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Initial Conditions

OPEN A FEW CALCULUS
BOOKS, AND YOU'LL SEE
SOMETHING STRANGE:
THEY ALL LOOK ALIKE!

Qlél—l... ALL THOSE A

FORMULAS... CALCULUS
15 BASED ON SOME
BEAUTIFUL IDEAS,
BUT THE PAYOFF 15
IN THE FORMULAS!
THIS BOOK WILL BE
FULL OF ’EM, TOO...
SORRY!

\_

/

50 HERE AND NOW I OFFER AN IRONCLAD
GUARANTEE: THIS ¢ALCULUS BOOK WILL BE

DIFFERENT!!

THE SAME PAGEFULS OF
FORMULAS, THE sAME
SET OF TOPICS, MOST-
LY, AND EVEN THE SAME
FONT! THEY ALL WEIGH
A TON, TOO...

ON THE OTHER HAND, T WANT TO USE MY
PEN TO EXPLAIN THE BRILLIANT AND ELEGANT
THINKING BEHIND ALL THOSE EQUATIONS...

FOR ONE THING, IT
DOESN'T WEIGH VERY
MUCH... PLUS, JUsT

LOOK AT THE FONT!

P




Chapter -1
Speed, Velocity, Change

BASIC IDEA #1

CALCULUé 15 THE MATHEMATICS OF CHANGE, AND CHANGE 15
MYSTERIOVUS. SOME THINGS GROW IMPERCEPTIBLY... OTHERS ZOOM...
HAIR GROWS SLOWLY AND 15 SUDDENLY CUT... TEMPERATURES RISE
AND FALL... SMOKE CURLS THROUGH THE AIR... PLANETS WHEEL
THROUGH SPACE... AND TIME, TIME NEVER STOPS...




THINK HARD ABOUT CHANGE, AND YOU MAY REACH SOME PRETTY STRANGE CONCLUSIONS. IN
ANCIENT GREECE, FOR EXAMPLE, ZENO OF ELEA THOUGHT ABOUT CHANGE AND CONVINCED
HIMSELF THAT MOTION 15 IMPO%SIBLE. HE REASONED LIKE 50:

AL MOTION 15 A CHANGE OF
( ) POSITION OVER TIME.
~ \X

AT ANY INSTANT, NO
CHANGE OF POSITION
TAKES PLACE.

THEREFORE, THERE

BUT TIME 15 A
CAN BE NO MOTION SUCCESSION OF
AT ANY INSTANT. INSTANTS.

THEREFORE,
MOTION NEVER
TAKES PLACE!

{4 3
DU

——
P alalanin T 2

DID 1 GET
OVER HERE?

. —




EVEN TIME
MOVES... IT'S
50 WEIRD...

1SAAC NEWTON AND
GOTTFRIED LEIBNIZ
LOOKED AT THE PROBLEM
THIS WAY: EVEN THOUGH
A MOVING CANNONBALL
GOE5 NOWHERE IN AN
INSTANT, STILL IT HAS
SOMETHING THAT
INDICATES MOTION.

IN THE LATE 16005, ROVGHLY 2,000 YEARS AFTER ZENO,
TWO OTHER 6UYS HAD A DIFFERENT IDEA.

ACTUALLY, I HAD THE YOU TOOK THE WORDS
IDEA AND YOU $TOLE IT! RIGHT OUT OF MY MOUTI-I

WHAT IT HAS 15 VELOCITY, A NUMBER. YOU MIGHT SAY THAT EVERY OBJELT CARRIES AROUND
AN INVISIBLE METER THAT READS OUT THE OBJECT'S SPEED AND DIRECTION AT ALL TIMES.

oH, NOW r'm
BEGINNING TO SEE...

IN OTHER WORDS, WE CAN IMAGINE
THAT EVERYTHING HAS A SORT OF
SPEEDOMETER, JUST LIKE THE ONE
IN A CAR (EXCEPT THAT THIS $PEED-
OMETER INDICATES DIRECTION TOO).




A PRETTY SHARP IDEA FOR NEWTON AND
LEIBNIZ TO HAVE HAD, CONSIDERING THAT
SPEEDOMETERS WOULDN'T BE INVENTED

FOR ANOTHER 200 YEARS YET...

WHAT’S A
SPEEDOMETER?

HOW DID OUR TWO
GENIUSES GET THE
IDEA? TO ANSWER
THIS, LET’S EXPLORE
A CAR’S SPEEDOMETER
READING.

ACTUALLY, WE WANT A VELOCIMETER, NOT A SPEEDOMETER. A VELOCIMETER LOOKS JUST
LIKE A SPEEDOMETER, EXCEPT THAT IT ATTACHES A MINUS SI6N TO THE SPEED WHEN THE
CAR 15 BACKING UP. VELOCITY 15 THE NEGATIVE OF THE SPEED WHEN YOU 60 IN REVERSE.

FORSOOTH!




TO APPRECIATE THE DIFFERENCE BETWEEN SPEED AND VELOCITY, IMAGINE A CAR MOVING FORWARD
FOR ONE HOUR AT A STEADY RATE OF 50 KM/HR, THEN TURNING AROUND AND COMING BACK (IN
A “NEGATIVE DIRECTION”) FOR ANOTHER HOUR AT THE SAME SPEED.

20 20 40 50
THE SPEED 15 ALWAYS 50 KM/HR, AND THE CAR THE AVERAGE SPEED 15 THE TOTAL
TRAVELS A TOTAL DISTANCE OF 100 KM: 50 KM DISTANCE DIVIDED BY THE TIME.

GOING OUT AND 50 KM COMING BACK. THE DISTANCE
15 THE SPEED TIMES THE ELAPSED TIME: TOTAL DISTANCE

SPEED,, =
ELAPSED TIME
TOTAL DISTANCE = SPEED - ELAPSED TIME
100 KM

= (50 KM/HR)-(2 HR) * T - 20w

= 100 KM
BUT IN TERMS OF VELOCITY, THE ¢AR IT5 AVERAGE VELOCITY 15 THE CHANGE OF
MOVES AT 50 KM/HR THE FIRST HOUR, AND POSITION DIVIDED BY THE ELAPSED TIME.

AT =50 KM/HR THE SECOND HOUR. THE
TOTAL CHANGE OF POSITION |5 ZERO—

CHANGE OF POSITION
THE CAR ENDS WHERE IT STARTED! Uy =

ELAPSED TIME QUITE A
DIFFERENCE!

5AY, WHERE'D YOU COPIED YOU. IN THIS CASE,
LEARN TO DRIVE?
O KM
Vy = —— = KM/HR
M2 uR O xum




IN SYMBOLS: IF t, AND t, ARE ANY TWO NOW WE NEED A BETTER DRIVER—5OMEONE
TIMES, AND AN OBJECT 15 AT POSITION WITH A STEADIER FOOT—5%0 LET'S PUT MY
S, AT TIME t, AND AT POSITION s, AT FRIEND DELTA WYE BEHIND THE WHEEL...
TIME t,, THEN THE OBJECT'S AVERAGE
VELOCITY OVER THE TIME INTERVAL
BETWEEN t, AND t, 15

S2 - 5
Wy = T—F

t, -t
OR

S;-51 = U (E-t)

=
WHAT DOES IT MEAN WHEN DELTA'S VELOCIMETER READS 100 KM/HR? FOR ONE THING, IT MUST
MEAN THAT IF SHE WERE TO HOLD HER VELOCITY PERFECTLY STEADY, THEN SHE WOULD 60
100 KM IN ONE HOUR, RIGHT? (PELTA HAS MOUNTED A (LOCK ON THE ROOF FOR CLARITY.)

I ARRIVE HERE "
AT ONE O'CLOCK!

IF T START HERE
AT NOON...

AND WE'D 60 200 KM IN t,- ¢, P
2 HOURS, 50 KM IN HALF AN ] (HOURS) (KILOMETERS)
HOUR, 100t KILOMETERS IN

t HOURS... A FORMULA THAT ER... LOGICAL, 10 1000
SHOULD WORK EVEN FOR I 6UESS... 9 900
SHORT TIME INTERVALS. —— 5 500

AT A PERFECTLY STEADY 1 100

100 KM/H:?, DELTA 60ES 05 50

1 KM IN % HOUR (36 SEC- 04 10
OND5), 0.1 KM IN 0.001 HOUR 0.01 f

(3.6 SECONDS), AND 0.001 KM, 0.001 o1

ONE METER, IN 0.00001 HR, 0.0001 0.01

OR 0.036 SECONDS. 0.0000001 0.00001




THAT'S |F THE VELOCITY REMAINS PERFECTLY STEADY... BUT IN THE REAL WORLD, VELOCITY
CHANGES AS A CAR 5LOWS DOWN AND SPEEDS UP. WHAT DOES THE READING MEAN THEN?
(NOW SHE’S ADDED A VELOCIMETER UP TOP AS WELL.)

VELOCITY = O - VELOCITY » VELOCITY

. HIGH T ) . LOWER

SLOWING
POWN

THE ANSWER 15 A LITTLE SUBTLE: YOU'VE SURELY NOTICED THAT OVER A VERY SHORT TIME
PERIOD, A sPEEPOMETER DOESN'T CHANGE MUCH. EVEN IF YOU FLOOR IT, v 15 NEARLY
CONSTANT OVER A TIME SPAN OF, SAY, 1/500 SEC. A PHOTO TAKEN WITH A SHORT EXPOSURE
WOULD SHOW A VELOCIMETER IMAGE WITH VIRTUALLY NO BLUR.

WHAT’S A
PHOTO?

THIS WAS NEWTON’S AND LEIBNIZ'S

Basic Idea:

CALCULATE THE RATIO (s,-5))/(t,-t;)
OVER A VERY SHORT TIME INTERVAL. FOR
ALL INTENTS AND PURPOSES, THIS RATIO 15
THE VELOCITY AT TIME &, (AND ALSO AT t,,
THEY'RE 0 CLOSED).




TO PUT IT ANOTHER WAY, A BODY’S INSTANTANEOUS VELOCITY 15 CLOSELY APPROXI-
MATED By (s,-51)/(t,-t;) WHEN £,-¢£, 15 SMALL. (YOU MIGHT WONDER HOW
NEWTON AND LEIBNIZ THOUGHT THEY MIGHT ACTUALLY MEASURE A CHANGE OF POSITION
OVER A TIME INTERVAL OF, 5AY, 0.00001 $EC., BUT NEVER MIND THAT!)

ARRHEFFF!
IT’S THE
PRINCIPLE

OF THE

THING...

BUT NEWTON AND LEIBNIZ WANTED MORE THAN AN APPROXIMATION: THEY WANTED THE
VELOCITY’S EXACT VALUE... AND WHAT’S MORE, THEY SHOWED HOW TO GET IT! FORGET
MEASUREMENT: THEY USED MATH, A NEW KIND OF MATH THEY INVENTED ESPECIALLY FOR
THE PURPOSE.

CEND
AND WE'LL CALL ey
IT FLUXIONS! & .,

WE ¢ALL IT CALCULVS.




IF A BODY’S POSITION DEPENDS ON TIME ACCORDING TO SOME FORMULA, THEN CALCULUS
POPS OUT A NEW, EXACT FORMULA FOR THE VELOCITY AT ANY TIME.

THIS SEEMED 50 MAGICAL THAT MORE THAN A FEW PEOPLE FOUND IT SUSPICIOUS... WEIRD...
BASED ON STRANGE, UNFOUNDED ASSUMPTIONS... SOMEHOW... WRONG...

YOU'RE ALMOST
DIVIDING BY ZERO!

(LEIBNIZ'S APPROACH SEEMED ESPECIALLY FISHY: HE WAS HAPPY TO
DIVIDE ONE THING BY ANOTHER NOT ONLY WHEN THE QUANTITIES
WERE SMALL, BUT ALSO WHEN THEY WERE “INFINITELY SMALL” BUT

NOT ZERO, WHATEVER THAT MEANT.)
- ZN . .
4 \ o s - . i, -
. V7R PERN . TR
PR




FISHY FOUNPATIONS OR NOT, CALCULUS WORKED, AND IT WORKED BEAUTIFULLY. IT WAS
AMAZINGLY EFFECTIVE. IT PRODUCED RESULTS!

MANY,
MANY, MANY
RESULTS...

50 PEOPLE PUT CALLULUS TO WORK... NOT ONLY N ASTRONOMY,
FINDING VELOCITIES, BUT ALSO THE RATE OF CHANGE COMMUNICATIONS,
OF ALL KINDS OF FLUCTUATING QUANTITIES. CALLULUS ELECTRICITY, BIOLOGY,

1 USEV EVERYWHERE! ~ (| CHEMISTRY, MECHANICS,

] STATISTICS, COMPUTER

SCIENCE, PSYCHOLOGY,
ECONOMICS...

POPULATION
DYNAMICS...

EVENTUALLY, THEY EVEN FIXED THE FOUNDATIONS, MORE OR LES5... UNFORTUNATELY, WE
LACK THE SPACE TO EXPLAIN FULLY HOW THIS WAS PONE, OR TO DESCRIBE THE TROUBLE-
SOME 155UES RAISED BY CALCULUS... LET'S JUST SAY THAT SOME OF ZENO'S SUBTLETIES
REMAIN A CHALLENGE TO THIS DAY...

HEY, MAN,
YOU WORRY
TOO MUCH!

YEAH, C’MON!
WHATEVER




Chapter 0
Meet the Functions

IN WHICH WE LEARN SOMETHING ABOUT RELATIONSHIPS

Wc BEGIN WITH ONE OF THE MO5T BEAUTIFUL AND
FRUITFUL IDEAS OF MODERN MATHEMATICS: THE
FUNCTION. EVERYTHING IN THIS BOOK WILL BE
ABOUT FUNCTIONS. 40... WHAT’S A FUNCTION?

UM... I

WHOOF! T THOUGHT
6UESS T AM?

YOU SAID FRUITFUL
AND BEAUTIFUL!

"



A FUNCTION 15 A SORT OF INPUT-OUTPUT DEVICE Or NUMBER-PROCES50R. A FUNCTION
(CALL IT £) EATS AND SPEWS NUMBERS IN A SPECIFIC WAY. FOR EACH NUMBER EATEN (CALL IT x),
f OUTPUTS A SINGLE, UNIQUE NUMBER, f(x), PRONOUNCED “EFF OF ECK5.” f I5 LIKE A RULE
THAT TRANSFORMS X INTO £(x). IN 60ES x, OUT CLOMES f(x).

PON'T WORRY... IT’%
CLEAN, ABSTRACT,
NUMERICAL OUTPUT...

IF YOU DPON'T LIKE YOUR OUTPUT FLOATING AROUND IN THE AIR LIKE SWAMP 6AS, THEN
THINK OF NUMBERS AS LYING ALONG A LINE. IN THAT CASE, YOU CAN IMAGINE A FUNCTION f
EATING NUMBERS FROM ONE LINE AND MERELY POINTING TO THE CORRESPONDING OUTPUT

VALUES ON THE OTHER LINE.

MARGINALLY
LESS 6RO%S...

12



FOR EXAMPLE, A CAR'S POSITION s 15 A FUNCTION OF TIME t. YOU ¢AN THINK OF s A%
READING TIME (OR EATING IT AS INPUT!) FROM A TIMELINE AND POINTING TO THE CAR’S
POSITION s(t) ON THE TRACK.

ATMOSPHERIC PRESSURE AS A SPHERICAL BALLOON INFLATES, ITS VOLUME
DEPENDS ON ALTITUDE: 15 A FUNCTION OF THE RADIUS. EACH RADIVS r
AT EACH ALTITUDE A, DETERMINES A UNIQUE VOLUME V(r).

THERE 15 A DEFINITE
PRESSURE P(A). THE
FUNCTION P EATS ALTI-
TUDE AND OUTPUTS
PRESSURE.

THE WORLD 15 FULL
OF FUNCTIONS!

PON'T TALK
WITH YOUR
MOUTH FULL.

ON A STRAIGHT MOUNTAIN TRAIL, ALTITUDE 15 A
FUNCTION OF POSITION ALONG THE TRAIL. EACH
POSITION x HAS A UNIQUE ALTITUDE A(x).

AC) l

12



IN THE EXAMPLE OF THE SPHERICAL BALLOON, THE VOLUME FUNCTION V WAS CALCULATED
FROM THE RADIUS r BY MEANS OF A FORMULA:

4mr?
V) = —= CUBE THIS AND
MULTIPLY THE CAN T USE A
RESULT BY (4n/3)! | CALCULATOR?

TO FIND THE VOLUME AS$SOCIATED
WITH A PARTICULAR RADIUS, SAY
r = 10, WE INPUT, OR PLUG IN,
THAT NUMBER IN PLACE OF r:

4m(10y° _ 4000 _
3 3
4,188.79...

vQ0)

"

r

(THE SI6N “ =" MEANS “I%
APPROXIMATELY EQUAL TO.”)

IMPORTANT: THE LETTERS WE AS5I6N TO THE FUNCTION AND VARIABLE DON'T MATTER!
HERE ARE THREE FORMULAS THAT ALL DEFINE THE SAME FUNCTION BECAUSE THEY PRODUCE
THE SAME OUTPUT FOR ANY GIVEN INPUT. THEY ALL DESCRIBE THE SAME RULE.

3

vir = 4T
3

47rt?

f(t) = —
3

4’

w) = —
9 3

WHAT'S IN |\ /ON'T MIND TF T CALL

NOTHING! 50 YOU R
YOU “MELONHEAD™?... | £/ -

14




HERE 15 A SLIGHTLY MORE COMPLICATED

EXAMPLE. SUPPOSE h 15 GIVEN BY THIS x h(x)
FORMULA:

hoo = Va2 -1
WE COMPUTE A FEW VALUES...

Ay = Vi2o1 =0

h2) = V22-1 = V3

hVs)=vV5-1 =12

ETC...

AND COMPILE A LITTLE TABLE. IT’S
FULL OF GAPS, BUT YOU (AN FILL IN
MANY MISSING VALUES... EXCEPT...

WHEN X 15 BETWEEN -1 AND 1, THE EXPRESSION INSIDE THE SQUARE ROOT SI6N 15
NEGATIVE: x%-1 < O. IN THAT ¢ASE, h(x) 15 UNDEFINED, BECAUSE NEGATIVE NUMBERS
HAVE NO (REAL) SQUARE ROOT. EVERY INPUT ACCEPTED BY h MUST HAVE A VALUE EITHER
21 0OR < -1. NOTHING ELSE 15 ALLOWED!

AK! IT’S A
DEAD ZONE!

GIVEN ANY FUNCTION, ITS
DOMAIN 15 THE SET OF
ALL NUMBERS WHERE THE
FUNCTION 15 DEFINED. A

FUNCTION f WILL ACCEPT
INPUTS ONLY FROM WITHIN
ITS DOMAIN.

ANYTHING
ELSE 15
INDIGESTIBLE!

15



WE USUALLY DESCRIBE A FUNCTION’S DOMAIN IN TERMS OF INTERVALS OF NUMBERS.
GIVEN ANY TWO NUMBERS a AND b, WITH a<b, WE USE THIS NOTATION:

(a, b), THE OPEN INTERVAL BETWEEN [a, b], THE CLOSED INTERVAL BETWEEN
a AND b, MEANS ALL THE NUMBERS a AND b, MEANS ALL THE NUMBERS LYING
LYING BETWEEN a AND b EXCLUDING BETWEEN a AND b INCLUDING THE
THE ENDPOINTS a AND b. ENDPOINTS.
a b a b
— R ———— —— ) —————
(a,b) 15 ALL x WITH a<x<b [a,b] 15 ALL x WITH a<x<b

AN “INFINITE INTERVAL” REFERS TO ALL THE NUMBERS GREATER THAN SOME NUMBER c. WE
WRITE THIS AS [c, ©0) IF c 15 INCLUDED AND (c, ©0), IF NOT. SIMILARLY, ON THE LEFT ARE
(-00, d ] AND (-00, d). THE INFINITY 516N 0O DOES NOT REPRESENT ANY NUMBER; IT'S
SIMPLY A CONVENIENCE TO BE USED IN SITUATIONS LIKE THIS. IT 15 NEVER INCLUDED IN ANY
INTERVAL, BECAUSE 15 ISN'T A NUMBER!

d c
III-—) T T ﬁ-lll
(-00,d) 15 ALL X WITH x < d [c,00) 15 ALL X WITH ¢ < x

IN TERMS OF INTERVALS, THEN, THE POMAIN OF THE POMAIN OF g(x) = -:2 15 ALL x # 0.

h(x) = Vx%-1 15 EVERYTHING OUTSIDE (PIVIDING BY O 15 FORBIDDEN.)
THE INTERVAL (-1, 1).

THE DOMAIN OF P(x) = x*+ 3 15 ALL
REAL NUMBERS WITHOUT RESTRICTION.

16



NOW RETURN TO OUR IMAGE OF A FUNCTION PICKING UP INPUTS FROM ONE NUMBER LINE AND
POINTING TO OUTPUTS ON ANOTHER NUMBER LINE.

fla)

IF WE LIKE, WE ¢AN LET THE FUNCTION’S CARTOON BODY FADE AWAY AND CONCENTRATE ON
THE ACT OF POINTING.

IN THIS VIEW, A £(d) IT'S THE
FUNCTION 15 $IMPLY : - T
A COLLECTION OF oV
ARROWS POINTING 1 Ba())
FROM ONE NUMBER
LINE TO ANOTHER. .
A SINGLE ARROW

EMERGES FROM b " N
EACH x IN THE fle
DOMAIN OF f AND

POINTS TO THE ¢

VALUE f(x). d
X

f(a)

17




NOW LET’S PLAY WITH

WM... WHAT IF I
THOZE ARROWS. TURN ONE OF THESE

LINES SIDEWAYS?

WHEN THE FIRST LINE, OR AXIS, 15 TURNED SIDEWAYS, WE CAN VIEW A FUNCTION A5 A GRAPH.
THE INPUTS x ARE ON THE HORIZONTAL AXIS, THE OUTPUTS y ARE ON THE VERTICAL AXIS,
AND ABOVE (OR BELOW) ANY POINT a ON THE x-AXIS WE PLOT A POINT (a, f(a)), WITH
Y-COORDINATE EQUAL TO THE VALUE OF THE FUNCTION f AT a.

NOTE THAT THE

THE GRAPH ARROWS ARE
y = f00 STILL LURKING IN
THIS PICTURE!

-------4 8

(a, f(a))

THE CURVE CONSISTS OF ALL POINTS (x,y) WITH y = f(x), A PHRASE WE ABBREVIATE
BY AYING “THE GRAPH y = £(x).”

18



HERE ARE SOME SIMPLE EXAMPLES.

fx) = x g(x) = 2x
3 |— 3
4
2 2 3 //' 3
! —t 2 2 .
0 || © ="
0 j—l 0 . ;
_1 —-— ‘1 1 1
-2 f——l o2 P
D | — -3 -3 \ -3
4 A | 4 -4 \ L -4
ARROWS GRAPH ARROWS GRAPH
h() = x*
THAT ARROW
) 4
4 / f 4 THING CAN
3 3 3 GET AWFULLY
2 2 MESSY...
1 1 r2
o o .y
-1 -1
-2 -2 : ¢ ¢
3 | 3 -2 A 1
ARROWS GRAPH

F(x) = THE LARGEST INTEGER (WHOLE NUMBER) < X,
SOMETIMES WRITTEN [x]. (50 [5] = 5, [6.7] = &,

[-1.6] = -2, [-03] = -1, ETC.

-1

ARROWS

vy

THIS LAST WAS AN EXAMPLE OF A
FUNCTION THAT HAS NO FORMULA
IN THE USUAL SENSE.

r60 PURE! 50

ABSTRACT! 5O
NUMERICAL!

I HATE TO TELL A
YOU THIS, GONICK,
BUT IT COMES UP

IN PHYSICS.

GRAPH

19




Add, Multiply, Divide

FUNCTIONS CAN BE COMBINED IN VARIOUS WAYS, JUST AS NUMBERS CAN. IF f AND g HAVE
OVERLAPPING DOMAINS, WE CAN ADD, MULTIPLY, AND DIVIDE THE FUNCTIONS WHEREVER THEY

ARE BOTH DEFINED. THIS PROPUCES NEW FUNCTIONS f + g, £g, AND f/g (A5 LONG AS WE'RE
CAREFUL NEVER TO DIVIDE BY ZERO).

WANT TO

(f +9)(x) = f(x) + g(x) COMBINE

(f9)(x) = f(x)g(x)
(f/9)(x) = f(x)/g(x) EXCEPT WHERE g(x) = O.

THE GRAPH OF f + g CAN BE BUILT THE DIFFERENCE BETWEEN TWO FUNCTIONS
FROM THE GRAPHS OF f AND g BY (AN BE VISUALIZED AS THE DIRECTED DISTANCE
ADPING THE y-COORDINATES AT EACH BETWEEN THEIR GRAPHS.

POINT x IN THEIR COMMON DOMAIN.

y = f(x) »

fF(x)-gx) <O
f(x)-gx) >0

%,

y=9g(x)

IN GENERAL, THE GRAPHS OF
PRODUCTS fg AND QUOTIENTS f/g
ARE NOT 50 EASILY SEEN IN TERMS
OF f AND g. USUALLY THEY MUST
BE CALCULATED POINT BY POINT.

SOMETIMES IT’S NOT
TOO BAD, THOUGH...

y =xsinx
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 The Elementary Functions

NOW THAT WE'VE COVERED SOME BASIC IDEAS ABOUT FUNCTIONS, LET’S REVIEW A FEW
COMMON EXAMPLES, FUNCTIONS TO WHICKH WE WILL REFER THROUGHOUT THE REMAINDER
OF THIS BOOK.

\.

S YOU LOOKED
R 50... DIFFERENT
- Y IN PRE-CALL!
-

THESE FUNCTIONS ARE
CALLED ELEMENTARY
FUNCTIONS, BECAUSE,
LIKE CHEMICAL ELEMENTS,
THEY (AN BE COMBINED
IN AN INEXHAUSTIBLE
VARIETY OF WAYS...
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Absolute Value HOW DO

YOU LIKE
CALCULVS 15 ABOUT APPRONXI- DEALING IN

MATIONS, AND THE ABSOLUTE ABSOLUTES?
VALUE FUNCTION MEASURES
HOW CLOSELY ONE NUMBER
APPROXIMATES ANOTHER.

THE ABSOLUTE VALUE OF x,
WRITTEN |x|, 15 DEFINED BY T

x WFx20

-x IFXx<O0

[x|

]

[x|

W

THIS FUNCTION NEVER

ASSUMES NEGATIVE VALUES,
AND |a| = |-al FOR ANY
NUMBER a. -

3 3
s—A
1 -1
0 - -0
-1 - -1
-2 H-2
-3 L3

YOU (AN THINK OF |al AS THE (POSITIVE, ABSOLUTE) DISTANCE OF a FROM O ON THE
NUMBER LINE, AND |a - b| = |b - a| A5 THE DISTANCE BETWEEN a AND b.

lal

2\
v

la - bl

v

N

IF ¢ 15 ANY NUMBER, AND r > O, THEN ALL THE
NUMBERS x WITH |x - ¢| < r FORM AN INTERVAL
CENTERED AT ¢ WITH “RADIVS” (HALF-LENGTH) r.

N
v
N
v

3]
\
-
L B
X @

|x -¢c|l € r

22
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IT'S NOT HARD TO SEE THAT FOR
ANY TWO NUMBERS a AND b,

la + bl < lal + |b]

FROM WHICH, BY SUBSTITUTING
b=c-a, WE GET

lc -al = lel - |al

FOR ANY TWO NUMBERS a AND c.




Constants

IF € 15 ANY FIXED NUMBER, THEN THERE 15 A VERY SIMPLE-MINDED FUNCTION f DEFINED BY
f(x) = € FOR ALL Xx. NOT MUCH OF A FUNCTION, YOU MIGHT SAY, BUT IT 15 A FUNCTION!
ITS GRAPH 15 THE HORIZONTAL LINE y = (. ALL ARROWS POINT TO THE SAME NUMBER.

THIS FUNCTION
DESCRIBES GOING
y=¢ NOWHERE!

fx)=¢C

Power Functions

THESE ARE THE FUNCTIONS WITH FORMULA x, x2, x?, ..., x'7, ... x"... WHERE n I A
POSITIVE INTEGER. WHEN n 15 EVEN, THESE FUNCTIONS ALL HAVE BOWL-SHAPED GRAPHS,
BECAUSE (-x)" = x". POSITIVE AND NEGATIVE INPUTS “LAND” IN THE SAME PLACE. IF n 15
ODD, THEN (-x)" = -(x"), AND THE 6RAPHS BEND DOWNWARD ON THE LEFT.

(N
0-.(:)0\&

7z
(0]
-1 // - -1
_.2 E .
f(x)=x*
2 L
THE HIGHER THE POWER, ] L
THE FASTER THEY GROW! 0 T— ‘1)
v -1
-2
= o3
gx)=x g




Polynomials

WE ADD CONSTANTS AND MULTIPLES OF POWER FUNCTIONS TO MAKE POLYNOMIALS,
WHICH HAVE FORMULAS LIKE 2x% + x + 41 OR x'” - x'* - 9x. THE CONSTANT FACTORS
ARE CALLED THE POLYNOMIAL'S COEFFICIENTS, AND THE LARGEST POWER OF x
WITH A NON-ZERO COEFFICIENT 15 CALLED THE POLYNOMIAL'S DEGREE.

]

Px)
@x)

7x'° + 395x* + x> + 11 UAS DEGREE 10.

-X +9 HAS DEGREE 1

]

ALGEBRA TEACHES US THAT A POLYNOMIAL P +
OF DEGREE n WAS NO MORE THAN n ROOTS, /7 \ /\

MEANING NUMBERS X, X5, ... X,,, WHERE ? j
P(x;) = 0. \/

THIS MEANS THAT THE GRAPH OF AN
nTH DEGREE POLYNOMIAL CROSSES
THE x-AXIS NO MORE THAN n TIMES.
IN FACT, WE WILL SEE THAT THE
GRAPH HAS AT MOST n - 1 “TURN-
INGS™ WHERE IT CHANGES FROM
RISING TO FALLING OR VICE VERSA.

WE'LL AL5O SEE THAT THE GRAPH OF ANY @
1

WELL, AWAY FROM
EVERYTHING ELSE,
POLYNOMIAL ZOOMS OFF TO INFINITY (EITHER ANYWAY.
POSITIVE OR NEGATIVE) A5 x GOES OFF TO

THE LEFT AND RIGHT WITHOUT BOUNDS.

-
~

24



Negative Powers

THESE ARE THE FUNCTIONS
FoO = -, n=1273.
X

THEY ARE AL50 WRITTEN

fx) = x™"

NEGATIVE POWER FUNCTIONS ARE
DEFINED FOR ALL x # O, AND,

LIKE THE POSITIVE POWERS, THEIR ==
GRAPHS DIFFER DEPENDING ON
WHETHER n 15 OPD OR EVEN.

Fractional Powers

IF n 15 A POSITIVE INTEGER, X7 MEANS THE nTH ROOT OF x, Vx .
THE FRACTIONAL NOTATION 15 USED TO MAKE THIS FORMULA WORK:

1.n 1
(x") = x"" = x

oo

!
sidhos
i
:

n EVEN: DOMAIN OF X7 15 ALL X = O n OVD: DOMAIN OF X7 15 ALL REAL NUMBERS.

THERE CAN BE NEGATIVE FRACTIONAL POWERS, TOO.

YOU'RE JUST AS
600D AS ANY
OTHER NUMBER...
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Rational Functions

@ NO,
THESE ARE FUNCTIONS GIVEN RATIONAL.
BY RATIO% OF POLYNOMIALS

P
R(x) = 000

THEY ARE DEFINED WHEREVER
@(x) + O. FOR EXAMPLE,

3x%+ 9x + 1
2L R 7Y
x°+16

X
x2-1

R(x)

W

W

T , X # 1

WE HAVE THREE THINGS TO SAY ABOUT RATIONAL FUNCTIONS. FIRST 15 THAT YOU (AN SKIP
THIS SECTION AND HEAD FOR PAGE 29 IF YOU WANT TO...

SECOND, WE CAN ASSUME THAT P HAS LOWER DEGREE THAN @. IF IT DOESN'T, YOU ¢AN DO
LONG DIVISION OF POLYNOMIALS* TO MAKE P/Q LOOK LIKE

R(x)

P,(x) + HA! THOSE PAGE- ny
~le9) SKIPPERS ARE GOING ( @ \
TO MI%5 THE FIRST d y
WHERE P, 15 A POLYNOMIAL, ook, CaANK! e
AND R, THE REMAINDER, I5 A 9. i

POLYNOMIAL WITH DEGREE
LOWER THAN THAT OF Q.

¥IF YOU'VE NEVER PONE LONG DIVISION OF POLYNOMIALS, IT'S JUST LIKE LONG DIVISION OF NUMBERS,
ONLY EASIER. LOOK IT UP SOMEWHERE; YOU'LL LIKE IT!
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THIRD, ANY RATIONAL FUNCTION (AN BE
WRITTEN AS A SUM OF SIMPLER “PARTIAL
FRACTIONS” OF THESE TWO KINDS:

a o bx+c
(x+p)" Prguer)”

WHERE a, b, ¢, p, q, AND r ARE CON-
STANTS, AND n AND m ARE POSITIVE
INTEGERS. IN OTHER WORDS, THE
DENOMINATORS ARE POWERS OF FIRST-
OR SECOND-DEGREE POLYNOMIALS.

THIS BECOMES USEFUL
LATER, WHEN WE DO
INTEGRATION.

FINDING THESE CONSTANTS CAN BE MESSY
IN PRACTICE—FOR STARTERS, YOU HAVE TO
FACTOR &(x)—BUT HERE ARE TWO
EXAMPLES TO SHOW HOW IT WORKS.

. NOW LETS PUT
Example: sverose | NOW Lere v

X MOTION...

(x-1?

F(x) =

FIRST WRITE IT AS

()5

THE FIRST FACTOR CAN BE REDUCED BY LONG
DIVISION:

1
(x’-‘-1) - x-1 +1

PLUGGING THAT IN AND EXPANDING GIVES

! 1y 1 1
(E ”)('ﬁ) S x-n? %1

JUST AS PROMISED—NOTHING BUT CONSTANTS
IN THE NUMERATORS OF FRACTIONS WITH
DENOMINATORS OF THE FORM (x+p)".

(‘on. YEAHM )
/2
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THE FIRST STEP 15 ALWAYS TO FACTOR THE
DENOMINATOR. RECALL FROM ALGEBRA:

el = (x+ DE-x+1).

NOW, ASSUME THERE 15 AN ANSWER.

ALWAYS A
600D IDEA
IN ALGEBRA!

IT WOULD LOOK LIKE THIS:

-2x*+7x-3% Ax+B . c

X+ x-x+1) x+1

=

WE WISH TO SOLVE FOR A, B, AND C.
COMBINING THE FRACTIONS ON THE RIGHT
PRODUCES THIS NUMERATOR:

A+O)x* + (A+B-CO)x + (B+O)

THIS BEING THE SAME AS THE NUMERATOR OF
THE ORIGINAL FRACTION, WE MUST HAVE

A+C = -2
A+B-C =7
B+C = -%

28

THESE ARE THREE EQUATIONS IN
THREE UNKNOWNS. WE PO SOME
ALGEBRA AND FIND...

A=12,B=1,AND C = -4, 50:

YOU (AN CHECK THE ANSWER BY
ADDING TOGETHER THESE FRACTIONS,
WHICH SHOULD COMBINE TO 6GIVE THE
ORIGINAL FUNCTION.

AND NOW FOR SOMETHING YOU WON'T
WANT TO MIS5... THIS NEXT FUNCTION
WILL REALLY GROW ON YOU...




Exponential Functions _. (“worrrameem

EXPONENTIAL FUNCTIONS ARE WE'RE HAVING RABBIT
GIVEN BY FORMULAS LIKE THIS: STEW TONIGHT...

f(x) = a*

HERE THE “BASE™ a IS5 FIXED,
AND THE EXPONENT X VARIES.
BY CONVENTION, WE ASSUME
a > 1. THESE FUNCTIONS
DESCRIBE CERTAIN KINDS OF
GROWTH (POPULATION
INCREASE, FOR EXAMPLE).

g

i

AMONG ALL PO%SIBLE BASES a, MATHEMATICIANS SINGLE OUT ONE AS ESPECIALLY “NATURAL.”
THIS NUMBER, KNOWN AS @, HAS A DECIMAL EXPANSION THAT BEGINS LIKE THIS:

2.7182818284590452353%6028747135266249775724709%6999595749669676277240766%
03%5354759457138217852516642742746629192200%05992181741259662904%572900%%4
29526059563073%81322328627943490763%233%82988075%1952510190116728341879307021
5408914992488416750924476146066808226480016847741185%7423454424371075%9077
7449920695517027618%86062613%128458320007520449328265602976067371132200709%
28709127443747047230696977209%101416928%68190255151086574637721112522897844
2505695%6967707854499699679468644549059879%163688922009879312772617821542
4999229576%5148220826989519%6680%318252886929849646510582092922982948879
2320%625094431172012%81970684161403%97019827679220682282376464804295%11802%
2878250981945581520175671736132206981125099618188159%041690%515988885192458
0727%8667%858942287922849989208680582574927961048419844426346% 2449684875
60232%624827041978623209002160990225204369941849146214092%4
3152096183690888707016768%96424378140592714563549061301  MORE OR
157477041718986106872969655212671546889570250%2540212340 LESS...
2100562788023519%20%222474501585290473041995777709%50%65U4TA 77250886
87696640%555707162268447162560798826517871341951246652010%059212%667719432
52786752985589448969709640975459185695638023%637016211204 (Do 77427228
2648961242251644507818244235294863%6372141740228892441247 (C by 96357437
0263755294448%37998016125492278509257782562092622648%2 7 62779333
865664816277251640191059004916449982892150566047258027 7863186415519
565%2442586982946959%0801915298721172556247546%9644791 01459040905
86298496791287406870504895858671747985466775757%205681 28845920541
32405%92200011378620094556068816674001698420558040%3 % x
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WE CAN SEE WHY e 15 NATURAL BY THINKING IF YOU START WITH $1, AT THE END OF THE
ABOUT COMPOUND INTEREST. IMAGINE A YEAR YOUR ACCOUNT WOULD HAVE DOUBLED
GENEROUS BANK (!) 15 PAYING ANNUAL INTEREST TO $2. PRETTY 600V!

OF 100% ON YOUR SAVINGS ACCOUNT.
$1 + 100%-(%$1) = $2

BUT NOT 600D ENOUGH, YOU COMPLAIN: YOU NOW YOU PO A LITTLE ARITHMETIC: YOU
WANT YOUR INTEREST COMPOUNDED MORE NOTICE THAT

OFTEN. YOU ASK THE BANK TO APD ON 50% 1 1 1 182
EVERY 51X MONTHS (100% PER YEAR TIMES HALF A+ +z0+20=0+3
A YEAR), FOR THIS YEAR-END DOLLAR TOTAL:
1 1 1 AND THE NEXT TIME INTEREST 15 ADDED, YOUR
M+ 3z)+30+3) =225 POLLAR TOTAL WILL BE (1 + 3)% NEXT TIME

A+ P nexT Time (0 + .

SIMILARLY, IF YOU COMPOUND PAYMENTS TOTAL AFTER
AT 100% THREE TIMES A PER YEAR 1 YEAR THE TOTAL
YEAR, YOUR TOTAL AFTER ONE APPEARS TO BE
YEAR (THREE PAYMENTS) 15 : AsDy - 2 APPROACHING @
)3 - DOLLARS.
$0+3) 2 A+ = $2.25
IF COMPOUNDED n TIMES E a+3) = $2.37
PER YEAR, YOUR YEAR-END 144 .
TOTAL WOULD BE 4 (e $2.44
5 A+ = $2.49
15N
50+ D
100
AND YOU DECIDE TO FIND OUT 100 (M) ™ = $2.705..
JUST HOW MUCH MONEY THIS 1000 A+255)"%% = $2.718...
WOULD BE! USING YOUR
CALCULATOR, YOU FIND:
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IF n 15 VERY, VERY LARGE, YOU (AN THINK OF YOUR MONEY AS BEING COMPOUNDED
CONTINUOUSLY, ALL THE TIME. IN THAT CASE, YOUR TOTAL BALANCE AT THE END
OF ONE YEAR WOULD BE EXACTLY e DOLLARS.

ONE, TWO, TWO SEVENTY,
TWO SEVENTY-ONE, TWO

SEVENTY-ONE AND EIGHT

TENTHS...

THE NUMBER e 15 NATURAL BECAUSE CONTINUOUS COMPOUNPING 15 NATURAL: IT POESN'T
PEPEND ON ANY PARTICULAR UNIT OF TIME.

WHAT’S 50
SPECIAL ABOUT
A YEAR?

THIS ALSO SHOWS THAT e IS THE MOST YOU (AN PO%5IBLY MAKE IN A YEAR FROM
ONE DPOLLAR AT 100% INTEREST!

HEY! THERE'S ONLY
$2.7182818284590452

uere! I'VE BEEN
SHORTCHANGED!!
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WE CAN USE THE FORMULA (1 +1)" TO CALCULATE e.
ALGEBRA TELLS US WE CAN EXPAND THAT BINOMIAL A%

1 nn-Nn-2) 1 n(n-1)(n-2)(n-3) 1 1
— e —_— -+ e e b —
2 n® 123 n® 1-2-3-4 n* n"

WHEN n 15 VERY LARGE, THE FRACTIONS
(n-1)/n, (n-2)/n, ETC. ARE VERY NEARLY
EQUAL TO 1, 50 THE EARLY TERMS ARE
VERY NEARLY

T+l 3+ 3+ 5 +5+ .

WHERE, IF m 15 ANY INTEGER, m! MEANS
THE PRODUCT 1-2-3- ... -m.

NOW IF WE IMAGINE n GROWING “TO ©0,” WE CAN CONCLUDE THAT e 15 GIVEN BY A SUM
WITH AN INFINITE NUMBER OF TERMS:

= 1,1 ,.,1 .1 1

AND S0, IN FACT, IT 15,

5I6H... WHAT A HOW COME YOV BECAUSE OF THIS NUMBER’S
BEAUTIFUL, BEAUTIFUL NEVER SAY ) SPECIAL, NATURAL STATUS, FROM
FORMULA. THAT TO ME NOW ON WE WILL REFER TO THE

FUNCTION exp, DEFINED BY
exp(x) = e*

A5 THE EXPONENTIAL FUNCTION.
&* 15 THE UM YOU WOULD HAVE
AFTER X YEARS IF ONE DOLLAR
WERE COMPOUNDED CONTINUOUSLY
AT 100% PER YEAR.
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1000 -

900 -

800 -~

700 -

600 -

500

400 -

200

EXPONENTIAL FUNCTIONS GROW RAPIDLY WITH X.
f(x) = 2% FOR EXAMPLE, DOUBLES EVERY TIME
X INCREASES BY 1:

§

Fx+) = 2% = 272 = 229 = 2f(%)

e* GROWS EVEN FASTER, AS YOU CAN EASILY
CALCULATE. A POWER FUNCTION LIKE g(x) = xZ,
BY COMPARISON, FALLS FAR BEMIND.

x e* x* Qy
(0] 1.0 (0]
1 2.7183%... 1
2 7.289... 4
2 20.085... 9
4 54.60... 16
5 148.41... 25
6 403.43... 26
7 1096.63... 49
g 2980.94... 64

IF @ 15 THE NUMBER WITH e“=2

(a =~ 0.693%, A5 YOU (AN CHECK ON
YOUR CALCULATOR), THEN e™ DOUBLES
WHENEVER x INCREASES BY a:

e(x+a) = e*e? = zex

AND IN PARTICULAR,

ena = (ea)n =




IF r 15 ANY POSITIVE NUMBER, THEN
THE FUNCTION h(x) = e™ 15 AN
EXPONENTIAL FUNCTION, BECAUSE

erx = (er)x

THE EXPONENTIAL WITH BASE e”
(NOTE THAT " > D.IT

INCREASES FASTER THAN exp(x)
IFr >1AND SLOWER IF r < 1.

EITHER WAY,
IT GROWS!

SMALLER r

ALWAYS DYING,
NEVER DEAD.

PUTTING @™ IN THE DENOMINATOR CREATES
A FUNCTION

1 -
)C(X)=y‘=erx

THAT DIES OUT AS x GROWS LARGE, I.E.,
IT 15 ALWAYS POSITIVE, BUT IT HEADS
INEXORABLY TOWARD ZERO. THE LARGER r
15, THE FASTER THE FUNCTION DIES OUT.

e™"™ DESCRIBES
SUCH PHENOMENA
AS RADIOACTIVE
DECAY, WHERE THE
DECREASE IN
RAPDIATION 15
PROPORTIONAL TO
THE AMOUNT OF
RADIOACTIVE
MATERIAL PRESENT,
RATHER LIKE
COMPOUND
INTEREST IN
REVERSE.

IT'S AS IF THE BANK TOOK
AWAY HALF YOUR MONEY
EVERY SIX MONTHS...




Circular Functions

OUR FINAL ELEMENTARY FUNCTIONS ARE
THE CIRCULAR, OR TRI6 FUNCTIONS:
THE SINE, COSINE, TANGENT, AND
SECANT. THESE DESCRIBE PROCESSES
THAT 60 BACK AND FORTH, UP AND
POWN, IN AND OUT, LIKE TIPES AND
YO-Y05.

THESE FUNCTIONS ARISE EITHER IN CIRCLES OR RIGHT TRIANGLES. HERE 15 A CIRCLE OF RADIVS 1,
CENTERED AT THE ORIGIN. BEGINNING ON THE x-AXI$ AT (1, 0), A POINT P = (xp, yp) ORBITS
COUNTERCLOCKWISE ALONG THE RIM. YOU CAN SEE A RIGHT TRIANGLE WITH HYPOTENEUSE OP.

P =(xP) yP)

Yp

-

THE ANGLE © (6REEK LETTER “THETA”) BETWEEN OP AND THE X-AXIS 15 MEASURED IN “NATURAL
UNITS, NAMELY THE LENGTH OF THE ARC TRAVELED BY P. THESE UNITS ARE CALLED
RADIANS. SINCE THE CIRCLE'S CIRCUMFERENCE 15 21, P TRAVELS 2 RADIANS IN ONE
COMPLETE CIRCUIT. SMALLER ANGLES ARE PROPORTIONAL, AND MOVING CLOCKWISE GIVES
NEGATIVE ANGLES. WHEN P DESCRIBES MORE THAN ONE CIRCUIT, THE ANGLE O 15 > 2.

| why THe W TO HONOR soME pEAD
GREEK LETTER? WHITE 6UYS. 60T A
PROBLEM WITH THAT?

0

6+2m —6/




THE SINE AND COSINE OF © ARE THE y AND X COORDINATES, RESPECTIVELY, OF THE POINT
P = (xp, yp). THE TANGENT OF © I5 THE RATIO YP/x,, WHEN xp#0.
cos 6 = xp
sin @ = yp
sin @
cos 6

Yp
\e
(YOU MAY HAVE ;
LEARNED FROM THE *p
ANCIENT GREEKS
THAT sin@ = y/r,
BUT HERE r = 1.)

P

"

tan 6 =

THE SINE AND COSINE OSCILLATE BETWEEN -1 AND 1, REPEATING THEMSELVES EVERY 2m RADIANS.
THE TANGENT REPEATS AFTER EVERY  RADIANS. THE TANGENT ZOOMS OFF TO INFINITY AT THE OPD
HALVES OF 1, WHERE THE COSINE 15 ZERO.

-1m/2 /2

Yy = cos X
WE WILL ALSO PYTHAGORAS GIVES U5 THIS
OCCASIONALLY HIGHLY USEFUL EQUATION
MENTION TI-IEe
SECANT OF O, in? 20 =
WHICH 15 THE sin"6 + cos"6 = 1
RECIPROCAL OF
THE COSINE, WHICH ALSO AMOUNTS TO
DEFINED WHEN 2 2
cos 6 # 0. sec”@ = tan“O + 1
sec O = 1 BECAUSE
cos 6
2 sin*@ + cos’@
sec“ @ = —_—
cos“6




ONE WAY TO VISUALIZE THE SINE AND COSINE 15 IMAGINE TWO OBSERVERS VIEWING THE CIRCLE
TO IMAGINE THE POINT P 15 A WEIGHT BEING EDGE-ON. ONE LOOKS ALONG THE x-AXIS, AND
SPUN AROUND AT THE END OF A 1-METER ROPE.  THE OTHER LOOKS POWN THE y-AXIS.

X-6UY SEES THE WEIGHT START AT EYE LEVEL, y-GIRL, LOOKING DOWN, SEES EXACTLY THE
THEN BOB UP AND DOWN, UP AND DOWN, UP SAME BACK-AND-FORTH MOTION, EXCEPT THAT
AND DOWN. HE $EES THE Y-VALUES, OR SINE. THE WEIGHT START AT THE TOP OF ITS CYCLE.

SHE SEES THE COSINE.

THIS CLEARLY SHOWS WHY THE SINE AND AND, AS 1T HOPE YOU'VE ALREADY LEARNED
COSINE HAVE IDENTICAL GRAPHS, EXCEPT SOMEWHERE, THERE ARE COUNTLESS OTHER
THAT ONE 15 DISPLACED SIDEWAYS BY 7. TRIGONOMETRIC IDENTITIES:

cos 6 = sin(6@ + g) sin(A+B) = sinAcos B + sinBcos A
ALSO, SINCE cos(-8) = cos 6, cos (A+B) = cosAcos B - sinAsin B

cos 6 = sin(g— e) sin0 = ';COZS_ZG
AND

2g - 1+ cos 26
sin @ = cos (7 - ) cosC = —F ETC!
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ANOTHER BASIC IDEA:

Composing Functions

SOMETIMES ONE FUNCTION 15 “PLUGGED INTO”
ANOTHER FUNCTION. FOR EXAMPLE, ON P. 15,

hx) = Vx?-1

15 THE RESULT OF PLUGGING THE VALUE OF
f(x) = x* -1 INTO THE SQUARE ROOT

FUNCTION g(u) = vu. FIRST WE EVALUATE
x% - 1 AND THEN TAKE THE SQUARE ROOT.

f 15 INSIDE THE
RADICAL SIGN.

RADICAL
SI6GN OF A
DIFFERENT

f 15 ¢CALLED THE INSIDE FUNCTION, AND KIND
g 15 THE OUTSIDE FUNCTION.
Example 1: Example 2: Example 3:
F(x) = tan?x + tan x + 1 6(x) = o Hx) = tan(x*+ x + 1)

INSIDE FUNCTION: INSIDE FUNCTION:
FIRST FIND tan x, THEN PLUG

ITINTO g(y) = y% +y + 1. ux) = x* g(x) = x*+ x +1
THE INSIDE FUNCTION 15

f(x) = tan x AND THE OUT- OUTSIPE FUNCTION: OUTSIDE FUNCTION:
SIDE FUNCTION 15 g. WE WRITE 2(t) = et £(0) = tan 6
FG) = g(fG) 600 = V) He) = F@GO)

WHAT’S HAPPENING HERE 15 THAT ONE FUNCTION'S
OUTPUT BECOMES ANOTHER FUNCTION’S INPUT. THE

FUNCTION g “EATS” THE OUTPUT OF THE FUNCTION f. %

RELAX... THESE
AREN'T BODILY
FUNCTIONS...



IN EFFECT, THE ARROW OF f 15 FOLLOWED BY THE ARROW OF g:

9(f(x))

11€9)

h:x— f(x) — g(f(x))

WE ¢ALL THE FUNCTION h THE COMPOSITION
OF g AND f, SOMETIMES WRITTEN gof. NOTE
THAT THE INSIDE FUNCTION 14 EVALUATED
FIRST. IT5 ARROW 15 ON THE LEFT. ALsO
NOTE THAT THE ORDER MATTERS. IN GEN-
ERAL, gof # fog. IN EXAMPLES 1 AND 3 ON
THE PREVIOUS PAGE, FOR INSTANCE,

F@lx) = tan (x*+ x + 1)
# tan’x + tan x +1 = g(f(x))

YOU CAN EVEN HAVE A CHAIN COMPOSED OF MANY FUNCTIONS. WHY NOT!?

cwss )

cos (Y x*+1

COMPOSITION LEADS STRAIGHT TO
Fractional Powers

BY COMPOSING £(x) = X7 WITH g(y) = y™,
WE ¢AN DEFINE FRACTIONAL POWERS OF x:

BIE]

m

h(x) = x

-
=

(x'l*)

FIRST TAKE THE nTH ROOT AND THEN THE
mTH POWER, OR VICE VERSA. (HERE THE
ORDER OF COMPOSITION DOESN'T MATTER.)
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Inverting POING NOTHING?*
Functions )

SOMETIMES WHEN WE COMPOSE
TWO FUNCTIONS, A STRANGE
THING HAPPENS: NOTHING!

NEXT BIG IDEA:
[WI-IAT’é WRONG WITHJ

Example:
FOX) = x5 AD g(y) = y? THEN  h(x) = g(fG)) = (%) = x

PLUG x INTO gof, AND OUT COMES x AGAIN. h CUBES THE CUBE ROOT, 50 IN THE END
THIS COMPOSITION DOESN'T PO ANYTHING! g “UNDOES” THE EFFECT OF f.

ALL THAT WORK...
AND FOR WHAT?

IN WORDS, g(x) 15 “THE NUMBER WHOSE CUBE 15 x.” WE OFTEN WANT TO KNOW THIS
KIND OF INFORMATION... SUCH THINGS AS:

THE NUMBER WHOSE SQUARE 15 4 OR, IN $YMBOLS, x* = 4

1 WHAT NUMBER X, 3 _ 1
THE NUMBER WHOSE SINE 15 V2 0. OR ¢ 50LVES sin 6 =1V2
THE NUMBER WHOSE EXPONENTIAL 15 2 THE EQUATIONS: e’ =12

*WITH A TIP OF THE HAT TO THE CHINESE PHILOSOPHER ZHUANGZI!
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BUT THERE'S A COMPLICATION... IT UNFORTUNATELY MAKES NO SENSE TO ASK FOR “THE”
NUMBER WHOSE SQUARE 15 4, BECAUSE THERE ARE TWO OF THEM, Z AND -2.

YOU'RE NOT
VERY WELL-
DEFINED,

THE SINE 15 EVEN WORSE. THE ANGLE
/4 SOLVES THE EQUATION:

sin @ = -'-2\/7

BUT 90 DO A LOT OF OTHER ANGLES:
2m/4, -57/4, 9/4, \m/4, ETC.

3m/4

/_

\ 91/7/4
—

sin(Z£2mn) = 3VZ,n = 0,1,2,3%, ..

sin(%" £2mn) = 3V2,n=01,2,3%, ..

IN OTHER WORDS, THESE FUNCTIONS HAVE MANY ARROWS LANDING ON THE GIVEN NUMBER. A
VALUE OF THE FUNCTION GENERALLY COMES FROM MANY DIFFERENT VALUES OF x.

| 4 1 1 (uow ANNOYING 15 TI-IAT?j
37/4 1
" o ; ’iﬁ
2 . .
/4
10 .0
o) o)
2 -5m/4 -
fF= x? 9(8) = sin6
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I NEVER
REPEAT
MYSELF!

BUT NOT ALL FUNCTIONS
ARE LIKE THAT: A
FUNCTION 15 CALLED
ONE-TO-ONE IF NO
TWO OF ITS ARROWS
LAND IN THE SAME
PLACE. IN $YMBOLS, IF
a # b, THEN f(a) # F(b).
EACH VALUE OF f IS5 THE
HEAD OF ONLY ONE
ARROW.

a !'___——-—": f(a)

y f(b)

IF 15 ANY ONE-TO-ONE FUNCTION, WE CAN MAKE A NEW FUNCTION, ', “F-INVERSE,”
THAT UNAMBIGUOUSLY UNDOES THE ACTION OF f BY REVERSING 1T5 ARROWS. THE DOMAIN
OF THE INVERSE FUNCTION ' 15 ALL THE VALUES ASSUMED BY f, AND FOR ANY NUMBER

£(x) IN ITS DOMAIN, ' 15 DEFINED BY

FUF(R) = x

YOU'RE A
BACKWARD
SORT OF
FUNCTION,

AREN'T YOU?

i fla)

b f(b)

BECAUSE £~' REVERSES THE ARROWS OF f, f OBVIOUSLY REVERSES THE ARROWS OF f'

TOO—IT'S MUTUAL! 90 IT FOLLOWS THAT
FF YN =y

THE TWO FUNCTIONS ARE INVERSES OF
EACH OTHER! ORDER DOESN'T MATTER.

EITHER WAY,
WE (AN
ACCOMPLISH
NOTHING!
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WHAT FUNCTIONS ARE ONE-TO-ONE? FOR OUR
PURPOSES, IT WILL BE FUNCTIONS THAT ARE

increasing or decreasing.

WE DEFINE A FUNCTION TO BE INCREASING, OR STRICTLY
INCREASING, IF THE VALUES f(Xx) RISE AS X DOES. THAT 15,
GIVEN ANY TWO POINTS a AND b IN THE DOMAIN OF f,

IF a < b, THEN f(a) < f(b).

f 15 STRICTLY DECREASING IF a < b IMPLIES THAT
f(a) > f(b).* BECAUSE OF THE INEQUALITY, EVERY
INCREASING FUNCTION 15 ONE-TO-ONE, AND 50 15 THE VOLUME OF A SPHERE

EVERY DECREASING FUNCTION. 15 AN INCREASING
FUNCTION OF RADIVS

AN INCREASING FUNCTION HAS A GRAPH THAT G6OES UPHILL AS THE VARIABLE MOVES TO THE
RIGHT. A DECREASING FUNCTION 60ES DOWNHILL.

DECREASING

INCREASING

IN TERMS OF ARROWS, AN INCREASING FUNCTION'S ARROWS NEVER CRO%5, BECAUSE THE VALUES
f(x) KEEP G6OING UP THE LINE. ALL A DECREASING FUNCTION'S ARROWS CROSS EACH OTHER!

- : =

INCREASING DECREASING

A

*NOTE THAT A FUNCTION f 15 INCREASING IF AND ONLY IF —f 15 DECREASING.
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SINCE AN INCREASING (OR DECREASING) FUNCTION 15 ONE-TO-ONE, IT HAS AN INVERSE!

THE INVERSE ARROWS
POINT FROM y TO x!

Little Example:

F(X) = x? 15 INCREASING.
ITS INVERSE 15

-1 _‘3
fFT(x) = x

IN GENERAL, g(x) = x" 15
INCREASING FOR ANY ODD
INTEGER n, AND THE
INVERSE 15

-1 1
g (x) = xn

Big, Important Example: Natural Logarithm,
Inverse of the Exponential

THE EXPONENTIAL FUNCTION Exp(x) = &* 15 INCREASING.

PROOF: IF a < b, THEN
b ]

% = e® ® 51 geeavse b-a >0, %0 4
e® > ef |

ITS INVERSE FUNCTION 15 ¢ALLED THE NATURAL
LOGARITHM, WRITTEN In (“ELL-EN”).

THE DOMAIN OF In 15 (O, oo) OR ALL POSITIVE

NUMBERS BECAUSE &* ASSUMES ALL VALUES
GREATER THAN ZERO,* AND

e =y AN InE® = x

| Sy -

lny

*50RRY, BUT YOU'RE ASKED TO TAKE THIS ON FAITH IN THIS BOOK.
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EXPONENTS, YOU SHOULD RECALL,
BEHAVE THIS WAY:

@MEY) = e**Y (MY = ™

THESE IMPLY THE FAMOUS LOG
FORMULAS THAT USED TO BE 50
IMPORTANT FOR MANAGING BIG
CALCULATIONS BACK IN THE DAY
BEFORE MECHANICAL AND ELEC-
TRONIC COMPUTERS, WHEN
EVERYTHING WAS DONE BY HAND.

In(xy) = Inx + Ilny

InxP = plnx

AND IN PARTICULAR, WHEN p = -1,

-1

Inx' = -lnx

"

LOOK UP “LOGARITHM”
ONLINE TO FIND OUT WHAT
I'M TALKING ABOUT...

BY HAND?
WHA-?

\

THE LOGARITHM ENABLES US TO EXPRESS OTHER
EXPONENTIALS IN TERMS OF “THE” EXPONENTIAL
WITH BASE e. TAKE 2%, FOR EXAMPLE. USING A
CALCULATOR, YOU CAN FIND AN APPROXIMATE
VALUE FOR In 2:

In 2 = 0.69%..* FROM WHICH:

e(ln 2)x - e0.693,..x

Zx = (ell’l 2)7( =

REPLACE 2 BY ANY NUMBER a > 1 AND THE
EXPONENTIAL A(x) = a” ¢AN BE EXPRESSED
SIMILARLY:

a* = e ™, Wwiere r = In a.

conetvsion: EVERY
EXPONENTIAL FUNCTION

CAN BE EXPRESSED AS e™
FOR SOME NUMBER r.

*IT MAKES SENSE THAT In 2 15 BETWEEN O AND 1, BECAUSE 2 15 BETWEEN 1 (= ¢°) AND e (= e').
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Graphing Inverses

WE'VE SEEN HOW INVERSES
LOOK IN TERMS OF ARROWS:
£~ SIMPLY TURNS ALL THE f
ARROWS AROUND. HOW DOES
THIS LOOK ON A GRAPH?

JUST FLIP
SOME OF
THESE
AROUND...
AND... UM...

ON THE GRAPH y = £(x), FOLLOW AN ARROW FROM A POINT X TO f(x) = y. THE INVERSE
FUNCTION ' REVERSES THAT ARROW, %0 f'(y) = x.

THAT 15, IF WE USE THE
VERTICAL y-AXIS$ FOR THE
INPEPENDENT VARIABLE,
THE GRAPH X = £'(y)
15 IDENTICAL TO THE
GRAPH y = f(x)!

y = FGO fam -

UNFORTUNATELY, WE
CUSTOMARILY PUT THE
INDEPENDENT VARIABLE
ON THE HORIZONTAL
AXI5, NOT THE VERTICAL
AXI5. WE WANT THE
GRAPH y = £ (x), NOT
x=fy.

x ——— - —

WHAT HAPPENS IF WE
EXCHANGE x AND y?

NOTHING
TOO
CHAOTIC,
I HOPE...




IF A POINT (a, b) 15 ON THE 6RAPH y = £(x), THEN (b, @) 15 ON THE GRAPH y = £~ (x).
THE POINT (a, b) 15 THE REFLECTION OF THE POINT (b, @) ACRO%S THE LINE y = X, 50 THE
GRAPH y = £7'(x) 15 THE MIRROR IMAGE OF THE GRAPH y = f(x) REFLECTED ACRO%5 THE

[

LINE y = x.

y=Ff(x)

WELL, THAT'S NOT DEPENDS ON
50 BAD THEN, 15 IT? | WHO'S LOOKING
IN THE MIRROR...

\

HERE ARE TWO EXAMPLES: ABOVE, THE
GRAPH y = Xx? AND ITS INVERSE THE
CUBE ROOT, AND ON THE RIGHT THE
SUPER-IMPORTANT NATURAL LOGARITHM
AND TS INVERSE THE EXPONENTIAL.




(AN WE INVERT A FUNCTION THAT 15 NOT ONE-TO-ONE, THAT 60E% UP AND DOWN? IF MANY
ARROWS LAND AT A POINT y, WHICH ONE DO WE REVERSE? THE ANSWER 15: PICK WHICHEVER
ONE YOU LIKE AND IGNORE THE REST!

- Za fé;xa I KNOW WHICH
m SR ONE I LIKE...

ONE SYSTEMATIC WAY TO DO THIS 15 TO FLIP
ONLY ARROWS ORIGINATING ON AN INTERVAL =

WHERE THE FUNCTION 15 ONE-TO-ONE. 3
FOR EXAMPLE, f(x) = x” I5 INCREASING (AND b y
50 ONE-TO-ONE) ON THE INTERVAL [0, o). PO
REVERSING ONLY THE ARROWS THAT START Ny g
THERE MAKES AN INVERSE B\
I L
Flo0 = Vx R
\4 o

THAT ALWAYS 6IVES THE NON-NEGATIVE
SQUARE ROOT. THEN FOR ALL x>0,

FET)) = x

§ i e s e e o o
Lot o o

FUF()) = x  (NO NEGATIVE x ALLOWED!)

THIS WORKS FOR ANY
FUNCTION f: RESTRICT
1T DOMAIN TO AN
INTERVAL WHERE f 15
INCREASING (OR
DECREASING), AND ON
THIS INTERVAL, f HAS
AN INVERSE.

SORRY.
WITHOUT
A BUNNY,
I PON'T




Second Big, Important Example:
Inverse Circular Functions

THE SINE AND COSINE WOBBLE UP AND DOWN, UP AND DOWN... BUT ON SOME $HORT
INTERVALS, THEY ARE INCREASING! LET'S CONCENTRATE ON THE SINE, BECAUSE THE COSINE
WORKS EXACTLY THE SAME WAY. YOU CAN SEE THAT THE SINE INCREASES ON THE INTERVAL

[-7, 2] WHERE T VALUES RISE FROM -1 TO 1.

=sin x

RESTRICTED TO THAT INTERVAL, THE SINE HAS y = arcsin x
AN INVERSE FUNCTION, ¢ALLED THE ARCSINE, -

WITH DOMAIN [-1, 17]. THE ARCSINE ALWAYS
TAKES ON VALUES BETWEEN -1/2 AND 7/2.

SUCH A
LITTLE
DOMAIN...

y=sinXe==*

WHY 15 IT CALLED THE ARCSINE? BECAUSE IT'S THE ARC LENGTH CORRESPONDING TO A
GIVEN SINE.

IFsin© =y THEN @ = arcsiny

6 15 AN ANGLE WHOSE SINE 15 y. THIS ANGLE,
BEING MEASURED IN RADIANS, 15 THE LENGTH OF
THE CORRESPONDING ARC ON THE UNIT CIRCLE
(5EE P. 35). OTHER ANGLES HAVE THE SAME SINE,
BUT € 15 THE ONLY ANGLE BETWEEN -m/2 AND
m/2 WITH sin@ = y.

y=sin6
O=arcsiny
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THIS CHAPTER’S FINAL FUNCTION WILL BE THE INVERSE OF THE TANGENT FUNCTION,
f(x) = tan x. THE INVERSE 15 KNOWN A5 THE ARCTANGENT FOR THE SAME
REASON THE INVERSE SINE 15 CALLED ARCSINE, AND 15 SYMBOLIZED AS arctan x.

' z=y/x =tan 6
; 6 = arctan z

FIRST WE HAVE TO CHOOSE A PART OF THE
TANGENT’S DOMAIN WHERE THE FUNCTION
15 INCREASING. HERE THE OPEN INTERVAL

(-F» F) SERVES THE PURPOSE.

e N

THE TANGENT'S VALUES RANGE OVER ALL REAL NUMBERS, I.E., THE “INTERVAL” (-o00, 00),
50 THE ARCTANGENT’S DOMAIN 15 (oo, 00). THE FUNCTION 15 DEFINED EVERYWHERE, BUT ITS
VALUE ALWAYS LIES BETWEEN -m/2 AND /2.

Yy

y = arctan x

(NJE]

'
NIE]




THIS COMPLETES OUR TOUR OF THE ELEMENTARY FUNCTIONS! WE'VE SEEN POWER FUNCTIONS
(POSITIVE, NEGATIVE, AND FRACTIONAL), THE EXPONENTIAL AND ITS INVERSE THE NATURAL
LOGARITHM, AND THE CIRCULAR FUNCTIONS AND THEIR INVERSES. NOT 0 MANY, REALLY...

55T! STOP THAT,
?> yoU TWO...

A NICE,
MANAGEABLE
MENAGERIE!

BUT OF COURSE, WHEN YOU ADD, MULTIPLY, DIVIDE, AND COMPOSE THESE BASIC INGREPDIENTS,
YOU CAN MAKE MONSTERS LIKE THIS:

1 _1
F(x) = ec052 [A + x®)2(5x - sin(In(cos x))) %]

CALCULYS,
NATURALLY!

AND WHAT ARE WE
SUPPOSED TO PO
WITH THEM?
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Problems

DESCRIBE THE DOMAIN OF EACH HERE 15 THE GRAPH OF A FUNCTION y = f(x), A POINT ¢
OF THE FOLLOWING FUNCTIONS: ON THE Xx-AXIS, AND A POINT d ON THE y-AXIS.
1. Q) = 3
: 1 - 2¢ 10. PRAW THE GRAPHS
OF THESE FUNCTIONS:
2. fby = _V2Zb-1 d | a. gix) = flx - ¢)
(b -4+ b. h(x) = f(x) + d
3. M0 = - ’le \ € uGx) = 2F(x)
. d mx) = f(2x)
(4
X2 e v(x) = -f(x)
4. vix) = V1 - (= \/
Vi-(3) £.TOO = F(-%)
5. 9(0) = 208
e?- I 11. HERE ARE SOME COMPOSITE FUNCTIONS. IDENTIFY THEIR
9 INSIDE AND OUTSIDE COMPONENTS AND WRITE EACH GIVEN
2xnct FUNCTION IN THE FORM u(v(x)) (OR u(v(w(x))) IF
b. Ax) = (1 - &% NECESSARY).

7. Tw) = (4 - eZu)-i/z a h(x) = 2°°%

8. fOx) = In (1 + %% b. hx) = Vinax® -1
9. L(x) = Inln %) c. h(x) = 4e* + & + 6&* - 99

12. SHOW THAT FOR ANY NUMBER ¢, A POLYNOMIAL P(x) = by + byx + byx? + ... + b,x" (AN

ALSO BE WRITTEN P(x) = a, + ay(x - ¢) + a,(x - ©)* + ... + a,(x - )" WHERE a, = P(c).
SHOW THAT a, # O IF b, # O.

13. LET’S DEFINE A FUNCTION f ON 14. SHOW THAT
THE OPEN INTERVAL (-1, 1) LIKE THIS:

arctan x = arccos

1
x+1? FOR-1<x <0 Vi+ x2

f(x) =
fx) = x*-1 FORO < x < 1 ) X
= arcsin ————
V1 + x2
a. 15 f AN INCREASING FUNCTION
ON ITS WHOLE DOMAIN? (HINT: DRAW A TRIANGLE.)
b. 15 f ONE-TO-ONE? 15. IF YOU HAVE A, DOLLARS TODAY, AND IT COM-
POUNDS 50 THAT YOU HAVE A(t) = A e™ DOLLARS
R VEnar T APH OF £ AND AFTER t YEARS, HOW LONG DOES IT TAKE TO DOUBLE

YOUR MONEY? (r 15 ASSUMED FIXED.)
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Tue LAsT cHAPTER WAS
ABOUT FUNCTIONS “SITTING
STILL,” 50 TO SPEAK.
GIVEN A POINT X, WE
FOLLOWED IT5 ARROW TO
THE LOCATION OF f(x).

Chapter 1
Limits

A BIG IDEA ABOUT SMALL THINGS

® f(a)

NOW CALCULUS INTRODUCES A NEW IDEA: NOT JUST THE VALUE OF A FUNCTION AT A
POINT a, BUT WHAT f(x) LOOK% LIKE VERY, VERY CLOSE TO a. IN FACT, WE MAY BE
INTERESTED IN THESE VALUES AT NEARBY POINTS X EVEN WHEN f ISN'T DEFINED AT

THE POINT a!!

a + 0.000001 ¢

a - 0.000001 @

BUT WHY?
JUST SAYIN'...
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WHY? THE REASON IT PLEASES ME,

GOES BACK TO . YOU AGAIN TO
NEWTON’S AND 2 e~ SEE, FRAULEIN!
LEIBNIZ'S IDEA

ABOUT VELOCITY.

(%EE PP. 7-8.)

THEIR IDEA, REMEMBER, WAS THIS: IF s(t) 19 POSITION AT TIME t, AND a 15 A MOMENT
IN TIME, THEN WHEN t 15 NEAR a, THE VELOCITY AT TIME a 15 VERY CLOSE TO THE
“DIFFERENCE QUOTIENT” P(8).

pety = 5B - s@ [0/0 6IVES ME THEJ
- a WORST INDIGESTION...

D 15 A FUNCTION OF t THAT 15
NOT DEFINED AT t = a, BUT |9
DEFINED WHEN t 15 NEAR a. AS a
t 6ETS CLOSER TO a, WE EXPECT W
DP(t) TO APPROACH THE INSTAN-
TANEOUS VELOCITY AT a. WE'LL
WANT TO WRITE

v@) = lim (4]

AND SAY THAT v(a) 15 THE LIMIT OF D(t) AS t 60OES TO a.

THE KICK LASTED MERE
MILLISECONDS, BUT IT
CERTAINLY HAD VELOCITY.
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FOR EXAMPLE, IT SO HAPPENS THAT ON A RAMP SET AT AN ANGLE OF SLIGHTLY MORE
THAN 11.77 PEGREES, A FRICTIONLESS VEHICLE STARTING FROM REST AT s = O WILL ROLL
DOWN ACCORPING TO THE FORMULA

s(t) = t* METERS

(IF YOU'RE CONCERNED ABOUT UNITS,
s(t) = (1 M/sECD)-(t 5EC)? = t* M.
1 M/5EC% 15 THE ACCELERATION.)

THEN NEAR A POINT IN TIME a, t t-3 t2-9 P
t? - a?
D) = 2.9 -0.1 -0.59 5.9
4 299 | -oo01 -0.0599 5.99
kﬁ;’:gg";ﬁ:f :A;;in:;f‘o" 2999 | -0.001 | -0005999 | 5999
D(t) WHEN t 15 (CLOSE TO a
3.001 0.001 0.006001 | 6.001
3.01 0.01 0.0601 6.01
3.1 0.1 0.41 6.1

6.01

3.01 B

BY THE WAY,
WHO’S PRIVING?

2.99
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MAYBE YOU STILL PON'T QUITE I ACCEPT THE CHALLENGE. FIRST, T REWRITE THE EXPRESSION
BELIEVE IT. YOU CHALLENGE ME TO BY LETTING h = t -3 OR t = 3 + h. THEN

MAKE D(t) EVEN CLOSER TO 6,

WITHIN 0.000001, 5AY. THAT 15, o) (%2 + h)? - 32 bh + h?

YOU REQUIRE G+ h -3 h

6+h wHEN h#O

IP@) - 6| < 0.000001

)

AND I OBSERVE THAT AS LONG AS h 15 NON- BUT YOU'RE A PERSISTENT 50-AND-%0... YOU
ZERO AND |h| < 0.000001, THEN IT CHALLENGE ME AGAIN: NOW YOU WANT D(¢)
FOLLOWS THAT, SINCE P(t) = 6 + h, WITHIN 0.0000000001 OF 6.
IP@) - 6] = |hl < 0.000001 I'VE 60T A
MILLION OF ’EM!
Ty
\
1 SATISFY YOUR DEMAND AGAIN: AS YOU DECIDE YOU WANT IT EVEN CLOSER,

BUT YOU DPON'T WANT TO STAND AROUND

LONG 48 h I5 NON-2CRO ANP FEEDING ME SMALL NUMBERS ALL DAY...

|h] < 0.0000000001

I'M PRETTY SURE

THEN, A5 ABOVE, 1 HAVE BETTER A
THINGS TO DO... I,

[(P®E) - 6] = |h|] < 0.000000001 -

OR, IF YOU LIKE,

5.9999999999 < P(t) < 6.0000000001
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50 YOU GIVE ME A GENERAL CHALLENGE: “IF 1 OFFER YOU ANY SMALL NUMBER—CALL
IT £, THE GREEK LETTER EPSILON*—(AN YOU MAKE P(t) WITHIN £ OF 6 BY MAKING h

SMALL? CAN YOU FORCE |D(E) - 6] < £7”
(B
b+& _,ﬁ( 0 [ YEAH...
W “54° ~d CAN you?

SIMPLE! I KNOW THAT P(t) = 6 + h WHEN h # O, 50 I ANSWER THE CHALLENGE BY SAYING,
“LET |h| < &

F 1t-3l=Ihl <&,
/ THEN [D(®) - 6] =
/ 16+ h) - 6l =
'/ hl < &.
p

AND T'VE MET YOUR CHALLENGE.

NOW YOU'RE SATISFIED! T'VE
SHOWN THAT D(t) (AN BE MADE
WITHIN A HAIR OF 6, NO MATTER
HOW SLENDER THE HAIR!!

UM... CAN WE
NOT TALK
ABOUT HAIR?

¥IT'S TRADITIONAL. SORRY!
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BY NOW, YOU MAY BE CONVINCED THAT A FUNCTION REALLY CAN APPROACH A LIMIT AS X—a,
EVEN IF THE FUNCTION ISN'T DEFINED AT THE POINT a ITSELF. GRAPHICALLY, IT LOOKS LIKE

THIS: L‘l‘,} f(x) = L MEANS THAT THE GRAPH y = f(x) HEADS FOR THE POINT (a, L).

y = f(x)

(a, L)

IT MAY WOBBLE ALONG THE WAY, BUT IT
REALLY DOES HOME IN ON (a, L), IN THE
SENSE THAT IT 6ETS WITHIN ANY TINY
CIRCLE AROUND (a, L) AND STAYS THERE.

LIMITS ARE ESPECIALLY EASY WHEN f 15 ONE OF OUR ELEMENTARY FUNCTIONS, POWER
FUNCTIONS, CIRCULAR FUNCTIONS, EXPONENTIALS, AND THEIR INVERSES. WHEN ONE OF THESE
FUNCTIONS 15 DEFINED AT A POINT @, THE GRAPH GOES WHERE IT OUGHT TO 60, NAMELY

3 TO FIND THE LIMIT AT a, JUsT
PLUG a INTO THE FUNCTION!
AL\

i‘.'.';' f(x) = f(a)

FOR INSTANCE,

}cim2 50x = 100

. 1 - 1 \ \‘”‘ //
m =3 N -
limcos © = 0

6-m/2
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ALMOST EVERYTHING ELSE YOU
NEED TO KNOW ABOUT LIMITS
15 SUMMED UP IN THESE

& <& &
Basic Limit Facts: surrosc c 15 o constant, anp £ ano g ARE TWO

FUNCTIONS DEFINED AROUND a*, WITH
lim f(x) = L AND limg(x) = M
x—a X—a
THEN
1a. ror ANy a, lim € = ¢
b. lim cFfx0) = Clim £
X—a X—a

C. lim (FG) + £) = lim £ + €
2. lim (FGO) + gG0)) = L + M
3. lim (F(x)g(x)) = LM

4. IF L # O, THEN lim _1_ = 1_
x=a £(x) L

IN SHORT, YOU (AN TAKE THE LIMIT OF 5UMS, PRODUCTS, AND QUOTIENTS TERM BY TERM

(WATCHING OUT FOR ZERO DPENOMINATORS), AND CONSTANTS “PASS THROUGH™ THE LIMIT
SYMBOL.

THIS MAKES
LIFE 90 MUCH
EASIER!!

Example: ror any a = o,

X . a s
) e*sin x e®sina
lim (3x*+ ——Z2) = 3a%> + ———
X—a x a

*WE'LL USE “PEFINED AROUND d” A5 SHORTHAND FOR “DEFINED ON AN OPEN INTERVAL CONTAINING
a, EXCEPT POS5IBLY AT a ITSELF.”
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ACTUALLY, THERE ARE A TO BEGIN WITH—THE PRECISE DEFINITION OF A LIMIT! TO
FEW MORE THINGS TO UNDERSTAND THIS, LET'S REVIEW WHAT HAPPENED ON PAGES
KNOW ABOUT LIMITS... 56 AND 57 WITH THE FUNCTION P(t) NEAR t = 3.

(CAN YOU MAKE IT WITHIN 0.0001?)

WITHIN
0.0000000017

( WITHIN... ;7

IN GENERAL TERMS, IT WENT THIS WAY: YOU CHALLENGED ME TO CONFINE D(t) WITHIN A
TINY INTERVAL I AROUND L BY MAKING t CLOSE TO a. THE “RADIUS” (HALF-LENGTH) OF THAT
INTERVAL WE CALLED &£, EPSILON. YOU PEMANDED THAT I MAKE L - £ < P(t) < L + &.

GIVEN THAT CHALLENGE, T RESPONDED BY FINDING AN AT THAT POINT, YOU CONCEDED
INTERVAL J AROUND a, WITHIN WHICH THIS WAS TRUE: THAT THE LIMIT REALLY WAS L.

IFti15INT, THEN D) 15 IN L.

SIGH... YES... 1
ADMIT DEFEAT...




WE (AN EXPRESS THIS WITH FORMULAS, TOO. LET'S USE f FOR THE FUNCTION AND x FOR
THE VARIABLE INSTEAD OF P AND t, AND I'LL ILLUSTRATE IT WITH A G6RAPH, 50 YOU CAN SEE
THIS PROCESS IN TWO PIFFERENT WAYS. THE MEANING 15 IDENTICAL—ONLY THE LANGUAGE 15

DIFFERENT.

OH, GREAT...
YOU'RE 60ING
TO MAKE ME
ADMIT DEFEAT
TWICE?

%0: GIVEN ANY £ > O, YOU CHALLENGED ME
TO MAKE [f(x) - L| < &, I.LE., TO GET THE
GRAPH WITHIN THIS STRIP AROUND L:

IF T (AN RESPOND TO AN £
CHALLENGE WITH A & THAT
MAKES THAT LAST “IF... THEN”
TRUE, THEN YOU AGREE THAT

lim f(x) = L.
xX—a

WELL, IT'S
FOR, UM...
THEM...

I RESPONDED WITH A POSITIVE NUMBER &
(THAT’S THE RADIUS OF THE INTERVAL J)
WITH THIS PROPERTY:

O
a

ABSOLUTELY!
I DECIDED TO
TAKE IT AS A
VICTORY!



HERE, THEN, ARE TWO WAY%
TO EXPRESS THE FORMAL

Definition of the limit: suerosc £ 15 A FUNCTION DEFINED AROUND
POINT a (THOUGH NOT NECESSARILY AT a ITSELF). THEN TO SAY f HAS THE LIMIT L AS x
APPROACHES a MEANS:

ALGEBRAIC VERSION: INTERVAL VERSION:

FOR EVERY € > O, THERE EXISTS A FOR EVERY OPEN INTERVAL I AROUND L,

NUMBER & > O, SUCH THAT IF THERE 15 AN OPEN INTERVAL J AROUND

|x - al < & THEN |f(x) - L| < &. a, SUCH THAT IF x 15 IN T, THEN f(x) 15
IN I,

ON THE INTERVAL J,
F(x) 15 “TRAPPED” OR
“CAGED™ IN 1.

ALTHOUGH 1 PREFER THE INTERVAL PICTURE, )
THE ALGEBRAIC VERSION |5 THE ONE YOU SEE C~\r4
IN ALL THE TEXTBOOKS, THE ONE RECITED IN -

A MANTRA-LIKE DRONE BY GENERATIONS OF
CALCULUS STUDENTS, UNTIL IT EITHER $INKS
IN, OR ELSE, YOU KNOW, IT DOESN'T.

it “FOR EVERY
EPSILOHHMMMAL...”
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TO SEE HOW THE DEFINITION
WORKS, LET'S PROVE SOME
OF THE BASIC LIMIT FACTS
ON PAGE 59.

Limit Fact 1b. lim £(x) =

L, THEN lim £ £(x) =

DELTA... FOR EVERY EPSILON,
THERE EXISTS A DELTA...

FOR EVERY EPSILON, THERE
EXISTS A DELTA... FOR EVERY
EPSILON, THERE EXISTS A
&% FOR EVERY...

CL WHEN C 15 A CONSTANT.

PROOF: GIVEN £ > O (THAT'S HOW
THESE PROOFS ALWAYS START), WE
HOPE TO FIND A NUMBER & > O
SUCH THAT IF |x - al < &, THEN
[CF(x) - CL| < E. WE NOTICE THAT

ICFG) - CLl = ICIIFG0) - L]
%0 IF
IFo0 - L] < 22—

14

WE SHOULD GET WHAT WE WANT. BUT
CAN WE TRAP £(x) IN THAT £/IC|
INTERVAL? ANSWER: OF COURSE WE
CAN! BY DEFINITION OF THE LIMIT, WE
(AN TRAP £(x) IN ANY SMALL INTERVAL
BY USING SOME & OR OTHER... THIS 15
THE KEY TO THE WHOLE CONCEPT!

S0 TAKE & SUCH THAT

IF Ix - al < &, THEN IfGx) - L] < Ii

cl
IN THAT CASE, IF |x - al < &, THEN

ICFGO) - €L = ICIIFGO - LI
<1clE =«
IC|

50 Cf(x) 15 CAGED WITHIN £ OF CL, AND
THE PROOF 15 COMPLETE.
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SOME FURTHER LIMIT FACTS DEPEND ON THE FOLLOWING PRELIM-
INARY THEOREM, OR LEMMA, AS MATHEMATICIANS WOULD CALL IT.

Lemma 1: suerose lim £G) = lim g(x) = L.

IF I 15 ANY OPEN INTERVAL AROUND L, THEN THERE 15 A SINGLE
OPEN INTERVAL J AROUND a ON WHICH BOTH f(x) AND g(x) ARE
TRAPPED IN 1.

é!
PROOFS |

SQUEEZE
THEOREMS
FROM IT...

PROOF: BY DEFINITION, THERE 15 AN OPEN INTERVAL J;
AROUND @ WHERE F(X) 15 CONFINED TO I, AND ANOTHER
(PO%5IBLY DIFFERENT) OPEN INTERVAL Jg AROUND a WHERE
g(x) 15 CONFINED TO 1.

WHAT PO YOU PO
WITH A LEMMA?

EW: I
I I 9599 -
70 a Y 2 L THEN THE INTERSECTION OF J; AND Jg, THAT
l | :__;_44‘—’ 15, ALL POINTS COMMON TO THE TWO INTERVALS,
9 g| U 15 ALSO AN OPEN INTERVAL J AROUND a. IF X I5
L~ IN J, THEN BOTH £(x) AND g(x) ARE IN I, AND

THE PROOF 15 COMPLETE.

Lemma 2: suepose lim £(x) = lim gGx) = O. THEN
lim f(x)g(x) = lim £(x) + lim g(x) = O
PROOF: cIveN & >0, By LEMMA 1 THERE

15 AN INTERVAL T AROUND a SUCH THAT IF
x 15 IN J, THEN

J
£ £
If(x)l<€ AND |g(x)| < 7
IFx15IN T, THEN, a
IF(x) + 9GO < 1£GO| +19G0)| < % ¥ % .y
2
IF(x)g0| = [FOAI-1gx)| < % < &

AND THE PROOF 15 COMPLETE. (WE ASSUMED !
& < 1 HERE, BUT THAT’S O.K.)
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WE LEAVE LIMIT THE PROOF OF FACTS 1a AND 1c AS AN EASY EXERCISE FOR YOU,
READER... ASSUMING THEM TO BE TRUE, WE NOW PROVE FACTS 2 AND 3.

Limit Fact 2. 7 tim 70 = L AW lim g0 = M, THEN
Llll;l FOO+gx)) =L + M

PROOF: APPLY LEMMA 2 TO THE FUNCTIONS f - L

AND g - M. THESE BOTH HAVE LIMIT O AS x—a, BY
FACT 1c. 50

o

|l

Lt_(t} ((F) - L) + (g(x) - M)) BY LEMMA 2

]

Lt_r‘r‘} ((FG) + g(x)) - (L + M)).

|l

[lim ((FGO + 9G] - (L + M) BY FACT 1c, 50

L‘I’} ((f(x) + g(x)) = L + M. DONE!

(Q. E. vobvw-v;c:)

Limit Fact 3. lim £(x) = L AND lim gCx) = M, THEN

lim (FG)g(x)) = LM

PROOF: AGAIN APPLY LEMMA 2 TO THE FUNCTIONS f - L AND g - M,
WHICH BOTH HAVE LIMIT O AS x—a.

o

]

}}1‘;‘ [(F() - L) (g(x) -M)] (BY LEMMA 2)

!

lim [f(x)g(x) - Lg(x) - Mf(x) + LM] (JUST ALGEBRA)

= lim fG)g(x) - lim Lg(x) - lim Mf(x) + LM (BY FACTS 2 AND 1a)

"

lim fGOg(x) - LM - LM + LM (BY FACT 1b)

= lim f(x)g(x) - LM, %0 THE PROOF OF LIMIT
x—a FACT 4 15 LEFT TO

. THE PROBLEM SETS...
lim f(x)g(x) = LM. DONE AGAIN!
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More Limit Facts aeout posimive (AND NEGATIVE) FUNCTIONS AND THEIR

LIMITS, PLUS SOMETHING ELSE TO CHEW ON...

5a. r lim £x) = L > O, THEN £(x) > O
ON SOME INTERVAL T AROUND a.

PROOF: LET I BE ANY OPEN INTERVAL THAT
CONTAINS L BUT EXCLUDES O. BY THE DEFINITION
OF A LIMIT, THERE 15 AN INTERVAL J AROUND a
ON WHICH f(x) 15 ALWAYS IN 1. SINCE 1
CONSISTS ENTIRELY OF POSITIVE NUMBERS, THE
PROOF 15 COMPLETE.

Bb. IF L < O, THEN THERE 15 AN INTERVAL
AROUND @ ON WHICH £(x) < O. THIS
FOLLOWS BY APPLYING 5a TO -f.

B5C. IF f(x) > 0 FOr ALL x ON 5OME
INTERVAL AROUND a, THEN lim £(x) 2 O
(IF THE LIMIT EXISTS).

PROOF: IF THE LIMIT WERE NEGATIVE,
THEN BY 5b, WE COULD FIND AN INTERVAL
AROUND a WHERE f(x) WAS NEGATIVE,
CONTRARY TO THE HYPOTHESIS.

Bd. same a5 5c, with > REPLACED
THROUGHOUT BY <.

/1
T- =
- 0

TRANSLATION OF 5a: A FUNCTION
WITH A POSITIVE LIMIT AT a MUST
BE POSITIVE NEAR a.

NOTE: WE CAN NOT CONCLUDE THAT A
POSITIVE FUNCTION HAS A POSITIVE LIMIT,
ONLY A NON-NEGATIVE LIMIT. FOR EXAMPLE,

F(x) = x*/x (x = 0)

15 ALWAYS POSITIVE, BUT

}}_t_‘g f(x)=0.
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AND FINALLY, THIS TASTY RESULT:

Sandwich Theorem: ir g(x) < £(x) < h(x) FORr ALL x IN SOME INTERVAL
AROUND a, ANP lim g(x) = lim h(x) = L, THEN lim £(x) = L AL5O.

A% THE BREAD
60E%, 50 60E5
THE PASTRAMI!

PROOF: GIVEN ANY CHALLENGE
INTERVAL I AROUND L, OUR
HELPFUL LEMMA 1 5AYS THERE 15
AN INTERVAL J AROUND a WHERE
BOTH g(x) AND h(x) ARE
CONFINED TO L

FOR EVERY x IN J, THEN, £(x)
MUST ALSO BE IN I, BECAUSE f(x)
LIES BETWEEN g(x) AND h(x).
THIS MEANS }‘ig; fx) = L.

DPOES THAT WORK
WITH VE6 TOO?

h(x)
x —1
a L
7 ()
g(x)

ON A GRAPH, YOU SEE HOW f 15
SANDWICHED BETWEEN g AND h,
AND %0 15 SQUEEZED TOWARD
THE POINT (a, L).
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WHOO! ALL THAT
THEORY! CAN WE

TAKE A BREAK NOwW?

YES... LET'S TAKE
A SHORT, UM,
INTERVAL...

THE SANDWICH THEOREM 6GIVES U5 OUR FIRST SURPRISING RESULT INVOLVING ACTUAL, USEFUL
FUNCTIONS. LET’S COMPARE AN ANGLE WITH ITS SINE.

AN ANGLE © (IN RADIANS!)
15 THE LENGTH OF THE
ARC IT SWEEPS OUT IN A
UNIT CIRCLE, WHILE sin ©
15 THE VERTICAL LEG OF
THE TRIANGLE OAP. AS ©
SHRINKS, THE ARC 15 LESS
CURVED, 50 THE DISCREP-
ANCY BETWEEN SINE AND
ANGLE SHOULD BE LESS.
WHAT HAPPENS WHEN
6—07?

IT'S 0 HARD TO
SEE... EVERYTHING
15 50 SMALL...

\
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IN FACT, THEY BECOME INDISTINGUISHABLE. WE NOW SHOW THIS EXCELLENT RESULT:

lim 508 _ 4

6—0 9 -

PROOF: 5UPPOSE THE ANGLE CUTS THE CIRCLE AT POINT Q.
EXTEND THE LINE OQ TO THE POINT @’ DIRECTLY ABOVE P,

WHERE THE CIRCLE HITS THE X AXIS. THEN OP = cos 6,
QP = sin 6, AND OP’ = 1.

BECAUSE THE TRIANGLES OPQ AND OPQ’
ARE SIMILAR, IT FOLLOWS THAT

e uvy

OoP’ oP cos 6 fo) cos 6

NOW THE AREA OF THE SECTOR OP'@ 15 SIMPLY ©/2 (IN RADIANS, REMEMBER!), 50 THE
AREAS OF THE SMALL TRIANGLE OPQ, THE SECTOR, AND THE LARGE TRIANGLE OPQ° FORM

THIS SANDWICH OF INEQUALITIES:

sin @
cos 6

1 . 1 1
z5inBcos6 < 76 < 3

DIVIDING BY 3sin © (WHICH
15 NOT ZERO!) 6IVES

e 1
<

cos6 < —
sin@ cos @

TURNING EVERYTHING ON ITS HEAD
REVERSES THE INEQUALITIES:

sin @ 1
<

cosB@ <
(2] cos 6

AS ©— 0, THE POINT P 5LIDES TOWARD P’, 50 cos & (AND HENCE 1/cos ©) BOTH HAVE

LIMIT EQUAL TO 1. THEREFORE, BY THE SANDWICH THEOREM, 50 DOES (sin©)/6, AND
WE'RE DONE!
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Limits at Infinity, Infinite Limits

SOMETIMES IN CALCULUS WE'RE INTERESTED IN VERY LARGE THINGS AS WELL AS VERY SMALL
ONES. WE MAY, FOR EXAMPLE, WANT TO STUDY HOW A FUNCTION BEHAVES IN THE LONG
RUN, AS “x— 00.” HERE’S ONE THAT APPROACHES A LIMIT OF 3 AS X GROWS LARGE.

3x?
xt+ 2

SOMETIMES A FUNCTION “BLOWS UP TO ©o”
AT A POINT a, MEANING THE VALUES OF f(x)
6ROW WITHOUT BOUND AS x—a. HERE'S ONE
THAT BLOWS UP NEAR x = 2:

1

f(x) = ——
(x - 2)?

WE SAY THE LIMIT 15 INFINITE, AND WE WRITE

lim f(x) = oco

x—2

TO INFINITY TSK...

AND BEYOND, THAT’S JUST

EH, GONIcK? FOR CARTOON
CHARACTERS...

IT%
CERTAINLY
6OING
SOME-
WHERE...
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THE PRECISE MEANING WE COULD JUST AS WELL 4pY

OF Lin; f(x) = o0 I5 THAT FOR EVERY INTERVAL I
THIS: GIVEN ANY LARGE AROUND oo, THERE 15 AN
NUMBER N, THERE 15 INTERVAL T AROUND a SUCH
AN INTERVAL T AROUND THAT £(x) 15 IN T WHENEVER
a SUCH THAT f(x) > N x15INJ.

WHENEVER x 15 IN J.

Z_H

REMEMBER, 60ING “TO
INFINITY” REALLY MEANS
GOING AWAY FROM

EVERY OTHER NUMBER!

[60UNV$ FAMILIAR...J

IN A SIMILAR WAY, A FUNCTION'S “LONG-TERM” BEHAVIOR (AN SOMETIMES BE DESCRIBED AS A
LIMIT A5 x— 00. FOR EXAMPLE, THE FUNCTION g(x) = 1/x 15 DECREASING, AND IN FACT, IT
GETS ARBITRARILY CLOSE TO ZERO A5 X 6ROWS WITHOUT BOUND. WE WRITE:

.1
lim % =0

FOR EVERY INTERVAL I AROUND L
MAYBE BY NOW YOU KNOW THE (1.E., FOR EVERY £>0),
MANTRA TO DEFINE ,l‘ijgo f(x) = L:

'THERE 15 AN INTERVAL J AROUND oo
. (I.E., EVERYTHING GREATER THAN SOME
NUMBER N) SUCH THAT

-+ IFx15INT (x >N), THEN f(x)
15INI (|fG)-L| < &)

WHEN x> N, f(x) 15 WITHIN £ OF THE LIMIT.
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Polynomials at Infinity

WE CLOSE THIS CHAPTER BY SHOWING HOW POLYNOMIALS GROW AT INFINITY. IN EFFECT, A
POLYNOMIAL OF DEGREE n GROWS AS 1TS LEADING TERM a,x" A5 x— oco. ALL THE
LOWER-ORDER TERMS BECOME RELATIVELY NEGLIGIBLE.

YOU'RE
BENEATH
NOTICE...

Polynomial growth theorem: surrosc Px) anp @x) ARE POLYNOMIALS
OF DEGREE n AND m, RESPECTIVELY:

P(xX) = a,x" + a1 x" + .. + ap
Qx) = b, x™+ b, X"+ .. + by (a,, b, *0)
THEN IN MATHSPEAK, WE 4AY THE
1 P(x) a, POLYNOMIAL OF HIGHER
< IF n=m, THEN lim 260 b, PEGREE DOMINATES THE
n POLYNOMIAL OF LOWER
DEGREE.
P(x
2.F n < m, THEN lim —— ™ .o

~% Q(x) AN

2. IF n >m, AND a, AND b, HAVE THE SAME
516N (I.E., BOTH + OR BOTH -), THEN

i PCo oo AND -00 WHEN a, ANV by,
o Q) HAVE OPPOSITE 5I6NS.

Examples:
lim 3P+ x+50 3 (NUMERATOR AND DENOM-
T DT ooneT T2 ke s
i 450x% + 8x% + 50 (VEGREE OF NUMERATOR
Aeh 5 =0 15 LESS THAN DEGREE OF
X+ x + 1 DENOMINATOR.)
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PROOF OF 1: As5UME n = m. BECAUSE A POLYNOMIAL HAS A FINITE NUMBER OF ROOTS,
Q(x) # O WHEN X 15 LARGE ENOUGH, 50 THE FUNCTION P/Q 15 DEFINED ON AN INTERVAL
AROUND oo. THEN FOR LARGE X WE CAN WRITE

a An- do
Px) _ PGo/x" T Tt oA
Q) Qu/x" b
b+ = + ..+ -Er?
X X

NOW WE CAN TAKE THE LIMIT TERM BY TERM AS x— oo,
AND SINCE EVERYTHING GOES TO ZERO EXCEPT a, AND b,
THE RESULT FOLLOWS.

[2¢%) nom G X" ¥ e ¥ BoXTT"
@) b x™+...+ b,

WE JUST SHOWED THAT THE
SECOND FACTOR HAS THE
FINITE LIMIT a,/b,, AS

X — 00. 5INCE ’l‘ijg X" = O,

THE PRODUCT HAS LIMIT O.
PART 3 15 PROVED IN MUCH
THE SAME WAY.

THE CASE Q(x) = 1 IMPLIES THAT ANY POLYNOMIAL P (I.E., THE NUMERATOR) HAS
AN INFINITE LIMIT AT INFINITY. POLYNOMIALS CAN'T OSCILLATE (WOBBLE) FOREVER,
BUT MUST ZOOM OFF EVENTUALLY.

’ltt_'rglo P(x) = oo IF THE LEADING COEFFICIENT 15 POSITIVE.

’l‘t_.rtr,l" P(x) = -oo IF THE LEADING COEFFICIENT 15 NEGATIVE.
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& L 3
No Limit
FINALLY, I HAVE TO LET
YOU IN ON A LITTLE

SECRET... SOMETIMES,
THERE 15 NO LIMIT...

FOR EXAMPLE, NEITHER THE SINE NOR THE COSINE HAS A LIMIT AS x— 00. BOTH FUNCTIONS
OSCILLATE BETWEEN -1 AND 1 FOREVER AS x GETS LARGE. GIVEN ANY SMALL CHALLENGE
INTERVAL AROUND ANY NUMBER, THE VALUES sin x AND cos x REPEATEDLY ESCAPE THAT

INTERVAL...

AND S0 NEITHER FUNCTION (AN APPROACH A LIMIT AS x— oo.

IT 15 ALSO PO%SIBLE FOR A FUNCTION TO
HAVE NO LIMIT AT A FINITE POINT a. THE
MONSTER

g(x) = sin (%), x£0

WIGGLES UP AND DOWN EVER MORE WILDLY
A5 x— 0. g HAS NO LIMIT AT x = 0.

||

/o

74

POINTS OUTSIDE I

BUT THESE “BAD DOGS” ARE RARE, AT
LEAST IN THIS BOOK. CALCULUS 15 ALL
BASED ON TAKING THINGS TO THE LIMIT,
50 WE'LL BE LOOKING AT FUNCTIONS
WHERE THE LIMIT EXISTS... YOU (AN
EXPECT NOTHING BUT 600V DOGS FROM
NOW ON.

'LL OUTPUT ON
THEIR INPUT!



AND FINDING LIMITS 15 EASY, OFTEN ENOUGH. lim & = &

AS WE SAID ON PAGE 58, FINDING lim £(x) x—3

OFTEN INVOLVES NOTHING MORE THAN

PLUGGING @ INTO f: im + =1
X—9 x 9

lim sin©@ = sin 4
6—4

AND 50 ON...

. sinx
lim

x—0 X
. PO
lim -
¥ Q)

BOTH OF THESE FUNCTIONS, NOT COINCIDENTALLY, ARE QUOTIENTS... THE PENOMINATOR GOES
TO ZERO OR INFINITY... NO WONDER THEY'RE CHALLENGING! YOU CAN'T SIMPLY PLUG IN!!

0/0 WILL
DO THAT
TO YOV...

IN THE NEXT
CHAPTER, WE
LOOK AT
NOTHING BUT
LIMITS OF
QUOTIENTS...
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Problems

FIND THE LIMITS:

1. lim 2x
x—2

2. lim2 (3x + €), C A CONSTANT
X—

X+ x +1
3, lim ————
o 4 ¢ 17

3 2

. x>+ x4+ 1

4. lim —_—
xo-o Qx4+ 8

lim 2
5. Jim, 2int

7 lim X2 x-2
" X1 x -1

HINT: SUBSTITUTE y = 1/(x - 1) AND FIND THE LIMIT AS
y— 0o. ALTERNATIVELY, LET h = x - 1 AND FIND THE
LIMIT A5 h—O.

8. lim sin 2x

x—0
HINT: USE A TRIG IDENTITY FOR sin 2x.

. sinx
9. lim )
x—0 P%

. .1
10. }‘% x sin (x)

HINT: USE THE SANDWICH THEOREM.

11. ON P. 19, WE DEFINED THE FUNCTION f(x) = [x] TO BE THE WHOLE NUMBER PART OF x,
THAT 15, THE LARGEST INTEGER <x. HERE 15 THE GRAPH OF THE FUNCTION g(x) = x - [x].
DOES ii"‘z (x - [x]) EXIST? HOW ABOUT ’l‘in}l (x - [x]) FOR ANY INTEGER n?

v f///zi///
| /
¢ ¢ ';1 z ¢ ¢ ¢

IF WE APPROACH n FROM THE LEFT, g(x)—1. IF WE APPROACH n FROM THE RIGHT, g(x)—O.
THIS SU66ESTS THE IDEA OF HAVING RIGHT-HAND AND LEFT-HAND LIMITS. PO YOU THINK THIS
15 A GOOD IDEA? MATHEMATICIANS DO... AND THEY WRITE THEM LIKE THIS:

lim g(x) THE LIMIT FROM THE LEFT.

xX—a~

lim+g(x) THE LIMIT FROM THE RIGHT.

xX—a

12. 5UPPOSE f 15 ANY FUNCTION,
WITH }gg f(x) = LAND L # O.
USING THE DEFINITION OF THE
LIMIT, PROVE THAT THERE 15 AN
OPEN INTERVAL J AROUND a
SUCH THAT IF X 15 IN J, THEN
[fFx)| > IL/2].

OPTIONAL PROBLEM: «
WORK OUT THE ;
DETAILED DEFINITIONS!

13. SHOW THAT THIS IMPLIES THAT IF X I5 IN J, THEN

| 1 < 21f(x) - L|
fFx) L L?
SHOW HOW THIS IMPLIES THAT

. 1 1

lim — = —

x=a f(x) L



Chapter 2
The Derivative

PICKING UP SPEED

Now we coMe TO THE HEART OF CALCULUS: A FUNCTION'S RATE OF CHANGE. AS AN
EXAMPLE, TAKE THE FUNCTION s(£) = t% WHICH DESCRIBES A CAR ROLLING DOWN A RAMP.

WE (AN SEE THE FUNCTION s IN AT LEAST TWO WAYS:

1. s EATS INPUTS t FROM A 2. THE GRAPH y = s(t), IN THIS

TIMELINE AND POINTS TO CASE y = tz, A PARABOLA.
THE CAR'S POSITION s(t)
ON THE TRACK.
(t, s(®)
z T
t
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HERE ARE THREE WAY$
TO THINK OF THE CAR’S
VELOCITY IN TERMS OF
THE FUNCTION s.

V4

Aa

1. IN THE TIMELINE PICTURE, IT
15 SIMPLY THE VELOCITY OF THE
FUNCTION'S ARROWHEAD As IT
MOVES ALONG THE S AXIS! THE
ARROWHEAD COINCIDES WITH THE
(AR, 50 THEY HAVE THE SAME
VELOCITY.

N

FUNCTION’S
“TAIL” MOVES
ALONG s-AXIS
WITH VELOAITY
v(@) AT t = a.

Q. AT TIME t = a, THE VELOUITY v(a) 15

v@ = lim s(t) - s(a)
t—a t-a

A5 WE AW ON PAGE 54. THE AVERAGE
VELOCITY ON THE INTERVAL (a, t) AP-
PROACHES THE INSTANTANEOUS veLociTY
AS THE TIME INTERVAL 6ETS SHORTER AND
SHORTER. AS BEFORE, WE SET h = t - a
AND REWRITE THE DIFFERENCE QUOTIENT:

s(a + h) - s(a)
h

THEN THE LIMIT TAKES THE FORM

s(a + h) - s(a)
h

a) = li
v(a) jim

IN THE CASE AT HAND, WHEN s(t) = t%, wE
CAN ACTUALLY EVALUATE THIS EXPRESSION:

(a + h?*- a?
h

a’+ 2ah + h* - a?
h—o h

v(a) = lim
h—0

[l

lim (2a + h)
h—o0

= 2a

THIS 15 THE CARS
VELOCITY AT TIME
t = a
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3. ON THE GRAPH y = s(B),

THE VELOAITY v(a) AT TIME a 15

LHE SLOPE OF THE GRAPH AT y = s(t)
= a.

SLOPES, T KNOW, THEN T ME THAT...
BUT CURVES? I HEN TELL ME THA

PON'T BELIEVE IT! J #
& .

LINES HAVE TRY WALKING UP om;,]

s(a) P = (a,5(a)
7 i t
a
THIS 15 TRUE BECAUSE WE
DEFINE THE SLOPE OF A
CURVE AS THE LIMIT OF s(a+h) ¢

SLOPES OF LINES. THE RATIO

s(a+h) - s(a)
h

15 THE S5LOPE OF THE LINE,
OR CHORD, JOINING TWO
POINTS ON THE CURVE:

P = (a, s(a)) AND 2
Q= C(a+h, sta+h)).

s(a+h) -s(a)

A5 h— 0, @ SLIDES TOWARD P, AND THE $LOPES OF THE CHORDS PQ, PQ’, PQ”, ETC.,
APPROACH A LIMITING VALUE, WHICH WE INTERPRET AS THE SLOPE OF THE CURVE AT THE
POINT P. IF s(t) = t2, WE JUST FOUND THAT THIS SLOPE 15 v(a) = 2a.

v(a)= SLOPE OF
TANGENT LINE TO y=s(t)
AT t=a.
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DO YOU REALIZE WHAT WE'VE JUST
DERIVED? OUR RESULT 15 THAT THE
5LOPE OF THE GRAPH y = t% AT
THE POINT (a, a®) 15

2a

NO MATTER WHAT VALUE OF a.

1

i

i

1

§

i

i

i

i

i

i

§ |~ 5LoPE=2
i '

: :

% =A% 7 % —t
-2 8 1

SLOPE =2a

SIMILAR REASONING FINDS THE SLOPE OF THE GRAPH OF ANY POWER FUNCTION y = t"
(n BEING A POSITIVE INTEGER) AT A POINT P = (a, a"). A CHORD BETWEEN P AND A

NEARBY POINT @ = (a + h, (a + h)™) HAS 5LOPE

(a+h)"-a"
h

DOES THIS HAVE A LIMIT A5 h—O?
BY ALGEBRA, WE (AN EXPAND:

(@+h)" = a"+na"'h + C,h% + CR? ¢

WHERE THE COEFFICIENTS C; ARE CONSTANTS

INVOLVING POWERS OF a. SUBTRACTING a" AND

DIVIDING BY h, WE GET

(a+ A" - a"
h

ALL TERMS AFTER THE FIRST HAVE LIMIT O
A5 h— 0, 50

lim (a+h)"—a" = nan—

h—o h

= na"' + C,h + CR®

+ ..

+ h"

+ A"

NOTE: THE VERY LAST
STEP USED LIMIT FACT 2:
THE LIMIT OF A SUM 15
THE SUM OF THE LIMITS!
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AS WE'VE JUST SEEN, THIS SLOPE CAN BE INTERPRETED AS A VELOCITY. FOR EXAMPLE, IF A
ROCKET (AN BLAST AHEAD 50 FAST THAT s(t) = t°, THEN AT ANY TIME a, THE ROCKET HAS
VELOUITY v(a) = 5a*.

a s(a)=a’ v(a) = 5a*

-2 -32 5(-2)" = (5)-(16) = 80
-1 -1 5-= 5
0] 0 50 = 0
1 A 1y 2 &
2 32 5@ 16
3 243 5.(3)* = (5)-(81) = 405

7

OR, IF g(¥) = t*, THEN v(a) = 44’

FOR ANY a:
a g(a) v(a) = 4a’
-10 | 10,000 | 4(-10)* = -4,000
-2 16 4(-2)% = -32 NOW, WAIT A
1 1 A1 . MINUTE... 6IVEN
- D= - ANY TIME a... (-
0 0 @)= 0 B 5
s a -
! ! 4= 4 YOU PLUG a INTO THAT
2 16 427 = 32 FORMULA THERE... AND ][~

n-
10 | 10,000 | 410 = 4,000 6ET na" ...
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JUST AS WELL HAVE SAID “FOR ANY TIME t.” VELOCITY, AFTER ALL,
15 OBVIOUSLY A FUNCTION OF TIME: AT ANY TIME, THE ¢AR (OR
ROCKET) HAS A VELOCITY! IN FACT, WE HAVE NOW PROVED THAT IF
THE CAR’S POSITION AT TIME t 15 t", THEN ITS VELOCITY AT
THAT TIME, v(®), 15 nt" ',

SO WHY ISN'T v A READER, IT 15! WE KEPT SAYING “FOR ANY TIME a,” BUT WE COULD
FUNCTION OF ¢7

’'m A
FUNCTION

WE HAVE DERIVED A NEW FUNCTION FROM s: THIS DERIVED FUNCTION, OR DERIVATIVE,
GIVES THE SLOPE OF THE GRAPH y = s(t) AT EACH POINT t, A SLOPE EQUAL TO THE
VELOCITY AT TIME t.

v(t) = SLOPE OF
GRAPH AT t
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THIS DERIVED FUNCTION 15 50 ASTOUNDINGLY AND WIDELY USEFUL, IN CONTEXTS FAR BEYOND
CARS ROLLING DOWN RAMPS, THAT IT DESERVES ITS OWN NAME, DEFINITION, AND NOTATION:

The Derivative
Defined:

IF £ 15 ANY FUNCTION, AND X [5 ANY
POINT IN ITS DOMAIN, THE DERIVATIVE
OF f, WRITTEN " AND READ “EFF-
PRIME,” 15 THE FUNCTION DEFINED BY

Flx + h) - F(x)
h

F(x) = ll’t_r'r‘l)

FOR EACH x WHERE THIS LIMIT EXISTS.

THIS 15 “ONLY” THE
CENTRAL CONCEPT OF
CALCULVS !

N s

t

FINDING THE DERIVATIVE ' 15 ¢ALLED DIFFERENTIATING THE FUNCTION f. £f'(x) 15 THE

SLOPE OF THE GRAPH y = f(x) AT THE POINT (x, f(x)). FROM NOW ON, WE DISPENSE

WITH THE LETTER v FOR VELOCITY, AND WRITE s'(£) INSTEAD. IN THIS NEW TERMINOLOGY,
THE RESULTS OF THE PREVIOUS PAGES ARE KNOWN AS THE POWER RULE:

IF £&x) = x", THEN £() = nx" -1

KIND OF
A SIMPLE
FORMULA...
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THAT’S WHAT
MAKES IT 50

cooL!!

YOU (AN EASILY CHECK THAT IT
AGREES WITH WHAT WE FOUND
WHEN n = 2. WHAT DOES IT SAY
WHEN n = 12 WHEN n = O7



KNOWING THE DERIVATIVE OF f(x) = X", WE ALSO IMMEDIATELY
KNOW THE DERIVATIVE OF ANY POLYNOMIAL, THANKS TO

o~

Derivative Fact 1: Sums and
Constants are Easy!

LIMIT FACTS 1b AND 2

THESE FOLLOW FROM
ON PAGE 59.

IF YOU SAY $O...

1Q. IF C 15 A CONSTANT AND £ 15 A FUNCTION WITH
DERIVATIVE £/, THEN (CF) = CFf'. TAKING THE
DERIVATIVE “PAS5ES THROUGH” A CONSTANT.
1D. i £ AND g ARE TWO FUNCTIONS, THEN
(F+a) = f+aq

THE DERIVATIVE OF A 5UM 15 THE SUM
OF THE DERIVATIVES.

WOULD YOU
LIKE TO $EE
THE PROOF?

(AN T 5TOP

F+a)x) =

lim fF(x+h) + g(x+h) - (F(x) + g(x))
h—0 h

=

lim f(x+h) - f(x) + lim g(x+h) - g(x)

h—o h h—0

FxX) + 9 ()

THIS MEANS WE CAN DIFFERENTIATE
(TAKE THE DERIVATIVE OF) A POLY-
NOMIAL ONE TERM AT A TIME.

aix) = X + 2%+ 2x2 g0 = 9x° + 8xT + 4x
FOO = 2x + 6x2 + 5 F(x) = 12x° + 12x
ETC.
y=2¢
NOTE THAT THE Q AHAéA)?LO_PEO
DERIVATIVE OF ANY ] LWAYS =

CONSTANT 15 ZERO! A\
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Real-Life Example:

T spac NEWTON 15 BOUNCING ON A VERY
SPRINGY TRAMPOLINE WITH A MEMBRANE
1 METER OFF THE GROUND. IF IT FLINGS
ISAAC UPWARD AT AN INITIAL VELOCITY OF
100 METERS PER SECOND, THEN HIS
HEIGHT s ABOVE THE GROUND (VERTICAL
POSITION, WITH UPWARD BEING THE
POSITIVE DIRECTION), MEASURED IN
METERS, 15 GIVEN BY

s(t) = 1 + 100t - 49t

HOW FAST 15 HE MOVING AFTER
10 SECONDS? IN WHAT DIRECTION?

Solution: tuc verivative oF s
GIVES THE VELOCITY AT ANY TIME.
DIFFERENTIATE  TERM BY TERM:

s'(t) = 100 - (4.9)(2t)

"

100 - 9.8t M/5EC

]

THAT 15 THE GENERAL FORMULA FOR
NEWTON’S VELOCITY AT TIME t. PLUG
IN t =10 SECONDS FOR THE ANSWER:

s’(10) = 100 - (9.8)(10)

= 2 METERS PER SECOND.

THE POSITIVE VELOCITY MEANS NEWTON
15 STILL GOING UP AT THAT TIME!

WHOA! AFTER
10 SECONDS?
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THAT 15 CALCULUS-
STRENGTH ELASTIC..

J




LET’S PAUSE HERE A MOMENT TO CONTEMPLATE THE DERIVATIVE... ALL THOSE PAGES
ABOUT LIMITS WERE JUST A LEAD-IN TO THIS ONE KEY IDEA, THE SIMPLE ACT OF
CROWNING AN f WITH A LITTLE TICK MARK, OR PRIME.

IT WAS THE FIRST BRILLIANT INSIGHT OF NEWTON AND LEIBNIZ TO SEE THAT THIS DERIVATIVE
FUNCTION COULD HAVE A SIMPLE AND EXACT FORMULA, WHICH, WITH A $TROKE, UNLOCKS THE
SECRETS OF MOTION AND CHANGE. TAKE THAT, ZENO!

THE ILLUSION
OF MOTION 15
OVERWHELMING!

83

AND ALTHOUGH NEWTON HAPPENED TO BE THINKING ABOUT VELOCITY WHEN HE DREAMED UP
HIS “FLUXIONS,” THE DERIVATIVE’S IMPORTANCE EXTENDS FAR BEYOND VELOCITY.

REGARDLESS OF WHAT f AND x
STAND FOR, THE FRACTION
fx +h) - fOO
h

CHANGE
IN £(x)

15 THE CHANGE IN THE VALUE OF
f RELATIVE TO A SMALL CHANGE
IN THE VARIABLE X. IN THE LIMIT,
THEN, £ 15 THE INSTANTANEOUS
RATE OF CHANGE OF f wiTH
RESPECT TO x.

CHANGE IN X

X x+h

CHANGE IN £(X)
CHANGE IN X

Fx) =




For Example:

SUPPOSE SOME FLUID 15 FLOWING INTO OR OUT

OF A STORAGE TANK. IF V(t) 15 THE VOLUME

IN LITERS PRESENT AT TIME t MINUTES, THEN
Vt+h) - V()

h

15 THE (INSTANTANEOUS) RATE OF FLOW,
MEASURED IN LITERS PER MINUTE.

V(t) = lim
h—0

NOTE: THIS 15 NOT
VELOCITY, BECAUSE
IT POESN'T REFER
TO POSITION!

IF C(£) 15 THE COST OF LIVING AT TIME t,
THEN

Ct+h) -C)
h

15 THE RATE AT WHICH THE COST 15
CHANGING AT TIME t.

C't) = lim
h—0

THIS 15 THE
RATE OF
INFLATION!

kBt
C

MANY REAL-WORLD FUNCTIONS DEPEND ON
VARIABLES OTHER THAN TIME. FOR INSTANCE,
AIR THINS OUT AT HIGHER ALTITUDE. IF P(x)
15 THE PRESSURE AT ALTITUDE X, THEN

Px+h) - P(x)

P'(x) = lim
h—0

15 THE RATE OF
CHANGE AT
ALTITUPE X OF
PRESSURE PER
UNIT OF
ALTITUPE
(PASCALS PER
METER, SAY),
THE 50-CALLED
PRESSURE
GRADIENT.

A STRAIGHT ROAD 6OES INTO THE MOUNTAINS.
IF A(x) 15 THE ALTITUDE AT POSITION X, THEN

Alx + h) - A(x)
h

A(x) = lim
h—0

15 THE ACTUAL SLOPE OR GRADE OF THE
ROAD AT POINT X. (THERE ARE NO UNITS,
SINCE WE HAVE DIVIDED METERS BY METERS.
GRADE 15 USVALLY GIVEN IN PERCENTAGE
TERMS.)
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NOW WE'RE READY TO START DIFFERENTIATING
THE ELEMENTARY FUNCTIONS, BUT FIRST...

A Note on Notation (Leibniz-Style)

WRITING £ FOR THE DERIVATIVE OF f
MAKES TWO THINGS CLEAR:

a) THE DERIVATIVE 15 A FUNCTION WHY 50

, MANY HEY, THE DERIVATIVE 15 A
b) f 15 PERIVED FROM THE FUNCTION f DIFFERENT ROCK STAR! IT (AN HAVE
5YMBOLS?

AS MANY AS IT LIKES!

BUT YOU'LL OFTEN SEE THE DERIVATIVE
WRITTEN IN AN ENTIRELY DIFFERENT

WAY, LIKE THIS:
dy or df
—_— —_— & FuncT
dx dx CGormERN

THIS WIDELY USED NOTATION EMPHASIZES
OTHER ASPECTS OF THE PERIVATIVE:

€) ITS ORIGIN AS A QUOTIENT

d) THE VARIABLE x WITH RESPECT TO
WHICH THE PERIVATIVE 15 TAKEN

LEIBNIZ INVENTED THE dy/dx 5CRIBBLE BASED ON THIS DIAGRAM. Ax, PRONOUNCED “DELTA-
EKS,” MEANS THE CHANGE IN X, OR WHAT WE'VE BEEN CALLING h. Af OR Ay I15 THE
RESULTING CHANGE IN THE VALUE OF THE FUNCTION, LLE., Ay = f(x + Ax) - f(x). THE
SYMBOL A (6REEK CAPITAL DELTA) SIMPLY MEANS “THE CHANGE IN...”

THE $LOPE OF THE
CHORD 15 THEN

Ay
Ax

DELTA! WHY,
THAT'S MY

WHAT AN
ASTOUNDING
COINCIDENCE.

: Ay




IN THIS NOTATION, WE WOULP WRITE: WHAT A WEIRD, UN-

YOU HAVE AN

NECESSARY IDEA! INFINITESIMAL
dy T Ay OR WHERE'D YOU GET IT? IMAGINATION. ..
—_— = m —

dx =0 Ax
df AN
— = lim —
dx Ax=0 Ax

LEIBNIZ BELIEVED THAT dx AND dy
WERE SOME KIND OF “INFINITELY
SMALL” VERSIONS OF Ax AND Ay
AND THAT THE DERIVATIVE WAS THE
QUOTIENT OF THESE “INFINITESIMALS.”

ALTHOUGH THIS IDEA WAS EVENTUALLY ABANDONED BY MOST MATHEMATICIANS, ITS
ACTUALLY PRETTY HELPFUL TO THINK OF THE DERIVATIVE, FOR ALL PRACTICAL PURPOSES,
AS A LITTLE BIT OF y DIVIDED BY A LITTLE BIT OF X...

DOGGONE CURVE
LOOKS PRETTY MUCH
LIKE A STRAIGHT LINE

FROM UP (LOSE

ANYWAY...

ARE YOU A
THE LEIBNIZ WAY 15 OFTEN MORE CON- MATHEMATICIAN OR
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