 are not

satisfied, and the initial-value problem has a solution, but not a unique one.

Remark The unique solution y D �.x/ to the initial-value problem .�/ guaranteed

by Theorem 3 may not be defined on the whole interval Œa; b� because it can “es-

cape” from the rectangle R through the top or bottom edges. Even if f .x; y/ and

.@=@y/f .x; y/ are continuous on the whole xy-plane, the solution may not be defined

on the whole real line. For example,

y D
1

1� x
satisfies the initial-value problem

8

<

:

dy

dx
D y

2

y.0/ D 1

but only for x < 1. Starting from .0; 1/, we can follow the solution curve as far as

we want to the left of x D 0, but to the right of x D 0 the curve recedes to 1 as

x ! 1�. (See Figure 18.2.) It makes no sense to regard the part of the curve to the

right of x D 1 as part of the solution curve to the initial-value problem.

y

x

.0;1/

1

Figure 18.2 The solution to y 0
D y

2,

y.0/ D 1 is the part of the curve

y D 1=.1 � x/ to the left of the vertical

asymptote at x D 1

Numerical Methods
Suppose that the conditions of Theorem 3 are satisfied, so we know that the initial-

value problem

8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

has a unique solution y D �.x/ on some interval containing x0. Even if we cannot

solve the differential equation and find �.x/ explicitly, we can still try to find approxi-

mate values yn for �.xn/ at a sequence of points

x0; x1 D x0 C h; x2 D x0 C 2h; x3 D x0 C 3h; : : :

starting at x0. Here, h > 0 (or h < 0) is called the step size of the approximation

scheme. In the remainder of this section we will describe three methods for construct-

ing the approximations fyng:
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1. the Euler method,

2. the improved Euler method, and

3. the fourth-order Runge–Kutta method.

Each of these methods starts with the given value of y0 and provides a formula for

constructing ynC1 when you know yn. The three methods are listed above in increasing

order of the complexity of their formulas, but the more complicated formulas produce

much better approximations for any given step size h.

The Euler method involves approximating the solution curve y D �.x/ by a

polygonal line (a sequence of straight line segments joined end to end), where each

segment has horizontal length h and slope determined by the value of f .x; y/ at the

end of the previous segment. Thus, if xn D x0 C nh, then

y1 D y0 C f .x0; y0/h

y2 D y1 C f .x1; y1/h

y3 D y2 C f .x2; y2/h

and, in general,

Iteration formulas for Euler’s method

xnC1 D xn C h; ynC1 D yn C hf .xn; yn/:

E X A M P L E 1
Use Euler’s method to find approximate values for the solution of

the initial-value problem
8

<

:

dy

dx
D x � y

y.0/ D 1

on the interval Œ0; 1� using

(a) 5 steps of size h D 0:2, and

(b) 10 steps of size h D 0:1.

Calculate the error at each step, given that the problem (which involves a linear equa-

tion and so can be solved explicitly) has solution y D �.x/ D x � 1C 2e�x .

Solution

(a) Here we have f .x; y/ D x � y, x0 D 0, y0 D 1, and h D 0:2, so that

xn D
n

5
; ynC1 D yn C 0:2.xn � yn/;

and the error is en D �.xn/ � yn for n D 0, 1, 2, 3, 4, and 5. The results of

the calculation, which was done easily using a computer spreadsheet program, are

presented in Table 1.

Table 1. Euler approximations with h D 0:2

n xn yn f .xn; yn/ ynC1 en D �.xn/ � yn

0 0:0 1:000 000 �1:000 000 0:800 000 0:000 000

1 0:2 0:800 000 �0:600 000 0:680 000 0:037 462

2 0:4 0:680 000 �0:280 000 0:624 000 0:060 640

3 0:6 0:624 000 �0:024 000 0:619 200 0:073 623

4 0:8 0:619 200 0:180 800 0:655 360 0:079 458

5 1:0 0:655 360 0:344 640 0:080 399

The exact solution y D �.x/ and the polygonal line representing the Euler approxima-

tion are shown in Figure 18.3. The approximation lies below the solution curve, as is

reflected in the positive values in the last column of Table 1, representing the error at

each step.
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Figure 18.3 The solution y D �.x/ to

y 0
D x � y, y.0/ D 1 and an Euler

approximation to it on Œ0; 1� with step size

h D 0:2

y

0:2 0:4 0:6 0:8 1:0

0:9

0:8

0:7

y D �.x/ D x � 1C 2e
�x

(b) Here we have h D 0:1, so that

xn D
n

10
; ynC1 D yn C 0:1.xn � yn/

for n D 0; 1; : : : ; 10. Again we present the results in tabular form:

Table 2. Euler approximations with h D 0:1

n xn yn f .xn; yn/ ynC1 en D �.xn/ � yn

0 0:0 1:000 000 �1:000 000 0:900 000 0:000 000

1 0:1 0:900 000 �0:800 000 0:820 000 0:009 675

2 0:2 0:820 000 �0:620 000 0:758 000 0:017 462

3 0:3 0:758 000 �0:458 000 0:712 200 0:023 636

4 0:4 0:712 200 �0:312 200 0:680 980 0:028 440

5 0:5 0:680 980 �0:180 980 0:662 882 0:032 081

6 0:6 0:662 882 �0:062 882 0:656 594 0:034 741

7 0:7 0:656 594 0:043 406 0:660 934 0:036 577

8 0:8 0:660 934 0:139 066 0:674 841 0:037 724

9 0:9 0:674 841 0:225 159 0:697 357 0:038 298

10 1:0 0:697 357 0:302 643 0:038 402

Observe that the error at the end of the first step is about one-quarter of the error at the

end of the first step in part (a), but the final error at x D 1 is only about half as large

as in part (a). This behaviour is characteristic of Euler’s method.

If we decrease the step size h, it takes more steps (n D jx � x0j=h) to get from

the starting point x0 to a particular value x where we want to know the value of the

solution. For Euler’s method it can be shown that the error at each step decreases on

average proportionally to h2, but the errors can accumulate from step to step, so the

error at x can be expected to decrease proportionally to nh2
D jx � x0jh. This is

consistent with the results of Example 1. Decreasing h and so increasing n is costly

in terms of computing resources, so we would like to find ways of reducing the error

without decreasing the step size. This is similar to developing better techniques than

the Trapezoid Rule for evaluating definite integrals numerically.
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1. the Euler method,

2. the improved Euler method, and

3. the fourth-order Runge–Kutta method.

Each of these methods starts with the given value of y0 and provides a formula for

constructing ynC1 when you know yn. The three methods are listed above in increasing

order of the complexity of their formulas, but the more complicated formulas produce

much better approximations for any given step size h.

The Euler method involves approximating the solution curve y D �.x/ by a

polygonal line (a sequence of straight line segments joined end to end), where each

segment has horizontal length h and slope determined by the value of f .x; y/ at the

end of the previous segment. Thus, if xn D x0 C nh, then

y1 D y0 C f .x0; y0/h

y2 D y1 C f .x1; y1/h

y3 D y2 C f .x2; y2/h

and, in general,

Iteration formulas for Euler’s method

xnC1 D xn C h; ynC1 D yn C hf .xn; yn/:

E X A M P L E 1
Use Euler’s method to find approximate values for the solution of

the initial-value problem
8

<

:

dy

dx
D x � y

y.0/ D 1

on the interval Œ0; 1� using

(a) 5 steps of size h D 0:2, and

(b) 10 steps of size h D 0:1.

Calculate the error at each step, given that the problem (which involves a linear equa-

tion and so can be solved explicitly) has solution y D �.x/ D x � 1C 2e�x .

Solution

(a) Here we have f .x; y/ D x � y, x0 D 0, y0 D 1, and h D 0:2, so that

xn D
n

5
; ynC1 D yn C 0:2.xn � yn/;

and the error is en D �.xn/ � yn for n D 0, 1, 2, 3, 4, and 5. The results of

the calculation, which was done easily using a computer spreadsheet program, are

presented in Table 1.

Table 1. Euler approximations with h D 0:2

n xn yn f .xn; yn/ ynC1 en D �.xn/ � yn

0 0:0 1:000 000 �1:000 000 0:800 000 0:000 000

1 0:2 0:800 000 �0:600 000 0:680 000 0:037 462

2 0:4 0:680 000 �0:280 000 0:624 000 0:060 640

3 0:6 0:624 000 �0:024 000 0:619 200 0:073 623

4 0:8 0:619 200 0:180 800 0:655 360 0:079 458

5 1:0 0:655 360 0:344 640 0:080 399

The exact solution y D �.x/ and the polygonal line representing the Euler approxima-

tion are shown in Figure 18.3. The approximation lies below the solution curve, as is

reflected in the positive values in the last column of Table 1, representing the error at

each step.
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Figure 18.3 The solution y D �.x/ to

y 0
D x � y, y.0/ D 1 and an Euler

approximation to it on Œ0; 1� with step size

h D 0:2

y

0:2 0:4 0:6 0:8 1:0

0:9

0:8

0:7

y D �.x/ D x � 1C 2e
�x

(b) Here we have h D 0:1, so that

xn D
n

10
; ynC1 D yn C 0:1.xn � yn/

for n D 0; 1; : : : ; 10. Again we present the results in tabular form:

Table 2. Euler approximations with h D 0:1

n xn yn f .xn; yn/ ynC1 en D �.xn/ � yn

0 0:0 1:000 000 �1:000 000 0:900 000 0:000 000

1 0:1 0:900 000 �0:800 000 0:820 000 0:009 675

2 0:2 0:820 000 �0:620 000 0:758 000 0:017 462

3 0:3 0:758 000 �0:458 000 0:712 200 0:023 636

4 0:4 0:712 200 �0:312 200 0:680 980 0:028 440

5 0:5 0:680 980 �0:180 980 0:662 882 0:032 081

6 0:6 0:662 882 �0:062 882 0:656 594 0:034 741

7 0:7 0:656 594 0:043 406 0:660 934 0:036 577

8 0:8 0:660 934 0:139 066 0:674 841 0:037 724

9 0:9 0:674 841 0:225 159 0:697 357 0:038 298

10 1:0 0:697 357 0:302 643 0:038 402

Observe that the error at the end of the first step is about one-quarter of the error at the

end of the first step in part (a), but the final error at x D 1 is only about half as large

as in part (a). This behaviour is characteristic of Euler’s method.

If we decrease the step size h, it takes more steps (n D jx � x0j=h) to get from

the starting point x0 to a particular value x where we want to know the value of the

solution. For Euler’s method it can be shown that the error at each step decreases on

average proportionally to h2, but the errors can accumulate from step to step, so the

error at x can be expected to decrease proportionally to nh2
D jx � x0jh. This is

consistent with the results of Example 1. Decreasing h and so increasing n is costly

in terms of computing resources, so we would like to find ways of reducing the error

without decreasing the step size. This is similar to developing better techniques than

the Trapezoid Rule for evaluating definite integrals numerically.
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The improved Euler method is a step in this direction. The accuracy of the Euler

method is hampered by the fact that the slope of each segment in the approximating

polygonal line is determined by the value of f .x; y/ at one endpoint of the segment.

Since f varies along the segment, we would expect to do better by using, say, the

average value of f .x; y/ at the two ends of the segment, that is, by calculating ynC1

from the formula

ynC1 D yn C h
f .xn; yn/C f .xnC1; ynC1/

2
:

Unfortunately, ynC1 appears on both sides of this equation, and we can’t usually solve

the equation for ynC1. We can get around this difficulty by replacing ynC1 on the right

side by its Euler approximation ynChf .xn; yn/. The resulting formula is the basis for

the improved Euler method.

Iteration formulas for the improved Euler method

xnC1 D xn C h

unC1 D yn C hf .xn; yn/

ynC1 D yn C h
f .xn; yn/C f .xnC1; unC1/

2
:

E X A M P L E 2
Use the improved Euler method with h D 0:2 to find approximate

values for the solution to the initial-value problem of Example 1

on Œ0; 1�. Compare the errors with those obtained by the Euler method.

Solution Table 3 summarizes the calculation of five steps of the improved Euler

method for f .x; y/ D x � y, x0 D 0, and y0 D 1.

Table 3. Improved Euler approximations with h D 0:2

n xn yn unC1 ynC1 en D �.xn/ � yn

0 0:0 1:000 000 0:800 000 0:840 000 0:000 000

1 0:2 0:840 000 0:712 000 0:744 800 �0:002 538

2 0:4 0:744 800 0:675 840 0:702 736 �0:004 160

3 0:6 0:702 736 0:682 189 0:704 244 �0:005 113

4 0:8 0:704 244 0:723 395 0:741 480 �0:005 586

5 1:0 0:741 480 0:793 184 �0:005 721

Observe that the errors are considerably less than one-tenth those obtained in Ex-

ample 1(a). Of course, more calculations are necessary at each step, but the number

of evaluations of f .x; y/ required is only twice the number required for Example 1(a).

As for numerical integration, if f is complicated, it is these function evaluations that

constitute most of the computational “cost” of computing numerical solutions.

Remark It can be shown for well-behaved functions f that the error at each step

in the improved Euler method is bounded by a multiple of h3 rather than h2 as for

the (unimproved) Euler method. Thus, the cumulative error at x can be bounded by a

constant times jx � x0jh
2. If Example 2 is repeated with 10 steps of size h D 0:1, the

error at n D 10 (i.e., at x D 1) is �0:001 323, which is about one-fourth the size of

the error at x D 1 with h D 0:2.

The fourth-order Runge–Kutta method further improves upon the improved

Euler method, but at the expense of requiring more complicated calculations at each

step. It requires four evaluations of f .x; y/ at each step, but the error at each step is

less than a constant times h5, so the cumulative error decreases like h4 as h decreases.

Like the improved Euler method, this method involves calculating a certain kind of

average slope for each segment in the polygonal approximation to the solution to the
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initial-value problem. We present the appropriate formulas below but cannot derive

them here.

Iteration formulas for the Runge–Kutta method

xnC1 D xn C h

pn D f .xn; yn/

qn D f

�

xn C
h

2
; yn C

h

2
pn

�

rn D f

�

xn C
h

2
; yn C

h

2
qn

�

sn D f .xn C h; yn C hrn/

ynC1 D yn C h
pn C 2qn C 2rn C sn

6
:

E X A M P L E 3
Use the fourth-order Runge–Kutta method with h D 0:2 to find

approximate values for the solution to the initial-value problem of

Example 1 on Œ0; 1�. Compare the errors with those obtained by the Euler and improved

Euler methods.

Solution Table 4 summarizes the calculation of five steps of the Runge–Kutta method

for f .x; y/ D x � y, x0 D 0, and y0 D 1 according to the formulas above. The table

does not show the values of the intermediate quantities pn, qn, rn, and sn, but columns

for these quantities were included in the spreadsheet in which the calculations were

made.

Table 4. Fourth-order Runge–Kutta approximations with h D 0:2

n xn yn en D �.xn/ � yn

0 0:0 1:000 000 0:000 000 0

1 0:2 0:837 467 �0:000 005 2

2 0:4 0:740 649 �0:000 008 5

3 0:6 0:697 634 �0:000 010 4

4 0:8 0:698 669 �0:000 011 3

5 1:0 0:735 770 �0:000 011 6

The errors here are about 1/500 of the size of the errors obtained with the im-

proved Euler method and about 1/7,000 of the size of the errors obtained with the

Euler method. This great improvement was achieved at the expense of doubling the

number of function evaluations required in the improved Euler method and quadru-

pling the number required in the Euler method. If we use 10 steps of size h D 0:1 in

the Runge–Kutta method, the error at x D 1 is reduced to �6:664 82 � 10�7, which is

less than 1/16 of its value when h D 0:2.

Our final example shows what can happen with numerical approximations to a solution

that is unbounded.

E X A M P L E 4
Obtain approximations at x D 0:4, x D 0:8, and x D 1:0 for

solutions to the initial-value problem
(

y
0
D y

2

y.0/ D 1

using all three methods described above, and using step sizes h D 0:2, h D 0:1, and

h D 0:05 for each method. What do the results suggest about the values of the solution

at these points? Compare the results with the actual solution y D 1=.1 � x/.
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The improved Euler method is a step in this direction. The accuracy of the Euler

method is hampered by the fact that the slope of each segment in the approximating

polygonal line is determined by the value of f .x; y/ at one endpoint of the segment.

Since f varies along the segment, we would expect to do better by using, say, the

average value of f .x; y/ at the two ends of the segment, that is, by calculating ynC1

from the formula

ynC1 D yn C h
f .xn; yn/C f .xnC1; ynC1/

2
:

Unfortunately, ynC1 appears on both sides of this equation, and we can’t usually solve

the equation for ynC1. We can get around this difficulty by replacing ynC1 on the right

side by its Euler approximation ynChf .xn; yn/. The resulting formula is the basis for

the improved Euler method.

Iteration formulas for the improved Euler method

xnC1 D xn C h

unC1 D yn C hf .xn; yn/

ynC1 D yn C h
f .xn; yn/C f .xnC1; unC1/

2
:

E X A M P L E 2
Use the improved Euler method with h D 0:2 to find approximate

values for the solution to the initial-value problem of Example 1

on Œ0; 1�. Compare the errors with those obtained by the Euler method.

Solution Table 3 summarizes the calculation of five steps of the improved Euler

method for f .x; y/ D x � y, x0 D 0, and y0 D 1.

Table 3. Improved Euler approximations with h D 0:2

n xn yn unC1 ynC1 en D �.xn/ � yn

0 0:0 1:000 000 0:800 000 0:840 000 0:000 000

1 0:2 0:840 000 0:712 000 0:744 800 �0:002 538

2 0:4 0:744 800 0:675 840 0:702 736 �0:004 160

3 0:6 0:702 736 0:682 189 0:704 244 �0:005 113

4 0:8 0:704 244 0:723 395 0:741 480 �0:005 586

5 1:0 0:741 480 0:793 184 �0:005 721

Observe that the errors are considerably less than one-tenth those obtained in Ex-

ample 1(a). Of course, more calculations are necessary at each step, but the number

of evaluations of f .x; y/ required is only twice the number required for Example 1(a).

As for numerical integration, if f is complicated, it is these function evaluations that

constitute most of the computational “cost” of computing numerical solutions.

Remark It can be shown for well-behaved functions f that the error at each step

in the improved Euler method is bounded by a multiple of h3 rather than h2 as for

the (unimproved) Euler method. Thus, the cumulative error at x can be bounded by a

constant times jx � x0jh
2. If Example 2 is repeated with 10 steps of size h D 0:1, the

error at n D 10 (i.e., at x D 1) is �0:001 323, which is about one-fourth the size of

the error at x D 1 with h D 0:2.

The fourth-order Runge–Kutta method further improves upon the improved

Euler method, but at the expense of requiring more complicated calculations at each

step. It requires four evaluations of f .x; y/ at each step, but the error at each step is

less than a constant times h5, so the cumulative error decreases like h4 as h decreases.

Like the improved Euler method, this method involves calculating a certain kind of

average slope for each segment in the polygonal approximation to the solution to the
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initial-value problem. We present the appropriate formulas below but cannot derive

them here.

Iteration formulas for the Runge–Kutta method

xnC1 D xn C h

pn D f .xn; yn/

qn D f

�

xn C
h

2
; yn C

h

2
pn

�

rn D f

�

xn C
h

2
; yn C

h

2
qn

�

sn D f .xn C h; yn C hrn/

ynC1 D yn C h
pn C 2qn C 2rn C sn

6
:

E X A M P L E 3
Use the fourth-order Runge–Kutta method with h D 0:2 to find

approximate values for the solution to the initial-value problem of

Example 1 on Œ0; 1�. Compare the errors with those obtained by the Euler and improved

Euler methods.

Solution Table 4 summarizes the calculation of five steps of the Runge–Kutta method

for f .x; y/ D x � y, x0 D 0, and y0 D 1 according to the formulas above. The table

does not show the values of the intermediate quantities pn, qn, rn, and sn, but columns

for these quantities were included in the spreadsheet in which the calculations were

made.

Table 4. Fourth-order Runge–Kutta approximations with h D 0:2

n xn yn en D �.xn/ � yn

0 0:0 1:000 000 0:000 000 0

1 0:2 0:837 467 �0:000 005 2

2 0:4 0:740 649 �0:000 008 5

3 0:6 0:697 634 �0:000 010 4

4 0:8 0:698 669 �0:000 011 3

5 1:0 0:735 770 �0:000 011 6

The errors here are about 1/500 of the size of the errors obtained with the im-

proved Euler method and about 1/7,000 of the size of the errors obtained with the

Euler method. This great improvement was achieved at the expense of doubling the

number of function evaluations required in the improved Euler method and quadru-

pling the number required in the Euler method. If we use 10 steps of size h D 0:1 in

the Runge–Kutta method, the error at x D 1 is reduced to �6:664 82 � 10�7, which is

less than 1/16 of its value when h D 0:2.

Our final example shows what can happen with numerical approximations to a solution

that is unbounded.

E X A M P L E 4
Obtain approximations at x D 0:4, x D 0:8, and x D 1:0 for

solutions to the initial-value problem
(

y
0
D y

2

y.0/ D 1

using all three methods described above, and using step sizes h D 0:2, h D 0:1, and

h D 0:05 for each method. What do the results suggest about the values of the solution

at these points? Compare the results with the actual solution y D 1=.1 � x/.
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Solution The various approximations are calculated using the various formulas de-

scribed above for f .x; y/ D y
2, x0 D 0, and y0 D 1. The results are presented in

Table 5.

Table 5. Comparing methods and step sizes for y 0
D y2, y.0/ D 1

h D 0:2 h D 0:1 h D 0:05

Euler

x D 0:4 1:488 000 1:557 797 1:605 224

x D 0:8 2:676 449 3:239 652 3:793 197

x D 1:0 4:109 124 6:128 898 9:552 668

Improved Euler

x D 0:4 1:640 092 1:658 736 1:664 515

x D 0:8 4:190 396 4:677 726 4:897 519

x D 1:0 11:878 846 22:290 765 43:114 668

Runge–Kutta

x D 0:4 1:666 473 1:666 653 1:666 666

x D 0:8 4:965 008 4:996 663 4:999 751

x D 1:0 41:016 258 81:996 399 163:983 395

Little useful information can be read from the Euler results. The improved Euler

results suggest that the solution exists at x D 0:4 and x D 0:8, but likely not at x D 1.

The Runge–Kutta results confirm this and suggest that y.0:4/ D 5=3 and y.0:8/ D 5,

which are the correct values provided by the actual solution y D 1=.1� x/. They also

suggest very strongly that the solution “blows up” at (or near) x D 1.

E X E R C I S E S 18.3

A computer is almost essential for doing most of these exercises.

The calculations are easily done with a spreadsheet program in

which formulas for calculating the various quantities involved can

be replicated down columns to automate the iteration process.

M 1. Use the Euler method with step sizes (a) h D 0:2, (b) h D 0:1,

and (c) h D 0:05 to approximate y.2/ given that y 0
D x C y

and y.1/ D 0.

M 2. Repeat Exercise 1 using the improved Euler method.

M 3. Repeat Exercise 1 using the Runge–Kutta method.

M 4. Use the Euler method with step sizes (a) h D 0:2 and (b)

h D 0:1 to approximate y.2/ given that y 0
D xe�y and

y.0/ D 0.

M 5. Repeat Exercise 4 using the improved Euler method.

M 6. Repeat Exercise 4 using the Runge–Kutta method.

M 7. Use the Euler method with (a) h D 0:2, (b) h D 0:1, and (c)

h D 0:05 to approximate y.1/ given that y 0
D cos y and

y.0/ D 0.

M 8. Repeat Exercise 7 using the improved Euler method.

M 9. Repeat Exercise 7 using the Runge–Kutta method.

M 10. Use the Euler method with (a) h D 0:2, (b) h D 0:1, and (c)

h D 0:05 to approximate y.1/ given that y 0
D cos.x2/ and

y.0/ D 0.

M 11. Repeat Exercise 10 using the improved Euler method.

M 12. Repeat Exercise 10 using the Runge–Kutta method.

Solve the integral equations in Exercises 13–14 by rephrasing them

as initial-value problems.

13. y.x/ D 2C

Z x

1

�

y.t/

�2

dt . Hint: Find
dy

dx
and y.1/.

14. u.x/ D 1C 3

Z x

2

t
2
u.t/ dt . Hint: Find

du

dx
and u.2/.

15. The methods of this section can be used to approximate

definite integrals numerically. For example,

I D

Z b

a

f .x/ dx

is given by I D y.b/, where

y
0
D f .x/; and y.a/ D 0:

Show that one step of the Runge–Kutta method with

h D b � a gives the same result for I as Simpson’s Rule

(Section 6.7) with two subintervals of length h=2.

16. If �.0/ D A � 0 and � 0.x/ � k�.x/ on Œ0;X�, where k > 0

and X > 0 are constants, show that �.x/ � Aekx on Œ0;X�.

Hint: Calculate .d=dx/.�.x/=ekx/.

17.I Consider the three initial-value problems

(A) u0
D u2 u.0/ D 1

(B) y
0
D x C y

2
y.0/ D 1

(C) v 0
D 1C v2 v.0/ D 1

(a) Show that the solution of (B) remains between the

solutions of (A) and (C) on any interval Œ0;X� where

solutions of all three problems exist. Hint: We must have

u.x/ � 1, y.x/ � 1, and v.x/ � 1 on Œ0; X�. (Why?)

Apply the result of Exercise 16 to � D y � u and to

� D v � y.
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(b) Find explicit solutions for problems (A) and (C). What

can you conclude about the solution to problem (B)?

(c)M Use the Runge–Kutta method with h D 0:05, h D 0:02,

and h D 0:01 to approximate the solution to (B) on Œ0; 1�.

What can you conclude now?

18.4 Differential Equations of Second Order

The general second-order ordinary differential equation is of the form

F

�

d2y

dx2
;
dy

dx
; y; x

�

D 0

for some function F of four variables. When such an equation can be solved explicitly

for y as a function of x, the solution typically involves two integrations and therefore

two arbitrary constants. A unique solution usually results from prescribing the values

of the solution y and its first derivative y 0
D dy=dx at a particular point. Such a

prescription constitutes an initial-value problem for the second-order equation.

Equations Reducible to First Order
A second-order equation of the form

F

�

d2y

dx2
;
dy

dx
; x

�

D 0

that does not involve the unknown function y explicitly (except through its derivatives)

can be reduced to a first-order equation by a change of dependent variable; if v D

dy=dx, then the equation can be written

F

�

dv

dx
; v; x

�

D 0:

This first-order equation in v may be amenable to the techniques described in earlier

sections. If an explicit solution v D v.x/ can be found and integrated, then the function

y D

Z

v.x/ dx

is an explicit solution of the given equation.

E X A M P L E 1
Solve the initial-value problem

d2y

dx2
D x

�

dy

dx

�2

; y.0/ D 1; y
0
.0/ D �2:

Solution If we let v D dy=dx, the given differential equation becomes

dv

dx
D xv

2
;

which is a separable first-order equation. Thus,

dv

v2
D x dx

�

1

v
D

x2

2
C

C1

2

v D �
2

x2
C C1

:
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Solution The various approximations are calculated using the various formulas de-

scribed above for f .x; y/ D y
2, x0 D 0, and y0 D 1. The results are presented in

Table 5.

Table 5. Comparing methods and step sizes for y 0
D y2, y.0/ D 1

h D 0:2 h D 0:1 h D 0:05

Euler

x D 0:4 1:488 000 1:557 797 1:605 224

x D 0:8 2:676 449 3:239 652 3:793 197

x D 1:0 4:109 124 6:128 898 9:552 668

Improved Euler

x D 0:4 1:640 092 1:658 736 1:664 515

x D 0:8 4:190 396 4:677 726 4:897 519

x D 1:0 11:878 846 22:290 765 43:114 668

Runge–Kutta

x D 0:4 1:666 473 1:666 653 1:666 666

x D 0:8 4:965 008 4:996 663 4:999 751

x D 1:0 41:016 258 81:996 399 163:983 395

Little useful information can be read from the Euler results. The improved Euler

results suggest that the solution exists at x D 0:4 and x D 0:8, but likely not at x D 1.

The Runge–Kutta results confirm this and suggest that y.0:4/ D 5=3 and y.0:8/ D 5,

which are the correct values provided by the actual solution y D 1=.1� x/. They also

suggest very strongly that the solution “blows up” at (or near) x D 1.

E X E R C I S E S 18.3

A computer is almost essential for doing most of these exercises.

The calculations are easily done with a spreadsheet program in

which formulas for calculating the various quantities involved can

be replicated down columns to automate the iteration process.

M 1. Use the Euler method with step sizes (a) h D 0:2, (b) h D 0:1,

and (c) h D 0:05 to approximate y.2/ given that y 0
D x C y

and y.1/ D 0.

M 2. Repeat Exercise 1 using the improved Euler method.

M 3. Repeat Exercise 1 using the Runge–Kutta method.

M 4. Use the Euler method with step sizes (a) h D 0:2 and (b)

h D 0:1 to approximate y.2/ given that y 0
D xe�y and

y.0/ D 0.

M 5. Repeat Exercise 4 using the improved Euler method.

M 6. Repeat Exercise 4 using the Runge–Kutta method.

M 7. Use the Euler method with (a) h D 0:2, (b) h D 0:1, and (c)

h D 0:05 to approximate y.1/ given that y 0
D cos y and

y.0/ D 0.

M 8. Repeat Exercise 7 using the improved Euler method.

M 9. Repeat Exercise 7 using the Runge–Kutta method.

M 10. Use the Euler method with (a) h D 0:2, (b) h D 0:1, and (c)

h D 0:05 to approximate y.1/ given that y 0
D cos.x2/ and

y.0/ D 0.

M 11. Repeat Exercise 10 using the improved Euler method.

M 12. Repeat Exercise 10 using the Runge–Kutta method.

Solve the integral equations in Exercises 13–14 by rephrasing them

as initial-value problems.

13. y.x/ D 2C

Z x

1

�

y.t/

�2

dt . Hint: Find
dy

dx
and y.1/.

14. u.x/ D 1C 3

Z x

2

t
2
u.t/ dt . Hint: Find

du

dx
and u.2/.

15. The methods of this section can be used to approximate

definite integrals numerically. For example,

I D

Z b

a

f .x/ dx

is given by I D y.b/, where

y
0
D f .x/; and y.a/ D 0:

Show that one step of the Runge–Kutta method with

h D b � a gives the same result for I as Simpson’s Rule

(Section 6.7) with two subintervals of length h=2.

16. If �.0/ D A � 0 and � 0.x/ � k�.x/ on Œ0;X�, where k > 0

and X > 0 are constants, show that �.x/ � Aekx on Œ0;X�.

Hint: Calculate .d=dx/.�.x/=ekx/.

17.I Consider the three initial-value problems

(A) u0
D u2 u.0/ D 1

(B) y
0
D x C y

2
y.0/ D 1

(C) v 0
D 1C v2 v.0/ D 1

(a) Show that the solution of (B) remains between the

solutions of (A) and (C) on any interval Œ0;X� where

solutions of all three problems exist. Hint: We must have

u.x/ � 1, y.x/ � 1, and v.x/ � 1 on Œ0; X�. (Why?)

Apply the result of Exercise 16 to � D y � u and to

� D v � y.
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(b) Find explicit solutions for problems (A) and (C). What

can you conclude about the solution to problem (B)?

(c)M Use the Runge–Kutta method with h D 0:05, h D 0:02,

and h D 0:01 to approximate the solution to (B) on Œ0; 1�.

What can you conclude now?

18.4 Differential Equations of Second Order

The general second-order ordinary differential equation is of the form

F

�

d2y

dx2
;
dy

dx
; y; x

�

D 0

for some function F of four variables. When such an equation can be solved explicitly

for y as a function of x, the solution typically involves two integrations and therefore

two arbitrary constants. A unique solution usually results from prescribing the values

of the solution y and its first derivative y 0
D dy=dx at a particular point. Such a

prescription constitutes an initial-value problem for the second-order equation.

Equations Reducible to First Order
A second-order equation of the form

F

�

d2y

dx2
;
dy

dx
; x

�

D 0

that does not involve the unknown function y explicitly (except through its derivatives)

can be reduced to a first-order equation by a change of dependent variable; if v D

dy=dx, then the equation can be written

F

�

dv

dx
; v; x

�

D 0:

This first-order equation in v may be amenable to the techniques described in earlier

sections. If an explicit solution v D v.x/ can be found and integrated, then the function

y D

Z

v.x/ dx

is an explicit solution of the given equation.

E X A M P L E 1
Solve the initial-value problem

d2y

dx2
D x

�

dy

dx

�2

; y.0/ D 1; y
0
.0/ D �2:

Solution If we let v D dy=dx, the given differential equation becomes

dv

dx
D xv

2
;

which is a separable first-order equation. Thus,

dv

v2
D x dx

�

1

v
D

x2

2
C

C1

2

v D �
2

x2
C C1

:
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The initial condition y 0.0/ D �2 implies that v.0/ D �2 and so C1 D 1: Therefore,

y D �2

Z

dx

x2
C 1

D �2 tan�1
x C C2:

The initial condition y.0/ D 1 implies that C2 D 1, so the solution of the given

initial-value problem is y D 1 � 2 tan�1 x.

A second-order equation of the form

F

�

d2y

dx2
;
dy

dx
; y

�

D 0

that does not explicitly involve the independent variable x can be reduced to a first-

order equation by a change of both dependent and independent variables. Again let

v D dy=dx, but regard v as a function of y rather than x: v D v.y/. Then

d2y

dx2
D

dv

dx
D

dv

dy

dy

dx
D v

dv

dy

by the Chain Rule. Hence, the given differential equation becomes

F

�

v
dv

dy
; v; y

�

D 0;

which is a first-order equation for v as a function of y. If this equation can be solved for

v D v.y/, there still remains the problem of solving the separable equation .dy=dx/ D

v.y/ for y as a function of x.

E X A M P L E 2 Solve the equation y
d2y

dx2
D

�

dy

dx

�2

.

Solution The change of variable dy=dx D v.y/ leads to the equation

yv
dv

dy
D v

2
;

which is separable, dv=v D dy=y, and has solution v D C1y. The equation

dy

dx
D C1y

is again separable and leads to

dy

y
D C1 dx

ln jyj D C1x C C2

y D ˙e
C1xCC2

D C3e
C1x

:

Second-Order Linear Equations
The most frequently encountered ordinary differential equations arising in applications

are second-order linear equations. The general second-order linear equation is of the

form

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/:
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As remarked in Section 18.1, if f .x/ D 0 identically, then we say that the equation

is homogeneous. If the coefficients a2.x/, a1.x/, and a0.x/ are continuous on an

interval and a2.x/ ¤ 0 there, then the homogeneous equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D 0

has a general solution of the form

yh D C1y1.x/C C2y2.x/;

where y1.x/ and y2.x/ are two independent solutions, that is, two solutions with the

property that C1y1.x/C C2y2.x/ D 0 for all x in the interval only if C1 D C2 D 0.

(We will not prove this here.)

Whenever one solution, y1.x/, of a homogeneous linear second-order equation is

known, another independent solution (and therefore the general solution) can be found

by substituting y D v.x/y1.x/ into the differential equation. This leads to a first-order,

linear, separable equation for v 0.

E X A M P L E 3
Show that y1 D e

�2x is a solution of y 00
C 4y 0

C 4y D 0, and find

the general solution of this equation.

Solution Since y 0
1 D �2e

�2x and y 00
1 D 4e

�2x , we have

y
00
1 C 4y

0
1 C 4y1 D e

�2x
.4 � 8C 4/ D 0;

so y1 is indeed a solution of the given differential equation. To find the general solu-

tion, try y D y1v D e
�2xv.x/. We have

y
0
D �2e

�2x
v C e

�2x
v

0

y
00
D 4e

�2x
v � 4e

�2x
v

0
C e

�2x
v

00
:

Substituting these expressions into the given DE, we obtain

0 D y
00
C 4y

0
C 4y

D e
�2x

.4v � 4v
0
C v

00
� 8v C 4v

0
C 4v/ D e

�2x
v

00
:

Thus, y D y1v is a solution provided v 00.x/ D 0. This equation for v has the general

solution v D C1 C C2x, so the given equation has the general solution

y D C1e
�2x
C C2xe

�2x
D C1y1.x/C C2y2.x/;

where y2 D xe
�2x is a second solution of the DE, independent of y1.

By Theorem 2 of Section 18.1, the general solution of the second-order, linear,

nonhomogeneous equation (with f .x/ ¤ 0) is of the form

y D yp.x/C yh.x/;

where yp.x/ is any particular solution of the nonhomogeneous equation, and yh.x/ is

the general solution (as described above) of the corresponding homogeneous equation.

In Section 18.6 we will discuss the solution of nonhomogeneous linear equations. First,

however, in Section 18.5 we concentrate on some special classes of homogeneous,

linear equations.
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The initial condition y 0.0/ D �2 implies that v.0/ D �2 and so C1 D 1: Therefore,

y D �2

Z

dx

x2
C 1

D �2 tan�1
x C C2:

The initial condition y.0/ D 1 implies that C2 D 1, so the solution of the given

initial-value problem is y D 1 � 2 tan�1 x.

A second-order equation of the form

F

�

d2y

dx2
;
dy

dx
; y

�

D 0

that does not explicitly involve the independent variable x can be reduced to a first-

order equation by a change of both dependent and independent variables. Again let

v D dy=dx, but regard v as a function of y rather than x: v D v.y/. Then

d2y

dx2
D

dv

dx
D

dv

dy

dy

dx
D v

dv

dy

by the Chain Rule. Hence, the given differential equation becomes

F

�

v
dv

dy
; v; y

�

D 0;

which is a first-order equation for v as a function of y. If this equation can be solved for

v D v.y/, there still remains the problem of solving the separable equation .dy=dx/ D

v.y/ for y as a function of x.

E X A M P L E 2 Solve the equation y
d2y

dx2
D

�

dy

dx

�2

.

Solution The change of variable dy=dx D v.y/ leads to the equation

yv
dv

dy
D v

2
;

which is separable, dv=v D dy=y, and has solution v D C1y. The equation

dy

dx
D C1y

is again separable and leads to

dy

y
D C1 dx

ln jyj D C1x C C2

y D ˙e
C1xCC2

D C3e
C1x

:

Second-Order Linear Equations
The most frequently encountered ordinary differential equations arising in applications

are second-order linear equations. The general second-order linear equation is of the

form

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/:
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As remarked in Section 18.1, if f .x/ D 0 identically, then we say that the equation

is homogeneous. If the coefficients a2.x/, a1.x/, and a0.x/ are continuous on an

interval and a2.x/ ¤ 0 there, then the homogeneous equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D 0

has a general solution of the form

yh D C1y1.x/C C2y2.x/;

where y1.x/ and y2.x/ are two independent solutions, that is, two solutions with the

property that C1y1.x/C C2y2.x/ D 0 for all x in the interval only if C1 D C2 D 0.

(We will not prove this here.)

Whenever one solution, y1.x/, of a homogeneous linear second-order equation is

known, another independent solution (and therefore the general solution) can be found

by substituting y D v.x/y1.x/ into the differential equation. This leads to a first-order,

linear, separable equation for v 0.

E X A M P L E 3
Show that y1 D e

�2x is a solution of y 00
C 4y 0

C 4y D 0, and find

the general solution of this equation.

Solution Since y 0
1 D �2e

�2x and y 00
1 D 4e

�2x , we have

y
00
1 C 4y

0
1 C 4y1 D e

�2x
.4 � 8C 4/ D 0;

so y1 is indeed a solution of the given differential equation. To find the general solu-

tion, try y D y1v D e
�2xv.x/. We have

y
0
D �2e

�2x
v C e

�2x
v

0

y
00
D 4e

�2x
v � 4e

�2x
v

0
C e

�2x
v

00
:

Substituting these expressions into the given DE, we obtain

0 D y
00
C 4y

0
C 4y

D e
�2x

.4v � 4v
0
C v

00
� 8v C 4v

0
C 4v/ D e

�2x
v

00
:

Thus, y D y1v is a solution provided v 00.x/ D 0. This equation for v has the general

solution v D C1 C C2x, so the given equation has the general solution

y D C1e
�2x
C C2xe

�2x
D C1y1.x/C C2y2.x/;

where y2 D xe
�2x is a second solution of the DE, independent of y1.

By Theorem 2 of Section 18.1, the general solution of the second-order, linear,

nonhomogeneous equation (with f .x/ ¤ 0) is of the form

y D yp.x/C yh.x/;

where yp.x/ is any particular solution of the nonhomogeneous equation, and yh.x/ is

the general solution (as described above) of the corresponding homogeneous equation.

In Section 18.6 we will discuss the solution of nonhomogeneous linear equations. First,

however, in Section 18.5 we concentrate on some special classes of homogeneous,

linear equations.
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E X E R C I S E S 18.4

1. Show that y D ex is a solution of y 00
� 3y 0

C 2y D 0, and

find the general solution of this DE.

2. Show that y D e�2x is a solution of y 00
� y 0
� 6y D 0, and

find the general solution of this DE.

3. Show that y D x is a solution of x2
y

00
C 2xy

0
� 2y D 0 on

the interval .0;1/, and find the general solution on this

interval.

4. Show that y D x2 is a solution of x2y 00
� 3xy 0

C 4y D 0 on

the interval .0;1/, and find the general solution on this

interval.

5. Show that y D x is a solution of the differential equation

x2y 00
� .2x C x2/y 0

C .2C x/y D 0, and find the general

solution of this equation.

6. Show that y D x�1=2 cos x is a solution of the Bessel

equation with � D 1=2:

x
2
y

00
C xy

0
C

�

x
2
�

1

4

�

y D 0:

Find the general solution of this equation.

First-order systems

7. A system of n first-order, linear, differential equations in n

unknown functions y1; y2; � � � ; yn is written

y
0
1 D a11.x/y1 C a12.x/y2 C � � � C a1n.x/yn C f1.x/

y
0
2 D a21.x/y1 C a22.x/y2 C � � � C a2n.x/yn C f2.x/

:
:
:

y
0
n D an1.x/y1 C an2.x/y2 C � � � C ann.x/yn C fn.x/:

Such a system is called an n� n first-order linear system and

can be rewritten in vector-matrix form as y0
DA.x/yC f.x/,

where

y.x/ D

0

B

@

y1.x/

:
:
:

yn.x/

1

C

A
; f.x/ D

0

B

@

f1.x/

:
:
:

fn.x/

1

C

A
;

A.x/ D

0

B

@

a11.x/ � � � a1n.x/

:
:
:

: : :
:
:
:

an1.x/ � � � ann.x/

1

C

A
:

Show that the second-order, linear equation

y 00
C a1.x/y

0
C a0.x/y D f .x/ can be transformed into a

2 � 2 first-order system with y1 D y and y2 D y
0 having

A.x/ D

�

0 1

�a0.x/ �a1.x/

�

; f.x/ D

�

0

f .x/

�

:

8. Generalize Exercise 7 to transform an nth-order linear

equation

y
.n/
Can�1.x/y

.n�1/
Can�2.x/y

.n�2/
C� � �Ca0.x/y D f .x/

into an n � n first-order system.

9. If A is an n � n constant matrix, and if there exists a scalar �

and a nonzero constant vector v for which Av D �v, show

that y D C1e
�xv is a solution of the homogeneous system

y0
DAy.

10. Show that the determinant

ˇ

ˇ

ˇ

ˇ

2 � � 1

2 3 � �

ˇ

ˇ

ˇ

ˇ

is zero for two

distinct values of �. For each of these values find a nonzero

vector v that satisfies the condition

�

2 1

2 3

�

v D �v. Hence,

solve the system

y
0
1 D 2y1 C y2; y

0
2 D 2y1 C 3y2:

18.5 Linear Differential Equations with Constant Coefficients

A differential equation of the form

a y
00
C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is said to be a linear, homogeneous,

second-order equation with constant coefficients.

A thorough discussion of techniques for solving such equations, together

with examples, exercises, and applications to the study of simple and

damped harmonic motion, can be found in Section 3.7; we will not re-

peat that discussion here. If you have not studied it, please do so now.
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We will, however, extend the treatment to cover linear, constant-coefficient differential

equations of higher order.

Constant-Coefficient Equations of Higher Order
Because in most applications of equation .�/ the dependent variable represents time,

we will, as we did in Section 3.7, regard y as a function of t rather than x, so that

the prime symbol .0/ denotes the derivative d=dt . The basic result of Section 3.7 was

that the function y D ert was a solution of .�/ provided that r satisfies the auxiliary

equation

ar
2
C br C c D 0: .��/

The auxiliary equation is quadratic and can have either

(a) two distinct real roots, r1 and r2 (if b2 > 4ac), in which case .�/ has general

solution y D C1e
r1t
C C2e

r2t ,

(b) a single repeated real root r (if b2
D 4ac), in which case .�/ has general solution

y D .C1 C C2t/e
rt , or

(c) a pair of complex conjugate roots, r D k ˙ i! with k and ! real (if b2 < 4ac),

in which case .�/ has general solution y D ekt
�

C1 cos.!t/C C2 sin.!t/
�

.

The situation is analogous for higher-order linear, homogeneous DEs with constant

coefficients. We describe the procedure without offering any proofs. If

Pn.r/ D anr
n
C an�1r

n�1
C � � � C a2r

2
C a1r C a0

is a polynomial of degree n with constant coefficients aj , (0 � j � n), and an ¤ 0,

then the DE

Pn.D/y D 0; (†)

where D D d=dt can be solved by substituting y D ert and obtaining the auxiliary

equation Pn.r/ D 0. This polynomial equation has n roots (see Appendix II) some

of which may be equal and some or all of which can be complex. If the coefficients

of the polynomial Pn.r/ are all real, then any complex roots must occur in complex

conjugate pairs k ˙ i! (with the same multiplicity), where k and ! are real.

The general solution of .†/ can be expressed as a linear combination of n inde-

pendent particular solutions

y D C1y1.t/C C2y2.t/C � � � C Cnyn.t/;

where the Cj are arbitrary constants. The independent solutions y1, y2, : : : , yn are

constructed as follows:

1. If r1 is a k-fold real root of the auxiliary equation (i.e., if .r � r1/
k is a factor of

Pn.r/), then

e
r1t
; te

r1t
; t

2
e

r1t
; : : : ; t

k�1
e

r1t

are k independent solutions of .†/.

2. If r D a C ib and r D a � ib (where a and b are real) constitute a k-fold pair

of complex conjugate roots of the auxiliary equation (i.e., if Œ.r � a/2 C b2�k is a

factor of Pn.r/), then

e
at cos bt; te

at cos bt; : : : ; t
k�1

e
at cos bt;

e
at sin bt; te

at sin bt; : : : ; t
k�1

e
at sin bt

are 2k independent solutions of .†/.
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E X E R C I S E S 18.4

1. Show that y D ex is a solution of y 00
� 3y 0

C 2y D 0, and

find the general solution of this DE.

2. Show that y D e�2x is a solution of y 00
� y 0
� 6y D 0, and

find the general solution of this DE.

3. Show that y D x is a solution of x2
y

00
C 2xy

0
� 2y D 0 on

the interval .0;1/, and find the general solution on this

interval.

4. Show that y D x2 is a solution of x2y 00
� 3xy 0

C 4y D 0 on

the interval .0;1/, and find the general solution on this

interval.

5. Show that y D x is a solution of the differential equation

x2y 00
� .2x C x2/y 0

C .2C x/y D 0, and find the general

solution of this equation.

6. Show that y D x�1=2 cos x is a solution of the Bessel

equation with � D 1=2:

x
2
y

00
C xy

0
C

�

x
2
�

1

4

�

y D 0:

Find the general solution of this equation.

First-order systems

7. A system of n first-order, linear, differential equations in n

unknown functions y1; y2; � � � ; yn is written

y
0
1 D a11.x/y1 C a12.x/y2 C � � � C a1n.x/yn C f1.x/

y
0
2 D a21.x/y1 C a22.x/y2 C � � � C a2n.x/yn C f2.x/

:
:
:

y
0
n D an1.x/y1 C an2.x/y2 C � � � C ann.x/yn C fn.x/:

Such a system is called an n� n first-order linear system and

can be rewritten in vector-matrix form as y0
DA.x/yC f.x/,

where

y.x/ D

0

B

@

y1.x/

:
:
:

yn.x/

1

C

A
; f.x/ D

0

B

@

f1.x/

:
:
:

fn.x/

1

C

A
;

A.x/ D

0

B

@

a11.x/ � � � a1n.x/

:
:
:

: : :
:
:
:

an1.x/ � � � ann.x/

1

C

A
:

Show that the second-order, linear equation

y 00
C a1.x/y

0
C a0.x/y D f .x/ can be transformed into a

2 � 2 first-order system with y1 D y and y2 D y
0 having

A.x/ D

�

0 1

�a0.x/ �a1.x/

�

; f.x/ D

�

0

f .x/

�

:

8. Generalize Exercise 7 to transform an nth-order linear

equation

y
.n/
Can�1.x/y

.n�1/
Can�2.x/y

.n�2/
C� � �Ca0.x/y D f .x/

into an n � n first-order system.

9. If A is an n � n constant matrix, and if there exists a scalar �

and a nonzero constant vector v for which Av D �v, show

that y D C1e
�xv is a solution of the homogeneous system

y0
DAy.

10. Show that the determinant

ˇ

ˇ

ˇ

ˇ

2 � � 1

2 3 � �

ˇ

ˇ

ˇ

ˇ

is zero for two

distinct values of �. For each of these values find a nonzero

vector v that satisfies the condition

�

2 1

2 3

�

v D �v. Hence,

solve the system

y
0
1 D 2y1 C y2; y

0
2 D 2y1 C 3y2:

18.5 Linear Differential Equations with Constant Coefficients

A differential equation of the form

a y
00
C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is said to be a linear, homogeneous,

second-order equation with constant coefficients.

A thorough discussion of techniques for solving such equations, together

with examples, exercises, and applications to the study of simple and

damped harmonic motion, can be found in Section 3.7; we will not re-

peat that discussion here. If you have not studied it, please do so now.
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We will, however, extend the treatment to cover linear, constant-coefficient differential

equations of higher order.

Constant-Coefficient Equations of Higher Order
Because in most applications of equation .�/ the dependent variable represents time,

we will, as we did in Section 3.7, regard y as a function of t rather than x, so that

the prime symbol .0/ denotes the derivative d=dt . The basic result of Section 3.7 was

that the function y D ert was a solution of .�/ provided that r satisfies the auxiliary

equation

ar
2
C br C c D 0: .��/

The auxiliary equation is quadratic and can have either

(a) two distinct real roots, r1 and r2 (if b2 > 4ac), in which case .�/ has general

solution y D C1e
r1t
C C2e

r2t ,

(b) a single repeated real root r (if b2
D 4ac), in which case .�/ has general solution

y D .C1 C C2t/e
rt , or

(c) a pair of complex conjugate roots, r D k ˙ i! with k and ! real (if b2 < 4ac),

in which case .�/ has general solution y D ekt
�

C1 cos.!t/C C2 sin.!t/
�

.

The situation is analogous for higher-order linear, homogeneous DEs with constant

coefficients. We describe the procedure without offering any proofs. If

Pn.r/ D anr
n
C an�1r

n�1
C � � � C a2r

2
C a1r C a0

is a polynomial of degree n with constant coefficients aj , (0 � j � n), and an ¤ 0,

then the DE

Pn.D/y D 0; (†)

where D D d=dt can be solved by substituting y D ert and obtaining the auxiliary

equation Pn.r/ D 0. This polynomial equation has n roots (see Appendix II) some

of which may be equal and some or all of which can be complex. If the coefficients

of the polynomial Pn.r/ are all real, then any complex roots must occur in complex

conjugate pairs k ˙ i! (with the same multiplicity), where k and ! are real.

The general solution of .†/ can be expressed as a linear combination of n inde-

pendent particular solutions

y D C1y1.t/C C2y2.t/C � � � C Cnyn.t/;

where the Cj are arbitrary constants. The independent solutions y1, y2, : : : , yn are

constructed as follows:

1. If r1 is a k-fold real root of the auxiliary equation (i.e., if .r � r1/
k is a factor of

Pn.r/), then

e
r1t
; te

r1t
; t

2
e

r1t
; : : : ; t

k�1
e

r1t

are k independent solutions of .†/.

2. If r D a C ib and r D a � ib (where a and b are real) constitute a k-fold pair

of complex conjugate roots of the auxiliary equation (i.e., if Œ.r � a/2 C b2�k is a

factor of Pn.r/), then

e
at cos bt; te

at cos bt; : : : ; t
k�1

e
at cos bt;

e
at sin bt; te

at sin bt; : : : ; t
k�1

e
at sin bt

are 2k independent solutions of .†/.
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Remark There is a simple explanation for such solutions, even though some treat-

ments make them seem needlessly experimental. They arise because the operator poly-

nomial is factorable, and the factors are commutative,

Pn.D/y D an.D � r1/.D � r2/ : : : .D � rn/y D 0:

Being commutative, any factor, .D� rk/, can be placed first in the order of application

to y. Thus, if .D� rk/yk D 0, then yk must be a solution and every factor contributes

a solution, Cke
rkx . The contributions of each factor are additive, because the operators

are linear. For distinct roots, rk , this captures all possible solutions.

However, for roots occurring m times things are more complicated. Suppose the

root rk appears m times. If yk represents the contributions of these m factors to the

general solution, then

.D � rk/
m
yk D 0:

But

.D�rk/
m
yk.t/ D .D�rk/

m�1
.D�rk/e

rk t
e

�rk t
yk.t/

„ † …

uk.t/

D .D�rk/
m�1

e
rk t
Duk.t/

because, for any function f .t/, .D � rk/e
rk tf .t/ D D

�

erk tf .t/
�

� rke
rk tf .t/ D

0C erk tDf .t/. We can repeat this argument m � 1 more times to obtain

.D � rk/
m
yk D e

rk t
D

m
uk.t/ D 0;

Thus,

D
m
uk.t/ D e

�rk t
.D � rk/

m
yk.t/ D 0;

and so uk.t/ must be a polynomial of degree at most m � 1: uk.t/ D Pm�1.t/e
rk t :

Similarly, the trigonometric solutions arise from complex roots and Euler’s formula.

E X A M P L E 1
Solve (a) y.4/

� 16y D 0 and (b) y.5/
� 2y.4/

C y.3/
D 0.

Solution The auxiliary equation for (a) is r4
� 16 D 0, which factors down to

.r � 2/.r C 2/.r2
C 4/ D 0 and, hence, has roots r D 2, �2, 2i , and �2i . Thus,

the DE (a) has general solution

y D C1e
2t
C C2e

�2t
C C3 cos.2t/C C4 sin.2t/

for arbitrary constants C1, C2, C3, and C4.

The auxiliary equation for (b) is r5
�2r4

Cr3
D 0, which factors to r3.r�1/2 D 0,

and so has roots r D 0; 0; 0; 1; 1. The general solution of the DE (b) is

y D C1 C C2t C C3t
2
C C4e

t
C C5te

t
;

where C1, : : : , C5 are arbitrary constants.

E X A M P L E 2
What are the order and the general solution of the constant-coefficient,

linear, homogeneous DE whose auxiliary equation is

.r C 4/
3
.r

2
C 4r C 13/

2
D 0‹

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1023 November 18, 2016

SECTION 18.5: Linear Differential Equations with Constant Coefficients 1023

Solution The auxiliary equation has degree 7, so the DE is of seventh order. Since

r
2
C 4r C 13 D .r C 2/

2
C 9, which has roots �2˙ 3i , the DE must have the general

solution

y DC1e
�4t
C C2te

�4t
C C3t

2
e

�4t

C C4e
�2t cos.3t/C C5e

�2t sin.3t/C C6te
�2t cos.3t/C C7te

�2t sin.3t/:

Euler (Equidimensional) Equations
A homogeneous, linear equation of the form

ax
2 d

2y

dx2
C bx

dy

dx
C cy D 0

is called an Euler equation or an equidimensional equation, the latter term being

appropriate since all the terms in the equation have the same dimension (i.e., they

are measured in the same units), provided that the constants a, b, and c all have the

same dimension. The coefficients of an Euler equation are not constant, but there

is a technique for solving these equations that is similar to that for solving equations

with constant coefficients, so we include a brief discussion of these equations in this

section. As in the case of constant-coefficient equations, we assume that the constants

a, b, and c are real numbers and that a ¤ 0. Even so, the leading coefficient, ax2,

does vanish at x D 0 (which is called a singular point of the equation), and this can

cause solutions to fail to be defined at x D 0. We will solve the equation in the interval

x > 0; the same solution will also hold for x < 0 provided we replace x by jxj in the

solution.

Let us search for solutions in x > 0 given by powers of x; if

y D x
r
;

dy

dx
D rx

r�1
;

d
2
y

dx2
D r.r � 1/x

r�2
;

then the Euler equation becomes

�

ar.r � 1/C br C c
�

x
r
D 0:

This will be satisfied for all x > 0, provided that r satisfies the auxiliary equation

ar.r � 1/C br C c D 0 or, equivalently, ar
2
C .b � a/r C c D 0:

As for constant-coefficient equations, there are three possibilities.

CASE I. If .b � a/2 � 4ac, then the auxiliary equation has two real roots:

r1 D
a � b C

p

.b � a/2 � 4ac

2a
;

r2 D
a � b �

p

.b � a/2 � 4ac

2a
:

In this case, the Euler equation has the general solution

y D C1x
r1
C C2x

r2 ; .x > 0/:

The general solution is usually quoted in the form

y D C1jxj
r1
C C2jxj

r2;

which is valid in any interval not containing x D 0 and may even be valid on intervals

containing the origin if, for example, r1 and r2 are nonnegative integers.
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Remark There is a simple explanation for such solutions, even though some treat-

ments make them seem needlessly experimental. They arise because the operator poly-

nomial is factorable, and the factors are commutative,

Pn.D/y D an.D � r1/.D � r2/ : : : .D � rn/y D 0:

Being commutative, any factor, .D� rk/, can be placed first in the order of application

to y. Thus, if .D� rk/yk D 0, then yk must be a solution and every factor contributes

a solution, Cke
rkx . The contributions of each factor are additive, because the operators

are linear. For distinct roots, rk , this captures all possible solutions.

However, for roots occurring m times things are more complicated. Suppose the

root rk appears m times. If yk represents the contributions of these m factors to the

general solution, then

.D � rk/
m
yk D 0:

But

.D�rk/
m
yk.t/ D .D�rk/

m�1
.D�rk/e

rk t
e

�rk t
yk.t/

„ † …

uk.t/

D .D�rk/
m�1

e
rk t
Duk.t/

because, for any function f .t/, .D � rk/e
rk tf .t/ D D

�

erk tf .t/
�

� rke
rk tf .t/ D

0C erk tDf .t/. We can repeat this argument m � 1 more times to obtain

.D � rk/
m
yk D e

rk t
D

m
uk.t/ D 0;

Thus,

D
m
uk.t/ D e

�rk t
.D � rk/

m
yk.t/ D 0;

and so uk.t/ must be a polynomial of degree at most m � 1: uk.t/ D Pm�1.t/e
rk t :

Similarly, the trigonometric solutions arise from complex roots and Euler’s formula.

E X A M P L E 1
Solve (a) y.4/

� 16y D 0 and (b) y.5/
� 2y.4/

C y.3/
D 0.

Solution The auxiliary equation for (a) is r4
� 16 D 0, which factors down to

.r � 2/.r C 2/.r2
C 4/ D 0 and, hence, has roots r D 2, �2, 2i , and �2i . Thus,

the DE (a) has general solution

y D C1e
2t
C C2e

�2t
C C3 cos.2t/C C4 sin.2t/

for arbitrary constants C1, C2, C3, and C4.

The auxiliary equation for (b) is r5
�2r4

Cr3
D 0, which factors to r3.r�1/2 D 0,

and so has roots r D 0; 0; 0; 1; 1. The general solution of the DE (b) is

y D C1 C C2t C C3t
2
C C4e

t
C C5te

t
;

where C1, : : : , C5 are arbitrary constants.

E X A M P L E 2
What are the order and the general solution of the constant-coefficient,

linear, homogeneous DE whose auxiliary equation is

.r C 4/
3
.r

2
C 4r C 13/

2
D 0‹
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Solution The auxiliary equation has degree 7, so the DE is of seventh order. Since

r
2
C 4r C 13 D .r C 2/

2
C 9, which has roots �2˙ 3i , the DE must have the general

solution

y DC1e
�4t
C C2te

�4t
C C3t

2
e

�4t

C C4e
�2t cos.3t/C C5e

�2t sin.3t/C C6te
�2t cos.3t/C C7te

�2t sin.3t/:

Euler (Equidimensional) Equations
A homogeneous, linear equation of the form

ax
2 d

2y

dx2
C bx

dy

dx
C cy D 0

is called an Euler equation or an equidimensional equation, the latter term being

appropriate since all the terms in the equation have the same dimension (i.e., they

are measured in the same units), provided that the constants a, b, and c all have the

same dimension. The coefficients of an Euler equation are not constant, but there

is a technique for solving these equations that is similar to that for solving equations

with constant coefficients, so we include a brief discussion of these equations in this

section. As in the case of constant-coefficient equations, we assume that the constants

a, b, and c are real numbers and that a ¤ 0. Even so, the leading coefficient, ax2,

does vanish at x D 0 (which is called a singular point of the equation), and this can

cause solutions to fail to be defined at x D 0. We will solve the equation in the interval

x > 0; the same solution will also hold for x < 0 provided we replace x by jxj in the

solution.

Let us search for solutions in x > 0 given by powers of x; if

y D x
r
;

dy

dx
D rx

r�1
;

d
2
y

dx2
D r.r � 1/x

r�2
;

then the Euler equation becomes

�

ar.r � 1/C br C c
�

x
r
D 0:

This will be satisfied for all x > 0, provided that r satisfies the auxiliary equation

ar.r � 1/C br C c D 0 or, equivalently, ar
2
C .b � a/r C c D 0:

As for constant-coefficient equations, there are three possibilities.

CASE I. If .b � a/2 � 4ac, then the auxiliary equation has two real roots:

r1 D
a � b C

p

.b � a/2 � 4ac

2a
;

r2 D
a � b �

p

.b � a/2 � 4ac

2a
:

In this case, the Euler equation has the general solution

y D C1x
r1
C C2x

r2 ; .x > 0/:

The general solution is usually quoted in the form

y D C1jxj
r1
C C2jxj

r2;

which is valid in any interval not containing x D 0 and may even be valid on intervals

containing the origin if, for example, r1 and r2 are nonnegative integers.
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E X A M P L E 3
Solve the initial-value problem

2x
2
y

00
� xy

0
� 2y D 0; y.1/ D 5; y

0
.1/ D 0:

Solution The auxiliary equation is 2r.r � 1/� r � 2 D 0, that is, 2r2
� 3r � 2 D 0,

or .r � 2/.2r C 1/ D 0, and has roots r D 2 and r D �.1=2/. Thus, the general

solution of the differential equation (valid for x > 0) is

y D C1x
2
C C2x

�1=2
:

The initial conditions imply that

5 D y.1/ D C1 C C2 and 0 D y
0
.1/ D 2C1 �

1

2
C2:

Therefore, C1 D 1 and C2 D 4, and the initial-value problem has solution

y D x
2
C

4
p

x
; .x > 0/:

CASE II. If .b�a/2 D 4ac, then the auxiliary equation has one double root, namely,

the root r D .a � b/=2a. It is left to the reader to verify that in this case the transfor-

mation y D xrv.x/ leads to the general solution

y D C1x
r
C C2x

r ln x; .x > 0/;

or, more generally,

y D C1jxj
r
C C2jxj

r ln jxj; .x ¤ 0/:

CASE III. If .b � a/2 < 4ac, then the auxiliary equation has complex conjugate

roots:

r D ˛ ˙ iˇ; where ˛ D
a � b

2a
; ˇ D

p

4ac � .b � a/2

2a
:

The corresponding powers xr can be expressed in real form in a manner similar to that

used for constant coefficient equations; we have

x
˛˙iˇ

D e
.˛˙iˇ/ ln x

D e
˛ ln x

�

cos.ˇ ln x/˙ i sin.ˇ lnx/
�

D x
˛ cos.ˇ ln x/˙ ix˛ sin.ˇ ln x/:

Accordingly, the Euler equation has the general solution

y D C1jxj
˛ cos.ˇ ln jxj/C C2jxj

˛ sin.ˇ ln jxj/:

E X A M P L E 4
Solve the DE x2y 00

� 3xy 0
C 13y D 0.

Solution The DE has the auxiliary equation r.r � 1/ � 3r C 13 D 0, that is, r2
�

4r C 13 D 0, which has roots r D 2˙ 3i . The DE, therefore, has the general solution

y D C1x
2 cos.3 ln jxj/C C2x

2 sin.3 ln jxj/:

Remark Euler equations can be transformed into constant-coefficient equations by

using a simple change of variable. See Exercise 14 for the details. In terms of the

new variable the operator is factorable, and the factors are commutative, therefore all

solution forms follow according to the previous remark. Transforming the resulting

solutions back in terms of the original variable brings us to the solutions above.
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E X E R C I S E S 18.5

Exercises involving the solution of second-order, linear,

homogeneous equations with constant coefficients can be found at

the end of Section 3.7.

Find general solutions of the DEs in Exercises 1–4.

1. y 000
� 4y

00
C 3y

0
D 0

2. y.4/
� 2y

00
C y D 0 3. y.4/

C 2y
00
C y D 0

4. y.4/
C 4y

.3/
C 6y

00
C 4y

0
C y D 0

5. Show that y D e2t is a solution of

y
000
� 2y

0
� 4y D 0

(where 0 denotes d=dt ), and find the general solution of this

DE.

6. Write the general solution of the linear, constant-coefficient

DE having auxiliary equation .r2
� r � 2/2.r2

� 4/2 D 0.

Find general solutions to the Euler equations in Exercises 7–12.

7. x2
y

00
� xy

0
C y D 0 8. x2

y
00
� xy

0
� 3y D 0

9. x2
y

00
C xy

0
� y D 0 10. x2

y
00
� xy

0
C 5y D 0

11. x2
y

00
C xy

0
D 0 12. x2

y
00
C xy

0
C y D 0

13.I Solve the DE x3y 000
C xy 0

� y D 0 in the interval x > 0.

14. Show that the change of variables x D et , z.t/ D y.et /,

transforms the Euler equation

ax
2 d

2y

dx2
C bx

dy

dx
C cy D 0

into the constant-coefficient equation

a
d2z

dt2
C .b � a/

dz

dt
C cz D 0:

15. Use the transformation x D et of the previous exercise to

solve the Euler equation

x
2 d

2y

dx2
� x

dy

dx
C 2y D 0; .x > 0/:

18.6 Nonhomogeneous Linear Equations

We now consider the problem of solving the nonhomogeneous second-order differen-

tial equation

a2.x/
d

2
y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/: .�/

We assume that two independent solutions, y1.x/ and y2.x/, of the corresponding

homogeneous equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D 0

are known. The function yh.x/ D C1y1.x/ C C2y2.x/, which is the general so-

lution of the homogeneous equation, is called the complementary function for the

nonhomogeneous equation. Theorem 2 of Section 18.1 suggests that the general solu-

tion of the nonhomogeneous equation is of the form

y D yp.x/C yh.x/ D yp.x/C C1y1.x/C C2y2.x/;

where yp.x/ is any particular solution of the nonhomogeneous equation. All we

need to do is find one solution of the nonhomogeneous equation, and we can write the

general solution.

There are two common methods for finding a particular solution yp of the

nonhomogeneous equation .�/:

1. the method of undetermined coefficients, and

2. the method of variation of parameters.
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E X A M P L E 3
Solve the initial-value problem

2x
2
y

00
� xy

0
� 2y D 0; y.1/ D 5; y

0
.1/ D 0:

Solution The auxiliary equation is 2r.r � 1/� r � 2 D 0, that is, 2r2
� 3r � 2 D 0,

or .r � 2/.2r C 1/ D 0, and has roots r D 2 and r D �.1=2/. Thus, the general

solution of the differential equation (valid for x > 0) is

y D C1x
2
C C2x

�1=2
:

The initial conditions imply that

5 D y.1/ D C1 C C2 and 0 D y
0
.1/ D 2C1 �

1

2
C2:

Therefore, C1 D 1 and C2 D 4, and the initial-value problem has solution

y D x
2
C

4
p

x
; .x > 0/:

CASE II. If .b�a/2 D 4ac, then the auxiliary equation has one double root, namely,

the root r D .a � b/=2a. It is left to the reader to verify that in this case the transfor-

mation y D xrv.x/ leads to the general solution

y D C1x
r
C C2x

r ln x; .x > 0/;

or, more generally,

y D C1jxj
r
C C2jxj

r ln jxj; .x ¤ 0/:

CASE III. If .b � a/2 < 4ac, then the auxiliary equation has complex conjugate

roots:

r D ˛ ˙ iˇ; where ˛ D
a � b

2a
; ˇ D

p

4ac � .b � a/2

2a
:

The corresponding powers xr can be expressed in real form in a manner similar to that

used for constant coefficient equations; we have

x
˛˙iˇ

D e
.˛˙iˇ/ ln x

D e
˛ ln x

�

cos.ˇ ln x/˙ i sin.ˇ lnx/
�

D x
˛ cos.ˇ ln x/˙ ix˛ sin.ˇ ln x/:

Accordingly, the Euler equation has the general solution

y D C1jxj
˛ cos.ˇ ln jxj/C C2jxj

˛ sin.ˇ ln jxj/:

E X A M P L E 4
Solve the DE x2y 00

� 3xy 0
C 13y D 0.

Solution The DE has the auxiliary equation r.r � 1/ � 3r C 13 D 0, that is, r2
�

4r C 13 D 0, which has roots r D 2˙ 3i . The DE, therefore, has the general solution

y D C1x
2 cos.3 ln jxj/C C2x

2 sin.3 ln jxj/:

Remark Euler equations can be transformed into constant-coefficient equations by

using a simple change of variable. See Exercise 14 for the details. In terms of the

new variable the operator is factorable, and the factors are commutative, therefore all

solution forms follow according to the previous remark. Transforming the resulting

solutions back in terms of the original variable brings us to the solutions above.
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E X E R C I S E S 18.5

Exercises involving the solution of second-order, linear,

homogeneous equations with constant coefficients can be found at

the end of Section 3.7.

Find general solutions of the DEs in Exercises 1–4.

1. y 000
� 4y

00
C 3y

0
D 0

2. y.4/
� 2y

00
C y D 0 3. y.4/

C 2y
00
C y D 0

4. y.4/
C 4y

.3/
C 6y

00
C 4y

0
C y D 0

5. Show that y D e2t is a solution of

y
000
� 2y

0
� 4y D 0

(where 0 denotes d=dt ), and find the general solution of this

DE.

6. Write the general solution of the linear, constant-coefficient

DE having auxiliary equation .r2
� r � 2/2.r2

� 4/2 D 0.

Find general solutions to the Euler equations in Exercises 7–12.

7. x2
y

00
� xy

0
C y D 0 8. x2

y
00
� xy

0
� 3y D 0

9. x2
y

00
C xy

0
� y D 0 10. x2

y
00
� xy

0
C 5y D 0

11. x2
y

00
C xy

0
D 0 12. x2

y
00
C xy

0
C y D 0

13.I Solve the DE x3y 000
C xy 0

� y D 0 in the interval x > 0.

14. Show that the change of variables x D et , z.t/ D y.et /,

transforms the Euler equation

ax
2 d

2y

dx2
C bx

dy

dx
C cy D 0

into the constant-coefficient equation

a
d2z

dt2
C .b � a/

dz

dt
C cz D 0:

15. Use the transformation x D et of the previous exercise to

solve the Euler equation

x
2 d

2y

dx2
� x

dy

dx
C 2y D 0; .x > 0/:

18.6 Nonhomogeneous Linear Equations

We now consider the problem of solving the nonhomogeneous second-order differen-

tial equation

a2.x/
d

2
y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/: .�/

We assume that two independent solutions, y1.x/ and y2.x/, of the corresponding

homogeneous equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D 0

are known. The function yh.x/ D C1y1.x/ C C2y2.x/, which is the general so-

lution of the homogeneous equation, is called the complementary function for the

nonhomogeneous equation. Theorem 2 of Section 18.1 suggests that the general solu-

tion of the nonhomogeneous equation is of the form

y D yp.x/C yh.x/ D yp.x/C C1y1.x/C C2y2.x/;

where yp.x/ is any particular solution of the nonhomogeneous equation. All we

need to do is find one solution of the nonhomogeneous equation, and we can write the

general solution.

There are two common methods for finding a particular solution yp of the

nonhomogeneous equation .�/:

1. the method of undetermined coefficients, and

2. the method of variation of parameters.
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The first of these hardly warrants being called a method; it just involves making an edu-

cated guess about the form of the solution as a sum of terms with unknown coefficients

and substituting this guess into the equation to determine the coefficients. This method

works well for simple DEs, especially ones with constant coefficients. The nature of

the guess depends on the nonhomogeneous term f .x/, but can also be affected by the

solution of the corresponding homogeneous equation. A few examples will illustrate

the ideas involved.

E X A M P L E 1
Find the general solution of y 00

C y
0
� 2y D 4x.

Solution Because the nonhomogeneous term f .x/ D 4x is a first-degree polyno-

mial, we “guess” that a particular solution can be found that is also such a polynomial.

Thus, we try

y D Ax C B; y
0
D A; y

00
D 0:

Substituting these expressions into the given DE, we obtain

0C A � 2.Ax C B/ D 4x or

�.2AC 4/x C .A � 2B/ D 0:

This latter equation will be satisfied for all x provided 2AC 4 D 0 and A � 2B D 0.

Thus, we require A D �2 and B D �1; a particular solution of the given DE is

yp.x/ D �2x � 1:

Since the corresponding homogeneous equation y 00
C y 0

� 2y D 0 has auxiliary

equation r2
C r � 2 D 0 with roots r D 1 and r D �2, the given DE has the

general solution

y D yp.x/C C1e
x
C C2e

�2x
D �2x � 1C C1e

x
C C2e

�2x
:

E X A M P L E 2
Find general solutions of the equations (where 0 denotes d=dt)

(a) y 00
C 4y D sin t ,

(b) y 00
C 4y D sin.2t/,

(c) y 00
C 4y D sin t C sin.2t/.

Solution

(a) Let us look for a particular solution of the form

y D A sin t C B cos t so that

y
0
D A cos t � B sin t

y
00
D �A sin t � B cos t:

Substituting these expressions into the DE y 00
C 4y D sin t , we get

�A sin t � B cos t C 4A sin t C 4B cos t D sin t;

which is satisfied for all x if 3A D 1 and 3B D 0. Thus, A D 1=3 and

B D 0. Since the homogeneous equation y 00
C 4y D 0 has general solution

y D C1 cos.2t/ C C2 sin.2t/, the given nonhomogeneous equation has the gen-

eral solution

y D
1

3
sin t C C1 cos.2t/C C2 sin.2t/:
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(b) Motivated by our success in part (a), we might be tempted to try for a particular

solution of the form y D A sin.2t/CB cos.2t/, but that won’t work, because this

function is a solution of the homogeneous equation, so we would get y 00
C4y D 0

for any choice of A and B . In this case it is useful to try

y D At sin.2t/C Bt cos.2t/:

We have

y
0
D A sin.2t/C 2At cos.2t/C B cos.2t/ � 2Bt sin.2t/

D .A � 2Bt/ sin.2t/C .B C 2At/ cos.2t/

y
00
D �2B sin.2t/C 2.A � 2Bt/ cos.2t/C 2A cos.2t/

� 2.B C 2At/ sin.2t/

D �4.B C At/ sin.2t/C 4.A � Bt/ cos.2t/:

Substituting into y 00
C 4y D sin.2t/ leads to

�4.B C At/ sin.2t/C 4.A � Bt/ cos.2t/C 4At sin.2t/C 4Bt cos.2t/

D sin.2t/:

Observe that the terms involving t sin.2t/ and t cos.2t/ cancel out, and we are left

with

�4B sin.2t/C 4A cos.2t/ D sin.2t/;

which is satisfied for all x if A D 0 and B D �1=4. Hence, the general solution

for part (b) is

y D �
1

4
t cos.2t/C C1 cos.2t/C C2 sin.2t/:

(c) Since the homogeneous equation is the same for (a), (b), and (c), and the non-

homogeneous term in equation (c) is the sum of the nonhomogeneous terms in

equations (a) and (b), the sum of particular solutions of (a) and (b) is a particular

solution of (c). (This is because the equation is linear.) Thus, the general solution

of equation (c) is

y D
1

3
sin t �

1

4
t cos.2t/C C1 cos.2t/C C2 sin.2t/:

We summarize the appropriate forms to try for particular solutions of constant-coefficient

equations as follows:
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The first of these hardly warrants being called a method; it just involves making an edu-

cated guess about the form of the solution as a sum of terms with unknown coefficients

and substituting this guess into the equation to determine the coefficients. This method

works well for simple DEs, especially ones with constant coefficients. The nature of

the guess depends on the nonhomogeneous term f .x/, but can also be affected by the

solution of the corresponding homogeneous equation. A few examples will illustrate

the ideas involved.

E X A M P L E 1
Find the general solution of y 00

C y
0
� 2y D 4x.

Solution Because the nonhomogeneous term f .x/ D 4x is a first-degree polyno-

mial, we “guess” that a particular solution can be found that is also such a polynomial.

Thus, we try

y D Ax C B; y
0
D A; y

00
D 0:

Substituting these expressions into the given DE, we obtain

0C A � 2.Ax C B/ D 4x or

�.2AC 4/x C .A � 2B/ D 0:

This latter equation will be satisfied for all x provided 2AC 4 D 0 and A � 2B D 0.

Thus, we require A D �2 and B D �1; a particular solution of the given DE is

yp.x/ D �2x � 1:

Since the corresponding homogeneous equation y 00
C y 0

� 2y D 0 has auxiliary

equation r2
C r � 2 D 0 with roots r D 1 and r D �2, the given DE has the

general solution

y D yp.x/C C1e
x
C C2e

�2x
D �2x � 1C C1e

x
C C2e

�2x
:

E X A M P L E 2
Find general solutions of the equations (where 0 denotes d=dt)

(a) y 00
C 4y D sin t ,

(b) y 00
C 4y D sin.2t/,

(c) y 00
C 4y D sin t C sin.2t/.

Solution

(a) Let us look for a particular solution of the form

y D A sin t C B cos t so that

y
0
D A cos t � B sin t

y
00
D �A sin t � B cos t:

Substituting these expressions into the DE y 00
C 4y D sin t , we get

�A sin t � B cos t C 4A sin t C 4B cos t D sin t;

which is satisfied for all x if 3A D 1 and 3B D 0. Thus, A D 1=3 and

B D 0. Since the homogeneous equation y 00
C 4y D 0 has general solution

y D C1 cos.2t/ C C2 sin.2t/, the given nonhomogeneous equation has the gen-

eral solution

y D
1

3
sin t C C1 cos.2t/C C2 sin.2t/:
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(b) Motivated by our success in part (a), we might be tempted to try for a particular

solution of the form y D A sin.2t/CB cos.2t/, but that won’t work, because this

function is a solution of the homogeneous equation, so we would get y 00
C4y D 0

for any choice of A and B . In this case it is useful to try

y D At sin.2t/C Bt cos.2t/:

We have

y
0
D A sin.2t/C 2At cos.2t/C B cos.2t/ � 2Bt sin.2t/

D .A � 2Bt/ sin.2t/C .B C 2At/ cos.2t/

y
00
D �2B sin.2t/C 2.A � 2Bt/ cos.2t/C 2A cos.2t/

� 2.B C 2At/ sin.2t/

D �4.B C At/ sin.2t/C 4.A � Bt/ cos.2t/:

Substituting into y 00
C 4y D sin.2t/ leads to

�4.B C At/ sin.2t/C 4.A � Bt/ cos.2t/C 4At sin.2t/C 4Bt cos.2t/

D sin.2t/:

Observe that the terms involving t sin.2t/ and t cos.2t/ cancel out, and we are left

with

�4B sin.2t/C 4A cos.2t/ D sin.2t/;

which is satisfied for all x if A D 0 and B D �1=4. Hence, the general solution

for part (b) is

y D �
1

4
t cos.2t/C C1 cos.2t/C C2 sin.2t/:

(c) Since the homogeneous equation is the same for (a), (b), and (c), and the non-

homogeneous term in equation (c) is the sum of the nonhomogeneous terms in

equations (a) and (b), the sum of particular solutions of (a) and (b) is a particular

solution of (c). (This is because the equation is linear.) Thus, the general solution

of equation (c) is

y D
1

3
sin t �

1

4
t cos.2t/C C1 cos.2t/C C2 sin.2t/:

We summarize the appropriate forms to try for particular solutions of constant-coefficient

equations as follows:
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Trial solutions for constant-coefficient equations

Let An.x/, Bn.x/, and Pn.x/ denote the nth-degree polynomials

An.x/ D a0 C a1x C a2x
2
C � � � C anx

n

Bn.x/ D b0 C b1x C b2x
2
C � � � C bnx

n

Pn.x/ D p0 C p1x C p2x
2
C � � � C pnx

n
:

To find a particular solution yp.x/ of the second-order linear, constant-

coefficient, nonhomogeneous DE

a2

d2y

dx2
C a1

dy

dx
C a0y D f .x/;

use the following forms:

If f .x/ D Pn.x/, try yp D x
mAn.x/:

If f .x/ D Pn.x/e
rx , try yp D x

mAn.x/e
rx :

If f .x/ D Pn.x/e
rx cos.kx/, try yp D x

merx ŒAn.x/ cos.kx/CBn.x/ sin.kx/�:

If f .x/ D Pn.x/e
rx sin.kx/, try yp D x

merx ŒAn.x/ cos.kx/CBn.x/ sin.kx/�;

where m is the smallest of the integers 0, 1, and 2, that ensures that no term

of yp is a solution of the corresponding homogeneous equation

a2

d
2
y

dx2
C a1

dy

dx
C a0y D 0:

Resonance
For � > 0, � ¤ 1, the solution y�.t/ of the initial-value problem

8

ˆ

<

ˆ

:

y
00
C y D sin.�t/

y.0/ D 0

y
0
.0/ D 1

can be determined by first looking for a particular solution of the DE having the form

y D A sin.�t/, and then adding the complementary function y D B cos t C C sin t .

The calculations give A D 1=.1 � �2/, B D 0, C D .1 � � � �2/=.1 � �2/, so

y�.t/ D
sin.�t/C .1 � � � �2/ sin t

1 � �2
:

For � D 1 the nonhomogeneous term in the DE is a solution of the

homogeneous equation y 00
Cy D 0, so we must try for a particular solution of the form

y D At cos t C Bt sin t . In this case, the solution of the initial-value problem is

y1.t/ D
3 sin t � t cos t

2
:

(This solution can also be found by calculating lim�!1 y�.t/ using l’Hôpital’s Rule.)

Observe that this solution is unbounded; the amplitude of the oscillations becomes

larger and larger as t increases. In contrast, the solutions y�.t/ for � ¤ 1 are bounded

for all t , although they can become quite large for some values of t if � is close to 1.

The graphs of the solutions y0:9.t/, y0:95.t/, and y1.t/ on the interval �10 � t � 100

are shown in Figure 18.4.
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Figure 18.4 Resonance
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The phenomenon illustrated here is called resonance. Vibrating mechanical sys-

tems have natural frequencies at which they will vibrate. If you try to force them to

vibrate at a different frequency, the amplitude of the vibrations will themselves vary si-

nusoidally over time, producing an effect known as beats. The amplitudes of the beats

can grow quite large, and the period of the beats lengthens as the forcing frequency

approaches the natural frequency of the system. If the system has no resistive damp-

ing (the one illustrated here has no damping), then forcing vibrations at the natural

frequency will cause the system to vibrate at ever increasing amplitudes.

As a concrete example, if you push a child on a swing, the swing will rise highest

if your pushes are timed to have the same frequency as the natural frequency of the

swing. Resonance is used in the design of tuning circuits of radios; the circuit is

tuned (usually by a variable capacitor) so that its natural frequency of oscillation is the

frequency of the station being tuned in. The circuit then responds much more strongly

to the signal received from that station than to others on different frequencies.

Variation of Parameters
A more formal method for finding a particular solution yp.x/ of the nonhomogeneous

equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/ .�/

when we know two independent solutions, y1.x/ and y2.x/, of the corresponding

homogeneous equation is to replace the constants in the complementary function by

functions, that is, search for yp in the form

yp D u1.x/y1.x/C u2.x/y2.x/:

Requiring yp to satisfy the given nonhomogeneous DE (�) provides one equation that

must be satisfied by the two unknown functions u1 and u2. We are free to require them

to satisfy a second equation also. To simplify the calculations below, we choose this

second equation to be

u
0
1.x/y1.x/C u

0
2.x/y2.x/ D 0:

Now we have

y
0
p D u

0
1y1 C u1y

0
1 C u

0
2y2 C u2y

0
2 D u1y

0
1 C u2y

0
2

y
00
p D u

0
1y

0
1 C u1y

00
1 C u

0
2y

0
2 C u2y

00
2 :
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Trial solutions for constant-coefficient equations

Let An.x/, Bn.x/, and Pn.x/ denote the nth-degree polynomials

An.x/ D a0 C a1x C a2x
2
C � � � C anx

n

Bn.x/ D b0 C b1x C b2x
2
C � � � C bnx

n

Pn.x/ D p0 C p1x C p2x
2
C � � � C pnx

n
:

To find a particular solution yp.x/ of the second-order linear, constant-

coefficient, nonhomogeneous DE

a2

d2y

dx2
C a1

dy

dx
C a0y D f .x/;

use the following forms:

If f .x/ D Pn.x/, try yp D x
mAn.x/:

If f .x/ D Pn.x/e
rx , try yp D x

mAn.x/e
rx :

If f .x/ D Pn.x/e
rx cos.kx/, try yp D x

merx ŒAn.x/ cos.kx/CBn.x/ sin.kx/�:

If f .x/ D Pn.x/e
rx sin.kx/, try yp D x

merx ŒAn.x/ cos.kx/CBn.x/ sin.kx/�;

where m is the smallest of the integers 0, 1, and 2, that ensures that no term

of yp is a solution of the corresponding homogeneous equation

a2

d
2
y

dx2
C a1

dy

dx
C a0y D 0:

Resonance
For � > 0, � ¤ 1, the solution y�.t/ of the initial-value problem

8

ˆ

<

ˆ

:

y
00
C y D sin.�t/

y.0/ D 0

y
0
.0/ D 1

can be determined by first looking for a particular solution of the DE having the form

y D A sin.�t/, and then adding the complementary function y D B cos t C C sin t .

The calculations give A D 1=.1 � �2/, B D 0, C D .1 � � � �2/=.1 � �2/, so

y�.t/ D
sin.�t/C .1 � � � �2/ sin t

1 � �2
:

For � D 1 the nonhomogeneous term in the DE is a solution of the

homogeneous equation y 00
Cy D 0, so we must try for a particular solution of the form

y D At cos t C Bt sin t . In this case, the solution of the initial-value problem is

y1.t/ D
3 sin t � t cos t

2
:

(This solution can also be found by calculating lim�!1 y�.t/ using l’Hôpital’s Rule.)

Observe that this solution is unbounded; the amplitude of the oscillations becomes

larger and larger as t increases. In contrast, the solutions y�.t/ for � ¤ 1 are bounded

for all t , although they can become quite large for some values of t if � is close to 1.

The graphs of the solutions y0:9.t/, y0:95.t/, and y1.t/ on the interval �10 � t � 100

are shown in Figure 18.4.
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Figure 18.4 Resonance
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The phenomenon illustrated here is called resonance. Vibrating mechanical sys-

tems have natural frequencies at which they will vibrate. If you try to force them to

vibrate at a different frequency, the amplitude of the vibrations will themselves vary si-

nusoidally over time, producing an effect known as beats. The amplitudes of the beats

can grow quite large, and the period of the beats lengthens as the forcing frequency

approaches the natural frequency of the system. If the system has no resistive damp-

ing (the one illustrated here has no damping), then forcing vibrations at the natural

frequency will cause the system to vibrate at ever increasing amplitudes.

As a concrete example, if you push a child on a swing, the swing will rise highest

if your pushes are timed to have the same frequency as the natural frequency of the

swing. Resonance is used in the design of tuning circuits of radios; the circuit is

tuned (usually by a variable capacitor) so that its natural frequency of oscillation is the

frequency of the station being tuned in. The circuit then responds much more strongly

to the signal received from that station than to others on different frequencies.

Variation of Parameters
A more formal method for finding a particular solution yp.x/ of the nonhomogeneous

equation

a2.x/
d2y

dx2
C a1.x/

dy

dx
C a0.x/y D f .x/ .�/

when we know two independent solutions, y1.x/ and y2.x/, of the corresponding

homogeneous equation is to replace the constants in the complementary function by

functions, that is, search for yp in the form

yp D u1.x/y1.x/C u2.x/y2.x/:

Requiring yp to satisfy the given nonhomogeneous DE (�) provides one equation that

must be satisfied by the two unknown functions u1 and u2. We are free to require them

to satisfy a second equation also. To simplify the calculations below, we choose this

second equation to be

u
0
1.x/y1.x/C u

0
2.x/y2.x/ D 0:

Now we have

y
0
p D u

0
1y1 C u1y

0
1 C u

0
2y2 C u2y

0
2 D u1y

0
1 C u2y

0
2

y
00
p D u

0
1y

0
1 C u1y

00
1 C u

0
2y

0
2 C u2y

00
2 :
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Substituting these expressions into the given DE, we obtain

a2.u
0
1y

0
1 C u

0
2y

0
2/C u1.a2y

00
1 C a1y

0
1 C a0y1/C u2.a2y

00
2 C a1y

0
2 C a0y2/

D a2.u
0
1y

0
1 C u

0
2y

0
2/ D f .x/;

because y1 and y2 satisfy the homogeneous equation. Therefore, u0
1 and u0

2 satisfy the

pair of equations

u
0
1.x/y1.x/C u

0
2.x/y2.x/ D 0;

u
0
1.x/y

0
1.x/C u

0
2.x/y

0
2.x/ D

f .x/

a2.x/
:

We can solve these two equations for the unknown functions u0
1 and u0

2 by Cramer’s

Rule (Theorem 6 of Section 10.7), or otherwise, and obtain

u
0
1 D �

y2.x/

W.x/

f .x/

a2.x/
; u

0
2 D

y1.x/

W.x/

f .x/

a2.x/
;

where W.x/, called the Wronskian of y1 and y2, is the determinant

W.x/ D

ˇ

ˇ

ˇ

ˇ

y1.x/ y2.x/

y 0
1.x/ y 0

2.x/

ˇ

ˇ

ˇ

ˇ

:

Then u1 and u2 can be found by integration.

E X A M P L E 3
Find the general solution of y 00

C y D tanx.

Solution The homogeneous equation y 00
C y D 0 has general solution

yh D C1 cos x C C2 sin x:

A particular solution yp.x/ of the nonhomogeneous equation can be found in the form

yp D u1.x/ cos x C u2.x/ sin x;

where u1 and u2 satisfy

u
0
1.x/ cos x C u0

2.x/ sinx D 0

�u
0
1.x/ sin x C u0

2.x/ cos x D tan x:

Solving these equations for u0
1.x/ and u0

2.x/, we obtain

u
0
1.x/ D �

sin2
x

cos x
; u

0
2.x/ D sinx:

Therefore,

u1.x/ D �

Z

sin2
x

cos x
dx D

Z

.cos x � sec x/ dx D sin x � ln.sec x C tan x/

u2.x/ D � cos x:

Hence, yp D sin x cos x � cos x ln.sec x C tan x/ � cos x sin x D � cos x ln.sec x C

tanx/ is a particular solution of the nonhomogeneous equation, and the general solu-

tion is

y D C1 cos x C C2 sinx � cos x ln.sec x C tan x/:

Note that no arbitrary constants were included when we integrated u0
1 and u0

2 to pro-

duce u1 and u2 as they would have produced terms in the general solution that are

already included in yh.
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Remark This method for solving the nonhomogeneous equation is called the method

of variation of parameters. It is completely general and extends to higher-order equa-

tions in a reasonable way, but it can be computationally somewhat difficult. We would

not likely have been able to “guess” the form of the particular solution in the above ex-

ample, so we could not have used the method discussed earlier in this section to solve

this equation.

Maple Calculations
Maple has a dsolve routine for solving (some) differential equations and initial-value

problems. This routine takes as input a DE and, if desired, initial conditions for it. We

illustrate for the equation y 00
C 2y 0

C 5y D 25t C 20 (assuming that the independent

variable is t):

> DE := (D@@2)(y)(t)+2*D(y)(t)+5*y(t)=25*t+20;

DE WD D
.2/
.y/.t/C 2D.y/.t/C 5y.t/ D 25t C 20

> dsolve(DE, y(t));

y.t/ D e.�t/ sin.2t/ C2C e.�t/ cos.2t/ C1C 2C 5t

Note Maple’s use of C1 and C2 for arbitrary constants. For an initial-value problem

we supply the DE and its initial conditions to dsolve as a single list or set argument

enclosed in square brackets or braces:

> dsolve([DE, y(0)=3, D(y)(0)=-2], y(t));

y.t/ D �3e.�t/ sin.2t/C e.�t/ cos.2t/C 2C 5t

You might think that this output indicates that y has been defined as a function of t

and you can find a decimal value for, say, y.1/ by giving the input evalf(y(1)).

But this won’t work. In fact, the output of the dsolve is just an equation with left

side the symbol y.t/. We can, however, use this output to define y as a function of t

as follows:

> y := unapply(op(2,%),t);

y WD t ! �3e.�t/ sin.2t/C e.�t/ cos.2t/C 2C 5t

The op(2,%) in the unapply command refers to the second operand of the previous

result (i.e., the right side of equation output from the dsolve). unapply(f,t)

converts an expression f to a function of t . To confirm:

> evalf(y(1));

5:843372646

E X E R C I S E S 18.6

Find general solutions for the nonhomogeneous equations in

Exercises 1–12 by the method of undetermined coefficients.

1. y 00
C y

0
� 2y D 1 2. y 00

C y
0
� 2y D x

3. y 00
C y

0
� 2y D e

�x 4. y 00
C y

0
� 2y D e

x

5. y 00
C 2y

0
C 5y D x

2 6. y 00
C 4y D x

2

7. y 00
� y

0
� 6y D e

�2x 8. y 00
C 4y

0
C 4y D e

�2x

9. y 00
C 2y

0
C 2y D e

x sinx 10. y 00
C 2y

0
C 2y D e

�x sinx

11. y 00
C y

0
D 4C 2x C e

�x 12. y 00
C 2y

0
C y D xe

�x

13. Repeat Exercise 3 using the method of variation of

parameters.

14. Repeat Exercise 4 using the method of variation of

parameters.

15. Find a particular solution of the form y D Ax2 for the Euler

equation x2y 00
C xy 0

� y D x2, and hence obtain the general

solution of this equation on the interval .0;1/.

16. For what values of r can the Euler equation

x2y 00
C xy 0

� y D xr be solved by the method of Exercise

15? Find a particular solution for each such r .

17. Try to guess the form of a particular solution for

x2y 00
C xy 0

� y D x, and hence obtain the general solution

for this equation on the interval .0;1/.
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Substituting these expressions into the given DE, we obtain

a2.u
0
1y

0
1 C u

0
2y

0
2/C u1.a2y

00
1 C a1y

0
1 C a0y1/C u2.a2y

00
2 C a1y

0
2 C a0y2/

D a2.u
0
1y

0
1 C u

0
2y

0
2/ D f .x/;

because y1 and y2 satisfy the homogeneous equation. Therefore, u0
1 and u0

2 satisfy the

pair of equations

u
0
1.x/y1.x/C u

0
2.x/y2.x/ D 0;

u
0
1.x/y

0
1.x/C u

0
2.x/y

0
2.x/ D

f .x/

a2.x/
:

We can solve these two equations for the unknown functions u0
1 and u0

2 by Cramer’s

Rule (Theorem 6 of Section 10.7), or otherwise, and obtain

u
0
1 D �

y2.x/

W.x/

f .x/

a2.x/
; u

0
2 D

y1.x/

W.x/

f .x/

a2.x/
;

where W.x/, called the Wronskian of y1 and y2, is the determinant

W.x/ D

ˇ

ˇ

ˇ

ˇ

y1.x/ y2.x/

y 0
1.x/ y 0

2.x/

ˇ

ˇ

ˇ

ˇ

:

Then u1 and u2 can be found by integration.

E X A M P L E 3
Find the general solution of y 00

C y D tanx.

Solution The homogeneous equation y 00
C y D 0 has general solution

yh D C1 cos x C C2 sin x:

A particular solution yp.x/ of the nonhomogeneous equation can be found in the form

yp D u1.x/ cos x C u2.x/ sin x;

where u1 and u2 satisfy

u
0
1.x/ cos x C u0

2.x/ sinx D 0

�u
0
1.x/ sin x C u0

2.x/ cos x D tan x:

Solving these equations for u0
1.x/ and u0

2.x/, we obtain

u
0
1.x/ D �

sin2
x

cos x
; u

0
2.x/ D sinx:

Therefore,

u1.x/ D �

Z

sin2
x

cos x
dx D

Z

.cos x � sec x/ dx D sin x � ln.sec x C tan x/

u2.x/ D � cos x:

Hence, yp D sin x cos x � cos x ln.sec x C tan x/ � cos x sin x D � cos x ln.sec x C

tanx/ is a particular solution of the nonhomogeneous equation, and the general solu-

tion is

y D C1 cos x C C2 sinx � cos x ln.sec x C tan x/:

Note that no arbitrary constants were included when we integrated u0
1 and u0

2 to pro-

duce u1 and u2 as they would have produced terms in the general solution that are

already included in yh.
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Remark This method for solving the nonhomogeneous equation is called the method

of variation of parameters. It is completely general and extends to higher-order equa-

tions in a reasonable way, but it can be computationally somewhat difficult. We would

not likely have been able to “guess” the form of the particular solution in the above ex-

ample, so we could not have used the method discussed earlier in this section to solve

this equation.

Maple Calculations
Maple has a dsolve routine for solving (some) differential equations and initial-value

problems. This routine takes as input a DE and, if desired, initial conditions for it. We

illustrate for the equation y 00
C 2y 0

C 5y D 25t C 20 (assuming that the independent

variable is t):

> DE := (D@@2)(y)(t)+2*D(y)(t)+5*y(t)=25*t+20;

DE WD D
.2/
.y/.t/C 2D.y/.t/C 5y.t/ D 25t C 20

> dsolve(DE, y(t));

y.t/ D e.�t/ sin.2t/ C2C e.�t/ cos.2t/ C1C 2C 5t

Note Maple’s use of C1 and C2 for arbitrary constants. For an initial-value problem

we supply the DE and its initial conditions to dsolve as a single list or set argument

enclosed in square brackets or braces:

> dsolve([DE, y(0)=3, D(y)(0)=-2], y(t));

y.t/ D �3e.�t/ sin.2t/C e.�t/ cos.2t/C 2C 5t

You might think that this output indicates that y has been defined as a function of t

and you can find a decimal value for, say, y.1/ by giving the input evalf(y(1)).

But this won’t work. In fact, the output of the dsolve is just an equation with left

side the symbol y.t/. We can, however, use this output to define y as a function of t

as follows:

> y := unapply(op(2,%),t);

y WD t ! �3e.�t/ sin.2t/C e.�t/ cos.2t/C 2C 5t

The op(2,%) in the unapply command refers to the second operand of the previous

result (i.e., the right side of equation output from the dsolve). unapply(f,t)

converts an expression f to a function of t . To confirm:

> evalf(y(1));

5:843372646

E X E R C I S E S 18.6

Find general solutions for the nonhomogeneous equations in

Exercises 1–12 by the method of undetermined coefficients.

1. y 00
C y

0
� 2y D 1 2. y 00

C y
0
� 2y D x

3. y 00
C y

0
� 2y D e

�x 4. y 00
C y

0
� 2y D e

x

5. y 00
C 2y

0
C 5y D x

2 6. y 00
C 4y D x

2

7. y 00
� y

0
� 6y D e

�2x 8. y 00
C 4y

0
C 4y D e

�2x

9. y 00
C 2y

0
C 2y D e

x sinx 10. y 00
C 2y

0
C 2y D e

�x sinx

11. y 00
C y

0
D 4C 2x C e

�x 12. y 00
C 2y

0
C y D xe

�x

13. Repeat Exercise 3 using the method of variation of

parameters.

14. Repeat Exercise 4 using the method of variation of

parameters.

15. Find a particular solution of the form y D Ax2 for the Euler

equation x2y 00
C xy 0

� y D x2, and hence obtain the general

solution of this equation on the interval .0;1/.

16. For what values of r can the Euler equation

x2y 00
C xy 0

� y D xr be solved by the method of Exercise

15? Find a particular solution for each such r .

17. Try to guess the form of a particular solution for

x2y 00
C xy 0

� y D x, and hence obtain the general solution

for this equation on the interval .0;1/.

9780134154367_Calculus   1051 05/12/16   5:30 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1032 November 18, 2016

1032 CHAPTER 18 Ordinary Differential Equations

In Exercises 18–20, find the general solution on the interval .0;1/

of the given DE using variation of parameters.

18. x2
y

00
C xy

0
� y D x 19. y 00

� 2y
0
C y D

ex

x

20. y 00
C 4y

0
C 4y D

e�2x

x2

21. Consider the nonhomogeneous, linear equation

x
2
y

00
� .2x C x

2
/y

0
C .2C x/y D x

3
:

Use the fact that y1.x/ D x and y2.x/ D xe
x are

independent solutions of the corresponding homogeneous

equation (see Exercise 5 of Section 18.4) to find the general

solution of this nonhomogeneous equation.

22. Consider the nonhomogeneous, Bessel equation

x
2
y

00
C xy

0
C

�

x
2
�

1

4

�

y D x
3=2
:

Use the fact that y1.x/ D x
�1=2 cosx and

y2.x/ D x
�1=2 sinx are independent solutions of the

corresponding homogeneous equation (see Exercise 6 of

Section 18.4) to find the general solution of this

nonhomogeneous equation.

18.7 The Laplace Transform

Previously we have regarded differentiation, d=dt , as an operation, sometimes denot-

ing it with D placed before a function, F.t/, so that DF.t/ D F 0.t/. Let us now

introduce a similar notation, T , for an integration operation on F.t/ in the form of a

definite integral

T fF.t/g D

Z b

a

K.s; t/F.t/ dt D f .s/;

called an integral transform or simply a transform of F.t/. The brace brackets

convey the idea that, unlike D, T takes a function in t and returns a function in a

different variable, s. K.s; t/ is known as the kernel of T: T is determined when a, b;

and the kernel K are chosen.

Transforms provide a powerful and systematic way to solve differential equations,

if you have the right transform for the job. The wrong transform can make for very

tough going, or may make no sense at all. There are many different named transforms

in use, such as Laplace, Fourier, Hankel, Mellin, and Radon transforms, to name only a

few. There is a well-known class of linear boundary-value problems, known as Sturm–

Liouville problems, to each of which there corresponds a distinct natural integral trans-

form. By far the best-known transforms are the Laplace and Fourier transforms. They

are appropriate for constant-coefficient linear differential equations and they are close

cousins of each other, differing for the most part in the kinds of problems for which

each is suited.

In this section we are going to examine the Laplace transform, denoted L, for

which K D e�st ; a D 0, and b D 1: The Laplace transform is the tool of choice

for solving initial-value problems for linear DEs, because the finite lower limit a D 0

automatically brings initial conditions at t D 0 into the calculation, as we will see

below. For Fourier transforms the kernel is also exponential but, since a D �1 and

b D1, if t were integrated to �1 the improper integral would diverge. We therefore

replace the real variable s with an imaginary variable, eliminating this problem. The

Fourier transform naturally captures boundary-value problems with conditions at1.

Most initial-value problems involve time, so we choose to use t as the variable of the

function F:

In order for the improper integral defining the Laplace transform of F.t/ to con-

verge, we must restrict F in some way. We say that F is of exponential order if it is

at least piecewise continuous on the interval Œ0;1/ and satisfies

jF.t/j � Ke
�ct
; for some positive constants K and c.
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Of course, not every function defined on Œ0;1/ is of exponential order. For instance,

F.t/ D e
t2

is not.

D E F I N I T I O N

1

The Laplace Transform

If F.t/ is of exponential order, the Laplace transform LfF.t/g is defined by

LfF.t/g D

Z 1

0

e
�st

F.t/ dt D f .s/:

Note that f .s/ exists at least for all s > c, the constant in the exponential

order condition.

Remark For any transform, T , to be useful for solving differential equations, an

inverse transform T �1 must exist such that

F.t/ D T
�1
fT fF.t/gg

for suitable classes of functions. For the case of the Laplace transform, L�1 exists and

is known:

L
�1
ff .s/g D

1

2�i

Z Ci1

�i1
e

st
f .s/ ds D F.t/:

Calculating L�1
ff .s/g requires a contour integral in the complex s plane, the specific

path of which is determined by choosing a real value of  to meet requirements arising

in the theory of complex variables. Such contour integration is beyond the scope of this

book, and it is not needed here. In fact, the integral is rarely ever computed in practice.

All we need to know is that L�1
ff .s/g exists to justify the following theorem.

T H E O R E M

4

A Uniqueness Theorem

If F.t/ is piecewise continuous on Œ0;1/ and f .s/ D
R1

0
e�stF.t/ dt exists, then,

except at isolated points where F is discontinuous, F.t/ is uniquely determined by

f .s/ and L�1
ff .s/g D F.t/ exists.

Remark The continuity conditions exclude the obvious deviations that could be in-

vented between functions at single points, which cannot be captured by integration.

Some examples will be provided in the exercises.

Remark Mathematical variables can carry physical units. It is worth noting that

since units concern linear scaling, the nonlinear exponential factor must be unit free.

Thus, st must be unitless or s must have units of t�1. Thus, if t has units of time,

then s must have units of frequency. This goes for other transforms, notably Fourier

transforms, too. The physical interpretation of the transformed variable as representing

physical frequencies is of great importance.

Remark One reason why the Laplace transform is useful for solving linear differen-

tial equations is that L (and its inverse L�1) are linear operators:

LfAF.t/C BG.t/g D ALfF.t/g C BLfG.t/g:

The reason the Laplace transform is so useful in solving initial-value problems is

summarized in the following theorem.

T H E O R E M

5

If F.t/ is of exponential order and is n times differentiable, and if LfF.t/g D f .s/,

then

LfF
.n/
.t/g D s

n
f .s/ �

�

s
n�1

F.0/C s
n�2

F
0
.0/C � � � C F

.n�1/
.0/
�

:
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In Exercises 18–20, find the general solution on the interval .0;1/

of the given DE using variation of parameters.

18. x2
y

00
C xy

0
� y D x 19. y 00

� 2y
0
C y D

ex

x

20. y 00
C 4y

0
C 4y D

e�2x

x2

21. Consider the nonhomogeneous, linear equation

x
2
y

00
� .2x C x

2
/y

0
C .2C x/y D x

3
:

Use the fact that y1.x/ D x and y2.x/ D xe
x are

independent solutions of the corresponding homogeneous

equation (see Exercise 5 of Section 18.4) to find the general

solution of this nonhomogeneous equation.

22. Consider the nonhomogeneous, Bessel equation

x
2
y

00
C xy

0
C

�

x
2
�

1

4

�

y D x
3=2
:

Use the fact that y1.x/ D x
�1=2 cosx and

y2.x/ D x
�1=2 sinx are independent solutions of the

corresponding homogeneous equation (see Exercise 6 of

Section 18.4) to find the general solution of this

nonhomogeneous equation.

18.7 The Laplace Transform

Previously we have regarded differentiation, d=dt , as an operation, sometimes denot-

ing it with D placed before a function, F.t/, so that DF.t/ D F 0.t/. Let us now

introduce a similar notation, T , for an integration operation on F.t/ in the form of a

definite integral

T fF.t/g D

Z b

a

K.s; t/F.t/ dt D f .s/;

called an integral transform or simply a transform of F.t/. The brace brackets

convey the idea that, unlike D, T takes a function in t and returns a function in a

different variable, s. K.s; t/ is known as the kernel of T: T is determined when a, b;

and the kernel K are chosen.

Transforms provide a powerful and systematic way to solve differential equations,

if you have the right transform for the job. The wrong transform can make for very

tough going, or may make no sense at all. There are many different named transforms

in use, such as Laplace, Fourier, Hankel, Mellin, and Radon transforms, to name only a

few. There is a well-known class of linear boundary-value problems, known as Sturm–

Liouville problems, to each of which there corresponds a distinct natural integral trans-

form. By far the best-known transforms are the Laplace and Fourier transforms. They

are appropriate for constant-coefficient linear differential equations and they are close

cousins of each other, differing for the most part in the kinds of problems for which

each is suited.

In this section we are going to examine the Laplace transform, denoted L, for

which K D e�st ; a D 0, and b D 1: The Laplace transform is the tool of choice

for solving initial-value problems for linear DEs, because the finite lower limit a D 0

automatically brings initial conditions at t D 0 into the calculation, as we will see

below. For Fourier transforms the kernel is also exponential but, since a D �1 and

b D1, if t were integrated to �1 the improper integral would diverge. We therefore

replace the real variable s with an imaginary variable, eliminating this problem. The

Fourier transform naturally captures boundary-value problems with conditions at1.

Most initial-value problems involve time, so we choose to use t as the variable of the

function F:

In order for the improper integral defining the Laplace transform of F.t/ to con-

verge, we must restrict F in some way. We say that F is of exponential order if it is

at least piecewise continuous on the interval Œ0;1/ and satisfies

jF.t/j � Ke
�ct
; for some positive constants K and c.
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Of course, not every function defined on Œ0;1/ is of exponential order. For instance,

F.t/ D e
t2

is not.

D E F I N I T I O N

1

The Laplace Transform

If F.t/ is of exponential order, the Laplace transform LfF.t/g is defined by

LfF.t/g D

Z 1

0

e
�st

F.t/ dt D f .s/:

Note that f .s/ exists at least for all s > c, the constant in the exponential

order condition.

Remark For any transform, T , to be useful for solving differential equations, an

inverse transform T �1 must exist such that

F.t/ D T
�1
fT fF.t/gg

for suitable classes of functions. For the case of the Laplace transform, L�1 exists and

is known:

L
�1
ff .s/g D

1

2�i

Z Ci1

�i1
e

st
f .s/ ds D F.t/:

Calculating L�1
ff .s/g requires a contour integral in the complex s plane, the specific

path of which is determined by choosing a real value of  to meet requirements arising

in the theory of complex variables. Such contour integration is beyond the scope of this

book, and it is not needed here. In fact, the integral is rarely ever computed in practice.

All we need to know is that L�1
ff .s/g exists to justify the following theorem.

T H E O R E M

4

A Uniqueness Theorem

If F.t/ is piecewise continuous on Œ0;1/ and f .s/ D
R1

0
e�stF.t/ dt exists, then,

except at isolated points where F is discontinuous, F.t/ is uniquely determined by

f .s/ and L�1
ff .s/g D F.t/ exists.

Remark The continuity conditions exclude the obvious deviations that could be in-

vented between functions at single points, which cannot be captured by integration.

Some examples will be provided in the exercises.

Remark Mathematical variables can carry physical units. It is worth noting that

since units concern linear scaling, the nonlinear exponential factor must be unit free.

Thus, st must be unitless or s must have units of t�1. Thus, if t has units of time,

then s must have units of frequency. This goes for other transforms, notably Fourier

transforms, too. The physical interpretation of the transformed variable as representing

physical frequencies is of great importance.

Remark One reason why the Laplace transform is useful for solving linear differen-

tial equations is that L (and its inverse L�1) are linear operators:

LfAF.t/C BG.t/g D ALfF.t/g C BLfG.t/g:

The reason the Laplace transform is so useful in solving initial-value problems is

summarized in the following theorem.

T H E O R E M

5

If F.t/ is of exponential order and is n times differentiable, and if LfF.t/g D f .s/,

then

LfF
.n/
.t/g D s

n
f .s/ �

�

s
n�1

F.0/C s
n�2

F
0
.0/C � � � C F

.n�1/
.0/
�

:
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PROOF For large enough s, the case n D 1 follows by integration by parts:

LfF
0
.t/g D

Z 1

0

e
�st
F

0
.t/ dt D e

�st
F.t/

ˇ

ˇ

ˇ

1

0
C s

Z 1

0

e
�st
F.t/ dt

D s f .s/ � F.0/:

A simple induction argument now shows that the formula holds for any n � 1.

E X A M P L E 1
If k is a constant, show that the Laplace transform of ekt is

Lfe
kt
g D

1

s � k
;

and use the result to solve the initial-value problem y 0
� y D 0, y.0/ D 1.

Solution We have

Lfe
kt
g D

Z 1

0

e
�st

e
kt
dt D

Z 1

0

e
.k�s/t

dt D
e.k�s/t

k � s

ˇ

ˇ

ˇ

1

0
D

1

s � k
;

provided s > k. Since y 0
� y D 0, linearity of Laplace transforms implies that

Lfy 0
g�Lfyg D Lf0g D 0. Hence, by Theorem 5 we have 0 D sLfyg�y.0/�Lfyg D

.s � 1/Lfyg � 1, and so

Lfyg D
1

s � 1
D Lfe

t
g:

By Theorem 4, the solution of the initial-value problem is y D et .

Several useful observations about using Laplace transforms for solving differential

equations can be made from this solution:

1. The initial conditions are built into the solution process, which differs from strate-

gies that call for the general solution to be found and then refined by initial or

boundary conditions.

2. Since the Laplace transforms of derivatives of the desired solution function y are

expressed in terms of that of y itself and initial values, the process of solving an

initial-value problem reduces to one of solving an algebraic equation for Lfyg.

3. Once we have found Lfyg, we must still find y. Since we are not able to calculate

the inverse Laplace transform (even though we know it exists), we must be able

to recognize Lfyg as being the transform of a known function y. To this end, it

is useful to build up a library of known Laplace transforms. A short such library

is provided below and in the Exercises. In the above example, we would not have

known that 1=.s � 1/ was the Laplace transform of et unless we were already

aware that the transform of ekt was 1=.s � k/.

4. Laplace transforms exist only for functions of exponential order. For functions that

grow faster than exponential order (either as coefficients or forcing terms in linear

differential equations), we may not be able to use the methods of this section.

Some Basic Laplace Transforms

We have already seen in Example 1 that

Lfe
kt
g D

1

s � k
; for s > k:

Suppose k is replaced by the imaginary quantity ik, then, as shown in Appendix II,

eikt
D cos.kt/C i sin.kt/, and so

Lfcos ktg C iLfsin ktg D Lfeikt
g D

1

s � ik
D

s

s2
C k2

C i
k

s2
C k2

:

Equating real and imaginary parts, we obtain
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Lfcos ktg D
s

s2
C k2

and Lfsinatg D
k

s2
C k2

:

Since both the cosine and sine functions never grow large, these transforms are valid

for all s > 0.

These straightforward transforms provide the means to solve fairly complex clas-

sical initial-value problems.

E X A M P L E 2
Consider the following initial-value problem for a forced harmonic

oscillator:

d2x

dt2
C !

2
x D sin kt; x.0/ D x

0
.0/ D 0;

where k ¤ !. Find x.t/.

Solution Using the differentiation formula from Theorem 5, after applying the Laplace

integral to both sides of the DE, we find

s
2
Lfxg � Œs � 0C 0�C !

2
Lfxg D

k

s2
C k2

;

and so

Lfxg D
k

.s2
C !2/.s2

C k2/
:

Using partial fractions,

Lfxg D
1

!2
� k2

�

k

s2
C k2

�

k

!

!

s2
C !2

�

:

Recognizing the Laplace transforms of sin.kt/ and sin.!t/ here, we conclude, using

Theorem 4, that

x D
1

!2
� k2

�

sin kt �
k

!
sin!t

�

:

E X A M P L E 3
If n � 0 is an integer, the Laplace transform of F.t/ D t

n is

Lft
n
g D

nŠ

snC1
for s > 0. Also, L

�1

�

1

snC1

�

D

tn

nŠ
:

To see this, note that the transform of F.t/ D t0 D 1 D e0s is Lft0g D 1=.s � 0/ D

1=s and then use induction on n.

More Properties of Laplace Transforms
Some additional properties of Laplace transforms are useful. The first concerns the

transforms of functions defined by integrals

E X A M P L E 4 Find L
n

R t

0
F.u/du

o

without explicit evaluation of integrals.
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PROOF For large enough s, the case n D 1 follows by integration by parts:

LfF
0
.t/g D

Z 1

0

e
�st
F

0
.t/ dt D e

�st
F.t/

ˇ

ˇ

ˇ

1

0
C s

Z 1

0

e
�st
F.t/ dt

D s f .s/ � F.0/:

A simple induction argument now shows that the formula holds for any n � 1.

E X A M P L E 1
If k is a constant, show that the Laplace transform of ekt is

Lfe
kt
g D

1

s � k
;

and use the result to solve the initial-value problem y 0
� y D 0, y.0/ D 1.

Solution We have

Lfe
kt
g D

Z 1

0

e
�st

e
kt
dt D

Z 1

0

e
.k�s/t

dt D
e.k�s/t

k � s

ˇ

ˇ

ˇ

1

0
D

1

s � k
;

provided s > k. Since y 0
� y D 0, linearity of Laplace transforms implies that

Lfy 0
g�Lfyg D Lf0g D 0. Hence, by Theorem 5 we have 0 D sLfyg�y.0/�Lfyg D

.s � 1/Lfyg � 1, and so

Lfyg D
1

s � 1
D Lfe

t
g:

By Theorem 4, the solution of the initial-value problem is y D et .

Several useful observations about using Laplace transforms for solving differential

equations can be made from this solution:

1. The initial conditions are built into the solution process, which differs from strate-

gies that call for the general solution to be found and then refined by initial or

boundary conditions.

2. Since the Laplace transforms of derivatives of the desired solution function y are

expressed in terms of that of y itself and initial values, the process of solving an

initial-value problem reduces to one of solving an algebraic equation for Lfyg.

3. Once we have found Lfyg, we must still find y. Since we are not able to calculate

the inverse Laplace transform (even though we know it exists), we must be able

to recognize Lfyg as being the transform of a known function y. To this end, it

is useful to build up a library of known Laplace transforms. A short such library

is provided below and in the Exercises. In the above example, we would not have

known that 1=.s � 1/ was the Laplace transform of et unless we were already

aware that the transform of ekt was 1=.s � k/.

4. Laplace transforms exist only for functions of exponential order. For functions that

grow faster than exponential order (either as coefficients or forcing terms in linear

differential equations), we may not be able to use the methods of this section.

Some Basic Laplace Transforms

We have already seen in Example 1 that

Lfe
kt
g D

1

s � k
; for s > k:

Suppose k is replaced by the imaginary quantity ik, then, as shown in Appendix II,

eikt
D cos.kt/C i sin.kt/, and so

Lfcos ktg C iLfsin ktg D Lfeikt
g D

1

s � ik
D

s

s2
C k2

C i
k

s2
C k2

:

Equating real and imaginary parts, we obtain
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Lfcos ktg D
s

s2
C k2

and Lfsinatg D
k

s2
C k2

:

Since both the cosine and sine functions never grow large, these transforms are valid

for all s > 0.

These straightforward transforms provide the means to solve fairly complex clas-

sical initial-value problems.

E X A M P L E 2
Consider the following initial-value problem for a forced harmonic

oscillator:

d2x

dt2
C !

2
x D sin kt; x.0/ D x

0
.0/ D 0;

where k ¤ !. Find x.t/.

Solution Using the differentiation formula from Theorem 5, after applying the Laplace

integral to both sides of the DE, we find

s
2
Lfxg � Œs � 0C 0�C !

2
Lfxg D

k

s2
C k2

;

and so

Lfxg D
k

.s2
C !2/.s2

C k2/
:

Using partial fractions,

Lfxg D
1

!2
� k2

�

k

s2
C k2

�

k

!

!

s2
C !2

�

:

Recognizing the Laplace transforms of sin.kt/ and sin.!t/ here, we conclude, using

Theorem 4, that

x D
1

!2
� k2

�

sin kt �
k

!
sin!t

�

:

E X A M P L E 3
If n � 0 is an integer, the Laplace transform of F.t/ D t

n is

Lft
n
g D

nŠ

snC1
for s > 0. Also, L

�1

�

1

snC1

�

D

tn

nŠ
:

To see this, note that the transform of F.t/ D t0 D 1 D e0s is Lft0g D 1=.s � 0/ D

1=s and then use induction on n.

More Properties of Laplace Transforms
Some additional properties of Laplace transforms are useful. The first concerns the

transforms of functions defined by integrals

E X A M P L E 4 Find L
n

R t

0
F.u/du

o

without explicit evaluation of integrals.
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Solution Let G.t/ D

Z t

0

F.u/du and LfG.t/g D g.s/: By the derivative formula

for n D 1; LfG
0
.t/g D sg.s/ � G.0/ D sg.s/: Since G 0

.t/ D F.t/, it follows that

f .s/ D LfF.t/g D sg.s/ D sLfG.t/g: Thus, G.s/ D f .s/=s and

L

�Z t

0

F.u/du

�

D

1

s
f .s/:

This integral formula does for integration what the differentiation formula did for dif-

ferentiation of first order: with suitable initial conditions, differentiation appears as

multiplication by s in its Laplace transform, while integration is division by s.

The next example shows that multiplying a function F.t/ by eat shifts its Laplace

transform a units to the right.

E X A M P L E 5
The Shifting Principle Find the Laplace transform of eatF.t/ in

terms of f .s/ D LfF.t/g. What does this imply for the inverse

transform L�1?

Solution Observe that

L
˚

e
at
F.t/

�

D

Z 1

0

e
�st
e

at
F.t/dt D

Z 1

0

e
�.s�a/t

F.t/dt D f .s � a/:

Thus, multiplying a function by an exponential shifts its Laplace transform. Therefore,

L
˚

e
at
F.t/

�

D f .s � a/ and L
�1
ff .s � a/g D e

at
F.t/:

Multiplying a function F.t/ by an exponential function eat results in shifting the vari-

able s in its Laplace transform to s � a.

Given two functions F and G defined on Œ0;1/, there is defined a kind of product

F � G called their convolution product (or more simply their convolution), whose

value at t 2 Œ0;1/ is given by

F �G.t/ D

Z t

0

F.t � u/G.u/ du:

A change of variable v D t � u in the integral shows that the convolution product is

commutative: F �G.t/ D G � F.t/.

T H E O R E M

6

The Laplace transform of a convolution of two functions is the product of their Laplace

transforms. If LfF.t/g D f .s/ and LfG.t/g D g.s/, then

LfF �Gg D f .s/g.s/:

It follows that L�1
ff .s/g.s/g D F �G.t/.

PROOF By first switching the integration order and then making the substitution

t D uC v in the inner integral, we calculate

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1037 November 18, 2016

SECTION 18.7: The Laplace Transform 1037

LfF �G.t/g D

Z 1

0

dt

Z t

0

e
�st
F.t � u/G.u/ du

D

Z 1

0

du

Z 1

u

e
�st
F.t � u/G.u/ dt

D

Z 1

0

du

Z 1

0

e
�s.vCu/

F.v/G.u/ dv

D

Z 1

0

e
�sv
F.v/ dv

Z 1

0

e
�su

G.u/ du D f .s/g.s/:

The Heaviside Function and the Dirac Delta Function
Recall the Heaviside step function H.x/, which has value 0 if x < 0 and 1 if x � 0.

Evidently, its Laplace transform is LfH.t/g D Lf1g D 1=s. Of more interest is the

shifted Heaviside function H.t � a/ for some a > 0. This function does its jump from

0 to 1 at t D a, so it is useful for representing a forcing term in a differential equation

that only comes into play at a positive time t D a > 0, for example, voltage applied to

an electric circuit when a switch is turned on at time a.

E X A M P L E 6
Find L fH.t � a/F.t � a/g, where H is the Heaviside step func-

tion. What implication does the result have for the inverse trans-

form of a product of a Laplace transform and an exponential?

Solution Since the product H.t � a/F.t � a/ is zero if t < a and F.t � a/ if t � a,

we have, using the substitution u D t � a,

LfH.t�a/F.t�a/g D

Z 1

a

e
�st
F.t�a/ dt D

Z 1

0

e
�s.uCa/

F.u/ du D e
�as

LfF.t/g:

This, in turn, implies that if LfF.t/g D f .s/ and a > 0, then

L
�1
fe

�as
f .s/g D H.t � a/F.t � a/:

So far the properties of Laplace transforms only provide tools for an alternative

approach to solving differential equations. They could as well be solved with methods

from the preceding sections. The result of the previous example may cause you to

wonder whether e�as is itself the Laplace transform of some function. The answer

is no—there is no function F.t/ such that LfF.t/g D e�as . However, there is a

generalized function (also called a distribution) that fills the bill. Recall the Dirac

distribution (also called the Dirac delta function, although it is not really a function),

ı.t/, defined in Section 16.1 by the requirement that if f is any function continuous on

a domain containing the open interval .b; c/ and if b < a < c, then

Z c

b

ı.t � a/f .t/ dt D f .a/:

If ı.t/ were actually a function, it would have to be zero whenever t was not zero, and

infinity at t D 0, but no function with these properties can ever have a nonzero integral

over any interval. The Dirac distribution ı.t�a/ can model a unit “point mass” located

at point a on a t-axis, or an impulsive force acting over an infinitesimal time interval

at t D a but large enough to suddenly increase the velocity of a unit mass by one unit.

For purposes of Laplace transforms, we want the interval .b; c/ to be .0;1/. If

a > 0, then the Laplace transform of ı.t � a/ is
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Solution Let G.t/ D

Z t

0

F.u/du and LfG.t/g D g.s/: By the derivative formula

for n D 1; LfG
0
.t/g D sg.s/ � G.0/ D sg.s/: Since G 0

.t/ D F.t/, it follows that

f .s/ D LfF.t/g D sg.s/ D sLfG.t/g: Thus, G.s/ D f .s/=s and

L

�Z t

0

F.u/du

�

D

1

s
f .s/:

This integral formula does for integration what the differentiation formula did for dif-

ferentiation of first order: with suitable initial conditions, differentiation appears as

multiplication by s in its Laplace transform, while integration is division by s.

The next example shows that multiplying a function F.t/ by eat shifts its Laplace

transform a units to the right.

E X A M P L E 5
The Shifting Principle Find the Laplace transform of eatF.t/ in

terms of f .s/ D LfF.t/g. What does this imply for the inverse

transform L�1?

Solution Observe that

L
˚

e
at
F.t/

�

D

Z 1

0

e
�st
e

at
F.t/dt D

Z 1

0

e
�.s�a/t

F.t/dt D f .s � a/:

Thus, multiplying a function by an exponential shifts its Laplace transform. Therefore,

L
˚

e
at
F.t/

�

D f .s � a/ and L
�1
ff .s � a/g D e

at
F.t/:

Multiplying a function F.t/ by an exponential function eat results in shifting the vari-

able s in its Laplace transform to s � a.

Given two functions F and G defined on Œ0;1/, there is defined a kind of product

F � G called their convolution product (or more simply their convolution), whose

value at t 2 Œ0;1/ is given by

F �G.t/ D

Z t

0

F.t � u/G.u/ du:

A change of variable v D t � u in the integral shows that the convolution product is

commutative: F �G.t/ D G � F.t/.

T H E O R E M

6

The Laplace transform of a convolution of two functions is the product of their Laplace

transforms. If LfF.t/g D f .s/ and LfG.t/g D g.s/, then

LfF �Gg D f .s/g.s/:

It follows that L�1
ff .s/g.s/g D F �G.t/.

PROOF By first switching the integration order and then making the substitution

t D uC v in the inner integral, we calculate
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LfF �G.t/g D

Z 1

0

dt

Z t

0

e
�st
F.t � u/G.u/ du

D

Z 1

0

du

Z 1

u

e
�st
F.t � u/G.u/ dt

D

Z 1

0

du

Z 1

0

e
�s.vCu/

F.v/G.u/ dv

D

Z 1

0

e
�sv
F.v/ dv

Z 1

0

e
�su

G.u/ du D f .s/g.s/:

The Heaviside Function and the Dirac Delta Function
Recall the Heaviside step function H.x/, which has value 0 if x < 0 and 1 if x � 0.

Evidently, its Laplace transform is LfH.t/g D Lf1g D 1=s. Of more interest is the

shifted Heaviside function H.t � a/ for some a > 0. This function does its jump from

0 to 1 at t D a, so it is useful for representing a forcing term in a differential equation

that only comes into play at a positive time t D a > 0, for example, voltage applied to

an electric circuit when a switch is turned on at time a.

E X A M P L E 6
Find L fH.t � a/F.t � a/g, where H is the Heaviside step func-

tion. What implication does the result have for the inverse trans-

form of a product of a Laplace transform and an exponential?

Solution Since the product H.t � a/F.t � a/ is zero if t < a and F.t � a/ if t � a,

we have, using the substitution u D t � a,

LfH.t�a/F.t�a/g D

Z 1

a

e
�st
F.t�a/ dt D

Z 1

0

e
�s.uCa/

F.u/ du D e
�as

LfF.t/g:

This, in turn, implies that if LfF.t/g D f .s/ and a > 0, then

L
�1
fe

�as
f .s/g D H.t � a/F.t � a/:

So far the properties of Laplace transforms only provide tools for an alternative

approach to solving differential equations. They could as well be solved with methods

from the preceding sections. The result of the previous example may cause you to

wonder whether e�as is itself the Laplace transform of some function. The answer

is no—there is no function F.t/ such that LfF.t/g D e�as . However, there is a

generalized function (also called a distribution) that fills the bill. Recall the Dirac

distribution (also called the Dirac delta function, although it is not really a function),

ı.t/, defined in Section 16.1 by the requirement that if f is any function continuous on

a domain containing the open interval .b; c/ and if b < a < c, then

Z c

b

ı.t � a/f .t/ dt D f .a/:

If ı.t/ were actually a function, it would have to be zero whenever t was not zero, and

infinity at t D 0, but no function with these properties can ever have a nonzero integral

over any interval. The Dirac distribution ı.t�a/ can model a unit “point mass” located

at point a on a t-axis, or an impulsive force acting over an infinitesimal time interval

at t D a but large enough to suddenly increase the velocity of a unit mass by one unit.

For purposes of Laplace transforms, we want the interval .b; c/ to be .0;1/. If

a > 0, then the Laplace transform of ı.t � a/ is
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Lfı.t � a/g D

Z 1

0

e
�st
ı.t � a/ dt D e

�as
; and L

�1
fe

�as
g D ı.t � a/:

Compare this result to that of Example 6 with the constant function F.t/ D 1 for

which LfF.t/g D 1=s:

L fH.t � a/g D e
�sa 1

s
:

Thus, since a > 0 implies H.�a/ D 0, we have

Lfı.t � a/g D sL fH.t � a/g :

This means that ı.t/ behaves like a derivative of H.t/ in terms of Laplace transform

formulas. (Classically, H 0.0/ does not exist.) It also suggests that one might define

derivative-like generalized functions that act like a second or higher derivatives. The

Laplace transform provides a new insight into the structure of these singular objects.

The following example illustrates how these properties work in practice.

E X A M P L E 7
Consider a harmonic oscillator consisting of a mass m suspended

from an elastic spring having spring constant k. As shown in Sec-

tion 3.7, the vertical position y.t/ of the mass at time t is governed by the DE

y
00
C !

2
y D f .t/;

where !2
D k=m and f .t/ is an external force per unit mass applied to the mass at

time t . Suppose the mass is at rest at height 0 at time t D 0 and is not acted on by any

net external force. It will then remain at rest. Now suppose that, at time t D a > 0,

a small pellet hits the mass, delivering an upward impulsive force, mı.t � a/, on the

spring. Determine the subsequent height of the mass, y.t/, for t > a.

Solution Formally, we want to solve the initial-value problem

d
2
y

dt2
C !

2
y D ı.t � a/; y

0
.0/ D y.0/ D 0:

If Lfy.t/g D Y.s/, then

s
2
Y.s/C !

2
Y.s/ D Lfı.t � a/g D e

�as
;

and so

Y.s/ D
e�as

s2
C !2

:

We know that

1

s2
C !2

D L

�

sin!t

!

�

and e
�as
D L fı.t � a/g :

Therefore, by the convolution theorem (Theorem 6),

y.t/ D

Z t

0

ı.t � a � u/
sin!u

!
du D H.t � a/

sin.!t � !a/

!
:

This solution is zero for t < a and is Y D
1

!
sin
�

!.t � a/
�

for t > a.

The same solution would have resulted for t > a if there were no impulse and the

initial conditions were set to y.a/ D 0 and y 0.a/ D 1: That is because the impulse at

t D a gave the mass an upward velocity of 1 at that time.
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Remark If Pn.x/ is a polynomial of degree n and D D
d

dt
, then P.D/ is an nth-

order homogeneous differential operator. If G.t; u/ is a solution of the nonhomo-

geneous DE P.D/G.t; u/ D ı.t � u/, with zero initial conditions, then G.t; u/ is

called a Green’s Function of P.D/. In this case, the solution of the nonhomogeneous

equation P.D/y.t/ D f .t/ with zero initial conditions is given by

y.t/ D

Z t

0

G.t; u/f .u/ du:

For the equation .D2
C!2/G.t; u/ D ı.t�u/, the above example gives us the Green’s

function G.t; u/ D H.t � u/.1=!/ sin
�

!.t � u/
�

, and the integral above will give a

solution to the initial-value problem

.D
2
C !

2
/y.t/ D f .t/; y.0/ D 0; y

0
.0/ D 0:

The following table provides a list of some Laplace transforms that are most useful

in solving initial-value problems for constant-coefficient linear differential equations,

both homogeneous and nonhomogeneous. These include those developed above and

others that you are invited to verify in the exercises.

Table 6. A short list of Laplace transforms and their inverses

F.t/ D L�1
ff .s/g f .s/ D LfF.t/g F.t/ D L�1

ff .s/g f .s/ D LfF.t/g

1
1

s
; .s > 0/ eat

1

s � a
; .s > a/

tn; n � 0
nŠ

snC1
; .s > 0/ tp; p > �1

�.p C 1/

spC1
; .s > 0/

sin.bt/
b

s2
C b2

; .s > 0/ cos.bt/
s

s2
C b2

; .s > 0/

sinh.at/
a

s2
� a2

; .s > jaj/ cosh.at/
s

s2
� a2

; .s > jaj/

eat sin.bt/
b

.s � a/2 C b2
; .s > a/ eat cos.bt/

s � a

.s � a/2 C b2
; .s > a/

t sin.bt/
2bs

.s2
C b2/2

; .s > 0/ t cos.bt/
s

2
� b2

.s2
C b2/

; .s > 0/

t
n
F.t/ .�1/

n
f

.n/
.s/ F

.n/
.t/ s

n
f .s/ �

n�1
X

j D0

s
n�1�j

F
.j /
.0/

H.t � c/
e

�cs

s
ı.t � c/ e

�cs

H.t � c/F.t � c/ e
�cs
f .s/ F �G.t/ D

Z t

0

F.t � �/g.�/; d� f .s/g.s/

I1.t/ D

Z t

0

F.�/ d�
1

s
f .s/ In.s/ D

Z 1

0

In�1.s/
1

sn
f .s/

9780134154367_Calculus   1058 05/12/16   5:32 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1038 November 18, 2016

1038 CHAPTER 18 Ordinary Differential Equations

Lfı.t � a/g D

Z 1

0

e
�st
ı.t � a/ dt D e

�as
; and L

�1
fe

�as
g D ı.t � a/:

Compare this result to that of Example 6 with the constant function F.t/ D 1 for

which LfF.t/g D 1=s:

L fH.t � a/g D e
�sa 1

s
:

Thus, since a > 0 implies H.�a/ D 0, we have

Lfı.t � a/g D sL fH.t � a/g :

This means that ı.t/ behaves like a derivative of H.t/ in terms of Laplace transform

formulas. (Classically, H 0.0/ does not exist.) It also suggests that one might define

derivative-like generalized functions that act like a second or higher derivatives. The

Laplace transform provides a new insight into the structure of these singular objects.

The following example illustrates how these properties work in practice.

E X A M P L E 7
Consider a harmonic oscillator consisting of a mass m suspended

from an elastic spring having spring constant k. As shown in Sec-

tion 3.7, the vertical position y.t/ of the mass at time t is governed by the DE

y
00
C !

2
y D f .t/;

where !2
D k=m and f .t/ is an external force per unit mass applied to the mass at

time t . Suppose the mass is at rest at height 0 at time t D 0 and is not acted on by any

net external force. It will then remain at rest. Now suppose that, at time t D a > 0,

a small pellet hits the mass, delivering an upward impulsive force, mı.t � a/, on the

spring. Determine the subsequent height of the mass, y.t/, for t > a.

Solution Formally, we want to solve the initial-value problem

d
2
y

dt2
C !

2
y D ı.t � a/; y

0
.0/ D y.0/ D 0:

If Lfy.t/g D Y.s/, then

s
2
Y.s/C !

2
Y.s/ D Lfı.t � a/g D e

�as
;

and so

Y.s/ D
e�as

s2
C !2

:

We know that

1

s2
C !2

D L

�

sin!t

!

�

and e
�as
D L fı.t � a/g :

Therefore, by the convolution theorem (Theorem 6),

y.t/ D

Z t

0

ı.t � a � u/
sin!u

!
du D H.t � a/

sin.!t � !a/

!
:

This solution is zero for t < a and is Y D
1

!
sin
�

!.t � a/
�

for t > a.

The same solution would have resulted for t > a if there were no impulse and the

initial conditions were set to y.a/ D 0 and y 0.a/ D 1: That is because the impulse at

t D a gave the mass an upward velocity of 1 at that time.
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Remark If Pn.x/ is a polynomial of degree n and D D
d

dt
, then P.D/ is an nth-

order homogeneous differential operator. If G.t; u/ is a solution of the nonhomo-

geneous DE P.D/G.t; u/ D ı.t � u/, with zero initial conditions, then G.t; u/ is

called a Green’s Function of P.D/. In this case, the solution of the nonhomogeneous

equation P.D/y.t/ D f .t/ with zero initial conditions is given by

y.t/ D

Z t

0

G.t; u/f .u/ du:

For the equation .D2
C!2/G.t; u/ D ı.t�u/, the above example gives us the Green’s

function G.t; u/ D H.t � u/.1=!/ sin
�

!.t � u/
�

, and the integral above will give a

solution to the initial-value problem

.D
2
C !

2
/y.t/ D f .t/; y.0/ D 0; y

0
.0/ D 0:

The following table provides a list of some Laplace transforms that are most useful

in solving initial-value problems for constant-coefficient linear differential equations,

both homogeneous and nonhomogeneous. These include those developed above and

others that you are invited to verify in the exercises.

Table 6. A short list of Laplace transforms and their inverses

F.t/ D L�1
ff .s/g f .s/ D LfF.t/g F.t/ D L�1

ff .s/g f .s/ D LfF.t/g

1
1

s
; .s > 0/ eat

1

s � a
; .s > a/

tn; n � 0
nŠ

snC1
; .s > 0/ tp; p > �1

�.p C 1/

spC1
; .s > 0/

sin.bt/
b

s2
C b2

; .s > 0/ cos.bt/
s

s2
C b2

; .s > 0/

sinh.at/
a

s2
� a2

; .s > jaj/ cosh.at/
s

s2
� a2

; .s > jaj/

eat sin.bt/
b

.s � a/2 C b2
; .s > a/ eat cos.bt/

s � a

.s � a/2 C b2
; .s > a/

t sin.bt/
2bs

.s2
C b2/2

; .s > 0/ t cos.bt/
s

2
� b2

.s2
C b2/

; .s > 0/

t
n
F.t/ .�1/

n
f

.n/
.s/ F

.n/
.t/ s

n
f .s/ �

n�1
X

j D0

s
n�1�j

F
.j /
.0/

H.t � c/
e

�cs

s
ı.t � c/ e

�cs

H.t � c/F.t � c/ e
�cs
f .s/ F �G.t/ D

Z t

0

F.t � �/g.�/; d� f .s/g.s/

I1.t/ D

Z t

0

F.�/ d�
1

s
f .s/ In.s/ D

Z 1

0

In�1.s/
1

sn
f .s/
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Remark Maple can calculate Laplace transforms and inverse Laplace transforms:

> inttrans[laplace](t*exp(2*t)*sin(3*t),t,s);

6.s � 2/
�

.s � 2/2 C 9
�2

> inttrans[invlaplace](%,s,t);

t e2t sin.3t/

E X E R C I S E S 18.7

In Exercises 1–6, use the results of this section to calculate the

specified Laplace transforms and state the corresponding inverse

transforms. What restrictions on the transform variable s apply?

Assume a and b are real constants, n is a nonnegative integer, and

i is the imaginary unit (i2 D �1).

1. Lfeat cos.bt/g 2. Lfeat sin.bt/g

3. Lfcosh.at/g 4. Lfsinh.at/g

5. Lftneat
g 6. Lftn eibt

g

Use the real and imaginary parts of Lftn eibt
g to calculate the

Laplace transforms in Exercises 7–10.

7. Lft cos.bt/g 8. Lft sin.bt/g

9. Lft2 cos.bt/g 10. Lft2 sin.bt/g

11. Complete the induction argument suggested in the proof of

Theorem 5 and thus complete the proof of the theorem itself.

12. Complete the proof of the formula for Lftng suggested in

Example 3 by carrying out the induction on n.

13. In Exercise 38 at the end of Section 14.4, the gamma function

is defined by

�.p/ D

Z 1

0

�
p�1

e
��
d�; (for p > 0)

and it is noted that �.pC 1/ D p�.p/ and �.nC 1/ D nŠ for

integers n � 0. Show that Example 3 generalizes to

nonintegral powers as

Lft
p
g D

�.p C 1/

spC1
if p > �1 and s > 0.

14. Let I1.t/ D

Z t

0

F.�/ d� , and for n > 1 let

In.t/ D

Z t

0

In�1.� d� . If f .s/ D LfF.t/g, show that

LfIn.t/g D
1

sn
LfF.t/g.

15. If f .s/ D
R1

0 F.t/ dt for s greater than a finite constant c,

show that f .n/.s/ D .�1/n LftnF.t/g. Use this result to

recalculate Lft sin at�g and Lft cos atg.

16. Re-solve the initial-value problem of Example 2 but this time

for the “resonance” case k D ! excluded in that example:

d2x

dt2
C !

2
x D sin.!t/; x.0/ D x

0
.0/ D 0:

In order to invert the Laplace transform of the solution, you

may want to examine carefully the Laplace transforms of

sin.!t/ and t cos.!t/.

In Exercises 17–21, use Laplace transforms to solve the given

initial-value problems.

17.

(

y
00
C 2y

0
D 0

y.0/ D 3; y
0
.0/ D 4:

18.

8

ˆ

<

ˆ

:

y
000
C 8y D 0

y.0/ D 0; y
0
.0/ D 1;

y
00
.0/ D 0:

19.

(

y
00
C 5y

0
C 6y D 0

y.a/ D 0; y
0
.a/ D 1; .a > 0/

20.

(

y
00
C y D t

2

y.0/ D y
0
.0/ D 0:

21.

(

y
00
C 2y

0
C y D e

�t

y.0/ D 1; y
0
.0/ D 2:

22. A grandfather clock has wound down from neglect; its

pendulum of mass m and length l has stopped swinging. Out

of irritation, its lazy owner, laying on a nearby couch, hurls a

shoe at the clock. The shoe collides, delivering an impulsive

force F.t/ D ml˛ı.t � 1/ of strength ˛ to the pendulum at

time t D 1. This impact causes the pendulum to swing again

in small oscillations through an angle � from its resting

position. For small angles, the pendulum, under gravitational

acceleration g, will oscillate according to

ml� 00
Cmg� D F.t/: Find �.t/:

23. Consider the system of equations

(

u
00
� 2uC 3v D 0

v
00
C 2v C 4u D 1

with initial conditions u.0/ D u0.0/ D v.0/ D v 0.0/ D 0:

Find u.t/ and v.t/ by taking the Laplace transform of both

equations.

24. Show that Lfteat
g D 1=.s � a/2 by direct differentiation of a

result from Table 6.

25. According to Section 9.9, a function is periodic with period T

if F.t C T / D F.t/. Show that the Laplace transform of such

a periodic function is

1

1 � e�sT

Z T

0

F.t/e
�st
dt:

Confirm this for sin t .
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26. Consider the partial differential equation

Ut t .x; t/ D Uxx.x; t/, which is a special case of the wave

equation discussed in Section 12.4. Suppose the following

conditions hold: U.x; 0/ D Ut .x; 0/ D 0, U.0; t/ D G.t/,

and limx!1 U.x; t/ D 0. This represents a wave initiated in

an initially still medium. Use a Laplace transform in t to find

u: What speed does the disturbance at x D 0 propagate at?

V D �.t/

L

C

R

Figure 18.5 An LCR circuit

27. An LCR Circuit: A circuit driven by an electromotive force,

�.t/ volts, has a capacitor with capacitance C Farads, an

inductor with inductance L Henrys, and a resistor with

resistance R Ohms connected in series (see Figure 18.5).

(Warning: Do not confuse the constant L with the Laplace

transform Lf g:) The voltage drop across a capacitor is given

by

Z t

0

i.t/dt=C for current i.t/ beginning at t D 0 in the

circuit wire. Across the inductor, the drop is Li 0.t/. For the

resistor it is simply i.t/R. The voltage drop across all of these

elements is caused by voltage source thus

�.t/ D i.t/RCLi
0
.t/C

1

C

Z t

0

i.t/dt; which is the equation

for the classical RLC circuit.

(a) Find the Laplace transform of i.t/.

(b) For R D 0, show that the equation reduces to a forced

harmonic oscillator with natural frequency ! D
�

1
LC

�
1
2 : Put

the circuit’s differential equation into the form of that from

Exercise 22 or Example 2 to achieve this.

(c) Find i.t/, for R D 0, using the result of (a), when

�.t/ D Lı.t � 1/.

28. The Fourier transform of f .t/ is given by

F.!/ D

Z 1

�1
f .t/e

�i!t
dt;

which, for suitable functions f; can be regarded as the

extension of the Laplace transform to the interval .�1;1/

with s replaced by i!. The inverse Fourier transform of F.!/

is then given by

f .t/ D
1

2�

Z 1

�1
F.!/e

i!t
d!:

(a) Use these two integrals to express f .t/ as an iterated double

integral. Assuming that the order of the integrals can be

reversed, find an integral representation of the Dirac delta

function ı.t/.

(b) Assuming that the usual properties of definite integrals hold

when representing a generalized function, show that ı.t/ acts

like any even function, that is, ı.�t / D ı.t/.

18.8 Series Solutions of Differential Equations

In Section 18.5 we developed a recipe for solving second-order, linear, homogeneous

differential equations with constant coefficients:

ay
00
C by

0
C cy D 0

and Euler equations of the form

ax
2
y

00
C bxy

0
C cy D 0:

Many of the second-order, linear, homogeneous differential equations that arise in ap-

plications do not have constant coefficients and are not of Euler type. If the coefficient

functions of such an equation are sufficiently well-behaved, we can often find solutions

in the form of power series (Taylor series). Such series solutions are frequently used

to define new functions, whose properties are deduced partly from the fact that they

solve particular differential equations. For example, Bessel functions of order � (Greek

“nu”) are defined to be certain series solutions of Bessel’s differential equation

x
2
y

00
C xy

0
C .x

2
� �

2
/y D 0:

Series solutions for second-order homogeneous linear differential equations are most

easily found near an ordinary point of the equation. This is a point x D a such that

the equation can be expressed in the form

y
00
C p.x/y

0
C q.x/y D 0;
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Remark Maple can calculate Laplace transforms and inverse Laplace transforms:

> inttrans[laplace](t*exp(2*t)*sin(3*t),t,s);

6.s � 2/
�

.s � 2/2 C 9
�2

> inttrans[invlaplace](%,s,t);

t e2t sin.3t/

E X E R C I S E S 18.7

In Exercises 1–6, use the results of this section to calculate the

specified Laplace transforms and state the corresponding inverse

transforms. What restrictions on the transform variable s apply?

Assume a and b are real constants, n is a nonnegative integer, and

i is the imaginary unit (i2 D �1).

1. Lfeat cos.bt/g 2. Lfeat sin.bt/g

3. Lfcosh.at/g 4. Lfsinh.at/g

5. Lftneat
g 6. Lftn eibt

g

Use the real and imaginary parts of Lftn eibt
g to calculate the

Laplace transforms in Exercises 7–10.

7. Lft cos.bt/g 8. Lft sin.bt/g

9. Lft2 cos.bt/g 10. Lft2 sin.bt/g

11. Complete the induction argument suggested in the proof of

Theorem 5 and thus complete the proof of the theorem itself.

12. Complete the proof of the formula for Lftng suggested in

Example 3 by carrying out the induction on n.

13. In Exercise 38 at the end of Section 14.4, the gamma function

is defined by

�.p/ D

Z 1

0

�
p�1

e
��
d�; (for p > 0)

and it is noted that �.pC 1/ D p�.p/ and �.nC 1/ D nŠ for

integers n � 0. Show that Example 3 generalizes to

nonintegral powers as

Lft
p
g D

�.p C 1/

spC1
if p > �1 and s > 0.

14. Let I1.t/ D

Z t

0

F.�/ d� , and for n > 1 let

In.t/ D

Z t

0

In�1.� d� . If f .s/ D LfF.t/g, show that

LfIn.t/g D
1

sn
LfF.t/g.

15. If f .s/ D
R1

0 F.t/ dt for s greater than a finite constant c,

show that f .n/.s/ D .�1/n LftnF.t/g. Use this result to

recalculate Lft sin at�g and Lft cos atg.

16. Re-solve the initial-value problem of Example 2 but this time

for the “resonance” case k D ! excluded in that example:

d2x

dt2
C !

2
x D sin.!t/; x.0/ D x

0
.0/ D 0:

In order to invert the Laplace transform of the solution, you

may want to examine carefully the Laplace transforms of

sin.!t/ and t cos.!t/.

In Exercises 17–21, use Laplace transforms to solve the given

initial-value problems.

17.

(

y
00
C 2y

0
D 0

y.0/ D 3; y
0
.0/ D 4:

18.

8

ˆ

<

ˆ

:

y
000
C 8y D 0

y.0/ D 0; y
0
.0/ D 1;

y
00
.0/ D 0:

19.

(

y
00
C 5y

0
C 6y D 0

y.a/ D 0; y
0
.a/ D 1; .a > 0/

20.

(

y
00
C y D t

2

y.0/ D y
0
.0/ D 0:

21.

(

y
00
C 2y

0
C y D e

�t

y.0/ D 1; y
0
.0/ D 2:

22. A grandfather clock has wound down from neglect; its

pendulum of mass m and length l has stopped swinging. Out

of irritation, its lazy owner, laying on a nearby couch, hurls a

shoe at the clock. The shoe collides, delivering an impulsive

force F.t/ D ml˛ı.t � 1/ of strength ˛ to the pendulum at

time t D 1. This impact causes the pendulum to swing again

in small oscillations through an angle � from its resting

position. For small angles, the pendulum, under gravitational

acceleration g, will oscillate according to

ml� 00
Cmg� D F.t/: Find �.t/:

23. Consider the system of equations

(

u
00
� 2uC 3v D 0

v
00
C 2v C 4u D 1

with initial conditions u.0/ D u0.0/ D v.0/ D v 0.0/ D 0:

Find u.t/ and v.t/ by taking the Laplace transform of both

equations.

24. Show that Lfteat
g D 1=.s � a/2 by direct differentiation of a

result from Table 6.

25. According to Section 9.9, a function is periodic with period T

if F.t C T / D F.t/. Show that the Laplace transform of such

a periodic function is

1

1 � e�sT

Z T

0

F.t/e
�st
dt:

Confirm this for sin t .
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26. Consider the partial differential equation

Ut t .x; t/ D Uxx.x; t/, which is a special case of the wave

equation discussed in Section 12.4. Suppose the following

conditions hold: U.x; 0/ D Ut .x; 0/ D 0, U.0; t/ D G.t/,

and limx!1 U.x; t/ D 0. This represents a wave initiated in

an initially still medium. Use a Laplace transform in t to find

u: What speed does the disturbance at x D 0 propagate at?

V D �.t/

L

C

R

Figure 18.5 An LCR circuit

27. An LCR Circuit: A circuit driven by an electromotive force,

�.t/ volts, has a capacitor with capacitance C Farads, an

inductor with inductance L Henrys, and a resistor with

resistance R Ohms connected in series (see Figure 18.5).

(Warning: Do not confuse the constant L with the Laplace

transform Lf g:) The voltage drop across a capacitor is given

by

Z t

0

i.t/dt=C for current i.t/ beginning at t D 0 in the

circuit wire. Across the inductor, the drop is Li 0.t/. For the

resistor it is simply i.t/R. The voltage drop across all of these

elements is caused by voltage source thus

�.t/ D i.t/RCLi
0
.t/C

1

C

Z t

0

i.t/dt; which is the equation

for the classical RLC circuit.

(a) Find the Laplace transform of i.t/.

(b) For R D 0, show that the equation reduces to a forced

harmonic oscillator with natural frequency ! D
�

1
LC

�
1
2 : Put

the circuit’s differential equation into the form of that from

Exercise 22 or Example 2 to achieve this.

(c) Find i.t/, for R D 0, using the result of (a), when

�.t/ D Lı.t � 1/.

28. The Fourier transform of f .t/ is given by

F.!/ D

Z 1

�1
f .t/e

�i!t
dt;

which, for suitable functions f; can be regarded as the

extension of the Laplace transform to the interval .�1;1/

with s replaced by i!. The inverse Fourier transform of F.!/

is then given by

f .t/ D
1

2�

Z 1

�1
F.!/e

i!t
d!:

(a) Use these two integrals to express f .t/ as an iterated double

integral. Assuming that the order of the integrals can be

reversed, find an integral representation of the Dirac delta

function ı.t/.

(b) Assuming that the usual properties of definite integrals hold

when representing a generalized function, show that ı.t/ acts

like any even function, that is, ı.�t / D ı.t/.

18.8 Series Solutions of Differential Equations

In Section 18.5 we developed a recipe for solving second-order, linear, homogeneous

differential equations with constant coefficients:

ay
00
C by

0
C cy D 0

and Euler equations of the form

ax
2
y

00
C bxy

0
C cy D 0:

Many of the second-order, linear, homogeneous differential equations that arise in ap-

plications do not have constant coefficients and are not of Euler type. If the coefficient

functions of such an equation are sufficiently well-behaved, we can often find solutions

in the form of power series (Taylor series). Such series solutions are frequently used

to define new functions, whose properties are deduced partly from the fact that they

solve particular differential equations. For example, Bessel functions of order � (Greek

“nu”) are defined to be certain series solutions of Bessel’s differential equation

x
2
y

00
C xy

0
C .x

2
� �

2
/y D 0:

Series solutions for second-order homogeneous linear differential equations are most

easily found near an ordinary point of the equation. This is a point x D a such that

the equation can be expressed in the form

y
00
C p.x/y

0
C q.x/y D 0;
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where the functions p.x/ and q.x/ are analytic at x D a. (Recall that a function f is

analytic at x D a if f .x/ can be expressed as the sum of its Taylor series in powers of

x � a in an interval of positive radius centred at x D a.) Thus, we assume

p.x/ D

1
X

nD0

pn.x � a/
n
;

q.x/ D

1
X

nD0

qn.x � a/
n
;

with both series converging in some interval of the form a � R < x < a C R.

Frequently p.x/ and q.x/ are polynomials, so they are analytic everywhere. A change

of independent variable � D x � a will put the point x D a at the origin � D 0, so we

can assume that a D 0.

The following example illustrates the technique of series solution around an

ordinary point.

E X A M P L E 1
Find two independent series solutions in powers of x for the Her-

mite equation

y
00
� 2xy

0
C �y D 0:

For what values of � does the equation have a polynomial solution?

Solution We try for a power series solution of the form

y D

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � ; so that

y
0
D

1
X

nD1

nanx
n�1

y
00
D

1
X

nD2

n.n � 1/anx
n�2
D

1
X

nD0

.nC 2/.nC 1/anC2x
n
:

(We have replaced n by nC2 in order to get xn in the sum for y 00.) We substitute these

expressions into the differential equation to get

1
X

nD0

.nC 2/.nC 1/anC2x
n
� 2

1
X

nD1

nanx
n
C �

1
X

nD0

anx
n
D 0

or 2a2 C �a0 C

1
X

nD1

h

.nC 2/.nC 1/anC2 � .2n � �/an

i

x
n
D 0:

This identity holds for all x provided that the coefficient of every power of x vanishes;

that is,

a2 D �
�a0

2
; anC2 D

.2n � �/an

.nC 2/.nC 1/
; .n D 1; 2; � � �/:

The latter of these formulas is called a recurrence relation.

We can choose a0 and a1 to have any values; then the above conditions determine

all the remaining coefficients an; .n � 2/. We can get one solution by choosing, for

instance, a0 D 1 and a1 D 0. Then, by the recurrence relation,

a3 D 0; a5 D 0; a7 D 0; � � � ; and
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a2 D �
�

2

a4 D
.4 � �/a2

4 � 3
D �

�.4 � �/

2 � 3 � 4
D �

�.4 � �/

4Š

a6 D
.8 � �/a4

6 � 5
D �

�.4 � �/.8 � �/

6Š

� � �

The pattern is obvious here:

a2n D �
�.4 � �/.8 � �/ � � � .4n � 4 � �/

.2n/Š
; .n D 1; 2; � � �/:

One solution to the Hermite equation is

y1 D 1C

1
X

nD1

�

�.4 � �/.8 � �/ � � � .4n � 4 � �/

.2n/Š
x

2n
:

We observe that if � D 4n for some nonnegative integer n, then y1 is an even poly-

nomial of degree 2n, because a2nC2 D 0 and all subsequent even coefficients therefore

also vanish.

The second solution, y2, can be found in the same way, by choosing a0 D 0 and

a1 D 1. It is

y2 D x C

1
X

nD1

.2 � �/.6 � �/ � � � .4n � 2 � �/

.2nC 1/Š
x

2nC1
;

and it is an odd polynomial of degree 2nC 1 if � D 4nC 2.

Both of these series solutions converge for all x. The ratio test can be applied

directly to the recurrence relation. Since consecutive nonzero terms of each series are

of the form anx
n and anC2x

nC2, we calculate

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

anC2x
nC2

anx
n

ˇ

ˇ

ˇ

ˇ

D jxj
2 lim

n!1

ˇ

ˇ

ˇ

ˇ

anC2

an

ˇ

ˇ

ˇ

ˇ

D jxj
2 lim

n!1

ˇ

ˇ

ˇ

ˇ

2n � �

.nC 2/.nC 1/

ˇ

ˇ

ˇ

ˇ

D 0

for every x, so the series converges by the ratio test.

If x D a is not an ordinary point of the equation

y
00
C p.x/y

0
C q.x/y D 0;

then it is called a singular point of that equation. This means that at least one of

the functions p.x/ and q.x/ is not analytic at x D a. If, however, .x � a/p.x/ and

.x � a/2q.x/ are analytic at x D a, then the singular point is said to be a regular

singular point. For example, the origin x D 0 is a regular singular point of Bessel’s

equation,

x
2
y

00
C xy

0
C .x

2
� �

2
/y D 0;

since p.x/ D 1=x and q.x/ D .x2
��

2
/=x

2 satisfy xp.x/ D 1 and x2
q.x/ D x

2
��

2,

which are both polynomials and therefore analytic.

The solutions of differential equations are usually not analytic at singular points.

However, it is still possible to find at least one series solution about such a point. The

method involves searching for a series solution of the form x� times a power series;

that is,

y D .x � a/
�

1
X

nD0

an.x � a/
n
D

1
X

nD0

an.x � a/
nC�

; where a0 ¤ 0:

9780134154367_Calculus   1062 05/12/16   5:34 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1042 November 18, 2016

1042 CHAPTER 18 Ordinary Differential Equations

where the functions p.x/ and q.x/ are analytic at x D a. (Recall that a function f is

analytic at x D a if f .x/ can be expressed as the sum of its Taylor series in powers of

x � a in an interval of positive radius centred at x D a.) Thus, we assume

p.x/ D

1
X

nD0

pn.x � a/
n
;

q.x/ D

1
X

nD0

qn.x � a/
n
;

with both series converging in some interval of the form a � R < x < a C R.

Frequently p.x/ and q.x/ are polynomials, so they are analytic everywhere. A change

of independent variable � D x � a will put the point x D a at the origin � D 0, so we

can assume that a D 0.

The following example illustrates the technique of series solution around an

ordinary point.

E X A M P L E 1
Find two independent series solutions in powers of x for the Her-

mite equation

y
00
� 2xy

0
C �y D 0:

For what values of � does the equation have a polynomial solution?

Solution We try for a power series solution of the form

y D

1
X

nD0

anx
n
D a0 C a1x C a2x

2
C a3x

3
C � � � ; so that

y
0
D

1
X

nD1

nanx
n�1

y
00
D

1
X

nD2

n.n � 1/anx
n�2
D

1
X

nD0

.nC 2/.nC 1/anC2x
n
:

(We have replaced n by nC2 in order to get xn in the sum for y 00.) We substitute these

expressions into the differential equation to get

1
X

nD0

.nC 2/.nC 1/anC2x
n
� 2

1
X

nD1

nanx
n
C �

1
X

nD0

anx
n
D 0

or 2a2 C �a0 C

1
X

nD1

h

.nC 2/.nC 1/anC2 � .2n � �/an

i

x
n
D 0:

This identity holds for all x provided that the coefficient of every power of x vanishes;

that is,

a2 D �
�a0

2
; anC2 D

.2n � �/an

.nC 2/.nC 1/
; .n D 1; 2; � � �/:

The latter of these formulas is called a recurrence relation.

We can choose a0 and a1 to have any values; then the above conditions determine

all the remaining coefficients an; .n � 2/. We can get one solution by choosing, for

instance, a0 D 1 and a1 D 0. Then, by the recurrence relation,

a3 D 0; a5 D 0; a7 D 0; � � � ; and
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a2 D �
�

2

a4 D
.4 � �/a2

4 � 3
D �

�.4 � �/

2 � 3 � 4
D �

�.4 � �/

4Š

a6 D
.8 � �/a4

6 � 5
D �

�.4 � �/.8 � �/

6Š

� � �

The pattern is obvious here:

a2n D �
�.4 � �/.8 � �/ � � � .4n � 4 � �/

.2n/Š
; .n D 1; 2; � � �/:

One solution to the Hermite equation is

y1 D 1C

1
X

nD1

�

�.4 � �/.8 � �/ � � � .4n � 4 � �/

.2n/Š
x

2n
:

We observe that if � D 4n for some nonnegative integer n, then y1 is an even poly-

nomial of degree 2n, because a2nC2 D 0 and all subsequent even coefficients therefore

also vanish.

The second solution, y2, can be found in the same way, by choosing a0 D 0 and

a1 D 1. It is

y2 D x C

1
X

nD1

.2 � �/.6 � �/ � � � .4n � 2 � �/

.2nC 1/Š
x

2nC1
;

and it is an odd polynomial of degree 2nC 1 if � D 4nC 2.

Both of these series solutions converge for all x. The ratio test can be applied

directly to the recurrence relation. Since consecutive nonzero terms of each series are

of the form anx
n and anC2x

nC2, we calculate

� D lim
n!1

ˇ

ˇ

ˇ

ˇ

anC2x
nC2

anx
n

ˇ

ˇ

ˇ

ˇ

D jxj
2 lim

n!1

ˇ

ˇ

ˇ

ˇ

anC2

an

ˇ

ˇ

ˇ

ˇ

D jxj
2 lim

n!1

ˇ

ˇ

ˇ

ˇ

2n � �

.nC 2/.nC 1/

ˇ

ˇ

ˇ

ˇ

D 0

for every x, so the series converges by the ratio test.

If x D a is not an ordinary point of the equation

y
00
C p.x/y

0
C q.x/y D 0;

then it is called a singular point of that equation. This means that at least one of

the functions p.x/ and q.x/ is not analytic at x D a. If, however, .x � a/p.x/ and

.x � a/2q.x/ are analytic at x D a, then the singular point is said to be a regular

singular point. For example, the origin x D 0 is a regular singular point of Bessel’s

equation,

x
2
y

00
C xy

0
C .x

2
� �

2
/y D 0;

since p.x/ D 1=x and q.x/ D .x2
��

2
/=x

2 satisfy xp.x/ D 1 and x2
q.x/ D x

2
��

2,

which are both polynomials and therefore analytic.

The solutions of differential equations are usually not analytic at singular points.

However, it is still possible to find at least one series solution about such a point. The

method involves searching for a series solution of the form x� times a power series;

that is,

y D .x � a/
�

1
X

nD0

an.x � a/
n
D

1
X

nD0

an.x � a/
nC�

; where a0 ¤ 0:
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Substitution into the differential equation produces a quadratic indicial equation, which

determines one or two values of � for which such solutions can be found, and a recur-

rence relation enabling the coefficients an to be calculated for n � 1. If the indicial

roots are not equal and do not differ by an integer, two independent solutions can be

calculated. If the indicial roots are equal or differ by an integer, one such solution

can be calculated (corresponding to the larger indicial root), but finding a second in-

dependent solution (and so the general solution) requires techniques beyond the scope

of this book. The reader is referred to standard texts on differential equations for more

discussion and examples. We will content ourselves here with one final example.

E X A M P L E 2
Find one solution, in powers of x, of Bessel’s equation of order

� D 1, namely,

x
2
y

00
C xy

0
C .x

2
� 1/y D 0:

Solution We try

y D

1
X

nD0

anx
�Cn

y
0
D

1
X

nD0

.�C n/anx
�Cn�1

y
00
D

1
X

nD0

.�C n/.�C n � 1/anx
�Cn�2

:

Substituting these expressions into the Bessel equation, we get

1
X

nD0

h

�

.�C n/.�C n � 1/C .�C n/ � 1
�

anx
n
C anx

nC2
i

D 0

1
X

nD0

h

.�C n/
2
� 1

i

anx
n
C

1
X

nD2

an�2x
n
D 0

.�
2
� 1/a0 C

�

.�C 1/
2
� 1

�

a1x C

1
X

nD2

h

�

.�C n/
2
� 1

�

an C an�2

i

x
n
D 0:

All of the terms must vanish. Since a0 ¤ 0 (we may take a0 D 1), we obtain

�
2
� 1 D 0; (the indicial equation)

Œ.�C 1/
2
� 1�a1 D 0;

an D �
an�2

.�C n/2 � 1
; .n � 2/: (the recurrence relation)

Evidently � D ˙1; therefore a1 D 0. If we take � D 1, then the recurrence relation

is an D �an�2=.n/.nC 2/. Thus,

a3 D 0; a5 D 0; a7 D 0; � � �

a2 D
�1

2 � 4
; a4 D

1

2 � 4 � 4 � 6
; a6 D

�1

2 � 4 � 4 � 6 � 6 � 8
; � � � :

Again the pattern is obvious:

a2n D
.�1/n

22nnŠ.nC 1/Š
;

and one solution of the Bessel equation of order 1 is

y D

1
X

nD0

.�1/n

22nnŠ.nC 1/Š
x

2nC1
:

By the ratio test, this series converges for all x.
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Remark Observe that if we tried to calculate a second solution using � D �1, we

would get the recurrence relation

an D �
an�2

n.n � 2/
;

and we would be unable to calculate a2. This shows what can happen if the indicial

roots differ by an integer.

E X E R C I S E S 18.8

1. Find the general solution of y 00
D .x � 1/2y in the form of a

power series y D
P1

nD0 an.x � 1/
n.

2. Find the general solution of y 00
D xy in the form of a power

series y D
P1

nD0 anx
n with a0 and a1 arbitrary.

3. Solve the initial-value problem

8

<

:

y
00
C xy

0
C 2y D 0

y.0/ D 1

y 0.0/ D 2:

4. Find the solution of y 00
C xy 0

C y D 0 that satisfies y.0/ D 1

and y 0.0/ D 0.

5. Find the first three nonzero terms in a power series solution in

powers of x for the initial-value problem y
00
C .sinx/y D 0,

y.0/ D 1, y 0.0/ D 0.

6. Find the solution, in powers of x, for the initial-value problem

.1 � x
2
/y

00
� xy

0
C 9y D 0; y.0/ D 0; y

0
.0/ D 1:

7. Find two power series solutions in powers of x for

3xy 00
C 2y 0

C y D 0.

8. Find one power series solution for the Bessel equation of order

� D 0, that is, the equation xy 00
C y 0

C xy D 0.

18.9 Dynamical Systems, Phase Space, and the Phase Plane

Phase space is a concept originating from classical physics, especially from celestial

mechanics. It provides the setting for representing the movements of a particle (or

many particles) by joining the space of conventional positions (often referred to as

“configuration space”) to the space of momentum coordinates. That is, the three coor-

dinates of position are joined to the three components of momentum so they together

form a 6-D (six-dimensional) phase space. If there are N bodies, then the phase space

can be expanded to consider 6N coordinates, where each particle contributes its own

6-D space. A gas with 1023 atoms (approximately Avogadro’s number) can be seen

as having either a 6-D phase space for each of the 1023 particles, or as one point in a

6 � 1023-D phase space.

Remarkably, this approach transforms analyzing movement into a problem of

geometry and topology because, in classical physics, knowing the positions and

momenta of all particles at a particular instant of time determines their positions and

momenta at all subsequent times. This concept was most famously articulated by the

French mathematician Laplace (also responsible for the transform in Section 18.7).

Any particle’s positions and momenta now and forever is a known or knowable curve

in phase space. That curve is described as its trajectory (or orbit, echoing the origins

in celestial mechanics). This fuelled a vexing philosophical problem that remains with

us today. If, through physics, we can know where every atom will be forever, based on

what they are all doing now, how can there be any choice? In the twentieth century,

this dilemma was substantially mollified with the emergence of quantum mechanics

and chaos.

As is often the case, this physics reflects underlying mathematics, which is the

topic of this section. It can be built up from what we have already seen in this chapter

involving systems of differential equations in the exercises of Section 18.4, fixed points

of dynamical systems in Section 4.1, and properties of vector fields in Section 15.1.
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Substitution into the differential equation produces a quadratic indicial equation, which

determines one or two values of � for which such solutions can be found, and a recur-

rence relation enabling the coefficients an to be calculated for n � 1. If the indicial

roots are not equal and do not differ by an integer, two independent solutions can be

calculated. If the indicial roots are equal or differ by an integer, one such solution

can be calculated (corresponding to the larger indicial root), but finding a second in-

dependent solution (and so the general solution) requires techniques beyond the scope

of this book. The reader is referred to standard texts on differential equations for more

discussion and examples. We will content ourselves here with one final example.

E X A M P L E 2
Find one solution, in powers of x, of Bessel’s equation of order

� D 1, namely,

x
2
y

00
C xy

0
C .x

2
� 1/y D 0:

Solution We try

y D

1
X

nD0

anx
�Cn

y
0
D

1
X

nD0

.�C n/anx
�Cn�1

y
00
D

1
X

nD0

.�C n/.�C n � 1/anx
�Cn�2

:

Substituting these expressions into the Bessel equation, we get

1
X

nD0

h

�

.�C n/.�C n � 1/C .�C n/ � 1
�

anx
n
C anx

nC2
i

D 0

1
X

nD0

h

.�C n/
2
� 1

i

anx
n
C

1
X

nD2

an�2x
n
D 0

.�
2
� 1/a0 C

�

.�C 1/
2
� 1

�

a1x C

1
X

nD2

h

�

.�C n/
2
� 1

�

an C an�2

i

x
n
D 0:

All of the terms must vanish. Since a0 ¤ 0 (we may take a0 D 1), we obtain

�
2
� 1 D 0; (the indicial equation)

Œ.�C 1/
2
� 1�a1 D 0;

an D �
an�2

.�C n/2 � 1
; .n � 2/: (the recurrence relation)

Evidently � D ˙1; therefore a1 D 0. If we take � D 1, then the recurrence relation

is an D �an�2=.n/.nC 2/. Thus,

a3 D 0; a5 D 0; a7 D 0; � � �

a2 D
�1

2 � 4
; a4 D

1

2 � 4 � 4 � 6
; a6 D

�1

2 � 4 � 4 � 6 � 6 � 8
; � � � :

Again the pattern is obvious:

a2n D
.�1/n

22nnŠ.nC 1/Š
;

and one solution of the Bessel equation of order 1 is

y D

1
X

nD0

.�1/n

22nnŠ.nC 1/Š
x

2nC1
:

By the ratio test, this series converges for all x.
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Remark Observe that if we tried to calculate a second solution using � D �1, we

would get the recurrence relation

an D �
an�2

n.n � 2/
;

and we would be unable to calculate a2. This shows what can happen if the indicial

roots differ by an integer.

E X E R C I S E S 18.8

1. Find the general solution of y 00
D .x � 1/2y in the form of a

power series y D
P1

nD0 an.x � 1/
n.

2. Find the general solution of y 00
D xy in the form of a power

series y D
P1

nD0 anx
n with a0 and a1 arbitrary.

3. Solve the initial-value problem

8

<

:

y
00
C xy

0
C 2y D 0

y.0/ D 1

y 0.0/ D 2:

4. Find the solution of y 00
C xy 0

C y D 0 that satisfies y.0/ D 1

and y 0.0/ D 0.

5. Find the first three nonzero terms in a power series solution in

powers of x for the initial-value problem y
00
C .sinx/y D 0,

y.0/ D 1, y 0.0/ D 0.

6. Find the solution, in powers of x, for the initial-value problem

.1 � x
2
/y

00
� xy

0
C 9y D 0; y.0/ D 0; y

0
.0/ D 1:

7. Find two power series solutions in powers of x for

3xy 00
C 2y 0

C y D 0.

8. Find one power series solution for the Bessel equation of order

� D 0, that is, the equation xy 00
C y 0

C xy D 0.

18.9 Dynamical Systems, Phase Space, and the Phase Plane

Phase space is a concept originating from classical physics, especially from celestial

mechanics. It provides the setting for representing the movements of a particle (or

many particles) by joining the space of conventional positions (often referred to as

“configuration space”) to the space of momentum coordinates. That is, the three coor-

dinates of position are joined to the three components of momentum so they together

form a 6-D (six-dimensional) phase space. If there are N bodies, then the phase space

can be expanded to consider 6N coordinates, where each particle contributes its own

6-D space. A gas with 1023 atoms (approximately Avogadro’s number) can be seen

as having either a 6-D phase space for each of the 1023 particles, or as one point in a

6 � 1023-D phase space.

Remarkably, this approach transforms analyzing movement into a problem of

geometry and topology because, in classical physics, knowing the positions and

momenta of all particles at a particular instant of time determines their positions and

momenta at all subsequent times. This concept was most famously articulated by the

French mathematician Laplace (also responsible for the transform in Section 18.7).

Any particle’s positions and momenta now and forever is a known or knowable curve

in phase space. That curve is described as its trajectory (or orbit, echoing the origins

in celestial mechanics). This fuelled a vexing philosophical problem that remains with

us today. If, through physics, we can know where every atom will be forever, based on

what they are all doing now, how can there be any choice? In the twentieth century,

this dilemma was substantially mollified with the emergence of quantum mechanics

and chaos.

As is often the case, this physics reflects underlying mathematics, which is the

topic of this section. It can be built up from what we have already seen in this chapter

involving systems of differential equations in the exercises of Section 18.4, fixed points

of dynamical systems in Section 4.1, and properties of vector fields in Section 15.1.
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Phase space analysis opens up a very powerful and general way to look at initial-value

problems of ordinary differential equations of any order, linear or not. Like Section

4.1, these represent dynamical systems, but they are continuous rather than discrete.

A Differential Equation as a First-Order System
A large class of ordinary differential equations (ODEs), with independent variable t

and dependent variable x, can be represented in the form

x
.n/
D g.t; x; x

0
; x

00
; : : : ; x

.n�1/
/;

which includes both nonlinear and linear equations, and as such is much more general

than the first-order systems arising in the exercises of Section 18.4. This equation

can be represented by a first-order system of differential equations in many ways. For

example, the variables y1; y2; : : : ; yn can be assigned to x and its derivatives up to

order n� 1 respectively, yielding the first-order system
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

y
0
1 D y2

y
0
2 D y3

:
:
:

y
0
n�1 D yn

y
0
n D g.t; y1; y2; y3; : : : ; yn/;

or, more simply, using vector notation,

y0
D f.t; y/;

where y D .y1; y2; y3; : : : ; yn/ and f.t; y/ D .y2; y3; y4; : : : ; yn; g.t; y//.

The space formed by the variables .y1; y2; y3; : : : ; yn/ is referred to as the phase

space of the differential equation, extending the classical definition from physics to

higher-order cases. In phase space, y0 defines a vector field in the sense of Section

15.1. The field lines of y0 are the trajectories of the differential equation, oriented in

the direction of increasing t .

E X A M P L E 1
Write the differential equation x 000

C 3x 0
C ex00

x D sin .xt/ as a

first-order system using the variable assignments indicated above.

What is the value of n? Write the vectors y 2 R
n and f 2 R

n explicitly.

Solution The differential equation has order 3; therefore, n D 3. So y 2 R
3 and

f 2 R
3. Let x D y1, x 0

D y2, and x 00
D y3. Thus,

8

ˆ

<

ˆ

:

y
0
1 D y2

y
0
2 D y3

y
0
3 D �3y2 � e

y3y1 C sin .y1t/:

We conclude

y0
D

0

B

@

y
0
1

y
0
2

y
0
3

1

C

A
and f.t; y/ D

0

B

@

y2

y3

�3y2 � e
y3y1 C sin .y1t/

1

C

A
:

Remark The method for creating a first-order system from a higher-order equation

is not unique. However, setting the new variables as the derivatives of the solution of

the higher-order equation has the advantages of being simple, naturally incorporating

initial values, and preserving the historical analogy with physics. Alternative para-

meterizations arise, as will be discussed below. Moreover, first-order nonlinear systems

of interest need not lead in any obvious manner to a single higher-order differential

equation.
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Existence, Uniqueness, and Autonomous Systems

The initial-value problem
8

<

:

dy

dt
D f.t; y/

y.t0/ D y0

.�/

resembles the scalar version that is the subject of Theorem 3 in Section 18.3,
8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

;

except that the independent variable in that theorem was called x, while for the system

we are using time t .

Remark Also, the system variables are depicted in vector font. The vector font ex-

aggerates the differences between the first-order equation and the first-order system.

To avoid this, modern treatments do not use boldface for vectors. Instead they simply

define y 2 R
n and f 2 R

n, which fully identifies these quantities as n-dimensional

vectors. It is simply irrelevant to assert the vector properties of a variable with its every

appearance, and it distracts from the properties that are common with scalars. Below

we will find that all of the essential properties of the discussion are the same for the

system and the first-order equation, so boldface vector notation distracts for these pur-

poses. However, for consistency with the rest of this book, we continue to use it. Do

not be distracted!

Theorem 3 asserts that under certain assumptions about the function f .x; y/, this

initial-value problem has a unique solution, y D �.x/, valid for all x in some open

interval containing x0. Moreover, �.x/ satisfies the integral equation

�.x/ D y0 C

Z x

x0

f
�

t; �.t/
�

dt

and can be constructed as the limit of a sequence of Picard iterations
˚

�n.x/
�

defined

by

�0.x/ D y0; �nC1.x/ D y0 C

Z x

x0

f
�

t; �n.t/
�

dt; for n D 0; 1; 2; : : : :

It should not be any surprise, therefore, that the vector system .�/ satisfies a similar

existence and uniqueness theorem, provable in a similar manner using Picard iterations

in R
n:

�0.t/ D y0; �nC1.t/ D y0 C

Z t

t0

f
�

�;�n.�/
�

d� for n D 0; 1; 2; : : : :

This modification of Theorem 3 can be proved under the assumption that f.t; y/ satis-

fies a Lipschitz condition; that is,

jf.t;u/ � f.t; v/j � Kju� vj

holds for all u and v in R
n, where the constant K may depend on t .

Remark Although we have left a full treatment of the existence and uniqueness the-

orem and its proof to more advanced books, it is clear that a large class of differen-

tial equations of any order have much in common with first-order equations. Some

structures of first-order equations translate directly to any differential equation when

viewed as a first-order system. Numerical methods for higher-order differential equa-

tions proceed naturally from the first-order formulation as well. No matter what the

order, no matter whether they are linear or nonlinear, they have much in common with

each other. This is quite unexpected when you first embark on a study of differential

equations.
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Phase space analysis opens up a very powerful and general way to look at initial-value

problems of ordinary differential equations of any order, linear or not. Like Section

4.1, these represent dynamical systems, but they are continuous rather than discrete.

A Differential Equation as a First-Order System
A large class of ordinary differential equations (ODEs), with independent variable t

and dependent variable x, can be represented in the form

x
.n/
D g.t; x; x

0
; x

00
; : : : ; x

.n�1/
/;

which includes both nonlinear and linear equations, and as such is much more general

than the first-order systems arising in the exercises of Section 18.4. This equation

can be represented by a first-order system of differential equations in many ways. For

example, the variables y1; y2; : : : ; yn can be assigned to x and its derivatives up to

order n� 1 respectively, yielding the first-order system
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

y
0
1 D y2

y
0
2 D y3

:
:
:

y
0
n�1 D yn

y
0
n D g.t; y1; y2; y3; : : : ; yn/;

or, more simply, using vector notation,

y0
D f.t; y/;

where y D .y1; y2; y3; : : : ; yn/ and f.t; y/ D .y2; y3; y4; : : : ; yn; g.t; y//.

The space formed by the variables .y1; y2; y3; : : : ; yn/ is referred to as the phase

space of the differential equation, extending the classical definition from physics to

higher-order cases. In phase space, y0 defines a vector field in the sense of Section

15.1. The field lines of y0 are the trajectories of the differential equation, oriented in

the direction of increasing t .

E X A M P L E 1
Write the differential equation x 000

C 3x 0
C ex00

x D sin .xt/ as a

first-order system using the variable assignments indicated above.

What is the value of n? Write the vectors y 2 R
n and f 2 R

n explicitly.

Solution The differential equation has order 3; therefore, n D 3. So y 2 R
3 and

f 2 R
3. Let x D y1, x 0

D y2, and x 00
D y3. Thus,

8

ˆ

<

ˆ

:

y
0
1 D y2

y
0
2 D y3

y
0
3 D �3y2 � e

y3y1 C sin .y1t/:

We conclude

y0
D

0

B

@

y
0
1

y
0
2

y
0
3

1

C

A
and f.t; y/ D

0

B

@

y2

y3

�3y2 � e
y3y1 C sin .y1t/

1

C

A
:

Remark The method for creating a first-order system from a higher-order equation

is not unique. However, setting the new variables as the derivatives of the solution of

the higher-order equation has the advantages of being simple, naturally incorporating

initial values, and preserving the historical analogy with physics. Alternative para-

meterizations arise, as will be discussed below. Moreover, first-order nonlinear systems

of interest need not lead in any obvious manner to a single higher-order differential

equation.
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Existence, Uniqueness, and Autonomous Systems

The initial-value problem
8

<

:

dy

dt
D f.t; y/

y.t0/ D y0

.�/

resembles the scalar version that is the subject of Theorem 3 in Section 18.3,
8

<

:

dy

dx
D f .x; y/

y.x0/ D y0

;

except that the independent variable in that theorem was called x, while for the system

we are using time t .

Remark Also, the system variables are depicted in vector font. The vector font ex-

aggerates the differences between the first-order equation and the first-order system.

To avoid this, modern treatments do not use boldface for vectors. Instead they simply

define y 2 R
n and f 2 R

n, which fully identifies these quantities as n-dimensional

vectors. It is simply irrelevant to assert the vector properties of a variable with its every

appearance, and it distracts from the properties that are common with scalars. Below

we will find that all of the essential properties of the discussion are the same for the

system and the first-order equation, so boldface vector notation distracts for these pur-

poses. However, for consistency with the rest of this book, we continue to use it. Do

not be distracted!

Theorem 3 asserts that under certain assumptions about the function f .x; y/, this

initial-value problem has a unique solution, y D �.x/, valid for all x in some open

interval containing x0. Moreover, �.x/ satisfies the integral equation

�.x/ D y0 C

Z x

x0

f
�

t; �.t/
�

dt

and can be constructed as the limit of a sequence of Picard iterations
˚

�n.x/
�

defined

by

�0.x/ D y0; �nC1.x/ D y0 C

Z x

x0

f
�

t; �n.t/
�

dt; for n D 0; 1; 2; : : : :

It should not be any surprise, therefore, that the vector system .�/ satisfies a similar

existence and uniqueness theorem, provable in a similar manner using Picard iterations

in R
n:

�0.t/ D y0; �nC1.t/ D y0 C

Z t

t0

f
�

�;�n.�/
�

d� for n D 0; 1; 2; : : : :

This modification of Theorem 3 can be proved under the assumption that f.t; y/ satis-

fies a Lipschitz condition; that is,

jf.t;u/ � f.t; v/j � Kju� vj

holds for all u and v in R
n, where the constant K may depend on t .

Remark Although we have left a full treatment of the existence and uniqueness the-

orem and its proof to more advanced books, it is clear that a large class of differen-

tial equations of any order have much in common with first-order equations. Some

structures of first-order equations translate directly to any differential equation when

viewed as a first-order system. Numerical methods for higher-order differential equa-

tions proceed naturally from the first-order formulation as well. No matter what the

order, no matter whether they are linear or nonlinear, they have much in common with

each other. This is quite unexpected when you first embark on a study of differential

equations.
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When f.t; y/ D f.y/ (i.e., f does not depend on t), the system .�/ is said to

be autonomous. This is the higher-dimensional version of an “unforced” differential

equation. If autonomous, solutions y.t/ of the initial-value problem .�/ are uniquely

defined for all time t , and their trajectories in phase space cannot intersect one another

at any finite time. But autonomous systems have a more general significance than one

might attribute to them at a first glance, because all systems can be made autonomous

with an easy but remarkable adjustment. Simply redefine the vectors in .�/, such that

y D .y1; y2; y3; : : : ; yn; ynC1/ and f.t; y/ D .y2; y3; y4; : : : ; g.ynC1; y/; 1/,

using the new variable, ynC1 D t , such that y 0
nC1 D 1. The revised version of .�/ is

now autonomous, but with a decisive difference hidden in the notation: it has a new

phase space with one more dimension.

E X A M P L E 2
Write the differential equation x 00

C 3x 0
C x2

D sin t as an

autonomous system of first-order differential equations.

Solution Let y1 D x and y2 D x
0 to get a first-order system in two dimensions that

is nonautonomous. To make it autonomous, define an additional variable, y3 D t .

Then
8

ˆ

<

ˆ

:

y
0
1 D y2

y
0
2 D �3y2 � y

2
1 C sin y3

y
0
3 D 1

;

which has a 3 (D 2C 1)-dimensional phase space.

In the following, we will concern ourselves with autonomous systems in a two-

dimensional phase space, because a nonautonomous system is most thoroughly treated

as a three-dimensional autonomous system, while the focus of this section will be two-

dimensional phase spaces.

Generally, existence and uniqueness for any system (adjusted to be autonomous),

in addition to the basic nature of phase space, impose surprisingly restrictive structure

on the trajectories of solutions of DEs:

Solutions, Trajectories, and Phase Space

1. In the unforced (i.e., autonomous) case, the order of a differential equa-

tion is the number of dimensions in its associated phase space.

2. The curve r D y.t/ in phase space (Rn) is a trajectory of the first-order

system resulting from parametrization of the given DE. Its tangent vector,

y0.t/ (also in R
n), is given by that first-order system itself.

3. With a limited continuity condition (e.g., Theorem 3, Section 18.3 or Lip-

schitz continuity, as above), these trajectories fill phase space because of

existence. For nonlinear equations, without such a condition, trajectories

may be confined within envelopes (violating uniqueness), which exclude

parts of phase space.

4. Because of uniqueness, trajectories never cross each other. Choosing an

initial point determines a unique trajectory through that point and com-

pletely determines the future and past along that trajectory. The com-

ponents of the initial-position vector are constants of motion along that

trajectory.

5. The tangent vectors on trajectories induce a vector field for which the

trajectories are streamlines, as discussed in Section 15.1.

Second-Order Autonomous Equations and the Phase Plane
Many essential applications are expressed using second-order differential equations,

giving the n D 2 case special importance. For n D 2, the phase space is known
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as the phase plane, and we use u and v to replace the two components y1 and y2

of y. We also consider now only the autonomous version of the first-order system and

denote by F.u; v/ andG.u; v/ the two components of f.y/. Thus, the two-dimensional

autonomous system becomes

8

ˆ

<

ˆ

:

du

dt
D F.u; v/

dv

dt
D G.u; v/

: .��/

For each point .u0; v0/ D
�

u.0/; v.0/
�

in phase space (the uv-plane) there exists a

unique trajectory of the autonomous system whose slope at any point .u; v/ is given by

dv

du
D

G.u; v/

F.u; v/
:

E X A M P L E 3
IfG=F D �u=v, show that solution trajectories in the phase plane

are concentric circles centred at the origin.

Solution Separating the variables in the equation
dv

du
D

G.u; v/

F.u; v/
D �

u

v
determin-

ing slope, we obtain v dv D �udu so that v2
C u

2
D c

2, which is a family of circles

all centred at the origin.

Like all first-order systems, .��/ provides a direction for trajectories correspond-

ing to increasing t . However, the slopes are not enough to determine this direction

because a sign change in t can be absorbed in the ratio G=F: For instance, consider

the systems

(A)

8

ˆ

<

ˆ

:

du

dt
D v

dv

dt
D �u

and (B)

8

ˆ

<

ˆ

:

du

dt
D �v

dv

dt
D u

:

Each has slope field �v=u, so its trajectories are the circles in Example 3, but for (A)

the orientation of the circles is clockwise in the uv-plane (see Figure 18.6), while for

(B) the orientation is counterclockwise. (To see this, for each system check the signs

of du=dt and dv=dt in, say, the first quadrant of the uv-plane.) Both of these systems

are different parametrized versions of the second-order autonomous DE x 00
C x D 0,

which, lacking a term with x 0, cannot distinguish between t and �t .

v

u

Figure 18.6 Trajectories of system (A)

Remark x 00
C x D 0 is the equation for a harmonic oscillator, in this case repre-

senting a linear spring with spring constant 1 and mass 1. As such, it is iconic of

periodic motion. It is fully solved with the methods of preceding sections as a lin-

ear combination of sines and cosines. Thus, circles in the phase plane represent this

periodic motion. In Chapter 17, the vector-like quality of differentials became the heart

of exterior calculus. But this quality is suppressed in a second derivative, so there is

no sense of direction implied by x 00
C x D 0. From where then does the orientation

of trajectories in phase space originate? It depends on the choice of parameterization

in .�/. An alternative, and equally valid, parameterization can be made that produces a

vector field with the opposite orientation. (When oriented, the streamlines are known

collectively as the flow).

Remark Some find this degree of flexibility foreign to their vision of mathematics,

but that reflects a misunderstanding. There are many other parameterizations possi-

ble. Some will give, say, ellipses rather than circles or even more convoluted closed

orbits. The resulting trajectories in different phase plane parameterizations are similar

topologically, not metrically.
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When f.t; y/ D f.y/ (i.e., f does not depend on t), the system .�/ is said to

be autonomous. This is the higher-dimensional version of an “unforced” differential

equation. If autonomous, solutions y.t/ of the initial-value problem .�/ are uniquely

defined for all time t , and their trajectories in phase space cannot intersect one another

at any finite time. But autonomous systems have a more general significance than one

might attribute to them at a first glance, because all systems can be made autonomous

with an easy but remarkable adjustment. Simply redefine the vectors in .�/, such that

y D .y1; y2; y3; : : : ; yn; ynC1/ and f.t; y/ D .y2; y3; y4; : : : ; g.ynC1; y/; 1/,

using the new variable, ynC1 D t , such that y 0
nC1 D 1. The revised version of .�/ is

now autonomous, but with a decisive difference hidden in the notation: it has a new

phase space with one more dimension.

E X A M P L E 2
Write the differential equation x 00

C 3x 0
C x2

D sin t as an

autonomous system of first-order differential equations.

Solution Let y1 D x and y2 D x
0 to get a first-order system in two dimensions that

is nonautonomous. To make it autonomous, define an additional variable, y3 D t .

Then
8

ˆ

<

ˆ

:

y
0
1 D y2

y
0
2 D �3y2 � y

2
1 C sin y3

y
0
3 D 1

;

which has a 3 (D 2C 1)-dimensional phase space.

In the following, we will concern ourselves with autonomous systems in a two-

dimensional phase space, because a nonautonomous system is most thoroughly treated

as a three-dimensional autonomous system, while the focus of this section will be two-

dimensional phase spaces.

Generally, existence and uniqueness for any system (adjusted to be autonomous),

in addition to the basic nature of phase space, impose surprisingly restrictive structure

on the trajectories of solutions of DEs:

Solutions, Trajectories, and Phase Space

1. In the unforced (i.e., autonomous) case, the order of a differential equa-

tion is the number of dimensions in its associated phase space.

2. The curve r D y.t/ in phase space (Rn) is a trajectory of the first-order

system resulting from parametrization of the given DE. Its tangent vector,

y0.t/ (also in R
n), is given by that first-order system itself.

3. With a limited continuity condition (e.g., Theorem 3, Section 18.3 or Lip-

schitz continuity, as above), these trajectories fill phase space because of

existence. For nonlinear equations, without such a condition, trajectories

may be confined within envelopes (violating uniqueness), which exclude

parts of phase space.

4. Because of uniqueness, trajectories never cross each other. Choosing an

initial point determines a unique trajectory through that point and com-

pletely determines the future and past along that trajectory. The com-

ponents of the initial-position vector are constants of motion along that

trajectory.

5. The tangent vectors on trajectories induce a vector field for which the

trajectories are streamlines, as discussed in Section 15.1.

Second-Order Autonomous Equations and the Phase Plane
Many essential applications are expressed using second-order differential equations,

giving the n D 2 case special importance. For n D 2, the phase space is known
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as the phase plane, and we use u and v to replace the two components y1 and y2

of y. We also consider now only the autonomous version of the first-order system and

denote by F.u; v/ andG.u; v/ the two components of f.y/. Thus, the two-dimensional

autonomous system becomes

8

ˆ

<

ˆ

:

du

dt
D F.u; v/

dv

dt
D G.u; v/

: .��/

For each point .u0; v0/ D
�

u.0/; v.0/
�

in phase space (the uv-plane) there exists a

unique trajectory of the autonomous system whose slope at any point .u; v/ is given by

dv

du
D

G.u; v/

F.u; v/
:

E X A M P L E 3
IfG=F D �u=v, show that solution trajectories in the phase plane

are concentric circles centred at the origin.

Solution Separating the variables in the equation
dv

du
D

G.u; v/

F.u; v/
D �

u

v
determin-

ing slope, we obtain v dv D �udu so that v2
C u

2
D c

2, which is a family of circles

all centred at the origin.

Like all first-order systems, .��/ provides a direction for trajectories correspond-

ing to increasing t . However, the slopes are not enough to determine this direction

because a sign change in t can be absorbed in the ratio G=F: For instance, consider

the systems

(A)

8

ˆ

<

ˆ

:

du

dt
D v

dv

dt
D �u

and (B)

8

ˆ

<

ˆ

:

du

dt
D �v

dv

dt
D u

:

Each has slope field �v=u, so its trajectories are the circles in Example 3, but for (A)

the orientation of the circles is clockwise in the uv-plane (see Figure 18.6), while for

(B) the orientation is counterclockwise. (To see this, for each system check the signs

of du=dt and dv=dt in, say, the first quadrant of the uv-plane.) Both of these systems

are different parametrized versions of the second-order autonomous DE x 00
C x D 0,

which, lacking a term with x 0, cannot distinguish between t and �t .

v

u

Figure 18.6 Trajectories of system (A)

Remark x 00
C x D 0 is the equation for a harmonic oscillator, in this case repre-

senting a linear spring with spring constant 1 and mass 1. As such, it is iconic of

periodic motion. It is fully solved with the methods of preceding sections as a lin-

ear combination of sines and cosines. Thus, circles in the phase plane represent this

periodic motion. In Chapter 17, the vector-like quality of differentials became the heart

of exterior calculus. But this quality is suppressed in a second derivative, so there is

no sense of direction implied by x 00
C x D 0. From where then does the orientation

of trajectories in phase space originate? It depends on the choice of parameterization

in .�/. An alternative, and equally valid, parameterization can be made that produces a

vector field with the opposite orientation. (When oriented, the streamlines are known

collectively as the flow).

Remark Some find this degree of flexibility foreign to their vision of mathematics,

but that reflects a misunderstanding. There are many other parameterizations possi-

ble. Some will give, say, ellipses rather than circles or even more convoluted closed

orbits. The resulting trajectories in different phase plane parameterizations are similar

topologically, not metrically.
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Fixed Points
Fixed points interrupt the flow because they represent a position where the flow stops

(i.e., u0
D 0 and v0

D 0 for the phase plane in particular), as do fixed points for discrete

maps in Section 4.2. Trajectories must go around them or stop at them (but only in

the limit). Directions of the vector field vary as one approaches them along different

paths. They are singularities of the vector field in this sense. As such, they are referred

to as singular points by some, but this term is already in use in the preceding sections.

They also go by other names: stationary point, equilibrium point, and more. If two

trajectories approach a common fixed point, uniqueness means that neither actually

reaches the fixed point in any finite t .

The fixed point is a limit point outside of the flow. Understanding the nature of

solutions becomes a question of studying the nature of fixed points, which come in a

number of varieties generally, and in the phase plane in particular. The connectedness

of the trajectories around fixed points determines key questions about stability, as well

as the structure of the flow, which we call the phase portrait. In the case of u0
D

v; v0
D �u, the origin is a fixed point around which the other trajectories seem to

act as orbits. It is a type of fixed point known as a centre. The character of the phase

portrait of this system is determined by the presence of the centre fixed point at the

origin.

To see different fixed points, we introduce the second-order differential equation

for the pendulum, with length equal to gravitational acceleration (i.e., x 00
C sin.x/ D

0). We find, in addition to a centre, other fixed points that change the overall phase

portrait, except near the origin where sinx � x, recovering the simple harmonic oscil-

lator.

E X A M P L E 4
Convert x 00

C sin.x/ D 0 to a first-order system and find the fixed

points in the phase plane.

Solution Let x D u and x 0
D v, then the first order system becomes u0

D v; v0
D

� sin.u/. Fixed points occur along the u axis for u D n� where n 2 I .

Figure 18.7 The phase portrait of a

pendulum. The separatrices are in blue.

v

u�� �

�

��

Figure 18.7 is part of the phase portrait of the pendulum showing three fixed points.

The origin is still a centre, but the other two fixed points .˙�; 0/ are known as sad-

dle points. They are limit points of a particular pair of trajectories that separate two

distinct types of behaviours. Each of these two trajectories is known as a separatrix.

The portion of the plane lying between the separatrices has trajectories that represent

classical back and forth oscillations of the pendulum. The trajectories above (or be-

low) both separatrices extend from u D �1 to u D 1 and represent the pendulum

winding around its axis, as a swing does when it goes over the top. This implies that x

is actually an angle and only acts as a spatial displacement by virtue of the scale fac-

tor of the pendulum’s length. The remaining fixed points in the phase plane are simply
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periodic artifacts, reproducing the original centre between two saddles. (There are

centres at .˙2n�; 0/ and saddle points at .˙.2nC 1/�; 0/ for n D 0; 1; 2; : : : .)

E X A M P L E 5
Repeat the calculation done for the simple harmonic oscillator in

Example 3 for the pendulum, using the slope formula to find an

expression relating u and v with one integration constant. This is known as the first

integral. Find the value of the integration constant for the trajectories in the eye-

shaped region containing the origin and lying between the separatrices. Show that for

small u, the corresponding formula for the harmonic oscillator is recovered.

Solution We have dv=du D G=F D � sin.u/=v, so v dv D � sin.u/ du. Thus,

v
2
=2 � cos.u/ D C . For the trajectories with limit points at .˙�; 0/ (i.e., the separa-

trices), we must have C D � cos.˙�/ D 1. For small u, we have cos.u/ D 1�u2
=2C

O.u4/. Thus, for the closed trajectories near the origin we have v2
C u2

� 2.C C 1/.

As jC j < 1 these trajectories approximate circles with radii
p

2.C C 1/ when only

terms up to second degree are retained.

Remark The first integral for both the pendulum and the harmonic oscillator repre-

sent energy in terms of physics. The integration constant amounts to a statement of

conservation of energy. From that standpoint, each trajectory has its own invariant

energy. But any one trajectory is not set by this value alone. A second condition still

must be set to specify a specific trajectory for a second-order differential equation.

Remark Not only does the pendulum’s first integral go over to the harmonic oscilla-

tor’s first integral in the phase plane, but x 00
C sin.x/ D 0 becomes x 00

C x D 0 when

terms above second order are discarded. This is known as linearization, and it gives

special importance to linear systems when exploring the flow near objects of interest

in the phase plane, such as fixed points.

Linear Systems, Eigenvalues, and Fixed Points
Since any fixed point of a system to DEs can be translated to the origin by a linear

change of variables, and then the DE can be linearized about the origin by discarding

higher-order terms, it is useful to investigate the linearized version of the autonomous

system .��/, that is, the linear system

8

ˆ

<

ˆ

:

du

dt
D auC bv

dv

dt
D cuC dv;

.�/

where a, b, c, and d are constants. The origin is the only fixed point of this system.

Classifying the kinds of behaviour .�/ can exhibit near the origin can help us determine

the behaviour of more general systems near their fixed points. Although .�/ has only

one fixed point by design, it allows us to examine some kinds of phase portraits

around fixed points of many DEs. We must examine the solutions of .�/ and can do so

by finding the eigenvalues of the matrix A D

�

a b

c d

�

as in the exercises of Section

18.4, or alternatively by converting the system .�/ back to a second-order differential

equation and using the operator notation of Sections 18.1 and 18.5.

E X A M P L E 6
(a) Use operator D D d=dt to find a second-order DE in u

implied by .�/, assuming none of the constants are zero, and

find the solutions r1 and r2 of the auxiliary equation for that DE. What second-

order DE is satisfied by v?

(b) Show that the eigenvalues of A are the same two numbers r1 and r2.
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Fixed Points
Fixed points interrupt the flow because they represent a position where the flow stops

(i.e., u0
D 0 and v0

D 0 for the phase plane in particular), as do fixed points for discrete

maps in Section 4.2. Trajectories must go around them or stop at them (but only in

the limit). Directions of the vector field vary as one approaches them along different

paths. They are singularities of the vector field in this sense. As such, they are referred

to as singular points by some, but this term is already in use in the preceding sections.

They also go by other names: stationary point, equilibrium point, and more. If two

trajectories approach a common fixed point, uniqueness means that neither actually

reaches the fixed point in any finite t .

The fixed point is a limit point outside of the flow. Understanding the nature of

solutions becomes a question of studying the nature of fixed points, which come in a

number of varieties generally, and in the phase plane in particular. The connectedness

of the trajectories around fixed points determines key questions about stability, as well

as the structure of the flow, which we call the phase portrait. In the case of u0
D

v; v0
D �u, the origin is a fixed point around which the other trajectories seem to

act as orbits. It is a type of fixed point known as a centre. The character of the phase

portrait of this system is determined by the presence of the centre fixed point at the

origin.

To see different fixed points, we introduce the second-order differential equation

for the pendulum, with length equal to gravitational acceleration (i.e., x 00
C sin.x/ D

0). We find, in addition to a centre, other fixed points that change the overall phase

portrait, except near the origin where sinx � x, recovering the simple harmonic oscil-

lator.

E X A M P L E 4
Convert x 00

C sin.x/ D 0 to a first-order system and find the fixed

points in the phase plane.

Solution Let x D u and x 0
D v, then the first order system becomes u0

D v; v0
D

� sin.u/. Fixed points occur along the u axis for u D n� where n 2 I .

Figure 18.7 The phase portrait of a

pendulum. The separatrices are in blue.

v

u�� �

�

��

Figure 18.7 is part of the phase portrait of the pendulum showing three fixed points.

The origin is still a centre, but the other two fixed points .˙�; 0/ are known as sad-

dle points. They are limit points of a particular pair of trajectories that separate two

distinct types of behaviours. Each of these two trajectories is known as a separatrix.

The portion of the plane lying between the separatrices has trajectories that represent

classical back and forth oscillations of the pendulum. The trajectories above (or be-

low) both separatrices extend from u D �1 to u D 1 and represent the pendulum

winding around its axis, as a swing does when it goes over the top. This implies that x

is actually an angle and only acts as a spatial displacement by virtue of the scale fac-

tor of the pendulum’s length. The remaining fixed points in the phase plane are simply
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periodic artifacts, reproducing the original centre between two saddles. (There are

centres at .˙2n�; 0/ and saddle points at .˙.2nC 1/�; 0/ for n D 0; 1; 2; : : : .)

E X A M P L E 5
Repeat the calculation done for the simple harmonic oscillator in

Example 3 for the pendulum, using the slope formula to find an

expression relating u and v with one integration constant. This is known as the first

integral. Find the value of the integration constant for the trajectories in the eye-

shaped region containing the origin and lying between the separatrices. Show that for

small u, the corresponding formula for the harmonic oscillator is recovered.

Solution We have dv=du D G=F D � sin.u/=v, so v dv D � sin.u/ du. Thus,

v
2
=2 � cos.u/ D C . For the trajectories with limit points at .˙�; 0/ (i.e., the separa-

trices), we must have C D � cos.˙�/ D 1. For small u, we have cos.u/ D 1�u2
=2C

O.u4/. Thus, for the closed trajectories near the origin we have v2
C u2

� 2.C C 1/.

As jC j < 1 these trajectories approximate circles with radii
p

2.C C 1/ when only

terms up to second degree are retained.

Remark The first integral for both the pendulum and the harmonic oscillator repre-

sent energy in terms of physics. The integration constant amounts to a statement of

conservation of energy. From that standpoint, each trajectory has its own invariant

energy. But any one trajectory is not set by this value alone. A second condition still

must be set to specify a specific trajectory for a second-order differential equation.

Remark Not only does the pendulum’s first integral go over to the harmonic oscilla-

tor’s first integral in the phase plane, but x 00
C sin.x/ D 0 becomes x 00

C x D 0 when

terms above second order are discarded. This is known as linearization, and it gives

special importance to linear systems when exploring the flow near objects of interest

in the phase plane, such as fixed points.

Linear Systems, Eigenvalues, and Fixed Points
Since any fixed point of a system to DEs can be translated to the origin by a linear

change of variables, and then the DE can be linearized about the origin by discarding

higher-order terms, it is useful to investigate the linearized version of the autonomous

system .��/, that is, the linear system

8

ˆ

<

ˆ

:

du

dt
D auC bv

dv

dt
D cuC dv;

.�/

where a, b, c, and d are constants. The origin is the only fixed point of this system.

Classifying the kinds of behaviour .�/ can exhibit near the origin can help us determine

the behaviour of more general systems near their fixed points. Although .�/ has only

one fixed point by design, it allows us to examine some kinds of phase portraits

around fixed points of many DEs. We must examine the solutions of .�/ and can do so

by finding the eigenvalues of the matrix A D

�

a b

c d

�

as in the exercises of Section

18.4, or alternatively by converting the system .�/ back to a second-order differential

equation and using the operator notation of Sections 18.1 and 18.5.

E X A M P L E 6
(a) Use operator D D d=dt to find a second-order DE in u

implied by .�/, assuming none of the constants are zero, and

find the solutions r1 and r2 of the auxiliary equation for that DE. What second-

order DE is satisfied by v?

(b) Show that the eigenvalues of A are the same two numbers r1 and r2.
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(c) Assume that r1 ¤ r2 and that neither is zero. (The equal roots case will be covered

in Exercises 10–12. The case of zero eigenvalues is treated in Exercises 13–14.)

Let p.r/ D .r � a/=b and q.r/ D c=.r � d/. Show that p.r/ D q.r/ if r D r1

or r D r2. Hence, show that the general solution of .�/ is
 

u

v

!

D C1

 

1

p.r1/

!

e
r1t
C C2

 

1

p.r2/

!

e
r2t
: .��/

Solution (a) We have

.D � a/u � bv D 0

�cuC .D � d/v D 0:

Apply .D � d/ to the first equation, multiply the second equation by b, and add

the two resulting equations to eliminate v and obtain .D�d/.D�a/u�bcu D 0,

that is, u00
� .a C d/u0

C .ad � bc/ D 0. The auxiliary equation for this DE is

r
2
� .aC d/r C .ad � bc/ D 0, which has two solutions given by

r1 D
.aC d/C

p

�

2
; r2 D

.aC d/ �
p

�

2
; where � D .a�d/

2
�4bc:

By symmetry (or by eliminating u instead of v from the pair of first-degree equa-

tions above) v must satisfy the same second-order DE as u.

(b) The eigenvalues of A satisfy the determinant equation
ˇ

ˇ

ˇ

ˇ

a � � b

c d � �

ˇ

ˇ

ˇ

ˇ

D 0; that is; �
2
� .aC d/�C .ad � bc/ D 0;

which is the same as the auxiliary equation in (a) and so has the same solutions.

For this reason, we may choose to call r1 and r2 eigenvalues of the system .�/.

(c) The auxiliary equation for the second-order equation for u or v can be written in

the form

.r � a/.r � d/ � bc D 0; that is
p.r/

q.r/
D 1:

Hence, p.r/ D q.r/ if r D r1 or r D r2. Now the (identical) second-order DEs

for u and v have general solutions

u D C1e
r1t
C C2e

r2t

v D B1e
r1t
C B2e

r2t
:

Substituting these expressions into .�/, we findB1 D p.r1/C1 andB1 D q.r1/C1,

while B2 D p.r2/C2 and B2 D q.r2/C2. As p.r/ D q.r/ for roots of the auxil-

iary equation, only two of these four equations are independent, leaving two free

constants, which should specify everything for a second-order linear differential

equation. Thus, we have
 

u

v

!

D C1

 

1

p.r1/

!

e
r1t
C C2

 

1

p.r2/

!

e
r2t
:

This representation of the general solution of the system gives insight into the types

of fixed points, except for the repeated root case. The structures that emerge are sur-

prisingly rich. Fixed points can be divided into two broad classes: hyperbolic and

nonhyperbolic. This terminology is well established, although it causes confusion

with the saddle point, discussed below. A hyperbolic fixed point in the plane is one

where Re.r1/ ¤ 0 and Re.r2/ ¤ 0. These points are robust under small changes of

the parameters in .�/, whereas the centre, as discussed in connection with oscillation,

is nonrobust or fragile. There are three types of hyperbolic fixed points in the plane.

Those three, together with the centre, are the four basic types of fixed points for linear

systems.
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Four important types of fixed points for 2-D linear systems

Centre A centre was shown in Figure 18.6 and Figure 18.7. The eigenvalues of

a centre are purely imaginary, so � < 0 and a C d D 0. Trajectories

around a centre are closed orbits. A centre is not hyperbolic as even

minute changes in a or d can shift the value of aC d away from zero. In

this sense, if the centre arises from a linearization, the fixed point cannot

be guaranteed to represent a centre in the full, unlinearized equations.

Focus If a C d ¤ 0 and � < 0, the trajectories are not closed. They spiral in

toward or outward from the fixed point, depending on the sign of aC d .

See Figure 18.8(a). Such a fixed point is called a focus. If a C d < 0,

the fixed point is a limit point for trajectories, That is, it is only reached

in the limit as t !1. It is said to be a stable or an unstable fixed point

based on whether trajectories approach or recede from the fixed point as

t increases. Unlike a centre, a focus is hyperbolic. Thus, it is robust in

that small changes in aC d , say, do not change the type of fixed point.

Saddle A fixed point is called a saddle if the eigenvalues are real and of opposite

sign (i.e., if � > 0, and r1r2 < 0). This means that one term in .��/

shrinks while the other grows. If, say, r1 < 0, we may choose initial

values so that C2 D 0. Then the resulting trajectory in the phase plane

is a straight line with slope p.r1/. Any starting point on it moves to the

fixed point in the limit as t ! 1. The fixed point is called the omega

limit point for this trajectory. Similarly, since r2 > 0, if C1 D 0, then the

trajectory is also a straight line having slope p.r2/, but represents move-

ment away from the fixed point. In this case, the trajectory approaches

the fixed point as t ! �1 and the fixed point is called the alpha limit

point of this trajectory. (Alpha and omega are the beginning and end

letters of the Greek alphabet.)

No other trajectories have the fixed point as a limit point, but all of

them must approach asymptotically both of the straight trajectories as

t ! ˙1. A linear saddle (unlike the nonlinear ones in Figure 18.7) is

depicted in Figure 18.8(b). Saddles are hyperbolic and thus robust, but

unstable, except for the stable asymptotes.

Node A fixed point is called a node when� > 0 and r1r2 > 0 (while r1 ¤ r2).

The fixed point is either unstable (if both the eigenvalues are positive) or

stable (if both are negative). In contrast to saddles, the fixed point is a

limit point of all trajectories. However, like saddles and foci, nodes are

hyperbolic. Figure 18.9 shows the phase portrait of a node.

Figure 18.8 Figure (a) shows some

trajectories of the stable, counterclockwise

focus for the system

(

u
0
D .�1=4/u � v

v
0
D u � .1=4/v:

Figure (b) shows some trajectories of the

saddle system

(

u
0
D 2uC v

v
0
D 4u � 2v:

The origin is the omega limit point for the

green trajectories and the alpha limit point

for the blue ones.

v

u u

(a) (b)
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(c) Assume that r1 ¤ r2 and that neither is zero. (The equal roots case will be covered

in Exercises 10–12. The case of zero eigenvalues is treated in Exercises 13–14.)

Let p.r/ D .r � a/=b and q.r/ D c=.r � d/. Show that p.r/ D q.r/ if r D r1

or r D r2. Hence, show that the general solution of .�/ is
 

u

v

!

D C1

 

1

p.r1/

!

e
r1t
C C2

 

1

p.r2/

!

e
r2t
: .��/

Solution (a) We have

.D � a/u � bv D 0

�cuC .D � d/v D 0:

Apply .D � d/ to the first equation, multiply the second equation by b, and add

the two resulting equations to eliminate v and obtain .D�d/.D�a/u�bcu D 0,

that is, u00
� .a C d/u0

C .ad � bc/ D 0. The auxiliary equation for this DE is

r
2
� .aC d/r C .ad � bc/ D 0, which has two solutions given by

r1 D
.aC d/C

p

�

2
; r2 D

.aC d/ �
p

�

2
; where � D .a�d/

2
�4bc:

By symmetry (or by eliminating u instead of v from the pair of first-degree equa-

tions above) v must satisfy the same second-order DE as u.

(b) The eigenvalues of A satisfy the determinant equation
ˇ

ˇ

ˇ

ˇ

a � � b

c d � �

ˇ

ˇ

ˇ

ˇ

D 0; that is; �
2
� .aC d/�C .ad � bc/ D 0;

which is the same as the auxiliary equation in (a) and so has the same solutions.

For this reason, we may choose to call r1 and r2 eigenvalues of the system .�/.

(c) The auxiliary equation for the second-order equation for u or v can be written in

the form

.r � a/.r � d/ � bc D 0; that is
p.r/

q.r/
D 1:

Hence, p.r/ D q.r/ if r D r1 or r D r2. Now the (identical) second-order DEs

for u and v have general solutions

u D C1e
r1t
C C2e

r2t

v D B1e
r1t
C B2e

r2t
:

Substituting these expressions into .�/, we findB1 D p.r1/C1 andB1 D q.r1/C1,

while B2 D p.r2/C2 and B2 D q.r2/C2. As p.r/ D q.r/ for roots of the auxil-

iary equation, only two of these four equations are independent, leaving two free

constants, which should specify everything for a second-order linear differential

equation. Thus, we have
 

u

v

!

D C1

 

1

p.r1/

!

e
r1t
C C2

 

1

p.r2/

!

e
r2t
:

This representation of the general solution of the system gives insight into the types

of fixed points, except for the repeated root case. The structures that emerge are sur-

prisingly rich. Fixed points can be divided into two broad classes: hyperbolic and

nonhyperbolic. This terminology is well established, although it causes confusion

with the saddle point, discussed below. A hyperbolic fixed point in the plane is one

where Re.r1/ ¤ 0 and Re.r2/ ¤ 0. These points are robust under small changes of

the parameters in .�/, whereas the centre, as discussed in connection with oscillation,

is nonrobust or fragile. There are three types of hyperbolic fixed points in the plane.

Those three, together with the centre, are the four basic types of fixed points for linear

systems.
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Four important types of fixed points for 2-D linear systems

Centre A centre was shown in Figure 18.6 and Figure 18.7. The eigenvalues of

a centre are purely imaginary, so � < 0 and a C d D 0. Trajectories

around a centre are closed orbits. A centre is not hyperbolic as even

minute changes in a or d can shift the value of aC d away from zero. In

this sense, if the centre arises from a linearization, the fixed point cannot

be guaranteed to represent a centre in the full, unlinearized equations.

Focus If a C d ¤ 0 and � < 0, the trajectories are not closed. They spiral in

toward or outward from the fixed point, depending on the sign of aC d .

See Figure 18.8(a). Such a fixed point is called a focus. If a C d < 0,

the fixed point is a limit point for trajectories, That is, it is only reached

in the limit as t !1. It is said to be a stable or an unstable fixed point

based on whether trajectories approach or recede from the fixed point as

t increases. Unlike a centre, a focus is hyperbolic. Thus, it is robust in

that small changes in aC d , say, do not change the type of fixed point.

Saddle A fixed point is called a saddle if the eigenvalues are real and of opposite

sign (i.e., if � > 0, and r1r2 < 0). This means that one term in .��/

shrinks while the other grows. If, say, r1 < 0, we may choose initial

values so that C2 D 0. Then the resulting trajectory in the phase plane

is a straight line with slope p.r1/. Any starting point on it moves to the

fixed point in the limit as t ! 1. The fixed point is called the omega

limit point for this trajectory. Similarly, since r2 > 0, if C1 D 0, then the

trajectory is also a straight line having slope p.r2/, but represents move-

ment away from the fixed point. In this case, the trajectory approaches

the fixed point as t ! �1 and the fixed point is called the alpha limit

point of this trajectory. (Alpha and omega are the beginning and end

letters of the Greek alphabet.)

No other trajectories have the fixed point as a limit point, but all of

them must approach asymptotically both of the straight trajectories as

t ! ˙1. A linear saddle (unlike the nonlinear ones in Figure 18.7) is

depicted in Figure 18.8(b). Saddles are hyperbolic and thus robust, but

unstable, except for the stable asymptotes.

Node A fixed point is called a node when� > 0 and r1r2 > 0 (while r1 ¤ r2).

The fixed point is either unstable (if both the eigenvalues are positive) or

stable (if both are negative). In contrast to saddles, the fixed point is a

limit point of all trajectories. However, like saddles and foci, nodes are

hyperbolic. Figure 18.9 shows the phase portrait of a node.

Figure 18.8 Figure (a) shows some

trajectories of the stable, counterclockwise

focus for the system

(

u
0
D .�1=4/u � v

v
0
D u � .1=4/v:

Figure (b) shows some trajectories of the

saddle system

(

u
0
D 2uC v

v
0
D 4u � 2v:

The origin is the omega limit point for the

green trajectories and the alpha limit point

for the blue ones.

v

u u

(a) (b)
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Figure 18.9 The system
(

u
0
D u � 2v

v
0
D .�1=4/uC 2v

has an unstable

node at the origin.

The trajectories emerge from the origin at

t D �1 in the direction of the blue line

and recede to infinity (as t !1),

becoming parallel to the green line.

y

x

E X A M P L E 7
Suppose that the origin is a node of the linear system .�/, either

stable or unstable, and the two eigenvalues of the system satisfy

r1 > r2. Show that the slopes of all trajectories approach the value of p.r/ at one of

the eigenvalues as t !1 and approach p.r/ at the other eigenvalue as t ! �1.

Solution Using the general solution .��/ to express the slope of a trajectory:

dv

du
D ŒC1p.r1/e

r1t
C C2p.r2/e

r2t
�=ŒC1e

r1t
C C2e

r2t
�

D ŒC1p.r1/C C2p.r2/e
.r2�r1/t

�=ŒC1 C C2e
.r2�r1/t

�:

Since r2 � r1 < 0, we have

lim
t!1

dv

du
D p.r1/: Similarly; lim

t!�1

dv

du
D p.r2/:

For a stable node r2 < r1 < 0, so the trajectories approach the node as t ! 1 and

their slopes approach p.r1/ there. For an unstable node 0 < r2 < r1, so the trajectories

approach the node as t ! �1 and their slopes approach p.r2/ there.

Remark For the unstable node in Figure 18.9, r2 D
1
2
.3�
p

3/ and p.r2/ � 0:1830

as t ! �1. The trajectories thus approach the origin tangent to the blue line, which

has slope p.r2/ in the figure. As t !1 the trajectories recede to infinity, with slopes

approaching p.r1/ � �0:6830, the slope of the green line.

The focus, saddle, and node are the three classes of hyperbolic fixed points. Like the

more well-known centre, the remaining cases are nonrobust transitions between those

robust cases, which will be explored further in the exercises.

Implications for Nonlinear Systems
Linear systems are only a special case. Most nonlinear differential equations have no

known direct solutions, as all known direct techniques fail on them. Even numerical

methods can produce equivocal results. But understanding the nature of objects that

exist in the phase space, their nature as limits for trajectories, and where they are,

helps enormously in detecting errors in numerics, or simply in grasping the nature of

solutions. In the phase plane, nonisolated fixed points lying on continuous curves can

exist. One may have limiting behaviours of trajectories being separatrices “strung”

between fixed points too. But, to complete the possibilities, in the phase plane one

may also have trajectories that have a closed cycle as a limit. This is known as a limit

cycle. There are more possibilities in higher dimensions, such as strange attractors, but

for autonomous systems in the phase plane there is nothing more.
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E X A M P L E 8
Show that the system

(

u
0
D 2u � v � 2u.u

2
C v

2
/

v
0
D uC 2v � 2v.u

2
C v

2
/

has a limit cycle.

Figure 18.10 Trajectories for the

nonlinear system in Example 8

v

u

Solution Using polar coordinates (u D r cos � , v D r sin �), we calculate

d

dt
r

2
D 2u

du

dt
C 2v

dv

dt
D .4u

2
C 4v

2
/
�

1 � .u
2
C v

2
/
�

D 4r
2
.1 � r

2
/;

from which we see that dr=dt > 0 if 0 < r < 1 and dr=dt < 0 if r > 1. Similarly,

since tan � D
v

u
,

u2
C v2

u2

d�

dt
D

�

1C
v2

u2

�

d�

dt
D

d

dt

v

u
D

uv 0
� vu0

u2
D

u2
C v2

u2

from which it follows that d�=dt D 1, and � is increasing at a constant rate. Thus,

some trajectories spiral counterclockwise outward from the origin toward the circle

r D 1 and others spiral counterclockwise inward from infinity toward that circle. The

circle itself is also a trajectory, called a limit cycle, and is a stable limit for the other

trajectories. See Figure 18.10.

The flow near hyperbolic fixed points preserves its topology when linearized.

Thus, knowing linearized behaviours has value for nonlinear cases. But this is not

the case for the nonhyperbolic fixed points.

E X A M P L E 9
Compare the result of Section 15.1 where Liapunov’s direct method

was applied to the vector field induced by Van der Pol’s equation,

x 00
C .1 � x2/x 0

C x D 0, to study the stability of the fixed point at the origin.

Solution Setting x D u, and u0
D v, the first-order system is

u
0
D v

v
0
D �uC v.u

2
� 1/:

Linearizing, by discarding terms second degree and higher,

u
0
D v

v
0
D �u � v:
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Figure 18.9 The system
(

u
0
D u � 2v

v
0
D .�1=4/uC 2v

has an unstable

node at the origin.

The trajectories emerge from the origin at

t D �1 in the direction of the blue line

and recede to infinity (as t !1),

becoming parallel to the green line.

y

x

E X A M P L E 7
Suppose that the origin is a node of the linear system .�/, either

stable or unstable, and the two eigenvalues of the system satisfy

r1 > r2. Show that the slopes of all trajectories approach the value of p.r/ at one of

the eigenvalues as t !1 and approach p.r/ at the other eigenvalue as t ! �1.

Solution Using the general solution .��/ to express the slope of a trajectory:

dv

du
D ŒC1p.r1/e

r1t
C C2p.r2/e

r2t
�=ŒC1e

r1t
C C2e

r2t
�

D ŒC1p.r1/C C2p.r2/e
.r2�r1/t

�=ŒC1 C C2e
.r2�r1/t

�:

Since r2 � r1 < 0, we have

lim
t!1

dv

du
D p.r1/: Similarly; lim

t!�1

dv

du
D p.r2/:

For a stable node r2 < r1 < 0, so the trajectories approach the node as t ! 1 and

their slopes approach p.r1/ there. For an unstable node 0 < r2 < r1, so the trajectories

approach the node as t ! �1 and their slopes approach p.r2/ there.

Remark For the unstable node in Figure 18.9, r2 D
1
2
.3�
p

3/ and p.r2/ � 0:1830

as t ! �1. The trajectories thus approach the origin tangent to the blue line, which

has slope p.r2/ in the figure. As t !1 the trajectories recede to infinity, with slopes

approaching p.r1/ � �0:6830, the slope of the green line.

The focus, saddle, and node are the three classes of hyperbolic fixed points. Like the

more well-known centre, the remaining cases are nonrobust transitions between those

robust cases, which will be explored further in the exercises.

Implications for Nonlinear Systems
Linear systems are only a special case. Most nonlinear differential equations have no

known direct solutions, as all known direct techniques fail on them. Even numerical

methods can produce equivocal results. But understanding the nature of objects that

exist in the phase space, their nature as limits for trajectories, and where they are,

helps enormously in detecting errors in numerics, or simply in grasping the nature of

solutions. In the phase plane, nonisolated fixed points lying on continuous curves can

exist. One may have limiting behaviours of trajectories being separatrices “strung”

between fixed points too. But, to complete the possibilities, in the phase plane one

may also have trajectories that have a closed cycle as a limit. This is known as a limit

cycle. There are more possibilities in higher dimensions, such as strange attractors, but

for autonomous systems in the phase plane there is nothing more.
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E X A M P L E 8
Show that the system

(

u
0
D 2u � v � 2u.u

2
C v

2
/

v
0
D uC 2v � 2v.u

2
C v

2
/

has a limit cycle.

Figure 18.10 Trajectories for the

nonlinear system in Example 8

v

u

Solution Using polar coordinates (u D r cos � , v D r sin �), we calculate

d

dt
r

2
D 2u

du

dt
C 2v

dv

dt
D .4u

2
C 4v

2
/
�

1 � .u
2
C v

2
/
�

D 4r
2
.1 � r

2
/;

from which we see that dr=dt > 0 if 0 < r < 1 and dr=dt < 0 if r > 1. Similarly,

since tan � D
v

u
,

u2
C v2

u2

d�

dt
D

�

1C
v2

u2

�

d�

dt
D

d

dt

v

u
D

uv0
� vu0

u2
D

u2
C v2

u2

from which it follows that d�=dt D 1, and � is increasing at a constant rate. Thus,

some trajectories spiral counterclockwise outward from the origin toward the circle

r D 1 and others spiral counterclockwise inward from infinity toward that circle. The

circle itself is also a trajectory, called a limit cycle, and is a stable limit for the other

trajectories. See Figure 18.10.

The flow near hyperbolic fixed points preserves its topology when linearized.

Thus, knowing linearized behaviours has value for nonlinear cases. But this is not

the case for the nonhyperbolic fixed points.

E X A M P L E 9
Compare the result of Section 15.1 where Liapunov’s direct method

was applied to the vector field induced by Van der Pol’s equation,

x 00
C .1 � x2/x 0

C x D 0, to study the stability of the fixed point at the origin.

Solution Setting x D u, and u0
D v, the first-order system is

u
0
D v

v
0
D �uC v.u

2
� 1/:

Linearizing, by discarding terms second degree and higher,

u
0
D v

v
0
D �u � v:
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Thus, a D 0; b D 1; c D �1; d D �1, from which we find � < 0 and a C d < 0.

According to the fixed point classes above, this is one of the three hyperbolic types.

The origin of the linear system is a stable focus, and as it is a hyperbolic fixed point,

the topology of the flow is unchanged by linearization. Thus, the eigenvalues of the

linearized system bring us to the same conclusion as Liapunov’s direct method did.

Remark Note in this case that Liapunov’s direct method does not provide the insight

into the specific nature of the fixed point that the eigenvalue analysis does in this case.

It is not only stable, but a stable focus.

E X A M P L E 10
Compare the result of Exercise 25 of Section 15.1, where

Liapunov’s direct method was applied to the vector field produced

by

u
0
D v

v
0
D �u � �vu

2
;

to study the nature of the fixed point at the origin.

Solution In Exercise 25 the origin was stable or unstable based on the sign of �. The

variables are reassigned x D u, and y D v. Discarding terms of second and higher

order,

u
0
D v

v
0
D �u:

Thus, a D 0; b D 1; c D �1; d D 0, from which we find � < 0 and aC d D 0. The

linear system has a centre at the origin. It is not hyperbolic, so the linear system need

not be representative of the nonlinear system’s flow at the origin. It is in fact of no

use in that regard, because the stability, as Liapunov’s direct method shows in Section

15.1, is determined entirely by the nonlinear terms in the differential equation.

Predator–Prey Models
A classic example of the use of phase plane techniques is the analysis of the inter-

action of competing biological populations. As a particularly simple example, consider

an island, covered with grass, having only two species of animals living on it; namely,

rabbits, which eat only grass, and foxes, which eat only rabbits. If the number of rabbits

is much smaller than could be supported by the supply of grass, and if there are no

foxes, the size u.t/ of the rabbit population will grow at a rate proportional to that size

(due to the natural fertility of rabbits). Similarly, if there are no rabbits, the size v.t/ of

the fox population will decrease at a rate proportional to that size, as there is nothing for

the foxes to eat. If both populations are positive, then the interactions between them

might be expected to be proportional to the product u.t/v.t/, the interactions being

unfavourable to the rabbits and favourable to the foxes involved. Thus, the populations

might be governed by a nonlinear system of the form

8

ˆ

ˆ

<

ˆ

ˆ

:

du

dt
D au � buv D au

�

1 �
bv

a

�

dv

dt
D �˛v C ˇuv D �˛v

�

1 �
ˇu

˛

�

;

where a, b, ˛, and ˇ are positive constants. These equations are known as the Lotka–

Volterra equations.
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This nonlinear system has two fixed points: P D .0; 0/ and Q D .˛=ˇ; a=b/. P

corresponds to zero populations of both species. The linearized version of the system

(in which the uv terms are dropped) has matrix A D

�

a 0

0 �˛

�

with eigenvalues a

and �˛, indicating a hyperbolic saddle point. The two straight trajectories containing

P are the u-axis, with alpha limit point at P and the v-axis with omega limit point at

P: We are only interested in the first quadrant, where u and v are both positive, and

no trajectory in that region can intersect either of the two axes.

To find the nature of the fixed point Q, we linearize the given system about Q by

first letting U D u � ˛
ˇ

and V D v � a
b

so that

dU

dt
D

du

dt
D a

�

U C
˛

ˇ

��

1�
b

a

�

V C
a

b

�

�

D ˇUV �
˛b

ˇ
V

dV

dt
D

dv

dt
D �˛

�

V C
a

b

�

�

1 �
ˇ

˛

�

U C
˛

ˇ

��

D �bUV C
aˇ

b
U:

Dropping the UV terms, the linearized system has matrix A D

�

0 �˛b=ˇ

aˇ=b 0

�

,

which has purely imaginary eigenvalues � D ˙
p

a˛ i . For the linearized version, the

system has a centre atQ, but centres are fragile (nonhyperbolic), so we can’t be sure the

original nonlinear system will have a centre at Q. Since no trajectories can cross the

coordinate axes, however, Q cannot be a saddle or a node; it must therefore be either a

centre or a focus. Examining the signs of du=dt and dv=dt in the four subregions into

which the horizontal and vertical lines through Q divide the first quadrant, we see that

trajectories appear to circulate aroundQ in a counterclockwise direction. The slope of

a trajectory at point .u; v/ is given by

dv

du
D

dv=dt

du=dt
D

v.ˇu � ˛/

u.a � bv/
:

Separating the variables in this DE, we can obtain a first integral for the nonlinear

system:

a � bv

v
dv D

ˇu � ˛

u
du ÷ a ln v � bv D ˇu � ˛ lnuC C;

where C is constant for any specific trajectory. At what points can such a trajectory

cross the vertical line u D a=b through Q? Only at points for which a ln v D bv C

ˇa=b � ˛ ln.a=b/ C C D bv C C1. Being concave downward, the graph of the

function ln x can cross the oblique straight line graph of bx C C1 in at most two

points. Therefore, no trajectory of the nonlinear system can cross the vertical line

through Q more than twice, and so Q cannot be a focus. Q is a centre even for the

nonlinear Lotka–Volterra system. Figure 18.11(a) shows part of the phase plane of the

Lotka–Volterra system.

Figure 18.11

Figure (a) shows trajectories of the

Lotka–Volterra model. The blue axes

are separatrices.

Figure (b) shows trajectories of the

modified Lotka–Volterra model. The

blue curve and the axes are separatrices.

v

u

Q D

�

a
b
;

˛
ˇ

�

P D .0; 0/

v

u

BA

C

(a) (b)
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Thus, a D 0; b D 1; c D �1; d D �1, from which we find � < 0 and a C d < 0.

According to the fixed point classes above, this is one of the three hyperbolic types.

The origin of the linear system is a stable focus, and as it is a hyperbolic fixed point,

the topology of the flow is unchanged by linearization. Thus, the eigenvalues of the

linearized system bring us to the same conclusion as Liapunov’s direct method did.

Remark Note in this case that Liapunov’s direct method does not provide the insight

into the specific nature of the fixed point that the eigenvalue analysis does in this case.

It is not only stable, but a stable focus.

E X A M P L E 10
Compare the result of Exercise 25 of Section 15.1, where

Liapunov’s direct method was applied to the vector field produced

by

u
0
D v

v
0
D �u � �vu

2
;

to study the nature of the fixed point at the origin.

Solution In Exercise 25 the origin was stable or unstable based on the sign of �. The

variables are reassigned x D u, and y D v. Discarding terms of second and higher

order,

u
0
D v

v
0
D �u:

Thus, a D 0; b D 1; c D �1; d D 0, from which we find � < 0 and aC d D 0. The

linear system has a centre at the origin. It is not hyperbolic, so the linear system need

not be representative of the nonlinear system’s flow at the origin. It is in fact of no

use in that regard, because the stability, as Liapunov’s direct method shows in Section

15.1, is determined entirely by the nonlinear terms in the differential equation.

Predator–Prey Models
A classic example of the use of phase plane techniques is the analysis of the inter-

action of competing biological populations. As a particularly simple example, consider

an island, covered with grass, having only two species of animals living on it; namely,

rabbits, which eat only grass, and foxes, which eat only rabbits. If the number of rabbits

is much smaller than could be supported by the supply of grass, and if there are no

foxes, the size u.t/ of the rabbit population will grow at a rate proportional to that size

(due to the natural fertility of rabbits). Similarly, if there are no rabbits, the size v.t/ of

the fox population will decrease at a rate proportional to that size, as there is nothing for

the foxes to eat. If both populations are positive, then the interactions between them

might be expected to be proportional to the product u.t/v.t/, the interactions being

unfavourable to the rabbits and favourable to the foxes involved. Thus, the populations

might be governed by a nonlinear system of the form

8

ˆ

ˆ

<

ˆ

ˆ

:

du

dt
D au � buv D au

�

1 �
bv

a

�

dv

dt
D �˛v C ˇuv D �˛v

�

1 �
ˇu

˛

�

;

where a, b, ˛, and ˇ are positive constants. These equations are known as the Lotka–

Volterra equations.
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This nonlinear system has two fixed points: P D .0; 0/ and Q D .˛=ˇ; a=b/. P

corresponds to zero populations of both species. The linearized version of the system

(in which the uv terms are dropped) has matrix A D

�

a 0

0 �˛

�

with eigenvalues a

and �˛, indicating a hyperbolic saddle point. The two straight trajectories containing

P are the u-axis, with alpha limit point at P and the v-axis with omega limit point at

P: We are only interested in the first quadrant, where u and v are both positive, and

no trajectory in that region can intersect either of the two axes.

To find the nature of the fixed point Q, we linearize the given system about Q by

first letting U D u � ˛
ˇ

and V D v � a
b

so that

dU

dt
D

du

dt
D a

�

U C
˛

ˇ

��

1�
b

a

�

V C
a

b

�

�

D ˇUV �
˛b

ˇ
V

dV

dt
D

dv

dt
D �˛

�

V C
a

b

�

�

1 �
ˇ

˛

�

U C
˛

ˇ

��

D �bUV C
aˇ

b
U:

Dropping the UV terms, the linearized system has matrix A D

�

0 �˛b=ˇ

aˇ=b 0

�

,

which has purely imaginary eigenvalues � D ˙
p

a˛ i . For the linearized version, the

system has a centre atQ, but centres are fragile (nonhyperbolic), so we can’t be sure the

original nonlinear system will have a centre at Q. Since no trajectories can cross the

coordinate axes, however, Q cannot be a saddle or a node; it must therefore be either a

centre or a focus. Examining the signs of du=dt and dv=dt in the four subregions into

which the horizontal and vertical lines through Q divide the first quadrant, we see that

trajectories appear to circulate aroundQ in a counterclockwise direction. The slope of

a trajectory at point .u; v/ is given by

dv

du
D

dv=dt

du=dt
D

v.ˇu � ˛/

u.a � bv/
:

Separating the variables in this DE, we can obtain a first integral for the nonlinear

system:

a � bv

v
dv D

ˇu � ˛

u
du ÷ a ln v � bv D ˇu � ˛ lnuC C;

where C is constant for any specific trajectory. At what points can such a trajectory

cross the vertical line u D a=b through Q? Only at points for which a ln v D bv C

ˇa=b � ˛ ln.a=b/ C C D bv C C1. Being concave downward, the graph of the

function ln x can cross the oblique straight line graph of bx C C1 in at most two

points. Therefore, no trajectory of the nonlinear system can cross the vertical line

through Q more than twice, and so Q cannot be a focus. Q is a centre even for the

nonlinear Lotka–Volterra system. Figure 18.11(a) shows part of the phase plane of the

Lotka–Volterra system.

Figure 18.11

Figure (a) shows trajectories of the

Lotka–Volterra model. The blue axes

are separatrices.

Figure (b) shows trajectories of the

modified Lotka–Volterra model. The

blue curve and the axes are separatrices.

v

u

Q D

�

a
b
;

˛
ˇ

�

P D .0; 0/

v

u

BA

C

(a) (b)
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Remark The Lotka–Volterra model of predator–prey interaction has the disadvan-

tage that if there are no predators, the prey population will grow exponentially to infin-

ity. This is impossible if their food supply (the grass the rabbits eat) is only finite. We

can correct this problem by using a logistic model for the growth of the rabbit popula-

tion; if the available grass can only feed a maximum of L rabbits, then we can use the

modified Lotka–Volterra model:

du

dt
D au

�

1 �
u

L

�

� buv

dv

dt
D �˛v C ˇuv;

where, again, all the parameters are positive numbers. Figure 18.11(b) shows the more

complicated phase plane structure in this case. Observe there are now two saddle points

and a focus instead of a centre. Exercise 15 below provides a simple example of this

modified model.

Remark The correction mentioned above is not unique. Other modifications may be

just as effective to the stated end. Model designers make no pretense at an exact theory

as one aims at in, say, physics. Such modelling is mathematical artistry. The models

are caricatures drawn in mathematics. One expects many different equation systems

to exhibit qualitatively similar behaviours. There is no expectation that such a model

would ever be able to predict, say, the exact number of predators and prey in any actual

setting. But that does not mean that models are unimportant. On the contrary, the

Lorenz equations are a famous system of differential equations modelling weather. No

one ever expected them to forecast actual weather, but they tell us in a direct manner

why the weather is so difficult to forecast. Similarly, when virologists imagined that

HIV was dormant for many years before turning into AIDS, it was a model system

of differential equations that showed that low HIV amounts did not require dormancy.

Instead, using actual data in a model for virus populations, the system showed very high

activity, not dormancy. That is, small function values do not imply small rates. AIDS

occurred when the body’s resistance finally gave out. This meant that only multi-drug

treatments could control AIDS, as any single drug therapy would rapidly encounter

drug resistance from HIV. Thus modellers, like Alan Perelson and others who did the

work, have saved many lives through their models.

E X E R C I S E S 18.9

In Exercises 1–5, determine the nature and stability of the fixed

point at the origin for the given linear systems.

1.

(

u
0
D uC v

v
0
D u � v

2.

(

u
0
D uC v

v
0
D �2uC v

3.

(

u
0
D �4uC 3v

v
0
D �2uC v

4.

(

u
0
D 4u � v

v
0
D �uC 2v

5.

(

u
0
D 2u � 4v

v
0
D 2u � 3v

6. Show that the system

(

u
0
D u � 2v

v
0
D 2u � v

has a centre at the origin. Use the transformation

U D .uC v/=3, V D u � v to rewrite the given system in a

form you will recognize and hence determine the shape of its

trajectories in the uv-plane.

7. For the system

(

u
0
D 2C v

v
0
D 4u � 2v

whose phase plane is shown

in Figure 18.8(b), the green line represents two trajectories

each with omega limit point at the origin, and the blue line

represents two more trajectories with alpha limit point at the

origin. Find equations for these four trajectories.

8. Find equations of the blue and green straight trajectories for

the nodal system whose phase portrait appears in Figure 18.9.

See Example 7.

9. What is the nature of the fixed point at the origin in Example

8?

10. Repeat Example 6, assuming again that a; b; c, and d are all

nonzero, but this time let r D r1 D r2 ¤ 0, to show that

 

u

v

!

D

"

C1

 

1

p.r/

!

C C2

 

t

1=b C p.r/t

!#

e
rt
:
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11. Suppose r > 0 in Exercise 10.

(a) Will the fixed point at .0; 0/ be stable or unstable? How is

this fixed point related to the three robust cases of fixed

points?

(b) What are the asymptotic behaviours of trajectories for

jt j ! 1? There is only one asymptote as t ! ˙1; find

its equation in the phase plane.

(c) The coefficient of ert (see Exercise 10) for both u and v

are linear functions of t: Consider the slopes of

trajectories that result. How many sign changes can

happen in the numerator and denominator of the slopes?

What does this imply about the directions, with respect to

each other, of the tangent vectors in the two asymptotic

limits for large jt j?

12. Assume b D c D 0 in the repeated roots case above.

Determine the solutions, u and v, and describe the flow

around the fixed point, which is sometimes referred to as a

degenerate node.

13. Suppose that A D

�

1 1

1 1

�

, for which one eigenvalue is

equal to zero.

(a) Find the solution for the system .�/ in this case. Show

that there is more than one fixed point and that they are

not isolated (i.e., they form a continuous line). Is this case

robust?

(b) Describe the trajectories based on part (a).

14. Consider the case where A D

�

0 0

0 0

�

, which has a zero

eigenvalue of multiplicity 2. Describe the phase plane in this

case. Where does this case stand in terms of robustness?

15. Consider the predator–prey model given by

8

ˆ

ˆ

<

ˆ

ˆ

:

du

dt
D 3u � u

2
� uv

dv

dt
D �v C uv;

which is an instance of the modified Lotka–Volterra model in

the remark at the end of this section. In order to simplify both

the algebra and the numbers, here u.t/ and v.t/ do not

represent numbers of rabbits and foxes, but rather numbers of

large units of biomass of those populations.

(a) Find the coordinates and classify the types of the three

fixed points A, B , and C in the phase plane of the system

as shown in Figure 18.11(b).

(b) Describe the three separatrices, and specify their alpha

and omega limit points.

(c) What is the slope of the separatrix that goes from B to C ?

(d) If u.0/ and v.0/ are both positive, what happens to the

biomass of the rabbit and fox populations as t !1?

C H A P T E R R E V I E W

Key Ideas

� What do the following phrases mean?

˘ an ordinary DE ˘ a partial DE

˘ the general solution of a DE

˘ a linear combination of solutions of a DE

˘ the order of a DE ˘ a linear DE

˘ a separable DE ˘ an exact DE

˘ an integrating factor ˘ a constant-coefficient DE

˘ an Euler equation ˘ an auxiliary equation

� Describe how to solve:

˘ a separable DE ˘ a first-order, linear DE

˘ a homogeneous, first-order DE

˘ a constant-coefficient DE ˘ an Euler equation

� What conditions imply that an initial-value problem for a

first-order DE has a unique solution near the initial point?

� Describe the following methods for solving first-order DEs

numerically:

˘ the Euler method ˘ the improved Euler method

˘ the fourth-order Runge–Kutta method

� Describe the following methods for solving a nonhomo-

geneous, linear DE:

˘ undetermined coefficients ˘ variation of parameters

� What are an ordinary point and a regular singular point of a

linear, second-order DE? Describe how series can be used to

solve such an equation near such a point.

Review Exercises

Find the general solutions of the differential equations in

Exercises 1–16.

1.
dy

dx
D 2xy 2.

dy

dx
D e

�y sinx

3.
dy

dx
D x C 2y 4.

dy

dx
D

x2
C y2

2xy

5.
dy

dx
D

x C y

y � x
6.

dy

dx
D �

y C ex

x C ey

7.
d2y

dt2
D

�

dy

dt

�2

8. 2
d2y

dt2
C 5

dy

dt
C 2y D 0

9. 4y 00
� 4y

0
C 5y D 0 10. 2x2

y
00
C y D 0

11. t2
d2y

dt2
� t

dy

dt
C 5y D 0

12.
d3y

dt3
C 8

d2y

dt2
C 16

dy

dt
D 0

13.
d

2
y

dx2
� 5

dy

dx
C 6y D e

x
C e

3x

14.
d2y

dx2
� 5

dy

dx
C 6y D xe

2x

15.
d2y

dx2
C 2

dy

dx
C y D x

2 16. x
d2y

dx2
� 2y D x

3
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Remark The Lotka–Volterra model of predator–prey interaction has the disadvan-

tage that if there are no predators, the prey population will grow exponentially to infin-

ity. This is impossible if their food supply (the grass the rabbits eat) is only finite. We

can correct this problem by using a logistic model for the growth of the rabbit popula-

tion; if the available grass can only feed a maximum of L rabbits, then we can use the

modified Lotka–Volterra model:

du

dt
D au

�

1 �
u

L

�

� buv

dv

dt
D �˛v C ˇuv;

where, again, all the parameters are positive numbers. Figure 18.11(b) shows the more

complicated phase plane structure in this case. Observe there are now two saddle points

and a focus instead of a centre. Exercise 15 below provides a simple example of this

modified model.

Remark The correction mentioned above is not unique. Other modifications may be

just as effective to the stated end. Model designers make no pretense at an exact theory

as one aims at in, say, physics. Such modelling is mathematical artistry. The models

are caricatures drawn in mathematics. One expects many different equation systems

to exhibit qualitatively similar behaviours. There is no expectation that such a model

would ever be able to predict, say, the exact number of predators and prey in any actual

setting. But that does not mean that models are unimportant. On the contrary, the

Lorenz equations are a famous system of differential equations modelling weather. No

one ever expected them to forecast actual weather, but they tell us in a direct manner

why the weather is so difficult to forecast. Similarly, when virologists imagined that

HIV was dormant for many years before turning into AIDS, it was a model system

of differential equations that showed that low HIV amounts did not require dormancy.

Instead, using actual data in a model for virus populations, the system showed very high

activity, not dormancy. That is, small function values do not imply small rates. AIDS

occurred when the body’s resistance finally gave out. This meant that only multi-drug

treatments could control AIDS, as any single drug therapy would rapidly encounter

drug resistance from HIV. Thus modellers, like Alan Perelson and others who did the

work, have saved many lives through their models.

E X E R C I S E S 18.9

In Exercises 1–5, determine the nature and stability of the fixed

point at the origin for the given linear systems.

1.

(

u
0
D uC v

v
0
D u � v

2.

(

u
0
D uC v

v
0
D �2uC v

3.

(

u
0
D �4uC 3v

v
0
D �2uC v

4.

(

u
0
D 4u � v

v
0
D �uC 2v

5.

(

u
0
D 2u � 4v

v
0
D 2u � 3v

6. Show that the system

(

u
0
D u � 2v

v
0
D 2u � v

has a centre at the origin. Use the transformation

U D .uC v/=3, V D u � v to rewrite the given system in a

form you will recognize and hence determine the shape of its

trajectories in the uv-plane.

7. For the system

(

u
0
D 2C v

v
0
D 4u � 2v

whose phase plane is shown

in Figure 18.8(b), the green line represents two trajectories

each with omega limit point at the origin, and the blue line

represents two more trajectories with alpha limit point at the

origin. Find equations for these four trajectories.

8. Find equations of the blue and green straight trajectories for

the nodal system whose phase portrait appears in Figure 18.9.

See Example 7.

9. What is the nature of the fixed point at the origin in Example

8?

10. Repeat Example 6, assuming again that a; b; c, and d are all

nonzero, but this time let r D r1 D r2 ¤ 0, to show that

 

u

v

!

D

"

C1

 

1

p.r/

!

C C2

 

t

1=b C p.r/t

!#

e
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11. Suppose r > 0 in Exercise 10.

(a) Will the fixed point at .0; 0/ be stable or unstable? How is

this fixed point related to the three robust cases of fixed

points?

(b) What are the asymptotic behaviours of trajectories for

jt j ! 1? There is only one asymptote as t ! ˙1; find

its equation in the phase plane.

(c) The coefficient of ert (see Exercise 10) for both u and v

are linear functions of t: Consider the slopes of

trajectories that result. How many sign changes can

happen in the numerator and denominator of the slopes?

What does this imply about the directions, with respect to

each other, of the tangent vectors in the two asymptotic

limits for large jt j?

12. Assume b D c D 0 in the repeated roots case above.

Determine the solutions, u and v, and describe the flow

around the fixed point, which is sometimes referred to as a

degenerate node.

13. Suppose that A D

�

1 1

1 1

�

, for which one eigenvalue is

equal to zero.

(a) Find the solution for the system .�/ in this case. Show

that there is more than one fixed point and that they are

not isolated (i.e., they form a continuous line). Is this case

robust?

(b) Describe the trajectories based on part (a).

14. Consider the case where A D

�

0 0

0 0

�

, which has a zero

eigenvalue of multiplicity 2. Describe the phase plane in this

case. Where does this case stand in terms of robustness?

15. Consider the predator–prey model given by

8

ˆ

ˆ

<

ˆ

ˆ

:

du

dt
D 3u � u

2
� uv

dv

dt
D �v C uv;

which is an instance of the modified Lotka–Volterra model in

the remark at the end of this section. In order to simplify both

the algebra and the numbers, here u.t/ and v.t/ do not

represent numbers of rabbits and foxes, but rather numbers of

large units of biomass of those populations.

(a) Find the coordinates and classify the types of the three

fixed points A, B , and C in the phase plane of the system

as shown in Figure 18.11(b).

(b) Describe the three separatrices, and specify their alpha

and omega limit points.

(c) What is the slope of the separatrix that goes from B to C ?

(d) If u.0/ and v.0/ are both positive, what happens to the

biomass of the rabbit and fox populations as t !1?

C H A P T E R R E V I E W

Key Ideas

� What do the following phrases mean?

˘ an ordinary DE ˘ a partial DE

˘ the general solution of a DE

˘ a linear combination of solutions of a DE

˘ the order of a DE ˘ a linear DE

˘ a separable DE ˘ an exact DE

˘ an integrating factor ˘ a constant-coefficient DE

˘ an Euler equation ˘ an auxiliary equation

� Describe how to solve:

˘ a separable DE ˘ a first-order, linear DE

˘ a homogeneous, first-order DE

˘ a constant-coefficient DE ˘ an Euler equation

� What conditions imply that an initial-value problem for a

first-order DE has a unique solution near the initial point?

� Describe the following methods for solving first-order DEs

numerically:

˘ the Euler method ˘ the improved Euler method

˘ the fourth-order Runge–Kutta method

� Describe the following methods for solving a nonhomo-

geneous, linear DE:

˘ undetermined coefficients ˘ variation of parameters

� What are an ordinary point and a regular singular point of a

linear, second-order DE? Describe how series can be used to

solve such an equation near such a point.

Review Exercises

Find the general solutions of the differential equations in

Exercises 1–16.

1.
dy

dx
D 2xy 2.

dy

dx
D e

�y sinx

3.
dy

dx
D x C 2y 4.

dy

dx
D

x2
C y2

2xy

5.
dy

dx
D

x C y

y � x
6.

dy

dx
D �

y C ex

x C ey

7.
d2y

dt2
D

�

dy

dt

�2

8. 2
d2y

dt2
C 5

dy

dt
C 2y D 0

9. 4y 00
� 4y

0
C 5y D 0 10. 2x2

y
00
C y D 0

11. t2
d2y

dt2
� t

dy

dt
C 5y D 0

12.
d3y

dt3
C 8

d2y

dt2
C 16

dy

dt
D 0

13.
d

2
y

dx2
� 5

dy

dx
C 6y D e

x
C e

3x

14.
d2y

dx2
� 5

dy

dx
C 6y D xe

2x

15.
d2y

dx2
C 2

dy

dx
C y D x

2 16. x
d2y

dx2
� 2y D x

3

9780134154367_Calculus   1079 05/12/16   5:39 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 18 – page 1060 November 18, 2016

1060 CHAPTER 18 Ordinary Differential Equations

Solve the initial-value problems in Exercises 17–26.

17.

8

ˆ

<

ˆ

:

dy

dx
D

x2

y2

y.2/ D 1

18.

8

<

:

dy

dx
D

y
2

x2

y.2/ D 1

19.

8

ˆ

<

ˆ

:

dy

dx
D

xy

x2
C y2

y.0/ D 1

20.

8

<

:

dy

dx
C .cos x/y D 2 cosx

y.�/ D 1

21.

8

ˆ

<

ˆ

:

y
00
C 3y

0
C 2y D 0

y.0/ D 1

y
0
.0/ D 2

22.

8

ˆ

<

ˆ

:

y
00
C 2y

0
C .1C �

2
/y D 0

y.1/ D 0

y
0
.1/ D �

23.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D e
�5

y
0
.1/ D 0

24.

8

ˆ

<

ˆ

:

x
2
y

00
� 3xy

0
C 4y D 0

y.e/ D e
2

y
0
.e/ D 0

25.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

d2y

dt2
C 4y D 8e

2t

y.0/ D 1

y
0
.0/ D �2

26.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2
d2y

dx2
C 5

dy

dx
� 3y D 6C 7e

x=2

y.0/ D 0

y
0
.0/ D 1

27. For what values of the constants A and B is the equation

Œ.x C A/e
x siny C cosy� dx C xŒex cosy C B siny� dy D 0

exact? What is the general solution of the equation if A and B

have these values?

28. Find a value of n for which xn is an integrating factor for

.x
2
C 3y

2
/ dx C xy dy D 0;

and solve the equation.

29. Show that y D x is a solution of

x
2
y

00
� x.2C x cotx/y 0

C .2C x cot x/y D 0;

and find the general solution of this equation.

30. Use the method of variation of parameters and the result of

Exercise 29 to find the general solution of the nonhomogeneous

equation

x
2
y

00
� x.2C x cotx/y 0

C .2C x cot x/y D x3 sinx:

31. Suppose that f .x; y/ and
@

@y
f .x; y/ are continuous on the

whole xy-plane and that f .x; y/ is bounded there, say

jf .x; y/j � K. Show that no solution of y 0
D f .x; y/ can

have a vertical asymptote. Describe the region in the plane in

which the solution to the initial-value problem

(

y
0
D f .x; y/

y.x0/ D y0

must remain.
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A P P E N D I X I

Complex Numbers

“
Old Macdonald had a farm,

Minus E-squared O.

” A mathematically simplified children’s song

Many of the problems to which mathematics is applied involve the solution of equa-

tions. Over the centuries the number system had to be expanded many times to provide

solutions for more and more kinds of equations. The natural numbers

N D f1; 2; 3; 4; : : :g

are inadequate for the solutions of equations of the form

x C n D m; .m; n 2 N/:

Zero and negative numbers can be added to create the integers

Z D f: : : ; �3; �2; �1; 0; 1; 2; 3; : : :g

in which that equation has the solution x D m � n even if m < n. (Historically,

this extension of the number system came much later than some of those mentioned

below.) Some equations of the form

nx D m; .m; n 2 Z; n ¤ 0/;

cannot be solved in the integers. Another extension is made to include numbers of the

form m=n, thus producing the set of rational numbers

Q D

n

m

n
W m; n 2 Z; n ¤ 0

o

:

Every linear equation

ax D b; .a; b 2 Q; a ¤ 0/;

has a solution x D b=a in Q, but the quadratic equation

x
2
D 2

has no solution in Q, as was shown in Section P.1. Another extension enriches the

rational numbers to the real numbers R in which some equations like x2
D 2 have

solutions. However, other quadratic equations, for instance,

x
2
D �1

do not have solutions, even in the real numbers, so the extension process is not com-

plete. In order to be able to solve any quadratic equation, we need to extend the real

number system to a larger set, which we call the complex number system. In this

appendix we will define complex numbers and develop some of their basic properties.
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Solve the initial-value problems in Exercises 17–26.

17.

8

ˆ

<

ˆ

:

dy

dx
D

x2

y2

y.2/ D 1

18.

8

<

:

dy

dx
D

y
2

x2

y.2/ D 1

19.

8

ˆ

<

ˆ

:

dy

dx
D

xy

x2
C y2

y.0/ D 1

20.

8

<

:

dy

dx
C .cos x/y D 2 cosx

y.�/ D 1

21.

8

ˆ

<

ˆ

:

y
00
C 3y

0
C 2y D 0

y.0/ D 1

y
0
.0/ D 2

22.

8

ˆ

<

ˆ

:

y
00
C 2y

0
C .1C �

2
/y D 0

y.1/ D 0

y
0
.1/ D �

23.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D e
�5

y
0
.1/ D 0

24.

8

ˆ

<

ˆ

:

x
2
y

00
� 3xy

0
C 4y D 0

y.e/ D e
2

y
0
.e/ D 0

25.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

d2y

dt2
C 4y D 8e

2t

y.0/ D 1

y
0
.0/ D �2

26.

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2
d2y

dx2
C 5

dy

dx
� 3y D 6C 7e

x=2

y.0/ D 0

y
0
.0/ D 1

27. For what values of the constants A and B is the equation

Œ.x C A/e
x siny C cosy� dx C xŒex cosy C B siny� dy D 0

exact? What is the general solution of the equation if A and B

have these values?

28. Find a value of n for which xn is an integrating factor for

.x
2
C 3y

2
/ dx C xy dy D 0;

and solve the equation.

29. Show that y D x is a solution of

x
2
y

00
� x.2C x cotx/y 0

C .2C x cot x/y D 0;

and find the general solution of this equation.

30. Use the method of variation of parameters and the result of

Exercise 29 to find the general solution of the nonhomogeneous

equation

x
2
y

00
� x.2C x cotx/y 0

C .2C x cot x/y D x3 sinx:

31. Suppose that f .x; y/ and
@

@y
f .x; y/ are continuous on the

whole xy-plane and that f .x; y/ is bounded there, say

jf .x; y/j � K. Show that no solution of y 0
D f .x; y/ can

have a vertical asymptote. Describe the region in the plane in

which the solution to the initial-value problem

(

y
0
D f .x; y/

y.x0/ D y0

must remain.
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A-1

A P P E N D I X I

Complex Numbers

“
Old Macdonald had a farm,

Minus E-squared O.

” A mathematically simplified children’s song

Many of the problems to which mathematics is applied involve the solution of equa-

tions. Over the centuries the number system had to be expanded many times to provide

solutions for more and more kinds of equations. The natural numbers

N D f1; 2; 3; 4; : : :g

are inadequate for the solutions of equations of the form

x C n D m; .m; n 2 N/:

Zero and negative numbers can be added to create the integers

Z D f: : : ; �3; �2; �1; 0; 1; 2; 3; : : :g

in which that equation has the solution x D m � n even if m < n. (Historically,

this extension of the number system came much later than some of those mentioned

below.) Some equations of the form

nx D m; .m; n 2 Z; n ¤ 0/;

cannot be solved in the integers. Another extension is made to include numbers of the

form m=n, thus producing the set of rational numbers

Q D

n

m

n
W m; n 2 Z; n ¤ 0

o

:

Every linear equation

ax D b; .a; b 2 Q; a ¤ 0/;

has a solution x D b=a in Q, but the quadratic equation

x
2
D 2

has no solution in Q, as was shown in Section P.1. Another extension enriches the

rational numbers to the real numbers R in which some equations like x2
D 2 have

solutions. However, other quadratic equations, for instance,

x
2
D �1

do not have solutions, even in the real numbers, so the extension process is not com-

plete. In order to be able to solve any quadratic equation, we need to extend the real

number system to a larger set, which we call the complex number system. In this

appendix we will define complex numbers and develop some of their basic properties.
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A-2 APPENDIX I Complex Numbers

Definition of Complex Numbers
We begin by defining the symbol i , called the imaginary unit,1 to have the property

i
2
D �1:

Thus, we could also call i the square root of �1 and denote it
p

�1. Of course, i is

not a real number; no real number has a negative square.

D E F I N I T I O N

1

A complex number is an expression of the form

aC bi or aC ib;

where a and b are real numbers, and i is the imaginary unit.

For example, 3 C 2i , 7
2
�

2
3
i , i� D 0 C i� , and �3 D �3 C 0i are all complex

numbers. The last of these examples shows that every real number can be regarded as

a complex number. (We will normally use aCbi unless b is a complicated expression,

in which case we will write aC ib instead. Either form is acceptable.)

It is often convenient to represent a complex number by a single letter; w and z

are frequently used for this purpose. If a, b, x, and y are real numbers, and

w D aC bi and z D x C yi;

then we can refer to the complex numbers w and z. Note that w D z if and only if

a D x and b D y. Of special importance are the complex numbers

0 D 0C 0i; 1 D 1C 0i; and i D 0C 1i:

D E F I N I T I O N

2

If z D x C yi is a complex number (where x and y are real), we call x the

real part of z and denote it Re .z/. We call y the imaginary part of z and

denote it Im .z/:

Re .z/ D Re .x C yi/ D x; Im .z/ D Im .x C yi/ D y:

Note that both the real and imaginary parts of a complex number are real numbers:

Re .3 � 5i/ D 3

Re .2i/ D Re .0C 2i/ D 0

Re .�7/ D Re .�7C 0i/ D �7

Im .3 � 5i/ D �5

Im .2i/ D Im .0C 2i/ D 2

Im .�7/ D Im .�7C 0i/ D 0:

Graphical Representation of Complex Numbers
Since complex numbers are constructed from pairs of real numbers (their real and

imaginary parts), it is natural to represent complex numbers graphically as points in

a Cartesian plane. We use the point with coordinates .a; b/ to represent the complex

number w D a C ib. In particular, the origin .0; 0/ represents the complex number

0, the point .1; 0/ represents the complex number 1 D 1 C 0i , and the point .0; 1/

represents the point i D 0C 1i . (See Figure I.1.)

1 In some fields, for example, electrical engineering, the imaginary unit is denoted j instead

of i . Like “negative,” “surd,” and “irrational,” the term “imaginary” suggests the distrust that

greeted the new kinds of numbers when they were first introduced.
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Figure I.1 An Argand diagram

representing the complex plane

y

x

0

i 1Ci 2Ci

�1C 3
2 i

�i

�2i 2�2i

�2�i

�2 1

Such a representation of complex numbers as points in a plane is called an Argand

diagram. Since each complex number is represented by a unique point in the plane,

the set of all complex numbers is often referred to as the complex plane. The symbol

C is used to represent the set of all complex numbers and, equivalently, the complex

plane:

C D fx C yi W x; y; 2 Rg :

The points on the x-axis of the complex plane correspond to real numbers (x D x C

0i), so the x-axis is called the real axis. The points on the y-axis correspond to pure

imaginary numbers (yi D 0C yi), so the y-axis is called the imaginary axis.

It can be helpful to use the polar coordinates of a point in the complex plane.

D E F I N I T I O N

3

The distance from the origin to the point .a; b/ corresponding to the complex

number w D a C bi is called the modulus of w and is denoted by jwj or

jaC bi j:

jwj D jaC bi j D

p

a2
C b2:

D E F I N I T I O N

4

If the line from the origin to .a; b/ makes angle � with the positive direction

of the real axis (with positive angles measured counterclockwise), then we

call � an argument of the complex number w D a C bi and denote it by

arg .w/ or arg .aC bi/. (See Figure I.2.)

The modulus of a complex number is always real and nonnegative. It is positive unless

the complex number is 0. Modulus plays a similar role for complex numbers that

absolute value does for real numbers. Indeed, sometimes modulus is called absolute

value.

Arguments of complex numbers are not unique. If w D a C bi ¤ 0, then

any two possible values for arg .w/ differ by an integer multiple of 2� . The sym-

bol arg .w/ actually represents not a single number, but a set of numbers. When we

write arg .w/ D � , we are saying that the set arg .w/ contains all numbers of the form

� C 2k� , where k is an integer. Similarly, the statement arg .z/ D arg .w/ says that

two sets are identical.

If w D aC bi , where a D Re .w/ ¤ 0, then

tan arg .w/ D tan arg .aC bi/ D
b

a
:

This means that tan � D b=a for every � in the set arg .w/.

y

x

arg(w)

w D aC bi

jwj

Figure I.2 The modulus and argument of

a complex number
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Definition of Complex Numbers
We begin by defining the symbol i , called the imaginary unit,1 to have the property

i
2
D �1:

Thus, we could also call i the square root of �1 and denote it
p

�1. Of course, i is

not a real number; no real number has a negative square.

D E F I N I T I O N

1

A complex number is an expression of the form

aC bi or aC ib;

where a and b are real numbers, and i is the imaginary unit.

For example, 3 C 2i , 7
2
�

2
3
i , i� D 0 C i� , and �3 D �3 C 0i are all complex

numbers. The last of these examples shows that every real number can be regarded as

a complex number. (We will normally use aCbi unless b is a complicated expression,

in which case we will write aC ib instead. Either form is acceptable.)

It is often convenient to represent a complex number by a single letter; w and z

are frequently used for this purpose. If a, b, x, and y are real numbers, and

w D aC bi and z D x C yi;

then we can refer to the complex numbers w and z. Note that w D z if and only if

a D x and b D y. Of special importance are the complex numbers

0 D 0C 0i; 1 D 1C 0i; and i D 0C 1i:

D E F I N I T I O N

2

If z D x C yi is a complex number (where x and y are real), we call x the

real part of z and denote it Re .z/. We call y the imaginary part of z and

denote it Im .z/:

Re .z/ D Re .x C yi/ D x; Im .z/ D Im .x C yi/ D y:

Note that both the real and imaginary parts of a complex number are real numbers:

Re .3 � 5i/ D 3

Re .2i/ D Re .0C 2i/ D 0

Re .�7/ D Re .�7C 0i/ D �7

Im .3 � 5i/ D �5

Im .2i/ D Im .0C 2i/ D 2

Im .�7/ D Im .�7C 0i/ D 0:

Graphical Representation of Complex Numbers
Since complex numbers are constructed from pairs of real numbers (their real and

imaginary parts), it is natural to represent complex numbers graphically as points in

a Cartesian plane. We use the point with coordinates .a; b/ to represent the complex

number w D a C ib. In particular, the origin .0; 0/ represents the complex number

0, the point .1; 0/ represents the complex number 1 D 1 C 0i , and the point .0; 1/

represents the point i D 0C 1i . (See Figure I.1.)

1 In some fields, for example, electrical engineering, the imaginary unit is denoted j instead

of i . Like “negative,” “surd,” and “irrational,” the term “imaginary” suggests the distrust that

greeted the new kinds of numbers when they were first introduced.
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Figure I.1 An Argand diagram

representing the complex plane

y

x

0

i 1Ci 2Ci

�1C 3
2 i

�i

�2i 2�2i

�2�i

�2 1

Such a representation of complex numbers as points in a plane is called an Argand

diagram. Since each complex number is represented by a unique point in the plane,

the set of all complex numbers is often referred to as the complex plane. The symbol

C is used to represent the set of all complex numbers and, equivalently, the complex

plane:

C D fx C yi W x; y; 2 Rg :

The points on the x-axis of the complex plane correspond to real numbers (x D x C

0i), so the x-axis is called the real axis. The points on the y-axis correspond to pure

imaginary numbers (yi D 0C yi), so the y-axis is called the imaginary axis.

It can be helpful to use the polar coordinates of a point in the complex plane.

D E F I N I T I O N

3

The distance from the origin to the point .a; b/ corresponding to the complex

number w D a C bi is called the modulus of w and is denoted by jwj or

jaC bi j:

jwj D jaC bi j D

p

a2
C b2:

D E F I N I T I O N

4

If the line from the origin to .a; b/ makes angle � with the positive direction

of the real axis (with positive angles measured counterclockwise), then we

call � an argument of the complex number w D a C bi and denote it by

arg .w/ or arg .aC bi/. (See Figure I.2.)

The modulus of a complex number is always real and nonnegative. It is positive unless

the complex number is 0. Modulus plays a similar role for complex numbers that

absolute value does for real numbers. Indeed, sometimes modulus is called absolute

value.

Arguments of complex numbers are not unique. If w D a C bi ¤ 0, then

any two possible values for arg .w/ differ by an integer multiple of 2� . The sym-

bol arg .w/ actually represents not a single number, but a set of numbers. When we

write arg .w/ D � , we are saying that the set arg .w/ contains all numbers of the form

� C 2k� , where k is an integer. Similarly, the statement arg .z/ D arg .w/ says that

two sets are identical.

If w D aC bi , where a D Re .w/ ¤ 0, then

tan arg .w/ D tan arg .aC bi/ D
b

a
:

This means that tan � D b=a for every � in the set arg .w/.

y

x

arg(w)

w D aC bi

jwj

Figure I.2 The modulus and argument of

a complex number
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It is sometimes convenient to restrict � D arg .w/ to an interval of length 2� , say,

the interval 0 � � < 2� , or �� < � � � , so that nonzero complex numbers will have

unique arguments. We will call the value of arg .w/ in the interval �� < � � � the

principal argument of w and denote it Arg .w/. Every complex number w except 0

has a unique principal argument Arg .w/.

E X A M P L E 1
(Some moduli and principal arguments) See Figure I.3.

j2j D 2

j1C i j D
p

2

ji j D 1

j � 2i j D 2

j �

p

3C i j D 2

j � 1 � 2i j D
p

5

Arg .2/ D 0

Arg .1C i/ D �=4

Arg .i/ D �=2

Arg .�2i/ D ��=2

Arg .�
p

3C i/ D 5�=6

Arg .�1 � 2i/ D �� C tan�1
.2/:

y

x

1Ci

�1�2i

�
p

3Ci

p
5

2 p
2

2

i

�2i

Figure I.3 Some complex numbers with

their moduli

Remark If z D x C yi and Re .z/ D x > 0, then Arg .z/ D tan�1.y=x/. Many

BEWARE! Review the

cautionary remark at the end of the

discussion of the arctangent function

in Section 3.5; different programs

implement the two-variable

arctangent using different notations

and/or order of variables.

computer spreadsheets and mathematical software packages implement a two-variable

arctan function denoted atan2.x; y/, which gives the polar angle of .x; y/ in the inter-

val .��; ��. Thus,

Arg .x C yi/ D atan2.x; y/:

Given the modulus r D jwj and any value of the argument � D arg .w/ of a complex

number w D a C bi , we have a D r cos � and b D r sin � , so w can be expressed in

terms of its modulus and argument as

w D r cos � C i r sin �:

The expression on the right side is called the polar representation of w.

D E F I N I T I O N

5

The conjugate or complex conjugate of a complex number w D a C bi is

another complex number, denoted w, given by

w D a � bi:

E X A M P L E 2
2 � 3i D 2C 3i , 3 D 3, 2i D �2i .

Observe that

Re .w/ D Re .w/

Im .w/ D �Im .w/

jwj D jwj

arg .w/ D � arg .w/:

In an Argand diagram the point w is the reflection of the point w in the real axis. (See

Figure I.4.)

Note that w is real (Im .w/ D 0) if and only if w D w. Also, w is pure imaginary

(Re .w/ D 0) if and only if w D �w. (Here, �w D �a � bi if w D aC bi .)

Complex Arithmetic
Like real numbers, complex numbers can be added, subtracted, multiplied, and

divided. Two complex numbers are added or subtracted as though they are two-

dimensional vectors whose components are their real and imaginary parts.

y

x

wDaCbi

wDa�bi

Figure I.4 A complex number and its

conjugate are mirror images of each other

in the real axis
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The sum and difference of complex numbers

If w D aC bi and z D x C yi , where a, b, x, and y are real numbers, then

w C z D .aC x/C .b C y/i

w � z D .a � x/C .b � y/i:

In an Argand diagram the points wCz and w�z are the points whose position vectors

are, respectively, the sum and difference of the position vectors of the points w and

z. (See Figure I.5.) In particular, the complex number a C bi is the sum of the real

number a D aC 0i and the pure imaginary number bi D 0C bi .

Complex addition obeys the same rules as real addition: if w1, w2, and w3 are

three complex numbers, the following are easily verified:

w1 C w2 D w2 C w1

.w1 C w2/C w3 D w1 C .w2 C w3/

jw1 ˙ w2j � jw1j C jw2j

Addition is commutative.

Addition is associative.

the triangle inequality

Note that jw1 � w2j is the distance between the two points w1 and w2 in the complex

plane. Thus, the triangle inequality says that in the triangle with vertices w1,�w2 and

y

x

z

wCz

w

w�z

�z

Figure I.5 Complex numbers are added

and subtracted vectorially. Observe the

parallelograms

0, the length of one side is less than the sum of the other two.

It is also easily verified that the conjugate of a sum (or difference) is the sum (or

difference) of the conjugates:

w C z D w C z:

E X A M P L E 3
(a) If w D 2C 3i and z D 4 � 5i , then

w C z D .2C 4/C .3 � 5/i D 6 � 2i

w � z D .2 � 4/C .3 � .�5//i D �2C 8i:

(b) 3i C .1 � 2i/ � .2C 3i/C 5 D 4 � 2i .

Multiplication of the complex numbers w D aC bi and z D x C yi is carried out by

formally multiplying the binomial expressions and replacing i2 by �1:

wz D .aC bi/.x C yi/ D ax C ayi C bxi C byi
2

D .ax � by/C .ay C bx/i:

The product of complex numbers

If w D aC bi and z D x C yi , where a, b, x, and y are real numbers, then

wz D .ax � by/C .ay C bx/i:

E X A M P L E 4
(a) .2C 3i/.1 � 2i/ D 2 � 4i C 3i � 6i2 D 8 � i .

(b) i.5 � 4i/ D 5i � 4i2 D 4C 5i .

(c) .aC bi/.a � bi/ D a2
� abi C abi � b2i2 D a2

C b2.

Part (c) of the example above shows that the square of the modulus of a complex

number is the product of that number with its complex conjugate:
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It is sometimes convenient to restrict � D arg .w/ to an interval of length 2� , say,

the interval 0 � � < 2� , or �� < � � � , so that nonzero complex numbers will have

unique arguments. We will call the value of arg .w/ in the interval �� < � � � the

principal argument of w and denote it Arg .w/. Every complex number w except 0

has a unique principal argument Arg .w/.

E X A M P L E 1
(Some moduli and principal arguments) See Figure I.3.

j2j D 2

j1C i j D
p

2

ji j D 1

j � 2i j D 2

j �

p

3C i j D 2

j � 1 � 2i j D
p

5

Arg .2/ D 0

Arg .1C i/ D �=4

Arg .i/ D �=2

Arg .�2i/ D ��=2

Arg .�
p

3C i/ D 5�=6

Arg .�1 � 2i/ D �� C tan�1
.2/:

y

x

1Ci

�1�2i

�
p

3Ci

p
5

2 p
2

2

i

�2i

Figure I.3 Some complex numbers with

their moduli

Remark If z D x C yi and Re .z/ D x > 0, then Arg .z/ D tan�1.y=x/. Many

BEWARE! Review the

cautionary remark at the end of the

discussion of the arctangent function

in Section 3.5; different programs

implement the two-variable

arctangent using different notations

and/or order of variables.

computer spreadsheets and mathematical software packages implement a two-variable

arctan function denoted atan2.x; y/, which gives the polar angle of .x; y/ in the inter-

val .��; ��. Thus,

Arg .x C yi/ D atan2.x; y/:

Given the modulus r D jwj and any value of the argument � D arg .w/ of a complex

number w D a C bi , we have a D r cos � and b D r sin � , so w can be expressed in

terms of its modulus and argument as

w D r cos � C i r sin �:

The expression on the right side is called the polar representation of w.

D E F I N I T I O N

5

The conjugate or complex conjugate of a complex number w D a C bi is

another complex number, denoted w, given by

w D a � bi:

E X A M P L E 2
2 � 3i D 2C 3i , 3 D 3, 2i D �2i .

Observe that

Re .w/ D Re .w/

Im .w/ D �Im .w/

jwj D jwj

arg .w/ D � arg .w/:

In an Argand diagram the point w is the reflection of the point w in the real axis. (See

Figure I.4.)

Note that w is real (Im .w/ D 0) if and only if w D w. Also, w is pure imaginary

(Re .w/ D 0) if and only if w D �w. (Here, �w D �a � bi if w D aC bi .)

Complex Arithmetic
Like real numbers, complex numbers can be added, subtracted, multiplied, and

divided. Two complex numbers are added or subtracted as though they are two-

dimensional vectors whose components are their real and imaginary parts.

y

x

wDaCbi

wDa�bi

Figure I.4 A complex number and its

conjugate are mirror images of each other

in the real axis
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The sum and difference of complex numbers

If w D aC bi and z D x C yi , where a, b, x, and y are real numbers, then

w C z D .aC x/C .b C y/i

w � z D .a � x/C .b � y/i:

In an Argand diagram the points wCz and w�z are the points whose position vectors

are, respectively, the sum and difference of the position vectors of the points w and

z. (See Figure I.5.) In particular, the complex number a C bi is the sum of the real

number a D aC 0i and the pure imaginary number bi D 0C bi .

Complex addition obeys the same rules as real addition: if w1, w2, and w3 are

three complex numbers, the following are easily verified:

w1 C w2 D w2 C w1

.w1 C w2/C w3 D w1 C .w2 C w3/

jw1 ˙ w2j � jw1j C jw2j

Addition is commutative.

Addition is associative.

the triangle inequality

Note that jw1 � w2j is the distance between the two points w1 and w2 in the complex

plane. Thus, the triangle inequality says that in the triangle with vertices w1,�w2 and

y

x

z

wCz

w

w�z

�z

Figure I.5 Complex numbers are added

and subtracted vectorially. Observe the

parallelograms

0, the length of one side is less than the sum of the other two.

It is also easily verified that the conjugate of a sum (or difference) is the sum (or

difference) of the conjugates:

w C z D w C z:

E X A M P L E 3
(a) If w D 2C 3i and z D 4 � 5i , then

w C z D .2C 4/C .3 � 5/i D 6 � 2i

w � z D .2 � 4/C .3 � .�5//i D �2C 8i:

(b) 3i C .1 � 2i/ � .2C 3i/C 5 D 4 � 2i .

Multiplication of the complex numbers w D aC bi and z D x C yi is carried out by

formally multiplying the binomial expressions and replacing i2 by �1:

wz D .aC bi/.x C yi/ D ax C ayi C bxi C byi
2

D .ax � by/C .ay C bx/i:

The product of complex numbers

If w D aC bi and z D x C yi , where a, b, x, and y are real numbers, then

wz D .ax � by/C .ay C bx/i:

E X A M P L E 4
(a) .2C 3i/.1 � 2i/ D 2 � 4i C 3i � 6i2 D 8 � i .

(b) i.5 � 4i/ D 5i � 4i2 D 4C 5i .

(c) .aC bi/.a � bi/ D a2
� abi C abi � b2i2 D a2

C b2.

Part (c) of the example above shows that the square of the modulus of a complex

number is the product of that number with its complex conjugate:
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ww D jwj
2
:

Complex multiplication shares many properties with real multiplication. In particular,

if w1, w2, and w3 are complex numbers, then

w1w2 D w2w1

.w1w2/w3 D w1.w2w3/

w1.w2 C w3/ D w1w2 C w1w3

Multiplication is commutative.

Multiplication is associative.

Multiplication distributes over addition.

The conjugate of a product is the product of the conjugates:

wz D w z:

To see this, let w D aC bi and z D x C yi . Then

wz D .ax � by/C .ay C bx/i

D .ax � by/� .ay C bx/i

D .a � bi/.x � yi/ D w z:

It is particularly easy to determine the product of complex numbers expressed in polar

form. If

w D r.cos � C i sin �/ and z D s.cos � C i sin�/;

where r D jwj, � D arg .w/, s D jzj, and � D arg .z/, then

wz D rs.cos � C i sin �/.cos � C i sin�/

D rs
�

.cos � cos� � sin � sin�/C i.sin � cos� C cos � sin�/
�

D rs
�

cos.� C �/C i sin.� C �/
�

:

(See Figure I.6.) Since arguments are only determined up to integer multiples of 2� ,

we have proved that

The modulus and argument of a product

jwzj D jwjjzj and arg .wz/ D arg .w/C arg .z/:

The second of these equations says that the set arg .wz/ consists of all numbers �C�,

where � belongs to the set arg .w/ and � to the set arg .z/.

Figure I.6 The argument of a product is

the sum of the arguments of the factors

y

x

�

w

�

z
wz

� C �

More generally, if w1; w2; : : : ; wn are complex numbers, then

jw1w2 � � �wnj D jw1jjw2j � � � jwnj

arg .w1w2 � � �wn/ D arg .w1/C arg .w2/C � � � C arg .wn/:
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Multiplication of a complex number by i has a particularly simple geometric inter-

pretation in an Argand diagram. Since ji j D 1 and arg .i/ D �=2, multiplication

of w D a C bi by i leaves the modulus of w unchanged but increases its argument

by �=2. (See Figure I.7.) Thus, multiplication by i rotates the position vector of w

counterclockwise by 90ı about the origin.

y

x

90ı

w

iw

Figure I.7 Multiplication by i

corresponds to counterclockwise

rotation by 90ı

Let z D cos � C i sin � . Then jzj D 1 and arg .z/ D � . Since the modulus of

a product is the product of the moduli of the factors and the argument of a product is

the sum of the arguments of the factors, we have jzn
j D jzjn D 1 and arg .zn/ D

n arg .z/ D n� . Thus,

z
n
D cos n� C i sin n�;

and we have proved de Moivre’s Theorem.

T H E O R E M

1

de Moivre’s Theorem
�

cos � C i sin �
�n
D cos n� C i sinn�:

Remark Much of the study of complex-valued functions of a complex variable is

beyond the scope of this book. However, in Appendix II we will introduce a complex

version of the exponential function having the following property: if z D xCiy (where

x and y are real), then

e
z
D e

xCiy
D e

x
e

iy
D e

x
.cos y C i siny/:

Thus, the modulus of ez is eRe .z/, and Im .z/ is a value of arg .ez
/. In this context,

de Moivre’s Theorem just says

.e
i�
/
n
D e

in�
:

E X A M P L E 5
Express .1C i/5 in the form aC bi .

Solution Since j.1C i/5j D j1C i j5 D
�p

2
�5
D 4
p

2, and

arg
�

.1C i/5
�

D 5 arg .1C i/ D
5�

4
, we have

.1C i/
5
D 4
p

2

�

cos
5�

4
C i sin

5�

4

�

D 4
p

2

�

�

1
p

2
�

1
p

2
i

�

D �4 � 4i:

de Moivre’s Theorem can be used to generate trigonometric identities for multiples of

an angle. For example, for n D 2 we have

cos 2� C i sin 2� D
�

cos � C i sin �
�2
D cos2

� � sin2
� C 2i cos � sin �:

Thus, cos 2� D cos2 � � sin2
� , and sin 2� D 2 sin � cos � .

The reciprocal of the nonzero complex number w D aC bi can be calculated by

multiplying the numerator and denominator of the reciprocal expression by the conju-

gate of w:

w
�1
D

1

w
D

1

aC bi
D

a � bi

.aC bi/.a � bi/
D

a � bi

a2
C b2

D

w

jwj2
:
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ww D jwj
2
:

Complex multiplication shares many properties with real multiplication. In particular,

if w1, w2, and w3 are complex numbers, then

w1w2 D w2w1

.w1w2/w3 D w1.w2w3/

w1.w2 C w3/ D w1w2 C w1w3

Multiplication is commutative.

Multiplication is associative.

Multiplication distributes over addition.

The conjugate of a product is the product of the conjugates:

wz D w z:

To see this, let w D aC bi and z D x C yi . Then

wz D .ax � by/C .ay C bx/i

D .ax � by/� .ay C bx/i

D .a � bi/.x � yi/ D w z:

It is particularly easy to determine the product of complex numbers expressed in polar

form. If

w D r.cos � C i sin �/ and z D s.cos � C i sin�/;

where r D jwj, � D arg .w/, s D jzj, and � D arg .z/, then

wz D rs.cos � C i sin �/.cos � C i sin�/

D rs
�

.cos � cos� � sin � sin�/C i.sin � cos� C cos � sin�/
�

D rs
�

cos.� C �/C i sin.� C �/
�

:

(See Figure I.6.) Since arguments are only determined up to integer multiples of 2� ,

we have proved that

The modulus and argument of a product

jwzj D jwjjzj and arg .wz/ D arg .w/C arg .z/:

The second of these equations says that the set arg .wz/ consists of all numbers �C�,

where � belongs to the set arg .w/ and � to the set arg .z/.

Figure I.6 The argument of a product is

the sum of the arguments of the factors

y

x

�

w

�

z
wz

� C �

More generally, if w1; w2; : : : ; wn are complex numbers, then

jw1w2 � � �wnj D jw1jjw2j � � � jwnj

arg .w1w2 � � �wn/ D arg .w1/C arg .w2/C � � � C arg .wn/:
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Multiplication of a complex number by i has a particularly simple geometric inter-

pretation in an Argand diagram. Since ji j D 1 and arg .i/ D �=2, multiplication

of w D a C bi by i leaves the modulus of w unchanged but increases its argument

by �=2. (See Figure I.7.) Thus, multiplication by i rotates the position vector of w

counterclockwise by 90ı about the origin.

y

x

90ı

w

iw

Figure I.7 Multiplication by i

corresponds to counterclockwise

rotation by 90ı

Let z D cos � C i sin � . Then jzj D 1 and arg .z/ D � . Since the modulus of

a product is the product of the moduli of the factors and the argument of a product is

the sum of the arguments of the factors, we have jzn
j D jzjn D 1 and arg .zn/ D

n arg .z/ D n� . Thus,

z
n
D cos n� C i sin n�;

and we have proved de Moivre’s Theorem.

T H E O R E M

1

de Moivre’s Theorem
�

cos � C i sin �
�n
D cos n� C i sinn�:

Remark Much of the study of complex-valued functions of a complex variable is

beyond the scope of this book. However, in Appendix II we will introduce a complex

version of the exponential function having the following property: if z D xCiy (where

x and y are real), then

e
z
D e

xCiy
D e

x
e

iy
D e

x
.cos y C i siny/:

Thus, the modulus of ez is eRe .z/, and Im .z/ is a value of arg .ez
/. In this context,

de Moivre’s Theorem just says

.e
i�
/
n
D e

in�
:

E X A M P L E 5
Express .1C i/5 in the form aC bi .

Solution Since j.1C i/5j D j1C i j5 D
�p

2
�5
D 4
p

2, and

arg
�

.1C i/5
�

D 5 arg .1C i/ D
5�

4
, we have

.1C i/
5
D 4
p

2

�

cos
5�

4
C i sin

5�

4

�

D 4
p

2

�

�

1
p

2
�

1
p

2
i

�

D �4 � 4i:

de Moivre’s Theorem can be used to generate trigonometric identities for multiples of

an angle. For example, for n D 2 we have

cos 2� C i sin 2� D
�

cos � C i sin �
�2
D cos2

� � sin2
� C 2i cos � sin �:

Thus, cos 2� D cos2 � � sin2
� , and sin 2� D 2 sin � cos � .

The reciprocal of the nonzero complex number w D aC bi can be calculated by

multiplying the numerator and denominator of the reciprocal expression by the conju-

gate of w:

w
�1
D

1

w
D

1

aC bi
D

a � bi

.aC bi/.a � bi/
D

a � bi

a2
C b2

D

w

jwj2
:
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Since jwj D jwj, and arg .w/ D � arg .w/, we have
ˇ

ˇ

ˇ

ˇ

1

w

ˇ

ˇ

ˇ

ˇ

D

jwj

jwj2
D

1

jwj
and arg

�

1

w

�

D � arg .w/:

The quotient z=w of two complex numbers z D xCyi and w D aCbi is the product

of z and 1=w, so

z

w
D

zw

jwj2
D

.x C yi/.a � bi/

a2
C b2

D

xaC yb C i.ya � xb/

a2
C b2

:

We have

The modulus and argument of a quotient

ˇ

ˇ

ˇ

z

w

ˇ

ˇ

ˇ D

jzj

jwj
and arg

�

z

w

�

D arg .z/ � arg .w/:

The set arg .z=w/ consists of all numbers � �� where � belongs to the set arg .z/ and

� to the set arg .w/.

E X A M P L E 6 Simplify (a)
2C 3i

4 � i
and (b)

i

1C i
p

3
.

Solution

(a)
2C 3i

4 � i
D

.2C 3i/.4C i/

.4 � i/.4C i/
D

8 � 3C .2C 12/i

42
C 12

D

5

17
C

14

17
i .

(b)
i

1C i
p

3
D

i.1 � i
p

3/

.1C i
p

3/.1 � i
p

3/
D

p

3C i

12
C 3

D

p

3

4
C

1

4
i .

Alternatively, since j1 C i
p

3j D 2 and arg .1 C i
p

3/ D tan�1
p

3 D
�

3
, the

quotient in (b) has modulus
1

2
and argument

�

2
�

�

3
D

�

6
. Thus,

i

1C i
p

3
D

1

2

�

cos
�

6
C i sin

�

6

�

D

p

3

4
C

1

4
i:

Roots of Complex Numbers
If a is a positive real number, there are two distinct real numbers whose square is a.

These are usually denoted
p

a (the positive square root of a) and

�

p

a (the negative square root of a).

Every nonzero complex number z D xCyi (where x2
Cy2 > 0) also has two square

roots; if w1 is a complex number such that w2
1 D z, then w2 D �w1 also satisfies

w
2
2 D z. Again, we would like to single out one of these roots and call it

p

z.

Let r D jzj, so that r > 0. Let � D Arg .z/. Thus, �� < � � � . Since

z D r
�

cos � C i sin �
�

;

the complex number

w D
p

r

�

cos
�

2
C i sin

�

2

�

clearly satisfies w2
D z. We call this w the principal square root of z and denote it

p

z. The two solutions of the equation w2
D z are, thus, w D

p

z and w D �
p

z.

Observe that the real part of
p

z is always nonnegative, since cos.�=2/ � 0 for

��=2 < � � �=2. In this interval sin.�=2/ D 0 only if � D 0, in which case
p

z is

real and positive.
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E X A M P L E 7
(a)
p

4 D
p

4.cos 0C i sin 0/ D 2.

(b)
p

i D

r

1

�

cos
�

2
C i sin

�

2

�

D cos
�

4
C i sin

�

4
D

1
p

2
C

1
p

2
i .

(c)
p

�4i D

r

4

h

cos
�

�

�

2

�

C i sin
�

�

�

2

�i

D 2

h

cos
�

�

�

4

�

C i sin
�

�

�

4

�i

D

p

2 � i
p

2.

(d)

s

�

1

2
C i

p

3

2
D

r

cos
2�

3
C i sin

2�

3
D cos

�

3
C i sin

�

3
D

1

2
C

p

3

2
i .

Given a nonzero complex number z, we can find n distinct complex numbers w that

satisfy wn
D z. These n numbers are called nth roots of z. For example, if z D 1 D

cos 0C i sin 0, then each of the numbers

w1 D 1

w2 D cos
2�

n
C i sin

2�

n

w3 D cos
4�

n
C i sin

4�

n

w4 D cos
6�

n
C i sin

6�

n

:
:
:

wn D cos
2.n � 1/�

n
C i sin

2.n � 1/�

n

satisfies wn
D 1 so it is an nth root of 1. (These numbers are usually called the nth

y

x

w1D1

w2D �1C
p

3i
2

w3D �1�
p

3i
2

Figure I.8 The cube roots of unity

roots of unity.) Figure I.8 shows the three cube roots of 1. Observe that they are at the

three vertices of an equilateral triangle with centre at the origin and one vertex at 1. In

general, the n nth roots of unity lie on a circle of radius 1 centred at the origin, and at

the vertices of a regular n-sided polygon with one vertex at 1.

If z is any nonzero complex number, and � is the principal argument of z (�� <
y

x

w1

w2

z

w3

w4

w5

Figure I.9 The five 5th roots of z

� � �), then the number

w1 D jzj
1=n

�

cos
�

n
C i sin

�

n

�

is called the principal nth root of z. All the nth roots of z are on the circle of radius

jzj1=n centred at the origin and are at the vertices of a regular n-sided polygon with

one vertex at w1. (See Figure I.9.) The other nth roots are

w2 D jzj
1=n

�

cos
� C 2�

n
C i sin

� C 2�

n

�

w3 D jzj
1=n

�

cos
� C 4�

n
C i sin

� C 4�

n

�

:
:
:

wn D jzj
1=n

�

cos
� C 2.n � 1/�

n
C i sin

� C 2.n � 1/�

n

�

:

We can obtain all n of the nth roots of z by multiplying the principal nth root by the

nth roots of unity.
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Since jwj D jwj, and arg .w/ D � arg .w/, we have
ˇ

ˇ

ˇ

ˇ

1

w

ˇ

ˇ

ˇ

ˇ

D

jwj

jwj2
D

1

jwj
and arg

�

1

w

�

D � arg .w/:

The quotient z=w of two complex numbers z D xCyi and w D aCbi is the product

of z and 1=w, so

z

w
D

zw

jwj2
D

.x C yi/.a � bi/

a2
C b2

D

xaC yb C i.ya � xb/

a2
C b2

:

We have

The modulus and argument of a quotient

ˇ

ˇ

ˇ

z

w

ˇ

ˇ

ˇ D

jzj

jwj
and arg

�

z

w

�

D arg .z/ � arg .w/:

The set arg .z=w/ consists of all numbers � �� where � belongs to the set arg .z/ and

� to the set arg .w/.

E X A M P L E 6 Simplify (a)
2C 3i

4 � i
and (b)

i

1C i
p

3
.

Solution

(a)
2C 3i

4 � i
D

.2C 3i/.4C i/

.4 � i/.4C i/
D

8 � 3C .2C 12/i

42
C 12

D

5

17
C

14

17
i .

(b)
i

1C i
p

3
D

i.1 � i
p

3/

.1C i
p

3/.1 � i
p

3/
D

p

3C i

12
C 3

D

p

3

4
C

1

4
i .

Alternatively, since j1 C i
p

3j D 2 and arg .1 C i
p

3/ D tan�1
p

3 D
�

3
, the

quotient in (b) has modulus
1

2
and argument

�

2
�

�

3
D

�

6
. Thus,

i

1C i
p

3
D

1

2

�

cos
�

6
C i sin

�

6

�

D

p

3

4
C

1

4
i:

Roots of Complex Numbers
If a is a positive real number, there are two distinct real numbers whose square is a.

These are usually denoted
p

a (the positive square root of a) and

�

p

a (the negative square root of a).

Every nonzero complex number z D xCyi (where x2
Cy2 > 0) also has two square

roots; if w1 is a complex number such that w2
1 D z, then w2 D �w1 also satisfies

w
2
2 D z. Again, we would like to single out one of these roots and call it

p

z.

Let r D jzj, so that r > 0. Let � D Arg .z/. Thus, �� < � � � . Since

z D r
�

cos � C i sin �
�

;

the complex number

w D
p

r

�

cos
�

2
C i sin

�

2

�

clearly satisfies w2
D z. We call this w the principal square root of z and denote it

p

z. The two solutions of the equation w2
D z are, thus, w D

p

z and w D �
p

z.

Observe that the real part of
p

z is always nonnegative, since cos.�=2/ � 0 for

��=2 < � � �=2. In this interval sin.�=2/ D 0 only if � D 0, in which case
p

z is

real and positive.
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E X A M P L E 7
(a)
p

4 D
p

4.cos 0C i sin 0/ D 2.

(b)
p

i D

r

1

�

cos
�

2
C i sin

�

2

�

D cos
�

4
C i sin

�

4
D

1
p

2
C

1
p

2
i .

(c)
p

�4i D

r

4

h

cos
�

�

�

2

�

C i sin
�

�

�

2

�i

D 2

h

cos
�

�

�

4

�

C i sin
�

�

�

4

�i

D

p

2 � i
p

2.

(d)

s

�

1

2
C i

p

3

2
D

r

cos
2�

3
C i sin

2�

3
D cos

�

3
C i sin

�

3
D

1

2
C

p

3

2
i .

Given a nonzero complex number z, we can find n distinct complex numbers w that

satisfy wn
D z. These n numbers are called nth roots of z. For example, if z D 1 D

cos 0C i sin 0, then each of the numbers

w1 D 1

w2 D cos
2�

n
C i sin

2�

n

w3 D cos
4�

n
C i sin

4�

n

w4 D cos
6�

n
C i sin

6�

n

:
:
:

wn D cos
2.n � 1/�

n
C i sin

2.n � 1/�

n

satisfies wn
D 1 so it is an nth root of 1. (These numbers are usually called the nth

y

x

w1D1

w2D �1C
p

3i
2

w3D �1�
p

3i
2

Figure I.8 The cube roots of unity

roots of unity.) Figure I.8 shows the three cube roots of 1. Observe that they are at the

three vertices of an equilateral triangle with centre at the origin and one vertex at 1. In

general, the n nth roots of unity lie on a circle of radius 1 centred at the origin, and at

the vertices of a regular n-sided polygon with one vertex at 1.

If z is any nonzero complex number, and � is the principal argument of z (�� <
y

x

w1

w2

z

w3

w4

w5

Figure I.9 The five 5th roots of z

� � �), then the number

w1 D jzj
1=n

�

cos
�

n
C i sin

�

n

�

is called the principal nth root of z. All the nth roots of z are on the circle of radius

jzj1=n centred at the origin and are at the vertices of a regular n-sided polygon with

one vertex at w1. (See Figure I.9.) The other nth roots are

w2 D jzj
1=n

�

cos
� C 2�

n
C i sin

� C 2�

n

�

w3 D jzj
1=n

�

cos
� C 4�

n
C i sin

� C 4�

n

�

:
:
:

wn D jzj
1=n

�

cos
� C 2.n � 1/�

n
C i sin

� C 2.n � 1/�

n

�

:

We can obtain all n of the nth roots of z by multiplying the principal nth root by the

nth roots of unity.
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E X A M P L E 8
Find the 4th roots of �4. Sketch them in an Argand diagram.

y

x

w1D1Ci

w4D1�i

�4

w3D�1�i

w2D�1Ci

Figure I.10 The four 4th roots of �4

Solution Since j � 4j1=4
D

p

2 and arg .�4/ D � , the principal 4th root of �4 is

w1 D

p

2

�

cos
�

4
C i sin

�

4

�

D 1C i:

The other three 4th roots are at the vertices of a square with centre at the origin and

one vertex at 1C i . (See Figure I.10.) Thus, the other roots are

w2 D �1C i; w3 D �1 � i; w4 D 1 � i:

E X E R C I S E S : A P P E N D I X I

In Exercises 1–4, find the real and imaginary parts (Re .z/ and

Im .z/) of the given complex numbers z, and sketch the position of

each number in the complex plane (i.e., in an Argand diagram).

1. z D �5C 2i 2. z D 4 � i

3. z D ��i 4. z D �6

In Exercises 5–15, find the modulus r D jzj and the principal

argument � D Arg .z/ of each given complex number z, and

express z in terms of r and � .

5. z D �1C i 6. z D �2

7. z D 3i 8. z D �5i

9. z D 1C 2i 10. z D �2C i

11. z D �3 � 4i 12. z D 3 � 4i

13. z D
p

3 � i 14. z D �
p

3 � 3i

15. z D 3 cos
4�

5
C 3i sin

4�

5

16. If Arg .z/ D 3�=4 and Arg .w/ D �=2, find Arg .zw/.

17. If Arg .z/ D �5�=6 and Arg .w/ D �=4, find Arg .z=w/.

In Exercises 18–23, express in the form z D x C yi the complex

number z whose modulus and argument are given.

18. jzj D 2; arg .z/ D � 19. jzj D 5; arg .z/ D tan�1 3

4

20. jzj D 1; arg .z/ D
3�

4
21. jzj D �; arg .z/ D

�

6

22. jzj D 0; arg .z/ D 1 23. jzj D
1

2
; arg .z/ D �

�

3

In Exercises 24–27, find the complex conjugates of the given

complex numbers.

24. 5C 3i 25. �3 � 5i

26. 4i 27. 2 � i

Describe geometrically (or make a sketch of) the set of points z in

the complex plane satisfying the given equations or inequalities in

Exercises 28–33.

28. jzj D 2 29. jzj � 2

30. jz � 2i j � 3 31. jz � 3C 4i j � 5

32. arg z D
�

3
33. � � arg .z/ �

7�

4

Simplify the expressions in Exercises 34–43.

34. .2C 5i/C .3 � i / 35. i � .3 � 2i/C .7 � 3i/

36. .4C i /.4 � i / 37. .1C i /.2 � 3i/

38. .aC bi/.2a � bi/ 39. .2C i /3

40.
2 � i

2C i
41.

1C 3i

2 � i

42.
1C i

i.2C 3i/
43.

.1C 2i/.2 � 3i/

.2 � i /.3C 2i/

44. Prove that z C w D z Cw.

45. Prove that
�

z

w

�

D

z

w
.

46. Express each of the complex numbers z D 3C i
p

3 and

w D �1C i
p

3 in polar form (i.e., in terms of its modulus and

argument). Use these expressions to calculate zw and z=w.

47. Repeat Exercise 46 for z D �1C i and w D 3i .

48. Use de Moivre’s Theorem to find a trigonometric identity for

cos 3� in terms of cos � and one for sin 3� in terms of sin � .

49. Describe the solutions, if any, of the equations (a) z D 2=z

and (b) z D �2=z.

50. For positive real numbers a and b it is always true that
p

ab D
p

a
p

b. Does a similar identity hold for
p

zw, where

z and w are complex numbers? Hint: Consider z D w D �1.

51. Find the three cube roots of �1.

52. Find the three cube roots of �8i .

53. Find the three cube roots of �1C i .

54. Find all the fourth roots of 4.

55. Find all complex solutions of the equation

z4
C 1 � i

p

3 D 0.

56. Find all solutions of z5
C a5

D 0, where a is a positive real

number.

57.I Show that the sum of the n nth roots of unity is zero. Hint:

Show that these roots are all powers of the principal root.
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A P P E N D I X II

Complex Functions

“
The shortest path between two truths in the real domain passes

through the complex domain.

”Jacques Hadamard 1865–1963

quoted in The Mathematical Intelligencer, v 13, 1991

Most of this book is concerned with developing the properties of real functions, that is,

functions of one or more real variables, having values that are themselves real numbers

or vectors with real components. The definition of function given in Section P.4 can be

paraphrased to allow for complex-valued functions of a complex variable.

D E F I N I T I O N

1

A complex function f is a rule that assigns a unique complex number f .z/

to each number z in some set of complex numbers (called the domain of the

function).

Typically, we will use z D xCyi to denote a general point in the domain of a complex

function andw D uCvi to denote the value of the function at z; ifw D f .z/, then the

real and imaginary parts of w (u D Re .w/ and v D Im .w/) are real-valued functions

of z, and hence real-valued functions of the two real variables x and y:

u D u.x; y/; v D v.x; y/:

For example, the complex function f .z/ D z
2, whose domain is the whole complex

plane C, assigns the value z2 to the complex number z. If w D z2 (where w D uCvi

and z D x C yi), then

uC vi D .x C yi/
2
D x

2
� y

2
C 2xyi;

so that

u D Re .z2
/ D x

2
� y

2 and v D Im .z2
/ D 2xy:

It is not convenient to draw the graph of a complex function. The graph of w D

f .z/ would have to be drawn in a four-dimensional (real) space, since two dimen-

sions (a z-plane) are required for the independent variable, and two more dimensions

(a w-plane) are required for the dependent variable. Instead, we can graphically rep-

resent the behaviour of a complex function w D f .z/ by drawing the z-plane and the

w-plane separately, and showing the image in the w-plane of certain, appropriately

chosen sets of points in the z-plane. For example, Figure II.1 illustrates the fact that

for the function w D z2 the image of the quarter-disk jzj � a, 0 � arg .z/ � �
2

is the half-disk jwj � a
2, 0 � arg .w/ � � . To see why this is so, observe that if

z D r.cos � C i sin �/, then w D r2.cos 2� C i sin 2�/. Thus, the function maps the

circle jzj D r onto the circle jwj D r2 and the radial line arg .z/ D � onto the radial

line arg .w/ D 2� .
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E X A M P L E 8
Find the 4th roots of �4. Sketch them in an Argand diagram.

y

x

w1D1Ci

w4D1�i

�4

w3D�1�i

w2D�1Ci

Figure I.10 The four 4th roots of �4

Solution Since j � 4j1=4
D

p

2 and arg .�4/ D � , the principal 4th root of �4 is

w1 D

p

2

�

cos
�

4
C i sin

�

4

�

D 1C i:

The other three 4th roots are at the vertices of a square with centre at the origin and

one vertex at 1C i . (See Figure I.10.) Thus, the other roots are

w2 D �1C i; w3 D �1 � i; w4 D 1 � i:

E X E R C I S E S : A P P E N D I X I

In Exercises 1–4, find the real and imaginary parts (Re .z/ and

Im .z/) of the given complex numbers z, and sketch the position of

each number in the complex plane (i.e., in an Argand diagram).

1. z D �5C 2i 2. z D 4 � i

3. z D ��i 4. z D �6

In Exercises 5–15, find the modulus r D jzj and the principal

argument � D Arg .z/ of each given complex number z, and

express z in terms of r and � .

5. z D �1C i 6. z D �2

7. z D 3i 8. z D �5i

9. z D 1C 2i 10. z D �2C i

11. z D �3 � 4i 12. z D 3 � 4i

13. z D
p

3 � i 14. z D �
p

3 � 3i

15. z D 3 cos
4�

5
C 3i sin

4�

5

16. If Arg .z/ D 3�=4 and Arg .w/ D �=2, find Arg .zw/.

17. If Arg .z/ D �5�=6 and Arg .w/ D �=4, find Arg .z=w/.

In Exercises 18–23, express in the form z D x C yi the complex

number z whose modulus and argument are given.

18. jzj D 2; arg .z/ D � 19. jzj D 5; arg .z/ D tan�1 3

4

20. jzj D 1; arg .z/ D
3�

4
21. jzj D �; arg .z/ D

�

6

22. jzj D 0; arg .z/ D 1 23. jzj D
1

2
; arg .z/ D �

�

3

In Exercises 24–27, find the complex conjugates of the given

complex numbers.

24. 5C 3i 25. �3 � 5i

26. 4i 27. 2 � i

Describe geometrically (or make a sketch of) the set of points z in

the complex plane satisfying the given equations or inequalities in

Exercises 28–33.

28. jzj D 2 29. jzj � 2

30. jz � 2i j � 3 31. jz � 3C 4i j � 5

32. arg z D
�

3
33. � � arg .z/ �

7�

4

Simplify the expressions in Exercises 34–43.

34. .2C 5i/C .3 � i / 35. i � .3 � 2i/C .7 � 3i/

36. .4C i /.4 � i / 37. .1C i /.2 � 3i/

38. .aC bi/.2a � bi/ 39. .2C i /3

40.
2 � i

2C i
41.

1C 3i

2 � i

42.
1C i

i.2C 3i/
43.

.1C 2i/.2 � 3i/

.2 � i /.3C 2i/

44. Prove that z C w D z Cw.

45. Prove that
�

z

w

�

D

z

w
.

46. Express each of the complex numbers z D 3C i
p

3 and

w D �1C i
p

3 in polar form (i.e., in terms of its modulus and

argument). Use these expressions to calculate zw and z=w.

47. Repeat Exercise 46 for z D �1C i and w D 3i .

48. Use de Moivre’s Theorem to find a trigonometric identity for

cos 3� in terms of cos � and one for sin 3� in terms of sin � .

49. Describe the solutions, if any, of the equations (a) z D 2=z

and (b) z D �2=z.

50. For positive real numbers a and b it is always true that
p

ab D
p

a
p

b. Does a similar identity hold for
p

zw, where

z and w are complex numbers? Hint: Consider z D w D �1.

51. Find the three cube roots of �1.

52. Find the three cube roots of �8i .

53. Find the three cube roots of �1C i .

54. Find all the fourth roots of 4.

55. Find all complex solutions of the equation

z4
C 1 � i

p

3 D 0.

56. Find all solutions of z5
C a5

D 0, where a is a positive real

number.

57.I Show that the sum of the n nth roots of unity is zero. Hint:

Show that these roots are all powers of the principal root.
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Complex Functions

“
The shortest path between two truths in the real domain passes

through the complex domain.

”Jacques Hadamard 1865–1963

quoted in The Mathematical Intelligencer, v 13, 1991

Most of this book is concerned with developing the properties of real functions, that is,

functions of one or more real variables, having values that are themselves real numbers

or vectors with real components. The definition of function given in Section P.4 can be

paraphrased to allow for complex-valued functions of a complex variable.

D E F I N I T I O N

1

A complex function f is a rule that assigns a unique complex number f .z/

to each number z in some set of complex numbers (called the domain of the

function).

Typically, we will use z D xCyi to denote a general point in the domain of a complex

function andw D uCvi to denote the value of the function at z; ifw D f .z/, then the

real and imaginary parts of w (u D Re .w/ and v D Im .w/) are real-valued functions

of z, and hence real-valued functions of the two real variables x and y:

u D u.x; y/; v D v.x; y/:

For example, the complex function f .z/ D z
2, whose domain is the whole complex

plane C, assigns the value z2 to the complex number z. If w D z2 (where w D uCvi

and z D x C yi), then

uC vi D .x C yi/
2
D x

2
� y

2
C 2xyi;

so that

u D Re .z2
/ D x

2
� y

2 and v D Im .z2
/ D 2xy:

It is not convenient to draw the graph of a complex function. The graph of w D

f .z/ would have to be drawn in a four-dimensional (real) space, since two dimen-

sions (a z-plane) are required for the independent variable, and two more dimensions

(a w-plane) are required for the dependent variable. Instead, we can graphically rep-

resent the behaviour of a complex function w D f .z/ by drawing the z-plane and the

w-plane separately, and showing the image in the w-plane of certain, appropriately

chosen sets of points in the z-plane. For example, Figure II.1 illustrates the fact that

for the function w D z2 the image of the quarter-disk jzj � a, 0 � arg .z/ � �
2

is the half-disk jwj � a
2, 0 � arg .w/ � � . To see why this is so, observe that if

z D r.cos � C i sin �/, then w D r2.cos 2� C i sin 2�/. Thus, the function maps the

circle jzj D r onto the circle jwj D r2 and the radial line arg .z/ D � onto the radial

line arg .w/ D 2� .
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Figure II.1 The function w D z2 maps a

quarter-disk of radius a to a half-disk of

radius a2 by squaring the modulus and

doubling the argument of each point z

y

x

arg .z/ D �

arg .w/ D 2�
w D z2

jzj D r a
jwj D r2 a2

z

z-plane w-plane

w

v

u

Limits and Continuity
The concepts of limit and continuity carry over from real functions to complex func-

tions in an obvious way providing we use jz1�z2j as the distance between the complex

numbers z1 and z2. We say that

lim
z!z0

f .z/ D �

provided we can ensure that jf .z/� �j is as small as we wish by taking z sufficiently

close to z0. Formally,

D E F I N I T I O N

2

We say that f .z/ tends to the limit � as z approaches z0, and we write

lim
z!z0

f .z/ D �;

if for every positive real number � there exists a positive real number ı (de-

pending on �), such that

0 < jz � z0j < ı ÷ jf .z/� �j < �:

D E F I N I T I O N

3

The complex function f .z/ is continuous at z D z0 if limz!z0
f .z/ exists

and equals f .z0/.

All the laws of limits and continuity apply as for real functions. Polynomials, that is,

functions of the form

P.z/ D a0 C a1z C a2z
2
C � � � C anz

n
;

are continuous at every point of the complex plane. Rational functions, that is, func-

tions of the form

R.z/ D
P.z/

Q.z/
;

where P.z/ and Q.z/ are polynomials, are continuous everywhere except at points

where Q.z/ D 0. Integer powers zn are continuous except at the origin if n < 0. The

situation for fractional powers is more complicated. For example,
p

z (the principal

square root) is continuous except at points z D x < 0. The function f .z/ D z is

continuous everywhere, because

jz � z0j D jz � z0j D jz � z0j:
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The Complex Derivative
The definition of derivative is the same as for real functions:

D E F I N I T I O N

4

The complex function f is differentiable at z and has derivative f 0
.z/ there,

provided

lim
h!0

f .z C h/ � f .z/

h
D f

0
.z/

exists.

Note, however, that in this definition h is a complex number. The limit must exist no

matter how h approaches 0 in the complex plane. This fact has profound implications.

The existence of a derivative in this sense forces the function f to be much better

behaved than is necessary for a differentiable real function. For example, it can be

shown that if f 0.z/ exists for all z in an open region D in C, then f has derivatives of

all orders throughout D. Moreover, such a function is the sum of its Taylor series

f .z/ D f .z0/C f
0
.z0/.z � z0/C

f
00
.z0/

2Š
.z � z0/

2
C � � �

about any point z0 inD; the series has positive radius of convergence R and converges

in the disk jz � z0j < R. For this reason, complex functions that are differentiable

on open sets in C are usually called analytic functions. It is beyond the scope of this

introductory appendix to prove these assertions. They are proved in courses and texts

on complex analysis.

The usual differentiation rules apply:

d

dz

�

Af .z/C Bg.z/
�

D Af
0
.z/C Bg

0
.z/

d

dz

�

f .z/g.z/
�

D f
0
.z/g.z/C f .z/g

0
.z/

d

dz

�

f .z/

g.z/

�

D

g.z/f
0
.z/ � f .z/g

0
.z/

�

g.z/
�2

d

dz
f
�

g.z/
�

D f
0�
g.z/

�

g
0
.z/:

As one would expect, the derivative of f .z/ D zn is f 0.z/ D nzn�1.

E X A M P L E 1
Show that the function f .z/ D z is not differentiable at any point.

Solution We have

f
0
.z/ D lim

h!0

z C h � z

h

D lim
h!0

z C h � z

h
D lim

h!0

h

h
:

But h=h D 1 if h is real, and h=h D �1 if h is pure imaginary. Since there are real

and pure imaginary numbers arbitrarily close to 0, the limit above does not exist, so

f 0.z/ does not exist.

The following theorem links the existence of the derivative of a complex function f .z/

with certain properties of its real and imaginary parts u.x; y/ and v.x; y/.
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Figure II.1 The function w D z2 maps a

quarter-disk of radius a to a half-disk of

radius a2 by squaring the modulus and

doubling the argument of each point z

y

x

arg .z/ D �

arg .w/ D 2�
w D z2

jzj D r a
jwj D r2 a2

z

z-plane w-plane

w

v

u

Limits and Continuity
The concepts of limit and continuity carry over from real functions to complex func-

tions in an obvious way providing we use jz1�z2j as the distance between the complex

numbers z1 and z2. We say that

lim
z!z0

f .z/ D �

provided we can ensure that jf .z/� �j is as small as we wish by taking z sufficiently

close to z0. Formally,

D E F I N I T I O N

2

We say that f .z/ tends to the limit � as z approaches z0, and we write

lim
z!z0

f .z/ D �;

if for every positive real number � there exists a positive real number ı (de-

pending on �), such that

0 < jz � z0j < ı ÷ jf .z/� �j < �:

D E F I N I T I O N

3

The complex function f .z/ is continuous at z D z0 if limz!z0
f .z/ exists

and equals f .z0/.

All the laws of limits and continuity apply as for real functions. Polynomials, that is,

functions of the form

P.z/ D a0 C a1z C a2z
2
C � � � C anz

n
;

are continuous at every point of the complex plane. Rational functions, that is, func-

tions of the form

R.z/ D
P.z/

Q.z/
;

where P.z/ and Q.z/ are polynomials, are continuous everywhere except at points

where Q.z/ D 0. Integer powers zn are continuous except at the origin if n < 0. The

situation for fractional powers is more complicated. For example,
p

z (the principal

square root) is continuous except at points z D x < 0. The function f .z/ D z is

continuous everywhere, because

jz � z0j D jz � z0j D jz � z0j:
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The Complex Derivative
The definition of derivative is the same as for real functions:

D E F I N I T I O N

4

The complex function f is differentiable at z and has derivative f 0
.z/ there,

provided

lim
h!0

f .z C h/ � f .z/

h
D f

0
.z/

exists.

Note, however, that in this definition h is a complex number. The limit must exist no

matter how h approaches 0 in the complex plane. This fact has profound implications.

The existence of a derivative in this sense forces the function f to be much better

behaved than is necessary for a differentiable real function. For example, it can be

shown that if f 0.z/ exists for all z in an open region D in C, then f has derivatives of

all orders throughout D. Moreover, such a function is the sum of its Taylor series

f .z/ D f .z0/C f
0
.z0/.z � z0/C

f
00
.z0/

2Š
.z � z0/

2
C � � �

about any point z0 inD; the series has positive radius of convergence R and converges

in the disk jz � z0j < R. For this reason, complex functions that are differentiable

on open sets in C are usually called analytic functions. It is beyond the scope of this

introductory appendix to prove these assertions. They are proved in courses and texts

on complex analysis.

The usual differentiation rules apply:

d

dz

�

Af .z/C Bg.z/
�

D Af
0
.z/C Bg

0
.z/

d

dz

�

f .z/g.z/
�

D f
0
.z/g.z/C f .z/g

0
.z/

d

dz

�

f .z/

g.z/

�

D

g.z/f
0
.z/ � f .z/g

0
.z/

�

g.z/
�2

d

dz
f
�

g.z/
�

D f
0�
g.z/

�

g
0
.z/:

As one would expect, the derivative of f .z/ D zn is f 0.z/ D nzn�1.

E X A M P L E 1
Show that the function f .z/ D z is not differentiable at any point.

Solution We have

f
0
.z/ D lim

h!0

z C h � z

h

D lim
h!0

z C h � z

h
D lim

h!0

h

h
:

But h=h D 1 if h is real, and h=h D �1 if h is pure imaginary. Since there are real

and pure imaginary numbers arbitrarily close to 0, the limit above does not exist, so

f 0.z/ does not exist.

The following theorem links the existence of the derivative of a complex function f .z/

with certain properties of its real and imaginary parts u.x; y/ and v.x; y/.
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T H E O R E M

1

The Cauchy–Riemann equations

If f .z/ D u.x; y/C iv.x; y/ is differentiable at z D x C yi , then u and v satisfy the

Cauchy–Riemann equations

@u

@x
D

@v

@y
;

@v

@x
D �

@u

@y
:

Conversely, if u and v are sufficiently smooth (say, if they have continuous second

partial derivatives near .x; y/), and if u and v satisfy the Cauchy–Riemann equations

at .x; y/, then f is differentiable at z D x C yi and

f
0
.z/ D

@u

@x
C i

@v

@x
:

PROOF First, assume that f is differentiable at z. Letting h D s C t i , we have

f
0
.z/ D lim

h!0

f .z C h/ � f .z/

h

D lim
.s;t/!.0;0/

�

u.x C s; y C t/ � u.x; y/

s C i t
C i

v.x C s; y C t/ � v.x; y/

s C i t

�

:

The limit must be independent of the path along which h approaches 0. Letting t D 0,

so that h D s approaches 0 along the real axis, we obtain

f
0
.z/ D lim

s!0

�

u.x C s; y/ � u.x; y/

s
C i

v.x C s; y/ � v.x; y/

s

�

D

@u

@x
C i

@v

@x
:

Similarly, letting s D 0, so that h D t i approaches 0 along the imaginary axis, we

obtain

f
0
.z/ D lim

t!0

�

u.x; y C t/ � u.x; y/

it
C i

v.x; y C t/ � v.x; y/

it

�

D lim
t!0

�

v.x; y C t/ � v.x; y/

t
� i

u.x; y C t/ � u.x; y/

t

�

D

@v

@y
� i

@u

@y
:

Equating these two expressions for f 0.z/, we see that

@u

@x
D

@v

@y
;

@v

@x
D �

@u

@y
:

To prove the converse, we use the result of Exercise 22 of Section 12.6. Since u and v

are assumed to have continuous second partial derivatives, we must have

u.x C s; y C t/ � u.x; y/ D s
@u

@x
C t

@u

@y
CO.s

2
C t

2
/

v.x C s; y C t/ � v.x; y/ D s
@v

@x
C t

@v

@y
CO.s

2
C t

2
/;
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where we have used Big-O notation (see Definition 9 of Section 4.10); the expression

O.�/ denotes a term satisfying jO.�/j � Kj�j for some constant K. Thus, if u and v

satisfy the Cauchy–Riemann equations, then

f .z C h/ � f .z/

h
D

s
@u

@x
C t

@u

@y
C i

�

s
@v

@x
C t

@v

@y

�

CO.s
2
C t

2
/

s C i t

D

.s C i t/
@u

@x
C i.s C i t/

@v

@x

s C i t
CO.

p

s2
C t2/

D

@u

@x
C i

@v

@x
CO.

p

s2
C t2/:

Thus, we may let h D s C t i approach 0 and obtain

f
0
.z/ D

@u

@x
C i

@v

@x
:

It follows immediately from the Cauchy–Riemann equations that the real and imagi-

nary parts of a differentiable complex function are real harmonic functions:

@
2
u

@x2
C

@
2
u

@y2
D 0;

@
2
v

@x2
C

@
2
v

@y2
D 0:

(See Exercise 15 of Section 12.4.)

The Exponential Function
Consider the function

f .z/ D e
x cos y C iex siny;

where z D x C yi . The real and imaginary parts of f .z/,

u.x; y/ D Re .f .z// D ex cos y and v.x; y/ D Im .f .z// D ex siny;

satisfy the Cauchy–Riemann equations

@u

@x
D e

x cos y D
@v

@y
and

@v

@x
D e

x siny D �
@u

@y

everywhere in the z-plane. Therefore, f .z/ is differentiable (analytic) everywhere and

satisfies

f
0
.z/ D

@u

@x
C i

@v

@x
D e

x cos y C iex siny D f .z/:

Evidently f .0/ D 1, and f .z/ D ex if z D x is a real number. It is therefore natural

to denote the function f .z/ as the exponential function ez .

The complex exponential function

e
z
D e

x
.cos y C i siny/ for z D x C yi:

In particular, if z D yi is pure imaginary, then

e
yi
D cos y C i sin y;
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T H E O R E M

1

The Cauchy–Riemann equations

If f .z/ D u.x; y/C iv.x; y/ is differentiable at z D x C yi , then u and v satisfy the

Cauchy–Riemann equations

@u

@x
D

@v

@y
;

@v

@x
D �

@u

@y
:

Conversely, if u and v are sufficiently smooth (say, if they have continuous second

partial derivatives near .x; y/), and if u and v satisfy the Cauchy–Riemann equations

at .x; y/, then f is differentiable at z D x C yi and

f
0
.z/ D

@u

@x
C i

@v

@x
:

PROOF First, assume that f is differentiable at z. Letting h D s C t i , we have

f
0
.z/ D lim

h!0

f .z C h/ � f .z/

h

D lim
.s;t/!.0;0/

�

u.x C s; y C t/ � u.x; y/

s C i t
C i

v.x C s; y C t/ � v.x; y/

s C i t

�

:

The limit must be independent of the path along which h approaches 0. Letting t D 0,

so that h D s approaches 0 along the real axis, we obtain

f
0
.z/ D lim

s!0

�

u.x C s; y/ � u.x; y/

s
C i

v.x C s; y/ � v.x; y/

s

�

D

@u

@x
C i

@v

@x
:

Similarly, letting s D 0, so that h D t i approaches 0 along the imaginary axis, we

obtain

f
0
.z/ D lim

t!0

�

u.x; y C t/ � u.x; y/

it
C i

v.x; y C t/ � v.x; y/

it

�

D lim
t!0

�

v.x; y C t/ � v.x; y/

t
� i

u.x; y C t/ � u.x; y/

t

�

D

@v

@y
� i

@u

@y
:

Equating these two expressions for f 0.z/, we see that

@u

@x
D

@v

@y
;

@v

@x
D �

@u

@y
:

To prove the converse, we use the result of Exercise 22 of Section 12.6. Since u and v

are assumed to have continuous second partial derivatives, we must have

u.x C s; y C t/ � u.x; y/ D s
@u

@x
C t

@u

@y
CO.s

2
C t

2
/

v.x C s; y C t/ � v.x; y/ D s
@v

@x
C t

@v

@y
CO.s

2
C t

2
/;
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where we have used Big-O notation (see Definition 9 of Section 4.10); the expression

O.�/ denotes a term satisfying jO.�/j � Kj�j for some constant K. Thus, if u and v

satisfy the Cauchy–Riemann equations, then

f .z C h/ � f .z/

h
D

s
@u

@x
C t

@u

@y
C i

�

s
@v

@x
C t

@v

@y

�

CO.s
2
C t

2
/

s C i t

D

.s C i t/
@u

@x
C i.s C i t/

@v

@x

s C i t
CO.

p

s2
C t2/

D

@u

@x
C i

@v

@x
CO.

p

s2
C t2/:

Thus, we may let h D s C t i approach 0 and obtain

f
0
.z/ D

@u

@x
C i

@v

@x
:

It follows immediately from the Cauchy–Riemann equations that the real and imagi-

nary parts of a differentiable complex function are real harmonic functions:

@
2
u

@x2
C

@
2
u

@y2
D 0;

@
2
v

@x2
C

@
2
v

@y2
D 0:

(See Exercise 15 of Section 12.4.)

The Exponential Function
Consider the function

f .z/ D e
x cos y C iex siny;

where z D x C yi . The real and imaginary parts of f .z/,

u.x; y/ D Re .f .z// D ex cos y and v.x; y/ D Im .f .z// D ex siny;

satisfy the Cauchy–Riemann equations

@u

@x
D e

x cos y D
@v

@y
and

@v

@x
D e

x siny D �
@u

@y

everywhere in the z-plane. Therefore, f .z/ is differentiable (analytic) everywhere and

satisfies

f
0
.z/ D

@u

@x
C i

@v

@x
D e

x cos y C iex siny D f .z/:

Evidently f .0/ D 1, and f .z/ D ex if z D x is a real number. It is therefore natural

to denote the function f .z/ as the exponential function ez .

The complex exponential function

e
z
D e

x
.cos y C i siny/ for z D x C yi:

In particular, if z D yi is pure imaginary, then

e
yi
D cos y C i sin y;
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a fact that can also be obtained by separating the real and imaginary parts of the

Maclaurin series for eyi :

e
yi
D 1C .yi/C

.yi/2

2Š
C

.yi/3

3Š
C

.yi/4

4Š
C

.yi/5

5Š
C � � �

D

�

1 �
y2

2Š
C

y4

4Š
� � � �

�

C i

�

y �
y3

3Š
C

y5

5Š
� � � �

�

D cos y C i sin y:

Observe that

je
z
j D

q

e2x
�

cos2 y C sin2
y
�

D e
x
;

arg .ez
/ D arg .eyi

/ D arg .cos y C i sin y/ D y;

ez
D e

x cos y � iex siny D ex cos.�y/C iex sin.�y/ D ez
:

In summary:

Properties of the exponential function

If z D x C yi then ez
D ez . Also,

Re .ez
/ D e

x cos y;

Im .ez
/ D e

x siny;

je
z
j D e

x
;

arg .ez
/ D y:

E X A M P L E 2
Sketch the image in the w-plane of the rectangle

R W a � x � b; c � y � d in the z-plane under the

transformation w D ez .

Solution The vertical lines x D a and x D b get mapped to the concentric circles

jwj D ea and jwj D eb . The horizontal lines y D c and y D d get mapped to the

radial lines arg .w/ D c and arg .w/ D d . Thus, the rectangle R gets mapped to the

polar region P shown in Figure II.2.

Figure II.2 Under the exponential

function w D ez , vertical lines get mapped

to circles centred at the origin, and

horizontal lines get mapped to half-lines

radiating from the origin

y

x

v

u

e
a

eb

arg .w/ D cP

R

w-planez-plane

arg .w/ D d

a b

c

d

Note that if d � c � 2� , then the image of R will be the entire annular region

ea
� jwj � eb , which may be covered more than once. The exponential function

e
z is periodic with period 2�i :

e
zC2�i

D e
z for all z;

and is therefore not one-to-one on the whole complex plane. However, w D ez is

one-to-one from any horizontal strip of the form

�1 < x <1; c < y � c C 2�

onto the whole w-plane excluding the origin.
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The Fundamental Theorem of Algebra
As observed at the beginning of Appendix I, extending the number system to include

complex numbers allows larger classes of equations to have solutions. We conclude

this appendix by verifying that polynomial equations always have solutions in the com-

plex numbers.

A complex polynomial of degree n is a function of the form

Pn.z/ D anz
n
C an�1z

n�1
C � � � C a2z

2
C a1z C a0;

where a0, a1, : : : , an are complex numbers and an ¤ 0. The numbers ai (0 � i � n)

are called the coefficients of the polynomial. If they are all real numbers, then Pn.x/

is called a real polynomial.

A complex number z0 that satisfies the equation P.z0/ D 0 is called a zero or

root of the polynomial. Every polynomial of degree 1 has a zero: if a1 ¤ 0, then

a1z C a0 has zero z D �a0=a1. This zero is real if a1 and a0 are both real.

Similarly, every complex polynomial of degree 2 has two zeros. If the polynomial

is given by

P2.z/ D a2z
2
C a1z C a0

(where a2 ¤ 0), then the zeros are given by the quadratic formula

z D z1 D

�a1 �

q

a2
1 � 4a2a0

2a2

and z D z2 D

�a1 C

q

a2
1 � 4a2a0

2a2

:

In this case, P2.z/ has two linear factors:

P2.z/ D a2.z � z1/.z � z2/:

Even if a2
1 � 4a2a0 D 0, so that z1 D z2, we still regard the polynomial as having two

(equal) zeros, one corresponding to each factor. If the coefficients a0, a1, and a2 are

all real numbers, the zeros will be real provided a2
1 � 4a2a0. When real coefficients

satisfy a2
1 < 4a2a0 then the zeros are complex, in fact, complex conjugates: z2 D z1.

E X A M P L E 3
Solve the equation z2

C 2iz � .1C i/ D 0.

Solution The zeros of this equation are

z D
�2i ˙

p

�4C 4.1C i/

2

D �i ˙
p

i

D �i ˙
1C i
p

2
D

1
p

2

�

1C .1 �
p

2/i
�

or �

1
p

2

�

1C .1C
p

2/i
�

:

The Fundamental Theorem of Algebra asserts that every complex polynomial of posi-

tive degree has a complex zero.

T H E O R E M

2

The Fundamental Theorem of Algebra

If P.z/ D anz
n
C an�1z

n�1
C � � � C a1z C a0 is a complex polynomial of degree

n � 1, then there exists a complex number z1 such that P.z1/ D 0.
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a fact that can also be obtained by separating the real and imaginary parts of the

Maclaurin series for eyi :

e
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D 1C .yi/C
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.yi/3

3Š
C

.yi/4
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C

.yi/5
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C � � �
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y4
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� � � �

�

C i

�

y �
y3

3Š
C

y5

5Š
� � � �

�

D cos y C i sin y:

Observe that

je
z
j D

q

e2x
�

cos2 y C sin2
y
�

D e
x
;

arg .ez
/ D arg .eyi

/ D arg .cos y C i sin y/ D y;

ez
D e

x cos y � iex siny D ex cos.�y/C iex sin.�y/ D ez
:

In summary:

Properties of the exponential function

If z D x C yi then ez
D ez . Also,

Re .ez
/ D e

x cos y;

Im .ez
/ D e

x siny;

je
z
j D e

x
;

arg .ez
/ D y:

E X A M P L E 2
Sketch the image in the w-plane of the rectangle

R W a � x � b; c � y � d in the z-plane under the

transformation w D ez .

Solution The vertical lines x D a and x D b get mapped to the concentric circles

jwj D ea and jwj D eb . The horizontal lines y D c and y D d get mapped to the

radial lines arg .w/ D c and arg .w/ D d . Thus, the rectangle R gets mapped to the

polar region P shown in Figure II.2.

Figure II.2 Under the exponential

function w D ez , vertical lines get mapped

to circles centred at the origin, and

horizontal lines get mapped to half-lines

radiating from the origin
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d

Note that if d � c � 2� , then the image of R will be the entire annular region

ea
� jwj � eb , which may be covered more than once. The exponential function

e
z is periodic with period 2�i :

e
zC2�i

D e
z for all z;

and is therefore not one-to-one on the whole complex plane. However, w D ez is

one-to-one from any horizontal strip of the form

�1 < x <1; c < y � c C 2�

onto the whole w-plane excluding the origin.
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The Fundamental Theorem of Algebra
As observed at the beginning of Appendix I, extending the number system to include

complex numbers allows larger classes of equations to have solutions. We conclude

this appendix by verifying that polynomial equations always have solutions in the com-

plex numbers.

A complex polynomial of degree n is a function of the form

Pn.z/ D anz
n
C an�1z

n�1
C � � � C a2z

2
C a1z C a0;

where a0, a1, : : : , an are complex numbers and an ¤ 0. The numbers ai (0 � i � n)

are called the coefficients of the polynomial. If they are all real numbers, then Pn.x/

is called a real polynomial.

A complex number z0 that satisfies the equation P.z0/ D 0 is called a zero or

root of the polynomial. Every polynomial of degree 1 has a zero: if a1 ¤ 0, then

a1z C a0 has zero z D �a0=a1. This zero is real if a1 and a0 are both real.

Similarly, every complex polynomial of degree 2 has two zeros. If the polynomial

is given by

P2.z/ D a2z
2
C a1z C a0

(where a2 ¤ 0), then the zeros are given by the quadratic formula

z D z1 D

�a1 �

q

a2
1 � 4a2a0

2a2

and z D z2 D

�a1 C

q

a2
1 � 4a2a0

2a2

:

In this case, P2.z/ has two linear factors:

P2.z/ D a2.z � z1/.z � z2/:

Even if a2
1 � 4a2a0 D 0, so that z1 D z2, we still regard the polynomial as having two

(equal) zeros, one corresponding to each factor. If the coefficients a0, a1, and a2 are

all real numbers, the zeros will be real provided a2
1 � 4a2a0. When real coefficients

satisfy a2
1 < 4a2a0 then the zeros are complex, in fact, complex conjugates: z2 D z1.

E X A M P L E 3
Solve the equation z2

C 2iz � .1C i/ D 0.

Solution The zeros of this equation are

z D
�2i ˙

p

�4C 4.1C i/

2

D �i ˙
p

i

D �i ˙
1C i
p

2
D

1
p

2

�

1C .1 �
p

2/i
�

or �

1
p

2

�

1C .1C
p

2/i
�

:

The Fundamental Theorem of Algebra asserts that every complex polynomial of posi-

tive degree has a complex zero.

T H E O R E M

2

The Fundamental Theorem of Algebra

If P.z/ D anz
n
C an�1z

n�1
C � � � C a1z C a0 is a complex polynomial of degree

n � 1, then there exists a complex number z1 such that P.z1/ D 0.
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PROOF (We will only give an informal sketch of the proof.) We can assume that the

coefficient of zn in P.z/ is an D 1, since we can divide the equation P.z/ D 0 by

an without changing its solutions. We can also assume that a0 ¤ 0; if a0 D 0, then

z D 0 is certainly a zero of P.z/. Thus, we deal with the polynomial

P.z/ D z
n
CQ.z/;

where Q.z/ is a polynomial of degree less than n having a nonzero constant term. If

R is sufficiently large, then jQ.z/j will be less than Rn for all numbers z satisfying

jzj D R. As z moves around the circle jzj D R in the z-plane, w D zn moves around

the circle jwj D R
n in the w-plane (n times). Since the distance from z

n to P.z/ is

equal to jP.z/ � zn
j D jQ.z/j < Rn, it follows that the image of the circle jzj D R

under the transformation w D P.z/ is a curve that winds around the origin n times.

(If you walk around a circle of radius r n times, with your dog on a leash of length

less than r , and your dog returns to his starting point, then he must also go around the

centre of the circle n times.) This situation is illustrated for the particular case

P.z/ D z
3
C z

2
� iz C 1; jzj D 2

in Figure II.3. The image of jzj D 2 is the large curve in the w-plane that winds

around the origin three times. As R decreases, the curve traced out by w D P.z/ for

jzj D R changes continuously. For R close to 0, it is a small curve staying close to the

constant term a0 of P.z/. For small enough R the curve will not enclose the origin.

(In Figure II.3 the image of jzj D 0:3 is the small curve staying close to the point 1 in

the w-plane.) Thus, for some value of R, say R D R1, the curve must pass through

the origin. That is, there must be a complex number z1, with jz1j D R1, such that

P.z1/ D 0.

Figure II.3 The image of the circle

jzj D 2 winds around the origin in the

w-plane three times, but the image of

jzj D 0:3 does not wind around the origin

at all

v

u

w D z3
C z2

� iz C 1 for jzj D 2

for jzj D 0:3

jwj D 8

Remark The above proof suggests that there should be n such solutions of the equa-

tion P.z/ D 0; the curve has to go from winding around the origin n times to winding

around the origin 0 times as R decreases toward 0. We can establish this as follows.

P.z1/ D 0 implies that z � z1 is a factor of P.z/:

P.z/ D .z � z1/Pn�1.z/;

where Pn�1 is a polynomial of degree n � 1. If n > 1, then Pn�1 must also have a

zero, z2, by the Fundamental Theorem. We can continue this argument inductively to

obtain n zeros and factor P.z/ into a product of the constant an and n linear factors:

P.z/ D an.z � z1/.z � z2/ � � � .z � zn/:

Of course, some of the zeros can be equal.
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Remark If P is a real polynomial, that is, one whose coefficients are all real num-

bers, then P.z/ D P.z/. Therefore, if z1 is a nonreal zero of P.z/, then so is z2 D z1:

P.z2/ D P.z1/ D P.z1/ D 0 D 0:

Real polynomials can have complex zeros, but they must always occur in complex

conjugate pairs. Every real polynomial of odd degree must have at least one real zero.

E X A M P L E 4
Show that z1 D �i is a zero of the polynomial

P.z/ D z4
C 5z3

C 7z2
C 5z C 6; and find all the other zeros of

this polynomial.

Solution First observe that P.z1/ D P.�i/ D 1C 5i � 7� 5i C 6 D 0, so z1 D �i

is indeed a zero. Since the coefficients of P.z/ are real, z2 D i must also be a zero.

Thus, z C i and z � i are factors of P.z/, and so is

.z C i/.z � i/ D z
2
C 1:

Dividing P.z/ by z2
C 1, we obtain

P.z/

z2
C 1
D z

2
C 5z C 6 D .z C 2/.z C 3/:

Thus, the four zeros of P.z/ are z1 D �i , z2 D i , z3 D �2, and z4 D �3.

E X E R C I S E S : A P P E N D I X II

In Exercises 1–12, the z-plane region D consists of the complex

numbers z D x C yi that satisfy the given conditions. Describe

(or sketch) the image R of D in the w-plane under the given

function w D f .z/.

1. 0 � x � 1; 0 � y � 2I w D z:

2. x C y D 1I w D z:

3. 1 � jzj � 2;
�

2
� arg z �

3�

4
I w D z

2
:

4. 0 � jzj � 2; 0 � arg .z/ �
�

2
I w D z

3
:

5. 0 < jzj � 2; 0 � arg .z/ �
�

2
I w D

1

z
:

6.
�

4
� arg .z/ �

�

3
I w D �iz:

7. arg .z/ D �
�

3
I w D

p

z:

8. x D 1I w D z
2
: 9. y D 1I w D z

2
:

10. x D 1I w D
1

z
:

11. �1 < x <1;
�

4
� y �

�

2
I w D e

z
:

12. 0 < x <
�

2
; 0 < y <1I w D e

iz
:

In Exercises 13–16, verify that the real and imaginary parts of each

function f .z/ satisfy the Cauchy–Riemann equations, and thus

find f 0.z/.

13. f .z/ D z2 14. f .z/ D z3

15. f .z/ D
1

z
16. f .z/ D ez2

17. Use the fact that eyi
D cosyC i siny (for real y) to show that

cosy D
eyi
C e�yi

2
and siny D

eyi
� e�yi

2i
:

Exercise 16 suggests that we define complex functions

cos z D
ezi
C e�zi

2
and sin z D

ezi
� e�zi

2i
;

as well as extend the definitions of the hyperbolic functions to

cosh z D
ez
C e�z

2
and sinh z D

ez
� e�z

2
:

Exercises 18–26 develop properties of these functions and

relationships between them.

18. Show that cos z and sin z are periodic with period 2� , and that

cosh z and sinh z are periodic with period 2�i .

19. Show that .d=dz/ sin z D cos z and .d=dz/ cos z D � sin z.

What are the derivatives of sinh z and cosh z?

20. Verify the identities cos z D cosh.iz/ and

sin z D �i sinh.iz/. What are the corresponding identities for

cosh z and sinh.z/ in terms of cos and sin?

21. Find all complex zeros of cos z (i.e., all solutions of

cos z D 0).

22. Find all complex zeros of sin z.

23. Find all complex zeros of cosh z and sinh z.
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PROOF (We will only give an informal sketch of the proof.) We can assume that the

coefficient of zn in P.z/ is an D 1, since we can divide the equation P.z/ D 0 by

an without changing its solutions. We can also assume that a0 ¤ 0; if a0 D 0, then

z D 0 is certainly a zero of P.z/. Thus, we deal with the polynomial

P.z/ D z
n
CQ.z/;

where Q.z/ is a polynomial of degree less than n having a nonzero constant term. If

R is sufficiently large, then jQ.z/j will be less than Rn for all numbers z satisfying

jzj D R. As z moves around the circle jzj D R in the z-plane, w D zn moves around

the circle jwj D R
n in the w-plane (n times). Since the distance from z

n to P.z/ is

equal to jP.z/ � zn
j D jQ.z/j < Rn, it follows that the image of the circle jzj D R

under the transformation w D P.z/ is a curve that winds around the origin n times.

(If you walk around a circle of radius r n times, with your dog on a leash of length

less than r , and your dog returns to his starting point, then he must also go around the

centre of the circle n times.) This situation is illustrated for the particular case

P.z/ D z
3
C z

2
� iz C 1; jzj D 2

in Figure II.3. The image of jzj D 2 is the large curve in the w-plane that winds

around the origin three times. As R decreases, the curve traced out by w D P.z/ for

jzj D R changes continuously. For R close to 0, it is a small curve staying close to the

constant term a0 of P.z/. For small enough R the curve will not enclose the origin.

(In Figure II.3 the image of jzj D 0:3 is the small curve staying close to the point 1 in

the w-plane.) Thus, for some value of R, say R D R1, the curve must pass through

the origin. That is, there must be a complex number z1, with jz1j D R1, such that

P.z1/ D 0.

Figure II.3 The image of the circle

jzj D 2 winds around the origin in the

w-plane three times, but the image of

jzj D 0:3 does not wind around the origin

at all

v

u

w D z3
C z2

� iz C 1 for jzj D 2

for jzj D 0:3

jwj D 8

Remark The above proof suggests that there should be n such solutions of the equa-

tion P.z/ D 0; the curve has to go from winding around the origin n times to winding

around the origin 0 times as R decreases toward 0. We can establish this as follows.

P.z1/ D 0 implies that z � z1 is a factor of P.z/:

P.z/ D .z � z1/Pn�1.z/;

where Pn�1 is a polynomial of degree n � 1. If n > 1, then Pn�1 must also have a

zero, z2, by the Fundamental Theorem. We can continue this argument inductively to

obtain n zeros and factor P.z/ into a product of the constant an and n linear factors:

P.z/ D an.z � z1/.z � z2/ � � � .z � zn/:

Of course, some of the zeros can be equal.

ADAMS & ESSEX: Calculus, 9th Edition. Appendix II – page A-19 October 5, 2016

APPENDIX II Complex Functions A-19

Remark If P is a real polynomial, that is, one whose coefficients are all real num-

bers, then P.z/ D P.z/. Therefore, if z1 is a nonreal zero of P.z/, then so is z2 D z1:

P.z2/ D P.z1/ D P.z1/ D 0 D 0:

Real polynomials can have complex zeros, but they must always occur in complex

conjugate pairs. Every real polynomial of odd degree must have at least one real zero.

E X A M P L E 4
Show that z1 D �i is a zero of the polynomial

P.z/ D z4
C 5z3

C 7z2
C 5z C 6; and find all the other zeros of

this polynomial.

Solution First observe that P.z1/ D P.�i/ D 1C 5i � 7� 5i C 6 D 0, so z1 D �i

is indeed a zero. Since the coefficients of P.z/ are real, z2 D i must also be a zero.

Thus, z C i and z � i are factors of P.z/, and so is

.z C i/.z � i/ D z
2
C 1:

Dividing P.z/ by z2
C 1, we obtain

P.z/

z2
C 1
D z

2
C 5z C 6 D .z C 2/.z C 3/:

Thus, the four zeros of P.z/ are z1 D �i , z2 D i , z3 D �2, and z4 D �3.

E X E R C I S E S : A P P E N D I X II

In Exercises 1–12, the z-plane region D consists of the complex

numbers z D x C yi that satisfy the given conditions. Describe

(or sketch) the image R of D in the w-plane under the given

function w D f .z/.

1. 0 � x � 1; 0 � y � 2I w D z:

2. x C y D 1I w D z:

3. 1 � jzj � 2;
�

2
� arg z �

3�

4
I w D z

2
:

4. 0 � jzj � 2; 0 � arg .z/ �
�

2
I w D z

3
:

5. 0 < jzj � 2; 0 � arg .z/ �
�

2
I w D

1

z
:

6.
�

4
� arg .z/ �

�

3
I w D �iz:

7. arg .z/ D �
�

3
I w D

p

z:

8. x D 1I w D z
2
: 9. y D 1I w D z

2
:

10. x D 1I w D
1

z
:

11. �1 < x <1;
�

4
� y �

�

2
I w D e

z
:

12. 0 < x <
�

2
; 0 < y <1I w D e

iz
:

In Exercises 13–16, verify that the real and imaginary parts of each

function f .z/ satisfy the Cauchy–Riemann equations, and thus

find f 0.z/.

13. f .z/ D z2 14. f .z/ D z3

15. f .z/ D
1

z
16. f .z/ D ez2

17. Use the fact that eyi
D cosyC i siny (for real y) to show that

cosy D
eyi
C e�yi

2
and siny D

eyi
� e�yi

2i
:

Exercise 16 suggests that we define complex functions

cos z D
ezi
C e�zi

2
and sin z D

ezi
� e�zi

2i
;

as well as extend the definitions of the hyperbolic functions to

cosh z D
ez
C e�z

2
and sinh z D

ez
� e�z

2
:

Exercises 18–26 develop properties of these functions and

relationships between them.

18. Show that cos z and sin z are periodic with period 2� , and that

cosh z and sinh z are periodic with period 2�i .

19. Show that .d=dz/ sin z D cos z and .d=dz/ cos z D � sin z.

What are the derivatives of sinh z and cosh z?

20. Verify the identities cos z D cosh.iz/ and

sin z D �i sinh.iz/. What are the corresponding identities for

cosh z and sinh.z/ in terms of cos and sin?

21. Find all complex zeros of cos z (i.e., all solutions of

cos z D 0).

22. Find all complex zeros of sin z.

23. Find all complex zeros of cosh z and sinh z.
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24. Show that Re .cosh z/ D coshx cos y and

Im .cosh z/ D sinhx siny.

25. Find the real and imaginary parts of sinh z.

26. Find the real and imaginary parts of cos z and sin z.

Find the zeros of the polynomials in Exercises 27–32.

27. P.z/ D z2
C 2iz 28. P.z/ D z2

� 2z C i

29. P.z/ D z2
C 2z C 5 30. P.z/ D z2

� 2iz � 1

31. P.z/ D z3
� 3iz

2
� 2z 32. P.z/ D z4

� 2z
2
C 4

33. The polynomial P.z/ D z4
C 1 has two pairs of complex

conjugate zeros. Find them, and hence express P.z/ as a

product of two quadratic factors with real coefficients.

In Exercises 34–36, check that the given number z1 is a zero of the

given polynomial, and find all the zeros of the polynomial.

34. P.z/ D z4
� 4z

3
C 12z

2
� 16z C 16I z1 D 1�

p

3 i:

35. P.z/ D z5
C 3z

4
C 4z

3
C 4z

2
C 3z C 1I z1 D i:

36. P.z/ D z5
� 2z4

� 8z3
C 8z2

C 31z � 30;

z1 D �2C i .

37. Show that the image of the circle jzj D 2 under the mapping

w D z4
C z3

� 2iz � 3 winds around the origin in the

w-plane four times.
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Continuous Functions

“
Geometry may sometimes appear to take the lead over analysis, but in

fact precedes it only as a servant goes before his master to clear the

path and light him on the way. The interval between the two is as wide

as between empiricism and science, as between the understanding

and the reason, or as between the finite and the infinite.

”J. J. Sylvester 1814–1897

from Philosophic Magazine, 1866

The development of calculus depends in an essential way on the concept of the limit

of a function and thereby on properties of the real number system. In Chapter 1 we

presented these notions in an intuitive way and did not attempt to prove them except

in Section 1.5, where the formal definition of limit was given and used to verify some

elementary limits and prove some simple properties of limits.

Many of the results on limits and continuity of functions stated in Chapter 1 may

seem quite obvious; most students and users of calculus are not bothered by applying

them without proof. Nevertheless, mathematics is a highly logical and rigorous dis-

cipline, and any statement, however obvious, that cannot be proved by strictly logical

arguments from acceptable assumptions must be considered suspect. In this appendix

we build upon the formal definition of limit given in Section 1.5 and combine it with

the notion of completeness of the real number system first encountered in Section P.1

to give formal proofs of the very important results about continuous functions stated in

Theorems 8 and 9 of Section 1.4, the Max-Min Theorem and the Intermediate-Value

Theorem. Most of our development of calculus in this book depends essentially on

these two theorems.

The branch of mathematics that deals with proofs such as these is called mathe-

matical analysis. This subject is usually not pursued by students in introductory cal-

culus courses but is postponed to higher years and studied by students in majors or

honours programs in mathematics. It is hoped that some of this material will be of

value to honours-level calculus courses and individual students with a deeper interest

in understanding calculus.

Limits of Functions
At the heart of mathematical analysis is the formal definition of limit, Definition 8 in

Section 1.5, which we restate as follows:

The formal definition of limit

We say that limx!a f .x/ D L if for every positive number � there exists a

positive number ı, depending on � (i.e., ı D ı.�/), such that

0 < jx � aj < ı ÷ jf .x/� Lj < �:

Section 1.5 was marked “optional” because understanding the material presented there

was not essential for learning calculus. However, that material is an essential

prerequisite for this appendix. It is highly recommended that you go back to Sec-
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24. Show that Re .cosh z/ D coshx cos y and

Im .cosh z/ D sinhx siny.

25. Find the real and imaginary parts of sinh z.

26. Find the real and imaginary parts of cos z and sin z.

Find the zeros of the polynomials in Exercises 27–32.

27. P.z/ D z2
C 2iz 28. P.z/ D z2

� 2z C i

29. P.z/ D z2
C 2z C 5 30. P.z/ D z2

� 2iz � 1

31. P.z/ D z3
� 3iz

2
� 2z 32. P.z/ D z4

� 2z
2
C 4

33. The polynomial P.z/ D z4
C 1 has two pairs of complex

conjugate zeros. Find them, and hence express P.z/ as a

product of two quadratic factors with real coefficients.

In Exercises 34–36, check that the given number z1 is a zero of the

given polynomial, and find all the zeros of the polynomial.

34. P.z/ D z4
� 4z

3
C 12z

2
� 16z C 16I z1 D 1�

p

3 i:

35. P.z/ D z5
C 3z

4
C 4z

3
C 4z

2
C 3z C 1I z1 D i:

36. P.z/ D z5
� 2z4

� 8z3
C 8z2

C 31z � 30;

z1 D �2C i .

37. Show that the image of the circle jzj D 2 under the mapping

w D z4
C z3

� 2iz � 3 winds around the origin in the

w-plane four times.
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A P P E N D I X III

Continuous Functions

“
Geometry may sometimes appear to take the lead over analysis, but in

fact precedes it only as a servant goes before his master to clear the

path and light him on the way. The interval between the two is as wide

as between empiricism and science, as between the understanding

and the reason, or as between the finite and the infinite.

”J. J. Sylvester 1814–1897

from Philosophic Magazine, 1866

The development of calculus depends in an essential way on the concept of the limit

of a function and thereby on properties of the real number system. In Chapter 1 we

presented these notions in an intuitive way and did not attempt to prove them except

in Section 1.5, where the formal definition of limit was given and used to verify some

elementary limits and prove some simple properties of limits.

Many of the results on limits and continuity of functions stated in Chapter 1 may

seem quite obvious; most students and users of calculus are not bothered by applying

them without proof. Nevertheless, mathematics is a highly logical and rigorous dis-

cipline, and any statement, however obvious, that cannot be proved by strictly logical

arguments from acceptable assumptions must be considered suspect. In this appendix

we build upon the formal definition of limit given in Section 1.5 and combine it with

the notion of completeness of the real number system first encountered in Section P.1

to give formal proofs of the very important results about continuous functions stated in

Theorems 8 and 9 of Section 1.4, the Max-Min Theorem and the Intermediate-Value

Theorem. Most of our development of calculus in this book depends essentially on

these two theorems.

The branch of mathematics that deals with proofs such as these is called mathe-

matical analysis. This subject is usually not pursued by students in introductory cal-

culus courses but is postponed to higher years and studied by students in majors or

honours programs in mathematics. It is hoped that some of this material will be of

value to honours-level calculus courses and individual students with a deeper interest

in understanding calculus.

Limits of Functions
At the heart of mathematical analysis is the formal definition of limit, Definition 8 in

Section 1.5, which we restate as follows:

The formal definition of limit

We say that limx!a f .x/ D L if for every positive number � there exists a

positive number ı, depending on � (i.e., ı D ı.�/), such that

0 < jx � aj < ı ÷ jf .x/� Lj < �:

Section 1.5 was marked “optional” because understanding the material presented there

was not essential for learning calculus. However, that material is an essential

prerequisite for this appendix. It is highly recommended that you go back to Sec-
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tion 1.5 and read it carefully, paying special attention to Examples 2 and 4, and attempt

at least Exercises 31–36. These exercises provide proofs for the standard laws of limits

stated in Section 1.2.

Continuous Functions
Consider the following definitions of continuity, which are equivalent to those given in

Section 1.4.

D E F I N I T I O N

1

Continuity of a function at a point

A function f; defined on an open interval containing the point a, is said to be

continuous at the point a if

lim
x!a

f .x/ D f .a/I

that is, if for every � > 0 there exists ı > 0 such that if jx � aj < ı, then

jf .x/� f .a/j < �.

D E F I N I T I O N

2

Continuity of a function on an interval

A function f is continuous on an interval if it is continuous at every point of

that interval. In the case of an endpoint of a closed interval, f need only be

continuous on one side. Thus, f is continuous on the interval Œa; b� if

lim
t!x

f .t/ D f .x/

for each x satisfying a < x < b, and

lim
t!aC

f .t/ D f .a/ and lim
t!b�

f .t/ D f .b/:

These concepts are illustrated in Figure III.1.

Figure III.1 f is continuous on the

intervals Œa; b�, .b; c/, Œc; d �, and .d; e�

y

xa b c d e

Some important results about continuous functions are collected in Theorems 6

and 7 of Section 1.4, which we restate here:

T H E O R E M

1

Combining continuous functions

(a) If f and g are continuous at the point a, then so are f C g, f � g, fg, and, if

g.a/ ¤ 0, f=g.

(b) If f is continuous at the point L and if limx!a g.x/ D L, then we have

lim
x!a

f
�

g.x/
�

D f .L/ D f
�

lim
x!a

g.x/
�

:
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In particular, if g is continuous at the point a (so that L D g.a//, then

limx!a f
�

g.x/
�

D f
�

g.a/
�

, that is, f ı g.x/ D f
�

g.x/
�

is continuous at

x D a.

(c) The functions f .x/ D C (constant) and g.x/ D x are continuous on the whole

real line.

(d) For any rational number r; the function f .x/ D xr is continuous at every real

number where it is defined.

PROOF Part (a) is just a restatement of various rules for combining limits; for

example,

lim
x!a

f .x/g.x/ D . lim
x!a

f .x//. lim
x!a

g.x// D f .a/g.a/:

Part (b) can be proved as follows. Let � > 0 be given. Since f is continuous at L,

there exists k > 0 such that jf
�

g.x/
�

� f .L/j < � whenever jg.x/ � Lj < k. Since

limx!a g.x/ D L, there exists ı > 0 such that if 0 < jx�aj < ı, then jg.x/�Lj < k.

Hence, if 0 < jx�aj < ı, then jf
�

g.x/
�

�f .L/j < �, and limx!a f
�

g.x/
�

D f .L/.

The proofs of (c) and (d) are left to the student in Exercises 3–9 at the end of this

appendix.

Completeness and Sequential Limits

D E F I N I T I O N

3

A real number u is said to be an upper bound for a nonempty set S of real

numbers if x � u for every x in S .

The number u� is called the least upper bound or supremum of S if u� is an

upper bound for S and u�
� u for every upper bound u of S . The supremum

of S is usually denoted sup.S/.

Similarly, ` is a lower bound for S if ` � x for every x in S . The number `�

is the greatest lower bound or infimum of S if `� is a lower bound for S and

` � `� for every lower bound ` of S . The infimum of S is denoted inf.S/.

E X A M P L E 1
Set S1 D Œ2; 3� and S2 D .2;1/. Any number u � 3 is an

upper bound for S1. S2 has no upper bound; we say that it is

not bounded above. The least upper bound of S1 is sup.S1/ D 3. Any real number

` � 2 is a lower bound for both S1 and S2. The greatest lower bound of each set is 2:

inf.S1/ D inf.S2/ D 2. Note that the least upper bound and greatest lower bound of a

set may or may not belong to that set.

We now recall the completeness axiom for the real number system, which we discussed

briefly in Section P.1.

The completeness axiom for the real numbers

A nonempty set of real numbers that has an upper bound must have a least

upper bound.

Equivalently, a nonempty set of real numbers having a lower bound must have

a greatest lower bound.

We stress that this is an axiom to be assumed without proof. It cannot be deduced

from the more elementary algebraic and order properties of the real numbers. These

other properties are shared by the rational numbers, a set that is not complete. The

completeness axiom is essential for the proof of the most important results about con-

tinuous functions, in particular, for the Max-Min Theorem and the Intermediate-Value
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tion 1.5 and read it carefully, paying special attention to Examples 2 and 4, and attempt

at least Exercises 31–36. These exercises provide proofs for the standard laws of limits

stated in Section 1.2.

Continuous Functions
Consider the following definitions of continuity, which are equivalent to those given in

Section 1.4.

D E F I N I T I O N

1

Continuity of a function at a point

A function f; defined on an open interval containing the point a, is said to be

continuous at the point a if

lim
x!a

f .x/ D f .a/I

that is, if for every � > 0 there exists ı > 0 such that if jx � aj < ı, then

jf .x/� f .a/j < �.

D E F I N I T I O N

2

Continuity of a function on an interval

A function f is continuous on an interval if it is continuous at every point of

that interval. In the case of an endpoint of a closed interval, f need only be

continuous on one side. Thus, f is continuous on the interval Œa; b� if

lim
t!x

f .t/ D f .x/

for each x satisfying a < x < b, and

lim
t!aC

f .t/ D f .a/ and lim
t!b�

f .t/ D f .b/:

These concepts are illustrated in Figure III.1.

Figure III.1 f is continuous on the

intervals Œa; b�, .b; c/, Œc; d �, and .d; e�

y

xa b c d e

Some important results about continuous functions are collected in Theorems 6

and 7 of Section 1.4, which we restate here:

T H E O R E M

1

Combining continuous functions

(a) If f and g are continuous at the point a, then so are f C g, f � g, fg, and, if

g.a/ ¤ 0, f=g.

(b) If f is continuous at the point L and if limx!a g.x/ D L, then we have

lim
x!a

f
�

g.x/
�

D f .L/ D f
�

lim
x!a

g.x/
�

:

ADAMS & ESSEX: Calculus, 9th Edition. Appendix III – page A-23 October 5, 2016

APPENDIX III Continuous Functions A-23

In particular, if g is continuous at the point a (so that L D g.a//, then

limx!a f
�

g.x/
�

D f
�

g.a/
�

, that is, f ı g.x/ D f
�

g.x/
�

is continuous at

x D a.

(c) The functions f .x/ D C (constant) and g.x/ D x are continuous on the whole

real line.

(d) For any rational number r; the function f .x/ D xr is continuous at every real

number where it is defined.

PROOF Part (a) is just a restatement of various rules for combining limits; for

example,

lim
x!a

f .x/g.x/ D . lim
x!a

f .x//. lim
x!a

g.x// D f .a/g.a/:

Part (b) can be proved as follows. Let � > 0 be given. Since f is continuous at L,

there exists k > 0 such that jf
�

g.x/
�

� f .L/j < � whenever jg.x/ � Lj < k. Since

limx!a g.x/ D L, there exists ı > 0 such that if 0 < jx�aj < ı, then jg.x/�Lj < k.

Hence, if 0 < jx�aj < ı, then jf
�

g.x/
�

�f .L/j < �, and limx!a f
�

g.x/
�

D f .L/.

The proofs of (c) and (d) are left to the student in Exercises 3–9 at the end of this

appendix.

Completeness and Sequential Limits

D E F I N I T I O N

3

A real number u is said to be an upper bound for a nonempty set S of real

numbers if x � u for every x in S .

The number u� is called the least upper bound or supremum of S if u� is an

upper bound for S and u�
� u for every upper bound u of S . The supremum

of S is usually denoted sup.S/.

Similarly, ` is a lower bound for S if ` � x for every x in S . The number `�

is the greatest lower bound or infimum of S if `� is a lower bound for S and

` � `� for every lower bound ` of S . The infimum of S is denoted inf.S/.

E X A M P L E 1
Set S1 D Œ2; 3� and S2 D .2;1/. Any number u � 3 is an

upper bound for S1. S2 has no upper bound; we say that it is

not bounded above. The least upper bound of S1 is sup.S1/ D 3. Any real number

` � 2 is a lower bound for both S1 and S2. The greatest lower bound of each set is 2:

inf.S1/ D inf.S2/ D 2. Note that the least upper bound and greatest lower bound of a

set may or may not belong to that set.

We now recall the completeness axiom for the real number system, which we discussed

briefly in Section P.1.

The completeness axiom for the real numbers

A nonempty set of real numbers that has an upper bound must have a least

upper bound.

Equivalently, a nonempty set of real numbers having a lower bound must have

a greatest lower bound.

We stress that this is an axiom to be assumed without proof. It cannot be deduced

from the more elementary algebraic and order properties of the real numbers. These

other properties are shared by the rational numbers, a set that is not complete. The

completeness axiom is essential for the proof of the most important results about con-

tinuous functions, in particular, for the Max-Min Theorem and the Intermediate-Value
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Theorem. Before attempting these proofs, however, we must develop a little more

machinery.

In Section 9.1 we stated a version of the completeness axiom that pertains to

sequences of real numbers; specifically, that an increasing sequence that is bounded

above converges to a limit. We begin by verifying that this follows from the version

stated above. (Both statements are, in fact, equivalent.) As noted in Section 9.1, the

sequence

fxng D fx1; x2; x3; : : :g

is a function on the positive integers, that is, xn D x.n/. We say that the sequence

converges to the limit L, and we write limxn D L, if the corresponding function x.t/

satisfies limt!1 x.t/ D L as defined above. More formally,

D E F I N I T I O N

4

Limit of a sequence

We say that limxn D L if for every positive number � there exists a positive

number N D N.�/ such that jxn � Lj < � holds whenever n � N:

T H E O R E M

2

If fxng is an increasing sequence that is bounded above, that is,

xnC1 � xn and xn � K for n D 1; 2; 3; : : : ;

then limxn D L exists. (Equivalently, if fxng is decreasing and bounded below, then

limxn exists.)

PROOF Let fxng be increasing and bounded above. The set S of real numbers xn has

an upper bound, K, and so has a least upper bound, say L D sup.S/. Thus, xn � L

for every n, and if � > 0, then there exists a positive integer N such that xN > L � �.

(Otherwise, L � � would be an upper bound for S that is lower than the least upper

bound.) If n � N; then we have L � � < xN � xn � L, so jxn � Lj < �. Thus,

limxn D L. The proof for a decreasing sequence that is bounded below is similar.

T H E O R E M

3

If a � xn � b for each n, and if limxn D L, then a � L � b.

PROOF Suppose that L > b. Let � D L � b. Since limxn D L, there exists n such

that jxn � Lj < �. Thus, xn > L � � D L � .L � b/ D b, which is a contradiction,

since we are given that xn � b. Thus, L � b. A similar argument shows that L � a.

T H E O R E M

4

If f is continuous on Œa; b�, if a � xn � b for each n, and if limxn D L, then

limf .xn/ D f .L/.

The proof is similar to that of Theorem 1(b) and is left as Exercise 15 at the end of this

appendix.

Continuous Functions on a Closed, Finite Interval
We are now in a position to prove the main results about continuous functions on

closed, finite intervals.
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T H E O R E M

5

The Boundedness Theorem

If f is continuous on Œa; b�, then f is bounded there; that is, there exists a constant K

such that jf .x/j � K if a � x � b.

PROOF We show that f is bounded above; a similar proof shows that f is bounded

below. For each positive integer n let Sn be the set of points x in Œa; b� such that

f .x/ > n:

Sn D fx W a � x � b and f .x/ > ng:

We would like to show that Sn is empty for some n. It would then follow that f .x/ � n

for all x in Œa; b�; that is, n would be an upper bound for f on Œa; b�.

Suppose, to the contrary, that Sn is nonempty for every n. We will show that

this leads to a contradiction. Since Sn is bounded below (a is a lower bound), by

completeness Sn has a greatest lower bound; call it xn. (See Figure III.2.) Evidently,

a � xn. Since f .x/ > n at some point of Œa; b� and f is continuous at that point,

f .x/ > n on some interval contained in Œa; b�. Hence, xn < b. It follows that

f .xn/ � n. (If f .xn/ < n, then by continuity f .x/ < n for some distance to the right

of xn, and xn could not be the greatest lower bound of Sn.)

Figure III.2 The set Sn

y

x

y D f .x/

n

a xn

Sn Sn

b

For each n, we have SnC1 � Sn. Therefore, xnC1 � xn and fxng is an increasing

sequence. Being bounded above (b is an upper bound) this sequence converges, by

Theorem 2. Let limxn D L. By Theorem 3, a � L � b. Since f is continuous at

L, limf .xn/ D f .L/ exists by Theorem 4. But since f .xn/ � n, limf .xn/ cannot

exist. This contradiction completes the proof.

T H E O R E M

6

The Max-Min Theorem

If f is continuous on Œa; b�, then there are points v and u in Œa; b� such that for any x

in Œa; b� we have

f .v/ � f .x/ � f .u/I

that is, f assumes maximum and minimum values on Œa; b�.

PROOF By Theorem 5 we know that the set S D ff .x/ W a � x � bg has an upper

bound and, therefore, by the completeness axiom, a least upper bound. Call this least

upper bound M . Suppose that there exists no point u in Œa; b� such that f .u/ D M .

Then by Theorem 1(a), 1=.M � f .x// is continuous on Œa; b�. By Theorem 5, there

exists a constant K such that 1=.M � f .x// � K for all x in Œa; b�. Thus f .x/ �

M � 1=K, which contradicts the fact that M is the least upper bound for the values of

f . Hence, there must exist some point u in Œa; b� such that f .u/ D M . Since M is
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Theorem. Before attempting these proofs, however, we must develop a little more

machinery.

In Section 9.1 we stated a version of the completeness axiom that pertains to

sequences of real numbers; specifically, that an increasing sequence that is bounded

above converges to a limit. We begin by verifying that this follows from the version

stated above. (Both statements are, in fact, equivalent.) As noted in Section 9.1, the

sequence

fxng D fx1; x2; x3; : : :g

is a function on the positive integers, that is, xn D x.n/. We say that the sequence

converges to the limit L, and we write limxn D L, if the corresponding function x.t/

satisfies limt!1 x.t/ D L as defined above. More formally,

D E F I N I T I O N

4

Limit of a sequence

We say that limxn D L if for every positive number � there exists a positive

number N D N.�/ such that jxn � Lj < � holds whenever n � N:

T H E O R E M

2

If fxng is an increasing sequence that is bounded above, that is,

xnC1 � xn and xn � K for n D 1; 2; 3; : : : ;

then limxn D L exists. (Equivalently, if fxng is decreasing and bounded below, then

limxn exists.)

PROOF Let fxng be increasing and bounded above. The set S of real numbers xn has

an upper bound, K, and so has a least upper bound, say L D sup.S/. Thus, xn � L

for every n, and if � > 0, then there exists a positive integer N such that xN > L � �.

(Otherwise, L � � would be an upper bound for S that is lower than the least upper

bound.) If n � N; then we have L � � < xN � xn � L, so jxn � Lj < �. Thus,

limxn D L. The proof for a decreasing sequence that is bounded below is similar.

T H E O R E M

3

If a � xn � b for each n, and if limxn D L, then a � L � b.

PROOF Suppose that L > b. Let � D L � b. Since limxn D L, there exists n such

that jxn � Lj < �. Thus, xn > L � � D L � .L � b/ D b, which is a contradiction,

since we are given that xn � b. Thus, L � b. A similar argument shows that L � a.

T H E O R E M

4

If f is continuous on Œa; b�, if a � xn � b for each n, and if limxn D L, then

limf .xn/ D f .L/.

The proof is similar to that of Theorem 1(b) and is left as Exercise 15 at the end of this

appendix.

Continuous Functions on a Closed, Finite Interval
We are now in a position to prove the main results about continuous functions on

closed, finite intervals.
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T H E O R E M

5

The Boundedness Theorem

If f is continuous on Œa; b�, then f is bounded there; that is, there exists a constant K

such that jf .x/j � K if a � x � b.

PROOF We show that f is bounded above; a similar proof shows that f is bounded

below. For each positive integer n let Sn be the set of points x in Œa; b� such that

f .x/ > n:

Sn D fx W a � x � b and f .x/ > ng:

We would like to show that Sn is empty for some n. It would then follow that f .x/ � n

for all x in Œa; b�; that is, n would be an upper bound for f on Œa; b�.

Suppose, to the contrary, that Sn is nonempty for every n. We will show that

this leads to a contradiction. Since Sn is bounded below (a is a lower bound), by

completeness Sn has a greatest lower bound; call it xn. (See Figure III.2.) Evidently,

a � xn. Since f .x/ > n at some point of Œa; b� and f is continuous at that point,

f .x/ > n on some interval contained in Œa; b�. Hence, xn < b. It follows that

f .xn/ � n. (If f .xn/ < n, then by continuity f .x/ < n for some distance to the right

of xn, and xn could not be the greatest lower bound of Sn.)

Figure III.2 The set Sn

y

x

y D f .x/

n

a xn

Sn Sn

b

For each n, we have SnC1 � Sn. Therefore, xnC1 � xn and fxng is an increasing

sequence. Being bounded above (b is an upper bound) this sequence converges, by

Theorem 2. Let limxn D L. By Theorem 3, a � L � b. Since f is continuous at

L, limf .xn/ D f .L/ exists by Theorem 4. But since f .xn/ � n, limf .xn/ cannot

exist. This contradiction completes the proof.

T H E O R E M

6

The Max-Min Theorem

If f is continuous on Œa; b�, then there are points v and u in Œa; b� such that for any x

in Œa; b� we have

f .v/ � f .x/ � f .u/I

that is, f assumes maximum and minimum values on Œa; b�.

PROOF By Theorem 5 we know that the set S D ff .x/ W a � x � bg has an upper

bound and, therefore, by the completeness axiom, a least upper bound. Call this least

upper bound M . Suppose that there exists no point u in Œa; b� such that f .u/ D M .

Then by Theorem 1(a), 1=.M � f .x// is continuous on Œa; b�. By Theorem 5, there

exists a constant K such that 1=.M � f .x// � K for all x in Œa; b�. Thus f .x/ �

M � 1=K, which contradicts the fact that M is the least upper bound for the values of

f . Hence, there must exist some point u in Œa; b� such that f .u/ D M . Since M is
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an upper bound for the values of f on Œa; b�, we have f .x/ � f .u/ D M for all x in

Œa; b�.

The proof that there must exist a point v in Œa; b� such that f .x/ � f .v/ for all x

in Œa; b� is similar.

T H E O R E M

7

The Intermediate-Value Theorem

If f is continuous on Œa; b� and s is a real number lying between the numbers f .a/

and f .b/, then there exists a point c in Œa; b� such that f .c/ D s.

PROOF To be specific, we assume that f .a/ < s < f .b/. (The proof for the case

f .a/ > s > f .b/ is similar.) Let S D fx W a � x � b and f .x/ � sg. S is nonempty

(a belongs to S) and bounded above (b is an upper bound), so by completeness S has

a least upper bound; call it c.

Suppose that f .c/ > s. Then c ¤ a and, by continuity, f .x/ > s on some

interval .c � ı; c� where ı > 0. But this says c � ı is an upper bound for S lower than

the least upper bound, which is impossible. Thus, f .c/ � s.

Suppose f .c/ < s. Then c ¤ b and, by continuity, f .x/ < s on some interval of

the form Œc; cC ı/ for some ı > 0. But this says that Œc; cC ı/ � S , which contradicts

the fact that c is an upper bound for S . Hence, we cannot have f .c/ < s. Therefore,

f .c/ D s.

For more discussion of these theorems and some applications, see Section 1.4.

E X E R C I S E S : A P P E N D I X III

1. Let a < b < c and suppose that f .x/ � g.x/ for a � x � c.

If limx!b f .x/ D L and limx!b g.x/ DM , prove that

L �M . Hint: Assume that L > M and deduce that

f .x/ > g.x/ for all x sufficiently near b. This contradicts the

condition that f .x/ � g.x/ for a � x � b.

2. If f .x/ � K on the intervals Œa; b/ and .b; c�, and if

limx!b f .x/ D L, prove that L � K.

3. Use the formal definition of limit to prove that

limx!0C x
r
D 0 for any positive, rational number r .

Prove the assertions in Exercises 4–9.

4. f .x/ D C (constant) and g.x/ D x are both continuous on

the whole real line.

5. Every polynomial is continuous on the whole real line.

6. A rational function (quotient of polynomials) is continuous

everywhere except where the denominator is 0.

7. If n is a positive integer and a > 0, then f .x/ D x1=n is

continuous at x D a.

8. If r D m=n is a rational number, then g.x/ D xr is

continuous at every point a > 0.

9. If r D m=n, where m and n are integers and n is odd, show

that g.x/ D xr is continuous at every point a < 0. If r � 0,

show that g is continuous at 0 also.

10. Prove that f .x/ D jxj is continuous on the real line.

Use the definitions from Chapter 3 for the functions in

Exercises 11–14 to show that these functions are continuous

on their respective domains.

11. sinx 12. cos x

13. lnx 14. ex

15. Prove Theorem 4.

16. Suppose that every function that is continuous and bounded

on Œa; b� must assume a maximum value and a minimum value

on that interval. Without using Theorem 5, prove that every

function f that is continuous on Œa; b� must be bounded on

that interval. Hint: Show that g.t/ D t=.1C jt j/ is continuous

and increasing on the real line. Then consider g
�

f .x/

�

.
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The Riemann Integral

“
It seems to be expected of every pilgrim up the slopes of the

mathematical Parnassus, that he will at some point or other of his

journey sit down and invent a definite integral or two towards the

increase of the common stock.

”J. J. Sylvester 1814–1897

In Section 5.3 we defined the definite integral
R b

a
f .x/ dx of a function f that is con-

tinuous on the finite, closed interval Œa; b�. The integral was defined as a kind of “limit”

of Riemann sums formed by partitioning the interval Œa; b� into small subintervals. In

this appendix we will reformulate the definition of the integral so that it can be used for

functions that are not necessarily continuous; in the following discussion we assume

only that f is bounded on Œa; b�. Later we will prove Theorem 2 of Section 5.3, which

asserts that any continuous function is integrable.

Recall that a partition P of Œa; b� is a finite, ordered set of points

P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn�1 < xn D b.

Such a partition subdivides Œa; b� into n subintervals Œx0; x1�; Œx1; x2�; : : : ; Œxn�1; xn�,

where n D n.P / depends on the partition. The length of the j th subinterval Œxj �1; xj �

is �xj D xj � xj �1.

Suppose that the function f is bounded on Œa; b�. Given any partition P; the n

sets Sj D ff .x/ W xj �1 � x � xj g have least upper bounds Mj and greatest lower

bounds mj , .1 � j � n/, so that

mj � f .x/ �Mj on Œxj �1; xj �:

We define upper and lower Riemann sums for f corresponding to the partition P to

be

U.f;P / D

n.P /
X

j D1

Mj�xj and

L.f;P / D

n.P /
X

j D1

mj�xj :

(See Figure IV.1.) Note that if f is continuous on Œa; b�, then mj and Mj are, in fact,

the minimum and maximum values of f over Œxj �1; xj � (by Theorem 6 of Appendix

III); that is, mj D f .lj / and Mj D f .uj /, where f .lj / � f .x/ � f .uj / for xj �1 �

x � xj .

If P is any partition of Œa; b� and we create a new partition P � by adding new

subdivision points to those of P; thus subdividing the subintervals of P into smaller

ones, then we call P � a refinement of P:
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an upper bound for the values of f on Œa; b�, we have f .x/ � f .u/ D M for all x in

Œa; b�.

The proof that there must exist a point v in Œa; b� such that f .x/ � f .v/ for all x

in Œa; b� is similar.

T H E O R E M

7

The Intermediate-Value Theorem

If f is continuous on Œa; b� and s is a real number lying between the numbers f .a/

and f .b/, then there exists a point c in Œa; b� such that f .c/ D s.

PROOF To be specific, we assume that f .a/ < s < f .b/. (The proof for the case

f .a/ > s > f .b/ is similar.) Let S D fx W a � x � b and f .x/ � sg. S is nonempty

(a belongs to S) and bounded above (b is an upper bound), so by completeness S has

a least upper bound; call it c.

Suppose that f .c/ > s. Then c ¤ a and, by continuity, f .x/ > s on some

interval .c � ı; c� where ı > 0. But this says c � ı is an upper bound for S lower than

the least upper bound, which is impossible. Thus, f .c/ � s.

Suppose f .c/ < s. Then c ¤ b and, by continuity, f .x/ < s on some interval of

the form Œc; cC ı/ for some ı > 0. But this says that Œc; cC ı/ � S , which contradicts

the fact that c is an upper bound for S . Hence, we cannot have f .c/ < s. Therefore,

f .c/ D s.

For more discussion of these theorems and some applications, see Section 1.4.

E X E R C I S E S : A P P E N D I X III

1. Let a < b < c and suppose that f .x/ � g.x/ for a � x � c.

If limx!b f .x/ D L and limx!b g.x/ DM , prove that

L �M . Hint: Assume that L > M and deduce that

f .x/ > g.x/ for all x sufficiently near b. This contradicts the

condition that f .x/ � g.x/ for a � x � b.

2. If f .x/ � K on the intervals Œa; b/ and .b; c�, and if

limx!b f .x/ D L, prove that L � K.

3. Use the formal definition of limit to prove that

limx!0C x
r
D 0 for any positive, rational number r .

Prove the assertions in Exercises 4–9.

4. f .x/ D C (constant) and g.x/ D x are both continuous on

the whole real line.

5. Every polynomial is continuous on the whole real line.

6. A rational function (quotient of polynomials) is continuous

everywhere except where the denominator is 0.

7. If n is a positive integer and a > 0, then f .x/ D x1=n is

continuous at x D a.

8. If r D m=n is a rational number, then g.x/ D xr is

continuous at every point a > 0.

9. If r D m=n, where m and n are integers and n is odd, show

that g.x/ D xr is continuous at every point a < 0. If r � 0,

show that g is continuous at 0 also.

10. Prove that f .x/ D jxj is continuous on the real line.

Use the definitions from Chapter 3 for the functions in

Exercises 11–14 to show that these functions are continuous

on their respective domains.

11. sinx 12. cos x

13. lnx 14. ex

15. Prove Theorem 4.

16. Suppose that every function that is continuous and bounded

on Œa; b� must assume a maximum value and a minimum value

on that interval. Without using Theorem 5, prove that every

function f that is continuous on Œa; b� must be bounded on

that interval. Hint: Show that g.t/ D t=.1C jt j/ is continuous

and increasing on the real line. Then consider g
�

f .x/

�

.
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A P P E N D I X IV

The Riemann Integral

“
It seems to be expected of every pilgrim up the slopes of the

mathematical Parnassus, that he will at some point or other of his

journey sit down and invent a definite integral or two towards the

increase of the common stock.

”J. J. Sylvester 1814–1897

In Section 5.3 we defined the definite integral
R b

a
f .x/ dx of a function f that is con-

tinuous on the finite, closed interval Œa; b�. The integral was defined as a kind of “limit”

of Riemann sums formed by partitioning the interval Œa; b� into small subintervals. In

this appendix we will reformulate the definition of the integral so that it can be used for

functions that are not necessarily continuous; in the following discussion we assume

only that f is bounded on Œa; b�. Later we will prove Theorem 2 of Section 5.3, which

asserts that any continuous function is integrable.

Recall that a partition P of Œa; b� is a finite, ordered set of points

P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn�1 < xn D b.

Such a partition subdivides Œa; b� into n subintervals Œx0; x1�; Œx1; x2�; : : : ; Œxn�1; xn�,

where n D n.P / depends on the partition. The length of the j th subinterval Œxj �1; xj �

is �xj D xj � xj �1.

Suppose that the function f is bounded on Œa; b�. Given any partition P; the n

sets Sj D ff .x/ W xj �1 � x � xj g have least upper bounds Mj and greatest lower

bounds mj , .1 � j � n/, so that

mj � f .x/ �Mj on Œxj �1; xj �:

We define upper and lower Riemann sums for f corresponding to the partition P to

be

U.f;P / D

n.P /
X

j D1

Mj�xj and

L.f;P / D

n.P /
X

j D1

mj�xj :

(See Figure IV.1.) Note that if f is continuous on Œa; b�, then mj and Mj are, in fact,

the minimum and maximum values of f over Œxj �1; xj � (by Theorem 6 of Appendix

III); that is, mj D f .lj / and Mj D f .uj /, where f .lj / � f .x/ � f .uj / for xj �1 �

x � xj .

If P is any partition of Œa; b� and we create a new partition P � by adding new

subdivision points to those of P; thus subdividing the subintervals of P into smaller

ones, then we call P � a refinement of P:
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Figure IV.1 Upper and lower sums

corresponding to the partition

P D fx0; x1; x2; x3g xx

yy

y D f .x/
y D f .x/

x0 x1 x2 x3 x0 x1 x2 x3

L.f; P /U.f; P /

�x1 �x2 �x3 �x1 �x2 �x3

T H E O R E M

1

If P � is a refinement of P; then L.f;P �/ � L.f;P / and U.f;P �/ � U.f;P /.

PROOF If S and T are sets of real numbers, and S � T; then any lower bound (or

upper bound) of T is also a lower bound (or upper bound) of S . Hence, the greatest

lower bound of S is at least as large as that of T; and the least upper bound of S is no

greater than that of T:

Let P be a given partition of Œa; b� and form a new partition P 0 by adding one

subdivision point to those of P; say, the point k dividing the j th subinterval Œxj �1; xj �

of P into two subintervals Œxj �1; k� and Œk; xj �. (See Figure IV.2.) Letmj ,m0
j , andm00

j

be the greatest lower bounds of the sets of values of f .x/ on the intervals Œxj �1; xj �,

Œxj �1; k�, and Œk; xj �, respectively. Then mj � m
0
j and mj � m

00
j . Thus, mj .xj �

xj �1/ � m
0
j .k � xj �1/Cm

00
j .xj � k/, so L.f;P / � L.f;P 0/.

If P � is a refinement of P; it can be obtained by adding one point at a time to

those of P and thus L.f;P / � L.f;P �
/. We can prove that U.f;P / � U.f;P �

/ in

a similar manner.

Figure IV.2 Adding one point to a

partition

y

x

y D f .x/

mj Dm0

j

m00

j

xj �1 k xj

T H E O R E M

2

If P and P 0 are any two partitions of Œa; b�, then L.f;P / � U.f;P 0
/.

PROOF Combine the subdivision points of P and P 0 to form a new partition P �;

which is a refinement of both P and P 0: Then by Theorem 1,

L.f;P / � L.f;P
�
/ � U.f;P

�
/ � U.f;P

0
/:

No lower sum can exceed any upper sum.

Theorem 2 shows that the set of values ofL.f;P / for fixed f and various partitions P

of Œa; b� is a bounded set; any upper sum is an upper bound for this set. By complete-

ness, the set has a least upper bound, which we shall denote I�. Thus, L.f;P / � I�
for any partition P: Similarly, there exists a greatest lower bound I � for the set of val-

ues of U.f;P / corresponding to different partitions P: It follows that I� � I
�: (See

Exercise 4 at the end of this appendix.)
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D E F I N I T I O N

1

The Riemann integral

If f is bounded on Œa; b� and I� D I �; then we say that f is Riemann

integrable, or simply integrable on Œa; b�, and denote by

Z b

a

f .x/ dx D I� D I
�

the (Riemann) integral of f on Œa; b�.

The following theorem provides a convenient test for determining whether a given

bounded function is integrable.

T H E O R E M

3

The bounded function f is integrable on Œa; b� if and only if for every positive number

� there exists a partition P of Œa; b� such that U.f;P / �L.f;P / < �.

PROOF Suppose that for every � > 0 there exists a partition P of Œa; b� such that

U.f;P /� L.f;P / < �, then

I
�
� U.f;P / < L.f;P /C � � I� C �:

Since I �
< I� C � must hold for every � > 0, it follows that I �

� I�. Since we

already know that I �
� I�, we have I �

D I� and f is integrable on Œa; b�.

Conversely, if I �
D I� and � > 0 are given, we can find a partition P 0 such

that L.f;P 0/ > I� � �=2, and another partition P 00 such that U.f;P 00/ < I �
C

�=2. If P is a common refinement of P 0 and P 00, then by Theorem 1 we have that

U.f;P /� L.f;P / � U.f;P 00/ �L.f;P 0/ < .�=2/C .�=2/ D �, as required.

E X A M P L E 1 Let f .x/ D
n

0 if 0 � x < 1 or 1 < x � 2

1 if x D 1.

Show that f is integrable on Œ0; 2� and find
R 2

0
f .x/ dx.

Solution Let � > 0 be given. Let P D f0; 1� �=3; 1C �=3; 2g. Then L.f;P / D 0

since f .x/ D 0 at points of each of these subintervals into which P subdivides Œ0; 2�.

(See Figure IV.3.) Since f .1/ D 1, we have

U.f;P / D 0

�

1 �
�

3

�

C 1

�

2�

3

�

C 0

�

2 �

�

1C
�

3

��

D

2�

3
:

Hence, U.f;P / � L.f;P / < � and f is integrable on Œ0; 2�. Since L.f;P / D 0 for

every partition,
R 2

0
f .x/ dx D I� D 0.

y

x

U.f; P /

1 21C �
31� �

3

1

Figure IV.3 Constructing a small upper

sum for a nonnegative function that is

positive at only one point

E X A M P L E 2
Let f .x/ be defined on Œ0; 1� by

f .x/ D

n

1 if x is rational

0 if x is irrational.

Show that f is not integrable on Œ0; 1�.

Solution Every subinterval of Œ0; 1� having positive length contains both rational and

irrational numbers. Hence, for any partition P of Œ0; 1� we have L.f;P / D 0 and

U.f;P / D 1. Thus, I� D 0 and I �
D 1, so f is not integrable on Œ0; 1�.
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Figure IV.1 Upper and lower sums

corresponding to the partition

P D fx0; x1; x2; x3g xx

yy

y D f .x/
y D f .x/

x0 x1 x2 x3 x0 x1 x2 x3

L.f; P /U.f; P /

�x1 �x2 �x3 �x1 �x2 �x3

T H E O R E M

1

If P � is a refinement of P; then L.f;P �/ � L.f;P / and U.f;P �/ � U.f;P /.

PROOF If S and T are sets of real numbers, and S � T; then any lower bound (or

upper bound) of T is also a lower bound (or upper bound) of S . Hence, the greatest

lower bound of S is at least as large as that of T; and the least upper bound of S is no

greater than that of T:

Let P be a given partition of Œa; b� and form a new partition P 0 by adding one

subdivision point to those of P; say, the point k dividing the j th subinterval Œxj �1; xj �

of P into two subintervals Œxj �1; k� and Œk; xj �. (See Figure IV.2.) Letmj ,m0
j , andm00

j

be the greatest lower bounds of the sets of values of f .x/ on the intervals Œxj �1; xj �,

Œxj �1; k�, and Œk; xj �, respectively. Then mj � m
0
j and mj � m

00
j . Thus, mj .xj �

xj �1/ � m
0
j .k � xj �1/Cm

00
j .xj � k/, so L.f;P / � L.f;P 0/.

If P � is a refinement of P; it can be obtained by adding one point at a time to

those of P and thus L.f;P / � L.f;P �
/. We can prove that U.f;P / � U.f;P �

/ in

a similar manner.

Figure IV.2 Adding one point to a

partition

y

x

y D f .x/

mj Dm0

j

m00

j

xj �1 k xj

T H E O R E M

2

If P and P 0 are any two partitions of Œa; b�, then L.f;P / � U.f;P 0
/.

PROOF Combine the subdivision points of P and P 0 to form a new partition P �;

which is a refinement of both P and P 0: Then by Theorem 1,

L.f;P / � L.f;P
�
/ � U.f;P

�
/ � U.f;P

0
/:

No lower sum can exceed any upper sum.

Theorem 2 shows that the set of values ofL.f;P / for fixed f and various partitions P

of Œa; b� is a bounded set; any upper sum is an upper bound for this set. By complete-

ness, the set has a least upper bound, which we shall denote I�. Thus, L.f;P / � I�
for any partition P: Similarly, there exists a greatest lower bound I � for the set of val-

ues of U.f;P / corresponding to different partitions P: It follows that I� � I
�: (See

Exercise 4 at the end of this appendix.)
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D E F I N I T I O N

1

The Riemann integral

If f is bounded on Œa; b� and I� D I �; then we say that f is Riemann

integrable, or simply integrable on Œa; b�, and denote by

Z b

a

f .x/ dx D I� D I
�

the (Riemann) integral of f on Œa; b�.

The following theorem provides a convenient test for determining whether a given

bounded function is integrable.

T H E O R E M

3

The bounded function f is integrable on Œa; b� if and only if for every positive number

� there exists a partition P of Œa; b� such that U.f;P / �L.f;P / < �.

PROOF Suppose that for every � > 0 there exists a partition P of Œa; b� such that

U.f;P /� L.f;P / < �, then

I
�
� U.f;P / < L.f;P /C � � I� C �:

Since I �
< I� C � must hold for every � > 0, it follows that I �

� I�. Since we

already know that I �
� I�, we have I �

D I� and f is integrable on Œa; b�.

Conversely, if I �
D I� and � > 0 are given, we can find a partition P 0 such

that L.f;P 0/ > I� � �=2, and another partition P 00 such that U.f;P 00/ < I �
C

�=2. If P is a common refinement of P 0 and P 00, then by Theorem 1 we have that

U.f;P /� L.f;P / � U.f;P 00/ �L.f;P 0/ < .�=2/C .�=2/ D �, as required.

E X A M P L E 1 Let f .x/ D
n

0 if 0 � x < 1 or 1 < x � 2

1 if x D 1.

Show that f is integrable on Œ0; 2� and find
R 2

0
f .x/ dx.

Solution Let � > 0 be given. Let P D f0; 1� �=3; 1C �=3; 2g. Then L.f;P / D 0

since f .x/ D 0 at points of each of these subintervals into which P subdivides Œ0; 2�.

(See Figure IV.3.) Since f .1/ D 1, we have

U.f;P / D 0

�

1 �
�

3

�

C 1

�

2�

3

�

C 0

�

2 �

�

1C
�

3

��

D

2�

3
:

Hence, U.f;P / � L.f;P / < � and f is integrable on Œ0; 2�. Since L.f;P / D 0 for

every partition,
R 2

0
f .x/ dx D I� D 0.

y

x

U.f; P /

1 21C �
31� �

3

1

Figure IV.3 Constructing a small upper

sum for a nonnegative function that is

positive at only one point

E X A M P L E 2
Let f .x/ be defined on Œ0; 1� by

f .x/ D

n

1 if x is rational

0 if x is irrational.

Show that f is not integrable on Œ0; 1�.

Solution Every subinterval of Œ0; 1� having positive length contains both rational and

irrational numbers. Hence, for any partition P of Œ0; 1� we have L.f;P / D 0 and

U.f;P / D 1. Thus, I� D 0 and I �
D 1, so f is not integrable on Œ0; 1�.
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Uniform Continuity
When we assert that a function f is continuous on the interval I; we imply that for

every x in that interval and every � > 0 we can find a positive number ı (depending on

both x and �) such that jf .y/� f .x/j < � whenever jy � xj < ı and y lies in I: If it

is possible to find a such a number ı independent of x and so depending only on � such

that jf .y/ � f .x/j < � holds whenever x and y belong to I and satisfy jy � xj < ı,

we say that that f is uniformly continuous on the interval I: Such is the case for a

closed finite interval.

T H E O R E M

4

If f is continuous on the closed, finite interval Œa; b�, then f is uniformly continuous

on that interval.

PROOF Let � > 0 be given. Define numbers xn in Œa; b� and subsets Sn of Œa; b� as

follows:

x1 D a

S1 D

n

x W x1 < x � b and jf .x/� f .x1/j �
�

3

o

:

If S1 is empty, stop; otherwise, let

x2 D the greatest lower bound of S1

S2 D

n

x W x2 < x � b and jf .x/� f .x2/j �
�

3

o

:

If S2 is empty, stop; otherwise, proceed to define x3 and S3 analogously. We proceed

in this way as long as we can; if xn and Sn have been defined and Sn is not empty, we

define

xnC1 D the greatest lower bound of Sn

SnC1 D

n

x W xnC1 < x � b and jf .x/� f .xnC1/j �
�

3

o

:

At any stage where Sn is not empty, the continuity of f at xn assures us that xnC1 > xn

and jf .xnC1/ � f .xn/j D �=3.

We must consider two possibilities for the above procedure: either Sn is empty for

some n, or Sn is nonempty for every n.

Suppose Sn is nonempty for every n. Then we have constructed an infinite, in-

creasing sequence fxng in Œa; b� that, being bounded above (by b), must have

a limit by completeness (Theorem 2 of Appendix II). Let lim xn D x
�. We have a �

x�
� b. Since f is continuous at x�, there exists ı > 0 such that

jf .x/� f .x�/j < �=8 whenever jx � x�
j < ı and x lies in Œa; b�. Since limxn D x

�,

there exists a positive integer N such that jxn � x
�
j < ı whenever n � N: For such n

we have

�

3
D jf .xnC1/� f .xn/j D jf .xnC1/ � f .x

�
/C f .x

�
/ � f .xn/j

� jf .xnC1/ � f .x
�
/j C jf .xn/ � f .x

�
/j

<
�

8
C

�

8
D

�

4
;

which is clearly impossible. Thus, Sn must, in fact, be empty for some n.

Suppose that SN is empty. Thus, Sn is nonempty for n < N; and the procedure

for defining xn stops with xN . Since SN �1 is not empty, xN < b. In this case define

xN C1 D b and let

ı D minfx2 � x1; x3 � x2; : : : ; xN C1 � xN g:
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The minimum of a finite set of positive numbers is a positive number, so ı > 0. If

x lies in Œa; b�, then x lies in one of the intervals Œx1; x2�, Œx2; x3�, : : :, ŒxN ; xN C1�.

Suppose x lies in Œxk; xkC1�. If y is in Œa; b� and jy � xj < ı, then y lies in either

the same subinterval as x or in an adjacent one; that is, y lies in Œxj ; xj C1�, where

j D k � 1, k, or k C 1. Thus,

jf .y/� f .x/j D jf .y/� f .xj /C f .xj / � f .xk/C f .xk/ � f .x/j

� jf .y/� f .xj /j C jf .xj / � f .xk/j C jf .xk/ � f .x/j

<
�

3
C

�

3
C

�

3
D �;

which was to be proved.

We are now in a position to prove that a continuous function is integrable.

T H E O R E M

5

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

PROOF By Theorem 4, f is uniformly continuous on Œa; b�. Let � > 0 be given. Let

ı > 0 be such that jf .x/�f .y/j < �=.b�a/whenever jx�yj < ı and x and y belong

to Œa; b�. Choose a partition P D fx0; x1; : : : ; xng of Œa; b� for which each subinterval

Œxj �1; xj � has length�xj < ı. Then the greatest lower bound, mj , and the least upper

bound, Mj , of the set of values of f .x/ on Œxj �1; xj � satisfy Mj � mj < �=.b � a/.

Accordingly,

U.f;P /� L.f;P / <
�

b � a

n.P /
X

j D1

�xj D
�

b � a
.b � a/ D �:

Thus, f is integrable on Œa; b�, as asserted.

E X E R C I S E S : A P P E N D I X IV

1. Let f .x/ D

�

1 if 0 � x � 1

0 if 1 < x � 2
. Prove that f is integrable on

Œ0; 2� and find the value of
R 2

0 f .x/ dx.

2. Let f .x/ D
n

1 if x D 1=n; n D 1; 2; 3; : : :

0 for all other values of x.

Show that f is integrable over Œ0; 1� and find the value of the

integral
R 1

0 f .x/ dx.

3.I Let f .x/ D 1=n if x D m=n, where m, n are integers having

no common factors, and let f .x/ D 0 if x is an irrational

number. Thus, f .1=2/ D 1=2, f .1=3/ D f .2=3/ D 1=3,

f .1=4/ D f .3=4/ D 1=4, and so on. Show that f is

integrable on Œ0; 1� and find
R 1

0 f .x/ dx. Hint: Show that for

any � > 0, only finitely many points of the graph of f over

Œ0; 1� lie above the line y D �.

4. Prove that I� and I� defined in the paragraph following

Theorem 2 satisfy I� � I
� as claimed there.

Properties of the Riemann Integral

In Exercises 5–8, you are asked to provide proofs of properties of

the Riemann integral that were stated for the definite integral of a

continuous function in Theorem 3 of Section 5.4.

5. Prove that if f and g are bounded and integrable on Œa; b�,

and A and B are constants, then Af C Bg is integrable on

Œa; b� and

Z b

a

�

Af .x/CBg.x/

�

dx D A

Z b

a

f .x/ dxCB

Z b

a

g.x/ dx:

6. Prove that if f is bounded and integrable on an interval

containing a, b, and c, then

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

7. Prove that if f and g are bounded and integrable on the

interval Œa; b� (where a < b) and f .x/ � g.x/ for a � x � b,

then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

Also, if jf j is bounded and integrable on Œa; b�,

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:
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Uniform Continuity
When we assert that a function f is continuous on the interval I; we imply that for

every x in that interval and every � > 0 we can find a positive number ı (depending on

both x and �) such that jf .y/� f .x/j < � whenever jy � xj < ı and y lies in I: If it

is possible to find a such a number ı independent of x and so depending only on � such

that jf .y/ � f .x/j < � holds whenever x and y belong to I and satisfy jy � xj < ı,

we say that that f is uniformly continuous on the interval I: Such is the case for a

closed finite interval.

T H E O R E M

4

If f is continuous on the closed, finite interval Œa; b�, then f is uniformly continuous

on that interval.

PROOF Let � > 0 be given. Define numbers xn in Œa; b� and subsets Sn of Œa; b� as

follows:

x1 D a

S1 D

n

x W x1 < x � b and jf .x/� f .x1/j �
�

3

o

:

If S1 is empty, stop; otherwise, let

x2 D the greatest lower bound of S1

S2 D

n

x W x2 < x � b and jf .x/� f .x2/j �
�

3

o

:

If S2 is empty, stop; otherwise, proceed to define x3 and S3 analogously. We proceed

in this way as long as we can; if xn and Sn have been defined and Sn is not empty, we

define

xnC1 D the greatest lower bound of Sn

SnC1 D

n

x W xnC1 < x � b and jf .x/� f .xnC1/j �
�

3

o

:

At any stage where Sn is not empty, the continuity of f at xn assures us that xnC1 > xn

and jf .xnC1/ � f .xn/j D �=3.

We must consider two possibilities for the above procedure: either Sn is empty for

some n, or Sn is nonempty for every n.

Suppose Sn is nonempty for every n. Then we have constructed an infinite, in-

creasing sequence fxng in Œa; b� that, being bounded above (by b), must have

a limit by completeness (Theorem 2 of Appendix II). Let lim xn D x
�. We have a �

x�
� b. Since f is continuous at x�, there exists ı > 0 such that

jf .x/� f .x�/j < �=8 whenever jx � x�
j < ı and x lies in Œa; b�. Since limxn D x

�,

there exists a positive integer N such that jxn � x
�
j < ı whenever n � N: For such n

we have

�

3
D jf .xnC1/� f .xn/j D jf .xnC1/ � f .x

�
/C f .x

�
/ � f .xn/j

� jf .xnC1/ � f .x
�
/j C jf .xn/ � f .x

�
/j

<
�

8
C

�

8
D

�

4
;

which is clearly impossible. Thus, Sn must, in fact, be empty for some n.

Suppose that SN is empty. Thus, Sn is nonempty for n < N; and the procedure

for defining xn stops with xN . Since SN �1 is not empty, xN < b. In this case define

xN C1 D b and let

ı D minfx2 � x1; x3 � x2; : : : ; xN C1 � xN g:
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The minimum of a finite set of positive numbers is a positive number, so ı > 0. If

x lies in Œa; b�, then x lies in one of the intervals Œx1; x2�, Œx2; x3�, : : :, ŒxN ; xN C1�.

Suppose x lies in Œxk; xkC1�. If y is in Œa; b� and jy � xj < ı, then y lies in either

the same subinterval as x or in an adjacent one; that is, y lies in Œxj ; xj C1�, where

j D k � 1, k, or k C 1. Thus,

jf .y/� f .x/j D jf .y/� f .xj /C f .xj / � f .xk/C f .xk/ � f .x/j

� jf .y/� f .xj /j C jf .xj / � f .xk/j C jf .xk/ � f .x/j

<
�

3
C

�

3
C

�

3
D �;

which was to be proved.

We are now in a position to prove that a continuous function is integrable.

T H E O R E M

5

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

PROOF By Theorem 4, f is uniformly continuous on Œa; b�. Let � > 0 be given. Let

ı > 0 be such that jf .x/�f .y/j < �=.b�a/whenever jx�yj < ı and x and y belong

to Œa; b�. Choose a partition P D fx0; x1; : : : ; xng of Œa; b� for which each subinterval

Œxj �1; xj � has length�xj < ı. Then the greatest lower bound, mj , and the least upper

bound, Mj , of the set of values of f .x/ on Œxj �1; xj � satisfy Mj � mj < �=.b � a/.

Accordingly,

U.f;P /� L.f;P / <
�

b � a

n.P /
X

j D1

�xj D
�

b � a
.b � a/ D �:

Thus, f is integrable on Œa; b�, as asserted.

E X E R C I S E S : A P P E N D I X IV

1. Let f .x/ D

�

1 if 0 � x � 1

0 if 1 < x � 2
. Prove that f is integrable on

Œ0; 2� and find the value of
R 2

0 f .x/ dx.

2. Let f .x/ D
n

1 if x D 1=n; n D 1; 2; 3; : : :

0 for all other values of x.

Show that f is integrable over Œ0; 1� and find the value of the

integral
R 1

0 f .x/ dx.

3.I Let f .x/ D 1=n if x D m=n, where m, n are integers having

no common factors, and let f .x/ D 0 if x is an irrational

number. Thus, f .1=2/ D 1=2, f .1=3/ D f .2=3/ D 1=3,

f .1=4/ D f .3=4/ D 1=4, and so on. Show that f is

integrable on Œ0; 1� and find
R 1

0 f .x/ dx. Hint: Show that for

any � > 0, only finitely many points of the graph of f over

Œ0; 1� lie above the line y D �.

4. Prove that I� and I� defined in the paragraph following

Theorem 2 satisfy I� � I
� as claimed there.

Properties of the Riemann Integral

In Exercises 5–8, you are asked to provide proofs of properties of

the Riemann integral that were stated for the definite integral of a

continuous function in Theorem 3 of Section 5.4.

5. Prove that if f and g are bounded and integrable on Œa; b�,

and A and B are constants, then Af C Bg is integrable on

Œa; b� and

Z b

a

�

Af .x/CBg.x/

�

dx D A

Z b

a

f .x/ dxCB

Z b

a

g.x/ dx:

6. Prove that if f is bounded and integrable on an interval

containing a, b, and c, then

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

7. Prove that if f and g are bounded and integrable on the

interval Œa; b� (where a < b) and f .x/ � g.x/ for a � x � b,

then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

Also, if jf j is bounded and integrable on Œa; b�,

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:
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8. If f is bounded and integrable on Œ�a; a�, where a > 0, then

(a) if f is an odd function, then

Z a

�a

f .x/ dx D 0, or

(b) if f is an even function, then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

9. Use the definition of uniform continuity given in the

paragraph preceding Theorem 4 to prove that f .x/ D
p

x is

uniformly continuous on Œ0; 1�. Do not use Theorem 4 itself.

10. Show directly from the definition of uniform continuity

(without using Theorem 5 of Appendix III) that a function f

uniformly continuous on a closed, finite interval is necessarily

bounded there.

11. If f is bounded and integrable on Œa; b�, prove that

F.x/ D
R x

a f .t/ dt is uniformly continuous on Œa; b�. (If f

were continuous, we would have a stronger result; F would be

differentiable on .a; b/ and F 0.x/ D f .x/ (which is the

Fundamental Theorem of Calculus).)
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Doing Calculus with Maple

“
I think, therefore I am.

” René Descartes 1596–1650

Discourse on Method

“
AI [Artificial Intelligences] think,

therefore I am.

” David Braue

APC Magazine, November 2003

Computer algebra systems like Maple and Mathematica are capable of doing most of

the tedious calculations involved in doing calculus, especially the very intensive calcu-

lations required by many applied problems. (They cannot, of course, do the thinking

for you; you must still fully understand what you are doing and what the limitations

are of such programs.) Throughout this text we have inserted material illustrating how

to use Maple to do common calculus-oriented calculations. These insertions range in

length from single paragraphs and remarks to entire sections. To help you locate the

Maple material appropriate for specific topics, we include below a list pointing to the

text sections containing Maple examples and the pages where they occur.

Note, however, that this material assumes you are familiar with the basics of start-

ing a Maple session, preferably with a graphical user interface, which typically displays

the prompt > when it is waiting for your input. In this book the input is shown in ma-

genta. It normally concludes with a semicolon (;) followed by pressing the <enter>

key, which we omit from our examples. The output is typically printed by Maple cen-

tred in the window; we show it in cyan. For instance,

> factor(x^2-x-2);

.x C 1/.x � 2/

Output can be supressed by using a colon (:) instead of a semicolon at the end of the

input.

The authors used Maple 10 for preparing the Maple examples in this edition. They

should work equally well in later editions. These examples are by no means complete

or exhaustive. For a more complete treatment of Maple as a tool for doing calculus,

the authors highly recommend the excellent Maple lab manual Calculus: The Maple

Way, written by Professor Robert Israel of the University of British Columbia. Like

this book, it is published by Pearson Canada under the Addison-Wesley logo.
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8. If f is bounded and integrable on Œ�a; a�, where a > 0, then

(a) if f is an odd function, then

Z a

�a

f .x/ dx D 0, or

(b) if f is an even function, then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

9. Use the definition of uniform continuity given in the

paragraph preceding Theorem 4 to prove that f .x/ D
p

x is

uniformly continuous on Œ0; 1�. Do not use Theorem 4 itself.

10. Show directly from the definition of uniform continuity

(without using Theorem 5 of Appendix III) that a function f

uniformly continuous on a closed, finite interval is necessarily

bounded there.

11. If f is bounded and integrable on Œa; b�, prove that

F.x/ D
R x

a f .t/ dt is uniformly continuous on Œa; b�. (If f

were continuous, we would have a stronger result; F would be

differentiable on .a; b/ and F 0.x/ D f .x/ (which is the

Fundamental Theorem of Calculus).)
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A P P E N D I X V

Doing Calculus with Maple

“
I think, therefore I am.

” René Descartes 1596–1650

Discourse on Method

“
AI [Artificial Intelligences] think,

therefore I am.

” David Braue

APC Magazine, November 2003

Computer algebra systems like Maple and Mathematica are capable of doing most of

the tedious calculations involved in doing calculus, especially the very intensive calcu-

lations required by many applied problems. (They cannot, of course, do the thinking

for you; you must still fully understand what you are doing and what the limitations

are of such programs.) Throughout this text we have inserted material illustrating how

to use Maple to do common calculus-oriented calculations. These insertions range in

length from single paragraphs and remarks to entire sections. To help you locate the

Maple material appropriate for specific topics, we include below a list pointing to the

text sections containing Maple examples and the pages where they occur.

Note, however, that this material assumes you are familiar with the basics of start-

ing a Maple session, preferably with a graphical user interface, which typically displays

the prompt > when it is waiting for your input. In this book the input is shown in ma-

genta. It normally concludes with a semicolon (;) followed by pressing the <enter>

key, which we omit from our examples. The output is typically printed by Maple cen-

tred in the window; we show it in cyan. For instance,

> factor(x^2-x-2);

.x C 1/.x � 2/

Output can be supressed by using a colon (:) instead of a semicolon at the end of the

input.

The authors used Maple 10 for preparing the Maple examples in this edition. They

should work equally well in later editions. These examples are by no means complete

or exhaustive. For a more complete treatment of Maple as a tool for doing calculus,

the authors highly recommend the excellent Maple lab manual Calculus: The Maple

Way, written by Professor Robert Israel of the University of British Columbia. Like

this book, it is published by Pearson Canada under the Addison-Wesley logo.
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List of Maple Examples and Discussion

Topic Section Page(s)

Defining and Graphing Functions P.4 30–32

Calculating with Trigonometric Functions P.7 54–55

Calculating Limits—A Numerical Monster 1.2 65–66

Calculating Limits 1.3 77–78

Solving Equations with fsolve 1.4 86

Finding Derivatives 2.4 118–119

Higher-Order Derivatives 2.6 130

Derivatives of Implicit Functions 2.9 147

Inverse Tangent Functions 3.5 196

Graph Plotting 4.7 253–258

Roundoff Error and Truncation 4.11 284–287

Calculating Sums 5.1 295

Integrating Functions 6.4 359–360

Numerical Integration—Higher-Order Methods 6.8 387–388

Normal Probabilities 7.8 446–447

Plotting Parametric Curves 8.2 475

Plotting Polar Curves 8.5 491–492

Infinite Series 9.5 541

Vector and Matrix Calculations 10.8 618–626

Velocity, Acceleration, Curvature, Torsion 11.5 663–664

Three-Dimensional Graphing 12.1 683–684

Partial Derivatives 12.4 699–700

Higher-Order Partial Derivatives 12.5 709

The Jacobian Matrix 12.6 719

Gradients 12.7 732

Taylor Polynomials 12.9 747–748

Constrained Extrema 13.4 779–781

Multivariable Newton’s Method 13.8 802–807

Double Integrals 14.2 826–827

Gradient, Divergence, Curl, Laplacian 16.2 927–928

Solving DEs with dsolve 18.6 1031

in Calculus of Several Variables only 18.6 1045

Laplace Transforms and Their Inverses 18.7 1040
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Answers to

Odd-Numbered Exercises

Chapter P

Preliminaries

Section P.1 (page 10)

1. 0:2 3. 4=33

5. 1=7 D 0:142857, 2=7 D 0:285714,

3=7 D 0:428571, 4=7 D 0:571428,

5=7 D 0:714285, 6=7 D 0:857142

7. Œ0; 5� 9. .�1;�6/ [ .�5;1/

11. .�2;1/ 13. .�1;�2/

15. .�1; 5=4� 17. .0;1/

19. .�1; 5=3/ [ .2;1/ 21. Œ0; 2�

23. .�2; 0/ [ .2;1/ 25. Œ�2; 0/ [ Œ4;1/

27. x D �3; 3 29. t D �1=2; �9=2

31. s D �1=3; 17=3 33. .�2; 2/

35. Œ�1; 3� 37.

�

5

3
; 3

�

39. Œ0; 4� 41. x > 1

43. true if a � 0, false if a < 0

Section P.2 (page 16)

1. �x D 4, �y D �3, dist D 5

3. �x D �4, �y D �4, dist D 4
p

2

5. .2;�4/

7. circle, centre .0; 0/, radius 1

9. points inside and on circle, centre .0; 0/, radius 1

11. points on and above the parabola y D x2

13. (a) x D �2, (b) y D 5=3

15. y D x C 2 17. y D 2x C b

19. above 21. y D 3x=2

23. y D .7 � x/=3 25. y D
p

2 � 2x

27. 4, 3,

y

x

3

3x C 4y D 12

4

29.
p

2, �2=
p

3

y

x
p

2

�2=
p

3

p

2x �
p

3y D 2

31. (a) y D x � 1, (b) y D �x C 3

33. .2;�3/ 37. 5

39. $23; 000 43. .�2;�2/

45.
�

1
3
.x1 C 2x2/;

1
3
.y1 C 2y2/

�

47. circle, centre .2; 0/, radius 4

49. perp. if k D �8, parallel if k D 1=2

Section P.3 (page 22)

1. x2
C y

2
D 16 3. x2

C y
2
C 4x D 5

5. .1; 0/, 2 7. .1;�2/, 3

9. exterior of circle, centre .0; 0/, radius 1

11. closed disk, centre .�1; 0/, radius 2

13. washer shaped region between the circles of radius 1

and 2 centred at .0; 0/

15. first octant region lying inside the two circles of radius

1 having centres at .1; 0/ and .0; 1/

17. x2
C y2

C 2x � 4y < 1

19. x2
C y2 < 2, x � 1 21. x2

D 16y
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List of Maple Examples and Discussion

Topic Section Page(s)

Defining and Graphing Functions P.4 30–32

Calculating with Trigonometric Functions P.7 54–55

Calculating Limits—A Numerical Monster 1.2 65–66

Calculating Limits 1.3 77–78

Solving Equations with fsolve 1.4 86

Finding Derivatives 2.4 118–119

Higher-Order Derivatives 2.6 130

Derivatives of Implicit Functions 2.9 147

Inverse Tangent Functions 3.5 196

Graph Plotting 4.7 253–258

Roundoff Error and Truncation 4.11 284–287

Calculating Sums 5.1 295

Integrating Functions 6.4 359–360

Numerical Integration—Higher-Order Methods 6.8 387–388

Normal Probabilities 7.8 446–447

Plotting Parametric Curves 8.2 475

Plotting Polar Curves 8.5 491–492

Infinite Series 9.5 541

Vector and Matrix Calculations 10.8 618–626

Velocity, Acceleration, Curvature, Torsion 11.5 663–664

Three-Dimensional Graphing 12.1 683–684

Partial Derivatives 12.4 699–700

Higher-Order Partial Derivatives 12.5 709

The Jacobian Matrix 12.6 719

Gradients 12.7 732

Taylor Polynomials 12.9 747–748

Constrained Extrema 13.4 779–781

Multivariable Newton’s Method 13.8 802–807

Double Integrals 14.2 826–827

Gradient, Divergence, Curl, Laplacian 16.2 927–928

Solving DEs with dsolve 18.6 1031

in Calculus of Several Variables only 18.6 1045

Laplace Transforms and Their Inverses 18.7 1040

ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-35 October 14, 2016

ANSWERS TO ODD-NUMBERED EXERCISES A-35

Answers to

Odd-Numbered Exercises

Chapter P

Preliminaries

Section P.1 (page 10)

1. 0:2 3. 4=33

5. 1=7 D 0:142857, 2=7 D 0:285714,

3=7 D 0:428571, 4=7 D 0:571428,

5=7 D 0:714285, 6=7 D 0:857142

7. Œ0; 5� 9. .�1;�6/ [ .�5;1/

11. .�2;1/ 13. .�1;�2/

15. .�1; 5=4� 17. .0;1/

19. .�1; 5=3/ [ .2;1/ 21. Œ0; 2�

23. .�2; 0/ [ .2;1/ 25. Œ�2; 0/ [ Œ4;1/

27. x D �3; 3 29. t D �1=2; �9=2

31. s D �1=3; 17=3 33. .�2; 2/

35. Œ�1; 3� 37.

�

5

3
; 3

�

39. Œ0; 4� 41. x > 1

43. true if a � 0, false if a < 0

Section P.2 (page 16)

1. �x D 4, �y D �3, dist D 5

3. �x D �4, �y D �4, dist D 4
p

2

5. .2;�4/

7. circle, centre .0; 0/, radius 1

9. points inside and on circle, centre .0; 0/, radius 1

11. points on and above the parabola y D x2

13. (a) x D �2, (b) y D 5=3

15. y D x C 2 17. y D 2x C b

19. above 21. y D 3x=2

23. y D .7 � x/=3 25. y D
p

2 � 2x

27. 4, 3,

y

x

3

3x C 4y D 12

4

29.
p

2, �2=
p

3

y

x
p

2

�2=
p

3

p

2x �
p

3y D 2

31. (a) y D x � 1, (b) y D �x C 3

33. .2;�3/ 37. 5

39. $23; 000 43. .�2;�2/

45.
�

1
3
.x1 C 2x2/;

1
3
.y1 C 2y2/

�

47. circle, centre .2; 0/, radius 4

49. perp. if k D �8, parallel if k D 1=2

Section P.3 (page 22)

1. x2
C y

2
D 16 3. x2

C y
2
C 4x D 5

5. .1; 0/, 2 7. .1;�2/, 3

9. exterior of circle, centre .0; 0/, radius 1

11. closed disk, centre .�1; 0/, radius 2

13. washer shaped region between the circles of radius 1

and 2 centred at .0; 0/

15. first octant region lying inside the two circles of radius

1 having centres at .1; 0/ and .0; 1/

17. x2
C y2

C 2x � 4y < 1

19. x2
C y2 < 2, x � 1 21. x2

D 16y
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23. y2
D 8x

25. .0; 1=2/, y D �1=2

y

x

.0; 1=2/

y D x2=2

y D �1=2

27. .�1; 0/, x D 1

y

x

x D �y2=4

�1

x D 1

29. (a) y D x2
�3, (b) y D .x�4/2, (c) y D .x�3/2C3,

(d) y D .x � 4/2 � 2

31. y D
p

.x=3/C 1 33. y D
p

.3x=2/C 1

35. y D �.x C 1/2 37. y D .x � 2/2 � 2

39. .2; 7/; .1; 4/ 41. .4;�3/; .�4; 3/

43. ellipse, centre .0; 0/, semi-axes 2, 1

y

x

1

2

x2

4
C y

2
D 1

45. ellipse, centre .3;�2/, semi-axes 3, 2

y

x

.3;�2/

.x � 3/2

9
C

.y C 2/2

4
D 1

47. hyperbola, centre .0; 0/, asymptotes x D ˙2y, ver-

tices .˙2; 0/

y

x

x2

4
� y

2
D 1

x D �2y

�2 2

x D 2y

49. rectangular hyperbola, asymptotes x D 0 and y D 0,

vertices .2;�2/ and .�2; 2/

y

x

.2;�2/

xy D �4

.�2; 2/

51. (a) reflecting the graph in the y-axis, (b) reflecting the

graph in the x-axis.

53.

y

x

1

jxj C jyj D 1

1

�1

�1
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ANSWERS TO ODD-NUMBERED EXERCISES A-37

Section P.4 (page 32)

1. D.f / D R, R.f / D Œ1;1/

3. D.G/ D .�1; 4�, R.g/ D Œ0;1/

5. D.h/ D .�1; 2/, R.h/ D .�1;1/

7. Only (b) is the graph of a function. Vertical lines can

meet the others more than once.

11. even, sym. about y-axis 13. odd, sym. about .0; 0/

15. sym. about .2; 0/ 17. sym. about x D 3

19. even, sym. about y-axis

21. no symmetry

23. 25.

y

x
y D �x2

y

x1

y D .x � 1/2

27. 29.

y

x

1

1

y D 1 � x3

y

x

1

y D
p

x C 1

31. 33.

y

x

y D �jxj

y

x

2

2

y D jx � 2j

35. 37.

y

x

1
x D �2

y D
2

x C 2

y

x

1

�1

y D
x

x C 1

39. D D Œ0; 2�, R D Œ2; 3�

41. D D Œ�2; 0�, R D Œ0; 1�

y

x

y D f .x/C 2

.2; 2/

y

x

y D f .x C 2/
1

�2

43. D D Œ0; 2�, R D Œ�1; 0�

45. D D Œ2; 4�. R D Œ0; 1�

y

x

2

�1
y D �f .x/

y

x2 4

.3; 1/

y D f .4 � x/

47. Œ�0:18; 0:68� 49. y D 3=2

51. .2; 1/; y D x � 1; y D 3� x

53. f .x/ D 0

Section P.5 (page 38)

1. The domains of f Cg, f �g, fg, and g=f are Œ1;1/.

The domain of f=g is .1;1/.

.f C g/.x/ D x C
p

x � 1

.f � g/.x/ D x �
p

x � 1

.fg/.x/ D x
p

x � 1

.f=g/.x/ D x=
p

x � 1

.g=f /.x/ D
p

x � 1=x

3.

y D x

y D �x2

y D x � x2

y

x

5.

y

x

y D x C jxj

y D jxj

y D x D jxj

y D x

7. (a) 2, (b) 22, (c) x2
C 2, (d) x2

C 10x C 22, (e) 5,

(f) �2, (g) x C 10, (h) x4
� 6x2

C 6

9. (a) .x � 1/=x, x ¤ 0; 1

(b) 1=.1 �
p

x � 1/ on Œ1; 2/ [ .2;1/

(c)
p

x=.1 � x/, on Œ0; 1/

(d)
pp

x � 1 � 1, on Œ2;1/

11. .x C 1/2 13. x2

15. 1=.x � 1/ 19. D D Œ0; 2�, R D Œ0; 2�
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23. y2
D 8x

25. .0; 1=2/, y D �1=2

y

x

.0; 1=2/

y D x2=2

y D �1=2

27. .�1; 0/, x D 1

y

x

x D �y2=4

�1

x D 1

29. (a) y D x2
�3, (b) y D .x�4/2, (c) y D .x�3/2C3,

(d) y D .x � 4/2 � 2

31. y D
p

.x=3/C 1 33. y D
p

.3x=2/C 1

35. y D �.x C 1/2 37. y D .x � 2/2 � 2

39. .2; 7/; .1; 4/ 41. .4;�3/; .�4; 3/

43. ellipse, centre .0; 0/, semi-axes 2, 1

y

x

1

2

x2

4
C y

2
D 1

45. ellipse, centre .3;�2/, semi-axes 3, 2

y

x

.3;�2/

.x � 3/2

9
C

.y C 2/2

4
D 1

47. hyperbola, centre .0; 0/, asymptotes x D ˙2y, ver-

tices .˙2; 0/

y

x

x2

4
� y

2
D 1

x D �2y

�2 2

x D 2y

49. rectangular hyperbola, asymptotes x D 0 and y D 0,

vertices .2;�2/ and .�2; 2/

y

x

.2;�2/

xy D �4

.�2; 2/

51. (a) reflecting the graph in the y-axis, (b) reflecting the

graph in the x-axis.

53.

y

x

1

jxj C jyj D 1

1

�1

�1
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ANSWERS TO ODD-NUMBERED EXERCISES A-37

Section P.4 (page 32)

1. D.f / D R, R.f / D Œ1;1/

3. D.G/ D .�1; 4�, R.g/ D Œ0;1/

5. D.h/ D .�1; 2/, R.h/ D .�1;1/

7. Only (b) is the graph of a function. Vertical lines can

meet the others more than once.

11. even, sym. about y-axis 13. odd, sym. about .0; 0/

15. sym. about .2; 0/ 17. sym. about x D 3

19. even, sym. about y-axis

21. no symmetry

23. 25.

y

x
y D �x2

y

x1

y D .x � 1/2

27. 29.

y

x

1

1

y D 1 � x3

y

x

1

y D
p

x C 1

31. 33.

y

x

y D �jxj

y

x

2

2

y D jx � 2j

35. 37.

y

x

1
x D �2

y D
2

x C 2

y

x

1

�1

y D
x

x C 1

39. D D Œ0; 2�, R D Œ2; 3�

41. D D Œ�2; 0�, R D Œ0; 1�

y

x

y D f .x/C 2

.2; 2/

y

x

y D f .x C 2/
1

�2

43. D D Œ0; 2�, R D Œ�1; 0�

45. D D Œ2; 4�. R D Œ0; 1�

y

x

2

�1
y D �f .x/

y

x2 4

.3; 1/

y D f .4 � x/

47. Œ�0:18; 0:68� 49. y D 3=2

51. .2; 1/; y D x � 1; y D 3� x

53. f .x/ D 0

Section P.5 (page 38)

1. The domains of f Cg, f �g, fg, and g=f are Œ1;1/.

The domain of f=g is .1;1/.

.f C g/.x/ D x C
p

x � 1

.f � g/.x/ D x �
p

x � 1

.fg/.x/ D x
p

x � 1

.f=g/.x/ D x=
p

x � 1

.g=f /.x/ D
p

x � 1=x

3.

y D x

y D �x2

y D x � x2

y

x

5.

y

x

y D x C jxj

y D jxj

y D x D jxj

y D x

7. (a) 2, (b) 22, (c) x2
C 2, (d) x2

C 10x C 22, (e) 5,

(f) �2, (g) x C 10, (h) x4
� 6x2

C 6

9. (a) .x � 1/=x, x ¤ 0; 1

(b) 1=.1 �
p

x � 1/ on Œ1; 2/ [ .2;1/

(c)
p

x=.1 � x/, on Œ0; 1/

(d)
pp

x � 1 � 1, on Œ2;1/

11. .x C 1/2 13. x2

15. 1=.x � 1/ 19. D D Œ0; 2�, R D Œ0; 2�

9780134154367_Calculus   1117 05/12/16   5:51 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-38 October 14, 2016

A-38 ANSWERS TO ODD-NUMBERED EXERCISES

y

x

y D 2f .x/

.1; 2/

2

y

x

.1=2; 1/

y D f .2x/

1

21. D D Œ0; 1�, R D Œ0; 1�

23. D D Œ�4; 0�, R D Œ1; 2�

.�2; 2/

y D 1C f .�x=2/
.�4; 1/

y

x

25.

27. (a) A D 0, B arbitrary, or A D 1, B D 0

(b) A D �1, B arbitrary, or A D 1, B D 0

29. all integers

31.

y

x

y D x � bxc

33. f 2; g2; f ı f; f ı g; g ı f are even

fg; f =g; g=f; g ı g are odd

f C g is neither, unless either f .x/ D 0 or g.x/ D 0.

Section P.6 (page 45)

1. roots �5 and �2; .x C 5/.x C 2/

3. roots �1˙ i ; .x C 1 � i/.x C 1C i/

5. roots 1=2 (double) and�1=2 (double); .2x�1/2.2xC

1/2

7. roots�1, 1
2
˙

p
3

2
i ; .xC1/

�

x �
1
2
C

p
3

2
i

� �

x �
1
2
�

p
3

2
i

�

9. roots 1 (triple) and �1 (triple); .x � 1/3.x C 1/3

11. roots �2, i , �i , 1C
p

3i , 1�
p

3i ; .xC2/.x� i/.xC

i/.x � 1 �
p

3i/.x � 1C
p

3i/

13. all real numbers

15. all real numbers except 0 and �1

17. x C
2x � 1

x2
� 2

19. x � 2C
x C 6

x2
C 2x C 3

21. P.x/ D .x2
� 2x C 2/.x2

C 2x C 2/

Section P.7 (page 57)

1. �1=
p

2 3.
p

3=2

5. .
p

3 � 1/=.2
p

2/ 7. � cos x

9. � cos x 11. 1=.sin x cos x/

17. 3 sin x � 4 sin3
x

19. period �

y

x���

�1

1
y D cos.2x/

21. period 2

y

x

y D sin.�x/

1 3

�1

2

1

23.

y

x

���

�2� 2�

2

�2

y D 2 cos.x � .�=3//

25. cos � D �4=5; tan � D �3=4

27. sin � D �2
p

2=3; tan � D �2
p

2

29. cos � D �
p

3=2; tan � D 1=
p

3

31. a D 1; b D
p

3

33. b D 5=
p

3; c D 10=
p

3

35. a D b tanA 37. a D b cotB

39. c D b secA 41. sinA D
p

c2
� b2=c

43. sinB D 3=.4
p

2/ 45. sinB D
p

135=16

47. 6=.1C
p

3/

49. b D 4 sin 40ı
= sin 70ı

� 2:736

51. approx. 16.98 m

Chapter 1

Limits and Continuity

Section 1.1 (page 63)

1. ..t C h/2 � t2/=h m/s 3. 4 m/s

5. �3 m/s, 3 m/s, 0 m/s

7. to the left, stopped, to the right

9. height 2, moving down

11. �1 ft/s, weight moving downward

13. day 45

Section 1.2 (page 71)

1. (a) 1, (b) 0, (c) 1 3. 1

5. 0 7. 1

9. 2=3 11. 0

13. 0 15. does not exist

17. 1=6 19. 0

21. �1 23. does not exist

25. 2 27. 3=8
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ANSWERS TO ODD-NUMBERED EXERCISES A-39

29. �1=2 31. 8=3

33. 1=4 35. 1=
p

2

37. 2x 39. �1=x2

41. 1=.2
p

x/ 43. 1

45. 1=2 47. 1

49. 0 51. 2

53. does not exist 55. does not exist

57. �1=.2a/ 59. 0

61. �2 63. �2

65. (a) 0, (b) 8, (c) 9, (d) �3

67. 5 69. 1

71. 0:7071 73. limx!0 f .x/ D 0

75. 2

77. x1=3 < x3 on .�1; 0/ and .1;1/,

x1=3 > x3 on .�1;�1/ and .0; 1/,

limx!a h.x/ D a for a D �1, 0, and 1

Section 1.3 (page 78)

1. 1=2 3. �3=5

5. 0 7. �3

9. �2=
p

3 11. does not exist

13. C1 15. 0

17. �1 19. �1

21.1 23. �1

25.1 27. �
p

2=4

29. �2 31. �1

33. horiz: y D 0, y D �1, vert: x D 0

35. 1 37. 1

39. �1 41. 2

43. �1 45. 1

47. 3 49. does not exist

51. 1

53. C.t/ has a limit at every real t except at the integers.

limt!t0� C.t/ D C.t0/ everywhere, but

limt!t0C C.t/ D

�

C.t0/ if t0 not integral

C.t0/C 1:5 if t0 an integer

y

t

$1.50

$3.00

$4.50

$6.00

1 2 3 4

y D C.t/

55. (a) B , (b) A, (c) A, (d) A

Section 1.4 (page 87)

1. at �2, right cont. and cont., at �1 disc., at 0 disc. but

left cont., at 1 disc. and right cont., at 2 disc.

3. no abs. max, abs. min 0 5. no

7. cont. everywhere

9. cont. everywhere except at x D 0, disc. at x D 0

11. cont. everywhere except at the integers, discontinuous

but left continuous at the integers

13. 4; x C 2 15. 1=5; .t � 2/=.t C 2/

17. k D 8 19. no max, min = 0

21. 16 23. 5

25. f positive on .�1; 0/ and .1;1/; f negative on

.�1;�1/ and .0; 1/

27. f positive on .�1;�2/, .�1; 1/ and .2;1/; f nega-

tive on .�2;�1/ and .1; 2/

35. max 1:593 at �0:831, min �0:756 at 0:629

37. max 31=3 � 10:333 at x D 3, min 4:762 at x D 1:260

39. 0:682

41. �0:6367326508; 1:409624004

Section 1.5 (page 92)

1. between 12 ıC and 20 ıC

3. .1:99; 2:01/ 5. .0:81; 1:21/

7. ı D 0:01 9. ı � 0:0165

Review Exercises (page 93)

1. 13 3. 12

5. 4 7. does not exist

9. does not exist 11. �1

13. 12
p

3 15. 0

17. does not exist 19. �1=3

21. �1 23.1

25. does not exist 27. 0
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y

x

y D 2f .x/

.1; 2/

2

y

x

.1=2; 1/

y D f .2x/

1

21. D D Œ0; 1�, R D Œ0; 1�

23. D D Œ�4; 0�, R D Œ1; 2�

.�2; 2/

y D 1C f .�x=2/
.�4; 1/

y

x

25.

27. (a) A D 0, B arbitrary, or A D 1, B D 0

(b) A D �1, B arbitrary, or A D 1, B D 0

29. all integers

31.

y

x

y D x � bxc

33. f 2; g2; f ı f; f ı g; g ı f are even

fg; f =g; g=f; g ı g are odd

f C g is neither, unless either f .x/ D 0 or g.x/ D 0.

Section P.6 (page 45)

1. roots �5 and �2; .x C 5/.x C 2/

3. roots �1˙ i ; .x C 1 � i/.x C 1C i/

5. roots 1=2 (double) and�1=2 (double); .2x�1/2.2xC

1/2

7. roots�1, 1
2
˙

p
3

2
i ; .xC1/

�

x �
1
2
C

p
3

2
i

� �

x �
1
2
�

p
3

2
i

�

9. roots 1 (triple) and �1 (triple); .x � 1/3.x C 1/3

11. roots �2, i , �i , 1C
p

3i , 1�
p

3i ; .xC2/.x� i/.xC

i/.x � 1 �
p

3i/.x � 1C
p

3i/

13. all real numbers

15. all real numbers except 0 and �1

17. x C
2x � 1

x2
� 2

19. x � 2C
x C 6

x2
C 2x C 3

21. P.x/ D .x2
� 2x C 2/.x2

C 2x C 2/

Section P.7 (page 57)

1. �1=
p

2 3.
p

3=2

5. .
p

3 � 1/=.2
p

2/ 7. � cos x

9. � cos x 11. 1=.sin x cos x/

17. 3 sin x � 4 sin3
x

19. period �

y

x���

�1

1
y D cos.2x/

21. period 2

y

x

y D sin.�x/

1 3

�1

2

1

23.

y

x

���

�2� 2�

2

�2

y D 2 cos.x � .�=3//

25. cos � D �4=5; tan � D �3=4

27. sin � D �2
p

2=3; tan � D �2
p

2

29. cos � D �
p

3=2; tan � D 1=
p

3

31. a D 1; b D
p

3

33. b D 5=
p

3; c D 10=
p

3

35. a D b tanA 37. a D b cotB

39. c D b secA 41. sinA D
p

c2
� b2=c

43. sinB D 3=.4
p

2/ 45. sinB D
p

135=16

47. 6=.1C
p

3/

49. b D 4 sin 40ı
= sin 70ı

� 2:736

51. approx. 16.98 m

Chapter 1

Limits and Continuity

Section 1.1 (page 63)

1. ..t C h/2 � t2/=h m/s 3. 4 m/s

5. �3 m/s, 3 m/s, 0 m/s

7. to the left, stopped, to the right

9. height 2, moving down

11. �1 ft/s, weight moving downward

13. day 45

Section 1.2 (page 71)

1. (a) 1, (b) 0, (c) 1 3. 1

5. 0 7. 1

9. 2=3 11. 0

13. 0 15. does not exist

17. 1=6 19. 0

21. �1 23. does not exist

25. 2 27. 3=8
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29. �1=2 31. 8=3

33. 1=4 35. 1=
p

2

37. 2x 39. �1=x2

41. 1=.2
p

x/ 43. 1

45. 1=2 47. 1

49. 0 51. 2

53. does not exist 55. does not exist

57. �1=.2a/ 59. 0

61. �2 63. �2

65. (a) 0, (b) 8, (c) 9, (d) �3

67. 5 69. 1

71. 0:7071 73. limx!0 f .x/ D 0

75. 2

77. x1=3 < x3 on .�1; 0/ and .1;1/,

x1=3 > x3 on .�1;�1/ and .0; 1/,

limx!a h.x/ D a for a D �1, 0, and 1

Section 1.3 (page 78)

1. 1=2 3. �3=5

5. 0 7. �3

9. �2=
p

3 11. does not exist

13. C1 15. 0

17. �1 19. �1

21.1 23. �1

25.1 27. �
p

2=4

29. �2 31. �1

33. horiz: y D 0, y D �1, vert: x D 0

35. 1 37. 1

39. �1 41. 2

43. �1 45. 1

47. 3 49. does not exist

51. 1

53. C.t/ has a limit at every real t except at the integers.

limt!t0� C.t/ D C.t0/ everywhere, but

limt!t0C C.t/ D

�

C.t0/ if t0 not integral

C.t0/C 1:5 if t0 an integer

y

t

$1.50

$3.00

$4.50

$6.00

1 2 3 4

y D C.t/

55. (a) B , (b) A, (c) A, (d) A

Section 1.4 (page 87)

1. at �2, right cont. and cont., at �1 disc., at 0 disc. but

left cont., at 1 disc. and right cont., at 2 disc.

3. no abs. max, abs. min 0 5. no

7. cont. everywhere

9. cont. everywhere except at x D 0, disc. at x D 0

11. cont. everywhere except at the integers, discontinuous

but left continuous at the integers

13. 4; x C 2 15. 1=5; .t � 2/=.t C 2/

17. k D 8 19. no max, min = 0

21. 16 23. 5

25. f positive on .�1; 0/ and .1;1/; f negative on

.�1;�1/ and .0; 1/

27. f positive on .�1;�2/, .�1; 1/ and .2;1/; f nega-

tive on .�2;�1/ and .1; 2/

35. max 1:593 at �0:831, min �0:756 at 0:629

37. max 31=3 � 10:333 at x D 3, min 4:762 at x D 1:260

39. 0:682

41. �0:6367326508; 1:409624004

Section 1.5 (page 92)

1. between 12 ıC and 20 ıC

3. .1:99; 2:01/ 5. .0:81; 1:21/

7. ı D 0:01 9. ı � 0:0165

Review Exercises (page 93)

1. 13 3. 12

5. 4 7. does not exist

9. does not exist 11. �1

13. 12
p

3 15. 0

17. does not exist 19. �1=3

21. �1 23.1

25. does not exist 27. 0
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A-40 ANSWERS TO ODD-NUMBERED EXERCISES

29. 2 31. no disc.

33. disc. and left cont. at 2

35. disc. and right cont. at x D 1

37. no disc.

Challenging Problems (page 94)

1. to the right 3. �1=4

5. 3 7. T; F; T; F; F

Chapter 2

Differentiation

Section 2.1 (page 100)

1. y D 3x � 1 3. y D 8x � 13

5. y D 12x C 24 7. x � 4y D �5

9. x � 4y D �2 11. y D 2x0x � x
2
0

13. no 15. yes, x D �2

17. yes, x D 0

19. (a) 3a2; (b) y D 3x � 2 and y D 3x C 2

21. .1; 1/; .�1; 1/ 23. k D 3=4

25. horiz. tangent at .0; 0/, .3; 108/, .5; 0/

27. horiz. tangent at .�0:5; 1:25/, no tangents at .�1; 1/

and .1;�1/

29. horiz. tangent at .0;�1/

31. no, consider y D x2=3 at .0; 0/

Section 2.2 (page 107)

1. 3.
y

x

y D f 0.x/

y

x

y D h0.x/

5. on Œ�2; 2� except at x D �1 and x D 1

7. slope positive for x < 1:5, negative for x > 1:5; hori-

zontal tangent at x D 1:5

9. singular points at x D �1; 0; 1, horizontal tangents at

about x D ˙0:57
11. (a) y 0

D 2x � 3, (b) dy D .2x � 3/ dx

13. (a) f 0.x/ D 3x2, (b) df .x/ D 3x2 dx

15. (a) g0
.x/ D �

4

.2C x/2
, (b) dg.x/ D �

4

.2C x/2
dx

17. (a) F 0.t/ D
1

p

2t C 1
, (b) dF.t/ D

1
p

2t C 1
dt

19. (a) y 0
D 1 �

1

x2
, (b) dy D

�

1 �
1

x2

�

dx

21. (a)F 0
.x/ D �

x

.1C x2/3=2
, (b) dF.x/ D �

x

.1C x2/3=2
dx

23. (a) y 0
D �

1

2.1C x/3=2
, (b) dy D �

1

2.1C x/3=2
dx

25. Define f .0/ D 0, f is not differentiable at 0

27. at x D �1 and x D �2

29.

x
f .x/� f .2/

x � 2

1:9 �0:26316

1:99 �0:25126

1:999 �0:25013

1:9999 �0:25001

x
f .x/� f .2/

x � 2

2:1 �0:23810

2:01 �0:24876

2:001 �0:24988

2:0001 �0:24999

d

dx

�

1

x

�
ˇ

ˇ

ˇ

ˇ

xD2

D �

1

4

31. x � 6y D �15

33. y D
2

a2
C a
�

2.2a C 1/

.a2
C a/2

.t � a/

35. 22t21, all t 37. �.1=3/x�4=3, x ¤ 0

39. .119=4/s115=4 , s � 0 41. �16

43. 1=.8
p

2/ 45. y D a2x � a3
C

1

a

47. y D 6x � 9 and y D �2x � 1

49.
1

2
p

2
53. f 0.x/ D 1

3
x�2=3

Section 2.3 (page 115)

1. 6x � 5 3. 2Ax C B

5. 1
3
s

4
�

1
5
s

2

7. 1
3
t
�2=3
C

1
2
t
�3=4
C

3
5
t
�4=5

9. x2=3
C x

�8=5 11.
5

2
p

x
�

3
2

p

x �
5
6
x

3=2

13. �
2x C 5

.x2
C 5x/2

15.
�2

.2 � �t/2

17. .4x2
� 3/=x4

19. �t�3=2
C .1=2/t

�1=2
C .3=2/

p

t

21. �
24

.3C 4x/2
23.

1
p

t.1 �
p

t /2

25.
ad � bc

.cx C d/2

27. 10C 70x C 150x2
C 96x3

29. 2x.
p

x C 1/.5x2=3
� 2/C

1

2
p

x
.x

2
C 4/.5x

2=3
� 2/

C

10

3
x

�1=3
.x

2
C 4/.

p

x C 1/

31.
6x C 1

.6x2
C 2x C 1/2

33. �1

35. 20 37. �
1

2

39. �
1

18
p

2
41. y D 4x � 6

43. .1; 2/ and .�1;�2/ 45.
�

�
1
2
;

4
3

�

47. y D b �
b

2
x

4
49. y D 12x � 16, y D 3x C 2
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51. x=
p

x2
C 1

Section 2.4 (page 120)

1. 12.2x C 3/5 3. �20x.4 � x2/9

5.
30

t2

�

2C
3

t

��11

7.
12

.5 � 4x/2

9. �2xsgn .1 � x2/ 11.

�

8 if x > 1=4

0 if x < 1=4

13.
�3

2
p

3x C 4.2C
p

3x C 4/2

15. �
5

3

�

1 �
1

.u � 1/2

��

uC
1

u � 1

��8=3

17.

y

t

y D j2C t3j

y

x

�

1
4 ;1

�

y D 4x C j4x � 1j

23. .5 � 2x/f 0.5x � x2/ 25.
f 0.x/

p

3C 2f .x/

27.
1
p

x
f

0
.3C 2

p

x/

29. 15f 0.4 � 5t/f 0.2 � 3f .4 � 5t//

31.
3

2
p

2
33. 102

35. �6
�

1 �
15
2
.3x/4

�

.3x/5 � 2
��3=2

�

�

�

x C
�

.3x/5 � 2
��1=2

��7

37. y D 23=2
�

p

2.x C 1/ 39. y D 1
27
C

5
162
.x C 2/

41.
x.x4

C 2x2
� 2/

.x2
C 1/5=2

43. 857,592

45. no; yes; both functions are equal to x2.

Section 2.5 (page 126)

3. �3 sin 3x 5. � sec2 �x

7. 3 csc2.4 � 3x/ 9. r sin.s � rx/

11. 2�x cos.�x2/ 13.
� sin x

2
p

1C cos x

15. �.1C cos x/ sin.x C sin x/

17. .3�=2/ sin2
.�x=2/ cos.�x=2/

19. a cos 2at 21. 2 cos.2x/C 2 sin.2x/

23. sec2 x � csc2 x 25. tan2 x

27. �t sin t 29. 1=.1C cos x/

31. 2x cos.3x/ � 3x2 sin.3x/

33. 2xŒsec.x2/ tan2.x2/C sec3.x2/�

35. � sec2 t sin.tan t/ cos.cos.tan t//

39. y D � � x; y D x � �

41. y D 1 � .x � �/=4; y D 1C 4.x � �/

43. y D
1
p

2
C

�

180
p

2
.x � 45/

45. ˙.�=4; 1/ 49. yes, .�; �/

51. yes, .2�=3; .2�=3/C
p

3/, .4�=3; .4�=3/ �
p

3/

53. 2 55. 1

57. 1=2

59. infinitely many, 0.336508, 0.161228

Section 2.6 (page 131)

1.

8

ˆ

<

ˆ

:

y
0
D �14.3 � 2x/

6
;

y
00
D 168.3 � 2x/

5
;

y
000
D �1680.3 � 2x/

4

3.

8

ˆ

<

ˆ

:

y
0
D �12.x � 1/

�3
;

y
00
D 36.x � 1/

�4
;

y
000
D �144.x � 1/

�5

5.

8

ˆ

ˆ

<

ˆ

ˆ

:

y
0
D

1
3
x

�2=3
C

1
3
x

�4=3
;

y
00
D �

2
9
x

�5=3
�

4
9
x

�7=3

y
000
D

10
27
x

�8=3
C

28
27
x

�10=3

7.

8

ˆ

ˆ

<

ˆ

ˆ

:

y
0
D

5
2
x

3=2
C

3
2
x

�1=2

y
00
D

15
4
x

1=2
�

3
4
x

�3=2

y
000
D

15
8
x

�1=2
C

9
8
x

�5=2

9. y 0
D sec2 x, y 00

D 2 sec2 x tan x, y 000
D 4 sec2 x tan2 xC

2 sec4 x

11. y 0
D �2x sin.x2

/, y 00
D �2 sin.x2

/ � 4x
2 cos.x2

/,

y 000
D �12x cos.x2/C 8x3 sin.x2/

13. .�1/nnŠx�.nC1/ 15. nŠ.2 � x/�.nC1/

17. .�1/nnŠbn.aC bx/�.nC1/

19. f .n/
D

�

.�1/kan cos.ax/ if n D 2k

.�1/kC1an sin.ax/ if n D 2k C 1
where

k D 0, 1, 2, : : :

21. f .n/
D .�1/k Œanx sin.ax/ � nan�1 cos.ax/� if

n D 2k, or .�1/k Œanx cos.ax/C nan�1 sin.ax/� if

n D 2k C 1, where k D 0, 1, 2, : : :

23. �
1 � 3 � 5 � � � � � .2n � 3/

2n
3

n
.1 � 3x/

�.2n�1/=2
;

.n D 2; 3; : : :/

Section 2.7 (page 137)

1. �0:0025; 0:4975 3. �1=40; �1=40

5. 4% 7. �4%

9. 1% 11. 6%

13. 8 ft2/ft

15. 1=
p

�A units/square unit

17. 16� m3/m

19.
dC

dA
D

r

�

A
length units/area unit
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A-40 ANSWERS TO ODD-NUMBERED EXERCISES

29. 2 31. no disc.

33. disc. and left cont. at 2

35. disc. and right cont. at x D 1

37. no disc.

Challenging Problems (page 94)

1. to the right 3. �1=4

5. 3 7. T; F; T; F; F

Chapter 2

Differentiation

Section 2.1 (page 100)

1. y D 3x � 1 3. y D 8x � 13

5. y D 12x C 24 7. x � 4y D �5

9. x � 4y D �2 11. y D 2x0x � x
2
0

13. no 15. yes, x D �2

17. yes, x D 0

19. (a) 3a2; (b) y D 3x � 2 and y D 3x C 2

21. .1; 1/; .�1; 1/ 23. k D 3=4

25. horiz. tangent at .0; 0/, .3; 108/, .5; 0/

27. horiz. tangent at .�0:5; 1:25/, no tangents at .�1; 1/

and .1;�1/

29. horiz. tangent at .0;�1/

31. no, consider y D x2=3 at .0; 0/

Section 2.2 (page 107)

1. 3.
y

x

y D f 0.x/

y

x

y D h0.x/

5. on Œ�2; 2� except at x D �1 and x D 1

7. slope positive for x < 1:5, negative for x > 1:5; hori-

zontal tangent at x D 1:5

9. singular points at x D �1; 0; 1, horizontal tangents at

about x D ˙0:57
11. (a) y 0

D 2x � 3, (b) dy D .2x � 3/ dx

13. (a) f 0.x/ D 3x2, (b) df .x/ D 3x2 dx

15. (a) g0
.x/ D �

4

.2C x/2
, (b) dg.x/ D �

4

.2C x/2
dx

17. (a) F 0.t/ D
1

p

2t C 1
, (b) dF.t/ D

1
p

2t C 1
dt

19. (a) y 0
D 1 �

1

x2
, (b) dy D

�

1 �
1

x2

�

dx

21. (a)F 0
.x/ D �

x

.1C x2/3=2
, (b) dF.x/ D �

x

.1C x2/3=2
dx

23. (a) y 0
D �

1

2.1C x/3=2
, (b) dy D �

1

2.1C x/3=2
dx

25. Define f .0/ D 0, f is not differentiable at 0

27. at x D �1 and x D �2

29.

x
f .x/� f .2/

x � 2

1:9 �0:26316

1:99 �0:25126

1:999 �0:25013

1:9999 �0:25001

x
f .x/� f .2/

x � 2

2:1 �0:23810

2:01 �0:24876

2:001 �0:24988

2:0001 �0:24999

d

dx

�

1

x

�
ˇ

ˇ

ˇ

ˇ

xD2

D �

1

4

31. x � 6y D �15

33. y D
2

a2
C a
�

2.2a C 1/

.a2
C a/2

.t � a/

35. 22t21, all t 37. �.1=3/x�4=3, x ¤ 0

39. .119=4/s115=4 , s � 0 41. �16

43. 1=.8
p

2/ 45. y D a2x � a3
C

1

a

47. y D 6x � 9 and y D �2x � 1

49.
1

2
p

2
53. f 0.x/ D 1

3
x�2=3

Section 2.3 (page 115)

1. 6x � 5 3. 2Ax C B

5. 1
3
s

4
�

1
5
s

2

7. 1
3
t
�2=3
C

1
2
t
�3=4
C

3
5
t
�4=5

9. x2=3
C x

�8=5 11.
5

2
p

x
�

3
2

p

x �
5
6
x

3=2

13. �
2x C 5

.x2
C 5x/2

15.
�2

.2 � �t/2

17. .4x2
� 3/=x4

19. �t�3=2
C .1=2/t

�1=2
C .3=2/

p

t

21. �
24

.3C 4x/2
23.

1
p

t.1 �
p

t /2

25.
ad � bc

.cx C d/2

27. 10C 70x C 150x2
C 96x3

29. 2x.
p

x C 1/.5x2=3
� 2/C

1

2
p

x
.x

2
C 4/.5x

2=3
� 2/

C

10

3
x

�1=3
.x

2
C 4/.

p

x C 1/

31.
6x C 1

.6x2
C 2x C 1/2

33. �1

35. 20 37. �
1

2

39. �
1

18
p

2
41. y D 4x � 6

43. .1; 2/ and .�1;�2/ 45.
�

�
1
2
;

4
3

�

47. y D b �
b

2
x

4
49. y D 12x � 16, y D 3x C 2
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51. x=
p

x2
C 1

Section 2.4 (page 120)

1. 12.2x C 3/5 3. �20x.4 � x2/9

5.
30

t2

�

2C
3

t

��11

7.
12

.5 � 4x/2

9. �2xsgn .1 � x2/ 11.

�

8 if x > 1=4

0 if x < 1=4

13.
�3

2
p

3x C 4.2C
p

3x C 4/2

15. �
5

3

�

1 �
1

.u � 1/2

��

uC
1

u � 1

��8=3

17.

y

t

y D j2C t3j

y

x

�

1
4 ;1

�

y D 4x C j4x � 1j

23. .5 � 2x/f 0.5x � x2/ 25.
f 0.x/

p

3C 2f .x/

27.
1
p

x
f

0
.3C 2

p

x/

29. 15f 0.4 � 5t/f 0.2 � 3f .4 � 5t//

31.
3

2
p

2
33. 102

35. �6
�

1 �
15
2
.3x/4

�

.3x/5 � 2
��3=2

�

�

�

x C
�

.3x/5 � 2
��1=2

��7

37. y D 23=2
�

p

2.x C 1/ 39. y D 1
27
C

5
162
.x C 2/

41.
x.x4

C 2x2
� 2/

.x2
C 1/5=2

43. 857,592

45. no; yes; both functions are equal to x2.

Section 2.5 (page 126)

3. �3 sin 3x 5. � sec2 �x

7. 3 csc2.4 � 3x/ 9. r sin.s � rx/

11. 2�x cos.�x2/ 13.
� sin x

2
p

1C cos x

15. �.1C cos x/ sin.x C sin x/

17. .3�=2/ sin2
.�x=2/ cos.�x=2/

19. a cos 2at 21. 2 cos.2x/C 2 sin.2x/

23. sec2 x � csc2 x 25. tan2 x

27. �t sin t 29. 1=.1C cos x/

31. 2x cos.3x/ � 3x2 sin.3x/

33. 2xŒsec.x2/ tan2.x2/C sec3.x2/�

35. � sec2 t sin.tan t/ cos.cos.tan t//

39. y D � � x; y D x � �

41. y D 1 � .x � �/=4; y D 1C 4.x � �/

43. y D
1
p

2
C

�

180
p

2
.x � 45/

45. ˙.�=4; 1/ 49. yes, .�; �/

51. yes, .2�=3; .2�=3/C
p

3/, .4�=3; .4�=3/ �
p

3/

53. 2 55. 1

57. 1=2

59. infinitely many, 0.336508, 0.161228

Section 2.6 (page 131)

1.

8

ˆ

<

ˆ

:

y
0
D �14.3 � 2x/

6
;

y
00
D 168.3 � 2x/

5
;

y
000
D �1680.3 � 2x/

4

3.

8

ˆ

<

ˆ

:

y
0
D �12.x � 1/

�3
;

y
00
D 36.x � 1/

�4
;

y
000
D �144.x � 1/

�5

5.

8

ˆ

ˆ

<

ˆ

ˆ

:

y
0
D

1
3
x

�2=3
C

1
3
x

�4=3
;

y
00
D �

2
9
x

�5=3
�

4
9
x

�7=3

y
000
D

10
27
x

�8=3
C

28
27
x

�10=3

7.

8

ˆ

ˆ

<

ˆ

ˆ

:

y
0
D

5
2
x

3=2
C

3
2
x

�1=2

y
00
D

15
4
x

1=2
�

3
4
x

�3=2

y
000
D

15
8
x

�1=2
C

9
8
x

�5=2

9. y 0
D sec2 x, y 00

D 2 sec2 x tan x, y 000
D 4 sec2 x tan2 xC

2 sec4 x

11. y 0
D �2x sin.x2

/, y 00
D �2 sin.x2

/ � 4x
2 cos.x2

/,

y 000
D �12x cos.x2/C 8x3 sin.x2/

13. .�1/nnŠx�.nC1/ 15. nŠ.2 � x/�.nC1/

17. .�1/nnŠbn.aC bx/�.nC1/

19. f .n/
D

�

.�1/kan cos.ax/ if n D 2k

.�1/kC1an sin.ax/ if n D 2k C 1
where

k D 0, 1, 2, : : :

21. f .n/
D .�1/k Œanx sin.ax/ � nan�1 cos.ax/� if

n D 2k, or .�1/k Œanx cos.ax/C nan�1 sin.ax/� if

n D 2k C 1, where k D 0, 1, 2, : : :

23. �
1 � 3 � 5 � � � � � .2n � 3/

2n
3

n
.1 � 3x/

�.2n�1/=2
;

.n D 2; 3; : : :/

Section 2.7 (page 137)

1. �0:0025; 0:4975 3. �1=40; �1=40

5. 4% 7. �4%

9. 1% 11. 6%

13. 8 ft2/ft

15. 1=
p

�A units/square unit

17. 16� m3/m

19.
dC

dA
D

r

�

A
length units/area unit
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A-42 ANSWERS TO ODD-NUMBERED EXERCISES

21. (a) 10,500 L/min, 3,500 L/min, (b) 7,000 L/min

23. decreases at 1=8 pound/mi

25. (a) $300, (b) C.101/ � C.100/ D $299:50

27. (a) �$2:00, (b) $9.11

Section 2.8 (page 144)

1. c D
aC b

2
3. c D ˙

2
p

3

9. inc. x > 0, decr. x < 0

11. inc. on .�1;�4/ and .0;1/, decr. on .�4; 0/

13. inc. on

�

�1;�
2
p

3

�

and

�

2
p

3
;1

�

, dec. on

�

�

2
p

3
;
2
p

3

�

15. inc. on .�2; 0/ and .2;1/; dec. on .�1;�2/ and

.0; 2/

17. inc. on .�1; 3/ and .5;1/; dec. on .3; 5/

19. inc. on .�1;1/ 23. 0:535898; 7:464102

25. 0; -0.518784

Section 2.9 (page 149)

1.
1 � y

2C x
3.
2x C y

3y2
� x

5.
2 � 2xy3

3x2y2
C 1

7. �
3x2
C 2xy

x2
C 4y

9. 2x C 3y D 5 11. y D x

13. y D 1 �
4

4 � �

�

x �
�

4

�

15. y D 2 � x 17.
2.y � 1/

.1 � x/2

19.
.2 � 6y/.1 � 3x2/2

.3y2
� 2y/3

�

6x

3y2
� 2y

21. �a2
=y

3 23. 0

25. �26

Section 2.10 (page 155)

1. 5x C C 3. 2
3
x3=2
C C

5. 1
4
x4
C C 7. � cos x C C

9. a2x �
1
3
x3
C C 11. 4

3
x3=2
C

9
4
x4=3
C C

13. 1
12
x

4
�

1
6
x

3
C

1
2
x

2
� x C C

15. 1
2

sin.2x/C C 17.
�1

1C x
C C

19. 1
3
.2x C 3/3=2

C C 21. � cos.x2/C C

23. tanx � x C C

25. .x C sinx cos x/=2C C

27. y D 1
2
x2
� 2x C 3; all x

29. y D 2x3=2
� 15; .x > 0/

31. y D
A

3
.x

3
� 1/C

B

2
.x

2
� 1/CC.x � 1/C 1; (all x/

33. y D sin x C .3=2/; (all x/

35. y D 1C tan x; ��=2 < x < �=2

37. y D x2
C 5x � 3; (all x/

39. y D
x5

20
�

x2

2
C 8; (all x/

41. y D 1C x � cos x; (all x/

43. y D 3x �
1

x
; .x > 0/

45. y D �
7
p

x

2
C

18
p

x
; .x > 0/

Section 2.11 (page 162)

1. (a) t > 2, (b) t < 2, (c) all t , (d) no t ,

(e) t > 2, (f) t < 2, (g) 2, (h) 0

3. (a) t < �2=
p

3 or t > 2=
p

3,

(b) �2=
p

3 < t < 2=
p

3, (c) t > 0, (d) t < 0,

(e) t > 2=
p

3 or �2=
p

3 < t < 0,

(f) t < �2=
p

3 or 0 < t < 2=
p

3,

(g)˙12=
p

3 at t D ˙2=
p

3, (h) 12

5. acc = 9.8 m/s2 downward at all times;

max height = 4.9 m; ball strikes ground at 9.8 m/s

7. time 27.8 s; distance 771.6 m

9. 4h m,
p

2v0 m/s 11. 400 ft

13. 0.833 km

15. v D

(

2t if 0 < t � 2

4 if 2 < t < 8

20 � 2t if 8 � t < 10
v is continuous for 0 < t < 10.

a D

(

2 if 0 < t < 2

0 if 2 < t < 8

�2 if 8 < t < 10
a is continuous except at t D 2 and t D 8.

Maximum velocity 4 is attained for 2 � t � 8.

17. 7 s 19. 448 ft

Review Exercises (page 163)

1. 18x C 6 3. �1

5. 6�x C 12y D 6
p

3C �

7.
cos x � 1

.x � sinx/2
9. x�3=5.4 � x2=5/�7=2

11. �2� sec2 � tan � 13. 20x19

15. �
p

3 17. �2xf 0.3 � x2/

19. 2f 0
.2x/

p

g.x=2/C
f .2x/ g0.x=2/

4
p

g.x=2/

21. f 0.x C .g.x//2/.1C 2g.x/g0.x//

23. cos x f 0.sin x/ g.cos x/� sinx f .sinx/ g0.cos x/

25. 7x C 10y D 24 27.
x3

3
�

1

x
C C

29. 2 tan x C 3 sec x C C 31. 4x3
C 3x4

� 7

33. I1 D x sin x C cos x C C , I2 D sin x � x cos x C C

35. y D 3x

37. points k� and k�=.nC 1/ where k is any integer

39. .0; 0/, .˙1=
p

2; 1=2/, dist. D
p

3=2 units

41. (a) k D g=R 43. 15.3 m
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ANSWERS TO ODD-NUMBERED EXERCISES A-43

45. 80 ft/s or about 55 mph

Challenging Problems (page 164)

3. (a) 0, (b) 3/8, (c) 12, (d) �48, (e) 3/7, (f) 21

13. f .m/ D C � .m � B/2=.4A/

17. (a) 3b2 > 8ac

19. (a) 3 s, (b) t D 7 s, (c) t D 12 s, (d) about 13:07 m/s2,

(e) 197.5 m, (f) 60.3 m

Chapter 3

Transcendental Functions

Section 3.1 (page 171)

1. f �1.x/ D x C 1

D.f
�1
/ D R.f / D R.f

�1
/ D D.f / D R

3. f �1.x/ D x2
C 1, D.f �1/ D R.f / D Œ0;1/,

R.f �1/ D D.f / D Œ1;1/

5. f �1.x/ D x1=3

D.f �1/ D R.f / D R.f �1/ D D.f / D R

7. f �1.x/ D �
p

x; D.f �1/ D R.f / D Œ0;1/,

R.f
�1
/ D D.f / D .�1; 0�

9. f �1.x/ D
1

x
�1; D.f

�1
/ D R.f / D fx W x ¤ 0g,

R.f �1/ D D.f / D fx W x ¤ �1g

11. f �1.x/ D
1 � x

2C x
,

D.f �1/ D R.f / D fx W x ¤ �2g,

R.f �1/ D D.f / D fx W x ¤ �1g

13. g�1.x/ D f �1.x C 2/ 15. k�1.x/ D f �1
�

�

x

3

�

17. p�1.x/ D f �1

�

1

x
� 1

�

19. r�1.x/ D
1

4

�

3 � f
�1

�

1 � x

2

��

21. f �1.x/ D

�p

x � 1 if x >D 1

x � 1 if x < 1

23. h�1.x/ D

�p

x � 1 if x � 1
p

1 � x if x < 1

25. g�1.1/ D 2 29.
�

f �1
�0
.2/ D 1=4

31. 2:23362 33. R; 1

35. c D 1, a, b arbitrary except ab ¤ 1, or c D �1 and

a D b D 0.
37. no

Section 3.2 (page 175)

1.
p

3 3. x6

5. 3 7. �2x

9. x 11. 1

13. 1 15. 2

17. loga.x
4
C 4x2

C 3/ 19. 4:728804 : : :

21. x D .log10 5/=.log10.4=5// � �7:212567

23. x D 31=5
D 10.log10 3/=5

� 1:24573

29. 1=2 31. 0

33.1

Section 3.3 (page 183)

1.
p

e 3. x5

5. �3x 7. ln
64

81

9. ln
�

x2.x � 2/5
�

11. x D
ln 2

ln.3=2/

13. x D
ln 5 � 9 ln 2

2 ln 2
15. 0 < x < 2

17. 3 < x < 7=2 19. 5e5x

21. .1 � 2x/e�2x 23.
3

3x � 2

25.
e

x

1C ex
27.

e
x
� e

�x

2

29. exCex
31. ex.sin x C cos x/

33.
1

x ln x
35. 2x lnx

37. .2 ln 5/52xC1 39. txxt ln t C txC1xt�1

41.
b

.bs C c/ ln a

43. x
p

x

�

1
p

x

�

1
2

ln x C 1
�

�

45. secx 47. �
1

p

x2
C a2

49. f .n/.x/ D eax.nan�1
C anx/; n D 1; 2; 3; : : :

51. y 0
D 2xex2

; y 00
D 2.1C 2x2/ex2

;

y 000
D 4.3x C 2x3/ex2

; y.4/
D 4.3 C 12x2

C

4x4/ex2

53. f 0.x/ D xx2C1.2 ln x C 1/;

g0.x/ D xxx

xx

�

lnx C .ln x/2 C
1

x

�

I

g grows more rapidly than does f .

55. f 0.x/ D f .x/

�

1

x � 1
C

1

x � 2
C

1

x � 3
C

1

x � 4

�

57. f 0.2/ D
556

3675
; f

0
.1/ D

1

6

59. f inc. for x < 1, dec. for x > 1

y

x

.1;1=e/

y D x e
�x

61. y D ex 63. y D 2e ln 2.x � 1/

65. �1=e2

67. f 0
.x/ D .AC B/ cos ln x C .B � A/ sin ln x;

R

cos ln x dx D
x

2
.cos ln x C sin ln x/,

R

sin ln x dx D
x

2
.sin ln x � cos ln x/
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A-42 ANSWERS TO ODD-NUMBERED EXERCISES

21. (a) 10,500 L/min, 3,500 L/min, (b) 7,000 L/min

23. decreases at 1=8 pound/mi

25. (a) $300, (b) C.101/ � C.100/ D $299:50

27. (a) �$2:00, (b) $9.11

Section 2.8 (page 144)

1. c D
aC b

2
3. c D ˙

2
p

3

9. inc. x > 0, decr. x < 0

11. inc. on .�1;�4/ and .0;1/, decr. on .�4; 0/

13. inc. on

�

�1;�
2
p

3

�

and

�

2
p

3
;1

�

, dec. on

�

�

2
p

3
;
2
p

3

�

15. inc. on .�2; 0/ and .2;1/; dec. on .�1;�2/ and

.0; 2/

17. inc. on .�1; 3/ and .5;1/; dec. on .3; 5/

19. inc. on .�1;1/ 23. 0:535898; 7:464102

25. 0; -0.518784

Section 2.9 (page 149)

1.
1 � y

2C x
3.
2x C y

3y2
� x

5.
2 � 2xy3

3x2y2
C 1

7. �
3x2
C 2xy

x2
C 4y

9. 2x C 3y D 5 11. y D x

13. y D 1 �
4

4 � �

�

x �
�

4

�

15. y D 2 � x 17.
2.y � 1/

.1 � x/2

19.
.2 � 6y/.1 � 3x2/2

.3y2
� 2y/3

�

6x

3y2
� 2y

21. �a2
=y

3 23. 0

25. �26

Section 2.10 (page 155)

1. 5x C C 3. 2
3
x3=2
C C

5. 1
4
x4
C C 7. � cos x C C

9. a2x �
1
3
x3
C C 11. 4

3
x3=2
C

9
4
x4=3
C C

13. 1
12
x

4
�

1
6
x

3
C

1
2
x

2
� x C C

15. 1
2

sin.2x/C C 17.
�1

1C x
C C

19. 1
3
.2x C 3/3=2

C C 21. � cos.x2/C C

23. tanx � x C C

25. .x C sinx cos x/=2C C

27. y D 1
2
x2
� 2x C 3; all x

29. y D 2x3=2
� 15; .x > 0/

31. y D
A

3
.x

3
� 1/C

B

2
.x

2
� 1/CC.x � 1/C 1; (all x/

33. y D sin x C .3=2/; (all x/

35. y D 1C tan x; ��=2 < x < �=2

37. y D x2
C 5x � 3; (all x/

39. y D
x5

20
�

x2

2
C 8; (all x/

41. y D 1C x � cos x; (all x/

43. y D 3x �
1

x
; .x > 0/

45. y D �
7
p

x

2
C

18
p

x
; .x > 0/

Section 2.11 (page 162)

1. (a) t > 2, (b) t < 2, (c) all t , (d) no t ,

(e) t > 2, (f) t < 2, (g) 2, (h) 0

3. (a) t < �2=
p

3 or t > 2=
p

3,

(b) �2=
p

3 < t < 2=
p

3, (c) t > 0, (d) t < 0,

(e) t > 2=
p

3 or �2=
p

3 < t < 0,

(f) t < �2=
p

3 or 0 < t < 2=
p

3,

(g)˙12=
p

3 at t D ˙2=
p

3, (h) 12

5. acc = 9.8 m/s2 downward at all times;

max height = 4.9 m; ball strikes ground at 9.8 m/s

7. time 27.8 s; distance 771.6 m

9. 4h m,
p

2v0 m/s 11. 400 ft

13. 0.833 km

15. v D

(

2t if 0 < t � 2

4 if 2 < t < 8

20 � 2t if 8 � t < 10
v is continuous for 0 < t < 10.

a D

(

2 if 0 < t < 2

0 if 2 < t < 8

�2 if 8 < t < 10
a is continuous except at t D 2 and t D 8.

Maximum velocity 4 is attained for 2 � t � 8.

17. 7 s 19. 448 ft

Review Exercises (page 163)

1. 18x C 6 3. �1

5. 6�x C 12y D 6
p

3C �

7.
cos x � 1

.x � sinx/2
9. x�3=5.4 � x2=5/�7=2

11. �2� sec2 � tan � 13. 20x19

15. �
p

3 17. �2xf 0.3 � x2/

19. 2f 0
.2x/

p

g.x=2/C
f .2x/ g0.x=2/

4
p

g.x=2/

21. f 0.x C .g.x//2/.1C 2g.x/g0.x//

23. cos x f 0.sin x/ g.cos x/� sinx f .sinx/ g0.cos x/

25. 7x C 10y D 24 27.
x3

3
�

1

x
C C

29. 2 tan x C 3 sec x C C 31. 4x3
C 3x4

� 7

33. I1 D x sin x C cos x C C , I2 D sin x � x cos x C C

35. y D 3x

37. points k� and k�=.nC 1/ where k is any integer

39. .0; 0/, .˙1=
p

2; 1=2/, dist. D
p

3=2 units

41. (a) k D g=R 43. 15.3 m
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ANSWERS TO ODD-NUMBERED EXERCISES A-43

45. 80 ft/s or about 55 mph

Challenging Problems (page 164)

3. (a) 0, (b) 3/8, (c) 12, (d) �48, (e) 3/7, (f) 21

13. f .m/ D C � .m � B/2=.4A/

17. (a) 3b2 > 8ac

19. (a) 3 s, (b) t D 7 s, (c) t D 12 s, (d) about 13:07 m/s2,

(e) 197.5 m, (f) 60.3 m

Chapter 3

Transcendental Functions

Section 3.1 (page 171)

1. f �1.x/ D x C 1

D.f
�1
/ D R.f / D R.f

�1
/ D D.f / D R

3. f �1.x/ D x2
C 1, D.f �1/ D R.f / D Œ0;1/,

R.f �1/ D D.f / D Œ1;1/

5. f �1.x/ D x1=3

D.f �1/ D R.f / D R.f �1/ D D.f / D R

7. f �1.x/ D �
p

x; D.f �1/ D R.f / D Œ0;1/,

R.f
�1
/ D D.f / D .�1; 0�

9. f �1.x/ D
1

x
�1; D.f

�1
/ D R.f / D fx W x ¤ 0g,

R.f �1/ D D.f / D fx W x ¤ �1g

11. f �1.x/ D
1 � x

2C x
,

D.f �1/ D R.f / D fx W x ¤ �2g,

R.f �1/ D D.f / D fx W x ¤ �1g

13. g�1.x/ D f �1.x C 2/ 15. k�1.x/ D f �1
�

�

x

3

�

17. p�1.x/ D f �1

�

1

x
� 1

�

19. r�1.x/ D
1

4

�

3 � f
�1

�

1 � x

2

��

21. f �1.x/ D

�p

x � 1 if x >D 1

x � 1 if x < 1

23. h�1.x/ D

�p

x � 1 if x � 1
p

1 � x if x < 1

25. g�1.1/ D 2 29.
�

f �1
�0
.2/ D 1=4

31. 2:23362 33. R; 1

35. c D 1, a, b arbitrary except ab ¤ 1, or c D �1 and

a D b D 0.
37. no

Section 3.2 (page 175)

1.
p

3 3. x6

5. 3 7. �2x

9. x 11. 1

13. 1 15. 2

17. loga.x
4
C 4x2

C 3/ 19. 4:728804 : : :

21. x D .log10 5/=.log10.4=5// � �7:212567

23. x D 31=5
D 10.log10 3/=5

� 1:24573

29. 1=2 31. 0

33.1

Section 3.3 (page 183)

1.
p

e 3. x5

5. �3x 7. ln
64

81

9. ln
�

x2.x � 2/5
�

11. x D
ln 2

ln.3=2/

13. x D
ln 5 � 9 ln 2

2 ln 2
15. 0 < x < 2

17. 3 < x < 7=2 19. 5e5x

21. .1 � 2x/e�2x 23.
3

3x � 2

25.
e

x

1C ex
27.

e
x
� e

�x

2

29. exCex
31. ex.sin x C cos x/

33.
1

x ln x
35. 2x lnx

37. .2 ln 5/52xC1 39. txxt ln t C txC1xt�1

41.
b

.bs C c/ ln a

43. x
p

x

�

1
p

x

�

1
2

ln x C 1
�

�

45. secx 47. �
1

p

x2
C a2

49. f .n/.x/ D eax.nan�1
C anx/; n D 1; 2; 3; : : :

51. y 0
D 2xex2

; y 00
D 2.1C 2x2/ex2

;

y 000
D 4.3x C 2x3/ex2

; y.4/
D 4.3 C 12x2

C

4x4/ex2

53. f 0.x/ D xx2C1.2 ln x C 1/;

g0.x/ D xxx

xx

�

lnx C .ln x/2 C
1

x

�

I

g grows more rapidly than does f .

55. f 0.x/ D f .x/

�

1

x � 1
C

1

x � 2
C

1

x � 3
C

1

x � 4

�

57. f 0.2/ D
556

3675
; f

0
.1/ D

1

6

59. f inc. for x < 1, dec. for x > 1

y

x

.1;1=e/

y D x e
�x

61. y D ex 63. y D 2e ln 2.x � 1/

65. �1=e2

67. f 0
.x/ D .AC B/ cos ln x C .B � A/ sin ln x;

R

cos ln x dx D
x

2
.cos ln x C sin ln x/,

R

sin ln x dx D
x

2
.sin ln x � cos ln x/

9780134154367_Calculus   1123 05/12/16   5:55 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-44 October 14, 2016

A-44 ANSWERS TO ODD-NUMBERED EXERCISES

69. (a) F2B;�2A.x/; (b) �2ex.cos x C sinx/

Section 3.4 (page 191)

1. 0 3. 2

5. 0 7. 0

9. 566 11. 29.15 years

13. 160.85 years 15. 4,139 g

17. $7;557:84 19. about 14.7 years

21. about 142

23. (a) f .x/ D Cebx
� .a=b/,

(b) y D .y0 C .a=b//e
bx
� .a=b/

25. 22:35 ıC 27. 6.84 min

31. .0;�.1=k/ ln.y0=.y0 � L///, solution! �1

33. about 7,671 cases, growing at about 3,028 cases/week

Section 3.5 (page 199)

1. �=3 3. ��=4

5. 0:7 7. ��=3

9.
�

2
C 0:2 11. 2=

p

5

13.
p

1� x2 15.
1

p

1C x2

17.

p

1 � x2

x
19.

1
p

2C x � x2

21.
�sgn a

p

a2
� .x � b/2

23. tan�1 t C
t

1C t2

25. 2x tan�1 x C 1

27.

p

1 � 4x2 sin�1
2x � 2

p

1 � x2 sin�1
x

p

1 � x2
p

1 � 4x2
�

sin�1
2x
�2

29.
x

p

.1 � x4/ sin�1
x2

31.

r

a � x

aC x

33.
� � 2

� � 1

37.
d

dx
csc�1

x D �
1

jxj
p

x2
� 1

y

x

.1;�=2/

.�1;��=2/

y D csc�1 x

39. tan�1 x C cot�1 x D �
�

2
for x < 0

41. cont. everywhere, differentiable except at n� for inte-

gers n

43. continuous and differentiable everywhere except at

odd multiples of �=2

y

x����2� 2�

�
y D cos�1.cos x/ y

x
�
2

�
2

y D tan�1.tanx/

49. tan�1

�

x � 1

x C 1

�

� tan�1 x D
3�

4
on .�1;�1/

51. f 0.x/ D 1�sgn .cos x/

y

x

.�;�/

.��;��/

�
2

y D x � sin�1
.sin x/

53. y D
1

3
tan�1 x

3
C 2 �

�

12

55. y D 4 sin�1 x

5

Section 3.6 (page 205)

3. tanh.x C y/ D
tanh x C tanh y

1C tanh x tanh y

tanh.x � y/ D
tanh x � tanh y

1 � tanh x tanh y

5.
d

dx
sinh�1

.x/ D
1

p

x2
C 1

,

d

dx
cosh�1

.x/ D
1

p

x2
� 1

,

d

dx
tanh�1

.x/ D
1

1 � x2
,

Z

dx
p

x2
C 1
D sinh�1

.x/C C ,
Z

dx
p

x2
� 1
D cosh�1

.x/C C .x > 1/,
Z

dx

1� x2
D tanh�1

.x/C C .�1 < x < 1/

7. (a)
x2
� 1

2x
; (b)

x2
C 1

2x
; (c)

x2
� 1

x2
C 1

; (d) x2
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9. domain .0; 1�, range Œ0;1/, derivative�1=.x
p

1 � x2/

y

x1

y D Sech�1
x

11. fA;B D gACB;A�B I gC;D D f.C CD/=2;.C �D/=2

13. y D y0 cosh k.x � a/C
v0

k
sinh k.x � a/

Section 3.7 (page 212)

1. y D Ae�5t
C Be�2t 3. y D AC Be�2t

5. y D .AC Bt/e�4t

7. y D .A cos t C B sin t/e3t

9. y D .A cos 2t C B sin 2t/e�t

11. y D .A cos
p

2t C B sin
p

2t/e�t

13. y D 6
7
et=2
C

1
7
e�3t

15. y D e�2t .2 cos t C 6 sin t/

25. y D 3
10

sin.10t/, circ freq 10, freq 10
2�

, per 2�
10

, amp 3
10

33. y D e3�t Œ2 cos.2.t � 3//C sin.2.t � 3//�

35. y D
c

k2
.1 � cos.kx/C a cos.kx/C

b

k
sin.kx/

Review Exercises (page 213)

1. 1=3 3. both limits are 0

5. max 1=
p

2e, min �1=
p

2e

7. f .x/ D 3e.x2=2/�2

9. (a) about 13.863%, (b) about 68 days

11. e2x 13. y=x

15. 13.8165% approx.

17. cos�1x D
�
2
�sin�1

x, cot�1x D sgn xsin�1
.1=
p

x2
C 1/,

csc�1
x D sin�1

.1=x/

19. 15 ıC

Chapter 4

More Applications of Differentiation

Section 4.1 (page 220)

1. 32 cm2/min

3. increasing at 160� cm2/s

5. (a) 1=.6�r/ km/hr, (b) 1=.6
p

�A/ km/hr

7. 1=.180�/ cm/s 9. 2 cm2/s

11. increasing at 2 cm3/s 13. increasing at rate 12

15. increasing at rate 2=
p

5

17. 45
p

3 km/h 19. 1/3 m/s, 5/6 m/s

21. 100 tonnes/day 23. 16 4
11

min after 3:00

25. 1=.18�/ m/min

27. 9=.6250�/ m/min, 4.64 m

29. 8 m/min 31. dec. at 126.9 km/h

33. 1/8 units/s 35.
p

3=16 m/min

37. (a) down at 24/125 m/s, (b) right at 7/125 m/s

39. dec. at 0.0197 rad/s 41. 0.047 rad/s

Section 4.2 (page 230)

1. 0:35173 3. 0:95025

5. 0:45340 7. 1:41421356237

9. 0:453397651516

11. 1:64809536561; 2:352392647658

13. 0:510973429389

15. infinitely many, 4:49340945791

19. max 1, min �0:11063967219 : : :

21. x1 D �a, x2 D a D x0. Look for a root half way

between x0 and x1

23. xn D .�1=2/
n
! 0 (root) as n!1.

Section 4.3 (page 235)

1. 3=4 3. a=b

5. 1 7. 1

9. 0 11. �3=2

13. 1 15. �1=2

17.1 19. 2=�

21. �2 23. a

25. 1 27. �1=2

29. e�2 31. 0

33. f 00.x/

Section 4.4 (page 242)

1. abs min 1 at x D �1; abs max 3 at x D 1

3. abs min 1 at x D �1; no max

5. abs min �1 at x D 0; abs max 8 at x D 3; loc max 3

at x D �2

7. abs min a3
C a � 4 at x D a; abs max b3

C b � 4 at

x D b

9. abs max b5
C b3

C 2b at x D b; no min value

11. no max or min values

13. max 3 at x D �2, min 0 at x D 1

15. abs max 1 at x D 0; no min value

17. no max or min value

19. loc max at x D �1; loc min at x D 1

y

x

.1;�4/

�1

y D x3
� 3x � 2
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69. (a) F2B;�2A.x/; (b) �2ex.cos x C sinx/

Section 3.4 (page 191)

1. 0 3. 2

5. 0 7. 0

9. 566 11. 29.15 years

13. 160.85 years 15. 4,139 g

17. $7;557:84 19. about 14.7 years

21. about 142

23. (a) f .x/ D Cebx
� .a=b/,

(b) y D .y0 C .a=b//e
bx
� .a=b/

25. 22:35 ıC 27. 6.84 min

31. .0;�.1=k/ ln.y0=.y0 � L///, solution! �1

33. about 7,671 cases, growing at about 3,028 cases/week

Section 3.5 (page 199)

1. �=3 3. ��=4

5. 0:7 7. ��=3

9.
�

2
C 0:2 11. 2=

p

5

13.
p

1� x2 15.
1

p

1C x2

17.

p

1 � x2

x
19.

1
p

2C x � x2

21.
�sgn a

p

a2
� .x � b/2

23. tan�1 t C
t

1C t2

25. 2x tan�1 x C 1

27.

p

1 � 4x2 sin�1
2x � 2

p

1 � x2 sin�1
x

p

1 � x2
p

1 � 4x2
�

sin�1
2x
�2

29.
x

p

.1 � x4/ sin�1
x2

31.

r

a � x

aC x

33.
� � 2

� � 1

37.
d

dx
csc�1

x D �
1

jxj
p

x2
� 1

y

x

.1;�=2/

.�1;��=2/

y D csc�1 x

39. tan�1 x C cot�1 x D �
�

2
for x < 0

41. cont. everywhere, differentiable except at n� for inte-

gers n

43. continuous and differentiable everywhere except at

odd multiples of �=2

y

x����2� 2�

�
y D cos�1.cos x/ y

x
�
2

�
2

y D tan�1.tanx/

49. tan�1

�

x � 1

x C 1

�

� tan�1 x D
3�

4
on .�1;�1/

51. f 0.x/ D 1�sgn .cos x/

y

x

.�;�/

.��;��/

�
2

y D x � sin�1
.sin x/

53. y D
1

3
tan�1 x

3
C 2 �

�

12

55. y D 4 sin�1 x

5

Section 3.6 (page 205)

3. tanh.x C y/ D
tanh x C tanh y

1C tanh x tanh y

tanh.x � y/ D
tanh x � tanh y

1 � tanh x tanh y

5.
d

dx
sinh�1

.x/ D
1

p

x2
C 1

,

d

dx
cosh�1

.x/ D
1

p

x2
� 1

,

d

dx
tanh�1

.x/ D
1

1 � x2
,

Z

dx
p

x2
C 1
D sinh�1

.x/C C ,
Z

dx
p

x2
� 1
D cosh�1

.x/C C .x > 1/,
Z

dx

1� x2
D tanh�1

.x/C C .�1 < x < 1/

7. (a)
x2
� 1

2x
; (b)

x2
C 1

2x
; (c)

x2
� 1

x2
C 1

; (d) x2
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ANSWERS TO ODD-NUMBERED EXERCISES A-45

9. domain .0; 1�, range Œ0;1/, derivative�1=.x
p

1 � x2/

y

x1

y D Sech�1
x

11. fA;B D gACB;A�B I gC;D D f.C CD/=2;.C �D/=2

13. y D y0 cosh k.x � a/C
v0

k
sinh k.x � a/

Section 3.7 (page 212)

1. y D Ae�5t
C Be�2t 3. y D AC Be�2t

5. y D .AC Bt/e�4t

7. y D .A cos t C B sin t/e3t

9. y D .A cos 2t C B sin 2t/e�t

11. y D .A cos
p

2t C B sin
p

2t/e�t

13. y D 6
7
et=2
C

1
7
e�3t

15. y D e�2t .2 cos t C 6 sin t/

25. y D 3
10

sin.10t/, circ freq 10, freq 10
2�

, per 2�
10

, amp 3
10

33. y D e3�t Œ2 cos.2.t � 3//C sin.2.t � 3//�

35. y D
c

k2
.1 � cos.kx/C a cos.kx/C

b

k
sin.kx/

Review Exercises (page 213)

1. 1=3 3. both limits are 0

5. max 1=
p

2e, min �1=
p

2e

7. f .x/ D 3e.x2=2/�2

9. (a) about 13.863%, (b) about 68 days

11. e2x 13. y=x

15. 13.8165% approx.

17. cos�1x D
�
2
�sin�1

x, cot�1x D sgn xsin�1
.1=
p

x2
C 1/,

csc�1
x D sin�1

.1=x/

19. 15 ıC

Chapter 4

More Applications of Differentiation

Section 4.1 (page 220)

1. 32 cm2/min

3. increasing at 160� cm2/s

5. (a) 1=.6�r/ km/hr, (b) 1=.6
p

�A/ km/hr

7. 1=.180�/ cm/s 9. 2 cm2/s

11. increasing at 2 cm3/s 13. increasing at rate 12

15. increasing at rate 2=
p

5

17. 45
p

3 km/h 19. 1/3 m/s, 5/6 m/s

21. 100 tonnes/day 23. 16 4
11

min after 3:00

25. 1=.18�/ m/min

27. 9=.6250�/ m/min, 4.64 m

29. 8 m/min 31. dec. at 126.9 km/h

33. 1/8 units/s 35.
p

3=16 m/min

37. (a) down at 24/125 m/s, (b) right at 7/125 m/s

39. dec. at 0.0197 rad/s 41. 0.047 rad/s

Section 4.2 (page 230)

1. 0:35173 3. 0:95025

5. 0:45340 7. 1:41421356237

9. 0:453397651516

11. 1:64809536561; 2:352392647658

13. 0:510973429389

15. infinitely many, 4:49340945791

19. max 1, min �0:11063967219 : : :

21. x1 D �a, x2 D a D x0. Look for a root half way

between x0 and x1

23. xn D .�1=2/
n
! 0 (root) as n!1.

Section 4.3 (page 235)

1. 3=4 3. a=b

5. 1 7. 1

9. 0 11. �3=2

13. 1 15. �1=2

17.1 19. 2=�

21. �2 23. a

25. 1 27. �1=2

29. e�2 31. 0

33. f 00.x/

Section 4.4 (page 242)

1. abs min 1 at x D �1; abs max 3 at x D 1

3. abs min 1 at x D �1; no max

5. abs min �1 at x D 0; abs max 8 at x D 3; loc max 3

at x D �2

7. abs min a3
C a � 4 at x D a; abs max b3

C b � 4 at

x D b

9. abs max b5
C b3

C 2b at x D b; no min value

11. no max or min values

13. max 3 at x D �2, min 0 at x D 1

15. abs max 1 at x D 0; no min value

17. no max or min value

19. loc max at x D �1; loc min at x D 1

y

x

.1;�4/

�1

y D x3
� 3x � 2
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21. loc max at x D 3
5

; loc min at x D 1; critical point x D

0 is neither max nor min

y

x

�

3
5 ;

108
55

�

1

y D x3.x � 1/2

23. loc max at x D �1 and x D 1=
p

5; loc min at x D 1

and x D �1=
p

5

y

x1

�1

�1p
5

1p
5

y D x.x2
� 1/2

25. abs min at x D 0

y

x

yD1

yD x2

x2C1

27. loc min at CP x D �1 and endpoint SP x D
p

2;

loc max at CP x D 1 and endpoint SP x D �
p

2

y

x

�
p

2 �1

1
p

2

y D x
p

2 � x2

29. loc max at x D 2n� �
�

3
; loc min at x D 2n� C

�

3
.n D 0;˙1;˙2; : : :/

y

x

�
3

5�
3

y D x � 2 sin x

yDx

31. loc max at CP x D
p

3=2 and endpoint SP x D �1;

loc min at CP x D �
p

3=2 and endpoint SP x D 1

y

x
�1

�
p

3
2 p

3
2

1

y D 2x � sin�1
x

33. abs max at x D 1= ln 2

y

x

.
1

ln 2 ;
1

e ln 2 /

y D x2
�x

35. abs max at x D e

y

x

.e;1=e/

y D
ln x

x

37. loc max at CP x D 0; abs min at SPs

x D ˙1

y

x�1 1

1

y D jx2
� 1j

39. abs max at CPs x D .2nC 1/�=2; abs min at SPs

x D n� .n D 0;˙1;˙2; : : :/

y

x�� �

1

y D j sin xj

41. no max or min 43. max 2, min �2

45. has min, no max 47. yes, no

Section 4.5 (page 246)

1. concave down on .0;1/

3. concave up on R

5. concave down on .�1; 0/ and .1;1/; concave up on

.�1;�1/ and .0; 1/; inflection x D �1; 0; 1

7. concave down on .�1; 1/; concave up on .�1;�1/

and .1;1/; inflection x D ˙1
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ANSWERS TO ODD-NUMBERED EXERCISES A-47

9. concave down on .�2;�2=
p

5/ and .2=
p

5; 2/; con-

cave up on .�1;�2/, .�2=
p

5; 2=
p

5/ and .2;1/;

inflection x D ˙2; ˙2=
p

5

11. concave down on .2n�; .2nC 1/�/; concave up on

..2n � 1/�; 2n�/, .n D 0;˙1;˙2; : : :/; inflection

x D n�

13. concave down on
�

n�; .nC
1
2
/�
�

;

concave up on
�

.n �
1
2
/�; n�

�

; inflection x D n�=2,

.n D 0;˙1;˙2; : : :/

15. concave down on .0;1/, up on .�1; 0/; inflection

x D 0

17. concave down on .�1=
p

2; 1=
p

2/, up on .�1;�1=
p

2/

and .1=
p

2;1/; inflection x D ˙1=
p

2

19. concave down on .�1;�1/ and .1;1/; conc up on

.�1; 1/; inflection x D ˙1

21. concave down on .�1; 4/, up on .4;1/; inflection

x D 4

23. no concavity, no inflections

25. loc min at x D 2; loc max at x D 2
3

27. loc min at x D 1=
4
p

3; loc max at �1=
4
p

3

29. loc max at x D 1; loc min at x D �1 (both abs)

31. loc (and abs) min at x D 1=e

33. loc min at x D 0; inflections at x D ˙2 (not dis-

cernible by Second Derivative Test)

35. abs min at x D 0; abs max at x D ˙1=
p

2

39. If n is even, fn has a min and gn has a max at x D 0.

If n is odd, both have inflections at x D 0.

Section 4.6 (page 255)

1. (a) g, (b) f 00, (c) f , (d) f 0

3. (a) k.x/, (b) g.x/, (c) f .x/, (d) h.x/

5.

y

x

�1

1 .2;1/

2

1�1

y D f .x/

7.

y

x

y D .x2
� 1/3

infl

�1

�1

infl

1

infl infl

�1=
p

5 1=
p

5

9.

y

x

2

�1

.�1;�3/

y D
2 � x

x

11.

y

x

�1

y D
x

3

1C x

�

� 3
2 ;

27
4

�

13.

y

x

1=2

�

2;� 1
2

�

�

�2;� 1
2

�

p
2�

p
2

y D
1

2 � x2

15.

y

x

�

�2;
4
3

� �

2;
4
3

�

�1 1

y D
x2

x2
� 1

9780134154367_Calculus   1126 05/12/16   5:56 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-46 October 14, 2016

A-46 ANSWERS TO ODD-NUMBERED EXERCISES

21. loc max at x D 3
5

; loc min at x D 1; critical point x D

0 is neither max nor min

y

x

�

3
5 ;

108
55

�

1

y D x3.x � 1/2

23. loc max at x D �1 and x D 1=
p

5; loc min at x D 1

and x D �1=
p

5

y

x1

�1

�1p
5

1p
5

y D x.x2
� 1/2

25. abs min at x D 0

y

x

yD1

yD x2

x2C1

27. loc min at CP x D �1 and endpoint SP x D
p

2;

loc max at CP x D 1 and endpoint SP x D �
p

2

y

x

�
p

2 �1

1
p

2

y D x
p

2 � x2

29. loc max at x D 2n� �
�

3
; loc min at x D 2n� C

�

3
.n D 0;˙1;˙2; : : :/

y

x

�
3

5�
3

y D x � 2 sin x

yDx

31. loc max at CP x D
p

3=2 and endpoint SP x D �1;

loc min at CP x D �
p

3=2 and endpoint SP x D 1

y

x
�1

�
p

3
2 p

3
2

1

y D 2x � sin�1
x

33. abs max at x D 1= ln 2

y

x

.
1

ln 2 ;
1

e ln 2 /

y D x2
�x

35. abs max at x D e

y

x

.e;1=e/

y D
ln x

x

37. loc max at CP x D 0; abs min at SPs

x D ˙1

y

x�1 1

1

y D jx2
� 1j

39. abs max at CPs x D .2nC 1/�=2; abs min at SPs

x D n� .n D 0;˙1;˙2; : : :/

y

x�� �

1

y D j sin xj

41. no max or min 43. max 2, min �2

45. has min, no max 47. yes, no

Section 4.5 (page 246)

1. concave down on .0;1/

3. concave up on R

5. concave down on .�1; 0/ and .1;1/; concave up on

.�1;�1/ and .0; 1/; inflection x D �1; 0; 1

7. concave down on .�1; 1/; concave up on .�1;�1/

and .1;1/; inflection x D ˙1
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9. concave down on .�2;�2=
p

5/ and .2=
p

5; 2/; con-

cave up on .�1;�2/, .�2=
p

5; 2=
p

5/ and .2;1/;

inflection x D ˙2; ˙2=
p

5

11. concave down on .2n�; .2nC 1/�/; concave up on

..2n � 1/�; 2n�/, .n D 0;˙1;˙2; : : :/; inflection

x D n�

13. concave down on
�

n�; .nC
1
2
/�
�

;

concave up on
�

.n �
1
2
/�; n�

�

; inflection x D n�=2,

.n D 0;˙1;˙2; : : :/

15. concave down on .0;1/, up on .�1; 0/; inflection

x D 0

17. concave down on .�1=
p

2; 1=
p

2/, up on .�1;�1=
p

2/

and .1=
p

2;1/; inflection x D ˙1=
p

2

19. concave down on .�1;�1/ and .1;1/; conc up on

.�1; 1/; inflection x D ˙1

21. concave down on .�1; 4/, up on .4;1/; inflection

x D 4

23. no concavity, no inflections

25. loc min at x D 2; loc max at x D 2
3

27. loc min at x D 1=
4
p

3; loc max at �1=
4
p

3

29. loc max at x D 1; loc min at x D �1 (both abs)

31. loc (and abs) min at x D 1=e

33. loc min at x D 0; inflections at x D ˙2 (not dis-

cernible by Second Derivative Test)

35. abs min at x D 0; abs max at x D ˙1=
p

2

39. If n is even, fn has a min and gn has a max at x D 0.

If n is odd, both have inflections at x D 0.

Section 4.6 (page 255)

1. (a) g, (b) f 00, (c) f , (d) f 0

3. (a) k.x/, (b) g.x/, (c) f .x/, (d) h.x/

5.

y

x

�1

1 .2;1/

2

1�1

y D f .x/

7.

y

x

y D .x2
� 1/3

infl

�1

�1

infl

1

infl infl

�1=
p

5 1=
p

5

9.

y

x

2

�1

.�1;�3/

y D
2 � x

x

11.

y

x

�1

y D
x

3

1C x

�

� 3
2 ;

27
4

�

13.

y

x

1=2

�

2;� 1
2

�

�

�2;� 1
2

�

p
2�

p
2

y D
1

2 � x2

15.

y

x

�

�2;
4
3

� �

2;
4
3

�

�1 1

y D
x2

x2
� 1
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17.

y

x

y D
x3

x2
C 1

p
3

�
p

3

yDx

19.

y

x

�4

2�2

yDx�1

y D
x2
� 4

x C 1

�1

21.

y

x2�2

�1 1

y D
x3
� 4x

x2
� 1

yDx

23.

y

x

�p
5;

25
p

5
16

�

1�1

yDx

y D
x5

.x2
� 1/2

25.

y

x3

2=
p

3

�2=
p

3 2

�2

yD 1
x3�4x

27.

y

x

.1;�1/

�
p

2

.�1;3/

yD1

p
2

y D
x3
� 3x2

C 1

x3
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29.

y

x2�
3

4�
3

y D x C 2 sin x

yDx

.2�;2�/

31.

y

x�

�2;� 2
e2

�

�

�1;� 1
e

�

y D x ex

33.

y

x

infl

infl infl

infl

.�1;1=e/ .1;1=e/

�a �b b a

a2D.5C
p

17/=4 b2D.5�
p

17/=4

y D x
2
e

�x2

35.

y

xe3=2

�

e;
1
e

�

1

y D
lnx

x

37.

y

x

y D
1

p

4 � x2

�1
1=2

1

39.

y

x

�1

1
�1

y D .x2
� 1/1=3

41. y D 0. Curve crosses asymptote at x D n� for every

integer n.

Section 4.7 (page 261)

5. 10�324

Section 4.8 (page 267)

1. 49=4 3. 20 and 40

5. 71:45 11. R2 sq. units

13. 2ab units2 15. 50 cm2

17. width 8C 10
p

2 m, height 4C 5
p

2 m

19. rebate $250 21. point 5 km east of A

25. (a) 0 m, (b) �=.4C �/ m

27. 8
p

3 units

29.
�

.a2=3
C b2=3/3 C c2

�1=2
units

31. 31=2=21=3 units

33. height
2R
p

3
, radius

r

2

3
R units

35. base 2m � 2m, height 1 m

37. width
20

4C �
m, height

10

4C �
m

41. width R, depth
p

3R 43. Q D 3L=8

45. 750 cars 47.
5000

�
m2; semicircle

49.
3
p

3a

4
cm

9780134154367_Calculus   1128 05/12/16   5:56 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-48 October 14, 2016

A-48 ANSWERS TO ODD-NUMBERED EXERCISES

17.

y

x

y D
x3

x2
C 1

p
3

�
p

3

yDx

19.

y

x

�4

2�2

yDx�1

y D
x2
� 4

x C 1

�1

21.

y

x2�2

�1 1

y D
x3
� 4x

x2
� 1

yDx

23.

y

x

�p
5;

25
p

5
16

�

1�1

yDx

y D
x5

.x2
� 1/2

25.

y

x3

2=
p

3

�2=
p

3 2

�2

yD 1
x3�4x

27.

y

x

.1;�1/

�
p

2

.�1;3/

yD1

p
2

y D
x3
� 3x2

C 1

x3
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29.

y

x2�
3

4�
3

y D x C 2 sin x

yDx

.2�;2�/

31.

y

x�

�2;� 2
e2

�

�

�1;� 1
e

�

y D x ex

33.

y

x

infl

infl infl

infl

.�1;1=e/ .1;1=e/

�a �b b a

a2D.5C
p

17/=4 b2D.5�
p

17/=4

y D x
2
e

�x2

35.

y

xe3=2

�

e;
1
e

�

1

y D
lnx

x

37.

y

x

y D
1

p

4 � x2

�1
1=2

1

39.

y

x

�1

1
�1

y D .x2
� 1/1=3

41. y D 0. Curve crosses asymptote at x D n� for every

integer n.

Section 4.7 (page 261)

5. 10�324

Section 4.8 (page 267)

1. 49=4 3. 20 and 40

5. 71:45 11. R2 sq. units

13. 2ab units2 15. 50 cm2

17. width 8C 10
p

2 m, height 4C 5
p

2 m

19. rebate $250 21. point 5 km east of A

25. (a) 0 m, (b) �=.4C �/ m

27. 8
p

3 units

29.
�

.a2=3
C b2=3/3 C c2

�1=2
units

31. 31=2=21=3 units

33. height
2R
p

3
, radius

r

2

3
R units

35. base 2m � 2m, height 1 m

37. width
20

4C �
m, height

10

4C �
m

41. width R, depth
p

3R 43. Q D 3L=8

45. 750 cars 47.
5000

�
m2; semicircle

49.
3
p

3a

4
cm
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Section 4.9 (page 274)

1. 6x � 9 3. 2 � .x=4/

5. .7 � 2x/=27 7. � � x

9. .1=4/C .
p

3=2/.x � .�=6//

11. about 8 cm2 13. about 62.8 mi

15.
p

50 �
99
14
� 7:071429, error < 0,

jerrorj < 1
2744
� 0:0003644, .7:07106; 7:071429/

17.
4
p

85 �
82
27

, error < 0, jerrorj < 1
2�36 , .3:03635; 3:03704/

19. cos 46ı
�

1
p

2

�

1 �
�

180

�

� 0:694765, error < 0,

jerrorj <
1

2
p

2

�

�

180

�2

, .0:694658; 0:694765/

21. sin.3:14/ � � � 3:14, error < 0,

jerrorj < .� � 3:14/3=2 < 2:02 � 10�9,

.� � 3:14 � .� � 3:14/3=2; � � 3:14/

23. .7:07106; 7:07108/,
p

50 � 7:07107

25. .0:80891; 0:80921/,
4
p

85 � 0:80906

27. 3 � f .3/ � 13=4

29. g.1:8/ � 0:6, jerrorj < 0:0208

31. about 1,005 cm3

Section 4.10 (page 283)

1. 1 � x C 1
2
x2
�

1

6
x

3
C

1
24
x

4

3. ln 2C
x � 2

2
�

.x � 2/2

8
C

.x � 3/3

24
�

.x � 2/4

64

5. 2C
x � 4

4
�

.x � 4/
2

64
C

3.x � 4/
3

1536

7. Pn.x/ D
1

3
�

1

9
.x�1/C

1

27
.x�1/

2
�� � �C

.�1/
n

3nC1
.x�

1/
n

9. x1=3
� 2C

1
12
.x�8/�

1
288
.x�8/2, 91=3

� 2:07986,

0 < error � 5=.81 � 256/,

2:07986 < 9
1=3

< 2:08010

11.
1

x
� 1 � .x � 1/ C .x � 1/

2,
1

1:02
� 0:9804,

�.0:02/3 � error < 0, 0:980392 �
1

1:02
< 0:9804

13. ex
� 1C x C

1
2
x2, e�0:5

� 0:625,

�
1
6
.0:5/3 � error < 0, 0:604 � e�0:5 < 0:625

15. sinx D x �
x3

3Š
C

x5

5Š
�

x7

7Š
CR7;

R7 D
sin c

8Š
x

8 for some c between 0 and x

17. sinx D
1
p

2

�

1C

�

x �
�

4

�

�

1

2Š

�

x �
�

4

�2

�

1

3Š

�

x �
�

4

�3

C

1

4Š

�

x �
�

4

�4
�

CR4;

where R4 D
cos c

5Š

�

x �
�

4

�5

for some c between x

and �=4

19. lnx D .x � 1/ �
.x � 1/2

2
C

.x � 1/3

3
�

.x � 11/4

4

C

.x � 1/5

5
�

.x � 1/6

6
CR6;

where R6 D
.x � 1/7

7c7
for some c between 1 and x

21.
1

e3
C

3

e3
.x C 1/C

9

2e3
.x C 1/

2
C

9

2e3
.x C 1/

3

23. x2
�

1
3
x

4 25. 1 � 2x2
C 4x

4
� 8x

6

27. Pn.x/ D 0 if 0 � n � 2; Pn.x/ D x
3 if n � 3

29. x C
x3

3Š
C

x5

5Š
C � � � C

x2nC1

.2nC 1/Š

31. e�x
D 1 � x C

x
2

2Š
�

x
3

3Š
C � � � C .�1/

n x
n

nŠ
CRn;

where Rn D .�1/
nC1

e�XxnC1

.nC 1/Š
for some X between

0 and x;
1

e
�

1

2Š
�

1

3Š
C � � � C

1

8Š
� 0:36788

33. 1�2xCx2 (f is its own best quadratic approximation);

(error = 0). g.x/ � 4C 3x C 2x2; error D x3;

since g000.x/ D 6 D 3Š, therefore error D
g000.c/

3Š
x

3;

no improvement possible.

35. Pn.x/ D 1C 2x C 3x
2
C � � � C .nC 1/xn

Section 4.11 (page 287)

1. No. No.

Review Exercises (page 287)

1. 6%=min

3. (a) �1;600 ohms/min, (b) �1;350 ohms/min

5. 2; 000 7. 32�R3
=81 units3

9. 9,000 cm3 11. approx 0.057 rad/s

13. about 9.69465 cm 15. 2:06%

17. �
4
C 0:0475 � 0:83290, jerrorj < 0:00011

19. 0; 1:4055636328

21. approx. .�1:1462; 0:3178/

Challenging Problems (page 289)

1. (a)
dx

dt
D

k

3
.x

3
0 � x

3
/, (b) V0=2

3. (b) 11

5. (c) y0.1 � .t=T //
2, (d) .1 � .1=

p

2//T

7. P 2.3 � 2
p

2/=4

9. (a) cos�1.r2=r1/
2, (b) cos�1.r2=r1/

4

11. approx 921 cm3

Chapter 5

Integration

Section 5.1 (page 295)

1. 13
C 23

C 33
C 43 3. 3C 32

C 33
C � � � C 3n
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5.
.�2/3

12
C

.�2/4

22
C

.�2/5

32
C � � � C

.�2/n

.n� 2/2

7.
P9

iD5 i 9.
P99

iD2.�1/
i i2

11.
Pn

iD0 x
i 13.

Pn
iD1.�1/

i�1
=i

2

15.
P100

iD1 sin.i � 1/ 17. n.nC 1/.2nC 7/=6

19.
�.�n

� 1/

� � 1
� 3n 21. ln.nŠ/

23. 400 25. .x2nC1
C 1/=.x C 1/

27. �4;949 31. 2m
� 1

33. n=.nC 1/

Section 5.2 (page 301)

1. 3/2 sq. units 3. 6 sq. units

5. 26/3 sq. units 7. 15 sq. units

9. 4 sq. units 11. 32/3 sq. units

13. 3=.2 ln 2/ sq. units

15. ln.b=a/, follows from definition of ln

17. 0 19. �=4

Section 5.3 (page 307)

1. L.f;P8/ D 7=4; U.f; P8/ D 9=4

3. L.f;P4/ D
e4
� 1

e2.e � 1/
� 4:22;

U.f; P4/ D
e4
� 1

e.e � 1/
� 11:48

5. L.f;P6/ D
�

6
.1C

p

3/ � 1:43;

U.f; P6/ D
�

6
.3C

p

3/ � 2:48

7. L.f;Pn/ D
n� 1

2n
; U.f; Pn/ D

nC 1

2n
,
R 1

0
x dx D

1

2

9. L.f;Pn/ D
.n � 1/2

4n2
; U.f; Pn/ D

.nC 1/2

4n2
,

R 1

0
x3 dx D

1

4

11.
R 1

0

p

x dx 13.
R �

0
sin x dx

15.
R 1

0
tan�1x dx

Section 5.4 (page 312)

1. 0 3. 8

5. .b2
� a2/=2 7. �

9. 0 11. 2�

13. 0 15. .2� C 3
p

3/=6

17. 16 19. 32=3

21. .4C 3�/=12 23. ln 2

25. ln 3 27. 4

29. 1 31. �=2

33. 1 35. 11=6

37.
�

3
�

p

3 39. 41=2

41. 3=4 43. k D Nf

Section 5.5 (page 318)

1. 4 3. 1

5. 9 7. 804
5

9.
2 �
p

2

2
p

2
11. .1=

p

2/ � .1=2/

13. e�
� e�� 15. .ae

� 1/= ln a

17. �=2 19.
�

3

21. 1
5

sq. units 23. 32
3

sq. units

25. 1
6

sq. units 27. 1
3

sq. units

29. 1
12

sq. units 31. 2� sq. units

33. 3 35. 16
3

37. e � 1 39.
sin x

x

41. �2
sin x2

x
43.

cos t

1C t2

45. .cos x/=.2
p

x/ 47. f .x/ D �e�.x�1/

49. 1=x2 is not continuous (or even defined) at x D 0,

so the Fundamental Theorem cannot be applied over

Œ�1; 1�. Since 1=x2 > 0 on its domain, we would ex-

pect the integral to be positive if it exists at all. (It

doesn’t.)

51. F.x/ has a maximum value at x D 1 but no minimum

value.
53. 2

Section 5.6 (page 326)

1. �1
2
e5�2x

C C 3. 2
9
.3x C 4/3=2

C C

5. � 1
32
.4x2

C 1/�4
C C 7. 1

2
ex2

C C

9. 1
2

tan�1
�

1
2

sinx
�

C C

11. 2 ln
ˇ

ˇex=2
� e�x=2

ˇ

ˇ

C C D ln jex
� 2C e�x

j C C

13. �2
5

p

4 � 5s C C 15. 1
2

sin�1

�

t
2

2

�

C C

17. � ln .1C e�x
/C C 19. �1

2
.ln cos x/2 C C

21. 1
2

tan�1
x C 3

2
C C

23. 1
8

cos8 x �
1
6

cos6 x C C

25. �
1

3a
cos3

ax C C

27. 5
16
x �

1
4

sin 2x C 3
64

sin 4x C 1
48

sin3
2x C C

29. 1
5

sec5 x C C

31. 2
3
.tan x/3=2

C
2
7
.tan x/7=2

C C

33. 3
8

sin x � 1
4

sin.2 sin x/C 1
32

sin.4 sin x/C C

35. 1
3

tan3 x C C

37. �1
9

csc9 x C
2
7

csc7 x �
1
5

csc5 x C C
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Section 4.9 (page 274)

1. 6x � 9 3. 2 � .x=4/

5. .7 � 2x/=27 7. � � x

9. .1=4/C .
p

3=2/.x � .�=6//

11. about 8 cm2 13. about 62.8 mi

15.
p

50 �
99
14
� 7:071429, error < 0,

jerrorj < 1
2744
� 0:0003644, .7:07106; 7:071429/

17.
4
p

85 �
82
27

, error < 0, jerrorj < 1
2�36 , .3:03635; 3:03704/

19. cos 46ı
�

1
p

2

�

1 �
�

180

�

� 0:694765, error < 0,

jerrorj <
1

2
p

2

�

�

180

�2

, .0:694658; 0:694765/

21. sin.3:14/ � � � 3:14, error < 0,

jerrorj < .� � 3:14/3=2 < 2:02 � 10�9,

.� � 3:14 � .� � 3:14/3=2; � � 3:14/

23. .7:07106; 7:07108/,
p

50 � 7:07107

25. .0:80891; 0:80921/,
4
p

85 � 0:80906

27. 3 � f .3/ � 13=4

29. g.1:8/ � 0:6, jerrorj < 0:0208

31. about 1,005 cm3

Section 4.10 (page 283)

1. 1 � x C 1
2
x2
�

1

6
x

3
C

1
24
x

4

3. ln 2C
x � 2

2
�

.x � 2/2

8
C

.x � 3/3

24
�

.x � 2/4

64

5. 2C
x � 4

4
�

.x � 4/
2

64
C

3.x � 4/
3

1536

7. Pn.x/ D
1

3
�

1

9
.x�1/C

1

27
.x�1/

2
�� � �C

.�1/
n

3nC1
.x�

1/
n

9. x1=3
� 2C

1
12
.x�8/�

1
288
.x�8/2, 91=3

� 2:07986,

0 < error � 5=.81 � 256/,

2:07986 < 9
1=3

< 2:08010

11.
1

x
� 1 � .x � 1/ C .x � 1/

2,
1

1:02
� 0:9804,

�.0:02/3 � error < 0, 0:980392 �
1

1:02
< 0:9804

13. ex
� 1C x C

1
2
x2, e�0:5

� 0:625,

�
1
6
.0:5/3 � error < 0, 0:604 � e�0:5 < 0:625

15. sinx D x �
x3

3Š
C

x5

5Š
�

x7

7Š
CR7;

R7 D
sin c

8Š
x

8 for some c between 0 and x

17. sinx D
1
p

2

�

1C

�

x �
�

4

�

�

1

2Š

�

x �
�

4

�2

�

1

3Š

�

x �
�

4

�3

C

1

4Š

�

x �
�

4

�4
�

CR4;

where R4 D
cos c

5Š

�

x �
�

4

�5

for some c between x

and �=4

19. lnx D .x � 1/ �
.x � 1/2

2
C

.x � 1/3

3
�

.x � 11/4

4

C

.x � 1/5

5
�

.x � 1/6

6
CR6;

where R6 D
.x � 1/7

7c7
for some c between 1 and x

21.
1

e3
C

3

e3
.x C 1/C

9

2e3
.x C 1/

2
C

9

2e3
.x C 1/

3

23. x2
�

1
3
x

4 25. 1 � 2x2
C 4x

4
� 8x

6

27. Pn.x/ D 0 if 0 � n � 2; Pn.x/ D x
3 if n � 3

29. x C
x3

3Š
C

x5

5Š
C � � � C

x2nC1

.2nC 1/Š

31. e�x
D 1 � x C

x
2

2Š
�

x
3

3Š
C � � � C .�1/

n x
n

nŠ
CRn;

where Rn D .�1/
nC1

e�XxnC1

.nC 1/Š
for some X between

0 and x;
1

e
�

1

2Š
�

1

3Š
C � � � C

1

8Š
� 0:36788

33. 1�2xCx2 (f is its own best quadratic approximation);

(error = 0). g.x/ � 4C 3x C 2x2; error D x3;

since g000.x/ D 6 D 3Š, therefore error D
g000.c/

3Š
x

3;

no improvement possible.

35. Pn.x/ D 1C 2x C 3x
2
C � � � C .nC 1/xn

Section 4.11 (page 287)

1. No. No.

Review Exercises (page 287)

1. 6%=min

3. (a) �1;600 ohms/min, (b) �1;350 ohms/min

5. 2; 000 7. 32�R3
=81 units3

9. 9,000 cm3 11. approx 0.057 rad/s

13. about 9.69465 cm 15. 2:06%

17. �
4
C 0:0475 � 0:83290, jerrorj < 0:00011

19. 0; 1:4055636328

21. approx. .�1:1462; 0:3178/

Challenging Problems (page 289)

1. (a)
dx

dt
D

k

3
.x

3
0 � x

3
/, (b) V0=2

3. (b) 11

5. (c) y0.1 � .t=T //
2, (d) .1 � .1=

p

2//T

7. P 2.3 � 2
p

2/=4

9. (a) cos�1.r2=r1/
2, (b) cos�1.r2=r1/

4

11. approx 921 cm3

Chapter 5

Integration

Section 5.1 (page 295)

1. 13
C 23

C 33
C 43 3. 3C 32

C 33
C � � � C 3n
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5.
.�2/3

12
C

.�2/4

22
C

.�2/5

32
C � � � C

.�2/n

.n� 2/2

7.
P9

iD5 i 9.
P99

iD2.�1/
i i2

11.
Pn

iD0 x
i 13.

Pn
iD1.�1/

i�1
=i

2

15.
P100

iD1 sin.i � 1/ 17. n.nC 1/.2nC 7/=6

19.
�.�n

� 1/

� � 1
� 3n 21. ln.nŠ/

23. 400 25. .x2nC1
C 1/=.x C 1/

27. �4;949 31. 2m
� 1

33. n=.nC 1/

Section 5.2 (page 301)

1. 3/2 sq. units 3. 6 sq. units

5. 26/3 sq. units 7. 15 sq. units

9. 4 sq. units 11. 32/3 sq. units

13. 3=.2 ln 2/ sq. units

15. ln.b=a/, follows from definition of ln

17. 0 19. �=4

Section 5.3 (page 307)

1. L.f;P8/ D 7=4; U.f; P8/ D 9=4

3. L.f;P4/ D
e4
� 1

e2.e � 1/
� 4:22;

U.f; P4/ D
e4
� 1

e.e � 1/
� 11:48

5. L.f;P6/ D
�

6
.1C

p

3/ � 1:43;

U.f; P6/ D
�

6
.3C

p

3/ � 2:48

7. L.f;Pn/ D
n� 1

2n
; U.f; Pn/ D

nC 1

2n
,
R 1

0
x dx D

1

2

9. L.f;Pn/ D
.n � 1/2

4n2
; U.f; Pn/ D

.nC 1/2

4n2
,

R 1

0
x3 dx D

1

4

11.
R 1

0

p

x dx 13.
R �

0
sin x dx

15.
R 1

0
tan�1x dx

Section 5.4 (page 312)

1. 0 3. 8

5. .b2
� a2/=2 7. �

9. 0 11. 2�

13. 0 15. .2� C 3
p

3/=6

17. 16 19. 32=3

21. .4C 3�/=12 23. ln 2

25. ln 3 27. 4

29. 1 31. �=2

33. 1 35. 11=6

37.
�

3
�

p

3 39. 41=2

41. 3=4 43. k D Nf

Section 5.5 (page 318)

1. 4 3. 1

5. 9 7. 804
5

9.
2 �
p

2

2
p

2
11. .1=

p

2/ � .1=2/

13. e�
� e�� 15. .ae

� 1/= ln a

17. �=2 19.
�

3

21. 1
5

sq. units 23. 32
3

sq. units

25. 1
6

sq. units 27. 1
3

sq. units

29. 1
12

sq. units 31. 2� sq. units

33. 3 35. 16
3

37. e � 1 39.
sin x

x

41. �2
sin x2

x
43.

cos t

1C t2

45. .cos x/=.2
p

x/ 47. f .x/ D �e�.x�1/

49. 1=x2 is not continuous (or even defined) at x D 0,

so the Fundamental Theorem cannot be applied over

Œ�1; 1�. Since 1=x2 > 0 on its domain, we would ex-

pect the integral to be positive if it exists at all. (It

doesn’t.)

51. F.x/ has a maximum value at x D 1 but no minimum

value.
53. 2

Section 5.6 (page 326)

1. �1
2
e5�2x

C C 3. 2
9
.3x C 4/3=2

C C

5. � 1
32
.4x2

C 1/�4
C C 7. 1

2
ex2

C C

9. 1
2

tan�1
�

1
2

sinx
�

C C

11. 2 ln
ˇ

ˇex=2
� e�x=2

ˇ

ˇ

C C D ln jex
� 2C e�x

j C C

13. �2
5

p

4 � 5s C C 15. 1
2

sin�1

�

t
2

2

�

C C

17. � ln .1C e�x
/C C 19. �1

2
.ln cos x/2 C C

21. 1
2

tan�1
x C 3

2
C C

23. 1
8

cos8 x �
1
6

cos6 x C C

25. �
1

3a
cos3

ax C C

27. 5
16
x �

1
4

sin 2x C 3
64

sin 4x C 1
48

sin3
2x C C

29. 1
5

sec5 x C C

31. 2
3
.tan x/3=2

C
2
7
.tan x/7=2

C C

33. 3
8

sin x � 1
4

sin.2 sin x/C 1
32

sin.4 sin x/C C

35. 1
3

tan3 x C C

37. �1
9

csc9 x C
2
7

csc7 x �
1
5

csc5 x C C
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39. 14
3

p

17C
2
3

41. 3�=16

43. ln 2 45. 2; 2.
p

2 � 1/

47. �=32 sq. units

Section 5.7 (page 331)

1.
1

6
sq. units 3.

64

3
sq. units

5.
125

12
sq. units 7.

1

2
sq. units

9.
5

12
sq. units 11.

15

8
� 2 ln 2 sq. units

13.
�

2
�

1

3
sq. units 15.

4

3
sq. units

17. 2
p

2 sq. units 19. 1 � �=4 sq. units

21. .�=8/ � ln
p

2 sq. units

23. .4�=3/ � 2 ln.2C
p

3/ sq. units

25. .4=�/ � 1 sq. units 27.
4

3
sq. units

29.
e

2
� 1 sq. units

Review Exercises (page 332)

1. sum is n.nC 2/=.nC 1/2

3. 20=3 5. 4�

7. 0 9. 2

11. sin.t2/ 13. �4esin.4s/

15. f .x/ D �1
2
e.3=2/.1�x/ 17. 9=2 sq. units

19. 3=10 sq. units 21. .3
p

3=4/ � 1 sq. units

23. .1
6

sin.2x3
C 1/C C 25. 98=3

27. .�=8/ � .1=2/tan�1.1=2/

29. � cos
p

2s C 1C C 31. min ��=4, no max

35. x1 D

p

3 � 1

2
p

3
; x2 D

p

3C 1

2
p

3

Chapter 6

Techniques of Integration

Section 6.1 (page 339)

1. x sin x C cos x C C

3.
1

�
x

2 sin�x C
2

�2
x cos�x �

2

�3
sin�x C C

5. 1
4
x4 ln x � 1

16
x4
C C

7. x tan�1 x �
1
2

ln.1C x2/C C

9.
�

1
2
x2
�

1
4

�

sin�1
x C

1
4
x
p

1 � x2
C C

11. 7
8

p

2C
3
8

ln.1C
p

2/

13. 1
13
e

2x
.2 sin 3x � 3 cos 3x/C C

15. ln.2C
p

3/ �
�

6
17. x tan x � ln j sec xj C C

19.
x

2

�

cos.ln x/C sin.ln x/
�

C C

21. lnx
�

ln.ln x/� 1
�

C C

23. x cos�1 x �
p

1 � x2
C C

25.
2�

3
� ln.2C

p

3/

27. 1
2
.x

2
C 1/

�

tan�1
x
�2
� x tan�1

xC
1
2

ln.1C x2
/CC

29.
1C e��

2
square units

31. In D x.lnx/
n
� nIn�1;

I4 D x
�

.ln x/4 � 4.ln x/3 C 12.ln x/2 � 24.ln x/C 24
�

CC

33. In D �
1

n
sinn�1

x cos x C
n � 1

n
In�2,

I6 D
5x

16
� cos x

�

1
6

sin5
x C

5
24

sin3
x C

5
16

sin x
�

C C ,

I7 D � cos x
�

1
7

sin6
x C

6
35

sin4
x C

8
35

sin2
x C

16
35

�

C C

35. In D
x

2a2.n � 1/.x2
C a2/n�1

C

2n � 3

2a2.n � 1/
In�1,

I3 D
x

4a2.x2
C a2/2

C

3x

8a4.x2
C a2/

C

3

8a5
tan�1 x

a
C C

37. Any conditions which guarantee that

f .b/g0.b/ � f 0.b/g.b/ D f .a/g0.a/ � f 0.a/g.a/

will suffice.

Section 6.2 (page 348)

1. ln j2x � 3j C C

3.
x

�
�

2

�2
ln j�x C 2j C C

5.
1

6
ln

ˇ

ˇ

ˇ

ˇ

x � 3

x C 3

ˇ

ˇ

ˇ

ˇ

C C 7.
1

2a
ln

ˇ

ˇ

ˇ

ˇ

aC x

a � x

ˇ

ˇ

ˇ

ˇ

C C

9. x � 4
3

ln jx C 2j C 1
3

ln jx � 1j C C

11. 3 ln jx C 1j � 2 ln jxj C C

13.
1

3.1 � 3x/
C C

15. �1
9
x �

13

54
ln j2 � 3xj C 1

6
ln jxj C C

17.
1

2a2
ln
jx2
� a2
j

x2
C C

19. x C
a

3
ln jx � aj �

a

6
ln.x2

C ax C a
2
/

�

a
p

3
tan�1 2x C a

p

3a
C C

21. 1
3

ln jxj � 1
2

ln jx � 1j C 1
6

ln jx � 3j C C

23.
1

4
ln

ˇ

ˇ

ˇ

ˇ

x C 1

x � 1

ˇ

ˇ

ˇ

ˇ

�

x

2.x2
� 1/

C C

25.
1

27
ln

ˇ

ˇ

ˇ

ˇ

x � 3

x

ˇ

ˇ

ˇ

ˇ

C

1

9x
C

1

6x2
C C

27.
x

4
�

1

4
ln jex

� 2j �
1

2.ex
� 2/

CK

29.
A

x � 1
C

B

.x � 1/2
C

3

.x � 1/3
C

D

x C 1
C

Ex C F

x2
C x C 1

31. x � 4C
A

x C 2
C

B

.x C 2/2
C

C

.x C 2/3
C

D

x � 2
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Section 6.3 (page 355)

1. 1
2

sin�1
.2x/C C

3. 9
2

sin�1 x

3
�

1
2
x

p

9 � x2
C C

5. �

p

9 � x2

9x
C C

7. �
p

9 � x2
C sin�1 x

3
C C

9. 1
3
.9C x2/3=2

� 9
p

9C x2
C C

11.
1

a2

x
p

a2
� x2

C C

13.
x

p

a2
� x2

� sin�1 x

a
C C

15.
1

2
sec�1 x

2
C C 17. 1

3
tan�1

x C 1

3
C C

19. 1
32

tan�1 2x C 1

2
C

1

16

2x C 1

4x2
C 4x C 5

C C

21. a sin�1 x � a

a
�

p

2ax � x2
C C

23.
3 � x

4
p

3 � 2x � x2
C C

25. 3
8

tan�1
x C

3x3
C 5x

8.1C x2/2
C C

27. 1
2

ln
�

1C
p

1 � x2
�

�
1
2

ln jxj �

p

1 � x2

2x2
C C

29. 2
p

x � 4 ln.2C
p

x/C C

31. 6
7
x7=6
�

6
5
x5=6
C

3
2
x2=3
C 2x1=2

� 3x1=3
� 6x1=6

C 3 ln.1C x1=3/C 6 tan�1 x1=6
CC

33.
�

6
�

p

3

8
35. �=3

37.
t � 1

4.t2 C 1/
�

1
4

ln jt C 1j C 1
8

ln.t2 C 1/C C

39.
1

3
ln

ˇ

ˇ

ˇ

ˇ

ˇ

1 �
p

1 � x2

x

ˇ

ˇ

ˇ

ˇ

ˇ

C

1

12
ln

 

�

2C
p

1� x2
�2

3C x2

!

CC

41.
1

p

1C x2
C

1

2
ln

ˇ

ˇ

ˇ

ˇ

ˇ

1 �
p

1C x2

1C
p

1C x2

ˇ

ˇ

ˇ

ˇ

ˇ

C C

43.
2
p

3
tan�1

�

2 tan.�=2/C 1
p

3

�

C C

45.
2
p

5
tan�1

�

tan.�=2/
p

5

�

C C

47.
9

2
p

2
tan�1 1

p

2
�

1

2
square units

49. a2 cos�1

�

b

a

�

� b
p

a2
� b2 square units

51.
25

2

�

sin�1 4

5
� sin�1 3

5

�

� 12 ln
4

3
square units

53.
ln.Y C

p

1C Y 2/

2
sq. units

Section 6.4 (page 362)

1.
3

25
e

3x sin.4x/C C

3. �

�

x4

2
C x

2
C 1

�

e�x2
C C

9.
x
p

x2
� 2

2
C ln jx C

p

x2
� 2j C C

11. �
p

3t2 C 5=.5t/C C

13. .x5=3125/.625.ln x/4 � 500.ln x/3 C 300.ln x/2

� 120 ln x C 24/C C

15. .1=6/.2x2
�x�3/

p

2x � x2
�.1=2/sin�1

.1�x/CC

17. .x � 2/=.4
p

4x � x2/C C

21. limx!1 erf.x/ D 1, limx!�1 erf.x/ D �1

21. (d) xerf.x/C .1=
p

�/ e
�x2

C C

Section 6.5 (page 370)

1. 1=2 3. 1=2

5. 3 � 21=3 7. 3=2

9. 3 11. �

13. 1=2 15. diverges to1

17. 2 19. diverges

21. 0 23. 1 sq. unit

25. 2 ln 2 square units 29. 2

31. diverges to1 33. converges

35. diverges to1 37. diverges to1

39. diverges 41. diverges to1

Section 6.6 (page 377)

1. T4 D 4:75;

M4 D 4:625;

T8 D 4:6875;

M8 D 4:65625;

T16 D 4:671875

Actual errors:

I � T4 � �0:0833333;

I �M4 � 0:0416667;

I � T8 � �0:0208333;

I �M8 � 0:0104167;

I � T16 � �0:0052083

Error estimates:

jI � T4j � 0:0833334;

jI �M4j � 0:0416667;

jI � T8j � 0:0208334;

jI �M8j � 0:0104167;

jI � T16j � 0:0052084
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39. 14
3

p

17C
2
3

41. 3�=16

43. ln 2 45. 2; 2.
p

2 � 1/

47. �=32 sq. units

Section 5.7 (page 331)

1.
1

6
sq. units 3.

64

3
sq. units

5.
125

12
sq. units 7.

1

2
sq. units

9.
5

12
sq. units 11.

15

8
� 2 ln 2 sq. units

13.
�

2
�

1

3
sq. units 15.

4

3
sq. units

17. 2
p

2 sq. units 19. 1 � �=4 sq. units

21. .�=8/ � ln
p

2 sq. units

23. .4�=3/ � 2 ln.2C
p

3/ sq. units

25. .4=�/ � 1 sq. units 27.
4

3
sq. units

29.
e

2
� 1 sq. units

Review Exercises (page 332)

1. sum is n.nC 2/=.nC 1/2

3. 20=3 5. 4�

7. 0 9. 2

11. sin.t2/ 13. �4esin.4s/

15. f .x/ D �1
2
e.3=2/.1�x/ 17. 9=2 sq. units

19. 3=10 sq. units 21. .3
p

3=4/ � 1 sq. units

23. .1
6

sin.2x3
C 1/C C 25. 98=3

27. .�=8/ � .1=2/tan�1.1=2/

29. � cos
p

2s C 1C C 31. min ��=4, no max

35. x1 D

p

3 � 1

2
p

3
; x2 D

p

3C 1

2
p

3

Chapter 6

Techniques of Integration

Section 6.1 (page 339)

1. x sin x C cos x C C

3.
1

�
x

2 sin�x C
2

�2
x cos�x �

2

�3
sin�x C C

5. 1
4
x4 ln x � 1

16
x4
C C

7. x tan�1 x �
1
2

ln.1C x2/C C

9.
�

1
2
x2
�

1
4

�

sin�1
x C

1
4
x
p

1 � x2
C C

11. 7
8

p

2C
3
8

ln.1C
p

2/

13. 1
13
e

2x
.2 sin 3x � 3 cos 3x/C C

15. ln.2C
p

3/ �
�

6
17. x tan x � ln j sec xj C C

19.
x

2

�

cos.ln x/C sin.ln x/
�

C C

21. lnx
�

ln.ln x/� 1
�

C C

23. x cos�1 x �
p

1 � x2
C C

25.
2�

3
� ln.2C

p

3/

27. 1
2
.x

2
C 1/

�

tan�1
x
�2
� x tan�1

xC
1
2

ln.1C x2
/CC

29.
1C e��

2
square units

31. In D x.lnx/
n
� nIn�1;

I4 D x
�

.ln x/4 � 4.ln x/3 C 12.ln x/2 � 24.ln x/C 24
�

CC

33. In D �
1

n
sinn�1

x cos x C
n � 1

n
In�2,

I6 D
5x

16
� cos x

�

1
6

sin5
x C

5
24

sin3
x C

5
16

sin x
�

C C ,

I7 D � cos x
�

1
7

sin6
x C

6
35

sin4
x C

8
35

sin2
x C

16
35

�

C C

35. In D
x

2a2.n � 1/.x2
C a2/n�1

C

2n � 3

2a2.n � 1/
In�1,

I3 D
x

4a2.x2
C a2/2

C

3x

8a4.x2
C a2/

C

3

8a5
tan�1 x

a
C C

37. Any conditions which guarantee that

f .b/g0.b/ � f 0.b/g.b/ D f .a/g0.a/ � f 0.a/g.a/

will suffice.

Section 6.2 (page 348)

1. ln j2x � 3j C C

3.
x

�
�

2

�2
ln j�x C 2j C C

5.
1

6
ln

ˇ

ˇ

ˇ

ˇ

x � 3

x C 3

ˇ

ˇ

ˇ

ˇ

C C 7.
1

2a
ln

ˇ

ˇ

ˇ

ˇ

aC x

a � x

ˇ

ˇ

ˇ

ˇ

C C

9. x � 4
3

ln jx C 2j C 1
3

ln jx � 1j C C

11. 3 ln jx C 1j � 2 ln jxj C C

13.
1

3.1 � 3x/
C C

15. �1
9
x �

13

54
ln j2 � 3xj C 1

6
ln jxj C C

17.
1

2a2
ln
jx2
� a2
j

x2
C C

19. x C
a

3
ln jx � aj �

a

6
ln.x2

C ax C a
2
/

�

a
p

3
tan�1 2x C a

p

3a
C C

21. 1
3

ln jxj � 1
2

ln jx � 1j C 1
6

ln jx � 3j C C

23.
1

4
ln

ˇ

ˇ

ˇ

ˇ

x C 1

x � 1

ˇ

ˇ

ˇ

ˇ

�

x

2.x2
� 1/

C C

25.
1

27
ln

ˇ

ˇ

ˇ

ˇ

x � 3

x

ˇ

ˇ

ˇ

ˇ

C

1

9x
C

1

6x2
C C

27.
x

4
�

1

4
ln jex

� 2j �
1

2.ex
� 2/

CK

29.
A

x � 1
C

B

.x � 1/2
C

3

.x � 1/3
C

D

x C 1
C

Ex C F

x2
C x C 1

31. x � 4C
A

x C 2
C

B

.x C 2/2
C

C

.x C 2/3
C

D

x � 2
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Section 6.3 (page 355)

1. 1
2

sin�1
.2x/C C

3. 9
2

sin�1 x

3
�

1
2
x

p

9 � x2
C C

5. �

p

9 � x2

9x
C C

7. �
p

9 � x2
C sin�1 x

3
C C

9. 1
3
.9C x2/3=2

� 9
p

9C x2
C C

11.
1

a2

x
p

a2
� x2

C C

13.
x

p

a2
� x2

� sin�1 x

a
C C

15.
1

2
sec�1 x

2
C C 17. 1

3
tan�1

x C 1

3
C C

19. 1
32

tan�1 2x C 1

2
C

1

16

2x C 1

4x2
C 4x C 5

C C

21. a sin�1 x � a

a
�

p

2ax � x2
C C

23.
3 � x

4
p

3 � 2x � x2
C C

25. 3
8

tan�1
x C

3x3
C 5x

8.1C x2/2
C C

27. 1
2

ln
�

1C
p

1 � x2
�

�
1
2

ln jxj �

p

1 � x2

2x2
C C

29. 2
p

x � 4 ln.2C
p

x/C C

31. 6
7
x7=6
�

6
5
x5=6
C

3
2
x2=3
C 2x1=2

� 3x1=3
� 6x1=6

C 3 ln.1C x1=3/C 6 tan�1 x1=6
CC

33.
�

6
�

p

3

8
35. �=3

37.
t � 1

4.t2 C 1/
�

1
4

ln jt C 1j C 1
8

ln.t2 C 1/C C

39.
1

3
ln

ˇ

ˇ

ˇ

ˇ

ˇ

1 �
p

1 � x2

x

ˇ

ˇ

ˇ

ˇ

ˇ

C

1

12
ln

 

�

2C
p

1� x2
�2

3C x2

!

CC

41.
1

p

1C x2
C

1

2
ln

ˇ

ˇ

ˇ

ˇ

ˇ

1 �
p

1C x2

1C
p

1C x2

ˇ

ˇ

ˇ

ˇ

ˇ

C C

43.
2
p

3
tan�1

�

2 tan.�=2/C 1
p

3

�

C C

45.
2
p

5
tan�1

�

tan.�=2/
p

5

�

C C

47.
9

2
p

2
tan�1 1

p

2
�

1

2
square units

49. a2 cos�1

�

b

a

�

� b
p

a2
� b2 square units

51.
25

2

�

sin�1 4

5
� sin�1 3

5

�

� 12 ln
4

3
square units

53.
ln.Y C

p

1C Y 2/

2
sq. units

Section 6.4 (page 362)

1.
3

25
e

3x sin.4x/C C

3. �

�

x4

2
C x

2
C 1

�

e�x2
C C

9.
x
p

x2
� 2

2
C ln jx C

p

x2
� 2j C C

11. �
p

3t2 C 5=.5t/C C

13. .x5=3125/.625.ln x/4 � 500.ln x/3 C 300.ln x/2

� 120 ln x C 24/C C

15. .1=6/.2x2
�x�3/

p

2x � x2
�.1=2/sin�1

.1�x/CC

17. .x � 2/=.4
p

4x � x2/C C

21. limx!1 erf.x/ D 1, limx!�1 erf.x/ D �1

21. (d) xerf.x/C .1=
p

�/ e
�x2

C C

Section 6.5 (page 370)

1. 1=2 3. 1=2

5. 3 � 21=3 7. 3=2

9. 3 11. �

13. 1=2 15. diverges to1

17. 2 19. diverges

21. 0 23. 1 sq. unit

25. 2 ln 2 square units 29. 2

31. diverges to1 33. converges

35. diverges to1 37. diverges to1

39. diverges 41. diverges to1

Section 6.6 (page 377)

1. T4 D 4:75;

M4 D 4:625;

T8 D 4:6875;

M8 D 4:65625;

T16 D 4:671875

Actual errors:

I � T4 � �0:0833333;

I �M4 � 0:0416667;

I � T8 � �0:0208333;

I �M8 � 0:0104167;

I � T16 � �0:0052083

Error estimates:

jI � T4j � 0:0833334;

jI �M4j � 0:0416667;

jI � T8j � 0:0208334;

jI �M8j � 0:0104167;

jI � T16j � 0:0052084
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3. T4 D 0:9871158;

M4 D 1:0064545;

T8 D 0:9967852;

M8 D 1:0016082;

T16 D 0:9991967

Actual errors:

I � T4 � 0:0128842;

I �M4 � �0:0064545;

I � T8 � 0:0032148;

I �M8 � �0:0016082;

I � T16 � 0:0008033

Error estimates:

jI � T4j � 0:020186;

jI �M4j � 0:010093;

jI � T8j � 0:005047;

jI �M8j � 0:002523;

jI � T16j � 0:001262

5. T4 D 46; T8 D 46:7

7. T4 D 3; 000 km2; T8 D 3; 400 km2

9. T4 � 2:02622; M4 � 2:03236;

T8 � 2:02929; M8 � 2:02982;

T16 � 2:029555

11. M8 � 1:3714136; T16 � 1:3704366; I � 1:371

Section 6.7 (page 382)

1. S4 D S8 D I; Errors D 0

3. S4 � 1:0001346; S8 � 1:0000083;

I � S4 � �0:0001346; I � S8 � �0:0000083

5. 46:93

7. For f .x/ D e�x:

jI � S4j � 0:000022, jI � S8j � 0:0000014;

for f .x/ D sin x,

jI � S4j � 0:00021,

jI � S8j � 0:000013

9. S4 � 2:0343333; S8 � 2:0303133;

S16 � 2:0296433

Section 6.8 (page 388)

1. 3

Z 1

0

udu

1C u3

3.

Z �=2

��=2

e
sin �

d�; or 2

Z 1

0

e1�u2
C eu2�1

p

2 � u2
du

5. 4

Z 1

0

dv
p

.2 � v2/.2 � 2v2
C v4/

7. T2 � 0:603553; T4 � 0:643283,

T8 � 0:658130; T16 � 0:663581;

Errors: I � T2 � 0:0631; I � T4 � 0:0234;

I � T8 � 0:0085; I � T16 � 0:0031.

Errors do not decrease like 1=n2 because the second

derivative of f .x/ D
p

x is not bounded on Œ0; 1�.

9. I � 0:74684 with error less than 10�4; seven terms of

the series are needed.

11. A D 1, u D 1=
p

3

13. A D 5=9, B D 8=9, u D
p

3=5

15. R1 � 0:7471805; R2 � 0:7468337;

R3 � 0:7468241; I � 0:746824

17. R2 D
2h

45

�

7y0 C 32y1 C 12y2 C 32y3 C 7y4

�

Review Exercises on Techniques of Integration (page 390)

1. 2
3

ln jx C 2j � 1
6

ln j2x C 1j C C

3. 1
4

sin4
x �

1
6

sin6
x C C

5.
3

4
ln

ˇ

ˇ

ˇ

ˇ

2x � 1

2x C 1

ˇ

ˇ

ˇ

ˇ

C C 7. �
1

3

 p

1 � x2

x

!3

C C

9. 1
5

�

5x3
� 2

�1=3
C C

11. 1
16

tan�1 x

2
C

x

8.4C x2/
C C

13.
1

2 ln 2

�

2
x
p

1C 4x
C ln.2x

C

p

1C 4x/
�

C C

15. 1
4

tan4 x C
1
6

tan6 x C C

17. �e�x
�

2
5

cos 2x C 1
5

sin 2x
�

C C

19.
x

10

�

cos.3 ln x/C 3 sin.3 ln x/
�

C C

21. 1
4

�

ln.1C x2/
�2
C C

23. sin�1 x
p

2
�

x
p

2 � x2

2
C C

25.
1

64

�

�

1

7.4x C 1/7
C

1

4.4x C 1/8
�

1

9.4x C 1/9

�

C

C

27. �1
4

cos 4x C 1
6

cos3 4x �
1

20
cos5 4x C C

29. �1
2

ln.2e�x
C 1/C C

31. �1
2

sin2
x � 2 sin x � 4 ln.2 � sin x/C C

33. �

p

1 � x2

x
C C

35. 1
48
.1 � 4x2/3=2

�
1

16

p

1 � 4x2
C C

37.
p

x2
C 1C ln.x C

p

x2
C 1/C C

39. x C 1
3

ln jxj C 4
3

ln jx � 3j � 5
3

ln jx C 3j C C

41. � 1
10

cos10 x C
1
6

cos12 x �
1

14
cos14 x C C

43.
1

2
ln jx2

C 2x � 1j �
1

2
p

2
ln

ˇ

ˇ

ˇ

ˇ

ˇ

x C 1 �
p

2

x C 1C
p

2

ˇ

ˇ

ˇ

ˇ

ˇ

C C

45. 1
3
x3 sin�1

2x C
1

24

p

1 � 4x2
�

1
72
.1 � 4x2/3=2

C C

47. 1
128

�

3x � sin.4x/C 1
8

sin.8x/
�

49. tan�1

p

x

2
C C

51.
x2

2
� 2x C

1

4
ln jxj C

1

2x
C

15

4
ln jx C 2j C C

53. �1
2

cos.2 ln x/C C 55. 1
2

exp
�

2 tan�1 x
�

C C

57. 1
4

�

ln.3C x2/
�2
C C 59. 1

2

�

sin�1
.x=2/

�2
C C

61.
p

x2
C 6x C 10�2 ln.xC3C

p

x2
C 6x C 10/CC

63.
2

5.2C x2/5=2
�

1

3.2C x2/3=2
C C

65. 6
7
x7=6
�

6
5
x5=6
C 2
p

x � 6x1=6
C 6 tan�1 x1=6

C C
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67. 2
3
x3=2
� x C 4

p

x � 4 ln.1C
p

x/C C

69.
1

2.4 � x2/
C C

71. 1
3
x3 tan�1 x �

1
6
x2
C

1
6

ln.1C x2/C C

73.
1

5
ln

ˇ

ˇ

ˇ

ˇ

3 tan.x=2/ � 1

tan.x=2/C 3

ˇ

ˇ

ˇ

ˇ

C C

75. 1
2

ln j tan.x=2/j � 1
4

�

tan�1.x=2/
�2
C C

D

1

4

�

ln

ˇ

ˇ

ˇ

ˇ

1 � cos x

1C cos x

ˇ

ˇ

ˇ

ˇ

�

1 � cos x

1C cos x

�

C C

77. 2
p

x � 2 tan�1
p

x C C

79.
1

2
x

2
C

4

3
ln jx � 2j � 2

3
ln.x2

C 2x C 4/

C

4
p

3
tan�1 x C 1

p

3
C C

Review Exercises (Other) (page 391)

1. I D 1
2

�

xex cos x C .x � 1/ex sin x
�

,

J D
1
2

�

.1 � x/ex cos x C xex sin x
�

3. diverges to1 5. �4=9

9. 367,000 m3

11. T8 D 1:61800; S8 D 1:62092; I � 1:62

13. (a) T4 D 5:526, S4 D 5:504; (b) S8 D 5:504;

(c) yes, because S4 D S8, and Simpson’s Rule is exact

for cubics.

Challenging Problems (page 391)

1. (c) I D
1

630
,
22

7
�

1

630
< � <

22

7
�

1

1260
.

3. (a)
1
p

3
tan�1

�

2x C 1
p

3

�

C

1
p

3
tan�1

�

2x � 1
p

3

�

,

(b)
1
p

2
tan�1.

p

2x C 1/C
1
p

2
tan�1.

p

2x � 1/

7. (a) a D 7=90, b D 16=45, c D 2=15.

(b) one interval: approx 0.6321208750, two intervals:

approx 0.6321205638, true val: 0.6321205588

Chapter 7

Applications of Integration

Section 7.1 (page 401)

1.
�

5
cu. units 3.

3�

10
cu. units

5. (a)
16�

15
cu. units, (b)

8�

3
cu. units

7. (a)
27�

2
cu. units, (b)

108�

5
cu. units

9. (a)
15�

4
�

�2

8
cu. units, (b) �.2 � ln 2/ cu. units

11.
10�

3
cu. units 13. about 35%

15.
�h

3

�

b
2
� 3a

2
C

2a3

b

�

cu. units

17.
�

3
.a � b/

2
.2a C b/ cu. units

19.
4�ab2

3
cu. units

21. (a) �=2 cu. units, (b) 2� cu. units

23. k > 2 25. yes; no; a2b=2 cm3

27. Vol. of ball D
R R

0
kr

2
dr D

kR3

3
; k D 4�

29. about 1; 537 cu. units 31. R D
h sin˛

sin˛ C cos 2˛

Section 7.2 (page 405)

1. 6 m3 3. �=3 units3

5. 132 ft3 7. �a2
h=2 cm3

9. 3z2 sq. units 11.
16r3

3
cu. units

13. 72� cm3 15. �r2.aC b/=2 cu. units

17.
16; 000

3
cu. units 19. 12�

p

2 in3

21. approx 97.28 cm3

Section 7.3 (page 412)

1. 2
p

5 units 3. 52=3 units

5. .2=27/.133=2
� 8/ units

7. 6 units 9. .e2
C 1/=4 units

11. sinh a units

13. ln.1C
p

2/ � ln
p

3 units

15. ln.e2
C e

�2
/ units 17. 6a units

19. 1:0338 units 21. 1:0581

23. .103=2
� 1/�=27 sq. units

25.
64�

81

"

.13=4/5=2
� 1

5
�

.13=4/3=2
� 1

3

#

sq. units

27. 2�
�p

2C ln.1C
p

2/
�

sq. units

29. 2�

�

255

16
C ln 4

�

sq. units

31. 4�2ab sq. units

33. 8�

 

1C
ln.2C

p

3

2
p

3

!

sq. units

35. s D
5

�

p

4C �2E

�

�
p

4C �2

�

37. k > �1

39. (a) � cu. units; (c) “Covering” a surface with paint

requires putting on a layer of constant thickness. Far

enough to the right, the horn is thinner than any pre-

scribed constant, so it can contain less paint than

would be necessary to paint its surface.

Section 7.4 (page 419)

1. mass
2L

�
; centre of mass at Ns D

L

2

3. m D 1
4
��0 a

2
I Nx D Ny D

4a

3�
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3. T4 D 0:9871158;

M4 D 1:0064545;

T8 D 0:9967852;

M8 D 1:0016082;

T16 D 0:9991967

Actual errors:

I � T4 � 0:0128842;

I �M4 � �0:0064545;

I � T8 � 0:0032148;

I �M8 � �0:0016082;

I � T16 � 0:0008033

Error estimates:

jI � T4j � 0:020186;

jI �M4j � 0:010093;

jI � T8j � 0:005047;

jI �M8j � 0:002523;

jI � T16j � 0:001262

5. T4 D 46; T8 D 46:7

7. T4 D 3; 000 km2; T8 D 3; 400 km2

9. T4 � 2:02622; M4 � 2:03236;

T8 � 2:02929; M8 � 2:02982;

T16 � 2:029555

11. M8 � 1:3714136; T16 � 1:3704366; I � 1:371

Section 6.7 (page 382)

1. S4 D S8 D I; Errors D 0

3. S4 � 1:0001346; S8 � 1:0000083;

I � S4 � �0:0001346; I � S8 � �0:0000083

5. 46:93

7. For f .x/ D e�x:

jI � S4j � 0:000022, jI � S8j � 0:0000014;

for f .x/ D sin x,

jI � S4j � 0:00021,

jI � S8j � 0:000013

9. S4 � 2:0343333; S8 � 2:0303133;

S16 � 2:0296433

Section 6.8 (page 388)

1. 3

Z 1

0

udu

1C u3

3.

Z �=2

��=2

e
sin �

d�; or 2

Z 1

0

e1�u2
C eu2�1

p

2 � u2
du

5. 4

Z 1

0

dv
p

.2 � v2/.2 � 2v2
C v4/

7. T2 � 0:603553; T4 � 0:643283,

T8 � 0:658130; T16 � 0:663581;

Errors: I � T2 � 0:0631; I � T4 � 0:0234;

I � T8 � 0:0085; I � T16 � 0:0031.

Errors do not decrease like 1=n2 because the second

derivative of f .x/ D
p

x is not bounded on Œ0; 1�.

9. I � 0:74684 with error less than 10�4; seven terms of

the series are needed.

11. A D 1, u D 1=
p

3

13. A D 5=9, B D 8=9, u D
p

3=5

15. R1 � 0:7471805; R2 � 0:7468337;

R3 � 0:7468241; I � 0:746824

17. R2 D
2h

45

�

7y0 C 32y1 C 12y2 C 32y3 C 7y4

�

Review Exercises on Techniques of Integration (page 390)

1. 2
3

ln jx C 2j � 1
6

ln j2x C 1j C C

3. 1
4

sin4
x �

1
6

sin6
x C C

5.
3

4
ln

ˇ

ˇ

ˇ

ˇ

2x � 1

2x C 1

ˇ

ˇ

ˇ

ˇ

C C 7. �
1

3

 p

1 � x2

x

!3

C C

9. 1
5

�

5x3
� 2

�1=3
C C

11. 1
16

tan�1 x

2
C

x

8.4C x2/
C C

13.
1

2 ln 2

�

2
x
p

1C 4x
C ln.2x

C

p

1C 4x/
�

C C

15. 1
4

tan4 x C
1
6

tan6 x C C

17. �e�x
�

2
5

cos 2x C 1
5

sin 2x
�

C C

19.
x

10

�

cos.3 ln x/C 3 sin.3 ln x/
�

C C

21. 1
4

�

ln.1C x2/
�2
C C

23. sin�1 x
p

2
�

x
p

2 � x2

2
C C

25.
1

64

�

�

1

7.4x C 1/7
C

1

4.4x C 1/8
�

1

9.4x C 1/9

�

C

C

27. �1
4

cos 4x C 1
6

cos3 4x �
1

20
cos5 4x C C

29. �1
2

ln.2e�x
C 1/C C

31. �1
2

sin2
x � 2 sin x � 4 ln.2 � sin x/C C

33. �

p

1 � x2

x
C C

35. 1
48
.1 � 4x2/3=2

�
1

16

p

1 � 4x2
C C

37.
p

x2
C 1C ln.x C

p

x2
C 1/C C

39. x C 1
3

ln jxj C 4
3

ln jx � 3j � 5
3

ln jx C 3j C C

41. � 1
10

cos10 x C
1
6

cos12 x �
1

14
cos14 x C C

43.
1

2
ln jx2

C 2x � 1j �
1

2
p

2
ln

ˇ

ˇ

ˇ

ˇ

ˇ

x C 1 �
p

2

x C 1C
p

2

ˇ

ˇ

ˇ

ˇ

ˇ

C C

45. 1
3
x3 sin�1

2x C
1

24

p

1 � 4x2
�

1
72
.1 � 4x2/3=2

C C

47. 1
128

�

3x � sin.4x/C 1
8

sin.8x/
�

49. tan�1

p

x

2
C C

51.
x2

2
� 2x C

1

4
ln jxj C

1

2x
C

15

4
ln jx C 2j C C

53. �1
2

cos.2 ln x/C C 55. 1
2

exp
�

2 tan�1 x
�

C C

57. 1
4

�

ln.3C x2/
�2
C C 59. 1

2

�

sin�1
.x=2/

�2
C C

61.
p

x2
C 6x C 10�2 ln.xC3C

p

x2
C 6x C 10/CC

63.
2

5.2C x2/5=2
�

1

3.2C x2/3=2
C C

65. 6
7
x7=6
�

6
5
x5=6
C 2
p

x � 6x1=6
C 6 tan�1 x1=6

C C
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67. 2
3
x3=2
� x C 4

p

x � 4 ln.1C
p

x/C C

69.
1

2.4 � x2/
C C

71. 1
3
x3 tan�1 x �

1
6
x2
C

1
6

ln.1C x2/C C

73.
1

5
ln

ˇ

ˇ

ˇ

ˇ

3 tan.x=2/ � 1

tan.x=2/C 3

ˇ

ˇ

ˇ

ˇ

C C

75. 1
2

ln j tan.x=2/j � 1
4

�

tan�1.x=2/
�2
C C

D

1

4

�

ln

ˇ

ˇ

ˇ

ˇ

1 � cos x

1C cos x

ˇ

ˇ

ˇ

ˇ

�

1 � cos x

1C cos x

�

C C

77. 2
p

x � 2 tan�1
p

x C C

79.
1

2
x

2
C

4

3
ln jx � 2j � 2

3
ln.x2

C 2x C 4/

C

4
p

3
tan�1 x C 1

p

3
C C

Review Exercises (Other) (page 391)

1. I D 1
2

�

xex cos x C .x � 1/ex sin x
�

,

J D
1
2

�

.1 � x/ex cos x C xex sin x
�

3. diverges to1 5. �4=9

9. 367,000 m3

11. T8 D 1:61800; S8 D 1:62092; I � 1:62

13. (a) T4 D 5:526, S4 D 5:504; (b) S8 D 5:504;

(c) yes, because S4 D S8, and Simpson’s Rule is exact

for cubics.

Challenging Problems (page 391)

1. (c) I D
1

630
,
22

7
�

1

630
< � <

22

7
�

1

1260
.

3. (a)
1
p

3
tan�1

�

2x C 1
p

3

�

C

1
p

3
tan�1

�

2x � 1
p

3

�

,

(b)
1
p

2
tan�1.

p

2x C 1/C
1
p

2
tan�1.

p

2x � 1/

7. (a) a D 7=90, b D 16=45, c D 2=15.

(b) one interval: approx 0.6321208750, two intervals:

approx 0.6321205638, true val: 0.6321205588

Chapter 7

Applications of Integration

Section 7.1 (page 401)

1.
�

5
cu. units 3.

3�

10
cu. units

5. (a)
16�

15
cu. units, (b)

8�

3
cu. units

7. (a)
27�

2
cu. units, (b)

108�

5
cu. units

9. (a)
15�

4
�

�2

8
cu. units, (b) �.2 � ln 2/ cu. units

11.
10�

3
cu. units 13. about 35%

15.
�h

3

�

b
2
� 3a

2
C

2a3

b

�

cu. units

17.
�

3
.a � b/

2
.2a C b/ cu. units

19.
4�ab2

3
cu. units

21. (a) �=2 cu. units, (b) 2� cu. units

23. k > 2 25. yes; no; a2b=2 cm3

27. Vol. of ball D
R R

0
kr

2
dr D

kR3

3
; k D 4�

29. about 1; 537 cu. units 31. R D
h sin˛

sin˛ C cos 2˛

Section 7.2 (page 405)

1. 6 m3 3. �=3 units3

5. 132 ft3 7. �a2
h=2 cm3

9. 3z2 sq. units 11.
16r3

3
cu. units

13. 72� cm3 15. �r2.aC b/=2 cu. units

17.
16; 000

3
cu. units 19. 12�

p

2 in3

21. approx 97.28 cm3

Section 7.3 (page 412)

1. 2
p

5 units 3. 52=3 units

5. .2=27/.133=2
� 8/ units

7. 6 units 9. .e2
C 1/=4 units

11. sinh a units

13. ln.1C
p

2/ � ln
p

3 units

15. ln.e2
C e

�2
/ units 17. 6a units

19. 1:0338 units 21. 1:0581

23. .103=2
� 1/�=27 sq. units

25.
64�

81

"

.13=4/5=2
� 1

5
�

.13=4/3=2
� 1

3

#

sq. units

27. 2�
�p

2C ln.1C
p

2/
�

sq. units

29. 2�

�

255

16
C ln 4

�

sq. units

31. 4�2ab sq. units

33. 8�

 

1C
ln.2C

p

3

2
p

3

!

sq. units

35. s D
5

�

p

4C �2E

�

�
p

4C �2

�

37. k > �1

39. (a) � cu. units; (c) “Covering” a surface with paint

requires putting on a layer of constant thickness. Far

enough to the right, the horn is thinner than any pre-

scribed constant, so it can contain less paint than

would be necessary to paint its surface.

Section 7.4 (page 419)

1. mass
2L

�
; centre of mass at Ns D

L

2

3. m D 1
4
��0 a

2
I Nx D Ny D

4a

3�
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5. m D
256k

15
I Nx D 0; Ny D

16

7

7. m D
ka3

2
I Nx D

2a

3
; Ny D

a

2

9. m D
R b

a
�.x/

�

g.x/� f .x/
�

dxI

MxD0 D
R b

a
x�.x/

�

g.x/�f .x/
�

dx; Nx D MxD0=m;

MyD0 D
1
2

R b

a
�.x/

�

.g.x//2 � .f .x//2
�

dx;

Ny DMyD0=m

11. Mass is 8
3
�R4 kg. The centre of mass is along the

line through the centre of the ball perpendicular to the

plane, at a distance R=10 m from the centre of the ball

on the side opposite the plane.

13. m D 1
8
��0a

4
I Nx D 16a=.15�/; Ny D 0, Nz D 8a=15

15. m D 1
3
k�a3

I Nx D 0; y D
3a

2�

17. about 5:57C=k3=2

Section 7.5 (page 424)

1.

�

4r

3�
;
4r

3�

�

3.

 p

2 � 1

ln.1C
p

2/
;

�

8 ln.1C
p

2/

!

5.

 

0;
9
p

3 � 4�

4� � 3
p

3

!

7.

�

19

9
;�
1

3

�

9. The centroid is on the axis of symmetry of the hemi-

sphere half way between the base plane and the vertex.

11. The centroid is on the axis of the cone, one-quarter of

the cone’s height above the base plane.

13.
�

�

2
;
�

8

�

15.

�

2r

�
;
2r

�

�

17. .8=9; 11=9/ 19. .0; 2=.3.� C 2///

21. .1;�2/ 23.
5�

3
cu. units

25. .0:71377; 0:26053/ 27.
�

1;
1
5

�

29. Nx D
MxD0

A
, Ny D

MyD0

A
,

where A D

Z d

c

�

g.y/� f .y/
�

dy,

MxD0 D
1
2

Z d

c

�

.g.y//
2
� .f .y//

2
�

dy,

MyD0 D

Z d

c

y
�

g.y/� f .y/
�

dy

31. diamond orientation, edge upward

Section 7.6 (page 431)

1. (a) 235,200 N, (b) 352,800 N

3. 6:12 � 108 N 5. 8:92 � 106 N

7. 7:056 � 105 N�m

9. 2450�a3

�

aC
8h

3

�

N�m

11.
19;600

3
XR

3 N�m

Section 7.7 (page 435)

1. $11; 000 3. $8.
p

x � ln.1C
p

x//

5. $9,063.46 7. $5,865.64

9. $50,000 11. $11,477.55

13. $64,872.10 15.
R T

0
e��.t/P.t/ dt

17. about 23,300, $11,890

Section 7.8 (page 449)

1. no more than $2.47 3. $6.81

5. � � 3:5833, � D 1:7059, Pr.X � 3/ D 0:4833

7. (a) eight triples .x; y; z/ where x; y; z 2 fH;T g

(b) Pr.H;H;H/ D 0:166375, Pr.H;H; T / D

Pr.H; T;H/ D Pr.T;H;H/ D 0:136125, Pr.H; T; T / D

Pr.T;H; T / D Pr.T; T;H/ D 0:111375, Pr.T; T; T / D

0:091125

(c) f .0/ D 0:911125, f .1/ D 0:334125, f .2/ D

0:408375, f .3/ D 0:166375

(d) 0:908875, (e) 1:650000

9. (a)
2

9
, (b) � D 2, �2

D

1

2
, � D

1
p

2
,

(c)
8

9
p

2
� 0:63

11. (a) 3, (b) � D
3

4
, �2
D

3

80
, � D

r

3

80
,

(c)
69

20

r

3

80
� 0:668

13. (a) 6 (b) � D
1

2
, �2
D

1

20
, � D

r

1

20
,

(c)
7

5
p

5
� 0:626

15. (a)
2
p

�
, (b) � D

1
p

�
� 0:0:564, �2

D

� � 2

2�
,

� D

r

� � 2

2�
� 0:426, (c) Pr� 0:68

19. (a) 0, (b) e�3
� 0:05, (c) � 0:046

21. approximately 0.006

Section 7.9 (page 458)

1. y2
D Cx 3. x3

� y
3
D C

5. Y D Cet2=2

7. y D ˙1; y D
Ce2x

� 1

Ce2x
C 1

9. y D � ln
�

Ce�2t
�

1
2

�

11. y D x3
C Cx2

13. y D 3
2
C Ce�2x 15. y D x � 1C Ce�x

17. y D .1C e1�10t
/=10 19. y D .x C 2/e1=x

21. y D
p

4C x2 23. y D
2x

1C x
; .x > 0/

25. b

27. If a D b the given solution is indeterminate 0=0; in

this case the solution is x D a2kt=.1C akt/.
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29. v D

r

mg

k
, v D

r

mg

k

e2
p

kg=mt
� 1

e2
p

kg=mt
C 1

, v !

r

mg

k

31. the hyperbolas x2
� y2

D C

Review Exercises (page 459)

1. about 833 m

3. a � 1:1904, b � 0:0476

5. a D 2:1773 7.
�

8
3�
;

4
3�

�

9. about 27,726 N�cm 11. y D 4.x � 1/3

13. $8; 798:85

Challenging Problems (page 459)

1. (b) ln 2=.2�/, (c) �=.4k.k2
C 1//

3. y D .r=h3/x3
� 3.r=h2/x2

C 3.r=h/x

5. b D �a D 27=2 7. 1=�

9. (a) S.a; a; c/ D 2�a2
C

2�ac2

p

a2
� c2

ln

 

aC
p

a2
� c2

c

!

.

(b) S.a; c; c/ D 2�c2
C

2�a2c
p

a2
� c2

cos�1
�

c

a

�

.

(c) S.a; b; c/ �
b � c

a � c
S.a; a; c/C

a � b

a � c
S.a; c; c/:

(d) S.3; 2; 1/ � 49:595.

Chapter 8

Conics, Parametric Curves, and Polar Curves

Section 8.1 (page 472)

1. .x2
=5/C .y

2
=9/ D 1 3. .x � 2/2 D 16 � 4y

5. 3y2
� x

2
D 3

7. single point .�1; 0/ 9. ellipse, centre .0; 2/

y

x

.�1;0/

y

x

2

4

11. parabola, vertex .�1;�4/

y

x

.�1;�4/

13. hyperbola, centre
�

�
3
2
; 1
�

asymptotes

2xC3 D ˙2
3=2
.y�1/

y

x

.� 3
2 ;1/

15. ellipse, centre .1;�1/

y

x

.1;�1/

17. y2
� 8y D 16x or y2

� 8y D �4x

19. rectangular hyperbola, centre .1;�1/,

semi-axes a D b D
p

2,

eccentricity
p

2,

foci .
p

2C 1;
p

2 � 1/,

.�
p

2C 1;�
p

2 � 1/,

asymptotes x D 1, y D �1

y

x

21. ellipse, centre (0,0),

semi-axes a D 2, b D 1,

foci˙

�

2

q

3
5
;�

q

3
5

�

y

x

23. .1 � "2/x2
C y2

� 2p"2x D "2p2
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5. m D
256k

15
I Nx D 0; Ny D

16

7

7. m D
ka3

2
I Nx D

2a

3
; Ny D

a

2

9. m D
R b

a
�.x/

�

g.x/� f .x/
�

dxI

MxD0 D
R b

a
x�.x/

�

g.x/�f .x/
�

dx; Nx D MxD0=m;

MyD0 D
1
2

R b

a
�.x/

�

.g.x//2 � .f .x//2
�

dx;

Ny DMyD0=m

11. Mass is 8
3
�R4 kg. The centre of mass is along the

line through the centre of the ball perpendicular to the

plane, at a distance R=10 m from the centre of the ball

on the side opposite the plane.

13. m D 1
8
��0a

4
I Nx D 16a=.15�/; Ny D 0, Nz D 8a=15

15. m D 1
3
k�a3

I Nx D 0; y D
3a

2�

17. about 5:57C=k3=2

Section 7.5 (page 424)

1.

�

4r

3�
;
4r

3�

�

3.

 p

2 � 1

ln.1C
p

2/
;

�

8 ln.1C
p

2/

!

5.

 

0;
9
p

3 � 4�

4� � 3
p

3

!

7.

�

19

9
;�
1

3

�

9. The centroid is on the axis of symmetry of the hemi-

sphere half way between the base plane and the vertex.

11. The centroid is on the axis of the cone, one-quarter of

the cone’s height above the base plane.

13.
�

�

2
;
�

8

�

15.

�

2r

�
;
2r

�

�

17. .8=9; 11=9/ 19. .0; 2=.3.� C 2///

21. .1;�2/ 23.
5�

3
cu. units

25. .0:71377; 0:26053/ 27.
�

1;
1
5

�

29. Nx D
MxD0

A
, Ny D

MyD0

A
,

where A D

Z d

c

�

g.y/� f .y/
�

dy,

MxD0 D
1
2

Z d

c

�

.g.y//
2
� .f .y//

2
�

dy,

MyD0 D

Z d

c

y
�

g.y/� f .y/
�

dy

31. diamond orientation, edge upward

Section 7.6 (page 431)

1. (a) 235,200 N, (b) 352,800 N

3. 6:12 � 108 N 5. 8:92 � 106 N

7. 7:056 � 105 N�m

9. 2450�a3

�

aC
8h

3

�

N�m

11.
19;600

3
XR

3 N�m

Section 7.7 (page 435)

1. $11; 000 3. $8.
p

x � ln.1C
p

x//

5. $9,063.46 7. $5,865.64

9. $50,000 11. $11,477.55

13. $64,872.10 15.
R T

0
e��.t/P.t/ dt

17. about 23,300, $11,890

Section 7.8 (page 449)

1. no more than $2.47 3. $6.81

5. � � 3:5833, � D 1:7059, Pr.X � 3/ D 0:4833

7. (a) eight triples .x; y; z/ where x; y; z 2 fH;T g

(b) Pr.H;H;H/ D 0:166375, Pr.H;H; T / D

Pr.H; T;H/ D Pr.T;H;H/ D 0:136125, Pr.H; T; T / D

Pr.T;H; T / D Pr.T; T;H/ D 0:111375, Pr.T; T; T / D

0:091125

(c) f .0/ D 0:911125, f .1/ D 0:334125, f .2/ D

0:408375, f .3/ D 0:166375

(d) 0:908875, (e) 1:650000

9. (a)
2

9
, (b) � D 2, �2

D

1

2
, � D

1
p

2
,

(c)
8

9
p

2
� 0:63

11. (a) 3, (b) � D
3

4
, �2
D

3

80
, � D

r

3

80
,

(c)
69

20

r

3

80
� 0:668

13. (a) 6 (b) � D
1

2
, �2
D

1

20
, � D

r

1

20
,

(c)
7

5
p

5
� 0:626

15. (a)
2
p

�
, (b) � D

1
p

�
� 0:0:564, �2

D

� � 2

2�
,

� D

r

� � 2

2�
� 0:426, (c) Pr� 0:68

19. (a) 0, (b) e�3
� 0:05, (c) � 0:046

21. approximately 0.006

Section 7.9 (page 458)

1. y2
D Cx 3. x3

� y
3
D C

5. Y D Cet2=2

7. y D ˙1; y D
Ce2x

� 1

Ce2x
C 1

9. y D � ln
�

Ce�2t
�

1
2

�

11. y D x3
C Cx2

13. y D 3
2
C Ce�2x 15. y D x � 1C Ce�x

17. y D .1C e1�10t
/=10 19. y D .x C 2/e1=x

21. y D
p

4C x2 23. y D
2x

1C x
; .x > 0/

25. b

27. If a D b the given solution is indeterminate 0=0; in

this case the solution is x D a2kt=.1C akt/.
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29. v D

r

mg

k
, v D

r

mg

k

e2
p

kg=mt
� 1

e2
p

kg=mt
C 1

, v !

r

mg

k

31. the hyperbolas x2
� y2

D C

Review Exercises (page 459)

1. about 833 m

3. a � 1:1904, b � 0:0476

5. a D 2:1773 7.
�

8
3�
;

4
3�

�

9. about 27,726 N�cm 11. y D 4.x � 1/3

13. $8; 798:85

Challenging Problems (page 459)

1. (b) ln 2=.2�/, (c) �=.4k.k2
C 1//

3. y D .r=h3/x3
� 3.r=h2/x2

C 3.r=h/x

5. b D �a D 27=2 7. 1=�

9. (a) S.a; a; c/ D 2�a2
C

2�ac2

p

a2
� c2

ln

 

aC
p

a2
� c2

c

!

.

(b) S.a; c; c/ D 2�c2
C

2�a2c
p

a2
� c2

cos�1
�

c

a

�

.

(c) S.a; b; c/ �
b � c

a � c
S.a; a; c/C

a � b

a � c
S.a; c; c/:

(d) S.3; 2; 1/ � 49:595.

Chapter 8

Conics, Parametric Curves, and Polar Curves

Section 8.1 (page 472)

1. .x2
=5/C .y

2
=9/ D 1 3. .x � 2/2 D 16 � 4y

5. 3y2
� x

2
D 3

7. single point .�1; 0/ 9. ellipse, centre .0; 2/

y

x

.�1;0/

y

x

2

4

11. parabola, vertex .�1;�4/

y

x

.�1;�4/

13. hyperbola, centre
�

�
3
2
; 1
�

asymptotes

2xC3 D ˙2
3=2
.y�1/

y

x

.� 3
2 ;1/

15. ellipse, centre .1;�1/

y

x

.1;�1/

17. y2
� 8y D 16x or y2

� 8y D �4x

19. rectangular hyperbola, centre .1;�1/,

semi-axes a D b D
p

2,

eccentricity
p

2,

foci .
p

2C 1;
p

2 � 1/,

.�
p

2C 1;�
p

2 � 1/,

asymptotes x D 1, y D �1

y

x

21. ellipse, centre (0,0),

semi-axes a D 2, b D 1,

foci˙

�

2

q

3
5
;�

q

3
5

�

y

x

23. .1 � "2/x2
C y2

� 2p"2x D "2p2

9780134154367_Calculus   1137 05/12/16   6:03 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-58 October 14, 2016

A-58 ANSWERS TO ODD-NUMBERED EXERCISES

Section 8.2 (page 478)

1. y D .x � 1/2=4

y

x1

x D 1C 2t

y D t2

�1 < t <1

3. y D .1=x/ � 1 5. x2
C y2

D 9

y

x

.1=4;3/

x D 1=t

y D t � 1

0 < t < 4

yD�1

y

x

x D 3 sin 2t
y D 3 cos 2t
0 � t � �=3

7.
x2

9
C

y2

16
D 1

y

x

tD1tD�1

x D 3 sin�t
y D 4 cos�t

�1 � t � 1

9. x2=3
C y2=3

D 1

y

x

tD0

tD2�

x D cos3
t

y D sin3
t

0 � t � 2�

11. the right half of the hyperbola x2
� y2

D 1

13. the curve starts at the origin and spirals twice counter-

clockwise around the origin to end at .4�; 0/

15. x D m=2; y D m2=4; .�1 < m <1/

17. x D a sec t; y D a sin t ;

y
2
D a

2
.x

2
�a

2
/=x

2

y

x

T

P

X

19. x3
C y3

D 3xy

y

x

x D
3t

1C t3

y D
3t

2

1C t3

xCyD�1

Section 8.3 (page 483)

1. vertical at .1;�4/

3. horizontal at .0;�16/ and .8; 16/; vertical at .�1;�11/

5. horizontal at .0; 1/, vertical at .˙1=
p

e; 1=e/

7. horiz. at .0;˙1/, vert. at .˙1; 1=
p

2/ and .˙1;�1=
p

2/

9. �3=4 11. �1=2

13. x D t � 2; y D 4t � 2 15. slopes ˙1

17. not smooth at t D 0

19. not smooth at t D 0

21. 23.
y

x

tD2

tD1

x D t2 � 2t

y D t2 � 4t

y

x

x D t3 � 3t

y D
2

1C t2

tD0

tD�1tD1

25.

y

xtD0

tD�

tD3�=2

tD2�
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Section 8.4 (page 487)

1. 4
p

2 � 2 units 3. 6a units

5. 8
3

�

.1C �2/3=2
� 1

�

units

7. 4 units 9. 8a units

11. 2
p

2�.1C 2e� /=5 sq. units

13. 72�.1C
p

2/=15 sq. units

15. 256=15 sq. units 17. 1=6 sq. units

y

x

x D t3 � 4t

y D t2

A

y

x

A

x D sin4
t

y D cos4 t

0 � t � �=2

19. 9�=2 sq. units

y

x

A

x D .2C sin t / cos t

y D .2C sin t / sin t

0 � t � 2�

23. 32�a3=105 cu. units

Section 8.5 (page 493)

1. x D 3, vertical straight line

3. 3y � 4x D 5, straight line

5. 2xy D 1, rectangular hyperbola

7. y D x2
� x, a parabola

9. y2
D 1C 2x, a parabola

11. x2
� 3y2

� 8y D 4, a hyperbola

13. 15.

y

x

2

r D 1C sin �

y

x

r D 1C 2 cos �

2�=3

17. 19.

y

x

r D 2C cos �
3�1

y

x

�=6

r D cos 3�

21. 23. r D ˙
p

sin 3�

y

x

r2
D 4 sin 2�

y

x

r2
D sin 3�

25. the origin and Œ
p

3=2; �=3�

27. the origin and Œ3=2;˙�=3�

29. asymptote y D 1, r D 1=.� � ˛/ has

asymptote .cos ˛/y�.sin˛/x D 1

y

x

yD1

r D
1

�

31. x D f .�/ cos �; y D f .�/ sin �

39. ln �1 D 1=�1, point .�0:108461; 0:556676/; ln �2 D

�1=.�2 C �/, point .�0:182488;�0:178606/

Section 8.6 (page 497)

1. �2 sq. units 3. a2 sq. units

y

x

r D
p

�

A

y

x

r2
D a2 cos 2�

�=4

9780134154367_Calculus   1138 05/12/16   6:03 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-58 October 14, 2016

A-58 ANSWERS TO ODD-NUMBERED EXERCISES

Section 8.2 (page 478)

1. y D .x � 1/2=4

y

x1

x D 1C 2t

y D t2

�1 < t <1

3. y D .1=x/ � 1 5. x2
C y2

D 9

y

x

.1=4;3/

x D 1=t

y D t � 1

0 < t < 4

yD�1

y

x

x D 3 sin 2t
y D 3 cos 2t
0 � t � �=3

7.
x2

9
C

y2

16
D 1

y

x

tD1tD�1

x D 3 sin�t
y D 4 cos�t

�1 � t � 1

9. x2=3
C y2=3

D 1

y

x

tD0

tD2�

x D cos3
t

y D sin3
t

0 � t � 2�

11. the right half of the hyperbola x2
� y2

D 1

13. the curve starts at the origin and spirals twice counter-

clockwise around the origin to end at .4�; 0/

15. x D m=2; y D m2=4; .�1 < m <1/

17. x D a sec t; y D a sin t ;

y
2
D a

2
.x

2
�a

2
/=x

2

y

x

T

P

X

19. x3
C y3

D 3xy

y

x

x D
3t

1C t3

y D
3t

2

1C t3

xCyD�1

Section 8.3 (page 483)

1. vertical at .1;�4/

3. horizontal at .0;�16/ and .8; 16/; vertical at .�1;�11/

5. horizontal at .0; 1/, vertical at .˙1=
p

e; 1=e/

7. horiz. at .0;˙1/, vert. at .˙1; 1=
p

2/ and .˙1;�1=
p

2/

9. �3=4 11. �1=2

13. x D t � 2; y D 4t � 2 15. slopes ˙1

17. not smooth at t D 0

19. not smooth at t D 0

21. 23.
y

x

tD2

tD1

x D t2 � 2t

y D t2 � 4t

y

x

x D t3 � 3t

y D
2

1C t2

tD0

tD�1tD1

25.

y

xtD0

tD�

tD3�=2

tD2�
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Section 8.4 (page 487)

1. 4
p

2 � 2 units 3. 6a units

5. 8
3

�

.1C �2/3=2
� 1

�

units

7. 4 units 9. 8a units

11. 2
p

2�.1C 2e� /=5 sq. units

13. 72�.1C
p

2/=15 sq. units

15. 256=15 sq. units 17. 1=6 sq. units

y

x

x D t3 � 4t

y D t2

A

y

x

A

x D sin4
t

y D cos4 t

0 � t � �=2

19. 9�=2 sq. units

y

x

A

x D .2C sin t / cos t

y D .2C sin t / sin t

0 � t � 2�

23. 32�a3=105 cu. units

Section 8.5 (page 493)

1. x D 3, vertical straight line

3. 3y � 4x D 5, straight line

5. 2xy D 1, rectangular hyperbola

7. y D x2
� x, a parabola

9. y2
D 1C 2x, a parabola

11. x2
� 3y2

� 8y D 4, a hyperbola

13. 15.

y

x

2

r D 1C sin �

y

x

r D 1C 2 cos �

2�=3

17. 19.

y

x

r D 2C cos �
3�1

y

x

�=6

r D cos 3�

21. 23. r D ˙
p

sin 3�

y

x

r2
D 4 sin 2�

y

x

r2
D sin 3�

25. the origin and Œ
p

3=2; �=3�

27. the origin and Œ3=2;˙�=3�

29. asymptote y D 1, r D 1=.� � ˛/ has

asymptote .cos ˛/y�.sin˛/x D 1

y

x

yD1

r D
1

�

31. x D f .�/ cos �; y D f .�/ sin �

39. ln �1 D 1=�1, point .�0:108461; 0:556676/; ln �2 D

�1=.�2 C �/, point .�0:182488;�0:178606/

Section 8.6 (page 497)

1. �2 sq. units 3. a2 sq. units

y

x

r D
p

�

A

y

x

r2
D a2 cos 2�

�=4
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5. �=2 sq. units 7. 2C .�=4/ sq. units

y

x

r D cos 4�

�=8

y

x

r D 1 � cos �

r D 1

9. �=4 sq. units 11. � � 3
2

p

3 sq. units

y

x

�=3

r D 3 cos �

r D 1C cos �

y

x

r D 1C 2 cos �

2�=3

13.

p

1C a2

a

�

e
a�
� e

�a�
�

units

17. 67:5ı, �22:5ı

19. 90ı at (0,0),

˙45ı at

�

1 �
1
p

2
;
�

4

�

,

˙135ı at

�

1C
1
p

2
;
5�

4

�

21. horizontal at
�

˙
�
4
;
p

2
�

, vertical at .2; 0/ and the ori-

gin

23. horizontal at .0; 0/,
�

2
3

p

2;˙ tan�1
p

2
�

,
�

2
3

p

2; � ˙ tan�1
p

2
�

,

vertical at
�

0;
�
2

�

,
�

2
3

p

2;˙ tan�1.1=
p

2/
�

,
�

2
3

p

2; � ˙ tan�1.1=
p

2/
�

25. horizontal at
�

4;�
�
2

�

,
�

1;
�
6

�

,
�

1;
5�
6

�

,

vertical at
�

3;�
�
6

�

,
�

3;�
5�
6

�

, no tangent at
�

0;
�
2

�

Review Exercises (page 498)

1. ellipse, foci .˙1; 0/, semi-major axis
p

2, semi-minor

axis 1
3. parabola, vertex .4; 1/, focus .15=4; 1/

5. straight line from .0; 2/ to .2; 0/

7. the parabola y D x2
� 1 left to right

9. first quadrant part of ellipse 16x2
C y2

D 16 from

.1; 0/ to .0; 4/

11. horizontal tangents at .2;˙2/ (i.e., t D ˙1)

vertical tangent at .4; 0/ (i.e., t D 0)

y

x

tD0

tD�1

tD˙
p

3

tD1

y

xtD�1

tD1

13. horizontal tangent at .0; 0/ (i.e., t D 0)

vertical tangents at .2;�1/ and .�2; 1/

(i.e., t D ˙1)

15. 1=2 sq. units 17. 1C e2 units

19. r D � 21. r D 1C cos 2�

y

x

r D � y

x

r D 1C cos 2�

23. r D 1C 2 cos 2�

y

x

r D 1C 2 cos 2�

25. � C .3
p

3=4/ sq. units 27. .� � 3/=2 sq. units

Challenging Problems (page 498)

1. 16� sec � cm2 5. 40�=3 ft3

7. about 84.65 minutes

9. r2
D cos.2�/ is the inner curve; area between curves

is 1/3 sq. units

Chapter 9

Sequences, Series, and Power Series

Section 9.1 (page 507)

1. bounded, positive, increasing, convergent to 2

3. bounded, positive, convergent to 4

5. bounded below, positive, increasing, divergent to infin-

ity

7. bounded below, positive, increasing, divergent to infin-

ity
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9. bounded, positive, decreasing, convergent to 0

11. divergent 13. divergent

15.1 17. 0

19. 1 21. e�3

23. 0 25. 1=2

27. 0 29. 0

31. limn!1 an D 5

33. If fang is (ultimately) decreasing, then either it is

bounded below and therefore convergent, or else it is

unbounded below and therefore divergent to negative

infinity.

Section 9.2 (page 514)

1.
1

2

3.
1

.2C �/8
�

.2C �/2 � 1
�

5.
25

4; 416
7.

8e4

e � 2

9. diverges to1 11.
3

4

13.
1

3
15. div. to1

17. div. to1 19. diverges

21. 14 m

25. If fang is ultimately negative, then the series
P

an

must either converge (if its partial sums are bounded

below) or diverge to �1 (if its partial sums are not

bounded below).

27. false, e.g.,
P .�1/n

2n
29. true

31. true

Section 9.3 (page 524)

1. converges 3. diverges to1

5. converges 7. diverges to1

9. converges 11. diverges to1

13. diverges to1 15. converges

17. converges 19. diverges to1

21. converges 23. converges

25. converges

27. sn C
1

3.nC 1/3
� s � sn C

1

3n3
; n D 6

29. sn C
2

p

nC 1
� s � sn C

2
p

n
; n D 63

31. 0 < s � sn �
nC 2

2n.nC 1/Š.2nC 3/
; n D 4

33. 0 < s � sn �
2n.4n2

C 6nC 2/

.2n/Š.4n2
C 6n/

I n D 4

39. converges, a
1=n
n ! .1=e/ < 1

41. No info from ratio test, but series diverges to infinity

since all terms exceed 1.

43. (b) s �
2

k.1 � k/
, k D 1

2
,

(c) 0 < s � sn <
.1C k/nC1

2nk.1 � k/
, k D

nC 2 �
p

n2
C 8

2.n � 1/

for n � 2
45. (a) 10, (b) 5, (c) 0.765

Section 9.4 (page 531)

1. conv. conditionally 3. conv. conditionally

5. diverges 7. conv. absolutely

9. conv. conditionally 11. diverges

13. 999 15. 13

17. converges absolutely if �1 < x < 1, conditionally if

x D �1, diverges elsewhere

19. converges absolutely if 0 < x < 2, conditionally if

x D 2, diverges elsewhere

21. converges absolutely if �2 < x < 2, conditionally if

x D �2, diverges elsewhere

23. converges absolutely if �7
2
< x <

1
2

, conditionally if

x D �
7
2

, diverges elsewhere

25. AST does not apply directly, but does if we remove all

the 0 terms; series converges conditionally

27. (a) false, e.g., an D
.�1/n

n
,

(b) false, e.g., an D
sin.n�=2/

n
(see Exercise 25),

(c) true

29. converges absolutely for �1 < x < 1, conditionally if

x D �1, diverges elsewhere

Section 9.5 (page 541)

1. centre 0, radius 1, interval .�1; 1/

3. centre �2, radius 2, interval Œ�4; 0/

5. centre 3
2

, radius 1
2

, interval .1; 2/

7. centre 0, radius1, interval .�1;1/

9.
1

.1 � x/3
D

1
X

nD0

.nC 1/.nC 2/

2
x

n, .�1 < x < 1/

11.
1

.1 � x/2
D

1
X

nD0

.nC 1/x
n
; .�1 < x < 1/

13.
1

.2 � x/2
D

1
X

nD0

nC 1

2nC2
x

n
; .�2 < x < 2/

15. ln.2 � x/ D ln 2 �
P1

nD1

x
n

2nn
; .�2 � x < 2/

17.
1

x2
D

1
X

nD0

nC 1

2nC2
.x C 2/

n
; .�4 < x < 0/

19.
x3

1 � 2x2
D

1
X

nD0

2
n
x

2nC3
;

�

�

1
p

2
< x <

1
p

2

�

21.
�

�
1
4
;

1
4

�

I

1

1C 4x
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5. �=2 sq. units 7. 2C .�=4/ sq. units

y

x

r D cos 4�

�=8

y

x

r D 1 � cos �

r D 1

9. �=4 sq. units 11. � � 3
2

p

3 sq. units

y

x

�=3

r D 3 cos �

r D 1C cos �

y

x

r D 1C 2 cos �

2�=3

13.

p

1C a2

a

�

e
a�
� e

�a�
�

units

17. 67:5ı, �22:5ı

19. 90ı at (0,0),

˙45ı at

�

1 �
1
p

2
;
�

4

�

,

˙135ı at

�

1C
1
p

2
;
5�

4

�

21. horizontal at
�

˙
�
4
;
p

2
�

, vertical at .2; 0/ and the ori-

gin

23. horizontal at .0; 0/,
�

2
3

p

2;˙ tan�1
p

2
�

,
�

2
3

p

2; � ˙ tan�1
p

2
�

,

vertical at
�

0;
�
2

�

,
�

2
3

p

2;˙ tan�1.1=
p

2/
�

,
�

2
3

p

2; � ˙ tan�1.1=
p

2/
�

25. horizontal at
�

4;�
�
2

�

,
�

1;
�
6

�

,
�

1;
5�
6

�

,

vertical at
�

3;�
�
6

�

,
�

3;�
5�
6

�

, no tangent at
�

0;
�
2

�

Review Exercises (page 498)

1. ellipse, foci .˙1; 0/, semi-major axis
p

2, semi-minor

axis 1
3. parabola, vertex .4; 1/, focus .15=4; 1/

5. straight line from .0; 2/ to .2; 0/

7. the parabola y D x2
� 1 left to right

9. first quadrant part of ellipse 16x2
C y2

D 16 from

.1; 0/ to .0; 4/

11. horizontal tangents at .2;˙2/ (i.e., t D ˙1)

vertical tangent at .4; 0/ (i.e., t D 0)

y

x

tD0

tD�1

tD˙
p

3

tD1

y

xtD�1

tD1

13. horizontal tangent at .0; 0/ (i.e., t D 0)

vertical tangents at .2;�1/ and .�2; 1/

(i.e., t D ˙1)

15. 1=2 sq. units 17. 1C e2 units

19. r D � 21. r D 1C cos 2�

y

x

r D � y

x

r D 1C cos 2�

23. r D 1C 2 cos 2�

y

x

r D 1C 2 cos 2�

25. � C .3
p

3=4/ sq. units 27. .� � 3/=2 sq. units

Challenging Problems (page 498)

1. 16� sec � cm2 5. 40�=3 ft3

7. about 84.65 minutes

9. r2
D cos.2�/ is the inner curve; area between curves

is 1/3 sq. units

Chapter 9

Sequences, Series, and Power Series

Section 9.1 (page 507)

1. bounded, positive, increasing, convergent to 2

3. bounded, positive, convergent to 4

5. bounded below, positive, increasing, divergent to infin-

ity

7. bounded below, positive, increasing, divergent to infin-

ity
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9. bounded, positive, decreasing, convergent to 0

11. divergent 13. divergent

15.1 17. 0

19. 1 21. e�3

23. 0 25. 1=2

27. 0 29. 0

31. limn!1 an D 5

33. If fang is (ultimately) decreasing, then either it is

bounded below and therefore convergent, or else it is

unbounded below and therefore divergent to negative

infinity.

Section 9.2 (page 514)

1.
1

2

3.
1

.2C �/8
�

.2C �/2 � 1
�

5.
25

4; 416
7.

8e4

e � 2

9. diverges to1 11.
3

4

13.
1

3
15. div. to1

17. div. to1 19. diverges

21. 14 m

25. If fang is ultimately negative, then the series
P

an

must either converge (if its partial sums are bounded

below) or diverge to �1 (if its partial sums are not

bounded below).

27. false, e.g.,
P .�1/n

2n
29. true

31. true

Section 9.3 (page 524)

1. converges 3. diverges to1

5. converges 7. diverges to1

9. converges 11. diverges to1

13. diverges to1 15. converges

17. converges 19. diverges to1

21. converges 23. converges

25. converges

27. sn C
1

3.nC 1/3
� s � sn C

1

3n3
; n D 6

29. sn C
2

p

nC 1
� s � sn C

2
p

n
; n D 63

31. 0 < s � sn �
nC 2

2n.nC 1/Š.2nC 3/
; n D 4

33. 0 < s � sn �
2n.4n2

C 6nC 2/

.2n/Š.4n2
C 6n/

I n D 4

39. converges, a
1=n
n ! .1=e/ < 1

41. No info from ratio test, but series diverges to infinity

since all terms exceed 1.

43. (b) s �
2

k.1 � k/
, k D 1

2
,

(c) 0 < s � sn <
.1C k/nC1

2nk.1 � k/
, k D

nC 2 �
p

n2
C 8

2.n � 1/

for n � 2
45. (a) 10, (b) 5, (c) 0.765

Section 9.4 (page 531)

1. conv. conditionally 3. conv. conditionally

5. diverges 7. conv. absolutely

9. conv. conditionally 11. diverges

13. 999 15. 13

17. converges absolutely if �1 < x < 1, conditionally if

x D �1, diverges elsewhere

19. converges absolutely if 0 < x < 2, conditionally if

x D 2, diverges elsewhere

21. converges absolutely if �2 < x < 2, conditionally if

x D �2, diverges elsewhere

23. converges absolutely if �7
2
< x <

1
2

, conditionally if

x D �
7
2

, diverges elsewhere

25. AST does not apply directly, but does if we remove all

the 0 terms; series converges conditionally

27. (a) false, e.g., an D
.�1/n

n
,

(b) false, e.g., an D
sin.n�=2/

n
(see Exercise 25),

(c) true

29. converges absolutely for �1 < x < 1, conditionally if

x D �1, diverges elsewhere

Section 9.5 (page 541)

1. centre 0, radius 1, interval .�1; 1/

3. centre �2, radius 2, interval Œ�4; 0/

5. centre 3
2

, radius 1
2

, interval .1; 2/

7. centre 0, radius1, interval .�1;1/

9.
1

.1 � x/3
D

1
X

nD0

.nC 1/.nC 2/

2
x

n, .�1 < x < 1/

11.
1

.1 � x/2
D

1
X

nD0

.nC 1/x
n
; .�1 < x < 1/

13.
1

.2 � x/2
D

1
X

nD0

nC 1

2nC2
x

n
; .�2 < x < 2/

15. ln.2 � x/ D ln 2 �
P1

nD1

x
n

2nn
; .�2 � x < 2/

17.
1

x2
D

1
X

nD0

nC 1

2nC2
.x C 2/

n
; .�4 < x < 0/

19.
x3

1 � 2x2
D

1
X

nD0

2
n
x

2nC3
;

�

�

1
p

2
< x <

1
p

2

�

21.
�

�
1
4
;

1
4

�

I

1

1C 4x
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23. Œ�1; 1/I 1
3

if x D 0;

�

1

x3
ln.1 � x/�

1

x2
�

1

2x
otherwise

25. .�1; 1/I
2

.1 � x2/2
27. 3=4

29. �2.� C 1/=.� � 1/3 31. ln.3=2/

Section 9.6 (page 550)

1. e3xC1
D

P1
nD0

3ne

nŠ
x

n
; (all x)

3. sin
�

x �
�

4

�

D

1
p

2

1
X

nD0

.�1/
n

�

�

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š

�

; (all x)

5. x2 sin
�

x

3

�

D

P1
nD0

.�1/n

32nC1.2nC 1/Š
x

2nC3
; (all x)

7. sinx cos x D
P1

nD0

.�1/n22n

.2nC 1/Š
x

2nC1
; (all x)

9.
1C x3

1C x2
D 1 � x

2
C

1
X

nD2

.�1/
n
�

x
2n�1

C x
2n
�

;

.�1 < x < 1/

11. ln
1C x

1 � x
D 2

1
X

nD1

x2n�1

2n � 1
; .�1 < x < 1/

13. cosh x � cos x D 2
P1

nD0

x4nC2

.4nC 2/Š
; (all x)

15. e�2x
D e2

P1
nD0

.�1/
n
2

n

nŠ
.x C 1/

n
; (all x)

17. cos x D
P1

nD0

.�1/nC1

.2n/Š
.x � �/

2n
; (all x)

19. ln 4C
P1

nD1

.�1/n�1

4nn
.x � 2/

n
; .�2 < x � 6/

21. sinx � cos x D
p

2
P1

nD0

.�1/n

.2nC 1/Š

�

x �
�

4

�2nC1

; (all x)

23.
1

x2
D

1

4

1
X

nD0

nC 1

2n
.x C 2/

n
; .�4 < x < 0/

25. .x � 1/C
P1

nD2

.�1/n

n.n� 1/
.x � 1/

n
; .0 � x � 2/

27. 1C
x2

2
C

5x4

24
29. x C

x2

2
�

x3

6

31. 1C
x

2
�

x2

8
33. ex2

(all x)

35.
ex
� e�x

2x
D

sinh x

x
if x ¤ 0; 1 if x D 0

37. (a) 1C x C x2, (b) 3C 3.x � 1/C .x � 1/2

Section 9.7 (page 554)

1.
1

720
.0:2/

7 3. 1:22140

5. 3:32011 7. 0:99619

9. �0:10533 11. 0:42262

13. 1:54306

15. I.x/ D
P1

nD0

.�1/n

.2nC 1/.2nC 1/Š
x

2nC1
; (all x)

17. K.x/ D
P1

nD0

.�1/n

.nC 1/2
x

nC1
; .�1 � x � 1/

19. M.x/ D
P1

nD0

.�1/n

.2nC 1/.4nC 1/
x

4nC1,

.�1 � x � 1/

21. 0:946 23. 2

25. �3=25 27. 0

Section 9.8 (page 559)

1.
p

1C x

D

1C
P1

nD1

.�1/n�1 1 � 3 � 5 � � � � � .2n � 3/

2nnŠ
x

n

jxj < 1

3.
p

4C x

D 2C
x

4
C2

1
X

nD2

.�1/
n�1 1 � 3 � 5 � � � � � .2n � 3/

23nnŠ
x

n
;

.�4 < x � 4/

5.
P1

nD0.nC 1/x
n; jxj < 1

7.
�

2
�x�

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ.2nC 1/
x

2nC1
; .�1 <

x < 1/

Section 9.9 (page 565)

1. 2�=3 3. �

5. 2
P1

nD1.�1/
n�1.sin.nt//=n

7.
1

4
�

1
X

nD1

�

2 cos..2n � 1/�t/

.2n � 1/2�2
C

.�1/n sin.n�t/

n�

�

9. 1

11. 2
P1

nD1

.�1/n

n�
sin.n�t/

13. �2=8

Review Exercises (page 566)

1. conv. to 0 3. div. to1

5. limn!1 an D

p

2 7. 4
p

2=.
p

2 � 1/

9. 2 11. converges

13. converges 15. converges

17. conv. abs. 19. conv. cond.

21. conv. abs. for x in .�1; 5/, cond. for x D �1, div. else-

where

23. 1:202

25.
P1

nD0 x
n=3nC1; jxj < 3

27. 1C
P1

nD1.�1/
n�1x2n=.nen/; �

p

e < x �
p

e

29. x C
P1

nD1.�1/
n22n�1x2nC1=.2n/Š; all x

31. .1=2/C
P1

nD1

.�1/n 1 � 4 � 7 � � � � � .3n � 2/xn

2 � 24n nŠ
,

�8 < x � 8

33.
P1

nD0.�1/
n
.x � �/

n
=�

nC1
; 0 < x < 2�

35. 1C 2x C 3x2
C

10
3
x3 37. 1 � 1

2
x2
C

5
24
x4
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39.

�

cos
p

x if x � 0

cosh
p

jxj if x < 0
41. �2=.� � 1/2

43. ln.e=.e � 1// 45. 1=14

47. 3; 0:49386 49.
P1

nD1

2

n
sin.nt/

Challenging Problems (page 567)

5. (c) 1:645

7. (a)1, (c) e�x2

, (d) f .x/ D ex2 R x

0
e

�t2

dt

Chapter 10

Vectors and Coordinate Geometry in 3-Space

Section 10.1 (page 574)

1. 3 units 3.
p

6 units

5. (a) jzj unitsI (b)
p

y2
C z2 units

7. cos�1.�4=9/ � 116:39ı

9.
p

3=2 sq. units 11.
p

n� 1 units

13. the half-space containing the origin and bounded by

the plane passing through .0;�1; 0/ perpendicular to

the y-axis

15. the vertical plane (parallel to the z-axis) passing

through .1; 0; 0/ and .0; 1; 0/

17. the sphere of radius 2 centred at .1;�2; 3/

19. the solid circular cylinder of radius 2 with axis along

the x-axis
21. the parabolic cylinder generated by translating the

parabola z D y2 in the yz-plane in the direction of

the x-axis
23. the plane through the points .6; 0; 0/, .0; 3; 0/ and

.0; 0; 2/

25. the straight line through .1; 0; 0/ and .1; 1; 1/

27. the circle in which the sphere of radius 2 centred at

the origin intersects the sphere of radius 2 with centre

.2; 0; 0/

29. the ellipse in which the plane z D x intersects the

circular cylinder of radius 1 and axis along the

z-axis
31. the part of the solid circular cylinder of radius 1 and

axis along the z-axis lying above or on the plane z D y

33. bdry .0; 0/ and x2
C y2

D 1; interiorD S ; S open

35. bdry of S is S ; interior empty; S is closed

37. bdry — the spheres x2
C y2

C z2
D 1 and

x2
C y2

C z2
D 4; interior — points between these

spheres; S is closed

39. bdry of S is S , namely the line x D y D z; interior is

empty; S closed

Section 10.2 (page 583)

1. (a) 3i � 2j, (b) �3iC 2j, (c) 2i � 5j, (d) �2iC 4j,

(e) �i � 2j, (f) 4iC j, (g) �7iC 20j, (h) 2i � .5=3/j

3. a) 6i � 10k; 8j; �3iC 20jC 5k

b) 5
p

2; 5
p

2

c) 3

5
p

2
i˙ 4

5
p

2
j � 1p

2
k d) 18

e) cos�1
.9=25/ � 68:9

ı f) 18=5
p

2

g) .27=25/iC .36=25/j � .9=5/k

9. from southwest at 50
p

2 km/h

11. head at angle � to the east of AC , where

� D sin�1 3

2
p

1C 4k2
.

The trip not possible if k < 1
4

p

5. If k > 1
4

p

5 there is

a second possible heading, � � � , but the trip will take

longer.

13. t D 2

15. cos�1.2=
p

6/ � 35:26ı; 90ı

17. .iC jC k/=
p

3

19. � D 1=2, midpoint, � D 2=3, 2/3 of way from P1 to

P2, � D �1, P1 is midway between this point and P2.

21. plane through point with position vector .b=jaj2/a per-

pendicular to a

23. x D 2i � 3j � 4k

25. .jujvC jvju/=
ˇ

ˇ

jujvC jvju
ˇ

ˇ

31. u D .w � a=jaj2/a; v D w � u

33. x D .aCK Ou/=.2r/, y D .a�K Ou/=.2s/, where K D
p

jaj2 � 4rst and Ou is any unit vector

35. about 12.373 m 37. about 19 m

Section 10.3 (page 592)

1. 5iC 13jC 7k 3.
p

6 sq. units

5. ˙1
3
.2i � 2jC k/ 15. 4=3 cubic units

17. k D �6

19. � D
x � .v�w/

u � .v�w/
, � D

x � .w� u/

u � .v�w/
, � D

x � .u� v/

u � .v�w/

21. u� .v�w/ D �2iC7j�4k, .u� v/�w D iC9jC9k;

the first is in the plane of v and w, the second is in the

plane of u and v.

Section 10.4 (page 599)

1. a) x2
C y2

C z2
D z2; b) x C y C z D x C y C z;

c) x2
C y2

C z2
D �1

3. x � y C 2z D 0 5. 7x C 5y � z D 12

7. x � 5y � 3z D �7 9. x C 6y � 5z D 17

11. .r1 � r2/ � Œ.r1 � r3/� .r1 � r4/� D 0

13. planes passing through the line x D 0, y C z D 1

(except the plane y C z D 1 itself)

15. r D .1C 2t/iC .2 � 3t/jC .3 � 4t/k;

.�1 < t <1/

x D 1C2t , y D 2�3t , z D 3�4t , .�1 < t <1/

x � 1

2
D

y � 2

�3
D

z � 3

�4

17. r D t.7i � 6j � 5k/I x D 7t; y D �6t;

z D �5t I x=7 D �y=6 D �z=5

19. r D iC 2j � kC t.iC jC k/;

x D 1C t; y D 2C t; z D �1C t ;

x � 1 D y � 2 D z C 1
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23. Œ�1; 1/I 1
3

if x D 0;

�

1

x3
ln.1 � x/�

1

x2
�

1

2x
otherwise

25. .�1; 1/I
2

.1 � x2/2
27. 3=4

29. �2.� C 1/=.� � 1/3 31. ln.3=2/

Section 9.6 (page 550)

1. e3xC1
D

P1
nD0

3ne

nŠ
x

n
; (all x)

3. sin
�

x �
�

4

�

D

1
p

2

1
X

nD0

.�1/
n

�

�

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š

�

; (all x)

5. x2 sin
�

x

3

�

D

P1
nD0

.�1/n

32nC1.2nC 1/Š
x

2nC3
; (all x)

7. sinx cos x D
P1

nD0

.�1/n22n

.2nC 1/Š
x

2nC1
; (all x)

9.
1C x3

1C x2
D 1 � x

2
C

1
X

nD2

.�1/
n
�

x
2n�1

C x
2n
�

;

.�1 < x < 1/

11. ln
1C x

1 � x
D 2

1
X

nD1

x2n�1

2n � 1
; .�1 < x < 1/

13. cosh x � cos x D 2
P1

nD0

x4nC2

.4nC 2/Š
; (all x)

15. e�2x
D e2

P1
nD0

.�1/
n
2

n

nŠ
.x C 1/

n
; (all x)

17. cos x D
P1

nD0

.�1/nC1

.2n/Š
.x � �/

2n
; (all x)

19. ln 4C
P1

nD1

.�1/n�1

4nn
.x � 2/

n
; .�2 < x � 6/

21. sinx � cos x D
p

2
P1

nD0

.�1/n

.2nC 1/Š

�

x �
�

4

�2nC1

; (all x)

23.
1

x2
D

1

4

1
X

nD0

nC 1

2n
.x C 2/

n
; .�4 < x < 0/

25. .x � 1/C
P1

nD2

.�1/n

n.n� 1/
.x � 1/

n
; .0 � x � 2/

27. 1C
x2

2
C

5x4

24
29. x C

x2

2
�

x3

6

31. 1C
x

2
�

x2

8
33. ex2

(all x)

35.
ex
� e�x

2x
D

sinh x

x
if x ¤ 0; 1 if x D 0

37. (a) 1C x C x2, (b) 3C 3.x � 1/C .x � 1/2

Section 9.7 (page 554)

1.
1

720
.0:2/

7 3. 1:22140

5. 3:32011 7. 0:99619

9. �0:10533 11. 0:42262

13. 1:54306

15. I.x/ D
P1

nD0

.�1/n

.2nC 1/.2nC 1/Š
x

2nC1
; (all x)

17. K.x/ D
P1

nD0

.�1/n

.nC 1/2
x

nC1
; .�1 � x � 1/

19. M.x/ D
P1

nD0

.�1/n

.2nC 1/.4nC 1/
x

4nC1,

.�1 � x � 1/

21. 0:946 23. 2

25. �3=25 27. 0

Section 9.8 (page 559)

1.
p

1C x

D

1C
P1

nD1

.�1/n�1 1 � 3 � 5 � � � � � .2n � 3/

2nnŠ
x

n

jxj < 1

3.
p

4C x

D 2C
x

4
C2

1
X

nD2

.�1/
n�1 1 � 3 � 5 � � � � � .2n � 3/

23nnŠ
x

n
;

.�4 < x � 4/

5.
P1

nD0.nC 1/x
n; jxj < 1

7.
�

2
�x�

1
X

nD1

1 � 3 � 5 � � � � � .2n � 1/

2nnŠ.2nC 1/
x

2nC1
; .�1 <

x < 1/

Section 9.9 (page 565)

1. 2�=3 3. �

5. 2
P1

nD1.�1/
n�1.sin.nt//=n

7.
1

4
�

1
X

nD1

�

2 cos..2n � 1/�t/

.2n � 1/2�2
C

.�1/n sin.n�t/

n�

�

9. 1

11. 2
P1

nD1

.�1/n

n�
sin.n�t/

13. �2=8

Review Exercises (page 566)

1. conv. to 0 3. div. to1

5. limn!1 an D

p

2 7. 4
p

2=.
p

2 � 1/

9. 2 11. converges

13. converges 15. converges

17. conv. abs. 19. conv. cond.

21. conv. abs. for x in .�1; 5/, cond. for x D �1, div. else-

where

23. 1:202

25.
P1

nD0 x
n=3nC1; jxj < 3

27. 1C
P1

nD1.�1/
n�1x2n=.nen/; �

p

e < x �
p

e

29. x C
P1

nD1.�1/
n22n�1x2nC1=.2n/Š; all x

31. .1=2/C
P1

nD1

.�1/n 1 � 4 � 7 � � � � � .3n � 2/xn

2 � 24n nŠ
,

�8 < x � 8

33.
P1

nD0.�1/
n
.x � �/

n
=�

nC1
; 0 < x < 2�

35. 1C 2x C 3x2
C

10
3
x3 37. 1 � 1

2
x2
C

5
24
x4
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39.

�

cos
p

x if x � 0

cosh
p

jxj if x < 0
41. �2=.� � 1/2

43. ln.e=.e � 1// 45. 1=14

47. 3; 0:49386 49.
P1

nD1

2

n
sin.nt/

Challenging Problems (page 567)

5. (c) 1:645

7. (a)1, (c) e�x2

, (d) f .x/ D ex2 R x

0
e

�t2

dt

Chapter 10

Vectors and Coordinate Geometry in 3-Space

Section 10.1 (page 574)

1. 3 units 3.
p

6 units

5. (a) jzj unitsI (b)
p

y2
C z2 units

7. cos�1.�4=9/ � 116:39ı

9.
p

3=2 sq. units 11.
p

n� 1 units

13. the half-space containing the origin and bounded by

the plane passing through .0;�1; 0/ perpendicular to

the y-axis

15. the vertical plane (parallel to the z-axis) passing

through .1; 0; 0/ and .0; 1; 0/

17. the sphere of radius 2 centred at .1;�2; 3/

19. the solid circular cylinder of radius 2 with axis along

the x-axis
21. the parabolic cylinder generated by translating the

parabola z D y2 in the yz-plane in the direction of

the x-axis
23. the plane through the points .6; 0; 0/, .0; 3; 0/ and

.0; 0; 2/

25. the straight line through .1; 0; 0/ and .1; 1; 1/

27. the circle in which the sphere of radius 2 centred at

the origin intersects the sphere of radius 2 with centre

.2; 0; 0/

29. the ellipse in which the plane z D x intersects the

circular cylinder of radius 1 and axis along the

z-axis
31. the part of the solid circular cylinder of radius 1 and

axis along the z-axis lying above or on the plane z D y

33. bdry .0; 0/ and x2
C y2

D 1; interiorD S ; S open

35. bdry of S is S ; interior empty; S is closed

37. bdry — the spheres x2
C y2

C z2
D 1 and

x2
C y2

C z2
D 4; interior — points between these

spheres; S is closed

39. bdry of S is S , namely the line x D y D z; interior is

empty; S closed

Section 10.2 (page 583)

1. (a) 3i � 2j, (b) �3iC 2j, (c) 2i � 5j, (d) �2iC 4j,

(e) �i � 2j, (f) 4iC j, (g) �7iC 20j, (h) 2i � .5=3/j

3. a) 6i � 10k; 8j; �3iC 20jC 5k

b) 5
p

2; 5
p

2

c) 3

5
p

2
i˙ 4

5
p

2
j � 1p

2
k d) 18

e) cos�1
.9=25/ � 68:9

ı f) 18=5
p

2

g) .27=25/iC .36=25/j � .9=5/k

9. from southwest at 50
p

2 km/h

11. head at angle � to the east of AC , where

� D sin�1 3

2
p

1C 4k2
.

The trip not possible if k < 1
4

p

5. If k > 1
4

p

5 there is

a second possible heading, � � � , but the trip will take

longer.

13. t D 2

15. cos�1.2=
p

6/ � 35:26ı; 90ı

17. .iC jC k/=
p

3

19. � D 1=2, midpoint, � D 2=3, 2/3 of way from P1 to

P2, � D �1, P1 is midway between this point and P2.

21. plane through point with position vector .b=jaj2/a per-

pendicular to a

23. x D 2i � 3j � 4k

25. .jujvC jvju/=
ˇ

ˇ

jujvC jvju
ˇ

ˇ

31. u D .w � a=jaj2/a; v D w � u

33. x D .aCK Ou/=.2r/, y D .a�K Ou/=.2s/, where K D
p

jaj2 � 4rst and Ou is any unit vector

35. about 12.373 m 37. about 19 m

Section 10.3 (page 592)

1. 5iC 13jC 7k 3.
p

6 sq. units

5. ˙1
3
.2i � 2jC k/ 15. 4=3 cubic units

17. k D �6

19. � D
x � .v�w/

u � .v�w/
, � D

x � .w� u/

u � .v�w/
, � D

x � .u� v/

u � .v�w/

21. u� .v�w/ D �2iC7j�4k, .u� v/�w D iC9jC9k;

the first is in the plane of v and w, the second is in the

plane of u and v.

Section 10.4 (page 599)

1. a) x2
C y2

C z2
D z2; b) x C y C z D x C y C z;

c) x2
C y2

C z2
D �1

3. x � y C 2z D 0 5. 7x C 5y � z D 12

7. x � 5y � 3z D �7 9. x C 6y � 5z D 17

11. .r1 � r2/ � Œ.r1 � r3/� .r1 � r4/� D 0

13. planes passing through the line x D 0, y C z D 1

(except the plane y C z D 1 itself)

15. r D .1C 2t/iC .2 � 3t/jC .3 � 4t/k;

.�1 < t <1/

x D 1C2t , y D 2�3t , z D 3�4t , .�1 < t <1/

x � 1

2
D

y � 2

�3
D

z � 3

�4

17. r D t.7i � 6j � 5k/I x D 7t; y D �6t;

z D �5t I x=7 D �y=6 D �z=5

19. r D iC 2j � kC t.iC jC k/;

x D 1C t; y D 2C t; z D �1C t ;

x � 1 D y � 2 D z C 1
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21. x�4
�5
D

y
3
; z D 7

25. ri ¤ rj , (i; j D 1; � � � ; 4; i ¤ j ),

v D .r1 � r2/� .r3 � r4/ ¤ 0, .r1 � r3/ � v D 0.

27. 7
p

2=10 units 29. 18=
p

69 units

31. all lines parallel to the xy-plane and passing through

.x0; y0; z0/

33. .x; y; z/ satisfies the quadratic if either

A1xCB1yCC1z D D1 or A2xCB2yCC2z D D2.

Section 10.5 (page 603)

1. ellipsoid centred at the origin with semi-axes 6, 3, and

2 along the x-, y-, and z-axes, respectively.

3. sphere with centre .1;�2; 3/ and radius 1=
p

2

5. elliptic paraboloid with vertex at the origin, axis along

the z-axis, and cross-section x2
C2y2

D 1 in the plane

z D 1

7. hyperboloid of two sheets with vertices .˙2; 0; 0/ and

circular cross-sections in planes x D c, (c2
> 4)

9. hyperbolic paraboloid — same as z D x2
� y2 but

rotated 45ı about the z-axis (counterclockwise as seen

from above)

11. hyperbolic cylinder parallel to the y-axis, intersecting

the xz-plane in the hyperbola .x2=4/ � z2
D 1

13. parabolic cylinder parallel to the y-axis

15. circular cone with vertex .2; 3; 1/, vertical axis, and

semi-vertical angle 45ı

17. circle in the plane x C y C z D 1 having centre

.1=3; 1=3; 1=3/ and radius
p

11=3

19. a parabola in the plane z D 1 C x having vertex at

.�1=2; 0; 1=2/ and axis along the line

z D 1C x, y D 0

21.
y

b
�

z

c
D �

�

1 �
x

a

�

;
y

b
C

z

c
D

1

�

�

1C
x

a

�

;

y

b
�

z

c
D �

�

1C
x

a

�

;
y

b
C

z

c
D

1

�

�

1 �
x

a

�

23. a D i˙ k (or any multiple)

Section 10.6 (page 607)

1. cylindrical: Œ2
p

2;��=4; 1�; spherical Œ3; cos�1.1=3/;��=4�

3. Cartesian: .�
p

3; 3; 2/; cylindrical: Œ2
p

3; 2�=3; 2�

5. the half-plane x D 0, y > 0

7. the xy-plane

9. the circular cylinder of radius 4 with axis along the

z-axis

11. the xy-plane

13. sphere of radius 1 with centre .0; 0; 1/

Section 10.7 (page 617)

1.

0

@

6 7

5 �3

1 1

1

A

3.

�

aw C by ax C bz

cw C dy cx C dz

�

5. AA
T
D

0

B

B

@

4 3 2 1

3 3 2 1

2 2 2 1

1 1 1 1

1

C

C

A

A
2
D

0

B

B

@

1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1

1

C

C

A

7. 36 17.

0

@

1 �1 0

0 1 �1

0 0 1

1

A

19. x D 1; y D 2; z D 3

21. x1 D 1; x2 D 2; x3 D �1; x4 D �2

23. neg. def. 25. pos. def.

27. indefinite

Section 10.8 (page 626)

1. 2 units

5. sp:=(U,V)->DotProduct(

U,Normalize(V,2),conjugate=false)

7. ang := (u,v) -> evalf(

(180/Pi)*VectorAngle(U,V))

9. VolT:=(U,V,W)->(1/6)*abs(

DotProduct(U,(V &x W),conjugate=false))

11. .u; v; x; y; z/ D .1; 0;�1; 3; 2/

13. �935

15.

2

4

9 �36 30

�36 192 �180

30 �180 180

3

5

Review Exercises (page 627)

1. plane parallel to y-axis through .3; 0; 0/ and .0; 0; 1/

3. all points on or above the plane through the origin with

normal iC jC k

5. circular paraboloid with vertex at .0; 1; 0/ and axis

along the y-axis, opening in the direction of increas-

ing y

7. hyperbolic paraboloid

9. points inside the ellipsoid with vertices at .˙2; 0; 0/,

.0;˙2; 0/, and .0; 0;˙1/

11. cone with axis along the x-axis, vertex at the origin,

and elliptical cross-sections perpendicular to its axis

13. oblique circular cone (elliptic cone). Cross-sections in

horizontal planes z D k are circles of radius 1 with

centres at .k; 0; k/

15. horizontal line through .0; 0; 3/ and .2;�1; 3/

17. circle of radius 1 centred at .1; 1; 1/ in plane normal to

iC jC k

19. 2x � y C 3z D 0 21. 2x C 5y C 3z D 2

23. 7x C 4y � 8z D 6

25. r D .2C 3t/iC .1C t/j � .1C 2t/k

27. x D 3t; y D �2t; z D 4t

29. .r2 � r1/� .r3 � r1/ D 0

31. .3=2/
p

34 sq. units
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33. A
�1
D

0

B

B

@

1 0 0 0

�2 1 0 0

1 �2 1 0

0 1 �2 1

1

C

C

A

35. pos. def.

Challenging Problems (page 628)

5. condition: a � b D 0,

x D
b � a

jaj2
C ta (for any scalar t)

Chapter 11

Vector Functions and Curves

Section 11.1 (page 635)

1. v D j, v D 1, a D 0, path is the line x D 1, z D 0

3. v D 2tj C k, v D
p

4t2 C 1, a D 2j, path is the

parabola y D z2, in the yz-plane

5. v D 2t i � 2tj, v D 2
p

2t , a D 2i � 2j, path is the

straight half-line x C y D 0; z D 1; .x � 0/

7. v D �a sin t iC a cos tjC ck, v D
p

a2
C c2,

a D �a cos t i � a sin tj, path is a circular helix

9. v D �3 sin t i � 4 sin t j C 5 cos t k, v D 5, a D �r,

path is the circle of intersection of the plane 4x D 3y

with the sphere x2
C y2

C z2
D 25

11. a D v D r, v D
p

a2
C b2

C c2 et , path is the

straight line
x

a
D

y

b
D

z

c

13. v D �.e�t cos et
C sin et /i

C.�e
�t sin et

C cos et
/j � et k

v D
p

1C e�2t
C e2t

a D Œ.e�t
� et / cos et

C sin et �i

CŒ.e�t
� et / sin et

� cos et �j � et k

The path is a spiral lying on the surface

z D �1=
p

x2
C y2

15. a D �3�2i � 4�2j 17.
p

3=2.�iC j � 2k/

19. v D 2iC 4jC 4k, a D �8
9
.2iC j � 2k/

29.
d

dt

�

u� .v�w/
�

D

du

dt
� .v�w/

Cu�
�dv

dt
�w

�

C u�
�

v�
dw

dt

�

31. u000
� .u� u0

/

33. r D r0e
2t , a D 4r0e

2t ; the path is a straight line

through the origin in the direction of r0

35. r D r0 C
1 � e�ct

c
v0 �

g

c2
.ct C e

�ct
� 1/k

Section 11.2 (page 642)

1.
e � 1

e
;

e2
� 1

e2

3. r D cos t iC sin tjC k; the curve is a circle of radius 1

in the plane z D 1

5. 4:76ı west of south;
�2R

72
towards the ground, where

R is the radius of the earth

7. (a) tangential only, 90ı counterclockwise from v

(b) tangential only, 90ı clockwise from v

(c) normal only

9. 16.0 hours, 52:7ı

Section 11.3 (page 649)

1. x D
p

a2
� t2; y D t; 0 � t � a

3. x D a sin �; y D �a cos �; �
2
� � � �

5. r D �2t iC tjC 4t2k

7. r D 3 cos t iC 3 sin tjC 3.cos t C sin t/k

9. r D .1C 2 cos t/i � 2.1 � sin t/j

C .9C 4 cos t � 8 sin t/k

11. Choice (b) leads to r D
t
2
� 1

2
iC tjC

t
2
C 1

2
k, which

represents the whole parabola. Choices (a) and (c) lead

to separate parametrizations for the halves y � 0 and

y � 0 of the parabola. For (a) these are r D t i ˙
p

1C 2t jC .1C t/k, .t � �1=2/

13. .17
p

17 � 16
p

2/=27 units

15.

Z T

1

p

4a2t4 C b2t2 C c2

t
dt units;

a.T 2
� 1/C c lnT units

17. �
p

2C 4�2
C ln.

p

2� C
p

1C 2�2/ units

19.
p

2e4�
C 1 �

p

3C
1
2

ln
e4� C1�

p

2e4� C1

e4�

�
1
2

ln.2 �
p

3/ units

21. straight line segments from .0; 0/ to .1; 1/, then to

.0; 2/

23. r D 1
p

A2CB2CC 2
.AsiC BsjC Csk/

25. r D a
�

1 �
s

K

�3=2

iC a
�

s

K

�3=2

jC b

�

1 �
2s

K

�

k,

0 � s � K; K D .
p

9a2
C 16b2/=2

Section 11.4 (page 658)

1. OT D 1
p

1C16t2C81t4
.i � 4tjC 9t2k/

3. OT D 1
p

1Csin2 t
.cos 2t iC sin 2tj � sin tk/

Section 11.5 (page 664)

1. 1=2; 27=2 3. 27=.4
p

2/

5. OT D .iC 2j/=
p

5; ON D .�2iC j/=
p

5; OB D k

7. OT D
1

p

1C t2 C t4
.iC tjC t2k/,

OB D
1

p

t4 C 4t2 C 1
.t

2i � 2tjC k/,

ON D
�.t C 2t3/iC .1 � t4/jC .t3 C 2t/k
p

t4 C 4t2 C 1
p

1C t2 C t4
,

� D

p

t4 C 4t2 C 1

.t4 C t2 C 1/3=2
; � D

2

t4 C 4t2 C 1

9. �.t/ D 1=
p

2, �.t/ D 0, curve is a circle in the plane

y C z D 4, having centre .2; 1; 3/ and radius
p

2
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21. x�4
�5
D

y
3
; z D 7

25. ri ¤ rj , (i; j D 1; � � � ; 4; i ¤ j ),

v D .r1 � r2/� .r3 � r4/ ¤ 0, .r1 � r3/ � v D 0.

27. 7
p

2=10 units 29. 18=
p

69 units

31. all lines parallel to the xy-plane and passing through

.x0; y0; z0/

33. .x; y; z/ satisfies the quadratic if either

A1xCB1yCC1z D D1 or A2xCB2yCC2z D D2.

Section 10.5 (page 603)

1. ellipsoid centred at the origin with semi-axes 6, 3, and

2 along the x-, y-, and z-axes, respectively.

3. sphere with centre .1;�2; 3/ and radius 1=
p

2

5. elliptic paraboloid with vertex at the origin, axis along

the z-axis, and cross-section x2
C2y2

D 1 in the plane

z D 1

7. hyperboloid of two sheets with vertices .˙2; 0; 0/ and

circular cross-sections in planes x D c, (c2
> 4)

9. hyperbolic paraboloid — same as z D x2
� y2 but

rotated 45ı about the z-axis (counterclockwise as seen

from above)

11. hyperbolic cylinder parallel to the y-axis, intersecting

the xz-plane in the hyperbola .x2=4/ � z2
D 1

13. parabolic cylinder parallel to the y-axis

15. circular cone with vertex .2; 3; 1/, vertical axis, and

semi-vertical angle 45ı

17. circle in the plane x C y C z D 1 having centre

.1=3; 1=3; 1=3/ and radius
p

11=3

19. a parabola in the plane z D 1 C x having vertex at

.�1=2; 0; 1=2/ and axis along the line

z D 1C x, y D 0

21.
y

b
�

z

c
D �

�

1 �
x

a

�

;
y

b
C

z

c
D

1

�

�

1C
x

a

�

;

y

b
�

z

c
D �

�

1C
x

a

�

;
y

b
C

z

c
D

1

�

�

1 �
x

a

�

23. a D i˙ k (or any multiple)

Section 10.6 (page 607)

1. cylindrical: Œ2
p

2;��=4; 1�; spherical Œ3; cos�1.1=3/;��=4�

3. Cartesian: .�
p

3; 3; 2/; cylindrical: Œ2
p

3; 2�=3; 2�

5. the half-plane x D 0, y > 0

7. the xy-plane

9. the circular cylinder of radius 4 with axis along the

z-axis

11. the xy-plane

13. sphere of radius 1 with centre .0; 0; 1/

Section 10.7 (page 617)

1.

0

@

6 7

5 �3

1 1

1

A

3.

�

aw C by ax C bz

cw C dy cx C dz

�

5. AA
T
D

0

B

B

@

4 3 2 1

3 3 2 1

2 2 2 1

1 1 1 1

1

C

C

A

A
2
D

0

B

B

@

1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1

1

C

C

A

7. 36 17.

0

@

1 �1 0

0 1 �1

0 0 1

1

A

19. x D 1; y D 2; z D 3

21. x1 D 1; x2 D 2; x3 D �1; x4 D �2

23. neg. def. 25. pos. def.

27. indefinite

Section 10.8 (page 626)

1. 2 units

5. sp:=(U,V)->DotProduct(

U,Normalize(V,2),conjugate=false)

7. ang := (u,v) -> evalf(

(180/Pi)*VectorAngle(U,V))

9. VolT:=(U,V,W)->(1/6)*abs(

DotProduct(U,(V &x W),conjugate=false))

11. .u; v; x; y; z/ D .1; 0;�1; 3; 2/

13. �935

15.

2

4

9 �36 30

�36 192 �180

30 �180 180

3

5

Review Exercises (page 627)

1. plane parallel to y-axis through .3; 0; 0/ and .0; 0; 1/

3. all points on or above the plane through the origin with

normal iC jC k

5. circular paraboloid with vertex at .0; 1; 0/ and axis

along the y-axis, opening in the direction of increas-

ing y

7. hyperbolic paraboloid

9. points inside the ellipsoid with vertices at .˙2; 0; 0/,

.0;˙2; 0/, and .0; 0;˙1/

11. cone with axis along the x-axis, vertex at the origin,

and elliptical cross-sections perpendicular to its axis

13. oblique circular cone (elliptic cone). Cross-sections in

horizontal planes z D k are circles of radius 1 with

centres at .k; 0; k/

15. horizontal line through .0; 0; 3/ and .2;�1; 3/

17. circle of radius 1 centred at .1; 1; 1/ in plane normal to

iC jC k

19. 2x � y C 3z D 0 21. 2x C 5y C 3z D 2

23. 7x C 4y � 8z D 6

25. r D .2C 3t/iC .1C t/j � .1C 2t/k

27. x D 3t; y D �2t; z D 4t

29. .r2 � r1/� .r3 � r1/ D 0

31. .3=2/
p

34 sq. units
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33. A
�1
D

0

B

B

@

1 0 0 0

�2 1 0 0

1 �2 1 0

0 1 �2 1

1

C

C

A

35. pos. def.

Challenging Problems (page 628)

5. condition: a � b D 0,

x D
b � a

jaj2
C ta (for any scalar t)

Chapter 11

Vector Functions and Curves

Section 11.1 (page 635)

1. v D j, v D 1, a D 0, path is the line x D 1, z D 0

3. v D 2tj C k, v D
p

4t2 C 1, a D 2j, path is the

parabola y D z2, in the yz-plane

5. v D 2t i � 2tj, v D 2
p

2t , a D 2i � 2j, path is the

straight half-line x C y D 0; z D 1; .x � 0/

7. v D �a sin t iC a cos tjC ck, v D
p

a2
C c2,

a D �a cos t i � a sin tj, path is a circular helix

9. v D �3 sin t i � 4 sin t j C 5 cos t k, v D 5, a D �r,

path is the circle of intersection of the plane 4x D 3y

with the sphere x2
C y2

C z2
D 25

11. a D v D r, v D
p

a2
C b2

C c2 et , path is the

straight line
x

a
D

y

b
D

z

c

13. v D �.e�t cos et
C sin et /i

C.�e
�t sin et

C cos et
/j � et k

v D
p

1C e�2t
C e2t

a D Œ.e�t
� et / cos et

C sin et �i

CŒ.e�t
� et / sin et

� cos et �j � et k

The path is a spiral lying on the surface

z D �1=
p

x2
C y2

15. a D �3�2i � 4�2j 17.
p

3=2.�iC j � 2k/

19. v D 2iC 4jC 4k, a D �8
9
.2iC j � 2k/

29.
d

dt

�

u� .v�w/
�

D

du

dt
� .v�w/

Cu�
�dv

dt
�w

�

C u�
�

v�
dw

dt

�

31. u000
� .u� u0

/

33. r D r0e
2t , a D 4r0e

2t ; the path is a straight line

through the origin in the direction of r0

35. r D r0 C
1 � e�ct

c
v0 �

g

c2
.ct C e

�ct
� 1/k

Section 11.2 (page 642)

1.
e � 1

e
;

e2
� 1

e2

3. r D cos t iC sin tjC k; the curve is a circle of radius 1

in the plane z D 1

5. 4:76ı west of south;
�2R

72
towards the ground, where

R is the radius of the earth

7. (a) tangential only, 90ı counterclockwise from v

(b) tangential only, 90ı clockwise from v

(c) normal only

9. 16.0 hours, 52:7ı

Section 11.3 (page 649)

1. x D
p

a2
� t2; y D t; 0 � t � a

3. x D a sin �; y D �a cos �; �
2
� � � �

5. r D �2t iC tjC 4t2k

7. r D 3 cos t iC 3 sin tjC 3.cos t C sin t/k

9. r D .1C 2 cos t/i � 2.1 � sin t/j

C .9C 4 cos t � 8 sin t/k

11. Choice (b) leads to r D
t
2
� 1

2
iC tjC

t
2
C 1

2
k, which

represents the whole parabola. Choices (a) and (c) lead

to separate parametrizations for the halves y � 0 and

y � 0 of the parabola. For (a) these are r D t i ˙
p

1C 2t jC .1C t/k, .t � �1=2/

13. .17
p

17 � 16
p

2/=27 units

15.

Z T

1

p

4a2t4 C b2t2 C c2

t
dt units;

a.T 2
� 1/C c lnT units

17. �
p

2C 4�2
C ln.

p

2� C
p

1C 2�2/ units

19.
p

2e4�
C 1 �

p

3C
1
2

ln
e4� C1�

p

2e4� C1

e4�

�
1
2

ln.2 �
p

3/ units

21. straight line segments from .0; 0/ to .1; 1/, then to

.0; 2/

23. r D 1
p

A2CB2CC 2
.AsiC BsjC Csk/

25. r D a
�

1 �
s

K

�3=2

iC a
�

s

K

�3=2

jC b

�

1 �
2s

K

�

k,

0 � s � K; K D .
p

9a2
C 16b2/=2

Section 11.4 (page 658)

1. OT D 1
p

1C16t2C81t4
.i � 4tjC 9t2k/

3. OT D 1
p

1Csin2 t
.cos 2t iC sin 2tj � sin tk/

Section 11.5 (page 664)

1. 1=2; 27=2 3. 27=.4
p

2/

5. OT D .iC 2j/=
p

5; ON D .�2iC j/=
p

5; OB D k

7. OT D
1

p

1C t2 C t4
.iC tjC t2k/,

OB D
1

p

t4 C 4t2 C 1
.t

2i � 2tjC k/,

ON D
�.t C 2t3/iC .1 � t4/jC .t3 C 2t/k
p

t4 C 4t2 C 1
p

1C t2 C t4
,

� D

p

t4 C 4t2 C 1

.t4 C t2 C 1/3=2
; � D

2

t4 C 4t2 C 1

9. �.t/ D 1=
p

2, �.t/ D 0, curve is a circle in the plane

y C z D 4, having centre .2; 1; 3/ and radius
p

2
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11. (a) OT D i; ON D
2j � k
p

5
,

OB D
jC 2k
p

5
; � D

p

5; � D 0

(b) OT D

q

2
3
.j� 1p

2
k/; OB D 1p

13
.�iC2jC2

p

2k/,

ON D � 1p
39
.6iCjC

p

2k/; � D
2

p
39

9
; � D �

6
p

2
13

13. max a=b2, min b=a2

15. � D
ex

.1C e2x/3=2
,

r D .x � 1 � e2x/iC .2ex
C e�x/j

17. 3

2
p

2ar

21. r D �4x3iC .3x2
C

1
2
/j

23. f .x/ D 1
8
.15x � 10x3

C 3x5/

Section 11.6 (page 673)

3. velocity: 1=
p

2, 1=
p

2; acceleration: �e��=2, e��=2

5. jar j D
v2

0

5

�

2

r2
C

1

r3

�

7. 42,777 km, the equatorial plane

9. T

4
p

2
13. 3=4

15. .1=2/ � .�=�/

19. r D A sec!.� � �0/; !2
D 1 � .k=h2/ if k < h2,

r D 1=.AC B�/ if k D h2,

r D Ae!�
CB e�!� ; !2

D .k=h2/�1, if k > h2;

there are no bounded orbits that do not approach the

origin except in the case k D h2 if B D 0 when there

are circular orbits. (Now aren’t you glad gravitation

is an inverse square rather than an inverse cube attrac-

tion?)

21. centre

�

`�

�2
� 1

; 0

�

;

asymptotes in directions � D ˙ cos�1

�

�

1

�

�

;

semi-transverse axis a D
`

�2
� 1

;

semi-conjugate axis b D
`

p

�2
� 1

;

semi-focal separation c D
`�

�2
� 1

.

Review Exercises (page 675)

3. v D 2.iC 2jC 2k/; a D .8=3/.�2i � jC 2k/

5. � D � D
p

2=.et
C e�t /2

9. 4a.1 � cos.T=2// units

11. rC .t/ D a.t � sin t/iC a.1 � cos t/j

13. OR D sin� cos � iC sin� sin �jC cos�k

O� D cos� cos � iC cos� sin �j � sin�k

O� D � sin � iC cos �j

right-handed

Challenging Problems (page 676)

1. (a) � D �
jC k
p

2
, � � 7:272 � 10�5

(b) aC D �

p

2�vi

(c) about 15.5 cm west of P

3. (c) v.t/ D .v0�.v0�k/k/ cos.!t/C.v0�k/ sin.!t/C

.v0 � k/k.

(d) Straight line if v0 is parallel to k, circle if v0 is

perpendicular to k.

5. (a) y D .48C 24x2
� x4/=64

7. (a) Yes, time �a=.v
p

2/, (b) � D
�

2
�

vt

a
p

2
,

� D ln

�

sec

�

vt

a
p

2

�

C tan

�

vt

a
p

2

��

.

(c) infinitely often

Chapter 12

Partial Differentiation

Section 12.1 (page 684)

1. all .x; y/ with x ¤ y 3. all .x; y/ except .0; 0/

5. all .x; y/ satisfying 4x2
C 9y2

� 36

7. all .x; y/ with xy > �1

9. all .x; y; z/ except .0; 0; 0/

11. z D f .x; y/ D x 13. z D f .x; y/ D y2

  z

x

ydomain
2

3

  z

x y

15. f .x; y/ D
p

x2
C y2 17. f .x; y/ D jxj C jyj

  z

x
y

  z

x
y

19. f .x; y/ D x � y D C 21. f .x; y/ D xy D C

y

x

C D�2
C D�1

C D0

C D1

C D2

y

x

C D0
C D0

C D1
C D4

C D9

C D�9

C D�4
C D�1

C D�1

C D�4

C D�9

C D9

C D4
C D1
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23. f .x; y/ D
x � y

x C y
D C 25. f .x; y/ D xe�y

D C

y

x

C D0:5

C D0

C D1

C D2

C D�2

C D�1

y

x

C D�1

C D�2

C D�4

C D1

C D2

C D4

27. At B , because the contours are closer together there.

29. a plane containing the y-axis, sloping uphill in the x

direction
31. a right-circular cone with base in the xy-plane and ver-

tex at height 5 on the z-axis

33. No, different curves of the family must not intersect in

the region.

35. (a)
p

x2
C y2; (b) .x2

C y
2
/
1=4,

(c) x2
C y

2
; (d) e

p

x2Cy2

37. spheres centred at the origin

39. circular cylinders with axis along the z-axis

41. regular octahedra with vertices on the coordinate axes

Section 12.2 (page 689)

1. 2 3. does not exist

5. �1 7. 0

9. does not exist 11. 0

13. f .0; 0/ D 1

15. all .x; y/ such that x ¤ ˙y; yes; yes f .x; x/ D 1
2x

makes f continuous at .x; x/ for x ¤ 0; no, f has no

continuous extension to the line x C y D 0.

17. no, yes 19. a D c D 0; b ¤ 0

23. a surface having no tears in it, meeting vertical lines

through points of the region exactly once

Section 12.3 (page 696)

1. f1.x; y/ D f1.3; 2/ D 1; f2.x; y/ D f2.3; 2/ D �1

3. f1 D 3x
2y4z5; f2 D 4x

3y3z5; f3 D 5x
3y4z4

All three vanish at .0;�1;�1/.

5.
@z

@x
D

�y

x2
C y2

;
@z

@y
D

x

x2
C y2

At .�1; 1/:
@z

@x
D �

1

2
;

@z

@y
D �

1

2

7. f1 D
p

y cos.x
p

y/; f2 D
x cos.x

p

y/

2
p

y

At .�=3; 4/: f1 D �1; f2 D ��=24

9.
@w

@x
D y ln z x.y ln z �1/

;
@w

@y
D lnx ln z xy ln z ,

@w

@z
D

y lnx

z
x

y ln z

At .e; 2; e/:
@w

@x
D

@w

@z
D 2e;

@w

@y
D e

2.

11. f1.0; 0/ D 2; f2.0; 0/ D �1=3

13. z D �4x � 2y � 3I xC2
�4
D

y�1
�2
D

z�3
�1

15. z D
1
p

2

�

1 �
x � �

4
C

�

16
.y � 4/

�

;

x � �

�1=4
p

2
D

y � 4

�=16
p

2
D

z � 1=
p

2

�1

17. z D 2
5
C

3x
25
�

4y
25
I

x�1
3
D

y�2
�4
D

z�1=5
�25

19. z D ln 5C 2
5
.x � 1/ �

4
5
.y C 2/;

x � 1

2=5
D

y C 2

�4=5
D

z � ln 5

�1

21. z D
x C y

2
�

�

4
I 2.x � 1/ D 2.y C 1/ D �z �

�

4

23. .0; 0/; .1; 1/; .�1;�1/

33. w D f .a; b; c/Cf1.a; b; c/.x �a/Cf2.a; b; c/.y �

b/C f3.a; b; c/.z � c/

35.
p

7=4 units

37. f1.0; 0/ D 1, f2.0; 0/ does not exist.

39. f is continuous at .0; 0/; f1 and f2 are not.

Section 12.4 (page 702)

1.
@2z

@x2
D 2.1C y

2
/;

@2z

@x@y
D 4xy;

@2z

@y2
D 2x

2

3.
@2w

@x2
D 6xy

3
z

3
;

@2w

@y2
D 6x

3
yz

3,

@2w

@z2
D 6x

3
y

3
z;

@2w

@x@y
D 9x

2
y

2
z

3,

@2w

@x@z
D 9x

2
y

3
z

2
;

@2w

@y@z
D 9x

3
y

2
z

2

5.
@

2
z

@x2
D �y e

x
;

@
2
z

@x@y
D e

y
� e

x
;

@
2
z

@y2
D x e

y

7. 27; 10; x2exy
�

xz sin xz � .3C xy/ cos xz
�

19. u.x; y; z; t/ D t�3=2
e

�.x2Cy2Cz2/=4t

Section 12.5 (page 711)

1.
@w

@t
D f1g2 C f2h2 C f3k2

3.
@z

@u
D g1h1 C g2f

0
h1

5.
dw

dz
D f1g1h

0
C f1g2 C f2h

0
C f3,

@w

@z

ˇ

ˇ

x
D f2h

0
C f3,

@w

@z

ˇ

ˇ

x;y
D f3

7.
@z

@x
D

�5y

13x2
� 2xy C 2y2

9. 2f1.2x; 3y/ 11. 2x f2.y
2; x2/

13. dT=dt D e�t
�

f 0.t/ � f .t/
�

; dT=dt D 0 if f .t/ D

et : in this case the decrease in T with time (at fixed

depth) is exactly balanced by the increase in T with

depth.

15. (a) 4f11 C 12f12 C 9f22, (b) 6f11 C 5f12 � 6f22,

(c) 9f11 � 12f12 C 4f22

9780134154367_Calculus   1146 05/12/16   6:09 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-66 October 14, 2016

A-66 ANSWERS TO ODD-NUMBERED EXERCISES

11. (a) OT D i; ON D
2j � k
p

5
,

OB D
jC 2k
p

5
; � D

p

5; � D 0

(b) OT D

q

2
3
.j� 1p

2
k/; OB D 1p

13
.�iC2jC2

p

2k/,

ON D � 1p
39
.6iCjC

p

2k/; � D
2

p
39

9
; � D �

6
p

2
13

13. max a=b2, min b=a2

15. � D
ex

.1C e2x/3=2
,

r D .x � 1 � e2x/iC .2ex
C e�x/j

17. 3

2
p

2ar

21. r D �4x3iC .3x2
C

1
2
/j

23. f .x/ D 1
8
.15x � 10x3

C 3x5/

Section 11.6 (page 673)

3. velocity: 1=
p

2, 1=
p

2; acceleration: �e��=2, e��=2

5. jar j D
v2

0

5

�

2

r2
C

1

r3

�

7. 42,777 km, the equatorial plane

9. T

4
p

2
13. 3=4

15. .1=2/ � .�=�/

19. r D A sec!.� � �0/; !2
D 1 � .k=h2/ if k < h2,

r D 1=.AC B�/ if k D h2,

r D Ae!�
CB e�!� ; !2

D .k=h2/�1, if k > h2;

there are no bounded orbits that do not approach the

origin except in the case k D h2 if B D 0 when there

are circular orbits. (Now aren’t you glad gravitation

is an inverse square rather than an inverse cube attrac-

tion?)

21. centre

�

`�

�2
� 1

; 0

�

;

asymptotes in directions � D ˙ cos�1

�

�

1

�

�

;

semi-transverse axis a D
`

�2
� 1

;

semi-conjugate axis b D
`

p

�2
� 1

;

semi-focal separation c D
`�

�2
� 1

.

Review Exercises (page 675)

3. v D 2.iC 2jC 2k/; a D .8=3/.�2i � jC 2k/

5. � D � D
p

2=.et
C e�t /2

9. 4a.1 � cos.T=2// units

11. rC .t/ D a.t � sin t/iC a.1 � cos t/j

13. OR D sin� cos � iC sin� sin �jC cos�k

O� D cos� cos � iC cos� sin �j � sin�k

O� D � sin � iC cos �j

right-handed

Challenging Problems (page 676)

1. (a) � D �
jC k
p

2
, � � 7:272 � 10�5

(b) aC D �

p

2�vi

(c) about 15.5 cm west of P

3. (c) v.t/ D .v0�.v0�k/k/ cos.!t/C.v0�k/ sin.!t/C

.v0 � k/k.

(d) Straight line if v0 is parallel to k, circle if v0 is

perpendicular to k.

5. (a) y D .48C 24x2
� x4/=64

7. (a) Yes, time �a=.v
p

2/, (b) � D
�

2
�

vt

a
p

2
,

� D ln

�

sec

�

vt

a
p

2

�

C tan

�

vt

a
p

2

��

.

(c) infinitely often

Chapter 12

Partial Differentiation

Section 12.1 (page 684)

1. all .x; y/ with x ¤ y 3. all .x; y/ except .0; 0/

5. all .x; y/ satisfying 4x2
C 9y2

� 36

7. all .x; y/ with xy > �1

9. all .x; y; z/ except .0; 0; 0/

11. z D f .x; y/ D x 13. z D f .x; y/ D y2

  z

x

ydomain
2

3

  z

x y

15. f .x; y/ D
p

x2
C y2 17. f .x; y/ D jxj C jyj

  z

x
y

  z

x
y

19. f .x; y/ D x � y D C 21. f .x; y/ D xy D C

y

x

C D�2
C D�1

C D0

C D1

C D2

y

x

C D0
C D0

C D1
C D4

C D9

C D�9

C D�4
C D�1

C D�1

C D�4

C D�9

C D9

C D4
C D1
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23. f .x; y/ D
x � y

x C y
D C 25. f .x; y/ D xe�y

D C

y

x

C D0:5

C D0

C D1

C D2

C D�2

C D�1

y

x

C D�1

C D�2

C D�4

C D1

C D2

C D4

27. At B , because the contours are closer together there.

29. a plane containing the y-axis, sloping uphill in the x

direction
31. a right-circular cone with base in the xy-plane and ver-

tex at height 5 on the z-axis

33. No, different curves of the family must not intersect in

the region.

35. (a)
p

x2
C y2; (b) .x2

C y
2
/
1=4,

(c) x2
C y

2
; (d) e

p

x2Cy2

37. spheres centred at the origin

39. circular cylinders with axis along the z-axis

41. regular octahedra with vertices on the coordinate axes

Section 12.2 (page 689)

1. 2 3. does not exist

5. �1 7. 0

9. does not exist 11. 0

13. f .0; 0/ D 1

15. all .x; y/ such that x ¤ ˙y; yes; yes f .x; x/ D 1
2x

makes f continuous at .x; x/ for x ¤ 0; no, f has no

continuous extension to the line x C y D 0.

17. no, yes 19. a D c D 0; b ¤ 0

23. a surface having no tears in it, meeting vertical lines

through points of the region exactly once

Section 12.3 (page 696)

1. f1.x; y/ D f1.3; 2/ D 1; f2.x; y/ D f2.3; 2/ D �1

3. f1 D 3x
2y4z5; f2 D 4x

3y3z5; f3 D 5x
3y4z4

All three vanish at .0;�1;�1/.

5.
@z

@x
D

�y

x2
C y2

;
@z

@y
D

x

x2
C y2

At .�1; 1/:
@z

@x
D �

1

2
;

@z

@y
D �

1

2

7. f1 D
p

y cos.x
p

y/; f2 D
x cos.x

p

y/

2
p

y

At .�=3; 4/: f1 D �1; f2 D ��=24

9.
@w

@x
D y ln z x.y ln z �1/

;
@w

@y
D lnx ln z xy ln z ,

@w

@z
D

y lnx

z
x

y ln z

At .e; 2; e/:
@w

@x
D

@w

@z
D 2e;

@w

@y
D e

2.

11. f1.0; 0/ D 2; f2.0; 0/ D �1=3

13. z D �4x � 2y � 3I xC2
�4
D

y�1
�2
D

z�3
�1

15. z D
1
p

2

�

1 �
x � �

4
C

�

16
.y � 4/

�

;

x � �

�1=4
p

2
D

y � 4

�=16
p

2
D

z � 1=
p

2

�1

17. z D 2
5
C

3x
25
�

4y
25
I

x�1
3
D

y�2
�4
D

z�1=5
�25

19. z D ln 5C 2
5
.x � 1/ �

4
5
.y C 2/;

x � 1

2=5
D

y C 2

�4=5
D

z � ln 5

�1

21. z D
x C y

2
�

�

4
I 2.x � 1/ D 2.y C 1/ D �z �

�

4

23. .0; 0/; .1; 1/; .�1;�1/

33. w D f .a; b; c/Cf1.a; b; c/.x �a/Cf2.a; b; c/.y �

b/C f3.a; b; c/.z � c/

35.
p

7=4 units

37. f1.0; 0/ D 1, f2.0; 0/ does not exist.

39. f is continuous at .0; 0/; f1 and f2 are not.

Section 12.4 (page 702)

1.
@2z

@x2
D 2.1C y

2
/;

@2z

@x@y
D 4xy;

@2z

@y2
D 2x

2

3.
@2w

@x2
D 6xy

3
z

3
;

@2w

@y2
D 6x

3
yz

3,

@2w

@z2
D 6x

3
y

3
z;

@2w

@x@y
D 9x

2
y

2
z

3,

@2w

@x@z
D 9x

2
y

3
z

2
;

@2w

@y@z
D 9x

3
y

2
z

2

5.
@

2
z

@x2
D �y e

x
;

@
2
z

@x@y
D e

y
� e

x
;

@
2
z

@y2
D x e

y

7. 27; 10; x2exy
�

xz sin xz � .3C xy/ cos xz
�

19. u.x; y; z; t/ D t�3=2
e

�.x2Cy2Cz2/=4t

Section 12.5 (page 711)

1.
@w

@t
D f1g2 C f2h2 C f3k2

3.
@z

@u
D g1h1 C g2f

0
h1

5.
dw

dz
D f1g1h

0
C f1g2 C f2h

0
C f3,

@w

@z

ˇ

ˇ

x
D f2h

0
C f3,

@w

@z

ˇ

ˇ

x;y
D f3

7.
@z

@x
D

�5y

13x2
� 2xy C 2y2

9. 2f1.2x; 3y/ 11. 2x f2.y
2; x2/

13. dT=dt D e�t
�

f 0.t/ � f .t/
�

; dT=dt D 0 if f .t/ D

et : in this case the decrease in T with time (at fixed

depth) is exactly balanced by the increase in T with

depth.

15. (a) 4f11 C 12f12 C 9f22, (b) 6f11 C 5f12 � 6f22,

(c) 9f11 � 12f12 C 4f22
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17. f1 cos s � f2 sin s C f11 t cos s sin s

Cf12 t.cos2
s � sin2

s/ � f22 t sin s cos s

19. f2 C 2y
2f12 C xyf22 � 4xyf31 � 2x

2f32;

all derivatives at .y2; xy;�x2/

27.
Pn

i;j D1 xi xj fij .x1; � � � ; xn/ D k.k�1/ f .x1; � � � ; xn/

31. u.x; y/ D f .x C ct/

Section 12.6 (page 722)

1. 6:9 3. 0:0814

5. 2:967

7. dz D 2xe3y dx C 3x2e3y dy; 8:76

9. dF D
x dx C y dy C z dz
p

x2
C y C 2C z2

; 3:1

11. (a) 3%, (b) 2%, (c) 1% 13. 8.88 ft2

15. 169 m, 24 m, most sensitive to angle at B

17.

�

cos � �r sin �

sin � r cos �

�

19.

�

2x z y

� ln z 2y �x=z

�

; .5:99; 3:98/

27. f �.p/ D p2=4

29. f �.p/ D 1 �
2p

3
� ln

�

3

p

�

Section 12.7 (page 733)

1. 4iC 2jI z D 4x C 2y � 3I 2x C y D 3

3. .3i � 4j/=25I 3x � 4y � 25z C 10 D 0;

3x � 4y C 5 D 0

5. .2i� 4j/=5I 2x � 4y � 5z D 10� 5 ln 5I x � 2y D 5

7. x C y � 3z D �3 9.
p

3y C z D
p

3C �=3

11.
4
p

5
13. 1 � 2

p

3

17. in directions making angles �30ı or �150ı with posi-

tive x-axis; no; �j.

19. 7i � j

21. a)

y

x

cD�9

cD�4

cD�1

cD0

cD1 cD4
cD9

cD1cD4
cD9

cD�1

cD�4

cD�9

b) in direction �i � j

c) 4
p

2k deg/unit time

d) 12k=
p

5 deg/unit time

e) x2y D �4

23. 3x2
� 2y2

D 10 25. �4=3

27. i � 2jC k

33. Dv.Dvf / D v
2
1f11 C v

2
2f22 C v

2
3f33 C 2v1v2f12

C2v1v3f13 C 2v2v3f23.

This is the second derivative of f as measured by an

observer moving with velocity v.

35.
@2T

@t2
C 2Dv.t/

�

@T

@t

�

CDa.t/T CDv.t/.Dv.t/T /

Section 12.8 (page 743)

1. �
x4
C 3xy2

y3
C 4x3y

; y ¤ 0; y
2
¤ �4x

3

3.
3xy4

C xz

xy � 2y2z
; y ¤ 0; x ¤ 2yz

5.
x � 2t2w

2xy2
� w

; w ¤ 2xy
2 7. �

@G=@x

@G=@u
;
@G

@u
¤ 0

9. �
v2H2 C wH3

u2H1 C tH3

; u
2
H1 C tH3 ¤ 0,

all derivatives at .u2
w; v

2
t; wt/

11.
2w � 4y

4x �w
; 4x ¤ w 13.

1

6
;
1

2
;
1

6
; �

1

2
; �

1

6

15. r ; all points except the origin

17. �3=2

19. �
@.F;G;H/

@.y; z;w/

�

@.F;G;H/

@.x; z;w/

21. 15I �
@.F;G;H/

@.x2; x3; x5/

�

@.F;G;H/

@.x1; x3; x5/

23. 2.uC v/; �2; 0

31. S D
3Nk

2

 

ln

"

4�mE

3h2N

�

V

N

�2=3
#

C

5

3

!

S D
3Nk

2

 

ln

"

2�mkT

h2

�

V

N

�2=3
#

C

5

3

!

Section 12.9 (page 749)

1.

1
X

nD0

.�1/
n x

ny2n

2nC1

3.

1
X

nD0

.�1/
n x

2nC1.y C 1/2nC1

2nC 1

5.

1
X

nD0

n
X

kD0

1

kŠ.n � k/Š
x

2k
y

2n�2k

7. 1
2
�

1
4
.x � 2/C

1
2
.y � 1/C

1
8
.x � 2/2

�
1
2
.x � 2/.y � 1/C

1
2
.y � 1/

2
�

1
16
.x � 2/

3

C
3
8
.x � 2/2.y � 1/ �

3
4
.x � 2/.y � 1/2 C

1
2
.y � 1/3

9. x C y2
�

x3

3

11. 1 � .y � 1/C .y � 1/2 � 1
2
.x �

�
2
/2

13. �x � x2
� .5=6/x

3

15. �
x

3
�

2y

3
�

2x2

27
�

8xy

27
�

8y2

27
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17.
Œ.2n/Š�3

.nŠ/2

Review Exercises (page 750)

1.

y

x

C D1

C D2

C D�2
C D�2

x C
4y2

x
D C

3.

y

x

C D�16

C D16

C D8

C D16

C D0

5. cont. except on lines x D ˙y; can be extended to x D

y except at the origin; if f .0; 0/ D 0 then f1.0; 0/ D

f2.0; 0/ D 1

7. (a) ax C by C 4cz D 16,

(b) the circle z D 1, x2
C y2

D 12, (c)˙.2; 2;
p

2/

9. 7,500 m2, 7.213%

11. (a) �1=
p

2, (b) dir. of ˙.i C 3j � 4k, (c) dir. of

�7iC 5jC 2k

15. (a) @u=@x D �5, @u=@y D 1, (b) �1:13

Chapter 13

Applications of Partial Derivatives

Section 13.1 (page 759)

1. .2;�1/, loc. (abs) min.

3. .0; 0/, saddle pt; .1; 1/, loc. min.

5. .�4; 2/, loc. max.

7. .0; n�/; n D 0;˙1;˙2; � � �, all saddle points

9. .0; a/, (a > 0), loc min; .0; a/, (a < 0), loc max;

.0; 0/ saddle point; .˙1; 1=
p

2/, loc. (abs) max;

.˙1;�1=
p

2/, loc. (abs) min.

11. .3�1=3; 0/, saddle pt.

13. max at .x; x/, min at .x;�x/, x ¤ 0

15. .�1;�1/; .1;�1/; .�1; 1/, saddle pts; .�3;�3/, loc.

min.

17. .1; 1; 1
2
/, saddle pt.

19. .0; 0/, saddle pt; . 1p
2
;

1p
2
/; .�

1p
2
;�

1p
2
/, loc. (abs)

max; . 1p
2
;�

1p
2
/; .�

1p
2
;

1p
2
/, loc. (abs) min.

21. max e�3=2=2
p

2, min �e�3=2=2
p

2; f is continuous

everywhere, and f .x; y; z/! 0 as

x2
C y2

C z2
!1

23. L3=108 cu. units 25. 8abc=.3
p

3/ cu. units

27. CPs are .
p

ln 3;�
p

ln 3/ and .�
p

ln 3;
p

ln 3/.

29. f does not have a local minimum at .0; 0/; the second

derivative test is inconclusive (B2
D AC ).

Section 13.2 (page 765)

1. max 5=4, min �2

3. max .
p

2 � 1/=2, min �.
p

2C 1/=2.

5. max 2=3
p

3, min 0 7. max 1, min �1

9. max 1=
p

e, min �1=
p

e

11. max 4/9, min �4=9

13. no limit; yes, max f D e�1 (at all points of the curve

xy D 1)

15. $625,000, $733,333

17. max 37/2 at (7/4,5)

19. 6,667 kg deluxe, 6,667 kg standard

Section 13.3 (page 773)

1. 84; 375 3. 1 unit

5. max 4 units, min 2 units

7. a D ˙
p

3; b D ˙2
p

3; c D ˙
p

3

9. max 8, min �8 11.
p

7 units

13. max 2, min �2 15. max 7, min �1

17.
2
p

6

3
units 19. 1

6
�

1
3
�

2
3

21. width =

�

2V

15

�1=3

, depth = 3�width,

height =
5

2
�width

23. max 1, min �1
2

27. method will not fail if rf D 0 at extreme point; but

we will have � D 0.

Section 13.4 (page 783)

1. max sqrtn, min �
p

n

3. local and absolute minimum 10

5. P D .0; 0; 0; 1; 2;�2/ has saddle behaviour,

Q D .
p

6=2; 3=2;
p

6=4; 7=4; 1=2;�1=2/, and

R D .�
p

6=2; 3=2;�
p

6=4; 7=4; 1=2;�1=2/ are

local minima. Distance
p

7=4.

Section 13.5 (page 789)

1. at . Nx; Ny/where Nx D
�
Pn

iD1 xi

�

=n; Ny D
�
Pn

iD1 yi

�

=n

9780134154367_Calculus   1148 05/12/16   6:11 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-68 October 14, 2016

A-68 ANSWERS TO ODD-NUMBERED EXERCISES

17. f1 cos s � f2 sin s C f11 t cos s sin s

Cf12 t.cos2
s � sin2

s/ � f22 t sin s cos s

19. f2 C 2y
2f12 C xyf22 � 4xyf31 � 2x

2f32;

all derivatives at .y2; xy;�x2/

27.
Pn

i;j D1 xi xj fij .x1; � � � ; xn/ D k.k�1/ f .x1; � � � ; xn/

31. u.x; y/ D f .x C ct/

Section 12.6 (page 722)

1. 6:9 3. 0:0814

5. 2:967

7. dz D 2xe3y dx C 3x2e3y dy; 8:76

9. dF D
x dx C y dy C z dz
p

x2
C y C 2C z2

; 3:1

11. (a) 3%, (b) 2%, (c) 1% 13. 8.88 ft2

15. 169 m, 24 m, most sensitive to angle at B

17.

�

cos � �r sin �

sin � r cos �

�

19.

�

2x z y

� ln z 2y �x=z

�

; .5:99; 3:98/

27. f �.p/ D p2=4

29. f �.p/ D 1 �
2p

3
� ln

�

3

p

�

Section 12.7 (page 733)

1. 4iC 2jI z D 4x C 2y � 3I 2x C y D 3

3. .3i � 4j/=25I 3x � 4y � 25z C 10 D 0;

3x � 4y C 5 D 0

5. .2i� 4j/=5I 2x � 4y � 5z D 10� 5 ln 5I x � 2y D 5

7. x C y � 3z D �3 9.
p

3y C z D
p

3C �=3

11.
4
p

5
13. 1 � 2

p

3

17. in directions making angles �30ı or �150ı with posi-

tive x-axis; no; �j.

19. 7i � j

21. a)

y

x

cD�9

cD�4

cD�1

cD0

cD1 cD4
cD9

cD1cD4
cD9

cD�1

cD�4

cD�9

b) in direction �i � j

c) 4
p

2k deg/unit time

d) 12k=
p

5 deg/unit time

e) x2y D �4

23. 3x2
� 2y2

D 10 25. �4=3

27. i � 2jC k

33. Dv.Dvf / D v
2
1f11 C v

2
2f22 C v

2
3f33 C 2v1v2f12

C2v1v3f13 C 2v2v3f23.

This is the second derivative of f as measured by an

observer moving with velocity v.

35.
@2T

@t2
C 2Dv.t/

�

@T

@t

�

CDa.t/T CDv.t/.Dv.t/T /

Section 12.8 (page 743)

1. �
x4
C 3xy2

y3
C 4x3y

; y ¤ 0; y
2
¤ �4x

3

3.
3xy4

C xz

xy � 2y2z
; y ¤ 0; x ¤ 2yz

5.
x � 2t2w

2xy2
� w

; w ¤ 2xy
2 7. �

@G=@x

@G=@u
;
@G

@u
¤ 0

9. �
v2H2 C wH3

u2H1 C tH3

; u
2
H1 C tH3 ¤ 0,

all derivatives at .u2
w; v

2
t; wt/

11.
2w � 4y

4x �w
; 4x ¤ w 13.

1

6
;
1

2
;
1

6
; �

1

2
; �

1

6

15. r ; all points except the origin

17. �3=2

19. �
@.F;G;H/

@.y; z;w/

�

@.F;G;H/

@.x; z;w/

21. 15I �
@.F;G;H/

@.x2; x3; x5/

�

@.F;G;H/

@.x1; x3; x5/

23. 2.uC v/; �2; 0

31. S D
3Nk

2

 

ln

"

4�mE

3h2N

�

V

N

�2=3
#

C

5

3

!

S D
3Nk

2

 

ln

"

2�mkT

h2

�

V

N

�2=3
#

C

5

3

!

Section 12.9 (page 749)

1.

1
X

nD0

.�1/
n x

ny2n

2nC1

3.

1
X

nD0

.�1/
n x

2nC1.y C 1/2nC1

2nC 1

5.

1
X

nD0

n
X

kD0

1

kŠ.n � k/Š
x

2k
y

2n�2k

7. 1
2
�

1
4
.x � 2/C

1
2
.y � 1/C

1
8
.x � 2/2

�
1
2
.x � 2/.y � 1/C

1
2
.y � 1/

2
�

1
16
.x � 2/

3

C
3
8
.x � 2/2.y � 1/ �

3
4
.x � 2/.y � 1/2 C

1
2
.y � 1/3

9. x C y2
�

x3

3

11. 1 � .y � 1/C .y � 1/2 � 1
2
.x �

�
2
/2

13. �x � x2
� .5=6/x

3

15. �
x

3
�

2y

3
�

2x2

27
�

8xy

27
�

8y2

27
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17.
Œ.2n/Š�3

.nŠ/2

Review Exercises (page 750)

1.

y

x

C D1

C D2

C D�2
C D�2

x C
4y2

x
D C

3.

y

x

C D�16

C D16

C D8

C D16

C D0

5. cont. except on lines x D ˙y; can be extended to x D

y except at the origin; if f .0; 0/ D 0 then f1.0; 0/ D

f2.0; 0/ D 1

7. (a) ax C by C 4cz D 16,

(b) the circle z D 1, x2
C y2

D 12, (c)˙.2; 2;
p

2/

9. 7,500 m2, 7.213%

11. (a) �1=
p

2, (b) dir. of ˙.i C 3j � 4k, (c) dir. of

�7iC 5jC 2k

15. (a) @u=@x D �5, @u=@y D 1, (b) �1:13

Chapter 13

Applications of Partial Derivatives

Section 13.1 (page 759)

1. .2;�1/, loc. (abs) min.

3. .0; 0/, saddle pt; .1; 1/, loc. min.

5. .�4; 2/, loc. max.

7. .0; n�/; n D 0;˙1;˙2; � � �, all saddle points

9. .0; a/, (a > 0), loc min; .0; a/, (a < 0), loc max;

.0; 0/ saddle point; .˙1; 1=
p

2/, loc. (abs) max;

.˙1;�1=
p

2/, loc. (abs) min.

11. .3�1=3; 0/, saddle pt.

13. max at .x; x/, min at .x;�x/, x ¤ 0

15. .�1;�1/; .1;�1/; .�1; 1/, saddle pts; .�3;�3/, loc.

min.

17. .1; 1; 1
2
/, saddle pt.

19. .0; 0/, saddle pt; . 1p
2
;

1p
2
/; .�

1p
2
;�

1p
2
/, loc. (abs)

max; . 1p
2
;�

1p
2
/; .�

1p
2
;

1p
2
/, loc. (abs) min.

21. max e�3=2=2
p

2, min �e�3=2=2
p

2; f is continuous

everywhere, and f .x; y; z/! 0 as

x2
C y2

C z2
!1

23. L3=108 cu. units 25. 8abc=.3
p

3/ cu. units

27. CPs are .
p

ln 3;�
p

ln 3/ and .�
p

ln 3;
p

ln 3/.

29. f does not have a local minimum at .0; 0/; the second

derivative test is inconclusive (B2
D AC ).

Section 13.2 (page 765)

1. max 5=4, min �2

3. max .
p

2 � 1/=2, min �.
p

2C 1/=2.

5. max 2=3
p

3, min 0 7. max 1, min �1

9. max 1=
p

e, min �1=
p

e

11. max 4/9, min �4=9

13. no limit; yes, max f D e�1 (at all points of the curve

xy D 1)

15. $625,000, $733,333

17. max 37/2 at (7/4,5)

19. 6,667 kg deluxe, 6,667 kg standard

Section 13.3 (page 773)

1. 84; 375 3. 1 unit

5. max 4 units, min 2 units

7. a D ˙
p

3; b D ˙2
p

3; c D ˙
p

3

9. max 8, min �8 11.
p

7 units

13. max 2, min �2 15. max 7, min �1

17.
2
p

6

3
units 19. 1

6
�

1
3
�

2
3

21. width =

�

2V

15

�1=3

, depth = 3�width,

height =
5

2
�width

23. max 1, min �1
2

27. method will not fail if rf D 0 at extreme point; but

we will have � D 0.

Section 13.4 (page 783)

1. max sqrtn, min �
p

n

3. local and absolute minimum 10

5. P D .0; 0; 0; 1; 2;�2/ has saddle behaviour,

Q D .
p

6=2; 3=2;
p

6=4; 7=4; 1=2;�1=2/, and

R D .�
p

6=2; 3=2;�
p

6=4; 7=4; 1=2;�1=2/ are

local minima. Distance
p

7=4.

Section 13.5 (page 789)

1. at . Nx; Ny/where Nx D
�
Pn

iD1 xi

�

=n; Ny D
�
Pn

iD1 yi

�

=n
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3. a D
�
Pn

iD1 yie
xi
�

.

�
Pn

iD1 e
2xi
�

5. If A D
P

xi
2, B D

P

xiyi , C D
P

xi ,D D
P

yi
2,

E D
P

yi , F D
P

xizi , G D
P

yizi ,

and H D
P

zi , then

� D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B C

B D E

C E n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; a D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F B C

G D E

H E n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

b D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A F C

B G E

C H n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; c D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B F

B D G

C E H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7. Use linear regression to fit � D a C bx to the data

.xi ; ln yi /. Then p D ea, q D b. These are not the

same values as would be obtained by minimizing the

expression
P

.yi � pe
qxi /

2.

9. Use linear regression to fit � D a C b� to the data
�

xi ;
yi

xi

�

. Then p D a; q D b. Not the same as

minimizing
P

.yi � pxi � qxi
2/2.

11. Use linear regression to fit � D a C b� to the data
�

e
�2xi ;

yi

exi

�

. Then p D a; q D b. Not the same as

minimizing
P

.yi � pe
xi � qe�xi /2. Other answers

are possible.

13. If A D
P

xi
4, B D

P

xi
3, C D

P

xi
2, D D

P

xi ,

H D
P

xi
2yi , I D

P

xiyi , and J D
P

yi , then

� D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B C

B C D

C D n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; a D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H B C

I C D

J D n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

b D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A H C

B I D

C J n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; c D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B H

B C I

C D J

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

15. a D 5=6; I D 1=252

17. a D 15=16; b D �1=16; I D 1=448

19. a D 20
�5 .�

2
� 16/; b D

12
�4 .20 � �

2/

21. ak D
2
�

R �

0
f .x/ cos kx dx; .k D 0; 1; 2; � � �/

23. � � 4
�

P1
kD0

cos..2kC1/x/

.2kC1/2 I �x

Section 13.6 (page 798)

1.
.�1/nnŠ

.xC1/nC1 3. 2
p

�.
p

y �
p

x/

5. 2x
.1Cx2/2 I

.6x2�2/

.1Cx2/3

7. �
2x
; assume x > 0I �

4x3 I
3�

16x5

9. nŠ 11. f .x/ D
R x

0
e�t2=2 dt

13. y D x2 15. x2
C y2

D 1

17. y D x � 1
4

19. no

21. no; a line of singular points

23. x2
C y2

C z2
D 1

25. y D x � � sin.�x/C ��2

2
sin.2�x/C � � �

27. y D 1
2
�

2
5
�x �

16
125
�2x2

C � � �

29. x � 1 � 1
100e
�

1
30000e2 ; y � 1 �

1
30000e2

Section 13.7 (page 802)

1. .0:797105; 2:219107/

3. .˙0:2500305;˙3:9995115/,

.˙1:9920783;˙0:5019883/

5. .0:3727730; 0:3641994/; .�1:4141606;�0:9877577/

7. x D x0 �
�1

�
; y D y0 �

�2

�
; z D z0 �

�3

�
,

where � D
@.f; g; h/

@.x; y; z/

ˇ

ˇ

ˇ

.x0;y0;z0/

and �i is � with the i th column replaced with

f

g

h

9. 18 iterations near .0; 0/, 4 iterations near .1; 1/; the

two curves are tangent at (0,0), but not at (1,1).

Section 13.8 (page 807)

1. .˙:45304; :81204;˙:36789/, .˙:96897; :17751;˙:17200/

3. local and absolute max 0:81042 at .�0:33853;�0:52062/;

local and absolute min�0:66572 at .0:13319; 0:53682/

5. �4:5937

Review Exercises (page 813)

1. .0; 0/ saddle pt., .1;�1/ loc. min.

3. .2=3; 4=3/ loc. min; .2;�4/ and .�1; 2/ saddle points

5. yes, 2, on the sphere x2
C y2

C z2
D 1

7. max 1=.4e/, min �1=.4e/

9. (a) L2=48 cm2, (b) L2=16 cm2

11. 4� sq. units 13. 16� cu. units

15. 1,688 widgets, $2.00 each

17. y � �2x � �xe�2x
C �2x2e�4x

Challenging Problems (page 813)

3. 1
2

ln.1C x2/tan�1x

Chapter 14

Multiple Integration

Section 14.1 (page 820)

1. 15 3. 21

5. 15 7. 96

9. 80 11. 36:6258

13. 20 15. 0

17. 5� 19. �a3

3

21. 1
6

Section 14.2 (page 827)

1. 5=24 3. 4

5.
ab.a2Cb2/

3
7. �

9. 3
56

11. 33
8

ln 2 � 45
16

13. e�2
2
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15.
1

2

�

1 �
1

e

�

; region is a triangle with vertices .0; 0/,

.1; 0/ and .1; 1/

17.
�

4�
; region is a triangle with vertices .0; 0/, .0; 1/ and

.1; 1/

19. 1=4 cu. units 21. 1=3 cu. units

23. ln 2 cu. units 25. �

2
p

2
cu. units

27. 16a3

3
cu. units

Section 14.3 (page 832)

1. converges to 1 3. converges to �=2

5. diverges to1 7. converges to 4

9. converges to 1�
1

e
11. diverges to1

13. converges to 2 ln 2 15. k > a � 1

17. k < �1 � a

19. k > �
1C a

1C b
(provided b > �1)

21.
1

2
, �

1

2
(different answers are possible because the

double integral does not exist.)

23.
a

2

3
25.

4
p

2a

3�

27. yes, 1=.2�/

Section 14.4 (page 842)

1. �a4
=2 3. 2�a

5. �a4=4 7. a3=3

9. �.ea2

� 1/=4 11.
.
p

3C1/a3

6

13. 1
3

15.
2a

3

17. k < 1I �
1�k

19.
a4

16

21. 2�
3

cu. units 23.
4�.2

p
2�1/a3

3
cu. units

25. 16Œ1 � .1=
p

2/� a3 cu. units

27. 1 �
4
p

2

3�
units 29. 4

3
�abc cu. units

31. 2a sinh a 33. 3 ln 2
2

sq. units

35. 1
4
.e � e�1/

Section 14.5 (page 849)

1. 8abc 3. 16�

5. 2=3 7. 1=15

9. 2=.3�/ 11. 3
16

ln 2

13. �
q

�
6

15. 1=8

17.
R 1

0
dx

R 1

0
dy

R 1�y

0
f .x; y; z/ dz

1 y

1

z

.1;1;0/

x

1

.1;0;1/

R

19.
R 1

0
dx

R x

0
dy

R x�y

0
f .x; y; z/ dz

.1;0;1/

.1;1;0/

z

y

x

1

27. .e � 1/=3

29. f D
1

vol.R/

ZZZ

R

f dV ; 1

Section 14.6 (page 855)

1. 2
3
�a3

�

1 �
1p
2

�

cu. units

3. 24� cu. units 5. .2� �
32

9
/a

3 cu. units.

7.
abc

3
tan�1 a

b
cu. units 9. �ab

2
cu. units

11.
8�a5

15
13.

2�a5

5

�

1 �
c

p

c2
C 1

�

15.
7�

12
17. ha3

12
I

�a2h2

48

Section 14.7 (page 864)

1. 3� sq. units 3. 2�a2 sq. units

5. 24�=
p

3 sq. units 7. .5
p

5 � 1/=12 sq. units

9. 4 sq. units 11. 5:123

13. 4�A
h

a �
p

B tan�1
�

ap
B

�i

units

15. 2�km�.hC
p

a2
C .b � h/2 �

p

a2
C b2/

17.
2�km�

3b2

�

2b
3
C a

3
� .2b

2
� a

2
/

p

a2
C b2

�

19.
�

1
3
;

1
3
;

1
2

�

21.
�

3a
8
;

3a
8
;

3a
8

�

9780134154367_Calculus   1150 05/12/16   6:12 pm



ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-70 October 14, 2016

A-70 ANSWERS TO ODD-NUMBERED EXERCISES

3. a D
�
Pn

iD1 yie
xi
�

.

�
Pn

iD1 e
2xi
�

5. If A D
P

xi
2, B D

P

xiyi , C D
P

xi ,D D
P

yi
2,

E D
P

yi , F D
P

xizi , G D
P

yizi ,

and H D
P

zi , then

� D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B C

B D E

C E n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; a D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F B C

G D E

H E n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

b D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A F C

B G E

C H n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; c D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B F

B D G

C E H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7. Use linear regression to fit � D a C bx to the data

.xi ; ln yi /. Then p D ea, q D b. These are not the

same values as would be obtained by minimizing the

expression
P

.yi � pe
qxi /

2.

9. Use linear regression to fit � D a C b� to the data
�

xi ;
yi

xi

�

. Then p D a; q D b. Not the same as

minimizing
P

.yi � pxi � qxi
2/2.

11. Use linear regression to fit � D a C b� to the data
�

e
�2xi ;

yi

exi

�

. Then p D a; q D b. Not the same as

minimizing
P

.yi � pe
xi � qe�xi /2. Other answers

are possible.

13. If A D
P

xi
4, B D

P

xi
3, C D

P

xi
2, D D

P

xi ,

H D
P

xi
2yi , I D

P

xiyi , and J D
P

yi , then

� D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B C

B C D

C D n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; a D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H B C

I C D

J D n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

b D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A H C

B I D

C J n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; c D
1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A B H

B C I

C D J

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

15. a D 5=6; I D 1=252

17. a D 15=16; b D �1=16; I D 1=448

19. a D 20
�5 .�

2
� 16/; b D

12
�4 .20 � �

2/

21. ak D
2
�

R �

0
f .x/ cos kx dx; .k D 0; 1; 2; � � �/

23. � � 4
�

P1
kD0

cos..2kC1/x/

.2kC1/2 I �x

Section 13.6 (page 798)

1.
.�1/nnŠ

.xC1/nC1 3. 2
p

�.
p

y �
p

x/

5. 2x
.1Cx2/2 I

.6x2�2/

.1Cx2/3

7. �
2x
; assume x > 0I �

4x3 I
3�

16x5

9. nŠ 11. f .x/ D
R x

0
e�t2=2 dt

13. y D x2 15. x2
C y2

D 1

17. y D x � 1
4

19. no

21. no; a line of singular points

23. x2
C y2

C z2
D 1

25. y D x � � sin.�x/C ��2

2
sin.2�x/C � � �

27. y D 1
2
�

2
5
�x �

16
125
�2x2

C � � �

29. x � 1 � 1
100e
�

1
30000e2 ; y � 1 �

1
30000e2

Section 13.7 (page 802)

1. .0:797105; 2:219107/

3. .˙0:2500305;˙3:9995115/,

.˙1:9920783;˙0:5019883/

5. .0:3727730; 0:3641994/; .�1:4141606;�0:9877577/

7. x D x0 �
�1

�
; y D y0 �

�2

�
; z D z0 �

�3

�
,

where � D
@.f; g; h/

@.x; y; z/

ˇ

ˇ

ˇ

.x0;y0;z0/

and �i is � with the i th column replaced with

f

g

h

9. 18 iterations near .0; 0/, 4 iterations near .1; 1/; the

two curves are tangent at (0,0), but not at (1,1).

Section 13.8 (page 807)

1. .˙:45304; :81204;˙:36789/, .˙:96897; :17751;˙:17200/

3. local and absolute max 0:81042 at .�0:33853;�0:52062/;

local and absolute min�0:66572 at .0:13319; 0:53682/

5. �4:5937

Review Exercises (page 813)

1. .0; 0/ saddle pt., .1;�1/ loc. min.

3. .2=3; 4=3/ loc. min; .2;�4/ and .�1; 2/ saddle points

5. yes, 2, on the sphere x2
C y2

C z2
D 1

7. max 1=.4e/, min �1=.4e/

9. (a) L2=48 cm2, (b) L2=16 cm2

11. 4� sq. units 13. 16� cu. units

15. 1,688 widgets, $2.00 each

17. y � �2x � �xe�2x
C �2x2e�4x

Challenging Problems (page 813)

3. 1
2

ln.1C x2/tan�1x

Chapter 14

Multiple Integration

Section 14.1 (page 820)

1. 15 3. 21

5. 15 7. 96

9. 80 11. 36:6258

13. 20 15. 0

17. 5� 19. �a3

3

21. 1
6

Section 14.2 (page 827)

1. 5=24 3. 4

5.
ab.a2Cb2/

3
7. �

9. 3
56

11. 33
8

ln 2 � 45
16

13. e�2
2
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15.
1

2

�

1 �
1

e

�

; region is a triangle with vertices .0; 0/,

.1; 0/ and .1; 1/

17.
�

4�
; region is a triangle with vertices .0; 0/, .0; 1/ and

.1; 1/

19. 1=4 cu. units 21. 1=3 cu. units

23. ln 2 cu. units 25. �

2
p

2
cu. units

27. 16a3

3
cu. units

Section 14.3 (page 832)

1. converges to 1 3. converges to �=2

5. diverges to1 7. converges to 4

9. converges to 1�
1

e
11. diverges to1

13. converges to 2 ln 2 15. k > a � 1

17. k < �1 � a

19. k > �
1C a

1C b
(provided b > �1)

21.
1

2
, �

1

2
(different answers are possible because the

double integral does not exist.)

23.
a

2

3
25.

4
p

2a

3�

27. yes, 1=.2�/

Section 14.4 (page 842)

1. �a4
=2 3. 2�a

5. �a4=4 7. a3=3

9. �.ea2

� 1/=4 11.
.
p

3C1/a3

6

13. 1
3

15.
2a

3

17. k < 1I �
1�k

19.
a4

16

21. 2�
3

cu. units 23.
4�.2

p
2�1/a3

3
cu. units

25. 16Œ1 � .1=
p

2/� a3 cu. units

27. 1 �
4
p

2

3�
units 29. 4

3
�abc cu. units

31. 2a sinh a 33. 3 ln 2
2

sq. units

35. 1
4
.e � e�1/

Section 14.5 (page 849)

1. 8abc 3. 16�

5. 2=3 7. 1=15

9. 2=.3�/ 11. 3
16

ln 2

13. �
q

�
6

15. 1=8

17.
R 1

0
dx

R 1

0
dy

R 1�y

0
f .x; y; z/ dz

1 y

1

z

.1;1;0/

x

1

.1;0;1/

R

19.
R 1

0
dx

R x

0
dy

R x�y

0
f .x; y; z/ dz

.1;0;1/

.1;1;0/

z

y

x

1

27. .e � 1/=3

29. f D
1

vol.R/

ZZZ

R

f dV ; 1

Section 14.6 (page 855)

1. 2
3
�a3

�

1 �
1p
2

�

cu. units

3. 24� cu. units 5. .2� �
32

9
/a

3 cu. units.

7.
abc

3
tan�1 a

b
cu. units 9. �ab

2
cu. units

11.
8�a5

15
13.

2�a5

5

�

1 �
c

p

c2
C 1

�

15.
7�

12
17. ha3

12
I

�a2h2

48

Section 14.7 (page 864)

1. 3� sq. units 3. 2�a2 sq. units

5. 24�=
p

3 sq. units 7. .5
p

5 � 1/=12 sq. units

9. 4 sq. units 11. 5:123

13. 4�A
h

a �
p

B tan�1
�

ap
B

�i

units

15. 2�km�.hC
p

a2
C .b � h/2 �

p

a2
C b2/

17.
2�km�

3b2

�

2b
3
C a

3
� .2b

2
� a

2
/

p

a2
C b2

�

19.
�

1
3
;

1
3
;

1
2

�

21.
�

3a
8
;

3a
8
;

3a
8

�
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23. The model still involves angular acceleration to spin

the ball—it doesn’t just fall. Part of the gravitational

energy goes to producing this spin even in the limiting

case.

25. I D ��a2h

�

h2

3
C

a2

4

�

; ND D

�

h2

3
C

a2

4

�1=2

27. I D
��a2h

3

�

2h2C3a2

20

�

; ND D

�

2h2C3a2

20

�1=2

29. I D
5a5�

12
; ND D

q

5
12
a

31. I D 8
3
�abc.a2

C b2/; ND D

q

a2Cb2

3

33. m D 4�
3
�.a

2
� b

2
/
3=2
; I D

1
5
m.2a

2
C 3b

2
/

35.
5a2g sin˛

7a2
C 3b2

39. The moment of inertia about the line

r.t/ D At iC BtjC Ctk is

1

A2
C B2

C C 2

�

.B
2
C C

2
/Pxx C .A

2
C C

2
/Pyy

C.A
2
C B

2
/Pzz � 2ABPxy � 2ACPxz � 2BCPyz

�

:

Review Exercises (page 865)

1. 3=10 3. ln 2

5. k D 1=
p

3

7.

Z 1

0

dx

Z 1

x

dy

Z 1

y

f .x; y; z/ dz

9. .1 � e�a2
/=.2a/ 11.

8�

15
.18
p

6 � 41/a
5

13. vol = 7/12, Nz = 11/28 15. 17=24

17.
1

6

Z �=2

0

h

.1C 16 cos2
�/

3=2
� 1

i

d� � 7:904 sq. units

Challenging Problems (page 866)

1. �abc

�

2

3
�

8

9
p

3

�

cu. units

3. (b) (i)
P1

nD1.�1/
n�11=n2, (ii)

P1
nD1 1=n

3,

(iii)
P1

nD1.�1/
n�1

1=n
3

5. 4 � tan�1.
p

2/C
32

3
tan�1

�

5
p

2

�

�

4

3
.7� C 2

p

2/

� 18:9348 cu. units

7. a3=210 cu. units

Chapter 15

Vector Fields

Section 15.1 (page 873)

1. field lines: y D xCC

y

x

3. field lines: y2
D x2

CC

y

x

5. field lines: y D �1
2
e�2x
CC

y

x

ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-73 October 14, 2016
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7. field lines: y D Cx

y

x

9. streamlines are lines parallel to i � j � k

11. streamlines: x2
Cy2

D a2; x D a sin.z� b/ (spirals)

13. y D C1x; 2x D z
2
C C2

15. y D Ce1=x 17. r D � C C

19. r D C�2 21. unstable

23. y 0
D 0 or y D

x

x2
� 1

Section 15.2 (page 882)

1. conservative;
x2

2
� y

2
C

3z2

2

3. not conservative

5. conservative; x2y C y2z � z2x

7. �2
r�r0

jr�r0j4

9. .x2
C y2/=z; equipotential surfaces are paraboloids

z D C.x2
Cy2/; field lines are ellipses x2

Cy2
C2z2

D A,

y D Bx in vertical planes through the origin

11. v D
m.xiC yjC .z � `/k/

Œx2
C y2

C .z � `/2�3=2
C

m.xiC yjC .z C `/k/

Œx2
C y2

C .z C `/2�3=2
,

v D 0 only at the origin; v.x; y; 0/ D
2m.xiC yj/

.x2
C y2

C `2/3=2
;

speed maximum on the circle x2
C y2

D `2=2; z D 0

15. � D �
�y

r2 ;F D
�.2xyiC.y2�x2/j/

r4 ; .r2
D x2

C y2/

21. � D 1
2
r2 sin 2�

Section 15.3 (page 887)

1.
.aCb/
p

a2Cb2Cc2

2
m2 3. a2

2

�p

2C ln.1C
p

2/
�

5. 8 gm

7. ı
6

�

.2e4�
C 1/3=2

� 33=2
�

9. 3
p

14

11. m D 2
p

2�2; .0;�1=�; 4�=3/

13. .e6
C 3e4

� 3e2
� 1/=.3e3/

15.
�p

2C ln.
p

2C 1/
�

a2=2

17. �=
p

2

19. 4
p

b2
C c2E

0

@

s

b2
� a2

b2
C c2

1

A;

p

b2
C c2E

0

@

s

b2
� a2

b2
C c2

; T

1

A

Section 15.4 (page 894)

1. �1=4 3. 1=2

5. 0 7. 19=2

9. e1C.�=4/

11. A D 2; B D 3I 4 ln 2 � 1
2

13. �13=2 15. a) �a2, b) ��a2

17. a)
�a2

2
, b) �

�a2

2
19. a) ab=2, b) �ab=2

23. The plane with origin removed is not simply con-

nected.

Section 15.5 (page 905)

1. dS D ds dz D
p

.g.�//2 C .g0.�//2 d� dz

3.
�ab
p

A2CB2CC 2

jC j sq. units .C ¤ 0/

5. (a) dS D jrF=F2j dx dz, (b) dS D jrF=F1j dy dz

7. �
8

9. 16a2 sq. units

13. 2� 15. 1=96

17. �.3e C e3
� 4/=3

19. 2�a2
C

2�ac2

p

a2
� c2

ln

 

aC
p

a2
� c2

c

!

sq. units

21. 2�
p

A2
C B2

C C 2=jDj

23. one-third of the way from the base to the vertex on the

axis

25. 2�k�ma

�

1
p

a2C.b�h/2
�

1
p

a2Cb2

�

27. I D 8
3
��a4

I ND D

q

2
3
a

29. 3
5
g sin˛

Section 15.6 (page 912)

1. 6 3. 3abc

5. �.3a2
� 4ab C b2/=2 7. 4�

9. 2
p

2� 11. 4�=3

13. 4�m 15. (a) 2�a2; (b) 8

Review Exercises (page 913)

1. .3e=2/ � .3=.2e// 3. 8
p

2=15

5. 1

7. (a) 6�mgb, (b) 6�R
p

a2
C b2

9. (b) e2 11. .xi � yj/=
p

x2
C y2
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23. The model still involves angular acceleration to spin

the ball—it doesn’t just fall. Part of the gravitational

energy goes to producing this spin even in the limiting

case.

25. I D ��a2h

�

h2

3
C

a2

4

�

; ND D

�

h2

3
C

a2

4

�1=2

27. I D
��a2h

3

�

2h2C3a2

20

�

; ND D

�

2h2C3a2

20

�1=2

29. I D
5a5�

12
; ND D

q

5
12
a

31. I D 8
3
�abc.a2

C b2/; ND D

q

a2Cb2

3

33. m D 4�
3
�.a

2
� b

2
/
3=2
; I D

1
5
m.2a

2
C 3b

2
/

35.
5a2g sin˛

7a2
C 3b2

39. The moment of inertia about the line

r.t/ D At iC BtjC Ctk is

1

A2
C B2

C C 2

�

.B
2
C C

2
/Pxx C .A

2
C C

2
/Pyy

C.A
2
C B

2
/Pzz � 2ABPxy � 2ACPxz � 2BCPyz

�

:

Review Exercises (page 865)

1. 3=10 3. ln 2

5. k D 1=
p

3

7.

Z 1

0

dx

Z 1

x

dy

Z 1

y

f .x; y; z/ dz

9. .1 � e�a2
/=.2a/ 11.

8�

15
.18
p

6 � 41/a
5

13. vol = 7/12, Nz = 11/28 15. 17=24

17.
1

6

Z �=2

0

h

.1C 16 cos2
�/

3=2
� 1

i

d� � 7:904 sq. units

Challenging Problems (page 866)

1. �abc

�

2

3
�

8

9
p

3

�

cu. units

3. (b) (i)
P1

nD1.�1/
n�11=n2, (ii)

P1
nD1 1=n

3,

(iii)
P1

nD1.�1/
n�1

1=n
3

5. 4 � tan�1.
p

2/C
32

3
tan�1

�

5
p

2

�

�

4

3
.7� C 2

p

2/

� 18:9348 cu. units

7. a3=210 cu. units

Chapter 15

Vector Fields

Section 15.1 (page 873)

1. field lines: y D xCC

y

x

3. field lines: y2
D x2

CC

y

x

5. field lines: y D �1
2
e�2x
CC

y

x

ADAMS & ESSEX:: Calculus: a Complete Course, 9th Edition. Answers – page A-73 October 14, 2016
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7. field lines: y D Cx

y

x

9. streamlines are lines parallel to i � j � k

11. streamlines: x2
Cy2

D a2; x D a sin.z� b/ (spirals)

13. y D C1x; 2x D z
2
C C2

15. y D Ce1=x 17. r D � C C

19. r D C�2 21. unstable

23. y 0
D 0 or y D

x

x2
� 1

Section 15.2 (page 882)

1. conservative;
x2

2
� y

2
C

3z2

2

3. not conservative

5. conservative; x2y C y2z � z2x

7. �2
r�r0

jr�r0j4

9. .x2
C y2/=z; equipotential surfaces are paraboloids

z D C.x2
Cy2/; field lines are ellipses x2

Cy2
C2z2

D A,

y D Bx in vertical planes through the origin

11. v D
m.xiC yjC .z � `/k/

Œx2
C y2

C .z � `/2�3=2
C

m.xiC yjC .z C `/k/

Œx2
C y2

C .z C `/2�3=2
,

v D 0 only at the origin; v.x; y; 0/ D
2m.xiC yj/

.x2
C y2

C `2/3=2
;

speed maximum on the circle x2
C y2

D `2=2; z D 0

15. � D �
�y

r2 ;F D
�.2xyiC.y2�x2/j/

r4 ; .r2
D x2

C y2/

21. � D 1
2
r2 sin 2�

Section 15.3 (page 887)

1.
.aCb/
p

a2Cb2Cc2

2
m2 3. a2

2

�p

2C ln.1C
p

2/
�

5. 8 gm

7. ı
6

�

.2e4�
C 1/3=2

� 33=2
�

9. 3
p

14

11. m D 2
p

2�2; .0;�1=�; 4�=3/

13. .e6
C 3e4

� 3e2
� 1/=.3e3/

15.
�p

2C ln.
p

2C 1/
�

a2=2

17. �=
p

2

19. 4
p

b2
C c2E

0

@

s

b2
� a2

b2
C c2

1

A;

p

b2
C c2E

0

@

s

b2
� a2

b2
C c2

; T

1

A

Section 15.4 (page 894)

1. �1=4 3. 1=2

5. 0 7. 19=2

9. e1C.�=4/

11. A D 2; B D 3I 4 ln 2 � 1
2

13. �13=2 15. a) �a2, b) ��a2

17. a)
�a2

2
, b) �

�a2

2
19. a) ab=2, b) �ab=2

23. The plane with origin removed is not simply con-

nected.

Section 15.5 (page 905)

1. dS D ds dz D
p

.g.�//2 C .g0.�//2 d� dz

3.
�ab
p

A2CB2CC 2

jC j sq. units .C ¤ 0/

5. (a) dS D jrF=F2j dx dz, (b) dS D jrF=F1j dy dz

7. �
8

9. 16a2 sq. units

13. 2� 15. 1=96

17. �.3e C e3
� 4/=3

19. 2�a2
C

2�ac2

p

a2
� c2

ln

 

aC
p

a2
� c2

c

!

sq. units

21. 2�
p

A2
C B2

C C 2=jDj

23. one-third of the way from the base to the vertex on the

axis

25. 2�k�ma

�

1
p

a2C.b�h/2
�

1
p

a2Cb2

�

27. I D 8
3
��a4

I ND D

q

2
3
a

29. 3
5
g sin˛

Section 15.6 (page 912)

1. 6 3. 3abc

5. �.3a2
� 4ab C b2/=2 7. 4�

9. 2
p

2� 11. 4�=3

13. 4�m 15. (a) 2�a2; (b) 8

Review Exercises (page 913)

1. .3e=2/ � .3=.2e// 3. 8
p

2=15

5. 1

7. (a) 6�mgb, (b) 6�R
p

a2
C b2

9. (b) e2 11. .xi � yj/=
p

x2
C y2
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Challenging Problems (page 913)

1. centroid .0; 0; 2=�/; upper half of the surface of the

torus obtained by rotating the circle .x�2/2Cz2
D 1,

y D 0, about the z-axis

Chapter 16

Vector Calculus

Section 16.1 (page 922)

1. div F D 2; curl F D 0

3. div F D 0; curl F D �i � j � k

5. div F D 1; curl F D �j

7. div F D f 0.x/C g0.y/C h0.z/; curl F D 0

9. div F D cos �

�

1C
1

r
cos �

�

;

curl F D � sin �

�

1C
1

r
cos �

�

k

11. div F D 0I curl F D .1=r/k

Section 16.2 (page 929)

7. div F can have any value, curl F must be normal to F

9. f .r/ D Cr�3

15. If F D r� and G D r , then r � .�r / D F�G.

17. G D ye2z iC xye2zk is one possible vector potential.

Section 16.3 (page 933)

1. �a2
� 4a3 3. 9

5.
3�ab

8
sq. units

7. 0

y

x

rD.sin t /iC.sin 2t/j

1

Section 16.4 (page 938)

1. 4�a3 3. .4=3/�a3

5. 360� 7. 81=4

11. 2
3
�a2b C

3
10
�a4b C �a2

13. (a) 12
p

3�a3, (b) �4
p

3�a3, (c) 16
p

3�a3

15. .6C 2 Nx C 4 Ny � 2Nz/V 17. 9�a2

Section 16.5 (page 943)

1. 1=2 3. �3�a2

7. 9�

9. ˛ D �1
2
; ˇ D �3; I D �

3
8
�

11. yes, �r 

Section 16.7 (page 961)

1. rf D �z OrC z O� C r�k

3. div F D 2; curl F D 0

5. div F D
2 sin�

R
; curl F D �

cos �

R

O�

7. div F D 0; curl F D cot� OR � 2 O�

9. scale factors: hu D

ˇ

ˇ

ˇ

ˇ

@r

@u

ˇ

ˇ

ˇ

ˇ

, hv D

ˇ

ˇ

ˇ

ˇ

@r

@v

ˇ

ˇ

ˇ

ˇ

local basis: Ou D
1

hu

@r

@u
, Ov D

1

hv

@r

@v

area element: dA D huhv dudv

11. rf .r; �/ D
@f

@r
OrC

1

r

@r

@�

O�

r � F.r; �/ D
@Fr

@r
C

1

r
Fr C

1

r

@F�

@�

r �F.r; �/ D

�

@F�

@r
C

1

r
F� �

1

r

@Fr

@�

�

k

13. u-surfaces: vertical elliptic cylinders with focal axes at

x D ˙a, y D 0

v-surfaces: vertical hyperbolic cylinders with focal

axes at x D ˙a, y D 0

z-surfaces: horizontal planes

u-curves: horizontal hyperbolas with foci x D ˙a,

y D 0

v-curves: horizontal ellipses with foci x D ˙a,

y D 0

z-curves: vertical straight lines

15. rf D
@2f

@R2
C

2

R

@f

@R
C

1

R2

@2f

@�2

C

cot�

R2

@f

@�
C

1

R2 sin2
�

@2f

@�2

Review Exercises (page 961)

1. 128� 3. �6

5. 3=4 7. � D �3, no

11. the ellipsoid x2
C 4y2

C z2
D 4 with outward normal

Challenging Problems (page 962)

1. div v D 3C

Chapter 17

Differential Forms and Exterior Calculus

Section 17.1 (page 971)

1. � ^  D a2b1 dx1 ^ dx2 ^ dx3 ^ dx4

3. � ^  D 7 dx1 ^ dx2 ^ dx3 ^ dx4 ^ dx5

5. � D .12/.13/.14/ � � � .1k/ is odd (even) if k is even

(odd)
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7. (a) �1, (b) 1, (c) 1, (d) �1

Section 17.2 (page 977)

1. dˆ D 2y dy ^ dz

3. d‰ D 2 dx1 ^ dx2 ^ dx3

5. 0, the zero differential 2-form

9. d.ˆ^‰^‚/ D .dˆ/^‰ ^‚C .�1/kˆ^ .d‰/^

‚C .�1/kC`ˆ ^‰ ^ .d‚/

11. curl grad f D 0

Section 17.3 (page 984)

1. 6 square units 3. 2 cubic units

5.
1

18
.18
p

18 � 6
p

6/

Section 17.4 (page 991)

1. !bottom D �dx ^ dy

5. no; x D .u2;�u2; u1;�u1/ is orientation preserving

(nonunique answer)

Section 17.5 (page 998)

3. 1=2 5. 252�2

Chapter 18
Ordinary Differential Equations

Section 18.1 (page 1003)

1. 1, linear, homogeneous 3. 1, nonlinear

5. 2, linear, homogeneous

7. 3, linear, nonhomogeneous

9. 4, linear, homogeneous

11. (a) and (b) are solutions, (c) is not

13. y2 D sin.kx/, y D �3.cos.kx/C .3=k/ sin.kx//

15. y D
p

2.cos x C 2 sin x/

17. y D x C sinx C .� � 1/ cos x

Section 18.2 (page 1008)

1. 2 tan�1.y=x/ D ln.x2
C y2/C C

3. y D x tan
�

ln jxj C C
�

5. y D xtan�1.ln jCxj/

7. y3
C 3y � 3x

2
D 24 11. 2xy C x2

y
2
D C

13. xexy
D C 15. ln jxj � y

x2 D C

17.
�

0
.y/

�.y/
D

1

M

�

@N

@x
�

@M

@y

�

must depend only on y.

19.
1

M

�

@N

@x
�

@M

@y

�

must depend only on y.

x � y2ey
D Cy2

21.
1

�

d�

dx
D

@N

@x
�

@M

@y

xM � yN
must depend only on xy;

sin x

y
�

y

x
D C

Section 18.3 (page 1016)

1. (a) 1.97664, (b) 2.187485, (c) 2.306595

3. (a) 2.436502, (b) 2.436559, (c) 2.436563

5. (a) 1.097897, (b) 1.098401

7. (a) 0.89441, (b) 0.87996, (c) 0.872831

9. (a) 0.865766, (b) 0.865769, (c) 0.865769

11. (a) 0.898914, (b) 0.903122, (c) 0.904174

13. y D 2=.3 � 2x/

17. (b) u D 1=.1�x/, v D tan.xC �
4
/. y.x/ is defined at

least on Œ0; �=4/ and satisfies 1=.1�x/ � y.x/ � tan.xC�
4
/

there.

Section 18.4 (page 1020)

1. y D C1e
x
C C2e

2x 3. y D C1x C
C2

x2

5. y D C1x C C2xe
x

Section 18.5 (page 1025)

1. y D C1 C C2e
t
C C3e

3t

3. y D C1 cos t C C2 sin t C C3t cos t C C4t sin t

5. y D C1e
2t
C C2e

�t cos t C C3e
�t sin t

7. y D Ax C Bx ln x 9. y D Ax C
B

x

11. y D AC B ln x

13. y D C1x C C2x ln x C C3x.lnx/
2

15. y D C1x cos.lnx/C C2x sin.ln x/

Section 18.6 (page 1031)

1. y D �
1

2
C C1e

x
C C2e

�2x

3. y D �
1

2
e

�x
C C1e

x
C C2e

�2x

5. y D � 2
125
�

4x
25
C

x2

5
CC1e

�x cos.2x/CC2e
�x sin.2x/

7. y D �
1

5
xe

�2x
C C1e

�2x
C C2e

3x

9. y D
1

8
e

x
.sin x � cos x/C e�x

.C1 cos x C C2 sin x/

11. y D 2x C x2
� xe�x

C C1 C C2e
�x

15. yp D
x2

3
; y D

x2

3
C C1x C

C2

x

17. y D
1

2
x ln x C C1x C

C2

x

19. y D C2e
x
C C2xe

x
C xe

x ln x

21. y D �x2
C C1x C C2xe

x

Section 18.7 (page 1040)

17. y D 1C 2e�2t

19. y.t/ D e�2.t�a/
� e�3.t�a/

21. y D

�

1C 3t C
t2

2

�

e�t
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A-74 ANSWERS TO ODD-NUMBERED EXERCISES

Challenging Problems (page 913)

1. centroid .0; 0; 2=�/; upper half of the surface of the

torus obtained by rotating the circle .x�2/2Cz2
D 1,

y D 0, about the z-axis

Chapter 16

Vector Calculus

Section 16.1 (page 922)

1. div F D 2; curl F D 0

3. div F D 0; curl F D �i � j � k

5. div F D 1; curl F D �j

7. div F D f 0.x/C g0.y/C h0.z/; curl F D 0

9. div F D cos �

�

1C
1

r
cos �

�

;

curl F D � sin �

�

1C
1

r
cos �

�

k

11. div F D 0I curl F D .1=r/k

Section 16.2 (page 929)

7. div F can have any value, curl F must be normal to F

9. f .r/ D Cr�3

15. If F D r� and G D r , then r � .�r / D F�G.

17. G D ye2z iC xye2zk is one possible vector potential.

Section 16.3 (page 933)

1. �a2
� 4a3 3. 9

5.
3�ab

8
sq. units

7. 0

y

x

rD.sin t /iC.sin 2t/j

1

Section 16.4 (page 938)

1. 4�a3 3. .4=3/�a3

5. 360� 7. 81=4

11. 2
3
�a2b C

3
10
�a4b C �a2

13. (a) 12
p

3�a3, (b) �4
p

3�a3, (c) 16
p

3�a3

15. .6C 2 Nx C 4 Ny � 2Nz/V 17. 9�a2

Section 16.5 (page 943)

1. 1=2 3. �3�a2

7. 9�

9. ˛ D �1
2
; ˇ D �3; I D �

3
8
�

11. yes, �r 

Section 16.7 (page 961)

1. rf D �z OrC z O� C r�k

3. div F D 2; curl F D 0

5. div F D
2 sin�

R
; curl F D �

cos �

R

O�

7. div F D 0; curl F D cot� OR � 2 O�

9. scale factors: hu D

ˇ

ˇ

ˇ

ˇ

@r

@u

ˇ

ˇ

ˇ

ˇ

, hv D

ˇ

ˇ

ˇ

ˇ

@r

@v

ˇ

ˇ

ˇ

ˇ

local basis: Ou D
1

hu

@r

@u
, Ov D

1

hv

@r

@v

area element: dA D huhv dudv

11. rf .r; �/ D
@f

@r
OrC

1

r

@r

@�

O�

r � F.r; �/ D
@Fr

@r
C

1

r
Fr C

1

r

@F�

@�

r �F.r; �/ D

�

@F�

@r
C

1

r
F� �

1

r

@Fr

@�

�

k

13. u-surfaces: vertical elliptic cylinders with focal axes at

x D ˙a, y D 0

v-surfaces: vertical hyperbolic cylinders with focal

axes at x D ˙a, y D 0

z-surfaces: horizontal planes

u-curves: horizontal hyperbolas with foci x D ˙a,

y D 0

v-curves: horizontal ellipses with foci x D ˙a,

y D 0

z-curves: vertical straight lines

15. rf D
@2f

@R2
C

2

R

@f

@R
C

1

R2

@2f

@�2

C

cot�

R2

@f

@�
C

1

R2 sin2
�

@2f

@�2

Review Exercises (page 961)

1. 128� 3. �6

5. 3=4 7. � D �3, no

11. the ellipsoid x2
C 4y2

C z2
D 4 with outward normal

Challenging Problems (page 962)

1. div v D 3C

Chapter 17

Differential Forms and Exterior Calculus

Section 17.1 (page 971)

1. � ^  D a2b1 dx1 ^ dx2 ^ dx3 ^ dx4

3. � ^  D 7 dx1 ^ dx2 ^ dx3 ^ dx4 ^ dx5

5. � D .12/.13/.14/ � � � .1k/ is odd (even) if k is even

(odd)
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7. (a) �1, (b) 1, (c) 1, (d) �1

Section 17.2 (page 977)

1. dˆ D 2y dy ^ dz

3. d‰ D 2 dx1 ^ dx2 ^ dx3

5. 0, the zero differential 2-form

9. d.ˆ^‰^‚/ D .dˆ/^‰ ^‚C .�1/kˆ^ .d‰/^

‚C .�1/kC`ˆ ^‰ ^ .d‚/

11. curl grad f D 0

Section 17.3 (page 984)

1. 6 square units 3. 2 cubic units

5.
1

18
.18
p

18 � 6
p

6/

Section 17.4 (page 991)

1. !bottom D �dx ^ dy

5. no; x D .u2;�u2; u1;�u1/ is orientation preserving

(nonunique answer)

Section 17.5 (page 998)

3. 1=2 5. 252�2

Chapter 18
Ordinary Differential Equations

Section 18.1 (page 1003)

1. 1, linear, homogeneous 3. 1, nonlinear

5. 2, linear, homogeneous

7. 3, linear, nonhomogeneous

9. 4, linear, homogeneous

11. (a) and (b) are solutions, (c) is not

13. y2 D sin.kx/, y D �3.cos.kx/C .3=k/ sin.kx//

15. y D
p

2.cos x C 2 sin x/

17. y D x C sinx C .� � 1/ cos x

Section 18.2 (page 1008)

1. 2 tan�1.y=x/ D ln.x2
C y2/C C

3. y D x tan
�

ln jxj C C
�

5. y D xtan�1.ln jCxj/

7. y3
C 3y � 3x

2
D 24 11. 2xy C x2

y
2
D C

13. xexy
D C 15. ln jxj � y

x2 D C

17.
�

0
.y/

�.y/
D

1

M

�

@N

@x
�

@M

@y

�

must depend only on y.

19.
1

M

�

@N

@x
�

@M

@y

�

must depend only on y.

x � y2ey
D Cy2

21.
1

�

d�

dx
D

@N

@x
�

@M

@y

xM � yN
must depend only on xy;

sin x

y
�

y

x
D C

Section 18.3 (page 1016)

1. (a) 1.97664, (b) 2.187485, (c) 2.306595

3. (a) 2.436502, (b) 2.436559, (c) 2.436563

5. (a) 1.097897, (b) 1.098401

7. (a) 0.89441, (b) 0.87996, (c) 0.872831

9. (a) 0.865766, (b) 0.865769, (c) 0.865769

11. (a) 0.898914, (b) 0.903122, (c) 0.904174

13. y D 2=.3 � 2x/

17. (b) u D 1=.1�x/, v D tan.xC �
4
/. y.x/ is defined at

least on Œ0; �=4/ and satisfies 1=.1�x/ � y.x/ � tan.xC�
4
/

there.

Section 18.4 (page 1020)

1. y D C1e
x
C C2e

2x 3. y D C1x C
C2

x2

5. y D C1x C C2xe
x

Section 18.5 (page 1025)

1. y D C1 C C2e
t
C C3e

3t

3. y D C1 cos t C C2 sin t C C3t cos t C C4t sin t

5. y D C1e
2t
C C2e

�t cos t C C3e
�t sin t

7. y D Ax C Bx ln x 9. y D Ax C
B

x

11. y D AC B ln x

13. y D C1x C C2x ln x C C3x.lnx/
2

15. y D C1x cos.lnx/C C2x sin.ln x/

Section 18.6 (page 1031)

1. y D �
1

2
C C1e

x
C C2e

�2x

3. y D �
1

2
e

�x
C C1e

x
C C2e

�2x

5. y D � 2
125
�

4x
25
C

x2

5
CC1e

�x cos.2x/CC2e
�x sin.2x/

7. y D �
1

5
xe

�2x
C C1e

�2x
C C2e

3x

9. y D
1

8
e

x
.sin x � cos x/C e�x

.C1 cos x C C2 sin x/

11. y D 2x C x2
� xe�x

C C1 C C2e
�x

15. yp D
x2

3
; y D

x2

3
C C1x C

C2

x

17. y D
1

2
x ln x C C1x C

C2

x

19. y D C2e
x
C C2xe

x
C xe

x ln x

21. y D �x2
C C1x C C2xe

x

Section 18.7 (page 1040)

17. y D 1C 2e�2t

19. y.t/ D e�2.t�a/
� e�3.t�a/

21. y D

�

1C 3t C
t2

2

�

e�t
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Section 18.8 (page 1045)

1. y D a0

 

1C

1
X

kD1

.x � 1/4k

4.kŠ/.3/.7/ � � � .4k � 1/

!

Ca1

 

x � 1C

1
X

kD1

.x � 1/4kC1

4.kŠ/.5/.9/ � � � .4k C 1/

!

3. y D
P1

nD0.�1/
n

�

2nnŠ

.2n/Š
x

2n
C

1

2n�1nŠ
x

2nC1

�

5. y D 1 � 1
6
x3
C

1
120
x5
C � � �

7. y1 D 1C

1
X

kD1

.�1/kxk

.kŠ/.2/.5/.8/ � � � .3k � 1/
,

y2 D x
1=3

 

1C

1
X

kD0

.�1/kxk

.kŠ/.4/.7/ � � � .3k C 1/

!

Section 18.9 (page 1058)

1. saddle 3. stable node

15. (a)A andB saddles, C stable focus, (c)�5=3, (d) u!

1, v ! 2

Review Exercises (page 1059)

1. y D Cex2
3. y D Ce2x

�

x

2
�

1

4

5. x2
C 2xy � y2

D C 7. y D C1 � ln jt C C2j

9. y D ex=2.C2 cos x C C2 sinx/

11. y D C1t cos.2 ln jt j/C C2t sin.2 ln jt j/

13. y D 1
2
ex
C xe3x

C C1e
2x
C C2e

3x

15. y D x2
� 4x C 6C C1e

�x
C C2xe

�x

17. y D .x3
� 7/1=3 19. y D ex2=2y2

21. y D 4e�t
� 3e�2t 23. y D .5t � 4/e�5t

25. y D e2t
� 2 sin.2t/

27. A D 1; B D �1; x.ex siny C cos y/ D C

29. y D C1x C C2x cos x

Appendix I Complex Numbers
(page A-10)

1. Re.z/ D �5; Im.z/ D 2

3. Re.z/ D 0; Im.z/ D ��

5. jzj D
p

2; � D 3�=4 7. jzj D 3; � D �=2

9. jzj D
p

5; � D tan�12

11. jzj D 5; � D �� C tan�1.4=3/

13. jzj D 2; � D ��=6 15. jzj D 3; � D 4�=5

17. 11�=12 19. 4C 3i

21. �
p

3
2
C

�
2
i 23. 1

4
�

p
3

4
i

25. �3C 5i 27. 2C i

29. closed disk, radius 2, centre 0

31. closed disk, radius 5, centre 3 � 4i

33. closed plane sector lying under y D 0 and to the left

of y D �x

35. 4 37. 5 � i

39. 2C 11i 41. �1
5
C

7
5
i

43. 1

47. zw D �3 � 3i;
z

w
D

1C i

3

49. (a) circle jzj D
p

2, (b) no solutions

51. �1; 1
2
˙

p
3

2
i

53. 21=6.cos �C i sin �/where � D �=4, 11�=12, 19�=12

55. ˙21=4
�p

3
2
C

1
2
i

�

; ˙21=4
�

1
2
�

p
3

2
i

�

Appendix II Complex Functions
(page A-19)

1. 0 � Re.w/ � 1; �2 � Im.w/ � 0

3. 1 � jwj � 4; � � argw �
3�

2

5.
1

2
� jwj <1; �

�

2
� argw � 0

7. arg .w/ D 5�=6 9. parabola v2
D 4uC 4

11. u � 0; v � u 13. f 0.z/ D 2z

15. f 0
.z/ D �1=z

2

19.
d

dz
sinh z D cosh z;

d

dz
cosh z D sinh z

21. z D
�

2
C k�; .k 2 Z/

23. zeros of cosh z: z D i
�

�

2
C k�

�

.k 2 Z/

zeros of sinh z: z D k�i .k 2 Z/

25. Re.sinh z/ D sinh x cos y; Im.sinh z/ D cosh x sin y

27. z D 0; �2i 29. z D �1˙ 2i

31. z D 0; i; 2i

33. z D
1˙ i
p

2
; z D

�1˙ i
p

2

z
4
C 1 D .z

2
C

p

2z C 1/.z
2
�

p

2z C 1/

35. z D �1; �1; �1; i; �i
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Index

1-Form, 965

2-Form, 966

Abel’s theorem, 538

Absolute convergence, 525
Absolute maximum, 83, 236, 753

Absolute minimum, 83, 236, 753

Absolute value, 8

Acceleration, 128, 157, 631

centripetal, 631, 640, 660
coriolis, 640

normal, 660

of a rolling ball, 861

polar components of, 669

tangential, 660

Addition formulas, 51
Addition

of functions, 33

of vectors, 575

Algebraic function, 166

Alternating sequence, 501

Alternating series bounds, 527
Alternating series test, 526

Ampère’s Circuital Law, 948

Amplitude, 210

Analytic function, 543, 700, A-13

Angle convention, 47

Angle
between vectors, 582

Angular momentum, 638

Angular speed, 637, 861

Angular velocity, 637

Anticyclone, 641

Antiderivative, 150
Antisymmetric form, 966

Aphelion, 671

Approximation

linear, 270

of definite integrals using series, 553

of functions using series, 551
of improper integrals, 383

of small changes, 131

tangent plane, 713

with Taylor polynomials, 748

Arc length element, 407, 647

for a parametric curve, 483
for a polar curve, 497

on a coordinate curve, 957

Arc length, 407

of a parametric curve, 483

of a polar curve, 497

on a circle, 47
Arc-length parametrization, 648

Arc
smooth, 883

Arccos, 197
Arccot, 199
Arccsc, 199
Archimedes’ principle, 950
Arcsec, 198
Arcsin, 193
Arctan, 195
Area element

for transformed coordinates, 839
in polar coordinates, 834
of a surface of revolution, 411
on a coordinate surface, 957
on a surface, 899

Area
between two curves, 327
bounded by a parametric curve, 485
bounded by a simple, closed curve, 931
element, 328
in polar coordinates, 496
of a circle, 62
of a circular sector, 47
of a conical surface, 413
of a plane region, 296, 327
of a polar region, 835
of a sphere, 411
of a surface of revolution, 411
of a torus, 413

Argand diagram, A-3
Argument

of a complex number, A-3
Associative, 609
Astroid, 479
Asymptote, 73, 247

horizontal, 73, 247
oblique, 249
of a hyperbola, 22, 468
vertical, 247

Asymptotic series, 568
Atan and atan2, 197
Attraction of a disk, 857
Autonomous system, 1047
Auxiliary equation, 206, 1021, 1023
Average rate of change, 133
Average value

of a function, 311
of a function, 831

Average velocity, 59, 156, 630
Average, 783
Axes

coordinate, 11
of an ellipse, 21

Axiom of completeness, A-23
Axis

major, 21
minor, 21
of a dipole, 880
of a parabola, 19, 463

Ball
n-dimensional volume, 460
open, 574
volume of, 396

Banking a curve, 660
Base, 172
Basic area problem, 297
Basis, 576, 577

local, 953
orthonormal, 584

Bessel equation
of order zero, 362

Bessel function, 361
Bessel’s equation, 1041
Beta function, 843
Big-O notation, 279
Biharmonic function, 702
Bilinear form, 966
Binomial coefficients, 559
Binomial series, 556
Binomial theorem, 555, 559
Binormal, 654
Biot–Savart Law, 947
Bisection Method, 86
Bound

for a sequence, 501
Boundary point, 574, 753
Boundary, 5

of a parametric surface, 896
of a subset of a manifold, 986

Bounded function, A-27
Bounded set, 753
Bounded region, 363
Boundedness theorem, A-24
Brachistochrone, 477
Branches of a hyperbola, 22
Buffon’s needle problem, 461

Cancellation identity, 168
Cardioid, 490
Cartesian coordinate system, 570
Cartesian coordinates, 11
Cartesian plane, 11
CAST rule, 53
Catenary, 579
Cauchy product, 535
Cauchy–Riemann equations, 702, A-13
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Section 18.8 (page 1045)

1. y D a0

 

1C

1
X

kD1

.x � 1/4k

4.kŠ/.3/.7/ � � � .4k � 1/

!

Ca1

 

x � 1C

1
X

kD1

.x � 1/4kC1

4.kŠ/.5/.9/ � � � .4k C 1/

!

3. y D
P1

nD0.�1/
n

�

2nnŠ

.2n/Š
x

2n
C

1

2n�1nŠ
x

2nC1

�

5. y D 1 � 1
6
x3
C

1
120
x5
C � � �

7. y1 D 1C

1
X

kD1

.�1/kxk

.kŠ/.2/.5/.8/ � � � .3k � 1/
,

y2 D x
1=3

 

1C

1
X

kD0

.�1/kxk

.kŠ/.4/.7/ � � � .3k C 1/

!

Section 18.9 (page 1058)

1. saddle 3. stable node

15. (a)A andB saddles, C stable focus, (c)�5=3, (d) u!

1, v ! 2

Review Exercises (page 1059)

1. y D Cex2
3. y D Ce2x

�

x

2
�

1

4

5. x2
C 2xy � y2

D C 7. y D C1 � ln jt C C2j

9. y D ex=2.C2 cos x C C2 sinx/

11. y D C1t cos.2 ln jt j/C C2t sin.2 ln jt j/

13. y D 1
2
ex
C xe3x

C C1e
2x
C C2e

3x

15. y D x2
� 4x C 6C C1e

�x
C C2xe

�x

17. y D .x3
� 7/1=3 19. y D ex2=2y2

21. y D 4e�t
� 3e�2t 23. y D .5t � 4/e�5t

25. y D e2t
� 2 sin.2t/

27. A D 1; B D �1; x.ex siny C cos y/ D C

29. y D C1x C C2x cos x

Appendix I Complex Numbers
(page A-10)

1. Re.z/ D �5; Im.z/ D 2

3. Re.z/ D 0; Im.z/ D ��

5. jzj D
p

2; � D 3�=4 7. jzj D 3; � D �=2

9. jzj D
p

5; � D tan�12

11. jzj D 5; � D �� C tan�1.4=3/

13. jzj D 2; � D ��=6 15. jzj D 3; � D 4�=5

17. 11�=12 19. 4C 3i

21. �
p

3
2
C

�
2
i 23. 1

4
�

p
3

4
i

25. �3C 5i 27. 2C i

29. closed disk, radius 2, centre 0

31. closed disk, radius 5, centre 3 � 4i

33. closed plane sector lying under y D 0 and to the left

of y D �x

35. 4 37. 5 � i

39. 2C 11i 41. �1
5
C

7
5
i

43. 1

47. zw D �3 � 3i;
z

w
D

1C i

3

49. (a) circle jzj D
p

2, (b) no solutions

51. �1; 1
2
˙

p
3

2
i

53. 21=6.cos �C i sin �/where � D �=4, 11�=12, 19�=12

55. ˙21=4
�p

3
2
C

1
2
i

�

; ˙21=4
�

1
2
�

p
3

2
i

�

Appendix II Complex Functions
(page A-19)

1. 0 � Re.w/ � 1; �2 � Im.w/ � 0

3. 1 � jwj � 4; � � argw �
3�

2

5.
1

2
� jwj <1; �

�

2
� argw � 0

7. arg .w/ D 5�=6 9. parabola v2
D 4uC 4

11. u � 0; v � u 13. f 0.z/ D 2z

15. f 0
.z/ D �1=z

2

19.
d

dz
sinh z D cosh z;

d

dz
cosh z D sinh z

21. z D
�

2
C k�; .k 2 Z/

23. zeros of cosh z: z D i
�

�

2
C k�

�

.k 2 Z/

zeros of sinh z: z D k�i .k 2 Z/

25. Re.sinh z/ D sinh x cos y; Im.sinh z/ D cosh x sin y

27. z D 0; �2i 29. z D �1˙ 2i

31. z D 0; i; 2i

33. z D
1˙ i
p

2
; z D

�1˙ i
p

2

z
4
C 1 D .z

2
C

p

2z C 1/.z
2
�

p

2z C 1/

35. z D �1; �1; �1; i; �i
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1-Form, 965

2-Form, 966

Abel’s theorem, 538

Absolute convergence, 525
Absolute maximum, 83, 236, 753

Absolute minimum, 83, 236, 753

Absolute value, 8

Acceleration, 128, 157, 631

centripetal, 631, 640, 660
coriolis, 640

normal, 660

of a rolling ball, 861

polar components of, 669

tangential, 660

Addition formulas, 51
Addition

of functions, 33

of vectors, 575

Algebraic function, 166

Alternating sequence, 501

Alternating series bounds, 527
Alternating series test, 526

Ampère’s Circuital Law, 948

Amplitude, 210

Analytic function, 543, 700, A-13

Angle convention, 47

Angle
between vectors, 582

Angular momentum, 638

Angular speed, 637, 861

Angular velocity, 637

Anticyclone, 641

Antiderivative, 150
Antisymmetric form, 966

Aphelion, 671

Approximation

linear, 270

of definite integrals using series, 553

of functions using series, 551
of improper integrals, 383

of small changes, 131

tangent plane, 713

with Taylor polynomials, 748

Arc length element, 407, 647

for a parametric curve, 483
for a polar curve, 497

on a coordinate curve, 957

Arc length, 407

of a parametric curve, 483

of a polar curve, 497

on a circle, 47
Arc-length parametrization, 648

Arc
smooth, 883

Arccos, 197
Arccot, 199
Arccsc, 199
Archimedes’ principle, 950
Arcsec, 198
Arcsin, 193
Arctan, 195
Area element

for transformed coordinates, 839
in polar coordinates, 834
of a surface of revolution, 411
on a coordinate surface, 957
on a surface, 899

Area
between two curves, 327
bounded by a parametric curve, 485
bounded by a simple, closed curve, 931
element, 328
in polar coordinates, 496
of a circle, 62
of a circular sector, 47
of a conical surface, 413
of a plane region, 296, 327
of a polar region, 835
of a sphere, 411
of a surface of revolution, 411
of a torus, 413

Argand diagram, A-3
Argument

of a complex number, A-3
Associative, 609
Astroid, 479
Asymptote, 73, 247

horizontal, 73, 247
oblique, 249
of a hyperbola, 22, 468
vertical, 247

Asymptotic series, 568
Atan and atan2, 197
Attraction of a disk, 857
Autonomous system, 1047
Auxiliary equation, 206, 1021, 1023
Average rate of change, 133
Average value

of a function, 311
of a function, 831

Average velocity, 59, 156, 630
Average, 783
Axes

coordinate, 11
of an ellipse, 21

Axiom of completeness, A-23
Axis

major, 21
minor, 21
of a dipole, 880
of a parabola, 19, 463

Ball
n-dimensional volume, 460
open, 574
volume of, 396

Banking a curve, 660
Base, 172
Basic area problem, 297
Basis, 576, 577

local, 953
orthonormal, 584

Bessel equation
of order zero, 362

Bessel function, 361
Bessel’s equation, 1041
Beta function, 843
Big-O notation, 279
Biharmonic function, 702
Bilinear form, 966
Binomial coefficients, 559
Binomial series, 556
Binomial theorem, 555, 559
Binormal, 654
Biot–Savart Law, 947
Bisection Method, 86
Bound

for a sequence, 501
Boundary point, 574, 753
Boundary, 5

of a parametric surface, 896
of a subset of a manifold, 986

Bounded function, A-27
Bounded set, 753
Bounded region, 363
Boundedness theorem, A-24
Brachistochrone, 477
Branches of a hyperbola, 22
Buffon’s needle problem, 461

Cancellation identity, 168
Cardioid, 490
Cartesian coordinate system, 570
Cartesian coordinates, 11
Cartesian plane, 11
CAST rule, 53
Catenary, 579
Cauchy product, 535
Cauchy–Riemann equations, 702, A-13
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Cauchy
probability density, 447

Cavalieri’s principle, 405
Celsius, 17
Central force, 669
Centre of gravity, 859
Centre of mass, 858
Centre

for a 2-D linear system, 1052
of a circle, 17
of a hyperbola, 468
of an ellipse, 466
of convergence, 532
of curvature, 654
of mass, 416

Centrifugal force, 640
Centripetal acceleration, 631, 640, 660
Centroid, 420, 859

of a triangle, 421
Chain Rule, 116, 703

as matrix multiplication, 718
proof of, 120
several variable proof, 715

Change of variables
in a double integral, 839
in a triple integral, 848

Chaos, 228
Circle, 17

osculating, 654
Circular frequency, 210
Circular helix, 647, 655
Circulation, 888

along a moving curve, 962
Closed curve, 644
Closed disk, 18
Closed interval, 5
Closed surface, 897
Closed

differential form, 975
Clothoid, 675
Coefficient

of a polynomial, 39
Colatitude, 606
Column vector, 609
Common ratio, 509
Commutative, 609
Comparison test

for series, 518
limit form, 519

Comparison theorem
for improper integrals, 368

Complement
of a set, 574

Complementary angles, 49
Complementary function, 1025
Complete elliptic integral, 410
Completeness of the real numbers, 4
Completeness, A-23

of the real numbers, 505
Completing the square, 345
Complex arithmetic, A-4
Complex conjugate, A-4
Complex exponential function, A-15
Complex function, A-11

derivative of, A-13
differentiable, A-13

Complex limit, A-12
Complex number, A-1

Complex plane, A-3

Complex polynomial, A-16

Component

of a cross product, 585

of a vector, 577

radial, transverse, 668

Composite function, 34

Composite surface, 897

Composition

of functions, 34

Compound interest, 188

Concavity, 242

of a parametric curve, 481

Conditional convergence, 526

Cone, 402, 601

Conic, 462

classifying a, 470

in polar coordinates, 492

Conjugate axis, 468

Conjugate hyperbola, 468

Conjugate

of a complex number, A-4

Connected curve, 85

Connected domain, 890

Conservation of energy, 430, 673

Conservation of mass, 944

Conservative field, 874, 925, 1006

necessary conditions, 876

Conservative

force, 430

Constant coefficient DE, 1020

Constant of integration, 151

Constraint manifold, 774

Constraint, 759

equation, 766

inequality, 766

linear, 763

Continuity

at a point, 687

at a point, A-22

at an endpoint, 80

at an interior point, 79

of a differentiable function, 109

on an interval, 81, A-22

right and left, 80

uniform, A-30

Continuous extension, 82

Continuous function, 81, A-22

Continuous

random variable, 440

Contours, 680

Convergence

absolute, 525

conditional, 526

improving, 524, 567

of a series, 509

of Fourier series, 562

of sequences, 502

Convergent

improper integral, 364

Convex set, 763

Convolution, 1036

Coordinate axes, 11

Coordinate curve, 953

Coordinate plane, 570

Coordinate surface, 953

Coordinate system
Cartesian, 570
rotating, 638

Coordinates
of a point in 3-space, 570

Coriolis acceleration, 640
Coriolis effect, 642
Coriolis force, 640
Cosecant, 53
Cosh function, 200
Cosine Law, 56
Cosine, 47
Cost function, 768, 784
Cost function, 784
Cotangent, 53
Coth, 202
Coulomb’s law, 946
Cramer’s Rule, 614
Critical point, 133, 142, 753
Cross product, 585

as a determinant, 589
properties of, 586

Csch, 202
Cumulative distribution function, 445
Curl, 914, 923

as circulation density, 921
in curvilinear coordinates, 960
in cylindrical coordinates, 960
in spherical coordinates, 960

Curvature, 651, 653
Curve sketching, 251
Curve, 629, 643

closed, 644
coordinate, 953
equipotential, 876
integral, 869
parametric, 473
piecewise smooth, 647, 884
simple closed, 644
smooth, 407, 644

Curvilinear coordinates, 952
orthogonal, 953

Cusp, 98
Cycloid, 476, 675
Cyclone, 641
Cylinder, 394, 600
Cylindrical coordinates, 604, 952
Cylindrical shells, 398

Damped harmonic motion, 211
de Moivre’s Theorem, A-7
Decimal point, 258
Decreasing function, 140
Decreasing sequence, 501
Definite integral, 304
Definite quadratic form, 616
Degree

of a polynomial, 39, 340
Del, 914
Delta function, 919
Density, 413

probability, 440, 441
Dependent variable, 24
Derivative

directional, 725
exterior, 972
left and right, 101
of a complex-valued function, A-13
of a composition of functions, 116
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Derivative (continued)
of a function, 100
of a product, 111
of a quotient, 114
of a reciprocal, 112
of a transformation, 717
of an inverse function, 170
of cosine, 124
of sine, 123
of the absolute value function, 104
of trigonometric functions, 125
second and higher order, 127

Determinant, 587, 610
properties of, 588

Difference quotient, 97
Differentiable function, 100, 101

of a complex variable, A-13
of several variables, 713
transformation, 717
vector-valued function, 630

Differential element, 395
Differential equation, 152

as a first-order system, 1046
constant coefficient linear, 205
equidimensional, 1023
Euler, 1023
exact, 1006
first-order linear, 454, 1004
general solution, 153
homogeneous linear, 1001
homogeneous, 1005
linear, 1001
nonhomogeneous linear, 1001
nonhomogeneous second order linear, 1025
of exponential growth or decay, 186
of logistic growth, 190
of simple harmonic motion, 129, 209
order of, 153
ordinary (ODE), 1001
partial (PDE), 692, 699, 1001
particular solution, 153
reducible, 1017
second order, 1017
second-order linear, 1018
separable, 450, 1004
solution using series, 1041
with constant coefficients, 1020

Differential Form, 971
closed, 975
exact, 977

Differential operator, 1003
Differential, 304, 964

form, 964
in several variables, 716
of a variable, 106
using for approximation, 132

Differentials
determining independent variables, 720

Differentiation rules, 109
for vector functions, 633

Differentiation, 101
following motion, 729
graphical, 101
implicit, 145
logarithmic, 182
of power series, 536
through an integral, 791

Diffusion equation, 702

Dipole, 880
moment of, 880

Dirac delta function, 919, 1037
Dirac distribution, 919, 1037
Direction cosine, 584
Direction vector, 596
Directional derivative, 725
Directrix

of a parabola, 19
of a parabola, 463
of an ellipse, 467

Dirichlet problem, 939
Discontinuity

removable, 83
Discontinuous function, 79
Discount rate, 433
Discrete map, 223
Discriminant, 206

of a quadratic, 43
Disk

open or closed, 18
open, 574

Distance
between points, 12
between two lines, 599
from a point to a curve, 165
from a point to a line, 598
from a point to a plane, 597
in n-space, 572
in 3-space, 570
point to surface, 695

Distribution, 918
Divergence theorem, 918, 933, 937

in the plane, 932
variants of, 937

Divergence, 914, 923
as flux density, 916
in curvilinear coordinates, 959
in spherical coordinates, 959
of a sequence, 503
of a series, 509

Divergent
improper integral, 364

Division algorithm, 40
Division

of functions, 33
Domain convention, 25, 678
Domain, 678, 890
x-simple, 821
y-simple, 821
connected, 890
of a function, 24
of integration, 815
regular, 821
simply connected, 890
star-like, 925

Dot product of vectors, 581
Double integral, 816

over a bounded domain, 818
properties of, 818

Double tangent, 333
Double-angle formulas, 52
Doubling time, 187
Dummy variable, 304

Eccentricity
of an ellipse, 466

Eigenvalue, 616
Eigenvector, 616

Elasticity, 136
Electric field, 946
Electrostatics, 946
Element

of arc length, 407, 483, 497, 647
of area, 328
of area on a surface, 411
of mass, 413, 856
of moment, 416
of surface area, 856
of volume, 395, 956
of work, 888

Elementary function, 361
Elementary k-form, 969
Ellipse, 21, 465

circumference of, 409
in polar coordinates, 666
parametric equations of, 474

Ellipsoid, 601
approximating surface area, 461
volume of, 405

Elliptic integral, 410, 887
Empirical regression line, 786
Endpoint, 5, 79
Energy

conservation of, 430
kinetic, 430, 861
potential, 430, 862

Entropy, 719, 807
Envelope, 165, 794
Epicycloid, 479
Equation of continuity, 945
Equation of motion

of a fluid, 946
Equation

of a circle, 18
of a plane, 593
of state, 719

Equations
of lines, 596

Equidimensional equation, 1023
Equipotential curve, 876
Equipotential surface, 876
Error bound

Simpson’s rule, 380
trapezoid and midpoint rules, 375

Error function, 843
Error

in linear approximation, 271
round-off, 31

Escape velocity, 430
Euclidean n-space, 460
Euclidean space

of n dimensions, 572
Euler equation, 1023
Euler method, 1011

improved, 1014
Euler’s theorem, 708
Evaluation symbol, 105, 314
Even function, 28
Even permutation, 968
Evolute, 661
Exact differential equation, 1006
Exact differential form, 977
Existence theorem, 86
Expanding universe, 962
Expectation, 438, 442
Exponent laws, 172
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Cauchy
probability density, 447

Cavalieri’s principle, 405
Celsius, 17
Central force, 669
Centre of gravity, 859
Centre of mass, 858
Centre

for a 2-D linear system, 1052
of a circle, 17
of a hyperbola, 468
of an ellipse, 466
of convergence, 532
of curvature, 654
of mass, 416

Centrifugal force, 640
Centripetal acceleration, 631, 640, 660
Centroid, 420, 859

of a triangle, 421
Chain Rule, 116, 703

as matrix multiplication, 718
proof of, 120
several variable proof, 715

Change of variables
in a double integral, 839
in a triple integral, 848

Chaos, 228
Circle, 17

osculating, 654
Circular frequency, 210
Circular helix, 647, 655
Circulation, 888

along a moving curve, 962
Closed curve, 644
Closed disk, 18
Closed interval, 5
Closed surface, 897
Closed

differential form, 975
Clothoid, 675
Coefficient

of a polynomial, 39
Colatitude, 606
Column vector, 609
Common ratio, 509
Commutative, 609
Comparison test

for series, 518
limit form, 519

Comparison theorem
for improper integrals, 368

Complement
of a set, 574

Complementary angles, 49
Complementary function, 1025
Complete elliptic integral, 410
Completeness of the real numbers, 4
Completeness, A-23

of the real numbers, 505
Completing the square, 345
Complex arithmetic, A-4
Complex conjugate, A-4
Complex exponential function, A-15
Complex function, A-11

derivative of, A-13
differentiable, A-13

Complex limit, A-12
Complex number, A-1

Complex plane, A-3

Complex polynomial, A-16

Component

of a cross product, 585

of a vector, 577

radial, transverse, 668

Composite function, 34

Composite surface, 897

Composition

of functions, 34

Compound interest, 188

Concavity, 242

of a parametric curve, 481

Conditional convergence, 526

Cone, 402, 601

Conic, 462

classifying a, 470

in polar coordinates, 492

Conjugate axis, 468

Conjugate hyperbola, 468

Conjugate

of a complex number, A-4

Connected curve, 85

Connected domain, 890

Conservation of energy, 430, 673

Conservation of mass, 944

Conservative field, 874, 925, 1006

necessary conditions, 876

Conservative

force, 430

Constant coefficient DE, 1020

Constant of integration, 151

Constraint manifold, 774

Constraint, 759

equation, 766

inequality, 766

linear, 763

Continuity

at a point, 687

at a point, A-22

at an endpoint, 80

at an interior point, 79

of a differentiable function, 109

on an interval, 81, A-22

right and left, 80

uniform, A-30

Continuous extension, 82

Continuous function, 81, A-22

Continuous

random variable, 440

Contours, 680

Convergence

absolute, 525

conditional, 526

improving, 524, 567

of a series, 509

of Fourier series, 562

of sequences, 502

Convergent

improper integral, 364

Convex set, 763

Convolution, 1036

Coordinate axes, 11

Coordinate curve, 953

Coordinate plane, 570

Coordinate surface, 953

Coordinate system
Cartesian, 570
rotating, 638

Coordinates
of a point in 3-space, 570

Coriolis acceleration, 640
Coriolis effect, 642
Coriolis force, 640
Cosecant, 53
Cosh function, 200
Cosine Law, 56
Cosine, 47
Cost function, 768, 784
Cost function, 784
Cotangent, 53
Coth, 202
Coulomb’s law, 946
Cramer’s Rule, 614
Critical point, 133, 142, 753
Cross product, 585

as a determinant, 589
properties of, 586

Csch, 202
Cumulative distribution function, 445
Curl, 914, 923

as circulation density, 921
in curvilinear coordinates, 960
in cylindrical coordinates, 960
in spherical coordinates, 960

Curvature, 651, 653
Curve sketching, 251
Curve, 629, 643

closed, 644
coordinate, 953
equipotential, 876
integral, 869
parametric, 473
piecewise smooth, 647, 884
simple closed, 644
smooth, 407, 644

Curvilinear coordinates, 952
orthogonal, 953

Cusp, 98
Cycloid, 476, 675
Cyclone, 641
Cylinder, 394, 600
Cylindrical coordinates, 604, 952
Cylindrical shells, 398

Damped harmonic motion, 211
de Moivre’s Theorem, A-7
Decimal point, 258
Decreasing function, 140
Decreasing sequence, 501
Definite integral, 304
Definite quadratic form, 616
Degree

of a polynomial, 39, 340
Del, 914
Delta function, 919
Density, 413

probability, 440, 441
Dependent variable, 24
Derivative

directional, 725
exterior, 972
left and right, 101
of a complex-valued function, A-13
of a composition of functions, 116
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Derivative (continued)
of a function, 100
of a product, 111
of a quotient, 114
of a reciprocal, 112
of a transformation, 717
of an inverse function, 170
of cosine, 124
of sine, 123
of the absolute value function, 104
of trigonometric functions, 125
second and higher order, 127

Determinant, 587, 610
properties of, 588

Difference quotient, 97
Differentiable function, 100, 101

of a complex variable, A-13
of several variables, 713
transformation, 717
vector-valued function, 630

Differential element, 395
Differential equation, 152

as a first-order system, 1046
constant coefficient linear, 205
equidimensional, 1023
Euler, 1023
exact, 1006
first-order linear, 454, 1004
general solution, 153
homogeneous linear, 1001
homogeneous, 1005
linear, 1001
nonhomogeneous linear, 1001
nonhomogeneous second order linear, 1025
of exponential growth or decay, 186
of logistic growth, 190
of simple harmonic motion, 129, 209
order of, 153
ordinary (ODE), 1001
partial (PDE), 692, 699, 1001
particular solution, 153
reducible, 1017
second order, 1017
second-order linear, 1018
separable, 450, 1004
solution using series, 1041
with constant coefficients, 1020

Differential Form, 971
closed, 975
exact, 977

Differential operator, 1003
Differential, 304, 964

form, 964
in several variables, 716
of a variable, 106
using for approximation, 132

Differentials
determining independent variables, 720

Differentiation rules, 109
for vector functions, 633

Differentiation, 101
following motion, 729
graphical, 101
implicit, 145
logarithmic, 182
of power series, 536
through an integral, 791

Diffusion equation, 702

Dipole, 880
moment of, 880

Dirac delta function, 919, 1037
Dirac distribution, 919, 1037
Direction cosine, 584
Direction vector, 596
Directional derivative, 725
Directrix

of a parabola, 19
of a parabola, 463
of an ellipse, 467

Dirichlet problem, 939
Discontinuity

removable, 83
Discontinuous function, 79
Discount rate, 433
Discrete map, 223
Discriminant, 206

of a quadratic, 43
Disk

open or closed, 18
open, 574

Distance
between points, 12
between two lines, 599
from a point to a curve, 165
from a point to a line, 598
from a point to a plane, 597
in n-space, 572
in 3-space, 570
point to surface, 695

Distribution, 918
Divergence theorem, 918, 933, 937

in the plane, 932
variants of, 937

Divergence, 914, 923
as flux density, 916
in curvilinear coordinates, 959
in spherical coordinates, 959
of a sequence, 503
of a series, 509

Divergent
improper integral, 364

Division algorithm, 40
Division

of functions, 33
Domain convention, 25, 678
Domain, 678, 890
x-simple, 821
y-simple, 821
connected, 890
of a function, 24
of integration, 815
regular, 821
simply connected, 890
star-like, 925

Dot product of vectors, 581
Double integral, 816

over a bounded domain, 818
properties of, 818

Double tangent, 333
Double-angle formulas, 52
Doubling time, 187
Dummy variable, 304

Eccentricity
of an ellipse, 466

Eigenvalue, 616
Eigenvector, 616

Elasticity, 136
Electric field, 946
Electrostatics, 946
Element

of arc length, 407, 483, 497, 647
of area, 328
of area on a surface, 411
of mass, 413, 856
of moment, 416
of surface area, 856
of volume, 395, 956
of work, 888

Elementary function, 361
Elementary k-form, 969
Ellipse, 21, 465

circumference of, 409
in polar coordinates, 666
parametric equations of, 474

Ellipsoid, 601
approximating surface area, 461
volume of, 405

Elliptic integral, 410, 887
Empirical regression line, 786
Endpoint, 5, 79
Energy

conservation of, 430
kinetic, 430, 861
potential, 430, 862

Entropy, 719, 807
Envelope, 165, 794
Epicycloid, 479
Equation of continuity, 945
Equation of motion

of a fluid, 946
Equation

of a circle, 18
of a plane, 593
of state, 719

Equations
of lines, 596

Equidimensional equation, 1023
Equipotential curve, 876
Equipotential surface, 876
Error bound

Simpson’s rule, 380
trapezoid and midpoint rules, 375

Error function, 843
Error

in linear approximation, 271
round-off, 31

Escape velocity, 430
Euclidean n-space, 460
Euclidean space

of n dimensions, 572
Euler equation, 1023
Euler method, 1011

improved, 1014
Euler’s theorem, 708
Evaluation symbol, 105, 314
Even function, 28
Even permutation, 968
Evolute, 661
Exact differential equation, 1006
Exact differential form, 977
Existence theorem, 86
Expanding universe, 962
Expectation, 438, 442
Exponent laws, 172
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Exponential distribution, 441
Exponential function, 172, 178

growth rate, 185
Exponential growth and decay, 186
Exponential order, 1032
Extension of a function, 82
Extensive variable, 719
Exterior derivative, 972
Exterior point, 574
Extreme value problem

constrained, 263, 759
Extreme value, 236

Factorial, 128
Farenheit, 17
Fibonacci sequence, 501
Field

conservative, 874
electrostatic, 868
gradient, 868
gravitational, 867
lines, 869
scalar, 867
slope, 1009
vector, 867
velocity, 868

First derivative test, 238
First-order linear DE, 454
Fixed point, 222

of a vector field, 872
theorem, 223
types for 2-D linear systems, 1052
of a first-order system, 1049

Floating-point number, 258
Flow line, 869
Flow, 1049
Fluid dynamics, 944
Flux, 908

through a moving surface, 963
Focal property

of an ellipse, 466
of a hyperbola, 469
of a parabola, 465

Focus
for a 2-D linear system, 1052
of an ellipse, 466
of a hyperbola, 467
of a parabola, 19, 463

Folium of Descartes, 478
Force

central, 669
centrifugal, 640
coriolis, 640
on a dam, 426

Form
antisymmetric, 966
bilinear, 966
differential, 964
differential, 971
on a vector space, 970

Fourier coefficients, 561
Fourier cosine series, 564
Fourier series, 561, 788, 813

convergence, 562
Fourier sine series, 564, 788
Fourier transform, 1032, 1041
Frenet frame, 654
Frenet–Serret formulas, 657
Frequency, 210

Function, 24
analytic, 543, A-13
arccos, inverse cosine, 197
arccot, inverse cotangent, 199
arccsc, inverse cosecant, 199
arcsec, inverse secant, 198
arcsin, 193
arctan, 195
atan and atan2, 197
biharmonic, 702
bounded, A-27
complex exponential, A-15
complex-valued, A-11
composition, 34
concave up or down, 242
continuous at an endpoint, 80
continuous on an interval, 81
continuous, 79, 81, A-22
cosecant, 53
cosh, hyperbolic cosine, 200
cosine, 47
cotangent, 53
domain convention, 25
elementary, 361
even, 28
exponential, 172, 178
from n-space to m-space, 717
gamma, 371
general exponential, 181
graph of, 26, 679
greatest integer, 37, 78
harmonic, 700
Heaviside, 36
hyperbolic, 200, 202
identity, 168
increasing and decreasing, 140
integrable over a domain, 818
integrable, 304, A-29
inverse hyperbolic, 203
inverse sine, 193
inverse tangent, 195
inverse, 167
Lagrange, 767
least integer, 37
left continuous, 80
natural logarithm, 176
objective, 764
odd, 28
of several variables, 678
one-to-one, 166
periodic, 49, 560
piecewise defined, 36
positively homogeneous, 707
power, 172
probability density, 441
probability, 437
rational, 250, 340
right continuous, 80
secant, 53
self-inverse, 169
signum, 36
sine, 47
sinh, hyperbolic sine, 200
special, 361
square root, 25
tangent, 53
trigonometric, 47, 53
uniformly continuous, A-30

Function (continued)
vector-valued, 629

Functional
linear, 965

Fundamental Theorem of Algebra, 41, A-17
Fundamental Theorem of Calculus (FTC), 313, 965
Fundamental Theorem of Space Curves, 657

Gamma function, 371, 843
Gauge Theory, 927
Gauss’s Law, 950
Gauss’s Theorem, 933
Gaussian approximation, 388
General exponential, 181
General power rule, 103, 149
General solution of a DE, 153
Generalized function, 918
Generalized mean-value theorem, 144
Generalized Stokes Theorem, 992
Geometric bounds for series, 523
Geometric series, 509
Gibbs equation, 720
Global maximum, 753
Global minimum, 753
Gradient vector

geometric properties of, 727
in higher dimensions, 730

Gradient, 724, 914, 923
in curvilinear coordinates, 958
in cylindrical coordinates, 958
in spherical coordinates, 958
vector, 724

Graph
of a function, 26, 679, 681
scaling, 20
shifting, 20

Gravitational attraction
of a ball, 905
of a spherical shell, 904

Gravitational field
of a point mass, 868

Greatest integer function, 37, 78
Greatest lower bound, A-23
Green’s function, 1039
Green’s Theorem, 997
Growth of exponentials and logarithms, 185
Growth

logistic, 190

Half-angle formulas, 52
Half-life, 187
Half-open interval, 5
Hamilton’s Theorem, 670
Hanging cables, 579
Harmonic function, 700, A-15
Harmonic series, 512, 702, 951
Heaviside function, 36, 80, 1037
Heavy tail

of a probability density, 448
Helix, 647, 655
Hessian matrix, 755
Higher-order derivatives, 127
Homogeneous function, 707
Homogeneous

differential equation, 206, 454, 1005
linear differential equation, 1001

Hooke’s Law, 209, 427
Horizontal asymptote, 73, 247
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Hyperbola, 22, 467
conjugate, 468
rectangular, 22, 468

Hyperbolic fixed point
for a 2-D linear system, 1052

Hyperbolic function, 200, 202
Hyperboloid, 602
Hypersurface, 679, 681
Hypocycloid, 478, 479

Ideal gas, 737
Identity function, 168
Identity matrix, 611
Imaginary axis, A-3
Imaginary part, A-2
Imaginary unit, A-2
Implicit differentiation, 145
Implicit function theorem, 147, 614, 740
Implicit function, 734
Improper double integral, 828
Improper integral

converges, 364
diverges, 364
type I, 364
type II, 365

Inclination of a line, 14
Incompressible fluid, 945
Increasing function, 140
Increasing sequence, 501
Increment, 12
Indefinite integral, 151
Indefinite quadratic form, 616
Independence of path, 891
Independent variable, 24
Indeterminate form, 230

limit calculation using series, 553
Index of summation, 292
Indicial equation, 1043
Induced orientation, 907
Induction, 110
Inequality

rules for, 4
Inertia

moment of, 861
Infimum, A-23
Infinite limit, 75, 91
Infinite sequence, 500
Infinite series, 292, 508
Infinitesimal, 106
Infinity, 73
Inflection point, 243
Inherited orientation

of a boundary, 987
Initial-value problem, 153
Inner product, 581
Instantaneous rate of change, 133
Instantaneous velocity, 60
Integer, 4, A-1
Integrable function, 304, 818, 298, A-29
Integral bounds for series, 516
Integral curves, 869
Integral equation, 318, 451, 793
Integral function

of an exact differential equation, 1006
Integral of a function

over a parametrized manifold, 983
Integral remainder

for Taylor’s theorem, 549
Integral sign, 151

Integral test, 515

Integral transform, 1032

Integral

definite, 304

double, 816

evaluating using Maple, 359

improper, 828

indefinite, 151

iterated, 822

line, 883

proper, 363

Riemann, 306

sign, 304

surface, 898

triple, 843

Integrals

over moving volumes, 963

Integrand, 304

Integrating factor, 454, 1007

Integration of a k-form

over a k-manifold, 989

Integration

by parts, 334

limits of, 304

numerical, 371

of power series, 536

using tables, 360

Intensive variable, 720

Intercept, 15

Interest rate

effective and nominal, 190

Interest, 188

Interior point, 79, 574

Intermediate-value property, 84

of a derivative, 106

Intermediate-value theorem, 85, A-26

Intersection of intervals, 7

Interval, 5

half-open, 5

of convergence, 533

open or closed, 5

Intrinsic parametrization, 648

Inverse cosecant, 199

Inverse cosine, 197

Inverse cotangent, 199

Inverse function, 167

properties of, 168

Inverse hyperbolic function, 203

Inverse hyperbolic substitution, 352

Inverse Laplace transform, 1033

Inverse matrix, 611

Inverse secant substitution, 351

Inverse secant, 198

Inverse sine substitution, 349

Inverse sine, 193
Inverse substitution

hyperbolic, 352

Inverse tangent substitution, 350

Inverse tangent, 195

Invertible matrix, 611

Involute of a circle, 477

Irrationality of � , 567

Irrationality of e, 567

Irrotational vector field, 925

Isolated point, 686

Iterated integral, 822

Iteration
in polar coordinates, 834
of a double integral, 822

Jacobian determinant, 738, 838
Jacobian matrix, 717, 980

k-Form, 968
elementary, 969

k-Parallelogram, 982
k-Volume zero

set of, 981
Kepler’s Laws, 666
Kepler, 665
Kernel of a transform, 1032
Kinetic energy, 430, 861
Kuhn–Tucker condition, 782

l’Hôpital’s Rules, 231
Lagrange function, 767
Lagrange multiplier, 768
Lagrange remainder, 27, 5498
Laplace equation, 700

in polar coordinates, 709
in spherical coordinates, 751

Laplace transform, 1032
and initial-value problems, 1033
list, 1039
of a convolution, 1036

Laplacian operator, 923
Latus rectum, 472
Least integer function, 37
Least squares method, 784
Least upper bound, A-23
Left continuous function, 80
Left limit, 68, 91
Legendre transformation, 721, 975
Leibniz notation, 105
Leibniz Rule, 559
Lemniscate, 491
Length

of a curve, 646
of a vector, 575

Level curve, 680
Level surface, 681
Liapunov function, 872
Liapunov’s direct method, 1055
Limit cycle, 1054
Limit, 60

at infinity, 73, 91
formal definition, 88, A-21
infinite, 75
informal definition, 66
of a complex-valued function, A-12
of a function of 2 variables, 686
of a sequence, 502, A-24
of integration, 304
of summation, 292

Limit (continued)
one-sided, 68
right and left, 68, 90
rules for calculating, 69

Line integral, 883
independence of parametrization, 884
independence of path, 891
of a conservative field, 995
of a vector field, 888

Line, 13
in 3-space, 595
normal, 693
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Exponential distribution, 441
Exponential function, 172, 178

growth rate, 185
Exponential growth and decay, 186
Exponential order, 1032
Extension of a function, 82
Extensive variable, 719
Exterior derivative, 972
Exterior point, 574
Extreme value problem

constrained, 263, 759
Extreme value, 236

Factorial, 128
Farenheit, 17
Fibonacci sequence, 501
Field

conservative, 874
electrostatic, 868
gradient, 868
gravitational, 867
lines, 869
scalar, 867
slope, 1009
vector, 867
velocity, 868

First derivative test, 238
First-order linear DE, 454
Fixed point, 222

of a vector field, 872
theorem, 223
types for 2-D linear systems, 1052
of a first-order system, 1049

Floating-point number, 258
Flow line, 869
Flow, 1049
Fluid dynamics, 944
Flux, 908

through a moving surface, 963
Focal property

of an ellipse, 466
of a hyperbola, 469
of a parabola, 465

Focus
for a 2-D linear system, 1052
of an ellipse, 466
of a hyperbola, 467
of a parabola, 19, 463

Folium of Descartes, 478
Force

central, 669
centrifugal, 640
coriolis, 640
on a dam, 426

Form
antisymmetric, 966
bilinear, 966
differential, 964
differential, 971
on a vector space, 970

Fourier coefficients, 561
Fourier cosine series, 564
Fourier series, 561, 788, 813

convergence, 562
Fourier sine series, 564, 788
Fourier transform, 1032, 1041
Frenet frame, 654
Frenet–Serret formulas, 657
Frequency, 210

Function, 24
analytic, 543, A-13
arccos, inverse cosine, 197
arccot, inverse cotangent, 199
arccsc, inverse cosecant, 199
arcsec, inverse secant, 198
arcsin, 193
arctan, 195
atan and atan2, 197
biharmonic, 702
bounded, A-27
complex exponential, A-15
complex-valued, A-11
composition, 34
concave up or down, 242
continuous at an endpoint, 80
continuous on an interval, 81
continuous, 79, 81, A-22
cosecant, 53
cosh, hyperbolic cosine, 200
cosine, 47
cotangent, 53
domain convention, 25
elementary, 361
even, 28
exponential, 172, 178
from n-space to m-space, 717
gamma, 371
general exponential, 181
graph of, 26, 679
greatest integer, 37, 78
harmonic, 700
Heaviside, 36
hyperbolic, 200, 202
identity, 168
increasing and decreasing, 140
integrable over a domain, 818
integrable, 304, A-29
inverse hyperbolic, 203
inverse sine, 193
inverse tangent, 195
inverse, 167
Lagrange, 767
least integer, 37
left continuous, 80
natural logarithm, 176
objective, 764
odd, 28
of several variables, 678
one-to-one, 166
periodic, 49, 560
piecewise defined, 36
positively homogeneous, 707
power, 172
probability density, 441
probability, 437
rational, 250, 340
right continuous, 80
secant, 53
self-inverse, 169
signum, 36
sine, 47
sinh, hyperbolic sine, 200
special, 361
square root, 25
tangent, 53
trigonometric, 47, 53
uniformly continuous, A-30

Function (continued)
vector-valued, 629

Functional
linear, 965

Fundamental Theorem of Algebra, 41, A-17
Fundamental Theorem of Calculus (FTC), 313, 965
Fundamental Theorem of Space Curves, 657

Gamma function, 371, 843
Gauge Theory, 927
Gauss’s Law, 950
Gauss’s Theorem, 933
Gaussian approximation, 388
General exponential, 181
General power rule, 103, 149
General solution of a DE, 153
Generalized function, 918
Generalized mean-value theorem, 144
Generalized Stokes Theorem, 992
Geometric bounds for series, 523
Geometric series, 509
Gibbs equation, 720
Global maximum, 753
Global minimum, 753
Gradient vector

geometric properties of, 727
in higher dimensions, 730

Gradient, 724, 914, 923
in curvilinear coordinates, 958
in cylindrical coordinates, 958
in spherical coordinates, 958
vector, 724

Graph
of a function, 26, 679, 681
scaling, 20
shifting, 20

Gravitational attraction
of a ball, 905
of a spherical shell, 904

Gravitational field
of a point mass, 868

Greatest integer function, 37, 78
Greatest lower bound, A-23
Green’s function, 1039
Green’s Theorem, 997
Growth of exponentials and logarithms, 185
Growth

logistic, 190

Half-angle formulas, 52
Half-life, 187
Half-open interval, 5
Hamilton’s Theorem, 670
Hanging cables, 579
Harmonic function, 700, A-15
Harmonic series, 512, 702, 951
Heaviside function, 36, 80, 1037
Heavy tail

of a probability density, 448
Helix, 647, 655
Hessian matrix, 755
Higher-order derivatives, 127
Homogeneous function, 707
Homogeneous

differential equation, 206, 454, 1005
linear differential equation, 1001

Hooke’s Law, 209, 427
Horizontal asymptote, 73, 247
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Hyperbola, 22, 467
conjugate, 468
rectangular, 22, 468

Hyperbolic fixed point
for a 2-D linear system, 1052

Hyperbolic function, 200, 202
Hyperboloid, 602
Hypersurface, 679, 681
Hypocycloid, 478, 479

Ideal gas, 737
Identity function, 168
Identity matrix, 611
Imaginary axis, A-3
Imaginary part, A-2
Imaginary unit, A-2
Implicit differentiation, 145
Implicit function theorem, 147, 614, 740
Implicit function, 734
Improper double integral, 828
Improper integral

converges, 364
diverges, 364
type I, 364
type II, 365

Inclination of a line, 14
Incompressible fluid, 945
Increasing function, 140
Increasing sequence, 501
Increment, 12
Indefinite integral, 151
Indefinite quadratic form, 616
Independence of path, 891
Independent variable, 24
Indeterminate form, 230

limit calculation using series, 553
Index of summation, 292
Indicial equation, 1043
Induced orientation, 907
Induction, 110
Inequality

rules for, 4
Inertia

moment of, 861
Infimum, A-23
Infinite limit, 75, 91
Infinite sequence, 500
Infinite series, 292, 508
Infinitesimal, 106
Infinity, 73
Inflection point, 243
Inherited orientation

of a boundary, 987
Initial-value problem, 153
Inner product, 581
Instantaneous rate of change, 133
Instantaneous velocity, 60
Integer, 4, A-1
Integrable function, 304, 818, 298, A-29
Integral bounds for series, 516
Integral curves, 869
Integral equation, 318, 451, 793
Integral function

of an exact differential equation, 1006
Integral of a function

over a parametrized manifold, 983
Integral remainder

for Taylor’s theorem, 549
Integral sign, 151

Integral test, 515

Integral transform, 1032

Integral

definite, 304

double, 816

evaluating using Maple, 359

improper, 828

indefinite, 151

iterated, 822

line, 883

proper, 363

Riemann, 306

sign, 304

surface, 898

triple, 843

Integrals

over moving volumes, 963

Integrand, 304

Integrating factor, 454, 1007

Integration of a k-form

over a k-manifold, 989

Integration

by parts, 334

limits of, 304

numerical, 371

of power series, 536

using tables, 360

Intensive variable, 720

Intercept, 15

Interest rate

effective and nominal, 190

Interest, 188

Interior point, 79, 574

Intermediate-value property, 84

of a derivative, 106

Intermediate-value theorem, 85, A-26

Intersection of intervals, 7

Interval, 5

half-open, 5

of convergence, 533

open or closed, 5

Intrinsic parametrization, 648

Inverse cosecant, 199

Inverse cosine, 197

Inverse cotangent, 199

Inverse function, 167

properties of, 168

Inverse hyperbolic function, 203

Inverse hyperbolic substitution, 352

Inverse Laplace transform, 1033

Inverse matrix, 611

Inverse secant substitution, 351

Inverse secant, 198

Inverse sine substitution, 349

Inverse sine, 193
Inverse substitution

hyperbolic, 352

Inverse tangent substitution, 350

Inverse tangent, 195

Invertible matrix, 611

Involute of a circle, 477

Irrationality of � , 567

Irrationality of e, 567

Irrotational vector field, 925

Isolated point, 686

Iterated integral, 822

Iteration
in polar coordinates, 834
of a double integral, 822

Jacobian determinant, 738, 838
Jacobian matrix, 717, 980

k-Form, 968
elementary, 969

k-Parallelogram, 982
k-Volume zero

set of, 981
Kepler’s Laws, 666
Kepler, 665
Kernel of a transform, 1032
Kinetic energy, 430, 861
Kuhn–Tucker condition, 782

l’Hôpital’s Rules, 231
Lagrange function, 767
Lagrange multiplier, 768
Lagrange remainder, 27, 5498
Laplace equation, 700

in polar coordinates, 709
in spherical coordinates, 751

Laplace transform, 1032
and initial-value problems, 1033
list, 1039
of a convolution, 1036

Laplacian operator, 923
Latus rectum, 472
Least integer function, 37
Least squares method, 784
Least upper bound, A-23
Left continuous function, 80
Left limit, 68, 91
Legendre transformation, 721, 975
Leibniz notation, 105
Leibniz Rule, 559
Lemniscate, 491
Length

of a curve, 646
of a vector, 575

Level curve, 680
Level surface, 681
Liapunov function, 872
Liapunov’s direct method, 1055
Limit cycle, 1054
Limit, 60

at infinity, 73, 91
formal definition, 88, A-21
infinite, 75
informal definition, 66
of a complex-valued function, A-12
of a function of 2 variables, 686
of a sequence, 502, A-24
of integration, 304
of summation, 292

Limit (continued)
one-sided, 68
right and left, 68, 90
rules for calculating, 69

Line integral, 883
independence of parametrization, 884
independence of path, 891
of a conservative field, 995
of a vector field, 888

Line, 13
in 3-space, 595
normal, 693
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Line of force, 869
Linear algebra, 608
Linear approximation, 270
Linear combination, 576, 577
Linear dependence, 611
Linear equation, 222, 613
Linear equations

solution with Maple, 625
Linear function, 763
Linear functional, 965
Linear independence, 611
Linear programming, 763
Linear regression, 786
Linear transformation, 612
Linear

differential equation, 206, 1001
Linearization, 270

in several variables, 713
Lissajous figure, 479
Local basis, 953
Local maximum, 236, 753
Local minimum, 236, 753
Logarithm, 173

general, 182
growth rate, 185
laws, 174

Logarithmic differentiation, 182
Logistic equation, 190
Logistic growth, 190, 433
Logistic map, 228
Longitude, 606
Lower bound, A-23

for a sequence, 501

Mach cone, 796
Maclaurin polynomial, 275
Maclaurin series, 543
Magnetic field, 946
Magnetostatics, 947
Magnitude, 8

of a vector, 575
Main diagonal, 611
Major axis, 21, 466
Manifold, 774

oriented, 984
smooth, 978

Maple, A-32
3-dimensional plots, 683
calculating derivatives with, 119
calculation of Taylor polynomials, 747
Chain Rule calculations, 709
evaluating integrals, 359
fsolve, 802
Gradient, 732
graphing functions, 30
implicit differentiation using, 148
iterated integrals, 826

Maple (continued)
Jacobian matrix, 719
LinearAlgebra package, 618
manipulation of matrices, 623
partial derivatives in, 699
solution of DEs and IVPs, 1031
solution of linear systems, 625
topics list, A-33
trigonometric functions, 54
VectorCalculus package, 622
vectors, 619

Marginal, 135

Mass element, 413, 856
Mass, 413
Mathematical induction, 110
Matrix, 608

calculations with Maple, 623
identity, 611
inverse, 611
invertible, 611
multiplication, 609
representation, 613
singular, 611
symmetric, 608

Max-min problems, 263
Max-Min Theorem, 83, A-25
Maximum property of entropy, 809
Maximum, 236

absolute, 83, 236, 753
global, 753
local, 236, 753
relative, 753

Maxwell relations, 738, 974
Maxwell’s equations, 950, 975
Mean value

of a function, 311, 831
Mean-Value Theorem, 138, 714

for double integrals, 831
for integrals, 310
generalized, 144

Mean, 442, 783
Mean, 783

of a random variable, 438
Method of Lagrange multipliers, 768
Method of least squares, 784
Method of partial fractions, 343
Method of substitution, 320
Method of Undetermined Coefficients, 356
MG graphics software, 680
Midpoint rule, 374

error estimate, 375
Minimum, 236

absolute, 83, 236, 753
global, 753
local, 236, 753
relative, 753

Minor axis, 21, 466
Mixed partial derivatives

equality of, 698
Möbius band, 908
Modulus

of a complex number, A-3
Moment element, 416
Moment of inertia, 861
Moment, 420, 858
Momentum, 636

angular, 638
Monotonic sequence, 501
Monster

numerical, 32
Multiindices, 558
Multinomial coefficient, 558
Multinomial Theorem, 558
Multiple integrals

notation for higher multiplicities, 863
Multiplication

of functions, 33
of matrices, 609
of vectors by scalars, 576

Multiplicity of a root, 42

Mutually perpendicular, 570

n-th root
of a complex number, A-9

Nabla, 914
Nappe, 462
Natural logarithm, 176

properties, 177
Natural number, 4, A-1
Negative definite, 616
Neighbourhood, 574
Neumann problem, 939
Newton quotient, 97
Newton’s Law of Cooling, 188
Newton’s Method, 222, 229

error bounds, 229
for systems, 799
formula for, 226
using a spreadsheet, 801

Node
for a 2-D linear system, 1052

Non–self-intersecting curve, 644
Nondecreasing function, 140
Nonhomogeneous DE, 1025
Nonhomogeneous

linear differential equation, 1001
Nonincreasing function, 140
Nonlinear programming, 782
Nonsmooth boundary

of a manifold, 987
Norm

of a partition, 302
Normal acceleration, 660
Normal distribution

general, 445
standard, 444

Normal line, 99, 693
Normal space

to a manifold, 980
Normal vector, 693

to a surface, 856, 899
Normal

unit vector, 652
Notation

for multiple integrals, 863
Nullcline, 874
Number

complex, A-1
floating-point, 258
natural, A-1
rational, A-1
real, A-1

Numerical integration, 371
by Simpson’s Rule, 379
by the Midpoint Rule, 374
by the Trapezoid Rule, 373
Gaussian approximation, 388
Romberg method, 384

Numerical method
for solving DEs, 1011

Numerical monster, 32

Objective function, 764, 768, 784
Oblate spheroid, 413, 906
Oblique asymptote, 249
Octant, 570
Odd function, 28
Odd permutation, 968
One-sided limit, 68
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One-to-one function, 166
Open ball, 574
Open disk, 18, 574
Open interval, 5
Open set, 574
Order of a differential equation, 153, 1001
Ordinary point of a linear DE, 1041
Orientable surface, 907
Orientation preserving transformation, 989
Orientation

inherited by a boundary, 987
of a coordinate system, 570
of a curve, 644, 888
of a manifold, 984
of a point, 984
of a vector space, 984

Oriented surface, 907
Origin, 570

of coordinates, 11
Orthogonal curvilinear coordinates, 953
Orthogonal trajectory, 876
Orthonormal basis, 584
Osculating circle, 654
Osculating plane, 653

p-Integrals, 367
p-series, 516
Pappus’s Theorem, 423
Parabola, 19, 463
Paraboloid, 602
Parallelepiped, 590
Parameter, 473
Parametric curve, 473

slope of a, 480
smooth, 480

Parametric equations, 473
of a line, 596
of a straight line, 474

Parametric surface, 895
boundary of, 896

Parametrization, 475
arc-length, 648
intrinsic, 648
of a curve, 645
of a manifold, 979
of the intersection of two surfaces, 885
smooth, of a manifold, 981

Partial derivative
equality of mixed, 698
first-order, 690
higher-order, 697, 708

Partial derivative (continued)
mixed, 697
pure, 697

Partial differential equation, 692, 699
Partial fraction, 343

decomposition, 343, 347
Partial fractions

method of, 343
Partial sum

of a series, 509
Particular solution

of a DE, 153
of a nonhomogeneous DE, 1025

Partition, 302, 815, A-27
Pascal’s Principle, 426
Pencil of planes, 595
Percentage change, 132
Perihelion, 671

Period, 210
fundamental, 560

Permutation, 968
Perturbation, 797
Phase plane, 1048
Phase portrait

of a harmonic oscillator, 1049
of a pendulum, 1050

Phase space, 1045
of a differential equation, 1046

Phase-shift, 210
Picard iteration, 1011, 1047
Piece-with-boundary

of a manifold, 986
Piecewise continuous function

definite integral of, 311
Piecewise defined function, 36
Piecewise smooth curve, 647, 884
Plane curve, 475
Plane

equation of, 593
in 3-space, 593
osculating, 653
tangent, 693

Planetary motion, 666
Poincaré’s Lemma, 977
Point-slope equation, 15
Poiseuille’s Law, 137
Polar axis, 487
Polar coordinates, 487
Polar graph of a function, 489
Polar representation

of a complex number, A-4
Pole, 487
Polygon, 297
Polynomial, 39, 340

complex, A-16
Position vector, 576, 629
Positive definite, 616
Positive series, 515
Positively homogeneous function, 707
Potential energy, 430, 862
Potential

for a conservative field, 874
vector, 925

Power function, 172
Power series, 531

continuity of, 538
differentiation of, 536

Power series (continued)
integration of, 536
operations on, 534

Predator–prey model
Lotka–Volterra, 1056
modified Lotka–Volterra, 1058

Present value, 433
Pressure, 426
Primary trigonometric function, 53
Principal n-th root, A-9
Principal argument, A-3
Principal square root, A-8
Prism, 394
Probability density function, 440, 441
Probability function, 437
Probability, 436
Product of inertia, 865
Product of complex numbers, A-5
Product rule, 111

Projectile, 632
Projection of a vector, 582
Prolate cycloid, 478
Prolate spheroid, 413, 906
Proper integral, 363
Pyramid, 402
Pythagorean identity, 48

Quadrant, 11
Quadratic equation, 222
Quadratic form, 616
Quadratic formula, A-17
Quadric surface, 600
Quotient rule, 114
Quotient

of complex numbers, A-7

Radial component, 668
Radian, 46
Radius of convergence, 533
Radius of gyration, 861
Radius

of a circle, 17
of curvature, 651

Radix point, 258
Random variable

continuous, 437, 440
discrete, 437

Range
of a function, 24, 678

Rate of change, 133
average, 133

instantaneous, 133
seen by a moving observer, 729

Ratio test, 521, 567
Rational function, 39, 250, 340
Rational number, 4, A-1
Real axis, A-3
Real line, 3
Real numbers, 3, A-1

completeness of, 4
Real part, A-2
Rearrangement of series, 530
Reciprocal rule, 112
Reciprocal

of a complex number, A-7
Rectangular hyperbola, 22, 468
Rectifiable curve, 407, 646
Recurrence relation, 1042, 1043
Reduction formula, 338
Refinement of a partition, 303, A-27
Reflection

by a hyperbola, 469
by a line, 29
by a parabola, 20, 465
by a straight line, 464
by an ellipse, 466

Region
bounded, 363

Regression line, 786
Regular domain, 821, 933
Regular singular point

of a DE, 1043
Related rates, 216
Relative change, 132
Relative maximum, 753
Relative minimum, 753
Removable discontinuity, 83
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Line of force, 869
Linear algebra, 608
Linear approximation, 270
Linear combination, 576, 577
Linear dependence, 611
Linear equation, 222, 613
Linear equations

solution with Maple, 625
Linear function, 763
Linear functional, 965
Linear independence, 611
Linear programming, 763
Linear regression, 786
Linear transformation, 612
Linear

differential equation, 206, 1001
Linearization, 270

in several variables, 713
Lissajous figure, 479
Local basis, 953
Local maximum, 236, 753
Local minimum, 236, 753
Logarithm, 173

general, 182
growth rate, 185
laws, 174

Logarithmic differentiation, 182
Logistic equation, 190
Logistic growth, 190, 433
Logistic map, 228
Longitude, 606
Lower bound, A-23

for a sequence, 501

Mach cone, 796
Maclaurin polynomial, 275
Maclaurin series, 543
Magnetic field, 946
Magnetostatics, 947
Magnitude, 8

of a vector, 575
Main diagonal, 611
Major axis, 21, 466
Manifold, 774

oriented, 984
smooth, 978

Maple, A-32
3-dimensional plots, 683
calculating derivatives with, 119
calculation of Taylor polynomials, 747
Chain Rule calculations, 709
evaluating integrals, 359
fsolve, 802
Gradient, 732
graphing functions, 30
implicit differentiation using, 148
iterated integrals, 826

Maple (continued)
Jacobian matrix, 719
LinearAlgebra package, 618
manipulation of matrices, 623
partial derivatives in, 699
solution of DEs and IVPs, 1031
solution of linear systems, 625
topics list, A-33
trigonometric functions, 54
VectorCalculus package, 622
vectors, 619

Marginal, 135

Mass element, 413, 856
Mass, 413
Mathematical induction, 110
Matrix, 608

calculations with Maple, 623
identity, 611
inverse, 611
invertible, 611
multiplication, 609
representation, 613
singular, 611
symmetric, 608

Max-min problems, 263
Max-Min Theorem, 83, A-25
Maximum property of entropy, 809
Maximum, 236

absolute, 83, 236, 753
global, 753
local, 236, 753
relative, 753

Maxwell relations, 738, 974
Maxwell’s equations, 950, 975
Mean value

of a function, 311, 831
Mean-Value Theorem, 138, 714

for double integrals, 831
for integrals, 310
generalized, 144

Mean, 442, 783
Mean, 783

of a random variable, 438
Method of Lagrange multipliers, 768
Method of least squares, 784
Method of partial fractions, 343
Method of substitution, 320
Method of Undetermined Coefficients, 356
MG graphics software, 680
Midpoint rule, 374

error estimate, 375
Minimum, 236

absolute, 83, 236, 753
global, 753
local, 236, 753
relative, 753

Minor axis, 21, 466
Mixed partial derivatives

equality of, 698
Möbius band, 908
Modulus

of a complex number, A-3
Moment element, 416
Moment of inertia, 861
Moment, 420, 858
Momentum, 636

angular, 638
Monotonic sequence, 501
Monster

numerical, 32
Multiindices, 558
Multinomial coefficient, 558
Multinomial Theorem, 558
Multiple integrals

notation for higher multiplicities, 863
Multiplication

of functions, 33
of matrices, 609
of vectors by scalars, 576

Multiplicity of a root, 42

Mutually perpendicular, 570

n-th root
of a complex number, A-9

Nabla, 914
Nappe, 462
Natural logarithm, 176

properties, 177
Natural number, 4, A-1
Negative definite, 616
Neighbourhood, 574
Neumann problem, 939
Newton quotient, 97
Newton’s Law of Cooling, 188
Newton’s Method, 222, 229

error bounds, 229
for systems, 799
formula for, 226
using a spreadsheet, 801

Node
for a 2-D linear system, 1052

Non–self-intersecting curve, 644
Nondecreasing function, 140
Nonhomogeneous DE, 1025
Nonhomogeneous

linear differential equation, 1001
Nonincreasing function, 140
Nonlinear programming, 782
Nonsmooth boundary

of a manifold, 987
Norm

of a partition, 302
Normal acceleration, 660
Normal distribution

general, 445
standard, 444

Normal line, 99, 693
Normal space

to a manifold, 980
Normal vector, 693

to a surface, 856, 899
Normal

unit vector, 652
Notation

for multiple integrals, 863
Nullcline, 874
Number

complex, A-1
floating-point, 258
natural, A-1
rational, A-1
real, A-1

Numerical integration, 371
by Simpson’s Rule, 379
by the Midpoint Rule, 374
by the Trapezoid Rule, 373
Gaussian approximation, 388
Romberg method, 384

Numerical method
for solving DEs, 1011

Numerical monster, 32

Objective function, 764, 768, 784
Oblate spheroid, 413, 906
Oblique asymptote, 249
Octant, 570
Odd function, 28
Odd permutation, 968
One-sided limit, 68
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One-to-one function, 166
Open ball, 574
Open disk, 18, 574
Open interval, 5
Open set, 574
Order of a differential equation, 153, 1001
Ordinary point of a linear DE, 1041
Orientable surface, 907
Orientation preserving transformation, 989
Orientation

inherited by a boundary, 987
of a coordinate system, 570
of a curve, 644, 888
of a manifold, 984
of a point, 984
of a vector space, 984

Oriented surface, 907
Origin, 570

of coordinates, 11
Orthogonal curvilinear coordinates, 953
Orthogonal trajectory, 876
Orthonormal basis, 584
Osculating circle, 654
Osculating plane, 653

p-Integrals, 367
p-series, 516
Pappus’s Theorem, 423
Parabola, 19, 463
Paraboloid, 602
Parallelepiped, 590
Parameter, 473
Parametric curve, 473

slope of a, 480
smooth, 480

Parametric equations, 473
of a line, 596
of a straight line, 474

Parametric surface, 895
boundary of, 896

Parametrization, 475
arc-length, 648
intrinsic, 648
of a curve, 645
of a manifold, 979
of the intersection of two surfaces, 885
smooth, of a manifold, 981

Partial derivative
equality of mixed, 698
first-order, 690
higher-order, 697, 708

Partial derivative (continued)
mixed, 697
pure, 697

Partial differential equation, 692, 699
Partial fraction, 343

decomposition, 343, 347
Partial fractions

method of, 343
Partial sum

of a series, 509
Particular solution

of a DE, 153
of a nonhomogeneous DE, 1025

Partition, 302, 815, A-27
Pascal’s Principle, 426
Pencil of planes, 595
Percentage change, 132
Perihelion, 671

Period, 210
fundamental, 560

Permutation, 968
Perturbation, 797
Phase plane, 1048
Phase portrait

of a harmonic oscillator, 1049
of a pendulum, 1050

Phase space, 1045
of a differential equation, 1046

Phase-shift, 210
Picard iteration, 1011, 1047
Piece-with-boundary

of a manifold, 986
Piecewise continuous function

definite integral of, 311
Piecewise defined function, 36
Piecewise smooth curve, 647, 884
Plane curve, 475
Plane

equation of, 593
in 3-space, 593
osculating, 653
tangent, 693

Planetary motion, 666
Poincaré’s Lemma, 977
Point-slope equation, 15
Poiseuille’s Law, 137
Polar axis, 487
Polar coordinates, 487
Polar graph of a function, 489
Polar representation

of a complex number, A-4
Pole, 487
Polygon, 297
Polynomial, 39, 340

complex, A-16
Position vector, 576, 629
Positive definite, 616
Positive series, 515
Positively homogeneous function, 707
Potential energy, 430, 862
Potential

for a conservative field, 874
vector, 925

Power function, 172
Power series, 531

continuity of, 538
differentiation of, 536

Power series (continued)
integration of, 536
operations on, 534

Predator–prey model
Lotka–Volterra, 1056
modified Lotka–Volterra, 1058

Present value, 433
Pressure, 426
Primary trigonometric function, 53
Principal n-th root, A-9
Principal argument, A-3
Principal square root, A-8
Prism, 394
Probability density function, 440, 441
Probability function, 437
Probability, 436
Product of inertia, 865
Product of complex numbers, A-5
Product rule, 111

Projectile, 632
Projection of a vector, 582
Prolate cycloid, 478
Prolate spheroid, 413, 906
Proper integral, 363
Pyramid, 402
Pythagorean identity, 48

Quadrant, 11
Quadratic equation, 222
Quadratic form, 616
Quadratic formula, A-17
Quadric surface, 600
Quotient rule, 114
Quotient

of complex numbers, A-7

Radial component, 668
Radian, 46
Radius of convergence, 533
Radius of gyration, 861
Radius

of a circle, 17
of curvature, 651

Radix point, 258
Random variable

continuous, 437, 440
discrete, 437

Range
of a function, 24, 678

Rate of change, 133
average, 133

instantaneous, 133
seen by a moving observer, 729

Ratio test, 521, 567
Rational function, 39, 250, 340
Rational number, 4, A-1
Real axis, A-3
Real line, 3
Real numbers, 3, A-1

completeness of, 4
Real part, A-2
Rearrangement of series, 530
Reciprocal rule, 112
Reciprocal

of a complex number, A-7
Rectangular hyperbola, 22, 468
Rectifiable curve, 407, 646
Recurrence relation, 1042, 1043
Reduction formula, 338
Refinement of a partition, 303, A-27
Reflection

by a hyperbola, 469
by a line, 29
by a parabola, 20, 465
by a straight line, 464
by an ellipse, 466

Region
bounded, 363

Regression line, 786
Regular domain, 821, 933
Regular singular point

of a DE, 1043
Related rates, 216
Relative change, 132
Relative maximum, 753
Relative minimum, 753
Removable discontinuity, 83
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Representation
of a function by series, 542

Resonance, 1028
Richardson extrapolation, 384
Riemann integral, 306
Riemann integral, A-29
Riemann sum, 898

for a double integral, 816
general, 305
upper and lower, 302, A-27

Right continuous function, 80
Right-circular cone, 462

axis, 462
nappe, 462
semi-vertical angle, 462
vertex, 462

Right-circular cylinder, 394
Right limit, 68, 90
Rise, 13
Rolle’s Theorem, 142
Romberg integration, 384
Root of an equation, 225
Root test, 522
Root

of a polynomial, 41
of an equation, 85

Rotating frame, 638
Round-off error, 31, 284
Row vector, 609
Ruled surface, 602
Rules for inequalities, 4
Run, 13
Runge–Kutta method, 1014

Saddle point, 754
Saddle

for a 2-D linear system, 1052
Sample space, 436
Scalar field, 867
Scalar multiplication, 576
Scalar potential, 874
Scalar product, 581
Scalar projection, 582
Scalar triple product, 590
Scale factors, 955
Scaling, 20
Secant line, 61, 96
Secant function, 53
Sech, 202
Second derivative test, 245, 755

for constrained extrema, 774
Second derivative, 127
Secondary trigonometric function, 53
Sector of a circle, 47
Self-inverse, 169
Semi-conjugate axis, 468
Semi-focal separation

of a hyperbola, 468
of an ellipse, 466

Semi-latus rectum, 472
Semi-major axis, 466
Semi-minor axis, 466
Semi-transverse axis, 468
Semidefinite

positive or negative, 616
Sensitivity, 134
Separable differential equation, 450, 1004
Separatrix, 1050
Sequence, 500

bounded, 501
convergent, 502
divergent, 503
of partial sums, 509

Series, 508
asymptotic, 568
Fourier, 561, 788
geometric, 509
harmonic, 512
Maclaurin, 543
positive, 515
power, 531
representation of a function, 542
solutions of a DE, 1041
Taylor, 543
telescoping, 512

Set
bounded, 753
convex, 763
open, 574

Shell
cylindrical, 398
spherical, 414

Shift, 20
Shifting Principle

for Laplace transforms, 1036
Sigma notation, 291
Sign

of a permutation, 968
Signum function, 36
Simple closed curve, 644, 890
Simple harmonic motion, 129, 208

differential equation of, 209
Simply connected domain, 890
Simpson’s Rule, 379
Sine Law, 56
Sine, 47
Singular matrix, 611
Singular point, 101, 753

of a DE, 1043
of an Euler equation, 1023

Sinh function, 200
Sink, 880
Sketching graphs, 251
Slicing, 394

volumes by, 402
Slope field, 1009
Slope

of a curve, 98
of a parametric curve, 480
of a polar curve, 494

Smooth boundary
of a manifold, 987

Smooth curve, 98, 407, 644
Smooth manifold, 978
Smooth surface, 898
Smooth

arc, 883
parametric curve, 480

Snell’s Law, 268
Solenoidal vector field, 925
Solid angle, 962
Solution

of a differential equation, 152
Solution curve, 1009

of a differential equation, 1006
Solve routines, 229
Source, 880

Special functions, 361

Speed, 156, 630

angular, 637, 861

Sphere, 600

area of, 411

Spherical coordinates, 605, 952

Spheroid, 413, 906

Spline, 460

Square root function, 25

Square Root Rule, 115

Squeeze Theorem, 69

Stability

of a floating object, 425

Stable

fixed point, 1052

Stadard basis, 576, 577

in n-space, 583

Standard deviation, 439, 442

Standard volume problem, 815

Star-like domain, 925

State

equation of, 719

function, 719

Statistical weight, 807

Steiner’s problem, 813

Steradian, 962

Stirling’s Formula, 551

Stokes Theorem, 940, 996

Generalized, 992

Straight line, 13

parametric equations of, 474

point-slope equation, 15

slope-intercept equation, 15

two intercept equation, 17

Streamline, 869

Strict parametrization

of a manifold, 981

Subspace, 611

Substitution

in a definite integral, 322

method of, 320

Subtraction

of functions, 33

Sum

of a series, 509

Summation by parts, 567

Summation formulas, 293

Sunrise and sunset, 642

Supplementary angles, 49

Supremum, A-23

Surface area element, 856

vector, 908

Surface area, 484

Surface integral, 898

Surface, 679

area element, 411

closed, 897

composite, 897

coordinate, 953

equipotential, 876

of revolution, 410

oriented, 907

parametric, 895

ruled, 602

smooth, 898

Symmetric matrix, 608
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System
of equations, 735
finding roots with Maple, 802

Tail

of a probability density, 448

of a series, 513

Tan �=2 substitution, 354

Tangent line, 61

nonvertical, 97

to a parametric curve, 481

vertical, 98

Tangent plane, 693

approximation using, 713

equation of, 694

Tangent space

to a manifold, 980

Tangent-line approximation, 270

Tangent

function, 53

unit vector, 650

Tangential acceleration, 660

Tanh, 202

Tautochrone, 477

Taylor approximation

of implicit functions, 748

Taylor polynomial, 275

in several variables, 745, 746

Taylor series, 543

multivariable, 745

Taylor’s formula, 277

approximating integrals with, 383

multivariable, 745

Taylor’s Theorem, 278

integral remainder, 549

Lagrange remainder, 549

Telescoping series, 512

Tetrahedron, 592

Thermodynamics, 719, 737

Time-shift, 210

Topographic map, 680

Topology, 574

Torque, 638

Torricelli’s Law, 289

Torsion, 655

Torus, 399

Track design, 661

Tractrix curve, 461

Trajectory, 1045

of a vector field, 869

of a differential equation, 1046

Transcendental function, 166, 179

Transform

Fourier, 1032

integral, 1032

inverse Laplace, 1033

Laplace, 1032

Transformation, 717, 848
inverse, 838
of plane coordinates, 837

Transpose, 608
Transverse axis, 468
Transverse component, 668
Trapezoid, 372
Trapezoid Rule, 373

error estimate, 375
Trefoil knot, 897
Triangle inequality, 8, 584, 819

for the definite integral, 308
Trigonometric function, 53
Trigonometric polynomial, 788
Trigonometry, 55
Triple integral, 843
Triple product

scalar, 590
vector, 592

Truncation error, 284
Tube

around a curve, 897

Ultimate
property of a sequence, 502

Undetermined coefficients, 356
method of, 1025

Uniform continuity, A-30
Uniform distribution, 440
Union, 7
Unit binormal, 654
Unit normal field

to a surface, 907
Unit normal, 652
Unit principal normal, 652
Unit tangent vector, 650
Unstable

fixed point, 1052
Upper bound, A-23

for a sequence, 501

Van der Pol equation, 872
Variable of integration, 304
Variable

extensive, 719
intensive, 720
of a function, 24

Variance, 439, 442
Variation of parameters

method of, 1029
Vector addition, 575
Vector area element

on a surface, 908
Vector field, 867

conservative, 925
in polar coordinates, 871
irrotational, 925
smooth, 867
solenoidal, 925
trajectories, 869

Vector-valued function, 629
Vector, 575

calculations with Maple, 619
cross product, 585
differential identities, 923
dot product, 581
in n-space, 583
normal, 693
position, 576
potential, 925
projection, 582
row or column, 609
triple product, 592

Velocity field
of a rotating solid, 869

Velocity, 128, 156, 630
angular, 637
average, 59, 156, 630
escape, 430
instantaneous, 60
polar components of, 668

Vertex
of a hyperbola, 468
of a parabola, 19, 463

Vertical asymptote, 247
Vertical tangent line, 98
Volume element, 956

in cylindrical coordinates, 850
in spherical coordinates, 852

Volume
by slicing, 394, 402
element, 395
of a k-parallelogram, 982
of a ball, 396
of a cone, 396
of a general cone, 935
of a torus, 399
of an ellipsoid, 405

Wallis Product, 340
Wave equation, 701
Wave

spherically expanding, 751
Wedge Product, 967, 969
Winding number, 895
Witch of Agnesi, 479
Work, 427, 888

element of, 888

x-simple domain, 821, 933

y-simple domain, 821, 933

z-simple domain, 933
Zero of a function, 225
Zero vector, 576
Zero

of a function, 799
of a polynomial, 41
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Representation
of a function by series, 542

Resonance, 1028
Richardson extrapolation, 384
Riemann integral, 306
Riemann integral, A-29
Riemann sum, 898

for a double integral, 816
general, 305
upper and lower, 302, A-27

Right continuous function, 80
Right-circular cone, 462

axis, 462
nappe, 462
semi-vertical angle, 462
vertex, 462

Right-circular cylinder, 394
Right limit, 68, 90
Rise, 13
Rolle’s Theorem, 142
Romberg integration, 384
Root of an equation, 225
Root test, 522
Root

of a polynomial, 41
of an equation, 85

Rotating frame, 638
Round-off error, 31, 284
Row vector, 609
Ruled surface, 602
Rules for inequalities, 4
Run, 13
Runge–Kutta method, 1014

Saddle point, 754
Saddle

for a 2-D linear system, 1052
Sample space, 436
Scalar field, 867
Scalar multiplication, 576
Scalar potential, 874
Scalar product, 581
Scalar projection, 582
Scalar triple product, 590
Scale factors, 955
Scaling, 20
Secant line, 61, 96
Secant function, 53
Sech, 202
Second derivative test, 245, 755

for constrained extrema, 774
Second derivative, 127
Secondary trigonometric function, 53
Sector of a circle, 47
Self-inverse, 169
Semi-conjugate axis, 468
Semi-focal separation

of a hyperbola, 468
of an ellipse, 466

Semi-latus rectum, 472
Semi-major axis, 466
Semi-minor axis, 466
Semi-transverse axis, 468
Semidefinite

positive or negative, 616
Sensitivity, 134
Separable differential equation, 450, 1004
Separatrix, 1050
Sequence, 500

bounded, 501
convergent, 502
divergent, 503
of partial sums, 509

Series, 508
asymptotic, 568
Fourier, 561, 788
geometric, 509
harmonic, 512
Maclaurin, 543
positive, 515
power, 531
representation of a function, 542
solutions of a DE, 1041
Taylor, 543
telescoping, 512

Set
bounded, 753
convex, 763
open, 574

Shell
cylindrical, 398
spherical, 414

Shift, 20
Shifting Principle

for Laplace transforms, 1036
Sigma notation, 291
Sign

of a permutation, 968
Signum function, 36
Simple closed curve, 644, 890
Simple harmonic motion, 129, 208

differential equation of, 209
Simply connected domain, 890
Simpson’s Rule, 379
Sine Law, 56
Sine, 47
Singular matrix, 611
Singular point, 101, 753

of a DE, 1043
of an Euler equation, 1023

Sinh function, 200
Sink, 880
Sketching graphs, 251
Slicing, 394

volumes by, 402
Slope field, 1009
Slope

of a curve, 98
of a parametric curve, 480
of a polar curve, 494

Smooth boundary
of a manifold, 987

Smooth curve, 98, 407, 644
Smooth manifold, 978
Smooth surface, 898
Smooth

arc, 883
parametric curve, 480

Snell’s Law, 268
Solenoidal vector field, 925
Solid angle, 962
Solution

of a differential equation, 152
Solution curve, 1009

of a differential equation, 1006
Solve routines, 229
Source, 880

Special functions, 361

Speed, 156, 630

angular, 637, 861

Sphere, 600

area of, 411

Spherical coordinates, 605, 952

Spheroid, 413, 906

Spline, 460

Square root function, 25

Square Root Rule, 115

Squeeze Theorem, 69

Stability

of a floating object, 425

Stable

fixed point, 1052

Stadard basis, 576, 577

in n-space, 583

Standard deviation, 439, 442

Standard volume problem, 815

Star-like domain, 925

State

equation of, 719

function, 719

Statistical weight, 807

Steiner’s problem, 813

Steradian, 962

Stirling’s Formula, 551

Stokes Theorem, 940, 996

Generalized, 992

Straight line, 13

parametric equations of, 474

point-slope equation, 15

slope-intercept equation, 15

two intercept equation, 17

Streamline, 869

Strict parametrization

of a manifold, 981

Subspace, 611

Substitution

in a definite integral, 322

method of, 320

Subtraction

of functions, 33

Sum

of a series, 509

Summation by parts, 567

Summation formulas, 293

Sunrise and sunset, 642

Supplementary angles, 49

Supremum, A-23

Surface area element, 856

vector, 908

Surface area, 484

Surface integral, 898

Surface, 679

area element, 411

closed, 897

composite, 897

coordinate, 953

equipotential, 876

of revolution, 410

oriented, 907

parametric, 895

ruled, 602

smooth, 898

Symmetric matrix, 608
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System
of equations, 735
finding roots with Maple, 802

Tail

of a probability density, 448

of a series, 513

Tan �=2 substitution, 354

Tangent line, 61

nonvertical, 97

to a parametric curve, 481

vertical, 98

Tangent plane, 693

approximation using, 713

equation of, 694

Tangent space

to a manifold, 980

Tangent-line approximation, 270

Tangent

function, 53

unit vector, 650

Tangential acceleration, 660

Tanh, 202

Tautochrone, 477

Taylor approximation

of implicit functions, 748

Taylor polynomial, 275

in several variables, 745, 746

Taylor series, 543

multivariable, 745

Taylor’s formula, 277

approximating integrals with, 383

multivariable, 745

Taylor’s Theorem, 278

integral remainder, 549

Lagrange remainder, 549

Telescoping series, 512

Tetrahedron, 592

Thermodynamics, 719, 737

Time-shift, 210

Topographic map, 680

Topology, 574

Torque, 638

Torricelli’s Law, 289

Torsion, 655

Torus, 399

Track design, 661

Tractrix curve, 461

Trajectory, 1045

of a vector field, 869

of a differential equation, 1046

Transcendental function, 166, 179

Transform

Fourier, 1032

integral, 1032

inverse Laplace, 1033

Laplace, 1032

Transformation, 717, 848
inverse, 838
of plane coordinates, 837

Transpose, 608
Transverse axis, 468
Transverse component, 668
Trapezoid, 372
Trapezoid Rule, 373

error estimate, 375
Trefoil knot, 897
Triangle inequality, 8, 584, 819

for the definite integral, 308
Trigonometric function, 53
Trigonometric polynomial, 788
Trigonometry, 55
Triple integral, 843
Triple product

scalar, 590
vector, 592

Truncation error, 284
Tube

around a curve, 897

Ultimate
property of a sequence, 502

Undetermined coefficients, 356
method of, 1025

Uniform continuity, A-30
Uniform distribution, 440
Union, 7
Unit binormal, 654
Unit normal field

to a surface, 907
Unit normal, 652
Unit principal normal, 652
Unit tangent vector, 650
Unstable

fixed point, 1052
Upper bound, A-23

for a sequence, 501

Van der Pol equation, 872
Variable of integration, 304
Variable

extensive, 719
intensive, 720
of a function, 24

Variance, 439, 442
Variation of parameters

method of, 1029
Vector addition, 575
Vector area element

on a surface, 908
Vector field, 867

conservative, 925
in polar coordinates, 871
irrotational, 925
smooth, 867
solenoidal, 925
trajectories, 869

Vector-valued function, 629
Vector, 575

calculations with Maple, 619
cross product, 585
differential identities, 923
dot product, 581
in n-space, 583
normal, 693
position, 576
potential, 925
projection, 582
row or column, 609
triple product, 592

Velocity field
of a rotating solid, 869

Velocity, 128, 156, 630
angular, 637
average, 59, 156, 630
escape, 430
instantaneous, 60
polar components of, 668

Vertex
of a hyperbola, 468
of a parabola, 19, 463

Vertical asymptote, 247
Vertical tangent line, 98
Volume element, 956

in cylindrical coordinates, 850
in spherical coordinates, 852

Volume
by slicing, 394, 402
element, 395
of a k-parallelogram, 982
of a ball, 396
of a cone, 396
of a general cone, 935
of a torus, 399
of an ellipsoid, 405

Wallis Product, 340
Wave equation, 701
Wave

spherically expanding, 751
Wedge Product, 967, 969
Winding number, 895
Witch of Agnesi, 479
Work, 427, 888

element of, 888

x-simple domain, 821, 933

y-simple domain, 821, 933

z-simple domain, 933
Zero of a function, 225
Zero vector, 576
Zero

of a function, 799
of a polynomial, 41
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Adams and Essex CCC9 and CoSV9 endpaper 1

DIFFERENTIATION RULES
d

dx

�

f .x/C g.x/

�

D f
0
.x/C g

0
.x/

d

dx

�

cf .x/

�

D cf
0
.x/

d

dx

�

f .x/g.x/

�

D f
0
.x/g.x/ C f .x/g

0
.x/

d

dx

�

1

f .x/

�

D �

f 0.x/
�

f .x/

�2

d

dx

�

f .x/

g.x/

�

D

g.x/f 0.x/ � f .x/g0.x/
�

g.x/

�2

d

dx
f

�

g.x/

�

D f
0
�

g.x/

�

g
0
.x/

ELEMENTARY DERIVATIVES
d

dx

1

x
D �

1

x2

d

dx

p

x D

1

2
p

x

d

dx
x

r
D rx

r�1

d

dx
e

x
D e

x d

dx
a

x
D a

x ln a .a > 0/
d

dx
ln x D

1

x
.x > 0/

d

dx
sin x D cos x

d

dx
cos x D � sinx

d

dx
tan x D sec2

x

d

dx
sec x D secx tanx

d

dx
csc x D � cscx cotx

d

dx
cot x D � csc2

x

d

dx
sin�1

x D

1
p

1� x2

d

dx
tan�1

x D

1

1C x2

d

dx
jxj D sgnx D

x

jxj

TRIGONOMETRIC IDENTITIES
sin2

x C cos2
x D 1 sin.�x/ D � sinx cos.�x/ D cosx

sec2
x D 1C tan2

x sin.� � x/ D sinx cos.� � x/ D � cosx

csc2
x D 1C cot2 x sin

�

�

2
� x

�

D cosx cos
�

�

2
� x

�

D sin x

sin.x ˙ y/ D sin x cosy ˙ cosx siny cos.x ˙ y/ D cosx cosy � sin x sin y tan.x ˙ y/ D

tanx ˙ tan y

1� tan x tan y

sin 2x D 2 sin x cos x

cos 2x D 2 cos2
x � 1 D 1� 2 sin2

x
sin2

x D

1 � cos 2x

2
cos2

x D

1C cos 2x

2

QUADRATIC FORMULA

If Ax
2

CBx C C D 0, then x D

�B ˙

p

B2
� 4AC

2A
.

GEOMETRIC FORMULAS

A D area,

b D base,

h D height,

C D circumference,

V D volume,

S D surface area

Rectangle Parallelogram Triangles

Trapezoid Circle Circular Cylinder Sphere

Prism Circular Cone Pyramid

b

h

b

h

b

h h

b

A D bh A D bh A D
1
2
bh

b1

h

b2

A D
1
2
.b1 C b2/h A D �r2; C D 2�r

r

r

h

A

V D Ah D �r
2
h; S D Ch D 2�rh

(cylindrical wall)
V D

4
3
�r3; S D 4�r2

r

h

r

h

A
A

A

h

V D Ah V D
1
3
AhV D

1
3
Ah D

1
3
�r

2
h; S D �r

p

r2
C h2 (conical wall)
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VECTOR IDENTITIES
If u D u1i C u2j C u3k

v D v1i C v2j C v3k

w D w1i C w2j C w3k

then (dot product) u � v D u1v1 C u2v2 C u3v3

(cross product) u � v D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .u2v3 � u3v2/i C .u3v1 � u1v3/j C .u1v2 � u2v1/k

length of u D juj D

p

u � u D

q

u
2
1 C u

2
2 C u

2
3 angle between u and v D cos�1

�

u � v

jujjvj

�

triple product identities u � .v � w/ D v � .w � u/ D w � .u � v/ u � .v � w/ D .u � w/v � .u � v/w

IDENTITIES INVOLVING GRADIENT, DIVERGENCE, CURL, AND LAPLACIAN

r D i
@

@x
C j

@

@y
C k

@

@z
(“del” or “nabla” operator) F.x; y; z/ D F1.x; y; z/ i C F2.x; y; z/ j C F3.x; y; z/ k

r�.x; y; z/ D grad�.x; y; z/ D

@�

@x
i C

@�

@y
j C

@�

@z
k r � F.x; y; z/ D div F.x; y; z/ D

@F1

@x
C

@F2

@y
C

@F3

@z

r � F.x; y; z/ D curl F.x; y; z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

@

@x

@

@y

@

@z

F1 F2 F3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

�

@F3

@y
�

@F2

@z

�

i C

�

@F1

@z
�

@F3

@x

�

j C

�

@F2

@x
�

@F1

@y

�

k

r.� / D �r C  r� r � .F � G/ D .r � F/ � G � F � .r � G/

r � .�F/ D .r�/ � F C � .r � F/ r � .F � G/ D F.r � G/ � G .r � F/ � .F �r /G C .G �r /F

r � .�F/ D .r�/� F C � .r � F/ r.F � G/ D F � .r � G/C G � .r � F/C .F �r /G C .G �r /F

r � .r�/ D 0 .curl grad D 0/ r � .r � F/ D 0 .div curl D 0/

r
2
�.x; y; z/ D r � r�.x; y; z/ D div grad� D

@
2
�

@x2
C

@
2
�

@y2
C

@
2
�

@z2
r � .r � F/ D r.r � F/ � r

2F .curl curl D grad div � laplacian/

VERSIONS OF THE FUNDAMENTAL THEOREM OF CALCULUS
Z b

a

f
0
.t/ dt D f .b/ � f .a/ (the one-dimensional Fundamental Theorem)

Z

C

grad� � dr D �

�

r.b/
�

� �

�

r.a/
�

if C is the curve r D r.t/, .a � t � b/.

ZZ

R

�

@F2

@x
�

@F1

@y

�

dA D

I

C

F � dr D

I

C

F1.x; y/ dx C F2.x; y/ dy where C is the positively oriented boundary of R (Green’s Theorem)

ZZ

S

curl F � ONdS D

I

C

F � dr D

I

C

F1.x; y; z/ dx C F2.x; y; z/ dy C F3.x; y; z/ dz where C is the oriented boundary of S . (Stokes’s Theorem)

Three-dimensional versions: S is the closed boundary of D, with outward normal ON
ZZZ

D

div F dV D

Z



Z

S

F �
ONdS Divergence Theorem

ZZZ

D

curl F dV D �

Z



Z

S

F �
ONdS

ZZZ

D

grad� dV D

Z



Z

S

� ON dS

FORMULAS RELATING TO CURVES IN 3-SPACE
Curve: r D r.t/ D x.t/i C y.t/j C z.t/k Velocity: v D

dr

dt
D v OT Speed: v D jvj D

ds

dt

Arc length: s D

Z t

t0

v dt Acceleration: a D

dv

dt
D

d2r

dt2
Tangential and normal components: a D

dv

dt

OT C v
2
� ON

Unit tangent: OT D

v

v
Binormal: OB D

v � a

jv � aj

Normal: ON D
OB �

OT D

d OT=dt

jd OT=dt j

Curvature: � D

jv � aj

v3
Radius of curvature: � D

1

�
Torsion: � D

.v � a/ � .da=dt/

jv � aj
2

The Frenet-Serret formulas:
d OT

ds
D � ON,

d ON

ds
D �� OT C � OB,

d OB

ds
D �� ON
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ORTHOGONAL CURVILINEAR COORDINATES
transformation: x D x.u; v; w/; y D y.u; v; w/; z D z.u; v; w/ position vector: r D x.u; v; w/i C y.u; v; w/j C z.u; v; w/k

scale factors: hu D

ˇ

ˇ

ˇ

ˇ

@r

@u

ˇ

ˇ

ˇ

ˇ

; hv D

ˇ

ˇ

ˇ

ˇ

@r

@v

ˇ

ˇ

ˇ

ˇ

; hw D

ˇ

ˇ

ˇ

ˇ

@r

@w

ˇ

ˇ

ˇ

ˇ

local basis: Ou D

1

hu

@r

@u
; Ov D

1

hv

@r

@v
; Ow D

1

hw

@r

@w

volume element: dV D huhvhw du dv dw

scalar field: f .u; v; w/ vector field: F.u; v; w/ D Fu.u; v; w/ Ou C Fv.u; v; w/Ov C Fw.u; v; w/ Ow

gradient: rf D

1

hu

@f

@u
Ou C

1

hv

@f

@v
Ov C

1

hw

@f

@w
Ow divergence: r�F D

1

huhvhw

�

@

@u

�

hvhwFu

�

C

@

@v

�

huhwFv

�

C

@

@w

�

huhvFw

�

�

r
2
f D

1

huhvhw

�

@

@u

�

hvhw

hu

@f

@u

�

C

@

@v

�

huhw

hv

@f

@v

�

C

@

@w

�

huhv

hw

@f

@w

��

curl: r � F D

1

huhvhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

hu Ou hv Ov hw Ow

@

@u

@

@v

@

@w

Fuhu Fvhv Fwhw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

PLANE POLAR COORDINATES
transformation: x D r cos �; y D r sin � position vector: r D r cos � i C r sin � j

scale factors: hr D

ˇ

ˇ

ˇ

ˇ

@r

@r

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D r local basis: Or D cos � i C sin � j; O� D � sin � i C cos � j

area element: dA D r dr d�

scalar field: f .r; �/ vector field: F.r; �/ D Fr .r; �/Or C F� .r; �/
O�

gradient: rf D

@f

@r
Or C

1

r

@f

@�

O� divergence: r � F D

@Fr

@r
C

1

r
Fr C

1

r

@F�

@�

laplacian: r
2
f D

@
2
f

@r2
C

1

r

@f

@r
C

1

r2

@
2
f

@�2
curl: r � F D

�

@F�

@r
C

F�

r
�

1

r

@Fr

@�

�

k

CYLINDRICAL COORDINATES
transformation: x D r cos �; y D r sin �; z D z position vector: r D r cos � i C r sin � j C zk

scale factors: hr D

ˇ

ˇ

ˇ

ˇ

@r

@r

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D r; hz D

ˇ

ˇ

ˇ

ˇ

@r

@z

ˇ

ˇ

ˇ

ˇ

D 1 local basis: Or D cos � i C sin � j; O� D � sin � i C cos � j; Oz D k

volume element: dV D r dr d� dz surface area element (on r D a): dS D a d� dz

scalar field: f .r; �; z/ vector field: F.r; �; z/ D Fr.r; �; z/Or C F� .r; �; z/
O� C Fz.r; �; z/k

gradient: rf D

@f

@r
Or C

1

r

@f

@�

O� C

@f

@z
k divergence: r � F D

@Fr

@r
C

1

r
Fr C

1

r

@F�

@�
C

@Fz

@z

laplacian: r
2
f D

@
2
f

@r2
C

1

r

@f

@r
C

1

r2

@
2
f

@�2
C

@
2
f

@z2
curl: r � F D

1

r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Or r O� k

@

@r

@

@�

@

@z

Fr rF� Fz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

SPHERICAL COORDINATES
transformation: x D R sin� cos �; y D R sin� sin �; z D R cos� position vector: r D R sin� cos � i CR sin� sin � j CR cos�k

scale factors: hR D

ˇ

ˇ

ˇ

ˇ

@r

@R

ˇ

ˇ

ˇ

ˇ

D 1; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R; h� D

ˇ

ˇ

ˇ

ˇ

@r

@�

ˇ

ˇ

ˇ

ˇ

D R sin�

local basis: OR D sin� cos � i C sin� sin � j C cos� k; O� D cos� cos � i C cos� sin � j � sin� k; O� D � sin � i C cos � j

volume element: dV D R
2 sin� dR d� d� surface area element (on R D a): dS D a

2 sin� d� d�

scalar field: f .R; �; �/ vector field: F.R; �; �/ D FR.R; �; �/
OR C F�.R; �; �/

O� C F� .R; �; �/
O�

gradient: rf D

@f

@R

OR C

1

R

@f

@�

O� C

1

R sin�

@f

@�

O� divergence: r � F D

@FR

@R
C

2

R
FR C

1

R

@F�

@�
C

cot�

R
F� C

1

R sin�

@F�

@�

laplacian: r
2
f D

@2f

@R2
C

2

R

@f

@R
C

1

R2

@2f

@�2
C

cot�

R2

@f

@�
C

1

R2 sin2
�

@2f

@�2
curl: r � F D

1

R2 sin�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

OR R O� R sin� O�

@

@R

@

@�

@

@�

FR RF� R sin�F�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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INTEGRATION RULES
Z

.Af .x/C Bg.x// dx D A

Z

f .x/ dx C B

Z

g.x/ dx

Z

f
0
.g.x// g

0
.x/ dx D f .g.x// C C

Z

U.x/ dV.x/ D U.x/ V .x/ �

Z

V.x/ dU.x/

Z b

a

f
0
.x/ dx D f .b/ � f .a/

d

dx

Z x

a

f .t/ dt D f .x/

ELEMENTARY INTEGRALS
Z

x
r
dx D

1

r C 1
x

rC1
C C if r ¤ �1

Z

dx

x
D ln jxj C C

Z

e
x
dx D e

x
C C

Z

a
x
dx D

ax

lna
C C

Z

sin x dx D � cos x C C

Z

cos x dx D sin x C C

Z

sec2
x dx D tan x C C

Z

csc2
x dx D � cot x C C

Z

sec x tan x dx D sec x C C

Z

csc x cot x dx D � csc x C C

Z

tan x dx D ln j secxj C C

Z

cot x dx D ln j sin xj C C

Z

sec x dx D ln j secx C tanxj C C

Z

csc x dx D ln j cscx � cot xj C C

Z

dx
p

a2
� x2

D sin�1 x

a
C C .a > 0; jxj < a/

Z

dx

a2
C x2

D

1

a
tan�1 x

a
C C .a > 0/

Z

dx

a2
� x2

D

1

2a
ln

ˇ

ˇ

ˇ

ˇ

x C a

x � a

ˇ

ˇ

ˇ

ˇ

C C .a > 0/

Z

dx

x
p

x2
� a2

D

1

a
sec�1

ˇ

ˇ

ˇ

x

a

ˇ

ˇ

ˇ C C .a > 0; jxj > a/

TRIGONOMETRIC INTEGRALS
Z

sin2
x dx D

x

2
�

1

4
sin 2x C C

Z

cos2
x dx D

x

2
C

1

4
sin 2x C C

Z

tan2
x dx D tanx � x C C

Z

cot2 x dx D � cot x � x C C

Z

sec3
x dx D

1

2
secx tanx C

1

2
ln j sec x C tanxj C C

Z

csc3
x dx D �

1

2
cscx cot x C

1

2
ln j csc x � cot xj C C

Z

sinax sin bx dx D

sin.a � b/x

2.a � b/
�

sin.aC b/x

2.aC b/
C C if a2

¤ b
2

Z

cosax cos bx dx D

sin.a � b/x

2.a � b/
C

sin.aC b/x

2.aC b/
C C if a2

¤ b
2

Z

sinax cos bx dx D �

cos.a � b/x

2.a � b/
�

cos.aC b/x

2.aC b/
C C if a2

¤ b
2

Z

sinn
x dx D �

1

n
sinn�1

x cosx C

n � 1

n

Z

sinn�2
x dx

Z

cosn
x dx D

1

n
cosn�1

x sinx C

n � 1

n

Z

cosn�2
x dx

Z

tann
x dx D

1

n � 1
tann�1

x �

Z

tann�2
x dx if n ¤ 1

Z

cotn x dx D

�1

n � 1
cotn�1

x �

Z

cotn�2
x dx if n ¤ 1

Z

secn
x dx D

1

n � 1
secn�2

x tanx C

n � 2

n � 1

Z

secn�2
x dx if n ¤ 1

Z

cscn
x dx D

�1

n � 1
cscn�2

x cot x C

n � 2

n � 1

Z

cscn�2
x dx if n ¤ 1

Z

sinn
x cosm

x dx D �

sinn�1
x cosmC1

x

nCm
C

n � 1

nCm

Z

sinn�2
x cosm

x dx if n ¤ �m

Z

sinn
x cosm

x dx D

sinnC1
x cosm�1 x

nCm
C

m � 1

nCm

Z

sinn
x cosm�2

x dx if m ¤ �n

Z

x sin x dx D sinx � x cosx C C

Z

x cos x dx D cos x C x sinx C C

Z

x
n sin x dx D �x

n cosx C n

Z

x
n�1 cos x dx

Z

x
n cos x dx D x

n sin x � n
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INTEGRALS INVOLVING
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MISCELLANEOUS ALGEBRAIC INTEGRALS
Z

x.ax C b/
�1
dx D

x

a
�

b

a2
ln jax C bj C C

Z

x.ax C b/
�2
dx D

1

a2

�

ln jax C bj C

b

ax C b

�

C C

Z

x.ax C b/
n
dx D

.ax C b/nC1

a2

�

ax C b

nC 2
�

b

nC 1

�

C C if n ¤ �1; �2

Z

dx

.a2
˙ x2/n

D

1

2a2.n � 1/

�

x

.a2
˙ x2/n�1

C .2n � 3/

Z

dx

.a2
˙ x2/n�1

�

if n ¤ 1

Z

x

p

ax C b dx D

2

15a2
.3ax � 2b/.ax C b/

3=2
C C

Z

x
n
p

ax C b dx D

2

a.2nC 3/

�

x
n
.ax C b/

3=2
� nb

Z

x
n�1

p

ax C b dx

�

Z

x dx
p

ax C b
D

2

3a2
.ax � 2b/

p

ax C b C C

Z

xn dx
p

ax C b
D

2

a.2nC 1/

�

x
n
p

ax C b � nb

Z

xn�1

p

ax C b
dx

�

Z

dx

x
p

ax C b
D

1
p

b
ln

ˇ

ˇ

ˇ

ˇ

ˇ

p

ax C b �

p

b
p

ax C b C

p

b

ˇ

ˇ

ˇ

ˇ

ˇ

C C if b > 0

Z

dx

x
p

ax C b
D

2
p

�b
tan�1

r

ax C b

�b
C C if b < 0

Z

dx

xn
p

ax C b
D �

p

ax C b

b.n � 1/xn�1
�

.2n � 3/a

.2n � 2/b

Z

dx

xn�1
p

ax C b
if n ¤ 1

Z

p

2ax � x2 dx D

x � a

2

p

2ax � x2
C

a
2

2
sin�1 x � a

a
C C .a > 0/

Z

dx
p

2ax � x2
D sin�1 x � a

a
C C .a > 0/

Z

x
n
p

2ax � x2 dx D �

x
n�1

.2ax � x
2
/
3=2

nC 2
C

.2nC 1/a

nC 2

Z

x
n�1

p

2ax � x2 dx

Z

x
n
dx

p

2ax � x2
D �

x
n�1

n

p

2ax � x2
C

.2n � 1/a

n

Z

x
n�1

dx
p

2ax � x2

Z

p

2ax � x2

x
dx D

p

2ax � x2
C a sin�1 x � a

a
C C .a > 0/

Z

p

2ax � x2

xn
dx D

.2ax � x
2
/
3=2

.3 � 2n/axn
C

n � 3

.2n � 3/a

Z

p

2ax � x2

xn�1
dx

Z

dx

xn
p

2ax � x2
D

p

2ax � x2

a.1 � 2n/xn
C

n � 1

.2n � 1/a

Z

dx

xn�1
p

2ax � x2

Z

.

p

2ax � x2/
n
dx D

x � a

nC 1
.

p

2ax � x2/
n

C

na2

nC 1

Z

.

p

2ax � x2/
n�2

dx if n ¤ �1

Z

dx

.
p

2ax � x2/n
D

x � a

.n � 2/a2
.

p

2ax � x2/
2�n

C

n � 3

.n � 2/a2

Z

dx

.
p

2ax � x2/n�2
if n ¤ 2

DEFINITE INTEGRALS
Z 1

0

x
n
e

�x
dx D nŠ .n � 0/

Z 1

0

e
�ax2

dx D

1

2

r

�

a
a > 0

Z 1

0

xe
�ax2

dx D

1

2a
if a > 0

Z 1

0

x
n
e

�ax2

dx D

n � 1

2a

Z 1

0

x
n�2

e
�ax2

dx if a > 0; n � 2

Z �=2

0

sinn
x dx D

Z �=2

0

cosn
x dx D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 � 3 � 5 � � � .n � 1/

2 � 4 � 6 � � �n

�

2
if n is an even integer and n � 2

2 � 4 � 6 � � � .n � 1/

3 � 5 � 7 � � �n
if n is an odd integer and n � 3

9780134154367_Calculus_End_Paper   6 12/12/16   5:46 pm




	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	To the Student
	To the Instructor
	Acknowledgments
	What Is Calculus?
	P. Preliminaries
	P.1. Real Numbers and the Real Line
	Intervals
	The Absolute Value
	Equations and Inequalities Involving Absolute Values

	P.2. Cartesian Coordinates in the Plane
	Axis Scales
	Increments and Distances
	Graphs
	Straight Lines
	Equations of Lines

	P.3. Graphs of Quadratic Equations
	Circles and Disks
	Equations of Parabolas
	Reflective Properties of Parabolas
	Scaling a Graph
	Shifting a Graph
	Ellipses and Hyperbolas

	P.4. Functions and Their Graphs
	The Domain Convention
	Graphs of Functions
	Even and Odd Functions; Symmetry and Reflections
	Reflections in Straight Lines
	Defining and Graphing Functions with Maple

	P.5. Combining Functions to Make New Functions
	Sums, Differences, Products, Quotients, and Multiples
	Composite Functions
	Piecewise Defined Functions

	P.6. Polynomials and Rational Functions
	Roots, Zeros, and Factors
	Roots and Factors of Quadratic Polynomials
	Miscellaneous Factorings

	P.7. The Trigonometric Functions
	Some Useful Identities
	Some Special Angles
	The Addition Formulas
	Other Trigonometric Functions
	Maple Calculations
	Trigonometry Review


	1. Limits and Continuity
	1.1. Examples of Velocity, Growth Rate, and Area
	Average Velocity and Instantaneous Velocity
	The Growth of an Algal Culture
	The Area of a Circle

	1.2. Limits of Functions
	One-Sided Limits
	Rules for Calculating Limits
	The Squeeze Theorem

	1.3. Limits at Infinity and Infinite Limits
	Limits at Infinity
	Limits at Infinity for Rational Functions
	Infinite Limits
	Using Maple to Calculate Limits

	1.4. Continuity
	Continuity at a Point
	Continuity on an Interval
	There Are Lots of Continuous Functions
	Continuous Extensions and Removable Discontinuities
	Continuous Functions on Closed, Finite Intervals
	Finding Roots of Equations

	1.5. The Formal Definition of Limit
	Using the Definition of Limit to Prove Theorems
	Other Kinds of Limits

	Chapter Review

	2. Differentiation
	2.1. Tangent Lines and Their Slopes
	Normals

	2.2. The Derivative
	Some Important Derivatives
	Leibniz Notation
	Differentials
	Derivatives Have the Intermediate-Value Property

	2.3. Differentiation Rules
	Sums and Constant Multiples
	The Product Rule
	The Reciprocal Rule
	The Quotient Rule

	2.4. The Chain Rule
	Finding Derivatives with Maple
	Building the Chain Rule into Differentiation Formulas
	Proof of the Chain Rule (Theorem 6)

	2.5. Derivatives of Trigonometric Functions
	Some Special Limits
	The Derivatives of Sine and Cosine
	The Derivatives of the Other Trigonometric Functions

	2.6. Higher-Order Derivatives
	2.7. Using Differentials and Derivatives
	Approximating Small Changes
	Average and Instantaneous Rates of Change
	Sensitivity to Change
	Derivatives in Economics

	2.8. The Mean-Value Theorem
	Increasing and Decreasing Functions
	Proof of the Mean-Value Theorem

	2.9. Implicit Differentiation
	Higher-Order Derivatives
	The General Power Rule

	2.10. Antiderivatives and Initial-Value Problems
	Antiderivatives
	The Indefinite Integral
	Differential Equations and Initial-Value Problems

	2.11. Velocity and Acceleration
	Velocity and Speed
	Acceleration
	Falling Under Gravity

	Chapter Review

	3. Transcendental Functions
	3.1. Inverse Functions
	Inverting Non–One-to-One Functions
	Derivatives of Inverse Functions

	3.2. Exponential and Logarithmic Functions
	Exponentials
	Logarithms

	3.3. The Natural Logarithm and Exponential
	The Natural Logarithm
	The Exponential Function
	General Exponentials and Logarithms
	Logarithmic Differentiation

	3.4. Growth and Decay
	The Growth of Exponentials and Logarithms
	Exponential Growth and Decay Models
	Interest on Investments
	Logistic Growth

	3.5. The Inverse Trigonometric Functions
	The Inverse Sine (or Arcsine) Function
	The Inverse Tangent (or Arctangent) Function
	Other Inverse Trigonometric Functions

	3.6. Hyperbolic Functions
	Inverse Hyperbolic Functions

	3.7. Second-Order Linear DEs with Constant Coefficients
	Recipe for Solving ay” + by’ + cy = 0
	Simple Harmonic Motion
	Damped Harmonic Motion

	Chapter Review

	4. More Applications of Differentiation
	4.1. Related Rates
	Procedures for Related-Rates Problems

	4.2. Finding Roots of Equations
	Discrete Maps and Fixed-Point Iteration
	Newton’s Method
	“Solve” Routines

	4.3. Indeterminate Forms
	l’H^opital’s Rules

	4.4. Extreme Values
	Maximum and Minimum Values
	Critical Points, Singular Points, and Endpoints
	Finding Absolute Extreme Values
	The First Derivative Test
	Functions Not Defined on Closed, Finite Intervals

	4.5. Concavity and Inflections
	The Second Derivative Test

	4.6. Sketching the Graph of a Function
	Asymptotes
	Examples of Formal Curve Sketching

	4.7. Graphing with Computers
	Numerical Monsters and Computer Graphing
	Floating-Point Representation of Numbers in Computers
	Machine Epsilon and Its Effect on Figure 4.45
	Determining Machine Epsilon

	4.8. Extreme-Value Problems
	Procedure for Solving Extreme-Value Problems

	4.9. Linear Approximations
	Approximating Values of Functions
	Error Analysis

	4.10. Taylor Polynomials
	Taylor’s Formula
	Big-O Notation
	Evaluating Limits of Indeterminate Forms

	4.11. Roundoff Error, Truncation Error, and Computers
	Taylor Polynomials in Maple
	Persistent Roundoff Error
	Truncation, Roundoff, and Computer Algebra

	Chapter Review

	5. Integration
	5.1. Sums and Sigma Notation
	Evaluating Sums

	5.2. Areas as Limits of Sums
	The Basic Area Problem
	Some Area Calculations

	5.3. The Definite Integral
	Partitions and Riemann Sums
	The Definite Integral
	General Riemann Sums

	5.4. Properties of the Definite Integral
	A Mean-Value Theorem for Integrals
	Definite Integrals of Piecewise Continuous Functions

	5.5. The Fundamental Theorem of Calculus
	5.6. The Method of Substitution
	Trigonometric Integrals

	5.7. Areas of Plane Regions
	Areas Between Two Curves

	Chapter Review

	6. Techniques of Integration
	6.1. Integration by Parts
	Reduction Formulas

	6.2. Integrals of Rational Functions
	Linear and Quadratic Denominators
	Partial Fractions
	Completing the Square
	Denominators with Repeated Factors

	6.3. Inverse Substitutions
	The Inverse Trigonometric Substitutions
	Inverse Hyperbolic Substitutions
	Other Inverse Substitutions
	The tan( /2) Substitution

	6.4. Other Methods for Evaluating Integrals
	The Method of Undetermined Coefficients
	Using Maple for Integration
	Using Integral Tables
	Special Functions Arising from Integrals

	6.5. Improper Integrals
	Improper Integrals of Type I
	Improper Integrals of Type II
	Estimating Convergence and Divergence

	6.6. The Trapezoid and Midpoint Rules
	The Trapezoid Rule
	The Midpoint Rule
	Error Estimates

	6.7. Simpson’s Rule
	6.8. Other Aspects of Approximate Integration
	Approximating Improper Integrals
	Using Taylor’s Formula
	Romberg Integration
	The Importance of Higher-Order Methods
	Other Methods

	Chapter Review

	7. Applications of Integration
	7.1. Volumes by Slicing—Solids of Revolution
	Volumes by Slicing
	Solids of Revolution
	Cylindrical Shells

	7.2. More Volumes by Slicing
	7.3. Arc Length and Surface Area
	Arc Length
	The Arc Length of the Graph of a Function
	Areas of Surfaces of Revolution

	7.4. Mass, Moments, and Centre of Mass
	Mass and Density
	Moments and Centres of Mass
	Two- and Three-Dimensional Examples

	7.5. Centroids
	Pappus’s Theorem

	7.6. Other Physical Applications
	Hydrostatic Pressure
	Work
	Potential Energy and Kinetic Energy

	7.7. Applications in Business, Finance, and Ecology
	The Present Value of a Stream of Payments
	The Economics of Exploiting Renewable Resources

	7.8. Probability
	Discrete Random Variables
	Expectation, Mean, Variance, and Standard Deviation
	Continuous Random Variables
	The Normal Distribution
	Heavy Tails

	7.9. First-Order Differential Equations
	Separable Equations
	First-Order Linear Equations

	Chapter Review

	8. Conics, Parametric Curves, and Polar Curves
	8.1. Conics
	Parabolas
	The Focal Property of a Parabola
	Ellipses
	The Focal Property of an Ellipse
	The Directrices of an Ellipse
	Hyperbolas
	The Focal Property of a Hyperbola
	Classifying General Conics

	8.2. Parametric Curves
	General Plane Curves and Parametrizations
	Some Interesting Plane Curves

	8.3. Smooth Parametric Curves and Their Slopes
	The Slope of a Parametric Curve
	Sketching Parametric Curves

	8.4. Arc Lengths and Areas for Parametric Curves
	Arc Lengths and Surface Areas
	Areas Bounded by Parametric Curves

	8.5. Polar Coordinates and Polar Curves
	Some Polar Curves
	Intersections of Polar Curves
	Polar Conics

	8.6. Slopes, Areas, and Arc Lengths for Polar Curves
	Areas Bounded by Polar Curves
	Arc Lengths for Polar Curves

	Chapter Review

	9. Sequences, Series, and Power Series
	9.1. Sequences and Convergence
	Convergence of Sequences

	9.2. Infinite Series
	Geometric Series
	Telescoping Series and Harmonic Series
	Some Theorems About Series

	9.3. Convergence Tests for Positive Series
	The Integral Test
	Using Integral Bounds to Estimate the Sum of a Series
	Comparison Tests
	The Ratio and Root Tests
	Using Geometric Bounds to Estimate the Sum of a Series

	9.4. Absolute and Conditional Convergence
	The Alternating Series Test
	Rearranging the Terms in a Series

	9.5. Power Series
	Algebraic Operations on Power Series
	Differentiation and Integration of Power Series
	Maple Calculations

	9.6. Taylor and Maclaurin Series
	Maclaurin Series for Some Elementary Functions
	Other Maclaurin and Taylor Series
	Taylor’s Formula Revisited

	9.7. Applications of Taylor and Maclaurin Series
	Approximating the Values of Functions
	Functions Defined by Integrals
	Indeterminate Forms

	9.8. The Binomial Theorem and Binomial Series
	The Binomial Series
	The Multinomial Theorem

	9.9. Fourier Series
	Periodic Functions
	Fourier Series
	Convergence of Fourier Series
	Fourier Cosine and Sine Series

	Chapter Review

	10. Vectors and Coordinate Geometry in 3-Space
	10.1. Analytic Geometry in Three Dimensions
	Euclidean n-Space
	Describing Sets in the Plane, 3-Space, and n-Space

	10.2. Vectors
	Vectors in 3-Space
	Hanging Cables and Chains
	The Dot Product and Projections
	Vectors in n-Space

	10.3. The Cross Product in 3-Space
	Determinants
	The Cross Product as a Determinant
	Applications of Cross Products

	10.4. Planes and Lines
	Planes in 3-Space
	Lines in 3-Space
	Distances

	10.5. Quadric Surfaces
	10.6. Cylindrical and Spherical Coordinates
	Cylindrical Coordinates
	Spherical Coordinates

	10.7. A Little Linear Algebra
	Matrices
	Determinants and Matrix Inverses
	Linear Transformations
	Linear Equations
	Quadratic Forms, Eigenvalues, and Eigenvectors

	10.8. Using Maple for Vector and Matrix Calculations
	Vectors
	Matrices
	Linear Equations
	Eigenvalues and Eigenvectors

	Chapter Review

	11. Vector Functions and Curves
	11.1. Vector Functions of One Variable
	Differentiating Combinations of Vectors

	11.2. Some Applications of Vector Differentiation
	Motion Involving Varying Mass
	Circular Motion
	Rotating Frames and the Coriolis Effect

	11.3. Curves and Parametrizations
	Parametrizing the Curve of Intersection of Two Surfaces
	Arc Length
	Piecewise Smooth Curves
	The Arc-Length Parametrization

	11.4. Curvature, Torsion, and the Frenet Frame
	The Unit Tangent Vector
	Curvature and the Unit Normal
	Torsion and Binormal, the Frenet-Serret Formulas

	11.5. Curvature and Torsion for General Parametrizations
	Tangential and Normal Acceleration
	Evolutes
	An Application to Track (or Road) Design
	Maple Calculations

	11.6. Kepler’s Laws of Planetary Motion
	Ellipses in Polar Coordinates
	Polar Components of Velocity and Acceleration
	Central Forces and Kepler’s Second Law
	Derivation of Kepler’s First and Third Laws
	Conservation of Energy

	Chapter Review

	12. Partial Differentiation
	12.1. Functions of Several Variables
	Graphs
	Level Curves
	Using Maple Graphics

	12.2. Limits and Continuity
	12.3. Partial Derivatives
	Tangent Planes and Normal Lines
	Distance from a Point to a Surface: A Geometric Example

	12.4. Higher-Order Derivatives
	The Laplace and Wave Equations

	12.5. The Chain Rule
	Homogeneous Functions
	Higher-Order Derivatives

	12.6. Linear Approximations, Differentiability, and Differentials
	Proof of the Chain Rule
	Differentials
	Functions from n-Space to m-Space
	Differentials in Applications
	Differentials and Legendre Transformations

	12.7. Gradients and Directional Derivatives
	Directional Derivatives
	Rates Perceived by a Moving Observer
	The Gradient in Three and More Dimensions

	12.8. Implicit Functions
	Systems of Equations
	Choosing Dependent and Independent Variables
	Jacobian Determinants
	The Implicit Function Theorem

	12.9. Taylor’s Formula, Taylor Series, and Approximations
	Approximating Implicit Functions

	Chapter Review

	13. Applications of Partial Derivatives
	13.1. Extreme Values
	Classifying Critical Points

	13.2. Extreme Values of Functions Defined on Restricted Domains
	Linear Programming

	13.3. Lagrange Multipliers
	The Method of Lagrange Multipliers
	Problems with More than One Constraint

	13.4. Lagrange Multipliers in n-Space
	Using Maple to Solve Constrained Extremal Problems
	Significance of Lagrange Multiplier Values
	Nonlinear Programming

	13.5. The Method of Least Squares
	Linear Regression
	Applications of the Least Squares Method to Integrals

	13.6. Parametric Problems
	Differentiating Integrals with Parameters
	Envelopes
	Equations with Perturbations

	13.7. Newton’s Method
	Implementing Newton’s Method Using a Spreadsheet

	13.8. Calculations with Maple
	Solving Systems of Equations
	Finding and Classifying Critical Points

	13.9. Entropy in Statistical Mechanics and Information Theory
	Boltzmann Entropy
	Shannon Entropy
	Information Theory

	Chapter Review

	14. Multiple Integration
	14.1. Double Integrals
	Double Integrals over More General Domains
	Properties of the Double Integral
	Double Integrals by Inspection

	14.2. Iteration of Double Integrals in Cartesian Coordinates
	14.3. Improper Integrals and a Mean-Value Theorem
	Improper Integrals of Positive Functions
	A Mean-Value Theorem for Double Integrals

	14.4. Double Integrals in Polar Coordinates
	Change of Variables in Double Integrals

	14.5. Triple Integrals
	14.6. Change of Variables in Triple Integrals
	Cylindrical Coordinates
	Spherical Coordinates

	14.7. Applications of Multiple Integrals
	The Surface Area of a Graph
	The Gravitational Attraction of a Disk
	Moments and Centres of Mass
	Moment of Inertia

	Chapter Review

	15. Vector Fields
	15.1. Vector and Scalar Fields
	Field Lines (Integral Curves, Trajectories, Streamlines)
	Vector Fields in Polar Coordinates
	Nonlinear Systems and Liapunov Functions

	15.2. Conservative Fields
	Equipotential Surfaces and Curves
	Sources, Sinks, and Dipoles

	15.3. Line Integrals
	Evaluating Line Integrals

	15.4. Line Integrals of Vector Fields
	Connected and Simply Connected Domains
	Independence of Path

	15.5. Surfaces and Surface Integrals
	Parametric Surfaces
	Composite Surfaces
	Surface Integrals
	Smooth Surfaces, Normals, and Area Elements
	Evaluating Surface Integrals
	The Attraction of a Spherical Shell

	15.6. Oriented Surfaces and Flux Integrals
	Oriented Surfaces
	The Flux of a Vector Field Across a Surface
	Calculating Flux Integrals

	Chapter Review

	16. Vector Calculus
	16.1. Gradient, Divergence, and Curl
	Interpretation of the Divergence
	Distributions and Delta Functions
	Interpretation of the Curl

	16.2. Some Identities Involving Grad, Div, and Curl
	Scalar and Vector Potentials
	Maple Calculations

	16.3. Green’s Theorem in the Plane
	The Two-Dimensional Divergence Theorem

	16.4. The Divergence Theorem in 3-Space
	Variants of the Divergence Theorem

	16.5. Stokes’s Theorem
	16.6. Some Physical Applications of Vector Calculus
	Fluid Dynamics
	Electromagnetism
	Electrostatics
	Magnetostatics
	Maxwell’s Equations

	16.7. Orthogonal Curvilinear Coordinates
	Coordinate Surfaces and Coordinate Curves
	Scale Factors and Differential Elements
	Grad, Div, and Curl in Orthogonal Curvilinear Coordinates

	Chapter Review

	17. Differential Forms and Exterior Calculus
	Differentials and Vectors
	Derivatives versus Differentials
	17.1. k-Forms
	Bilinear Forms and 2-Forms
	k-Forms
	Forms on a Vector Space

	17.2. Differential Forms and the Exterior Derivative
	The Exterior Derivative
	1-Forms and Legendre Transformations
	Maxwell’s Equations Revisited
	Closed and Exact Forms

	17.3. Integration on Manifolds
	Smooth Manifolds
	Integration in n Dimensions
	Sets of k-Volume Zero
	Parametrizing and Integrating over a Smooth Manifold

	17.4. Orientations, Boundaries, and Integration of Forms
	Oriented Manifolds
	Pieces-with-Boundary of a Manifold
	Integrating a Differential Form over a Manifold

	17.5. The Generalized Stokes Theorem
	Proof of Theorem 4 for a k-Cube
	Completing the Proof
	The Classical Theorems of Vector Calculus


	18. Ordinary Differential Equations
	18.1. Classifying Differential Equations
	18.2. Solving First-Order Equations
	Separable Equations
	First-Order Linear Equations
	First-Order Homogeneous Equations
	Exact Equations
	Integrating Factors

	18.3. Existence, Uniqueness, and Numerical Methods
	Existence and Uniqueness of Solutions
	Numerical Methods

	18.4. Differential Equations of Second Order
	Equations Reducible to First Order
	Second-Order Linear Equations

	18.5. Linear Differential Equations with Constant Coefficients
	Constant-Coefficient Equations of Higher Order
	Euler (Equidimensional) Equations

	18.6. Nonhomogeneous Linear Equations
	Resonance
	Variation of Parameters
	Maple Calculations

	18.7. The Laplace Transform
	Some Basic Laplace Transforms
	More Properties of Laplace Transforms
	The Heaviside Function and the Dirac Delta Function

	18.8. Series Solutions of Differential Equations
	18.9. Dynamical Systems, Phase Space, and the Phase Plane
	A Differential Equation as a First-Order System
	Existence, Uniqueness, and Autonomous Systems
	Second-Order Autonomous Equations and the Phase Plane
	Fixed Points
	Linear Systems, Eigenvalues, and Fixed Points
	Implications for Nonlinear Systems
	Predator–Prey Models

	Chapter Review

	Appendices
	Appendix I: Complex Numbers
	Definition of Complex Numbers
	Graphical Representation of Complex Numbers
	Complex Arithmetic
	Roots of Complex Numbers

	Appendix II: Complex Functions
	Limits and Continuity
	The Complex Derivative
	The Exponential Function
	The Fundamental Theorem of Algebra

	Appendix III: Continuous Functions
	Limits of Functions
	Continuous Functions
	Completeness and Sequential Limits
	Continuous Functions on a Closed, Finite Interval

	Appendix IV: The Riemann Integral
	Uniform Continuity

	Appendix V: Doing Calculus with Maple
	List of Maple Examples and Discussion


	Answers to Odd-Numbered Exercises
	Index
	Back Cover



