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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage tech-
nology transfer in control engineering. The rapid development of control tech-
nology has an impact on all areas of the control discipline. New theory, new
controllers, actuators, sensors, new industrial processes, computer methods,
new applications, new philosophies , new challenges. Much of this develop-
ment work resides in industrial reports, feasibility study papers and the re-
ports of advanced collaborative projects. The series offers an opportunity for
researchers to present an extended exposition of such new work in all aspects
of industrial control for wider and rapid dissemination.

Autonomy for aerial, land, and marine (surface and underwater) vehicles
is an ever-expanding field of industrial control engineering in which there is
significant international interest. Currently, there are many prototypes and
working autonomous vehicles in all the fields of application; however, some
areas are better developed than others. Meanwhile in the control conference
literature it is possible to see that frontier research has reached the prob-
lems of working with groups, convoys or swarms of cooperating autonomous
vehicles.

The tasks that autonomous mobiles can tackle are very often either haz-
ardous, or, conversely, routine, where the use of an insitu human operator is to
be avoided, or simply technically (and economically) unnecessary. Typically,
such tasks involve inspection, monitoring, and detection. For example, un-
manned aerial vehicles (UAVs) can be used to perform airborne sea searches,
inspect long-distance power lines or oil and gas pipelines (particularly those
traversing hostile, or hazardous terrain), monitor environmental or meteoro-
logical variables and survey crop production and forestry resources. This list
is by no means exhaustive and UAVs can perform many other valuable tasks.

In the technological field of UAVs, designing, and testing, a complete fault-
tolerant control and guidance system is a demanding and challenging task.
This is the objective of the research reported by Dr. Guillaume Ducard in
this Advances in Industrial Control monograph. The practical problem faced
by the control engineer is that once aircraft actuators fail, or the aircraft
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x Series Editors’ Foreword

suffers some structural airframe damage then the aircraft flying character-
istics change, the flying performance deteriorates and immediate action for
airborne survival is required. Identifying the flying status of the aircraft and
reconfiguring the control system to maintain airborne performance are just
two of the actions that may be needed. In Dr Ducard’s book, there is a care-
ful and thorough development of a system and its component modules to
deal with fault situations like these. The reader will find the analysis, the
development, the testing, and the presentation to be comprehensive. As the
monograph subtitle, Practical Methods for Small Unmanned Aerial Vehicles,
suggests, careful consideration is given to the development of designs and
algorithms that satisfy the tight constraints of real-time capability, modu-
larity, and limited computing power. Simulations are presented with realistic
and targeted scenarios to test the separate components and then finally the
complete system.

Fault-tolerant Control and Guidance Systems will be of interest to a wide
range of readers from the industrial and the control communities. Academic
researchers and graduate students working in the mobile autonomous vehicle
field may find transferable knowledge in this well-structured monograph and
it will obviously appeal to aerospace researchers and engineers. It is therefore
a very welcome addition to the Advances in Industrial Control series.

Industrial Control Centre M.J. Grimble
Glasgow M.A. Johnson
Scotland, UK
2009
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This book is based on part of the research work I carried out at the Measure-
ment and Control Laboratory of the Swiss Federal Institute of Technology
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group founded by Professor H. P. Geering in 1986. At that time, research
focused on developing navigation algorithms and robust control techniques
applied to unmanned helicopters. In 2006, our colleague Markus Möckli suc-
cessfully completed flight tests of an aircraft autonomously flying aerobatic
maneuvers. In 2007, Marco Gerig flight tested guidance and control algo-
rithms for aerobatic maneuvers with a small autonomous helicopter.

Concurrently, in the context of my PhD work completed in 2007, a new
research activity was initiated dealing with the design of fault-tolerant flight
control and guidance systems for a small unmanned aircraft. This work fo-
cused on designing techniques to detect and isolate faults among sensors and
actuators and on developing methods to adaptively reconfigure the flight con-
trol laws and the vehicle trajectory. Reasonable complexity, real-time capabil-
ity and modularity were the main requirements for the algorithms designed.

My first thanks go to Professor Hans Peter Geering for offering me excep-
tional working conditions over the few years under his supervision and for
opportunities to do research on the fascinating topics covered in this book. I
gratefully acknowledge his constant support in many different aspects.

I owe special thanks to Brigitte Rohrbach, our former secretary, for her
support in copy-editing part of this manuscript, for her invaluable help in
many aspects, and for her kindness in general.

I am also very grateful for the precious assistance I received from Oliver
Jackson, Sorina Moosdorf, Aislinn Bunning, Professor Michael Johnson and
Professor Mike Grimble.

Last but not least, I thank my parents and my brother for their continuous
and loving support in every possible way in life in general.

ETH Zurich Guillaume Ducard
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8.4.5 Stability of the Channel ṗdes to pmeas . . . . . . . . . . . . . . . 187
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Chapter 1

Introduction

This book deals with the design of fault-tolerant control and guidance systems
for a small unmanned aircraft. This book focuses on designing techniques to
detect and isolate faults among sensors and actuators and on developing
methods to appropriately reconfigure the flight control laws and the vehicle
trajectory. Real-time capability and modularity are two main requirements
for the algorithms designed.

1.1 Motivations for Fault-tolerant Control Systems for
Unmanned Aerial Vehicles

Unmanned aerial vehicles have been around and in service since the 1990s
and are going to be routinely used for a wide range of tasks such as:

• Sea rescue searches from the air
• Border patrols, homeland security, law enforcement, monitoring of drug

trafficking
• Monitoring and control of road traffic and transportation
• Crop yield prediction, drought monitoring, spraying of pesticides
• Inspections of power lines, bridges and barrages
• Observation of oil and gas pipelines
• Forest monitoring, fire detection, firefighting: operation and management
• Relaying and broadcasting of mobile telecommunication, TV or radio pro-

grams, Internet connections
• Tactical reconnaissance and operational support
• Landmine detection, operation in hazard or disaster zones
• Digital charting and mapping, mineral and archaeological prospecting
• Environmental and climate research: monitoring of air quality, meteoro-

logical studies and predictions
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2 1 Introduction

• Automated unmanned airshipping, postal delivery
• Filming and movie applications

New generations of UAVs will be designed to achieve their mission not
only with increased efficiency, but also with more safety and security. Future
UAVs will be operated with algorithms capable of monitoring the aircraft’s
health and of taking action if needed. Fault-tolerant control systems for small
and low-cost UAVs should not increase significantly the number of actuators
or sensors needed to achieve the safer operation. Safe and reliable operation
of the UAV relies on the following key points:

• The flight control system must be robust against the aircraft model’s un-
certainties and external disturbances.

• An efficient fault detection and isolation (FDI) system should be capable
of monitoring the health status of the aircraft.

• The guidance system should be reconfigurable depending on actuator fault
occurrence or aircraft damage. It should generate an appropriate flight
trajectory that avoids obstacles despite flight performance degradation.

1.2 Book Outline

The book starts with a literature review about the fault-tolerant flight control
systems already developed for aircraft. In Chap. 3, the nonlinear model used
for simulation and control design is presented.

Chapter 4 presents a new system for the detection and isolation of actuator
faults in an aircraft. Chapter 5 details the design and the implementation of
a reconfigurable control allocation module.

Chapter 6 describes the technique known as nonlinear dynamic inversion
(NDI) and presents the architecture and the design procedure of the con-
trollers used in the aircraft autopilot. Chapter 7 is dedicated to the analysis
and control of the longitudinal axis of the aircraft and presents an architec-
ture for the altitude controller that uses robust NDI in all the control loops.
Chapter 8 is dedicated to the analysis and control of the lateral-directional
motion of the aircraft. It describes the controllers for the roll and yaw rates,
for the roll angle, and for the sideslip angle.

Chapter 9 presents a new adaptive path-planning algorithm, which re-
configures the aircraft’s trajectory based on its flying performance after the
occurrence of an actuator failure. Chapter 10 focuses on an aileron failure
and shows how the degraded flying performance can be evaluated and used
to reconfigure the guidance system.

Finally, the book concludes with an outlook and summarizes the methods
presented.



Chapter 2

Review

This chapter reviews some of the most relevant fault-tolerant flight control
systems that can be found in the literature. Since the terminology used in
this field is not unique and differs among authors, the chapter starts with
a brief definition of some terms and expressions frequently used throughout
this book.

2.1 Definition of Fault-tolerant Systems

Since the systems of interest are said to be fault-tolerant, let us first clarify
the terminological distinction between a fault and a failure [1].

2.1.1 Fault

“A fault is an unpermitted deviation of at least one characteristic property
(feature) of the system from the acceptable, usual, standard condition.” [1]

Based on this definition, a fault corresponds to an abnormal behavior of
the system, which may not affect the overall functioning of the system but
may eventually lead to a failure (defined below). Finally, a fault may be small
or hidden, and therefore difficult to detect and estimate.

For example, consider the temperature of an engine. If this temperature
exceeds a certain accepted limit, say 100◦C, there is a fault in the system.
Although this excessive temperature does not prevent the engine from work-
ing properly for a while, it may eventually damage components of the engine
and possibly lead to its breaking down.

In this book, an actuator fault corresponds to any abnormal behavior.
This includes bias or loss of effectiveness as shown in Fig. 2.1d.

3



4 2 Review

A sensor fault occurs as soon as the measurement data deviate from the
real physical measured process by more than the noise uncertainty. Bias,
excessive noise, or wrong scaling factors are also classified as sensor faults, as
shown in Fig. 2.2.

2.1.2 Failure

“A failure is a permanent interruption of a system’s ability to perform a
required function under specified operating conditions.” [1]

Resulting from one or more faults, a failure is therefore an event that
terminates the functioning of a unit in the system. On an aircraft, actuators
are used to deflect control surfaces such as ailerons, elevators, and rudders,
and also to actuate the engine throttle or the landing-gear mechanism. An
actuator is declared failed when it can no longer be used in a controlled
manner.

For a control surface, there are two major types of failures [2]. As shown
in Fig. 2.1a, the control surface may become ineffective and float at the zero-
moment position. The control surface can also be locked at any arbitrary
intermediate position (Fig. 2.1b) or reach and stay at the saturation position
as shown in Fig. 2.1c.

Mechanical failures may also happen. This is the case when the mechani-
cal link between the control surface and its corresponding actuator or servo
breaks. The engine may also fail.

time

�

max�

min�

(b)

Fttime
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min�

time

�

max�
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(c)

Ft
time
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Ft

desired actuator position

true actuator position

Fig. 2.1 Several types of actuator failures: (a) floating around trim; (b) locked-in-
place; (c) hard-over; and (d) loss of effectiveness (actuator fault occurring after tF )
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Fig. 2.2 Several types of sensor faults: (a) sensor bias; (b) loss of accuracy or cali-
bration error; (c) sensor drift; and (d) frozen sensor (occurring after tF )

Finally, there are many sources of possible irreversible damage to the air-
craft that may be classified as structural failures. They correspond to the
scenarios where a piece of the aircraft is missing, such as an aileron, a tail
rudder, an elevator, or part of a wing.

The reconfigurable flight control system of this book is capable of detecting
faults in the system (which are more difficult to detect than failures) and is
able to adequately compensate for failures (which is more difficult than to
only accommodate faults).

2.1.3 Fault-tolerant Control System

A fault-tolerant control system is capable of controlling the system with sat-
isfactory performance even if one or several faults, or more critically, one or
several failures occur in this system. Fault-tolerant control systems may be
regrouped into two main families: passive fault-tolerant controllers and active
fault-tolerant controllers.

2.1.3.1 Passive Fault-tolerant Controllers

In a passive fault-tolerant controller, deviations of the plant parameters from
their true values or deviations of the actuators from their expected position
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may be efficiently compensated by a fixed robust feedback controller [3–5].
However, if these deviations become excessively large and exceed the robust-
ness properties, some actions need to be taken. Also, if deviations occur at
the sensor side, inevitable deviations from the reference command signals will
happen. Therefore, an active fault-tolerant control architecture is needed in
order to achieve extended fault-tolerance capability.

2.1.3.2 Active Fault-tolerant Controllers

An active fault-tolerant controller usually contains a separate module: an
FDI system that monitors the health of the aircraft. The FDI system in-
forms a supervision module of the seriousness of the fault/failure or damage.
Based thereon, the supervision module may decide to reconfigure the flight
controllers, the guidance system, and the navigation system.

There are also two families of FDI systems, namely passive FDI and active
FDI systems. Passive FDI systems “wait” until a fault or failure occurs [6],
whereas active FDI systems will artificially excite the aircraft, either by flying
health-check maneuvers [7, 8] or by injecting test signals in the actuator
commands and then assessing the individual health status of actuators and
sensors [8–15].

In this book, an active fault-tolerant control system has been developed,
which contains an active nonlinear FDI system and robust nonlinear con-
trollers in all of the control loops of the autopilot. Furthermore, a supervi-
sion module has been designed that is capable of reconfiguring the control
allocation process described in Chap. 5, the controllers presented in Chaps.
7 and 8, and the guidance system explained in Chaps. 9 and 10.

2.1.4 Dealing with Faults and Failures in Practice

In this book, there will be an emphasis on actuator faults and failures. Indeed,
a sensor failure does not modify the flying performance of the aircraft. The
sensor failure can be handled either by using a redundant sensor if available,
or by reconstructing the missing measurement data with the knowledge of
the plant and the measurement data furnished by the remaining sensors [16].
The FDI method presented in this book is also capable of reconstructing
the data of a failed attitude sensor [17]. However, as soon as there is an
actuator failure or any damage to the airframe, the flying qualities of the
aircraft inevitably degrade, and immediate action must be taken to preserve
the aircraft’s integrity. This is the focus of this book.



2.2 Challenges of Designing Reconfigurable Control Systems 7

2.2 Challenges of Designing Reconfigurable Control
Systems

There are many challenges when designing a reconfigurable flight control
system and the difficulties may be categorized as follows:

2.2.1 Difficulties of Designing Reliable FDI Systems

A reliable FDI system provides accurate information about the health status
of the aircraft. In order to achieve such a result, the FDI system needs to be
robust against external disturbances, model uncertainties and sensor noise.
In addition, the FDI system should not trigger false alarms and should still
be sufficiently sensitive to detect the faults.

Robustness is a fundamental issue in the performance of FDI systems and
reconfigurable flight controllers [18, 19]. FDI systems may experience signif-
icant performance reduction if model uncertainties are not properly consid-
ered. A robustness analysis framework for failure detection and accommoda-
tion systems is provided in [18] and [20].

2.2.2 Interaction Between Flight Controllers and FDI
Systems

It is often the case that a reconfigurable flight control system incorporates an
FDI system and a flight controller. The FDI system monitors the aircraft’s
behavior and identifies relevant parameters that are usually used by the flight
controller to synthesize the control commands. Therefore, the performance of
the flight controller is dependent on the results provided by the FDI system
and vice versa. Thus, the interactions between these two systems should be
rigorously investigated.

The following observation is made in [19]: “it is fairly common for inte-
gration of failure detection and accommodation systems to be problematic if
they are designed separately”.

Challenges exist when some aircraft parameters need to be identified dur-
ing the flight in real time and under feedback control [21]. This task is even
more difficult and delicate when an actuator or a sensor fault happens. More-
over, the robustness of the flight controller can mask some aircraft faults and
failures and make the detection problem more difficult.

There exist already many examples of integrated fault-tolerant control,
sometimes referred to as IFTC [6, 19, 22–25].
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New generations of reconfigurable flight control systems will not only rely
on a fault-tolerant controller, but will include complete and integrated sys-
tems that reconfigure the flight controllers, adapt the guidance system, and
reshape on-line the vehicle trajectories [25]. This book also provides an ex-
ample of such a complete reconfigurable system applied to a small UAV.

2.2.3 Other Practical Challenges

Usually, the flight control system relies on some nominal values for the mass,
the moments of inertia and the aerodynamic coefficients to generate the con-
trol signals. When the aircraft experiences an actuator failure or airframe
damage, the aircraft becomes asymmetric. It is thus not trivial to determine
which of these parameters need to be (on-line) re-estimated to keep good
flying performance.

It is often the case that the available on-board processing power is lim-
ited, in particular for small or micro UAVs. The design of a reconfigurable
flight controller is therefore a tradeoff between performance, complexity and
available processing power.

Finally, challenges are many when the fault diagnostic, the reconfiguration
of the control system, the reconfiguration of the path plan or of the mission
is to be done autonomously under limited or no human supervision.

2.3 Different Approaches for FDI Systems

Table 2.1 provides a list of common and recent techniques that are encoun-
tered in the literature for the design of FDI systems.

2.3.1 Trends in Filter Design for FDI System

More than a decade ago in the mid-1990s, several implementations of recur-
sive least squares (RLS) algorithms were used in FDI systems and success-
fully flight tested. For example, the work by Ward et al. in [21] describes
a computationally efficient real-time parameter identification and reconfig-
urable control algorithm. The identification algorithm is based on a modified
sequential least-squares (MSLS) found in [61], the recursive version of which
is found in [27]. The MSLS parameter identification algorithm is based on
RLS techniques and incorporates additional constraints to take into account
a priori information and to adjust the size of the data window used in the
regressor of the filter [26].
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Table 2.1 List of some recent and popular techniques used to design FDI systems
for flight applications

Technique
Example of recent books/papers
using this technique (ordered
chronologically)

(Modified -) RLS [21, 26–28]

KF (bank of -) [29–35]

EKF (bank of -) [11, 13, 34, 36, 37]

UKF [38–41]

LPV filters [42]

Interaction matrix [43]

Particle filters [44]

Neural networks [7, 45–48]

Statistical methods [1, 49]

Wavelet analysis [3, 7]

H∞ [6, 50–52]

Robust model-based system [18, 53, 54]

Parity space approach [1, 18, 55–57]

Unknown input observer [58–60]

Many FDI filters have also been designed using mathematical models of
the system being monitored. Model-based FDI methods have been enhanced
using robust FDI techniques as defined by Chen and Patton in [18]. It consists
of incorporating during the design of FDI systems the effects of disturbance
signals, model uncertainties and measurement noise [53]. It is often the case
that several model-based filters are organized in a bank in which one filter is
sensitive to a specified failure but the other filters remain insensitive to that
failure. A very recent example of this technique can be found in [54] where a
robust fault diagnosis for a spacecraft attitude control system is designed.

Many different variants of Kalman filters (KFs) have been constructed for
detecting and isolating faults or for state estimation and state reconstruction.
The use of extended Kalman filters (EKFs) applied to nonlinear systems for
FDI purposes has also gained recent interest in [11, 13, 34] and in this book.
A recent paper presented a method that uses EKFs to estimate on-line the
aircraft’s aerodynamic parameters and the components of the wind velocity.
These estimates are used to update the parameters of the flight controller [36].

The unscented Kalman filter (UKF) is among the latest extensions of
Kalman-type filters and seems to provide remarkable results for systems that
are particularly nonlinear. The paper by Campbell [40] discusses the imple-
mentation of a sigma point filter (SPF) which was originally introduced as
the UKF [38], where the distributions are approximated by a finite set of
points. It is used to estimate aircraft states and aerodynamic derivatives in
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real time. This is a nonlinear estimation algorithm that can be performed on-
line, which possesses robustness properties against parameter uncertainties,
against filter tuning and initial conditions.

The discussion in [38] explains that the SPF has similar performance to a
truncated second-order EKF but without the need to calculate the Jacobian
matrices. A comparison between EKF and SPF can also be found in [39].
The main results of this paper indicate that the SPF filter has equal or
better performance than an EKF for real-time estimation application for the
following reasons: the SPF is more robust against initial uncertainties and
against jumps in the data, is less sensitive to tuning of the process noise, is
less susceptible to divergence, is more accurate from one time step to the next
and, finally, requires equivalent computational load. Very recent contributions
in [41] focused on a new formulation for the state update equation of the filter
for improved accuracy.

Recently, linear parameter-varying (LPV) filters gained the attention of
some researchers in the fault-tolerant control community. For example, a
design of LPV-based FDI filters is found in [42]. An example of an H∞ control
law that minimizes command tracking errors under actuator fault occurrence
combined with an FDI filter based on an affine LPV model of a Boeing 747
is found in [19].

2.3.2 Trends in Active Fault Detection

Better, faster, and more reliable actuator and sensor fault-tolerant systems
are being designed by exploiting the concept of active fault supervision. This
consists of injecting artificial signals in actuators in such a way that a robust
and reliable fault diagnosis can be made even if the system is excited very
slightly.

Very few papers have discussed this technique so far. The work published
by Honeywell in 1998 [8] and 2001 [9] is among the first occurrences of using
artificial exciting signals for FDI purposes. Test signals are injected into the
null space of the inputs using redundant control surfaces such that these
signals (ideally) cancel one another and thereby do not excite aircraft motion
[9], but contribute to better fault diagnosis; see also [62].

In 2006, the use of artificial signals was demonstrated to improve signif-
icantly the performance of an FDI system based on the extended multiple
model adaptive estimation (EMMAE) method [11, 13]. This method is de-
scribed in Chap. 4 of this book and in [13]. In 2007, the authors of [12]
suggested an adaptive fault-tolerant controller with self fault-diagnosis actu-
ators. This is done by generating high-frequency signals for actuators with
suspected failures, and minimizing the effects of those signals on the system
state using the remaining healthy actuators.
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Recent contributions in active fault-diagnosis utilizing artificial excitation
signals can also be found in [14] and [15].

2.4 Different Approaches for Flight Control Systems

Table 2.2 provides a list of the most common techniques that are encountered
in the literature for the design of flight control systems.

Table 2.2 List of some recent and popular techniques used to design flight control
systems

Technique
Example of recent books/papers
using this technique (ordered
chronologically)

P, PD, PI, PID [25, 37, 63]

H∞, LQ, LQG, LTR [3–5, 64–67]

Dynamic inversion [37, 47, 48, 62, 63, 68–74]

Quantitative feedback theory [75, 76]

LPV [77–79]

Model predictive control, Receding horizon [4, 40]

Backstepping [80–82]

Neural networks [45–48, 74, 83]

Adaptive control [4, 21, 29, 35, 84–86]

Model following [4, 37, 47, 48]

Sliding mode control [86–92]

Fuzzy logic [4, 93]

Eigenstructure assignment [4, 22, 94]

2.5 Techniques to Design Fault-tolerant Flight Control
Systems

Table 2.3 provides a list of the most common techniques that are encountered
in the literature for the design of fault-tolerant and reconfigurable flight con-
trol systems. Some of these techniques as described below.
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Table 2.3 List of some recent and popular techniques used to design reconfigurable
flight control systems

Technique
Example of recent books/papers
using this technique (ordered
chronologically)

Multiple model switching and tuning [95, 96]

Multiple model adaptive control [30, 32, 33, 35, 97]

Interacting multiple models [44, 98]

Control allocation [37, 47, 62, 82, 99–105]

Sliding mode control [86, 90–92, 106–109]

Model predictive control [40, 110]

Eigenstructure assignment [22, 94, 98]

Model reference adaptive control [28, 74, 84, 111]

Model reference + Dynamic inversion [12, 25, 36, 37, 47, 48, 74, 84, 112]

Neural networks [45–48, 74, 83]

Other recent fault compensation strategies [113]

2.5.1 Multiple Model Techniques

2.5.1.1 Multiple Model Switching and Tuning

In the multiple model switching and tuning (MMST) technique shown in Fig.
2.3, the dynamics of each fault scenario are described by a dedicated model.
Each model is paired with its respective controller. The control system is re-
configured by choosing the model/controller pair that is the most appropriate
at each time step.

A switching logic module computes for each model i a performance in-
dex Ji, which is a function of the error ei between the model Mi and the
measurement data vector y. The performance index Ji is of the following
form:

Ji(t) = αe2i (t) + β
∫ t

0 exp [−λ(t− τ)] e2i (τ)dτ
α ≥ 0, β > 0, λ > 0 .

(2.1)

The coefficients α and β are responsible for the tradeoff between instanta-
neous and long-term contributions of the error ei in the calculation of the
index Ji. The coefficient λ is used as a forgetting factor.

The model Mi that produces the smallest performance index J is the
closest to the current system, and therefore the controller Ki becomes active.
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Fig. 2.3 MMST scheme

Most of the MMST reconfigurable schemes also include a tuning part,
which is a separate identification algorithm that updates the parameters of
the model Mi while the controller Ki is active.

The MMST technique has the advantages of being fast and usually stable if
the actually occurring failures match the predefined fault scenarios. However,
severe limitations of the method appear in practice as soon as an unmodeled
failure is encountered or if multiple or structural failures occur. Moreover, the
number of individual pairs of model/controller to be designed may become
excessively large if the system is to successfully operate over a wide range of
failure scenarios [95, 96].

2.5.1.2 Multiple Model Adaptive Estimation

Another approach to detect and isolate actuator or sensor faults is the mul-
tiple model adaptive estimation (MMAE) method [114] as depicted in Fig.
2.4. It is based on a bank of KFs running in parallel, each of which is match-
ing a particular fault status of the system. A hypothesis testing algorithm
uses the residuals from each KF to assign a conditional probability to each
fault hypothesis. As one may expect, the computational load is quite intense.
Therefore, the on-line use of this method was impractical for a long time.
However, with the more powerful processors now available this method has
regained appeal in many applications.

Several papers have demonstrated how the MMAE method can be used
in the context of FDI systems and control reconfiguration for aircraft [30–32]
and underwater vehicles [33]. The advantages and limitations of the MMAE
method are discussed in detail in Chap. 4, where an extended and nonlinear
FDI method is designed based on the MMAE technique.
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2.5.2 Control Allocation Techniques

Control allocation techniques are described in detail in Chap. 5. Briefly
stated, the flight control system generates a virtual control command Cv =
[CL CM CN ]T in terms of the desired roll, pitch, and yaw torques. This
virtual command Cv is passed to the control allocator, which is provided
with each actuator’s position limits and effectiveness to produce any torque
component of the Cv vector. An algorithm is computed on-line to optimally
generate the control signals for the actuators [99, 100, 103].

The biggest advantage of using a control allocation technique is that ac-
tuator failures can be compensated without the need for modifying the flight
control laws [82]. Moreover, actuator constraints, such as deflection limits and
motion rates, can be taken into account by the control allocator when the
virtual command Cv is “distributed” over the actuators. Finally, the deflec-
tion of each actuator can be chosen by the control allocator to optimize some
criteria, such as total drag, total deflections, or to prioritize some actuators.

However, as explained in [96], control allocation techniques may have the
following disadvantage: “the dynamics and limitations of the actuators after
a failure are not taken into account in the control laws. This means that the
controller will still attempt to achieve the original system performance even
though the actuators are not capable of achieving it”. Chapters 8 and 10
explain how these disadvantages have been overcome in this book.
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Fig. 2.5 MRAC scheme: (a) indirect controller parameter adaptation; and (b) direct
controller parameter adaptation

2.5.3 Model Reference Adaptive Control

Model reference adaptive control (MRAC) [111, 115] is a method that can
be utilized when tolerance to damage or structural failures is required. This
technique is also often used as a final stage of a complex control system
combining several algorithms. The goal is to have the output of the plant
under consideration follow the output of a reference model.

The linearized plant under consideration is of the form

ẋ = Ax + Bu + d ,

y = Cx , (2.2)

where the system state vector is x ∈ Rn, the control input vector is u ∈ Rp,
and the measurement vector is y ∈ Rk. The reference model is of the form

ẏm = Amym + Bmr , (2.3)

where the output vector of the reference model is ym ∈ Rk and the reference
signal vector is r ∈ Rl. The dynamics matrix Am ∈ Rk×k and Bm ∈ Rk×l

can be chosen arbitrarily, but Am must be stable [115].
In order to have the output of the plant follow the output of the reference

model, the parameters of the controller are adapted by some adaptation laws
as shown in Fig. 2.5. There are two types of adaptation, namely the indirect
and the direct adaptation.

In the indirect adaptation, the matrices A, B, and the vector d are first
estimated, for example using a least squares algorithm. In a second step,
based on the estimates Â, B̂ and d̂, the controller parameters are computed
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by the adaptation laws such that the closed-loop system matches the desired
dynamics of the reference model.

In the direct adaptation, the controller parameters are directly adapted
such that the plant tracks the reference model.

However, the MRAC technique has some limitations. The adaptation laws
require an estimation algorithm to track certain parameters of the system. It
is therefore necessary that these system parameters evolve slowly enough in
order that the estimation routine can track them properly. Faults or failures,
however, may cause abrupt changes in the values of the system parameters.
During the transient phase, in which the adaptive algorithm identifies the
new faulty plant, it is not guaranteed that the controller can stabilize the
system. Therefore, the MRAC technique is usually not used on its own but
in combination with other algorithms in a more complicated fault-tolerant
control architecture [25, 84].

2.5.4 Other Reconfigurable Control Methods

As shown in Table 2.3, there are other methods to design a reconfigurable
flight control system. For instance, the eigenstructure assignment is used to
reconfigure the feedback control laws in [98] and [94]. In model predictive
control (MPC), the constraints on actuators or on any other state variable
are systematically taken into account during the generation of the control
signals [110]. A recent robust nonlinear MPC for low level aircraft control is
presented in [40].

Sliding mode control has been investigated in [86, 90, 106–109]. The sliding
mode control technique possesses some insensitivity and robustness properties
to certain types of disturbance and uncertainty, which is an appealing feature
for fault-tolerant flight control [87, 88]. The ability of sliding mode control to
maintain the aircraft desired performance in case of faults without requiring
an explicit FDI system makes it an other example of a passive approach to
fault-tolerant control. Recent developments that employ sliding mode control
for fault-tolerant control of a civil aircraft for both sensor and actuator faults
are described in [89] and [91].

Other popular reconfigurable flight control systems use adaptive feedback
linearization via artificial neural networks [45] or via on-line parameter iden-
tification methods [84]. New combinations of model reference and inverse
dynamics controllers have been discussed in [84] and [25], and very recently
in [12, 36, 74, 112, 116–118] and in this book.
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2.6 Reconfigurable Guidance Systems

Over the last two decades, many path-planning algorithms have been in-
vestigated, especially for ground robots, single UAV, and more recently for
a formation of UAVs. Among the methods used in path planning, we can
mention the probabilistic road maps (PRM) method [119], which explores all
the possible paths within the space surrounding the vehicle and finally se-
lects the lowest cost route. However, the computational load makes the PRM
method impractical for real-time path planning in small UAVs. An extension
to the PRM method has recently been presented in [120]. It is called modi-
fied rapidly-exploring random trees, which is capable of efficiently searching
for feasible paths in the space while taking into account constraints from the
vehicle performance. However, efforts are still going on to implement an on-
the-fly path-replanning system as pop-up obstacles are discovered or when
the performance of the vehicle degrades.

There are other methods based on potential field functions. However, the
primitive forms of potential field functions present some difficulties when
choosing an appropriate potential function, and the algorithm may be stuck
at some local minimum [121]. Since then, a whole family of potential field
methods with superior performance has been developed. They are known as
navigation functions [122, 123]. Other path-planning techniques are based
on optimization methods, such as mixed integer linear programming or MPC
techniques [124], which still involve intensive computations.

In this book, a reconfigurable guidance algorithm for a UAV is presented,
which newly combines the lateral guidance control law from [125] and [126],
originally designed for UAVs tracking circles for mid-air rendez vous, with
a new, simple adaptive path-planning algorithm, which takes advantage of
the curve path-following property of the above-mentioned lateral guidance
law [127–130].

2.7 Real Flight Tests

One of the biggest challenge in UAV research is to fly test the algorithms
developed. Several successful flight tests occurred over the past few years.

At the end of the 1990s, a significant milestone in the development of re-
configurable control systems was the flight testing with a NASA F15 aircraft
of the so-called Self Repairing Flight Control System, which achieved fail-
ure and damage tolerance through an indirect adaptive reconfigurable flight
control architecture that used an explicit FDI system to perform on-line dam-
age and fault detection and estimation using hypothesis testing techniques
associated with a bank of KFs [29].

Using an alternative approach based on an indirect adaptive control ar-
chitecture, during the summer 1996, a series of flight tests demonstrated an



18 2 Review

adaptive approach to reconfigurable flight control called Self Designing Con-
troller. The results of the flight tests are reported in [21]. The fault scenario
corresponded to the landing of an F-16 with a simulated missing elevon.

Another successful flight test was conducted as part of the Reconfigurable
Systems for Tailless Fighter Aircraft also known as the RESTORE program.
The technology used in this program combined a dynamic inversion control
law in an explicit model-following framework. A neural network was also used
for on-line learning of selected aircraft parameters and used in the feedback
linearization loops [47, 48].

Flight tests of the US Air Force’s Integrated Adaptive Guidance and Con-
trol program developed for the Boeing X-40A are reported in [25].

Flight testing of a simple reconfigurable control system on an autonomous
model aircraft is reported in [28].

A number of flight tests of reconfigurable control systems were carried
out as part of the Defense Advanced Research Projects Agency (DARPA)
Software Enabled Control program on two unmanned combat aerial vehicles
(UCAVs), namely the Boeing T-33/UCAV and Boeing X-45 UCAV [52].

NASA Langley Research Center is also actively involved in developing and
testing reconfigurable systems for the new generation of re-entry vehicles,
commercial aircraft and small UAVs [111, 131]. Several recovery systems and
technologies were developed as part of the Aviation Safety program. High risk
flight tests were conducted utilizing a dynamically scaled transport aircraft
that has been developed at the NASA Langley Research Center as part of
the Airborne Subscale Transport Aircraft Research testbed [132, 133].

The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft pro-
gram successfully demonstrated the tailless fighter design using advanced
technologies to improve the maneuverability and survivability of possible fu-
ture fighter aircraft.

At the end of 2004 and beginning of 2005, the US Air Force and Boe-
ing Company conducted a flight test of a modified MK-82 weapon at Eglin
Air Force Base, which was controlled with a direct adaptive model reference
flight control system that is capable of learning on-line some aerodynamics
parameters with a neural-network algorithm similar to the one used in the
RESTORE program [85].

More recently, the long endurance SeaScan UAV has been developed by
the Insitu Group for weather reconnaissance and has recently been deployed
in Iraq [40].

Finally, Honeywell Research Laboratories, Barron Associates, Inc., Scien-
tific Systems Company, Inc., etc., are among the companies actively involved
in designing and flight testing fault-tolerant control systems.
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Chapter 3

Nonlinear Aircraft Model

This chapter presents the axes, the frames, and the nonlinear model of the
aircraft used in this book [1–4].

3.1 Definitions of the Frames

3.1.1 Navigation Frame

The orientation of the navigation frame is North, East, Down (xn yn zn). This
frame does not move and is attached to the earth’s local tangent plane. When
the plane is on the ground before taking off, the origin On of the navigation
frame is initialized by the position of the airplane’s center of mass. In the
rest of this book, the navigation frame is considered as a local inertial frame
where Newton’s laws apply.

3.1.2 Body Frame

The positive x axis of the body frame points forward along the aircraft’s
longitudinal axis, the positive y axis is directed along the right wing, the
positive z axis is normal to the x and y axes, pointing downward. The origin
Ob is located at the aircraft’s center of mass. This defines a right-handed
orthogonal body coordinate frame (xb yb zb) attached to the aircraft as shown
in Fig. 3.1.
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Fig. 3.1 Aircraft configuration

3.1.3 Euler Angles

Three Euler angle rotations continuously relate the orientation of the air-
craft’s body-fixed frame to the navigation frame.

As shown in Figs. 3.2 and 3.3, the navigation coordinate frame is first
transformed into the intermediate frame 1 via a rotation about the zn axis by
the angle ψ, which defines the aircraft’s heading. This is followed by a rotation
about the new y1 axis by an angle θ, which defines the aircraft’s elevation.
Finally, the aircraft bank angle, φ, defines the rotation about the new x2

axis. Figure 3.4 shows a 3D representation of the Euler angles describing the
orientation of the body frame with respect to the navigation frame.
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Fig. 3.4 3D representation of the Euler angles

3.1.4 Direction Cosine Matrix

The attitude transformation matrix (also called direction cosine matrix) is
necessary to transform vectors and point coordinates from the aircraft’s body-
fixed frame (b) to the navigation frame (n) and vice versa.

The direction cosine matrix Cb
n transforms the vector A expressed in the

navigation frame An into a vector expressed in the aircraft’s body-fixed frame
Ab as follows:

Ab = Cb
nA

n, (3.1)

with
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Cb
n =

⎛

⎝
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎞

⎠

⎛

⎝
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞

⎠

⎛

⎝
cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞

⎠ ,

(3.2)
yielding

Cb
n =

⎛

⎝
cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cos φ sinψ sinφ sin θ sinψ + cos φ cosψ sinφ cos θ
cos φ sin θ cosψ + sinφ sinψ cos φ sin θ sinψ − sinφ cosψ cos φ cos θ

⎞

⎠ .

(3.3)

The direction cosine matrix Cn
b, which transforms the vector A expressed in

the aircraft’s body-fixed frame Ab into a vector expressed in the navigation
frame An is Cn

b =
(
Cb

n

)−1 =
(
Cb

n

)T .

3.1.5 Quaternion Representation

The orientation of the aircraft body-fixed frame (b) with respect to the nav-
igation frame (n) can also be expressed with a quaternion representation as
follows:

Cb
n =

⎡

⎣
1 − 2(q22 + q3

2) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1 − 2(q12 + q3

2) 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) 1 − 2(q12 + q2

2)

⎤

⎦ ,

where the quaternion qn = [q0 q1 q2 q3]
T =

[
cos(θ/2)

sin(θ/2)un

]

transforms

the navigation frame (n) into the body-fixed frame (b) by a rotation of an
angle θ around the axis un as shown in Fig. 3.5. In [5], it is shown how
elements of the quaternion can be expressed in terms of the Euler angles and
vice versa.

Fig. 3.5 Quaternion
rotation from the navi-
gation frame (n) to the
body frame (b)

nu
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bx
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3.1.6 Wind Frame

The air flow acting on the airframe is responsible for the aerodynamic forces.
The air flow is described by the airspeed vector VT. Its norm is VT and its
direction relative to the airframe is defined by two angles, namely the angle
of attack α and the sideslip angle β.

As shown in Fig. 3.6, the angle of attack α is the angle between the pro-
jection of the airspeed vector VT onto the (xb, zb) plane and the xb axis. The
sideslip angle β is the angle between the projection of the airspeed vector VT

onto the (xb, zb) plane and the airspeed vector itself. The wind axes coordi-
nate system is such that the xw axis points along the airspeed vector VT .

bx

bz

by

�
�

TV
bO

wx

wy

wz

Fig. 3.6 Angle of attack and sideslip angle definition, α > 0 and β > 0

The rotation matrix Cw
b is necessary to transform vectors and point co-

ordinates from the aircraft body-fixed frame (b) to the wind frame (w) and
vice versa according to the following formulae:

Aw = Cw
b Ab or Ab = (Cw

b )TAw = Cb
wAw , (3.4)

with

Cw
b =

⎡

⎣
cosβ sinβ 0
− sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤

⎦ ,

=

⎡

⎣
cosα cosβ sinβ sinα cosβ
− sinβ cosα cosβ − sinα sinβ

− sinα 0 cosα

⎤

⎦ . (3.5)
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As an example, the airspeed vector is expressed in the body-fixed frame as
follows:

VT
b = Cb

wVT
w

⎡

⎣
uT

vT

wT

⎤

⎦ = Cb
w

⎡

⎣
VT

0
0

⎤

⎦ . (3.6)

The subscript T is used to distinguish the coordinates of the airspeed
vector VT

b from the coordinates of the aircraft’s inertial velocity vector
vb = [u v w]T .

3.2 Wind Disturbance

Several types of wind disturbances W will be introduced in the simulations
of the following chapters to test the robustness of the control, guidance, and
fault detection algorithms.

As found in [3], the aircraft’s inertial velocity v is the sum of the airspeed
VT and the wind velocity W (see Fig. 3.7),

v = VT + W . (3.7)

bx

bz

by

TV
bO

W v

Fig. 3.7 Geometry of the airspeed vector VT, the wind disturbance W, and the
inertial velocity vector v

For a wind disturbance given by its coordinates in the navigation frame
Wn, the vectors in (3.7) are projected in the body-fixed frame as follows:
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vb = VT
b + Cb

nW
n ,

⇐⇒ VT
b = vb − Cb

nW
n ,

⎡

⎣
uT

vT

wT

⎤

⎦ =

⎡

⎣
u
v
w

⎤

⎦− Cb
n

⎡

⎣
WN

WE

WD

⎤

⎦ . (3.8)

For the nonlinear simulations of the aircraft, the aerodynamic forces and
torques are functions of the angle of attack α, the sideslip angle β, the airspeed
VT , and the dynamic pressure q̄. They are defined as follows:

VT =
√
u2

T + v2
T + w2

T , α = arctan
(
wT

uT

)

, β = arcsin
(
vT

VT

)

, q̄ =
ρV 2

T

2
.

(3.9)

3.3 Model of the Low Altitude Atmosphere

The dynamic pressure q̄ = ρV 2
T

2 is a key parameter involved in the aerody-
namic forces, as described in Sect. 3.6. The air density ρ needs to be computed
using the International Standard Atmosphere model as follows:

T = T0 [1 + ah/T0] ,

ρ =
p0 [1 + ah/T0]

5.2561

RT
, (3.10)

where the temperature T0 = 288.15 K, and the coefficients a = −6.5 ×
10−3 K/m, R = 287.3 m2K−1 s−2, and p0 = 1013 × 102 Nm−2. For exam-
ple, the value of the air density calculated for an altitude h = 500 m is
ρ = 1.166 kgm−3. This model of the low altitude atmosphere is valid up to
an altitude of 11000m.

3.4 Equations of Rigid-body Motion

In the following, we will consider the aircraft flying over a small region of the
earth. We will assume that the earth is locally flat (Rearth → ∞), and thus we
neglect centripetal acceleration due to the earth curvature. We also neglect
effects due to the coriolis acceleration, which consequently assumes the earth
to be an inertial (or Galilean) frame, where Newton’s laws are applicable.
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3.4.1 Equations of Forces

Newton’s second law relates the mass m of a system, the velocity vector v of
its center of mass, and the force vectors Fj acting on the system. Subscript
i indicates that time derivation is computed in the inertial frame as follows:

∑

j

Fj =
[ d
dt

(
mv

)]

i
. (3.11)

Equation 3.12 recalls the relationship of the time derivative of an arbitrary
time-dependent vector U(t) with respect to two different frames F0 and F1.
The subscript next to the brackets in (3.12) indicates in which frame time
derivation occurs. The vector describing the relative rotation of the frame F1

with respect to the frame F0 is ωF1/F0 yielding

[dU(t)
dt

]

F0

=
[dU(t)

dt

]

F1

+ ωF1/F0 × U(t) . (3.12)

The subscript b refers to the body-fixed frame attached to the aircraft.
Equation 3.11 is rewritten as

∑

j

Fj =
[ d
dt

(
mv

)]

i
=
[d(mv)

dt

]

b
+ ωb/i × (mv) . (3.13)

Projecting the vectors of the previous equation in the aircraft body-fixed
frame (b), and assuming the mass to be constant, yields

1
m

⎡

⎣
∑

j

Fj
b

⎤

⎦ =
[
d(vb)
dt

]

b

+ ωb/i
b × (vb) , (3.14)

1
m

[
mgb + Fb

engine + Fb
aerodynamic

]
=

⎛

⎝
u̇
v̇
ẇ

⎞

⎠+

⎛

⎝
p
q
r

⎞

⎠×
⎛

⎝
u
v
w

⎞

⎠ . (3.15)

The equations for the motion of the aircraft are finally obtained as follows:
⎛

⎝
−g sin θ

g sinφ cos θ
g cosφ cos θ

⎞

⎠+
1
m

⎡

⎣

⎛

⎝
Fthrust

0
0

⎞

⎠+

⎛

⎝
Xb

Y b

Zb

⎞

⎠

⎤

⎦−
⎛

⎝
qw − rv
ru − pw
pv − qu

⎞

⎠ =

⎛

⎝
u̇
v̇
ẇ

⎞

⎠ .

(3.16)
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3.4.1.1 Rotational Velocities and Propagation of Aircraft’s
Angular Rates

The rotational velocity vector ωb/n describes the angular motion of the body
frame (b) with respect to the navigation frame (n). The vector ωb/n can be
expressed in either frame. We recall that the relative rotational velocities
between three coordinate systems (a), (b), and (c) are related to each other
as follows:

ωa/c = ωa/b + ωb/c . (3.17)

Figure 3.8 shows that the rotation velocity vector between:

• The intermediate frame 1 and the navigation frame is ω1/n = ψ̇zn = ψ̇z1

• The intermediate frame 2 and 1 is ω2/1 = θ̇y1 = θ̇y2

• The aircraft body-fixed frame and the intermediate frame 2 is ωb/2 =
φ̇x2 = φ̇xb .
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Fig. 3.8 Euler angles

The rotational velocity vector ωb/n can be constructed as follows:

ωb/n = ωb/2 + ω2/1 + ω1/n ,

= φ̇xb + θ̇y2 + ψ̇z1 . (3.18)

Projecting each rotational velocity vector in the body-fixed coordinate
system, we obtain the following relationships:

ωb/n
b = φ̇xb + θ̇ (cos φyb − sinφzb) + ψ̇ (cos θ cosφzb + cos θ sinφyb − sin θxb) ,

= (φ̇− ψ̇ sin θ)xb +
(
ψ̇ cos θ sinφ+ θ̇ cos φ

)
yb +

(
ψ̇ cos θ cos φ− θ̇ sinφ

)
zb .

By definition ωb/n
b = [p q r]T , where the aircraft’s roll rate is p, its

pitch rate is q, and its yaw rate is r. The relationship between the airplane
turn rates p, q, r expressed in the body-fixed frame and the Euler attitude
rates φ̇, θ̇, and ψ̇ is
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p = φ̇− ψ̇ sin θ ,
q = ψ̇ cos θ sinφ+ θ̇ cosφ ,
r = ψ̇ cos θ cosφ− θ̇ sinφ . (3.19)

In matrix form, the propagation of the Euler angles with time is as follows:
⎡

⎣
p
q
r

⎤

⎦ =

⎡

⎣
1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

⎤

⎦

⎡

⎣
φ̇

θ̇

ψ̇

⎤

⎦ , (3.20)

⎡

⎣
φ̇

θ̇

ψ̇

⎤

⎦ =

⎡

⎣
1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

⎤

⎦

⎡

⎣
p
q
r

⎤

⎦ . (3.21)

The propagation of the aircraft’s angular rates can also be computed with
the quaternion representation. Indeed, the attitude of the aircraft defined in
terms of the quaternion qn can be obtained after integration of the following
formula:

q̇n =
1
2

⎡

⎢
⎢
⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

⎤

⎥
⎥
⎦ωb/n

b ,

⎡

⎢
⎢
⎣

q̇0
q̇1
q̇2
q̇3

⎤

⎥
⎥
⎦ =

1
2

⎡

⎢
⎢
⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

⎤

⎥
⎥
⎦

⎡

⎣
p
q
r

⎤

⎦ . (3.22)

The nonlinear aircraft model used for simulations in this book only uses the
quaternion formulation, because some computational and singularity issues
occur when Euler angles are used in the vicinity of a pitch angle of 90◦.

3.4.1.2 Aircraft Position and Propagation of Longitudinal
Velocities

The position of the aircraft pn expressed in the navigation frame (n) is ob-
tained by integration of the ground speed vector [ẋN ẋE ẋD]T , which is com-
puted as follows:
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ṗn =
d

dt
{pn} =

d

dt
{Cn

b pb} = Ċn
b pb + Cn

b ṗb, (since pb = 0)

= Cn
b vb,

⎡

⎣
ẋN

ẋE

ẋD

⎤

⎦ = Cn
b

⎡

⎣
u
v
w

⎤

⎦ . (3.23)

3.4.2 Equations of Moments

Newton’s law for momentum in the local navigation frame considered as an
inertial frame is [3]

Mn =
d

dt

∣
∣
∣
∣
n

{Inωb/n
n} ,

=
d

dt
{Cn

b Ibωb/n
b} ,

= Ċn
b Ibωb/n

b + Cn
b İbωb/n

b + Cn
b Ibω̇b/n

b , 1

= Cn
b ωb/n

b × (
Ibωb/n

b
)

+ Cn
b Ibω̇b/n

b ,

⇐⇒ Mb = ωb/n
b × (

Ibωb/n
b
)

+ Ibω̇b/n
b ,

⇐⇒
⎡

⎣
ṗ
q̇
ṙ

⎤

⎦ =
(
Ib
)−1

⎛

⎜
⎝

⎡

⎣
L
M
N

⎤

⎦

b

−
⎡

⎣
p
q
r

⎤

⎦× Ib

⎡

⎣
p
q
r

⎤

⎦

⎞

⎟
⎠ . (3.24)

The body-fixed inertia matrix of the aircraft is Ib =

⎡

⎣
Ixx 0 Ixz

0 Iyy 0
Izx 0 Izz

⎤

⎦ .

3.5 Engine

3.5.1 Engine Rate

The dynamics for the engine speed n are modeled by a first-order linear
system with the time constant τn and the engine speed reference signal nc as
follows:

ṅ = − 1
τn
n+

1
τn
nc . (3.25)

1 İb ≈ 0.
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3.5.2 Thrust Force

The thrust force is generated by the propeller and can be expressed with
dimensionless coefficients [6]. The dimensionless thrust coefficient is

CFT (J) = CFT1 + CFT2J + CFT3J
2 , (3.26)

with the ratio J = VT

Dπn , where the diameter of the propeller is D, the engine
speed is n, and the airspeed is VT . The thrust force is computed as follows:

FT = ρn2D4CFT (J) . (3.27)

3.6 Model of the Aerodynamic Forces

3.6.1 Lift Force

The dimensionless lift coefficient is modeled as a linear function of the angle
of attack α as

CZ(α) = CZ1 + CZαα . (3.28)

The lift force is calculated by multiplying the lift coefficient by the wing
surface S and the dynamic pressure q̄ as follows:

Zw = q̄SCZ(α) .2 (3.29)

3.6.2 Lateral Force

The lateral force acting on the aircraft is mainly due to the fuselage, which
is considered to be an inefficient wing with zero offset due to the symmetry
of the airplane in the (xb, zb) plane, yielding

CY (β) = CY 1β ,

Y w = q̄SCY (β) . (3.30)

3.6.3 Drag Force

Due to the symmetry of the fuselage, minimum drag is obtained when the
sideslip angle β is zero. The wing is not symmetric, therefore, minimum drag

2 The superscript w indicates that the vector is expressed in the wind frame.
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is obtained for an angle of attack different from zero. The dimensionless drag
coefficient is approximated by a quadratic function in α and β according to

CX(α, β) = CX1 + CXαα+ CXα2α
2 + CXβ2β

2 . (3.31)

The drag force is obtained by multiplying the drag coefficient by the dynamic
pressure and the wing surface resulting in

Xw = q̄SCX(α, β) . (3.32)

3.7 Model of the Aerodynamic Torques

In order to change the attitude of the aircraft, torques are applied to the
airframe. They are generated by control surfaces such as ailerons, elevators,
and rudders. The control surface deflections are scaled such that the range
of δa, δe, and δr are the same:

δa, δe, δr ∈ [−1, 1] . (3.33)

The total torque M applied to the airframe contains only aerodynamics
effects and is expressed in the body-fixed frame as follows:

Mb =

⎡

⎣
Mx

b

My
b

Mz
b

⎤

⎦ =

⎡

⎣
Lb

M b

N b

⎤

⎦ . (3.34)

3.7.1 Roll Torque Lb

The generation of the roll torque is modeled by a linear function of the aileron
deflection δa, the sideslip angle β, and the dimensionless angular rates p̃ and
r̃. The dimensionless angular rates are introduced as follows:

p̃ =
bp

2VT
, q̃ =

c̄q

2VT
, r̃ =

br

2VT
, (3.35)

where the wingspan is b and the mean aerodynamic chord is c̄.
The dimensionless roll torque is

CL(δa, β, p̃, r̃) = CLaδa + CLββ + CLp̃p̃+ CLr̃ r̃ . (3.36)

The roll torque is then obtained by multiplying CL(δa, β, p̃, r̃) by the dynamic
pressure q̄ and the wing surface S as follows:
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Lb = q̄SbCL(δa, β, p̃, r̃) . (3.37)

The effectiveness of the ailerons to produce some roll torque is modeled
through the coefficient CLa and depends mainly on the size of the ailerons.
The term CLp̃ is the damping factor related to the dimensionless roll rate
p̃. The term CLr̃ is useful to model the effect of unequal left and right wing
speeds due to the rotation around the zb axis, resulting in a difference in the
lift forces, and thus modifying the roll torque generation.

3.7.2 Pitch Torque Mb

The generation of the pitch torque M b expressed in the aircraft body-fixed
frame (b) is modeled by a linear function of the elevator deflection δe, of the
angle of attack α, and of the dimensionless pitch rate q̃. The dimensionless
pitch torque is modeled as

CM (δe, α, q̃) = CM1 + CMeδe + CMq̃ q̃ + CMαα . (3.38)

The effectiveness of the elevator to produce some pitch torque is accounted
for through the coefficient CMe and is dependent mainly on the size of the
elevator. The derivative term CMα is negative if the airplane is stable on its
longitudinal axis. The damping factor CMq̃ depends mainly on the length of
the fuselage and the surface of the horizontal tail.

The pitch torque is finally computed as follows:

M b = q̄Sc̄CM (δe, α, q̃) . (3.39)

3.7.3 Yaw Torque Nb

The generation of the yaw torque N b is modeled by a linear function of the
rudder deflection δr, of the sideslip angle β, and of the dimensionless yaw
rate r̃ as follows:

CN (δr, r̃, β) = CNδr
δr + CNr̃ r̃ + CNββ ,

N b = q̄SbCN(δr, r̃, β) . (3.40)

The effectiveness of the rudder to produce some yaw torque is modeled
through the coefficient CNδr

and is dependent mainly on the size of the rud-
der. The damping factor CNr̃ is affected by primarily the lever arm and the
size of the vertical tail.
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3.8 Summary of the Nonlinear Aircraft Model

The differential equations of the nonlinear six degree-of-freedom aircraft
model are recalled below:
⎡

⎣
ẋN

ẋE

ẋD

⎤

⎦ = Cn
b

⎡

⎣
u
v
w

⎤

⎦ , (3.41)

⎡

⎣
u̇
v̇
ẇ

⎤

⎦ =

⎡

⎣
−g sin θ

g sinφ cos θ
g cosφ cos θ

⎤

⎦ +
1
m

⎡

⎣

⎛

⎝
FT

0
0

⎞

⎠ +

⎛

⎝
Xb

Y b

Zb

⎞

⎠

⎤

⎦−
⎡

⎣
qw − rv
ru − pw
pv − qu

⎤

⎦ , (3.42)

⎡

⎢
⎢
⎣

q̇0
q̇1
q̇2
q̇3

⎤

⎥
⎥
⎦ =

1
2

⎡

⎢
⎢
⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

⎤

⎥
⎥
⎦

⎡

⎣
p
q
r

⎤

⎦ , (3.43)

⎡

⎣
ṗ
q̇
ṙ

⎤

⎦ =
(
Ib
)−1

⎛

⎜
⎝

⎡

⎣
L
M
N

⎤

⎦

b

−
⎡

⎣
p
q
r

⎤

⎦× Ib

⎡

⎣
p
q
r

⎤

⎦

⎞

⎟
⎠ , (3.44)

ṅ = − 1
τn
n+

1
τn
nc . (3.45)

Expressions for the thrust force FT and torques [L M N ]T are given in
previous sections of this chapter. The numerical values of all the parameters
involved in the model are given in Appendix F.
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Chapter 4

Nonlinear Fault Detection and Isolation
System

In this chapter, three main limitations of the classical implementation of the
MMAE method to isolate faults based on predefined fault hypotheses are
highlighted. The first limitation concerns the number of filters that must be
designed in order to span the range of possible fault scenarios, which must
be limited due to computational load. The second limitation appears when
an actuator is locked at an arbitrary non-zero position that biases the resid-
uals of the KFs, leading to inaccurate fault detection and state estimation.
Third, most of the implementations of an MMAE method only work effi-
ciently around predefined operating conditions. This chapter presents a non-
linear actuator FDI system, which works over the entire operating envelope
of an aircraft. Locked-in-place and floating actuator faults can be handled.
The robustness of the FDI system is enhanced by the use of auxiliary exci-
tation signals. The FDI system is also capable of handling two simultaneous
actuator failures with no increase of the computational load. The complete
system has been demonstrated in simulation with a nonlinear model of a
model aircraft in moderate to severe wind conditions.

4.1 Introduction

New generations of UAVs will be designed to achieve their mission not only
with increased efficiency, but also with more safety and security. Future UAVs
will be operated with algorithms capable of monitoring the aircraft health
and of taking action if needed. Fault-tolerant control systems for small and
low-cost UAVs should not increase significantly the number of actuators or
sensors to achieve the safer operation. This chapter describes a computa-
tionally efficient on-line nonlinear FDI system that monitors the actuators’
health without requiring any sensors to measure the deflection of the control
surfaces.

43
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Fig. 4.1 Classical MMAE scheme

4.2 FDI Using MMAE Schemes

One approach to detect and isolate actuator or sensor faults is the MMAE
method [1] as depicted in Fig. 4.1. It is based on a bank of KFs running in
parallel, each of which is matching a particular fault status of the system.
A hypothesis testing algorithm uses the residuals from each KF to assign
a conditional probability to each fault hypothesis. As one may expect, the
computational load is quite intense. Therefore, the on-line use of this method
was impractical for a long time. However, with the more powerful processors
now available this method has regained appeal in many applications.

Several papers have demonstrated how the MMAE method can be used
in the context of FDI systems for aircraft [2–4] and underwater vehicles [5].

4.2.1 Advantage of the MMAE Method

The main advantage of the MMAE method lies in its responsiveness to para-
meter variations, leading to faster fault isolation than that attained by other
methods without a multiple model structure.

The method also enables the reconstruction of a correct state estimate even
when an actuator or sensor fault occurs, since the estimated state vector is
the sum of each KF estimate weighted by its corresponding probability.
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4.2.2 Limitations of the MMAE Method

The MMAE method can be applied in practice as long as the expected faults
can be hypothesized by a reasonable number of KFs. However, the number
of addressable faults is limited due to the computational load required for
each filter.

The method also does not provide satisfactory results when an occurring
fault does not closely match a predefined fault hypothesis. This may occur
when an actuator is locked-in-place at an arbitrary position that affects the
dynamics of the system. Since lock-in-place faults cannot be predicted, they
can have detrimental effects on the filter performance. Due to the biased
residuals, the KF provides inaccurate estimates of the state variables, which
causes severe problems with the probability calculation. Therefore, neither
the fault detection nor the fault isolation works properly, and the state esti-
mation is useless for control purposes.

Moreover, in most of the fault-tolerant applications that use the MMAE
method, the KFs are designed based on a linear model of the unmanned
vehicle operated at certain nominal conditions. Very few papers describe the
MMAE method being used in the nonlinear case, when the system operates
over the entire range of possible operating conditions. The authors of [6]
used a multiple model approach for the sensor fault detection of nonlinear
systems. However, the assumption is made that the nonlinear system can be
approximated by a finite number of interpolated linear time-invariant models,
which constitute the banks of KFs whose residuals are used to determine the
effective operating regime and isolate the faulty sensor. In this chapter, a
unique bank of filters is designed, which can operate over the whole span of
the aircraft’s flying conditions.

4.2.3 New Extensions to the MMAE Method:
The EMMAE Method

In order to make the MMAE method applicable for any flight conditions and
capable of isolating lock-in-place or floating actuator faults, the MMAE al-
gorithm is combined with EKFs used for the nonlinear estimation of some
(unknown) fault parameter: the deflection of a faulty control surface (or ac-
tuator). The resulting method is called EMMAE; see [7–9].

This chapter explains why the on-line estimation of the deflection of a
faulty actuator enables the EMMAE method to cope with lock-in-place or
floating actuator fault scenarios and drastically reduces the number of filters
needed.
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Moreover, this method takes advantage of the estimated faulty-actuator
deflection to reconfigure the settings of the control allocator described in
Chap. 5 in order to efficiently compensate for the fault.

Furthermore, some techniques were added to enhance the robustness and
the performance of the EMMAE-FDI system when there is very low excitation
of the aircraft during steady flight and to improve the speed and accuracy of
the fault isolation.

Finally, the results of simulations are presented and demonstrate the com-
plete system on a nonlinear model of an aircraft experiencing consecutive
actuator faults under severe wind disturbance.

4.3 A New FDI Scheme Based on the EMMAE Method

4.3.1 Modeling Actuator Faults

A lock-in-place or floating actuator fault in the system can be seen as if the
desired control input δj was disconnected and replaced by a faulty control
signal δ̄j that takes control over the plant, as shown in Fig. 4.2. In a concise
manner [10], the true input of the plant can be written as

ui(t) = δi(t) + σAi(δ̄i(t) − δi(t)) . (4.1)

In the case of actuator failure(s), the vector of the (unknown) inputs is

δ̄(t) = [δ̄1(t) δ̄2(t) ... δ̄m(t)]T , (4.2)

with σ = diag{σA1 σA2 ... σAm}, where

σAj =
{

1, if the jth actuator fails
0, otherwise

}

. (4.3)
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Fig. 4.2 Modeling of actuator faults
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In the method presented below, the unknown parameters δ̄j are constantly
estimated by their respective EKF. The conditional fault-hypothesis proba-
bilities pj assign the value for σAj .

4.3.2 The EMMAE Method

The MMAE method is to be made applicable for any arbitrary lock-in-place
faults or uncontrolled varying faults and at all flying conditions. Therefore,
the original MMAE algorithm is modified by replacing the linear KFs by
EKFs used as nonlinear estimators of the state vector and a fault parameter,
namely the deflection of a faulty control surface (or actuator). The implemen-
tation of the EMMAE is depicted in Fig. 4.3. Contrary to the FDI designs
with the classical MMAE method where several KF are designed for several
faulty deflections for one actuator, in the EMMAE method only one EKF
is responsible for completely monitoring one actuator’s health. Therefore,
the EMMAE method drastically reduces the number of filters required for
actuator health monitoring.

�
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Fig. 4.3 EMMAE-FDI scheme: each EKF monitors its assigned actuator

The addition of the actuator deflection estimate in the system state vector
enables the EMMAE method to work for all the possible positions where an
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actuator can be locked or floating. In order to better illustrate the difference
between the EMMAE and MMAE methods, we recall how the models are
defined in the regular MMAE method [2–5] for an actuator or a sensor failure.
The MMAE scheme considers a bank of linear models of the form

ẋ = Ax + Bu ,

y = Cx + Du , (4.4)

where each model matches a fault scenario.
For example, the model that describes a failure of the jth actuator will

have its B matrix modified such that the jth column of the B matrix is
replaced by the very same column times a factor λj that varies from zero
(complete loss of the actuator) to one (fully functioning actuator), see (4.5).
Any intermediate value of λj indicates a reduction in the effectiveness of the
jth actuator to modify the dynamics of the aircraft as shown in (4.5):

ẋ = Ax + Bju ,

ẋ = Ax +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11 · · · b1jλj · · · b1N

... · · · ... · · · ...
bl1 · · · bljλj · · · blN
... · · · ... · · · ...
bp1 · · · bpjλj · · · bpN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

...
uj

...
uN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5)

If we are to design a filter to detect the failure of the ith sensor, the ith row
of the C matrix will be replaced by the very same row times a factor that
varies from zero (total sensor failure such as sensor disconnection) to one (no
sensor failure) as shown in (4.6):

y = Cix ,

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 · · · c1k · · · c1p

...
... · · · ... · · · ...

ci1λi ci2λi · · · cikλi · · · cipλi

...
... · · · ... · · · ...

cm1 cm2 · · · cmk · · · cmp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

...
xk

...
xp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.6)

However, this kind of approach for the modeling of actuator and sensor
failure is very restrictive. Indeed, in the case of a total loss of the jth actu-
ator, the factor λj equals zero. This means that whatever control input the
controller generates for the jth actuator, it has no influence on the dynamics
of the aircraft, and the faulty actuator deflection is considered to be zero.
Note that if the jth actuator is actually locked at a non-zero deflection angle,
the control signal to the jth actuator has no influence on the dynamics of
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the aircraft; however, the faulty-actuator deflection does have an influence
on the dynamics of the aircraft. This condition results in an unknown bias
term that will prevent the jth KF in the MMAE method from working prop-
erly. Therefore, the residuals will be biased, and the state estimation and the
computation of the probabilities will be incorrect as well.

In the EMMAE method, we not only modify the control input matrix, but
also the dynamics matrix. Indeed, in order to define a model that describes
a failure of the jth actuator, the jth column of the control input matrix is
zeroed and the state vector is augmented with the jth actuator deflection
δ̄j . The dynamics matrix is also augmented with the original jth column of
the control input matrix. In this way, the control inputs from the controller
to the jth actuator are totally ignored, but the faulty deflection δ̄j that is
constantly estimated (ˆ̄δj ) in the state vector contributes to modifying the
dynamics of the aircraft model of the jth filter, yielding residuals that are
the smallest for the filter matching the occurring fault. Let us illustrate how
the filters in the EMMAE are constructed in practice.

4.4 Aircraft Actuator Configuration and Nonlinear
Dynamics

4.4.1 The Aircraft Configuration

The five control surfaces of the aircraft under consideration are one left
aileron, one right aileron, one left elevator, one right elevator, and one rudder,
as shown in Fig. 4.4. All actuators are fully independent, which means that
ailerons (or elevators) can individually move up, down, or together in the
same direction. This configuration permits some pitch torque to be produced
with ailerons or some roll torque to be produced with elevators.

The state vector of the FDI filters is chosen to take only the most relevant
state variables of the aircraft in order to reduce the computational load when
running the EKFs. The state vector is x = [p q r α β]T . The control
vector for the aircraft is u = [δa1 δa2 δe1 δe2 δr FT ]T , and the vector
involving only actuator deflections is δ = [δa1 δa2 δe1 δe2 δr].

4.4.2 Aircraft Nonlinear Dynamics

Among the nonlinear equations which describe the dynamics of the aircraft,
those involving the turn rates are of high interest. They show the explicit
relationship between turn rates and the torques applied to the aircraft, i.e.,
[LM N ]T , expressed in the body-axes frame (xb, yb, zb) of the aircraft:
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In the context of this work, the aircraft is a small UAV for which the aero-
dynamic moments have been modeled as follows (see [11–14]):

L = q̄SbCL(δa1, δa2, δe1, δe2, p, r, β) ,
M = q̄Sc̄CM (δa1, δa2, δe1, δe2, α, q) ,
N = q̄SbCN (δa1, δa2, δe1, δe2, δr, r, β) , (4.8)

where the dynamic pressure is q̄ = ρV 2
T

2 , the total airspeed of the aircraft is
VT , the air density is ρ, the wing total surface is S, the wing span is b, and
the mean aerodynamic wing chord is c̄.

The aerodynamic derivatives are expressed as a linear combination of the
state elements and control inputs as

CL = CLa1δa1 + CLa2δa2 + CLe1δe1 + CLe2δe2 + CLp̃p̃+ CLr̃ r̃ + CLββ ,

CM = CM1 + CMa1δa1 + CMa2δa2 + CMe1δe1 + CMe2δe2 + CMq̃ q̃ + CMαα ,

CN = CNδr
δr + CNr̃ r̃ + CNββ , (4.9)

with

p̃ =
bp

2VT
, q̃ =

c̄q

2VT
, r̃ =

br

2VT
. (4.10)

The last two nonlinear differential equations concern the angle of attack α
and the sideslip angle β as follows (see Appendices A and C for the derivation
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of the following two formulae):

α̇ ≈ q +
g

VT

{

1 +
q̄S

mg
([CX1 + CZα]α+ CZ1)

}

,

β̇ ≈ −r +
q̄SCY 1

mVT
β , (4.11)

with the drag derivative CX1, the side force derivative CY 1, and the lift deriv-
atives CZ1, CZα being constant terms (see Appendix F). The inertia matrix is

Ib =

⎡

⎣
Ixx 0 Ixz

0 Iyy 0
Izx 0 Izz

⎤

⎦, and the measurement vector is y = [p q r α β]T .

4.5 Design of the EKFs

In 1960, Kalman introduced his approach to linear filtering based on the
method of minimum variance [15]. Compared with existing filtering tech-
niques at that time, the KF, though usually more computationally intense,
offered performance improvements and ease of implementation on a digital
computer due to its recursive formulation. Moreover, the KF processes all
available measurement data or information that can be provided to it, re-
gardless of their precision, on the basis of their stochastic descriptions, in
order to generate an overall best estimate of the parameter considered [16].

A mathematical model has been developed to describe the behavior of the
aircraft. We know that this model will never be perfect, leaving many effects
unmodeled. Also, this model will only be approximated by the computer
implementation. Furthermore, several parameters of the model will not be
known exactly, and the sensor measurement data will be corrupted by noise
and biases. For all these reasons, we decided to use Kalman filtering to take
into account such system dynamics and measurement noise, errors, and un-
certainties.

KFs are well suited when the real world can be described by linear differ-
ential equations expressed in state space form and when the measurements
are linear functions of the states. However, in most realistic problems, the
real world is described by nonlinear differential equations. In this work, we
will therefore consider the implementation of EKFs to take into account these
nonlinearities.
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4.5.1 EKF Equations

The EKFs are designed based on a set of continuous nonlinear differential
equations that describe the plant under consideration as follows (see [17]):

ẋ = f(x, u) + w , (4.12)

where the state vector is x, the control input vector is u, the set of nonlinear
functions of the state and control vectors is f(x, u), and the random zero-
mean process noise vector is w.

The continuous process noise covariance matrix describing the random
process w is given by

Rw = E{wwT } . (4.13)

Equation 4.12 is first linearized around the current operating point and
then discretized using the Euler integration method. Note that the Euler
integration method is also used for the simulations presented in the following
sections. The discretized form of (4.12) is expressed in state space form as

xk+1 = φkxk + Gkuk + wk , (4.14)

where the state vector is evaluated at the discrete time instant tk = kTs,
with Ts being the sampling period of the system. The control input vector
at time step k is uk, and the discrete random zero-mean process noise wk is
used to describe uncertainties in our model.

Finally, the discrete form of the measurement equation, either a linear or
a nonlinear function of the states, is

yk = h(xk) + vk , (4.15)

where the discrete zero-mean random noise vk is described by the measure-
ment noise covariance matrix Rv,k = E{vkvT

k } and consists of the variances
of each of the measurement noise sources.

The discrete transition matrix φk is approximated by (see Appendix B.2.2)

φk ≈ I + F(k)Ts , (4.16)

where the continuous system dynamics matrix F(k) is obtained by linearizing
the continuous nonlinear equations and is evaluated at the latest available
state estimate x̂k|k according to

F(k) =
∂f(x, u)
∂x

∣
∣
∣
∣
x=x̂k|k, u=uk

. (4.17)

Similarly, the continuous measurement matrix H(k) is computed by lineariz-
ing the (possibly nonlinear) measurement equation h(x) and is successively
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evaluated at the latest available state estimate x̂k|k−1 according to

H(k) = Hk =
∂h(x)
∂x

∣
∣
∣
∣
x=x̂k|k

. (4.18)

The equations used in the EKF [17, 18] are described below. The schematic
overview of the computation steps is shown in Fig. 4.5:

1. The Kalman gain matrix Lk is computed as

Lk = Σk|k−1HT
k

[
HkΣk|k−1HT

k + Rv,k

]−1
(4.19)

and is a function of the last propagated state error covariance matrix Σk|k−1,
and of the measurement noise covariance matrix Rv,k.

2. The measurement update of the state estimate is as follows:

x̂k|k = x̂k|k−1 + Lk[yk − h(x̂k|k−1)] , (4.20)

where the last extrapolated state estimate is x̂k|k−1, the Kalman gain is
Lk, the measurement vector is yk and the estimated measurement vector is
h(x̂k|k−1). The set of continuous nonlinear measurement equations is h(.).

3. The third step concerns the update of the state error covariance matrix
Σk|k = E{ek|keT

k|k} with ek|k = x(k) − x̂k|k, where x(k) is the true (un-
known) value of the state vector at the discrete instant k. The matrix Σk|k is
recursively computed as a function of the last predicted state error covariance
matrix Σk|k−1 and the last computed Kalman gain matrix Lk as follows:

Σk|k = [I − LkHk]Σk|k−1 . (4.21)

4. The forward propagation of the state error covariance matrix is

Σk+1|k = φkΣk|kφT
k + Rw,k , (4.22)

where the matrix Rw,k represents the covariance of the discrete process noise
acting on the elements of the state vector. The value of Rw,k is found from the
continuous process noise covariance matrix Rw and the continuous transition
matrix φ according to (see also Appendix B.1)

Rw,k =
∫ Ts

0

φ(τ)RwφT (τ)dτ . (4.23)

There is an alternative solution of introducing process noise into the system
through the control input matrix. Indeed, if the plant is described by the
following equation:

xk+1 = φkxk + Gkuk + Gkwk , (4.24)
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then the process noise covariance matrix is defined by

Rw,k = GkRwGT
k , (4.25)

where the covariance matrix of the discrete process noise acting on the ele-
ments of the state vector is Rw,k, and the discrete control input matrix is

Gk = Ts
∂f
∂u

∣
∣
∣
∣
VT(k)

.

5. The propagation forward of the state estimate does not have to be
done with the discrete transition matrix φk but rather it is done directly
by integrating the actual nonlinear differential equations forward at each
sampling interval. If the Euler integration technique is used, the extrapolated
state estimate is computed with

x̂k+1|k = x̂k|k + ˙̂xk|kTs , (4.26)

where the derivative is obtained from

˙̂xk|k = f
(
x̂k|k,uk

)
. (4.27)

Remarks:

• Note that the EKF presented in this section keeps track of the total es-
timates and not of the incremental ones (deviation from a nominal tra-
jectory) as would be the case in a linearized KF. Indeed, the residuals
are built from the difference between the true measurement vector and
the predicted measurement vector using the set of nonlinear measurement
equations acting on the total state estimate h(x̂k|k−1).

• Moreover, the measurement update of the state estimate is done using
the total estimate x̂(k|k − 1), and the propagation forward of the total
state estimate is achieved using the set of nonlinear differential equations
acting on the total state estimate f(x̂k|k,uk) instead of using the discrete
transition matrix acting on incremental state quantities.

• Nevertheless, the computation of the Kalman gains and state error covari-
ance matrices makes use of the recursively updated linear model through
φk, Hk, and Rw,k.

• The schematic overview shown in Fig. 4.5 clarifies the mechanization of
the EKF implemented in this work.
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4.5.2 Designing the EKF for the No-fault Scenario

The continuous system dynamics matrix for the no-fault filter Fnf (k) evalu-
ated at time step k can be explicitly derived from the nonlinear model as

Fnf (k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Sb[IzzCLβ−IxzCNβ]
D1

q̄

F1
Sc̄CMα

Iyy
q̄ 0

0 Sb[IxxCNβ−IxzCLβ]
D1

q̄

0 1 0 ρVT SCZα

2m 0

0 0 −1 0 ρVT SCY 1
2m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̂nf (k|k)

, (4.28)

with the submatrix F1 defined as

F1 =

⎡

⎢
⎢
⎢
⎢
⎣

IzzSb2CLp̃

2D1VT
q̄ − N1

D1
q −N1

D1
p+ N2

D1
r (IzzCLr̃−IxzCNr̃)Sb2

2D1VT
q̄ + N2

D1
q

Ixx−Izz

Iyy
r − 2 Izx

Iyy
p

Sc̄2CMq̃

2VT Iyy
q̄ − Ixx−Izz

Iyy
p− 2Ixz

Iyy
r

−Sb2CLp̃Ixz

2D1VT
q̄ + N3

D1
q N3

D1
p+ N1

D1
r Sb2[−IxzCLr̃+IxxCNr̃]

2D1VT
q̄ + N1

D1
q

⎤

⎥
⎥
⎥
⎥
⎦
,

(4.29)
where N1 = Ixz(Ixx−Iyy +Izz), N2 = IyyIzz −I2

xz −I2
zz, N3 = I2

xz −IxxIyy +
I2
xx, and D1 = IxxIzz − I2

xz .
The discrete transition matrix for the no-fault filter is calculated with

φnf,k = I + Fnf (k)Ts .
We also compute the control input matrix of the no-fault filter Gnf (k) as

follows:

Gnf (k) = q̄k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

SbIzzCLa1
D1

SbIzzCLa2
D1

SbIzzCLe1
D1

SbIzzCLe2
D1

−SbIxzCNδr

D1

Sc̄CMa1
Iyy

Sc̄CMa2
Iyy

Sc̄CMe1
Iyy

Sc̄CMe2
Iyy

0

−SbIxzCLa1
D1

−SbIxzCLa2
D1

−SbIxzCLe1
D1

−SbIxzCLe2
D1

SbIxxCNδr

D1

0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.30)
The discrete control input matrix for the no-fault filter is Gnf,k = Gnf (k)Ts .
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4.5.3 Augmenting the State Vector with the Faulty
Actuator Parameter δ̄i

The state vector of the ith filter is augmented to monitor the occurrence of
the ith actuator fault. The deflection of the failed actuator is included in the
state vector in a way to be estimated by the EKF. Therefore the state vector
for each filter i is

zi =
[

x
δ̄i

]

. (4.31)

The augmented state vector leads to the following state space equations for
each filter i:

zi(k + 1) = fzi
(zi(k), δ(k)) + wk ,

yi(k) = h(zi(k)) + vk , (4.32)

where

fzi
(zi(k), δ(k)) =

[
f (zi(k), δ(k))

δ̄i(k)

]

. (4.33)

The linearization of the dynamics matrix yields

Fzi(k) =
∂

∂zi
fzi

(zi(k), δ(k))
∣
∣
∣
∣
zi=ẑi(k|k)

,

=
[
F(k) G(i)(k)

0 1

]

, (4.34)

where G(i) represents the ith column of G. The input matrix becomes

Gzi(k) =
∂

∂δ̄i
f zi(zi(k), δ(k))

∣
∣
∣
∣
zi=ẑi(k|k)

=
[
G(0,i)(k)

0

]

, (4.35)

with G(0,i) representing the matrix G with its ith column set to zero.
The linearization of the measurement matrix is

Hzi(k) =
∂

∂zi
h(zi(k), δ(k))

∣
∣
∣
∣
zi=ẑi(k|k)

= [Cx(k) Cδ̄i
(k)] , (4.36)

with

Cx(k) =
∂

∂x
h(zi(k))

∣
∣
∣
∣
zi=ẑi(k|k)

= H ,

Cδ̄i
(k) =

∂

∂δ̄i
h(zi(k))

∣
∣
∣
∣
zi=ẑi(k|k)

= 0 . (4.37)
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Using the above equations, the linearized system evaluated at each sampling
time can be written as

[
x(k + 1)
δ̄i(k + 1)

]

=
[
F(k) Gi(k)

0 1

] [
x(k)
δ̄i(k)

]

+
[
G(0,i)(k)

0

]

δ(k) ,

y(k) = [H 0]
[
x(k)
δ̄i(k)

]

. (4.38)

4.5.4 Designing the EKF for the Case of a Failure on
Aileron 1

In order to provide an example of how to derive the matrices for the EKF
corresponding to the scenario of a lock-in-place or floating actuator failure,
we will consider the filter that monitors the functioning of aileron 1.

The system dynamics matrix for the aileron1-fault filter Fδa1(k) is explic-
itly derived from the nonlinear model as

Fδa1(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Sb[IzzCLβ−IxzCNβ]
D1

q̄
SbIzzCLa1

D1
q̄

F1
Sc̄CMα

Iyy
q̄ 0 Sc̄CMa1

Iyy
q̄

0 Sb[IxxCNβ−IxzCLβ]
D1

q̄
−SbIxzCLa1

D1
q̄

0 1 0 ρVT SCZα

2m 0 0

0 0 −1 0 ρVT SCY 1
2m 0

0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ẑ1(k|k)

,

(4.39)

with

F1 =

⎡

⎢
⎢
⎢
⎢
⎣

IzzSb2CLp̃

2D1VT
q̄ − N1

D1
q −N1

D1
p+ N2

D1
r (IzzCLr̃−IxzCNr̃)Sb2

2D1VT
q̄ + N2

D1
q

Ixx−Izz

Iyy
r − 2 Izx

Iyy
p

Sc̄2CMq̃

2VT Iyy
q̄ − Ixx−Izz

Iyy
p− 2Ixz

Iyy
r

−Sb2CLp̃Ixz

2D1VT
q̄ + N3

D1
q N3

D1
p+ N1

D1
r Sb2[−IxzCLr̃+IxxCNr̃]

2D1VT
q̄ + N1

D1
q

⎤

⎥
⎥
⎥
⎥
⎦
,

(4.40)

withN1 = Ixz(Ixx−Iyy+Izz),N2 = IyyIzz−I2
xz−I2

zz,N3 = I2
xz−IxxIyy+I2

xx,
and D1 = IxxIzz − I2

xz .

The discrete transition matrix for the aileron1-fault filter is calculated with
φk,δa1 = I + Fδa1(k)Ts.
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The control input matrix of the no-fault filter Gδa1(k) is computed as
follows:

Gδa1(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 SbIzzCLa2
D1

q̄
SbIzzCLe1

D1
q̄

SbIzzCLe2
D1

q̄
−SbIxzCNδr

D1
q̄

0 Sc̄CMa2
Iyy

q̄
Sc̄CMe1

Iyy
q̄

Sc̄CMe2
Iyy

q̄ 0

0
−SbIxzCLa2

D1
q̄

−SbIxzCLe1
D1

q̄
−SbIxzCLe2

D1
q̄

SbIxxCNδr

D1
q̄

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

q̄(k)

.

(4.41)
The discrete control input matrix for the aileron1-fault filter is Gδa1,k =

Gδa1(k)Ts. All the other filters monitoring the other actuators are designed
in a similar way.

4.6 Actuator Fault Isolation

4.6.1 Hypothesis Testing

A hypothesis testing algorithm uses the residuals and the state error covari-
ance matrix from each EKF to assign a conditional probability to each fault
scenario. The estimated state vector of the system is the sum of the state
vector of each EKF weighted by its corresponding probability

x̂[k] =
∑

i

x̂i[k] · pi[k], (4.42)

where x̂i[k] is the state estimate computed by the EKF that assumes the fault
scenario θi. The index i covers all the fault scenarios implemented, including
the no-fault case. By pi[k] we denote the probability that the ith fault scenario
is occurring. Now, the main difficulty lies in the on-line computation of the
probability pi[k]. In order to determine which fault scenario the actual plant
is the closest to, we must consider the measurement data from the sensors.
The last available measurement vector is y[k], sometimes also written yk in
the following. We also define the sequence of the last measurement vectors as
Yk = {yk,yk−1,yk−2, ...,y0}. The fault probability pi[k] can be expressed
as the a posteriori conditional probability pi[k] = p(θ = θi|Yk), i.e., the
probability that the actual plant can be categorized in the scenario θi given
the sequence of the last measurements Yk.
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Bayes’ law states that

pi[k] = p[θ = θi|Yk] =
p[Yk|θ = θi]p[θ = θi]

p[Yk]
, (4.43)

where the probability p[Yk] can be decomposed as

p[Yk] = p[Yk|θ = θ1] · p[θ = θ1] + ...+ p[Yk|θ = θN ] · p[θ = θN ] ,

=
N∑

j=0

p[Yk|θ = θj ] · p[θ = θj ] . (4.44)

Combining (4.43) and (4.44) yields

pi[k] = p[θ = θi|Yk] =
p[Yk|θ = θi]p[θ = θi]

∑N
j=0 p[Yk|θ = θj ] · p[θ = θj ]

, (4.45)

with N being the number of different scenarios under consideration. In order
to make a recursive form appear in the probabilities, the measurement data
sequence Yk is rewritten as the sequence {yk,Yk−1}:

p[Yk|(θ = θj)] = p[yk,Yk−1|(θ = θj)]
= p [yk| (Yk−1, θ = θj)] · p[Yk−1|(θ = θj)]
= p [yk|(θ = θj ,Yk−1)] · p[(θ = θj)|Yk−1]
= p [yk|(θ = θj ,Yk−1)] · pj [k − 1] . (4.46)

Using the result (4.46) in (4.45) yields

pi[k] = p[(θ = θi)|Yk] =
p [yk|(θ = θi,Yk−1)] · pi[k − 1] · p[θ = θi]

∑N
j=0 p [yk|(θ = θj,Yk−1)] · pj [k − 1] · p[θ = θj ]

.

(4.47)
Since a fault may occur at any time, regardless of which actuator may fail, we
decide to assign the same probability to all the scenarios, i.e., p[θ = θj ] = 1/N
for j = 1, ..., N . Therefore, the equation above simplifies to the following
recursive expression:

pi[k] = p[θ = θi|Yk] =
p [y = yk|(θ = θi,Yk−1)] · pi[k − 1]

∑N
j=0 p [y = yk|(θ = θj ,Yk−1)] · pj [k − 1]

. (4.48)

Remarks:

• By examining the probabilities, we can determine the “health status” of
the system. It is either the no-fault case or a case where an actuator
is locked-in-place or floating. An actuator fault is declared valid if the
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corresponding fault probability exceeds 90% for a certain amount of time.
A fault is declared removed when the corresponding fault probability is
below 5% for a certain amount of time.

• One may notice that the denominator of (4.48) corresponds to the sum
of each scenario probability’s numerator, such that the fault probabilities
add up to one.

• In practice, in order to prevent the possibility that the recursive compu-
tation of the fault probability in (4.48) stays at zero forever as soon as
the probability reaches zero, the lower bound of each probability is set to
0.001.

• This method that uses probabilities for fault isolation is sometimes called
a Bayes classifier (see [19], Chap. 16).

4.6.2 Gaussian Conditional Probability Density

We now derive an explicit formula for the term p [y = yk|(θ = θi,Yk−1)],
which corresponds to the probability of obtaining the measurement data y[k]
at time tk = kTs, assuming the scenario θi exists and given the sequence of
the last measurements Yk−1.

The probability density is chosen to be a Gaussian function [16] with its
characteristic bell-shaped curve according to the following formula:

p [y = yk|(θ = θi,Yk−1)] = λi[k]e−ri[k]T Σ−1
i [k]ri[k]/2 , (4.49)

with λi[k] = 1
(2π)m/2|Σi[k]|1/2 , where |...| denotes the determinant of the ma-

trix, m represents the measurement dimension, and Σi[k] is the residual co-
variance matrix calculated at time step k by the ith EKF. The term ri[k]
corresponds to the residuals of the ith EKF, when the measurement update
step occurs according to the equation

ri[k] = yk − h(x̂i(k|k − 1)) . (4.50)

Intuitive Explanation of the Probability Density

In the case of a single-input single-output problem, in which the state and
measurement vectors reduce to scalars, the measurement data h(x̂i(k|k− 1))
that we expect according to our model can be seen as the mean value of the
measurement data computed by the ith EKF, i.e., ŷi[k] in Fig. 4.6.

The width of the conditional Gaussian density is governed only by the
covariance matrix Σi[k]. Figure 4.7 shows the shapes of the Gaussian function
for several standard deviations σ2 = Σ(jj). The residual ri[k] determines
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Fig. 4.6 Conditional probability density in the scalar case

the relative position of the peak of the probability density with the actual
measurement yk.

In the multivariable case, which applies in this FDI system, the fault prob-
ability p [y = yk|(θ = θi,Yk−1)] is given by f(ri = ri[k]|(θ = θi,Yk−1)), with
the probability density defined as a function of the residual ri with

f(ri|(θ = θi,Yk−1)) =
1

(2π)m/2|Σi[k]|1/2
· e−rT

i Σ−1
i [k]ri/2 . (4.51)

Therefore, the filter that corresponds to the fault scenario produces an
estimate for the measurement vector ŷi[k] = h(x̂i(k|k− 1)) very close (apart
from noise) to the actual value of the measurement data vector y[k]. The
residual ri[k] = yk−h(x̂i(k|k−1)) will be small and close to zero. This means
that the corresponding probability p [y = yk|(θ = θi,Yk−1)] is the highest for
the filter matching the fault scenario.

By examining the probabilities computed with (4.52) we can determine the
health status of the system, either in the no-fault case or in an actuator/sensor
failure case:
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Fig. 4.7 Gaussian functions for zero-mean value and several standard deviations σ

pi[k] = p[θ = θi|Yk] =
p [y = yk|(θ = θi,Yk−1)] · pi[k − 1]

∑N
j=0 p [y = yk|(θ = θj ,Yk−1)] · pj [k − 1]

. (4.52)

Remarks:

• The hypothesis testing uses a Gaussian density function, which assumes
that the residuals from the EKFs are Gaussian distributed. When this is
not the case, there is a little inconsistency with the application of the the-
ory. However, the assumption that these residuals are Gaussian distributed
is still reasonable, especially when the aircraft dynamics are slow.

• The reason why we use a Gaussian distribution to describe the probability
density of the current measurement to take on the value yk based on
the fault hypothesis θi and the previous measurements Yk−1, is to make
the mathematics tractable. As mentioned in the book by Maybeck [16],
“the Kalman filter, which propagates the first and second-order statistics
[mean and variance of a process], includes all information contained in the
[Gaussian] conditional probability density, rather than only some of it, as
would be the case with a different form of density”. If another probability
density function was known, then (4.51) could be changed accordingly.
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4.7 Simulation Results of the EMMAE-FDI with no
Supervision System

4.7.1 Simulation Conditions

In order to obtain realistic simulations, the sensor measurement data are
corrupted on purpose with zero-mean white Gaussian noise corresponding
to typical specifications of low-cost sensors. For the turn rate sensors, the
standard deviation is σp,q,r = 5deg/s=0.0873 rad/s, which corresponds to
a noise covariance of Σp,q,r = 0.0076 × I3 [rad2/s2]. For the air-flow angle
sensors, the noise standard deviation is σα,β = 2deg= 0.0349 rad (Σα,β =
0.0012 × I2 [rad2]). The airspeed sensor noise has a standard deviation of
σVT = 1m/s (ΣVT = 1 m2/s2). Poor sensor quality adversely affects the FDI
reliability.

When there is little excitation and when the faulty actuator deflection is
close to the trim conditions, an actuator failure becomes even more difficult
to detect. Indeed, due to large sensor noise, the control signals (see Fig.
4.8) become noisy as well, which reduces the difference between the actual
faulty actuator deflection and its corresponding control signal. The larger
this difference, the easier it is to detect the fault.

The EKF process noise covariance matrix and the sensor noise covariance
matrix are selected as follows: Rw = 0.002×I5 and Rv = diag[0.1×I3 0.02×
I2].

4.7.2 Scenario

The scenario to test the fault detection method is chosen to put the FDI in
the most difficult conditions, which are those of minimum excitation of the
system. This is achieved when the aircraft is flying straight and level (no
maneuvers, no wind) at a constant speed of 30m/s.

The actuator faults are simulated by blocking the control surfaces close to
the trim deflections corresponding to straight level flight conditions, because
those faults are harder to detect and to estimate. For example, the ailerons
and the rudder are intentionally made to fail close to the neutral deflection
(0◦), and the elevators are made to fail close to −2◦. Fault detection with
the EMMAE method is tested on a six degrees-of-freedom nonlinear aircraft
model of a UAV currently in use at the laboratory.

Simulations were performed in MATLABR©/SimulinkR© on closed-loop con-
trol architecture, with a nonlinear autopilot which regulates the speed, al-
titude, and the attitude of the aircraft. The actuator configuration of the
aircraft is depicted in Fig. 4.4. The EMMAE-FDI system is therefore com-
posed of six EKFs, one for monitoring the no-fault case, two for monitoring
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Fig. 4.8 Control signals and actual actuator deflections

each aileron (one on each wing), two EKFs for monitoring each of the two
independent elevators, and one EKF for the rudder.

As depicted in Fig. 4.8, a sequence of consecutive faults is generated. From
t= 10...40 s aileron 1 fails and is locked at −1◦ deflection, for t=70...100 s
aileron 2 fails and is “floating” between the two positions −1◦ and 1◦ in
a square-wave fashion. For t= 130...160 s the rudder fails and is locked at
−1◦. For t=190...220 s elevator 1 gets locked at −0.5◦, and finally, for
t= 250...280 s elevator 2 is floating between two uncontrolled positions −1◦

and −3◦ in a square wave fashion. After this sequence of faults, the aircraft
continues to fly straight and level, and no more faults are introduced.
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4.7.3 Comments on the Simulation Results

Figure 4.9 shows the results obtained by the FDI system after the sequence
of faults. The top plot labeled “No-Fault” has a probability of 1 when the
EMMAE-FDI system does not detect any fault in the aircraft. An actuator
fault is declared valid if the corresponding fault probability exceeds 90% for a
certain amount of time. A fault is declared removed when the corresponding
fault probability is below 5% for a certain amount of time. When aileron 1
fails at t=10 s, the “No-Fault” filter needs about 6 s for its probability to
go down to almost 0, which means that a failure occurred somewhere. After
the aileron 1 fault is introduced, both probabilities for aileron 1 and 2 to
fail (Pbaf1, Pbaf2) start rising at t= 11.5 s. At t= 17 s, the FDI begins to
distinguish between the two ailerons which one has failed, and Pbaf2 returns
to zero while Pbaf1 rises up to 90% at t =34 s. Therefore, it took 24 s for
the FDI to indicate that aileron 1 experiences a failure. At t=40 s, the fault
of aileron 1 is removed and the actuator behaves normally again. Figure 4.9
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Fig. 4.9 Probabilities from each filter of the EMMAE-FDI after a sequence of faults
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shows that the probability Pbaf1, indicating whether aileron 1 fails, decreases
slowly and reaches 0 again after 10 s, while the “No-Fault” probability rises
accordingly. It thus takes 10 s for the FDI to indicate that the fault has been
removed.

As Fig. 4.8 shows, at t =70 s aileron 2 fails and has an uncontrolled square
wave motion between −1◦ and 1◦. Figure 4.9 shows that the FDI takes 20 s to
detect such a failure. We observe an ambiguity between the two ailerons for
a few seconds before the probability Pbaf2 finally reaches 90% at t= 90 s. At
t= 100 s the fault of aileron 2 is removed, and this actuator behaves normally
again. However, the FDI is not capable of detecting quickly that the fault
has been removed. It takes about 8 s to do so.

For the rudder, the fault is introduced at t =130 s and is isolated by the
FDI system at t=131 s when Pbaf5 exceeds 90%. The fault removal is de-
tected in less than 5 s. It takes less time to isolate a rudder fault and to de-
tect its removal because there is only one rudder, unlike the other actuators
which are redundant (two ailerons, two elevators). Therefore, a malfunction-
ing rudder cannot be compensated by a redundant rudder, thus resulting in
no actuator-fault ambiguity.

The introduction of the elevator 1 fault at t= 190 s is isolated by its cor-
responding filter (probability signal Pbaf3 exceeding 90%) at t=208 s. After
the fault removal, the FDI system takes 8 s to indicate the fault removed. We
observe the same kind of behavior for elevator 2 as for elevator 1. Finally,
after the last fault has been removed, 5 s are needed by the FDI system to
slowly build up probability in the “No-Fault” filter to indicate that no more
faults are detected in the system.

4.7.4 Remarks on the First Attempt to Use the
EMMAE-FDI System

• The results plotted in Fig. 4.9 indicate that the current implementation
of the method is able to detect the fact that a failure occurred, even in a
very low-excitation case, but it could not tell quickly and reliably which
actuator experienced the fault. In cases of redundant actuators having the
same influence on the aircraft aerodynamics, the EMMAE method has
difficulty quickly resolving ambiguities between redundant actuators when
they cannot be properly excited.

• It appears that failures of actuators near trim deflection are more difficult
to detect and isolate.

• Moreover, whenever a fault is removed, the EMMAE method alone requires
a long time to detect that fact. It is critical, however, that the FDI quickly
detects the removal of a failure, or quickly recognizes that a false alarm
has been triggered due to possible external perturbations, such as strong
wind gusts.
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• Finally, it is critical that the probabilities quickly reach the “expected
values” which correctly describe the fault scenario. Indeed, the estimated
state vector of the system, which is the sum of the state vector of each EKF
weighted by its corresponding probability, must be sufficiently correct and
accurate if this state estimate is fed back to the controller.

4.8 Improvements to the EMMAE-FDI System

This section describes the techniques that have been added to enhance the
performance of the FDI system when there is very low excitation of the
system, particularly during steady level flight. In order to improve the speed
and the accuracy of the fault isolation, a supervision module is designed
whose tasks are detailed below.

4.8.1 Design of an Active Supervision Module
(Supervisor)

The supervision module shown in Fig. 4.10 is designed to monitor probability
signals from the FDI. If an actuator-failure probability exceeds a certain
threshold for some time, then the supervisor is designed to superimpose an
artificial control signal on the corresponding actuator. If an actuator fails, the
additional signal will have no effect on the aircraft dynamics, but it will help
the FDI confirm more quickly the failure of this actuator. On the other hand,
if the actuator has not actually failed, the aircraft will respond according to
the additional signal, and the FDI will then remove the fault assigned to this
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actuator. If the corresponding fault probability falls below a certain threshold
for a defined period of time, the supervisor removes the superimposed signal.

It has been shown that significant identification improvements can be ob-
tained by optimizing the signals applied to the control surfaces [20]. Actuator
excitation methods have already been developed for system identification pur-
poses. Null-space injection methods have been designed that work directly
in optimization-based control allocation approaches, which generate actuator
excitation while still providing the desired pseudo-commands [21, 22]. In this
work, the excitation signals are adaptively controlled within the limits from
1 to 4 degrees, with the function δex i(t) = [1 + 3(1 − pi(t))] cos(2πfit).

Note that an actuator is only excited when its corresponding fault proba-
bility pi exceeds 5%. Most of the time, only one actuator is excited. Although
better performance may be expected if the excitation signals to each actuator
were independent and uncorrelated, we used the same excitation signal for
all actuators. The frequency of the signal is to be chosen within the range of
the aircraft bandwidth, in our case fi=1Hz.

The excitation signal has an adaptive amplitude dependent on the proba-
bility pi of actuator i to have failed. In this way, when the probability pi is
low, the excitation amplitude is large and vice versa. Simulation results show
that this adaptive amplitude for the excitation signal efficiently improves the
accuracy and speed for fault isolation compared with a fixed amplitude ex-
citation signal. This adaptive amplitude ensures that the actuator is excited
as little as possible, but still enough to isolate the fault or to remove a false
alarm. Figure 4.11 shows the practical implementation of the excitation signal
generator and provides an example for aileron 1.

This method is therefore a systematic way of testing each triggered failure
alarm, to confirm it or to remove it, hence making the FDI more robust.
Whereas other proposed schemes [5, 23] suggest having the aircraft perform
a “health-check maneuver” or “diagnostic maneuver” as soon as a failure is
detected, in the method introduced in this work the actuator is directly ex-
cited by the supervision module rather than by the aircraft autopilot, yielding
much faster and more accurate fault isolation.

4.8.2 Performance of the EMMAE-FDI with the
Supervision System

4.8.2.1 Detection Performance

Figure 4.12 shows how the aileron faults are accurately detected and isolated
in less than 5 s. The rudder fault is isolated after 1 s. The elevator faults take
longer (about 9 s) to be isolated. However, the removal of all the faults is
detected in less than 5 s. Furthermore, there is no more ambiguity or false
detection among the actuator faults. Comparing the results shown in Fig.
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Fig. 4.11 Generation of the actuator excitation signal (example for aileron 1)

4.12 with those of Fig. 4.9, we see that the performance and the robustness
of the EMMAE-FDI system have greatly improved due to the supervision
module.

We recall that these results are obtained in the most difficult conditions
for the FDI system. Indeed there is no external disturbance such as wind
gusts, the aircraft flies straight and level, and the actuators fail close to their
trim deflection.

4.8.2.2 State Estimation Performance

The left plot in Fig. 4.13 shows a comparison between noisy measurements
and the state estimate from the EMMAE method in the implementation of
Fig. 4.10. The right plot in Fig. 4.13 shows a comparison between noiseless
measurements and the state estimate from the EMMAE method. Clearly, de-
spite a large amount of noise in the sensor measurements, the state estimate
accurately tracks the true (noiseless) measurements, and the filtered data
enable the controller to generate control signals with less noise, which facil-
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Fig. 4.12 Probabilities from each filter of the EMMAE-FDI after a sequence of faults
(with the supervisor)

itates fault detection and isolation as well as state estimation from correct
probability computations.

Furthermore, as shown in Fig. 4.14, the faulty control surface deflection
is well estimated in the case of a frozen actuator, but it is slowly estimated
in the case of an uncontrolled square wave motion of the control surface. An
engineering fix to have the EKF track the faulty actuator deflection faster
is to increase the process noise on the desired control input; it is, however,
to the detriment of estimate accuracy. In practice, it is more likely that an
actuator simply locks at a certain deflection or floats around the local and
slowly varying angle of attack, thereby reducing the challenge of estimating
the faulty actuator deflection.

The elements of the state vector differ from their respective estimate when-
ever the probabilities are not correct. As mentioned, the simulations that are
presented here are for straight and level flight, i.e., the worst condition for
any FDI system. In practice, a small UAV is maneuvering almost all the time,
which further improves the results and the performance of the FDI system.
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Fig. 4.13 Comparison between: (a) noisy; and (b) noiseless measurements and the
probability-weighted state estimate from the EMMAE method

4.9 A Realistic Flight Scenario

In this section, the FDI system is tested in a realistic flight scenario, in which
the UAV takes off, tracks a predefined trajectory, and follows an altitude and
a speed reference profile. First, the simulation is done without wind, and in a
second phase, Dryden Wind turbulences are included in the simulation to test
the robustness of the FDI system in the presence of external disturbances.

4.9.1 No-wind and No-actuator-fault Conditions

Figure 4.15 shows the flight path of the aircraft when there is no wind and
no actuator failure. The left plot shows that the aircraft takes off at point 1
and flies in the direction of the points 2, 3, . . . , 6 and then flies again the
whole sequence of points. The overshoot during the turns after the points 3
and 6 are due to the guidance system and the excessive speed of the aircraft
when approaching these points. Lower speeds result in less overshoot.

The speed profile shown in the top right plot of Fig. 4.15 is chosen to
cover a significant range of the aircraft speed in order to test the performance
of the fault detection system at different operating conditions. Clearly, the
measured airspeed VT is corrupted by noise, like all the other measurement
signals defined in Sect. 4.7.1 that are used by the KFs in the FDI system.
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Fig. 4.14 True actuator positions and associated estimates (a position estimate is
only valid during the occurrence of a fault)

Also, the altitude reference signal is chosen such that the aircraft has the
vertical motion depicted in the bottom right plot of Fig. 4.15.

Figure 4.16 shows the results of the FDI system, namely the fault-
probability signals. Even though no actuator fault has been introduced yet in
the simulation of Fig. 4.15, Fig. 4.16 shows that the FDI system without the
active fault supervision system indicates that some actuator faults appear
and disappear between t=80 s and t= 180 s, which corresponds to the time
interval in which the aircraft speed exceeds 45m/s.

In Fig. 4.16, the ailerons are assigned a fault probability of around 50%
between the time intervals [80 . . . 105 s], [110 . . . 117 s], [120 . . . 127 s] and
[138 . . . 162 s], which correspond to the straight flight path segments [4,5],
[5,6], [6,1] and [1,2], respectively. Clearly, the system suffers from a lack of
persistent excitation in these time intervals, in particular for the roll and yaw
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Fig. 4.15 Flight simulation with no wind and no actuator fault

axes. This issue is efficiently resolved as soon as the active fault supervision
system of Sect. 4.8.1 is enabled.

The artificial excitation signals that are superimposed on actuator com-
mands by the active fault supervision module are shown in Fig. 4.17. As
expected, the roll axis is excited by aileron commands during the phases of
straight flight and when the speed exceeds 45m/s.

Figure 4.18 shows that the false actuator fault alarms are eliminated.
Therefore, the active fault supervision module contributes significantly to
increasing the robustness of the FDI system by providing the system with
enough excitation. Actuator faults are thus accurately detected.

Apparently, the higher the speed of the aircraft, the greater the need for
exciting the aircraft around its rotational axes to achieve proper fault di-
agnosis. This may be explained by the fact that the value of the terms in
the dynamic matrix in (4.39) increases with the square of the aircraft speed
through the dynamic pressure. Therefore the KFs become more sensitive to
the noise of the turn rates when they are not excited (close to zero). In turn,
residuals build up and false alarms appear. The artificial excitation of the
turn rates by the supervision module can be seen as a means of increasing
the signal-to-noise ratio of the turn rates during steady flight regimes.
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Fig. 4.16 Fault probabilities in the case of no wind, no actuator fault, and no active
fault supervision system

Fig. 4.17 Artificial excitation signals superimposed on the actuator control signals
by the active fault supervision system of Sect. 4.8.1, yielding the FDI results in Fig.
4.18
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Fig. 4.18 Fault probabilities in the case of no wind, no fault, and with active fault
supervision

4.9.2 Wind Conditions and No Actuator Faults

In this section, Dryden Wind turbulences are included in the simulation to
test the robustness of the FDI system in the presence of external disturbances.

Figure 4.19 shows the wind speeds in the North, East and Down directions.
They correspond to severe wind conditions for the type of aircraft simulated,
which is a small aerobatic model aircraft.

The guidance system used in this simulation is described in Chap. 9 and
successfully compensates for wind disturbances since the flight path is almost
identical to the one flown without wind. The left plot in Fig. 4.20 shows the
flight path of the aircraft. The top right plot shows how the speed measure-
ment signal is disturbed by the wind gusts. The bottom right plot shows how
the altitude tracking is perturbed by the wind as well.

Figure 4.21 shows that the wind gusts contribute to exciting the aircraft
naturally, such that the fault alarms that appeared on Fig. 4.16 no longer
exist. Moreover, Fig. 4.22 shows how the use of the active actuator fault
supervision system helps in removing some false alarms even in the case of
severe wind conditions. For example, for 110 s< t< 115 s or 195 s< t< 200 s,
the FDI system with no supervision module indicates that the ailerons are
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Fig. 4.19 Wind speed in m/s

failing, whereas with the supervision module, these two false fault alarms do
not appear. In such wind conditions, the active supervision system would be
more effective if the amplitude of the excitation signals was higher. Therefore,
the wind speed or a level of wind disturbance might be an additional criterion
to design the adaptive excitation amplitude.

4.9.3 Strong Winds, Actuator Faults and Active
Supervision Module

In this section, the previous flight scenario is simulated again with the se-
quence of faults presented in Sect. 4.7.1. The fault-probability signals for each
actuator are generated by the EMMAE-FDI system and are shown in Fig.
4.23. The FDI system detects and isolates the actuator faults in less than
5 s for aileron 1 (Pbaf1), 3 s for aileron 2 (Pbaf2), 2 s for elevator 1 (Pbaf3),
3 s for elevator 2 (Pbaf4), and 1 s for the rudder (Pbaf5). In all cases, the
removal of the fault is accurately detected in less than 1 s.
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Fig. 4.20 Flight simulation in wind conditions
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Fig. 4.21 Fault probabilities in the case of strong winds, no actuator fault, no active
fault supervision system
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Fig. 4.22 Fault probabilities in the case of strong winds, no actuator fault, with
active fault supervision system
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Fig. 4.23 Fault probabilities in the case of severe wind, with a sequence of actuator
faults, with the active fault supervision system
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4.10 An Additional Filtering Stage for the
EMMAE-FDI System

The results shown in Fig. 4.23 are still not completely satisfactory since the
fault-probability signals are noisy. In order to improve the quality of the
final fault diagnosis of the aircraft, an additional filtering stage is added to
the EMMAE-FDI system. As shown in Fig. 4.24, each fault-probability signal
p1, p2, . . . , pi passes through a low-pass filter whose cut-off frequency is 0.2Hz,
and a hysteresis block that sets its output to one if its input exceeds 0.6, and
sets its output back to zero when the input goes below 0.4 again. After passing
through this additional filtering stage, the signals of Fig. 4.23 are transformed
into the filtered actuator-fault probabilities p̄1, p̄2, . . . , p̄i shown in Fig. 4.25.

Although it may take longer to finally isolate the fault in the system,
the results shown in Fig. 4.25 are in accordance with the expected fault
probabilities. We recall that this simulation is made in severe wind conditions,
flying the flight path shown in Fig. 4.20 at different speeds and altitudes.

Figure 4.25 shows that the noise in the probability signals p̄1, p̄2, . . . , p̄i

is almost completely removed. These filtered probabilities can thus be used
to select alternative flight modes in a reconfigurable flight controller, for ex-
ample. Note that the excitation signals are still triggered by the unfiltered
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probability signals that come directly from the EMMAE module. In this way,
we ensure that the system is excited after any variation of the probabilities
p1, p2, . . . , pi.
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Fig. 4.25 Filtered actuator-fault probabilities p̄1, p̄2, . . . , p̄i after the second stage
of filtering in the active FDI supervision module

4.11 Detection and Isolation of Simultaneous Failures

This section addresses the case of a second fault occurring simultaneously in
the system. The EMMAE-FDI is slightly modified to detect and isolate the
occurrence of a second fault and to continue the monitoring of the fault that
occurred first. The system described here works properly for the detection
and isolation of the second fault as long as the first fault does not change,
i.e., the faulty control surface remains locked. In such a case, the filter i that
isolated the first actuator fault provides an estimation of the deflection of
the faulty control surface. This estimation ˆ̄δi is used as a new input instead
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of the input δi for all the other filters in the bank of EKFs in the EMMAE-
FDI. Note that the value of ˆ̄δi used as input for the other filters must be
the value before the second fault occurred. Indeed, when the second fault k
occurs, then the ith filter has an input δk that is false, leading to the wrong
estimation of ˆ̄δi. Figure 4.26 shows the modifications that are to be made at
the input of the EKFs in the case of the first failure occurring on actuator 1.

Figure 4.27 shows the probability signals p̄1, p̄2, . . . , p̄i generated at the
output of the FDI-system shown in Fig. 4.24. Aileron 1 fails between t =
30 . . . 110 s and elevator 1 fails between t = 50 . . . 90 s. Pbaf11 indicates the
probability of aileron 1 failing only, Pbaf13 indicates the probably of both
actuators (aileron 1 and elevator 1) failing at the same time. The system can
properly detect and isolate the fault situations. The flight scenario that yields
the results of Fig. 4.27 and Fig. 4.28 corresponds to straight level flight, with
no wind. The maximum time delay needed to isolate the first fault is 3.8 s
and 2 s for the second failure.

Figure 4.28 shows the estimation of the deflection of the faulty control
surfaces. As expected, the estimation of the position of the failing aileron is
valid as long as the second fault is not introduced, i.e., between the time
intervals t = 30 . . . 50 s and t = 90 . . . 110 s. The deflection of the failing
elevator is properly estimated during the occurrence of the corresponding
fault between t = 50 . . .90 s.
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Fig. 4.26 Modified EMMAE-FDI for the isolation of a second simultaneous fault
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4.12 Use of the EMMAE-FDI for a Reconfigurable
Flight Control System

The design of a reconfiguring control system in the event of a major failure or
damage is a challenging task [24]. Many papers show how to build an adaptive
controller using a multiple-model structure. An overview of these architec-
tures and their robustness properties can be found in [25]. This section shows
a new feature of the EMMAE-FDI, which consists of using the estimation of
the faulty control surface to reconfigure part of the control system depicted
in Fig. 4.10, using control allocation techniques; see Chap. 5.

4.12.1 Control Allocation

The controller generates a virtual control command Cv = [CL CM CN ]T

in terms of desired roll, pitch, and yaw torque. This virtual command Cv

is passed to the control allocator, which is provided with each actuator’s
position limits and effectiveness to produce any torque component of the Cv

signal. A constrained optimization problem is then solved on-line to optimally
generate control signals for actuators.

The control allocator solves the following (possibly underdetermined) con-
strained system of equations, which may be regarded as a mapping in the
controlled system g(δ(t)) = Cv(t), with the true actuator control signals
δ(t) ∈ RN and N being the number of control surfaces. After linearization,
the mapping equation may be rewritten in the standard formulation of the
constrained linear control allocation problem:

Bδ(t) = Cv(t),
δ i(t) ≤ δi(t) ≤ δi(t), (4.53)

with the constraints

δ i(t) = max{δi, min, ρi, down ΔT + δi(t−ΔT )},
δi(t) = min{δi, max, ρi, up ΔT + δi(t−ΔT )}, (4.54)

where δi,max, δi,min are actuator i position limits, ρi,up and ρi,down are the
actuator i rate limits, and Ts is the sampling time of the digital control
system.
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4.12.2 Benefits of the Supervision Module for Control
Allocation

The control allocator is responsible for distributing the desired moments
among a set of actuators. Therefore, if the control allocator is provided with
the information that a faulty control surface is deflected at a certain an-
gle, then the control allocator can generate appropriate commands to the
unfailed actuators in an optimal manner, i.e., by taking advantage of the
torque already generated by the faulty actuator(s). A method to indicate to
the control allocator which actuator has failed and at what position is to have
the supervision module merge the upper and lower deflection limits δi,max,
δi,min of the failed actuator i and make these limits equal to the estimated
deflection ˆ̄δi of actuator i computed by the corresponding EKF.

This method allows the faulty actuator to be frozen or floating at any
position. Moreover, since ˆ̄δi is actually the estimate for the deflection angle of
a control surface, this method is still valid for mechanical-link failure between
an actuator (servo) and its corresponding control surface.

A complete description of this reconfigurable control allocator can be found
in Chap. 5 of this book [26].

4.13 Computational Complexity of the EMMAE-FDI

Let us denote by N the number of actuators that are monitored by an FDI
system. In the classical implementation of an MMAE-FDI, for each actuator
k filters are to be designed for k different possible positions of the failed
actuator. Therefore, kN+1 KFs are required (+1 refers to the no-fault filter).
If the appearance of a second fault is to be checked as well, a new bank of KFs
has to be reloaded, based on the knowledge of the first fault that occurred.
In total Nk + 1 + (N − 1)kN = N2k + 1 KFs must be designed.

One major advantage of the EMMAE-FDI method presented in this chap-
ter over classical MMAE schemes is that it requires only one filter to com-
pletely monitor one actuator. Any possible actuator-fault scenario is taken
into account by only one filter. Therefore, for the monitoring of a single actu-
ator fault, only N+1 filters are required with the EMMAE-FDI method. For
the monitoring of a second actuator fault with the EMMAE-FDI method, no
other bank of filters has to be loaded. Indeed, if actuator i fails, it suffices
to feed all the other filters with the estimate of the faulty control surface
deflection ˆ̄δi instead of the input δi. Thus, again only N +1 filters are needed
with the EMMAE-FDI system to detect and isolate a second fault after a
first actuator fault has been introduced.

As a simple example, our UAV is equipped with five actuators. A classical
MMAE scheme designed for three possible faulty deflections per actuator
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requires sixteen filters, whereas the EMMAE method needs only six filters
for any lock-in-place and floating actuator fault scenarios.

Finally, the choice of the state vector x = [p q r α β δ̂]T minimizes
the number of relevant state elements for the satisfactory operation of the
filters, thus limiting the number of computations required for the EKFs.
Indeed, in previous work by the author [8, 9], a first version of this EMMAE
method needed up to nine states in the state vector to achieve satisfactory
results.

4.14 Conclusions

The EMMAE-FDI algorithm, combined with an active supervision module,
offers fast and accurate fault detection and isolation. Moreover, the addition
of the estimation of the faulty control surface deflection in the state vector
makes the method applicable for actuator failures such as frozen or floating
at an arbitrary position. Only one filter is needed to monitor the health of a
single actuator. The filters used in the EMMAE-FDI are EKFs, which provide
nonlinear state estimations at any flight operating condition. An active FDI
technique is developed, which generates appropriate artificial excitation of the
aircraft when needed. An additional filtering stage for the fault-probability
signals has been designed to enhance the robustness of the diagnosis, even in
the event of severe wind turbulence. The whole system has been demonstrated
using nonlinear simulations of a realistic flight scenario. The FDI system was
shown to be capable of handling two simultaneous actuator failures without
increasing the computational load. Finally, when a fault is clearly isolated,
the faulty actuator deflection estimate can be advantageously used to modify
on-line the settings of a control allocator, making the whole system suitable
for flight control reconfiguration without any change in the initial controller
and any additional actuator position sensor [7].
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Chapter 5

Control Allocation

This chapter describes the design of a control allocation module with explicit
laws for fast operation and low computational load, such that this algorithm
can run in a small processor or microcontroller with limited floating-point
operation capability. The control allocation method is capable of compensat-
ing for actuator faults. Given the appropriate fault detection system, there is
no need to redesign the controller when such faults occur, since the control
allocator compensates for the fault. The allocation method is also designed
to be reconfigurable based on the results obtained from the EMMAE-FDI
system presented in Chap. 4. Finally, this chapter terminates with a com-
parison, which shows that this method yields satisfactory results, provides
optimal solutions in some cases, and is simpler and faster than conventional
methods.

5.1 Introduction to Control Allocation

In flight control, the proposed control allocation is used to compute control
surface deflections in order to produce certain desired aerodynamic moments
in roll, pitch, and yaw. The greatest benefit of this approach is achieved
in over-actuated systems. Using control allocation, the design of the control
system can be separated into the derivation of the control laws and the design
of a control allocator. This approach offers the following three advantages:

• The actuator constraints, such as position and rate limits, can be taken
into account. If one actuator is saturated, the remaining actuators can be
used to produce the desired control effort.

• Control allocation takes advantage of the system’s redundancy and allows
the system to be optimized for certain objectives. For instance in a plane,
these objectives may be the minimization of the drag, wing load, total
control surface deflections, etc. [1, 2].
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• In cases of actuator failures, a supervision controller can reconfigure the
behavior of the control allocator in order to compensate for those failures,
without the need for redesigning the control laws.

Several methods have been described in the literature: direct control al-
location [3], daisy chaining [4], and the linear programming method [5]. The
main technique these methods have in common is solving a constrained opti-
mization problem. The pseudoinverse redistribution method [6, 7] is another
technique, which makes use of a pseudoinverse computation of the control
input B matrix. Although it does not always provide an optimal solution, it
is usually faster than the other methods.

This chapter presents a method which does not have to solve any optimiza-
tion problem and does not need to compute any pseudoinverse matrix. It is
based on a set of explicit laws to drive the actuators depending on the fault
situation. The appropriate law is selected by a supervision module, which
uses data from a FDI module; see Chap. 4.

The control allocation algorithm presented in this chapter is designed for
a small unmanned airplane, with five control surfaces producing the torques
around the roll, pitch, and yaw axes. The method has been designed for fast
operation and very low computational load, suitable for a small processor or
microcontroller with limited floating-point operation capability [8]. Finally,
the performance of this method is compared with that of a sequential least
squares (SLS) control allocation method [9].

5.2 Reconfigurable Flight Control System

As described in Chap. 3 and shown in Fig. 5.1, the aircraft is equipped with
five control surfaces, which are one left aileron, one right aileron, one left ele-
vator, one right elevator, and one rudder. All actuators are fully independent,
which means that ailerons (or elevators) can individually move up, down, or
together in the same direction. This configuration permits some pitch torque
to be produced with ailerons or some roll torque to be produced with ele-
vators. The flight control system shown in Fig. 5.2 is a modified version of
the one shown in Fig. 4.10. In Chap. 4, the supervision module (Supervisor)
is responsible for the generation of appropriate excitation signals for fault
detection purposes [10].

In this chapter, the supervisor is additionally made responsible for the
reconfiguration of the control allocation module. Based on the results from
the EMMAE-FDI system, the supervisor is to decide what is the health status
of the aircraft, and in particular, what fault situation occurs. Based thereon,
the supervisor selects an appropriate actuator behavior mode that the control
allocator should use for the control of ailerons and elevators. These modes
are detailed in the next section. Additionally, the supervisor passes to the
control allocator the estimate(s) of the position of the failed actuator(s).
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Fig. 5.2 Control allocation module in a reconfigurable flight control system

The flight controller generates a virtual control command vector Cv =
[CL CM CN ]T in terms of the desired dimensionless aerodynamic coefficients
for roll, pitch, and yaw torques. This virtual command Cv is passed to the
control allocator, which knows each actuator’s position limits and effective-
ness to produce torque components of the Cv signal.

In conventional methods [6, 9], the control allocator solves the following
(possibly underdetermined) constrained system of equations, which may be
regarded as a mapping in the controlled system g(δ(t)) = Cv(t), with the
true actuator control signals δ(t) ∈ RN and N being the number of control
surfaces. After linearization, the mapping equation may be rewritten in the
standard formulation of the constrained linear control allocation problem:
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Bδ(t) = Cv(t),
δ i(t) ≤ δi(t) ≤ δi(t), (5.1)

with the constraints

δ i(t) = max{δi, min, ρi, down ΔT + δi(t−ΔT )},
δi(t) = min{δi, max, ρi, up ΔT + δi(t−ΔT )}, (5.2)

where δi,max, δi,min are the ith actuator position limits, ρi,up and ρi,down are
the ith actuator rate limits (see Fig. 5.3), and Ts is the sampling time of
the digital control system. Note that in the context of this work, actuators’
motion rates are not considered.

,maxi�

,mini�

i,up


i,down


( )i t�

Fig. 5.3 Control surface deflection, motion, and rate limits

The convention used here for ailerons and elevators is positive deflection
when the control surface is up and negative deflection when the control sur-
face is down. For the rudder, positive deflection occurs when the rudder
deflects to the right, when looking at the aircraft from the back, Table 5.1.

Table 5.1 Control surface sign conventions

Actuator Deflection Sense Primary effect

Ailerons Right wing trailing edge up + Positive roll moment
Elevators Trailing edge up + Positive pitch moment
Rudder Trailing edge right + Positive yaw moment

For convenience the relevant equations of aerodynamic moments needed
for control allocation are recalled below (see Chap. 3):
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L = q̄SbCL(δa1, δa2, δe1, δe2, p̃, r̃, β) ,
M = q̄Sc̄CM (δa1, δa2, δe1, δe2, q̃, α) ,
N = q̄SbCN (δa1, δa2, δe1, δe2, δr, r̃, β) , (5.3)

where the control-surface deflection vector is δ = [δa1 δa2 δe1 δe2 δr]T and
q̄ = ρV 2

T

2 is the dynamic pressure, VT is the total airspeed of the aircraft, ρ is
the air density, S is the wing total surface, b is the wing span, and c̄ is the
mean aerodynamic wing chord.

The aerodynamic derivatives are expressed as a linear combination of the
state elements and control inputs as

CL = CLa1δa1 + CLa2δa2 + CLe1δe1 + CLe2δe2 + CLp̃p̃+ CLr̃r̃ + CLββ ,

CM = CMa1δa1 + CMa2δa2 + CMe1δe1 + CMe2δe2 + CLq̃ q̃ + CLαα ,

CN = CNδr
δr + CNr̃r̃ + CNββ , (5.4)

with

p̃ =
bp

2VT
, q̃ =

c̄q

2VT
, r̃ =

br

2VT
. (5.5)

The inertia matrix is expressed in the aircraft’s body axes as follows:

Ib =

⎡

⎣
Ixx 0 Ixz

0 Iyy 0
Izx 0 Izz

⎤

⎦ . (5.6)

Equation 5.4 shows that the dimensionless torques (CL, CM , CN ) linearly
depend on elements of the state vector [p q r α β]T and on elements of the
control input vector δ as follows:

[CL CM CN ]T = [CL,M,N ]x x + [CL,M,N ]δ δ. (5.7)

The rudder produces torque along the aircraft z-body axis, together
with the ailerons when they do not generate the same aerodynamic drag.
This effect is known as adverse yaw [11, 12] and is modeled by the term
CNdrag(δa2) − CNdrag(δa1) in (5.8). We will not consider the adverse yaw
effect from elevators when they are used with opposite deflections.

The virtual command issued by the controller for torque generation is

Cv =

⎛

⎝
CL

CM

CN

⎞

⎠ =

⎛

⎝
CLa1δa1 + CLa2δa2 + CLe1δe1 + CLe2δe2
CMa1δa1 + CMa2δa2 + CMe1δe1 + CMe2δe2
CNδr

δr + CNdrag(δa2) − CNdrag(δa1)

⎞

⎠ . (5.8)

The virtual command is rewritten as

Cv = [CL,M,N ]δ δ, (5.9)
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with

[CL,M,N ]δ =

⎡

⎣
CLa1 CLa2 CLe1 CLe2 0 0
CMa1 CMa2 CMe1 CMe2 0 0

CNdrag,δa
CNdrag,δa

0 0 CNδr
0

⎤

⎦ ,

δ = [δa1 δa2 δe1 δe2 δr δThrust]T . (5.10)

Given Cv and [CL,M,N ]δ, the problem of control allocation is to find the
control input vector δ. The system in (5.9) has three equations and five
unknowns. In order to solve this system for a unique value of a control input
vector δ, modes for the behavior of the actuators are set according to the
fault situation. The fault configurations are shown in Table 5.2.

Table 5.2 Fault configurations

Aileron 1 Aileron 2 Elevator 1 Elevator 2
Actuator
Behavior

Mode
Equation

0 see Fig. 5.5

X 1 see (5.16)
X 2 see (5.16)a

X 3 see (5.18)
X 4 see (5.18)a

X X 5 see (5.18)
X X 5 see (5.18)

X X 5 see (5.18)
X X 5 see (5.18)

X X 5 see (5.18)
X X 5 see (5.18)

X X X 6 see (5.18)b

X X X 6 see (5.18)b

X X X 6 see (5.18)b

X X X 6 see (5.18)b

X X X X 7
a modified accordingly
b or (5.18)
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5.3 Behavior Mode of Ailerons and Elevators

5.3.1 Nominal Mode: Mode 0

In the nominal mode, the system does not experience any fault. When the
ailerons are deflected, they not only alter the lift being produced at each wing,
but the drag as well. The aileron that deflects up (δaileron > 0) produces less
drag than the one deflecting down; see Fig. 5.4. The difference in the drag
between the two ailerons will generate some yaw torque. The most common
way to overcome adverse yaw is to use differential ailerons. This consists of
deflecting the up-going aileron to a larger angle than the down-going one.
Figure 5.4 shows a case where aileron 2 deflects to a larger angle than aileron
1, so that they both generate the same drag.

aileron�

ail,up 0XC �

ail,down 0XC  

,aileronXC

1a�
2a�0

Fig. 5.4 Drag coefficients for an aileron deflecting up or down

In the nominal mode the ailerons are driven differentially according to
(5.11):

δa1 = −γ · δa2 , (5.11)

with

γ =

(
CXail,up∣

∣CXail,down

∣
∣

)sign(δa2 )

, (5.12)

and sign(δa2) defined in Fig. 5.5. Given the conventions shown in Table 5.1,
the sign of each aerodynamic coefficient in (5.8) can be explicitly written
down as follows:

CLa = CLa2 = −CLa1 > 0 ,
CLe = CLe2 = −CLe1 > 0 ,
CMa = CMa2 = CMa1 > 0 ,
CMe = CMe2 = CMe1 > 0 ,
CNδr

> 0 . (5.13)
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In this nominal mode, given (5.11) and (5.12), no adverse yaw torque is
generated and the system for torque generation may be reduced as follows:

CL = CLa(δa2 − δa1) + CLe(δe2 − δe1) ,
CM = CMa(δa2 + δa1) + CMe(δe2 + δe1) ,
CN = CNδr

δr . (5.14)

The system in (5.14) has three equations with five unknowns. In order to
obtain a unique solution for this system, the number of unknowns must be
reduced to three. In the nominal case, we thus set the following two behavior
modes for actuators:

δa1 = − γ · δa2 ,

δe1 = δe2 . (5.15)

Using the conditions of (5.15), Eq. 5.14 now has three unknowns and can be
solved uniquely. Figure 5.5 shows the finite state algorithm that computes
control allocation in the nominal mode.
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Fig. 5.5 Control allocation in the nominal mode (no fault), mode 0
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5.3.2 Single Actuator Fault Modes: Modes 1 to 4

The FDI system is either based on the EMMAE method [10] which returns
the estimated position of a faulty actuator (control surface), or on a direct
measurement of the deflections of the control surfaces. Therefore, the de-
flection of the failed control surface is known. This reduces the number of
unknowns in (5.14) by one.

A predefined rule for compensating this failure is then used to further
reduce the system to three unknowns for three equations. In this way, we
obtain a unique solution of the system of equations in (5.14). The goal is
always to provide the control allocator with an analytic and explicit solution
to properly drive the healthy actuators, depending on the fault configuration.

5.3.2.1 Aileron Fault: Modes 1 and 2

If aileron 1 fails (mode 1), the FDI system will estimate or measure its cor-
responding faulty deflection δa1,fault. Aileron 2 is used to produce the roll
torque required to stabilize the aircraft. The elevators are used to correct un-
desired pitch torque due to the ailerons, and they produce additional needed
pitch torque according to the following equations:

δa1,fault is given by the FDI system,
δa2 = δa1,fault − CL/CLa ,

δe1 = δe2 = (CM − CMa(δa1,fault + δa2)) /(2CMe) ,
δr =

(
CN − [

CNdrag(δa2) − CNdrag(δa1)

])
/CNδr

.

Check if δa2, δe1, δe2, δr are in the actuator motion range, otherwise
saturate. (5.16)

If δa2 saturates then δa2 = δa2,min or δa2,max, if δa2 fails (mode 5) then
δa2 = δa2,fault given by the FDI system. In both cases another unknown in
the system is removed. Only the two deflections for the elevators remain to
be computed. Note that they can also generate additional roll motion until
they themselves saturate, according to the following equations:

δa1,fault is given by the FDI system,
δa2 = δa2,sat if δa2 saturates, or δa2 = δa2,fault if δa2 fails,
θ1 = (CM − CMa(δa1 + δa2)) /CMe , θ2 = (CL − CLa(δa1 − δa2)) /CLe ,

δe1 = (θ1 + θ2)/2 , δe2 = (θ1 − θ2)/2 ,
δr =

(
CN − [

CNdrag(δa2) − CNdrag(δa1)

])
/CNδr

. (5.17)
Check if δe1, δe2, δr are in the actuator motion range, otherwise
saturate.
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Similar results can be derived for the case when aileron 2 fails on its own
(mode 2).

Remark:

• In practice, it is also possible to simplify the control law for the rudder,
simply by driving the rudder with δr = CN/CNδr

.
• We will use this formulation in the rest of the chapter. Indeed, if adverse

yaw effects occur due to aileron deflection, then the controller itself will
compensate by modifying the torque command CN accordingly.

5.3.2.2 Elevator Fault: Modes 3 and 4

Let us consider the case when elevator 1 is locked (mode 3). The locked eleva-
tor will generate some roll motion if the other elevator does not deflect with
the same angle. If this undesired roll motion is compensated by having the
other elevator deflect the same angle as the locked one, then some undesired
pitch torque will be generated in turn, and it will be very hard to compensate
for the undesired pitch motion by only acting on the ailerons. One solution
is to compute first the deflection of the remaining elevator to produce the
desired pitch moment. In a second step, we use differential ailerons to correct
for the roll torque.

δe1,fault is given by the FDI system,
δe2 = CM/CMe − δe1,fault. Check and saturate δe2 if needed.
In the case δe2 also fails (mode 5) δe2 = δe2,fault, given by the FDI system.
δa1 = −δa2 = (CL − CLe(δe1 − δe2)),
δr = CN/CNrudd

,

Check if δa1, δa2, δr are in the actuator motion range, otherwise
saturate. (5.18)

Once again equivalent results can be derived for the case when elevator 2 fails
(mode 4). If the actuators exceed their respective physical limitation, they
are simply saturated.

5.3.2.3 Rudder Fault

If the aircraft is equipped with a redundant rudder, then the method is also
applicable to compensate for rudder failure. The equation for CN in (5.14) has
to be modified to take into account both rudders. In the case of failure, the
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supervision module would compensate a rudder fault, and thus an undesired
yaw moment, by deflecting the remaining rudder.

5.4 Multiple Failures

5.4.1 Case of Two Simultaneous Failures: Mode 5

If the FDI system is capable of handling two simultaneous failures, and if
the position of these two locked actuators is known, then two unknowns in
(5.14) are removed and replaced by the faulty values. The remaining two
actuator deflections can then be computed. However, we may face problems
that cannot be solved any more. For example, if the two elevators are both
locked up or down, then the induced pitch motion will never be compensated
by the ailerons. In such a case, an emergency procedure similar to that of the
following modes 6 and 7 has to be initiated.

5.4.2 More Than Two Simultaneous Failures: Modes 6
and 7

In the case of three simultaneous faults (mode 6), there is one unknown for
two different equations. Therefore, the two equations cannot be solved at
the same time, and it is very likely that the aircraft cannot be controlled
anymore. In mode 7, all the control surfaces of the aircraft are failed. In
these two modes, an emergency procedure has to be engaged to prevent the
UAV from crashing. One possibility is to shut down the engine and deploy a
parafoil. If the UAV is small and low cost and does not necessarily need to
be recuperated, then a another possibility is to blow up the UAV when it is
high enough to avoid a ground or obstacle collision.

5.5 Extensions of the Method

The method described in this chapter could be extended to a larger number
of actuators. As an example, consider an aircraft that is equipped with two
ailerons on the right wing and two ailerons on the left wing. One strategy
is to only use the outer ailerons during normal operation. This situation
corresponds to the one already described in Sect. 5.3.1.

If one of the outer ailerons fails, then the other outer aileron on the opposite
wing is used to compensate for this failure, as described in Sect. 5.3.2. If the
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latter actuator saturates or also fails, then the two inner ailerons (flaps) will
be used. In that case, (5.14) will be augmented with two new terms in the
equation for CL. It then is easy to find explicitly the required deflections of
the inner ailerons to generate the desired value of CL.

5.6 Computational Load of the Method

In order to have an estimation of how many floating-point operations are
required in the control allocator, Table 5.3 summarizes the number of oper-
ations involved for the cases nominal mode, single, and double faults. These
cases are all simulated and presented in the next section. Clearly, the control
allocator presented requires very few floating-point operations.

Table 5.3 Number of floating-point operations required for control allocation

Fault situation
... > ...

or
... < ...

+, − × ÷

Nominal mode, see Fig. 5.5 11 3 4 4
Aileron 1 fault, see (5.16) 8 5 2 3
Aileron 1 fault and saturation of aileron 2, see (5.18) 6 8 4 2
Aileron 1 + aileron 2 faults, see (5.18) 6 8 4 3
Elevator fault, see (5.18) 8 5 3 3
Elevator 1 + aileron 2 faults, see (5.18) 6 6 4 2

5.7 Simulation Results

The method described has been tested in MATLABR©/SimulinkR© in a closed-
loop control architecture. The aircraft is in steady conditions flying straight
and level. The input of the controller is a reference signal for roll, pitch,
and yaw rates of pref = qref = rref = 0 [deg/s]. The actuators are modeled
as a first-order low-pass filter with the time constant τ = 0.05 s. In order
to introduce some noise into the system, some white noise with a variance
of 0.32 deg2 has been added on the actuators. Actuators are saturated at
±45 deg.

The control allocator implemented for comparison is based on the work by
Härkeg̊ard [9]. That method solves a constrained optimization problem on-
line using an SLS method to optimally generate control signals for actuators
by minimizing overall actuator deflections. That method was also used for
comparison purposes in the paper by Jin [7].
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The tic toc command in MATLABR©/SimulinkR© has been used to compare
execution times of both methods. Simulations have been run on an AMD
Turion 64, 1.6 GHz processor.

As shown in Fig. 5.6, a sequence of consecutive faults is generated. During
t= 2...6 s aileron 1 fails and is locked at −20 deg, for t=10...15 s aileron 2
fails and is locked at +40deg, for t= 20...25 s elevator 1 fails and is locked at
−5 deg, and finally for t=30...35 s elevator 2 fails and is locked at +15deg.
Finally, two cases of simultaneous failures are tested. For t= 40...45 s both
ailerons are locked at +10deg and −1 deg, respectively. For t= 50...55 s both
elevators are locked at +5 deg and −10 deg, respectively.

In the plots presented, fastCA refers to the method introduced in this
chapter, whereas SLS refers to the sequential least square method [9]. Fig.
5.6 shows the respective behaviors of the two methods. In the non-fault case,
both methods generate exactly the same control signals, even if the reference
signal for the turn rates is different from zero (a sine wave, for example).
This means that fastCA generates an optimal solution in the non-fault case.
Slightly different control signals are generated in fault cases. For example,
during an aileron failure, fastCA only compensates for roll motion by acting
on the remaining aileron, whereas SLS also makes use of elevators. In the case
of an elevator fault, it is interesting to note that both methods generate the
same control signals for the remaining elevator, but generate slightly different
control signals for ailerons.

The second fault on aileron 2 that is introduced at t= 10 s is rather severe.
Aileron 1 thus tries to compensate this fault to maintain the roll rate at zero.
We see that aileron 1 briefly saturates, and both methods use differential
elevators to help correcting for the roll motion. Finally, SLS allocation some-
times produces large peaks in the control signals when a fault is introduced or
removed, especially when the reference signal is not zero, whereas such peaks
never appeared with fastCA. Figure 5.7 shows the signals for roll, pitch, and
yaw rates. They all remain close to zero, with the exception of the short peak
that appears when the severe fault on aileron 2 is introduced. But for all of
the other faults, they are almost unnoticeable in the turn rate measurement
signals.

5.7.1 Impact of the Control Allocator on the Controller

Figure 5.8 shows the virtual control signal Cv = [CL CM CN ]T produced
by the controller and the influence of the control allocator on the controller.
Here the FDI system is ideal, i.e., it is infinitely fast and knows instanta-
neously which fault occurred, and the control allocator is also immediately
reconfigured in the proper mode.

Aside from the severe fault introduced at t= 10 s causing the controller
to generate a high command value for CL as aileron 1 saturates, the faults
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Fig. 5.7 Roll, pitch, and yaw rate during the succession of faults

have almost no influence on the controller. The controller thus acts as if there
were no faults, due to the reconfigurable control allocator that autonomously
compensates for the faults.

In the case of a realistic FDI system, the fault is isolated after some delay.
During the fault isolation process, the control allocator is still in its nominal
mode, and the aircraft flight controller itself tries to compensate for the fault
by modifying the values of CL, CM , and CN such that the reference signals
for the turn rates are best satisfied. When the fault is isolated, the control
allocator can be reconfigured in the most appropriate mode. Note that the
flight controller on its own cannot drive, if needed, the elevators differentially
or the ailerons both up or down. The flight controller only produces the values
for CL, CM , and CN , and does not modify the behavior of the actuators.
Rather, this is done by the supervision module shown in Fig. 5.2, when the
FDI results are available.

5.7.2 Comparison of Computational Effort for Control
Allocation

The upper plot in Fig. 5.9 shows the time needed to compute the control
allocation algorithm. The upper gray curve represents the SLS method, which
needs about 1.3ms, whereas the black line represents the fastCA method,
which takes about 45μs. The bottom plot in Fig. 5.9 shows the relative speed
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of the fastCA compared with the SLS method. During normal operation, on
average, fastCA is 30 times faster. During the single-fault mode, fastCA is 25
times faster than SLS. The noise that appears in Fig. 5.9 seems to be due to
the operating system running in the background of MATLABR©, which from
time to time executes other tasks (outside MATLABR©) in-between the tic
and toc commands.

5.8 Conclusions

The control allocation technique described in this chapter is an explicit set
of allocation laws. Depending on the fault configuration, a supervision mod-
ule has to select the appropriate law to distribute the commands. The re-
sults show that the behavior of this method is very similar to that of an
optimization-based method, but it is much faster. Indeed, no optimization
solver has to be run on-line, and no pseudoinverse matrix has to be com-
puted. This method also requires very few floating-point operations and is
deterministic, i.e., we know precisely how much time the control allocation
requires to compute its solution. The technique is therefore suitable to be
implemented in a small processor or a microcontroller, where the computa-
tional power is rather limited and where the program has to run in a real-time
environment.
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Chapter 6

Nonlinear Control Design

An aircraft is intrinsically a nonlinear system. Therefore, if linear controllers
are to be used in the aircraft flight control system, several linear controllers
have to be designed and then gain-scheduled over the operating regime of
the aircraft. However, recent nonlinear control techniques have made it pos-
sible to deal directly with the known nonlinearities of the aircraft dynamics,
which yields a unique controller suitable for a wide range of operating condi-
tions. This chapter describes the technique known as NDI and presents the
architecture and the design procedure of the controllers used in the aircraft
autopilot.

6.1 Concept of Dynamic Inversion

6.1.1 Derivation of a Dynamic Inversion Controller

The usage of dynamic inversion control has been very popular over the past
few years for the design of flight control systems [1–15].

Let the plant be described by a set of nonlinear differential equations of
the form

ẋ(t) = f(x) + g(x)u , (6.1)
y(t) = h(x) , (6.2)

where the state vector is x(t) ∈ Rn and the measurement vector is y(t) ∈ Rp.
The system is assumed to be linear in the control input vector u(t) ∈ Rm.
This assumption holds for an aircraft, the model of which is described in
Chap. 3.

From (6.2), we obtain the following total derivative of the output y with
respect to the time t:

107
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ẏ =
∂h

∂x

dx

dt
=
∂h

∂x
f(x) +

∂h

∂x
g(x)u = F (x) + G(x)u . (6.3)

6.1.2 General Case

In order to have the output of the plant y(t) follow a desired trajectory, the
signal for the desired output dynamics ẏdes(t) is constructed and (6.3) is
inverted in order to obtain the appropriate control signal uc(t) as follows:

uc(t) = G−1(x)
(
ẏdes(t) − F (x)

)
. (6.4)

Now, the control design task is to build a suitable control signal for the
desired output dynamics ẏdes(t) as follows:

ẏdes(t) = K
(
yc(t),ymeas(t)

)
, (6.5)

where the symbol K represents the controller, which has two inputs, namely
the command signal yc and the output measurement vector ymeas, as shown
in Fig. 6.1.

Aircraft
Dynamic

Model

( )F x

Control Allocation

1( )�G x
( )c tu ( )tx

( )meas ty

�

( )des ty�

Linearization Loop

Outer Tracking Loop

K

( )c ty

Fig. 6.1 NDI scheme

6.1.3 Formulation of the Signal for the Desired Output
Dynamics ẏdes(t)

The signal for the desired dynamics ẏdes(t) can be constructed with the
following design steps [16].

First, the error signal is defined as

e(t) = yc(t) − ymeas(t) . (6.6)

Second, the terms in (6.6) are differentiated with respect to time yielding
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ė(t) = ẏc(t) − ẏmeas(t) ,
⇐⇒ ẏmeas(t) = ẏc(t) − ė(t) . (6.7)

Third, a controller K is designed to drive the error e(t) to zero, and to
guarantee that the dynamic system in (6.8) is asymptotically stable:

ė(t) = −Ke(t) , (6.8)

where all of the eigenvalues of the p by p matrix K have strictly positive real
parts.

Fourth, if perfect plant dynamic inversion occurs, then the plant output
follows the desired dynamics, i.e., ẏmeas(t) = ẏdes(t). Therefore, (6.7) is
rewritten as follows:

ẏdes(t) = ẏc(t) − ė(t) . (6.9)

The complete expression for the signal ẏdes(t) is finally obtained by using
(6.8) in (6.9) yielding

ẏdes(t) = ẏc(t) + K · e(t) . (6.10)

6.2 Ideal or Perfect Dynamic Inversion

If there is no uncertainty in the plant model, i.e., F (x) and G(x) are perfectly
known and if actuators and sensors are also perfect, the dynamic inversion
process is perfect or ideal. In such a case, dynamic inversion transforms the
controlled system from ẏdes(t) to ymeas(t) into a system of p parallel and
uncoupled integrators.

In order to better illustrate how the pure integrators are actually created
by perfect dynamic inversion, let us consider Fig. 6.2, which shows the effect
of the additive inverse path and multiplicative inverse path on the dynamics
of the plant.

Fig. 6.2 Dynamic inversion with desired dynamics for a nonlinear plant
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The plant output signal ymeas = h(x) can be written as follows:

ymeas =
1
s

ẏmeas ,

=
1
s

[F (x) + G(x)uc] , see (6.3), with uc defined in (6.4) ,

=
1
s

[
F (x) + G(x)

(
G−1(x)

(
ẏdes(t) − F (x)

))]
,

=
1
s
Ip ẏdes(t) . (6.11)

Equation 6.11 clearly indicates that perfect dynamic inversion transforms
the controlled system from ẏdes(t) to ymeas(t) into p parallel integrators as
shown in Fig. 6.3.

Fig. 6.3 Transfer func-
tion from ẏdes to ymeas

in the case of perfect
dynamic inversion

1
p

s
I

desy� measy

Figure 6.4 shows the architecture of the dynamic inversion process in the
linear case, where the linearized plant is written in the standard form

ẋ(t) = Ax(t) + Bu(t) ,
y(t) = Cx(t) . (6.12)

Pure integrator created with perfect dynamic inversion

1

s

1( )�
B

A

plant model

�

desy� measy

Linear additive inverse

Linear multiplicative
inverse

Controller
of Desired
Dynamics

cy

A

CB
y = xy = x� �

Fig. 6.4 Dynamic inversion with desired dynamics for a linear plant
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6.3 Architecture of the Controller of Desired Dynamics

The architecture of the controller that parameterizes the desired dynamics
ẏdes(t) is based on a proportional and integral (PI) controller.

6.3.1 Selection of a PI Controller

There are several ways to construct PI or proportional, integral and derivative
(PID) controllers for a plant with the transfer function Gp(s). A classical
configuration is the “parallel” PI controller shown in Fig. 6.5.

1

s

measy

iK

bK

�

cy
Plant: ( )pG s

Fig. 6.5 Configuration of a classical parallel PI controller

The closed-loop transfer function of the PI controller and the plant Gp of
Fig. 6.5 is

ymeas

yc
=

(sKb +Ki)Gp

s+ (sKb +Ki)Gp
. (6.13)

The PI controller has introduced a zero at s = −Ki/Kb, which is de-
pendent on the controller parameters Ki and Kb. It is preferable to have
a PI controller structure without a zero or with a zero that can be placed
arbitrarily and can be used to cancel a slow pole in the closed-loop transfer
function. Therefore, the previous PI controller is modified in order to obtain
the PI-type controller shown in Fig. 6.6.

1

s

measy
iK bK

�

cy
Plant: ( )pG s

�

Fig. 6.6 Configuration of the modified PI controller

The closed-loop transfer function of the modified PI controller and the
plant Gp is
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ymeas

yc
=

KbKiGp

s+Kb(s+Ki)Gp
. (6.14)

Clearly, the transfer function in (6.14) has the same denominator as (6.13)
but the closed-loop zero of the controller has been removed. The modified
PI controller of Fig. 6.6 contains a pure integral controller of the error sig-
nal and an inner-loop proportional feedback, which can be considered as a
differentiator-free rate-feedback control loop.

6.3.2 Feedforward of the Command Signal yc

The control structure in Fig. 6.5 is called “one degree-of-freedom” because the
controller is acting on a single signal, i.e., the error signal yc−ymeas. However,
in order to improve the command-tracking performance of the controller, we
treat the two signals yc and ymeas independently by introducing a feedforward
controller on the command signal yc.

1

s

measy
iK pK

�

cy
( )pG s

�

cf

Plant:

Fig. 6.7 Architecture of the modified PI controller with feedforward of the command
signal

The resulting control system is depicted in Fig. 6.7 and has a so-called
“two degree-of-freedom” control scheme, since the plant input is the sum of
the contributions of the feedback and the feedforward controllers.

Adding the feedforward path of the command signal improves the perfor-
mance at frequencies where feedback control is not effective (i.e., at higher
frequencies than the feedback controller corner frequency). The transfer func-
tion of the system shown in Fig. 6.7 is as follows:

ymeas(s)
yc(s)

=
GpKb(fcs+Ki)
s+GpKb(s+Ki)

. (6.15)

Equation 6.16 shows that the closed-loop transfer function has a zero,
which can be placed at a desired location by modifying the value of the
coefficient fc. In this way, the zero can be chosen in order to cancel the
smallest real pole of the closed-loop transfer function and hence improve the
time response of the system to the command signals.

The controller that will be used in this project features:
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• A proportional action with the gain Kb, which sets the bandwidth of the
controller.

• An integral action with the gain Ki = fiKb, with the auxiliary integrator
gain fi as shown in Fig. 6.8. The reason why the coefficient fi is introduced
here will be clarified later in the chapter. The coefficient fi is selected once
and Kb becomes the single parameter determining the bandwidth of the
closed-loop system.

• A command-feedforward gain fc, which enhances the time response of the
system to command signals.

The transfer function of the system shown in Fig. 6.7 is as follows:

ymeas(s)
yc(s)

=
GpKb(fc s+ fiKb)

s (1 +Gp Kb) +Gp fiK2
b

. (6.16)

If we consider the plant Gp(s) to be a pure integrator created by perfect
dynamic inversion, then the closed-loop transfer function of the system shown
in Fig. 6.8 is

ymeas(s)
yc(s)

=
Kb(fcs+ fiKb)
s2 +Kbs+ fiK2

b

. (6.17)

Integrator created with
pure dynamic inversion

1

s

desy� measycy

i bf K
bK

cf

� �

Fig. 6.8 Architecture of the modified PI controller with command feedforward

6.3.3 Open-loop Gain

In order to compute the open-loop gain, the inner-rate feedback loop is first
closed as shown in Fig. 6.9, and the open-loop gain is computed as

Le(s) = Ly(s) =
Gp(s)

1 +KbGp(s)
K2

b fi

s
. (6.18)

Clearly, the open-loop transfer function is not dependent on the gain fc.
If the plant Gp(s) is a pure integrator, the open-loop gain is
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Le(s) = Ly(s) =
1

s+Kb

K2
b fi

s
, (6.19)

where the gain Kb is used to set the bandwidth of the controller as shown in
Fig. 6.10.

i bf K

Fig. 6.9 Open-loop gain

2
if

Fig. 6.10 Asymptotic Bode plot of the loop-transfer function Ly(s) of (6.18)

6.3.4 Design Rules for the Command-feedforward
Gain fc

Equation 6.17 is of the form Kgain(s+zero)
(s+pole1)(s+pole2) . The gain fc is to be selected in

order to make the real zero of the transfer function cancel the smallest real
pole. In this way, the closed-loop time constant is as small as possible.

The poles of (6.17) are the solutions of the equation s2 +Kbs+ fiK
2
b = 0.

Let us define the auxiliary variable Δ = K2
b (1 − 4fi).
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• If the integral gain fi < 0.25, then Δ > 0 and the two poles of (6.17) are
real and equal to pole1,2 = (−Kb ±

√
Δ)/2. In order to cancel the slowest

pole by the zero, the condition −fiKb

fc
= −Kb+

√
Δ

2 must be satisfied, which
results in the choice for the command-feedforward gain fc as follows [12,
13]:

fc = (1 +
√

1 − 4fi)/2 . (6.20)

• If the integral gain fi is chosen larger than 0.25, then two complex con-
jugate poles pole1,2 = (−Kb ± j

√−Δ)/2 appear and fc can be selected
to make the real zero cancel the magnitude of the complex poles, i.e.,(
K2

b +K2
b (4fi − 1)

)
/4 = (f2

i K
2
b )/f2

c , which results in the following choice
for fc [12, 13]:

fc =
√
fi . (6.21)

The denominator of (6.17) can be written in the form s2 +2ω0ζs+ω2
0 with

2ω0ζ = Kb and ω2
0 = fiK

2
b . An analytical value for the damping ratio is also

found to be ζ = 1/(2
√
fi).
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Fig. 6.11 Bode plots of the closed-loop transfer function ymeas/yc for Kb = 1 and
different values of fi according to Table 6.1

Table 6.1 shows that for fi > 0.25 complex conjugate poles appear as
expected, and they can no longer be perfectly canceled by the zero. Therefore,
the values for fi will be chosen up to 0.25. In the flight control loops designed
in the following chapters, the integral gain is chosen to be fi = 0.25. This
choice yields a value fc = 0.5 according to (6.20), which leads to a “critically
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damped” (closed-loop damping coefficient ζcl = 1) system, whose transfer
function is

ymeas(s)
yc(s)

=
Kb/2

s+Kb/2
. (6.22)

Clearly, (6.22) indicates that the bandwidth of the closed-loop transfer func-
tion ymeas/yc is given by the term Kb/2, which is a key parameter for the
tuning of the controllers described in the following chapters.

Table 6.1 Summary of the control design parameters shaping the signal of desired
dynamics ẏdes

fi = 0 fi = 0.01 fi = 0.2 fi = 0.25 fi = 0.3 fi = 1

Kb 1 1 1 1 1 1
fc 1 0.99 0.724 0.5 0.5477 1
zero 0 −0.01 −0.276 −0.5 −0.5477 −1
pole1 0 −0.01 −0.276 −0.5 −0.5 + j0.2236 −0.5 + j0.8660
pole2 −1 −0.99 −0.724 −0.5 −0.5 − j0.2236 −0.5 − j0.8660
ωcl

a 1 0.99 0.72 0.5 0.55 1
ζ ∞ 5 1.12 1 0.9129 0.5

a closed-loop bandwidth

6.3.5 Feedforward of the Rate of Change of the
Command Signal ẏc

In Chap. 7, some controllers will be designed with a feedforward of the rate of
change of the command signal ẏc in order to increase the command-tracking
performance of the system. Figure 6.12 shows the complete architecture of
such a controller.

Integrator created with
pure dynamic inversion
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desy� measycy

i bf K
bK

cf
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1

s
refK

fK

refy

cy�

�

Reference Model

Fig. 6.12 Architecture of the PI controller with feedforward and reference model

One may notice that for Kf = 1, the signal ẏdes(t) is exactly constructed
as shown in (6.10), i.e., ẏdes(t) = ẏc(t) +K · e(t).
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The transfer function of the system in Fig. 6.12 from yc to ymeas is as
follows:

ymeas(s)
yc(s)

=
Gp

[
Kfs

2 +Kb(fcs+ fiKb)
]

s+Gp(Kbs+ fiK2
b )

. (6.23)

If the plant Gp(s) is a pure integrator obtained by the perfect dynamic
inversion process, the transfer function ymeas(s)

yc(s)
is as follows:

ymeas(s)
yc(s)

=
Kfs

2 +Kb(fcs+ fiKb)
s2 +Kbs+ fiK2

b

. (6.24)

It is very interesting to note that for Kf = 1 and fc = 1, the transfer function
in (6.24) simplifies to ymeas(s)

yc(s)
= 1, and the open-loop gain Ly(s) remains

exactly the same as in (6.18) [10, 12]. This architecture will be particularly
useful in the aircraft velocity-control loops.

6.3.6 Reference Model and Explicit Model Following

In Fig. 6.12, the reference signal yref passes through a reference model filter
that generates the commanded control signal yc(t) and its time derivative
ẏc(t) used in the feedforward path. Inserting a reference model in the control
system is also called explicit model following and makes the aircraft behave
with certain “flying qualities” imposed by the reference model [3, 5, 9, 16, 17].
In this project, the explicit model-following technique is employed such that
the closed-loop system under consideration exhibits first-order responses. The
reference model has the following transfer function

yc(s)
yref (s)

=
Kref

s+Kref
. (6.25)

For Kf = 1 and fc = 1 in (6.24), we obtain

ymeas(s)
yref (s)

=
ymeas

yc
· yc

yref
=

Kref

s+Kref
. (6.26)

The latter equation means that if dynamic inversion operates properly, the
system responds to the reference signal yref like a first-order system, with
the coefficient Kref defining its cut-off frequency.
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6.3.7 Integrator Anti-windup

A common problem encountered with integral control of real systems is inte-
grator windup. Saturation may occur on actuators or on internal states like a
limited angle of attack, a limited rate of climb, etc. When saturation occurs,
the integrator may begin to integrate a large error signal that takes its output
far beyond the plant’s control-input saturation levels. When the plant comes
out of saturation, or when the command reverses, it may take a significant
time before this excessive control output is removed and linear control is
regained [16]. Figure 6.13 shows the implementation of the anti-windup loop.

For practical application, a suitable value for the anti-windup gain is to be
selected. When the control signal exceeds the upper actuator limit u > umax,
the actuator saturates and its output stays at a constant value usat, and
therefore Δu = usat − u is a negative number, which is fed back to decrease
the input of the integrator untilΔu reaches zero again, thus yielding u = usat.

The control objective of the anti-windup loop is to drive the signal Δu in
Fig. 6.14 to zero. Therefore, the loop should be stabilizing, which imposes the
condition KaKb > 0. Moreover,Δu is the solution of the following differential
equation:

τΔ̇u +Δu = 0 . (6.27)

Equation 6.27 corresponds to a first-order system with the time constant
τ = 1/(KbKa). The larger the product KbKa, the faster the term Δu returns
to zero. A reasonable number adopted in this work is Ka = 3.

Remark:

• A very interesting framework for the design of anti-windup system for NDI
controllers can be found in the work by G. Herrmann et al. [18].
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Fig. 6.13 Architecture of the integrator anti-windup system
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Fig. 6.14 Stability study of the integrator anti-windup loop
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Chapter 7

Autopilot for the Longitudinal Motion

The nonlinear differential equations governing the motion of an aircraft are
described in Chap. 3. For the plant analysis and control design, these equa-
tions are linearized around a certain operating point. Two sets of state vari-
ables appear to be clearly decoupled, each defining a specific mode of aircraft
motion. The state variables involved in the longitudinal mode are the pitch
rate q, the airspeed VT , the angle of attack α, and the pitch angle θ. The
lateral-directional mode involves the state variables for the roll rate p, the
yaw rate r, the sideslip angle β, and the roll angle φ.

This chapter is dedicated to the analysis and control of the longitudinal
motion of the aircraft and presents an architecture for the altitude controller,
which uses robust NDI in all of the control loops. This chapter brings an in-
novative and practical approach for stability and robustness analyses of the
plant undergoing the dynamic inversion process. Moreover, this chapter pro-
vides a systematic procedure for the selection of some uncertain model para-
meters involved in the controllers. Finally, a new nonlinear airspeed controller
is also designed and presented.

7.1 Equations for Longitudinal Mode Analysis

A linear model of the longitudinal motion of the aircraft is constructed as
follows:

Δẋlong = AlongΔxlong + BlongΔulong , (7.1)

where the state vector is defined as xlong = [q VT α θ]T and the control
input vector is ulong = [δelevator δThrust] as shown in Fig. 7.1.

In order to build the linear longitudinal model and therefore obtain the
matrices Along, Blong, Clong, and Dlong, a nonlinear differential equation
must first be formulated for each of the state variables as follows:

121
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Longitudinal
plant

elevator�! q!

TV!
�!
�!

Thrust TF�! � !

Fig. 7.1 Linear model of the aircraft longitudinal mode

q̇ = fq(x,u) , V̇T = fVT (x,u) ,

α̇ = fα(x,u) , θ̇ = fθ(x,u) ,

where the state vector of the aircraft is x, and the control vector is u.

7.1.1 Pitch Rate Differential Equation

The nonlinear differential equation for the pitch rate is found from (3.44) as

q̇ =
1
Iyy

[
M b − (Ixx − Izz)pr + Ixz(p2 − r2)

]
, (7.2)

where the pitch torque M b is expressed as a linear combination of the control
surface deflections, the angle of attack α, and the dimensionless pitch rate
q̃ = c̄q/2VT as follows:

M b = q̄Sc̄ (CM1 + CMeδe + CMαα+ CMq̃ q̃) . (7.3)

The definition of the other variables can be found in Chap. 3.

7.1.2 Airspeed Differential Equation

The nonlinear differential equation of the aircraft’s airspeed is derived in
Appendix A and is formulated as follows:

V̇T =
1
m

(Xw + FT cosα cosβ +mgw
x ) , (7.4)

where the drag force is Xw = ρV 2

2 S(CX1 +CXα α+CXα2 α
2 +CXβ2 β

2) and
the gravity term is

gw
x = g(− sin θ cosα cosβ + cos θ sinφ sinβ + cos θ cosφ sinα cosβ) . (7.5)

For the analysis of the longitudinal motion, the aircraft is assumed to fly
straight and level with no sideslipping and no wind, yielding
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βnom = 0, θnom = αnom, pnom = qnom = rnom = 0, φnom = 0 . (7.6)

The nonlinear differential equation for the airspeed is simplified as follows:

V̇T =
1
m

(
ρV 2S

2
(CX1 + CXα α+ CXα2 α

2) + FT cosα
)

. (7.7)

7.1.3 Differential Equation for the Angle of Attack

The nonlinear differential equation of the aircraft’s angle of attack α is derived
in Appendix A and is formulated as follows:

α̇ =
1

cosβ

(
1

mVT
[Zw − FT sinα+mgw

z ] + qw

)

, (7.8)

with the lift force Zw = ρV 2

2 S(CZ1 + CZαα), the gravity term gw
z =

g(sinα sin θ+cosα cos θ cosφ), and the pitch rate in wind axes qw = q cosβ−
p sinβ cosα − r sinα sinβ. Under the assumptions in (7.6) the dynamics of
the angle of attack can be simplified as

α̇ =
1

mVT

[
ρV 2

2
S(CZ1 + CZα α) − FT sinα+mg

]

+ q . (7.9)

7.1.4 Differential Equation for the Pitch Angle

The differential equation for the pitch angle θ is

θ̇ = q . (7.10)

7.1.5 Matrices for the Longitudinal Mode

The matrices for the linear longitudinal mode are obtained as follows:
⎡

⎢
⎢
⎣

Δ̇q
˙ΔVT

Δ̇α

Δ̇θ

⎤

⎥
⎥
⎦ = ALong

⎡

⎢
⎢
⎣

Δq
ΔVT

Δα
Δθ

⎤

⎥
⎥
⎦ + BLong

[
Δδelevator

ΔδThrust

]

, (7.11)

with the dynamic matrix
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ALong =
(
∂f(x, u)

∂x

)

xnom, unom

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

VT ρ S c̄2 CMq̃

4Iyy
ALong(1,2)

V 2
T ρ S c̄ CMα

2Iyy
0

0
ρV S[CX1 + CXα α + CXα2 α2]

m ALong(2,3) 0

1 Zw + FT sin α − mg
mV 2

T

VT ρ S CZα

2m 0

1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xnom,

unom

(7.12)

ALong(1,2) =
ρ VT S c̄ [CM1 + CMe δe + CMα α]

Iyy
,

ALong(2,3) =
ρV 2

T

2 S(CXα + 2CXα2 α) − FT sinα
m

,

and the control input matrix

BLong =
(
∂f(x, u)

∂u

)

xnom,

unom

=

⎡

⎢
⎢
⎢
⎢
⎣

q̄ S c̄ CMe

Iyy
0

0 cos α cos β
m

0 − sin α
mVT cos β

0 0

⎤

⎥
⎥
⎥
⎥
⎦

xnom,

unom

, (7.13)

where the input δThrust = FT is expressed in N. The numerical values of
ALong and BLong are provided in Appendix E.

7.2 Dynamic Modes of the Longitudinal Plant

The eigenvalues of the dynamic matrix ALong are computed and two pairs
of complex eigenvalues appear corresponding to two oscillatory modes called
the short-period mode and the phugoid mode as shown in Fig. 7.2.

7.2.1 Short-period Mode

This mode has a frequency of ωsp = 4.72 rad/s and a damping coefficient of
ζsp = 0.9. The short-period mode corresponds to oscillations in the angle of
attack and the pitch angle at approximately constant airspeed. In order to
efficiently compensate for the undesired motion due to this mode, the pitch
rate and the angle-of-attack controllers are to be designed with a bandwidth
larger than ωsp.
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Fig. 7.2 Aircraft longitudinal mode eigenvalues

7.2.2 Phugoid Mode

The phugoid mode involves the coupled effects of potential and kinetic en-
ergy. Indeed, as the aircraft pitches up and climbs, its speed decreases causing
the aircraft to pitch down again and therefore descend. As the aircraft de-
scends, its speed increases and the aircraft starts to pitch up again, and so on.
This oscillation is slow with a frequency of ωph = 0.2 rad/s and a damping
coefficient of ζph = 0.64.

7.3 Validation of the Linear Longitudinal Model

In order to validate the analytical terms found for Along in (7.12) and Blong

in (7.13), the linear longitudinal model is simulated for some input pertur-
bation and compared with a nonlinear simulation, which has the same input
perturbation.
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7.3.1 Perturbation on the Elevator Command

The top plot in Fig. 7.3 shows a perturbation of about 10% on the elevator
command. The other plots in Fig. 7.3 show that the nonlinear and linear
simulations are in good agreement.

Fig. 7.3 Validation of the linear longitudinal plant with a small perturbation on the
elevator
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7.3.2 Perturbation on the Engine Speed nmot

The top plot in Fig. 7.4 shows a perturbation of about 10% on the engine
rotational speed nmot. The other plots in Fig. 7.4 show that the nonlinear and
linear simulations are in good agreement, thus validating the linear model of
the longitudinal axis.

Fig. 7.4 Validation of the linear longitudinal plant with a small perturbation on the
engine rate nmot
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7.4 Stability Analysis of the Uncertain Dynamic
Inversion

Perfect NDI control assumes that the plant dynamics are perfectly known,
such that perfect cancelation of the nonlinearities in the plant dynamics can
be achieved. This assumption is obviously not satisfied in practice where all
the parameters of the aircraft model are subject to uncertainties and where
all the measurement data are corrupted by noise and bias.

Many papers have already discussed methods to design stable and robust
control systems based on the dynamic inversion method [1–8]. In general the
NDI is used in an inner control loop to cancel certain nonlinearities of the
system and an outer control loop is designed to guarantee the performance
and the stability requirements of the whole system; see Fig. 6.1. For example,
in [4] the outer loop is designed using the linear quadratic gaussian (LQG)
control method. The stability analysis is made using the methodology devel-
oped by [9], which gives the largest stability domain around a steady-state
operating point.

Other papers show how H∞ controllers can be designed for the outer
contol loop [7, 10, 11]. A μ-analysis is presented, for example, in [1, 12] and
the stability of the system can be measured by the value of μ, whereas the
robustness of the system is guaranteed if μ < 1.

In [7], NDI is used in the inner loop controller in order to equalize the plant
dynamics over the flight envelope. The stability of the closed-loop system
(together with the outer-loop controller) over all operating points is assessed
using the relative error method presented in [13].

Another approach is the stochastic stability and robustness analysis and
design [8, 14]. This technique estimates the probability of system instability
and performance requirements violation when stochastic variations of the
system parameters are introduced.

In [3], an alternative approach for the design and analysis of a robust NDI
method for aircraft motion control is presented. That approach is based upon
Lyapunov stability theory and multiple time-scale dynamic inversion.

In [6], linear stability and robustness analyses are conducted on linearized
models computed locally throughout the flight envelope and the classical gain
and phase margins are determined.

More recently, the analysis of NDI flight control laws has also been inves-
tigated using LPV or quasi-LPV models. Using this framework, it is possible
to model nonlinear effects and parametric uncertainties in the system. In
order to analyse stability and robustness properties of LPV-based models,
quadratic Lyapunov functions and parameter-dependent Lyapunov functions
have been used in [15] and [16], respectively. Some additional techniques
based on Lyapunov quadratic functions are developed in [17] for assessment
of the robust performance and robust stability of a quasi-LPV model with
respect to time-varying, parametric uncertainties.
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Although many advanced analysis techniques have been presented to quan-
tify the stability of a control system using NDI, very few papers show the
“physical” effects of uncertainties on the behavior of the system. This sec-
tion considers the longitudinal motion of an aircraft and shows the effects
of parameter and measurement uncertainties on the inversion processes. The
contributions of this work to the analyses of stability and robustness of the
NDI controller for the longitudinal motion are [18]:

• To show that an explicit transfer function can be derived from the plant
input to the plant output, which includes the dynamic inversion process
and all the relevant model parameter and measurement uncertainties.

• To suggest a framework in which the stability and robustness properties
can be assessed using the notion of phase and gain margins from classical
control theory.

• To show that uncertain parameters selected in the dynamic inversion paths
can either stabilize or destabilize the system to be controlled.

• To provide a systematic procedure for the selection of uncertain model
parameters involved in the dynamic inversion paths.

7.4.1 Uncertain Model Parameters and Measurement
Data

The uncertain model parameters involved in the longitudinal axis are CM1,
CMe, CMq̃ , CMα, Iyy. The uncertain measured state elements are α, q, and
VT . The uncertainty levels of these parameters are summarized in Table 7.1.

Table 7.1 Summary of the parameter and measurement uncertainties for the pitch-
axis control loop

Parameter Nominal value Level of uncertainty Unit

CM1 2.08 × 10−2 ±10 % -
CMe 5.45 × 10−1 ±20 % -
CMq̃ −9.03 × 10−2 ±20 % rad−1

CMα −9.83 ±20 % rad−1

Iyy 10.9 ±5 % kg m2

α 9.23 × 10−2 (5.29) ±5 % rad (deg)
q 0 ±5 % rad/s
VT 30 ±5 % m/s

Furthermore, it is assumed that there is no uncertainty on the aircraft
mass m, the wing surface S, the wing span b, the air density ρ, and the mean
aerodynamic chord c̄.
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7.4.2 Linear Modeling of the Uncertain Dynamic
Inversion

Figure 7.5 shows the NDI process involved in the innermost control loop of
the longitudinal axis, namely the pitch rate control loop. If dynamic inversion
operates perfectly, the plant behaves as a pure integrator. However, as soon as
some uncertainty is introduced in this process, this pure integrator transforms
into either a stable or unstable system depending on the uncertainty. This is
discussed in the rest of this chapter.

Pitch rate
controller measy

cq

Aircraft

�

Control Allocation

x
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M w Iw
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� ��� �� �� �� �� � ��� ��� �� �� ���� �
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q e�1

qSc

MC �

�

B�
Antiwind-up

xM

1

MeC
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Fig. 7.5 NDI for pitch rate control

In order to build a linear transfer function from the input q̇des to the output
ymeas, the additive inverse term and the multiplicative inverse term of the
dynamic inversion path are linearized as shown in Fig. 7.6. The uncertain
plant matrices are called Au, Bu and Cu, where the superscript u stands for
“uncertain”.

1
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� � 1
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�

B

uA

, longitudinal plant modelq
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Inverse

Controller
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Dynamics

cq

Uncertain dynamic inversion

�
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uCB
y x�� �y x�u

Fig. 7.6 Linear dynamic inversion with uncertainties for pitch rate control
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The state space representation of the system in Fig. 7.6 is [18]

Δ̇x =
[
A − B(CBu)−1AuCu

]
Δx + B(CBu)−1Δu ,

= ADI Δx + BDI Δu . (7.14)

7.4.3 Model Simplification for the Longitudinal Motion

The variables describing the aircraft longitudinal axis can be divided based on
a time-scale-separation argumentation between the fast time-scale variables
α and q, and the slow time-scale variable VT and flight-path angle γ = θ−α.

A linear model of the pitch axis is built which only involves the fast time-
scale variables as follows:

[
q̇
α̇

]

=
[
a11 a12

a21 a22

] [
q
α

]

+
[
b11 0
0 b22

] [
δe
FT

]

,

= Aq,α

[
q
α

]

+ Bq,α

[
δe
FT

]

. (7.15)

The dynamic inversion process on the longitudinal axis is employed to
directly affect the dynamics of the pitch rate q as shown in Fig. 7.5. Therefore,
the state variable α is not concerned with the inversion process and thus the
second line of the matrix ADI is equal to the second line of the matrix Aq,α

of (7.15). Uncertainties in the terms of the dynamic matrix of the system in
(7.15) are introduced as follows:

Au
q,α =

[
a11 +Δa11 a12 +Δa12

a21 +Δa21 a22 +Δa22

]

; (7.16)

uncertainties in the terms of the the control input matrix are introduced as
follows:

Bu
q,α =

[
b11 +Δb11 0

0 b22 +Δb22

]

; (7.17)

and uncertainties in the terms of the measurement matrix are introduced as
follows:

Cu
q,α =

[
c11 +Δc11 0

0 c22 +Δc22

]

. (7.18)
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7.4.4 Linear Model of the Pitch Axis and Dynamic
Inversion Process

7.4.4.1 Perfect Dynamic Inversion

If there is no model uncertainty and no measurement error, the dynamic
inversion process is perfect, yielding

ADI (1,1) = ADI (1,2) = 0, and BDI (1,1) = 1 . (7.19)

The matrices ADI ∈ R2×2 and BDI ∈ R2×2 of the system in (7.15) are
of the form

ADI =
[

0 0
a21 a22

]

, BDI =
[

1 0
0 b22

]

, CDI =
[
Cq 0
0 Cα

]

=
[

1 0
0 1

]

.

(7.20)
A graphical representation of the perfect dynamic inversion process is shown
in the right-hand plot in Fig. 7.7, where we clearly see that qmeas = q̇des/s.
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Fig. 7.7 Imperfect vs. perfect dynamic inversion

7.4.4.2 Imperfect Dynamic Inversion

In the case of imperfect dynamic inversion, the terms in the matrices ADI

and BDI are obtained as follows:

q̇ = a11c11q + a12c22α+ b11 (bu11)
−1 (q̇des − au

11c
u
11q − au

12c
u
22α) ,

=
{
a11c11 − b11 (bu11)

−1
au
11c

u
11

}
q +

{
a12c22 − b11 (bu11)

−1
au
12c

u
22

}
α

+ b11 (bu11)
−1
q̇des ,

= ADI(1,1)q +ADI(1,2)α+BDI(1,1)q̇des . (7.21)
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The dynamics of the angle of attack are obtained as follows:

α̇ = a21q + a22α+ b22FT ,

= ADI(2,1)q +ADI(2,2)α+BDI(2,2)FT . (7.22)

The terms c11 and c22 are both equal to one, whereas the uncertain mea-
surement coefficients are cu11 = c11 +Δc11 and cu22 = c22 +Δc22.

Fig. 7.8 Uncertain dynamic inversion and simplified longitudinal plant

The dynamic matrix, the control input matrix, and the measurement ma-
trix of the simplified plant, together with the uncertain dynamic inversion
process as shown in Fig. 7.8, are finally obtained as follows:

ADI =

[
a11 − b11(a11+Δa11)(c11+Δc11)

b11+Δb11
a12 − b11(a12+Δa12)(c22+Δc22)

b11+Δb11

a21 a22

]

,

(7.23)

BDI =

⎡

⎣

b11
b11+Δb11

0

0 b22

⎤

⎦ , (7.24)

CDI =

[
c11 +Δc11 0

0 c22 +Δc22

]

. (7.25)

7.4.4.3 Computing the Plant’s Transfer Functions Including
Model Uncertainties

Explicit transfer functions can be obtained using the following formula:

G(s) = CDI(sI − ADI)−1BDI =
CDIadj(sI − ADI)BDI

|sI − ADI | . (7.26)
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The transfer function for the channel from q̇des to qmeas is obtained as
follows:

qmeas

q̇des
=

CDI(1,1)BDI (1,1)(s− ADI (2,2))
D , (7.27)

with D = s2−s(ADI(1,1)+ADI(2,2))+ADI(1,1)ADI (2,2)−ADI(2,1)ADI (1,2).

7.4.4.4 MATLABR© Validation

In order to validate the results derived in the above paragraphs, three different
methods are used to calculate the transfer function qmeas/q̇des.

First, the SimulinkR© diagram shown in Fig. 7.9 is constructed, where the
matrices A1 alq long, B1 alq long, and C1 alq long represent the uncertain
matrices Au

q,α, Bu
q,α, and Cu

q,α, respectively. The state space block contains
the original matrices Aq,α, Bq,α, and Cq,α. The output of the state space
block is the vector [q α]T . The MATLABR© script shown in Table 7.2 is used
to compute the transfer function from the input q̇des to the plant output qmeas

using the MATLABR© command “linmod”.

1

q1

q

C1_alq_long(1,1)

dC/dq

C1_alq_long(2,2)

dC/dalpha

B1_alq_long(1,1)

dB/dq

A1_alq_long(1,1)

dA/dq

A1_alq_long(1,2)

dA/dalpha

alpha

x' = Ax+Bu

y = Cx+Du

State-Space
0

1

qdotdes

Fig. 7.9 SimulinkR© diagram called “alpha qlinearDITest” used to compute the
transfer function with the command “linmod” from q̇des to q as shown in Table
7.2

Table 7.2 MATLABR© commands used with the SimulinkR© diagram in Fig. 7.9 to
compute the transfer function from q̇des to qmeas

[aa alq, bb alq, cc alq,dd alq] = linmod(′alpha qlinearDITest′);
sys plant alq linmod = ss(aa alq,bb alq, cc alq,dd alq);
tf qdotdes to q alq linmod = tf(sys plant alq linmod);
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A second method is investigated, where the matrices ADI , BDI , and CDI

are first computed by MATLABR©, and the command “ss” is utilized to create
a state space system out of these matrices. Finally, the transfer function is
computed with the command “tf” as shown in Table 7.3.

Table 7.3 Second method to compute the transfer function from q̇des to qmeas

sys DI = ss(A DI,B DI,C DI,D DI);
DI tf = tf(sys DI);
DI tf(1, 1)

Third, the transfer function is explicitly evaluated given (7.27), and the
MATLABR© code is shown in Table 7.4.

Table 7.4 Third method to compute the transfer function from q̇des to qmeas

s = tf(′s′);
hand qrateDI tf = C DI(1, 1) ∗ B DI(1, 1) ∗ (s − A DI(2, 2))/(s2 − ...
...(A DI(1, 1) + A DI(2, 2)) ∗ s + A DI(1, 1) ∗ A DI(2, 2) − A DI(2, 1) ∗ A DI(1, 2));

The top plot in Fig. 7.10 shows that if no uncertainty is introduced in the
system, the transfer function obtained by each of the three methods is that
of a pure integrator, i.e, qmeas/q̇des = 1/s.

The bottom plot in Fig. 7.10 shows the case where all the terms of the
matrices Au

q,α, Bu
q,α, and Cu

q,α are 30 % lower than the original values. Using
the three different methods the transfer function qmeas/q̇des is computed. The
results are identical and show that uncertainties in the system transform
the pure integrator obtained by perfect dynamic inversion into qmeas/q̇des =
(s+ 3.657)/(s2 + 5.091s+ 6.607) in this case.

Section 7.4.6 presents in more detail how the parameter uncertainties affect
the dynamic inversion process.

7.4.5 Evaluation of the Uncertainty Terms in the
Matrix ADI

Suppose the variable y is a function of the parameters x, z, t, with the
associated uncertainties Δx, Δz, Δt. The maximum possible error on y =
f(x, z, t) is computed with the following relationship:

Δy =
∣
∣
∣
∣
∂f

∂x

∣
∣
∣
∣Δx+

∣
∣
∣
∣
∂f

∂z

∣
∣
∣
∣Δz +

∣
∣
∣
∣
∂f

∂t

∣
∣
∣
∣Δt . (7.28)
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Fig. 7.10 Comparisons between the three methods to obtain the transfer function
qmeas/q̇des: (a) Bode diagram: no uncertainty in the system; and (b) Bode diagram:
with uncertainties in the system

If the variable y is a ratio of the variables x and z, y = x
z , the maximum

relative error on y is computed as follows [19]:

Δy

y
=
Δx

x
+
Δz

z
. (7.29)

The uncertainty of the term a11 of the matrix Aq,α defined in (7.15) is
computed as follows:

a11 =
∂q̇

∂q
= f(VT , CMq̃ , Iyy) =

VTρSc̄
2CMq̃

4Iyy
,



7.4 Stability Analysis of the Uncertain Dynamic Inversion 137

Δa11 =
∣
∣
∣
∣
∂f

∂VT

∣
∣
∣
∣ΔVT +

∣
∣
∣
∣
∂f

∂CMq̃

∣
∣
∣
∣ΔCMq̃ +

∣
∣
∣
∣
∂f

∂Iyy

∣
∣
∣
∣ΔIyy ,

∣
∣
∣
∣
Δa11

a11

∣
∣
∣
∣ =

∣
∣
∣
∣
ΔVT

VT

∣
∣
∣
∣+

∣
∣
∣
∣
ΔCMq̃

CMq̃

∣
∣
∣
∣+

∣
∣
∣
∣
ΔIyy

Iyy

∣
∣
∣
∣ ,

≈ 5 % + 20 % + 5 % = 30 % . (7.30)

The uncertainty of the term a12 of the matrix Aq,α defined in (7.15) is
computed as follows:

a12 =
∂q̇

∂α
= f(VT , CMα, Iyy) =

V 2
T ρSc̄CMα

2Iyy
,

∣
∣
∣
∣
Δa12

a12

∣
∣
∣
∣ =

∣
∣
∣
∣
ΔVT

VT

∣
∣
∣
∣+

∣
∣
∣
∣
ΔCMα

CMα

∣
∣
∣
∣ +

∣
∣
∣
∣
ΔIyy

Iyy

∣
∣
∣
∣ ,

≈ 5 % + 20 % + 5 % = 30 % . (7.31)

The uncertainty of the term b11 of the matrix Bq,α in (7.15) is computed
as follows:

b11 =
∂q̇

∂δe
= f(VT , CMe, Iyy) ,

=
ρV 2

T Sc̄CMe

2Iyy
,

∣
∣
∣
∣
Δb11
b11

∣
∣
∣
∣ =

∣
∣
∣
∣
ΔVT

VT

∣
∣
∣
∣+

∣
∣
∣
∣
ΔCMe

CMδe

∣
∣
∣
∣+

∣
∣
∣
∣
ΔIyy

Iyy

∣
∣
∣
∣ ,

≈ 5 % + 20 % + 5 % = 30 % . (7.32)

The uncertainty of the terms a21, a22, b21 and b22 is chosen to be zero,
since these terms are not used in the dynamic inversion of the dynamics of
the pitch rate q.

7.4.6 Effect of Uncertainties on Dynamic Inversion

In this section, the matrices ADI and BDI are computed with uncertainties
according to (7.23) and (7.24).

The transfer function qmeas/q̇des in (7.27) is computed, where the coef-
ficients Δa11

a11
, Δb11

b11
, Δa12

a12
, Δc11

c11
are successively made negative and positive

in a nested for-loop algorithm in MATLABR©. The results are shown in Fig.
7.12 and Fig. 7.13.

It appears that the transfer function qmeas/q̇des has at least one unstable
pole if:

• Δa11
a11

and Δb11
b11

have the same sign, and Δq
q > 0

• Δa11
a11

> 0 and Δb11
b11

< 0 .
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The transfer function qmeas/q̇des only has stable poles if:

• Δa11
a11

and Δb11
b11

have the same sign, and Δq
q < 0

• Δa11
a11

< 0 and Δb11
b11

> 0 .

Therefore, for the actual implementation of the pitch rate controller in the
UAV control unit, a safe choice for the plant parameters would be

a11 = a11,nom

(

1 −
∣
∣
∣
∣
Δa11

a11

∣
∣
∣
∣

)

,

b11 = b11,nom

(

1 +
∣
∣
∣
∣
Δb11
b11

∣
∣
∣
∣

)

, (7.33)

where the terms a11,nom and b11,nom may be obtained from wind-tunnel ex-
periments or real flight tests. For the measurement of the pitch rate, a safe
choice would be

q = qmeas

(

1 −
∣
∣
∣
∣
Δq

q

∣
∣
∣
∣

)

. (7.34)

By using the above suggestions in (7.33) and (7.34), the plant from q̇des to
qmeas remains stable, even if one of the three above conditions is violated.
Other simulation results show that measurement uncertainties of the angle of
attack α have no influence on the stability of the transfer function qmeas/q̇des

[18].
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Fig. 7.11 Unstable vs. stable poles due to parameter uncertainties
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Fig. 7.12 Transfer function of the longitudinal plant including uncertain dynamic
inversion from q̇des to qmeas
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7.4.7 Mathematical Selection of the Uncertain Model
Parameters

Equation 7.27 can be written explicitly as follows:

qmeas

q̇des
=

b11
b11+Δb11

(s− a22)
s2 + Γs+ γ

, (7.35)

where the factor Γ is

Γ = −
[

a11 − b11
b11 +Δb11

(a11 +Δa11)(c11 +Δc11) + a22

]

, (7.36)

and the factor γ is

γ =
[

a11 − b11
b11 +Δb11

(a11 +Δa11)(c11 +Δc11)
]

a22 (7.37)

−
[

a12 − b11
b11 +Δb11

(a12 +Δa12)(c11 +Δc11)
]

a21, (with a21 = 1).

The term Γ is rearranged in order to make relative uncertainty terms
appear of the form Δa../a.. and is approximated by neglecting products of
uncertainty terms:

Γ = −
[

a11 − b11
b11 +Δb11

(a11 +Δa11)(c11 +Δc11) + a22

]

, (7.38)

Γ =
−a11

1 + Δb11
b11

[

1 +
Δb11
b11

−
(

1 +
Δa11

a11

)

c11

(

1 +
Δc11
c11

)]

− a22 (c11 = 1) .

Let us define Γ
′
= Γ

(
1 + Δb11

b11

)
, the previous equation is rewritten as follows:

Γ
′
= −a11

[

1 +
Δb11
b11

−
(

1 +
Δa11

a11
+
Δc11
c11

)]

− a22

(

1 +
Δb11
b11

)

,

Γ
′
= a11

[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

− a22

(

1 +
Δb11
b11

)

,

Γ
′
= α1 − α2 , (7.39)

with α1 = a11

[
Δa11
a11

− Δb11
b11

+ Δc11
c11

]
, and α2 = a22

(
1 + Δb11

b11

)
.

The term γ is rearranged as follows:
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γ =
a11a22

1 + Δb11
b11

[

1 +
Δb11
b11

−
(

1 +
Δa11

a11

)(

1 +
Δc11
c11

)]

− a12

1 + Δb11
b11

[

1 +
Δb11
b11

−
(

1 +
Δa12

a12

)(

1 +
Δc11
c11

)]

,

γ

(

1 +
Δb11
b11

)

= − a11a22

[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

+ a12

[
Δa12

a12
− Δb11

b11
+
Δc11
c11

]

,

γ
′
= − a22α1 + α3 , (7.40)

with γ
′
= γ

(
1 + Δb11

b11

)
, and α3 = a12

[
Δa12
a12

− Δb11
b11

+ Δc11
c11

]
.

The poles of the transfer function in (7.35) are the roots of

s2 + Γs+ γ = 0 . (7.41)

These roots are given by s1,2 = −Γ±√
Δ

2 , where Δ = Γ 2 − 4γ. In order that
there are only stable poles in the system, the following two inequalities must
be satisfied

−Γ +
√
Δ < 0 and − Γ −

√
Δ < 0 . (7.42)

The poles will lie in the left half plane if Γ > 0. Suppose that Δ > 0, in
which case the poles are real, then the conditions above are equivalent to

−Γ <
√
Δ < Γ and Γ > 0 , (7.43)

which is again equivalent to

Δ < Γ 2 and Γ > 0 ,
⇐⇒ Γ 2 − 4γ < Γ 2 and Γ > 0 ,
⇐⇒ Γ > 0 and γ > 0 . (7.44)

The first inequality in (7.44), namely Γ > 0, is satisfied if

Γ
′
> 0,

(

1 +
Δb11
b11

)

is always positive ,

⇐⇒ α1 − α2 > 0 ,

⇐⇒ a11

[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

> a22

(

1 +
Δb11
b11

)

,

⇐⇒
[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

<
a22

a11

(

1 +
Δb11
b11

)

, (a11 < 0) . (7.45)

Since both of the coefficients a11 and a22 are negative, the inequality in (7.45)
holds if
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[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

< 0 , (7.46)

which is always guaranteed if we choose

Δa11

a11
< 0,

Δb11
b11

> 0, and
Δc11

c11
< 0 . (7.47)

The conditions in (7.47) for the selection of the uncertainty levels, which
guarantee the existence of stables poles only are indeed the same as the
conditions found from the simulation results (see (7.33) and (7.34)).

The second inequality in (7.44), namely γ > 0, is fulfilled if

γ
′
> 0

⇐⇒ −a12

[
Δa12

a12
− Δb11

b11
+
Δc11
c11

]

< −a11a22

[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

,

⇐⇒
[
Δa12

a12
− Δb11

b11
+
Δc11
c11

]

<
a11a22

a12

[
Δa11

a11
− Δb11

b11
+
Δc11
c11

]

, (a12 < 0)

⇐⇒
[
Δa12

a12
− Δb11

b11
+
Δc11
c11

]

< 0 . (7.48)

The condition in (7.48) holds if in addition to the conditions in (7.47), we
choose

Δa12

a12
< 0 . (7.49)

If the term Δ = Γ 2−4γ is negative, then the poles will be complex conjugate.
They will lie in the left half plane under the condition that Γ > 0, which is
fulfilled by the conditions of (7.47).

The numerator of the transfer function in (7.35) has a negative zero if the
term a22 = ∂α̇

∂α < 0. This is the case for the aircraft under consideration,
whatever the level of uncertainty for this term.

7.5 General Control Architecture for the Longitudinal
Motion

The longitudinal motion controller is inspired by [20] and consists of several
loops, where every loop is designed assuming that the next inner loop achieves
perfect tracking of the command signals. This condition is not satisfied if the
next inner loop bandwidth is not sufficiently larger than the bandwidth of the
outer loop. Therefore, the controllers will be designed to ensure reasonable
time-scale separation.

The differences between the autopilot for the longitudinal motion of this
chapter and the one in [20] are the following:
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• The controllers in [20] for the tracking of roll-, pitch-, and yaw-rate com-
mands are based on MRAC laws, where the matrices A and B of the linear
aircraft model are constantly estimated by an on-line stabilized RLS algo-
rithm, which provides an adaptation of the matrix terms with the current
operating point of the aircraft and/or the possible modification of the
aircraft aerodynamics due to some damage or failures.

In this book, the controllers for the turn rates use NDI, and therefore rely
on a good knowledge of the plant parameters. Uncertainties on the plant
parameters and on sensor data are taken into account during the design of
the controllers of the turn-rate desired dynamics. These controllers are to
be sufficiently robust to guarantee satisfactory stability and performance
properties, as discussed in Sect. 7.6.

• In [20], the controllers for the angle of attack, altitude rate, and altitude
commands, all consist of proportional compensators, whose gains are cho-
sen for a satisfactory closed-loop pole placement in the ideal case.

In this chapter, all the controllers used have the architecture presented
in Chap. 6 either in Fig. 6.8 or Fig. 6.12. These controllers include PI gains
together with feedforward paths of the command signal.

• In [20], although some simulation results are provided that demonstrate
the robustness of the algorithm in the presence of external disturbance or
sensor noise, no robustness analysis is presented. The rest of this chapter
is dedicated to the stability and robustness analyses of the control systems
in the presence of large parameter and measurement uncertainties.

Turn rate controllers
+

Control Allocation

ch
��

Aircraft

ch
�

�

�
3T

2T1T

cq

controller

�
c��comna

c�Altitude
rate

controller
�

Altitude
controller

�

ch

�h�h
,� � q , , ,n Ta V� �

Fig. 7.14 General architecture for the control of the longitudinal motion

In Fig. 7.14, the blocks T1, T2, and T3 represent transformations that are
linear in the main input variable, but nonlinear in the other variables. These
nonlinear transformations are derived in the Appendix C, [20].

7.5.1 Nonlinear Transformation T3

The nonlinear transformation T3 transforms the commanded rate of change
for the angle of attack α̇c into the pitch rate command qc as follows:

qc = α̇c − g

VT
(cos θ cosφ+ an) . (7.50)
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7.5.2 Nonlinear Transformation T2

The nonlinear transformation T2 transforms the aircraft normal acceleration
command an,com into a command for the angle of attack αc as follows:

αc =
an,com − a2q̄

a1q̄
, (7.51)

where a1 and a2 are constant and defined in Appendix C.

7.5.3 Nonlinear Transformation T1

The nonlinear transformation T1 transforms the vertical acceleration com-
mand ḧc into the aircraft normal acceleration command an,com as follows:

an,com =
ḧc/g − 1
cosφ cos θ

. (7.52)

7.6 Pitch Rate Control

Figure 7.15 shows the longitudinal plant linearized by the uncertain dynamic
inversion process together with the controller of the pitch rate dynamics,
which generates the control signal q̇des.
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Fig. 7.15 Pitch rate controller with the plant that includes parameter and measure-
ment uncertainties

In order to study the stability and the robustness of the system in the
presence of model and measurement uncertainties, the open-loop gain of the
plant and the pitch rate controller is computed with (6.18), which is recalled
here for convenience:
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Le(s) = Ly(s) =
Gq(s)

1 +Kb,q Gq(s)
K2

b,qfi,q

s
, (7.53)

with Gq(s) =
qmeas(s)
q̇des(s)

=
CDI(1,1)BDI (1,1)(s− ADI (2,2))

s2 − s(ADI (1,1) + ADI (2,2)) + ADI (1,1)ADI (2,2) − ADI (2,1)ADI (1,2)

.

(7.54)

A series of simulations are run, where the coefficients Δa11
a11

, Δa12
a12

, Δb11
b11

,
Δc11
c11

, and Δc22
c22

are successively equal to +30 % and −30 % in a nested for-
loops algorithm. The gains chosen for the pitch controller are Kb, q = 12 [s−1]
and fi, q = 0.25. The results are shown in Figs. 7.17 to 7.20.

7.6.1 Stability/Robustness Requirements

The stability of the system is assessed by analyzing the root locus and Nyquist
plots provided for each example. Additional requirements are formulated for
the shape of the Bode plot of the open-loop gain as shown in Fig. 7.16a. Phase
and gain margins are defined by the diamond region shown in Fig. 7.16b. In
the Nichols chart, if the curve of the loop gain avoids the diamond region,
the phase and gain margins are guaranteed [16]. The two most important
uncertainty terms for the pitch rate control loop are Δa11

a11
and Δb11

b11
. Therefore,

four series of plots are provided in Fig. 7.17 to Fig. 7.20. For each series, one
value of these two uncertainty terms is modified at a time, whereas all the
other uncertainty terms are varied.

Figure 7.17 shows the results obtained when Δa11
a11

= +30 % and Δb11
b11

=
+30 %. Clearly, the requirements of the loop gain Bode plot are fulfilled.
The loop gain also avoids the diamond region in the Nichols chart, therefore
45◦ phase and 5 dB gain margins are guaranteed. The root locus plot shows
that right half-plane poles and zeros cancel each other and that the loop
gain can be safely increased without destabilizing the system. There is no
unstable pole. Finally, the Nyquist plot shows that the critical −1 point is
safely avoided (no right encirclement [21]) by the loop gain in all cases.

Depending on the uncertainty configuration, the bandwidth of the con-
troller may be significantly affected. The requirement on the bandwidth is
that the closed-loop bandwidth of the system should be higher than the
frequency of the short-period mode ωsp = 4.72 rad/s. The top-left plot
in Fig. 7.21 shows that a gain of Kb,q = 12 [s−1] is sufficient in the case
Δa11
a11

= Δb11
b11

= +30 %.
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Fig. 7.16 (a) Requirements for the shape of the loop gain Bode plot; and (b) dia-
mond region

Fig. 7.17 Open-loop gain of the pitch controller and the plant including model
parameter and measurement uncertainties, Δa11

a11
= +30 % and Δb11

b11
= +30 %
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Fig. 7.18 Open-loop gain of the pitch controller and the plant including model
parameter and measurement uncertainties, Δa11

a11
= +30 % and Δb11

b11
= −30 %

Figure 7.18 shows the results obtained in the case Δa11
a11

= +30 % and
Δb11
b11

= −30 %. The Bode plot and Nichols chart requirements are fulfilled.
The root locus plot shows the existence of several right half-plane pairs of
poles and zeros cancelling each other. There is no unstable pole. The Nyquist
plot shows that no right encirclement of the −1 point occurs. The closed-loop
Bode plot is shown in Fig. 7.21.

Figure 7.19 shows the results obtained in the case Δa11
a11

= −30 % and
Δb11
b11

= +30 %. The Bode plot and Nichols chart requirements are fulfilled.
The root locus plot shows that there is no right half-plane pole or zero. The
Nyquist plot shows that no right encirclement of the −1 point occurs.

The closed-loop Bode plot in Fig. 7.21 shows that the bandwidth ωc of
the controlled system may be just enough (ωc ≈ ωsp) for some uncertainty
configuration on the parameters a12, c11, c22. Therefore, a slightly larger
value of Kb,q may be required in order to ensure ωc > ωsp . This uncertainty
configuration (Δa11

a11
= −30 % and Δb11

b11
= +30 %) is the one suggested in Sect.

7.4.6 for the selection of the plant parameters used in the dynamic inversion
process. It clearly gives the best results in terms of stability/robustess of the
system compared with the other plant uncertainty configurations.

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-4

-3

-2

-1

0

1

2

3

0 dB0 dB

-20 dB-20 dB
-10 dB-10 dB

-6 dB-6 dB
-4 dB-4 dB

-2 dB-2 dB

20 dB20 dB
10 dB10 dB
6 dB6 dB
4 dB4 dB

2 dB2 dB

Nyquist plotNyquist plot

Real Axis

Im
a
g
in

a
ry

A
x
is

-20 -15 -10 -5 0 5 10
-20

-15

-10

-5

0

5

10

15

20
0.120.260.40.520.66

0.8

0.9

0.97

0.120.260.40.520.66

0.8

0.9

0.97

2.5

5

7.5

10

12.5

15

17.5

2.5

5

7.5

10

12.5

15

17.5

Root locusRoot locus

Real Axis

Im
a
g
in

a
ry

A
x
is

-100

-50

0

50

M
a
g
n
it
u
d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

-180

-135

-90

P
h
a
s
e

(d
e
g
)

Bode plotBode plot

Frequency (rad/s)Frequency (rad/s)

-180 -170 -160 -150 -140 -130 -120 -110 -100 -90

-100

-80

-60

-40

-20

0

20

40

60
Nichols chartNichols chart

Phase (deg)Phase (deg)

G
a
in

(d
B

)



7.6 Pitch Rate Control 149

Fig. 7.19 Open-loop gain of the pitch controller and the plant including model
parameter and measurement uncertainties, Δa11

a11
= −30 % and Δb11

b11
= +30 %

Figure 7.20 shows the results obtained in the case Δa11
a11

= −30 % and
Δb11
b11

= −30 %. The Bode plot and Nichols chart requirements are fulfilled.
The root locus plot shows the existence of several right half-plane pairs of
poles and zeros cancelling each other. There is no unstable pole. The Nyquist
plot shows that no right encirclement of the −1 point occurs. The closed-loop
Bode plot is shown in Fig. 7.21.

Simulation results showed that the controller for the pitch rate desired
dynamics is able to meet the requirements for stability and robustness of
the system for all the different uncertainty configurations presented. The
configuration where dynamic inversion operates with Δa11

a11
= −30 % and

Δb11
b11

= 30 % is clearly the safest case. Therefore, in practice the parameter
a11 is to be intentionally estimated too low, whereas b11 will be intentionally
estimated too high.
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Fig. 7.20 Open-loop gain of the pitch controller and the plant including model
parameter and measurement uncertainties, Δa11

a11
= −30 % and Δb11

b11
= −30 %

7.6.2 Pitch Rate Closed-loop Transfer Function

The closed-loop transfer function qmeas/qcom is obtained as follows:

qmeas

qcom
=
qmeas

qc
· qc
qcom

,

=
Gq

[
Kfs

2 +Kb,q(fcs+ fiKb,q)
]

s+Gq Kb,q(s+ fiKb,q)
· Kref,q

s+Kref,q
, (7.55)

where

Gq =
qmeas

q̇des
,

=
CDI(1,1)BDI (1,1)(s− ADI (2,2))

s2 − s(ADI (1,1) + ADI (2,2)) + ADI (1,1)ADI (2,2) − ADI (2,1)ADI (1,2)

.

(7.56)
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The Bode plots of the closed-loop transfer function in (7.56) are shown in
Fig. 7.21 for several uncertainty configurations. Clearly, the closed-loop band-
width is affected by the uncertainty of the pitch rate measurement Δq/q. For
negative values of the uncertainty Δq/q the nominal bandwidth is reduced,
whereas for positive values of the uncertainty Δq/q the nominal bandwidth
is increased. Section 7.4.7 demonstrated that the pitch rate measurement
should be intentionally estimated too low to guarantee stability of the con-
trol system, which corresponds to the lower-bandwidth plots shown in Fig.
7.21. The gain Kb,q should be chosen such that the closed-loop bandwidth
ωcl is larger than the short-period mode frequency ωsp = 4.72 rad/s. Figure
7.21 shows that ωcl is larger than or equal to ωsp in all cases, which confirms
that the value of Kb,q = 12 [s−1] is sufficiently large.

Fig. 7.21 Bode plot of the closed-loop transfer function from qcom to qmeas for
several uncertainty configurations
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7.7 Angle-of-attack Control Loop

The controller for the angle of attack is shown in Fig. 7.22. The dynamics
of the angle of attack are described by the linear model in (7.57), where the
numerical values of the matrices are shown.
[
q̇
α̇

]

=
[−4.779 −4.542

1 −3.698

] [
q
α

]

+
[

27.41 0
0 −1.1 × 10−4

] [
δe

δThrust

]

. (7.57)

It is assumed that the variations of δThrust are small. Moreover, the thrust
force δThrust modifies the dynamics of the angle of attack through the term
b22 = −1.1 × 10−4, which is negligible compared to a21, a22, or b11. Con-
sequently, the dynamics of the angle of attack α̇ are considered to be only
dependent on the pitch rate q and on the angle of attack α as shown in Fig.
7.22.
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Fig. 7.22 Dynamics of the angle of attack

The control loop of the pitch rate is closed, and the transfer function
αmeas/qcom is computed as follows:

Gα =
αmeas

qcom
=
αmeas

qmeas
· qmeas

qcom
=
Cαa21C

−1
q

s− a22
· qmeas

qcom
, (7.58)

where qmeas/qcom is defined in (7.55), and where the measurement coefficient
of the angle of attack Cα is defined as follows:

Cα = 1 +
Δα

α
. (7.59)

A simplified version of Fig. 7.22 is shown in Fig. 7.23.
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7.7.1 Open-loop and Closed-loop Gains

The open-loop gain is

Le,α =
Gα

1 +Gα Kb,α
· K

2
b,α fi,α

s
. (7.60)

The gains are selected to be fi,α = 0.25, fc = 0.5, and Kb,α = 6 [s−1].
Simulation results are shown in Fig. 7.24 to Fig. 7.27 for several uncertainty
configurations of the terms a11, a12, b11 , Cq, and Cα. The closed-loop trans-
fer function is:

αmeas

αcom
=

Gα

(
Kb,α fcs+ fi,α K

2
b,α

)

s(1 +Gα Kb,α) +Gα fi,α K2
b,α

. (7.61)

7.7.2 Comments on the Results

An excessive value of Kb,α can destabilize the system in all cases (time-scale
separation issue with the pitch rate loop). In all cases, there is no unstable
closed-loop pole, and the phase and gain margins defined by the diamond
region in the Nichols chart are guaranteed. The Bode plots of the closed-loop
gain show that the closed-loop bandwidth is very sensitive to the uncertainty
of the pitch rate measurement Δq/q and to the uncertainty of the angle-of-
attack measurementΔα/α. The largest bandwidth is obtained for Δq

q < 0 and
Δα
α > 0 simultaneously. Conversely, the smallest bandwidth is obtained for

Δq
q > 0 and Δα

α < 0 simultaneously. In Sect. 7.4.6, it was already suggested
to underevaluate the value of the pitch rate measurement qmeas. For the
dynamic inversion process, it would be wiser to select an underestimated
value for the measurement of αmeas, i.e., α = αmeas(1− |Δα/α|). These two
suggestions used in the dynamic inversion process result in an intermediate
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and reasonable closed-loop bandwidth. The configuration where NDI operates
with Δa11

a11
= −30 % and Δb11

b11
= 30 % is still clearly the safest case.

Fig. 7.24 Angle-of-attack controller and the plant including model parameter and
measurement uncertainties, Δa11

a11
= +30 % and Δb11

b11
= +30 %
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gain (dB)gain (dB)
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Fig. 7.25 Angle-of-attack controller and the plant including model parameter and
measurement uncertainties, Δa11

a11
= −30 % and Δb11

b11
= +30 %
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Fig. 7.26 Angle-of-attack controller and the plant including model parameter and
measurement uncertainties, Δa11

a11
= +30 % and Δb11

b11
= −30 %
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Fig. 7.27 Angle-of-attack controller and the plant including model parameter and
measurement uncertainties, Δa11

a11
= −30 % and Δb11

b11
= −30 %
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7.8 Rate-of-climb Controller

The flight path angle γ, the pitch angle θ, and the angle of attack α are
related as follows:

θ = α+ γ . (7.62)

The rate of climb ḣ is defined as follows:

ḣ = VT sin γ . (7.63)

The linear system has been computed around nominal flying conditions
which correspond to straight and level flight. This means that the flight path
angle is γ ≈ 0. Therefore, the difference between the pitch angle and the
angle of attack is small, i.e., θ − α ≈ 0. The rate of climb can therefore be
approximated by

ḣ ≈ VT · (θ − α) . (7.64)

The pitch angle θ is obtained by time integration of the pitch rate q as follows:

θ =
q

s
. (7.65)

The angle of attack α may be expressed in terms of the pitch rate q with

q =
s− a22

a21
α , (7.66)

where the terms a21 and a22 are those defined in (7.15) and therefore

ḣ ≈ VT · (θ − α) = VT

(
s− a22

a21s
α− α

)

= VT
s(1 − a21) − a22

a21s
α . (7.67)

Finally, a model of the altitude rate is obtained as follows:

ḣmeas ≈ CḣVT
s(1 − a21) − a22

a21s
α , (7.68)

where the term Cḣ contains the uncertainty in the altitude rate measurement
as follows (also see Fig. 7.28):

Cḣ = 1 +
Δḣ

ḣ
. (7.69)

The nonlinear transformation between the desired vertical acceleration
ḧdes and the commanded angle of attack αcom as shown in Fig. 7.28 is (see
Appendix C)

αcom = ḧdes · 1
ξ1 q̄ g cosφ cos θ

−
(

1
ξ1 q̄ cosφ cos θ

+
ξ2
ξ1

)

, (7.70)
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with

ξ1 =
S(CX1 + CZα)

mg
≈ SCZα

mg
, (CX1 � CZα)

ξ2 =
SCZ1

mg
. (7.71)

Therefore, the term Tḧ,α = 1/ (ξ1 q̄ g cosφ cos θ) is acting as a gain and should
not be forgotten in the computation of the loop gain.

The uncertainty associated with the gain Tḧ,α is computed as follows:

∣
∣
∣
∣
∣

ΔTḧ,α

Tḧ,α

∣
∣
∣
∣
∣
≈
∣
∣
∣
∣
Δξ1
ξ1

∣
∣
∣
∣+

∣
∣
∣
∣
Δq̄

q̄

∣
∣
∣
∣+

∣
∣
∣
∣
Δφ

φ

∣
∣
∣
∣+

∣
∣
∣
∣
Δθ

θ

∣
∣
∣
∣

≈ 30 % + 10 % + 5 % + 5 % = 50 % . (7.72)

The value of the controller gains shown in Fig. 7.28 are Kb,ḣ = 1 [s−1], fi,ḣ =
0.25, fc,ḣ = 1, and Kf,ḣ = 1. Although not represented in the figures, the
angle-of-attack command αcom is saturated between 0◦ and 13◦, and an anti-
windup system is implemented in the altitude rate controller.
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7.8.1 Open-loop Gain

The open-loop gain is computed as follows:

Le =
Gḣ

1 +GḣKb,ḣ

·
K2

b,ḣ
fi,ḣ

s
, (7.73)

where

Gḣ =
ḣmeas

ḧdes

= Tḧ,α

(

1 +
ΔTḧ,α

Tḧ,α

)

· αmeas

αcom
· α

αmeas
· ḣmeas

α
, (7.74)

where the transfer function αmeas/αcom is defined in (7.61), and the ratio
α/αmeas = C−1

α is defined in (7.59) and shown in Fig. 7.28. The ratio ḣmeas/α
is defined in (7.68).

Figure 7.29 shows the open-loop gains obtained when the parameters Δa11
a11

,
Δa12
a12

, Δb11
b11

, Δq
q , and Δα

α take on alternatively the values +30 % and −30 %

in a nested for-loop algorithm. The term
ΔTḧ,α

Tḧ,α
takes on alternatively the

values +50 % and −50 %, whereas the term Δḣ
ḣ

takes on alternatively the
values +5 % and −5 %.

In all cases, the system is asymptotically stable and the bandwidth of
the open loop is very weakly affected by the uncertainties and is around
0.8 rad/s. The lower the gain Kb,ḣ, the weaker is the influence of the plant
and measurement uncertainties on the bandwidth of the altitude rate control
loop.

7.8.2 Closed-loop Gain

The closed-loop gain is computed as follows:

ḣmeas

ḣcom

=
ḣmeas

ḣc

· ḣc

ḣcom

,

=
Gḣ

[
Kf,ḣs

2 +Kb,ḣ(fc,ḣs+ fi,ḣKb,ḣ)
]

s+GḣKb,ḣ(s+ fi,ḣKb,ḣ)
· Kref,ḣ

s+Kref,ḣ

, (7.75)

with

Gḣ = Tḧ,α

(

1 +
ΔTḧ,α

Tḧ,α

)

· αmeas

αcom
· α

αmeas
· ḣmeas

α
. (7.76)

The gains used in the altitude rate reference model are Kref,ḣ = 1 [s−1]
and Kf,ḣ = 1. The choice of Kb,ḣ = 1 [s−1] yields a closed-loop bandwidth
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Fig. 7.29 Bode plots of the open-loop gains of the altitude rate controller for several
uncertainty configurations

in the range of 0.6 to 1 rad/s depending on the uncertainty configuration as
shown in Fig. 7.30.

7.9 Altitude Controller

The altitude controller is shown in Fig. 7.31. The measured altitude is ob-
tained as follows:

hmeas ≈ Ch
ḣ

s
, (7.77)

where the uncertain coefficient for the altitude measurement is defined as
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Fig. 7.30 Bode plots of the closed-loop gains of the altitude rate controller for several
uncertainty configurations

Ch = 1 +
Δh

h
. (7.78)

The gains of the altitude controller are Kref,h = 0.3 [s−1], fc,h = 1, Kf,h = 1,
Kb,h = 0.2 [s−1], and fi,h = 0.25.

The altitude rate command ḣcom is saturated to stay within the range
[−VT /4, +VT /4], and an anti-windup system is implemented in the altitude
controller.
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Fig. 7.31 Altitude controller

7.9.1 Open-loop Gain

The open-loop gain is computed as follows:

Le,h =
Gh

1 +GhKb,h
· K

2
b,h fi,h

s
, (7.79)

where

Gh =
hmeas

ḣcom

=
hmeas

ḣmeas

· ḣmeas

ḣcom

=
ChCḣ

−1

s
· ḣmeas

ḣcom

. (7.80)

The transfer function ḣmeas/ḣcom is defined in (7.75), the coefficient Ch is
defined in (7.78), and the coefficient Cḣ is defined in (7.69).

Figure 7.32 shows the open-loop gains obtained when the parameters Δa11
a11

,
Δa12
a12

, Δb11
b11

, Δq
q , and Δα

α take on alternatively the values +30 % and −30 %

in a nested for-loops algorithm. The term
ΔTḧ,α

Tḧ,α
takes on alternatively the

values +50 % and −50 % and Δh
h the values +1 % and −1 %.

In all cases, the system is asymptotically stable, the bandwidth of the
open-loop gain is almost unaffected by the uncertainties and is in the range
0.3 to 0.4 rad/s.
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7.9.2 Closed-loop Gain

The closed-loop gain is computed as follows:

hmeas

hcom
=
hmeas

hc
· hc

hcom

=
Gh

[
Kf,hs

2 +Kb,h(fc,hs+ fi,hKb,h)
]

s+GhKb,h(s+ fi,hKb,h)
· Kref,h

s+Kref,h
. (7.81)

The choice of Kb,h = 0.2 [s−1] yields a closed-loop bandwidth in the range
of 0.2 to 0.3 rad/s as shown in Fig. 7.33. This guarantees sufficient time-scale
separation with the rate-of-climb controller.

Figure 7.33 shows that the plant and measurement uncertainties have al-
most no influence on the bandwidth of the altitude control loop.

Fig. 7.32 Open-loop gains of the altitude controller for several uncertainty configu-
rations
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Fig. 7.33 Closed-loop gains of the altitude controller for several uncertainty config-
urations

7.9.3 Performance of the Altitude Controller

Figure 7.34 shows the performance of the altitude controller in the nominal
case (no plant uncertainty) for a constant airspeed of 30m/s. The aircraft
is capable of tracking the reference vertical trajectory without steady-state
error for a step or a ramp input. There is also no overshoot for a step input.
The aircraft reaches the reference altitude quickly.
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The overall performance of the longitudinal motion controllers presented
in this chapter are very satisfactory.

Fig. 7.34 Performance of the altitude controller (nominal conditions)

Remarks:

• In this chapter, an anti-windup system is implemented for all the control
loops that employ an integrator. Moreover, axis control saturation can be
detected with an analysis of the control inputs and outputs of the control
allocation module. The possible occurrence of an actuator failure should
also be taken into account for anti-windup compensation.

• The paper by Schierman et al. [22] contains a very interesting scheme
for the longitudinal control of the Boeing X-40A reusable launch vehicle.
The inner-control loops for attitude utilize a model-following and dynamic
inversion approach. The architecture contains five control loops for the
control of altitude, altitude rate, flight path angle, angle of attack and
pitch rate, respectively. Each loop employs a model-following scheme, the
bandwidth of which is adjusted in a backstepping manner to maintain ro-
bustness stability margins in the presence of actuator saturation or failure.
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7.10 Airspeed Controller

7.10.1 Content of this Section

This section presents a new nonlinear airspeed controller for a UAV [23]. The
thrust force of the UAV is generated by a propeller. The nonlinear dynamics
of the airspeed are appropriately expressed as a function of the thrust force,
which is a nonlinear function of the engine speed. The latter variable is the
only physical control input of the system. The airspeed control system is
constituted of a linear controller responsible for the generation of the desired
airspeed dynamics, which are successively converted into a desired thrust
command and an engine speed command through two consecutive nonlinear
transformations. The proposed architecture is modular, easy to implement,
and computationally efficient. Nonlinear simulation results demonstrate the
effectiveness of the method.

7.10.2 Motivation

An essential variable involved in the flight dynamics of an aircraft is the
airspeed or the speed of the airframe relative to the surrounding air. The
airspeed VT is indeed part of all of the aerodynamic equations of forces and
moments acting on the airplane through the dynamic pressure q̄ [24, 25].
Human pilots also know well that the airspeed is a critical flight parameter.
It is to be carefully monitored in order to avoid any undesired stall of the
airplane. In [26], it is explained that “precise airspeed control” is required in
order to achieve “precise altitude and heading for longer and longer periods
in straight and level flight.” Precise airspeed control is also necessary during
climbs or descents at specified rates, or during the safety critical maneuvers
at low airspeed such as the glide and flare paths before landing.

Human pilots are usually taught that the airspeed is to be adjusted by
acting on the aircraft’s propulsion power, and that altitude is to be controlled
by modifying the pitch attitude of the aircraft. However, there are situations
in which the role of pitch and power are reversed, i.e., the pitch attitude
is used to control the speed and the power to control the altitude. This is
the case, for example, during take off, landing, and any maneuver to reach a
certain gliding slope.

In this work, the first method is employed, i.e., the airspeed is adjusted
by the propulsion power, and the altitude of the aircraft is controlled by the
pitch attitude at any given airspeed.

Figure 7.35 shows the speed autopilot found in [20], which assumes that
the transfer function from the throttle command δth,com to the aircraft’s air-
speed VT is of the form VT (s)/δth,com(s) = kv/s(s+ av), where the constant
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Fig. 7.35 Airspeed controller [20]

term kv/av is the amount of steady-state longitudinal acceleration per unit
of throttle command and 1/av is the time constant of the engine thrust re-
sponse. The gains gF,V , gI,V , gP,V and gTEC are used as feedforward, integral,
proportional, and total energy compensation gains, respectively [20, 27].

Although the controller shown in Fig. 7.35 provides satisfactory results
over a limited altitude range as found in [20], this type of modeling does
not take into account that the airspeed response due to throttle commands
also depends on the flight conditions, such as altitude and current flying
speed. Indeed, the aerodynamic forces acting on the airframe and the thrust
produced by the engine are strongly dependent on the air density ρ, which
varies nonlinearly with the altitude h and with the airspeed VT . Therefore,
the dynamics of the airspeed are a nonlinear function of the airspeed, the
altitude, the air density, the engine speed, and the throttle command as
follows:

V̇T = f(VT , h, ρ, n, δth) . (7.82)

Some papers suggest the design of robust nonlinear airspeed controllers
using a combination of H∞ control and feedback linearization [10, 11]. How-
ever, in [11] for example, the thrust is linearly modeled in terms of a throttle
setting and the control design does not take into account detailed nonlinear
dynamics of the thrust generated by the engine through the propeller.

In this section, a nonlinear airspeed controller is designed taking into ac-
count a nonlinear modeling of the thrust force generation. This airspeed con-
troller is to adapt itself over the flight envelope and be of low computational
load.

This section starts with a quick review of the engine and thrust models.
Second, the nonlinear transformations between the desired dynamics of the
airspeed and the engine speed are established. Third, a linear controller is
designed to shape the dynamics of the desired airspeed signal. Finally, the
section includes simulation results that demonstrate the effectiveness of the
airspeed control system [23].
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7.10.3 Engine Speed

The dynamics of the engine speed n are modeled by a first-order linear system
with the time constant τn and the engine speed reference signal nc as follows:

ṅ = − 1
τn
n+

1
τn
nc . (7.83)

7.10.4 Thrust Force

The thrust force FT generated by a propeller with the diameter D, and an
engine speed n is modeled as follows [10, 28]:

FT = ρn2D4CFT (J) , (7.84)

where the dimensionless thrust coefficient CFT (J) is defined as

CFT (J) = CFT1 + CFT2J + CFT3J
2 , (7.85)

with the advanced ratio J being

J =
VT

Dπn
, (7.86)

and the constant coefficients CFT1 , CFT2 , and CFT 3 as defined in Appendix
F.

7.10.5 Nonlinear Transformations

The nonlinear differential equation of the aircraft’s forward velocity u about
the x-axis in the aircraft’s body frame is found for example in Chap. 3 as
follows:

u̇ = −g sin θ +
1
m

(
FT + Cb

w(1,:)
[Xw Y w Zw]T

)

= −g sin θ +
1
m

(FT + cosα cosβXw − cosα cosβY w − sinαZw) .

(7.87)
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The aerodynamic forces Xw, Y w, and Zw are defined as follows:

Xw = q̄S
(
CX1 + CXαα+ CXα2α

2 + CXβ2β
2
)
,

Y w = q̄SCY ββ ,

Zw = q̄S (CZ1 + CZαα) . (7.88)

For values of α in the range of [0, ..., 0.2 rad] and β close to zero, and taking
u̇ as an approximation of V̇T , Eqs. 7.87 and 7.88 are simplified as follows:

V̇T ≈ − g sin θ +
1
m

(FT +Xw − Y w + αZw) ,

≈ − g sin θ +
1
m

[FT + q̄S (CX1 + CZ1)] +
q̄S

m
(CXα + CZα)α . (7.89)

The airspeed controller has to track the reference airspeed signal VT,com.
Therefore, the first stage of the controller is designed to shape the desired
dynamics of the airspeed as follows:

V̇T,des = KV (VT,com, VT ) , (7.90)

where the symbol KV designates a stabilizing control law for the desired
airspeed dynamics as a function of the commanded and measured airspeed.

The desired dynamics for the airspeed V̇T,des are converted into a thrust
command FT,com as follows:

FT,com = m[V̇T,des + g sin θ] − F b
aero,x , (7.91)

where the aerodynamic force F b
aero,x is expressed as

F b
aero,x =

q̄S

m
[ CX1 + CZ1 + (CXα + CZα)α ] . (7.92)

The thrust command FT,com is to be converted into a command for the engine
speed ncom. Equations 7.84 − 7.86 are rearranged in order to solve for ncom

in the following equation:

n2
com

(
CFT1ρD

4
)
+ncom

(

CFT2ρD
3VT

π

)

+CFT3ρD
2 V

2
T

π2
−FT,com = 0 . (7.93)

In order to solve the above equation at each time step, the airspeed is
assumed to be constant over the sampling time yielding

ncom =
Δ1VT +

√
Δ2V 2

T +Δ3FT,com

Δ4
, (7.94)

with
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Δ1 =
−CFT2ρD

3

π
,

Δ2 =

(
C2

FT2
− 4CFT1CFT3

)
ρD6

π2
,

Δ3 = 4CFT1ρD
4 ,

Δ4 = 2CFT1ρD
4 . (7.95)

The architecture of the nonlinear airspeed controller is shown in Fig. 7.36.
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Fig. 7.36 Nonlinear airspeed controller

7.10.6 Controller of the Desired Airspeed Dynamics

The controller for the desired airspeed dynamics is the same as in Fig. 6.13
with the following gains fc = 1, fi = 0.25 and Kb = 3 [s−1].

In order to avoid conflicts between the airspeed controller and the angle-of-
attack controller which cause undesired pitch oscillations, the bandwidth of
the airspeed controller is chosen to be smaller than that of the angle-of-attack
controller.

7.10.7 Simulation Results

Figure 7.37 shows the airspeed and the angle of attack during the aggressive
vertical maneuvers of Fig. 7.34. The airspeed reference signal is 30m/s and
must remain constant despite aggressive altitude changes. Figure 7.37 shows
the good performance of the airspeed controller and of the angle-of-attack
controller. Moreover, they do not conflict with each other, since there is no
mutual oscillatory influence from one to the other.
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Chapter 8

Autopilot for the Lateral Motion

This chapter is dedicated to the analysis and control of the lateral motion of
the aircraft and presents an architecture for the lateral-directional controllers
which use robust NDI in all of the control loops. This chapter brings an
innovative and practical approach for stability and robustness analyses of the
plant undergoing the dynamic inversion process. Finally, this chapter provides
practical suggestions for the selection of the uncertain model parameters
involved in the controllers.

8.1 Equations for Lateral Motion Analysis

A linear model of the longitudinal motion of the aircraft is constructed as
follows:

Δ̇xlat = Alat Δxlat + Blat Δulat , (8.1)

where the state vector is defined as xlat = [p r β φ]T and the control
input vector is ulat = [δaileron δrudder]T as shown in Fig. 8.1.

Lateral
plant

aileron�! p!
r!
�!
�!rudder�!

Fig. 8.1 Linear model of the aircraft lateral-directional motion

In order to build the linear longitudinal model and therefore obtain the
matrices Alat, Blat, Clat, and Dlat, a nonlinear differential equation must
first be formulated for each of the state variables as follows:

175
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ṗ = fp(x,u) ,
ṙ = fr(x,u) ,
β̇ = fβ(x,u) ,

φ̇ = fφ(x,u) ,

where the state vector of the aircraft is x, and the control vector is u.

8.1.1 Differential Equation for the Roll Rate p

The nonlinear differential equation for the roll rate is found from (3.44) as

ṗ = I−1
(1,1)(L

b − T b
p ) + I−1

(1,3)(N
b − T b

r ) , (8.2)

where

T b
p = Izxqp+ Izzqr − Iyyqr , (8.3)

T b
r = Iyyqp− Ixxqp− Ixzqr , (8.4)

and where the roll torque Lb and the yaw torque N b are expressed as a linear
combination of the control surface deflections, the sideslip angle β, and the
dimensionless roll rate p̃ = bp/2VT or the dimensionless yaw rate r̃ = br/2VT ,
respectively, as follows:

Lb = q̄SbCL(δa1, δa2, δe1, δe2, β, p̃, r̃) , (8.5)
N b = q̄SbCN (δr, β, r̃) . (8.6)

Chapter 3 provides definition of the other variables.

8.1.2 Differential Equation for the Yaw Rate r

The nonlinear differential equation for the yaw rate is found from (3.44) as

ṙ = I−1
(3,1)(L

b − T b
p ) + I−1

(3,3)(N
b − T b

r ) . (8.7)

8.1.3 Differential Equation for the Sideslip Angle β

The nonlinear differential equation of the aircraft’s sideslip angle β is derived
in Appendix A and is formulated as follows:
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β̇ = −rw +
Y w − FT cosα sinβ +mgw

y

mVT
, (8.8)

where

rw = Cw
b (3,:) [p q r]T = −p sinα+ r cosα ,

Y w = q̄SCY 1β ,

gw
y = g(cosα sinβ sin θ + cosβ cos θ sinφ− sinα sinβ cos θ cosφ) . (8.9)

8.1.4 Differential Equation for the Roll Angle φ

The differential equation for the roll angle is obtained as follows:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ . (8.10)

8.1.5 Matrices for the Lateral Mode

The linear model for the lateral motion is obtained around the following
nominal conditions pnom = qnom = rnom = 0, θnom = αnom, βnom =
0, φnom = 0 :

⎡

⎢
⎢
⎣

Δ̇p

Δ̇r

Δ̇β

Δ̇φ

⎤

⎥
⎥
⎦ = ALat

⎡

⎢
⎢
⎣

Δp
Δr
Δβ
Δφ

⎤

⎥
⎥
⎦+ BLat

[
Δδaileron

Δδrudder

]

, (8.11)

where the dynamic matrix is

ALat =
(
∂f

∂x

)

xnom

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̄ S b2 Izz CLp̃

2 VT D1

q̄ S b2 (Izz CLr̃−Ixz CNr̃)
2 VT D1

q̄ S b (Izz CLβ−Ixz CNβ)
D1

0

−q̄ S b2 Ixz CLp̃

2 VT D1

q̄ S b2 (Ixx CNr̃−Ixz CLr̃)
2 VT D1

q̄ S b (Ixx CNβ−Ixz CLβ)
D1

0

sinα − cosα q̄ S CY 1−FT cos α
mVT

g cos θ
VT

1 tan θ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

xnom

,

(8.12)

and the control input matrix is
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BLat =
(
∂f

∂u

)

xnom

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Izz ρ V 2
T S b CLa

2D1
− Ixz ρ V 2

T S b CNδr

2D1

− Ixz ρ V 2
T S b CLa

2D1

0
0

Ixx ρ V 2
T S b CNδr

2D1

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

xnom

,

(8.13)
with

D1 = IzzIxx − I2
xz . (8.14)

The numerical values of ALat and BLat are listed in Appendix E.

8.2 Dynamic Modes of the Lateral Plant

The eigenvalues of the dynamic matrix ALat are shown in Fig. 8.2.
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Fig. 8.2 Aircraft lateral motion eigenvalues
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8.2.1 Dutch Roll Mode

Figure 8.2 shows the existence of an oscillatory mode defined by the pair
of complex eigenvalues ωDutch,roll = −1.67 ± j4.47. This mode is called the
Dutch roll mode and has a frequency around ω = 4.95 rad/s and a damping
factor of ζ = 0.353. In this oscillatory mode, all of the state variables of the
lateral motion are involved, and the behavior of the aircraft at this mode is
a combination of roll and yawing motion with some sideslipping [1, 2]. This
mode can be excited by pulses on the rudder, which cause the aircraft to roll
and yaw at the same time. This mode is to be carefully controlled especially
during the landing phase in windy conditions.

8.2.2 Roll Subsidence Mode

This mode describes the response of the roll angle to some lateral control
inputs. It is a stable exponential mode which gives an idea of how fast the
aircraft will start to roll [1, 2]. This mode gets faster as the speed increases.
Figure 8.2 shows that the frequency of this mode is ωroll = 11.37 rad/s, and
therefore the aircraft has a quick roll response, which is to be expected since
the model corresponds to an aerobatic aircraft.

8.2.3 Spiral Mode

The spiral mode can be stable or unstable. In the case shown in Fig. 8.2,
the mode is unstable with a very low frequency ωspiral = 0.034 rad/s. For
instance, if the aircraft is given a small initial roll angle on the right, a sideslip
to the right is produced, which produces a yawing moment to the right. The
aircraft keeps turning while the roll angle keeps increasing. This causes the
aircraft to fly a steeper and steeper spiral.

8.3 Validation of the Linear Lateral Model

In order to validate the analytical terms found for Alat in (8.12) and Blat

in (8.13), the linear lateral model is simulated for some input perturbations
and compared with a nonlinear simulation for the input perturbations.
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8.3.1 Perturbation on the Aileron Command

The top plot in Fig. 8.3 shows a perturbation on the aileron of about 10 %
of the maximum aileron command. The other plots in Fig. 8.3 show that
the nonlinear and linear simulations are in good agreement for the roll rate
response p. For the other state variables, namely r, β, and φ, the linear and
the nonlinear simulations start to slowly separate after 4 s. However, this is
sufficient to validate the linear model response to an aileron perturbation.

Fig. 8.3 Validation of the lateral plant with a perturbation on the aileron
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8.3.2 Perturbation on the Rudder Command

The top plot in Fig. 8.4 shows a perturbation of about 40 % of the maximum
rudder deflection. This is a significantly strong perturbation, and yet the
deviations of the state variables between the linear and nonlinear simulations
are rather small. This validates the behavior of the linear lateral model after
a rudder perturbation.

Fig. 8.4 Validation of the lateral plant with a perturbation on the rudder
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8.3.3 Linearization at Different Operating Points

Figure 8.5 shows how the eigenvalues of the lateral motion evolve for different
airspeeds. All the modes become faster as the airspeed increases, except for
the spiral mode. Consequently, the corner frequency of the lateral-directional
controller has to become larger as the airspeed increases and be at least larger
than the frequency of the Dutch roll mode.
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Fig. 8.5 Eigenvalues of the plant for different aircraft speeds
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8.4 Stability Analysis of the Uncertain Dynamic
Inversion

In order to control the lateral-directional motion of the aircraft, the con-
trollers must deal with the roll and yaw axes simultaneously. Because the
plant dynamics are not perfectly known and the measurements are noisy,
perfect cancelation of the nonlinearities in the plant dynamics cannot be
achieved by NDI.

The contributions of this section to the analyses of stability and robustness
of the plant together with dynamic inversion for the lateral motion are:

• To show that transfer functions can be derived from the plant inputs to
the plant outputs, which include the dynamic inversion process and all the
relevant model parameter uncertainties and measurement uncertainties.

• To validate the control design and assess the stability and robustness prop-
erties using the notion of phase and gain margins from classical control
theory.

• To provide a procedure for the selection of uncertain model parameters
involved in the dynamic inversion paths.

8.4.1 Uncertain Model Parameters and Measurement
Data

The uncertain model parameters involved in the lateral motion are CLa1 ,
CLa2 , CLe1 , CLe2 , CLβ , CLp̃ , CLr̃, Ixx, Ixz, Izx, Izz , CNδr, CNβ , CNr̃ and
the measurement of p, r, β, VT .1 The uncertainty levels of these parameters
are summarized in Table 8.1.

Furthermore, it is assumed that there is no uncertainty on the aircraft
mass m, the wing surface S, the wingspan b, and the air density ρ.

8.4.2 Modeling of the Uncertain Dynamic Inversion

Figure 8.6 shows the NDI process involved in the innermost control loops of
the lateral-directional motion, namely the roll and yaw rate control loops.

If dynamic inversion operates perfectly, the channels ṗdes to p and ṙdes to r
are totally independent. Perfect dynamic inversion cancels the cross-coupling
between the roll and yaw axes, and each channel behaves as a pure integrator.

However, as soon as some uncertainty is introduced in the inversion
process, these pure integrators transform into either stable or unstable first-

1 Please refer to Chap. 3 or the Nomenclature for the definition of these parameters.
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Table 8.1 Summary of the parameter and measurement uncertainties for the lateral-
directional controllers

Parameter Nominal value Level of uncertainty Unit

CLa1 −3.395 × 10−2 ±10 % -
CLa2 3.395 × 10−2 ±10 % -
CLe1 −0.485 × 10−2 ±10 % -
CLe2 0.485 × 10−2 ±10 % -
CLβ −1.30 × 10−2 ±30 % -
CNδr 5.34 × 10−2 ±10 % -
CNβ 8.67 × 10−2 ±10 % -
CNr̃ −2.14 × 10−1 ±10 % -
Ixx 2.56 ±5 % kg m2

Ixz = Izx 0.5 ±5 % kg m2

Izz 11.3 ±5 % kg m2

p 0 ±5 % rad/s
r 0 ±5 % rad/s
β 0 ±5 % rad
VT 30 ±5 % m/s
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Fig. 8.6 NDI for lateral-directional motion control

order systems depending on the uncertainty. The rest of the chapter shows
that when the dynamic inversion path is not perfect anymore due to model
uncertainties and measurement errors, cross-couplings appear again between
the roll and yaw axes, and the transfer function of each channel is no longer
a pure integrator. Under certain uncertainty configuration, the dynamic in-
version process destabilizes the plant, which is manifest by the appearance of
unstable poles in the transfer functions. The following section is dedicated to
the analysis of the influence of the parameter and measurement uncertainties
on the stability of the plant after dynamic inversion.
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8.4.3 Linear Representation of the Lateral-directional
Motion

The plant and the dynamic inversion processes shown in Fig. 8.6 are linearized
and written in a state space representation as follows:

Δ̇x =
[
A − B(CBu)−1AuCu

]
Δx + B(CBu)−1Δu ,

= ADI Δx + BDI Δu , (8.15)

where the state vector is x = [p r β]T , and the control input vector is
u = [ṗdes ṙdes]T as shown in Fig. 8.7. The superscript u is used to indicate
an uncertain matrix.
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Fig. 8.7 Linear representation of the lateral-directional plant and the uncertain dy-
namic inversion process

8.4.4 Definition of the Matrices ADI, BDI, and CDI

for the Lateral Mode

Since the only relevant state variables of the lateral-directional motion that
are involved in the dynamic inversion process are p, r, and β, the aircraft
lateral-directional linear model is simplified as follows:

⎡

⎣
Δ̇p

Δ̇r

Δ̇β

⎤

⎦ =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎡

⎣
Δp
Δr
Δβ

⎤

⎦ +

⎡

⎣
b11 b12
b21 b22
b31 b32

⎤

⎦
[
Δδa
Δδr

]

,

⎡

⎣
Δ̇p

Δ̇r

Δ̇β

⎤

⎦ = Ap,r,β

⎡

⎣
Δp
Δr
Δβ

⎤

⎦ + Bp,r,β

[
Δδa
Δδr

]

. (8.16)
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The matrices ADI , BDI , and CDI found in (8.15) are obtained as follows:

ADI = Ap,r,β −
[

Bp,r,β(1:2,1:2)

(
Bu

p,r,β

)−1

Au
p,r,β(1:2,:)

Cu

01×3

]

∈ �3×3 .

(8.17)
The reduced and uncertain dynamic matrix Au

p,r,β(1:2,:)
used in (8.17) is

defined as

Au
p,r,β(1:2,:)

=
[
a

′
11 a

′
12 a

′
13

a
′
21 a

′
22 a

′
23

]

∈ �2×3,

=
[
a11 +Δa11 a12 +Δa12 a13 +Δa13

a21 +Δa21 a22 +Δa22 a23 +Δa23

]

, (8.18)

with the terms a11, a12, ..., a23 defined in (8.16). The reduced control input
matrix Bp,r,β(1:2,1:2) is defined as follows:

Bp,r,β(1:2,1:2) =
[
b11 b12
b21 b22

]

∈ �2×2 , (8.19)

with the terms b11, b12, ..., b22 defined in (8.16). Uncertain terms are added
to the reduced control input matrix Bu

p,r,β as follows:

(
Bu

p,r,β

)−1

=
[
b
′
11 b

′
12

b
′
21 b

′
22

]−1

∈ �2×2

=
[
b11 +Δb11 b12 +Δb12
b21 +Δb21 b22 +Δb22

]−1

. (8.20)

The control input matrix of the system of (8.15) is expressed as follows:

BDI =

[
Bp,r,β(1:2,1:2)

(
Bu

p,r,β

)−1

01×2

]

∈ �3×2 . (8.21)

The uncertain output or measurement matrix of the system in Fig. 8.7 is

CDI = Cu =

⎡

⎣
C

′
p 0 0

0 C
′
r 0

0 0 C
′
β

⎤

⎦ ∈ �3×3 , (8.22)

with C
′
p = 1+ Δp

p , C
′
r = 1+ Δr

r , and C
′
β = 1+ Δβ

β . A graphical representation
of the dynamic inversion process in the linear case and applied to the lateral-
directional axes is shown in Fig. 8.8.
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Fig. 8.8 Linear representation of dynamic inversion applied to the lateral-directional
axes

The explicit transfer functions can be obtained using the following formula

G(s) = CDI(sI − ADI)−1BDI =
CDI adj(sI − ADI)BDI

|sI − ADI | . (8.23)

It is known that for multi-input and multi-output (MIMO) systems, checking
stability margins “one-loop-at-a-time” is inappropriate and that the robust
stability can be assessed by analyzing the shape of the singular value (SV)
σ̄ [3]. However, the stability of each separate channel ṗdes → p and ṙdes →
r will be still qualitatively discussed in the next two sections. They give
practical insight on how the uncertain dynamic inversion affects stability
of each channel and give suggestions on how to choose the values of the
model coefficients involved in the dynamic inversion paths. Robust stability
and robust performance of the lateral-directional control system is discussed
later in this chapter.

8.4.5 Stability of the Channel ṗdes to pmeas

In this section, the stability of the plant channel from ṗdes to pmeas is analyzed
when the most relevant model parameters are uncertain.

If the dynamic inversion and the measurement of p are perfect, the trans-
fer function pmeas/ṗdes is one of a pure integrator. However, when the model
parameters used in the inversion process contain uncertainties, the pure in-
tegrator transforms into a system whose transfer function contains poles and
zeros. The explicit transfer function pmeas/ṗdes containing the uncertain pa-
rameters is obtained with (8.23).
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Simulation results show that this transfer function is most sensitive to the
variations of the model parameters a11 = ∂ṗ/∂p and b11 = ∂ṗ/∂δa as defined
in (8.16).

Figure 8.10 shows that some unstable poles appear as soon as Δb11/b11 <
0. Uncertainties on the parameter a12 = ∂ṗ/∂r do not affect the stability of
the channel (see numerical values of the lateral-directional matrix in Appen-
dix E). The third most influential parameter is a13 = ∂ṗ/∂β. The effects of
the uncertainties on a13 are shown in Fig. 8.9.
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Fig. 8.9 Chart of stable and unstable poles appearing in the transfer function p/ṗdes

due to uncertainties on the parameters a11, b11 and a13

The light gray area in Fig. 8.9 indicates the combination in the parameter
uncertainties which results in stable poles only. Therefore, during the design
of the roll rate controller, we suggest taking as plant parameters running on
the onboard computer the following coefficients:

a11 =
∂ṗ

∂p
= a11,nom

(

1 −
∣
∣
∣
∣
Δa11

a11

∣
∣
∣
∣

)

,

a13 =
∂ṗ

∂β
= a13,nom

(

1 −
∣
∣
∣
∣
Δa13

a13

∣
∣
∣
∣

)

,

b11 =
∂ṗ

∂δa
= b11,nom

(

1 +
∣
∣
∣
∣
Δb11
b11

∣
∣
∣
∣

)

. (8.24)

Another parameter whose uncertainty has a significant influence on the sta-
bility of the channel from ṗdes to p is the measurement data of the roll rate.
Simulation results show that any uncertainty in the roll rate measurement
such that Δp/p > 0 causes the appearance of large unstable poles in the
regions (1) and (3) in Fig. 8.9, and a small right half-plane pole also appears
in region (2).
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Therefore, the roll rate measurement data used for the dynamic inversion
process should be selected as follows:

p = pmeas

(

1 −
∣
∣
∣
∣
Δp

p

∣
∣
∣
∣

)

. (8.25)

Other parameters such as Δr/r, Δβ/β, b12 and b22 have almost no influ-
ence on the stability of the channel ṗdes → pmeas. Additional simulations
show that it is best for stability to select the parameters as follows:

a21 =
∂ṙ

∂p
= a21,nom

(

1 −
∣
∣
∣
∣
Δa21

a21

∣
∣
∣
∣

)

,

a22 =
∂ṙ

∂r
= a22,nom

(

1 −
∣
∣
∣
∣
Δa22

a22

∣
∣
∣
∣

)

,

a23 =
∂ṙ

∂β
= a23,nom

(

1 −
∣
∣
∣
∣
Δa23

a23

∣
∣
∣
∣

)

. (8.26)

This choice for the selection of the parameters used in the dynamic inversion
path will be confirmed in the next section when the stability of the channel
ṙdes to rmeas is discussed.

8.4.6 Stability of the Channel ṙdes to rmeas

For the analysis of the stability of the channel ṙdes to rmeas, all of the terms
discussed in the previous section are selected according to (8.24) and (8.25).
For all other coefficients involved in dynamic inversion, extensive simulations
show that it is best to choose

a21 =
∂ṙ

∂p
= a21,nom

(

1 −
∣
∣
∣
∣
Δa21

a21

∣
∣
∣
∣

)

, p = pmeas

(

1 −
∣
∣
∣
∣
Δp

p

∣
∣
∣
∣

)

,

a22 =
∂ṙ

∂r
= a22,nom

(

1 −
∣
∣
∣
∣
Δa22

a22

∣
∣
∣
∣

)

, r = rmeas

(

1 −
∣
∣
∣
∣
Δr

r

∣
∣
∣
∣

)

,

a23 =
∂ṙ

∂β
= a23,nom

(

1 −
∣
∣
∣
∣
Δa23

a23

∣
∣
∣
∣

)

, β = βmeas

(

1 −
∣
∣
∣
∣
Δβ

β

∣
∣
∣
∣

)

,

b21 =
∂ṙ

∂δa
= b21,nom

(

1 −
∣
∣
∣
∣
Δb21
b21

∣
∣
∣
∣

)

,

b22 =
∂ṙ

∂δr
= b22,nom

(

1 +
∣
∣
∣
∣
Δb22
b22

∣
∣
∣
∣

)

. (8.27)
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Simulation results show that the stability of the channel ṙdes to rmeas is
influenced mostly by the terms b21, Δr/r, and Δβ/β. A heuristic rule that
seems to work remarkably well is to select uncertainty levels in order to:

• Estimate the measurement data intentionally too low
• Estimate negative model parameters intentionally too low
• Estimate positive model parameters intentionally too high.

Based on this statement and on the parameter selections of (8.24) to (8.27),
the channel ṙdes to rmeas only contains stable poles and zeros as shown in Fig.
8.11. Almost any other configuration of uncertain parameters yields unstable
poles.
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Fig. 8.11 Bode plot and root locus of the channel ṙdes to rmeas with uncertainty
levels indicated in (8.24) to (8.27)

8.5 Roll and Yaw Rate Controllers

Figure 8.13 shows the SVs of the plant G represented in Fig. 8.12. Clearly,
the loop gain has no integrator behavior, and the SVs of G are small at 0 Hz.
Therefore, in order to avoid a large steady-state error in the closed loop,
the roll and yaw rate controllers shown in Fig. 8.14 are designed with an
integrator behavior.

The SVs σ(G) and σ̄(G) are also largely separated, they are said to be
unbalanced. Therefore, the controller K is designed to balance the SVs as
much as possible, i.e., in order that the SVs σ(GK) and σ̄(GK) are close to
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the same values. This ensures that the speed of the responses will be nearly
the same in all channels of the system.
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Fig. 8.12 The lateral/directional plant after uncertain dynamic inversion
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30 % uncertainty on the plant parameters selected according to (8.27)
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8.5.1 Architecture of the Controllers

Figure 8.14 shows the complete architecture of the roll and yaw rate controller
K.
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Fig. 8.14 Complete architecture of the roll and yaw rate controllers

8.5.2 Open-loop Analysis of the Roll and Yaw Rate
Controllers

For the analysis of the loop gain (roll, yaw rate controllers and plant), Fig.
8.14 is modified as shown in Fig. 8.15, where the inner-rate feedback of the
turn rates pmeas and rmeas are included as part of the new plant G1. The
state space representation of the plant G1 is obtained as follows:

ẋ =
[

ADI − BDI

[
Kb,roll 0 0

0 Kb,yaw 0

]

CDI

]

x

+ BDI

[
Kb,roll 0

0 Kb,yaw

](
up

ur

)

, (8.28)

ymeas = CDI (1:2,:) x . (8.29)
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Fig. 8.15 Open-loop analysis of the roll and yaw rate controllers

The controller K1 is a block diagonal controller as follows:

K1 =

[
fi Kb,roll

s 0
0 fi Kb,yaw

s

]

. (8.30)

The controller gains are kb,roll=22 [s−1] and Kb,yaw=23 [s−1], and in both
controllers the integrator coefficient is fi = 0.25.

Figure 8.16 shows that the SVs of the open-loop gain G1K1 have been
balanced such that they have approximately the same gain at low frequencies.
Therefore, there is about the same control bandwidth for all the channels of
the system. At low frequencies, the SVs have a slope of −20dB/decade with
a large gain in order to avoid steady-state error in tracking the commanded
signal pcom and rcom.

Figure 8.17 shows the SVs of the open-loop gain G1K1, where the plant
G1 is obtained with the parameter selection indicated in (8.24) to (8.27) with
30 % uncertainty on all the dynamic and control input matrix terms and 30 %
uncertainty on all the measurement data.

8.5.3 Frequency-domain Stability and Robustness
Bounds

8.5.3.1 Low Frequencies

The robust performance bounds are specified in Figs. 8.16 and 8.17. They
are given in terms of the minimum SV σ(G1K1) being sufficiently large at
low frequencies.

To ensure that external disturbances such as wind or wind gusts are at-
tenuated by at least a factor of 0.1 up to the frequency ω = 0.5 rad/s (see
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Fig. 8.16 SVs of the loop gain G1K1, with perfect dynamic inversion of the plant.
kb,roll=22 [s−1] and Kb,yaw=23 [s−1]

Military Specifications 1797, [1]), σ(G1K1) should be larger than 20 dB up
to the frequency ω = 0.5 rad/s.

Moreover, the corner frequency ωc of the loop gain should be larger than
the frequency of the oscillatory Dutch roll mode ωDutch,roll = 4.95 rad/s. The
results shown in Fig. 8.16 satisfy all of the low-frequencies requirements.

The results of Fig. 8.17 are obtained with uncertainties in the dynamic
inversion. The controlled system slightly violates the robust performance
bounds at low frequencies, but this is not critical. The bandwidth is slightly
too low, and the controller gains Kb,roll and Kb,yaw should be slightly in-
creased.

8.5.3.2 High Frequencies

At high frequencies, the maximal SVs σ̄(G1K1) are to be upper-bounded to
guarantee stability robustness of the closed-loop system against uncertainties
due to actuator modeling inaccuracies, neglected aircraft flexible modes, high-
frequency unmodeled dynamics, plant parameter variations, and sensor noise
and errors.
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Fig. 8.17 SVs of the loop gain G1K1, with uncertain dynamic inversion of the
plant by 30% uncertainty level on each variable according to (8.24) to (8.27).
kb,roll=22 [s−1] and Kb,yaw=23 [s−1]

The uncertainty model m(ω) is inspired by [1] and modified to assume
that the rigid-body model of the aircraft is accurate to within 30 % up to
a frequency of 3 rad/s, after which the uncertainty grows at the rate of
20 dB/decade. This uncertainty model has a transfer function as follows:

m(ω) =
∣
∣
∣
∣
jω + 3

10

∣
∣
∣
∣ . (8.31)

In order to guarantee stability robustness against modeling errors, the con-
dition in (8.32) must be satisfied at the frequencies where plant uncertainties
become significant, i.e., m(ω)  1 or 1/m(ω) � 1 (ω > 7 rad/s). This bound
is shown in Figs. 8.16 and 8.17.

σ̄ (G1K1(jω)) <
1

m(ω)
=
∣
∣
∣
∣

10
jω + 3

∣
∣
∣
∣ . (8.32)

In the case of perfect dynamic inversion (Fig. 8.16) or imperfect dynamic
inversion with 30 % uncertainty on all the plant coefficients (Fig. 8.17), the
high-frequencies requirements are well satisfied.
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8.6 Coordinated-turn Controllers

The lateral-directional control system is designed such that the aircraft makes
coordinated turns by having the bank angle φ(t) follow some desired com-
mand φc(t) and maintaining at the same time the sideslip angle β(t) at zero.

8.6.1 Sideslip Angle Controllers

The nonlinear differential equation of the sideslip angle is derived in Appendix
D and is rewritten in a more convenient form in (8.33).

β̇ =
1
VT

[g sinφ cos θ + ay] + p sinα− r cosα . (8.33)

By inverting (8.33), the commanded yaw rate is expressed as a nonlinear
function of the desired rate of change of the sideslip angle as follows:

rcom = − β̇des

cosα
+

1
VT cosα

[g sinφ cos θ + ay] + p tanα . (8.34)

The complete architecture of the lateral-directional controller is shown in Fig.
8.18.
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Fig. 8.18 Complete lateral-directional controller

8.6.2 Desired Dynamics of the Bank Angle

The controller for the desired dynamics of the bank angle φ is shown in
Fig. 8.19. The controller gains are Kref,φ = 2.7 [s−1], Kf,φ = 1, fc,φ = 1,
fi,φ = 0.25, and Kb,φ = 3 [s−1].
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8.6.3 Desired Dynamics of the Sideslip Angle

The controller for the desired dynamics of the sideslip angle β is shown in
Fig. 8.20. The controller gains are fc,β = 0.5, fi,β = 0.25, and Kb,β = 5 [s−1].
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Fig. 8.20 Controller of the desired dynamics for the sideslip angle

8.6.4 Simulation Results

Figure 8.21 shows the results of a nonlinear simulation for aggressive lateral
commands. The simulation also includes actuator dynamics and saturations.
The top plot in Fig. 8.21 shows the reference signal of the roll angle. The
aircraft is capable of tracking a step roll angle input with no overshoot with
zero steady-state error and very good time response. There is a systematic
small tracking error when the reference roll angle signal is a ramp, but this
is acceptable. The tracking of the roll and yaw rates commands are accurate
and very fast, with no tracking error for a step input or a ramp, which is
very satisfactory. The controller for the sideslip angle has good performance
as shown in the bottom plot of Fig. 8.21. The overall control performance of
the lateral-directional motion is very satisfactory.
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Chapter 9

Reconfigurable Guidance System

This chapter presents a guidance algorithm for a UAV. It combines a nonlin-
ear lateral guidance control law, originally designed for UAVs tracking circles
for mid-air rendezvous, with a new simple adaptive path-planning algorithm.
Preflight path planning consists only of storing a few waypoints guiding the
aircraft to its targets. The chapter presents an efficient way to model no-fly
zones (NFZ), to generate a path in real time to avoid known or “pop-up”
obstacles, and to reconfigure the flight path in the event of reduced aircraft
performance. Simulation results show the good performance of this recon-
figurable guidance system which, moreover, is computationally efficient [1,
2].

9.1 Introduction

Over the last two decades, many path-planning algorithms have been inves-
tigated, especially for ground robots, for a single UAV, and more recently
for a formation of UAVs. Among the methods used in path planning, we can
mention the PRM method [3], which explores all the possible paths within
the space surrounding the vehicle and finally selects the lowest cost route.
However, the computational load makes the PRM method impractical for
real-time path planning in small UAVs. An extension to the PRM method has
recently been presented in [4]. It is called modified rapidly-exploring random
trees, which is capable of efficiently searching for feasible paths in the space
while taking into account constraints from the vehicle performance. However,
efforts are still going on to implement an on-the-fly path-replanning system
as pop-up obstacles are discovered or when the performance of the vehicle
degrades.

There are other methods based on potential field functions. However, the
primitive forms of potential field functions present some difficulties when
choosing an appropriate potential function, and the algorithm may be stuck

201
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at some local minimum [5]. Since then, a whole family of potential field
methods with superior performance has been developed. They are known
as navigation functions [6, 7]. Other path-planning techniques are based on
optimization methods, such as mixed integer linear programming or MPC
techniques [8], which still involve intensive computations.

In this chapter, we present a reconfigurable guidance algorithm for a UAV.
It newly combines the lateral guidance control law from [9] and [10], originally
designed for UAVs tracking circles for mid-air rendezvous, with a new, sim-
ple adaptive path-planning algorithm, which takes advantage of the curve
path-following property of the above-mentioned lateral guidance law. This
path-planning method generates on-line a flight path based on predefined
waypoints, takes into account the aircraft performance, avoids known or ap-
pearing obstacles, is simple to implement, and requires low computational
power.

Guidance
System

, ,N E Dx x x

, ,N E DV V V

Waypoints list

No-Fly Zone

max, /left right�

c�

ch

cV

Fig. 9.1 Guidance system inputs and outputs

As shown in Fig. 9.1, the guidance system needs six inputs. The first input
concerns the aircraft’s current ground position (xN , xE , xD). The second
input is the aircraft’s ground velocity (VN , VE , VD). The mission of the
aircraft is defined by a list of waypoints through which the aircraft is to fly.
Furthermore, if in the area of the flight operation some obstacles or NFZ are
known in advance or appear during the flight, their location and dimensions
can be specified to the guidance system via the fourth input. A constraint
on the maximum bank angle φmax,left/right is given to the guidance system.
Finally, the parameter τroll is provided as an estimate of the maximum time
needed to bank the aircraft to φmax. Note that the last four inputs can
be changed dynamically, and the first two inputs are obviously constantly
updated.

The outputs of the guidance system are the commanded bank angle φc,
whose value is computed by the lateral guidance system detailed in Sects. 9.2
and 9.3. The altitude command signal hc is computed by the altitude guidance
system described in Sect. 9.4. Finally, the commanded aircraft velocity Vc can
be adaptively controlled by the guidance system in order to efficiently avoid
obstacles and reach the goals of the mission optimally. Note, however, that
in this chapter the velocity command Vc is kept to a constant value.
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9.2 Lateral Guidance System

9.2.1 Lateral Guidance Control Law for Trajectory
Tracking

Consider Fig. 9.2, where an aircraft has to be guided to track the desired
path. From the current location of the aircraft O, we can draw a circular
arc that intersects the desired path at a “reference point” P, where R is the
radius of the circle-arc OP, L1 is the segment that joins the center of the
aircraft O to the reference point P, and η is the angle between the aircraft’s
velocity vector and the line L1.

Desired path

�

nV
�

R

R

�
�



Reference point

la

O

P

C

1L

Fig. 9.2 Guidance law geometry

The lateral acceleration required to bring the aircraft to the reference point
following the arc of a circle is

al =
V 2

n

R
, (9.1)

where the ground speed of the aircraft (taken in the local navigation frame) is
Vn =

√
V 2

N + V 2
E . Let us express R in terms of the distance L1 and the angle

η. The triangle (OCP) is isosceles in C, therefore, we have L1 = 2R sin θ, or
also L1 = 2R cos γ. Moreover, the angle γ = π

2 − η, and consequently, the
length L1 can be expressed in terms of the angle η as follows:

L1 = 2R sin η , (9.2)

⇐⇒ R =
L1

2 sin η
. (9.3)

The lateral acceleration in (9.1) can now be written as
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al =
2V 2

n

L1
sin η . (9.4)

In turn, the lateral acceleration al is converted to a bank angle command,
φcom ≈ al/g (see Appendix D.2).

9.2.2 Advantages and Properties of the Method

9.2.2.1 Remarkable Performance for Curve Path Following

This control law is remarkable in the sense that it is particularly suited to fly
circles. Indeed, if the aircraft is following a desired circular path, then the ac-
celeration command al generated by the guidance system is exactly the same
as the associated centripetal acceleration. In other words, the guidance logic
chooses a reference point on the desired path at a distance L1 ahead of the
aircraft, and generates the acceleration command that would lead the vehicle
to hit the point after flying a circular arc, thus leading to zero steady-state
error for a circular path. As shown in Chap. 3 of [9], the performance of such
a lateral guidance law for circle following in the presence of wind is superior
to that obtained with PD or PID controllers. With the nonlinear guidance
law al = 2V 2

n

L1
sin η, the vehicle ground speed Vn is used to generate the accel-

eration command, which intrinsically takes into account the inertial velocity
changes due to the wind effects, and adapts to the situation accordingly.

9.2.2.2 Properties Associated with the Angle η

Equation 9.4 shows that the direction of the acceleration al depends on the
sign of η. For example, if the reference point is on the right side of the
direction of the aircraft velocity vector, then the aircraft will be commanded
to accelerate to the right, and finally the aircraft will tend to align its velocity
vector with the direction of L1.

In practice the distance L1 is fixed to a certain value, and two cases arise:

• If the aircraft is far away from the desired path, then the direction of L1

makes a large angle with the desired path. Therefore, the guidance law
chooses the reference point on the desired trajectory in such a way that
the aircraft rotates its velocity direction to approach the desired path at
a large angle.

• If the aircraft is close to the desired path, then the direction of L1 makes a
small angle with the desired path. Therefore, the guidance law chooses the
reference point on the desired trajectory in such a way that the aircraft
rotates its velocity direction to approach the desired path at a small angle.
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Since the angle η contains the information about the upcoming path, this
geometric factor has the effect of a feedforward control.

9.2.3 Drawback of the Method

A drawback of the control law in (9.4) is that it does not contain any element
of an integral control. Therefore, the lateral guidance law requires to be pro-
vided with an unbiased lateral acceleration measurement, and a non-biased
bank angle estimate.

9.2.4 Selection of L1

The design parameter in the lateral guidance logic is the distance L1 between
the vehicle and the reference point as shown in Fig. 9.3. It is explained in [9]
that for a small magnitude of η, the guidance formula can be approximated
in terms of the cross-track error y as follows:

al =
2V 2

n

L1
sin η ≈ 2

Vn

L1

(

ẏ +
Vn

L1
y

)

. (9.5)

Desired path

�

nV
�

Reference point

y

O

P

1L

Fig. 9.3 Guidance law geometry

Equation 9.5 shows that the guidance law is equivalent to a PD controller,
in which the ratio between the vehicle speed Vn and the distance L1 is an
important factor that behaves as the gain of the controller. A small value of
L1 leads to a high control gain and vice versa. The control gain is limited by
the inner loop bank control bandwidth (2−3 rad/s). With a nominal flight
velocity of around 25 m/s, the distance L1 has been chosen to be L1 = 150 m.
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9.2.5 Path-planning Objective

The main objective of this chapter is to generate on-line an appropriate ref-
erence path from which the reference point P can be selected and used by
the lateral guidance control law.

9.3 Regular Waypoint Tracking

The regular waypoint tracking algorithm guides the aircraft through the pre-
defined waypoints. An imaginary segment joins two consecutive points, and
we define the segment k to be the segment that joins the waypoints WPk

and WPk+1. The reference point, P , from the guidance law presented above,
lies on this segment and is L1 distant from the center of the aircraft; see Fig.
9.4.

9.3.1 Computation of the Reference Point P

The angle of the segment k with respect to North is defined as follows:

ψseg(k) = tan−1

(
WPk+1,E −WPk,E

WPk+1,N −WPk,N

)

∈ [−π;π] . (9.6)

The coordinates of the current location of the center of the aircraft are in
the North−East plane (XN , XE). The angles χ and λ, and the distance d1

as shown in Fig. 9.4 can be computed as follows:

χ = tan−1

(
XE −WPk,E

XN −WPk,N

)

∈ [−π;π] ,

λ = |ψseg(k)| − |χ| ,
d1 =

√
(XE −WPk,E)2 + (XN −WPk,N )2 . (9.7)

The distance between WPk and the reference point P is given by

[WPk, P ] = [WPk, H ] + [H,P ] = d1 cosλ+
√
L2

1 − d1
2 sin2 λ . (9.8)

Finally, the coordinates of the reference point P can be computed with

PN = WPk,N + [WPk, P ] cosψseg(k) ,

PE = WPk,E + [WPk, P ] sinψseg(k) . (9.9)
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Fig. 9.4 Regular waypoint tracking

9.3.2 Logic for Segment Switching

As the aircraft flies, the reference point P also moves along the desired tra-
jectory, which consists of consecutive segments. Therefore, the guidance al-
gorithm has to select properly the current segment on which the reference
point P is to be selected.

Equation 9.10 gives the two conditions that are continuously checked:

d2 ≥ L1, d1 cosλ < ‖WPk,WPk+1‖ . (9.10)

If one of the two conditions is not satisfied anymore, the guidance system
has to select a reference point P on the next segment [WPk+1,WPk+2]. On
the other hand, if the two conditions are still satisfied, the guidance system
computes a reference point P on the segment [WPk,WPk+1]. In that case,
the path-planning system has to further check the lateral distance between
the aircraft and the segment followed in order to make sure that it selects a
point on the current segment that is L1 distant from the aircraft.
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Two subcases can be distinguished:

• If |λ| > π/2, the aircraft is somewhere behind the first point of the current
segment. In that case, the distance L1 is selected as L1 = max(L1, d1).

• If |λ| < π/2, the guidance algorithm proceeds in checking the lateral dis-
tance [C,H ] = d1 sinλ. If [C,H ] > L1, then the distance L1 is assigned a
new value with L1 = 1.1 × [C,H ].

In this way, we always ensure that the arm L1 is long enough to intersect the
desired trajectory, so that a reference point P always exists.

9.3.3 Computation of the Roll Angle Command φcom

The direction of the aircraft’s ground speed is computed with

ψ = tan−1

(
VE

VN

)

∈ [−π;π] . (9.11)

The lateral guidance control law needs the angle η, which is computed as
follows (see Fig. 9.6):

η = Ω − ψ ,

Ω = tan−1

(
PE −XE

PN −XN

)

∈ [−π;π] . (9.12)

In practice, we want the angle η to be in the range [−π;π], therefore the
following code implementation is used

while (η > π) η = η − 2π ,
while (η < −π) η = η + 2π . (9.13)

Once the angle η is in the range [−π;π], the angle η is further limited
(saturated if needed) to be in the range [−π/2;π/2]. The reason for this is that
when the angle η becomes large and approaches π/2 (or −π/2, respectively)
we want the aircraft to bank to the right (or to the left, respectively) as
much as is possible to quickly come closer again to the reference trajectory.
Indeed, since the angle η is used in the roll angle command with φcom =
2V 2

n sin η/(L1g), if η exceeded π/2 (−π/2) in the range [π/2;π] ([−π/2;−π])
the term sin η would decrease in amplitude, which means that the commanded
roll angle also decreases, and the aircraft would come back more slowly to
the reference trajectory, which is not desired. Finally, the control signal for
the roll angle φcom is saturated within the range [−φmax;φmax].
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9.4 Altitude Guidance Law

The altitude control signal is hc and is computed as follows:

hc = WPk,D + γd1 cosλ , (9.14)

with the desired flight path angle defined as follows:

γ = tan−1

⎛

⎝ WPk+1,D −WPk,D√
(WPk+1,N −WPk,N )2 + (WPk+1,E −WPk,E)2

⎞

⎠ , (9.15)

with λ and d1 defined in (9.7).
Figure 9.7 shows the aircraft flying from waypoint WPk to WPk+1. The

desired altitude is hc computed as a function of the aircraft’s ground position.
The aircraft’s current altitude is XD, which is obviously too high compared
with hc in Fig. 9.7, and the altitude controller of Section 7.5 must correct
this altitude error.

Remarks:

• Equations 9.14 and 9.15 are used to generate the altitude reference signal
in the normal waypoint tracking mode.

• In the modes evasion maneuver (mode 1) or circle tracking (mode 2), the
altitude reference signal is kept at the value where it was before the guid-
ance system entered one of these modes. Indeed, in mode 1 or 2 the aircraft
takes a path that is not known in advance and for which no altitude may
be specified. Once the guidance system switches back to normal waypoint
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Fig. 9.7 Altitude tracking geometry

tracking mode (mode 0), the altitude control signal is again constantly
recomputed.

9.5 NFZ and Obstacles

Before the flight, the location of any known NFZ are stored in the memory of
the autopilot. If the UAV is equipped with scanning sensors that can detect
pop-up obstacles, our path-planning system will recompute on the fly a new
trajectory. It determines whether an NFZ or an obstacle interferes with the
planned path by using an imaginary “detection line” of length RLA in front
of the aircraft, as shown in Fig. 9.8. The distance RLA defines the so-called
“look-ahead distance”. If any part of this detection line penetrates an NFZ
or an obstacle, avoidance action (mode 1) is immediately taken as described
in the next section.

9.5.1 Definition of an NFZ

An NFZ is any airspace in which an aircraft is not permitted to fly. This
airspace can be of any arbitrary shape. However, in order to simplify the
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LAR

No-Fly Zone

NFZR

Fig. 9.8 NFZ and look-ahead distance RLA

guidance algorithm, two conditions are imposed on how the NFZ is repre-
sented.

First, the vertical limits of the NFZ are not considered such that the
NFZ is essentially a 2D surface. The aircraft is not allowed to pass over the
NFZ. Second, the shape of the NFZ is chosen to be a circle. In this way, the
avoidance maneuver can be an arc of a circle in order to benefit from the
guidance control law especially suited to track circles, which are described by
only two parameters, namely their center and their radius.

Although this chapter discusses the avoidance of one circular NFZ only, the
algorithm can be extended to multiple NFZs with some simple modifications.
Also, a complex NFZ shape can be represented by multiple circles.

9.5.2 Choice of an Appropriate Look-ahead Distance
RLA

The distance RLA defines the so-called “look-ahead distance”. If any part
of this detection line penetrates an NFZ or an obstacle, avoidance action is
immediately taken as described in the next section.

The look-ahead distance RLA is chosen such that the aircraft will fly an
arc that stays just outside the NFZ and start the evasion maneuver as late
as possible. The value of RLA depends on the radius RNFZ of the NFZ,
the ground speed of the aircraft Vn, and the maximum bank angle of the
aircraft φmax. Given these parameters, and assuming a coordinated turn, the
minimum turn radius that the aircraft can fly is given by

Rmin =
V 2

n

g tan(φmax)
,

Vn =
√
V 2

N + V 2
E . (9.16)

The subscript n attached to the ground speed of the aircraft Vn indicates
that the speed is taken in the local navigation frame.
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In the case of an NFZ with infinite radius, the aircraft would have to make
a 90◦ turn, in which case RLA,min = Rmin. For any NFZ with a finite radius,
the aircraft has to turn less than 90◦ to avoid it. Figure 9.9 shows the situation
where the aircraft is at the point where it begins its turn and is guided so
that its path becomes tangent to the edge of the NFZ. A triangle can be set
up with vertices at the center of the NFZ, at the center of the aircraft, and
at a point Rmin off the right wing-tip. The minimum look-ahead distance
RLA,min is constructed using the Pythagorean theorem

(RLA,min +RNFZ)2 +R2
min = (Rmin +RNFZ)2 . (9.17)

By expanding both sides and regrouping the terms, we obtain the following
equation, where the distance RLA,min is the unknown variable

R2
LA,min + 2RLA,minRNFZ − 2RminRNFZ = 0 . (9.18)

Equation 9.18 admits two real solutions of which we only keep the positive
one

RLA,min =
√
RNFZ

√
RNFZ + 2Rmin −RNFZ . (9.19)

minR

minR
,minLAR

NFZR

NFZR

Fig. 9.9 Approaching an NFZ or an obstacle. Definition of the look-ahead distance
RLA

To obtain the final value for RLA, compensation must be made for the
delay needed to initiate the turn and to bank to φmax. The assumption is
made that while the aircraft is initiating the turn, it continues to fly level,
and then as soon as it reaches φmax it takes a minimum radius turn. The
characteristic time τroll to roll to φmax can be multiplied by the aircraft’s
speed to obtain the distance the aircraft will travel during this delay, which
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is added to RLA,min. The resulting look-ahead distance is

RLA = RLA,min + Vn τroll . (9.20)

9.6 Detection of the NFZ

As mentioned before, the algorithm monitors an “imaginary” line of length
RLa ahead of the aircraft, and checks if it penetrates any NFZ or obsta-
cle. First, the distance DNFZ from the aircraft to the center of the NFZ is
calculated; see Fig. 9.10:

DNFZ =
√

(NFZN −XN )2 + (NFZE −XE)2 . (9.21)

NNFZ
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NX

ENFZ EX

�NFZD

LAR

NFZ�

nV
�

NFZ LAR R�

NFZ

!

Fig. 9.10 Geometry of the NFZ approach

If the condition
DNFZ ≤ RNFZ +RLA (9.22)

is satisfied, where the length RNFZ is the radius of the NFZ, then the aircraft
is considered to be within range of the NFZ, which means that the aircraft
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is in the light-gray area in Fig. 9.10. In this case, a further check is made to
see if a part of the detection line is touching the NFZ.

There are two possible cases shown in Figs. 9.11 and 9.12 depending on
the orientation of the aircraft. The distances DNFZ and RLA are known. We
also define the angle ψNFZ between the North direction at the center of the
aircraft and the segment of length DNFZ as follows:

ψNFZ = tan−1

(
NFZE −XE

NFZN −XN

)

. (9.23)

A pair of triangles is created as shown in Fig. 9.11. The length of the edges
y and a can easily be calculated, using

Δ = |ψNFZ − ψ| , ∈ [−π;π] ,
y = DNFZ · sinΔ ,

a = DNFZ · cosΔ . (9.24)

!

LAR

V
�

NFZD

NFZR

x

y
a

Fig. 9.11 Diagram of NFZ detection algorithm, Case 1 (detected)

Case 1: a ≤ RLA

Case 1 applies if a ≤ RLA. The limiting case occurs when edge a is tangent
to the NFZ. Therefore, y will have a length equal to RNFZ . Thus, the NFZ
touches the detection line if y ≤ RNFZ .
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Fig. 9.12 Diagram of NFZ detection algorithm, Case 2 (not detected)

Case 2: a > RLA

Case 2 applies if a > RLA. The limiting case occurs when the end of the
detection line is on the edge of the NFZ. This can be checked by comparing
the length of edge x with the radius of the NFZ, so that the NFZ touches
the detection line if x ≤ RNFZ , where x =

√
y2 + (a−RLA)2.

The check for Case 1 or Case 2 is only done if Δ is less than or equal
to 90◦. If Δ is greater than 90◦, then the center of the NFZ lies behind the
aircraft and no action is taken. Figure 9.13 shows the diagram of the NFZ
detection algorithm.

9.7 NFZ Avoidance Algorithm

The NFZ avoidance algorithm guides the aircraft around any NFZ that the
aircraft encounters. The avoidance method is designed to be simple to imple-
ment while allowing the aircraft to reach waypoints close to the edge of the
NFZ.
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9.7.1 On-line Selection of an Avoidance Path Template

One key feature of this avoidance method is the on-line generation of a cir-
cular arc around the NFZ as a reference path, drawn as a dashed line in Fig.
9.14. Such a path minimizes the distance the aircraft flies to avoid the NFZ.
Moreover, we saw at the beginning of this chapter that the lateral guidance
control law is particularly efficient in tracking circles.

Furthermore, choosing the reference path to be circular allows the template
path to be easily defined in relationship to the NFZ dimensions. It is indeed
defined by the center of the NFZ and a path radius, R1, which is simply the
NFZ radius plus a safety margin. The aircraft follows this path until it is able
to continue towards the next waypoint in a straight line and without passing
through the NFZ.

NFZ
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LAR

1R

V
�

1WP
2WP

3WP

4WP

1T

2T

3T

NFZR

LAR
'

1�

1�

2�

Fig. 9.14 Circular template path, waypoint tracking and reconfiguration
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9.7.2 Entering the Circular Path Template

As soon as the obstacle is detected to be an immediate threat to the aircraft at
point T1, the guidance system begins an evasion maneuver with the minimum
turn radius possible to reach tangentially the template path at point T 2; see
Fig. 9.14.

9.7.3 Choice of the Avoidance Side

Whether the guidance algorithm chooses to go left or right around the NFZ
is determined by which side of the NFZ center the aircraft is already flying
towards. If the aircraft’s velocity vector is pointing to the right of the NFZ
center, then the aircraft will fly around the NFZ on the right-hand side. If the
velocity vector is pointing to the left-hand side, then the aircraft flies around
the NFZ on the left-hand side. A circular NFZ makes this decision easy.

In practice, we compute Δ = ψNFZ − ψ (∈ [−π;π]), and if Δ > 0 then
the aircraft flies on the left-hand side of the NFZ, otherwise it evades on the
right-hand side; see Fig. 9.15.
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Fig. 9.15 NFZ evasion side
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9.7.4 Generating the Template Path

Once the evasion maneuver is complete, the extremity of the monitoring line
lies outside the NFZ. If the next waypoint to reach is obstructed by the NFZ,
the guidance system guides the aircraft around the NFZ until there is a clear
line of sight to the next valid waypoint. In this case, the guidance system has

NFZ�
1R

NFZD P
�

New next waypoint1L

NFZ

(Orientation of the aircraft
after the evasion maneuver)

EX

NX

East

North

NFZR

LAR

On-line generated circle

EP

NP

Fig. 9.16 Circular template path generation

to guide the aircraft to a point P that is on the circle R1 and at a distance
L1 ahead of the aircraft. Using the law of cosines, the angle β (Fig. 9.16)
between the segment that joins the center of the aircraft to the center of the
NFZ and the segment from the center of the aircraft to the new reference
point P is expressed as

β = arccos
(
DNFZ

2 + L1
2 −R1

2

2DNFZ L1

)

. (9.25)
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In order to make sure that the generated circle to avoid the NFZ is a feasible
path for the aircraft, the radius R1 is selected as

R1 = max (Rmin, RNFZ + safety value) . (9.26)

The coordinates of the reference point P can then be computed as follows:

• If the NFZ is to be avoided on the right-hand side, we compute Ψavoid =
ψNFZ + β

• If the NFZ is to be avoided on the left-hand side, we compute Ψavoid =
ψNFZ − β

and finally

PN = XN + L1 cos(Ψavoid) ,
PE = XE + L1 sin(Ψavoid) . (9.27)

9.7.5 Leaving the Circular Path Template

The aircraft follows the circular path until it is able to continue towards the
next waypoint in a straight line and without passing through the NFZ. The
point at which the guidance algorithm transitions back to normal guidance
(mode 0) towards the next waypoint is T3 in Fig. 9.14, and it occurs when
there is a clear line of sight from the aircraft’s current position to the next
waypoint.

The next waypoint has to be reachable, which means that it should lie
outside a no-fly area. Therefore, while initiating the evasion maneuver, the
guidance system analyzes the waypoint list and checks if the waypointWPk+1

that was tracked before the evasion maneuver is still a reachable point. The
following condition must hold:

dNFZ/WPk+1 =
√

(NFZN −WPk+1,N )2 + (NFZE −WPk+1,E)2 > R1 .

(9.28)
If it turns out that this waypoint is not reachable, the guidance system

selects the next waypoint in the list, and so on. Figure 9.14 illustrates the
waypoint reconfiguration. The aircraft makes a left turn at waypoint WP2
in the direction of WP3. Then the NFZ is detected and the guidance system
guides the aircraft around the obstacle. The unreachable waypoint WP3 is
discarded and instead WP4 becomes the next target.
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When should the guidance transition T3 shown in Fig. 9.14 occur? A sim-
ple criterion is to monitor the angle Λ as shown in Fig. 9.14, which is the
angle between the segment made by the aircraft’s center and the next valid
waypoint, and the segment made by the aircraft’s center and the center of
the NFZ. As soon as |Λ| > π/2, then there is a clear line of sight to the next
valid waypoint. The angle Λ can be expressed simply as follows:

Λ = θ1 − θ2 ∈ [−π;π] , (9.29)

with

θ1 = tan−1

(
WPk+1,E −XE

WPk+1,N −XN

)

,

θ2 = ψNFZ = tan−1

(
NFZE −XE

NFZN −XN

)

. (9.30)

The decision steps for the next valid waypoint are summarized in Fig. 9.18.

9.7.6 Properties of the Guidance Schedule

The guidance schedule presented here has several desirable properties. It
attempts to minimize the number of waypoints that are unreachable by ini-
tiating the avoidance maneuver as late as possible. It does not require any
complex logic to decide how to avoid the NFZ. Finally, it minimizes the dis-
tance and time needed to return to the original flight path. It does this by
flying directly to the next waypoint as soon as is safely possible.

9.8 Simulation

9.8.1 Simulation Set-up

Simulations were done using the nonlinear six degree-of-freedom computer
model of a radio controlled aerobatic aircraft described in Chap. 3. The flight
controllers used are described in Chaps. 7 and 8. The airspeed, the altitude,
and the sideslip angle are kept constant.

Three similar scenarios were simulated, with the results presented below.
In all scenarios, the aircraft is following a desired path that passes through an
NFZ. The simulation was done with a maximum bank angle of φmax = 30◦.



224 9 Reconfigurable Guidance System

WP NFZ� �' � �

1,

1,

arctan
k E E

WP
k N N

WP X

WP X
�

�

�

� �� ��� �� ��� �� �

good_fix = 0

current_seg = current_seg+1

current_seg = 1
fixes = user_fixes

good_fix = 1

good_fix == 0?

2	' � ' �

� �
1

||
2

( sin )?NFZD R

	
' )

' )

fixes(current_seg,:) = [Xn Xe]

mode = 0
evade = 0

Yes

No

Yes

Yes

Yes

Yes

No

No

Nocurrent_seg > Nb_seg?

if ?	' �

Exit

No

Comments:
good_fix = 0, no next valid waypoint

has been found yet.
good_fix = 1, a next valid waypoint

has been found.

user_fixes: are the waypoints stored
in memory before the flight.

Xn, Xe: current North-East location
of the aircraft.

Next valid WP &
clear line of sight
Next valid WP &
clear line of sight

mode == 2?
No

Yes

/ 1 ?NFZ WPd R 

Fig. 9.18 Next valid point and clear line-of-sight determination



9.8 Simulation 225

9.8.2 Simulation Results

9.8.2.1 No Wind

This first scenario, shown in Fig. 9.19, highlights the basic response of the
aircraft to an NFZ blocking its path. The aircraft begins South of the NFZ
and flies North along the desired path defined by the waypoints 1 to 5 and
returns back to the runway. The desired path passes through an NFZ, but
the aircraft deviates around it before returning to the desired path. The
simulation was run at three different flight speeds, 15, 30, and 45m/s. It can
be seen that the aircraft begins its turn much later when flying at 15m/s
than when flying at 45m/s. The airplane stays outside the NFZ at all three
speeds.

9.8.2.2 With Wind

This second scenario, shown in Fig. 9.20, highlights the response of the air-
craft in wind conditions. The desired path remains the same as in the first
scenario. The path taken by the aircraft without wind and with wind are
shown for comparison. The aircraft is flying at a nominal airspeed of 30m/s.

A first flight is made with a 6m/s crosswind blowing from West to East.
In this case, the path followed by the aircraft is almost identical to the one
without wind.

Another flight simulation is made with wind blowing from South to North
with a speed of 6 m/s. The trajectory in the latter windy condition differs
from the the nominal track (without wind) in the two turns that avoid the
obstacle, where there is a maximum difference of 20m. This is due to the fact
that the wind speed adds to the airspeed resulting in a higher ground speed
Vn than the one obtained with no wind. Thus, the evasion maneuver starts
earlier when the aircraft first encounters the obstacle in between points 1 and
2. In between points 4 and 5, the wind is facing the aircraft, and therefore,
the ground speed is lower than the one obtained with no wind. This explains
why the evasion maneuver starts later.

In both cases, the NFZ is avoided. After the obstacle has been avoided,
the guidance system resumes normal waypoint tracking. As expected from
the lateral guidance law described in Sect. 9.2 there is no steady-state error
when flying the circular arc around the NFZ as shown in Fig. 9.20.
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9.9 Conclusions

This chapter presented a guidance algorithm that combines simplicity of im-
plementation and ability to avoid an NFZ. The algorithm successfully demon-
strated in simulation its ability to guide the aircraft around the NFZ and then
to resume flying along the desired path. The guidance system intrinsically
takes into account the wind condition via the ground speed of the aircraft.
Finally, the method is computationally efficient.
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Chapter 10

Evaluation of the Reduction in the
Performance of a UAV

After an actuator failure, the performance of the aircraft is degraded. If an
FDI system is available in the flight control system, the knowledge of the
failure can be used to evaluate the new aircraft performance. Based thereon,
a supervision system decides whether the mission can still be continued or
if it should be aborted and have the aircraft redirected to the base station.
In both cases, the aircraft should still be guided along a trajectory that
is compatible with the new flying properties of the airplane. This chapter
focuses on an aileron failure and shows how the degraded flying performance
can be evaluated and used to reconfigure the guidance system. Simulation
results show that, if the reduced performance due to the actuator failure is
taken into account, the safety of the mission is improved [1].

10.1 Introduction

In this chapter, results from an on-line FDI system are used to estimate the
reduction in performance of a UAV after an actuator failure. It is assumed
that an FDI system is capable of estimating or measuring the position of
the failed control surface. Based thereon, two simple criteria are developed
in order to quantify the reduction of the flight performance of the aircraft.
These two criteria are φmax, the maximum bank angle allowed, and τroll,
the time the aircraft needs to roll to φmax. A guidance algorithm has been
proposed in the previous chapter, which takes into account these two criteria
in order to redefine on-line the flight path and to avoid an NFZ even after
degraded flight performance.

This chapter focuses on an aileron that gets stuck and therefore alters
the ability of the aircraft to roll. The supervision module is designed to
make proper decisions on how to avoid an NFZ and on how to reach the
next waypoint of the predefined trajectory. Simplicity and low computational
power are among the requirements for this system, since it is intended to
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operate in a small UAV with limited processing power. Finally, simulation
results show that the system presented increases flight safety and enables the
aircraft to complete its mission [1].

10.2 FDI System

The FDI system is designed to monitor the proper functioning of actuators.
The FDI system detects the occurrence of an actuator fault, isolates the failed
actuator, and finally estimates or measures the deflection of the failed control
surface.

10.2.1 FDI with Control Surface Deflection Sensor

One simple method to detect that an actuator has failed consists of adding
a sensor on the control surface to measure its deflection. If the result of this
measurement is in accordance with the control signal issued by the controller,
then the actuator is assumed to work properly, otherwise the actuator is
considered to be faulty. If the monitored actuator turns out to have failed,
its corresponding sensor will measure the deflection of the control surface, as
shown by the dashed line in Fig. 10.1.

10.2.2 FDI Without Control Surface Deflection Sensor

If no sensor is used to measure the control surface deflection, then the FDI
system has to be designed to detect which actuator has failed and to estimate
at which deflection the control surface is stuck or floating. Such an FDI system
is detailed in Chap. 4. It is based on the EMMAE method.

10.3 Degraded Turn Performance Evaluation

As Fig. 10.1 shows, the FDI system indicates to a supervision module which
actuator has failed and at which deflection. The task of the supervision mod-
ule is to determine the new flying performance of the aircraft by computing
two parameters. They are the maximum bank angle φmax that the guidance
algorithm is allowed to command, and τroll, the time needed for the aircraft
to bank to φmax.
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In normal operation, when the aircraft is flying turns, the flight controller
makes sure that the roll angle does not exceed a maximum value φmax, nom

(±30◦ in our case).
Let us consider the case where the left aileron gets stuck as shown in

Fig. 10.2. This causes the roll performance to differ between a left bank and
a right bank maneuver.

1,max ,maxa ail left� ��

1,min ,mina ail left� ��

2,max ,maxa ail right� ��

2,min ,mina ail right� ��

1 ,a ail left stuck� ��

2a�

Fig. 10.2 Rear view of the aircraft with its left aileron stuck

The contribution of the ailerons for roll torque generation is expressed as
follows:

Lailerons = q̄SbCLa(δa1 − δa2) , (10.1)

where δa1 (δa2, respectively) represents the deflection of the left (right, re-
spectively) aileron, the dynamic pressure is q̄ = ρVT

2/2, with the air density
ρ, the airspeed VT , the wing total surface S, the wing span b, and the dimen-
sionless roll torque effectiveness of the ailerons CLa.

The relative deflection between the two ailerons is defined as follows:

Δδail = δa1 − δa2 . (10.2)
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During straight and level flight, in order to compensate for the failure of
the left aileron, the controller has to deflect the right aileron to the same
position, such that Δδail = 0, as is depicted in Fig. 10.2.

Therefore, if the aircraft is to bank to the right, the maximum roll torque
on the right that can be generated occurs when δa2 = δa2, max, and, con-
versely, the maximum roll torque on the left occurs when δa2 = δa2, min. Let
us define the relative deflection of the ailerons in the faulty case, for maximum
right and left torque generation:

(Δδail, right bank)max = δa1, stuck − δa2, max ,

(Δδail, left bank)max = δa1, stuck − δa2, min . (10.3)

10.3.1 Determination of the Maximum Bank Angle for
Left/Right Turn

According to the scenario depicted in Fig. 10.2, the relative deflection of the
ailerons is as follows:

∣
∣(Δδail, right bank)max

∣
∣ <

∣
∣(Δδail, left bank)max

∣
∣ . (10.4)

Consequently, it will take longer for the aircraft to reach a desired right bank
angle than a left bank angle, since the maximum rate of turn |p right max| <
|p left max|. After a time interval Δt, the maximum bank angles that can be
reached are

φleft = − |p left max|Δt ,
φright = |p right max|Δt . (10.5)

In order to preserve the stability of the aircraft, we limit the left bank
angle to a smaller value so that it takes the same time for the aircraft to
come back from φleft max as from φright max to φ = 0◦, which means that
the following condition should hold

φleft max

|p left max| = − φright max

|p right max| . (10.6)

We are now interested in finding an explicit linear relationship between
the roll rate p and the relative aileron deflection Δδail. We thus recall that
the dynamic equation for the angular rates is

ω̇ =
(
Ib
)−1 (

[L,M,N ]T − ω × Ibω
)
, (10.7)
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with ω = [p, q, r]T . The variables p, q, and r are the roll, pitch, and yaw
rates, and the aircraft body axes inertia matrix is Ib. The variables L, M ,
and N stand for the roll, pitch, and yaw moments acting on the aircraft,
respectively. They are the sum of the moments due to aerodynamic effects
of the airframe (af) itself (fuselage and wing) and the total moment vector
produced by the control actuators (δ):

[L,M,N ]T = [L,M,N ]Taf + [L,M,N ]Tδ . (10.8)

For our experimental small UAV, the roll moment L is modeled as follows:

L = q̄Sb (CLaΔδail + CLp̃p̃+ CLr̃ r̃ + CLββ) , (10.9)

where β is the sideslip angle of the aircraft. The inertia matrix is of the form

Ib =

⎛

⎝
Ixx 0 Ixz

0 Iyy 0
Ixz 0 Izz

⎞

⎠ . (10.10)

With the assumption that Ixz � Ixx, Iyy, Izz , we can formulate a linearized
dynamic equation for the roll rate as

ṗ =
ρVT IzzSb

2CLp̃

4(IxxIzz − Ixz
2)
p+

ρVT
2IzzSbCLa

2(IxxIzz − Ixz
2)
Δδail , (10.11)

which can also be written as

ṗ = −VT θp p+ VT
2θail Δδail , (10.12)

with θp and θail being positive constants:

θp = − ρIzzSb
2CLp̃

4(IxxIzz − Ixz
2)
,

θail =
ρIzzSbCLa

2(IxxIzz − Ixz
2)
. (10.13)

If the aircraft airspeed VT is almost constant, we can integrate (10.12) and
obtain a first-order response of the roll rate after a step input in Δδail:

p = VT
θail

θp
Δδail

(
1 − e−VT θp t

)
. (10.14)

We can conclude from (10.14) that the ratio �pmax of the maximum roll rates
in each direction is proportional to the ratio of the relative deflection of the
ailerons for maximum right and left torque generation as follows:
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|p left max|
|p right max| =

∣
∣(Δδail, left bank)max

∣
∣

∣
∣(Δδail, right bank)max

∣
∣ = �p max . (10.15)

We can now select the maximum bank angles that we allow in each direction
by choosing

φright max = φmax, nom = +30◦ ,
φleft max = −φright max/�pmax . (10.16)

10.3.2 Determination of the Minimum Radius of
Right/Left Turns

By intentionally reducing the bank angle of the aircraft in one direction (in
our example to the left), we are increasing the minimum radius of the left
turn that the aircraft can fly according to the following expression

Rleft, min =
Vn

2

g tan(φleft max)
,

Rright, min =
Vn

2

g tan(φright max)
. (10.17)

10.3.3 Determination of the Maximum Roll Rates

From (10.14), we see that the steady-state value for the roll rate is ps =
VT

θail

θp
Δδail, which gives us a simple value for the maximum turn rate achiev-

able in each direction:

ps left max = VT
θail

θp
(Δδail, left bank)max ,

ps right max = VT
θail

θp
(Δδail, right bank)max . (10.18)

These maximum roll rates will be used to compute the maximum time to roll
to φmax in each direction, as shown in the next paragraph.
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10.3.4 Determination of the Maximum Time τroll to
Roll to φmax

The variable τroll represents the maximum time needed to bank from φ = 0
to the maximum left roll angle φleft max or right roll angle φright max

τroll = max(τroll→φright max
, τroll→φleft max

) . (10.19)

In order to get an explicit value of τroll for the on-line reconfiguration of
the guidance system, we neglect the transients in the roll rate (see (10.14)),
and we integrate (10.18) with respect to time:

φleft max = ps, left max · τroll→φleft max
,

φright max = ps, right max · τroll→φright max
. (10.20)

Finally, the characteristic time to roll to φmax is computed as

τroll = max
(
φleft max

ps, left max
,
φright max

ps, right max

)

. (10.21)

10.4 Interface with the Guidance System

The guidance system developed in the previous chapter can dynamically re-
configure the trajectory flown by the aircraft in the case of an aileron failure.
For this, the variables φleft/right, max and τroll are to be given to the guidance
system.
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10.5 Stability Discussion

The main goals of the algorithm presented in this chapter are to limit how far
the aircraft is allowed to roll with the parameter φmax, and to help adapt the
guidance system of the aircraft, but not the low-level controllers. This adap-
tation is done through a linear estimation of the lateral performance of the
aircraft. This adaptation helps prevent the guidance system from command-
ing an infeasible path that may violate an NFZ or collide with an obstacle.
The guidance algorithm assumes the availability of a bank-angle controller,
whose responsibility is to ensure the stability of the aircraft. In order to pre-
vent commanded paths that would be too aggressive for the aircraft, the
guidance algorithm includes logic that smooths the commanded path and
avoids large steps in the bank angle control signal.

At the end of 2007, an interesting paper was written by Park et al. [2]
on the performance and Lyapunov stability of the nonlinear path following
guidance method described in [3, 4] and utilized in Chap. 9. The adaptive
nature of the guidance method makes its stability independent of the vehicle
velocity. Robust stability of the guidance law is shown in [2] in the presence
of saturated lateral acceleration, which is a limitation for every aircraft and
in particular in the context of actuator fault or failure.

10.6 Simulation Results

Simulations were done using the nonlinear six degree-of-freedom computer
model of a radio controlled aerobatic aircraft described in Chap. 3. The flight
controllers used are described in Chaps. 7 and 8. The NFZ is located in front
of the aircraft 1000m North, 0m East, and has a radius of 500m. The aircraft
is commanded to fly to a desired waypoint at 1800m North, 200m East, at
an airspeed of VT = 30m/s.

10.6.1 No Failure

This first scenario, shown in Fig. 10.4, highlights the basic response of the air-
craft to an NFZ blocking its path. The aircraft begins South of the NFZ and
flies North along the desired path. The desired path then continues through
the NFZ, but the aircraft autonomously deviates around it to the right before
returning to the desired path North and East of the NFZ.
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Fig. 10.4 No failure
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10.6.2 With Failure but No Reconfiguration

The left aileron is now stuck at mid-motion range. In this scenario the guid-
ance system is not reconfigured. We can see in Fig. 10.5 that the aircraft
initiates its evasion procedure at the same time as in the no-failure case.
However, due to the degraded performance, the aircraft is not able to turn
right as fast as before. Therefore, the aircraft penetrates the NFZ or collides
with the obstacle.

10.6.3 With Failure and With Reconfiguration

The left aileron is still stuck at mid-motion range. Now, the guidance system
is reconfigured based on the knowledge of the fault and the new parameters
for φmax,left/right and τroll. As a result, the look-ahead distance RLa is longer,
causing the aircraft to start its evasion maneuver earlier than in the previous
cases. Also, the turn’s radius is larger, which makes the aircraft circumvent
the obstacle from a larger distance without penetrating it.

Although in this chapter the case where the left aileron fails was studied,
the same methodology applies if it is the right aileron that fails.
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Fig. 10.5 With failure
but no reconfiguration
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Fig. 10.6 With failure
and with reconfiguration
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10.7 Performance Degradation Around the Pitch and
Yaw Axes

10.7.1 Pitch Axis

The ability of the aircraft to rotate around its pitch axis is essentially due to
the elevators. For small private aircraft like a propeller Cessna, there is only
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one elevator on the tail fin for pitch rate control. If this actuator unfortunately
fails or breaks there is no other means to control the aircraft around the pitch
axis. If the deflection of the failed elevator is luckily close to the trim position,
then the altitude can still be maintained and adjusted by appropriate throttle
commands. However, any landing attempt without a working elevator would
be a highly risky exercise.

The small UAV that we consider in this book has two independent hori-
zontal control surfaces on the tail fin as shown in Fig. 3.1. They are controlled
by the control allocation module described in Chap. 5, which explains how
control commands are reallocated among actuators in order to efficiently
compensate for the failure of one of the two elevators.

Therefore, in this chapter, no special guidance reconfiguration is developed
in the event of an elevator failure. It is enough for the safety of the mission if
the altitude at least can be maintained constant despite the failure. This is
guaranteed as long as the elevator does not lock at its maximum deflection.
An elevator failure at a large deflection will generate significant drag, all the
more that the failure is compensated by having the other elevator deflect
the same but opposite deflection. This may generate significant drag, thus
slowing down the aircraft, which will loose altitude unless the airspeed is
maintained. This is the responsibility of the airspeed controller.

10.7.2 Yaw Axis

If the rudder fails and, for example, locks at a non-zero deflection angle, then
some inevitable sideslip angle will build up. In order to maintain the flight
path along the desired trajectory, the guidance system generates a bank angle
command φc that counteracts the lateral undesired acceleration caused by the
failed rudder. A rudder failure is less critical than an elevator failure and can
usually be compensated by a combined deflection of ailerons and elevators.
This is automatically done by the flight control system.

10.8 Conclusion

This chapter presents a simple method to evaluate the performance of a UAV
after an aileron failure. Since the method is intended to be implemented on a
small UAV control unit with limited processing power, simplicity is required.
The key to simplicity is to interpret any reduction in the aircraft perfor-
mance about the roll axis as a limitation on the bank angle, φmax,left/right,
and as longer time to reach the maximum bank angle, τroll. These two criteria
are passed to a guidance algorithm that is simple and adaptable to the air-
craft’s performance reduction described by the two criteria mentioned. The
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algorithm demonstrated in simulation its ability to autonomously guide the
aircraft around the NFZ and then resume flying along the desired path. In the
event of a failed actuator, simulations have shown the benefits of reconfigur-
ing the guidance system to take into account the degraded flight performance
of the airplane in order to redefine on-line a feasible flight path that avoids
the obstacle.
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Chapter 11

Conclusions and Outlook

11.1 Future Work

11.1.1 FDI System

The FDI system developed in this book runs n (number of actuators)+1
EKFs in parallel. Current and future research work of the author focuses on
a technique to reduce the computational complexity needed to achieve fault
diagnoses with at least the same level of reliability and performance.

11.1.2 Reconfigurable Guidance System

The reconfigurable guidance system presented in Chaps. 9 and 10 adapts the
trajectory of the aircraft based on modifying the minimum radius of turn
Rmin that the aircraft can fly. In both chapters, the airspeed was regulated
to be constant around VT = 30 m/s. However, the guidance system can be
reconfigured by also adapting the airspeed. Indeed, if the speed is lowered,
the aircraft can make a coordinated turn with a smaller turn radius, which
should help avoid more easily some obstacles or threats.

After an actuator fault or damage, the flying performance of the aircraft
inevitably degrades. This performance reduction requires more energy to
achieve the mission. Indeed, since the trajectories are reconfigured, the length
of the new flight path may be significantly extended. Therefore, the post-fault
mission is also to be redesigned based on the amount of energy that is still
available aboard the UAV. This is a topic for future research.

Chapter 9 presented an efficient method to avoid a known NFZ or a pop-
up obstacle. The system was demonstrated in the event of a single NFZ
blocking the aircraft’s path from one waypoint to the next. The method can
be extended to cope with multiple NFZs or obstacles.

241
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11.2 The Future of Fault-tolerant Flight Control
Systems for UAVs

Many fault-tolerant control systems have already been developed for UAVs,
and a few have been successfully demonstrated during real flight tests. In
the near future, more fault-tolerant flight control and guidance algorithms
will be tested in real UAVs. A reconfigurable flight system will be successful
in practice for UAV applications, if it combines reliability, reasonable com-
plexity, and computation efficiency. This is even more true if a fault-tolerant
flight control system is to be designed for a formation of UAVs, which is a
new and appealing research area.

11.3 General Conclusion

In this book, new approaches for fault-tolerant flight control systems are in-
vestigated. The complete fault-tolerant guidance and control system is shown
in Fig. 11.1.

The core of these fault-tolerant systems is the EMMAE-FDI algorithm.
An efficient and nonlinear FDI system is developed for actuators and sen-
sors over the entire operating envelope of an aircraft. Locked-in-place and
floating actuator faults can be handled. The EMMAE-FDI system is also ca-
pable of handling two simultaneous actuator failures with no increase of the
computational load and with no additional actuator position sensor.

The robustness of the FDI system is enhanced by the use of auxiliary exci-
tation signals in order to check systematically any suspicious behavior of the
aircraft. The robustness of the EMMAE-FDI system has been successfully
demonstrated in simulation with a nonlinear model of a model aircraft flying
a realistic flight scenario under severe wind conditions. The EMMAE-FDI
algorithm, combined with an active supervision module, offers fast and ac-
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curate FDI. When a fault is clearly isolated, the faulty actuator deflection
that is estimated by the FDI module can be used advantageously to modify
on-line the settings of a control allocator.

The control allocation module presented in this book uses explicit laws for
fast operation and low computational load, such that this algorithm can run
in a small processor or microcontroller with limited floating-point operation
capability. The control allocation method is designed to be reconfigurable
based on the results obtained from the EMMAE-FDI system. Depending on
the fault configuration, a supervision module has to select the appropriate
law to distribute the commands and compensate for actuator faults. There
is no need to redesign the flight controllers when such faults occur, since the
control allocator compensates for the fault.

Simulation results show that this method yields satisfactory results, pro-
vides optimal solutions in some cases, and is much simpler and faster than
conventional methods based on optimization algorithms. Indeed, no opti-
mization solver has to be run on-line, and no pseudoinverse matrix has to
be computed. This method also requires very few floating-point operations
and is deterministic. The technique is therefore suitable to be implemented
in a small processor or a microcontroller, where the computational power is
rather limited and where the program has to run in a real-time environment.

In the flight control system described in this book, robust nonlinear con-
trollers suitable for a wide range of operating conditions have been designed,
thus removing the need for designing several linear controllers and gain-
scheduling them. The controllers are based on a combination of explicit model
following, NDI, and nonlinear transformations of selected longitudinal state
variables. This book explains a practical approach for stability and robustness
analyses of the plant undergoing the dynamic inversion process and provides
a systematic procedure for the selection of uncertain model parameters in-
volved in the controllers.

As part of the reconfigurable flight control system, a novel approach for
adaptive guidance is presented. It combines a nonlinear lateral guidance con-
trol law, originally designed for UAVs tracking circles for mid-air rendezvous,
with a new simple adaptive path-planning algorithm. Preflight path planning
consists only of storing a few waypoints guiding the aircraft to its targets.
Moreover, this guidance system integrates an efficient way to model NFZ,
to generate a path in real time to avoid known or “pop-up” obstacles, and
to reconfigure the flight path in the event of reduced aircraft performance.
Simulation results show the good performance of this reconfigurable guidance
system, which is also computationally efficient.

Since after an actuator failure the performance of the aircraft inevitably
degrades, the knowledge of the failure is used to evaluate the new aircraft
performance. Based thereon, a supervision system decides whether the mis-
sion can still be continued or if it should be aborted, in which case the aircraft
is redirected to the base station. In both cases, the aircraft should still be
guided along a trajectory that is compatible with the new flying properties
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of the airplane. An example dealing with an aileron failure shows how the
degraded flying performance can be evaluated and used to reconfigure the
guidance system. Simulation results show that, if the reduced performance
due to the actuator failure is taken into account, the safety of the mission is
considerably improved.



Appendix A

VT , α, and β Differential Equations

Chapter 3 establishes the equations for the aircraft motion. Equation 3.13 is
recalled below for convenience

∑

j

Fj =
[ d
dt

(
mv

)]

n
, (A.1)

=
[d(mv)

dt

]

b
+ ωb/n × (mv) . (A.2)

Equation A.1 corresponds to the law of Newton, where the subscript n
denotes the navigation frame. In (A.2), the time derivation is computed in
the aircraft body-fixed frame (b). Time derivation can also be done in the
wind frame (w) as follows:

1
m

∑

j

Fj =
[dv
dt

]

b
+ ωb/n × v =

[dv
dt

]

w
+ ωw/b × v + ωb/n × v . (A.3)

All of the terms in (A.3) are projected in the wind frame, yielding

1
m

∑

j

Fj
w =

[dvw

dt

]

w
+ ωw/b

w × vw + ωb/n
w × vw . (A.4)

The forces due to the engine, aerodynamics, and gravity are inserted in
(A.4) as follows:

1
m

(mgw + Fengine
w + Faero

w) − ωw/b
w × vw − ωb/n

w × vw =
[dvw

dt

]

w
,

(A.5)
with
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gw = Cw
b Cb

n
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and

Fengine
w = Cw

b
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⎣
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0
0
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0
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ωw/b
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⎡

⎣
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Equation A.5 is computed using the terms in (A.6)−(A.8) as follows:
⎡

⎣
gw

x

gw
y

gw
z

⎤

⎦ +
1
m

⎛

⎝FT

⎡

⎣
cosα cosβ
− sinβ cosα

− sinα

⎤

⎦ +

⎡

⎣
Xw

Y w

Zw

⎤

⎦

⎞

⎠−
⎡

⎣
pw

qw

rw

⎤

⎦×
⎡

⎣
VT

0
0

⎤

⎦

−
⎡

⎣
−α̇ sinβ
−α̇ cosβ

β̇

⎤

⎦×
⎡

⎣
VT

0
0

⎤

⎦ =

⎡

⎣
V̇T

0
0

⎤

⎦ . (A.9)

Computing the two cross-products of (A.9) yields
⎡

⎣
gw

x

gw
y

gw
z

⎤

⎦+
1
m

⎛

⎝FT

⎡

⎣
cosα cosβ
− sinβ cosα

− sinα

⎤

⎦ +

⎡

⎣
Xw

Y w

Zw

⎤

⎦

⎞

⎠

−
⎡

⎣
0

rwVT

−qwVT

⎤

⎦−
⎡

⎣
0

β̇VT

α̇ cosβVT

⎤

⎦ =

⎡

⎣
V̇T

0
0

⎤

⎦ . (A.10)

Finally, the nonlinear differential equations for the airspeed VT , the sideslip
angle β, and the angle of attack α are obtained as follows:

V̇T =
1
m

(Xw + FT cosα cosβ +mgw
x ) ,

β̇ = −rw +
1

mVT

(
Y w − FT cosα sinβ +mgw

y

)
,

α̇ =
1

cosβ

(

qw +
1

mVT
(Zw − FT sinα+mgw

z )
)

. (A.11)



Appendix B

Discretization of Linear State Space
Models

B.1 Continuous Model

Consider the following continuous state space model:

ẋ(t) = Ax(t) + Bu(t) + w(t) , (B.1)

where A and B are the dynamics and input matrices, and where w(t) repre-
sents continuous process noise with a covariance matrix Q = E{wwT }. The
time derivative of the exponential matrix is

d(eAt)
dt

= AeAt = eAtA . (B.2)

Multiplying (B.1) on the left-hand side by the term e−At yields

e−Atẋ(t) = e−AtAx(t) + e−AtBu(t) + e−Atw(t) ,
⇐⇒ e−Atẋ(t) − e−AtAx(t) = e−AtBu(t) + e−Atw(t) . (B.3)

The left-hand side of (B.3) is equal to d(e−Atx(t))
dt , therefore (B.3) is rewritten

as
d(e−Atx(t))

dt
= e−AtBu(t) + e−Atw(t) . (B.4)

Integrating the above equation on the time interval [0, t] yields
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∫ t

0

d(e−Aτx(τ))
dτ

dτ =
∫ t

0

e−AσBu(σ)dσ +
∫ t

0

e−Aνw(ν)dν ,

e−Atx(t) − x(0) =
∫ t

0

e−AσBu(σ)dσ +
∫ t

0

e−Aνw(ν)dν ,

e−Atx(t) = x(0) +
∫ t

0

e−AσBu(σ)dσ +
∫ t

0

e−Aνw(ν)dν ,

x(t) = eAtx(0) +
∫ t

0

eA(t−σ)Bu(σ)dσ +
∫ t

0

eA(t−ν)w(ν)dν .

(B.5)

The continuous transition matrix is defined as follows:

Φ(t) = eAt (B.6)

and finally the continuous solution for x(t) is written as

x(t) = Φ(t)x(0) +
∫ t

0

Φ(t− σ)Bu(σ)dσ +
∫ t

0

Φ(t− ν)w(ν)dν . (B.7)

B.2 Discrete Model

The discrete fundamental or transition matrix can be found by evaluating
the continuous transition matrix at the sampling time Ts or Φk = Φ(Ts). As
demonstrated in several practical examples in the book by Zarchan and Mu-
soff1, the transition matrix can be approximated by taking only the first two
elements of the Taylor series. Adding higher-order terms does not bring sig-
nificant improvements in the performance of the filter. Therefore, the discrete
transition matrix is computed as follows:

Φk ≈ I + ATs , (B.8)

where the system dynamics matrix A can be obtained by linearizing the
nonlinear equations and is successively (after every sampling time step Ts)
evaluated at the latest available state estimate x̂(k|k) of the EKF according
to

A =
∂f(x)
∂x

∣
∣
∣
∣
x=x̂(k|k)

. (B.9)

Let us define the discrete value taken by the state vector after the kth time
sample with x[k] = x(kTs) .

1 P. Zarchan and H. Musoff. Fundamentals of Kalman Filtering: A Practical Ap-
proach, Second Edition. Volume 208, Progress in Astronautics and Aeronautics, AIAA
Inc., Reston, VA, 2005.
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We can therefore rewrite the solution for x(t) obtained in (B.5) at t =
(k + 1)Ts as

x[k + 1] = eA(k+1)Tsx(0) +
∫ (k+1)Ts

0

eA((k+1)Ts−σ)Bu(σ)dσ

+
∫ (k+1)Ts

0

eA((k+1)Ts−σ)w(σ)dσ ,

=
∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)Bu(σ)dσ +
∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)w(σ)dσ

+ eATs

[

eAkTsx(0) +
∫ kTs

0

eA(kTs−σ)Bu(σ)dσ +
∫ kTs

0

eA(kTs−σ)w(σ)dσ

]

.

(B.10)

The bracketed term in (B.10) is actually x[k] = x(kTs), and the second
and third terms can be simplified by using the substitution τ = (k+1)Ts−σ
as follows:

∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)Bu(σ)dσ = −
∫ 0

Ts

eAτBu(τ)dτ ,

=
∫ Ts

0

eAτBu(τ)dτ . (B.11)

Assuming also that the input u is constant over the integration interval (zero-
order hold) yields

x[k + 1] = eATsx[k] +

(∫ Ts

0

eAτdτ

)

Bu[k] +

(∫ Ts

0

eAτw(τ)dτ

)

,

= Φkx[k] +

(∫ Ts

0

Φ(τ)dτ

)

Bu[k] +

(∫ Ts

0

Φ(τ)w(τ)dτ

)

,

= Φkx[k] + Bku[k] + wk . (B.12)

B.2.1 Derivation of the Discrete Process-noise
Covariance Matrix Qk

The discrete process-noise covariance matrix Qk is defined as
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Qk = E{wkwk
T } ,

= E

⎧
⎨

⎩

[∫ Ts

0

φ(τ)w(τ)dτ

] [∫ Ts

0

φ(ν)w(ν)dν

]T
⎫
⎬

⎭
,

=
∫ Ts

0

∫ Ts

0

φ(τ)E
{
w(τ)w(ν)T

}
φ(ν)T dτdν ,

Qk =
∫ Ts

0

φ(τ)Qφ(τ)T dτ . (B.13)

B.2.2 Transition Matrix for KFs

Let us consider the following linear and continuous state space model:

ẋ(t) = Fx(t) + Gu(t) + w(t) , (B.14)

where F and G are the time-invariant dynamics and input matrices, and
where w(t) represents continuous process noise with a covariance matrix
Q = E{wwT }.

Equation B.14 can be integrated as follows (also see Appendix B.1):

x(t) = Φ(t)x(0) +
∫ t

0

Φ(t− σ)Bu(σ)dσ +
∫ t

0

Φ(t− ν)w(ν)dν , (B.15)

where the continuous transition matrix is Φ(t) = eF t. A Taylor series expan-
sion is used to approximate Φ(t), yielding

Φ(t) = eF t = I + F t+
(F t)2

2!
+ ...+

(F t)n

n!
+ ... . (B.16)

The discrete fundamental or transition matrix can be found by evaluating
the continuous fundamental matrix at the sampling time Ts: Φk = Φ(Ts).
As demonstrated in several practical examples in the book by Zarchan and
Musoff1, the transition matrix can be approximated by taking only the first
two elements of the Taylor series; adding higher-order terms does not bring
any significant improvements in the performance of the filter. Therefore, in
this work the discrete transition matrix is computed as

Φk ≈ I + FTs . (B.17)

1 P. Zarchan and H. Musoff. Fundamentals of Kalman Filtering: A Practical Ap-
proach, Second Edition. Volume 208, Progress in Astronautics and Aeronautics, AIAA
Inc., Reston, VA, 2005.



Appendix C

Nonlinear Transformations Used in the
Longitudinal Controllers

C.1 Nonlinear Transformation T1 Between Second
Time Derivative of Altitude ḧ and the Aircraft
Normal Acceleration an

The altitude h corresponds to the down position of the center of gravity of
the aircraft xD in the inertial navigation frame (n). Newton’s law states that

∑

j

F j =
[ d
dt

(
mv

)]

n
= m

⎛

⎝
ẌN

ẌE

ẌD

⎞

⎠ , (C.1)

i.e.,
⎛

⎝
0
0
mg

⎞

⎠+ Cn
b

⎡

⎣

⎛

⎝
Fthrust

0
0

⎞

⎠+

⎛

⎝
Xb

Y b

Zb

⎞

⎠

aero

⎤

⎦ = m

⎛

⎝
ẍN

ẍE

ẍD

⎞

⎠ , (C.2)

with

Cn
b =

⎛

⎝
cos θ cosψ sin θ sinφ cosψ − cosφ sinψ sin θ cosφ cosψ + sinφ sinψ
cos θ sinψ sin θ sinφ sinψ + cos φ sinψ sin θ cosφ sinψ − sinφ cosψ
− sin θ sinφ cos θ cos φ cos θ

⎞

⎠ .

(C.3)

Equation C.2 may be rewritten as
⎛

⎝
0
0
mg

⎞

⎠ + Cn
b m

⎛

⎝
fx

fy

fz

⎞

⎠ = m

⎛

⎝
ẍN

ẍE

ẍD

⎞

⎠ , (C.4)

where fx, fy, fz represent the accelerometer measurement data. Since the
vertical acceleration ẍD is of interest, the corresponding equation in (C.2) is
expanded as follows:

251
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ẍD = g − sin θ fx + sinφ cos θ fy + cosφ cos θ fz . (C.5)

Considering that the roll angle φ and the sideslip angle are small and close
to zero yields Y b ≈ 0. Therefore the term sinφ cos θ Y b/m is neglected and
(C.5) becomes

ẍD = g

[

1 − fx

g
sin θ +

fz

g
cosφ cos θ

]

. (C.6)

For moderate values of the pitch angle θ, the term − sin θ fx/g is much
smaller than 1 and is therefore neglected. The specific normal acceleration
is an = fz/g. Finally, the nonlinear transformation T 1 between the second
time derivative of the altitude ḧ and the aircraft’s normal acceleration an is
expressed as follows:

ẍD = ḧ = g [1 + cosφ cos θ an] . (C.7)

C.2 Nonlinear Transformation T2 Between the Angle of
Attack α and the Aircraft Normal Acceleration an

In Chap. 3, the relationship between the aircraft-body accelerations and the
forces acting on the aircraft is established and recalled here for convenience:
⎛

⎝
−g sin θ

g sinφ cos θ
g cosφ cos θ

⎞

⎠+
1
m

⎡

⎣

⎛

⎝
Fthrust

0
0

⎞

⎠+ Cb
w

⎛

⎝
Xw

Y w

Zw

⎞

⎠

⎤

⎦−
⎛

⎝
qw − rv
ru − pw
pv − qu

⎞

⎠ =

⎛

⎝
u̇
v̇
ẇ

⎞

⎠ ,

(C.8)

with

Cb
w =

⎛

⎝
cosα cosβ − cosα sinβ − sinα

sinβ cosβ 0
sinα cosβ − sinα sinβ cosα

⎞

⎠ . (C.9)

The last row of (C.8) is written as follows:

ẇ = g cosφ cos θ +
1
m

[Xw sinα cosβ − Y w sinα sinβ + Zw cosα] − pv + qu .

(C.10)
Therefore, the z-body axis aerodynamic force is

Zb =
1
m

[Xw sinα cosβ − Y w sinα sinβ + Zw cosα] . (C.11)
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The aircraft’s normal and specific acceleration1 measured by the z-accelerometer
is

an =
1
mg

[Xw sinα cosβ − Y w sinα sinβ + Zw cosα] , (C.12)

with

Xw = q̄S
[
CX1 + CXαα+ CXα2α

2 + CXβ2β
2
]
, (C.13)

Y w = q̄SCY 1β and Zw = q̄S [CZ1 + CZαα] . (C.14)

Considering α to be small (in practice limited to 0 and 0.21 rad) yields
α2 � α and thus only the first-order term in α is considered in (C.13). Under
normal flight conditions the sideslip angle β is also close to zero, which leads
to the following simplified version for the normal specific acceleration an:

an ≈ 1
mg

[αq̄S(CX1 + CXαα) + q̄S(CZ1 + CZαα)] ,

≈ q̄S

mg
([CX1 + CZα]α+ CZ1) . (C.15)

Simulation results show that an is almost perfectly estimated using (C.15).
The acceleration an is of the form an ≈ q̄(ξ1α + ξ2), where ξ1 and ξ2 are
constant values and q̄ = ρV 2

T /2.

C.3 Nonlinear Transformation T3 Between α̇ and the
Pitch Rate q

The angle of attack α is related to the aircraft-body velocities u and w by

tan(α) =
w

u
. (C.16)

Differentiating (C.16) with respect to time yields

ẇ = u̇ tanα+ u
(
1 + tan2 α

)
α̇ . (C.17)

Given the assumption that α and u̇ are small, (C.17) can be simplified to

ẇ = uα̇ . (C.18)

The last row of (C.8) provides a relationship between the pitch rate q and
the z-body axis velocity w as follows:

1 Measured in multiples of g.
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g cosφ cos θ + Zb/m− pv + qu = ẇ

= uα̇ . (C.19)

The x-body axis velocity u can be approximated by the total airspeed VT ,
yielding

g cosφ cos θ + Zb/m− pv + qVT = VT α̇ . (C.20)

The nonlinear transformation T 3 aims at establishing a relationship between
α̇ and the pitch rate q. Therefore, (C.20) is rewritten as

α̇ = q +
g

VT

(

cosφ cos θ +
Zb

mg

)

− pv

VT
, (C.21)

where the term Zb/mg corresponds to the normal acceleration an measured
at the aircraft center of gravity by the accelerometer in the z-body direction,
and where the term pv/VT is usually very close to zero during normal flight
condition with small side-slipping. Finally, the expression for the nonlinear
transformation T 3 is obtained as follows:

α̇ = q +
g

VT
(cosφ cos θ + an) . (C.22)



Appendix D

Nonlinear Transformation Used in the
Lateral-directional Controller

D.1 Dynamics of the Sideslip Angle

This section establishes the relationship between the dynamics of the sideslip
angle β̇ and the roll and yaw rates, p and r, respectively.

By definition the sideslip angle β is obtained as follows:

β = sin−1

(
v

VT

)

, (D.1)

where the aircraft’s y-body axis velocity is v, and the aircraft’s airspeed is
VT .

Equation D.1 is rearranged as VT sinβ = v, and is differentiated with
respect to time, yielding

V̇T sinβ + VT β̇ cosβ = v̇ . (D.2)

Based on the assumptions that the sideslip angle remains small and close
to zero and that the airspeed VT is almost constant, (D.2) is simplified as
follows:

β̇ ≈ v̇

VT
. (D.3)

An expression for the dynamics of the side velocity v is found in (C.8) and
is recalled here for convenience:

v̇ = g sinφ cos θ +
1
m

(Xw sinβ + Y w cosβ) + pw − ru . (D.4)

Using the facts that u ≈ VT cosα, w ≈ VT sinα, β ≈ 0, Y w ≈ may, where
ay is the accelerometer y-axis measurement, yields the simplified expression
for v̇,

v̇ ≈ g sinφ cos θ + ay + pVT sinα− rVT cosα . (D.5)
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The final expression for β̇ is obtained by combining (D.3) and (D.5) yielding

β̇ =
1
VT

[g sinφ cos θ + ay] + p sinα− r cosα . (D.6)

D.2 Roll Angle Command Signal and Equation
Governing a Coordinated Turn

Let us assume that the aircraft is flying straight, level, and at constant alti-
tude. In such a case, the lift force Zb generated by the wings compensates
the weight mg of the aircraft. When flying a turn, the aircraft banks by a roll
angle φ, and the lift force provides a lateral component that accelerates the
aircraft as shown in Fig. D.1. This lateral force Fl is computed as follows:

Fl = Zb sinφ . (D.7)

The lateral acceleration is obtained as

al =
Zb sinφ
m

. (D.8)

If the magnitude of Zb is replaced by mg, the lateral acceleration is simplified
to

al = g sinφ . (D.9)

Conversely, in order to produce the lateral acceleration al, the aircraft has to
bank to a roll angle φ equal to

φ = sin−1(
al

g
) ≈ al

g
. (D.10)

Fig. D.1 Lateral acceler-
ation in a turn
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D.3 Law of Cosines

Fig. D.2 Triangle pa-
rameters for the law of
cosines

A

C

B

b

c

a

The law of cosines gives any edge of a triangle as a function of the two
adjacent edges and the opposite angle with

a2 = b2 + c2 − 2bc cosA ,

b2 = a2 + c2 − 2ac cosB ,

c2 = a2 + b2 − 2ab cosC . (D.11)



Appendix E

Linearization of the Aircraft Model at
30 m/s

The aircraft is linearized around the operating point corresponding to a
straight and level flight at a constant altitude of 500m above sea level and
at a constant speed of 30 m/s.

E.1 Longitudinal Linear Model

ALong =

⎛

⎜
⎜
⎝

−4.7796 0 −4.5420 0
0 −0.0830 −0.8660 −9.81
1 −0.0215 −3.6573 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

BLong =

⎛

⎜
⎜
⎝

27.4128 0
0 −1.1 · 10−4

0 0
0 0

⎞

⎟
⎟
⎠ ,

CLong =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

DLong =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ .

(E.1)
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E.2 Lateral Linear Model

ALat =

⎛

⎜
⎜
⎝

−11.4540 2.7185 −19.4399 0
0.5068 −2.9875 23.3434 0
0.0922 −0.9957 −0.4680 0.3256

1 0.0926 0 0

⎞

⎟
⎟
⎠ ,

BLat =

⎛

⎜
⎜
⎝

78.4002 −2.7282
−3.4690

0
0

13.9685
0
0

⎞

⎟
⎟
⎠ ,

CLat =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

DLat =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ .

(E.2)



Appendix F

Nomenclature

Symbol Definition

a temperature gradient
α angle of attack
b wing span
(b) body-fixed frame
〈b〉 body-fixed coordinate system
β sideslip angle
c̄ mean aerodynamic chord
CFT 1 ...CFT3 thrust force derivatives
CL... roll torque derivatives
CM... pitch torque derivatives
CN... yaw torque derivatives
CX... drag force derivatives
CY 1 side force derivative
CZ1, CZα lift force derivatives
Cb

a direction cosine matrix, transformation from (a) to (b)
Cv virtual control command, input of the control allocator
D propeller diameter
δa aileron deflection
δe elevator deflection
δr rudder deflection
δt throttle position
FT component of FT in xb direction
g component of g in zn direction
g earth gravity vector
h altitude above sea level
θ pitch angle
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Symbol Definition

Ib airplane inertia matrix in the body-fixed frame
J thrust advance ratio
Lb roll torque, xb direction
m airplane mass
M b pitch torque, yb direction
M external torque vector affecting the rigid body
(n) local navigation frame
〈n〉 local navigation coordinate system
n engine speed
nc commanded engine rotational speed
N b yaw torque, zb direction
p roll rate, xb direction
p̃ dimensionless roll rate, xb direction
p inertial position vector of the rigid body
q̄ dynamic pressure
q pitch rate, yb direction
q̃ dimensionless pitch rate, yb direction
q0 1st element of the quaternion qn

q1 2nd element of the quaternion qn

q2 3rd element of the quaternion qn

q3 4th element of the quaternion qn

qn quaternion that describes the rotation from 〈n〉 to 〈b〉
r yaw rate, zb direction
r̃ dimensionless yaw rate, zb direction
R air gas constant
ρ air density
S wing surface
T ambient temperature
T0 ambient temperature at mean sea level
τn time constant of the engine turn rate
u inertial velocity component, xb direction
uT airspeed component, xb direction
v inertial velocity component, yb direction
vT airspeed component, yb direction
vN component of v in xn direction
vE component of v in yn direction
vD component of v in zn direction
VT airspeed component, xw direction
v inertial velocity vector of the rigid body
VT airspeed vector
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Symbol Definition

φ roll angle
w inertial velocity component, zb direction
wT airspeed component, zb direction
WN component of W in xn direction
WE component of W in yn direction
WD component of W in zn direction
W wind velocity vector
xN component of p in xn direction
xE component of p in yn direction
xD component of p in zn direction
Xw drag force, xw direction
Y w side force, yw direction
ψ heading angle
Xw lift force, zw direction
ωb/a rotational velocity vector of 〈b〉 with respect to 〈a〉
γ flight path angle
ŷ model-based estimate of the measurement data
y(t) measurement data

Table F.1 Guidance system variables

Symbol Definition

al lateral acceleration
DNFZ distance between the aircraft’s center of gravity and the

NFZ center
L1 distance between the aircraft’s center of gravity and the

guidance reference point P
P guidance reference point
PE East position of the reference point P
PN North position of the reference point P
φmax maximum roll angle allowed
RLA look-ahead distance
RNFZ radius of the circle defining the NFZ
Rmin minimum turn radius
τroll time to roll to φmax

WPk waypoint number k
XE East position of the aircraft’s center of gravity
XN North position of the aircraft’s center of gravity
y cross-track error distance



264 F Nomenclature

Table F.2 Aircraft model parameters

Parameter Value Unit Definition

m 28 [kg] airplane mass

Ib Ib =

[
2.56 0 0.5
0 10.9 0

0.5 0 11.3

]

[kg·m2] airplane inertia matrix

S 1.80 [m2] wing surface

c̄ 0.58 [m] mean aerodynamic
chord

b 3.1 [m] wing span
D 0.79 [m] propeller diameter
CFT 1 8.42 × 10−2 [−] thrust derivative
CFT 2 −1.36× 10−1 [−] thrust derivative
CFT 3 −9.28× 10−1 [−] thrust derivative
CZ1 1.29 × 10−2 [−] lift derivative
CZα −3.25 [−] lift derivative
CX1 −2.12× 10−2 [−] drag derivative
CXα −2.66× 10−2 [−] drag derivative
CXα2 −1.55 [−] drag derivative
CXβ2 −4.01× 10−1 [−] drag derivative
CY 1 −3.79× 10−1 [−] side force derivative
CLa 6.79 × 10−2 [−] roll derivative
CLa1 = −CLa2 −3.395× 10−2 [−] roll derivative
CLe1 = −CLe2 −0.485× 10−2 [−] roll derivative
CLβ −1.30× 10−2 [−] roll derivative
CLp̃ −1.92× 10−1 [−] roll derivative
Cr̃ 3.61 × 10−2 [−] roll derivative
CM1 2.08 × 10−2 [−] pitch derivative
CMe 5.45 × 10−1 [−] pitch derivative
CMe1 = CMe2 2.725× 10−1 [−] pitch derivative
CMa1 = CMa2 0.389× 10−1 [−] pitch derivative
CMα −9.03× 10−2 [−] pitch derivative
CMq̃ −9.83 [−] pitch derivative
CNδr

5.34 × 10−2 [−] yaw derivative
CNβ 8.67 × 10−2 [−] yaw derivative
CNr̃ −2.14× 10−1 [−] yaw derivative

τn 0.4 [s]
time constant of
the engine



Index

acceleration
aircraft-body, 252
lateral, 203, 205
longitudinal, 168
normal, 145, 252–254
vertical, 145, 251

actuator
floating, 58
lock-in-place, 58

additive inverse, 109, 130
adverse yaw, 93, 96, 98
aerodynamic

derivatives, 50, 93
forces, 168, 170
moments, 50, 89, 92

air density, 33, 50, 93, 168, 183, 231
airspeed vector, 31, 32
angle of attack, 31, 50
anti-windup, 118, 162
artificial excitation, 74, 86
artificial neural network, 16
avoidance algorithm, 216

Bayes classifier, 61
Bode plots, 115, 151, 153, 162, 189

closed-loop, 16, 195
command

tracking, 112, 116
virtual, 14, 84, 91, 101

computational load, 13, 43, 45, 49, 90,
168

control
allocation, 14, 84, 89
closed-loop, 100, 111, 144
feedforward, 112
PI controller, 111

control surfaces, 39, 49, 90, 239
coordinated turn, 197, 212

desired dynamics, 108, 144, 170, 197
direction cosine matrix, 29, 30
dynamic pressure, 33

eigenstructure assignment, 16
eigenvalues, 109, 124, 178
engine speed, 37, 167, 170, 262
error

cross-track, 205
state, 53
steady-state, 165, 191, 194, 204, 225
tracking, 198

Euler
angles, 28
integration, 52, 54

explicit model following, 117

failure
definition, 4
simultaneous, 99

fault
configuration, 97
definition, 3

flight path angle, 158, 210, 263
floating-point, 100, 243
force

aerodynamic, 31, 33
drag, 39, 95, 122, 239
lateral, 38
lift, 38
thrust, 38, 169

frame
body, 27
inertial, 27

265
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navigation, 27
time derivation, 34
wind, 31

gain
closed-loop, 164
open-loop, 113, 117, 145, 146, 194

Gaussian function, 61
guidance

altitude, 202, 210
control law, 201
lateral, 203, 205, 218, 225

hypothesis testing, 59

inertia matrix, 51, 93, 264
inertial velocity, 32
international standard atmosphere, 33

Kalman
extended Kalman filter, 45, 47, 51, 54
Kalman filter, 13, 43, 51, 72
Kalman gain, 53, 54
linearized Kalman filter, 54

longitudinal mode, 121, 123
low-cost sensors, 64

MATLABR©, 64, 100, 101, 134, 135
mode

Dutch roll mode, 179
phugoid mode, 125
short-period mode, 124
spiral mode, 179

model predictive control, 16
model reference, 117

MRAC, 15
multiple model

EMMAE, 47
MMAE, 13, 43, 45, 47
MMST, 12

multiplicative inverse, 109, 130

Nichols chart, 146, 153
no-fly zone, 202, 211, 229, 263
noise

measurement, 52
process, 52, 54, 64

sensor, 64
nonlinear dynamic inversion, 107, 128
Nyquist plot, 146, 148, 149

path planning, 17, 201, 207, 211
potential field functions, 201
probability

computation, 49
conditional, 44, 59

problems
control allocation, 99
estimation, 45

quaternion, 30

rate
altitude, 144, 158, 160, 162
of climb, 118, 158

residuals, 49, 54, 74
robust

control, 128
performance, 194
stability, 187, 195

robustness, 46, 129
root locus (see also stability), 191

sideslip angle, 31, 50
SimulinkR©, 64, 100, 101, 134
singular values, 191, 194, 195
sliding mode control, 16
stability

robustness, 195, 196
root locus, 146, 148

standard deviation, 61, 64
supervision module, 76, 85, 90, 230

time-scale separation, 143
torque

dimensionless, 93
pitch, 40
roll, 39
yaw, 40

transition matrix, 52, 56

waypoint tracking, 206
wind

disturbances, 32, 76
gusts, 67, 70, 76, 194



Other titles published in this series (continued): 
 
Soft Sensors for Monitoring and Control  
of Industrial Processes 
Luigi Fortuna, Salvatore Graziani,  
Alessandro Rizzo and Maria G. Xibilia 

Adaptive Voltage Control in Power Systems 
Giuseppe Fusco and Mario Russo 

Advanced Control of Industrial Processes 
Piotr Tatjewski 

Process Control Performance Assessment 
Andrzej W. Ordys, Damien Uduehi  
and Michael A. Johnson (Eds.) 

Modelling and Analysis of Hybrid  
Supervisory Systems 
Emilia Villani, Paulo E. Miyagi 
and Robert Valette 

Process Control 
Jie Bao and Peter L. Lee 

Distributed Embedded Control Systems 
Matjaž Colnarič, Domen Verber  
and Wolfgang A. Halang 

Precision Motion Control (2nd Ed.) 
Tan Kok Kiong, Lee Tong Heng  
and Huang Sunan  

Optimal Control of Wind Energy Systems 
Iulian Munteanu, Antoneta Iuliana Bratcu, 
Nicolaos-Antonio Cutululis and Emil 
Ceangǎ 

Identification of Continuous-time Models 
from Sampled Data 
Hugues Garnier and Liuping Wang (Eds.) 

Model-based Process Supervision 
Arun K. Samantaray and Belkacem 
Bouamama 

Diagnosis of Process Nonlinearities and 
Valve Stiction 
M.A.A. Shoukat Choudhury, Sirish L.  
Shah, and Nina F. Thornhill 

Magnetic Control of Tokamak Plasmas 
Marco Ariola and Alfredo Pironti 

Real-time Iterative Learning Control 
Jian-Xin Xu, Sanjib K. Panda  
and Tong H. Lee  

Deadlock Resolution in Automated 
Manufacturing Systems  
ZhiWu Li and MengChu Zhou 

Model Predictive Control Design  
and Implementation Using MATLAB® 
Liuping Wang 

Predictive Functional Control 
Jacques Richalet and Donal O’Donovan 

Fault-tolerant Control Systems 
Hassan Noura, Didier Theilliol,  
Jean-Christophe Ponsart and Abbas 
Chamseddine 
Publication due August 2009 

Control of Ships and Underwater Vehicles 
Khac Duc Do and Jie Pan 
Publication due September 2009 

Detection and Diagnosis of Stiction  
in Control Loops 
Mohieddine Jelali and Biao Huang (Eds.) 
Publication due October 2009 

Stochastic Distribution Control  
System Design 
Lei Guo and Hong Wang 
Publication due November 2009 

Advanced Control and Supervision  
of Mineral Processing Plants 
Daniel Sbárbaro and René del Villar (Eds.) 
Publication due December 2009 

Active Braking Control Design for Road 
Vehicles  
Sergio M. Savaresi and Mara Tanelli  
Publication due January 2010  


	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	back-matter.pdf



