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TECHNICAL NOTE 3662

THEORETICAL LOSS RELATIONS FOR LOW-SPEED TWO-DIMENSIONAL-CASCADE FLOW

By Seymour Lieblein and William H. Roudebush

SUMMARY

The relations between wake characteristics and total-pressure de-
fect were theoretically analyzed for the incompressible flow across a
two-dimensional cascade of compressor blades. Equations for total-
pressure-loss coefficient both in an arbitrary downstream plane and in
a plane far downstream where complete mixing has occurred were developed
in terms of the wake momentum thickness and form factor at the arbitrary
plane. Results indicated that the total-pressure-loss coefficient for
unseparated flow varied almost directly with the ratio of wake momentum
thickness to blade chord length and with the solidity, and inversely
with the cosine of the air outlet angle.

Sample calculations indicated that the additional loss incurred in
the mixing of the wake is a function primarily of the form factor of the
wake at the start of the mixing, and also that the mixing loss may be a
silgnificant proporticn of the loss at the trailing edge. The effect of
trailing-edge thickness was indicated to be possibly significant for
conventlonal compressor blade sections.

It was concluded from the analysis that the wake characteristics of
momentum thickness and form factor constitute significant parameters for
the presentation and correlation of two-dimensional-cascade loss data.

INTRODUCTION

It is a difficult task to predict and control losses 1n axial-flow-
compressor design because of the complex three-dimensional nature of the
loss phenomenon. For simplicity, the standard approach considers that
the complete loss in compressor blade rows can be constructed by prop-
erly correcting blade-profile losses for three-dimensional effects. A
necessary first step in such an analysis is the determination of the
blade-profile loss. The basic blade-profile loss is considered to in-
clude the loss accrued in the mixing of the wake downstream of the blade.
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The problem of theoretical loss estimation for blade profiles in-
volves first, a determination of the boundary-layer charascteristics on
the blade surfaces and, second, a means of determining the total-pressure
defect resulting from these boundary-layer characteristics. The first
part of the problem has received considerable attention (e.g., refs. 1
and 2), although certain difficulties still remain. The second part of
the problem, which is the concern of the present paper, has alsoc been
investigated in references 3 to 5. These references show that analytical
relations between certain blade-wake boundary-layer characteristics and
the resulting defect in total pressure can be established for cascade
flow. The present paper continues the approach and presents a detailed
theoretical analysis of cascade loss and wake relations in terms of wake
momentum thickness and form factor. The analysis is directed specifi-
cally toward establishing simplified equations and considerations that
may prove useful 1In the estimation of profile losses and in the correla-
tion of experimental data in the low-speed two-dimensional cascade,
which 1is the primary source of compressor blade-profile data.

The analysis is made for incompressible two-dimensional flow. Re-
lations are obtained between the total-pressure defect and the wake
characteristics at an arbitrary station between zero and about 1% chorad

lengths downstream of the trailing edge. Both the total-pressure defect
up to the station and the defect for complete mixing are considered.
From these relations, the various factors influencing the loss are de-
termined and thelr relastive effects are evaluated.

SYMBOLS
c chord length, ft
H form factor, 5*/6
K pseudoenergy factor, k/6
k pseudoenergy thickness, ft
n exponent in power velocity profile relation (table I)
P total pressure, 1b/sq ft
LP mass-averaged decrease in total pressure, lb/sq i
bs) static pressure, 1b/sq ft
s distance along outlet streamline, ft

t blade trailing-edge thickness, ft
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\ R t\_o
t blade trailing-edge-thickness parameter, (c cos B
v velocity, ft/sec
Y half blade spacing normal to axial direction measured from wake
centerline (y = 0, fig. 1)
v coordinate normal to axial direction (fig. 1)
z coordinate in axial direction (fig. 1)
0 angle of attack, deg
B air angle (angle between flow direction and axis), deg
5 full boundary-layer or wake thickness, ft
% displacement thickness, ft
2 . & g
® full-thickness parameter, | =
c/cos B
e momentum thickness, ft
8 tum-thick aramet R
momentum-thickness parameter, | = ) == B
o mass density, lb-secz/f‘t4
o solidity, c/2Y
51 total-pressure-loss coefficient for loss up to cascade measuring
(&P) 5
station, i—j;§
z P11
52 total-pressure-loss coefficient for loss up to cascade measuring
(&P),
station,
I
2 0,2
5: total-pressure-loss coefficient for loss up to_outlet plane based
(A.P)x cos B,
on alr angle in outlet plane, 1 V2 cos By
z P
EE: % total-pressure-loss coefficient for loss for complete mixing based

2

(&P), fcos B,
on air angle in outlet plane, | 2 \cos B
z 1 t
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Sﬁbscripts:

1 lower surface

min minimum

t plare of trailing edge

u upper surface

X arvitrary outlet plane 0 to l% chord lengths dcwnstream cf trail-
ing edge

y normal to axial direction

'z axial direction

0 free stream

1 inlet

2 outlet measuring station (1/2 to 1 chord length dcwnstream of

trailing edge)

© far downstream where complete mixing has taken place

GENERAL CONSIDERATIONS

In subsonic two-dimensional-cascade flow, losses arise frcm the
growth of boundary layers on the suction and pressure surfaces of the
blades. These surface boundary layers then come together at the blade
trailing edge to form the blade wake, as shown in figure 1. As & result
of the formation of the surface boundary layers, & local defect in total
Pressure is created and a certain mass-averaged loss in total pressure
occurs in the plane of the trailing edge.

Downstream of the trailing edge, a mixing teskes place between the
wake and the free-stream flcw, and the wake is eventually reenergized
through turbulent mixing. Inasmuch as a loss in total pressure is in-
volved in the mixing process, the ultimate total pressure at a station
far downstream where conditions have become uniforn will be less than
the average total pressure at the blade trailing edge. This difference
in total pressure is referred tc as the mixing loss. The loss for com-
plete mixing represents the total loss attributable to a given wake pro-
Tile in the two-dimensional cascade.
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Although the losses encountered in the flow over the blade profiles
of a two-dimensional cascade can be expressed in various ways (e.g.,
drag coefficient, wake coefficient, total-pressure defect, entropy rise),
it 1s ultimately desirable, for the determination of compressor blade-
row efficiency and entropy gradients, to determine the loss in total
pressure involved in the flow. This cannot as yet be done theoretically
because of the current inability to determine accurately the turbulent
viscous flow across blade sections. However, wherever the flow field is
separated clearly into a wake region and a free-stream region (as in
fig. 1), mathematical relations c¢an be developed to express the loss in
total pressure as a function of the local properties of the wake. Al-
though this does not solve the problem of loss estimation (the boundary-
layer and wake parameters cannot be calculated accurately in all cases),
the approach does point out the relative influence of the various geo-
metric and aerodynamic factors on the resulting loss in total pressure.

In cascade loss analysis there are two stations of particular in-
terest: (1) the plane of the trailing edge and (2) the usual cascade
measuring station (about 1/2 to 1 chord length downstream of the trail-
ing edge). Consideration of cascade losses in terms of the wake char-
acteristics at the blade trailing edge is desirable, because ultimately,
in the development of effective cascade flow theory (potential flow and
boundary-layer theory), it should be possible to compute satisfactorily
the surface boundary-layer characteristics (momentum thickness and form
factor) at the blade trailing edge. Significant developments along
these lines are represented, for example, by reference 6. A study of
the significant parameters determining the loss at the cascade measuring
station is also necessary so that the available experimental data can
best be analyzed and correlated.

The analysis starts with a development of the general equations
for the loss in total pressure up to an arbitrary outlet station and
for the loss in total pressure after complete mixing. These equations
are expressed in terms of the wake characteristics of momentum thickness
and form factor at the arbitrary outlet location. The application of
these relations to two specific outlet locations, the plane of the
trailing edge and the usual cascade measuring station, is then discussed.

BASIC EQUATIONS
Assumptions
The theoretical development of cascade loss relations is based on

the fundamental premise that, for short distances downstream of conven-

tional cascades (say, up to about 1% to 2 chord lengths), the outlet

flow in a plane normal to the axial direction of the cascade (fig. 1)
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can be divided into a wake region where gradients in total pressure
occur and a free-stream region where the total pressure is essentially
constant. In conjunction with this premise, the following specific as-
sumptions are made: (1) the flow is two-dimensional and incompressible,
(2) the inlet flow is uniform across the blade spacing (y-direction),
(3) the outlet static pressure and flow angle are constant across the
entire blade spacing, (4) the outlet total pressure is constant in the
free stream outside the wake, and (5) the outlet free-stream total pres-
sure is equal to the inlet total pressure. Under these assumptions, the
variations in outlet velocity and pressure in an arbitrary plane normal
to the axial direction will appear as shown in figure 2.

The validity of these-assumptions varies with distance downstream
of the blade trailing edge. General cascade experience indicates that
they are sufficiently valid in the region covered by the present analy-
sis to provide results that are qualitatively correct. These assump-
tioni have frequently been employed in cascade loss analyses (refs. 3
to 5).

Loss at Outlet Station

Development of eguations. - For an outlet plane located at any dis-

tance between O and about 1% chord lengths downstream of the blade trail-

ing edge, the mass-averaged loss in total pressure between the cascade
inlet plane (subscript 1) and the general outlet plane (subscript x) is

given by Y
I oV, xPydy
ol (1)

Y
fY Vg xdy

With free-stream total pressure assumed constant between station 1 and
the general outlet station, the loss across the cascade is given by the
defect in total pressure in the outlet plane as

hjii oVz,x(PO,x - Px)dy _
(aF)y =¥ (2)

x
fY Ovz,xdy
Y

From the Bernoulli equation for incompressible flow,

(AP)X =P -

P=p+%pV2 (3)

coae
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Then, inasmuch as static pressure is assumed constant across the entire
blade spacing in the y-direction, equation (2) can be expressed as

e Y ;.2 2
é-v[' (VO,x - Vy)V, cos B, 4y
-7

Y
f Vy cos Bydy
-Y

With outlet angle B, constant across the blade spacing, equation (4)
can be given, after expressing the velocities in terms of ratios, as

Y 2
2 PYo,x " \Vo,x Yo,/

(&P) (4)

X

(5)

Actually, since V, = vO,x in the free stream, the limits of integra-

tion in equation (5) can be restricted to the limits of the wake region
extending from -8 . to &, o (see fig. 2).

Since the momentum thickness 1s a basic parameter in all simplified
boundary-layer theory, it is desirable to express equation (5) in terms
of this parameter. This can be accomplished by expanding the integral
in the numerator to yield

3
(AP') = Z 1 - v"— V_) dy + - 7 V——) dy (6)
X 8, v v 5 0,x 0,x 0,x 0,x
2
X = l,y
2Y -f (l -7 )dy
0,x

51:.'7

The following definitions of wake charscteristics are now made:

Displacement thickness:

u,y
8% = ( - l’-)dy (7a)
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Momentum thickness:

td v\ /v
v ), Go)()e “"”
o]

&
v,y v v 2
ky = ( - %)(vg) dy (7¢)

The integrals appearing in equations (7a) and (7b) are similar to the
standard boundary-layer-thickness parameters, except that the integra-
tion path is normal to the cascade axial direction instead of being nor-
mal to the flow direction. These modified thickness parameters are des-
ignated by the subscript y. Substituting equations (7) into equation

(6) then yields
e k
(%) * (59
- 1 .2 X x
(Ap)x =% Vo,x (5;)
. 1 (X
2Y Jy

In equation (8), Vo,x 1s not completely independent of the wake

formation. The presence of the wake displacement thickness causes an
acceleration of the free-stream flow vwhich is reflected as an increase
‘in the V term. This point can be brought out more clearly by ex-
pressing the loss in terms of the inlet dynamic head. TFrom continuity,
for uniform inlet conditions

(8)

Y
2Y pVycos By = jr pVy cos B,dy (9)
-Y

Dividing both sides of equation (9) by ¥y ,cos B, and adding and sub-
2
tracting 2Y +to the right side of the equation give :

oy Vl cos Bl (
Vo,x cos cos By 5 - VO x
S,y

RCCC
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cos Bl
. 1 cos Py
Vo o= (10)
X 5‘;
t- (Z—Y-)x

Substitution of equation (10) into equation (8) then yields
e k
- 1.2 cos By 2Y Jy ' 4 2%
(&P)y = 7 oV1 \cos Bx [ - 3
. 2Y x

The total-pressure loss, in thls form, is a more explicit funetion of
the wake characteristics. Specifically, it 1s revealed that the mass-
averaged loss in total pressure in any outlet plane will depend on the
inlet dynamic head, the inlet and outlet air angles, and the ratio %o
blade spacing of the wake momentum, displacement, and pseudoenergy
thicknesses in the outlet plane.

or

(11)

For analysis purposes in investigating the relation between total-
pressure loss and wake characterilstics, it is convenient to use a loss

coefflclent defined as

- 2

(&P) fcos B

T* = X X (12)
x 1 pvz cos By

2 1

which differs in the term (cos Bx/cos Bl)z from the more customary def-
inition of loss coefficient given by

The definition of loss coefficient given by equation (12) will be used
throughout the present analysis. Thus, equation (11) can be expressed as

GIC)
6: = x X (13)

@)
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Applied form. - For use in the analysis of cascade and compressor
loss data, it is desirable that the derived loss equations be put in the
most applicable and significant forms. Several factors can be consid-
ered in this respect.

In the previous loss equations, it is to be noted that the wake
thicknesses involved are defined in the plane normal to the axial di-
rection. However, inasmuch as one of the purposes of the development
is to permit the calculation of total-pressure losses resulting from
the blade boundary-layer growth, it would be well to express the loss
equations in terms of the conventional wake thicknesses normal to the
free-stream flow. This can be accomplished by assuming that the thick-
ness of the wake or boundary layer in any plane (i.e., normal to the
blade surface or normal to the outlet flow direction) can be related to
the thickness in the plane normal to the axis through the cosine of the
angle between the plane in question and ‘the rormal plane., This relation-
ship will be valid as long as the axial gradients of flow in the wake
are not large. Thus, in terms of wake thickness normal to the outlet
flow at angle B, 1t is assumed that with little error

- )
3= 5y cos B
6* = 6; cos B
) (14)
k = ky cos B
8 = ey cos B_J

Use will also be made of the defirnitions of wake form factor H and
pseudoenergy factor K given respectively by

*
H= %— (15a)
K = % (15b)

Furthermore, it is desirable to express the blade spacing in terms
of the blade solidity o and chord length ¢, where o = c/ZY. Thus,
from equations (14), (15), and the solidity relation, equation (13)
becomes :

o - (9-) o X , (16)

X c
x COs Bx o UHX 3
- (E)x cos By
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With the further definition of the wake momentum-thickness parameter 3
given by

A 8 g

6, = (—) —_— (17)

x c/y cos By :

equation (16) for the loss coefficient becomes

* A 1+ Ky

(l - exHx)

As a simplification, it would be desirable if the pseudoenergy fac-
tor K could be expressed in terms of the form factor H. Accordingly,
values of K were investigated for several representative analytical
variastions of velocity in the wake, as shown by the half-wake profiles
in figure 3. (It is assumed that the velocity profiles in fig. 3 are

symmetrical about the point of minimum velocity at y//g = 0.) The
power velocity profile, with minimum velocity ratio vmin/vo = 0 (fig.

3(a)), represents the form of the wake at the trailing edge. The other
velocity distributions are intended to represent possible wake profiles
some distance downstream where some mixing has occurred and vmin/v0:>o'

The thickness % of the half wake for the error-curve profile (fig.

3(e)) was arbitrarily established as the value of y/zg at which
V/Vy = 0.99. (The integrated values are those of the definite integrals

obtained from allowing Yy 5 -+ = )} Equations for V/VO for the profiles
are given 1in table I.

Computed values of K determined from equations (7b), (7¢), and
(15b) are shown as a function of H (computed from eqs. (7a), (7b), and
(152)) for the various analytical profiles in figure 4. Variations in
K and H were obtained for the power profile by varying the exponent
n and for the other profiles by varying the minimum velocity ratio
Vmin/VO' The equations for K obtained for the various profiles are

given in table I. Also shown in the figure are values computed from
experimental wake-profile data obtained in references 7 to 10. The data
of references 7 to 9 were taken approximately 1/2 chord length downstream
of the blades, and for reference 10, about 0.02 chord length.

Figure 4 shows that profile form should not be a significant factor
in the K-H relation. For values of H up to about 1.4, a maximum

difference of less than 1% percent 1s indicated for the quantity (1 +K),
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and therefore for E; in equation (18) for the various profiles consid-
ered. As will be indicated later, higher values of H, for which maxi-
mum differences in (1 + K) up to about 3 percent are indicated, will

generally occur only in the trailing-edge region where vmin/VO may be

near zero. In view of these considerations, the K-H variation given by
the power velocity profile was adopted as the simplest acceptable approxi-
mation to the general K-H relation for use in the loss equation. This
selection 1is reasonably substantiated by the limited experimental data
presented.

With K for the power velocity profile given by

H+1
K=3-T (29)

the equation for the loss coefficient from equations (18) and (19)
becomes

2H
—_
36 - 1
Ty = 26 X (20)

X (1 - §kﬂx)3

It is thus established that the total-pressure-loss coefficient (as de-
fined by eq. (12)) in a plane downstream of the trailing edge is a func-
tion of the wake momentum-thickness parameter (as defined by eq. (17))
and the wake form factor.

A plot of the calculated variation of 5; against é& (from eq.
(20)) for a range of values of H, from 1.2 to 2.6 is shown in figure 5.
The plot of figure 5 reveals that E; is only a secondary function of
H. 1In fact, for values of @; < about 0.07 and velues of Hy < about 2.0
(representative trailing-edge values for unstalled flow), the loss coef-
ficlent is essentially independent of the value of Hy.

B .
Loss for Complete Mixing

The complete loss in total pressure attributable to a cascade blade
row is measured only at a station (subscript ) sufficiently far down-
stream for the flow to again become uniform across the blade spacing as
shown in figure €. Since the flow is uniform in the y-direction both
far upstream and far downstream, the mass-averaged defect in total pres-
sure is given by

(AP)w = Py - Bu = Py o - Pa (21)
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It 1s now desired to express (AF), in terms of wake and flow character-

istics in the general outlet plane. To do this, it is necessary to ex-
press the pressures in equation (21) in terms of velocities. The con-
version to velocities 18 achieved through the application of the Ber-
noulli equation and the equations for conservation of momentum in the
axial and tangential directions for the flow envelope bounded by the
streamlines a-a and b-b and by the outlet and far-downstream planes
in figure 6. The details of the development are presented in the
appendix.

With the definition of the loss coefficient for complete mixing
based on the alr angle in the general outlet plane glven by

-— 2
¥ = (&) feos By (22)
X 1 sz cos Bl :
' 2 1

it is shown in the appendix that

L) ~
26 e 2
- X x| 2 2 1
2 1+3 Hx - sin Bx H -

The loss coefficient for complete mixing is thus & function of the air
angle as well as of the wake momentum-thickness parameter and the form
factor in the outlet plane.

The calculated variation of 6i;x

of H, from 1.0 to 2.6 and for B, of 0° and 60° as obtained from

equation (23) is plotted in figure 7. The figure shows that, unlike
the case for the local loss coefficient in the outlet plane (fig. 5),
the loss coefficient for complete mixing depends to a significant ex-
tent on the value of the wake form factor. The influence of the outlet
alr angle Bx, however, 1s small.

with 6, for a range of values

Mixing-Loss Ratio

An indication of the additional loss incurred by the complete mix-
ing of the wake can be conveniently obtained from consideration of the
mixing-loss ratio; that is, the ratio of the loss for complete mixing to
the loss up to the outlet plane. From equations (23) and (18), the
mixing-loss ratio is given, in terms of the wake characteristics in the
outlet plane, by

—3 ~ ~
® 2(1 - 6,H,) 9 2 2 1
X X
® " {1l + = |Hy - sin B H, - (24)
(a;*)x 1 + Ky 2 X 1 -9,
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A numerical evaluation of equation (24) in terms of Hy, and @;

can be obtained through the use of the representative relation between
K, and Hy given by equation (19). A plot of the variation of mixing-

loss ratio against H, so cbtained is shown in figure 8 for By of o°

and 80°. Figure 8 reveals the general observation that the mixing-loss
ratio at a glven outlet-plane locetion is determined primarily by the
form factor of the wake in the outlet plane.

As H, approaches 1.0 in figure 8, calculated va}ues of mixing-
loss ratio less than 1.0 are obtained for values of BX greater than O.
This result is obtained mathematically because of the independent menner
in which @% and H, are allowed to vary in the calculation. For an
actual wake profile, §x and H, do not vary completely independently;
and, at a value of H, of 1.0, 5; must be zero. Values of mixing-loss

ratio less than 1.00 in figure 8, therefore, represent regions of unreal
flow.

The exact nature of the mixing-loss ratio as H, approaches 1.0

can be demonstrated more clearly by examining the mixing-loss ratio of
a given wake velocity profile. TFor the power velocity profile of figure
3(a), for example, K, can be expressed in terms of Hy through equa-

tion (19), and é& can be expressed in terms of H, and the wake full
thickness parameter gx’ where

3, = (g)x T (25)
by .
S} -
-2 (5) e

Substitution of equations (19) and (26) into equation (24) then yields
for the power velocity profile

- 2 - 2
b4 . l-Bx(Hx_'_l)

ecee
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Plots of the variation of (Zn/® ), with H, and B, for the
power velocity profile are shown in figure 9 for a range of values of
3,. 3
The convergence of the values of GB:%B*)X to 1.0 as Hx approaches 1.0
is clearly indicated for all values of 5x in figure 9(a). The small

effect of alr outlet angle on mixing-loss ratic for unstalled flow
(B, < 2.0) 1is shown in figure 9(b).

(The value of ,Sx = 0.6 corresponds approximately to éx = 0.1.)

Mixing-loss ratios were also determined for the other representa-
tive velocity profiles shown in figure 3. For a given wake velocity
distribution, K can be expressed in terms of H, and & can be ex-
pressed in terms of H and the wake full thickness &. Equations for
@ and K for the various wake profiles of figure 3 are given in table
I. The substitution of the relations for K and 6 in table I into
equation (24) yields the mixing-loss ratio for the various profiles as

a function of H,, %x, and B, 1in the general outlet plane. A compar-
ative plot of the calculated variation of (5:/5*)x with Hx for repre-
sentative limiting values of Bx and B, 1s shown in figure 10 for all

five profiles. Figure 10 shows that the mixing-loss ratio may be essen-
tially independent of the particular variation of the velocity in the
wake.

Summary

In summary, the preceding analysis of the loss relations for the

‘wake in an outlet plane located from O to about li chord lengths down-

2
stream of a cascade indicates that, for unstalled configurations, the
total-pressure-loss coefficient (as defined by eq. (12)) up to the out-
let plane is essentially a function of only the local wake momentum-
thickness perameter (eq. (17)). The ratio of the total-pressure loss
for complete mixing to the loss at the outlet plane depends primarily
on the form factor of the wake in the outlet plane.

APPLICATION TO PLANE OF TRAILING EDGE

An outlet station of practical Interest in cascade loss analyses in
the plane of the blade trailing edge, where the blade-surface boundary
layers come together toc form the blade wake (station t, fig. 1). The
development of loss equations for the plane of the trailing edge can per-
mit the calculation of the loss in total pressure arising from the devel-
opment of the boundary layers on the blade surfaces, as determined from
blade boundary-layer theory.
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Of a1l the assumptions stipulated for the general analysis in the
arbitrarily located plane, perhaps the one concerning the constancy of
the static pressure across the blade spacing mey be most questionable
in the plane of the trailing edge. It 1s recognized that static-pressure
gradients will normally occur in the plane of the blade trailing edge,
depending on the blade circulation and surface curvatures; and, as a
consequence, the derived relations will not be an exact representation
of the flow. At present, there 1s no available informetion concerning
the effect of such gradients on the results of the simplified develop-
ments. It is belleved, however, that the existence of the static-
pressure gradients normally encountered in conventional unstalled cas-
cade operation will not materially alter the principal conclusions and
trends of variation established from an analysis based on uniform static
pressure.

For simplicity, the case of zeroc blade trailing-edge thickness will
be considered first.

Equations for Zero Trailing-Edge Thickness

In the plane of the tralling edge, under the assumptions of the
analysis and the condition of no blade trailing-edge thickness, the vari-
ations of velocity and pressure in the y-direction will appear as shown
in figure 11(a). The wake thicknesses at the trailing edge consist of
the wake thicknesses of the upper- and lower-surface boundary layers, so
that

- I
By - 5u’y + 87':3’
*
_By = S*U,y + ST:Y
Gy = Gu’y + 97' Y
5% _ 4+ o¥F
_ouwy Ty ;
B=5"77% (28)
u,y 1,y
ko Sy YRy
Gu,y + gl:y
QyH = Qu’yﬂu + elJy'Hl _

A similar set of equations can readily be established for thicknesses
normal to the air angle Py through the cosine of the angle B as in

equations (14). The accuracy of this conversion to the normal wake

-~ -



NACA TN 3662 17

thicknesses in the plane of the trailing edge is perhaps not as good &s
it would be farther downstream, since the rates of change of the wake
properties along the direction of the flow are greatest in the region of
the trailing edge.

Loss at trailing edge. - The equation for loss coefficlent in the
plane of the tralling edge is then obtained from equation (18) as

x A L1+K

& zzft—gzgzgg (29)

(Dt=9

or, with the K-H relation of the power velocity profile (eq. (19)),

2Hy
.~ 3E -1
mﬁ = 26, 3 (30)
(1 - 6.H)

where the 6 and H values are determined as in equation (28).

The wake momentum thickness of equations (29) and (30) is normal to
the air outlet angle in the plane of the trailing edge, which may not
necessarily be equal to the mean of the angles of the tangents to the
blade surfaces at the trailing edge. Strictly speaking, since the re-
sults of surface boundary-layer calculations generally yield boundary-
layer properties normal to the blade surfaces, an adjustment for the
differences between these angles should be made in the determination of
the wake thickness values for use in equation (30). However, such a
refinement is cutside the accuracy of the present analysis.

For boundary-layer flow on blade surfaces, values of form factor H
may generally be obtained from about 1.3 to about 2.0 to 2.6 when sepa-
ration occurs. Furthermore, analysis of compressor cascade blade losses
reveals that separation in the low-loss range of incidence-angle opera-
tion is indicated for values of wake momentum-thickness ratio (6/c)
greater than about 0.02. Thus, for unseparated flow, for a high value
of solidity of about 1.75, and a high value of air outlet angle of about

FS

60°, a momentum-thickness parameter 6 of less than about 0.07 is ob-

tained. Most blade sections will operate at values of 9 considerably
lower than 0.07 in their design regions of incidence angle. A practical
range of blade operation can therefore be represented for conventional
compressor cascades by values of Ht from about 1.3 to about 2.2 and by

values of 5t up to about 0.07. In this range, according to figure 5,
6% will not be very sensttive to the value of H,. Equation (30) can
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then be simplified by taking Ht = 1.6 as & representative average
value to give

1.6846
_* t
(J)t = A3 (31)
(1 - 1.66y)
loss for complete mixing. - The equation for the loss coefficient

for complete mixing based on the wake characteristics at the trailing
edge is obtained from equation (23) as

_ 26 6y | 2 2 2
t ~ t t
(1 - 6,8,) - O¢Hy

The plot of cnf){ against 6 in figure 7 shows that, for the practical
range of values of Qt and Ht at the trailing edge, the influence of
Bt will be very small. The effect of outlet angle can therefore be neg-
lected by taking B4 = O, so that, with little error, equation (32) can

be simplified to

(33)

In the plane of the tralling edge, the power velocity profile is
considered to be most representative of the velocity varlation across
the wake. Plots of the variation of the mixing-loss ratio (&G/‘ )

against H, and By for the power velocity profile are shown in fig-
ure 9. In the range of values of H 2 1.4, the full thickness parame-
ter Gt and the air outlet angle Bt exert only a secondary influence

on the value of the mixing-loss ratio.

Effect of Trailing-Edge Thickness

Since practical blade sections are constructed with nonzero values
of trailing-edge thickness, the question of the effect of this thickness
on the total-pressure loss of the section is naturally raised. An accu-
rate theoretical evaluation of the thickness effect is not currently fea-
sible because of the complexity of the flow in the region of the trailing
edge. Apperently, a rapid mixing between the flows along the upper and
lower surfaces takes place immediately behind the trailing edge with ac~
companying large localized gradients of pressure and flow angle. The
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precise nature of the flow in the trailing-edge'region is expected to de-
pend on the shape of the trailing edge (i.e., whether the trailing edge
is blunt or rounded). At any rate, the presence of a blade trailing-edge
thickness will affect the loss in total pressure because of the creation
of additional mixing lcsses.

Tt 1is possible, under the assumptions of the present analysls, to
determine the losgs attributable to blade trailing-edge thickness by con-
sidering the flow immediately downstream of the trailing edge to be a
"dead-air" region. The additional loss will thus appear in the form of
a dumping loss. As indicated previously, the precise nature of the
trailing-edge flow is too uncertain for the present qualified analysis to
be expected to produce accurate estimates of the trailing-edge-thickness
effect. However, the trends determined by this analysis should be correct.

According to the simplified pilcture of the trailing-edge effect, the
variations of velocity and pressure in the y-direction immediately behind
the trailing edge will appear as shown in figure 11(b). The trailing-
edge thickness appears only as an effective increase in the wake full and
displacement thicknesses, so that, for a trailing-edge thickness ¢t,

g* &% +of + ¢ t

Accordingly, the approximate equation for the loss coefficient for com-
plete mixing can be obtained by replacing H, in equation (33) by

AN t
H, + t/6; to glve

(35)

where the trailing-edge thickness parameter ‘% is defined as

~ t o

t = (z) cos By (36)
and H; and 6y are as before.

In order to examine the effect of trailing-edge thickness on the loss
for complete mixing, the ratio of loss coefficient with trailing-edge
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thickness ®u (eq. (35)) to the loss coefficient for zero trailing-edge
(55'{:0 (eq. (33)) is established as

1A £V 5
T 1+3 0% \B +q 1- 8.8,
—— - : & (37)

Equation (37) is based on the assumption that §t and Hy (obtained

from the surface boundary-layer characteristics) are unaffected by
changes in the blade trailing-edge thickness. A plot of the calculated
variation of the loss ratio of equation (37) against trailing-edge-
thickness parameter is shown in figure 12 for & range of values of Gt

and Ht‘

The results of figure 12 indlcate that the percentage increase in
loss due to mixing can be significant for large values of the trailing-
edge-thickness parameter. For conventional compressor blades with
trailing-edge-thickness ratios (t/c) of about 0,01 or 0.02 (and there-

fore for % up to about 0.035 or 0.070), the representative additional
loss, according to figure 12, could be of the order of 15 to 55 percent.
Although the loss magnitudes obtained by this simplified analysis are
certainly questionable, the figure does indicate that definite advantages
may be gained by maintaining trailing-edge thicknesses as small as pos-
sible. Similar results of the trailing-edge-thickness effect were ob-
tained in references 3 and 11.

Discussion

The application of the derived loss equations to the plane of the
trailing edge permits the calculation of the cascade loss in total pres-
sure once the momentum thickness and form factor of the blade-surface
boundary layers at the trailing edge are known. A completely theoretical
determination of cascade losses can therefore be made on the basis of
cascade boundary-layer theory and the trailing-edge loss relations pre-
sented herein. The reduced sensitivity of the loss coefficient to wvari-
ations in Hy 1indlcates that great accuracy in the theoretical determi-

nation of the boundary-layer values of Hy 1s not essential.

Because of the necessary assumptions involved in the developments,
the loss equations are expected to be most accurate for the case of zero
or nearly zero blade trailing-edge thickness. Further information con-
cerning the nature of the flow and boundary-layer characteristics in the
immediate vicinity of the blade trailing-edge region in the case of posi-
tive trailing-edge thickness is desirable.
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APPLICATION TO PLANE OF MEASURING STATION

In the previous section, the loss equations were expressed in terms
of the wake characteristics in the plane of the trailing edge. As such,
they presumed a knowledge of the growth of the boundary layers on the
blade surfaces. In most cases of cascade investigations, however, the
losses are measured in a plane a short distance (say, from about 1/2 to
1 chord length) downstream of the cascade (station 2, fig. 1). At such
distances, some mixing of the wake has already taken place and the mini-
mum velocity in the wake is no longer zero. General cascade experilence
indicates that the wakes of conventional cascade configurations are
clearly defined at the usual measuring-station locations and that
PO,Z = Py. Thus, the loss developments for the measuring station are

expected to be more valid than at the tralling edge because of the
greater uniformity of the static pressure in the y-direction and the
smaller variation of the wake properties along the flow direction as
distance behind the blade 1s increased.

The variations of veloclty and pressure along the y-direction in
the plane of the measuring station will appear as in figure 2. At the
measuring station, the wake can no longer be divided specifically into
its three components (suction-surface boundary layer, pressure-surface
boundary layer, and tralling-edge thickness).

Equations

The equations for loss coefficient up to the measuring station, for
loss coefficient for complete mixing, and for mixing-loss ratio ex-
pressed in terms of wake characteristics in the plane of the measuring
station are obtained from the respective general equations (eqs. (20),
(23), and (24)) by replacing the subscript x with the subseript 2
for the pertinent quantities involved. Simplifications of these equa-
tions can be obtained from consideration of the values of form factor H
generally observed at the measuring station.

It is known that wake form factor decreases with distance downstream
of the trailing edge and asymptotically approaches a value of 1.0. Ex-
perimental variations of wake form factor with distance downstream (ex-
pressed as the ratio s/c of distance along the wake to the airfoil
chord length) for low-speed isolated and cascade airfoils are shown 1in
figure 13. Apparently the decrease in H with distance is quite rapid.

According to figure 13, values of HZ between 1.0 and 1.2 should repre-
sent practical limits for a measuring-station location between 1/2 and 1
chord length behind the blade.

For the loss coefficient in the plane of the measuring station (eq.
(20)), figure 5 shows that the dependency of @ on Hp 1s slight in

the range 1.0 < Hy < 1.2. For practlical purposes, an average value of
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H, of 1.1 may be taken, so that, with negligible error, the equation
for the loss coefficient at the measuring station can be glven as

1.91282

®2 =1 1.18,)3 (38)

For values of Hy, < 1.2, the effect of air outlet angle Bz on the

loss for complete mixing in the measuring plane essentially vanishes
(fig. 7), so that, from equation (23),

1+ L85

_ ~ 1+ % 62Hp

@f2=292——2h—2- (39)
’ (l - 92H2)

If desirable, an average value of Hy = 1.1 mey also be used in the
equation for the loss for complete mixing.

According to the results of the mixing-loss-ratio calculstions
(figs. 8 and 9), for 1.0< H, < 1.2 in the measuring plane, very lit-

tle additional loss will accrue as a result of any further mixing of the
wake. Apparently, for & measuring station located from 1/2 to 1 chord
length downstream of the blade trailing edge, a considerable part of the
wake mixing loss has already occurred.

Comparison with Experiment

The accuracy of the loss equation in predicting the magnitude of
the loss coefficient for a given value of wake momentum-thickness ratio
was evaluated for the available experimental wake velocity-distribution
data at the usual measuring station (refs. 7 to 10, e.g.). Integrations
of the low-speed experimental wake-velocity profiles of the blade sec-
tione of references 7 to 10 were conducted to determine the wake momentum
thickness, the wake form factor, and the mass-averaged total-pressure
loss in the plane of the measuring station.

Since the experimental wake profiles in the references are plotted

1 ci s
in terms of the local values of VZ/VO,Z or (PO,Z - Pza//§ pvg ,0 1t is

J
more convenlent for comparison purposes to use a loss coefficient based
on outlet dynamic head, such that by definition

(aF),,
e - (40)
5 Vp,2

6G65¢
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where (AF)z is the integrated mass-averaged loss in total pressure in

the measuring plane (eq. (2)). The theoretical relation between loss
coeffleient 52 and the wake characteristics 1s obtained from equations

(10) and (12) as

2
(Ap)z cos [32 ~ 2 2
By = T 2 (Fos Bl) (1 - 6,Hy) = ag(l - 6,H,) (41)
z

so that, from equation (20),
2H,
. 3 -1

(42)

D

For the usual measuring-station location (s/c = 0.5 to 1), with H, = 1.1,

A~
1.9126,
(43)

52"'—‘-—7
1-1.162

Loss coefficlents were determined in two ways: first, by using the
actual measured value of Hp in equation (42), and secondly by using
the representative value of Hp = 1.1 as in equation (43)(applicable
only within values of s/c = 0.5 to 1). Calculated and integrated val-
ues of &, for these data are compared in the following table:

Blade section Ref. | s/c Hy, | Integ. |Integ. &, | Cale. B, [Cale. By
(6/e)z | (eq. (40))| (ea. (42),|(ea. (43),
actual Hy)|Hp = 1.1)

Compressor blade, a = 15° 7 0.56 | 1.12{ 0.0151 0.0330 0,0338 0.0342
Compressor blade, a = 25° 7 .52 11.13 .0130 .0269 .0271 .0276
Thin turning vane 8 .50 {1.10 .00250 .0309 .0309 .0309
Thick turning vane 8 B0 11.14 .00506 .0591 .0583 .0591
Compressor blade 9 55 [1.16 .00860 .0178 0177 .0181
Compressor blade 10 .02 |1.51| .0163 .0287 .0287 (.0319)

The close agreement between measured and calculated values of in-

dicates the validity of the K-H relation for these limited data.
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Discussion

The establishment of relations between the total-pressure loss and
the wake characteristics in the plane of the measuring station suggests
several considerations in the empirical prediction of cascade losses
and in the analysis of experimental cascade loss data. Since the total-
pressure-loss coefficient depends primarily on the wake momentum-

~
thickness parameter 92 = g EEéLE—’ three major quantities are con-
2 2

tained in the loss prediction, namely, the momentum-thickness ratio G/C,
the solidity o, and the air outlet angle B,. The quantities o and

Bo depend primarily on the cascade geometry, so that the principel aero-

dynamic factor involved is- the wake momentum-thickness ratio 6/c (and
to0 a considerably smaller extent, the wake form factor). If generalized
correlations of weske momentum-thickness ratioc can be obtained in terms
of the basic influencing parameters involved (e.g., velocity diffusion,
Reynolds number, Mach number, etc.), the use of these correlations, in
conjunction with the geometric characteristics of a particular cascade
configuration could then form the basis of a loss prediction procedure
according to the equations presented herein (egs. (20) and (23)). The
desirability of expressing cascade loss data in terms of wake momentum-
thickness ratio is hereby indicated.

To date, experimental loss data have not generally been presented
in terms of wake momentum-thickness ratio. However, it should be pos-
sible to convert the available data expressed in terms of other loss
parameters (e.g., drag coefficient, total-pressure-loss coefficient,
etc.) to corresponding values of wake momentum~-thickness ratio. For
example, a frequently used cascade loss perameter is the loss coeffi-
cient @, defined, in terms of the symbols used in this report, by

_ 1 .2
oy = (A?)Z/E vy

From equations (12) and (20),

2H, _
) = 5 <°°s Bl>2 26 (Cos Bl>2 2 (44)
W =W2\eos B/ = 2 ~
cos Bz cos Bz (1 - 92H2)3

(2) _9_,
C/2 cos Bg

51 cos Bs fcos By 2<3H2 -1 N <9> Hyo 3 (45)
7 ¢ cos Bl 2H2 T \c o COS BZ

S
or, since 65

/_\
ojo
N
]

[latala
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(In eq. (45), an iteration solution is required because of the high
order to which 6/c appears.) Strictly speaking, the accurate solution
of equation (45) requires a knowledge of the wake form factor. However,
for practical purposes, as was indicated previously, a representative
average value of Hp may be satisfactorily used (say, an H2 of about

1.1) in the calculations. (Similar relations can be developed for (8/c)s
in terms of loss coefficients based on outlet dynamic head, eq. (42)).

SUMMARY OF RESULTS

Simple approximate equations have been developed to relate total-
pressure loss in an Incompressible plane cascade flow to the character-
istics of the wake in a plane downstream of the blade trailing edge.
Both the loss up to the plane and the complete loss after mixing have
been expressed in terms of the characteristics of the wake in the plane.
It was found that, for unseparated flow, the total-pressure-loss coef-
ficient was primarily a direct function of the wake momentum-thickness
ratioc and the blade solidity and an inverse function of the cosine of
the air outlet angle. A secondary factor in the determination of the
loss coefficient was the value of the wake form factor H.

Application of the loss relations to the plane of the blade trail-
ing edge indicated that, if the blade-surface boundary-layer momentum
thickness and form factor at the trailing edge can be determined for a
given cascade configuration, the corresponding loss in total pressure
can be calculated according to the relations developed herein. From
the theoretical developments, 1t was shown that, for conventional values
of compressor blade trailing-edge thickness, the contribution of the
trailing-edge thickness to the total loss may be significant. It was
also shown that the additional loss resulting from the mixing of the
wake can be a considerable percentage of the loss incurred at the trail-
ing edge, depending upon the initial value of the wake form factor.

In a similar manner, the loss up to the usual cascade measuring
station located from about 1/2 to 1 chord length downstream of the blade
and the loss after complete mixing have been expressed in terms of the
wake characteristics at the measuring station. "In view of the small
values of H indicated to occur at the measuring station, particularly
simple relations were obtained for the measuring statlon showing the
loss coefficient to vary effectively only with the wake momentum-
thickness ratio, the solidity, and the air outlet angle.
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It was concluded from the analysis that the wake characteristics of
momentum-thickness ratio and form factor constitute significant param-
eters for the prediction of cascade losses and for the presentation and
correlation of two-dimensional-cascade data. The developments also Pro-
vide a means for computing the wake momentum-thickness ratio from re-

ported values of loss coefficient.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, January 23, 1956
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APPENDIX - LOSS COEFFICIENT FOR COMPLETE MIXING

The mass-averaged loss 1in total pressure between the inlet station
(station 1, fig. 6) and the far-downstream station (station =, fig. 6)
where the wake has been completely mixed is given by

(4P) = P, - P,

or, since P = PO,x where the wake is well-defined (O to about 1%

chord lengths downstream of the cascade),

(&F), = Pox - R (21)

For conservation of momentum in the axial direction (fig. 6)

Y 2 2
f Vz,xdy + 2¥px = 2¥YVz @ + 2¥Pa (A1)
-Y

Substituting for P, and p, through the Bernoulli equation (eq. (3))
in equation (Al) gives

\'4
2 1 .2 1 2 1 2
Fo,x m o = V2,0 -5 Vet 3 flo,x - 37 | Ve
or

1 2 1
-Y

The problem now is to express V and cos B, 1in terms of con-

Z)-
ditions in the outlet plane. From conservation of momentum in the tan-
gential direction (fig. 8),

Y
\jﬂ Vg, xVy,xdY = 2¥oV, V. (a3)
-Y

Using the relation V, = V, tan B, equation (A3) becomes
N4
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Therefore,
(a4)
or
V. cos B Y v 8 Puy v
cos
0,x 0 X
V, = == e—|dy = —S—=]27 - 1- d
Z,m» zY o, 2Y Vo,x Y
-Y 'Sl,y
(a5)
Then, in terms of boundary-layer characteristics,
¥*
By
Vz,w = V0,xC08 By <1 - o¥ (a6)
X

Substitution of equations (A4) and (A6) into equation (A2) gives

1 .2
+ 2 ovO,x

Y
tanZB V2 dy
1 » 8; 2 ’ X .y Z,X 1 Y
(&P) =% o2 -——)xcosBxl- Y T -ﬁLov";,xdy
» .
[’-Wg,x (1 - zy)x cos Bx]

3

2Y
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2
or, factoring out -]2; pVO)x,

¥ 2
2
VZ!X
tanZp (V ) y
1.2 AR o 1 Vs x\
- Z,X
(&P = 5 0, x 1 +( - -za%)x cos“B, 1 - > ?32 T " -7 (Va"; dy (A7)
2
(2¥) (1-2Y cos By Y
Now,
8
d Vo x\2 WYLV, 2
e=E) 3y = cos™g, dy
Vo,x Yo,x x
’ -8 ’
-Y 1,y
b,y v\
- coezﬁx 2Y - 1-17 dy
0,x
By

é. o*
= 2Y coszﬁx (l - - _Z) (a8)
x



30 NACA TN 3662

The expression of VO,X in terms of V; from equation (10) and the

substitution of equation (A8&) into equation (A7) then yields, after
reducing,

2
1 o f coS By 5.\ 2 P
Z °V1 (cos B 8™Z  cinZp (—y) 2 sin? (__,Y_) P
(F), = X coszax (2% . X \2Y/X . s5in B, \"3y X 42 COSEBX _X) (A9)
(a: x #\12 . (55) 2Y
2 [ -(%),J 2

With the use of equations (14) and the definitions of solidity,
form factor H, and momentum-thickness parameter 6 (eq. (19)), equation

(A9) can be expressed in terms of the loss coefficient GIEU defined
by equation (22), as ’ '

I~ 2 - . 2
26 sin“B 6 sin¢p
By = i {cos?p, + ———X— & X |ileos?p, - —
’ (l - exHx) (l = QXH)() (l = exHx)

(A10)

With the use of the identity cosCB =1 - sinZB, equation (AlO) becomes

~ ~ ~ 2 ‘A 2
— 28, éxHx ) 5« 8y Hy 2 Ox51n®By
Tox = |1+ 5 sin“By + 5= - == sinp, - —2—
(1 - &,8) 1 - 6,8, 2(1 - 8,8,)

Factoring and reducing of terms then ylelds for the loss coefficient for
complete mixing

=X (1 - GyHy )2 e SN - -

6GG%
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Figure 1. - Developwent of surface boundary layers and wake in flow about cascade blade
sections as considered by loss analysis.



NACA TN 3662

| '
-
>'; 1
P I
-
8 Vo
-]
U
>
1 | i
' Ymin
o |
P
\ |
|
v P
0]
g ,
9 P
& 1
1 |
po !
0 l ]
-Y -51 , ¥ 0 Bu, y Y

Distance, y
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used in loss analysis.
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Figure 5. - Theoretical variation of total-pressure-loss
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