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To William Montgomery 
and Thomas Carter, 
Jor their delight in 
sandpiles, seesaws, and pebbles. 



Even now there is a very wavering grasp ofthe true position ofmathematics 
as an element in the history of thought. I will not go so far as to say that to con­
struct a history of thought without profound study of the mathematical ideas 
of successive epochs is like omitting Hamlet from the play which is named after 
hirn. That would be claiming too much. But it is certainly analogous to cutting 
out the part of Ophelia. This simile is singularly exact. For Ophelia is quite 
essential to the play, she is very charming-and a !ittle mad. Let us grant that 
the pursuit of mathematics is a divine madness of the human spirit, arefuge 
from the goading urgency of contingent happenings. 

Alfred North Whitehead 
from Mathematics as an 

Element in the 
History of Thought 



Preface 

This book is for students being introduced to calculus, and it covers the 
usual topics, but its spirit is different from wh at might be expected. Though 
the approach is basically historical in nature, emphasis is put upon ideas 
and their place-not upon events and their dates. Its purpose is to have 
students to learn calculus first, and to learn incidentally something about 
the nature of mathematics. 

Somewhat to the surprise of its author, the book soon became animated 
by a spirit of opposition to the darkness that separates the sciences from 
the humanities. To fight the speil of that darkness anything at hand is used, 
even a few low tricks or bad jokes that seemed to offer a slight promise of 
success. To lighten the darkness, to illuminate some of the common ground 
shared by the two cultures, is a goal that justifies almost any means. It is 
possible that this approach may make calculus more fun as weil. 

Whereas the close ties of mathematics to the sciences are weil known, 
the ties binding mathematics to the humanities are rarely noticed. The 
result is a distorted view of mathematics, placing it outside the mainstream 
of liberal arts studies. This book tries to suggest gently, from time to time, 
where a kinship between mathematics and the humanities may be found. 

There is a misconception today that mathematics has mainly to do with 
scientific technology or with computers, and is thereby unrelated to hu­
manistic thought. One sees textbooks with such titles as Mathematics Jor 
Liberal Arts Majors, a curious phrase that seems to suggest that the liberal 
arts no longer include mathematics. 

No discipline has been apart of liberal arts longer than mathematics. 
Three-Iogic, arithmetic, and geometry-of the original seven liberal arts 
are branches of mathematics. Plato's friend Archytas, who helped develop 
the whole idea of liberal education, was a distinguished mathematician. No 
true student of liberal arts can neglect mathematics. 

Vll 



viii Preface 

How did it happen that mathematics, in the public eye, became dissociated 
from the humanities? In brief, the emergence and growth of scientific 
knowledge in the seventeenth century led to a polarization in academic 
circles. Science went one way, the humanities went another. Mathematics, 
at first in the middle, seems now to be more commonly identified with the 
sciences and with the technology they engendered. 

Today in some academic institutions the state is not healthy. The ground 
between the sciences and the humanities is so dark that many well-meaning 
members on each side lack the education to see the most valuable contribu­
tions of the other. To the disadvantage of students, this is sometimes the 
case even among the faculties of so-called "liberal arts" colleges. 

In the seventeenth century mathematics was a bridge between the two 
kinds of knowledge. Thus, for example, Isaac Newton's new physics could 
be read by Voltaire, who was at horne both with Homer and with Archimedes. 
Voltaire even judged Archimedes to be superior, in imagination, to Homer. 

The unity of knowledge which seemed attainable in the seventeenth 
century, and which has long been an ideal of liberal education, is still worth 
seeking. Today as in the time of Voltaire, and in the time of Plato, mathe­
matics calls us to eye this goal. 

o 



Für Anyüne Afraid üf Mathematics 

Maturity, it has been said, involves knowing when and how to delay suc­
cumbing to an urge, in order by doing so to attain a deeper satisfaction. To 
be immature is to demand, like a baby, the immediate gratification of every 
impulse. 

Perhaps happily, none ofus is mature in every respect. Mature readers of 
poetry may be immature readers of mathematics. Statemen mature in 
diplomacy may act immaturely in dealing with their own children. And 
mature mathematicians may on occasion act like babies when asked to 
listen to serious music, to study serious art, or to read serious poetry. 

What is involved in many such cases is how we control our natural urge 
to get directly to the point. In mathematics, as in serious music or literature, 
the point sometimes simply cannot be attained immediately, but only by 
indirection or digression. 

The major prerequisite for reading this book is a willingness to cultivate 
some measure of maturity in mathematics. If you get stuck, be willing to 
forge ahead, with suspended disbelief, to see where the road is leading. "Go 
forward, and faith will follow!" was d' Alembert's advice in the eighteenth 
century to those who would leam the calculus. Your puzzlement may vanish 
upon tuming a page. 

All that will be assumed at the out set is a nodding acquaintance with 
some elementary parts of arithmetic, algebra, and geometry, most of wh ich 
was developed long before A.D. 1600. There will be some review in the 
early chapters, offering us as weIl a chance to outline the early history of 
mathematics. 

IX 



To the Instructor 

This book aspires to aid a student interested in either 

(1) receiving an elementary introduction to the basic ideas of calculus; or 
(2) learning "about" calculus, as a significant element in the history of 

thought. 

At first these goals may seem incompatible. In fact, each tends to reinforce 
the other. Aremark made by George P61ya suggests how both goals might 
be accomplished at once. 

If the learning of mathematics reflects to any degree the invention of mathe­
matics, it must have a place for guessing, for plausible inference. 

The reader will find plenty of opportunity here for guessing. The early 
chapters go at a gentle pace and invite the reader to enter into the spirit of 
the investigation. 

For those whose backgrounds in mathematics are not especially strong, 
Chapters 1-6, together with Chapter 10, have been designed to form a 
terminal course in mathematics. (Chapter 10 can be read immediately after 
Chapter 6.) In these chapters algebraic manipulations have been kept at a 
simple level. Negative and fractional exponents can be avoided altogether 
here, and even the absolute value function is omitted. Trigonometry is not 
introduced until Chapter 7. The result, even with the omission of some of 
the harder problems at the ends of chapters, is not a wate red-down course, 
but one that retains the full Bavor of calculus. 

This book is intended for use in a different way by students weil prepared 
in mathematics. They should move rapidly through Chapters 1-6, omitting 
many of the routine exercises placed at the ends of sections and concentrating 

x 



To the Instructor xi 

upon the more challenging problem sets located at the ends of chapters. 
After Chapter 6 the pace of the book picks up moderately. Chapter 7 develops 
the calculus of trigonometrie functions, following a quick introduction to 
trigonometry. Chapter 8 discusses the integral in more detail than before, 
adding a little more rigor to a treatment that remains basically intuitive. 
Chapter 9 deals with the exponential and logarithmic functions. Chapter 10 
is mainly historical in nature, but it sets the stage for the study of integration 
techniques through the use of formal manipulations with differentials. 

The book ends with Chapter 10, where a leisurely two-semester calculus 
course will find itself near the end of the year. In a fast-movingcourse the 
instructor may have to look elsewhere for additional material to cover. Had 
there been a Chapter 11, it would have covered techniques of integration, a 
subject often touched upon in Chapters 6-10 but whose systematic study was 
postponed. The theory of infinite series is another important topic that has 
been touched upon but not developed in this volume. 

In time, perhaps, a second volume will appear-to include these and other 
topics and to bring the story more up-to-date. 

I wish to thank Mary Priestley for helping me in this enterprise and for 
sharing with me its ups and downs. I am grateful also to Paul HaIrnos for 
his interest and encouragement. 

May, 1978 

Sewanee 

W.M.P. 
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Anecdote of the Jar 
Wallace Stevens 

I placed a jar in Tennessee 
And round it was, upon a hilI. 
It made the slovenly wilderness 
Surround that hilI. 

The wilderness rose up to it, 
And sprawled around, no longer wild. 
The jar was round upon the ground 
And tall and of a port in air. 

It took dominion everywhere. 
The jar was gray and bare. 
It did not give of bird or bush, 
Like nothing else in Tennessee. 

Copyright 1923 and renewed 1951 by Wallace Stevens. Reprinted from The Collected Poems 
0/ Wallace Stevens, by Wallaee Stevens, by permission of Alfred A. Knopf, Ine., and Faber and 
Faber Ltd. 



Tokens [rom the Gods 1 

A calculus is a pebble, or sm all stone. * Playing with pebbles, or "calculating", 
is a primitive form of arithmetic. The calculus, or calculus, refers to some 
mathematics that was developed principally in the seventeenth century. 

Today the calculus can be seen as a natural result of a certain point of 
view. This point of view is reached in three steps. One begins by inventing 
the notion of a variable and trying to see situations, where possible, in terms 
of variables. The second step is to focus attention upon the relationship 
between the variables arising in a particular situation. This leads to the 
idea of a function. The third step involves the notion of the limit of a function. 
This simple yet subtle notion, which makes it all work, was recognized in 
the seventeenth century as being a key idea. 

We shall discuss limits a little later. Right now, let us look at a couple 
of concrete situations where we can get hold of the idea of a variable and 
of a function relating one variable to another. 

§1. A Calculus Problem 

Let us become acquainted with a type of problem that calculus can handle. 
We shall not be able to solve this problem until certain tools are developed 
in a later chapter. 

* Physicians still use the word calculus in this sense, to descnbe an unwelcome presence in 
the kidney or bladder. The success of a textbook on calculus is measured by the degree to which 
its contents are not described by the physician's usage of the word. 



2 1 Tokens from the Gods 

EXAMPLE 1. A small rectangular pen containing 12 square yards is to be 
fenced in. The front, to be made of stone, will cost $5 per yard of fencing, 
while each of the other three wooden sides will cost only $2 per yard. What 
is the least amount of money that will pay for the fencing? 

In this example, the total cost of the fencing obviously will vary in terms 
of the design of the rectangle. Our job is to become familiar enough with 
how the cost varies in order to recognize the least possible cost. Toward 
this end we first pick at random a few possible designs and calculate their 
corresponding costs. There are lots of ways to enclose 12 square yards: 

~D 2 LI ___ ff_o_nt __ ...J 

n: 6 

EXERCISES 

1.1. Suppose the front is 1 yard in length. Find the cost. Hint. The cost is the surn of 
the costs of each of the four sides. First find the lengths of the sides, rernernbering 
that the area rnust be 12 square yards. 

1.2. Suppose the front is 2 yards. Find the cost. 

1.3. Suppose the front is 3 yards. Find the cost. Answer: $37.00. 

1.4. Suppose the front is n yards. Find the cost. Answer: 7n + (48/n) dollars. 

§2. Variables and Functions 

The information obtained in the exercises above may be conveniently sum­
marized in a table. Here, L is an abbreviation for the length in yards of the 
front, and C stands for the cost of the fencing in dollars. 

L C 

1 55 
2 38 
3 37 
n 7n + (48/n) 

We have seen, in the exercises above, that the value of Cis entirely deter­
mined by the value of L. In other words, there is a rule by which one gets 



2. Variables and Functions 

from L to C. This rule is simply given by 

C = cost in dollars of 

L 

12 
L 

= cost of front, plus cost of other sides 

= 5L + 2L + 2(~) + 2(~) 
48 

=7L+y;. 

3 

(1) 

(2) 

Because the cost C varies in terms of the length L, it is natural to speak 
of C as a variable whose value is determined by the value of the variable L. 
In other words (and more explanation will be forthcoming below), C is a 
function of L, which we express succinctly by writing 

C = f(L) (3) 

(read "C equals f of L"). The symbol f denotes the function, or rule, by 
which C is given in terms of L. Putting lines (2) and (3) together shows that 
the rule f can be expressed by the equation 

48 
f(L) = 7L +y;. 

The notation f(L) does not, of course, denote multiplication, but rat her 
denotes the effect of the rule f acting upon the variable L. For example, 
by this rule, 

48 
f(n) = 7n +-, 

n 

48 
f(3) = 7 . 3 + "3 = 21 + 16 = 37, 

48 
f(2) = 7 . 2 + 2 = 14 + 24 = 38, 

48 
f(1) = 7 . 1 + T = 7 + 48 = 55. 

Since the equation C = 7 L + (48/ L) says virtually the same thing as the 
equation f(L) = 7 L + (48/L), one might ask the reason for introducing 
this new symbol f. The reason is that we shall need to have a name for the 
mechanism, or rule, by which one gets from the left column above to the 
right column. It is, after all, this mechanism f that we want to study in order 
to recognize the least possible value of the cost C. 



4 1 Tokens from the Gods 

Note that fis not a variable, but stands for a fixed rule relating the two 
variables C and L. 

EXERCISES 

2.1. Use the rule given by f(L) = 7 L + (48/L) to find each of the following. 
(a) f(4). (b) f(5). 
(c) f(x). (d) f(J2). 
(e) f(3 + J2). (f) f(3 + h). 
(g) f(x + h). (h) f(n 2 ). 

(i) f(x 2 ). (j) f(4n). 
(k) f( 4t). (I) f(8/7). 
(m) f(6). 
Answers: (c) 7x + (48/x). (g) 7(x + h) + (48/(x + h)). (k) 28t + (12/t). 

2.2. In the following table, fill in the question marks appropriately. (Your answers to 
the preceding exercise may be helpful here.) 

c./f" L C 

4 ? 
2.5 ? 
x ? 
x 2 ? 

x+h ? 
? 50 
? 50 

§3. Three Ways of Looking at a Function 

In this book, the word function will be used a little loosely lind may have 
either of these three meanings: 

(A) A function is a pair of columns ofnumbers. Notjust any pair of columns, 
but a pair whose first column has no number repeated. We speak of the 
function as being from the first column to the second. 

1 55 
2 38 
3 37 
4 40 

(etc.) 

(B) A function is a rule of correspondence. Not just any rule, but a rule 
which associates to each number exactly one second number. We picture 
the correspondence as going from a horizontal number line to a vertical 
number line. 



3. Three Ways of Looking at a Function 

55 

50 

45 

40~~~=;1 

2 3 4 

5 

(C) A function is a curve in the plane. Not just any curve, but a curve that 
no vertieal line erosses more than onee. (Occasionally, instead of calling 
the curve a function, we call it the graph of a function.) 

55 
50 

45 

40 

35 (3,37) 

2 3 4 

Do you agree that (A), (B), and (C) are, at heart, expressions of the same 
idea? Is it not rem ar kable that the same idea can be thought of-as in 
(A)-as a statie notion or-as in (B)-as adynamie notion or-as in (C)-as 
a geometrie notion ? This remarkable feature is one reason why the idea of 
a function is an important one. Already the reader may expect that the 
study of fUTlctions will have a bearing on the study of dynamics (that is, 
motion), and on the study of curves in the plane. If the reader has also the 
feeling that the idea of a function can change a moving, or fluid, situation 
into a more easily scrutinized static situation, then much ofwhat the ensuing 
chapters hold has been foreseen. 

A surprising amount of mathematics consists in simply saying the same 
thing in many different ways, until it is finally said in a way that makes it 
simple. The problem in Example 1 of finding the least possible cost could be 
rephrased as either of the following problems: 

(1) Find the least number that can possibly occur in the second column in (A). 
(2) Find the lowest point ever hit on the vertical axis by f(L) in (B). 
(3) Find the second coordinate of the lowest point on the curve in (C). 

Calculus will teach us how to do problem 3 above. In Chapter 3 we shall 
begin the study of a technique that often enables one to find with ease the 
lowest point on a curve. 

For obvious reasons, Example 1 is called an optimization problem, where 
the optimum is achieved by minimizing a certain variable (the cost C). Let 
us now look at a second example, where the optimization problem that 
arises requires that a certain variable be maximized. 



6 1 Tokens from the Gods 

EXAMPLE 2. A farmer has a cow named Minerva. For her has been purchased 
1200 feet of fencing to enclose three sides of a rectangular grazing area. The 
fourth side is bounded by a long barn and requires no fence. Find the largest 
possible grazing area that Minerva can have. 

In this example the area varies with the design of the rectangle. Our task 
is to become familiar enough with how it varies in order to recognize the 
greatest possible area. We first pick at random a few possible designs and 
calculate the corresponding areas. There are lots of ways to use that 1200 
feet of fencing. 

400 
I~ 

100 I 1000 

Side of long, long barn 

EXERCISES 

3.1. Suppose the side along the barn is 100 feet. Find the area enclosed. Hint. First 
figure out the lengths of the other sides. 

3.2. Suppose the side along the barn is 400 feet. Find the area. 

3.3. Suppose the side along the barn is 1000 feet. Find the area. 

3.4. Suppose the side along the barn is n feet. Find the area. Answer: 600n - tn2 square 
feet. 

§4. Words versus Algebra 

Letting s stand for the length, in feet, of the side along the barn, and letting 
A stand for the area enclosed, in square feet, we have the following table: 

Jg~ 
s A 

100 55,000 
400 160,000 

1000 100,000 
n 600n - tn2 

From the exercises above, it is clear that the value of s completely determines 
the value of A. This me ans that A is a function of s. We want to become 
familiar with this function in order to recognize the largest possible area A 



4. W ords versus Algebra 7 

that it can produce for Minerva. We begin by giving it a name. Let us denote 
this function by g. (If we have a function pop up, we are free to baptize it 
with any name we choose. However, it. is conventional in most books to 
reserve the Ietters J, g, F, and G to designate functions.) 

We now have A = g(s). That is, g(s) is the area A corresponding to the 
rectangle whose Iength along the side of the barn is s feet. That is, 

g(s) = area, in square feet, of (4) 
s 

Equation (4) defines the function g in words. It is perfectly proper to define 
a function by writing out its rule in words. However, if the rule is really an 
algebraic rule in disguise, it behooves us to recognize it. What is the height 
of the rectangle in (4) whose base is s feet? It is t(1200 - s). Reason: Having 
used s feet opposite the barn, we have 1200 - s feet Ieft, of which half must 
go on each of the other sides. Thus, from (4) we can go on: 

g(s) = area of .... I ___ ...J 

s(1200 - s) 

2 
S2 

= 600s - 2. 

s 

1200 - s 

2 

This shows that the function g, written out in words in equation (4), can be 
expressed as an equation in algebra: 

S2 

g(s) = 600s - 2. (5) 

For obvious reasons, such a function is called an algebraic function. Almost 
all the functions we shall encounter in the first six chapters of this book will 
be aigebraic functions, and it is important to learn to convert an equation 
in words to an equation in algebra, whenever it is possible to do so. There 
arise many functions Iike g, whose rules are expressed in words, but whose 
rules are really aigebraic rules in disguise. 

EXERCISES 

4.1. Use the algebraic rule g(s) = 600s - ts2 to calculate 
(a) g(100). (b) g(400). 

(c) g(700). (d) g(10oo). 

~g~ mg~ 
(g) g(x + n). (h) g(x + h). 
(i) g(2 + 3k). (j) g(l/n). 
(k) g(1/x). 

Answers: (c) 175,000. (g) 600(x + n) - t(x + n)2. 
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4.2. Read again the three ways (A), (B), and (C) of looking at a function. 
(a) Draw a few arrows, as in (B), picturing the function 9 as a correspondence 

going from a horizontal number line to a vertical number line: 

160,000 IE--....... 

120,000 

80,000 

40,000 

'" ~_~_~_~k-_ 
100 400 700 1000 

(b) Plot a few points, as in (C), Iying on the curve g: 

160,000 

120,000 

80,000 

40,000 

• (400, 160,000) 

100 400 700 1000 

(c) In Chapter 3 we shaillearn an easy way to find the highest point on the curve 
g. Can you guess what the highest point might be? 

§5. Domain and Range 

Look again at equations (4) and (5) above. There is a subtle difference between 
them, despite the fact that both equations describe exactly the same rule of 
correspondence. The difference is this: In equation (4) it would make no 
sense (why?) to let the variable s have a value greater than 1200. Nor would 
it make any sense in (4) to let s take on a negative value. On the other hand, 
the algebraic rule 600s - ts2, given in equation (5), is weil defined for any 
value whatever of the variable s. For instance, when s is - 2, this algebraic 
rule gives 

( _2)2 
600( -2) - -2- = -1202, 

even though it is impossible to have a rectangle whose area is negative. 
A way to avoid such confusion is to agree to specify, at the outset, as 

soon as a f\mction is introduced, the collection of numbers on which the 
function is defined. This collection is called the domain of the function. The 



5. Domain and Range 9 

domain of our function g, as specified in words in equation (4), is then the 
coIlection of aIl permissible values of the variable s, which may be pictured 
like this: 

0---------------------0 
o 1200 

(The open circles at the endpoints 0 and 1200 indicate that these values are 
excluded from the domain. We cannot get an honest-to-goodness rectangle 
if we permit s to equal either 0 or 1200.) Instead of drawing a picture of the 
domain, one could equaIly weIl specify the domain by writing the inequality 

o < s < 1200, 

which says that the values of the variable s are restricted to lie between 0 
and 1200.* 

Onee the domain of a funetion has been specified, one can then speak 
of the range of values assumed by the function. For the funetion given by 
A = g(s), the domain consists of aIl permissible values of sand the range 
eonsists ofall eorresponding values of A. Sinee there are three ways oflooking 
at a funetion, there are three ways of thinking about a funetion's domain 
and range: 

(A) If the funetion is thought of as a pair of columns, then its domain is the 
eolleetion of all numbers allowed to go in the first eolumn and its range 
is the coIlection of aIl numbers in the seeond. 

~ 700 175,000 ~ 
o { 400 160,000} 

e:. 1000 100,000 ~ 
::s (etc.) 

(B) If the function is thought of as a rule of correspondence, then its domain 
is the set of aIl numbers on whieh the rule aets, and its range is the set 
of all corresponding numbers. 

9 

I 
o Domain 1200 

• Had we wished (we did not) to inc1ude, say, the point 0 and exc1ude 1200, we would have 
written 0 ::;; s < 1200 or drawn the picture with a closed circ1e at 0 and an open circ1e at 1200. 
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(C) Ifthe function is thought of as a curve, its domain is the projection ofthe 
curve on the horizontal axis and its range is the projection of the curve 
on the vertical axis. 

o Domain 1200 

The domain must be specified before it makes any sense to speak of the 
range of a function. If the domain is altered, then the range willlikely change 
as weIl. To find the range ofa given function is a problem we shall not discuss 
until Chapter 3. By (C) above, we see that finding the range involves finding 
the highest and lowest points on a curve, a topic we shall meet in Chapter 3. 

It is usually easy to specify the domain of a function, however. In the 
function of Example 1, given by 

48 
f(L) = 7L + L' 

it is natural to take the domain to be specified by the inequality 

O<L 

(or L > 0, if you prefer), wh ich says that the values of the variable L are 
restricted to be positive. This restriction is forced by equation (1), where 
the rule for f is written out in words. 

If one does not like to write inequalities, then one should learn to draw 
pictures. The domain of the function f of Example 1 can be pictured as 
folIows: 

o------------------~ 
o 

(The arrow indicates that the domain is not bounded on the right, but 
continues to include all positive numbers.) 

Suppose a function is specified simply by giving an algebraic rule, such 
as .JX+1. (The radical sign J denotes the positive square root of what 
folIows.) What shall we understand to be its domain? We shall agree to the 
following convention. 
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Convention. U nless otherwise specified, the domain oJ an algebraic rule shall 
be understood to be the collection oJ all numbers Jor which the rule makes sense. 

In applying this convention, one often has to remember two facts which 
ought to be familiar from arithmetic: 

(1) It makes no sense to "divide by zero". 
(2) It makes no sense to take the "square root" of a negative number. 

Thus, the domain of the algebraic rule given by jX+1, unless otherwise 
specified, shall be understood to be the collection of all numbers for which 
x + 1 is not negative, that is, the collection of all numbers x for which 

0:::; x + 1, 
which is the same as saying 

-1:::; x, 
or drawing the picture 

Domain of the rule JX+1 
• ) 

-1 

Since it makes no sense to divide by zero, the domain ofthe rule (x 2 + x)/x 
is pictured as follows: 

Domain ofthe rule (x2 + xlix +-------__ O~--------_ 
o 

The rule given by x + 1, on the other hand, makes sense for any number 
whatsoever. By our convention, the domain of this rule (unless otherwise 
specified) shall be understood to be unrestricted: 

Domain of the rule x + 1 

We now make a point wh ich the reader may think at first to be overly 
precise. The significance of this point will not be appreciated until later. 
The point is this: Although it is true that 

the functions given by 

and 

x 2 + x x(x + 1) 
x x 

= x + 1 if x #- 0, 

2 
F(x) = x + x 

x 

G(x) = x + 1 
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are not the same. Reason: The functions Fand G do not have the same 
domain. To say two functions are the same means they have the same graph, 
and, in particular, they must have the same domain. 

EXERCISES 

5.1. In Example 1 we found that the numbers 37 and 55 were in the range of f. Do 
you believe that every number between 37 and 55 is also in the range? Why might 
you think so? 

5.2. In Example 2 we found that it was possible to enclose an area of 100,000 square 
feet and also possible to enclose an area of 160,000 square feet. From these facts, 
given the nature of the problem raised in Example 2, can you conclude that it is 
possible to enclose 130,000 square feet? 

5.3. Apply the convention above to specify the domain of each of the following alge­
braic rules. (You may specify the domain either by an inequality or by a picture.) 
(a) .JX. (b) ~. 
(c) 1/x. (d) 1/(x - 1). 
(e) 7x + (48/x). (f) 600x - tx 2• 

(g) (h 2 + 2h)/h. (h) h + 2. 
(i) .jf+h2. (j) L2/(L 2 - 1). 
(k) (s - 1)(s - 2). (I) ~. 
Answers: 
(e) .i # 0: 

(g) h # 0: 

(h) h unrestricted: 

(I) 1 ~ s: 

+-------~c~--------~ 
o 

+-------~o~------~ 
o 

• 

5.4. True or false? The function specified by the rule (h 2 + 2h)/h is the same as the 
function specified by the rule h + 2. 

§6. Optimization 

In Example 1, the problem of finding the least cost was seen to be the same 
as another problem, that of finding the least number in the range of possible 
costs. To answer the question raised in Example 1, we need to find the least 
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number in the range off, where fis the function whose rule of correspondence 
and whose domain are specified succinctly by writing 

48 
f(L)=7L+ L , 0< L. 

We shall find this number, onee we have developed the appropriate tools 
of calculus. 

In Example 2, the problem of finding the biggest possible area was seen 
to be the same as another problem, that of finding the largest number in 
the range of possible areas. To answer the question raised in Example 2, 
we need to find the largest number in the range of g, where g is the function 
whose rule of correspondence and whose domain are specified succinctly 
by writing 

0< s < 1200. 

We shall find this number later, using calculus. 
In our discussion of Examples 1 and 2, we have seen the first step in how 

to handle optimization problems. An optimization problem can always be 
spotted by the presence of a superlative. Whenever a problem requires that 
we find the least, or most, or cheapest, or best, or closest, etc., we know that 
we have an optimization problem on our hands. From our discussions in 
Examples 1 and 2, we may expeet that any optimization problem will give 
rise to a funetion, and that the solution to the problem will involve finding 
the highest (or lowest) point on the eurve determined by the funetion. Thus, 
by seeing the optimization problem in terms of variables, and by getting an 
algebraie rule relating one variable to another, the optimization problem 
is transferred to another problem, that of studying the eurve determined 
by the rule, or funetion, relating the variables. This is the first step in solving 
optimization problems. This step takes a little while to master. Onee it is 
mastered, however, the seeond step of finding the highest (or lowest) point 
on a eurve ean be aeeomplished with the study of only a little ealculus. 

Must every eurve neeessarily have a highest point and a lowest point? 
Certainly not. The eurve f of Example 1 has no highest point. Reason: The 
range of eosts is not bounded above. There exists no most expensive way 
to build that fenee. The eurve g of Example 2 has no lowest point. Reason: 
The grazing area is to be a reetangle and thus eannot have an area of zero, 
yet the area A ranges arbitrarily elose to zero. There is no least possible 
grazing area for Minerva. 

EXERCISES 

6.1. Suppose, in Example 1, the pen was to enclose 30 square yards instead of 12, the 
costs of stone and wood remaining the same. Find an algebraic rule giving the 
cost C in terms of the length L of the front, and specify the domain of this rule. 
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6.2. Suppose, in Example 2, the farmer had 2000 feet of fencing instead of 1200, the 
other conditions of the problem remaining unchanged. Find an algebraic rule 
giving the area A in terms of the length S of the side along the barn, and specify 
the domain ofthis rule. Answer: A = 1000s - !S2, 0< S < 2000. 

§7. Purpose 

What follows, gentle reader, is an unorthodox introduction to the notion 
of a limit. (If this is frightening, then be assured that an orthodox discussion 
is given in Section 9.) Calculus is, in asense, the study oflimits, yet this simple 
notion is also easily misunderstood, unless the student can make the proper 
distinction between two things which are easy to confuse. These two things 
we might call "purpose" and '~action". The analogy we shall make, in hopes 
that it will make the idea of a limit easier to grasp, is this: 

The "limit" of a function, at a point in or near its domain, is like the purpose of 
a human being, at a point in time. 

The reader may find that the word limit is almost exact1y as easy (or as hard) 
to understand as the word purpose. 

This analogy will be worth nothing at all unless the ordinary distinction 
between purpose and action is kept weIl in mind. These two notions, though 
often related, are quite different. Most of us can think of instances when our 
action did not reflect our purpose or of times when we wandered aimlessly 
to no purpose whatever. Sometimes, even with a purpose, one hesitates to 
act. Finally, there are the gratifying times when one has a pur pose and acts 
accordingly. 

A function, believe it or not, is just like a person in this respect, and one 
can learn a lot by inquiring into this aspect of the life of a function. At any 
point in the domain of a function we may compare its action (what it actually 
does at the point) with its purpose (what it seemed on the threshold of doing 
at the point). Often, just as in the lives of human beings, the action will 
agree with the purpose, giving a sense of "continuity". But there are several 
other possibilities that can occur. The action at some point may disagree 
with the purpose, or there may be no discernible pur pose, or there may be 
purpose with no action, or there may be neither purpose nor action. 

We study functions all the time in calculus, and we gradually learn tha 
each function has a personality all its own. A function is something mor 
than might be imagined from the description "a rule of correspondence' 
just as a human being is something more than "a featherless plantigrac 
biped mammai". 

Let us try, while studying calculus, to feel ourselves into the world 
functions, to see what they really are. Here is a fable. It is offered in f 
Take it seriously, but not too seriously. 
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Lim: A Fable 

The gods did not reveal af/ things to men at the start; but, as time goes on, 
by searehing, they disco ver more and more. 

Xenophanes 

The lord whose is the ara eie at Delphi neither reveals nor hides, but gives 
tokens. 

Heraclitus 

On the First Day all functions were created, and solemnly told the harsh 
facts of a functional existence: 

Each funetion has been assigned his domain, to which he will be restricted 
eternafly to live in accordance with the rule he has been given. Ouring 
eternity, he must contemplate the purpose of his being, knowing that on 
the Last Oay the gods may require him to state his purpose at same trouble­
same point. At that point the function must either state his purpose, or reply 
that no purpose exists. For at each point same functions have been given a 
purpose and same have not. Remember the words 01 Xenophanes and 
Heraclitus. 

Among the multitude of functions trembling on the First Day was g of 
Example 2. Charged with a Herculean task, gof Example 2 must take each s 
between 0 and 1200 and throw it to the corresponding A. The throw must be in 
accordance with the god-given rule 

1 
A = area of a rectangle of sides sand -(1200 - s). 

2 

Up and down his domain, g carefully moves, throwing his s's until he 
knows by heart where each little s is supposed to go. He is glad the gods 
did not ask hirn to throw - 2, or any negative number, or to throw any number 
exceeding 1200, because he would have no clue where the gods might want 
these numbers thrown. At last, clever g realizes that he has no purpose at 
the point - 2, or at any negative number, or at any number exceeding 1200. 
Should the gods ask hi m, on the fearsome Last Day, of his purpose at the 
point - 2, g would reply in his best courtly fashion: 

The purpose of g, at the point - 2, does not exist! (6) 

Confidence begins to weil up in g. 
Yet soon g realizes that the gods have played a trick on hirn. "Ye gods!" 

exclaims g, "Why did ye not give me a closed domain?" Poor gis tantalized 
whenever he moves near the ends of his domain. When he moves to his left, 
toward 0, he is allowed to throw numbers that lie arbitrarily close to 0; 
nevetheless, he is not allowed to throw 0, since 0 is not in his domain. A 
similar frustration is feit when he moves to the right toward 1200. 

Night and day, for what seemed like half of eternity, g continuously 
worried about the points 0 and 1200. Fi nally the gods had pity upon g and 
sent down to hirn a messenger, named Lim. 

"HaiI, long-suffering g, most favored of Minerva, hai I '" shouted Lim. 
"Who that?" responded g, so startled that he began dropping his s's. 

15 



16 1 Tokens [rom the Gods 

'Tm the One Who Knows", replied lim, and smiled smugly. "Remer'nber 
the words of Xenophanes and Heraclitus." 

"Get off my domain!" shouted g, thinking his intruder to be an oracular 
fanatic. 

"Now, now, calm down", said limo "I have been se nt to help you find 
your purpose, if you should need help at any point. 00 you know your pur­
pose at 1200?" 

"Since I am restricted to my domain for all of eternity," said g, "g(1200) 
does not exist. I am not allowed to act at the point 1200." 

"It is true that you are not allowed action at 1200," responded lim, 
"but it is still possible that you may have purpose at that point, not to be 
fu Ifi lied before the Last Day. Have you no clue what the gods want you to do 
at 1200 on the Last Day?" 

Long-suffering g thought and thought and thought. He thought about his 
s's near 1200, and about the A 's that corresponded to them : 

~g~ 
s A 

600 

1190 5950 Throwing s's to A's, 

1199 599.5 
A 

1199.9 59.995 
1199.99 5.99995 

whens is nea 

I 

r 1200 

1199.999 0.5999995 I I 
(etc.) 0 

~ 
1199 s 1200 

"As s gets closer to 1200, A gets closer to 0", exclaimed both lim and g 
simultaneously. Then g, in deep tones, declaimed, 

The purpose of g at 1200 is to throw it to O. (7) 

"Exactly," said lim, "but why do you speak in such an old-fashioned 
way? The gods haven't talked like that for ages. Just use my name. Instead 
of your statement (7), just say, 

lim g at 1200 is 0, 
and instead of (6), say 

lim g at - 2 does not exist. 

The gods will understand what you mean. They all know my name. I deliver 
their ambrosia on Thursdays." 

EXERCISES 

7.1. Is 1200 in the domain of g? Answer: No. 

7.2. Does g(1200) exist? Answer: No, g(1200) is undefined, because 1200 is not in 
the domain of g. There is no action of the function g at the point 1200. 

7.3. Does Lim g at 1200 exist? Answer: Yes. Lim g at 1200 is 0, because as s ..... 1200, 
g(s) ..... O. (The arrow is an abbreviation for approaches, or gets eloser and 
eloser to or tends to.) 
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7.4. What is Limg at -2? Answer: Limg does not exist at -2, beeause gIs) does 
not exist when s is elose to - 2, giving 9 no elue as to a purpose at - 2. 

7.5. What is Lim 9 at 1202? 

7.6. What is g(1202)? Answer: Sinee the funetion 9 is not allowed to aet at the point 
1202, g(1202) does not exist. 

7.7. What is g(O)? 

7.8. What is Lim 9 at O? 

7.9. What is Lim 9 at 1200.1 ? Answer : It does not exist. 

7.10. WhatisLimgat -0.1? 

§8. Continuity: Purpose versus Action 

"Aha!" said g, "I understand now everything about a function's purpose." 
"That is doubtful," replied Lim, "for you are stililikely to confuse purpose 

with action. What, for example, is your purpose at the point 600?" 
"Lim g at 600 is 180,000," responded g without hesitation, "because 

g(600) is 180,000." 

"Aha!" said Lim, "A right answer, but tor a wrong reason. Just as 1 

expected. When the gods inquire about your purpose at 600, they have in 
mind something more subtle than you imagine. To reply that g(600) is 180,000 
is to state your action at the point 600. But action need not necessarily agree 
with purpose. (At the point 1200 you have no action, yet you do have 
purpose.)" 

"To find your purpose at 600, the first thing you must do is to torget 
entirely about your action at 600. You mayas weil pretend that 600 has been 
removed from your domain. Then you proceed just as before. What does A 
approach as s approaches 600?" 

Long-suffering g thought and thought and thought. What, indeed, would 
be his purpose at 600 if 600 were removed from his domain? 

The point 600, being in the interior of the domain, can be approached by 
values of seither slightly smaller or slightly larger than 600: 

~g----.,. 
s A 

~g~ 
s A 

500 175,000 700 175,000 
550 178,750 650 178,750 
590 179,955 610 179,955 
598 179,998 602 179,998 
599 179,999.5 601 179,999.5 
599.9 179,999.995 600.1 179,999.995 

(ete.) (ete.) 

Letting s approach Letting s approach 
600 from the lett 600 trom the right 

(s -+ 600-) (s -+ 600+) 

17 
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Whether s tends to 600 from the lett, or the "minus side" (s -+ 600-), 
or whether s tends to 600 from the "plus side" (s -+ 600+), the corresponding 
values of A tend to 180,000. Since A -+ 180,000 as s -+ 600 (from either side), 

Lim g at 600 is 180,000. (8) 

A --180,00 180,000 0 
as s -- 600 

A 

o s 600 

"Now let me get this straight", said g. "To find my purpose at 600, I 
first pretend that 600 has been removed from my domain, and then see 
what happens to A as s tends to 600. This is the way I figure out that state­
ment (8) is true. Isn't there an easier way to do it?" 

"Yes," said Lim, "if you are not afraid to use your common sense. Just 
look at the rule you were given, g(s) = 600s - ts2, and note that it is de­
scribed in terms of so me simple algebraic operations. Look at what happens 
to each of them in turn, as s -+ 600. Common sense should tell you that, as 
s -+ 600, it must follow that S2 -+ (600)2 and 600s __ 600(600). Therefore, 
as s -+ 600, 

1 1 
A = g(s) = 600s - _S2 -+ 600(600) - -(600)2. 

2 2 

Thus, A -+ 180,000." 
"I really feel great at 600," said g, "whereas at 1200 I become so frus­

trated. " 
"That is because, at 600, your action agrees with your purpose : 

g(600) = 180,000 (by applying the rule g to 600) 

= Lim g at 600 [by (8)). 

Like any creature, you experience the wholesome feeling of continuity 
at any point where action and purpose exist and agree. Whenever there is 
not agreement between action and purpose, or whenever one or both are 
missing, the anxieties of discontinuity emerge. At 1200, friend g, you behave 
discontinuously. You have a purpose : 

Lim g at 1200 is 0, 

but you do not act accordingly: 

g(1200) does not exist. 

Everyone is frustrated by discontinuity." 
"Let me leave you with this idea, to ponder as you will. To say that a 

function is continuous at a certain point means that, at the point, the function 
has both purpose and action, and they agree." 
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Definition. A function G is said to be continuous at a point x provided that 
the following three conditions are satisfied: 

(1) G(x) exists. 
(2) Lim G at x exists. 
(3) G(x)=LimGatx. 

"That is all the help I can give you," said Lim, "for I must now depart. 
I have to collect 37 chariotloads of ambrosia before Thursday." 

"Wait!" shouted g. "Can't you help my friend f of Example 1? She lives 
on the domain 0< L. What a curve!" 

"Remember the words of Xenophanes and Heraclitus!" said Lim, and 
departed without another word. 

EXERCISES 

8.1. What is g(400)7 

8.2. What is Lim 9 at 4007 

8.3. Is 9 continuous at the point 4007 

8.4. Is 9 continuous at the point 07 

8.5. Is 9 continuous at the point - 27 

8.6. Is 9 continuous at every point in its domain 7 Answer : Yes. 

8.7. Consider the lunction f 01 Example 1. Is f continuous 
(a) at 07 
(b) at -27 
(c) at27 
Give reasons justilying your answers. 

§9. Limits 

19 

In everyday language the word limit has virtually the same meaning as 
bound. In calculus, however, it has a rather different meaning. The limit 
of a function, at a certain point, is (roughly speaking) wh at the function, 
at that point, is on the threshold of doing. * If c is the point in quest ion, 
then the limit of f at c is symbolized by 

Limitf(x), (9) 

or by 
Limf at c, 

and is found by investigating the action of f at points near c, while com­
pletely ignoring the value off at c. Before any further explanation is given, 
it should be emphasized that f(c), the value of f at c, may weIl be entirely 
unrelated to the limit of f at c. [If it happens that they are the same, that is, 

* The ward limit is kin to the Latin ward timen. which means "threshold". 
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that f(c) = Limitx_J(x), then the function fis said to be continuous at the 
point c.] 

How does one find the limit pf a function at a point? The symbolism 
(9) is designed to suggest the method of doing this. We simply ask for the 
limiting value of f(x), as we imagine the values of the variable x taken 
doser and doser to (but not equal to) the number c. The arrow in "x -t c" 
is supposed to suggest x approaching c ever more dose1y. 

Some examples should serve to darify things. The reader is asked simply 
to use common sense in thinking about what happens as the value of a 
variable gets doser and doser to a fixed number c. 

EXAMPLE 3. Let F(x) = (x 2 + x)/x, with domain specified by the inequality 
x #- o. Find Lim F at 4. 

Here we are asked to find 
2 

L .. x + x 
Imlt---, 
x-4 X 

(10) 

and it is obvious how this is to be done, simply by reading the formula (10) 
in words: We are asked to find the limiting value ofthe expression (x 2 + x)/x 
as x tends to 4. What happens to this expression as x -t 4? Common sense 
teUs us that x 2 -t 16, so that the expression (x 2 + x)/x approaches (16 + 4)/4, 
wh ich is equal to 5. Therefore, 

.. x 2 + x 
Limit --- = 5, 
x-4 X 

which answers the question raised in Example 3, and also shows, incidentaUy, 
that F is continuous at 4. (Why?) D 

EXAMPLE 4. Let G(x) = x + 1, with unrestricted domain. Find Lim G at 0. 
This is even easier than the preceding example. As x --+ 0, common sense 

says that (x + 1) --+ 1. Therefore, 

Limit (x + 1) = 1. D 
x-o 

EXAMPLE 5. Let F(x) = (x 2 + x)/x, with domain specified by x #- O. Find 
LimF at O. 

Here we are asked to find 

.. x 2 + x 
Llmlt---, 
x-o x 

and it is not obvious, at first, how this is to be done. As x --+ 0, both the 
numerator x2 + x and the denominator x also approach o. What is to be 
done? 

What is to be done is to realize that the question raised in Example 5 
is exactly the same as the question raised in Example 4, whose answer, we 
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have seen, is 1. Why are these two questions exactly the same? Because 
Lim F at 0, remember, is to be found by letting x tend to 0, but never allowing 
x to equal 0. If x '" 0, though, then 

F(x) = x(x + 1) = x + 1, 
x 

so that the limit of F at ° is the same as the limit of x + 1: 

.. x2 + X .. 
LImIt -- = LImIt (x + 1) = 1, 

X--'O x x-o 

by Example 4. (What has just been illustrated in this example is not hard, 
but it is subtle. Reread this ex am pie, and also the last remark in Section 5, 
to make sure you understand it.) 0 

A picture is the best way to illustrate why Examples 4 and 5 must have 
the same ans wer : 

F 

2 
F(x) = x + x 

x 

_---<0>___-_:> 
o 

G 

G(x) = x + 1 

• 
o 

The curves Fand Gare identical, except when x is 0. Since the limit of 
a function at the point ° is independent of the action at 0, Fand G have the 
same limit at 0. 

Here is another example, using h instead of x as the variable. 

EXAMPLE 6. Find Limith _ o ((h 2 + 2h)/h). 
This is like Example 5, where it is not immediately obvious whether the 

limit exists at 0. Both the numerator h2 + 2h and the denominator h tend 
to ° as h ~ 0. However, if h is not equal to 0, then we may divide by h, so 

h2 + 2h = h(h + 2) = h 2 
h h + . 

This shows that the algebraic rule given by (h 2 + 2h)/h is exactly the same 
as the algebraic rule h + 2, provided h is not 0. Since the limit at ° is inde­
pendent of the action at 0, these two rules have the same limit at 0: 

L · . h2 + 2h .. (h 2) 2 Imlt h = LImIt + =. 
h-O h-O 

o 
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When investigating the limit of a function at a point, one may encounter 
any of the following situations: 

(I) The limit exists and agrees with the action of the function at the point. 
(11) The limit exists, but the function does not act accordingly. 

(III) The limit does not exist. 

If case (I) occurs, the function is said to be continuous at the point. This 
is illustrated in Examples 3 and 4. Case (11) is illustrated in Examples 5 
and 6. Case (III) will be illustrated in ExampIes 7 and 8. 

EXAMPLE 7. Find Limitx _ o(7x + (48/x)). 
This limit does not exist. As x --+ 0, the first term, 7x, is "well-behaved", 

tending to 0, but the second term, 48/x, does not tend to a limit, since it 
becomes large-positive as x tends to 0 from the right, and it becomes large­
negative as x approaches 0 from the left: 

x 7x + 48/x x 7x + 48/x 

1 55 -1 -55 
0.1 480.7 -0.1 -480.7 
0.01 4800.07 -0.01 -4800.07 

(etc.) ( etc.) 

Letting x approach Letting x approach 
o from the right o from the left 

(x -> 0+) (x -> 0-) 0 

EXAMPLE 8. The Post Office has discovered that the cost of sending a letter 
by mail varies in terms ofthe weight W ofthe letter. Accordingly, the number 
of stamps to be affixed to a letter is a function of w. One stamp is required 
if the weight w is 2 ounces or less; two stamps if 2< W $; 4; three stamps 
if 4 < W $; 6; etc. Let us call this function F, so that 

F(w) = the number of stamps on a letter of weight w. 

Find Lim F at 4. 

3 0 

number 
of 2 0 • 

stamps The "curve" F 

0 2 3 4 5 6 
weight 
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Lim F at 4 does not exist. As w tends to 4 from the left, the number of 
stamps F(w) tends to 2; whereas, when w tends to 4 from the right, F(w) 
tends to 3: 

w F(w) w F(w) 

3.9 2 4.1 3 
3.99 2 4.01 3 
3.999 2 4.001 3 

( etc.) (etc.) 

[F(w) -+ 2, as w -+ 4-] [F(w) -+ 3, as w -+ 4 +] 

The limit does not exist at 4, because we get different "answers" when we 
approach 4 from different sides. 0 

EXERCISES 

9.1. Find the indicated limits: 
(a) Limitx~o «x2 - 4x)jx). 
(c) Limitx~d(x2 - l)j(x - 1)). 
(e) Limith~o (3hjh). 
(g) Limitx~_d(x2 - l)j(x + 1)). 

(b) Limitx~o(x - 4). 
(d) Limith~o (3h 2 jh). 
(f) Limith~o (3jh). 
(h) Limitt~3 (5j(6 + t)). 

9.2. Consider each of the following algebraic rules, and tell whether it is continuous 
at the indicated point c: 
(a) (x 2 - 4x)jx; c = O. Answer: Not continuous. 
(b) x - 4; c = O. 
(c) (x 2 - l)j(x - 1); c = 1. 
(d) 5j(6 + t); c = 3. Answer: Continuous. 

9.3. Consider the "Post Office function" defined in Example 8. 
(a) The function F is defined by a rule stated in words. Do you think it is likely 

that this rule is an algebraic rule in disguise? Hint. Do you think an algebraic 
rule could have a graph like the "curve" F? 

(b) Does Lim F at 2 exist? 
(c) Does F(2) exist? 
(d) Is F continuous at 2? 
(e) Is F continuous at 3? Answer: Yes. 
(f) A politician asserts that "the scale of charges imposed by the Post Office upon 

its customers exhibits unnatural and unjustifiable discontinuities at 2-ounce 
intervals." Explain, in more detail, wh at the politician means. 

9.4. (A philosophical question to be pondered for a while before being answered) Is dis­
continuity unnatural? That is, must the rules that come from laws of nature 
necessarily be continuous? (Man-made rules, like the Post Office function, are 
often discontinuous, at least at some points.) 
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§lO. Summary 

Variables, functions, and limits were ideas that came of age in the seventeenth 
century. Fermat (pronounced fer-MAH) was probably the first to see the 
real importance of limits. Continuity is an old philosophical term that drew 
new interest from Leibniz (pronounced LTP-nits), who was the first to use 
the word function. 

These notions were not particularly weB defined by their inventors, who 
were content to describe things in intuitive terms. The word function at 
first referred only to an algebraic rule, which is automaticaBy continuous 
at each point in its domain. 

Problem Set für Chapter I 

1. Consider Example 1 ance more. We chose to look at it in terms of the variables C 
and L. The cost variable C cannot be avoided, since the problem involves finding 
the minimum of this variable. However, instead of choosing L, the length of the 
front, as our se co nd variable, we might just as weil have chosen W, the depth of 
the pen. 

(a) Write an algebraic rule expressing C in terms of W. 
(b) Wh at is the domain of the rule in (a)? 
(c) Plot a few points on the graph of the equation in (a) that expresses C in terms 

ofW. 
(d) Write an equation that relates Wand L. Hint. What is their product? 
(e) Go back to equation (2) and, in it, replace L by 12/W and simplify. Do you get 

the same equation as you got in part (a) above? Why did it work out that way? 

2. In Example 1, change the word least to greatest. With this modification, respond to 
the question raised. 

3. Consider Example 2 once more. We chose to look at it in terms of the variables 
A and s. There is no getting around the variable A, since it must be maximized in 
order to answer the question raised. However, instead of s, we might just as weil 
have chosen the other dimension W of the rectangle to be our other variable. 

_I 

Side of long barn 
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(a) Write an algebraic rule expressing A in terms of w. 
(b) What is the domain of the function whose rule is given in part (a)? (Be careful.) 
(c) Plot a few points on the graph of the equation in (a). 
(d) Write an equation relating wand s. Hint. What is the sum of2w and s? 
(e) In the equation A = 600s - ts2, replace s by 1200 - 2w, and simplify. You 

should get the same answer as in part (a). Why? 

4. In Example 2, change the word largest to smallest. With this modification, respond 
to the question raised, bearing in mind that no honest-to-goodness rectangle has 
an area ofO. 

5. Some curves determine functions and some do not. Does a circle ever determine 
a function? 

6. Do all straight lines determine functions? If not, give an example of one that doesn't. 

7. Some algebraic equations determine functions and some do not. Consider the 
algebraic equation x2 + y2 = 1. 
(a) Is (0, 1) on the graph of this equation? 
(b) Is (0, -1) on the graph ofthis equation? 
(c) Does the algebraic equation x2 ... y2 = 1 determine a function? 

8. Does the algebraic equation y = ~ determine a function? If so, wh at is 
its domain? 

9. One way to specify a function is to draw the curve it determines. For each of the 
curves below, specify the domain and the range. (Specify either by drawing pictures 
or by writing an inequality, whichever is easier.) 

(-2,2) 

(1,4) 

(1,2) 

(5,10) 

f 
o • 

(6,7) (8,7) 

f 0----... 
(3,4) (6,4) 

G 

(8, - 2) 
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10. Referring to the functions F, f, G, and 9 pictured in the preceding problem, find 
(a) LimF at 3. (b) Limf at 6. 
(c) LimG at 1. (d) Limg at 3. 
(e) Limg at 7. (f) F(3). 
(g) f(6). (h) G(I). 
(i) g(3). (j) g(7). 

11. Still referring to the functions F, f, G, and 9 of problem 9, answer the following 
questions. 
(a) Is F continuous at 3? 
(b) Isf continuous at 6? 
(c) Is G continuous at 1 ? 
(d) Is 9 continuous at 3? 
(e) Is 9 continuous at 7? 

12. The domain ofthe "Post Office function" ofExample 8 is specified by the inequality 
0< w. What is its range? 

13. The functions of Examples 5 and 6 (in Section 9) have the same domain. It has a 
hole in it, at the point 0: 

~--------~o~--------~ 
o 

(a) What is the range of the function of Example 5? 
(b) What is the range of the function of Example 6? 

14. Suppose the numbers 1 and 3 are known to be in the range of a certain function. 
Must the range then necessarily contain all numbers between 1 and 3? Hint. Look 
at your answer to problem 12. 

15. Suppose the numbers 1 and 3 are known to be in the range of a certain function, 
and suppose the function is continuous at every point in its domain. Must the 
range necessarily contain all numbers between 1 and 3? Hint. Look at your answer 
to problem 13(b). What if, in addition, the domain has no "holes" in it? 

16. In the corner of a large court yard a rectangular enclosure is to be built. To pay for 
the material, $240 has been allocated. This is to be used to pay for both the stone 
fence, which costs $6 per meter, and the wood fence, which costs $2 per meter. The 
area A of the enclosure will vary with the way thc enclosure is built. 

(a) Let L be the length of the stone fence. How much money will be left to spend 
for wood? 
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(b) Let L be the length of the stone fence. How long will the wood fence be? Hint. 
The answer to part (a) teils you how much money is left for wood. 

(c) Let L be the length of the stone fence. Find an algebraic rule giving the area A 
in terms of L, and specify the domain of this rule. 

17. There is often more than one way to choose your variables. In problem 16, 
(a) Let x be the amount of money spent on stone. How much is left to spend on 

wood, and how long, therefore, is the wooden fence? 
(b) Let x be the amount of money spent on stone. Find an algebraic rule giving A 

in terms of x, and specify the domain of this rule. 

18. A metal container, in the form of a rectangular solid, is to be constructed. The 
base is to be square, there is to be no top, and the volume of the container (the 
product of its three dimensions) is to be 12 cubic meters. Suppose the material for 
the sides costs $2 per square meter, and the material for the base costs $3 per square 
meter. 

12 cubic meters 

L 

(a) Let C be the cost of the material for the container, and let L be the length of 
a side of the square base (in meters). Find the cost C if L is 2. Hint. First note 
that the height of the container must be 3 (why?) if L is 2. 

(b) Find the cost C if L is n. Hint. First note that the height ofthe container must 
be 12/n2 if L is n. 

(c) Find an algebraic rule giving C in terms of L, and specify its domain. 

19. (This problem is like the preceding one, except that we have a specified amount 0/ 
material, instead 0/ a specified volume.) Suppose that we have 120 square feet of 
material, out of which is to be constructed a square base and four sides of a rec­
tangular container. (The container is to have no top.) Let L be the length of a side 
ofthe base. 
(a) If H is the height of the container, then it is true that 120 = e + 4LH. (Why?) 

Solve this equation for H, to get H in terms of L. 
(b) The volume V of the container is the product of its three dimensions, so V = 

L· L . H. Use part (a) to get V in terms of L alone. 
(c) In part (b) we have V as a function of L. Wh at is the domain of this function? 
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About 2500 years ago, a Greek named Pythagoras walked by Homer's 
fabled wine-dark sea, until he came to know what would inform his whole 
life. Arithmetic, with grand contempt for the slippery pebbles' uncertain 
support, boldly vauIted from the earth~and geometry was drawn out of 
the stars. Mathematics sprang from this marriage. 

In childhood, mathematics was nurtured by that early spirit rising from 
the shores of the Mediterranean, exhorting Greeks to walk like giants, to 
wrest secrets from the gods. The history of mathematics ever since has 
been bound upwith the workings of that spirit. What was it like, back then? 
Whose was the voice that howled above the seashore, as Pythagoras length­
ened his stride? What moved the train~Eudoxus to Archimedes~that 
followed Pythagoras down the shore? 

Let us study the workings of that train, to come to know its spirit. We 
ourselves move in it. We are still transported by a caravan of Greeks~who 
feIt mathematics spring from head to shoulder~upon whose shoulders we 
too stand. 

The purpose of the present chapter is to remind ourse1ves of history. 
Some readers may have the urge instead to jump flat-footed into an attack 
upon the problem that arose in Chapter 1: the problem of how the highest 
and lowest points on a curve can be easily found. Those readers may jump 
to Chapter 3, but they are warned that flat-footed jumps are awkward 
without a good foundation from which to 1eap. Studying history helps to 
build foundations. 

§ 1. The Philosophy of Pythagoras 

Real mathematics begins with Pythagoras (ca. 569-500B.C.), aIthough small 
steps were taken earlier by the Sumerians, Babylonians, and Egyptians. 
Some would say that Thales, who taught Pythagoras, deserves as much 
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credit; but Thales, hailed widely as the "father of philosophy", surely enjoys 
honor enough already. Why the spark of mathematics should suddenly 
glow so brightly (and why the flame would die with the coming of the 
Romans) is still a mystery. 

Geometry became increasingly the dominant theme in Greek mathe­
matics, and Pythagoras set the style. Yet Pythagoras was at first more 
attracted to arithmetic. He and his followers, the Pythagoreans, founded a 
small society that virtually worshipped numbers. One short sentence is all 
it takes to sum up the philosophy of Pythagoras: 

All is number! 

Pythagoras, it is said, invented the word philosophy, which literally means 
"love of wisdom". He sought wisdom by studying numbers. Number, to 
the Pythagoreans, referred to the ideas they pictured by the sequence 

(etc.) 

Today we call these numbers positive integers. Exactly what the Pythagoreans 
meant by asserting that all is number is not entirely dear. At the least they 
meant that numbers are connected with many things that, at first, see m 
totally unrelated to numbers. For example, the musical tones produced by 
plucked strings seem at first to have nothing at all to do with numbers. Yet 
it was Pythagoras hirnself, so legend has it, who discovered what we now 
call thirds, fifths, octaves, etc., because of the numbers that are naturally 
associated with their relative pitches. Elementary facts about music are 
such common knowledge today that we surely underrate their significance. 
In the sixth century B.C., their discovery must have been astonishing. 
Imagine! Numbers have something to do with music! 

"Perhaps numbers have something to do with everything!" thought 
Pythagoras. "Perhaps everything is number. ... " At least this offered a 
viable alternative to Thales' philosophy. Thales thought everything was 
water. 

The Pythagoreans bequeathed much to Western culture. Who has not 
heard of the Pythagorean theorem? 

The Pythagorean Theorem. In a right triangle, the square buHt on the hypote­
nuse has the same area as the combined area of the squares on the other two 
sides. 

area a2 

area b2 
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PROOF. From the vertex of the right angle, drop a perpendicular to the 
hypotenuse, hitting the hypotenuse at Q. 

a 

a a 

b C 
b b 

b 

a 

The hypotenuse is then split in two, as indicated, so that 

c = s + r. 
Since L:,AQC is similar to L:,ACB (why are they similar?), we have 

r b 
-
b c 

Since L:,BQC is similar to L:,BCA, it follows that 

s a 
a c 

(1) 

(2) 

(3) 

From equation (2) it follows that b2 = rc (showing that the two figures with 
vertical markings are equal in area). From equation (3) it follows that 
a2 = sc (showing that the two figures with horizontal markings are equal 
in area). From the equations a2 = sc and b2 = rc, together with equation (1), 
we have 

a2 + b2 = sc + rc = (s + r)c = c . c = c2 . 

Therefore, a2 + b2 = c2 , Q.E.D. 

The proofjust given shows exactly how the square built on the hypotenuse 
can be split into two areas that are equal, respectively, to the squares built 
on the sides. Pythagoras probably gave a more elementary proof, perhaps 
like the one that is outlined in problem 3 at the end of this chapter. 
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The Pythagorean theorem is app1icable to a surprising variety of situa­
tions, as indicated in the exercises that follow. 

EXERCISES 

1.1. In the plane, indicate the position of the points P and Q, whose coordinates are 
given below, and use the Pythagorean theorem to find the distance from P to Q. 
(a) P=(3,37),Q=(4,40). 
(b) P = (1,55), Q = (6,50). 
(c) P = (4,40), Q = (2,38). 
(d) P = (n, n l ), Q = (n 3, n 4 ). 

Answers: 
(a) Dist P to Q is.JW, by the Pythagorean theorem: 

(4,40) 

I 
I 
I 

3 I 
I 
I 

I I ____ .r:J 
(3,37) (4,37) 

(d) Dist (n, n l ) to (n 3 , n 4 ) is .J(n3 - n)l + (n 4 _ nl)z. 

1.2. Use the Pythagorean theorem to find a formula for the distance from (x\,yd 
to (xz,yz). Answer: Dist (x\,yd to (xz,yz) is .J(xz - xdl + (yz - ydz. (This 
is ca lied the distance formula and should be memorized.) 

1.3. (a) Use the distance formula to find the distance from (0,0) to (3,4). 
(b) What is wrong with the following "calculation"? 

Dist (0,0) to (3,4) = .J3z + 4z 

= 3 + 4 = 7. 

1.4. Use the distance formula to find the distance from (0,0) to (x,y). Be sure you 
know why your answer is not equal to x + y. Answer: 

Dist (0,0) to (x,y) = .J(x - W + (y - W 
= .Jxz + yl. 

1.5. Consider this sentence: 

The distance from (0,0) to (x, y) is 5. 

Rewrite this senten ce as a senten ce (that is, an equation) using only algebraic 
symbols. Hint. In algebra, the word is may be translated "equals". 

1.6. Consider this sentence: 

The point (x, y) lies on the circle of radius 5 with center at (0,0). 
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Rewrite this sentence as an equation in algebra. Hint. This is precisely the problem 
posed in exercise 1.5 (why?). The answer is the same as the answer to 1.5. 

1.7. Consider this sentence: 
X Z + y2 = 25. 

Rewrite this, using the distance formula, as a sentence in words. Answer: The 
point (x, y) lies on the circle of radius 5 with center at (0,0). 

1.8. Consider each of the following equations, and rewrite it as a sentence in words. 
(a) X Z + y2 = 49. 
(b) x 2 + y2 = 1. 
(c) X Z + y2 = 4. 

1.9. Consider this sentence: 

The distance from (n, 3) to (x, y) is 7. 

Rewrite this as an equation. Answer: (x - n)2 + (y - 3)Z = 49. 

1.10. Write an equation which says that (x, y) lies on the circle of radius 7 with center 
at (n, 3). 

1.11. Write an equation which says that (x, y) lies on the circle 
(a) of radius 3 with center at (2,5). 
(b) of radius .j2 with center at (1,0). 
(c) of radius 3 with center at (- 2, 5). 
(d) of radius n with center at (- n, 3n). 
(e) of radius r with center at (a, b). 
Answer: (c) (x + 2)Z + (y - W = 9. 

1.12. Consider each of the following equations, and rewrite it as a senten ce in words. 
(a) (x + 2)2 + (y - W = 9. 
(b) (x - 2)2 + (y + W = 9. 
(c) x2 + (y - 2)2 = 3. 
(d) (x + n)2 + (y - 3n)2 = 2. 

Answer: (d) The point (x, y) lies on the circ1e of radius .j2 with center at (- n, 3n). 

1.13. A lighthouse is located 3 miles away from a straight shoreline. An electric plant 
is 13 miles downshore (as indicated in the figure, where P is the nearest shore 
point to the lighthouse). Suppose that undersea cable costs $7,000 per mile, 
whereas underground cable costs $2,000 per mile. 

l Lighthouse 

3 miles 

1 
P 13 miles 

Electric plant 
• 

(a) What is the cost (in thousands) of running cable undersea to P, then under­
ground to the power plant? 
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(b) What is the cost (in thousands) ofrunning cable undersea from the lighthouse 
to a point Q 4 miles downshore, then underground to the plant? 

Lighthouse 

4 Q Electric plant 

p 

(c) Find an algebraic rule giving the cost (in thousands) of running the cable 
undersea from the lighthouse to a point x miles dowüshore, then under­
ground to the plant. Answer: C = 7.J9 + x2 + 2(13 - x). 

(d) What is the domain of the function expressed in words in part (c)? 

§2. Geometry versus Arithmetic 

Pythagoras perhaps had little notion that the Pythagorean theorem could be 
relevant in such a variety of contexts as we have just seen in the exercises in 
Section 1. In particular, the idea that an algebraic equation (like x2 + y2 = 25) 
could be identified with a geometrie curve (the circle of radius 5 with center 
at the origin) is an idea whose value the Greeks never fully realized. The 
importance of this interplay between algebra and geometry was first seen by 
two seventeenth-century Frenchmen, Pierre de Fermat and Rene Descartes. 
It was they who developed analytie geometry, the name given to the study 
of this interplay, whose goal is the attainment of a synthesis of algebra and 
geometry. 

Ever since A.D. 1637, when Descartes wrote La Geometrie, it has been 
common knowledge that curves can have equations and that equations 
determine curves. Why did the Greeks fail to utilize this means of approaching 
problems in geometry? The answer is simple. The Greeks knew that their 
curves had equations. However, they developed little abbreviative symbol­
ism, and therefore had to write the "equations" out in words. For the Greeks, 
sometimes only a wondrous wealth of limiting clauses could describe 
adequateiy the mathematician's latest and prettiest discovery: 

Let a cone be cut by a plane through the axis, and let it also be cut by 
another plane cutting the base of the cone in a straight line perpendicular to 
the base of the axial triangle, and further let the diameter of the section be 
parallel to one side of the axial triangle; then if any straight line be drawn 
from the section of the co ne parallel to the common section of the cutting 
plane and the base of the cone as far as the diameter of the section, its square 
will be equal to the rectangle bounded by the intercept made by it on the 
diameter in the direction of the vertex of the section and a certain other 
straight line .... 

Apollonius, Conics, ca. 200 B.C. 
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See? 
By contrast, our modern system, which uses Descartes's coordinates and 

his abbreviative notation, is almost magically efficient. In modern terms, the 
long statement of Apollonius simply says, 

Given a parabola, a Cartesian co ordinate system can be introduced in 
which the parabola has an equation of the form y = cx2 , where c is a certain 
constant. ... 

It is hard to overestimate the value of appropriate symbolism. The Greeks 
ne ver had it, and they developed only a little algebra. Their powers were 
concentrated upon geometry. 

Why did the Greeks prefer to couch their mathematics in geometry? Why 
not let number play the key role in mathematics, particularly since Pythagoras 
would base everything upon number? The reason has to do with the dis­
covery by the Pythagoreans of irrational quantities, a discovery that might 
be interpreted as disproving their own philosophy! 

It is told that those who first brought out the irrationals from conceal­
ment into the open perished in shipwreck, to a man. For the unutterable and 
the formless must needs be concealed. And those who uncovered and touched 
this image of life were instantly destroyed and shall remain forever exposed 
to the play of the eternal waves. 

Proclus 

Pythagoreans want to explain everything by numbers. Trouble starts 
when one tries to explain the simplest elements of geometry by numbers. 
How does one account for points on a line in terms ofnumbers? This appears 
easy at first, but the appearance is deceptive. On a line segment a unit length 
is first chosen, and then to each ratio of integers is associated a point, in a 
natural way that is now familiar to every schoolchild. The ratio i, for example, 
names the point obtained by dividing the unit length into 4 equal parts 
and then taking 3 of them. At first, it appears that every point on the line 
can be named in this way, by using ratios of integers, or rational numbers. 

The Pythagoreans, however, discovered to their distress that there was 
a certain point P that could be accounted for by no rational number whatever! 

I--unit length-j p 2 3 

Consider the point P situated on the line as indicated above. The number 
associated with P would measure the length of the hypotenuse of a right 
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triangle whose legs each have a length of one unit. Therefore, by the 
Pythagorean theorem, the square of the number associated with P must be 
equal to 2. The shock was feit when somehow, out ofthe Pythagorean school, 
around 500 B.C., came the following remarkable statement and proof. 

Theorem. There is no rational number whose square is 2. 

PROOF. (The proof uses the indirect, or reductio ad absurdum method, which 
consists in showing that an absurd conclusion results from supposing the 
theorem false.) Suppose that the theorem stated above is false, i.e., suppose 
there is a rational number whose square is 2. Then, by canceling out any 
common factors in the numerator and denominator, we should have a 
rational number alb in lowest terms whose square is 2. We should then 
have integers a and b satisfying: 

a and b have no common divisor; 

a2 

b2 = 2. 

From equation (5) it follows that 

ais even. 

(4) 

(5) 

(6) 

Reason: If a were an odd number, then a2 would be odd; yet equation (5) 
teils us that a2 = 2b2 , showing that a2 is even, being twice another integer. 

Since we know that a is even, we know that a must be equal to twice 
some other integer. Calling this other integer k, we then have a = 2k, or 
a2 = 4P, so that equation (5) becomes 

4k 2 

V=2, 

where k and bare integers. From equation (7) it follows that 

bis even. 

(7) 

(8) 

Reason: If b were an odd number, then h2 would be odd, yet equation (7) 
teils us (when it is solved for b) that h2 = 2k 2 , showing that b2 is even. 

The absurd conclusion is evident when statements (4), (6), and (8) are 
compared. This shows that an absurd conclusion is a consequence of as­
suming the theorem false. Therefore, the theorem must be true, Q.E.D. 

The Greeks evidently saw no way to explain the point P by a number, 
since they could conceive of no "number" other than a rational number. 
Today, most students have no qualms over associating the point P with 
the number defined by a never-ending decimal expansion beginning 

1.414 .... 
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The Greeks preferred to shy away from infinite processes whenever they 
could. Here, they took refuge in the "safe" framework of geometry. The 
point P offers, of course, no difficulty at all to geometry. It is just as simple 
an object as any other geometrie point. Although the difficulty with irrational 
numbers surfaces in geometry as a problem with incommensurable line 
segments, the brilliant Eudoxus (ca. 408-355 B.C.) showed how things could 
be handled. It seemed that geometry could handle something that arithmetic 
could not, and the Greeks came to regard geometry more highly than 
arithmetic. For over two thousand years mathematics was couched in the 
framework of geometry. 

What might have happened if, instead, the Greeks had emphasized mea­
surement by numbers and had studied the way that numerical quantities 
relate to one another in a given setting? Then the development ofthe calculus 
and ofmodern science might have been accelerated radically. For this reason 
it may not be an exaggeration to say that the irrationality of J2 had a 
profound effect upon the history of mankind. 

EXERCISES 

2.1. Is 1.41 a rational number? Answer: Yes, since it is equal to 141/100, a ratio of 
integers. 

2.2. Is 2 a rational number? Hint. 2 = 2/1. 

2.3. Is it true that J2 = 1.414? 

2.4. Is J4 irrational? 

2.S. Give a reductio ad absurdum argument showing that sJ2 is irrational. Answer: If 
it were rational, it would be equal to some ratio m/n of integers, which leads to a 
contradiction, as folIows: sJ2 = m/n implies that J2 = m/Sn = a rational 
number, contradicting the theorem just proved. 

2.6. Prove that 3J2 is irrational. 

2.7. Give a reductio ad absurdum argument showing that iJ2 is irrational. 

2.8. Prove that (a/b)J2 is irrational, if a and bare nonzero integers. 

2.9. Give a reductio ad absurdum argument showing that 3 + J2 is irrational. Answer: 
If 3 + J2 were rational, we would have 3 + J2 = m/n, which, when solved for 
J2, yields J2 = (m - 3n)/n = a rational number, which is a contradiction. 

2.10. Is the sum of a rational number and an irrational number always irrational? 

2.11. Is the sum of two rational numbers always rational? 

2.12. Is the sum of two irrational numbers always irrational? Hint. Consider the sum 
of 3 + J2 and 3 - J2. 

2.13. Is the product of two rationals always rational? 

2.14. Is the product of two irrationals always irrational? 
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2.15. Find an irrational number lying between 0 and 1/1000. Hint. Use your answer 
to exercise 2.8 and choose b very large. 

2.16. Are there ilifinitely many irrationals between 0 and 1/1000? 

2.17. Are there infinitely many irrationals between any two rational numbers? 

2.18. (For more ambitious students) The long statement of Apollonius given in this 
section is, believe it or not, one of the prettiest theorems of geometry, once it is 
understood. Read pp. 203-204 of The World of Mathematics, edited by James 
R. Newman, Simon and Schuster, 1956, where Apollonius' proof may be found. 

§3. Plato, Aristotle, and Mathematics 

Western philosophy has been described as aseries of footnotes to the 
writings of Plato. Yet, as we know from the warning on his gate ("Let no 
one ignorant of geometry enter here !"), Plato's philosophy was inf1uenced 
by his conception of mathematics. The Pythagorean spirit lives in Plato. 

Mathematics, in Plato's time (430-349 B.C.), was enjoying vigorous 
activity, the leading figure being Plato's colleague Eudoxus, whose work 
we shall meet in Chapter 6. Plato could not have failed to be impressed 
with the remarkable achievements ofEudoxus and with the fact that Eudoxus 
might have created (or is discovered a better word?) something that would 
last forever. 

The eternal was of paramount interest to Plato, transitory things being of 
less value. What is important is the power to prevail against the ravages 
oftime. To Plato, mathematics seemed to possess this power. The theorems of 
the Pythagoreans will live, even if the Greek language should die. Plato 
became enamoured of mathematics. 

The theorems of mathematics are eternally true, thought Plato, and 
significant theorems will retain their value not only for the next few thousand 
years, but literally forever. "Geometry will draw the soul toward truth," 
said Plato, "and create the spirit of philosophy." All knowledge should 
perhaps aspire to the state attained by mathematics. Here, beyond the realm 
of immediate practicality, lies the true spirit of pure thought. 

Plato went even further. As an illustration, consider the question whether 
the Pythagorean theorem was true before Pythagoras came upon it. Plato 
would reply strongly in the affirmative and would assert that the theorem 
had always been true. It had been built into the universe, and Pythagoras 
was just the first one to see it clearly. 

Plato believed that the Pythagorean theorem existed, in some sense, 
long before Pythagoras. The connection between the ideas involved was 
there always. It was waiting to be discovered, as is often said nowadays, 
just as America was waiting to be discovered by Columbus. Plato began 
to think that all enduring knowledge must be like this. Knowledge consists 
of ideas, or eternal forms, and their great web of connections. 
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To put a significant piece of this knowledge into down-to-earth terms, 
so that all can understand, is a noble undertaking. Socrates, Plato's teacher, 
undertook to explain the idea of justice, an idea that is still imperfectly 
understood. Plato tackled the virtually impossible task of explaining the 
good, the true, and the beautiful, and to see the interrelationship between 
these ideas. In the more concrete realm of mathematics, Euclid (ca. 365-
275 B.C.) tried to uncover the interrelationship between all the ideas of 
geometry that were known up to his time. 

However naive Plato's outlook may appear, it cannot be denied that 
such efforts as these have inspired to this day many more seemingly impos­
sible undertakings. 

The aspect of Plato's philosophy just described is sometimes pictured as 
follows. The ideas, or eternal forms, al ready exist, floating in the "Platonic 
heaven", just beyond our grasp. Perhaps, as the Pythagoreans believed, we 
ourselves existed in a former life when we might have known these ideas 
be fore, but we are born with an imperfect knowledge of them. In order to 
remember ourselves, we must study philosophy: Only a lover of wisdom 
can climb high enough to swing ara und heaven, and slide back down to 
earth with a new perspective. A Platonist today might hold the view that 
"liberal arts" consists of ideas brought down to earth by swingers. 0 

The excitement and enthusiasm that Plato found in the study of mathe­
matics may be contrasted with the tone taken by his great student Aristotle 
(384-322 B.C.). It has been suggested, perhaps unkindly, that Aristotle was 
never enthusiastic about anything. But it is certainly true that Aristotle saw 
in mathematics nothing to inspire such a flight of imagination as was taken 
by Plato. Aristotle was more of a scholar, or critic, than a speculator. The 
capacity to systematize knowledge, to bring order through reason, was of 
the highest importance. The value of mathematics, to Aristotle, lies in its 
exemplification of this capacity to a degree unmatched in any other dis­
cipline. Aristotle seems really to have been more interested in logic than 
in mathematics. 

Aristotle's views on logic had great influence. They tend to be reflected 
in the style of Euclid, whose Elements-the greatest textbook of modern 
times-appeared about 300 B.C. Euclid seemed to show that the towering 
edifice of geometry was simply the consequence of logic unerringly applied 
to "self-evident" propositions, or axioms. The value of Euclid's work lies 
not so much in the announcement of previously unknown theorems (many 
of the theorems in the Elements were known be fore Euclid was born), but 
rather in the masterful logical organization of a great body of knowledge 
by the axiomatic method. Aristotle endorsed this method, which seems to 
have been introduced several centuries earlier by Thales, who taught 
Pythagoras. 

The axiomatic method consists in stating clearly one's initial assumptions 
(axioms) and deducing all else by means of logic. The method results in a 
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writing style that is demanding, austere, and-to some-supremely beautiful: 

Euclid alone has looked on Beauty bare. 
Let all who prate of Beauty hold their peaee, 
And lay them prone upon the earth and cease 
To ponder on therriselves, the while they stare 
At nothing, intricately drawn nowhere 
In shapes of shifting lineage; let geese 
Gabble and hiss, but heroes seek release 
From dusty bondage into luminous air. 
o blinding hour, 0 holy, terrible day, 
When first the shaft into his vision shone 
Of light anatomized! Euclid alone 
Has looked on Beauty bare. Fortunate they 
Who, though onee only and then but far away, 
Have heard her massive sandal set on stone. 

Edna St. Vincent Millay* 

Western civilization has consumed over a thousand editions of Euclid's 
Elements. It is no surprise that traces ofthe axiomatic method can be detected 
in many nonmathematical writings: 

We hold these truths to be self-evident ... 
. . . a new nation ... dedicated to the proposition that ... 

Thomas Jefferson and Abraham Lincoln were among Euclid's admirers. 
Lincoln considered his reading of Euclid an indispensable part of his educa­
tion. The following passage is from a biographical sketch written for the 
1860 presidential campaign. 

He studied and nearly maste red the six books of Euclid since he was a 
member of Congress. 

He began a course of rigid mental discipline with the intent to improve 
his faculties, especially his powers of logic and language. Hence his fondness 
for Euclid, which he carried with him on the circuit till he could demonstrate 
with ease all the pro positions in the six books; often studying far into the 
night, with a candle near his pillow, while his fellow-Iawyers, half a dozen in 
a room, filled the air with interminable snoring. t 

What is it about Euclid that attracts? Is it not the cold, unexcited certainty 
with which tower upon tower of seemingly irrefutable arguments are built? 
No work could be more dispassionate than Euclid's Elements. Yet this 
same quality has probably repelled as often as it has attracted. For many 
people, Euclid is too severe, too lacking in enthusiasm, "faultless to a fault". 
Whatever enthusiasm Euclid felt for mathematics he restrained in writing 
the Elements. Aristotle would have wanted it that way. Scholarship must 
stand up under the cold, steady eye. 

* Sonnet XLV, [rom Collected Poems, Harper and Row. Copyright 1923, 1951 by Edna SI. 
Vincent Millay and Norma Millay Ellis. 

t This passage is cited in E. T. Bell's M eil of M athematics, p. xvi. 
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EXERCISES 

3.1. Latin translations of Euclid have made famous the abbreviation Q.E.D. If you 
don't know already, use a dictionary to find out what this abbreviation stands for, 
in both Latin and English. 

3.2. Here are some comments on Euclid made by an eminent modern mathematician. 
Are his criticisms justified? 

Euclid's work ought to have been any educationist's nightmare. The work pre­
sumes to begin from a beginning; that is, it presupposes a certain level of readi­
ness, but makes no other prerequisites. Yet it never offers any "motivations", it 
has no il/uminating "asides", it does not attempt to make anything "intuitive", and 
it auoids applications to a fault. 1 t is so "humorless" in its mathematical purism 
that, although it is a book about "Elements", it nevertheless does not unbend 
long enough in its singlemindedness to make the remark, however incidental/y, 
that if a rectangle has a base of 3 inches and a height of 4 inches then it has an 
area of 12 square inches. Euclid's work never mentions the name of aperson; it 
never makes a statement about, or even an (intended) allusion to, genetic de­
velopments of mathematics . .. 1 n short, it is almost impossible to refute an 
assertion that the Elements is the work of an unsufferable pedant and martinet.* 

3.3. In the next seetion, we shall make use ofthe following proposition, which is typical 
of pro positions in the Elements. Can you give a proof of this proposition? 

1f two parallel fines are cut by a transversal, then the alternate interior angles 
are equal. 

(Prove that the indicated angles are equal. Look up a proof in a geometry book 
if you have trouble.) 

§4. Measuring the Earth 

The root geo- means "earth", and geometry literally means "earth-measure­
ment". Eratosthenes (ca. 276-195 B.C.) did just that, with the aid of Euc1id's 
proposition about alternate interior angles (see exercise 3.3). In the third 
century B.C., Eratosthenes convinced hirnself that the earth's circumference 

* Salomon Bochner. The Rofe of Mathematics in the Rise of Science, p. 35. (Copyright © 1966 
by Princeton University Press and reprinted by permission of the Press.) 
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is about 50 times the distance from Alexandria to Aswan. (Aswan was known 
as "Syene" then. Its distance from Alexandria is about 500 miles.) 

We indicate part ofEratosthenes' reasoning, leaving the rest to the reader. 
Eratosthenes thought that Alexandria was due north of Aswan. (It is not 
quite due north. Locate the two cities on aglobe.) In Aswan there was a 
deep weIl that had an unusual feature. The sun shone straight down the 
weIl, casting no shadow at aIl, once every year: at the summer solstice. The 
sun, at noon on lune 22, is directly overhead in Aswan, so that the sunlight 
beaming down a weIl is headed for the center of the earth. At the same time, 
in Alexandria, Eratosthenes observed the shadow cast by an upright stick, 
and measured an angle of slightly more than 7 degrees, or about lo a com­
plete revolution. (One-fiftieth a complete revolution is, in degrees, equal to 
(/0)(360) degrees, or 7.2°.) 

EXERCISES 

Angle of frJ revolution 
in Alexandria: 

Eratosthenes 

4.1. Explain how, from the facts above, one might infer that the circumference of the 
earth is about 25,000 miles. 

Alexantd~ ~ 
__ -- ... 00 __ -- I: 

e-:::::::::----- ~ 

Center of Earth Aswan 

) 
4.2. Look up the circumference of the earth in an almanac or encydopedia. Was 

Eratosthenes' calculation dose to being accurate? 

4.3. In A.D. 1492 Columbus had his own idea of the earth's size. Did he think it 
larger or smaller than Eratosthenes believed it to be? What would have happened 
if Columbus had believed Eratosthenes' calculation to be correct? 

§5. Archimedes versus the Romans 

Had Eratosthenes lived in another time, his cleverness might have earned 
hirn a greater reputation. He was known, however, by the nickname "Beta", 
for it was his lot to live in the shadow of a deeper mathematician, Apollonius 



42 2 The Spirit of Greece 

(ca. 260-200 B.C.), and to be virtually eclipsed by the incomparable 
Archimedes (287 -212 B.C.). 

Residing within Archimedes of Syracuse was a mysterious, driving force 
that compelled hirn to contemplate mathematics with his whole being. 
Archimedes' contemporaries spoke in wonder of his "raging Siren", his 
"familiar demon", his "muse", or his "spirit". 

Archimedes discovered a significant part of the calculus. The notion of 
a limit was weil understood by Archimedes, though he did not call it by 
name. His understanding of the essential idea is implicit in the papers he 
wrote. What is even more remarkable, Archimedes had a better grasp of 
this notion than the seventeenth-century mathematicians who invented 
the term. 

In addition to his mathematics, which includes papers two thousand 
years ahead ofhis times, Archimedes developed the theory offloating bodies 
into the science now called hydrostatics. He was also an inventor ofingenious 
and useful devices such as a water pump, elaborate compound pulleys 
utilizing the law of the lever to remarkable advantage, and a mechanical 
contraption that is said to have described accurately the motions of the 
heavenly bodies. But he was, above all, a pure mathematician. 

Archimedes' "violen ce from within" never abandoned hirn, even in great 
old age. When Rome attacked Syracuse in 214 B.C., Archimedes, despite 
his seventy years of age, went into action. To repel the Roman legions of 
Marcellus, he invented and deployed all manner cf weapons. As Plutarch 
recorded, Archimedes' catapults and other devices scared the pluperfect hell 
out of the Romans: 

In fine, when such terror had seized upon the Romans that, if they did 
but see a little rope or a piece of wood from the wall, instantly crying out, 
that there it was again, Archirnedes was about to let fly some engine at them, 
they turned their backs and fled; Marcellus desisted from conflicts and 
assaults, putting all his hope in a long siege. 

Yet Archirnedes possessed so high a spirit, so profound a soul, and such 
treasures of scientific knowledge, that though these inventions had now 
obtained hirn the renown of more than human sagacity, he yet would not 
deign to leave behind hirn any commentary or writing on such subjects; but, 
repudiating as sordid and ignoble the whole trade of engineering, and every 
sort of art that lends itselfto mere use and profit, he placed his whole affection 
and ambition in those purer speculations where there can be no reference to 
the vulgar needs of life; studies, the superiority of which to all others is un­
questioned, and in wh ich the only doubt can be wh ether the beauty and 
grandeur of the subjects examined, or the precision and cogency of the 
methods and means of proof, most des erve our admiration. It is not possible 
to find in all geometry more difficult and intricate questions, or more simple 
and lucid explanations. Some ascribe this to his natural genius; while others 
think that incredible effort and toil produced these, to all appearances, easy 
and unlaboured results. No amount of investigation of yours would succeed 
in attaining the proof, and yet, once seen, you immediately believe you would 
have discovered it; by so smooth and so rapid a path he leads you to the 
conclusion required. 
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And thus it ceases to be incredible that (as is commonly told of hirn) the 
charm of his familiar and domestic Siren made hirn forget his food and 
neglect his person, to that degree that when he was occasionally carried by 
absolute violen ce to bathe or have his body anointed, he used to trace geo­
metrical figures in the ashes of the fire, and diagrams in the oil on his body, 
being in astate of entire preoccupation, and, in the truest sense, divine 
possession with his love and delight in science. His discoveries were numerous 
and admirable; but he is said to have requested his friends and relations that, 
when he was dead, they would place over his tomb a sphere contained in a 
cylinder, inscribing it with the ratio which the containing solid bears to the 
contained. 

Plutarch, translated by John Dryden 
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Archimedes, at the age of seventy-five, was killed by sword. He had 
ignored the orders of Marcellus' soldier and had continued to study the 
lines and curves drawn in the sand. This was in 212 B.C. Apollonius and 
Eratosthenes died not long after, and the glory of Greece was soon to pass. 

The long period of Roman domination now began. The Roman culture 
was inclined more toward engineering than toward mathematics. Romans 
valued only the parts of mathematics that could be applied in everyday life. 
Cicero, while he restored Archimedes' gravesite in Sicily and praised his 
name, nevertheless wrote with pride of how the Romans assimilated into 
Roman culture only the "practical" parts of mathematics. 

With the Greeks geometry was regarded with the utmost respect, and 
consequently none were held in greater honor than mathematicians, but we 
Romans have restricted this art to the practical purposes of measuring and 
reckoning. 

Cicero, Tusculan Disputations 

One is surely free, like Cicero, to embrace utilitarianism if one wishes; 
but who is wise enough to say today what might be useful tomorrow? 
Consider, for instance, the simple proposition of Euclid regarding alternate 
interior angles. Many, upon seeing this proposition, would immediately 
discard it as useless. Yet Eratosthenes used it to measure the earth. 

As a more striking example, consider the calculus, which was to grow 
out of seventeenth-century mathematics. It is still prized highly today for 
its utility, even by some who value relevance and applicability of knowledge 
more than knowledge itself. Calculus is indispensable to the modern engineer. 
Yet Archimedes, who scorned the utilitarian as no one else, had unlocked 
some of the secrets of the calculus in the normal course of his studies. 

Today the other secrets ofthe calculus seem to us not [ar from Archimedes. 
But Roman engineers added to mathematics little of value. For nearly two 
thousand years the puzzling riddles lay right where Archimedes fell, in the 
reddening sand, amongst pebbles, lines, and curves. 
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At last there came colossal shrieks and shouts of surprise and delight in 
the seventeenth century, when suddenly Archimedes' Siren raged anew. The 
great man's spirit had prevailed against the Romans, and even today it 
is heard, howling in jubilation, Eureka! 

Problem Set für Chapter 2 

1. The Pythagoreans, by arranging pebbles in clever ways, could draw remarkable 
conclusions. To illustrate: 
(a) What is the sum of the first two odd numbers? 

Answer: "plus ": is ::, the square of two. 
(b) What is the sum of the first three odd numbers? 

Answer: "plus ": plus "": is m, the square of three. 
(c) What is the sum ofthe first four odd numbers? 
(d) What is 1 + 3 + 5 + 7 + 9 + 11, the sum of the first six odd numbers? 
(e) What is the sum of the first n odd numbers? 
(f) What is 1 + 3 + 5 + ... + 99? (Here, the three dots stand for the sum of the 

odd numbers between 5 and 99.) 

2. The Pythagoreans knew that an easy way to count the number of pebbles arranged 
in the shape of a triangle is to view the triangle as half of a rectangle: 
(a) What is the sum ofthe first two numbers? 

Answer: "plus: is":, which is half of ::, 
so the sum of the first two numbers is t(2)(3). 

(b) What is the sum of the first three numbers? Answer: It is t(3)(4), or half the 
dots in a 3 by 4 rectangle. 

(c) What is 1 + 2 + 3 + 4 + 5 + 6 + 7'1 
(d) What is 1 + 2 + 3 + ... + l00? (Here, the three dots stand for the integers 

between 3 and 100.) 
(e) What is the sum ofthe first n positive integers? 

3. The following principle is self-evident: If the same amount is taken away from two 
figures having equal area, then the two modified figures have equal area. It is thought 
that Pythagoras might have employed this principle, as folIows: 

b 
b b 

b 

a 

The two large squares have equal area. Take away the four right triangles, use the 
principle above, and it becomes clear" that c2 = a2 + b2 . Eureka! 

4. Undersea cable costs $11,000 per mile, whereas underground cable costs $7,000 
per mile. An island and a power plant are located as indicated, and cable is to be 
run between them. 
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SEA 
2mi. 

Power plant 

----Smiles 

Let C be the cost (in thousands) of the cable, and let x be as indicated. Find an 
algebraic rule expressing C in terms of x, and specify the domain of this rule. (In 
Chapter 4 we shall discuss how to find the cheapest way of laying the cable.) 

S. Find the center and the radius of the circle corresponding to each of the following 
algebraic equations: 
(a) x 2 + (y - 2)2 = 7. 
(b) (x + W + (y - .j2)2 = 10. 
(c) x2 + y2 = 10. 
(d) Sx2 + 5y2 = 10. 

6. Write an algebraic equation corresponding to each of the following circles: the 
circle with 
(a) radius 3, center at (3, - 4). 
(b) radius JS, center at (0,3). 
(c) radius 9, center at (n, J'7). 

7. Give a reductio ad absurdum argument to prove that 
(a) J8 is irrational. 
(b) JI8 is irrational. 
Hint. (a) First note that J8 = ~ = ,j4 . .j2 = 2.j2. Then proceed, using the 
fact that .j2 is known to be irrational. 

8. (In this question, you are not asked to give rigorous justification Jor your answers, 
only to test your intuition about the notion oJ area. It may be helpJul to think about 
what happens to a figure in a photograph, when the photograph is enlarged.) 
(a) Suppose, in a plane with figures drawn, each length is tripled (i.e., blown up 

by a factor of 3). For instance, a square of size 2 by 2 becomes a square of size 
6 by 6. By what factor is the area of each figure blown up? Answer: Areas of 
squares, and therefore all (why?) areas, are blown up by a factor of 9. 

(b) Suppose, as in part (a), that each length is blown up by a factor of r. By what 
factor is each area magnified? 

(c) The number n is defined as folIows: 

n is the area oJ a circle oJ radius 1 unit. 

Use your answer to part (b), plus a little imagination, to find the area of a circle 
of radius r units. 

(d) How could you convince someone that n is less than 4? Hint. Consider a square 
circumscribed about the unit circle. What is the area of the square? 

(e) How could you convince someone that 1t exceeds 3? (A certain state legislature 
once considered seriously passing a law declaring that 1t was equal to 3 in that 
state. What are the objections to such a law?) 

(f) Archimedes knew, beyond any doubt, that 1t lies somewhere between 3 Wand 
3+. Can you imagine how he might have been able to determine this? 
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9. The formula for the area A of a circle [see problem 8(c)], gives A as a furiction of 
r. What is the domain ofthis function? What is its range? Plot a few points so that 
you can make a rough sketch of the curve determined by this function. 

10. The Pythagorean theorem deals with squares constructed on the three sides of a 
right triangle. What about semicircles instead? Prove that the area of the semicircle 
with hypotenuse as diameter is equal to the sum of the areas of the semicircles on 
the other two sides. Hint. Use the equation A = 1[r2 as an aid in finding the areas 
of the semicircles. Then use the Pythagorean theorem. 

11. (This is a famous result of Hippocrates of Chios, a member of the Pythagorean 
school.) In the figure below, the hypotenuse ofthe right tri angle is also the diameter 
of the circle in which the triangle is inscribed. 

Lunes of Hippocrates 

Prove that the combined area of the two "lunes" (with vertical markings) is equal 
to the area of the right triangle. Hint. From problem 10 we know that the area 
marked vertically in the lower figure is equal to the area marked horizontally. 
Take away the cross-hatched area from both figures, and use the principle given 
at the beginning of problem 3. Eureka! 
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12. Consider the figure below, where the two triangles have a vertex in common and 
the lengths of their bases are equal. Prove that the triangles have the same area. 

b b 

13. Here is a problem that intrigued the Greeks. Given a figure, construct a triangle 
whose area is the same as that ofthe figure. (For example, given the lunes ofproblem 
11, Hippocrates found a tri angle of the same size.) Do this for a regular octagon. 
(Regular means all sides have the same length and all angles made by adjacent 
sides are equal.) Hint. Stare at the figure below, and use the result of the preceding 
problem. (Both figures can be thought of as being made up of eight triangles.) 

I~. 
b b b b b b b b b 

14. By a regular polygon of n sides is meant a figure in the plane bounded by n equal 
sides with n equal angles. (Problem 13 dealt with a regular polygon of 8 sides.) Let 
r denote the perpendicular distance from the center of a regular polygon to a side. 
Show that the area of a regular polygon is equal to the area of a tri angle whose 
height is rand whose base is equal in length to the perimeter of the polygon. Hint. 
Stare at the figure below, and use the same reasoning as you did in the preceding 
problem. 

I~ 
d d d d 

t+[.-------Perimeter of polygon -------.j. [ 

15. (Here the reader is asked simply to make a guess after considering the evidence.) 
Keep in mind that the equality of areas of the regular polygon and the correspond­
ing triangle pictured in problem 14 holds, no matter how many sides the polygon 
has. This eq uality of areas holds for a polygon of a billion sides, for instance. Keeping 
this in mind, stare at the two figures below. One is a cirde of radius 1', and the 
other is a triangle of height /' whose base is equal in length to the circumference of 
the cirde. 
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C 

Now make a guess as to which of the following is true: 
(a) The area of the circle exceeds the area of the triangle. 
(b) The area of the triangle exceeds that of the circle. 
(c) The area ofthe triangle equals the area ofthe circle. 

2 The Spirit of Greece 

16. (For more ambitious students) The amount and the type of reasoning which con­
stitute an irrefutable argument in mathematics have never been fixed. Some things 
that the seventeenth century took as obvious (i.e., requiring no proof) the twentieth 
century and also the ancient Greeks accepted only after a careful demonstration 
from basic principles had been given. If you believe that the statement in part (c) 
of problem 15 is "obviously" true, then you are in the good company of some of 
the keenest minds of the seventeenth century. They would reason that equality 
between areas of polygons and triangles carries over "in the limit", a circle being 
regarded as the limit of polygons that approach it more and more closely. 

Ort the other hand, you may feel that the statement (c) requires a clear proof, 
because you have only made an educated guess that it is true. If so, then you are 
at horne with Archirnedes and with most twentieth-century mathematicians who 
would think so too. Archirnedes proved 15(c) by showing that 15(a) leads to a 
contradiction, as does 15(b). Can you? 

17. The statement in (c) of problem 15 is true. Using it, and letting C stand for the 
circumference of a circle of radius r, prove that 
(a) nr2 = tCr. 
(b) C = 2nr. 

18. The algebraic rule C = 2nr defines the circumference of a circle as a function of 
its radius. What is the domain of this function? What is its range? Plot a few points 
on the curve determined by this function. Is the "curve" really a straight line? 

19. The number n is irrational, but this fact was not proved until the nineteenth century, 
and the proof is a little sophisticated. However, numbers like .j3, JS, .)6, .j7, 
.[8, .JT6, etc., have been known to be irrational since antiquity. Pick a couple of 
these and try your hand at proving them irrational. 

20. Do a little outside reading about the Greeks, and particularly about Archirnedes. 
F or exam pie, read pp. 19 - 34 of E. T. Bell's M en of M athematics, Simon and Sch uster, 
New York, 1937. 
(a) Wh at did Archirnedes mean when he said, "Give me a place to stand on, and 

I will move the earth!" 
(b) "EurlYka! Eureka!" shouted the streaking sage of Syracuse. Why? 
(c) What does E. T. Bell mean when he says that modern mathematics was born 
with Archimedes and died with hirn for over two thousand years? 
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21. The words below are derived from Greek. Look them up in a good dictionary and 
find out their literal meaning: 
(a) arithmetic. 
(b) geometry. Answer: "Earth-measurement". 
(c) mathematics. 
(d) philosophy. Answer: "Love ofwisdom". 
(e) enthusiasm. 

22. Rome itself stands Jor the impress oJ organization and unity upon diverse 
Jermenting elements. Roman Law embodies the secret oJ Roman greatness in its 
Stoic respect Jor intimate rights oJ human nature within an iron Jramework oJ 
empire. Europe is always jlying apart because oJ the diverse explosive character 
oJ its inheritance, and coming together because it can never shake off that impress 
oJ unity it has received Jrom Rome. The history oJ Europe is the history oJ 
Rome curbing the H ebrew and the Greek, with their various impulses oJ religion, 
and oJ science, and oJ art, and oJ quest Jor material comJort, and oJ lust oJ 
domination, wh ich are all at daggers drawn with each other. The vision oJ Rome 
is the vision oJ the unity oJ civilization. 

A. N. Whitehead 

What did the Romans da far mathematics? 



3 Sherlock Holmes 
Meets Pierre de Fermat 

Given a eurve, such as the one below, how ean one loeate its lowest point? 
This problem arose naturally in Chapter 1, along with the analogous prob­
lem of finding the highest point on a eurve. Both problems ean be solved by 
the same method, to wh ich we now turn. 

55 

50 

45 

40 

234 

§1. Rising and Falling Lines 

We must agree first how to use the words rising and falling, for there is 
danger of misunderstanding. Is the eurve above rising or falling as it passes 
through the point (1, 55)? The answer depends upon whether one thinks of 
the eurve as being traeed out from left to right or in the reverse direetion. 
So that we all speak the same language, let us agree to think of any funetion's 
eurve as being traeed out from left to right (or from west to east, ifyou prefer). 
The eurve above is then falling as it passes through (1,55), and rising as it 
passes through (4,40). 

Before going further, we had better mention the simplest eurves of all: 
straight lines, Below are pietured falling, horizontal, and rising lines. 

50 
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These three lines, if superimposed upon the curve pictured on page 50, 
may give the reader a hint as to the method we shall develop. At each point P 
on a curve, we shall seek the line through P that most closely approximates 
the curve near P. This line will be called the tangent line to the curve at P. 
The discussion of tangent lines begins in Section 3, and most of this chapter 
is devoted to their study. 

What does the study oftangent lines to curves have to do with the problem 
stated in the first senten ce of this chapter? Look again at the curve above. 
It is pretty clear, is it not, that the lowest point occurs where the tangent 
line is horizontal, that is, where the tangent line slopes neither up nor down. 

We must give a precise meaning to the word slope. 

Definition. The slope of the line joining (x l' yd and (x2, Y2) is given by 

Y2 - Yl 
provided Xl i= x 2 . 

For ex am pie, the slope of the line joining (4,6) and (5, - 3) is given by 

-3-6 
5-4 =-9. 

The slope of a line is a number that measures how fast the line rises (or, 
when the slope is negative, how fast the line falls.) If L is the line joining 
(Xl' Yd and (X2' Yz), then 

so that we have 

Y2 - Yl = Slope L, 
X 2 - Xl 

Y2 - Yl = (Slope L)(X2 - xd· (1) 

The relation expressed in equation (1) will be useful later in finding an 
equation of the line L. 
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EXERCISES 

1.1. Find the slope of the line joining (1,2) and (3,7), alld draw a picture of this line. 
Partial answer: Slope is 5/2. 

1.2. Find the slope and draw a picture of the line joining (1,2) and (3, - 2). Is this line 
rising or Jalling? 

1.3. Find the slope and draw a picture of the line joining (1,2) and (5,2). Is this line 
rising or Jalling? 

1.4. Find the slope and draw a picture ofthe line joining (1,2) and (1, 5). Partial answer: 
Slope is undefined. 

1.5. Using geometry, show that the slope of a line is independent ofwhich pair of points 
is chosen to ca1culate the slope. That is, in the figure below, show that the slope 
from P to Q is equal to the slope from R to S. Hint. The slope is simply a ratio 
of two sides of a triangle. Prove that the triangles are similar. 

R 

P 

1.6. (a) Find the slope of the line L joining (1,2) and (3,5). 
(b) Find the slope of the line joining (1,2) and (300,450). 
(c) Using your answers to (a) and (b), decide whether the point (300,450) lies 

above, on, or below the line L joining (1,2) and (3,5). 
(d) Is the point (301,452) on this line L? How do you know? 

§2. Linear Functions 

It is easy to see, as illustrated in exercises 1.1-1.3, that a line is 

rising if its slope is positive, 
falling if its slope is negative, 
horizontal if its slope is zero. 

Some curves (and we shaIl understand a line to be an especiaIly simple 
kind of curve) determine functions, and some do not. Any nonverticalline 
does determine a function. (Why?) Such a function is caIled a linear function. 

The slope of a line teIls us something about the linear function it deter­
mines. It teIls us how much the function "stretches". What does this mean? 
Look at the figure below, where a line of positive slope is pictured, and 
consider the function determined by this line. If the domain is the interval 
from Xl to X z and ifthe corresponding range extends from Yl to Yz, then by 
what factor is the domain stretched as it is sent into the range? 
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From the figure, the length of the range is Y2 - Yl' and the length of the 
domain is x2 - Xl' Equation (1) above thus says: 

Length of range = (slope of line)(length 01' domain). 

The slope ofthe line thus gives the factor by which a linear function stretches 
lengths. A line of slope 3, for instance, determines a linear function that 
sends any interval into an interval three times as long. A line of slope 3, 
considered as a function, has a "stretching factor" of 3. 

The preceding discussion applies to lines of positive slope. Suppose the 
slope of a line is negative, say - 3. Then the linear function determined by 
the line still has a stretching factor of 3, but intervals in the domain are 
"flipped upside down" before they land in the range. 

A Jine of slope - 3 

Domain 

The notion of slope makes it easy to write or to recognize equations of 
nonvertical lines. The following exercises illustrate this. 

EXERCISES 

2.1. Translate into words the algebraic equation y - 2 = ~(x - 1). Allswer: By equa­
tion (1), this says "(x, y) lies on the line of slope 3/2 passing through (1,2)." [This 
is an equation, then, of the line described in exercise 1.6(a).] 

2.2. Translate into words the algebraic equation y - 4 = 3(x - 2), and sketch the 
line determined by this equation. 

2.3. Translate into words the algebraic equation y + 4 = - 2(x - 3), and sketch the 
line determined. H im. First rewrite the equation as y - ( - 4) = - 2(x - 3), then 
use equation (1). 
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2.4. Translate into words each ofthe following equations, and sketch the line determined. 
(a) y = 2x + 4. Hint. Rewrite as y - 4 = 2(x - 0). 
(b) 3x + 4y = 6. Hint. First solve for y. Then proceed as you did in part (a). 
(c) y = nx + .j2. 
(d) y = 5. Hint (if needed). Rewrite as y - 5 = O(x - 0), and use equation (1). 

2.5. The slope-intercept form of the equation of a line is 

y = bx + c, 
where band c are constants. 
(a) Rewrite this equation as y - c = b(x - 0). Find the slope ofthe line determined 

by this equation, and find both coordinates of the point where the line meets 
the y-axis. 

(b) Describe the curve determined by the function given by f(x) = 3x + 5. Answer: 
The graph of f is a line passing through (0, 5) with slope 3, since the algebraic 
rule 3x + 5 is in slope-intercept form. 

(c) Describe the curve determined by each of the following rules: 
(i) -2x-5. 

(ii) x-I. 
(iii) 5 - x. 

2.6. Find an algebraic equation for the line of slope 3 passing through (0, n). Answer: 
By equation (1), a point (x, y) lies on this line if and only if y - n = 3(x - 0), or 
(simplifying) y = 3x + n. 

2.7. Find an algebraic equation for the line of slope 3 passing through (n,O). 

2.8. (a) Find the slope of the line joining (4,6) and (3,8). 
(b) Using your answer to (a), find an equation of the line joining (4,6) and (3,8). 

2.9. Find an equation of the line joining 
(a) (0,0) and (1, - 2). 
(b) (3,4) and (4,7). Answer: y = 3x - 5. 
(c) (3,4) and (7,4). 
(d) (3,4) and (3,7). Hint. This is made simple, not hard, by the fact that the slope 

is undefined. Use common sense. 

§3. The Principle of Elimination 

In the preceding section we have made an essentially complete investiga­
tion of the simplest kind of function. We have learned that any function 
given by a rule of the form 

bx + c 

is a linear function. Its graph is a line of slope b passing through the point 
(0, c) on the vertical axis. 

The next simplest kind of function is a quadratic function, arising when 
a linear expression bx + c is modified by a term involving a square: A 
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quadratic function is given by an algebraic rule of the form 

ax2 + bx + c, where a =f. O. 

The behavior of quadratic functions is not hard to study. To investigate 
that behavior, and to learn at the same time how to find tangent lines to curves, 
let us consider the simplest quadratic function of all. This is, of course, the 
squaring function given by 

Plotting a lot of points on the graph of the squaring function shows that 
it looks something like this: 

y 

There are many lines through P = (1,1). How can we pick out the line tangent to the 
curve at P? 

We are ready to move toward attacking the problem stated in the first 
senten ce of this chapter. We have al ready hinted that the solution of that 
problem involves the study of tangent lines to curves. Our task now is to 
figure out exactly what a tangent line iso So far, we have only made the (rather 
vague) statement that the tangent line to a curve at a point P is the line 
through P that most closely resembles the curve near P. With this meager 
thread to hold on to, how can one determine the slope of the tangent line to 
the squaring function at the point P = (1, 1)? 

This is achallenging question, even for the keen mind of a master sleuth. 
Let us therefore enlist the aid of the great detective: 

Sherlock Holmes's Principle. When you have eliminated the impossible, what­
ever remains, however improbable, must be the truth. 

The answer to a question is among what remains after wrong answers have 
been set aside. By this principle of elimination, the tangent line is the line 
left when all "nontangent" lines have been discarded. Will this be helpful 
to us? We shall see. Let us first look at some exercises to test whether this 
principle of elimination is weil understood. 
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EXERCISES 

Apply Sherlock Holmes's principle to each of the following situations. 

3.1. Winnie the Pooh's honey is gone. Everyone but Tigger has a valid alibi that 
proves his innocence. Answer: By Holmes's principle, Tigger stole the honey, 
provided it was stolen. 

3.2. A survey shows that Peter Pan is a citizen ofno country questioned in the survey, 
and England is the only country not questioned. Answer: By Holmes's principle, 
Peter Pan is a citizen ofEngland, provided that Peter Pan is a citizen oJsome country. 

3.3. The county seat of Yoknapatawpha County, Mississippi, is none other than the 
city of Jefferson. 

3.4. 1984 + h is not the title of a famous book, if h is not equal to O. Answer: No 
famous book has a numerical title, except possibly 1984. 

3.5. If h =f. 0, then the area of a circle of radius 1 is not TC + h. Answer: The area of a 
circle of radius 1 is none other than TC. 

3.6. If x =f. 5, then x is not the solution of a certain problem in arithmetic. Answer: 
The solution of the problem, by Holmes's pr in ci pie, is 5, provided the problem 
has a solution. 

3.7. If h =f. 0, then h + 2 is not the answer to a certain problem in arithmetic. 

3.8. If h =f. 0, then (h 2 + 2h)/h is not the answer to a certain problem. H int. (h 2 + 2h)jh = 
h + 2 if h =f. O. 

3.9. If h =f. 0, then (h 2 + 4h)/h is not the answer to a certain problem. Answer: By 
Holmes's principle, the ans wer must be 4, provided the problem has an ans wer 
(and provided the answer is a number). 

3.10. If h =f. 0, then (h 2 + 9h)jh is not the answer to a certain problem. 

§4. The Slope of a Tangent Line 

We are prepared to begin our detective work. To employ the principle of 
Sherlock Holmes, we must attain skill at finding wrong answers, in order 
to eliminate them. Let us recall the question: 

What is the slope of the tangent line to 
the curve y = x2 at the point P = (1, I)? (2) 

How can we get a wrong answer to this question ? Look once aga in at the 
graph of the squaring function near P. A line through P that cuts the curve 
twice will not be tangent at P, it would seem. The tangent line at P will touch 
the curve only at P. 
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not tangent at P 
(cuts curve twice) 
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tangent at P 

Now we have a clue. To obtain a wrong answer to question (2), we need 
only find the slope of a line joining P to another point on the graph of the 
squaring function. This graph consists of each point in the plane whose 
second co ordinate is the square of its first coordinate. Another point on 
the curve, then, is (1 + h, (1 + h)2) if h is not equal to zero. (If h is 0, this 
"other" point would coincide with P.) The slope ofthe nontangent line joining 
(1,1) and (1 + h, (1 + h)2) is given by 

(1 + h)2 - 1 

1+h-1 
1 + 2h + h2 - 1 

h 

We now know a host of wrong answers to question (2), for if h =f. 0, then 
(2h + h2 )/h is the slope of a line that is not tangent at P. Note that this 
expression simplifies to 2 + h. 

This hne, not tangent at P if h i= 0, has a slope equal to 2 + h 

What is the answer to question (2), now that we know that 2 + h is not 
the answer, if h =f. 0. The only number not eliminated is 2. By Sherlock 
Holmes's principle, the answer to question (2) must be 2, provided the ques­
tion has an answer. That is, 

the slope of the tangent 
line to y = x2 at (1, 1) is 2, (3) 

provided the curve y = x2 has a tangent line at (1,1). Elementary, dear 
Watson! 0 
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Holmes's method illustrates the curious fact that it is possible to get the 
right answer by first considering how to get wrong answers. Let us try another 
question. 

Wh at is the slope of the tangent line 
to the curve y = x2 at the point ( - 2, 4)? (4) 

Let us consider how to get wrong answers to question (4). A wrong 
answer is the slope of the line joining (- 2, 4) and (- 2 + h, (- 2 + h)2) if 
h =F O. The slope of this nontangent (or secant, as a line cutting a curve 
twice is often called) is given by 

(-2 + h)2 - 4 4 - 4h + h2 - 4 
-2+h+2 h 

-4h + h2 

h 

= - 4 + h if h =F O. 

P=(-2,4) 

This secant has a slope equal to -4 + h 

What is the answer to question (4), now that we know -4 + h is not the 
answer if h =F O? The only number not eliminated is - 4. By Holmes's 
principle, the answer must be -4, provided there is an answer. That is, 

the slope of the tangent 
line to y = x2 at (-2,4) is -4, (5) 

provided the curve y = x2 has a tangent line at ( - 2, 4). 

EXERCISES 

Apply the pr in ci pie of elimination to each of the following. 

4.1. What is the slope of the tangent line to the curve y = x 2 at (O,O)? Answer : It is 0, 
provided there is a tangent line. 

4.2. What is the slope of the tangent line to the curve y = x2 at the point (2,4)? 

4.3. Wh at is the slope of the tangent line to y = x 2 at (n, n2 )? Answer: 2n, if there is a 
tangent line. 
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4.4. What is the slope of the tangent line to the curve y = x 2 + 3 at the point (1, 4)? 

4.5. What is the slope of the tangent line to the curve y = x2 + 3x at the point (1,4)? 
H int. A wrong answer to this question is given by 

(1 + W + 3(1 + h) - 4 = 5 + h if h #- O. 
h 

4.6. What is the slope of the tangent line to the curve y = x2 + 3x + 2 at the point 
(1, 6)? Answer: 5, if there is one. 

4.7. What is the slope of the tangent line to the curve y = x2 + 3x + 2 at the point 
(n, n 2 + 3n + 2)? 

§5. Fermat's Method and the Derivative 

As clever as Holmes's method is, it has serious drawbacks, as illustrated in 
problem 17 at the end of this chapter. One worrisome thing about this 
method is that things are left hanging a bit at the end. How do we know 
whether a curve has a tangent line at a certain point? What is needed is a 
clear definition. 

Pierre de Fermat used the notion of limit to invent a workable definition 
of the stope of a tangent line to a curve. It is only a slight modification of 
the method we have just employed, but by it the drawbacks to Holmes's 
method are removed. 

Fermat described the following method offinding the slope ofthe tangent 
line to a curve f at a given point P = (c,f(c)) on the curve. First find the 
slope of the line joining (c,f(c)) and (c + h,f(c + h)), where h '# O. Although 
this slope, which is given by 

f(c + h) - f(c) 
h 

(6) 

is likely not the desired slope of the tangent line, it clearly approximates 
the desired slope as h is taken nearer to zero. It is natural, then, to dejine 
the slope of the tangent line at (c,f(c)) to be the number (if there is one) 
that expression (6) is trying to become as h approaches zero. 

/ 
(c + h,f(c + h)) v 

A 
NOT tangent /. 
to/at P ~/. 

/' (c,f(c)) = P 
// 

• • 

/ 
/ 

/ 

c c + h 

This non tangent line has slope given by expression (6) 
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Definition. The slope of the tangent line to the curve f at the point (c,f(c)) 
is defined to be 

L . . f(c + h) - f(c) 
umt h . 

h->O 

Fermat's idea is simple yet subtle. The "right answer" is the limiting value 
of wrong answers that approximate it ever so closely. Here are several 
examples to illustrate Fermat's method. 

EXAMPLE I. Find the slope of the tangent line to the curve y = x2 at the 
point (1, 1). 

Here the function is given by f(x) = x 2 , and the point P is (1,1(1)). 
According to Fermat's method, the slope of the tangent line at (1,1(1)) is 
given by 

L . . f(1 + h) - f(1) L' . (1 + hf - 1 
Imlt h = Imlt h 

h .... O h .... O 

.. h2 + 2h 
= LImit h 

h .... O 

= Limit (h + 2) 
h->O 

=2. 

Note that nothing is left hanging at the end. Since the limit exists, there is 
a tangent line, and its slope is equal to that limit. By Fermat's definition, 
the existence of a tangent line is tantamount to the existence of the limit of 
expression (6). D 

EXAMPLE 2. Find the slope of the tangent line to the curve y = x 2 at the 
point (n, n2 ). 

Here we have the squaring function again, given by f(x) = x 2 , and the 
point P is (n,j(n)). By Fermat's method, the slope of the tangent line is 

L . . f(n + h) - f(n) L' . (n + h)2 - n2 
Imlt h = Imit h 

h .... O h .... O 

L .. 2nh + h2 

= Imtt h 
h->O 

= Limit (2n + h) 
h .... O 

= 2n. o 



5. Fermat's Method and the Derivative 61 

EXAMPLE 3. Find the slope of the tangent line to the curve y = x2 at the 
point (x, x 2). 

This is so similar to Example 2 that the reader can probably guess the 
answer. The answer is 2x, for the same reason that the answer to the preceding 
example is 211:. This is seen by a calculation identical to that of Example 2, 
with x replacing 11:: 

L . . f(x + h) - f(x) L. . (x + h)2 - x 2 

lmü h = lmlt h 
h .... O h .... O 

= Limit (2x + h) = 2x. 
h .... O 

(The reader is asked to fill in the missing steps in this calculation.) D 

The work of Examples 1-3 may be summarized in a table: 

~f' J/f......,. ,\Slope oftangent 
x y line at (x, y) 

n 
x 

-1 

2 
2n 
2x 
? 

If we recall the definition of a function in terms of a pair of columns, 
then we see that the first and third columns above determine a new function. 
This new function, derived from the original function f, will be denoted by 
I' and called the derivative of f. From the third line of the table above, we 
see that the rule determining I' is simply the "doubling" rule, sending x 
to 2x. That is, we see that 

if f(x) = x 2 , then f'(x) = 2x. (7) 

Or, in words, the derivative of the squaring function is the doubling function. 

EXAMPLE 4. Find the slope of the tangent line to the curve y = x2 at the 
point ( -1,1). 

Now there is no need to go back to Fermat's method, because the derivative 
gives us the general slope-predicting rule. All that is asked here is that the 
question mark in the preceding table be filled in appropriately, and that is 
now easy. The ans wer is 1'( -1), wh ich is equal to - 2, since I' is the doubling 
function. D 

EXAMPLE 5. Find the slope of the tangent line to the curve y = x2 at the 
point (4, 16). 

The ans wer is 1'(4), which is equal to 8. D 
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The function J sends X into y. What does the function f' do? It is con­
venient to let y' stand for the long phrase "Slope of the tangent line at (x, y)". 
Then the function f' stands x into y'. Thus, equation (7) says exactly the 
same thing as 

if y = x2 , then y' = 2x. 

EXERCISES 

5.1. Fill in the missing steps in Example 3. 

5.2. Find the slope of the tangent line to the curve y = x 2 at the point (3,9) 
(a) by using Fermat's method, going through all the steps to find the limit of 

((3 + W - 9)/h as h approaches O. 
(b) by using the shortcut method of Example 5, knowing that the derivative of 

the squaring function is the doubling function. 

5.3. What does statement (5) of Section 4 say in terms of y'? Answer: It says, "Given 
y =x2 , then y' is -4 when x is -2." 

5.4. What does statement (3) of Section 4 say about y'? 

5.5. Wh at does the answer to exercise 4.5 say about y'? Answer: It says, "Given 
y = x 2 + 3x. then y' is 5 when x is 1 (assuming there is a tangent line)." 

5.6. What does the ans wer to exercise 4.6 say about y'? 

§6. The Interplay between a Function 
and Its Derivative 

The derivative f' is useful for many reasons. One reason (we shall see others 
later) is that f' gives information about the behavior of the original function 
J. To illustrate this, let us continue to study the squaring function J, whose 
derivative, we have seen, is the doubling function. 

First, note that f' is just as "good" a function as f. The equation y' = f'(x) 
determines a curve too! In this case the rule for f' is the linear expression 

2x, 

which we should recognize immediately to be pictured as a line of slope 2, 
passing through the origin (0,0) in the x-y' plane. 

2 
X x 2 2x 
n n 2 2n 
s S2 2s 
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To see the interplay between fand 1', it is convenient to picture the 
curve l' on aseparate co ordinate system (the x-y' plane) and to compare 
it with the curve f in the x-y plane. 

y 

(-2,4) (2,4) 

x 

- f falling -y-f rising­
horizontal tangent line 

y' 

x 

--[' < 0----1'1--[' > 0-

(-2,4) 

At a point where the curve f is falling, the tangent line must have a 
negative slope. Hence, if fis falling at the point (c,f(c)), then 1'(c) must be 
negative. Similarly, when f is rising, then l' must be positive. And when the 
curve f has a horizontal tangent line, then l' must be zero. 

EXERCISES 

6.1. Find both coordinates of a point on the curve y = x 2 where the slope ofthe tangent 
hne is 3. Allswer: We are required to fill in the question marks correctly in the 
following table: 

When y' = 3, we have 2x = 3; so x = l When x = t y = (t)2 =~. Therefore, the 
slope of the tangent hne is 3 at the point (t, ~). 

6.2. Find both coordinates of a point on the curve y = x 2 where the slope of the tangent 
line is 
(a) -2. 
(b) O. 
(c) 10. 
(d) 5. 

6.3. Suppose the slope of the tangent hne to a curve is -1 at a certain point. Is the 
curve rising or falling as it passes through that point? 

6.4. Find an equation ofthe tangent li ne to the curve y = x2 at the point (3,9). Answer: 
When x is 3, y' is 6; so the slope of the tangent line is 6. An equation of the hne of 
slope 6 through (3,9) is y - 9 = 6(x - 3). 



64 3 Sherlock Holmes Meets Pierre de Fermat 

6.5. Find an equation of the tangent line to the curve y = x2 at the point 
(a) (1,1). 
(b) (-1,1). 
(c) (11:,11:2). 

Answer: (c) y - 11:2 = 211:(x - 11:) .. 

§7. Solving Optimization Problems 
with Derivatives 

Compare the equation y = x 2 with the equation A = S2. Both equations 
determine the same function. Why? Because both equations define exactly 
the same rule, the squaring ruZe. The curve in the x-y plane of the equation 
y = x 2 is identical with the curve in the s-A plane of the equation A = S2. 

Since the derivative of the squaring function is the doubling function, it is 
clear that 

if A = S2, then A' = 2s. (8) 

By the same token, we know, for example, that 

if y = L 2, then y' = 2L. 

Changing only the names of the variables doesn't alter the function, or its 
derivative, at all. 

Let us find another quadratic function to play with. In Example 2 of 
Chapter 1 we encountered the personable function 9 given by the quadratic 
rule 

What is the rule for g', the derivative of g? 

400 
700 

s 

160,000 
175,000 

-ts2 + 600s ? 

Can you guess the rule for g', before we work it out below? There is 
nothing wrong with guessing. Consider the facts. Statement (8) teIls us that 
from the expression S2 in the second column we derive the expression 2s 
in the third column. On the basis ofthis, what would you guess to be derived 
from the expression -ts2 ? As for the expression 600s, that is easy. This is 
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just a linear expression of slope 600, leading one to expect that from the 
expression 6005 in the second column we would derive the expression 600 
in the third. From these facts, what would you guess: 

52 
If g(5) = -2 + 6005, then g'(5) = ? 

To verify your guess, go back to the definition of the derived function. 
By definition, g'(5) is the slope of the tangent line to the curve 9 at the point 
(5, g(5)). Using Fermat's method to calculate that slope, we have 

'() L' 't g(5 + h) - g(5) 9 5 = Iml h 
h-+°ll 

· . -!(5 + h)2 + 600(5 + h) - (_!52 + 6005) 
= LImIt h 

h~O 

· . _!52 - 5h - th 2 + 6005 + 600h + !52 - 6005 
= LImIt h 

h~O 

· . -5h - !h 2 + 600h 
= LImIt h 

h~O 

= Limit (-5 -~ + 600) 
h~O 2 

= -5 + 600. 

Thus we see that g'(5) = - 5 + 600. In other words, 

52 
if A = -2 + 6005, then A' = -5 + 600. 

s 

? 
s 

A 

? 
-ts2 + 600s 

A' 

o 
-s + 600 

We now have enough information to determine the highest point (?, ?) 
on the curve g, for this point must occur where the slope of the tangent is 
zero. This is easy, for A' = 0 when 

-5 + 600 = 0, 

5 = 600. 

Thus, at the point (600,180,000), the curve 9 has a horizontal tangent line. 
How do we know this is the highe5t point? Look at the derivative. The 
curve A' = - 5 + 600 is a linear curve of slope -1, and A' is 0 when 5 is 
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600. The derivative looks like this: 

-g'>O g'<O-

Therefore the curve 9 must be rising to the left of 600 and falling to the 
right of 600. This means that, at 5 = 600, the maximal A is attained. 

--g risingr-g falling­

horizontal tangent at 600 

The optimization problem arising in Example 2, Chapter 1, is now solved. 
The maximal area is 180,000 square feet, attained when the length 5 along 
the barn is 600 feet: 

Maximal area 
in Example 2, 
Chapter I 300 

600 

Side ofbarn 

Let us attack a problem similar to the one just disposed of: to show how 
easy an optimization problem can become when calculus is applied. 

EXAMPLE 6. A farmer has 300 meters of fencing to enclose three sides of a 
rectangular area. The fourth side is bounded by a long barn and requires 
no fence. What is the largest area she can enclose? 

We want to maximize the area A, which varies in terms of the length 5 

along the barn. Letting G denote the function that arises, we have 

A = G(5) = area (in square meters) of 

52 
= 1505 --

2' 

s 

300 - 5 

2 

where the domain is specified by the inequality 0 < 5 < 300. 
To solve this optimization problem, we must find the highest point (?, ?) 

on the curve G, which gives the area A as a function of 5. Toward this end, 
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we take the derivative: 

S2 
If A = 150s - 2' then A'= 150 - s (why?). 

Thus A' is 0 when s is 150, and we have found the point on the curve G 
where the tangent line is horizontal: 

150 
s 

11,250 
150s - h 2 

A' 

o 
150 - s 

In alllikelihood, the point (150, 11,250) is the highest point on the curve 
G. To prave that it is, look at the sign of the derivative on either side of 150. 
The derivative G' is given by the linear rule 150 - s, and thus looks like this: 

-G' > O-+--G' < 0---

Therefore, the curve G must be rising to the left of 150 and falling to the right. 
This shows that, at s = 150, G attains its maximum. 

/"'\G 

• -G rising-----G falling-­

maxG at 150 

The maximal area is 11,250 square meters. 

EXERCISES 

o 

7.1. The derivative of the squaring function is the doubling function. The slope of 
the line bx + cis b. Use these facts and try your hand at guessing answers to the 
following: 
(a) If y = x 2 + 3x, wh at is y'? 
(b) If y = S2 - 57s, wh at is y'? 
(c) If A = 4s2 + 60s, what is A'? 
(d) If y = 5x2 + 13x - 7, wh at is y'? 
(e) If y = ax 2 + bx + c, wh at is y'? 

7.2. In each of(a) through (e) of exercise 7.1, use Fermat's method to verify the correct­
ness of your guess. Answer: (a) Given y = f(x) = x2 + 3x, by Fermat's method 
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, J'() L· . J(x + h) - J(x) y = x = lImt -----:--'---
h-O h 

. . (x + h)2 + 3(x + h) - (x2 + 3x) 
= LlImt -----'-------

h-O h 

L . . 2xh + h2 + 3h 
= 1ID1t -----

h 

= Limit (2x + h + 3) 
h-O 

= 2x + 3. 

7.3. In each of (a) through (e) of exercise 7.1, find both coordinates of the point on the 
quadratic where the tangent line is horizontal. Answer: (a) At the point (- 3/2, 
-9/4), y' is zero. 

7.4. Find both coordinates of the highest point on the curve A = 1200w - 2w2, with 
domain 0 < w < 600. (This is the function which arose in problem 3 at the end of 
Chapter 1.) 

7.5. A farmer has 4000 feet of fencing to enclose three sides of a rectangular area (the 
fourth side being bounded by a long fence already standing). Find the largest area 
that can be enclosed, and specify the dimensions that should be used to attain 
maximal area. 

7.6. A farmer has 4000 feet of fencing to enclose Jour sides of a rectangular area. What 
dimensions should be used to maximize the area enclosed? 

7.7. By working through the following steps in turn, find a pair oJ positive numbers 
whose sum is 10 and whose product is as large as possible. 
(a) We want to maximize their product. Let P denote their product. What is P if 

the first number is 2? (First find the second number, using the fact that the 
sum of the two numbers must be 10.) 

(b) What is P ifthe first number is n? 
(c) What is P ifthe first number is x? 
(d) Your answer to (c) yields a quadratic rule giving P as a function of x. What is P'? 
(e) What is the domain of the function you found in part (c)? (Remember that 

both numbers must be positive.) 
(f) Find both coordinates of the highest point on the graph of the quadratic 

function of part (c). 
(g) Answer the question ofproblem 7.7 with a complete sentence. 

7.8. Express the number 10 as the sum oftwo positive numbers in such a way that the 
sum of the square of the first and three times the second is as small as possible. 
Hini. This is similar to exercise 7.7. 

7.9. Work through the following steps in turn, in order to answer the question at the 
end. 
(a) In the x-y plane, draw the line y = 3x + 2. Also indicate the position of the 

point (4,0). 
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(b) Find the square of the distance between the point (4,0) and the point on the 
line y = 3x + 2 whose first coordinate is TC. (First find the second co ordinate, 
then find the square of the distance by the Pythagorean theorem.) 

(c) Find the square of the distance between the point (4,0) and the point on the 
line y = 3x + 2 whose first co ordinate is x. Answer: 10x2 + 4x + 20. 

(d) The rule written down in the answer to part (c) is a quadratic function. Find 
the value of x that yields the minimum of this function. 

(e) Find both coordinates of the point on the line y = 3x + 2 that is dosest to the 
point (4,0). Answer: (-1/5,7/5). 

7.10. Find both coordinates of the point on the line y = 5 - 2x that is dosest to the 
point (0,0). 

§8. Definition of the Derivative 

Calculus relies greatly upon derivatives. We therefore seek rules enabling 
us to write down quickly the derivative of any function we might meet. We 
have already found such a rule for writing down the derivative of any 
quadratic function: 

If y = ax 2 + bx + c, then y' = 2ax + b. 

(Another way of expressing the same thing is, "If f(x) = ax2 + bx + c, then 
f'(x) = 2ax + b.") By virtue ofthis simple rule, there is no need to go through 
all the details ofFermat's method in order to find the derivative ofa quadratic. 
In the next chapter, however, we shall meet more complicated algebraic 
functions, such as are given by the rules l/x (the reciprocal function), x3 

(the cubing function), JX (the square root function), etc. To find their deriva­
tives, we must be c1ear about the definition of the derivative. 

If f is any function, the rule defining its derivative f' is given below. The 
derivative is defined so that, at a point x, the derivative f' gives the slope 
ofthe tangent line to the curve f at the point (x,f(x)). Since Fermat's method 
gives this slope, we have the following definition. 

Definition. Given a function f, and a point x in its domain, the derivative f' 
is defined by the rule 

f '( ) - L' . f(x + h) - f(x) 
x - Imlt h . 

h~O 

Note that the definition ofthe derivative incorporates all three basic notions : 
variable, function, limit. 

To calculate f' directly from this definition is sometimes tedious, req uiring 
severallines of computation. However, as in Section 7, it is possible to guess 
and to verify shortcut rules of finding derivatives. This will be the business 



70 3 Sherlock Holmes Meets Pierre de Fermat 

of Chapter 4. To understand that chapter, it is necessary to understand the 
preceding definition and to recognize a derivative when it is staring you 
in the face. That is the point of the following exercises. 

EXERCISES 

8.1. Consider each of the expressions below, and show that you recognize it as a 
derivative. 

( ) L . 'tJ(n + h) - J(n) 
a Iml . 

h-O h 

(b) Limit (ljh)(f(x + h) - J(x)). 
h-O 

(c) Limit (ljh)(g(1 + h) - g(l)). 
h-O 

(d) Limit (ljh)(F(s + h) - F(s)). 
h-O 

Partial answer: The expression (a) is equal to f'(n), and (d) is equal to F(s). 

8.2. Let J(x) = x 3, F(x) = JX, g(x) = Ijx. Which of the following is equal to f'(x)? 
to F(x)? to g'(x)? 

Limit Limit - -- - -.. Ix + h - JX .. 1 (1 1) 
h-O h ' h-O h x + h x' 

8.3. (For more ambitious students) Evaluate each of the limits in exercise 8.2. (Answers 
may be found in Chapter 4.) 

8.4. (For more ambitious students) Consider the function J given by J(L) = 7L + (48jL). 
(a) What is J(L + h)? 
(b) Simplify the expression J(L + h) - J(L), as much as possible, by combining 

fractions with the use of a common denominator. 
(c) Divide your answer to (b) by h, where h #- O. Answer: 7 - (48jL(L + h)). 
(d) Find f'(L), by taking the limit of your answer to (c), as h tends to O. 
(e) Solve Example 1 of Chapter 1. 

§9. Classifying Quadratics: the Quadratic Formula 

The reader has probably heard of the quadratic formula, which is the answer 
to question (9) below. This formula was known long before calculus was 
developed, but our study in this chapter of the calculus of quadratics may 
cast a new light upon it. We have seen that the quadratic function given by 
f(x) = ax2 + bx + c has a horizontal tangent line at the point 

( -b, _b2 + 4ac). 
2a 4a 
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This followed, as in exercise 7.3(e), from setting the derivative f'(x) equal 
to zero and solving for x. The graph of the quadratic f might look like this: 

-bl2a 
x 

(- b2 + 4ac)f4a 
ax2 + bx + c 

y' 

o 
2ax + b 

For any quadratic f we have thus answered the question, when is f'(x) 
equal to zero? (Answer: At the "critical point" -bI2a.) We now ask a dif­
ferent question. 

? 0 
? 0 
x ax2 + bx+ c 

When is f(x) equal to zero? (9) 

The clue to answering question (9) lies in the apparent symmetry of the 
curve above. We are inclined to guess that the question has two answers, 
each lying the same distance L from the critical point - bl2a. There ought 
to be, then, some number L such that 

l-b 
2+ L, 

f(x) = 0 when x = a 
-b 
~-L. 
2a 

All that remains is to find this number L. Since f( ( - bl2a) + L) = 0, 
we have 

(-b )2 (-b ) a 2i + L + b 2i + L + c = o. (10) 

In (10), when the first term is squared out, a cancellation results (the 
reader is asked to perform the calculations), and eventually we get 

(11) 

Equation (11) bears some scrutiny. We are trying to find L, with a, b, 
and c being given. Note that the left-hand side of (11) is a square, since 
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4a2L 2 = (2aL)2, and therefore cannot be negative. If b2 - 4ac should be 
negative, then there is no number L satisfying (11). On the other hand, if 
b2 - 4ac is nonnegative, we cantake its square root to solve for L. From 
(11) there are two possible paths: 

Case I. If b2 - 4ac < 0, then there is no number L satisfying equation (11), 
and hence there is no number L satisfying (10). 

Case II. If b2 - 4ac ~ 0, then by taking square roots we get 

2aL = Jb2 - 4ac, 

L = Jb2 - 4ac. 
2a 

We now know a formula for Land we know that the answer to question 
(9) is given by x = ( - bl2a) ± L. Putting these facts together yields the 
quadratic formula in the theorem below. 

Theorem on Quadratics. T he equation 

ax2 + bx + c = 0 

has soilltions given by 

-b ± Jb 2 - 4ac 
x = -------',,-----

2a 

(a #- 0) 

(quadratic formula) 

provided that the discriminant b2 - 4ac is not negative. The equation has no 
solution if the discriminant is negative. 

For example, consider the equation 

- 16x2 - 50x + 200 = O. 

The discriminant here is (-50)2 - 4(-16)(200) = 15,300, whose square 
root is approximately 123.7. The quadratic formula says the solutions are 

x = -( - 50) ± JI5,36O ~ {-5.43. 
-32 2.30. 

o 

As another example, consider the equation 

- 16x2 + 50x - 200 = O. 

The discriminant here is (50)2 - 4( -16)( - 200) = -10,300, which is nega­
tive, showing that the equation has no solutions. 0 

If the discriminant is equal to zero then the "two" solutions meld into 
one. In this case, L is zero, making the critical point - bl2a into a "double 
root" of thequadratic equation. This happens in the equation 

x 2 - 4x + 4 = 0, 
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where the discriminant is (_4)2 - 4(1)(4) = 0, and the quadratic formula 
yields 

-(-4)±0 
x= =2 

2 
as the only solution. o 

There is nothing mysterious going on here. A little reflection shows that 
any quadratic function falls into one of the following six classifications. 

Positive Zero 
discriminant discriminant 

Y- V a>O 

-bl2a 

-n -bl2a 

---r:: a<O 

Two roots One "double" root 

EXERCISES 

9.1. Solve the equation x2 - 4x + 4 = 0 by factoring. 

9.2. Solve the equation x2 - x - 6 = 0 
(a) by the quadratic formula. 

Negative 
discriminant 

V 
• 

-bl2a 

-bl2a 
• 

1\ 
No root 

(b) by factoring x2 - x - 6 into the product of x + 2 and x - 3. 

9.3. Solve the equation x2 - x - 4 = O. 

9.4. Factor the quadratic x 2 - x - 4 into the product oftwo linear expressions. Answer: 
x2 - x - 4 = (x - ±o + JU))(x - t(l - JU)). 

9.5. Solve the equation x 2 - 6x + 13 = O. 

9.6. Show all the steps of an algebraic derivation of equation (11), beginning with 
equation (10). 

9.7. For each of the six categories of quadratics pictured above, give an example. 

9.8. Consider onee again Example 1 of Chapter 1. Show that it is impossible to build 
the fence described there for a cast C of $35. H int. If C = 35, then 7 L + (48/ L) = 35, 
so upon multiplying through by L we get 

7L2 + 48 = 35L, 

7 L 2 - 35L + 48 = O. 
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Use the theorem on quadratics to show that, no matter what the length L of the 
front fence is, this equation cannot be satisfied. 

9.9. What is the least positive value of C for which the equation 7 L 2 - CL + 48 = 0 
has a solution? 

§ 1 0 Three Frenchmen 

The inftuence of France was increasingly feIt throughout Europe in the 
seventeenth century. This inftuence was particularly strong in mathematics. 
France nurtured no fewer than three mathematical minds of the first rank, 
in addition to many lesser lights. 

Blaise Pascal (1623-1662), who at the age of eighteen invented the first 
calculating machine, might have bcen unsurpassed as a mathematician, had 
his other great talents not drawn hirn elsewhere. Even so, he helped give 
birth to projective geometry and to the theory of probability, and he came 
very dose to discovering the fundamental theorem of calculus (to be dis­
cussed in Chapter 6). In fact, Leibniz hit upon the fundamental theorem 
while reading a mathematics paper by Pascal. 

Little need be said here of Rene Descartes (1596-1650), for halfthe world 
already knows his name. We have noted earlier that he developed analytic 
geometry and made it widely known through his writings. Without analytic 
geometry the step up to the calculus would be formidable indeed. Isaac 
Newton was to say, "If I have seen further than Descartes, it is by standing 
on the shoulders of giants." One of those giants was, of course, Descartes 
hirnself. 

Another giant was Pierre de Fermat (1601-1665). Fermat occupies a 
special pI ace in the hearts of those who love mathematics. His appeal is 
that of the amateur who can outdo the professionals. Fermat developed 
analytic geometry in 1629, but did not publicize the fact, and Descartes got 
all the credit with a paper published in 1637. In correspondence with Pascal, 
Fermat was an equal partner in creating the theory of probability. He 
corrected mistakes that Descartes and Pascal made, in fields where they 
were acknowledged as masters, and was rarely hirnself in error. Fermat's 
real love was the theory of numbers, which was revolutionized by his 
accomplishments. 

Unlike Descartes and Pascal, Fermat was restrained in expressing him­
self, and his work is known mainly through his letters and through the notes 
he was accustomed to make in the margins of books. The "true inventor 
of differential calculus" was this quiet man of Toulouse. 

Problem Set for Chapter 3 

1. Use Fermat's method (not a shortcut rule) to show that the derivative of x2 - 6x + 
13 is given by 2x - 6. 



Problem Set für Chapter 3 

2. Consider the function defined by 1(x) = x2 - 6x + 13. 
(a) Fill in the question marks in the following table . 

.;1", 
y' x y 

° ? ? 
? ? -4 
5 ? ? 
n ? ? 
? ? ° 

75 

(b) Use the first line of the table to find the slope of the tangent line to the curve 1 
at the point (0,13). 

(c) Is the curve 1 rising or 1alling as it passes through the point (0, 13)? 
(d) Write an equation of the tangent line to the curve 1 at the point (0, 13). 
(e) For what values of xis f'(x) positive? 
(f) For what values of xis the curve 1 rising? 
(g) For what values of xis the curve 1 falling? 
(h) Find both coordinates of the point where the tangent line to the curve 1 is 

horizontal. 
(i) Sketch the curve 1 in the x-y plane, making sure your sketch is in accordance 

with your answers to the preceding three questions. 
(j) If the domain of f is taken to be all values of x satisfying the inequality ° :-:; 

x :-:; 5, what is the range? 
(k) What is the range of f if the domain is given by the inequality ° < x < 5? 
(I) Wh at is the range if the domain is ° :-:; x < 2? 
(m) What is the range if the domain is unrestricted? 

3. Consider the function defined by f(x) = 2x2 - 6x. 
(a) What is the slope of the tangent line to the curve f at the point (O,O)? 
(b) Is the curve f rising or falling at (O,O)? 
(c) For what values of xis the curve f falling? 
(d) Sketch the curve f. 
(e) What is the range of f if the domain is ° :-:; x :-:; 4? 
(f) What is the range of f if the domain is ° < x < 1 ? 
(g) Wh at is the range of f if the domain is unrestricted? 

4. Consider the function defined by f(x) = 8 - x2 + 3x. 
(a) What is the range if the domain is ° :-:; x < 2? 
(b) What is the range if the domain is - 2 < x < O? 

5. Consider the function defined by f(x) = 8 - 3x. 
(a) What is the range if the domain is ° :-:; x :-:; 3? 
(b) What is the range if the domain is - 2 < x < 5? 

6. Find both coordinates of the point on the line y = 2x - 3 that is dosest to (0,0). 

7. Find both coordinates of the point on the line y = 6 - x that is dosest to ( - 2, - 4). 
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8. Express the number 20 as the sum of two numbers in such a way that the sum of the 
second and the square of the first is as small as possible. 

9. ANorman window is in the shape ofa rectangle surmounted by a semicircIe. If the 
perimeter of the window is 16 feet, find the dimensions which allow the most light 
to pass through the window. 

10. Although the point (2, -1) is not on the quadratic y = x2 - 2x + 3, there are two 
tangent lines to this quadratic that pass through this point. Find an equation of 
either one of these lines. 

11. A wire 500 centimeters long is cut in two. The first part is bent into the circumference 
of a circIe, and the second is bent into the perimeter of a square. How should the 
wire be cut in order that the combined areas ofthe circIe and the square be as small as 
possible? 

12. Use Fermat's method to show that if f(x) = 7x - 9, then f'(x) = 7. 

13. Use Fermat's method to show that if f(x) = 7, then f'(x) = O. 

14. Consider the quadratic function given by f(x) = x 2 + 2x + 7. When x = 0, then 
f(x) = 7. What is f'(x) when x = O? Does your answer contradict the result of 
problem 13? Explain. 

15. Reread problem 16 in the problem set at the end of Chapter 1. Find the maximal 
area that can be encIosed. 

16. Carry out the following steps in order to accomplish the last step. 
(a) The points (1,1) and (1 + h, (1 + h)3) lie on the curve y = x3. Find the slope of 

the line joining these points (assuming, of course, that h #- 0). 
(b) Simplify your answer to part (a) by using the fact that (1 + W = 1 + 3h + 

3h2 + h3• 

(I + h,(1 +W) 

(c) Take the limit, as h ..... 0, ofyour answer to part (b), and thus show that the slope 
of the tangent line to the curve y = x 3 at (1, 1) is 3. 

17. (This problem is supposed to show why the "Sherlock Holmes method" of finding 
tangent lines will not always work. Actually, Descartes proposed a c/osely related 
method, but it had to be discarded in favor of F ermat' s approach.) The Sherlock Holmes 
method of finding tangents rests upon the belief that a line joining two points on a 
curve cannot be tangent to the curve. (This happens to be true for quadratic curves.) 
(a) Using the result ofproblem 16(c), write an equation of the tangent line at (1,1) to 

the curve y = x 3• 

(b) Does the point ( - 2, - 8) lie on the line of part (a)? 
(c) Does the point (- 2, - 8) Iie on the curve y = x 3 • 
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(d) If the Sherlock Holmes method were applied to the curve y = x 3 at the point 
(1,1), would it work? 

18. Consider each of the folIowing functions, and match it with its derivative. [The 
derivative of the function pictured in (a), for example, is pictured in (d).] 

(a) 

(d) 

(g) 

(j) 

(b) 

(e) 

(h) 

(k) 

(c) 

(f) 

(i) 

[The curve in (k) 
coincides with the 
horizontal axis.] 



4 Optimistic Steps 

What is calculus? It is the study of the interplay between a function and its 
derivative. There are quite a few aspects to this interplay, some of which 
may be surprising. In this chapter we shall learn more about the use of 
derivatives in solving optimization problems. To do this efficiently, the 
major part of the chapter is concentrated upon the development of shortcut 
rules for finding derivatives. 

§ 1. The Derivative of the Reciprocal Function 

If f is a function, then f'(x) is defined as the limit of the difference quotient 

f(x + h) - f(x) 
h 

(1) 

as h tends to zero. (Do you see why expression (1) is a quotient of differences?) 
In order to find this limit, it is often necessary to use a little algebra to write 
the difference quotient in a simple way. 

Before proceeding, let us review very briefly the algebra of simplifying 
fractions by combining them with the use of a common denominator. For 
instance, 

78 

1 4 5 
5 4 5·4 5·4 

4-5 
5·4 

-1 

20' 
1 re re+2 re-(re+2) -2 

----

re + 2 re (re + 2)re (re + 2)re (re + 2)re (re + 2) re ' 



1. The Derivative of the Reciprocal Function 

and, by the same token, 

1 1 x 
x + h x (x + h)x 

x+h 

(x + h)x 

x - (x + h) 

(x + h)x 

-h 
(x + h)x· 
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(2) 

Whenever the rule for f involves division, the difference quotient (1) is 
often filled with fractions that need to be combined by using a common 
denominator. 

EXAMPLE 1. Find f'(x), if f(x) = 1/x. 
Here, the algebraic rule 1/x involves division (and, of course, is undefined 

when x is 0). Let us first use a common denominator to simplify the expression 

f(x + h) - f(x) 

be fore dividing by hand taking the limit. Since f(x) = I/x and f(x + h) = 
1/(x + h), equation (2) shows that 

-h 
f(x + h) - f(x) = (x + h)x 

Dividing by nonzero h yields 

f(x + h) - f(x) - 1 
h (x+h)x· 

Using this simplified expression für the difference quotient makes it 
easy to take the limit: 

f '() L· . f(x + h) - f(x) 
x = Imü h 

h-O 

L.. -1 
= Imlt--­

h-O (x + h)x 
-1 

(x + O)x 

-1 
Xl . 

The derivative of I/x is therefore - I/xl. The expression I/x is called the 
reciprocal of x. We now know the derivative of the reciprocal function. 

L 
I 

f(x) = x 
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The domain of f does not include O. Note that f' is always negative (because 
the curve f is always falling). 

EXERqSES 

-1 
j'(x)=xr 

1.1. If J(t) = 1/t, wh at is f'(t)? Answer: f'(t) = -1/t2 , because J is simply the reciprocal 
function. Remember that changing only the name oJ the variable does not alter the 
Junction. 

1.2. If J(L) = 1/L, what is f'(L)? 

1.3. If A = 1/s, what is A'? 

1.4. In each of the following, first make a guess as to the expression giving the derivative. 
Then verify your guess by Fermat's method. 
(a) y = 48/L. 
(b) C=7L+(48/L). 
(c) y = 5/(x - 7). 
(d) y = 5/(7 - x). 

1.5. Consider the function given by J(x) = 1/(nx + 7). Carry out the following steps to 
find f'(x). 
(a) Simplify the expression J(x + h) - J(x) by using a common denominator. 
(b) Divide your answer to (a) by nonzero h. 
(c) Find the limit, as h tends to zero, of your answer to (b). Answer: f'(x) = 

-n/(nx + 7)2. 

1.6. Suppose J(x) = 1/g(x), where g is some given function. [For instance, exercise 1.5 
dealt with the case where g(x) = nx + 7.] Since J is expressed in terms of g, the 
difference quotient of J can be expressed in terms of g as weil. Show that the differ­
ence quotient of J can be expressed by 

J(x + h) - J(x) 
h 

H int. Begin by writing 

-1 g(x + h) - g(x) 
g(x + h)g(x) h 

1 1 
J(x + h) - J(x) = ----, 

g(x + h) g(x) 

and combine the fractions on the right. Then divide by h. 
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Now that we know the derivative of I/x, it is natural to ask about the deriva­
tives of similar expressions involving reciprocals. For example, what is the 
derivative of l/x2? Or of 1/(x2 + 2x)? Or, more generally, wh at is the deriva­
tive of l/g(x), where 9 is some given function? 

To answer this question, first recall that g'(x) is the limit, as h approaches 
zero, of the difference quotient 

g(x + h) - g(x) 
h 

(3) 

In order that the quotient (3) tend tü a limit, the numerator ofthe quotient 
must tend to ° as h tends to 0. Reason: The denominator h tends to 0; if 
the numerator did not, then the quotient would "blow up" as h approached 
0, and consequently the limit would not exist. 

When the numerator in (3) tends to 0, we have 

Limit g(x + h) = g(x). (4) 
h-+O 

This fact will be useful in just a moment. 
We can now answer the question raised at the beginning ofthis section: 

What is the derivative of l/g(x)? The derivative of a function is the limit 
of its difference quotient. The difference quotient of l/g(x) is simplified in 
exercise 1.6, showing that the derivative of l/g(x) is equal to 

L.. -1 g(x + h) - g(x) -1 '() 
hl~lt g(x + h)g(x) . h g(x)g(x) 9 x, 

where (4) has been used (how?) in evaluating this limit. We have just proved 
the following rule to be valid. 

General Rule for Reciprocals. The derivative of l/g(x) is 

-1 
(g(x) )2 g'(x) 

if the function 9 has a derivative. 

If we suppress writing the variable, this rule can be expressed in a very 
compact way. It says 

(~)' = -=-!. g' 9 g2· (5) 

For example, what is the derivative of 1/(4 - 3x)? By (5), 

( 1)' -1 3 
4 - 3x (4 - 3X)2(4 - 3x)' = (4 - 3X)2' 

since (4 - 3x)' = - 3. D 
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For another example, what is the derivative of 1/(nx + 7)? By (5), 

-1 -n 
(nx + 7f(nx + 7)' = (nx + 7)2' 

which agrees with the ans wer to exercise 1.5. o 

A rule that is much easier to prove involves multiplication by constants. 
We have essentially guessed this rule already, in Chapter 3, when we guessed 
that the derivative of ts2 ought to be one-half the derivative of S2: 

e;)' = ~(S2)' 
1 

= 2(2s) = s. 

It takes little imagination to guess that there ought to be a general rule 
involving multiplication by constants, like t. 

Rule for Constant Multiples. The derivative of c . g(x) is c· g'(x) if c is a 
constant and the function g has a derivative. 

For example, what is the derivative of lOO/(nx + 7)? By the rule for con­
stant multiplies, 

(~)' -100( 1 )' 
nx + 7 nx + 7 

-lOOn 

(nx + 7)2' 

where the second equality comes from the general reciprocal rule. 0 

The reader is asked to prove the rule for constant multiples, in a problem 
at the end of this chapter. 

EXERCISES 

2.1. Find y' if y = 1/(7 - x). 

Answer: y' = (1/(7 - x))' = 1/(7 - X)2. 

2.2. Use the general rule for reciprocals to find the derivatives ofthe following functions: 
(a) j(x) = 1/x2. 
(b) g(x) = 1/(x2 + 2x). 
(c) F(x) = 1/(6 - 3x). 

(d) G(x) = 1/(2x2 - 3x + 4). 
Answer: (b) g'(x) = (- 2x - 2)/(x2 + 2X)2. 

2.3. Apply the general rule for reciprocals to find the derivative of l/x. Does your 
answeragree with the answer obtained in Section 1, where Fermat's method was 
used? 
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2.4. Find y' if y = l/t2 • Answer: y' = -2/t3• 

2.5. Find C' if C = 1/(L 2 + 4). 
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2.6. Use the general rule for reciprocals, together with the rule for constant multiples, 
to find the derivatives of the following functions, expressed as algebraic rules: 
(a) 5/x2 . (b) 14/(x2 + 2x). 
(c) n/(6 - 3x). (d) l00/(2x2 - 3x + 4). 
(e) 5/(4 - 3s). (f) 48/L. 
(g) -1/t2 . (h) 6/(n - lI). 

§3. The Surn Rule and the Second Derivative 

There is an easy rule involving the sum oftwo functions. We have essentially 
guessed this rule al ready, in Chapter 3, when we guessed that the derivative 
ofax2 + bx + e ought to be equal to the sum of the derivatives of ax2 and 
of bx + e: 

(ax 2 + bx + e)' = (ax 2 )' + (bx + e)' 

= 2ax + b. 

One would surely suspect that this is a special case of a general rule. 

Rule for Sums. The derivative of f(x) + g(x) is equal to 1'(x) + g'(x) if the 
funetions fand 9 have derivatives. 

This rule is true, but its proof is left to the reader as a problem at the end 
of this chapter (problem 37). 

One often has to use several rules at once. 

EXAMPLE 2. Find the derivative ofthe function given by the algebraic expres­
sion 6x2 + (17/(x 2 + 3x)). 

Here we have a sum, and the sum rule says (f + g)' = l' + g'. Therefore, 

( 17)' ( 17 )' 6x2 + 2 3 = (6x2 )' + 2 (by sum rule) 
x + x x + 3x 

_ 6(x2 )' + 17 ( 1 )' (by rule for 
- x2 + 3x constant multiples) 

-1 
= 6(2x) + 17 2 )2 (2x + 3), 

(x + 3x 

by the rule for quadratics, together with the reciprocal rule. The answer 
may be simplified, ifdesired, to 12x - ((34x + 51)/(x2 + 3X)2). 0 
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The calculation in Example 2 required several steps. The reader will 
find that, with practice, it is easy to combine these steps into one: 

The derivative of 5x2 + (6/(x2 - 2)) is 5(2x) + 6( -1/(x2 - 2)2)(2x). 
The derivative of 7L +(48/L) is 7 + 48(-1/L2)(1). 
The derivative of (lO/x) - (45/x 2 ) - 5x2 + X - 1t is 1O( -1/x2 )(1) -

45( -1/x4 )(2x) - 5(2x) + 1. D 

Having taken one derivative, we have nothing preventing us from taking 
a second derivative. The second derivative (the derivative of !') is denoted 
by j". We now have y = f(x), y' = f'(x), and y" = j"(x). 

EXAMPLE 3. Find the first and second derivatives of the function given by 

3 
f(x) = 2x2 + - - 4. 

x 

Here, the first derivative is given by 

f'(x) = (2x 2 + ~ - 4)' 
x 

3 
=4x- z ' 

x 

and the second derivative is given by 

j"(x) = (4X - ~2)' 
-1 

= 4 - 37 (2x) 

6 
=4+3". 

x 
D 

A function is given by a pair of columns, and its derivative adds a third 
column to consider. The second derivative gives us still another column to 
play with. For example, in the function f above, if we let x equal 1, we get 

The first two columns tell us that the curve f goes through the point 
P = (1,1). The third column teIls us that the tangent at P has a positive 
slope, so the curve f is rising as it goes through P. What does the fourth 
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column tell us? As we shall see in the next seetion, the positive second 
derivative tells us that the curve f, as it passes through P, looks rather like 
a smile. 

EXERCISES 

3.1. For the function j of Example 3, fill in the question marks appropriately. 

x y y' y" 

2 ? ? ? 
-1 ? ? ? 

1 ? ? ? 2 

3.2. Find the second derivative of each of the following functions. 
(a) j(x) = 2x2 + 3x - 5. 
(b) g(x) = - 3x2 + 4x - ,fi. Answer: g"(x) = - 6. 
(c) j(L) = 7L + (48/L). 
(d) g(s) = 600s - ts2 • 

(e) G(t) = t2 - 6t + (5/(t - 3)). Answer: G"(t) = 2 + «(lOt - 30)/(t2 - 6t + W). 
(f) F(x) = (10/x) - 5x2 + X - 7r. 

§4. The Second Derivative and Concavity 

The second derivative fU gives the same sott of information about f' as the 
first derivative f' gives about f. Indirectly, then, the second derivative says 
something about the behavior of the original function f. Let us try to find 
out exactly what f" tells about f. 

First we must agree on some terminology to describe how a curve is 
"curving". There are several terms in use for this (the phrases concave up­
wards and concave downwards are common descriptions), but they do not 
seem to be immediately suggestive of what they are intended to describe. 
To remedy this, let us depart from common terminology and make up our 
own way of describing how a curve curves. 

We have al ready agreed, on the first page of Chapter 3, to think of a curve 
as being traced out from left to right. Ifwe thought ofthe curve as describing 
a road on a road map, then the pencil point tracing out the curve moves in 
a generally eastward direction. Pretend that you, on your motorcycle, have 
been shrunk to the size of that pencil point tracing out the curve. As you 
journey eastward, there is a simple way you can describe how the road is 
curving. All that need be said is whether you are leaning to your Zeft or to 
your right, in order to keep your motorcycle on the road. 
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The functions fand 9 below curve in opposite directions. Note that their 
second derivatives f" and g" have opposite signs. 

~~} 
(0,0) 

j(x) = x 2 , 

j"(x) = 2 

(0,4) n, 
g(x) = 4 - x 2 , 

g"(x) = -2 

In the case of the curve y = x 2, you must always lean to your Zeft to stay 
on the curve; you lean always to your right to stay on the curve y = 4 - x 2 • 

The first curve has a positive second derivative; the second curve has a 
negative second derivative. These are simple examples, in that the second 
derivative is constant in both, whereas we shall see that generally the second 
derivative will change sign when the "road" starts to curve the other way. 
Nevertheless, these examples give us a due to the truth: When f" is positive, 
the curve f is bending to the Zeft; when f" is negative, the curve f is bending 
to the right. 

Why should it be this way? Focus attention on a particular point P 
lying on a curve f. Then P = (c, f(c)) for some number c. A litde reflection 
shows that 

then the curve f is bending to 
if 1"(c) < 0, the right as it passes through 

the point P = (c,j(c)). (6) 

To see this, all one needs to recall is that when the derivative of a function 
is negative, then the values of the function are decreasing (because its curve 
is falling). Keeping this in mind, and remembering that 1" is the derivative 
of 1', one can see the plausibility of statement (6), as follows. Suppose 
1"(c) < 0. Then the values of l' are decreasing, i.e., the slopes of the tangent 
lines to the curve f are decreasing, as the curve f passes through (c,j(c)). 
But decreasing slopes of the tangent lines near this point imply that the 
curve is bending to the right. Near P the curve f must look like one of the 
following if 1"(c) is negative: 

1 
(a) Rising, bending 

right 

p 

f\ 
(b) "Flat" at P, 

bending right 
(c) Falling, bending 

right 
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Similar reflection shows that, near P, the curve f must look like one of 
the following if f"(e) is positive: 

J V \ P 
(d) Rising, bending (e) "Flat" at P, (f) Falling, bending 

left bending left left 

The upshot of the preceding discussion is this. While the sign of the first 
derivative tells whether the curve is rising or falling, the sign of the seeond 
derivative teIls whether it is bending to the left or to the right. The second de­
rivative f" teIls which way the curve f is curving. 0 

When the second derivative is negative, as in the figures (a), (b), and (c) 
above, we have described the curve as "bending to the right". It is described 
as eoneave down in most books, and figures (d), (e), and (f) are described as 
eoneave up. The definition of concavity in these terms is given in a problem 
at the end of the chapter. There is little point in leaming these terms, how­
ever, if you are interested in studying calculus only for a semester or so. 
In fact, it might be better to describe (d), (e), and (f) as "smiles", and call (a), 
(b), and (c) "frowns", and just remember that a positive seeond derivative 
always draws a smile. 

Knowing both derivatives of a function at a point gives us a fairly good 
idea of what the curve looks like nearby. The word loeal (as opposed to 
global) is used in mathematics to describe this kind of information; it teIls 
us what the road looks like only in a small neighborhood of a point as we 
roar through on our motorcycle. What adventures may lie elsewhere on the 
road remain to be seen. 

EXAMPLE 4. Describe the local behavior of the curve y = x 2 + (8/x) as the 
curve passes through 

(a) (1,9). 
(b) (2,8). 
(c) (-2,0). 

It is intended that we sketch the curve locally near each of these points, 
so as to indicate whether the curve is rising or falling, "smiling" or "frowning", 
as it passes through. From the first and second derivatives 

'2 8 d y= x- 2 an 
x 

we can fill in the following table. 

16 
y"=2+ 3 , 

x 
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x y y y" 

1 9 -6 18 
2 8 2 4 

-2 0 -6 0 

It is really only the sign of y' and y" that we need. From the first line of 
the table we see that y' is negative and y" is positive. The curve is then fall­
ing and smiling as it goes through (1,9). It must resemble the curve sketched 
in figure (f) above, with P = (1,9). 

From the second line of the table, with both derivatives positive, we see 
that the curve must resemble the one of figure (d), with P = (2,8). 

The third line of the table, with y' negative, shows the curve falling as it 
passes through (- 2, 0), but how do we interpret the fact that y" is zero? 
We must look at the sign of y" for x just less than - 2 and for x just greater 
than - 2. Doing this reveals that the sign of y" switches from positive to 
negative. This means that, at the point ( - 2, 0), the curve stops ben ding left 
and starts bending right (or, if you prefer, the concavity switches from up 
to down). Such a point, where the curve stops bending one way and starts 
bending the other way, is called a point of inflection. 

All the information gleaned above is in this picture: 

)(2,8) 

The curve y = x2 + (8/x), pictured locally in neighborhoods of three points. The point 
( - 2, 0) is a point of inflection. 0 

At a point of inflection the second derivative must be zero (why?). How­
ever, the second derivative can be zero at points other than inftection points. 
A straight line has no inftection points, but the second derivative of a linear 
function is always zero. 

EXERCISES 

4.1. Consider the function given by f(x) = x2 - 3x + 2. Describe the local behavior 
of the curve f as it passes through 
(a) (0,2). 
(b) (2,0). 
(c) (1,0). 
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4.2. Describe the local behavior ofthe curve y = lOx - (4/x) near 
(a) (1,6). 
(b) (2,18). 
(c) (-!-,3). 
Partial answer: The curve looks like figure (a), page 86, with P = (1,6). 

4.3. Describe the local behavior of the curve C = 7 L + (48/L) near 
(a) (2,38). 
(b) (2.5,36.70). 
(c) (3,37). 

4.4. Describe the loeal behavior of the curve y = x2 + (8/x) near 
(a) (- 1, - 7). 
(b) (4, 7i). 
(This is the curve of Example 4.) 
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4.5. From the meager sketch in Example 4 above, we see that the curve appears to have a 
local minimum between x = 1 and x = 2. Find the x-coordinate of this local 
minimum. Is this a global minimum as weIl, i.e., is this the lowest point on the 
entire curve? 

4.6. Does any linear function have an inflection point? Does any quadratic function 
have an inflection point? 

4.7. Find both coordinates of an inflection point on the curve y = x2 + (I/x). 

4.8. Suppose you have a function fand a point c where f'(c) = 0 and f"(c) is positive. 
Have you found a local minimum or a loeal maximum of f? 

§5. The Rule für Squares 

There remain four shortcut rules to be discussed in this chapter. We need 
to find out how to take derivatives of squares, of square roots, of products, 
and of quotients. One might suspect that we shall therefore have to go through 
all the details of Fermat's method four more times. Fortunately, things can 
be arranged so that we have to do Fermat's method only once more, to find 
a rule for squares. The only algebraic trick we shall need is a simple one. 
The difference of two squares factors into the product of their sum and 
difference : 

a2 - b2 = (a + b)(a - b). 

Suppose we are presented with a function whose rule involves a square. 
For example, suppose we have a rule f(x) given by (x2 + 3f, or by 
(5x - (7jX»2, or, more generally, by (g(X»2, where g is a function whose 
derivative we know. By Fermat's method, if f(x) = (g(X»2, then 

f '() L' . f(x + h) - f(x) 
x = tmtt h 

h-O 

L . . (g(x + h»2 - (g(x) )2 
= tmtt h 

h-O 
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How can this difference quotient be simplified, in order to find its limit? 
Answer: Since the numerator is the difference of two squares, we can factor 
it into the product of their sum and difference, to get 

f '() L· . (g(x + h) + g(x) )(g(x + h) - g(x)) 
x = Imlt h 

h-O 

. . (g(X + h) - g(X)) = ~l~lt (g(x + h) + g(x)) h 

= (g(x) + g(x) )g'(x) [by equation (4)] 

= 2g(x)g'(x), 

provided, of course, that 9 has a derivative. We have our rule. 

Rule for Squares. The derivative of (g(X))2 is 2g(x)g'(x) if the function 9 has 
a derivative. 

By this ruIe, for exampIe, 

the derivative of (x2 + 3)2 is 2(x2 + 3)(2x), 
the derivative of (5x - (7 Ix))2 is 2(5x - (7 Ix))(5 + (7Ix2)). 

EXERCISES 

5.1. Find the derivative of(3x + 5)2 by using the rule for squares. Answer: Here we have 
(g(x) )2, where g(x) = 3x + 5. By the rule for squares, its derivative is 2gg', which is 
2(3x + 5)(3), or 18x + 30. 
[The reader should check that this is the same answer one ob ta ins by first writing 
(3x + 5)2 as 9x 2 + 30x + 25, and then ta king the derivative by the quadratic rule.] 

5.2. Find the derivative of (6 - 7X)2 
(a) by applying the rule for squares. 
(b) by first squaring the expression 6 - 7x and then applying the rule for quadratics. 

5.3. Find the derivative of each of the following functions, expressed as algebraic rules. 
(a) (x 2 - 5xf 
(b) (7L + (48/L))1. 
(c) (5x 2 + (6/(x 2 - 2)))2 
(d) (3x 2 - 5x + J'i.j2. 
(e) (2x 2 + (3/x) - 4)2. 
Answer: (b) 2(7L + (48/L) )(7 - (48/L 2)). 

5.4. True or false? The derivative of a square is equal to the square of the derivative. 

5.5. Find the derivative of x 4 by regarding x4 as (X 2)2 and using the rule for squares. 
Answer: 4x3. 

5.6. Find the derivative of (1/x)2 
(a) by applying the rule for squares. 
(b) by first writing (1/x)2 = 1/x2 and then using the general reciprocal rule. 
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5.7. What is the derivative of 
(a) (x2 + 5x)2? 
(b) (f(x) + g(x) )2? Answer: 2(f(x) + g(x) )(f'(x) + g'(x)). 

§6. The Product Rule and the Square Root Rule 
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It is not true that the derivative of a product is the product of the derivatives. 
The product ruIe is a little more complicated than that. It is easy to derive 
the product rule, though, because a product can always be expressed in terms 
of squares, and we already know the rule for squares. 

To see the relationship between products and squares, begin with the 
familiar identity 

(a + b)2 = a2 + 2ab + b2, 
and "solve" this equation for the product ab. You get 

1 
ab = 2( (a + bf - a2 - b2), 

which expresses the product ab in terms of squares. The same thing holds, 
of course, for functions. If fand gare functions, then their product can be 
written as 

1 
fg = 2( (f + gf - f2 - g2). 

Taking derivatives byusing the rule for squares, and also using the result 
of exercise 5.7, we find that 

1 
(fg)' = 2[2(f + g)(f' + g') - 2fr - 2gg'] 

= (f + g)(f' + g') - ff' - gg' 

= ff' + fg' + gf' + gg' - ff' - gg' 

= fg' + gf'. 

Rule for Products. The derivative of f(x)g(x) is f(x)g'(x) + g(x)f'(x), provided 
that fand g have derivatives. 

The reader may find it easier to remember the product rule by reading 
it in words: The derivative of a product is equal to the first term times the 
derivative of the second, plus the "other way around". 

As an example, let us find the derivative of the product (x + 2)(x - 3). 
By the product rule, it is 

(x + 2)(x - 3)' + (x - 3)(x + 2)' 

= (x + 2)(1) + (x - 3)(1) 

= 2x - 1. 
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In this example we can "check" our answer by noting that the product 
(x + 2)(x - 3) is equal to the quadratic expression x2 - x - 6, whose deriva­
tive is indeed 2x - 1. 0 

Here are some more exampIes, with the answers Ieft in an unsimplified 
form. 

The derivative oJ (x 2 + x)(5x - 2) is equal to 

(x 2 + x)(5) + (5x - 2)(2x + 1). 

The derivative oJ (7L + (48jL))(L 2 - n) is equal to 

(7L + ~}2L) + (L2 - n)(7 - ~~} o 

Now, wh at about square roots? How do we get the derivative of J, if the 
function J is given by J(x) =.JT+7? Or by J2x - 3? Or, more generally, 
by J g(x), where gis some function whose derivative we al ready know? We 
can guess the answer to this question by using the rule for squares: If J = Jg, 
then (by squaring both sides) we have 

P=g, 
2fi' = g' (by rule for squares), 

1 l' = -g' (solving for 1'), 
2J 

l' = 2~g' (since J = Jg). 

1 
Square Root Rule. The derivative of Jg(x) is ~g'(x), provided the 

2 g(x) 
Junction 9 has a derivative. 

The application of this rule is quite straightforward. 

The derivative of.JT+7 is 

1 (2x) = x . 
2.JT+7 .JT+7 

The derivative oJ J2x - 3 is 

1 (2) = 1 . 
2J2x - 3 J2x - 3 

The derivative oJ ~ is 
1 1 

-(1)=-. 
2~ 2~ 

o 
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EXERCISES 

6.1. Find the derivative of x 3 , by regarding x3 as the product of x2 and x. 
Answer: (x 3 )' = (x 2x)' = x 2(1) + x(2x) = 3.x? 

6.2. Find the derivative of x4 by regarding x4 as the product of x3 and x. Does your 
answer agree with exercise 5.5? 

6.3. Find the derivative of each of the following. 
(a) x S . 

(b) x 6 • 

(c) x 7. 

(d) x", where n is a positive integer. 

6.4. Any quotient can be expressed as a product. Find the derivative of x/(x + 3), by 
regarding this quotient as the product of x and 1/(x + 3). 

Answer: 

-1 1 
=x--+--(I) 

(x + W x + 3 

-x 1 
= (x+ W +~+3' 

6.5. Find the derivative of x 3/(5x + I) by regarding this quotient as the product of x3 

and 1/(5x + 1). 

6.6. Use the square root rule to find the derivatives of the following. 

(a) J9+X2. 
(b) 17 .}3x2 - 2x. 

(c) .fiX. 
(d) .fi. 

6.7. Find the derivative of x\jT+x. 

Answer: (x4.JT+X)' = x4(.JT+X)' + (.JT+X)(x4)' 

= x4( 1 ) + (.JT+X)(4x 3) 
2.JT+X 

x4 3 --- + 4x JI+X. 
2.}1 + x 

6.8. Find the first derivatives of the following. 

(a) x\/I+XZ. 
(b) x.jX. 
(c) x3,j2x~. 

(d) x6 .}3x2 - 2x. 

6.9. Find the second derivative y" if y = .}2x + 5. 
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§7. The Quotient Rule 

Exercises 6.4 and 6.5 give the clue to finding a rule for obtaining the derivative 
of a quotient f/g: Regard it as the product of l/g and f. Then we have 

(f)' = Gf)' 

= G)f' + fG)' 

= (:2)f' + f( ~})g' 
gf' - fg' 

g2 

Rule for Quotients. The derivative of f(x)/g(x) is 

g(x)f'(x) - f(x)g'(x) 
(g(x) )2 

if the functions fand g have derivatives. 

The reader may find it easier to remember the quotient rule by reading 
it in words: The derivative of a quotient is equal to the bottom times the 
derivative of the top, minus the other way around, over the bottom squared. 

For example, 

the derivative of x/(x + 3) is 

(x + 3)(1) - (x)(1) 

(x + 3)2 

the derivative of x 3/(5x + 1) is 

(5x + 1 )(3x2 ) - (x 3 )(5) 
(5x + 1)2 

(The reader should check that these answers, with the help of a little algebra, 
may be seen to agree with the answers to exercises 6.4 and 6.5.) 0 

EXERCISES 

7.1. If y = 2x/(x2 - 3), what is y'? Answer: y' = (-2x 2 - 6)/(x 2 - W. 
7.2. If y = 2x/(x2 - 3), wh at is y"? Hint. Use the quotient rule to find the derivative of 

the answer to exercise 7.1. In the course of doing this, the rule for squares will come 
in handy in finding the derivative of the bottom. Don't take time to simplify your 
answer. 

7.3. Describe the local behavior of the curve y = 2x/(x2 - 3) near the point (2,4) and 
near (1, - 1), and find both coordinates of an inflection point. 
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7.4. Find the first derivatives of the following. Do not simplify. 
(a) (x + 2)/(x - 2). 
(b) (x 2 - 3)/(x - 2)2. 
(c) x3/J1+Xl. 
(d) .J(x + 2)/(x - 2). 
(e) ((3x - 1)/X2 )2. Answer: 2( (3x - l)1x2 )( (x 2(3) - (3x - 1)(2x) )/x4 ). 
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7.5. Consider the function given by f(x) = 5x2 + (6/(x 2 - 2)). What does the curve 
f look like, locally, near the point (0, - 3)? Near (2, 23)? 

7.6. What does the curve y = .J16 + x2 look like, locally, as it passes through (0,4)? 

§8. Solving Optimization Problems 

Where are we now? We have just completed an unavoidable digression 
from our original theme, which was the solution of optimization problems. 
As we saw in Chapter 1, an optimization problem leads to the problem of 
finding the highest (or lowest) point on a certain curve. This, in turn, has 
led to the study of derivatives, because derivatives cast light on the behavior 
of a curve. And now, at last, we know how to bypass Fermat's method and 
use the following rules instead. 

(1) (cf)' = c . l' (constant multiples). 
(2) (f + g)' = l' + g' (sums). 
(3) (l/g)' = (_1/g2)g' (reciprocals). 
(4) (g2)' = 2gg' (squares). 
(5) (-J g)' = (l/2JY)g' (square roots). 
(6) (fg)' = Jg' + gI' (produets). 
(7) (f/g), = (gI' - fq')/g2 (quotients). 

The reader should practiee using these rules until they have been memo­
rized. Then the taking of derivatives will be quite a routine matter, and the 
most important step in solving an optimization problem will have been 
mastered. 

We ean finally come to grips with the topic to whieh the title of this 
ehapter alludes. What are the steps leading to the solution of an optimiza­
tion problem? Basieally, there are just two steps. First, translate the problem 
into the geometrie problem of finding the highest (or lowest) point on a 
certain curve J; and second, find l' and use it as an aid in understanding 
how the curve J behaves. 

The critical points to be found in sketching a curve J are those where 
the tangent lineto the curve is horizontal. [That leads to adefinition: To 
say that x is a critical point o{ J is to say that I'(x) = 0.] Usually, although 
not always, the funetion J will attain its optimal value at a critical point. 

To verify whether the optimum has been found, make a rough sketch 
of the curve near each critical point (the second derivative is helpful here) 
and near each endpoint of the domain. 
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As we have seen, some curves do not have a highest (or lowest) point. It 
can be proved, however, that a curve must have such points if it comes from 
a continuous function and ifthe domain is an interval containing its endpoints. 
This is a deep theorem of analysis, the modern branch of mathematics into 
which seventeenth-century calculus evolved, and cannot be proved here. The 
moral for us is to be aware of what a function is doing near the endpoints 
of its domain, particularly if the domain does not include endpoints. If a 
continuous curve fails to have a highest (or lowest) point, then by the theorem 
of analysis the trouble must lie in the behavior of the function near an end­
point missing from its domain. 

EXAMPLE 5. Find the highest point on the curve f given by 

f(x) = 2x + 3, 
on the domain 

(a) 0::;; x ::;; 4. 
(b) 0< x< 4. 

Let us look first for all critical points in the domain, that is, all values x 
for wh ich f'(x) = O. Here we have f'(x) = 2, which shows that there are no 
such values. Since f has no critical points, the principle of analysis mentioned 
above guarantees that the extreme values of f must occur at the endpoints 
of the domain. At the endpoint 0, the value of fis 3; at the end point 4, the 
value of fis 11. Therefore, 

(a) ifthe domain is 0::;; x ::;; 4, then (4,11) is the highest point on the curve f. 
(b) if the domain is 0 < x < 4, then the curve f contains no highest point. 

Note that, to draw the conclusions (a) and (b), we did not have to draw a 
picture of the curve f! The reader may wish to draw a picture anyway, to 
see bett er what is going on. The expression 2x + 3 reveals f to be a linear 
function of slope 2: 
(a) Domain: 0::;; x ::;; 4 

Range: 3::;; y::;; 11. 

(4,11) 

Domain 
• 

o 4 

The highest point on the 
curve is (4, 11). The greatest 
number in the range is 11; the 
least is 3. 

(b) Domain: 0 < x < 4 
Range: 3 < Y < 11. 

o 
o 

Domain 
o 
4 

There is no highest (or lowest) 
point on the curve, because the 
range contains no greatest (or least) 
number. 
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EXAMPLE 6. Let C = 7L + (48/L), with domain 0< L. Find the least possible 
value of C. 

Let us first find all critical points in the domain, that is, points where 
C' is zero. Since C' = 7 - (48/U), C' is zero when 

48 
7 - L 2 = 0, 

7 L 2 - 48 = 0 (multiplying through by L 2), 

7L 2 = 48, 

U= 48 
7' 

ft8 
L= + -. - 7 

~ I C I C' 

~ 
Because -.J 48/7 is not in the domain, the only critical point in the domain is 

ft = 2.619 .... 

At the critical point, the corresponding value of C is given by 

(48 48 
C = 7 -V 7 + ~ = 36.661 .... 

We must now show that this is the least possible value of C. 
The second derivative helps here. It is given by 

C" = 96 
L 3 ' 

wh ich is (obviously) positive for all values of L in the domain 0 < L. There­
fore, the curve C = 7 L + (48/L) is always bending to its left (or smiling). 
The point 

(2.619 ... , 36.661 ... ), 

being the point on the curve where a tangent line is horizontal, must be the 
lowest point on the curve. 

We can now answer the question raised in Example 1 of Chapter 1. The 
least amount of money that will pay for the fencing is $36.66 (rounded off 
to the nearest cent). D 

The preceding example was discussed rather thoroughly without ever 
drawing the curve. We found the lowest point and we discovered that the 
curve was always bending to the left. If it is desired to sketch the curve, 
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what additional information is needed? Answer : Information about the 
curve's behavior near the "endpoints" of the domain, i.e., when L is very 
small and when L is very large. 

To get this information, use common sense. Look at the two terms 7L 
and 48/L, whose sum gives C. What happens to each of them when L is 
very small? The first term 7 L is negligible (i.e., nearly zero), so the curve 
behaves essentially like the graph of 48/L when L is small. The expression 
48/L increases without bound as L --+ 0+. (See Example 7, near the end of 
Chapter 1.) 

What happens when L is very large? Then the expression 48/ L is negligible, 
so the curve behaves essentially like the graph of 7 L when L is large. The 
expression 7L pro duces a line of slope 7. For large L, the curve C = 
7L + (48/L) approximates a straight line of slope 7. 

Putting these facts together produces the following sketch: 

36.66 ... 

Domain 

Domain: 0< L 
Range: 36.66 ... :;; C 

o------------------------------~ o 

EXERCISES 

8.1. For each of the following functions, find its maximum value, if it has one. 
(a) f(x) = 5 - 2x, 0 ~ x < 3. 
(b) F(x) = x 2 - 2x, 0 ~ x ~ 4. 
(c) g(x) = x - (I/x) + 6,0< x ~ 8. 
(d) G(x) = x + (l/x) + 6,0< x ~ 8. 
Answers: (b) max F is 8. (d) max G does not exist. 

8.2. For each of the functions in exercise 8.1, find its minimum value, if it has one. 
Answers: (a) min f does not exist. (b) min Fis -1. 

8.3. Sketch the curve y = 4x + (36/x), with domain 0 < x, indicating both coordinates 
of the lowest point. Also, indicate how the curve looks when x is very small and 
when x is very large. 

8.4. A rectangular pen containing 16 square meters is to be fenced in. The front will cost 
$4 per meter of fencing, while each of the other three sides will cost $3 per meter. 
What is the least amount of money that will pay for the fencing? 

8.5. In the problem set at the end of Chapter 1, read again problem 19. Find the greatest 
possible volume V. 
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§9. Summary 

Here, in detail, are the steps that have been illustrated above. 

Step 1. Aigebraic formulation: 
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(a) See the problem in terms of variables. (The quantity to be 
optimized is one variable, say y, and you have to find a second 
variable, say x, on which y depends.) 

(b) Write down an algebraic rule J, giving y in terms of x. 
(c) Specify the domain of the function J. 

Step 2. Geometrie analysis: 
(a) See the problem as one of finding the highest (or lowest) point 

on the curve J. 
(b) Find the derivative f'. (And find f" too, if it can be done without 

much trouble.) 
(c) Find the critieal points, if any, that lie in the domain of J. (That 

is, find aB values of x in the domain of J that satisfy the equation 
f'(x) = 0.) 

(d) Check what happens near the endpoints of the domain. 
(e) Using the information of steps 2(c) and 2(d), find the desired 

highest (or lowest) point on the curve J. 
[The second derivative may be helpful in steps 2(d) and 2(e).] 

Step 3. Back to everyday life: 
(a) Read the problem again, to determine exactly what was caBed 

for. (Was it the first or second coordinate, or both, of the highest 
or lowest point of the curve that you were seeking?) 

(b) Give a direct answer to the question raised in the problem, by 
writing a complete, concise senten ce. 

Step l(c) is easy to forget, and thus deserves emphasis. The domain must 
be specified; otherwise, steps 2(c) and 2(d) cannot be carried out. Step 3 is 
also easy to forget. In concentrating on step 2, you can lose sight of your 
goal and, as a consequence, do unnecessary work. When a problem takes 
a long time to work, it is a good idea to remind yourself now and then what 
you are after. 

Here is another example to illustrate these steps. 

EXAMPLE 7. An ordinary metal can (shaped like a cylinder) is to be fashioned, 
using 5411: square inches of metal. What choiee of radius and height will 
maximize the volume of the can? 

Here, we want to maximize the volume, so let V denote the volume, 
which is given in terms of the radius rand height h by the formula 

V = (area of base)(height) 

(7) 
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The rule V = nr2h gives V in terms of two variables. We need to get V in 
terms of only one variable, and this can be done, as folIows, by finding a 
relation between rand h. The picture below shows that the area of the side 
of the can is given by 2nrh: 

Cd t After making 
h avertical cut ___ ! in the side, 

we have here the side t h 
of the can, flattened. I 

L.....-__ ----' ~ 

The total amount of metal available, 54n square inches, must equal the 
amount in the side ofthe can, plus the amount in the circular top and bottom: 

54n = 2nrh + 2nr2 • 

This is a relation between rand h. It is easy to solve for h (the reader is asked 
to do it), and obtain 

27 - r 2 
h=--­

r 

Putting equations (7) and (8) together gives 

2(27 - r 2
) V= nr 

r 

= nr(27 - r2 ) 

= 27nr - nr3 , 

(8) 

which expresses V in terms of r alone. The problem now is to find the value 
of r that yields the maximal volume V, where 

V = 27nr - nr3 , 0< r < J27. 
[The radius r must be less than .Ji7. Reason: The height h must be positive, 
so, by equation (8), 27 - r2 must be positive.] 

r v V' 

? o 
r 27rrr - rrr 3 27rr - 3rrr2 

Let us find critical points. The derivative is given by 

V' = 27n - 3nr2 , 

which is zero when (dividing by 3n) 

0= 9 - r 2 , 

r 2 = 9, 

r= ±3. 

Since - 3 is not in the domain, the only critical point is 3. 
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We now show that when r is 3, the volume V is maximal. This is easy 
to see, for the second derivative is given by 

V" = -6nr, 

which is (obviously) negative throughout the domain. The curve is therefore 
always ben ding to its right (or frowning), and hence it must reach its highest 
point at the pI ace where it has a horizontal tangent line. (At both endpoints 
of the domain, V tends to zero.) 

To maximize the volume, the radius should be 3 inches, and the cor-
responding height, by equation (8), should be 6 inches. 0 

A Final Remark. As in Examples 5, 6, and 7, it is not really necessary to 
sketch the curve in order to do the problem. If f has a derivative, then the 
extreme values (maximum and minimum) can be located by checking among 
the endpoints and the critical points. Curve sketching is to be encouraged, 
because pictures say more than words, but the principles of analysis are 
valid regardless of how well one draws. 

Problem Set for Chapter 4 

1. A rectangular pen containing 36 square meters is to be fenced in. The front fence will 
cost $7 per meter, while each of the other three sides will cost $3 per meter. What 
is the least amount of money that will pay for the cost of the fence? 

2. A book company wants to put 60 square inches of type on a rectapgular page, 
leaving margins of 1 inch on the sides and bottom and of 2 inches at the top. What 
should be the dimensions ofthe page in order to minimize the amount ofpaper used? 

3. Write an equation of the tangent line to the curve y = 5/x2 at the point (1,5). 

4. Tell whether the curve y = 5/x2 is bending to the right or to the left as it passes 
through 
(a) (1,5). 
(b) (-1,5). 

5. Consider the function f defined by f(x) = 5x~. 
(a) Is the curve f rising or falling as it passes through the point (0, O)? 
(b) Is the curvefbending to the left or to the right as it passes through the point (0, O)? 

6. Consider the function given by f(x) = ax 2 + bx + c, where (I, b, and c are constants. 
Which way does the curve f bend if 
(a) (I> 07 
(b) (I < 07 
(c) (I = 07 

7. Consider the curve C = 3L + (27/L), 0 < L. 
(a) Find the first coordinate of a point on this curve where the tangent line is 

horizontal. 
(b) This curve always bends the same way on the domain 0< L. Which way7 
(c) From your answer to part (b), you know the point found in part (a) must be the 

highest or lowest point on the curve') 
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8. Consider the curve C = 3L + (27/L), L < o. 
(a) This curve always bends the same way on the dOlllain L < o. Which way? 
(b) Find both coordinates ofthe highest point on the curve. 
(c) Does this curve have a lowest point? 

9. What is the range of f, where f(L) = 3L + (27/L), with domain L =F O? Hint. First 
sketch the curve f, using the information obtained in problems 7 and 8. 

10. (A problem in curve sketching.) Consider the cubic equation y = x 3 - 3x + 2. 
(a) The derivative y' = 3x2 - 3 is a simple quadratic function. Plot the graph of 

this quadratic, and, on a different coordinate system, plot the graph of the 
simple linear function y" = 6x. 

(b) The two graphs just sketched give much information about the original cubic. 
Use these two graphs to specify on what interval(s) the cubic is 

(i) rising. 
(ii) falling. 

(iii) bending to the left. 
(iv) bending to the right. 

(c) Find both coordinates of an inflection point of the cubic. 
(d) There are two points on this cubic where there is a horizontal tangent line. Find 

both coordinates of both points. 
(e) Sketch the curve y = x 3 - 3x + 2, using all the information just obtained. 
(f) Specify the range of the cubic if the domain is 

(i) 0 ~ x ~ 3. 
(ii) - 2 ~ x < O. 

(iii) -2< x ~ o. 
(iv) unrestricted. 

11. Consider the cubic equation y = x 3 + 3x + 2. 
(a) Sketch the graph of this cubic, after first investigating its first and second 

derivatives, as in the preceding problem. 
(b) Find both coordinates of an inflection point. 
(c) Specify the range of this cubic if its domain is given by -1 ~ x ~ 4. 

12. As in the preceding two problems, carry out an analysis of the cubic y = x 3 + 2, 
sketch its graph, and find its point of inflection. What is its range if its domain is 
given by - 1 ~ x < 2? 

13. Suppose y = (t2 - 3)f(t + 2). Find y' and y" when t is 0, and use this information 
to sketch the curve 10caIly, near the point P = (0, -tl. 

14. Sketch the curve y = x 2 + (8/x), x =F 0, a portion ofwhich has al ready been sketched 
in Section 4. 

15. Express the number 10 as the sum of two positive numbers in such a way that the 
sum of the cube of the first and the square of the second is as small as possible. 

16. Find the point on the graph of y2 = 4x that is nearest the point (2, 1). 

17. What is the smallest slope that a tangent line to the curve y = x 3 + 3x + 2 could 
possibly have? 
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18. Identical squares are to be cut out of each corner of a piece of metal that is shaped 
like a rectangle of dimensions 5 feet by 8 feet. The four squares are then discarded, 
and the sides folded upwards to make a large box, with open top. Let x be the length 
of the sides of the squares cut out, and let V be the corresponding volume of the box. 
Find the value of x that maximizes V. 

X 

1 

1 

r------------------r--, 
Ix 

------------8-----------+ 

Discard squares, fold up sides: 

f--'-/1 __ /1 x 

I V 
19. Identical squares are to be cut out of each corner of a rectangular piece of metal 

measuring 10 meters by 4 meters. Then the squares are to be discarded, and the sides 
folded up to make a water trough for thirsty horses. What size squares should be cut 
out in order to maximize the volume of the trough? 

20. Out of 100 square centimeters of metal, the sides, top, and bottom of a cylindrical 
can are to be fashioned. What should be the radius of the base of the can in order to 
maximize the amount of chicken soup that the can will hold? 

21. In exercise 1.13 of Chapter 2, a certain cost C was given in terms of a length x by the 
equation 

C = 7.,}9 + x2 - 2x + 26, 

(a) Find C', then fill in the table below. 

~
c C' 

o 47 ? 

4 53 ? 

0::; x::; 13. 

(b) Tell whether the curve is rising or falling as it passes through (0,47) and through 
(4,53). Can you conclude that the lowest point on the curve lies somewhere 
between these two points? 

(c) Find the value of x that yields the least cost C. 
(d) Read again exercise 1.13 of Chapter 2. Then draw a picture of how the cable 

should be built in order to minimize the cost of the cable. 



104 4 Optimistic Steps 

22. A lighthouse is located 4 miles offshore. The nearest town is 5 miles downshore. 
Whenever she goes into town, the lighthouse keeper must take a motorboat con­
taining her motorcycIe, dock at a point somewhere downshore, then ride the rest of 
the way by motorcycle. Where should the boat be docked in order to minimize the 
time of the trip to town if 
(a) the motorboat goes 20 miles per hour and the motorcycle goes 40 miles per hour? 
(b) the motorboat and the motorcycle travel at the same speed? 
(c) the motorboat goes A miles per hour and the motorcycle goes B miles per hour? 

23. In problem 18 at the end of Chapter 1, a certain cost C was given in terms of a length 
L by the equation 

96 
C = 3L2 +­

L' 

(a) Find the value of L that minimizes the cost. 

0< L. 

(b) Read again problem 18 of Chapter 1, and draw a picture indicating the dimen­
sions of the metal container that will minimize its cost. 

24. Find the dimensions of the cheapest possible trash can with square base and 
rectangular sides, subject to the following specifications. The volume of the can is to 
be 3 cubic meters, the material for the sides costs $0.30 per square meter, and the 
material for the base costs $0.50 per square meter. 

25. In the preceding problem, suppose it is decided to add a top to the can, made out of 
light metal costing only $0.10 per square meter. With this addition, what are the 
dimensions of the cheapest can? 

26. The metal used in making the top and bottom of a cylindrical can will cost $0.03 
per square centimeter, while the metal used in the side ofthe can will cost $0.02 per 
square centimeter. If the volume of the can is to be 100 cubic centimeters, what 
should be the dimensions ofthe can in order to minimize the cost? 

27. Out of 160 square feet ofmaterial, a container is to be made. What dimensions will 
maximize the volume of the container if the container is to be shaped like 
(a) a rectangular figure with square base and open top? 
(b) a rectangular figure with square base and with a top? 
(c) a cylindrical can without a top? 
(d) a cylindrical can with a top? 

28. A Norman window is in the shape of a rectangle surmounted by a semicircle. Find 
the dimensions of the window that will allow the most light to pass, provided that 
the perimeter of the window is 8 meters. 

29. A wire is to be cut in two. The first part is to be bent into the circumference of a 
circIe, and the second part into the perimeter of a square. How should the wire be 
cut in order to minimize the combined area of the circle and square if 
(a) the wire is 100 centimeters long? 
(b) the wire is A centimeters long? 

30. The definition of concave upward is as folIows: A curve I is concave upward if it lies 
abol'e each tangent line (with the obvious exception 01 the point 01 tangency). 
(a) If f" is always positive, is the curve I concave upward? 
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(b) If the area in the plane lying up above the curve f forms a concave figure, is the 
curve f concave upward? 

31. Find the first derivatives ofthe following. Do not simplify your answers. 
(a) (x/(x - 6) )2. 
(b) .J x/(x - 6). 
(c) (4x 5 - 3x)(x2 - X + ·ßY 
(d) X 4/(X 3 + x - W. 
(e) (x5 - x).J2 + 7x. 
(f) jX5. 

32. Mathematics shares some characteristics with experimental science. One notices a 
pattern developing, and then one tries to guess a general rule. The rule must then be 
tested for its applicability to new situations. One hopes that a widely applicable rule 
can be derived logically from simpler principles that are already accepted. Consider 
the rule 

(x")' = nx"-l, 

which ought to have been guessed in exercise 6.3 of this chapter. This rule applies 
where n is a positive integer. Let us test this rule for wider applicability. 
(a) Apply the rule above to find (x- l )'. Does it result in the correct answer? (We 

already know that the derivative of X-I is -1/x2, from our work in Section 1.) 
(b) Apply the rule to find (x- 2)'. Does it give the derivative of 1/x2 ? 
(c) Apply the rule to find (X l /2)'. Does it give the derivative of .JX? 
(d) Apply the rule to find (x3/2)'. Does it give the derivative ofx.JX? (The derivative 

of x.JX can be taken by the product rule.) 
(e) Apply your rule to find (X 5/2)'. Does it give the derivative of jX5? 
(f) Apply your rule to find (X- 7/2)'. Does it give the derivative of i/R? 
(g) If it made any sense to speak of raising a number to the power 7t, wh at would 

you guess is the derivative of x"? 
(The widely applicable rule that suggests itself here will be derived logically in 
Chapter 9.) 

33. Suppose that a function 9 has a derivative at a point x. Does it necessarily follow 
that gis continuous at x? That is, if g'(x) exists, does it follow that g(x) = Lim 9 at x? 
Hint. In Section 2 we saw that if g'(x) exists, then equation (4) necessarily folIows. 

34. Suppose that a function 9 is continuous at a point x. Does it necessarily follow that 9 
has a derivative at x? Hint. Consider a function whose curve has a "corner", as 
pictured below, at the point (x, g(x)). 

35. Use Fermat's method to show that the derivative of a constant function is zero. 
[This is so easy that it is easy to miss. You are to show that if g(x) = c, where c is a 
constant, then g'(x) = 0 for all x.] 
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36. Give two proofs of the rule for constant multiples, which states that (c . J)' = c . 1'. 
(a) First, by applying the product rule to the product J . g, where g(x) = c, and 

using the result of problem 35. 
(b) Secondly, by applying Fermat's method to the situation pictured below: 

the curve 
y = c· J(x) 

37. By applying Fermat's method to the situation pictured below, prove the rule for 
sums, which states that (f + g)' = f' + g'. 

(x + h,f(x + h) + g(x + h» 

the curve 
y = J(x) + g(x) 

38. Use Fermat's method (not a shortcut rule) to show that if J(x) = jX, then f'(x) = 
1/2.JX. Hint. Simplify the difference quotient of J by multiplying both the top and 
the bottom by the expression -J x + h + jX. 

39. Use Fermat's method (not a shortcut rule) to prove directly the product rule, which 
states that (fg)' = Jg' + gf'. Hint. First find the difference quotient of the product 
function given by y = J(x)g(x). Simplify it by inserting the expression J(x + h)g(x) -
J(x + h)g(x) into the numerator to get 

g(x + h) - g(x) J(x + h) - J(x) 
J(x + h) h + g(x) h . 

Then find the limit as h tends to O. 

40. Derive the reciprocal rule from the product rule, by proceeding as folIows. Assuming 
that the expression l/g has a derivative, begin with the obvious equality 

and use the product rule, together with the result of problem 35, to write 

then solve for the derivative of l/g. 
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41. Match each of the following functions (a) through (j) with its derivative. [The 
derivatives of (k) and (I) are not pictured.] 

(a) (b) (c) 

(d) (e) 

(g) (i) 

(j) (1) 
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Things change. The world is in flux. How can one understand a world in 
which change plays so great a role? The seventeenth-century ans wer given 
by Leibniz and Newton is simplicity itself: 

Study change. 

To study change is to study the way things vary. We have done a little of 
this in the preceding chapters, but we have not yet taken up this study in 
earnest. The derivative has a rem ar kable ability to capture the dynamics 
of change. A main point of this chapter is that the derivative may be viewed as 
measuring the instantaneous rate of change. 

How can this be? Before answering, we need to develop symbolism that is 
suggestive of the ideas involved. The symbolism of primes (as in y' or 1') to 
denote the derivative otTers no aid to our new endeavor. In fact, the main 
advantage of denoting the derivative by I' is that this notation suggests that 
the derivative is a function. Once this important fact has been hammered 
horne, the use of primes to denote derivatives otTers no special advantage, 
and may be discarded in the presence of a superior system of symbolism. 

§1. Leibniz's Notation: Mathematics and Poetry 

A superior system of notation for the calculus was developed by Leibniz. If 
y is a function of x, Leibniz denoted the derivative by 

dy 
dx' 
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instead ofby y'. Or, if Ais a function of s, Leibniz called the derivative 

dA 
ds' 

instead of A'. 
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At this point the reader is doubtless mystified as to why this symbolism is 
supposed to be more helpful than the perfectly good notation already devel­
oped. It is helpful only if one views the derivative the way Leibniz did. Let 
us illustrate how Leibniz would go about showing that the derivative of x2 

is 2x. 
Consider a fixed point (x, y) on the curve y = x 2 . 

(x + .1xf 

.1y 

.1x 

x x +.1x 

A portion of the curve y = x 2 

Let Llx be a small change in the variable x. ("LI" is the Greek letter delta. The 
expression Llx is to be taken as a whole, and not to be confused with a product. 
The change Llx may be either positive or negative.) What is the corresponding 
change Lly in the variable y? From the figure, it is clearly given by 

Lly = (x + LlX)2 - x 2 

= x 2 + 2x(Llx) + (Llxf - x 2 

= 2x(Llx) + (Llxf. 

Therefore, the ratio ofthe change (or increase) in y to the increase in x wh ich 
caused it is given by 

Lly 
- = 2x + Llx. 
Llx 

(1) 

As mentioned above, the increase Llx may be either positive or negative (a 
negative increase of course represents a decrease), but may not be zero. What 
happens in equation (1) as Llx tends to O? Then the fraction LlyjLlx approaches 
what might be termed the instantaneous rate of increase of y with respect to x, 
which, using equation (1), is equal to 

Limit LI y = Limit (2x + LI x) = 2x . 
.1x-->Q Llx .1x-->Q 
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(The reason that we get the derivative of Xl should be plain. As seen in the 
figure above, the ratio of changes Lly/Llx is also the slope of a line that ap­
proaches the tangent line at (x, y) when Llx approaches zero.) 

The ratio Lly/Llx of changes taking place over an interval oflength Llx is 
not of primary interest here. Leibniz wanted the "ultimate rqtio", or the 
instantaneous rate of increase taking pI ace at the point x. This is what happens 
as the length Llx shrinks to zero, and this Leibniz called dy/dx. That is, the 
symbol dy/dx is defined as folIows: 

dy .. Lly 
-= LImIt-. 
dx L1x~O Llx 

Why did Leibniz choose to denote the derivative this way? What is in the 
symbol dy/dx that is not in the name derivative? A lot, as it turns out. First, 
dy/dx reminds us that the derivative is the limit ofratios of changes. Secondly, 
because the symbol dy/dx looks like a fraction, it reminds us that the deriv­
ative is a limit of fractions, of "quotients of differences". The symbol dy/dx, 
by its very form, gives a hint that the derivative might be expected to exhibit 
some of the familiar properties of fractions. In a lighter vein, the reason 
Leibniz chose this symbolism is that, by the seventeenth century, the ancient 
Greek letter LI had evolved "in the limit" to the modern d. What could be more 
natural than to denote the limit of LI y/LI x by dy/dx? 

It is hard to overestimate the value of appropriate symbolism. Of all 
creatures, only human beings have much ability to name things and to coin 
phrases. Poets do this best of all. 

... as imagination bodies forth 
The forms of things unknown, the poet's pen 
Turns them to shapes and gives to airy nothing 
A local habitation and a name. 

Shakespeare 

It can be contended that Leibniz's way ofwriting the calculus approaches 
the poetic. One can be borne up and carried along purely by his symbolism, 
while his symbols themselves may appear to take on a life all their own. 
Mathematics and poetry are different, but they are not so far apart as one 
might think. 

The reader who is skeptical of the remarks just made is asked to suspend a 
final judgment until this chapter and the next are completed. Any skepticism 
that still remains may be eliminated by Chapter 10, which can be read im­
mediately following Chapter 6. In the meantime, just to show that the 
remarks above are not especially radical, here is a well-known quotation 
from a man who won the Nobel Prize in literature: 

Mathematics, rightly viewed, possesses not only truth, but supreme 
beauty-a beauty cold and austere, like that of sculpture, without appeal to 
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any part of our weaker nature, without the gorgeous trappings of painting or 
music, yet sublimely pure, and capable of astern perfeetion such as only the 
greatest art can show. The true spirit of delight, the exaltation, the sense of 
being more than man, which is the touchstone of the highest excellence, is to 
be found in mathematics as surely as in poetry. 

Bertrand Russell 
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Before we can see anything in Leibniz's notation, we must 1earn how to 
use it. There is no poetry in the examples that follow, only illustrations of 
how things are said in the language of Leibniz. 

dy d 2 
then dx = dx(x ) = 2x. 

dA d 2 
then ds = ds(s ) = 2s. 

df 2 
then dx = 3x . 

d 6t 
-(~1 + 3t2 ) = ~=~ 
dt 2~1 + 3t2 

If y = f· g, 
dy dg (lf 

then - = f - + g - (the product rule). 
dx dx dx 

d (1) -1 dg . 
-/ - = -2 -d (the reclprocal rule). 
(X g g x 

EXERCISES 

1.1. Write the square root rufe in Leibniz's notation: If y = jg, then dy/dx = ? 

1.2. Write the quotient rufe: d(f/g)/dx = ? 

1.3. Find dC/dL if C = 7L + (48/L). 

1.4. Wh at is d(t2 + 3t + n)/dt? 

1.5. Use the product rule to find d(w4 J3 + w)/dw. 

1.6. Find the derivatives of each of the following, expressing your answer in Leibniz's 
notation. 
(a) L = 12/W. 
(b) C = (84/W) + 4W. 
(c) C = 2nr. 
(d) A = m·2 • 

Answers: (b) dC/dW = (- 84/W2) + 4. (c) dC/dr = 211.. 
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1.7. (This question is not entirely frivolous, as will be seen in Chapter 6.) The ancient 
Greek letter LI has by the seventeenth century evolved "in the limit" to the letter d. 
What about the Greek letter E .(sigma)? What is the "seventeenth-century limit" 
of E? 

1.8. Is dyjdx the quotient of"dy" and "dx"? Answer: No. The derivative is denoted by 
the entire symbol dyjdx. Just as one understands the word rainbow without feeling 
any need to know wh at ra and inbow might mean, so one can understand dyjdx 
without ascribing meaning to dy and dx. 

1.9. A familiar rule for fractions is (AjB)(BjC) = AjC. If derivatives behaved like 
fractions, what would the product 

be equal to? Answer: dyjdt. 

dy dx 

dx dt 

1.10. If derivatives behaved like fractions, wh at would the following products of deriva­
tives be equal to? 
(a) (dCjdL)(dLjdW). 
(b) (dAjdr)(drjdt). 
(c) (dLjdW)(dWjdL). 

§2. The Derivative as Instantaneous Speed 

Suppose a rock is thrown directly upward, and suppose that, at time 
seconds after it is released, its height h (in feet) is given by the equation 

h = -16t2 + 64t. 

To illustrate the ideas just introduced concerning change, let us try to answer 
the following questions. 

(a) During its first second of flight, what is the rock's average speed? 
(b) What is the rock's instantaneous speed when t = 1 (i.e., 1 second after 

release)? 
(c) When t = 3 (i.e., 3 seconds after release), is the rock going up or down? 
(d) When does the rock attain its maximum height? 
(e) What is the rock's initial velocity, i.e., what speed was given the rock at 

the instant of release? 

To get hold of this situation, let us set up the usual table. Since h = 

-16t2 + 64t, the derivative is given by 

dh 
dt = -32t + 64. 

Plugging in a few numbers gives rise to this table. 
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t h 
(in seconds) (in feet) 

~JLlt 4~JLlh 
2 64 
3 48 

-16t2 + 64t 

dh/dt 
(in feet per second) 

32 
o 

-32 
-32t + 64 
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Why is dh/dt in the units of feet per second (ft/sec)? Because the change 
LI h in h is in feet and the change LI t is in seconds, so LI h/ LI t is in feet per second, 
showing that dh/dt is the limit ofnumbers Llh/Llt that are in units offeet per 
second. Let us ans wer the questions raised in turn. 

(a) During the initial l-second interval, we have Llt = 1. The corresponding 
distance traveled is the change in height from 0 to 48 feet. That is, Llh = 
48. The average speed for the first second is then given by 

distance traveled Llh 
time taken LI t 

48 feet 

1 second 

= 48 ft/sec. 

(b) The derivative dh/dt gives the instantaneous rate of increase of height 
with respect to time. When t = 1, dh/dt = 32 ft/sec. If the rock had a 
speedometer inside it to measure the upward speed, the speedometer 
should read 32 when t is 1. 

(c) When t is 3, then dh/dt is -32, so that dh/dt, wh ich measures the rate of 
increase of height, is negative. Since the rate of increase of height is 
negative, the rock is /alling when t is 3. (The instantaneous speed is 
32 ft/sec downward when t is 3.) 

(d) The rock is going up when the upward speed dh/dt is positive and is going 
down when dh/dt is negative. The rock must therefore attain its maximum 
height when dh/dt is zero. This occurs when t is 2. 

(e) It is easy to be confused about speeds at the moment ofrelease and at the 
moment of impact with the ground. But there is no question that at any 
intermediate time t, the speed is given by the expression - 32t + 64. To 
avoid confusion, let us agree that the initial speed is the limit of this 
expression as t tends to zero from the right: 

Limit ( - 32t + 64) = 64 ft/sec. o 
t ...... O + 

It is easy to sketch the quadratic curve h = -16t2 + 64t, and thus it is 
easy to picture the situation described above. Avoid the mistake 0/ thinking 
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that the rock travels along the curve, however. The rock moves straight up 
(until t = 2), then straight down, along the vertical axis. 

t= 2; speed 0 

t= I; 
speed +32 

t= 3; 
speed -32 

I 
I 
I 
I 
~ 

Ground 

64 

48 

32 

16 

0 

(2,64) 

(3,48) 

\ 

\ 
\ 
\ 

h = - 1612 + 641 

2 3 4 

The rock hits the ground when t = 4. What is its speed at the moment 01 
impact? God only knows. We can know if we interpret the question as 
requiring us to find the speed the rock is approaching as t tends to the moment 
of impact. Then the answer is easy. The upward speed at the moment of 
impact is approaching 

Limit ( - 32t + 64) = - 64 ftjsec. 
t-4-

(The negative sign occurs because - 32t + 64 gives the upward speed.) At 
the moment of impact, the rock is approaching a downward speed of 64 ftjsec. 

EXERCISES 

2.1. A rock is thrown directly upward. Its height h (in feet) at time t seconds after release 
is given by 

h = -16t2 + 128t. 

(a) Wh at is the rock's average speed during its first second of fiight? 
(b) What is the rock's instantaneous speed when t = 1 ? 
(c) Is the rock going up or down when t = 3? 
(d) When is the maximum height attained? 
(e) What is the average speed of the rock du ring the time interval between t = 1 

and t = 3? 
(f) Wh at is the instantaneous speed when t = 2? 
(g) What is the rock's initial speed? 
(h) When does the rock hit the ground, i.e., when is the height h equal to zero? 

Answer: When t = 8. 
(i) What is the speed of the rock when it hits the ground? (See the discussion above 

for a proper interpretation of this question.) 
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2.2. A rocket travels directly upward. At time t seconds after it is launched, its height h 
in feet is given by 

h = 5013 + 80t. 

(a) What is the rocket's average speed during its first 2 seconds of flight? Answer: 
280 ft/sec. 

(b) What should the rocket's speedometer read when t = 1? 
(c) Let v stand for the rocket's speedometer reading (so that v = dh/dt). Then v, 

like h, is a function of t. Fill in the question marks appropriately in the following 
table. 

h v dv/dt 

? 230 ? 
2 560 680 ? 
n ? ? ? 

50t3 + 80t ? ? 

(d) Think about the uni.ts in which things are measured. Here we have tin seconds, 
h in feet, so v is in feet per second. What units is dv/dt measured in? Answer: 
ft/sec per second. 

(e) When t is 2, is the speedometer reading v increasing or decreasing? Hint. This 
is the same quest ion as, "Is dv/dt positive or negative?" It is also the same 
question as, "Is the rocket accelerating or decelerating in its upward movement?" 

(f) Is the rocket accelerating or decelerating when t = 1 ? 
(g) Acceleration is defined as the rate of increase of speed. What is the rocket's 

instantaneous acceleration when t = 1? Answer : The rate of increase of speed, 
dv/dt, is equal to 300 ft/sec per second, when t = 1. 

(h) What is the rocket's instantaneous acceleration when t = 2? 

2.3. Go back to the situation described in exercise 2.1. 
(a) Fill in the following table. 

h v 

1 112 96 
4 ? ? 
6 ? ? 

- 16t2 + 128t ? 

dv/dt 

? 
? 
? 
? 

(b) Since v is the upward speed, and since dv/dt measures the rate of increase of v, 
it follows that dv/dt measures the upward acceleration. In this case the upward 
acceleration is constant. What is it? Answer: It is -32 ft/sec per second. (This 
is what gravity does, near the earth's surface. Each second the effect of gravity 
is to decrease the upward speed of a freely falling body by 32 ft/sec.) 

(c) If a freely falling body is given an initial speed of + 128 ft/sec, how many 
seconds will gravity take to change the speed to 
(i) 64 ft/sec? 

(ii) - 64 ft/sec? 
(d) In the rocket problem of exercise 2.2, why isn't the acceleration - 32 ft/sec per 

second, since this is the acceleration due to gravity? 
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§3. Continuity and Nature 

Laws that govern nature command our interest. Leibniz believed that all 
such laws are subject to the following basic principle. 

Leibniz's Principle of Continuity. Nature must behave in a continuous fashion. 

What does this mean? It is best to look at a concrete example, so consider 
again the motion of the rock discussed at length in the preceding section. 
This could be regarded as a simple experiment in physics, out of wh ich arise 
the variables hand t, related by the function f pictured here. 

(2,64) 
64 

48 

32 

16 

o 2 3 4 

Notice that f is continuous at each point in its domain 0::; t::; 4. Ac­
cording to Leibniz's principle, it could be no other way, for f describes a 
process that actually takes place in nature. It would be impossible, for 
ex am pie, for the rock to behave as described by the function 9 pictured 
below. 

(1,64) 
64 

48 

32 

16 

o 2 3 4 
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This describes the rock c1imbing steadily to 48 feet, then instantly leaping 
to a height of almost 64 feet. Only a mirac1e (i.e., something that disregards 
the laws of nature) could accomplish this! Leibniz's principle says that 
nature simply cannot allow the discontinuity of the function g at the point 
t = 1. If there are laws of nature, then these laws determine an underlying 
purpose, and the action of nature must agree with that purpose. Thus only 
continuous functions can arise out of this experiment, or any experiment, in 
physics. Or so the philosopher thought. 

Nothing happens all at onee, and it is one ofmy great maxims, and among 
the most eompletely verified, that nature never makes leaps: whieh I ealled the 
Law of Continuity . ... 

Leibniz 

Let us go into this a bit further. Consider the instant when t is 1. What 
happens naturally (i.e., in the course ofnature) is supposed to be continuously 
related both to the past and to the future. Wh at does this mc an in terms of 
change? Does continuity mean that a small change L1t in time will produce 
only a small change L1h in height? Certainly not, because anyone can think 
of occasions where nature allows large changes in little time. Instead, con­
tinuity means that, as LI t is taken nearer and nearer to zero, then the cor­
responding change LI h must also tend to zero: 

LI t ---+ 0 implies LI h ---+ O. 

In other words, to say that h is a continuous function of t is to say 
Limit LI h = O. (2) 
At-O 

To illustrate this, notice the difference in the behavior of fand g near the 
point t = 1. 

Llh [---

48 -- I 
I 
I 
I I 

ILltl 
L.-I 

48 
Llh 

!1f------ I 

48~-1 ! 
I I 
I I 
I I 

I Llt I 
I---.,j 

I 

The first two figures show that as Llt -> 0, either through positive or negative values, 
Llh -> O. Thus, Limit~t_O Llh = 0 and f is continuous at 1. The third figure shows that 
as Llt -> 0 through positive values, Llh -> 16. Thus, Limit,lt_l + Llh #- 0 and 9 is diseon­
tinuous at 1. 

Condition (2) expresses the definition of continuity in terms of change. We 
should check to see that the definition of continuity by condition (2) agrees 
with the definition of continuity given in Chapter 1. To see this, assume that 
h = f(t) satisfies condition (2). Because Llh = f(t + Llt) - f(t), this condition 
tells us that 

Limitf(t + Llt) - f(t) = 0, 
Ltl--+Ü 

which means 
Limit f(t + Llt) = f(t), 
Llt-+O 
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which says that 
f(t) = Limf at t, 

showing that f satisfies the definition of continuity given in Chapter 1. 

LJh 

LJt 

Think of t as being fixed, with Ll t tending to zero 

EXERCISES 

3.1. Suppose that, at a certain point, the derivative dhjdt exists. Prove that condition (2) 
must then be satisfied, showing that continuity follows from the existence of the 
derivative. Hint. As Llt -> 0, LlhjLlt tends to the limit dhjdt. Why does this imply that 
Llh --> O? 

3.2. Does the existence of a derivative follow from continuity? That is, if Llt -> 0 implies 
Llh --> 0, does it automatically follow that the limit of LlhjLlt exists? 

3.3. If y is a function of x, which of the following conditions mean that the function is 
continuous? 
(a) Lly -> 0 as Llx --> O. 
(b) Llx -> 0 as Lly --> O. 
(c) LimitAr_oLlx = O. 
(d) LimitAx_oLly = O. 

3.4. If derivatives behaved like fractions, what would you expect the following products 
of derivatives to be equal to? 
(a) (dAjdC)(dCjdr). 
(b) (dyjdx)(dxjdy). 
(c) (dVjdh)(dhjdt). 

§4. A Chain Rule? 

Believe it or not, there is still something to be learned from the example 
given on the first page of Chapter 1. Three variables arise from that example, 
related in the following way. 

C = cost of c:=J W, where W' L = 12. 
L 



4. A Chain Rule? 119 

The variable C can be expressed either in terms of L alone or of Walone, 
while the variables Wand L are themselves related by the fact that their 
product must be 12, the area of the rectangle. This leads to the following 
relations. 

C = 7L 48 + L' (3) 

L = 12 
W' 

(4) 

C = 84 4W W+ . (5) 

Equations (3) and (4) might be thought of as links in a chain of relations 
which together produce equation (5). That is, the first two equations show 
how C is a function of Land L is a function of W. This chain of relations 
forces C to be a function of W, namely, the function specified in equation (5). 
One feels that there ought to be a rule governing derivatives in the presence 
of such a chain. The derivatives that arise from (3), (4), and (5) are as folIows. 

dC 48 
dL = 7 - LZ· (3') 

dL -12 
(4') 

dW W z · 

dC -84 
dW= WZ + 4. (5') 

Is there a "chain rule", as one feels there ought to be? Leibniz's notation 
suggests one to uso The notation suggests that derivatives might act like 
fractions, in which case we might expect that the product (dCjdL)(dLjdW) is 
equal to dCjdW. Let us see if this is so. 

dC dL = (7 _ 48)(-12) [from (3') and (4')] 
dL dW L 2 W 2 

-84 48·12 
= W 2 + L 2 W 2 

-84 48·12 
= W 2 + (LWf 

-84 
= W 2 + 4 (since LW = 12) 

dC 
dW [from (5')]. 
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It is so! Leibniz's notation has suggested a chain rufe for derivatives. Has any 
magician's trick ever been so delightful as this? 

EXERCISES 

4.1. From equation (4) we get W = 12/L. 
(a) Find dW/dL. 
(b) If derivatives behaved like fractions, one might expect that the product of 

dW/dL and dL/dW is 1. Is it? 

4.2. Suppose y = I/x. 
(a) Find dy/dx. 
(b) Suppose, in addition, that x = t 2 + 3t. Find dx/dt. 
(c) The chain of relations y = I/x and x = t 2 + 3t teils us that y = 1/(t2 + 3t). 

Find dy/dt by using the general rule for reciprocals. 
(d) Using your answers to parts (a) and (b), find the product of dy/dx and dx/dt. 

Does your answer agree with dy/dt as found in part (c)? Hint. After finding the 
product, get your answer entirely in terms of t by replacing x with t2 + 3t. 

4.3. Suppose y = JU. 
(a) Find dy/du. 
(b) Suppose, in addition, that u = x 2 + 9. Find du/dx. 
(c) The chain of relations y = JU and u = x2 + 9 teils us that y = Jx2 + 9. Find 

dy/dx by using the square root rule. 
(d) Using your answers to parts (a) and (b), find the product of dy/du and du/dx. 

Does your answer agree with dy/dx as found in part (c)? 

4.4. Consider the chain of relations y = u5 and u = 3x2 + 7x. What does this tell us 
about the dependence of y upon x? Answer: The dependence of y upon x is 
expressed by the rule y = (3x2 + 7X)5. 

4.5. Consider each of the following chains of relations. What does it tell us about the 
dependence of y upon x? 
(a) y = u3, U = 7x - 13. 
(b) y = 5/(2 - t), t = 2 - x. Answer: y = 5/x. 
(c) y = u2, U = x3 - 3x + :n:. 

4.6. A complicated dependence can often be regarded as made up of a chain of simpler 
dependences. For each of the following, specify such a chain. 
(a) y = (4x 2 - 6X)7. Answer: This can be regarded as the result of the chain y = 

u 7, U = 4x2 - 6x. 
(b) y = J3 - 2x + x 2 . 

(c) Y = (19x - 4)5. 
(d) y = (5x + {l/X) )4. Answer: This is y = u4 , where u = 5x + (I/x). 

§5. TheChain Rule 

Suppose that we have two functions that form a chain of relations, and 
suppose that each has a derivative. That is the setting for the chain rule. 
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Chain Rule. If y is a function of u and u is a function of x, then 

dy dydu 
dx du dx' 

This is the rule that Leibniz's notation enabled us to guess. It is also a 
rule that Leibniz's notation enables us to remember, since it says, essentially, 
that derivatives multiply just like fractions, provided that Leibniz's nota­
tion is used. 

Why is this rule true? First note that u is a continuous function of x, 
since dujdx exists. This means that 

Llu ~ ° as Llx ~ 0. (6) 

(See exercise 3.1.) This fact will be useful in amoment. 
To see the plausibility of the chain rule, consider wh at is produced by a 

nonzero change Llx in x. First, a change Llu in u occurs (since u is a function 
of x), and then the change Llu in turn pro duces a change Lly in y (since y is 
a function of u). By ordinary multiplication of fractions, 

Lly Lly L1u 
Llx Llu L1x' 

(7) 

provided Llu 'i- 0. As Llx ~ 0, equation (7) becomes "in the limit" 

dy dy du 
dx du dx' 

by virtue of condition (6). D 

What has just been given is more of a "plausibility argument" than a 
real proof to justify the chain rule. The trouble is that equation (7) does not 
hold if Llu = 0, i.e., if a nonzero Llx should produce no change in u. A more 
careful proof, taking account of this troublesome case, will be outlined in 
a problem at the end of Chapter 8, for those rare readers blessed with both 
skepticism and patience. Let us for the time being accept the chain rule as 
true, and learn how to use it. It is the most important rule governing 
derivatives. 

EXAMPLE 1. What is the derivative of(3x2 + 7X)5? 
Here we want dyjdx, where y = (3x 2 + 7X)5. As in exercise 4.4, we may 

regard y as being given in terms of x by the chain of relations 

y = u5 and u = 3x2 + 7x. 
By the chain rule, . 

dy dy du 
dx du dx 

= 5u4(6x + 7) 

= 5(3x2 + 7X)4(6x + 7). D 
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EXAMPLE 2. What is the derivative of (x 3 - 3x + n)2? 
Here we want dy/dx, where y = (x3 - 3x + n)2 = u2, if we set u equa1 

to x3 - 3x + n. We then have the chain 

y = u2 and u = x3 - 3x + n. 
By the chain rule, 

dy dy du 
dx du dx 

= 2u(3x2 - 3) 

= 2(x3 - 3x + n)(3x2 - 3). 

(Note that Example 2 can be done by the rule for squares, to get the same 
answer. The rule for squares is simply the special case of the chain rule that 
arises when a chain of relations involves a square.) D 

EXERCISES 

5.1. Wh at is the derivative of(7x - lW? Hint. The chain ofrelations in exercise 4.5(a) 
arises here. 

5.2. Find the derivative of(4x2 - 6X)7. Hint. We want dy/dx, where y = (4x 2 - 6X)7 = 

U 7, if we set u equal to 4x2 - 6x. 

5.3. Regard each of the following as being given by an appropriate chain of relations, 
and use the chain rule to obtain the derivative. 
(a) (5x + (l/x) )4. 
(b) (x 2 - 2x + 1)3. 
(c) (t2 + t)3. 
(d) (5L - l6nL 2)4. 

5.4. The area, radius, and circumference of a circle are related by the chain A = nr2 and 
r = (l/2n)C. Find dA/dC by the chain rule. Answer: dA/dC = (l/2n)C = r. 

5.5. On the basis ofthe answer to exercise 5.4, and with nothing but Leibniz's notation 
to guide your intuition, guess what dC/dA iso 

5.6. From the equations A = nr2 and C = 2nr, 
(a) find an algebraic rule giving C in terms of A. 
(b) find dC/dA from your answer to part (a), and see ifit agrees with the guess made 

in exercise 5.5. 
Partial answer: C = y'4nA. (Find dC/dA by the square root rule.) 

5.7. If y = x 2, X > 0, then it follows that x = JY, y > O. 
(a) Find dy/dx from the equation y = x2 

(b) Find dx/dy from the equation x = JY. 
(c) The expression dy/dx "looks like" the reciprocal of dx/dy. Is it? 
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§6. Related Rates 

Problems involving related rates are tailor-made for the chain rule. Let 
us do an easy example, then a harder example, in order to make some observa­
tions on how such problems may be handled. 

EXAMPLE 3. A pebble is dropped in still water, forming a circular ripple 
whose radius is expanding at a rate of 3 inches per second. When the radius 
is 7 inches, how fast is the area A of the ripple increasing? 

In rate problems it is important to get straight exactly wh at we are 
required to find, as weIl as what we are given to start off with. One must 
remember that the derivative measures the instantaneous rate of increase. 
The rate of increase of area A (with respect to time) is then dA/dt. The goal 
of Example 3 is then to find dA/dt when r is 7. This may be abbreviated by 

~~ Ir=7 (8) 

(read "dA/dt, evaluated when r is 7"). The expression (8) is the rate we are 
required to find. 

What are we given to work with? The first sentence of Example 3 teIls 
us a related rate: 

dr 
dt = 3, (9) 

and we know that there is a chain of relations connecting the variables A, r, 
and t: 

A = nr2 and r is a function of t. 

By the chain rule, using (9), 

dA dA dr 
-- = - - = 2nr(3). 
dt dr dt 

Therefore, 
dA 
dt = 6nr. 

To evaluate expression (8), plug in r = 7: 

dAI -d = 6nrlr=7 
t r= 7 

= 6n(7) 

= 42n in2/sec. 

(The expression "in2/sec" abbreviates the phrase "square inches per second". 
Why must dA/dt come out in these units?) D 
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EXAMPLE 4. The bottom end of a 10-foot ladder resting against a wall is 
pulled away from the wall at a rate of 2 ft/sec. At what rate is the top end 
falling at the instant when the bottom end is 6 feet from the wall? 

y 

L..l... ____ ~ _ 2 ft/sec 
x 

There are two ways to work this problem, and we shall look at both of 
them. As with virtually every calculus problem, the first step is to see the 
problem in terms of variables. Time is certainly one variable, and the others 
are x and y, the legs of a right triangle formed by the ladder, the wall, and 
the floor. As time t increases, it is evident that x increases and y decreases. 
The derivative dy/dt gives the rate of increase of y. The rate at which the 
top of the ladder falls is the rate of decrease of y, which is the negative of 
dy/dt. Thus we are required to find 

- ~~IX=6 (10) 

What are we given to work with? We know a related rate: 

dx= 2 
dt ' 

(11) 

and we know an age-old relation that connects the variables x and y: 

(12) 

Solving this equation for y shows that we have the following chain of 
relations connecting y, x, and t: 

y = J100 - x 2 and xis a function of t. 

By the chain rule, with help from equation (11), 

so that 

dy dy dx 
dt dx dt 

-2x 
2J100 _ x 2 (2), 

dy 2x 

dt ~100 - x 2 
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To find (10), as desired, plug in x = 6: 

dyl 
dt x:6 

12 

~100 - 36 

3 
= "2 ft/sec. o 

An alternate way to finish this problem is as follows. In equation (12), 
x and y both depend upon t. Taking the derivative with respect to t yields 

d 2 2 d 
dt (x + y ) = dt (100), 

dx dy 
2x dt + 2y dt = 0 (by rule for squares), 

dy 
4x + 2y dt = 0 [by (11)], 

so that 
dy 2x 

dt y 
Therefore, 

_ dyl = 2xl = 2(6) = ~ ft/sec 
dt x = 6 Y x = 6 8 2 ' 

since (by the Pythagorean theorem) y = 8 when x = 6. o 
Related rates problems may seem difficult at first because everything in 

them seems to be changing at once. But this is only an invitation to see 
the problem in terms ofvariables and to use the derivative's magie power to 
measure change. Then adopt the philosopher's point of view. Seek that 
which does not change, that "holds sway above the ftux". Search for a 
relation between the variables that always holds. This relation may be as 
simple as the Pythagorean theorem (in Example 4) or the formula for the 
area of a circle (in Example 3). Finally, express yourself in the language 
of Leibniz. It will lead you to the truth. 

EXERCISES 

6.1. A pebble is dropped in still water, forming a circular ripple whose radius is in­
creasing at a rate of 5 inches per second. When the radius is 3 inches, how fast is 
the area of the ripple increasing? 

6.2. The bottom end of a 13-foot ladder resting against a wall is pulled away from the 
wall at a rate of 3 feet per second. How fast is the top end falling when 
(a) the bottom end is 5 feet from the wall? 
(b) the top end is 5 feet from the floor? 
Answers: (a) i ft/sec. (b) 356 ft/sec. 
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6.3. An airplane is flying horizontally at 5000 feet, with speed 600 ft/sec, and an observer 
is on the ground. Let s be the distance from the observer to the airplane. 

r--___ x __ "-7.~ 600 __ 
ft/sec 

5000 

Find ds/dt, the rate of increase of s, at each of the following instants. 
(a) Two seconds after the plane passes direct1y above the observer. 
(b) One second after the plane is direct1y overhead. 
(c) At the instant the plane is overhead. 
(d) Three seconds before the plane is direct1y overhead. 
Hint. (c) At this instant the plane is dosest to the observer, so sassumes its minimum. 
What value does the derivative take when a minimum is attained? 
H int. (d) You want (ds/dt) Ix= _ 1800, and you should expect a negative answer, 
since the distance s is decreasing at this instant. 

6.4. Consider again the rock whose motion is described at length in Section 2. Suppose 
there is an observer at ground level, 36 feet from the point where the rock is released. 
Let s be the distance from the observer to the rock. 

Find ds/dt when 
(a) t = 1 (and h = 48). 
(b) t = 2 (and h = 64). 
(c) t = 3 (and h = 48). . 
H int. From the table in Section 2, dh/dt is 32, 0, and - 32 at times t = 1, 2, and 3, 
respectively. 

6.5. A child 4 feet tall walks direct1y away from astreet light that is 10 feet above the 
ground. She walks at a rate of 5 feet per second. How fast does the tip ofher shadow 
move? 
H int. You want dL/dt, knowing that dx/dt = 5, and knowing, from similar triangles, 
that the relation L/lO = (L - x)/4 always holds. Proceed as in the alternate solution 
to Example 4. 
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----L----

§7. Antiderivatives 

We have so far been mainly concerned with the following operation: getting a 
function, forming with it a quotient of differences, and taking a limit in order 
to get its derivative. This operation is called differentiation. To differentiate a 
function is to take its derivative. For example, we get 

by differentiating t, 

by differentiating 
t 2 

2' 

t2 by differentiating 
t 3 

3 ' 

t3 by differentiating 
t4 

4 (13) 

In general, we get 
t" + 1 

tn by differentiating 
n + 1 

What we have been studying so far is called the differential calculus. The 
name is due to Leibniz who, writing in Latin, spoke of "calculus differen­
tialis". An important concern of the differential calculus is simply to fill in 
the question mark given the following table. 

y dy/dt 

f(t) ? 

The differential calculus is concerned with how to get from the second 
column above, to the third. It is done, of course, by means of Fermat's 
method. We shall now consider the reverse problem: how to getfrom the third 
column back to the second. This is a principal concern of"calculus integralis", 
as Leibniz called it, writing in 1696. 

dy/dt 

f(t) 
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This is the problem of finding an antiderivative. Fortunately, we already 
know a little about antiderivatives. From the formulas (13) it is completely 
obvious that 

In general, 

is an antiderivative of 1, 

t 2 
is an antiderivative of 

2 
t, 

t3 
is an antiderivative of t2 

3 
, 

t4 
is an antiderivative of t 3 • 

4 

t"+ 1 

n+l 
is an antiderivative of t". 

Knowing this enables one to find easily antiderivatives of many functions 
whose rules involve powers only: 

An antiderivative of - 32 is - 32t. 
An antiderivative of - 32t is - 16t2 . 

An antiderivative of64 - 32t is 64t - 16t2 • 

An antiderivative of 1 + 4t - 9t2 is t + 2t2 - 3t3 . 

We generally say "an", rather than "the", in speaking of antiderivatives, 
because there is generally more than one antiderivative of a given function. 
Having found an antiderivative, you can easily find another, simply by adding 
any constant to the one already in hand. Reason: If F is an antiderivative of 
f (i.e., if F' = f), then F + e is too [since (F + e)' = F', the derivative of a 
constant e being 0]. Thus, for example, 

-32t, -32t - 7, -32t + n, -32t + e, 
where e can be any constant, are all antiderivatives of - 32. We cannot 
speak of "the" antiderivative of - 32, unless we specify, by giving additional 
information, exactly which antiderivative we mean. 

EXAMPLE 5. Consider the function given by f(t) = - 32, with domain 0 ~ t. 
Find 

(a) an antiderivative F of f. 
(b) the antiderivative F of f that takes the value 64 when t is O. 
(c) the antiderivative F off that takes the value - 40 when t is 5. 

We have already answered part (a). Any function whose rule is of the 
form - 32t + e will do, where e can be any constant (inciuding, of course, 0). 

o 
To ans wer (b), note that what is required is to fill in properly the following 

table. 
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F(t) J(t) 

o 64 
? -32 

The first line of the table gives enough information (we hope) to make the 
antiderivative unique. By part (a) we expect 

F(t) = -32t + C, 

and by the first line of the table we must have 

F(O) = 64. 

From (14), with t = 0, we get 

F(O) = -32(0) + C = C. 

(14) 

(15) 

This equation, together with (15), shows that C must be 64. Thus, in equation 
(14), not just any constant C will do; we must have F( t) = - 32t + 64. D 

To answer (c) we must satisfy the condition 

F(5) = -40, 

in addition to equation (14), which implies 

F(5) = - 32(5) + C. 

Putting (16) and (17) together determines C: 

-40 = -160 + C, 

C = 120. 

The answer to part (c) is then given by F(t) = - 32t + 120. 

(16) 

(17) 

D 

An antiderivative is generally determined, not uniquely, but only "up to 
an additive constant". Additional information, as in parts (b) and (c) of 
Example 5, is required to specify a unique antiderivative. How can we be 
sure of uniqueness, though? Our procedure here will be justified in the next 
section. 

EXERCISES 

7.1. In each ofthe following, specify an antiderivative F ofthe given functionJ. 
(a) J(t) = 3t + 2. Answer: F(t) = !t2 + 2t + C. 
(b) J(t) = - 32t + 96. 
(c) J(t) = 1 +t+t2 . 

(d) J(t) = nt3. Answer: F(t) = int4 + C. 

7.2. In each of parts (a) through (d) of exercise 7.1, find the antiderivative F that takes 
the value 6 when t = 2. 
Answers: (a) F(t) = W + 2t - 4. (d) F(t) = int4 + 6 - 4n. 
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7.3. In each ofthe following the derivative of his specified. Use antiderivatives to find h 
itself. 
(a) dhfdt = 96 - 32t. 
(b) dhfdt = -40 - 32t. 
(c) dhfdt = -32t. 

7.4. In each of parts (a) through (c) of exercise 7.3, find the antiderivative h that takes 
the value 100 when t = O. An.:;wer: (a) h = 96t - 16t2 + 100. 

7.5. In each ofparts (a) through (c) of exercise 7.3, find the antiderivative h that takes the 
value 100 when t = 1. Answer: (a) h = 96t - 16t2 + 20. 

§8. A Fundamental Principle and Freely 
Falling Bodies 

Taking antiderivatives points us in a direction exactly opposite the direction 
of differential calculus, and leads to the study of integral calculus. The reason 
for the use of the word integral will be explained in Chapter 6. 

Let us examine more carefully the notion of an antiderivative. Because 
we get 0 by differentiating a constant function F(t) = C, it seems plausible that 

any antiderivative of 0 is a constant function. (18) 

Can we be sure of this? Another way of saying the same thing is as folIows: 

If F'(t) = 0, then F(t) = C for some constant C. (19) 

Statements (18) and (19) are true, but only with the additional understand­
ing that the domain in question is connected, that is, has no holes in it. The 
example pictured below shows that statement (19) can fail with holes in the 
domain. In this example F'(t) = 0, yet the function F is not constant. 

0---

o 0 

0---0 F 

Disconnected domain 

r---__<O)----<O)----<O>---- F' 
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In analysis it is shown that (18) and (19) are true, prnvided the domain is 
connected. The reader is asked to accept this as intuitively obvious. It has an 
important consequence, which will provide the basis for much that will 
follow. 

A Fundamental Principle of Integral Calculus. Let Fand A be Junctions 
defined on the same connected domain, and assume that dA/dt = dF/dt. Then, 

Jor some constant C. 

PROOF. First note that 

A(t) = F(t) + C 

d dA dF 
-(A - F) = - - - = 0 
dt dt dt ' 

since dA/(/t = dF/dt, by assumption. Therefore, 

A - F = an antiderivative of 0 [by (20)] 

= a constant function [by (18)], 

since the domain is assumed connected. Thus, for some constant C, 

A(t) - F(t) = C, 

A(t) = F(t) + C. 

(20) 

o 

The fundamental principle just established is sometimes phrased this 
way: Two antiderivatives oJ the same jUl1ctiol1 differ by a constant. The reader 
is cautioned to remember that zero is a perfectly good constant. 

Intuition often runs ahead of reason. A good example of this is found in 
Section 7, where we expected equation (14) to hold and to justify what 
followed there. Now we know that we were right. The fundamental principle 
guarantees equation (14), for it says that any antiderivative whatsoever of 
- 32 differs by a constant from - 32t, on a connected domain. Thus, parts 
(b) and (c) of Example 5 do indeed have unique answers, for the domain of 
Example 5 is connected. 

Though the fundamental principle may appear abstract, it has quite 
practical uses. It comes into play whenever we know the rate of change of a 
quantity and want to know the quantity itself. An example ofthis is furnished 
by the study of Ji'eely jalling bodies. This refers to the vertical movement of 
objects thrown in the air near the earth's surface. If gravity is the only force 
acting on the body (which means that the body is not self-propelled and that 
the effect of air friction is ignored), the body is said to be jreely jalling. 

Near the earth's surface, the effect of gravity is very simple to describe. 
Each second gravity decreases the upward speed of a freely falling body by 
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32 ft/sec. That is, if V is the upward speed of a freely falling body, then the 
effect of gravity is specified by the eguation 

~~ = -32. (21) 

This equation gives the rate of increase of v. If we want to know v itself, the 
fundamental principle says that 

v = -32t + C 

for some constant C. We need additional information to determine C. If, 
for example, the initial speed was known to be 64 ft/sec, then v = - 32t + 64, 
as in part (b) ofExample 5. If, as in part (c) ofExample 5, the speed is known 
to be downwards at 40 ft/sec when t = 5, then we must have v = - 32t + 120. 

EXAMPLE 6. A rock is thrown upward from ground level with an initial 
speed of 64 ft/sec. Treating the rock as a freely falling body, ans wer the 
following: 

(a) What is the maximum height attained by the rock? 
(b) Where is the rock 3 seconds after it is released? 
(c) When, and with what speed, will it hit the ground? 

Here, we know that the upward speed v is given by v = - 32t + 64, by 
the remarks preceding the example. But the upward speed v is equal to dh/dt, 
the rate of increase of height. Hence. 

dh 
dt = -32t + 64. 

Therefore, by the fundamental principle, 

h = - 16t2 + 64t + C (22) 

for some constant C. What is C? Since the rock is thrown from ground level, 
we must have h = 0 when t = 0, so that, from (22), 

0= -16(Of + 64(0) + C. 

Therefore, C = 0 and (22) becomes 

h = - 16t2 + 64t. 

But this is the height formula that was discussed at length in Seetion 2. From 
that section we know that the maximum height of the rock is 64 feet, the 
rock is at 48 feet and falling when t = 3, and it hits the ground when t = 4 
with a down ward speed approaching 64 ft/sec. 0 
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The way the preceding example was begun involved two steps that can be 
schematized as follows: 

(time since release) 

o 

h 
(height) 

o 
(Step 2) 

v (= dh/dt) 
(upward speed) 

+64 
(Step 1) 

dv/dt 
(upward acce)eration 

due to gravity) 

-32 

Example 6 involves two antiderivaties. In step 1, when we "pull back" from 
the fourth column to the third, we must adjust the constant so that the 
initial speed is 64, as required. When we pull back from the third column to 
the second, another constant must be adjusted to be in accordance with the 
given initial height. 

EXAMPLE 7. From a building 200 feet high, a ball is thrown downward at 
an initial speed of 50 ft/sec. Find an algebraic expression for the height of the 
ball in terms of the time since release, treating the ball as a freely falling 
object. 

Here, we begin with the following information, and we want to fill in the 
question mark giving h in terms of t. To do this we must first fill in the other 
question mark properly. 

o 

h 

200 
? 

v = dh/dt 

-50 
? 

dv/dt 

-32 

We must simply pull back twice by taking antiderivatives, each time adjusting 
the constant in accordance with the initial conditions. Pulling back to the 
third column yields v = - 32t - 50, and thus in the second column we must 
have h = -16t2 - 50t + 200. This equation gives h in terms of t, so long as 
gravity is the only force that acts upon the ball, that is, until h = 0 when the 
ball hits the ground. 0 

The method outlined in Examples 6 and 7 develops a mathematical 
"model" predicting the motion of a freely falling body. Given the initial 
speed and the initiallocation, we can find the formulas governing the speed 
and the height at any time, so long as gravity acts. Thus the dynamics of a 
freely falling body can be worked out with ease, through the help of our 
fundamental principle of integral caIculus. 

Our model is hardly perfeet, however, for the not ion of a freely falling 
bady is an idealization ofwhat actually happens when a rock is tossed up in 
the air. Air friction has its effect, particularly at high speeds, and a more 
complex model is required to account for this and other factors. 
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EXERClSES 

8.1. A ball is thrown vertically from ac1ifI Find its upward speed v in terms ofthe time t 
since release if 
(a) it is initially thrown upward at 96 ft/sec. 
(b) it is initially thrown downward at 60 ft/sec. 

8.2. A rock is thrown upward from ground level at an initial speed of96 ft/sec. 
(a) What is its maximum height? 
(b) Where is the rock 4 seconds after release? 
(c) When will the rock hit the ground? 
(d) Wh at is the speed of the rock at the moment of impact? Answer: Limitt~6-

v = - 96 ft/sec. 

8.3. From a tower 256 feet high, a ball is thrown upward at an initial speed of 96 ft/sec. 
When, and with wh at speed, will it hit the ground? H int. 

o 

? 

h 

256 
(Step 2) 

o 

v 

96 
(Step 1) 

? 

dv/dt 

-32 

Partial answer: At impact the downward speed approaches 160 ft/sec. 

8.4. Suppose, in exercise 8.3, the ball is thrown downward initially at 96 ft/sec. When, 
and with wh at speed, will it hit the ground? H int. This is done like exercise 8.3, 
except the initial speed is - 96 instead of 96. 

8.5. A rifie is supposed to have a muzzle velocity of 1000 ft/sec. If it is fired straight up, 
how high will the bullet go? 

8.6. A certain rifie, when fired straight up, will send abullet to a height of 2000 feet. 
Wh at is the muzzle velo city of the rifie? Hint. Letting Vo be the muzzle velocity, 
we have 

o 

Find vo, beginning with equation (21). 

h v 

o 
2000 

Vo 
o 

8.7. A boy huris a ball directly upwards. It hits the ground 8 seconds later. What was 
the ball's initial speed? H int. 

Find vo. 

o 
8 

h v 

o 
o 
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§9. Antiderivatives and Distance 

The method offreely falling bodies does not apply, of course, to self-propelled 
objects like motorcycles, cars, and rockets. Nevertheless, antiderivatives 
come into play with self-propelled objects when it is desired to convert 
speedometer readings into distance traveled. Suppose a navigator charts 
his speedometer reading as it varies over the span of an hour. How can the 
navigator determine from his chart the distance traveled during this hour? 
The answer involves antiderivatives. 

EXAMPLE 8. A rocket ship blasts through the firmament on ajourney directly 
away from the earth. At noon on a certain day the navigator becomes in­
te res ted in the ship's speedometer reading as a function of time, and finds 
that it is given by 100t3 - 400t2 + 800t, where t is the time in hours since 
noon. If this function J gives the speedometer reading in km/hr (kilometers 
per hour), find the distance traveled by the rocket 

(a) between noon and two o'clock. 
(b) between one and four o'clock. 

The speedometer reading is the instantaneous rate of change of distance 
from the earth. Ifwe let s be the distance from the earth, we then have 

ds 
dt = 100t3 - 400t2 + 800t = J(t). 

The distance s must be in kilometers, since the speedometer reading is given 
in km/hr. Schematically, the situation we are faced with can be pictured as 
folIows. 

(hours since noon) 

o 
1 
2 
4 

s 
(distance from earth) 

? 
? 
? 
? 

F(t) 

ds/dt 
(speed) 

f(t) 

We know the expression for J(t) and we need to fill in the question marks 
correctly to answer (a) and (b) above. 

We first find an antiderivative F of J: 

s = F(t) = 1oot4
_ 4oot3+ 8oot2+ C. 

432 

We know the position Junction F must be of this form by the fundamental 
principle, but we are not given enough information to determine C. Never­
theless, by plugging in the values 0, 1,2, and 4 into this expression for F, we 
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can easily figure out wh at was required: 

(a) The distance traveled between time t = 0 and t = 2 is equal to 

(position at t = 2) minus (position at t = 0) 

= F(2) - F(O) 

= 933.7 + C - C 

= 933.7 km. 

F(2) 

s = F(t) 
= position at time t 

F(O) 

(b) The distance traveled between time t = 1 and t = 4 is equal to 

F(4) - F(1) = 4266.7 + C - (291.7 + C) 

= 3975 km. o 
To get the distance traveled, given the speed function f, is then a job 

for antiderivatives. If F is an antiderivative of f, then F gives the position 
at time t, so that the initial and final positions are readily determined. The 
distance traveled is simply the distance between the initial and final position, 
if the ship does not reverse course. (In Example 8 the speed function is 
always positive, so the direction of travel is always away from the earth.) 

What happens if the speed function changes sign in the midst of the 
journey, so that the course of travel is reversed? Then the distance traveled 
must be calculated in two steps, as illustrated in the next example. 

EXAMPLE 9. A rock is thrown upward at an initial speed of 64 ftjsec. How 
far does the rock travel during the first 3 seconds of its flight? 

Here the speed function f is given by f(t) = 64 - 32t, because of the 
influence of gravity. When t = 2, the sign of the speed function changes 
from positive to negative, showing that the rock's motion changes from up 
to down. We must calculate separately the distance traveled by the rock 
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during its upward and down ward journey. An antiderivative F is given by 

F(t) = -16t2 + 64t + C 

for some constant C. We are not given enough information to determine C, 
for we do not know the initial height of the rock. 

Nevertheless, the distance traveled upward is 

F(2) - F(O) = 64 + C - C = 64 ft. 

The distance traveled down ward from t = 2 to t = 3 is 

F(2) - F(3) = 64 + C - (48 + C) 

= 16 ft. 

The total distance traveled is then 80 feet, even though the distance between 
the rock's final and initial positions, given by F(3) - F(O), is only 48 feet. 
(Example 9 is, of course, essentially the same situation that we have met 
twice before, in Section 2 and in Example 6, Section 7.) 0 

EXERCISES 

9.1. In Example 8, find the distance traveled by the rocket ship between 
(a) t = 0 and t = 3. 
(b) t = 1 and t = 3. 

9.2. If ds/dt is the upward speed, then its rate of increase, wh ich is d(ds/dt)/dt, is the 
upward acceleration. In Leibniz's notation, the symbol d(ds/dt)/dt is abbreviated 
to d2s/dt2. Find the upward acceleration in Example 8, and then answer the 
following: 
(a) Is the rocket accelerating or decelerating in its upward movement when t = 3? 
(b) Is the rocket accelerating or decelerating when t = O? Answer: Since d2s/ 

dt21, ~ 0 = 800 km/hr per hour, which is positive, the rocket is accelerating. 

9.3. In Example 9, how far does the rock travel between 
(a) t = 1 and t = 3? 
(b) t = 0 and t = 4? Answer: 128 feet. 

9.4. A stone is thrown upward from a tower window at an initial speed of 48 ft/sec. 
Find the distance traveled by the stone during its first 3 seconds of flight, treating 
it as a freely falling body. 

9.5. Do exercise 9.4 with the modification that the stone is thrown down ward instead of 
upward. 

9.6. The speed function f of a ship stays constant at 30 km(hr, i.e., f(t) = 30. Find how 
far the ship travels between t = 1 and t = 4, 
(a) by the method of anti derivatives, as in ExampIe 8. 
(b) by common sense. 
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§10. A Token 

There is a lot to be learned in the simple pastime of contemplating a circle. 
(Chapter 7, in fact, will be entirely devoted to this.) Through a problem at 
the end of Chapter 2, it was established that the area A of a circle is given by 

(23) 

where r is the radius. As also noted in Chapter 2, problem 16, Archimedes 
established the fact that the two figures below have the same area. 

Circleof 0 
radius rand A 
circumference C 

Right tri angle 
ofbase rand 
height C 

The equality of areas produces the equation nr2 = tCr, from which we get 
the formula for the circumference, 

C = 2nr. (24) 

From (23) we derive the equation dAjdr = 2nr, so that by (24) we have 

~ = C. (25) 

Thus the derivative (with respect to r) of the area of a circle is equal to the 
circwnference! It takes only a little sensitivity to recognize that there must 
be here some sort of underlying harmony that has so far gone unnoticed. 
Equation (25) is a token from the gods. It is up to us to figure out what it 
really means. Remember the words of Xenophanes and Heraclitus! 

Is equation (25) just an accident? Or should we have realized, by adopting 
the proper point of view, that this equation was bound to be true? Let us 
set about trying to derive equation (25) directly Fom fundamental considera­
tions. We may discover something worth knowing in the process. 

The equation C = 2nr defines, of course, a straight line of slope 2n, 
passing through the origin. The variables r, C, and Aare then related as 
indicated ih the figure. 
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(r, C) 

If r is changed by a sm all amount Llr, wh at are the corresponding changes 
LI C and LlA? They are as indicated in the figure below. 

r 
LiC 

C 

To calculate the change LlA in area, regard it as being made up of a rectangle 
surmounted by a triangle. The rectangle has base Llr and height C, and the 
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tri angle has base ,1r and height ,1C. Therefore, 

1 
,1A = C(,1r) + 2(,1r)(,1 C). 

Dividing by ,1r produces 

,1A 1 
Tr = C + 2(,1C)· 

5 Chains and Change 

As ,1r --+ 0, we must have ,1C --+ 0 also, because C is a continuous function 
of r. Therefore, 

dA L .. ,1A 
-= ImIt­
dr Llr~O ,1r 

= Limit [c + !(,1C)] 
Llr~O 2 

=c. 
What have we learned? We have learned that the equation dA/dr = C 

is simply a consequence of the fact that A is the area beneath the curve 
giving C as a continous function of r. That is, given the picture 

it must follow that dA/dr = C. 
Are areas beneath continuous functions always related to the functions 

in this way? Wh at is the secret that is still eluding us? 
It turns out that what is behind all this is the fundamental theorem of 

calculus. Leibniz guessed it, probably sometime in the 1670s. Actually, 
Isaac Newton had come upon it in 1666 (at the age of twenty-three), but 
kept it a secret. 

The fundamental theorem is discussed in Chapter 6. The reader may 
possibly be able to guess what it says beforehand, however, after doing the 
following exercises. The many uses of this theorem will still bring surprise. 

EXERCISES 

10.1. Make a guess about a relation between the three variables that occur in each of 
the fol1owing pictures. 
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(a) (b) 

(c) (d) 

A 

Answer: (c) dA/dL = C. (d) dA/dx = y. 

10.2. Guess again, as in exercise 10.1, but utilize the fact that equations for the curves are 
furnished. 

(1,55) 

(l, 1) 

(t,y) 
A A (b) --'--___ --'--_ (c) (0,0) (a) --'-____ '---_ 

Answer: (c) dA/dx = x 2 . 

§ 11. Leibniz 

Leibniz, like Descartes, is one of several mathematicians who were also 
distinguished philosophers. He said that we live in "the best of all possible 
worlds". Voltaire, who admired Leibniz, still could not tolerate his un­
restrained optimism, and satirized it in Candide. Relatively re cent develop­
ments in physics have shown, however, that profound truth can be found 
in Leibniz's seemingly naive belief: 

Ours, according to Leibniz, is the best of all possible worlds, and the laws 
of nature can therefore be described in terms of extremal principles. 

C. L. Siegel and J. K. Moser* 

• Siegel/Moser, Lectures on Celestial Mechanics (New York: Springer-Verlag, 1971) p.l. 
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MEI'SIS OCTOBRIS .. \.IM De LXXXIV. 46:-

NOVA METHODllS PRO lvIAXlfrJlS Er /I/I. 
'IIimü, itcmfFlc t.mgmtIIJIIJ, fjlJ~ 'ICt.fmc7,;"~, 11U i'nllifJlI"Irs 

'1uAnti/ales moralllr, (5 Jing:d.1re Ir() illil tAIt.li 
genlu,perG.G. L. 

SIt3xiSAX, & eurva! plllfcs, utVV, \X'W, YY, ZZ, qua rum or,U.TAB.XIT 
nat:2, 3d axcl11 normab, V X, W X, Y X, Z X, qUit "octnmr rc!pc • 

• ihn', I', ~., Y, z; & irE1 A X ;1blc.!f., ab axt, voectur x. Tangrntcs lint 
VB, \'V. C, Y D, Z E axi oecurremes refpeClive in puncHs G, C,I1, E. 
Jamredaaliqua proarbitrio aflitnua voeetur dx, & rcda qua: fit ad 
dx, ut v (vcl w, vel y, yd z )efl:::d V ß (vcl W C, vel Y D, vel ZE) vo. 
e~eur cl v (vel d w, "cl dy vcl dz) fivc diflucmia ipfarum p (vc1 i.-.iä. 
rum ',};",aut y, aut 7) His pofitis ealculi regula: Clunt ralcs: 

Sit a Cjl1anti.as data eon{bns, erit da a:qualis 0, & d ~ erit a:qu; 
a dx: fi fit y a:qu l' (feu ordin;\ta qua:vis eurva: Y '1', a:qualis cui"is or. 
dinata:relpondenticurva: VV)erit dya:qu.dv • J;:mAJJiI;oe'SII6-
tmaio: fi6tz-y+w+x a:qu.v,crit cl ;-':::'Y+',};'+x fcu dp, :tqu 

d 7. - d y .fcd w + d x. Multiplir4/io, cl x v ;cqU.lC d 11+" d x, feu rofito 
y ;-::qu.x ~', flet d y a:qu l( d l' + I' d x. In atbittlio enitn eil: vel formulam, 
\It x v, vel cOl1lpcndio pro ca Jiteral11, ut y, adlübere. Norandum & X 

& d x eodern modo in hoc calculo tracbri, ut y & dy, vclaliam Iiteram 
indctcrminatam cum fua.diftcrcntiali. Nocandum e[i3m non dari 
fempcr rcgrdlum a differentiali iEquationc, nifi cum quadam cautio· 

ne, de quo alibi. Porro Dipijio, d~ vel (pofitoza:qu.~) dz ötqu. 
±JldYi4 Yclv y Y 

Y Y d· t t , .. ~oadSig"4 hoc Fobe notan um, eum in ca cu 0 pro .~Jtcra 
fubfiituitl!f fimplitit~r cjus diftcrmei;\!is, {crv;lfi quidcm eadem h.!;na, 
& pro + z fuibi + cl l, pro - z fcribi - d z, 'It Cl( addüion~ & fil~tra4 
(lione paulo ante pofita apparct; fcd quando ;td cxcgehn \"alorum 
vcnitur, feu eum confidcracur ipCius l relatio ad x, tune apparere, an 
valor ipfius d l fit <jvantitas affirmativa,:m nihilo minor fcu negath'a: 
quod Foficrills CL:m fie, tune tangens Z E dllcltur a pund~ Z no~ wr· 
fus A, Ce ~ in partes eontrarias feu infra X.id eil :une eum 'l'[;~ or".;::.::a: 

N n 11 3 I \..,'I..~.:. 

Figure 1. First page ofthe first paper pubJished on the calculus. Leibniz wrote this short 
account-only six pages long-in 1684. The long title reads "A new method for maxima 
and minima, as weil as for tangents, wh ich is not obstructed by fractional and irrational 
quantities, and a unique calculus for it". 
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Modern books on celestial mechanics show that the course actually 
chosen as the path of a heavenly body is the optimum among all possible 
courses. It should be added that the optimum path must be defined quite 
carefully, and in a way that Fermat was more likely to have fore seen than 
Leibniz. Nevertheless, the optimization techniques of Leibniz's calculus 
enter the picture in an essential way. 

Few men have been more gifted than Leibniz. He invented a calculating 
machine that could multiply, divide, and take roots. He organized the Berlin 
Academy of Sciences and was its first president. He knew many languages, 
was an historian and a diplomat, with in te rests in economics, and a pioneer 
in the field of internationallaw. 

But when he died in 1716, little notice was taken. Only one mourner 
attended the funeral of Gottfried Wilhe1m von Leibniz, and an observer 
said that "he was buried more like a robber than what he really was, the 
ornament ofhis country." 

Problem Set for Chapter 5 

1. A motorcycie travels on a straight road leading directly away from a city. At time 
t hours past noon its distance from the city is lOt3 - 40t2 + 80t miles. 
(a) How far does the motorcycle go between one o'clock and three o'clock? 
(b) Wh at is its average speed over the time interval between one o'clock and three 

o'clock? 
(c) What is the speedometer reading at two o'clock? 
(d) At two o'clock, is the motorcycle accelerating or decelerating? 
(e) At one o'clock, is the motorcycle accelerating or decelerating? 

2. The height of a rock at time t is given by h = - 4.9t2 + 20t, where h is in meters 
and t is in seconds. 
(a) Is the rock rising or fallillg when t = 3? 
(b) How fast is the rock going when t = 3? 
(c) When does the rock attain its maximal height? 
(d) What is the acceleration ofthe rock? 

3. Suppose x and y are each functions of t. Let Adenote their product. (If x and y are 
positive, A can be pictured as the area of a rectangle whose sides vary in length as 
t increases.) 

Lly 

y 

x Llx 

The shaded area is LlA 
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(a) In time Llt, x becomes x + Llx and y becomes y + Lly. Hence A + LlA = (x + 
Llx)(y + Lly). Use this equation to find LlA in terms of x, y, Llx, and Lly. 

(b) Suppose dx/dt and dy/dt exist. What must happen to Llx and Lly as Llt -+ 07 
(c) Derive the product rule, by carrying out the following steps. 

(i) Take your answer to (a), and divide both sides ofthe equation by Llt. 
(ii) Take the limit as Llt -+ 0, using your answer to part (b), to show that 

dA dy dx 
-=x~-+y-. 
dt dt dt 

4. Back in Chapter 1, we encountered this situation linking the three variables A, s, and 
w: 

A = area of LI __ -,I w, where 2w + s = 1200. 
s 

This leads to the chain 

1 2 A = 600s - -s where s = 1200 - 2w, 
2 ' 

which produces the equation A = 1200w - 2w2 • 

(a) Using the three equations above, find dA/ds, ds/dw, and dA/dw. 
(b) Multiply dA/ds by ds/dw. Is your answer equal to dA/dw? 
(c) Find dw/ds. Is it equal to the reciprocal of ds/dw? 

5. U se the chain rule to find the derivative of each of the following: 
(a) (x2 + 7X)4. 
(b) (x 3 - (l/x) )6. 
(c) «x - 2)/(x + 2) )3. 
(d) (x 4 - 3x + 11)5. 

6. A pebble dropped in still water causes a ripple to form, whose radius is increasing 
at a rate of7 in/sec. At what rate is the area ofthe ripple increasing, when the radius 
is 5 inches? 

7. A ladder 20 feet long leans against a wall. If its bottom end is pulled away from the 
wall at a constant rate of 5 ft/sec, how fast is the top of the ladder descending 
(a) when the bottom end is 12 feet from the wall? 
(b) when the top end is 12 feet from the floor? 

8. A man 5 feet tall walks directly away from the base of astreet light. He walks at a 
rate of 3 ft/sec. How fast does the tip of his shadow move if the street light is 12 feet 
above the ground? 

9. In problem 8, how fast does the length of his shadow change? 

10. An ob server is 80 feet from a railroad track when a train passes at a rate of 50 ft/sec. 
How fast is the train's engineer moving away from the observer at the instant they 
are 
(a) 80 feet apart? 
(b) 100 feet apart? 
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11. Molasses is poured on a pancake at a constant rate so that the circular area covered 
by the molasses is increasing at a rate of 3 in2/sec. How fast is the radius of this 
circular area increasing at the instant when the radius is 2 inches? 

12. Find antiderivatives of each of the following: 
(a) 3t2 + 12t + 11:. 

(b) l/t2 . 

(c) t 3 - 5t + 3. 
(d) t 5 + 4t3 - 16t2• 

13. In each of parts (a) through (d) of problem 12, find an antiderivative that takes the 
value 0 when t = 1. Is there a unique answer in each case? 

14. From a window 276 feet high, a rock is thrown upward at an initial speed of 50 ft/sec. 
Answer the fol!owing quest ions, treating the rock as a freely falling body. 
(a) When will the rock attain its maximal height? 
(b) When will it hit the ground? 
(c) What will be the speed of the rock when it hits the ground? 

15. A baseball is thrown straight up. Wh at was its initial speed if 
(a) it reaches a maximum height of 100 feet? 
(b) it hits the ground 5 seconds after it is released? 
(c) it is at a height of 60 feet 2 seconds after it is released? 

16. Since 32 feet is about 9.8 meters, equation (21) of Section 8 becomes dv/dt = -9.8 
rn/sec per sec. By taking antiderivatives twice, show that the height h in meters of a 
freely falling body is - 4.9t2 + vot + ho, where Vo is the initial upward speed in 
rn/sec, ho is the initial height in meters, and t is the time in seconds after the body is 
released. 

17. In Example 7 of Section 8, find the speed at which the ball hits the ground. 

18. The derivative of a certain function fis given by f'(x) = 10 - 6x. It is also known 
that f(2) = 3. Find the largest number in the range of f. 

19. Suppose that the least number in the range of a certain function g is 2. Suppose also 
that g'(x) = 2x - 4. Find g(3). 

20. Think about a tennis ball just as it lands on the ground after being dropped. lt 
bounces up. The upward speed is negative just before impact, and positive just 
after. Does this mean that the speed function must be discontinuous at the instant of 
impact? Is Leibniz's principle of continuity violated ? Or can you see a way to save 
this principle by a more careful examination of what actually happens at the 
moment ofimpact? 

21. (For ambitious students only) Although we know the derivative of the reciprocal 
function, we do not yet know an antiderivative of it. Nevertheless, suppose that we 
have somehow found the antiderivative A of the reciprocal function that takes the 
value 0 at the point 1. That is, we have a function A satisfying the following: 

A(t) A'(t) 

o 
A(t) l/t 
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Although we do not yet have any sort of forrnula by which to express the rule 
for the function A, we can nevertheless deduce some interesting things about it. 
(a) To begin with, we know thatif L= A(t), then dL/dt = 1/t. This makes it un­

likely that the domain of the function A inc1udes the point O. Why? 
(b) Let y = A(nt). This may be regarded as the chain y = A(u), where u = nt. Use 

the chain rule to find dy/dt. Hint. dy/du = l/u. 
(c) The work in parts (a) and (b) shows that dL/dt = dy/dt. By the fundamental 

principle of integral calculus, there must be some constant C such that L = 
y + C, i.e., A(nt) = A(t) + C, on a connected domain. Show that the constant C 
must be A(n). Hint. A(I) = O. 

(d) We now know that A(nt) = A(n) + A(t), since C = A(n). Assuming that the 
domain of Ais the connected set of all positive numbers, show that, for any s > 0 
and t > 0, we have 

A(st) = A(s) + A(t). 

Hint. Use the same reasoning as before. Just consider s instead of n. 
(e) The equation in (d) shows that the function A "converts multiplication into 

addition" in asense. That is, the action of A on a product st is the sum of the 
action on each term. By letting t = s in this equation, prove that A(S2) = 2A(s) 
if s > O. 

(f) Prove that A(S3) = 3A(s) if s > O. 
(g) In the equation in (d), let t = l/s, and show that A(1/s) = - A(s) if s > O. 
(h) In the equation in (d), let s = t = JX and prove th~t A(JX) = !A(x). 
(i) If L = A(f), then dL/df = l/f. What would you guess is the formula for df/dL 7 
(This has been a preview of the logarithmic function that will be discussed in Chapter 9.) 

22. Consider the area A as indicated below: 

y = I/t 

(a) What is A when t = 1 ? 
(b) What would you guess dA/dt to be? 
(c) Here, A is a function of t. Does it satisfy the table set up at the beginning of 

problem 217 

23. A rock is thrown up at an initial speed of 96 ft/sec. How far does the rock travel 
during 
(a) the first 2 seconds of flight? 
(b) the first 5 seconds offlight7 

24. A small, tired bug is c1imbing up the y-axis. At time t = 1, the bug is at the origin 
and, ftom that time on, her speed is given by f(t) = 4/t2. 
(a) How far does the bug go between times t = 1 and t = 2? 
(b) At what time twill the bug be at position y = 3? 
(c) At what time twill the bug be at position y = 3.757 
(d) How far does the bug go between times t = 1 and t = looo? 
(e) Will the bug ever reach the position y = 4? 
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25. Match each of the following functions (a) through (g) with its derivative. [The 
derivative of (h) is not pictured.] 

/V/ 0 0 0 0 

(a)T/1 7 (b) 

/\J / ~I~ (C)/ IV 
(d) 7 

0 0 : 0 )[ ~ 
(e) (f) 

0 ~( 

(g) -0 0 0 0- ~[L 
(h) 

[The curve in (g) lies on the horizontal axis, but has holes in it. The left branch of the 
curve in ([) is identical with that of (d), but translated downwards.] 

26. In problem 25, the curves (d) and ([) have the same derivative, but do not differ 
by a constant. Doesn't this contradict the fundamental principle ofintegral calculus? 



6 The Integrity of Ancient 
and Modern Mathematics 

When minds of first order meet, sparks fly, even across the centuries. The 
fundamental theorem of calculus, to be discussed in this chapter, is the result 
of such a pyrotechnic fusion of ideas. When Leibniz and Newton met Eudoxus 
and Archimedes, the calculus was rounded out into a whole. By the end of 
the seventeenth century it was becoming evident that calculus was not a bag 
of unrelated tricks but was an entity complete unto itself. 

The point of this chapter is to see our subject as a unified whole, and the 
fundamental theorem is what really ties it together. Before coming to this 
theorem, let us recall briefly what we have seen so far. Calculus is largely 
the study ofthe interplay between a function and its derivative. In Chapters 3 
and 4 we saw the geometric aspect of this interplay, which gives insight into 
the study of curves lying in a plane. As a by-product, the solution of optimiza­
tion problems was effected. In Chapter 5, a dynamic aspect of this interplay 
revealed itself, throwing light upon the study of change. Previously vague 
terms, like instantaneous velocity, acceleration, and rate of growth, were 
seen to have natural and precise meanings couched in calculus. And, most 
importantly, the fundamental notion of continuity has been clarified in terms 
of limits. 

We have seen by now that the interplay between a function and its 
antiderivative is signally rich. In this chapter we study still another aspect 
of this interplay. Calculus permits the easy calculation of the area of a figure 
bounded by curves in the plane. 

§ 1. Areas and Antiderivatives? 

Why should there be any connection between the calculus and the calcu­
lation of area? Isaac Newton saw the connection at an early age, having 
learned something, no doubt, from studying mathematics at Cambridge 

148 
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under the tutelage of Isaac Barrow. While Newton was keeping his secrets 
to himself, the light came to Leibniz upon studying a mathematics paper 
by Pascal. The connection is a secret nö longer. 

Let us try to guess the connection first and put off until later an attempt 
to prove that our guess is correct. The key is to work through several simple 
examples and to observe that two seemingly different approaches yield the 
same result. 

To see the landscape clearly, a motorcycle ride will help, if the reader 
will put up with just one more trip. Suppose you are watching the speedom­
eter and therefore know the function I giving the speed of the motorcycle 
in terms of time. What method(s) can be applied to the speed function I, 
in order to calculate the distance traveled between, say, the times t = 1 
and t = 4? 

EXAMPLE 1. Suppose the speed is constant at 50 kmjhr, i.e., the speed func­
ti on is given by I(t) = 50. What is the distance traveled between t = 1 and 
t = 4? 

One way the distance traveled can be found is by the antiderivative 
method illustrated in Section 9 of Chapter 5. Since the speed is always 
positive in this example, the distance traveled is just the distance between 
the motorcycle's initial and final positions. The position function F is an 
antiderivative of the speed function I, so 

F(t) = 50t + C, 

where C is some constant. The distance traveled is then 

F(4) - F(1) = 200 + C - (50 + C) 

= 150 kilometers. 

150 

F(4) = position 
at t = 4 

F(t) = position 
at time t 

F(I) = position 
at t = 1 

Common sense reveals a simpler way to do this problem, however, for 
the speed is constant at 50 km/hr. Traveling at 50 kmjhr for 3 hours, the 
motorcycle covers a distance of 

50 . 3 = 150 kilometers. 

The product 50·3 has a striking significance if we look at the graph of the 
speed function I, wh ich is simply a horizontal line. One cannot help but 
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notice that the distance traveled between times t = 1 and t = 4 is numerically 
equal to the area beneath the curve J, between t = 1 and t = 4: 

50 t 11111111111111;;~~:!i~111111111111115t 
1 4 
~1'-------3------~'1 

f(t) = 50 

Area beneath J, from t = 1 to t = 4, is 150 = F(4) - F(1), 

where F is an antiderivative of f. Could it be that the area beneath any 
curve is so simply related to an antiderivative? D 

EXAMPLE 2. Suppose the speed is given by J(t) = 2t. What is the distance 
traveled between t = 1 and t = 4? 

An antiderivative F is given by F(t) = t2 + C. Since the speed 2t is always 
positive between t = 1 and t = 4, the distance traveled is 

F(4) - F(I) = 16 + C - (1 + C) = 15 units. 

Let us check to see if this is equal to the area beneath the curve J. Since 
the graph of J(t) = 2t is simply a line of slope 2, the area in question looks 
like this: 

f(t) = 2/ 

(4,8) I 

4 

The area is made up of a rectangle of area 3 . 2 = 6, surmounted by a right 
tri angle of area !(3)(6) = 9. The area beneath the curve J is then 

6 + 9 = 15. D 

The two methods agree once aga in ! The area beneath the graph of the 
positive function J again turns out to be the same number as that calculated 
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by the antiderivative method, i.e., 

F(4) - F(1). (1) 

We shall see a lot ofsuch expressions as (1), and it will be convenient to have 
an abbreviation for them. The notation FI~ or [F(t)]~ is defined to do this: 

For example, 
FI~ = [F(t)]~ = F(b) - F(a). 

5otl1 = 50(4) - 50(1) = 150, 

[t 2 ]1 = 42 - 12 = 15, 

[t2 - 2t]1 = (16 - 8) - (1 - 2) = 9. (2) 

EXAMPLE 3. Consider the area beneath the curve given by f(t) = 2t - 2, 
between t = 1 and t = 4. Sketch this area and see if it is equal to that calcu­
lated by the anti derivative method. 

(4,6) 

1(/) = 21 - 2 

4 

The area is easily seen to be a right tri angle of base 3 and height 6, having 
an area of 

1 
2:(3)(6) = 9, 

wh ich agrees with the number calculated by the antiderivative method in 
equation (2) preceding the example. D 

EXERCISES 

(Remember that the phrase "beneath the curve" means "below the curve 
and above the horizontal axis". 

1.1. Sketch the graphs of each of the following linear functions 1 and find the area 
beneath/, between t = 1 and t = 4, by splitting the area into a rectangle surmounted 
by a triangle. 
(a) f(t) = 10 - 2t. 
(b) f(t) = t. 
(c) f(t) = 4t - 3. 
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1.2. For each of the three linear functions of exercise 1.1, apply the antiderivative 
method. That is, find an antiderivative Fand calculate the expression (1). Answer: 
(b) tt2 jt = t(16) - t(1) = lf· 

1.3. Apply the method of antiderivatives to each of the following. 
(a) f(t) = 4t + 2, from t = 2 to t = 5. 
(b) f(t) = 4t + 2, from t = 1 to t = 4. 
(c) f(t) = t, from t = 0 to t = 1. 
(d) f(t) = 5 - t, from t = 0 to t = 2. 
Answer: (a) [2t2 + 2tJ~ = 60 - 12 = 48. 

1.4. The answer to each of the four parts of exercise 1.3 ought to be equal to a certain 
area. In each case, sketch the area. Answer: (a) The area of 48 is that lying beneath 
the curve f(t) = 4t + 2, 2 :s;; t :s;; 5. 

(5,22) 

f 

(2, 10) 

2 5 

1.5. Apply the method of anti derivatives to each of the following. 
(a) f(t) = l/t2 , from t = 1 to t = 4. 
(b) f(t) = l/t2 , from t = 2 to t = 6. 
(c) f(t) = t 2 , from t = 0 to t = 1. 
(d) f(t) = t 2 - 4t + 5, from t = 1 to t = 4. 
Answer: (a) [-I/tJt = -t - (-1) = l 

§2. Areas Bounded by Curves 

Consider the area beneath the quadratic curve given by 

f(t) = t2 - 4t + 5, 

f 

(l,2) 

1 ::;; t ::;; 4. 

(4,5) 

4 
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An antiderivative F of f is given by 

1 . . 
F(t) = 3t3 - 2t2 + 5t. 

In view of the way things have turned out up to now, one might guess that 
this area is equal to 

[1 3 2 J4 (64 ) (1 ) 3 t - 2t + 5t 1 = 3 - 32 + 20 - 3 - 2 + 5 

= 6. 

The answer of 6 square units is surely easy to calculate by the antideriva­
tive method. But how can we be sure that this method gives the correct 
area? We must first have a clear definition of area. 

The importance of the role of definitions (in any subject, but particularly 
in mathematics) is not often noticed. At first we generally have only an 
intuitive conception of some notion that seems of interest. However, we 
can deal with intuitive notions, like tangent fine and area, only in a super­
ficial way until we assign these notions a precise significance, showing how 
they are related to ideas with which we are quite at horne. Even more impor­
tant (in any subject) is the choice of what terms to define, for that choice 
will determine one's language and consequently will ease-or hinder-one's 
way. When Fermat chose to speak in terms of the intuitive notion of a limit, 
he rendered invaluable service to all who would enter mathematics. 

Fermat gave a definition that clarified the idea of a tangent fine and 
enabled us to travel in this book as far as we have. To travel much further 
with security, we must seek clarification of the notion of area. What does 
it mean to assert that the area pictured above is 6 square units? The figure 
is bounded by a curve on one side! Is it nonsense to speak of the "area" 
inside a curved figure ? 

This question was profoundly considered long aga by Archimedes, 
who became the master of a method introduced still earlier by Eudoxus. 
Archimedes, of course, had no notion of antiderivatives, but he could calcu­
late areas (and volumes!) enclosed by curved figures. He used the method 
of Eudoxus, coupled with his own awesome technique. 

The exercises below may suggest the essence of Eudoxus' method, but 
the discussion in depth of this method is postponed until Section 5. There 
we shall aga in seek out Eudoxus and Archimedes, who knew what they 
were talking about. 

EXERCISES 

2.1. Review problems 8 through 16 in the problem set at the end of Chapter 2. 

2.2. Consider the two "stairstep" figures superimposed on the curve f(t) = t2 - 4t + 5, 
1 :::; t :::; 4. 
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177777/;" (4, 5) 

2 3 4 

Use them to convince yourself that the area beneath the curve exceeds 4 square 
units but is less than 9 square units. 

2.3. What can you deduce by considering twice as many steps? 

5 

3.25 

2 

l.2i l_jBmm ____ L_ 
o 1 1.5 2 2.5 3 3.5 4 

Answer: The area beneath the curve exceeds 4.875 square units but is less than 
7.375 square units. 

2.4. By putting in a few more steps, convince yourself that the area beneath the curve 
exceeds 5 square units but is less than 7 square units. 

2.5. (A question for speculation) Make up a definition of the area enclosed by a curved 
figure lying in the plane. There are several ways this might be defined. Can you 
think of a way to define the area as a number that is the limit of other numbers that 
approximate it ever so close!y? 

§3. Areas and Antiderivatives 

The exercises in Section 2 point the way toward adefinition of the not ion of 
area. The definition will be stated precisely in Section 5. Right now, let us 
take for granted the fact that the notion of area dates from antiquity, and 
ask a seventeenth-century question: What have areas got to da with anti­
derivatives? 
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The answer to this question was given independently by Newton and 
Leibniz, and runs somewhat as follows. The key step in most calculus 
problems is to see the problem in terms of variables. How can we see the 
problem of calculating this area, for example, as a problem involving 
variables? 

f 

4 

The answer is to consider the way the indicated area A varies in terms of t 
in the picture below. 

A dA/dt 

1 0 
4 ? 

(Do you see why we set A = 0 when t = I?) We want to find the area A when 
t = 4. We have made a guess that the antiderivative method will probably 
give it to us: 

When t = 4, then A = F(4) - F(l), (3) 

where F is an antiderivative of f. 
So far, equation (3) is only an educated guess. To prove that it is correct, 

let us try to find a formula expressing A in terms oft, in order to plug in t = 4. 
From the picture given above, we may expect that 

dA 
dt = f(t). (4) 

(See Section 10 of Chapter 5.) A proof of (4) will be forthcoming shortly, but 
first note that (4) says that A, like F, is an antiderivative of f. By the funda­
mental principle of integral calculus, A and F differ by some constant C, i.e., 

A = F(t) + C. 

What is C? Since A = 0 when t = 1, equation (5) shows 

0= F(1) + C, 

(5) 



156 6 The Integrity of Ancient and Modern Mathematics 

so that C = -F(l) and (5) becomes 

A = F(t) - F(l). (6) 

Statement (3), wh ich we were trying to prove, is now an obvious consequence 
of(6)! 0 

A proof of(4), on which the preceding argument hangs, will be given below, 
but the style of argument just seen will be valuable later and ought to be 
remembered. It consists ofthree steps, culminating in a proof of(3): 

Step 1. By (4), we have 

~
A dA/dt 

1 0 
t f(t) 

Step 2. By the fundamental principle, since F' = J, we have 

A dA/dt 

o 
F(t) + C f(t) 

Step 3. Adjusting C so that A = 0 when t = 1 yields this information from 
which (3) follows easily. 

t 
4 

A dA/dt 

o 
F(t) - F(l) 

? 
f(t) 

To make things complete, we must prove (4), which shows the connection 
between areas and antiderivatives. Note that here we are dealing with a 
function whose graph lies above the axis, i.e., a positive function. A more 
general case is treated in Section 4. 

Theorem on Areas and Antiderivatives. Let J be a positive, continuous Junc­
tion, and let A be the area beneath the curve J Fom x = a to x = t. 

a 
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Then A is an antiderivative off: 

dA Tl = f(t). 

PROOF. Let t be fixed, and let y = f(t). To find dA/dt, we first consider the 
change LlA in area produced by a nonzero change Llt: 

AA 

y + Ay 

y 

At At 

Compare the size of Ll A with that of rectangles built upon the same base of 
length Llt. 

y + Ay 

At At 

Since the areas of these rectangles are equal, respectively, to y . Ll t and (y + 
Lly) . Llt, it follows that LlA lies between y' Llt and (y + Lly) . Llt. Dividing by 
Ll t then shows that 

LlA l' d -- les between y an y + Ll y. 
Llt 

(7) 

From (7) it is easy to determine the limit of LlA/Llt as Llt -> 0, for Lly must 
te nd to zero as weIl (since y is a continuous function of t). Thus LlA/Llt, being 
sandwiched between y and y + Lly, must tend to y, i.e., 

dA L' . LlA f( ) - = ImIt - = y = t. 
dt At~O Llt 

D 

The proofjust given may seem to rely on the picture that shows the curve 
f rising as it passes through (t, y) and also shows the change Llt as being 
positive. If the curve is falling, or if Ll t is negative, the pictures have to be 
redrawn, but the proofhas been worded in such a way as to require no change. 
If the function "wiggles" violently near (t, y) so that the curve is neither 
rising nor falling there, our proof is invalid, but the theorem is still true, as 
shown in a more careful demonstration better deferred to a course in analysis. 
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EXERCISES_ 

3.1. Find the area beneath the graph of each of the following equations, from 1 to 4. 
(a) f(t) = t 2 - 2t + 6. (b) f(t) = l/t2 . 

(c) f(x) = x 2• (d) f(x) = x 3• 

(e) f(x) = x 2 + x 3 . (f) y = 3t2 + 5. 
(g) y = 4x3 - 3x2 . (h) y = n. 
(i) h = -16t2 + 64t. (j) g(s) = 600s - ts2 . 

Answers: (b) ~ square units. [See exercise 1.5(a).] (d) x4/41i = (256/4) - (1/4) = 

255/4 = 63~ square units. (f) 78 square units. (h) 3n square units. 

3.2. In Section 10 of Chapter 5 you were asked to do some problems by guesswork. 
With the aid of the theorem on areas and anti derivatives, go back and do these 
problems without guessing. 

3.3. With the aid of the theorem on areas and antiderivatives, find dA/dt in each of the 
following situations. Specify your answer in terms of t. 

(a) (b) 

f(x)=~ 

n 
-I o 

Answer: (a) Since f(x) = ~, we have f(t) = ~t2. By the theorem, dA/dt = 

f(t) = ~. (Note that this problem really has nothing to do with "x". The 
ans wer would be the same if the function f had been expressed by writing f(s) = 
~, or by writing the equation y = ~ to specify the curve f. In this 
problem x is a dummy variable, in the sense that the answer is unchanged if "x" 
is renamed as "s" or "L".) 

3.4. The algebraic rule ~ has domain - 1 ~ t ~ 1. Find an antiderivative of this 
function. Answer: Let A be the function oft specified by the picture in exercise 3.3(a). 
(This function is specified in words, not as an algebraic rule, but it is a perfectly 
good function, and the theorem on areas and antiderivatives shows that it answers 
this question.) 

3.5. Find an antiderivative of each of the following functions, expressed as algebraic 
rules. 
(a) 1/(t + 1), 0 ~ t. 
(b) l/t, 1 ~ t. 
(c)~, -2~t~2. 
(d) 1/(t2 + 1), 0 ~ t. 
Answers: (a) Let A be the function of t specified in the picture in exercise 3.3(b). 
(b) Let A be the function of t specified in the picture in problem 22 at the end of 
Chapter 5. 
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§4. Areas between Curves 

The preceding section studied how to find the area between a curve and a 
certain straight line (the horizontal axis). It is just as easy to find the area 
between a curve and another curve. 

I 
x=a I 

I 
I 
I 
I 
I 

(a,/(a)) 

(a, gral) 
I 
I 
I 
I 

f 

g 

I 
I x=b 
I (b,/(b)) 

I (b, g(b)) 

I 
I 

Finding the area between two curves is a prob)em that can be approached 
by the method of Newton and Leibniz outlined in Section 3. The key is to 
see the problem in terms of variables. Let A be the area indicated below, so 
that A is a function of t. 

x=a 

(a,f(a)) 

(a, g(a)) 

I 
I 
I 
I 

f 

A 

g 

I 
IX=I 
I 
I 

(/,/(/)) 

(I, g(/)) 

If both fand gare continuous, with f lying above g, it follows that 

dA dt = f(t) - g(t). (8) 

The proof of (8) will not be given, because the idea of the proof is so similar 
to that of the theorem of Section 3. [The only basic difference is this. In the 
theorem of Section. 3, L1A was seen to be roughly equal to the product 
f(t)L1t; whereas here L1A is roughly equal to (f(t) - g(t))L1t.] From (8) it 
is easy to deduce, as explained below, a more general area principle. 
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General Area Principle. Let fand g be continuous curves, with f lying above g. 
Then the area between fand g,from x = a to x = b, is given by 

[F ~ GJ~, 

where F is an antiderivative off and G is an antiderivative of g. 

PROOF. The proof follows exactly the pattern of the three steps described in 
Section 3. Using (8), we have thc following information about the dependence 
of A upon t: 

A dA/dt 

a 0 
t 
b 

? 
? 

fit) - g(t) 

Equation (8) says that A is an antiderivative of f - g. Since F - G is too 
(why?), the fundamental principle of integral calculus says that 

A = (F(t) - G(t)) + C (9) 

for some constant C. What is C? Because A = 0 when t = a, we get from 
equation (9) that 

0= (F(a) - G(a)) + C. 

This shows that C = -(F(a) - G(a)), so that (9) becomes 

A = (F(t) - G(t)) - (F(a) - G(a)) = [F - GJ~. 

Thus the formula A = [F - GJ~ expresses A in terms oft. When t = b, then A 
becomes the desired area, as pictured at the beginning of this section. From 
the formula, when t = b, 

A = [F - GJ~. o 
In applying the general area principle to areas bounded by curves, it is 

essential to note which curve is on top. Ifthe curves cross one or more times, 
several applications of the area principle may be required. (See Example 8.) 

EXAMPLE 4. Find the indicated area. 

(-1,2) (1,2) 

x= -I x=1 

( -1,0) y=o (1,0) 
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This is the area between the curves fand g, where f(x) = 1 + x 2 , g(x) = 0, 
a = - 1, b = 1. Antiderivatives of fand gare given by F(x) = x + x 3/3 and 
G(x) = 0. By the general area principle, the area is 

4 (-4) 8 = "3 - 3 ="3 square units. o 

EXAMPLE 5. Find the indicated area. 

The curve lying on top here is given by f(x) = 0, while the bottom curve's 
equation is g(x) = x 3 - 1. Here, a = ° and b = 1. Antiderivatives are given 
by F(x) = ° and G(x) = x4 /4 - x. By the general area principle, the area is 
equal to 

[F - G]Ö = [0 - (~4 -x) J: 
3 . 

= "4 square umts. 

EXAMPLE 6. Find the indicated area. 

~=X (1,1) 

y= Xl 

(0,0) 

Let f(x) = x, g(x) = x 2 , a = 0, b = 1. The area is equal to 

[F - G]Ö = [~2 _ ~3J: 
1 1 1 . = - - - = - square umts. 
236 

o 

o 
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EXAMPLE 7. Find the indicated area. 
(-2,4) 

y=2-x 

(1,1) 

'1:= -2 

(-2, -8) 

Let j(x) = 2 - x, g(x) = x 3, a = - 2, b = 1. The area is given by 

[ 2X _ x2 _ X4Jl 
2 4 -2' 

which, when evaluated, is seen to be 4.f square units. 0 

EXAMPLE 8. Consider the curve given by j(x) = x 2 - 1, with domain - 2 ::; 
x::; 4. 

x=4 

x= -2 

4 

A2 

Find the area between the curve j and the x-axis. 
Since the curve crosses the x-axis twice, the required area splits into three 

pieces, A" A 2 , and A 3 , as indicated. In each piece the area principle may be 
applied, taking account as to which of the curves y = x 2 - 1 and y = 0 is 
on top. We get 

Al = [x3 
_ XJ-l 4 

3 -2 3' 

A 2 = [0 -(;3 -x) 11 = [x -;31 1 ~, 
A 3 = [;3 -xI = 18. 
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The total area between the curve fand the x-axis is then 

2 . 
Al + A 2 + A 3 = 203 square units. 

EXERCISES 

163 

D 

4.1. In each of the following, find the indicated area. H int jor A 4 • First find A 3' A 4 = 
A 2 - A 3 (why?). 

(-1,4) (1,4) 

(-1,0) (1,0) (0,0) (4,0) 

(-1,0) (2,0) 

(-1, -4) 

(0,0) (4,0) 

(1,1) 

(-1,-1) 

(1, -3) 

Partial answer: A 2 = 634. A s = 136. A 7 = i. A 9 = l 
4.2. Find the area between each of the following curves and the x-axis, as illustrated in 

Example 8. 
(a) j(x) = 4 - x 2, -3:::;; x:::;; 4. 
(b) j(x) = x 3 - 5x2 + 6x, -2:::;; x:::;; 4. 
(c) j(x) = 1 - (4/x2), 1 :::;; x :::;; 3. 
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Answer: (c) 4 square units: 

! 

r--_---:~.......-==......:::::=\::i =:11 (3,~) 
~2 

(I, - 3) 

§5. Eudoxus' Method and the Integral 

Integrity, integer, integration, integral-these words have the same root 
meaning, that of "wholeness". To integrate is to collect into a whole. What 
we are now studying is called integral calculus, and it is high time to explain 
why Leibniz chose to call it that. The reason may stern from an observation 
made by Leibniz [and, before hirn, by Cavalieri (1598-1647) and others], 
an observation that may be confirmed by the general area principle. 11, 
whenfigures in the plane are set one above the other, they are seen to be made 
up 01 equal "vertical segments", then the areas 01 the figur es must be equal. 
This delightful observation is gene rally known as Cavalieri's principle. A 
concrete illustration is below. 

(0,3) 

(0,0) 

(0, - I) iF-+----'~ 

y=x+3 
y = x 2 + 3 

(1,3) 

y=2x+1 
y=x2 +x+1 

H ere, a verticalline through any point x on the horizontal axis shows a vertical 
segment 01 length x - x 2 in all three figures. Cavalieri's principle says the 
three figures must have the same area. This is confirmed by the general area 
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principle, wh ich says that all threefigures have an area 0/ [(x 2/2) - (x 3/3)]6 = i 
square units. 

A rough* statement of Cavalieri's principle is that the area of a figure 
is determined by the vertical line segments that make it up. The area of a 
figure would thus seem to be the result of collecting into a wh oie, or in te­
grating, all its verticalline segments. Leibniz toyed with the idea of regarding 
any area as an integral of (infinitely many) line segments. 

This idea raises serious questions. The area of each verticalline segment 
is of course zero, since a line segment has no width. Yet somehow Leibniz 
would have us believe that infinitely many zeros integrate into a nonzero 
total area! The paradoxical nature of this idea was recognized by Leibniz, 
who nevertheless persisted in believing the idea valuable, at least on an 
intuitive level. Leibniz was never able to describe clearly this intuitive 
perception, and it has generally been regarded with suspicion. 

Nonetheless, by thinking on this intuitive level Leibnize was able to make 
important discoveries. lustification for so me of these discoveries often had 
to wait for later mathematicians, as Leibniz sometimes had difficulty in 
saying what he meant. The difficulty is understandable, for it is related to 
one of the old paradoxes of Zeno (ca. 495-435 B.C.), but further discussion 
of this is postponed until Chapter 10. 0 

The point of the preceding discussion was to explain how the word 
integral ente red the calculus. Leibniz wanted to refer to an area as an integral, 
and out of respect forLeibniz we shall do likewise. However, we discard 
his fuzzy notion about an "integral of zeros" collecting together to yield a 
nonzero number. We seek a slight modification of Leibniz's notion of an 
integral to bring things into clear focus. How can this be done? 

Once again we turn for help to the notion of a limit, which has al ready 
done more than its share to clarify the idea of a tangent to a curve and the 
idea of continuity. As we shall see, the integral has a natural definition in 
terms of a limit, by means of a modification of a method introduced by 
Eudoxus over 2000 years ago. 

Eudoxus, of course, never spoke of limits, nor did Archirnedes. The Greeks 
never called limits by name, but could sometimes manage to get the same 
job done by using the method of elimination. (In modern terms, this 
amounts to finding an area A by somehow eliminating all numbers larger 
than A, together with all numbers smaller, leaving the desired number A 
as the only number left. t ) Our experience in Chapter 3 suggests that the use 
of limits may be preferable to the use of the principle of elimination. 

Here, then, is Eudoxus' method (in modern dress), defining the integralof 
a function / on the domain a :::; x :::; b. 

* And, as it stands, quite inaccurate. See problem 21 at the end of this chapter. 

t An example of this method may be found in the appendix on Archimedes. 
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(X2,f(X2)) 

(xl,f(xtl) 

(a,f(a)) 
(X3,f(X3)) 

(Xk,f(Xk)) 
I I 

(b,f(b)) 

Idea: As n gets [arger, the area beneath the staircase with n steps approach es 
the area beneath the curve f. 

Consider any large positive integer n, and divide the interval a ~ x ~ b 
into n subintervals, each of the same length Llx, so that 

b-a 
Llx=--. 

n 
(10) 

Thus (see the picture) we have Xo = a, Xl = a + Llx, X2 = a + 2L1x, 
x 3 = a + 3 LI x, and so on. Finally, at the last, we have 

X n = a + nLlx 

= a + n(b - a) = b. 
n 

There is a convenient way to abbreviate the preceding two sentences, narnely, 

x k = a + kLlx, for k = 0,1,2, ... , n. (11) 

The area Ak of the k-th rectangle (see the picture) is sirnply the product 
of its height and width: 

(12) 

Therefore, the total area Sn beneath the staircase figure with n steps is the 
surn Al + A 2 + ... + An. We abbreviate this by writing 

n 

Sn = L Ak 
k=l 

(read "Sn equals the surn, as k runs frorn 1 to n, of Ak"). Substituting the 
expression (12) for Ak shows 

(13) 
k=l 

Now Sn is the area beneath the staircase figure with n steps, and it is not 
likely to be equal to the area beneath the curve f. However, as n is taken 
larger and larger, Sn dearly approxirnates the area beneath f to great 
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accuracy. The area beneath fis the limit of Sn as n increases without bound, 
so we define the integral of f to be this limit. That is, the integral of f from 
a to b is defined as 

n 

Limit Sn = Limit 2: f(Xk)Llx [by (13)], 
lIx .... O k= 1 

(14) 

since (10) shows that Llx -+ 0 as n incrcases without bound. 
The right-hand side of (14) suggests that the integral of j from a to b 

might be denoted by 
!ab f(x)dx, (15) 

since this is the symbol that results from replacing the Greek Ll by the 
letter d, the Greek ~ by the letter S (a seventeenth-century S) and replacing 
the discrete points Xk by the continuous variable x, which runs from a to b. 

Definition. Let f be a function with domain a ~ x ~ b. The integral of f from 
a to b is denoted by 

!ab f(x) dx ( or, for short, by f f) 

and is defined to be the number calculated by Eudoxus' method: 

f f(x)dx = Limit ± j(xk)Llx = Limit Sn, 
a lIx .... O k=l 

where Sn is defined by equation (13). 

The idea of Eudoxus' method is not unlike the idea behind Fermat's 
method. The "right answer" for the integral S: f is the limit of "wrong 
answers" Sn that come quite dose to the integral when n is quite large. In 
integral calculus Eudoxus' method assumes a role of importance parallel 
to the role played by Fermat's method in differential calculus. It defines 
the basic notion to be studied. 

Just as we have found shortcuts to Fermat's method, so we can find 
shortcuts to the method of Eudoxus. We can sometimes guess the value of 
an integral by interpreting the integral as an area. For instance, from exercise 
3.1(d) we may expect that 

f4 f(x) dx = 63~, where f(x) = x 3, 
1 4 

or, more briefly, 
f4 3 3 Jl x dx = 634. 
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If the variable is called t instead of x, we modify our notation accordingly. 
From exercise 1.1, without using Eudoxus' method, we expect to have 

f14 (10 - 2t) dt = 15, f4 15 
1 tdt = 2' L4 (4t - 3)dt = 21. 

These examples should suggest that integrals, defined by Eudoxus' 
method, can be calculated by the method of antiderivatives. This is true, 
and it is essentially the content of the fl1hdamental theorem. Before the 
fundamental theorem can be appreciated, however, we must learn to be at 
horne with 

(a) interpreting ihtegrals as areas (being careful, because an integral is not 
always an area). 

(b) calculating integrals by Eudoxus' method (as a limit of sums). 

The first of these should be accomplished by the following exercises. Section 
6 deals with the second. 

EXERcrSES 

5.1. In exercise 3.1, ten areas were found. Express each of these areas as integrals, and 
express the answers you found in exercise 3.1 in integral notation. Answers: 
(b) fi(1/t 2 )dt =;i. (c) Si x 2 dx = 21. (h) Si ndt = Si ndx = Si nds = 3n. 

5.2. Interpret each of the following integrals as an area. 

(a) S~ (8x - 2x2 ) dx. (b) S~ 1 (3x 2 + 1) dx. 

(c) g (,3 - 5x 2 + 6x) dx. (d) S6 n dt. 

(e) S~3 ~dt. (f) S~2 ~dt. 
(g) S6 ~ dt. (h) So. 3 -}9 - x 2 dx. 

Answers: (a) This integral is equal to the area A 2 of exercise 4.1. (d) This integral 
is equal to the area beneath the curve y = n, from t = 0 to t = 5. (e) This integral 
is equal to the area beneath the curve y = .[97, a semicircle (why?), from t = - 3 
to t = 3. 

5.3. Evaluate each of the integrals in 5.2 by some means other than Eudoxus' method. 
Allswer: (e) The area of a semicircle of radius 3 is equal to half the area of the full 
circle, or 9n/2. Therefore, S~ 3 ~ dt = 9n/2. 

5.4. If a function fis negative, i.e., if its graph lies below the horizontal axis, then all the 
Ak's of equation (12) are negative. Use this to explain why, when f is negative, 
then S~ f(x) dx willIlot be an area. H im. No area is negative. 

§6. The Integral as a Limit of Sums 

It takes time and patience to carry out Eudoxus' method of calculating an 
integral. Since the antiderivative method is shorter, one may ask why time 
should be spent studying Eudoxus. There are several reasons. 
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(a) J~ 1 cannot be calculated by anti derivatives unless an antiderivative of 
1 is known. [There are many functions, such as I/x and 1/(1 + x 2 ), whose 
antiderivatives we do not yet know.] 

(b) Eudoxus' method leads to a c1ear understanding of wh at is meant by 
the area beneath a curve. 

(c) Eudoxus' method emphasizes that an integral is a limit ofsums. Areas are 
not the only quantities that are limits of sums. As we shall see, volumes 
can also be regarded as limits of sums, and they can be expressed by 
integrals. Integrals are of use in expressing other quantities as weIl, such 
as the quantity of work required to put a satellite in orbit. 

Eudoxus' method involves the sum of n numbers, where n is a large 
integer. Such a sum must be simplified before the limit can be taken in order 
to find the integral. There is one such sum which, thanks to the Pythagoreans, 
we know how to calculate already. 

n(n + 1) 
1 + 2 + 3 + ... + n = --=-2-' (16) 

(See Chapter 2, problem 2.) The formula for the sum of the squares of the 
first n positive integers has also been known since antiquity: 

1 + 4 + 9 + ... + n2 = n(n + 1)(2n + 1) 
6 . (17) 

Let us take formula (17) for gran ted here. It is discussed in an appendix on 
sums. 

To deal efficiently with sums, an efficient system of notation must be 
developed. The symbol 

n 

L 
k=l 

is used as an indication to sum up n numbers that are to be indexed by k. 
We refer to k as the index 01 summation. For instance, 

3 

L k = 1 + 2 + 3 = 6, 
k=l 

because L~= 1 k indicates the sum of3 numbers, the numbers being expressed 
by k, where k runs from 1 to 3. Similarly, 

3 

L 5k = 5 . 1 + 5 . 2 + 5 . 3 = 5(1 + 2 + 3). (18) 
k=l 

This simplifies, of course, to 5 . 6 = 30, but it is more important to note that 
equation (18) shows that 

3 3 

L 5k = 5· L k. (19) 
k=l k=l 
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What is the "real reason" that the number 5 can be brought out in front of 
the summation sign, as in (19)? It is simply because 5 is an expression that is 
independent of the index k. It therefore occurs in each of the summands and 
can be factored out in front, as seen in (18). 

What has just been illustrated in the simple example given above is most 
important to remember when trying to simplify sums. Note when an expres­
sion can be brought out in front of the summation sign. We can see, for example, 
that 

n (1) (1) n L 2: k= 2: . L k, 
k~l n n k~l 

(20) 

simply because the expression 1/n2 is independent of the index k. In fact, 
beginning with equation (20), we can carry out a complete simplification as 
follows. We already know how to simplify the sum that occurs in the right­
hand side of (20). Equation (16) says 

f k = n(n + 1). 
k~l 2 

(21) 

[Do you see why equation (16) says exactly this?] When this is used in (20) 
we get 

f (~)k=(~)n(n+1)=n+1=~+~. 
k~"'t n2 n2 2 2n 2 2n 

(22) 

As a first example of Eudoxus' method, let us calculate an integral whose 
value we al ready know by other means. 

EXAMPLE 9. Calculate Sö x dx directly from its definition by applying the 
method of Eudoxus. 

Here, we must apply Eudoxus' method to the function given by f(x) = x 
on the domain 0 :::;; x :::;; 1. Thus we have a = 0, b = 1, and 

b-a 1-0 1 
Llx = -- = -- = - [from (10)], 

n n n 

xk = a + kLlx = 0 + k(~) = ~ [from (11)], 

k 
f(x k ) = X k =-. 

n 

Using these, we first find an approximation Sn to the desired integral. From 
(13), 

Sn = L f(x k ) Llx = L - - = L 2: k. n 11 (k) (1) n (1) 
k~ 1 k~ 1 n n k~ 1 n 

The integral, by definition, is the limit of Sn as n increases without bound. 
In order to find that limit we must first simplify the expression for Sn. This 
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has already been carried out in (22), so we have 

1 1 
Sn = 2 + 2n· 
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(23) 

From (23), it is easy to find Limit Sn, for it is obvious that, as n grows in­
creasingly larger, 1/2n -+ o. Therefore, 

('1 d L·· S L·· (1 1 ) 1 Jo X X = Imlt n = Imlt 2 + 2n = 2· o 

Example 9 shows that Eudoxus' method, like Fermat's method, can be 
carried out without ever drawing a geometrie picture to describe what go es 
on. A picture aids the understanding, however, so let us draw one. What 
was shown in (23) is that the area Sn of the staircase figure with n steps is 
equal to t + 1/2n square units. As n gets larger (or, equivalently, as Llx -+ 0), 
the jagged figure on the left approximates more and more the area on 
the right. 

(I, I) (I, I) 

n 1 

/
Areasn= I f(x.)~x=t+-2 

'=1 n 

f(x) = x 

Area fol f(x)dx = t 

(0,0) (1,0) (0,0) (1,0) 

The integral of Example 9 is, of course, calculated much more quickly 
by simply using the formula for the area of a triangle. ür, by the antideriva­
tive method, 

o 

Before doing a second example it might be weIl to make a smaIl point 
about summations. Here is a question that is easy to miss because it is too 
simple. What is 

3 

LI 
k=l 

equal to? To answer this question, remember that "Lf= I" indicates that 3 
numbers are to be summed. For instance, 

3 

L Ak = Al + A 2 + A 3 • 
k=l 
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If A k = 1 (that is, if Al = 1, A2 = 1, A 3 = 1), this becomes 

3 

L 1 = 1 + 1 + 1 = 3, 
k=l 

answering our question. By the same token we see that 

n 

L 1=~+1+1+···+~=n. (24) 
k= 1 v 

n summands 

EXAMPLE 10. Calculate Si 2xdx directly from its definition by applying the 
method of Eudoxus. 

We apply Eudoxus' method to the function given by f(x) = 2x on the 
domain 1 ~ x ~ 4. Thus we have a = 1, b = 4, and 

b-a 4-1 3 
L1x = -- = -- = - [from (10)], 

n n n 

(3) 3k xk=a+kL1x=l+k n =1+--; [from (11)], 

6k 
f(Xk) = 2Xk = 2 + -. 

n 

Hence, 

Sn = L f(Xk) L1x = L 2 + - -n n ( 6k)(3) 
k= 1 k= 1 n n 

= f (~+ 182k) 
k=l n n 

n 6 n 18k 
= L - + L -2 (why?) 

k= 1 n k= 1 n 

= ~ f 1 + 1~ f k (why?) 
nk=l n k=l 

= ~(n) + 18 n(n + 1) n n2 2 [by (21) and (24)] 

= 6 + 18 n + 1 = 15 +~. 
2n n 

Therefore, 

fl4 2xdx = Limit Sn = Limit(15 +~) = 15. o 
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By comparison with Eudoxus' method, antiderivatives evaluate integrals 
like lightning: 

f14 2xdx = x21i = 16 - 1 = 15. 

The point of these examples, however, has nothing to do with speed of 
calculation. Only an electronic computer would regard Eudoxus' method 
as speedy. The point is to emphasize that the integral is a limit of sums and 
can be calculated without reference to any geometrie figure and without 
any knowledge whatever of derivatives or antiderivatives. 

The integral S~ J does have a geometrie interpretation, however, as the 
area beneath the curve J, if J is not negative. By another stroke of good 
fortune, the integral enjoys a connection with anti derivatives, to be stated 
precisely in the fundamental theorem. Since such delightful connections can 
be proved to be true, the most intellectual of minds might regard them as 
unsurprising, being merely part of the nature of things. Some of the rest of 
us, who know the meaning of serendipity, happily find it here. 

EXERCISES 

(Be willing to jJut in a little time practicing the use oJ summation notation. It 
is quite efficient, once learned. The appendix on sums and limits may be helpJul.) 

6.1. Go through the following steps to calculate the integral g (3x + 2) dx. 
(a) Wh at is Llx? 
(b) Find X k in terms of k. 
(c) Find I(xd in terms of k and n, where I(x) = 3x + 2. 
(d) Using formulas (21) and (24) to simplify the expression Sn, show that Sn = 

(147/2) + (147/2n) + 14. 
(e) Find the desired integral by taking the limit, as n increases without bound, of 

your answer to part (d). 
(f) Interpret the integral as an area and calculate it by the antiderivative method. 

Do you get the same answer as in part (e)? 

6.2. lust as in exercise 6.1, ca1culate each of the following integrals directly from its 
definition by Eudoxus' method. 
(a) S~ (5x + 1) dx. 
(b) H(5x + l)dx. 
(c) H(5x + l)dx. 
(d) SiO - 5x) dx. 
Answer : (d) - 28. (The integral here is not an area, since the function 1 - 5x is 
negative on the domain 2 ~ x ~ 4.) 

6.3. Explain why, in exercise 6.2, it is to be expected that the sum of your answers to 
parts (b) and (c) is equal to the answer to part (a). 

6.4. Write formula (17) in summation notation. Answer: Lk= 1 k2 = n(n + 1)(2n + 1)/6. 

6.5. Use your answer to exercise 6.4 to help calculate g x2 dx directly from its definition 
by Eudoxus' method. Answer: t. (See Appendix 2, Section 2.) 
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§7. Some Properties of the Integral 

In Section 2 we guessed that a certain area was equal to 6 square units 
without knowing, at that time, what was meant by the area within a figure 
bounded by a curve. We now have Eudoxus' method of determining such 
an area, and we can therefore check our guess of Section 2. Let us do that, 
with an eye out for noticing some properties of the integral. 

Consider, then, the function given by 

J(x) = Xl - 4x + 5, 1 ~ x ~ 4. 

Applying the method of Eudoxus to find the area beneath J, we have 
Llx = 3jn, Xk = 1 + 3kjn, and 

n n 

Sn = L J(xk)Llx = L [x~ - 4Xk + 5] Llx (25) 
k=l k=l 

n 27k 2 18k 6 
= I -3- - -2 + - (by collecting terms) 

k= 1 n n n 

= 2~ I. k 2 - 1~ I. k + ~ I. 1 
n k=l n k=l nk=l 

= 2: (1 + ~) ( 2 + ~) -9 (1 + ~) + 6, 
by (16), (17), alld (24). (The reader is asked to fill in the missing steps in this 
calculation.) Since 1jn -+ 0 as n gets larger, it is easy to take the limit of Sn, 
which gives the area beneath J. The area beneath J is then equal to 

Limit Sn = Limi{267 (1 + ~)(2 +~) -9(1 +~) + 6J 

27 
= 6(1)(2) - 9(1) + 6 

= 6 square units. 

This confirms our guess, and shows that 

L4 (x 2 - 4x + 5) dx = 6. 

Looking back over the calculation given above, we can notice an impor­
tant property of the integral. From line (25), we see that 

n n n 

Sn = I x~ Llx - I 4XkLlx + I 5Llx. (26) 
k=l k=l k=l 

What happens to this equation "in the limit"? As n increases without bound, 
equation (26) becomes (do YOll see why?) 

f14 (x2 - 4x + 5) dx = f14 x2 dx - f14 4x dx + f14 5 dx. 
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This suggests that the integral of a sum of functions is equal to the sum of their 
integrals. This is true: 

Sum Rule for Integrals. 1f the functions fand g have integrals on the domain 
a ~ x ~ b, then 

Lb (f(x) + g(x)) dx = Lb f(x) dx + Lb g(x) dx. 

PROOF. 

Lb (f(x) + g(x)) dx = Limit Jl (f(Xk) + g(xd) L1x 

n n 

= Limit L f(xd L1x + Limit L g(Xk) L1x 
k~l k~l 

= Lb f(x) dx + Lb g(x) dx. D 

What about a rule for constant multiples? Is it true that Si 4x dx is equal 
to 4 Si xdx? Sure it is: 

Constant-Multiple Rule for Integrals. 1f f has an integral on the domain 
a ~ x ~ b, then for any constant c, 

f c . f(x) dx = C Lb f(x) dx. 

PROOF. We know that 
n n 

L c· f(Xk)L1X = C L f(xdL1x, (27) 
k~ 1 k~l 

since the constant c is independent ofthe index ofsummation. Since equation 
(27) holds for each n, no matter how large, we get, in the limit, 

f c . f(x) dx = c S: f(x) dx. D 

Another property of the integral is suggested by this figure. 

(0,5) (4,5) 

y = x 2 - 4x + 5 

o 4 

Since the total shaded area is equal to S6 (x 2 - 4x + 5) dx, we know that 
Sb (.x 2 - 4.\" + 5) d.\" + Si (x 2 - 4x + 5) cix = Sri (x 2 - 4x + 5) cix. We are led 
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to suspect that, in general, if Srif exists, then so does Sbf and Si f, and we 
have the additiuity property 

We can incorporate this into an existence theorem. 

Existence Theorem for integrals. 1f f is a continuous function throughout 
the domain a :s; x :s; b, then the integral 

I'b jb 
Ja f = Ja f(x)dx 

exists. M oreover, if t is between a and b, then 

S: f = S: f + f f· 

What does it mean to say that an integral "exists"? It me ans, simply, 
that Limit Sn exists, where Sn is the approximating sum from Eudoxus' 
method. The limit will ex ist, according to the theorem given above, if f is 
continuous. But the proof of the existence theorem is better left to a course 
in analysis. Let us take it for gran ted that f has an integral from a to b if f 
is continuous on a :s; x :s; b. 

EXERCISES 

7.1. Fill in the missing steps in the calculation of Sn that begins with equation (25). 

7.2. Consider the areas Al and A z in the figure. 

A y=j-g 

I~ 
a b 

Cavalieri's principle says that AI = A z . Prove that this is true by showing, in order, 

(a) Al = gu - g). 

(b) A z = S~ j - S~ g. 

(c) AI = A z . [Use (a), (b), and the rule for sums and constant multiples.] 

7.3. Is the integral ofa product equal to the product ofthe integrals? 
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7.4. Use Eudoxus' method to calculate 

(a) g(x2 - 4x + 5)dx. 

(b) Jri(x2 - 4x + 5)dx. 
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7.5. It is true that Ji(x2 - 4x)dx = 6 - Ji 5dx. Why is this true? Hint. In this section 
we have shown that 6 = Ji (x 2 - 4x + 5) dx. Utilize the appropriate properties 
of the integral. 

7.6. Find these integrals quickly, by using the values of related integrals already calcu­
lated, together with appropriate properties of the integral. 

(a) Ji( _x2 + 4x - 5)dx. Answer: -6. 

(b) Ji(3x2 - I2x + I5)dx. 

(c) Ji (nx 2 - 4nx + 5n) dx. 
(d) Ji(x2 - 4x)dx. Answer: -9. 

7.7. Attempt to calculate g (l/x2) dx by Eudoxus' method. 
(a) Show that Sn = D=1 n/k2 • 

(b) Wh at is SI? S2? S3? Partial answer: S2 = 2.5. 
(c) Show that Sn always exceeds n. Hint. Show Sn = n(1 + .. '). 
(d) Does Limit Sn exist? Answer: In view of part (c), Sn cannot tend to a limit, 

since it grows arbitrarily talge as n increases. 
(e) Does g(l/x2 )dx exist? Hint. By definition, the integral is equal to Limit Sn. 

Use part (d). 
(f) Does your answer to part (e) contradict the existence theorem for integrals? 

Why not? 

§8. The Fundamental Theorem 

The fundamental theorem shows the connection between the two branches 
of calculus, differential and integral. The connection is really between 
Fermat's method and Eudoxus' method, of course. To prepare the way for 
the fundamental theorem, let us review Fermat's method, using the notation 
ofLeibniz. 

increase 
in F 

tangent, 
slope F(x) '-... 

x 

F 
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Consider a function Fand a point x, and let Llx be length of a small 
interval that contains x. Then, by Fermat's method, it folIo ws that 

F'(x) = Limit Lly. 
Llx-O Llx 

This means, roughly speaking, that the number Lly/Llx is very dose to 
F'(x) when Llx is very dose to (but not equal to) zero. In symbols, 

F'(x) ~ Lly, provided Llx ~ 0, 
Llx 

where "~" stands for "approximate equality". It will serve our purpose to 
rewrite this as 

F'(x) - Lly ~ 0, provided Llx ~ 0. 
Llx 

(28) 

Here, x is fixed, and the expression F'(x) - (Lly/Llx) varies in terms of Llx. 
Let the letter 0 stand for this expression: 

, Lly 
F(x) --= o. 

Llx 

By (28), we know something about the variable 0: 

o ~ 0, provided Llx ~ 0. 

From (29), upon multiplying through by Llx, 

F'(x) Llx - Lly = 0 Llx, 

F'(x)Llx = Lly + oLlx. 

(29) 

(30) 

(31) 

Equation (31), in connection with the information given in (30), is the key 
to the proof of the fundamental theorem. Note that (31) is, so to speak, 
what one gets by beginning with Fermat's method and "undoing it". Roughly 
speaking, (31) says that when the derivative is multiplied by Llx, a sm all 
change in x, you get a dose approximation to Lly, the corresponding change 
in y. Remember that 0 is not 0, but rather a variable tending to ° as Llx -> 0. 

The Fundamental Theorem of Calculus. If f is a continuous function with 
domain a :::; x :::; b, then 

f f(x) dx = F(b) - F(a), 

where F is any antiderivative off. 

PROOF. (Didn't we prove this al ready when we proved the area principle? 
Answer: No. The integral of f is not always an area. The fundamental 
theorem asserts that the antiderivative method works even when the func­
tion fis not always positive.) 
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Since we know that Fis an antiderivative of J, equation (31) says 

J(x)Llx = Lly + oLlx, 
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where Lly is the change in F corresponding to the change Llx in x. Applying 
this to the k-th subinterval in Eudoxus' method, we have 

J(xk ) Llx = change in Fon k-th subinterval + 0k Llx. 

Hence the approximating sum to the integral J~ J can be expressed as 
n n n 

L J(xk ) Llx = L change in F on k-th subinterval + L 0k Llx. (32) 
k=l k=l k=l 

It is obvious that 

n change in F on change in F on the 
k~l k-th subinterval = entire interval a ::;; x ::;; b 

= F(b) - F(a). 

Therefore, from (32), 

n 

L J(xk ) Llx = F(b) - F(a) + L 0k Llx, 
k=l k=l 

and, taking the limit as Llx -> 0, we get 

Lb J(x) dx = F(b) - F(a) + f 0 dx [by (30)] 

= F(b) - F(a). 0 

The careful reader may feel that the last step in the proof given above 
does not justify adequately the fact that 

Limit i 0k Llx = rb 0 dx. 
Llx~O k= 1 Ja 

(33) 

The careful reader is right. Although (33) is surely made plausible by (30), 
it has not been justified rigorously in the above proof. Rigorous proof of 
(33) is better deferred to a course in analysis. 

EXERCISES 

8.1. (a) Evaluate the integral J~ 1 X dx by the antiderivative method. 
(b) Evaluate J ~ 1 X dx by Eudoxus' method. Answer : O. 
(c) Do your answers to (a) and (b) agree, as the fundamental theorem asserts? 
(d) Can the integral in question be regarded as an area? 

8.2. Prove that if the continuous curve f crosses the x-axis, then the integral J~ f gives 
the algebraic sum of the areas between the curve fand the axis, counting area 
above as positive and below as negative. Hint. In the picture below, you want to 
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show that 

Prove this by giving a reason for each of the following equalities: 

f.b f = f.c f + ff+ Lb f 

= f.c (f - 0) - f (0 - f) + f: (f - 0) = Al - A 2 + A 3 • 

8.3. Evaluate each of the following integrals by using the fundamental theorem. 

(a) JW - x 3) dx. (b) J5 3 dx. 

(c) J~ 1 3x2 dx. (d) J~ 1 (n - nx2 )dx. 

(e) W (l/x2) dx. (f) J:': 10 (l/x2) dx. 

Answers: (d) 4n/3. (e) to. (f) 190' 

8.4. First express each of the following areas as an integral. Then evaluate the integral, 
using the fundamental theorem. 

(a) 

(0,0) 

(b) 

(1,3) 

(1,2)~ 

(1,1)~(3.1) 

y = I/x (3,1) 

(c) 

y= I + JT=""? 

(-I'I)~(I'I) 
(-1,0) y=JT=""? (1,0) 

Answer: (a) JI,(x - x 2 )dx = [(x 2/2) - (x3/3)]Ö = i square units. 
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8.5. (For careful readers) What is wrong with thefollowing "calculation"? s~ 1 (I/x2) dx = 
-l/xl~l = -2. 

8.6. Consider the integral Sb n~~x2 dx. 
(a) Evaluate this integral, using the fundamental theorem. 
(b) Draw a picture of an area that is represented by this integral. (On the following 
pages, we shall see that this same integral also represents a volume.) 

§9. Integrals and Volumes 

Integrals, defined by Eudoxus' method, arise naturally in many contexts 
having nothing to do with area. Yet the fundamental theorem can still be 
used to evaluate the integral, provided an appropriate antiderivative can 
be found. This is why the fundamental theorem is of much more significance 
than the area principle. Many illustrations of this may be seen in Chapter 8. 

One illustration is readily at hand. Let us consider the problem offinding 
volumes of solids of revolution. The only thing we need to know at the outset 
is the formula for the volume of a cylinder. It is given by the product of 
the area of the circular base and the height: 

~ __ • __ ~h 
I--r---+] 

h 

T 
1 

Working carefully through an example will enable us to see a shortcut 
way of working many similar examples. The key is to try to express the 
volume desired as an integral. The integral can then be evaluated by the 
fundamental theorem. 

EXAMPLE 11. Determine the volume of a co ne if its height is 7 feet and if 
the radius of its base is 5 feet. 
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What is meant by the volume of asolid figure? This question is easily 
answered by means bf the notion of a limit. We can get the volume by 
approximating it ever more closely and then obtaining it exactly as the limit 
of our approximations. The desired volume, we shall see, will turn out to 
be the limit of a sum, just as in Eudoxus' method. That is, the desired volume 
will turn out to be an integral. 

Let us carry out this procedure. If we turn our given cone on its side, 
we see that it could be regarded as the solid figure obtained by revolving 
the indicated area 360 degrees about the horizontal axis. Such asolid figure 
is called asolid 0/ revolution. The volume of any solid of revolution is easy 
to obtain by the method described below. 

(n cylinders) 

Llx 

T 
5 Our co ne is the solid 
1 obtained by revolving the 

area beneath the line 
y = ~x, between 0 and 7. 

A "jagged cone" that 
approximates ours is 
obtained by revolving 
the staircase figure. 

The kth cylinder 
comes from revolving 
the kth step. 

(n steps) 

o Llx 

From the formula for the volume of a cylinder, the volume of the k-th 
cylinder is clearly given by 

The jagged cone is made up of n cylinders. Its volume is the sum of the 
volumes of these cylinders: 

yolume of = " volume of =" 1t 25 x 2 L1x 
Jagged cone k~l k-th cylinder k~l 49 k • 

(34) 
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As L1x --+ 0, the jagged cone approximates our given cone ever more c1osely. 
Therefore, 

Volume ofgiven cone = Limit (volume ofjagged cone) 
Llx-O 

n 25 
= Limit I n49 xf L1x [by (34)J. 

Llx-O k= 1 

This says that the volume of our given cone is equal to the limit of a sum, 
i.e., to an integral. What integral is it? The domain is surely 0 ~ x ~ 7, be­
cause the points Xk subdivide that domain. Clearly, then, 

. . ~ 25 2 f7 25 2 d Limit L... n-4 X k ~x = n-x x 
Llx-O k= 1 9 0 49 

25 X3\7 
= n 493 0 ~ 183.26. 

The volume of a cone, with h = 7 feet and r = 5 feet, is then given by 

n(25)(7) . 
3 ~ 183.26 cublc feet. o 

One might conjecture that the volume of a co ne of height hand radius 
r is given by nr2h/3. This seems to be wh at the answer to Example 11 is 
trying to tell uso The reader is asked to verify this conjecture in an exercise 
to follow. 

EXERCISES 

9.1. Determine the volume of a cone of height hand radius r. (lust work through each 
step of Example 11, but with h in place of 7 and with r in place of 5.) 

9.2. Compare a cone with a cylinder of the same base and height. Using your answer to 
exercise 9.1, find the ratio of the volume of the cylinder to the volume of the 
inscribed cone. 

Answer: The ratio is 3: 1, first proved by the man himself, Eudoxus of Cnidos, as 
an application of the method that now bears his name. 

9.3. Suppose it is desired to cut a cone parallel to its base, in such a way that the two 
resulting pieces have the same volume. Where should the cut be made? 
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9.4. In Example 11, the area beneath the line y = .)-x, 0 ::; x ::; 7, was revolved about the 
x-axis, and the volume of the resulting solid ofrevolution found. Suppose instead 
we revolve the area beneath the quadratic y = x 2 , 0 ::; X ::; 1. 

I 
/ y= x 2 

I 

Let V be the volume of the resulting solid, and let the points X k subdivide the 
interval 0 ::; x ::; 1, as in Eudoxus' method. For each of the equalities that follow, 
give a reason to justify it. 

" 
V = Limit L nx: Llx 

Ax-+O k= 1 

§10. The Volume of aSolid of Revolution 

We found the volume of a cone in Section 9 by regarding the co ne as a 
solid of revolution. Thus its volume could be approximated by a "jagged" 
solid of revolution, then calculated exactiy as an integral. Exactly the same 
procedure will give us an integral formula for the volume of any solid of 
revolution. 

Consider the solid of revolution obtained by revolving the area beneath 
a continuous curve j, with domain a ~ x ~ b. 

This solid is obtained 
from this area beneath f. 

This "jagged" solid is 
gotten by revolving 
Eudoxus' staircase 
approximation to f. 

a b 

12trJ 
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The jagged solid is made up of n cylinders, if the staircase has n steps. 
The k-th cylinder comes from revolving the k-th step: 

ill T 
!(Xk) 

kth cylinder • J., 

~AX 

'--_---';....L..--'-_ kth step 
X k 

Since the volume of the k-th cylinder is n(f(xd)2 ~x, the volume of the 
jagged solid is 

n 

L n(f(xk ) f ~x. 
k= 1 

As ~x --+ 0, the jagged solid's volume tends to 

Lb n(f(x))2 dx. (35) 

Formula (35) tlien gives the volume oJ the solid oJ revolution obtained by 
revolving the area beneath the curve J, Jrom x = a to x = b, about the x-axis. 

EXAMPLE 12. Find the volume of a sphere whose radius is 7 meters. 
A sphere can be regarded as the solid ofrevolution obtained by revolving 

a semicircle about its diameter. 

CircJe, radius 7 

SemicircJe, radius 7 

The equation 

-7 ~ x ~ 7, 
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describes a semicircle of radius 7 whose diameter lies on the x-axis. By 
formula (35), the volume of a sphere of radius 7 meters is given by 

f7 n(J49 - X 2)2dx = n f7 (49 - x2)dx 

= n[49x _ X3J7 
3 -7 

= n73 (~) cubic meters. D 

One might conjecture that the volume of a sphere of radius r is given 
by 4nr3/3. That could be what the ans wer to Example 12, where r = 7, is 
trying to tell uso The reader is asked to verify this conjecture in an exercise 
to follow. 

EXERCISES 

10.l. Use formula (35) to find the volumes of the so lids of revolution obtained by 
revolving the areas under each of the foliowing curves. 
(a) f(x) = x 2, 0::;; X ::;; 5. 
(b) f(x)=x 2,-4::;;x::;;4. 
(c) f(x) = x + 1,0::;; x::;; 3. 
(d) f(x) = JI+X2, -1 ::;; x ::;; 2. 
Answers: (a) 625n cubic units. (c) 21n cubic units. 

10.2. Consider the integral H(njx 2)dx. Draw a picture of 
(a) a figure in the plane whose area is given by this integral. 
(b) asolid of revolution whose volume is given by this integral. 

10.3. Determine the volume of a sphere of radius r. (lust work through the steps of 
Example 12 with r in place of 7.) 

10.4. Consider a sphere in comparison with a cylinder in which the sphere is inscribed. 
Using your ans wer to exercise 10.3, find the ratio of the volume of the cylinder to 
the volume of the sphere. 

T 
I 

Answer: The ratio is 3 :2, as first proved by Archimedes in the third century B.C. 

(See the appendix on Archirnedes.) 
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§11. Isaac Newton 

The Plague, in 1664-1665, had at least one IOnunate consequence. Cambridge 
University was forced to shut down. Newton, having just received his B.A. 
degree, moved back to the English countryside where he had been born on 
Christmas Day of 1642. Newton delighted in privacy. The next 2 years of 
secluded life by an apple grove produced astonishing results. Newton came 
into possession of ideas that would enable hirn to create modern physics 
virtually by hirnself, with the help of calculus, which he also created at the 
same time. 

Newton not only had ideas ofhis own. He could seee new features hidden 
in the ideas of others. Whereas Fermat had developed his method only to 
find tangent lines to curves, Newton saw in this same method the means of 
defining a derived function that would measure instantaneous rates of change. 
Newton used this to study the physics of motion, of which he postulated 
certain "universallaws". When he put these laws together with his calculus 
and with the law of gravitation (also discovered on the farm), Newton 
derived the equations governing the motion of the planets about the sun. 

Johannes Kepler (1571-1630) had earlier made the significant discovery 
that the planets travel in elliptical orbits, but Kepler could not explain why. 
Newton knew how to explain that this was no more mysterious than the 
fall of an apple from the tree. When Newton overcame his secretive nature 
and finally revealed in 1687 the magnitude of his work, the effect was over­
whelming. Newton, it was said, had "explained the universe". That was, of 
course, an overstatement, whose repetition finally prompted the playful 
couplet of Alexander Pope, 

Nature and Nature's laws lay hid in night; 
God said, "Let Newton be!" and all was light. 

Nevertheless, it is generally conceded that Newton's Mathematical Prin­
ciples of Natural Philosophy (1687) remains the greatest single work in the 
history of science. Perhaps never before or since has so much been uncovered 
at a single stroke. Aided by 20 years of thought, Newton wrote it, start to 
finish, in 18 months. 

An aura of mystery still surrounds the man: 

... Newton with his prism and silent face, 
The marble index of a mind forever 
Voyaging through strange seas of thought, alone. 

So wrote William Wordsworth near the dawn of the nineteenth century, 
upon marveling at astatue of Newton celebrating his work in optics. 

Newton's highest compliment came from his only riyal, who published 
(in 1684) the first paper on the calculus. There would be bitter years of 
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[ I ] 

PHILOSOPHllE 
NATURALlS 

Principia 
MA THEMA TICA 

Definitiones. 

Def. I. 

!l.!!..antital Mttterite eft mmfura ejufdem orta ex ilJiur DenJitttte & 
Magnitucline conjunClim. 

A Er duplo denfior in duplo fpatio quadruplus eft. Idem 
. intdlige de N ive ~t Pulveribus per compreffionem vellique­
fa&ionem condenCatis. Et par efl: ratio corporum omnium, quz 
per caufas quaCcunq; divedimode condenfanrur. Medji interea, 
fi quod fuerit, interftitia partium libere pervadentis, hic nullam ra­
tionern habeo. Hanc autem quantitatem fub nominecorporis vel 
~~ (Ta: in 'equemibus pamm intelligo. Innotefcit ea per corporis cu­
Jlllq; pondus. Nam ponderi proportionalem e!fe reperi per ex pe­
rimcma pelldulorum accuratiffime infiituta , uti pofihac docebi­
tur. 

B Der. 

Figure 2. The first page of Newton's Principia (1687) 
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controversy over who first discovered the calculus. But, 

Taking mathematics from the beginning of the world to the time of 
Newton, what he has done is much the better half. 

Leibniz 

189 

Although others owned bits and pieces of the caIculus, Newton was the 
first to have the whole subject at his command. He rose like Archirnedes 
above the age in which he lived, moved by a spirit impervious to time. 

I do not know what I may appear to the world; but to myselfI seem to have 
been only like a boy playing on the seashore, and diverting myself in now and 
then finding a smoother pebble or a prettier shell than ordinary, whilst the 
great ocean of truth lay all undiscovered be fore me. 

Newton 

The transport of caIculus from the seashore to the stars: that was Newton's 
accomplishment. A dream of old Pythagoras had been realized at last. 

Problem Set für Chapter 6 

1. A boat travels along a straight course. At time t hours past noon, its speed is t 2 -

4t + 10 km/hr. How far does the boat travel between three o'clock and six o'clock? 

2. Sketch the quadratic curve y = t2 - 4t + 10, and find the area bencath this curve, 
between t = 3 and t = 6. 

3. If A is the area indicated in the figure below, find dA/dt. (Your answer should be 
expressed in terms of t, of course.) 

y = I/(x + 2) 

o 

4. Find the indicated area. (In each case, split the area into two pieces by drawing an 
appropriate verticalline, find the area of each piece separately, and add.) 

(a) y=4-x2 (b) 

(1,4) 

(- 2, 0) (2,0) 



190 6 The Integrity of Ancient and Modern Mathematics 

5. Draw a picture of the area represented by the integral g 4dt, and evaluate the 
integral by finding the area of your picture. 

6. Evaluate the integral g.}4 - t2 dt, after first drawing a picture of the area it 
represents. 

7. Find the indicated area by using your answers to problems 5 and 6. Why is the 
general area principle of no use to you here? 

(0,4) (2,4) 
--""'rTTT1rTTT1TTTT~-- Y = 4 

(0,2) 

y=~ 

(2,0) 

8. Find the indicated area by splitting it into three parts, finding the area of each part, 
and adding. 

(3,3) 

3 

9. Calculate the following integrals directly from their definition by Eudoxus' method. 
(a) g 4xdx. 

(b) Jj(2x - l)dx. 

(c) S~ x dx. 

10. Consider the integral S~ 1/2 (x 2 - 2x) dx. 
(a) Illustrate Eudoxus' method in calculating this integral. 
(b) Illustrate the fundamental theorem in calculating this integral. 
(c) Explain why it is to be expected that your answers to parts (a) and (b) agree 

with each other, yet disagree with your answer to problem 8. 

11. (a) By using the appropriate mIes for derivatives, and simplifying your answer, 
show that 

3x2 3x(4 + x 3 ) 
if F(x) = ~' then F(x) = 3 3/2' 

2", 1 + x3 4(1 + x ) 

(b) Evaluate the integral 
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12. Find the indicated areas, by any means. 

(a) 

-I 

(b) y=~ 

--I 
13. Find the volumes of the solids of revolution obtained by revolving the areas of 

problem 12 about the x-axis. 

14. (a) Find an equation of the line joining (1,2) and (4,5). 
(b) Find the volume of the frustrum of a co ne obtained by revolving the indicated 

area about the x-axis. 

(4,5) 

(1,2) 

4 

15. Find the volume of the indicated flower pot, shaped Iike the frustrum of a cone. 

T 
3 
1 

T 
1 

Hint. The volume is that obtained from revolving the area beneath the line joining 
(0,3) and (7,5). 
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16. Find a formula (in terms of '1, '2' and h) for the volume of a frustrum of a cone 
with the indicated dimensions. 

1---'2---l 

1--'1-1 

T 
1 

17. A grapefruit half, shaped like a hemisphere of radius 3 inches, is sliced in two, as 
indicated. 

(a) Find the volume of each slice. 
(b) Which slice has greater volume? 
(c) Where should the slice be made in order to divide the grapefruit into pieces of 

equal volume? (Your answer may be expressed as the solution to a certain cubic.) 

18. Consider the integral Sö nx2 dx. 
(a) Draw a picture of a figure whose area is given by this integral. 
(b) Draw a picture of asolid of revolution whose volume is given by this integral. 

19. The equation (x2/a2) + (y2/b2) = 1 has an ellipse as its graph. Let A be the area 
inside the ellipse. J ustify each of the following equalities in the calculation of A. 

b 

-a a 

p;2 X 2 

A = 2 Ja b2 - -- dx 
-a a2 

= 2~ Ja Ja2 - x 2 dx = 2~(~na2) = nab. a -a a 2 



Problem Set for Chapter 6 193 

20. If the ellipse of problem 19 is revolved about the x-axis, an ellipsoid of revolution 
(watermeion) results. Find the volume inside it. 

21. The two right triangles below might be regarded as being made up of "identical 
vertical segments", if their segments are made to correspond as indicated. But it is 
clear that the two triangles do not have the same area. Does this violate Cavalieri's 
principle? Why not? 

22. In the problem set at the end ofChapter 2, work problem 12 by applying CavaJieri's 
principle. Hint. Go to problem 12, Chapter 2. Turn your head sideways as far as you 
can. Don't strain your neck. 

23. Find the coordinates of the point P lying on the curve y = 4 - x2 that maximizes 
the area of the indicated triangle PQR. (P must lie between Rand Q.) 

P 

R = (-2,0) 

24. Match each of the curves below with its derivative. 

(a) (c) 

(b) (d) 

[The curve in (d) coincides with the horizontal axis, but has a hole in it.] 
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As we have seen, ne ar the end of Chapter 5, the fundamental theorem of 
calculus veils her face with a circle. In this chapter we shall see that all of 
trigonometry hides behind a eircle, as weIl. According to Plato, Dante, and 
many others, the circle is the most perfeet figure. It is surely rich in ideas. 

Trigonometry has quite ancient origins, dating back over 3000 years to 
the Egyptians and Babylonians. LiteraIly, it means "three-angle measure­
ment", signifying its application to triangles used in land measurement, 
navigation, astronomy, and the like. Only in comparatively recent times has 
it been weIl recognized that trigonometry might be described more properly 
as the study of circles, rather than triangles. 

In this chapter we shall develop the main ideas oftrigonometry and apply 
the methods of differential and integral calculus to trigonometrie functions 
(sine, eosine, tangent, ete.). We thus take a giant step forward. Up to now we 
have restricted our attention alm ost entirely to algebraie funetions. 

No prior acquaintanee with trigonometry is neeessary in order to read 
this chapter. 

§ 1. Trigonometrie Funetions; 
Degrees versus Radians 

Let us start at the beginning, with a right triangle. 

opposite side 

adjacent side 

194 
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Consider the angle e, with "adjaeent side" and "opposite side", as indieated. 
The sine, eosine, and tangent of e are defined as the following ratios: 

. e opposite side . e adjaeent side e opposite side 
sme = ,eosme = , tangent =. .. 

hypotenuse hypotenuse adJaeent slde 

The cases when e is either 30, 45, or 60 degrees will quiekly become familiar 
to the reader. They look like this. (See exereises 1.1 and 1.2.) 

XJl e 2 ~f xJf 
J3 J2 I 

"2 

""2 ""2 

sin 300 = 1/2 = ~ 
1 2 

sin 45° = J2/2 = J2 
1 2 

sin 60° = J3/2 = J3 
1 2 

cos 30° = J3/2 = J3 J2/2 J2 1/2 1 
cos45° = --=- cos60° = - =-

1 2 1 2 1 2 

tan300 = ~ = _1_ tan 45° = J2/2 = 1 o J3/2 
J3/2 J3 J2/2 tan60 = 172 = J3 

Note that, in eaeh of these eases, the tangent is the quotient of the sine and 
eosine. 

CaIculus deals with functions, and we see the beginning ofthree important 
trigonometrie functions from the work given above. 

U SIN ..... L/COS ..... U TAN"\. 
e e e 

30 1 30 .[3/2 30 1/.[3 "2 
45 ..fi/2 45 ..fi/2 45 1 
60 .[3/2 60 1 60 .[3 "2 

In the tables given above, the angle e is measured in degrees. When we 
measure angles by degrees, we are following the practice established by the 
ancient Babylonians, who deeided that a circle should be divided into 
360 equal parts: 

360 degrees = 1 revolution. (1 ) 
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It is worth mentioning that, from (1), we get 

90 degrees = ~ revolution, 

60 degrees = ~ revolution, 

45 degrees = ~ revolution, (2) 

30 degrees = 112 revolution, 

1 degree = 3~0 revolution. 

Rather than measure angles in degrees, we could equally well measure 
them in fractions of a revolution, as illustrated by the formulas collected in 
(2). It is remarkable that degree measurement should have lasted so long. 
Is it not curious that, some 3000 years ago, the Babylonians chose 360 as 
the numbers of units in a circle? Why not 100, for example, instead? We 
measure angles today in the same way that Nebuchadnezzar did! 

Perhaps the ancient Babylonians thought (and this seems uncertain) 
that a year is composed of 360 days. If so, then a circle divided into 360 parts 
is a convenient way of marking the passage of days. The circle, like the 
Babylonian year, repeats itself after aperiod of 360 units has been completed. 
This simple property of a circle, that circular motion repeats itself after a 
per iod of 1 revolution, is of surprising importance. Whenever pe rio die phe­
nomena appear-as in the rise and fall of a piston, the turning of a wheel, 
the waves striking the seashore, sound waves hitting the ear-one might 
look for a mathematical description that involves a circle, appearing in 
one of its many splendid disguises. We emphasize: 

Circular motion is periodic, repeating after 1 revolution. (3) 

It is tempting to think that it makes no real difference how angles are 
measured, whether in degrees or in revolutions, or in whatever other units 
we may choose to invent. The units in terms of which we measure are purely 
conventional, i.e., chosen for convenience. In calculus a new convention has 
arisen, and for one reason only. It makes much more convenient the study 
of the calculus of trigonometrie functions. In calculus we measure angles 
by radians , where, by definition, 

1 revolution = 2n radians. (4) 
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A little later we shall see that the advantage of radian measure over degree 
measure is a simplifieation in the formulas for the derivatives ofthe trigono­
metrie funetions. 

From (1) and (4) it follows that 

3600 = 1 rev. = 2n rad, 

and the formulas eolleeted in (2) are augmented as follows: 

900 = ~ rev. = ~ rad. 

6 0 1 n d o ="6 rev. = 3" ra . 

1 n 
45 0 = "8 rev. = 4" rad. 

300 = 112 rev. = ~ rad. 

o 1 n d 
1 = 360 rev. = 180 ra . 

(5) 

(6) 

From Seetion 2 onward, unless otherwise indieated it shall be understood 
that angles are measured in radians. For example, 

n 1 
eos- =-

3 2' 

beeause 1 is the ratio of the adjaeent side to the hypotenuse relative to an 
angle of n/3 radians (60 degrees). The sine, eosine, and tangent funetions, 
when defined in terms of radian measure of angles, will be abbreviated by 

sin, eos, and tan, 

respeetively. We shall rarely have need to use the "old-fashioned" funetions 

SIN, COS, and TAN, 

defined in terms of degree measure. 
(Do you see the differenee between eos and COS? Whereas eos(n/3) = t 

it is not true that COS(n/3) = 1. Instead, COS(n/3) ~ 1, for the eosine of } 
degrees is approximately equal to 1.) 

Our pro gram will be to study the trigonometrie funetions and see how 
they arise in many settings related to problems in ealculus. We shall find their 
derivatives, ealculate their integrals, and use them in problems of optimiza­
tion and in problems of related rates. 
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EXERCISES 

1.1. Use the Pythagorean theorem to find the lengths a and b. Hint. First convince 
yourself that a = b. 

l/1b 
~ 

a 

1.2. Use the Pythagorean theorem to find the lengths a and b. Hint. First convince 
yourself that if the triangle is duplicated along the side a, as indicated, then an 
equilateral triangle results. From this it is obvious what the length bis. 

~b 
a 

1.3. How many degrees are there in an angle of 1 radian? Hint. In equation (5), divide 
by 2n. Answer: 1 radian is approximately 57.3 degrees. 

1.4. An arc length of s units is subtended by an angle at the center of a circle of radius 
1 unit. 

What is the measure of the angle in 
(a) revolutions? 
(b) degrees? 
(c) radians? 
Answer: (a) sj2n revolutions, since 1 revolution corresponds to an arc length of2n, 
the circumference of the unit circle. 

1.5. What is the area of the pie-shaped sector in exercise 1.4? Hint. The area of the 
entire unit circle is n square units. What fraction of the unit circle is taken up by 
the pie-shaped sector? 

1.6. An arc length of s units is subtended by an angle at the center of a circle of radius r 
units. What is the measure of the angle in 
(a) revolutions? 
(b) degrees? 
(c) radians? 
Answer: (b) 180sjnr degrees. 



2. Circle Funetions 199 

1. 7. What is the are length subtended by an angle of t radians on a circle of radius 
(a) 1 unit? 
(b) r units? 

1.8. Convert from degrees to radians: 
(a) 15. 
(c) 540. 
(e) 6. 

1.9. Convert from radi ans to degrees: 
(a) n/12. 
(c) n/2. 
(e) n/5. 

(b) 12. 
(d) 75. 
(f) 20. 

(b) 3n. 
(d) 5n/6. 
(f) n/6. 

1.10. What is the sine ofan angle ofn/6 radians? Answer: t. 

1.11. Fill in the table below, where t is measured in radi ans. 

n/6 
n/4 
n/3 

cos t sin t 

1.12. Find the coordinates of the indicated points lying on the unit circle. 

p 

(0,0) (1,0) (0,0) (1,0) 

(a) are length 7t/6 (b) are length 7t/4 (e) are length n/3 

Answer: (b) On the unit circle an are length of n/4 units corresponds to an angle of 
45 degrees at the center of the circle. By exercise 1.1, Q = (J'i/2, J'i/2). Note the 
similarity in the answers of exercise 1.11 and 1.12. 

§2. Circle Functions 

Up to now we have been concerned mainly with angles t lying between 0 and 
90 degrees, or 0 and nl2 radians. From now on, we shall measure angles in 
radians, unless otherwise indicated. One can give a simple description of 
how to find cos t and sin t, when t is measured in radians. The description is 
based upon the unit circle (the circle of radius 1 unit, with center at the origin). 
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Beginning at the point (1,0) on the unit circ1e, mark off an arc length of t 
units, traveling counterclockwise around the circ1e. The point on the circ1e 
at the end of this arc must (see exercise 1.12) have coordinates given by 
(cos t, sin t). 

I units of are 

(1,0) 

An angle of t radi ans 

The description of the functions sin and cos in terms of a circ1e agrees 
with their description, given in Section 1, as ratios of certain sides of a right 
triangle. The great advantage of describing sin and cos as "circ1e functions" 
is that there is no longer any need to restrict the values of t to lie between 0 
and n12. Für any value of t whatever, positive or negative, it makes sense to 
speak of cos t and of sin t, defined as circ1e functions. * (If t is negative, then 
you go c10ckwise instead of counterc1ockwise in marking off the arc length.) 

Let us give some examples of this. The reader will find it handy to be 
familiar with the sixteen points on the unit circ1e below. (Actually, ifyou only 
know the points P 1, P 2, and P 3, you can easily figure Oüt the coordinates of 
the rest.) 

(-1/2, J3/2) 

(- )2/2, fi/2) Ps 
P6 

(-J3/2, 1/2) P 
7 

(-.[3/2,-1/2) P9 

P IO 
( - J2/2, - J2/2) P 

(-1/2, -.[3/2) 

11 

(0,1) 

kn/2 

(1/2, J3/2) 

P3 P2 ()2/2,)2f2) 

PI (.[3/2, 1/2) 

(l,0) 

~ PI -
P s (.J 3/2, - 1/2) 

14 

(J2/2, - J2f2) 

(0, -1) 

The unit circ1e, and sixteen points that everyone should know 

* Some authors say "eireular" functions. The phrase "circJe function" is supposed to suggest 
that the function's domain is, in essen ce, the circJe. A function living on a circJe is a eircJe fune­
tion, just as a man living on earth is an earth man (and not an "earthen" man). 
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EXAMPLE 1. Find sin(nj2). 
We follow the description of the sine as a circle function, and move 

counterclockwise through an arc length of nj2 units, beginning at 0,0). 
We thus move a quarter of the way around the circumference, since nj2 is 
one-fourth of 2n, the length of the circumference, and land at P 4. The point 
P 4 then has coordinates given by (cos(nj2), sin(nj2)). Hence, 

(cos~, sin~) = P4 = (0,1). (7) 

From (7) we see that sin(nj2) = 1. o 

EXAMPLE 2. Find cos(nj2). 
lt follows from (7) that cos(nj2) = O. o 

EXAMPLE 3. Find cos( -nj3). 
Beginning at (1,0) on the unit circle and moving clockwise through an 

arc length of nj3 puts us at the point P 13. Therefore, 

(8) 

and it follows that cos( -nj3) = t. D 

EXAMPLE 4. Find sin n. 
An arc length of n represents half the circumference. Beginning at (1,0) 

and going halfway around the eircle puts us at Ps, so 

(eosn,sinn) = Ps = (-1,0). 

Therefore, sin n = o. 

EXAMPLE 5. Find sin 3n. 

(9) 

o 

Moving from (1,0) through an are length of 3n units takes us through one and 
one-half turns of the eircle, stopping at Ps. Therefore, 

(eos 3n, sin 3n) = Ps = (-1,0), 
and sin 3n = o. 

(10) 
o 

Having defined the sine and eosine funetions, we define the tangent 
function to be their quotient. 

Definition. The tangent function is denoted by tan, and defined as 

sin t . 
tan t = --, provlded eos t "# o. 

eost 
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Whenever eos t = 0, then tan t is undefined. Thus, from Example 2, 
tan(n/2) is undefined. It is obvious that the tangent funetion is undefined 
when (and only when) the terminal point of the are length in question is 
either P 4 or P 12 . 

From Example 4 and Example 5 we see that 

tan n = 0 = tan 3n. 

It is obvious that the tangent funetion takes the value 0 when (and only 
when) the terminal point of the are length in question is either Po or P 8' 

The tangent is positive in the first quadrant (between the points Po and P 4)' 
negative in the seeond quadrant (between P 4 and P 8)' positive in the third 
(between P 8 and P 12)' and negative in the fourth (between P 12 and Po). 

EXERCISES 

2.1. Find each of the following, using the definition of sin and cos as circle functions. 
(a) sin( - n/3). Hint. Use equation (8). 
(b) cosn. Hint. Use equation (9). 
(c) cos(5n/3). Hint.1t is obvious (why?) that cos(5n/3) = cos( -n/3). See Example 3. 
(d) sin(5n/3). 
(e) sin 0. 
(f) cos 0. 

2.2. Use the definition tan = sin/cos to find each of the following. 
(a) tan( - n/3). Answer: tan( -n/3) = (sin( - n/3) )/(cos( - n/3)) = (- )3/2)/! = -)3, 

from equation (8). 
(b) tan(5n/3). 
(c) tanO. 
(d) tan 2n. 
(e) tan(3n/4). Answer: -1. 
(f) tan(5n/4). 
(g) tan( - n/6). 
(h) tan 1984n. 

2.3. Find the tangent of the angle made by the positive x-axis and the line segment 
(a) joining (0,0) and (2,3). Answer: ~. 
(b) joining (0,0) and (4,7). 
(c) joining (0,0) and (2, -1). Answer: -!. 
(d) whose equation is y = bx. 
(e) joining (0,0) and (0,3). Answer: Tangent is undefined. 

2.4. Draw an angle whose tangent is 
(a) 3. 
(b) - 2. 
(c) 1776. 
(d) -10. 
Partial answer: (b) The angle whose initial side is the positive x-axis and whose 
terminal side is the line segment joining (0,0) and (1, - 2) will do. 
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2.5. What is the range of the tangent funetion? Answer: The range oftan is unrestrieted 
if the domain is taken to be - n/2 < t < n/2. 

2.6. Find the range of the eosine funetion if the domain is speeified by 
(a) 0 =:::; t =:::; n/2. 
(b) -n/2 < t < n/2. 
(e) 0< t =:::; n. 
(d) -n/6 =:::; t < n/3. 
(e) -n =:::; t < n. 
(f) 0< t =:::; 2n. 
(g) unrestrieted. 
Answers: (d) If y = eos t and if - n/6 ::; t < n/3, then the range is t < y =:::; 1. In 
(e), (f), and (g) the range is -1 =:::; y =:::; 1. 

2.7. For eaeh of the seven domains speeified in exereise 2.6, find the range of the sine 
funetion. Answers: (d) If y = sin t and if - n/6 =:::; t < n/3, then the range is - t =:::; 

y < .J3/2. In (e), (f), and (g) the range is -1 =:::; y =:::; 1. 

2.8. In whieh of the four quadrants is the si ne funetion positive? In whieh is the eosine 
funetion positive? 

2.9. The funetions sin and eos are defined for any number whatever. What is meant in 
the last footnote by the statement that the domain of sin and of eos is "in essen ce" 
a circle? 

§3. Trigonometrie Identities 

An identity is an equation that holds for all values of the variables involved. 
Thus the equations 

t + t = 2t, (t + s)(t - s) = t2 - S2, r(s + t) = rs + rt 

are familiar algebraie identities. 
Identities that involve the circ1e functions are called trigonometrie identi­

ties. By virtue ofthe fact that (cos t, sin t) lies on the unit circ1e, its coordinates 
x = cos t and y = sin t must satisfy the circ1e's equation x 2 + i = 1. That is, 

(cos t)2 + (sin tf = 1, (11) 

for all values of the variable t. This important trigonometrie identity occurs 
frequently. So frequently, in fact, that one tires of forever writing the paren­
theses in such expressions as (cos t)2. Instead, by long-standing tradition 
one writes cos2 t, thereby freeing parentheses to enc10se more exotic phrases 
elsewhere. Similarly, 

sin2 t is an abbreviation for (sin t)2. (12) 
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Here is a list of a few trigonometrie identities, beginning with (11) rewritten 
using the eonvention (12). 

eos2 t + sin2 t = 1. (13) 

eos( - t) = eos t. (14) 

sin( - t) = - sin t. (15) 

tan( - t) = -tan t. (16) 

eos(t + 2n) = eos t. (17) 

sin(t + 2n) = sin t. (18) 

tan(t + 2n) = tan t. (19) 

eos(s + t) = eos s eos t - sin s sin t. (20) 

eos(s - t) = eos s eos t + sin s sin t. (21) 

eosO - t) = sin t. (22) 

sin (~ - t) = eos t. (23) 

sin(s + t) = sin s eos t + eos s sin t. (24) 

sin(s - t) = sin s eos t - eos s sin t. (25) 

The most important of these are the eosine sum law (20) and the sine sum 
law (24), along with their analogues, the eosine differenee law (21) and the 
sine differenee law (25). It takes a little work to prove these, while formulas 
(13) through (19) are easy to verify. 

Formula (13) has already been proved. To see why (14) and (15) are true, 
aJl one has to do is study the pieture be1ow. 

Q, = (eos I, sin I) 

\~ lunits --+-----+---.--
Jl/ofare 

Q _, = (eos( - I), sin( - I)) 

The unit circle. The points Q, and Q _, have the same first coordinate, hence, cos t = 
cos( - t); and they have opposite second coordinates; showing that sin( - t) = - sin t 
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Now that (14) and (15) have been verified, it is easy to prove (16): 

tan( - t) = sin( - t) (by definition of tan) 
cos( - t) 

. -sin t 

cost 

= -tan t. 

[by (14) and (15)J 
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o 
Formulas (17) through (19) can be proved at a single stroke, if one wishes, 

just by putting statements (3) and (4) together with the definition ofthe circle 
functions. But we shall verify statements (17) through (19) by a different means 
later. 

To prove the eosine sum law it will be helpful to know a simple fact about 
the length of a chord in terms ofthe size ofthe central angle associated with it. 

Formula for Chordal Lengths. On the unit circle, the length 01 a chord sub­
tended by a central angle of 0 radians is given by the formula 

L = ~2 - 2cosO. 

(1,0) 

PROOF. It is easier to calculate the length L if first we rotate the whole figure 
until one side of the central angle lies on the positive x-axis: 

(1,0) 

Let us calculate e, using the distance formula in the plane: 

L 2 = (cosO - 1)2 + (sinO - 0)2 

= cos 2 0 - 2cos() + 1 + sin2 () 

= 2 - 2cosO (26) 
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sinee eos2 + sin2 = 1 by (13). Taking the positive square root ofboth sides of 
(26) yields the desired formula. D 

Let us now prove the eosine sum law. For given sand t, let e = s + t, 
and eonsider a ehord on the unit eircle subtended by e: 

t units of are 

From the distanee formula, 

L2 = (eoss - eos( _t))2 + (sin s - sin( - t))2 

= (eos s - eos t)2 + (sin s + sin t)2 [by (14) and (15)] 

= eos2 s - 2eosseost + eos2 t + sin2 s + 2sinssint + sin2 t 
= 2 - 2 eos s eos t + 2 sin s sin t, (27) 

sinee sin2 + eos2 = 1. 
On the other hand, from (26), with e = s + t, 

L2 = 2 - 2eos(s + t). (28) 

Equations (27) and (28) give two different expressions for the same 
quantity L 2. Ir we set these two expressions equal to eaeh other the eosine 
sum law (20) results. D 

The sine sum law is proved in the next seetion. 

EXERCISES 

3.1. Put equations (27) and (28) together and derive the eosine surn law. 

3.2. In the eosine surn law, let s = 2n and sirnplify the right-hand side of the resulting 
equation to derive forrnula (17). 

3.3. In the eosine surn law, Jet s = e and t = e to prove the double-angle Iormula 

eos 2e = eos2 e - sin 2 e. 

3.4. The eosine surn law holds if we replaee sand t by anything we ehoose. Replaee 
t by - tin (20), then use (14) and (15) to prove (21). 

3.5. In (21), let s = n/2 and derive forrnula (22). 

3.6. Forrnula (22) holds if we replaee t by anything we ehoose. Replaee t by (n/2) - t 
in (22), and thus derive forrnula (23). 



3. Trigonometrie Identities 207 

3.7. The formula for chordallength applies to a unit circle. Deduce from it the general 
formula for a circle of radius r units. 

(This is easy. Just guess the indicated length, using the fact that the big circle is 
just like the small circle, but blown up by a factor of r.) 

3.8. The formula for chordallengths holds for any angle e. 

(- I, 0) t--------4--~~ (1,0) 

If 0 < e < n, there is a simpler formula, given by 

Prove this simpler formula from the figure here, and then deduce the half-angle 
formula 

. e )1 -cosO 
sm2 = 2' 0< e < n. 

3.9. The half-angle formula of exercise 3.8 holds if 0< IJ < n. Plug in each of the 
following numbers into the half-angle formula, and see whether it still holds. 
(Remember that .J denotes the positive root.) 
(a) 0 = O. 
(b) e = n. 
(c) 0 = 2n. 
(d) e = 3n. 
(e) e = -no 
Answer: The formula fails in (d) and (e). 

3.1 O. Pretend the figure of exercise 3.8 is a lake of radius 1 kilometer. A girl at the point 
(1,0) wishes to get to the point (- 1,0) by swimming the length Land then running 
the rest of the way along the shoreline. 
(a) How far must she run? Answer: n - IJ kilometers. 
(b) If she can swim 3 km/hr and run 5 km/hr, how long will it take her to reach 

her destination? Answer: hin 10 + t(n - 0) hours. 

3.11. Sketch the graphs of the sine and eosine functions. Answer: (See Section 5.) 
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§4. More Identities 

Let us first prove the sine sum law (24). We begin with formula (22), replaeing 
t by s + t: 

sin(s + t) = eos(~ - (s + t)) 
= eos (~ - s - t) 

= eos(~ - s)eost + sin(~ - s)sint [by (21)] 

= sin s eos t + eos s sin t [by (22) and (23)]. 

This proves (24), and (25) is easily derived from (24). D 

From the identities al ready derived one eould develop infinitely many 
new ones just by making appropriate substitutions. The reader with no 
previous aequaintanee with trigonometry is apt to be bewildered by the 
multitude of identities. In praetiee, however, most of the useful identities 
ean be seen as eonsequenees of the sine sum law, the eosine sum law, or the 
law sin 2 + eos 2 = 1. Be sure you know these three identities, at least. The 
double-angle and half-angle formulas, for instanee, follow easily from them. 

Double- and Half-Angle Formulas. The following are trigonometrie identities. 

(a) eos 28 = eos 28 - sin 2 8. 
(b) sin 28 = 2 sin 8 eos 8. 
(e) sin 2 !8 = (1 - eos 8)/2. 
(d) cos2 W = (1 + eos 8)/2. 

PROOF. The double-angle formulas (a) and (b) follow from the eosine and 
sine sum laws, respeetively, by letting s = t = 8. Both (e) and (d) follow 
from (a), together with the identity sin 2 + eosz = 1, whieh ean be rewritten as 

eos 2 8 = 1 - sinz 8, 
or as 

sinz 8 = 1 - eosz 8. 

When (29) is used to make a substitution in (a) we get 

eos28 = 1 - 2sinz 8, 

(29) 

(30) 

(31) 
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whieh, when solved for the expression sin2 (), beeomes 

. 2 () 1 - eos 2(} 
sm =----

2 

from whieh (e) follows upon replaeing () with t(}. 
When (30) is used to make a substitution in (a) we get 

eos 2(} = 2 eos2 () - 1. 

Solving (33) for the expression eos2 () yields 

2 () _ 1 + eos 2(} 
eos - 2 ' 

from whieh (d) follows upon replaeing () with t(}. 
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(32) 

(33) 

(34) 

o 

The reader will have observed that in the eourse ofproving the double- and 
half-angle formulas we have derived six additional trigonometrie identities 
(29) through (34) as weIl. Oeeasionally these eome in handy, particularly (32) 
and (34), but it is better to be able to derive them quiekly than to trust them 
to memory. They ean be dedueed in a eouple of lines by anyone who knows 
the sine and eosine sum laws. The produet formulas ean also be dedueed 
quiekly. 

Product Formulas. The following are identities. 

(a) eos s eos t = t(eos(s - t) + eos(s + t)). 
(b) sinssint = t(eos(s - t) - eos(s + t)). 
(e) sin s eos t = t(sin(s - t) + sin(s + t)). 

PRooF. The produet formulas (a) and (b) eaeh eome from putting together 
the eosine differenee law and the eosine sum law: 

eos(s - t) = eos s eos t + sin s sin t. 

eos(s + t) = eos s eos t - sin s sin t. 

Adding together the respeetive sides of these identities yields 

eos(s - t) + eos(s + t) = 2 eos s eos t, 

from whieh (a) follows upon dividing by 2. 
If we subtraet instead of add, we get 

eos(s - t) - eos(s + t) = 2 sin s sin t, 

from whieh (b) follows upon dividing by 2. 
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The produet formula (e) results from playing off the sine sum law against 
the sine differenee law in the same spirit. The verifieation of (e) is left to the 
reader. 0 

With the aid of the identities at our disposal we ean extend our knowledge 
of the eircle far beyond the sixteen points that everybody knows. These 
sixteen points eome, basieally, from knowing about right triangles eontain­
ing angles ofn/6, n/4, and n/3 radians (30, 45, and 60 degrees). We ean use that 
knowledge to learn about some other angles. 

EXAMPLE 6. Find the eosine of 15°, or n/12 radi ans, by noting that this angle 
is the differenee oftwo angles we already know about. 

The point is that 15 = 60 - 45, or n/12 = n/3 - n/4. We ean thus employ 
the eosine differenee law: 

n (n n) eos 12 = eos 3 - 4" 

n n . n . n 
= eos-eos- + sm-sm-

3 4 3 4 

=~(f)+ f(f) 
= f(1 +J3) 

= 0.96593 ... , 

from a table of square roots. o 

EXAMPLE 7. Find the eosine of 15°, or n/12 radians, by noting that the angle 
is half of an angle we al ready know about. 

From the half-angle formula (d) given above, 

1 + eos(n/6) 
2 

1 + (J3/2) 2 + J3 
2 4 

Sinee we know that eos n/12 is positive (the eosine being positive in the 
first quadrant), we take the positive square root of both sides to get 

n 1 
eos 12 = 2)2 + J3 = 0.96593 .... o 

EXAMPLE 8. Find the sine of75°, or 5n/12 radians. 



4. More Identities 211 

Since 75 = 45 + 30, or 5n/12 = (n/4) + (n/6), this is a job for the sine 
sum law. 

. 5n . (n n) 
sm 12 = sm 4" +"6 

. n n n . n 
= sm-cos- + cos-sm-

4 6 4 6 

=f(~)+ fG) 
J2 

= 4(y'3 + 1) = 0.96593 .... o 

How could this example haue been done more quickly? Hint. Put formula 
(23) together with Example 6. 

EXERCISES 

4.1. Using the sine surn law (24), deduce the si ne difference law (25). 

4.2. The proof of the product forrnula (c) was left to the reader, with a hint as to how 
it rnight be done. Do it. 

4.3. Find the sine of n/12 radians by using the rnethod of Exarnple 6. 

4.4. Find the sine of n/12 radians by using the rnethod of Exarnple 7. 

4.5. Find sin(7n/12) by any rnethod. 

4.6. The identity (18) has al ready been proved. Give a different proof by using the 
sine surn law. Then use (17) and (18) to deduce identity (19). 

4.7. Derive the tangent sum law: 

tan s + tan t 
tan(s + t) = -----

1 - tan s tan t 

H int. Since tan = sin/cos, we know that 

sin(s + t) 
tan(s + t) = . 

cos(s + t) 
Use the sine surn law in the nurnerator imd use the eosine surn law in the denorni­
nator. Then divide everything in sight by the product cos s cos t. 

4.8. Using the tangent surn law of exercise 4.8, together with the identity (16), derive a 
tangent difference law. Answer: tan(s - t) = (tan s - tan t)/(1 + tan s tan t). 

4.9. (a) Prove a double-angle forrnula for the tangent. 
(b) Prove a half-angle forrnula for the tangent. 
Answel': (b) Frorn the half-angle forrnulas (c) and (d) we get, by dividing, the 
tangent half-angle forrnula tan 2 ~e = (1 - cos e)/(1 + cos e). 
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4.10. In the next section we shall need to use the fact that, in the diagram be1ow, the 
are length P'Q' is less than the length of the line segment P'Q. Prove this. 

, 
() 

o , P' 

Here, B is an angle between 0 and nl2 radians 

Suggestion. Let B be the measure, in radians, of the central angle P'OQ', andjustify 
eaeh of the following steps .. 
(1) Area of seetor P'OQ' < area of triangle P'OQ. 
(2) (BI2n)(nr2 ) < tr (length P'Q). 
(3) Br < length P'Q. 
(4) Are length P'Q' < length P'Q. 

§5. The Derivative of the Sine Function 

The sine and eosine funetions are pietured below. By (17) and (18), the wavy 
pattern on an interval of length 2n repeats itself again and again. 

sin 

(~ )3) 
6' 2 

cos 

(-n, -1) (n, -1) 

This pieture makes it plausible that the derivative of the sine function 
is the eosine funetion. Let us make this guess: 

(sin)' = eos. (35) 

The rest of this seetion is devoted to the proof of (35). This takes a little 
more work than might be expeeted, beeause the sine funetion, not being 
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algebraic, demands careful attention. We must go back to basics whenever 
we are alone in strange seas. We go back to Fermat's method here. 

If f(x) = sin x, then (using the sine sum law) we have 

f(x + h) - f(x) = sin(x + h) - sin x 

= sin x cos h + cos x sin h - sin x 

= sin x (cos h - 1) + cos x sin h. 

Applying Fermat's method, we divide by nonzero hand take the limit to get 

f () L· . . (cos h - 1) (sin h) 'x = hl~It smx h + cosx -h- . (36) 

What is this limit? Will it be equal to cos x, in accordance with our guess 
(35) above? We cannot answer until first we investigate the behavior of the 
two expressions in parentheses, 

cosh - 1 
h 

d sinh 
an -h_' 

to determine their limits as h tends to zero. In order for our guess to be 
correct, the limit ofthe first should be 0 and the limit ofthe second should be 1. 

Let us first investigate the expression (sin h)/h as h ~ o. In the figure 
below, think of h as being very close to zero. 

Q = (cosh, sinh) 

Q' 
sinh 

(0, 0) --------~-­-cosh-p' p= (1,0) 

An angle of h radi ans 

It is clear (see exercise 4.10) that the line segment P'Q has a length smaIIer 
than that of the arc PQ, but greater than the length of the arc P'Q'. Since 
the coordinates of Q are (cos h, sin h), this means that the quantity 

sin h lies between h cos hand h. (37) 

Reason: The arc P'Q', being subtended by an angle of h radians on a circle of 
radius cos h, has length h cos h; while the line segment P'Q has length sin h, 
and the arc PQ has length h. Using (37) and dividing by nonzero h, we see 
that when h ~ 0, 

sinh . 
-h- hes between cos hand 1. (38) 

The information in (38) is aII we need to find the limit of (sin h)/h as h ~ 0, 
for it is clear that cos h ~ cos ° = 1 (the cosine function being continuous 
at the point 0). Thus (sin h)/h, being squeezed between cos hand 1, must 
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also tend to 1: 

L .. sinh_ 
lInIt h - l. 

h"'O 
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(39) 

Wehave just finished the hard part, having found the limit of the second 
term in parentheses in (36). The limit of the first term there succumbs to the 
foIlowing trick. 

cosh - 1 = cosh -1(COSh + 1) 
h h cosh + 1 

cos2 h - 1 

h(cosh + 1) 

-sin2 h 
h(cos h + 1) 

_ sin h ( - sin h ) 
- h cosh + 1 ' 

which, as h approaches 0, tends to 

1C ~OI) = 0, 
by (39) and by the continuity at ° of the sine and eosine functions. Therefore, 

L · . cos h - 1 _ ° (40) Imlt h -. 
h-O 

We can now complete the calculation left hanging m equation (36). 
From (36), if f(x) = sin x, then 

f'(x) = (sinx)(O) + (cosx)(l) = cosx, 

by (39) and (40). Our guess (35) is confirmed. 0 

The derivation just given may seem at first to rely too much upon the 
picture that shows h as a positive quantity. However, the statement (37) holds 
if h is negative as weIl, as the reader is asked to demonstrate. Thus (38) 
holds for any small nonzero h. 

EXERCISES 

5.1. Show that (37) holds if h is a sm all negative number. [In this case all three quantities 
mentioned in statement (37) are negative.] 

5.2. Find the limits of each of the following quantities, as h tends to zero. Hint. (b) Go 
through the derivation preceding equation (40), but with h2 in the denominator 
instead of h. 
(a) (tan h)jh. 
(b) (cos h - l)jh2 . 

(c) «cos h - 1)jh2)2. 
Answers: (a) 1. (b) --!-. (c) t. 
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5.3. Find the limits of eaeh of the following, as x tends to zero. 
(a) (sin 2x)jx. 
(b) (eos 2x - l)jx. 
(e) (eos 2x - 1)jx2 . 
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Answer : (a) (sin 2x)jx = 2(sin 2x)j2x = 2(sin h)jh if we let h = 2x. Since h --> 0 as 
x --> 0, we have 

. . sin 2x sin h 
LImIt -- = Li..'1lit 2- = 2(1) = 2. 
x~o X h~O h 

5.4. Use the ehain rule to find the derivatives of the funetions given by eaeh of the 
following rules. 
(a) sin2x. (b) sinnx. 
(e) sin( (nj2) - t). (d) sin(l + t2 ). 

(e) sin(JX). (f) sin 38. 
(g) sin2 8. (h) sin(82). 

Hint. (e). See Example 10 in the next seetion. Answers: (a) 2 eos 2x. (d) 2t eos(l + t2 ). 

(g) 2 sin 8 eos 8. (h) 28 eos(82). 

5.5. Find the derivative of the eosine funetion in two ways: 
(a) using the identity eos t = sin( (nj2) - t), together with your answer to exereise 

5.4(e). 
(b) beginning with the identity sin2 + eos2 = 1, using the rule for squares to write 

2(sin)(sin)' + 2(eos)(eos)' = 0, 

and eontinuing from here. 

5.6. The secant is defined as the reeiproeal of the eosine, i.e., sec t = 1jeos t, whenever 
eos t i' O. Prove the important identity 

see2 t = 1 + tan 2 t. 

Hint. In identity (13), divide everything by eos2 t. 

§6. More Derivatives of Trigonometrie Funetions 

To find the derivative of the eosine funetion, let f(x) = eos x and use the 
eosine surn law to sirnplify the differenee quotient: 

f(x + h) - f(x) 
h 

eos(x + h) - eos x 
h 

eos x eos h - sin x sin h - eos x 

h 

( eos h - 1) . (sin h) 
= eos x h - sm x -h- . 
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Taking the limit of the differenee quotient as h tends to 0, we get 

f'(x) = (eos x)(o) - (sin x)(l) [by (39) and (40)] 

= -sinx. 

Thus, the derivative 0/ the eosine /unetion is the negative 0/ the sine /unetion. 
o 

The derivative of the tangent function ean be found by using the quotient 
rule. Sinee tan = sin/eos, 

( sin)' (tan)' = -
eos 

(eos)(sin)' - (sin)(eos)' 
(eos)2 

(eos)(eos) - (sin)( -sin) 
(eos)2 

(eos)2 [by (13)]. 

The derivative of the tangent funetion is thus the square of the reeiproeal 
of the eosine funetion. In trigonometry the reeiproeal of the eosine is ealled 
the secant, i.e., 

1 
seex =--. 

eosx 

Thus the derivative of the tangent ean be expressed more briefly as 

(tan)' = (_1_)2 = see2. 
eos 

The derivative 0/ the tangent is the square 0/ the seeant. 
There are two more trigonometrie funetions whieh eome into play less 

frequently, the cosecaqt and the cotangent, defined as the reeiproeals of the 
sine and the tangent funetions, respeetively: 

esex = -.-, 
smx 

1 
eotx = --. 

tanx 

The derivatives of the six trigonometrie funetions are given below. 

(sin)' =eos (ese)' = -eseeot 
(cos)' = -sin (sec)' = seetan 
(tan)' = see2 (eot)' = -ese2 

The formulas in the first eolumn have been proved above. The reader is 
asked to verify the formulas in the seeond eolumn. 

Now that we know the derivatives of the trigonometrie funetions we ean 
apply the teehniques of the ealculus to trigonometry. 



6. More Derivatives of Trigonometrie Funetions 217 

EXAMPLE 9. The point (n/6, 1/2) is on the curve f(x) = sinx. Write an equa­
tion of the tangent line at this point. 

The slope of the tangent line is 

x f(x) f'(x) 

.,n n)3 n/6 1 J3/2 (sm) 6" = cOS6" = T· z 

x smx cosx 

An equation of the line through (n/6, 1/2) with slope )3/2 is given by 

y-~=f(x-~} 0 

EXAMPLE 10. Apply the chain rule to find dy/dt, where y = sin( (n/2) - t). 
Here we have the chain y = sin x and x = (n/2) - t. By the chain rule, 

Hence, 

dy dy dx 
dt = dx dt = (cos x)( -1). 

dy 
~ = -cosx 
dt 

= - sin t, by (22). o 

EXAMPLE 11. A particle moves along the y-axis in such a way that its position 
at time t seconds is given by 

y = Scos t. 

Find its instantaneous velocity and acceleration when t = n/3. 
The instantaneous velocity is given by 

dy . 
v = ~ = -Ssmt 

dt ' 

and the acceleration a is given by 

dy 
a = dt = - S cos t. 

Thus, when t = n/3, the velocity is - S)3/2 units per second (the particle is 
thus moving down ward), and the acceleration is - Sm units/sec per second 
(showing that the particle is accelerating down ward). 0 

The motion described is the projection upon the y-axis of the curve 
y = S cos t. 
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5~" " 11 
II~ 
11 

-5 v 

5 

-5 

EXAMPLE 12. Find the indicated area. 

o 

The area is given by the integral 

So" sin t dt. 

TC 

By the fundamental theorem of calculus, this is equal to 

[ -cos t]ü, 

since ( - cos)' = sin. The area is then 

-cosn - (-cosO) = -(-1) - (-1) = 2 

square units. 

EXAMPLE 13. Find the value of 8 at whieh the funetion given by 

f( 8) = 3600 eos 8( 1 + sin 8), 

assumes its maximum value. 

o 

The maximum value of f (see the end of Chapter 4) must oeeur either 
at an end point of the domain or at a eritieal point in the interior of the 
domain. Let us eheck the values of f at the endpoints first: 

f(O) = 3600(1)(1) = 3600. 

f(~) = 3600(0)(2) = O. 

(41) 

(42) 

To find a critieal point we take the derivative, using the produet rule, and 
simplify using trigonometrie identities: 

1'( 8) = 3600 eos 8( eos 8) - 3600 sin 8(1 + sin 8) 

= 3600(eos2 8 - sin 8 - sin 2 8) 

= 3600(1 - sin 2 8 - sin 8 - sin 2 8) 

= 3600(1 - sin 8 - 2 sin 2 8). 
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When is the derivative f' equal to zero? Only when 

2sin2 e + sine -1 = O. 
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This is a quadratic equation, not in e, but in the expression sin e. The quadratic 
formula says this expression is then given by 

. -1±J9 {-I 
sme = 4 =!' 

In the domain 0 ~ e ~ n/2, it is never true that sin e = -1. Hence the only 
critical point in the domain occurs when 

The value of f at the critical point n/6 is 

f(~) = 3600( f)G) = 4676.5 .... (43) 

The maximum of f must occur at an endpoint or at a critical point. 
Inspection of (41), (42), and (43) shows that the maximum occurs when 
e = n/6. 0 

EXERCISES 

6.1. Verify the formulas given in this section for the derivatives of the secant, cosecant, 
and cotangent functions. 

6.2. The point (n/6, .)3/2) lies on the curve y = cos x. Write an equation of the tangent 
line at that point. Allswer: )' - (.)3/2) = -!(.x - (n/6)). 

6.3. In the situation described in Example 11, find the velo city and acceleration when 
(a) t = n/2. 
(b) t = n. 
(c) t = 7n/4. 

6.4. Find the area beneath the curve y = cos t, between 
(a) t = 0 and t = n/3. 
(b) t = -n/4 and t = n/6. 

6.5. Find the derivatives of the following. 
(a) cos(1 + t3 ). (b) cos 2(1 + t 3 ). 

(c) t 2 sin t. (d) ..}2 + cos(t2 ). 

(e) (sin x)3/3. (f) (cos xl/x. 
(g) cos J'f+X. (h) sin (cos x). 

Answers: (b) - 6t2 cos (1 + t3 ) sin( 1 + t3 ). 

(e) sin2 xcosx. (g) (-sinJ'f+X)/2J'f+X. 
(h) - sin x cos(cos x). 
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6.6. The equation 2 sin2 () + sin () - 1 = 0 was solved in Example 13 with the help 
of the quadratic formula. Solve this equation by factoring the left-hand side 
instead. 

6.7. Find an antiderivative of each of the following expressions. lust use the trial-and­
error method until you hit upon what you are after. 
(a) sin 2x. . 
(b) sin nx. 
(c) cos 3x. 
(d) cos nx. 

6.8. Guess a general formula for an anti derivative of(a) sin kx and(b)cos kx, where kis a 
constant. Answers: (a) (- cos kx)/k. (b) (sin kx)/k. 

6.9. Use the result of exercise 6.8 together with the product formulas obtained in 
Seetion 4 to find anti derivatives of each of the following products. 
(a) cos 2x cos 5x. (b) cos2 x. 
(c) sin4xsinx. (d) sin2 x. 
(e) sin 3x cos x. (f) sin( - 2x) cos ( - 4x). 
Answers: (d) (2x - sin 2x)/4. (e) (( - cos 2x)/4) - ((cos 4x)j8). 

6.10. If the area pictured in Example 12 is revolved about the horizontal axis, a football­
shaped solid is genera ted. Find the volume of this solid of revolution. H int. You 
will need to use your answer to exercise 6.9( d) to evaluate the integral in the formula 
for the volume. Answer: n 2/2 cubic units. 

§7. Optimization and Inverse Trigonometrie 
Funetions 

One eannot study the ealculus of trigonometrie funetions very long without 
beginning to fee1 the need for the inverses of these functions. (If a function 
is regarded as a pair of columns of numbers, then its inverse is obtained by 
interehanging the eolumns.) Let us look at a couple of optimization problems 
here and see if we don't feel that need. 

EXAMPLE 14. A farmer has three identical pieces of rigid wo oden fencing, 
eaeh 60 feet in length. These, together with a long straight fenee already 
standing, will enclose a garden plot. 

'\ F !ß / 
60 '\l ...... 1 __ ....JIil 60 

60 

What should the indieated angle e be in order that the area enclosed be as 
large as possible? 
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Let A be the enclosed area, in square feet, so that A is a funetion of 8. 
What is the domain of this funetion? It is reasonable to eonsider values of 
8 that lie in the interval from 0 to a right angle: 

The area A is the sum ofthe areas of a reetangle and two identieal triangles. 

-60sinf}-- -60sinf}----

~ ,+ V-
60 

A = 60(60eos 8) + 2G}60eos 8)(60sin 8) 

= 3600( eos 8)( 1 + sin 8). 

This gives a trigonometrie rule expressing A in terms of 8. From our work 
in Example 13, we see that when 8 is nl6 radians (30 degrees), the area is 
4676.5 ... square feet, whieh is the maximum possible area. 0 

There are a eouple of remarks worth making about Example 14. First, 
the end point nl2 is missing from the domain ofthe funetion under eonsidera­
tion, yet is included in the domain of the funetion of Example 13, whose 
maximum oeeurs when 

. 8 1 
sm =2. (44) 

Obviously no harm is done by including or excluding an endpoint when the 
maximum turns out to oeeur at an interior point of the domain. 

In Example 14, if the question had been to find the value of 8 rninirnizing 
the area, then the answer should be that there is no such 8 (unless one is 
willing to allow the three pieces of feneing to be nailed on top of the fenee 
already standing). That is, the funetion of Example 14 does not attain a 
minimum value, while the funetion of Example 13 attains its minimum 
when 8 = n12. 

A more important eonsideration to be dealt with, however, is that fre­
quently one must solve such equations as (44) in optimization problems 
involving trigonometrie funetions. Look again at equation (44). To find 8, 
one must find the are length whose sine is t, sinee measurement in radians 
is essentially measurement by length of subtended are. That is, from (44) 
we get 

8 = the are length whose sine is ~, (45) 
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which we can express more briefly by writing 

e . 1 
= arcsm 2· (46) 

Equation (46), where aresin is read "arc sine", is simply an abbreviation 
for the longer statement (45). It turns out that minor chaos can ensue if we 
are not absolutely c1ear about the meaning of aresin. 

Convention. The expression ares in shall be understood to designate an are 
length lying between - nl2 and nl2 (inclusive). 

Thus arcsin t is NOT equal to 5n16, to -llnI6, or to 13nI6, even though 
these are all arcs with sine of t. There is only one number lying between 
- nl2 and nl2 whose sine is t, and that is n16. Therefore, 

. 1 n 
arcsm 2 = 6' 

and from equation (46) we get 

The point just made is easy to forget. Let us illustrate the point with 
a picture. 

(J3 1) 0 2'2 

(1,0) 

There are (infinitely) many arc lengths having a sine of t: n16, 5n16, 
- 11 n16, 13n16, etc. Only one of these, however, lies between - nl2 and n12, 
and that is the one designated as arcsin t. 

The reader may surely wonder why we dweIl so long on such a simple 
point about the meaning of ares in. The reason is that if this point is under­
stood, then 

arcsin 

is a funetion: if -1 :::;; x :::;; 1, then arcsin defines a rule that produces exaetly 
one number in - nl2 :::;; y :::;; nl2 that corresponds to x. It is an important, 
useful function that enables us to write down a convenient expression for 
the solution of such an equation as (44). It behooves us to study this func­
tion and to study the analogous functions areeos and aretan (see the exercises 
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below) from the point of view of ealculus. After we beeome more familiar 
with these inverse funetions, we must inquire about their derivatives. 

Let us look at another optimization problem first. 

EXAMPLE 15. Suppose, in Example 14, one of the pieces of feneing is 100 
feet instead of 60 feet. What angle 8 will maximize the area of the trapezoid? 

It is intended that we should maximize the area A of 

-60 sin (J. -60 sin (J ... 

~ .... : __ 6_oe .... lo_s(J __ .JI~ 
100 

Here we have 

A = 6000 eos 8 + 3600 eos 8 sin 8, 

where the domain is 0 S 8 < n12. We eould proeeed just as in Example 13, 
but let us take a different approach that is more flamboyant, making use 
of the seeond derivative and of trigonometrie identities. 

By a double-angle formula, 2 eos 8 sin 8 = sin 28. The expression for A 
ean be rewritten as 

A = 6000 eos 8 + 1800 sin 28, 

from whieh we ean take two derivatives quiekly: 

dA . 28 d(j = - 6000 sm 8 + 3600 eos , 

d2A 
d8 2 = - 6000 eos 8 - 7200 sin 28. 

The seeond derivative d2 Ald82 is obviously negative throughout the domain 
Os 8 < n12. Therefore (why?), we shall find the maximum area A ifwe find 
a eritieal point. A eritieal point satisfies the equation 

0= ~; = - 6000 sin 8 + 3600(1 - 2 sin 2 8) 

by the identity (31). This equation simplifies to 

6 sin 2 8 + 5 sin 8 - 3 = O. 

By the quadratie formula, 

sin 8 = - 5 ± J97 = {-1.237 ... . 
12 0.404 ... . 
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Sinee the sine funetion never takes a value less than -1, the eritieal point 
e must satisfy 

sin e = 0.404 ... , 

Therefore, 
e = ares in 0.404 ... 

yields the maximum area A. D 

EXERCISES 

7.1. In Example 15 we found that the optimal value ofe occurred when sin e = 0.404 .... 
(a) Find cos e. Hint. sin2 + cos2 = 1. 
(b) Drawa picture of the trapezoid that maximizes the area in Example 15, giving 

all dimensions to several decimal places. 
(c) What is the maximal area in Example 15? 

7.2. A farmer has three pieces of rigid wo oden fencing, of lengths 30 meters, 30 meters, 
and 45 meters, respectively. These, together with a long straight fence already 
standing, will enclose a trapezoid al area. Draw a picture of the trapezoid, giving its 
dimensions, that maximizes the enclosed area. 

7.3. Find the arcsin of each of the following. 
(a) .j3/2. 
(c) -1. 
(e) -1. 
(g) sin(5nI6). 
(i) sin(3nI4). 

(b) -.j3/2. 
(d) 1. 
(f) O. 
(h) sin(nI3). 

Answers: (b) -nI3. (g) arcsin(sin(5nI6)) = arcsin 1 = n16. 

7.4. Find the range of each of the following functions, with indicated domains. 
(a) f(e) = cos e + 2sin ecos e, 0 :::; e :::; n12. 
(b) f( e) = 4 cos e + 3 sin e cos e, 0 :::; e :::; n12. 
(c) f( e) = 4 cos e + 3 sin e, 0 :::; e :::; n12. 
Answer: (c) 3 :::; f(e) :::; 5. 

7.5. The arctangent function is defined as folio ws : If xis any number whatever, arctan x 
is the arc length y in the range - nl2 < y < nl2 whose tangent is x. Find the arc­
tangent of each of the following. 
(a) O. 
(c) .j3. 
(e) -1. 
(g) tan(3nI4). 
Answers: (b) n14. (f) O. (g) - n14. 

7.6. Evaluate each of the following. 
(a) arctantl~l' 
(b) arcsin xW2 . 

(c) arcsi,n el~ l' 
Answers: (a) n12. (b) n16. (c) n. 

(b) 1. 
(d) -.j3. 
(f) tan 2n. 
(h) tan( - nI4). 
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7.7. Consider the function given by 

2 . 0 1 1t 
f(O) = -Sill- - -0 +-

3 2 5 5' 

(This function arose in exercise 3.10.) 
(a) Find !'(O) and find j"(0). 
(b) Show that j"(0) < 0 if 0 < 0 < n. 
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o :0; 0 :0; 1t. 

(c) Explain why it follows from part (b) that the function f cannot attain its mini­
mum value at any point 0 satisfying 0 < 0 < n. 

(d) What should the girl in exercise 3.10 do, in order to re ach her destination as 
quickly as possible? 

Partial answer: (a)!'(O) = tcosto - t. 

7.8. The areeosine function is defined as folIows: If xis a number in the domain -1 :0; 

x :0; 1, then arccos x is the number y in the range 0 :0; Y :0; n whose eosine is x. 
(a) Why do we not specify - n/2 :0; y :0; n/2, as we did in the case of the arctangent 

and the arcsine? 
(b) Find the arccosine of each of the following. 

(i) O. (ii) 1. 
(iii) .fi/2. (iv) - .fi/2. 
(v) cos 2n. (vi) sin(n/6). 

Answers: (iv) 3n/4. (vi) n/3. 

7.9. Consider again the function f of exercise 7.7. 
(a) Show that !'(O) = 0 when 0 = 2 arccos ~. 
(b) Show that if cos te = t and ifO :0; 0 :0; n, then sin to = ~. H int. sin 2 + cos2 = 1. 
(c) Show that the largest number in the range of the function fis given by 

8 2 3 n 
- - -arccos- + - = 0.79 .... 
15 5 5 5 

(d) Sketch the graph of the curve f. 

§8. Inverse Functions and Their Derivatives 

One way to look at a function is to regard it as a pair of columns of numbers, 
the first column having no number repeated. Suppose the columns are 
interchanged, so that the second column becomes the first. Then we have 
the inverse relationship. 11 the inverse relationship is a function, then it is 
called theinverse function.The inverse function is denoted/- 1 ifthe original 
function is called I. 

The notation 1-1, read "I inverse", has become traditional despite the 
fact that it is not wholly satisfactory. It might be better to call the inverse 
function I~, for 1-1 is easily confused with 1/1, which is something entirely 
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different. Thus sin -1 does NOT mean I/sin, despite the fact that sin2 means 
(sin)2. As we shall see below, sin -1 means arcsin. 

As an example, or rather a "nonexample", consider the function J given by 

J(x) = sinx, o~ x. 

In this case there is no inverse function, because the inverse relationship is 
not a function: 

sinx x 

0 0 
0 n 

n/2 
3n/2 

(ete.) 

The first column has a number (in fact, many numbers) repeated. 
In contrast, the function J given by 

has an inverse: 

J(x) = sinx, 
n n 

-- < x <-2 - - 2' 

-1 -n/2 
- .fi/2 - n/4 

o 0 
./2./2 n/4 

1 n/2 

The inverse relationship here is a function. There is only one value between 
- n/2 and n/2 having a given value for its sine. 

The inverse relationship here should be recognized immediately as being 
nothing other than the arcsine function. That is, if 

J(x) = sinx, 

then 
J- 1(x) = arcsinx, 

n n 
-- < x <-2 - - 2' 

-l~x~l. 

An inverse function is obtained by interchanging the columns of the 
original function. Therefore the range of the original function becomes the 
domain ofthe inverse function. Likewise the domain ofthe original function 
becomes the range of its inverse. The curve J - 1 has the same shape as J, 
but with the axes interchanged. 
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/=sin 

Domain: -n/2 ~ s ~ n/2. 
Range: - 1 ~ I ~ I. 

/-1 = arcsin 

Domain : - 1 ~ I ~ 1. 
Range: -n/2 ~ s ~ n/2. 
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It is easy to find the derivative of j - 1 if one already knows the derivative 
of j. After aIl, if one can construct tangent lines to the curve j, one ought 
to be able to do the same for the curve j - 1. However, there is a slight subtilty 
that arises, owing to the interchange of the axes mentioned above. Before 
we find the derivative of the arcsine function it may be weIl to discuss 
thoroughly a simpler example. 

EXAMPLE 16. Consider the function given by 

0< s. 

This function has an inverse function (why?). Since the point (n, n 2 ) is on 
the curvej, it follows that (n 2,n) is on the curvej-l. Find the slope ofthe 
tangent line to the curve j-l at the point (n 2, n). 

Since j is the squaring function, its derivative is the doubling function. 
Therefore we know the information in this table: 

slope of 
tangent 

2n 

and we are asked to fi11 in properly the question mark in this table: 

J / - 1 ."" slope of 
tangent 

? 

This, it turns out, is easy. The answer is I/2n, as may be seen in several ways. 
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First Solution. Let us get an explicit formula for f - 1 and then find its 
derivative. For the squaring function f with the domain of all positive 
numbers, the inverse function is the square root function. To see this (if it is 
not already apparent) we reason as follows. Since f(s) = S2 the points (s, S2) 
make up the curve f. Hence, the curve f - 1 is made up of points of the 
form (S2, s), showing that 

f-1(S2) = s. 

If we let t replace S2 (so that Jt must replace s), this becomes 

f-1(t) = Jt. 
By the square root rule, 

(f-1)'(t) = _1_. 
2Jt 

The slope of the tangent line to the curve f -1 at the point (n 2 , n) is then 
given by 

Second Solution. Let us look at this from a geometrie point of view, 
mixed with a little algebra. We know that the slope of the tangent line to 
the curve f at (n, n2) is given by 2n. Therefore, an equation of the tangent 
line, in x-y coordinates, is 

y - n2 = 2n(x - n). (47) 

Recall how the curve f - 1 is related to the curve f by the interchange 
of coordinates: (x, y) is on f if and only if (y, x) is on f - 1. 

Tangent 
line has 
equation (47) 

Tangent line has 
equation (48) 

Therefore, if we inter change x and y in an equation of a tangent line to 
f, such as (47), should we not expect to get an equation of a tangent line 
to f - 1? That is, 

or 
x - n 2 = 2n(y - n), 

1 2 Y - n = -(x - n ) 
2n 

(48) 

will be a line tangent to f- 1 at (n 2, n). Obviously, the line with equation (48) 
has slope 1/2n. 
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Third Solution. A third way to do Example 16 is to use the chain rule to 
find the derivative of f - 1. We have the chain 

t = f(s) and s = f-1(t). (49) 

By the chain rule, 

dt ds 
d-d = 1, .s t 

f'(S)(f-1)'(t) = 1, 

1 
(f-l)'(t) = f'(s) iff'(s)"# O. (50) 

Note that equation (50) gives (f - 1 )'(t), not in terms of t, but in terms of s, 
where sand t are related by the chain (49). Thus, in our case, equation (50) 
becomes 

-lI 2 1 1 
(f )(n) = f'(n) = 2n' o 

In the third solution to Example 16 we have essentially proved a general 
theorem on the calculus of inverse functions. 

Rule for Inverse Functions. 1f a differentiable function f has ~n inverse func­
tion f - 1, ehen its derivative is given by formula (50), where sand t are related 
by the chain (49). 

Let us not take time to give a formal proof ofthis rule, which is somewhat 
cumbersome. What it says is that ifwe have the information in the table here: 

then (assuming f -1 exists and assuming m "# 0) we are entitled to the in­
formation here: 

t I sI/rn 

EXAMPLE 17. Consider the function given by f(s) = S2, 0< s. Find a formula 
for the derivative of f - 1. 

I[ t = f(s) = S2, then f'(s) = 2s and (50) becomes 

That is, 

(f-1)'(t) = ;s' where s = Jt. 

(f-1)'(t) = _1_. 
2Jt 
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This is of course the well-known formula for the derivative of the square 
root function. 0 

Before finding the derivative of the arcsine function, let us do one more 
example inthe same spirit, to find the derivative of the n-th raat functian. 

EXAMPLE 18. Consider the function given by f(s) = sn, 0< s, where n is a 
positive integer. The inverse f - I is called the n-th raat functian. Find its 
derivative. 

If t = f(s) = sn, then f'(s) = nsn-I and (50) becomes 

1 
(f -I )'(t) = ----=-1' where t = sn. 

nsn 

To get this derivative in terms of t we write 

(f-I)'(t) = ~(~) = ~(tl/n) = ~t(1/n)-I. 
n sn n t n 

Thus the derivative of the n-th root function t l /n is given by the rule 
(1/n)t(1/n)-I. Note that when n = 2, this re duces to the result obtained in 
Example 17. 0 

EXAMPLE 19. Consider the function given by f(s) = sin s, - nl2 ::;; s :s; n12. 
The in verse f - I is called the arcsine function. Find its derivative. 

If t = f(s) = sin s, then f'(s) = cos sand (50) becomes 

1 
(f-I)'(t) = --, where s = arcsin t. 

coss 

Thus the answer could be expressed by 

1 
(f-I)'(t) = cos(arcsint) (51) 

It turns out, however, that the expression (51) can be simplified to an algebraic 
rule, simply by pondering the question, What is cos(arcsin t)? 

It is, of course, 
cos s, where s = arcsin t. 

That is, cos(arcsin t) is simply 

cos s, where sin s = t, 

Now things become familiar, because 

cos2 S + sin2 s = 1, 

cos2 S + t 2 = 1, 

coss= ±~. 
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But (important!) the are s must lie between -n12 and n12, where the eosine 
is never negative. Therefore, the negative root should be disearded and we 
have proved that 

eos(aresint) = eoss =~. 

Thus equation (51) ean be simplified to 

(aresin)'(t) = ~ 
1 - t 2 

o (52) 

Something has happened here that is intriguing. Who would have thought 
that the derivative of a trigonometrie funetion such as ares in would turn 
out to be an algebraie rule? Or, to look at things in reverse, who would 
have thought that an antiderivative of an algebraie rule like 1/~ 
would not be algebraie? 

EXERCISES 

8.1. The graph of a function cannot be cut more than once by a verticalline. Suppose a 
horizontalline cuts the graph of a function f in two or more places. Does f have 
an inverse function f -I? 

8.2. Consider the eosine function. Does it have an inverse if its domain is taken as 
(a) -n/2:::;; s :::;; n/2? 
(b) 0:::;; s :::;; n? 
Apply the test of exercise 8.1. 

8.3. Write an equation of the tangent line to the curve y = ares in x at the point 0/2, 
n/6). 

8.4. Given the information that the point (1,2) is on a certain curve f, that 1'(1) = 3, 
and that the function f has an inverse function, find the slope of the tangent line 
to the curve f- I at (2, 1). Answer: t, by equation (50). 

8.5. The point (n/4, 1) is on the graph of f(s) = tan s. Wh at is the slope of the tangent 
line to the curve f-I(t) = arctan tat the point (1, n/4)? Hint. This is done just like 
exercise 8.4 if you can find f'(n/4). 

8.6. The point (n/3, 1/2) is on the graph of f(s) = cos s. Find the slope of the tangent 
line to the curve f-I(t) = arccos tat the point (1/2, n/3). 

8.7. Use the chain rule to find the derivatives of the following. 
(a) arcsin 5x. (b) arcsin( (x - 3)/3). 
(c) ares in .jX. (d) arcsin .J(6 - xl/x. 
(e) arcsin(sin x). (f) arcsin(cos x). 

(g) sin(arcsin x). (h) cos(arcsin x). 
Answers: (a) 5/.J 1 - 25x2 • (e) (cos x)/.J 1 - sin 2 x = (cos x)/.J cos2 x (= 1, -1, or 
undefined, depeIlding upon x). The answer to part (b) is, if simplified, seen to be 
the negative of twice the answer to part (d). (This fact is useful in problem 18 at 
the end of the chapter.) 
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8.8. Evaluate the following integrals by applying the fundamental theorem of calculus. 

(a) Jö'2 (1/J1=7) dt. 

(b) J~W2 (1/J1=7)dt. 
Answer: (b) n/2. 

8.9. If f(x) = arcsin(l/x), show that 
(a) f'(x) = -I/x.) x2 - I if I < x. 
(b) f'(x) = l/xP=!" if x < -1. 
(c) f'(x) is undefined if -1 ::::; x ::::; 1. 

8.10. The expression tm/n, for 0 < t, where m is an integer and n a positive integer, is 
defined by 

Regarding this as being given by the chain of relations composed of the n-th 
root followed by the m-th power, find dy/dt, where y = tm/no Answer: dy/dt = 
(m/n)t(m/n) -I. 

§9. Implicit Differentiation 

The derivatives of the three most important inverse trigonometrie funetions 
are summarized here. 

(aresin)'(t) = ~, 
1 - t 2 

-1 
(areeos)'(t) = ~' 

\I 1 - t 2 

1 
(aretan)'(t) = --2' 

1 + t 

-1<t<1. 

-1<t<1. 

for alJ t. 

The first of these has al ready been proved and the seeond, similar to it, 
is left to the reader as an exereise. Let us prove the third. 

If t = f(s) = tan s, then 1'(s) = see2 sand (50) beeomes 

(f - 1 )'(t) = _1_, where t = tan S. 
see2 s 

Therefore (see exereise 5.6), 

1 1 
(aretan)'(t) = -2- = 1 2 

sec s + tan s 1 + t 2 ' 
o 

An alternate approach to the theory of inverse funetions is by the method 
of implicit differentiation. Sometimes it shortens one's work. Let us do a 
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problem in related rates first by the usual method, and then by making use 
of this new technique. 

EXAMPLE 20. A plane is flying at a constant altitude of 3000 feet and at a 
constant speed of 600 feet per second. An observer on the ground measures 
the angle e as indicated in the diagram. Find the rate of change of e, 2 seconds 
after the plane has passed directly over the observer. 

I"T"""---~~ 

X / 

I 
I 

I 

3000 / 

BI 
I 

I 

This is a related rates problem. We know the rate of change of x: 

dx 
,-- = 600, 
at 

and we know a relation between x and e: 

or 

x 
tan e = 3000' 

x 
e = arctan 3000. 

(53) 

This may be regarded as a chain given by e = arctan u, where u = x/3000, 
so that 

de 1 du 1 

1 + (x/3000)2 3000· 

Two seconds after the plane passes directly overhead we have x = 1200 
(why?). Plugging this value of x into the above expression yields 

:~ Ix= 1200 34~0 
However, it is not de/dx that is required in this example, but rather de/dt. 
By the chain rule, when x = 1200, we have 

de de dx 1 5. 
- = - - = -- 600 = - radmns per second. 
dt dx dt 3480 29 
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Note that the answer comes out in radians per second not in degrees per 
second. Why? 

Alternate solution. Look carefully at equation (53). We know that e is a 
function of t even though the variable t does not appear in (53). The rule 
giving einterms oft is hidden, or implicit, in equation (53), because x depends 
upon t. In this equation, let us take the derivative, not with respect to x, 
but with respect to t. This is called implicit differentiation. We get 

2 de 1 dx 1 
sec e dt = 3000 dt = 5' 

since dx/dt = 600. 
When x = 1200, the picture looks like this: 

1200 

3000 

showing that tan e = t, so 

so 

sec2e = 1 + tan2e = 1 + G)2 
Thus, when x = 1200, equation (54) becomes 

29 de 
25 dt 5' 

de 5 
- = - rad/sec. 
dt 29 

29 
25' 

(54) 

D 

Note that in the alternate solution given above we did not need to know 
the formula for differentiating the arctangent function. Implicit differentia­
tion made this unnecessary. 

EXAMPLE 21. A car parked too dose to the movie screen in a drive-in theater 
begins to back slowly away from the screen in order to obtain a better view. 
If the screen is 50 feet high, with its base 30 feet above eye level, where should 
the car stop in order to maximize the angle of vision? 
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_---x---_ 

We must find the value of x that maximizes e, the angle of vision. Let 
us get an explicit formula expressing the dependence of e upon x. Clearly, 
from the diagram, 

Therefore, 

e=t-s 

80 30 
= arctan - - arctan -, 0< x. 

x x 

~ -w 1 -~ 

dx 1 + (80jX)2 7 - 1 + (30jX)2 7· 
Simplifying and setting this equal to zero yields 

80 30 
x2 + (80)2 x2 + (30)2 

To solve this for a critical point x, we cross-multiply and collect terms to get 

(80 - 30)x2 = (80)2(30) - (30)2(80) = 80(30)(80 - 30), 

x 2 = 80(30), 

x = .J2400 
~ 48.99 ft. 

It should be evident that the angle of vision e is maximal when x ~ 49 
feet. This is the only critical point in the domain. The maximum must occur 
here, because near the "ends" of the domain (when x is near zero or when 
x is very large) the angle of vision is tending to zero. 

() 

L-~-----.-----~--x 
49 
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Example 21 can also be done by implicit differentiation, beginning with 
the equation 

. tan t - tans 
tane = tan(t - s) = , 

1 + tan t tan s 
(55) 

and then getting the right-hand side of this equation in terms of x. The 
reader is asked to carry this out in an exercise below. 0 

EXERCISES 

9.1. By following earefully the line of reasoning developed in Example 19, hut making 
necessary modifieations, show that (areeos)'(t) = - 1/~. 

9.2. Consider the funetion given hy y = aresin t + areeos t, with domain - 1 < t < 1. 
(a) Find y'. 
(h) Deduee from part (a) that y(t) = C for some eonstant C. 
(e) Find C. 
(d) Deduee the trigonometrie identity 

n . 
areeos t = 2" - aresm t, -l~t~1. 

(e) The identity in part (d) was proved, not hy using trigonometry, hut hy using 
ealculus. Can you prove the identity without using calculus? 

9.3. Consider the function given hy y = arctan(tan x). Note that it is undefined when 
x = ± n/2, ± 3n/2, etc. 
(a) Show that dy/dx = 1, except when x = ± n/2, ± 3n/2, etc. 
(b) Use the fundamental prineiple of integral ealculus to conclude that, for some 

constants C and D, 

aretan(tan x) = x + C, 

arctan(tanx) = x + D, 

(e) Find C and D. Hint. Plug in x = 0 and x = n. 
(d) Deduee the trigonometric identities 

arctan(tan x) = x, 

arctan(tan x) = x - n, 

n n 
--< x <-. 

2 2 

n 3n 
-<x<-. 
2 2 

n n 
--< x <-. 

2 2 

n 3n 
-<x<-. 
2 2 

(e) Simplify the expression arctan(tan x), where - 3n/2 < x < -n/2. 
(See problem 28 at the end of the chapter.) 

9.4. A plane is flying at a eonstant altitude of 5000 meters at a speed of 800 rn/sec. An 
ohserver on the ground measures the angle () hetween the plane and a vertieal 
line, as in Example 20. Three seconds after the plane passes directly overhead, find 
the rate of change of () in 
(a) radians per second. 
(h) degrees per seeond. 
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9.5. An observer 5000 meters from the launehing pad watches a rocket in its vertical 
takeotf. When the altitude of the rocket is 1000 meters, its speed is 500 rn/sec. Find 
the rate of change of the angle of inclination of the rocket, as observed at this 
instant. 

9.6. A taU statue has its base on a pedestal 10 feet above eye level. If the statue itself is 
30 feet taU, where should an observer stand in order that he may enjoy the widest 
possible angle of vision? Answer : Twenty feet from the pedestal. 

9.7. Beginning with equation (55) and reading the suggestion that foUows that equation, 
give an alternate solution to Example 21 using implicit differentiation. 

9.8. Evaluate each of the following integrals by using the fundamental theorem of 
calculus. 

(a) st3 (1/(1 + t2 )) dt. 

(b) s~ d1/(1 + t 2 )) dt. 

Answer : (b) [arctan t] ~ 1 = (n/4) - ( - n/4) = n/2. 

9.9. Use implicit differentiation to find the slope of the tangent line to the given curve 
at the indicated point P. 
(a) x2 + y2 = 25, P = (3, -4). 
(b) X 2y3 + i + 2y = 3x + 1, P = (1,1). 
(c) y sin x + arctan y = 0, P = (0,0). 
Hint. (b) x 2(3 y2 y') + 2xy3 + 2yy' + 2y' = 3. When x = y = 1, this becomes 3y' + 
2 + 2y' + 2y' = 3. Solve for y'. 

§10. Summary 

The sine and eosine funetions are defined in terms of a eircle. As t inereases, 
the point (eos t, sin t) periodieally traees out the unit eircle in a eounter­
cloekwise manner. The other trigonometrie funetions are defined in terms 
of the sine and eosine, giving rise to numerous trigonometrie identities. 

We adopt the eonvention of measuring angIes by radi ans beeause this 
eonvention simplifies the ruIes for differentiating the trigonometrie funetions. 
The inverse trigonometrie funetions, surprisingIy, have derivatives that are 
given by aIgebraie ruIes. 

The eircIe is rieh in ideas. 

Problem Set for Chapter 7 

1. In the third century B.C., Eratosthenes of Cyrene measured a famous angle (see 
Chapter 2, Section 4) and found it to be approximately one-fiftieth of a revolution. 
Wh at is the measure of this angle in degrees? in radi ans ? 

2. Apply the sine, eosine, and tangent sum laws to simplify each of the following. 
(a) sin(t + n). 
(b) cos(t + n). 
(c) tan(t + n). 
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3. Find the limit, as h tends to zero, of each of the following. 
(a) (sin 2h)/h. 
(b) (sin h2 )/h. 
(c) (sin h2)/(sin2 h). 
(d) (1 - cos h}/3h2 . 

7 A Circle of Ideas 

4. Write an equation of the tangent line to the curve y = tan x at the point (n/4, 1). 

5. Find the derivative of each of the following. Do not simplify your answers. 
(a) x sin x. (b) sin x cos x. 
(c) sin(x cos x). (d) sin nx. 
(e) sin tx. (f) sec2 x. 

~---

(g) sec x tan x. (h) .J 5 + tan x. 
(i) tan 2 x. (j) tan 2 nx. 
(k) cos2(3x - 4). (I) cos(cos x). 

(m) (sin xl/x. (n) (cos 3x)/(x2 + 1). 

6. Find both coordinates of an infiection point on the curve 
(a) y = sinx. 
(b) y = cosx. 
(c) y=tanx. 

7. Fill in the table, and use the information to sketch the curve y = tan x, - n/2 < 
x< n/2. 

x y y' y" 

-n/3 
-n/6 

0 
n/6 
n/3 

8. Use the rule found in problem 2(c), together with the curve sketched in 7, to sketch 
the curve y = tan x on the domain - n ::;; x ::;; n (with the points - n/2 and n/2 
deleted from the domain of course). 

9. A garden plot is to be in the shape of a trapezoid, as in Example 15. One side of the 
plot will be borde red by a long fence al ready standing, while the other three sides 
are to be 80 feet (opposite the long fence), 50 feet, and 50 feet. Make a sketch, giving 
dimensions, indicating how the plot should be laid out in order to maximize the 
encJosed area. 

10. Work problem 9, assuming the three sides to be 50 feet (opposite the long fence), 
80 feet, and 80 feet. 

11. A person standing on the side of a circular lake of radius 1 kilometer wants to get to 
the point directly opposite hirn on the other side. His motorboat can travel 4 km/hr 
and he can jog 6 kmjhr. Prove that by no combination of boat travel and jogging 
can he get to his destination is less than half an hour. 
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12. A particle moveS along the y-axis in such a way that its position is given by 

y = 4 cos t + 3 sin t, O:s:; t. 

(a) Find its position, velocity, and acceleration when t = 11:/3. 
(b) Find its position, velocity, and acceleration when t = 311:/2. 
(c) Show that the particle's velocity is Zero whenever tan t = 3;. 
(d) Specify the range of positions y assumed by the particle. 
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13. Find the area, between t = 0 and t = 11:/3, beneath each of the following curVeS. 
(a) y = cos t. 
(b) y = 5 sin t. 
(c) y = sec2 t. 

14. By carrying out each of the following steps, prove by Fermat's method that (tan)' = 

sec2. 

(a) Find the limit, as h -> 0, of (tan h)/h. 
(b) Apply the tangent sum law to the expression tan(x + h). 
(c) Using the result of part (b) and combining terms with a common denominator, 

show that 

(1 + tan 2 x) tan h 
tan(x + h) - tanx = . 

1 - tanxtanh 

(d) In the equation of part (c), divide both sides by nonzero h. Then take the limit, 
using the result of part (a). 

15. Consider each of the following statements and indicate whether it is true or false. 
(a) sinO = o. 
(b) SINO = O. 
(c) sin30=1. 
(d) SIN 30 = 1. 
(e) sin(11:/6) = 1. 
(f) arcsin(11:/6) = 30. 
(g) arcsin 1 = 30. 
(h) arcsin 1 = 511:/6. 
(i) arcsin(sin x) = x for all x. 
(j) arcsin(sin(511:/6) ) = 11:/6. 
(k) arctan(cosO) = 11:/4. 
(I) cos(arctan 0) = 11:/4. 
(m) arccos( - 1) = - 11:. 
(n) arccos( -1) = 11:. 
(0) tan(aretan 6) = 6. 
(p) aretan(tan 6) = 6. 
(q) tan( -x) = -tanx. 
(r) sin(aresin x) = x for all x. 

16. By writing cos 3x = cos(2x + x) and applying the eosine sum law, derive an identity 
expressing a "triple-angle formula" for the eosine. Can you express your formula in 
terms of eos alone, without using sin? 
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17. Take the derivative of both sides of the tri pIe-angle formula obtained in problem 16, 
then solve for the expression sin 3x, thus obtaining by calculus a tri pIe-angle formula 
for the sine function. 

18. Consider the function given by 

(X-3) ~ f(x) = arcsin -3- + 2arcsin..J~-6-' 

defined on the domain 0 $ x $ 6. 
(a) Show that n/2 is in the range of f. 
(b) Show that n/2 is the largest number in the range of f. 
(c) Show that n/2 is the smallest number in the range of f. 
(d) Deduce a trigonometrie identity that holds on the domain 0 $ x $ 6. 

19. Find the indicated areas. 

-J2/2 13/2 

1 
Y= JI - x2 

-I 0 13 

20. An observer 5000 feet from alaunching pad watches a rocket in its vertical takeoff 
and measures its angle e of incIination as it rises. 

5000 

When () is 60 degrees, the observer finds that de/dt is 3 degrees per second. 
(a) When () = n/3 radi ans, what is de/dt in radians per second? 
(b) What is the altitude of the rocket when e = n/3 radians? 
(c) What is the speed of the rocket when e = n/3 radians? 
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21. A field-goal kicker has a problem. The ball must be kicked from a point on the 
indicated line. 

-20---1----1 

x 

Wh ich point x should be chosen in order to open up the widest angle between the 
goal posts? 

22. The base of astatue is 12 feet above eye level, while the statue itself is 25 feet tall. 
Where should an ob server stand in order to have the best view of the statue? 

23. Evaluate each of the following integrals. To find antiderivatives, use the technique 
developed in exercises 6.8 and 6.9. 

(a) W cos t dt. (b) J3 sin 5t dt. 

(c) S~~sin2 tdt. (d) J3cos2 tdt. 

(e) SÜl2 sin 2x cos 3x dx. (f) So sin 2x sin 5x dx. 

(g) Sot 2 cos 3x cos x dx. (h) SÜI4 sin 2x sin 5x dx. 

24. Evaluate the integral SO L((!) d(!, where L((!) = ,.)2 - 2 cos (!. Hint. To find an anti­
derivative of L, first express L in simpler terms, using the result of exercise 3.8. 

25. The inverse of each of the functions in the following list is also in the list. Match 
each function with its inverse. 
(a) The squaring function, sending x to x 2 , 0 < x. 
(b) The reciprocal function, sending x to I/x, x # o. 
(c) The identity function, sen ding x to x. 
(d) The doubling function, sen ding x to 2x. 
(e) The square root function, sending x to JX, 0< x. 
(f) The halving function, sen ding x to tx. 

26. The identity function, sending x to x, plays a special role in the theory of inverse 
functions. 
(a) Show that the composition of a function with its inverse is the identity function, 

i.e., show 
(i) f - 1 (f(x) ) = x if x is in the domain of f, 

(ii) f(f - I(X)) = x if x is in the domain of f -I. 

(b) The graph of the identity function is simply the straight line of slope 1 through 
the origin. Show that the graph of f - I, the graph of the identity function, and 
the graph of f enjoy the following camaraderie: the curves fand f - 1 are each 
"reflections" of the other, through the identity function's graph. 
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27. Given the following table of information about the function f, fill in the question 
marks properly in the table for f - I. 

28. Each of the following expressions is of the form f-I(f(x)): 
(i) arctan(tan x). 

(iv) 

(ii) arccos(cos x). 
(iii) arcsin(sin x). 

(a) Match each ofthem with its graph below. 

(v) 

IA / 
n/2 o n 

(b) As we can see from these graphs, it is not necessarily true that f -1(f(X)) = x 
for all x. Does this contradict the result of problem 26(a)? 

(c) Sketch the curves giving the derivatives of the functions pictured in part (a). 

29. The absolute value function is sometimes useful in making certain complicated 
expressions appear in a simpler form. The absolute value of a number x is denoted 
by lxi and defined as 

Ixl=P= { ~ 
-x 

ifO < x. 

ifx = O. 

ifx < O. 

(a) If f(x) = lxi, find f'(x). Hint. The derivative does not exist at the point x = 0, 
but if x i= 0, you can find the derivative by applying the square root rule to F 

(b) Show that 
arccos(cos x) = lxi if - n ::;; x ::;; n. 

(c) Show that if f(x) = arcsin(sin x), then 

cosx 
f'(x) = -I -I' cosx 

Rillt. See exercise 8.7(e). 
(d) Show that f'(x) = (sin x)/Isin xl if f(x) = arccos(cos x). Specify the values of x 

for which f'(x) does not exist. 
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30. What is wrong with the following "argument"? If f(x) = arctan(tan x), then by 
the chain rule 

,1 1 
f (x) = 2 sec2 x = --sec2 x = 1. 

1 + tan x sec2 x 

Since f'(x) = 1 for all x, it follows thatf(x) = x. Therefore, arctan(tan x) = x for all x. 

31. (a) Find dy/dx if y = sin(nx/180). 
(b) Show that SIN x = sin(nx/180) and eos x = cos(nx/180), where SIN and 

eos denote the sine and cosine functions, respectively, relative to degree 
measure of angles. 

(c) Using parts (a) and (b), prove that (SIN)'(x) = (n/180) eos x. 
(d) Find (eosy, in terms of SIN. 

32. (a) Justify each of the following steps. 

sin t + .J3 cos t = 2Gsin t + ;; cos t) 

(b) Explain how it is obvious from part (a), without using calculus, that the range 
of the function given by sin t + J3 cos t is - 2 :::;; y :::;; 2 if the domain is un­
restricted. 

(c) Prove, without using calculus, that the range ofthe function given by a sin t + b 
cos t is 

if the domain contains an interval of length 2n. 
(d) Do problem 12, part (d), without using calculus. 

33. Use implicit differentiation to find the slope ofthe tangent line to each ofthe follow­
ing curves at the indicated point P. 
(a) x2 + y2 = 169, P = (5, 12). 
(b) x2 + y2 = 169, P = (5, -12). 
(c) y3 - 4xy + 3x2 = 0, P = (1,1). 
(d) sin 4y + arctan x + cos(x + y) = 1, P = (0,0). 

34. Find the "general solution" to the fence problem illustrated in problems 9 and 10. 
Show that ifthe fences have lengths a, b, and a, then the angle () should be chosen as 

() . (-b + .Jb2 + sa2
) = arcsm , 

4a 

in order to maximize the enclosed area. 
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35. Show that, regardless of the values of a and b in problem 34, the optimal angle e 
found in problem 34 can never exceed 1(/4 radi ans. Hint. Let x = b/a and regard e 
as a function of x. 

36. Find the general solution of the angle problem illustrated in problems 21 and 22. 

L 

B 

x 

Show that if L is the length ofthe object in which you are interested, whose base is 
a distance B from a line on which you are constrained to move, then the optimal 
value of x is ,J B(L + B). 

37. (F or circle lauers) Investigate (i.e., prove or disprove) the following conjecture. Given 
the general situation as found in problems 9 and 10, what you should do, to optimize 
the area, is to make your fence as nearly like a circle as you can. That is, ifyou have 
fencing of lengths a, b, and a, then layout your fence so that you can put a circle 
through the four corners, with its diameter along the fence al ready standing: 

b 

38. (For circle lauers) Investigate the following conjecture. Given the general situation 
as found in problems 21 and 22, what you should do, to optimize the indicated 
angle, is to find the position on the line where a circle tangent to the line cuts the 
top and boUom points of the object in which you are interested. 

Maximal 0 

Can you praue this using only Euclidean geometry? 
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Reculer pour mieux sauter! ("Draw back to leap !") say the French, and we 
shall bear in mind their good advice. Before we can leap into a higher realm, 
we must step backwards, in two senses. We must consider more carefully 
some fundamental principles that we have al ready met but still do not really 
know. And we nmst think a little more about pulling back from a given 
function to an antiderivative. Does every continuous function, for example, 
have an antiderivative? We shall see. 

The word transcendental has been used in mathematics for well over a 
century. It means what it says, referring to something that transcends, or 
rises above, whatever realm has al ready been attained. A transcendental 
function is one whose rule of correspondence transcends the realm of ordinary 
algebra. For example, the function F given by 

F(x) = arctan x 

is transcendental. The rule for calculating arctan x cannot be expressed in 
terms of algebraic operations (sums, qUütients, powers, roots, etc.) applied 
to the variable x. 

In contrast, the function f given by 

1 
f(x) = 1 + x2 

is not transcendental. The function f is an algebraic fimction because the 
rule for f is stated in terms of quotients, sums, and squares-all familiar 
algebraic operations. Almost all the functions we encountered before Chapter 
7 were algebraic, as is, für example, the function given by 

1 
g(x) =-. 

x 

245 
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It is curious that, as in the case of Fand f given above, an antiderivative F 
of an algebraic function f need not be algebraic. Does this mean that tech­
niques for finding antiderivatives will be more involved than the techniques 
we al ready know for finding derivatives? In one sense the answer to this 
question is yes, but in another sense, as we shall see, an antiderivative of any 
continuous function can be found with almost ridiculous ease. 

Before we can see clearly how simple it is to write down, for example, an 
antiderivative of the function g given above, we must learn to feel more at 
horne with the integral. Calculus consists oftwo branches, differentiation and 
integration, and so far we have placed more emphasis upon the former. It 
should be rem em bered, however, that integration is almost exactly 2000 years 
older than differentiation, Eudoxus living 2000 years before Fermat. Let us 
try to do justice to the integral, to meet it in friendship, to enter its house. 

§ 1. Fundamentals : Existence and U niqueness 

In varying degrees of depth we have discussed the following fundamental 
principles: 

Fl. On a connected domain, two antiderivatives of the same function differ by an 
additive constant. 

F2. If f is a continuous function with domain a ::s:; x ::s:; b, then the integral 
of f exists. [That is, in Eudoxus' method when the limit is taken, the limit 
will ex ist, producing the number to be denoted S~ f(x) dx.] 

F3. The integral S~ f(x) dx can be evaluated by calculating F(b) - F(a), where 
Fis any antiderivative off. 

These principles might be called, respectively, the uniqueness theorem, the 
existence theorem, and the evaluation theorem. The uniqueness theorem Fl 
was made plausible in Chapter 5, and the evaluation theorem F3 was proved 
in Chapter 6. The existence theorem F2 was stated in Chapter 6 without 
proof. In this chapter we shall see so me reasons for believing the existence 
theorem, although we shall not see its complete proof. 

The existence theorem F2 tends to be overshadowed by the evaluation 
theorem F3, despite the fact that F3 is of no use whatever unless an antideriva­
tive is known. For many purposes the existence theorem is of paramount 
importance. If we forget it, we can find ourselves in pitfalls. 

Pitfall. It is obvious, from Eudoxus' method, that if a function is always 
positive, then its integral is too: 

Sab f(x) dx z 0 if f(x) z O. (1) 
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This must apply to the function given by f(x) = 1/x2 , since squares are never 
negative. ByF3, since the derivative of -l/x is 1/x2 , we have 

SI _111 (-1) _ f(x)dx=- = -1- - = -2. 
I x -I -1 

(2) 

Statements (1) and (2) contradict each other. D 

How did we let ourselves get into this pitfall? Our trouble comes from 
being so enchanted with the evaluation theorem F3 that we tend to forget the 
existence theorem F2. The function 1/x2 is not continuous throughout the 
domain - 1 S x S 1, since it is not even defined at the point x = o. If we 
attempted to apply Eudoxus' method to 1/x2 on this domain, we should find 
that the approximating sums Sn get arbitrarily large and do not te nd to a 
limit. (Compare exercise 7.7 of Chapter 6.) The integral J~ I (1/x 2) dx does not 
exist, and of course the evaluation theorem F3 cannot be used to evaluate a 
nonexisting n um ber! 

One reason for learning the existence theorem, then, is simply to avoid 
looking silly. An even bett er reason for making friends with F2 will be dis­
cussed in the next section. 

EXERCISES 

1.1. Among the following rules, specify the ones you can recognize to be algebraic 
functions. 
(a) sin x. 
(b) 1/v'1=7. 
(c) arcsinx. 
(d) The area of a circIe of radius x. 
(e) The area beneath the squaring function, between 0 and x. 
(f) The area beneath the curve y = 1/(1 + t2 ), between 0 and x. 
(g) The area beneath the curve y = 1/t, between 1 and x. 
Answers: (b), (d), and (e) are algebraic. 

1.2. Here are some conjectures. For each o[them, tell whether it is true or false, and why. 
(a) If a transcendental function has a derivative, its derivative must also be a 

transcendental function. 
(b) Ifan algebraic function has a derivative, its derivative must also be an algebraic 

function. 
(c) An antiderivative of a transcendental function must be transcendental. 
(d) An antiderivative of an algebraic function must be algebraic. 

1.3. Every one of the following "calculations" is ridiculous. Explain why, in each case. 

(a) SW/)I- x 2)dx = arcsin2. 

(b) SW/(l + x 2))dx = arctan 1 - arctanO = 45. 

(c) SW/(l - x)2)dx = 1/(1 - x)16 = -2. 

(d) So sec2 x dx = tan xlo = tan n - tan 0 = O. 
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1.4. Of the integrals that follow, some exist and some do not. Which of these can be 
proved to exist by appealing to the existence theorem F2? (Y ou are not asked to 
evaluate the integrals.) 

(a) SW/(1 + x»dx. 

(c) S~ 1 lxi dx. 
(e) S~ 1 arcsin x dx. 

(g) H tan t dt. 
(i) g~dt. 

(b) SW/(l - x»dx. 
(d) S~olO(l/(X2 - x + 1»dx. 

(f) S~olO (1/(x 2 - x-I» dx. 

(h) S6 sin 3 t cos2 t dt. 
(j) r 5 t2 sin t arctan(cos t) dt. 

Hint. A function is continuous at a point, ifit is differentiable at the point. However, 
it can be continuous without being differentiable. Answers: (a), (c), (d), (e), (h), and 
(j) ex ist by F2. 

1.5. The importance of Fllies in the fact that it makes a statement about uniqueness. 
It says that the antiderivative of a given function is not unique, that is, there is more 
than one antiderivative. Use Fl to prove this more positively expressed variant: 

Uniqueness Theorem (An Alternate Statement oJ Fl). Assume that Fand Gare 
antiderivatives oJ the same Junction, defi ned on a connected domain. IJ, Jor some point 
c it is true that F(c) = G(c), then F(x) = G(x)Jor all x in the domain. 

§2. What is a Number? 

Sometimes it is contended that the most novel development arising out of 
calculus is a change in mankind's conception of number. There is no doubt 
that we think ofnumbers today in a way different from those ancient Greeks 
for whom "number" meant a positive quantity that could be measured by a 
ratio of integers. On the other hand some Greeks, such as Eudoxus and 
Archimedes, would easily recognize the modern conception of number as 
having been borrowed largely from their own work. This is another subject 
bett er pursued in depth by a course in analysis, but we must touch upon it 
lightly here. 

In the beginning there were only positive whole numbers, 1, 2, 3, etc., the 
playthings of the Pythagoreans, who first saw the value of numbers to 
philosophy. To increase their power the Pythagoreans "enlarged" their 
conception of number to include positive rationals, that is, numbers of the 
form m/n, where m and n are positive integers. Their discovery of irrational 
points on the "number line", however, showed that their conception ofnum­
ber was still too narrow to accomplish what they wished. They could not 
(and they proved they could not!) even measure with their numbers the 
hypotenuse of a right tri angle whose legs were of unit length. 

It is clear from the experience of the Pythagoreans that if numbers are to 
measure arbitrary quantities, then there must be a number corresponding to 
each length of fine segment. This is what a number "really" iso The real number 
system must contain numbers capable of measuring any quantity, whether 
positive, negative, or zero. 
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How can a quantity be measured, particularly if it is an irrational quantity? 
The modern answer is, of course, by using the notion of limit, by approxirnat­
ing it ever more closely by quantities we already know, and by thinking ofthe 
number as the limit of our approximations. 

Today, for example, we think of J2 as being a perfectly proper real number, 
whereas Pythagoras had to think ofit as a certain length, and not a "number" 
at all. When we write 

J2 = 1.414. .. (note the three dots!), 

we do not me an J2 = 1.414 (which, of course, is false, because the square of 
1.414 is not equal to 2), but that a sequence beginning 

1, 1.4, 1.41, 1.414, ... 

is getting progressively closer to what we da mean. The real number J2 is 
defined by specifying a sequence 

14 
1, 

10' 
141 
100' 

of positive rationals whose squares 

1, 1.96, 1.9881, 

are tending to 2. 

1414 
1000'·· . 

1.999396, ... 

As the example of J2 illustrates, to define areal number, it is only neces­
sary to specify how it may be approximated to any desired degree of accuracy. 
That is, to define areal number, it is only necessary to specify a way to approxi­
mate it as a limit. 

The idea is that areal number is supposed to represent a point on the 
number line. While the point itself we conceive of as a "sharply defined" 
object, it may weIl be impossible to hit the point with a rational number. The 
best we can do is to specify how the point may be approximated ever more 
closely. 

1! 

3.0 3.1 3.2 

The number n is defined as the area ofa circle ofradius 1 unit. The sequence 
3, 3.l, 3.l4, 3.l41, 3.l415, 3.l4159, ... is the beginning of a sequence of 
rationals tending to n as a limit: n = 3.l4159 .... 

What has all this got to do with integrals? A whole lot, indeed! An integral 
is defined-by Eudoxus' method-as a limit, with the sequencc of numbers 
tending to that limit being the approximating sums calculated in the method. 
There is a moral in this. When we see an integral, such as 

(3) 

we should think of it as representing a number no less sharply defined than 
numbers like J2 or n. We must avoid the temptation to think that with no 
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antiderivative of l/t, the expression (3) is worthless because it cannot be 
"evaluated" by the fundamental theorem F3. This is the wrong attitude to 
take, and anyone who takes this attitude cannot make friends with integrals 
and cannot, probably, make much further progress in this book. 

On the contrary, the expression (3) is a perfectly wonderful number, 
perfectly weIl defined. It is defined by Eudoxus' method as the number that 
is the limit of approximating sums of the form 

n = 1,2,3, .... (4) 

By taking n larger and larger, we specify a way of approximating the real 
number (3) to any desired number of decimal places. The only question is 
whether the limit ofthe approximating sums (4) exists, as n increases without 
bound. And here is where the importance of the fundamental existence 
theorem F2 is seen. Because f(t) = l/t is differentiable, therefore continuous, 
on the interval 1 :s;; t :s;; 2, the existence theorem assures us that the approxi­
mations in (4) do indeed tend to a limit. 

The integral (3), with the help ofF2, is seen to have built into itself a way 
to calculate the terms of its decimal expansion, to as many pI aces as desired. 
And this can be done by pure arithmetic, without any knowledge of antideri­
vatives or of derivatives. One need only be a humble computer to plug a 
large value of n into (4) and to find that 

f21 
-dt = 0.693147 .... 

1 t 
(5) 

By the same token, a computer knowing nothing about calculus, but only 
about addition and multiplication, can discover that 

l 3 1 
-dt = 1.09861 .... 

1 t 
(6) 

Integrals, if they ex ist, express numbers just as weil as any other means of 
expressing numbers. The expression (3) is every bit as "definite" as the ex­
pression n. 

ActuaIly, integrals of the re ci pro ca I function l/t are ofmore than in ci dental 
interest, as we shall see in Chapter 9. Here are a few more results, given 
without proof. By plugging into the expression (4) a large value ofn one can 
discover, for ex am pIe, that 

f41 
- dt = 1.38629 ... , 

1 t 

f61 
-dt= 1.79176 ... , 

1 t 

f lO 1 
- dt = 2.30259 ... , 

1 t 

f121 
-dt = 2.48491 .... 

1 t 

(7) 

(8) 

(9) 

(10) 
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The integrals (5) through (10), and all integrals of the form 

(11) 

are of particular interest, as we shall see. It is important to realize that an 
expression such as (11), despite its complicated symbolism, simply stands for a 
certain real number whenever x is given a particular value. The number is 
perfectly definite, if x > 1, since it can be calculated to arbitrarily many 
decimal pI aces by Eudoxus' method. 

EXERCISES 

2.1. The Greeks used only positive numbers. When was the number zero introduced into 
our number system? (Use an encyclopedia to find out.) 

2.2. Criticize this statement: "Zero is nothing." Answer: Zero is a number, naming a 
certain point on the number line. Nothing is not a number. Zero is therefore not 
nothing. 

2.3. Wh at motivation do we have to enlarge our number system to inelude negative 
numbers? Hint. Think about the problem of naming points on the "Ieft half" of 
the number Ene, or of measuring the value of overdrawn bank accounts, or of 
reading freezing temperatures on the Celsius scale. 

2.4. What is the motivation for ineluding in the real number system numbers that are 
not rational? 

2.5. With our more sophisticated notion ofnumber it can sometimes be quite a problem 
to tell when numbers are equal. 
(a) Archimedes knew that J3 is irrational, and doubtless suspected that 1[ is too. 
Attempting to find very elose rational approximations, he found that J3 lies 
between 265/153 and 1351/780, while n lies between 3~7 and 3~. Anybody can show 
that .j2 lies between ;6-ö6- and ; riÖÖ. U sing the information here, and without using 
the decimal system (Archimedes did not), give a convincing argument to prove that 
.j2 + J3 # 1[. 

(b) It is true that 
.j2 4(1 + J3) = 0.9659 ... , 

and it is also true that 

~ J2 + J3 = 0.9659 .... 

On the basis of this information alone, can one infer that (.j2/4j(1 + J3) = 
!J2 + J3? Answer: No. All we know from this is that the numbers are "equal" 
to four decimal pI aces. 

(c) Prove that the two numbers in part (b) that agree to four decimal places are in 
fact equal. Hil1t. There are a couple ofways of doing this. One way is to use the 
results of Examples 6 and 7 of Chapter 7. 
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2.6. When was the decimal system introduced into mathematics? (Use an encyc10pedia 
find out.) 

2.7. Let L(x) be defined as the expression (11). 

(a) What is L(2)? Answer: By (5), L(2) = 0.693147 .... 
(b) What is L(3)? 
(c) What is L(2) + L(3)? 
(d) What is L(6)? 
(e) What is L(3) + L(4)? 
(f) What is L(12)? 
(g) Do we have enough information to conc1ude that L(2) + L(3) = L(6) or that 

L(3) + L(4) = L(12) or that L(2) + L(2) = L(4)? Answer: No. But we also do not 
know enough to prove they are not equal. 

2.8. It can be shown by Eudoxus' method that 

~ l024 1 
-dt = 6.93147 .... 

1 t 

(a) Explain how one might have guessed this. Hint. 1024 = 210. 
(b) Make a guess (no proof called for) as to the value of each of the following 

integrals: 

f 30 ~dt 
I t ' f 24 ~dt 

1 t ' 

Answer: (b) 3.4012 ... , 3.1781 ... , 2.1972 .... 

§3. Approximating S~ f 
In the preceding section it was emphasized that the number J~! has built 
into itself a means by which it can be approximated to any desired degree of 
accuracy. As a practical matter, it is of in te rest to know how dose we come 
by specifying a particular approximation. 

EXAMPLE 1. The integral Si (1/t) dt exists by F2. Calculate the approximating 
sum 

n 

Sn = L !(tk) LJ t, 
k=l 

for (a) n = 4, (b) n = 8, and (c) n = 16. 

(I, 1) 

(3,1) 
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Note that for (a) we have Llt = (3 - 1)/4 = t and therefore 

S - i 1 (1) 
4 - k= 1 1 + (k!2) "2 

4 1 
=2:-

k= 1 2 + k 
1 111 

= 3 + 4 + "5 + 6 = 0.95. 

For (b) we have Llt = t, and, when simplified, 

s 1 1 1 
Ss= L -4 k=-+"'+~= 1.020 .... 

k= 1 + 5 12 

For (c) we have Llt = t and, when simplified, 
16 1 1 1 

S16 = k~1 8 + k = 9 + ... + 24 = 1.058 .... D 

In Example 1, the approximating sums S4' Ss, S 16 are getting closer to the 
"right answer", which, by (6), is 1.09861 .... 1f we do not know the right 
answer already, how can we tell how close to it we come by calculating an 
approximating sum Sn? This question motivates the following theorem, wh ich 
teils us the maximum possible error we can make. 

Theorem on Approximating Sums. Suppose the curve f is falling on the do­
main a :s; t :s; b. Then the approximating sum Sn to the integral S~ f differs 
from the integral by no more than the quantity 

(f(a)-f(b))Llt. (12) 

That is [since Llt = (b - a)!n], the number S~ f must satisfy the inequality 

Sn:S; fb f :s; Sn + (f(a) - f(b))(b - a). (13) 
Ja n 

PROOF. A formal proof of this theorem could be given, but the reader will 
find it easier to understand this theorem by simply studying the picture 
below. 

(a,f(a)) 

T 
f(a) - !(b) 

~ (b,f(b)) 

'--v---' a '--v---' b 
''-----dt--------~) 

Sn is the area beneath the staircase with n steps 
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From the picture it is obvious that the shaded area is the difference 
between Sn and J~ f. If each component of the shaded area is pushed hori­
zontally over to the vertical axis on the left, it be comes obvious that the 
entire shaded area cannot exceed the area of the rectangle whose base is At 
and whose height is f(a) - f(b). The error in the approximation Sn is then 

f: f - Sn = shaded area 

:s; rectangle of base At, and 
height f(a) - f(b) 

= (f(a) - f(b))At. 

This inequality shows that the quantity (12) exceeds the error in the approxi­
mation Sn. The inequality (13) is apparent when one adds the quantity Sn 
to each side of the inequality just above. D 

The theorem just proved applies only to falling curves. (An analogous 
result holds for rising curves, but this is left to the reader as an exercise. If the 
curve is neither rising nor falling, then the considerations made above do not 
apply.) 

Since the curve given by f(t) = 1/t is falling on the domain 1 :s; t :s; 3, we 
may apply our theorem to it. Using the results of Example 1, we see that the 
cases n = 4, n = 8, and n = 16 make the inequality (13) become, respectively, 

i31 0.95:s; -dt:s; 0.95 + 0.333, 
1 t 

f 3 1 
1.02 ... :s; -dt:s; 1.02 + 0.167, 

1 t 

f 3 1 
1.058 ... :s; -. dt :s; 1.058 + 0.083. 

1 t 

Note that successive doublings of n (4,8,16) produce successive halvings 
(0.333,0.167,0.083) of the error estimation. We can thus get as elose to the 
integral as we please, but we have to stop sometime of course. The last 
inequality above shows the integral between 1.058 and 1.141. A good guess 
would be the average of these, which is 1.099: 

f 3 ! dt ;::::: 1.099. 
1 t 

This average will be slightly larger than the integral here, because the curve 
y = 1/t is concave up. (What does concauity haue to do with this?) Nevertheless, 
1.099 is a satisfactory approximation to 1.09861 ... , the number obtained 
by calculating S" for very large n. 

What we have just done makes it easy to give a proof of an existence 
theorem for falling curves. 

Existence Theorem (Special Case). Let f be a falling CU/Te with dOl1win a :s; 
t:s; b. Then J~ f exists. 
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!>ROOF. The inequality (13) shows how to specify the number S~ f to any 
desired degree of accuracy. This is all that is required to assert that areal 
number exists. (Reread Section 2, where real numbers are discussed.) 0 

EXERCISES 

3.1. The integral H (l/t) dt exists by F2. Calculate the approxirnating sum for 
(a) n = 4. 
(b) n = 8. 

3.2. What <\oes inequality (13) become, for the integral H(1/t)dt when 
(a) n=4? 
(b) n = 8? 

3.3. The integral SW/(1 + t 2 )) dt exists by F2. 
(a) Calculate its approximating sum S4. 
(b) Wh at does inequality (13) become when n = 4? 
(c) Use your answer to part (b) to make a guess at an approximation to the 

number n. 
Answers: (b) 0.72029::; n/4 ::; 0.72029 + 0.1250. (c) Taking the average of these 

bounds as an estimate for n/4, we might guess n ~ 3.131, which we expect 
(why?) to be low. 

3.4. Prove that if the <mrve f is rising on the interval a ::; t ::; b, then 

Sn - (f(b) - f(a) )(b - a)::; fb f::; Sn. 
n Ja 

3.5. Prove that if fis a rising curve, then S~ f exists. 

3.6. The existence theorem F2 asserts that if f is continuous on a ::; t ::; b, then S~ f 
exists. We have not given a proof of this, but we have established the existence of the 
integral for a rising curve and for a falling curve. Can you make an argument 
showing that the integral exists for a continuous curve that is sometimes rising and 
sometimes falling? 

3.7. Give an example ofa discontinuous function whose integral exists. Hint. Continuity 
was never used in the proofs of this section. Consult problem 3 at the end of this 
chapter. 

§4. Definition of J~ f if b < a. 

Up to now, whenever we saw the expression 

(14) 

it was either explicitly stated, or else understood, that a < b. Wh at should 
expression (14) be understood to mean if b::;: a? We make the following 
definition. The motivation for making this definition will be co me clear on 
the pages that follow. 
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Definition. The expression (14) is defined as 

(a) the number ca leu la ted by Eudoxus' method if a < b; 
(b) zero if a = b; 
(c) the negative 0/ Sb / if b < a. 

For example, H (1ft) dt = 0 by this definition, and 

fo 1 II 1 --dt= - --dt 
1 1 + t 2 0 1 + t 2 

n 
= - [arctan tJA = -4' 

8 House of Integrals 

This definition may seem peculiar, but there is a pragmatic reason for 
making it. With this definition, the evaluation theorem F3 is true without the 
restriction that a < b. 

The Fundamental Theorem (Extended). Let / be a continuous function defined 
an same interval containing the points a and b. Then, regardless 0/ whether 
a < b, it is true that 

if F' = /. 

PROOF. We already know equality holds between J~ / and FI~ when a < b. 
We must prove equality for the other two cases. If a = b, then the integral by 
definition is equal to 0, but so is FI~ = F(a) - F(a). Thus equality holds if 
a = b. 

The remaining case is b < a. By the definition just given, in this ca se we 
have 

= - [FJ~ (by the original F3) 

= - (F(a) - F(b)) 

= FI:· 
Equality therefore holds if b < aas weil. o 

Now that the expression (14) has a wider significance, it sometimes requires 
a little thought to determine for what values a and b the expression (14) 
makes sense. 

EXAMPLE 2. Specify the values of x for which the following integrals exist. 

(a) n/2 sin. 
(b) n/4arcsin. 
(c) SO arctan. 
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The integral (a) exists for all x, since the sine function is everywhere 
continuous. Another way of seeing this is to note that by the fundamental 
theorem, as just extended, 

f~2 sin = [ -cos]~/2 = -cos X + cos~ (15) 

for all x. 
The integral (b) does not exist for all x, since arcsin is continuous only 

on the domain - 1 ~ x ~ 1. By F2 the integral (b) exists on this domain. 
If we have no antiderivative of aresin, we cannot give a simplified expression 
for (b), in contrast to the simplification of the integral (a) in equation (15). 

By F2 the integral (c) exists for all x, since arctan is continuous everywhere. 
o 

In Example 2 each of the functions in question has a name (sin, aresin, 
arctan). If the function has no name, but is specified by an algebraic rule, a 
dummy variable must be used. (Compare exercise 3.3 of Chapter 5.) 

EXAMPLE 3. Specify the values of x for which the following integrals exist. 

(a) Sl (l/t) dt. 

(b) s~ 1 Oft) dt. 
(c) Sl/2 ~dt. 

Here, t is a dummy variable. The answer would be unaffected if t were 
replaced by any other variable (except in this case x, since x is already being 
used in another context as the upper limit ofthe integral). Since the algebraic 
rule l/t has a discontinuity at the point t = 0 and nowhere else, the integral 
(a) exists on the domain 0 < x, by F2. 

The integral (b) exists on the domain x< o. (Why?) 
The square root function is continuous wherever it is defined, and it is 

defined only when the expression beneath the radical sign is not negative. 
The expression 4 - t 2 is nonnegative when - 2 ~ t ~ 2. Therefore the 
integral (c) exists by F2 on the domain -2 ~ x ~ 2. [Note that the answer 
to (c) is not - 2 ~ t ~ 2, because t is a dummy variable. The problem has to 
do with x, not t.] 0 

EXERCISES 

4.1. Use the fundamental theorem, as extended in this seetion, to ealculate eaeh of the 
following integrals. 

(a) H t 2 dt. (b) Si t2 dt. 

(e) Bsin5 tdt. (d) Heostdt. 

(e) H S2 ds. (f) H S2 ds. 

(g) B sin 5 s ds. (h) H eos s ds. 

Answers: (a) -i. (b) (x 3/3) - (8/3). (e) - 8/3. (f) (x 3/3) - (8/3). 
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4.2. Consider each of the following statements and tell whether it is true or false. 
(a) I2 t2 dt = I2 S2 ds = I2 L 2 dL. 
(b) The derivative of n/2 sin t dt is sin x. (See (15) for another way to express 
n/2 sin t dt.) 
(c) H t2 dt is an antiderivative ofthe squaring function. 
(d) The derivative of H t2 dt is given by t2 • 

Answers: (a), (b), and (c) are true. In (d) the derivative is x 2 . 

4.3. Specify the natural domains of the following. That is, specify in each case the values 
of x for which the expression makes sense. 
(a) L(x) = n (l/t) dt. 
(b) F(x) = S~ (l/(t - 1)(t + 3) )dt. 
(c) G(x) = S~ .J(t + l)(t + 3) dt. 
Answers: (a) 0 < x. (b) -3< x < 1. (c) -1:<;; x. 

4.4. Verify each of the following, using the extended definition of the integral. 
(a) (l/(b - a» S~! = (l/(a - b» Sb! if a < b. 
(b) (l/(b - a» S~! = (l/(a - b» Sb! if a > b. 
(This simple result will be surprisingly handy to know on several occasions in the 
pages ahead.) 

§5. Integrals as Averages 

The remaining sections in this chapter deal with the uses of the integral. We 
first found integrals by considering how to measure areas, but integrals are 
ofvalue to many people having no interest whatever in studying areas. That 
is why we have been emphasizing that the integral is a number. That number 
need not be an area. It might instead represent some distance traveled, some 
quantity of work performed, the magnitude of some force, or the possibility 
of occurrence of some momentous event. It might be a "moment of inertia", 
a "quadrat ure", or an "average". The house of integrals has many sides. 

Perhaps the easiest way to enter this house is by considering the notion of 
an average. The average of several quantities is calculated by finding their 
sum and then dividing by the number of quantities. The average of two 
quantities has a simple geometrie interpretation: 

a b 
• • • 

a+b 
-2-

The average of a and b is halfway in between 

What about the average of more than two quantities? Does it have a 
geometrie interpretation? Consider the average of the first five squares 1, 4, 
9, 16, and 25. The average is 11, since (1 + 4 + 9 + 16 + 2))/5 = 11. In a 
rather vague sense, the number 11 is the "center" ofthe numbers 1,4,9,16, 
and 25. 
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4 
• • 

avg 

16 
• 

25 
• 
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We can say a little more precisely what is meant by center. Think about the 
line above as representing a seesaw whose only weight is concentrated at the 
points 1,4, 9, 16, and 25. If equal weights are placed at these points, then a 
fulcrum placed at the average value, 11, will make the seesaw balance. It 
will not tilt either way, with the fulcrum at its center. (Note that the center of a 
seesaw is not necessarily exactly in the middle. If, in the figure above, the 
fulcrum was put in the middle, at the point 13, the left side of the seesaw 
would go down and the right side up.) 

There is a lot to be learned by playing on seesaws, as Archimedes was 
first to note. (See the appendix in this book on Archimedes.) Let us pause to 
playamoment. 

Consider the n quantities 1,2, 3, ... , n. What is their average? 

2 3 
• • • • 

n+1 
2 

n 
• 

Ifwe think of the seesaw we can guess right away their average, without doing 
any involved calculation. If equal weights are put at the points 1,2, 3, ... , n, 
where should the fulcrum be placed in order to make the seesaw balance? 
By the symmetry of the situation, it should obviously be placed in the middle, 
that is, halfway between 1 and n. 

n + 1 
-2- = avg of 1, 2, 3, ... , n. 

This is a case when we are able to guess the average without using the defini­
tion, which would entail adding the n quantities and then dividing by n: 

1 n 

avg of 1, 2,3, ... , n = -' L k. 
n k~ 1 

Let us combine the preceding two equations to obtain 

~'±k=n+l. 
n k~ 1 2 

Multiplying through by n yields 

± k=n(~), 
k~ 1 2 

which is the familiar formula for the sum of the first n positive integers. We 
have just derived this old result in a new way, using the notion of an average. 
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What has just been done reveals a use for averages that is sometimes 
handy to remember. If you can somehow guess the average of a number of 
quantities, then, as above, you can quite easily calculate their sumo 

An idea should begin to grow here, in the mind of a student of calculus. 
Sums are "like" integrals, since integrals are limits of sums. It might be 
handy to invent, in analogy with the foregoing, the notion of the average of a 
function, and see how it is related to the integral of the function. 

To take a concrete example, let us consider what ought to be meant by 
the average value of the sine function, on the domain 0 ~ x ~ 11:. 

o XI X 2 ••• 7t 

What is avg f? 

If we partition the domain into n equal parts, as indicated, then the average 
value taken by the function f at these n points is, of course, 

1 n - L f(x k )· 
n k= 1 

(16) 

This expression is the average value of fon the (discrete) set of points Xl' 

x 2 , ... ,Xn • It is natural to define the average of f on the (continuous) 
domain 0 ~ x ~ 11: as the limit of (16), as n increases without bound: 

avgf = Limit ~ i f(Xk)' 
n k= 1 

(17) 

Equation (17) gives us a natural definition of avgf, as a limit of a certain 
sumo How is this related to the integral SO fex) dx, which is also the limit of a 
sum? Applying Eudoxus' method to the interval 0 ~ X ~ 11:, we get L1x = 

1I:/n, so that 

f: fex) dx = Limit kt f(xk) Jx 

= Limit i f(xd ~ 
k= 1 n 

= 11: • Limit ~ i f(Xk) 
n k= 1 

= 11: • avgf [by (17)]. 

Since So fex) dx = 11: • avgf, it follows that 

1 ~1[ avgf = - fex) dx. 
11: 0 
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Hence, for J(x) = sin x, 0 ~ ~ ~ n, we have 

avgJ = - smxdx =-( -cosx) =-. 1 Sc" . 1 I" 2 
nOn 0 n 

The average value ofthe sine function, on the domain 0 ~ x ~ n, is then 2/n. 
From considering the preceding example we can see the relation we were 

seeking to find, between the integral of J and the average of J, over a certain 
intervai. The average of J is the integral of J, divided by the length of the 
interval. We are thus led naturally to this definition. 

Definition. Let J be a continuous function on the interval a ~ x ~ b. The 
average value of J on this interval is denoted by avg fand defined by the 
equation 

1 ib avgJ = -b - J(x) dx. - a a 

(Continuity of fis assumed, in order that the existence of the integral of J 
can be guaranteed by F2.) 

EXAMPLE 4. The average value of the sine function on the interval from 0 to 
n/3 is given by 

1 Sc"/3 . 3 3 -/- smxdx = -[ -cosx]ü/3 =-. 
n 3 0 n 2n 

D 

EXAMPLE 5. The average value of the squaring function on the interval 
from 1 to 5 is given by 

_1_f5 X2dX=~X315 =~= 10.33.... D 
5-1 1 43 1 3 

(Why isn't the answer equal to 11, which, as we saw above, is the average oJ the 
first five squares 1,4,9, 16, and 25?) 

EXAMPLE 6. If the speed of a motorcycle at time t is given by v(t) = 40 + 3t2 -
4t miles per hour, then the motorcycle's average speed, between t = 1 and 
t = 3, is given by 

1 f3 1 3 _ 1 1 (40 + 3t2 - 4t)dt = "2 [40t + t3 - 2t2]~ 

= 45 miles per hour. D 

EXAMPLE 7. If the height ofa rock at time t is given in feet by h(t) = -16t2 + 
96t, then the rock's average height, between t = 0 and t = 3, is given by 

1 3 1 [ t 3 J3 3-ofo (-16t 2 +96t)dt=3 -163 +48t2 0 = 96 feet. D 
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At the beginning of this section we saw how the notion of an average of a 
collection of quantities can so met im es be an aid to a quick calculation of 
their sumo Similarly, the notion of the average of a function can sometimes 
simplify the calculation of its integral. From the definition of avg f, the 
integral of f is given by 

.c f(x)dx = (avgf)(b - a). (18) 

For certain functions, over certain intervals, it is possible to guess their 
average value, and thus, by (18), obtain their integral with virtually no work 
at all. It is particularly easy for the function given by x n, where n is odd, and 
where the interval is symmetrie about 0 (i.e., has 0 as its midpoint). The average 
of such a function is obviously 0, a fact that can be seen quickly in several 
ways. One way is to observe that if f(x) = x n, where n is odd, then 

f( -x) = - f(x), (19) 

because f( -x) = (-xt = (( -1)(x)t = (-1txn = _xn = - f(x). (Where 
did we use the assumption that n is odd?) From (19) it follows easily that avgf is 
o on an interval symmetrie about 0: 

-x 
• • 

o 
x 
• 

f(x) is the negative of f( - x) 

In approximating avgf by sums like (16), we get cancellation between the 
value of f at a point X k and the value off at - Xb from which it follows that 
avgf is O. 

Thus we know immediately that such integrals as s~ 1 x 3 dx, s~ 5 X 7 dx, 
S~a x 5 dx are all equal to 0 by (18), since in each ca se the average value of the 
integrand is o. We are also allowed to perform such operations as 

f 5 X3 dx = f3 x3 dx + f5 x3 dx = f5 x3 dx, 
-3 -3 3 3 

J:a f(x) dx = f:a f(x) dx + f f(x) dx = f f(x) dx, 

provided (19) holds. 
It is convenient to have a name far functions f for wh ich f( - x) = - f(x). 

They are called odd functions. As we have just seen, avg f = 0 on a domain 
symmetrie about 0 if fis an odd function. Besides x, x 3, x 5 , etc., odd functions 
include sin [because sin( - xl = - sin x], tan [because tan( - x) = - tan x], 
and many others. This is sometimes very useful to know. For example, even 
though we may not as yet know antiderivatives of tan x or x3 cos x or 
cos2 2x sin 3x, we can nevertheless assert that the integrals 

fl tanxdx, f 4 X3 cos x dx, 
-4 f 3 COS2 2x sin 3x dx 

-3 

are all equal to 0, because they are integrals of odd functions over intervals 
symmetrie about O. 
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EXERCISES 

5.1. (a) How many integers are there between the integer 7 and the integer 10 
(incl usive)? 

(b) How many integers are there between the integer m and the integer n (inclusive), 
assuming that n is greater than m? 

(c) Without adding up the integers from 7 to 10, guess their average. Then use 
your answer to 5.1(a) to deduce their sumo 

(d) Guess the average of the integers from m to n, inclusive. Then use your answer 
to 5.1(b) to deduce their sumo 

(e) Check your answer to 5.1(d) by writing 

k=m k~l k~l 

and applying the well-known rule for evaluating the two summations on the 
right-hand side. 

5.2. In each of the following, find the average value of the function on the indicated 
interval. 
(a) sinx, 0:::;; x:::;; n/4. 
(b) x 2 , 0 :::;; X :::;; 3. 
(c) x, 0 :::;; x :::;; 4. 
(d) x 3 , -I :::;; x :::;; 1. Answer: 0, since x 3 is odd function. 
(e) x 3 , -I :::;; x :::;; 2. 
(f) cos x, n/2 :::;; x :::;; n. Answer: - 2/n. 

5.3. A rock ~s thrown upwards from ground level at an initial speed of 64 feet per 
second. Find its average height over the first 2 seconds of its ftight. 

5.4. Which of the following are odd functions? 
(a) fix) = 2. (b) fix) = 2x. 
(c) fix) = 2cosx. (d) fix) = 2xcosx. 
(e) fix) = sin(x2). (f) fix) = sin(x3). 

(g) fix) = 2x + 2. (h) fix) = sin 2x sin 3x. 

5.5. A function f that satisfies the equation f( - x) = fix) for all x is called an even 
function. Which of the functions in exercise 5.4 are even functions? 

5.6. Give an example of a function that is neither odd nor even. H int. There is one in 
exercise 5.4. 

5.7. Assurne that f is an even function that is continuous. 
(a) Show that avgf on -Q:::;; x:::;; 0 is equal to avgf on 0:::;; x:::;; Q. 

(b) Show, using 5.7(a), that S~a fix) dx = So fix) dx. 
(c) Show, using 5.7(b), that S"-a fix) dx = 2 So fix) dx. 

5.8. Without evaluating any of the following integrals, give reasons for justifying the 
following equalities. Use the facts you have learned about odd and even functions. 
(a) S~dX5 +x4 + x 3 +x2 + X + I)dx = 2 Sö(x4 + x 2 + I)dx. 
(b) S'-r(l - x 2 ) dx = 2 SW - x 2 ) dx. 
(c) S-=-2(sinx + x)dx = H(sinx + x)dx. 
(d) S~ 1 (x 2 tan x cos x) dx = O. 
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5.9. Consider eaeh of the following eonjeetures. If it is true, give a reason why; if 
false, speeify a eonerete example where the eonjeeture fails. 
(a) The surn of two odd funetions is itself an odd funetion. 
(b) The produet of two odd fimetions is itself an even funetion. 
(e) The produet of even funetions is an even funetion. 
(d) The sum of even funetions is eveh. 
(e) If fis not an even funetion, then f rnust be an odd funetion. 
(f) The graph of any even function is "symmetrie about the vertieal axis". 
(g) If an odd funetion is eontinuous at 0, then it takes the value 0 at O. 
(h) The graph of any odd funetion is "symmetrie with respeet to the origin". 
(i) If f is any funetion whatever, and a funetiort 9 is defined by g(x) = f(x) + 

f( - x), then 9 is an eVen funetion. 
(j) If f is any funetion Whatever, and a function h is defined by h(x) = f(x) -

f( - x), then h is an odd funetion. 
(k) Any funetion whatever ean be expressed as the sum of an even funetion and 

an odd funetion. 

5.10. In Chapter 5 we defined average speed as the quotient of the distanee traveled by 
the time it took. In this seetion the average speed was defined as the integral of the 
speed, divided by the length of the time interval in question. Do these definitions 
agree? 

5.11. On the interval a ~ x ~ b, find the average value of 
(a) f(x) = C, where C is a eonstant. 
(b) f(x) = x. 
(e) f(x) = x 2 

(d) f(x) = x 3 . 

Hints. (e) b3 - a3 = (b - a)(b2 + ab + a2 ). (d) b4 - a4 = (b - a)(b 3 + b2a + ba2 + 
a 3) 

5.12. Frequently we need to speak of the average of a funetion over more than one 
intetval. To indieate that the interval in question is frorn a to b, we write 

avgf· 
a,b 

(a) Find avgo. 1 (x 2 ). Answer: (1/(1 - 0)) Sö x 2 dx = 1/3. 
(b) Find avg 1,2 (x 2 ). Answer: (1/(2 - 1)) Si x2 dx = 7/3. 
(e) Find avgo,2 (x 2 ). 

(d) Is it true that avgo,2 (x 2 ) = avgO. 1 (x 2 ) + avg 1,2 (x 2 )? 

5.13. Let f be a eontinuous funetion. Consider eaeh of the following eonjeetures, and 
tell whether it is true or false. 
(a) avga,b(ef) = C • avga,bf 
(b) avga.b (f + y) = avga.b f + avga.b g, where 9 is eontinuous. 
(e) avga.b (P) = (avga,b f)2. 
(d) avga,c f = avga,b f + avgb,c f· 
Him. (d) See 5.12(d). 

5.14. lust as we have found it useful to define S~f when b ~ a, so it will be useful to 
define avga .b f when b ~ a. The natural definition is as folIows: 
(a) avga,a f = fra). 
(b) avga .b f = avgb.a f if b < a. 
Use the result of exereise 4.4 to prove that (I/(b - a)) S~f is equal to avga.bf, 
euen if b < a. 
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§6. Simpson's Rule 

A moral of the preceding section is that ifyou can somehow guess the average 
of a function, then you can easily find its integral. For complicated functions 
we cannot hope to guess correctly. It turns out, however, that for simple 
functions like quadratics or cubics, it is remarkably simple to find averages. 

Let us begin with something familiar. Suppose a teacher is about to 
assign a grade to a student who has made scores of 70, 90, and 80 on three 
papers. If the three papers are of equal scope and size, the teacher would 
probably average the three grades to get a cumulative grade of 80. Suppose, 
however, that the second paper was the result of a project that was far more 
ambitious than the first and third assignments, which were of ordinary 
difficulty. In this case it would be reasonable to count the second grade with 
more weight than the first and third. 

Suppose it was decided to give the second paper four times the weight of 
the first, and to give the third paper the same weight as the first. Then the 
teacher would take not an ordinary average of the numbers 70, 90, and 80, 
but a "one-four-one" weighted average: 

70(1) + 90~4) + 80(1) = 85. 

(We divide by 6, since 6 is the sum of the weights 1,4, and 1.) 
A one-four-one weighted average of three numbers, as first observed by 

the eighteenth-century English mathematician Simpson, just happens to be 
exactly what we need in our present endeavor. Simpson found, perhaps 
simply by the method of trial and error, a simple one-four-one rule for 
writing down quickly the average of any quadratic or cubic. 

ConsideJ: the problem of finding the average of the function given by 
f(x) = x2 on the interval 1 ~ x ~ 3. 

(3,9) 

j(x) = x 2 

2 3 
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Notice that this function takes the value 1 at the left-hand endpoint, 4 at the 
midpoint, and 9 at the right-hand endpoint: 

f y 

1 1 
2 4 
3 9 

The ordinary average of these values of 1, 4, and 9 is 14/3, which will be a 
fair approximation to avgf. However, Simpson realized that-at least for 
quadratics and cubics, and perhaps other functions as weIl-the value of the 
function at the midpoint of the interval in question has more weight in 
determining the average of the function than the function's values at the 
endpoints of the interval. Consider a one-four-one weighted average of the 
values 1, 4, and 9: 

1(1) + 4(4) + 9(1) 13 
6 3 . 

The average of the function is, by definition, 

1 f3 x313 13 
avgf = 3 _ 1 1 x 2 dx = (; 1 = 3' 

Is it just an accident that avgf is equal to a one-four-one weighted average of 
the values of f at the Ieft, center, and right of the interval in question? 

Let us use the abbreviation 

smpf, or smp f, 
a,b 

to denote the application of Simpson's one-four-one rule to fon the interval 
a::;; x::;; b: 

smp f = smp f = f(a) + 4[( (a + b)/2) + f(b). 
a~ 6 

(20) 

We want to compare this with 

1 lb avgf = avgf = -b - f(x)dx. 
a.b - a a 

We have just seen that smpf is equal to avgf for f(x) = x 2 if a = 1 and 
b = 3: 

13 
smp x 2 = - = avg x 2 • 

1,3 3 1,3 

EXAMPLE 8. Calculate smp f for f(t) = -16t2 + 96t on the interval from 
o to 3, and compare smp f with avgf. 
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Here, the midpoint is~, and we have the following table ofvalues. 

o 
3 
"2 
3 

Simpson's one-four-one rule gives 

f(t) 

o 
108 
144 

( 16 296) 0+4(108)+144 96 smp - t + t = = . 
0.3 6 

In Example 7 of the preceding section, we found that 

avg (-16t2 + 96t) = 96. 
0.3 

o 

EXAMPLE 9. Calculate smpf for f(x) = sinx on the interval from 0 to n/3, 
and compare smp f with avgf. 

Here we have the table of values as indicated, 

and 

x 

o 
rt/6 
rt/3 

f(x) 

o 
1 
"2 

.[3/2 

0+ 4(t) + (J3/2L 4 + J3 
smp (sinx) = 6 - 12 
0,1[/3 

From Example 4 of the preceding section, we have 

. 3 
avg (sm x) =-. 
0,1[/3 2n 

(21) 

o (22) 

EXAMPLE 10. Calculate smpf for f(x) = x4 on the interval from 0 to 4, 
and compare smp f with avg f. 

o 0 
2 16 
4 256 

From the table, we calculate 

smp x4 = 0 + 4(16) + 256 = 53~ 
0,4 6 3' 

(23) 
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whereas 

avg x4 = - x4 dx = - . - = 51-. 114 1 XSl4 1 
0,4 4 0 4 5 0 5 

o 

From these examples we are led to expect dose agreement, but not 
necessarily equality, between smpf and avgf. We do get equality, however, 
if fis a linear, quadratic, or cubic function. 

Proposition on Exactness in Simpson's Rule. It is true that smp f = avgf if 
fis given by 

(a) f(x) = C (constant function). 
(b) f(x) = x. 
(c) f(x)=x 2 . 

(d) f(x) = x3. 

!>ROOF. We shall prove part (d), leaving the rest to the reader. 

a a3 

(a + b)/2 (a + W/8 
b b3 

If f(x) = x3, then 

smp f = a3 + 4( (a + b)j2)3 + b3 

a~ 6 

= ~(a3 + 4(a3 + 3a2b; 3ab2 + b3) + b3) 

= ~C2a3 + 12a2b: 12ab2 + 12b3) 

1 
= -(a3 + a2b + ab2 + b3) 

4 

= avg f [by exercise 5.11(d)]. 
a,b 

This proves part (d) of the proposition. The other parts are easier and are 
left to the reader to verify. 0 

It follows from the proposition just proved, as the reader will show in 
an exercise to follow, that 

smp f = avg f if f(x) = ax3 + bx2 + cx + d. 
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Thus, one can calculate exactly any integral of any cubic function by first 
using Simpson's rule to find the average value ofthe cubic. This is sometimes 
a great time-saver. Even for more general functions Simpson's rule is a 
great aid in guessing a quick approximation to an integral, because smp f 
is generally a good approximation to avgf. Frequently one has neither the 
time nor the patience to carry out Eudoxus' method to obtain a value of 
an integral that is correct to many decimal places. Let us introduce some 
notation to indicate the approximation to an integral that Simpson would 
make. Let 

S~f 

denote this approximation to J~ f. That is, 

S~ f = (b - a) smp f 
a.b 

~ (b - a) avg f (since smp f ~ avg f) 
a,b 

= f f [by (18)]. 

(24) 

When one is unable to use the fundamental evaluation theorem F3 for 
want of an anti derivative, Simpson's rule to calculate S~ f is a welcome 
relief. Though S~ f will not in general be equal to J~ f, we can expect to get 
approximate equality between these two numbers, as shown above. Let us 
look at a few examples to see how elose they can come. 

EXAMPLE 11. Estimate the integral Si (I/x) dx by Simpson's ruIe. 
Here we have 

(~) = 1 + 4(1) + t = 25 = 0694 
s~f x 6 36· .. ·' 

so that by (24), 

si G) = (2 - l)G!) = 0.694 ... , 

whereas, from equation (5), 

D 

EXAMPLE 12. Estimate the integral Si (I/x) dx by Simpson's rule. 
Here we have 

smp (~) = 1 + 4(t) + t = ~, 
1,3 X 6 9 
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so that 

Si(~) = (3 -l)G) = 1.11 ... , 
whereas, from equation (6), 

f31 
-dx = 1.099 .... 

1 X 
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o 

EXAMPLE 13. Estimate the integral H2 (1/x) dx by Slmpson's rule. 
Here we have 

smp (.!.) = 1 + 4(2/13) + (1/12) = 265 
1.12 X 6 396' 

so that 

12 (1) (265) Sl ;: = (12 - 1) 936 = 3.1 ... , 

whereas, from equation (10), 

f 12 1 
-dx = 2.5 .... 

1 X 
o 

These examples suggest that Simpson's rule may give a remarkably elose 
estimation of an integral J~ j, provided that the length of the interval from 
a to b is smalI, but that S~ j may be somewhat different from J~ j when the 
length b - ais large. One would expect, for example, to get a better approxi­
mation to H2 (1/x) dx by repeated applications of Simpson's rule to smaller 
intervals, say, e.g., 

f 121 d _f31d f61 d 1121 d -x- -x+ -x+ -x 
1 X 1X 3X 6 X 

~1.11+?+? (25) 

[The reader is asked to complete the calculation and see if the result is a 
better approximation to H2 (1/x) dx than the approximation SF(1/x) in 
Example 13.] 

Consider the problem of estimating the number n to several decimal 
places. Remember that n is defined as the area of the unit cirele, so that, 
by definition, n is equal to 

2 f 1 vi 1 - x 2 dx. (26) 
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By Simpson's rule, one then has it that n is approximately equal to 

2· S: 1(J1=X2) = 2(1 - (-I))G) = 2.67 ... , 

which is not a very good approximation, partly because the interval is 
fairly large, being of length 2, but mainly because J1=X2 is quite unlike 
any cubic equation, since it has vertical tangents at - 1 and at 1. (Roughly 
speaking, one expects more error with Simpson's estimation, the more unlike 
a cubic is the CUfve in question.) We would expect to improve upon OUf 
estimation of (26) by noting that the integrand is an even function, so that 
(26) is equal to 

4 SOl J1=X2 dx ~ 4 . SM)1 - x 2 ) 

= 4(1 - O)C + 4(;;/2) + 0) 

2 + 4)3 
= 3 = 2.97 .... 

This is a better approximation to n, because the interval is half as long as 
be fore, but the approximation is still not very satisfactory. 

Let us be more cunning. Since the sine function is so nice, and since the 
interval 0 to n/3 is not too long, we have grounds for supposing that the 
values in (21) and (22) are quite cIose. That is, 

From this is follows that 

18 
n~---

4+)3 

4+)3 3 
12 ~ 2n' 

72 - 18)3 

13 
(muItiplying top and bottom by 4 - )3) 

~ 72 - 18(1.732) 
13 

= 3.140 .... 

By luck we have hit upon a very good approximation to n, though it is still 
not so good as that of Archimedes. The wily Syracusan, by delicate estimates 
with a 96-sided polygon approximating the unit circIe, was able to show 
that n lies between 3~? and 3+. In decimal notation (Archimedes did not 
use decimal notation, of course), this means that n is greater than 3.1408 
and less than 3.1428. We now know that n is irrational, and we have estimates 
of n to a million decimaI places. For over a thousand years, however, 
Archimedes' estimate was about the best we knew. 
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EXERCISES 

6.1. Apply Simpson's rule, as indicated. 
(a) smpo.I(I/(1 + x 2 )). 

(b) smpO,n/3 (cos x). 
(c) smpO,2 (x4 ). 

(d) smp2,4 (x4 ). 

8 House of Integrals 

6.2. With the help of your answers to exercise 6.1, find S6(1/(1 + x 2», Sü/3(cosx), 
S6(x4), and Si(x4). Then caIculate, by the fundamental theorem F3, the integrals 
SW/(1 + x 2», Sü/3 (cos), g (x4), and Si (x4), and compare them to their approxima­
tions by Simpson's rule. 

6.3. In the proposition of this section, only part (d) was proved. Give proofs of parts 
(a), (b), and (c). 

6.4. Prove that Simpson's rule shares two properties with the integral, namely, 
(a) S~(Cf) = c . S~(f). 
(b) S~(f + g) = S~(f) + S~(g). 

6.5. Using the proposition of this section, together with the properties (a) and (b) of 
exercise 6.4, and without using F3, prove that S~(5X2 + 3x) = S~ (5x2 + 3x). Answer: 

S~(5X2 + 3x) = S~(5X2) + S~(3x) [by 6.4(b)] 

= 5 . S~(X2) + 3 . S~(x) [by 6.4(a)] 

= 5 J: (x 2 ) + 3 J: (x) [byparts(b)and(c)oftheproposition] 

= J: (5x 2 + 3x). 

6.6. Using the proposition of this section, together with the properties (a) and (b) of 
exercise 6.4, and without using F3, prove that 

S~(7x3 + 5x2 + 3x + 1) = J: (7x 3 + 5x2 + 3x + 1). 

(See the solution of the preceding problem.) 

6.7. Prove the obvious generalization ofthe result ofexercise 6.6: 

Theorem. Let f be any cubic function. Then, 

S~(f) = J: f. 
6.8. Evaluate the integral S~ 1(7x3 + 5x2 + 3x + l)dx 

(a) by the fundamental evaluation theorem F3. 
(b) by evaluating S~4(7x3 + 5x2 + 3x + 1) instead and applying the preceding 

theorem. 
Which method is shorter? 

6.9. The integral has the property that if f is a continuous function, then S~ f = 
S~ f + Hf. Does Simpson's rule have this property? That is, is it true that S~(f) = 
S~(f) + S~(f)? Hint. Test the case when f(x) = x4, a = 0, b = 2, and c = 4. Much 
of your work has already been done in equation (23) and in parts (c) and (d) of 
exercise 6.1. 

6.10. Complete the calculation left unfinished in (25). 
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6.11. By carrying out the following steps, find an approximation to n. (Carry all your 
numbers out to at least four decimal places. Use a hand calculator, if available.) 
(a) Use F3 to find J~~~cosxdx to several decimal places, using 1.732051 as an 

approximation to )3. 
(b) Find smp~6.n/3 (cos) to several decimal places, utilizing decimal approxima­

tions to y2 and)3. (J2 = 1.414214 .... ) 
(c) Because the interval from n/6 to n/3 is rather short, being of length n/6, and 

because the eosine function is so nice, we can expect a very elose approxima­
tion between the integral and its estimation by Simpson's rule: 

i n/3 cosxdx ~ S~!~(cos) = (n/6) smp (cos). 
Jn/6 n/6.n/3 

For the left-hand side of this approximation, substitute your answer to part 
(a), and substitute your answer to part (b) appropriately on the right. Then 
deduce an approximation to n. 

6.12. Suppose fis continuous at the point a. 
(a) What is the limit, as b tends to a, of f(b)? 
(b) Wh at is the limit, as b tends to a, of f((a + b)/2)? 
(c) Use your answers to parts (a) and (b) to prove that 

Limit (smp f) = f(a). 
b-a a,b 

(Begin with the definition given in equation (20).J 
(d) What would you guess is 

Limit (avg f) ? 
b-a a,b 

§7. Quadratures, Mean-Value Theorems, and 
L'Höpital's Rule 

M ean is another word for average and, being shorter, is more often used in 
mathematics books. Here we shall see some more reasons why the mean 
(or average) value of a function is of importance. The first reason is that it 
helps to solve, with ridiculous ease, the problem of quadratures. 

The problem of quadratures is an ancient problem, dating back to the 
Greeks. What is this problem? The fOot quadra- means "four", of course, 
but when the Pythagoreans thought of "four", they thought of 

• • 

• • 
which is a square. (That is why a quadratic equation is not an equation of 
fourth degree, as one might sensibly guess, but rat her an equation involving 
a square.) The problem of quadratures is the problem of exhibiting a square 
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of the same area as a given figure. To construct such a square is to effect 
(or perform) a quadrature of the figure. 

It is trivial to perform a quadrature of a rectangle or a triangle. A 
quadrature of the rectangle 

L 

w 

is given by a square whose sides have length .J L W. (In an exercise to follow, 
the reader is asked to perform a quadrature of a triangle.) To solve the 
problem of quadratures, therefore, one need only exhibit a rectangle (or 
tri angle) of the same size as the given figure, since quadratures can readily 
be performed upon rectangles (or triangles). Thus, in the fifth century B.C., 

when Hippocrates showed that the indicated "lune" was of the same area 
as the triangle, he had effectively performed a quadrature of the lune. 

(In a problem at the end of Chapter 2 is sketched a way to see that the lune 
and the triangle have equal area.) 

An outstanding problem was the quadrature of the circle. Archimedes 
showed (see the problem set at the end of Chapter 2) that a circle of radius 
rand circumference Cis equal in area to a triangle of height rand base C. 
Archimedes thus was able to perform a quadrature of the circle, assuming 
that a straight line equal in length to the circumference of the circle could 
be constructed. This point bears further discussion, but he re is not the place 
for it. The interested reader may consult the appendix on Archimedes. 

The problem of quadratures is today handily solved by integrals, together 
with the notion of the mean, or average, value of a function. Since 

S: f(x) dx = (b - a) avg f, 
a,b 

it follows that the area beneath the curve f from a to b is equal to thearea 
of a rectangle of base b - a and height avga,b f. 



7. Quadratures, Mean-Value Theorems, and L'Höpital's Rule 275 

T 
avgf 

1 
a b a b 

This solves the problem of quadratures for any figure that is the area beneath 
the graph of any continuous function. A rectangle with the same base but 
with height equal to the mean value of the function does the trick. Since it 
is easy to do, we could convert the rectangle into a square of equal size, but 
for the purposes of the rest of this section, it is better not to do it. 

It is better to ponder the figure below, instead, and to see something in it 
that will prove invaluable. The question to think about is, what happens 
as b is taken closer to a? 

maxf 

avgf 
f(a) 

minf 

a b 

The average, minimum, and maximum of f 

To see wh at happens, note first that avgf must be between the maximum 
and minimum values of f. This is obvious from the definition of average. 
Thus we have a very useful inequality: 

min f ::; avg f ::; max f· (27) 
a,b a,b a.b 

What happens to the terms in this inequality as b tends to a? Assuming 
that fis continuous at a, we can answer this question easily. The maximum 
and the minimum of f must get doser to each other, and both must get 
doser to f(a). Thus, as b tends to a, avga,bf must tend to f(a), since avga,bf 
is squeezed between two quantities, each ofwhich tends to f(a): 

Limit avg f = f(a) if fis continuous at a. (28) 
b-a a,b 

The statement (28) is of great value, as we shall see in the next section. The 
reader who understands the notion of continuity should see that statement 
(28) is almost obvious. It simply says, in rough terms, that when b is dose 
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to a, then the average of f from a to b is expected to be dose to f(a). For 
example, since the cosine function is continuous, 

Limit avg (cos) = cos 0 = 1. (29) 
x-+Q O.X 

The fuH importance of statement (28) will be seen in the next section, 
but the value of it can be indicated right here. We can also illustrate once 
again the value of doing things backwards. 

EXAMPLE 14. Find the limit, as x tends to 0, of (sin 2x)/(sin 3x). 
The trouble is that both numerator and denominator tend to O. (This is 

an example ofthe so-called indeterminate form 0/0, which frequently arises.) 
The fundamental theorem F3, used backwards (!), says 

f(x) - f(O) = f: f'. (30) 

When this is applied to f(x) = sin 2x, we have f(O) = 0 and f'(x) = 2 cos 2x, 
so that (30) becomes 

sin2x = f: 2cos2tdt 

= 2(x - 0) avg (cos 2t). 
O.x 

When F3 is applied backwards to f(x) = sin 3x, then (30) becomes 

sin 3x = 3(x - 0) avg (cos 3t). 
O.x 

and we can express the quotient we are investigating in terms ofmean values: 

sin 2x = 2x avgo.x (cos 2t) = ~ . avgo.x (cos 2t) if x#- O. 
sin 3x 3x avgo.x (cos 3t) 3 avgo.x (cos 3t) , 

and it is now obvious, with the aid of (28), what the limit is, as x tends to O. 
It is 

2 cosO 2 
3 cosO 3' 

since cos 2t and cos 3t are continuous at O. Hence, t is the limit, as x tend 
to 0, of the quotient (sin 2x)/{sin 3x). 0 

The key to investigating the indeterminate form % was to rewrite the 
quotient in terms of average values. This approach, with the aid of (28), 
often works, though not always. A shortcut to this approach is to remember 
this equality: if f(a) = 0 and g{a) = 0 (so that f/g becomes indeterminate 
at the point a), then 

f(x) 
g(x) 

avga•x f' 
avga•x g' 

if x#- a. (31) 
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Thus, by (28) we know that the numerator tends to f'(a) and the denominator 
tends to g'(a); assuming that f' and g' are each continuous at the point a, 
and we have proved the following rule. 

L'Höpital's Itule. 1f the quotient f/g becomes the indeterm inate form ~ at the 
point a, then 

Limit f(x) = f'(a) 
x-a g(x) g'(a) , 

provided f' and g' are continuous and g'(a) i= 0. 

[The rule should really be named for its discoverer, the Swiss mathematician 
J. Bernoulli (1667 -1748), but it very early became associated with the name 
of his student L'Höpital, who wrote one of the first texts on the calculus.] 
The rule, as stated above, does not work if g'(a) = 0. (Why not?) A more 
general rule, to handle this case, is derived in the exercises to follow. 

EXAMPLE 15. Find the limit, as x tends to 1, of(x4 - x)/(x3 - x). 

Solution. When x = 1, the quotient becomes the indeterminate form 010. 
By L'Höpital's rule, the limit at 1 is equal to 

f'(I) 
g'(1) , 

provided the denominator is not zero. Here we have f(x) = x4 - x and g(x) = 
x3 - x, so that 

f'(x) 4x 3 - 1 
g'(x) 3x 2 - l' 

(32) 

which is equal to t when x is 1. The limit is then l o 
EXAMPLE 16. Find the limit, as x tends to 0, of (x4 - x)/(x 3 - x). 

Solution. By (32), j'(O)/g'(O) = 1. The limit is 1, by L'Höpital's rule. 0 

"NONEXAMPLE." Find the limit, as x tends to 2, of (x4 - x)/(x 3 - x). 

Solution. When x = 2, the quotient does not become an indeterminate 
form. It becomes (24 - 2)/(2 3 - 2) = -i as x tends to 2. L'Höpital's rule is not 
applicable, for the quotient is continuous at the point 2. By continuity, its 
limiting value is equal to the value it takes, namely l 0 

EXAMPLE 17. Find the limit, as x tends to 0, of the quotient f(x)/g(x) = 
(1 - cos x)/x2 . 

Solution. At thepoint 0, the quotient f(x)/g(x) becomes the indeterminate 
form 010, so we look at the quotient f'(x)/g'(x), in hopes of applying L' 
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Höpital's rule. But, 
f'(x) sinx 
g'(x) h' 

8 House of Integrals 

(33) 

which also becomes an indeterminate form at the point O! Thus L'Höpital's 
rule, as stated above, does not apply. A more general rule is needed to handle 
this situation, and it is derived in the exercises to follow. It says that if f'/g' 
is again indeterminate, then the limit of flg may be obtained by applying 
L'Höpital's rule to the indeterminate form f'/g'. Let us do this. Applying 
L'Höpital's rule to the quotient (33), we are led to investigate 

cosx 
-2-' 

wh ich has a limit of t at the point x = O. The limit at 0 of (1 - cos x)/x2 is 
t· 0 

A result ciosely related to L'Höpital's rule, and wh ich will be used to 
obtain a strengthened form of that rule, is a mean-value theorem. It asserts 
that the mean value of a continuous function on an interval must actually be a 
value attained by the function. Intuitively, this is obvious, because inequality 
(27) says that the mean value off lies between the largest and smallest values 
of f. Sin~e f(x) varies continuously between its largest and smallest values, 
it must at some point c be equal to its me an value: 

avg f = f(c) for some point c between a and b. (34) 
a.b 

A rigorous proof of this is best deferred to a course in analysis. Of course, if 
f "wiggles" a lot, there may be more than one point where f attains its mean 
value: 

avgf 
•• b 

• 
a 

I 
I 
I 
I 

I I "'= 7: c 

Mean-Value Theorem. If fis continuous on the interval from a to b, there must 
be at least one point c, where a < c < b, at which f(c) is equal to the mean 
(ar average) value of f. 

The mean-value theorem is of great importance, partly because its content 
can be rephrased in several (apparently) different ways. There are thus several 
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(apparently) different mean-value theorems, not just one, as we shall note in 
the exercises to follow. 

Let us now see how this enters into a proof of a strengthened form of 
L'Höpital's rule. The key is to go back to equation (31) and analyze it a bit 
further, to show that if f/g is indeterminate at the point a, then 

f(b) 1'(c) 
g(b) = g'(c) for some c between a and b. (35) 

The reader is asked to do this, under suitable hypotheses, in an exercise to 
follow. Once this is done, a strong form of L'Höpital's rule is easily forth-
coming: 

L'Höpital's Rule (Strong Form). 1f the quotient f/g becomes indeterminate at 
the point a, then, at the point a, 

L · f L· l' lm- = lm-
g g" 

provided l' and g' are continuous and Lim(f'/g') exists at a. 

PROOF. [Note that this form ofthe rule is indeed "stronger" in that it applies 
even when, as in Example 17, g'(a) = 0.] By (35), we have 

f(x) 1'(c) 
g(x) = g'(c) for some c between a and x. 

The choice of c depends, of course, upon the choice of x, but c must lie in 
between a and x. This means that, as x ~ a, we automatically have c ~ a, so 

L · . f(x) L· . 1'(c) . l' lmlt -(- = lmlt -- = Llm - at a. 
x-a g x) c-a g'(c) g' 

o 

EXAMPLE 18. Find the limit, as x tends to O. of (x - sin x)/x3• 

Solution. Since this quotient is indeterminate at 0, the rule just proved 
says its limit at 0 is the same as the limit of 

1 - cosx 
3x2 

However, this is again indeterminate, of the form 0/0, at the point 0; so, 
applying the rule to this indeterminate form, we investigate 

smx 
6x ' 

for its limit at o. This is again indeterminate, but one more application ofthe 
rule shows that its limit is the limit at 0 of 

cosx 
6 ' 
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which obviously has a limit of i at O. What we have done is to use repeated 
applications ofthe strong form ofL'Höpital'srule to show that, at the point 0, 

L · x - sin x L' 1 - cos x L' sin x L' cos x 1 
1m x 2 = 1m 3x2 = Imfu = Im-6- = 6' 

where the final equality comes from the continuity ofthe eosine function at O. 
Therefore, 

. . x - sinx 1 
LImIt 3 =-. 
x~o x 6 

o 

EXERCISES 

7.1. Wh at size square will form a quadrat ure of a triangle of base band height h? 

7.2. Show that a rectangle of base n and height 2/n effects a quadrat ure of the area 
beneath the sine function, between 0 and n. 

7.3. Using the result of exercise 7.2, using no computation, and using at most two 
senten ces ofwriting, prave that the area crosshatched vertically is equal in size to 
the area crosshatched horizontally. 

o 1t 

7.4. Perform a quadrature of the indicated area, by finding a reet angle of the same 
size. 

(2,4) 

o 2 

7.5. A student has caIculated the average value of the sine function on a certain interval 
and has found that it is equal to 2. By appealing to an appropriate inequality in 
this section, show that the student's caIculation must be wrang. 
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7.6. Note that if x is not equal to 0, 1, or -1, then 

x 4 - X x(x3 - 1) 

x 3 - X x(x2 - 1) 

x(x - 1)(x2 + X + 1) 

x(x- 1)(x + 1) 

x 2 + X + 1 
x+1. 
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(a) Check the results of Examples 15 and 16 by using this equality to find 
Lim(x4 - x)/(x 3 - x) at 1 and at O. 

(b) What is the limit at -1? 
(c) What is the limit at - 2? 

7.7. Find the limit ofeach ofthe following, at the point a. 
(a) (x 5 + 1)/(x + 1), a = -1. (b) (sin x)/x, a = O. 
(c) (sin x)/(x - n), a = n. (d) (x 3 - x)/(x4 - x), a = -1. 
(e) (arctan x)/3x, a = O. (f) (x 2 - l)/(2x2 - X - 1), a = 1. 
(g) (arcsin x)/(sin x), a = O. (h) (cos 3x)/(x - (n/2)), a = n/2. 

7.8. The mean-value theorem asserts that a continuous function must at some point be 
equal to its mean (or average) value. The "continuous" is vastly different from the 
"discrete" in this respect. Give an example to show this. (Almost any example 
you choose will suffice. Think of three test grades, for example, whose average is 
not itself a grade that was made on a test.) 

7.9. Use the mean-value theorem to prove these variant forms of the theorem: 
(a) 1f f is continuous, then there is a point c between a and b such that 

f: f(x) dx = f(c)(b - a). 

H int. In (34), write avgf in terms of an integral. 
(b) 1f F has a continuous derivative F', then there is a point c between a and b such 

that 
F(b) - F(a) 

b = F'(c). 
-a 

Hint. In the equality of exercise 7.9(a), let f = F', and use F3 to evaluate the 
integral on the left. 

(c) 1f 9 has a continuous derivative, then there is a point c between a and x such that 

g(x) = g(a) + g'(c)(x - a). 

Hint. In the equality of exercise 7.9(b), let F = 9 and b = X. 

7.l0. The term mean-value theorem is most often applied to the statement in exercise 
7.9(b). Use this statement to show that if P = (a, F(a)) and Q = (b, F(b)) are two 
points on the continuously differentiable curve F, then there is another point R = 

(c, F(c)) on the curve F, located between P and Q, such that Slope(PQ) is equal 
to the slope of the tangent line to F at R. 
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7.11. Assurne that l' and g' are continuous and that g' is never equal to zero, except 
possibly at the point a. Assurne that fra) and gral are equal to zero, so that the 
quotient f/g becomes indeterminate at the point a. By carrying out the following 
steps, prove statement (35). 
(a) Let h(x) = f(b)g'(x) - g(b)1'(x). Show that avga,b h = O. Hint. Since b is a 

constant, J~ h(x) dx = f(b) J~ g' - g(b) J~ f'. Use F3 to evaluate these integrals 
and to see that the integral of h, from a to b, is equal to zero. 

(b) Apply the mean-value theorem, together with the result of part (a), to show 
that h(c) = 0 for some c between a and b. Then derive (35). 

7.12. Find the limit of each of the following at the indicated point a. 
(a) (sin(3x2) )/x2, a = O. 
(b) (x - tan xl/x, a = 0, 
(c) (x - tan x)/x2, a = O. 
(d) (1 - cosx)/(xsinx), a = O. 
Answers: (a) 3. (b) O. (c) O. (d)~. 

7.13. Consider aga in the three versions of the mean-value theorem established m 
exercise 7.9. 
(a) Show that the statement in part (a) of exercise 7.9 is true euen if b < a. 
(b) Show that the statement in part (b) of exercise 7.9 is true euen if b < a. 
(c) Show that the statement in part (c) of exercise 7.9 is true even if x < a. 

7.14. Show that statement (35) ofthis section is true euen ifb < a. 

§8. Integrals as Antiderivatives 

A continuous function does not necessarily have a derivative. Regardless of 
how complicated the continuous function is, however, it has an antiderivative, 
expressible in terms of an integraL 

Theorem on Integral Representations of Antiderivatives. Let I be a continuous 
Iunction defined on a connected domain and let c be any fixed point lying in the 
domain, Then an antiderivative 011 is given by F, where F is defined by the 
integral expression 

F(x) = r I· (36) 

!'ROOF, Note that the integral expression (36) exists for any point x in the 
connected domain, The existence is guaranteed by F2 since I is assumed 
continuous, To show that F'(x) = I(x), we use Fermat's method, 

F(x + h) - F(x) = fX+h 1- fx f = fX+h f. 
Je Je' Jx 

Dividing by nonzero h, we get 

F(x + h) - F(x) = ~ f+h 1= avg f. 
h h x x,x+h 

(37) 
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Hence, 

F'() L' . F(x + h) - F(x) 
x = tmtt h 

h~O 

= Limit avg f [by (37)] 
h~O x,x+h 

= fex) [by (28)], 

since f is eontinuous at x. Therefore, F is an antiderivative of f. D 

The careful reader will want to examine equation (37) to see that it holds 
for h negative. It does. (See exereise 5.14.) 

The expression (36) gives an antiderivative of f. It gives the antiderivative 
that takes the value 0 at the point x = c, for 

F(c) = f f = O. 

By the uniqueness theorem Fl, any other antiderivative of f differs from (36) 
by a constant. For example, by the theorem just proved, we know that 

G(x) = LX f (38) 

is also an antidervative of f. (G is the antiderivative that takes the value 0 
at the point x = d.) The antiderivative G differs from the antiderivative F by 
a constant. The reader is asked to find this constant in an exercise to follow. 

The reader should learn to feel at horne with integral representations of 
functions. Using them gives one the power to write down an antiderivative of 
any continuous funetion whatever. 

EXAMPLE 19. Find the antiderivative of the funetion aretan that takes the 
value 

(a) 0 at the point x = O. 
(b) 0 at the point x = 1. 
(e) 5 at the point x = O. 
(d) n at the point x = 1. 
(e) J2 at the point x = -no 

This is now ehild's play, although it would have been formidable indeed 
prior to the diseussion in this seetion. The answers are, obviously, 

(a) F(x) = SO aretan. 

(b) F(x) = fl;2 arctan. 

(e) F(x) = 5 + SO aretan. 

(d) F(x) = n + H/zaretan. 

(e) F(x) = J2 + S~"aretan. 
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The answers are unique by the uniqueness theorem Fl, and they are de­
fined for all x by the existence theorem F2, since arctan is everywhere 
continuous. 0 

In Example 19 the function in question happened to have a name (arctan). 
If the function is specified not by name but by an algebraic rule, a dummy 
variable must be introduced. 

EXAMPLE 20. Find the antiderivative of the function I/x that takes the value 

(a) 0 at the point x = 1. 
(b) 1t at the point x = 6. 
(c) 17 at the point x = -4. 

What could be simpler? The answers are 

(a) F(x) = n (1/t) dt, defined for 0 < x. 
(b) F(x) = 1t + J6 (lft) dt, defined for 0< x. 
(c) F(x) = 17 + J~4(lft)dt, defined for x < o. 

By the uniqueness theorem the answers are unique on the specified connected 
domains. 0 

A differential equation is an equation involving the derivative(s) of a 
function. To solve a differential equation is to find a function that satisfies 
the equation. We are in a position to write down the solution to any elemen­
tary differenthl equation ofthe first order (involving only the first derivative). 

Theorem on Elementary First-Order Differential Equations. Given f(x), the 
elementary differential equation 

with the boundary condition 

has the unique solution 

dy 
dx = f(x}, 

y = Yo + IX f Jxo 
defined on a connected component of the domain of continuity off. 

(39) 

(40) 

(41) 

PROOF. The differential equation (39) simply specifies that y is equal to an 
antiderivative off. By the theorem on integral representations of antideriva­
tives, then, 

y = IX f + some constant, Jxo 
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if X o is a point iq the domain of the continuous function f. It is c1ear that 
condition (40) forces the constant to be Yo, showing that (41) is indeed the 
unique solution. 0 

EXAMPLE 21. Find the solution to each ofthe following differential equations 
with the given boundary condition. 

(a) dy/dx = cos x, y(O) = 3. 
(b) dy/dx = x 2 , y(l) = 2. 
(c) 4y/dx = I/x, y(3) = 7. 

This is a straightforward application of the theorem on differential 
equations. However, it may take a moment to get used to the way in wh ich 
the dummy variable enters. The answers are, respectively, 

(a) y = 3 + Socos = 3 + [sinJo = 3 + sinx. 
(b) y = 2 + n t2 dt = 2 + [t3/3J~ = 2 + (x 3/3) - -t = -t(x3 + 5). 
(c) y = 7 + S3 (l/t) dt. 

The answers to (a) and (b) are defined for all x, but the answer to (c) is 
defined only for 0 < x. 0 

The theorem proved in this section is certainly as "fundamental" as Fl, 
F2, orF3. Let us call it F4 and elevate it to the same exalted status. We may 
restate it in a striking way: 

F4. 1f f is continuous, then the derivative of the integral of f is f. That is, 

~ rx j =j(x). 
dx Je 

(42) 

A p/ea. Gentle reader, if you remember nothing else about calculus, 
remember equation (42). There is no possible way to express the connection 
between differential and integral calculus in a more compact fashion. 

EXERCISES 

8.1. What is all this fuss about antiderivatives? Doesn't F3 say that every continuous 
function has an antiderivative? Answer: No. Go back to Chapter 6 and read the 
proof of F3. It says that if there is an antiderivative F, then F can be used to evaluate 
the integral of f. 

8.2. Find the antiderivative of the function sin2 that 
(a) takes the value 0 at the point x = n. 
(b) takes the value 4 at the point x = n. 
(c) takes the value J3 at the point x = O. 
Answer: (c) F(x) = J3 + SO sin2 t dt. 
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8.3. Fill in properly the indicated places (a) and (b) in each of the tables below. 

(i) x 

o 
x 
2 

y 

5 
(a) 

(b) 

dy/dx 

1/(x + 3) 

Answers: (a) 5 + ]0 (1/(t + 3))dt. (b) 5 + SW/(t + 3))dt. 

(ii) x 

3 
x 
7 

y 

1 
2 

(a) 

(b) 

dy/dx 

Partial answer: (b) 316.5. 

(iii) x 

x 
3 

y 

o 
(a) 

(b) 

dy/dx 

I/x 

Partial answer: (b) Si (1/t) dt = 1.0986 .... 

8.4. By the uniqueness theorem expressions (38) and (36) must differ by a constant. 
Find the constant. Answer: S~ f - S;j f = S~ f· 

8.5. Each of the following is a continuous function, everywhere defined. Find its anti­
derivative that takes the value 7t at the point - 5. 

(a) lxi. 

(b) Isin xl. 
(e) ,j~3 ~+'-lx---;-4'1. 
Answer: (b) F(x) = 7t + S~ slsin tl dt. 

8.6. Use (42) to find the derivative of eaeh of the following: 

(a) y = 3 + n (t + 4t3 ) dt. 
(b) y = eos x + S~ (aretan t) dt. 

(e) L = t 2 + S~ (sin2 x + 10) dx. 
Answers: (a) dy/dx = x + 4x3. (b) dy/dx = - sin x + aretan x. (e) dL/dt = 2t + sin2 

t + 10. 

8.7. Use (42) together with the ehain rule to find the derivative of eaeh of the following: 

(a) y = 3 + S;' (t + 4t3 ) dl. 
(b) y = S~d 7 (aretan t + cos3 t) dt. 
(e) C = S~nX(eos2s - tans)ds. 

Answer: (a) Here we have the ehain given by the expression in exereise 8.6(a) and 
the equation x = r2 . By the ehain rule, 

dy dy dx 
- = - - = (x + 4x3 )(2r) = (r 2 + 4r6 )(2r). 
dr dx dr 
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8.8. Find the derivative of each of the following: 

(a) y = J; cos3 tdt. Hint. J; f = - Hf. 
(b) y = J:'x cos3 t dt. Hint. J:,J = JC:J + JO! 

§9. Integrals as W ork and as Distance 

The term work has a technical meaning in physics and is defined in a very 
simple way, provided we have motion against an opposing force that does not 
vary. Work is the product of the opposing force and the distance traveled: 

W=f·d. 

For instance, if a person weighs 150 pounds (lb) and he c1imbs up a rope 
from a height of 6 feet to a height of 10 feet, then the amount of work done is 

W = (150 lb)(4 ft) = 600 ft-lb. (43) 

The calculation of 600 foot-pounds (ft-lb) ofwork is based on the assump­
tion, not entirely valid, that the force of gravity opposing the motion was 
constant at 150 pounds throughout the motion. Actually, the law of gravity 
says that the higher one goes, the less one weighs, but surely the weight loss 
over so short a trip may be ignored here. 

Suppose the problem had been to calculate the work done in moving 
this same person from the earth's surface to a point 500 miles above the 
earth's surface. Then the weight loss would be substantial and could not be 
ignored in our calculations. Let us discuss the law of gravity briefty. 

According to Newton's law, the weight of an object, which is the force 
f(x) opposing upward motion, is inversely proportional to the square of 
the distance x from the earth's center. That is, 

f(x) = gravitational force at distance x from earth's center 

k 
2 ' x 

where k is the constant of proportionality. When x = 4000 miles (the radius 
of the earth, according to Eratosthenes' measurement), we then have 

k 
weight on earth's surface = f(4000) = (4000)2' 

Solving this eq uation for k yields the constant of proportionality: 

k = (4000f (weight on earth's surface), 

and the force of gravity therefore varies in accordance with the rule 

f (4000)2 . h h r ...\ 
(x) = --z-(welg ton eart 's surlace), where x IS In ml es. 

x 
(44) 
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EXAMPLE 22. How much work is done in taking an object weighing 150 
pounds on the earth's surface to a point 500 miles above the earth? 

This problem requires a little speculation, for the weight loss is con­
siderable. According to (44), theforce of gravity at the end of the trip, when 
x = 4500 miles, is given by 

(4000)2 
f(4500) = (4500f (150) = 118.5 Ib. 

How should work be measured, then, when the opposing force varies along 
the path of travel? The answer, as we shall see, is to measure the work by a 
certain integral. 

Consider the work LI W done in moving from x to x + Llx, where Llx is 
a very sm all positive number. Since the opposing force at any stage of this 
short move is between f(x) and f(x + Llx), it is clear that the work LI W lies 
between the quantities 

f(x) Llx and f(x + LI x) Llx. 

Dividing by Llx, we see that the difference quotient LI Wj Llx lies between the 
quantities fex) and f(x + Llx): 

LlW 
f(x)::;; Llx ::;; f(x + Llx). 

Wh at happens here as Llx tends to O? Since fis continuous, f(x + Llx) --+ f(x), 
and the difference quotient LI WjLlx, being squeezed in between, must also 
tend to f(x). That is, 

dW 
d"i = f(x). 

We then have the information in the following table regarding the rela­
tion between the work done and the distance from the earth's center. (Why 
is W = 0 when x = 4000?) 

x W dW/dx 

4000 0 
x fex) 

4500 ? 

To answer the question raised in Example 22 is to fill in the quest ion mark 
in the table given above. But this is just the sort of thing we have learned to 
do (see exercise 8.3) by integrals. The work done during the trip from x = 4000 
to x = 4500 is given by 

(4500 f. 
J4000 

(45) 
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Since an antiderivative of l/x2 is -I/x, we can evaluate this integral by 
F3. The work done is then, by (44), 

f4500 (4000):(150) dx = (4000)2(150)[~J4500 
4000 X X 4000 

~ 66,667 mi-Ib. o 

The notion of work is of great importance in physics because it is closely 
connected to the notions of energy and of power. Considerations such as 
those just made have led physicists to the conclusion that the natural defini­
tion of work is in terms of an integral, just like (45). 

Definition. The work done against an opposing force J(x) in moving from 
position x = a to position x = b is defined as the integral 

It is important to note that this definition of work reduces to the simple 
definition given at the beginning ofthis section in case the force J(x) happens 
to be constant. 

EXAMPLE 23. Suppose the force J(x) is constant at 150 pounds. Wh at is the 
work done in moving from the position x = 6 feet to x = 10 feet? 

According to the definition above, the work done is 

rIO rlO J6 J = J6 150 dx = 150xl~0 = 600 ft-lb. 

This agrees, as it should, with the calculation in (43). o 

The preceding discussion has to do with moving a single object through 
a fixed distance. If different "parts" of the object go different distances, then 
the work is aga in expressed by an integral, but in a different way. This is 
illustrated below. 

EXAMPLE 24. Water weighs 62.4 pounds per cubic foot. Suppose the water 
contained in an inverted conical container is at a depth of 6 feet, while the 
container itselfis 7 feet high with a circular radius of5 feet on top. How much 
work is required to pump all the water out? 

The problem here is that all the water doesn't move the same distance. 
It takes very little work to pump out a cubic foot of water near the top, but 
more to move the same volume at the bottom. Let W be the work required 
to pump out all the water if the initial depth of the water is x feet. Our plan 
is to find dW/dx first, then express W itself as an integral. Fixing x, let L1x 
be a sm all positive change. What is the corresponding change L1 W in work? 
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~---~/T 
7-x-Ax 

! 
fAX 

1 
What is the work LI W required to pump this water to the top? 

The weight of the water moved is clearly (see the picture) between 

62.4nGx Y.1X and 62.4n(~(X + ,1X)y ,1x 

pounds. 
To pump this water to the top of the tank, it must move between 

7 - x -,1x and 7 - x 

feet. These facts give us clear bounds on the amount of work ,1 W it takes 
to pump this volume of water to the top: 

62.4nGx y (7 - x - ,1 x) ,1x :s; ,1 W :s; 62.4nG(X + ,1X)y (7 - x),1x 

Dividing by ,1x we get 

62.4nGx y (7 - x - ,1x) :s; ~~ :s; 62.4nG(X + ,1X)y (7 - x). 

As ,1x tends to zero, both sides of this inequality tend to the same limit. 
Since the difference quotient ,1 Wj,1x is squeezed in between, it must tend 
to that limit also. That is, 

~~ = 62.4n(~x y (7 - x) = 62.4nG!)(7x2 - x 3 ). (46) 

Since W = 0 when x = 0 (why?), the solution of the differential equation 
(46) is given by 

(47) 

Equation (47) gives the work W as a function of the initial depth x. H, 
as in Example 24, the initial depth is 6 feet, then the work required to pump 
aB the water out of the tank is 

f0
6 62.4nG!)(7t2 - t3)dt ft-lb. (48) 

The reader is asked to evaluate this integral in an exercise to foBow. 0 
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A less rigorous way of arriving at equation (46) has the advantage of 
being much quicker. Stare at the figure above and try to make each of the 
following assertions seem plausible. If L1x is near zero, then all the water of 
the little slice in question goes approximately 7 - x feet. Also, if L1x is near 
zero the volume of water in the little slice is approximately that of a cylinder 
of height L1x and radius ~x, having a volume of n(~x)2 L1x cubic feet, and a 
consequent weight of 62.4n(~x)2 L1x pounds. The work L1 W is then very 
dose to the product of this approximate weight and this approximate 
distance: 

L1 W ~ 62.4n(~x y (7 - x) L1x. 

Dividing by L1x and taking the limit as L1x tends to zero leads to equation (46). 
Another use of integrals in the physics of motion is in the measurement 

of distance traveled. This should come as no surprise, as we have seen already 
the relation between distance traveled and antiderivatives. (See Chapter 5, 
Section 9.) 

Theorem on Integrals and Distance. Let the speed oj a moving partic/e be 
given at time t by v(t), where v is a positive continuous junction. Then the 
distance traveled between time t = a and time t = b is given by the integral 

Sab v. 

PROOF. Let s denote the distance traveled by the partide, beginning at time 
t = (/. This means that s = 0 when t = a. Since the speed v is equal to the 
rate of change of distance, we have v = ds/dt. We then have the following 
information, and we want to fill in the question mark. 

s ds/dt 

a 0 
t 
b ? 

v(t) 

This is by now a routine problem. The question mark must be filled in by 
the integral J~ v, which therefore gives the distance traveled between times 
t = a and t = b. D 

EXAMPLE 25. Suppose the speed at time t of a certain partide is given by 
v(t) = 1/t. How far does the particle go between time t = 1 and time t = 3? 
between t = 4 and t = 12? 

Since the speed is positive, the distance traveled is the integral ofthe speed 
over the time interval in question. The distance traveled between t = 1 and 
t = 3 is 

f3 f31 . v = - dt = 1.0986 ... umts. 
1 1 t 
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The distance traveled between t = 4 and t = 12 is then 

,12 V = 11 2 !dt. 
J4 J4 t 

With the aid of equations (7) and (10) at the beginning of this chapter, we 
see that this integral is equal to 

= 2.4849 ... - 1.3863 ... 

= 1.0986 ... units. o 

EXERCISES 

9.1. Find the work done in moving an object from the earth's surface to a point 1000 
miles above if the object weighs 100 pounds on the earth's surface. Answer: 80,000 
mi-Ib. 

9.2. A satenite weighing 1000 pounds when it is at a point 1000 miles above the surface 
of the earth is to be pushed out to a point 2000 miles from the earth's surface. 
(a) How much work must be done to accomplish this? 
(b) How much work was required to put the satenite in its original orbit at a distance 

of 1000 miles from the earth? 
(c) How much did the satenite weigh when it was on the earth's surface? 
Answer: (c) 1562.5 Ib. 

9.3. Evaluate the integral (48) by 
(a) using F3. 
(b) using Simpson's rule. (Why will Simpson's rule give you the correct answer for 

this integral ?) 

9.4. Find the answer to the question raised in Example 24 ifthe container is completely 
fun of water. Answer: 637011: ft-Ib. 

9.5. The water contained in an inverted conical container is at a depth of 10 feet. If the 
container itself is 15 feet high with a circular radius of 9 feet on top, how much 
work is required to pump an the water out? Answer : 62.411:(9/25) Sb 0 (15t 2 - t 3 ) dt 
ft-Ib. (Evaluate by F3.) 

9.6. The water contained in a cylindrical container is at a depth of 10 feet. If the con­
tainer itself is 15 feet high with a circular radius of 9 feet on top, how much work is 
required to pump an the water out? (You can do this by integrals, or by common 
sense.) Answer: 505,44011: ft-Ib. (This is the weight of the water times the average 
distance it has to move.) 

9.7. The water contained in a hemispherical container is at a depth of 6 feet. The con­
tainer itself is 7 feet high, which means that it has a circular radius of 7 feet on top. 
How much work is required to pump an the water out? Answer: 62.411: SI (49t - t 3 ) 

dt ft-Ib. 
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9.8. Suppose the speed at time t of a certain partic1e is given by v(t) = lO/(1 + t2). How 
far does the partic1e go between 
(a) t = ° and t = I? 
(b) t = land t = J3? 
Answer: (b) 5n/6 units. 

9.9. Suppose the speed of a certain partic1e is given at time t by v(t) = 10ft. How far 
does the partic1e go between 
(a) t = land t = 2? 
(b) t = 2 and t = 4? 
(c) t = 4 and t = 8? 

§10. Summary 

An integral is definite in this sense. If an integral exists, then it can be specified 
to any degree of accuracy by an approximating sumo This characteristic­
of admitting an approximation to an arbitrary degree of c1oseness-we take 
to be the principal defining quality of a "real" number. The number J~ f 
may be an average, may effect a quadrature, may measure a quantity of 
work, or may represent a length of distance traveled. The function J~ f 
represents an antiderivative of f if fis continuous. 

Fundamentals are important. It is useful to know theorems guaranteeing 
the existence of integrals or the uniqueness of solutions to a given equation. 

Integrals have other uses that we do not yet know. There are still more 
mean-value theorems and other versions ofL'Höpital'srule. There are many 
parts of the house of integrals we have yet to see. But we can begin to fee1 
at horne. 

Problem Set for Chapter 8 

1. (A discussion question) Suppose two students are working on the same mathematics 
problem, in which it is required to find a certain "x", and they give the following 
answers: 

Student A. x = arctan 2. 
Student B. x = SW/(l + t2)) dt. 

Both answers are dec1ared to be correct. Assuming that no calculator and no table 
of tangents and arctangents is available, explain which answer more directly leads 
to the desired result if 
(a) it is desired that the angle x be constructed very carefully. 
(b) it is desired that the number x be ca1culated very carefully (to many decimal 

pi aces). 
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2. Some of the following "calculations" are ridiculous. Find them, and explain why 
they are in error. 

(a) H( -2x/(x2 - 1)2)dx = (I/(x2 - 1))1~ = 1. 
(b) H/2(-2x/(x2 - 1)2)dx = -t. 
(c) Sö/2(1/~) dt = arsin t - arcsin 0 = 30 - 0 = 30. 

3. Consider the simple step function given by fix) = 4 if 0::; x::; 1 and fix) = 6 
if 1< x::; 2. 
(a) Sketch the graph of fon the domain 0 ::; x ::; 2. 
(b) Apply Eudoxus' method to fon the domain 0 ::; x::; 2, and show that S2 = 10, 

S4 = 10, S6 = 10. 
(c) Show that Sn = 10 whenever n is even. 
(d) Calculate S3, S5' and S7 in Eudoxus' method. 
(e) Does Limit Sn exist? 
(f) Is f continuous throughout the domain 0::; x ::; 2? 
(g) Does S5 fix) dx exist? 
(h) Do your answers to parts (f) and (g) contradict F2 ? Explain why not. 

4. Consider each of the following integrals. Wh ich of them can be seen to exist by 
applying F2 ? Which of them are obviously equal to zero? 

(a) S~dl/t)dt. (b) S"-~t37dt. 

(c) S~2sec2tdt. (d) S"-asin4tcos3tdt. 
(e) S~I/2 arctan(arcsin t) dt. (f) S~2 arctan(arcsin t) dt. 

(g) S~3.J50-t3dt. (h) S":.4.J50-t3 dt. 

5. Approximate the number Si (l/t) dt by the method illustrated in Section 3, calculating 
S4, SB, and S16' Then make your best guess at it by taking the average of your 
bounds, as illustrated at the end of Section 3. Would you expect this guess to be 
slightly high or slightly low? 

6. Approximate the number L(5) = Si (I/t) dt by making the guess (see exercise 2.7) 
that L(5) + L(2) = L(10), and then solving this equation for L(5) using the informa­
tion in formulas (5) and (9) of Section 2. 

7. Approximate the number Si (l/t) dt by using Simpson's rule. That is, calculate 
sW/t). 

8. (a) Use Simpson's rule to calculate SÖ/2(1!~). Simplify your answer to (15 + 
16.JT5 + 10}3)/180. 

(b) Explain why (15 + 16.JT5 + 1O}3)/30 ought to be a elose approximation to the 
number n. 

(c) (Optional) Use a table of square roots to help evaluate the quotient in part (b) 
to five decimal places. Compare your answer with 3.14159, the correct expansion 
of n to five decimal places. 

9. A metal bar placed along the x-axis stretch es from x = 2 to x = 6. If its temperature 
at the point x is given by 2x3 - x2 + 3x + 7, find its average temperature by 
(a) using the definition of the average of a function. 
(b) calculating smp2,6 (2x 3 - x2 + 3x + 7). 
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10. A rock thrown from the ground has height given by h = -16t2 + 64t feet at time t 
seconds after release. Find the rock's average height 
(a) during the first 3 seconds of flight. 
(b) during the entire flight. (The rock hits the ground when t = 4.) 

11. A rock thrown from ground level hits the ground again after T seconds have elapsed. 
Calculate the average height of the rock, treating it as a freely falling body from 
time t = 0 to t = T. 

12. The weight of an object depends upon its distance x in miles from the center of the 
earth. The weight of an object is given by (40oo)2(150)/x2 pounds if its weight is 
150 pounds on the earth's surface. Find the average weight of this object if it is 
taken at a uniform rate from the earth's surface (radius 4000 miles) to a point 
(a) 500 miles above the earth. 
(b) 1000 miles above the earth. 

13. Use L'H6pital's rule to find the limit, at the point 0, of each of the following in­
determinate forms. 
(a) (arcsin xl/x. 
(c) (1 - cos 2x)/x2 
(e) x 5/(6 sin x + x 3 - 6x). 
(g) (1 - cos 3x)/(x - 5x2). 

(b) (sin nx )/3x. 
(d) (tan x sin x )/( arctan x). 
(f) (1 - cos xl/x. 
(h) x/cos(2x - (n/2) ). 

14. In the problem set at the end of Chapter 7, do problem 3 by applying L'H6pital's 
rule. 

15. Find each of the following limits. 

(a) Limitx _ 1 ((x4 - l)/(x - 1)). 

(b) Limitx _ 2 ((1/(x - 2»Hcos3 tdt). 
(c) Limitx _ n ((l/(x - n)2) S~ sin t dt). 
(d) Limitx _ I n (1 /t) dt. 

16: For each of the following, first specify the domain of all permissible values of x 
for which the expression makes sense, then find dy/dx. 

(a) y = 6 + S~ Itl dt. (b) y = n + SW/t2) dt. 
(c) y = 5x - fW/(t - 4»dt. (d) y = g(1/(t2 + t + 2))dt. 
(e) y=gtantdt. (f) y=g2(1/(t+2»)dt. 
(g) y=J;sin3 tdt. (h) y=H2(l/(t2 +t-2)dt. 

17. Write down an integral expression for the antiderivative of the absolute value 
function that takes the value 
(a) 0 at the point O. 
(b) n at the point 4. 

18. Write down an integral expression for the solution of each of the following differ­
ential equations, with given boundary condition. 
(a) dy/dx = x 2, y(2) = 4. 
(b) dy/dx = I/x, y(3) = 1. 
(c) dy/dx = cos x, yen) = 2. 
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19. For each of the differential equations in problem 18 
(a) find y(I). 
(b) find y( 5). 

8 House of Integrals 

20. (a) Use the uhiqueness theorem Fl to show that if F(O) = 0 and if F(x) = 0 for all x, 
then F(x) = 0 for all x. 

(b) Find F(x) if F(x) = r.x fIt) dt, assuming fis continuous. 
(c) Combine parts (a) and (b) to give a new proof that the integral J"-a fIt) dt must 

be zero if fis an add function, continuous on -a ::;; t ::;; a. 

21. (a) Find the derivative of g Oft) dt, defined for 0 < x. 
(b) Find the derivative of JYfl/t)dt, defined for 0 < x. 
(c) Combine parts (a) and (b) with the uniqueness theorem Fl to conclude that nx (1ft) dt - 17 (I/t) dt must be constant. Find that constant. Hint. Let x = 1. 
(d) Conclude that L(nx) = L(x) + L(n) ifO < x, where L(x) is defined by expression 

(11), Section 2. 

22. In exercise 2.7 we speculated that L(6) = L(2) + L(3), but we were unable to prove 
equality. Prove that this equation is true. Hint. It is easier to prove the more general 
assertion L(ax) = L(a) + L(x), if x and a are positive. Prove this more general 
assertion by employing the means of problem 21, but with a replacing n. 

23. A snail embarks on a trip at time t = O. His goal is to travel 2 feet. But he gets ever 
more tired and walks ever more slowly, so that his speed v is given in ft/min by 

v(t) = 1/(1 + t2 ), 0::;; t. 

(a) What distance does the snail travel between t = 0 and t = I? 
(b) How long does it take the snail to travel a distance of n/3 feet? 
(cl Write down the integral that gives the distance traveled between time t = 0 and 

t = 100 
(d) Explain why the integral in part (c), when evaluated by Eudoxus' method, will 

not exceed n/2. 
(e) Does the snail ever come to a complete stop on the (infinite) domain 0 ::;; t? 
(f) Will the snail ever re ach his goal? 
(g) "If you set any goal, and move toward it long enough, you will eventually 

reach it." This is an old saying. Explain why old snails never say it much. 

24. Find the amount of work done against the force of earth's gravity if an object 
weighing 500 pounds on the earth's surface is raised vertically to a point 
(a) 1000 miles above the earth's surface. 
(b) 96,000 miles above the earth's surface. 
(c) L miles above the earth's surface. 

25. (a) Explain why the answer to part (c) ofproblem 24 cannot exceed 2 million mi-lb, 
regardless of how large L might be. 

(b) "Ifyour capacity for work is limited, there is abound on how high you can go." 
This is an old saying. Explain how young astronauts may disprove this saying. 

26. (a) Prove that the work done in moving an object is equal to the product of the 
distance traveled and the average force along the path of travel. 

(b) Prove that the distance traveled is equal to the product of the time traveled and 
the average speed during this time. 
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27. A car travels 120 miles in 2 hours. Prove that at some instant during this trip the 
car's speed is 60 mijhr. Give a careful argument, illustrating clearly how the mean­
value theorem comes into play. 

28. Look again at problem 23 at the end of Chapter 6. Show that it is solved by applying 
the mean-value theorem as stated in exercise 7.10 to the function J(x) = 4 - x 2 , 

-2:$;x:$;1. 

29. A container is 5 feet deep and is filled with water (weighing 62.4 pounds per cubic 
foot) to a depth of 3 feet. Calculate the work required to pump all the water out 
if the top of the container is a circle of radius 5 feet and the container is shaped like 
(a) a cylinder. 
(b) a cone. 
(c) a hemisphere. 

30. A chain 50 feet long weighs 150 pounds, the weight distributed uniformly along its 
length. If the chain is suspended vertically from the top of a cliff, how much work is 
required to pull it to the top? 

31. Find dy/dx if 
f, 3X' + 4 

Y = cos(xt) dt. 
arctan x 

32. The curve y = l/t, 0 < t, is of extraordinary interest, as we shall see in the next 
chapter. 
(a) Show that SL,(I/t) = SI(I/t) if r > 1. 
(b) Can one infer, from part (a), that SL,(I/t)dt.= SI (l/t)dt? 
(c) Prove that the area indicated by vertical cross-hatching is equal to the area with 

horizontal cross-hatching. 

(I, I) 

F==R1 (r,l(r) 

r 

Hint. Begin by showing that the two rectangles R 1 and R 2 have the same area. 
(d) Deduce from part (c) that SL,(1/t) dt = SI (l/t) dt if r > O. 

33. (A proof of the chain rule) Suppose we have the chain y = f(u) and u = g(x), where 
fand gare differentiable functions. By this chain we have 

y = f(g(x)). 

A proof of the chain rule is outlined below, under the additional assumption that 
f' is continuous. (The chain rule can be proved without this assumption, but the 
proof is more tedious.) 
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(a) Justify each of these equalities if g(x + h) # g(x). 

f(g(x + h)) - f(g(x)) = fg(x+h) I' 
Ju(x) 

8 House of Integrals 

= [g(X + h) - g(X)][ avg 1']. 
g(x), g(x+h) 

(b) Show that the equalities of part (a) hold even if g(x + h) = g(x). 
(c) Justify each of the following equalities, thereby proving the chain rule. 

dy .. f(g(x + h)) - f(g(x)) 
- = LImIt --------
dx h-O h 

L · . [g(X + h) - g(X)][ f'] = ImIt avg 
h- 0 h g(x). g(x + 11) 

= g'(x)f'(g(x)) 

= f'(u)g'(x) 

dy du 

du dx 

34. The second derivative f" can be derived direct1y from the function f without taking 
the first derivative, as folIows: 

" .. f(x + h) - 2f(x) + f(x - h) 
f (x) = LImIt 2 ' 

11-0 h 

assuming f" continuous. Prove that this is so, by evaluating this limit with the 
help of L'Höpital's rule. Hint. It will require two applications of L'Höpital's rule, 
and, in each one, you will need to use the chain rule to get derivatives. Remember 
that x is fixed, and the limit is taken with respect to h. 

35. Suppose a cylindrical container of height hand radius r is completely filled with a 
liquid weighing D pounds per cubic unit. 
(a) Calculate the work required to empty the container by pumping all the liquid 

to the top. 
(b) Calculate the weight of the liquid in the full container. 
(c) Using your answers to parts (a) and (b), show that this problem could have been 

solved by pretending that the entire weight of the full container was concen­
trated at a depth of h/2. (See exercise 9.6.) 

36. In the situation described in problem 35, suppose the container is an inverted co ne 
instead. 
(a) Calculate the work required to empty the container. 
(b) Calculate the weight of the liquid in the full container. 
(c) Show that this problem could have been solved by pretending that the entire 

weight of the full container was concentrated at a depth of 311/4 (and therefore 
moves a distance of h/4 units). 

37. Suppose a hemispherical container of radius r is completely filled with a liquid 
weighing D pounds per cubic unit. As in problems 35 and 36, find the centroid of the 
liquid. (The centroid, or center of mass, is an important physical notion. For the 
purpose of ca1culating work, the liquid behaves as if all its weight is concentrated at 
its centroid.) 
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When we began studying trigonometry in Chapter 7, we found the calculus 
of trigonometrie functions to be made easier by the introduction of radian 
measure. The des ire for simplicity brought about the adoption of a "natural" 
unit of measure~the radian. 

We begin this chapter with the study of logarithms. What is the natural 
way ofmeasuring logarithms in order to simplify the calculus of the logarith­
mic function? Weshall see, and soon. 

No longer need we be bound to the lowlands of algebraic and trigono­
metrie functions. We are prepared to conquer the height above. If calculus 
has a center we may find it here, where logarithms multiply and exponentials 
grow. 

No prior acquaintance with logarithms is necessary in order to read this 
chapter. 

§1. Logarithms 

Addition is easier than multiplication. This is one reason why logarithms are 
valuable. Logarithms can be used to convert problems in multiplication 
(or division) into problems of addition (or subtraction). How can such a 
conversion be possible? The principle is really quite simple. 

Everybody knows, für example, that 

2327 = 210. 

299 
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That is, the problem of multiplying 23 and 27 is solved by adding 3 and 7 to 
get 10, and then raising the base 2 to the exponent 10. The problem ofmulti­
plying 8 by 128 can be handled with no multiplication at all: 

8·128 = 2327 = 210. 

The numbers 3 and 7 here are logarithms, to the base 2, ofthe numbers 8 and 
128, respectively. Multiplying the numbers 8 and 128 involves adding their 
logarithms. 

We can speak of logarithms to any base b, provided b is positive and not 
equal to 1. 

Definition. Let b be a positive number, with b # 1. If ais also positive, then 
the logarithm of a to the base b is denoted 

logb a 

and is defined as the exponent to which the base b must be raised in order to 
get a. That is, 

For example, 

10gb a = t means bt = a. 

10g28 = 3 (because 23 = 8), 

10g2 128 = 7 (because 27 = 128), 

10g22 = 1 (because 21 = 2), 

10g21 = ° (because 20 = 1), 

10g2 ~ = - 1 ( because r I = ~)-

(1) 

In the decimal system, the number 10 is the most convenient choice of 
base. For ex am pie, 

loglo 100 = 2 (because 102 = 100), 

loglo 10 = 1 (because 101 = 10), 

loglo 1 = 0 (because 100 = 1), 

10g100.10 = -1 (because 10- 1 = 0.10), 

10g100.01 = -2 (because 10- 2 = 0.01). 

In principle then, it is easy to see how a theory might be constructed to 
convert multiplication into addition. Just as 

10g2 (8 . 128) = 10g2 8 + 10g2 128, 

so we should expect that the logarithm (to any base) of a product will be 
eq ual to the sum of the logarithms of the factors: 

LOG(uv) = LOG(u) + LOG(v). (2) 
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While it is clear in principle that there should be many different logarithmic 
functions [that is, functions satisfying condition (2)], it is not yet clear how 
any such function might be defined in practice. What, for example, is 

10glo1!? (3) 

To say 10g1o 1! = t is to say lO t = 1! [by (1)]. To give a numerical value to 
expression (3) is to solve the equation 

(4) 

for t. How can such an equation as this be solved? We shall see. About all we 
can do now is make guesses. Since 

101/2 = JIO = 3.162 ... ~ 1!, 

we can guess that the solution to (4) is just a little less than t. Therefore, 

10g1o 1! ~ 0.49. 

But ifwe needed 10g1o 1! to many decimal places, guessing would be a very 
inefficient procedure. Actually, we have in our hands already the means to 
overcome all difficulties connected with a practical way of defining a loga­
rithmic function. In the next section we shall begin to move in the proper 
direction. 

EXERCISES 

1.1. Evaluate each of the following. 
(a) logz 1024. 
(b) logz i. 
(c) IOg327. 
(d) loglo 1,000,000. 
Answers: (a) 10. (b) - 2. (c) 3. (d) 6. 

1.2. Evaluate each of the following. 
(a) IOgIOZ42. 
(b) log 1/4 2. 
(c) IOgZ73. 
(d) logl,ooo,ooo 10. 
Partial answers: (a) /0' (b) -!. 

1.3. On the basis of the answers to exercises 1.1 and 1.2 formulate a conjecture about the 
relation of loga b to 10gb a. 

1.4. For each of the numbers on the left below, make a guess as to the number on the 
right that most close1y approximates it. 

(i) logz n. 
(ii) logn 2. 

(iii) loglo 316. 
(iv) 10glO 3162. 
(v) 10glO 0.32. 

(vi) loglo 0.032. 

(a) -0.5. 
(b) -1.5. 
(c) 1.7. 
(d) 0.6. 
(e) 3.5. 
(f) 2.5. 
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1.5. A logarithmic function is a function defined on the positive real numbers that 
satisfies the identity (2). Show that any logarithmic function has the following 
properties. 
(a) LOG(l) = O. 
(b) LOG(u2) = 2 LOG(u). 
(c) LOG(u3 ) = 3 LOG(u). 
(d) LOG(JX) =! LOG(x). 

Hint. Let u = v = 1 in identity (2) to prove (a); to prove (b), let v = u. To prove (d), 
let u = JX in the equation established in part (b). 

1.6. Show that any logarithmic function satisfies the following. 
(a) LOG(abe) = LOG(a) + LOG(b) + LOG(e) if a, b, and e are positive numbers. 
(b) LOG(a 1a2 '" an) = LOG(ad + LOG(a2) + ... + LOG(a,,) if a lo a2, ... , a" 

are positive numbers. 
(c) LOG(c") = n LOG(e) if e is a positive number and n is a positive integer. 
Hint. Let u = ab and let v = e in identity (2) to prove (a). To prove (c) let a l = 
a2 = ... = an = ein the equation established in part (b). 

1.7. Given a logarithmic function, suppose that a number e is found satisfying 
LOG(e) = 1. 
(a) Show, using the result of part (c) of exercise 1.6, that LOG(e") = n for any 

positive integer n. 
(b) What would you guess that LOG(~) is equal t07 

§2. The Natural Log Function 

A logarithmic (or log) function is any function that converts multiplication 
into addition, as in equation (2). We already have such a function in our hands. 

Definition. The naturallogarithmic function In is defined on the domain 0 < x 
by the equation 

Ix 1 
lnx = -dt. 

1 t 

Often one sees the expressions 

loge x and L(x) 

(5) 

used in pi ace ofln x to denote the natural log function. It is easy to prove that 
In x (read "natural log of x" or simply "el-en of x") converts multiplication 
into addition. By means of this conversion we see that multiplication on the 
positive real numbers has the same structure as addition defined on all real 
numbers. A Greek word, homomorphism (literally, "same form") is used in 
modern mathematics to describe this remarkable similarity between the 
(apparently) unlike operations of multiplication and addition. 

The Homomorphism Theorem. If a and b are positive numbers, then 

In(ab) = In a + In b. 
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PROOF. By F4, 

d d 1x1 1 -(ln x) = - -dt =-, 
dx dx I t x 

0< x. (6) 

By the chain rule, using the fact that d(ln x)/dx = I/x, we have 

d 1 1 
-(lnax) = -a = -, 0< x. 
dx ax x 

Therefore, In ax is an antiderivative of I/x. By F3, then, 

Ib 1 Ib In b = - dt = In at = In ab - In a. 
I t I 

Solving this equation for the expression In ab yields the desired result. 0 

The homomorphism theorem was, in essence, proved in problem 22 at 
the end of Chapter 8, but by a slightly different means. As our familiarity 
with calculus grows, we shail often find that there is more than one way to 
see that a given statement is true. For example, from problem 32 at the end 
of Chapter 8 we know that 

I I 1 Ir 1 . - dt = - dt If 0 < r. 
I Ir t I t 

We should recognize the integral on the right-hand side here to be In 1', by 
definition of the natural log function. Thus, if 0 < 1', 

I I 1 Il/r 1 1 In I' = - dt = - - dt = -In -. 
I Ir t 1 t I' 

(7) 

Theorem on Logarithms of Reciprocals. [fO < 1', tlIen 

1 
In- = -Inr. (8) 

I' 

PROOF. Equation (8) is an immediate consequence of (7), but let us give a 
different proof,just for fun. A powerful tool for verifying identities, such as (8), 
is the uniqueness theorem Fl. By Fl, two differentiable functions must be 
identical on a connected domain if they have the same derivative and agree 
at just one point. (See exercise 1.5 of Chapter 8.) Let us show that -In I' and 
In(1/r) have the same derivative: 

d dr 1 
dr ( -In 1') = - dr (In 1') = --;: [by (6)]. 

By the chain rule, 
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We have shown that the two functions on either side of (8) have the same 
derivative. Since it is obvious that equation (8) holds when r = 1, the uni­
queness theorem guarantees that equality holds throughout the connected 
domain 0 < r. 0 

Theorem on Logarithrns of Numbers Raised to Rational Powers. Let m and n 
be integers, with n # O. Then Jor any positive number x, 

m 
In(xm /II ) = - In x. 

n 
(9) 

!>ROOF. We shall prove the identity (9) by the uniqueness theorem. Obviously 
equation (9) is true at the point x = 1, when both sides of equation (9) are 
equal to O. 

Taking derivatives, we find that 

~ ('!: In x) = '!: ~ (In x) = '!: X-I. 
dx n n dx n 

By the chain rule, using the rule* for differentiating rational powers of x, 

~ (In xm/ II ) = _1_ ('!:) xm/II - 1 = '!: x-I. 
dx Xm/II n n 

By F1, equation (9) holds throughout the connected domain 0 < x. 0 

To become more familiar with the natural log function, let us set about 
plotting the graph of 

L = Inx, 0< x. 

Taking derivatives, we have 

dL 1 d2 L -1 

dx 
, 

dx 2 2 ' 
0< x. 

x x 

Obviously the first derivative is always positive on the domain 0 < x, and 
the second derivative is always negative. The curve L = In x is therefore 
continually rising, but is concave downwards. 

We eire already familiar with some points on the graph. From equations 
(5) to (10) ofChapter 8 we have the information in the following table, where 
numbers are rounded off to three places. 

* Derived in exercise 8.10 of Chapter 7. 

J In)., 
x L 

2 0.693 
3 1.099 
4 1.386 
6 1.792 

10 2.303 
12 2.485 
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From the theorem on logarithms of reciprocals we immediately know twice 
as much as before: 

r./'"ln --,. 
x L 

0.500 -0.693 
0.333 -1.099 
0.250 -1.386 
0.167 -1.792 
0.100 -2.303 
0.085 -2.485 

The graph of the natural log function looks like this: 

In 

Using the homomorphism theorem and the other results of this section, 
we can calculate many new values of the natural log function. 

EXAMPLE 1. Calculate the natural logarithm of (a) 100, (b) 50, (c) 0.01, 
(d) ft, (e) ft/4, and (f) (100)2/3. 

The following calculations make use of values tabulated above. 
(a) In 100 = In(102) = 2(1n 10) = 2(2.303) = 4.606. 
(b) In 50 = ln(t . 100) = In t + In 100 = - 0.693 + 4.606 = 3.913. 
(c) In 0.01 = In 160 = -ln 100 = -4.606. 
(d) lnft = In(6 1/ 2) = !In 6 = t(1.792) = 0.896. 
(e) In(J6/4) = In iJ6 = In i + In J6 = -1.386 + 0.896 = - 0.490. 
(f) In(loo2/3) = tIn 100 = t(4.606) = 3.071. 

(In each ofthe calculations above there may be slight error in the last decimal 
place because the table used is accurate to only three places.) 

EXERCISES 

2.1. In this section we have two proofs of the fact that the natural log of l/r is the 
negative of thenatural log of r. Give a third proof of this fact, by showing that 
for any logarithmic function whatever, it is true that LOG(l/r) = - LOG(r). 
Hint. In equation (2), let u = l/r and let v = r. 
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2.2. Having done exercise 2.1, you now know three different proofs that equation (8) 
is an identity. 
(a) Which of these proofs might be described as geometrie? as algebraic? as 

analytic? 
(b) (For students of aesthetics) Which of these three proofs is the prettiest? U1zy? 
(c) Which of these proofs illustrates the most powerful general method ofproving 

identities? 

2.3. Use the chain rule to find the derivative of each of the following. 
(a) y = In(1 + x 2 ). (b) y = In(3 + cos x). 
(c) y = In nx. (d) y = In (arccos x). 
(e) y = sin(ln x). (f) y = arctan(ln x). 
(g) y = .j3 + (In X)2. (h) y = cos2(ln nx). 
Answers: (a) 2x/(I+x2 ). (b) (-sinx)/(3 + cosx). (d) -1/~arccosx. 
(e) (I/x) cos(ln x). (f) 1/(x + x In2 x). (g) (In x)/x.j3 + In2 x. 

2.4. Some of the functions defined by the rules in exercise 2.3 do not have an un­
restricted domain. Find them and specify the largest domain on wh ich they are 
defined. (Remember that the natural log function is defined only on the domain of 
positive real numbers.) 
Answers: (c) 0 < x. (d) -1 ::;; x < 1. (e)-(h) 0 < x. 

2.5. Write an equation of the tangent line to the curve y = In x at the point 
(a) (1,0). 
(b) (1,-0.693). 
(c) (4,1.386). 
Answers: (a) y = x-I. (c) y - 1.386 = 0.250(x - 4). 

2.6. Prove that the natural log function converts division into subtraction, i.e., In(b/a) = 
In b - In a if a and b are positive numbers. (Can you give more than one proof?) 

2.7. Use only the short table given in this seetion together with the properties of the 
natural log function to find the naturallogarithm of each of the following. 
(a) 3000. (b) .j 3000. 
(c) .j3000/1002/3. (d) 9. 
(e) 0.009. (f) 5. 
(g) 2(3/2)1/10. (h) 3.J2/4J12. 
(i) 10(16)3/8. (j) 31000. 
Answers: (b) 4.003. (c) 0.932. (e) -4.711. (01.609. (g) 0.734. (h) -1.183. (j) 1099. 

2.8. The domain of In is given by 0 < x. By carrying out the following steps, establish 
the range of In. 
(a) Show that In(3") > n, and In(r") < - n, for any positive integer n. Hint. 

In(3") = n In 3. 
(b) Use part (a) to conclude that the range of In includes - n ::;; y ::;; n, for any 

integer n. 
(c) Use part (b) to conclude that the range of In is unrestricted. 

2.9. Does Inx, 0 < x, have an inverse In -I? If so, wh at is the domain and what is the 
range of In - 1 ? 
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2.10. Justify each of the following equalities, where a, b, and k are positive. 

fbl b ~kb 1 lnb -lna = -dt = ln- = -dt. 
"t a kat 

§3. The Exponential Function 

The natural log function has an inverse In - 1 since the curve y = In x is 
always increasing. What is In - l? It is called the exponential function exp, 
and its place is at the very center of the whole discipline of calculus. Why? 
Because the exponential function, as we shall see, is its own derivative! 

Definition. The exponential function exp is defined as the inverse ofthe natural 
log function. That is, exp is the function having the following properties: 

ln(expx)=x forallx; 

exp(ln x) = x, 0< x. 

(10) 

(11) 

Equations (10) and (11) should not seem mysterious. Ifthey do, the reader 
should review problem 26 at the end of Chapter 7. The equations simply 
say that the function exp has the effect of "undoing" whatever the function 
In does. The range of the exponential function is the set of positive real 
numbers, since this is the domain of the natural log. The domain of exp is 
unrestricted since (see exercise 2.8) the range ofln is unrestricted. 

What does the graph of the exponential function look like? Being the 
inverse of the natural log, the exponential function has a graph that is the 
reflection through the line y = x of the graph of In. 

exp 

3 exp 
x y 

2 -2.303 0.100 
-1.099 0.333 

_-ln 
-0.693 0.500 ~-

,..,..."'-' (?, 1) 0.000 1.000 
/'" 0.693 2.000 

/ (1,0) 
1.000 ? 

I 1.099 3.000 
I 2.303 10.000 I 

I 
I , 
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Since the natural log converts multiplication into addition, it should come 
as no surprise that the inverse function has the opposite effect: 

Homomorphism Theorem. For al/real numbers a and b, 

exp(a + b) = (exp a)(exp b). (12) 

The proof of this is easy and is left to the reader as an exercise. The most 
striking property of the exponential function, wh ich gives it a unique status 
among aB functions studied in calculus, is the foBowing: 

Theorem on Differentiating Exponentials. The exponential junction is its own 
derivative: 

(exp)' = exp; 

moreover, if j is any differentiable junction then 

d 
dx exp(f(x)) = f'(x) exp(f(x)). 

PROOF. Equation (10) says 

ln(expx) = x for aB x. 

Differentiating both sides yields 

1 
--(exp)'(x) = l. 
expx 

Multiplying this equation through by exp x, we get 

(exp)'(x) = expx, 
which proves (13). 

(13) 

(14) 

Equation (14) is an easy consequence of (13) and the chain rule. If y = 

exp(f(x)), then we have the chain y = exp u and u = j(x). By the chain rule, 

~~ = ~~ ~~ = (exp u)f'(x) = f'(x) exp(f(x)). D 

The application of the rule for differentiating exponentials is straight­
forward: 

d 
dx expx = expx, 

d 
dx exp 2x = 2 exp 2x, 

(15) 
d 

dx exp(x2 ) = 2x exp(x2), 

:x exp(sinx) = (cos x)exp(sin x). 
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Here are some more examples. 

d expx 
-d )1 + expx = , by the square root rule; 
x 2)1 + expx 

d 
d)expx)2 = 2(expx)(expx) = 2(expx)2, by the rule for squares; (16) 

~ 1) -1 -1 
d -- = ( )2 (expx) = --, by the reciprocal rule. 
x expx expx expx o 

Look again at the graph ofthe exponential function. What is exp 1? From 
the graph it appears to be somewhere between 2.5 and 3. Later on we shall 
see how this number can be calculated to any desired degree of accuracy. 
As we shall see in Section 9, 

exp 1 = 2.71828 .... (17) 

It is convenient to introduce a special symbol to stand for this number, which 
plays a central role in the theory of exponentials. It is called e. 

Definition. The number e is defined by the equation 

e = exp 1. 

Equivalently, e is that number satisfying the equation 

In e = 1. 

(18) 

(19) 

By (17) and (18), e = 2.71828 .... The number e is very special. Like n, 
it pops up in the most unexpected places. 

Why is the number e so important to the exponential function? Consider 
the following. For any rational number rn/n we have 

111 
In(e"'/") = -ln e 

11 

m 

n 

Therefore, l11/n = ln(em/"), so 

This shows that 

111 
exp- = exp(ln(em/")) 

11 

[by (9)J 

[by (19)]. 

[by (11)]. 

(20) 

whenever x = 111/11 = a rational number. The exponential function exp is 
now seen to be aptly named. By (20) it is indeed an exponential function, and 
its base is e. 
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EXERCISES 

3.1. Suppose that In s = In t, where s is a positive number and t is a positive number. 
Prove that s = t either 
(a) by an informal argument referring to the rising graph of the natural log 

function; or 
(b) by writing 

i' I o = In t - In s = - dx 
s x 

and arguing that the only way the integral can be zero is for sand t to be equal. 

3.2. (a) Show that In(exp(a + b)) = a + b. 
(b) Show th,at In[(expa)(expb)] = a + balso, by using the homomorphism prop­

erty of the natural log, together with property (10). 
(c) Use the results of parts (a) and (b), together with exercise 3.1, to prove the 

identity (12). 

3.3. Check to see which of the following are identities. (Take the natural log 0/ both 
sides in each equation. By exercise 3.1, positive numbers are equal if and only if they 
have the same naturallogarithm.) 
(a) exp(x2) = 2 exp x. 
(b) (expx)2 = exp2x. 
(c) (expx)" = expnx. 
(d) (exp a)j(exp b) = exp(ajb). 
(e) (exp a)j(exp b) = exp(a - b). 
Partial answer: Equation (a) is not an identity. The natural log of the left-hand 
side is x 2, while the natural log of the right-hand side is In 2 + x. 

3.4. Write an equation of the tangent line to the graph of y = exp x at the point 
(a) (0,1). 
(b) (1, e). 
Answers: (a) y = x + 1. (b) y - e = e(x - 1). 

3.5. Find the second derivative of the exponential function. Then find the 37-th 
derivative of it. 

3.6. Find the derivative of each of the following. 
(a) xexpx. 
(b) exp(tanx). 
(c) expnx. 
(d) (In x)(exp x). 
(e) (sin x)(exp 3x). 
(f) sin(exp 3x). 
Answers: (a) expx + xexpx. (b) (sec2 x)exp(tanx). (c) nexpnx. (d) (In x)(exp x) + 
(ljx)(exp x). 

3.7. The exponential function is continuous everywhere (because it is differentiable 
everywhere). Use the continuity of exp to answer the following. 
(a) Wh at is Limitx _ n exp x? 
(b) Does the integral Hexptdt exist? 
(c) What is d(S~ exp t dt)jdx? 
(d) What is Limit (exp(ljn)) as n increases without bound? 
Answers: (a) exp n. (d) 1. 
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3.8. Since the exponential function is its own derivative, the exponential function is 
also its own antiderivative. Use this to evaluate the following integrals by F3. 

(a) H exp t dt. 

(b) H exp t dt. 

(c) n exp t dt. 

Answers: (a) e2 - 1. (b) e - 1. (c) exp 1t - e. 

3.9. Is exp an even function? an odd function? (Look at its graph to tell.) Write the 
exponential function as the sum of an even function and an odd function. [See 
exercise 5.9, parts (i)-(k), in Chapter 8.J 
Answer : See problem 5 at the end of this chapter. 

3.10. (Only Jor those with a Pythagorean love oJ numbers) The following is pure play 
with numbers, for which only a little justification is offered. By serendipity we 
are able to approximate the number e very nicely. 
(a) Simpson's ruleis expected to work better and better over sm aller and smaller 

intervals. Convince yourself that the following approximation ought to be 
quite good if n is a largy integer. 

el/n_e-In= exp I SI/" 

-i/n 

(b) Multiplying both sides of an approximation by a large positive integer n 
offers no guarantee that the approximation will still be elose. Nevertheless, 
multiply the approximation of part (a) so as to obtain 

(3n - 1)e2/n - 4e l/n - (3n + 1) ::::; O. 

(c) The expression on the left in part (b) may be regarded as a quadratic in el/n . 

Apply the quadratic formula, throwing away (why?) the negative root, and 
obtain 

el/n ::::; 2 + J3+9nl. 
3n - 1 

(d) Even if the approximation in part (c) is very elose there is no guarantee it will 
still be elose if both sides are raised to the n-th power. Nevertheless, do this 
hüpefully, writing 

e ::::; [2 + J3+9nlJn. 
3n - 1 

(e) The approximation in part (d) is expected to get better as n is taken larger and 
larger. Evaluate the expression on the right, using a table of square roots, für 

(i) n = 1. 
(ii) n = 2. 

(iii) n = 4. 
(iv) n = 8. 
Answers: (i) 2.732. (ii) 2.719. (iii) 2.7183. (iv) 2.718286. 
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§4. Exotic Numbers 

Everyone today has heard the phrase "exponential growth", especially in 
connection with the alarming rate at which the world's population is rising. 
The phrase refers, of course, to the rapid rise of the exponenti:j.l function's 
graph. The exponential function also pops up in studying the decay of 
radioactive material and in the theory of comppund interest. We shall study 
these "external" applicMions of the exponential function shortly. Right now, 
let us study how the exponential function is applied "internally" to mathe­
matics itself, rather than to the external world. 

Consider such an exotic expression as 

e". (21) 

What could this mean? What should it mean? Is it areal number? Can we 
make sense out of such expressions as (21), or, for example, 

2", e''3 3-12, and 6e ? (22) 

How can a number be raised to an irrational power? 
As we have done so often in the past, we must call on our old friend Lim. 

Consider tpe expression (21). Let us first say what it should not mean. It 
should not me an any of the following numbers: 

e3 . 141 , 

The expression e" should not denote any ofthese numbers, but should denote 
their limit. Tqat is, e" should be defined as 

e" = Limit t!, 

where x tends to n through rational values, like 3, 3.1, 3.14, etc., in the 
sequence given above. But t! = exp x if x is rational, by (20). Therefore the 
definition just given implies that 

e" = Limit exp x = exp n, 

by the continuity of the exponential function. This answers our question 
about raising a number to an irrational power, if that number happens to 
be e. By the same token as above, it is natural to define et as follows: 

et = expt 

for any real number t, rational or irrational. For example, 

ev'3 = exp..j3, 

eO = expO = 1, 

ein 2 = exp(ln 2) = 2, 

ein a = exp(ln a) = a, 

1 
e- 1 = exp( -1) =-. 

e 
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(I, exp I) 

Since er and exp t agree when t is rational, it is natural to define e' as exp t for all t 

Having seen how to define et for any real number t, we can apply similar 
considerations to define d, where a is any positive number. From equation 
(9) we already know that the following identity holds for every rational 
number: 

m 
In(am/n ) = -ln a. 

n 

It is natural to define the number d in such a way that the equation 

Ind = tlna (23) 

becomes an identity, holding for all real numbers t. By exponentiating both 
sides, we see that (23) is equivalent to 

d = exp(tlna) = et1na • (24) 

We are thus led to this definition. 

Definition. Let a be a positive number and let t be any real number. Then 
d is defined by equation (24). 

The exotic numbers listed in (22) are then rendered as follows: 

2" = exp(nln2):::::o exp(3.l4(0.69)) = exp2.17 = eZ. 17 , 

ev'3 = exp(J31ne) = exp(J3):::::o exp(1.73) = e1.73, 

3v'2 = exp(,J21n3):::::o exp(1.41(1.10)) = exp 1.55 = e1.55, 

6e = exp(e In 6) :::::0 exp(2.72(1.80)) = exp 4.90 = e4 .90 . 

Any positive real number can be expressed as apower of e. The problem of 
calculating such powers as e Z. 17 , e1.73, etc., to several decimal pi aces is dis­
cussed in a later section. 
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We should check that this definition ofraising numbers to powers agrees 
with OUf familiar notion in cases where the situation is familiar. For example, 

2- 1 = exp((-1)ln2) = exp(-0.69 ... ) = 0.500. 

GY = eXP(2InD = exp(2( -0.69 ... )) = exp( -1.38 ... ) = 0.250. 

(~)n = exp(nln~) = exp(n(-ln4)) = exp(-nln4) = exp(ln4- n) = 4-n. 
What about the laws of exponents that we are used to? Do they still 

hold? Is (aSr equal to ast, for example? By definition we have 

(aS)t = exp(t In aS ), 

ast = exp(st In a). 

The following theorem answers some questions. 

(25) 

(26) 

Theorem on Exponentials. Let a be a positive number, and let sand t be any 
real numbers. Then 

?ROOF. To prove (27) first note that 

by (23). Therefore, 
lnas = s In a 

(aS)t = exp(t In aS) 

= exp(st In a) 

(27) 

(28) 

(29) 

[by (25)] 

[by (29)J 

[by (26)J 

A proof of (28) is given by the following chain of equalities. The first and 
last of these equalities are by definition. The crucial step involves the 
homomorphism theorem [identity (12) of Section 3]. 

aSd = [exp(s In a)J [exp(t In a)J = exp( (s + t) In a) = aS +t. 0 

At last we can prove a rule of differentiation that the reader probably 
was able to guess in Chapter 4, problem 32. 

General Rule for Powers. 1f f(x) = xt, with domain 0 < x, then f has a deriva­
tive given by 

f'(x) = tx,-l. 

?ROOF. By definition of x' we have 

f(x) = exp(t In x). 
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By (14), 
t t 

f'(x) = -exp(tlnx) = -xt = txt - l . 
x x 

F or example, 

if f(x) = x", then f'(x) = nx"-l; 
if f(x) = xe, then f'(x) = eXe -1; 
if f(x) = X-I, then f'(X) = - X- 2. 

315 

o 

The reader should note the sharp contrast between powers and exponentials. 

General Rule for Exponentials. Let a be a positive number and let f(x) = aX • 

Then f has a derivative given by 

f'(x) = (In a)ax . 

!'ROOF. By definition ofaX, we have 

f(x) = exp(x In a). 
By (14), 

f'(x) = (In a) exp(x In a) = (In a)ax . 

For example, 

if f(x) = nX , then f'(x) = (In n)nX ; 

iff(x) = 2\ then f'(x) = (In 2)Y; 
if f(x) = ~, then j'(x) = (In e)e"' = ~. 

o 

As seen in these examples, the derivative of any exponential function is 
proportional to the function itself. If f(x) = aX, then f'(x) = (In a)f(x), by the 
rule given above. The constant of proportionality is In a. The natural base 
for an exponential function is e. Only in this case is the constant of propor­
tionality equal to one. 

EXERCISES 

4.1. Formulas (27) and (28) of this seetion were proved by the "direet" method. Give 
indireet proofs of these formulas by showing that both sides of eaeh formula 
have the same natural log. Then appeal to the resuIt of exereise 3.1. 

4.2. Find the derivative of eaeh of the following. 
(a) x"e-'. 
(b) x,2:ln x. 

(e) Hf'. 
(d) x iO . 

(e) neo 
Answers: (a) x"~ + nx"-I~. (b) x v 2: -1(1 + J2ln x). (e) (In lO)HY. (d) lOx9 . (e) O. 
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4.3. Find the derivative of each of the following. 
(a) e". (b) e2x. 

(c) e"2. (d) e'in x. 
(e) .jT"+? (f) (e")2. 
(g) 1je". 
Answer: (The answers are given in formulas (15) and (16), where the notation 
exp x is used in place of e".) 

4.4. Find the derivative of each of the following. 
(a) JX. (b) 32x. 

(c) y 2 • (d) 3,in x. 

(e) .J1+3X. (f) W)2. 
(g) l/Y. 
Answers: (b) 2(ln 3)3 2x . (c) 2x(ln 3W2

• (d) (cos x)(ln 3)3'in x. 

4.5. Which ofthe following are identities? 
(a) 3xY = JYx. (b) WV = (3Y)x. 
(c) 5X 5)' = 5XY , (d) 10' = e lO In" 

(e) lO'=e,lnIO. (f) P=e"/2, 
(g) e- 2x = {1/e"f, (h) e"eY = e"+Y, 
(i) i'Y = e"eY. (j) aX W = (a/W. 
H int. One way to test for equality ofnumbers is to see if they have the same natural 
log, 

4.6. Find an antiderivative of the function f given by f(x) = x', 0< x. Be careful. 
Answer: If t =F -1, an antiderivative is given by F(x) = x'+ I/(t + 1); if t = -1, 
an antiderivative is F(x) = In x. 

4.7. (a) Use F3 together with the result of exercise 4.6 to evaluate the integral S~ x' dx, 
where t =F - 1. 

(b) Evaluate H x' dx, where t = -1. 
(c) On the basis ofyour answers to parts (a) and (b) explain why it is plausible to 

conjecture that 
a'+ I - 1 

Limit = Ina ifO < a. 
, __ I t + 1 

(d) Use L'Höpital's rule to evaluate the limit in part (c). Is the conjecture true? 

4.8. Consider the problem of finding Limith _ o «ah - l)/h), where a is so me positive 
number. Do this in three ways: 
(a) By letting h = t + 1, justify each of the following steps: 

(b) Use the derivative to find the slope of the tangent line to the curve f(x) = aX 

at the point (0, 1). Equate this number with the limit that results from applying 
Fermat's method to find the slope of this tangent line. 

(c) Evaluate the limit directly by an application of L'Höpital's rule. 
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4.9. Consider the problem of finding Limith~o ((ln(1 + hk) )fh), where k is some real 
number. Do this in three ways. 
(a) First justify the foIIowing equalities: 

1 1fl+hk1 -ln(1 + hk) = - -dt 
h hIt 

= k ~ f1+hk ~dt = k[ avg (~)J. 
hk 1 t 1.1+hk t 

Then find the limit as h tends to zero by using the continuity of the function 
1ft at the point t = 1. 

(b) Use the derivative to find the slope of the tangent line to the curve f(x) = 

In(1 + kx) at the point (0,0). Equate this number with the limit that arises by 
applying Fermat's method to find the slope of this tangent line. 

(c) Evaluate the limit by applying L'Höpital's rule. 

4.10. (a) Give an example of a function whose rate of growth is proportional to itself. 
That is, find an example of a function f such that if y = f(t), then dyfdt = ky, 
where k is some constant of proportionality. 

(b) Can you think of any quantity from the "real worId" that might be expected 
to grow always at a rate proportional to its size? 

Hints. (a) Read the last paragraph in this section. 
(b) Read Sections 6, 7, and 8. 

§5. Uses of Logarithms; Logarithmic Differentiation 

A table of logarithms may be found in an appendix to this book. Both 
natural logs and logarithms to the base 10 are given. While it is true that 
the natural log function In makes calculus simpler, nevertheless our decimal 
representation of real numbers gives some advantage to the function IOglO' 
How is In related to IOglO? Recall from Section 1 that 

IOglO a = t means 10' = a. 

It is now easy to solve the equation 10' = a for t. Taking the natural log of 
both sides gives 

Therefore, 

tIn 10 = Ina, 

Ina 
t = In 10' 

Ina lna 
IOglO a = In 10 ~ 2.302585 = 0.43429 In a. (30) 

This shows that IOglO is simply a multiple of the natural log function. 
The same is true of logarithms to any base b whatever. 
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Theorem on Logarithms to Arbitrary Bases. Let b be a positive number, with 
b =I- 1. Then 

In particular, 

PROOF. To prove (31), let 

By (1), then, 

Therefore, 

. Inx 
10gb x = Inb' 0< x. 

loge x = Inx. 

t = logbx. 

tIn b = In x, 

Inx 
t = Inb' 

(31) 

(32) 

(33) 

(34) 

Putting (33) and (34) together proves (31). Letting b = e in equation (31) 
proves (32), which shows that thenatural log function is the logarithmic 
function to the base e. 0 

A logarithmic function to any base is then just a multiple of the natural 
log function. By virtue of this, a logarithmic function to any base inherits 
the homomorphism property al ready proved for the natural log, plus all 
the properties that follow from the homomorphism property. Just as eX 

gives the inverse function for the natural log, so does bX give the inverse func­
tion for 10gb, provided b =I- 1. Whether one wishes to work with logarithms to 
base e, base 10, or to some other base is largely a matter of convenience. 

EXAMPLE 2. Use a table of logarithms to calculate each of the following 
numbers to several decimal places: 

(a) JU. 
(b) 10eO. 12 . 

(c) 100(1.06)20. 

The method is first to find the logarithm of the number in question, then 
to use the inverse log function to find the number itself. We shall do each 
of these in two ways, first using natural logs, then logs to base 10. Tables 
are in an appendix. 

(a) Let x = JU. Then, using natural logs, we have In x = ! In 12 ~ 1.242. 
By the inverse log function, 

x ~ e1. 242 ~ 3.46. 

Using logs to base 10 instead, we have loglo x =! loglo 12 ~ 0.5396. 
By the inverse log function, 

x ~ 10°·5396 ~ 3.46. 
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(h) Let x = 10eO•12• Using natural logs we have 

In x = In 10 + 0.12 In e = In 10 + 0.12 ~ 2.423. 

By the inverse log function, 

x ~ e2 .423 ~ 11.28. 

Using logs to hase 10 instead, we have 

log10x = IOg10 10 + 0.1210g10 e ~ 1 + 0.0521. 

By the inverse log function, 

x ~ 101.0521 ~ 11.28. 

(c) Let x = 100(1.06)20. Using natural logs we have 

In x = In 100 + 20 In 1.06 ~ 4.605 + 1.165 = 5.770. 

By the inverse log function, 

x ~ e5 .770 ~ 320.7. 

Using logs to hase 10, we have 

10g10 x = loglo 100 + 2010g10 1.06 ~ 2 + 0.5061. 

By the inverse log function, 

x ~ 102.5061 ~ 320.7. o 

Whenever an expression involves products, quotients, or powers, it is 
often easier to deal with the logarithm of the expression than with the 
expression itself. 

EXAMPLE 3. Find the limit, as h tends to 0, of each of the following: 

(a) exp( (sin h)jh). 
(h) (1 + h)l/h. 
(c) (1 + hk)l/h. 

Each of these expressions is rather complicated, hut its log is not so 
complicated. Let us first find the limits of the logs of these expressions. Once 
this is done, it will he easy to find the limits of the expressions themselves. 

(a) Let y = exp( (sin h)jh). Then In y = (sin h)jh. By L'Höpital's rule, 

L· . sinh L· . cosh 0 1m1t -h- = 1m1t -- = cos = 1. 
h~O h~O 1 

This shows that In y tends to 1. This immediately implies that y tends 
to e. Reason: By continuity of the exponential function, 

y = exp(ln y) --> exp 1 = e. 
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(b) Let y = (1 + h)l /h. Then In y = (1/h) In(1 + h). By L'Höpital's rule, 

L· . In(l + h) L· . 1/(1 + h) 1 
Imlt h . = Imlt = . 

h-O h-O 1 

This shows that In y tends to 1, which immediateiy implies that y tends 
to e. 

(c) Let y = (1 + hk)l /h. Then lny = (l/h)ln(l + hk). By L'Höpital's rule, 

L· . ln(l + hk) .. k/(1 + hk) k 
Imlt h = LImIt = . 

h-+O h-O 1 

This shows that In y tends to k, which immediately implies (why?) that 
y tends to ek• 0 

EXAMPLE 4. Find dy/dx, given each of the following: 

(a) y = 2x • 

(b) y = xx. 
(c) y = x 2/{l + X 2)3/2. 

Each of these expressions is fairly complicated, but its log is somewhat 
simpler to deal with. Let us first find In y, then use implicit differentiation. 
(The technique ofusing implicit differentiation after applying the logarithmic 
function is known as logarithmic differentiation.) 

(a) If y = 2X, then In y = x In 2. Differentiation of both sides with respect 
to x yields 

Therefore, 

1 dy 
-- = In2. 
y dx 

(b) If y = xx, then In y = x In x. Differentiation of both sides with respect 
to x yields 

1 dy (1) Y dx = x ~ + In x = 1 + In x. 

Therefore, 
dy 
dx = y(1 + Inx) = xX (1 + In x). 

(c) If y = x 2/(1 + X 2)3 / 2, then In y = 2ln x - (3/2) In(l + x 2). Differentiation 
of both sides with respect to x yields 

1 dy _ 2(1) (3) 2x _ 2 3x y dx - ~ - "2 1 + x 2 - ~ - 1 + x 2 · 
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Therefore, 

~~ = Y(~ -1 !Xx2) = (1 +X~2)3/2 (~ - 1 !Xx2). 0 

The simplicity achieved by the use oflogarithmic differentiation is obvious. 
A seeming drawback to this technique is that we can take the logarithm 
only of positive quantities. Can the technique be made applicable to dif­
ferentiate negative quantities? The answer is yes, by taking absolute va lues 
first. The following theorem explains why. 

Theorem on Logarithmic Differentiation. 1f f is a differentiable function 
(whether positive or negative), then 

~lnlf(x)1 =f'(x) iff(x) # O. 
dx fex) 

(35) 

!>ROOF. We must consider separately the cases when f(x) is positive and 
when f(x) is negative, and verify that the formula (35) holds in each case. 
This is easy to do. 

If f(x) is positive, then formula (35) asserts that 

d f'(x) 
dx lnf(x) = f(x) , 

which is easily seen to be true by a straightforward application of the chain 
rule. 

If f(x) is negative, then If(x)1 = - f(x) by definition of the absolute value 
of a negative quantity. In this case the assertion of formula (35) is that 

~ ln( - f(x)) = f'(x). 
dx f(x) 

(36) 

This again is easily seen to be true by the chain rule. The reader is asked 
to verify (36) as an exercise. 0 

EXAMPLE 5. Use logarithmic differentiation to find the derivative of each 
of the following: 

(a) (x + 1)/(x - 1). 
(b) x(x2 + 3)1/4/(X - 6). 
(c) f(x)g(x). 

In each case we take absolute values first, since we cannot take the 
logarithm of a negative quantity. The formulas we obtain will be valid 
everywhere except for a few points that we shall note at the end. 

(a) Let y = (x + l)/(x - 1). Then lyl = Ix + li/Ix - 11, so 

Inlyl = lnlx + 11- lnlx - 11. (37) 
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By the theorem on logarithmic differentiation, 

y' 1 1 
y x+1 x-1 

y' = yC: 1 - x ~ 1) = G ~ ~)C ~ 1 - x ~ 1} 
(b) Let y = x(x2 + 3)1/4j(X - 6). Then lyl = Ixllx2 + 31l/4jlx - 61, so 

1 
Inlyl = lnlxl + 4lnlx2 + 31- ln lx - 61. (38) 

Logarithmic differentiation therefore shows that 

y' =~+(!)~ __ 1_ 
y x 4 x2 + 3 x - 6· 

Multiplying through by y, we obtain 

y' = x(x2 + 3)1/4(~ + tx __ 1_). 
x - 6 X x2 + 3 x - 6 

(c) Let y = f(x)g(x). Then lyl = If(x)llg(x)l, so 

Inlyl = Inlf(x)1 + Inlg(x)l· 

Assuming fand g to be differentiable, we obtain 

y' f'(x) g'(x) -=--+-. Y f(x) g(x) 

Multiplying through by y = f(x)g(x), we derive the product rule 

( f'(X) g'(X)) 
y' = f(x)g(x) f(x) + g(x) = g(x)f'(x) + f(x)g'(x). 

(39) 

D 

There is one slight drawback to the method oflogarithmic differentiation. 
The number 0 is not in the domain of the natural log function. Therefore 
equation (37) does not hold when x = 1 or when x = -1. Equation (38) 
fails when x = 0 or when x = 6. And equation (39) is not true when either 
f or g takes the value zero. The advantages of logarithmic differentiation 
far outweigh this slight drawback. 

EXERCISES 

5.1. We may speak of logarithms to any base b, provided b is positive and not equal to 
one. Why do we not speak of "Iogarithms to base I"? 

5.2. Use (31) to prove each of the following. 
(a) 10gb a = I/Ioga b if a and bare both positive and neither is equal to 1. 
(b) (10gb a)(loge b) = loge a if a, b, and c are positive and neither is equal to 1. 
(c) 10gb xy = 10gb X + 10gb y if b, x, and y are positive and b =f. 1. 



5. Uses of Logarithms; Logarithmic Differentiation 323 

5.3. We have seen in this section that a logarithmic function to any base is simply a 
certain multiple of the natural log function. In a similar vein, show that an ex po­
nential function to any base is simply a certain power of the exponential function 
e". Answer: bX = (eX)!n b. 

5.4. In exercise 1.4 we made guesses about approximations to logarithms of certain 
numbers to certain bases. Use tables, together with formula (31) if needed, to 
find these logarithms correct to several decimal places. 

5.5. Find each of the following logarithms to several decimal pi aces, by any means. 
(a) log 10 1[, (b) 10g,1O. 
(c) loge 3. (d) log3 e. 
(e) IOg23. (f) IOgl/2 3. 
(g) logl/4IO. (h) log4IO. 
Answers: (a) 0.497. (c) 1.586. (f) - 1.586. (h) 1.661. 

5.6. Find the limit as h tends to zero: 
(a) exp( (cos h - 1)/h). (b) (1 + ht 
(c) (I + h)I/I>. (d) (1 + 0.06h)I/I>. 
(e) exp(ln h). (f) (1 - h)1!I'. 
(g) (1 + h)-I!". (h) (I + h2)1/1>. 

Answers: (a) 1. (b) 1. (c) e. (d) eO.06. Hin!. (e) Use identity (11). 

5.7. Prove equation (36) by the chain rule. 

5.8. Use logarithmic differentiation to find the derivative of each of the following. 
(a) 10' (b) (1 + xy. 
(c) lxi. (d) (xix + 31 1/4)/(8 + x 3 ). 

(e) l/g(x). (f) .jO(x). 
(g) (f(X))2. (h) f(x)/y(x). 
AnsIVers: (b) (1 + xl'( (x/(1 + xl) + In(1 + x)), -1 < x. (c) lxi/x, x =F O. 
(d)( (x I x + 31 1/4)/(8 + x 3 ))( (1/x) + (1/(4x + 12)) - (3x 2 /(8 + x 3 )), x =F 0, - 2, - 3. 

5.9. Use formula (35) to find antiderivatives of each of the following. 
(a) 1/(1 + x). (b) - 3/(5 - 3x). 
(c) 1/(5 - 3x). (d) 2x/(1 + x 2 ). 

(el x/(1 + 3x 2 ). (f) (- sin xl/(cos xl. 
Answers: (c) (-1/3) Inl5 - 3xl· (f) lnlcos xl. 

5.10. Use F3 to evaluate each of the following integrals, after first checking to see if the 
integral exists. 

(al SW/(l + x)ldx. (bl J~d-3/(5 - 3xl)dx. 

(c) J~ 1 (I/x) dx. (d) Jti (2x/(1 + x 2 )) dx. 

(e) H tan x dx. (f) JO/4 tan x dx. 

AllslVers: (a) Inil + xiii = In4 -ln2 = In(4/2) = In2. 
(b) Inl5 - 3xll~1 = In5 -ln8. (c) Does not exist. (d) Inil + x211ti = In 17. 
(e) Does not exist. (f) -Inlcos x110/4 = -ln(v'2";2) = ~ In 2. 

5.11. Do exercise 4.4 by the method of logarithmic differentiation. Is it easier by this 
method? 
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§6. Compound Interest; Continuous Interest 

The reader is probably familiar with the notion of compound interest. If not, 
then the following ex am pie should make clear the not ion of interest com­
pounded annually, compounded semiannually, compounded quarterly, etc. 

EXAMPLE 6. A principal of $1,000 is deposited in a savings account to grow 
at an interest rate of 12% per year. Find the value (principal plus interest) of 
the savings account at the end of one year if interest is compounded 

(a) annually. 
(b) semiannually (that is, at 6-month intervals). 
(c) quarterly (that is, at 3-month intervals). 
(d) monthly. 
(e) daily. 
(f) n times (that is, at intervals of length 1/n years). 

All of these are really instances of the last. In (a) the interest is added to the 
principal once, in (b) twice, in (c) four times, in (d) 12 times, and in (e) 365 times. 
Thus, (a) through (e) are really instances of(f), where n is equal to 1,2,4,12, 
and 365, respectively. Nevertheless, let us consider (a) through (f) in order. 

(a) At the end of 1 year an interest of 12% per year on a principal of $1,000 
will produce an income of 1000(0.12) = 120 dollars. Adding this to the 
original principal gives 

1000 + 1000(0.12) = 1000(1 + 0.12) = 1000(1.12), 

or $1,120. 
(b) Here the interest of 12% per year is compounded twice, that is, by adding 

6% in te rest at the end of each half-year. At the end of the first half-year 
the balance is 

1000 + 1000(0.06) = 1000(1 + 0.06) = 1000(1.06) (40) 

dollars. Equation (40) says that compounding interest semiannually has 
the effect of increasing the account's balance by a factor of 1.06 at the 
end of each half-year. The balance (40), after another half-year, will 
therefore be increased to 

1000(1.06)(1.06) = 1000(1.06)2, 
or $1,123.60. 

(c) Here the in te rest of 12% per year is compounded four times, that is, by 
adding 3% interest to the existing balance at the end of each quarter. 
This means that the account's value is multiplied by a factor of 1.03 
each quarter, so that after 1 year the account is worth 

1000 ( 1.03)4 

dollars. This is equal to $1,125.51. 
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(d) Here the interest of 12% per year is compounded 12 tim es, that is, by 
adding 1% interest to the existing balance at the end of each month. 
This means that the principal is multiplied by a factor of 1.01 twelve 
times in the course ofa year, making the account worth 

1000(1.01)12 (41) 

dollars at the end of the year. The reader is asked to use logarithms to 
evaluate (41). 

(e) Here the interest of 12% per year is compounded 365 times, that is, by 
adqing 12/365% interest each day. At the end of the year the account is 
worth 

( 
1 )365 

1000 1 + 365 (0.12) (42) 

dollars. The reader is asked to use logarithms to evaluate (42), and to 
show that it is equal to $1,127.44. 

(f) If tpe interest of 12% per year is compounded n times, that is, by adding 
(12/n)% interest to the existing balance each time, then the value of the 
account at the end of one year is 

1000 ( 1 + G}0.12))" 

dollars. 

The values calculated in Example 6 are tabulated here. 

The year-end 
value of $1000 

n investment at 12% 
per year interest 
compounded 11 times 

$1120.00 
2 $1123.60 
4 $1125.51 
12 $1126.82 

365 $1127.44 
n $1000(1 + (0.12/11))" 

(43) 

o 

As n is taken larger and larger, that is, as the interest is compounded more 
and more often, we approach what might be called continuous interest, or 
interest compounded continuously. In Example 6 the value of the account at 
the end of 1 year with interest compounded continuously is the limit of (43), 
as n increases without bound. What is the limit of (43)? Letting h = I/n, 
so that h ----> 0 as n increases, we see that it is 

Limit 1000(1 + h(0.12))I/h = 1000eo. 12, 
h~O 
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by part (e) of Example 3 in the preeeding seetion. Tables [or see equation 
(67) of Seetion 9] give eO. 12 ~ 1.12749, so that eontinuous interest in Example 
6 will produee a year-end value of 

$1,127.49. 

As might be expeeted, this is only slightly larger than the value tabulated for 
interest eompounded daily. 

The example just eonsidered was for a prineipal Ao = 1000 with a rate of 
growth k = 0.12 over aperiod of time t = 1. Continuous interest at a rate k 
on an initial investment A o over aperiod oftime t units is defined by applying 
exaetly the same eonsiderations. The result is deseribed as folIows. 

Theorem on Continuous Interest. Let k denote a rate oJ growth oJ value oJ an 
investment, and let A o denote the investment's initial value. Then its value A at 
time t is given by 

if the growth is continuous. 

PROOF. Beeause of the multiplieity ofsymbols in the ealculation that folIows, 
things may seem mueh more eomplieated than they are. Remember that 
Ao, k, aud t are simply eonstants in the ealculation, representing the prineipal, 
the rate of interest, and the period of time over whieh the investment is 
earried. 

By eompounding n times over the period t the value of the initial invest­
ment beeomes 

(44) 

We are interested in the limit of (44) as n is taken larger and larger, that is, as 
interest is compounded more and more often. How ean we ealculate the 
limit of (44) in order to get the value of the investment under eontinuous 
interest? Ifwe let h = t/h (so that n = t/h), we see that the limit of(44) is given 
by 

Limit A o{1 + hky1h = Limit AoW + hk) llhr 
I/~O h~O 

= Ao[ekr 

= Aoekt , 

where we have used onee again the result of part (e) of Example 3. D 

EXAMPLE 7. At an interest rate of 6% per year, how mueh will an initial 
investment of $1,000 be worth after 5 years under 

(a) annual interest? 
(b) eontinuous interest? 

(a) For annual interest the investment's value is multiplied eaeh year by a 
a faetor of 1.06. After 5 years the investment will be worth 

1000(1.06)5 = 1338.23 
dollars. 
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(b) Applying the theorem on continuous interest with A o = 1000, k = 0.06, 
and t = 5, we see that the investmerit will be worth 

1000eO.06(5) = 1000eo.3 = 1349.86 

dollars after 5 years. D 

EXAMPLE 8. A bank advertises an interest rate on savings at 7.5% per year, 
to be compounded continuously. What amount of interest compounded 
annually is equivalent to this? 

After 1 year at the advertised rate, an investment Ao would be worth 
AoeO.075 by the theorem on continuous interest. After 1 year at an annual 
rate k, the same investment would be worth AoO + k). For these to be equi­
valent we must have 

AoO + k) = AoeO.075, 

1 + k = eO.075 , 

k = eO.0 75 - 1. (45) 

From a table, eO.0 75 ~ 1.0779, so k ~ 0.0779 by (45). An annual rate of 
approximately 7.79% is then equivalent to interest compounded continuously 
at 7.5%. D 

At interest compounded annually, quarterly, or daily, the value of the 
initial investment grows by discrete steps. With interest compounded con­
tinuously the value A grows continuously at a rate proportional to A. The 
following theorem should not be surprising. 

Theorem on Exponenti.al Growth. The function given by 

A(t) = Aoekt (46) 

describes a quantity A whose initial value is A o and whose rate of growth is 
always proportional to itselJ, that is, 

dA 
dt = kA. (47) 

PROOF. Obviously from (46) we have A(O) = Ao. All that weneed to do is 
verify that the function defined in (46) satisfies the "growth law" given by the 
differential equation (47). This is straightforward. If (46) holds, then 

dA d 
~ = - A ekt = A kekt [by (14)] 
dt dt ° ° 

= kA [by (46)]. D 

The theorem just proved may seem insignificant. We shall see, however, 
that the growth law expressed by the differential equation (47) is ofparticular 
interest. Equation (47) is one of the most important differential equations 
ever written. And the theorem just proved tells us exactly how to solve it. A 
solution to (47) is given by the function expressed in equation (46). 
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EXERCISES 

6.1. Use logarithms to evaluate expressions (41) and (42). 

6.2. A principal of $100 is deposited for 20 years at an interest rate of 6% per year. How 
much will this account be worth at the end of 20 years if the in te rest is compounded 
(a) annually? 
(b) continuously? 
Answers: (a) About $321, by Example 2, part (c). (b) About $332, by the theorem 
on continuous interest. 

6.3. At an interest rate of 12% per year, how much will an initial investment of $1,000 
be worth after 5 years under 
(a) annual interest? 
(b) continuous interest? 

6.4. A bank advertises an in te rest rate on savings at 8% per year, to be compounded 
continuously. What amount of interest compounded annually is equivalent? 
Answer: 8.33%. 

6.5. A bank advertises an interest rate on savings at 8% per year, to be compounded 
annually. What amount of interest compounded continuously is equivalent? 
Answer: 7.70%. 

6.6. Wh at amount of interest compounded continuously will double the initial value 
of an investment after 5 years? Answer: We must find the growth rate k that 
satisfies 2Ao = A(5) = A oe 5k• Dividing by A o we obtain 2 = eSk, implying that 
In 2 = 5k, or k = (In 2)/5 = 0.1386. An interest rate of 13.86% per year will suffice. 

6.7. What amount of interest compounded continuously will double the initial value 
of an investment after 10 years? 

6.8. What amount of interest compounded annually will double the value of an 
investment after 5 years? Answer: 14.87% per year. 

6.9. Money is deposited at 6% interest per year to be compounded continuously. How 
long will it take for the account to double in value? 

6.10. A quantity A grows in accordance with the law A = Aoekt , where k is positive. 
How long does it take for the quantity A to double in size? Answer: Let T be the 
required time so that A(t + T) = 2A(t). That is, 

Solving by logarithms gives T = (In 2)!k. 

6.11. Consider the differential equation dA/dt = 2A. 
(a) Show that A = e2t satisfies this differential equation. 
(b) Show that A = e2t + C does not satisfy this differential equation unless C = O. 
(c) Show that A = Ce 2t does satisfy this differential equation, where C can be any 

constant. 

6.12. Consider the differential equation dA/dt = 2t. (Note the difference between this 
equation and the equation of exercise 6.11.) Solve this equation. Answer: A = 
t 2 + C. 



7. Population Growth 329 

6.13. Solve each of the following differential equations with given initial conditions. 
(a) dA/dt = 2A, A(O) = 5. 
(b) dA/dt = nA, A(O) = 10. 
(c) dA/dt = - 2A, A(O) = 3. 
Answer: (c) A = 3e- 2', by the theorem on exponential growth. 

6.14. The exponential function has a special feature in connection with the product 
rule which makes it quite useful in solving certain types of differential equations. 
To see this property, take the derivative of the product of each of the following, 
as indicated. Note that the exponential function factors out of your answer. 
(a) (t2 e')'. 
(b) (t4 e3')'. 

(c) (ek' sin t)'. 
(d) (eF(tjg(t))'. 
Answers: (b) e3'(4t 3 + 3t4 ). (c) ek'(cos t + k sin t). (d) eF(,j(g'(t) + f(t)g(t)), where 
F' =f. 

6.15. Try to combine careful observation with a !ittle luck to guess an antiderivative 
of each of the following. Use the property of the exponential function illustrated 
in the preceding exercise. 
(a) e'(1 + t). 
(c) ek'(cos t + k sin t). 
(e) e-k'(cos t - k sin t). 
Answers: (a) te'. (e) e-k'sint. (f) e-k'y. 

§7. Population Growth 

(b) e'(cos t + sin t). 
(d) e-'( (l/t) .- In t). 
(f) e - k'( (dy/dt) - ky). 

Is there a law governing the way the population N of some species varies 
with time? It is hard to conceive of a law that might be valid if one is prone to 
worry about violent upheaval, massive drought, stalking pestilence, nuclear 
holocaust, apocalyptic cataclysm, and the like. In the absence of such catas­
trophes, however, the rate of growth of population at any time should be 
proportional to the population at that time. The growth law is 

dN 
Tt= kN, (48) 

where k is some constant of proportionality characteristic of the species in 
question. The larger k is, the faster the population multiplies. 

The growth law (48) should not be accepted as absolutely accurate. It 
represents a simpleminded way of making a mathematical model to predict 
population growth. This model has the great virtue of simplicity, but it also 
has its drawbacks, just as the simple model for studying freely falling bodies 
has drawbacks. A slight drawback here is that the population N is treated 
as a continuously increasing quantity in (48). In fact, of course, every popula­
tion changes by discrete steps with each birth and death. However, if the 
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population N is large then the discrete steps will occur so close together as to 
approximate the continuous growth in (48) to great accuracy. (Recall from the 
preceding section how little difference there is between interest compounded 
daily and interest compounded continuously.) Thus we may expect the 
growth law (48) to make fairly accurate predictions when applied to large 
populations, in the absence of catastrophic events. 

Equation (48) is of the same form as the differential equation (47) con­
sidered in the theorem on exponential growth. By that theorem we know that 

(49) 

is a solution, where No is the initial population, i.e., the population when 
t = O. 

Knowing that (49) is a solution of the growth law (48) is certainly helpful, 
but we cannot proceed with security until we investigate whether (49) is the 
only solution of (48). It is, as we shall see below. In addition to proving the 
uniqueness of the solution (49), we shall introduce the idea of an integrating 
facto/", which is quite a useful tool in attacking differential equations in 
general. 

The possibility of finding an integrating factor is increased by a curious, 
but simple, property of the exponential function that has been illustrated in 
exercise 6.14. The property is this. If an exponential function is multiplied 
by a second function, and the derivative of the product is taken, then the 
exponential function can be factored out of the derivative. It is easy to check 
that this is true. For any differentiable function N(t), the product rule yields 

showing how e' factors out of the derivative of the product. The same game 
can be played with e k' (or even with eF(t), as investigated in the exercises). 
For example, the product rule yields 

(e-k'N(t))' = e- k'( ~~ - kN(t)). (50) 

How could equation (50) be of any use? It becomes useful when you read 
it backwards (!), as in the proof below. 

Existence and Uniqueness Theorem for the Growth Law. For the differential 
equation (48) there exists a unique solution, given by (49). 

PROOF. We have already seen that there exists a solution, for the function (49) 
satisfies (48). To prove uniqueness we shall go in the reverse direction. That is, 
given (48), which can be rewritten 

dN 
--kN=O 
eit ' 

(51) 
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we shall derive (49). To do this multiply equation (51) through by the integrat­
ing factor e - kt to get 

By (50) we then have 
(e-kWy = 0, 

so by the fundamental principle Fl, e-ktN must be constant: 

e-ktN = C. 

Multiplying through by ekt yields 

(52) 

What is C? Letting t = 0 in (52) we obtain No = Ceo = C. Therefore C = 

No and (49) follows. 0 

The trick of multiplying through (51) by the integrating factor e- kt 
doubtless appears at first as if pulled out of a hat by magie. But in fact any­
body can do it who works the exercises below. A fair number of differential 
equations succumb to this trick, when used in conjunction with the funda­
mental principles of calculus. 

The technique of dealing with examples illustrating population growth is 
much the same as in the examples illustrating in te rest compounded con­
tinuously. 

EXAMPLE 9. Assurne that the population of a certain planet grows from 2 
billion to 3 billion in 10 years. 

(a) How long will it take the population to double in size? 
(b) When will the population reach 10 billion? 

If we ass urne the growth law valid and beg in measuring time when the 
population N is 2 billion, then by (49) we have 

(53) 

where N is measured in bill ions, t in years. We can find k by using the fact 
that N = 3 when t = 10, so that (53) implies 

3 = 2e 10k, 

In 3 = In 2 + lOk. 

Solving for k we get (rounding off to four decimal pi aces) 

k = In 3 - In 2 = 0.0405 
10 ' 

and (53) becomes 
N = 2eO.0405t. (54) 
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Once we have the population expressed as a function of time, as in (54), 
we can easily answer questions (a) and (b). 

(a) The population doubles when N = 4, i.e., when 

4 = 2eO.0405t. 

Solving for t by logarithms yie1ds t = 17.1 years. 

(b) The population reaches 10 billion when 

10 = 2eO.0405t. 

Solving for t by logarithms yields t = 39.7 years. D 

In Example 9 there is an alternate way of expressing equation (54) that 
has the advantage of not requiring the use of log tables. The trick is to solve 
for ek instead of k in the equation 3 = 2elOk. This is easy: 

lOk 3 e =-
2' 

k = (~)l/lO e 2 . 

Therefore ~t = (3j2yl lO by (27), and (53) becomes 

N = 2(Dtl lO (55) 

Both (54) and (55) represent the same function giving population in terms of 
time. 

EXERCISES 

7.1. The population of a chicken farm grows from 1000 to 1200 in 1 month. Assuming 
the growth law (48) valid, find an expression for the population in terms of time. 
Then find 
(a) how long it takes far the population to double. 
(b) when the population will reach 2500. 
Partial answer: N = 1ooo(!)', where t is in months. 

7.2. In Example 9 find the average population over the 10-year period in which the 
population rises from 2 billion to 3 billion. H int. An anti derivative of ekt is given 
by ektjk. Answer: From (54) the average value of the population N is 

~ )10 2eO.0405t dt = ~[eO.0405tJIO ~ 2.47 billion. 
10 Jo 5 0.0405 ° 

7.3. An experiment in biology begins with a colony of 3 million bacteria. After 8 hours 
the population of the colony is 15 million. Assume the growth law valid. 
(a) Find an expression for the population in terms of time. 
(b) How long does it take the colony to double in size? 
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7.4. The population of a certain country was 151 million in 1950. Twenty years later it 
was 203 million. Assuming the growth law valid, find 
(a) how long it takes the population to double. 
(b) the population in 1960. 
(c) the populatiort in 1930. 
(d) the population in 1990. 
(e) when the population will reach 400 million. 
Hint. Start measuring time in 1950. Then parts (b), (c), and (d) correspond to t = 10, 
- 20, and 40, respectively. 

7.5. Consider the general differential equation dy/dx = f(x)y, where f(x) is some given 
function. Let F be an antiderivative of f. Derive the solution y = CeF(x). Answer: 
Rewrite the differential equation as (dy/dx) - f(x)y = 0 and multiply through by 
the integrating factor e-F(x) to obtain 

e-F(x) C~ -f(X)y) = 0 

(e-F(X)y), = 0, 

e-F(X)y = C, 

y = CeF(x). 

7.6. As in exercise 7.5, find an integrating factor to aid in solving each of the following 
differential equations. Do not simply write down the answer. Get used to going through 
all the steps as in exercise 7.5. 
(a) (dy/dx) - 2y = O. (b) (dy/dx) - (sin x)y = O. 
(c) (dy/dx) + 3x2 y = O. (d) (dy/dx) - (sec2 x)y = O. 
(e) (dy/dx) + (I/x 2)y = O. (f) (dy/dx) - (I/x)y = O. 
Answers: (a) y = Ceh . (b) y = Ce- cos x. (d) y = Ce'an x. (f) y = Cx. 

7.7. (Read again Section 8 of Chapter 8 before doing this problem.) Use an integrating 
factor in each of the following differential equations to find the solution that takes 
the value 3 when x is 2. 
(a) (dy/dx) - 2y = O. 
(c) (dy/dx) + 3x2y = cosx. 
(e) (dy/dx) - 2xy = 4. 
Answers: 

(b) (dy/dx) - 2y = x. 
(d) (dy/dx) + (y/x2) = tan x. 
(f) (dy/dx) + 2xy = ~. 

(b) Multiplying through by the integrating factor e- 2x, we obtain 

e-2XC~ - 2Y) = xe-h 

(e- 2xy)' = xe- 2x. 

It follows (see Chapter 8, Section 8) that for so me C, 

e- 2xy - C + S·' te- 2'dt - 2 • 

When x is 2, y must equal 3, which implies C = 3e- 4 and therefore 

y = 3e- 4 + 2x + e2x f2x te- 2'dt. 

(c) y = 3e8 -x' + e- x' He" cos t dt. 

(d) )" = (3e IIX/y'e) + e llx S2e- li'tantdr. 
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§8. Radioactive Decay 

We have so far considered the growth law dA/dt = kA only in ca se k is 
positive. In this case, when an initial positive vahie Ao is prescribed, dA/dt is 
always positive, which means the quantity A is continua11y increasing as 
time goes on. We have seen that A must grow in an exponential fashion in 
accordance with the equation A = Aoekt . 

One ofthe features ofthis growth is that no matter wh at size the quantity 
is, there is a fixed time T it takes for the size to double. As seen in exercise 
6.10, this "doubling time" is given by 

In2 
T=T· 

It has been observed for so me time that radioactive substances behave in 
rather the opposite way. A radioactive substance decays (that is, its rate of 
growth is negative) in such a way that there is a fixed length of time it takes 
to reduce itself to half its original size. Suppose, for ex am pie, that this half­
life is 5 years. This means that ifwe begin, say, with 16 grams ofthe radioactive 
substance, its size will be cut in half every 5 years. Thus we sha11 have 8 grams 
left after 5 years, 4 grams after 10 years, 2 grams after 15 years. In general 
we sha11 have 16(W grams left after n half-lives have elapsed. 

16 (0,16) 

8 

4 

2 
1 

5 

(20, I) 

10 15 20 

Radioactive decay with 16 grams initially and a half·life of 5 years. The curve has equa· 
tion (57). It also has equation (58). 

How do we fi11 in the rest ofthe points here? It seems reasonable to assume 
that the rate of decay of a radioactive substance should be proportional to 
its size at any given instant. That is, 

dA 
dt = kA, 
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where k is negative. (Remember that dA/dt represents the rate ofincrease of A.) 
By our theorem of the previous section, which is valid whether k is positive 
or negative, we conclude that 

A = Aoekt• 

For the curve pictured above, we have Ao = 16, so that A = 16ekt • What is 
k? Since A = 8 when t = 5, we have 

8 = 16e5k, 

1 5k 2 = e , 

-ln2 = 5k, 

-ln2 
k = ~5- = -0.139, 

(56) 

where we have rounded off to three places. The curve given above then has 
the equation 

A = 16e-(O.139)t. (57) 

The curve also may be represented by a different equation, derived as 
follows. Taking the fifth root of both sides of (56) we have 

Therefore ekt = (t)t/5 and it follows that 

(1)t/5 
A = 16 -

2 
(58) 

Equation (58) is equivalent to (57), but the form of (58) makes it quite 
obvious that we have wh at we were seeking. Only a moment's scrutiny of 
equation (58) will convince the reader that it describes a quantity A which 
takes the value 16 when t = 0, and which is cut in halfwith every passage of 
5 units of time. 

The proof of the following theorem is left to the reader. The essential 
idea of the proof may be found in the concrete example just discussed. 

Theorem on Radioactive Decay. Let Adenote the amount of a certain radio­
active substance present at time t, and let Ao denote the amount present when 
t = O. If the rate of decay is proportional at each instant to the amount present, 
then 

( -tln2) (1)I/T 
A = Ao exp --T- = Ao 2 ' (59) 

where T is the half-life of the substance. 
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Here are some examples dealing with radibactive decay. 

EXAMPLE 10. Five grams of a certain radioactive substance decays to 3 grams 
in 10 days. Find the half-life T of the substance. 

Ifwe begin measuring time when 5 grams is present, then by (59) we have 
A = 5 exp( ( - tln 2)jT). Since A = 3 when t = 10, we get 

( -lOln 2) 
3 = 5exp T ' 

In 3 = In 5 _ 1 0 ~n 2 . 

Solving for T we get 

1OIn2 
T = I I ~ 13.6 days. 

n 5 - n 3 
o 

EXAMPLE 11. Five grams of a certain radioactive substance decays to 3 grams 
in 10 days. Find the average amount present during these 10 days. 

Beginning to measure time when 5 grams is present, we have' 

A = 5exp --~~ = 5e-(O.051)t (-tIn 2) 
13.6 

from the work of Example 10. The average of A between t = 0 and t = 10 
is given by 

- 5e-(O.051)t dt = - e-(O.051)t dt 1 llo 1 llo 
10 0 2 0 

= [~e-(O.051),]IO 
0.102 0 

~ 3.9 grams. o 

EXERCISES 

8.1. During aperiod of 1 year, 15 grams of a eertain radioaetive substanee deeays until 
only 12 grams is left. Find the half-life T of the substanee. Answer: T ~ 3.11 years. 

8.2. In exereise 8.1 find the average amount of the radioaetive substanee present during 
the year. 

8.3. Write out a eareful proof of the theorem on radioaetive deeay state,d in this seetion. 
That is, derive equation (59) from the growth law dA/dt = kA, where k is negative. 

8.4. Suppose that initially there are 15 grams of a radioaetive substanee X and 24 grams 
of a radioaetive substanee Y. After 1 year there are 12 grams of X and 18 grams of Y. 
When will there be the same amount of X and Y? Answer: When 15(~)' = 24(%)" 
or when (solving by logs) t ~ 7.3 years. 
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8.5. Radium has a half-life of 1620 years. If 10 grams of radium are present in a certain 
piece of material today, find 
(a) a formula for the amount of radium present as a function of time. 
(b) the rate of radioactive decay today. 
(c) the amount ofradium present in this material at the time of Pythagoras (when 

t = - 2500 years). 
Answers: (a) A = 1O(t)t/1620, where A is the amount present in grams and t is time 
in years from today. (b) dA/dtlt=o;::; - 0.0043. This gives rate of growth. The rate of 
of decay today is 0.0043 grams per year, approximately. (c) 10(1)-2500/1620;::; 
29.1 grams. 

8.6. During a certain period of time, 20 grams of a radioactive substance decays to 
15 grams. Find the average amount of radioactive substance present during this 
period if the length of the period is 
(a) 1 year. 
(b) 100 years. 
Answer: Approximately 17.4 grams, in either case. 

8.7. During a certain period of time, A grams of a radioactive substance decays to B 
grams. Find the average amount ofradioactive substance present during this period. 
Answer: (A - B)/(ln A - In B) grams (regardless of the length of the period). 

§9. Algebraic Approximations to 
Transcendental Functions 

A transcendental function (exp, sin, In, arctan, etc.) has a rule that is not 
expressible in terms of algebraic operations. This tends to make trans­
cendental functions seem more removed from us who have known algebraic 
functions so much longer. If a function is not algebraic, then we naturally 
ask whether it might be approximated closely by an algebraic function. 

There is an obvious line of attack which can be illustrated by taking a 
concrete example. Let us consider the function exp near a particular point 
on its graph. The most convenient point to choose is (0,1), although the 
considerations that follow apply equally weIl to any point on the graph. 
Near the point (0,1) the tangent line, having equation 

y = x + 1, (60) 

is the line that most closely approximates the curve exp. We have in equation 
(60) an algebraic approximation to the transcendental curve exp near the 
point (0, 1). Obviously the approximation 

expx;::::1+x 

is a good one only if x ;:::: 0. For instance, we expect that 

expO.12;:::: 1 + 0.12, (61) 
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since 0.12 ~ O. However, if xis relatively far from 0, then the approximation 
is not so good. When x = 1 for instance, the algebraic rule 1 + x takes the 
value 2, yet the exponential function takes the value e ~ 2.72. 

Linear approximation to exp ne ar (0, 1) 

It is natural to say that at the point x = 0 the transcendental function exp 
and the algebraic rule given by 1 + x agree to first order. That is, at x = 0 
they have the same value and the same first derivative: 

x I y I y' 

~ 

They do not agree to any higher order, however, for all higher derivatives 
ofthe linear function 1 + x are equal to zero; whereas all higher derivatives 
of exp are equal to exp, which takes the value 1 when x = O. The function exp 
has the following "signature" at the point x = 0: 

The linear approximation (60) agrees with exp to first order at x = O. 
Let us seek a quadratic approximation that agrees with the signature of exp 
to second order, i.e., that satisfies this table: 

x y" 

o 

This is easy. We can easily guess (and we check this guess below) that the 
linear part of the quadratic we seek is given in (60). Thus we need only find 
the right coefficient a of the second degree term in 

From (62) we derive 
y = ax2 + x + 1. 

y' = 2ax + 1, 

y" = 2a. 

(62) 

(63) 

(64) 
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From (62) and (63) we see that y = 1 and y' = 1 when x = 0, regardless of 
the value of a. From (64) we see that in order to have y" = 1 we must have 
a = !. Thus the quadratic function given by 

1 
y = 1 + x + _x2 

2 
(65) 

agrees with the exponential function to second order at the point x = O. 
We expect that the approximation 

will be better than our former attempt. For instance, 

1 
exp 0.12 :;::; 1 + 0.12 + 2(0.12)2 = 1.1272 (66) 

ought to be better than the approximation in (61). And when x = 1, the 
approximation 

1 
exp(1) :;::; 1 + 1 + 20? = 2.5 

is respectably close to e. 

Quadratic approximation to exp near (0, 1) 

A cubic approximation of exp to third order suggests itself. It ought to 
be of the form 

1 
Y = 1 + x + 2 x2 + ax 3 

for some a, in order that its quadratic part agree with (65). Upon taking three 
derivatives we find 

y'" = 6a. 

In order to have y'" = 1, we must have a = i. A third-order approximation 
to exp at the point x = 0 is then given by 
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Using this third-order approximation we have 

1 1 
exp0.12 ~ 1 + 0.12 +2(0.12)2 + 6(0.12)3 = 1.127488, (67) 

1 1 
exp 1 ~ 1 + 1 + 2(1)2 + 6(1)3 ~ 2.67. (68) 

We shall find that (68) is a pretty good approximation to e, while (67) is 
of such accuracy as to please all but the most complete perfectionist. 

We may continue this process to any order we please. The reader will 
find that a fourth-order approximation at the point x = 0 is given by 

1 1 1 
expx ~ 1 + x + 2X2 + 6X3 + 24x4, 

and, in general, an n-th-order approximation is 

1 1 
expx ~ 1 + x + _x 2 + ... + ,xn, 

2 n. 
(69) 

where n! (read "n factorial") is defined as the product ofthe integers 1 through 
n: 

n! = 1 . 2 . 3 ... n. 

Setting x = 1 in (69) leads to the approximation 

1 1 1 1 1 
e ~ 1 + 1 + 2 + 6 + 24 + 120 + ... + n!' (70) 

where the approximation, one hopes, becomes more and more accurate 
with increasing n. In summation notation, (70) is written 

(71) 

For n = 3 this approximation is evaluated in (68). In the exercises the reader 
is asked to evaluate it for larger n. 

Approximations become more useful if one has a good idea of their ac­
curacy. How elose is the approximation in (71)? As we shall see in Section 10, 
the error in the approximation (71) cannot possibly exceed 3/(n + 1)!, 
showing that the approximation does indeed become as accurate as we 
please by taking n sufficiently large. Recall that to define areal number it is 
necessary to specify it to an arbitrary degree of accuracy. Since the approxi­
mation given in (71) does this, the number e is sometimes defined as the limit 
of the approximating sums in (71). 

EXAMPLE 12. Find an algebraic approximation to the curve y = e- X near 
(0,1). 
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Let us find the signature of this function at the point x = O. This is made 
easy by the fact that successive derivatives of e- X are -e-X, e-X, _e- x , 

e-X, etc., forming an alternating pattern. At x = 0 the successive derivatives 
are then -1, 1, -1, 1, -1, etc. 

The reader can verify that this gives rise to the algebraic approximation 

(72) 

There is also another way to arrive at (72). J ust consider the approximation 
(69), which holds if xis near zero. It must therefore hold if xis replaced by - x, 
which results in (72). 0 

EXAMPLE 13. Find an algebraic approximation to the sine function that is 
valid near the point x = O. 

Let us find the sigmiture of this function at the point x = O. This is made 
easy by the fact that the successive derivatives of sin repeat in patterns of 
four: cos, - sin, - cos, sin, cos, - sin, - cos, sin, etc. At the point x = 0 
the successive derivatives are then 1,0, -1, 0, 1,0, -1, 0, etc., repeating in 
patterns of four. 

The reader can verify that this gives rise to the approximation 

. 1 3 1 5 smx ~ x - -x +-x 
6 120 

(73) 

Note that only odd powers of x appear. This is to be expected because sin is 
an odd function. 0 

EXAMPLE 14. Find an algebraic approximation to In(1 + x) that is valid 
near x = O. 

If y = In(1 + x), the successive derivatives are given by 

y' = (1 + X)-l, 

y" = -(1 + X)-2, 

y'" = 2(1 + x)- 3, 

y(4) = -6(1 + X)-4, 
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etc., where the power rule for taking derivatives has been used repeatedly. 
Plugging in x = 0, we see that the successive derivatives take the values 1, 
- 1, 2, - 6, 24, - 120, etc. 

This gives rise to the approximation 

1 1· 1 
In(1 + x) ~ x - _x2 + _x3 - _x4 + ... 

2 3 4 

EXERCISES 

(74) 

o 

9.1. Find a fourth-order approximation to the exponential function at the point x = O. 
Then plug in x = 1 to get an approximation for e. 

9.2. The approximation (71) becomes more accurate with larger values of n. Evaluate 
the right-hand side of(71) for n = 5,6, and 7. Partial answer: For n = 7 the approxi­
mation in (71) becomes 2.71826 .... 

9.3. It is shown in Seetion 10that the approximation (71) is accurate to within 3/(n + I)! 
at least. Use this "error estimation" to determine what value ofn in (71) will ensure 
an accuracy of at least 

(a) /0' 
(b) 160' 

(c) 10100' 

(d) lo.boo. 

Answer: (b) In order that the error be less than 160, we want to choose n so that 
3/(n + I)! is less than 160' We can find n by trial-and-error methods. When 11 = 5, 
then 3/(11 + 1)1 is equal to ir = 7~0 = z.io. Thus the accuracy in the approximation 
(71) is well within 160, or 0.01, wheri n is 5. 

9.4. Estimate the value of l/e to several decimal places, either by plugging in x = -1 in 
(69) or by plugging in x = 1 in (72). (Stop after taking six or seven terms in the 
series.) 

9.5. Estimate the square root of e. [Plug in x = tin (69).J 

9.6. Estimate the sine of an angle of 1 radi an, or 57.3 ... degrees. [Plug in x = 1 in the 
approximation (73).J 

9.7. Estimate the natural log of 1.1. [Plug in x = 0.1 in the approximation (74).J 

9.8. Estimate the natural log 01 t. [Plug in x = -t in (74).J 

9.9. The natural log function is undefined for negative numbers. We might expect, 
therefore, that the right-hand side of (74) does not tend to a limit if x ::::; - 1. 
(a) Plug in x = -1 and see what happens. 
(b) Plug in x = 1 and see what happens. 
(c) Plug in x = 2 and see wh at happens. 
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Partial answer: The approximation (74) works as we would hope only if - 1 < 
x::;; 1. 

9.10. Consider the eosine function, as its graph passes through the point (0,1). Find its 
signature and deduce an algebraic approximation to the eosine function that is 
valid near the point x = O. Hint. This is similar to Example 13 except that only 
even powers will appear. 

9.11. The derivative of the sine is the eosine. Differentiate the right-hand side of (73) 
term by term. Do you get agreement with your answer to exercise 9.10? You 
should. 

9.12. Consider the function given by f(x) = -/100 + x. Find an algebraic approxima­
tion that agrees with f near the point x = 0 
(a) to first order. 
(b) to se co nd order. 
(c) to third order. 
Answer: (c) -/100 +.\ ~ 10 + tox - 80100X2 + 1.606.000X3. 

9.13. By plugging in appropriate values of x in part (c) of exercise 9.12, estimate 

(a) JIOf. 
(b) JlO4. 
(c) .J9O. 
(d) JIlo. 
(e) JI2l. 

9.14. Consider the following signature. 

(a) Find a linear approximation to first order. 
(b) Find a quadratic approximation to second order. 
(c) Find a cubic approximation to third order. 
Answers: (a) y = b + c(x - a). (b) y = b + c(x - a) + (dj2)(x - all. (c) y = b + 
c(x - a) + (dj2)(x - a)2 + (ej6)(x - a)3. 

9.15. Find a cubic approximation to the exponential function that agrees with it to 
third order near the point x = 1. Answer: The exponential function has the 
following signature at the point x = 1: 

y = e + e(x - 1) + (ej2)(x - 1)2 + (ej6)(x - 1)3 is the required cubic, by part (c) 
of exercise 9.14. 
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9.16. Find a cubic approximation to the square root function that agrees with it to 
third order near the point 
(a) x = 100. 
(b) x = 25. 
(c) x = 1. 
Answer: (a) The square root function has the following signature at the point 
x = 100: 

x I y 

100 I 10 

y' 

I 
20 

y" 

-I 
4000 

y'" 

__ 3_ 
800.000 

y = 10 + lo(x - 100) - 80100 (x - 100)2 + 1.606.000 (x - 100)3 is the required cubic, 
by part (c) of exercise 9.14. [The same answer could have been obtained by re­
placing x with x - 100 in the answer to part (c) of exercise 9.12.] 

9.17. Verify that the following approximations agree to third order. 
(a) tanx~x+tx3. 
(p) In(1 - x) ~ -x - ±x2 - tx3. 
(c) ,r/(1 - x) ~ 1 + 2x + 1X2 + !x3 • 

(d) eX tan x ~ x + x2 + tX3. 

9.18. (For use in Seetion 10) The exponential function,r is the solution to the differential 
equation dy/dx = y that takes the value 1 when x is O. Its algebraic approximations 
(69) "try" to do this as weil as they can. 
(a) Show that the first-order approximation y = 1 + x satisfies the differential 

equation dy/dx = y - x. 
(b) Show that the second-order approximation y = 1 + x + ±x2 satisfies dy/dx = 

y _ ±x2 . 

(cl Show that the third-order approximation satisfies dy/dx = y - f;x 3 • 

(d) Show that the n-th-order approximation (69) satisfies dy/dx = y - (l/n !)x". 

§10. Where Do We Go from Here? 

In this chapter we have been able to look at some previous work in a new 
light by introducing the natural log function. We have learned a little more 
about properties of the real number system, and we have seen the central 
role played in calculus by the exponential function. We have reached a 
certain plateau in our study of calculus, and it is time for this chapter to 
come to an end. 

The reader should not think, however, that the plateau we have reached 
marks the height of modern knowledge about calculus. In fact it marks the 
beginning, for very little has been described here that was not commonly 
known by eighteenth-century mathematicians. We have barely touched 
upon the contributions of the nineteenth and twentieth centuries. 
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What is left to study in calculus? Some indication may be gotten from 
all the loose strings left hanging in the preceding section. Can we really 
bring transcendental functions down toearth so easily? Will such algebraic 
approximations always work? Can we differentiate and integrate tran­
scendental functions by performing these operations upon their algebraic 
approximations instead? Can we learn to solve complicated differential 
equations? 

More fundamental considerations are these. Can we put our discipline 
on a firmer foundation? Can we give a precise definition of limit so that 
we do not have to use such vague terms as tends to or approaches or approxi­
mates. Can our arguments about functions and about real numbers be made 
to rest upon something more solid than the pictures we sketch? If so, can 
we apply ourselves to the study of situations we cannot picture? Instead of 
studying functions of a single variable, as we have done so far, can we study 
functions whose rule of correspondence depends upon two, three, or more 
variables? How can we make our way into higher dimensions? 

These questions and many more have been attacked by modern mathe­
maticians with great success. We can indeed explore spaces ofhigh dimension 
with the same security we have in the two-dimensional plane. We can indeed 
be more precise about what we say. 

Here is a sm all sampie of ideas typical of nineteenth-century analysis. 
In the preceding section our hopes were raised that e could be approximated 
as closely as we please by a number of the form 

n 1 
Sn = 1 + L -klo 

k= 1 . 
(75) 

That is, we think it is probably true that e = Limit Sn as n increases without 
bound. Analysis cannot be content with assertions that are "probably true". 
We ask about the size of the difference between e and Sn' in order to be sure 
that the difference e - Sn becomes arbitrarily sm all. 

Theorem on the Approximation of e. If Sn is defined by (75), then Jor each 
positive integer n, 

3 
O<e-sn «n+l)!· 

PROOF. First note for later use that 

e< 3. 

This follows because e = e 1 < e1.09 < eIn 3 = 3. 

(76) 

(77) 

Let n be a particular (fixed) positive integer, and define the function y by 

(78) 
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It follows (see exercise 9.18) that the function y satisfies the differential 
equation 

dy xn 

-=y--. 
dx n! 

(79) 

If we compare the equation (79) with the differential equation dy/dx = y 
satisfied by the exponential function, we see that they are identical except 
for the expression xn/n!. This expression ought therefore to be related 
somehow to the difference between y(x) and eX • It is, as we see below in 
equation (80). 

Let us rewrite (79) as 
dy xn 

--y= -­
dx n! 

and multiply through by the integrating factor e - X: 

-x(dY ) xn_x 
e dx - y = - n!e 

Therefore -e-Xy(x) is an antiderivative of (xn/n!)e- x . By F3 we have, for 
any t, 

since y(O) = 1. This shows that 

for any real number t. Multiplying through by et yields 

(80) 

Equation (80) holds for all t. If we let t = 1, we have 

(81) 

Since the right-hand side of (81) is positive (why?), it is clear that 

0< e - Sn, 

which proves the first half of inequality (76). To prove the other half we 
must show that the right-hand side of (81) does not exceed 3/(n + I)!. 
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Let us first consider the integral on the right-hand side of (81). On the 
domain 0 :::; x :::; 1 it is clear that e - x never exceeds 1. Therefore, 

,1 xn ,1 xn 1 ,1 
Jo n!e-Xdx:::; Jo n!(I)dx = n! Jo xndx. 

By the fundamental theorem of calculus we have 

1 1 1 [xn + 1 J1 1 (1) 1 
n! So xn dx = n! n + 1 0 = 1 . 2 ... n n + 1 = (n + I)!' 

From (82) and (83) we deduce the inequality 

I I xn 1 
-x < 

o ,e dx_( 1)" n. n + . 
Finally, 

1 
e - Sn:::; e (n + I)! [by (81) and (84)] 

3 
«n+ I)! [by(77)]. 

Problem Set for Chapter 9 

1. Find the indicated area: 

(1,55) 

(4,40) 

4 

2. Find the derivative of each of the following. 
(a) e2x In x. (b) In(ln x). 
(c) exp(~). (d) X2~ sin x. 
(e) (~)x. (f) (2 + sin xt. 
(g) 10glO x. (h) logx 10. 

3. Use L'Höpital's rule to find the following limits. 
(a) Limitx~d(lnx)/(x - 1)). (b) Limitx~o«~ - l)jx). 
(c) Limitx~o((1OX - l)/x). (d) Limitx~l «log10x)/(x - 1)). 
(e) Limitx~o «~ - 1 - x)/x2 ). (f) Limitx~ lln( (x 5 - l)/(x - 1)). 
(g) Limitx~2((1-log2X)/(X - 2)). (h) Limitx~2«1 -logx2)/(x - 2)). 

4. Evaluate each of the following integrals. 

(a) Sb e"x dx. 

(c) Sb(3x 2/(1 + x 3))dx. 

(e) s~ 1 (2/(4 + 2x)) dx. 

(b) Sb 2x dx. 

(d) S~j3 tan x dx. 

(f) H ~2(2x) dx. 

(82) 

(83) 

(84) 

D 
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5. The hyperbolie sine and hyperbolie eosine are defined as folIows: 

'"" -x " - e sinhx = . 
2 ' 

e" + e- X 

coshx = 2 

They have properties roughly analogous to the sine and eosine functions. Establish 
the following. 
(a) The hyperbolic sine is an odd function, the hyperbolic eosine is an even function, 

and their sum is the exponential function. 
(b) cosh 2 x - sinh2 x = 1, for all x. 
(c) d(sinhx)/dx = coshx; d(coshx)/dx = sinhx. 
(d) sinh(x + y) = (sinh x)(cosh y) + (cosh x)(sinhy) for all x and y. 

6. Show that (cosh x + sinh x)n = cosh nx + sinh nx. 

7. Find the critical points and inftection points, ifany, of the functionJ given by J(x) = 

xe", and use this information to help sketch the graph of J. 

8. Make a rough sketch of the graphs of y = x2 and y = 2X • They intersect at (2,4) and 
(4,16). Find the area enclosed by the curves between these two points ofintersection. 

9. Which number is larger: e" or ne ? 

10. (a) Given y = J gh, the product of three positive functions, use logarithmic differ­
entiation to find y'. 

(b) Guess a generalized product rufe. If y = JI J2 ... Jn is the product of n functions, 
what is y'? 

11. U se logarithmic differentiation to find the derivatives of the following. 
(a) 100(tY!35. 
(b) ,)2 + X4/(X2 + 6)3/2. 

(c) (3 + cos t)S'. 
(d) x 2(5 + sin x)3/e"(2 - arctan x)". 

12. Find the limit of each of the following, as h tends to O. 
(a) (1 + 3h)2/h. 
(b) (1 - nh)-I/h. 
(c) (1 + h2)I/h2 • 

(d) (1 - 3h 3 )I/h. 

13. For each of the following, find the volume of the solid of revolution generated by 
revolving about the x-axis the area beneath J from x = 0 to x = 1. 
(a) J(x) = e-'. 
(b) J(x) = e" - 1. 
(c) J(x) = 1/JI+X. 
(d) J(x) = lOX. 

14. Assurne that a function J satisfies the identity 

J(x + h) = J(x)J(h). 

Assurne also that J is not always equal to zero. 
(a) Apply Fermat's method to J and deduce that if J has a derivative, then !'(x) = 

k!(x), where 

k L· . J(h) - 1 
= Imlt--h-· 

h-O 
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(b) By setting both x and h equal to zero in(*) deduce thatf(O) is either 0 or 1. Deduce 
further that f(O) cannot be 0, and therefore f(O) = 1, and therefore (why?) 
k = 1'(0). 

(c) Use parts (a) and (b) to show that any differerHiable function f satisfying the 
homomorphism property (*) is either identically zero or else of the form 

f(x) = eh, 

where k = 1'(0). 

15. A principal of $1,000 is deposited in a savings account and left to grow at 7% 
interest per year, to be compounded contin\lously. 
(a) How much is the account worth after 10 years? 
(b) What is the average balance in the account during its first 10 years? 
(c) Whcn will the account be worth $3,000? 

16. A snake farm increases its population from 10,000 to 13,000 in 1 month. 
(a) Assuming the growth law (48) valid, find how long it takes for the population 

to double. 
(c) When will the population reach 30,000? 

17. An unknown quantity of a new breed of fish is introduced into a lake. After 3 years 
the population of this breed is estimated at 2000, and after 5 years at 4000. Estimate 
how many fish were originally introduced, assuming the growth law is valid. 

18. A certain radioactive substance takes a week to decay from 10 grams to 9 grams. 
What is its half-life? 

19. Initially there are 10 grams of a radioactive substance X and 20 grams of a radio­
active substance Y. After 3 days there are 9 grams of X and 15 grams of Y. When 
will there be equal amounts of X and Y? 

20. Carbon-14 has a half-Iife of 5568 years. 
(a) How long does it take for two-thirds of carbon-14 to decay? 
(b) In a sampIe of materialleft undisturbed for millennia, 10 grams of carbon-14 

are present today. How much carbon-14 was present in this sampIe at the time 
of Pythagoras? 

21. A fast-decaying radioactive substance go es from 1000 grams to 1 gram in 1 year. 
Find the average amount present during this year. 

22. Solve each of the following differential equations through the use of an appropriate 
integrating factor. 
(a) (dy/dx) - 3y = O. 
(c) (dy/dx) + 2y = x. 

(e) (dy/dx) + 3x 2y = O. 

(b) (dy/dx) - 3y = e". 
(d) (dy/dx) - y = e- X • 

(f) (dy/dx) + (y/x) = 3. 

23. Estimate the square root of 28 by carrying out the following steps. 
(a) Find a cubic approximation, near the point x = 0, to the function ,)25 + X. 
(b) Let x = 3 in your cubic. 

24. Consider the function given by f(x) = 1/(1 - x). Find linear, quadratic, cubic, and 
n-th-order approximations valid near the point x = O. Compare your answer with 
the approximation to 1/0 - x) obtained in the appendix on sums and limits. 

25. In your answer to problem 24 replace x by - x and thus obtain linear, quadratic, 
cubic, and n-th-order approximations to 1/0 + x). Is your answer the same as that 
obtained by differentiating both sides of the approximation (74)? 
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26. (a) In your answer to problem 25 replace x by x 2 to obtain 

(b) Integrate both sides of the approximation in part (a) from x = 0 to x = 1 to 
obtain 

nIl 1 1 
-~1--+---+--'" 
4 3 5 7 9 

(c) Deduce Leibniz's approximation Jar n: 

4 4 4 4 4 
n~4--+---+---+'" 

3 5 7 9 11 

(d) Add up a few of the numbers on the right-hand side of the approximation in 
part (c). Does the sum seem to be getting c10ser and c10ser to n as more terms are 
taken? (Actually, while this is a very beautiful result obtained by Leibniz, the 
series converges much too slowly to be of great practical value in approximating 
n.) 

27. Newtan's law aJ caoling deals with the temperature change in a heated body placed 
in a large medium kept at constant temperature. If y is the temperature of the body, 
Newton's law states that the rate of change of y is always proportional to the 
difTerence between y and the constant temperature of the surrounding medium. 
(The hotter the body, the faster it will cool.) Suppose a sm all metal ball is heated to a 
temperature of 180 degrees Celsius and placed at time t = 0 in a large tub ofwater 
kept at a constant temperature of 20 degrees Celsius. 
(a) Write down Newton's law in the form of a differential equation. 
(b) Use an appropriate integrating factor to solve the differential equation ofpart (a). 
(c) Suppose that at time t = 2 minutes the temperature y of the metal ball is 90 

degrees Celsius. Use this information to adjust the constant appearing in your 
ans wer to part (b). 

(d) What will be the temperature of the ball at time t = 4, assuming Newton's law 
valid? 

(e) When will the ball's temperature be 25 degrees Celsius, assuming all of the 
above? 

28. (Far ambitious students) Our model for dealing with freely falling bodies began with 
the assumption that the rate of change of speed is - 32 ft/sec per second. This does 
not take into account the fact that air friction becomes more significant as the speed v 
gets larger. Accordingly, instead of assuming dv/dt = - 32, as we did in Chapter 5, 
ass urne 

dv 
- = -32 - kv 
dt ' 

where k is some constant of proportionality that depends upon the shape of the 
falling body. Find the height h as a function oftime. Does your ans wer approach the 
height formula 

h = -16t2 + vot + 110 

of Chapter 5 as k tends to zero? 
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29. Approximations are more valuable if one can estimate the size of error in them. 
Prove that the error in the approximation (69) can be represented as an integral: 

exp(t) - (1 + i: ~) = r' x" exp(t - x)dx. 
k=l k! Jo n! 

(This is a special case of Taylor's theorem, one of the most valuable theorems in 
analysis.) Hint. Begin with equation (80). 
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Our story of the development of calculus began with the "Greek miracle", 
when the spirit of modern mathematics was first feIt. That spirit then lay 
dormant for so long that its rejuvenation in the Renaissance seems almost 
like a second miracle. Except for the Arabs, it might never have happened. 

Arabic culture, as early as A.D. 1000, placed great value upon learning and 
scholarship. The Arabs even produced, in Omar Khayyäm (1043?-1123?), a 
man who was both poet and mathematician. In studying how to find the 
roots of a cubic equation, Omar took significant steps in algebra, the chief 
mathematical discipline cultivated by the Arabs. The word algebra is Arabic. 

However, our debt to the Arabs is not primarily for their development of 
algebra, which bears no comparison in depth to the development of geometry 
by the Greeks. Nor is our principal debt to their rejection of the preposterous 
Roman numerals and the introduction of the Arabic system we use today. 
Our real debt is rather to their love of learning, which compelled them to 
preserve and translate the ancient classical writings, at a time in history when 
these might have been irretrievably lost. 

For several hundred years the Arabs cradled such works as those of 
Euclid, Apollonius, and Archimedes. The rediscovery by western Europe 
of these works helped rekindle the flame of mathematics in the Renaissance. 
Neoclassicism, a movement to revive or to adapt the classical style, arose in 
mathematics just as it arose in literature, art, and music. 

As every student of history knows, all this led in time to the Age of Reason, 
the Enlightenment, and eventually to the Romantic Movement. And every 
student of the liberal arts will know something of the way these historical 
movements are reflected in literat ure, art, and music. 

Let us not leave mathematics out of the liberal arts. How does mathe­
matics enter into this scheme of things? It is obvious that the development 

352 
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of calculus helped bring about the rise of modern science, to which the 
Enlightenment pointed with such pride. However, let us not be content with 
such an obvious remark. While we may not leam "the true position ofmathe­
matics as an element in the history of thought", we may yet leam something 
by musing about the nature of mathematics. 

The key word of the discussion in this chapter is tension. It has been 
contended that the life in any work of art derives from the creation and 
resolution of tension, where "tension" is understood in a rather broad sense. 
Certainly the vitality of mathematics springs from a kind of tension. Mathe­
matics itself, being in residence between the humanities and the sciences, is 
stretched in many directions: toward beauty, form, and vision on the one 
hand; and toward utility, function, and rationality on the other. And these 
are only a few of the struggles taking place within mathematics: 

Mathematics as an expression of the human mind reftects the active will, 
the contemplative reason, and the desire for aesthetic perfection. Hs basic 
elements are logic and intuition, analysis and construction, generality and 
individuality. Though different traditions may emphasize different aspects, it 
is only the interplay of these antithetic forces and the struggle for their synthe­
sis that constitute the Iife, usefulness, and supreme value of mathematical 
science. 

R. Courant and H. Robbins* 

§ 1. Guessing versus Reasoning 

Mathematics has always been associated with "reason", or "rational 
thought". The word rational still carries the connotation of "measurement" 
or "calculation". A rational man measures, or calculates, the effect of his 
activity. 

The mathematician, in the act ofmaking a discovery, is hardly "rational", 
however. The view that mathematicians employ only a cold, unexcited, 
strictly logical approach to their calling is somewhat distorted. Archimedes, 
struggling with a perplexing problem, once had such an exciting idea that he 
jumped from his bath to run naked and screaming down the streets of 
Syracuse. And Newton's greatness as a mathematician seems not to have been 
due primarily to his ability to reason correctly: 

I fancy his pre-eminence is due to his muscles of intuition being the 
strongest and most enduring with which a man has ever been gifted. Anyone 
who has ever attempted pure scientific or philosophical thought knows how 
one can hold a problem momentarily in one's mind and apply all one's powers 
of concentration to piercing through it, and how it will dissolve and escape 

* What is Mathematics? Oxford University Press, New York, 1941, p. xv. 



354 10 Romance in Reason 

and you will find that what you are surveying is a blank. I believe that Newton 
could hold a problem in his mind for hours and days and weeks until it 
surrendered to hirn its secret. Then being a supreme mathematical technician 
he could dress it up, how you will, for purposes of exposition, but it was his 
intuition which was pre-eminently extraordinary-'so happy in his conjec­
tures', said de Morgan, 'as to seem to know more than he could possibly 
have any means of proving' .... 

lohn Maynard Keynes* 

Conjectures, or guesses, playa largely unrecognized role in mathematics. 
We have seen in this book some instances ofhow they work. Early in Chapter 
3 we guessed that the slope of a certain tangent line was 2, yet it took a while 
to find a reason why. Early in Chapter 6 we guessed that a certain area was 
6 square units, but reasoned justification for that guess could co me only 
much later. "Humble thyself, impotent reason!" exhorted Pascal, who 
almost discovered the calculus himself, before Newton. While reason may 
demonstrate the truth of a guess, reason alone rarely discovers anything of 
significance. 

Mathematics is regarded as a demonstrative seien ce. Yet this is only one 
of its aspects. Finished mathematics presented in a finished form appears as 
purely demonstrative, consisting of proofs only. Yet mathematics in the 
making resembles any other human knowledge in the making. You have to 
guess a mathematical theorem before you prove it; you have to guess the idea 
of the proof before you carry through the details. You have to combine 
observations and follow analogies; you have to try and try again. The result 
of a mathematician's creative work is demonstrative reasoning, a proof; but 
the proof is discovered by plausible reasoning, by guessing. 

G. P6lya t 

Let there be no doubt of the existence, in mathematics, of knowledge 
acquired in nonrational ways: 

I have had my solutions for a long time, but I do not yet know how I am 
to arrive at them. 

Gauss 

It's plain to me by the fountain I draw from, though I will not undertake 
to prove it to others. 

Newton 

* "Newton, the Man" from Essays in Biography, Horizon Press Inc., New York, 1951, p. 312. 
(This essay appears also in Newton Tercentenary Celebrations, Cambridge University Press, 
1947.) 

t Induction aM Analogy in Mathematics, Princeton University Press, 1954, p. vi. 
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Certain things first became cIear to me by a mechanical method, although 
they had to be demonstrated by geometry afterwards, because investigation 
by the said method did not furnish an actual demonstration. 

Archimedes 
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Gauss*, Newton, and Archimedes stand in a dass above all other mathe­
maticians. We thus have it on the highest authority that imagination plays a 
role in mathematics at least rivaling, and perhaps surpassing, the role of 
reason. Great mathematicians have both gifts, in great degree. 

EXERCISES 

1.1. Make a guess as to the formula for the surface area S of a sphere of radius /'. Reason 
by analogy with a circIe, which is a "sphere" in the plane: for a circle, A = n/,2 and 
C = 2n/'; for a sphere, V = %nr3 and S = ? 

2nr ?? 

1.2. Give the approximate dates and general characteristics of the Renaissance, the 
Age of Reason, and the Romantic Movement. For help, consult an encyclopedia 
or a history of Western civilization. 

1.3. Leaf through Volume 1 of Mathematics and Plausible Reasoning, G. P6lya, 
Princeton University Press, Princeton, N.J., 1954, for a fuller understanding of the 
art of guessing. 

§2. Atomism versus Common Sense 

How is nonrational, or intuitive, knowledge possible? What sorts of tricks 
were used by the developers of the calculus to tell them which way to go? 
Many tricks stern from the "atoms of Democritus·'. The Greek Democritus 
(ca. 460-370 B.C.) supported the doctrine of atomism, wh ich holds that bodies 
are made up of atoms, or in divisible units. An atomist would raise no objec­
ti on to thinking of a line as the sum of its points, or of an area as the sum of its 

* Carl Friedrich Gauss (1777 - 1855), preeminent German mathematician. 
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vertical line segments. Atomism regards time as being made up of instants, 
an instant being a "point" in time. 

Like most philosophical doctrines, atomism has its drawbacks. Common 
sense seems to tell us that time, like a pencil point moving smoothly along a 
line, is a "ftowing", or "continuous", kind of thing. How can a continuous 
entity like time be made up of discrete instants? How can an atomist answer 
the Arrow Paradox of Zeno (ca. 495-435 B.C.)? 

Consider an arrow ftying through the air. At each instant the arrow is 
motionless. How can the arrow move if it is motionless at each instant? 

The same general sort of "paradox" is not uncommon in mathematics: 

How can a line segment have nonzero length, if each of its points has 
length zero? 

How can a planar figure have nonzero area, if each of its vertical line 
segments has area zero? 

The inadequacy of atomism is evident. The atoms of a body apparently 
need not reflect all the properties of that body: whereas a line has length, its 
points do not. The whole may be something more than the sum of its atoms. 

Wh at good, then, is atomism? In mathematics it is often an aid to the 
intuition. Demoeritus used it to make an inspired guess about the proper 
formula for the volume of a co ne or pyramid (one-third the area of the base 
times the height, in either ease). Demoeritus had the imagination to guess the 
eorreet answer, but was never able to offer any rational justifieation for that 
ans wer. It was Eudoxus whose method provided the demonstrative proof. 
Both des erve eredit: Demoeritus as seer, and Eudoxus as sage . 

. . . in the case of the theorems the proof of which Eudoxus was the first 
to discover, namely that the cone is a third part of the cylinder, and the 
pyramid ofthe prism, having the same base and equal height, we should give 
no small share of the credit to Democritus who was the first to make the 
assertion ... but did not prove it. 

Archirnedes 

The passage above, as well as the quotation from Archirnedes given 
earlier, is taken from a letter addressed to Eratosthenes. Archirnedes goes on 
in this letter to deseribe discovery and prooj as eomplementary aspeets of 
mathematies. He then deseribes how he used atomism, in a novel way, to 
eonjeeture the truth of some of his most eelebrated theorems, whieh he 
proved later by a masterful use of Eudoxus' method. The means of diseovery 
and the means of proof were eompletely different. 
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EXERCISES 

2.1. Archimedes' letter to Eratosthenes is discussed briefly in an appendix to this book. 
Read the appendix on Archimedes. 

2.2. (The purpose of this exercise is to give a clue as to how Democritus might have used 
atomism to guess that the volume of a pyramid is one-third the area of the base times 
the height.) Consider a bunch of cannonballs (to be thought of as large atoms) 
arranged in a pyramid with square base. 

(a) Find the number of cannonballs in a pyramid if the base is 
(i) two by two. 

(ii) three by three. 
(iii) four by four. Answer: 30. 
(iv) n by n. Hint. See appendix on sums. 

(b) Find the number of cannonballs in a cl/be if the base is 
(i) two by two. 

(ii) three by three. 
(iii) four by four. Answer: 64. 
(iv) n by n. 

(c) Find the ratio of the number of cannonballs in a pyramid with square base to 
the number of cannonballs in a cu be with the same base, if the base is n by n. 
Answer: n(n + 1)(2n + 1)/6n3 . 

(d) The ratio in part (c) has 1/3 as a limit. How might this have helped Democritus? 

§3. Seer versus Sage 

It has never been a secret that the pursuit ofmathematics requires more than 
the power of deductive reasoning. Even a rationalist allows this possibility. 

There are only two ways open to man for attaining certain knowledge of 
truth: clear intuition and necessary deduction. 

Descartes 
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The se er who disco vers is just as much a mathematician as the sage who 
proves. Some mathematicians, like Archimedes, are coequa11y seer and sage, 
and no mathematician is who11y one or the other. Nevertheless the distinc­
ti on is useful. The seer has the gift ofvision-intuition, divination, or imagina­
tive insight. Whereas the sage is blessed with wisdom-soundjudgment, good 
taste, and reason. The seer points his hand to the sky while his eye darts 
around the heavens as if to see everything at a single instant. The sage, 
however, plants his feet squarelyon the ground, his gaze fixed upon his 
object, and marks his world with a steady eye. 

The distinction between seer and sage is of interest when one examines 
the philosophies of Plato and Aristotle, insofar as they pertain to mathe­
matics. Platonism has often been seen to animate speculation, the searching 
and re-searching for undiscovered truths lying just beyond our ken. Seers 
are often disciples of Plato. 

If Plato animates speculation, says Whitehead, then Aristotle animates 
scholarship. Aristotle emphasized the consolidation of knowledge, through 
reason, into a coherent system. Aristotle's influence may be seen in the form 
in which Euclid's Elements was cast, even though the content of the Elements 
owes its existence to the spirit of speculation. Aristotle's influence was great, 
and Greek mathematics appears alm ost always in finished form, cold, un­
excited, and with strict logic, as if it might have been written by a sage alone. 

The fact that classicaJ Greek texts presented only proofs became a source 
of some annoyance later. One might think that the Greeks, in a wondrous 
plot, had a11 agreed to conspire against the seventeenth century by refusing 
to divulge their means of discovery . 

. . . !ike so me artisans who eonceal their secret, they feared, perhaps, that 
the ease and simp!ieity of their [hidden] method, if become popular, would 
diminish its importance, and they preferred to make themselves admired by 
leaving to us, as the product of their art, eertain barren truths deduced with 
subtlety, rather than to teach us that art itself, the knowledge of which would 
end our admiration. 

Deseartes 

Descartes could not have known that the "art itself", the seer's vision, had 
been freely given by Archimedes in his Ietter* to Eratosthenes mentioned 
earlier. And, having revealed his secret method (discussed in an appendix to 
this book), Archimedes wrote, 

lam persuaded that this method will be ofno !ittle service to mathematies. 
For I foresee that this method, onee understood, will be used to discover 
other theorems which have not yet occurred to me, by other mathematicians, 
now living or yet unborn. 

* See The Method oI Archimedes, a Supplement to The Worb oI AI'chimedes, edited by T. L. 
Heath, Cambridge University Press, 1912 (also available in paperback by Dover Publications). 
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Figure 3.* Plato and Aristotle in Raphael's "School of Athens". Even now there is a very 
wavering grasp of the true position of mathematics as an element in the history of thought. 
-Whitehead. 

* Reproduced, with permlSSlOn, [rom Raphael, by Os kar Fischel, translated by Bernard 
Rackham, Routledge & Kegan Paul Ltd., London, 1948. 
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Unfortunately for Descartes, the contents of Archimedes' letter had been 
lost for centuries, and were found again only in 1906, in Turkey, by the 
Danish philologist J. L. Heiberg .. 

The preference expressed by Descartes for the seer as opposed to the sage 
was typical ofseventeenth-(and eighteenth-) century thought in mathematics. 
The infiuence (jf Aristotle was at an ebb, and Platonism was once again 
ascendent. It is curious that, in the Age of Reason, the climate was such as to 
permit a lapse of rigor in the reasoning used by mathematicians. The "idea 
itself", the means of discovery, became more important than the rigorous 
logical demonstration. The happy acceptance ofvague, but intuitively sugges­
tive remarks as a valid proof was not unusual. Areaction set in against the 
"over-precise" manner of the Greeks, which could only impede the progress 
of seventeenth-century mathematics. 

An illustration of this is seen in Newton's Principia, written in 1687. In 
composing this greatest ofworks Newton attempted to emulate the rigorous 
Archimedean style; but, by doing so, he only made the Principia more 
difficult for modern minds to comprehend: 

The ponderous instrument of synthesis (Archimedism), so effective in his 
hands, has never since been grasped by one who could use itfor such purposes; 
and we gaze at it with adttüring curiosity, as on some gigantic implement of 
war, which stands idle among the memorials of ancient days, and makes us 
wonder wh at manner of man he was who could wield as a weapon wh at we 
can hardly lift as a burden. 

William Whewell 

The passage above is from a nineteenth-century book on the history of 
science. In the seventeenth century, one might weH have heard of Newton's 
Principia what King James had earlier said of Francis Bacon's Novum 
Organum, that "it was like the pe ace ofGod, which passeth all understanding." 

EXERCISES 

3.1. "If logic is the hygiene of the tnathematician, it is not his source of food." The 
twentieth-century mathematician Andre Weil said this. What does Weil mean? 

3.2. On the whole, has the spirit of Plato or of Aristotle been more conducive to the 
progress of science? 

3.3. Find Newton's Principia in a library. The full title in English is Mathematical 
Principles of Natural Philosophy. 
(a) What did Newton mean by "natural philosophy"? 
(b) Why did Newton write in Latin? 
(c) Newton's book is generally acknowledged as the greatest single work ever 

written on science. Why? 
(d) Why is Newton's book so little read today? 
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3.4. (For more ambitious students) "The world will again sink into the boredom of a 
drab detail of rational thought, unless we retain in the sky some reftection of light 
from the sun of Hellenism." Read Chapter 7, "Laws of Nature", from Adventures 
of Ideas, A. N. Whitehead, Macmillan, New York, 1933, then tell what is meant by 
Whitehead's warning. 

§4. The Discrete versus the Continuous 

The attraction of atomism is probably the emphasis it pI aces upon the 
discrete, a notion that seems quite transparent to the intuition. Certainly the 
discrete is easier to comprehend than the continuous. It is easier to think 
about a stationary pebble than about flowing sand. It is easier to think about a 
stationary instant than about flowing time. 

The temptation is great to attempt to explain the continuous in terms of 
the discrete. Newton tried to explain light this way. Although common sense 
teIls us that light is a "continuous" phenomenon, Newton spoke of"particles 
of light", as if a light ray was made up of a huge number of discrete units. 
Newton's description was not really taken seriously until the development of 
quantum theory in the twentieth century. 

Within mathematics itself, the tension between the discrete and the con­
tinuous is profound. 

The whole of mathematical history may be interpreted as a battle for 
supremacy between these two concepts. This conftict may be but an echo of 
the older strife so prominent in early Greek philosophy, the struggle of the 
One to subdue the Many. But the image of a battle is not wholly appropriate, 
in mathematics at least, as the continuous and the discrete have frequently 
helped one another to progress. 

E. T. Bell* 

The development of calculus given in this book has been based upon the 
notion of limit, which is intimately related to the idea of continuity. Thus we 
have placed much more emphasis upon the continuous than upon the dis­
crete. It must now be confessed that the seventeenth century attempted a 
discrete approach to the calculus as weIl, the description ofwhich makes up a 
remarkable chapter in the history of ideas. 

An attempt will now be made to describe this discrete approach. If the 
reader finds this approach slightly incomprehensible, there is a good reason 
for it. The description is kept at a very intuitive level in order to ignore any 
difficulties that might be seen by dose logical scrutiny. This is the way some 
things were done in the mathematics of the seventeenth century, and much 

* E. T. Bell, The Development of Mathematics. McGraw-Hill. 1945, p. 13. 
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of the great progress made then is undoubtedly due to this approach. Had 
there not been a lapse in emphasis upon logical rigor, Newton and Leibniz 
might have feared to put some of their speculations into print. It is helpful 
to remember that the tone of seventeenth-century mathematics contrasts 
greatly with the c1assical Greek. Seventeenth-century mathematics often 
reads as if written by seer alone. 

With our eyes "in a fine frenzy rolling", let us seek the seer's vision. Con­
sider the following question : 

What does the difference ~x become, as ~x tends to zero, but is never 
allowed to equal zero? 

The answer given by Leibniz might run something like the following: 

The difference ~x becomes a quantity of infinitesimal size, to be denoted 
by "dx" and called the differential of x. To say that dx is an infinitesimal is to 
say that dx is not zero, but is sm aller than any positive number. 

The differential of y, where y is a function of x, is "defined" in a similar 
way: the differential dy is what the difference Lly becomes, as Llx tends to 
zero, but is not alIowed to equal zero. Leibniz thought ofthe derivative as an 
actual quotient of the differentials dy and clx. Thinking this way leads one to 
discover the chain rule. Newton thought in an intuitive way along much the 
same lines, but his terminology was different. He spoke of jluents, jluxions, 
and their moments, becausc he thought of a variable as a flowing quantity. 

In reply to the question given above, many of us would say that the 
question is sirnply ill-posed and has no ans wer. The difference Llx does not 
"become" anything, because it is never zero. It just "keeps on changing". 
This would be the reply of a sage. Calculus was not discovered by a sage. 

It is easy to criticize the notion of an infinitesimal, if it is regarded as a 
fixed quantity somehow squeezed between zero and the positive numbers. 
Where could it be on the number line? There is no place for it: 

$'" 
o I 

o 2 

If there is such a thing as an infinitesimal, it must be a new kind of quantity, 
for it cannot be pictured as a point on the number line. The notion of the 
infinitesimal is one of the most elusive ideas ever conceived. Attempts to 
describeit, as with the adjectives nascent and evanescent, bordered upon the 
the comic. The first adjective means "just born", the second means "just 
vanishing" . 

However, we should not laugh at this seventeenth-century version of 
atomism called infinitesimal analysis. Though it all seems so vague, it was 



5. The Infinitesimal Calculus 363 

really a noble attempt to reconcile, through a rat her mystical notion, the two 
great cooperating opposites of mathematics. An infinitesimal was supposed 
to be a discrete entity that retained qualities of the continuous. 

EXERCISES 

4.1. Prove that there is no positive number lying "next" to zero. That is, show that 
between any positive number and zero lies another number. Hint. Halving a non­
zero quantity always results in a new quantity that is closer to zero. 

4.2. Criticize the foIIowing statement. "The tangent line to a curve at a point is the line 
through the point and the next point on the curve." 

4.3. (For more ambitious students) Read in a philosophy book about Leibniz's theory of 
monads. Write a paper explaining this theory, and explaining how it may be related 
to Leibniz's theory of differentials. 

§5. The Infinitesimal Calculus 

Let us continue in the spirit of the preceding section, agreeing to pretend that 
we know what an infinitesimal iso Let us also agree to accept the romantic 
notion that logic is unimportant, that something is true as soon as it is feIt. 
This is the setting for discussing the remarkable theory of the infinitesimal 
calculus, in the spirit of seventeenth-century mathematical thought. 

To start off with a bang, let us consider the fundamental theorem of 
calculus: 

S: J(x) dx = F(b) - F(a) if F' = J. 

Infinitesimal calculus is better done in Leibniz's notation, wh ich does not 
name functions, only variables. To put the fundamental theorem in this 
notation, let y = F(x), so that dy/dx = F'(x) = J(x), y(b) = F(b), and y(a) = 
F(a). 

The Fundamental Theorem oJ Caculus. S~ (dy/dx) dx = y(b) - y(a). 

"PROOF"! Canceling the differential dx we have 

ib dy d = Ib d d x y. 
a X a 

(1) 

Now S~ dy is simply the sum, from a to b, of all the infinitesimal changes in y! 
This will obviously add up to the total change in the function y, as x runs 
from a to b: 

f dy = y(b) - y(a). 

The fundamental theorem is simply the result of putting equations (1) and (2) 
together! (?) 
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EXAMPLE 1. Use infinitesimal ealculus to find the area between the eurves 
y = 2 + 2x - x2 and y = x - x 2 , between x = 0 and x = 2. 

(0,2) 

x=O 

(0,0) 

(2, -2) 

Let x be any number between 0 and 2. Consider the vertieal segment 
through x whose width is infinitesimal! The length of this segment is 

2 + 2x - x 2 - (x - x 2 ) = 2 + x. 

The width of this segment is the infinitesimal dx! Its area is therefore (2 + 
x) dx! The entire area between the eurves is the sum of these infinitesimal 
areas (2 + x) dx, as x runs from 0 to 2! The entire area is then 

f: (2 + x) dx = 6 square units, 

by the fundamental theorem of ealculus! (?) 

EXAMPLE 2. Use infinitesimal ealculus to find dA/dt, where A is the area 
beneath the eurve y, between x = a and x = t. 

A 

a 

This is easy! As any tran seen dental eye ean see, the infinitesimal change 
dA in area is dearly given by a rectangle of height y and width dt! 

dt 

dA = ydt. 
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Dividing by dt, we see that dA/dt = y. Thus the area beneath a curve y 
yields an antiderivative of y. (?) 

EXAMPLE 3 Use infinitesimal calculus to find the volume ofa solid generated 
by revolving the area beneath a curve about the x-axis. 

(X,y) 

a XI b 
I 
I 

I 

Let us consider the solid ofrevolution generated by the curve y from x = a 
to x = b. If x is any number between a and b, consider the volume of the 
indicated slice through x of infinitesimal width! 

dx 

Its infinitesimal volume dV is given by 

dV = ny2dx, 

by the well-known formula for the volume of an infinitesimal cylinder! The 
total volume V of the solid is the sum of all these infinitesimal dV's, as x 
runs from a to b! 

V = LX==ab dV = Sub ny2 dx. 

This is the formula for the volume of asolid of revolution! (?) 

EXAMPLE 4. Suppose asolid of revolution is generated by revolving the area 
beneath a curve about the y-axis. Use infinitesimal calculus to find the 
formula for the solid. 
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Let x be any number between a and b, and eonsider what happens to the 
vertieal segment through x, as it is revolved about the y-axis. The surfaee of a 
eylinder is obtained, the eylinder .being of height f(x) and radius x. Let us 
find the infinitesimal volume of this surface, whose thiekness is infinitesimal! 
When the surfaee is flattened out, a reet angular solid is obtained, dimensions 
2nx, f(x), and dx . 

.l.. 
j(x) 

T 
surface, flattened 

2nx 

Its infinitesimal volume dV is then given by 

dV = 2nxf(x) dx. 

dx 

The total volume V is the sum of these infinitesimals dV, as x runs from a to b! 

~ I I 

s=? 

V = f:==: dV = f 2nxf(x) dx 

is the required formula! (?) 

EXAMPLE 5. Use infinitesimal eaIculus to find the derivative of the squaring 
function. 

dy / dx, (x + dx~1 
~~:)T 

dx 

The two points virtually coincide 

On the curve y = x2 eonsider the point (x, x 2 ). If x is ehanged by an 
infinitesimal amount dx, then 

dy = (x + dX)2 - x 2 = 2x dx + (dX)2. 

Dividing by dx, we obtain 

dy 
dx = 2x + dx. (3) 
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Figure 4.* Engraving from Euler's Introductiol1 il1 Al1ulysin 1I1fil1itorum (1748), the first 
great treatise on analysis. Every textbook on calculus today borrows, more or less, 
from Euler. 

* This illustration serves as frontispieee for Abraham Robinson's historie Non-standard Analysis, 
North-Holland, Amsterdam, 1966. Reprodueed by kind permission of Elsevier-North Holland. 
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Since dx is infinitesimal, equation (3) becomes 

dy 
dx = 2x. (?) (4) 

Example 5 leads to an interesting question for anyone who professes to 
understand the "reasoning" in it. H ow can 2x + dx be equal to 2x unless dx is 
zero? And if dx is zero then how do youjustify dividing by it to arrive at equation 
(3)? One way to avoid embarrassment is to discard the notion that an in­
finitesimal is fixed and to think of it instead as a variable tending to zero. In 
that sense equation (3) does "become" equation (4). This leads to the dis­
carding of fixed infinitesimals in favor of the notion of a limit. 

EXERCISES 

5.1. Discuss the following quotations of Bertrand RusselI. 
(a) "It is a peculiar fact ab out the genesis and growth of new disciplines that too 

much rigour too early imposed stiftes the imagination and stultifies invention. A 
certain freedom from the strictures of sustained formality tends to promote the 
development of a subject in its early stages, even if this means the risk of a 
certain amount of error." (Wisdom of the West, Rathbone Books Limited, 
London, 1959, p. 280.) 

(b) "Instinct, intuition, or insight is what first leads to the beliefs which subsequent 
reason confirms or confutes . .. Reason is a harmonising, controlling force 
rather than a creative one. Even in the most purely logical realms, it is insight 
that first arrives at what is new." (Dur Knowledge of the External World, 
W. W. Norton ,g' Company, Inc., 1929, p. 22.) 

5.2. In the spirit of this seetion write out a "proof" of each of the following, using 
infinitesimals. If ever you fee I yourself getting into logical difficulties, adopt the 
visionary's style of reasoning by making exclamations instead of statements. 
(a) The distance traveled is the integral of the speed function. 
(b) dy/dt = (dy/dx)(dx/dt). 
(c) ds/dt = (dt/ds)-l. 
Answer: (c) What else ('ould it bel 

5.3. Consider a curve f. What is its length from the point (a,j(a)) to (b,j(b))? 

(bJ(b)) 

(aJ(a)) 

Use infinitesimals to try to guess a formula for the length ofa curve. (Try to express 
it as an integral.) After you have made your guess, check to see if it works for a 
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straight line whose length you are sure of. Then (ifyou have read Chapter 7) see ifit 
checks out for some arc ofthe unit circle whose length you are sure of. 

5.4. By carrying out the following steps, check to see if the formula of Example 4 
works in this simple case considered here. 
(a) Use the known formula (derived in Chapter 6) for the volume of a cone to 

find the volume of a cone of radius 2, height 4. 
(b) Consider the co ne generated by revolving the area beneath the line y = 4 - 2x, 

o :s::: x :s::: 2, about the y-axis. 

(0,4) 

/ 

/ 
'--~-- (2,0) 

Apply the formula of Example 4 to this situation. Does it give the proper answer 
as found in part (a)? 

5.5. (Only Jor those who haue read Chapter9) Work exercise 7.6 of Chapter 9 by throwing 
around infinitesimals with reckless abandon. Answer: (a) If (dyjdx) - 2y = 0, then 
dyjdx = 2y. Therefore (!), 

1 
-dy = 2dx, 
y 

f,x=t 1 f,x=t -dy = 2dx, 
x=Q y x=Q 

In y(x)l~ = 2xl~, 

In y(t) - In y(O) = 2t, 

In y( t) = In y(O) + 2t, 

y(t) = y(0)e2t• 

5.6. (H ow do you measure surJace area?) In exercise 1.1 you were asked to make a guess as 
to the formula for the surface area S of a sphere ofradius r. Consider the following 
way one might reason by the use ofinfinitesimals. The sphere ofradius r is obtained 
by revolving the graph of y = .}r2 - x2 , r:S::: x :s::: r, ab out the x-axis. 
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When the point (x, y) is revolved we get the surface of an infinitesimal cylinder of 
radius y and height dx! This surface, when flattened out into a rectangle, is seen to 
have an area of 2ny dx. Therefore (!), the total surface area is given by 

S fr 2 d 2 fr d (the area beneath the curve y) 
= _, ny x = n _, y x = 2n from -r to r . 

Since the area beneath the semicircle is nr2/2, it follows that S = 2n(nr2 /2) = n2r2 • (7) 
(a) This probably disagrees with the guess you made in exercise 1.1. Do you still 

have more confidence in your guess, or do you accept the infinitesimal analysis 
just given? H1Iy? 

(b) Are you willing to accept all the infinitesimal analysis given in this section? If 
not, how do you decide what to accept and what to reject as invalid? 

Hint. Archimedes showed that the surface area of a sphere of radius r is given by 
S = 4nr2 • 

§6. Analysis versus Modern Developments 

As Leibniz grew older, he began to move away from infinitesimals and toward 
the notion of limit. The following excerpt from a letter written in 1702 is 
seen as evidence for this. 

One must remember ... that incomparably small quantities ... are by no 
means eonstant and determined. On the contrary, since they may be made as 
small as we like, they play the same part in geometric reasoning as the infinitely 
sm all in the striet sense. For if an antagonist denies the eorreetness of our 
theorems, our calculations show that the error is sm aller than any given 
quantity, since it is in our power to decrease the incomparably sm all ... as 
much as is necessary for our purpose. 

Leibniz* 

This passage can be construed as saying, in effect, that the use of in­
finites im als can be regarded as a shortcut means of taking a limit. The 
objectionable reasoning in Example 5, Leibniz seems to say, is merely a 
quick way of getting the result that was derived with a little more care in 
Chapter 5, Section 1. 

It was doubly difficult for Leibniz to discard the infinitesimal, for this 
conception had inspired both his mathematics and, in his theory of monads, 
his philosophy. In deciding whether to disown his brainchild Leibniz must 
have experienced quite a struggle between mind and heart. His indecision 
is understandable. It was easier for Newton, who renounced the infinitely 

* From a letter 10 Varignon, as given in Ways of Thollghr of Grear Mathematicialls, by Herber! 
Meschkowski, Holden-Day, 1964, p, 58. 
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small in his later work, in favor of an intuitive understanding of the limit 
notion. Analysis in mathematics became based upon limits. 

Atomism continues to survive today, though, and so do infinitesimals. 
Though sometimes, as in exercise 5.6, infinitesimals lead one astray, generally 
they point one in the proper direction like magie. Their success led Leo 
Tolstoy to seek an historical adaptation. 

[Infinitesimal calculus J, unknown to the ancients, when dealing with 
problems of motion admits the conception of the infinitely smalI, and so 
conforms to the chief condition of motion (absolute continuity) and thereby 
corrects the inevitable error which the human mind cannot avoid when it 
deals with separate elements of motion instead of examining continuous 
motion. 

In seeking the laws of historical movement just the same thing happens. 
The movement of humanity, arising as it does from innumerable arbitrary 
human wills, is continuous .... 

Only by taking infinitesimally sm all units for observation (the differential 
of history, that is, the individual tendencies ofmen) and attaining to the art of 
integrating them (that is, finding the sum of these infinitesimals) can we 
hope to arrive at the laws of history. 

ToIstoy* 

These words were written in the middle ofthe nineteenth century, showing 
that infinitesimals were alive and kicking then. Even in the mid-twentieth 
century infinitesimals were used in calculus, though only, it was supposed 
to be emphasized, as a shortcut means of deriving what was done more 
rigorously by means of limits. 

Analysis, a branch of mathematics growing out of calculus to develop 
apreeise notion of limit, had in the late nineteenth century given calculus 
a firm foundation. Analysis tried to do for the calculus what Euclid had 
attempted to do for geometry: base the entire structure upon a few simple 
general principles. The "8-15" definition of a limit (the discussion of which 
we defer) has given apreeise meaning to that notion. (The reader will have 
observed that the discussion of limits so far offered in this book has been 
completely intuitive in character.) 

Quite recently mathematics has seen the exciting development of non­
standard analysis, wh ich makes real sense out of infinitesimals. This work 
was pioneered in the 1960s by Abraham Robinson (1918-1974), who used 
sophisticated modern mathematical ideas to capture the intuitive notion of 
an infinitesimal. The discrete approach to the calculus, thought for so long 
to have been a heroic failure, may yet be a success after all. 

At the same time, a movement in quite the opposite direction has been 
born. Errett Bishop (1928- ) and his followers have developed an 
approach to the calculus that is more down-to-earth and constructive in 
nature than traditional analysis. It will be interesting to see how calculus 
looks in the year 2015, on its 350-th birthday. 

* War ami Peace. translated by Louise and Aylmer Maude, Simon and Schuster, New York, 
1942. p. 918. 
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EXERCISES 

6.1. Read Chapter 7, "The Beginning of Modern Mathematics, 1637-1687", in The 
Development of Mathematics, E. T. Bell, McGraw-Hill, New York, 1945. 

6.2. Read the first section of Book Eleven of War and Peace, from wh ich Tolstoy's 
quotation above is taken. 

6.3. Read pp. 1-2 of Non-standard Analysis, Abraham Robinson, North-Holland, 
Amsterdam, 1966. Compare it with "A Constructivist Manifesto", pp. 1-10 of 
Foundations of Constructive Analysis, Errett Bishop, McGraw-Hill, New York, 
1967. 

§7. Faith versus Reason 

Having had a very brief view of what has happened to calculus recently, 
let us get back to the early eighteenth century, where the old conftict between 
faith and reason still raged. A minor, but revealing incident in this conftict 
concerns infinitesimals, which became the ammunition for a skirmish be­
tween Edmund Halley, the astronomer, and George Berkeley (pronounced 
BARK-ly), the philosoph er. 

Halley, so the story goes, had persuaded a friend of Berkeley's to become 
skeptical about his religious beliefs, whereupon they were rejected on the 
grounds that theologian's claims could not be justified so soundly as the 
claims of mathematicians. This infuriated the Irishman Berkeley, who had 
just been made abishop in the Church of England. His outrage was so great 
that he sought not to shore up the foundations of theology, but to under­
mine those of mathematics. The result was an extraordinary essay, The 
Analyst, "a discourse addressed to an in fidel mathematician". 

Whereas then it is supposed that you apprehend more distinctly, consider 
more closely, infer more justly, and conclude more accurately than other 
men, and that you are therefore less religious because more judicious, I shall 
claim the privilege of a Freethinker; and take the liberty to inquire into the 
object, principles, and method of demonstration admitted by the mathemati­
cians of the present age, with the same freedom that you presume to treat the 
principles and mysteries of Religion; to the end that all men may see wh at 
right you have to lead, or wh at encouragement others have to follow you .... 

Berkeley wrote The Analyst in 1734, not too many years after the deaths 
of Newton and Leibniz. In his essay Berkeley forcefully made the argument 
given in Section 5, in criticism of the logic used in infinitesimal calculus. 
He pointed out quite rightly that the seventeenth century was content to 
accept arguments that the ancient Greeks would have discarded as in­
adequate. The implication was that seventeenth-century mathematicia:ns 
were accepting arguments on faith, not on reason. Berkeley then went on 
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A NA L Y S T; 
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DISCOURSE 
Addretred CO an 

Iufidel MATHEMATICIAN. 

WHEREIN 

It is examined whether the Objell, Princi­
pIes, and Inferences of the modern Analy­
fis are more diftin81y conceived, or 'more 
cvidently dcduced,than Rcligious Myfteries 
and Points of Faith. 

8y the A v T HO" of cr'hI Millute Phil'fopher. 

Ftrjl ~lfjI oltt,~ .U'" 0111 of tbille 0111. EJt; MJJ ,hm 
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.},er's 1)'1. S. Matt. c. vii. v. r. 

L 0 ND 0 N: 
Printcd for J. To N so N in the Strand. ) 'H. 

Figure 5. Title page of Berkeley's ''The Analyst". 
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[HJe who ("an digest a second or thirdf/uxiolJ ... need 110t, methinks, be squeamish about 
any point ilJ dirinity. 
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drily to inquire whether infinites im als were not "ghosts of departed quan­
tities", implying that nothing in theology could be more ghostlike than the 
basic notion of infinitesima1 calculus. 

At the time it was written, little attention was given by mathematicians 
to Berkeley's splendid philippic. Today it is admitted by virtually every 
student of mathematics that some of Berkeley's objections to the calculus 
were unanswerable until the late nineteenth century, when analysis at last 
produced a precise definition of the notion of a limit. 

EXERCISES 

7.1. Read one of the following chapters from Mathematics in Western Culture, Morris 
Kline, Oxford University Press, New York, 1953. 
(a) Chapter XVI, "The Newtonian Inftuence: Science and Philosophy". 
(b) Chapter XVII, "The Newtonian Inftuence: Religion". 
(c) Chapter XVIII, "The Newtonian Inftuence: Literature and Aesthetics". 

7.2. Read the excerpts and commentary arising from Berkeley's Analyst given on 
pp. 286-293 of WOlld of Mathematics, edited by James R. Newman, Simon and 
Schuster, New York, 1956. 

7.3. Read Chapter 13, "From Intuition to Absolute Rigor, 1700-1900", in The Develop­
ment of Mathematics, E. T. Bell, McGraw-Hill, New York, 1945. 

§8. Conclusion 

It is curious that, desphe his fulminations, Bishop Berkeley accepted the 
calculus on faith. He believed, he said, that correct results in the calculus 
were the product of some "compensation of errors" in reasoning. 

Mathematicians so on became aware of the shaky ground on which the 
calculus was erected, as indicated by the admortition of d' Alembert (1717 ~ 
1783): "Go forward, and faith will follow!" In the conftict between faith and 
reason, mathematics had the potential for use by either side. Among the 
founders of the calculus both Leibniz and Newton exhibited strong interest 
in theology. Leibniz made a scrious attempt to reunite the Protestant and 
Catholic churches, and Newton thought of his work as helping to prove the 
existence of God. The study of things eterrial may tend to heighten one's 
awareness of religion. 

The first edition (1771) of the Encyclopaedia Britannica quoted with 
approval the sentiments expressed a century earlier by Issac Barrow. Barrow 
was Newton's teacher, who resigned from Cambridge in order that Newton 
be given his professorship. The words could have been written by Plato 
himself: 

The mathematics ... effectually exercise, not vainly delude, nor vexa­
tiously torment, studious minds with obscure subtilties; but plainly dem on-
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strate every thing within their reach, draw certain conclusions, instruct by 
profitable rules, and unfold pleasant questions. These disciplines likewise 
enure and corroborate the mind to a constant diligence in study; they wholly 
deli ver us from a credulous simplicity, most strongly fortify us against the 
vanity of scepticism, effectually restrain us from a rash presumption, most 
easily incline us to a due assent, perfectly subject us to the govemment of 
right reason. While the mind is abstracted and elevated from sensible matter, 
distinctly views pure forms, conceives the beauty ofideas, and investigates the 
harmony of proportions; the manners themselves are sensibly corrected and 
improved, the affections composed and rectified, the fancy calmed and settled, 
and the understanding raised and excited to more divine contemplations. * 

375 

Nevertheless, mathematics appears generally seen as allied with reason 
in opposition to faith. Voltaire pointed to the spectacular achievements of 
"rational" science and mathematics, and demanded the right to ex amine 
everything under the authority of reason. Voltaire won out, for a time, and 
it was little noted that mathematicians ofthe Enlightenment were using their 
instinct more than their intellect: 

They defined their terms vaguely and used their methods loosely, and the 
logic oftheir arguments was made to fit the dictates oftheir intuition. In short, 
they broke all the laws of rigor and of mathematical decorum. 

The veritable orgy which followed the introduction of the infinitesimals ... 
was but a natural reaction. Intuition had too long been held imprisoned by 
the severe rigor of the Greeks. Now it broke loose, and there were no Euclids 
to keep its romantic ftight in check. 

Tobias Dantzigt 

The Enlightenment, emphasizing intellect, was to be washed aside by the 
Romantic Movement that declared, with Rousseau, the primary nature of 
instinct. Romanticism can be, and has been, described in a variety of ways. 
But if it is marked by areaction against Neoclassicism, an emphasis upon 
imagination, a disregard for decorum, apd a predilection for theseer to the 
sage, then the Rornantic Movement was al ready rampant in mathematics 
at the very height of the Age of ~eason. 

Is this a paradox? Only, perh'l-ps, for those who see mathematics in too 
narrow a light. Mathematics is romance in reason. 

* "J'vlathematics", Encyc/opaedia Britannica, Vol. III, 1771, pp. 30-31. 

t Number, the Language of Seien ce, Doubleday Anchor, 1956, p. 130. 



Review Problems for Chapters 1-10 

1. Given a right triangle of sides a, b, and c, construct three others just like it, and 
put aII four triangles together to help form a large square. Then stare at the large 
square until you see a new way to prove the Pythagorean theorem. 

c 

Hint. Begin by observing that the area ofthe large square can be expressed in two 
ways. 

2. Below is a right triangle inscribed in a semicircle. The legs of the triangle are diam­
eters of two other semicircles. Prove that the sum of the areas of the two lunes is 
equal to the area of the right triangle. 

(Lunes fascinated Leonardo da Vinci. See Coolidge, The Mathematics of Great 
Amateurs, Dover paperback, p. 43 11) 

3. Find the area of this lune. 
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~
X_1)2+(Y-l)2 =2 

(0,2) 

x 2 + y2 = 4 

(2,0) 
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4. Find the indicated areas. Hint. In each case, split the area up into a triangle and 
a pie-shaped sector. 

(a) (b) 

o J2 0 J3 
2 2 

5. Prove the irrationality of each of the following numbers. (a) J2/2; (b) ß/2. 

6. Describe the Pythagorean philosophy. Wh at influence did it have upon Plato? 

7. Plato and Aristotle held differing views about the nature and the value of mathe­
matics. Explain these views. 

8. Read the catalogue of courses of study offered by a college or university in wh ich 
you are interested. Separate the offerings into those which are "Greek" and those 
which are "non-Greek". (Anrhropology, for example, is a Greek word meaning 
study of man; biology is Greek for study of life, etc.) Does the spirit of Greece still 
live? 

9. (a) Solve the equation bx + c = O. 
(b) Find the limit, as a tends to zero, of ( - b + .J b2 - 4ac)/2a. 
(c) Explain why it should not be surprising that parts (a) and (b) have the same 

answer. 

10. "Limits are as simple as pi." This pun contains a good deal oftruth. Explain. 

11. A rectangular field borde ring a road is to be fenced in. The fence along the road 
will cost $9 per meter, while each of the other three sides will cost $4 per meter. 
(a) Find the dimensions yielding the cheapest cost if an area of 100 square meters 

is to be enclosed. 
(b) Find the maximal area that can be enclosed ifthe total cost ofthe fence is $1800. 

12. The sum of two positive numbers is 60, and the numbers are chosen so that the 
product ofthe first by the cube ofthe second is as large as possible. Find the numbers. 

13. A can in the shape of a cylinder is to be placed inside a sphere of radius r inches. 
Find the largest possible volume the can could have. 

14. A cone-shaped paper cup is to be designed whose edge is to be 10 centimeters in 
length. What should be the height h of the cup, in order to maximize its volume? 

15. A co ne is to be inscribed within a sphere ofradius r inches. Find the largest possible 
volume the cone could have. 

16. Santa Claus has a problem. Out of 100 square feet of tin a rectangular box with 
square base and open top is to be constructed. What dimensions should be used 
to maximize the amount of reindeer food the box can hold? 
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17. One corner of a long rectangular sheet of paper of width 8 inches is folded over 
until it just touches the opposite edge. Find the minimum length of the crease. 

! 
18. A man is in a boat 100 meters from a straight shoreline. His cabin is 100 meters 

downshore. If he can walk three times as fast as he can row, where should his boat 
be docked in order that he get to his cabin as quickly as possible? 

19. A ladder is to be carried horizontally around the indicated corner. Find the length 
of the longest ladder that can pass through. 

12ft 

20. A ladder 10 ft long leans against a fence 4 ft high. Find the maximum horizontal 
distance the ladder can reach beyond the fence. 

21. A circular lake is 200 meters in diameter. A man standing on one side wishes to 
get to the point directly opposite. He can run twice as fast as he can swim. Wh at is 
the quickest way across? 

22. Astring of length 40 centimeters is to be cut in two, and the pieces are to be folded 
into a circle and an equilateral triangle respectively. How should the string be cut 
in order to 
(a) minimize the combined area of the circle and triangle? 
(b) maximize the combined area? 

23. (a) Define the terms critica! point and inflection point. 
(b) Give an example of a curve with no highest point and no lowest point. 
(c) Outline the steps by which one can find the highest and lowest points on a 

curve, using calculus. 

24. The curves drawn in problem 41 at the end ofChapter 4 are given without equations, 
but the person sketching these curves had certain equations in mind. Can you 
guess the equations represented by these curves? (The curve in (b), for example, is 
intended to be the graph of y = lnlxl.) 

25. Can you match equations to the curves pictured in problem 25 at the end of 
Chapter 5? 

26. Match equations to the curves pictured in problem 24 at the end of Chapter 6. 

27. Consider the equation C = 10L + (40/L). 
(a) Sketch this curve, indicating all critical points. 
(b) Find the range, ifthe domain is given by 1 < L < 5. 
(c) Find the range if the domain is given by L # O. 
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28. Consider the function given by J(x) = 2x2 + (3/x) - 4. 
(a) Sketch this curve, indicating all critical points and inflection points. Hint. A 

little work has already been done in exercise 3.1 of Chapter 4. 
(b) Find the range, ifthe domain is given by t < x ::;; 3. 
(c) Find the area beneath J, from x = 2 to x = 5. 

29. From a tower 124 feet high, a ball is thrown downwards at an initial speed of 40 
feet per second. Treating the ball as a freely falling body, ans wer the following. 
(a) Where is the ball one second after it is released? 
(b) When will the ball hit the ground? 
(c) What speed is the ball approaching at the instant it hits the ground? 

30. A car accelerates from 0 to 50 ft/sec in 10 seconds. In this time, assuming constant 
acceleration, find how far the car travels. 

31. A rock thrown straight up reaches a maximum height of 64 feet. What was its 
initial speed? 

32. A balloon, shaped like a sphere, is being blown up at a constant rate so that its 
volume is increasing at 2 cubic feet per second. When its radius is 3 feet, 
(a) how fast is its radius increasing? 
(b) how fast is its surface area increasing? 

33. A paper cup shaperi like a cone has height 10 centimeters and has a circular top 
of radius 5 centimeters. Water is poured in at a constant rate of 3 cubic centimeters 
per second. Letting h denote the height of water in the cup, find dh/dt when 
(a) h = 1 cm. 
(b) h = 4 cm. 
(c) h = 8 cm. 

10 

1 
34. An observer stands one mile from the launch site of a rocket. If the speed of the 

rocket is 300 mijhr when the angle of inclination ß of the rocket is 45 degrees, 
find dß/dt at this instant. 
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35. A particle is moving along the y-axis in sueh a way that its position is given by 
y = 5sint + 12eost. 
(a) Find its position, veloeity, and aeceleration at the instant when t = 5n/6. 
(b) Find the range of positions y assumed by the particle between time t = 0 and 

t = 2n. 

36. An observer is 48 feet away from a spot where a ball is thrown straight up with an 
initial speed of 64 ft/see. LeUing e be the angle of inclination of the ball from the 
observer's position, find de/dt and d2e/dt2 

(a) one seeond after the ball is released. 
(b) two seeonds after the ball is released. 
(e) three seeonds after the ball is released. 

37. In problem 36, let s be the distanee between the observer and the ball. Find ds/dt 
and d2s/dt2 at times one, two, and three seeonds after the ball is released. 

38. Use appropriate formulas for sums to evaluate eaeh of the following. 
(a) 1 + 2 + 3 + ... + 1000. 
(b) 1 + 4 + 9 + ... + 1,000,000. 
(e) 1 + 8 + 27 + ... + 1,000,000,000. 
(d) 1 + (1/2) + (1/4) + (1/8) + ... + (1/1024). 
(e) 1 + 3 + 9 + 27 + ... + 59,049. 

39. Consider the funetion given by f(x) = 3x2 - 2x + 5. 
(a) Hlustrate Fermat's method in finding the slope of the tangent line to the curve 

f at (1,6). 
(b) Illustrate Eudoxus' method in finding the integral of f from x = 0 to x = 4. 

40. Evaluate the integral J~ x2 dx by Eudoxus' method. 

41. Evaluate the integral J~ x3 dx by Eudoxus' method. 

42. Consider the function given by f(t) = e-". 
(a) Find the derivative of f. 
(b) Find the antiderivative of f that takes the value 3 when t is 2. 
(c) Find an algebraic approximation to f that is valid for t near o. 
(d) Use your answer to part (c) to give a good estimation for the value ofthe integral 

Sb e-" dt. 

43. (a) Use trigonometrie identities to show tan(e + tn) = -1/tan e. 
(b) Use the result of part (a) to show that if a line has slope b # 0, then a perpen­

dicular line has slope - l/b. (Lines are perpendicular if their slopes are negative 
reciprocals of each other.) 

44. Consider the curve y = x'. 
(a) Write an equation of the tangent line at (4,256). 
(b) The normal Une to a curve is the line perpendicular to the tangent line. Write 

an equation of the normal line at (4,256). Hint. Use the result of part (b) of 
problem 43. 

45. The equation y = SO e-',(t - l)(t - 3)dt describes a curve in the x-y plane. 
(a) Fill in the following table. 
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(b) Draw a picture of the curve locally, as it passes through the origin, indicating 
whether it is rising or falling, concave up or down. 

(c) Tell whether the curve is rising or falling, concave up or down, when x = 2. 
(d) Find all the critical points of the function specified by the equation above, and 

tell whether they are local minima or local maxima. 

46. In Chapter 6 Cavalieri's principle was discussed for figures Iying in a plane. Actually, 
Cavalieri formulated an analogous principle for figures Iying in three-dimensional 
space. Can you? 'Two solid figures have the same volume if ... "? 

47. (a) What does it mean to say that a function fis continuous at a certain point c? 
(b) If f'(c) exists, does it follow that f is continuous at the point c? 
(c) If fis continuous at the point c, does it follow that f'(c) exists? 

48. A cycloid is the curve traced out by a point on a circle, as the circle rolls along a 
straight line. (Think of the path of the head of a nail embedded in a tire, as the tire 
rolls.) The cycloid was the subject of many investigations in the seventeenth century. 
Let the circle have radius r, let the point tracing out the cycloid be initially at the 
origin, and let the circle roll along the x-axis. Show that, after the circle has rota ted 
through an angle of e radians, the coordinates of the point tracing out the cycloid 
are given by x = re - r sin e, y = r - r cos e. H int. After the tire moves through 
an angle e, the situation looks like this. Begin by observing that the circular arc 
must be equal in length to the distance traveled by the circle. 

equal..,-tl~~ 

(0,0) (2nr,0) 

49. Consider the cycloid of problem 48, whose coordinates x and y are parametrized 
by e. (The radius r is a constant.) 
(a) Find dx/de and dy/de. 
(b) Find dy/dx with help from part (a) and the chain rule. 
(c) The point (r(tn - !j3), !r) lies on the cycloid. Find the slope of the tangent 

line at this point. 

50. Let us try to determine the length of arc of the cycloid of problem 48. Let s denote 
the arclength traversed as a function of e, beginning at e = 0 (when the point tracing 
out the cycloid is located at the origin.) 
(a) Use the nonrigorous type of reasoning illustrated in Section 5 of Chapter 10 

to make it plausible that (ds/dW = (dx/de)2 + (dy/de)2. Begin by applying the 
Pythagorean theorem to an infinitesimal right triangle. 
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(b) Using the equation of part (a) and the result of part (a) of problem 49, conelude 
that 

ds 
-'- = r.}2 - 2cosO. 
dO 

(c) Conelude from part (b) that the arelength of the cyeloid from the origin to the 
point (2nl",0) is given by the integral 

r f: x .}2 - 2cosOdO. 

(d) Evaluate the integral in part (c). Hillt. To find an anti derivative, use the trick 
in problem 24 at the end of Chapter 7. 

51. (a) Show that in = arctant + arctant. Hillt. Let 01 = arctant, let O2 = arctant, 
and use the tangent sum law to show that tan(8 1 + 82) = 1 = tan in. 

(b) Use the result established in part (a) to obtain a elose approximation to n. 
H int. The quantities arctan t and arctan t can be found very accurately with 
Iittle trouble. For example (see problem 26 of Chapter 9), 

1 ~1!2 1 ~1!2 2 4 6 arctan- = --dx = (1 - x + x - x + .. ·)dx. 
2 0 1 + x2 0 

52. The method of approximating n given in the preceding problem offers a considerable 
improvement over the method of Leibniz given in problem 26 of Chapter 9. An 
even quicktr method of approximating n was discovered by John Machin in 1706, 
who established first that 

nil 
- = 4 arctan - - arctan -. 
4 5 239 

(This can be proved by repeated application of the tangent sum law.) Use Machin's 
identity to estimate n to six decimal places. 

53. Evaluate each of the following limits. 
(a) Limitx~ 0 (1 - e-')/( 1 - nX ). 

(b) Limitx~ I (I - xe)/(I - XX). 

(c) Limit,~ 1 In( (I - x 3 )/( I - x)). 

(d) Limit'~2' [ln(x2 - 4) - In(x - 2)]. 

54. Let A and B be uncqual positive numbers. Prove that the quantity (A - B)/ 
(In A - In B) lies between A and B. H illt. A pply an appropriate form of the mean­
value theorem to the natural log function on the interval from A to B. 

55. Integrals were introduced in order to represent areas. Yet there are people having 
no interest whatever in areas who still pi ace high value on the study of integrals. 
List at least six reasons why integrals are of interest, aside from their use in mea­
suring areas. 

56. Some decomposed carbon has been found in a cave thought to have been inhabited 
by ancient man. If it is established that one fourth of the original carbon has de­
composed, how long has the carbon been in the cave? (The half-Iife of ca rb on is 
5568 years.) 

57. In one month 20 g of radioactive substance X decays to 14 g, while during the same 
period 50 g of radioactive substance Y decays to 30 g. When will there be the same 
amount of substances X and Y? 
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58. Consider the function given by J(x) = ~1I000 + x. 
(a) Find an algebraic approximation agreeing with J to third order at the point 

x = O. 
(b) Use part (a) to estimate the cube root of 1010 to several decimal places. 

59. (a) Find the derivative of te-'. 
(b) Use your answer to part (a) to guess an antiderivative of te-'. 
(c) Guess an antiderivative of t 2 e-'. Hint. First find its derivative. 
(d) Investigate this conjecture: An anti derivative of J(t)e-' is given by - e-'(J(t) + 

f'(t) + f"(t) + .. -). 
(e) Find an antiderivative of (t 2 - 3t + 6)e-'. 
(f) Find an anti derivative of (t2 - 3t + 6)e'. 
(g) Make your own conjecture about antiderivatives of J(l)e' and attempt to 

verify it. 

60. (a) Give a one-sentence definition of calculus. 
(b) Give a one-sentence definition of mathematics. 

61. Mathematics is made up largely of methods. We have discussed mainly Fermat's 
method and the method of Eudoxus, but we have also seen the method of Archi­
rnedes, the "Sherlock Holmes method", and the method of Simpson (Simpson's 
rule). Without referring to the text, 
(a) explain the purPOS(l of each method, 
(b) explain how each method works, and 
(c) evaluate how well each method accomplishes its purpose. 

62. Much of our knowledge of Greek mathematics comes from a commentary written 
on the first book of Euclid's Elements by Proclus, who lived in the fifth century 
A.D. In his commentary Proclus says that mathematics 

arouses our innate knowledge, awakens our intellect, purges our understanding, 
brings to light the concepts that belong essentially to us, takes away the forget­
fulness and ignorance that we have from birth, sets us free from the bonds of 
unreason; and a11 this by the favor of the god [Hermes?] who is truly the patron 
of this science, who brings our intellectual endowments to light, fills everything 
with divine reason, moves our souls towards Nous [the highest form of knowl­
edge], awakens us as it were from our heavy si umber, through our searching 
turns us back upon ourselves, through our birthpangs perfeets us, and through 
the discovery of pure Nous leads us to the blessed life. (Proclus: A Commentary 
Oll the First Book oI ElIcli"'s Elemenrs, translated by Glenn R. Morrow, Princeton 
University Press, 1970, p. 38) 

(a) Compare this passage with the passage quoted in Chapter 10, Section 8, written 
some 1200 years later. 

(b) From the quotation above it is obvious whom Proclus thought to be the supreme 
philosopher. Was it Plato or Aristotle? 

63. Name at least five noted philosophers who have also been mathematicians. Is it 
just an accident that some of the most eminent philosophers have also been 
mathematicians? 

64. The Greek writipgs of Plato, the French of Pascal, Descartes, and Poincare, the 
English of R].lssell and Whitehead have all been acclaimed as models of pro se 
style by students of literat ure. Is it just an accident that some of the' most eminent 
writers have also devoted themselves to mathematics? 
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65. Consider each of the following relatively recent statements. Which of them is 
virtually arestatement of the principle of continuity? Which of them remind you 
ofPythagoras? ofPlato? of Archimedes? ofLeibniz? 
(a) Remote from human passions, remote even from the pitiful facts of nature, 

the generations have gradually created an ordered cosmos, where pure thought 
can dweil as in its natural horne and where one, at least, of our nobler impulses 
can escape from the dreary exile ofthe actual world (Bertrand RusselI, twentieth 
century). 

(b) Since the fabric of the world is the most perfect and was established by the 
wisest Creator, nothing happens in this world in which some reason ofmaximum 
or minimum would not co me to light (Leonhard Euler, eighteenth century). 

(c) Apart from a certain smoothness in the nature ofthings, there can be no knowl­
edge, no useful method, no intelligent purpose (Alfred North Whitehead, 
twentieth century). 

(d) The great book ofNature lies ever open before our eyes and the tme philosophy 
is written in it ... But we cannot read it unless we have first learned the language 
and the characters in which it is written ... It is written in mathematicallanguage 
(Galileo, seventeenth century). 

(e) I have never done anything 'useful' .... The ca se for my Iife ... is this: that I 
have added something to knowledge, and helped others to add more; and that 
these somethings have a value which differs in degree only, and not in kind, 
from that of the creations of the great mathematicians, or of any of the artists, 
great or smalI, who have left some kind ofmemorial behind them (G. H. Hardy, 
twentieth century). 

66. William Blake (1757 -1827) wrote the following poem. What is it about? 

Mock on, Mock on Voltaire, Rousseau: 
Mock on, Mock on: 'tis all in vain! 
Y ou throw the sand against the wind, 
And the wind blows it back again. 

And every sand becomes a Gern 
Reftected in the beams divine; 
Blown back they blind the mocking Eye, 
But still in Israel's paths they shine. 

The Atoms of Democritus 
And Newton's ParticIes of light 
Are sands upon the Red sea shore, 
Where Israel's tents do shine so bright. 



Appendix 1 
Writings "About" Mathematics* 

The complaint of some humanists that mathematicians make no attempt to 
describe to others their function is unjustified. On the contrary, a list of 
articles and books published with this purpose in mind is extensive, owing 
to the efforts ofa number ofwriters, many ofwhom have been distinguished 
mathematicians. 

This appendix calls attention to some of these writings about mathe­
matics, which are by and large non-technical in nature and addressed to 
the general reader. It also serves as a way of acknowledging, however in­
adequately, the debt owed by the author ofthis book to the writings of others. 
The list of works mentioned has been purposely kept short-so as not to 
overwhelm the reader-and reflects to some degree, of course, the taste of 
the author. 

A much more extensive list may be found in the useful Annotated Bibliog­
raphy of Expository Writings in the Mathematical Sciences, by Matthew P. 
Gaffney and Lynn Arthur Steen, published by the Mathematical Association 
of America, Washington, D.C., 1976. 

§1. The Nature of Mathematics 

The quotation just inside the title page of this text is taken from Alfred 
North Whitehead's chapter on mathematics in Science and the Modern 
World [55]t. This essay, "Mathematics as an Element in the History of 

* Arevision of ABrief G!tide to Writings 'About' Mathematics, W. M. Priestley, Copyright 
© 1972 (private1y published). 

t Numbers in square brackets refer to the listing in the bibliography. 

385 
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Thought", is a modern classic. Quite a different kind of article, but equally 
celebrated, is Henri Poincan::'s "Mathematical Creation". The ideas expressed 
here by the great French mathematician are often referred to in discussions 
of creativity. Poincare's article may be found in [16], for example, as weIl 
as in [34].1t inspired Hadamard's The Psychology of Invention in the Mathe­
matical Field [17]. 

The attractiveness of mathematics as an activity similar to creative 
endeavors in the fine arts is the theme of an excellent article [18] by Paul 
Halmos. This theme is given its most eloquent expression, perhaps, in the 
lines of RusselI: "Mathematics, rightly viewed, possesses not only truth, 
but supreme beauty ... " (See Chapter 5, Section 1, for the rest.) It is only 
fair to add here that Russell later [39] partially repudiated some of these 
sentiments, owing to certain developments in twentieth-century philosophy. 

G. H. Hardy's defense [19] of mathematics rests largely on aesthetic 
grounds. A M athematician's Apology has been reprinted, with a foreword by 
C. P. Snow. Ofthis unique book Graham Greene has said, "There is nothing 
here which the layman cannot understand except possibly one theorem, 
and I know no writing-except perhaps Henry James's introductory essays­
which conveys so clearly and with such an absence of fuss the excitement 
of the creative artist." 

Hardy says that mathematics is not a contemplative but a creative subject. 
One cannot know the nature of mathematics without doing some mathe­
matics. The books [10], [35], [36], and [48] are designed to help the reader 
do just that. 

§2. About Mathematicians 

E. T. BeIl's M en of M athematics [1] must surely be the most popular book 
about mathematicians. In his inimitable, crusty style Bell relates the lives 
and achievements of thirty-odd mathematicians, the latest being Georg 
Cantor, who died in 1918. 

Few mathematicians write autobiographies, the only one of great literary 
merit being Bertrand Russell's [40]. Since Russell did little in mathematics 
after World War I, his is a mathematician's autobiography only as far as 
Volume I. Norbert Wiener, who received his Ph.D. degree at the age of 
eighteen and studied under Russell and Hardy, has written an autobiography 
[56], [57]. Wiener is the father of cybernetics. 

Oystein Ore's biography [33] of the great Norwegian mathematician 
Niels Henrik Abel is weIl worth reading. Abel died at the age of twenty-six. 
Leopold Infeld [21] writes movingly of the remarkable French mathe­
matician Evariste Galois. Galois died at twenty. 

An absotbing biography [37] of David Hilbert has been written by 
Constance Reid, who followed it with the life story [38] of Richard Courant. 
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Hilbert, long associated with Göttingen, helped chart the course oftwentieth­
century mathematics in a famous address in 1900; and Courant, in moving 
from Göttingen to New York, was instrumental in raising the level ofmathe­
matical research in the United States. 

As a rule, only the celebrated mathematician is written about. The 
ordinary teacher of mathematics, upon whom real inspiration descends 
grudgingly and fleetingly, is usually thought undeserving of attention. But 
Donald Weidman has written a sympathetic account [51J of the run-of-the­
mill mathematician's fate. 

§3. History and Development of Mathematics 

For the general reader D. J. Struik's A Concise History of Mathematics [46J 
is most handy. Two good textbooks used by undergraduate courses in history 
of mathematics are Eves [12J and Boyer [6]. Eves leans toward geometry, 
Boyer toward analysis. Boyer wrote an earlier book [5J on the development 
of calculus, but on this subject the real gern is by Toeplitz [49]. For the 
development ofmathematics a variety ofworks may be consulted. Dantzig's 
book [11 J, dealing mainly with analysis, is easy to read. Meschkowski's 
little book [28J is good, as is Kline's big book [23]. Bell [2J is unique. 

If Greek mathematics is your interest, then van der Waerden [50J is for 
you. Here is a beautiful, exciting description of a glorious epoch in mathe­
matics. Neugebauer [31 J discusses Babylonian and Egyptian mathematics. 

For sampies of little gems by ancient and classical mathematicians, such 
as Archimedes, Pascal, and Leibniz, see the collections by Coolidge [9J or 
Meschkowski [27]. Extensive source books are Smith [42J and Struik [47]. 

The definitive work in the history of mathematics (up to 1800) is the 
massive tome of Moritz Cantor [7J, which Salomon Bochner [4J charac­
terized as "one of those large-scale works by bearded gaslight-Victorians 
which the 20th century does not quite know how to supersede with whatever 
it might try to supersede them with." 

What about the future ofmathematics? See Weil [52]. 

§4. Philosophy of Mathematics 

What is mathematics? Is it created or is it discovered? What are the founda­
tions ofmathematics? Textbooks, such as Eves and Newsom [15J and Wilder 
[58J, consider such questions, whose answers may vary according to whether 
one subscribes to the philosophy of intuitionism, formalism, or logicism. 

Hermann Weyl, who was an intuitionist, wrote a deep book [53J, 
Philosoph} of M athematics und Natural Science. It demands deliberate 
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reading. Poincare is most articulate on this subject, as on every other subject 
collected in his essays [34]. Lately the intuitionist position has been revived 
and modified, with the coming into prominence of constructive methods. See 
the review [45J of Bishop's book. 

Hilbert was the foremost proponent of the formalist thesis, and passages 
in [37J attempt to capture the spirit of the early twentieth-century debate 
over the validity of this thesis. The celebrated theorem proved by Kurt Gödel 
in 1931, which was such a setback for formalist hopes, has been outlined for 
the general reader by Nagel and Newman [30]. 

Russell and Whitehead promulgated the logistic thesis. See Henkin [20J 
for some comments on its current state. 

Many important issues in the philosophy of mathematics turn on one's 
ans wer to a seemingly simple question: What is areal number? One might 
think that all mathematicians would agree upon real numbers by now, since 
numbers have been around for a long time, ifnot eternally. But see Steen [43]. 

§5. Collections of Expository Articles 

If a guide to writings about mathematics listed only one entry, it would have 
to be the four-volume set W orld of M athematics [32J, edited by James 
R. Newman. Some of the articles mentioned above are reprinted (though 
sometimes in abridged form) in this superb collection. Anyone interested in 
mathematics is probably already familiar with this work. 

A compilacion [22J of articles on mathematics that have appeared in 
Scientific American is impressive, as are the collections [3J and [41 J, all of 
which attempt to give in a non-technical way something of the flavor of 
today's mathematical research. 

Shortly after World War II there appeared in France an ambitious collec­
tion of expository essays about mathematics. Written mainly by French 
mathematicians, these essays cover a great range oftopics, even including the 
relationship between mathematics and music, aesthetics, philosophie ideal­
ism, social change, and Marxism. Though some are dated by now, many 
retain their original striking quality. It is good to have them [24J available in 
English. 

§6. Miscellaneous Writings 

The book [25J by Littlewood, Hardy's great collaborator, surely goes under 
this heading. Hermann Weyl's Symmetry [54J and Hugo Steinhaus's Mathe­
matical Snapshots [44J have been widely admired. J. D. Williams has written 
for the layman a delightful book on game theory, The Compleat Strategyst 
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[59]. Menninger's Number Words and Number Symbols [26] must be on the 
coffee table of every modern Pythagorean. Eves's books [13], [14] help 
preserve the folklore of mathematics, as does the older collection [29] of 
Moritz, for those who are interested in "W\tty, profound, amusing passages 
about mathematics and mathematicians". 

Finally, who is unfamiliar with the work [8] of th(lt dour Oxford professor 
of mathematics, the Reverend Charles Lutwidge Dodgson? 
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Appendix 2 
Sums and Their Limits 

This appendix is intended to supplement the discussion of Eudoxus' method 
given in Chapter 6 by presenting proofs of several summation formulas and 
by offering some more examples of summation techniques. Wh at follows 
may be read immediately after Seetion 6 of Chapter 6. 

Let us begin by diseussing a problem whieh may be no further away than 
the nearest supermarket. We shall solve it two ways. The first solution makes 
no use of summation teehniques. 

Problem A. Oranges are staeked in the form of a pyramid whose base is 
reet angular, with 6 oranges along one side and 10 oranges aloog the other. 
How many oranges are in the pyramid? 

Solution 1. The bottom level, of dimensions 6 by 10, has 4 more oranges 
along one side than along the other. As any experieneed staeker of oranges 
knows, it follows that every level will have 4 more oranges in one dimension 
than in the other. The size of the top level has to be 1 orange by 5 oranges, 
the next level must be of size 2 by 6, followed by a level of size 3 by 7, and 
so on. Adding the oranges in eaeh level-beginning at the top level-we 
see that the total number of oranges is given by 

1 ·5 + 2·6 + 3 . 7 + 4·8 + 5 ·9 + 6· 10 = 175. o 

Solution 2. The k-th level (eounting from the top level down) will have 
k oranges along one side and k + 4 oranges along the other. Henee the 
k-th level wi1l eontain k(k + 4) = k2 + 4k oranges. There are obviously 
6 levels in all, so the total number of oranges is equal to 

6 666 

(*) L oranges on k-th level = L (k 2 + 4k) = L k2 + 4 L k. 
k=1 k=1 k=1 k=1 

392 
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There are easy formulas for ~), for LP, and for Lk3, given as folIows: 

± k = n(n + 1) 
k= 1 2' 

(1) 

± k2 = n(n + 1)(2n + 1) 
k= 1 6' 

(2) 

n n2(n + 1)2 L k3 = . 
k= 1 4 

(3) 

(We shall prove these formulas shortly.) When n = 6, formulas (1) and 
(2) become 

t k = 6(7) = 21· 
k= 1 2 ' 

t P = 6(7)(13) = 91. 
k= 1 6 

These, when put together with equation (*) above, show that the total 
number of oranges is equal to 91 + 4(21) = 175. 0 

In Problem A we needed to add together only six quantities. With such 
a small number of summands the use of summation techniques saves little 
time. Solution 2 will probably consume as much time as Solution 1. With 
a large number of summands, however, the use of summation techniques 
is almost indispensable. The reader will find it helpful to memorize formulas 
(1), (2), and (3). 

Problem A +. Baseballs are stacked in the form of a huge pyramid, with a 
rectangular base of 60 balls by 50 balls. How many baseballs does the 
pyramid contain? 

Solution 1. Every level will have 10 more balls in one dimension than in 
the other, and there will be 50 levels in all. Counting from the top level 
down, we see that the total number of balls is giv~n by 

1 . 11 + 2 . 12 + 3 . 13 + ... + 50 . 60 = ??! o 

Solution 2. The k-th level from the top will have k balls along one side 
and k + 10 balls along the other. Hence the k-th level contains k(k + 10) = 

k2 + lOk balls, and the total number ofballs in the entire pyramid is given by 

50 50 50 

L (k 2 + lOk) = L k2 + 10· L k 
k=l k=l k=l 

= 50(51)(101) + 10 50·51 [by (1) and (2)] 
6 2 

= 55,675. o 
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§1. Collapsing Sums; Proofs of Formulas 
(1), (2) and (3) 

Here are some ex am pies of a simple but important type of summation. The 
sum depends only upon the first and last terms, since the intermediate terms 
cancel. The sum "collapses", making it quite easy to add up. The following 
equalities are obvious. 

(I-D+G-D+G-~)+"'+G-n:l)=I-n:l' (4) 

[1 2 - 02] + [2 2 - 12] + [3 2 - 22] + ... + [n 2 - (n - If] = n2 , (5) 

[1 3 - 03] + [23 - 13] + [33 - 23] + ... + [n 3 - (n - 1)3] = n3 . (6) 

In summation notation, formulas (4), (5), and (6) are expressed as follows. 

n (1 1) 1 k~! k - k + 1 = 1 - n + 1; 
(4') 

11 

L (k 2 - (k - If) = /12; (5') 
k= ! 

11 

L (k 3 - (k - 1)3) = n3 . (6') 
k= ! 

What is this good for? It seems too obvious to lead to anything interesting. 
Yet interesting results are immediately at hand. Since (1/k) - O/(k + 1)) = 

1/(k 2 + k), the obvious formula (4') immediately yields the interesting 
summation formula 

11 

L 1/(k2 + k) = 11/(11 + 1), 
k = ! 

a result which may not be obvious. And the obvious formulas (5') and (6') 
lead immediately to proofs of formulas (1) and (2). 

PROOF OF FORMuLA (I). First note that 

k2 - (k - 1)2 = k2 - (k 2 - 2k + 1) = 2k - 1, 

so that formula (5') becomes 

Therefore, 

11 

L (2k - 1) = n2 . 
k=! 

11 IJ 

2· L k - L 1 = n2 , 
k=! k=! 

n 

2· L k - 11 = 11 2, 
k= ! 

n 

2· L k = n2 + 11, 
k=! 

n 11 2 + n 
L k=-2-' 

k=! 

o 
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PROOF OF FORMULA (2). First note that 

k3 - (k - 1)3 = k3 - (k 3 - 3k2 + 3k - 1) = 3k2 - 3k + 1, 

so that formula (6') becomes 

n 

I (3k 2 - 3k + 1) = n3 • 
k=l 

Therefore, 
n n n 

3· I k2 - 3· I k + I 1 = n3 , 
k=l k=l k=l 

3 . f k2 - 3 n(n + 1) + n = n3 • 

k= 1 2 

395 

We want to derive formula (2) by solving this equation for Ik2 • This is 
easier to do if first we multiply through by 2: 

6· I k2 - 3n(n + 1) + 2n = 2n 3• 
k= 1 

Therefore (the reader is asked to supply the missing steps), 

n 

6· I k2 = 2n3 + 3n2 + n 
k=l 

= n(2n2 + 3n + 1) 

= n(n + 1)(2n + 1), 

and formula (2) is obtained upon dividing by 6. o 

PROOF OF FORMuLA (3). Since the idea of these proofs should be familiar 
by now, only the main steps are given. The reader is asked to fill in the 
details. Beginning with the collapsing sum 

n 

I (e - (k - 1)4) = n4 , 
k = 1 

and noting that k4 - (k - 1)4 = 4k3 - 6k2 + 4k - 1, we get 

4· Ik3 - 6 . Ik2 + 4· Ik - I1 = n4 , 

where all the summations run from k = 1 to k = n. Using formulas already 
derived for Ik2 , Ik, and I1, we obtain the equation 

Therefore, 

4 . Ik3 - (2n 3 + 3n2 + n) + (2n 2 + 2n) - n = n4 . 

4 . Ik3 = n4 + 2n3 + n2 

= n2(n 2 + 2n + 1) 

= n2(n + 1f, 
and formula (3) is obtained upon dividing by 4. o 
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The summation formulas (1), (2), and (3) were known to the Greeks, but 
the proofs presented here are modern. The modern approach, using sum­
mation notation, has the advantage of applying equaHy weH to the deter­
mination of formulas for ~)4, ~)S, etc.-sums which the Greeks apparently 
did not consider. The determination of such formulas is left to the reader 
as an exercise. 

§2. Integrals of Quadratics and Cubics 

Many examples of Eudoxus' method of ca1culating integrals are given in 
Chapter 6, but most of them deal with relatively simple linear functions. 
Here are some slightly more complicated applications of the method. 

EXAMPLE I. Ca1culate the integral J6 x 2 dx directly from its definition as 
a limit of sums. 

Solution. We are asked to ca1culate S~ f(x) dx, where a = 0, b = 1, and 
f(x) = x2. Here we have L1x = I/n, Xk = kin, and f(Xk) = P/n2. An appro­
ximating sum for the desired integral is then given by 

Therefore, 

n 

Sn = L f(Xk) L1x 
k= 1 

n(n + I)(2n + 1) [by (2)J 
6n3 

,I x2 dx = Limit Sn = Limit~(1 +~) (2 +~) = ~(1)(2) =~. 0 Jo 6 n n 6 3 

EXAMPLE 2. Calculate the integral So ax2 dx directly from its definition as 
a limit of sums. 

Solution. This is only a slight modification of the preceding example. 
Here we have L1x = n/n, Xk = kn/n, and f(Xk) = ak2n2/n2. 

Sn = f (ak22n2)(~) = a~3 f k2 = an3n(n + I;(2n + 1). 
k = 1 n n n k = 1 6n 
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Therefore, 

f: ax2dx = Limit Sn = Limita~3 (1 + ~)(2 +~) = a;3. 0 

EXAMPLE 3. Calculate the integral Jh ax2 dx by Eudoxus' method. 

Solution. This is treated just like the preceding example except that we 
have t in pI ace of 'lr. It is therefore obvious that the bottom line will read 

rt 2 d .. . . at3 (1 1) (2 1) at3 
Jo ax x = LImIt Sn = LImIt 6 + n + n = 3· 

EXAMPLE 4. Calculate the integral J6 x 3 dx by Eudoxus' method. 

Solution. Here we have 

Therefore, 

S = L 3 -n (k3)(1) 
n k= 1 n n 

-~ ± p 
- n4 k= 1 

n2(n + 1f 
4n4 

[by (3)] 

r 1 3 .. . . 1 ( 1)2 1 ) 1 Jo x dx = LImIt Sn = LImIt 4 1 + n = 4(1 = 4· 

EXAMPLE 5. Calculate the integral J~ x 3 dx by Eudoxus' method. 

o 

D 

Solution. Here are the main steps. The details are left to the reader. To 
save space the index k is suppressed in the summations below. The sum­
mations are understood to run from k = 1 to k = n. 

Since Xk = a + k Llx, we have 

Sn = LX~ Llx 
= Da + k LlX)3 Llx 

= L[a3 + 3a2k(Llx) + 3ak2(Llx)2 + k3(Llx)3] Llx 

= a3(Jx)L1 + 3a2(Llx)2 L k + 3a(Jx)3L k2 + (LlX)4L P. 
Using the fact that Llx = (b - a)/n and using the summation formulas for 
~), Lk, Lk2, and ~)3, we get 

Sn = a3(b - a) + ~a2(b - a)2(1 +~) + ~a(b - a)3(1 + ~)(2 +~) 
1 (1)2 + 4(b - a)4 1 + n . 
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Taking the limit of S" as n increases without bound, we see that 

o 

§3. Geometrie Series and Applieations 

The equation (1 + x)(l - x) = 1 - x 2 is such a simple algebraic identity 
that the most interesting thing about it is rarely noticed. The interesting 
thing is that it comes from a collapsing sumo 

(1 + x)(l - x) = (1)(1 - x) + (x)(1 - x) = (1 - x) + (x - x 2 ) = 1 - x 2 . 

This is about the simplest possible example of a collapsing sumo We should 
ask whether this example generalizes readily and whether the generalization 
is even more interesting. The answer is yes to both questions. 

The immediate generalization is this: 

(1 + x + x 2)(1 - x) = (1 - x) + (x - x 2 ) + (x 2 - x 3 ) = 1 - x 3 . 

And the far-reaching generalization is one of the most important identities 
in mathematics: 

(1 + x + x2 + ... + x")(1 - x) = (1 - x) + (x - x 2 ) + ... + (x" - x"+ 1) 

= 1 - x n + 1. 

The identity is important because from it we get the following summation 
formula (by dividing both sides ofthe identity by 1 - x): 

1 - xn + 1 
1 + x + x 2 + ... + xn = , if x =I- 1. 

1 - x 
(7) 

The series on the left is called a geometrie series and its sum is given in 
equation (7). The resultjust obtained is useful enough to be called a theorem. 

Theorem on Geometrie Series. F 01' a geometrie series the following summation 
formula is valid, proz;ided x =I- 1: 

n 1 _ x n + 1 I x k = __ _ 
k=O 1 - x 

(where XO is understood to be 1). 

The reader should note the difference between the type of series now being 
considered and the type that was considered in Section 1. In Section 1 we 
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found, for example, that 

f k2 = n(n + 1)(2n + 1). 
k=l 6' 

whereas by the theorem just proved (with x = 2) we have 

k=O 

n 1 2n + 1 

" 2k = - = 2n + 1 - 1 
L... 1-2 . 

The reader should be eareful not to eonfuse I2k with Ik 2 • One is a geometrie 
se ries while the other is not. Note also that the formula for the geometrie 
series above is for the sum beginning with index k = O. By subtracting 1 from 
both sides of equation (7) we get an analogous formula where the index k 
begins at 1: 

n X _ xn + 1 I xk =-----,-__ 
k=l I-x' 

x#1. 

EXAMPLE 6. Evaluate the sum 

1 (1)2 (1)3 (l)n 1+ 4+ 4 + 4 + ... + 4 . 

Solution. The sum in question comes from the geometrie series 

n (l)k 
k~O 4 . 

By (7) its sum is 

1-(t)n+l =~_~(~)n ~~ 
I-i 3 3 4 3 

if n is a large positive integer. o 
EXAMPLE 7. Consider the funetion given by f(x) = 1/(1 - x). Find an ap­
proximation of this function given by nonnegative powers of x. 

Solution. Equation (7) says 

1 xn + 1 1 
1 + x + x2 + x3 + ... + xn = -- - -- ~ -­

I-x I-x I-x 

if x ~ O. Therefore, 

--~ 

I-x 

n 

I x\ if x ~ o. 
k=O 

This answer should be eompared to the result of problem 24 at the end of 
Chapter 9. 0 

Here is a dazzling applieation of the use of a geometrie series. It is due to 
Fermat. While the theorem is easy to prove using the fundamental theorem 
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of calculus, Fermat was able to prove it before the fundamental theorem was 
known. The proof demands careful attention, as some details of it are left 
to the reader. 

Theorem (Fermat). Let A be the area beneath the graph 0/ the curve y = tn 

(where n is a positive integer) between t = 0 and t = b. Then A = bn + 1 j(n + 1). 

PROOF. Let x be a positive number just less than 1 and consider the (infinite) 
sequence of numbers 

which subdivide the interval from t = 0 to t = b into infinitely many sub­
intervals. For fixed x, let Ax be the area beneath the staircase built upon 
these subintervals. 

As x -+ 1 - the staircase approximates the curve ever more closely. 
Hence the area A beneath the curve is given by 

A = Limit A x . 
x""'" 1 -

We shall first calculate A x . To do this it is convenient to start at the top 
step and go down, with the top step counted as the O-th step. Then the k-th 
step looks like this. 

height: b"x'" 
width: b(l - xix' 
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The area beneath the k-th step is then bn + 1(1 - x)(xn + 1 )\ and the total 
area Ax (where x < 1) is given by summing, beginning at k = 0: 

Ax = bn+1(1 - x)[1 + x n+1 + (Xn +1)2 + (Xn +1)3 + ... ] 

= bn + 1(1 - X)[ 1 ] (why?) 
1 - xn + 1 

= bn + 1 L ~ ~nX+ 1 ] 

= bn + 1/(1 + x + X2 + ... + X") [by (7)]. 

Therefore, 

A = Limit Ax = Limit b"+1/(1 + x + x2 + ... + x") = bn +1/(n + 1). 0 
x-l- x-l-

PROBLEMS (ÜPTlONAL) 

1. Baseballs are staeked in the form of a pyramid with a rectangular base of 40 balls 
by 36 balls. How many balls are in the pyramid? 

2. Evaluate eaeh of the following sums. 
(a) 1 . 8 + 2 . 9 + 3 . 10 + 4 . 11 + ... + 50 . 57. 
(b) (1/1 . 2) + (1/2 . 3) + (1/3 . 4) + (1/4,5) + ... + (1/99 . 100). 

(e) L:t~1 k3 . 

(d) L:t~1 3k • 

(e) L:t~~ (W· 
3. (a) Prove that D= 1 k4 = n(n + 1)(2n + 1)(3n2 + 3n - 1)/30. 

(b) Use the result of part (a) to ealculate Sb x 4 dx by Eudoxus' method. 

4. Find a formula for IP and use it to ealeulate Sb X S dx. Caution: Keep a cool head. 
This problem ean eause nervous breakdowns. 

5. Apply Eudoxus' method to ealculate eaeh of the following integrals. 

(a) Si (3x3 - 2x 2 )dx. 

(b) S~2(2x3 -7x)dx. 

(e) s~ 1 (x2 - X + 4) dx. 

6. (For those who think they understand infinity) This book has avoided mentioning the 

symbol for infinity until now, beeause the symbol is so easily misunderstood. Test 

whether you und erstand it or not, by explaining why it is natural to write 

L x k = 1/(1 - x), if -1 < x< 1; 
k= 0 

and yet at the same time to write 

f 

L xk #- 1/(1 - x), if x < - 1 or x > 1. 
k= 0 
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7. (a) When did Fermat die? 
(b) When did Newton discover the fundamental theorem of calculus? 
(c) Look again at the theorem of Fermat's proved in the last section. Give a one­

line proof of this theorem by making use of the fundamental theorem of calculus. 

8. (An ambitious project) Geometric series continue to find many surprising applications, 
even to the present day. Yet none could be more charming than the application made 
by Archimedes to effect a quadrature of the parabola. He proved that the area of a 
segment of a para bola is equal to four-thirds the area of its largest inscribed triangle. 
(The factor 4/3 comes from the fact that Ik"= 0 (i)k = 4/3, as seen in Example 6.) 
In modem terminology we may state this result as folio ws : 

Theorem (Archimedes). Let A be the area enclosed between the graph of a linear 
function and the graph of a quadratic function, and let T be the area of the largest 
triangle that can be inscribed in A. Then A = (4/3)T. 

Either (al prove this result through the use of calculus; or (b) look up Archimedes' 
original proof and write a paper on it, sketching the main points. 
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Archimedes 

The mind of Archimedes is modern. Though he was born about 287 B.C., one 
may expect to have difficulty understanding his work unless one knows 
something of the developments in mathematics that took place two thousand 
years later. It may be well to read much of Chapters 1-6, together with 
Chapter 10, before expecting to understand everything in the small sample of 
Archimedes' work that is outlined here in this appendix. 

In his published papers Archimedes characteristically put together his 
ideas with such tight logic that the adjective archimedean came to refer to any 
logical demonstration meeting the very highest standards ofrigor. The reader 
interested in seeing truly archimedean demonstrations is invited to consult 
T. L. Heath, The Works of Archirnedes, Cambridge, 1897 (also available in 
paperback by Dover Publications). This appendix outlines only a few of his 
ideas, and these are given presentations that may be described as casual if 
compared with archimedean standards. 

§1. Archimedes and the Classical Problems 

The three so-called "c1assical problems of antiquity" are as follows. 

(The Trisection Problem) Given an angle, devise a method for constructing 
another angle one-third as large. 

(The Quadrature of the Circle) Given a circ1e, devise a method for con­
structing a square having the same area. 

403 
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(The Duplication of the Cube) Given a cube, devise a method for con­
structing another cube whose volume is twice as large. 

It is probably safe to say that every Greek mathematician worked seriously 
on at least one of these famous problems. It ought to be surprising, therefore, 
that Euclid's Elements gives no account ofthem. 

Why did Euclid not discuss these easily stated, natural problems? The 
reason is simple. Euclid did not know how to do them. Nor did anyone else. 
The construction of the required trisection, quadrature, or duplication eluded 
the efforts of the greatest mathematicians. 

It is important to understand what Euclid meant by a "construction". 
In Euclidean geometry a construction may use a ruler and a compass, but 
nothing else. And the "ruler" can have no distance markings on it, its use being 
only as a straightedge to draw straight lines through points already con­
structed. Using Euclidean constructions, no one was able to solve any of the 
three problems above. 

Archimedes somehow recognized the futility of Euclidean methods of 
attacking these problems, and reacted in a thoroughly modern way. If 
traditional theory proves inadequate to handle the type of thing for which it 
was designed, then something new is needed. 

In asense, it is "obvious" that each of the problems above has a solution. 
For example, it is obvious that there exists a trisection of a sixty-degree angle. 
(An angle of twenty degrees, of course, does the trick.) The whole problem is in 
constructing an angle of twenty degrees from a given angle of sixty degrees 
through the use of ruler and compass alone. Archimedes devised the following 
construction of striking simplicity. 

Given an angle, we may construct a circle whose center 0 lies at the 
angle's vertex : 

On a ruler, or straightedge, mark off two points Rand S the distance 
between which is equal to the radius OQ. Now perform the following trick 
with the straightedge. Keeping the point R on the line through OQ and 
keeping the point S on the circle, manipulate the straightedge until it touches 
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the point P: 

Q 

The angle PRQ is the required trisection of the given angle POQ. The 
proof of this is easy and is left to the reader. Hint. Begin by drawing the 
triangles RSO and SOP and note that they are isoseeles triangles. 

As Arehirnedes pointed out, the eonstruetion just outlined is done with 
ruler and eompass, but it is not a Euelidean eonstruetion. Why is it not a 
Euclidean eonstruetion? 

Arehirnedes' answer to the problem of squaring the eircle resulted in one 
of the most important papers in mathematies. Instead of finding a square of 
the same area as the eircle, Arehirnedes found a triangle, whieh is just as good. 

Archimedes' Quadrature of the Circle. A circle has the same area as a triangle 
whose base is equa! to the circumference of the circle and whose height is equal 
to the radius. 

!>ROOF. Let A be the area of the eircle ofradius rand let B be the area of the 
right triangle with legs of lengths rand C. 

r\AreaA 

UJ,~ 
There are clearly three logieal possibilities: 

(a) A > B, 
(b) A < B, 
(e) A = B. 

c 

To prove (e) Arehirnedes used the prineiple of elimination. He proved 
that neither possibility (a) nor possibility (b) eouid be true. This leaves (e) as 
the only ease not eliminated. 
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Proof that possibility (a) is false. We use the method of reductio ad absur­
dum. Suppose A > B. Then the number B is not equal to A but is only an 
approximation. How can we get a better approximation? That is easy. We can 
approximate the circle as closely as we please by a regular polygon inscribed 
inside, and therefore there is such a polygon whose area P is a better approxi­
mation to A. Then we have 

A>P>B. (1) 

But this leads quickly to a contradiction. Let p denote the length of the 
polygon's perimeter and let r' denote the polygon's "radius" (see the figure 
below). 

It follows that 

P = tr'p (by problem 14, Chapter 2) 

< trC (since r' < rand p < C). 

Therefore, P < trc. But trC = B, so 

P<B. (2) 

Statements (1) and (2) contradict each other. This contradiction arises 
from the supposition that A > B. This supposition is therefore false. Possi­
bility (a) has been proved false. 

Proof that possibility (b) is false. This proof follows closely the lines of 
the proof above, except that a circumscribed polygon approximating the 
circle is brought into play. Suppose that A < B. Then there is a circumscribed 
regular polygon satisfying condition (1) but with the inequalities reversed. 
This leads quickly to a contradiction (the demonstration of which is left to 
the reader), wh ich shows that the supposition A < B must be false. 

By "double elimination" it follows that A = B. D 

In the theorem above, Archimedes teIls us how to construct a triangle 
equal in area to a given circle. However, the construction given is not a 
Euclidean construction. (Why not?) 
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In fact, this theorem occupies only a small (though essential) pi ace in 
Archimedes' ce1ebrated paper on the quadrat ure of the circ1e. The main 
body of the paper is concerned with estimating the numerical value of the 
ratio of the circumference of a circ1e to its diameter. (Today this ratio is 
always denoted by the Greek letter n-the first letter in the Greek word for 
perimeter-but this notation was'introduced only in the eighteenth century 
by Euler.) Archimedes found this ratio to be between 3~? and 3~. The es­
tablishment of such a c10se approximation for n required the display of an 
awesome technique of calculation that involve delicate estimates made from 
inscribed and circumscribed polygons of 96 sides. 

Actually, there existed be fore Archimedes other successful (but not 
Euc1idean) methods oftrisecting angles and squaring circ1es. In fact, a single 
curve-aptly called the quadratrix-could be employed in solving both 
problems, Hippias and Dinostratus had shown how to do this, but at the 
expense of a considerable departure from tradition al methods. 

Like Hippias and Dinostratus, Archimedes did not hesitate to break with 
tradition when tradition prevented hirn from attending his calling. But when 
he broke, he evidently did not like to go further away than he had to. When 
Archimedes found Euclidean constructions inadequate he tried to develop 
adequate constructions that were almost Euc1idean. Happily he found them, 
as we have seen above, even though he also found a single curve-the 
spiral-that could be used to do the same job as the quadratrix. 

In the ca se of the third of the c1assical problems, the duplication of the 
cube, Archimedes offered no new solution. Solutions (using non-Euclidean 
constructions) had already been given by Archytas, Eudoxus, Eratosthenes, 
Apollonius, and others. In modern terms the problem can be stated as follows. 
Given a cube whose sides have length s (yielding a volume of S3), construct a 
cube with sides x whose volume is 2s3 , or twice as large. This means one must 
construct a length x satisfying the equation 

(3) 

where s is given. There are many (non-Euc1idean) ways of doing this. 
Archimedes did something very much harder. Instead ofposing for hirnself 

the problem of solving the simple cubic equation (3), Archimedes tackled the 
analysis of cubic equations in general. Since the Greeks couched all their 
algebra in geometric terms, and since they did not consider negative numbers, 
it would not be said today that Archimedes gave the first complete analysis 
of the general cubic equation. But if it were said, it would not be far wrong. 

As we have seen, Archimedes failed in his attempts to solve the three 
c1assical problems of antiquity through the exc1usive use of Euc1idean 
methods. These are among his few failures, but we now know that they are 
nothing to be ashamed of. No Euclidean method, no matter how ingenious, 
will solve any of these problems. The inadequacy of Euclidean methods in 
this regard was conc1usively demonstrated in the nineteenth century. This 
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demonstration may be found in many undergraduate texts on modem 
algebra, but it is beyond the scope of the present text. 

§2. Archimedes' Method 

When does a seesaw balance? Answer: when the moments on each side are 
equal, the moment being defined as the product of a weight with its distance 
from the lever's fulcrum. This principle is a cornerstone of staties, a branch 
of physics that studies conditions of equilibrium. 

-d1--d2 -

Weight W 1 

Weight W2 

Law ofthe lever: 
The lever is in equilibrium ifw1d1 = W2d2 

This principle was known to the Greeks before Archimedes was born. Yet 
Archimedes was the one to see how this tool could be used to open the way 
toward mathematical physics. He postulated simple axioms about statics, 
from which he proceeded to deduce the law of the lever and much, much 
more. He began investigating, with great success, the problem of finding the 
centroid, or center of gravity, of asolid figure. When he incorporated into all 
this his famous principle of buoyaney (the upward force on an object sub­
merged in water is exactly equal to the weight of the water displaced), he 
invented the science of hydrostaties. Though Archimedes is said to have 
deplored "the whole trade of engineering", he could not have failed to know 
that his work would have practical applications to engineering. Everything 
from the design of more efficient compound pulleys to the design of more 
stable floating vessels is connected with it. 

As impressive as all this might be, there is yet another application of the 
law of the lever that is even more surprising. Archimedes perceived-in 
wh at must be described as a flash of genius-that the lever can be brought 
into play with problems of pure mathematics. While a physical principle 
cannot, of course, be admitted into an archimedean demonstration of pure 
mathematics, a physical principle (or anything else, for that matter) can 
certainly be used to make guesses. And an archimedean guess precedes an 
archimedean demonstration. 

The law of the lever applies only to the physical world, of course. But it 
occurred to Archimedes that there ought to be an analogous law in the 
real m of geometry! Wh at should such a law say? Archimedes began to play 
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with the idea ofbalancing geometric objects against each other. He reasoned, 
for example, that equilibrium would hold in the following situation. 

circle, 
area 1[d2 

Since nxd . d = nd2 . x, equilibrium obtains 

Since a body behaves as if aB its weight is concentrated at its center of 
gravity, the configuration below is essentiaBy the same as the one above, and 
is therefore in equilibrium. (The combined area of the two circles below is 
equal to the area of the square in the picture above.) 

area 1[xd - 1[X2 ......... 1"0'.:..;.0 .... 

Reasoning somewhat as Cavalieri was to do centuries later (see Chapter 6), 
Archimedes concluded that we must have equilibrium in the following 
figure-for each vertical slice through the cylinder is exactly balanced by a 
corresponding pair of horizontal slices in the sphere and cone. 

sphere, 
diameter d 

cone, 
radius d 

and height d 

"""'"40~''''' 

cylinder, 
radius d and 
height d 
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What is all this good for? Archimedes used it to guess the volume of a 
sphere. The volumes of cones and cylinders were weil known already. Since 
the configuration above balances, the law of the lever says that 

(volume of sphere and cone) . d = (volume of cylinder) . ~. 

(The length d/2 is the moment arm of the center of gravity of the cylinder.) 
Dividing by d in this equation shows that 

volume of sphere + volume of cone = t(volume of cylinder). 

Let V denote the volume of the sphere of diameter d. Then by known for­
mulas for the volumes of cones and cylinders the above equation becomes 

1 3 1 3 
V + r td = 2nd , 

from which it follows that 

1 4 
V = -nd3 = -nr3 

6 3' 
(4) 

where r( =td) is the radius. The volume ofa sphere is then given by equation 
(4). 

This is one of several extraordinary balancing acts that Archimedes was 
able to per form. They are all examples of his so-called "method", described 
in his famous letter to Eratosthenes. He emphasized that his method was used 
only to make guesses at what seemed to be plausible. Once he knew the 
likely truth he could prove it by rigorous means, such as the principle of 
double elimination illustrated in Section 1. 

Let us look at just one more example of what a genius can see. In his 
letter to Eratosthenes, Archimedes says 

... judging from the fact that any circle is equal to a triangle with base 
equal to the circumference and height equal to the radius of the circle, I 
apprehended that, in like manner, any sphere is equal to a co ne with base 
equal to the surface of the sphere and height equal to the radius.* 

Archimedes has guessed this cubature of the sphere: 

Sphereof 8 
surface area S ----::-::. ... -T---~--
and radIUs r r Cone of 

___ .1__ _-==--=-.:.:.-=-_ base Sand 
height r 

* From The Method of Archirnedes, pp. 20-21 of the supplement to The Works of Archirnedes, 
edited by T. L. Heath, Cambridge, 1912. 
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If this guess is correct it folIo ws that 

4 3 1 
-nr = -Sr 
3 3 
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from the formulas for the volumes of spheres and cones. Solving this equation 
for the surface area S yields 

(5) 

In this way Archimedes guessed the correct formula (5) for the surface 
area of a sphere. The surface area is exactly four times as large as any great 
circle in the sphere, according to Archimedes. Having guessed the right 
answer he then proved it by completely different means, giving a rigorous 
demonstration to meet his standards. 

As Archimedes once noted on a different occasion, a light touch-if 
properly applied-can move the earth. 

PROBLEMS (OPTION AL) 

1. Prove that Archimedes' trisection technique actually works, as folIows: in the figure 
of Section 1 illustrating this technique, let rt. = angle PRQ, let {J = angle POQ, and 
prove that ß = 3rt.. 

2. (a) Given lengths x and y, outline a Euclidean construction that pro duces the 
length JXY. Hint. Ponder the figure below. What is the length PQ? 

p 

Semicircle with 
diameter x + y 

(b) Devise a way of effecting a quadrature of a rectangle, using only Euclidean 
methods. That is, given a rectangle of sides x and y, construct a square having 
the same area as the rectangle. Hint. Use the result of part (a). 

(c) Devise a way of effecting a quadrat ure of a triangle, using only Euclidean methods. 
Hint. First construct by Euclidean methods a rectangle having the same area 
as the given tri angle. Then use the result of part (b). 
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3. Many references are listed at the end of Appendix 1. Several of them discuss the 
quadratrix of Hippias and Dinostratus. 
(a) Find a book that discusses the quadratrix (also called the trisectrix). 
(b) Be prepared to illustrate in class how the quadratrix can be employed to trisect 

an angle and to square a circle. 

4. Find a book that discusses Archimedes' spiral and be prepared to illustrate in class 
how the spiral can be employed to trisect an angle and to square a circle. 

5. It is impossible to duplicate the cube using only Euclidean constructions. Find a 
way to do it that uses constructions that are "almost" Euclidean. If you need to, 
find and use a book that discusses the Greek attempts to solve the Delian problem 
(as the problem of duplicating the cube was known). 

6. We have already noted (in exercise 10.4 of Chapter 6) that Archimedes found the 
ratio of the volume of a cylinder to the volume of an inscribed sphere. Archimedes 
also found the ratio of the surface area of the cylinder (including its base and top) 
to the surface area of the inscribed sphere. What is this ratio? 

7. Archimedes' "balancing act" described in Section 2 works not only for a sphere 
but also (as Archimedes pointed out) for a segment of a sphere. Only a slight modifi­
cation of the method described in Section 2 is needed to determine the volume of 
this segment of a sphere: 

T ---

lW A segment with height h 
of a sphere with diameter d 

Guess wh at this volume is by using the method of Archimedes. Then verify your 
result by ca1culus. Hint. Let V denote the volume ofthe segment ofheight h pictured 
above. By Archimedes' method of balancing, derive the relation 

(V + ~7rh3)d = (7rd 2h)i. 
Then solve for V. Check your answer to see that it is the same as the integral 

which gives V as the volume of asolid of revolution. 

8. The proof given in Section 1 of Archimedes' quadrature ofthe circle is left unfinished. 
The proofthat possibility (b) is false is left to the reader. Write out this proofin detail. 

9. Write a short essay either ddending or attacking Voltaire's assertion that Archimedes 
is superior in imagination to Homer. 



Appendix 4 
Clean Writing in Mathematics 

Style is like good manners. Its lambent presence is barely noticeable, but 
its absence is conspicuous. Taken in a broad sense, style can be discerned 
almost everywhere. One can speak of style (or its absence) in playing tennis, 
in hosting a dinner party, in presiding over a meeting, in teaching a dass, 
or even-the subject of this appendix-in writing out the solution to a 
problem in calculus. 

In such activities style is characterized by the light touch that draws 
harmony out of imminent disorder and makes difficult things seem easy. 
Everyone hates the burden of unnecessary fuss and bother ; the grace that 
comes from easing this burden is the hallmark of style. In any purposeful 
activity it is style that eases the way. 

Style must be natural because it cannot be affected. Affectation will draw 
attention only to itself, while style would draw attention straightway to the 
goal at hand. 

Style is an outgrowth of education, not a product of it, for style cannot be 
readily taught or learned. It is acquired almost incidentally, like good 
manners, by those who want to please. Yet the final aim of education may be 
the cultivation of a sense for style. 

Finally [out of education], there should grow the most austere of all 
mental qualities; I mean the sense for style. It is an aesthetic sense, based on 
admiration for the direct attainment of a foreseen end, simply and without 
waste. Style in art, style in literature, style in logic, style in practical execution 
have fundamentally the same aesthetic qualities, namely, attainment and 
restraint. The love of a subject in itself and for itself, where it is not the sleepy 
pleasure of pacing a mental quarter-deck, is the love of style as manifested in 
that study . 

... Style, in its finest sense, is the last acquirement ofthe educated mind; 
it is also the most useful. It pervades the whole being. The administrator with 

413 
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a sense for style hates waste; the engineer with a sense for style economises 
his material; the artisan with a sense for style prefers good work. Style is the 
ultimate morality of mind. 

But above style, and above knowledge, there is something, a vague shape 
like fate above the Greek gods. That something is Power. Style is the fashion­
ing of power, the res training of power. But, after all, the power of attainment 
of the desired end is fundamental. The first thing to do is to get there. Do not 
bother about your style, but solve your problem, justify the ways of God to 
man, administer your province, or do whatever else is set before you. 

Where, then, does style help? In this, with style the end is attained without 
side issues, without raising undesirable inftammations. With style you attain 
your end and nothing but your end. With style the effect of your activity is 
calculable, and foresight is the last gift of gods to men. 

Alfred North Whitehead* 

§1. What to Do After Solving a Problem 

Much of this text aims at aiding the reader to acquire the power to solve 
problems. This appendix is not about solving problems, but about what to 
do afterwards. U nless a problem is so easy that its answer is virtually apparent 
at the outset, one '>hould not be content with merely finding the answer. 
One ought to develop a style ofjustifying wh at one believes to be true. 

The tone of that justification should be geared to the expectations of 
those to whom it is addressed. Archimedes aimed at satisfying the highest 
expectations of his most critical fellow mathematicians. 

[Archimedes' deli berate style] suggests the tactics of some great strategist 
who foresees everything, e1iminates everything not immediately conducive to 
the execution ofhis plan, masters every position in its order, and then suddenly 
(when the very elaboration "fthe scheme has almost obscured, in the mind of 
the spectator, its ultimate object) strikes the final blow. Thus we read in 
Archimedes proposition after proposition the bearing of which is not im­
mediately obvious but wh ich we timl infallibly used later on; and we are led 
by such easy stages that the difficulty of the original problem, as presented at 
the outset, is scarcely appreciated. 

T. L. Heath' 

Plutarch must have been right in suggesting that it was only by means of 
the greatest labor that Archimedes' works appear so unlabored. Archimedes 
was willing to put forth any amount of time and effort in his work. He was 
bafHed for years, he teils us, be fore he was able to write some of his papers. 

No one (including the instructor) in an introductory calculus course should 
be expected to meet archimedean standards. But so me standards of clean 

* Presidential address to the Mathematical Association of England, 1916. (Reprinted in The 
Aims of Education, by A. N. Whitehead, Macmillan, 1929, p. 24.) 

t Preface to The Works of Archimedes, Cambridge, 1897, p. vi. 
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exposition can be developed and maintained. Here are a few rules that might 
be considered. 

(1) 00 not slavishly follow any set of rules, even these. 
(2) State clearly wh at information has been given at the outset, and make 

each succeeding step in your reasoning follow from what has gone before. 
(3) If you introduce a symbol such as "x", be sure to indicate what it stands 

for. Your reader may not guess. 
(4) Say exactly what you mean. 00 not, for example, put an "equals" sign 

between unequal quantities. 
(5) Write complete senten ces and punctuate them correctly. Remember 

that an equation is (usually) a sentence. 
(6) By being as concise and as natural as you can, disguise whatever effort 

it may have cost you to attain your goal. Be serious but not solemn. 
(7) When you have completed your argument and have led your reader to 

the end, state your full conclusion in a complete sentence. Then stop 
writing. 

(8) Review what you have written and delete anything irrelevant. 

All of these rules may be condensed into one short Latin phrase: 

Respice finem ! * 
It takes thought and time to produce a clear and concise piece of writing. 

The story is told that Pascal-a master of French prose-once apologized 
at the end of a long letter, saying that he simply had not had time to write a 
short letter. The great mathematician C. F. Gauss told a friend: 

Y C1U know that Iwrite slowly. This is chiefly because I am never satisfied 
until I have said as much as possible in a few words, and writing briefly takes 
far more time than writing at length. t 

But one can write too little just as easily as one can write too much. A 
proper balance must be struck. 

EXAMPLE. Consider the function given by f(x) = x2 - 4x + 2. Find the 
coordinates ofthe highest point on the graph off ifthe domain off is specified 
by the inequality 0 ::; x ::; 3. 

"Solution" by Student O. 

y = x2 - 4x + 2 = 2x - 4 = 0 

2x = 4 

x=2 

* Literally, "Respect your goal!" or "Have a high regard for the final result!" The phrase is often 
understood in its broadest sense, where it expresses a philosophy of life. 

t From a letter by Gauss. as quoted in ffilYs oI Thought oI Great Mathematicial1s. by Herbert 
Meschkowski, Holden-Oay. 1964, p. 62. 
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Remark. Student Dappears to be slavishly following rule 1, for he has 
broken rules 4, 5, and 7. His statement 

x 2 - 4x + 2 = 2x - 4 

adds a touch of algebraic humor to this brief comedy of errors. 

"Solution" by Student C. Ir y = x2 - 4x + 2, then y' = 2x - 4. The deriv­
ative is then equal to zero when 2x - 4 = 0, or x = 2. The point x = 2 is 
then the highest point on the graph of f. 

Remark. Although Student C demonstrates knowledge of a nonalgebraic 
language-and thus appears to be better educated than Student D-his 
attempted solution is still inadequate. For one thing, the point x = 2 is on 
the x-axis and not on the graph of f. 

"Solution" by Student B. To find the highest point, we set the derivative 
2x - 4 equal to zero. We get x = 2. Since f(2) = -2 we have a horizontal 
tangent line to the graph of f at the point (2, - 2). The highest point is there­
fore (2, - 2). 

Remark. Student B has favored us with four informative sentences in­
dicating much knowledge of calculus. But the fourth senten ce does not follow 
from the third, and this breaks rule 2. 

Solution by Student A. The only critical point occurs when x = 2. Since the 
largest value attained by a continuous function must occur at a critical point 
or at an endpoint, we need only glance at the following table to see that (0,2) 
is the highest point on the graph of f. 

Remark. Student A has style. 

my o 2 
2 -2 
3 -1 

Solution by Student A +. Since the second derivative (given by rex) = 2) 
is always positive, the curve f is always concave upwards. Every such curve, 
like every smile, reaches its highest point at one end, and the end points here 
are (0,2) and (3, -1). The highest point on the curve is then (0,2). 

§2. Rewriting 

'This first thing to do is to get there. Do not bother about your style, but solve 
your problem ... " Whitehead's point is weIl taken. Virtually any means of 
solving a problem is legitimate, whether by a calculated method, by eliminat-



2. Rewriting 417 

ing wrong answers, or by pure guesswork. If you are like the author of this 
book, you will make a big mess. You will fill up pages with hastily scrawled, 
illegible handwriting (half of which will be crossed out, being irrelevant), 
you will sketch badly drawn figures (which will not be improved when you 
spill coffee on them), and you will lose your pencil (the one that still had a 
good eraser). Y ou will begin to believe those who say that scientific research 
is the purest example of an essentially comic activity. 

But you leam, after aIl, through play; comic activity serves a serious pur­
pose. Almost miraculously, your playful attempts may begin to give form to 
something new, however dimly conceived. Then your work is reaUy cut out 
for you. What is becoming clear to you must be shown related to things 
familiar to all. It is here, with your end already in mind, that you begin to 
worry about style. 

The chances are that you must rethink your whole project. First you must 
decide for whom you are writing. Are you addressing your instructor and 
classmates, or some wider circle? It is weIl to keep in mind some real or 
imaginary audience. 

What is your goal? Is it to impress your reader with your knowledge, or 
is it to lead your reader to that knowledge? Or do you see your task as offer­
ing the most direct possible justification of some assertion? Your goal will 
determine your style. 

EXAMPLE. A Norman window is in the shape ofa rectangle surmounted by a 
semicircle. If the perimeter of the window is 16 feet, find the dimensions 
maximizing the area. 

Comic Activity. 

11} (LIirr) ~ ~(5~HMWI~ 

'-::; ~ - L/lltt) ( '-/.rr) + ? 

YI1~ &.t. ~~ "'Ji 
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_ ,1t''r - t.fr :;::. b 

-11r - tf'r :: -n 
( -"Ir - <t) r ~ -I ~ 

~~ 

1'- IV L f;.UR.f.K~ r-- ,::. -- "I 

'f .,. 11 

tf - 7.. '1f" - i.{ ~ -1f - 'f ~O 
5- ~ r\ 

tvl~K 

Solution A. Let r be the radius of the semicircle making up the top of a 
Norman window whose perimeter is 16 feet. It follows easily that the rec­
tangular portion ofthe window must be of dimensions 2r by (16 - nr - 2r}/2 
feet. The area A of the window is the sum of the areas of the semicirc1e and 
the rectangle: 

1 
A = 2nr2 + 2r(16 - nr - 2r}/2 

=( -2-~n)r2+16r. 
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This is just a simple quadratic function whose leading term is negative, so it 
attains a maximum at its critical point. To find the critical point we set the 
derivative A' equal to zero: 

2 ( - 2 - ~ n) r + 16 = 0, 

(4 + n)r = 16, 

r = 16/(4 + n) 

~ 2.24 feet. 

To maximize the area, the rectangular portion of the window must be of 
dimensions 4.48 by 2.24 feet, approximately. 

Solution A +. It is no harder to consider the more general problem where 
a fixed perimeter P is specified, and to prove the following theorem. 

Norman Window Theorem. Let P be the perimeter of aN orman window, made 
up of a rectangle surmounted by a semicircle. Then the area of the window is 
maximized if the rectangle has base 2P/(4 + n) and height P/(4 + n). 

PROOF. If r is the radius of the semicircle, it follows by easy algebra that the 
rectangle has these dimensions: 

(*) base = 2r, 

. P - nr - 2r 
helght = -----2 . (**) 

The area A of the w;.ndow is the sum of the areas of the semicircle and the 
rectangle. When these are calculated and combined we get 

( 4+n) ? A = - -2- r- + Pr, 

A'= -(4+n)r+P, 

A"=-(4+n). 

Setting A' equal to zero immediately yields r = P/(4 + n). This gives the 
only critical point, which is a maximum since A" is negative. Substituting 
this value of r into equations (*) and (**) shows that the area A is maximized 
when the rectangle is of dimensions 2P/(4 + n) by P/(4 + n). 0 

§3. Summary 

Like virtually every course taught in the liberal arts, a course in mathematics 
is in part a course in writing. A student cannot leam to think like a mathe­
matician without leaming to write like a mathematician. 
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Style in writing is of little use, however, unless you first have something 
to say. To find something new you must strike out on your own, with a 
willingness to make mistakes, to learn from them, and to laugh at yourself. 
By playing the fool in a comedy of errors, you may find the means to climb 
up to a more serious level. 

What has been discussed in this appendix is the classical sense of style that 
is so weIl depicted by Whitehead. This sense derives to some extent from 
classical mathematics. In modern times other notions about style have arisen, 
the most notable being that style is virtually synonymous with self-expres­
sion. Since everyone agrees that is is fatal to imitate the style of another, many 
believe that style is acquired only by writing away after one's own fashion 
with a proud indifference to any discipline imposed from outside. 

Mathematics was born, however, in a less (or perhaps more) sophisti­
cated time when self-expression was not so important. The purpose of 
education was not then to learn to express yourself; it was to learn to tell the 
truth. And even today, when writing in the discipline of mathematics, you 
may find yourself most squarely standing between the reader and the truth. 
In this austere place there is little room for self-expression. You must get 
yourself out of the way. It is only good manners to bow. 

PROBLEMS (ÜPTIONAL) 

1. Consider the function given by f(x) = 3x2 + 10x + 7. Find the coordinates of the 
highest point on the graph of f if the domain of f is specified by the inequality 
0:::;; x:::;; 3. 

2. A Norman window is in the shape of a rectangle surmounted by a triangle. If the 
perimeter of the window is 16 feet, find the dimensions maximizing the area of the 
rectangular portion of the window. 

3. An athletic field is to be built roughly in the shape of an oval, with a 400-meter track 
as its perimeter. The field is to consist of a rectangle with a semicircle at each end. 
Find the dimensions of the field maximizing the area of the rectangular portion. 

4. In problem 3, find the dimensions of the field maximizing its total area. 

5. What do you think is the final aim of education? What, if anything, does the study 
of mathematics contribute to the attainment of this final aim? 



Tables 421 

Natural Logarithms of Numbers 

N 0 1 2 3 4 5 6 7 8 9 

1.0 0.00000 0995 1980 2956 3922 4879 5827 6766 7696 8618 

1.1 0.09531 *0436 *1333 *2222 *3103 *3976 *4842 *5700 *6551 *7395 
1.2 0.1 8232 9062 9885 *0701 *1511 *2314 *3111 *3902 *4686 *5464 
1.3 0.26236 7003 7763 8518 9267 *0010 *0748 *1481 *2208 *2930 

1.4 0.33647 4359 5066 5767 6464 7156 7844 8526 9204 9878 
1.5 0.4 0547 1211 1871 2527 3178 3825 4469 5108 5742 6373 
1.6 0.4 7000 7623 8243 8858 9470 *0078 *0682 *1282 *1879 *2473 

1.7 0.53063 3649 4232 4812 5389 5962 6531 7098 7661 8222 
1.8 0.58779 9333 9884 *0432 *0977 *1519 *2078 *2594 *3127 *3658 
1.9 0.64185 4710 5233 5752 6269 6783 7294 7803 8310 8813 

2.0 0.69315 9813 *0310 *0804 *1295 *1784 *2271 *2755 *3237 *3716 

2.1 0.74194 4669 5142 5612 6081 6547 7011 7473 7932 8390 
2.2 0.78846 9299 9751 *0200 *0648 *1093 *1536 *1978 *2418 *2855 
2.3 0.83291 3725 4157 4587 5015 5442 5866 6289 6710 7129 

2.4 0.87547 7963 8377 8789 9200 9609 *0016 *0422 *0826 *1228 
2.5 0.91629 2028 2426 2822 3216 3609 4001 4391 4779 5166 
2.6 0.9 5551 5935 6317 6698 7078 7456 7833 8208 8582 8954 

2.7 0.99325 9695 *0063 *0430 *0796 *1160 *1523 *1885 *2245 *2604 
2.8 1.02962 3318 3674 4028 4380 4732 5082 5431 5779 6126 
2.9 1.06471 6815 7158 7500 7841 1881 8519 8856 9192 9527 

3.0 1.09861 *0194 *0526 *0856 *1186 *1514 *1841 *2168 *2493 *2817 

3.1 1.1 3140 3462 3783 4103 4422 4740 5057 5373 5688 6002 
3.2 1.1 6315 6627 6938 7248 7557 7865 8173 8479 8784 9089 
3.3 1.1 9392 9695 9996 *0297 *0597 *0896 *1194 *1491 *1788 *2083 

3.4 1.22378 2671 2964 3256 3547 3837 4127 4415 4703 4990 
3.5 1.25276 5562 5846 6130 6413 6695 6976 7257 7536 7815 
3.6 1.28093 8371 8647 8923 9198 9473 9746 *0019 *0291 *0563 

3.7 1.3 0833 1103 1372 1641 1909 2176 2442 2708 2972 3237 
3.8 1.3 3500 3763 4025 4286 4547 4807 5067 5325 5584 5841 
3.9 1.36098 6354 6609 6864 7118 7372 7624 7877 8128 8379 

4.0 1.3 8629 8879 9128 9377 9624 9872 *0118 *0364 *0610 *0854 

N 0 1 2 3 4 5 6 7 8 9 
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Natural Logarithms of Numbers (Cant.) 

N 0 1 2 3 4 5 6 7 8 9 

4.0 1.3 8629 8879 9128 9377 9624 9872 *0118 *0364 *0610 *0854 

4.1 1.41099 1342 1585 1828 2070 2311 2552 2792 3031 3270 
4.2 1.4 3508 3746 3984 4220 4456 4692 4927 5161 5395 5629 
4.3 1.4 5862 6094 6326 6557 6787 7018 7247 7476 7705 7933 

4.4 1.48160 8387 8614 8840 9065 9290 9515 9739 9962 *0185 
4.5 1.50408 0630 0851 1072 1293 1513 1732 1951 2170 2388 
4.6 1.5 2606 2823 3039 3256 3471 3687 3902 4116 4330 4543 

4.7 1.54756 4969 5181 5393 5604 5814 6025 6235 6444 6653 
4.8 1.5 6862 7070 7277 7485 7691 7898 8104 8309 8515 8719 
4.9 1.58924 9127 9331 9534 9737 9939 *0141 *0342 *0543 *0744 

5.0 1.60944 1144 1343 1542 1741 1939 2137 2334 2531 2728 

5.1 1.62924 3120 3315 3511 3705 3900 4094 4287 4481 4673 
5.2 1.64866 5058 5250 5441 5632 5823 6013 6203 6393 6582 
5.3 1.66771 6959 7147 7335 7523 7710 7896 8083 8269 8455 

5.4 1.68640 8825 9010 9194 9378 9562 9745 9928 *0111 *0293 
5.5 1.7 0475 0656 0838 1019 1199 1380 1560 1740 1919 2098 
5.6 1.72277 2455 2633 2811 2988 3166 3342 3519 3695 3871 

5.7 1.7 4047 4222 4397 4572 4746 4920 5094 5267 5440 5613 
5.8 1.7 5786 5958 6130 6302 6473 6644 6815 6985 7156 7326 
5.9 1.7 7495 7665 7843 8002 8171 8339 8507 8675 8842 9009 

6.0 1.79176 9342 9509 9675 9840 *0006 *0171 *0336 *0500 *0665 

6.1 1.80829 0993 1156 1319 1482 1645 1808 1970 2132 2294 
6.2 1.82455 2616 2777 2938 3098 3258 3418 3578 3737 3896 
6.3 1.84055 4214 4372 4530 4688 4845 5003 5160 5317 5473 

6.4 1.8 5630 5786 5942 6097 6253 6408 6563 6718 6872 7026 
6.5 1.87180 7334 7487 7641 7794 7947 8099 8251 8403 8555 
6.6 1.8 8707 8858 9010 9160 9311 9462 9612 9762 9912 *0061 

6.7 1.90211 0360 0509 0658 0806 0954 1102 1250 1398 1545 
6.8 1.9 1692 1839 1986 2132 2279 2425 2571 2716 2862 3007 
6.9 1.93152 3297 3442 3586 3730 3874 4018 4162 4305 4448 

7.0 1.94591 4734 4876 5019 5161 5303 5445 5586 5727 5869 

N 0 1 2 3 4 5 6 7 8 9 
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Natural Logarithms of Numbers (Cant.) 

N 0 1 2 3 4 5 6 7 8 9 

7.0 1.94591 4734 4876 5019 5161 5303 5445 5586 5727 5869 

7.1 1.96009 6150 6291 6431 6571 6711 6851 6991 7130 7269 
7.2 1.97408 7547 7685 7824 7962 8100 8238 8376 8513 8650 
7.3 1.9 8787 8924 9061 9198 9334 9470 9606 9742 9877 *0013 

7.4 2.00148 0283 0418 0553 0687 0821 0956 1089 1223 1357 
7.5 2.01490 1624 1757 1890 2022 2155 2287 2419 2551 2683 
7.6 2.02815 2946 3078 3209 3340 3471 3601 3732 3862 3992 

7.7 2.04122 4252 4381 4511 4640 4769 4898 5027 5156 5284 
7.8 2.05412 5540 5668 5796 5924 6051 6179 6306 6433 6560 
7.9 2.06686 6813 6939 7065 7191 7317 7443 7568 7694 7819 

8.0 2.07944 8069 8194 8318 8443 8567 8691 8815 8939 9063 

8.1 2.09186 9310 9433 9556 9679 9802 9924 *0047 *0169 *0291 
8.2 2.1 0413 0535 0657 0779 0900 1021 1142 1263 1384 1505 
8.3 2.1 1626 1746 1866 1986 2106 2226 2346 2465 2585 2704 

8.4 2.1 2823 2942 3061 3180 3298 3417 3535 3653 3771 3889 
8.5 2.1 4007 4124 4242 4359 4476 4593 4710 4827 4943 5060 
8.6 2.1 5176 5292 5409 5524 5640 5756 5871 5987 6102 6217 

8.7 2.1 6332 6447 6562 6677 6791 6905 7020 7134 7248 7361 
8.8 2.1 7475 7589 7702 7816 7929 8042 8155 8267 8380 8493 
8.9 2.1 8605 8717 8830 8942 9054 9165 9277 9389 9500 9611 

9.0 2.1 9722 9834 9944 *0055 *0166 *0276 *0387 *0497 *0607 *0717 

9.1 2.20827 0937 1047 1157 1266 1375 1485 1594 1703 1812 
9.2 2.2 1920 2029 2138 2246 2354 2462 2570 2678 2786 2894 
9.3 2.23001 3109 3216 3324 3431 3538 3645 3751 3858 3965 

9.4 2.24071 4177 4284 4390 4496 4601 4707 4813 4918 5024 
9.5 2.25129 5234 5339 5444 5549 5654 5759 5863 5968 6072 
9.6 2.26176 6280 6384 6488 6592 6696 6799 6903 7006 7109 

9.7 2.27213 7316 7419 7521 7624 7727 7839 7932 8034 8136 
9.8 2.2 8238 8340 8442 8544 8646 8747 8849 8950 9051 9152 
9.9 2.29253 9354 9455 9556 9657 9757 9858 9958 *0058 *0158 

10.0 2.30259 0358 0458 0558 0658 0757 0857 0956 1055 1154 

N 0 1 2 3 4 5 6 7 8 9 
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Four-Place Logarithms to Base 10 

10 0 1 2 3 4 5 6 7 8 9 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 
11 0414 0453 0492 0531 0569 0607 0645 0682 0179 0755 
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 

20 3010 3032 3054 3075 3096 3448 3139 3160 3181 3201 
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 

25 3979 3997 4014 4031 4048 4065 4082 4099 4416 4133 
26 4150 4466 4483 4200 4216 4232 4249 4265 4281 4298 
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 
21; 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 
34 5315 5328 5340 5353 5366 5378 5391 5403 5446 5428 

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 
43 6335 6345 6355 6365 7375 6385 6395 6405 6415 6425 
44 6135 6444 6154 6464 6474 6484 6493 6503 6513 6522 

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 
51 7076 7084 7093 7101 7110 7118 7126 7135 7443 7452 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 
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Four-Place Logarithms to Base 10 (Cant.) 

55 0 1 2 3 4 5 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 
76 8808 8814 8820 8825 8831 8837 8842 8848 8851 8859 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 
87 9395 9400 9405 9440 9445 9420 9425 9430 9435 9140 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 
91 9590 9595 9600 9605 9609 9614 9619 9621 9628 9633 
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 
94 9734 9736 9741 9745 9750 9754 9759 9763 9768 9773 

95 9777 9782 9786 9791 9795 9800 9805 9809 9844 9818 
96 9823 9827 9832 9836 981\ 9815 9850 9854 9859 9863 
97 9868 9872 9877 9881 9886 9890 9891 9899 9903 9908 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 



Answers to Selected Problems 

CHAPTER 1 

1. (a) C = (84jW) + 4W. (bl 0 < W. 

3. (a) A = 1200w - 2w2 . (b) 0< w < 600. 

9. (al domain F is 

--.0---, 

1 3 5 

or 1 ~ x ~ 5, x -# 3. range F is 

• 0 . , 
4 7 10 

or 4 ~ Y ~ 10, Y -# 7. 
(b) domain fis 

0 ., 
3 8 

or 3 < x ~ 8. range f is 

• ., 
4 7 

or y = 4 or 7. 

11. (a) No. (b) No. 

13. (a) range Fis 
0 ~ , 
1 

or y -# 1. 
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17. (b) A = 20x - (l/12)x2, 0 < X < 240. 

19. (c) 0 < L < JI2O. 

CHAPTER 2 

1. (f) 2500. 

3. Eureka! 

5. (d) center (0,0), radius J2. 

427 

7. (a) if J8 = 2J2 were rational, it would be equal to some ratio m/n of integers, 
which leads to a contradiction, as folIows: 2J2 = m/n implies that J2 = m/2n = 
a rational number, contradicting the fact that J2 is irrational. 

9. domain 0 < r; range 0< A. 

11. Eureka! 

15. Statement (c) is true. (See the appendix on Archirnedes.) 

21. (c) (For the origin and meaning ofthe word mathematics, see S. Bochner, The Role 
of Mathematics in the Rise of Science, Princeton University Press, 1966, pp. 
22-28.) 

22. No Roman lost his life because he was absorbed in the contemplation of a mathematical 
diagram.-A. N. Whitehead. In mathematics a/l roads lead back to Greece.-Tobias 
Dantzig. 

CHAPTER 3 

3. (a) -6. 
(b) falling. 
(c) x< l 
(d) 

(~, -tl 
(e) -4.5:::;; y:::;; 8. 
(f) -4< y < O. 
(g) -4.5:::;; y. 

5. (a) -1:::;; y:::;; 8. (b) -7 < y < 14. 

7. (4,2). 

9. (This problem is discussed in detail in Appendix 4.) 

11. The wire should be cut so as to make the first part 5OOn/(4 + n) ~ 220 centimeters 
long in order to mimmize the combined areas. 
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13. rex) = Limith~o ((f(x + h) - fex) )/h) = Limith~o ((7 - 7)/h) = Limith~o 0 = O. 

15. 1200 square meters. 

17. (a) y - 1 = 3(x - 1), or y = 3x - 2. (b) Yes. (c) Yes. (d) No, the tangent line 
of slope 3 through (1,1) would be eliminated from consideration in "Holmes's 
method", because it cuts the curve twice. 

18. The derivative of(a) is pictured in (d); the derivative of(b) is (d); of(c) is (g); of(d) is 
(g); of(e) is (h); of(f) is (b); of(g) is (k); of(h) is (j); of(i) is (b); of(j) is (k); of(k) is (k). 

CHAPTER 4 

1. $92.95. 

3. y - 5 = -lO(x - 1). 

5. (a) rising. (b) to the right. 

7. (a) 3. (b) to the left. (c) lowest. 

9. range fis 

11. (a) 

(b) (0,2). 
(c) -2~y~78. 

13. t 

o 

y 

-3 
"2 

y' 

3 
4 

+----4. ..----+ 
-18 18 

y" 

15. The first number should be (-1 + J6i)/3 >::; 2.27, and the second should be >::; 7.73. 

17. 3. 

19. The sides of the cut-out square should be of length (14 - )76)/6 >::; 0.88 meters, 
in order to maximize the volume. 
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21. (d) Distance PQ should be J4i5 ~ 0.8944 miles. 

\ 
p i 

Q 

23. (a) min C occurs when L = .ifI6 ~ 2.52 meters. 

25. 13 by 13 by 13 meters. 

27. (a) approximately 7.30 by 7.30 by 3.65 feet. 
(b) approximately 5.16 by 5.16 by 5.16 feet. 
(c) both radius and height should be ..}160/3n ~ 4.12 feet. 
(d) radius should be approximately 2.91 feet and height 5.82 feet. 

29. (b) The first part should be nA/(4 + n) centimeters long. 

31. (a) 2(x/(x - 6))( (x - 6 - x)/(x - 6)2). (f) (1/2..}XS)(5x4 ). 

41. (Partial answer) the derivative of(a) is (d); the derivative of(j) is (a). 

CHAPTER 5 

429 

1. (a) 100 miles. (b) 50 mi/hf. (c) 40 mi/hf. (d) accelerating. (e) decelerating. 

3. (a) LlA = x(Lly) + y(Llx) + (Llx)(Lly). (b) Llx and Lly must tend to zero since x 
and y are differentiable, hence continuous, functions of 1. 

5. (a) 4(x2 + 7X)3(2x + 7). (c) 3( (x - 2)/(x + 2) )2(4/(x + 2)2). 

7. (a) 11 ft/sec. (b) 23° ft/sec. 

9. 1f- ft/sec. 

11. (dr/dt)!r= 2 = 3/4n in/sec. 

13. (b) F(t) = 1 - (l/t). (This curve F is pictured in (d) ofproblem 25.) The answer is not 
unique, because the function pictured in figure (f) of problem 25 is also an anti­
derivative of l/t2 that takes the value 0 when t = 1. 

15. (a) 80 ft/sec. (b) 80 ft/sec. (c) 62 ft/sec. 

17. The upward speed at impact is Limitr~2.3 - (- 32t - 50) = -123.6 ft/sec. 

19. g(3) = 3. 

23. (b) 208 ft. 

CHAPTER 6 

1. 49 km. 

3. dA/dt = 1/(t + 2). 
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5. 

o 2 

The area is 2 . 4 = 8. 

7. 8 - n square units. (We do not yet know an anti derivative of ~.) 

9. (a) S5 4x dx = Limit Sn = Limit Lk= 1 4(2k/n)(2/n) = Limit(16/n2)(n(n + 0/2) = 8. 

11. (b) 2. 

13. (a) 16n/15 cubic units. (b) 4n/3 cubic units. 

15. 280n/3 cubic units. 

17. (b) Slice 2. 

23. (- 1/2, 15/4). 

CHAPTER 7 

3. (a) 2. (b) O. (c) 1. (d) i. 
5. (a) x cos x + sin x. (b) - sin2 x + cos 2 x. (c) (- x sin x + cos x) cos(x cos x). 

(d) ncosnx.(e) tcos(tx). (f) 2sec2 xtanx. (g) sec3 x + secxtan 2 x. 

7. 

9. 

121.24 ft 

500\ /'Oft 
80 ft 

11. (Show, using techniques of optimization, that the minimum time of travel is half 
an hour.) 
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13. (a) J3/2 square units. (b) t square units. (c) J3 square units. 

15. TTFITFFFFITFFITFfF. 

431 

17. (From problem 16 we have cos 3x = 4 cos3 X - 3 cos x. Differentiate both sides and 
solve for the expression sin 3x. Get it in terms of sin alone, without using cos.) 

19. Al = 7n/12 square units, A2 = n/4 square units, A 3 = n/3 square units. 

21. To maximize the angle, let x equalftOO "" 26.46. 

23. (a) O. (b)~. (c) n. (d) n/2. (e) -~. (f) O. (g) O. (h) 5J2/42. 

25. (Partial answer) The inverse of(a) is (e); the inverse of(e) is (a). 

33. (a) - t2' (b) -(z. (c) 2. (d) -i. 

CHAPTER 8 

3. (Partial answer) (f) No. (g) Yes, H f(x)dx = 10. 

5. (Partial answer) The average of the bounds will be slightly larger than the integral 
Si Oft) dt, since the curve y = l/t is concave up when 1 :::; t :::; 5. 

7. 76/45 "" 1.69. 

9. (a) 161.67. (b) 161.67. 

11. 8 T 2 /3 feet. 

13. (a) 1. (b) n/3. (c) 2. (d) O. 

15. (a) 4. (b) cos3 2. (c) -~. (d) O. 

17. (a) So ItJ dt. 

19. (a) 5/3, -0.099 ... ,2+ sin 1. (b) 43,1 + In(5/3), 2 + sin 5. 

21. (a) I/x. (b) I/x. 

23. (a) n/4 ft. (b) J3 min. 

29. (a) 16,380n ft-lbs. 

31. (9X + ~) cos(3x3 + 4x) - (_1_2 + arctan x) cos(x arctan x) 
x l+x x 

CHAPTER 9 

1 
+ "2 (sin(x arctan x) - sin(3x3 + 4x)). 

x 

1. 52.5 + 481n 4 "" 119.042 square units. 

3. (a) 1. (b) 1. (c) Inl0. (d) Ifln 10. (e)~. (f) In5. (g) -1/(2In2). 
(h) 1/(2 In 2). 
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7. The only critical point is at x = - 1, and the only inflection point is at x = - 2. 
As x runs through large negative values, e" tends to zero. So does xe". 

11. (a) (- 20/7)(1n 2)(t)'/35. (c) 5(3 + cos t)s'(1n(3 + cos t) - (t sin t/(3 + cos t))l. 

13. (a) tn(e2 - 1). (b) tn(e2 - 4e + 5). (c) n In 2. (d) 99n/(2In 10). 

15. (a) $2013.75. (b) $1448.21. (c) In 15.69 years. 

17. 707. 

19. after 11.4 days. 

21. 144.6 grams. 

23. (a) %+x ~ 5 + /ox - I0100X 2 + so.boox3. 

(b) J28 ~ 5.29154. (Correct value is 5.29150 ... ) 

25. Your answer should be the same as that obtained from (74) by differentiation. 

27. (a) dy/dt = k(y - 20), where y is the temperature in degrees Celsius of the metal 
ball, and k is the negative (why?) constant of proportionality. 

(b) y = 20 + 160d". (d) 50.625°C. (e) when t ~ 8.39. 

CHAPTER 10 

1. The area of the large square is equal to the sum of the areas of four congruent right 
triangles and the area of a small square whose sides have length a - b. Therefore, 
4{tab) + (a - b)2 = area of large square = c2, from which it follows by simple 
algebra that a2 + b2 = c2. 

3. 2 square units. 

9. (a) x = -c/b. 

11. (a) The fence along the road should be )800/13 ~ 7.845 m. and the depth of the 
fenced-in area should be ~ 12.748 m. (b) approximately 7788 square meters. 

13. 4nr3/3.[3 cubic units. 

15. 32nr3/81 cubic units. 

17. 6.[3 inches. 

19. 26 ft. 

21. Swimmingdirectly across is the quiekest way. 
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25. Yes. (For help, see problem 28 at the end of Chapter 7.) 

27. (b) 40 :::; C < 58. 
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29. (a) 68 ft. from the ground. (b) approximately 1.802 seconds after it is released. 
(c) 97.65 ft/see downwards, approximately. 

31. 64 ft/see. 

33. (a) 12/n ern/sec. (b) 3/4n ern/sec. (e) 3/16n ern/sec. 

35. (b) -13:::; y :::; 13. 

37. 

1 
2 
3 

s ds/dt 

16,fi 
o 

-16,fi 

-32,fi/3 
-25.6 
-32,fi/3 

41. S~ x 3 dx = Limit D= 1 (kt/n)3(t/n) = Limit(t4 /n4 ) D= 1 k3 = Limit(t4 /n4 )(n2(n + 
1)2/4) = t4 /4 

45. x 

0 
1 
2 
3 

47. (b) Yes. (e) No. 

49. (e) /3. 

y 

0 

y' y" 

3 -4 
0 -2/e 

-1/e4 4/e4 

0 2/e9 

53. (a) Ijln n. (b) ein. (e) In 3. (d) In4. 

57. in about 5.94 months. 

(rising, eoneave down) 
(Ioeal maximum) 
(falling, eoneave up) 
(loeal minimum) 

63. It is one of the rarest gifts to be able to hold a view with conviction and detachment at 
the same time. Philosophers and scientists more than other men strive to train them­
se/ves to achieve it, though in the end they are usually no more successful than the 
layman. Mathematics is admirably suited to foster this kind of attitude. It is by no 
means accidental that many great philosophers were also mathematicians.-Bertrand 
Russell. 
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