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THEORETICAL LOSS RELATIONS FOR LOW-SPEED TW0-DIMENSIONAL-CASCADE FLOW

By Seymour Lieblein and William H. Roudebush

SUMMARY

The relations between wake characteristics and total-pressure de-

fect were theoretically analyzed for the incompressible flow across a

two-dimenslonal cascade of compressor blades. Equations for total-

pressure-loss coefficient both in an arbitrary downstream plane and in

a plane far downstream where complete mixing has occurred were developed

in terms of the wake momentum thickness and form factor at the arbitrary

plane. Results indicated that the total-pressure-loss coefficient for

unseparated flow varied almost directly with the ratio of wake momentum

thickness to blade chord length and with the solidity, and inversely

with the cosine of the air outlet angle.

Sample calculations indicated that the additional loss incurred in

the mixing of the wake is a function primarily of the form factor of the

wake at the start of the mixing, and also that the mixing loss may be a

significant proportion of the loss at the trailing edge. The effect of

trailing-edge thickness was indicated to be possibly significant for

conventional compressor blade sections.

It was concluded from the analysis that the wake characteristics of

momentum thickness and form factor constitute significant parameters for

the presentation and correlation of two-dimensional-cascade loss data.

INTRODUCTION

It is a difficult task to predict and control losses in axial-flow-

compressor design because of the complex three-dimensional nature of the

loss phenomenon. For simplicity, the standard approach considers that

the complete loss in compressor blade rows can be constructed by prop-

erly correcting blade-profile losses for three-dimensional effects. A

necessary first step in such an analysis is the determination of the

blade-profile loss. The basic blade-profile loss is considered to in-

clude the loss accrued in the mixing of the wake downstream of the blade.

I
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The problem of theoretical loss estimation for blade profiles in-

volves first, a determination of the boundary-layer characteristics on

the blade surfaces and, second, a means of determining the total-pressure

defect resulting from these boundary-layer characteristics. The first

part of the problem has received considerable attention (e.g., refs. 1

and 2), although certain difficulties still remain. The second part of

the problem, which is the concern of the present paper, has also been

investigated in references 3 to 5. These references show that analytical

relations between certain blade-wake boundary-layer characteristics and

the resulting defect in total pressure can be established for cascade

flow. The present paper continues the approach and presents a detailed

theoretical analysis of cascade loss and wake relations in terms of wake

momentum thickness and form factor. The analysis is directed specifi-

cally toward establishing simplified equations and considerations that

may prove useful in the estimation of profile losses and in the correla-

tion of experimental data in the low-speed two-dlmensional cascade,

which is the primary source of compressor blade-profile data.

The analysis is made for incompressible two-dimensional flow. Re-

lations are obtained between the total-pressure defect and the wake

characteristics at an arbitrary station between zero and about l_ chord

lengths downstream of the trailing edge. Both the total-pressure defect

up to the station and the defect for complete mixing are considered.

From these relations, the various factors influencing the loss are de-

termined and their relative effects are evaluated.
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SYMBOLS

chord length, ft

form factor, 5*/e

pseudoenergy factor, k/e

pseudoenergythickness, ft

exponent in power velocity profile relation (table I)

total pressure, lb/sq ft

mass-averaged decrease in total pressure, lb/sq ft

static pressure, lb/sq ft

distance along outlet streamline, ft

blade trailing-edge thickness, ft
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(})oblade trailing-edge-thickness parameter, cos 15

velocity, ft/sec

half blade spacing normal to axial direction measured from wake

eenterline (y = 0, fig. i)

coordinate normal to axial direction (fig. i)

coordinate in axial direction (fig. i)

angle of attack, deg

air angle (angle between flow direction and axis), deg

full boundary-layer or wake thickness, ft

displacement thickness, ft

5

fu!l-thicknes s parameter, (c)_-_s _

momentum thickness, ft

({.)momentum-thickness parameter, cos

mass density, lb-sec2/ft 4

solidity_ c/2Y

total-pressure-loss coefficient for loss up to cascade measuring

station, i 2
OVl

total-pressure-loss coefficient for loss up to cascade measuring

(_)2
station, i 2

°Vo,2

total-pressure-loss coefficient for loss up to outlet plane based

(2_)x Lcos 13x_2

on air angle in outlet plane, [ _ kc-_s _77

2

total-pressure-loss coefficient for loss for complete mixing based

 l°°son air angle in outlet plane, I 2 _cos

OVl
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Subscripts:

lower surface

minimum

plane of trailing edge

upper surface

arbitrary outlet plane 0 to l½ chord lengths downstream of trail-
ing edge

y normal to axial direction

z axial direction

0 free stream

1 inlet

2 outlet measuring station (!/2 to I chord length downstream of

trailing edge)

- fir do_mstream where complete mlxlng has taken place

GE?_RAL CONSIDEPATIONS

In subsonic two-dimensional-cascade fiow_ losses arise from the

growth of boundary layers on the suction and pressure surfaces of the

blades. These surface boundary layers then come together at the blade

trailing edge to form the blade wake_ as show_ in figure i. As a result

of the formation of the surface boundary layers, a local defect in total

pressure Is created and a certain mass-averaged loss in total pressure

occurs in the plane of the trailing edge.

Downstream of the trailing edge, a mixing takes place between the

wake and the free-stream flow_ and the wake is eventually reenergized

through turbulent mixing. Inasmuch as a loss in total pressure is in-

volved in the mixing process, the ultimate total pressure at a station

far downstream where conditions have become uniform will be less than

the average total pressure at the blade trailing edge. This difference

in total pressure is referred to as the mixing loss. The loss for com-

plete mixing represents the total loss attributable to a glven wake pro-
file in the two-dimensional cascade.
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Although the losses encountered in the flow over the blade profiles
of a two-dimenslonal cascade can be expressed in various ways (e.g.,
drag coefficient, wake coefficient, total-pressure defect, entropy rise),

it is ultimately desirable, for the determination of compressor blade-

row efficiency and entropy gradients, to determine the loss in total

pressure involved in the flow. This cannot as yet be done theoretically

because of the current inability to determine accurately the turbulent

viscous flow across blade sections. However, wherever the flow field is

separated clearly into a wake region and a free-stream region (as in

fig. i), mathematical relations can be developed to express the loss in

total pressure as a function of the local properties of the wake. Al-

though this does not solve the problem of loss estimation (the boundary-

layer and wake parameters cannot be calculated accurately in all cases),

the approach does point out the relative influence of the various geo-

metric and aerodynamic factors on the resulting loss in total pressure.

In cascade loss analysis there are two stations of particular in-

terest: (1) the plane of the trailing edge and (2) the usual cascade

measuring station (about 1/2 to 1 chord length downstream of the trail-

ing edge). Consideration of cascade losses in terms of the wake char-

acteristics at the blade trailing edge is desirable, because ultimately,

in the development of effective cascade flow theory (potential flow and

boundary-layer theory), it should be possible %o compute satisfactorily

the surface boundary-layer characteristics (momentum thickness and form

factor) at the blade trailing edge. Significant developments along

these lines are represented, for example, by reference 6. A study of

the significant parameters determining the loss at the cascade measuring

station is also necessary so that the available experimental data can

best be analyzed and correlated.

The analysis starts with a development of the general equations

for the loss in total pressure up to an arbitrary outlet station and

for the loss in total pressure after complete mixing. These equations

are expressed in terms of the wake characteristics of momentum thickness

and form factor at the arbitrary outlet location. The application of

these relations to two specific outlet locations, the plane of the

trailing edge and the usual cascade measuring station, is then discussed.

BASIC EQUATIONS

Assumptions

The theoretical development of cascade loss relations is based on

the fundamental premise that, for short distances downstream of conven-

1
tional cascades (say, up to about l_ to 2 chord lengths), the outlet

flow in a plane normal to the axial direction of the cascade (fig. l)
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can be divided into a wake region where gradients in total pressure
occur and a free-stream region where the total pressure is essentially
constant. In conjunction with this premise, the following specific as-
sumptions are made: (i) the flow is two-dimensional and incompressible,
(2) the inlet flow is uniform across the blade spacing (y-direction),

(S) the outlet static pressure and flow aogle are constant across the

entire blade spacing, (4) the outlet total pressure is constant in the

free stream outside the wake, and (5) the outlet free-stream total pres-

sure is equal to the inlet total pressure. Under these assumptions, the

variations in outlet velocity and pressure in an arbitrary plane normal

to the axial direction will appear as shown in figure 2.

The validity of these'assumptions varies with distance downstream

of the blade trailing edge. General cascade experience indicates that

they are sufficiently valid in the region covered by the present analy-

sis to provide results that are qualitatively correct. These assump-

tions have frequently been employed in cascade loss analyses (refs. 3
to s).

Loss at Outlet Station

Development of equations. - For an outlet plane located at any dis-
1

tance between 0 and about l_ chord lengths downstream of the blade trail-

ing edge, the mass-averaged loss in total pressure between the cascade

inlet plane (subscript l) and the general outlet plane (subscript x) is
given by

__ OVz,xPxdY

(i)

(a;)x'P1 fY _vz,xdY

With free-stream total pressure assumed constant between station 1 and

the general outlet station, the loss across the cascade is given by the
defect in total pressure in the outlet plane as

Y OVz,x(PO, x - P )dy
(_)x Y-- (2)

fy _Vz,xdy

From the Bernoulli equation for incompressible flow,

1
P = p +_ _v2 (3)
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Then, inasmuch as static pressure is assumed constant across the entire

blade spacing in the y-direction, equation (2) can be expressed as

_,_v 2 - v_)v cos_(Vo, x x

(a_)x - (4)
_-y

vx cos _x_

With outlet angle 8x constant across the blade spacing, equation (4)

can be given, after expressing the velocities in terms of ratios, as

fi[pro, x - \Vo,xj j dy

(_)x " (s)

vx)2Y - ! - _ dy
Y

Actually, since Vx = VO, x in the free stream, the limits of integra-

tion in equation (5) can be restricted to the limits of the wake region

extending from -51,y to 5u,y (see fig. 2).

Since the momentum thickness is a basic parameter in all simplified

boundary-layer theory, it is desirable to express equation (5) in terms

of this parameter. This can be accomplished by expanding the integral

in the numerator to yield

(a_)x . _ °V°'x + - a (6)

,Y

2Y -

The following definitions of wake characteristics are now made"

Displacement thickness:

. V

5y = -

_-61 ,y

dy (Ta)
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Momentum thickness:

8u 'Y V

J-5_ ,Y

(Vb)

Pseudoenergy thickness :

-% % dy
J-51 ,y

(7c)

The integrals appearing in equations (7a) and (7b) are similar to the

standard boundary-layer-thickness parameters, except that the integra-

tion path is normal to the cascade axial direction instead of being nor-

mal to the flow direction. These modified thickness parameters are des-

ignated by the subscript y. Substituting equations (7) into equation
(6) then yields

h +
i _2 2Y x

(_)x = _ °_O,x

i -\nTx

In equation (8), V0, x is not completely independent of the wake

formation. The presence of the wake displacement thickness causes an

acceleration of the free-stream flow which is reflected as an increase

in the V_,x- term. This point can be brought out more clearly by ex-

pressing the loss in terms of the inlet dynamic head. From continuity,
for uniform inlet conditions

2Y OVlCOS _I = f_ PVx cos _xdY (9)

Dividing both sides of equation (9) by OVo,xC°S _x and adding and sub-

tracting 2Y to the right side of the equation give

V I cos 91
2Y = 2Y -

VO,x cos 8x Su'Y(i Vx )- Vo-----_ dy

5_ ,y

o
o
o
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or

cos _xx)VI cos

1 - Y

X

(lO)

Substitution of equation (i0) into equation (8) then yields

2Z + 2Z
1 21c°s _ 2Yx x

_ _. (Zl)

The total-pressure loss, in this form, is a more explicit function of

the wake characteristics. Specifically, it is revealed that the mass-

averaged loss in total pressure in any outlet plane will depend on the

inlet dynamic head, the inlet and outlet air angles, and the ratio to

blade spacing of the wake momentum, displacement, and pseudoenergy

thicknesses in the outlet plane.

For analysis purposes in investigating the relation between total-

pressure loss and wake characteristics, it is convenient to use a loss

coefficient defined as

(cos 2
Z PVl

which differs in the term (cos _x/COS 61 )2

Inltion of loss coefficient given by

from the more customary def-

_l=l 2

OVl

The definition of loss coefficient given by equation (12) will be used

throughout the present analysis. Thus, equation (ll) can be expressed as

_x ......[l (Sy__*)x13

(13)
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Applied form. - For use in the analysis of cascade and compressor

loss data, it is desirable that the derived loss equations be put in the

most applicable and significant forms. Several factors can be consid-

ered in this respect.

In the previous loss equations, it is to be noted that the wake

thicknesses involved are defined in the plane normal to the axial di-

rection. However, inasmuch as one of the purposes of the development

is to permit the calculation of total-pressure losses resulting from

the blade boundary-layer growth, it would be well to express the loss

equations in terms of the conventional wake thicknesses normal to the

free-stream flow. This can be accomplished by assuming that the thick-

ness of the wake or boundary layer i_ any plsne (i.e., normal to the

blade surface or normal to the outlet flow direction) can be related to

the thickness in the plane normal to the axis through the cosine of the

angle between the plane in question and "the normal plane. This relation-

ship will be valid as long as the axial gradients of flow in the wake

are not large. Thus, in terms of wake thickness normal to the outlet

flow at angle G, it is assumed that with little error

8 = 5y cos _ _

5* = 5.*.cos

k = ky cos

8 = ey cos

(i4)

Use will also be made of the definitions of wake form factor

pseudoenergy factor K given respectively by

5"
H = --

H and

(isa)

k (iSb)K=#

Furthermore, it is desirable to express the blade spacing in terms

of the blade solidity a and chord length c, where o = c/2Y. Thus,

from equations (14), (15), and the solidity relation, equation (15)

becomes

°
x cos "_x

1 +K x (16)
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With the further definition of the wake momentum-thickness parameter

given by

(°)x" "cos

equation (16) for the loss coefficient becomes

(17)

_. ^ 1 + (18)
a_x= e x

(1 -

As a simplification, it would be desirable if the pseudoenergy fac-

tor K could be expressed in terms of the form factor H. Accordingly,

values of K were investigated for several representative analytical

variations of velocity in the wake, as shown by the half-wake profiles

in figure 3. (It is assumed that the velocity profiles in fig. 5 are
J.

symmetrical about the point of minimum velocity at y/_ 0.) The

power velocity profile, with minimum velocity ratio Vin/Vo - 0 (fig.

3(a)), represents the form of the wake at the trailing edge. The other

velocity distributions are intended to represent possible wake profiles

some distance downstream where some mixing has occurred and Vmin/V 0 > O.
5

The thickness _ of the half wake for the error-curve profile (fig.

3(e)) was arbitrarily established as the value of y at which

V/V 0 = 0.99. (The integrated_ values are those of the definite integrals

obtained from allowing y/_* -.) Equations for V/V 0 for the profiles

are given in table I.

Computed values of K determined from equations (To), (7c), and

(15b) are shown as a function of H (computed from eqs. (7a), (7b), and

(15a)) for the various analytical profiles in figure 4. Variations in

K and H were obtained for the power profile by varying the exponent

n and for the other profiles by varying the minimum velocity ratio

Vmin/V 0. The equations for K obtained for the various profiles are

given in table I. Also shown in the figure are values computed from

experimental wake-profile data obtained in references 7 to i0. The data

of references 7 to 9 were taken approximately 1/2 chord length downstream

of the blades, and for reference i0, about 0.02 chord length.

Figure 4 shows that profile form should not be a significant factor

in the K-H relation. For values of H up to about 1.4, a maximum

1
difference of less than IF percent is indicated for the quantity (i + K),
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and therefore for _ in equation (18) for the various profiles consid-

ered. As will be indicated later, higher values of H, for which maxi-

mum differences in (i + K) up to about 3 percent are indicated, will

generally occur only in the _railing-edge region where Vmln/V 0 may be

near zero. In view of these considerations, the K-H variation given by

the power velocity profile was adopted as the simplest acceptable approxi-

mation to the general K-H relation for use in the loss equation. This

selection is reasonably substantiated by the limited experimental data
presented.

With K for the power velocity profile given by

H+I
K 5H - 1 (19)

the equation for the loss coefficient from equations (18) and (19)
becomes

2H
X

_. ^ 5H - i
_x = 20x x

(1- ex )3 (20)

It is thus established that the total-pressure-loss coefficient (as de-

fined by eq. (12)) in a plane downstream of the trailing edge is a func-

tion of the wake momentum-thlckness parameter (as defined by eq. (17))
and the wake form factor.

A plot of the calculated variation of _ against _x (from eq.

(20)) for a range of values of Kx from 1.2 to 2.6 is shown in figure 5.

The plot of figure 5 reveals that _ is only a secondary function of

^ < about 0.07 and values of Hx < about 2.0H. In fact, for values of ex _

(representative trailing-edge values for unstalled flow), the loss coef-

ficient is essentially independent of the value of Hx.
1&-

Loss for Complete Mixing

The complete loss in total pressure attributable to a cascade blade

row is measured only at a station (subscript ®) sufficiently far down-

stream for the flow to again become uniform across the blade spacing as

shown in figure 6. Since the flow is uniform in the y-direction both

far upstream and far dovnstream, the mass-averaged defect in total pres-
sure is given by

(Z_). = PI " P" = PO,x - P" (21)
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It is now desired to express (2_). in terms of wake and flow character-

istics in the general outlet plane. To do this, it is necessary to ex-

press the pressures in equation (21) in terms of velocities. The con-

version to velocities is achieved through the application of the Ber-

noulli equation and the equations for conservation of momentum in the

axial and tangential directions for the flow envelope bounded by the

streamlines a-a and b-b and by the outlet and far-downstream planes

in figure 6. The details of the development are presented in the

appendix.

With the definition of the loss coefficient for complete mixing

based on the air angle in the general outlet plane given by

2

e"x = i 2
, 2 oVIV -_

(22)

it iS shown in the appendix that

--W ik 2
= _-- 2 + _- - sin2_x "
(1- ex ) 1 -

(23)

The loss coefficient for complete mixing is thus a 9unction of the air

angle as well as of the wake momentum-thickness parameter and the form

factor in the outlet plane.

The calculated variation of _* with e for a range of values
m, X X

of Hx from 1.O to 2.6 and for _x of 0° and 60 ° as obtained from

equation (2g) is plotted in figure 7. The figure shows that, unlike

the case for the local loss coefficient in the outlet plane (fig. S),

the loss coefficient for complete mixing depends to a significant ex-

tent on the value of the wakeform factor. The influence of the outlet

air angle 8x , however, is small.

Mixing-Loss Ratio

An indication of the additional loss incurred by the complete mix-

ing of the wake can be conveniently obtained from consideration of the

mlxlng-loss ratio; that is, the ratio of the loss for complete mixing to

the loss up to the outlet plane. From equations (23) and (18), the

mixing-loss ratio is given, In" terms of the wake characteristics in the

outlet plane, by

+ - sin 8x 1
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A numerical evaluation of equation (24) in terms of Hx and e%

can be obtained through the use of the representative relation between

Kx and Hx given by equation (19). A plot of the variation of mixing-

loss ratio against Hx so obtained is shown in figure 8 for 6x of 0°

and 60°. Figure 8 reveals the general observation that the mixing-loss

ratio at a given outlet-plane location is determined primarily by the

form factor of the wake in the outlet plane.

As Hx approaches 1.0 in figure 8, calculated values of mixing-

loss ratio less than 1.O are obtained for values of _x greater than O.

This result is obtained mathematically because of the independent manner

in which _x and Hx are allowed to vary in the calculation. For an

actual wake profile, _x and Hx do not vary completely independently;
A

and, at a value of Hx of 1.03 ex must be zero. Values of mixing-loss

rstio less than 1.O0 in figure 8, therefore, represent regions of unreal
flow.

The exact nature of the mlxing-loss ratio as Hx approaches 1.0

can be demonstrated more clearly by examining the mixing-loss ratio of

a given wake velocity profile. For the power velocity profile of figure

5(a), for example, Kx can be expressed in terms of Hx through equa-

tion (19), and e._x can be expressed in terms of Hx and the wake full
A

thickness parameter 5x, where

-- °
cos6x (25)"_Jx

by

Substitution of equations (19) and (26) into equation (24) then yields

for the power velocity profile

(ZT)
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Plots of the variation of (_-/_x with Hx and 6x for the

power velocity profile are shown in figure 9 for a range of values of

8x" (The value of 5x = 0.6 corresponds approximately to _x m 0.i.)

--_/_ to i 0 as H approaches 1.0The convergence of the values of (_ x " x

is clearly indicated for all values of _x in figure 9(a). The small

effect of air outlet angle on mixing-loss ratio for unstalled flow

(Ex < 2.0) is shown in figure 9(b).

Mixing-loss ratios were also determined for the other representa-
tive velocity profiles shown in figure 5. For a given wake velocity

distribution, K can be expressed in terms of H, and @ can be ex-

pressed in terms of H and the wake full thickness 5. Equations for

e and K for the various wake profile s of figure 5 are given in table
I. The substitution of the relations for K and e in table I into

equation (24) yields the mixing-loss ratio for the various profiles as

a function of Hx, 5x, and 6x in the general outlet plane. A compar-

ative plot of the calculated variation of (_-_-/_x with Hx for repre-

sentative limiting values of _x and _x is shown in figure i0 for all

five profiles. Figure i0 shows that the mixing-loss ratio may be essen-

tially independent of the particular variation of the velocity in the
wake.

Summary

In summary, the preceding analysis of the loss relations for the
• 1
wake in an outlet plane located from 0 to about l_ chord lengths down-

stream of a cascade indicates that, for unstalled configurationsj the

total-pressure-loss coefficient (as defined by eq. (12)) up to the out-

let plane is essentially a function of only the local wake momentum-

thickness parameter (eq. (17)). The ratio of the total-pressure loss

for complete mixing to the loss at the outlet plane depends primarily
on the form factor of the wake in the outlet plane.

APPLICATION TO PLANE OF TRAILING EDGE

An outlet station of practical interest in cascade loss analyses in

the plane of the blade trailing edge_ where the blade-surface boundary
layers come together to form the blade wake (station t, fig. 1). The

development of loss equations for the plane of the trailing edge can per-
mit the calculation of the loss in total pressure arising from the devel-

opment of the boundary layers on the blade surfaces_ as determined from

blade boundary-layer theory.
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Of all the assumptions stipulated for the general analysis in the

arbitrarily located plane, perhaps the one concerning the constancy of

the static pressure across the blade spacing may be most questionable

in the plane of the trailing edge. It is recognized that static-pressure

gradients will normally occur in the plane of the blade trailing edge,

depending on the blade circulation and surface curvatures; and, as a

consequence, the derived relations will not be an exact representation

of the flow. At present, there is no available information concerning

the effect of such gradients on the results of the simplified develop-

ments. It is believed, however, that the existence of the static-

pressure gradients normally encountered in conventional unstalled cas-

cade operation will not materially alter the principal conclusions and

trends of variation established from an analysis based on uniform static

pressure.

For simplicity, the case of zero blade trailing-edge thickness will

be considered first.

(
(

(

(

Equations for Zero Trailing-Edge Thickness

In the plane of the trailing edge, under the assumptions of the

analysis and the condition of no blade trailing-edge thickness, the vari-

ations of velocity and pressure in the y-direction will appear as shown

in figure ll(a). The wake thicknesses at the trailing edge consist of

the wake thicknesses of the upper- and lower-surface boundary layers, so

that

5y = 5u,y + 5_,y

* = + 5_,y5y 5_u,y

ey = eu,y + e_,y

H 5_u'7 + 5"= Z_7

e + ezu,y ,y

K = ku_7 + k_,7

Ou,y + 8Z,y

(28)

A similar set of equations can readily be established for thicknesses

normal to the air angle _t through the cosine of the angle 8t as in

equations (14). The accuracy of this conversion to the normal wake
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thicknesses in the plane of the trailing edge is perhaps not as good as

it would be farther downstream, since the rates of change of the wake

properties along the direction of the flow are greatest in the region of

the trailing edge.

Loss at trailing edge. - The equation for loss coefficient in the

plane of the trailing edge is then obtained from equation (18) as

_. i + K t

cot = _t (1 - _tHt )3 (29)

or, with the K-H relation of the power velocity profile (eq. (19)),

_. 3Ht - 1

cot = 2_t (1 - _tHt )3
(3o)

where the 8 and H values are determined as in equation (28).

The wake momentum thickness of equations (29) and (30) is normal to

the air outlet angle in the plane of the trailing edge, which may not

necessarily be equal to the mean of the angles of the tangents to the

blade surfaces at the trailing edge. Strictly speaking, since the re-

sults of surface boundary-layer calculations generally yield boundary-

layer properties normal to the blade surfaces, an adjustment for the

differences between these angles should be made in the determination of

the wake thickness values for use in equation (30). However 3 such a

refinement is outside the accuracy of the present analysis.

For boundary-layer flow on blade surfaces, values of form factor H

may generally be obtained from about 1.3 to about 2.0 to 2.6 when sepa-

ration occurs. Furthermore, analysis of compressor cascade blade losses

reveals that separation in the low-loss range of incidence-angle opera-

tion is indicated for values of wake momentum-thickness ratio (8/c)

greater than about 0.02. Thus, for unseparated flow, for a high value

of solidity of about 1.75, and a high value of air outlet angle of about

60 °, a momentum-thickness parameter 8 of less than about 0.07 is ob-

tained. Most blade sections will operate at values of _ considerably

lower than 0.07 in their design regions of incidence angle. A practical

range of blade operation can therefore be represented for conventional

compressor cascades by values of Ht from about 1.3 to about 2.2 and by

values of _t up to about 0.07. In this range, according to figure 5,

will not be very sensitive to the value of Ht. Equation (30) can
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then be simplified by taking H t _ 1.6 as a representative average

value to give

__. i. 684_ t

_t =
(1- 1.6_t )5

(51)

Loss for complete mixing. - The equation for the loss coefficient
for complete mixing based on the wake characteristics at the trailing

edge is obtained from equation (25) as

_. 2_t

u +

_,t (i - _tHt)2

et 2 2

T t " sln _t

i - etHtJ

in figure 7 shows that, for the practicalThe plot of _-,x-* against^ _x

range of values of et and Ht at the trailing edge, the influence of

8t will be very small. The effect of outlet angle can therefore be neg-

lected by taking _t u O, so that, with little error, equation (52) can

be simplified to

l^ 2

_. 1 + t (33)
_',t _ 2_t ^ 2

(1 - etHt)

In the plane of the trailing edge, the power velocity profile is

considered to be most representative of the velocity variation across

the wake. Plots of the variation of the mixlng-loss ratio _ _ )x

against Kx and 8x for the power velocity profile are shown in fig-

ure 9. In the range of values of Ht Z 1.4, the full thickness parame-
A

ter et and the air outlet angle 6t exert only a secondary influence

on the value of the mixing-loss ratio.

Effect of Trailing-Edge Thickness

Since practical blade sections are constructed with nonzero values

of trailing-edge thickness, the question of the effect of this thickness

on the total-pressure loss of the section is naturally raised. An accu-

rate theoretical evaluation of the thickness effect is not currently fea-

sible because of the complexity of the flow in the region of the trailing

edge. Apparently, a rapid mixing between the flows along the upper and

lower surfaces takes place immediately behind the trailing edge with ac-

companylng large localized gradients of pressure and flow angle. The
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precise nature of the flow in the trailing-edge'region is expected to de-
pend on the shape of the trailing edge (i.e., whether the trailing edge
is blunt or rounded). At any rate, the presence of a blade trsillng-edge
thickness will affect the loss in total pressure because of the creation
of additional mixing losses.

It is possible, under the assumptions of the present analysis, to
determine the loss attributable to blade trailing-edge thickness by con-
sidering the flow immediately downstreamof the trailing edge to be a
"dead-air" region. The sdditional loss will thus appear in the form of
a dumping loss. As indicated previously, the precise nature of the
trailing-edge flow is too uncertain for the present qualified analysis to
be expected to produce sccurate estimates of the trailing-edge-thickness
effect. However, the trends determined by this analysis should be correct.

According to the simplified picture of the trailing-edge effect, the
variations of velocity and pressure in the y-direction immediately behind
the trailing edge will appear as shownin figure ll(b). The trailing-
edge thickness appears only as an effective increase in the wake full and
displacement thicknesses, so that, for a trailing-edge thickness t,

8* 8_ + 5_ + t t
. _ + _ (34)T = Su + e_

Accordingly, the approximate equation for the loss coefficient for com-

plete mixing can be obtained by replacing Ht in equation (3Z) by

+ tlet to

1+1_ ( 2
_. 2_t 2 _t Ht + 0t ) (35)
CO_,t

where the trailing-edge thickness parameter t is defined as

t _ cos Pt

and Et and _t are as before.

In order to examine the effect of traillng-edge thickness on the loss

for complete mixing, the ratio of loss coefficient with trailing-edge
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-411-
thickness _. (eq. (55)) to the loss coefficient for zero trailing-edge

(_=0 (eq. (55)) is established as

i ^ 2
1 + t

(37)

Equation (37) is based on the assumption that _t and Ht (obtained

from the surface boundary-layer characteristics) are unaffected by

changes in the blade trailing-edge thickness. A plot of the calculated

variation of the loss ratio of equation (57) against trailing-edge-

thickness parameter is shown in figure 12 for a range of values of _t

and Ht .

The results of figure 12 indicate that the percentage increase in

loss due to mixing can be significant for large values of the trailing-

edge-thickness parameter. For conventional compressor blades with

trailing-edge-thlckness ratios (t/c) of about O,O1 or 0.02 (and there-

fore for t up to about 0.055 or 0.070), the representative additional

loss, according to figure 12, could be of the order of 15 to 55 percent.

Although the loss magnitudes obtained by this simplified analysis are

certainly questionable, the figure does indicate that definite advantages

may be gained by maintaining trailing-edge thicknesses as small as pos-

sible. Similar results of the trailing-edge-thickness effect were ob-

tained in references 3 and ll.

Discussion

The application of the derived loss equations to the plane of the

trailing edge permits the calculation of the cascade loss in total pres-
sure once the momentum thickness and form factor of the blade-surface

boundary layers at the trailing edge are known. A completely theoretical
determination of cascade losses can therefore be made on the basis of

cascade boundary-layer theory and the trailing-edge loss relations pre-

sented herein. The reduced sensitivity of the loss coefficient to vari-

ations in Ht indicates that great accuracy in the theoretical determi-

nation of the boundary-layer values of Ht is not essential.

Because of the necessary assumptions involved in the developments,

the loss equations are expected to be most accurate for the case of zero

or nearly zero blade trailing-edge thickness. Further information con-

cerning the nature of the flow and boundary-layer characteristics in the

immediate vicinity of the blade trailing-edge region in the case of posi-

tive trailing-edge thickness is desirable.
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.o
JD

APPLICATTON TO PLANE OF MEASURING STATION

In the previous section, the loss equations were expressed in terms

of the wake characteristics in the plane of the trailing edge. As such,

they presumed a knowledge of the growth of the boundary layers on the

blade surfaces. In most cases of cascade investigations, however, the

losses are measured in a plane a short distance (say_ from about 1/2 to

1 chord length) downstream of the cascade (station 2, fig. i). At such

distances, some mixing of the wake has already taken place and the mini-

mum velocity in the wake is no longer zero. General cascade experience

indicates that the wakes of conventional cascade configurations are

clearly defined at the usual measurlng-statlon locations and that

P0,2 _ PI" Thus, the loss developments for the measuring station are

expected to be more valid than at the trailing edge because of the

greater uniformity of the static pressure in the y-direction and the

smaller variation of the wake properties along the flow direction as

distance behind the blade is increased.

The variations of velocity and pressure along the y-directlon in

the plane of the measuring station will appear as in figure 2. At the

measuring station, the wake can no longer be divided specifically into

its three components (suction-surface boundary layer, pressure-surface

boundary layer, and trailing-edge thickness).

Equations

The equations for loss coefficient up to the measuring station, for

loss coefficient for complete mixing, and for mixing-loss ratio ex-

pressed in terms of wake charscteristics in the plane of the measuring

station are obtained from the respective general equations (eqs. (20),

(23), and (24)) by replacing the subscript x with the subscript 2

for the pertinent quantities involved. Simplifications of these equa-

tions can be obtained from 99nslderation of the values of form factor H

generally observed at the measuring station.

It is known that wake form factor decreases with distance downstream

of the trailing edge and asymptotically approaches a value of 1.O. Ex-

perimental variations of wake form factor with distance downstream (ex-

pressed as the ratio s/c of distance along the wake to the airfoil

chord length) for low-speed isolated and cascade airfoils are shown in

figure 13. Apparently the decrease in H with distance is quite rapid.

According to figure 13, values of H 2 between 1.O and 1.2 should repre-

sent practical limits for a measurlng-station location between 1/2 and 1

chord length behind the blade.

For the loss coefficient in the plane of the measuring station (eq.

(20)), figure 5 shows that the dependency of _-_ on H 2 is slight in

the range 1.0 & H2 < 1.2. For practical purposes, an average value of
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H2 of i.i may be taken, so that, with negligible error, the equation

for the loss coefficient at the measuring station can be given as

-. 1. 912_ 2

_°2 " (l- 1.l_2)3 (38)

For values of H2 < 1.2, the effect of air outlet angle 62 on the

loss for complete mixing in the measuring plane essentially vanishes

(fig. 7), so that_ from equation (23),

1 ^ 2

_. = 2_2 1 +_ e2H 2
(z -  2H2) 2 (39)

If desirable, an average value of H2 - 1.1 may also be used in the

equation for the loss for complete mixing.

According to the results of the mixing-loss-ratio calculations

(figs. 8 and 9), for 1.O _ H2 < 1.2 In the measuring plane_ very lit-

tle additional loss will accrue as a result of any further mixing of the

wake. Apparently, for a measuring station located from 1/2 to 1 chord

length downstream of the blade trailing edge, a considerable part of the

wake mixing loss has already occurred.

o_
cn
_D

Comparison with Experiment

The accuracy of the loss equation in predicting the magmitude of

the loss coefficient for a given value of wake momentum-thickness ratio

was evaluated for the available experimental wake velocity-distribution

data at the usual measuring station (refs. 7 to lO, e.g.). Integrations

of the low-speed experimental wake-velocity profiles of the blade sec-

tions of references 7 to lO were conducted to determine the wake momentum

thickness_ the wake form factor, and the mass-averaged total-pressure

loss in the plane of the measuring station.

Since the experimental wake profiles in the references are plotted

- P2)/1 pV 3 it isin terms of the local values of V2/V0,2_ or .(Po,2 2
0,2

more convenient for comparison purposes to use a loss coefficient based

on outlet dynamic head3 such that by definition

2
co2= 1

_" PV_, 2
(40)
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where (2_)2 is the integrated mass-averaged loss in total pressure in

the measuring plane (eq. (2)). The theoretical relation between loss

coefficient _2 and the wake characteristics is obtained from equations

(in) a_d (12) as
2

(_)2_oos_2) )2 __. )2_2 " 1 2 \_--_ _ (1 - 82_2 " _2(1 - _2_2 (41)
PV 1

so that, from equation (20),

2H 2

^ 3H 2 - i

_2 = 2e2 ^
l - O2H 2

(42)

For the usual measuring-station location (s/c - 0.5 to i), with E 2 = i.i,

1.912e 2

_2 " ^ (43)
1 - l.le 2

Loss coefficients were determined in two ways: first, by using the

actusl measured value of H 2 in equation (42), and secondly by using

the representative value of H 2 - 1.1 as in equation (43)(applicable

only within values of s/c = 0.5 to 1). Calculated and integrated val-

ues of _2 for these data are compared in the following table:

Blade section Ref. " s/c '1_2"

Compressor blade, m . 15 °

iCompressor blade, m - 25°
!Thin turning vane

Thick turning vane
Compressor blade

Compressor blade

7 0.56 1.12
7 .52 i .13

8 .50 I.I0

8 .50 1.14

9 .55 1.16
i0 .02 1.51

lnteg.

(e/c) 2

0.0151
.0130

.00250

.00506

.00860

.0163

Integ. _2

(eq. (40))

0.0330
.0269

.0309

.0591

.0178

.0287

Cale. _2

(eq. (42),

actual H2)

0.0338

.0271

.0309

.0583

.0177
,0287

Calc. _2

(eq.(43),
E_- l.l)

0.0342

.0276

.0309

.0591

.0181

(.0319)

The close agreement between measured snd calculated values of _ in-

dlcates the validity of the K-H relation for these limited data.
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Discussion

The establishment of relations between the total-pressure loss and

the wake characteristics in the plane of the measuring station suggests

several considerations in the empirical prediction of cascade losses

and in the analysis of experimental cascade loss data. Since the total-

pressure-loss coefficient depends primarily on the wake momentum-

thickness parameter 02 = _ cos _2' three major quantities are con-

tained in the loss prediction, namely, the momentum-thickness ratio e/c,

the solidity _, and the air outlet angle 62" The quantities _ and

_2 depend primarily on the cascade geometry, so that the principal aero-

dynamic factor Involved is-the wake momentum-thickness ratio 8/c (and

to a considerably smaller extent, the wake form factor). If generalized

correlations of wake momentum-thickness ratio can be obtained in terms

of the basic influencing parameters involved (e.g., velocity diffusion,

Reymolds number, Msch number, etc.), the use of these correlations, in

conjunction with the geometric characteristics of a particular cascade

configuration could then form the basis of a loss prediction procedure

according to the equations presented herein (eqs. (20) and (23)). The

desirability of expressing cascade loss data in terms of wake momentum-

thickness ratio is hereby indicated.

To date, experimental loss data have not generally been presented

ix terms of wake momentum-thickness ratio. However, it should be pos-

sible to convert the available data expressed in terms of other loss

parameters (e.g., drag coefficient, total-pressure-loss coefficient,

etc.) to corresponding values of wake momentum-thickness ratio. For

example, a frequently used cascade loss parameter is the loss coeffi-

cient _l, defined3 in terms of the symbols used in this report, by

From equations (12)and (20),

2H 2

.(cos _i_ 2 = 2_ 2(cos _i_ 2 5H2 - 1g2

or, since e2 = q
2 cos _2'

: T _ \cos Fz/ \ 2R2

(44)

(45)
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(In eq. (45), an iteration solution is required because of the high

order to which e/c appears.) Strictly speaking, the accurate solution

of equation (45) requires a knowledge of the wake form factor. However,

for practical purposes, as was indicated previously, a representative

average value of H2 may be satisfactorily used (say, an H2 of about

1.1) in the calculations. (Similar relations can be developed for (e/c) 2

in terms of loss coefficients based on outlet dynamic head, eq. (42)).

SUMMARY OF RESULTS

Simple approximate equations have been developed to relate total-

pressure loss in an incompressible plane cascade flow to the character-

istics of the wake in a plane downstream of the blade trailing edge.

Both the loss up to the plane and the complete loss after mixing have

been expressed in terms of the characteristics of the wake in the plane.

It was found that, for unseparated flow, the total-pressure-loss coef-

ficient was primarily a direct function of the wake momentum-thickness

ratio and the blade solidity and an inverse function of the cosine of

the air outlet angle. A secondary factor in the determination of the

loss coefficient was the value of the wake form factor H.

Application of the loss relations to the plane of the blade trail-

ing edge indicated that, if the blade-surface boundary-layer momentum

thickness and form factor at the trailing edge can be determined for a

given cascade configuration, the corresponding loss in total pressure

can be calculated according to the relations developed herein. From

the theoretical developments, it was shown that, for conventional values

of compressor blade trailing-edge thickness, the contribution of the

traillng-edge thickness to the total loss may be significant. It was

also shown that the additional loss resulting from the mixing of the

wake can be a considerable percentage of the loss incurred at the trail-

ing edge, depending upon the initial value of the wake form factor.

In a similar manner, the loss up to the usual cascade measuring

station located from about 1/2 to 1 chord length downstream of the blade

and the loss after complete mixing have been expressed in terms of the

wake characteristics at the measuring station. In view of the small

values of H indicated to occur at the measuring station, particularly

simple relations were obtained for the measuring station showing the

loss coefficient to vary effectively only with the wake momentum-

thickness ratio, the solidity, and the air outlet angle.
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It was concluded from the analysis that the wake characteristics of

momentum-thickness ratio and form factor constitute significant param-

eters for the prediction of cascade losses and for the presentation and

correlation of two-dimensional-cascade data. The developments also pro-
vide a means for computing the wake momentum-thickness ratio from re-

ported values of loss coefficient.

Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics

Cleveland, Ohio, January 23, 1956
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APPENDIX - LOSS COEFFICIENT FOR COMPLETE MIXING

The mass-averaged loss in total pressure between the inlet station

(station l, fig. 6) and the far-downstream station (station ®, fig. 6)

where the wake has been completely mixed is given by

(Zk_). = P1 " P"

i
or_ since PI = Po_x where the wake is well-defined (0 to about i_

chord lengths downstream of the cascade)3

(a_L " Po,x - P- (2l)

For conservation of momentum in the axial direction (fig. 6)

S 2 2
pVz,xdy + 2Ypx = 2YpVz,. + 2Yp® (AI)

Substituting for Px and p. through the Bernoulli equation (eq. (5))

in equation (AI) gives

2

P0,x - P_ = PVz,®"

1 2 i 2

ov. +_ oVo,x

or

1 2

(Z/)® -- _ Pro, x x-)l#_YI 2 I 2

+ g PVz'® co_ - _ PVz'xdy
Y

(A2)

The problem now is to express V z and cos 8. in terms of con-
#m

ditions in the outlet plane. From conservation of momentum in the tan-

gential direction (fig. 6),

fl PVz'xVy'xdY = 2YpVz'_VY'"

(A3)

Using the relation Vy = V z tan _, equation (A3) becomes

tan 6x gz,xdY

tan _® = 2YV2
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Therefore,

COS _,, _,

2yV 2
Z,m

For the conservation of mass flow,

loV z,xdy = 2Y pV z _m

or

Vo_xC°S _ x _V 4 Vo?xC°S _ x

Vz,.- _ ___\Vo,__'_' _ 2 -fl u 'y

, y

_,Y

Then, in terms of boundary-layer characteristics,

Vz,. = V0,x e°s _x 1 -

Substitution of equations (A4) and (A6) izto equation (A2) gives

(A4)

(A6)

1 2

(nY).. _ pro,x +_ °V°'x -_]x c°szBx
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I 2
or, factoring out _ PV0,x,

(A7)

Now

r_r_ =_. = -- oo,%_
j_ ,,vo,:j j ,,,FVo,xj

- [--r""oo.% (- Vo,dtVo,d
d-8_ ,y

dy-

(AS)
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The expression of Vo, x in terms of V I from equation (I0) and the

substitution of equation (AS) into equation (A7) then yields, after

reducing,

o_
o-+
(x
_D

With the use of equations (14) and the definitions of solidity,

form factor H, and momentum-thickness parameter _ (eq. (19)), equation

--* defined
(Ag) can be expressed in terms of the loss coefficient _.,x'
by equation (22), as

_ ,, {0 .,,0x_o ,- " 2 °S2Gx + + c°S2_x " -- ?.-I_
.,x (I- exEx) (i- _x_) (I- ex_)

(A_O)

2
With the use of the identity cos _ = 1 - sln28, equation (AIO) becomes

=.. _x [, _ _x4T "SxSin28x ]

=A=_°=_x- _i[: _-7<)=]

Factoring and reducing of terms then _elds for the loss coefficient for

complete mixing

x[ <m'_ = _ + sin21 x-,x (I - _xHx)2 -_ - x-
(23)
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Figure i. - Development of surface boundary layers and wake in flow about cascade blade

sections as considered by loss analysis.
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Figure 2. - Model variation of velocity and pressure in plane
normal to axis at arbitrary station downstream of cascade as

used in loss analysis.
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Figure 15. - Experimental variation of wake form factor with
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