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FOREWORD

Professor Chung-hua Wu pioneered the three-dimensional flow theory for turbomachines at Lewis

Flight Propulsion Laboratory, NACA in 1950. He introduced the S 1 and S2 families of relative stream

surfaces and thus reduced three-dimensional flow problems to problems of iterating two solutions of two

independent variables. The relaxation or direct matrix method was used for subsonic flows and the

method of characteristics for supersonic flows. Laborious but accurate results were obtained without the

benefit of modern digital computers. In the sixties Professor Wu developed a body-fitted, nonorthogonal

curvilinear coordinate system to improve computational accuracy. In subsequent years Professor Wu and

his colleagues at the Institute of Engineering Thermal Physics, the People's Republic of China, developed

shock-fitting and artificial compressibility methods for solutions in two- and three-dimensional transonic

flows. Professor Wu's theories were design tools used in aircraft engines such as the J69, JT-3D, Spe_,

RB211, JTgD, F404, etc.

Since the early sixties Clemson University has been active in internal flow analysis. Through the

support of the NASA Lewis Research Center in the early seventies, an inverse design method of the

Griffith diffuser was developed. Initially the method was limited to potential flow. In subsequent years,

the inyerse method development at Clemson for internal flow has improved to include viscosity,

compressibility and turbulence. Presently Clemson's inverse solution method is used in design

modification of the GE MS-7001F gas turbine using coal gas as a fuel.

Because of mutual interests in internal flows and ties to the NASA Lewis Research Center, I became

familiar with Professor Wu's work. In 1979, the year after U.S.A. and China resumed a normal

relationship, I met Professor Wu in Beijing. He was the director at the Institute of Engineering Thermal

Physics, The Academy of Sciences, People's Republic of China, at that time. We discussed the

possibilities of exchange visits and collaborations.
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A project emerged with the following specific objectives:

(1) To prepare a manuscript that summarizes the work of more than 100 journal articles on

S1 and S2 methods and three-dimensional flow solutions in turbomachinery that Wu and his

colleagues developed in the last 40 years

(2) To give two lecture series on the above subjects, one at NASA Lewis Research Center and the

other at the University of Cincinnati

(3) To discuss, on a regular basis, research problems in internal flows with graduate students and

faculty of the Department of Mechanical Engineering of Clemson University

Thanks to the assistance of Dr. Melvin J. Hartmann, Director of University Programs at NASA

Lewis, the above objectives materialized in 1990 with the support of a grant for NASA Lewis. Clemson

University was privileged to have had Professor Wu and his wife, Professor l_n-Hua Li, reside on

Clemson's campus from January 1990 until May 1990. The lecture series at NASA Lewis was held

March 19-21, 1990, and April 16-17, 1990, in Cincinnati. The manuscript draft was completed prior to

Professor Wu's return to China.

On the eve of publishing this report, I would like to recognize the efforts of Dr. Lonnie Reid, Chief

of Internal Fluid Mechanics Division, and his colleagues who reviewed the manuscripts, and to express my

appreciation to many others at NASA Lewis who made this report possible.
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It was a fulfilling experience and an inspiration for me to work with Professor Wu on this project.

Persons who were involved with this project hope that this report will serve a useful purpose not only to

document the work of computational fluid mechanics in turbonmchine_y, but also to encourage those of

us who continue to toil in turbomochlnery research.

On September 19, 1992, Professor Chung Hua Wu died in Beljing after a prolonged illness. While in

the hospital, he read the final typing of the manuscript. We are sorry that he did not see his report

released. The subject of this report is Professor Wuts lifetime effort. We hope this report will inspire

those of us who toil in the field of turbomachlnery.

March 1991

Project Coordinator

Tah-teh Yang

Professor of Mechanical Engineering

Clemson University
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SYMBOLS

a

aa_

b,B

C

%

%

v/vt

e

F

g

g_

gU

H

h

l

i

J

K

M

N

Jacobian of matrix aa/_; velocity of sound

basic metric tensor of two-dimensional x a coordinate system

integrating factor in the continuity equation for S1 and S3 stream surfaces

blade chord in z-dlrection; artificial compresslbility coefficient

specific heat at constant pressure

specific heat at constant volume

differentiation with respect to time following relative motion of fluid particle

internal energy of fluid per unit mass

base vector and reciprocal vector of x I coordinate system

" {force acting on S 2 surface per unit mass of fluid, - I n
n;pr

Jacobian of matrix gij

covariant metric tensor of x I coordinate system

contravariant metric tensor of x I coordinate system

absolute stagnation enthalpy, h + V2/2

enthalpy per unit mass of fluid, u + p/p

relative stagnation rothalpy per unit mass, I -- i + W2/2 = H - wV0r

rothalpy per unit mass, h - Uz/2

station along x I coordinate lines

station along .x 2 coordinate lines

orthogonal coordinates on surface of revolution

hP_ach number

number of blades
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P

P

q

R

r

r,O,z

S1

S 2

8

T

t

U

u

V

Vor

W

W x

@

unit vector normal to stream surface

cascade spacing (pitch)

pressure

any fluid quantity

heat transfer to fluid per unit mass per unit time

gas constant

radiusvector

absolutecylindricalcoordinates

relativecylindricalcoordinates

relative stream surface passing through fluid particles lying on a circular arc upstream

of or midway in blade row

relative stream surface passing through fluid particles lying on a radial or curved line

upstream of or midway in blade row

entropy per unit mass of fluid

absolute temperature

time or circumferential thickness of blade

blade velocity at radius r

du -- cv dT

unit base vector and reciprocal vector

absolute velocity of fluid

angular momentum of fluid about axis of rotation

relative velocity of fluid

physical component of relative velocity tangent to x i

work done by fluid element per unit mass per unit time

contravariant component of W
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%

x i

E

P

a

T

covariant component of W

general curvUinear coordinates (i = 1,2,3)

distance along turbomachine axis

angle between W and its meridional component

ratio of specific heats

angle included by the coordinate lines x i and x j

coefficient of viscosity, coefficient of artificial viscosity, or Mach angle

absolute vorticity, V × V

viscous stress tensor

fluid density

artificial density

angle between z and 0= tan-l(dr//ds)

normal, circumferential, or radial thickness of stream filament

dissipation function

stream function

angular speed of blade

partial differentiation of a flow variable on stream surface with respect to

coordinate x i

Subscripts:

C

e

h

i

!

L.E.

casing

exit station

hub

inlet

meridional component

leading edge

xi



m

n

P

8

T.E.

mean (midchannel)

component in the direction normal to hub or casing

pressure surface of blade

radial, circumferential, and axial component

suction surface of blade

trailing edge

Superscripts:

o stagnation state

dimensionless quantity
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z
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CHAPTER 1

INTRODUCTION

As a result of studying the effect of the radial equilibrium condition on the radial flow field in

the axial-flow turbomachine (refs. I and 2), a general theory of three-dimensional flow in turbomachines

(ref. 3) was proposed in 1950. It was intended for solving the three-dimensional flow in a turbomachine

(I) Having arbitrary hub and casing shapes--the theory applicable to axial-flow, radial-fiow,

and mixed-flow turbomachines

(2) With a finite number of blades which have finite thickness and arbitrary shape

(3) With fluid moving through it at a high speed--the speed of flow being purely subsonic or

supersonic

The fluid flow through the stator and rotor blade row was assumed to be steady with respect to the

stationary blades and rotating blades, respectively. It was proposed to obtain steady flow relative to the

blades by an iterative solution between two families of relative stream surfaces. The families were the S1

family and the S2 family. The problem of determining the flow field with three independent variables

was reduced to a number of flow fields having only two independent variables. Thus, the purely subsonic

or purely supersonic flow along an S 1 or S2 relative stream surface could be accurately solved by the

mathematical techniques available at that time. The relaxation or direct matrix method was used for the

subsonic flow, and the method of characteristics was used for supersonic flows. References 4 to 10

contain the solutions obtained by these methods and the approximate solutions obtained by series

expansion in the circumferential direction from a mean streamline on the S1 stream surface in axial flow
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turbomachines and centrifugal compressors. Almost all of these calculations were obtained by

mechanical, digital computers. This was a laborious endeavor and consumed a great deal of time, but

provided insight into the characteristics of three-dimensional compressible flow in turbomachines. Those

insights were useful to the development of the three-dimensional flow in turbomachine theory.

The flow computations reported in references 10 and 11 are probably the first two turbomachine

calculations ever performed on large-scale, high-speed, electronic digital computers. Reference 10 includes

calculations along the mid-channel S2 relative stream surface for high subsonic flow. Reference 8

contains computations along the mid-span S! relative stream surface for incompressible flow at design

and off-design inlet angles. The number of interior grid points for the two problems was 400 and 200,

respectively. The fourth degree differential formula was used. It took approximately 60 hr on an IBM

CPEC computer to factorize the coefficient matrix into lower and upper triangular matrices for the

turbine problem. The compressor problem was also factorized in 60 hr on an IBM 604 computer. The

gas turbine problem was also solved on an UNIVAC computer later and took a relatively shorter period

of time--11 min for factorization and 2.5 rain for each cycle of stream function calculation.

With the advent of the faster, modern digital computers, solutions for the subsonic flow along the

St and S2 stream surfaces were obtained by many turbomachine investigators (refs. 12 to 26).

Solutions obtained on IBM 360, 370, KDF9, and Facom 230-26 took about 0.5 to 35 rain. In addition to

the S1 and S2 stream surface flow solutions, quasi-(refs. 22 to 25) and full-three-dimensional flows

(ref. 25) were obtained on IBM, Facon, and CDC 7600 in about 2 to 16 rain (refs. 22 to 25). The S 1

surfaces were assumed to be surfaces of revolution in calculating the quasi-three-dimensional flow.

1.

7

Along with the development of high speed digital computers, the development of mathematical

calculation techniques continued. One major development of the latter was avoiding the inconvenience
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and inaccuracy caused by unequal grid spacing near an arbitrarily shaped boundary surface, which exists

in all practical applications. One approach used more accurate, high-order differentiation at such points

(ref. 27). A second approach used body-fitted finite elements to dlscretize the differential equations (refs.

19, 20 and 25). A third approach used the body-fitted, nonorthogonal, curvilinear coordinate system

(refs. 28 to 33). A second major development in mathematical techniques was the solution of transonic

turbomachine flow using the time-marching method (refs. 34 to 36), separate-region.calculation and shock

fitting (refs. 37 to 39), and artificial compressibility (refs. 40 to 42).

This report is a slightly expanded version of a series of lectures given at NASA Lewis and at

Cincinnati University during the spring of 1990.

Chapter 2 briefly reviews the fundamental aerothermodynamic equations governing three-

dimensional flow in turbomachines. The equations, in the beginning, are for the most general case of

unsteady flow of a viscous fluid relative to a rotating blade. The two independent thermodynamic

properties selected were entropy and relative stagnation rothalpy of the fluid. The latter is a

thermodynamic property introduced especially for calculating three-dimensional flow in the rotating blade

row. The implication of assuming steady absolute flow in the stator and the steady relative flow in the

rotor at the same time is also discussed. After a discussion on the effect of viscosity in the governing

equations, a practical method for considering the viscous effect on the flow field is given.

Chapter 3 presents the basic idea of expressing flow variables on a general stream surface in terms of

two independent variables, i.e., the two coordinates. This chapter continues conservation of mass in a

fluid element. In such a case, the governing equations naturally contain a stream filament thickness

term, a general function of the two coordinates. The flow along the stream filament is obtained by

3



solvingthe principal equation with the stream function as the single dependent variable.

solving direct (analysis) and inverse (design) problems are described.

Procedures for

To have high accuracy in the finite-difference approximation at grid points near a curved boundary

wall and to satisfy the boundary condition at the curved wall accurately, the body fitted, general,

nonorthogonal, curvilinear coordinate system is used for both S1 and S 2 stream filaments. By using

tensor calculus--the continuity equation, the vorticity equation, the dynamic equation, the energy

equation, and the principal equation are easily expressed in terms of the general, nonorthogonal,

curvilinear coordinates and corresponding nonorthogonal velocity components. These equations and

methods of solution for flow along S1 and S2 stream filaments are given in Chapter 4.

Z

The first part of Chapter 5 presents a simple, approximate solution for subsonic flow along the S 1

stream filament of revolution by circumferentlally extending the known solution on the mid-channel

streamline. Also in this chapter a simple, approximate three-dimensional solution is obtained by

circumferentially extending the known values on the mid-channel stream surface. The second part of this

chapter presents results obtained in subsonic S 1 solutions employing H type and C type

nonorthogonal, curvUinear coordinates. The third part describes procedures for quasi-three-dimensional

blade design and full-three-dimensional analysis of given blades. A comparison of the calculated three-

dimensional flow field and measured data is also included.

Chapter 6 describes several relatively quick methods for calculating the transonic flow along S 1 and

S2 relative stream filaments. The method of separate-region calculation with shock-fitting, elliptic

solution of the stream-function principal equation, to which artificial viscosity is introduced in the density

term to stabilize the transonic calculation for both the S1 and $2 stream filament, and the elliptic

-1 I1



algorithmfor the inversesolution of S2 flow (V#r prescribed), which is modified for obtaining a sharp

shock discontinuity, are presented. The calculated results are compared with experimental data.

Applying the quick solution methods described in Chapter 6, the quasi-three- and full-three-

dimensional transonic flow solutions in two compressor rotors were obtained and are presented in

Chapter 7. The solutions are presented with emphasis on the convergence process and the geometry of

individual S t and S2 stream filaments obtained in the three-dimensional solution. These solutions are

also compared to experimental data and are included in Chapter 7.

Based on the analytical solutions of three-dimensional subsonic and transonic flows and their

respective experimental data, practical methods for three-dimensionai turbomachine blade design and

blade element test data correction emerged and are proposed in Chapters 6 and 7.

5



CHAPTER 2

FUNDAMENTAL AEROTHERMODYNAMIC EQUATIONS GOVERNING THE

THREE-DIMENSIONAL FLOW IN TURBOMACHINES

2.1 Basic Aerothermodynamic Equations Governing the Three-Dimensional

Flow of a Viscous Fluid Through a Stationary Blade Row

The general basic aerothermodynamic equations governing the flow of a viscous fluid through a

stationary blade row which were formulated in reference 1 in connection with the calculation of a radial-

equilibrium condition for the design of turbomachine blades are as follows:

Continuity Equation: From the principle of conservation of matter, the equation of continuity is

op + V.(pV) = o (2.1)

or

V-V + Dlnp = 0
Dt

(2. la)

Dynamic Equation: Newton's second law of motion is expressed for viscous fluid by the Navier-Stoke's

equation.

DV =Vp + /_ _ V(V V) +...
P S----_ 3

(2.2)

:=,

where • . . represents high order terms due to viscosity change with temperature.

6
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Energy Equation: From the first law of thermodynamics, one form of the energy equation is

Du + P D(1/p) _el+_ _
Dt Dt p

(2.3)

in which

du = cv dT (2.4)

_1 = _1 V. (kVT) (2.5)
P

and

t=#

l
2

(v • v)2[v)v + (v× v)2 - 2(v. v)(v. v) - J

(2.e)

For turbomachine calculations it is convenient to take specific stagnation enthaipy H and specific

entropy s as the two independent thermodynamic properties defining the thermodynamic state of the

gas. They are related to other thermodynamic properties and velocity by

H = h + 1V 2 = (u + p/p) + 1V _
2 2

(2.7)

sad

T ds = du + p d(1/p) (2.8)

By the use of equations (2.2), (2.7), and (2.8) the following forms of dynamic equation and energy

equation were obtained (ref. 1):



P
+ _ v(v. v) +

3

(2.2a)

and

Dt p Ot p 3

(2.3a)

In the case of steady invicid flow, equation (2.2a) becomes

V x (V x V) =VH- TVs (2.2b)

which is the Coroco equation originally deduced for the investigation of flow with shock and vorticity.

The second law of thermodynamics states

TDs>_ 1
Dt

(2.9)

Combining equation (2.8) with the first law of thermodynamics, equation (2.3), yields

T Ds =_i+ #
Dt p

(2.1o)

which conforms with the second law of thermodynamics, equation (2.9).



From theprecedinggeneral,basicequationsthe followingcanbenoticed:

(1) In the stationaryframeof referencethe flowunsteadinessis representedby the partial derivative,

with respectto time, of densityin thecontinuity equation, of velocity in the dynamic equation, and of

pressure in the energy equation.

(2) Stagnation enthalpy is, in general, affected by the viscosity of the fluid through the last two

terms on the right elde of equation (2.3a). If the last term on the right side of equation (2.1a), the

viscous force per unit mass of fluid, is denoted by Ff, then the two viscous terms in equation (2.3a) are

O/p and V.Ff. Thusthe effect of viscosity on the stagnation enthalpy is not represented by V.Ff

alone.

2.2 Effect of Viscosity on Basic Equations

In order to more clearly see the effects of viscosity on the changes in stagnation enthalpy and

entropy, the dynamic equation (2.2a), the energy equation (2.3a), and the entropy equation (2.10) are

further examined using the stress tensor f (ref. 43).

Newton's Second Law of Motion

Let the resultant stress (force per unit area) acting on the surfaces of an infinitesimally small fluid

element be denoted by f (fig. 2.1) where r is related to the hydraulic pressure p, uniform in all

directions, and a viscous stress _r' by the following equation:

9



r!o x rxy rxs o_

_" ry x Gy ry s = ]Ty x

r,y o

(2.11)

or

1"ij = --p 6ij + r. _.IJ
(2.12)

where

1, i=j

6_ : 0, i * j

The vector and tensor form of Newton's second law of motion are, respectively

DV 1,-, 1 ,
=- -_vp -t- _V.r

Dt p p

(2.13a)

and

DV i aV i _V i
t

1 013 __ 1 arij (2.13b)

P_C i P O_Xj

where Einstein's summation convention is used.

• By using equations (2.1), (2.2), and (2.3), Newton's second law of motion can also be put into the

following form:

10
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8V _ V x (V x V) -VH + T x Vs + 1V.r, (2.14)

First Law of Thermodynamics

The first law of thermodynamics is, in general, expressed by

De
_ = -, (2.15)
Dt

The time rate of work done by the force acting on the fluid element surface, per unit mass of fluid,

as seen by a stationary observer is

p 8 Xi p _ Xi p 0 X i

or

, = _Iv.(f.V) = -_Iv.(pV) + _Iv • (_'.V)
P P P

(2.16b)

where

• '-V = f._Vj (2.17)

The first term on the right side of equation (2.16b) can be written as

1 V.(pV)= 1 (V.Vp+pV.V) 1 {Dp _}P P P D-t

11



Substitutingthe continuityequation(2.1a)into theprecedingequation results in

n

p p (Dt p p Dt Dt p 8t

Substituting the preceding equation into equation (2.16b) results in

4" -- D(p/p) _ 10p + _1V- (¢'-V)
Dt p _ p

(2.18)

To this observer the time rate of increase of internal energy is

De_Dt DtD {u+ _} (2.19)

Substituting equations (2.18) and (2.19) into equation (2.15) yields

DH _ lap +el + lV -(,'.V)
Dt p & p

(2.20)

The energy equation (2.20) can be put into a slightly different form by expanding the last term on

the right side of the equation as follows:

, _, I,,
p axi P [ _J ax i

l (2.21)

+ vj--_-T,I

12



But

aV__
x'ij

axi

(2.22a)

and

1 a,-'_ = Ff (2.22b)

Therefore, the energy equation (2.20) can be written as

DH _ lop +_I+ _- +Ff. V
Dt p at p

(2.23)

which is the same as equation (2.39).

The energy equation (2.20) can also be transformed to the form of equation (2.3) as follows by

multiplying terms on the left side of equation (2.13b) by Vi:

D V 2 ap a_"i.i (2.24)___ : Vi -- - Vi
o_xi _)xjDt 2

Using equations (2.21), (2.22a), and the continuity equation (2. la), equation (2.14) is transformed into

the following equation:

__[pD(1/p)___]__ Dt'_DV_
(2.25)

13



Substitutingequations(2.25)and(2.19)into the first law of thermodynamics,equation(2.14)resultsin

Du + P __D(1/P) = dl + #-
Dr Dt p

which is identical to equation (2.3).

The physical meaning of this form of the energy equation can best be seen by deriving the equation from

the point of view of an observer moving with the fluid element. To this observer the time rate of the

increase of its internal energy is

De_ Du (2.26)
Dt Dt

and the rate of doing work against the surroundings by unit mass of the fluid element per unit time is

lrijOV ! = 1( OVi _ i_i}

D(1/p) _

Dt p
(2.27)

In equation (27) _r_ is the rate of work done by unit mass of fluid element as seen by an observer

moving with the fluid element and _i are the coordinates moving with the fluid element.

14



Substitutingequations(2.26)and (2.27) into equation (2.15) yields

Du[ (2.28)

Equation (2.28) is exactly the same as equation (2.21) which is obtained by modifying the energy

equation (2.26) obtained from the point of view of a stationary observer with the use of Newton's second

law of motion (eq.(2.13)).

It is important to notice the following:

(1) To a stationary observer, the rate of work done by unit mass of fluid against viscous forces and

the rate of increase of internal energy are, respectively,

-1V.(_'. V) and D(u q- V_/2) (2.29)
p Dt

These two terms appear in the corresponding energy equation (2.20).

(2) To an observer moving with the fluid, the rate of work done by the unit mass of fluid against

viscous forces and the rate of increase of internal energy are, respectively,

Du
_ and m
p Dt

These two terms appear in the corresponding energy equation (2.28).

15



In the derivationof theenergyequationfrom the first law of thermodynamics,theexpressionfor

workdoneby the fluid elementagainstits surroundingsandthe increasein the internalenergyof the

fluid elementmust bewritten for the sameobserver,eitherstationaryor movingwith the fluid. If oneis

written for the stationaryobserverandthe otheris written for theobservermovingwith thefluid, the

resultingequationiserroneous.Unfortunatelythis kind of mixup hasappearedin somepublications.

Two-DimensionalLaminar BoundaryLayer Flow In order to clearly see the effects of fluid

viscosity and heat transfer on the energy equation and entropy equation, the following general analysis of

steady laminar boundary layer flow is made. The velocity and temperature distributions in the boundary

layer and an infinitesimally small element whose width and height are 5x and 5y are shown in

figure 2.2. The x and y coordinates are chosen, respectively, to lie along and perpendicular to the

tangent of the blade surface. The approximate relation commonly used to treat boundary layer problems

is employed in the analysis. Fluid pressure may have a gradient in the x direction.

(1) To a stationary observer, the time rate of work done by the fluid, per unit mass, is

@ -- _[m(p

J
Vxla _ a (_rV x Vy

_-
P

(2.30)

and after employing the continuity equation

V4r
D (p/p)

Dt
(2.30a)
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o

The time rate of heat transfer to the fluid element, per unit nmss, is

(2.sx)

Substituting equations (2.30a) and (2.31) into the first law of thermodynamics equation (2.15), the

following is obtained:

__._j - _I_ -+ =
(2,s2)

Rearranging terms gives

DH N 1 k + +
Dt p /)x

(2.33)

In equstion (2.33), .a'rV"(_
ax

then becomes

is much snmJler than and can be neglected. Equation (2.33)

dH _ 1 B k B Vxat _ ÷
(2.34)
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If # = constant, Pr = 1, and the difference between V and V x is neglected, then equation (2.34)

becomes

H = constant everywhere in the boundary layer is a particularly useful solution to the above equation. In

this case, the wall temperature Tw equals the fluid stagnation temperature T o. When Cp of the gas is

a constant,

V 2
T O = T + -- = constant (2.36)

2Cp

Differentiating equation (2.36) results in

_r = _ __v0v (2.37)
i

_y Cp (_y

Itcan be seenfrom equations(2.37)and (2.31)that

(a)at the lower boundary of the boundary layer,V = 0 and aV/Sy > 0, therefore,r > 0 and

0T/ay = _ = o;

(b) at the upper boundary of the boundary layer, V = 71 and aV/Sy = 0, therefore, r = 0 and

_/_ =4=0;

(c)between thesetwo boundaries,aW/Sy > 0, r > 0,/Yr/Sy < 0, and therefore,heat transferisin

the y direction.

18



Since H = constant, equation (2.34) indicates that, under the present approximation, the amount of

heat transferred into (or out of) the fluid element is equal to thework done by the fluid element on the

surrounding (or by the external viscous shear stress on the fluid element), i.e.,

(2.38)

Of the two terms on the right side of equation (2.38) the first one is always negative and the second one

is always positive.

2. To an observer moving with the fluid the time rate of work done by the fluid element, per unit

mass, on its surrounding is

D(l/p) rlaW¢ + aW_ / = P D(1/p) _ r aVx (2.39)

where _ and _ are coordinates moving with the fluid, with the velocity W. Since

(2.40)

Substituting equations (2.39) and (2.32) into the first law of thermodynamics, the following is obtained:
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Substituting equation (2.41) into the entropy equation (2.61) results in

T

The preceding two equations give, respectively, rate of increase of internal energy and entropy in the fluid

element due to the work done on the fluid element by viscous force acting on the fluid element.

In the particular solution above, substituting equation (2.38) into equations (2.41) and (2.42) results

in the following equations, respectively:

D(1/p)_ # 02 V2
X

Vu _ _ lVx _ P 0Y2 2 _ pD(1/P) (2.43)D'-'t - p _" p " D-t

and

T Ds 1 Or_ # 02 v2__ = _ _ Vx__ x (2.44)

Dt p 0y p 0y2 2

The first term on the right side of these two equations is always positive because Or/0y is always

negative.

In this example it is quite clear that

2O
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(a) the rate of work done by the viscous forces on the fluid element, per unit mass, seen by a

stationary observer at rest is 1/p _rVx)/ay = 1/p (r0Vx/ay + Vx_r/ay), where the first term is

always positive and the second term is always negative.

In the particular solution above, because the work done by the fluid element and heat transfer to the

fluid element just cancel each other, the stagnation enthalpy remains constant along the relative

streamline.

(b) The rate of work done on unit mass of fluid by the viscous force seen by an observer moving

wi_h the gas is r(l/p) 0Vx/ay , which is always greater than zero. . _

1 Vx _r p D(1/p) in which the first term is
In the particular solution above, (Cl - @) = - P _ - Dt '

always greater than zero, thereby causing Du/Dt and Ds/Dt always to be greater than zero.

It is quite obvious that the work done by the fluid element seen by a stationary observer and by an

observer moving with the fluid element are not the same. In writing out the energy equation, they should

be used with the increase in internal energy of the fluid element seen by the same observer.

r_ F_

2.3 Basic Aerothermodynamic Equations Governing the Three-Dimensional Flow of a

Viscous Fluid Through a Rotating Blade Row

?

General basic aerothermodynamic equations governing the fluid flow through a blade row rotating at

a constant angular velocity were formulated in reference 3 for a nonviscous fluid, in which the entropy s

and a new thermodynamic property I, first called "modified total enthalpy _ and later named "relative

stagnation rothalpy" (ref. 44), were taken as the two independent thermodynamic properties defining the

thermodynamic state of the gas. Later this formulation was extended to viscous gases in reference 43.

Continuity Equation: From the principle of conservation of matter, the equation of continuity is
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or

+ v.(p w)= 0
at

v. w + DlnP_0 (2.45a)
Dt

Dynamic Equation: For a blade rotating at a constant angular velocity w about the z axis, Newton's

second law of motion is

DW 1 1 (2.46)= w_r -I- 2w x W=- _Vp + _V. _'
Dt p p

=

Where T' is the viscous stress tensor acting on a fluid element.

The relative acceleration in equation (2.46) can be written as

DW aW

Dt at
aW 1 (V × W)+(W.V) W=_+_VW 2-w x
at 2

(2.47)

Rothalpy and relative stagnation rothalpy are defined, respectively, by (ref. 44)

(2.48)
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w2 (,,,r)2 W2
I-i+m=h- +m

2 2 2
(2.49)

By using equations (2.4), (2.8), and (2.49) the following form of Newton's second law of motion is

obtained:

0W_w × (v ×V)=-VI÷TVs- lye' (2.50)
8t p

Energy Equation: The energy equation for fluid flow passing through a rotating blade can be obtained

from the first law of thermodynamics in the same manner as in the case of fluid flow passing through a

stationary blade row. First, from a stationary observer's point of view, the rate of work done by the fluid

element, per unit mass, against its surrounding is

, = - I_r • v = - I_F • (W + U)

I
= - _V • (¢.W) - ;EF÷_r

p (2.51)

= Iv-(pW) - 1 V. (¢'.W) - _ D(¥_')

p p Dt

where U is the blade speed wr.

energy per unit mass is

To the same otmerver the rate of increase of the fluid element's internal

De-D{ u _] V[ u WZ+2W__r÷_2r2]_-_ + =_ +
(2.52)
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Substitutingequations(2.51)and (2.52)into equation (2.15) yields

DI _- _.l__aP+ _1 + _Iv • (_'.W)
Dt p Ot p

(2.53)

+

Just as in the case of fluid flow passing through a stationary blade row, the energy equation in the

form of the preceding equation can be transformed into the form similar to equation (2.28). For instance

the dot product of W and equation (2.46) is

D W 2 Op _ W /_'ii
Dt_ --w. (_,- _ ×w)=w_ _ (2.54)

The last term in the preceding equation can be written as

(2.55)

and the dissipation function for the fluid element moving with respect to the rotating blade is

(2.56)
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By using equations (2.55), (2.56), and the continuity equation (2.45); equation (2.51) can be transformed

into the following equation:

Substituting equation (2.57) and (2.52) into equation (2.14) yields the following form of the energy

equation:

D.0{D I,+Dt
Again the physical meaning of this form of energy equation can be seen more clearly by deriving the

equation from the point of view of an observer moving with the fluid element. To this observer the time

rate of the increase in the internal energy is given by equation (2.26) and the time rate of work done by

the fluid element against its surroundings is

1 awl D(1/p) _' (2.59)= - lrij__= p_ - __
* p Cg_i Dt p

where _ is the coordinate moving with the fluid.

Substituting equations (2.59) and (2.26) into equation (2.14) yields equation (2.58).
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EntropyEquation: From the second law of thermodynamics,

T __Ds__ _t (2.60)
Dt

substituting (2.58) into the entropy equation (2.8) the following is obtained:

T __Ds= ¢1 + --#' (2.61)
Dt p

Equations (2.53) and (2.61) are two important equations. They appear quite similar to equation

(2.20) and (2.10), respectively, but the total derivative with respect to time now means following motion

along the relative streamline, and the partial derivative with respect to time now refers to the derivative

at a coordinate point relative to the rotating blade.

2.4 Steady Fluid Flow Through a Stationary Blade Row and

Steady Relative Flow Through a Rotating Blade Row

Under steady operating conditions, fluid flow through a single stationary blade row is steady and the

unsteady terms in the governing equations can be neglected. Similarly under steady operating conditions

fluid flow through a single rotating blade row is steady and the unsteady terms in the governing

equations can be neglected. However, even in a single-stage turbomachine, there is always a stationary

blade row upstream (in the case of a turbine) or downstream (in the case of a compressor) of a rotating

blade row. Usually they are spaced not too far apart and the fluid flow relative to either blade row is
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unsteady. Because of the mathematical difficulty, in practically all of the design calculations and analysis

calculations, fluid flow relative to either the stator or rotor, is assumed to be steady.

Steady absolute flow in stationary blade rows means that the unsteady terms in governing equations

(2.1), (2.14), (2.20), and (2.28) at a fixed coordinate point, say (r,0,Z)o are equal to zero.

In the case of fluid flow through a rotating blade row, steady relative flow means that all of the

partial derivatives with respect to time in governing equations (2.45), (2.50), (2.53) and (2.61) at a fixed

coordinate point, say (r#,Z)o , with the origin of the coordinates fixed in the blade (i.e., _ = 0 -_t), are

equal to zero. Furthermore, since the absolute velocity V is related to the relative velocity W by

v = w + u (2.62)

or

V r = W r ]

V z = W z

V o = We + osr

(2.63)

When the relative velocity at a relative coordinate point (r#,z)is steady, the absolute velocity at a

relative point, Vr,4, z is also steady with respect to the rotating blade, so is V x V.

Because the absolute flow is calculated for the stationary blade row, whereas the relative flow is

calculated for the rotating blade row, there is an abrupt change in the tangential component of the fluid

velocity, and consequently, in the streamline when the fluid motion is referred to the different coordinate
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system moving from one blade row to the next (fig. 2.3). However, the projection of the streamlines on

the meridional plane is continuous because the meridional components of the absolute and relative

velocities are continuous (fig. 2.4).

In the following presentation, as well as in computer codes, only the governing equations for steady

relative flow through the rotating blade row will be given. It is understood that when the blade row is

stationary, w = 0, _ --, 0, W _ V, I -, H, and t' --, i.

2.5 Viscous Terms in the Governing Equations

An analysis will now be made on the magnitude of the viscous terms in the governing equations.

Continuity Equation: For steady flow the continuity equation (2.45) becomes

v. (pw) = 0 (2.64)

Equation (2.64) does not contain a viscous term. The effect of viscosity on the fluid flow comes through

the entropy increase in the flow in the following equation of fluid density:

Pb (I-W2/2 -{- U2/2_ _-Z_-Ie

z: -w,/----,;
(2.65)

The effect of entropy increase in density is quite large and consequently cannot be ignored.

Energy Equation: Of the two forms of energy equation (2.53) and (2.58), it is more convenient to use

(2.53). For steady flow it becomes
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DI = _1 + 1 V (_'.W) (2.66)
Dt p

In the core region the viscous stress and heat transfer are negligible. In the boundary layer region near

the blade surfaces and hub and casing walls, if the boundary layer is laminar, the Pr number of the fluid

is equal to unity, and the boundary walls are adiabatic walls, the viscous work term and heat transfer

term cancel each other. In actual turbomachines the boundary layer flow is turbulent and the Pr number

is different from 1, and the summation of these two terms will not be equal to zero, but the magnitude is

expected to be small. The following equation is usually considered to be a good approximation for the

entire flow region:

DI
__ = 0 (2.67)
Dt

Dynamic Equation: For steady flow equation (2.34) becomes

1
W x (V x Y) =VI- TVs +- V._' (2.68)

P

When I is taken to be constant on all streamlines, the magnitude of VI depends on the magnitude

of VI at the inlet. Vs is quite small in the core region, but quite large near the solid wall. For

instance the radial entropy profile at the exit of a rotor blade row may look something like that shown in

figure 2.5. From the dynamic equation in the radial direction.
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When the viscous stresses are neglected, equation (2.68) is simplified to

W × (V x V) = VI - TVs (2.69)

Equation (2.69) in the radial direction is

0W s W_ a(V#r ) OWr aI Os (2.70)
W s "-- + W z- + -- -- T--

Or r Or 0z Or Or

The effect of radial entropy gradient on the radial variation of velocity is indicated in figure 2.5.

The inclusion of entropy gradient in the dynamic equations is necessary for a better prediction of velocity

variations near the solid wall.

Entropy Increase: Evaluation of entropic increase along the streamlines by equation (2.61) requires

a solution of the complete set of governing equations for viscous fluid. At the present time approximate

value of entropy increase along the streamlines may be estimated by an appropriate value of the

polytropic exponent of a polytropic process which represents the actual flow process (ref. 1). It may also

be estimated by the pressure recovery factor and the isentropic rotor efficiency obtained in experimental

investigation and tests (ref. 47). For the flow through a stator blade row the entropy increase across the

blade row is calculated from the recovery factor in stagnation pressure as follows:

sc _ Sb = R "/ ln_l (2.71)
_-1 a

or

=i
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s c -- sb = R _ in Pb______ (2.71a)
- 1 Pco

For the flow passing a rotor blade row, the increase of entropy across the blade row is calculated from the

isotropic rotor efficiency as follows:

Sb -- Sa = R _ In Tb°/Ta° (2.72)

7-1 1 + _(Tb°/Tao- 1)

where

= _/s for compressor rotor

:1/_[ s for turbine rotor

2.6 Some Remarks on the Energy Equation and the Entropy Equation

The First Law of Thermodynamics and the Second Law of Thermodynamics are two important

physical laws governing the flow of a compressible visCous fluid in a turbomachine. The following

remarks are made here regarding the energy equation and entropy equation derived from these two laws.

1. Energy equations in two different forms were described in Section 2.1 and 2.2 for flow through, a

stationary blade row and a rotating blade row respectively. In one form of the energy equation, equation

(2.28) or (2.58), the increase of internal energy of a fluid element along the streamline is given directly by

the heat transfer from the surroundings to the fluid element minus the work done by the fluid element

against its surroundings. The equation is the same as the one universally used in thermodynamic
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calculations,exceptthat there is an additional work done term by the fluid element against the external

viscous force. In the other form of energy equation, equation (2.2) or (2.53), however, the increase of

stagnation enthalpy or stagnation rothalpy is given by three terms, namely, the heat transfer to the fluid

element, the work done by the fluid element against the viscous forces, and an insteady pressure term. It

shold be noted here that the work done by the fluid element against external pressure is included in the

first form of the energy equation, but not in the second form of the energy equation. (Equation (2.18)

will help to explain this difference.)

2. It should be emphasized that the heat transfer term (t refers to the heat transferred to the fluid

element from its surrounding fluid elements and that it is not equal to zero for the fluid element in the

viscous region, even when the flow of the fluid as a whole is adiabatic, i.e., there is no heat transfer

between the fluid and the bounding wall. For instance, in the preceding analysis of a two-dimensional

boundary layer flow, it is seen that (i) there is a positive heat transfer into the fluid element in the

boundary layer, and (ii) when the Prandtl number of the fluid is equal to one, this amount of heat

transfer into the fluid element is equal to just the work done by the fluid element against the viscous

forces acting on the fluid element, thereby keeping the stagnation enthalpy constant along the streamline.

This is a very useful result, which provides a sound basis in taking stagnation enthalpy or stagnation

rothalpy constant along the streamline in current engineering calculation for turbomachine flows.

Because of this canceling effect, it should be kept in mind that when the viscous effect on the stagnation

enthalpy is considered in the calculation, it is not correct to keep one viscous work term in equation

(2.20) or equation (2.53), or two viscous work terms in equation (2.23) and to neglect the heat transfer

term in these equations.

3. Entropy equation (2.10) or (2.61) clearly shows that the increase of entropy of the fluid element

along the streamline is made of two parts, namely the heat transfer to the fluid element (1 and the work

done by the fluid element against the external viscous forces as seen by an observer moving with the fluid
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element,the dissipationfunction _ (see eq. (2.27)). Depending on the nature of problem, dl may be

positive or negative (usually positive), but 4_ is always positive.

4. The heat transfer term dl in the energy equation and entropy equation is heat transfer to the

fluid element from its surroundings due to temperature difference. The viscous term in the energy

equation and entropy equation is work done by the fluid element against the viscous force acting on the

fluid element. They are independently evaluated according to their own definition, which is set up to the

heat transfer term and work done term in the First Law of Thermodynamics (eq. (2.15)). In light of the

preceding argument, it is easy to see that the frequently-appearing saying awork done by the frictional

forces acting on the fluid element turns into frictional heat and is added to the fluid element,"

dH/dt = F[- V, T ds/dt --F?- V (for instance, eq. (3.19) on p. 51 of ref. 45 and equations in the

middle of p. 277 of ref. 46) are incorrect.
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CHAPTER 3

GOVERNING EQUATIONS FOR FLUID FLOW ALONG RELATIVE STREAM FILAMENTS

3.1 Following Fluid Flow on Relative Stream Surfaces

In order to solve the steady three-dimensional irrotational or rotational flow in a relatively simple

manner, an approach was taken in reference 3 to obtain the three-dimensional solution by an appropriate

combination of mathematically two-dimensional flows on two different kinds of relative stream surfaces

(figs. 3.1 to 3.3). The first kind of relative stream surface is one whose intersection with a z-plane, either

upstream of the blade row or somewhere in the blade row, forms a circular arc (fig. 3.1). The _econd

kind of relative stream surface is one whose intersection with a z-plane, either upstream of the blade row

or somewhere inside the blade row, forms a radial line (fig. 3.2). These two kinds of relative stream

surfaces were designated as stream surface S1 and $2, respectively.

STREAM SURFACE OF THE FIRST KIND--S 1

Shown in figure 3.1 is a stream surface of the first kind formed by fluid particles lying on a circular

arc ab of radius oa upstream from the blade row. It is a generalization for three-dimensional flow

from the cylindrical surfaced usually considered in the two-dimensional design of turbomachines.

STREAM SURFACE OF THE SECOND KIND--S 2

A stream surface of the second kind is shown in figure 3.2. The important surface of this family is

the one that lies about midway between two adjacent blades, and divides the mass flow in the channel

formed by the two blades into approximately two equal parts. This surface is designated as the mean
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streamsurfaceor mid-channelstreamsurface S2,m. For blades with all radial elements, such as the one

shown in figure 3.2, it is convenient to consider a mid-channel stream surface formed by fluid particles

originally lying on a radial line ab upstream from the blade row. Otherwise the radia! line is chosen

about midway in the passage with the fluid particles originally starting out from a curved line upstream

from the blade row as shown in figure 3.3.

In general, both of these two kinds of stream surfaces are employed in the solution of the three-

dimensional problem flow field in turbomachines. The correct solution of one surface requires some data

from the other, and consequently, successive solutions between the solution of one of these two surfaces

are involved. Yet, the solution of flow on each surface is manageable with the efficient technique for

mathematically two-dimensional problems.

Relations Among Relative Velocity of Fluid, Coordinates

of Stream Surface, and Normal to Stream Surface

In general, the coordinates of the relative stream surfaces, the components of the unit normal n

(figs. 3.1 and 3.2), and the velocity components are related by the following equations:

S(r, z) = 0 (3.1)

nrdr + ncd_ + nsdz = 0 (3.2)

nrW r + n¢W¢ + ns dz = 0 (3.3)
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3.2 Equation Governing Fluid Flow Along S2

Stream Surface of S2 Stream Filament

Because S_ stream surface involved in the three-dimensional flow calculation is always a general

twisted surface, whereas the S 1 stream surface involved can be a surface of revolution, the S2 stream

surface will be considered first in the following treatment.

When the fluid motion on S2 stream surface is followed, equations (3.1) and (3.2) are used to

eliminate one of the three independent variables, the Io coordinate. That is, any quantity q on S2 is

now considered as

q -- f Jr, z, _o(r, z)] (3.3a)

The change in the quantity q along S2 due to a small change in r while z is held constant is (see

fig. 3.4)

(3.4)

Substituting a_o/0r from equation (3.2), for dz : 0, into the preceding equation gives

aq = &l _ nr 1 aq

ar & n@r_

in which the bold partial derivative sign is used to indicate this differentiation following the stream

8urfsce.

(3.4a)
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Similarly,

Oq _ Oq nl 10q

Bz Oz n¢ r O_

(3.5)

Along streamline on S2

Dq = Wraq + W Oq
Dt Or 0z

(3.6)

Continuity Equation

When the fluid motion is followed along the S2 stream surface and equation (3.4) and (3.5) are

used, the continuity equation for Steady relative motion becomes

_ + : p C(r, z)
r Or az

(3.7)

where

OW rC(r, z) = -- 1 + nr + n_
ntor 0_o

OW_° n OWI/+ (3.81

This continuity equation is put into the following form:

+ =0
Or Oz

(3.9)
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by using an integratingfactor B, which isrelatedto C by the followingequation:

Oln BDInB _ Wr 01nB + Wz _ = -C (3.10)
Dt Or 0z

or

an_B=_;iodt=_f _cdx
B i LiW

(3.11)

Equation (3.9)isthe necessaryand sufficientconditionthata stream function k_

relatedto velocitycomponents by

exists._ is

8_
----rBpW s (3.12a)

Or

-: rBpW r (3.12b)
8z

The differencein • at two points j and k on the S2 surfaceis

_k_ t j = J_j d_ = j_j rBp(Wsdr - Wrdz ) (3.13)

The preceding equation indicates that B is proportional to the angular thickness of a thin stream

filament whose mid-surface is the stream surface S2 considered herein and whose circumferential

thickness is equal to rB. Indeed, if the mass flow into and out of the element of such a stream sheet (cut

between two planes normal to the z-axis, and a distance dz apart (see fig. 3.5)) is equated to zero, and

the distances dr and dz approach zero as a limit, the following equation is obtained:
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 (rPWr)
+ =0

ar _z

Comparing this equation with equation (3.9) and considering the mass flow relations show r to be

proportional to rB. This proportionality means that physically B is a quantity which is proportional

to the angular thickness of a stream filament whose mid-surface is the S 2 surface considered herein.

With this interpretation, B is immediately seen to be closely related to the angular distance between two

adjacent blades. In actual calculation, only the ratio rB to (rB)i or r to ri is important. In general

it is easier to obtain the variation in rB from the distance between adjacent streamlines obtained on S1

surface than to evaluate B/B i by equations (3.11) and (3.8) using data obtained on S1 surfaces.

It is seen from the preceding section that in following the fluid flow along a stream surface, a

consideration of conservation of matter automatically changes the fluid flow on the stream surface to the

fluid flow along the stream filament. In general three-dimensional flow, the thickness of the stream

filament changes with respect to the two coordinates r and z. In the case of S2 stream filament (see

fig. 3.6) it is easy to see that: (1) in the radial direction, r increases with the radius as the

circumferential distance between the adjacent blades increases in the radial direction and (2) in the flow

direction, due to the blade thickness, r decreases as the fluid enters the blade channel and then increases

as the fluid moves toward the trailing edge of the blade.

Dynamic Equation

For general rotational flow, the dynamic equation (2.69) in the three perpendicular directions are

(3.15a)
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/ awWr/a(V°,)aWr W. =- ---- (3.15b)

(3.15c)

In following the motion on S_ equation (3.15) are reduced to the following forms by using equations

(3.3) to (3.6):

a(Var)
[

W_ + Ws _aWr aWs / aI + TaS + Fr

--_-r) Or Or

(3.16a)

(3.16b)

/aWr awffi] w_o a(V.r) ai +T as +F a

-- Wr(--_ - -- --oar) -- -r _z -- - O-z oa-'_

(3.16c)

where F is a vector having the unit of force per unit mass of gas defined by

(3.17)
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3.3 Principal Equation for Fluid Flow Along S2 Stream Filament

By considering the fluid flow along an S2 stream filament and using the partial derivative of fluid

quantities as functions of two independent variables r and z, the principle of conservation of matter

leads to the continuity equation given by either equation (3.9) or (3.14), which are the necessary and

sufficient conditions for a stream function _ to exist. The relative velocity components Wr and Wz

are related to the partial derivatives of • by equation (3.12). When this relation is used, the dynamic

equation in the radial direction can be used to form a principal equation governing the fluid flow on S 2

stream filament. The solution of the fluid flow on S2 stream filament is concentrated on solving this

principal equation for the single dependent variable 9. It is much better than solving a number of

dependent variables from a set of partial differential equations. The form of the principal equation will

be given for the direct problem and the inverse problem in the next two sections.

Principal Equation for Direct Problem

In the direct problem the shape of the S 2 stream surface is given. In practice the shape is specified

by a number of coordinate points lying on the surface, The components of the unit normal are then

calculated by equation (3.2) as follows:

Along the intersection of the S2 surface and a constant-z plane

(3.1s)

and along the intersection of the S2 surface and a constant r-surface
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n IIW_--ro
(3.19)

Components nr, n7_, and n s are determined by the preceding two equations along with the following

equation:

2 + n 2 + n2 =1
nr _o I

(3.20)

Let

/z
nr Fr

n,_ F_

(3.21a)

ns Fz

n_ F_

(3.21b)

From equation (3.3)

W_o-- -(pW r -_-pWl)
(3.22)

Using equations (3.21a) and (3.21b) and other basic relations, the dynamic equation in the radial

direction can be transformed into the following form (ref. 48).
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It is seen from the coefficients of the second order partial derivatives that when W > a or < a,

equation (3.23) is ]_yperbolic or elliptic.

Procedure of Solution for Direct Problem

In the direct problem of fluid flow along the S2 stream filament the variation of filament thickness

r (or rB) relative to its inlet value and equation (3.21) are given. There are nine independent equations

governing the fluid flow, namely equations (3.12a), (3.12b), (3.22), (3.16b), (3.21a), (3.21b), (2.67),

(2.71), or (2.72). The nine independent variables to be determined are Wr, W_, Ws, Fr, F_, Fz, I, S,

and @. (It may be noted here that, when equation (2.67) instead of the complete viscous equation (2.66)

is used for the energy equation in the calculation, there are only three independent equations among the

dynamic equations in three directions and the energy equation, because the latter can be obtained from

the former and the normality conditions between F and W.) The procedure of calculation is as follows:

(I) Starting from an estimated • field at the beginning of calculation or from the • field

determined in the previous cycle, compute Wr and Wz from equations (3.12a) and (3.12b),

respectively.

(2) Compute W_ from equation (3.22).

(3) Compute V 0 -_ W_ -t- _r and then F_ from the dynamic equation in the circumferential

direction, equation (3.16h).

(4) Compute Fr and Fz from equations (3.21a) and (3.21b).

(5) When the approximate equation, equation (2.67) is used for the whole flow region, stagnation

rothalpy I is taken to be constant along all streamlines.

(6) For an invicid isentropic calculation, entropy s is taken to be constant over the whole region.

For an analysis and design calculation, which tries to approximate the real flow as closely as

possible, a certain empirical variation along the streamline with the difference between the exit

and inlet value given by equations (2.71) or (2.72) is considered. In transonic turbomachines the

abrupt entropy increase across the shock is also taken into consideration.

(7) Solve k_ from the principal equation (3.23).
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Repeat calculations I to 7 until the desired accuracy is reached.

Principal Equation for Inverse Problem

In the inverse or design problem of fluid flow along the mid-channel S2 filament the variation of the

filament thickness r (or rB) relative to its inlet value is empirically determined by the desirable blade

thickness distribution. (In three-dlmensional solution the S_ filament thickness is taken from the

solution of S 1 filaments obtained in a previous cycle.) Now there are only seven independent equations

governing the fluid flow, namely equations (3.12a) and (3.12b), (3.16a) to (3.16c), (c), (2.67), and (2.71)

or (2.72), two less than that in the direct problem. On the other hand, however, there are nine

independent variables to be determined.

The differential of the coordinates of the S_ stream surface are related to the F components by

Frdr + F_ordlo + Fsdz = 0 (3.24)

In order for this differential equation to lead to an integral surface of the form represented by

equation (3.1), F must satisfy the following condition of integrability:

F.V×F=O (3.25)

Writing equation (3.25) in scalar form and using the relations (3.12a) and (3.12b) gives
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_r
(3.26)

By integrating along a constant r-line equation (3.26) gives

Fr/F/o- OttO,r/ (3.27)

If Fr=O ats 0

rLF_r )

(3.28)

Thus, there is only one degree of freedom left to the designer. Of all of the appropriate ways of

utilizing this degree of freedom, the one found most useful is to prescribe an appropriate variation of V 0

or V0r on the S2, m surface, i.e., the following equation is prescribed:

V a = G(r, z) (3.29)

The principal equation formed by combining the continuity equation and the dynamic equation in

the radial direction is

46



{1Wr/ WrW/- _,;_ - 2 _ + 1- a2;_2
+N 8@_ +M a¢/ =o
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From the coefficients of this second order partial derivative, the principal equation (3.27) is seen to be

hyperbolic or elliptic then the meridional velocity W! = J War + W2• is greater or less than the speed

1

of sound.

In turbomachine design the $2, m surface may be specified in some manner other than

equation (3.29). For instance in the case of an axial-flow turbine, in order to design the cooled rotor 54

blades with no or minimum radial twist, the following function may be specified on the mid-channel S2

stream surface:
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w_ g_(') (3.31)
Wl

In the case of a centrifugal compressor, in order to design the impeller blades with minimum deformation

and stress during operation, the mid-channel S2 stream surface may be specified to consist of all radial

elements, i.e.,

W_o

w---:- _g2(') (3.32)

In general then, the Sz stream surface n_y be specified by the following relation:

W_

W-":= g (r, z) (3.33)

By using equation (3.33) and other basic relations the dynamic equation in the radial direction can

be transformed into the following form (ref. 48):

w'_+ ' +N OlIl_+M _ -0

a2 J &_ Or &

(3.34)

where
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Procedure of Solution for Inverse Problem

The procedure of calculation of Sz, m stream filament is as follows:

(1) Starting from an estimated _ field at the beginning of calculation or from the • field

determined in the previous cycle, compute Wr and Ws from equations (3.12a) and (3.12b),

respectively.

(2) When (V#r)is prescribed, compute W lo from V 0. When (Wio/Ws) is prescribed, compute

Wto from equation (3.30) and Wz is computed from step 1.

(3) Compute Flo and Fs from, respectively, equations (3.16b) and (3.16c).

(4) When the approximate equation (2.67) is used for the whole flow region, the stagnation rothalpy

I is taken to be constant along all streamlines.

(5) For an invicid isentropic calculation, entropy s is taken to be constant over the whole region.

For an analysis and design calculation, which tries to approximate the real flow as closely as

possible, a certain empirical variation along the streamline with the difference between exit and

inlet value given by equation (2.71) or (2.77) is considered. In transonic turbomachines the

abrupt entropy increase across the shock is also taken into consideration.
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(6) Solve @ from the principal equation (3.30) or (3.34).

Repeat steps 1 to 6 until the desired accuracy is reached.

3.4 Principal Equations for Fluid Flow Along S1 Stream Filament

The S 1 stream surfaces near the hub and casing walls are usually considered to be surfaces of

revolution. If the radius of the hub wall increases (or decreases) in the flow direction while the radius of

the casing wall decreases (or increases) in the flow direction, the S1 surface in the mid-span region may

be close to surface of revolution. Just like in the case of Sz flow, the continuity equation requires that

the mass of fluid flow in a thin stream filament be conserved. ' _.......................

The flow equations expressed by a set of orthogonal curvilinear coordinates (#, p) (fig. 3.6) are as

follows (refs. 2 and 4):

Continuity Equation:

at a_
(3.35)

,. W relations

= - rpWto (3.36a)
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1 _ _ rpW! (s.sob)

Dynamic Equation:

1 8W!

r 8_
sin o = -- =0

r

(3.a7)

Principal Equation:

o aCnrl_ 1 a21Ii
+ _ ÷

012 r --_-) _-'_ r2 a_o2

-N (3.38)

where

For general S 1 surface or filament, where the surface twists in the circumferential direction, one

may formulate the governing equation with respect to the coordinates as follows:

(1) For turbomachines with axial inflow and axial outflow any quantity q on the S1 surface is

considered a function of to and z.

(2) For turbomachines with radial inlet and radial discharge, any quantity on the S1 surface is

considered a function of to and r.
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(3) For turbomachineswith axial (or radial) inflow and radial (or axial) outflow, any quantity on

the S1 surface is considered a function of (Io, #).

(4) Same as that in case (3) but considered a function of noncurvilinear coordinates x 1 and x2.
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CHAPTER 4

THREE-DIMENSIONAL FLOW EQUATIONS EXPRESSED IN TERMS OF

NONORTHOGONAL CURVILINEAR COORDINATES AND CORRESPONDING

NONORTHOGONAL VELOCITY COMPONENTS

Equations governing the fluid flow along S 1 and S 2 stream filaments were first derived in

references 2 to 4 employing orthogonal curvilinear coordinates (r, _, z) or (_,_, n). These equations have

been adopted in treatises on turbomachinery (for instance refs. 45 to 47), programmed into computer

cedes (for instance, refs. 8, 10 to 19, 22, and 23) and used in analysis and design of turbomachines (for

instance, refs. 21 to 26). During calculation of actual engineering problems it soon becomes evident that

in order to improve the relatively low accuracy of numerical differentiation (ref. 27) occurring at grid

points, unequally spaced near a curved boundary the coordinate line may coincide with the lea_iing and

trailing edges of the blade (see fig. 4.1) and a computer code may be used universally for turbomachines

of different geometry. Work to employ general nonorthogonal curvilinear coordinates for the calculation

of fluid flow along S1 and S_ stream filaments began in the sixties (refs. 28 and 29). Presented in the

following sections are some basic relations of general nonorthogonal curvilinear coordinates, equations

governing fluid flow along S1 and S2 stream filaments employing general nonorthogonal curvilinear

coordinates and the methods of solution.

4.1 General Curvilinear Coordinates in a Three-Dimensional Space

Let (yl, y2, y3) be the usual orthogonal Cartesian coordinates of point P and (x 1, x2, x3) be its

nonorthogonal curvUinear coordinates. In general the square of the element of arc ds is
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where gij

ds2 = gijdxidxJ (i, j = 1, 2, 3)

is the covariant metric tensor of the three-dimensional space

(4.1)

gij-- ayk ayk ----el "ej = gji
ax_ axj

(k = 1, 2, 3) (4.2)

gij = _ cos Oij (4.3)

where 0ij is the angle between the two basic vectors • l and el.

8A'e

The lengths of the elements of arc measured along the coordinates lines of our curvilinear systems,

ds(i} = g_ii dxi
(4.4)

The element of volume dv is

dv = _g"gdxidx2dx 3 (4.5)

where g is the determinant Igijl. Let e! denote the reciprocal base vectors defined by
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(4.6)

The corresponding contravariant metric tensor of the three-dimensional space is

g_J_ G_j_ _. j = gJ_
g

(4.7)

where Glj is the cofactor of the element gij in g.

For both systems it is convenient to use base vectors of unit length defined by

ui:ei+ g_'-_ (4.s)

ui ei --_ (4.9)

A vector B in the three-dimensional space is now either expressed in terms of the base vectors • l

and ui, or the reciprocal vectors e i and ul, as follows:

B = biei (4.10)
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B = Bitti (4.11)

B = (4.12)

B = Biui (4.13)

where b i and B i are, respectively, the contravariant components and the physical components along • i

of the vector B; and b i and B i are, respectively, the covariant components and the physical

components along el of the vector B. The covariant component and its corresponding physical

component can be calculated from the contravariant component with the following formula:

bi --- B • ei = gijbJ (4.14)

Finally the differential operators in general curvilinear coordinates are as follows: the gradient of a

scaler I is given by

VI = e| __aI (4.15)
Ox i

the divergence of vector W is
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° W (4.16)

and the contravariant components _i of vector E = V x V = _ie i are

_1 _ ! f av3 -- _V2 /

ax3j

1 av2_ _1]
e= _-g axl _x 2

0

t:

(4.17)

4.2 General Curvilinear Coordinates on a Surface

In the investigation of fluid flow along an S l or S2 stream filament the governing equations are

written for the fluid flow on the mld-surface of the filament. Such a surface is a two-dlmensional

manifold embedded in a three-dimensional enveloping space and is usually described by coordinates ua

(a : 1, 2), called the curvilinear or Gaussian coordinates on the surface.

Under this notation the relevant equations corresponding to those in the preceding section are as

follows:
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as2 = aa# dx a dx E (a, B = 1, 2) (4.18)

where aa# is the covariant metric tensor of the surface

aa_ = -- •a. ep----a_a (4.19)

aa#--_ cos #a_
(4.20)

The lengths of elements of arc measured along the coordinate lines are

ds(a) -- a_aa dxa
(4.21)

An element ofarea dA is

dA : _-adu ldu 2
(4.22)

where a isthe determinant laa_l.

a = lao#l= a11a22sin2012 (4.23)
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The contravariant metric tensor of the two-dimensional surface is

aO_ _- ea . e s -_ a_

all -- - a = la11sin20 2)-!

= all --,"--a =

(4.24)

= ---_ --a12 -- a _ --cos 012// a22 sin 2 012
(4.25)

In the investigation of S 1 and S 2 flow employing nonorthogonal curvilinear coordinates the two

Gaussian coordinates, u I and u 2, on the surface, are selected to be the same as two of the three

curvilinear coordinates in the three-dimensional space. For instance, in the case of S 1 flow, x 1 and x 2

shown in figure 4.1 are two nonorthogonal curvilinear coordinates of the three general curvilinear

coordinates referring to the three-dimensional space and are the same as the two Gaussian coordinates

which refer to the two-dimensional surface. The third coordinate x 3, which refers to the three-

dimensional space, may be selected as normal to the x 1 - x 2 surface. In that case W 3 = w 3

W 3 _ w 3 -- 0.

In the following, distinctions between (u 1, u2) and (x t, x 2) will not be made, but ea, aa/_, a... (a,

= 1, 2) will be used for the S 1 surface, whereas el, gij, g • • • (i, j = 1, 2, 3) will be used for the three-

dimensional space in which the surface is embedded. For a given problem, aa/_ are computed from

equation (4.19) through numerical differentiation.
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For vector W on the S1 surfacethe followingareobtained:

W1 = W. e I = aU wl -[- a12w2 = a_ll(Wl -}- W2 cos 012)

w2-- W- e2 = a21 wl -f-a_2w2--_--a_22(Wl co8 012 _ W 2)

(4.26)

(4.27)

The preceding equations can also be obtained by the geometrical relations indicated in figure 4.2.

4.3 Basic Equations Governing Fluid Flow on S 1 Surface of Revolution

General Equations: Denoting the normal distance between two adjacent surfacc_ of revolution by r,

the continuity equation of steady relative flow along the stream filament is

v • o (4.2s)
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Substituting equation (4.16) into (4.28) results in

_(_W'_H_,,)+0(,,W'_H_')=0
Ox1 Ox2

(4.29)

This equation can also be obtained by considering the mass flow into and out of the elementary volume

(dSl, ds2, r) (see fig. 4.3).

When expressions (4.10), (4.15), and (4.17) are used, the dynamic equation (2.53) in the es

direction is

(4.30)

When equation (4.10) and the following relation between the absolute and relative vorticities are used:

V x V=V x W+2_ (4.31)

the dynamic equation in the e2 direction for steady relative flow is (fig. 4.4).
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t ax'a 2J ax2

(4.32)

By using equation (4.26) the preceding equation becomes

ax"

= - 2 alt_-_22 e sino sin012 + Wt

(4.33)

This equation can alsobe obtainedby applying Stokestheorem to the surfaceelement offigure4.3,

Using relations(4.10)and (4.15)the energyequation (2.51)forsteadyrelativeflowbecomes

• aI el=w i al :o
DI =W. VI =w%l" --:.
D--t ax_ ax_

(4.34)

or

W 2 al
DI W t al + ___--_ --0

(4.35)

SpecialForms of Flow Equations on St:
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A number of useful special forms of equations presented in the preceding section can be obtained by

selecting a number of different x 1 - and x2-coordinate lines, as follows:

(a) xl-lines coincident with streamlines. In this case W 2 -- w 2 -- 0, W 1 -- W, equations (4.29),

(4.33), and (4.35) simplify to, respectively,

---a(rpW__V/_-22sin 0,2)=0
ax 1

(4.29a)

_-_o )_
_X 1

(4.33a)

0I
= 0 (4.35a)

ax I

If at the same time x 2 is taken to be normal to X1, the preceding equations are further simplified with

cos 012 = 0 and sin 012 = 1.

(b) xl-line coincident with the meridional coordinate line ! and x 2 - _o. In this case, 012 = 270 °,

W 1 --- Wi, W 2 = - Wto , _ -- 1, a_22= r, equations (4.29), (4.33), and (4.35) become those used in

references 4 to 9.

(c) S 1 surface is a cylindrical surface of radius r. If y = x 2 = r_o and x I - z, equations (4.29),

(4.33), and (4.35) become those of plane flow as used in reference 54. If, however, xl-line is taken to be

coincident with the streamline W l -- W, W 2 -- 0 and the equations are further simplified to
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--_a(rpWa_2_sin _12)--0
ax 1

(4.29c)

(4.33C)

aI
= 0 (4.35c)

ax 1

Furthermore, if x2-line is taken to be normal to x 1 -line, an interesting result is obtained--the quantity

W _ is an invariant along an x 2 - line in the case where the variations of I and s along the x2-

line are equal to zero.

As seen in the preceding equations, dynamic equations (4.33) and (4.33a) contain the variations of I

and s of the fluid in the es direction. When they are uniform at the blade inlet and no change occurs

along the streamline, they are uniform everywhere--this is usually assumed on S1 flow calculation and

will also be assumed in the following discussion of methods of solution. In cases where their derivatives

are not' very small, they should, of course, be properly considered.

4.4 Methods of Solution for S1

When the xl-lines are corrected during calculation to coincide with the streamlines, equation (4.29),

along the xl-line, gives
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a_22sin 012

/.-=-
in which _/a22 and 012 are computed after each correction of the streamline coordinates. For

nonisentroplc flow of a perfect gas

i I 11i= _ e --_-= 1 - _ - 1 (pW)2 _-_ e---_-

_,., -T(_ i _ J
(4.37)

The values of p and W can be determined from their product by rewriting equation (4.37) as (ref. 3)

2

(4.38)

where

S--8 i

R_= P e__

Pi

(4.39)
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Thetablein reference3 canthen be used find _ (i.e., p) from the known value of _ (i.e., pW). W

then computed from pW after p obtained.

When the derivatives of I and s are neglected, equation (4.33a) yields

is

(4.41)

This equation is used to obtain a new set of values of W at the grid points by integrating along the

x2-1ines with the right side of the equation computed from known values of the preceding cycle. The

integration may be started from the mid-channel streamline as in references 4 to 6 or from the stagnation

streamline. The mass flow along the x2-line is then computed by

x2 012 a_-22 dx 2 {4.42)rh -- f(x2)0 rpW sin

A comparison between the computed mass flow and the correct mass flow leads to new values of

streamline positions. This process of correction should be applied at each station along the streamlines,

quite similar to the method employed in references 4 and 6. It may be noticed, however, that with the

use of the present nonorthogonal curvilinear coordinates the tangency of the relative fluid velocity at the
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bladesurfacesis automaticallysatisfied.This method,of course,canalsobeemployedto modify existing

bladingor to designnewbladingas in references 4 and 35.

If it is desirable to keep the xl-line fixed during calculation, then

(1) pW 1 along the xl-line is corrected by the complete continuity equatiot_ (4.29).

(2) compute pW by

_w_E_w_)_+_w_)2 _w_)_w_)co__]'_ (4.43)

(3) integrate (W 2 a_11) along x I -line by

o(w_C) __
ax2

_¢sin o sin 012 -f _xlC cos 012 -_ W 2)

ax2

(4.44)

(4) compute mass flow along x2-1ine by

rh -- j_('x2)0rpW 1 sin 012 x 2
(4.45)

(5) correct the W 1 values at the grid points in the same manner as in the previous case.
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Themethod described above is quite similar to that used in references 4, 6, and 54 except that the

solution of the latter is extended in the circumferential direction from the mean streamline by using a

Taylor series consisting of three terms. Whereas, the solution of the former is extended circumferentially

to successive streamlines by a Taylor series of only two terms.

In general the continuity equation and the dynamic equation are to be solved simultaneously through

the use of the stream function _. Equation (4.29) is necessary and sufficient condition that a function

exists with

= _rpW2 /all sinr--- 012
0x 1

o_ = rpW 1 _f_sin 012
ax 2

(4.46)

Substituting equations (4.46) into (4.33), the following principal equation governing the fluid flow along

the S 1 filament of revolution expressed in terms of nonorthogonal curvilinear coordinates x I - and x 2 is

obtained.

1 _II COS 012 _ 1 _ J o_ K _II
-2 + + + -- M (4.47)

where
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(¢ ) COS 012 0ln *" 1 _12
aln _II/%2 I" sln _12 _{_ q_

I ' ) cos 012alnr 1 a$12K -- - 81n Ca22/a11 _"sin 012 + +

_22 _X 2 a_11 _X 1 sin _12 a_11 _X 1

M.._

+ - 2_arp sin a sin 2 012

Equation (4.47) may be considered as a generalization of the principal equation (3.38) in which the

orthogonal curvUinear coordinates (_, to) are used. When x I and x 2 become ! and to, respectively,

equation (4.47) reduces to equation (3.38).

When the _-derivatives are evaluated with suitable numerical differentiation formulas, including

those at the unequally spaced grid points (ref. 27) the resulting set of a large number of algebraic

equations involving the unknown k_'s at the grid points may be solved either by the direct matrix

method (refs. 3, 4, 8, 10 to 12, and 27) or by the relaxation method (refs. 3, 4, 10, 11, and 27). The

boundary conditions of the periodic variation of flow and the flow angles at the inlet and outlet stations

are to be satisfied in the same manner as described in references 4 and 8. Inasmuch as fixed (x 1, x 2)

coordinates are generally used in solving the principal equation (4.47), J and K are then a function of a
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fixedgeometryand have to be computed only once. The exclusion of derivatives

right side of equation (4.47) is helpful in the convergence of the solution.

W I and W 2 on the

4.5 Equations Governing Fluid Flow on a General S2 Surface

Vorticity Equation and Dynamic Equation: In general, the problem of fluid flow along S2 stream

filament is treated in the same manner as described for S 1 stream filament in the preceding sections.

But there is an important difference in the S2 surface inverse problem in that the shape of the S2

surface is known only after the solution is obtained. Because of this and also for the elimination of the

angular derivatives in the governing equations, the independent variables, i.e., the nonorthogona|

curvilinear coordinates x 1 and x 2 are selected to lie on the meridional plane (see fig. 4.5) while

following the fluid motion on the S2 surface in exactly the same manner as was done in references 3, 10,

and 11 in which orthogonal coordinates z and r on the merldional plane were used. The third

coordinate x 3 for three-dimensional flow is chosen to be the angular coordinate _, which is the same as

that used in the cylindrical coordinate system previously employed in references 3, 10, and 11.

Corresponding to this choice of x3, g_33 = r, g = r2a, g_= r-1, W 3=W_,w 3=W_-r,V 3--

V0, v3=V 0-r,W 3=W_,w 3=W_r,V3--V0 and v 3=V0r.

It was found in references 2 and 3 that it is more convenient to use the absolute vorticity than to use

the relative vorticity in treating the relative flow on S2 surface. Under the present nonorthogonal

curvilinear coordinate system, the three contravariant components of V × V (eq. (4.17)) becomes
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r ax_ _J

,,__:
r_-a[ a_ 8x !

,,_ _,_,w,_w,]
r _ ax' ax2j

(4.48)

By using these expressions, the three nonorthogonal dynamic equations in the e l directions are

ax2j --T-[_ _x_ J ax' ax--E
(4.49a)

- °Wl/:_- T 8.___s

ax2j ax2 ax2
(4.49b)

J _/_'22[ ax2 a--__J= _ - T_-._

(4.49c)
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Alternatively theseequationsmay also be obtained by using the following expressions of the rectangular

components of W and V × V in the e l, e2, and e8 directions (see fig. 4.2).

W c = W Isin #12,Wd = W2 sin Or2, We = We (4.50)

c ) , I ow,1

_,=,--(_,)8,°,,, r_t_ - _ J

__=r,_ = _si" e,,[a,,' a,,'J

(4.51)

We notice that the form of equations (4.49) and (4.51) are quite similar to equations (19) and (75),

respectively, of reference 3 employing orthogonal curvilinear coordinates (z, r, Io), but that the w's are

now more complicated covariant components of the relative velocity W.

With different choices of x I - and x 2 -coordinate lines suitable for different problems, the general

form of equations (4.49) reduces correspondingly to a number of special forms. For instance, if it is

selected that

(1) xl-line is coincident with the projection of the streamline on the meridional plane, then

#1 = ¢, W2= 0, Wl= W_; and w 1 = a_llWl, w 2 = W: a_22cos 012, and equation (4.49)

becomes
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o(w, 
ax 2

_ aI

ax 2

(4.52)

_',_HL _ - __ :_-T

(2) x1-line is coincident with the projection of the streamline on the meridional plane and xS-line to

be radial line normal to the z-axis, then 01 = o, 02 = O, 01z = 90 ° - o,

a = _cos o, w 2 = W! a_22 sin o, equation (4.51) becomes
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_1 .__

3 ---

r _1_1a_2 cos ff

r _c(_ q

1 lo(w, si ,)
(_r

(4.53)

and (4.49b) becomes

_r

= __0I_ T __0s (4.54)
Or Or

and (4.49a) and (4.49c) remain unchanged. Equation (4.54) may be used to evaluate the change of W t

along the r-coordinate lines for axial-flow machines.

Under this coordinate system, the correct expressions of V x V in the r, _ and z directions in

terms of the rectangular components W_ and W_ or V 0 are
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= _.lsin a + _2
_r

o[ 1 a(V0r) 1 a(V0r)_ 1 aW,

_ : _3 = tan ¢ OW__ __W!- 1 OW!

O, rm cos o a_22 Or

r [a_22 Or 0_o

(4.55)

(c) x 2 -line is normal to

equation (4.51) reduces to

xI -line and
01 =$2*O, then Wl = wl a_ll, W2_- W2 a_2z, a: _

r _L ax2

OxI ]

_x I

(4.56)

and (4.49) reduces to
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 v 22Laxl ax2 TL _ ax'
= aI _ T _s

ax I ax 1

r _L oxI a_ J ax_ ax_
(4.57)

acp

_ aI _ T as

a_ a_

If 0x2 = 9o° and 01 = 02 = 0, then _ = avf_-22= 1, equations (4.55) and (4.56) reduce to,

respectively, (19) and (95) of reference 3 in which the orthogonai cylindrical coordinates r, _, z are used.

(d) x2-1ine is normal to x 1 - line and xl-line is coincident with the projection of streamline on the

meridlonalplane, then 01-02--a,W 2=0,W 1= Wpw 1- W! a_11, w 2=0, _a = _11a22 and

equation (4.48) simplifies to
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_2

,
r a_lla22 ax 2

r a_ _

r a_1ia22 ax 2

(4.58)

and correspondingly

=1_ 1 O(Vor)

r _ Ox _

I

-=3 _ w

1 a(w, 
ax 2

(4.59)

It is interesting to notice that in the present coordinate system the components of the absolute vorticity

-=t and =3 contain only one term each, and that for flow, in which the absolute vorticity remains zero,

both Vor and W1 $/al1r--

to the angular coordinate

coordinate ! as the fluid moves through the blade passage.

simplify to

remain constant along the x 2 - line, while W l _ must vary with respect

_o according to the variation of Vgr with respect to the meridional

In this coordinate system, equations (4.49)
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= real_ T m@s

0t a_

(4.60a)

r ax 2 .a_'.. 8x 2 8x 2 ax 2
¥-1L

(4._b)

[
= al _ T as

a_ a_

(4.60c)

4.6 Governing Equations for S2 with Independent Variable _o Eliminated

The unitvectornormal to the S2 surfaceisexpressedas

n = ni el = Ni ui (4.61)

the orthogonalrelationisexpressedby

niel • dxiel = nldX1 + n2dx2 + n_odlo--
N 1 N 2

dx 1 + _ dx 2 + N_ordp =0 (4.62)
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The derivative of fluid quantity on S2 stream surface with respect to x 1 or x 2 with the other kept

constant is

a a a ax 3 a a a__ a nl a a NI a
=__ + --__ + __-___--__-

ax 1 ax 1 ax 3 ax 1 _x 1 a_ ax 1 ax 1 n_ a_ ax I N_r a_ a_

(4.63a)

8 a a ax 3 a a a_ a n2 a a N2 a
- + =_ + _ =_ - _ =.__ _

8x 2 8x 2 ax 3 ax 2 8x 2 a_ ax 2 ax 2 n_ a_ ax 2 N_r a_ a_

(4.63b)

When equations (4.63) are used the continuity equation for steady relative flow becomes

ax--_ _-_
(4.64)

where r is the circumferential distance between two adjacent S2 surfaces and the dynamic equations

become

1_tax_-_ + , _,-a_ _
(4.65a)
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T _as -f2
ax 2

(4.65b)

w2 a(vf)
D(Vs.r)_ W 1 8(V#') + --f_ = F_r

Dt a_ll ax 1 a_2_ c3x2

(4.65c)

Alternatively, these equations can be obtained by projecting the three components of equation (96) of

reference 2 in e1, • 2, • 3 directions. F in these equations is the same F of reference 2, fi being its

covariant components

F= n-,; n= - . = =N_r p a_

(4.66)

From equations (4.26),

_w 2
!

ax I

I/='='-] Bco.,,,+ +w,co.,12) (4.67)
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Substituting equation (4.67) into equation (4.65) gives

_-:_2/_x-I_ _

+ -
r 8x I

_s
OI + T _ = -fl

Ox 1 8x 1

(4.68a)

+w2cos012)  [(wl

w a,v.r,.IT.w'L- ; _ +_ Ox-_

(4.68b)

D(v°r)wl _,(vor)w_a(Vor)
-- + = f_o = F_or

Dt a_11 ax I a_'-22 OX 2

(4.68c)

Equation (4.68b) is the most important equation for S2 flow just as equation (4.33) for S 1 surface

flow.

Corresponding to the different choice of the x 1- and x2-coordinates, equations (4.64) and (4.68)

reduce to the following special equations:

(1) xl-line coincides with the projection of the streamline on the meridional plane.

W 2 - 0 and equations (4.64) and (4.68) simplify to, respectively
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a (,pwl _sin Ol,)= o
(4.69)

and

W_ a(V#r) 01 + T 0s fx

r B! _C a_

(4.70a)

(4.70b)

D(V#r) = W! a(Vsr)

D't 1f-_" B-t =f÷=F_#r

(4.70c)

Equations (4.69) and (4.70b) of S2 surface are quite similar to equations (4.29a) and (4.33a),

respectively, of S 1 surface.

(2) xl-line coincides with the projection of the streamline on the meridional plane and x2-1ine is in

the radial direction normal to the z-axis. Equations (4.69), (4.70a), and (4.70c) remain

unchanged, but (4.70b) becomes
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ar 8C W! [ r &

iOI as
+ __ - T -- - fr|

ar Or J
(4.71)

(3) xl-line coincides with the projection of the streamline on the meridional plane and x2-1ine is

normal to xl-line. Equations (4.64), (4.70a) and (4.70c) remain unchanged, but (4.64) simplifies

to

a(W!_ _ _[_ W_o a(Ver )ax 2 W! r ax 2

1

+ _OI _ T __0s _ f2[
ax 2 ax 2 ]

(4.72)

It is noticed that equation (4.70b) contains an f2 term which is, in general, not equal to zero inside the

blade passage.

By the use of equations (4.63), the energy equation (4.35) becomes

DI W 1 OI W 2 OI
-- + ----0 (4.73)

Dt a_-H/_x' a_22 Ox 2

For the special case where xl-line is coincident with the projection of the streamline on the meridional

plane it simplfies to

aI
-- =0

ax I
(4.74)
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4.7 Methods of Solution For S2 Flow

Since the equations governing the flow along S_ stream filament are quite similar to those along S1

stream filament (the main difference being the difference in the partial derivatives involved), the methods

of solution are also quite similar. In the first group of methods of solution, W 1 or • is integrated along

successive x2-coordinate lines, whereas in the second group of methods of solution _-values at all grid

points on the mld-S 2 surface are solved at the same time.

In the first group, if the xl-lines are corrected during calculation to coincide with the projection of

the streamlines on the meridional plane, the continuity equation (4.64) gives

pw,-- (pwJ 
(r _ sin #12)i (4.75)

r a_22sin 012

S 2 filament flow is calculated by considering the effect of entropy increase in the density equation

/'" !/'
1 V --_-Zi-1.-si

S= p -2 e"--R--

Pi

_b = 7 - 1 pW! Hi _---'i e R

(4.7e)

The values of p and W

of equation (4.38) with

can be determined from their product by rewriting equation (4.75) in the form
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a(Wl a_ll) 2 [ W_oaiV0r) OI as ]
(4.77)

The tableinreference3 Can be used to find E (orp) from the known value of 4_(or pW#). W_ isthen

computed from pW_ after p isobtained.

The rightsideof equation (4.70b)ismore complicatedthan equation (4.41)of S1 flow, In the

inverseor designproblem, the variationof V0r isspecifiedby the designer,whereas in the director

analysisproblem itisobtainablefrom the given shape of the S2 surface(seenext sectionforfurther

discussion).The variationof I isobtained from itsinletvalue and equation (4.73).The variationof s

isestimatedfrom itsinletvalue and the empiricalequation. W t_ isthen integratedalong the x2-

linesfrom a streamlinealong the innerboundary or in the middle ofthe flowregionin the same manner

as that in the S1 surfaceflowcalculation.In the casewhere the x2-1ineischosen normal to the xl-line

itisconvenientto rewriteequation (4.72)as

rh-- K_f(x:2)h rpW! sin 012 a_"2_ dx 2
(4.78)

and integrate (W! a_11) 2 along the x2-1ines. After variation of W_ along x 2 is obtained, the mass

flow along x _ is computed.

with

I_ c -
2rr - Nt (4.79)
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where _ is a correction factor as indicated by figure 19 of reference 7. If the range of integration

includes the wall boundary-layer regions, m calculated should be slightly greater than the actual mass

flow because the calculated velocity in the wall boundary-layer region is greater than the actual value (see

fig. 2.5). In the design problem we may either specify the mean streamline and obtain the coordinates of

the inner and outer boundaries from given mass flow, or specify one boundary and obtain the other

boundary. In the analysis problem, the mass flow calculation is used to correct the values of W# and p

on the streamlines (see ref. 6).

If it is preferred to use fixed xl-lines, then the variation of pW 1 along the x 2 -lines should be

corrected according to continuity equation (4.64). Compute pW by

I

(4.80)

integrate W 1 a1_1 along x2-1ine by

cos °121

(4.81)

compute mass flow along x2-line by
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(4.82)

and correct W 1 values at the fixed grid points in the same manner as in the previous case.

Analogous to the Sl-surface problem, the continuity equation and dynamic equation may be solved

simultaneously through the use of stream function. From equation (4.64) a stream function can be

defined with

rpW 2
f----

= _ _all sin 012
i)x I

_II = rpW1 a_"22 sin 012

ax 2

(4.83)

Substituting equation (4.83) into the dynamic equation (4.65b) gives the following principal equation for

flow along S2 stream filament.

1 a:_ cos 012 _ 1 _ J _ K M
-2 + + +

all a(xl) 2 _ axl _X 2 a22 _(x2) 2 _ _xl _ _x2

-- M (4.84)

where
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J .._

Z _

) cos 012 aln r 1 a012
aln _/all/a22 r sln 012 + +

_t_ t _ ax2 sinO_2_22 ax2

-- ) cos o12 aln r 1 aol2aln _]a_2/all r sin 012 + +

_-22ax2 _ axI sln012_-_ ax'

f. 1 alnp _ cos 01z aln Pl 1

°,1 ox2j  llox1

+ 1 0 In p _ co_ 0_2o in p 1 _ + pC

ax 2 at/'_z_ ax2 J a_22 ax2

Equation (4.84)may be consideredas a generalizationof the principalequation (107a)ofreference3

where orthogonalcurvilinearcoordinates r,_, z are used. When xI and x2 become z and r,

respectively,equation (4.85)reducesto equation (107a)of reference3.

When the g-derivativesare evaluatedby suitablenumericaldifferentiationformulas ofequal or

unequal spacing(ref.27),the resultingsetof a largenumber ofalgebraicequationscontainingthe

unknown g-values at the gridpointsare obtained. Also the dynamic equation may be writtenas

ft ' WdL : f f (V× W)t o _(1a22 sin Ol2dxtdx2

1

_ O__I+ T O__s_ q[

Ox_ ax 2 ]
dxldx 2

(4.s5)

and integration along 1, 2, ...,8, 1 around the grid point E results in an algebraic equation containing

the g-values at the grid points A,B,...,I, (fig. 4.7). The resulting set of algebraic equations containing
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unknown _-values at the grid points in the order of several hundred for one stream filament, can be

solved by either the direct matrix method or relaxation method as employed in references 3 to 8, 11

and 12.

4.8 Computation of F Term in Inverse Problem

It is pointed out in Chapter 3 that in the inverse or design problem the following condition of

integrability should be used in the solution in the fluid flow along the S2 stream filament.

F.v × F--0 (4.86)

When general curvilinear coordinates are employed, substituting equations (4.12), (4.17) and (4.63) into

equation (4.86) gives

(4.87)

Then

_-- __ dx 1
+ X)o ax 2

(4.88)

or
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a_F_0r io

(4.89)

The procedure of calculating f2 is similar to fr of references 2, 12 and 16. Compute fl from

equation (4.68a), f_ from (4.68c), the derivative of fl/f_ with respect to x 2, then integrate f2 along

x 1 from (X{)o, where f2 is known. It is convenient to choose (xl)o at a station where Fr is equal to

zero because F 2 can then be computed from F I.

4.9 Computation of Components of Normal and W_ In Direct Problem

In the direct or analysis problem, the known S2 surface offers two relations between the n- or F-

components. Since n is normal to W,

n • W = nl wl + n2w 2 + n_w_ --
N 1 W 1 N 2 W2

+ + N_W_ - 0 (4.90)

or

NIW 1 sin 012 + N2W 2 sin 01_ + N_W_ = 0 (4.91)

then
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wlN2w2 i. (4.92)

This equation is similar to the equation appearing in section 3.3. The ratio of the N-components may be

obtained by the following consideration: Along the intersection of the S2 surface and a constant x 2

surface

(4.93)

Along the intersection of the S2 surface and a constant x 1 surface

N--_ r _x z (OX2)xl=(Xl)o

Knowing these N-ratios Wto can be computed from equation (4.92) and V 0

is then calculated by equation (4.68c) and F z by

computed from Wto. Fta

N 2

F z = _ F_
N_

(4.95)
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CHAPTER5

TWO- AND THREE-DIMENSIONAL SUBSONIC FLOW IN TURBOMACHINES

5.1 SeriesExpansion on S 1 SurfaceofRevolution

The intersectionof an SI surfacewith a mid-channel S2 surfaceisa streamlinelyingin the mid-

passage on the SI surface(fig.5.I) and isreferredto as the "mean streamline_ inreferences54 and 4 to

6. In order to get an ideaabout fluidflowalong the $2,m filamentwith referenceto the flowin the

three=dimensionalchannel,the fluidflow along the mean streamlinewas examined in that referencebased

on the solutionofcompressible(subsonic)flow ina typicaltwo-dimensionalturbinecascade obtained by

an electro-mechanicalhand computer inthe lateforties.

Figure 5.2 shows that as the inlet Mach number increases, the increase in the velocity along the mean

streamline is larger toward the suction surface. The dip in velocity variation along the suction surface is

also seen along the mean streamline. In figure 5.3 the shape of the mean stream]ine is compared to those

of the mid-channel line and the mean chamber line.

Figure 5.4 compares the variation of the specific mass flow along the mean streamline to the one-

dimensional variation, the passage width. Inside the blade passage the former is a few percent greater

than the latter, however the difference at the leading edge is large (25 percent). The effect of the blade

thickness extends 40 percent upstream and downstream of the blade is also apparent.
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Thevariation of tangentail velocity and its rate along the mean streamline are shown in figure 5.5. The

two begin to vary=at 60 percent chord length upstream of the blade and end at 60 percent chord length

downstream of the blade.

b

Based on the preceding observation a very simple, quick approximate solution of the inverse or direct

problem for fluid flow along an arbitrary S1 stream filament or revolution was proposed in references 5

and 6. Any flow variable on the mean streamline is considered a function of the meridional coordinate

C.

q = q'L_,cp(_)] (5.1)

Its total variation with respect to _ is

dq _ 0q + 0q de = 0q + tan fl 0q (5.2)

d_ _ 0¢ d_ _ r 3_

From the continuity and dynamic equation the following equations for the first derivatives, with respect

to the angular coordinate _o of the velocity components, are

0Wt [ dW_ tan fl d(rrpWl) _ (5.3)-- r _ + _ + (W_ + 2wr) sin a os_fl
Oto d_ rp d_

A variation of tangential velocity, similar to that shown in Fig. 5.5 but simpler, was used in the

calculation of fluid flow on Sz, m surface in Refs. 10 and 11.
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r 7 + (W# + 2wr)sin a tan _ - rp

(5.4)

o_Wt d 0W¢ 02W¢ 0W#
= r - tan fl _ + sin a

0¢---_ d_ 0¢ 0¢_. 0¢

(5.s)

I"
02W$ _ _ 2

o_2 [ _2

0p d(rrpWt) 1 d rr p _ + Wt
¢q_ d_ - rp d| ¢qio

r d 0We 0We)+ tan /9 d{ 0¢ + sin a ____--j
'cos 2

(5.6)

The variation of a velocity component Wf or other flow variables in the circumferential direction

is given by the Taylor series

q(_b) -_ qm -F (¢ - Cm) _-_ m -F "'"2 m

(s.7)

The mass flow between the mean streamline and suction and pressure surfaces are, respectively,
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Ms = rr f_m pWld _ (5.8)

and

Mp = rr f:: pW_d_
(5.9)

The mass flow between the streamline selected in the mid-passage of a radial-flow impeller and the

suction surface, is 65 percent of total mass flow (ref. 6). The streamline distribution and the variation of

the meridional velocity along the mean streamline are shown in figures 5.7 and 5.8, respectively. It is

interesting to see that the final value of W{ obtained in the series (three terms) calculation is quite

different from the constant value assumed in the design and compares well with the value obtained in the

accurate direct matrix solution (ref. 8).

This method has been improved and further developed in references 55 to 57. Recently a computer

code employing fourth order Taylor series has been developed (ref. 58). In the case of a transonic turbine

cascade the result obtained by using the fourth order series is generally better than the result obtained by

using the second order series (fig. 5.9). It is also seen from the figure that the result agrees with the

experimental data better than that obtained by the time-marching method reported in reference 35,

especially in the low supersonic region. Yet the code can be put on a TI-59 pocket calculator.

(Computing time on this calculator is 3 min per station).
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5.2 Series Expanison In to-Coordinate

The circumferential extension of flow properties on a mean streamline by series expansion along the

S1 surface of revolution, described in the previous section, can readily extend to a circumferential

extension of flow properties on a mean S2 stream surface by series expansion in the three-dimensional

blade channel. Because S1 flow surface of revolution is not assumed here, the three-dimensional series

expansion method yields a full-three-dimensional flow field, whereas the use of series expansion on a

number of S1 stream surfaces of revolution yields a quasi-three-dimensional flow field.

Partial Derivatives of Flow Quantities in Nonorthogonal Curvilinear Coordinates: Flow properties at a

point in the three-dimensionM flow channel are calculated by Taylor series expansion similar to

equation (5.7). The first order partial derivative of W i and p, with respect to _o can be obtained from

the three-dimensional vorticity components, equation (4.17), for isentropic irrotatlonal flow, is as follows

(refs. 59, 61):

a_2_ cos 012 _ r 0_o
0x 2

0_

Ox 1

OW l

0W 2

0_0

OW_o

O(V0r)

Ox2

= 0(v0r)

0x l

C

(5.1o)
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where

C

_f_22-sin 01_ ) + __O0x2 (r p W 2 v/-a-ll- sin 01_)]

and

Oto (3'- 1)h O_ a¢_
--k- (pW2) 2 - 2(pW 1) (pW 2) cOs 012] -}- (pW_)2}]

The higher order derivatives can also be obtained from the basic equations.

5.3 Forming Successive S2 Surfaces by Progressing Circumferentially from 82, m

Similar to that in the two-dimensional series expansion method, the space coordinate /o of the S2

surfaces can be obtained by the following series (ref. 59)

.2m}Ata : to - _om : (@2 - @2m) 7.2 ÷-.- (5. ll)

m 2 m

where to is the circumferential coordinate of any S2 surface and qJ2 is the value of stream function of

that S2 surface.
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In reference to figure 5.10 the integrating factor B of S2 surface in section 4.5 is related to its

inlet value by

B A_- (5.12)
Bi (A )i

The inlet plane Zi is taken sufficiently far upstream of the blade row where the flow is uniform.

The difference of stream function _ between two adjacent S2 surfaces is the mass flow passing through

the shaded area in figure 5.10, i.e.,

(5.13)

With the use ofequations(5.12)and (5.13)the p coordinateof

stepas shown in figure5.11. The velocitycomponent W i and p

by Taylor seriesexpansion.

S 2 surface can be determined step-by-

at the S I, $2,... are then calculated

The method describedin the precedingparagraphs was programmed in Fortran IV and employed to

investigatethree-dimensionalflowin a compressor statorand a turbinerotor. Less than 3 rainwere

needed on a M150 computer (0.4MIP). The turbinerotorisdesignedfora pressureratioof 1.4,inlet

absoluteMach number of0.4,and rotorhub tipratioof0.66.
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Figure 5.12 shows the projection of the streamlines on $2, m surface on the meridional plane. The

blade shape and the velocity distribution around the blade is shown in figure 5.13. The intersections of

the S 1 and Sz surfaces, with the through-flow cross-sections, are shown in figure 5.14.

The twist of the S 1 surface in the radial direction (fig. 5.14) is seen, generally, radially outward

toward the suction surface. As this turbine rotor is designed for radially nonuniform work output, the

radial twist of S1 surface is relatively large, but it is still under 3 percent. The differences in the normal

distance between the adjacent S 1 stream surface, both in the flow direction and in the circumferential

direction of the twisted S] surfaces, and the untwisted S1 surfaces of revolution will explain the

difference in flow fields between the two cases.

5.4 Coordinate Transformation and Direct Expansion Method

For a more accurate determination of the coordinates of the S2 surfaces and flow properties on

these surfaces, 'the following coordinate transformation is made:

=

= x (r,z)

--

(5.16)

The surfaces of revolution formed by revolving the x 1- and x2-coordinate lines around the z-axis and the

S2 surfaces are the new coordinate surfaces (fig. 5.15). From the continuity and dynamic equations, the

following first order partial derivatives are obtained (refs. 60 and 61):
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_cos 012

1 aT_

a_11 ax I

r 0__
ax 2

cos 012 r
ax 1

1 a_ 1
m

a_/'_22 Ox 2 r

OW 1

0_2

Ow 2

0¢2

o(v_.)
E

ax 2

0g 1

[ C'

(5.17)

where

Q __

W 1 8B W z c3B

_0x _0x

and

,,
0¢ 2 ('7- 1)h 0¢ 2 0¢ 2

(5.18)

In addition second order partial derivatives are also obtained. Then

_O -- _Om -)-(¢2 -- ¢2m)Bm -I- _ ia--_
(5.19)
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I I (_2sW(,_2.) = W(,P2m) + -
 2m) + 1 2

a_ 2
(5.20)

This approximate method of solving three-dimensional flow has been programmed in Fortran IV. The

complete solution was computed on a UNIVAC-1100 computer in less than 1 min.

The method was used to calculate the three-dimensional flow field in the Chinese Academy of

Sciences's (CAS) reseach compressor (ref. 62). The mass flow is 61 kg/s, the rotor tip M is 1.4, the

stage total-pressure ratio is 1.5, the hub-tip ratio at stator inlet is 0.49, and the number of stator blades

is 37. Projections of $2,m and its streamline projection on the meridional plane are shown in figure 5.16.

The blade shape and distribution of velocity on the k = 7 coordinate surface obtained by this method

and the stream surface extension method are compared in figure 5.17. The difference between the two is

small. A comparison of Mach number distribution with that obtained by the SI/S 2 iterative solution

(see section 5.9) are shown in figure 5.18. Except near the leading edge, the result obtained from the

present method is close to that of the three-dimensional solution. The relative twist of S 1 surfaces at

the suction surface (J-4) is shown in figure 5.19. Rm is the value of R on the $2, m surface of the same

S 1 surface. (R is the local value to the point j = 4, k = 1,... 11.) It is seen that the largest AR/R

occurs a short distance from the hub wall and the maximum difference between the present solution and

the full-three-dimensional solution also occurs there. It may be noticed that the maximum relative twist

is rather small, being less than 1 percent.
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5.5 Direct Matrix Solution of Subsonic Flow Along S 1 Filament of Revolution

The method of employing general nonorthogonal curvilinear coordinates and corresponding

nonorthogonal velocity components to express the basic equations governing the fluid flow along S1

S l stream filaments were developed during the sixties (refs. 28 and 29). Since 1969, computer codes

using general curvilinear coordinates have become available for flow along the S l (ref. 40) and S1

(ref. 64) stream filaments.

and

When nonorthogonal curvilinear coordinates (x 1, x 2) are selected on the flow surface of revolution

(fig. 4.1) the principal equation (4.48) is to be solved. The metric tensor aa_/ involved in the equation

is calculated from the given geometry of the blading in cylindrical coordinate system (I, to) by the

following equations:

--f°'/'
a,2 {ax2J j

all = Ot! Oi + r_Oto Oto

Ox i Ox I Ox 10x 2

a12
cos Oli --

(5.21)

Discretization with the use of second order central numerical differentiation formula leads to a nine-point

star in the two coordinates (fig. 4.7). The resulting N algebraic equations for the N interior grid

points is written as

102

-_] 1 I



{#}: {p} (5.22)

The coefficientmatrix [IVl]isa trldiagonalmatrix. In orderto takeadvantage ofthe zeroelementsin

[IVI],one row offictitiousgridpointswas added upstream and downstream of the bladeand the only

coefficientalong the diagonalswas numbered and stored(ref.63),thus reducingthe storagerequirement

forthe coefficientmatrices. For a problem of m --47, n = 11, (517gridpoints),only 28 000 coefficients

are stored. Therefore,32 K internalstorageissufficient.

As in references 10, 11, and 63, the coefficient matrix is factored to a lower triangular matrix [L]

and an upper triangular matrix [u] which has elements along the diagonal equal to unity. Thus,

equation (5.22) becomes

iLl[u](_) = (P) (5.23)

_¢1_ is then obtained by a simple forward and backward substituting process as follows:

Calculate {Q) from [L] (Q) = (P) (5.24)

Caluclate{_} from [u]{_) = (Q) (5.25)
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The preceding direct factorization technique was available in the forties. It was first utilized to solve

the $2,m flow in a gas turbine (ref. 10) Only 385 interior points were involved in that problem, and the

method was tested on an IBM CPCE and a UNIVAC. Nine digits were used on the former and 11 digits

were used on the latter. The results agree up to the fifth digit. The residual left at any grid point is less

than one in the eighth digit.

As in references 10, 11, and 63 density is obtained by storing the E - • table (eqs. 4.39 to 4.41) in

the computer. During the iteration process for _ and the density terms on the right side of the

principal equation (4.47), the relaxation factor for density equal to unity is good for quick convergence,

whereas, the relaxation factor for _ should be reduced from 1 to 0.5 when the inlet Mach number

increases from low subsonic to high subsonic. Depending on the inlet Mach number, usually 10 to 20

iterations are required to reach the following convergence criterion (ref. 63):

p_+l _ pV

V

< 10 -5

< 10 -4

(5.20)

This computer code has been widely used by a number of people on a number of different computers.

On a Sun 4/110 (32-bit, 7-MIPS) computer, 20 iterations for an S1 problem of 500 grid points were

computed in less than 30 sec.

This code has been modified slightly by adding a nearly orthogonal C-mesh sub-system around the

leading edge of the blade (ref. 65) (fig. 5.20). The _-values at the boundary of this sub-grid-system are

taken from the result of the solution formerly obtained with the H-shape grid system. This additional
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calculationimprovesthe flow field around the leading edge (fig. 5.20). Not only the peak velocity

(fig. 5.21), but also the stagnation point at the leading edge are correctly determined as indicated in

figure (5.22). For the blade shown in figure 5.22, the positions of the stagnation point corresponding to a

number of inlet angles are shown in figure 5.23.

Alternately an H-C mesh, such as that shown in figure 5.24, may be used in the computation of S1

flow to obtain flow computation around the leading edge accurately. The H-C grid is obtained by a

numerical solution of Poisson's equation incorporating finer grids in areas of the physical plane where

large flow gradient exists.

The computer code of reference 43 has been slightly modified to obtain the flow field through a

turbomachine blade row having splitter vanes or tandem blades (ref. 66). Division of mass flow by the

splitter vane (fig. 5.25) and the outlet flow angle are determined by applying Kutta-Joukosky condition

to the trailing edges of the main blade and the splitter vane. Figures 5.25 and 5.26 show some of the

results obtained in an investigation of the effects of replacing one half of the main blade by splitter vane.

Figure 5.26 reveals that by substituting seven splitter vanes, which have half of the chord length and the

same shape as the main blade (except around the leading edge), the peak velocity at the leading edge of

the main blade is reduced to about the same value in a cascade of half the solidity. The Mach number at

the second peak is also reduced. On the other hand, the outlet angle is reduced only 1.2 ° compared to

2.3 ° in cascade of half the solidity.

Iterative SOR and Direct Matrix Solution of Subsonic Flow Along S_ Filament

The computer code for the solving of the principal equation (4.84) for fluid flow along an Sz stream

filament, employing nonorthogonal curvilinear coordinates and corresponding nonorthogonai velocity

components, was first programmed by the use of iterative relaxation method (ref. 64). In order to get an

accurate solution, at least six stations are placed inside the blade passage (from leading edge to trailing
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edgeof the blade).

a large internal storage capability is required.

line over-relaxation iterative method was used.

Because of the large number of grid points involved in multistage machines (fig. 2.4)

However, such storage was not available at that time, the

Usually 20 to 30 iterations are required to reach the same

convergence criterion set for S 1 calculation. (In this way, 1200 grid points can be used on a 32K

internal storage.) Recently the same principal of equation has been programmed using the direct matrix

method of solution.

Similar to the S 1 flow passing through the blade row having splitter vanes, this code has also been

slightly modified for calculating S2 flow for fan blades, downstream of which the flow is divided into the

core compressor and the outer annulus.

Examples of solutions obtained by this computer code will be given in the next section for three-

dimensional flow calculation and also in chapters 6 and 7 for transonic flow.

The S2 computer code is programmed for the inverse problem, i.e., the variation of V0r along the

S2 surface is specified by the designer and the condition of integrability is incorporated in the code (see

section 3.3). Equations (4.92) to (4.94) are also incorporated in the program so that it may be used to

calculate V0r from Wio. Thus the same code can also be used for direct problem.

5.6 Three-Dimensional Subsonic Flow in Turbomachine

Three-Dimensional Flow and Quasi-Three-Dimensional Flow in Turbomachines

In general the solution for three-dimensional flow in turbomachines involves the use of a number of

S I and S2 stream filaments. Flow through a three-dimensional flow passage formed by two adjacent

blades can be considered to consist of a large number of thin S 1 stream filaments (fig. 5.27) and the flow
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in each filament can be taken to be the same as that on the S 1 stream surface at mid-height of the

filament (fig. 5.28). Similarly, the flow through the passage can be considered to be consist of a large

number of S2 stream filaments (see fig. 5.29) and the flow in each filament can be taken to be the same

as that on the S2 stream surface in the mid-circumferential position of the filament. The two families

are related in the following manner: The stream surface of one family is formed by joining the

corresponding streamlines lying on the stream surfaces of the other family. Hence iteration between the

solutions of the flow through the two families of stream filaments is necessary to obtain the three-

dimensional flow. Theoretically the solution becomes exact when the number of filaments becomes very

large. However, for engineering accuracy, 8 to 10 filaments in each family is sufficient.

For axial-flow turbomachines the twist of the S1 stream surface is usually not large. In the so-

called _quasi-three-dimensional" solution all of the Sl-stream surfaces are assumed to be surfaces of

revolution. In that case the radius coordinate and the normal thickness of the filament do not vary in the

circumferential direction. Any variation in flow direction can be determined by the use of only one S 2

surface. In the following, the S2 surface lying in the mid-channel, the $2, m surface, will be used

(fig. 5.30). This choice is, of course, arbitrary. But, it is preferred, since (1) the shape of that surface

bears some resemblance to the mean surface, (2) the flow on that surface is an approximate average flow

in the channel, (3) the calculation of the flow on that surface is the first step of practical three-

dimensional blade design process, and (4) calculation of flow on more S2 surfaces will be involved in the

full-three-dimensional solution. The geometry of the S l stream surface determined by an axially

symmetrical solution or by an averaging process of the flow in the circumferential direction would give a

quasi-three-dimensional flow solution different from the one described herein.
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Three-Dimensional Blade Design Procedure

It is suggested that the following steps may be followed in a three-dimensional blade design process:

(1) Determine flow path in the meridional plane.

at a number of stations between rows (ref. 1).

$2, m calculation in the third step.

Simplified radial equilibrium calculation is made

If desired, this flow path can be modified in the

(2) Estimate radial variations of stator stagnation pressure loss and rotor isentropic efficiency and

compute the corresponding entropy increases across the blade row (see section 2.5). Assume linear

variation of entropy in the flow direction except at the passage shock. It is desirable to check the

loss with boundary layer calculation in later cycles.

(3) Assume the variations of r/r i and (Vor)/(V#r)i along the mid-channel S z filament (see section

5.1). Solve the $2,m principal equation for ¢2 (section 4.6). Compute density and velocity

components. Compute coordinates _o(xl,x 2) or (_,_) and examine the shape of $2,m for its

smoothness.

(4) Obtain the geometry of the S1 stream filaments of revolution, [r(z),r(z)] from the meridional

projection of streamlines on $2, m. Design the blade section by the mean-streamline/series

expansion method (section 5.1) or select standard blade section on the conical surface that

approximates the S 1 surface in the blade passage. Solve the S 1 principal equation for ¢J

(section 4.4). Compute velocity components and density. If the p or W distribution around

the blade has to be improved, repeat the design or blade selection process in step 4. An inverse

calculation is available to modify the blade shape for a better W or p distribution around the

blade (ref. 67). The new values of V0r and r obtained are inputs to the next $2, m calculation.
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(5) Repeatstep 3 with the (V#r) and r values obtained in step 4. Modify the passage geometry in

the meridional plane if desirable. Modify the stacking line in the range permitted by stress

consideration if desirable.

(6) Steps 4 and 5 are repeated until acceptable convergence and desirable velocity and pressure

distributions around the blade surface and along the hub and casing walls are obtained (see

fig. s.sl).

The S1 surface near the hub or casing wall is usually assumed to be surface of revolution. If the

angle between the S 1 surface there and the hub or casing wall in the meridionai plane is denoted by a

(fig. 5.6), and if the S1 surface there is a surface of revolution, then

_k a
= 0 (5.27)

a_ k

By using the following relation between ¢ and the velocity components

Wr
tan ¢ = __

Wz
(5.28)

and the following equation of vorticity component,

(V X V)r-
1 aWz 1 °_V¢r)

r a_ r az

(5.29)

there is obtained (ref. 68)
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L

1

-(VxV (5.30)

Equation (5.30)shows how (V#r) and the vorticityaffectsthe twistof the SI surface.

S1 surfaceisa surfaceof revolution,o_//_ - 0 and equation (5.30)becomes

In particular if

a(V0r)

On

= r(V × V)l (5.31)

If the _-vorticity component is equal to zero, then

a(Vor)
=0

an

L

(5.32)

Thus, in the third step of the design process described in the preceding section, satisfaction of

equation (5.32) in the values of (V0r) specified near the hub and casing wall would help keep the S1

stream surface near the wall being surface of revolution.

Determination of the Circumferentially Uniform Condltions Far Upstream and Far Downstream of the

Blade

In the solution of S1 flow the uniform condition (in the circumferential direction) at stations far

upstream and far downstream of the blade row is required. This is true not only for all of the blade rows

in a multistage machine (fig. 2.4), but also for the rotor and stator in a single stage machine (fig. 5.32).

The far field boundary condition upstream of blade row S in figure 5.31 is obtained as follows:

(1) Calculate $2, m flow with all of the blade rows in the flow passage.
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(2) Take off blade row R and make another $2, m flow calculation from station AA to station BB.

In this calculation the • distribution obtained at station AA in step 1 is used as the boundary

value at that station. At the far upstream station BB, a boundary condition of the second type

(i.e., Vr -- 0) is considered.

(3) With the k_ distribution at BB and a second type boundary condition (i.e., Vr -- 0) specified at

far downstream station CC, an $2, m calculation from station BB to station CC is made.

(4) The fluid state obtained at station BB in step 2, and the streamline shape and the fluid state

between station BB and CC obtained in step 3 provides the geometry of the S1 surface and the

boundary conditions at the two stations for the calculation of flow along a number of S 1 stream

filaments.

The far downstream condition for blade row

figure.

R is obtained in a similar manner as indicated in the

5.7 Three-Dimensional Flow in a High Subsonic Compressor Stator

Designed by Quasi-Three-Dimensional Flow Method

The quasi-three-dimensional blade design method described in the preceding paragraphs has been

used to design a high subsonic stator of a single stage transonic fan. The projection of the stator blade

on the meridional plane is shown in figure 5.33. The inlet Mach number at the hub is 0.8. After

completion of the blade design a three-dimensional analysis was immediately carried out. The quasi-

three-dimensional design took five cycles of iteration, whereas the full-three-dimensional analysis took

only three more cycles of iteration.
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It wascustomaryin the past that entropy gradient was considered in the

whereas isentropic assumption was considered in subsonic

immediately shows divergence of the solution (fig. 5.34).

S2 calculation (fig. 2.5),

S1 calculation. Iteration between the two

When the same value of entropy was used at

the same point on the two surfaces, convergence was quickly reached after only two more cycles of

calculation. The criterion used for both convergence consistency is

<: • (5.33)

s was reduced to less than 2 percent.

S2,m calculation in the last cycle.

Figure 5.35 shows the streamlines obtained at the root in S1 and

In the foUowup, full-three-dimensional analysis calculation the S 1

surface of revolution. The nonorthogonal curvilinear coordinates are still placed on the surface.

principal equation is the same as equation (4.84) except for the last term in M. Instead of

(2wrp sin a sin 2 012) it is now (2w3rp sin 2 012 ). Actually the computer code needs only one S1

the general S1 code.

code.

surface is no longer considered as

The

code and

By putting w3 -- w sin a, the same code becomes the S1 surface of revolution

Due to the twist in the general Sz stream surface, it is not possible to impose the periodic condition

immediately downstream of the trailing edge of the blade. Instead the boundary condition of the first

kind is used there, that is, k_ is specified there. After a certain distance downstream the periodic

condition is again imposed.
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Thedifference between the two solutions is indicated by the twist of the S 1 surface, that is the

deviation of S 1 surface from surface of revolution. Figure 5.36 shows the amount of deviation of the S 1

surface number 3 and number 5 of figure 5.37 at a number of stations along the flow direction. It is

apparent that the deviation of surface number 3, located nearly at mid-span, is larger than that of

number 5. The deviation measured by the difference in radius, At, is less than 1 percent of the radius r.

Figure 5.37 also shows twist of S1 stream surfaces near the leading edge and the trailing edge of the

stator.

The difference in the streamline distribution, the variation of V0r along the intersecting streamline

of S 1 and S2 surfaces and the variation of the angular thickness of S2, m filament as determined in the

S 1 calculation, are shown in figures 5.38 to 5.40, respectively, and are small. Yet these relatively small

differences in radius or filament thickness causes a relatively large difference on the Mach number

distribution over the blade surface (fig. 5.41). This phenomena can be explained by examining the

difference in the variation of r in the two cases. Figure 5.37 shows that r near the suction surface at

the blade leading edge is smaller in the full-three-dimensional flow than in the quasi-three-dimensional

flow. Thus, the peak Mach number on the suction surface obtained in the full-three-dimensional analysis

solution is higher than that obtained in the quasi-three-dimensional design calculation. It exceeds the

sonic velocity slightly.

5.8 Three-Dimensional Flow in CAS Research Compressor (Subsonic Case)

CAS Research Compressor

The research compressor designed for experimental investigation of three-dimensional subsonic and

transonic flow in an axial-flow compressor is a single-stage compressor with inlet guide vanes. It is

designed for a stagnation pressure ratio of 1.5 and isentropic efficiency of 0.85. The tip speed is 400 m/s,
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the inlet hub-tip ratio is 0.4. The corrected mass flow per unit frontal area is 188 kg/mZs and the

average inlet Mach number is 0.616.

Figure 5.42 shows the flow path with the intersecting lines between the meridional plane and S 1

surfaces. The hub and casing contours are so chosen as to reduce, as much as possible, the sever flow

conditions at the tip of the rotor and at the hub of the rotor and stator. The relative Mach number of

air entering the rotor varies from 0.68 at the hub to 1.34 at the tip. The MCA blade shape (laid out on

conical surfaces) was used for the tip elements. The DCA blade shape was used for the elements in the

told-span and hub regions. Blade solidity varies from 2.3 at the hub to 1.3 at the tip, and the diffusion

factor at the tip is limited to less than 0.4. The absolute Mach number of air entering the stator varies

from 0.80 at the hub to 0.58 at the casing. Solidity of the stator blade varies from 2.0 at the hub to 1.1

at the casing and the diffusion factor is limited to 0.5 at the hub. The turning angle at the hub is

slightly less than 45 degrees for the rotor and slightly less than 45 degrees for the stator. Aerodynamic

design details are given in reference 62.

Overall Performance

Rotor test data were taken over a range of mass flows from maximum flow to near stall condition at

60_ 70, 80, 90, and 100 percent of equivalent design speed. For each mass flow, measurements were taken

at seven radial positions. Measured outlet stagnation pressures, stagnation temperatures, stream static

pressure and flow angles were corrected for Mach number effect.

Overall stagnation pressure and stagnation temperature ratios were obtained from a mass average of

the survey data at the rotor outlet and the pressure and temperature measured at the inlet station.
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Strain-gaugetypeandSetracapacitancetype transducerswereusedin measuringpressures.Copper

resistancetemperaturedetectorswereusedin measuring temperature at the inlet station and nickel

chromel silicon-nickel thermocouplers were used in measuring temperature at the outlet station. Flow

through the rotor was determined by the calibrated bell-mouth inlet.

Rotor speed was measured by a magnetic pick-up in conjunction with a gear mounted on the drive

motor shaft. A phase difference type torque-meter was used to measure the torque of the drive shaft. A

3000 kW D.C. motor and gear boxes were used to obtain speeds up to 12 000 rpm for the research

compressor.

The estimated accuracy of these conventional measurements is as follows:

Inlet pressure, mm H20 il0

Outlet pressure, mm H20 =1=25

Temperature, K ±1

Mass flow, % +0.5

Speed, _ +0.03

Flow angle, deg. ±1.5

Torque, (0-400 kg/m), % ±1

For overall performance L2F measurements were only made at the inlet and outlet station. At the

inlet station, data were taken only at one circumferential position, whereas at the outlet station, data

were taken at 16 circumferential positions.
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The accuracy of the L2F measurements is estimated to be

Flow speed, % -I-1

Flow angle, deg. ±1

The overall performance of the rotor is plotted in figure 5.43. The plotted data present rotor

stagnation pressure ratio and isentropic efficiency as a function of equivalent mass flow for rotative

speeds of 60, 70, 80, 90, and 100 percent of design speed.

DetailedL2F Measurements

DetailedL2F measurements were firstmade forthe peak efficiencypointof 70 percentofdesign

speed. The equivalentmass flow was 144.8kg/m_s, the stagnationpressureratiowas 1.21,and the

isentropicefficiencywas 93.2 percent. Flow speed and flowangle were recorded at 8 axialstations,6 to

14 radialpositions,and 10 to 16 circumferentialpositions.All of the measured pointsare on the S_,m

and SI stream surfacesobtained in the designcalculation.

Three-Dimensional Flow Calculation

Before the result of the three-dimensionai flow field calculation can be properly compared with the

L2F measurements, suitable flow parameters measured at the outlet station should be used in the

calculation. The probe measured outlet stagnation pressure p2 ° and laser measured outlet flow angle

a2, shown in figure 5.44 as functions of radius are chosen. The main input to the three-dimensionai

analysis calculation is then: flow path (in meridionai plan), blade geometry (coordinates given on design

conical surface or on manufacturing templates), inlet pressure and temperature, rotor speed, mass flow,

flow coefficients, and outlet stagnation pressure and outlet absolute flow angle.
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Thefirst stepin thethree-dimensionalcalculationis computationof flow along an S2, m filament

about mid-way between two adjacent blades (fig. 5.31). The radial distribution of rotor efficiency

determined by temperature measurement, is shown in figure 5.45. The measured value of torque is

considered to be more accurate than the measured value of a small increase in temperature across the

rotor. The temperature determined radial distribution of rotor efficiency, used in the initial calculation,

has to be corrected so that the radial distribution of stagnation pressure in the calculation at the outlet

station should be at least approximately equal to that obtained by the pitot tube measurement. The

span-wise averaged value of the corrected efficiencies has to agree with the rotor efficiency determined by

torque measurement. The resulting distribution of rotor efficiency also determines the radial distribution

of Ver at the outlet, which is compared to the values used in the design (fig. 5.45), i.e., 100-percent

design speed. The comparison shows that at the peak efficiency point of 70-percent design speed, the load

distribution along blade span is quite different from that at the design point. The load near the tip and

the efficiency distribution shows that the efficiency at the hub is lower than that at the design point. It

seems that is caused by the appearance of a higher angle of attack in the hub region.

In the initial calculation the variation of Ver along the flow direction is taken to be the same as

that used in reference 11. The variaiton of the stream filament thickness is estimated according to the

blade thickness distribution. (In a later calcualtion, however, both estimates are not need, because their

variations are given by S 1 solutions.)

With these input values, solution of $2, m flow is obtained. The axial velocity at the outlet station

and the experimental flow angle a 2 yield a new set of values for V0r at the outlet station. The $2, m

calculation is repeated with this set of values until convergence of the solution is obtained.
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Theconvergedvalueof outlet Vsr is thenusedwith the experimentalvalueof outlet stagnation

pressure to correct the radial variation of rotor efficiency. The modified values are used to repeat the

preceding calculation of $2, m until the rotor efficiency value converges.

From this solution of $2, m the geometry of 11 surfaces of revolution are formed and interpolated

values of coordinates of the corresponding blade surfaces and the variation of the S 1 stream filaments

are obtained.

After these solutions of the flow on 11 S1 surfaces are obtained, a new $2,m

the corresponding variations of V0r and stream filament thickness, is obtained.

$2, m surface is computed in the same manner as previously discussed.

surface, together with

The flow on this new

The whole calculation process is very similar to the quasl-three-dimensional calculation described in

section 5.7, except that input values to the whole calculation are different. The solution of the complete

procedure converges rapidly (see fig. 5.46) and only four computation cycles are actually required in the

present case.

This quasi-three-dimensional computation could be conveniently followed by a full three-dimensional

computation as suggested in the preceding section. It was found in the present case that the difference

between the two solutions is rather small. The twist of the S1 stream surface obtained is very small.

Comparisons were made only between the experimental measurement and the quasi-three-dimensional

solution.
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Thefollowingsketchshows the various steps invloved in the present calculation:

Input Data

I

Row path (In merldlonal plane) I
Blade geometry (on conical surfaces) I

-- Inlet condition, mass flow, rotor speed

Expeflmental outlet stagnation pressure p 2 °J
I

Expedmental outlet flow angle a 2 [
I

l

Radial dlstflbutlon of rotor efficiency J
I

J Radial distribution of Outlet V er }------
I

[vA_alaletlva_atlc;°f V er J
I

J So_uUon offlow on $2, m surface J

Experimental a 2 !

Experimental P2 o

I Interpolation of blade coordinates on 11 S surfaces I1
I

I

I Solutlonsofflowon11S1surfaces I

Print out J

Comparison and Discussion

From the calculation procedure presented in the preceding section it is seen that the result of the

theoretical calculation depends on the accuracy of the experimental data put into the calculation.

Because the measured p2 ° and a 2 are believed to be relatively more accurate than the others, they axe

chosen as the input for the calculation, with only a small adjustment in the values (see fig. 5.44).

On the other hand, errors in temperature increase across a single rotor could be quite large,

therefore, a relatively large adjustment in local rotor efficiency was made for the overall rotor efficiency

determined by the torque-meter to be satisfied (see fig. 5.45).

119



Figure5.47showsthe radial variationof the relative flow angle at the inlet and outlet station

obtained in the theoretical calculation for 70-percent design speed. It is seen that their variations are

quite similar to those of the design values.

The corresponding radial variations of relative Mach number at the inlet and outlet station are

shown in figure 5.48. Although the inlet Mach number is only slightly greater than 0.8 at the tip, the

calculation shows that supersonic velocity occurs near the leading edge of the blade in the tip region.

The absolute velocities of air flowing past the rotor blade channel obtained in the L2F measurement

and in the theoretical calculation on the $2, m surface are compared in figure 5.49. In general, the two

agree closely in the trend of variation and agree reasonably well in magnitude. Toward the exit, the

calculated value is lower than the L2F measured value. Perhaps this is caused by the inadequacy in the

magnitude of the mass flow coefficient used in the theoretical calculation to account for the effect of an

annulus boundary layer.

The variation of relative flow angle obtained by the L2F measurement along a streamline near the

blade suction surface, along the mean streamline and along a streamline near the blade pressure surface,

all on an S1 surface at 40-percent blade height, are compared to the calculated value in figure 5.50. In

general, the agreement is pretty good. Similar to that noticed in the design calculation, the air has an

overturning in the blade channel at the outer radius even at 70-percent design speed. Figure 5.51 shows

constant Mach contours on three S1 surfaces.
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CHAPTER 6

TRANSONIC FLOW ALONG S 1 AND S2 STREAM FILAMENTS

Intensive research work on the development of a relatively simple and quick method of computing

the transonic flow along S 1 and S2 relative stream surfaces has been carried out during the last 5 years

at the Institute of Engineering Thermophysics, CAS. Once the quick methods for solving transonic S1

and S2 flow have been completed, they can be readily utilized to obtain a quick solution of a three-

dimensional transonic flow.

Because the computer time required to solve a steady flow problem by using a time-dependent

approach is quite long, a solution for the steady flow problem using much shorter computer time has been

sought through a number of approaches. The mean streamline/series expansion method, as seen in

sections 5.1 to 5.4, is quite simple and is applicable to a low transonic flow without strong passage shock.

When strong passage shock in the the blade passage is considered, it immediately appears that using

existing methods of calculating the supersonic flow and subsonic flow, separately, on the two sides of the

passage shock should work. For instance the method of characteristics can be used for the supersonic

region while the direct matrix solution can be used for the subsonic region.

6.1 Transonic Flow Along S 1 Stream Filament of Revolution Solved by Separate

Region Computation with Shock Fitting

Calculation of Supersonic Inlet Region

In figure 6.1 a typical compressor cascade with a supersonic inlet flow is shown with the bow-

wave/passage-shock. The bow wave region upstream of bow wave can be easily calculated by the method

of characteristics. References 37 and 38 give detailed descriptions of this method of solving supersonic
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flow alonganarbitrary stream filament of revolution. The nonuniform increase of entropy downstream of

the detached bow wave is included in this computation. The calculation is carried out from one blade to

the next in the circumferential direction for several blades until the periodicity condition is satisfied.

• Among others, the theoretical inlet flow angle _1, which corresponds to the inlet Mach number Mi, is

determined. It was noticed in the calculations that the periodicity of velocity can be satisfied easier than

that of entropy (ref. 37). (Usually the former occurs at the fourth blade channel while the latter occurs

at the seventh blade.)

Location and Shape of Detached Bow Wave

In the past,the locationand shape of the bow wave were usuallytaken from empiricaldata ofan

isolatedplane or axiallysymmetrical body (refs.70 to 72). Based on experimentaldata givenin

reference73,modificationof such data forplanecascadehas been clonein reference74. For three-

dimensionalapplicationsthe locationand shape ofthe bow wave on the SI surfaceof revolutionis

requiredand theirdeterminationby theoreticalcalculationhas been presentedinreference75.

In calculating the transonic flow field for a cascade test, the location and shape of the bow wave may

be taken from the middle line of the bow shock band obtained through optical measurement. For the

design of a transonic cascade, they may be taken from empirical data (refs. 70, 71, 73, and 74) or may be

taken from the shock capturing solution described in section 6.2.

Computation of Subsonic or Transonic Region Downstream of Passage Shock

Depending on the inlet Mach number, the flow downstream of the passage shock may either be

subsonic or transonic. The subsonic S 1 code (ref. 63) is modified to take passage shock as the inlet

boundary and to take the stream function variation immediately downstream from the passage shock as
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the Dirichlet boundaryvalueat the inlet station. The nonorthogonal curvilinear coordinate system is

especially suited for use in the downstream region (see fig. 6.2).

The streamline distribution and constant Mach number contours calculated for DCA 2-8-10 cascade

(ref. 73) at an inlet Mach number of 1.11 and a static pressure ratio of 1.35 are shown in figure 6.3.

In figure 6.4 the variations of three important flow variables V#r, _, and M, along the three

streamlines are shown. Notice that the change in the flow direction, or angle _, is large at the curved

part of the passage shock, whereas the jumps in M and V0r are large near the suction surface.

Similar data obtained on a number of S1 surfaces gives the shape of the mean (and other) S2

stream surface, the thickness variation of the corresponding S2 stream filaments, and the variation of

V0r over the S2 surface. The accuracy of the calculated flow along the S2 surface depends on the

accuracy of this data.

Improvement of Location and Shape of Passage Shock

According to the calculation for supersonic flow upstream of the passage shock and the assumed

location and shape of the passage shock, the Mach number, just upstream of the shock, the angle included

by the shock, and incoming flow are completely determined. Then the turning angle across the shock, the

Mach number just downstream of the shock, the pressure increase across the shock, the density ratio and

the entropy change, etc. are calculated by the Rankine-Hugoniot relations. If the assumed location and

shape of the passage shock are correct, these calculated values of aerothermodynamic quantities just

downstream of the shock and those at the inlet boundary obtained from the solution of the subsonic flow

field, must be the same. Based on this criterion, the correct location and shape of the shock can be

obtained. This adjustment process is incorporated in the computer code of reference 38. Figure 6.5
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showsthe agreement in W and _ in the case of a DCA 2-8-10 cascade calculation. On the UNIVAC

1100, computation time for a supersonic region with 90-by-20 mesh points is less than 2 min, and for

subsonic region with 13-by-40 mesh points, computation time for each iteration is less than 1 rain. To

obtain the convergent result, the total computation time is about 10 min. In reference 76, this method

was applied to compute the transonic flow along three S1 stream filaments in the DFVLR rotor and

compare the flow with experimental data.

In case the flow downstream of the passage shock is transonic, one of the shock capturing code

described in section 6.2, may be used.

6.2 Transonic Stream-Function Principal Equation Solved With the

Use of Artificial Compressibility

In the treatment of a transonic flow calculation, the use of the stream function principal equation is

preferred to the use of the potential function principal equation. Many good methods are available for

quick, accurate solution of the elliptic principal equation corresponding to the direct problem of subsonic

flow along an S1 surface. For transonic flow, however, the stream function approach has inherent

difficulty since gas density is not uniquely determined from the mass flux obtained from the derivatives of

stream function • after each cycle of iteration of the _ field. This is why long computer time was

spent to obtain the steady solution through artificial unsteady calculations. Now, with the method of

introducing artificial density through the density term (refs. 76 to 78, and 40), the stream function

principal equation is elliptic throughout the whole flow field, and quick methods are available for solving

the elliptic equation. Several attempts (refs. 41, 42, and 79) to assess this approach are described briefly

in the following section.
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Principal Equation

The following conservative form of the stream function principal equation is obtained by substituting

equation (4.46) into the dynamic equation (4.33):

a A1 _ A2
ax 2 P ax 2 P

-- _ 2 _ - A3 = A4
axI _ ax2

(6.1)

where

w1(ax2
sin _ sin 012

(6.1a)

It may be noticed that in the stream function solution it is easy to include entropy variation in the

flow field. The density calculation includes entropy increase as follows:
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P=Pl

1 _S-S,

('I_-'hw2r2- 'h(W') _-l eTHI
(6.2)

The principal equation (6.1) also includes a variation of entropy with respect to x 2. Entropy increase

across a shock is calculated by the usual formula.

Method of Solution

The principal equation (6.1) is a mixed-type equation. It can be solved by modifying the density so

numerical dissipation necessary is introduced in the supersonic region. For the present treatment, in

which general nonorthogonal curvilinear coordinates are used, modified density is selected as follows:

W W 2 ): P - /lPsAS _- P - P -_-Pxl AXl -F _--Px2Ax 2
(6.3)

where

(6.4)

and
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C=0.5-3

Determination ofDensity

In transonicflow,the densityisnot uniquelydetermined by the value ofmass flux,through the _-_

method usuallyused in subsonicflow cannot be used. Densityisnow determined in the following

manner: By the use of equation (4.46)and artificialdensity,the dynamic equation (4.33)can be written

as (seeeq. 4.41)

(6.5)

W 2 along the x 2 coordinate line by

W 2 at grid points on this line are first

is replaced by the artificial density _. Then

This velocity gradient equation is now used to obtain

integrating from an initial x I coordinate line. W 1 and

calculated using equation (4.46), in which the density p

W 1 on other x 1 coordinate lines are obtained by integrating from the initial line either in one direction

(ref. 41), successively in reversed direction (ref. 42), or in positive and negative directions (ref. 79).

Knowing W l, W a is calculated by

w,/w,=- / (6.6a)

W iscalculatedby
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W

1

-[-(W2)2 -t- 2WIw 2 cos e12]_ (6.6b)

and p is calculated by equation (4.2).

Discretized algebraic equations obtained by the principal equation (6.1) by conservative central

difference formula over a whole flow field can then be solved by a suitable method for the solution of an

elliptic equation. In the direct matrix method of solution the coefficient matrix [M] of the diecretized

equation (6.1) is now a function of _. To prevent decomposition of the coefficient matrix [M] in every

cycle of iteration, equation (5.0) is transformed into (ref. 41).

[M'] [A ¢,](n+I) = _ [RI(n) (6.7)

so that the decomposition of [M']isneeded only the firsttime,and subsequent solutionscan be obtained

with relativelyfew forward and backward substitutions.

In addition to this direct matrix solution, strong implicit approximate factorization procedures

(rife. 80 and 81) and vertical line relaxation procedures were also programmed in reference 41.

It was found when calculating for a transonic cascade with a mesh of 61-by-ll, the strong implicit

algorithm and the relaxation algorithm took about 2 sec per iteration on an UNIVAC-1100 computer

whereas the direct matrix algorithm took about 3 sec on the same computer. But convergence obtained

after 40 iterations (120 sec) in the latter is better than the convergence obtained after 100 iterations

(200 sec) in the former. The Mach number obtained by the direct matrix algorithm for a turbine cascade
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and a compressor cascade are compared with other theoretical calculations and experimental data in

figures 6.6 and 6.7 respectively. Fifty to sixty and 11 to 15 grid points were used, respectively, along x 1

and x2 coordinate lines, and 200 to 300 iterations were carried out to reach an _L_) level of 10"3. It is

interesting to see that in the case of the turbine cascade, the result obtained by the present method

agrees quite well with experimental value. It seems that both this method and the mean

streamline/series expansion method gives a Mach number distribution in the supersonic region better

than that given by the time-marching method. In the case of the T-1 compressor cascade, it is seen that

the present method captured the second shock better than the relaxation method and time-marching

method, and that the position of the captured first shock is a little ahead of that given by the experiment

data.

Improvement of Velocity Distribution for Transonic Blading

On the basis of this treatment of the transonic direct problem, a method of solution for the transonic

inverse problem was developed and reported in reference 67. This method is very useful in improving the

aerodynamic performance of cascade blades. For instance, the velocity distribution on the suction of

Tl(18AeI4b)08 cascade shows two high velocity peaks (fig. 6.8). This method enables one to modify the

velocity distribution so that the magnitude of the two velocity peaks is reduced, but the blade circulation

is kept the same (see fig. 6.8). Blade coordinates obtained in the inverse solution are shown in figure 6.9.

It is seen that the change in the blade shape is very small. Maximum blade thickness and outlet flow

angle are practically the same.

6.3 Effect of Axial-Velocity Density Ratio and Viscous Effect

In comparing theoretical calculations presented in the preceding sections with experimental data, it

is important to notice that the cascade experimental data is usually obtained at a certain axial-velocity
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densityratio. In the case of compressor cascade it exceeds unity. Therefore, the theoretical calculation

should consider a variation of the stream filament r corresponding to the axial velocity density ratio in

the experiment.

It is also important to consider the viscous effect. If flow does not separate from the blade, the

viscous effect is reflected by the reduction in flow area due to boundary layer development on the blade

surface and the increase of entropy in the fluid.

At a relatively low supersonic inlet Mach number, inclusion of the effect of entropy increase in the

theoretical calculation (shock capturing method) seems to give a pressure distribution in agreement with

the experimental data (ref. 73) (fig. 6.10). The variations of V0r , M, and _ along three streamlines

are shown in figure 6.11.

In the case of an inlet Mach number of 1.11, the inclusion of both entropy increase and axial-velocity

density ratio (fl -- 1.16) in the theoretical calculation yields a fair comparison between the calculated and

experimental pressure distribution (ref. 73) around the blade surface (fig. 6.12). The variations of V0r,

M, and _ along three streamlines are also shown in figure 6.13.

At an even higher inlet Mach number of 1.34, probably due to boundary layer separation, an fl

value of 1.18, which is much higher than the experimental data of 1.04, is required to bring the pressure

distribution close to the experimental level (fig. 6.14). The corresponding variation along three

streamlines is shown in figure 6.15.
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Calculations (ref. 85) have also been made to obtain the flow along three S 1 surfaces at 68-, 89-,

100-percent blade height of the DFVLR rotor. Here an adequate knowledge of the relatively large

variation of r is very important for results to be close to the experimental data.

6.4 Transonic Flow Along General SI Stream Filament

In a general S1 stream filament the radial coordinate of the central S1 surface and thickness of the

filament vary in the flow direction and circumferential direction (see fig. 6.16). In transonic flow, there

are abrupt changes in r and r in the shock region. The method for solving transonic flow along an S 1

stream filament of revolution given in reference 41, has been extended in reference 86 to that along an

arbitrarily twisted S 1 stream filament.

In a full-three-dimensional calculation, the shape of a general S 1 stream surface is obtained by

joining corresponding stream lines on a number of S2 stream surfaces. In reference 87, general x 1 and

x 2 coordinates are placed on the central S 1 surface of an S 1 stream filament. The third coordinate x 3

is chosen in the radial direction (fig. 6.17). Then

ar az a@
_1-- _ r _ _ z ÷r _ _

ax 1 ax 1 ax 1

ar az
s2=_r+_z+r _

ax2 ax_ ax2

_r

63= _r

(6.s)
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where

ar

(6.0)

The stream function principal equation in conservative form is

(6.10)

where

A2 = coso12/(sino12")

A 4 =
a_ll/ aI 2 _D(z,lo)/D(xl,x 2 )0_ cos(n,r)
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These equations are only slightly different from those on an S 1 surface of revolution. (Compare

eq. (6.10) with eq. (6.1)). The procedure of solution for the transonic flow along a general S l stream

filament is the same as that along an S1 stream filament of revolution (ref. 41).

6.5 Transonic Flow on $2 Stream Filament Solved by Separate Region Computation with Shock Fitting

Similar to transonic S 1 surface flow, transonic S2 surface flow can also be solved by a separate

region calculation. However, the shock on an Sz surface is different from that on an S1 surface. The

shock usually begins at the outer casing and terminates a distance from the inner hub. Thus, the flow

field is divided into three regions (ref. 39) (fig. 6.18). The first region AA1BIBA, is a supersonic flow

region. It extends from the starting line AA1, which may or may not coincide with the blade leading

edge, to shock line BB r Supersonic flow in this region is solved by the method of characteristics. The

slopes of the two families of characteristics are

_dxl_

(6.11)

where i : 1,2 (when i : 1(2) the sign is + (-)).

The consistency relation along the i family of characteristics is

dW do
-]- C2i -- -{- C3i _--- 0

Cli dx I dx i
(6.12)
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Thesecondregion A1A2B2B1A1 is a transonic flow region. The flow in this region is best

calculated by a Taylor series, using the following partial derivatives with respect to x2:

OW 1 OW 2
+ E2i - Fli (6.13)

Eli ax 2 aX 2

_W 1 a2W 2
Eli -- -t- E2i - F2i (6.14)

a(x2)2 a(x2)2

where i -- 1_2.

0x 2 (7 - 1)h 0x 2
(6.15)

0(x2)2 p (_ - 1)h _2

(6.16)

The coefficients C1i , C2i , C3i , Eli , E2i , Fli , Fzi and G are given in reference 39.

The third region BB2A2A3CICB is a subsonic flow region, the flow of which is solved by the SOR

method.

This method has been used in reference 39 to obtain the transonic S2 flow in the CAS rotor and the

rotor reported in reference 86. The computation was done on a UNIVAC 1100; CPU time was about

3 rain. For the high pressure (1.94) rotor of reference 86 meridional projection of the characteristic
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networkon S2 and the mesh used for the subsonic region are shown in figure 6.19. Figure 6.20 shows

meridional projection of the streamlines. The abrupt change of the streamline across the shock is clearly

seen. The Mach number variation in the three flow regions is seen in figure 6.21.

The variation of flow along the mid-channel S2 surface can be seen more clearly by following the

flow along three streamlines, namely, the one along the hub, the one at midspan and the one along the

casing. Corresponding to the abrupt change across the shock (fig. 6.20) the decrease in S1 stream

filament thickness is large (fig. 6.22) whereas the change in the relative flow angle (fig. 6.23) is small.

Across the shock, the drop in relative Mach number (fig. 6.24) and absolute Mach number (fig. 6.26) and

the increase in absolute flow angle (fig. 6.25), tangential velocity, (fig. 6.27) and pressure ratio (fig. 6.28)

is relatively large. It is noticed from these figures that there is quite a large overturning of the air and

overshooting of the tangential velocity below mid-span and near the trailing edge of the blade.

6.6 Shock Embedding Elliptic Solution for Inverse Problem of Transonic S 2 Flow

One of the findings in reference 3 has been generally accepted since it was published. That finding

states that in the case of an inverse problem where the tangential velocity component is prescribed by the

designer, the partial differential equation governing fluid flow remains elliptic as long as the meridional

velocity component is lower than the speed of sound, even when the flow relative to the rotating blade is

higher than the speed of sound. Indeed a great number of transonic turbomachines have been designed on

that basis. However, if in the design of transonic machines, the design parameter selected, for instance

Vsr , is prescribed in the same manner as in the subsonic machines (fig. 5.5), flow discontinuity at the

passage shock is not obtained in the solution. This kind of calculation is referred to as Level I

calculation. If the values of Vsr , s, and r prescribed in the design calculation are smooth, but have

steep gradients at the passage shock, then the solution obtained indicates a passage shock. This is
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referredto as Level II calculation. Level III calculation has the following characteristics: (a) prescribed

values have proper discontinuity across the shock provided by transonic S 1 calculations, (b) shock

relations are embedded in the S2 calculation, (c) S2 solution obtained shows a clear shock discontinuity,

and (d) one of the x2-coordinate lines coincides with the shock llne (fig. 6.29).

Embedding Shock Relations

In the calculations of the direct problem of stream surfaces, usually the plane shock relations are

used. This is equivalent to assuming that the shock surface is perpendicular to the stream surface. The

error involved appears to be somewhat different for S I and S2 flows and its magnitude depends on

particular configuration. In reference 88, this assumption is not made and fully three-dimensional

relations are used across the shock. First, two stations, a very short distance apart, are placed along the

shock line one immediately upstream and the other immediately downstream. The dynamic equation in

the direction tangent to the S2 surface and also to the shock surface is

= wt -) (6.17)ts

The dynamic equation in the direction normal to the shock surface yields

/ "_ 1' 0

(6.18)

The dynamic equation in the direction tangent to the shock, but not tangent to the S2 surface yields

136



s (+) - s(-)

R I 17--In _)M(n)2 + _--_ + -In M_ -)2- -3' 1 (3' + 7 1 _ _'_

The energy equation is simply

I(+) : I(-) (6.20)

The continuity is simply

q? (+) : _ (-) (6.21)

and the condition of continuity of the stream surface S2 is given by the _ coordinate of S2

_(÷) : @(-) (6.22)

The computer program of reference 64 was modified by working equations derived from the

preceding basic equations. The modified program was used to carry out the three levels of calculation for

the DFVLR rotor (ref. 89), for which Laser Two Focus measured internal flow data is available

(ref. 90). In addition, the experimental Mach number contour plots at several spanwise positions given in

reference 34 for the peak efficiency operating condition at design speed, the meridional projection of the

Mach number contours on the $2, m surface are constructed and shown in figure 6.32(a). The increase of
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V0r and s from inlet to outlet, determined from the measured values given in references 34, is used in

the calculation.

Figures 6.30 and 6.31 show input values of r, V0r , and s used in the Level II and III calculations.

From the results obtained in the three levels of calculations, it is immediately seen from figures 6.32 and

6.33 that the streamlines and Mach number contours obtained in the Level I calculation are quite

different from Level II and III calculations as well as from the measured result. Mach number contours

obtained in the Level III calculation agrees best with the measured data.

It is also seen that the difference between the results obtained in Level II and III calculations are not

large. The differences in the S1 surface shape and S1 filament thickness, needed for S1 calculations,

are shown in figures 6.33 and 6.34, respectively.

The relative flow angle obtained in the calculation is compared to that of the mean camber line and the

measured value (ref. 90) in figure 6.35. The agreement with measured value is quite good. The

calculated pressure rise is shown in figure 6.36.

6.7 Direct-Problem Solution of Transonic Flow Along S_ Stream Filament

In the case of a direct problem of transonic flow along the S2 stream filament, it is desirable to put

the nonorthogonal curvilinear coordinates, x 1 and x 2 on the mid-S 2 surface of the filaments, and the

x3-coordinate perpendicular to the surface (refs. 91 and 92) (fig. 6.37). Then W 3 -- 0 If dx 3 - 1, then

g_33 : rn : r B cos (n,_o) and
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/al/0rl
g22 tax21 _ +

g12 = ¢gll g22 cos 012

g = rn/#12 gll g22 sin2 012

(6.23)

The continuity equation, the dynamic equation and stream function velocity, and the principal equations

are, respectively (ref. 91).

(pr n g_--22 sin #12W 1) + _ (pr n _ sin 012W 2) = 0

Ox1 ax 2

(6.24)

0 I(W2 _{_ Wl cos 012) g_/----9.2]

0x 2

=2 g_""11g_"'_2_o3sinOl2 + g_"---11[0Iw_____ _x 2 -T 0x-'-_0s]

(6.25)

where ca8 = oJ cos(n,z)/rn,

"rnp _sin #12W2= - /9ql; rnP g_22sin 012W1= o_
0x I 0x 2

(6.26)
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(6.27)

where

C2 = cos S21/(sinS12 r.)

This principal equation is similar to that on the S 1 stream surface, but it contains only two unknowns,

and p. The traditional _-p iteration is used in the solution.

The method of artificial compressibility is used in a manner quite similar to that in transonic S1

flow (section 6.2). In the calculation for the 8:1 presesure ratio centrifugal compressor (fig. 6.38) of

reference 93, it was found that the viscous effect is large and that only after appropriate entropy

correction and use of a blockage coefficient of 0.18, about the same value used in reference 93, the

calculated M_ch number at the casing was brought up to a level close to the experimental value (fig.

6.39). Results of computation for a mass flow of 0.909 kg/s at tip Mach number of 1.25 are given in

figures 6.40 and 6.41. The increase in V0r along the casing is shown in figure 6.40. The increase in V 0

across the shock is a small portion of the total increase. Figure 6.41 shows the meridional projection of
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Mach number contours on $2, m. It is seen that flow in an inducer of a centrifugal compressor is quite

similar to that in a rotor of a transonic axial-flow compressor.
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CHAPTER7

THREE-DIMENSIONAL FLOW IN TRANSONIC TURBOMACHINES

The determination of three-dimensional flow in transonic turbomachines through the use of S1 and

S2 stream filaments proceeds in the same manner as in the case of subsonic turbomachines. Various

techniques described in Chapter 6 for solution of transonic S 1 and Sz flow are selected for use in the

three-dimensional solution. Because the blading has a stronger influence than the hub and casing walls

on the passage shock, the position and shape of the shock are determined in the S1 calculation.

Together with the geometry of the S 2 stream filament and the discontinuous changes of filament

thickness r, angular momentum V0r , and entropy s, the position and shape of the shock are carried

over to the S2 calculation in the next cycle. This procedure not only was proven to be practical in the

S1/S 2 iteration process, but also provides a possibility to modify the geometry of the blade and

meridional passage for minimizing the loss caused by passage shock. So the three-dimensional blade

design procedure suggested in this Chapter is even more desirable in the case of transonic turbomachines.

7.1 Quasi-Three-Dimensional Flow Field in the DFVLR Rotor

Quasi-three-dimensional solution refers to the solution obtained by using a number of S t stream

filaments of revolution and a mid-channel S2 filament. In reference 95, this approximate method was

applied to compute the flow field in the DFVLR rotor (ref. 89) operating at the design point, of which

measured flow field (ref. 90) is available for comparison. The design stagnation pressure ratio is 1.51 and

the inlet relative Mach number at the blade tip is about 1.37. The Vsr distribution at the outlet at

design point is determined from experimental data and is used as the fixed boundary value of the direct

problem.
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For $2, m solution a grid system of 61 stations along x I and 11 stations along x2 is selected on

the meridional plane. Seven S1 surfaces located at 0, 10, 30, 50, 70, 90, and 100 percent, respectively, of

the blade height at the inlet station are used in the calculation. The grid system selected on the S1

surface has 61 stations along x 1 coordinate and 15 stations along x 2 coordinate. The methods of

references 42 and 64 are used for S 1 and S2 calculations, respectively. In order to see how high of a

convergence level can be obtained for this moderately high transonic flow, nine cycles of calculation were

carried out and the convergence level obtained (relative change of flow variable less than 1 percent) is as

good as that previously obtained for subsonic flow. The significant advantage of the transonic three-

dimensional calculation method is that the computation can be carried out at low cost in a reasonable

time period on a modern microcomputer, which is readily available to all design engineers. For instance,

the computing time for the transonic S l and S2 solution is about 30 sec each on a 7-MIP Sun 4

machine. Thus, the total time required is less than 1 hr. This time decreases in proportion to the

number of CPU's in a multiprocessor. If, say, eight S1 flows can be done at the same time on an 8-CPU

computer, the total time required will be reduced by a factor of eight. Therefore, this relatively

inexpensive, approximate three-dimensional code is quite suitable for design investigation and trade-off

studies. The final choice of design configuration may then be checked and refined by a full-three-

dimensional analysis code or even by a viscous code, which has recently been made available.

Convergence of Iterative Three-Dimensional Solution

The key issue for the success of the present method of solving the three-dimensional transonic flow

by iterative calculation between an $2, m surface calculation and a number of S1 surface calculations is

the convergence problem. In the case of a high subsonic flow through a compressor stator (ref. 31) it was

found that when the entropy values of the two surfaces at the same intersecting point are kept the same,

a convergent solution with
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rsz(n) - rsz(n_l)

rs2(n-1)
<0.3 percent

%2(n-1)

< 0.8 percent

and

< 2 percent

was obtained after only four cycles of iteration. For transonic flow it is expected that the convergence of

solution would be more difficult to obtain than that of the passage shock. However, it is believed that, in

the present calculation procedure, that the shock discontinuity is determined in the S 1 solution and that

the abrupt changes in entropy r and V0r across the shock obtained in the S 1 solution are taken as

the input values to the $2,m solution will help achieve convergence of the three-dimensional iterative

solution.

In the example cited above, the criterion IAr/rlm _ and IAr//rlmax are used to judge convergence,

whereas I_[$1 - MSz)/MsI_a x is used to judge consistency. Between convergence and consistency, the

former is more essential. If convergence is not achieved, good consistency is impossible. On the other

hand, even in the case of a high degree of convergence, there may be an irreducible inconsistency of the

Math number. It is believed that consistency of entropy and mass flow coefficient in the S1 and S 2

calculations is especially important for consistency between the S1 and S2 solutions.

Using a proper value of relaxation factor is very important for convergence. During the calculation

for flow in transonic rotor, the thickness value of the S1 stream filament near the casing, fluctuated and
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diverged when a relaxation factor was not used (see fig. 7.1). This kind of divergence is something like

that in the iterative calculation of the following algebraic equation.

x(n) _f _(n-1))

when f'(x) <-1. Hence, in order to obtain and speed up convergence, a small relaxation factor was

used.

In the numerical example to be presented in the following section, the same grid pattern in the x 1

direction is employed for both S1 and S2 calculations, and the entropy and mass flow coefficients are

kept consistent in both calculations. It is found that using the relaxation factor of a relatively small

value is very effective in obtaining quick convergence. The consistency is, at the same time, relatively

good. In the case of high subsonic flow through a compressor rotor, the relative change in S1 filament

thickness is reduced to below 2 percent and the relative differences between St and S 2 Mach numbers

and flow angles are reduced to 0.9 percent and 0.3 degrees, respectively. In the case of transonic flow in a

compressor rotor with a tip Mach number of 1.37, the relative change in S1 filament thickness is

reduced to below 1 percent and the relative difference between S1 and S2 Mach numbers at the same

grid point is below 4 percent. These values of consistency are probably due to the fact that artificial

density is employed in S1 but not in S2 calculations and that the conservation form of the principal

equation is employed in S1 hut not in S2 calculations.
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Variation of Flow Variables During the Convergence Process

During the first few cycles of calculation there was a general tendency toward convergence.

However, in the region near the casing, the values of S1 filament thickness soon began to fluctuate.

Also its magnitude tends to increase (see fig. 7.2). A small relaxation factor, less than 1, was used to

make the process convergent. It was noticed in the 7th cycle that a small r 1 input to S 1 calculation

(the lower solid line in fig. 7.2) yields a large value of output from the S2 calculation (the upper dashed

line in fig. 7.2) and vice versa in the 8th cycle. The solution lies between the two. The middle value was

then taken as input to the 9th cycle and the output obtained is less than 1 percent from the final value.

The difference in streamlines obtained on the $2, m surface in the 1st cycle and 9th cycle shown in

figure 7.3 is seen to lie in the region downstream of the shock. The radius coordinate obtained in the 9th

cycle in that region is considerably higher than that in the 1st cycle.

The stream-wise variation of r for the seven S 1 surfaces assumed in the 1st cycle and obtained in

the 9th cycle is shown in figure 7.4, and the value of r and r, respectively, of the streamline at 70- and

100-percent blade height in the 7th to 9th cycles of calculation is listed, respectively, in tables I and II.
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The converging process of V0r is similar to that of r of S1. The variation of V0r, relative to its

value at the exit, along the seven streamlines in the 9th cycle of calculation is compared to that in the 1st

cycle of calculation in figure 7.5.

On the other hand, the change in the angular thickness of stream filament $2, m is relatively simple.

The stream-wise value on the seven streamlines used as input value to the 9th cycle is shown in

figure 7.6(b) and is compared to those assumed in the 1st cycle (fig. 7.6(a)). The abrupt change in r

(and V0r streamline) is clearly seen in figure 7.5(b) (and 7.3(b), 7.4(b)).

Figure 7.7(a) shows the Mach number variation along the mean streamlines obtained on the seven

S 1 surfaces in the 9th cycle, whereas figure 7.7(b) shows those along the streamlines on the $2, m surface

obtained in the 9th cycle. They are very close; the maximum difference between the two being less than

4 percent. This is the same value previously obtained in the iteration for a subsonic rotor. This means

that in the present solution of moderately high transonic flow, the convergence and consistency level

obtained is as good as those in the subsonic case.

Three-Dimensional Flow Field

In the approximate three-dimensional solution presented herein, the three-dimensional flow field is

obtained on the seven S1 filaments of revolution extending over the whole blade passage (the $2, m

calculation is used mainly for obtaining the geometry of the S1 filaments). The constant Mach number

contours on these S1 surfaces can be readily obtained from the calculation. However, in order to make a

comparison to test data, the contours on S 1 surfaces at 18, 45, 68, and 89 percent span are obtained

through interpolation. They are shown in figures 7.8(a) to (d). They clearly show the strong effect of

the passage shock. The solution of S 1 surface flow can also be used to obtain the radial variation of
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flow variablesat a numberof stationsalongtheflow direction.

andflow angle 3 are shown in figure 7.9.

Two of them, the relative Mach number

Although only the flow variation on the central S2 surface is directly available in the approximate

three-dimensional solution, those on the other S2 surfaces can be constructed by the data on the

corresponding streamlines on different S1 surfaces. Constant Mach number contours on the suction and

pressure surfaces are obtained in this way and are shown together with that on the central S_ surface in

figure 7.10. A second passage shock is seen on the suction surface and the central S2 surface, extending

only a short distant inward from the casing.

From data on these S2 surfaces, stream-wise variations of flow variables on certain streamlines can

be readily obtained. For instance, the variation of flow angle along three streamlines on the $2, m

surface at 18-, 68-, and 89-percent blade height (at inlet) are shown in figure 7.11.

The variation of flow variables can also be shown on spanwise surfaces formed by x _ and x 3

coordinates. The variations of M,/_, and p on these surfaces are particularly useful for observing the

influence of the passage shock and the magnitude of vorticity or secondary flow. Mach number contours

on three such surfaces are shown in figure 7.12. On the 10-percent chord surface, the intersection of

shock surface and this surface is seen to extend from the casing all the way inward to a point very near

the hub. At the 90-percent chord surface, the flow is almost entirely subsonic.

In order to more clearly see the effect of the three-dimensional passage shock on the three-

dimensional flow field, the three-dimensional passage shock is constructed in scale and is shown in

figure 7.13. At the tip Mach number of 1.37 and hub tip ratio of 0.5 the passage shock extends from

casing all the way inward almost to the hub.
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Comparison Between Computed Flow Field with DFVLR Measured Data

The quasi-three-dimensional transonic solution obtained by the present method is compared with

available DFVLR measured data in figures 7.8, 7.9 and 7.11.

The character of the flow field obtained by the present method is seen to be in good agreement with

that constructed fromDFVLR measured data. In the region near 18-percent span, a supersonic zone

appears near the leading edge of the suction surface. In the middle of the span, a bow wave appears a

short distance in front of the leading edge and the wave extends to the flow passage to form a passage

shock. At about two-thirds of the span, the shock appears to be nearly attached to the leading edge.

Located in the blade tip region, is a second shock downstream of the bow wave/passage shock and the

shock is nearly normal to the suction surface. The position of the passage shock obtained in the

calculation is slightly in front of the measured position. It seems that this difference is inherent in the

solution of transonic flow by the use of the stream function/artlficial density method (refs. 41, 42, and

79). Also the computed shock is more nearly normal to the suction surface, whereas the measured shock

is more inclined to the suction surface.

The result calculated by a different method (ref. 34) is included in figure 7.8 for comparison. The

character of flow is similar, but there is some difference in the magnitude between the two calculated

results.

The relativelygood agreement between the calculatedand measured valuesofMach number and

flow angle in the radialdirection(fig.7.9)and flow anglealong the stream-wisedirection(fig.7.11)

indicatethat flowfieldin the centralportionof the three-dimensionalpassage determined in the present

method issufficientlyaccurateforengineeringcomputation. Itseems that a more accuratedetermination

of the shock position,such as the separatecalculation/shockfittingmethod (section6.1),appropriate

correctionforblockage effectat higherradius(section6.3,)and without assuming axiallysymmetrical SI

stream surfacemay improve the solutions.
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7.2 Full-Three-Dimensional Transonic Flow in Cas Rotor

Solution Obtained by Using a Number of S1 and S2 Stream Filaments

The method described in Chapter 5 for obtaining three-dimensional flow using a number of S 1 and

S2 stream filaments was employed in reference 96 for calculating full-three-dimensional transonic flow in

the CAS rotor. A full-three-dimensional calculation was made after a quasi-three-dimensional solution

was been obtained. Thus, full-three-dimensional calculation can be used as a full-three-dimensional

analysis solution after the rotor is designed by the quasi-three-dimensional procedure.

The design parameters of the CAS compressor and details of testing were given in section 5.9. The

meridional projection of the rotor blades, design streamlines, L2F measuring stations, and the overall

performance of the rotor were given in figures 5.42 and 5.43. The radial distribution of stagnation

pressure and absolute flow angle measured by optical and non-optical devices are shown in figure 5.44.

Three-dimensional flow calculation has been carried out for 80 and 90 percent of design speed and

compared to the L2F data available at these two speeds.

Quasi-Three-Dimensional Solution for Transonic Flow in CAS Rotor

Quasi-three-dimensional solutions of transonic rotor were obtained for 80- and 90-percent design

speed. The stagnation pressure and the absolute flow angle, measured by Setra capacitance transistor

and L2F velocimeter, respectively, are taken as the outlet boundary conditions. The other main input

data are: flow path in meridional plane, blade geometry (coordinates given on S 1 surface or on

manufacturing templates), inlet pressure and temperature, rotor speed, mass flow and mass flow

coefficient.
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The first step is to solve the flow along an $2, m surface about midway between two adjacent

blades. The computer code of reference 64, with a given absolute outlet flow angle and rotor efficiency, is

used for this purpose. The isentroplc efficiency of the rotor is determined by the torque measurement.

The radial distribution of rotor efficiency is calculated with the stagnation pressure and temperature

measurements. With the absolute velocity and flow angle measured by L2F velocimeter, the angular

momentum V0r is calculated. During calculation, the outlet flow angle a and radial distribution of

efficiency _s are updated successively, until V0r converges, and the calculated pressure p0 is in

agreement with the experimental values. This process takes only three to five cycles. The set of radial

distribution values of p0 a, and V0r at the outlet station and the rotor efficiency qs are used for

three-dimensional calculation of internal flow field and are compared with the L2F measured internal

flow field. Figure 7.14 shows the calculated values as compared to the measured values at the outlet

station.

From this solution of $2, m flow, the geometry of the 11 S1 surfaces of revolution and the variation of

the S1 stream filaments are obtained. The coordinates of the corresponding blade surface are calculated

by interpolation. The computer code of reference 41 is used to calculate the S 1 transonic flow. After

the solution of the flow on the 11 S 1 surfaces are obtained, a new $2, m surface along with the

corresponding variations of thickness of the S 1 filament Number 10 in figure 7.15. The angular

momentum V0r along streamline. Number 2 and Number 10 on the $2, m surface during iteration are

shown in figure 7.16. In figure 7.17 the relative Mach numbers along the intersecting streamlines

obtained on Si surface and on $2, m surface are shown. The closeness between the values shows the

degree of consistency as well as convergence reached in the solution.

Table III below gives the geometry and major flow parameters on six S1 stream filaments obtained

in the solution

152



11

9

7

5
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1

M

TABLE III.--MAJOR PARAMETERS ON SIX S I

_1, #2, Coordinates r,m
degree degree

1.180 -66.2

1.089 -64.2

.993 -61.3

.883 -57.4

.758 -51.2

.609 -38.7

%o = 1.141 cm.

-56.2

-51.2

-45.7

-38.5

-27.6

3.8

_=0 _=.5

.3426 .3390

.3133 .3102

.2807 .2801

.2434 .2460

.1986 .2055

.1370 .1499

STREAM FILAMENTS OF REVOLUTION

f'_ f'o i

r1,0

"_=1

.3354

.3078

.2788

.2465

.2096

.1628

_'= 0 "_'= .s

1.000 1.014

1.092 1.021

1.234 1.121

1.404 1.305

1.730 1.589

2.638 2.461

_'=1 ro

.943 .943

.979 .896

1.071 .868

1.206 .859

1.433 .929

1.929 .731

O'p

degree

-7.98

- 5.49

-1.73

2.61

8.62

18.41

In the tablevaluesof ro,r0.s,rl, and r/ro show clearlythe quasi-three-dimensionalassumption of

the -S1 stream surface.Although the S1 surfaceisaxially-symmetric,the flow on SI variesinthe

circumferentialdirection.

The meridionalprojectionofstreamlineson $2,m isshown in figure7.18(a).

The stream-wlse variation of the S2 filament thickness and the angular momentum V0r at the mean

streamline on six S1 stream surfaces is shown in figures 7.19 and 7.20, respectively. On the S1 surface

near the hub, the flow is subsonic and these curves resemble those previously obtained in the subsonic

compressor (for example, fig. 5.40 and 5.39). But for the S 1 surface located in the region where a

passage shock exists, the curves are greatly affected by the shock.

The circumferential variations of relative Mach number at six axial stations on five S1 surfaces are

shown in figure 7.21.
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Full-Three-Dimensional Flow in CAS Rotor

As mentioned in Section 5.7 the full-three-dimensional solution can be made by going into the multi-

S2 calculation immediately after the completion of the multi-S 1 calculation in the first cycle interaction

(A-B-C in fig. 7.22). But, in the present calculation, multi-S 2 calculations are carried out after the

completion of the quasi-three-dimensional solution (A-B-A-B in fig. 7.22). It is found that the iterative

calculation between six (in the first four cycles) to 11 (in the last two cycles) S 1 surfaces and seven S_

surfaces reaches an acceptable level of convergence and consistency after six cycles of iteration. There are

52 (21 in the blade region) and 11 stations, respectively, along x I and x 2 coordinates on each S 1

surface, and 52 and 11 stations, respectively, along x I and x 2 coordinates on each S2 surface. The

solution of the flow on the seven S2 surfaces employed in the iterative calculation is based on the

_inverse type _ solution, i.e., V0r obtained in the S 1 solution is taken as the input value to the S2

solution. The S2 surface adjacent to the blade surface is placed a short distance from it, and the mass

flow between them is 5 percent of the total flow. The S 1 and

through two interpolation codes so that V#r distribution and

S2 computer codes are connected

S2 filament thickness obtained in the

solution of flow on S 1 surfaces are interpolated for input values to different Sz surfaces. Similarly the

geometry of the S1 surfaces and the filament thickness r obtained in the solution of flow on S2

surfaces, are interpolated for input values to the S1 surfaces.

Similar to the quasi-three-dimensional solution, entropy increases across the rotor at different radii

are calculated according to the rotor efficiency at these radii. The variation of entropy increased along

the x 1 direction is obtained by considering that (1) there is no entropy increase in the flow up to shock

line, (2) entropy increases abruptly across the shock, and (3) from there on it increases linearly to the

outlet value. In order to be consistent, the value of entropy used in the S 1 calculation is the same as

that in the S2 calculation at the same grid point. Because of the lack of data on how entropy varies

154



from blade to blade, the circumferential variation of entropy is considered neither on the

on different S2 surfaces.

S 1 surface nor

Converging Process

Since the main difference between a quasi-three-dimensional and a full-three-dimensional solution is

whether the radius of the S 1 surface is or is not circumferentially constant, the convergence in the

geometry of S 1 surface is an indication of the convergence of the full-three-dimensional solution.

Table IV lists the changes in the radii of three S1 surfaces during iteration. The corresponding changes

in S 1 filament are listed in Table V.

S 1

TABLE IV.--CHANGES IN RADIUS (m) OF GENERAL S I SURFACES DURING ITERATION

S 2
St&tion

cycle
21

.3111

.3118

.3118

.2784

.2791

.2791

.2425

.2430

.2429

31

.3102

.3101

.3101

.2790

.2_4

.2_4

.2453

.2453

.2453

41

.3083

.3081

.2781

.2793

.2790

.2790

.2473

.2469

.2469

21

.3126

.3131

.3131

.2807

.2811

.2811

.2451

.2445

.2445

IV

31

.3102

.3108

.3108

.2806

.2804

.2805

.2476

.2468

.2467

41

.3077

.3082

.3082

.2792

.2794

.2794

.2481

.2476

.2476

21

.3127

.3137

.3137

.2814

.2823

.2823

.2471

.2466

.2465

VII

31

.3098

.3108

.3108

.2802

.2806

.2806

.2483

.2475

.2474

41

.3070

.3080

.3080

.2792

.2793

.2794

.2490

.2480

.2479
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$1

TABLE V.--CRANGES IN FILAMENT THICKNESS (cm) OF GENERAL S I SURFACES

S I
Station

cycle

7 1

5

6

5 I

5

6

ro = 1.41 cm.

21

1.143

1.128

1.126

1.189

1.201

1.202

1.388

1.366

1.387

31

1.054

1.054

1.052

1.131

1.136

1.138

1.328

1.298

1.299

41

.986

.986

.985

1.063

1.075

1.075

1.2:]9

1.213

1.213

21

1.096

1.084

1.084

1.174

1.190

1.200

1.388

1.401

1.402

IV

31

1.035

1.039

1.037

1.087

1.120

1.121

1.294

1.295

1.296

41

.982

.977

.977

1.033

1.062

1.062

1.201

1.204

1.204

21

1.087

1.061

1.062

1.127

1.166

1.167

1.373

1.374

1.375

VII

31

1.050

1.037

1.036

1.059

1.103

1.104

1.277

1.279

1.279

41

.987

.955

.955

.989

1.034

1.035

1.160

1.158

1.159

Convergence in the radius of the general

stream filament is clearly indicated in Tables IV and V.

The Mach numbers along intersecting lines between $2, m

figure 7.17(b).

S 1 stream surfaces and in the thickness of the general S1

surfaces and S 1 surfaces are shown in

In figure 7.23 the Mach numbers along intersecting streamlines between S1 surfaces and S2 surfaces in

this solution are shown. A comparison between figures 7.17(a) and 7.17(b) and figure 7.23 itself indicates

that much better convergence and consistency are achieved in the full-three-dlmenslonal solution than

that achieved in the quasi-three-dimensional solution.

Geometry of S 1 and S2 Stream Filaments

Data in tables VI and VII show that the radius of the S 1 surface increases in the circumferential

direction at the blade leading edge, and the difference decreases toward the blade trailing edge. On the

other hand, the filament thickness at the leading edge is larger near the pressure surface at large radius

and larger near the suction surface at small radius. The difference decreases toward the trailing edge.
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This configuration of the S1 stream filaments is a combined result of the flow vorticity and the passage

shock. In subsonic flow the relative circumferential difference in the radius is found to be about

0.2 percent, but in transonic flow the maximum value is about 1.3 percent, an order of magnitude higher.

The geometry of the S2 stream filaments is given in table VIII.

TABLE VI.--COORDINATE r (m) OF S I STREAM SURFACES

S 1, S 2

station

17

21

25

33

41

45

Number = 7

I II' III IV V

.2792 .2802 .2806 .2811 .2815

.2792 .2800 .2811 .2820 .2825

.2792 .2800 .2806 .2812 .2819

.2795 .2802 .2803 .2804 .2802

.2789 .2793 .2793 .2793 .2794

.2784 .2785 .2785 .2785 .2787

Number = 4

I II III IV V

.2201 .2205 .2214 .2222 .2229

.2229 .2230 .2239 .2248 .2259

.2243 .2248 .2256 .2263 .2268

.2271 .2278 .2284 .2287 .2290

.2294 .2299 .2301 .2303 .2307

.2304 .2305 .2306 .2305 .2308

TABLE VII.--THICKNESS OF S I STREAM FILAMENTS (r/to)
, r _,.

S v S 2

station

16

21

31

41

46

Number

I II

1.026 1.017

1.054 1.043

1.028 .986

.954 .946

.929 .928

11 (Filament of Revolution)

III IV V

1.008 1.001 .995

1.021 1.007 .996

.970 1.957 .957

.954 .957 .968

.929 .929 .928

Number 4 (General Filament)

I

1.251

1.202

1.138

1.075

1.042

I II III IV V I

16 1.643 1.653 1.653 1.652 1.647 3.497
21 1.502 1.533 1.546 1.557 1.543 2.876

31 1.418 1.431 1.430 1.429 1.121 2.613

41 1.317 1.316 1.316 1.306 1.297 1.962

46 1.255 1.256 1.255 1.254 1.251 1.692

ro = 1.41 cm.

Number 7 (General Filament)

II III IV V

1.262 1.253 1.246 1.239

1.209 1.200 1.187 1.167

1.130 1.121 1.114 1.104

1.067 1.062 1.058 1.052

1.039 1.038 1.037 1.035

Number 1 (Filament of Revolution)

II III IV V

3.488 3.542 3.592 3.695

2.872 2.955 3.053 3.172

2.603 2.662 2.709 2.738

2.055 2.099 2.133 2.191

1.703 1.711 1.720 1.741

Figures 7.24 and 7.25 show, respectively, the 10 S1 stream filaments formed by the 11 S 1 stream

surfaces and the intersecting lines of the 11 S 1 stream surfaces with three span-wise surfaces. It is found

during calculation that the twist of the S 1 surface in the radial direction is relatively large at the blade

leading edge and relatively small at blade trailing edge. For instance, the radii of S 1 surface Number 5
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at the blade leading edge are, respectively. 0.2429 m at the pressure surface and 0.2465 m at the suction

surface, a difference of 0 to 0.0036 m or 1.48 percent, but at the trailing edge they are, respectively,

0.2469 and 0.2479, a difference of only 0.001 m or 0.4 percent.

The geometry of S1 stream surfaces is one of the most important three-dimensional flow variables.

The blade section is now operating inside this filament. The flow characteristics are greatly influenced by

the variation of filament thickness in stream-wise as well as in circumferential direction.

Three-Dimensional Flow Field

The three-dimensional geometry of the S 1 stream filaments, given in tables VI and VII, and the

blade sections lying in the filament determine the flow along these filaments and consequently the flow

over the whole channels (see fig. 5.27). The meridional projection of the streamlines obtained on the

Sz, m surface S 2 filament thickness and Vsr along the mean streamline on six S 1 stream surfaces are

given in figures 7.18(h), 7.19(b) and 7.20(b), respectively. The difference between the solution obtained

in the present full-three-dlmensional solution and the previous quasi-three-dimensional solution is quite

apparent. The major geometry and inlet and outlet flow conditions of the six S1 stream filaments are

listed in table VI in which

point of chord length and

contraction in r

a and b denote the two corners at the upstream station, e and f at mid-

c and d at the downstream station, rc/ra, rd/r b and r¢/ra, rd/T b are the

and filament thickness r, respectively, on the two sides.

The flow determined on the six S 1 filaments is shown in figure 7.26 in terms of constant Mach number

contours. They are drawn for flow fields including four stations upstream and three stations downstream

of the blade. The inlet Mach number varies from 0.6 at the hub to 1.25 at the tip. The supersonic

region begins to appear on surface (3). On surface (7) a bow wave appears and extends to the suction
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surface as a passage shock.

50-percent chord point.

On the tip surface (11) the passage shock hits the suction surface at about
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The geometryof the S2 stream filaments is given in table VIII. Similar to the S 1 stream

filaments, the three-dimensional geometry of the S2 stream filaments and the meridional wall shape

determine the flow along these filaments and consequently the flow over the whole channel (see fig. 5.29).

figure 7.27 shows the constant Mach number contours on the S2 filaments. Notice that, whereas in the

quasi-three-dimensional solution only flow on one S2 surface (the $2, m surface), which took part in the

iteration, is directly obtained in the solution, in full-three-dimensional solution the flow on all S2

surfaces, which took part in the iteration, are directly obtained in the solution. The circumferentially

uniform flow at the inlet station becomes nonuniform near the blade leading edge, where tip Mach

number varies from 1.18 on S2 (I) to 1.21 on S2 (VII). It becomes uniform again at three stations

downstream of the blade. From the pressure surface of one blade toward the suction surface of the

adjacent blade, the intersection line of the shock and the surface becomes longer and moves downstream.

The flow condition on S2 (I) and (VII) should be particularly useful in the investigation of boundary

layer flow along the blade surfaces.

Using data obtained from these two families of stream surfaces a three-dimensional view of the shock

can easily be constructed (fig. 7.28). The passage shock is seen to extend from the casing part way

(about two-thirds) down to the hub. The shock is nearly normal to the suction surface and more inclined

at lower radius.

Using data obtained on the S 1 and S2 surfaces, constant Mach number contours can also be

constructed on a number of a third family of surfaces, formed by the x 2 and x 3 coordinates, nearly

normal to S1 and S2 surfaces at stations 1 (L.E.), 5, 9, 11, and 21 (T.E) (fig. 7.28). In the stream-

wise direction the shock intersection line becomes shorter, and the circumferential gradient in Mach

number becomes smaller. Between station 11 and 21 appears a reverse circumferential Mach number
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gradient in the lower part of the passage. Consequently there is also a reverse circumferential gradient in

pressure, which will affect the boundary layer along the hub wall.

Constant a contours are obtained on five such surfaces and are shown in figure 7.30. At station

J---0 (one station upstream of the blade) there is a significant difference circumferentially in the upper

half of the flow channel. At the pressure surface side ¢ is +2 °, whereas on the suction surface side, ¢

is -2 ° to -6 °. This difference in o means that the air is moving outward on the left and moving

inward on the right. At station 2 the air on the upper left is now moving inward with -8 ° to -10 °.

Thus there is a twist of S1 surface between station 0 and station 2. It is nearly uniform

clrcumferentially at station 6. At station 10 a sharp change of 2 ° appears in the flow direction over most

part of the channel. At station 21 the value ¢ is again nearly uniform in the circumferential direction.

The stream-wise variations of filament thickness and angular momentum V0r of S2 stream

filaments (I), (IV), and (VII) are shown, respectively, in figures 7.31 and 7.32. As for the filament

thickness r, the variation in the subsonic hub region is similar to that of (P-t)/P, except that there is a

high peak value at the leading edge on the S2(I ). In the supersonic upper region the variation of S2(I )

and S_(VII) are quite different from (P-t)/P. On S2(IV ) there is still some resemblance, but it has two

peaks around the leading edge, indicating the effects of bow wave and passage shock.

The variation of V0r is somewhat similar. In the hub region it is only slightly modified from the

usual shape in subsonic flow. But in the upper part there is quite a peak at leading edge near the

pressure surface and an overshoot at the trailing edge near the suction surface. In the tip region there is

either a two-step rise or fluctuation in the V0r variation.
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Difference Between Three-Dimensional and Quasi-Three-Dimensional Solution

The difference between three-dimensional and quasi-three-dimensional solution is entirely due to the

difference in the geometry of the S1 stream filament. Tables III and VIII show the major difference

between the S 1 stream filaments involved in the two calculations.

First, there is some difference in the geometry of $2,m in the radial coordinate and in the

contraction of the filaments thickness. Figure 7.19 shows the difference in the streamwise variation of the

$2, m filament thickness.

A rather complicated variation in the full-three-dimensional flow is much simplified in the quasi-

three-dimensional flow. The streamwise variations of the important flow variable Vor on the $2, m

surface are compared in figure 7.20. A higher overshoot exists in the quasi-three-dimensional solution.

The streamwise variations of Mach number along the intersecting streamline of the S 1 and S_, m

surfaces, obtained in the solution on the two surfaces, are compared in figure 7.17. The full-three-

dimensional solution has reached a higher level of consistency and convergence than the quasi-three-

dimensional solution. The former, in general, gives a slightly higher peak Mach number than the latter.

This difference is also noticeable in the comparison of the constant Mach number contour maps on the

$2, m surface shown in figure 7.34.

Circumferential variations of Mach number at six stations on five S 1 surfaces obtained in full-three-

dimensional and quasi-three-dimensional solution are compared in figure 7.21. In addition to the factors

influencing the solution mentioned above, the circumferential variation in the S 1 geometry in the full-

three-dimensional solution also influences the result. It can be seen from tables V, VI, and VIII that for

S 1 surfaces above $1(7), the filament thickness and its contraction on the side near the pressure surface
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issignificantlydifferentfrom thoseon the side near the suction surface. The combined effect on the

velocity distribution is that, on S1 surfaces above $I(7), the Mach number of the full-three-dimensional

solution is higher in the region from mid-channel to suction surface and lower in the region from mid-

channel to pressure surface, than that of the quasi-three-dimensional solution.

Comparison with L2F Measurement

Efforts were made at IETP to obtain internal flow on S1 surface (4), and (7) to (I0) by the use of

a Laser-2-Focus (L2F) velocimeter developed by DFVLR. Measured values are shown in figure 7.21. In

general the measured values are a little higher than the calculated values. Constant Mach number

contours, constructed from the L2F measured data, are shown in figure 7.33. The trend is similar, but

again the measured Mach number is a little higher than the calculated value.

7.3 Some Remarks

The general theory of three-dimensional flow in subsonic and supersonic turbomachinery based on

the iterative solution between S1 and S2 stream filaments has been successfully extended to a transonic

flow regime. In this extension, some of the recently developed simple and quick methods for solving

transonic flow along S1 and S2 stream filaments are utilized. For the CAS transonic rotor, three-

dimensional solution is obtained after six cycles of iteration by using the quasi-three-dimensional solution

as the starting value. It has a higher level of convergence and consistency than the quasi-three-

dimensional solution. The difference between three-dimensional and quasi-three-dimensional solution is:

The former gives a higher peak Mach number than the latter. This difference is mainly due to the

neglect of the circumferential variation of the S1 filament thickness in the quasi-three-dimensional

solution. A comparison between the theoretical solution and the L2F measurement shows that the
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characterof thetransonicflow includingthe three-dimensionaishockstructureis in fair agreement,and

the calculatedvelocityis a little lower than that measured by L2F over most of the flow region, except

at the 20-percent chord station in the upper half region near the suction surface, where the measured

velocity is a little lower.

A practical three-dimensionai computer aided design and analysis (three-dimensional-CADA) system

has been constructed by the use of the general S1 code and the general S2 code. The recommended

procedure of three-dimensional-CADA calculation follows.

(1) Prescribed the through-flow design requirements on the $2, m

solution

(2) Design the blade section on a number of general S1

(3) Stack the blade sections

(4) Obtain the three-dimensional analysis for the blade just designed

surface and obtain the $2, m

stream filaments

(5) Modify step 1 or step 2 and repeat steps 3 and 4 until the results obtained meet the design

requirements

It is believed that the configuration of the three-dimensional geometry of the S 1 stream filaments,

obtained during the iterative calculation between the S 1 and S2 flow, to a large extent, determines the

performance of the blade section lying in the stream filament. With this information available better

design of the blade section and, consequently, of the whole blade can be realized. Another advantage of

the presented method is that the computer storage required is very small and the amount of CPU time is

also small so it is feasible to carry out all of the computations on a microcomputer.
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Figure 2.1 .--Stress tensor.
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Figure 3,1 mRelatlve stream surface S 1.

z

Rgure 3.2--Relative stream surface S 2.
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Figure 3.3.--Intersecting S 1 and S 2 surfaces in blade passage.
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Figure 3.4.--Partial derivative and total derivative following motion on S 2.
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Figure 3.5.--Element of S 2 stream filament. Figure 3.6---S 2 stream surface and S 2 stream filament.
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Figure 3.7.--Orthogonal curvilinear coordinates e, _, on S t surface of revolution.
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Figure 4.1 .--Non-orthogonal curvilinear coordinates employed

in the Investigation of S 1 flow.
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Figure 4.3.--Element of S 1 stream filament, Figure 4.4.--Unit vector and vorticity normal to

S 1 surface.
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Figure 4.5.--Non-orthogonal curvilinear coordinates used for

S 2 flow.
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Figure 4.6.--Partial derivative and total derivative following fluid flow on S 2 surface.
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Figure 4.7.--Line integration around grid point E.
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Figure 5.1 .--Mean stream surface and mean
streamline.
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Figure 5.2.--Variations of velocity on blade surface and mean Figure &&--Streamline distribution in turbine cascade.
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Figure 5.6.--Mean streamline in the flow passage.

186

1 II



(NACA TN 3448, 1955)

Figure 5.7.---Streamline in a radial-flow impeller.
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Figure 5.8---Variation of meridional velocity on mean streamline.
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Figure 5.14.--Intersection of S1 , S 2 surfaces with the through
flow cross sections of turbine rotor.
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Figure 5.16.--Projection of S2,m streamlines on meddonal
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Figure 5.20.--Body-fitting quasi-orthogonal C-grid around the
blade leading edge.
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Figure 5.21 .---improvement in velocity distribution around leading Figure 5.22.--Stagnation point determined for a large negative
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Figure 5.23.--Variation of stagnation point location with inlet angle. Figure 5.24--H-C grid system.

192

I7IF



-0.2

0
0

0.2 10
2O

0.4 3O
4O
47.3

0.6 5O
6O

0.8 70
80

1.0 9O

1.2

14 I I i
0 0.1 0.2 0.3

Figure 5.25.reDistribution of streamline in a cascade

having splitter vanes.

D or = 1.5(14m.b.) 13.0 ° Calculated value

• 12.2 ° Experiment data
----0--- 7m.b. + 7s.b. 11.8 = #s = 47.3

1.0 -"¢"- or = O.75(Tm.b.) 10.7 • -

.9

[ I I.3 I ] I
0 20 40 60 80 1O0

Percent, chord

Figure 5.26.--Mach number distribution around blades of three
cascades.

Figure 5.27.--S 1 stream filaments. Figure 5.28.uThree-dimensional variation of an S 1

stream filament.
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Figure 5.29.---$2 stream filaments.
Figure 5.30.--S 1 filaments and a mid-channel S 2

employed in quasi-3D solution.
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Figure 5.31 .--Calculation steps in quasi-3-D blade design.
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Figure 5.32.---Determination of flow condition far upstream and downstream of the
embedded blade row.
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Figure 6.3---Streamline distribution and Mach contours.
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Figure 6.10.--Pressure distribution around the blade.
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Figure 6.17.---General S 1 stream surface.
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Figure 6.20.--Merldonal projection of streamlines.
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Figure 6.32.--.Comparison of Mach number contours on $2, m.

1.0

.853

.714

.597

.46G

,355

.Z72

.123

• 05g

0

Calculation I

- _ Calculation il

Calculation Ill

Figure 6.33.--Comparison of streamline distributions.

Calculation |I

Calculation |II

0.10 [_ LE.

!-:::_o.._,-;-'+'"'w"-"f_"_

0.12 f L.E =_=

0.10

t-" 0.08

0.08 ='355 I I I

o.1,I _ ,.E
oE 0.12 _,..,.,..__''" T.E.

t: 0.10 = 1230.08 ' I I 1
4 6 8 10 12

Z, cm

Rgure 6.34.--Variation of filament thickness (1 percent mass

flow).

211



¢0.

7O

qJ= .ss3
..... ._ (89%span)

60 _. ""

50 _\ _ = _597

_'_,.__:_ " 168% span)

.... Carnbedine _'..
30 _ 0 Measurement _._

-_ Calculation I] _..Calculation I|!

20 I I I I \',, i
0 0.2 0.4 0.6 0.8 1.0

Percent, axial chord

Rgure 6.35.---Comparison of relative flow angle.

1.4

1.2

•_. 1.0

0.8

0.6

1.4

1.2

, 1.0

0.8

0.6

1.2

_ 1.0
0.8

O.6

T,E.
__-_ Calculation II

-- Calculation Illf '

(

='_31 I I

I T.E.
='123 I I ]

4 6 8 10

z, cm

Figure 6.36,--Pressure dse on $2, m.

I
12

f

¢o .J

j"
B

f

Figure 6.37.--Non-orthogonal curvillnear coordinate system
used for S 2 stream surface.

E
U

10

8

6

4

Trailing m

edge J

Leading edge

I
I ::

2

0 ] I I ] I I I .I
•-8 -.6 .-4 -2 0 2 4 6

z, cm

Figure 6.38--Meridonal projection of mesh on $2, m.

212

I lr



0 _dn_t_ data
1.4 r- _ AS and flow rite 1.0

J oorreot_n
1.2 _ _- _ AS oormidemd 0.8

I I-I:) --- k_i_,:_o.u.o,, iF -_.o. o_'_ "',--.. _ 0.4

0.6 .2

,_,!__L___L _
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

F_um 6._.--_ff_ of entropy lind flow m_ correction. Figure 6.40.--4r_'_ in Ver .a_ casing.

Trailing
8 edge

4

Leading edge

I.IS !.2 1.251.3

1.0
0.9

0.8

0.8

0.7

0.6

).5

0 I I I I I I I I I

-3 -2 -1 0 1 2 3 4 5 6
Z, cm

Figure 6.41--Meridonal projection of MaC h number contours.

213



Accurate solution

Relaxation factor a = 1

Relaxation factor ,_ << 1

_..__.... (n ÷ I)., _

"_..:_--

_e

v

z

Figure 7.1 ._Local fluctuation of S 1 stream filament thick-

ness during iteration and the effect of relaxation factor

(sketch).

/--- 2nd cycle

/ /-- 4th cycle f-- 8th cycle//

r ,,hcycle
/

3rd cycle --/

z

Figure 7.2.--Variation of tip S 1 filament thickness (schematic}.

S
t.

2O

15

10

(a}
5

0

I I I I Co) t I

5 10 15 20 0 5 10

Z. cffl

(a) 1st cycle.

Co)_h cycle,
7iguce 7.3.--MeridionaJ projection of streandines obtmed on S2. m surface.

I I
15 20

214

_I 11



2.0

i 1.5

1.0

t-" .5

Blade height,
percent

,._ 0

_ _,,,....\"/_'I_ -- 70

_ --_-_ _ "%_

(a) I I
10

Co)
I I

15 20 0

Z_ cm

(a) 1st cycle.
(b) 9th cycle.

Figure 7.4.--S 1 filament thickness.

Blade height,
percent

...._ 0

---- 10

. _ 30

_-- 50

.---- 70
9O

I I I I
5 10 15 20

P-,

£

1.4

1.0

0.6

0.2

-0.2
--5

1_ Percent

blade
height

I I I I

15 20 -55 10

z, cm

(a) 1st cycle.

blade

height

II I
0 5 10 15 20

Zj cm

(b) 9th cycle.

Figure 7.5.--S 2 input Vor.

1.1

1.0

co"
;_ 0.9-

0.8--

0.7
0

Blade

height,
percent

_ "_ 100

I I
10 15

z, cm

(a) I st cycle.

I
2O

Blade
height,

/_ percent
"_" _ O

_-_-.. _- ,50
7o

_f "-- 90
..... IO0

0

I I
5 10

z, cm

(b) 9th cycle.

I I
15 20

Figure 7.6.--S 2 Input filament thickness.

215



1.8

1.4

1
1.0

i
0.6

Blade
height,

-- percent

/-- 0

r- 10
.///-- 3o

 IIL , , Jr,oo

0.2 I
0 5

Bkkde
he_ht,
percent

/-- 0
/r- 10

- .i_'_ ///-- 3o
_-"---'--"-'J"-UI i Ii._ so

I #"_111 -/II_ 70

I I I I_ J
10 15 20 0 5 10

z, cm z, cm

(a) S1 calculation. (b} S2 calculation.

Figure 7.7.---Output Mach number on streamlines of 9th cycle.

I I
15 20

(1) (3) (2)

(a) 18 percent blade height.

(1) (2) (3)

(c) 68 percent blade height.

°l

(1) (3) (,2)

(b) 45 percent blade height.

(1) (2) (3)

(d) 89 percent blade height.

Figure 7.8.--Mach number contours on S1 surface: (1) DFVLR measured data; (2) calculated by pref,ent method; (3) from Ref. 34.

216

"I-1!7



I I I An_

0 nMmaCb_hr 1 0

0 --_,,_; ? Calc ul.._rad:_a _ ?etGe0''-

0 (a) Mach number. 0 (a) Row number.

Figure 7.9.--Radial vadatlon of Mach number and flow angle at a number of stations.

Pressure surface Centrel-mld-surface Suction surface

Rgure 7.10.--Constant Mach number contours o.n three S 2 surfaces.

217



3O

70 _ Percent span

Figure 7.11--Variation of flow angle along three stream lines on

$2, m surface.

.9

'2 :_.o

0.9

0.8

- 0 18

0.6

Calculated

20 I I i [ I

0 20 40 60 80 100 10 50 90

Axial chord, percent Percent, chord

Figure 7.12.---Constant Mach number contours on span-wise
surfaces formed by (x 2 x3) coordinates.
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Figure 7.26.mMach number contours in six S 1 stream filaments.
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Figure 7.27.---Mach number contours in three S 2 stream filaments.
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Rgure 7.28.--Three-dimensional shock.
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Figure 7.29.--Mach number contours on five span-wise surfaces.
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Rgure 7.30.--Constant cr contours on five span-wise surfaces.
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Figure 7.33.--Comparlson of Mach number contours on S2m.
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