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To William Montgomery

and Thomas Carter,

for their delight in

sandpiles, seesaws, and pebbles.



Even now there is a very wavering grasp of the true position of mathematics
asanelement in the history of thought. I will not go so far as to say that to con-
struct a history of thought without profound study of the mathematical ideas
of successive epochs is like omitting Hamlet from the play which is named after
him. That would be claiming too much. But it is certainly analogous to cutting
out the part of Ophelia. This simile is singularly exact. For Ophelia is quite
essential to the play, she is very charming—and a little mad. Let us grant that
the pursuit of mathematics is a divine madness of the human spirit, a refuge
from the goading urgency of contingent happenings.

Alfred North Whitehead
from Mathematics as an
Element in the

History of Thought



Preface

This book is for students being introduced to calculus, and it covers the
usual topics, but its spirit is different from what might be expected. Though
the approach is basically historical in nature, emphasis is put upon ideas
and their place—not upon events and their dates. Its purpose is to have
students to learn calculus first, and to learn incidentally something about
the nature of mathematics.

Somewhat to the surprise of its author, the book soon became animated
by a spirit of opposition to the darkness that separates the sciences from
the humanities. To fight the spell of that darkness anything at hand is used,
even a few low tricks or bad jokes that seemed to offer a slight promise of
success. To lighten the darkness, to illuminate some of the common ground
shared by the two cultures, is a goal that justifies almost any means. It is
possible that this approach may make calculus more fun as well.

Whereas the close ties of mathematics to the sciences are well known,
the ties binding mathematics to the humanities are rarely noticed. The
result is a distorted view of mathematics, placing it outside the mainstream
of liberal arts studies. This book tries to suggest gently, from time to time,
where a kinship between mathematics and the humanities may be found.

There is a misconception today that mathematics has mainly to do with
scientific technology or with computers, and is thereby unrelated to hu-
manistic thought. One sees textbooks with such titles as Mathematics for
Liberal Arts Majors, a curious phrase that seems to suggest that the liberal
arts no longer include mathematics.

No discipline has been a part of liberal arts longer than mathematics.
Three—logic, arithmetic, and geometry—of the original seven liberal arts
are branches of mathematics. Plato’s friend Archytas, who helped develop
the whole idea of liberal education, was a distinguished mathematician. No
true student of liberal arts can neglect mathematics.

vii



viii Preface

How did it happen that mathematics, in the public eye, became dissociated
from the humanities? In brief, the emergence and growth of scientific
knowledge in the seventeenth century led to a polarization in academic
circles. Science went one way, the humanities went another. Mathematics,
at first in the middle, seems now to be more commonly identified with the
sciences and with the technology they engendered.

Today in some academic institutions the state is not healthy. The ground
between the sciences and the humanities i1s so dark that many well-meaning
members on each side lack the education to see the most valuable contribu-
tions of the other. To the disadvantage of students, this is sometimes the
case even among the faculties of so-called “liberal arts” colleges.

In the seventeenth century mathematics was a bridge between the two
kinds of knowledge. Thus, for example, Isaac Newton’s new physics could
be read by Voltaire, who was at home both with Homer and with Archimedes.
Voltaire even judged Archimedes to be superior, in imagination, to Homer.

The unity of knowledge which seemed attainable in the seventeenth
century, and which has long been an ideal of liberal education, is still worth
seeking. Today as in the time of Voltaire, and in the time of Plato, mathe-
matics calls us to eye this goal.



For Anyone Afraid of Mathematics

Maturity, it has been said, involves knowing when and how to delay suc-
cumbing to an urge, in order by doing so to attain a deeper satisfaction. To
be immature is to demand, like a baby, the immediate gratification of every
impulse.

Perhaps happily, none of us is mature in every respect. Mature readers of
poetry may be immature readers of mathematics. Statemen mature in
diplomacy may act immaturely in dealing with their own children. And
mature mathematicians may on occasion act like babies when asked to
listen to serious music, to study serious art, or to read serious poetry.

What is involved in many such cases is how we control our natural urge
to get directly to the point. In mathematics, as in serious music or literature,
the point sometimes simply cannot be attained immediately, but only by
indirection or digression.

The major prerequisite for reading this book is a willingness to cultivate
some measure of maturity in mathematics. If you get stuck, be willing to
forge ahead, with suspended disbelief, to see where the road is leading. “Go
forward, and faith will follow!” was d’Alembert’s advice in the eighteenth
century to those who would learn the calculus. Your puzzlement may vanish
upon turning a page.

All that will be assumed at the outset is a nodding acquaintance with
some elementary parts of arithmetic, algebra, and geometry, most of which
was developed long before A.D. 1600. There will be some review in the
early chapters, offering us as well a chance to outline the early history of
mathematics.

X



To the Instructor

This book aspires to aid a student interested in either

(1) receiving an elementary introduction to the basic ideas of calculus; or
(2) learning “about” calculus, as a significant element in the history of
thought.

At first these goals may seem incompatible. In fact, each tends to reinforce
the other. A remark made by George Polya suggests how both goals might
be accomplished at once.

If the learning of mathematics reflects to any degree the invention of mathe-
matics, it must have a place for guessing, for plausible inference.

The reader will find plenty of opportunity here for guessing. The early
chapters go at a gentle pace and invite the reader to enter into the spirit of
the investigation.

For those whose backgrounds in mathematics are not especially strong,
Chapters 1-6, together with Chapter 10, have been designed to form a
terminal course in mathematics. (Chapter 10 can be read immediately after
Chapter 6.) In these chapters algebraic manipulations have been kept at a
simple level. Negative and fractional exponents can be avoided altogether
here, and even the absolute value function is omitted. Trigonometry is not
introduced until Chapter 7. The result, even with the omission of some of
the harder problems at the ends of chapters, is not a watered-down course,
but one that retains the full flavor of calculus.

This book is intended for use in a different way by students well prepared
in mathematics. They should move rapidly through Chapters 1-6, omitting
many of the routine exercises placed at the ends of sections and concentrating

X



To the Instructor Xi

upon the more challenging problem sets located at the ends of chapters.
After Chapter 6 the pace of the book picks up moderately. Chapter 7 develops
the calculus of trigonometric functions, following a quick introduction to
trigonometry. Chapter 8 discusses the integral in more detail than before,
adding a little more rigor to a treatment that remains basically intuitive.
Chapter 9 deals with the exponential and logarithmic functions. Chapter 10
is mainly historical in nature, but it sets the stage for the study of integration
techniques through the use of formal manipulations with differentials.

The book ends with Chapter 10, where a leisurely two-semester calculus
course will find itself near the end of the year. In a fast-moving course the
instructor may have to look elsewhere for additional material to cover. Had
there been a Chapter 11, it would have covered techniques of integration, a
subject often touched upon in Chapters 6—10 but whose systematic study was
postponed. The theory of infinite series is another important topic that has
been touched upon but not developed in this volume.

In time, perhaps, a second volume will appear—to include these and other
topics and to bring the story more up-to-date.

I wish to thank Mary Priestley for helping me in this enterprise and for
sharing with me its ups and downs. I am grateful also to Paul Halmos for
his interest and encouragement.

May, 1978

Sewanee
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Anecdote of the Jar

Wallace Stevens

I placed a jar in Tennessee
And round it was, upon a hill.
It made the slovenly wilderness
Surround that hill.

The wilderness rose up to it,

And sprawled around, no longer wild.
The jar was round upon the ground
And tall and of a port in air.

It took dominion everywhere.
The jar was gray and bare.

It did not give of bird or bush,
Like nothing else in Tennessee.

Copyright 1923 and renewed 1951 by Wallace Stevens. Reprinted from The Collected Poems
of Wallace Stevens, by Wallace Stevens, by permission of Alfred A. Knopf, Inc., and Faber and
Faber Ltd.



Tokens from the Gods

A calculus is a pebble, or small stone.* Playing with pebbles, or “calculating”,
is a primitive form of arithmetic. The calculus, or calculus, refers to some
mathematics that was developed principally in the seventeenth century.

Today the calculus can be seen as a natural result of a certain point of
view. This point of view is reached in three steps. One begins by inventing
the notion of a variable and trying to see situations, where possible, in terms
of variables. The second step is to focus attention upon the relationship
between the variables arising in a particular situation. This leads to the
idea of a function. The third step involves the notion of the limit of a function.
This simple yet subtle notion, which makes it all work, was recognized in
the seventeenth century as being a key idea.

We shall discuss limits a little later. Right now, let us look at a couple
of concrete situations where we can get hold of the idea of a variable and
of a function relating one variable to another.

§1. A Calculus Problem

Let us become acquainted with a type of problem that calculus can handle.
We shall not be able to solve this problem until certain tools are developed
in a later chapter.

* Physicians still use the word calculus in this sense, to describe an unwelcome presence in
the kidney or bladder. The success of a textbook on calculus is measured by the degree to which
its contents are not described by the physician’s usage of the word.



2 1 Tokens from the Gods

ExampLE 1. A small rectangular pen containing 12 square yards is to be
fenced in. The front, to be made of stone, will cost $5 per yard of fencing,
while each of the other three wooden sides will cost only $2 per yard. What
is the least amount of money that will pay for the fencing?

In this example, the total cost of the fencing obviously will vary in terms
of the design of the rectangle. Our job is to become familiar enough with
how the cost varies in order to recognize the least possible cost. Toward
this end we first pick at random a few possible designs and calculate their
corresponding costs. There are lots of ways to enclose 12 square yards:

front front front

EXERCISES

1.1. Suppose the front is 1 yard in length. Find the cost. Hint. The cost is the sum of
the costs of each of the four sides. First find the lengths of the sides, remembering
that the area must be 12 square yards.

1.2. Suppose the front is 2 yards. Find the cost.
1.3. Suppose the front is 3 yards. Find the cost. Answer: $37.00.

1.4. Suppose the front is 7 yards. Find the cost. Answer: 7 + (48/x) dollars.

§2. Variables and Functions

The information obtained in the exercises above may be conveniently sum-
marized in a table. Here, L is an abbreviation for the length in yards of the
front, and C stands for the cost of the fencing in dollars.

L C
1 55
2 38
3 37
n Tn + (48/7)

We have seen, in the exercises above, that the value of C is entirely deter-
mined by the value of L. In other words, there is a rule by which one gets
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from L to C. This rule is simply given by

C = cost in dollars of | 1—5 (1)
L
= cost of front, plus cost of other sides
=S5L+ 2L+ 2(%) + 2<%>
=T7L + 4—5 2)

Because the cost C varies in terms of the length L, it is natural to speak
of C as a variable whose value is determined by the value of the variable L.
In other words (and more explanation will be forthcoming below), C is a
Sunction of L, which we express succinctly by writing

C=f(L) A3)
(read “C equals f of L”). The symbol f denotes the function, or rule, by
which C is given in terms of L. Putting lines (2) and (3) together shows that
the rule f can be expressed by the equation

48
SW=TL+—.

The notation f(L) does not, of course, denote multiplication, but rather
denotes the effect of the rule f acting upon the variable L. For example,
by this rule,

S =T+
T

48
f(3)=7-3+?=21+16=37,

48
f@=7-2+5=14+24=38,

48
S =T 1+ =7+48=55

Since the equation C = 7L + (48/L) says virtually the same thing as the
equation f(L) = 7L + (48/L), one might ask the reason for introducing
this new symbol f. The reason is that we shall need to have a name for the
mechanism, or rule, by which one gets from the left column above to the
right column. It is, after all, this mechanism f that we want to study in order
to recognize the least possible value of the cost C.
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Note that f is not a variable, but stands for a fixed rule relating the two
variables C and L.

EXERCISES
2.1. Use the rule given by f(L) = 7L + (48/L) to find each of the following.
(@) f4). (b) £5).
© f). @ f(/2)
© fB+2). () f3+h).
(8 flx+h) (h) f(n?).
(i) fix3). (§) f(4n).
(k) f(4e). @ 1@/,
(m) f(6).

Answers: (c) Tx + (48/x). (g) 7(x + h) + (48/(x + h)). (k) 28t + (12/1).

2.2. In the following table, fill in the question marks appropriately. (Your answers to
the preceding exercise may be helpful here.)

S
LC/ \C
4 ?
2.5 ?
X ?
x? ?
x+h ?
? 50
? 50

§3. Three Ways of Looking at a Function

In this book, the word function will be used a little loosely and may have
either of these three meanings:

(A) A function is a pair of columns of numbers. Not just any pair of columns,
but a pair whose first column has no number repeated. We speak of the
function as being from the first column to the second.

1 55
2 38
3 37
4 40
(etc)

(B) A function is a rule of correspondence. Not just any rule, but a rule
which associates to each number exactly one second number. We picture
the correspondence as going from a horizontal number line to a vertical
number line.
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55
50
45
40

:

(C) A function is a curve in the plane. Not just any curve, but a curve that
no vertical line crosses more than once. (Occasionally, instead of calling
the curve a function, we call it the graph of a function.)

T

1 2 3 4

1 2 3 4

Do you agree that (A), (B), and (C) are, at heart, expressions of the same
idea? Is it not remarkable that the same idea can be thought of—as in
(A)—as a static notion or—as in (B)—as a dynamic notion or—as in (C)—as
a geometric notion? This remarkable feature is one reason why the idea of
a function is an important one. Already the reader may expect that the
study of functions will have a bearing on the study of dynamics (that is,
motion), and on the study of curves in the plane. If the reader has also the
feeling that the idea of a function can change a moving, or fluid, situation
into a more easily scrutinized static situation, then much of what the ensuing
chapters hold has been foreseen.

A surprising amount of mathematics consists in simply saying the same
thing in many different ways, until it is finally said in a way that makes it
simple. The problem in Example 1 of finding the least possible cost could be
rephrased as either of the following problems:

(1) Find theleast number that can possibly occur in the second column in (A).
(2) Find the lowest point ever hit on the vertical axis by f(L) in (B).
(3) Find the second coordinate of the lowest point on the curve in (C).

Calculus will teach us how to do problem 3 above. In Chapter 3 we shall
begin the study of a technique that often enables one to find with ease the
lowest point on a curve.

For obvious reasons, Example 1 is called an optimization problem, where
the optimum is achieved by minimizing a certain variable (the cost C). Let
us now look at a second example, where the optimization problem that
arises requires that a certain variable be maximized.
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ExAMPLE 2. A farmer has a cow named Minerva. For her has been purchased
1200 feet of fencing to enclose three sides of a rectangular grazing area. The
fourth side is bounded by a long barn and requires no fence. Find the largest
possible grazing area that Minerva can have.

In this example the area varies with the design of the rectangle. Our task
is to become familiar enough with how it varies in order to recognize the
greatest possible area. We first pick at random a few possible designs and
calculate the corresponding areas. There are lots of ways to use that 1200
feet of fencing.

|
1200 — =

2
400
n 400 100 1000 1
Side of long, long barn
EXERCISES

3.1. Suppose the side along the barn is 100 feet. Find the area enclosed. Hint. First
figure out the lengths of the other sides.

3.2. Suppose the side along the barn is 400 feet. Find the area.
3.3. Suppose the side along the barn is 1000 feet. Find the area.

3.4. Suppose the side along the barn is « feet. Find the area. Answer: 600n — $n2 square
feet.

§4. Words versus Algebra

Letting s stand for the length, in feet, of the side along the barn, and letting
A stand for the area enclosed, in square feet, we have the following table:

g

s‘/‘\A

100 55,000

400 160,000

1000 100,000
n 600 — in?

From the exercises above, it is clear that the value of s completely determines
the value of 4. This means that 4 is a function of s. We want to become
familiar with this function in order to recognize the largest possible area A
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that it can produce for Minerva. We begin by giving it a name. Let us denote
this function by g. (If we have a function pop up, we are free to baptize it
with any name we choose. However, it is conventional in most books to
reserve the letters f, g, F, and G to designate functions.)

We now have 4 = g(s). That is, g(s) is the area A corresponding to the
rectangle whose length along the side of the barn is s feet. That is,

g(s) = area, in square feet, of 4
N

Equation (4) defines the function g in words. It is perfectly proper to define
a function by writing out its rule in words. However, if the rule is really an
algebraic rule in disguise, it behooves us to recognize it. What is the height
of the rectangle in (4) whose base is s feet? It is $(1200 — s). Reason: Having
used s feet opposite the barn, we have 1200 — s feet left, of which half must
go on each of the other sides. Thus, from (4) we can go on:

g(s) = area of @%—_—S
s
_ 5(1200 — s)
B 2
2
s
= 600s — >

This shows that the function g, written out in words in equation (4), can be
expressed as an equation in algebra:
2

g®=®%—%. (5)

For obvious reasons, such a function is called an algebraic function. Almost
all the functions we shall encounter in the first six chapters of this book will
be algebraic functions, and it is important to learn to convert an equation
in words to an equation in algebra, whenever it is possible to do so. There
arise many functions like g, whose rules are expressed in words, but whose
rules are really algebraic rules in disguise.

EXERCISES

4.1. Use the algebraic rule g(s) = 600s — 45 to calculate
(a) g(100). (b) g(400).
(c) g(700). (d) g(1000).
(e} g(n). ) gx).
(8) g(x + m). (h) g(x + h).
(D) g2 + 3k). (3 g(1/m).
(k) g(1/x).

Answers: (c) 175,000. (g) 600(x + n) — L(x + n)*.
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4.2. Read again the three ways (A), (B), and (C) of looking at a function.
(a) Draw a few arrows, as in (B), picturing the function g as a correspondence
going from a horizontal number line ta a vertical number line:

160,000 1
120,000
80,000
40,000

| ] 1
100 400 700 1000

(b) Plot a few points, as in (C), lying on the curve g:

160,000 ® (400, 160,000)
120,000
80,000
40,000

I [ !

100 400 700 1000

(c) In Chapter 3 we shall learn an easy way to find the highest point on the curve
g. Can you guess what the highest point might be?

§5. Domain and Range

Look again at equations (4) and (5) above. There is a subtle difference between
them, despite the fact that both equations describe exactly the same rule of
correspondence. The difference is this: In equation (4) it would make no
sense (why?) to let the variable s have a value greater than 1200. Nor would
it make any sense in (4) to let s take on a negative value. On the other hand,
the algebraic rule 600s — $s%, given in equation (5), is well defined for any
value whatever of the variable s. For instance, when s is — 2, this algebraic
rule gives

—2)?
600(—2)—( 2) = —1202,

even though it is impossible to have a rectangle whose area is negative.

A way to avoid such confusion is to agree to specify, at the outset, as
soon as a function is introduced, the collection of numbers on which the
function is defined. This collection is called the domain of the function. The
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domain of our function g, as specified in words in equation (4), is then the
collection of all permissible values of the variable s, which may be pictured
like this:

O QO

0 1200

(The open circles at the endpoints 0 and 1200 indicate that these values are
excluded from the domain. We cannot get an honest-to-goodness rectangle

if we permit s to equal either 0 or 1200.) Instead of drawing a picture of the
domain, one could equally well specify the domain by writing the inequality

0 < s < 1200,

which says that the values of the variable s are restricted to lie between 0
and 1200.*

Once the domain of a function has been specified, one can then speak
of the range of values assumed by the function. For the function given by
A = g(s), the domain consists of all permissible values of s and the range
consists of all corresponding values of 4. Since there are three ways of looking
at a function, there are three ways of thinking about a function’s domain
and range:

(A) If the function is thought of as a pair of columns, then its domain is the
collection of all numbers allowed to go in the first column and its range
is the collection of all numbers in the second.

g
s‘/ \A
o [ 400 | 160,000
g ) 700 | 175000 z
£ 1000 | 100,000 (
=
(etc.)

(B) If the function is thought of as a rule of correspondence, then its domain
is the set of all numbers on which the rule acts, and its range is the set
of all corresponding numbers.

a8uey

l,
0 Domain 1200

* Had we wished (we did not) to include, say, the point 0 and exclude 1200, we would have
written 0 < s < 1200 or drawn the picture with a closed circle at 0 and an open circle at 1200.
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(C) Ifthe function is thought of as a curve, its domain is the projection of the
curve on the horizontal axis and its range is the projection of the curve
on the vertical axis.

o3uey

Domain 1200

oo

The domain must be specified before it makes any sense to speak of the
range of a function. If the domain is altered, then the range will likely change
as well. To find the range of a given function is a problem we shall not discuss
until Chapter 3. By (C) above, we see that finding the range involves finding
the highest and lowest points on a curve, a topic we shall meet in Chapter 3.

It is usually easy to specify the domain of a function, however. In the
function of Example 1, given by

48
fL)=TL +—,

it is natural to take the domain to be specified by the inequality
O0<L

(or L > 0, if you prefer), which says that the values of the variable L are
restricted to be positive. This restriction is forced by equation (1), where
the rule for f is written out in words.

If one does not like to write inequalities, then one should learn to draw
pictures. The domain of the function f of Example 1 can be pictured as
follows:

(The arrow indicates that the domain is not bounded on the right, but
continues to include all positive numbers.)

Suppose a function is specified simply by giving an algebraic rule, such
as \/x + 1. (The radical sign / denotes the positive square root of what
follows.) What shall we understand to be its domain? We shall agree to the
following convention.
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Convention. Unless otherwise specified, the domain of an algebraic rule shall
be understood to be the collection of all numbers for which the rule makes sense.

In applying this convention, one often has to remember two facts which
ought to be familiar from arithmetic:

(1) 1t makes no sense to “divide by zero”.
(2) It makes no sense to take the “square root” of a negative number.

Thus, the domain of the algebraic rule given by /x + 1, unless otherwise
specified, shall be understood to be the collection of all numbers for which
x + 1 is not negative, that is, the collection of all numbers x for which

0<x+1,
which is the same as saying
-1<x,
or drawing the picture
Domain of the rule /x + 1

-1

Since it makes no sense to divide by zero, the domain of the rule (x> + x)/x
is pictured as follows:

Domain of the rule (x? + x)/x

0

The rule given by x + 1, on the other hand, makes sense for any number
whatsoever. By our convention, the domain of this rule (unless otherwise
specified) shall be understood to be unrestricted:

Domain of the rule x + |

We now make a point which the reader may think at first to be overly
precise. The significance of this point will not be appreciated until later.
The point is this: Although it is true that

x> +x  x(x+1)

X X
=x+1 ifx#0,
the functions given by
Flx) = x? + x
X

and
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are not the same. Reason: The functions F and G do not have the same
domain. To say two functions are the same means they have the same graph,
and, in particular, they must have the same domain.

EXERCISES

5.1. In Example 1 we found that the numbers 37 and 55 were in the range of f. Do
you believe that every number between 37 and 55 is also in the range? Why might
you think so?

5.2. In Example 2 we found that it was possible to enclose an area of 100,000 square
feet and also possible to enclose an area of 160,000 square feet. From these facts,
given the nature of the problem raised in Example 2, can you conclude that it is
possible to enclose 130,000 square feet?

5.3. Apply the convention above to specify the domain of each of the following alge-
braic rules. (You may specify the domain either by an inequality or by a picture.)

(a) /x. (b) Jx— 1

() 1/x. (d) 1/(x—1).
(€) 7x + (48/x). (f) 600x — $x2.
(g) (h? + 2h)/h. (h) h+ 2.
(i) 1+ h. (G) L2AL?—1).
k) (s—D(s—2). 0 Vs— 1L
Answers:
(e) x+#0:

0
(g h#0:

0

(h) h unrestricted:

M 1<s:

1

5.4. True or false? The function specified by the rule (h? + 2h)/h is the same as the
function specified by the rule h + 2.

§6. Optimization

In Example 1, the problem of finding the least cost was seen to be the same
as another problem, that of finding the least number in the range of possible
costs. To answer the question raised in Example 1, we need to find the least
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number in the range of f, where f is the function whose rule of correspondence
and whose domain are specified succinctly by writing

f(L)=7L+%, 0<L.
We shall find this number, once we have developed the appropriate tools
of calculus.

In Example 2, the problem of finding the biggest possible area was seen
to be the same as another problem, that of finding the largest number in
the range of possible areas. To answer the question raised in Example 2,
we need to find the largest number in the range of g, where g is the function
whose rule of correspondence and whose domain are specified succinctly
by writing

1
g(s) = 600s — isz, 0 < s < 1200.

We shall find this number later, using calculus.

In our discussion of Examples 1 and 2, we have seen the first step in how
to handle optimization problems. An optimization problem can always be
spotted by the presence of a superlative. Whenever a problem requires that
we find the least, or most, or cheapest, or best, or closest, etc., we know that
we have an optimization problem on our hands. From our discussions in
Examples 1 and 2, we may expect that any optimization problem will give
rise to a function, and that the solution to the problem will involve finding
the highest (or lowest) point on the curve determined by the function. Thus,
by seeing the optimization problem in terms of variables, and by getting an
algebraic rule relating one variable to another, the optimization problem
is transferred to another problem, that of studying the curve determined
by the rule, or function, relating the variables. This is the first step in solving
optimization problems. This step takes a little while to master. Once it is
mastered, however, the second step of finding the highest (or lowest) point
on a curve can be accomplished with the study of only a little calculus.

Must every curve necessarily have a highest point and a lowest point?
Certainly not. The curve f of Example 1 has no highest point. Reason: The
range of costs is not bounded above. There exists no most expensive way
to build that fence. The curve g of Example 2 has no lowest point. Reason:
The grazing area is to be a rectangle and thus cannot have an area of zero,
yet the area A ranges arbitrarily close to zero. There is no least possible
grazing area for Minerva.

EXERCISES

6.1. Suppose, in Example 1, the pen was to enclose 30 square yards instead of 12, the
costs of stone and wood remaining the same. Find an algebraic rule giving the
cost C in terms of the length L of the front, and specify the domain of this rule.
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6.2. Suppose, in Example 2, the farmer had 2000 feet of fencing instead of 1200, the
other conditions of the problem remaining unchanged. Find an algebraic rule
giving the area A in terms of the length s of the side along the barn, and specify
the domain of this rule. Answer: 4 = 1000s — 5%, 0 < s < 2000.

§7. Purpose

What follows, gentle reader, is an unorthodox introduction to the notion
of a limit. (If this is frightening, then be assured that an orthodox discussion
is given in Section 9.) Calculus is, in a sense, the study of limits, yet this simple
notion is also easily misunderstood, unless the student can make the proper
distinction between two things which are easy to confuse. These two things
we might call “purpose” and “action”. The analogy we shall make, in hopes
that it will make the idea of a limit easier to grasp, is this:

The “limit” of a function, at a point in or near its domain, is like the purpose of
a human being, at a point in time.

The reader may find that the word limit is almost exactly as easy (or as hard)
to understand as the word purpose.

This analogy will be worth nothing at all unless the ordinary distinction
between purpose and action is kept well in mind. These two notions, though
often related, are quite different. Most of us can think of instances when our
action did not reflect our purpose or of times when we wandered aimlessly
to no purpose whatever. Sometimes, even with a purpose, one hesitates to
act. Finally, there are the gratifying times when one has a purpose and acts
accordingly.

A function, believe it or not, is just like a person in this respect, and one
can learn a lot by inquiring into this aspect of the life of a function. At any
point in the domain of a function we may compare its action (what it actually
does at the point) with its purpose (what it seemed on the threshold of doing
at the point). Often, just as in the lives of human beings, the action will
agree with the purpose, giving a sense of “continuity”. But there are several
other possibilities that can occur. The action at some point may disagree
with the purpose, or there may be no discernible purpose, or there may be
purpose with no action, or there may be neither purpose nor action.

We study functions all the time in calculus, and we gradually learn tha’
each function has a personality all its own. A function is something mor
than might be imagined from the description “a rule of correspondence’
just as a human being is something more than “a featherless plantigrac
biped mammal”.

Let us try, while studying calculus, to feel ourselves into the world
functions, to see what they really are. Here is a fable. It is offered in f
Take it seriously, but not too seriously.
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Lim: A Fable

The gods did not reveal all things to men at the start; but, as time goes on,
by searching, they discover more and more.

Xenophanes

The lord whose is the oracle at Delphi neither reveals nor hides, but gives
tokens.

Heraclitus

On the First Day all functions were created, and solemnly told the harsh
facts of a functional existence:

Each function has been assigned his domain, to which he will be restricted
eternally to live in accordance with the rule he has been given. During
eternity, he must contemplate the purpose of his being, knowing that on
the Last Day the gods may require him to state his purpose at some trouble-
some point. At that point the function must either state his purpose, or reply
that no purpose exists. For at each point some functions have been given a
purpose and some have not. Remember the words of Xenophanes and
Heraclitus.

Among the multitude of functions trembling on the First Day was g of
Example 2. Charged with a Herculean task, g of Example 2 must take each s
between 0 and 1200 and throw it to the corresponding A. The throw mustbe in
accordance with the god-given rule

1
A = area of a rectangle of sides s and 5(1200 —8).

Up and down his domain, g carefully moves, throwing his s’s until he
knows by heart where each little s is supposed to go. He is glad the gods
did notask him to throw —2, or any negative number, or to throw any number
exceeding 1200, because he would have no clue where the gods might want
these numbers thrown. At last, clever g realizes that he has no purpose at
the point —2, or at any negative number, or at any number exceeding 1200.
Should the gods ask him, on the fearsome Last Day, of his purpose at the
point —2, g would reply in his best courtly fashion:

The purpose of g, at the point —2, does not exist! (6)

Confidence begins to well up in g.

Yet soon g realizes that the gods have played a trick on him. “'Ye gods!”
exclaims g, “Why did ye not give me a closed domain?’’ Poor g is tantalized
whenever he moves near the ends of his domain. When he moves to his left,
toward 0, he is allowed to throw numbers that lie arbitrarily close to 0;
nevetheless, he is not allowed to throw 0, since 0 is not in his domain. A
similar frustration is felt when he moves to the right toward 1200.

Night and day, for what seemed like half of eternity, g continuously
worried about the points 0 and 1200. Finally the gods had pity upon g and
sent down to him a messenger, named Lim.

“Hail, long-suffering g, most favored of Minerva, hail!”’ shouted Lim.

“Who that?” responded g, so startled that he began dropping his s's.
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“I'm the One Who Knows”’, replied Lim, and smiled smugly. ‘‘Remember
the words of Xenophanes and Heraclitus.”

“‘Get off my domain!”’ shouted g, thinking his intruder to be an oracular
fanatic.

“Now, now, calm down”, said Lim. ‘| have been sent to help you find
your purpose, if you should need help at any point. Do you know your pur-
pose at 1200?"

“Since | am restricted to my domain for all of eternity,” said g, ‘‘g(1200)
does not exist. | am not allowed to act at the point 1200.”

“It is true that you are not allowed action at 1200,” responded Lim,
“but it is still possible that you may have purpose at that point, not to be
fulfilled before the Last Day. Have you no clue what the gods want you to do
at 1200 on the Last Day?”

Long-suffering g thought and thought and thought. He thought about his
s’s near 1200, and about the A’s that corresponded to them:

sL/_ ! ’_\A
600
1190 5950 Throwing s’s to 4’s,
1199 599.5 4 when s is near 1200
1199.9 59.995
1199.99 5.99995
1199.999 0.5999995 L\ 1o
(etc.) 0 1199 s 1200

“‘As s gets closer to 1200, A gets closer to 0”’, exclaimed both Lim and g
simultaneously. Then g, in deep tones, declaimed,

The purpose of g at 1200 is to throw it to 0. (7)

“Exactly,” said Lim, “‘but why do you speak in such an old-fashioned
way ? The gods haven’t talked like that for ages. Just use my name. Instead
of your statement (7), just say,

Lim g at 1200 is 0,
and instead of (6), say

Limg at —2 does not exist.

The gods will understand what you mean. They all know my name. | deliver
their ambrosia on Thursdays.”

EXERCISES

7.1. 1s 1200 in the domain of g? Answer: No.

7.2. Does g(1200) exist? Answer: No, g(1200) is undefined, because 1200 is not in
the domain of g. There is no action of the function g at the point 1200.

7.3. Does Limg at 1200 exist? Answer: Yes. Lim g at 1200 is 0, because as s — 1200,
g(s) — 0. (The arrow is an abbreviation for approaches, or gets closer and
closer to or tends to.)
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7.4. What is Limg at —2? Answer: Lim g does not exist at —2, because g(s) does
not exist when s is close to — 2, giving g no clue as to a purpose at —2.

7.5. Whatis Limg at 12027

7.6. What is g(1202)? Answer: Since the function g is not allowed to act at the point
1202, g(1202) does not exist.

7.7. What is g(0)?

7.8. Whatis Limg at0?

7.9. What is Limg at 1200.1? Answer: It does not exist.
7.10. Whatis Limg at —0.1?

§8. Continuity: Purpose versus Action

“Aha!" said g, ‘‘| understand now everything about a function’s purpose.”

“Thatis doubtful,"” replied Lim, “‘for you are still likely to confuse purpose
with action. What, for example, is your purpose at the point 600?"’

“Limg at 600 is 180,000, responded g without hesitation, ‘‘because
g(600) is 180,000."”

“*Aha!"” said Lim, ‘A right answer, but for a wrong reason. Just as |
expected. When the gods inquire about your purpose at 600, they have in
mind something more subtle than you imagine. To reply that g(600) is 180,000
is to state your action at the point 600. But action need not necessarily agree
with purpose. (At the point 1200 you have no action, yet you do have
purpose.)’”’

“To find your purpose at 600, the first thing you must do is to forget
entirely about your action at 600. You may as well pretend that 600 has been
removed from your domain. Then you proceed just as before. What does A
approach as s approaches 6007?"

Long-suffering g thought and thought and thought. What, indeed, would
be his purpose at 600 if 600 were removed from his domain?

The point 600, being in the interior of the domain, can be approached by
values of s either slightly smaller or slightly larger than 600:

g g
& T
500 175,000 700 175,000
550 178,750 650 178,750
590 179,955 610 179,955
598 179,998 602 179,998
599 179,999.5 601 179,998.5
599.9 179,999.995 600.1 179,999.995
(etc.) (etc.)
Letting s approach Letting s approach
600 from the left 600 from the right

(s = 6007) (s —»600+)
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Whether s tends to 600 from the left, or the “‘minus side’ (s — 600~),
or whether s tends to 600 from the “‘plus side’’ (s — 600*), the corresponding
values of A tend to 180,000. Since A — 180,000 as s — 600 (from either side),

Lim g at 600 is 180,000. (8)
180,000 A — 180,000
as s — 600
A
0 S 600

“Now let me get this straight’’, said g. “To find my purpose at 600, |
first pretend that 600 has been removed from my domain, and then see
what happens to A as s tends to 600. This is the way | figure out that state-
ment (8) is true. Isn’t there an easier way to do it?"”

““Yes,"” said Lim, “‘if you are not afraid to use your common sense. Just
look at the rule you were given, g(s) = 600s — 1s?, and note that it is de-
scribed in terms of some simple algebraic operations. Look at what happens
to each of them in turn, as s — 600. Common sense should tell you that, as
s — 600, it must follow that sz — (600)2 and 600s — 600(600). Therefore,
as s — 600,

1 1
A = g(s) = 6005 — —s* - 600(600) — (600)".

Thus, A — 180,000.”

| really feel great at 600, said g, ‘‘whereas at 1200 | become so frus-
trated.”

“That is because, at 600, your action agrees with your purpose:

g(600) = 180,000 (by applying the rule g to 600)
= Limg at 600 [by (8)].
Like any creature, you experience the wholesome feeling of continuity
at any point where action and purpose exist and agree. Whenever there is
not agreement between action and purpose, or whenever one or both are

missing, the anxieties of discontinuity emerge. At 1200, friend g, you behave
discontinuously. You have a purpose:

Limg at 1200 is O,
but you do not act accordingly:
g(1200) does not exist.

Everyone is frustrated by discontinuity.”

“Let me leave you with this idea, to ponder as you will. To say that a
function is continuous at a certain point means that, at the point, the function
has both purpose and action, and they agree.”’
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Definition. A function G is said to be continuous at a point x provided that
the following three conditions are satisfied:
(1) G(x) exists.
(2) LimG at x exists.
(3) G(x) = LimG at x.

“That is all the help | can give you,” said Lim, ‘‘for | must now depart.
| have to collect 37 chariotloads of ambrosia before Thursday.”

“Wait!"” shouted g. “'Can’t you help my friend f of Example 1? She lives
on the domain 0 < L. What a curve!”

“‘Remember the words of Xenophanes and Heraclitus!"' said Lim, and
departed without another word.

EXERCISES
8.1. What is g(400)?
8.2. What is Lim g at 400?
8.3. Is g continuous at the point 4007
8.4. Is g continuous at the point 07?
8.5. Is g continuous at the point —2?
8.6. Is g continuous at every point in its domain? Answer: Yes.
8.7. Consider the function f of Example 1. Is f continuous
(a) at0?
(b) at —2?

(c) at2?
Give reasons justifying your answers.

§9. Limits

In everyday language the word limit has virtually the same meaning as
bound. In calculus, however, it has a rather different meaning. The limit
of a function, at a certain point, is (roughly speaking) what the function,
at that point, is on the threshold of doing.* If ¢ is the point in question,
then the limit of f at ¢ is symbolized by

Limit f(x), 9)

X—c

or by
Lim f at c,

and is found by investigating the action of f at points near c, while com-
pletely ignoring the value of f at c. Before any further explanation is given,
it should be emphasized that f(c), the value of f at ¢, may well be entirely
unrelated to the limit of f at ¢. [If it happens that they are the same, that is,

* The word limit is kin to the Latin word limen, which means “threshold”.
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that f(c) = Limit,_f(x), then the function f is said to be continuous at the
point c.]

How does one find the limit of a function at a point? The symbolism
(9) is designed to suggest the method of doing this. We simply ask for the
limiting value of f(x), as we imagine the values of the variable x taken
closer and closer to (but not equal to) the number ¢. The arrow in “x — ¢”
is supposed to suggest x approaching c ever more closely.

Some examples should serve to clarify things. The reader is asked simply
to use common sense in thinking about what happens as the value of a
variable gets closer and closer to a fixed number c.

ExaMmpLE 3. Let F(x) = (x? + x)/x, with domain specified by the inequality
x # 0. Find Lim F at 4.
Here we are asked to find
2
Limit =~ (10)
x4 X

and it is obvious how this is to be done, simply by reading the formula (10)
in words: We are asked to find the limiting value of the expression (x? + x)/x
as x tends to 4. What happens to this expression as x — 4? Common sense
tells us that x? — 16, so that the expression (x? 4+ x)/x approaches (16 + 4)/4,
which is equal to 5. Therefore,

x2 +x

Limit =35,
x—=4 X

which answers the question raised in Example 3, and also shows, incidentally,
that F is continuous at 4. (Why?) tl

ExaMPLE 4. Let G(x) = x + 1, with unrestricted domain. Find Lim G at 0.
This is even easier than the preceding example. As x — 0, common sense

says that (x + 1) — 1. Therefore,
Limit (x + 1) = 1. O

x—=0

ExaMpLE 5. Let F(x) = (x? + x)/x, with domain specified by x # 0. Find
Lim F at 0.
Here we are asked to find
2
Limit Xt x’
x—=0 X

and it is not obvious, at first, how this is to be done. As x — 0, both the
numerator x% + x and the denominator x also approach 0. What is to be
done?

What is to be done is to realize that the question raised in Example 5
is exactly the same as the question raised in Example 4, whose answer, we



9. Limits 21

have seen, is 1. Why are these two questions exactly the same? Because
Lim F at 0, remember, is to be found by letting x tend to 0, but never allowing
x to equal 0. If x # 0, though, then

(x+1)=

Flx) == X+ 1,
so that the limit of F at O is the same as the limit of x + 1:

24 x
Limit — Limit (x+ 1) = 1,

x—0 X x-0

by Example 4. (What has just been illustrated in this example is not hard,
but it is subtle. Reread this example, and also the last remark in Section 5,
to make sure you understand it.) O

A picture is the best way to illustrate why Examples 4 and 5 must have
the same answer:

©.1) (0.1)

Flx)=>—= Gx)=x+1

0 0

The curves F and G are identical, except when x is 0. Since the limit of
a function at the point 0 is independent of the action at 0, F and G have the
same limit at 0.

Here is another example, using & instead of x as the variable.

ExXAMPLE 6. Find Limit,_, ((h® + 2h)/h).

This is like Example 5, where it is not immediately obvious whether the
limit exists at 0. Both the numerator h? 4+ 2h and the denominator h tend
to 0 as h — 0. However, if h is not equal to 0, then we may divide by A, so

h* +2h  h(h+2)

P I =h+2.

This shows that the algebraic rule given by (h? + 2h)/h is exactly the same
as the algebraic rule h + 2, provided h is not 0. Since the limit at 0 is inde-
pendent of the action at 0, these two rules have the same limit at 0:

2

. 2h ..
Limit = Limit (h + 2) = 2. dJ

h—=0 h—=0
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When investigating the limit of a function at a point, one may encounter

any of the following situations:

(I) The limit exists and agrees with the action of the function at the point.
(IT) The limit exists, but the function does not act accordingly.

(ITT) The limit does not exist.

If case (I) occurs, the function is said to be continuous at the point. This
is illustrated in Examples 3 and 4. Case (II) is illustrated in Examples 5
and 6. Case (III) will be illustrated in Examples 7 and 8.

ExaMpLE 7. Find Limit,_, o (7x + (48/x)).

This limit does not exist. As x — 0, the first term, 7x, is “well-behaved”,
tending to 0, but the second term, 48/x, does not tend to 4 limit, since it
becomes large-positive as x tends to 0 from the right, and it becomes large-
negative as x approaches 0 from the left:

x Tx + 48/x x Tx + 48/x
1 55 -1 —55
0.1 480.7 —0.1 —480.7
0.01 4800.07 —0.01 —4800.07

(etc.) (etc.)

Letting x approach Letting x approach

0 from the right 0 from the left

(x—07) (x-07) U

ExaMpLE 8. The Post Office has discovered that the cost of sending a letter
by mail varies in terms of the weight w of the letter. Accordingly, the number
of stamps to be affixed to a letter is a function of w. One stamp is required
if the weight w is 2 ounces or less; two stamps if 2 < w < 4; three stamps
if 4 < w < 6; etc. Let us call this function F, so that

F(w) = the number of stamps on a letter of weight w.

Find Lim F at 4.

3 o
number
of 2 O
stamps The “curve” F
1
IR R S TN T |
0 1 2 3 4 5 6
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Lim F at 4 does not exist. As w tends to 4 from the left, the number of

stamps F(w) tends to 2; whereas, when w tends to 4 from the right, F(w)

tends to 3:
4.1 3
4.01 3
4.001 3
(etc.) (etc.)
[Fow)—>2,asw—47] [F(w)—>3,asw—4"]

The limit does not exist at 4, because we get different “answers” when we
approach 4 from different sides. O

EXERCISES

9.1. Find the indicated limits:

9.2.

9.3.

94.

(@) Limit,_q((x*> — 4x)/x). (
(¢) Limit,.; ((x* = )/(x — 1)). (
(e) Limit,_, o (3h/h). (
(&) Limit,—._, ((x* = D/(x + 1)). (
Consider each of the following algebraic rules, and tell whether it is continuous
at the indicated point c:

(@) (x2 — 4x)/x; c = 0. Answer: Not continuous.

)

b) Limit,_o(x — 4).
d) Limit,_o (3h2/h).
f) Limit,_o(3/h).

h) Limit,_.5(5/(6 + 1)).

a

(b) x—4;c=0.

(© (2=D/x—1);c=1.

(d) 5/(6 + t); c = 3. Answer: Continuous.

Consider the “Post Office function” defined in Example 8.

(a) The function F is defined by a rule stated in words. Do you think it is likely
that this rule is an algebraic rule in disguise? Hint. Do you think an algebraic
rule could have a graph like the “curve” F?

(b) Does Lim F at 2 exist?

(c) Does F(2) exist?

(d) Is F continuous at 2?

(e) Is F continuous at 3?7 Answer: Yes.

(f) A politician asserts that “the scale of charges imposed by the Post Office upon
its customers exhibits unnatural and unjustifiable discontinuities at 2-ounce
intervals.” Explain, in more detail, what the politician means.

(A philosophical question to be pondered for a while before being answered) Is dis-
continuity unnatural? That is, must the rules that come from laws of nature
necessarily be continuous? (Man-made rules, like the Post Office function, are
often discontinuous, at least at some points.)
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§10. Summary

Variables, functions, and limits were ideas that came of age in the seventeenth
century. Fermat (pronounced fer-MAH) was probably the first to see the
real importance of limits. Continuity is an old philosophical term that drew
new interest from Leibniz (pronounced LIP-nits), who was the first to use
the word function.

These notions were not particularly well defined by their inventors, who
were content to describe things in intuitive terms. The word function at
first referred only to an algebraic rule, which is automatically continuous
at each point in its domain.

Problem Set for Chapter 1

1. Consider Example 1 once more. We chose to look at it in terms of the variables C
and L. The cost variable C cannot be avoided, since the problem involves finding
the minimum of this variable. However, instead of choosing L, the length of the
front, as our second variable, we might just as well have chosen W, the depth of
the pen.

front

(a) Write an algebraic rule expressing C in terms of W.

(b) What is the domain of the rule in (a)?

(c) Plot a few points on the graph of the equation in (a) that expresses C in terms
of W.

(d) Write an equation that relates W and L. Hint. What is their product?

(e) Go back to equation (2) and, in it, replace L by 12/W and simplify. Do you get
the same equation as you got in part (a) above? Why did it work out that way?

2. In Example 1, change the word least to greatest. With this modification, respond to
the question raised.

3. Consider Example 2 once more. We chose to look at it in terms of the variables
A and s. There is no getting around the variable A, since it must be maximized in
order to answer the question raised. However, instead of s, we might just as well
have chosen the other dimension w of the rectangle to be our other variable.

Side of long barn
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(a) Write an algebraic rule expressing A in terms of w.

(b) What is the domain of the function whose rule is given in part (a)? (Be careful.)

(c) Plot a few points on the graph of the equation in (a).

{d) Write an equation relating w and s. Hint. What is the sum of 2w and s?

(e) In the equation A = 600s — 45, replace s by 1200 — 2w, and simplify. You
should get the same answer as in part (a). Why?

4. In Example 2, change the word largest to smallest. With this modification, respond
to the question raised, bearing in mind that no honest-to-goodness rectangle has
an area of 0.

5. Some curves determine functions and some do not. Does a circle ever determine
a function?

6. Do all straight lines determine functions? If not, give an example of one that doesn’t.

7. Some algebraic equations determine functions and some do not. Consider the
algebraic equation x2 + y% = 1.
(a) Is (0,1) on the graph of this equation?
(b) Is (0, —1) on the graph of this equation?
(c) Does the algebraic equation x? & y? = 1 determine a function?

8. Does the algebraic equation y = /1 — x? determine a function? If so, what is
its domain?

9. One way to specify a function is to draw the curve it determines. For each of the
curves below, specify the domain and the range. (Specify either by drawing pictures
or by writing an inequality, whichever is easier.)

(5,10)
F
(3’7) O—
6,7) 8,7)
/
(&
(1, 4) @3, 4) 6,4)
(-2.2) (7.2)
&
~
\,ﬁ -1
(31 - 1)
8.-2)
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10.

11.

12.

13.

14.

15.

16.
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Referring to the functions F, f, G, and g pictured in the preceding problem, find

() Lim F at 3. (b) Lim f at 6.

(c) LimG at 1. (d) Limg at 3.

(¢) Limg at 7. (f) F(3).

(&) f(6). (h) G(1).

(i) g(3). (3) 9(D.

Still referring to the functions F, f, G, and g of problem 9, answer the following
questions.

(a) Is F continuous at 3?
(b) Is f continuous at 67
(c) Is G continuous at 1?
(d) Is g continuous at 3?
(e) Is g continuous at 77

The domain of the “Post Office function” of Example 8 is specified by the inequality
0 < w. What is its range?

The functions of Examples 5 and 6 (in Section 9) have the same domain. It has a
hole in it, at the point 0:

0

(a) What is the range of the function of Example 5?
(b) What is the range of the function of Example 6?

Suppose the numbers 1 and 3 are known to be in the range of a certain function.
Must the range then necessarily contain all numbers between 1 and 3? Hint. Look
at your answer to problem 12.

Suppose the numbers 1 and 3 are known to be in the range of a certain function,
and suppose the function is continuous at every point in its domain. Must the
range necessarily contain all numbers between 1 and 3? Hint. Look at your answer
to problem 13(b). What if, in addition, the domain has no “holes” in it?

In the corner of a large courtyard a rectangular enclosure is to be built. To pay for
the material, $240 has been allocated. This is to be used to pay for both the stone
fence, which costs $6 per meter, and the wood fence, which costs $2 per meter. The
area A of the enclosure will vary with the way the enclosure is built.

(a) Let L be the length of the stone fence. How much money will be left to spend
for wood?
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17.

18.

19.

(b) Let L be the length of the stone fence. How long will the wood fence be? Hint.
The answer to part (a) tells you how much money is left for wood.

(c) Let L be the length of the stone fence. Find an algebraic rule giving the area 4
in terms of L, and specify the domain of this rule.

There is often more than one way to choose your variables. In problem 16,

(a) Let x be the amount of money spent on stone. How much is left to spend on
wood, and how long, therefore, is the wooden fence?

(b) Let x be the amount of money spent on stone. Find an algebraic rule giving A
in terms of x, and specify the domain of this rule.

A metal container, in the form of a rectangular solid, is to be constructed. The
base is to be square, there is to be no top, and the volume of the container (the
product of its three dimensions) is to be 12 cubic meters. Suppose the material for
the sides costs $2 per square meter, and the material for the base costs $3 per square
meter.

12 cubic meters

L

(a) Let C be the cost of the material for the container, and let L be the length of
a side of the square base (in meters). Find the cost C if L is 2. Hint. First note
that the height of the container must be 3 (why?) if L is 2.

(b) Find the cost C if L is n. Hint. First note that the height of the container must
be 12/n if L is 7.

(c) Find an algebraic rule giving C in terms of L, and specify its domain.

(This problem is like the preceding one, except that we have a specified amount of

material, instead of a specified volume.) Suppose that we have 120 square feet of

material, out of which is to be constructed a square base and four sides of a rec-

tangular container. (The container is to have no top.) Let L be the length of a side

of the base.

(a) If H is the height of the container, then it is true that 120 = L? + 4LH. (Why?)
Solve this equation for H, to get H in terms of L.

(b) The volume V of the container is the product of its three dimensions, so V =
L L- H. Use part (a) to get V in terms of L alone.

(c} In part (b) we have V as a function of L. What is the domain of this function?



The Spirit of Greece

About 2500 years ago, a Greek named Pythagoras walked by Homer’s
fabled wine-dark sea, until he came to know what would inform his whole
life. Arithmetic, with grand contempt for the slippery pebbles’ uncertain
support, boldly vaulted from the earth—and geometry was drawn out of
the stars. Mathematics sprang from this marriage.

In childhood, mathematics was nurtured by that early spirit rising from
the shores of the Mediterranean, exhorting Greeks to walk like giants, to
wrest secrets from the gods. The history of mathematics ever since has
been bound up with the workings of that spirit. What was it like, back then?
Whose was the voice that howled above the seashore, as Pythagoras length-
ened his stride? What moved the train—FEudoxus to Archimedes—that
followed Pythagoras down the shore?

Let us study the workings of that train, to come to know its spirit. We
ourselves move in it. We are still transported by a caravan of Greeks—who
felt mathematics spring from head to shoulder—upon whose shoulders we
too stand.

The purpose of the present chapter is to remind ourselves of history.
Some readers may have the urge instead to jump flat-footed into an attack
upon the problem that arose in Chapter 1: the problem of how the highest
and lowest points on a curve can be easily found. Those readers may jump
to Chapter 3, but they are warned that flat-footed jumps are awkward
without a good foundation from which to leap. Studying history helps to
build foundations.

§1. The Philosophy of Pythagoras

Real mathematics begins with Pythagoras (ca. 569-500B.c.), although small
steps were taken earlier by the Sumerians, Babylonians, and Egyptians.
Some would say that Thales, who taught Pythagoras, deserves as much
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credit; but Thales, hailed widely as the “father of philosophy”, surely enjoys
honor enough already. Why the spark of mathematics should suddenly
glow so brightly (and why the flame would die with the coming of the
Romans) is still a mystery.

Geometry became increasingly the dominant theme in Greek mathe-
matics, and Pythagoras set the style. Yet Pythagoras was at first more
attracted to arithmetic. He and his followers, the Pythagoreans, founded a
small society that virtually worshipped numbers. One short sentence is all
it takes to sum up the philosophy of Pythagoras:

All is number!

Pythagoras, it is said, invented the word philosophy, which literally means
“love of wisdom”. He sought wisdom by studying numbers. Number, to
the Pythagoreans, referred to the ideas they pictured by the sequence

(etc)

Today we call these numbers positive integers. Exactly what the Pythagoreans
meant by asserting that all is number is not entirely clear. At the least they
meant that numbers are connected with many things that, at first, seem
totally unrelated to numbers. For example, the musical tones produced by
plucked strings seem at first to have nothing at all to do with numbers. Yet
it was Pythagoras himself, so legend has it, who discovered what we now
call thirds, fifths, octaves, etc., because of the numbers that are naturally
associated with their relative pitches. Elementary facts about music are
such common knowledge today that we surely underrate their significance.
In the sixth century B.c., their discovery must have been astonishing.
Imagine! Numbers have something to do with music!

“Perhaps numbers have something to do with everything!” thought
Pythagoras. “Perhaps everything is number....” At least this offered a
viable alternative to Thales’ philosophy. Thales thought everything was
water.

The Pythagoreans bequeathed much to Western culture. Who has not
heard of the Pythagorean theorem?

The Pythagorean Theorem. In a right triangle, the square built on the hypote-
nuse has the same area as the combined area of the squares on the other two
sides.

area c?

B area a’

I~ area b?
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PrROOF. From the vertex of the right angle, drop a perpendicular to the
hypotenuse, hitting the hypotenuse at Q.

S c B
r s a
¢ Y a a
r a
4 » |c
b b
b

The hypotenuse is then split in two, as indicated, so that
c=s+r. (1)
Since AAQC is similar to AACB (why are they similar?), we have

r b
s @

Since ABQC is similar to ABCA, it follows that

a

=2, 3)

From equation (2) it follows that b? = rc (showing that the two figures with
vertical markings are equal in area). From equation (3) it follows that
a* = sc (showing that the two figures with horizontal markings are equal
in area). From the equations a® = sc and b? = rc, together with equation (1),
we have

a+b’=sct+rc=(s+rc=c-c=c

Therefore, a? + b?> = ¢2, Q.E.D.

The proofjust given shows exactly how the square built on the hypotenuse
can be split into two areas that are equal, respectively, to the squares built
on the sides. Pythagoras probably gave a more elementary proof, perhaps
like the one that is outlined in problem 3 at the end of this chapter.
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The Pythagorean theorem is applicable to a surprising variety of situa-
tions, as indicated in the exercises that follow.

EXERCISES

1.1. In the plane, indicate the position of the points P and Q, whose coordinates are
given below, and use the Pythagorean theorem to find the distance from P to Q.
(a) P=(3,37), Q = (4,40).

(b) P =(1,55), @ = (6,50).
(c) P=1(4,40), 0 =(2,38).
(d) P=(n7%),Q = (z*n%.
Answers:

(a) Dist Pto Qis \/T(S, by the Pythagorean theorem:

4,40)

-
(3,37) 4,37)

(d) Dist (n,7%) to (3, 1% is \/(n® — 7)? + (x* — n?)%

1.2. Use the Pythagorean theorem to find a formula for the distance from (x,, y,)
to (x,,y,). Answer: Dist (x,,y,) to (x,y,) is /(x3 — x,)% + (y2 — yy)*. (This
is called the distance formula and should be memorized.)

1.3. (a) Use the distance formula to find the distance from (0, 0) to (3,4).
(b) What is wrong with the following “calculation”?

Dist (0,0) to (3,4) = /3% + 4%

=34+4=".

1.4. Use the distance formula to find the distance from (0,0) to (x,y). Be sure you
know why your answer is not equal to x + y. Answer:

Dist (0,0) to (x, y) = /(x — 0)2 + (y — 0)*
=./x% 4+ y%
1.5. Consider this sentence:
The distance from (0,0) to (x, y) is 5.

Rewrite this sentence as a sentence (that is, an equation) using only algebraic
symbols. Hint. In algebra, the word is may be translated “equals”.

1.6. Consider this sentence:

The point (x, y) lies on the circle of radius 5 with center at (0, 0).
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Rewrite this sentence as an equation in algebra. Hint. This is precisely the problem
posed in exercise 1.5 (why?). The answer is the same as the answer to 1.5.

1.7. Consider this sentence:
x? 4 y? =25

Rewrite this, using the distance formula, as a sentence in words. Answer: The
point (x, y) lies on the circle of radius 5 with center at (0, 0).

1.8. Consider each of the following equations, and rewrite it as a sentence in words.
(@) x* + y* =49.
by x2+yr=1.
() x2+ y*=4.

1.9. Consider this sentence:
The distance from (r, 3) to (x, y) is 7.
Rewrite this as an equation. Answer: (x — m)> + (y — 3)* = 49.

1.10. Write an equation which says that (x, y) lies on the circle of radius 7 with center
at (=, 3).

1.11. Write an equation which says that (x, y) lies on the circle
(a) of radius 3 with center at (2, 5).
(b) of radius \/i with center at (1,0).
(c) of radius 3 with center at (—2,5).
(d) of radius = with center at (— =, 3%).
(e) of radius r with center at (a, b).
Answer: (c) (x + 2> +(y — 5% =09.

1.12. Consider each of the following equations, and rewrite it as a sentence in words.
(@ (x+2*+(y—-52=09.
b) (x—2*+(y+5°*=09.
() x>+ (y—27?=3.
(d) (x+m)*+(y—3n) =2
Answer: (d) The point (x, y) lies on the circle of radius /2 with center at (-7, 37).

1.13. A lighthouse is located 3 miles away from a straight shoreline. An electric plant
is 13 miles downshore (as indicated in the figure, where P is the nearest shore
point to the lighthouse). Suppose that undersea cable costs $7,000 per mile,
whereas underground cable costs $2,000 per mile.

I Lighthouse

3 miles
Electric plant

—

}" 13 miles

(a) What is the cost (in thousands) of running cable undersea to P, then under-
ground to the power plant?
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(b) What is the cost (in thousands) of running cable undersea from the lighthouse
to a point Q 4 miles downshore, then underground to the plant?

Lighthouse

4 Q Electric plant

———

P

(c) Find an algebraic rule giving the cost (in thousands) of running the cable
undersea from the lighthouse to a point x miles downshore, then under-
ground to the plant. Answer: C = 7./9 4+ x? + 2(13 — x).

(d) What is the domain of the function expressed in words in part (c)?

§2. Geometry versus Arithmetic

Pythagoras perhaps had little notion that the Pythagorean theorem could be
relevant in such a variety of contexts as we have just seen in the exercises in
Section 1. In particular, the idea that an algebraic equation (like x* + y* = 25)
could be identified with a geometric curve (the circle of radius 5 with center
at the origin) is an idea whose value the Greeks never fully realized. The
importance of this interplay between algebra and geometry was first seen by
two seventeenth-century Frenchmen, Pierre de Fermat and René Descartes.
It was they who developed analytic geometry, the name given to the study
of this interplay, whose goal is the attainment of a synthesis of algebra and
geometry.

Ever since A.D. 1637, when Descartes wrote La Géométrie, it has been
common knowledge that curves can have equations and that equations
determine curves. Why did the Greeks fail to utilize this means of approaching
problems in geometry? The answer is simple. The Greeks knew that their
curves had equations. However, they developed little abbreviative symbol-
ism, and therefore had to write the “equations” out in words. For the Greeks,
sometimes only a wondrous wealth of limiting clauses could describe
adequately the mathematician’s latest and prettiest discovery:

Let a cone be cut by a plane through the axis, and let it also be cut by
another plane cutting the base of the cone in a straight line perpendicular to
the base of the axial triangle, and further let the diameter of the section be
parallel to one side of the axial triangle; then if any straight line be drawn
from the section of the cone parallel to the common section of the cutting
plane and the base of the cone as far as the diameter of the section, its square
will be equal to the rectangle bounded by the intercept made by it on the
diameter in the direction of the vertex of the section and a certain other
straight line. . ..

Apollonius, Conics, ca. 200 B.C.
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See?

By contrast, our modern system, which uses Descartes’s coordinates and
his abbreviative notation, is almost magically efficient. In modern terms, the
long statement of Apollonius simply says,

Given a parabola, a Cartesian coordinate system can be introduced in
which the parabola has an equation of the form y = cx?, where c is a certain
constant. . ..

It is hard to overestimate the value of appropriate symbolism. The Greeks
never had it, and they developed only a little algebra. Their powers were
concentrated upon geometry.

Why did the Greeks prefer to couch their mathematics in geometry? Why
not let number play the key role in mathematics, particularly since Pythagoras
would base everything upon number? The reason has to do with the dis-
covery by the Pythagoreans of irrational quantities, a discovery that might
be interpreted as disproving their own philosophy!

It is told that those who first brought out the irrationals from conceal-
ment into the open perished in shipwreck, to a man. For the unutterable and
the formless must needs be concealed. And those who uncovered and touched
this image of life were instantly destroyed and shall remain forever exposed
to the play of the eternal waves.

Proclus

Pythagoreans want to explain everything by numbers. Trouble starts
when one tries to explain the simplest elements of geometry by numbers.
How does one account for points on a line in terms of numbers? This appears
easy at first, but the appearance is deceptive. On a line segment a unit length
is first chosen, and then to each ratio of integers is associated a point, in a
natural way that is now familiar to every schoolchild. The ratio 2, for example,
names the point obtained by dividing the unit length into 4 equal parts
and then taking 3 of them. At first, it appears that every point on the line
can be named in this way, by using ratios of integers, or rational numbers.

The Pythagoreans, however, discovered to their distress that there was
a certain point P that could be accounted for by no rational number whatever!

F— unit length—| ' d 2 3

" N
—t -+

Consider the point P situated on the line as indicated above. The number
associated with P would measure the length of the hypotenuse of a right
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triangle whose legs each have a length of one unit. Therefore, by the
Pythagorean theorem, the square of the number associated with P must be
equal to 2. The shock was felt when somehow, out of the Pythagorean school,
around 500 B.C., came the following remarkable statement and proof.

Theorem. There is no rational number whose square is 2.

PRrROOF. (The proof uses the indirect, or reductio ad absurdum method, which
consists in showing that an absurd conclusion results from supposing the
theorem false.) Suppose that the theorem stated above is false, i.e., suppose
there is a rational number whose square is 2. Then, by canceling out any
common factors in the numerator and denominator, we should have a
rational number a/b in lowest terms whose square is 2. We should then
have integers a and b satisfying:

a and b have no common divisor; 4)
2
a

From equation (5) it follows that

a is even. (6)

Reason: If a were an odd number, then a® would be odd; yet equation (5)
tells us that a®> = 2b?, showing that a® is even, being twice another integer.

Since we know that a is even, we know that a must be equal to twice
some other integer. Calling this other integer k, we then have a = 2k, or
a® = 4k?, so that equation (5) becomes

4K
b—z

where k and b are integers. From equation (7) it follows that

=2, (7)

b is even. (8)

Reason: If b were an odd number, then h* would be odd, yet equation (7)
tells us (when it is solved for b) that b? = 2k?, showing that b? is even.
The absurd conclusion is evident when statements (4), (6), and (8) are
compared. This shows that an absurd conclusion is a consequence of as-
suming the theorem false. Therefore, the theorem must be true, Q.E.D.

The Greeks evidently saw no way to explain the point P by a number,
since they could conceive of no “number” other than a rational number.
Today, most students have no qualms over associating the point P with
the number defined by a never-ending decimal expansion beginning

1.414 . ...



36 2 The Spirit of Greece

The Greeks preferred to shy away from infinite processes whenever they
could. Here, they took refuge in the “safe” framework of geometry. The
point P offers, of course, no difficulty at all to geometry. It is just as simple
an object as any other geometric point. Although the difficulty with irrational
numbers surfaces in geometry as a problem with incommensurable line
segments, the brilliant Eudoxus (ca. 408355 B.cC.) showed how things could
be handled. It seemed that geometry could handle something that arithmetic
could not, and the Greeks came to regard geometry more highly than
arithmetic. For over two thousand years mathematics was couched in the
framework of geometry.

What might have happened if, instead, the Greeks had emphasized mea-
surement by numbers and had studied the way that numerical quantities
relate to one another in a given setting? Then the development of the calculus
and of modern science might have been accelerated radically. For this reason
it may not be an exaggeration to say that the irrationality of \/i had a
profound effect upon the history of mankind.

EXERCISES

2.1. Is 1.41 a rational number? Answer: Yes, since it is equal to 141/100, a ratio of
integers.

2.2. Is 2 a rational number? Hint. 2 = 2/1.
2.3. Isit true that \/2 = 1.414?
2.4. Is \/4 irrational?

2.5. Give a reductio ad absurdum argument showing that 5,/2 is irrational. Answer: If
it were rational, it would be equal to some ratio m/n of integers, which leads to a
contradiction, as follows: Sﬁ = m/n implies that ﬁ = m/5n = a rational
number, contradicting the theorem just proved.

2.6. Prove that 3,/2 is irrational.
2.7. Give a reductio ad absurdum argument showing that 2./2 is irrational.
2.8. Prove that (a/b)ﬁ is irrational, if a and b are nonzero integers.

29. Give a reductio ad absurdum argument showing that 3 + /2 is irrational. Answer:
If 3 + /2 were rational, we would have 3 + /2 = m/n, which, when solved for
V2, yields ﬁ = (m — 3n)/n = a rational number, which is a contradiction.

2.10. Is the sum of a rational number and an irrational number always irrational?
2.11. Is the sum of two rational numbers always rational ?

2.12. Is the sum of two irrational numbers always irrational? Hint. Consider the sum

of 3+ 2and 3 — /2.

2.13. Is the product of two rationals always rational?

2.14. TIs the product of two irrationals always irrational?
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2.15. Find an irrational number lying between 0 and 1/1000. Hint. Use your answer
to exercise 2.8 and choose b very large.

2.16. Are there infinitely many irrationals between 0 and 1 /10007
2.17. Are there infinitely many irrationals between any two rational numbers?

2.18. (For more ambitious students) The long statement of Apollonius given in this
section is, believe it or not, one of the prettiest theorems of geometry, once it is
understood. Read pp. 203-204 of The World of Mathematics, edited by James
R. Newman, Simon and Schuster, 1956, where Apollonius’ proof may be found.

§3. Plato, Aristotle, and Mathematics

Western philosophy has been described as a series of footnotes to the
writings of Plato. Yet, as we know from the warning on his gate (“Let no
one ignorant of geometry enter here!”), Plato’s philosophy was influenced
by his conception of mathematics. The Pythagorean spirit lives in Plato.

Mathematics, in Plato’s time (430-349 B.c.), was enjoying vigorous
activity, the leading figure being Plato’s colleague Eudoxus, whose work
we shall meet in Chapter 6. Plato could not have failed to be impressed
with the remarkable achievements of Eudoxus and with the fact that Eudoxus
might have created (or is discovered a better word?) something that would
last forever.

The eternal was of paramount interest to Plato, transitory things being of
less value. What is important is the power to prevail against the ravages
of time. To Plato, mathematics seemed to possess this power. The theorems of
the Pythagoreans will live, even if the Greek language should die. Plato
became enamoured of mathematics.

The theorems of mathematics are eternally true, thought Plato, and
significant theorems will retain their value not only for the next few thousand
years, but literally forever. “Geometry will draw the soul toward truth,”
said Plato, “and create the spirit of philosophy.” All knowledge should
perhaps aspire to the state attained by mathematics. Here, beyond the realm
of immediate practicality, lies the true spirit of pure thought.

Plato went even further. As an illustration, consider the question whether
the Pythagorean theorem was true before Pythagoras came upon it. Plato
would reply strongly in the affirmative and would assert that the theorem
had always been true. It had been built into the universe, and Pythagoras
was just the first one to see it clearly.

Plato believed that the Pythagorean theorem existed, in some sense,
long before Pythagoras. The connection between the ideas involved was
there always. It was waiting to be discovered, as is often said nowadays,
just as America was waiting to be discovered by Columbus. Plato began
to think that all enduring knowledge must be like this. Knowledge consists
of ideas, or eternal forms, and their great web of connections.
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To put a significant piece of this knowledge into down-to-earth terms,
so that all can understand, is a noble undertaking. Socrates, Plato’s teacher,
undertook to explain the idea of justice, an idea that is still imperfectly
understood. Plato tackled the virtually impossible task of explaining the
good, the true, and the beautiful, and to see the interrelationship between
these ideas. In the more concrete realm of mathematics, Euclid (ca. 365-
275 B.c.) tried to uncover the interrelationship between all the ideas of
geometry that were known up to his time.

However naive Plato’s outlook may appear, it cannot be denied that
such efforts as these have inspired to this day many more seemingly impos-
sible undertakings.

The aspect of Plato’s philosophy just described is sometimes pictured as
follows. The ideas, or eternal forms, already exist, floating in the “Platonic
heaven”, just beyond our grasp. Perhaps, as the Pythagoreans believed, we
ourselves existed in a former life when we might have known these ideas
before, but we are born with an imperfect knowledge of them. In order to
remember ourselves, we must study philosophy: Only a lover of wisdom
can climb high enough to swing around heaven, and slide back down to
earth with a new perspective. A Platonist today might hold the view that
“liberal arts” consists of ideas brought down to earth by swingers. O

The excitement and enthusiasm that Plato found in the study of mathe-
matics may be contrasted with the tone taken by his great student Aristotle
(384-322 B.C.). It has been suggested, perhaps unkindly, that Aristotle was
never enthusiastic about anything. But it is certainly true that Aristotle saw
in mathematics nothing to inspire such a flight of imagination as was taken
by Plato. Aristotle was more of a scholar, or critic, than a speculator. The
capacity to systematize knowledge, to bring order through reason, was of
the highest importance. The value of mathematics, to Aristotle, lies in its
exemplification of this capacity to a degree unmatched in any other dis-
cipline. Aristotle seems really to have been more interested in logic than
in mathematics.

Aristotle’s views on logic had great influence. They tend to be reflected
in the style of Euclid, whose Elements—the greatest textbook of modern
times—appeared about 300 B.c. Euclid seemed to show that the towering
edifice of geometry was simply the consequence of logic unerringly applied
to “self-evident” propositions, or axioms. The value of Euclid’s work lies
not so much in the announcement of previously unknown theorems (many
of the theorems in the Elements were known before Euclid was born), but
rather in the masterful logical organization of a great body of knowledge
by the axiomatic method. Aristotle endorsed this method, which seems to
have been introduced several centuries earlier by Thales, who taught
Pythagoras.

The axiomatic method consists in stating clearly one’s initial assumptions
(axioms) and deducing all else by means of logic. The method results in a
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writing style that is demanding, austere, and—to some—supremely beautiful :

Euclid alone has looked on Beauty bare.

Let all who prate of Beauty hold their peace,
And lay them prone upon the earth and cease
To ponder on themselves, the while they stare
At nothing, intricately drawn nowhere

In shapes of shifting lineage; let geese

Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.

O blinding hour, O holy, terrible day,

When first the shaft into his vision shone

Of light anatomized! Euclid alone

Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

Edna St. Vincent Millay*

Western civilization has consumed over a thousand editions of Euclid’s
Elements. It is no surprise that traces of the axiomatic method can be detected
in many nonmathematical writings:

We hold these truths to be self-evident . . .
...anew nation . . . dedicated to the proposition that . . .

Thomas Jefferson and Abraham Lincoln were among Euclid’s admirers.
Lincoln considered his reading of Euclid an indispensable part of his educa-
tion. The following passage is from a biographical sketch written for the
1860 presidential campaign.

He studied and nearly mastered the six books of Euclid since he was a
member of Congress.

He began a course of rigid mental discipline with the intent to improve
his faculties, especially his powers of logic and language. Hence his fondness
for Euclid, which he carried with him on the circuit till he could demonstrate
with ease all the propositions in the six books; often studying far into the
night, with a candle near his pillow, while his fellow-lawyers, half a dozen in
a room, filled the air with interminable snoring."

What is it about Euclid that attracts? Is it not the cold, unexcited certainty
with which tower upon tower of seemingly irrefutable arguments are built?
No work could be more dispassionate than Euclid’s Elements. Yet this
same quality has probably repelled as often as it has attracted. For many
people, Euclid is too severe, too lacking in enthusiasm, “faultless to a fault”.
Whatever enthusiasm Euclid felt for mathematics he restrained in writing
the Elements. Aristotle would have wanted it that way. Scholarship must
stand up under the cold, steady eye.

* Sonnet XLV, from Collected Poems, Harper and Row. Copyright 1923, 1951 by Edna St.
Vincent Millay and Norma Millay Ellis.

' This passage is cited in E. T. Bell's Men of Mathematics, p. xvi.
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EXERCISES

3.1. Latin translations of Euclid have made famous the abbreviation Q.E.D. If you
don’t know already, use a dictionary to find out what this abbreviation stands for,
in both Latin and English.

3.2. Here are some comments on Euclid made by an eminent modern mathematician.
Are his criticisms justified?

Euclid’s work ought to have been any educationist’s nightmare. The work pre-
sumes to begin from a beginning; that is, it presupposes a certain level of readi-
ness, but makes no other prerequisites. Yet it never offers any “motivations”, it
has no illuminating “asides”, it does not attempt to make anything “intuitive”, and
it avoids applications to a fault. It is so “humorless” in its mathematical purism
that, although it is a book about “Elements”, it nevertheless does not unbend
long enough in its singlemindedness to make the remark, however incidentally,
that if a rectangle has a base of 3 inches and a height of 4 inches then it has an
area of 12 square inches. Euclid’s work never mentions the name of a person; it
never makes a statement about, or even an (intended) allusion to, genetic de-
velopments of mathematics . .. In short, it is almost impossible to refute an
assertion that the Elements is the work of an unsufferable pedant and martinet.*

3.3. In the next section, we shall make use of the following proposition, which is typical
of propositions in the Elements. Can you give a proof of this proposition?

If two parallel lines are cut by a transversal, then the alternate interior angles
are equal.

/

(Prove that the indicated angles are equal. Look up a proof in a geometry book
if you have trouble.)

§4. Measuring the Earth

The root geo- means “earth”, and geometry literally means “earth-measure-
ment”. Eratosthenes (ca. 276—195 B.c.) did just that, with the aid of Euclid’s
proposition about alternate interior angles (see exercise 3.3). In the third
century B.C., Eratosthenes convinced himself that the earth’s circumference

* Salomon Bochner, The Role of Mathematics in the Rise of Science, p. 35. (Copyright © 1966
by Princeton University Press and reprinted by permission of the Press.)
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is about 50 times the distance from Alexandria to Aswan. (Aswan was known
as “Syene” then. Its distance from Alexandria is about 500 miles.)

We indicate part of Eratosthenes’ reasoning, leaving the rest to the reader.
Eratosthenes thought that Alexandria was due north of Aswan. (It is not
quite due north. Locate the two cities on a globe.) In Aswan there was a
deep well that had an unusual feature. The sun shone straight down the
well, casting no shadow at all, once every year: at the summer solstice. The
sun, at noon on June 22, is directly overhead in Aswan, so that the sunlight
beaming down a well is headed for the center of the earth. At the same time,
in Alexandria, Eratosthenes observed the shadow cast by an upright stick,
and measured an angle of slightly more than 7 degrees, or about £5 a com-
plete revolution. (One-fiftieth a complete revolution is, in degrees, equal to
(5)(360) degrees, or 7.2°.)

Angle of ¥ revolution
in Alexandria:

ﬂ Eratosthenes

EXERCISES

4.1. Explain how, from the facts above, one might infer that the circumference of the
earth is about 25,000 miles.

w
. )
Alexandria s
// w

— Ly
—_ E
T 17

Center of Earth Aswan

4.2. Look up the circumference of the earth in an almanac or encyclopedia. Was
Eratosthenes’ calculation close to being accurate?

4.3. In A.p. 1492 Columbus had his own idea of the earth’s size. Did he think it
larger or smaller than Eratosthenes believed it to be? What would have happened
if Columbus had believed Eratosthenes’ calculation to be correct?

§5. Archimedes versus the Romans

Had Eratosthenes lived in another time, his cleverness might have earned
him a greater reputation. He was known, however, by the nickname “Beta”,
for it was his lot to live in the shadow of a deeper mathematician, Apollonius
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(ca. 260-200 B.c.), and to be virtually eclipsed by the incomparable
Archimedes (287-212 B.c.).

Residing within Archimedes of Syracuse was a mysterious, driving force
that compelled him to contemplate mathematics with his whole being.
Archimedes’ contemporaries spoke in wonder of his “raging Siren”, his
“familiar demon”, his “muse”, or his “spirit”.

Archimedes discovered a significant part of the calculus. The notion of
a limit was well understood by Archimedes, though he did not call it by
name. His understanding of the essential idea is implicit in the papers he
wrote. What is even more remarkable, Archimedes had a better grasp of
this notion than the seventeenth-century mathematicians who invented
the term.

In addition to his mathematics, which includes papers two thousand
years ahead of his times, Archimedes developed the theory of floating bodies
into the science now called hydrostatics. He was also an inventor of ingenious
and useful devices such as a water pump, elaborate compound pulleys
utilizing the law of the lever to remarkable advantage, and a mechanical
contraption that is said to have described accurately the motions of the
heavenly bodies. But he was, above all, a pure mathematician.

Archimedes’ “violence from within” never abandoned him, even in great
old age. When Rome attacked Syracuse in 214 B.c., Archimedes, despite
his seventy years of age, went into action. To repel the Roman legions of
Marcellus, he invented and deployed all manner cf weapons. As Plutarch
recorded, Archimedes’ catapults and other devices scared the pluperfect hell
out of the Romans:

In fine, when such terror had seized upon the Romans that, if they did
but see a little rope or a piece of wood from the wall, instantly crying out,
that there it was again, Archimedes was about to let fly some engine at them,
they turned their backs and fled; Marcellus desisted from conflicts and
assaults, putting all his hope in a long siege.

Yet Archimedes possessed so high a spirit, so profound a soul, and such
treasures of scientific knowledge, that though these inventions had now
obtained him the renown of more than human sagacity, he yet would not
deign to leave behind him any commentary or writing on such subjects; but,
repudiating as sordid and ignoble the whole trade of engineering, and every
sort of art that lends itself to mere use and profit, he placed his whole affection
and ambition in those purer speculations where there can be no reference to
the vulgar needs of life; studies, the superiority of which to all others is un-
questioned, and in which the only doubt can be whether the beauty and
grandeur of the subjects examined, or the precision and cogency of the
methods and means of proof, most deserve our admiration. It is not possible
to find in all geometry more difficult and intricate questions, or more simple
and lucid explanations. Some ascribe this to his natural genius; while others
think that incredible effort and toil produced these, to all appearances, easy
and unlaboured results. No amount of investigation of yours would succeed
in attaining the proof, and yet, once seen, you immediately believe you would
have discovered it; by so smooth and so rapid a path he leads you to the
conclusion required.
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And thus it ceases to be incredible that (as is commonly told of him) the
charm of his familiar and domestic Siren made him forget his food and
neglect his person, to that degree that when he was occasionally carried by
absolute violence to bathe or have his body anointed, he used to trace geo-
metrical figures in the ashes of the fire, and diagrams in the oil on his body,
being in a state of entire preoccupation, and, in the truest sense, divine
possession with his love and delight in science. His discoveries were numerous
and admirable; but he is said to have requested his friends and relations that,
when he was dead, they would place over his tomb a sphere contained in a
cylinder, inscribing it with the ratio which the containing solid bears to the
contained.

Plutarch, translated by John Dryden

Archimedes, at the age of seventy-five, was killed by sword. He had
ignored the orders of Marcellus’ soldier and had continued to study the
lines and curves drawn in the sand. This was in 212 B.C. Apollonius and
Eratosthenes died not long after, and the glory of Greece was soon to pass.

The long period of Roman domination now began. The Roman culture
was inclined more toward engineering than toward mathematics. Romans
valued only the parts of mathematics that could be applied in everyday life.
Cicero, while he restored Archimedes’ gravesite in Sicily and praised his
name, nevertheless wrote with pride of how the Romans assimilated into
Roman culture only the “practical” parts of mathematics.

With the Greeks geometry was regarded with the utmost respect, and
consequently none were held in greater honor than mathematicians, but we
Romans have restricted this art to the practical purposes of measuring and
reckoning.

Cicero, Tusculan Disputations

One is surely free, like Cicero, to embrace utilitarianism if one wishes;
but who is wise enough to say today what might be useful tomorrow?
Consider, for instance, the simple proposition of Euclid regarding alternate
interior angles. Many, upon seeing this proposition, would immediately
discard it as useless. Yet Eratosthenes used it to measure the earth.

As a more striking example, consider the calculus, which was to grow
out of seventeenth-century mathematics. It is still prized highly today for
its utility, even by some who value relevance and applicability of knowledge
more than knowledge itself. Calculus is indispensable to the modern engineer.
Yet Archimedes, who scorned the utilitarian as no one else, had unlocked
some of the secrets of the calculus in the normal course of his studies.

Today the other secrets of the calculus seem to us not far from Archimedes.
But Roman engineers added to mathematics little of value. For nearly two
thousand years the puzzling riddles lay right where Archimedes fell, in the
reddening sand, amongst pebbles, lines, and curves.
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At last there came colossal shrieks and shouts of surprise and delight in
the seventeenth century, when suddenly Archimedes’ Siren raged anew. The
great man’s spirit had prevailed against the Romans, and even today it
is heard, howling in jubilation, Eureka!

Problem Set for Chapter 2

1. The Pythagoreans, by arranging pebbles in clever ways, could draw remarkable
conclusions. To illustrate:
(a) What is the sum of the first two odd numbers?
Answer: - plus «; is 5:, the square of two.
(b) What is the sum of the first three odd numbers?
Answer: - plus «; plus **is i3, the square of three.
(c) What is the sum of the first four odd numbers?
(d) Whatis 1+ 3+ 5+ 7+ 9 + 11, the sum of the first six odd numbers?
(e) What is the sum of the first n odd numbers?
(f) Whatis 1 +3 4+ 5+ -+ 99? (Here, the three dots stand for the sum of the
odd numbers between 5 and 99.)

2. The Pythagoreans knew that an easy way to count the number of pebbles arranged

in the shape of a triangle is to view the triangle as half of a rectangle:

(a) What is the sum of the first two numbers?
Answer: «plus ¢ is.:, which is half of i,
so the sum of the first two numbers is 1(2)(3).

(b) What is the sum of the first three numbers? Answer: It is 1(3)(4), or half the
dots in a 3 by 4 rectangle.

(c) Whatis1+2+3+4+54+6+7?

(d) What is 1 +2 4 3 4+ -+ -+ 100? (Here, the three dots stand for the integers
between 3 and 100.)

() What is the sum of the first n positive integers?

3. The following principle is self-evident: If the same amount is taken away from two
figures having equal area, then the two modified figures have equal area. It is thought
that Pythagoras might have employed this principle, as follows:

b a
a c a a

a

b b <
b a b

The two large squares have equal area. Take away the four right triangles, use the
principle above, and it becomes clear’ that ¢?> = a® + b*. Eureka!

4. Undersea cable costs $11,000 per mile, whereas underground cable costs $7,000
per mile. An island and a power plant are located as indicated, and cable is to be
run between them.
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Power plant

Let C be the cost (in thousands) of the cable, and let x be as indicated. Find an
algebraic rule expressing C in terms of x, and specify the domain of this rule. (In
Chapter 4 we shall discuss how to find the cheapest way of laying the cable.}

5. Find the center and the radius of the circle corresponding to each of the following
algebraic equations:
(@ x> +(y—22=1.
(b) (x+3)2 + (y — /2 = 10.
(¢) x> +y*=10.
(d) 5x* + 5y* = 10.

6. Write an algebraic equation corresponding to each of the following circles: the
circle with
(a) radius 3, center at (3, —4).
(b) radius \/3, center at (0, 3).
(c) radius 9, center at (7, \/7).

7. Give a reductio ad absurdum argument to prove that
(a) \/§ is irrational.
(b) /18 is irrational.
Hint. (a) First note that \/8 = \/4-2 = /4 /2 = 2,/2. Then proceed, using the
fact that /2 is known to be irrational.

8. (In this question, you are not asked to give rigorous justification for your answers,
only to test your intuition about the notion of area. It may be helpful to think about
what happens to a figure in a photograph, when the photograph is enlarged.)

(a) Suppose, in a plane with figures drawn, each length is tripled (i.e., blown up
by a factor of 3). For instance, a square of size 2 by 2 becomes a square of size
6 by 6. By what factor is the area of each figure blown up? Answer: Areas of
squares, and therefore all (why?) areas, are blown up by a factor of 9.

(b) Suppose, as in part (a), that each length is blown up by a factor of r. By what
factor is each area magnified?

(¢) The number 7 is defined as follows:

7 is the area of a circle of radius 1 unit.

Use your answer to part (b), plus a little imagination, to find the area of a circle
of radius r units.

(d) How could you convince someone that 7 is less than 4? Hint. Consider a square
circumscribed about the unit circle. What is the area of the square?

() How could you convince someone that « exceeds 3? (A certain state legislature
once considered seriously passing a law declaring that = was equal to 3 in that
state. What are the objections to such a law?)

(f) Archimedes knew, beyond any doubt, that 7 lies somewhere between 34% and
3%, Can you imagine how he might have been able to determine this?
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9. The formula for the area A4 of a circle [see problem 8(c)], gives A ds a furiction of
r. What is the domain of this function? What is its range? Plot a few points so that
you can make a rough sketch of the curve determined by this function.

10. The Pythagorean theorem deals with squares constructed on the three sides of a
right triangle. What about semicircles instead? Prove that the area of the semicircle
with hypotenuse as diameter is equal to the sum of the areas of the semicircles on
the other two sides. Hint. Use the equation 4 = nr? as an aid in finding the areas
of the semicircles. Then use the Pythagorean theorem.

A1
LU

—

11. (This is a famous result of Hippocrates of Chios, a member of the Pythagorean
school.) In the figure below, the hypotenuse of the right triangle is also the diameter
of the circle in which the triangle is inscribed.

Lunes of Hippocrates

\_/

Prove that the combined area of the two “lunes” (with vertical markings) is equal
to the area of the right triangle. Hint. From problem 10 we know that the area
marked vertically in the lower figure is equal to the area marked horizontally.
Take away the cross-hatched area from both figures, and use the principle given
at the beginning of problem 3. Eureka!
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12. Consider the figure below, where the two triangles have a vertex in common and
the lengths of their bases are equal. Prove that the triangles have the same area.

13. Here is a problem that intrigued the Greeks. Given a figure, construct a triangle
whose area is the same as that of the figure. (For example, given the lunes of problem
11, Hippocrates found a triangle of the same size.) Do this for a regular octagon.
(Regular means all sides have the same length and all angles made by adjacent
sides are equal.) Hint. Stare at the figure below, and use the result of the preceding
problem. (Both figures can be thought of as being made up of eight triangles.)

b b b b b b b b b

14. By a regular polygon of n sides is meant a figure in the plane bounded by n equal
sides with n equal angles. (Problem 13 dealt with a regular polygon of 8 sides.) Let
r denote the perpendicular distance from the center of a regular polygon to a side.
Show that the area of a regular polygon is equal to the area of a triangle whose
height is r and whose base is equal in length to the perimeter of the polygon. Hint.
Stare at the figure below, and use the same reasoning as you did in the preceding

problem.
Regular polygon
r LN
e
a 4 d d d

f Perimeter of polygon |

15. (Here the reader is asked simply to make a guess after considering the evidence.)
Keep in mind that the equality of areas of the regular polygon and the correspond-
ing triangle pictured in problem 14 holds, no matter how many sides the polygon
has. This equality of areas holds for a polygon of a billion sides, for instance. Keeping
this in mind, stare at the two figures below. One is a circle of radius r, and the
other is a triangle of height r whose base is equal in length to the circumference of
the circle.
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16.

17.

18.

19.

20.
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Now make a guess as to which of the following is true:
(a) The area of the circle exceeds the area of the triangle.
(b) The area of the triangle exceeds that of the circle.

(c) The area of the triangle equals the area of the circle.

(For more ambitious students) The amount and the type of reasoning which con-
stitute an irrefutable argument in mathematics have never been fixed. Some things
that the seventeenth century took as obvious (i.e., requiring no proof) the twentieth
century and also the ancient Greeks accepted only after a careful demonstration
from basic principles had been given. If you believe that the statement in part (c)
of problem 15 is “obviously” true, then you are in the good company of some of
the keenest minds of the seventeenth century. They would reason that equality
between areas of polygons and triangles carries over “in the limit”, a circle being
regarded as the limit of polygons that approach it more and more closely.

On the other hand, you may feel that the statement (c) requires a clear proof,
because you have only made an educated guess that it is true. If so, then you are
at home with Archimedes and with most twentieth-century mathematicians who
would think so too. Archimedes proved 15(c) by showing that 15(a) leads to a
contradiction, as does 15(b). Can you?

The statement in (c) of problem 15 is true. Using it, and letting C stand for the
circumference of a circle of radius r, prove that

(a) nr? =1iCr.

(b) C =2nr.

The algebraic rule C = 2zrr defines the circumference of a circle as a function of
its radius. What is the domain of this function? What is its range? Plot a few points
on the curve determined by this function. Is the “curve” really a straight line?

The number = is irrational, but this fact was not proved until the nineteenth century,
and the proof is a little sophisticated. However, numbers like /3, \/5, /6, v/7,
/8, /10, etc., have been known to be irrational since antiquity. Pick a couple of
these and try your hand at proving them irrational.

Do a little outside reading about the Greeks, and particularly about Archimedes.

For example, read pp. 19-34 of E. T. Bell’s Men of Mathematics, Simon and Schuster,

New York, 1937.

(a) What did Archimedes mean when he said, “Give me a place to stand on, and
I will move the earth!”

(b) “Eureka! Eureka!” shouted the streaking sage of Syracuse. Why?

(c) What does E. T. Bell mean when he says that modern mathematics was born

with Archimedes and died with him for over two thousand years?



Problem Set for Chapter 2 49

21. The words below are derived from Greek. Look them up in a good dictionary and
find out their literal meaning:
(@) arithmetic.
(b) geometry. Answer: “Earth-measurement”.
(c) mathematics.
(d) philosophy. Answer: “Love of wisdom”.
(e) enthusiasm.

22. Rome itself stands for the impress of organization and unity upon diverse
fermenting elements. Roman Law embodies the secret of Roman greatness in its
Stoic respect for intimate rights of human nature within an iron framework of
empire. Europe is always flying apart because of the diverse explosive character
of its inheritance, and coming together because it can never shake off that impress
of unity it has received from Rome. The history of Europe is the history of
Rome curbing the Hebrew and the Greek, with their various impulses of religion,
and of science, and of art, and of quest for material comfort, and of lust of
domination, which are all at daggers drawn with each other. The vision of Rome
is the vision of the unity of civilization.

A. N. Whitehead

What did the Romans do for mathematics?



Sherlock Holmes
Meets Pierre de Fermat

Given a curve, such as the one below, how can one locate its lowest point?
This problem arose naturally in Chapter 1, along with the analogous prob-
lem of finding the highest point on a curve. Both problems can be solved by
the same method, to which we now turn.

55
50 -
45

40 -

§1. Rising and Falling Lines

We must agree first how to use the words rising and falling, for there is
danger of misunderstanding. Is the curve above rising or falling as it passes
through the point (1, 55)? The answer depends upon whether one thinks of
the curve as being traced out from left to right or in the reverse direction.
So that we all speak the same language, let us agree to think of any function’s
curve as being traced out from left to right (or from west to east, if you prefer).
The curve above is then falling as it passes through (1, 55), and rising as it
passes through (4, 40).

Before going further, we had better mention the simplest curves of all:
straight lines. Below are pictured falling, horizontal, and rising lines.

50
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(1,55)
—_———
27 /(Z(
Fallint_g liml’. Horizontal line Rising line
(negative slope) (zero slope) (positive slope)

These three lines, if superimposed upon the curve pictured on page 50,
may give the reader a hint as to the method we shall develop. At each point P
on a curve, we shall seek the line through P that most closely approximates
the curve near P. This line will be called the tangent line to the curve at P.
The discussion of tangent lines begins in Section 3, and most of this chapter
is devoted to their study.

What does the study of tangent lines to curves have to do with the problem
stated in the first sentence of this chapter? Look again at the curve above.
It is pretty clear, is it not, that the lowest point occurs where the tangent
line is horizontal, that is, where the tangent line slopes neither up nor down.

We must give a precise meaning to the word slope.

Definition. The slope of the line joining (x,, y,) and (x,, v,) is given by

Y2 — W1
X, — X,

, provided x; # x,.

(x15 ¥1)

For example, the slope of the line joining (4,6) and (5, —3) is given by

~3-6

-9
5—-4

The slope of a line is a number that measures how fast the line rises (or,
when the slope is negative, how fast the line falls)) If L is the line joining
(x1, y1) and (x, y), then

2270 _ Slope L,
X2 — X3
so that we have
Y2 — y1 = (Slope L)(x; — x). (1)

The relation expressed in equation (1) will be useful later in finding an
equation of the line L.
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EXERCISES

1.1. Find the slope of the line joining (1,2) and (3,7), and draw a picture of this line.
Partial answer: Slope is 5/2.

1.2. Find the slope and draw a picture of the line joining (1,2) and (3, —2). Is this line
rising or falling?

1.3. Find the slope and draw a picture of the line joining (1,2) and (5, 2). Is this line
rising or falling?

1.4. Find the slope and draw a picture of the line joining (1,2) and (1, 5). Partial answer:
Slope is undefined.

1.5. Using geometry, show that the slope of a line is independent of which pair of points
is chosen to calculate the slope. That is, in the figure below, show that the slope
from P to Q is equal to the slope from R to S. Hint. The slope is simply a ratio
of two sides of a triangle. Prove that the triangles are similar.

1.6. (a) Find the slope of the line L joining (1,2) and (3, 5).
(b) Find the slope of the line joining (1,2) and (300, 450).
(c) Using your answers to (a) and (b), decide whether the point (300,450) lies
above, on, or below the line L joining (1,2) and (3, 5).
(d) Is the point (301,452) on this line L? How do you know?

§2. Linear Functions

It is easy to see, as illustrated in exercises 1.1-1.3, that a line is

rising if its slope is positive,
falling if its slope is negative,
horizontal if its slope is zero.

Some curves (and we shall understand a line to be an especially simple
kind of curve) determine functions, and some do not. Any nonvertical line
does determine a function. (Why?) Such a function is called a linear function.

The slope of a line tells us something about the linear function it deter-
mines. It tells us how much the function “stretches”. What does this mean?
Look at the figure below, where a line of positive slope is pictured, and
consider the function determined by this line. If the domain is the interval
from x, to x, and if the corresponding range extends from y, to y,, then by
what factor is the domain stretched as it is sent into the range?
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From the figure, the length of the range is y, — y,, and the length of the
domain is x, — x,. Equation (1) above thus says:

Length of range = (slope of line)(length of domain).

The slope of the line thus gives the factor by which a linear function stretches
lengths. A line of slope 3, for instance, determines a linear function that
sends any interval into an interval three times as long. A line of slope 3,
considered as a function, has a “stretching factor” of 3.

The preceding discussion applies to lines of positive slope. Suppose the
slope of a line is negative, say — 3. Then the linear function determined by
the line still has a stretching factor of 3, but intervals in the domain are
“flipped upside down” before they land in the range.

-]

3 Aline of slope —3

J8uey

Domain

The notion of slope makes it easy to write or to recognize equations of
nonvertical lines. The following exercises illustrate this.

EXERCISES

2.1. Translate into words the algebraic equation y — 2 = 3(x — 1). Answer: By equa-
tion (1), this says “(x, y) lies on the line of slope 3/2 passing through (1,2).” [This
is an equation, then, of the line described in exercise 1.6(a).]

2.2. Translate into words the algebraic equation y — 4 = 3(x — 2), and sketch the
line determined by this equation.

2.3. Translate into words the algebraic equation y + 4 = —2(x — 3), and sketch the
line determined. Hint. First rewrite the equation as y — (—4) = —2(x — 3), then
use equation (1).
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24.

2.5.

2.6.

2.7.
2.8.

29.
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Translate into words each of the following equations, and sketch the line determined.
(a) y=2x+ 4. Hint. Rewriteas y — 4 = 2(x — 0).

(b) 3x + 4y = 6. Hint. First solve for y. Then proceed as you did in part (a).

() y=mnx+ ﬁ

(d) y = 5. Hint (if needed). Rewrite as y — 5 = 0(x — 0), and use equation (1).

The slope-intercept form of the equation of a line is

y=bx+c,

where b and c are constants.

(a) Rewrite this equation as y — ¢ = b(x — 0). Find the slope of the line determined
by this equation, and find both coordinates of ihe point where the line meets
the y-axis.

(b) Describe the curve determined by the function given by f(x) = 3x + 5. Answer:
The graph of f is a line passing thirough (0, 5) with slope 3, since the algebraic
rule 3x + 5 is in slope-intercept form.

(c) Describe the curve determined by each of the following rules:

(i) —2x—5.
(i) x — 1.
(iii) 5 — x.

Find an algebraic equation for the line of slope 3 passing through (0, 7). Answer:
By equation (1), a point (x, y) lies on this line if and only if y — n = 3(x — 0), or
(simplifying) y = 3x + =.

Find an algebraic equation for the line of slope 3 passing through (n,0).

(a) Find the slope of the line joining (4,6) and (3, 8).
(b) Using your answer to (a), find an equation of the line joining (4, 6) and (3, 8).

Find an equation of the line joining

(a) (0,0) and (1, —2).

(b) (3,4) and (4,7). Answer: y = 3x — 5.

(c) (3,4) and (7,4).

(d) (3,4) and (3,7). Hint. This is made simple, not hard, by the fact that the slope
is undefined. Use common sense.

§3. The Principle of Elimination

In

the preceding section we have made an essentially complete investiga-

tion of the simplest kind of function. We have learned that any function
given by a rule of the form

bx + ¢

is a linear function. Its graph is a line of slope b passing through the point

(0’

¢) on the vertical axis.
The next simplest kind of function is a quadratic function, arising when

a linear expression bx + ¢ is modified by a term involving a square: A
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quadratic function is given by an algebraic rule of the form
ax? + bx +c, wherea#0.

The behavior of quadratic functions is not hard to study. To investigate
that behavior, and to learn at the same time how to find tangent lines to curves,
let us consider the simplest quadratic function of all. This is, of course, the
squaring function given by

fx) = x*.

Plotting a lot of points on the graph of the squaring function shows that
it looks something like this:

y
(—2,4) b (2,4)
= )/
y=x / ,
1N o
0,0/ 7 x

There are many lines through P = (1,1). How can we pick out the line tangent to the
curve at P?

We are ready to move toward attacking the problem stated in the first
sentence of this chapter. We have already hinted that the solution of that
problem involves the study of tangent lines to curves. Our task now is to
figure out exactly what a tangent line is. So far, we have only made the (rather
vague) statement that the tangent line to a curve at a point P is the line
through P that most closely resembles the curve near P. With this meager
thread to hold on to, how can one determine the slope of the tangent line to
the squaring function at the point P = (1,1)?

This is a challenging question, even for the keen mind of a master sleuth.
Let us therefore enlist the aid of the great detective:

Sherlock Holmes’s Principle. When you have eliminated the impossible, what-
ever remains, however improbable, must be the truth.

The answer to a question is among what remains after wrong answers have
been set aside. By this principle of elimination, the tangent line is the line
left when all “nontangent” lines have been discarded. Will this be helpful
to us? We shall see. Let us first look at some exercises to test whether this
principle of elimination is well understood.
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EXERCISES

Apply Sherlock Holmes’s principle to each of the following situations.

3L

3.2.

33.
3.4.
3.5.
3.6.
3.7
38

39.

3.10.

§4.

Winnie the Pooh’s honey is gone. Everyone but Tigger has a valid alibi that
proves his innocence. Answer: By Holmes’s principle, Tigger stole the honey,
provided it was stolen.

A survey shows that Peter Pan is a citizen of no country questioned in the survey,
and England is the only country not questioned. Answer: By Holmes’s principle,
Peter Pan is a citizen of England, provided that Peter Pan is a citizen of some country.

The county seat of Yoknapatawpha County, Mississippi, is none other than the
city of Jefferson.

1984 + h is not the title of a famous book, if 4 is not equal to 0. Answer: No
famous book has a numerical title, except possibly /984.

If h # 0, then the area of a circle of radius 1 is not © + h. Answer: The area of a
circle of radius 1 is none other than =.

If x # 5, then x is not the solution of a certain problem in arithmetic. Answer:
The solution of the problem, by Holmes’s principle, is S, provided the problem
has a solution.

If h # 0, then h + 2 is not the answer to a certain problem in arithmetic.

Ifh # 0, then (h* + 2h)/his not the answer to a certain problem. Hint. (h* + 2h)/h =
h+2ifh#0.

If h 0, then (h* + 4h)/h is not the answer to a certain problem. Answer: By
Holmes’s principle, the answer must be 4, provided the problem has an answer
(and provided the answer is a number).

If h # 0, then (h* + 9h)/h is not the answer to a certain problem.

The Slope of a Tangent Line

We are prepared to begin our detective work. To employ the principle of
Sherlock Holmes, we must attain skill at finding wrong answers, in order
to eliminate them. Let us recall the question:

What is the slope of the tangent line to
the curve y = x? at the point P = (1,1)? )

How can we get a wrong answer to this question? Look once again at the
graph of the squaring function near P. A line through P that cuts the curve
twice will not be tangent at P, it would seem. The tangent line at P will touch
the curve only at P.
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/
/ /

not tangent at P / tangent at P

(cuts curve twice) /

LH=>r 1L,)="P
/ 7

Now we have a clue. To obtain a wrong answer to question (2), we need
only find the slope of a line joining P to another point on the graph of the
squaring function. This graph consists of each point in the plane whose
second coordinate is the square of its first coordinate. Another point on
the curve, then, is (1 + h, (1 + h)?) if h is not equal to zero. (If h is 0, this
“other” point would coincide with P.) The slope of the nontangent line joining
(1,1yand (1 + h, (1 + h)?) is given by

(A+h*—1 1+42h+h*—1 2h+h
l+h—-1 h - h

We now know a host of wrong answers to question (2), for if 4 # 0, then
(2h + h?)/h is the slope of a line that is not tangent at P. Note that this
expression simplifies to 2 + h.

/
/
/

(1+h,(1 + h)?)

P=(,1)

/
/

This line, not tangent at P if & 5 0, has a slope equal to 2 + h

What is the answer to question (2), now that we know that 2 + k is not
the answer, if h # 0. The only number not eliminated is 2. By Sherlock
Holmes’s principle, the answer to question (2) must be 2, provided the ques-
tion has an answer. That is,

the slope of the tangent
lineto y = x2at (1,1)is 2, (3)

provided the curve y = x? has a tangent line at (1,1). Elementary, dear
Watson! O



58 3 Sherlock Holmes Meets Pierre de Fermat

Holmes’s method illustrates the curious fact that it is possible to get the
right answer by first considering how to get wrong answers. Let us try another
question. :
What is the slope of the tangent line
to the curve y = x? at the point (—2,4)? 4

Let us consider how to get wrong answers to question (4). A wrong
answer is the slope of the line joining (—2,4) and (=2 + h, (=2 + h)?) if
h # 0. The slope of this nontangent (or secant, as a line cutting a curve
twice is often called) is given by

(—2+h?>—-4 4—4h+h*—4

—2+4h+2 h
_ —4h+ 1
- h
=—4+h ifh#0.
\
\
P=(-2,4)

(=2 +h,(—2+ h)?)

\
\
\

This secant has a slope equal to —4 + h

What is the answer to question (4), now that we know —4 + h is not the
answer if h # 0? The only number not eliminated is —4. By Holmes’s
principle, the answer must be —4, provided there is an answer. That is,

the slope of the tangent
linetoy =x?at(—2,4)is —4, (5)

provided the curve y = x? has a tangent line at (—2,4).

EXERCISES

Apply the principle of elimination to each of the following.

4.1. What is the slope of the tangent line to the curve y = x* at (0,0)? Answer: It is O,
provided there is a tangent line.

4.2. What is the slope of the tangent line to the curve y = x? at the point (2,4)?

4.3. What is the slope of the tangent line to y = x? at (n,n%)? Answer: 2=, if there is a
tangent line.
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4.4. What is the slope of the tangent line to the curve y = x? + 3 at the point (1,4)?

4.5. What is the slope of the tangent line to the curve y = x* + 3x at the point (1,4)?
Hint. A wrong answer to this question is given by

A+h?>+3(1+h)—4

p =5+h ifh#0.

4.6. What is the slope of the tangent line to the curve y = x? + 3x + 2 at the point
(1,6)? Answer: 5, if there is one.

4.7. What is the slope of the tangent line to the curve y = x? + 3x + 2 at the point
(m, 7% + 3n + 2)?

§5. Fermat’s Method and the Derivative

As clever as Holmes’s method is, it has serious drawbacks, as illustrated in
problem 17 at the end of this chapter. One worrisome thing about this
method is that things are left hanging a bit at the end. How do we know
whether a curve has a tangent line at a certain point? What is needed is a
clear definition.

Pierre de Fermat used the notion of limit to invent a workable definition
of the slope of a tangent line to a curve. It is only a slight modification of
the method we have just employed, but by it the drawbacks to Holmes’s
method are removed.

Fermat described the following method of finding the slope of the tangent
line to a curve f at a given point P = (c, f(c)) on the curve. First find the
slope of the line joining (c, f(c)) and (¢ + k, f(c + h)), where h # 0. Although
this slope, which is given by

fle +h) = flo)

h b

is likely not the desired slope of the tangent line, it clearly approximates
the desired slope as h is taken nearer to zero. It is natural, then, to define

the slope of the tangent line at (c, f(c)) to be the number (if there is one)
that expression (6) is trying to become as h approaches zero.

(6)

(c+ h,f(c+ h)
NOT tangent // 7

c c+h
This nontangent line has slope given by expression (6)
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Definition. The slope of the tangent line to the curve f at the point (c, f(c))
is defined to be

Limit 76+ M =/,
h-0 h

Fermat’s idea is simple yet subtle. The “right answer” is the limiting value
of wrong answers that approximate it ever so closely. Here are several
examples to illustrate Fermat’s method.

ExaMPLE 1. Find the slope of the tangent line to the curve y = x? at the
point (1, 1).

Here the function is given by f(x) = x2, and the point P is (1, f(1)).
According to Fermat’s method, the slope of the tangent line at (1, f(1)) is
given by

1+h-—f1 1 21
Limith Limit (_TL
h—0 h=0 h
2
— Limit =2
h—0 h
= Limit (h + 2)
h—0
= 2.

Note that nothing is left hanging at the end. Since the limit exists, there is
a tangent line, and its slope is equal to that limit. By Fermat’s definition,
the existence of a tangent line is tantamount to the existence of the limit of
expression (6). O

ExaMPLE 2. Find the slope of the tangent line to the curve y = x? at the
point (r, 72).

Here we have the squaring function again, given by f(x) = x2, and the
point P is (x, f(n)). By Fermat’s method, the slope of the tangent line is

- 2.2
Limit /B ER =S _ o R 2
h—0 h K0 h
L o mr 4 2nh+ P — w2
= Limit
h=0 h
2
— Limit 2+
h—=0 h

= Limit (27 + h)
h—=0

= 2m. O
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ExampLE 3. Find the slope of the tangent line to the curve y = x? at the
point (x, x2).

This is so similar to Example 2 that the reader can probably guess the
answer. The answer is 2x, for the same reason that the answer to the preceding
example is 2z. This is seen by a calculation identical to that of Example 2,
with x replacing n:

— h 2 _ 2
Limit (X F R =Sy R =X
h—0 h h—0 h
= Limit (2x + h) = 2x.
h—-0
(The reader is asked to fill in the missing steps in this calculation.) O

The work of Examples 1-3 may be summarized in a table:

/\ \Slope of tangent

line at (x, y)

1 1 2
s n 2n
x? 2x

-1 1 ?

If we recall the definition of a function in terms of a pair of columns,
then we see that the first and third columns above determine a new function.
This new function, derived from the original function f, will be denoted by
S/ and called the derivative of f. From the third line of the table above, we
see that the rule determining f' is simply the “doubling” rule, sending x
to 2x. That is, we see that

if f(x) = x%, then f'(x) = 2x. N

Or, in words, the derivative of the squaring function is the doubling function.

ExampLE 4. Find the slope of the tangent line to the curve y = x? at the
point (—1,1).

Now there is no need to go back to Fermat’s method, because the derivative
gives us the general slope-predicting rule. All that is asked here is that the
question mark in the preceding table be filled in appropriately, and that is
now easy. The answer is f'(— 1), which is equal to — 2, since f is the doubling
function. O

ExaMpLE 5. Find the slope of the tangent line to the curve y = x? at the
point (4, 16).
The answer is f”(4), which is equal to 8. O
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The function f sends x into y. What does the function ' do? It is con-
venient to let y’ stand for the long phrase “Slope of the tangent line at (x, y)”.
Then the function f’ stands x into y'. Thus, equation (7) says exactly the
same thing as

if y=x2, theny = 2x.

EXERCISES
5.1. Fill in the missing steps in Example 3.

5.2. Find the slope of the tangent line to the curve y = x? at the point (3,9)
(a) by using Fermat’s method, going through all the steps to find the limit of
({3 + h)*> — 9)/h as h approaches 0.
(b) by using the shortcut method of Example 5, knowing that the derivative of
the squaring function is the doubling function.

5.3. What does statement (5) of Section 4 say in terms of ¥'? Answer: It says, “Given
y =x2, then y' is —4 when xis —2.”

5.4. What does statement (3) of Section 4 say about y'?

5.5. What does the answer to exercise 4.5 say about y'? Answer: It says, “Given
y = x?+ 3x, then ) is 5 when x is 1 (assuming there is a tangent line).”

5.6. What does the answer to exercise 4.6 say about }'?

§6. The Interplay between a Function
and Its Derivative

The derivative f' is useful for many reasons. One reason (we shall see others
later) is that f” gives information about the behavior of the original function
f. To illustrate this, let us continue to study the squaring function f, whose
derivative, we have seen, is the doubling function.

First, note that f” is just as “good” a function as f. The equation y' = f'(x)
determines a curve too! In this case the rule for f’ is the linear expression

2x,

which we should recognize immediately to be pictured as a line of slope 2,
passing through the origin (0,0) in the x-)" plane.
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To see the interplay between f and f”, it is convenient to picture the

curve f’ on a separate coordinate system (the x-y' plane) and to compare
it with the curve f in the x-y plane.

g Y 2,4)
(=2,4) 2.4 L.2)
;_ curve f’
curve f f =0 X
-—f' <0 —f > 0—
(-L1 L (=1,-2)
x
~— ffalling frising—»

(=29

horizontal tangent line

At a point where the curve f is falling, the tangent line must have a

negative slope. Hence, if f is falling at the point (c, f(c)), then f’(c) must be
negative. Similarly, when f is rising, then f’ must be positive. And when the
curve f has a horizontal tangent line, then f’ must be zero.

EXERCISES

6.1.

6.2.

6.3.

6.4.

Find both coordinates of a point on the curve y = x* where the slope of the tangent
line is 3. Answer: We are required to fill in the question marks correctly in the
following table:

When y' = 3, we have 2x = 3; 50 x = 3. When x = 3, y = (3)? = §. Therefore, the
slope of the tangent line is 3 at the point (3, ).

Find both coordinates of a point on the curve y = x? where the slope of the tangent
line is

(a —2.

(b) 0.
(c) 10.

d) s.

Suppose the slope of the tangent line to a curve is —1 at a certain point. Is the
curve rising or falling as it passes through that point?

Find an equation of the tangent line to the curve y = x? at the point (3,9). Answer:
When x is 3, ¥ is 6; so the slope of the tangent line is 6. An equation of the line of
slope 6 through (3,9)is y — 9 = 6(x — 3).
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6.5. Find an equation of the tangent line to the curve y = x? at the point
(@ (1,1).
(b) (—1,1).
© (m,7?). .
Answer: (¢) y — n* = 2n(x — ).

§7. Solving Optimization Problems
with Derivatives

Compare the equation y = x> with the equation A4 = s?. Both equations
determine the same function. Why? Because both equations define exactly
the same rule, the squaring rule. The curve in the x-y plane of the equation
y = x? is identical with the curve in the s-A plane of the equation A = s*.
Since the derivative of the squaring function is the doubling function, it is
clear that

if A =352 then A’ = 2s. (8)

By the same token, we know, for example, that
if y= L2 theny =2L.

Changing only the names of the variables doesn’t alter the function, or its
derivative, at all.

Let us find another quadratic function to play with. In Example 2 of
Chapter 1 we encountered the personable function g given by the quadratic
rule

s2

—“7 + 600s.

What is the rule for g’, the derivative of g?

s/ l T A l A’
400 160,000
700 175,000

s —15% + 600s ?

Can you guess the rule for g', before we work it out below? There is
nothing wrong with guessing. Consider the facts. Statement (8) tells us that
from the expression s> in the second column we derive the expression 2s
in the third column. On the basis of this, what would you guess to be derived
from the expression —3s2? As for the expression 600s, that is easy. This is



7. Solving Optimization Problems with Derivatives 65

just a linear expression of slope 600, leading one to expect that from the
expression 600s in the second column we would derive the expression 600
in the third. From these facts, what would you guess:

2
If g(s) = —% + 6005, then g/(s) = ?

To verify your guess, go back to the definition of the derived function.
By definition, ¢'(s) is the slope of the tangent line to the curve g at the point
(s,9(s)). Using Fermat’s method to calculate that slope, we have

gs +h) —g(s)

g'(s) = Limit

h—0, h

— Limit —3(s + h)? + 600(s + h) — (—4s* + 600s)
h—0 h

— Limit —4s2 — sh — 1h? 4 600s + 600h + 3s% — 600s

"~ Thoo h

— Limit —sh — $h? + 600h

"~ oo h

= Limit <—s — g + 600>

h—0
= —s+ 600.
Thus we see that g'(s) = —s + 600. In other words,

2

if A= —% +600s, then A’ = —s + 600.

s l A l A
? ? 0
s —45% + 600s —5+ 600

We now have enough information to determine the highest point (?, ?)
on the curve g, for this point must occur where the slope of the tangent is
zero. This is easy, for A" = 0 when

—s+600=0,
s = 600.
Thus, at the point (600, 180,000), the curve g has a horizontal tangent line.

How do we know this is the highest point? Look at the derivative. The
curve A" = —s + 600 is a linear curve of slope —1, and A’ is 0 when s is
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600. The derivative looks like this;

’

g
\(600, 0)

g >0 T\g’<0—>

Therefore the curve g must be rising to the left of 600 and falling to the
right of 600. This means that, at s = 600, the maximal A is attained.

Y

1
~—g rising g falling—

horizontal tangent at 600

The optimization problem arising in Example 2, Chapter 1, is now solved.
The maximal area is 180,000 square feet, attained when the length s along
the barn is 600 feet:

Maximal area
in Example 2,
Chapter 1 300

600
Side of barn

Let us attack a problem similar to the one just disposed of: to show how
easy an optimization problem can become when calculus is applied.

EXAMPLE 6. A farmer has 300 meters of fencing to enclose three sides of a
rectangular area. The fourth side is bounded by a long barn and requires
no fence. What is the largest area she can enclose?

We want to maximize the area A, which varies in terms of the length s
along the barn. Letting G denote the function that arises, we have

. 300 —
A = G(s) = area (in square meters) of > ]
N
2
s
= 150s — —
S ==

where the domain is specified by the inequality 0 < s < 300.
To solve this optimization problem, we must find the highest point (?, ?)
on the curve G, which gives the area 4 as a function of s. Toward this end,
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we take the derivative:

2

If A = 1505 — % then A'=150 — s (why?).

Thus A’ is 0 when s is 150, and we have found the point on the curve G
where the tangent line is horizontal:

G
sfl Ty | A
150 11,250 0
s 150s — is? 150 — s

In all likelihood, the point (150, 11,250) is the highest point on the curve
G. To prove that it is, look at the sign of the derivative on either side of 150.
The derivative G’ is given by the linear rule 150 — s, and thus looks like this:

\(150,0)
~—G > oﬁa/ <0—

Therefore, the curve G must be rising to the left of 150 and falling to the right.
This shows that, at s = 150, G attains its maximum.

/N

— .
~—G rising —<—G falling—
max G at 150

The maximal area is 11,250 square meters. O

EXERCISES

7.1. The derivative of the squaring function is the doubling function. The slope of
the line bx + c is b. Use these facts and try your hand at guessing answers to the
following:

(@) If y = x? + 3x, what is y'?

(b) If y = s* — 575, what is y'?

(c) If A = 4s? + 60s, what is A’?

(d) If y = 5x* + 13x — 7, what is y'?
(e) If y = ax? + bx + ¢, what is y'?

7.2. In each of (a) through (e) of exercise 7.1, use Fermat’s method to verify the correct-
ness of your guess. Answer: (a) Given y = f(x) = x? + 3x, by Fermat’s method
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we have
B = f0
y=1)= Limit J& A = /)
h—0 h
it &I+ 3D = (2 + 39
= Limit
h—0 h
. 2xh+ kK +3h
=Limit ———M8M8
h—0 h

= Limit 2x + h + 3)
h—0

=2x + 3.

7.3. In each of (a) through (e) of exercise 7.1, find both coordinates of the point on the
quadratic where the tangent line is horizontal. Answer: (a) At the point (—3/2,
—9/4), y' is zero.

7.4. Find both coordinates of the highest point on the curve 4 = 1200w — 2w?, with
domain 0 < w < 600. (This is the function which arose in problem 3 at the end of
Chapter 1.)

7.5. A farmer has 4000 feet of fencing to enclose three sides of a rectangular area (the
fourth side being bounded by a long fence already standing). Find the largest area
that can be enclosed, and specify the dimensions that should be used to attain
maximal area.

7.6. A farmer has 4000 feet of fencing to enclose four sides of a rectangular area. What
dimensions should be used to maximize the area enclosed?

7.7. By working through the following steps in turn, find a pair of positive numbers
whose sum is 10 and whose product is as large as possible.

(a) We want to maximize their product. Let P denote their product. What is P if
the first number is 2? (First find the second number, using the fact that the
sum of the two numbers must be 10.)

(b) What is P if the first number is n?

(c) What is P if the first number is x?

(d) Youranswer to (c)yields a quadratic rule giving P as a function of x. Whatis P'?

(¢) What is the domain of the function you found in part (c)? (Remember that
both numbers must be positive.)

(f) Find both coordinates of the highest point on the graph of the quadratic
function of part (c).

(2) Answer the question of problem 7.7 with a complete sentence.

7.8. Express the number 10 as the sum of two positive numbers in such a way that the
sum of the square of the first and three times the second is as small as possible.
Hint. This is similar to exercise 7.7.

7.9. Work through the following steps in turn, in order to answer the question at the
end.
(a) In the x-y plane, draw the line y = 3x + 2. Also indicate the position of the
point (4,0).
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(b) Find the square of the distance between the point (4,0) and the point on the
line y = 3x + 2 whose first coordinate is =. (First find the second coordinate,
then find the square of the distance by the Pythagorean theorem.)

(c) Find the square of the distance between the point (4,0) and the point on the
line y = 3x + 2 whose first coordinate is x. Answer: 10x? + 4x + 20.

(d) The rule written down in the answer to part (c) is a quadratic function. Find
the value of x that yields the minimum of this function.

(¢) Find both coordinates of the point on the line y = 3x + 2 that is closest to the
point (4,0). Answer: (—1/5,7/5).

7.10. Find both coordinates of the point on the line y = 5 — 2x that is closest to the
point (0, 0).

§8. Definition of the Derivative

Calculus relies greatly upon derivatives. We therefore seek rules enabling
us to write down quickly the derivative of any function we might meet. We
have already found such a rule for writing down the derivative of any
quadratic function:

If y=ax* + bx + ¢, theny = 2ax + b.

(Another way of expressing the same thing is, “If f(x) = ax? + bx + c, then
f'(x) = 2ax + b.”) By virtye of this simple rule, there is no need to go through
all the details of Fermat’s method in order to find the derivative of a quadratic.
In the next chapter, however, we shall meet more complicated algebraic
functions, such as are given by the rules 1/x (the reciprocal function), x*
(the cubing function), \/E (the square root function), etc. To find their deriva-
tives, we must be clear about the definition of the derivative.

If f is any function, the rule defining its derivative f” is given below. The
derivative is defined so that, at a point x, the derivative f’ gives the slope
of the tangent line to the curve f at the point (x, f(x)). Since Fermat’s method
gives this slope, we have the following definition.

Definition. Given a function f, and a point x in its domain, the derivative f*
is defined by the rule

f'(x) = Limit w

h—=0 h

Note that the definition of the derivative incorporates all three basic notions:
variable, function, limit.

To calculate f” directly from this definition is sometimes tedious, requiring
several lines of computation. However, as in Section 7, it is possible to guess
and to verify shortcut rules of finding derivatives. This will be the business
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of Chapter 4. To understand that chapter, it is necessary to understand the
preceding definition and to recognize a derivative when it is staring you
in the face. That is the point of the following exercises.

EXERCISES

8.1. Consider each of the expressions below, and show that you recognize it as a
derivative.
- + h)—
(a) leltu.
h=0 h

(b) Lhirr(ljit /RS (x + h) — f(x)).

() Limit (1/h)(g(1 + h) — g(1)).

h—0

(d) Limit (1/h)(F(s + h) — F(s)).

h=0
Partial answer: The expression (a) is equal to f'(n), and (d) is equal to F'(s).

82. Let f(x)= x> F(x)= \/E g(x) = 1/x. Which of the following is equal to f'(x)?
to F'(x)? to g'(x)?
T 3_ .3
\/x+h \/.?, 1/ 1 1 ’ Limit (x+h)°—x .
h h—0 h\x + h

Limit Limit —
=0 h

h—0

X

8.3. (For more ambitious students) Evaluate each of the limits in exercise 8.2. (Answers
may be found in Chapter 4.)

8.4. (For more ambitious students) Consider the function f given by f(L) = 7L + (48/L).
(a) What is f(L + h)?
(b) Simplify the expression f(L + h) — f(L), as much as possible, by combining
fractions with the use of a common denominator.
(c) Divide your answer to (b) by h, where h # 0. Answer: 7 — (48/L(L + h)).
(d) Find f'(L), by taking the limit of your answer to (c), as 4 tends to 0.
(e) Solve Example 1 of Chapter 1.

§9. Classifying Quadratics: the Quadratic Formula

The reader has probably heard of the quadratic formula, which is the answer
to question (9) below. This formula was known long before calculus was
developed, but our study in this chapter of the calculus of quadratics may
cast a new light upon it. We have seen that the quadratic function given by
f(x) = ax? + bx + c has a horizontal tangent line at the point

—b —b*+4dac
2a’ 4a )
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This followed, as in exercise 7.3(e), from setting the derivative f'(x) equal
to zero and solving for x. The graph of the quadratic f might look like this:

(—b —b% + 4ac)

22’ 4a
XL/I_f’\y l y
_b d —b/2a | (—b*+4ac)/4a 0
ey 2
(2,0) i‘i (7,0 x ax* 4+ bx + ¢ 2ax + b

A==

For any quadratic f we have thus answered the question, when is f'(x)

equal to zero? (Answer: At the “critical point” —b/2a.) We now ask a dif-
ferent question.

NS

I y
? 0
? 0

x | ax*+bx+c
When is f(x) equal to zero? 9)

The clue to answering question (9) lies in the apparent symmetry of the
curve above. We are inclined to guess that the question has two answers,

each lying the same distance L from the critical point —b/2a. There ought
to be, then, some number L such that

—b
Z + L,
f(x)=0 when x =
2a
All that remains is to find this number L. Since f((—b/2a) + L) =0,
we have
—b 2 -b
al—+L} +b{—+L}]+c=0 (10)
2a 2a

In (10), when the first term is squared out, a cancellation results (the
reader is asked to perform the calculations), and eventually we get

44*1.? = b? — 4ac. (11)
Equation (11) bears some scrutiny. We are trying to find L, with a, b,
and ¢ being given. Note that the left-hand side of (11) is a square, since
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4a’L? = (24L)? and therefore cannot be negative. If b? — 4ac should be
negative, then there is no number L satisfying (11). On the other hand, if
b? — 4ac is nonnegative, we can take its square root to solve for L. From
(11) there are two possible paths:

Case 1. If b2 — 4ac < 0, then there is no number L satisfying equation (11),
and hence there is no number L satisfying (10).
Case II. If b* — 4ac > 0, then by taking square roots we get

2aL = ./b? — 4ac,
L— b?* — dac

2a
We now know a formula for L and we know that the answer to question
(9) is given by x = (—b/2a) + L. Putting these facts together yields the
quadratic formula in the theorem below.
Theorem on Quadratics. The equation
ax?+bx+c=0 (a#0)

has solutions given by

_ —b+/b* —4ac
- 2a

X

(quadratic formula)

provided that the discriminant b? — dac is not negative. The equation has no
solution if the discriminant is negative.
For example, consider the equation
—16x* — 50x + 200 = 0.

The discriminant here is (—50)? — 4(—16)(200) = 15,300, whose square
root is approximately 123.7. The quadratic formula says the solutions are

a

= ~

—(—50) + /15300 {—543.
—32

1 230,

As another example, consider the equation
—16x? + 50x — 200 = 0.
The discriminant here is (50)2 — 4(— 16)(—200) = — 10,300, which is nega-

tive, showing that the equation has no solutions. O

If the discriminant is equal to zero then the “two” solutions meld into
one. In this case, L is zero, making the critical point —b/2a into a “double
root” of the quadratic equation. This happens in the equation

x2—dx +4=0,
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where the discriminant is (—4)? — 4(1)(4) = 0, and the quadratic formula
yields

_—(=9$0_

=—— =

as the only solution. O

2

There is nothing mysterious going on here. A little reflection shows that
any quadratic function falls into one of the following six classifications.

Positive Zero Negative
discriminant + discriminant discriminant
a>0 \ . / o
W —b/2a —~b/2a
@ —b/2a ~b/2a
NN
Two roots One “double” root No root
EXERCISES

9.1. Solve the equation x? — 4x + 4 = 0 by factoring,

9.2. Solve the equation x> — x — 6 =0
(a) by the quadratic formula.
(b) by factoring x2 — x — 6 into the product of x + 2 and x — 3.

9.3. Solve the equation x2 — x — 4 = 0.

9.4. Factor the quadratic x? — x — 4 into the product of two linear expressions. Answer:
x?—x—4=(x—51+J17)x = 31 = J/17)).
9.5. Solve the equation x* — 6x + 13 = 0.

9.6. Show all the steps of an algebraic derivation of equation (11), beginning with
equation (10).

9.7. For each of the six categories of quadratics pictured above, give an example.

9.8. Consider once again Example 1 of Chapter 1. Show that it is impossible to build
the fence described there for a cost C of $35. Hint. If C = 35, then 7L + (48/L) = 35,
so upon multiplying through by L we get

712 + 48 = 35L,
7L* — 35L + 48 = 0.
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Use the theorem on quadratics to show that, no matter what the length L of the
front fence is, this equation cannot be satisfied.

9.9. What is the least positive value of C for which the equation 7L> — CL + 48 =0
has a solution?

§10 Three Frenchmen

The influence of France was increasingly felt throughout Europe in the
seventeenth century. This influence was particularly strong in mathematics.
France nurtured no fewer than three mathematical minds of the first rank,
in addition to many lesser lights.

Blaise Pascal (1623-1662), who at the age of eighteen invented the first
calculating machine, might have been unsurpassed as a mathematician, had
his other great talents not drawn him elsewhere. Even so, he helped give
birth to projective geometry and to the theory of probability, and he came
very close to discovering the fundamental theorem of calculus (to be dis-
cussed in Chapter 6). In fact, Leibniz hit upon the fundamental theorem
while reading a mathematics paper by Pascal.

Little need be said here of René Descartes (1596-1650), for half the world
already knows his name. We have noted earlier that he developed analytic
geometry and made it widely knewn through his writings. Without analytic
geometry the step up to the calculus would be formidable indeed. Isaac
Newton was to say, “If I have seen further than Descartes, it is by standing
on the shoulders of giants.” One of those giants was, of course, Descartes
himself.

Another giant was Pierre de Fermat (1601-1665). Fermat occupies a
special place in the hearts of those who love mathematics. His appeal is
that of the amateur who can outdo the professionals. Fermat developed
analytic geometry in 1629, but did not publicize the fact, and Descartes got
all the credit with a paper published in 1637. In correspondence with Pascal,
Fermat was an equal partner in creating the theory of probability. He
corrected mistakes that Descartes and Pascal made, in fields where they
were acknowledged as masters, and was rarely himself in error. Fermat’s
real love was the theory of numbers, which was revolutionized by his
accomplishments.

Unlike Descartes and Pascal, Fermat was restrained in expressing him-
self, and his work is known mainly through his letters and through the notes
he was accustomed to make in the margins of books. The “true inventor
of differential calculus” was this quiet man of Toulouse.

Problem Set for Chapter 3

1. Use Fermat’s method (not a shortcut rule) to show that the derivative of x> — 6x +
13 is given by 2x — 6.
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2. Consider the function defined by f(x) = x? — 6x + 13.
(@) Fill in the question marks in the following table.

7N
x|y

~2a w0

(b) Use the first line of the table to find the slope of the tangent line to the curve f
at the point (0, 13).

c) Isthe curve f rising or falling as it passes through the point (0, 13)?

d) Write an equation of the tangent line to the curve f at the point (0, 13).

e) For what values of x is f'(x) positive?

f) For what values of x is the curve f rising?

g) For what values of x is the curve f falling?

h) Find both coordinates of the point where the tangent line to the curve f is
horizontal.

(i) Sketch the curve f in the x-y plane, making sure your sketch is in accordance
with your answers to the preceding three questions.

(j) If the domain of f is taken to be all values of x satisfying the inequality 0 <
x < 5, what is the range?

(k) What is the range of f if the domain is given by the inequality 0 < x < 5?

() What is the range if the domain is 0 < x < 2?

(m) What is the range if the domain is unrestricted?

3. Consider the function defined by f(x) = 2x? — 6x.
(a) What is the slope of the tangent line to the curve f at the point (0,0)?
(b) Is the curve f rising or falling at (0,0)?
(c) For what values of x is the curve f falling?
(d) Sketch the curve f.
(e) What is the range of f if the domain is 0 < x < 4?
(f) What is the range of f if the domainis 0 < x < 1?
(g) What is the range of f if the domain is unrestricted?

4. Consider the function defined by f(x) = 8 — x* + 3x.
(a) What is the range if the domain is 0 < x < 27
(b) What is the range if the domain is —2 < x < 0?

5. Consider the function defined by f(x) = 8 — 3x.
(a) What is the range if the domain is 0 < x < 3?
(b) What is the range if the domainis —2 < x < 5?

6. Find both coordinates of the point on the line y = 2x — 3 that is closest to (0, 0).

7. Find both coordinates of the point on the line y = 6 — x that is closest to (— 2, —4).
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10.

11.

12.

13.

14.

15.

16.

17.

3 Sherlock Holmes Meets Pierre de Fermat

. Express the number 20 as the sum of two numbers in such a way that the sum of the

second and the square of the first is as small as possible.

. A Norman window is in the shape of a rectangle surmounted by a semicircle. If the

perimeter of the window is 16 feet, find the dimensions which allow the most light
to pass through the window.

Although the point (2, — 1) is not on the quadratic y = x? — 2x + 3, there are two
tangent lines to this quadratic that pass through this point. Find an equation of
either one of these lines.

A wire 500 centimeters long is cut in two. The first part is bent into the circumference
of a circle, and the second is bent into the perimeter of a square. How should the
wire be cut in order that the combined areas of the circle and the square be as small as
possible?

Use Fermat’s method to show that if f(x) = 7x — 9, then f'(x) = 7.
Use Fermat’s method to show that if f(x) = 7, then f'(x) = 0.

Consider the quadratic function given by f(x) = x* + 2x + 7. When x = 0, then
f(x)=7. What is f’(x) when x =0? Does your answer contradict the result of
problem 13?7 Explain.

Reread problem 16 in the problem set at the end of Chapter 1. Find the maximal
area that can be enclosed.

Carry out the following steps in order to accomplish the last step.

(a) The points (1,1) and (1 + h,(1 + h)?) lie on the curve y = x>. Find the slope of
the line joining these points (assuming, of course, that i # 0).

(b) Simplify your answer to part (a) by using the fact that (1 + h* =1+ 3h +
3n% + k3.

y=x

(1+h(1+h?

11

(c) Take the limit, as h — 0, of your answer to part (b), and thus show that the slope
of the tangent line to the curve y = x* at (1,1) 1s 3.

(This problem is supposed to show why the “Sherlock Holmes method” of finding
tangent lines will not always work. Actually, Descartes proposed a closely related
method, but it had to be discarded in favor of Fermat’s approach.) The Sherlock Holmes
method of finding tangents rests upon the belief that a line joining two points on a
curve cannot be tangent to the curve. (This happens to be true for quadratic curves.)
(a) Using the result of problem 16(c), write an equation of the tangent line at (1, 1) to
the curve y = x3.
(b) Does the point (— 2, —8) lie on the line of part (a)?

(c) Does the point (—2, —8) lie on the curve y = x3.
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(=2,-8)

(d) If the Sherlock Holmes method were applied to the curve y = x> at the point
(1,1), would it work?

18. Consider each of the following functions, and match it with its derivative. [ The
derivative of the function pictured in (a), for example, is pictured in (d).]

\ j

@) (b) ©

() © ®)
A Vo

(@ (b) \ o 7

[The curve in (k)
coincides with the
G) ) horizontal axis. ]




Optimistic Steps

What is calculus? It is the study of the interplay between a function and its
derivative. There are quite a few aspects to this interplay, some of which
may be surprising. In this chapter we shall learn more about the use of
derivatives in solving optimization problems. To do this efficiently, the
major part of the chapter is concentrated upon the development of shortcut
rules for finding derivatives.

§1. The Derivative of the Reciprocal Function

If f is a function, then f”(x) is defined as the limit of the difference quotient

Jx+h) - fx)
h

as h tends to zero. (Do you see why expression (1) is a quotient of differences?)
In order to find this limit, it is often necessary to use a little algebra to write
the difference quotient in a simple way.

Before proceeding, let us review very briefly the algebra of simplifying
fractions by combining them with the use of a common denominator. For
instance,

(1)

4 5 4-5 -1

54 5.4 5.4 2°
1 1 s n+2 wn—-(rn+2) =2

| —
=

T+2 7 @+dn (+Ynr (m+dn  (m+2)n

78
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and, by the same token,
1 1 x x+h x—(x+h  —h

_— = - = = . 2

x+h x (x+hx (x+hx (x + h)x (x + h)x @)
Whenever the rule for f involves division, the difference quotient (1) is
often filled with fractions that need to be combined by using a common

denominator.

ExampLE 1. Find f'(x), if f(x) = 1/x.
Here, the algebraic rule 1/x involves division (and, of course, is undefined
when x is 0). Let us first use a common denominator to simplify the expression

fx+h - f(x)

before dividing by h and taking the limit. Since f(x) = 1/x and f(x + h) =
1/(x + h), equation (2) shows that

fx+h) - flx) =

Dividing by nonzero h yields
J(x +h) — fx) -1

h T (x + hx’
Using this simplified expression for the difference quotient makes it
easy to take the limit:

£/x) = Limit X TR =100
h—0 h
= Lt
—1
(x + O)x
—1

x2’

The derivative of 1/x is therefore — 1/x2. The expression 1/x is called the
reciprocal of x. We now know the derivative of the reciprocal function.

S =+
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4 Optimistic Steps

The domain of f does not include 0. Note that f is always negative (because
the curve f is always falling).

f@="

xZ

EXERCISES

1.1.

1.2.
1.3.
1.4.

L5

L.6.

If f(t) = 1/t, what is f'(t)? Answer: f'(t) = — 1/t because f is simply the reciprocal
function. Remember that changing only the name of the variable does not alter the
function.

If f(L) = 1/L, what is f'(L)?
If A =1/s, whatis A"?

In each of the followihg, first make a guess as to the expression giving the derivative.
Then verify your guess by Fermat’s method.

(@) y=48/L.

(b) C =1L + (48/L).

(€ y=5/x-1).

(d) y=5/7-x).

Consider the function given by f(x) = 1/(nx + 7). Carry out the following steps to

find f(x).

(a) Simplify the expression f(x + h) — f(x) by using a common denominator.

(b) Divide your answer to (a) by nonzero h.

(c) Find the limit, as h tends to zero, of your answer to (b). Answer: f'(x) =
—nf(mx + T)2

Suppose f(x) = 1/g(x), where g is some given function. [For instance, exercise 1.5

dealt with the case where g(x) = mx + 7.] Since f is expressed in terms of g, the

difference quotient of f can be expressed in terms of g as well. Show that the differ-
ence quotient of f can be expressed by

fx+h) - flx) -1 glx+h) —g(x)
h T g(x + h)g(x) h ‘

Hint. Begin by writing
_ 1 1
glx+h)  g(x)’

and combine the fractions on the right. Then divide by h.

flx+h) - f(x)
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§2. General Rules for Reciprocals and
for Constant Multiples

Now that we know the derivative of 1/x, it is natural to ask about the deriva-
tives of similar expressions involving reciprocals. For example, what is the
derivative of 1/x2? Or of 1/(x? 4 2x)? Or, more generally, what is the deriva-
tive of 1/g(x), where g is some given function?

To answer this question, first recall that g'(x) is the limit, as h approaches
zero, of the difference quotient

g(x + h) — g(x)

—

In order that the quotient (3) tend to a limit, the numerator of the quotient

must tend to O as h tends to 0. Reason: The denominator h tends to 0; if

the numerator did not, then the quotient would “blow up” as h approached

0, and consequently the limit would not exist.

When the numerator in (3) tends to 0, we have

Limit g(x + h) = g(x). 4)

h—=0

3)

This fact will be useful in just a moment.

We can now answer the question raised at the beginning of this section:
What is the derivative of 1/g(x)? The derivative of a function is the limit
of its difference quotient. The difference quotient of 1/g(x) is simplified in
exercise 1.6, showing that the derivative of 1/g(x) is equal to

. -1 g(x + h) — g(x) -1
L . =
A g+ M) h 9(x)9(x)

where (4) has been used (how?) in evaluating this limit. We have just proved
the following rule to be valid.

g'(),

General Rule for Reciprocals. The derivative of 1/g(x) is

— 1 ,
@7 ¢

if the function g has a derivative.

If we suppress writing the variable, this rule can be expressed in a very

compact way. It says
y -1
—|=—=4. )
<g> g*

For example, what is the derivative of 1/(4 — 3x)? By (5),

LY =l a3
1—3x) T@ et TN =g

since (4 — 3x) = —3. O
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For another example, what is the derivative of 1/(nx + 7)? By (5),

1 1 ( +7),__—1r__
ax+7)  (nx + 7) e T (nx + 7

which agrees with the answer to exercise 1.5. O

A rule that is much easier to prove involves multiplication by constants.
We have essentially guessed this rule already, in Chapter 3, when we guessed
that the derivative of 35 ought to be one-half the derivative of s*:

s 1,
(‘z‘) =2¢)
1
=5(2S)=S.

It takes little imagination to guess that there ought to be a general rule
involving multiplication by constants, like .

Rule for Constant Multiples. The derivative of c-g(x) is ¢ - g'(x) if ¢ is a
constant and the function g has a derivative.

For example, what is the derivative of 100/(mx + 7)? By the rule for con-

stant multiplies,
100 Y 1y —100%
=100 =
<7rx + 7) <7rx + 7) (nx + 7)*

where the second equality comes from the general reciprocal rule. O

The reader is asked to prove the rule for constant multiples, in a problem
at the end of this chapter.

EXERCISES

2.1. Find y' if y = 1)(7 — x).
Answer:y = (1)(7 — x)Y = 1/(7T — x)*

2.2. Use the general rule for reciprocals to find the derivatives of the following functions:
@ flx)=1/x

(b) g(x) = 1/(x* + 2x).

(c) F(x)=1/(6 — 3x).

(d) G(x) =1/2x* — 3x + 4).

Answer: (b) g'(x) = (—2x — 2)/(x% + 2x)%

2.3. Apply the general rule for reciprocals to find the derivative of 1/x. Does your
answer agree with the answer obtained in Section 1, where Fermat’s method was
used?
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24. Find y if y = 1/t2. Answer: y = —2/t3.
2.5. Find C'if C = 1/(L? + 4).

2.6. Use the general rule for reciprocals, together with the rule for constant multiples,
to find the derivatives of the following functions, expressed as algebraic rules:

(@) 5/x2. (b) 14/(x* + 2x).

(©) /(6 — 3x). (d) 100/(2x* — 3x + 4).
(€) 5/(4 — 3s). (f) 48/L.

(® -1/ (h) 6/(= — 6).

§3. The Sum Rule and the Second Derivative

There is an easy rule involving the sum of two functions. We have essentially
guessed this rule already, in Chapter 3, when we guessed that the derivative
of ax? 4+ bx + ¢ ought to be equal to the sum of the derivatives of ax? and
of bx + ¢:
(ax? + bx + ¢)' = (ax?) + (bx + ¢)'
= 2ax + b.

One would surely suspect that this is a special case of a general rule.

Rule for Sums. The derivative of f(x) + g(x) is equal to f'(x) + g'(x) if the
functions f and g have derivatives.

This rule is true, but its proof is left to the reader as a problem at the end
of this chapter (problem 37).
One often has to use several rules at once.

ExAMPLE 2. Find the derivative of the function given by the algebraic expres-

sion 6x2 + (17/(x% + 3x)).
Here we have a sum, and the sum rule says (f + g) = f' + g'. Therefore,

17 N 17 Y
(6)(2 + 2z 3x> = (6X2)’ + <xz_+_—3x> (by sum rule)

oy " (by rule for
= 6(x°) + 17<x2 T 3x> constant multiples)
=6(2 17—y )

@)+ Ty @ )

by the rule for quadratics, together with the reciprocal rule. The answer
may be simplified, if desired, to 12x — ((34x + 51)/(x? + 3x)?). O
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The calculation in Example 2 required several steps. The reader will
find that, with practice, it is easy to combine these steps into one:

The derivative of 5x* + (6/(x* — 2)) is 5(2x) + 6(— 1/(x* — 2)*)(2x).

The derivative of TL +(48/L) is 7 + 48(—1/L*)(1).

The derivative of (10/x) — (45/x?) — 5x> + x — m is 10(—1/x*)(1) —
45(— 1/x%)(2x) — 52x) + 1. 0

Having taken one derivative, we have nothing preventing us from taking
a second derivative. The second derivative (the derivative of f”) is denoted
by f. We now have y = f(x), y' = f'(x), and y" = f"(x).
ExaMpLE 3. Find the first and second derivatives of the function given by
, 3
fx)=2x*+—-—4.
X
Here, the first derivative is given by

f(x) = (2x* + 3_ a4y
X

-_—4X—P,

and the second derivative is given by

ey 3y
f(X)—<4x“F>

-1
6
X

A function is given by a pair of columns, and its derivative adds a third
column to consider. The second derivative gives us still another column to
play with. For example, in the function f above, if we let x equal 1, we get

The first two columns tell us that the curve f goes through the point
P =(1,1). The third column tells us that the tangent at P has a positive
slope, so the curve f is rising as it goes through P. What does the fourth
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column tell us? As we shall see in the next section, the positive second
derivative tells us that the curve f, as it passes through P, looks rather like
a smile.

EXERCISES

3.1. For the function f of Example 3, fill in the question marks appropriately.

M I
2] 2 9 ?
~1 | 2] ?
Ll 29 ?

3.2. Find the second derivative of each of the following functions.
(@) f(x)=2x*+3x~5.
( gx) = —3x? + 4x — ﬁ Answer: g"(x) = —
f(Ly=7L + (48/L)
g(s) = 600s — %s
G(t)=t* — 6t + (5/(t — 3)). Answer: G"(t) = 2 + ({10t — 30)/(t> — 6t + 9)%).

)
(©
d)
€)
f) F(x)=(10/x) — 5x* + x — m.

§4. The Second Derivative and Concavity

The second derivative f” gives the same sort of information about f* as the
first derivative f* gives about f. Indirectly, then, the second derivative says
something about the behavior of the original function f. Let us try to find
out exactly what f tells about f.

First we must agree on some terminology to describe how a curve is
“curving”. There are several terms in use for this (the phrases concave up-
wards and concave downwards are common descriptions), but they do not
seem to be immediately suggestive of what they are intended to describe.
To remedy this, let us depart from common terminology and make up our
own way of describing how a curve curves.

We have already agreed, on the first page of Chapter 3, to think of a curve
as being traced out from left to right. If we thought of the curve as describing
a road on a road map, then the pencil point tracing out the curve moves in
a generally eastward direction. Pretend that you, on your motorcycle, have
been shrunk to the size of that pencil point tracing out the curve. As you
journey eastward, there is a simple way you can describe how the road is
curving. All that need be said is whether you are leaning to your left or to
your right, in order to keep your motorcycle on the road.
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The functions f and g below curve in opposite directions. Note that their
second derivatives /" and g" have opposite signs.

0,4
It
S g
0.0 il
Sx) = x?, g(x)=4— x?,
Sx)=2 g'x)= -2

In the case of the curve y = x2, you must always lean to your left to stay
on the curve; you lean always to your right to stay on the curve y = 4 — x2.
The first curve has a positive second derivative; the second curve has a
negative second derivative. These are simple examples, in that the second
derivative is constant in both, whereas we shall see that generally the second
derivative will change sign when the “road” starts to curve the other way.
Nevertheless, these examples give us a clue to the truth: When f" is positive,
the curve f is bending to the left; when f" is negative, the curve f is bending
to the right.

Why should it be this way? Focus attention on a particular point P
lying on a curve f. Then P = (c, f(c)) for some number c. A little reflection
shows that

then the curve f is bending to
if f"(c) <0, the right as it passes through
the point P = (¢, f(¢)). (6)

To see this, all one needs to recall is that when the derivative of a function
is negative, then the values of the function are decreasing (because its curve
is falling). Keeping this in mind, and remembering that f”' is the derivative
of f’, one can see the plausibility of statement (6), as follows. Suppose
f"(c) < 0. Then the values of f” are decreasing, i.e., the slopes of the tangent
lines to the curve f are decreasing, as the curve f passes through (c, f(c)).
But decreasing slopes of the tangent lines near this point imply that the
curve is bending to the right. Near P the curve f must look like one of the
following if f"'(c) is negative:

P
(a) Rising, bending (b) “Flat” at P, (c) Falling, bending
right bending right right
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Similar reflection shows that, near P, the curve f must look like one of
the following if f"(c) is positive:

)N

P
(d) Rising, bending (e) “Flat” at P, (f) Falling, bending
left bending left left

The upshot of the preceding discussion is this. While the sign of the first
derivative tells whether the curve is rising or falling, the sign of the second
derivative tells whether it is bending to the left or to the right. The second de-
rivative f” tells which way the curve f is curving. O

When the second derivative is negative, as in the figures (a), (b), and (c)
above, we have described the curve as “bending to the right”. It is described
as concave down in most books, and figures (d), (¢), and (f) are described as
concave up. The definition of concavity in these terms is given in a problem
at the end of the chapter. There is little point in learning these terms, how-
ever, if you are interested in studying calculus only for a semester or so.
In fact, it might be better to describe (d), (e), and (f) as “smiles”, and call (a),
(b), and (c) “frowns”, and just remember that a positive second derivative
always draws a smile.

Knowing both derivatives of a function at a point gives us a fairly good
idea of what the curve looks like nearby. The word local (as opposed to
global) is used in mathematics to describe this kind of information; it tells
us what the road looks like only in a small neighborhood of a point as we
roar through on our motorcycle. What adventures may lie elsewhere on the
road remain to be seen.

ExaMPLE 4. Describe the local behavior of the curve y = x* + (8/x) as the
curve passes through

(a) (1,9).
(b) (2,8).
(© (=2,0).
It is intended that we sketch the curve locally near each of these points,

so as to indicate whether the curve is rising or falling, “smiling” or “frowning”,
as it passes through. From the first and second derivatives

8 16
y=2x—— and )y’ =2+,
X X

we can fill in the following table.
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M I
19 —6 18
8 2 4

-2 0 -6 0

It is really only the sign of y’ and y” that we need. From the first line of
the table we see that y’ is negative and y” is positive. The curve is then fall-
ing and smiling as it goes through (1,9). It must resemble the curve sketched
in figure (f) above, with P = (1,9).

From the second line of the table, with both derivatives positive, we see
that the curve must resemble the one of figure (d), with P = (2, 8).

The third line of the table, with y’ negative, shows the curve falling as it
passes through (—2,0), but how do we interpret the fact that y” is zero?
We must look at the sign of y” for x just less than —2 and for x just greater
than —2. Doing this reveals that the sign of y” switches from positive to
negative. This means that, at the point (—2,0), the curve stops bending left
and starts bending right (or, if you prefer, the concavity switches from up
to down). Such a point, where the curve stops bending one way and starts
bending the other way, is called a point of inflection.

All the information gleaned above is in this picture:

(1,9)\ /(2, 5

k(—z’()) ] i }

The curve y = x? + (8/x), pictured locally in neighborhoods of three points. The point
(—2,0) is a point of inflection. |

At a point of inflection the second derivative must be zero (why?). How-
ever, the second derivative can be zero at points other than inflection points.
A straight line has no inflection points, but the second derivative of a linear
function is always zero.

EXERCISES

4.1. Consider the function given by f(x) = x? — 3x + 2. Describe the local behavior
of the curve f as it passes through
(@) (0,2).
(b) (2,0).
(¢) (1,0).
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4.2. Describe the local behavior of the curve y = 10x — (4/x) near

(@) (1,6).

(b) (2,18).

© (%3

Partial answer: The curve looks like figure (a), page 86, with P = (1,6).
4.3. Describe the local behavior of the curve C = 7L + (48/L) near

(a) (2,38).

(b) (2.5,36.70).

© (3,37).

4.4. Describe the local behavior of the curve y = x2 + (8/x) near
(@ (=1,-7).
(b) 3,73
(This is the curve of Example 4.)

4.5. From the meager sketch in Example 4 above, we see that the curve appears to have a
local minimum between x =1 and x = 2. Find the x-coordinate of this local
minimum. Is this a global minimum as well, i.., is this the lowest point on the
entire curve?

4.6. Does any linear function have an inflection point? Does any quadratic function
have an inflection point?

4.7. Find both coordinates of an inflection point on the curve y = x2 + (1/x).

4.8. Suppose you have a function f and a point ¢ where f'(c) = 0 and f"(c) is positive.
Have you found a local minimum or a local maximum of f?

§5. The Rule for Squares

There remain four shortcut rules to be discussed in this chapter. We need
to find out how to take derivatives of squares, of square roots, of products,
and of quotients. One might suspect that we shall therefore have to go through
all the details of Fermat’s method four more times. Fortunately, things can
be arranged so that we have to do Fermat’s method only once more, to find
a rule for squares. The only algebraic trick we shall need is a simple one.
The difference of two squares factors into the product of their sum and
difference:
a* — b%* = (a + b)(a — b).

Suppose we are presented with a function whose rule involves a square.
For example, suppose we have a rule f(x) given by (x*> + 3)% or by
(5x — (7/x))% or, more generally, by (g(x))?, where g is a function whose
derivative we know. By Fermat’s method, if f(x) = (g(x))?, then

oy y i J(X + ) — flx)
f(x)—%'l_rglt———}l—-

 Limi @+ P~ (g9)*

h=0 h
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How can this difference quotient be simplified, in order to find its limit?

Answer: Since the numerator is the difference of two squares, we can factor
it into the product of their sum and difference, to get

(g(x + h) + g(x))(g(x + h) — g(x))

f'(x) = Limit
h—=0 h
= Limit (g(x + h) + g(x))<g(_x_+hz_—g(£)>
h—0

= (g(x) + g(x))g'(x) [by equation (4)]
= 2g(x)g'(x),

provided, of course, that g has a derivative. We have our rule.

Rule for Squares. The derivative of (g(x))? is 2g(x)g'(x) if the function g has
a derivative.

By this rule, for example,

the derivative of (x* + 3)% is 2(x? + 3)(2x),
the derivative of (5x — (7/x))? is 2(5x — (7/x))(5 + (7/x?)).

EXERCISES

5.1

5.2.

5.3.

54.
5.5.

5.6.

. Find the derivative of (3x + 5)* by using the rule for squares. Answer: Here we have

(g(x))?, where g(x) = 3x + 5. By the rule for squares, its derivative is 2gg’, which is
2(3x + 5)(3), or 18x + 30.

[ The reader should check that this is the same answer one obtains by first writing
(3x + 5)% as 9x* + 30x + 25, and then taking the derivative by the quadratic rule.]

Find the derivative of (6 — 7x)?
(a) by applying the rule for squares.
(b) by first squaring the expression 6 — 7x and then applying the rule for quadratics.

Find the derivative of each of the following functions, expressed as algebraic rules.
(@) (x? — 5x)2

(b) (7L + (48/L))*

(©) (5x* +(6/(x* = 2)))*

(d) (3x% - 5x + /2%

(&) (2x* + (3/x) — 4%

Answer: (b) 2(7L + (48/L) }(7 — (48/L?)).

True or false? The derivative of a square is equal to the square of the derivative.

Find the derivative of x* by regarding x* as (x?)? and using the rule for squares.
Answer: 4x°.

Find the derivative of (1/x)?
(a) by applying the rule for squares.
(b) by first writing (1/x)> = 1/x? and then using the general reciprocal rule.
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5.7. What is the derivative of
(@) (x% 4 5x)%?
(b) (f(x) + g(x))*? Answer: 2(f(x) + g(x))(f'(x) + g'(x)).

§6. The Product Rule and the Square Root Rule

It is not true that the derivative of a product is the product of the derivatives.
The product rule is a little more complicated than that. It is easy to derive
the product rule, though, because a product can always be expressed in terms
of squares, and we already know the rule for squares.

To see the relationship between products and squares, begin with the
familiar identity

(a + b)? = a* + 2ab + b?,
and “solve” this equation for the product ab. You get
1
ab = E((a + b)? — a? — b?),

which expresses the product ab in terms of squares. The same thing holds,
of course, for functions. If f and g are functions, then their product can be
written as

1
fg =5/ +9? - f* -9

Taking derivatives by using the rule for squares, and also using the result
of exercise 5.7, we find that

(9 = 3120 + 9"+ 9) = 26" — 249

=(f+9f' +9)—f —9g9
=f'+f9d+af +99 —ff —99
=fq9 +gqf".

Rule for Products. The derivative of f(x)g(x) is f(x)g'(x) + g(x)f'(x), provided
that f and g have derivatives.

The reader may find it easier to remember the product rule by reading
it in words: The derivative of a product is equal to the first term times the
derivative of the second, plus the “other way around”.

As an example, let us find the derivative of the product (x + 2)(x — 3).
By the product rule, it is

(x+ 2)(x — 3 + (x — 3)(x + 2
=(x +2)(1) + (x = 3)(1)
=2x—1.
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In this example we can “check” our answer by noting that the product
(x + 2)(x — 3) is equal to the quadratic expression x> — x — 6, whose deriva-
tive is indeed 2x — 1. d

Here are some more examples, with the answers left in an unsimplified
form.

The derivative of (x* + x)(5x — 2) is equal to
(x% + x)(5) + (5x — 2)(2x + 1).
The derivative of (7L + (48/L))(L* — ) is equal to

48 48
<7L + f)QL) +(L* — n)<7 - P) O

Now, what about square roots? How do we get the derivative of f, if the
function f is given by f(x) = /1 + x*? Or by \/2x — 3? Or, more generally,
by /¢(x), where g is some function whose derivative we already know? We
can guess the answer to this question by using the rule for squares: If f = \/g,
then (by squaring both sides) we have

f?=gq
2ff" =g (by rule for squares),

! 1 ’ . ’
f'= ?g (solving for f7),

f= i&g/ (since £ = /).

Square Root Rule. The derivative of /g(x) is

1
g'(x), provided the
2g(x)

Sunction g has a derivative.

The application of this rule is quite straightforward.

The derivative of \/1 + x* is

1 X
(2x) = .
21 + x? J1+x2
The derivative of \/2x — 3 is

1 1
2) = .
2,/2x—3( ) J2x -3

The derivative of /x is
: 1 1
—()=—=. 0

2/x 2/x
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EXERCISES

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

69.

Find the derivative of x3, by regarding x> as the product of x? and x.
Answer: (x3) = (x%x) = x*(1) + x(2x) = 3x2.

Find the derivative of x* by regarding x* as the product of x* and x. Does your
answer agree with exercise 5.57?

Find the derivative of each of the following.
(a) x5.
(b) x
(©) x
(d)
Any quotient can be expressed as a product. Find the derivative of x/(x + 3), by
regarding this quotient as the product of x and 1/(x + 3).

x V 1V
Answer: ={x
(+53) =(++3)

—1 1
x4+ ——(1
x(x+3)2+x+3()

x", where n is a positive integer.

=X + 1
T(x 432 x+3

Find the derivative of x3/(5x + 1) by regarding this quotient as the product of x*
and 1/(5x + 1).

Use the square root rule to find the derivatives of the following.
(@) /9 + X2

(b) 17/3x7 = 2x.
(©) Vx.
(d) 2.

Find the derivative of x*\/1 + x.
Answer: (x* 1+ x) = x*(/1+ x) + (/1 + 0¥

(2 \/__> + (/T + x)@dx?)

X4
=————+4x3 /1 + x.
21+ x

Find the first derivatives of the following.
(a) x2/T ¥ <%

b) xﬁ.

(© x32x-3.

(d) x°/3x% - 2x.

Find the second derivative y” if y = \/2x + 5.
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§7. The Quotient Rule

Exercises 6.4 and 6.5 give the clue to finding a rule for obtaining the derivative
of a quotient f/g: Regard it as the product of 1/g and f. Then we have

(-
(o)
()

_a—f

g

Rule for Quotients. The derivative of f(x)/g(x) is

g(x)f'(x) — f(x)g'(x)
(9(x))*

if the functions f and g have derivatives.

The reader may find it easier to remember the quotient rule by reading
it in words: The derivative of a quotient is equal to the bottom times the
derivative of the top, minus the other way around, over the bottom squared.

For example,

the derivative of x/(x + 3) is

(x +3)(1) — (x)(1)
(x +3)2 ’

the derivative of x*/(5x + 1) is
(5x + 1(3x2) — (x*)(5)

(5x + 1)2
(The reader should check that these answers, with the help of a little algebra,
may be seen to agree with the answers to exercises 6.4 and 6.5.) O

EXERCISES
7.1. If y = 2x/(x? — 3), what is y'? Answer: y' = (—2x* — 6)/(x* — 3)%.

72. If y = 2x/(x* — 3), what is y"? Hint. Use the quotient rule to find the derivative of
the answer to exercise 7.1. In the course of doing this, the rule for squares will come
in handy in finding the derivative of the bottom. Don’t take time to simplify your
answer.

7.3. Describe the local behavior of the curve v = 2x/(x? — 3) near the point (2,4) and
near (1, — 1), and find both coordinates of an inflection point.
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7.4. Find the first derivatives of the following. Do not simplify.
() (x +2)/(x —2).
(b) (x* — 3)/(x —2)*.
x3/J1 + x2.
(d) V(x+ 2)/(x —2).
(&) ((3x — 1)/xH2. Answer: 2((3x — 1)/x3)((x*(3) — (3x — 1)(2x))/x*).

7.5. Consider the function given by f(x) = 5x> + (6/(x> — 2)). What does the curve
[ look like, locally, near the point (0, — 3)? Near (2,23)?

7.6. What does the curve y = /16 + x? look like, locally, as it passes through (0,4)?

§8. Solving Optimization Problems

Where are we now? We have just completed an unavoidable digression
from our original theme, which was the solution of optimization problems.
As we saw in Chapter 1, an optimization problem leads to the problem of
finding the highest (or lowest) point on a certain curve. This, in turn, has
led to the study of derivatives, because derivatives cast light on the behavior
of a curve. And now, at last, we know how to bypass Fermat’s method and
use the following rules instead.

1) (¢f) =c- f" (constant multiples).
2)(f+9=f"+g (sums)
3) (l/g)' =(—1/g%g (reciprocals).
4) (g*) =299’ (squares).
) g =(1/2\/9)g" (square roots).
©) (fgy =fg' + gf" (products).
(7) (flg) =(af — f9')/g* (quotients).

The reader should practice using these rules until they have been memo-
rized. Then the taking of derivatives will be quite a routine matter, and the
most important step in solving an optimization problem will have been
mastered.

We can finally come to grips with the topic to which the title of this
chapter alludes. What are the steps leading to the solution of an optimiza-
tion problem? Basically, there are just two steps. First, translate the problem
into the geometric problem of finding the highest (or lowest) point on a
certain curve f; and second, find f* and use it as an aid in understanding
how the curve f behaves.

The critical points to be found in sketching a curve f are those where
the tangent line to the curve is horizontal. [ That leads to a definition: To
say that x is a critical point of f is to say that f'(x) = 0.] Usually, although
not always, the function f will attain its optimal value at a critical point.

To verify whether the optimum has been found, make a rough sketch
of the curve near each critical point (the second derivative is helpful here)
and near each endpoint of the domain.
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As we have seen, some curves do not have a highest (or lowest) point. It
can be proved, however, that a curve must have such points if it comes from
a continuous function and if the domain is an interval containing its endpoints.
This is a deep theorem of analysis, the modern branch of mathematics into
which seventeenth-century calculus evolved, and cannot be proved here. The
moral for us is to be aware of what a function is doing near the endpoints
of its domain, particularly if the domain does not include endpoints. If a
continuous curve fails to have a highest (or lowest) point, then by the theorem
of analysis the trouble must lie in the behavior of the function near an end-
point missing from its domain.

ExaMpLE 5. Find the highest point on the curve f given by

f(x)=2x+3,
on the domain

(@) 0<x<4
(b) 0 <x <4

Let us look first for all critical points in the domain, that is, all values x
for which f'(x) = 0. Here we have f’'(x) = 2, which shows that there are no
such values. Since f has no critical points, the principle of analysis mentioned
above guarantees that the extreme values of f must occur at the endpoints
of the domain. At the endpoint 0, the value of f is 3; at the endpoint 4, the
value of f is 11. Therefore,

(a) if the domain is 0 < x < 4, then (4, 11) is the highest point on the curve f.
(b) if the domain is 0 < x < 4, then the curve f contains no highest point.

Note that, to draw the conclusions (a) and (b), we did not have to draw a
picture of the curve f! The reader may wish to draw a picture anyway, to
see better what is going on. The expression 2x + 3 reveals f to be a linear
function of slope 2:

(a) Domain: 0 < x <4 (b) Domain: 0 < x <4
Range: 3<y<1l. Range: 3 <y<1l.
11 4,11) 11
& %
= =1
g /7 2| /7
3 3
Domain Domain
>r—G
0 4 0 4
The highest point on the There is no highest (or lowest)
curve is (4, 11). The greatest point on the curve, because the
number in the range is 11; the range contains no greatest (or least)

least is 3. number.
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ExAMPLE 6. Let C = 7L + (48/L), with domain 0 < L. Find the least possible
value of C.

Let us first find all critical points in the domain, that is, points where
C' is zero. Since C’ = 7 — (48/L?), C’ is zero when

48
7 — 7z 0,
7L? — 48 = 0 (multiplying through by L?),
7L?* = 48,
=%
==,
48
L=+ |—.
N7
L C c
? 0

Because — /48/7 is not in the domain, the only critical point in the domain is

4
/;§:2.619....
/

At the critical point, the corresponding value of C is given by

CcC=7 ﬁ+4—8=3~6.661....
N

We must now show that this is the least possible value of C.
The second derivative helps here. It is given by

96

C// — F,

which is (obviously) positive for all values of L in the domain 0 < L. There-
fore, the curve C = 7L + (48/L) is always bending to its left (or smiling).
The point

(2.619...,36.661...),

being the point on the curve where a tangent line is horizontal, must be the
lowest point on the curve.

We can now answer the question raised in Example 1 of Chapter 1. The
least amount of money that will pay for the fencing is $36.66 (rounded off
to the nearest cent). O

The preceding example was discussed rather thoroughly without ever
drawing the curve. We found the lowest point and we discovered that the
curve was always bending to the left. If it is desired to sketch the curve,



98 4 Optimistic Steps

what additional information is needed? Answer: Information about the
curve’s behavior near the “endpoints” of the domain, i.e., when L is very
small and when L is very large. -

To get this information, use common sense. Look at the two terms 7L
and 48/L, whose sum gives C. What happens to each of them when L is
very small? The first term 7L is negligible (i.e., nearly zero), so the curve
behaves essentially like the graph of 48/L when L is small. The expression
48/L increases without bound as L — 0*. (See Example 7, near the end of
Chapter 1.)

What happens when Lis very large? Then the expression 48/L is negligible,
so the curve behaves essentially like the graph of 7L when L is large. The
expression 7L produces a line of slope 7. For large L, the curve C =
7L + (48/L) approximates a straight line of slope 7.

Putting these facts together produces the following sketch:

Range

Domain: 0< L

36.66 . . . //C= 7L Range: 36.66... <C

Domain

1

EXERCISES

8.1. For each of the following functions, find its maximum value, if it has one.
(@) f(x)=5-2x,0<x < 3.
b) Fix)=x*> —2x,0<x < 4.
() gx)=x—-(1/x)+6,0<x<8.
(d) Gx)=x+(1/x)+6,0<x<8.
Answers: (b) max F is 8. (d) max G does not exist.

8.2. For each of the functions in exercise 8.1, find its minimum value, if it has one.
Answers: (a) min f does not exist. (b) min F is —1.

8.3. Sketch the curve y = 4x + (36/x), with domain 0 < x, indicating both coordinates
of the lowest point. Also, indicate how the curve looks when x is very small and
when Xx is very large.

84. A recfangular pen containing 16 square meters is to be fenced in. The front will cost
$4 per meter of fencing, while each of the other three sides will cost $3 per meter.
What is the least amount of money that will pay for the fencing?

8.5. In the problem set at the end of Chapter 1, read again problem 19. Find the greatest
possible volume V.
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§9. Summary

Here, in detail, are the steps that have been illustrated above.

Step 1. Algebraic formulation:

(a) See the problem in terms of variables. (The quantity to be
optimized is one variable, say y, and you have to find a second
variable, say x, on which y depends.)

(b) Write down an algebraic rule f, giving y in terms of x.

(c) Specify the domain of the function f.

Step 2. Geometric analysis:

(a) See the problem as one of finding the highest (or lowest) point
on the curve f.

(b) Find the derivative f'. (And find f” too, if it can be done without
much trouble.)

(c) Find the critical points, if any, that lie in the domain of f. (That
is, find all values of x in the domain of f that satisfy the equation
f(x)=0)

(d) Check what happens near the endpoints of the domain.

(e) Using the information of steps 2(c) and 2(d), find the desired
highest (or lowest) point on the curve f.

[The second derivative may be helpful in steps 2(d) and 2(e). ]

Step 3. Back to everyday life:

(a) Read the problem again, to determine exactly what was called
for. (Was it the first or second coordinate, or both, of the highest
or lowest point of the curve that you were seeking?)

(b) Give a direct answer to the question raised in the problem, by
writing a complete, concise sentence.

Step 1(c) is easy to forget, and thus deserves emphasis. The domain must
be specified; otherwise, steps 2(c) and 2(d) cannot be carried out. Step 3 is
also easy to forget. In concentrating on step 2, you can lose sight of your
goal and, as a consequence, do unnecessary work. When a problem takes
a long time to work, it is a good idea to remind yourself now and then what
you are after.

Here is another example to illustrate these steps.

ExaMPLE 7. An ordinary metal can (shaped like a cylinder) is to be fashioned,
using 547 square inches of metal. What choice of radius and height will
maximize the volume of the can?

Here, we want to maximize the volume, so let V denote the volume,
which is given in terms of the radius r and height h by the formula

V = (area of base)(height)
= nr?h. (7)
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The rule V = nr?h gives V in terms of two variables. We need to get V in
terms of only one variable, and this can be done, as follows, by finding a
relation between r and h. The picture below shows that the area of the side
of the can is given by 2nrh:

I After making
h a vertical cut
1 in the side,

we have here the side
of the can, fiattened.

-—

-7

The total amount of metal available, 547 square inches, must equal the
amount in the side of the can, plus the amount in the circular top and bottom:

54 = 2nrh + 2nr>.

This is a relation between r and h. It is easy to solve for  (the reader is asked
to do it), and obtain
27 —r?
h="TT )

¥

Putting equations (7) and (8) together gives

27 — r?
V= mr?
nr( - >

= nr(27 — r?)

=27nr — 7r3,

which expresses V in terms of r alone. The problem now is to find the value
of r that yields the maximal volume V, where

V=2Tnr—mr3, 0<r<.27

[The radius r must be less than \/ﬁ Reason: The height h must be positive,
s0, by equation (8), 27 — r* must be positive.]

rl vV } Vv’

? 0

271 — 3nr?

r 277r — nr?

Let us find critical points. The derivative is given by

V' =271 — 3nr?,
which is zero when (dividing by 3n)
0=9—1r?
=9,
r= +3.

Since —3 is not in the domain, the only critical point is 3.
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We now show that when r is 3, the volume V is maximal. This is easy
to see, for the second derivative is given by

V' = —6nr,

which is (obviously) negative throughout the domain. The curve is therefore
always bending to its right (or frowning), and hence it must reach its highest
point at the place where it has a horizontal tangent line. (At both endpoints
of the domain, V tends to zero.)

To maximize the volume, the radius should be 3 inches, and the cor-
responding height, by equation (8), should be 6 inches. O

A Final Remark. As in Examples 5, 6, and 7, it is not really necessary to
sketch the curve in order to do the problem. If f has a derivative, then the
extreme values (maximum and minimum) can be located by checking among
the endpoints and the critical points. Curve sketching is to be encouraged,
because pictures say more than words, but the principles of analysis are
valid regardless of how well one draws.

Problem Set for Chapter 4

1. Arectangular pen containing 36 square meters is to be fenced in. The front fence will
cost 37 per meter, while each of the other three sides will cost $3 per meter. What
is the least amount of money that will pay for the cost of the fence?

2. A book company wants to put 60 square inches of type on a rectangular page,
leaving margins of 1 inch on the sides and bottom and of 2 inches at the top. What
should be the dimensions of the page in order to minimize the amount of paper used?

3. Write an equation of the tangent line to the curve y = 5/x* at the point (1,5).

4. Tell whether the curve y = 5/x? is bending to the right or to the left as it passes
through
(a) (1,5).
(b) (—=1,5).

5. Consider the function f defined by f(x) = 5x4/1 — 3x.
(a) Is the curve f rising or falling as it passes through the point (0, 0)?
(b) Isthe curve f bending to the left or to the right as it passes through the point (0,0)?

6. Consider the function given by f(x) = ax? + bx + ¢, where a, b, and ¢ are constants.
Which way does the curve f bend if
(@) a>0?
(b) a<0?
(c) a=0?

7. Consider the curve C = 3L + (27/L), 0 < L.
(a) Find the first coordinate of a point on this curve where the tangent line is
horizontal.
(b) This curve always bends the same way on the domain 0 < L. Which way?
(c) From your answer to part (b), you know the point found in part (a) must be the
highest or lowest point on the curve?
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8. Consider the curve C = 3L + (27/L), L < 0.
(a) This curve always bends the same way on the domain L < 0. Which way?
(b) Find both coordinates of the highest point on the curve.
{(c) Does this curve have a lowest point?

9. What is the range of f, where f(L) = 3L + (27/L), with domain L # 0? Hint. First
sketch the curve f, using the information obtained in problems 7 and 8.

10. (A problem in curve sketching.) Consider the cubic equation y = x> — 3x + 2.

(a) The derivative y' = 3x? — 3 is a simple quadratic function. Plot the graph of
this quadratic, and, on a different coordinate system, plot the graph of the
simple linear function y” = 6x.

(b) The two graphs just sketched give much information about the original cubic.
Use these two graphs to specify on what interval(s) the cubic is

(i) rising.

(i1) falling.
(iii) bending to the left.
(iv) bending to the right.

(c) Find both coordinates of an inflection point of the cubic.

(d) There are two points on this cubic where there is a horizontal tangent line. Find
both coordinates of both points.

{e) Sketch the curve y = x* — 3x + 2, using all the information just obtained.

(f) Specify the range of the cubic if the domain is

(1)) 0<x<3.
(i) —2<x<0.
(i) —2<x<0.
(iv) unrestricted.

11. Consider the cubic equation y = x3 + 3x + 2.
(a) Sketch the graph of this cubic, after first investigating its first and second
derivatives, as in the preceding problem.
(b) Find both coordinates of an inflection point.
(c) Specify the range of this cubic if its domain is given by —1 < x < 4.

12. As in the preceding two problems, carry out an analysis of the cubic y = x* + 2,
sketch its graph, and find its point of inflection. What is its range if its domain is
given by —1 < x < 2?

13. Suppose y = (t* — 3)/(t + 2). Find y' and y” when ¢ is 0, and use this information
to sketch the curve locally, near the point P = (0, —3).

14. Sketch the curve y = x* + (8/x), x # 0, a portion of which has already been sketched
in Section 4.

15. Express the number 10 as the sum of two positive numbers in such a way that the
sum of the cube of the first and the square of the second is as small as possible.

16. Find the point on the graph of y? = 4x that is nearest the point (2, 1).

17. What is the smallest slope that a tangent line to the curve y = x3 + 3x + 2 could
possibly have?
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18.

19.

20.

21.

Identical squares are to be cut out of each corner of a piece of metal that is shaped
like a rectangle of dimensions 5 feet by 8 feet. The four squares are then discarded,
and the sides folded upwards to make a large box, with open top. Let x be the length
of the sides of the squares cut out, and let V be the corresponding volume of the box.
Find the value of x that maximizes V.

S

Discard squares, fold up sides:

Jﬂ x
Identical squares are to be cut out of each corner of a rectangular piece of metal
measuring 10 meters by 4 meters. Then the squares are to be discarded, and the sides

folded up to make a water trough for thirsty horses. What size squares should be cut
out in order to maximize the volume of the trough?

Out of 100 square centimeters of metal, the sides, top, and bottom of a cylindrical
can are to be fashioned. What should be the radius of the base of the can in order to
maximize the amount of chicken soup that the can will hold?

In exercise 1.13 of Chapter 2, a certain cost C was given in terms of a length x by the
equation

C =79 + x* —2x + 26, 0<x<13.
(a) Find C/, then fill in the table below.

X C C’
0 47 ?
4 53 ?

(b) Tell whether the curve is rising or falling as it passes through (0, 47) and through
(4,53). Can you conclude that the lowest point on the curve lies somewhere
between these two points?

(c) Find the value of x that yields the least cost C.

(d) Read again exercise 1.13 of Chapter 2. Then draw a picture of how the cable
should be built in order to minimize the cost of the cable.
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22. A lighthouse is located 4 miles offshore. The nearest town is 5 miles downshore.
Whenever she goes into town, the lighthouse keeper must take a motorboat con-
taining her motorcycle, dock at a point somewhere downshore, then ride the rest of
the way by motorcycle. Where should the boat be docked in order to minimize the
time of the trip to town if
(a) the motorboat goes 20 miles per hour and the motorcycle goes 40 miles per hour?
(b) the motorboat and the motorcycle travel at the same speed?

(c) the motorboat goes A miles per hour and the motorcycle goes B miles per hour?

23. In problem 18 at the end of Chapter 1, a certain cost C was given in terms of a length
L by the equation

96
C=3L%+—, O0<L.
L
(a) Find the value of L that minimizes the cost.
(b) Read again problem 18 of Chapter 1, and draw a picture indicating the dimen-
sions of the metal container that will minimize its cost.

24. Find the dimensions of the cheapest possible trash can with square base and
rectangular sides, subject to the following specifications. The volume of the can is to
be 3 cubic meters, the material for the sides costs $0.30 per square meter, and the
material for the base costs $0.50 per square meter.

25. In the preceding problem, suppose it is decided to add a top to the can, made out of
light metal costing only $0.10 per square meter. With this addition, what are the
dimensions of the cheapest can?

26. The metal used in making the top and bottom of a cylindrical can will cost $0.03
per square centimeter, while the metal used in the side of the can will cost $0.02 per
square centimeter. If the volume of the can is to be 100 cubic centimeters, what
should be the dimensions of the can in order to minimize the cost?

27. Out of 160 square feet of material, a container is to be made. What dimensions will
maximize the volume of the container if the container is to be shaped like
(a) a rectangular figure with square base and open top?
(b) a rectangular figure with square base and with a top?
(c) a cylindrical can without a top?
(d) a cylindrical can with a top?

28. A Norman window is in the shape of a rectangle surmounted by a semicircle. Find
the dimensions of the window that will allow the most light to pass, provided that
the perimeter of the window is 8 meters.

29. A wire is to be cut in two. The first part is to be bent into the circumference of a
circle, and the second part into the perimeter of a square. How should the wire be
cut in order to minimize the combined area of the circle and square if
(a) the wire is 100 centimeters long?

(b) the wire is A centimeters long?

30. The definition of concave upward is as follows: A curve f is concave upward if it lies
above each tangent line (with the obvious exception of the point of tangency).
(a) If f" is always positive, is the curve f concave upward?
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31.

32.

33.

34.

35.

(b) If the area in the plane lying up above the curve f forms a concave figure, is the
curve f concave upward?

Find the first derivatives of the following. Do not simplify your answers.
(a) (x/(x — 6))

(b) /x/(x — 6).

(©) (4x® = 3x)(x? — x +/2)%

(d) x*/(x® + x = 3)%

(e) (x3 —x)J2+ 7x.

(f) Vx°

Mathematics shares some characteristics with experimental science. One notices a
pattern developing, and then one tries to guess a general rule. The rule must then be
tested for its applicability to new situations. One hopes that a widely applicable rule
can be derived logically from simpler principles that are already accepted. Consider
the rule

n—1
b

(x") = nx

which ought to have been guessed in exercise 6.3 of this chapter. This rule applies

where n is a positive integer. Let us test this rule for wider applicability.

(a) Apply the rule above to find (x~'y. Does it result in the correct answer? (We
already know that the derivative of x ™! is —1/x2, from our work in Section 1.)

(b) Apply the rule to find (x~2). Does it give the derivative of 1/x*?

(c) Apply the rule to find (x"/2). Does it give the derivative of /x?

(d) Apply the rule to find (x*2)". Does it give the derivative of x\/x? (The derivative
of x\/§ can be taken by the product rule.)

(¢) Apply your rule to find (x*2). Does it give the derivative of \/x>?

(f) Apply your rule to find (x~7/2). Does it give the derivative of 1/y/x7?

(g) If it made any sense to speak of raising a number to the power 7, what would
you guess is the derivative of x*?

(The widely applicable rule that suggests itself here will be derived logically in

Chapter 9.)

Suppose that a function g has a derivative at a point x. Does it necessarily follow
that g is continuous at x? That is, if g'(x) exists, does it follow that g(x) = Lim g at x?
Hint. In Section 2 we saw that if g'(x) exists, then equation (4) necessarily follows.

Suppose that a function g is continuous at a point x. Does it necessarily follow that g
has a derivative at x? Hint. Consider a function whose curve has a “corner”, as
pictured below, at the point (x, g(x)).

(x,9(x))

Use Fermat’s method to show that the derivative of a constant function is zero.
[This is so easy that it is easy to miss. You are to show that if g(x) = ¢, where cis a
constant, then g'(x) = 0 for all x.]
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36. Give two proofs of the rule for constant multiples, which states that (c- f) =c- f".
(a) First, by applying the product rule to the product f - g, where g(x) = c, and
using the result of problem 35.
(b) Secondly, by applying Fermat’s method to the situation pictured below:

(x+hc flx+h)

(x, ¢ f(x))
the curve

y=c-f(x)

37. By applying Fermat’s method to the situation pictured below, prove the rule for
sums, which states that (f + g = f' + ¢

(x+h flx+h)+g(x+h)

(x, f(x) + g(x))

the curve
y=fx)+gx)

38. Use Fermat’s method (not a shortcut rule) to show that if f(x) = \/i then f'(x) =
1/2\/; Hint. Simplify the difference quotient of f by multiplying both the top and
the bottom by the expression \/x + h + /x.

39. Use Fermat’s method (not a shortcut rule) to prove directly the product rule, which
states that (fg) = fg' + gf’. Hint. First find the difference quotient of the product
function given by y = f(x)g(x). Simplify it by inserting the expression f(x + h)g(x) —
f(x + h)g(x) into the numerator to get

g+ B =g() S+ B = f()

Joe+h) h h

Then find the limit as & tends to 0.

40. Derive the reciprocal rule from the product rule, by proceeding as follows. Assuming
that the expression 1/g has a derivative, begin with the obvious equality

-

and use the product rule, together with the result of problem 35, to write

RO

then solve for the derivative of 1/g.
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41. Match each of the following functions (a) through (j) with its derivative. [The

derivatives of (k) and (1) are not pictured.]
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Chains and Change

Things change. The world is in flux. How can one understand a world in
which change plays so great a role? The seventeenth-century answer given
by Leibniz and Newton is simplicity itself:

Study change.

To study change is to study the way things vary. We have done a little of
this in the preceding chapters, but we have not yet taken up this study in
earnest. The derivative has a remarkable ability to capture the dynamics
of change. A main point of this chapter is that the derivative may be viewed as
measuring the instantaneous rate of change.

How can this be? Before answering, we need to develop symbolism that is
suggestive of the ideas involved. The symbolism of primes (as in y" or f') to
denote the derivative offers no aid to our new endeavor. In fact, the main
advantage of denoting the derivative by f” is that this notation suggests that
the derivative is a function. Once this important fact has been hammered
home, the use of primes to denote derivatives offers no special advantage,
and may be discarded in the presence of a superior system of symbolism.

§1. Leibniz’s Notation: Mathematics and Poetry

A superior system of notation for the calculus was developed by Leibniz. If
y is a function of x, Leibniz denoted the derivative by

dy
dx’

108
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instead of by y'. Or, if 4 is a function of s, Leibniz called the derivative
dA
E’

instead of A",

At this point the reader is doubtless mystified as to why this symbolism is
supposed to be more helpful than the perfectly good notation already devel-
oped. It is helpful only if one views the derivative the way Leibniz did. Let
us illustrate how Leibniz would go about showing that the derivative of x*
is 2x.

Consider a fixed point (x, y) on the curve y = x2.

(x + Ax)* ¢ (x + 4x,(x + 4x)?)
4y
X2
(x, ) = (x,x?)
i‘/ Ax
x x 4+ Ax

A portion of the curve y = x?

Let Ax be a small change in the variable x. (“4” is the Greek letter delta. The
expression 4x is to be taken as a whole, and not to be confused with a product.
The change Ax may be either positive or negative.) What is the corresponding
change Ay in the variable y? From the figure, it is clearly given by

Ay = (x + 4x)? — x?
= x? + 2x(4x) + (4x)* — x?
— 2x(Ax) + (4x)*.

Therefore, the ratio of the change (or increase) in y to the increase in x which
caused it is given by

4
2Y _ox + Ax. 1)
Ax

As mentioned above, the increase 4x may be either positive or negative (a
negative increase of course represents a decrease), but may not be zero. What
happens in equation (1) as Ax tends to 0? Then the fraction 4y/Ax approaches
what might be termed the instantaneous rate of increase of y with respect to x,
which, using equation (1), is equal to

o .
Limit Y Limit (2x + 4x) = 2x.
ax-0 AX  ax-o0
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(The reason that we get the derivative of x? should be plain. As seen in the
figure above, the ratio of changes A4y/4x is also the slope of a line.that ap-
proaches the tangent line at (x, y) when Ax approaches zero.)

The ratio Ay/Ax of changes taking place over an interval of length Ax is
not of primary interest here. Leibniz wanted the “ultimate ratio”, or the
instantaneous rate of increase taking place at the point x. This is what happens
as the length Ax shrinks to zero, and this Leibniz called dy/dx. That is, the
symbol dy/dx is defined as follows:

Why did Leibniz choose to denote the derivative this way? What is in the
symbol dy/dx that is not in the name derivative? A lot, as it turns out. First,
dy/dx reminds us that the derivative is the limit of ratios of changes. Secondly,
because the symbol dy/dx looks like a fraction, it reminds us that the deriv-
ative is a limit of fractions, of “quotients of differences”. The symbol dy/dx,
by its very form, gives a hint that the derivative might be expected to exhibit
some of the familiar properties of fractions. In a lighter vein, the reason
Leibniz chose this symbolism is that, by the seventeenth century, the ancient
Greek letter 4 had evolved “in the limit” to the modern d. What could be more
natural than to denote the limit of Ay/Ax by dy/dx?

It is hard to overestimate the value of appropriate symbolism. Of all
creatures, only human beings have much ability to name things and to coin
phrases. Poets do this best of all.

... as imagination bodies forth

The forms of things unknown, the poet’s pen
Turns them to shapes and gives to airy nothing
A local habitation and a name.

Shakespeare

It can be contended that Leibniz’s way of writing the calculus approaches
the poetic. One can be borne up and carried along purely by his symbolism,
while his symbols themselves may appear to take on a life all their own.
Mathematics and poetry are different, but they are not so far apart as one
might think.

The reader who is skeptical of the remarks just made is asked to suspend a
final judgment until this chapter and the next are completed. Any skepticism
that still remains may be eliminated by Chapter 10, which can be read im-
mediately following Chapter 6. In the meantime, just to show that the
remarks above are not especially radical, here is a well-known quotation
from a man who won the Nobel Prize in literature:

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, like that of sculpture, without appeal to
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any part of our weaker nature, without the gorgeous trappings of painting or
music, yet sublimely pure, and capable of a stern perfection such as only the
greatest art can show. The true spirit of delight, the exaltation, the sense of
being more than man, which is the touchstone of the highest excellence, is to
be found in mathematics as surely as in poetry.

Bertrand Russell
Before we can see anything in Leibniz’s notation, we must learn how to

use it. There is no poetry in the examples that follow, only illustrations of
how things are said in the language of Leibniz.

dy d
If = 2 AN 2 _ )
y=x%then o dx(x ) = 2x
d4 d
2 ad _d 5 _
IfA =5 then - =(s) =2
d
I /() = x% then L = 3x2,
dx
d 61
—(W1T+3)=———.
NI e
d
Ify=/"g. then Y f e g 4 (the product rule).
dx dx dx
d (1\ ~—1d
dx <Z]> =7 ﬁ (the reciprocal rule).

EXERCISES

1.1. Write the square root rule in Leibniz’s notation: If y = \/5, then dy/dx = ?
1.2. Write the quotient rule: d( f/g)/dx = ?

1.3. Find dC/dL if C = 7L + (48/L).

1.4. What is d(t> + 3t + m)/dt?

1.5. Use the product rule to find d(w“\/gﬂ)/dw.

1.6. Find the derivatives of each of the following, expressing your answer in Leibniz’s

notation.

(a) L=12/W.

(b) C = (84/W) + 4W.
(c) C=2nr.

(d) 4 =nr2

Answers: (b) dC/dW = (—84/W?) + 4. (c) dC/dr = 2.
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1.7. (This question is not entirely frivolous, as will be seen in Chapter 6.) The ancient
Greek letter 4 has by the seventeenth century evolved “in the limit” to the letter d.
What about the Greek letter 2 (sigma)? What is the “seventeenth-century limit”
of 2?

1.8. Is dy/dx the quotient of “dy” and “dx”? Answer: No. The derivative is denoted by
the entire symbol dy/dx. Just as one understands the word rainbow without feeling
any need to know what ra and inbow might mean, so one can understand dy/dx
without ascribing meaning to dy and dx.

19. A familiar rule for fractions is (4/B)(B/C) = A/C. If derivatives behaved like
fractions, what would the product

dy dx
dx dt
be equal to? Answer: dy/dt.
1.10. If derivatives behaved like fractions, what would the following products of deriva-
tives be equal to?
(a) (dC/dL)(dL/dW).
(b) (dA/dr)(dr/dt).
(c) (dL/dW)dW/dL).

§2. The Derivative as Instantaneous Speed

Suppose a rock is thrown directly upward, and suppose that, at time ¢
seconds after it is released, its height 4 (in feet) is given by the equation

h = —16t* + 64t.

To illustrate the ideas just introduced concerning change, let us try to answer
the following questions.

(a) During its first second of flight, what is the rock’s average speed?

(b) What is the rock’s instantaneous speed when t =1 (i.e., 1 second after
release)?

(c) When t = 3 (i.e, 3 seconds after release), is the rock going up or down?

(d) When does the rock attain its maximum height?

(e) What is the rock’s initial velocity, i.e., what speed was given the rock at
the instant of release?

To get hold of this situation, let us set up the usual table. Since h =
—16t* + 64t, the derivative is given by

@ = —32t + 64.
dt

Plugging in a few numbers gives rise to this table.
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t h dh/dt
(in seconds) (in feet) (in feet per second)
0 0
14t agJah 32
2 64 0
3 48 -32
t —16t% + €4t —32t + 64

Why is dh/dt in the units of feet per second (ft/sec)? Because the change
Ahin his in feet and the change 4t is in seconds, so 4h/At is in feet per second,
showing that dh/dt is the limit of numbers Ah/At that are in units of feet per
second. Let us answer the questions raised in turn.

(a) During the initial 1-second interval, we have At = 1. The corresponding
distance traveled is the change in height from 0 to 48 feet. That is, 4h =
48. The average speed for the first second is then given by

distance traveled _ Ah
time taken At

_ 48 feet
" 1 second

= 48 ft/sec.

(b) The derivative dh/dt gives the instantaneous rate of increase of height
with respect to time. When t = 1, dh/dt = 32 ft/sec. If the rock had a
speedometer inside it to measure the upward speed, the speedometer
should read 32 when ¢t is 1.

(c) When t is 3, then dh/dt is — 32, so that dh/dt, which measures the rate of
increase of height, is negative. Since the rate of increase of height is
negative, the rock is falling when t is 3. (The instantaneous speed is
32 ft/sec downward when t is 3.)

(d) Therock is going up when the upward speed dh/dt is positive and is going
down when dh/dt is negative. The rock must therefore attain its maximum
height when dh/dt is zero. This occurs when ¢t is 2.

(e) Itiseasy to be confused about speeds at the moment of release and at the
moment of impact with the ground. But there is no question that at any
intermediate time ¢, the speed is given by the expression — 32t + 64. To
avoid confusion, let us agree that the initial speed is the limit of this
expression as ¢ tends to zero from the right:

Limit (— 32t + 64) = 64 ft/sec. O
t—0+
It is easy to sketch the quadratic curve h = — 16t + 64t, and thus it is

easy to picture the situation described above. Avoid the mistake of thinking
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that the rock travels along the curve, however. The rock moves straight up
(until t = 2), then straight down, along the vertical axis.

t=2; speed 0 (2,64)
i "N
t=1; t=3;
speed +32 ) speed — 32 481 (1,48) (3,48)
\
\
1 \
32 \
\
16 fr h= —161 + 64t
! 1 1 1
Ground 0 1 2 3 4

The rock hits the ground when ¢t = 4. What is its speed at the moment of
impact? God only knows. We can know if we interpret the question as
requiring us to find the speed the rock is approaching as t tends to the moment
of impact. Then the answer is easy. The upward speed at the moment of
impact is approaching

Limit (—32t + 64) = — 64 ft/sec.

t—4-
(The negative sign occurs because — 32t + 64 gives the upward speed.) At
the moment of impact, the rock is approaching a downward speed of 64 ft/sec.

EXERCISES

2.1. Arock is thrown directly upward. Its height & (in feet) at time t seconds after release
is given by
h= —16: + 128t

(a) What is the rock’s average speed during its first second of flight?

(b) What is the rock’s instantaneous speed when t = 1?

(c) Isthe rock going up or down when t = 3?

(d) When is the maximum height attained?

(e) What is the average speed of the rock during the time interval between t = 1
and t = 3?

(f) What is the instantaneous speed when t = 2?

(g) What is the rock’s initial speed?

(h) When does the rock hit the ground, ie., when is the height # equal to zero?
Answer: When t = 8.

(i) What is the speed of the rock when it hits the ground? (See the discussion above
for a proper interpretation of this question.)
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22.

2.3.

A rocket travels directly upward. At time ¢ seconds after it is launched, its height 4
in feet is given by
h = 50t3 + 80¢.

(a) What is the rocket’s average speed during its first 2 seconds of flight? Answer:
280 ft/sec.

(b) What should the rocket’s speedometer read when t = 1?

(c) Let v stand for the rocket’s speedometer reading (so that v = dh/dt). Then v,
like h, is a function of . Fill in the question marks appropriately in the following
table.

t h v dv/dt
1 ? 230 ?
2 560 680 ?
i3 ? ? ?
t 50t3 + 80t ? ?

(d) Think about the units in which things are measured. Here we have ¢ in seconds,
h in feet, so v is in feet per second. What units is dv/dt measured in? Answer:
ft/sec per second.

() When ¢ is 2, is the speedometer reading v increasing or decreasing? Hint. This
is the same question as, “Is dv/dt positive or negative?” It is also the same
question as, “Is the rocket accelerating or decelerating in its upward movement ?”

(f) Isthe rocket accelerating or decelerating when t = 1?

(g) Acceleration is defined as the rate of increase of speed. What is the rocket’s
instantaneous acceleration when t = 1? Answer: The rate of increase of speed,
dv/dt, is equal to 300 ft/sec per second, when ¢ = 1.

(h) What is the rocket’s instantaneous acceleration when t = 2?

Go back to the situation described in exercise 2.1.
(a) Fill in the following table.
t h v dv/dt
1 112 96 ?
4 ? ? ?
6 ? ? ?
t —16t% + 128t ? ?

(b) Since v is the upward speed, and since dv/dt measures the rate of increase of v,
it follows that dv/dt measures the upward acceleration. In this case the upward
acceleration is constant. What is it? Answer: It is — 32 ft/sec per second. (This
is what gravity does, near the earth’s surface. Each second the effect of gravity
is to decrease the upward speed of a freely falling body by 32 ft/sec.)

(c) If a freely falling body is given an initial speed of +128 ft/sec, how many
seconds will gravity take to change the speed to
(i) 64 ft/sec?

(ii) — 64 ft/sec?

(d) In the rocket problem of exercise 2.2, why isn’t the acceleration — 32 ft/sec per

second, since this is the acceleration due to gravity?
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§3. Continuity and Nature

Laws that govern nature command our interest. Leibniz believed that all
such laws are subject to the following basic principle.

Leibniz’s Principle of Continuity. Nature must behave in a continuous fashion.

What does this mean? It is best to look at a concrete example, so consider
again the motion of the rock discussed at length in the preceding section.
This could be regarded as a simple experiment in physics, out of which arise
the variables h and t, related by the function f pictured here.

(2,64)
64
48 (1,48)
2+ !
16 |
1 L 1
0 1 2 3 4

Notice that f is continuous at each point in its domain 0 <t < 4. Ac-
cording to Leibniz’s principle, it could be no other way, for f describes a
process that actually takes place in nature. It would be impossible, for
example, for the rock to behave as described by the function g pictured
below.

(1,64)
64
I

48 +

32F
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This describes the rock climbing steadily to 48 feet, then instantly leaping
to a height of almost 64 feet. Only a miracle (i.e., something that disregards
the laws of nature) could accomplish this! Leibniz’s principle says that
nature simply cannot allow the discontinuity of the function g at the point
t = 1. If there are laws of nature, then these laws determine an underlying
purpose, and the action of nature must agree with that purpose. Thus only
continuous functions can arise out of this experiment, or any experiment, in
physics. Or so the philosopher thought.

Nothing happens all at once, and it is one of my great maxims, and among
the most completely verified, that nature never makes leaps: which I called the
Law of Continuity. . . .

Leibniz

Let us go into this a bit further. Consider the instant when ¢ is 1. What
happens naturally (i.e., in the course of nature) is supposed to be continuously
related both to the past and to the future. What does this mecan in terms of
change? Does continuity mean that a small change At in time will produce
only a small change 44 in height? Certainly not, because anyone can think
of occasions where nature allows large changes in little time. Instead, con-
tinuity means that, as At is taken nearer and nearer to zero, then the cor-
responding change 4h must also tend to zero:

At -0 implies 4h— 0.
In other words, to say that & is a continuous function of ¢ is to say
Limit 4h = 0. (2)

4t—=0

To illustrate this, notice the difference in the behavior of f and g near the
point t = 1.

The first two figures show that as At — 0, either through positive or negative values,
4h— 0. Thus, Limit,,_, 4h = 0 and f is continuous at 1. The third figure shows that
as At — 0 through positive values, 4h — 16. Thus, Limit,,_, ;. 4h # 0 and ¢ is discon-
tinuous at 1.

Condition (2) expresses the definition of continuity in terms of change. We
should check to see that the definition of continuity by condition (2) agrees
with the definition of continuity given in Chapter 1. To see this, assume that
h = f(t) satisfies condition (2). Because 4h = f(t + A4t) — f(t), this condition
tells us that

Limit f(t + At) — f(t) = 0,
At—0
which means
Limit f(¢ + 4ty = f(2),

At—0
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which says that

f(t) =Lim f at ¢,

showing that f satisfies the definition of continuity given in Chapter 1.

(t + 4t, f(t + 49)

4h

°- Py

At
Think of ¢ as being fixed, with At tending to zero

EXERCISES

3.1. Suppose that, at a certain point, the derivative dh/dt exists. Prove that condition (2)
must then be satisfied, showing that continuity follows from the existence of the
derivative. Hint. As At — 0, Ah/At tends to the limit dh/dt. Why does this imply that
Ah - 0?

3.2. Does the existence of a derivative follow from continuity? That is, if 4t — 0 implies
4h - 0, does it automatically follow that the limit of 4h/4t exists?

3.3. If y is a function of x, which of the following conditions mean that the function is
continuous?
(a) dy—>0as 4x— 0.
(b) Ax > 0as 4y - 0.
(c) Limit,,_.,dx =0.
(d) Limit,,.,4y =0.

3.4. If derivatives behaved like fractions, what would you expect the following products
of derivatives to be equal to?
(@) (dA/dCYdC/dr).
(b) (dy/dx)(dx/dy).
(c) (dV/dh)(dh/dt).

§4. A Chain Rule?

Believe it or not, there is still something to be learned from the example
given on the first page of Chapter 1. Three variables arise from that example,
related in the following way.

C=costof [ |W, where W-L =12
L



4. A Chain Rule? 119

The variable C can be expressed either in terms of L alone or of W alone,
while the variables W and L are themselves related by the fact that their
product must be 12, the area of the rectangle. This leads to the following
relations.

48
C=7L+2 3
+L’ (3)
12
L=12 4
=4 @
84
c=% 1 aw. 5
wt (5)

Equations (3) and (4) might be thought of as links in a chain of relations
which together produce equation (5). That is, the first two equations show
how C is a function of L and L is a function of W. This chain of relations
forces C to be a function of W, namely, the function specified in equation (5).
One feels that there ought to be a rule governing derivatives in the presence
of such a chain. The derivatives that arise from (3), (4), and (5) are as follows.

dc 48 ,
=" ®
il —12 ,
W= W @
daCc -84

Zi_” =W§‘+4. (5’)

Is there a “chain rule”, as one feels there ought to be? Leibniz’s notation
suggests one to us. The notation suggests that derivatives might act like
fractions, in which case we might expect that the product (dC/dL)(dL/dW) is
equal to dC/dW. Let us see if this is so.

dC dL 48\( —12 , /
L= <7 — F)(W> [from (3) and (4')]
-84 48-12
w2 T w?
-84 48-12

= wr T awy

-84
=W

_dc
T dw

+4 (since LW = 12)

[from (5')].
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It is so! Leibniz’s notation has suggested a chain rule for derivatives. Has any
magician’s trick ever been so delightful as this?

EXERCISES

4.1. From equation (4) we get W = 12/L.
(a) Find dW/dL.
(b) If derivatives behaved like fractions, one might expect that the product of
dW/dL and dL/dW is 1. Is it?

4.2. Suppose y = 1/x.

(a) Find dy/dx.

(b) Suppose, in addition, that x = t* + 3¢. Find dx/dt.

(c) The chain of relations y = 1/x and x = t2 + 3¢ tells us that y = 1/(¢* + 31).
Find dy/dt by using the general rule for reciprocals.

(d) Using your answers to parts (a) and (b), find the product of dy/dx and dx/dt.
Does your answer agree with dy/dt as found in part (c)? Hint. After finding the
product, get your answer entirely in terms of ¢ by replacing x with ¢ + 3t.

4.3. Suppose y = \/u.
(a) Find dy/du.
(b) Suppose, in addition, that u = x> + 9. Find du/dx.
(c) The chain of relations y = \/u and u = x? + 9 tells us that y = \/x? + 9. Find
dy/dx by using the square root rule.
(d) Using your answers to parts (a) and (b), find the product of dy/du and du/dx.
Does your answer agree with dy/dx as found in part (c)?

4.4. Consider the chain of relations y = u® and u = 3x? + 7x. What does this tell us
about the dependence of y upon x? Answer: The dependence of y upon x is
expressed by the rule y = (3x2 + 7x)°.

4.5. Consider each of the following chains of relations. What does it tell us about the
dependence of y upon x?
(@ y=uu="7x—13
(b) y=5/2—1t),t =2 — x. Answer: y = 5/x.
(© y=utu=x>—3x+m

4.6. A complicated dependence can often be regarded as made up of a chain of simpler
dependences. For each of the following, specify such a chain.
(@) y = (4x% — 6x)". Answer: This can be regarded as the result of the chain y =
ul, u=4x? — 6x.
(b) y =43 —2x+ x%
(©) y=(19x — 4)>.
(d) y = (5x + (1/x))*. Answer: This is y = u*, where u = 5x + (1/x).

§5. The Chain Rule

Suppose that we have two functions that form a chain of relations, and
suppose that each has a derivative. That is the setting for the chain rule.
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Chain Rule. If y is a function of u and u is a function of x, then

iy _ayi
dx  dudx’

This is the rule that Leibniz’s notation enabled us to guess. It is also a
rule that Leibniz’s notation enables us to remember, since it says, essentially,
that derivatives multiply just like fractions, provided that Leibniz’s nota-
tion is used.

Why is this rule true? First note that u is a continuous function of x,
since du/dx exists. This means that

Au—0 as Ax—0. (6)

(See exercise 3.1.) This fact will be useful in a moment.

To see the plausibility of the chain rule, consider what is produced by a
nonzero change Ax in x. First, a change Au in u occurs (since u is a function
of x), and then the change 4u in turn produces a change 4y in y (since y is
a function of u). By ordinary multiplication of fractions,

4y Ay Au
A i 7
Ax  Au Ax’ )
provided du # 0. As 4x — 0, equation (7) becomes “in the limit”
dy dydu
dx  dudx’
by virtue of condition (6). O

What has just been given is more of a “plausibility argument” than a
real proof to justify the chain rule. The trouble is that equation (7) does not
hold if Au = 0, i.e.,, if a nonzero 4x should produce no change in u. A more
careful proof, taking account of this troublesome case, will be outlined in
a problem at the end of Chapter 8, for those rare readers blessed with both
skepticism and patience. Let us for the time being accept the chain rule as
true, and learn how to use it. It is the most important rule governing
derivatives.

ExAaMPLE 1. What is the derivative of (3x? + 7x)3?
Here we want dy/dx, where y = (3x? + 7x)°. As in exercise 4.4, we may
regard y as being given in terms of x by the chain of relations
y=u and u=3x*+7x.
By the chain rule,”

dy _dydu
dx  dudx
= Su(6x + 7)

= 5(3x% + Tx)*(6x + 7). g
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EXAMPLE 2. What is the derivative of (x* — 3x + m)2?
Here we want dy/dx, where y = (x> — 3x + n)*> = u?, if we set u equal
to x> — 3x + n. We then have the chain

y=u? and u=x>-3x4+m.

By the chain rule,

dy dydu
dx  dudx
= 2u(3x? — 3)

=2(x3 — 3x + m)(3x% — 3).

(Note that Example 2 can be done by the rule for squares, to get the same
answer. The rule for squares is simply the special case of the chain rule that
arises when a chain of relations involves a square.) O

EXERCISES

5.1. What is the derivative of (7x — 13)3? Hint. The chain of relations in exercise 4.5(a)
arises here.

5.2. Find the derivative of (4x? — 6x)”. Hint. We want dy/dx, where y = (4x? — 6x)” =
u’, if we set u equal to 4x? — 6x.

5.3. Regard each of the following as being given by an appropriate chain of relations,
and use the chain rule to obtain the derivative.
(@) (5x + (1/x))*.

(b) (x% —2x +1)3
(© (2 + 0.
(d) (SL — 16nL2)*,

5.4. The area, radius, and circumference of a circle are related by the chain A = nr? and
r =(1/2n)C. Find dA4/dC by the chain rule. Answer: dA/dC = (1/2n)C = r.

5.5. On the basis of the answer to exercise 5.4, and with nothing but Leibniz’s notation
to guide your intuition, guess what dC/dA is.

5.6. From the equations A = nr? and C = 2nr,
(a) find an algebraic rule giving C in terms of A.
(b) find dC/dA from your answer to part (a), and see if it agrees with the guess made
in exercise 5.5.
Partial answer: C = \/4nA. (Find dC/dA by the square root rule.)

5.7. If y = x%, x > 0, then it follows that x = \/y, y > 0.
(a) Find dy/dx from the equation y = x?.
(b) Find dx/dy from the equation x = ./}.

(c) The expression dy/dx “looks like” the reciprocal of dx/dy. Is it?
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§6. Related Rates

Problems involving related rates are tailor-made for the chain rule. Let
us do an easy example, then a harder example, in order to make some observa-
tions on how such problems may be handled.

ExaMPLE 3. A pebble is dropped in still water, forming a circular ripple
whose radius is expanding at a rate of 3 inches per second. When the radius
is 7 inches, how fast is the area A of the ripple increasing?

In rate problems it is important to get straight exactly what we are
required to find, as well as what we are given to start off with. One must
remember that the derivative measures the instantaneous rate of increase.
The rate of increase of area 4 (with respect to time) is then dA/dt. The goal
of Example 3 is then to find dA/dt when r is 7. This may be abbreviated by

d_A
dt r=17

(read “dA/dt, evaluated when r is 7”). The expression (8) is the rate we are
required to find.

What are we given to work with? The first sentence of Example 3 tells
us a related rate:

®)

dr
i 3, ©)

and we know that there is a chain of relations connecting the variables A, r,
and t:
A=nar? and risa function of t.

By the chain rule, using (9),

dA dA dr
7{ = E Et_ = 27'[7'(3)
Therefore,
dA
E = 67r.
To evaluate expression (8), plug inr =7:
dA
d_t rer = 67Ir|r=7
= 67(7)

= 427 in?/sec.

(The expression “in?/sec” abbreviates the phrase “square inches per second”.
Why must dA/dt come out in these units?) |
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ExaMpLE 4. The bottom end of a 10-foot ladder resting against a wall is
pulled away from the wall at a rate of 2 ft/sec. At what rate is the top end
falling at the instant when the bottom end is 6 feet from the wall?

1?

— 2 ft/sec

There are two ways to work this problem, and we shall look at both of
them. As with virtually every calculus problem, the first step is to see the
problem in terms of variables. Time is certainly one variable, and the others
are x and y, the legs of a right triangle formed by the ladder, the wall, and
the floor. As time t increases, it is evident that x increases and y decreases.
The derivative dy/dt gives the rate of increase of y. The rate at which the
top of the ladder falls is the rate of decrease of y, which is the negative of
dy/dt. Thus we are required to find

dy
- 10
dt|._ 6 (10)

What are we given to work with? We know a related rate:

dx
o, 1y

and we know an age-old relation that connects the variables x and y:
x? + y* = 100. (12)

Solving this equation for y shows that we have the following chain of
relations connecting y, x, and ¢:

y=+/100 — x> and x is a function of t.

By the chain rule, with help from equation (11),

d_y = d_y d_x - —2x )
drdxdt  2./100 — x? ’
so that
dy 2x

Cdt /100 — X2
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To find (10), as desired, plug in x = 6:

o 12
dt| _. /100 —36
= % ft/sec. O

An alternate way to finish this problem is as follows. In equation (12),
x and y both depend upon t. Taking the derivative with respect to ¢t yields

d 5, 5 _d
S0+ y?) = 2(100)
dx dy _

2x pn + 2y i 0 (by rule for squares),

d
M+@%=0@ﬂm}

so that
dy 2x
. y’
Therefore,
d
Y = 2_x = @ = — ft/sec,
dtls=6 Y |x=6 8
since (by the Pythagorean theorem) y = 8 when x = 6. dJ

Related rates problems may seem difficult at first because everything in
them seems to be changing at once. But this is only an invitation to see
the problem in terms of variables and to use the derivative’s magic power to
measure change. Then adopt the philosopher’s point of view. Seek that
which does not change, that “holds sway above the flux”. Search for a
relation between the variables that always holds. This relation may be as
simple as the Pythagorean theorem (in Example 4) or the formula for the
area of a circle (in Example 3). Finally, express yourself in the language
of Leibniz. It will lead you to the truth.

EXERCISES

6.1. A pebble is dropped in still water, forming a circular ripple whose radius is in-
creasing at a rate of 5 inches per second. When the radius is 3 inches, how fast is
the area of the ripple increasing?

6.2. The bottom end of a 13-foot ladder resting against a wall is pulled away from the
wall at a rate of 3 feet per second. How fast is the top end falling when
(a) the bottom end is 5 feet from the wall?
(b) the top end is 5 feet from the floor?
Answers: (a) 3 ft/sec. (b) 3¢ ft/sec.
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6.3. An airplane is flying horizontally at 5000 feet, with speed 600 ft/sec, and an observer
is on the ground. Let s be the distance from the observer to the airplane.

X - ‘600
ft/sec

5000 s

s

Find ds/dt, the rate of increase of s, at each of the following instants.

(a) Two seconds after the plane passes directly above the observer.

(b) One second after the plane is directly overhead.

(c) At the instant the plane is overhead.

(d) Three seconds before the plane is directly overhead.

Hint. (c) At this instant the plane is closest to the observer, so s assumes its minimum.
What value does the derivative take when a minimum is attained?

Hint. (d) You want (ds/dt) |x= ~ 1800, and you should expect a negative answer,
since the distance s is decreasing at this instant.

6.4. Consider again the rock whose motion is described at length in Section 2. Suppose
there is an observer at ground level, 36 feet from the point where the rock is released.
Let s be the distance from the observer to the rock.

36

Find ds/dt when

(a) t =1 (and h = 48).

(b) t =2 (and h = 64).

() t=3(and h = 48). )

Hint. From the table in Section 2, dh/dt is 32,0, and —32 at times t = 1, 2, and 3,
respectively.

6.5. A child 4 feet tall walks directly away from a street light that is 10 feet above the
ground. She walks at a rate of 5 feet per second. How fast does the tip of her shadow
move?

Hint. You want dL/dt, knowing that dx/dt = 5, and knowing, from similar triangles,
that the relation L/10 = (L — x)/4 always holds. Proceed as in the alternate solution
to Example 4.
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§7. Antiderivatives

We have so far been mainly concerned with the following operation: getting a
function, forming with it a quotient of differences, and taking a limit in order
to get its derivative. This operation is called differentiation. To differentiate a
function is to take its derivative. For example, we get

1 Dby differentiating t,
t2

¢t by differentiating 5
3

.. t
t* by differentiating 3

4
3 . .
t> by differentiating T (13)
In general, we get
+1
t" bydi tiati .
y differentiating 1

What we have been studying so far is called the differential calculus. The
name is due to Leibniz who, writing in Latin, spoke of “calculus differen-
tialis”. An important concern of the differential calculus is simply to fill in
the question mark given the following table.

t y dy/dt
t f) ?
The differential calculus i1s concerned with how to get from the second
column above, to the third. It is done, of course, by means of Fermat’s
method. We shall now consider the reverse problem: how to get from the third

column back to the second. This is a principal concern of “calculus integralis”,
as Leibniz called it, writing in 1696.

t y dy/dt
A A A ()]
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This is the problem of finding an antiderivative. Fortunately, we already
know a little about antiderivatives. From the formulas (13) it is completely
obvious that

o~

is an antiderivative of 1,

. e

5 is an antiderivative of t,
3

3 is an antiderivative of ¢,
t4

7 is an antiderivative of 3.

In general,
tn +1

is an antiderivative of t".
n+1
Knowing this enables one to find easily antiderivatives of many functions
whose rules involve powers only:

An antiderivative of —32 is —32t.

An antiderivative of —32t is — 16t

An antiderivative of 64 — 32t is 64t — 16t%.

An antiderivative of 1 + 4t — 9t% is t + 2t2 — 3¢°.

We generally say “an”, rather than “the”, in speaking of antiderivatives,
because there is generally more than one antiderivative of a given function.
Having found an antiderivative, you can easily find another, simply by adding
any constant to the one already in hand. Reason: If F is an antiderivative of
f (e, if F'=f), then F + C is too [since (F + C) = F’, the derivative of a
constant C being 0]. Thus, for example,

—32t, —32t—17, —-32t +m, —32t + C,
where C can be any constant, are all antiderivatives of —32. We cannot

speak of “the” antiderivative of — 32, unless we specify, by giving additional
information, exactly which antiderivative we mean.

ExaMPLE 5. Consider the function given by f(t) = — 32, with domain 0 <.
Find
(a) an antiderivative F of f.

(b) the antiderivative F of f that takes the value 64 when ¢ is 0.
(c) the antiderivative F of f that takes the value —40 when ¢ is 5.

We have already answered part (a). Any function whose rule is of the
form — 32t + C will do, where C can be any constant (including, of course, 0).

a

To answer (b), note that what is required is to fill in properly the following
table.
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The first line of the table gives enough information (we hope) to make the
antiderivative unique. By part (a) we expect

F(t)= =32t + C, (14)
and by the first line of the table we must have
F(0) = 64. (15)

From (14), with ¢t = 0, we get

FO)= —-32(00+ C=C.
This equation, together with (15), shows that C must be 64. Thus, in equation
(14), not just any constant C will do; we must have F(t) = — 32t + 64. O

To answer (c) we must satisfy the condition
F(5) = —40, (16)
in addition to equation (14), which implies
F(5)= —=32(5)+ C. (17)
Putting (16) and (17) together determines C:

—40 = —160 + C,
C =120.

The answer to part (c) is then given by F(t) = — 32t + 120. |

An antiderivative is generally determined, not uniquely, but only “up to
an additive constant”. Additional information, as in parts (b) and (c) of
Example 5, is required to specify a unique antiderivative. How can we be
sure of uniqueness, though? Our procedure here will be justified in the next
section.

EXERCISES

7.1. In each of the following, specify an antiderivative F of the given function f.
(@) f(t)=3t+ 2. Answer: F(t) = 3t + 2t + C.
(b) f(t) = —32t + 96.
© fO=1+t+1%
(d) f(¢) = nt’. Answer: F(t) = znt* + C.

7.2. In each of parts (a) through (d) of exercise 7.1, find the antiderivative F that takes
the value 6 when t = 2.
Answers: (a) F(t) = 3t2 + 2t — 4. (d) F(t) = mt* + 6 — 4.
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7.3. In each of the following the derivative of h is specified. Use antiderivatives to find h
itself.
(a) dh/dt =96 — 32t.
(b) dh/dt = —40 — 32t.
(¢) dh/dt = —32t.

7.4. In each of parts (a) through (c) of exercise 7.3, find the antiderivative h that takes
the value 100 when ¢ = 0. Answer: (a) h = 96t — 16t> + 100.

7.5. In each of parts (a) through (c) of exercise 7.3, find the antiderivative h that takes the
value 100 when ¢ = 1. Answer: (a) h = 96t — 16t> + 20.

§8. A Fundamental Principle and Freely
Falling Bodies

Taking antiderivatives points us in a direction exactly opposite the direction
of differential calculus, and leads to the study of integral calculus. The reason
for the use of the word integral will be explained in Chapter 6.

Let us examine more carefully the notion of an antiderivative. Because
we get 0 by differentiating a constant function F(t) = C, it seems plausible that

any antiderivative of 0 is a constant function. (18)
Can we be sure of this? Another way of saying the same thing is as follows:
IfF(5)=0, then F(t)=C for some constant C. (19)

Statements (18) and (19) are true, but only with the additional understand-
ing that the domain in question is connected, that is, has no holes in it. The
example pictured below shows that statement (19) can fail with holes in the
domain. In this example F'(t) = 0, yet the function F is not constant.

Disconnected domain
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In analysis it is shown that (18) and (19) are true, provided the domain is
connected. The reader is asked to accept this as intuitively obvious. It has an
important consequence, which will provide the basis for much that will
follow.

A Fundamental Principle of Integral Calculus. Let F and A be functions
defined on the same connected domain, and assume that dA/dt = dF/dt. Then,

Ay =Fit)+ C
for some constant C.

Proor. First note that

d dA dF
SA-F)=—-"=
( ) dt  dt ’

dt (20)

since dA/dt = dF/dt, by assumption. Therefore,

A — F = an antiderivative of 0 [by (20)]
= a constant function [by (18)],

since the domain is assumed connected. Thus, for some constant C,

At) — F(t) = C,
A(t) = F(t) + C. d

The fundamental principle just established is sometimes phrased this
way: Two antiderivatives of the same function differ by a constant. The reader
is cautioned to remember that zero is a perfectly good constant.

Intuition often runs ahead of reason. A good example of this is found in
Section 7, where we expected equation (14) to hold and to justify what
followed there. Now we know that we were right. The fundamental principle
guarantees equation (14), for it says that any antiderivative whatsoever of
—32 differs by a constant from —32t, on a connected domain. Thus, parts
(b) and (c) of Example 5 do indeed have unique answers, for the domain of
Example 5 is connected.

Though the fundamental principle may appear abstract, it has quite
practical uses. It comes into play whenever we know the rate of change of a
quantity and want to know the quantity itself. An example of this is furnished
by the study of freely falling bodies. This refers to the vertical movement of
objects thrown in the air near the earth’s surface. If gravity is the only force
acting on the body (which means that the body is not self-propelled and that
the effect of air friction is ignored), the body is said to be freely falling.

Near the earth’s surface, the effect of gravity is very simple to describe.
Each second gravity decreases the upward speed of a freely falling body by



132 5 Chains and Change

32 ft/sec. That is, if v is the upward speed of a freely falling body, then the
effect of gravity is specified by the equation

dv
Z = _13) 21
o 32 @n
This equation gives the rate of increase of v. If we want to know v itself, the
fundamental principle says that

v=—-32t+C

for some constant C. We need additional information to determine C. If,
for example, the initial speed was known to be 64 ft/sec, then v = —32t + 64,
as in part (b) of Example 5. If, as in part (c) of Example 5, the speed is known
to be downwards at 40 ft/sec when t = 5, then we must have v = —32¢ + 120.

ExaMPLE 6. A rock is thrown upward from ground level with an initial
speed of 64 ft/sec. Treating the rock as a freely falling body, answer the
following:

(a) What is the maximum height attained by the rock?
(b) Where is the rock 3 seconds after it is released?
(c) When, and with what speed, will it hit the ground?

Here, we know that the upward speed v is given by v = —32t + 64, by
the remarks preceding the example. But the upward speed v is equal to dh/dt,
the rate of increase of height. Hence.

h_ 3464
dt

Therefore, by the fundamental principle,
h=—16t2+ 64t + C (22)

for some constant C. What is C? Since the rock is thrown from ground level,
we must have h = 0 when ¢ = 0, so that, from (22),

0 = —16(0)% + 64(0) + C.
Therefore, C = 0 and (22) becomes
h= —16t* + 64t.

But this is the height formula that was discussed at length in Section 2. From
that section we know that the maximum height of the rock is 64 feet, the
rock is at 48 feet and falling when ¢ = 3, and it hits the ground when ¢ = 4
with a downward speed approaching 64 ft/sec. O
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The way the preceding example was begun involved two steps that can be
schematized as follows:

dv/dt
t h v (=dh/dr) (upward acceleration
(time since release) (height) (upward speed) due to gravity)
0 0 +64
t (Step 2) (Step 1) -32

Example 6 involves two antiderivaties. In step 1, when we “pull back” from
the fourth column to the third, we must adjust the constant so that the
initial speed is 64, as required. When we pull back from the third column to
the second, another constant must be adjusted to be in accordance with the
given initial height.

ExaMPLE 7. From a building 200 feet high, a ball is thrown downward at
an initial speed of 50 ft/sec. Find an algebraic expression for the height of the
ball in terms of the time since release, treating the ball as a freely falling
object.

Here, we begin with the following information, and we want to fill in the
question mark giving h in terms of ¢. To do this we must first fill in the other
question mark properly.

-t l h ‘ v = dh/dt ‘ dv/dt

0
t

200 -50
? ? -32

We must simply pull back twice by taking antiderivatives, each time adjusting
the constant in accordance with the initial conditions. Pulling back to the
third column yields v = —32¢ — 50, and thus in the second column we must
have h = —16t* — 50t + 200. This equation gives k in terms of ¢, so long as
gravity is the only force that acts upon the ball, that is, until # = 0 when the
ball hits the ground. |

The method outlined in Examples 6 and 7 develops a mathematical
“model” predicting the motion of a freely falling body. Given the initial
speed and the initial location, we can find the formulas governing the speed
and the height at any time, so long as gravity acts. Thus the dynamics of a
freely falling body can be worked out with ease, through the help of our
fundamental principle of integral calculus.

Our model is hardly perfect, however, for the notion of a freely falling
body is an idealization of what actually happens when a rock is tossed up in
the air. Air friction has its effect, particularly at high speeds, and a more
complex model is required to account for this and other factors.
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EXERCISES

8.1. A ball is thrown vertically from a cliff. Find its upward speed v in terms of the time ¢
since release if
(a) it is initially thrown upward at 96 ft/sec.
(b) it is initially thrown downward at 60 ft/sec.

8.2. Arock is thrown upward from ground level at an initial speed of 96 ft/sec.
(a) What is its maximum height?
(b) Where is the rock 4 seconds after release?
(c) When will the rock hit the ground?
(d) What is the speed of the rock at the moment of impact? Answer: Limit,_¢-
v= —96 ft/sec.

8.3. From a tower 256 feet high, a ball is thrown upward at an initial speed of 96 ft/sec.
When, and with what speed, will it hit the ground? Hint.

t h v dv/dt
0 256 96
t (Step 2) (Step 1) -32
? 0 ?

Partial answer: At impact the downward speed approaches 160 ft/sec.

8.4. Suppose, in exercise 8.3, the ball is thrown downward initially at 96 ft/sec. When,
and with what speed, will it hit the ground? Hint. This is done like exercise 8.3,
except the initial speed is — 96 instead of 96.

8.5. A rifle is supposed to have a muzzle velocity of 1000 ft/sec. If it is fired straight up,
how high will the bullet go?

8.6. A certain rifle, when fired straight up, will send a bullet to a height of 2000 feet.
What is the muzzle velocity of the rifle? Hint. Letting v, be the muzzle velocity,
we have

Find v,, beginning with equation (21).

8.7. A boy hurls a ball directly upwards. It hits the ground 8 seconds later. What was
the ball’s initial speed? Hint.

t h v
0 0 Vo
8 0

Find v,.
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§9. Antiderivatives and Distance

The method of freely falling bodies does not apply, of course, to self-propelled
objects like motorcycles, cars, and rockets. Nevertheless, antiderivatives
come into play with self-propelled objects when it is desired to convert
speedometer readings into distance traveled. Suppose a navigator charts
his speedometer reading as it varies over the span of an hour. How can the
navigator determine from his chart the distance traveled during this hour?
The answer involves antiderivatives.

ExaMPLE 8. A rocket ship blasts through the firmament on a journey directly
away from the earth. At noon on a certain day the navigator becomes in-
terested in the ship’s speedometer reading as a function of time, and finds
that it is given by 100> — 400t? + 800t, where ¢ is the time in hours since
noon. If this function f gives the speedometer reading in km/hr (kilometers
per hour), find the distance traveled by the rocket

(a) between noon and two o’clock.
(b) between one and four o’clock.

The speedometer reading is the instantaneous rate of change of distance
from the earth. If we let s be the distance from the earth, we then have

d
d—f = 10063 — 400¢> + 800t = £().

The distance s must be in kilometers, since the speedometer reading is given
in km/hr. Schematically, the situation we are faced with can be pictured as
follows.

t s ds/dt
(hours since noon) (distance from earth) (speed)

0 ?

1 ?

2 ?

4 ?

t F(1) 10

We know the expression for f(f) and we need to fill in the question marks
correctly to answer (a) and (b) above.
We first find an antiderivative F of f:
100t* 400 800¢?

=F@) = C.
S (t) 1 3-i- 2+

We know the position function F must be of this form by the fundamental
principle, but we are not given enough information to determine C. Never-
theless, by plugging in the values 0, 1, 2, and 4 into this expression for F, we
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can easily figure out what was required:
(a) The distance traveled between time ¢t = 0 and ¢ = 2 is equal to

(position dt ¢t = 2) minus (position at ¢t = 0)

= F(2) — F(0)
=9337+C-C
= 933.7 km.

t
¢ FQ)
s= F(y)

= position at time ¢

F(0)

(b) The distance traveled between time t = 1 and ¢t = 4 is equal to

F(4) — F(1) = 4266.7 + C — (291.7 + C)
= 3975 km. O

To get the distance traveled, given the speed function f, is then a job
for antiderivatives. If F is an antiderivative of f, then F gives the position
at time ¢, so that the initial and final positions are readily determined. The
distance traveled is simply the distance between the initial and final position,
if the ship does not reverse course. (In Example 8 the speed function is
always positive, so the direction of travel is always away from the earth.)

What happens if the speed function changes sign in the midst of the
journey, so that the course of travel is reversed? Then the distance traveled
must be calculated in two steps, as illustrated in the next example.

EXAMPLE 9. A rock is thrown upward at an initial speed of 64 ft/sec. How
far does the rock travel during the first 3 seconds of its flight?

Here the speed function f is given by f(¢) = 64 — 32t, because of the
influence of gravity. When ¢ = 2, the sign of the speed function changes
from positive to negative, showing that the rock’s motion changes from up
to down. We must calculate separately the distance traveled by the rock
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during its upward and downward journey. An antiderivative F is given by
F(t)= —16t* + 64t + C

for some constant C. We are not given enough information to determine C,
for we do not know the initial height of the rock.
Nevertheless, the distance traveled upward is

F2)—FO) =64+ C—C =641t
The distance traveled downward fromt =2tot =3 1is

F2)—F(3)=64+C—-(48+C)
=16 ft.

The total distance traveled is then 80 feet, even though the distance between
the rock’s final and initial positions, given by F(3) — F(0), is only 48 feet.
(Example 9 is, of course, essentially the same situation that we have met
twice before, in Section 2 and in Example 6, Section 7.) O

EXERCISES

9.1. In Example 8§, find the distance traveled by the rocket ship between
(a t=0andt=3.
(b) t=1andt=3.

9.2. If ds/dt is the upward speed, then its rate of increase, which is d(ds/dt)/dt, is the
upward acceleration. In Leibniz’s notation, the symbol d(ds/dt)/dt is abbreviated
to d*s/dt*. Find the upward acceleration in Example 8, and then answer the
following:

(a) Is the rocket accelerating or decelerating in its upward movement when ¢t = 3?
(b) Is the rocket accelerating or decelerating when t = 0?7 Answer: Since d>s/
dt?|,- o = 800 km/hr per hour, which is positive, the rocket is accelerating.

9.3. In Example 9, how far does the rock travel between
() t=1and t =37
(b) t =0and t = 4?7 Answer: 128 feet.

9.4. A stone is thrown upward from a tower window at an initial speed of 48 ft/sec.
Find the distance traveled by the stone during its first 3 seconds of flight, treating
it as a freely falling body.

9.5. Do exercise 9.4 with the modification that the stone is thrown downward instead of
upward.

9.6. The speed function f of a ship stays constant at 30 km/hr, i.e., f(t) = 30. Find how
far the ship travels between t = 1 and t = 4,
(a) by the method of antiderivatives, as in Example 8.
(b) by common sense.
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§10. A Token

There is a lot to be learned in the simple pastime of contemplating a circle.
(Chapter 7, in fact, will be entirely devoted to this.) Through a problem at
the end of Chapter 2, it was established that the area A of a circle is given by

A = mr?, (23)

where r is the radius. As also noted in Chapter 2, problem 16, Archimedes
established the fact that the two figures below have the same area.

Circle of Right triangle
radius r and A | of base r and
circumference C height C

The equality of areas produces the equation nr*> = $Cr, from which we get
the formula for the circumference,

C =2nr. (24)

From (23) we derive the equation dA/dr = 27r, so that by (24) we have
A = C. (25)
dr

Thus the derivative (with respect to r) of the area of a circle is equal to the
circumference! It takes only a little sensitivity to recognize that there must
be here some sort of underlying harmony that has so far gone unnoticed.
Equation (25) is a token from the gods. It is up to us to figure out what it
really means. Remember the words of Xenophanes and Heraclitus!

Is equation (25) just an accident? Or should we have realized, by adopting
the proper point of view, that this equation was bound to be true? Let us
set about trying to derive equation (25) directly from fundamental considera-
tions. We may discover something worth knowing in the process.

The equation C = 2nr defines, of course, a straight line of slope 2m,
passing through the origin. The variables r, C, and A are then related as
indicated in the figure.
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r.C)

C:an

If r is changed by a small amount Ar, what are the corresponding changes
AC and AA? They are as indicated in the figure below.

ac
+r @0
44
Cc
—>Ar<—

To calculate the change AA in area, regard it as being made up of a rectangle
surmounted by a triangle. The rectangle has base Ar and height C, and the
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triangle has base Ar and height AC. Therefore,
1
44 = C(4r) + E(Ar)(AC).

Dividing by Ar produces

44 1
—=C+= .
T + 2(A C)
As Ar —» 0, we must have AC — 0 also, because C is a continuous function
of r. Therefore,
a4 _ Limit 44
dr o Ar

= Limit [c +1u C):|
4r—-0 2
=C.

What have we learned? We have learned that the equation dA/dr = C
is simply a consequence of the fact that 4 is the area beneath the curve
giving C as a continous function of r. That is, given the picture

r. Q)

it must follow that dA/dr = C.

Are areas beneath continuous functions always related to the functions
in this way? What is the secret that is still eluding us?

It turns out that what is behind all this is the fundamental theorem of
calculus. Leibniz guessed it, probably sometime in the 1670s. Actually,
Isaac Newton had come upon it in 1666 (at the age of twenty-three), but
kept it a secret.

The fundamental theorem is discussed in Chapter 6. The reader may
possibly be able to guess what it says beforehand, however, after doing the
following exercises. The many uses of this theorem will still bring surprise.

EXERCISES

10.1. Make a guess about a relation between the three variables that occur in each of
the following pictures.
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@ (b)

(r,y) . . ,C)

© ()

(L,C)
(x,»)

Answer: (c) dA/dL = C. (d) dA/dx = y.

10.2. Guess again, as in exercise 10.1, but utilize the fact that equations for the curves are
furnished.

(1,55)

1
(1) y=1/t

(+,)

@) (b) 4

Answer: (c) dA/dx = x2.

§11. Leibniz

Leibniz, like Descartes, is one of several mathematicians who were also
distinguished philosophers. He said that we live in “the best of all possible
worlds”. Voltaire, who admired Leibniz, still could not tolerate his un-
restrained optimism, and satirized it in Candide. Relatively recent develop-
ments in physics have shown, however, that profound truth can be found
in Leibniz’s seemingly naive belief:

Ours, according to Leibniz, is the best of all possible worlds, and the laws
of nature can therefore be described in terms of extremal principles.

C. L. Siegel and J. K. Moser*

* Siegel/Moser, Lectures on Celestial Mechanics (New York: Springer-Verlag, 1971) p.1.
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MENSIS OCTOBRIS A, M DCLXXXIV. 46+
NOVA METHODUS PRO MANIMIS ET M-

wimisy itemque tangentibusy que nec fraclic, nec irrationales
guantitates moratur, & fingslare pro illis calcili
genusy per G,G. L.

Itaxis AX, & curva plures,ut VV, W W, YY, ZZ, quarum ordj TAB-X1I
natz, ad axemnormale, VX, WX, Y X, ZX, quz vocentur refpe-
.Qive, v, w5 Y, 25 &ipfa AX ablofla abaxe, vocetur x. Tangentes fint
VB, W C,TD, ZEaxi occurrentes refpedive in pundis B, C,D, E,
Jamrectaaliqua proatbitrio aflumta vocetur dx, & redta qua fit ad
dx,utp (velw,vely, velz)eftad VI (vel W/ C,vel YD, vel Z E) vo-
cetur d» (veld w, veldy vel dz) five dificrentia ipfarum v (vel ifa-
fum w;,aut Y, autz) His pofitis calculi regulx erunt ales:
Sit a quanti:as dara conftans, ericdaxqualiso, & d ax erit :cqu:
adx:fifity xqur(feu ordinataquaviscurva Y Y, xqualis cuivis or-
dinatz refpondenticurva V'V )erit dyzqu.de . Jam Addirio & Sub-

tradtio; (1 Gtz -y W X 2qu.p,erit d 2— Yo W px feu dp, xqu
dz—d yupd v o d x. Muliiplicatioyd x v xqu. xd p,f» dx, feu pofito
yaquxp, fietd yaquxd»grdx. Inatbitfio enimeft velformulam,
utx v, vel compendio pro caliteram, ut y, adhibere. Notandum & x
& d xeodem modoin hoc calculo tractari, uty & dy, velaliam literam
indeterminatam cum fua differentiali.  Notandum ctiam non dari
femper regreffum a differentiali Z£quatione, nifi cum quadam cautio-

ne, de quo alibi.  Porro Divife, divd (pofitozzqu. 2y dz zqu.

drdy Foydv y Y
ngadsigﬂd hoc probe notandum, cum in calculo pro litcra
fubftituicur fimpliciter cjus differcntialis, fervari quidem eadem figna,
& prospzferibi o dz, pro—z feribi—~dz, utcx additione & fubtra-
&ione paulo ante pofita apparet; {cd quando ad cxegefin valorum
venitur, feu cum confideraturiplius z relatio ad x, tunc apparere, an
valoripfiusdz fit quantitas affirmativa, 2an nihilo minor feu negativa:
quod pofterivscem fit, tunc tangens Z E ducitura pun@o Z non ver-
fus A, {elin partes contrarias feu infraX.id cft runccum ipfe orginia
Nnn3 IR

Figure 1. First page of the first paper published on the calculus. Leibniz wrote this short
account—only six pages long—in 1684. The long title reads “A new method for maxima
and minima, as well as for tangents, which is not obstructed by fractional and irrational
quantities, and a unique calculus for it”.
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Modern books on celestial mechanics show that the course actually
chosen as the path of a heavenly body is the optimum among all possible
courses. It should be added that the optimum path must be defined quite
carefully, and in a way that Fermat was more likely to have foreseen than
Leibniz. Nevertheless, the optimization techniques of Leibniz’s calculus
enter the picture in an essential way.

Few men have been more gifted than Leibniz. He invented a calculating
machine that could multiply, divide, and take roots. He organized the Berlin
Academy of Sciences and was its first president. He knew many languages,
was an historian and a diplomat, with interests in economics, and a pioneer
in the field of international law.

But when he died in 1716, little notice was taken. Only one mourner
attended the funeral of Gottfried Wilhelm von Leibniz, and an observer
said that “he was buried more like a robber than what he really was, the
ornament of his country.”

Problem Set for Chapter 5

1. A motorcycie travels on a straight road leading directly away from a city. At time
t hours past noon its distance from the city is 10> — 40¢> + 80¢ miles.
(a) How far does the motorcycle go between one o’clock and three o’clock?
(b) What is its average speed over the time interval between one o’clock and three
o’clock?
(c) What is the speedometer reading at two o’clock?
(d) At two o’clock, is the motorcycle accelerating or decelerating?
(e) At one o’clock, is the motorcycle accelerating or decelerating?

2. The height of a rock at time ¢ is given by h = —4.9t> + 20t, where h is in meters
and ¢t is in seconds.
(a) Is the rock rising or falling when t = 3?
(b) How fast is the rock going when t = 3?
(c) When does the rock attain its maximal height?
(d) What is the acceleration of the rock?

3. Suppose x and y are each functions of . Let A denote their product. (If x and y are
positive, A can be pictured as the area of a rectangle whose sides vary in length as
t increases.)

4y

X Ax
The shaded area is 44
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10.

(a) In time A4t, x becomes x + Ax and y becomes y + 4y. Hence A + 44 = (x +
A4x)(y + 4y). Use this equation to find 44 in terms of x, y, Ax, and 4y.
(b) Suppose dx/dt and dy/dt exist. What must happen to 4x and A4y as At — 0?
(c) Derive the product rule, by carrying out the following steps.
(i) Take your answer to (a), and divide both sides of the equation by At.
(i) Take the limit as 4t — 0, using your answer to part (b), to show that

dA  dy dx

TR TS

. Back in Chapter 1, we encountered this situation linking the three variables A4, s, and

wi

A = area of D w, where 2w + s = 1200.
s
This leads to the chain
1 2
A = 600s — ES ,  where s = 1200 — 2w,

which produces the equation 4 = 1200w — 2w?,

(a) Using the three equations above, find dA4/ds, ds/dw, and dA/dw.
(b) Multiply dA/ds by ds/dw. Is your answer equal to dA4/dw?

(c) Find dw/ds. Is it equal to the reciprocal of ds/dw?

. Use the chain rule to find the derivative of each of the following:

(@) (x2 + Tx)*.

(b) (x> —(1/x))°.

© ((x =2/x+2))°.
(d) (x* —3x + 7)°.

. A pebble dropped in still water causes a ripple to form, whose radius is increasing

at a rate of 7 in/sec. At what rate is the area of the ripple increasing, when the radius
is 5 inches?

. A ladder 20 feet long leans against a wall. If its bottom end is pulled away from the

wall at a constant rate of 5 ft/sec, how fast is the top of the ladder descending
(a) when the bottom end is 12 feet from the wall?
(b) when the top end is 12 feet from the floor?

. A man 5 feet tall walks directly away from the base of a street light. He walks at a

rate of 3 ft/sec. How fast does the tip of his shadow move if the street light is 12 feet
above the ground?

. In problem 8, how fast does the length of his shadow change?

An observer is 80 feet from a railroad track when a train passes at a rate of 50 ft/sec.
How fast is the train’s engineer moving away from the observer at the instant they
are

(a) 80 feet apart?

(b) 100 feet apart?



Problem Set for Chapter 5 145

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

Molasses is poured on a pancake at a constant rate so that the circular area covered
by the molasses is increasing at a rate of 3 in?/sec. How fast is the radius of this
circular area increasing at the instant when the radius is 2 inches?

Find antiderivatives of each of the following:
(@) 322+ 12t + 7.

(b) 1/¢2.

(¢) 3 —5t+3.

(d) £ + 4 — 1612

In each of parts (a) through (d) of problem 12, find an antiderivative that takes the
value 0 when ¢t = 1. Is there a unique answer in each case?

From a window 276 feet high, a rock is thrown upward at an initial speed of 50 ft/sec.
Answer the following questions, treating the rock as a freely falling body.

(a) When will the rock attain its maximal height?

(b) When will it hit the ground?

(c) What will be the speed of the rock when it hits the ground?

A baseball is thrown straight up. What was its initial speed if
(a) it reaches a maximum height of 100 feet?

(b) it hits the ground 5 seconds after it is released?

(c) it is at a height of 60 feet 2 seconds after it is released?

Since 32 feet is about 9.8 meters, equation (21) of Section 8 becomes dv/dt = —9.8
my/sec per sec. By taking antiderivatives twice, show that the height h in meters of a
freely falling body is —4.9t> + vt + hgy, where v is the initial upward speed in
my/sec, hy is the initial height in meters, and ¢ is the time in seconds after the body is
released.

In Example 7 of Section 8, find the speed at which the ball hits the ground.

The derivative of a certain function f is given by f'(x) = 10 — 6x. It is also known
that f(2) = 3. Find the largest number in the range of f.

Suppose that the least number in the range of a certain function g is 2. Suppose also
that g'(x) = 2x — 4. Find ¢(3).

Think about a tennis ball just as it lands on the ground after being dropped. It
bounces up. The upward speed is negative just before impact, and positive just
after. Does this mean that the speed function must be discontinuous at the instant of
impact? Is Leibniz’s principle of continuity violated? Or can you see a way to save
this principle by a more careful examination of what actually happens at the
moment of impact?

(For ambitious students only) Although we know the derivative of the reciprocal
function, we do not yet know an antiderivative of it. Nevertheless, suppose that we
have somehow found the antiderivative 4 of the reciprocal function that takes the
value 0 at the point 1. That is, we have a function A satisfying the following:
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22.

23.

24,

Although we do not yet have any sort of formula by which to express the rule
for the function A, we can nevertheless deduce some interesting things about it.
(a) To begin with, we know that if L.= A(t), then dL/dt = 1/t. This makes it un-

likely that the domain of the function A includes the point 0. Why?

(b) Let y = A(nt). This may be regarded as the chain y = A(u), where u = nt. Use
the chain rule to find dy/dt. Hint. dy/du = 1/u.

(c) The work in parts (a) and (b) shows that dL/dt = dy/dt. By the fundamental
principle of integral calculis, there must be some constant C such that L =
y+ C, ie, A(nt) = A(t) + C, on a connected domain. Show that the constant C
must be A(n). Hint. A(1) = 0.

(d) We now know that A(nt) = A(n) + A(t), since C = A(n). Assuming that the
domain of A is the connected set of all positive numbers, show that, for any s > 0
and t > 0, we have

A(st) = A(s) + A(2).

Hint. Use the same reasoning as before. Just consider s instead of .

(e) The equation in (d) shows that the function 4 “converts multiplication into
addition” in a sense. That is, the action of 4 on a product st is the sum of the
action on each term. By letting ¢ = s in this equation, prove that A(s*) = 2A(s)
ifs>0.

(f) Prove that A(s®) = 3A(s) if s > 0.

(g) Inthe equation in (d), let t = 1/s, and show that A(1/s) = — A(s) if s > 0.

(h) [n the equation in (d), let s=1t= \/>_c and prove that A(\/ic_) = $A(x).

(i) If L = A(f), then dL/df = 1/f. What would you guess is the formula for df/dL?

(T his has been a preview of the logarithmic function that will be discussed in Chapter 9.)

Consider the area A as indicated below:

(1,1

(t.5) y=1/t

(a) What is A whent=1?

(b) What would you guess dA/dt to be?

(c) Here, A4 is a function of ¢. Does it satisfy the table set up at the beginning of
problem 217

A rock is thrown up at an initial speed of 96 ft/sec. How far does the rock travel
during

(a) the first 2 seconds of flight?

(b) the first 5 seconds of flight?

A small, tired bug is climbing up the y-axis. At time ¢ = 1, the bug is at the origin
and, from that time on, her speed is given by f(¢t) = 4/t%.

(a) How far does the bug go between times t = 1 and ¢t = 27

(b) At what time ¢ will the bug be at position y = 3?

(c) At what time ¢ will the bug be at position y = 3.75?

(d) How far does the bug go between times ¢t = 1 and t = 1000?

(e) Will the bug ever reach the position y = 4?
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25. Match each of the following functions (a) through (g) with its derivative. [The
derivative of (h) is not pictured.]

VA e ——
A

p
. L

(© (f)

)
R

(h)

[The curve in (g) lies on the horizontal axis, but has holes in it. The left branch of the
curve in (f) is identical with that of (d), but translated downwards.]

26. In problem 25, the curves (d) and (f) have the same derivative, but do not differ
by a constant. Doesn’t this contradict the fundamental principle of integral calculus?



The Integrity of Ancient
and Modern Mathematics

When minds of first order meet, sparks fly, even across the centuries. The
fundamental theorem of calculus, to be discussed in this chapter, is the result
of such a pyrotechnic fusion of ideas. When Leibniz and Newton met Eudoxus
and Archimedes, the calculus was rounded out into a whole. By the end of
the seventeenth century it was becoming evident that calculus was not a bag
of unrelated tricks but was an entity complete unto itself.

The point of this chapter is to see our subject as a unified whole, and the
fundamental theorem is what really ties it together. Before coming to this
theorem, let us recall briefly what we have seen so far. Calculus is largely
the study of the interplay between a function and its derivative. In Chapters 3
and 4 we saw the geometric aspect of this interplay, which gives insight into
the study of curves lying in a plane. As a by-product, the solution of optimiza-
tion problems was effected. In Chapter 5, a dynamic aspect of this interplay
revealed itself, throwing light upon the study of change. Previously vague
terms, like instantaneous velocity, acceleration, and rate of growth, were
seen to have natural and precise meanings couched in calculus. And, most
importantly, the fundamental notion of continuity has been clarified in terms
of limits.

We have seen by now that the interplay between a function and its
antiderivative is signally rich. In this chapter we study still another aspect
of this interplay. Calculus permits the easy calculation of the area of a figure
bounded by curves in the plane.

§1. Areas and Antiderivatives?

Why should there be any connection between the calculus and the calcu-
lation of area? Isaac Newton saw the connection at an early age, having
learned something, no doubt, from studying mathematics at Cambridge

148
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under the tutelage of Isaac Barrow. While Newton was keeping his secrets
to himself, the light came to Leibniz upon studying a mathematics paper
by Pascal. The connection is a secret no longer.

Let us try to guess the connection first and put off until later an attempt
to prove that our guess is correct. The key is to work through several simple
examples and to observe that two seemingly different approaches yield the
same result.

To see the landscape clearly, a motorcycle ride will help, if the reader
will put up with just one more trip. Suppose you are watching the speedom-
eter and therefore know the function f giving the speed of the motorcycle
in terms of time. What method(s) can be applied to the speed function f,
in order to calculate the distance traveled between, say, the times ¢ =1
and t = 47

ExaMPLE 1. Suppose the speed is constant at 50 km/hr, i.e., the speed func-
tion is given by f(f) = 50. What is the distance traveled between ¢t = 1 and
t=4?

One way the distance traveled can be found is by the antiderivative
method illustrated in Section 9 of Chapter 5. Since the speed is always
positive in this example, the distance traveled is just the distance between
the motorcycle’s initial and final positions. The position function F is an
antiderivative of the speed function f, so

F(t) =50t + C,
where C is some constant. The distance traveled is then
F(4) — F(1) =200+ C — (50 + C)
= 150 kilometers.

F(4) = position
atr=4

F(1) = position

150 at time ¢

F(1) = position
atr=1

Common sense reveals a simpler way to do this problem, however, for
the speed is constant at 50 km/hr. Traveling at 50 km/hr for 3 hours, the
motorcycle covers a distance of

50 - 3 = 150 kilometers.

The product 50 - 3 has a striking significance if we look at the graph of the
speed function f, which is simply a horizontal line. One cannot help but
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notice that the distance traveled between times t = 1 and t = 4 is numerically
equal to the area beneath the curve f, betweent = 1 and t = 4:

? LIl /0=
;eills 50
T |
! 4

Area beneath f, from t = 1 to t = 4, is 150 = F(4) — F(1),
where F is an antiderivative of f. Could it be that the area beneath any

curve is so simply related to an antiderivative? U

ExamPLE 2. Suppose the speed is given by f(t) = 2t. What is the distance
traveled between t = 1 and t = 4?

An antiderivative F is given by F(t) = t* + C. Since the speed 2t is always
positive between t = 1 and ¢t = 4, the distance traveled is

F(4) - F(1)=16+ C — (1 + C) = 15 units.

Let us check to see if this is equal to the area beneath the curve f. Since
the graph of f(t) = 2t is simply a line of slope 2, the area in questlon looks

like this:
4,8) ,’/r

1,2)

w
|
e

1 4
The area is made up of a rectangle of area 3 - 2 = 6, surmounted by a right
triangle of area £(3)(6) = 9. The area beneath the curve f is then
6+9 =15 O

The two methods agree once again! The area beneath the graph of the
positive function f again turns out to be the same number as that calculated
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by the antiderivative method, i.e.,
F(4) — F(1). (D

We shall see a lot of such expressions as (1), and it will be convenient to have
an abbreviation for them. The notation F| or [F(t)]} is defined to do this:

Fs = [F()]t = F(b) — F(a).
For example,
50t|$ = 50(4) — 50(1) = 150,

[(*]t=4>-12=15,
[£*—2]t1=(16-8)—(1—-2)=09. 2
ExaMpLE 3. Consider the area beneath the curve given by f(f) =2t — 2,

between ¢t = 1 and ¢t = 4. Sketch this area and see if it is equal to that calcu-
lated by the antiderivative method.

/(4, 6)

fy=2t—-2

(1,0)

/1 4

The area is easily seen to be a right triangle of base 3 and height 6, having
an area of

1

53)6) =9,
which agrees with the number calculated by the antiderivative method in
equation (2) preceding the example. d
EXERCISES

(Remember that the phrase “beneath the curve” means “below the curve
and above the horizontal axis”.

1.1. Sketch the graphs of each of the following linear functions f and find the area
beneath f, betweent = 1 and t = 4, by splitting the area into a rectangle surmounted
by a triangle.

(@) f(t)=10— 2t
(b) () =1t
(c) f(t)=4t-3.
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1.2. For each of the three linear functions of exercise 1.1, apply the antiderivative
method. That is, find an antiderivative F and calculate the expression (1). Answer:
(b) 3%|1 = 3(16) — (1) = 2.

1.3. Apply the method of antiderivatives to each of the following.
(@ f(y=4t+2,fromt=2tot=>5.
() f(ty=4t+ 2, fromt=1tot=4.
() f)=t,fromt=0tot=1.
d f&)=5—tfromt=0tot=2.
Answer: (a) [2¢% + 2t]5 = 60 — 12 = 48.

1.4. The answer to each of the four parts of exercise 1.3 ought to be equal to a certain
area. In each case, sketch the area. Answer: (a) The area of 48 is that lying beneath
the curve f(t) =4t + 2,2 <t < 5.

(5,22)

2,10)

2 5

1.5. Apply the method of antiderivatives to each of the following.
(@) f()=1/t*, fromt=1tot = 4.
(b) f(t1)=1/t®, fromt=2tot = 6.
(© fiy=1t*fromt=0tot=1.
d f)=t2—4t+ 5, fromt=1tot =4
Answer:(@)[-t]} = - - (-1 =3

§2. Areas Bounded by Curves

Consider the area beneath the quadratic curve given by
f)y=1t2—4t+5, I<t<4

’b 4,5)

(1,2)
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An antiderivative F of f is given by
1 L
F@t) = §t3 —2t% + 5t.

In view of the way things have turned out up to now, one might guess that
this area is equal to

1 4 64 1
B3 =22 45t =(——=324+20)—-(=—-2+5
[3 i ]1 <3 2 O> <3 " >

= 6.

The answer of 6 square units is surely easy to calculate by the antideriva-
tive method. But how can we be sure that this method gives the correct
area? We must first have a clear definition of area.

The importance of the role of definitions (in any subject, but particularly
in mathematics) is not often noticed. At first we generally have only an
intuitive conception of some notion that seems of interest. However, we
can deal with intuitive notions, like tangent line and area, only in a super-
ficial way until we assign these notions a precise significance, showing how
they are related to ideas with which we are quite at home. Even more impor-
tant (in any subject) is the choice of what terms to define, for that choice
will determine one’s language and consequently will ease—or hinder—one’s
way. When Fermat chose to speak in terms of the intuitive notion of a limit,
he rendered invaluable service to all who would enter mathematics.

Fermat gave a definition that clarified the idea of a tangent line and
enabled us to travel in this book as far as we have. To travel much further
with security, we must seek clarification of the notion of area. What does
it mean to assert that the area pictured above is 6 square units? The figure
is bounded by a curve on one side! Is it nonsense to speak of the “area”
inside a curved figure?

This question was profoundly considered long ago by Archimedes,
who became the master of a method introduced still earlier by Eudoxus.
Archimedes, of course, had no notion of antiderivatives, but he could calcu-
late areas (and volumes!) enclosed by curved figures. He used the method
of Eudoxus, coupled with his own awesome technique.

The exercises below may suggest the essence of Eudoxus’ method, but
the discussion in depth of this method is postponed until Section 5. There
we shall again seek out Eudoxus and Archimedes, who knew what they
were talking about.

EXERCISES
2.1. Review problems 8 through 16 in the problem set at the end of Chapter 2.

2.2. Consider the two “stairstep” figures superimposed on the curve f(f) = t* — 4t + 5,
I1<r<4.
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 (4,5)

@n

(1,2) 9 L

1 2 3 4

Use them to convince yourself that the area beneath the curve exceeds 4 square
units but is less than 9 square units.

2.3. What can you deduce by considering twice as many steps?

325+

2k
1.25
1

TT

0 1 15 2 253 35 4

Answer: The area beneath the curve exceeds 4.875 square units but is less than
7.375 square units.

2.4. By putting in a few more steps, convince yourself that the area beneath the curve
exceeds S square units but is less than 7 square units.

2.5. (A question for speculation) Make up a definition of the area enclosed by a curved
figure lying in the plane. There are several ways this might be defined. Can you
think of a way to define the area as a number that is the limit of other numbers that
approximate it ever so closely?

§3. Areas and Antiderivatives

The exercises in Section 2 point the way toward a definition of the notion of
area. The definition will be stated precisely in Section 5. Right now, let us
take for granted the fact that the notion of area dates from antiquity, and
ask a seventeenth-century question: What have areas got to do with anti-
derivatives?
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The answer to this question was given independently by Newton and
Leibniz, and runs somewhat as follows. The key step in most calculus
problems is to see the problem in terms of variables. How can we see the
problem of calculating this area, for example, as a problem involving
variables?

1 4

The answer is to consider the way the indicated area A4 varies in terms of ¢
in the picture below.

t A dA/dt

1 0
4 ?

1 t

(Do you see why we set A = 0 when ¢t = 1?) We want to find the area 4 when
t = 4. We have made a guess that the antiderivative method will probably
give it to us:

Whent = 4, then A = F(4) — F(1), (3)

where F is an antiderivative of f.

So far, equation (3) is only an educated guess. To prove that it is correct,
let us try to find a formula expressing A in terms of ¢, in order to plugin t = 4.
From the picture given above, we may expect that

dA
— = f(1). 4
=10 @

(See Section 10 of Chapter 5.) A proof of (4) will be forthcoming shortly, but
first note that (4) says that A, like F, is an antiderivative of f. By the funda-
mental principle of integral calculus, 4 and F differ by some constant C, i.e.,

A=F(t)+ C. )]
What is C? Since A = 0 when ¢ = 1, equation (5) shows
0=FQ1)+C,
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so that C = — F(1) and (5) becomes
A = F(t) — F(1). (6)
Statement (3), which we were trying to prove, is now an obvious consequence

of (6)! d

A proof of (4), on which the preceding argument hangs, will be given below,
but the style of argument just seen will be valuable later and ought to be
remembered. It consists of three steps, culminating in a proof of (3):

Step 1. By (4), we have

t A dA/dt

Step 2. By the fundamental principle, since F’' = f, we have

t I A ‘ dA4/dt

1
t

e |
Fiy+C f

Step 3. Adjusting C so that 4 = 0 when ¢t = 1 yields this information from
which (3) follows easily.

t | A I dAjdt
1 0

t | F()—FQ) §{0]
4 ?

To make things complete, we must prove (4), which shows the connection
between areas and antiderivatives. Note that here we are dealing with a
function whose graph lies above the axis, i.e., a positive function. A more
general case is treated in Section 4.

Theorem on Areas and Antiderivatives. Let f be a positive, continuous func-
tion, and let A be the area beneath the curve f fromx = ato x = t.

(Y]

y=f
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Then A is an antiderivative of f :

dA

i = f(1).

ProoF. Let t be fixed, and let y = f{(¢t). To find dA/dt, we first consider the
change 44 in area produced by a nonzero change 4t:

T

y+ 4y y+ 4y

44

\

At At

Compare the size of 44 with that of rectangles built upon the same base of
length At.

y+ 4y

¥y

a4t At

Since the areas of these rectangles are equal, respectively, to y - At and (y +
4y) - At, it follows that AA lies between y - At and (y + Ay) - At. Dividing by
At then shows that

44 .
i lies between y and y + Ay. 7

From (7) it is easy to determine the limit of AA4/4t as At — 0, for Ay must
tend to zero as well (since y is a continuous function of t). Thus 4A4/4t, being
sandwiched between y and y + 4y, must tend to y, i.e.,

=2 = Limit —':i =y = f(). 0

The proof just given may seem to rely on the picture that shows the curve
f rising as it passes through (¢, y) and also shows the change At as being
positive. If the curve is falling, or if At is negative, the pictures have to be
redrawn, but the proofhas been worded in such a way as to require no change.
If the function “wiggles” violently near (t,y) so that the curve is neither
rising nor falling there, our proof is invalid, but the theorem is still true, as
shown in a more careful demonstration better deferred to a course in analysis.
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EXERCISES.
3.1. Find the area beneath the graph of each of the following equations, from 1 to 4.
()f()—t—2t+6 - (b) fg=1%
© flx)= () f(x)= x>
(e)f()—x +x3. (f) y=32+5.
(g) y=4x>—3x2 (h)y y=m.
(i) h= —16t* + 64t. (j) g(s) = 600s — 5%

Answers: (b) 4 square units. [See exercise 1.5(a).] (d) x*/4|f = (256/4) — (1/4) =
255/4 = 632 square units. (f) 78 square units. (h) 37 square units.

3.2. In Section 10 of Chapter 5 you were asked to do some problems by guesswork.
With the aid of the theorem on areas and antiderivatives, go back and do these
problems without guessing.

3.3. With the aid of the theorem on areas and antiderivatives, find dA/dt in each of the
following situations. Specify your answer in terms of t.

(@) (b) \

f=y1-x

—1 . t 0 t

Answer: (a) Since f(x) = \/1 — x%, we have f(t) = \/1 — 2. By the theorem, d4/dr =
f(©) = /1 — t%. (Note that this problem really has nothing to do with “x”. The
answer would be the same if the function f had been expressed by writing f (5) =
1 —s%, or by writing the equation y = /1 — L? to specify the curve f. In this
problem x is a dummy variable, in the sense that the answer is unchanged if “x”
is renamed as “s” or “L".)

3.4. The algebraic rule /1 — t* has domain —1 < ¢ < 1. Find an antiderivative of this
function. Answer: Let A4 be the function of ¢ specified by the picture in exercise 3.3(a).
(This function is specified in words, not as an algebraic rule, but it is a perfectly
good function, and the theorem on areas and antiderivatives shows that it answers
this question.)

3.5. Find an antiderivative of each of the following functions, expressed as algebraic
rules.
(a) 1/t+1),0<t
(b) 1/t,1 <t
() J4—-13 —2<t<2.
(d) 12+ 1),0<t
Answers: (a) Let A be the function of ¢ specified in the picture in exercise 3.3(b).
(b) Let A be the function of ¢ specified in the picture in problem 22 at the end of
Chapter 5.
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§4. Areas between Curves

The preceding section studied how to find the area between a curve and a
certain straight line (the horizontal axis). It is just as easy to find the area
between a curve and another curve.

x=a x=b
| o (6.(6))
| il
|
(@,/(@) S
(a$ g (a) ) ‘LNL‘\L
g U 6,900

Finding the area between two curves is a problem that can be approached
by the method of Newton and Leibniz outlined in Section 3. The key is to
see the problem in terms of variables. Let 4 be the area indicated below, so
that A is a function of t.

(@ /(@) f “
a,g(a
g

If both f and g are continuous, with f lying above g, it follows that

dA

T (1) — g(). 8

The proof of (8) will not be given, because the idea of the proof is so similar
to that of the theorem of Section 3. [The only basic difference is this. In the
theorem of Section 3, 44 was seen to be roughly equal to the product
f(t) At; whereas here 44 is roughly equal to (f(t) — g(¢)) At.] From (8) it
is easy to deduce, as explained below, a more general area principle.
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General Area Principle. Let f and g be continuous curves, with f lying above g.
Then the area between f and g, from x = a to x = b, is given by

[F - G,
where F is an antiderivative of f and G is an antiderivative of g.

Proor. The proof follows exactly the pattern of the three steps described in
Section 3. Using (8), we have the following information about the dependence
of A upon t:

t | A | dA/dt

a
t !
b ?

Equation (8) says that A is an antiderivative of f — g. Since F — G is too
(why?), the fundamental principle of integral calculus says that

A=F@p-G6H)+C )

for some constant C. What is C? Because A = 0 when ¢t = g, we get from
equation (9) that

o o

J) —g(0)

0= (F(a) — G(a)) + C.
This shows that C = —(F(a) — G(a)), so that (9) becomes
A = (F(t) — G(t)) — (F(a) — G(a)) = [F — G]s.

Thus the formula A = [F — G]; expresses A in terms of t. When t = b, then 4
becomes the desired area, as pictured at the beginning of this section. From
the formula, when t = b,

A=[F-GT]. O

In applying the general area principle to areas bounded by curves, it is
essential to note which curve is on top. If the curves cross one or more times,
several applications of the area principle may be required. (See Example 8.)

ExaMpLE 4. Find the indicated area.

y=1+x*

B

(—-1,0) y=0 (1,0)
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This is the area between the curves f and g, where f(x) = 1 + x2, g(x) =0,
a= —1, b = 1. Antiderivatives of f and g are given by F(x) = x + x3/3 and
G(x) = 0. By the general area principle, the area is

[F-G]L, =|:x +x;]il

4 [(-4\ 8 .
=3~ <—3> = 3 square units. (]

ExaMPLE 5. Find the indicated area.

The curve lying on top here is given by f(x) = 0, while the bottom curve’s
equation is g(x) = x*> — 1. Here, a = 0 and b = 1. Antiderivatives are given
by F(x) =0 and G(x) = x*/4 — x. By the general area principle, the area is

equal to
4 1
)
4 0

3 .
= Square units. O

ExaMPLE 6. Find the indicated area.

0,0

Let f(x) = x, g(x) = x*, a = 0, b = 1. The area is equal to

1 .
= — square units. O
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ExaMpLE 7. Find the indicated area.
(—2,4) ¢
: y=2-x

1.1

(—2,—-8)¢
Let f(x) =2 — x, g(x) = x*,a = —2, b = 1. The area is given by

XZ x4 1
2 —_— e
[x 2 4]_;

which, when evaluated, is seen to be % square units. O

ExaMpLE 8. Consider the curve given by f(x) = x? — 1, with domain —2 <
x <4

x= =2

A,
2N

4,
Find the area between the curve f and the x-axis.

Since the curve crosses the x-axis twice, the required area splits into three
pieces, A, A,, and A3, as indicated. In each piece the area principle may be
applied, taking account as to which of the curves y=x?> —1and y=0is
on top. We get

[ x3 Tt 4
A:-——x =—,
13 T3
x3 1 K3 4
A, =10—-—=—— = - — =
o= 5] - [=-5]L-5
3 4
Ay = —— = 18.
3 3 x_1 8
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The total area between the curve f and the x-axis is then

2 .
A+ A, + Az = 205 square units. O

EXERCISES

4.1. In each of the following, find the indicated area. Hint for A,. First find 45. A, =
A, — A5 (why?).

y=8x—2x?

(—1,4) (1,4)
y=3xr+1 A,
A,

(—1,0) (1,0 0,0 4,0)

(-1,0) (2,0

0,0 4,0)

y=x*—5x*+ 6x

y= =3
/;\

(—1,-1) 0 2\d1/3

y=—x—2

Ay =

i
wioo

Partial answer: A, =% As=2. 4, =

4.2. Find the area between each of the following curves and the x-axis, as illustrated in
Example 8.
(@ flx)=4—-x%, -3<x<4
(b) fx)=x>—-5x2+6x, -2<x<4
© fx)=1-@4/x*)1<x<3.
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Answer: (c) % square units:

1
3
A0

1 2
f

(1,-3)

§5. Eudoxus’ Method and the Integral

Integrity, integer, integration, integral-—these words have the same root
meaning, that of “wholeness”. To integrate is to collect into a whole. What
we are now studying is called integral calculus, and it is high time to explain
why Leibniz chose to call it that. The reason may stem from an observation
made by Leibniz [and, before him, by Cavalieri (1598—1647) and others],
an observation that may be confirmed by the general area principle. If,
when figures in the plane are set one above the other, they are seen to be made
up of equal “vertical segments”, then the areas of the figures must be equal.
This delightful observation is generally known as Cavalieri’s principle. A
concrete illustration is below.

(1,4)
y=x+3
y=x2+3

0,3) (1,3)

y=2x+1
y=x*+x+1

0,0) x

=x—x—1
et

©,-1) (1, -1

Here, a vertical line through any point x on the horizontal axis shows a vertical
segment of length x — x? in all three figures. Cavalieri’s principle says the
three figures must have the same area. This is confirmed by the general area
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principle, which says that all three figures have an area of [(x*/2) — (x*/3)]6 = &
square units.

A rough* statement of Cavalieri’s principle is that the area of a figure
is determined by the vertical line segments that make it up. The area of a
figure would thus seem to be the result of collecting into a whole, or inte-
grating, all its vertical line segments. Leibniz toyed with the idea of regarding
any area as an integral of (infinitely many) line segments.

This idea raises serious questions. The area of each vertical line segment
is of course zero, since a line segment has no width. Yet somehow Leibniz
would have us believe that infinitely many zeros integrate into a nonzero
total area! The paradoxical nature of this idea was recognized by Leibniz,
who nevertheless persisted in believing the idea valuable, at least on an
intuitive level. Leibniz was never able to describe clearly this intuitive
perception, and it has generally been regarded with suspicion.

Nonetheless, by thinking on this intuitive level Leibnize was able to make
important discoveries. Justification for some of these discoveries often had
to wait for later mathematicians, as Leibniz sometimes had difficulty in
saying what he meant. The difficulty is understandable, for it is related to
one of the old paradoxes of Zeno (ca. 495-435 B.c.), but further discussion
of this is postponed until Chapter 10. O

The point of the preceding discussion was to explain how the word
integral entered the calculus. Leibniz wanted to refer to an area as an integral,
and out of respect for Leibniz we shall do likewise. However, we discard
his fuzzy notion about an “integral of zeros” collecting together to yield a
nonzero number. We seek a slight modification of Leibniz’s notion of an
integral to bring things mto clear focus. How can this be done?

Once again we turn for help to the notion of a limit, which has already
done more than its share to clarify the idea of a tangent to a curve and the
idea of continuity. As we shall see, the integral has a natural definition in
terms of a limit, by means of a modification of a method introduced by
Eudoxus over 2000 years ago.

Eudoxus, of course, never spoke of limits, nor did Archimedes. The Greeks
never called limits by name, but could sometimes manage to get the same
job done by using the method of elimination. (In modern terms, this
amounts to finding an area A by somehow eliminating all numbers larger
than A, together with all numbers smaller, leaving the desired number 4
as the only number left.!) Our experience in Chapter 3 suggests that the use
of limits may be preferable to the use of the principle of elimination.

Here, then, is Eudoxus’ method (in modern dress), defining the integral of
a function f on the domaina < x < b.

* And, as it stands, quite inaccurate. See problem 21 at the end of this chapter.

¥ An example of this method may be found in the appendix on Archimedes.
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(b, f(6))
(xz,f(xz)) 7
(x15 f(x1))

(x5, £3)
@@ |3 s

An

= =
Xk b
A4x Xp
Idea: As n gets larger, the area beneath the staircase with n steps approaches

the area beneath the curve f.

Consider any large positive integer n, and divide the interval a< x < b
into n subintervals, each of the same length Ax, so that

b—a
—

Ax =

(10)
Thus (see the picture) we have x, =a, x; = a + 4x, x, = a + 24x,
X3 = a + 3 4x, and so on. Finally, at the last, we have

X,=a+ndx
nb—a

b.

=a+

There is a convenient way to abbreviate the preceding two sentences, namely,
xy=a+kdx, fork=0,1,2,...,n (11)

The area 4, of the k-th rectangle (see the picture) is simply the product
of its height and width:
A= flx) Ax. (12)

Therefore, the total area S, beneath the staircase figure with n steps is the
sum A, + A, + - - - + A,. We abbreviate this by writing

S" = Z Ak
k=1
(read “S, equals the sum, as k runs from 1 to n, of 4,”). Substituting the
expression (12) for A, shows

5, = 21 f(xi) dx. 13)

Now S, is the area beneath the staircase figure with n steps, and it is not
likely to be equal to the area beneath the curve f. However, as n is taken
larger and larger, S, clearly approximates the area beneath f to great
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accuracy. The area beneath f is the limit of S, as n increases without bound,
so we define the integral of f to be this limit. That is, the integral of f from
a to b is defined as

Limit S, = Limit ) f(x)4x [by (13)], (14)
Ax—~0 k=1
since (10) shows that Ax — 0 as n increases without bound.
The right-hand side of (14) suggests that the integral of f from a to b
might be denoted by

J7 1 ax, (15

since this is the symbol that results from replacing the Greek 4 by the
letter d, the Greek X by the letter j (a seventeenth-century S) and replacing
the discrete points x, by the continuous variable x, which runs from a to b.

Definition. Let f be a function with domain a < x < b. The integral of / from
a to b is denoted by

Lb f(x)dx ( or, for short, by L ’ f >

and is defined to be the number calculated by Eudoxus’ method:

fa ® f(x)dx = Limit z f(x,) Ax = Limit$,,,

4x—0 k=1
where S, is defined by equation (13).

The idea of Eudoxus’ method is not unlike the idea behind Fermat’s
method. The “right answer” for the integral jﬂ f is the limit of “wrong
answers” S, that come quite close to the integral when n is quite large. In
integral calculus Eudoxus’ method assumes a role of importance parallel
to the role played by Fermat’s method in differential calculus. It defines
the basic notion to be studied.

Just as we have found shortcuts to Fermat’s method, so we can find
shortcuts to the method of Eudoxus. We can sometimes guess the value of
an integral by interpreting the integral as an area. For instance, from exercise
3.1(d) we may expect that

: 3
f * fx)dx = 637, where f(x) = x’,
or, more briefly,

4 4 _ 3
flx dx—632.
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If the variable is called ¢ instead of x, we modify our notation accordingly.
From exercise 1.1, without using Eudoxus’ method, we expect to have

4 4 15 4
fl (10 — 20)dt = 15, L tdt ==, fl (4¢ — 3)dt = 21.

These examples should suggest that integrals, defined by Eudoxus’
method, can be calculated by the method of antiderivatives. This is true,
and it is essentially the content of the fuhdamental theorem. Before the
fundamental theorem can be appreciated, however, we must learn to be at
home with

(a) interpreting integrals as areas (being careful, because an integral is not
always an area).
(b) calculating integrals by Eudoxus’ method (as a limit of sums).

The first of these should be accomplished by the following exercises. Section
6 deals with the second.

EXERCISES

5.1. In exercise 3.1, ten areas were found. Express each of these areas as integrals, and
express the answers you found in exercise 3.1 in integral notation. Answers:
(b) ﬁ‘(l/lz)dt =3.(c) ﬁ x2dx = 21.(h) j‘l‘ ndt = [‘1‘ ndx = j‘l‘ nds = 3m.

5.2. Interpret each of the following integrals as an area.
(a) [5(8x — 2x?)dx. (b) fL,(3x* + 1)dx.
(c) [5(x* = 5x% + 6x)dx. (d) 3 mde
€ (239~ 0 2,V4-1%d
(© J§v25 . (h) [0 V5 = .
Answers: (a) This integral is equal to the area 4, of exercise 4.1. (d) This integral
is equal to the area beneath the curve y = x, from ¢ = 0 to ¢ = 5. (e) This integral

is equal to the area beneath the curve y = /9 — t2, a semicircle (why?), fromt = —3
tot=3.

5.3. Evaluate each of the integrals in 5.2 by some means other than Eudoxus’ method.
Answer: (e) The area of a semicircle of radius 3 is equal to half the area of the full
circle, or 97/2. Therefore, (25 /9 — t2dt = 9n/2.

5.4. If a function f is negative, i.e,, if its graph lies below the horizontal axis, then all the
Ay’s of equation (12) are negative. Use this to explain why, when f is negative,
then {2 f(x)dx will not be an area. Hint. No area is negative.

§6. The Integral as a Limit of Sums
It takes time and patience to carry out Eudoxus’ method of calculating an

integral. Since the antiderivative method is shorter, one may ask why time
should be spent studying Eudoxus. There are several reasons.
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(a) _[Z f cannot be calculated by antiderivatives unless an antiderivative of
f is known. [ There are many functions, such as 1/x and 1/(1 + x?), whose
antiderivatives we do not yet know. ]

(b) Eudoxus’ method leads to a clear understanding of what is meant by
the area beneath a curve.

(c) Eudoxus’ method emphasizes that an integral is a limit of sums. Areas are
not the only quantities that are limits of sums. As we shall see, volumes
can also be regarded as limits of sums, and they can be expressed by
integrals. Integrals are of use in expressing other quantities as well, such
as the quantity of work required to put a satellite in orbit.

Eudoxus’ method involves the sum of n numbers, where n is a large
integer. Such a sum must be simplified before the limit can be taken in order
to find the integral. There is one such sum which, thanks to the Pythagoreans,
we know how to calculate already.

_n(n+ 1)

I+243 4 dn=—yp— (16)

(See Chapter 2, problem 2.) The formula for the sum of the squares of the
first n positive integers has also been known since antiquity:

_ n(n + 1)(2n + 1)

1+4+9+-+n? ¢

(17)

Let us take formula (17) for granted here. It is discussed in an appendix on
sums.

To deal efficiently with sums, an efficient system of notation must be
developed. The symbol

n
2
k=1

is used as an indication to sum up n numbers that are to be indexed by k.
We refer to k as the index of summation. For instance,

3
Y k=1+2+3=6,

k=1

because ) 7 ; k indicates the sum of 3 numbers, the numbers being expressed
by k, where k runs from 1 to 3. Similarly,

3
Y Sk=5-1+5-2+5-3=51+2+23). (18)
k=1

This simplifies, of course, to 5 - 6 = 30, but it is more important to note that
equation (18) shows that

3 3
Y sk=5-Y k (19)
k=1 k=1
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What is the “real reason” that the number 5 can be brought out in front of
the summation sign, as in (19)? It is simply because 5 is an expression that is
independent of the index k. It therefore occurs in each of the summands and
can be factored out in front, as seen in (18).

What has just been illustrated in the simpie example given above is most
important to remember when trying to simplify sums. Note when an expres-
sion can be brought out in front of the summation sign. We can see, for example,

that
n 1 1 n
k==]- k, 20
kgl ("2> ("2> 121 (20)

simply because the expression 1/n? is independent of the index k. In fact,
beginning with equation (20), we can carry out a complete simplification as
follows. We already know how to simplify the sum that occurs in the right-
hand side of (20). Equation (16) says

Z k= n(n + 1)‘ 1)
k=1 2
[Do you see why equation (16) says exactly this?] When this is used in (20)
we get
LS I\nn+1) n+1 1 1
Yl k== = =4 —. 22
& (n2> <n2> 2 n 2 an @)

As a first example of Eudoxus’ method, let us calculate an integral whose
value we already know by other means.

ExampLE 9. Calculate jé x dx directly from its definition by applying the
method of Eudoxus.
Here, we must apply Eudoxus’ method to the function given by f(x) = x
on the domain 0 < x < 1. Thus we have a = 0, b = 1, and
b—a _1-0

1
Ax = == [from (10)],

k
Xx=a+kdx =0+ k<1> = [from (11)],

n
k
f) = x =~

n

Using these, we first find an approximation S, to the desired integral. From

(13),
n n k 1 n 1
S'l = kgl f(xk) Ax = kgl <;> <;> = kgl <,—13> k

The integral, by definition, is the limit of S, as n increases without bound.
In order to find that limit we must first simplify the expression for S,. This
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has already been carried out in (22), so we have

1 1
S,==-+—. 23
2 2n 3)
From (23), it is easy to find Limit S,, for it is obvious that, as n grows in-
creasingly larger, 1/2n — 0. Therefore,
_ . .1 1 1
fol xdx = Limit §, = L1m1t<§ + 5;) =5 O
Example 9 shows that Eudoxus’ method, like Fermat’s method, can be
carried out without ever drawing a geometric picture to describe what goes
on. A picture aids the understanding, however, so let us draw one. What
was shown in (23) is that the area S, of the staircase figure with n steps is
equal to 3 + 1/2n square units. As n gets larger (or, equivalently, as 4x — 0),
the jagged figure on the left approximates more and more the area on
the right.

(1,1) (1n

7
(n steps) V| n |
Area S, = ) f(xu)Ax=%+2—n
k=1
/ fx)=x
Area fol fx)dx =1
(0,0) (1,0) 0,0) 1.0)

The integral of Example 9 is, of course, calculated much more quickly
by simply using the formula for the area of a triangle. Or, by the antideriva-

tive method,
2

fol xdx =x7

Before doing a second example it might be well to make a small point
about summations. Here is a question that is easy to miss because it is too
simple. What is

1

1 1
o 2 2 .

3
Y1
k=1

equal to? To answer this question, remember that “Y7_,” indicates that 3
numbers are to be summed. For instance,

Ak=A1+A2+A3.

1

1w

k
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If A, = 1 (thatis, if 4, = 1, A, = 1, A; = 1), this becomes
3
Y 1=1+1+1=3,
k=1
answering our question. By the same token we see that

Yl=1l+1+1+"4+1=n (24)
k=1 g .
n summands

ExampLE 10. Calculate [{ 2x dx directly from its definition by applying the
method of Eudoxus.
We apply Eudoxus’ method to the function given by f(x) = 2x on the
domain 1 < x < 4. Thus we have a = 1, b = 4, and
b—a 4-1 3

Ax = —=—= [from (10)],

n
k
xx=a+kdx=1+ k(%) =1 +§r7 [from (11)],

6k
f(xk)=2Xk=2+_n_.
Hence,
i " 6k\ /(3
S= S fxdx= Y <2+—><—>
k=1 k=1 h n
" /6 18k
-3 (%)
"6 " 18k
= -+ R Wh 9
kgl n kgl n2 ( y )
6 & 18 &
==Y 14+ > k (why?)
=1 " k=1
_ g(n) 4 18 nn 2+ D by 21) and 24)]
—e+18" o542,
2n n
Therefore,

9
fl“ 2xdx = Limit S, = Limit<15 + H) = 15. O
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By comparison with Eudoxus’ method, antiderivatives evaluate integrals
like lightning:

[foxax=xt=16-1=15

The point of these examples, however, has nothing to do with speed of
calculation. Only an electronic computer would regard Eudoxus’ method
as speedy. The point is to emphasize that the integral is a limit of sums and
can be calculated without reference to any geometric figure and without
any knowledge whatever of derivatives or antiderivatives.

The integral > f does have a geometric interpretation, however, as the
area beneath the curve f, if f is not negative. By another stroke of good
fortune, the integral enjoys a connection with antiderivatives, to be stated
precisely in the fundamental theorem. Since such delightful connections can
be proved to be true, the most intellectual of minds might regard them as
unsurprising, being merely part of the nature of things. Some of the rest of
us, who know the meaning of serendipity, happily find it here.

EXERCISES

(Be willing to put in a little time practicing the use of summation notation. It
is quite efficient, once learned. The appendix on sums and limits may be helpful.)

6.1. Go through the following steps to calculate the integral f§(3x + 2)dx.

(a) What is 4x?

(b) Find x, in terms of k.

(c) Find f(x,)in terms of k and n, where f(x) = 3x + 2.

(d) Using formulas (21) and (24) to simplify the expression S,, show that S, =
(147/2) + (147/2n) + 14.

(e) Find the desired integral by taking the limit, as n increases without bound, of
your answer to part (d).

(f) Interpret the integral as an area and calculate it by the antiderivative method.
Do you get the same answer as in part (e)?

6.2. Just as in exercise 6.1, calculate each of the following integrals directly from its
definition by Eudoxus’ method.
(a) [5(5x + 1)dx.
(b) [3(5x + 1)dx.
(c) [3(5x + 1yax.
(d) f3(1 — 5x)dx.
Answer: (d) —28. (The integral here is not an area, since the function 1 — 5x is
negative on the domain 2 < x < 4.)

6.3. Explain why, in exercise 6.2, it is to be expected that the sum of your answers to
parts (b) and (c) is equal to the answer to part (a).

6.4. Write formula (17) in summation notation. Answer: Y 5_, k? = n(n + 1)(2n + 1)/6.

6.5. Use your answer to exercise 6.4 to help calculate [§ x* dx directly from its definition
by Eudoxus’ method. Answer: L. (See Appendix 2, Section 2.)
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§7. Some Properties of the Integral

In Section 2 we guessed that a certain area was equal to 6 square units
without knowing, at that time, what was meant by the area within a figure
bounded by a curve. We now have Eudoxus’ method of determining such
an area, and we can therefore check our guess of Section 2. Let us do that,
with an eye out for noticing some properties of the integral.
Consider, then, the function given by
f(x)=x% —4x + 5, 1<x<4

Applying the method of Eudoxus to find the area beneath f, we have
Ax = 3/n, x, = 1 + 3k/n, and
S, = Z fx)dx = > [x —4x,+ 5] 4x (25)
k= k=1
" 3k\? 3k 3
-3 ()0
= n n n

" 27k* 18k 6

- k; w2 + 7 (by collecting terms)
27 18 n

= — k2 _° 42 i
n3 K= 2 k; n kzl

T )o e

by (16), (17), and (24). (The reader is asked to fill in the missing steps in this
calculation.) Since 1/n — 0 as n gets larger, it is easy to take the limit of S,,,
which gives the area beneath f. The area beneath f is then equal to

2
Limit S, = Limitl:—7<1 + 1>(2 + 1) - 9(1 + 1) + 6]
6 n n n

=@ -9 +6

= 6 square units.

This confirms our guess, and shows that
ff (x? —4x + 5)dx = 6.

Looking back over the calculation given above, we can notice an impor-
tant property of the integral. From line (25), we see that

n

S,= Y xidx— ) 4x,dx+ ), S54x. (26)
k=1 K=1 K=1

What happens to this equation “in the limit”? As » increases without bound,
equation (26) becomes (do vou see why?)

f: (x2 —4x + S)dx = f: x2dx — f: 4xdx + ff 5dx.
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This suggests that the integral of a sum of functions is equal to the sum of their
integrals. This is true:

Sum Rule for Integrals. If the functions f and g have integrals on the domain
a< x<b,then

700+ gepax = [7 feadx + [} g dx.

a

Proor.
[2 009 + g9 dx = Limit 3 (060 + g(x) 4x

= Limit Y f(x,)4x + Limit ) g(x,)4x
k=1 k=1

- f * f(x)dx + L” g(x)dx. O

What about a rule for constant multiples? Is it true that {1 4x dx is equal
to 4 [{ xdx? Sure it is:

Constant-Multiple Rule for Integrals. If f has an integral on the domain
a < x < b, then for any constant c,

J;b ¢ f(x)dx =c Lbf(x)dx.
PrROOF. We know that

n

Y ¢ flx)dx=c Z": f(x) Ax, (27
K=1

k=1

since the constant ¢ is independent of the index of summation. Since equation
(27) holds for each n, no matter how large, we get, in the limit,

Lbc~f(x)dx=cLbf(x)dx. O

Another property of the integral is suggested by this figure.

©,5) 4,5)

0

1 ' 4
J'Ol(xz — 4x + 5)dx J'l“(x2 —4x + S)dx

Since the total shaded area is equal to [§(x* — 4x + 5)dx, we know that
fo(x? —4x + 5)dx + [1(x? — 4x + 5)dx = [§(x* — 4x + 5)dx. We are led
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to suspect that, in general, if [§ f exists, then so does [§f and [{f, and we
have the additivity property

1 4 4
fo f+f1 f:fo J
We can incorporate this into an existence theorem.

Existence Theorem for Integrals. If f is a continuous function throughout
the domain a < x < b, then the integral

1= reax

exists. Moreover, if t is between a and b, then

b t
[r=fr+fr
What does it mean to say that an integral “exists”? It means, simply,
that Limit S, exists, where S, is the approximating sum from Eudoxus’
method. The limit will exist, according to the theorem given above, if f is
continuous. But the proof of the existence theorem is better left to a course

in analysis. Let us take it for granted that f has an integral from a to b if f
is continuous on a < x < b.

EXERCISES
7.1. Fill in the missing steps in the calculation of S, that begins with equation (25).

7.2. Consider the areas 4; and A, in the figure.

4, !
g
a b

Cavalieri’s principle says that 4, = A,. Prove that this is true by showing, in order,
@ 4, =f2(f -9
b) A=/ —fag

(c) A, = A,.[Use (a), (b), and the rule for sums and constant multiples.]

7.3. Is the integral of a product equal to the product of the integrals?
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7.4. Use Eudoxus’ method to calculate
(a) [5(x* — 4x + 5)dx.
(b) jg(xz — 4x + 5)dx.

7.5. It is true that [{(x* — 4x)dx = 6 — |} 5dx. Why is this true? Hint. In this section
we have shown that 6 = [}(x? — 4x + 5)dx. Utilize the appropriate properties
of the integral.

7.6. Find these integrals quickly, by using the values of related integrals already calcu-
lated, together with appropriate properties of the integral.
(a) [$(—x*+ 4x — 5)dx. Answer: —6.
(b) [$(3x* — 12x + 15)dx.
(9 [H(rx* — 4nx + 57)dx.
(d) [$(x* — 4x)dx. Answer: —9.

7.7. Attempt to calculate [§(1/x*)dx by Eudoxus® method.

(a) Show that S, =37_, n/k?

(b) What is S, ? S,? S3? Partial answer: S, = 2.5.

() Show that S, always exceeds n. Hint. Show S, = n(1 + - - *).

(d) Does Limit S, exist? Answer: In view of part (c), S, cannot tend to a limit,
since it grows arbitrarily large as n increases.

(e) Does [§(1/x?)dx exist? Hint. By definition, the integral is equal to Limit$,,.
Use part (d).

(f) Does your answer to part (e) contradict the existence theorem for integrals?
Why not?

§8. The Fundamental Theorem

The fundamental theorem shows the connection between the two branches
of calculus, differential and integral. The connection is really between
Fermat’s method and Eudoxus’ method, of course. To prepare the way for
the fundamental theorem, let us review Fermat’s method, using the notation
of Leibniz.

tangent,
slope F'(x) ~_
F
increase Jy 4
nFol g ™ (x, F(x)

=0
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Consider a function F and a point x, and let 4x be length of a small
interval that contains x. Then, by Fermat’s method, it follows that

F(x) = Limit 22

4x—>0 X

This means, roughly speaking, that the number Ay/4x is very close to
F'(x) when 4x is very close to (but not equal to) zero. In symbols,

A
F(x) = —A—%, provided 4x = 0,

where “=” stands for “approximate equality”. It will serve our purpose to
rewrite this as

4
F'(x) — 211 ~ 0, provided 4x = 0. (28)
X

Here, x is fixed, and the expression F'(x) — (4y/Ax) varies in terms of Ax.
Let the letter o stand for this expression:

F'(x) — A_y = 0. (29)
Ax

By (28), we know something about the variable o:
o= 0, provided 4x =~ 0. (30)
From (29), upon multiplying through by Ax,
F'(x)Ax — Ay = 0 Ax,
F(x)4x = Ay + o Ax. (31)
Equation (31), in connection with the information given in (30), is the key
to the proof of the fundamental theorem. Note that (31) is, so to speak,
what one gets by beginning with Fermat’s method and “undoing it”. Roughly
speaking, (31) says that when the derivative is multiplied by Ax, a small

change in x, you get a close approximation to Ay, the corresponding change
in y. Remember that o is not 0, but rather a variable tending to 0 as 4x — 0.

The Fundamental Theorem of Calculus. If f is a continuous function with
domain a < x < b, then

J; r00dx = Fb) ~ Fla)
where F is any antiderivative of f.

Proor. (Didn’t we prove this already when we proved the area principle?
Answer: No. The integral of f is not always an area. The fundamental
theorem asserts that the antiderivative method works even when the func-
tion f is not always positive.)
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Since we know that F is an antiderivative of f, equation (31) says
f(x)dx = 4y + 04x,
where Ay is the change in F corresponding to the change 4x in x. Applying
this to the k-th subinterval in Eudoxus’ method, we have
f(x,) Ax = change in F on k-th subinterval + o, 4x.

Hence the approximating sum to the integral {5 f can be expressed as

Y. f(x,)4x = Y, change in F on k-th subinterval + )  o,4x. (32)
k=1 k=

k=1 =1

It is obvious that

changein Fon _ change in F on the
<, k-th subinterval  entire interval a < x < b

= F(b) — F(a).
Therefore, from (32),

n

S f(x)dx = Fb) — F@ + ¥ opdx,
k=1

k=1

and, taking the limit as 4x — 0, we get
L * f(x)dx = F(b) — F(a) + f "0dx [by (30)]
= F(b) — F(a). 0

The careful reader may feel that the last step in the proof given above
does not justify adequately the fact that

Limit Y o,4x = [" 0dx. (33)
4x-0 k=1 a
The careful reader is right. Although (33) is surely made plausible by (30),
it has not been justified rigorously in the above proof. Rigorous proof of
(33) is better deferred to a course in analysis.

EXERCISES

8.1. (a) Evaluate the integral {1, xdx by the antiderivative method.

(b) Evaluate {1, x dx by Eudoxus’ method. Answer: 0.

() Do your answers to (a) and (b) agree, as the fundamental theorem asserts?
(d) Can the integral in question be regarded as an area?

8.2. Prove that if the continuous curve f crosses the x-axis, then the integral [% f gives
the algebraic sum of the areas between the curve f and the axis, counting area
above as positive and below as negative. Hint. In the picture below, you want to
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show that

A, 4, A3

Prove this by giving a reason for each of the following equalities:

Lr=fio«lir=fis
=[U-9-Jlo-n+[[U-0=4-4,+4,

Evaluate each of the following integrals by using the fundamental theorem.

a) f§(1 - x%)dx. b) {3 3dx.
o) [*,3x%dx. d) 1,(n—nx?)
(€ f1°(1/x?)dx. f) j_lo(l/xz)dx.

Answers: (d) 4n/3. (€) 5. () T5.

First express each of the following areas as an integral. Then evaluate the integral,
using the fundamental theorem.

(a)
(1,3)
y=2x+1
y=x>+x+1

(0,0
(b)
(1,2) y=14+1/x
1,1 (3.9

y= l/x (3:%)
(©)

y=1+J1-x*
(-5L1 (L1

(~1LO¥, = T ¥ (1,0)

Answer:‘ (a) [5(x — x?)dx = [(x*/2) — (x3/3)]} = & square units.
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8.5. (For careful readers) What is wrong with the following “calculation™? {1, (1/x?) dx =
—1xL, = -2

8.6. Consider the integral [§ n33x* dx.
(a) Evaluate this integral, using the fundamental theorem.
(b) Draw a picture of an area that is represented by this integral. (On the following
pages, we shall see that this same integral also represents a volume.)

§9. Integrals and Volumes

Integrals, defined by Eudoxus’ method, arise naturally in many contexts
having nothing to do with area. Yet the fundamental theorem can still be
used to evaluate the integral, provided an appropriate antiderivative can
be found. This is why the fundamental theorem is of much more significance
than the area principle. Many illustrations of this may be seen in Chapter 8.

One illustration is readily at hand. Let us consider the problem of finding
volumes of solids of revolution. The only thing we need to know at the outset
is the formula for the volume of a cylinder. It is given by the product of
the area of the circular base and the height:

—r—

u—

Working carefully through an example will enable us to see a shortcut
way of working many similar examples. The key is to try to express the
volume desired as an integral. The integral can then be evaluated by the
fundamental theorem.

ExaMPLE 11. Determine the volume of a cone if its height is 7 feet and if
the radius of its base is 5 feet.

5}
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What is meant by the volume of a solid figure? This question is easily
answered by means of the notion of a limit. We can get the volume by
approximating it ever more closely and then obtaining it exactly as the limit
of our approximations. The desired volume, we shall see, will turn out to
be the limit of a sum, just as in Eudoxus’ method. That is, the desired volume
will turn out to be an integral.

Let us carry out this procedure. If we turn our given cone on its side,
we see that it could be regarded as the solid figure obtained by revolving
the indicated area 360 degrees about the horizontal axis. Such a solid figure
is called a solid of revolution. The volume of any solid of revolution is easy
to obtain by the method described below.

~

5 Our cone is the solid

_L obtained by revolving the
area beneath the line
y = 3x, between 0 and 7.

(n cylinders)

(n steps) Ay =3x
A “‘jagged cone” that = £
approximates ours is === T
obtained by revolving 0 - U
the staircase figure. X
1,5)

The kth cylinder

Ax
—
5 .
@ } TX comes from revolving } 3x,

the kth step. 0 X1 X5 X X

From the formula for the volume of a cylinder, the volume of the k-th
cylinder is clearly given by

5 )2 25
7'c<-7~xk> Ax = nEx,fo.

The jagged cone is made up of n cylinders. Its volume is the sum of the
volumes of these cylinders:
Volume of = volume of 525
=3 Yon (34)

_ =2
jagged cone ~ &, k-th cylinder ~ &, " 497 ax.
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As Ax — 0, the jagged cone approximates our given cone ever more closely.
Therefore,

Volume of given cone = Limit (volume of jagged cone)
4x—0

.S 25
= Limit ) n-—=x}4x [by (34)].
4x—0 k=1 49
This says that the volume of our given cone is équal to the limit of a sum,
i.e., to an integral. What integral is it? The domain is surely 0 < x < 7, be-
cause the points x; subdivide that domain. Clearly, then,

Lo 25 2
Limit ) n—9x,f Ax = f7 7r~5x2 dx

A4x-0 k=1 4 0 49
25 x3|7
=n——| ~ 183.26.
"3973,
The volume of a cone, with h = 7 feet and r = 5 feet, is then given by
2547
w ~ 183.26 cubic feet. O

One might conjecture that the volume of a cone of height h and radius
r is given by nr2h/3. This seems to be what the answer to Example 11 is
trying to tell us. The reader is asked to verify this conjecture in an exercise
to follow.

EXERCISES

9.1. Determine the volume of a cone of height 4 and radius r. (Just work through each
step of Example 11, but with & in place of 7 and with r in place of 5.)

9.2. Compare a cone with a cylinder of the same base and height. Using your answer to
exercise 9.1, find the ratio of the volume of the cylinder to the volume of the
inscribed cone.

Answer: The ratio is 3:1, first proved by the man himself, Eudoxus of Cnidos, as
an application of the method that now bears his name.

9.3. Suppose it is desired to cut a cone parallel to its base, in such a way that the two
resulting pieces have the same volume. Where should the cut be made?
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9.4. In Example 11, the area beneath the line y = 3x, 0 < x < 7, was revolved about the
x-axis, and the volume of the resulting solid of revolution found. Suppose instead
we revolve the area beneath the quadraticy = x%,0<x < 1.

I
[y=x
/

\
™~ A

1

Let V be the volume of the resulting solid, and let the points x, subdivide the
interval 0 < x < 1, as in Eudoxus’ method. For each of the equalities that follow,
give a reason to justify it.

V = Limit ), nxjd4x

A4x=0 p=1

51
1 X 4 . .
= fol ax*dx=n f x*dx = 7r|:~:| =3 cubic units.

0 5 Jo

§10. The Volume of a Solid of Revolution

We found the volume of a cone in Section 9 by regarding the cone as a
solid of revolution. Thus its volume could be approximated by a “jagged”
solid of revolution, then calculated exactly as an integral. Exactly the same
procedure will give us an integral formula for the volume of any solid of
revolution.

Consider the solid of revolution obtained by revolving the area beneath
a continuous curve f, with domain a < x < b.

f .
This solid is obtained /T
from this area beneath f.
a b
(% flxi))

This “jagged” solid is
gotten by revolving
Eudoxus’ staircase Xo X X,
approximation to f.
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The jagged solid is made up of n cylinders, if the staircase has n steps.
The k-th cylinder comes from revolving the k-th step:

T =t
£t I-r-"'_'_ £
+ !
Xk
\ A

Since the volume of the k-th cylinder is m(f(x,))? Ax, the volume of the
jagged solid is

kth cylinder kth step

X

n

> m(f(x))? Ax.

k=1

As Ax — 0, the jagged solid’s volume tends to

f,, ® (f(x))? dx. (35)

Formula (35) then gives the volume of the solid of revolution obtained by
revolving the area beneath the curve f, from x = a to x = b, about the x-axis.

ExXAMPLE 12. Find the volume of a sphere whose radius is 7 meters.
A sphere can be regarded as the solid of revolution obtained by revolving
a semicircle about its diameter.

X2+ y2=49

dh
N

Circle, radius 7

1N

Semicircle, radius 7

The equation

y =49 — x?, -7<x<7,
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describes a semicircle of radius 7 whose diameter lies on the x-axis. By
formula (35), the volume of a sphere of radius 7 meters is given by

f; n(J49 — x2)?dx == ff7 (49 — x?)dx

x3 7
4 -
TC‘ 9x 3 |—7

4 )
73 <§> cubic meters. O

One might conjecture that the volume of a sphere of radius r is given
by 4nr®/3. That could be what the answer to Example 12, where r = 7, is
trying to tell us. The reader is asked to verify this conjecture in an exercise
to follow.

EXERCISES

10.1. Use formula (35) to find the volumes of the solids of revolution obtained by
revolving the areas under each of the following curves.
(@ fx)=x*30<x<S5.
(b) flx)=x% -4<x<4.
€ fx)y=x+1,0<x<3.
d) f)=1+x* —-1<x<2.

Answers: (a) 6257 cubic units. (¢) 217 cubic units.

10.2. Consider the integral ﬁ(n/xz)dx. Draw a picture of
(a) afigure in the plane whose area is given by this integral.
(b) a solid of revolution whose volume is given by this integral.

10.3. Determine the volume of a sphere of radius r. (Just work through the steps of
Example 12 with r in place of 7.)

10.4. Consider a sphere in comparison with a cylinder in which the sphere is inscribed.
Using your answer to exercise 10.3, find the ratio of the volume of the cylinder to
the volume of the sphere.

= |

=

Answer: The ratio is 3:2, as first proved by Archimedes in the third century B.C.
(See the appendix on Archimedes.)
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§11. Isaac Newton

The Plague, in 1664—1665, had at least one 1ortunate consequence. Cambridge
University was forced to shut down. Newton, having just received his B.A.
degree, moved back to the English countryside where he had been born on
Christmas Day of 1642. Newton delighted in privacy. The next 2 years of
secluded life by an apple grove produced astonishing results. Newton came
into possession of ideas that would enable him to create modern physics
virtually by himself, with the help of calculus, which he also created at the
same time.

Newton not only had ideas of his own. He could seee new features hidden
in the ideas of others. Whereas Fermat had developed his method only to
find tangent lines to curves, Newton saw in this same method the means of
defining a derived function that would measure instantaneous rates of change.
Newton used this to study the physics of motion, of which he postulated
certain “universal laws”, When he put these laws together with his calculus
and with the law of gravitation (also discovered on the farm), Newton
derived the equations governing the motion of the planets about the sun.

Johannes Kepler (1571-1630) had earlier made the significant discovery
that the planeis travel in elliptical orbits, but Kepler could not explain why.
Newton knew how to explain that this was no more mysterious than the
fall of an apple from the tree. When Newton overcame his secretive nature
and finally revealed in 1687 the magnitude of his work, the effect was over-
whelming. Newton, it was said, had “explained the universe”. That was, of
course, an overstatement, whose repetition finally prompted the playful
couplet of Alexander Pope,

Nature and Nature’s laws lay hid in night;
God said, “Let Newton be!” and all was light.

Nevertheless, it is generally conceded that Newton’s Mathematical Prin-
ciples of Natural Philosophy (1687) remains the greatest single work in the
history of science. Perhaps never before or since has so much been uncovered
at a single stroke. Aided by 20 years of thought, Newton wrote it, start to
finish, in 18 months.

An aura of mystery still surrounds the man:

... Newton with his prism and silent face,
The marble index of a mind forever
Voyaging through strange seas of thought, alone.

So wrote William Wordsworth near the dawn of the nineteenth century,

upon marveling at a statue of Newton celebrating his work in optics.
Newton’s highest compliment came from his only rival, who published

(in 1684) the first paper on the calculus. There would be bitter years of
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(]

PHILOSOPHI A
NATURALIS

Principia
MATHEMATICA

Definitiones.

Def. 1.

Quantitas Materie eft menfura ejufdem orta ex illius Denfitate &
Magnitudine conjunttim.

A Er duplo denfior in duplo {patio quadruplus eft. Idem
) intellige de Nive et Pulveribus per compreflionem vel lique-
faltionem condenfatis.  Et par eft ratio corporum omnium, quz
per caufas quafcung; diverfimode condenfantur.  Medii interea,
{i quod fuerit, interftitia partiumlibere pervadentis, hic nullam ra-
tioncm habeo.  Hanc autem quantitatem fub nomine corporis vel
Maffz in {equentibus pafTim intelligo. Innotefcit ea per corporis cu-
yulq; pondus. Nam ponderi proportionalem efle reperi per expe-
rimenta pendulorum accuratiffime inftituta , uti pofthac docebi-
.

B Def.

Figure 2. The first page of Newton’s Principia (1687)
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controversy over who first discovered the calculus. But,
Taking mathematics from the beginning of the world to the time of
Newton, what he has done is much the better half.
Leibniz
Although others owned bits and pieces of the calculus, Newton was the

first to have the whole subject at his command. He rose like Archimedes
above the age in which he lived, moved by a spirit impervious to time.

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me.

Newton

The transport of calculus from the seashore to the stars: that was Newton’s
accomplishment. A dream of old Pythagoras had been realized at last.

Problem Set for Chapter 6
1. A boat travels along a straight course. At time t hours past noon, its speed is t* —
4t + 10 km/hr. How far does the boat travel between three o’clock and six o’clock?

2. Sketch the quadratic curve y = t? — 4t + 10, and find the area beneath this curve,
between t = 3 and t = 6.

3. If A is the area indicated in the figure below, find dA/dt. (Your answer should be
expressed in terms of ¢, of course.)

y=1/(x+2)

0 t

4. Find the indicated area. (In each case, split the area into two pieces by drawing an
appropriate vertical line, find the area of each piece separately, and add.)

(b)

y=4x

0,0
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5. Draw a picture of the area represented by the integral j% 4dt, and evaluate the
integral by finding the area of your picture.

6. Evaluate the integral [3./4 — t*dt, after first drawing a picture of the area it
represents.

7. Find the indicated area by using your answers to problems 5 and 6. Why is the
general area principle of no use to you here?

0,4) (2,4)

©,2)

y=.J4-1

2.0

8. Find the indicated area by splitting it into three parts, finding the area of each part,
and adding.

(,3)

9. Calculate the following integrals directly from their definition by Eudoxus’ method.
(a) ﬁ, 4x dx.
(b) [T(2x — 1)ax.
(c) [bxdx.

10. Consider the integral {2, (x* — 2x)dx.
(a) Illustrate Eudoxus’ method in calculating this integral.
(b) Ilustrate the fundamental theorem in calculating this integral.
(c) Explain why it is to be expected that your answers to parts (a) and (b) agree
with each other, yet disagree with your answer to problem 8.

11. (a) By using the appropriate rules for derivatives, and simplifying your answer,
show that

3x? 3x(4 + x3)
if F(x) = ———, then F/(x) = ——————.
F) N ) 41 + x3)?

(b) Evaluate the integral
fz 3x(4 + x3)

0 41+
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12. Find the indicated areas, by any means.

(a) y=1_x2

ORI

-1 1
13. Find the volumes of the solids of revolution obtained by revolving the areas of
problem 12 about the x-axis.

14. (a) Find an equation of the line joining (1, 2) and (4, 5).
(b) Find the volume of the frustrum of a cone obtained by revolving the indicated
area about the x-axis.

e

@.5)

(1,2)

15. Find the volume of the indicated flower pot, shaped like the frustrum of a cone.

et
—

Hint. The volume is that obtained from revolving the area beneath the line joining
(0,3) and (7,5).
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16. Find a formula (in terms of r,, r,, and h) for the volume of a frustrum of a cone
with the indicated dimensions.

f—r2

-
|

be—ri—
17. A grapefruit half, shaped like a hemisphere of radius 3 inches, is sliced in two, as
indicated.

I

e 14— 27—

(a) Find the volume of each slice.

(b) Which slice has greater volume?

{(c) Where should the slice be made in order to divide the grapefruit into pieces of
equal volume? (Your answer may be expressed as the solution to a certain cubic.)

18. Consider the integral {3 nx? dx.
(a) Draw a picture of a figure whose area is given by this integral.
(b) Draw a picture of a solid of revolution whose volume is given by this integral.

19. The equation (x2/a*) + (¥*/b®) = 1 has an ellipse as its graph. Let A be the area
inside the ellipse. Justify each of the following equalities in the calculation of A.

2.2
a=2(" [T
N b

= 25 f_a Va2 —xtdx = 25<§na ) = nab.
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20.

21.

22.

23.

24,

If the ellipse of problem 19 is revolved about the x-axis, an ellipsoid of revolution
(watermelon) results. Find the volume inside it.

The two right triangles below might be regarded as being made up of “identical
vertical segments”, if their segments are made to correspond as indicated. But it is
clear that the two triangles do not have the same area. Does this violate Cavalieri’s
principle? Why not?

s

In the problem set at the end of Chapter 2, work problem 12 by applying Cavalieri’s
principle. Hint. Go to problem 12, Chapter 2. Turn your head sideways as far as you
can. Don’t strain your neck.

Find the coordinates of the point P lying on the curve y = 4 — x? that maximizes
the area of the indicated triangle PQR. (P must liec between R and Q.)

0=(,3)

R=(-2,0)

Match each of the curves below with its derivative.

(@ ©

(b) @)

[The curve in (d) coincides with the horizontal axis, but has a hole in it.]



A Circle of Ideas

As we have seen, near the end of Chapter 5, the fundamental theorem of
calculus veils her face with a circle. In this chapter we shall see that all of
trigonometry hides behind a circle, as well. According to Plato, Dante, and
many others, the circle is the most perfect figure. It is surely rich in ideas.

Trigonometry has quite ancient origins, dating back over 3000 years to
the Egyptians and Babylonians. Literally, it means “three-angle measure-
ment”, signifying its application to triangles used in land measurement,
navigation, astronomy, and the like. Only in comparatively recent times has
it been well recognized that trigonometry might be described more properly
as the study of circles, rather than triangles.

In this chapter we shall develop the main ideas of trigonometry and apply
the methods of differential and integral calculus to trigonometric functions
(sine, cosine, tangent, etc.). We thus take a giant step forward. Up to now we
have restricted our attention almost entirely to algebraic functions.

No prior acquaintance with trigonometry is necessary in order to read
this chapter.

§1. Trigonometric Functions;
Degrees versus Radians

Let us start at the beginning, with a right triangle.

hypotenuse L
P opposite side

adjacent side

194
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Consider the angle 6, with “adjacent side” and “opposite side”, as indicated.
The sine, cosine, and tangent of 0 are defined as the following ratios:

opposite side
hypotenuse

__adjacent side opposite side

sine § = : —.
adjacent side

, cosine 6 tangent 0 =

~ hypotenuse ’

The cases when 6 is either 30, 45, or 60 degrees will quickly become familiar
to the reader. They look like this. (See exercises 1.1 and 1.2.)

‘ J# ‘ﬁ
% 2 ’
N ;
2

Ve
2

sin30°:1/2—% sin45°=£§e=§ sin60°=@:>2[—3

cos30°=\/§/2—\/§ cos45°=£§g=ﬁ 12

53 cos 60 =T=—

12 1 2/2 3/2
tan 30° = —/ tan 45° —f—/=1 tan6()°—£-/——\/§

NG V2 12

Note that, in each of these cases, the tangent is the quotient of the sine and
cosine.

Calculus deals with functions, and we see the beginning of three important
trigonometric functions from the work given above.

 SIN~, « COSy
0

0

1
Jn
V32

In the tables given above, the angle 0 is measured in degrees. When we
measure angles by degrees, we are following the practice established by the
ancient Babylonians, who decided that a circle should be divided into
360 equal parts:

360 degrees = 1 revolution. (1)
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It is worth mentioning that, from (1), we get

90 degrees = % revolution,
1 .

60 degrees = 3 revolution,
1 .

45 degrees = 3 revolution, 2
1 .

30 degrees = o revolution,

1
1d =— ion.
egree 360 revolution

Rather than measure angles in degrees, we could equally well measure
them in fractions of a revolution, as illustrated by the formulas collected in
(2). It is remarkable that degree measurement should have lasted so long.
Is it not curious that, some 3000 years ago, the Babylonians chose 360 as
the numbers of units in a circle? Why not 100, for example, instead? We
measure angles today in the same way that Nebuchadnezzar did!

Perhaps the ancient Babylonians thought (and this seems uncertain)
that a year is composed of 360 days. If so, then a circle divided into 360 parts
is a convenient way of marking the passage of days. The circle, like the
Babylonian year, repeats itself after a period of 360 units has been completed.
This simple property of a circle, that circular motion repeats itself after a
period of 1 revolution, is of surprising importance. Whenever periodic phe-
nomena appear—as in the rise and fall of a piston, the turning of a wheel,
the waves striking the seashore, sound waves hitting the ear—one might
look for a mathematical description that involves a circle, appearing in
one of its many splendid disguises. We emphasize:

Circular motion is periodic, repeating after 1 revolution. (3)

It is tempting to think that it makes no real difference how angles are
measured, whether in degrees or in revolutions, or in whatever other units
we may choose to invent. The units in terms of which we measure are purely
conventional, i.e., chosen for convenience. In calculus a new convention has
arisen, and for one reason only. It makes much more convenient the study
of the calculus of trigonometric functions. In calculus we measure angles
byradians, where, by definition,

1 revolution = 2z radians. 4)
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A little later we shall see that the advantage of radian measure over degree
measure is a simplification in the formulas for the derivatives of the trigono-
metric functions.

From (1) and (4) it follows that

360° = 1 rev. = 2= rad, (5)

and the formulas collected in (2) are augmented as follows:

1
90° = I rev. = g rad.

1

60°=6rev.=§rad.

45°—lre = —rad (6)
=3 V—4 .

30"—L = —rad
12rev. 6r

o - =T

1—360rev. 180rad.

From Section 2 onward, unless otherwise indicated it shall be understood
that angles are measured in radians. For example,

c n 1
0S— =,

3 2
because 3§ is the ratio of the adjacent side to the hypotenuse relative to an
angle of n/3 radians (60 degrees). The sine, cosine, and tangent functions,
when defined in terms of radian measure of angles, will be abbreviated by

sin, cos, and tan,
respectively. We shall rarely have need to use the “old-fashioned” functions

SIN, COS, and TAN,

defined in terms of degree measure.

(Do you see the difference between cos and COS? Whereas cos(n/3) = 3,
it is not true that COS(n/3) = 1. Instead, COS(n/3) = 1, for the cosine of §
degrees is approximately equal to 1.)

Our program will be to study the trigonometric functions and see how
they arise in many settings related to problems in calculus. We shall find their
derivatives, calculate their integrals, and use them in problems of optimiza-
tion and in problems of related rates.
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EXERCISES

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

Use the Pythagorean theorem to find the lengths a and b. Hint. First convince
yourself that a = b.

a

Use the Pythagorean theorem to find the lengths a and b. Hint. First convince
yourself that if the triangle is duplicated along the side a, as indicated, then an
equilateral triangle results. From this it is obvious what the length b is.

b
b
~
SN 60°Ib

~
a 1
~N

How miany degrees are there in an angle of 1 radian? Hint. In equation (5), divide
by 2. Answer: 1 radian is approximately 57.3 degrees.

An arc length of s units is subtended by an angle at the center of a circle of radius

1 unit.
’&c length s

What is the measure of the angle in

(a) revolutions?

(b) degrees?

(c) radians?

Answer: (a) s/2n revolutions, since 1 revolution corresponds to an arc length of 2,
the circumference of the unit circle.

What is the area of the pie-shaped sector in exercise 1.4? Hint. The area of the
entire unit circle is 7 square units. What fraction of the unit circle is taken up by
the pie-shaped sector?

An arc length of s units is subtended by an angle at the center of a circle of radius r
units. What is the measure of the angle in

(a) revolutions?

(b) degrees?

(c) radians?

Answer: (b) 180s/nr degrees.
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1.7. What is the arc length subtended by an angle of ¢ radians on a circle of radius
(a) 1 unit?
(b) r units?

1.8. Convert from degrees to radians:

(a) 15. (b) 12.

(c) 540. (d) 75.

() 6. (f) 20.
1.9. Convert from radians to degrees:

(a) m/12. (b) 3m.

(c) m/2. (d) Sm/6.

(e) m/S. (f) =/6.

1.10. What is the sine of an angle of n/6 radians? Answer: §.

1.11. Fill in the table below, where ¢t is measured in radians.

t | cost l sin t

n/6
/4
7/3

1.12. Find the coordinates of the indicated points lying on the unit circle.

R
p %
0,0) (1,0) 0,0) (1,0) 0,0) (1,0)
(a) arc length /6 (b) arc length /4 (c) arc length n/3

Answer: (b) On the unit circle an arc length of 7/4 units corresponds to an angle of
45 degrees at the center of the circle. By exercise 1.1, 0 = (ﬁ/Z, \/5/2). Note the
similarity in the answers of exercise 1.11 and 1.12.

§2. Circle Functions

Up to now we have been concerned mainly with angles t lying between 0 and
90 degrees, or 0 and n/2 radians. From now on, we shall measure angles in
radians, unless otherwise indicated. One can give a simple description of
how to find cos t and sin t, when ¢ is measured in radians. The description is
based upon the unit circle (the circle of radius 1 unit, with center at the origin).
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Beginning at the point (1,0) on the unit circle, mark off an arc length of ¢
units, traveling counterclockwise around the circle. The point on the circle
at the end of this arc must (see exercise 1.12) have coordinates given by
(cost,sint).

i (Cos?, sint)

t units of arc

1,0

An angle of t radians

The description of the functions sin and cos in terms of a circle agrees
with their description, given in Section 1, as ratios of certain sides of a right
triangle. The great advantage of describing sin and cos as “circle functions”
is that there is no longer any need to restrict the values of ¢ to lie between 0
and 7/2. For any value of t whatever, positive or negative, it makes sense to
speak of cost and of sint, defined as circle functions.* (If ¢ is negative, then
you go clockwise instead of counterclockwise in marking off the arc length.)

Let us give some examples of this. The reader will find it handy to be
familiar with the sixteen points on the unit circle below. (Actually, if you only
know the points P,, P,, and P;, you can easily figure out the coordinates of
the rest.)

©,1)

(—172, =/312) (112, =/3/2)

0.-1

The unit circle, and sixteen points that everyone should know

* Some authors say “circular” functions. The phrase “circle function” is supposed to suggest
that the function’s domain is, in essence, the circle. A function living on a circle is a circle func-
tion, just as a man living on earth is an earth man (and not an “earthen” man).
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ExawmpLE 1. Find sin(w/2).

We follow the description of the sine as a circle function, and move
counterclockwise through an arc length of n/2 units, beginning at (1,0).
We thus move a quarter of the way around the circumference, since n/2 is
one-fourth of 27, the length of the circumference, and land at P,. The point
P, then has coordinates given by (cos(n/2), sin(n/2) ). Hence,

T .=
<cos > sin 5) =P, =(0,1) (7)
From (7) we see that sin(n/2) = 1. O

ExaMPLE 2. Find cos(n/2).
It follows from (7) that cos(n/2) = 0. O

ExaMmpLE 3. Find cos(—n/3).
Beginning at (1,0) on the unit circle and moving clockwise through an
arc length of /3 puts us at the point P, . Therefore,

[/ . 1 /3
(cosk—%),mn(—g)):Pw=<2, —\/2>, (8)

and it follows that cos(—n/3) = 1. O

ExaMpLE 4. Find sin 7.
An arc length of 7 represents half the circumference. Beginning at (1,0)
and going halfway around the circle puts us at Pg, so

(cosm,sinm) = Pg =(—1,0). 9)
Therefore, sinm = 0. |
ExaMPLE 5. Find sin 3x.

Moving from (1, 0) through an arc length of 37 units takes us through one and
one-half turns of the circle, stopping at Pg. Therefore,

(cos3m,sin3n) = Py = (—1,0), (10)
and sin 37 = 0. |

Having defined the sine and cosine functions, we define the tangent
function to be their quotient.

Definition. The tangent function is denoted by tan, and defined as

sint .
tant = —, provided cost # 0.
cost
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Whenever cost =0, then tant is undefined. Thus, from Example 2,
tan(n/2) is undefined. It is obvious that the tangent function is undefined
when (and only when) the terminal point of the arc length in question is
either P, or P,.

From Example 4 and Example 5 we see that

tanm = 0 = tan 3m.

It is obvious that the tangent function takes the value 0 when (and only
when) the terminal point of the arc length in question is either P, or Py.
The tangent is positive in the first quadrant (between the points P, and P,),
negative in the second quadrant (between P, and Pg), positive in the third
(between Pg and P,,), and negative in the fourth (between P, and Py).

EXERCISES

2.1. Find each of the following, using the definition of sin and cos as circle functions.
(a) sin(—m/3). Hint. Use equation (8).
(b) cosn. Hint. Use equation (9).
{c) cos(5n/3). Hint. It is obvious (why?) that cos(57/3) = cos(— n/3). See Example 3.
(d) sin(57/3).
(e) sinO.
(f) cosO.

2.2. Use the definition tan = sin/cos to find each of the following.
(a) tan(—m/3). Answer: tan(—n/3) = (sin(—n/3) )/(cos(—7/3)) = (= /3/2)/4 = —/3,
from equation (8).
(b) tan(5n/3).
(c) tanO.
(d) tan2n.
(e) tan(3n/4). Answer: —1.
(f) tan(5m/4).
(g) tan(—mn/6).
(h) tan 1984n.

2.3. Find the tangent of the angle made by the positive x-axis and the line segment
(a) joining (0,0) and (2, 3). Answer: 3.
(b) joining (0,0) and (4, 7).
(c) joining (0,0) and (2, —1). Answer: —13.
(d) whose equation is y = bx.
(e) joining (0,0) and (0, 3). Answer: Tangent is undefined.

2.4. Draw an angle whose tangent is
(@) 3.
(b) —2.
(c) 1776.
(d) —10.
Partial answer: (b) The angle whose initial side is the positive x-axis and whose
terminal side is the line segment joining (0,0) and (1, —2) will do.
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2.5. What is the range of the tangent function? Answer: The range of tan is unrestricted
if the domain is taken to be —n/2 < t < 7/2.

2.6. Find the range of the cosine function if the domain is specified by

@@ 0<t<mp2

(b) —m/2<t<m/2.

) 0<t<m
(d) —m/6 <t<mn/3.
&) —n<t<m.
(
(

f)

g unrestrlcted

Answers: (d) If y = cost and if —n/6 <t < 7/3, then the range is <y <1.In
(e), (f), and (g) therange is —1 < y < 1.

2.7. For each of the seven domains specified in exercise 2.6, find the range of the sine
function. Answers: (d) If y = sint and if —n/6 < t < n/3, then the range is —% <
y < /3/2. In (e), (f), and (g) the range is —1 < y < 1.

2.8. In which of the four quadrants is the sine function positive? In which is the cosine
function positive?

2.9. The functions sin and cos are defined for any number whatever. What is meant in
the last footnote by the statement that the domain of sin and of cos is “in essence”
a circle?

§3. Trigonometric Identities

An identity is an equation that holds for all values of the variables involved.
Thus the equations

t+t=2t, (t+s)t—s)=t*—5% Hs+t)=rs+rt

are familiar algebraic identities.

Identities that involve the circle functions are called trigonometric identi-
ties. By virtue of the fact that (cos ¢, sin ¢) lies on the unit circle, its coordinates
x = cost and y = sin t must satisfy the circle’s equation x? + y% = 1. That is,

(cost)? + (sint)? = 1, (11)

for all values of the variable ¢. This important trigonometric identity occurs
frequently. So frequently, in fact, that one tires of forever writing the paren-
theses in such expressions as (cost)®. Instead, by long-standing tradition
one writes cos? t, thereby freeing parentheses to enclose more exotic phrases
elsewhere. Similarly,

sin ¢t is an abbreviation for (sin £)2. (12)
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Here is a list of a few trigonometric identities, beginning with (11) rewritten

using the convention (12).
cos?t + sin?t = 1.
cos(—t) = cost.
sin(—t) = —sint.
tan(—t) = —tant.
cos(t + 2m) = cos .
sin(t + 27) = sint.

tan(t + 27n) = tant.

cos(s + t) = cosscost — sinssin .

cos{s — t) = cosscost + sinssin .

cos T t int

——t|=sint.

2

si r t cost

in| = —t)=cost.
2

sin(s + t) = sinscost + cosssint.

sin(s — t) = sinscost — cosssint.

(13)
(14)
(15)
(16)
(17)
(18)
(19)

(22)

(23)

(24)
(25)

The most important of these are the cosine sum law (20) and the sine sum
law (24), along with their analogues, the cosine difference law (21) and the
sine difference law (25). It takes a little work to prove these, while formulas

(13) through (19) are easy to verify.

Formula (13) has already been proved. To see why (14) and (15) are true,

all one has to do is study the picture below.

Q, = (cost, sint)

(N
(=

= (cos(—1), sin{—1))

The unit circle. The points Q, and Q _, have the same first coordinate, hence, cos t =
cos(—t); and they have opposite second coordinates; showing that sin(—t) = —sin t
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Now that (14) and (15) have been verified, it is easy to prove (16):

tan(—1) = z?s((i?) (by definition of tan)
" —sint
=—— [by(14)and (15)]
= —tant. |

Formulas (17) through (19) can be proved at a single stroke, if one wishes,
just by putting statements (3) and (4) together with the definition of the circle

functions. But we shall verify statements (17) through (19) by a different means
later.

To prove the cosine sum law it will be helpful to know a simple fact about
the length of a chord in terms of the size of the central angle associated with it.

Formula for Chordal Lengths. On the unit circle, the length of a chord sub-
tended by a central angle of 0 radians is given by the formula

L=./2—2cos6.

(1,0)

PrOOF. It is easier to calculate the length L if first we rotate the whole figure
until one side of the central angle lies on the positive x-axis:

(cos @, sinf)

4 (1,9

Let us calculate L2, using the distance formula in the plane:
L? = (cos 0 — 1)? + (sin § — 0)?
=cos?0 —2cosf + 1 + sin26
=2 —2cosf (26)
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since cos? + sin® = 1 by (13). Taking the positive square root of both sides of
(26) yields the desired formula. O

Let us now prove the cosine sum law. For given s and ¢, let 8 = s + ¢,
and consider a chord on the unit circle subtended by 6:

{coss, sins) 5 units
of arc
L
9 (1,0)

t units of arc

(cos(—1), sin(—1))

From the distance formula,
L? = (coss — cos(—1t))? + (sin s — sin(—1))?
= (coss — cost)® + (sins + sint)®> [by (14) and (15)]
= cos?s — 2cosscost + cos?t + sin?s + 2sinssint + sin?¢

=2 —2cosscost + 2sinssinft, (27)

since sin® + cos? = 1.
On the other hand, from (26), with 0 = s + ¢,

L? =2 —2cos(s + 1). (28)

Equations (27) and (28) give two different expressions for the same
quantity L2. If we set these two expressions equal to each other the cosine
sum law (20) results. O

The sine sum law is proved in the next section.

EXERCISES
3.1. Put equations (27) and (28) together and derive the cosine sum law.

3.2. In the cosine sum law, let s = 27 and simplify the right-hand side of the resulting
equation to derive formula (17).

3.3. In the cosine sum law, let s =6 and t = 0 to prove the double-angle formula
cos 26 = cos? 0 — sin? 6.

3.4. The cosine sum law holds if we replace s and t by anything we choose. Replace
t by —tin (20), then use (14) and (15) to prove (21).

3.5. In(21), let s = /2 and derive formula (22).

3.6. Formula (22) holds if we replace t by anything we choose. Replace t by (n/2) — t
in (22), and thus derive formula (23).
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3.

3.8.

39.

3.10.

311

The formula for chordal length applies to a unit circle. Deduce from it the general
formula for a circle of radius r units.

N

(r,0)

(This is easy. Just guess the indicated length, using the fact that the big circle is
just like the small circle, but blown up by a factor of r.)

The formula for chordal lengths holds for any angle 6.

6 units of arc

(=10

—¢ (1,0)
If 0 < 6 < =, there is a simpler formula, given by
. 0
L =2sin-.
2

Prove this simpler formula from the figure here, and then deduce the half-angle

Sformula
.6 1 —cos0
sin- = [———, 0<fO<m
2 2

The half-angle formula of exercise 3.8 holds if 0 <6 < n. Plug in each of the
following numbers into the half-angle formula, and see whether it still holds.
(Remember that \/ denotes the positive root.)

(a) 0=0.
(b) 8 =n.
(c) 6 =2m.
(d) 8 =3n.
() 6 = —m.

Answer: The formula fails in (d) and (e).

Pretend the figure of exercise 3.8 is a lake of radius 1 kilometer. A girl at the point

(1,0) wishes to get to the point (— 1,0) by swimming the length L and then running

the rest of the way along the shoreline.

(a) How far must she run? Answer: n — 0 kilometers.

(b) If she can swim 3 km/hr and run 5 km/hr, how long will it take her to reach
her destination? Answer: sin40 + 4(x — 0) hours.

Sketch the graphs of the sine and cosine functions. Answer: (See Section 5.)
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§4. More Identities

Let us first prove the sine sum law (24). We begin with formula (22), replacing

tbys+t:
(s+t)>

o
ofir-)
o5

= cos(lzr— - s) cost + sin(% - s) sint  [by (21)]

=sinscost + cosssint [by (22) and (23)].
This proves (24), and (25) is easily derived from (24). |

sin(s + t) =

I
Nl:l

(SR

[\

From the identities already derived one could develop infinitely many
new ones just by making appropriate substitutions. The reader with no
previous acquaintance with trigonometry is apt to be bewildered by the
multitude of identities. In practice, however, most of the useful identities
can be seen as consequences of the sine sum law, the cosine sum law, or the
law sin® + cos? = 1. Be sure you know these three identities, at least. The
double-angle and half-angle formulas, for instance, follow easily from them.

Double- and Half-Angle Formulas. The following are trigonometric identities.

(a) cos20 = cos?6 — sin? 6.
(b) sin 260 = 2sin 6 cos 6.
(c) sin 216—(1 — cos 0)/2.
(d) cos?40 = (1 + cos 6)/2.

PrOOF. The double-angle formulas (a) and (b) follow from the cosine and
sine sum laws, respectively, by letting s =t = #. Both (c) and (d) follow
from (a), together with the identity sin? + cos? = 1, which can be rewritten as

cos?0 =1 —sin?0, (29)
or as

sin?f = 1 — cos? . (30)
When (29) is used to make a substitution in (a) we get

cos20 =1 — 2sin? 6, (31)
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which, when solved for the expression sin? 6, becomes

1 — cos26

in20 =
s 2

from which (c) follows upon replacing 6 with 6.
When (30) is used to make a substitution in (a) we get

cos26 = 2cos?6 — 1.
Solving (33) for the expression cos? 8 yields

1 + cos26

2
9 =
cos 5 ,

from which (d) follows upon replacing 6 with 46.

209

(32)

(33)

The reader will have observed that in the course of proving the double- and
half-angle formulas we have derived six additional trigonometric identities
(29) through (34) as well. Occasionally these come in handy, particularly (32)
and (34), but it is better to be able to derive them quickly than to trust them
to memory. They can be deduced in a couple of lines by anyone who knows
the sine and cosine sum laws. The product formulas can also be deduced

quickly.

Product Formulas. The following are identities.

(a) cosscost = (cos(s — t) + cos(s + t}).

(b) sinssint = L(cos(s — t) — cos(s + ).
(c) sinscost = i(sin(s — t) + sin(s + 1)).

Proor. The product formulas (a) and (b) each come from putting together

the cosine difference law and the cosine sum law:

cos(s — t) = cosscost + sinssin t.

cos(s + t) = cosscost — sinssin t.

Adding together the respective sides of these identities yields

cos(s — t) + cos(s + t) = 2cosscost,

from which (a) follows upon dividing by 2.
If we subtract instead of add, we get

cos(s — t) — cos(s + t) = 2sin ssin ¢,

from which (b) follows upon dividing by 2.
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The product formula (c) results from playing off the sine sum law against
the sine difference law in the same spirit. The verification of (c) is left to the
reader. O

With the aid of the identities at our disposal we can extend our knowledge
of the circle far beyond the sixteen points that everybody knows. These
sixteen points come, basically, from knowing about right triangles contain-
ing angles of #/6, 7/4, and n/3 radians (30, 45, and 60 degrees). We can use that
knowledge to learn about some other angles.

ExampLE 6. Find the cosine of 15°, or 7/12 radians, by noting that this angle
is the difference of two angles we already know about.

The point is that 15 = 60 — 45, or n/12 = /3 — ©/4. We can thus employ
the cosine difference law:

COSl—COS E—E
12 3 4

n n+ .M, T
= COS—COS— + sinsin—
34 3 4

- 1<£) N £<£>

2\ 2 2\ 2
2
= %(1 +4/3)
=096593...,
from a table of square roots. O

ExampLE 7. Find the cosine of 15°, or 7/12 radians, by noting that the angle
is half of an angle we already know about.
From the half-angle formula (d) given above,

2T 1 + cos(n/6)

CcOS 12 b
C1+G/32) 2+.3
B 2 T4

Since we know that cos /12 is positive (the cosine being positive in the
first quadrant), we take the positive square root of both sides to get

1
coslfz-zi,/2+\/§=o.96593.... O

ExampLE 8. Find the sine of 75°, or 57/12 radians.
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Since 75 = 45 + 30, or 5n/12 = (n/4) + (n/6), this is a job for the sine
sum law.

sinsn—s' n+7r'
2" "™a27s

. T T T, T
= SIn—COS— + CoS—sIn —

4 6 4 6
NIRRT
4040
:{%(ﬁ +1)=096593.... O

How could this example have been done more quickly? Hint. Put formula
(23) together with Example 6.

EXERCISES

4.1.
4.2.

4.3.
44.
4.5.
4.6.

4.7.

438.

49.

Using the sine sum law (24), deduce the sine difference law (25).

The proof of the product formula (c) was left to the reader, with a hint as to how
it might be done. Do it.

Find the sine of 7/12 radians by using the method of Example 6.
Find the sine of #/12 radians by using the method of Example 7.
Find sin(7x/12) by any method.

The identity (18) has already been proved. Give a different proof by using the
sine sum law. Then use (17) and (18) to deduce identity (19).

Derive the tangent sum law:

tan(s + 1) tans + tant
an(s =
1 —tanstant

Hint. Since tan = sin/cos, we know that

sin(s + ¢
tan(s +¢) = (—f)
cos(s + t)
Use the sine sum law in the numerator and use the cosine sum law in the denomi-
nator. Then divide everything in sight by the product cos scost.

Using the tangent sum law of exercise 4.8, together with the identity (16), derive a
tangent difference law. Answer: tan(s — t) = (tans — tant)/(1 + tanstant).

(a) Prove a double-angle formula for the tangent.

(b) Prove a half-angle formula for the tangent.

Answer: (b) From the half-angle formulas (c) and (d) we get, by dividing, the
tangent half-angle formula tan? 16 = (1 — cos 8)/(1 + cos ).
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4.10. In the next section we shall need to use the fact that, in the diagram below, the
arc length P'Q’ is less than the length of the line segment P'Q. Prove this.

Here, 0 is an angle between 0 and /2 radians

Suggestion. Let 0 be the measure, in radians, of the central angle P'OQ’, and justify
each of the following steps..

(1) Area of sector P'OQ’ < area of triangle P'OQ.

(2) (8/2n)(nr?) < 4r (length P'Q).

(3) Or < length P'Q.

(4) Arclength P'Q’ < length P'Q.

§5. The Derivative of the Sine Function

The sine and cosine functions are pictured below. By (17) and (18), the wavy
pattern on an interval of length 2x repeats itself again and again.

(nl

3 cos

(=n,—1) (m,—1)
This picture makes it plausible that the derivative of the sine function
is the cosine function. Let us make this guess:
(sin)’ = cos. (35)

The rest of this section is devoted to the proof of (35). This takes a little
more work than might be expected, because the sine function, not being
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algebraic, demands careful attention. We must go back to basics whenever
we are alone in strange seas. We go back to Fermat’s method here.
If f(x) = sin x, then (using the sine sum law) we have

flx + h) — f(x) =sin(x + h) — sinx
=sinxcosh + cosxsinh — sinx
= sinx(cosh — 1) + cos xsin h.
Applying Fermat’s method, we divide by nonzero h and take the limit to get
f'(x)= I;.ii%it sin x(%) + cos x(SIth> (36)

What is this limit? Will it be equal to cos x, in accordance with our guess
(35) above? We cannot answer until first we investigate the behavior of the
two expressions in parentheses,
cosh — 1 J sink
——— and —,
h h
to determine their limits as /1 tends to zero. In order for our guess to be
correct, the limit of the first should be 0 and the limit of the second should be 1.
Let us first investigate the expression (sinh)/h as h— 0. In the figure
below, think of & as being very close to zero.

Q = (cosh, sinh)

©,0) &
<——cosh—=P pP=(1,0)

An angle of h radians

It is clear (see exercise 4.10) that the line segment P'Q has a length smaller
than that of the arc PQ, but greater than the length of the arc P'Q’. Since
the coordinates of Q are (cos A, sin k), this means that the quantity

sin h lies between h cos h and h. (37)

Reason: The arc P'Q’, being subtended by an angle of 4 radians on a circle of
radius cos h, has length hcos ; while the line segment P'Q has length sin h,
and the arc PQ has length h. Using (37) and dividing by nonzero h, we see
that when h =~ 0,
inh

% lies between cos h and 1. (38)
The information in (38) is all we need to find the limit of (sin h)/h as h — 0,
for it is clear that cosh — cos0 = 1 (the cosine function being continuous
at the point 0). Thus (sin h)/h, being squeezed between cosh and 1, must
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also tend to 1:
.. sinh
Limit o = 1. (39)
h-=0 h
We have just finished the hard part, having found the limit of the second
term in parentheses.in (36). The limit of the first term there succumbs to the

following trick.

h  h cosh + 1
_cos’h—1
h(cosh + 1)
—sin®h
" h(cosh + 1)

_sinh —sinh
" h \cosh+1)

which, as h approaches 0, tends to

-0
Il——1]=0
<1+1> ’

by (39) and by the continuity at 0 of the sine and cosine functions. Therefore,

cosh—1 cosh— 1<cosh+ 1)

cosh—l_

Limit =0. (40)

h=0 h
We can now complete the calculation left hanging in equation (36).
From (36), if f(x) = sin x, then

f'(x) = (sin x)(0) + (cos x)(1) = cos x,
by (39) and (40). Our guess (35) is confirmed. ]

The derivation just given may seem at first to rely too much upon the
picture that shows 4 as a positive quantity. However, the statement (37) holds
if h is negative as well, as the reader is asked to demonstrate. Thus (38)
holds for any small nonzero k.

EXERCISES

5.1. Show that (37) holds if 4 is a small negative number. [In this case all three quantities
mentioned in statement (37) are negative. |

5.2. Find the limits of each of the following quantities, as h tends to zero. Hint. (b) Go
through the derivation preceding equation (40), but with h? in the denominator
instead of h.

(a) (tan h)/h.

(b) (cosh — 1)/h2.

(©) ((cosh — 1)/h?)2.
Answers: (a) 1. (b) —%. (c) &.
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53.

54.

5.5.

5.6.

Find the limits of each of the following, as x tends to zero.
(a) (sin 2x)/x.
(b) (cos2x — 1)/x.
(c) (cos2x — 1)/x2.
Answer: (a) (sin 2x)/x = 2(sin 2x)/2x = 2(sin h)/h if we let h = 2x. Since h — 0 as
x — 0, we have
Limit %%* _ Limit 2‘°“th —21)=2

x-0 X h=0

Use the chain rule to find the derivatives of the functions given by each of the
following rules.

(a) sin2x. (b) sin7x.
(¢) sin((m/2) — 1) (d) sin(1 + £2).
(€) sin(/x). (f) sin 36.

(g) sin®6. (h) sin(6?).
Hint. (c). See Example 10 in the next section. Answers: (a) 2 cos 2x. (d) 2t cos(1 + t2).
(g) 2sin @ cos 6. (h) 26 cos(6?).

Find the derivative of the cosine function in two ways:

(a) using the identity cost = sin((n/2) — t), together with your answer to exercise
5.4(c).

(b) beginning with the identity sin® + cos® = 1, using the rule for squares to write

2(sin)(sin)’ + 2(cos)(cos) =0,
and continuing from here.

The secant is defined as the reciprocal of the cosine, i.e., sect = 1/cost, whenever
cost # 0. Prove the important identity

sec’t =1 + tan?t.

Hint. In identity (13), divide everything by cos?t.

§6. More Derivatives of Trigonometric Functions

To find the derivative of the cosine function, let f(x) = cosx and use the
cosine sum law to simplify the difference quotient:

flx+h) — f(x) _cos(x + h) — cos x

h h

cosxcosh —sinxsinh — cos x

h

= COS X —COSh_l —sinx -sﬂ
= 7 W)
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Taking the limit of the difference quotient as k tends to 0, we get
f'(x) = (cos x)(0) — (sinx)(1) [by (39) and (40)]
= —sinx.

Thus, the derivative of the cosine function is the negative of the sine function.

g

The derivative of the tangent function can be found by using the quotient
rule. Since tan = sin/cos,

(tan) = <%>l

(cos)(sin)’ — (sin)(cos)’
(cos)?

(cos)(cos) — (sin)(— sin)
(cos)?

= —1—2 [by (13)].

(cos) ,
The derivative of the tangent function is thus the square of the reciprocal
of the cosine function. In trigonometry the reciprocal of the cosine is called
the secant, i.e.,

1
cosx’

S€C X =

Thus the derivative of the tangent can be expressed more briefly as

1) 2
(tan) = <5§> = sec”.

The derivative of the tangent is the square of the secant.

There are two more trigonometric functions which come into play less
frequently, the cosecant and the cotangent, defined as the reciprocals of the
sine and the tangent functions, respectively:

1
csCX = ——, cotx = .
sin x tan x

The derivatives of the six trigonometric functions are given below.

(sin)’ = cos (csc) = —csccot
{cos) = —sin (sec)’ = sectan
(tan) = sec? (cot) = —csc?

The formulas in the first column have been proved above. The reader is
asked to verify the formulas in the second column.

Now that we know the derivatives of the trigonometric functions we can
apply the techniques of the calculus to trigonometry.
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ExaMPLE 9. The point (%/6, 1/2) is on the curve f(x) = sin x. Write an equa-
tion of the tangent line at this point.
The slope of the tangent line is

x | Jx) | f(x)
.,y s \/3 1
1z Z=N" /6 3 32
(sin) ; cos6 5 T V3
x sin x cos X

An equation of the line through (n/6, 1/2) with slope /3/2 is given by

y—1=i%}-f) 0

2 2 6

ExampLE 10. Apply the chain rule to find dy/dt, where y = sin((n/2) — ¢).
Here we have the chain y =sinx and x = (n/2) — t. By the chain rule,

dy _dy dx

it " dxa - Cos¥E=D

Hence,
d
g__ COS X

dt

= COS E t
- 2

—sint, by (22). O

EXAMPLE 11. A particle moves along the y-axis in such a way that its position
at time t seconds is given by

y = Scost.

Find its instantaneous velocity and acceleration when t = /3.
The instantaneous velocity is given by

dy
—_ T = 5 1 t,
V== sin
and the acceleration a is given by
dy
=—= —5cost.
a=— cos

Thus, when t = n/3, the velocity is — 5ﬁ/2 units per second (the particle is
thus moving downward), and the acceleration is — 5(3) units/sec per second
(showing that the particle is accelerating downward). O

The motion described is the projection upon the y-axis of the curve
»=15cos t.
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5 <_ é) —
SAA 3’2 // \ Y= 5cost
/ \
O 5 A—

1

1 | B e a—
\

1] L \\ //

-5tV -5
ExaMmprLE 12. Find the indicated area.
b4
(59

E "

y=sint

The area is given by the integral
f " sintdt.
0

By the fundamental theorem of calculus, this is equal to
[ —cost]g,
since (—cos)’ = sin. The area is then
—cost —(—cos0)= —(=1)—(—-1)=2
square units. O
ExAMPLE 13. Find the value of 6 at which the function given by
£(6) = 3600cos 0(1 + sinf),  0<f<2,
assumes its maximum value.
The maximum value of f (see the end of Chapter 4) must occur either

at an endpoint of the domain or at a critical point in the interior of the
domain. Let us check the values of f at the endpoints first:

£(0) = 3600(1)(1) = 3600 (41)
f(%) = 3600(0)(2) = O. (42)

To find a critical point we take the derivative, using the product rule, and
simplify using trigonometric identities:
f'(6) = 3600 cos B(cos 8) — 3600sin (1 + sin 6)
= 3600(cos? ) — sin § — sin? )
= 3600(1 — sin? @ — sinf — sin? 0)
= 3600(1 — sinf — 2sin? ).
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When is the derivative f’ equal to zero? Only when
2sin?6 +sinf — 1 =0.

This is a quadratic equation, not in 6, but in the expression sin 6. The quadratic
formula says this expression is then given by

sinf = ___L@ - {1_ 1.
4 2
In the domain 0 < 0 < &/2, it is never true that sinf = — 1. Hence the only
critical point in the domain occurs when
1
o1
sin X
T
0=-—.
6

The value of f at the critical point 7/6 is

f(%) = 3600<§><%> = 4676.5 . . .. 43)

The maximum of f must occur at an endpoint or at a critical point.
Inspection of (41), (42), and (43) shows that the maximum occurs when
0 = m/6. O

EXERCISES

6.1. Verify the formulas given in this section for the derivatives of the secant, cosecant,
and cotangent functions.

6.2. The point (7/6, \/§/Z) lies on the curve y = cos x. Write an equation of the tangent
line at that point. Answer: y — (\/3/2) = —4(x — (n/6)).

6.3. In the situation described in Example 11, find the velocity and acceleration when

@) t = n/2.
b) t=m.
(©) t=Tn/a.

6.4. Find the area beneath the curve y = cost, between
(a) t=0and t=n/3.
(b) t = —m/4and t = n/6.

6.5. Find the derivatives of the following.

(a) cos(1 + t3). (b) cos*(1 + £3).
(c) t*sint. (d) /2 + cos(t?).
(e) (sinx)3/3. (f) (cosx)/x.

(g8) cos~/2 + x. (h) sin(cos x).
Answers: (b) —6t%cos(1 + £3)sin(1 + £3).

(e) sin?xcosx.(g) (—siny/2 + x)/2/2 + x.

(h) —sin x cos(cos x).
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6.6. The equation 2sin?60 + sinf — 1 = 0 was solved in Example 13 with the help
of the quadratic formula. Solve this equation by factoring the left-hand side
instead.

6.7. Find an antiderivative of each of the following expressions. Just use the trial-and-
error method until you hit upon what you are after.
(a) sin2x. ‘
(b) sinzx.
(c) cos3x.
(d) cosmx.

6.8. Guess a general formula for an antiderivative of (a) sin kx and (b) cos kx, where kisa
constant. Answers: (a) (—cos kx)/k. (b) (sin kx)/k.

6.9. Use the result of exercise 6.8 together with the product formulas obtained in
Section 4 to find antiderivatives of each of the following products.

(a) cos2xcos 5x. (b) cos?x.

(c) sin4xsinx. (d) sin?x.

(e) sin3xcosx. (f) sin(—2x)cos(—4x).
Answers: (d) (2x — sin 2x)/4. (€) ((— cos 2x)/4) — ((cos 4x)/8).

6.10. If the area pictured in Example 12 is revolved about the horizontal axis, a football-
shaped solid is generated. Find the volume of this solid of revolution. Hint. You
will need to use your answer to exercise 6.9(d) to evaluate the integral in the formula
for the volume. Answer: n2/2 cubic units.

§7. Optimization and Inverse Trigonometric
Functions

One cannot study the calculus of trigonometric functions very long without
beginning to feel the need for the inverses of these functions. (If a function
is regarded as a pair of columns of numbers, then its inverse is obtained by
interchanging the columns.) Let us look at a couple of optimization problems
here and see if we don’t feel that need.

EXAMPLE 14. A farmer has three identical pieces of rigid wooden fencing,
each 60 feet in length. These, together with a long straight fence already
standing, will enclose a garden plot.

60 60

60

What should the indicated angle 8 be in order that the area enclosed be as
large as possible?
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Let A be the enclosed area, in square feet, so that A4 is a function of 6.
What is the domain of this function? It is reasonable to consider values of
0 that lie in the interval from 0 to a right angle:

T
0< —.
_8<2

The area A is the sum of the areas of a rectangle and two identical triangles.

<+—60sinf— <+—60sin—

60cos 0

60 \¢3 60

60
A = 60(60cos ) + 2(;)(60 cos )(60sin 9)

= 3600(cos 0)(1 + sin 6).

This gives a trigonometric rule expressing 4 in terms of 6. From our work
in Example 13, we see that when 6 is n/6 radians (30 degrees), the area is
4676.5 . .. square feet, which is the maximum possible area. O

There are a couple of remarks worth making about Example 14. First,
the endpoint 7/2 is missing from the domain of the function under considera-
tion, yet is included in the domain of the function of Example 13, whose
maximum occurs when

1
inf =—. 44
sin 6 5 (44)

Obviously no harm is done by including or excluding an endpoint when the
maximum turns out to occur at an interior point of the domain.

In Example 14, if the question had been to find the value of 8 minimizing
the area, then the answer should be that there is no such 0 (unless one is
willing to allow the three pieces of fencing to be nailed on top of the fence
already standing). That is, the function of Example 14 does not attain a
minimum value, while the function of Example 13 attains its minimum
when 6 = /2.

A more important consideration to be dealt with, however, is that fre-
quently one must solve such equations as (44) in optimization problems
involving trigonometric functions. Look again at equation (44). To find 0,
one must find the arc length whose sine is 4, since measurement in radians
is essentially measurement by length of subtended arc. That is, from (44)
we get

: 1
f = the arc length whose sine is > (45)
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which we can express more briefly by writing
.1
0 = arcsin 5 (46)

Equation (46), where arcsin is read “arc sine”, is simply an abbreviation
for the longer statement (45). It turns out that minor chaos can ensue if we
are not absolutely clear about the meaning of arcsin.

Convention. The expression arcsin shall be understood to designate an arc
length lying between —n/2 and n/2 (inclusive).

Thus arcsin 3 is NOT equal to 57n/6, to —117/6, or to 137/6, even though
these are all arcs with sine of 4. There is only one number lying between
—mn/2 and n/2 whose sine is 4, and that is /6. Therefore,

arcsin= = L
2 6
and from equation (46) we get
i
0=—
6

The point just made is easy to forget. Let us illustrate the point with
a picture.

.
2 gy (3)
(1,0) (1,0) 1,0

There are (infinitely) many arc lengths having a sine of }: n/6, 57/6,
—117n/6, 131/6, etc. Only one of these, however, lies between — /2 and n/2,
and that is the one designated as arcsin 3.

The reader may surely wonder why we dwell so long on such a simple
point about the meaning of arcsin. The reason is that if this point is under-
stood, then

arcsin

is a function: if —1 < x < 1, then arcsin defines a rule that produces exactly
one number in —7/2 < y < 1/2 that corresponds to x. It is an important,
useful function that enables us to write down a convenient expression for
the solution of such an equation as (44). It behooves us to study this func-
tion and to study the analogous functions arccos and arctan (see the exercises
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below) from the point of view of calculus. After we become more familiar
with these inverse functions, we must inquire about their derivatives.
Let us look at another optimization problem first.

ExampLE 15. Suppose, in Example 14, one of the pieces of fencing is 100
feet instead of 60 feet. What angle 6 will maximize the area of the trapezoid?
It is intended that we should maximize the area 4 of

<60 sin 6+ <60 sin 0
N 60 clos 7} Y60
100

Here we have

A = 6000 cos 8 + 3600 cos Osin 6,

where the domain is 0 < 6 < /2. We could proceed just as in Example 13,
but let us take a different approach that is more flamboyant, making use
of the second derivative and of trigonometric identities.

By a double-angle formula, 2 cosfsinf = sin 26. The expression for A
can be rewritten as

A = 6000 cos 8 + 1800 sin 26,

from which we can take two derivatives quickly:

dA

w0 — 6000 sin 6 + 3600 cos 26,
d*A .
q07 = — 6000 cos 8 — 7200 sin 20.

The second derivative d*>A4/d6? is obviously negative throughout the domain
0 < 0 < ©/2. Therefore (why?), we shall find the maximum area A if we find
a critical point. A critical point satisfies the equation

dA
0= 0 —6000sin 6 + 3600(1 — 2sin? 6)

by the identity (31). This equation simplifies to
6sin*6 + 5sinf — 3 = 0.

By the quadratic formula,

sinf =—3 0404 .. ..

—51@_{—1.237....
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Since the sine function never takes a value less than — 1, the critical point
0 must satisfy

sinf = 0404 . . ., 0$9<§.

Therefore,
0 = arcsin 0.404 . . .

yields the maximum area A. O

EXERCISES

7.1. In Example 15 we found that the optimal value of 6 occurred whensin 8 = 0.404 . . . .
(a) Find cos@. Hint. sin? + cos? = 1.
(b) Draw a picture of the trapezoid that maximizes the area in Example 15, giving
all dimensions to several decimal places.
(c) What is the maximal area in Example 15?

7.2. A farmer has three pieces of rigid wooden fencing, of lengths 30 meters, 30 meters,
and 45 meters, respectively. These, together with a long straight fence already
standing, will enclose a trapezoidal area. Draw a picture of the trapezoid, giving its
dimensions, that maximizes the enclosed area.

7.3. Find the arcsin of each of the following.

(a) V32 (b) —/3/2.
() —L (d) 1.
€ -3 (f) o.
(g) sin(5/6). (h) sin(n/3).

(i) sin(3m/4).
Answers: (b) —n/3. (g) arcsin(sin(57/6) ) = arcsin$ = 7/6.

7.4. Find the range of each of the following functions, with indicated domains.
(a) f(8) =cos@ + 2sinfcosh,0 <0 < n/2.
(b) f(6) =4cos6 + 3sinfcosh,0<6<m/2.
(¢} f(6) =4cosf + 3sinh,0< 0 < /2.
Answer: (c) 3 < f(6) < 5.

7.5. The arctangent function is defined as follows: If x is any number whatever, arctan x
is the arc length y in the range — /2 < y < n/2 whose tangent is x. Find the arc-
tangent of each of the following.

(@) 0. (b) 1.

© /3. (d) —/3.

(e} — 1L (f) tan2m.
(g) tan(3m/4). (h) tan(—mn/4).

Answers: (b) n/4. (f) 0. (g) —n/4.

7.6. Evaluate each of the following.
(a) arctane|l,.
(b) arcsin x|3’.
(c) arcsinf|L;.
Answers: (a) n/2. (b) /6. (c) 7.
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7.7. Consider the function given by
2.6 1 i1

9)=Zsin.—-0+—-, 0<6<nm

f(6) 3sm2 50+5 n

(This function arose in exercise 3.10.)

(a) Find f'(6) and find f"(6).

(b) Show that f"(6) <0if0 < 6 < 7.

() Explain why it follows from part (b) that the function f cannot attain its mini-
mum value at any point 0 satisfying 0 < 6 < n.

(d) What should the girl in exercise 3.10 do, in order to reach her destination as
quickly as possible?

Partial answer: (a) f'(f) = Lcos36 — L.

7.8. The arccosine function is defined as follows: If x is a number in the domain —1 <
x < 1, then arccos x is the number y in the range 0 < y < = whose cosine is x.
(a) Why do we not specify —n/2 < y < /2, as we did in the case of the arctangent
and the arcsine?
(b) Find the arccosine of each of the following.

@ 0. (ii) 1.
(iii) /2/2. (iv) —/2/2.
(v) cos2m. (vi) sin(n/6).

Answers: (iv) 3n/4. (vi) /3.

7.9. Consider again the function f of exercise 7.7.
(a) Show that f*(8) = 0 when 0 = 2arccos?.
(b) Show thatifcos 36 = 2,and if0 < 0 < =, then sin 30 = £. Hint. sin? + cos? = 1.
(c) Show that the largest number in the range of the function f is given by

8 2 3 =z
—_ = - +-=079....
s 5arcc055+5

(d) Sketch the graph of the curve f.

§8. Inverse Functions and Their Derivatives

One way to look at a function is to regard it as a pair of columns of numbers,
the first column having no number repeated. Suppose the columns are
interchanged, so that the second column becomes the first. Then we have
the inverse relationship. If the inverse relationship is a function, then it is
called the inverse function. The inverse function is denoted f ~! if the original
function is called f.

The notation f ™7, read “f inverse”, has become traditional despite the
fact that it is not wholly satisfactory. It might be better to call the inverse
function f 7, for £~ is easily confused with 1/f, which is something entirely
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different. Thus sin~! does NOT mean 1/sin, despite the fact that sin® means
(sin)2. As we shall see below, sin~! means arcsin.

As an example, or rather a “nonexample”, consider the function f given by
f(x) =sinx, 0<x.

In this case there is no inverse function, because the inverse relationship is
not a function:

sin x ‘ x
0 0
0 T
1 /2
1 3n/2

(etc.)

The first column has a number (in fact, many numbers) repeated.
In contrast, the function f given by

. 4 o
f(x) = sin x, 25xS2,
has an inverse:
-1 —7/2
=212 | -4
0 0
V22 n/4
1 /2

The inverse relationship here is a function. There is only one value between
—n/2 and 7/2 having a given value for its sine.

The inverse relationship here should be recognized immediately as being
nothing other than the arcsine function. That is, if

f(x) =sinx, ——<x<

i
2,

ol A

then
f~Y(x) = arcsin x, —-l1<x<l.

An inverse function is obtained by interchanging the columns of the
original function. Therefore the range of the original function becomes the
domain of the inverse function. Likewise the domain of the original function
becomes the range of its inverse. The curve f~! has the sarne shape as f,
but with the axes interchanged.
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O 3

LI (t,9)
( ’ ) f=sin (_1’_;)

f ! = arcsin

Domain: —n/2<s<mn/2. Domain: —1<t¢<1.
Range: —1<t<1. Range: —n/2<s<mn/2.

It is easy to find the derivative of f ~! if one already knows the derivative
of f. After all, if one can construct tangent lines to the curve f, one ought
to be able to do the same for the curve f ~!. However, there is a slight subtilty
that arises, owing to the interchange of the axes mentioned above. Before
we find the derivative of the arcsine function it may be well to discuss
thoroughly a simpler example.

ExaMmpLE 16. Consider the function given by
f(s)=s%, O0<s.

This function has an inverse function (why?). Since the point (n,7?) is on
the curve f, it follows that (n2, 7) is on the curve f ~!. Find the slope of the
tangent line to the curve f ~! at the point (n2, 7).

Since f is the squaring function, its derivative is the doubling function.
Therefore we know the information in this table:

/'f\ ‘ slope of

| tangent

nlnz‘Zn

and we are asked to fill in properly the question mark in this table:

tangent

L/f‘l\ ‘ slope of

Z.nl ?

This, it turns out, is easy. The answer is 1/2n, as may be seen in several ways.
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First Solution. Let us get an explicit formula for f~! and then find its
derivative. For the squaring function f with the domain of all positive
numbers, the inverse function is the square root function. To see this (if it is
not already apparent) we reason as follows. Since f(s) = s the points (s, s?)
make up the curve f. Hence, the curve f ™! is made up of points of the
form (s, s), showing that

i) =s.

If we let ¢ replace s? (so that \ﬁ must replace s), this becomes

i =4t

1
SO =——
2/t
The slope of the tangent line to the curve f~! at the point (n%,x) is then
given by

By the square root rule,

L _t
2n? 2m

Second Solution. Let us look at this from a geometric point of view,
mixed with a little algebra. We know that the slope of the tangent line to
the curve f at (n, n?) is given by 2z. Therefore, an equation of the tangent
line, in x-y coordinates, is

(@)

y — 1% = 2n(x — n). (47)

Recall how the curve f~! is related to the curve f by the interchange
of coordinates: (x, y) is on f if and only if (y,x) is on f 1.

f
(7'[, n2) -1
w2t S
Tangent
line has Tangent line has
equation (47) equation (48)

Therefore, if we interchange x and y in an equation of a tangent line to
f, such as (47), should we not expect to get an equation of a tangent line
to £~ 1? That is,
x —n? =2n(y — n),
or
1
y—m=—(x—n? (48)
2n
will be a line tangent to f ~! at (n2, ). Obviously, the line with equation (48)
has slope 1/2x.
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Third Solution. A third way to do Example 16 is to use the chain rule to
find the derivative of £ ~'. We have the chain

t=f(s) and s=f"1). (49)
By the chain rule,
dids |
dsdr
SO =1,
W)= L g 50
(00 =75 176 #0 (50

Note that equation (50) gives (f ~1)(t), not in terms of ¢, but in terms of s,
where s and ¢ are related by the chain (49). Thus, in our case, equation (50)
becomes

SR =5 =5 O
In the third solution to Example 16 we have essentially proved a general
theorem on the calculus of inverse functions.

Rule for Inverse Functions. If a differentiable function f has an inverse func-
tion f ™1, then its derivative is given by formula (50), where s and t are related
by the chain (49).

Let us not take time to give a formal proof of this rule, which is somewhat
cumbersome. What it says is that if we have the information in the table here:

oI
N t m

then (assuming f ! exists and assuming m # Q) we are entjtled to the in-
formation here:

\/f_ll

]
t|s|1/m

ExaMpLE 17. Consider the function given by f(s) = s, 0 < s. Find a formula
for the derivative of f 1.
If t = f(s) = s% then f"(s) = 2s and (50) becomes
where s = /t.
That is,
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This is of course the well-known formula for the derivative of the square
root function. O

Before finding the derivative of the arcsine function, let us do one more
example in the same spirit, to find the derivative of the n-th root function.

ExamPLE 18. Consider the function given by f(s) =s", 0 <'s, where n is a
positive integer. The inverse f~! is called the n-th root function. Find its
derivative.

If t = f(s) = 5", then f'(s) = ns"~! and (50) becomes

—1v 1
f 1)(t)=F’ where t = 5"

To get this derivative in terms of t we write

1 1/n 1
S0 = H(;_"> = %(tt > = ;t‘”")‘l,

Thus the derivative of the n-th root function t!" is given by the rule
(1/n)tt/"=1 Note that when n = 2, this reduces to the result obtained in
Example 17. O

ExaMpLE 19. Consider the function given by f(s) = sins, —n/2 < s < 7/2.
The inverse f ™! is called the arcsine function. Find its derivative.
If t = f(s) = sins, then f'(s) = coss and (50) becomes

1 .
(f~ @) = oss’ where s = arcsin t.

Thus the answer could be expressed by

1

= (51)
cos(arcsin t)

(70

It turns out, however, that the expression (51) can be simplified to analgebraic
rule, simply by pondering the question, What is cos(arcsin t)?
It is, of course,
coss, where s = arcsint.

That is, cos(arcsin t) is simply

coss, wheresins =t, -

IA
W
IA

N3
NI

Now things become familiar, because

cos?s + sin?s =1,
cos?s +t2 =1,

coss = +./1 — ¢2
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But (important!) the arc s must lie between —n/2 and 7/2, where the cosine
is never negative. Therefore, the negative root should be discarded and we
have proved that

cos(arcsint) = coss = +/1 — t2

Thus equation (51) can be simplified to

(arcsin)(t) = —1—~— a (52

J1—1t?

Something has happened here that is intriguing. Who would have thought
that the derivative of a trigonometric function such as arcsin would turn
out to be an algebraic rule? Or, to look at things in reverse, who would
have thought that an antiderivative of an algebraic rule like 1//1 — t*
would not be algebraic?

EXERCISES

8.1

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

The graph of a function cannot be cut more than once by a vertical line. Suppose a
horizontal line cuts the graph of a function f in two or more places. Does f have
an inverse function f~1?

Consider the cosine function. Does it have an inverse if its domain is taken as
(@ —m/2<s<n/2?

(b) 0<s<n?

Apply the test of exercise 8.1.

Write an equation of the tangent line to the curve y = arcsin x at the point (1/2,
7/6).

Given the information that the point (1,2) is on a certain curve f, that f'(1) = 3,
and that the function f has an inverse function, find the slope of the tangent line
to the curve f ~! at (2,1). Answer: §, by equation (50).

The point (r/4, 1) is on the graph of f(s) = tans. What is the slope of the tangent
line to the curve f ~!(t) = arctant at the point (1,7/4)? Hint. This is done just like
exercise 8.4 if you can find f'(n/4).

The point (r/3,1/2) is on the graph of f(s) = coss. Find the slope of the tangent
line to the curve f~!(t) = arccos at the point (1/2,7/3).

Use the chain rule to find the derivatives of the following.

(a) arcsin Sx. (b) arcsin((x — 3)/3).
) arcsin \/: (d) arcsin /(6 — x)/x.

(e) arcsin(sin ‘c) (f) arcsin(cos X).

(g) sin(arcsin x). cos arcsin x).

Answers: (a) 5/\/1 — 25x2. cosx/\/l — sin? x = (cos x)//cos’ x(=1, —1, or

undefined, depending upon x) The answer to part (b) is, if simplified, seen to be
the negative of twice the answer to part (d). (This fact is useful in problem 18 at
the end of the chapter.)
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8.8. Evaluate the following integrals by applying the fundamental theorem of calculus.
(a) [8*(1/4/1 = %)t
(b) [¥¥E /1 - e

Answer: (b) n/2.

8.9. If f(x) = arcsin(1/x), show that
@) f(x)= —1/xJ/x> —1if1 <x.
(b) f1(x)=1/x/x* —Tifx < —1.
(c) f'(x)is undefinedif —1 < x < 1.

8.10. The expression t™", for 0 < t, where m is an integer and n a positive integer, is
defined by

tm/n — (tlln)m.

Regarding this as being given by the chain of relations composed of the n-th
root followed by the m-th power, find dy/dt, where y = t™". Answer: dy/dt =
(m/n)eemim =1,

§9. Implicit Differentiation

The derivatives of the three most important inverse trigonometric functions
are summarized here.

1
(arcsin)(t) = ———, —-l<t<l.
1—-1¢
-1
(arccos)'(t) = F, —l<t<l.
— t"’
(arctan)/(¢) = L for all ¢
Tl '

The first of these has already been proved and the second, similar to it,
is left to the reader as an exercise. Let us prove the third.
If t = f(s) = tans, then f'(s) = sec? s and (50) becomes

1
-1y _ -
(f~Hwm= oy where ¢ = tans.

Therefore (see exercise 5.6),

111
sec’s 1+ tan®s 1+t

(arctan)'(t) = |

An alternate approach to the theory of inverse functions is by the method
of implicit differentiation. Sometimes it shortens one’s work. Let us do a
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problem in related rates first by the usual method, and then by making use
of this new technique.

ExampPLE 20. A plane is flying at a constant altitude of 3000 feet and at a
constant speed of 600 feet per second. An observer on the ground measures
the angle 6 as indicated in the diagram. Find the rate of change of 0, 2 seconds
after the plane has passed directly over the observer.

3000 /

This is a related rates problem. We know the rate of change of x:

d
& _ 600,

and we know a relation between x and 0:

X
tanf = ——
A= 3000°
or

0= arctan—x—
- 3000°

This may be regarded as a chain given by = arctan u, where u = x/3000,
so that
de 1 du 1 1

dx  1+udx 1+ (x/3000)% 3000°

Two seconds after the plane passes directly overhead we have x = 1200
(why?). Plugging this value of x into the above expression yields
do 1
dx |- 1200 3480

However, it is not df/dx that is required in this example, but rather df/dt.
By the chain rule, when x = 1200, we have
dg dfdx 1

5
& " dx di 3480 %0 = o i d.
T dx dt — 3450000 = o radians per secon
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Note that the answer comes out in radians per second not in degrees per
second. Why?

Alternate solution. Look carefully at equation (53). We know that 0 is a
function of ¢t even though the variable ¢ does not appear in (53). The rule
giving 0 in terms of ¢ is hidden, or implicit, in equation (53), because x depends
upon t. In this equation, let us take the derivative, not with respect to x,
but with respect to t. This is called implicit differentiation. We get

, 240 1 dx 1
SeC 0 = 3000 di 5 o)
since dx/dt = 600.
When x = 1200, the picture looks like this:

1200

3000

showing that tan 0 = £, so

2\2 29
2 =1 t 2 :1 — = —,
sec” 0 + tan“ 6 +<5> %

Thus, when x = 1200, equation (54) becomes

2do_1
25dr S
SO
ag 5
AT rad/sec. O

Note that in the alternate solution given above we did not need to know
the formula for differentiating the arctangent function. Implicit differentia-
tion made this unnecessary.

ExXAMPLE 21. A car parked too close to the movie screen in a drive-in theater
begins to back slowly away from the screen in order to obtain a better view.
If the screen is 50 feet high, with its base 30 feet above eye level, where should
the car stop in order to maximize the angle of vision?



9. Implicit Differentiation 235

~.

AN
~.
30 \\\\t f\) E\
AS
)

We must find the value of x that maximizes 6, the angle of vision. Let
us get an explicit formula expressing the dependence of 8 upon x. Clearly,
from the diagram,

O=t—s
80
= arctan— — arctan—, 0<x
e e
Therefore,
de 1 —80 1 -30

dx 1+ 80/x)7 xX  1+30/x° x*
Simplifying and setting this equal to zero yields

80 30
x2 + (80)2  x2 + (30)2

To solve this for a critical point x, we cross-multiply and collect terms to get

(80 — 30)x? = (80)2(30) — (30)%(80) = 80(30)(30 — 30),

x2 = 80(30),
x = /2400
~ 48.99 ft.

It should be evident that the angle of vision 8 is maximal when x x~ 49
feet. This is the only critical point in the domain. The maximum must occur
here, because near the “ends” of the domain (when x is near zero or when
x is very large) the angle of vision is tending to zero.

’ 49

0
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Example 21 can also be done by implicit differentiation, beginning with
the equation
tant — tans

tanf =tan(t — §) = ————,
1 +tanttans

(55)
and then gétting the right-hand side of this equation in terms of x. The
reader is asked to carry this out in an exercise below. O

EXERCISES

9.1. By following carefully the line of reasoning developed in Example 19, but making
necessary modifications, show that (arccos)(t) = —1/4/1 — 2.

9.2. Consider the function given by y = arcsint + arccost, with domain —1 <t < 1.
(a) Find y'.
(b) Deduce from part (a) that y(t) = C for some constant C.
(¢) Find C.
(d) Deduce the trigonometric identity

7r .
arccost = i arcsin ¢, —-1<t<1.

(¢) The identity in part (d) was proved, not by using trigonometry, but by using
calculus. Can you prove the identity without using calculus?

9.3. Consider the function given by y = arctan(tan x). Note that it is undefined when
x = +n/2, +3n/2, etc.
(a) Show that dy/dx = 1, except when x = +7/2, +3n/2, etc.
(b) Use the fundamental principle of integral calculus to conclude that, for some
constants C and D,

T T
arctan(tanx) = x + C, —3 <x< 7

n 3n
arctan(tanx) = x + D, 3 <x< ER

(c) Find Cand D. Hint. Plugin x =0 and x = 7.
(d) Deduce the trigonometric identities

tan(tan x) Tex<?t
arctan(tan x) = x, ——<Xx<_.
2 2

n 3n

arctan(tanx) = x — x, E<x<7.

(e) Simplify the expression arctan(tan x), where —3n/2 < x < —7/2.
(See problem 28 at the end of the chapter.)

9.4. A plane is flying at a constant altitude of 5000 meters at a speed of 800 m/sec. An
observer on the ground measures the angle # between the plane and a vertical
line, as in Example 20. Three seconds after the plane passes directly overhead, find
the rate of change of 8 in
(a) radians per second.

(b) degrees per second.
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9.5. An observer 5000 meters from the launching pad watches a rocket in its vertical
takeoff. When the altitude of the rocket is 1000 meters, its speed is 500 m/sec. Find
the rate of change of the angle of inclination of the rocket, as observed at this
instant.

9.6. A tall statue has its base on a pedestal 10 feet above eye level. If the statue itself is
30 feet tall, where should an observer stand in order that he may enjoy the widest
possible angle of vision? Answer: Twenty feet from the pedestal.

9.7. Beginning with equation (55) and reading the suggestion that follows that equation,
give an alternate solution to Example 21 using implicit differentiation.

9.8. Evaluate each of the following integrals by using the fundamental theorem of
calculus.
(@) [5° (/1 +t?))dr.
by [L,(/1 + t3))dr.
Answer: (b) [arctant]L, = (n/4) — (—n/4) = n/2.
9.9. Use implicit differentiation to find the slope of the tangent line to the given curve
at the indicated point P.
(@) x2+y*=25P=3,-4.
(b) x2y* + y2 +2y=3x+1,P=(1,1).
(c) ysinx + arctany =0, P = (0, 0).
Hint. (b) x2(3y%y') + 2xy* + 2yy’ + 2y’ = 3. When x = y = 1, this becomes 3y’ +
2+ 2y + 2y = 3. Solve for y'.

§10. Summary

The sine and cosine functions are defined in terms of a circle. As t increases,
the point (cost, sint) periodically traces out the unit circle in a counter-
clockwise manner. The other trigonometric functions are defined in terms
of the sine and cosine, giving rise to numerous trigonometric identities.

We adopt the convention of measuring angles by radians because this
convention simplifies the rules for differentiating the trigonometric functions.
The inverse trigonometric functions, surprisingly, have derivatives that are
given by algebraic rules.

The circle is rich in ideas.

Problem Set for Chapter 7

1. In the third century B.C., Eratosthenes of Cyrene measured a famous angle (see
Chapter 2, Section 4) and found it to be approximately one-fiftieth of a revolution.
What is the measure of this angle in degrees? in radians?

2. Apply the sine, cosine, and tangent sum laws to simplify each of the following.
(a) sin(z + ).
(b) cos(t + m).
(c) tan{t + m).
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10.

11.
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. Find the limit, as h tends to zero, of each of the following.

(a) (sin2h)/h.
(b) (sinh?)/h.
(c) (sin h?)/(sin? h).
(d) (1 — cosh)/3h2.

. Write an equation of the tangent line to the curve y = tanx at the point (n/4,1).

. Find the derivative of each of the following. Do not simplify your answers.

(a) xsinx. (b) sin x cos x.

(c) sin(xcosx). (d) sinnx.

(e) sinix. (f) sec?x.

(g) secxtanx. (h) /5 + tanx.

(i) tan®x. (j) tan?mx.

(k) cos?(3x — 4). () cos(cos x).

(m) (sin x)/x. (n) (cos3x)/(x* + 1).

. Find both coordinates of an inflection point on the curve

(@) y=sinx.
(b) y =cosx.
(c) y=tanx.

. Fill in the table, and use the information to sketch the curve y = tanx, —n/2 <

x < m/2.

X y y y

—7/3
—7/6
0
/6
/3

. Use the rule found in problem 2(c), together with the curve sketched in 7, to sketch

the curve y = tanx on the domain —n < x < = (with the points —7/2 and n/2
deleted from the domain of course).

. A garden plot is to be in the shape of a trapezoid, as in Example 15. One side of the

plot will be bordered by a long fence already standing, while the other three sides
are to be 80 feet (opposite the long fence), 50 feet, and 50 feet. Make a sketch, giving
dimensions, indicating how the plot should be laid out in order to maximize the
enclosed area.

Work problem 9, assuming the three sides to be 50 feet (opposite the long fence),
80 feet, and 80 feet.

A person standing on the side of a circular lake of radius 1 kilometer wants to get to
the point directly opposite him on the other side. His motorboat can travel 4 km/hr
and he can jog 6 km/hr. Prove that by no combination of boat travel and jogging
can he get to his destination is less than half an hour.
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12. A particle moves along the y-axis in such a way that its position is given by
y=4cost + 3sint, 0<t

(a) Find its position, velocity, and acceleration when t = n/3.
(b) Find its position, velocity, and acceleration when ¢ = 3n/2
(c) Show that the particle’s velocity is zero whenever tant =

(d) Specify the range of positions y assumed by the particle.

13. Find the area, between t = 0 and ¢ = n/3, beneath each of the following curves.
(a) y=cost.
(b) y = Ssint.
(c) y=sec?t.

14. By carrying out each of the following steps, prove by Fermat’s method that (tan)’ =
sec?.
(a) Find the limit, as & — 0, of (tan h)/h.
(b) Apply the tangent sum law to the expression tan(x + h).
(c) Using the result of part (b) and combining terms with a common denominator,

show that

(1 + tan?x)tanh

tan(x + h) — tanx = .
( ) 1 —tanxtanh

(d) In the equation of part (c), divide both sides by nonzero h. Then take the limit,
using the result of part (a).

15. Consider each of the following statements and indicate whether it is true or false.
a) sin0=0.

b) SINO=0.

) sin30 =1,

) SIN30 =73

sin(n/6) = 5

arcsin(n/6) = 30.

o0

()
~—

f

-

r

(

(

(

(

(

(

(g) arcsin$ = 30.

(h) arcsin $ = 5m/6.

(i) arcsin(sin x) = x for all x.
(j) arcsin(sin(57/6)) = n/6.
(k) arctan(cos0Q) = n/4.

() cos(arctan0) = n/4.
(m) arccos(—1)= —m.

(n) arccos(—1)=m.

(o) tan(arctan6) =

(p) arctan(tan6) = 6.

(g) tan(—x)= —tanx.

(

-~

sin(arcsin x) = x for all x.

16. By writing cos 3x = cos(2x + x) and applying the cosine sum law, derive an identity
expressing a “triple-angle formula” for the cosine. Can you express your formula in
terms of cos alone, without using sin?



240 7 A Circle of Ideas

17. Take the derivative of both sides of the triple-angle formula obtained in problem 16,
then solve for the expression sin 3x, thus obtaining by calculus a triple-angle formula
for the sine function.

18. Consider the function given by

. (x . [6
flx)= arcsm< ) + 2arcsin 6
defined on the domain 0 < x < 6.
(a) Show that 7/2 is in the range of f.
(b) Show that /2 is the largest number in the range of f.
(c) Show that /2 is the smallest number in the range of f.
(d) Deduce a trigonometric identity that holds on the domain 0 < x < 6.

19. Find the indicated areas.

1 y=1/1+ x?)

V22 V312 -1 0 V3

20. An observer 5000 feet from a launching pad watches a rocket in its vertical takeoff
and measures its angle 8 of inclination as it rises.

5000

When 6 is 60 degrees, the observer finds that df/dt is 3 degrees per second.
(a) When 0 = 7/3 radians, what is d6/dt in radians per second?

(b) What is the altitude of the rocket when 6 = 7/3 radians?

(c) What is the speed of the rocket when 6 = n/3 radians?
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21.

22.

23.

24.

25.

26.
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A field-goal kicker has a problem. The ball must be kicked from a point on the
indicated line.

15—
—

20

Which point x should be chosen in order to open up the widest angle between the
goal posts?

The base of a statue is 12 feet above eye level, while the statue itself is 25 feet tall.
Where should an observer stand in order to have the best view of the statue?

Evaluate each of the following integrals. To find antiderivatives, use the technique
developed in exercises 6.8 and 6.9.

(a) [3"costat.

(© j_ sin? ¢ dt.

(e) [5?sin2xcos3xdx.
(2

&2 cos 3x cos x dx.

(b) [5sin 5tdtz.

(d) [5cos?tdt.

(f) [5sin2xsinSxdx.
(h) [%*sin2xsin 5xdx.

Evaluate the integral g L(6)d6, where L(6) = \/2 — 2cos 0. Hint. To find an anti-
derivative of L, first express L in simpler terms, using the result of exercise 3.8.

The inverse of each of the functions in the following list is also in the list. Match
each function with its inverse.

(@) The squaring function, sending x to x2, 0 < x.

(b) The reciprocal function, sending x to 1/x, x # 0.

(c) The identity function, sending x to x.

(d) The doubling function, sending x to 2x.

(e) The square root function, sending x to \/;, 0<x.

(f) The halving function, sending x to 3x.

The identity function, sending x to x, plays a special role in the theory of inverse

functions.

(a) Show that the composition of a function with its inverse is the identity function,
ie., show
(i) £~ Y(f(x)) = x if x is in the domain of f,

(i) f(f (%)) = x if x is in the domain of f ~1.

(b) The graph of the identity function is simply the straight line of slope 1 through
the origin. Show that the graph of f ~!, the graph of the identity function, and
the graph of f enjoy the following camaraderie: the curves f and f ! are each
“reflections” of the other, through the identity function’s graph.
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27. Given the following table of information about the function f, fill in the question
marks properly in the table for f 1.

VY s
x y x y

28. Each of the following expressions is of the form f ~*(f(x)):
(1) arctan(tan x).
(11) arccos(cos x).
(ii1) arcsin(sin x).
(a) Match each of them with its graph below.

(i) ) (V‘)\/\
- 7!/2 —n/2 ; 0 ;

(b) As we can see from these graphs, it is not necessarily true that f~(f(x)) = x
for all x. Does this contradict the result of problem 26(a)?
(c) Sketch the curves giving the derivatives of the functions pictured in part (a).

29. The absolute value function is sometimes useful in making certain complicated
expressions appear in a simpler form. The absolute value of a number x is denoted
by |x| and defined as

x if0<x
x|=vx*=<{ 0 ifx=0.
—x ifx<O.

a) If f(x) = |x], (x). Hint. The derivative does not exist at the point x = 0,
but if x # 0, you can find the derivative by applying the square root rule to ./x>.
(b) Show that

arccos(cosx) = |x| if —n<x<m
(c) Show that if f(x) = arcsin(sin x), then

1 €os X
X)=—0.
|cos x|

Hint. See exercise 8. 7(e)
(d) Show that f’(x) = (sin x)/|sin x| if f(x) = arccos(cos x). Specify the values of x

for which f'(x) does not exist.
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30.

31

32.

33.

34.

What is wrong with the following “argument™? If f(x) = arctan(tanx), then by
the chain rule

1 1
1 2 2
X)=———>—8ec’x = sec’x = 1.
AL 1 +tan%x sec? x

Since f'(x) = 1 for all x, it follows that f(x) = x. Therefore, arctan(tan x) = x for all x.

(a) Find dy/dx if y = sin(nx/180).

(b) Show that SIN x = sin(nx/180) and COS x = cos(nx/180), where SIN and
COS denote the sine and cosine functions, respectively, relative to degree
measure of angles.

(c) Using parts (a) and (b), prove that (SIN)(x) = (z/180) COS x.

(d) Find (COSY, in terms of SIN.

(a) Justify each of the following steps.

. 1. 3
sint + /3 cost = 2<Esmt + %cost)

. 1
= 2<cos§smt +s1n§cost)

i
=2sin{t+ = ).
n(:+3)

(b) Explain how it is obvious from part (a), without using calculus, that the range
of the function given by sinz + \[3cost is —2 <y <2 if the domain is un-
restricted.

(c) Prove, without using calculus, that the range of the function given by asint + b

cost is
—Jat+ b <y<. fa* +b*

if the domain contains an interval of length 2x.
(d) Do problem 12, part (d), without using calculus.

Use implicit differentiation to find the slope of the tangent line to each of the follow-
ing curves at the indicated point P.

(a) x* + y* =169, P = (5,12).

(b) x2 + y* =169, P = (5, —12).

(¢) y> —dxy +3x*=0,P=(1,1).

(d) sin 4y + arctan x + cos(x + y) = 1, P = (0,0).

Find the “general solution™ to the fence problem illustrated in problems 9 and 10.
Show that if the fences have lengths q, b, and a, then the angle 6 should be chosen as

—b + /b% + 84
()=arcsin< + + a)’

4a

in order to maximize the enclosed area.
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35.

36.

37.

38.

Show that, regardless of the values of a and b in problem 34, the optimal angle 6
found in problem 34 can never exceed /4 radians. Hint. Let x = b/a and regard 6
as a function of x.

Find the general solution of the angle problem illustrated in problems 21 and 22.

X

Show that if L is the length of the object in which you are interested, whose base is
a distance B from a line on which you are constrained to move, then the optimal

value of x is \/B(L + B).

(For circle lovers) Investigate (i.e., prove or disprove) the following conjecture. Given
the general situation as found in problems 9 and 10, what you should do, to optimize
the area, is to make your fence as nearly like a circle as you can. That is, if you have
fencing of lengths a, b, and g, then lay out your fence so that you can put a circle
through the four corners, with its diameter along the fence already standing:

b

N~

(For circle lovers) Investigate the following conjecture. Given the general situation
as found in problems 21 and 22, what you should do, to optimize the indicated
angle, is to find the position on the line where a circle tangent to the line cuts the
top and bottom points of the object in which you are interested.

Maximal 0

Can you prove this using only Euclidean geometry?



House of Integrals

1

Reculer pour mieux sauter! (“Draw back to leap!”) say the French, and we
shall bear in mind their good advice. Before we can leap into a higher realm,
we must step backwards, in two senses. We must consider more carefully
some fundamental principles that we have already met but still do not really
know. And we must think a little more about pulling back from a given
function to an antiderivative. Does every continuous function, for example,
have an antiderivative? We shall see.

The word transcendental has been used in mathematics for well over a
century. It means what it says, referring to something that transcends, or
rises above, whatever realm has already been attained. A transcendental
function is one whose rule of correspondence transcends the realm of ordinary
algebra. For example, the function F given by

F(x) = arctan x

is transcendental. The rule for calculating arctan x cannot be expressed in
terms of algebraic operations (sums, quotients, powers, roots, etc.) applied
to the variable x.
In contrast, the function f given by
1

S = 1 + x?

is not transcendental. The function f is an algebraic function because the
rule for f is stated in terms of quotients, sums, and squares—all familiar
algebraic operations. Almost all the functions we encountered before Chapter
7 were algebraic, as is, for example, the function given by

245
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It is curious that, as in the case of F and f given above, an antiderivative F
of an algebraic function f need not be algebraic. Does this mean that tech-
niques for finding antiderivatives will be more involved than the techniques
we already know for finding derivatives? In one sense the answer to this
question is yes, but in another sense, as we shall see, an antiderivative of any
continuous function can be found with almost ridiculous ease.

Before we can see clearly how simple it is to write down, for example, an
antiderivative of the function g given above, we must learn to feel more at
home with the integral. Calculus consists of two branches, differentiation and
integration, and so far we have placed more emphasis upon the former. It
should be remembered, however, that integration is almost exactly 2000 years
older than differentiation, Eudoxus living 2000 years before Fermat. Let us
try to do justice to the integral, to meet it in friendship, to enter its house.

§1. Fundamentals: Existence and Uniqueness

In varying degrees of depth we have discussed the following fundamental
principles:

F1. Ona connected domain, two antiderivatives of the same function differ by an
additive constant.

F2. If f is a continuous function with domain a < x < b, then the integral
of f exists. [ That is, in Eudoxus’ method when the limit is taken, the limit
will exist, producing the number to be denoted {5 f(x) dx.]

F3. The integral |? f(x)dx can be evaluated by calculating F(b) — F(a), where
F is any antiderivative of f.

These principles might be called, respectively, the uniqueness theorem, the
existence theorem, and the evaluation theorem. The uniqueness theorem F1
was made plausible in Chapter 5, and the evaluation theorem F3 was proved
in Chapter 6. The existence theorem F2 was stated in Chapter 6 without
proof. In this chapter we shall see some reasons for believing the existence
theorem, although we shall not see its complete proof.

The existence theorem F2 tends to be overshadowed by the evaluation
theorem F3, despite the fact that F3is of no use whatever unless an antideriva-
tive is known. For many purposes the existence theorem is of paramount
importance. If we forget it, we can find ourselves in pitfalls.

Pitfall. 1t is obvious, from Eudoxus’ method, that if a function is always
positive, then its integral is too:

L” f(x)dx >0 if f(x) > 0. (1)
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This must apply to the function given by f(x) = 1/x?, since squares are never
negative. By F3, since the derivative of —1/x is 1/x%, we have

—1r —1
-1=_1_<j>=_2' )

2 1eydx = —
-1 X
Statements (1) and (2) contradict each other. O

How did we let ourselves get into this pitfall? Our trouble comes from
being so enchanted with the evaluation theorem F3 that we tend to forget the
existence theorem F2. The function 1/x? is not continuous throughout the
domain —1 < x < 1, since it is not even defined at the point x = 0. If we
attempted to apply Eudoxus’ method to 1/x? on this domain, we should find
that the approximating sums S, get arbitrarily large and do not tend to a
limit. (Compare exercise 7.7 of Chapter 6.) The integral [, (1/x*)dx does not
exist, and of course the evaluation theorem F3 cannot be used to evaluate a
nonexisting number!

One reason for learning the existence theorem, then, is simply to avoid
looking silly. An even better reason for making friends with F2 will be dis-
cussed in the next section.

EXERCISES

1.1. Among the following rules, specify the ones you can recognize to be algebraic
functions.
(a) sinx.
(b) 1//1 —x%

¢) arcsin x.

d) The area of a circle of radius x.

e) The area beneath the squaring function, between 0 and x.

f) The area beneath the curve y = 1/(1 + t?), between 0 and x.

(g) The area beneath the curve y = 1/t, between 1 and x.

Answers: (b), (d), and (e) are algebraic.

(
(
(
(

1.2. Here are some conjectures. For each of them, tell whether it is true or false, and why.
(a) If a transcendental function has a derivative, its derivative must also be a
transcendental function.
(b) Ifan algebraic function has a derivative, its derivative must also be an algebraic
function.
(c}) An antiderivative of a transcendental function must be transcendental.
(d) An antiderivative of an algebraic function must be algebraic.

1.3. Every one of the following “calculations” is ridiculous. Explain why, in each case.
(@) [3(1/y/1 — x*)dx = arcsin 2.
(b) [5(1/(1 + x?))dx = arctan 1 — arctan 0 = 45.
© [2A1 = x)P)dx = 1/1 - x)|3 = -2
(d) [5sec®xdx = tanx|j =tanm — tan0 = 0.
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1.4. Of the integrals that follow, some exist and some do not. Which of these can be
proved to exist by appealing to the existence theorem F2? (You are not asked to
evaluate the integrals.)

(a) J30/1 + x))dx. (b) [2(1A1 — x))dx.

(© fLy|x|dx. @) (2% (1/(x* = x + 1)) dx.
(e) f1, arcsinxdx. ) 2% (1/x* - x — 1))dx.
(g) f5tanedr. (h) [3sin’zcos?dt.

(i) f6/1—2¢dr (j) |2 5t*sincarctan(cost)dr.

Hint. A function is continuous at a point, if it is differentiable at the point. However,
it can be continuous without being differentiable. Answers: (a), (c), (d), (e), (h), and
(j) exist by F2.

1.5. The importance of F1 lies in the fact that it makes a statement about uniqueness.
It says that the antiderivative of a given function is not unique, that is, there is more
than one antiderivative. Use F1 to prove this more positively expressed variant:

Uniqueness Theorem (A4n Alternate Statement of F1). Assume that F and G are
antiderivatives of the same function, defined on a connected domain. If , for some point
c it is true that F(c) = G(c), then F(x) = G(x) for all x in the domain.

§2. What is a Number?

Sometimes it is contended that the most novel development arising out of
calculus is a change in mankind’s conception of number. There is no doubt
that we think of numbers today in a way different from those ancient Greeks
for whom “number” meant a positive quantity that could be measured by a
ratio of integers. On the other hand some Greeks, such as Eudoxus and
Archimedes, would easily recognize the modern conception of number as
having been borrowed largely from their own work. This is another subject
better pursued in depth by a course in analysis, but we must touch upon it
lightly here.

In the beginning there were only positive whole numbers, 1, 2, 3, etc,, the
playthings of the Pythagoreans, who first saw the value of numbers to
philosophy. To increase their power the Pythagoreans “enlarged” their
conception of number to include positive rationals, that is, numbers of the
form m/n, where m and n are positive integers. Their discovery of irrational
points on the “number line”, however, showed that their conception of num-
ber was still too narrow to accomplish what they wished. They could not
(and they proved they could not!) even measure with their numbers the
hypotenuse of a right triangle whose legs were of unit length.

It is clear from the experience of the Pythagoreans that if numbers are to
measure arbitrary quantities, then there must be a number corresponding to
each length of line segment. This is what a number “really” is. The real number
system must contain numbers capable of measuring any quantity, whether
positive, negative, or zero.
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How can a quantity be measured, particularly if it is an irrational quantity ?
The modern answer is, of course, by using the notion of limit, by approximat-
ing it ever more closely by quantities we already know, and by thinking of the
number as the limit of our approximations.

Today, for example, we think of \/2 as being a perfectly proper real number,
whereas Pythagoras had to think of it as a certain length, and not a “number”
at all. When we write

\/5 = 1.414 ... (note the three dots!),

we do not mean \/§ = 1.414 (which, of course, is false, because the square of
1.414 is not equal to 2), but that a sequence beginning

L, 1.4, 1.41, 1.414, ...

is getting progressively closer to what we do mean. The real number ﬁ is
defined by specifying a sequence

LM 1 e
’ 10° 100’ 1000° "~
of positive rationals whose squares
1, 1.96, 1.9881, 1.999396, . ..

are tending tc 2.

As the example of ﬁ illustrates, to define a real number, it is only neces-
sary to specify how it may be approximated to any desired degree of accuracy.
That is, to define a real number, it is only necessary to specify a way to approxi-
mate it as a limit.

The idea is that a real number is supposed to represent a point on the
number line. While the point itself we conceive of as a “sharply defined”
object, it may well be impossible to hit the point with a rational number. The
best we can do is to specify how the point may be approximated ever more
closely.

1 1 L

30 3.1 32

The number = is defined as the area of a circle of radius 1 unit. The sequence
3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ... is the beginning of a sequence of
rationals tending to x as a limit: = = 3.14159... ..

What has all this got to do with integrals? A whole lot, indeed! An integral
is defined—by Eudoxus’ method—as a limit, with the sequence of numbers
tending to that limit being the approximating sums calculated in the method.
There is a moral in this. When we see an integral, such as

K %dt, 3)
we should think of it as representing a number no less sharply defined than
numbers like \/2 or 7. We must avoid the temptation to think that with no
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antiderivative of 1/t, the expression (3) is worthless because it cannot be
“evaluated” by the fundamental theorem F3. This is the wrong attitude to
take, and anyone who takes this attitude cannot make friends with integrals
and cannot, probably, make much further progress in this book.

On the contrary, the expression (3) is a perfectly wonderful number,
perfectly well defined. It is defined by Eudoxus’ method as the number that
is the limit of approximating sums of the form

Zn: fieyat, n=1,23,. ... 4)
k=1

By taking n larger and larger, we specify a way of approximating the real
number (3) to any desired number of decimal places. The only question is
whether the limit of the approximating sums (4) exists, as » increases without
bound. And here is where the importance of the fundamental existence
theorem F2 is seen. Because f(t) = 1/t is differentiable, therefore continuous,
on the interval 1 < t < 2, the existence theorem assures us that the approxi-
mations in (4) do indeed tend to a limit.

The integral (3), with the help of F2, is seen to have built into itself a way
to calculate the terms of its decimal expansion, to as many places as desired.
And this can be done by pure arithmetic, without any knowledge of antideri-
vatives or of derivatives. One need only be a humble computer to plug a
large value of n into (4) and to find that

1
ff;dz = 0693147 .. .. 5)

By the same token, a computer knowing nothing about calculus, but only
about addition and multiplication, can discover that

1
ff ~di = 1.09861 ... 6)

Integrals, if they exist, express numbers just as well as any other means of
expressing numbers. The expression (3) is every bit as “definite” as the ex-
pression 7.

Actually, integrals of the reciprocal function 1/t are of more than incidental
interest, as we shall see in Chapter 9. Here are a few more results, given
without proof. By plugging into the expression (4) a large value of n one can
discover, for example, that

1

f:;dt — 138629 ..., )
1

ff SdE=179176 ..., )
1

Llo;dt —230259 ..., 9)

1
fI” Sdi = 248491 ... (10)
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The integrals (5) through (10), and all integrals of the form
x 1

are of particular interest, as we shall see. It is important to realize that an
expression such as (11), despite its complicated symbolism, simply stands for a
certain real number whenever x is given a particular value. The number is
perfectly definite, if x > 1, since it can be calculated to arbitrarily many
decimal places by Eudoxus’ method.

EXERCISES

2.1. The Greeks used only positive numbers. When was the number zero introduced into
our number system? (Use an encyclopedia to find out.)

2.2. Criticize this statement: “Zero is nothing.” Answer: Zero is a number, naming a
certain point on the number line. Nothing is not a number. Zero is therefore not
nothing.

2.3. What motivation do we have to enlarge our number system to include negative
numbers? Hint. Think about the problem of naming points on the “left half” of
the number line, or of measuring the value of overdrawn bank accounts, or of
reading freezing temperatures on the Celsius scale.

2.4. What is the motivation for including in the real number system numbers that are
not rational?

2.5. With our more sophisticated notion of number it can sometimes be quite a problem
to tell when numbers are equal.
(a) Archimedes knew that \/3 is irrational, and doubtless suspected that = is too.
Attempting to find very close rational approximations, he found that /3 lies
between 265/153 and 1351/780, while = lies between 3% and 3%. Anybody can show
that /2 lies between 252 and 1443, Using the information here, and without using
the decimal system (Archimedes did not), give a convincing argument to prove that
\/i +3#m

(b) It is true that

2
%(1 +.3)=09659 ...,
and it is also true that

1
3 2+/3=0965%....

On the basis of this information alone, can one infer that (/2/4)(1 + /3) =
W2+ \/3 ? Answer: No. All we know from this is that the numbers are “equal”
to four decimal places.

(c) Prove that the two numbers in part (b) that agree to four decimal places are in
fact equal. Hint. There are a couple of ways of doing this. One way is to use the
results of Examples 6 and 7 of Chapter 7.
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2.6. When was the decimal system introduced into mathematics? (Use an encyclopedia
find out.)

2.7. Let L(x) be defined as the expression (11).

(a) What is L(2)? Answer: By (5), L(2) = 0.693147 . . ..

(b) What is L(3)?

(c) Whatis L(2) + L(3)?

(d) What is L(6)?

(e) What is L(3) + L(4)?

(f) What is L(12)?

(8) Do we have enough information to conclude that L(2) + L(3) = L(6) or that
L(3) + L(4) = L(12) or that L(2) + L(2) = L(4)? Answer: No. But we also do not
know enough to prove they are not equal.

2.8. It can be shown by Eudoxus’ method that
1
fl“’“?dt =693147. ...

(a) Explain how one might have guessed this. Hint. 1024 = 21°,
(b) Make a guess (no proof called for) as to the value of each of the following
integrals:

—dt.

flao % i, J*lz4 % i@, J‘19 :

Answer: (b) 3.4012...,3.1781...,2.1972....

§3. Approximating [5 f

In the preceding section it was emphasized that the number {5 f has built
into itself a means by which it can be approximated to any desired degree of
accuracy. As a practical matter, it is of interest to know how close we come
by specifying a particular approximation.

ExampLE 1. The integral {3 (1/7) dt exists by F2. Calculate the approximating

sum
n

Sn= Z f(tk)Ata

k=1

for (@) n =4, (b)n =8, and (¢) n = 16.

1,1

3.3
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=12+ k
L
3 4 5 6
For (b) we have At = , and, when simplified,
Se=y 1oy o0
Sid+ ks 12
For (c) we have 4t = §, and, when simplified,
Sw=y Ll 1 oss. m
Z8+k 9 24

In Example 1, the approximating sums S,, Sg, S;¢ are getting closer to the
“right answer”, which, by (6), is 1.09861 . ... If we do not know the right
answer already, how can we tell how close to it we come by calculating an
approximating sum S,,? This question motivates the following theorem, which
tells us the maximum possible error we can make.

Theorem on Approximating Sums. Suppose the curve f is falling on the do-
main a <t < b. Then the approximating sum S, to the integral fﬂf differs
from the integral by no more than the quantity

(f(a) — f(b)) 4. (12)
That is [since At = (b — a)/n], the number (5 f must satisfy the inequality
= [Pras, s SO MON=0 .

ProoF. A formal proof of this theorem could be given, but the reader will
find it easier to understand this theorem by simply studying the picture
below.

(@.f(a))

Sla)— 1)

(b, /()

—— a —— b
AN At J

S, is the area beneath the staircase with n steps
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From the picture it is obvious that the shaded area is the difference
between S, and |; f. If each component of the shaded area is pushed hori-
zontally over to the vertical axis on the left, it becomes obvious that the
entire shaded area cannot exceed the area of the rectangle whose base is At
and whose height is f(a) — f(b). The error in the approximation S, is then

f: f — S, = shaded area

< rectangle of base 4t, and
height f(a) — f(b)
= (fla) — f(b)) 4t.
This inequality shows that the quantity (12) exceeds the error in the approxi-

mation S,. The inequality (13) is apparent when one adds the quantity S,
to each side of the inequality just above. |

The theorem just proved applies only to falling curves. (An analogous
result holds for rising curves, but this is left to the reader as an exercise. If the
curve is neither rising nor falling, then the considerations made above do not
apply.)

Since the curve given by f(t) = 1/t is falling on the domain 1 <t < 3, we
may apply our theorem to it. Using the results of Example 1, we see that the
cases n = 4, n = §, and n = 16 make the inequality (13) become, respectively,

1
095 < f 13 Sdi < 095+ 0333,

1
102... < ff ~di < 102+ 0.167,

1
1058 ... < ff ~dr < 1,08 + 0.083.

Note that successive doublings of n (4,8, 16) produce successive halvings
(0.333,0.167,0.083) of the error estimation. We can thus get as close to the
integral as we please, but we have to stop sometime of course. The last
inequality above shows the integral between 1.058 and 1.141. A good guess
would be the average of these, which is 1.099:

f Lot = 1.099.
Ut

This average will be slightly larger than the integral here, because the curve
y = 1/tis concave up. (W hat does concavity have to do with this?) Nevertheless,
1.099 is a satisfactory approximation to 1.09861 ..., the number obtained
by calculating S, for very large n.

What we have just done makes it easy to give a proof of an existence
theorem for falling curves.

Existence Theorem (Special Case). Let f be a falling curve with domain a <
t <b. Then [}, f exists.
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ProoF. The inequality (13) shows how to specify the number f’; f to any
desired degree of accuracy. This is all that is required to assert that a real
number exists. (Reread Section 2, where real numbers are discussed.) O

EXERCISES

3.1. The integral [} (1/1)dt exists by F2. Calculate the approximating sum for
(@) n=4.
(b) n=28.

3.2. What does inequality (13) become, for the integral |7 (1/7) dt when
(a) n=47
(b) n=8?

3.3. The integral [§(1/(1 + ¢?))dt exists by F2.

(a) Calculate its approximating sum S,.

(b) What does inequality (13) become when n = 47

(c) Use your answer to part (b) to make a guess at an approximation to the
number 7.

Answers: (b) 0.72029 < n/4 < 0.72029 + 0.1250. (c) Taking the average of these
bounds as an estimate for n/4, we might guess n ~ 3.131, which we expect
(why?) to be low.

3.4. Prove that if the curve f is rising on the interval a < t < b, then

5, YO = fla)b-a) [Fr=s.
n a

3.5. Prove that if f is a rising curve, then [% f exists.

3.6. The existence theorem F2 asserts that if f is continuous on a <t < b, then jZ f
exists. We have not given a proof of this, but we have established the existence of the
integral for a rising curve and for a falling curve. Can you make an argument
showing that the integral exists for a continuous curve that is sometimes rising and
sometimes falling?

3.7. Give an example of a discontinuous function whose integral exists. Hint. Continuity
was never used in the proofs of this section. Consult problem 3 at the end of this
chapter.

§4. Definition of {5 fif b < a.

Up to now, whenever we saw the expression

i1 (14

it was either explicitly stated, or else understood, that a < b. What should
expression (14) be understood to mean if b< a? We make the following
definition. The motivation for making this definition will become clear on
the pages that follow.
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Definition. The expression (14} is defined as

(a) the number calculated by Eudoxus’ method if a < b;
(b) zero if a = b;
(c) the negative of (3 fif b <a.

For example, [{(1/t)dt = 0 by this definition, and
o 1 11
fl 1+ tzdt: _fo 1+ tzdt
T

= —[arctant]d = ——.

[arctan 3 =

This definition may seem peculiar, but there is a pragmatic reason for

making it. With this definition, the evaluation theorem ¥3 is true without the
restriction that a < b.

The Fundamental Theorem (Extended). Let f be a continuous function defined
on some interval containing the points a and b. Then, regardless of whether
a < b, it is true that

[or=r, wr=rs

Proor. We already know equality holds between [ f and F|; when a < b.
We must prove equality for the other two cases. If a = b, then the integral by
definition is equal to 0, but so is F|¢ = F(a) — F(a). Thus equality holds if
a=b.

The remaining case is b < a. By the definition just given, in this case we

have
[r=-[1
= —[F]; (by the original F3)
= —(F(a) — F(b))
= F|.
Equality therefore holds if b < a as well. d

Now that the expression (14) has a wider significance, it sometimes requires
a little thought to determine for what values a and b the expression (14)
makes sense.

ExaMpLE 2. Specify the values of x for which the following integrals exist.

(a) [}, sin.
(b) fi4arcsin.
(c) [sarctan.
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The integral (a) exists for all x, since the sine function is everywhere
continuous. Another way of seeing this is to note that by the fundamental
theorem, as just extended,

x . 1
fm sin = [ —cos]};; = —cosx + cos 5 (15)

for all x.

The integral (b) does not exist for all x, since arcsin is continuous only
on the domain —1 < x < 1. By F2 the integral (b) exists on this domain.
If we have no antiderivative of arcsin, we cannot give a simplified expression
for (b), in contrast to the simplification of the integral (a) in equation (15).

By F2 the integral (c) exists for all x, since arctan is continuous everywhere.

O

In Example 2 each of the functions in question has a name (sin, arcsin,
arctan). If the function has no name, but is specified by an algebraic rule, a
dummy variable must be used. (Compare exercise 3.3 of Chapter 5.)

ExaMPLE 3. Specify the values of x for which the following integrals exist.

(@) f1(1/adt.
(b) =, (1/0)dt.
(© [i2v4—1t2dr

Here, t is a dummy variable. The answer would be unaffected if ¢t were
replaced by any other variable (except in this case x, since x is already being
used in another context as the upper limit of the integral). Since the algebraic
rule 1/t has a discontinuity at the point ¢ = 0 and nowhere else, the integral
(a) exists on the domain 0 < x, by F2.

The integral (b) exists on the domain x < 0. (Why?)

The square root function is continuous wherever it is defined, and it is
defined only when the expression beneath the radical sign is not negative.
The expression 4 — t* is nonnegative when —2 <t < 2. Therefore the
integral (c) exists by F2 on the domain —2 < x < 2. [ Note that the answer
to(c)is not —2 <t < 2, because ¢ is a dummy variable. The problem has to
do with x, not t.] O

EXERCISES

4.1. Use the fundamental theorem, as extended in this section, to calculate each of the
following integrals.

(a) [$2dr. (b) f3 t2dt.

(c) [3sin®rdt. (d) [Scostdr.

(e) [9s?ds. f) f3s%ds.

(8) [3sin®sds. . (h) [3cossds.
Answers: (a) —%. (b) (x3/3) — (8/3). (e) —8/3. () (x*/3) — (8/3).
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4.2. Consider each of the following statements and tell whether it is true or false.
(@) [3¢%dr=[3s*ds =5 L*dL.
(b) The derivative of [,,sintdt is sinx. (See (15) for another way to express
[ smtdt)
(c) |3 t*dt is an antiderivative of the squaring function.
(d) The derivative of [} ¢*dt is given by .
Answers: (a), (b), and (c) are true. In (d) the derivative is x2.

4.3. Specify the natural domains of the following. That is, specify in each case the values
of x for which the expression makes sense.
() L(x) = [f(1/r)dr.
(b) F(x) = 51/t — 1)(t + 3))dL.

(©) G(x) =[5/t + Dt + 3)adr.

Answers:(a) 0 < x.(b) -3 <x<1l.(c) -1 <x.

4.4. Verify each of the following, using the extended definition of the integral.
(@ b—a)fof=0Qfa=b)fs fifa<b.
b) Mb—a) [t f=01fa=b))(; fifa>b.
(This simple result wzll be surprisingly handy to know on several occasions in the
pages ahead.)

§5. Integrals as Averages

The remaining sections in this chapter deal with the uses of the integral. We
first found integrals by considering how to measure areas, but integrals are
of value to many people having no interest whatever in studying areas. That
is why we have been emphasizing that the integral is a number. That number
need not be an area. It might instead represent some distance traveled, some
quantity of work performed, the magnitude of some force, or the possibility
of occurrence of some momentous event. It might be a “moment of inertia”,
a “quadrature”, or an “average”. The house of integrals has many sides.

Perhaps the easiest way to enter this house is by considering the notion of
an average. The average of several quantities is calculated by finding their
sum and then dividing by the number of quantities. The average of two
quantities has a simple geometric interpretation:

a b
a+b
2
The average of a and b is halfway in between

What about the average of more than two quantities? Does it have a
geometric interpretation? Consider the average of the first five squares 1, 4,
9, 16, and 25. The average is 11, since (1 + 4+ 9+ 16+ 25)/5=11.In a
rather vague sense, the number 11 is the “center” of the numbers 1, 4, 9, 16,
and 25.
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avg

We can say a little more precisely what is meant by center. Think about the
line above as representing a seesaw whose only weight is concentrated at the
points 1, 4, 9, 16, and 25. If equal weights are placed at these points, then a
fulcrum placed at the average value, 11, will make the seesaw balance. It
will not tilt either way, with the fulcrum at its center. (Note that the center of a
seesaw is not necessarily exactly in the middle. If, in the figure above, the
fulcrum was put in the middle, at the point 13, the left side of the seesaw
would go down and the right side up.)

There is a lot to be learned by playing on seesaws, as Archimedes was
first to note. (See the appendix in this book on Archimedes.) Let us pause to
play a moment.

Consider the n quantities 1, 2, 3, ..., n. What is their average?

1 2 3 n
n+1
2

If we think of the seesaw we can guess right away their average, without doing
any involved calculation. If equal weights are put at the points 1,2,3, ..., n,
where should the fulcrum be placed in order to make the seesaw balance?
By the symmetry of the situation, it should obviously be placed in the middle,
that is, halfway between 1 and n.

n+1
2

=avgofl,2,3,...,n

This is a case when we are able to guess the average without using the defini-
tion, which would entail adding the n quantities and then dividing by n:

'Y k
k=1

Let us combine the preceding two equations to obtain

avgof1,2,3,...,n=

I |-

) B n+1
. k=
n ,‘; 2

Multiplying through by n yields

" n+1
k=n ,
k; ( 2>

which is the familiar formula for the sum of the first n positive integers. We
have just derived this old result in a new way, using the notion of an average.
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What has just been done reveals a use for averages that is sometimes
handy to remember. If you can somehow guess the average of a number of
quantities, then, as above, you can quite easily calculate their sum.

An idea should begin to grow here, in the mind of a student of calculus.
Sums are “like” integrals, since integrals are limits of sums. It might be
handy to invent, in analogy with the foregoing, the notion of the average of a
function, and see how it is related to the integral of the function.

To take a concrete example, let us consider what ought to be meant by
the average value of the sine function, on the domain 0 < x < 7.

0 X X n

What is avg f?

If we partition the domain into n equal parts, as indicated, then the average
value taken by the function f at these n points is, of course,

LS . (16)

=

This expression is the average value of f on the (discrete) set of points x,,
X3, ..., X,. It is natural to define the average of f on the (continuous)
domain 0 < x < = as the limit of (16), as n increases without bound:

o
avg f = Limit— ) f(x,). (17)
=4
Equation (17) gives us a natural definition of avg f, as a limit of a certain
sum. How is this related to the integral {§ f(x)dx, which is also the limit of a

sum? Applying Eudoxus’ method to the interval 0 < x < #, we get 4x =
7/n, so that

fo" f(x)dx = Limit él f(x) Ax

= Limit ¥ f(xg)~
k=1 n

=n- Limit1 Y fx)
n=

=n-avgf [by(17)].
Since [§ f(x)dx = n - avg f, it follows that

avgf = 71: fon f(x)dx.
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Hence, for f(x) =sinx, 0 < x < n, we have

avgf = L f"sinxdx = l(—cosx) = z
T JO T o T
The average value of the sine function, on the domain 0 < x < =, is then 2/x.
From considering the preceding example we can see the relation we were
seeking to find, between the integral of f and the average of f, over a certain
interval. The average of f is the integral of f, divided by the length of the
interval. We are thus led naturally to this definition.

Definition. Let f be a continuous function on the interval a < x < b. The
average value of f/ on this interval is denoted by avg f and defined by the

equation
1 b
— f f(x)dx

(Continuity of f is assumed, in order that the existence of the integral of f
can be guaranteed by F2.)

avg f =

ExaMmpLE 4. The average value of the sine function on the interval from 0 to
n/3 is given by

/3f smxdx——[ cosx]g? = 237r' d

EXAMPLE 5. The average value of the squaring function on the interval
from 1 to 5 is given by

1 5 5 1x3
o1l =g, -

(Why isn’t the answer equal to 11, which, as we saw above, is the average of the
first five squares 1, 4,9, 16, and 257)

—=1033.... U

ExAMPLE 6. If the speed of a motorcycle at time t is given by v(t) = 40 + 3t* —
4t miles per hour, then the motorcycle’s average speed, between ¢ = 1 and
t = 3, is given by

3_1f (40 + 31> — 41)d _—[4Ot+t3 20213
= 45 miles per hour. O

ExampLE 7. If the height of a rock at time ¢t is given in feet by h(t) = —16t> +
96t, then the rock’s average height, between t = 0 and ¢t = 3, is given by

1 3 1 t3 3
A A _16 2 = - _ - 2 = t'
3_0fo( t* + 96t) dt 3[ 165+ 48 l) 96 fee O
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At the beginning of this section we saw how the notion of an average of a
collection of quantities can sometimes be an aid to a quick calculation of
their sum. Similarly, the notion of the average of a function can sometimes
simplify the calculation of its integral. From the definition of avg f, the
integral of f is given by

[P reyax = @ve N - o (18)

For certain functions, over certain intervals, it is possible to guess their
average value, and thus, by (18), obtain their integral with virtually no work
at all. It is particularly easy for the function given by x", where n is odd, and
where the interval is symmetric about O (i.e., has 0 as its midpoint). The average
of such a function is obviously 0, a fact that can be seen quickly in several
ways. One way is to observe that if f(x) = x", where n is odd, then

fl=x) = —f(x), (19)
because f(—x)=(—x)"=((=1)(x))"=(=1)'x"= —x" = —f(x). (Where
did we use the assumption that n is odd?) From (19) it follows easily that avg f is
0 on an interval symmetric about O:

- X X
i 0
f(x) is the negative of f(—x)

In approximating avg f by sums like (16), we get cancellation between the
value of f at a point x, and the value of f at — x,, from which it follows that
avg fis 0.

Thus we know immediately that such integrals as {1, x*dx, {25 x7 dx,
{2, x® dx are all equal to 0 by (18), since in each case the average value of the
integrand is 0. We are also allowed to perform such operations as

_5 x3dx = _3 3dx + [ x3dx = 5x3dx,
f3 3 3 3
[Porax= 7 feaax+ [ feadx = [ frdx

provided (19) holds.

It is convenient to have a name for functions f for which f(—x) = — f(x).
They are called odd functions. As we have just seen, avg f = 0 on a domain
symmetric about 0 if f is an odd function. Besides x, x3, x>, etc., odd functions
include sin [because sin(—x) = —sin x], tan [because tan(—x) = —tan x],
and many others. This is sometimes very useful to know. For example, even
though we may not as yet know antiderivatives of tanx or x*cosx or
cos? 2xsin 3x, we can nevertheless assert that the integrals

1 4 3 .
f_ , tan xdx, f_ , X cos xdx, f_ , cos? 2xsin 3x dx

are all equal to 0, because they are integrals of odd functions over intervals
symmetric about 0.
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EXERCISES

5.1

5.2

5.3.

54

5.5.

5.6.

5.7.

5.8

(a) How many integers are there between the integer 7 and the integer 10
(inclusive)?

(b) How many integers are there between the integer m and the integer n (inclusive),
assuming that n is greater than m?

(c) Without adding up the integers from 7 to 10, guess their average. Then use
your answer to 5.1(a) to deduce their sum.

(d) Guess the average of the integers from m to n, inclusive. Then use your answer
to 5.1(b) to deduce their sum.

(e) Check your answer to 5.1(d) by writing

m—

n 1
k=Y k=Y k
k=1 =1

and applying the well-known rule for evaluating the two summations on the
right-hand side.

M=

k=m k

In each of the following, find the average value of the function on the indicated
interval.

(a) sinx, 0 < x < 7w/4.

(b) x4, 0<x <3.

(c) x,0<x<4.

(d) x3, =1 < x < 1. Answer: 0, since x* is odd function.

(e) x3, —1<x<2.

(f) cosx, /2 < x < n. Answer: —2/n.

A rock is thrown upwards from ground level at an initial speed of 64 feet per
second. Find its average height over the first 2 seconds of its flight.

Which of the following are odd functions?

(@) flx)=2. (b) f(x) = 2x.

(c) f(x)=2cosx. (d) f(x)=2xcosx.

(€) f(x)=sin(x?). (f) f(x) = sin(x?).

(8) f(x)=2x+2. (h) f(x) = sin 2x sin 3x.

A function f that satisfies the equation f(—x) = f(x) for all x is called an even
function. Which of the functions in exercise 5.4 are even functions?

Give an example of a function that is neither odd nor even. Hint. There is one in
exercise 5.4.

Assume that f is an even function that is continuous.

(a) Show thatavgfon —a<x <0Qisequaltoavg fon0<x<a.
(b) Show, using 5.7(a), that {2, f(x)dx = [§ f(x)dx.

(c) Show, using 5.7(b), that 2, f(x)dx =2 18 f(x)dx.

Without evaluating any of the following integrals, give reasons for justifying the
following equalities. Use the facts you have learned about odd and even functions.
(@) fLi(x® +x* 4+ X7 + x> + x + 1)dx =2 [§(x* + x? + )dx.

(b) (2, (1 —x¥)dx =2 [5(1 — x?)dx.

(c) f2,(sinx + x)dx = [§(sinx + x)dx.

(d) fL,(x*tanxcosx)dx = 0.
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59.

5.10.

5.11.

5.12.

5.13.

5.14.

8 House of Integrals

Consider each of the following conjectures. If it is true, give a reason why; if
false, specify a concrete example where the conjecture fails.
(a) The sum of two odd functions is itself an odd function.
(b) The product of two odd functions is itself an even function.
¢) The product of even functions is an even function.
d) The sum of even functions is evet.
e) If f is not an even function, then f must be an odd function.
f) The graph of any even function is “symmetric about the vertical axis”.
g) If an odd function is contindous at 0, then it takes the value O at O.
h) The graph of any odd function is “symmetric with respect to the origin”.
(i) If f is any function whatever, and a functioni g is defined by g(x) = f(x) +
f(—x), tHen g is an even function.
) If f is any function Whatever, and a function h is defined by h(x) = f(x) —
f(—x), then A is an odd function.
(k) Any function whatever can be expressed as the sum of an even function and
an odd function.

(
(
(
(
(
(

In Chaptér 5 we defined average speed as the quotient of the distance traveled by
the time it took. In this section the average speed was defined as the integral of the
speed, divided by the length of the time interval in question. Do these definitions
agree?

On the interval a < x < b, find the average value of

(a) f(x) = C, where C is a constant.
(b) flx) =

(© flx)=x*

(d) f(x) = x>

Hints.(©)b® — a® = (b — a)(b? + ab + a®).(d)b* — a* = (b — a)(b® + b%a + ba* +
a3) .
Frequently we need to spedk of the average of a function over more than one
intetval. To indicate that the interval in question is from a to b, we write
avg f.
ab
(4) Find avg,, (x?). Answer: (1)1 — 0)) [§ x*dx = 1/3.
(b) Find avg, ,(x?). Answer: (142 — 1)) [} x?dx =7/3.
{c) Find avg, , (x?).
(d) Is it true that avgg ,(x?) = avgo ; (x?) + avg, ,(x?)?

Let f be a continuous function. Consider each of the following conjectures, and
tell whether it is true or false.

(a) avg,lcf) = ¢ avg,, .

(b) avg,,(f + g) = avg,, f + avg,, g, where g is continuous.

(©) avg,,(f?) = (avga, )%

(d) avg, [ =avg,, [ +avg,. f.

Hint. (d) See 5.12(d).

Just as we have found it useful to define [5f when b < a, so it will be useful to
deﬁne avg,, f when b < a. The natural definition is as follows:

(a) avg,, f = fla).
(b) avg,, f=avg,, fifb<a
Use the result of exercise 4.4 to prove that (1/(b — a)) [/ is equal to avg,,f,
even if b < a.
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§6. Simpson’s Rule

A moral of the preceding section is that if you can somehow guess the average
of a function, then you can easily find its integral. For complicated functions
we cannot hope to guess correctly. It turns out, however, that for simple
functions like quadratics or cubics, it is remarkably simple to find averages.

Let us begin with something familiar. Suppose a teacher is about to
assign a grade to a student who has made scores of 70, 90, and 80 on three
papers. If the three papers are of equal scope and size, the teacher would
probably average the three grades to get a cumulative grade of 80. Suppose,
however, that the second paper was the result of a project that was far more
ambitious than the first and third assignments, which were of ordinary
difficulty. In this case it would be reasonable to count the second grade with
more weight than the first and third.

Suppose it was decided to give the second paper four times the weight of
the first, and to give the third paper the same weight as the first. Then the
teacher would take not an ordinary average of the numbers 70, 90, and 80,
but a “one-four-one” weighted average:

70(1) + 90(4) + 80(1)

= 85.
6

(We divide by 6, since 6 is the sum of the weights 1, 4, and 1.)

A one-four-one weighted average of three numbers, as first observed by
the eighteenth-century English mathematician Simpson, just happens to be
exactly what we need in our present endeavor. Simpson found, perhaps
simply by the method of trial and error, a simple one-four-one rule for
writing down quickly the average of any quadratic or cubic.

Consider the problem of finding the average of the function given by
f(x) = x* on the interval 1 < x < 3.

3,9 ¢

— 52
2.4) Sx)=x
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Notice that this function takes the value 1 at the left-hand endpoint, 4 at the
midpoint, and 9 at the right-hand endpoint:

x|y
1|1
2| 4
3109

The ordinary average of these values of 1, 4, and 9 is 14/3, which will be a
fair approximation to avg f. However, Simpson realized that—at least for
quadratics and cubics, and perhaps other functions as well—the value of the
function at the midpoint of the interval in question has more weight in
determining the average of the function than the function’s values at the
endpoints of the interval. Consider a one-four-one weighted average of the
values 1,4, and 9:
I(1)+44)+91) 13

6 37
The average of the function is, by definition,

3

1 3, P13
anf—ﬁfl X dx—F

1

Is it just an accident that avg f is equal to a one-four-one weighted average of
the values of f at the left, center, and right of the interval in question?
Let us use the abbreviation

smpf, or smp f,
a,b

to denote the application of Simpson’s one-four-one rule to f on the interval
a<x<b:

f(@) +4f((a + b)/2) + f(b)

smpf = sn;pf = ¢ . (20)
We want to compare this with
1 b
avgf =avg f = b f fx)dx.
a,b — ave

We have just seen that smp f is equal to avg f for f(x) = x? if a =1 and
b=3:

2 13 2
smp x* = — = avg x°.
1,3 3 1.3
ExaMPLE 8. Calculate smp f for f(tf) = —16t> + 96t on the interval from

0 to 3, and compare smp f with avg f.
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Here, the midpoint is 3, and we have the following table of values.

t fy
0 0

3 108
3 144

Simpson’s one-four-one rule gives
0+ 4(108) + 144

smp (—16t* + 961) = 96.
0,3 6
In Example 7 of the preceding section, we found that
avg (—16t% + 96t) = 96. O
0,3

ExampLE 9. Calculate smp f for f(x) = sin x on the interval from 0 to =/3,
and compare smp f with avg f.
Here we have the table of values as indicated,

x Sx)

and

smp (sin x) = 0+4@) + (\/3/2)= At \/3, (21)
0,7/3 6 12

From Example 4 of the preceding section, we have

avg (sin x) = 23_n O (22

0,n/3

ExampLE 10. Calculate smp f for f(x) = x* on the interval from 0 to 4,
and compare smp f with avg f.

From the table, we calculate

0+4(16)+256=53%’ )

smp x* =

0,4 6
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whereas

. =31 O

5
5

| —

1
avg x* = 2 f: x*dx =

4
0,4 0

Sl

From these examples we are led to expect close agreement, but not
necessarily equality, between smp f and avg f. We do get equality, however,
if f is a linear, quadratic, or cubic function.

Proposition on Exactness in Simpson’s Rule. It is true that smp f = avg f if
f is given by

(a) f(x) = C (constant function).

(b) f(x) = x.
(© flx)=x%
(d) flx) = x>

PROOF. We shall prove part (d), leaving the rest to the reader.

x ‘ x
a a®
(a + b)/2 (a +b)*/8
b b3

If f(x) = x3, then
’ a® + 4((a + b)/2)* + b*

Sﬁpf= 3
1 3 2 2 3
L af® + 3a’b + 3ab® + b L3
6 8
B 1<12a3 + 12a%b + 12ab* + 12b3>
"6 8

1
= Z(a3 + a*b + ab® + b¥)
=avg f [by exercise 5.11(d)].
a,b

This proves part (d) of the proposition. The other parts are easier and are
left to the reader to verify. O

It follows from the proposition just proved, as the reader will show in
an exercise to follow, that

smp f =avg f if f(x)=ax3 + bx? +cx + d.
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Thus, one can calculate exactly any integral of any cubic function by first
using Simpson’s rule to find the average value of the cubic. This is sometimes
a great time-saver. Even for more general functions Simpson’s rule is a
great aid in guessing a quick approximation to an integral, because smp f
is generally a good approximation to avg f. Frequently one has neither the
time nor the patience to carry out Eudoxus’ method to obtain a value of
an integral that is correct to many decimal places. Let us introduce some
notation to indicate the approximation to an integral that Simpson would
make. Let

Sef
denote this approximation to [% f. That is,
Sef=(b—a)smp f (24)
a,b

~ (b —a)avg f (sincesmp f ~ avg f)
a,b

= [, 1 [byas)l.

When one is unable to use the fundamental evaluation theorem F3 for
want of an antiderivative, Simpson’s rule to calculate Sb f is a welcome
relief. Though S% f will not in general be equal to fﬁ f, we can expect to get
approximate equality between these two numbers, as shown above. Let us
look at a few examples to see how close they can come.

ExampLE 11. Estimate the integral [ (1/x)dx by Simpson’s rule.
Here we have

1.2 \x 6 " 36

s? (%) =2~ 1)<§> =0.6%...,

whereas, from equation (5),

fz(l>dx=0.693.... O
J1 \ x

ExampLE 12. Estimate the integral [} (1/x)dx by Simpson’s rule.

Here we have
1 1+43)+1
smp<—>=—+._(i)+—3=
1,3 X 6

N\ 1443 +1 2
Smp<—>=+—(3)t—2——5——-0.694...,

so that by (24),

>
99
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1 5
Sf<;>=(3 - 1)<§)= 1i1...,

whereas, from equation (6),

so that

1
*ldx =1099 . ... O
1 x

ExaMPLE 13. Estimate the integral [{?(1/x)dx by Simpson’s rule.
Here we have

smp
1,12

1 265
siz(Z)=@2-p(2)=31...

whereas, from equation (10),

l _ 1 +4(2/13)+(1/12)_§
x] 6 T 396’
so that

f”1M=zy”. O
1 x

These examples suggest that Simpson’s rule may give a remarkably close
estimation of an integral [5 f, provided that the length of the interval from
a to b is small, but that S} f may be somewhat different from {% f when the
length b — a is large. One would expect, for example, to get a better approxi-
mation to {1?(1/x)dx by repeated applications of Simpson’s rule to smaller
intervals, say, e.g.,

121 3l 61 121
J.l ;dx=f1 ;dx+f3 ;dx-i— . ;dx

1 1 1
st (2)st(2) e se()
X X X
111+ 747 (25)
[The reader is asked to complete the calculation and see if the result is a

better approximation to {{?(1/x)dx than the approximation Sj*(1/x) in
Example 13.]

Consider the problem of estimating the number n to several decimal
places. Remember that n is defined as the area of the unit circle, so that,
by definition, = is equal to

2 [ JT=xax. (26)
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By Simpson’s rule, one then has it that x is approximately equal to

2-SL,(JT=xH)=2(1—- (_—1))@) =267...,

which is not a very good approximation, partly because the interval is
fairly large, being of length 2, but mainly because /1 — x* is quite unlike
any cubic equation, since it has vertical tangents at —1 and at 1. (Roughly
speaking, one expects more error with Simpson’s estimation, the more unlike
a cubic is the curve in question.) We would expect to improve upon our
estimation of (26) by noting that the integrand is an even function, so that
(26) 1s equal to

4 [P T=xdx~4-Sy/T= 2

- o L 43D20)

BEL L NERPPY
=SS g7

This is a better approximation to =, because the interval is half as long as
before, but the approximation is still not very satisfactory.

Let us be more cunning. Since the sine function is so nice, and since the
interval O to =/3 is not too long, we have grounds for supposing that the
values in (21) and (22) are quite close. That is,

4+\/§~i

12 721
From this is follows that

18

443

72 —18/3
= T\[ (multiplying top and bottom by 4 — /3)
72— 18(1.732)
- 13
=3140....

By luck we have hit upon a very good approximation to =z, though it is still
not so good as that of Archimedes. The wily Syracusan, by delicate estimates
with a 96-sided polygon approximating the unit circle, was able to show
that 7 lies between 342 and 31. In decimal notation (Archimedes did not
use decimal notation, of course), this means that = is greater than 3.1408
and less than 3.1428. We now know that = is irrational, and we have estimates
of = to a million decimal places. For over a thousand years, however,
Archimedes’ estimate was about the best we knew.
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EXERCISES

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

Apply Simpson’s rule, as indicated.

(a) smpy ;(1/(1 + x?)).

(b) smpg 3 (cos x).

(c) Smpo,2(x4)~

(d) Smp2,4(x4).

With the help of your answers to exercise 6.1, find Sy(1/(1 + x?)), S¥3(cosx),
S3(x*), and S%(x*). Then calculate, by the fundamental theorem F3, the integrals
fo(1/(1 + x?)), [57(cos), {3(x*), and {4 (x*), and compare them to their approxima-
tions by Simpson’s rule.

In the proposition of this section, only part (d) was proved. Give proofs of parts
(a), (b), and (c).

Prove that Simpson’s rule shares two properties with the integral, namely,
@) Scf) = c-Sf).
(b) SUf +9) = SiS) + Sig).

Using the proposition of this section, together with the properties (a) and (b) of
exercise 6.4, and without using F3, prove that S(5x? + 3x) = [5(5x? + 3x). Answer:

SB(5x% + 3x) = SY(5x?) + S(3x) [by 6.4(b)]
=5-Shx?) +3-Six) [by 64(a)]

= SIZ (x?)+3 r: (x) [by parts(b)and(c) ofthe proposition]

= [5x* + 3w,
Using the proposition of this section, together with the properties (a) and (b) of
exercise 6.4, and without using F3, prove that
SYTx3 + 5x% + 3x + 1) =f” (7x3 + 5x% + 3x + 1).
(See the solution of the preceding problem.)
Prove the obvious generalization of the result of exercise 6.6:

Theorem. Let f be any cubic function. Then,

sun= 1 r
Evaluate the integral |3 ,(7x® + 5x + 3x + 1)dx
(a) by the fundamental evaluation theorem F3.
(b) by evaluating S> ,(7x* + 5x% 4+ 3x + 1) instead and applying the preceding
theorem.
Which method is shorter?

The integral has the property that if f is a continuous function, then jf,f =
|5 1 + [ f. Does Simpson’s rule have this property? That is, is it true that S5(f) =
S5(S) + Si(f)? Hint. Test the case when f(x) = x*, a= 0, b =2, and ¢ = 4. Much
of your work has already been done in equation (23) and in parts (c) and (d) of
exercise 6.1.

Complete the calculation left unfinished in (25).
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6.11. By carrying out the following steps, find an approximation to z. (Carry all your

numbers out to at least four decimal places. Use a hand calculator, if available.)

(a) Use F3 to find [f/2cosxdx to several decimal places, using 1.732051 as an
approximation to /3.

(b) Find smp,e .3 (cos) to several decimal places, utilizing decimal approxima-
tions to ﬁ and /3. (/2 = 1414214 ... )

(c) Because the interval from n/6 to n/3 is rather short, being of length n/6, and
because the cosine function is so nice, we can expect a very close approxima-
tion between the integral and its estimation by Simpson’s rule:

J:Z: cos x dx = ST3(cos) = (n/6) smp (cos).
n/6,m/3

For the left-hand side of this approximation, substitute your answer to part
(a), and substitute your answer to part (b) appropriately on the right. Then
deduce an approximation to 7.

6.12. Suppose f is continuous at the point a.
(a) What is the limit, as b tends to a, of f(b)?
(b) What is the limit, as b tends to a, of f((a + b)/2)?
(c) Use your answers to parts (a) and (b) to prove that

Limit <smp f> = f(a).
b—a a,b

(Begin with the definition given in equation (20).]
(d) What would you guess is
Limit (avg f> ?

b—a a,b

§7. Quadratures, Mean-Value Theorems, and
L’Hopital’s Rule

Mean is another word for average and, being shorter, is more often used in
mathematics books. Here we shall see some more reasons why the mean
(or average) value of a function is of importance. The first reason is that it
helps to solve, with ridiculous ease, the problem of quadratures.

The problem of quadratures is an ancient problem, dating back to the
Greeks. What is this problem? The root quadra- means “four”, of course,
but when the Pythagoreans thought of “four”, they thought of

which is a square. (That is why a quadratic equation is not an equation of
fourth degree, as one might sensibly guess, but rather an equation involving
a square.) The problem of quadratures is the problem of exhibiting a square
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of the same area as a given figure. To construct such a square is to effect
(or perform) a quadrature of the figure.

It is trivial to perform a quadrature of a rectangle or a triangle. A
quadrature of the rectangle

w

is given by a square whose sides have length ./LW. (In an exercise to follow,
the reader is asked to perform a quadrature of a triangle.) To solve the
problem of quadratures, therefore, one need only exhibit a rectangle (or
triangle) of the same size as the given figure, since quadratures can readily
be performed upon rectangles (or triangles). Thus, in the fifth century B.C.,
when Hippocrates showed that the indicated “lune” was of the same area
as the triangle, he had effectively performed a quadrature of the lune.

(In a problem at the end of Chapter 2 is sketched a way to see that the lune
and the triangle have equal area.)

An outstanding problem was the quadrature of the circle. Archimedes
showed (see the problem set at the end of Chapter 2) that a circle of radius
r and circumference C is equal in area to a triangle of height r and base C.
Archimedes thus was able to perform a quadrature of the circle, assuming
that a straight line equal in length to the circumference of the circle could
be constructed. This point bears further discussion, but here is not the place
for it. The interested reader may consult the appendix on Archimedes.

The problem of quadratures is today handily solved by integrals, together
with the notion of the mean, or average, value of a function. Since

[\ 100dx = b —ayave.

it follows that the area beneath the curve f from a to b is equal to the -area
of a rectangle of base b — a and height avg,, f.
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Tk

avg f

1

a b a b

This solves the problem of quadratures for any figure that is the area beneath
the graph of any continuous function. A rectangle with the same base but
with height equal to the mean value of the function does the trick. Since it
is easy to do, we could convert the rectangle into a square of equal size, but
for the purposes of the rest of this section, it is better not to do it.

It is better to ponder the figure below, instead, and to see something in it
that will prove invaluable. The question to think about is, what happens
as b is taken closer to a?

max f

avgf f
Sfla)

min f

a b
The average, minimum, and maximum of f

To see what happens, note first that avg f must be between the maximum
and minimum values of f. This is obvious from the definition of average.
Thus we have a very useful inequality:

min f < avg f < max f. (27

a,b a,b a,b
What happens to the terms in this inequality as b tends to a? Assuming
that f is continuous at a, we can answer this question easily. The maximum
and the minimum of f must get closer to each other, and both must get
closer to f(a). Thus, as b tends to a, avg,, f must tend to f(a), since avg,, f
is squeezed between two quantities, each of which tends to f(a):

Limit avg f = f(a) if f is continuous at a. (28)
b—a ab

The statement (28) is of great value, as we shall see in the next section. The
reader who understands the notion of continuity should see that statement
(28) is almost obvious. It simply says, in rough terms, that when b is close
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to a, then the average of f from a to b is expected to be close to f(a). For
example, since the cosine function is continuous,

Limit avg (cos) = cos0 = 1. (29)

x—=0 O,x

The full importance of statement (28) will be seen in the next section,
but the value of it can be indicated right here. We can also illustrate once
again the value of doing things backwards.

ExaMpLE 14. Find the limit, as x tends to 0, of (sin 2x)/(sin 3x).

The trouble is that both numerator and denominator tend to O. (This is
an example of the so-called indeterminate form 0/0, which frequently arises.)
The fundamental theorem F3, used backwards (!), says

1) = f0) = [ 1 (30)

When this is applied to f(x) = sin 2x, we have f(0) = 0 and f'(x) = 2 cos 2x,
so that (30) becomes

sin2x = fx 2cos2tdt
0
= 2(x — 0) avg (cos 2t).
0,x
When F3 is applied backwards to f(x) = sin 3x, then (30) becomes
sin 3x = 3(x — 0) avg (cos 3t).
0,x
and we can express the quotient we are investigating in terms of mean values:

sin2x _ 2x avgo(cos2t) 2 avg, ,(cos2i) if x % 0:
sin3x  3xavgy,(cos3t) 3 avg,(cos3t) ’

and it is now obvious, with the aid of (28), what the limit is, as x tends to 0.
Itis

2cos0 2

3cos0 3
since cos 2t and cos 3t are continuous at 0. Hence, % is the limit, as x tend
to 0, of the quotient (sin 2x)/(sin 3x). O

The key to investigating the indeterminate form 0/0 was to rewrite the
quotient in terms of average values. This approach, with the aid of (28),
often works, though not always. A shortcut to this approach is to remember
this equality: if f(a) = 0 and g(a) = 0 (so that f/g becomes indeterminate
at the point a), then

&) _avg. [’

glx)  avg,. g

if x # a. (31)
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Thus, by (28) we know that the numerator tends to f”(a) and the denominator
tends to g'(a); assuming that ' and ¢’ are each continuous at the point g,
and we have proved the following rule.

L’Héopital’s Rule. If the quotient f]g becomes the indeterminate form 3 at the
point a, then

. f(x) _ f(a)
it =

e 9 g

s

provided f' and g' are continuous and g'(a) # 0.

[The rule should really be named for its discoverer, the Swiss mathematician
J. Bernoulli (1667-1748), but it very early became associated with the name
of his student L’Hopital, who wrote one of the first texts on the calculus.]
The rule, as stated above, does not work if g'(a) = 0. (Why not?) A more
general rule, to handle this case, is derived in the exercises to follow.

ExaMPLE 15. Find the limit, as x tends to 1, of (x* — x)/(x® — x).

Solution. When x = 1, the quotient becomes the indeterminate form 0/0.
By L’Hopital’s rule, the limit at 1 is equal to
/'
g’
provided the denominator is not zero. Here we have f(x) = x* — xand g(x) =
x3 — x, so that

fx)  4x® -1
Jgx) 3x*-1

(32)
which is equal to 3 when x is 1. The limit is then 3. O

ExAMPLE 16. Find the limit, as x tends to 0, of (x* — x)/(x* — x).

Solution. By (32), £'(0)/g’(0) = 1. The limit is 1, by L’Hopital’s rule. [J

“NONEXAMPLE.”” Find the limit, as x tends to 2, of (x* — x)/(x* — x).

Solution. When x = 2, the quotient does not become an indeterminate
form. It becomes (2* — 2)/(2* — 2) = $ as x tends to 2. L’Hdpital’srule is not
applicable, for the quotient is continuous at the point 2. By continuity, its
limiting value is equal to the value it takes, namely 3. O

ExampLE 17. Find the limit, as x tends to 0, of the quotient f(x)/g(x) =
(1 — cos x)/x2.

Solution. At the point 0, the quotient f(x)/g(x) becomes the indeterminate
form 0/0, so we look at the quotient f'(x)/g'(x), in hopes of applying L’
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Hoépital’s rule. But,

f'(x) sinx

gx) 2x°
which also becomes an indeterminate form at the point 0! Thus L’Hopital’s
rule, as stated above, does not apply. A more general rule is needed to handle
this situation, and it is derived in the exercises to follow. It says that if f’/g’
is again indeterminate, then the limit of f/g may be obtained by applying
L’Hopital’s rule to the indeterminate form f’/g’. Let us do this. Applying
L’Hépital’s rule to the quotient (33), we are led to investigate

(33)

coS X
2 b

which has a limit of § at the point x = 0. The limit at 0 of (1 — cos x)/x? is

1

1 O

2

A result closely related to L’Hopital’s rule, and which will be used to
obtain a strengthened form of that rule, is a mean-value theorem. It asserts
that the mean value of a continuous function on an interval must actually be a
value attained by the function. Intuitively, this is obvious, because inequality
(27) says that the mean value of f lies between the largest and smallest values
of f. Since f(x) varies continuously between its largest and smallest values,
it must at some point ¢ be equal to its mean value:

avg f = f(¢) for some point ¢ between a and b. (34)
ab
A rigorous proof of this is best deferred to a course in analysis. Of course, if

S “wiggles” a lot, there may be more than one point where f attains its mean
value:

/X
avbg f o—-

—

—

|

I

|

I

I
. 4 o
a b

\ C/
Mean-Value Theorem. If f is continuous on the interval from a to b, there must

be at least one point ¢, where a < ¢ < b, at which f(c) is equal to the mean
(or average) value of f.

The mean-value theorem is of great importance, partly because its content
can be rephrased in several (apparently) different ways. There are thus several
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(apparently) different mean-value theorems, not just one, as we shall note in
the exercises to follow.

Let us now see how this enters into.a proof of a strengthened form of
L’Hopital’s rule. The key is to go back to equation (31) and analyze it a bit
further, to show that if f/g is indeterminate at the point a, then

f) _ f()

——="——for some c between a and b. (35)
gb) g

The reader is asked to do this, under suitable hypotheses, in an exercise to

follow. Once this is done, a strong form of L’Hépital’s rule is easily forth-

coming:

L’Hépital’s Rule (Strong Form). If the quotient f/g becomes indeterminate at
the point a, then, at the point a,

f

Lim=

Iz

= le—,,
g

provided f' and g’ are continuous and Lim(f'/g’) exists at a.

ProOF. [ Note that this form of the rule is indeed “stronger” in that it applies
even when, as in Example 17, g'(a) = 0.] By (35), we have
Jx) _ f'le)

— =*——for some c between a and x.

g(x) 4o
The choice of ¢ depends, of course, upon the choice of x, but ¢ must lie in
between a and x. This means that, as x — a, we automatically have ¢ — a, so

Limit 7® — Limit 9 — Lim§ at a. O

x—a g(x) c»a 90

ExaMPLE 18. Find the limit, as x tends to 0. of (x — sin x)/x>.

Solution. Since this quotient is indeterminate at 0, the rule just proved
says its limit at O is the same as the limit of

1 —cosx
3x?
However, this is again indeterminate, of the form 0/0, at the point O; so,
applying the rule to this indeterminate form, we investigate
sin x
6x ’
for its limit at 0. This is again indeterminate, but one more application of the
rule shows that its limit is the limit at O of

COS X

6 3
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which obviously has a limit of £ at 0. What we have done is to use repeated
applications of the strong form of L’Hépital’srule to show that, at the point O,
. X —sinx . 1 —cosx . sinx . cosx 1
Lm———=LiIm——M8M = =1 =—
1 2 m—3 Lim 6x m—c &
where the final equality comes from the continuity of the cosine function at 0.
Therefore,

. . x—sinx 1
Limit ———=—. ]
x—0 X 6

EXERCISES

7.1. What size square will form a quadrature of a triangle of base b and height h?

7.2. Show that a rectangle of base = and height 2/x effects a quadrature of the area
beneath the sine function, between 0 and =.

7.3. Using the result of exercise 7.2, using no computation, and using at most two
sentences of writing, prove that the area crosshatched vertically is equal in size to
the area crosshatched horizontally.

&

7.4. Perform a quadrature of the indicated area, by finding a rectangle of the same
size.

2.9

[ 4

0 2

7.5. A student has calculated the average value of the sine function on a certain interval
and has found that it is equal to 2. By appealing to an appropriate inequality in
this section, show that the student’s calculation must be wrong.
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7.6.

7.7.

7.8.

79.

7.10.

Note that if x is not equal to 0, 1, or —1, then

x‘*—x_x(x3—1)_x(x—1)(x2+x+1)_x2+x+1

x*—x x(x*—1) x(x—Dx+1) ~  x+1
(a) Check the results of Examples 15 and 16 by using this equality to find
Lim(x* — x)/(x® — x) at 1 and at 0.
(b) What is the limit at —1?
(c) What is the limit at —2?

Find the limit of each of the following, at the point a.

(@ (> + HYx+1),a=—1. (b) (sinx)/x, a = 0.

(©) (sinx)/(x —n),a=m. (d) (x3 = x)f(x*—x),a=—1.
{e) (arctanx)/3x,a=0. ) x2-1D/2x2—x—1),a=1.
(g) (arcsinx)/(sinx),a = 0. (h) (cos3x)/(x — (n/2)), a = =/2.

The mean-value theorem asserts that a continuous function must at some point be
equal to its mean (or average) value. The “continuous” is vastly different from the
“discrete” in this respect. Give an example to show this. (Almost any example
you choose will suffice. Think of three test grades, for example, whose average is
not itself a grade that was made on a test.)

Use the mean-value theorem to prove these variant forms of the theorem:
(a) If f is continuous, then there is a point ¢ between a and b such that

[7 fdx = £ — a).

Hint. In (34), write avg f in terms of an integral.
(b) If F has a continuous derivative F', then there is a point ¢ between a and b such
that

Hint. In the equality of exercise 7.9(a), let f = F’, and use F3 to evaluate the
integral on the left.
(c) If g has a continuous derivative, then there is a point ¢ between a and x such that

g9(x) = g(a) + g()(x — a).
Hint. In the equality of exercise 7.9(b), let F =g and b = x.

The term mean-value theorem is most often applied to the statement in exercise
7.9(b). Use this statement to show that if P = (q, F(a)) and Q = (b, F(b)) are two
points on the continuously differentiable curve F, then there is another point R =
(¢, F(c)) on the curve F, located between P and Q, such that Slope(PQ) is equal
to the slope of the tangent line to F at R.
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7.11. Assume that f’ and ¢’ are continuous and that ¢’ is never equal to zero, except
possibly at the point a. Assume that f(a) and g(a) are equal to zero, so that the
quotient f/g becomes indeterminate at the point a. By carrying out the following
steps, prove statement (35).

(a) Let h(x) = f(b)g'(x) — g(b)f'(x). Show that avg,, h=0. Hint. Since b is a
constant, {5 h(x)dx = f(b) {5 g’ — g(b) [, /. Use F3 to evaluate these integrals
and to see that the integral of &, from a to b, is equal to zero.

(b) Apply the mean-value theorem, together with the result of part (a), to show
that h(c) = O for some ¢ between a and b. Then derive (35).

7.12. Find the limit of each of the following at the indicated point a.
(a) (sin(3x?))/x3, a=0.
(b) (x —tanx)/x,a=0.
(¢) (x —tanx)/x? a=0.
(d) (1 —cosx)/(xsinx),a=0.
Answers: (a) 3. (b) 0. (c) 0. (d) &.

7.13. Consider again the three versions of the mean-value theorem established in
exercise 7.9.
(a) Show that the statemnent in part (a) of exercise 7.9 is true even if b < a.
(b) Show that the statement in part (b) of exercise 7.9 is true even if b < a.
(c) Show that the statement in part (c) of exercise 7.9 is true even if x < a.

7.14. Show that statement (35) of this section is true even if b < a.

§8. Integrals as Antiderivatives

A continuous function does not necessarily have a derivative. Regardless of
how complicated the continuous function is, however, it has an antiderivative,
expressible in terms of an integral.

Theorem on Integral Representations of Antiderivatives. Let f be a continuous
Junction defined on a connected domain and let ¢ be any fixed point lying in the
domain. Then an antiderivative of f is given by F, where F is defined by the
integral expression

F) = [T f. (36)

ProoOF. Note that the integral expression (36) exists for any point x in the
connected domain. The existence is guaranteed by F2 since f is assumed
continuous. To show that F'(x) = f(x), we use Fermat’s method.

Fx+h—Fo=[""f=[Tr=["r.

Dividing by nonzero h, we get

Pox =T 2 " = avg 1. )

h x,x+h
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Hence,
—F
F(x) = Limit 70+ 7 = Fx)
h—=0 h
= Limit avg f [by (37)]
h—-0 x,x+h
= f(x) [by(28)],
since f is continuous at x. Therefore, F is an antiderivative of f. O

The careful reader will want to examine equation (37) to see that it holds
for h negative. It does. (See exercise 5.14.)

The expression (36) gives an antiderivative of f. It gives the antiderivative
that takes the value 0 at the point x = ¢, for

no=ff=o

By the uniqueness theorem F1, any other antiderivative of f differs from (36)
by a constant. For example, by the theorem just proved, we know that

6= ;s (38)

is also an antidervative of f. (G is the antiderivative that takes the value 0
at the point x = d.) The antiderivative G differs from the antiderivative F by
a constant. The reader is asked to find this constant in an exercise to follow.

The reader should learn to feel at home with integral representations of
functions. Using them: gives one the power to write down an antiderivative of
any continuous function whatever.

ExaMpLE 19. Find the antiderivative of the function arctan that takes the
value

(a) 0 at the point x = 0.
(b) 0 at the point x = 3.
(c) 5 at the point x = 0.
(d) = at the point x = 4.
(e) /2 at the point x = — 7.

This is now child’s play, although it would have been formidable indeed
prior to the discussion in this section. The answers are, obviously,

(a) F(x) = [§arctan.

(b) F(x) = [i,,arctan.

(c) F(x)=5+ [§arctan.
(d) F(x) = + [jyarctan.
(€) F(x)=+/2 + [* arctan.
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The answers are unique by the uniqueness theorem F1, and they are de-
fined for all x by the existence theorem F2, since arctan is everywhere
continuous. O

In Example 19 the function in question happened to have a name (arctan).
If the function is specified not by name but by an algebraic rule, a dummy
variable must be introduced.

ExaMpLE 20. Find the antiderivative of the function 1/x that takes the value

(a) O at the point x = 1.
(b) = at the point x = 6.
(c) 17 at the point x = —4.

What could be simpler? The answers are

(@) F(x) = [}(1/7)dt, defined for 0 < x.
(b) F(x) = + [§(1/¢)dt, defined for 0 < x.
(c) F(x) =17+ [ ,(1/r)dt, defined for x < 0.

By the uniqueness theorem the answers are unique on the specified connected
domains. O

A differential equation is an equation involving the derivative(s) of a
function. To solve a differential equation is to find a function that satisfies
the equation. We are in a position to write down the solution to any elemen-
tary differential equation of the first order (involving only the first derivative).

Theorem on Elementary First-Order Differential Equations. Given f(x), the
elementary differential equation

d
== ) (39)
X
with the boundary condition
Y(X0) = Yo, (40)
has the unique solution
y=vo+ [ 1 (41)

defined on a connected component of the domain of continuity of f.

Proor. The differential equation (39) simply specifies that y is equal to an
antiderivative of f. By the theorem on integral representations of antideriva-
tives, then,

X
y= f f + some constant,
X0
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if x4 is a point iny the domain of the continuous function f. It is clear that
condition (40) forces the constant to be y,, showing that (41) is indeed the
unique solution. Cl

ExaMpLE 21. Find the solution to each of the following differential equations
with the given boundary condition.

(a) dy/dx = cosx, y(0) = 3.
(b) dy/dx = x?, y(1) = 2.
(¢) dy/dx =1/x, y(3) =T.

This is a straightforward application of the theorem on differential
equations. However, it may take a moment to get used to the way in which
the dummy variable enters. The answers are, respectively,

(@) y =3+ [5cos =3 + [sin]; =3 + sinx.
(b) y=2+t2dt =2+ 3 =2+ (x*/3) — § = 4(x> + 9).
© y=7+[5(1/nar.

The answers to (a) and (b) are defined for all x, but the answer to (c) is
defined only for 0 < x. U

The theorem proved in this section is certainly as “fundamental” as F1,
F2, orF3. Let us call it F4 and elevate it to the same exalted status. We may
restate it in a striking way:

F4. If 1 is continuous, then the derivative of the integral of f is f. That is,

Cr=rw @)

A plea. Gentle reader, if you remember nothing else about calculus,
remember equation (42). There is no possible way to express the connection
between differential and integral calculus in a more compact fashion.

EXERCISES

8.1. What is all this fuss about antiderivatives? Doesn’t F3 say that every continuous
function has an antiderivative? Answer: No. Go back to Chapter 6 and read the
proof of F3. It says that if there is an antiderivative F, then F can be used to evaluate
the integral of f.

8.2. Find the antiderivative of the function sin? that
(a) takes the value O at the point x = 7.
(b) takes the value 4 at the point x = 7.
(c) takes the value ﬁ at the point x = 0.
Answer: (c) F(x) = /3 + [§sin?tdt.
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8.3. Fill in properly the indicated places (a) and (b) in each of the tables below.

x|y dy/dx
0 5
x | @ | Ux+3)
2 | (b)

Answers: (a) 5 + 5 (1/¢ + 3))de. (b) 5 + [3(1/t + 3))dt.

(i1) x y dy/dx
3|
(a) 3x?
71 (b)

Partial answer: (b) 316.5.

(iii) x y dy/dx

1 0
X (a) 1/x
3 (b)
Partial answer: (b) [3(1/t)dt = 1.0986 . . ..
8.4. By the uniqueness theorem expressions (38) and (36) must differ by a constant.
Find the constant. Answer: |7 f — [5 f = [ 1.

8.5. Each of the following is a continuous function, everywhere defined. Find its anti-
derivative that takes the value = at the point — 5.

(a) |x|.
(b) |sin x|.
© 3+ 4|
Answer: (b) F(x) = 7 + % 5 [sint|dt.
8.6. Use (42) to find the derivative of each of the following:
(@) y=3+[3(t+ 4.
(b) y =cosx + [;(arctant)dr.
(©) L =1+ [o(sin®x + 10)dx.
Answers: (a) dy/dx = x + 4x3. (b) dy/dx = —sin x + arctan x. (c) dL/dt = 2t + sin?
t + 10.
8.7. Use (42) together with the chain rule to find the derivative of each of the following:
(@) y=3+ 5 (t + 4% dr
(b) y = fa*"(arctant + cos>r)dt.
(c) C = [§"*(cos’s — tans)ds.
Answer: (a) Here we have the chain given by the expression in exercise 8.6(a) and
the equation x = r2. By the chain rule,
dy _ dy dx

dy dydx
= de g = A2 = (7 + 402,
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8.8. Find the derivative of each of the following:
(@) y=ficos’tdr.  Hint. {3 f=—[%f.
(b) y={*,cos’tdr. Hint.[Z f=[2 f+ 5/

§9. Integrals as Work and as Distance

The term work has a technical meaning in physics and is defined in a very
simple way, provided we have motion against an opposing force that does not
vary. Work is the product of the opposing force and the distance traveled:

W=f-d

For instance, if a person weighs 150 pounds (Ib) and he climbs up a rope
from a height of 6 feet to a height of 10 feet, then the amount of work done is

W = (150 1b)(4 ft) = 600 ft-Ib. (43)

The calculation of 600 foot-pounds (ft-Ib) of work is based on the assump-
tion, not entirely valid, that the force of gravity opposing the motion was
constant at 150 pounds throughout the motion. Actually, the law of gravity
says that the higher one goes, the less one weighs, but surely the weight loss
over so short a trip may be ignored here.

Suppose the problem had been to calculate the work done in moving
this same person from the earth’s surface to a point 500 miles above the
earth’s surface. Then the weight loss would be substantial and could not be
ignored in our calculations. Let us discuss the law of gravity briefly.

According to Newton’s law, the weight of an object, which is the force
f(x) opposing upward motion, is inversely proportional to the square of
the distance x from the earth’s center. That is,

f(x) = gravitational force at distance x from earth’s center

_k

=3
where k is the constant of proportionality. When x = 4000 miles (the radius
of the earth, according to Eratosthenes’ measurement), we then have

. k
weight on earth’s surface = f(4000) = (4000)%"

Solving this equation for k yields the constant of proportionality:
k = (4000)? (weight on earth’s surface),

and the force of gravity therefore varies in accordance with the rule

4000)2 .
fx)= ( 2 ) (weight on earth’s surface), where x is tn miles.  (44)
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ExamMpLE 22. How much work is done in taking an object weighing 150
pounds on the earth’s surface to a point 500 miles above the earth?

This problem requires a little speculation, for the weight loss is con-
siderable. According to (44), the force of gravity at the end of the trip, when
x = 4500 miles, is given by

_(4000)? 3
f(4500) = (7150—0)2(150) =118.51b.

How should work be measured, then, when the opposing force varies along
the path of travel? The answer, as we shall see, is to measure the work by a
certain integral.

Consider the work AW done in moving from x to x + Ax, where Ax is
a very small positive number. Since the opposing force at any stage of this
short move is between f(x) and f(x + Ax), it is clear that the work AW lies
between the quantities

f(x)4dx and f(x + Ax)Ax.

Dividing by 4x, we see that the difference quotient AW/4x lies between the
quantities f(x)and f(x + 4x):

flx) < éA—‘;—V < f(x + 4x).

What happens here as Ax tends to 0? Since f is continuous, f(x + 4x) — f(x),
and the difference quotient AW/Ax, being squeezed in between, must also
tend to f(x). That is,
aw
- S(x).
We then have the information in the following table regarding the rela-
tion between the work done and the distance from the earth’s center. (Why
is W = 0 when x = 40007)

x ’ w ‘ dW/dx

4000
x
4500

0
J)

?

To answer the question raised in Example 22 is to fill in the question mark
in the table given above. But this is just the sort of thing we have learned to
do (see exercise 8.3) by integrals. The work done during the trip from x = 4000

to x = 4500 is given by
4500
Jevon (45)

000
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Since an antiderivative of 1/x2 is —1/x, we can evaluate this integral by
F3. The work done is then, by (44),

J-mo (4000)%(150)
@y -9

4000 X

) _ 1500
dx = (4000)%(150) [7]

4000
~ 66,667 mi-lb. O

The notion of work is of great importance in physics because it is closely
connected to the notions of energy and of power. Considerations such as
those just made have led physicists to the conclusion that the natural defini-
tion of work is in terms of an integral, just like (45).

Definition. The work done against an opposing force f(x) in moving from
position x = a to position x = b is defined as the integral

s

It is important to note that this definition of work reduces to the simple
definition given at the beginning of this section in case the force f(x) happens
to be constant.

ExaMPLE 23. Suppose the force f(x) is constant at 150 pounds. What is the
work done in moving from the position x = 6 feet to x = 10 feet?
According to the definition above, the work done is

[0 = [.° 150dx = 150x]3° = 600 fe-Ib.

This agrees, as it should, with the calculation in (43). O

The preceding discussion has to do with moving a single object through
a fixed distance. If different “parts” of the object go different distances, then
the work is again expressed by an integral, but in a different way. This is
illustrated below.

ExaMPLE 24. Water weighs 62.4 pounds per cubic foot. Suppose the water
contained in an inverted conical container is at a depth of 6 feet, while the
container itselfis 7 feet high with a circular radius of 5 feet on top. How much
work is required to pump all the water out?

The problem here is that all the water doesn’t move the same distance.
It takes very little work to pump out a cubic foot of water near the top, but
more to move the same volume at the bottom. Let W be the work required
to pump out all the water if the initial depth of the water is x feet. Our plan
is to find dW/dx first, then express W itself as an integral. Fixing x, let 4x
be a small positive change. What is the corresponding change AW in work?
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What is the work AW required to pump this water to the top?

The weight of the water moved is clearly (see the picture) between

5\? 5 2
62.4n<?x> Ax and 62.4n<7(x+Ax)> Ax
pounds.

To pump this water to the top of the tank, it must move between
7—x—4x and 7—x
feet. These facts give us clear bounds on the amount of work AW it takes

to pump this volume of water to the top:
2

2
62.4n/§x (7T—x—A4x)Ax < AW < 6247 é(x +4x) ] (7T —x)4x
\7 7

Dividing by Ax we get
2

2
62.4n<§x> (7T—x—4x) < M < 62.47r<§(x + Ax)) (7 — x).
7 Ax 7

As Ax tends to zero, both sides of this inequality tend to the same limit.
Since the difference quotient AW/Ax is squeezed in between, it must tend
to that limit also. That is,

dw 5 \? 25 5 3
— = 624n| = —x)=624n{ — - x3). 46
I 62 4n<7x> (7—x)=62 4n<49>(7x x°) (46)
Since W =0 when x = 0 (why?), the solution of the differential equation
(46) is given by

. 25
W= fo 62.4n<5>(7z2 — )dt. 47)

Equation (47) gives the work W as a function of the initial depth x. If,
as in Example 24, the initial depth is 6 feet, then the work required to pump
all the water out of the tank is

6 25 2 3
fo 62.4n<@>(7t — %) dt ft-1b. 48)

The reader is asked to evaluate this integral in an exercise to follow. O
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A less rigorous way of arriving at equation (46) has the advantage of
being much quicker. Stare at the figure above and try to make each of the
following assertions seem plausible. If Ax is near zero, then all the water of
the little slice in question goes approximately 7 — x feet. Also, if Ax is near
zero the volume of water in the little slice is approximately that of a cylinder
of height Ax and radius 3x, having a volume of m(3x)? Ax cubic feet, and a
consequent weight of 62.4n(3x)? Ax pounds. The work AW is then very
close to the product of this approximate weight and this approximate
distance:

5 2
AW ~ 62.47r<7x> (7 — x) Ax.

Dividing by 4x and taking the limit as Ax tends to zero leads to equation (46).

Another use of integrals in the physics of motion is in the measurement
of distance traveled. This should come as no surprise, as we have seen already
the relation between distance traveled and antiderivatives. (See Chapter 5,
Section 9.)

Theorem on Integrals and Distance. Let the speed of a moving particle be
given at time t by v(t), where v is a positive continuous function. Then the
distance traveled between time t = a and time t = b is given by the integral

b
[28
a

ProoF. Let s denote the distance traveled by the particle, beginning at time
t = a. This means that s = 0 when t = a. Since the speed v is equal to the
rate of change of distance, we have v = ds/dt. We then have the following
information, and we want to fill in the question mark.

ds/dt

This is by now a routine problem. The question mark must be filled in by
the integral [} v, which therefore gives the distance traveled between times
t=aandt=b. O

ExAMPLE 25. Suppose the speed at time t of a certain particle is given by
u(t) = 1/t. How far does the particie go between time ¢t = 1 and time ¢t = 37
between t =4 and t = 127

Since the speed is positive, the distance traveled is the integral of the speed
over the time interval in question. The distance traveled between ¢ = 1 and
t=31is
[Fo= Lt = 1.0986 . .. units.

t

1
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The distance traveled between t = 4 and ¢t = 12 is then

[0 La

With the aid of equations (7) and (10) at the beginning of this chapter, we
see that this integral is equal to

121 121 al
L ?dt=fl ?dt—fl ?dt
=24849 ... —1.3863...
= 1.0986 . .. units. O

EXERCISES

9.1. Find the work done in moving an object from the earth’s surface to a point 1000
miles above if the object weighs 100 pounds on the earth’s surface. Answer: 80,000
mi-lb.

9.2. A satellite weighing 1000 pounds when it is at a point 1000 miles above the surface
of the earth is to be pushed out to a point 2000 miles from the earth’s surface.
(a) How much work must be done to accomplish this?
(b) How much work was required to put the satellite in its original orbit at a distance
of 1000 miles from the earth?
(c) How much did the satellite weigh when it was on the earth’s surface?
Answer: (c) 1562.5 Ib.

9.3. Evaluate the integral (48) by
(a) usingF3.
(b) using Simpson’s rule. (Why will Simpson’s rule give you the correct answer for
this integral )

9.4. Find the answer to the question raised in Example 24 if the container is completely
full of water. Answer: 63707 ft-1b.

9.5. The water contained in an inverted conical container is at a depth of 10 feet. If the
container itself is 15 feet high with a circular radius of 9 feet on top, how much
work is required to pump all the water out? Answer: 62.47(9/25) [§° (15¢* — ) dt
ft-1b. (Evaluate by F3.)

9.6. The water contained in a cylindrical container is at a depth of 10 feet. If the con-
tainer itself is 15 feet high with a circular radius of 9 feet on top, how much work is
required to pump all the water out? (You can do this by integrals, or by common
sense.) Answer: 505,4407 ft-1b. (This is the weight of the water times the average
distance it has to move.)

9.7. The water contained in a hemispherical container is at a depth of 6 feet. The con-
tainer itself is 7 feet high, which means that it has a circular radius of 7 feet on top.
How much work is required to pump all the water out? Answer: 62.4x [] (49t — )
dt ft-1b.
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9.8. Suppose the speed at time ¢ of a certain particle is given by v(t) = 10/(1 + t2). How
far does the particle go between
(@ t=0andt=1?
(b) t=1and t=/3?
Answer: (b) 57/6 units.

9.9. Suppose the speed of a certain particle is given at time t by v(t) = 10/t. How far
does the particle go between
(a t=1landt=2?
(b) t=2and t=4?
(c) t=4andt=28?

§10. Summary

An integral is definite in this sense. If an integral exists, then it can be specified
to any degree of accuracy by an approximating sum. This characteristic—
of admitting an approximation to an arbitrary degree of closeness—we take
to be the principal defining quality of a “real” number. The number {3 f
may be an average, may effect a quadrature, may measure a quantity of
work, or may represent a length of distance traveled. The function {7 f
represents an antiderivative of f if f is continuous.

Fundamentals are important. It is useful to know theorems guaranteeing
the existence of integrals or the uniqueness of solutions to a given equation.

Integrals have other uses that we do not yet know. There are still more
mean-value theorems and other versions of L’Hépital’s rule. There are many
parts of the house of integrals we have yet to see. But we can begin to feel
at home.

Problem Set for Chapter 8

1. (A discussion question) Suppose two students are working on the same mathematics

problem, in which it is required to find a certain “x”, and they give the following
answers:

Student A. x = arctan 2.
Student B. x = [5(1/(1 + t%))dt.

Both answers are declared to be correct. Assuming that no calculator and no table

of tangents and arctangents is available, explain which answer more directly leads

to the desired result if

(a) it is desired that the angle x be constructed very carefully.

(b) it is desired that the number x be calculated very carefully (to many decimal
places).
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2. Some of the following “calculations” are ridiculous. Find them, and explain why
they are in error.

(@) f3(=2x/x* = 1P)dx = (1/* = D) = %-
(b) f5'2(—2x/x* — 1)?)dx = —}.
(©) [4%(1/5/1 = t?)dt = arsin & — arcsin 0 = 30 — 0 = 30.

3. Consider the simple step function given by f(x)=4 if 0<x <1 and f(x)=6
ifl<x<2
(a) Sketch the graph of f on the domain 0 < x < 2.
(b) Apply Eudoxus’ method to f on the domain 0 < x < 2, and show that S, = 10,
S, =10, S¢ = 10.
(c) Show that S, = 10 whenever n is even.
(d) Calculate S5, S5, and S, in Eudoxus’ method.
(e) Does Limit S, exist?
(f) Is f continuous throughout the domain 0 < x < 2?
(2) Does {2 f(x)dx exist?
(h) Do your answers to parts (f) and (g) contradict F2 ? Explain why not.

4. Consider each of the following integrals. Which of them can be seen to exist by
applying F2 ? Which of them are obviously equal to zero?

(a) fL,(1/t)dt. (b) |, t*7dr.

(c) [2,sec?tdr. (d) [*,sindtcos3tdt.

(e) {Y2,,arctan(arcsin ¢)dt. (f) [%,arctan(arcsint)dt.
(®) J25+/50—¢*at (h) f*4+/50 — .

S. Approximate the number f 3 (1/t) dt by the method illustrated in Section 3, calculating
S4, Sg, and S;. Then make your best guess at it by taking the average of your
bounds, as illustrated at the end of Section 3. Would you expect this guess to be
slightly high or slightly low?

6. Approximate the number L(5) = {3 (1/t)dt by making the guess (see exercise 2.7)
that L(5) + L(2) = L(10), and then solving this equation for L(5) using the informa-
tion in formulas (5) and (9) of Section 2.

7. Approximate the number (3(1/t)dt by using Simpson’s rule. That is, calculate
S3(1/1).

8. (a) Use Simpson’s rule to calculate S§%(1/y/1 — t2). Simplify your answer to (15 +
16,/15 + 10,/3)/180.
(b) Explain why (15 + 16\/1_5 + 10\/3)/30 ought to be a close approximation to the
number 7.
(c) (Optional) Use a table of square roots to help evaluate the quotient in part (b)
to five decimal places. Compare your answer with 3.14159, the correct expansion
of m to five decimal places.

9. A metal bar placed along the x-axis stretches from x = 2 to x = 6. If its temperature
at the point x is given by 2x* — x? + 3x + 7, find its average temperature by
(a) using the definition of the average of a function.
(b) calculating smp, ¢(2x> — x? + 3x + 7).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

A rock thrown from the ground has height given by h = — 16t + 64t feet at time ¢
seconds after release. Find the rock’s average height

(a) during the first 3 seconds of flight.

(b) during the entire flight. (The rock hits the ground when ¢t = 4.)

A rock thrown from ground level hits the ground again after T seconds have elapsed.
Calculate the average height of the rock, treating it as a freely falling body from
timet=0tot=T.

The weight of an object depends upon its distance x in miles from the center of the
earth. The weight of an object is given by (4000)%(150)/x2 pounds if its weight is
150 pounds on the earth’s surface. Find the average weight of this object if it is
taken at a uniform rate from the earth’s surface (radius 4000 miles) to a point
(a) 500 miles above the earth.

(b) 1000 miles above the earth.

Use L’'Hopital’s rule to find the limit, at the point 0, of each of the following in-
determinate forms.

(a) (arcsin x)/x. (b) (sin mx)/3x.

(¢) (1 — cos2x)/x? (d) (tan xsin x)/(arctan x).
(e) x3/(6sinx + x> — 6x). (f) (1 = cosx)/x.

(8 (1 — cos3x)/(x — 5x2). (h) x/cos(2x — (%/2)).

In the problem set at the end of Chapter 7, do problem 3 by applying L’'Hopital’s
rule.

Find each of the following limits.

(8) Limit,, ((x* = 1)/(x — 1)).

(b) Limit,_, ((1/(x — 2)) 3 cos®t dr).
() Limit,,((1/(x — n)?) [*sintdr)
(d) Limit,_, [3(1/)dt.

For each of the following, first specify the domain of all permissible values of x
for which the expression makes sense, then find dy/dx.

(@) y=6+ [5]t|dr. () y=m+ [1(1/e*)dr.

(©) y=>5x— [3(1/(t — 4))ar. (d) y~j’5 1/t2+t+2))dt.
() y=[stantds ) y=[1/t+2)
(g) y=(2sin®tdr. (h) y—j (142 +t—2))dt.
Write down an integral expression for the antiderivative of the absolute value
function that takes the value

(a) O at the point 0.

(b) = at the point 4.

Write down an integral expression for the solution of each of the following differ-
ential equations, with given boundary condition.

(a) dy/dx = x?, y(2) = 4.

(b) dy/dx = 1/x, y(3) = 1.

(c) dy/dx = cosx, y(n) =
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19.

20.

21.

22.

23.

24,

25.

26.

For each of the differential equations in problem 18
(a) find y(1).
(b) find y(5).

(a) Use the uhiqueness theorem F1 to show that if F(0) = 0 and if F'(x) = 0 for all x,
then F(x) = 0 for all x.

(b) Find F'(x) if F(x) = [, f(t)dt, assuming f is continuous.

(c) Combine parts (a) and (b) to give a new proof that the integral |2, f(r)dt must
be zero if f is an odd function, continuous on ~a <t < a.

(a) Find the derivative of {3 (1/) dz, defined for 0 < x.
(b) Find the derivative of {T*(1/t)dt, defined for 0 < x.
(c) Combine parts (a) and (b) with the uniqueness theorem F1 to conclude that
T*(1/t)dt — {1 (1/1)dt must be constant. Find that constant. Hint. Let x = 1.
(d) Conclude that L(nx) = L(x) + L(rn)if 0 < x, where L(x) is defined by expression
(11), Section 2.

In exercise 2.7 we speculated that L(6) = L(2) + L(3), but we were unable to prove
equality. Prove that this equation is true. Hint. It is easier to prove the more general
assertion L(ax) = L{a) + L(x), if x and a are positive. Prove this more general
assertion by employing the means of problem 21, but with a replacing =.

A snail embarks on a trip at time ¢t = 0. His goal is to travel 2 feet. But he gets ever
more tired and walks ever more slowly, so that his speed v is given in ft/min by

o)=1/1+1t}) 0<t

(a) What distance does the snail travel betweent =0and t = 1?

(b) How long does it take the snail to travel a distance of n/3 feet?

(c) Write down the integral that gives the distance traveled between time t = 0 and
t = 100.

(d) Explain why the integral in part (c), when evaluated by Eudoxus’ method, will
not exceed n/2.

(e) Does the snail ever come to a complete stop on the (infinite) domain 0 < ¢?

(f) Will the snail ever reach his goal?

(g) “If you set any goal, and move toward it long enough, you will eventually
reach it.” This is an old saying. Explain why old snails never say it much.

Find the amount of work done against the force of earth’s gravity if an object
weighing 500 pounds on the earth’s surface is raised vertically to a point

(a) 1000 miles above the earth’s surface.

(b) 96,000 miles above the earth’s surface.

(c) L miles above the earth’s surface.

(a) Explain why the answer to part (c) of problem 24 cannot exceed 2 million mi-lb,
regardless of how large L might be.

(b) “If your capacity for work is limited, there is a bound on how high you can go.”
This is an old saying. Explain how young astronauts may disprove this saying.

(a) Prove that the work done in moving an object is equal to the product of the
distance traveled and the average force along the path of travel.

(b) Prove that the distance traveled is equal to the product of the time traveled and
the average speed during this time.
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217.

28.

29.

30.

31.

32.

33.

A car travels 120 miles in 2 hours. Prove that at some instant during this trip the
car’s speed is 60 mi/hr. Give a careful argument, illustrating clearly how the mean-
value theorem comes into play.

Look again at problem 23 at the end of Chapter 6. Show that it is solved by applying
the mean-value theorem as stated in exercise 7.10 to the function f(x) =4 — x2,
—-2<x<1.

A container is 5 feet deep and is filled with water (weighing 62.4 pounds per cubic
foot) to a depth of 3 feet. Calculate the work required to pump all the water out
if the top of the container is a circle of radius 5 feet and the container is shaped like
(a) a cylinder.

(b) a cone.

(c) a hemisphere.

A chain 50 feet long weighs 150 pounds, the weight distributed uniformly along its
length. If the chain is suspended vertically from the top of a cliff, how much work is
required to pull it to the top?
Find dy/dx if

3x2+4

y= cos(xt)dt.

arctan x

The curve y = 1/t, 0 < t, is of extraordinary interest, as we shall see in the next

chapter.

(2) Show that S,(1/t) = S5(1/0) if r > 1.

(b) Can one infer, from part (a), that |}, (1/1)dt = {7 (1/t)dt?

(c) Prove that the area indicated by vertical cross-hatching is equal to the area with
horizontal cross-hatching.

(1,1)

(r,1/r)

R,
1

Hint. Begin by showing that the two rectangles R, and R, have the same area.
(d) Deduce from part (c) that {1 ,(1/0)dt = [} (1/t)dt if r > 0.

(A proof of the chain rule) Suppose we have the chain y = f(u) and u = g(x), where
[ and g are differentiable functions. By this chain we have

y = flg(x)).

A proof of the chain rule is outlined below, under the additional assumption that
f" is continuous. (The chain rule can be proved without this assumption, but the
proof is more tedious.)
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(a) Justify each of these equalities if g(x + h) # g(x).
g+ m) = flgn) = [ 1

g(x)

=[mx+m—guﬂ[ avg f}
g(x), g(x +h)

(b) Show that the equalities of part (a) hold even if g(x + h) = g(x).
(c) Justify each of the following equalities, thereby proving the chain rule.

dy_L..ﬂMX+M)—ﬂMﬂ)
— = Limit
dx h—0 h

x+h) —
~ Limit [M}[ avg f,]
h—0 h g(x), g(x +h)

=g (x)f"(g(x))
= f'(Wg'(x)
dy du

34. The second derivative /" can be derived directly from the function f without taking
the first derivative, as follows:

g(x +h)

9 = Limig [+ = Y0+ S =)

h—0 h

assuming f" continuous. Prove that this is so, by evaluating this limit with the
help of L’'Hb6pital’s rule. Hint. It will require two applications of L’Hopital’s rule,
and, in each one, you will need to use the chain rule to get derivatives. Remember
that x is fixed, and the limit is taken with respect to h.

35. Suppose a cylindrical container of height h and radius r is completely filled with a

liquid weighing D pounds per cubic unit.

(a) Calculate the work required to empty the container by pumping all the liquid
to the top.

(b) Calculate the weight of the liquid in the full container.

(c) Using your answers to parts (a) and (b), show that this problem could have been
solved by pretending that the entire weight of the full container was concen-
trated at a depth of /1/2. (See exercise 9.6.)

36. In the situation described in problem 35, suppose the container is an inverted cone
instead.
(a) Calculate the work required to empty the container.
(b) Calculate the weight of the liquid in the full container.
(c) Show that this problem could have been solved by pretending that the entire
weight of the full container was concentrated at a depth of 3h/4 (and therefore
moves a distance of 4/4 units).

37. Suppose a hemispherical container of radius r is completely filled with a liquid
weighing D pounds per cubic unit. As in problems 35 and 36, find the centroid of the
liquid. (The centroid, or center of mass, is an important physical notion. For the
purpose of calculating work, the liquid behaves as if all its weight is concentrated at
its centroid.)



The Central Height

When we began studying trigonometry in Chapter 7, we found the calculus
of trigonometric functions to be made easier by the introduction of radian
measure. The desire for simplicity brought about the adoption of a “natural”
unit of measure—the radian.

We begin this chapter with the study of logarithms. What is the natural
way of measuring logarithms in order to simplify the calculus of the logarith-
mic function? We shall see, and soon.

No longer need we be bound to the lowlands of algebraic and trigono-
metric functions. We are prepared to conquer the height above. If calculus
has a center we may find it here, where lcgarithms multiply and exponentials
grow.

No prior acquaintance with logarithms is necessary in order to read this
chapter.

§1. Logarithms

Addition is easier than multiplication. This is one reason why logarithms are
valuable. Logarithms can be used to convert problems in multiplication
(or division) into problems of addition (or subtraction). How can such a
conversion be possible? The principle is really quite simple.

Everybody knows, for example, that

2327 =210,

299
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That is, the problem of multiplying 23 and 27 is solved by adding 3 and 7 to
get 10, and then raising the base 2 to the exponent 10. The problem of multi-
plying 8 by 128 can be handled with no multiplication at all:

8128 = 2327 =210,

The numbers 3 and 7 here are logarithms, to the base 2, of the numbers 8 and
128, respectively. Multiplying the numbers 8 and 128 involves adding their
logarithms.

We can speak of logarithms to any base b, provided b is positive and not
equal to 1.

Definition. Let b be a positive number, with b # 1. If a is also positive, then
the logarithm of a to the base b is denoted

log, a

and is defined as the exponent to which the base b must be raised in order to
get a. That is,
log,a=1t means b'=a. (1)

For example,

log,8 =3 (because 2° = 8),
log, 128 =7 (because 27 = 128),
log;2 =1 (because 2! = 2),

(

log,1 =0 (because 2° = 1),

1 1
10825 =1 (because 271 = 5)

In the decimal system, the number 10 is the most convenient choice of
base. For example,
log;,100 = 2 (because 10% = 100),
log,o10 =1 (because 10 = 10),
log;o1 =0 (because 10° = 1),
log,,0.10 = —1 (because 107! = 0.10),
log;,0.01 = —2 (because 10~ 2 = 0.01).

In principle then, it is easy to see how a theory might be constructed to
convert multiplication into addition. Just as

log, (8 - 128) = log, 8 + log, 128,

so we should expect that the logarithm (to any base) of a product will be
equal to the sum of the logarithms of the factors:

LOG(uv) = LOG(u) + LOG(v). (2)
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While it is clear in principle that there should be many different logarithmic
functions [that is, functions satisfying condition (2)], it is not yet clear how
any such function might be defined in practice. What, for example, is

log,on? 3)

To say log,on =t is to say 10' = = [by (1)]. To give a numerical value to
expression (3) is to solve the equation

10 =n 4

for t. How can such an equation as this be solved? We shall see. About all we
can do now is make guesses. Since

1012 = /10 =3.162 ...~ =,
we can guess that the solution to (4) is just a little less than . Therefore,
logom =~ 0.49.

But if we needed log, , = to many decimal places, guessing would be a very
inefficient procedure. Actually, we have in our hands already the means to
overcome all difficulties connected with a practical way of defining a loga-
rithmic function. In the next section we shall begin to move in the proper
direction.

EXERCISES

1.1. Evaluate each of the following.
(a) log, 1024.
(b) log, .
(c) log;27.
(d) log, 1,000,000.
Answers: (a) 10. (b) —2. (c) 3. (d) 6.

1.2. Evaluate each of the following.
(a) logyg242.
(b) log,,4 2.
(c) log,,3.
(d) logy,000,000 10.
Partial answers: (a) 5. (b) —%.

1.3. On the basis of the answers to exercises 1.1 and 1.2 formulate a conjecture about the
relation of log, b to log, a.

1.4. For each of the numbers on the left below, make a guess as to the number on the
right that most closely approximates it.

i
(v) log,0.32.
(vi) log,,0.032.

(i) log, 7. (a) —0.5.
(ii) log, 2. (b) —1.5
(iii) log,, 316. (c) 1.7.
(iv (d) 0.6

(

(

)
)
) log,o3162.
)
)
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1.5. A logarithmic function is a function defined on the positive real numbers that
satisfies the identity (2). Show that any logarithmic function has the following

properties.

(@) LOG(1)=0.

(b) LOG(u?) = 2LOG(u).
() LOG(u?) = 3 LOG(u).

(d) LOG(/x) = $ LOG(x).
Hint. Let u = v = 1 in identity (2) to prove (a); to prove (b), let v = u. To prove (d),
“letu = \/T in the equation established in part (b).
1.6. Show that any logarithmic function satisfies the following.
(a) LOG(abc) = LOG(a) + LOG(b) + LOG(c) if a, b, and ¢ are positive numbers.
(b) LOG(a,a; - - - a,) = LOG(a,) + LOG(a,) + - - - + LOG(a,) ifa,, a;, ..., a,
are positive numbers.
(c) LOG(c") = nLOG(c) if ¢ is a positive number and n is a positive integer.
Hint. Let u = ab and let v = ¢ in identity (2) to prove (a). To prove (c) let a, =
a, =---=a, = cin the equation established in part (b).
1.7. Given a logarithmic function, suppose that a number e is found satisfying
LOG(e) = 1. )
(a) Show, using the result of part (c) of exercise 1.6, that LOG(e") = n for any
positive integer n.
(b) What would you guess that LOG(¢*) is equal to?

§2. The Natural Log Function

A logarithmic (or log) function is any function that converts multiplication
into addition, as in equation (2). We already have such a function in our hands.

Defirition. The natural logarithmic function In is defined on the domain 0 < x
by the equation

1nx=flx%dt. (5)

Often one sees the expressions
log,x and L(x)

used in place of In x to denote the natural log function. It is easy to prove that
In x (read “natural log of x” or simply “el-en of x”) converts multiplication
into addition. By means of this conversion we see that multiplication on the
positive real numbers has the same structure as addition defined on all real
numbers. A Greek word, homomorphism (literally, “same form”) is used in
modern mathematics to describe this remarkable similarity between the
(apparently) unlike operations of multiplication and addition.

The Homomorphism Theorem. If a and b are positive numbers, then

In(ab) = Ina + Inb.
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ProoF. By F4,

d d px1 1
e = — — = — . 6
dx(lnx) dx vt X 0<x ©

By the chain rule, using the fact that d(In x)/dx = 1/x, we have

d 1 1
—(Inax) =—a=-, 0<x.
dx ax X

Therefore, In ax 1s an antiderivative of 1/x. By F3, then,

b

1=1nab—1na.

1
Inb= J‘lb?dt =Inat

Solving this equation for the expression In ab yields the desired result. [

The homomorphism theorem was, in essence, proved in problem 22 at
the end of Chapter 8, but by a slightly different means. As our familiarity
with calculus grows, we shail often find that there is more than one way to
see that a given statement is true. For example, from problem 32 at the end
of Chapter 8§ we know that

1 r1

[0, de=[l—ar ito<r.
1r ¢t 1y

We should recognize the integral on the right-hand side here to be Inr, by

definition of the natural log function. Thus, if 0 < r,

11 l/rl 1
1n;~=f1/r?dz= -, cdt=~In-. ™

Theorem on Logarithms of Reciprocals. If 0 < r, then
1
In == Inr. (8)

Proor. Equation (8) is an immediate consequence of (7), but let us give a
different proof, just for fun. A powerful tool for verifying identities, such as (8),
is the uniqueness theorem F1. By F1, two differentiable functions must be
identical on a connected domain if they have the same derivative and agree
at just one point. (See exercise 1.5 of Chapter 8.) Let us show that —Inr and
In(1/r) have the same derivative:

dr

d 1
(=Inn = =Snn) = — [by (6)]

a1 -1 1
ar\ " o2

By the chain rule,
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We have shown that the two functions on either side of (8) have the same
derivative. Since it is obvious that equation (8) holds when r = 1, the uni-
queness theorem guarantees that equality holds throughout the connected
domain 0 < r. O

Theorem on Logarithms of Numbers Raised to Rational Powers. Let m and n
be integers, with n # 0. Then for any positive number x,

In(x™") = ';'l?ln X. 9)

Proor. We shall prove the identity (9) by the uniqueness theorem. Obviously
equation (9) is true at the point x = 1, when both sides of equation (9) are
equal to 0.

Taking derivatives, we find that
d (m \ m d m
—( =1 =——(nx)=-x""
dx<n nx/ ndx(nx) nx
By the chain rule, using the rule* for differentiating rational powers of x,
d 1
Linaminy = — (D )amin-t 28 1,
dx xmin

n n

By F1, equation (9) holds throughout the connected domain 0 < x. O

To become more familiar with the natural log function, let us set about
plotting the graph of
: L=Inx, 0<x

Taking derivatives, we have
dL 1 ’L -1
dx  x’ dx*  x?
Obviously the first derivative is always positive on the domain 0 < x, and
the second derivative is always negative. The curve L = Inx is therefore
continually rising, but is concave downwards.
We dre already familiar with some points on the graph. From equations
(5) to (10) of Chapter 8 we have the information in the following table, where
numbers are rounded off to three places.

R 0<x.

fln’\
X L

* Derived in exercise 8.10 of Chapter 7.
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From the theorem on logarithms of reciprocals we immediately know twice
as much as before:

(/ln\
x

L

The graph of the natural log function looks like this:

In
3,1.1)
(2,.69)

(1,0)
G, —.69)

Using the homomorphism theorem and the other results of this section,
we can calculate many new values of the natural log function.

ExaMpLE 1. Calculate the natural logarithm of (a) 100, (b) 50, (c) 0.01,
(d) /6, () /6/4, and (f) (100)*'>.

The following calculations make use of values tabulated above.
(a) In100 = In(10%) = 2(In 10) = 2(2.303) = 4.606.
(b) In50 = In(3 - 100) =In3 + In100 = —0.693 + 4.606 = 3.913.
(¢) In0.01 =Intis = —In100 = —4.606.
(d) In\/6 = In(6'?) = $In 6 = £(1.792) = 0.896.
(e) In(/6/4) = 1n4f = ln4 + lnf —1.386 + 0.896 = —0.490.
(f) In(100%’3) = $In 100 = %(4.606) = 3.071.
(

In each of the calculations above there may be slight error in the last decimal
place because the table used is accurate to only three places.)

EXERCISES

2.1. In this section we have two proofs of the fact that the natural log of 1/r is the
negative of the natural log of r. Give a third proof of this fact, by showing that
for any logarithmic function whatever, it is true that LOG(1/r) = —LOG(r).
Hint. In equation (2), let u = 1/r and let v = r.
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2.2.

2.3.

2.4.

25.

2.6.

2.7.

2.8.

29.
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Having done exercise 2.1, you now know three different proofs that equation (8)

is an identity.

(a) Which of these proofs might be described as geometric? as algebraic? as
analytic?

(b) (For students of aesthetics) Which of these three proofs is the prettiest? Why?

(c) Which of these proofs illustrates the most powerful general method of proving
identities?

Use the chain rule to find the derivative of each of the following.

(@) y=1In1 + x3). (b) y =In(3 + cosx).
(¢) y=Innx. (d) y = In(arccos x).
(e} y =sin(lnx). (f) y = arctan(In x).

(®) y=+3+(nx)> (h) y= cosz(ln 7x).
Answers: (a) 2x/(1 + x?). (b) (—sinx)/3 + cosx). (d) — 1/\f1——x arccos X.
() (1/x)cos(In x). (f) 1/(x + x1In?x). (g) (In x)/x+/3 + In% x.

Some of the functions defined by the rules in exercise 2.3 do not have an un-
restricted domain. Find them and specify the largest domain on which they are
defined. (Remember that the natural log function is defined only on the domain of
positive real numbers.)

Answers: ()0 < x.(d) —1 <x < 1.(e)-(h) 0 < x.

Write an equation of the tangent line to the curve y = Inx at the point
(a) (1,0).

(b) (&, —0.693).

(c) (4,1.386).

Answers:(a) y =x — 1.(c) y — 1.386 = 0.250(x — 4).

Prove that the natural log function converts division into subtraction, i.e., In(b/a) =
Inb — Ina if a and b are positive numbers. (Can you give more than one proof?)

Use only the short table given in this section together with the properties of the
natural log function to find the natural logarithm of each of the following.

(a) 3000. (b) +/3000.

(¢) /3000/100%'3, ) 9

() 0.009. ()

(®) 2(3/2)"*°. (h) \/5/4\/_

(I) 10(16)3/8 ( ) 31000

Answers: (b) 4.003. (c) 0.932. (e) —4.711. (f) 1.609. (g) 0.734. (h) —1.183. (j) 1099.

The domain of In is given by 0 < x. By carrying out the following steps, establish

the range of In.

(a) Show that In(3") > n, and In(37") < —n, for any positive integer n. Hint.
In(3") =nln3.

(b) Use part (a) to conclude that the range of In includes —n < y < n, for any
integer n.

(c) Use part (b) to conclude that the range of In is unrestricted.

Does Inx, 0 < x, have an inverse In~!? If so, what is the domain and what is the
range of In"1?
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2.10. Justify each of the following equalities, where a, b, and k are positive.

1 b 1
lnb—lna=J‘b?d:=1n_=ﬂ‘b?dt.
a ) a a

§3. The Exponential Function

The natural log function has an inverse In~' since the curve y = Inx is
always increasing. What is In~'? It is called the exponential function exp,
and its place is at the very center of the whole discipline of calculus. Why?
Because the exponential function, as we shall see, is its own derivative!

Definition. The exponential function exp is defined as the inverse of the natural
log function. That is, exp 1s the function having the following properties:

In(expx) = x for all x; (10)
exp(ln x) = x, 0<x. (11)

Equations (10) and (11) should not seem mysterious. If they do, the reader
should review problem 26 at the end of Chapter 7. The equations simply
say that the function exp has the effect of “undoing” whatever the function
In does. The range of the exponential function is the set of positive real
numbers, since this is the domain of the natural log. The domain of exp is
unrestricted since (see exercise 2.8) the range of In is unrestricted.

What does the graph of the exponential function look like? Being the
inverse of the natural log, the exponential function has a graph that is the
reflection through the line y = x of the graph of In.

exp
x y
—2.303 0.100
—1.099 0.333
—0.693 0.500
0.000 1.000
0.693 2.000
1.000 ?
1.099 3.000
2.303 10.000
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Since the natural log converts multiplication into addition, it should come
as no surprise that the inverse function has the opposite effect:
Homomorphism Theorem. For all real numbers a and b,

exp(a + b) = (exp a)(exp b). (12)

The proof of this is easy and is left to the reader as an exercise. The most

striking property of the exponential function, which gives it a unique status
among all functions studied in calculus, is the following:

Theorem on Differentiating Exponentials. The exponential function is its own
derivative:

(exp)’ = exp; (13)

moreover, if f is any differentiable function then

d
25 XPUf (X)) = f'(x) exp(f(x)). (14)

Proor. Equation (10) says
In(expx) = x for all x.
Differentiating both sides yields

expx(exp)’(x) =1

Multiplying this equation through by exp x, we get
(exp)'(x) = exp x,
which proves (13).
Equation (14) is an easy consequence of (13) and the chain rule. If y =
exp(f(x)), then we have the chain y = expu and u = f(x). By the chain rule,

dy _dy du

dx  du dx = (expu)f'(x) = f'(x) exp(f(x)). 0

The application of the rule for differentiating exponentials is straight-
forward:

—eXpX = expx,

dx

d
—exp2x = 2exp 2x,
dx
(15)

%exp(xz) = 2xexp(x?),

Ix exp(sin x) = (cos x) exp(sin x).
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Here are some more examples.

d 1+ expx cxp X by the square root rule
-— =—————  bythesquarer ;
dx 21 +expx a

d
a;(exp x)* = 2(exp x)(exp x) = 2(expx)?, by the rule for squares; (16)

d( 1 -1 -
d_< _> = (expx) = &, by the reciprocal rule. O

x\expx/ (expx)?

Look again at the graph of the exponential function. What is exp 1? From
the graph it appears to be somewhere between 2.5 and 3. Later on we shall
see how this number can be calculated to any desired degree of accuracy.
As we shall see in Section 9,

expl =2.71828 . ... (17)

It is convenient to introduce a special symbol to stand for this number, which
plays a central role in the theory of exponentials. It is called e.

Definition. The number e is defined by the equation
e=-¢expl. (18)
Equivalently, e is that number satisfying the equation

Ine=1. (19)

By (17) and (18), e = 2.71828 . ... The number e is very special. Like 7,
it pops up in the most unexpected places.

Why is the number e so important to the exponential function? Consider
the following. For any rational number m/n we have

In(e™™) = —Ine [by (9]

m

=— [by (19)]-

n

Therefore, m/n = In(e™"), so

exp% = exp(In(e™™"))

= emin [by 11)].
This shows that
expx = e, (20)

whenever x = m/n = a rational number. The exponential function exp is
now seen to be aptly named. By (20) it is indeed an exponential function, and
its base is e.
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EXERCISES

3.1

32

33.

34.

3.5.

3.6.

3.7.

Suppose that Ins = Int, where s is a positive number and ¢ is a positive number.

Prove that s = ¢ either

(a) by an informal argument referring to the rising graph of the natural log
function; or

(b) by writing

I
O=lnt—lns=f[—dx
s X

and arguing that the only way the integral can be zero is for s and ¢ to be equal.

(a) Show that In(exp(a + b)) =a + b.

(b) Show that In[(expa)(expb)] = a + b also, by using the homomorphism prop-
erty of the natural log, together with property (10).

(c) Use the results of parts (a) and (b), together with exercise 3.1, to prove the
identity (12).

Check to see which of the following are identities. (Take the natural log of both
sides in each equation. By exercise 3.1, positive numbers are equal if and only if they
have the same natural logarithm.)

(a) exp(x?) = 2expx.

(b) (expx)? = exp2x.

(c) (expx)" = expnx.

(d) (expa)/(exp b) = exp(a/b).

(¢) (expa)/(expb) = exp(a — b).

Partial answer: Equation (a) is not an identity. The natural log of the left-hand
side is x2, while the natural log of the right-hand side is In2 + x.

Write an equation of the tangent line to the graph of y = expx at the point
(@) (0,1).

(b) (1,e).

Answers: (@) y=x+1.(b)y —e=e(x — 1).

Find the second derivative of the exponential function. Then find the 37-th
derivative of it.

Find the derivative of each of the following.
(a) xexpx.

(b) exp(tan x).

(c) expmx.

(d) (Inx)(expx).

(e) (sinx)(exp 3x).

(f) sin(exp3x).

Answers: (a) exp x + xexp x. (b) (sec? x) exp(tan x). (¢) wexp nx. (d) (In x)(exp x) +
(1/x)(exp x).

The exponential function is continuous everywhere (because it is differentiable
everywhere). Use the continuity of exp to answer the following.

(a) What is Limit, _,, exp x?

(b) Does the integral [3exp¢dt exist?

(c) What is d([7exp t dt)/dx?

(d) What is Limit (exp(1/n)) as n increases without bound?

Answers: (a) expn. (d) 1.
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38.

39.

3.10.

Since the exponential function is its own derivative, the exponential function is
also its own antiderivative. Use this to evaluate the following integrals by F3.

(a) [3exptd:.
(b) [sexptdr.
(©) [jexptdt.
Answers: (a) e? — 1. (b)e — 1. (c)expm — e.

Is exp an even function? an odd function? (Look at its graph to tell) Write the
exponential function as the sum of an even function and an odd function. [See
exercise 5.9, parts (i)-(k), in Chapter 8.]

Answer: See problem 5 at the end of this chapter.

(Only for those with a Pythagorean love of numbers) The following is pure play

with numbers, for which only a little justification is offered. By serendipity we

are able to approximate the number e very nicely.

(a) Simpson’s ruleis expected to work better and better over smaller and smaller
intervals. Convince yourself that the following approximation ought to be
quite good if n is a large integer.

_ i/n
elin _ o=t J‘ exp
—1/n

1
~ S exp = 3—(e‘ Un 4 4 4 e'm),
n

(b) Multiplying both sides of an approximation by a large positive integer n
offers no guarantee that the approximation will still be close. Nevertheless,
multiply the approximation of part (a) so as to obtain

(3n — 1)e?" — 4t — (3n + 1) = 0.

(c) The expression on the left in part (b) may be regarded as a quadratic in '™
Apply the quadratic formula, throwing away (why?) the negative root, and
obtain

i 2319

3n—1

e

(d) Even if the approximation in part (c) is very close there is no guarantee it will
still be close if both sides are raised to the n-th power. Nevertheless, do this
hopefully, writing

3n—1

o [2 +/3+ 9n2:|"

(e) The approximation in part (d) is expected to get better as n is taken larger and
larger. Evaluate the expression on the right, using a table of square roots, for

) n=1.

(i) n=2.
(i) n=4.
(iv) n=8.

Answers: (i) 2.732. (i) 2.719. (iii) 2.7183. (iv) 2.718286.
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§4. Exotic Numbers

Everyone today has heard the phrase “exponential growth”, especially in
connection with the alarming rate at which the world’s population is rising.
The phrase refers, of course, to the rapid rise of the exponential function’s
graph. The exponential function also pops up in studying the decay of
radioactive material and in the theory of compound interest. We shall study
these “external” applications of the exponential function shortly. Right now,
let us study how the exponential function is applied “internally” to mathe-
matics itself, rather than to the external world.
Consider such an exotic expression as

e (21)

What could this mean? What should it mean? Is it a real number? Can we
make sense out of such expressions as (21), or, for example,

2" B 32 and 627 (22)

How can a number be raised to an irrational power?

As we have done so often in the past, we must call on our old friend Lim.
Consider the expression (21). Let us first say what it should not mean. It
should not mean any of the following numbers:

63, 63'1, e3.14’ e3.141, e3.1415’ .

The expression " should not denote any of these numbers, but should denote
their limit. That is, " should be defined as

e" = Limit &%,
where x tends to n through rational values, like 3, 3.1, 3.14, etc., in the
sequence given above. But ¢* = exp x if x is rational, by (20). Therefore the
definition just given implies that

e” = Limit exp x = expm,

X
by the continuity of the exponential function. This answers our question
about raising a number to an irrational power, if that number happens to
be e. By the same token as above, it is natural to define ¢' as follows:

e =expt

for any real number t, rational or irrational. For example,

e¥® = exp./3,
e® =exp0 =1,

e"?=exp(ln2) =2,
"4 = exp(lna) = q,

1
-1 —_ = —,
e ! =exp(—1) 5
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(t,exp?)

emim
m

_

Since ¢ and exp t agree when ¢ is rational, it is natural to define ¢' as exp ¢ for all ¢

Having seen how to define ¢' for any real number t, we can apply similar
considerations to define a', where a is any positive number. From equation
(9) we already know that the following identity holds for every rational
number:

In(a™") = %ln a.

It is natural to define the number &' in such a way that the equation
Ind =tlna (23)

becomes an identity, holding for all real numbers t. By exponentiating both
sides, we see that (23) is equivalent to

a =exp(tlnag) =", (24)
We are thus led to this definition.
Definition. Let a be a positive number and let ¢ be any real number. Then

a' is defined by equation (24).
The exotic numbers listed in (22) are then rendered as follows:

2" = exp(nIn2) ~ exp(3.14(0.69)) = exp2.17 = e*!7,
e¥® = exp(y/31Ine) = exp(y/3) ~ exp(1.73) = e!'73,
32 = exp(y/21n3) & exp(1.41(1.10)) = exp 1.55 = e!-53,
(

6° = exp(eln 6) ~ exp(2.72(1.80)) = exp 4.90 = *°°.

Any positive real number can be expressed as a power of e. The problem of
calculating such powers as e*'!7, e!:73, etc., to several decimal places is dis-
cussed in a later section.
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We should check that this definition of raising numbers to powers agrees
with our familiar notion in cases where the situation is familiar. For example,

271 = exp((—1)In2) = exp(—0.69 . . .) = 0.500.

2
(%) = exp<2 ln%) =exp(2(—0.69...)) =exp(—1.38...) = 0.250.

1y 1
<Z> = exp(n In Z) =exp(n(—In4)) = exp(—nln4) = exp(ln47") = 47"
What about the laws of exponents that we are used to? Do they still
hold? Is (&°)* equal to a%, for example? By definition we have

(a*)' = exp(tln a®), (25)
a® = exp(stln a). (26)

The following theorem answers some questions.

Theorem on Exponentials. Let a be a positive number, and let s and t be any
real numbers. Then

(@) = a*; @7
aad =a*'. (28)

ProOF. To prove (27) first note that
Ing® = slna (29)

by (23). Therefore,

(¢*)' = exp(tIna’) [by (25)]
= exp(stlna) [by (29)]
=a". [by (26)]

A proof of (28) is given by the following chain of equalities. The first and
last of these equalities are by definition. The crucial step involves the
homomorphism theorem [identity (12) of Section 3].

a’a' = [exp(slna)][exp(tIna)] = exp((s + t)lna) = a°"". O

At last we can prove a rule of differentiation that the reader probably
was able to guess in Chapter 4, problem 32.

General Rule for Powers. If f(x) = x', with domain 0 < x, then f has a deriva-
tive given by

fl(x)=tx'""1,

ProOOF. By definition of x' we have

f(x) = exp(tn x).



4. Exotic Numbers 315

By (14),
f’(x)=£exp(t1nx)=£x’= tx~1, O
x T X

For example,

if f(x) = x7, then f'(x) =
if f(x) = x5, thenf (x) = ex
if f(x) = x"1, then f'(x)

The reader should note the sharp contrast between powers and exponentials.

7Z
ex

General Rule for Exponentials. Let a be a positive number and let f(x) = a*.
Then f has a derivative given by

J'(x) = (Ing)a™

Proor. By definition of a*, we have

f(x) = exp(x1na).
By (14),

f'(x) = (Ina)exp(xIn a) = (In a)a*. d

For example,

if f(x) = n*, then f'(x) = (Inm)x*
if flx)= 2" then f'(x) = (In 2)2*;
if f(x) = €, then f'(x) = (Ine)e* = €~

As seen in these examples, the derivative of any exponential function is
proportional to the function itself. If f(x) = a%, then f'(x) = (Ina)f(x), by the
rule given above. The constant of proportlonahty is ln a. The natural base
for an exponential function is e. Only in this case is the constant of propor-
tionality equal to one.

EXERCISES

4.1. Formulas (27) and (28) of this section were proved by the “direct” method. Give
indirect proofs of these formulas by showing that both sides of each formula
have the same natural log. Then appeal to the result of exercise 3.1.

4.2. Find the derivative of each of the following.
(a) x"e".
(b) x*%Inx.
(c) 10~
(d) xlO
(e) n°.
Answers: (a) x"¢* + nx"~'e*. (b) x¥271(1 + \/_lnx ) (In 10)10%. (d) 10x°. (e) 0.
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Find the derivative of each of the following.

(a) & (b) e

() e (d) esin*.
() J1+¢. ’ (f) (e
(g 1/

Answer: (The answers are given in formulas (15) and (16), where the notation
exp x is used in place of ¢*.)

Find the derivative of each of the following.

(a) 3% (b) 3%~

(c) 3*. (d) 3%+,
(e) 1+ 3~ (fy (3%~
(8) 1/3~

Answers: (b) 2(In 3)3%*. (c) 2x(In 3)3*". (d) (cos x)(In 3)3""~.

Which of the following are identities?

(a) 3° =37 (b) (39" = ()"
(C) 5 5} Slxyio ( ) i;)x—_ elo/:”
(e) 10t =¢'m10 f) =€

(®) e > =(1/e. (h) e = &t
(i) & =c¢e'e. §)] a"/b" (a/by*.

Hint. One way to test for equality of numbers is to see if they have the same natural
log.

Find an antiderivative of the function f given by f(x) = x', 0 < x. Be careful.
Answer: If t # — 1, an antiderivative is given by F(x) = x'*!/(t + 1); if t = —1,
an antiderivative is F(x) = In x.

(a) Use F2 together with the result of exercise 4.6 to evaluate the integral j"‘{ x'dx,
where t # —1.

(b) Evaluate |{ x"dx, where t = —1.

(c) On the basis of your answers to parts (a) and (b) explain why it is plausible to

conjecture that
t+1

Limit —lna if0<a

t—»—1

(d) Use L’'Hopital’s rule to evaluate the limit in part (c). Is the conjecture true?

Consider the problem of finding Limit,_, o ((a" — 1)/h), where a is some positive
number. Do this in three ways:
(a) By letting h =t + 1, justify each of the following steps:

o ah _ 1 o ar+1 —
Limit = Limit ———— =Ina.
h—0 t—=—1

(b) Use the derivative to find the slope of the tangent line to the curve f(x) =
at the point (0, 1). Equate this number with the limit that results from applying
Fermat’s method to find the slope of this tangent line.

(c) Evaluate the limit directly by an application of L’'Hdpital’s rule.
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49. Consider the problem of finding Limit,_ o ((In(1 + hk))/h), where k is some real
number. Do this in three ways.
(a) First justify the following equalities:

1 1 preml
ﬁln(1+hk)=zfl St

1 rreml 1
=k— —dt =k 1.
hk Jt t |:1.a1v+ghk <t>j|

Then find the limit as h tends to zero by using the continuity of the function
1/t at the point t = 1.

(b) Use the derivative to find the slope of the tangent line to the curve f(x) =
In(1 + kx) at the point (0,0). Equate this number with the limit that arises by
applying Fermat’s method to find the slope of this tangent line.

(c} Evaluate the limit by applying L’'H&pital’s rule.

4.10. (a) Give an example of a function whose rate of growth is proportional to itself.
That is, find an example of a function f such that if y = f{(¢), then dy/dt = ky,
where k is some constant of proportionality.

(b) Can you think of any quantity from the “real world” that might be expected
to grow always at a rate proportional to its size?

Hints. (a) Read the last paragraph in this section.

(b) Read Sections 6, 7, and 8.

§5. Uses of Logarithms; Logarithmic Differentiation

A table of logarithms may be found in an appendix to this book. Both
natural logs and logarithms to the base 10 are given. While it is true that
the natural log function In makes calculus simpler, nevertheless our decimal
representation of real numbers gives some advantage to the function log,,.
How is In related to log,,? Recall from Section 1 that

log;pa=1t means 10'=a.

It is now easy to solve the equation 10’ = q for ¢. Taking the natural log of
both sides gives

tiIn10 =Ina,
Ina
t=—rn.
In10
Therefore,
Ina Ina

log,pa = =0434291na. (30)

In10 ~ 2302585

This shows that log,, is simply a multiple of the natural log function.
The same is true of logarithms to any base b whatever.
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Theorem on Logarithms to Arbitrary Bases. Let b be a positive number, with
b # 1. Then

log, x = —, 0<x. (31)
Inb
In particular,
log,x = Inx. (32)
Proor. To prove (31), let
t = logy x. (33)
By (1), then,
b'=x.
Therefore,
tlnb =Inx,
In x
t= b’ (34)

Putting (33) and (34) together proves (31). Letting b = e in equation (31)
proves (32), which shows that the natural log function is the logarithmic
function to the base e. ]

A logarithmic function to any base is then just a multiple of the natural
log function. By virtue of this, a logarithmic function to any base inherits
the homomorphism property already proved for the natural log, plus all
the properties that follow from the homomorphism property. Just as e*
gives the inverse function for the natural log, so does b* give the inverse func-
tion for log,, provided b # 1. Whether one wishes to work with logarithms to
base e, base 10, or to some other base is largely a matter of convenience.

ExaMPLE 2. Use a table of logarithms to calculate each of the following
numbers to several decimal places:

(a) /12.
(b) 10e°-12,
(c) 100(1.06)2°.

The method is first to find the logarithm of the number in question, then
to use the inverse log function to find the number itself. We shall do each
of these in two ways, first using natural logs, then logs to base 10. Tables
are in an appendix.

(a) Let x = \/12. Then, using natural logs, we have Inx = $In12 ~ 1.242.
By the inverse log function,
x x et242 x 3.46.
Using logs to base 10 instead, we have log,,x = $log,, 12 ~ 0.5396.
By the inverse log function,

x ~ 1093396 x 3.46.
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(b) Let x = 10€%!2. Using natural logs we have
Inx=1In10+ 0.12Ine =1In10 + 0.12 ~ 2.423.
By the inverse log function,
x ~ 24?3 x 11.28.
Using logs to base 10 instead, we have
log;ox =log;,10 + 0.12]log,,e =~ 1 + 0.0521.
By the inverse log function,
| x ~ 1010521 ~ 11.28.
(c) Let x = 100(1.06)%°. Using natural logs we have
Inx =1In100 + 201n 1.06 ~ 4.605 + 1.165 = 5.770.
By the inverse log function,
| x =~ e>"7% ~ 320.7.
Using logs to base 10, we have
logyox =log,;, 100 + 20log,,1.06 ~ 2 + 0.5061.
By the inverse log function,

x =~ 1023061 ~ 320.7. O

Whenever an expression involves products, quotients, or powers, it is
often easier to deal with the logarithm of the expression than with the
expression itself.

ExampPLE 3. Find the limit, as & tends to 0, of each of the following:

(a) exp((sin h)/h).
(b) (1 + W)t
(c) (1 + hk)!™,
Each of these expressions is rather complicated, but its log is not so

complicated. Let us first find the limits of the logs of these expressions. Once
this is done, it will be easy to find the limits of the expressions themselves.

(a) Let y = exp((sin h)/h). Then In y = (sin h)/h. By L’Hopital’s rule,

. . sinh . . Cosh
Limit —— = Limit —— = cos0 = 1.
h—0 h h—0

This shows that In y tends to 1. This immediately implies that y tends
to e. Reason: By continuity of the exponential function,

y=-exp{lny)-expl =e.
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(b) Let y = (1 + h)'". Then Iny = (1/h)In(1 + k). By L’Hopital’s rule,

Limit 248 _ i YA+R
h—0 h h-0

This shows that In y tends to 1, which immediately implies that y tends

to e.
(c) Let y = (1 + hk)*™ Then Iny = (1/h)In(1 + hk). By L’'Hdpital’s rule,
. . In(1+h ..
Limit I + Al _ leltk/(l—+@ = k.
=0 h h=0

This shows that In y tends to k, which immediately implies (why?) that
y tends to e. O

ExaMpLE 4. Find dy/dx, given each of the following:

(@) y=2%
(b) y = x"
(© y=x*(1+x*)>

Each of these expressions is fairly complicated, but its log is somewhat
simpler to deal with. Let us first find In y, then use implicit differentiation.
(The technique of using implicit differentiation after applying the logarithmic
function is known as logarithmic differentiation.)

(a) If y =2~ then Iny = xIn2. Differentiation of both sides with respect
to x yields

1dy
——=1In2.
) dx n2
Therefore,
d
Y o yIn2=2"In2.
dx
(b) If y = x%, then Iny = xInx. Differentiation of both sides with respect
to x yields
1d
il x<l> +Inx=1+1Inx.
y dx x
Therefore,
dy
— =y(1 + Inx) = x*(1 + In x).
dx

(¢) Ify = x2/(1 + x?)*2, thenIny = 21nx — (3/2)In(1 + x?). Differentiation
of both sides with respect to x yields

ld_y_zl § 2x 2 3x
ydx “\x 2J14+ x> x 14x*
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Therefore,

dy (2 3x X 2 3x 0
ax N\x 14X T+ xH\x 14+ x2)

The simplicity achieved by the use oflogarithmic differentiation is obvious.
A seeming drawback to this technique is that we can take the logarithm
only of positive quantities. Can the technique be made applicable to dif-
ferentiate negative quantities? The answer is yes, by taking absolute values
first. The following theorem explains why.

Theorem on Logarithmic Differentiation. If f is a differentiable function
(whether positive or negative), then

d !

dx
Proor. We must consider separately the cases when f(x) is positive and
when f(x) is negative, and verify that the formula (35) holds in each case.
This is easy to do.
If f(x) is positive, then formula (35) asserts that

d f'(%)

9 -

e nfx) 700
which is easily seen to be true by a straightforward application of the chain
rule.

If f(x) is negative, then | f (x)| = — f(x) by definition of the absolute value
of a negative quantity. In this case the assertion of formula (35) is that

d S

if f(x) #0. (35)

—In(— = . 36

I n(—f(x)) ) (36)
This again is easily seen to be true by the chain rule. The reader is asked
to verify (36) as an exercise. Cl

ExaMpPLE 5. Use logarithmic differentiation to find the derivative of each
of the following:

(@ (x + D/x —1).
(b) x(x* + 3)Y*/(x — 6).
() f(x)g(x).

In each case we take absolute values first, since we cannot take the
logarithm of a negative quantity. The formulas we obtain will be valid
everywhere except for a few points that we shall note at the end.

(a) Lety = (x + 1)/(x — 1). Then |y| = |x + 1]/|x — 1
In|y| =In|x + 1] — In|x — 1]. (37)

, SO
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By the theorem on logarithmic differentiation,

y 1 1

y=x+1_x-—1

L1\ (x#1y 11
VENGFL x—1) TGS \x+1  x=1/)

(b) Let y = x(x* + 3)*/(x — 6). Then |y| = |x||x* + 3|*/*/|x — 6], so

1
In|y| = In|x| + Zln]x2 + 3| —In|x — 6.
Logarithmic differentiation therefore shows that
y 1 1\ 2x 1
gl Ul o meae-t ~
y X 4/x*+3 x—6
Multiplying through by y, we obtain
Cox(x®+ 341 Ix 1
y=—""¢ \tte23" :
x—6 x x*+3 x-—6

() Let y = f(x)g(x). Then [y| = | £ |g(x)]. so

In|y| = In|f(x)| + In|g(x)|
Assuming f and g to be differentiable, we obtain

Y _f®, ge
y  fx) 0 gx)
Multiplying through by y = f(x)g(x), we derive the product rule
Y = fx)g() (f W @) — 99) + (X)g 0
fx)  g(x)

(38)

(39)

O

There is one slight drawback to the method of logarithmic differentiation.
The number O is not in the domain of the natural log function. Therefore
equation (37) does not hold when x =1 or when x = —1. Equation (38)
fails when x = 0 or when x = 6. And equation (39) is not true when either
f or g takes the value zero. The advantages of logarithmic differentiation

far outweigh this slight drawback.

EXERCISES

5.1. We may speak of logarithms to any base b, provided b is positive and not equal to

one. Why do we not speak of “logarithms to base 1”?

5.2. Use (31) to prove each of the following.
(a) log,a = 1/log, b if a and b are both positive and neither is equal to 1.

(b) (logy a)(log. b) = log.a if a, b, and ¢ are positive and neither is equal to 1.

(c) log, xy = log, x + log, y if b, x, and y are positive and b # 1.
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5.3.

54.

5.5.

5.6.

5.7.

5.8.

59.

5.10.

We have seen in this section that a logarithmic function to any base is simply a
certain multiple of the natural log function. In a similar vein, show that an expo-
nential function to any base is simply a certain power of the exponential function
. Answer: b* = (e*)\" b,

In exercise 1.4 we made guesses about approximations to logarithms of certain
numbers to certain bases. Use tables, together with formula (31) if needed, to
find these logarithms correct to several decimal places.

Find each of the following logarithms to several decimal places, by any means.
(a) log,om. (b) log, 10.

(c) log,3. (d) logse.

(e) log, 3. (f) log,,, 3.

(g) log; 4 10. (h) log, 10.

Answers: (a) 0.497. (e) 1.586. (f) —1.586. (h) 1.661.

Find the limit as & tends to zero:

(a) exp((cosh — 1)/h). (b) (1 + h)~.

(© (1 +h)'". (d) (1 + 0.06k) .
() exp(lnh). (f) (1 =™

(g) (1 +h)~th (h) (1 4+ h2)th,

Answers: (a) 1. (b) 1. (c) e. (d) ¢°°C. Hint. (e) Use identity (11).
Prove equation (36) by the chain rule.

Use logarithmic differentiation to find the derivative of each of the following.

(a) 107 (b) (1 + x)~

(© |x| (d) (x|x + 3|V49/8 + x?).
(e) 1/g(x). (f) /o).

(@ (f(x)~ (h) f(x)/g(x).

Answers: (b) (1 + x)*((x/(1 + x)) + In(1 + x)), —1 < x. (¢) |x|/x, x # 0.
(d) ((\|‘< + 3|”4)/(8 + 3))((1/x) + (1/(4x + 12)) — 3x2/(8 + x¥), x#0, -2, -3

Use formula (35) to find antiderivatives of each of the following.

@ 1/(1 + x). (b) —3/(5 — 3x).
(c) 1/(5 = 3x). (d) 2x/1 + x2).
(e) x/1 + 3x2). (f) (—sinx)/(cos x).

Answers: () (—1/3) In|5 — 3x]. () In|cos x|.

Use F3 to evaluate each of the following integrals, after first checking to see if the
integral exists.

(@) [3(1/1 + x))dx. (b) [, (—3/(5 — 3x))dx.

() JL,(1/x)dx. (d) fe2x/(1 + x?))dx.

(e) [3tanxdx. (f) [5'*tanxdx.

Answers: (a) In|1 + _\-”% =In4—In2=1In@/2) = In2.

(b) In|5 — 3x||%, = In5 — In8. (c) Does not exist. (d) In|1 + ..\'2||8 =Inl17.
(e) Does not exist. (f) —In|cos x||¥* = —In(y/2/2) = $In2.

. Do exercise 4.4 by the method of logarithmic differentiation. Is it easier by this

method?
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§6. Compound Interest; Continuous Interest

The reader is probably familiar with the notion of compound interest. If not,
then the following example should make clear the notion of interest com-
pounded annually, compounded semiannually, compounded quarterly, etc.

ExaMPLE 6. A principal of $1,000 is deposited in a savings account to grow
at an interest rate of 12% per year. Find the value (principal plus interest) of
the savings account at the end of one year if interest is compounded

a) annually.

b) semiannually (that is, at 6-month intervals).

c) quarterly (that is, at 3-month intervals).

d) monthly.

e) daily.

f) n times (that is, at intervals of length 1/n years).

P

All of these are really instances of the last. In (a) the interest is added to the
principal once, in (b) twice, in (c) four times, in (d) 12 times, and in (e) 365 times.
Thus, (a) through (e) are really instances of (f), where nis equal to 1, 2,4, 12,
and 363, respectively. Nevertheless, let us consider (a) through (f) in order.

(a) At the end of 1 year an interest of 12% per year on a principal of $1,000
will produce an income of 1000(0.12) = 120 dollars. Adding this to the
original principal gives

1000 + 1000(0.12) = 1000(1 + 0.12) = 1000(1.12),

or $1,120.

(b) Here the interest of 12%] per year is compounded twice, that is, by adding
6% interest at the end of each half-year. At the end of the first half-year
the balance is

1000 + 1000(0.06) = 1000(1 + 0.06) = 1000(1.06) (40)

dollars. Equation (40) says that compounding interest semiannually has
the effect of increasing the account’s balance by a factor of 1.06 at the
end of each half-year. The balance (40), after another half-year, will
therefore be increased to

1000(1.06)(1.06) = 1000(1.06)?,
or $1,123.60.

(c) Here the interest of 12% per year is compounded four times, that is, by
adding 3% interest to the existing balance at the end of each quarter.
This means that the account’s value is multiplied by a factor of 1.03
each quarter, so that after 1 year the account is worth

1000(1.03)*
dollars. This is equal to $1,125.51.
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(d) Here the interest of 129 per year is compounded 12 times, that is, by

As

adding 19 interest to the existing balance at the end of each month.
This means that the principal is multiplied by a factor of 1.01 twelve
times in the course of a year, making the account worth

1000(1.01)*? (41)

dollars at the end of the year. The reader is asked to use logarithms to
evaluate (41).

Here the interest of 129 per year is compounded 365 times, that is, by
adding 12/365% interest each day. At the end of the year the account is
worth

1 365
1000( 1 + —(0. 42
< +365(012)> (42)

dollars. The reader is asked to use logarithms to evaluate (42), and to
show that it is equal to $1,127.44.
If the interest of 129 per year is compounded n times, that is, by adding
(12/n)% interest to the existing balance each time, then the value of the
account at the end of one year is

1000(1 + <%> (0.12)>n (43)
]

The values calculated in Example 6 are tabulated here.

dollars.

The year-end

value of $1000

n investment at 129
per year interest
compounded n times

1 $1120.00
2 $1123.60
4 $1125.51
12 $1126.82

365 | $1127.44
no | $1000(1 + (0.12/m))"

n is taken larger and larger, that is, as the interest is compounded more

and more often, we approach what might be called continuous interest, or
interest compounded continuously. In Example 6 the value of the account at
the end of 1 year with interest compounded continuously is the limit of (43),

as

n increases without bound. What is the limit of (43)? Letting h = 1/n,

so that h — 0 as n increases, we see that it 1s

Limit 1000(1 + h(0.12))*" = 1000e°-!2,
h—0
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by part (c) of Example 3 in the preceding section. Tables [or see equation
(67) of Section 9] give %2 ~ 1.12749, so that continuous interest in Example
6 will produce a year-end value of

$1,127.49.

As might be expected, this is only slightly larger than the value tabulated for
interest compounded daily.

The example just considered was for a principal 4, = 1000 with a rate of
growth k = 0.12 over a period of time ¢ = 1. Continuous interest at a rate k
on an initial investment 4, over a period of time ¢ units is defined by applying
exactly the same considerations. The result is described as follows.

Theorem on Continuous Interest. Let k denote a rate of growth of value of an
investment, and let A, denote the investment’s initial value. Then its value A at
time t is given by

A= Ay
if the growth is continuous.

PrOOF. Because of the multiplicity of symbols in the calculation that follows,
things may seem much more complicated than they are. Remember that
Ao, k, and t are simply constants in the calculation, representing the principal,
the rate of interest, and the period of time over which the investment is
carried.

By compounding n times over the period ¢ the value of the initial invest-

ment becomes
A0<1 + (%)k) . (44)

We are interested in the limit of (44) as n is taken larger and larger, that is, as
interest is compounded more and more often. How can we calculate the
limit of (44) in order to get the value of the investment under continuous
interest? If we let h = t/h (so that n = t/h), we see that the limit of (44) is given
by

Limit Ay(1 + hk)"* = Limit A,[(1 + hk)'"]*

h=0 h=0
= Ao[e"]"
= Aoekt,

where we have used once again the result of part (c) of Example 3. O

EXAMPLE 7. At an interest rate of 6%, per year, how much will an initial
investment of $1,000 be worth after 5 years under

(a) annual interest?
(b) continuous interest?

(a) For annual interest the investment’s value is multiplied each year by a
a factor of 1.06. After 5 years the investment will be worth

1000(1.06)° = 1338.23
dollars.
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(b) Applying the theorem on continuous interest with A4, = 1000, k = 0.06,
and t = 5, we see that the investment will be worth

1000e°-966) = 1000e°-* = 1349.86
dollars after 5 years. O

ExaMpLE 8. A bank advertises an interest rate on savings at 7.5% per year,
to be compounded continuously. What amount of interest compounded
annually is equivalent to this?

After 1 year at the advertised rate, an investment 4, would be worth
Aye® %75 by the theorem on continuous interest. After 1 year at an annual
rate k, the same investment would be worth A,(1 + k). For these to be equi-
valent we must have

Ao(l + k) — A060,075,
1+ k=¢%73,
k =e%%75 — 1. (45)

From a table, °°73 ~ 1.0779, so k ~ 0.0779 by (45). An annual rate of
approximately 7.79Y% is then equivalent to interest compounded continuously

at 7.5%. O

At interest compounded annually, quarterly, or daily, the value of the
initial investment grows by discrete steps. With interest compounded con-
tinuously the value A grows continuously at a rate proportional to A. The
following theorem should not be surprising.

Theorem on Exponential Growth. The function given by
A(f) = Aget (46)

describes a quantity A whose initial value is A, and whose rate of growth is
always proportional to itself, that is,

dA

dt
PrOOF. Obviously from (46) we have A(0) = A,. All that we need to do is
verify that the function defined in (46) satisfies the “growth law” given by the
differential equation (47). This is straightforward. If (46) holds, then

iA_d
dt  dt

kA. (47)

Age" = Aok [by (14)]
— kA [by(46)]. 0

The theorem just proved may seem insignificant. We shall see, however,
that the growth law expressed by the differential equation (47) is of particular
interest. Equation (47) is one of the most important differential equations
ever written. And the theorem just proved tells us exactly how to solve it. A
solution to (47) is given by the function expressed in equation (46).
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EXERCISES

6.1.
6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

Use logarithms to evaluate expressions (41) and (42).

A principal of $100 is deposited for 20 years at an interest rate of 6%, per year. How
much will this account be worth at the end of 20 years if the interest is compounded
(a) annually?

(b) continuously?

Answers: (a) About $321, by Example 2, part (c). (b) About $332, by the theorem
on continuous interest.

At an interest rate of 129 per year, how much will an initial investment of $1,000
be worth after 5 years under

(a) annual interest?

(b) continuous interest?

A bank advertises an interest rate on savings at 8 per year, to be compounded
continuously. What amount of interest compounded annually is equivalent?
Answer: 8.33%.

A bank advertises an interest rate on savings at 8%, per year, to be compounded
annually. What amount of interest compounded continuously is equivalent?
Answer: 7.70%.

What amount of interest compounded continuously will double the initial value
of an investment after 5 years? Answer: We must find the growth rate k that
satisfies 24, = A(5) = Age®®. Dividing by 4, we obtain 2 = ¢°%, implying that
In2 = 5k, or k = (In2)/5 = 0.1386. An interest rate of 13.86%; per year will suffice.

What amount of interest compounded continuously will double the initial value
of an investment after 10 years?

What amount of interest compounded annually will double the value of an
investment after 5 years? Answer: 14.87% per year.

Money is deposited at 6% interest per year to be compounded continuously. How
long will it take for the account to double in value?

A quantity A grows in accordance with the law A4 = A,e®, where k is positive.
How long does it take for the quantity A to double in size? Answer: Let T be the
required time so that A(t + T) = 2A(t). That is,

Aot =24,
Solving by logarithms gives T = (In 2)/k.

Consider the differential equation dA/dt = 2A.

(a) Show that A = e?' satisfies this differential equation.

(b) Show that A = e?' + C does not satisfy this differential equation unless C = 0.

(c) Show that A = Ce?* does satisfy this differential equation, where C can be any
constant.

Consider the differential equation dA/dt = 2t. (Note the difference between this
equation and the equation of exercise 6.11.) Solve this equation. Answer: A =
2+ C.
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6.13. Solve each of the following differential equations with given initial conditions.
(@) dA/dt = 24, A(0) = 5.
(b) dA/dt = 14, A(0) = 10.
(c) dA/dt = —2A4, A(0) = 3.
Answer: () A = 3e” %, by the theorem on exponential growth.

6.14. The exponential function has a special feature in connection with the product
rule which makes it quite useful in solving certain types of differential equations.
To see this property, take the derivative of the product of each of the following,
as indicated. Note that the exponential function factors out of your answer.
(@) (t2e'.
(b) (t*e™).
(c) (™sinty.
(d) (e 9(2)).
Answers: (b) e3(4t® + 3t%). (c) e*(cost + ksint). (d) e (g'(t) + f()g(t)), where
F =f.

6.15. Try to combine careful observation with a little luck to guess an antiderivative

of each of the following. Use the property of the exponential function illustrated
in the preceding exercise.

(a) ¢ + 1) (b) é'(cost + sint).
(c) e(cost + ksint). (d) e '((1/t) — In¢).
(e) e M(cost — ksint). (f) e ™((dy/dt) — ky).

—kt

Answers: (a) te'. (€) e Msint. (f) e ¥y.

§7. Population Growth

Is there a law governing the way the population N of some species varies
with time? It is hard to conceive of a law that might be valid if one is prone to
worry about violent upheaval, massive drought, stalking pestilence, nuclear
holocaust, apocalyptic cataclysm, and the like. In the absence of such catas-
trophes, however, the rate of growth of population at any time should be
proportional to the population at that time. The growth law is

dN
= kN, (48)
where k is some constant of proportionality characteristic of the species in
question. The larger k is, the faster the population multiplies.

The growth law (48) should not be accepted as absolutely accurate. It
represents a simpleminded way of making a mathematical model to predict
population growth. This model has the great virtue of simplicity, but it also
has its drawbacks, just as the simple model for studying freely falling bodies
has drawbacks. A slight drawback here is that the population N is treated
as a continuously increasing quantity in (48). In fact, of course, every popula-
tion changes by discrete steps with each birth and death. However, if the
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population N is large then the discrete steps will occur so close together as to
approximate the continuous growth in (48) to great accuracy. (Recall from the
preceding section how little difference there is between interest compounded
daily and interest compounded continuously.) Thus we may expect the
growth law (48) to make fairly accurate predictions when applied to large
populations, in the absence of catastrophic events.

Equation (48) is of the same form as the differential equation (47) con-
sidered in the theorem on exponential growth. By that theorem we know that

N = Nope (49)

is a solution, where N is the initial population, i.e., the population when
t=0.

Knowing that (49) is a solution of the growth law (48) is certainly helpful,
but we cannot proceed with security until we investigate whether (49) is the
only solution of (48). It is, as we shall see below. In addition to proving the
uniqueness of the solution (49), we shall introduce the idea of an integrating
factor, which is quite a useful tool in attacking differential equations in
general.

The possibility of finding an integrating factor is increased by a curious,
but simple, property of the exponential function that has been illustrated in
exercise 6.14. The property is this. If an exponential function is multiplied
by a second function, and the derivative of the product is taken, then the
exponential function can be factored out of the derivative. It is easy to check
that this is true. For any differentiable function N(t), the product rule yields

dN dN

(eN(t)y = — + N(t)e' =e'{ — + N(1) ],
dt dt

showing how e’ factors out of the derivative of the product. The same game

can be played with ¢ (or even with ™, as investigated in the exercises).

For example, the product rule yields

(eHN() = et <‘%’ - kN(r)) 0

How could equation (50) be of any use? It becomes useful when you read
it backwards (1), as in the proof below.

Existence and Uniqueness Theorem for the Growth Law. For the differential
equation (48) there exists a unique solution, given by (49).

PrOOF. We have already seen that there exists a solution, for the function (49)
satisfies (48). To prove uniqueness we shall go in the reverse direction. That is,
given (48), which can be rewritten

— — kN = 51
dt o (51)
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we shall derive (49). To do this multiply equation (51) through by the integrat-

ing factor e™* to get
dN
e—'«<_ - kN> —o.
dt

By (50) we then have

(e MN) =0,
so by the fundamental principle F1, e”*N must be constant:
e MN =C.
Multiplying through by € yields
N = Cé". (52)
What is C? Letting t = 0 in (52) we obtain N, = Ce® = C. Therefore C =
N, and (49) follows. O

The trick of multiplying through (51) by the integrating factor e ™
doubtless appears at first as if pulled out of a hat by magic. But in fact any-
body can do it who works the exercises below. A fair number of differential
equations succumb to this trick, when used in conjunction with the funda-
mental principles of calculus.

The technique of dealing with examples illustrating population growth is
much the same as in the examples illustrating interest compounded con-
tinuously.

ExaMPLE 9. Assume that the population of a certain planet grows from 2
billion to 3 billion in 10 years.

(a) How long will it take the population to double in size?
(b) When will the population reach 10 billion?

If we assume the growth law valid and begin measuring time when the
population N is 2 billion, then by (49) we have

N = 2é, (53)

where N is measured in billions, ¢ in years. We can find k by using the fact
that N = 3 when ¢ = 10, so that (53) implies

3= 2eIOk
In3=1In2 + 10k.
Solving for k we get (rounding off to four decimal places)

k=ln3—ln2

= 0.04
0 0.0405,

and (53) becomes
N = 260'0405t. (54)



332 9 The Central Height

Once we have the population expressed as a function of time, as in (54),
we can easily answer questions (a) and (b).

(a) The population doubles when N = 4, i.e., when

4 = 2@0'0405t.
Solving for ¢ by logarithms yields t = 17.1 years.
(b) The population reaches 10 billion when
10 = 200405,
Solving for ¢ by logarithms yields ¢ = 39.7 years. O

In Example 9 there is an alternate way of expressing equation (54) that
has the advantage of not requiring the use of log tables. The trick is to solve
for e instead of k in the equation 3 = 2¢!°* This is easy:

3
pl0k — 2

2

3 1/10

Therefore € = (3/2)/1° by (27), and (53) becomes

N2 9

Both (54) and (55) represent the same function giving population in terms of
time.

EXERCISES

7.1. The population of a chicken farm grows from 1000 to 1200 in 1 month. Assuming
the growth law (48) valid, find an expression for the population in terms of time.
Then find
(a) how long it takes for the population to double.

(b) when the population will reach 2500.
Partial answer: N = 1000(%)", where ¢ is in months.

7.2. In Example 9 find the average population over the 10-year period in which the
population rises from 2 billion to 3 billion. Hint. An antiderivative of e is given
by e*/k. Answer: From (54) the average value of the population N is

1

1 0.04051t7)10
l f 10 9004051 gy _I:e__{l ~ 2.47 billion.
10 Jo 50 0.0405 |,

7.3. An experiment in biology begins with a colony of 3 million bacteria. After 8 hours
the population of the colony is 15 million. Assume the growth law valid.
(a) Find an expression for the population in terms of time.
(b) How long does it take the colony to double in size?
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74.

7.5.

7.6.

7.7.

The population of a certain country was 151 million in 1950. Twenty years later it
was 203 million. Assuming the growth law valid, find

a) how long it takes the population to double.

b) the population in 1960.

c) the population in 1930.

d) the population in 1990.

(e) when the population will reach 400 million.

Hint. Start measuring time in 1950. Then parts (b), (c), and (d) correspond to ¢ = 10,
—20, and 40, respectively.

Consider the general differential equation dy/dx = f(x)y, where f(x) is some given
function. Let F be an antiderivative of f. Derive the solution y = Ce"™. Answer:
Rewrite the differential equation as (dy/dx) — f(x)y = 0 and multiply through by
the integrating factor e~ to obtain

(2 fiy) =0

dx
(e"F@yy =0,
e f@y =C,
y = Cef™®,

As in exercise 7.5, find an integrating factor to aid in solving each of the following
differential equations. Do not simply write down the answer. Get used to going through
all the steps as in exercise 7.5.

(@) (dy/dx) — 2y =0. (b) (dy/dx) — (sinx)y = 0.
(¢) (dy/dx) + 3x%y = 0. (d) (dy/dx) — (sec® x)y = 0.
() (dy/dx) + (1/x*)y = 0. (f) (dy/dx) —(1/x)y = 0.
Answers: (a) y = Ce?*. (b) y = Ce™** (d) y = Ce"*™*.(f) y = Cx.

(Read again Section 8 of Chapter 8 before doing this problem.) Use an integrating
factor in each of the following differential equations to find the solution that takes
the value 3 when x is 2.

(a) (dy/dx) — 2y =0. (b) (dy/dx) — 2y = x.

(©) (dy/dx) + 3x%*y = cos x. (d) (dy/dx) + (y/x*) = tanx.
(©) (dy/dx) — 2xy = 4. (f) (dy/dx) + 2xy = €.
Answers:

—2x

(b) Multiplying through by the integrating factor e

d
e <d—y—2y>—xe 2x
X

-2x

, we obtain

(e™y) = xe
It follows (see Chapter 8, Section 8) that for some C,
e ¥y=C+ f; te”2tdt.
When x is 2, y must equal 3, which implies C = 3¢ ~* and therefore
y=23e 4*2x 4 g2x f; te~ 2t dt.

(©) y=13e"* 4 7[5 ¢’ cost dt.
(d) y = (3e'™//e) + eV [3e tant dr.
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§8. Radioactive Decay

We have so far considered the growth law dA/dt = kA only in case k is
positive. In this case, when an initial positive value A, is prescribed, dA/dt is
always positive, which means the quantity A is continually increasing as
time goes on. We have seen that 4 must grow in an exponential fashion in
accordance with the equation A = A4y€".

One of the features of this growth is that no matter what size the quantity
is, there is a fixed time T it takes for the size to double. As seen in exercise
6.10, this “doubling time” is given by

_ln2

k

It has been observed for some time that radioactive substances behave in
rather the opposite way. A radioactive substance decays (that is, its rate of
growth is negative) in such a way that there is a fixed length of time it takes
to reduce itself to haif its original size. Suppose, for example, that this half-
life is 5 years. This means that if we begin, say, with 16 grams of the radioactive
substance, its size will be cut in half every 5 years. Thus we shall have 8 grams
left after 5 years, 4 grams after 10 years, 2 grams after 15 years. In general
we shall have 16(3)" grams left after n half-lives have elapsed.

T

161\(0, 16)

I 1 1 1

5 10 15 20
Radioactive decay with 16 grams initially and a half-life of 5 years. The curve has equa-
tion (57). It also has equation (58).

How do we fill in the rest of the points here? It seems reasonable to assume
that the rate of decay of a radioactive substance should be proportional to
its size at any given instant. That is,

A

E—kA’
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where k is negative. (Remember that d4/dt represents the rate of increase of A.)
By our theorem of the previous section, which is valid whether k is positive
or negative, we conclude that

A = Aoekl.

For the curve pictured above, we have 4, = 16, so that A = 16¢'. What is
k? Since A = 8 when t = 5, we have

8 = 16¢%*,

1

J=e (56)
—In2 = 5k,

k = _15“2 = —0.139,

where we have rounded off to three places. The curve given above then has
the equation

A = 16701391, (57)

The curve also may be represented by a different equation, derived as
follows. Taking the fifth root of both sides of (56) we have

1\1/5
k— |2
“=(3)"

Therefore € = (1)"> and it follows that

1 t/5
A= 16(5) . (58)

Equation (58) is equivalent to (57), but the form of (58) makes it quite
obvious that we have what we were seeking. Only a moment’s scrutiny of
equation (58) will convince the reader that it describes a quantity 4 which
takes the value 16 when t = 0, and which is cut in half with every passage of
5 units of time.

The proof of the following theorem is left to the reader. The essential
idea of the proof may be found in the concrete example just discussed.

Theorem on Radioactive Decay. Let A denote the amount of a certain radio-
active substance present at time t, and let A, denote the amount present when
t = 0. If the rate of decay is proportional at each instant to the amount present,

then
—tIn2 1\WT
A Aoexp< T ) A0<2>, (59)

where T is the half-life of the substance.
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Here are some examples dealing with radioactive decay.

ExaMmpLE 10. Five grams of a certain radioactive substance decays to 3 grams
in 10 days. Find the half-life T of the substance.

If we begin measuring time when 5 grams is present, then by (59) we have
A =5exp((—tIn2)/T). Since A = 3 when t = 10, we get

—10In2
3= Sexp<—OT—n—>,

10In2
In3=1In5 - .
n3=1In5 T
Solving for T we get
10In2

ExaMmpLE 11. Five grams of a certain radioactive substance decays to 3 grams
in 10 days. Find the average amount present during these 10 days.
Beginning to measure time when 5 grams is present, we have-

A= 5exp<;1t3—ll6£> — 5 (0.051)

from the work of Example 10. The average of 4 between ¢t = 0 and ¢t = 10
is given by

1 prio 1 r10
_ —(0.051) g, _ © ~(0.051)t
IOJ‘O Se dr_zfo e dt

-1 10
— e—(0.0Sl)t
oo,

~ 3.9 grams. O

EXERCISES

8.1. During a period of 1 year, 15 grams of a certain radioactive substance decays until
only 12 grams is left. Find the half-life T of the substance. Answer: T ~ 3.11 years.

8.2. In exercise 8.1 find the average amount of the radioactive substance present during
the year.

8.3. Write out a careful proof of the theorem on radioactive decay stated in this section.
That is, derive equation (59) from the growth law dA4/dt = kA, where k is negative.

8.4. Suppose that initially there are 15 grams of a radioactive substance X and 24 grams
of a radioactive substance Y. After 1 year there are 12 grams of X and 18 grams of Y.
When will there be the same amount of X and Y? Answer: When 15(2)' = 24(2),
or when (solving by logs) t ~ 7.3 years.
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8.5. Radium has a half-life of 1620 years. If 10 grams of radium are present in a certain
piece of material today, find
(a) a formula for the amount of radium. present as a function of time.
(b) the rate of radioactive decay today.
(c) the amount of radium present in this material at the time of Pythagoras (when

t = —2500 years).

Answers: (a) A = 10(3)"162°, where A is the amount present in grams and ¢ is time
in years from today. (b) d4/dt|,., ~ —0.0043. This gives rate of growth. The rate of
of decay today is 0.0043 grams per year, approximately. (c) 10(})~2509/1620 »
29.1 grams.

8.6. During a certain period of time, 20 grams of a radioactive substance decays to
15 grams. Find the average amount of radioactive substance present during this
period if the length of the period is
(a) 1 year.

(b) 100 years.
Answer: Approximately 17.4 grams, in either case.

8.7. During a certain period of time, 4 grams of a radioactive substance decays to B
grams. Find the average amount of radioactive substance present during this period.
Answer: (A — B)/(In A — In B) grams (regardless of the length of the period).

§9. Algebraic Approximations to
Transcendental Functions

A transcendental function (exp, sin, In, arctan, etc.) has a rule that is not
expressible in terms of algebraic operations. This tends to make trans-
cendental functions seem more removed from us who have known algebraic
functions so much longer. If a function is not algebraic, then we naturally
ask whether it might be approximated closely by an algebraic function.

There is an obvious line of attack which can be illustrated by taking a
concrete example. Let us consider the function exp near a particular point
on its graph. The most convenient point to choose is (0,1), although the
considerations that follow apply equally well to any point on the graph.
Near the point (0, 1) the tangent line, having equation

y=x+1, (60)

is the line that most closely approximates the curve exp. We have in equation
(60) an algebraic approximation to the transcendental curve exp near the
point (0, 1). Obviously the approximation

expxx~1+x
is a good one only if x ~ 0. For instance, we expect that

exp0.12 x 1 + 0.12, (61)



338 9 The Central Height

since 0.12 ~ 0. However, if x is relatively far from 0, then the approximation
is not so good. When x = 1 for instance, the algebraic rule 1 + x takes the
value 2, yet the exponential function takes the value e = 2.72.

Linear approximation to exp near (0, 1)

It is natural to say that at the point x = 0 the transcendental function exp
and the algebraic rule given by 1 + x agree to first order. That is, at x =0
they have the same value and the same first derivative:

They do not agree to any higher order, however, for all higher derivatives
of the linear function 1 + x are equal to zero; whereas all higher derivatives
of exp are equal to exp, which takes the value 1 when x = 0. The function exp
has the following “signature” at the point x = 0:

The linear approximation (60) agrees with exp to first order at x = 0.
Let us seek a quadratic approximation that agrees with the signature of exp
to second order, i.e., that satisfies this table:

This is easy. We can easily guess (and we check this guess below) that the
linear part of the quadratic we seek is given in (60). Thus we need only find
the right coefficient a of the second degree term in

y=ax*+x+ 1. (62)
From (62) we derive
y =2ax +1, (63)

y' = 2a. (64)
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From (62) and (63) we see that y = 1 and y' = 1 when x = 0, regardless of
the value of a. From (64) we see that in order to have y” = 1 we must have
= 1. Thus the quadratic function given by

=1+x+%ﬁ (65)

agrees with the exponential function to second order at the point x = 0.
We expect that the approximation

1
expx~ 1 +x+§x2
will be better than our former attempt. For instance,
1
exp0.12~ 1+ 012 + 5(0.12)2 =1.1272 (66)

ought to be better than the approximation in (61). And when x = 1, the
approximation

1
exp(l) = 1+ 1+ 5(1) =25

is respectably close to e.

y=1+x+4x?

Quadratic approximation to exp near (0, 1)

A cubic approximation of exp to third order suggests itself. It ought to
be of the form

1
y=1+x+§x2—i-ax3

for some q, in order that its quadratic part agree with (65). Upon taking three
derivatives we find
y//l — 6a’

In order to have y”" = 1, we must have a = £. A third-order approximation
to exp at the point x = 0 is then given by

1 1
expx ~ 1 +x+§x2+6x3.
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Using this third-order approximation we have

exp0.12~ 1+ 0.12 +. (0 12)% + 6(0.12)3 = 1.127488, (67)
1 2 1 3
expl~1+1+ 5(1) + 6(1) ~ 2.67. (68)

We shall find that (68) is a pretty good approximation to e, while (67) is
of such accuracy as to please all but the most complete perfectionist.

We may continue this process to any order we please. The reader will
find that a fourth-order approximation at the point x = 0 is given by

1 1 1
expx~ 1 +x+-x2+-x>4+—

2 6 24
and, in general, an n-th—order approximation is
1, 1
expxz1+x+§x +-~-+mx", (69)

where n! (read “n factorial™) is defined as the product of the integers 1 through
n:
nl=1-2-3---n

Seiting x = 1 in (69) leads to the approximation

1 1 1 1 1
exl+1l4FoF -t

— 70
2 6 24 120 n!’ (70)

where the approximation, one hopes, becomes more and more accurate
with increasing n. In summation notation, (70) is written

22

For n = 3 this approximation is evaluated in (68). In the exercises the reader
is asked to evaluate it for larger n.

Approximations become more useful if one has a good idea of their ac-
curacy. How close is the approximation in (71)? As we shall see in Section 10,
the error in the approximation (71) cannot possibly exceed 3/(n + 1)!,
showing that the approximation does indeed become as accurate as we
please by taking n sufficiently large. Recall that to define a real number it is
necessary to specify it to an arbitrary degree of accuracy. Since the approxi-
mation given in (71) does this, the number e is sometimes defined as the limit
of the approximating sums in (71).

- X

ExaMmpPLE 12. Find an algebraic approximation to the curve y = e™* near

(0,1).
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Let us find the signature of this function at the point x = 0. This is made
easy by the fact that successive derivatives of e™* ate —e™*, e™*, —e™*

e”*, etc,, forming an alternating pattern. At x = 0 the successive derivatives
arethen —1,1, —1,1, —1, etc.

3

]

AR

The reader can verify that this gives rise to the algebraic approximation

1 1 1
Frl- —x2— x4 —xt—-- . 72
e x + 2x 6x + 5 4x (72)
There is also another way to arrive at (72). Just consider the approximation
(69), which holds if x is near zero. It must therefore hold if x is replaced by —x,
which results in (72). |

ExampLE 13. Find an algebraic approximation to the sine function that is
valid near the point x = 0.

Let us find the signature of this function at the point x = 0. This is made
easy by the fact that the successive derivatives of sin repeat in patterns of
four: cos, —sin, —cos, sin, cos, —sin, —cos, sin, etc. At the point x =0
the successive derivatives are then 1,0, —1, 0, 1,0, —1, 0, etc., repeating in
patterns of four.

SRR
ololtlo ot l ol 1]

The reader can verify that this gives rise to the approximation

_ 1, 1
rx—= —x% = 73
sinx ~ x 6x +120x (73)

Note that only odd powers of x appear. This is to be expected because sin is
an odd function. O

ExaMPLE 14. Find an algebraic approximation to In(l + x) that is valid
near x = 0.
If y = In(1 + x), the successive derivatives are given by

y=>01+x"1
y'=—=1+x72
y =21+ x)73,
Yy = —6(1+x)7%
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etc., where the power rule for taking derivatives has been used repeatedly.
Plugging in x = 0, we see that the successive derivatives take the values 1,
—1,2, —6,24, —120, etc.

JEAEARA R
olol 1 -1l 21 =6l

This gives rise to the approximation
ln(l+x)zx—%x2+%x3_%x4+... (74)

EXERCISES

9.1. Find a fourth-order approximation to the exponential function at the point x = 0.
Then plug in x = 1 to get an approximation for e.

9.2. The approximation (71) becomes more accurate with larger values of n. Evaluate
the right-hand side of (71) for n = 5, 6,and 7. Partial answer: For n = 7 the approxi-
mation in (71) becomes 2.71826 . . ..

9.3. Itisshown in Section 10that the approximation (71)is accurate to within 3/(n + 1)!
at least. Use this “error estimation” to determine what value of n in (71) will ensure
an accuracy of at least
@) s
(b) 1o5-

() Tooo-

(d) 1o.600-

Answer: (b) In order that the error be less than 155, we want to choose n so that
3/(n + 1)! is less than 155. We can find n by trial-and-error methods. When n = 5,
then 3/(n + 1)!is equal to & = 735 = 7i5. Thus the accuracy in the approximation
(71) is well within 15, or 0.01, when n is 5.

9.4. Estimate the value of 1/e to several decimal places, either by plugging in x = —1in
(69) or by plugging in x = 1 in (72). (Stop after taking six or seven terms in the
series.)

9.5. Estimate the square root of e. [Plug in x = % in (69).]

9.6. Estimate the sine of an angle of 1 radian, or 57.3 .. . degrees. [ Plug in x = 1 in the
approximation (73).]

9.7. Estimate the natural log of 1.1. [Plug in x = 0.1 in the approximation (74).]

9.8. Estimate the natural log of 1. [Plug in x = —% in (74).]

9.9. The natural log function is undefined for negative numbers. We might expect,
therefore, that the right-hand side of (74) does not tend to a limit if x < —1.
(@) Plugin x = —1 and see what happens.
(b) Plugin x = 1 and see what happens.
(c) Plugin x = 2 and see what happens.
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9.10.

9.11.

9.12.

9.13. B

9.14.

9.15.

Partial answer: The approximation (74) works as we would hope only if —1 <
x <1

Consider the cosine function, as its graph passes through the point (0, 1). Find its
signature and deduce an algebraic approximation to the cosine function that is
valid near the point x = 0. Hint. This is similar to Example 13 except that only
even powers will appear.

The derivative of the sine is the cosine. Differentiate the right-hand side of (73)
term by term. Do you get agreement with your answer to exercise 9.10? You
should.

Consider the function given by f(x) = /100 + x. Find an algebraic approxima-
tion that agrees with f near the point x =0

(a) to first order.

(b) to second order.

(c) to third order.

Answer: (c) /100 4+ x = 10 4 25X — 5a00%° + T505500%°-

y plugging in appropriate values of x in part (c) of exercise 9.12, estimate
) V10

—_

(a
(b) \/104.
(©) V90.
(d) 110.
(e) /121.

Consider the following signature.

(a) Find a linear approximation to first order.

(b) Find a quadratic approximation to second order.

(c) Find a cubic approximation to third order.

Answers: (a) y=b+c(x—a). (b) y=b+c(x —a)+ (d/2)(x —a)®>. (c) y=b +
c(x — a) + (d/2)(x — a)* + (e/6)(x — a)*.

Find a cubic approximation to the exponential function that agrees with it to
third order near the point x = 1. Answer: The exponential function has the
following signature at the point x = 1:

y=e+e(x — 1)+ (e/2)(x — 1)* 4 (¢/6)(x — 1)* is the required cubic, by part (c)
of exercise 9.14.
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9.16. Find a cubic approximation to the square root function that agrees with it to
third order near the point

(a) x = 100.
(b) x =25.
() x=1.
Answer: (a) The square root function has the following signature at the point
x = 100:
x 1 y | y/ ’ y!! l yNI |
100 ‘ 10 ‘ ZLO ‘ Za_o% I 800?000 '

y = 10 + 35(x — 100) — 5g00(x — 100)* + Tgobvo5(x — 100)* is the required cubic,
by part (c) of exercise 9.14. [The same answer could have been obtained by re-
placing x with x — 100 in the answer to part (c) of exercise 9.12.]

9.17. Verify that the following approximations agree to third order.
(@) tanx =~ x + $x3.
(b) In(1 — x) &~ —x — 4x? — 1x3,
(¢) /(1 —x)~1+2x + 3x® + §x3.
(d) e*tanx =~ x + x? + x>,

9.18. (For use in Section 10) The exponential function e* is the solution to the differential

equation dy/dx = y that takes the value 1 when x is 0. Its algebraic approximations

(69) “try” to do this as well as they can.

(a) Show that the first-order approximation y = 1 + x satisfies the differential
equation dy/dx =y — x.

(b) Show that the second-order approximation y = 1 + x + 1x? satisfies dy/dx =
y =32

(c) Show that the third-order approximation satisfies dy/dx = y — &x3.

(d) Show that the n-th—order approximation (69) satisfies dy/dx = y — (1/n)x".

§10. Where Do We Go from Here?

In this chapter we have been able to look at some previous work in a new
light by introducing the natural log function. We have learned a little more
about properties of the real number system, and we have seen the central
role played in calculus by the exponential function. We have reached a
certain plateau in our study of calculus, and it is time for this chapter to
come to an end.

The reader should not think, however, that the plateau we have reached
marks the height of modern knowledge about calculus. In fact it marks the
beginning, for very little has been described here that was not commonly
known by eighteenth-century mathematicians. We have barely touched
upon the contributions of the nineteenth and twentieth centuries.
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What is left to study in calculus? Some indication may be gotten from
all the loose strings left hanging in the preceding section. Can we really
bring transcendental functions down to earth so easily? Will such algebraic
approximations always work? Can we differentiate and integrate tran-
scendental functions by performing these operations upon their algebraic
approximations instead? Can we learn to solve complicated differential
equations?

More fundamental considerations are these. Can we put our discipline
on a firmer foundation? Can we give a precise definition of limit so that
we do not have to use such vague terms as tends to or approaches or approxi-
mates. Can our arguments about functions and about real numbers be made
to rest upon something more solid than the pictures we sketch? If so, can
we apply ourselves to the study of situations we cannot picture? Instead of
studying functions of a single variable, as we have done so far, can we study
functions whose rule of correspondence depends upon two, three, or more
variables? How can we make our way into higher dimensions?

These questions and many more have been attacked by modern mathe-
maticians with great success. We can indeed explore spaces of high dimension
with the same security we have in the two-dimensional plane. We can indeed
be more precise about what we say.

Here is a small sample of ideas typical of nineteenth-century analysis.
In the preceding section our hopes were raised that e could be approximated
as closely as we please by a number of the form

-1+ Y o 15)
k=1

That is, we think it is probably true that e = Limit s, as n increases without
bound. Analysis cannot be content with assertions that are “probably true”.
We ask about the size of the difference between e and s,, in order to be sure
that the difference e — s, becomes arbitrarily small.

Theorem on the Approximation of e. If s, is defined by (75), then for each
positive integer n,

3
0<e—S"<m. (76)

Proor. First note for later use that
e < 3. a7

This follows because e = e! < e!'0% < ¢i?3 = 3.
Let n be a particular (fixed) positive integer, and define the function y by

yx) =1+ Zn: (78)

x-|><
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It follows (see exercise 9.18) that the function y satisfies the differential
equation

=y (79)

If we compare the equation (79) with the differential equation dy/dx =y
satisfied by the exponential function, we see that they are identical except
for the expression x"/n!. This expression ought therefore to be related
somehow to the difference between y(x) and e*. It is, as we see below in
equation (80).

Let us rewrite (79) as

Therefore —e™*y(x) is an antiderivative of (x"/n!)e™*. By F3 we have, for

any t,
r X" t
-Xx — _pX
ol e *dx e *y(x)

0
=—e 'y(t) + 1,
since y(0) = 1. This shows that

1—e 'y(t)= f(: %e"‘ dx
for any real number t. Multiplying through by €' yields
e —yit)=-¢ fot %e_"dx. (80)
Equation (80) holds for all ¢. If we let ¢ = 1, we have
1x"
e——s,,=ef0 ;ﬁe dx. (81)

Since the right-hand side of (81) is positive (why?), it is clear that
O0<e—s,,

which proves the first half of inequality (76). To prove the other half we
must show that the right-hand side of (81) does not exceed 3/(n + 1)!.
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Let us first consider the integral on the right-hand side of (81). On the
domain 0 < x < 1 it is clear that e * never exceeds 1. Therefore,

f —e"‘dx fo X )d _1 O xdx. (82)

n! n!J

By the fundamental theorem of calculus we have

1 rm 1 x| 1 1 1
J— nd = — = - . 83
nlJo X ¥ n![n+1]0 1-2---n<n+1> (n+1)! (83)

From (82) and (83) we deduce the inequality

1
*d —_— 4
fo n' (n+ DY 84)
Finally,
1
e—s,<e P [by (81) and (84)]
<3 [y 0
n+ 1 YUk
Problem Set for Chapter 9
1. Find the indicated area:
(1,55)
48
JR=Tx+ 2 2 440
1 4
2. Find the derivative of each of the following.
(a) e¥*Inx. (b) In(ln x).
(c) exp(e). (d) x%esinx.
(e) (). (f) (2 + sinx)*.
(g) logyox. (h) log, 10.

3. Use L'Hopital’s rule to find the following limits.

(a) Limit,_,((Inx)/(x — 1)). (b) Limit,_q((e* — 1)/x).

(O Limit,—o((10% — 1)/x). (d) Limit,q ((logyox)/(x — 1)).

(e) Limit,_q((e* — 1 — x)/x3). (f) Limit,_, In((x> — D)/x — 1)).

(g) Limit, ., ((1 — logz x)/(x — 2)). (h) Limit,,, ((1 — log, 2)/(x — 2)).
4. Evaluate each of the following integrals.

a) [o e~ dx. (b) [5 27 dx.

o) f6(3x*/1 + x*))dx. (d) f§°tanxdx.

e) JL1(2/(4 + 2x))dx. () [3 e (2x)dx.
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5.

11.

12.

13.

14.

The hyperbolic sine and hyperbolic cosine are defined as follows:

& —e e&+e
3 ; coshx = .

sinh x =
They have properties roughly analogous to the sine and cosine functions. Establish
the following.
(a) The hyperbolic sine is an odd function, the hyperbolic cosine is an even function,

and their sum is the exponential function.

(b) cosh?x — sinh?x = 1, for all x.
(c) d(sinh x)/dx = cosh x; d(cosh x)/dx = sinh x.
(d) sinh(x + y) = (sinh x)(cosh y) + (cosh x)(sinh y) for all x and y.

. Show that (cosh x + sinh x)" = cosh nx + sinh nx.

. Find the critical points and inflection points, if any, of the function f given by f(x) =

xe*, and use this information to help sketch the graph of f.

. Make a rough sketch of the graphs of y = x2 and y = 2*. They intersect at (2,4) and

(4,16). Find the area enclosed by the curves between these two points of intersection.

. Which number is larger: e” or n°?

10.

(a) Given y = fgh, the product of three positive functions, use logarithmic differ-
entiation to find y'.

(b) Guess a generalized product rule. If y = f, f, - - - £, is the product of n functions,
what is y'?

Use logarithmic differentiation to find the derivatives of the following.
(a) 100G)"°.

(b) V2 + x*/(x? + 6)*2

(©) (3 + cost)™.

(d) x*(5 + sin x)?/e*(2 — arctan x)™.

Find the limit of each of the following, as & tends to 0.
(a) (1 + 3h)*".

(b) (1 — mh)~ 1k,

(©) (1 + KA,

(d) (1 — 3h3)HA

For each of the following, find the volume of the solid of revolution generated by
revolving about the x-axis the area beneath f from x =0to x = 1.

@ flx)=e".

(b) flx)=¢€"—1.

(©) f(x)=1/J1+x.

(d) f(x) =10~

Assume that a function f satisfies the identity

flx+ h) = f(x)f(h). (%)

Assume also that f is not always equal to zero.
(a) Apply Fermat’s method to f and deduce that if f has a derivative, then f'(x) =
kf(x), where

h)—1
k = Limit /i) .
h—0
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

(b) By setting both x and hequal to zero in (*) deduce that f(0) is either 0 or 1. Deduce
further that f(0) cannot be 0, and therefore f(0) =1, and therefore (why?)
k= f'(0).

(c) Use parts (a) and (b) to show that any differentiable function f satisfying the
homomorphism property (*) is either identically zero or else of the form

flx) ==,
where k = f'(0).

A principal of $1,000 is deposited in a savings account and left to grow at 7%,

interest per year, to be compounded continpously.

(a) How much is the account worth after 10 years?

(b) What is the average balance in the account during its first 10 years?
(c) When will the account be worth $3,000?

A snake farm increases its population from 10,000 to 13,000 in 1 month.

(a) Assuming the growth law (48) valid, find how long it takes for the population
to double.

(c) When will the population reach 30,0007

An unknown quantity of a new breed of fish is introduced into a lake. After 3 years
the population of this breed is estimated at 2000, and after 5 years at 4000. Estimate
how many fish were originally introduced, assuming the growth law is valid.

A certain radioactive substance takes a week to decay from 10 grams to 9 grams.
What is its half-life?

Initially there are 10 grams of a radioactive substance X and 20 grams of a radio-
active substance Y. After 3 days there are 9 grams of X and 15 grams of Y. When
will there be equal amounts of X and Y?

Carbon-14 has a half-life of 5568 years.

(a) How long does it take for two-thirds of carbon-14 to decay?

(b) In a sample of material left undisturbed for millennia, 10 grams of carbon-14
are present today. How much carbon-14 was present in this sample at the time
of Pythagoras?

A fast-decaying radioactive substance goes from 1000 grams to 1 gram in 1 year.
Find the average amount present during this year.

Solve each of the following differential equations through the use of an appropriate
integrating factor.

(a) (dy/dx) — 3y = 0. (b) (dy/dx) — 3y =¢*.
(©) (dy/dx) + 2y = x. (d) (dy/dx) —y=¢e""
(€) (dy/dx) + 3x*y = 0. () @dy/dx) + (y/x) = 3.

Estimate the square root of 28 by carrying out the following steps.
(a) Find a cubic approximation, near the point x = 0, to the function /25 + x.
(b) Let x = 3 in your cubic.

Consider the function given by f(x) = 1/(1 — x). Find linear, quadratic, cubic, and
n-th-order approximations valid near the point x = 0. Compare your answer with
the approximation to 1/(1 — x) obtained in the appendix on sums and limits.

In your answer to problem 24 replace x by —x and thus obtain linear, quadratic,
cubic, and n-th—-order approximations to 1/(1 + x). Is your answer the same as that
obtained by differentiating both sides of the approximation (74)?
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26.

27.

28.

9 The Central Height

(@) In your answer to problem 25 replace x by x2 to obtain

1
1_’_xzz1—x2+x“—x(’-+-"'
(b) Integrate both sides of the approximation in part (a) from x =0to x =1 to
obtain
T ! 1 N 1 1 + 1
477375 779

(c) Deduce Leibniz’s approximation for .

~4 4 4 4 4 4
R R AR T
(d) Add up a few of the numbers on the right-hand side of the approximation in
part (c). Does the sum seem to be getting closer and closer to n as more terms are
taken? (Actually, while this is a very beautiful result obtained by Leibniz, the
series converges much too slowly to be of great practical value in approximating
m.)

Newton's law of cooling deals with the temperature change in a heated body placed

in a large medium kept at constant temperature. If y is the temperature of the body,

Newton’s law states that the rate of change of y is always proportional to the

difference between y and the constant temperature of the surrounding medium.

(The hotter the body, the faster it will cool.) Suppose a small metal ball is heated to a

temperature of 180 degrees Celsius and placed at time ¢ = 0 in a large tub of water

kept at a constant temperature of 20 degrees Celsius.

(a) Write down Newton’s law in the form of a differential equation.

(b) Use an appropriate integrating factor to solve the differential equation of part (a).

(c) Suppose that at time t = 2 minutes the temperature y of the metal ball is 90
degrees Celsius. Use this information to adjust the constant appearing in your
answer to part (b).

(d) What will be the temperature of the ball at time ¢t = 4, assuming Newton’s law
valid?

(€) When will the ball’s temperature be 25 degrees Celsius, assuming all of the
above?

(For ambitious students) Our model for dealing with freely falling bodies began with
the assumption that the rate of change of speed is — 32 ft/sec per second. This does
not take into account the fact that air friction becomes more significant as the speed v
gets larger. Accordingly, instead of assuming dv/dt = — 32, as we did in Chapter 5,
assume

dv

i 32 — kv,
where k is some constant of proportionality that depends upon the shape of the
falling body. Find the height 4 as a function of time. Does your answer approach the
height formula

h= —16t% + vyt + hq

of Chapter 5 as k tends to zero?



Problem Set for Chapter 9 351

29. Approximations are more valuable if one can estimate the size of error in them.
Prove that the error in the approximation (69) can be represented as an integral:

exp(t) — (1 + ; i) = f(; :—:exp(t — x)dx.

k=1 k!

(This is a special case of Taylor’s theorem, one of the most valuable theorems in
analysis.) Hint. Begin with equation (80).



Romance in Reason

Our story of the development of calculus began with the “Greek miracle”,
when the spirit of modern mathematics was first felt. That spirit then lay
dormant for so long that its rejuvenation in the Renaissance seems almost
like a second miracle. Except for the Arabs, it might never have happened.

Arabic culture, as early as A.D. 1000, placed great value upon learning and
scholarship. The Arabs even produced, in Omar Khayyam (10437-11237?), a
man who was both poet and mathematician. In studying how to find the
roots of a cubic equation, Omar took significant steps in algebra, the chief
mathematical discipline cultivated by the Arabs. The word algebra is Arabic.

However, our debt to the Arabs is not primarily for their development of
algebra, which bears no comparison in depth to the development of geometry
by the Greeks. Nor is our principal debt to their rejection of the preposterous
Roman numerals and the introduction of the Arabic system we use today.
Our real debt is rather to their love of learning, which compelled them to
preserve and translate the ancient classical writings, at a time in history when
these might have been irretrievably lost.

For several hundred years the Arabs cradled such works as those of
Euclid, Apollonius, and Archimedes. The rediscovery by western Europe
of these works helped rekindle the flame of mathematics in the Renaissance.
Neoclassicism, a movement to revive or to adapt the classical style, arose in
mathematics just as it arose in literature, art, and music.

As every student of history knows, all this led in time to the Age of Reason,
the Enlightenment, and eventually to the Romantic Movement. And every
student of the liberal arts will know something of the way these historical
movements are reflected in literature, art, and music.

Let us not leave mathematics out of the liberal arts. How does mathe-
matics enter into this scheme of things? It is obvious that the development

352
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of calculus helped bring about the rise of modern science, to which the
Enlightenment pointed with such pride. However, let us not be content with
such an obvious remark. While we may not learn “the true position of mathe-
matics as an element in the history of thought”, we may yet learn something
by musing about the nature of mathematics.

The key word of the discussion in this chapter is tension. It has been
contended that the life in any work of art derives from the creation and
resolution of tension, where “tension” is understood in a rather broad sense.
Certainly the vitality of mathematics springs from a kind of tension. Mathe-
matics itself, being in residence between the humanities and the sciences, is
stretched in many directions: toward beauty, form, and vision on the one
hand; and toward utility, function, and rationality on the other. And these
are only a few of the struggles taking place within mathematics:

Mathematics as an expression of the human mind reflects the active will,
the contemplative reason, and the desire for aesthetic perfection. Its basic
elements are logic and intuition, analysis and construction, generality and
individuality. Though different traditions may emphasize different aspects, it
is only the interplay of these antithetic forces and the struggle for their synthe-
sis that constitute the life, usefulness, and supreme value of mathematical
science.

R. Courant and H. Robbins*

§1. Guessing versus Reasoning

Mathematics has always been associated with “reason”, or “rational
thought”. The word rational still carries the connotation of “measurement”
or “calculation”. A rational man measures, or calculates, the effect of his
activity.

The mathematician, in the act of making a discovery, is hardly “rational”,
however. The view that mathematicians employ only a cold, unexcited,
strictly logical approach to their calling is somewhat distorted. Archimedes,
struggling with a perplexing problem, once had such an exciting idea that he
jumped from his bath to run naked and screaming down the streets of
Syracuse. And Newton’s greatness as a mathematician seems not to have been
due primarily to his ability to reason correctly:

1 fancy his pre-eminence is due to his muscles of intuition being the
strongest and most enduring with which a man has ever been gifted. Anyone
who has ever attempted pure scientific or philosophical thought knows how
one can hold a problem momentarily in one’s mind and apply all one’s powers
of concentration to piercing through it, and how it will dissolve and escape

* What is Mathematics? Oxford University Press, New York, 1941, p. xv.
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and you will find that what you are surveying is a blank. I believe that Newton
could hold a problem in his mind for hours and days and weeks until it
surrendered to him its secret. Then being a supreme mathematical technician
he could dress it up, how you will, for purposes of exposition, but it was his
intuition which was pre-eminently extraordinary—‘so happy in his conjec-
tures’, said de Morgan, ‘as to seem to know more than he could possibly
have any means of proving’. ...

John Maynard Keynes*

Conjectures, or guesses, play a largely unrecognized role in mathematics.
We have seen in this book some instances of how they work. Early in Chapter
3 we guessed that the slope of a certain tangent line was 2, yet it took a while
to find a reason why. Early in Chapter 6 we guessed that a certain area was
6 square units, but reasoned justification for that guess could come only
much later. “Humble thyself, impotent reason!” exhorted Pascal, who
almost discovered the calculus himself, before Newton. While reason may
demonstrate the truth of a guess, reason alone rarely discovers anything of
significance.

Mathematics is regarded as a demonstrative science. Yet this is only one
of its aspects. Finished mathematics presented in a finished form appears as
purely demonstrative, consisting of proofs only. Yet mathematics in the
making resembles any other human knowledge in the making. You have to
guess a mathematical theorem before you prove it; you have to guess the idea
of the proof before you carry through the details. You have to combine
observations and follow analogies; you have to try and try again. The result
of a mathematician’s creative work is demonstrative reasoning, a proof; but
the proof is discovered by plausible reasoning, by guessing.

G. Polyat

Let there be no doubt of the existence, in mathematics, of knowledge
acquired in nonrational ways:

I have had my solutions for a long time, but I do not yet know how I am
to arrive at them.

Gauss

It’s plain to me by the fountain I draw from, though I will not undertake
to prove it to others.

Newton

* “Newton, the Man” from Essays in Biography, Horizon Press Inc., New York, 1951, p. 312.
(This essay appears also in Newton Tercentenary Celebrations, Cambridge University Press,
1947.)

Y Induction and Analogy in Mathematics, Princeton University Press, 1954, p. vi.
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Certain things first became clear to me by a mechanical method, although
they had to be demonstrated by geometry afterwards, because investigation
by the said method did not furnish an actual demonstration.

Archimedes

Gauss*, Newton, and Archimedes stand in a class above all other mathe-
maticians. We thus have it on the highest authority that imagination plays a
role in mathematics at least rivaling, and perhaps surpassing, the role of
reason. Great mathematicians have both gifts, in great degree.

EXERCISES

1.1. Make a guess as to the formula for the surface area S of a sphere of radius r. Reason
by analogy with a circle, which is a “sphere™ in the plane: for a circle, 4 = nr? and
C = 2nr; for a sphere, V = %$nr® and S = ?

2nr 77

1.2. Give the approximate dates and general characteristics of the Renaissance, the
Age of Reason, and the Romantic Movement. For help, consult an encyclopedia
or a history of Western civilization.

1.3. Leaf through Volume 1 of Mathematics and Plausible Reasoning, G. Polya,
Princeton University Press, Princeton, N.J., 1954, for a fuller understanding of the
art of guessing.

§2. Atomism versus Common Sense

How is nonrational, or intuitive, knowledge possible? What sorts of tricks
were used by the developers of the calculus to tell them which way to go?
Many tricks stem from the “atoms of Democritus™. The Greek Democritus
(ca. 460-370B.C.) supported the doctrine of atomism, which holds that bodies
are made up of atoms, or indivisible units. An atomist would raise no objec-
tion to thinking of a line as the sum of its points, or of an area as the sum of its

* Carl Friedrich Gauss (1777-1855), preeminent German mathematician.
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vertical line segments. Atomism regards time as being made up of instants,
an instant being a “point” in time.

Like most philosophical doctrines, atomism has its drawbacks. Common
sense seems to tell us that time, like a pencil point moving smoothly along a
line, is a “flowing”, or “continuous”, kind of thing. How can a continuous
entity like time be made up of discrete instants? How can an atomist answer
the Arrow Paradox of Zeno (ca. 495-435B.C.)?

Consider an arrow flying through the air. At each instant the arrow is
motionless. How can the arrow move if it is motionless at each instant?

The same general sort of “paradox” is not uncommon in mathematics:

How can a line segment have nonzero length, if each of its points has
length zero?

How can a planar figure have nonzero area, if each of its vertical line
segments has area zero?

The inadequacy of atomism is evident. The atoms of a body apparently
need not reflect all the properties of that body: whereas a line has length, its
points do not. The whole may be something more than the sum of its atoms.

What good, then, is atomism? In mathematics it is often an aid to the
intuition. Democritus used it tc make an inspired guess about the proper
formula for the volume of a cone or pyramid (one-third the area of the base
times the height, in either case). Democritus had the imagination to guess the
correct answer, but was never able to offer any rational justification for that
answer. It was Eudoxus whose method provided the demonstrative proof.
Both deserve credit: Democritus as seer, and Eudoxus as sage.

... 1in the case of the theorems the proof of which Eudoxus was the first
to discover, namely that the cone is a third part of the cylinder, and the
pyramid of the prism, having the same base and equal height, we should give
no small share of the credit to Democritus who was the first to make the
assertion . . . but did not prove it.

Archimedes

The passage above, as well as the quotation from Archimedes given
earlier, is taken from a letter addressed to Eratosthenes. Archimedes goes on
in this letter to describe discovery and proof as complementary aspects of
mathematics. He then describes how he used atomism, in a novel way, to
conjecture the truth of some of his most celebrated theorems, which he
proved later by a masterful use of Eudoxus’ method. The means of discovery
and the means of proof were completely different.
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EXERCISES

2.1. Archimedes’ letter to Eratosthenes is discussed briefly in an appendix to this book.
Read the appendix on Archimedes.

2.2. (The purpose of this exercise is to give a clue as to how Democritus might have used
atomism to guess that the volume of a pyramid is one-third the area of the base times
the height.) Consider a bunch of cannonballs (to be thought of as large atoms)
arranged in a pyramid with square base.

(a) Find the number of cannonballs in a pyramid if the base is
(i) two by two.
(ii) three by three.
(iii) four by four. Answer: 30.
(iv) n by n. Hint. See appendix on sums.

(b) Find the number of cannonballs in a cube if the base is
(i) two by two.
(ii) three by three.
(iii) four by four. Answer: 64.
(iv) n by n.

(c) Find the ratio of the number of cannonballs in a pyramid with square base to
the number of cannonballs in a cube with the same base, if the base is n by n.
Answer: n(n + 1)(2n + 1)/6n>.

(d) The ratio in part (c) has 1/3 as a limit. How might this have helped Democritus?

§3. Seer versus Sage

It has never been a secret that the pursuit of mathematics requires more than
the power of deductive reasoning. Even a rationalist allows this possibility.

There are only two ways open to man for attaining certain knowledge of
truth: clear intuition and necessary deduction.

Descartes
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The seer who discovers is just as much a mathematician as the sage who
proves. Some mathematicians, like Archimedes, are coequally seer and sage,
and no mathematician is wholly one or the other. Nevertheless the distinc-
tion is useful. The seer has the gift of vision—intuition, divination, or imagina-
tive insight. Whereas the sage is blessed with wisdom—sound judgment, good
taste, and reason. The seer points his hand to the sky while his eye darts
around the heavens as if to see everything at a single instant. The sage,
however, plants his feet squarely on the ground, his gaze fixed upon his
object, and marks his world with a steady eye.

The distinction between seer and sage is of interest when one examines
the philosophies of Plato and Aristotle, insofar as they pertain to mathe-
matics. Platonism has often been seen to animate speculation, the searching
and re-searching for undiscovered truths lying just beyond our ken. Seers
are often disciples of Plato.

If Plato animates speculation, says Whitehead, then Aristotle animates
scholarship. Aristotle emphasized the consolidation of knowledge, through
reason, into a coherent system. Aristotle’s influence may be seen in the form
in which Euclid’s Elements was cast, even though the content of the Elements
owes its existence to the spirit of speculation. Aristotle’s influence was great,
and Greek mathematics appears almost always in finished form, cold, un-
excited, and with strict logic, as if it might have been written by a sage alone.

The fact that classical Greek texts presented only proofs became a source
of some annoyance later. One might think that the Greeks, in a wondrous
plot, had all agreed to conspire against the seventeenth century by refusing
to divulge their means of discovery.

... like some artisans who conceal their secret, they feared, perhaps, that
the ease and simplicity of their [hidden] method, if become popular, would
diminish its importance, and they preferred to make themselves admired by
leaving to us, as the product of their art, certain barren truths deduced with
subtlety, rather than to teach us that art itself, the knowledge of which would
end our admiration.

Descartes

Descartes could not have known that the “art itself”, the seer’s vision, had
been freely given by Archimedes in his letter* to Eratosthenes mentioned
earlier. And, having revealed his secret method (discussed in an appendix to
this book), Archimedes wrote,

I .am persuaded that this method will be of no little service to mathematics.
For I foresee that this method, once understood, will be used to discover
other theorems which have not yet occurred to me, by other mathematicians,
now living or yet unborn.

* See The Method of Archimedes, a Supplement to The Works of Archimedes, edited by T. L.
Heath, Cambridge University Press, 1912 (also available in paperback by Dover Publications).
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Photo Anderson
Figure 3.* Plato and Aristotle in Raphael’s “School of Athens”. Even now there is a very

wavering grasp of the true position of mathematics as an element in the history of thought.
—Whitehead.

* Reproduced, with permission, from Raphael, by Oskar Fischel, translated by Bernard
Rackham, Routledge & Kegan Paul Ltd., London, 1948.
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Unfortunately for Descartes, the contents of Archimedes’ letter had been
lost for centuries, and were found again only in 1906, in Turkey, by the
Danish philologist J. L. Heiberg.

The preference expressed by Descartes for the seer as opposed to the sage
was typical of seventeenth-(and eighteenth-) century thought in mathematics.
The influence of Aristotle was at an ebb, and Platonism was once again
ascendent. It is curious that, in the Age of Reason, the climate was such as to
permit a lapse of rigor in the reasoning used by mathematicians. The “idea
itself”, the means of discovery, became more important than the rigorous
logical demonstration. The happy acceptance of vague, but intuitively sugges-
tive remarks as a valid proof was not unusual. A reaction set in against the
“over-precise” manner of the Greeks, which could only impede the progress
of seventeenth-century mathematics.

An illustration of this is seen in Newton’s Principia, written in 1687. In
composing this greatest of works Newton attempted to emulate the rigorous
Archimedean style; but, by doing so, he only made the Principia more
difficult for modern minds to comprehend:

The ponderous instrument of synthesis (Archimedism), so effective in his
hands, has never since been grasped by one who could use it for such purposes;
and we gaze at it with adthiring curiosity, as on some gigantic implement of
war, which stands idle among the memorials of ancient days, and makes us
wonder what manner of man he was who could wield as a weapon what we
can hardly lift as a burden.

William Whewell

The passage above is from a nineteenth-century book on the history of
science. In the seventeenth century, one might well have heard of Newton’s
Principia what King James had earlier said of Francis Bacon’s Novum
Organum, that “it was like the peace of God, which passeth all understanding.”

EXERCTISES

3.1. “If logic is the hygiene of the mathematician, it is not his source of food.” The
twentieth-century mathematician André Weil said this. What does Weil mean?

3.2. On the whole, has the spirit of Plato or of Aristotle been more conducive to the
progress of science?

3.3. Find Newton’s Principia in a library. The full title in English is Mathematical
Principles of Natural Philosophy.
(a) What did Newton mean by “natural philosophy”?
(b) Why did Newton write in Latin?
(c) Newton’s book is generally acknowledged as the greatest single work ever
written on science. Why?
(d) Why is Newton’s book so little read today?
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3.4. (For more ambitious students) “The world will again sink into the boredom of a
drab detail of rational thought, unless we retain in the sky some reflection of light
from the sun of Hellenism.” Read Chapter 7, “Laws of Nature”, from Adventures
of Ideas, A. N. Whitehead, Macmillan, New York, 1933, then tell what is meant by
Whitehead’s warning.

§4. The Discrete versus the Continuous

The attraction of atomism is probably the emphasis it places upon the
discrete, a notion that seems quite transparent to the intuition. Certainly the
discrete is easier to comprehend than the continuous. It is easier to think
about a stationary pebble than about flowing sand. It is easier to think abouta
stationary instant than about flowing time.

The temptation is great to attempt to explain the continuous in terms of
the discrete. Newton tried to explain light this way. Although common sense
tells us that light is a “continuous” phenomenon, Newton spoke of “particles
of light”, as if a light ray was made up of a huge number of discrete units.
Newton’s description was not really taken seriously until the development of
quantum theory in the twentieth century.

Within mathematics itself, the tension between the discrete and the con-
tinuous is profound.

The whole of mathematical history may be interpreted as a battle for
supremacy between these two concepts. This conflict may be but an echo of
the older strife so prominent in early Greek philosophy, the struggle of the
One to subdue the Many. But the image of a battle is not wholly appropriate,
in mathematics at least, as the continuous and the discrete have frequently
helped one another to progress.

E. T. Bell*

The development of calculus given in this book has been based upon the
notion of limit, which is intimately related to the idea of continuity. Thus we
have placed much more emphasis upon the continuous than upon the dis-
crete. It must now be confessed that the seventeenth century attempted a
discrete approach to the calculus as well, the description of which makes up a
remarkable chapter in the history of ideas.

An attempt will now be made to describe this discrete approach. If the
reader finds this approach slightly incomprehensible, there is a good reason
for it. The description is kept at a very intuitive level in order to ignore any
difficulties that might be seen by close logical scrutiny. This is the way some
things were done in the mathematics of the seventeenth century, and much

* E. T. Bell, The Development of Mathematics, McGraw-Hill, 1945, p. 13.
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of the great progress made then is undoubtedly due to this approach. Had
there not been a lapse in emphasis upon logical rigor, Newton and Leibniz
might have feared to put some of their speculations into print. It is helpful
to remember that the tone of seventeenth-century mathematics contrasts
greatly with the classical Greek. Seventeenth-century mathematics often
reads as if written by seer alone.

With our eyes “in a fine frenzy rolling”, let us seek the seer’s vision. Con-
sider the following question:

What does the difference Ax become, as Ax tends to zero, but is never
allowed to equal zero?

The answer given by Leibniz might run something like the following:

The difference Ax becomes a quantity of infinitesimal size, to be denoted
by “dx” and called the differential of x. To say that dx is an infinitesimal is to
say that dx is not zero, but is smaller than any positive number.

The differential of y, where y is a function of x, is “defined” in a similar
way: the differential dy is what the difference Ay becomes, as 4x tends to
zero, but is not allowed to equal zero. Leibniz thought of the derivative as an
actual quotient of the differentials dy and dx. Thinking this way leads one to
discover the chain rule. Newton thought in an intuitive way along much the
same lines, but his terminology was different. He spoke of fluents, fluxions,
and their moments, because he thought of a variable as a flowing quantity.

In reply to the question given above, many of us would say that the
question is sirply ill-posed and has no answer. The difference 4x does not
“become” anything, because it is never zero. It just “keeps on changing”.
This would be the reply of a sage. Calculus was not discovered by a sage.

It is easy to criticize the notion of an infinitesimal, if it is regarded as a
fixed quantity somehow squeezed between zero and the positive numbers.
Where could it be on the number line? There is no place for it:

777

o~ L. 1
0 I 2
If there is such a thing as an infinitesimal, it must be a new kind of quantity,
for it cannot be pictured as a point on the number line. The notion of the
infinitesimal is one of the most elusive ideas ever conceived. Attempts to
describe it, as with the adjectives nascent and evanescent, bordered upon the
the comic. The first adjective means “just born”, the second means “just
vanishing”.
However, we should not laugh at this seventeenth-century version of
atomism called infinitesimal analysis. Though it all seems so vague, it was
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really a noble attempt to reconcile, through a rather mystical notion, the two
great cooperating opposites of mathematics. An infinitesimal was supposed
to be a discrete entity that retained qualities of the continuous.

EXERCISES

4.1. Prove that there is no positive number lying “next” to zero. That is, show that
between any positive number and zero lies another number. Hint. Halving a non-
zero quantity always results in a new quantity that is closer to zero.

4.2. Criticize the following statement. “The tangent line to a curve at a point is the line
through the point and the next point on the curve.”

4.3. (For more ambitious students) Read in a philosophy book about Leibniz’s theory of
monads. Write a paper explaining this theory, and explaining how it may be related
to Leibniz’s theory of differentials.

§5. The Infinitesimal Calculus

Let us continue in the spirit of the preceding section, agreeing to pretend that
we know what an infinitesimal is. Let us also agree to accept the romantic
notion that logic is unimportant, that something is true as soon as it is felt.
This is the setting for discussing the remarkable theory of the infinitesimal
calculus, in the spirit of seventeenth-century mathematical thought.

To start off with a bang, let us consider the fundamental theorem of
calculus:

fa” f(x)dx = F(b) — F(a) ifF =f.

Infinitesimal calculus is better done in Leibniz’s notation, which does not
name functions, only variables. To put the fundamental theorem in this
notation, let y = F(x), so that dy/dx = F'(x) = f(x), y(b) = F(b), and y(a) =
F(a).

The Fundamental Theorem of Caculus. {5 (dy/dx)dx = y(b) — y(a).

“PrOOF”’! Canceling the differential dx we have

Lbj—idx= J;bdy. (1)

Now jﬂ dy is simply the sum, from ¢ to b, of all the infinitesimal changes in y!
This will obviously add up to the total change in the function y, as x runs
from a to b:

[Ty =y - y@.

The fundamental theorem is simply the result of putting equations (1) and (2)
together! ?)
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ExaMpLE 1. Use infinitesimal calculus to find the area between the curves
y=2+2x—x*and y = x — x? between x = 0 and x = 2.

ﬁc,z +2x— x2)
0,2) » (2,2)
x=0
(0,0 x=2
(x,x — x?)
2,-2)

Let x be any number between 0 and 2. Consider the vertical segment
through x whose width is infinitesimal! The length of this segment is

24 2x—xt—(x—x)=2+x

The width of this segment is the infinitesimal dx! Its area is therefore (2 +
x)dx! The entire area between the curves is the sum of these infinitesimal
areas (2 + x) dx, as x runs from O to 2! The entire area is then

foz (2 + x)dx = 6 square units,

by the fundamental theorem of calculus! N

ExampLE 2. Use infinitesimal calculus to find dA/dt, where A is the area
beneath the curve y, between x =aand x =t.

(£, )

a t

This is easy! As any transcendental eye can see, the infinitesimal change
dA in area is clearly given by a rectangle of height y and width dt!

dA = ydt.
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Dividing by dt, we see that dA/dt = y. Thus the area beneath a curve y
yields an antiderivative of y. 7N

ExampLE 3 Use infinitesimal calculus to find the volume of a solid generated
by revolving the area beneath a curve about the x-axis.

(x,y)

Let us consider the solid of revolution generated by the curve y from x = a
to x = b. If x is any number between a and b, consider the volume of the
indicated slice through x of infinitesimal width!

b

dx

Its infinitesimal volume dV is given by
dV = ny*dx,

by the well-known formula for the volume of an infinitesimal cylinder! The
total volume V of the solid is the sum of all these infinitesimal dV’s, as x
runs from a to b!

V= Lx:ade = f: ny? dx.
This is the formula for the volume of a solid of revolution! (N
EXAMPLE 4. Suppose a solid of revolution is generated by revolving the area

beneath a curve about the y-axis. Use infinitesimal calculus to find the
formula for the solid.
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Let x be any number between a and b, and consider what happens to the
vertical segment through x, as it is revolved about the y-axis. The surface of a
cylinder is obtained, the cylinder.being of height f(x) and radius x. Let us
find the infinitesimal volume of this surface, whose thickness is infinitesimal!
When the surface is flattened out, a rectangular solid is obtained, dimensions
2nx, f(x), and dx.

1
& | surface, flattened ﬂ
T 2nx - |-

dx

Its infinitesimal volume dV is then given by
dV = 2nxf(x) dx.

The total volume V is the sum of these infinitesimals dV, as x runs from a to b!

<>

V= Lx:: av = Lb 2nxf(x) dx

is the required formula! (N

ExaMpLE 5. Use infinitesimal calculus to find the derivative of the squaring
function.

(x + dx, (x + dx)?)

(x, x%)

dy

dx

The two points virtually coincide
On the curve y = x? consider the point (x,x?). If x is changed by an
infinitesimal amount dx, then

dy = (x + dx)? — x? = 2x dx + (dx)*.
Dividing by dx, we obtain
dy

a = 2x + dx. (3)
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Figure 4.* Engraving from Euler’s Introduction in Analysin Infinitorum (1748), the first
great treatise on analysis. Every textbook on calculus today borrows, more or less,
from Euler.

* This illustration serves as frontispiece for Abraham Robinson’s historic Non-standard Analysis,
North-Holland, Amsterdam. 1966. Reproduced by kind permission of Elsevier-North Holland.
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Since dx is infinitesimal, equation (3) becomes

dy =2x. (?) 4
dx
Example 5 leads to an interesting question for anyone who professes to
understand the “reasoning” in it. How can 2x + dx be equal to 2x unless dx is
zero? And if dx is zero then how do you justify dividing by it to arrive at equation
(3)? One way to avoid embarrassment is to discard the notion that an in-
finitesimal is fixed and to think of it instead as a variable tending to zero. In
that sense equation (3) does “become” equation (4). This leads to the dis-
carding of fixed infinitesimals in favor of the notion of a limit.

EXERCISES

5.1. Discuss the following quotations of Bertrand Russell.

(a) “It is a peculiar fact about the genesis and growth of new disciplines that too
much rigour too early imposed stifles the imagination and stultifies invention. A
certain freedom from the strictures of sustained formality tends to promote the
development of a subject in its early stages, even if this means the risk of a
certain amount of error.” (Wisdom of the West, Rathbone Books Limited,
London, 1959, p. 280.)

(b) “Instinct, intuition, or insight is what first leads to the beliefs which subsequent
reason confirms or confutes ... Reason is a harmonising, controlling force
rather than a creative one. Even in the most purely logical realms, it is insight
that first arrives at what is new.” (Our Knowledge of the External World,
W. W. Norton & Company, Inc., 1929, p. 22.)

5.2. In the spirit of this section write out a “proof” of each of the following, using
infinitesimals. If ever you feel yourself getting into logical difficulties, adopt the
visionary’s style of reasoning by making exclamations instead of statements.

(a) The distance traveled is the integral of the speed function.
(b) dy/dt = (dy/dx)(dx/dt).

(¢) ds/dt = (dt/ds)~*.

Answer: (c) What else could it be!

5.3. Consider a curve f. What is its length from the point (a, f(a)) to (b, f(b))?

(b, /(b))

(@ /@)

Use infinitesimals to try to guess a formula for the length of a curve. (Try to express
it as an integral.) After you have made your guess, check to see if it works for a
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straight line whose length you are sure of. Then (if you have read Chapter 7) see if it
checks out for some arc of the unit circle whose length you are sure of.

5.4. By carrying out the following steps, check to see if the formula of Example 4
works in this simple case considered here.
(a) Use the known formula (derived in Chapter 6) for the volume of a cone to
find the volume of a cone of radius 2, height 4.
(b) Consider the cone generated by revolving the area beneath the line y = 4 — 2x,
0 < x < 2, about the y-axis.

/

[——T==\2.0)

N 7

S~——

Apply the formula of Example 4 to this situation. Does it give the proper answer
as found in part (a)?

5.5. (Only for those who have read Chapter 9) Work exercise 7.6 of Chapter 9 by throwing
around infinitesimals with reckless abandon. Answer: (a) If (dy/dx) — 2y = 0, then
dy/dx = 2y. Therefore (!),

1
Zdy = 2dx,
y

J::(: ;dy = J::(: 2dx,

In y(x)‘; =2x

.
In y(¢) — In y(0) = 21,
In y(r) = In y(0) + 2t
y(1) = y(0)e*.

5.6. (How do you measure surface area?) In exercise 1.1 you were asked to make a guess as
to the formula for the surface area S of a sphere of radius r. Consider the following
way one might reason by the use of infinitesimals. The sphere of radius r is obtained
by revolving the graph of y = \/r* — x?, r < x < r, about the x-axis.

(x,y)

~}

~

—

O~
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When the point (x, y) is revolved we get the surface of an infinitesimal cylinder of
radius y and height dx! This surface, when flattened out into a rectangle, is seen to
have an area of 2ny dx. Therefore (!), the total surface area is given by

S= f_r 2nydx = 2= f_rydx = 2n<from _rior

the area beneath the curve y)

Since the area beneath the semicircle is nr?/2, it follows that S = 2n(nr?/2) = n%r2.(?)

(a) This probably disagrees with the guess you made in exercise 1.1. Do you still
have more confidence in your guess, or do you accept the infinitesimal analysis
just given? Why?

(b) Are you willing to accept all the infinitesimal analysis given in this section? If
not, how do you decide what to accept and what to reject as invalid?

Hint. Archimedes showed that the surface area of a sphere of radius r is given by
S = 4nr.

§6. Analysis versus Modern Developments

As Leibniz grew older, he began to move away from infinitesimals and toward
the notion of limit. The following excerpt from a letter written in 1702 is
seen as evidence for this.

One must remember . . . that incomparably small quantities . . . are by no
means constant and determined. On the contrary, since they may be made as
small as we like, they play the same part in geometric reasoning as the infinitely
small in the strict sense. For if an antagonist denies the correctness of our
theorems, our calculations show that the error is smaller than any given
quantity, since it is in our power to decrease the incomparably small. .. as
much as is necessary for our purpose.

Leibniz*

This passage can be construed as saying, in effect, that the use of in-
finitesimals can be regarded as a shortcut means of taking a limit. The
objectionable reasoning in Example 5, Leibniz seems to say, is merely a
quick way of getting the result that was derived with a little more care in
Chapter 5, Section 1.

It was doubly difficult for Leibniz to discard the infinitesimal, for this
conception had inspired both his mathematics and, in his theory of monads,
his philosophy. In deciding whether to disown his brainchild Leibniz must
have experienced quite a struggle between mind and heart. His indecision
is understandable. It was easier for Newton, who renounced the infinitely

* From a letter to Varignon, as given in Ways of Thought of Great Mathematicians. by Herbert
Meschkowski, Holden-Day, 1964, p. 58.
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small in his later work, in favor of an intuitive understanding of the limit
notion. Analysis in mathematics became based upon limits.

Atomism continues to survive today, though, and so do infinitesimals.
Though sometimes, as in exercise 5.6, infinitesimals lead one astray, generally
they point one in the proper direction like magic. Their success led Leo
Tolstoy to seek an historical adaptation.

[Infinitesimal calculus], unknown to the ancients, when dealing with
problems of motion admits the conception of the infinitely small, and so
conforms to the chief condition of motion (absolute continuity) and thereby
corrects the inevitable error which the human mind cannot avoid when it
deals with separate elements of motion instead of examining continuous
motion.

In seeking the laws of historical movement just the same thing happens.
The movement of humanity, arising as it does from innumerable arbitrary
human wills, is continuous . . ..

Only by taking infinitesimally small units for observation (the differential
of history, that is, the individual tendencies of men) and attaining to the art of
integrating them (that is, finding the sum of these infinitesimals) can we
hope to arrive at the laws of history.

Tolstoy*

These words were written in the middle of the nineteenth century, showing
that infinitesimals were alive and kicking then. Even in the mid-twentieth
century infinitesimals were used in calculus, though only, it was supposed
to be emphasized, as a shortcut means of deriving what was done more
rigorously by means of limits.

Analysis, a branch of mathematics growing out of calculus to develop
a precise notion of limit, had in the late nineteenth century given calculus
a firm foundation. Analysis tried to do for the calculus what Euclid had
attempted to do for geometry: base the entire structure upon a few simple
general principles. The “e-0” definition of a limit (the discussion of which
we defer) has given a precise meaning to that notion. (The reader will have
observed that the discussion of limits so far offered in this book has been
completely intuitive in character.)

Quite recently mathematics has seen the exciting development of non-
standard analysis, which makes real sense out of infinitesimals. This work
was pioneered in the 1960s by Abraham Robinson (1918-1974), who used
sophisticated modern mathematical ideas to capture the intuitive notion of
an infinitesimal. The discrete approach to the calculus, thought for so long
to have been a heroic failure, may yet be a success after all.

At the same time, a movement in quite the opposite direction has been
born. Errett Bishop (1928- ) and his followers have developed an
approach to the calculus that is more down-to-earth and constructive in
nature than traditional analysis. It will be interesting to see how calculus
looks in the year 2015, on its 350-th birthday.

* War and Peace, translated by Louise and Aylmer Maude, Simon and Schuster, New York,
1942, p. 918.
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EXERCISES

6.1. Read Chapter 7, “The Beginning of Modern Mathematics, 1637-1687", in The
Development of Mathematics, E. T. Bell, McGraw-Hill, New York, 1945.

6.2. Read the first section of Book Eleven of War and Peace, from which Tolstoy’s
quotation above is taken.

6.3. Read pp. 1-2 of Non-standard Analysis, Abraham Robinson, North-Holland,
Amsterdam, 1966. Compare it with “A Constructivist Manifesto”, pp. 1-10 of
Foundations of Constructive Analysis, Errett Bishop, McGraw-Hill, New York,
1967.

§7. Faith versus Reason

Having had a very brief view of what has happened to calculus recently,
let us get back to the early eighteenth century, where the old conflict between
faith and reason still raged. A minor, but revealing incident in this conflict
concerns infinitesimals, which became the ammunition for a skirmish be-
tween Edmund Halley, the astronomer, and George Berkeley (pronounced
BARK-ly), the philosopher.

Halley, so the story goes, had persuaded a friend of Berkeley’s to become
skeptical about his religious beliefs, whereupon they were rejected on the
grounds that theologian’s claims could not be justified so soundly as the
claims of mathematicians. This infuriated the Irishman Berkeley, who had
just been made a bishop in the Church of England. His outrage was so great
that he sought not to shore up the foundations of theology, but to under-
mine those of mathematics. The result was an extraordinary essay, The
Analyst, “a discourse addressed to an infidel mathematician™.

Whereas then it is supposed that you apprehend more distinctly, consider
more closely, infer more justly, and conclude more accurately than other
men, and that you are therefore less religious because more judicious, I shall
claim the privilege of a Freethinker; and take the liberty to inquire into the
object, principles, and method of demonstration admitted by the mathemati-
cians of the present age, with the same freedom that you presume to treat the
principles and mysteries of Religion; to the end that all men may see what
right you have to lead, or what encouragement others have to follow you . . ..

Berkeley wrote The Analyst in 1734, not too many years after the deaths
of Newton and Leibniz. In his essay Berkeley forcefully made the argument
given in Section 5, in criticism of the logic used in infinitesimal calculus.
He pointed out quite rightly that the seventeenth century was content to
accept arguments that the ancient Greeks would have discarded as in-
adequate. The implication was that seventeenth-century mathematicians
were accepting arguments on faith, not on reason. Berkeley then went on
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THE

ANALYST;
OR, A

DISCOURSE

Addreffed to an

Infidel MATHEMATICIAN.

WHEREIN

It is examined whether the ObjeQ, Princi-
ples, and Inferences of the modern Analy-
fis are more diltin@ly conceived, or ‘more

evidently deduced,than Religious Myfteries
and Points of Faith.

By the AuTrOROf The Minute Philofopher.

Firft caft oxt the beam ot of thine own Eye; and then
Jbais thom fee clearly so cafb out the mote oxs of thy ro-
sher’s eye. S. Matt. c. vii. v. §.

LONDON:
Printed for J. ToNnsoN i the Strand. 1734.

Figure 5. Title page of Berkeley’s “The Analyst”.

[H]e who can digest a second or third fluxion . . . need not, methinks, be squeamish about
any point in divinity.
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drily to inquire whether infinitesimals were not “ghosts of departed quan-
tities”, implying that nothing in theology could be more ghostlike than the
basic notion of infinitesimal calculus.

At the time it was written, little attention was given by mathematicians
to Berkeley’s splendid philippic. Today it is admitted by virtually every
student of mathematics that some of Berkeley’s objections to the calculus
were unanswerable until the late nineteenth century, when analysis at last
produced a precise definition of the notion of a limit.

EXERCISES

7.1. Read one of the following chapters from Mathematics in Western Culture, Morris
Kline, Oxford University Press, New York, 1953.
(a) Chapter XVI, “The Newtonian Influence: Science and Philosophy”.
(b) Chapter XVII, “The Newtonian Influence: Religion”.
(c) Chapter XVIII, “The Newtonian Influence: Literature and Aesthetics”.

7.2. Read the excerpts and commentary arising from Berkeley’s Analyst given on
pp. 286293 of World of Mathematics, edited by James R. Newman, Simon and
Schuster, New York, 1956.

7.3. Read Chapter 13, “From Intuition to Absolute Rigor, 1700-1900”, in The Develop-
ment of Mathematics, E. T. Bell, McGraw-Hill, New York, 1945.

§8. Conclusion

It is curious that, despite his fulminations, Bishop Berkeley accepted the
calculus on faith. He believed, he said, that correct results in the calculus
were the product of some “compensation of errors” in reasoning.

Mathematicians soon became aware of the shaky ground on which the
calculus was erected, as indicated by the admonition of d’Alembert (1717
1783): “Go forward, and faith will follow!” In the conflict between faith and
reason, mathematics had the potential for use by either side. Among the
founders of the calculus both Leibniz and Newton exhibited strong interest
in theology. Leibniz made a serious attempt to reunite the Protestant and
Catholic churches, and Newton thought of his work as helping to prove the
existence of God. The study of things eternal may tend to heighten one’s
awareness of religion.

The first edition (1771) of the Encyclopaedia Britannica quoted with
approval the sentiments expressed a century earlier by Issac Barrow. Barrow
was Newton'’s teacher, who resigned from Cambridge in order that Newton
be given his professorship. The words could have been written by Plato
himself:

The mathematics . . . effectually exercise, not vainly delude, nor vexa-
tiously torment, studious minds with obscure subtilties; but plainly demon-
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strate every thing within their reach, draw certain conclusions, instruct by
profitable rules, and unfold pleasant questions. These disciplines likewise
enure and corroborate the mind to a constant diligence in study; they wholly
deliver us from a credulous simplicity, most strongly fortify us against the
vanity of scepticism, effectually restrain us from a rash presumption, most
easily incline us to a due assent, perfectly subject us to the government of
right reason. While the mind is abstracted and elevated from sensible matter,
distinctly views pure forms, conceives the beauty of ideas, and investigates the
harmony of proportions; the manners themselves are sensibly corrected and
improved, the affections composed and rectified, the fancy calmed and settled,
and the understanding raised and excited to more divine contemplations.*

Nevertheless, mathematics appears generally seen as allied with reason
in opposition to faith. Voltaire pointed to the spectacular achievements of
“rational” science and mathematics, and demanded the right to examine
everything under the authority of reason. Voltaire won out, for a time, and
it was little noted that mathematicians of the Enlightenment were using their
instinct more than their intellect:

They defined their terms vaguely and used their methods loosely, and the
logic of their arguments was made to fit the dictates of their intuition. In short,
they broke all the laws of rigor and of mathematical decorum.

The veritable orgy which followed the introduction of the infinitesimals . . .
was but a natural reaction. Intuition had too long been held imprisoned by
the severe rigor of the Greeks. Now it broke loose, and there were no Euclids
to keep its romantic flight in check.

Tobias Dantzig'

The Enlightenment, emphasizing intellect, was to be washed aside by the
Romantic Movement that declared, with Rousseau, the primary nature of
instinct. Romanticism can be, and has been, described in a variety of ways.
But if it is marked by a reaction against Neoclassicism, an emphasis upon
imagination, a disregard for decorum, and a predilection for the seer to the
sage, then the Romantic Movement was already rampant in mathematics
at the very height of the Age of Reason.

Is this a paradox? Only, perhaps, for those who see mathematics in too
narrow a light. Mathematics is romance in reason.

* “Mathematics”, Encyclopaedia Britannica, Vol. 111, 1771, pp. 30-31.
¥ Number, the Language of Science, Doubleday Anchor, 1956, p. 130.
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1. Given a right triangle of sides a, b, and ¢, construct three others just like it, and
put all four triangles together to help form a large square. Then stare at the large
square until you see a new way to prove the Pythagorean theorem.

N

c

Hint. Begin by observing that the area of the large square can be expressed in two
ways.

2. Below is a right triangle inscribed in a semicircle. The legs of the triangle are diam-
eters of two other semicircles. Prove that the sum of the areas of the two lunes is
equal to the area of the right triangle.

(Lunes fascinated Leonardo da Vinci. See Coolidge, The Mathematics of Great
Amateurs, Dover paperback, p. 43 fI.)

3. Find the area of this lune.
(x—17+(y-1?=2

(0,2)

x24+y1=4

2,0

376
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10.
11.

12.

13.

14.

15.

16.

. Find the indicated areas. Hint. In each case, split the area up into a triangle and

a pie-shaped sector.

(@) x2+yt=1 (b) x2+yr=1

I ya

2

0 J2 0 \/_j
2

. Prove the irrationality of each of the following numbers. (a) ﬁ/Z; (b) \/5/2.
. Describe the Pythagorean philosophy. What influence did it have upon Plato?

. Plato and Aristotle held differing views about the nature and the value of mathe-

matics. Explain these views.

. Read the catalogue of courses of study offered by a college or university in which

you are interested. Separate the offerings into those which are “Greek” and those
which are “non-Greek”. (Anchropology, for example, is a Greek word meaning
study of man; biology is Greek for study of life, etc.) Does the spirit of Greece still
live?

. (a) Solve the equation bx + ¢ = 0.

(b) Find the limit, as a tends to zero, of (— b + \/b? — 4ac)/2a.
(c) Explain why it should not be surprising that parts (a) and (b) have the same
answer.

“Limits are as simple as pi.” This pun contains a good deal of truth. Explain.

A rectangular field bordering a road is to be fenced in. The fence along the road

will cost $9 per meter, while each of the other three sides will cost $4 per meter.

(a) Find the dimensions yielding the cheapest cost if an area of 100 square meters
is to be enclosed.

(b) Find the maximal area that can be enclosed if the total cost of the fence is $1800.

The sum of two positive numbers is 60, and the numbers are chosen so that the
product of the first by the cube of the second is as large as possible. Find the numbers.

A can in the shape of a cylinder is to be placed inside a sphere of radius r inches.
Find the largest possible volume the can could have.

A cone-shaped paper cup is to be designed whose edge is to be 10 centimeters in
length. What should be the height & of the cup, in order to maximize its volume?

10

A cone is to be inscribed within a sphere of radius r inches. Find the largest possible
volume the cone could have.

Santa Claus has a problem. Out of 100 square feet of tin a rectangular box with
square base and open top is to be constructed. What dimensions should be used
to maximize the amount of reindeer food the box can hold?
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Review Problems for Chapters 1-10

One corner of a long rectangular sheet of paper of width 8 inches is folded over
until it just touches the opposite edge. Find the minimum length of the crease.

crease f
8

l

A man is in a boat 100 meters from a straight shoreline. His cabin is 100 meters
downshore. If he can walk three times as fast as he can row, where should his boat
be docked in order that he get to his cabin as quickly as possible?

A ladder is to be carried horizontally around the indicated corner. Find the length
of the longest ladder that can pass through.

12 ft

St
1

A ladder 10 ft long leans against a fence 4 ft high. Find the maximum horizontal
distance the ladder can reach beyond the fence.

| 10
|| Maximize x
Lx 49

A circular lake is 200 meters in diameter. A man standing on one side wishes to
get to the point directly opposite. He can run twice as fast as he can swim. What is
the quickest way across?

A string of length 40 centimeters is to be cut in two, and the pieces are to be folded
into a circle and an equilateral triangle respectively. How should the string be cut
in order to

(a) minimize the combined area of the circle and triangle?

(b) maximize the combined area?

(a) Define the terms critical point and inflection point.

(b) Give an example of a curve with no highest point and no lowest point.

(c) Outline the steps by which one can find the highest and lowest points on a
curve, using calculus.

The curves drawn in problem 41 at the end of Chapter 4 are given without equations,
but the person sketching these curves had certain equations in mind. Can you
guess the equations represented by these curves? (The curve in (b), for example, is
intended to be the graph of y = 1n|x|.)

Can you match equations to the curves pictured in problem 25 at the end of
Chapter 5?

Match equations to the curves pictured in problem 24 at the end of Chapter 6.

Consider the equation C = 10L + (40/L).

(a) Sketch this curve, indicating all critical points.

(b) Find the range, if the domain is given by 1 < L < 5.
(c) Find the range if the domain is given by L # 0.
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28. Consider the function given by f(x) = 2x2 + (3/x) — 4.
(a) Sketch this curve, indicating all critical points and inflection points. Hint. A
little work has already been done in exercise 3.1 of Chapter 4.
(b) Find the range, if the domain is given by $ < x < 3.
(c) Find the area beneath f, from x =2 to x = 5.

29. From a tower 124 feet high, a ball is thrown downwards at an initial speed of 40
feet per second. Treating the ball as a freely falling body, answer the following.
(a) Where is the ball one second after it is released?
(b) When will the ball hit the ground?
(c) What speed is the ball approaching at the instant it hits the ground?

30. A car accelerates from 0 to 50 ft/sec in 10 seconds. In this time, assuming constant
acceleration, find how far the car travels.

31. A rock thrown straight up reaches a maximum height of 64 feet. What was its
initial speed?

32. A balloon, shaped like a sphere, is being blown up at a constant rate so that its
volume is increasing at 2 cubic feet per second. When its radius is 3 feet,
(a) how fast is its radius increasing?
(b) how fast is its surface area increasing?

33. A paper cup shaped like a cone has height 10 centimeters and has a circular top
of radius 5 centimeters. Water is poured in at a constant rate of 3 cubic centimeters
per second. Letting h denote the height of water in the cup, find dh/dt when
(a) h=1cm.

(b) h=4cm.
(c) h=8cm.

f— §—f

10

l

34. An observer stands one mile from the launch site of a rocket. If the speed of the
rocket is 300 mi/hr when the angle of inclination 6 of the rocket is 45 degrees,
find df/dt at this instant.
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35.

36.

37.

38.

39.

40.
41.
42.

43.

45.

Review Problems for Chapters 1-10

A particle is moving along the y-axis in such a way that its position is given by

y =S5sint + 12cost.

(a) Find its position, velocity, and acceleration at the instant when t = 57/6.

(b) Find the range of positions y assumed by the particle between time t = 0 and
t =2m.

An observer is 48 feet away from a spot where a ball is thrown straight up with an
initial speed of 64 ft/sec. Letting 6 be the angle of inclination of the ball from the
observer’s position, find d6/dt and d20/dt>

(a) one second after the ball is released.

(b) two seconds after the ball is released.

(c) three seconds after the ball is released.

In problem 36, let s be the distance between the observer and the ball. Find ds/dt
and d?s/dt? at times one, two, and three seconds after the ball is released.

Use appropriate formulas for sums to evaluate each of the following.
(@ 1+2+3+---+ 1000

(b) 1+4+9+ -+ 1,000,000.

(€) 1+8+427+ -+ 1,000,000,000.

d) 1+(1/2) +(1/4) + (1/8) + - - - +(1/1024).

€ 14+34+9+27+ -+ 59,049.

Consider the function given by f(x) = 3x2 — 2x + 5.

(a) Tliustrate Fermat’s method in finding the slope of the tangent line to the curve
fat(1,6).

(b) Illustrate Eudoxus’ method in finding the integral of f from x =0 to x = 4.

Evaluate the integral {% x2dx by Eudoxus’ method.

Evaluate the integral {{, x> dx by Eudoxus’ method.

12

Consider the function given by f(t) = e™"".

(a) Find the derivative of f.

(b) Find the antiderivative of f that takes the value 3 when ¢ is 2.

(c) Find an algebraic approximation to f that is valid for ¢ near O.

(d) Use your answer to part (c) to give a good estimation for the value of the integral
fhe " at.

(a) Use trigonometric identities to show tan(f + in) = —1/tan 6.

(b) Use the result of part (a) to show that if a line has slope b # 0, then a perpen-
dicular line has slope — 1/b. (Lines are perpendicular if their slopes are negative
reciprocals of each other.)

. Consider the curve y = x*.

(a) Write an equation of the tangent line at (4,256).
(b) The normal line to a curve is the line perpendicular to the tangent line. Write

an equation of the normal line at (4,256). Hint. Use the result of part (b) of
problem 43.

The equation y = j’é e~ "(t — 1)(t — 3)dt describes a curve in the x-y plane.
(a) Fill in the following table.
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46.

47.

48.

49.

50.

(b) Draw a picture of the curve locally, as it passes through the origin, indicating
whether it is rising or falling, concave up or down.

(c) Tell whether the curve is rising or falling, concave up or down, when x = 2.

(d) Find all the critical points of the function specified by the equation above, and
tell whether they are local minima or local maxima.

In Chapter 6 Cavalieri’s principle was discussed for figures lying in a plane. Actually,
Cavalieri formulated an analogous principle for figures lying in three-dimensional
space. Can you? “Two solid figures have the same volume if . . .”?

(a) What does it mean to say that a function f is continuous at a certain point ¢?
(b) If f'(c) exists, does it follow that f is continuous at the point c¢?
(c) If f is continuous at the point ¢, does it follow that f’(c) exists?

A cycloid is the curve traced out by a point on a circle, as the circle rolls along a
straight line. (Think of the path of the head of a nail embedded in a tire, as the tire
rolls.) The cycloid was the subject of many investigations in the seventeenth century.
Let the circle have radius r, let the point tracing out the cycloid be initially at the
origin, and let the circle roll along the x-axis. Show that, after the circle has rotated
through an angle of 6 radians, the coordinates of the point tracing out the cycloid
are given by x = rf — rsinf, y =r — rcos 6. Hint. After the tire moves through
an angle 6, the situation looks like this. Begin by observing that the circular arc
must be equal in length to the distance traveled by the circle.

- ~
/// \\\
(x // L 9’} rcosf \\
ANGET \ /
equal \[/
(0,0 (2nr, 0)

Consider the cycloid of problem 48, whose coordinates x and y are parametrized

by 6. (The radius r is a constant.)

(a) Find dx/df and dy/d6.

(b) Find dy/dx with help from part (a) and the chain rule.

() The point (r(3n — 4./3),47) lies on the cycloid. Find the slope of the tangent
line at this point.

Let us try to determine the length of arc of the cycloid of problem 48. Let s denote

the arclength traversed as a function of 6, beginning at 6 = 0 (when the point tracing

out the cycloid is located at the origin.)

(a) Use the nonrigorous type of reasoning illustrated in Section 5 of Chapter 10
to make it plausible that (ds/d0)* = (dx/d0)*> + (dy/d8)>. Begin by applying the
Pythagorean theorem to an infinitesimal right triangle.
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51.

52.

53.

54.

55.

56.

57.

Review Problems for Chapters 1-10

(b) Using the equation of part (a) and the result of part (a) of problem 49, conclude
that

§= ry2 — 2cos@.

d

(c) Conclude from part (b) that the arclength of the cycloid from the origin to the
point (27r,0) is given by the integral

rf;n V2 — 2cos8do.

(d) Evaluate the integral in part (c). Hint. To find an antiderivative, use the trick
in problem 24 at the end of Chapter 7.

(a) Show that {7 = arctani + arctany. Hint. Let 0, = arctan?, let 0, = arctan$,
and use the tangent sum law to show that tan(f, + 6,) = 1 = tanj=.

(b) Use the result established in part (a) to obtain a close approximation to =.
Hint. The quantities arctan$ and arctan can be found very accurately with
little trouble. For example (see problem 26 of Chapter 9),

1 1z 1 112 2 46 ...
arctan§= o 1 +xzdxzfo (1—=x*+x*—x°+--)dx.
The method of approximating = given in the preceding problem offers a considerable
improvement over the method of Leibniz given in problem 26 of Chapter 9. An
even quicker method of approximating n was discovered by John Machin in 1706,
who established first that

n__4 t ! arctan !

= arctan ¢ 735"
(This can be proved by repeated application of the tangent sum law.) Use Machin’s
identity to estimate = to six decimal places.

Evaluate each of the following limits.
(@) Limit,_o(1 — e9)/(1 — =%).

(b) Limit,_, (1 — x°)/(1 — x™).

(¢) Limit,_,In((1 — x*/(1 — x)).

(d) Limit,_,. [In(x* — 4) — In(x — 2)].

Let 4 and B be unequal positive numbers. Prove that the quantity (4 — B)/
(InA — In B) lies between A and B. Hint. Apply an appropriate form of the mean-
value theorem to the natural log function on the interval from A to B.

Integrals were introduced in order to represent areas. Yet there are people having
no interest whatever in areas who still place high value on the study of integrals.
List at least six reasons why integrals are of interest, aside from their use in mea-
suring areas.

Some decomposed carbon has been found in a cave thought to have been inhabited
by ancient man. If it is established that one fourth of the original carbon has de-
composed, how long has the carbon been in the cave? (The half-life of carbon is
5568 years.)

In one month 20 g of radioactive substance X decays to 14 g, while during the same
period 50 g of radioactive substance Y decays to 30 g. When will there be the same
amount of substances X and Y?
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58.

59.

60.

61.

62.

63.

64.

Consider the function given by f(x) = /1000 + x.

(a) Find an algebraic approximation agreeing with f to third order at the point
x=0. .

(b) Use part (a) to estimate the cube root of 1010 to several decimal places.

(a) Find the derivative of te™".

(b) Use your answer to part (a) to guess an antiderivative of te™".

(c) Guess an antiderivative of t?e~". Hint. First find its derivative.

(d) Investigate this conjecture: An antiderivative of f(t)e™" is given by —e™'(f(t) +
SO+m+ ).

(e) Find an antiderivative of (12 — 3t 4 6)e".

(f) Find an antiderivative of (t> — 3t + 6)¢'.

(g) Make your own conjecture about antiderivatives of f(f)e' and attempt to
verify it.

(a) Give a one-sentence definition of calculus.
(b) Give a one-sentence definition of mathematics.

Mathematics is made up largely of methods. We have discussed mainly Fermat’s
method and the method of Eudoxus, but we have also seen the method of Archi-
medes, the “Sherlock Holmes method”, and the method of Simpson (Simpson’s
rule). Without referring to the text,

(a) explain the purpose of each method,

(b) explain how each method works, and

(c) evaluate how well each method accomplishes its purpose.

Much of our knowledge of Greek mathematics comes from a commentary written
on the first book of Euclid’s Elements by Proclus, who lived in the fifth century
A.D. In his commentary Proclus says that mathematics

arouses our innate knowledge, awakens our intellect, purges our understanding,
brings to light the concepts that belong essentially to us, takes away the forget-
fulness and ignorance that we have from birth, sets us free from the bonds of
unreason; and all this by the favor of the god [Hermes?] who is truly the patron
of this science, who brings our intellectual endowments to light, fills everything
with divine reason, moves our souls towards Nous [the highest form of knowl-
edge], awakens us as it were from our heavy slumber, through our searching
turns us back upon ourselves, through our birthpangs perfects us, and through
the discovery of pure Nous leads us to the blessed life. (Proclus: A Commentary
onthe First Book of Euclid’s Elements, translated by Glenn R. Morrow, Princeton
University Press, 1970, p. 38)

(a) Compare this passage with the passage quoted in Chapter 10, Section 8, written
some 1200 years later.

(b) From the quotation above it is obvious whom Proclus thought to be the supreme
philosopher. Was it Plato or Aristotle?

Name at least five noted philosophers who have also been mathematicians. Is it
just an accident that some of the most eminent philosophers have also been
mathematicians?

The Greek writings of Plato, the French of Pascal, Descartes, and Poincaré, the
English of Russell and Whitehead have all been acclaimed as models of prose
style by students of literature. Is it just an accident that some of the most eminent
writers have also devoted themselves to mathematics?
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65. Consider each of the following relatively recent statements. Which of them is
virtually a restatement of the principle of continuity? Which of them remind you
of Pythagoras? of Plato? of Archimedes? of Leibniz?

(a)

(b

=

(©)

(d)

Remote from human passions, remote even from the pitiful facts of nature,
the generations have gradually created an ordered cosmos, where pure thought
can dwell as in its natural home and where one, at least, of our nobler impulses
can escape from the dreary exile of the actual world (Bertrand Russell, twentieth
century).

Since the fabric of the world is the most perfect and was established by the
wisest Creator, nothing happens in this world in which some reason of maximum
or minimum would not come to light (Leonhard Euler, eighteenth century).
Apart from a certain smoothness in the nature of things, there can be no knowl-
edge, no useful method, no intelligent purpose (Alfred North Whitehead,
twentieth century).

The great book of Nature lies ever open before our eyes and the true philosophy
iswritten in it . . . But we cannot read it unless we have first learned the language
and the characters in which it is written . . . It is written in mathematical language
(Galileo, seventeenth century).

I have never done anything ‘useful’ . . . . The case for my life . . . is this: that I
have added something to knowledge, and helped others to add more; and that
these somethings have a value which differs in degree only, and not in kind,
from that of the creations of the great mathematicians, or of any of the artists,
great or small, who have left some kind of memorial behind them (G. H. Hardy,
twentieth century).

66. William Blake (1757-1827) wrote the following poem. What is it about?

Mock on, Mock on Voltaire, Rousseau:
Mock on, Mock on: ‘tis all in vain!
You throw the sand against the wind,
And the wind blows it back again.

And every sand becomes a Gem
Reflected in the beams divine;

Blown back they blind the mocking Eye,
But still in Israel’s paths they shine.

The Atoms of Democritus

And Newton’s Particles of light

Are sands upon the Red sea shore,
Where Israel’s tents do shine so bright.



Appendix 1
Writings “About” Mathematics*

The complaint of some humanists that mathematicians make no attempt to
describe to others their function is unjustified. On the contrary, a list of
articles and books published with this purpose in mind is extensive, owing
to the efforts of a number of writers, many of whom have been distinguished
mathematicians.

This appendix calls attention to some of these writings about mathe-
matics, which are by and large non-technical in nature and addressed to
the general reader. It also serves as a way of acknowledging, however in-
adequately, the debt owed by the author of this book to the writings of others.
The list of works mentioned has been purposely kept short—so as not to
overwhelm the reader—and reflects to some degree, of course, the taste of
the author.

A much more extensive list may be found in the useful Annotated Bibliog-
raphy of Expository Writings in the Mathematical Sciences, by Matthew P.
Gaffney and Lynn Arthur Steen, published by the Mathematical Association
of America, Washington, D.C., 1976.

§1. The Nature of Mathematics

The quotation just inside the title page of this text is taken from Alfred
North Whitehead’s chapter on mathematics in Science and the Modern
World [55]". This essay, “Mathematics as an Element in the History of

* A revision of A Brief Guide to Writings ‘About’ Mathematics, W. M. Priestley, Copyright
© 1972 (privately published).

* Numbers in square brackets refer to the listing in the bibliography.
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Thought”, is a modern classic. Quite a different kind of article, but equally
celebrated, is Henri Poincaré’s “Mathematical Creation”. The ideas expressed
here by the great French mathematician are often referred to in discussions
of creativity. Poincaré’s article may be found in [16], for example, as well
as in [34]. It inspired Hadamard’s The Psychology of Invention in the Mathe-
matical Field [17].

The attractiveness of mathematics as an activity similar to creative
endeavors in the fine arts is the theme of an excellent article [18] by Paul
Halmos. This theme is given its most eloquent expression, perhaps, in the
lines of Russell: “Mathematics, rightly viewed, possesses not only truth,
but supreme beauty ...” (See Chapter 5, Section 1, for the rest.) It is only
fair to add here that Russell later [39] partially repudiated some of these
sentiments, owing to certain developments in twentieth-century philosophy.

G. H. Hardy’s defense [19] of mathematics rests largely on aesthetic
grounds. A Mathematician’s Apology has been reprinted, with a foreword by
C. P. Snow. Of this unique book Graham Greene has said, “There is nothing
here which the layman cannot understand except possibly one theorem,
and I know no writing—except perhaps Henry James’s introductory essays—
which conveys so clearly and with such an absence of fuss the excitement
of the creative artist.”

Hardy says that mathematics is not a contemplative but a creative subject.
One cannot know the nature of mathematics without doing some mathe-
matics. The books [10], [35], [36], and [48] are designed to help the reader
do just that.

§2. About Mathematicians

E. T. Bell's Men of Mathematics [1] must surely be the most popular book
about mathematicians. In his inimitable, crusty style Bell relates the lives
and achievements of thirty-odd mathematicians, the latest being Georg
Cantor, who died in 1918.

Few mathematicians write autobiographies, the only one of great literary
merit being Bertrand Russell’s [40]. Since Russell did little in mathematics
after World War I, his is a mathematician’s autobiography only as far as
Volume 1. Norbert Wiener, who received his Ph.D. degree at the age of
eighteen and studied under Russell and Hardy, has written an autobiography
[56], [57]- Wiener is the father of cybernetics.

Opystein Ore’s biography [33] of the great Norwegian mathematician
Niels Henrik Abel is well worth reading. Abel died at the age of twenty-six.
Leopold Infeld [21] writes movingly of the remarkable French mathe-
matician Evariste Galois. Galois died at twenty.

An absorbing biography [37] of David Hilbert has been written by
Constance Reid, who followed it with the life story [38] of Richard Courant.
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Hilbert, long associated with Gottingen, helped chart the course of twentieth-
century mathematics in a famous address in 1900; and Courant, in moving
from Géttingen to New York, was instrumental in raising the level of mathe-
matical research in the United States.

As a rule, only the celebrated mathematician is written about. The
ordinary teacher of mathematics, upon whom real inspiration descends
grudgingly and fleetingly, is usually thought undeserving of attention. But
Donald Weidman has written a sympathetic account [51] of the run-of-the-
mill mathematician’s fate.

§3. History and Development of Mathematics

For the general reader D. J. Struik’s A Concise History of Mathematics [46]
is most handy. Two good textbooks used by undergraduate courses in history
of mathematics are Eves [12] and Boyer [6]. Eves leans toward geometry,
Boyer toward analysis. Boyer wrote an earlier book [ 5] on the development
of calculus, but on this subject the real gem is by Toeplitz [49]. For the
development of mathematics a variety of works may be consulted. Dantzig’s
book [11], dealing mainly with analysis, is easy to read. Meschkowski’s
little book [28] is good, as is Kline’s big book [23]. Bell [2] is unique.
If Greek mathematics is your interest, then van der Waerden [50] is for
you. Here is a beautiful, exciting description of a glorious epoch in mathe-
matics. Neugebauer [31] discusses Babylonian and Egyptian mathematics.
For samples of little gems by ancient and classical mathematicians, such
as Archimedes, Pascal, and Leibniz, see the collections by Coolidge [9] or
Meschkowski [27]. Extensive source books are Smith [42] and Struik [47].
The definitive work in the history of mathematics (up to 1800) is the
massive tome of Moritz Cantor [7], which Salomon Bochner [4] charac-
terized as “one of those large-scale works by bearded gaslight-Victorians
which the 20th century does not quite know how to supersede with whatever
it might try to supersede them with.”
What about the future of mathematics? See Weil [52].

§4. Philosophy of Mathematics

What is mathematics? Is it created or is it discovered? What are the founda-
tions of mathematics? Textbooks, such as Eves and Newsom [15] and Wilder
[ 58], consider such questions, whose answers may vary according to whether
one subscribes to the philosophy of intuitionism, formalism, or logicism.

Hermann Weyl, who was an intuitionist, wrote a deep book [53],
Philosophy of Mathematics and Natural Science. It demands deliberate
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reading. Poincaré is most articulate on this subject, as on every other subject
collected in his essays [ 34]. Lately the intuitionist position has been revived
and modified, with the coming into prominence of constructive methods. See
the review [45] of Bishop’s book.

Hilbert was the foremost proponent of the formalist thesis, and passages
in [37] attempt to capture the spirit of the early twentieth-century debate
over the validity of this thesis. The celebrated theorem proved by Kurt Godel
in 1931, which was such a setback for formalist hopes, has been outlined for
the general reader by Nagel and Newman [30].

Russell and Whitehead promulgated the logistic thesis. See Henkin [20]
for some comments on its current state.

Many important issues in the philosophy of mathematics turn on one’s
answer to a seemingly simple question: What is a real number? One might
think that all mathematicians would agree upon real numbers by now, since
numbers have been around for a long time, if not eternally. But see Steen [43].

§5. Collections of Expository Articles

If a guide to writings about mathematics listed only one entry, it would have
to be the four-volume set World of Mathematics [32], edited by James
R. Newman. Some of the articles mentioned above are reprinted (though
sometimes in abridged form) in this superb collection. Anyone interested in
mathematics is probably already familiar with this work.

A compilation [22] of articles on mathematics that have appeared in
Scientific American is impressive, as are the collections [3] and [41], all of
which attempt to give in a non-technical way something of the flavor of
today’s mathematical research.

Shortly after World War II there appeared in France an ambitious collec-
tion of expository essays about mathematics. Written mainly by French
mathematicians, these essays cover a great range of topics, even including the
relationship between mathematics and music, aesthetics, philosophic ideal-
ism, social change, and Marxism. Though some are dated by now, many
retain their original striking quality. It is good to have them [24] available in
English.

§6. Miscellaneous Writings

The book [25] by Littlewood, Hardy’s great collaborator, surely goes under
this heading. Hermann Weyl’s Symmetry [ 54] and Hugo Steinhaus’s Mathe-
matical Snapshots [44] have been widely admired. J. D. Williams has written
for the layman a delightful book on game theory, The Compleat Strategyst
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[59]. Menninger’s Number Words and Number Symbols [ 26] must be on the
coffee table of every modern Pythagorean. Eves’s books [13], [14] help
preserve the folklore of mathematics, as does the older collection [29] of
Moritz, for those who are interested in “witty, profound, amusing passages
about mathematics and mathematicians”.

Finally, who is unfamiliar with the work [8] of that dour Oxford professor
of mathematics, the Reverend Charles Lutwidge Dodgson?
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Appendix 2
Sums and Their Limits

This appendix is intended to supplement the discussion of Eudoxus’ method
given in Chapter 6 by presenting proofs of several summation formulas and
by offering some more examples of summation techniques. What follows
may be read immediately after Section 6 of Chapter 6.

Let us begin by discussing a problem which may be no further away than
the nearest supermarket. We shall solve it two ways. The first solution makes
no use of sumniation techniques.

Problem A. Oranges are stacked in the form of a pyramid whose base is
rectangular, with 6 oranges along one side and 10 oranges along the other.
How many oranges are in the pyramid?

Solution 1. The bottom level, of dimensions 6 by 10, has 4 more oranges
along one side than along the other. As any experienced stacker of oranges
knows, it follows that every level will have 4 more oranges in one dimension
than in the other. The size of the top level has to be 1 orange by 5 oranges,
the next level must be of size 2 by 6, followed by a level of size 3 by 7, and
so on. Adding the oranges in each level—beginning at the top level—we
see that the total number of oranges is given by

1-54+2:6+3-7+4-84+5-9+6-10=175. ]

Solution 2. The k-th level (counting from the top level down) will have
k oranges along one side and k + 4 oranges along the other. Hence the
k-th level will contain k(k + 4) = k* + 4k oranges. There are obviously
6 levels in all, so the total number of oranges is equal to
6 6 6 6
*) Y. oranges on k-th level = ) (k* + 4k) = Z +4 3 k
k=1 =

k=1

392
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There are easy formulas for ) k, for ) k?, and for ) k*, given as follows:

z": kzn(nz-l- 1), (1)
k=1

i 2 - n(n+ 1)(2n + 1), @
K=1 6

§ ot D (3)
K=1 4

(We shall prove these formulas shortly.) When n = 6, formulas (1) and
(2) become

6
Y k=—-=21; i )6(13) 91.

These, when put together with equation (*) above, show that the total
number of oranges is equal to 91 + 4(21) = 175. O

In Problem A we needed to add together only six quantities. With such
a small number of summands the use of summation techniques saves little
time. Solution 2 will probably consume as much time as Solution 1. With
a large number of summands, however, the use of summation techniques
is almost indispensable. The reader will find it helpful to memorize formulas
(1), (2), and (3).

Problem A *. Baseballs are stacked in the form of a huge pyramid, with a
rectangular base of 60 balls by 50 balls. How many baseballs does the
pyramid contain?

Solution 1. Every level will have 10 more balls in one dimension than in
the other, and there will be 50 levels in all. Counting from the top level
down, we see that the total number of balls is given by

1-11+2-124+3-13+---450-60= 177! O

Solution 2. The k-th level from the top will have k balls along one side
and k + 10 balls along the other. Hence the k-th level contains k(k + 10) =
k?* + 10k balls, and the total number of balls in the entire pyramid is given by

50
Y (k* 4+ 10k) = Zk2+10 Zk

k=1

50(51)(101 50-51
=—(%(—) 10~—2— [by (1) and (2)]

= 55,675. (]
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§1. Collapsing Sums; Proofs of Formulas
(1), (2) and (3)

Here are some examples of a simple but important type of summation. The
sum depends only upon the first and last terms, since the intermediate terms
cancel. The sum “collapses”, making it quite easy to add up. The following

equalities are obvious.
1 1 1
—— =1-—-: 4
<n n+ 1> n+1 @)

()62

[12-0%] 4+ 22— 12]+[32 =22+ -+ [P —(n—1)}] =n", (5)
[P—0]+[2°-13]+[33-2]+ -+ [ =(n—1)*]=n’. (6)
In summation notation, formulas (4), (5), and (6) are expressed as follows.
" /1 1 1

[ B &
k;<k k+1> : n+ U @)
Y (k2 — (k= 1)?) = n; (5)
k=1
Y (k3= (k=173 =n’ (6"
k=1

What is this good for? It seems too obvious to lead to anything interesting.
Yet interesting results are immediately at hand. Since (1/k) — (1/(k + 1)) =
1/(k? + k), the obvious formula (4) immediately yields the interesting
summation formula

}E 1/(k> + k) =n/(n + 1),
k=1

a result which may not be obvious. And the obvious formulas (5) and (6’)

lead immediately to proofs of formulas (1) and (2).

ProOF OF FormuLA (1). First note that
K2—k=1D*=k*—=(k*=2k+1)=2k—1,

so that formula (5) becomes

n

Y 2k —1)=n’

Therefore,

k=1 k=1
n
. 1.2
2-Y k—n=n?
=

=1
n

2- Y k=n*+n,
k=1

n }12 +n

k= . O
/Z‘l 2
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PrOOF OF FORMULA (2). First note that
— (k=1 =k>— (k> = 3k? + 3k — 1) = 3k — 3k + 1,

so that formula (6") becomes
> (3k* =3k + 1) =n?.
k=1
Therefore,
-3 Z k + Z 1=n?
k= k=

3'Zk2—3n(n; D n=n’.
=

We want to derive formula (2) by solving this equation for Y k?. This is
easier to do if first we multiply through by 2:

6> k*—3n(n+1)+2n=2n

k=1
Therefore (the reader is asked to supply the missing steps),

6> k*=2n>+3n’+n

k=
=n2n* +3n+1)

, =n(n+ 1)(2n + 1),
and formula (2) is obtained upon dividing by 6. O
Proor oF FormuLA (3). Since the idea of these proofs should be familiar

by now, only the main steps are given. The reader is asked to fill in the
details. Beginning with the collapsing sum

i (k* — (k — 1% = n*

and noting that k* — (k — 1)* = 4k® — 6k? + 4k — 1, we get

4-Zk3—6-2k2+4-2k—21=n4,
where all the summations run from k = 1 to k = n. Using formulas already
derived for ) k?, Yk, and ) 1, we obtain the equation

43k —(2n* + 3n® + n) + (2n® + 2n) — n = n*.
Therefore,
4-Yk=n*+2n*+n?
=n*n* +2n+ 1)
=n’n+ 1)%
and formula (3) is obtained upon dividing by 4. O
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The summation formulas (1), (2), and (3) were known to the Greeks, but
the proofs presented here are modern. The modern approach, using sum-
mation notation, has the advantage of applying equally well to the deter-
mination of formulas for ) k*, Y k*, etc—sums which the Greeks apparently
did not consider. The determination of such formulas is left to the reader
as an exercise.

§2. Integrals of Quadratics and Cubics

Many examples of Eudoxus’ method of calculating integrals are given in
Chapter 6, but most of them deal with relatively simple linear functions.
Here are some slightly more complicated applications of the method.

ExampLE 1. Calculate the integral {§ x?dx directly from its definition as
a limit of sums.

Solution. We are asked to calculate [% f(x)dx, where a =0, b=1, and
f(x) = x2. Here we have 4x = 1/n, x, = k/n, and f(x,) = k*/n®. An appro-
ximating sum for the desired integral is then given by

So= 3 flx)dx
k=1

Therefore,

S DO N 11
fo x*dx = Limit S, = leltg(l + E)(z + ;> -z =3 O

ExampLE 2. Calculate the integral § ax?dx directly from its definition as
a limit of sums.

Solution. This is only a slight modification of the preceding example.
Here we have Ax = n/n, x, = kn/n, and f(x,) = ak?*n?/n?.

Lo (akPn?\(n\ an® &, an’n(n+1)(2n+ 1)
S"—,El( 7 ><E>‘?,§lk = 6 -
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Therefore,

T 3 1 1 3
f ax2dx=LimitS,,=Limitﬂ 142 4+-)=% 0
° 6 n n 3

ExaMPLE 3. Calculate the integral {{, ax* dx by Eudoxus’ method.

Solution. This is treated just like the preceding example except that we
have ¢ in place of 7. It is therefore obvious that the bottom line will read

3 £3
ft ax?dx = Limit S, = Limitﬁ(l + 1)(2 + 1) = E—. d
Jo 6 n n 3

ExAMPLE 4. Calculate the integral [§ x*dx by Eudoxus’ method.

w2 )0

Solution. Here we have

n

2K

—L('Fr [by (3)]
1 1\?
=Z<1+;l'>

1, . .1 1\?
f x*dx =LimitS, =Limit-(1 +-] =
0 4 n

Therefore,

ExaMPLE 5. Calculate the integral |5 x* dx by Eudoxus’ method.

Solution. Here are the main steps. The details are left to the reader. To
save space the index k is suppressed in the summations below. The sum-
mations are understood to run from k = 1to k = n.

Since x;, = a + k Ax, we have

S, =Y xi Ax
=Y (a+ k 4x)* Ax
=Y [a® + 3a*k(4x) + 3ak?(4x)? + k*(4x)*] Ax
= a>(4x)).1 + 3a*(4x)*Y k + 3a(4x)>Y k* + (4Ax)*Y k3.
Using the fact that Ax = (b — a)/n and using the summation formulas for

Y1, Yk, Yk and Y k3, we get

S,=a’b—a)+ %az(b — a)? (1 + %) + %a(b —a)? <1 + %)(2 + %)

1 of 1V
+46-a <1+;>.
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Taking the limit of S, as n increases without bound, we see that

1

fb x3dx =a¥b—a) + %az(b —a?+alb—a)P®+ Z(b —a)*
b* a*

=37 O

§3. Geometric Series and Applications

The equation (1 + x)(1 — x) =1 — x? is such a simple algebraic identity
that the most interesting thing about it is rarely noticed. The interesting
thing is that it comes from a collapsing sum.

A+x)(1-x)=1 -0 +x)1-x)=1=-x)+x=-x3)=1-—x%

This is about the simplest possible example of a collapsing sum. We should
ask whether this example generalizes readily and whether the generalization
is even more interesting. The answer is yes to both questions.

The immediate generalization is this:

T+x+x)1—-x=01-x+x—-x)+x*=-x)=1-x>

And the far-reaching generalization is one of the most important identities
in mathematics:

I+x+x2++xY 1 —x)=(1—-x)+(x—xH)+ 4+ x"—x"""
=1-x"*1

The identity is important because from it we get the following summation

formula (by dividing both sides of the identity by 1 — x):

1 — Y"+1

l4+x+x24  +x"=—T
1-x

if x # L. (7
The series on the left is called a geometric series and its sum is given in
equation (7). The result just obtained is useful enough to be called a theorem.

Theorem on Geometric Series. For a geometric series the following summation
SJormula is valid, provided x # 1:

n n+1

. _l—x
o 1 —x

(where x° is understood to be 1).

The reader should note the difference between the type of series now being
considered and the type that was considered in Section 1. In Section 1 we
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found, for example, that

n 1)(2n + 1)
K2 — n(n + )
LT

whereas by the theorem just proved (with x = 2) we have

n 1 _ 2n+1
= — =t
The reader should be careful not to confuse ) 2* with ) k2. One is a geometric
series while the other is not. Note also that the formula for the geometric
series above is for the sum beginning with index k = 0. By subtracting 1 from
both sides of equation (7) we get an analogous formula where the index k

begins at 1:
n+1

Zx":ﬂ_’ X#l
k=1 I—x

ExaMPLE 6. Evaluate the sum

el ()

Solution. The sum in question comes from the geometric series

56

1_(%)n+1_4—1 1"~i
1-1 73 3\4) 73

if n is a large positive integer. O

By (7) its sum is

ExampLE 7. Consider the function given by f(x) = 1/(1 — x). Find an ap-
proximation of this function given by nonnegative powers of x.

Solution. Equation (7) says
1 xntt .

l+4x+x2+x>+ - +x"= - ~
l-x 1-x 1-x

if x ~ 0. Therefore,
1

1—x

n
~ ) X ifx~0.
k=0

This answer should be compared to the result of problem 24 at the end of
Chapter 9. O

Here is a dazzling application of the use of a geometric series. It is due to
Fermat. While the theorem is easy to prove using the fundamental theorem



400 Appendix 2 Sums and Their Limits

of calculus, Fermat was able to prove it before the fundamental theorem was
known. The proof demands careful attention, as some details of it are left
to the reader.

Theorem (Fermat). Let A be the area beneath the graph of the curve y = t"
(where n is a positive integer) betweent = 0 andt = b. Then A = b"*/(n + 1).

PROOF. Let x be a positive number just less than 1 and consider the (infinite)
sequence of numbers

b, bx, bx?, bx3, ..., bx* ...

which subdivide the interval from ¢t = 0 to ¢t = b into infinitely many sub-
intervals. For fixed x, let A, be the area beneath the staircase built upon
these subintervals.

(b,b")

{0,0) cee o bxko-e- bx? bx b

As x — 17 the staircase approximates the curve ever more closely.
Hence the area A beneath the curve is given by

A = Limit A,.
x—1-
We shall first calculate 4,. To do this it is convenient to start at the top

step and go down, with the top step counted as the 0-th step. Then the k-th
step looks like this.

(bx", bnxkn)

height: b"x*
width: b(1 — x)x*

bxh+ 1 bxk
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The area beneath the k-th step is then b"*!(1 — x)(x"* '), and the total

area A, (where x < 1) is given by summing, beginning at k = 0:

A _bn+1 [l+xn+1 +( "+1)2+(X"+1)3+"']

1
= b"+ 1(1 — X)[W :l (Why?)

n 1—x
=b +1[1 _xn+1}

=P+ x+x2++xm [by (7)].

Therefore,
A=Limit A, = Limit "* /1 + x + x> + -+ x) =b""(n + 1). O
x—=1- x—=1-

PROBLEMS (OPTIONAL)

1.

- (a

Baseballs are stacked in the form of a pyramid with a rectangular base of 40 balls
by 36 balls. How many balls are in the pyramid?

. Evaluate each of the following sums.

(@ 1-8+2-9+3-10+4-11+---+50-57.

(b) (1/1-2)+(1/2-3)+ 13-4+ (1/4-5) + -+ - + (1/99 - 100).
Zwoks

Zmo

100 (z)k

Prove that ) %, k* = n(n + 1)(2n + 1)(3n* + 3n ~ 1)/30.

)
(e)
)
) Use the result of part (a) to calculate [§ x*dx by Eudoxus’ method.

(b

. Find a formula for ) k® and use it to calculate {§ x° dx. Caution: Keep a cool head.

This problem can cause nervous breakdowns.

. Apply Eudoxus’ method to calculate each of the following integrals.

a) {1(3x® — 2x%)dx.
b) [2,02x* = 7x)dx.
0 [3,(x* —x + 4)dx.

. (For those who think they understand infinity) This book has avoided mentioning the

symbol for infinity until now, because the symbol is so easily misunderstood. Test
whether you understand it or not, by explaining why it is natural to write

Z 1/1-x), if—1<x<l;

and yet at the same time to write

Y x*#1/1—-x), ifx<—lorx>1

k=0



402 Appendix 2 Sums and Their Limits

7. (a) When did Fermat die?
(b) When did Newton discover the fundamental theorem of calculus?
(c) Look again at the theorem of Fermat’s proved in the last section. Give a one-
line proof of this theorem by making use of the fundamental theorem of calculus.

8. (An ambitious project) Geometric series continue to find many surprising applications,
even to the present day. Yet none could be more charming than the application made
by Archimedes to effect a quadrature of the parabola. He proved that the area of a
segment of a parabola is equal to four-thirds the area of its largest inscribed triangle.
(The factor 4/3 comes from the fact that ) 2, (§)* = 4/3, as seen in Example 6.)
In modern terminology we may state this result as follows:

Theorem (Archimedes). Let A be the area enclosed between the graph of a linear
Sunction and the graph of a quadratic function, and let T be the area of the largest
triangle that can be inscribed in A. Then A = (4/3)T.

Either (a) prove this result through the use of calculus; or (b) look up Archimedes’
original proof and write a paper on it, sketching the main points.
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The mind of Archimedes is modern. Though he was born about 287 B.C., one
may expect to have difficulty understanding his work unless one knows
something of the developments in mathematics that took place two thousand
years later. It may be well to read much of Chapters 1-6, together with
Chapter 10, before expecting to understand everything in the small sample of
Archimedes’ work that is outlined here in this appendix.

In his published papers Archimedes characteristically put together his
ideas with such tight logic that the adjective archimedean came to refer to any
logical demonstration meeting the very highest standards of rigor. The reader
interested in seeing truly archimedean demonstrations is invited to consult
T. L. Heath, The Works of Archimedes, Cambridge, 1897 (also available in
paperback by Dover Publications). This appendix outlines only a few of his
ideas, and these are given presentations that may be described as casual if
compared with archimedean standards.

§1. Archimedes and the Classical Problems

The three so-called “classical problems of antiquity” are as follows.

(The Trisection Problem) Given an angle, devise a method for constructing
another angle one-third as large.

(The Quadrature of the Circle) Given a circle, devise a method for con-
structing a square having the same area.

403
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(The Duplication of the Cube) Given a cube, devise a method for con-
structing another cube whose volume is twice as large.

It is probably safe to say that every Greek mathematician worked seriously
on at least one of these famous problems. It ought to be surprising, therefore,
that Euclid’s Elements gives no account of them.

Why did Euclid not discuss these easily stated, natural problems? The
reason is simple. Euclid did not know how to do them. Nor did anyone else.
The construction of the required trisection, quadrature, or duplication eluded
the efforts of the greatest mathematicians.

It is important to understand what Euclid meant by a “construction”.
In Euclidean geometry a construction may use a ruler and a compass, but
nothing else. And the “ruler” can have no distance markings on it, its use being
only as a straightedge to draw straight lines through points already con-
structed. Using Euclidean constructions, no one was able to solve any of the
three problems above.

Archimedes somehow recognized the futility of Euclidean methods of
attacking these problems, and reacted in a thoroughly modern way. If
traditional theory proves inadequate to handle the type of thing for which it
was designed, then something new is needed.

In a sense, it is “obvious” that each of the problems above has a solution.
For example, it is obvious that there exists a trisection of a sixty-degree angle.
(An angle of twenty degrees, of course, does the trick.) The whole problem is in
constructing an angle of twenty degrees from a given angle of sixty degrees
through the use of ruler and compass alone. Archimedes devised the following
construction of striking simplicity.

Given an angle, we may construct a circle whose center O lies at the
angle’s vertex:

i

| R__S |

On a ruler, or straightedge, mark off two points R and S the distance
between which is equal to the radius 0Q. Now perform the following trick
with the straightedge. Keeping the point R on the line through OQ and
keeping the point S on the circle, manipulate the straightedge until it touches
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