OSCAR E. FERNANDEZ



CALCULUS
Simplified



Other Books by Oscar Fernandez
Everyday Calculus: Discovering the Hidden Math All Around Us

The Calculus of Happiness: How a Mathematical Approach to Life Adds Up to
Health, Wealth, and Love



CALCULUS
Simplified

Oscar E. Fernandez

RRRRRRRRRRRRRRRRRRRRRRRR
NNNNNNNNNNNNNNNNNN



Copyright (© 2019 by Princeton University Press
Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540
6 Oxford Street, Woodstock, Oxfordshire OX20 1TR

press.princeton.edu
All Rights Reserved

LCCN 2019936027
ISBN 978-0-691-17539-3

British Library Cataloging-in-Publication Data is available

Editorial: Vickie Kearn, Susannah Shoemaker, and Lauren Bucca
Production Editorial: Kathleen Ciofh
Text Design: Lorraine Doneker
Cover design: Layla Mac Rory
Production: Erin Suydam
Publicity: Matthew Taylor and Kathryn Stevens
Copyeditor: Theresa Kornak

This book has been composed in MinionPro
Printed on acid-free paper. co
Printed in the United States of America
1 357 9 10 8 6 4 2



To Emilia and Alicia

Many years from now when you confront calculus,
Come back to this book and give it a read.
Come back to me, too, and give me a hug.
As much as I love math, I love you both much, much more.
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Preface

Hi. Welcome to Calculus Simplified. My name is Oscar Fernandez, Associate Profes-
sor of Mathematics and Faculty Director of the Pforzheimer Learning and Teaching
Center at Wellesley College, and I will be your instructor.

Who Is This Book Intended For?

Here are three questions that will help you determine if this book is for you.

¢ Do you have a background in algebra, geometry, and some exposure
to functions (exposure to transcendental functions—exponentials, logs,
trigonometry—is not required)? If so, this book is for you.

o Areyou currently enrolled in a calculus course (or soon will be)? If so, this
book is for you.

« Did you learn calculus long ago and are now seeking a quick refresher on
the subject? If so, this book is for you.

If you answered “no” to all of those questions, this book might not be for you. I
encourage you to skim it first to see if it may still be an appropriate resource for you.
If you answered “yes” to any of those questions, great! Read on.

Reason 1 You Should Use This Book: Its Goldilocks
Approach to Calculus

Cognitive scientists have accumulated evidence over the past few decades support-
ing what is today called the “Goldilocks Effect”: we learn best when the content being
taught contains just the right amount of challenge and complexity—not too much,
and not too little.

Consider now the challenge of learning calculus. The typical calculus student
turns to three particular resources for help: a calculus textbook, a calculus professor,
and a calculus supplement. Each of these resources, however, has its strengths and
weaknesses. I've highlighted three particular dimensions along which to understand
those strengths and weaknesses in (a) of Figure 1: level of detail, personalization of
content, and depth of insights.
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Compare the aforementioned three calculus resources along those three dimensions
and here are some of the things youd notice:

Regarding the level of detail. Most calculus supplements (e.g., Calculus for
Dummies) are devoid of formal statements of theorems. That means it isn’t al-
ways clear when one can apply the formulas and techniques discussed (this is
clearly articulated by the hypotheses of a theorem). Most calculus textbooks,
on the other hand, have the opposite problem—they are replete with formal
statements of theorems (and their proofs). The result is a calculus learning
experience that feels too formal, where proof and rigor often overcompli-
cate explanations and obscure the intuition behind the concepts. Conclusion:
too little detail may give you a false sense of confidence in your calculus
knowledge; too much detail may turn you off from calculus altogether.

Regarding the depth of insights. Most calculus supplements offer only
superficial mathematical insights, focusing instead more on teaching com-
putational skills, procedures, and techniques. (Example: “Do this when you
see that”) In fairness, most calculus supplements are supplements; the idea is
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to use them alongside a calculus textbook and/or calculus professor, which
furnish those deeper mathematical insights. Often these resources go too
far, however, as evidenced by one of the most common nuggets of student
feedback in a calculus course: “less theory, more examples, please” Con-
clusion: too little depth of insight will make learning calculus feel like rote
learning; too much depth of insight makes calculus feel too theoretical and
impractical.

Regarding the personalization of content. Most calculus textbooks are
thousand-page tomes containing way more content than any calculus profes-
sor can cover in a Calculus 1 course. The average calculus textbook, therefore,
is not at all personalized to your interests. We calculus professors do our best
to distill the hundreds of pages of content provided by the calculus textbook
into roughly 30 hour-long lessons, ideally taking into consideration the par-
ticular interests of the students in the course. This is an improvement over the
calculus textbook, for sure. But in a class of many students it is still hard to per-
sonalize the content to each student. Conclusion: too little personalization of
content is a wasted opportunity to engage you in learning calculus; however,
the amount the average calculus instructor provides, while an improvement
over that of a calculus textbooK, is still not personalized enough.

The conclusion: none of the resources just discussed are “just right” for learning
calculus. That’s where this book comes in.

This book takes a “Goldilocks approach” to learning calculus.

As Figure 1(b) is meant to illustrate:

This book balances intuition with theory to provide you with just the right
level of detail. Chapter 1 teaches you the core ideas of calculus. What you
will learn there will anchor all of what you will learn in the rest of the book.
That’s because the Chapter focuses on developing the intuition behind the
main concepts, mindset, and overarching framework of calculus. Subsequent
chapters discuss the math of calculus, with just the right balance of formal
statements of definitions and theorems, so that you learn the terminology of
calculus and understand the full story, complete with when and why it works.

This book allows you to personalize your calculus adventure. First of all:

No prior knowledge of exponential, logarithmic, or trigonometric functions
is needed to learn calculus from this book.

Don’t know what sinx is (or don’t yet fully understand it)? Same issue with
€* or Inx? No problem; the calculus of such functions is left until the end of
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every section (discussed under the heading Transcendental Tales). Include
it in your reading if youd like; skip it if youd rather not. The choice is
yours.

Additionally, sections do include discussions of theory, but focus on in-
tuition rather than proof. More technical discussions and proofier content is
relegated to the chapter appendixes (which you can download from the book’s
website). Include it in your reading if youd like; skip it if youd rather not. The
choice is yours.

Finally, the same approach is used with the more in-depth real-world ap-
plications. These are included in Appendix C. Include it in your reading if
youd like; skip it if youd rather not. The choice is yours.

The net effect of all this: a gentler learning experience, as illustrated in
Figure 1(c), and a focus on intuition (hence the Calculus Simplified title).

This book provides just the right amount of depth to the mathematical
insights unearthed. You will learn both the “how” and the “why” of calculus.
You will understand why its core concepts are important. You will be exposed
to the various other places (e.g., real-world contexts) where calculus concepts
show up. And if you want to, you will also understand the historical context
that motivated the invention of calculus (some of that content is optional and
contained in the chapter appendixes).

Reason 2 You Should Use This Book: The Bonus Features

The Goldilocks approach used in this book is complemented by the following

additional features designed to supercharge your learning of calculus.

A focus on conciseness. Excluding the exercises and appendixes:
This book teaches you calculus in at most 110 pages.

Exclude transcendental functions (exponentials, logarithms, and trigono-
metric functions) and youre down to 87 pages (Figure 2). Both of these
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numbers are considerably less than the roughly 200-300 pages the typical
calculus textbook takes to teach the same content (again excluding the
exercises and appendixes).

Nearly 200 solved examples. I've included 196 distinct solved examples in
this book. I also included more than just the calculations for many of them—
I wrote out my thought process too. This will help you learn to think like a
mathematician thinks about calculus.

Answers to all non-proof exercises. There are 337 exercises in this book. I
have included answers to all of the exercises that are not proofs or derivations;
answers start on page 227.

Use of color and boxes to separate content. In-chapter definitions, theo-
rems, and important takeaways appear in blue boxes to help you easily spot
them. End-of-chapter exercises are also color-coded: exercises colored blue
are applied exercises. And of course, colors are used to help explain various
concepts.

Interactive online content linked to book content. In mathematics, an in-
teractive graph—or a video lesson—is sometimes worth a million words. I've
capitalized on the learning power of these digital resources by creating sev-
eral ones based on the content in this book. You'll find references to them
throughout the book; a link to the graphs and other digital resources can be
accessed on the book’s website:

https://press.princeton.edu/titles/13351.html

Inclusion of references. Sources for external content used—and for addi-
tional useful resources—are provided in the Bibliography. References appear
in-text as brackets and use a number (e.g., [3]) to identify the entry in the
bibliography being referenced.

A direct line to the author. I wrote this book to help you learn calculus. I
stand by this goal. So, feel free to email me with any questions, comments, or
suggestions. Seriously. Here is my email:

math@surroundedbymath.com
I also encourage you to submit feedback on the book via the link below.
https://goo.gl/forms/yOIFolqTEEdzkVhr2

Your submission will be anonymous. Your feedback will help me improve the
book and will be incorporated into future editions.
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Parting Thoughts

Calculus Simplified is a resource for anyone interested in learning (or relearn-
ing) Calculus 1. First and foremost, it is an attempt to re-structure the standard
presentation of content in a calculus textbook to strike that “just right” balance on
the level of detail, depth of insights, and personalization of content illustrated in
Figures 1(a) and (b).

Second, Calculus Simplified was designed to streamline your learning of calculus.
But do not confuse “streamline” with “water down.” This book is not a collection
of calculus formulas or merely a quick review of calculus concepts (which presumes
you already know calculus). It is not an idiot’s or dummies guide to calculus (you are
neither). Calculus Simplified is a college-level Calculus 1 course—based on the notes
I created for teaching calculus—streamlined to eliminate excess content that gets in
the way of learning calculus, written in more informal prose, including relevant real-
world examples, and structured to afford you multiple routes to learning calculus.

Finally, though the vast majority of topics covered in a calculus textbook are also
covered in Calculus Simplified, this book is not intended to be a comprehensive treat-
ment of Calculus 1. In the present conception of what a calculus textbook consists
of, this book is also not intended to be a textbook (though it can certainly be used as
such in some settings). At the same time, Calculus Simplified is much more than the
run-of-the-mill calculus supplement. Explained within the theme of this Preface, I
think of Calculus Simplified as occupying the “Goldilocks zone” between a calculus
textbook and a calculus supplement.

I am excited to begin working with you as you set off on your calculus adven-
ture. Once you are done learning the calculus in this book, I encourage you to
read the Epilogue; it contains some useful advice and encouragement for navigating
mathematics beyond calculus. See you in Chapter 1!

Oscar E. Fernandez
Brookline, MA



To the Student

Welcome to Calculus Simplified! Before you embark on your adventure through this
book, I thought I would give you a few practical tips intended to help you conquer
calculus.

What You Can Expect to Learn from This Book

This subheading’s title might seem silly, given that this is a book about calculus. But
research shows that students learn best when they know beforehand what they are
about to learn and what they should be able to do with that knowledge at the end of
the lesson. Rather than insert these learning goals and objectives at the start of each
lesson, I have provided them in a supplemental document titled Calculus Simplified:
Learning Goals and Objectives, available on the book’s website. (That document also
maps this book’s learning goals and objectives to the curriculum framework used
in AP Calculus, in case you're enrolled in such a course.) I highly recommend you
keep that document handy as you read through each section of the book.

How to Read a Math Book (Including This One)

Though I have done my best to infuse my writing with the elements of a novel—
characters, a plot, etc.—this book is not a novel. One thing this implies is that you
need to read this book differently than you would a novel. For example, simply read-
ing this book won’t help you understand calculus. Rather, I recommend you work
through this book—work out the examples, work out the solutions to the exercises,
work through the supplemental content. By doing mathematics you will be helping
yourself learn mathematics. Moreover, jot down questions and comments as you
read and work through this book. This will ensure you are learning actively rather
than passively.

Lastly, let me mention the special role that theorems play in mathematics, and
how to ensure you're getting the most out of them. Loosely speaking, a theorem is a
statement that has been proven true. A typical theorem has the following structure:
preamble, hypotheses, conclusion. Example:

Theorem (Pythagorean Theorem): Consider a right triangle in the plane. Let ¢
denote the length of the hypotenuse of the triangle and a and b the lengths of the
other two sides. Then ¢? = a® + b?.
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To the Student

In this theorem the first sentence is the preamble; its role is to provide context
for what the theorem says. The second sentence in the theorem contains some
assumptions (as happened here, sometimes the preamble also contains assump-
tions). The last sentence contains the conclusion.

Echoing my earlier advice to work through this book, do the same with
theorems—whenever you come across a theorem take a moment to understand
what it is saying. Try to draw pictures, explain the theorem in words, and imag-
ine removing some of the hypotheses to see how the conclusion might be affected.
Doing all this will help you appreciate what the real use of the theorem is, help you
remember it, and help you learn when it can (and cannot) be applied.

How to Become a Better Student

I have one last recommendation for you: employ the latest research from the science
of learning while you study. Study strategies like retrieval practice and interleaving—
both backed by cognitive science research—can supercharge your studying. You
can read more about these and other research-backed study strategies in the sup-
plemental document titled Evidence-Based Study Strategies, available on the book’s
website.

Alright, that’s all T have for you at the moment. Let’s get started with your calculus
adventure!



To the Instructor

You might be thinking, “Not another calculus book!” But this one is different. My
goal is neither to add another calculus textbook to the volumes of such books nor
to provide students with an overly simplistic treatment of the subject. Instead, as I
wrote in the preface, Calculus Simplified is an attempt to re-structure the standard
presentation of content in a calculus textbook to strike that “just right” balance on
the level of detail, depth of insights, and personalization of content.

Calculus Simplified is also a sign of the times. In the age of Twitter, it has become
increasingly clear that shorter and more succinct treatments of calculus are favored
by students. The byte-sized explanations utilized in this book, along with the free-
dom to add or exclude content related to transcendental functions, cut down the
time investment necessary for a student to quickly familiarize herself with a calcu-
lus concept. As such, I have used this very text successfully not just as a main text
in introductory calculus courses, but also as a quick reference text in more rigorous
calculus courses (especially due to its excellent breadth of exercises).

One final note that you may find helpful: the explicit connection to the AP Cal-
culus Mathematical Practices curriculum framework. Even if you are not teaching
an AP Calculus course, I highly recommend reading the Fall 2016 revision of the
AP Calculus curriculum. In addition to discussing a variety of useful teaching tech-
niques for calculus, the document details six broad learning goals for calculus (these
are the Mathematical Practices) along with detailed learning objectives for each con-
cept covered in AP Calculus. On the website that accompanies this book, you will
find a supplemental document titled Calculus Simplified: Learning Goals and Objec-
tives that maps each of the AP Calculus framework’ learning goals and objectives
to the associated sections and exercises in this book. This makes it especially easy to
use this book in just-in-time fashion to provide content and exercises for whatever
calculus topic you are teaching on a given day.






Before You Begin ...

Here is some useful information that will help you navigate this book.

Numbering scheme

Where applicable, equations in the chapters are numbered in (chap-
ter.equation) format. Example: equation (3.17) refers to the 17th numbered
equation in Chapter 3.

Equation numbers appear flushed right in the book, like this: (3.17)
Figures and tables in the chapters follow the same numbering scheme as
equations, except no parentheses surround the “x.y” reference.

Equations and figures/tables in appendixes A, B, and C are numbered in (ap-
pendix.equation) format. Example: equation (B.7) refers to the 7th numbered
equation in Appendix B.

Equations and figures/tables in the appendix to chapter X are numbered as
(AX.y) and AX.y, respectively. Example: equation (A1.5) refers to the 5th
numbered equation in the appendix to Chapter 1.

Color-coded alerts

Definitions and theorems appear next to thin blue vertical rectangles, like
this:

] Theorem 3.2 Theorem text...

Appendix C contains applied examples too long to include in the chapters.
These are referenced with light blue rectangles, like this:

I Reference Text Short description of applied example.

Suggested end-of-chapter exercises are referenced like this:
Related Exercises |

Thin blue-colored rectangles in the margin—Ilike the one to the right—alert
you to online interactive versions of the graph(s) or content being discussed
(accessible via the book’s website, listed in the Preface).
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« Content involving transcendental functions (exponential, logarithmic, and
trigonometric functions) appears under the subheading Transcendental
Tales.

o Inmany sections I suggest tips and summarize takeaways; these appear under
the subheading Tips, Tricks, and Takeaways.
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1

The Fast Track Introduction to Calculus

Chapter Preview. Calculus is a new way of thinking about mathematics. This
chapter provides you with a working understanding of the calculus mindset, core con-
cepts of calculus, and the sorts of problems they help solve. The focus throughout is on
the ideas behind calculus (the big picture of calculus); the subsequent chapters discuss
the math of calculus. After reading this chapter, you will have an intuitive understand-
ing of calculus that will ground your subsequent studies of the subject. Ready? Let’s start
the adventure!

1.1 What Is Calculus?
Here’s my two-part answer to that question:

Calculus is a mindset—a dynamics mindset. Contentwise, calculus is the
mathematics of infinitesimal change.

Calculus as a Way of Thinking

The mathematics that precedes calculus—often called “pre-calculus,” which in-
cludes algebra and geometry—largely focuses on static problems: problems devoid
of change. By contrast, change is central to calculus—calculus is about dynamics.
Example:

o What’s the perimeter of a square of side length 2 feet? <— Pre-calculus
problem.

o How fast is the square’s perimeter changing if its side length is increasing at
the constant rate of 2 feet per second? <— Calculus problem.

This statics versus dynamics distinction between pre-calculus and calculus runs
even deeper—change is the mindset of calculus. The subject trains you to think of a
problem in terms of dynamics (versus statics). Example:

o Find the volume of a sphere of radius r. Pre-calculus mindset: Use ‘3—1711'3

(Figure 1.1(a)).

o Find the volume of a sphere of radius r. Calculus mindset: Slice the sphere
into a gazillion disks of tiny thickness and then add up their volumes
(Figure 1.1(b)). When the disks’ thickness is made “infinitesimally small” this
approach reproduces the %n r3 formula. (We will discuss why in Chapter 5.)
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(@) (b)

Figure
mindset.

1.1: Visualizing the volume of a sphere via (a) a pre-calculus mindset and (b) a calculus

There’s that mysterious word again—infinitesimal—and I've just given you a clue
of what it might mean. I'll soon explain. Right now, let me pause to address a thought
you might have just had: “Why the slice-and-dice approach? Why not just use the
‘3—171 13 formula?” The answer: had I asked for the volume of some random blob in
space instead, that static pre-calculus mindset wouldn’t have cut it (there is no for-
mula for the volume of a blob). The dynamics mindset of calculus, on the other
hand, would have at least led us to a reasonable approximation using the same

slice-and-dice approach.

That volume example illustrates the power of the dynamics mindset of calculus.
It also illustrates a psychological fact: shedding the static mindset of pre-calculus will
take some time. That was the dominant mindset in your mathematics courses prior
to calculus mathematics courses, so you're accustomed to thinking that way about
math. But fear not, young padawan (a Star Wars reference), I am here to guide you
through the transition into calculus’ dynamics mindset. Let’s continue the adventure
by returning to what I've been promising: insight into infinitesimals.

What Does “Infinitesimal Change” Mean?

The volume example earlier clued you in to what “infinitesimal” might mean. Here’s
a rough definition:

<« . . k2l . .
Infinitesimal change” means: as close to zero change as you can imagine,
but not zero change.

Let me illustrate this by way of Zeno of Elea (c. 490-430 BC), a Greek philosopher
who devised a set of paradoxes arguing that motion is not possible. (Clearly, Zeno
did not have a dynamics mindset.) One such paradox—the Dichotomy Paradox—
can be stated as follows:

To travel a certain distance you must first traverse half of it.

Figure 1.2 illustrates this. Here Zeno is trying to walk a distance of 2 feet. But
because of Zeno's mindset, with his first step he walks only half the distance: 1 foot

=
=
o©
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Figure 1.2: Zeno trying to walk a distance of 2 feet by traversing half the remaining distance with
each step.

(Figure 1.2(b)). He then walks half of the remaining distance in his second step: 0.5
foot (Figure 1.2(c)). Table 1.1 keeps track of the total distance d, and the change in
distance Ad, after each of Zeno's steps.

Table 1.1: The distance d and change in distance Ad after each of Zeno’s steps.

Ad | 1| 05 | 025 | 0.125 | 0.0625 | 0.03125 | 0.015625 | 0.0078125
d 1| 15| 175 | 1.875 | 1.9375 | 1.96875 | 1.984375 | 1.9921875

Each change Ad in Zeno’s distance is half the previous one. So as Zeno continues his
walk, Ad gets closer to zero but never becomes zero (because each Ad is always half
of a positive number). If we checked back in with Zeno after he’s taken an infinite
amount of steps, the change Ad resulting from his next step would be . . . drum roll
please . .. an infinitesimal change—as close to zero as you can imagine but not equal
to zero.

This example, in addition to illustrating what an infinitesimal change is, also does
two more things. First, it illustrates the dynamics mindset of calculus. We discussed
Zeno walking; we thought about the change in the distance he traveled; we visualized
the situation with a figure and a table that each conveyed movement. (Calculus is full
of action verbs!) Second, the example challenges us. Clearly, one can walk 2 feet.
But as Table 1.1 suggests, that doesn’t happen during Zeno's walk—he approaches
the 2-foot mark with each step yet never arrives. How do we describe this fact with
an equation? (That’s the challenge.) No pre-calculus equation will do. We need a
new concept that quantifies our very dynamic conclusion. That new concept is the
mathematical foundation of calculus: limits.

1.2 Limits: The Foundation of Calculus

Lets return to Table 1.1. One thing you may have already noticed: Ad and d are
related. Specifically:

Ad+d=2, or equivalently, d=2— Ad. (1.1)
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This equation relates each Ad value to its corresponding d value in Table 1.1. Great.
But it is not the equation we are looking for, because it doesn’t encode the dynamics
inherent in the table. The table clearly shows that the distance d traveled by Zeno
approaches 2 as Ad approaches zero. We can shorten this to

d—2 as Ad— 0.

(We are using “—” here as a stand-in for “approaches.”’) The table also reiterates what
we already know: were we to let Zeno continue his walk forever, he would be closer
to the 2-foot mark than anyone could measure; in calculus we say: “infinitesimally
close to 2 To express this notion, we write
lim d=2, (1.2)
Ad—0

read “the limit of d as Ad — 0 (but is never equal to zero) is 2

Equation (1.2) is the equation we've been looking for. It expresses the intuitive
idea that the 2-foot mark is the limiting value of the distance d Zeno’s traversing.
(This explains the “lim” notation in (1.2).) Equation (1.2), therefore, is a statement
about the dynamics of Zeno’s walk, in contrast to (1.1), which is a statement about
the static snapshots of each step Zeno takes. Moreover, the Equation (1.2) reminds
us that d is always approaching 2 yet never arrives at 2. The same idea holds for Ad:
it is always approaching 0 yet never arrives at 0. Said more succinctly:

Limits approach indefinitely (and thus never arrive).

We will learn much more lim v
about limits in Chapter 2 (in- A0
cluding that (1.2) is actually
a “right-hand limit”). But the
Zeno example is sufficient to Finite change Axin Y Infinitesimal change in ¥
give you a sense of what the (Not a calculus concept) (Calculus concept)
calculus concept of limit is and Figure 1.3: The calculus workflow.
how it arises. It also illustrates
this section’s title—the limit concept is the foundation on which the entire mansion
of calculus is built. Figure 1.3 illustrates the process of building a new calculus con-
cept that we will use over and over again throughout the book: start with a finite
change Ax in a quantity Y that depends on x, then shrink Ax to zero without letting
it equal zero (i.e., take the limit as Ax — 0) to arrive at a calculus result. Working
through this process—like we just did with the Zeno example, and like you can now
recognize in Figure 1.1—is part of what doing calculus is all about. This is what I
meant earlier when I said that calculus is the mathematics of infinitesimal change—
contentwise, calculus is the collection of what results when we apply the workflow
in Figure 1.3 to various quantities Y of real-world and mathematical interest.
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Three such quantities drove the historical development of calculus: instantaneous
speed, the slope of the tangent line, and the area under a curve. In the next section
we'll preview how the calculus workflow in Figure 1.3 solved all of these problems.
(We'll fill in the details in Chapters 3-5.)

1.3 The Three Difficult Problems That Led to the Invention
of Calculus

Calculus developed out of a need to solve three Big Problems (refer to Figure 1.4):!

1. The instantaneous speed problem: Calculate the speed of a falling object at a
particular instant during its fall. (See Figure 1.4(a).)

2. The tangent line problem: Given a curve and a point P on it, calculate the slope
of the line “tangent” to the curve at P. (See Figure 1.4(b).)

3. The area under the curve problem: Calculate the area under the graph of a
function and bounded by two x-values. (See Figure 1.4(c).)

Figure 1.4 already gives you a sense of why these problems were so difficult to
solve—the standard approach suggested by the problem itself just doesn’t work. For
example, you've been taught you need two points to calculate the slope of a line.
The tangent line problem asks you to calculate the slope of a line using just one
point (point P in Figure 1.4(b)). Similarly, we think of speed as “change in distance
divided by change in time” How, then, can one possibly calculate the speed at an
instant, for which there is no change in time? These are examples of the sorts of
roadblocks that stood in the way of solving the three Big Problems.

Speed at this instant =? Slope of this line =7 Area of the shaded region =7
y y
“ ‘ S
y=Jjx ]
@ /N;fﬂ
’
i v M /Ay ! f X i i X
a b

(@) (b) (©
Figure 1.4: The three problems that drove the development of calculus.
IThese may not seem like important problems. But their resolution revolutionized science, enabling the

understanding of phenomena as diverse as gravity, the spread of infectious diseases, and the dynamics of the world
economy.
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Calculus workflow picture result
il il il il
3 s @ 3
Ady || ‘ @ Instantaneous
speed:
Ad
‘ a At—0 . Aid
‘ ‘ A0 At
(PN AN 7 AN Mgl U
Large At Smaller At Even smaller At Infinitesimally small Az
y y y
y=/(x) y=/x y=f
Slope of the
tangent line:
Ax—0 A
TAy lim =¥
P, __.Ei P. Ay P. Ax—0 Ax
Ax Ax
T X T X T X
a a a
Large Ax Smaller Ax Infinitesimally small Ax
Areais swept out ... ...uptoAxpasth...
y y y
y=/(x) y=/(x) y=/(x)
/F'\/ /\/ /('\/ Shaded area
i i i under the
: : Ax—=0 : curve:
P i i : i lim 4
i : i ! i : frarcaiis
] : x i X i :' X
a b a b —Ax a b

... with resulting area
denoted 4,

Infinitesimally small Ax

Figure 1.5: The calculus workflow (from Figure 1.3) applied to the three Big Problems.

But recall my first characterization of calculus: calculus is a dynamics mindset.
Nothing about Figure 1.4 says “dynamics.” Every image is a static snapshot of some-
thing (e.g., an area). So let’s calculus the figure. (Yep, 'm encouraging you to think
of calculus as a verb.)

Figure 1.5 illustrates the application of the calculus workflow (from Figure 1.3)
to each Big Problem. Each row uses a dynamics mindset to recast the problem as
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the limit of a sequence of similar quantities (e.g., slopes) involving finite changes.
Specifically:

e Row #1I: The instantaneous speed of the falling apple is realized as the limit
of its average speeds % (ratios of changes in distance to changes in time) as
At— 0.

o Row #2: The slope of the tangent line is realized as the limit of the slopes of
the secant lines % (the gray lines in the figure) as Ax — 0.

e Row #3: The area under the curve is realized as the limit as Ax — 0 of the
area swept out from x =a up to Ax past b.

The limit obtained in the second row of the figure is called the derivative of f (x)
at x = a, the x-value of point P. The limit obtained in the third row of the figure is
called the definite integral of f(x) between x =a and x = b. Derivatives and inte-
grals round out the three most important concepts in calculus (limits are the third).
We will discuss derivatives in Chapters 3 and 4 and integrals in Chapter 5, where
we'll also fill in the mathematical details associated with the three limits in Figure 1.5.

This completes my big picture overview of calculus. Looking back now at Fig-
ures 1.1, 1.2, and 1.5,  hope I've convinced you of the power of the calculus mindset
and the calculus workflow. We will employ both throughout the book. And because
the notion of a limit is at the core of the workflow, I'll spend the next chapter teach-
ing you all about limits—their precise definition, the various types of limits, and the
myriad techniques to calculate them. See you in the next chapter.



2 Limits: How to Approach Indefinitely (and Thus
Never Arrive)

Chapter Preview. Limits are the foundation of calculus. As stressed in our Cal-
culus Workflow, they are the intermediary between finite and infinitesimal changes,
the latter being the type of change calculus is all about. But there are many types of
limits—one-sided, two-sided, etc. This chapter takes you on a limit safari to teach you
all about this core calculus concept. We'll learn how to visualize, approximate, and
calculate limits; we'll learn about the real-world applications of limits; and along the
way I'll give you lots of tips and tricks to help you master limits. I'll assume you're
comfortable with the content in Appendixes A and B, so skim that first if you haven’t
already. Ready? Let’s start the expedition.

2.1 One-Sided Limits: A Graphical Approach

Soon after we calculated the limit (1.2) (page 4) in the Zeno example from Chap-
ter 1, I mentioned it was an example of a “right-hand limit” Figure 2.1 illustrates
what I mean.

The rightmost graph plots Zeno’s distance traveled d versus the change Ad in his
distance traveled. (Recall from (1.1) that d =2 — Ad.) The graph excludes the point
(0,2) (hence the hole) because Ad £ 0 (Zeno never arrives at the 2-foot mark, re-
member?). But this is the static view of Zeno’s walk. Switching to a dynamics mindset
produces the other three plots in the figure. As noted, observe how d approaches 2
(the arrows on the d-axis) as Ad approaches 0 (the arrows on the Ad-axis). Since

dapproaches2 ... .-

d d d

/ 5

\ ~ (¢

/'/ \\\ - I S

2 / 2 2 2 2

/ S d=2-Ad i

1/ 1 ‘\\\\ 1 1 &

« \ 3
—T—r—Ad 4y —Ad G y—Ad ————Ad

12 12 A1 2 12

as Ad approaches 0 from the right ----—-—""" .

Figure 2.1: lllustrating the right-hand limit lim d=2.

Ad—07t
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fx)tendsto 10 ... -—-___

y y y
[
10 10 10
5 5 5 y=/)
T T X P T X T T X T T X

\as x approaches 4 from the left - S

Figure 2.2: Illustrating the left-hand limit lim f(x) = 10.

x—4-

Ad is approaching 0 from numbers fo the right of 0 on the number line, we denote
this in limit notation as

lim d=2.
Ad—0Tt

We call this limit a right-hand limit. As you may have guessed, there are also left-
hand limits, denoted by
lim f(x).

X—>Cc

To evaluate these we look at what number the y-values f(x) tend to as x approaches
¢ from numbers to the left of ¢ on the x-axis. Figure 2.2 shows an example in which

lim f(x)=10. Here are important comments on the figure and on left-hand limits
x—4-

in general.

o Note that the answer to the limit in Figure 2.2 is indeed 10 and not the y-value
at x =4 (the closed circle in the figure); limits approach indefinitely and thus
never arrive, remember?

o On the topic of “approaching,” I say in Figure 2.2 that f(x) tends to 10, as
opposed to f(x) approaches 10. That’s because sometimes the y-values are
moving away from 10 (as in the second plot from the left). That’s not a
problem, because recall that limits approach indefinitely, so what really mat-
ters is where the y-values are headed when the x-values are very close to
x=4. Nonetheless, I'll switch to the “tends to” terminology henceforth to
remind you that sometimes the y-values may oscillate on their way to their
limit.

« Finally, be careful not to confuse 4~ with —4. The notation 4~ indicates the
direction of approach (i.e., from numbers to the left of 4 on the x-axis). By
contrast, —4 denotes the negative number —4.

—
=
=
o
=
o
O
=
=
(¢}
70
—_

ag
[=1
=
(¢
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I encourage you to use the dynamics mindset inherent in Table 2.1: A few
Figures 2.1 and 2.2 every time you see a graph (particularly if ~values ofa fictitious

you're using it to calculate a limit). function f
x f)
[DUNVISH 2.1 Assuming the patterns in Table 2.1 Sl Ik
-1 Assuming the patterns in table 2.5 €O 99 | 39601

tinue, what answers do you expect for lim f(x) and | 1.999 | 3.99601
x—>2~ . .

lim+ f(x)? : :
x—3 3.001 | 6.004001
301 | 6.0401
Solution Weexpectthat lim f(x) =4and lim f(x)=6. & 3.1 6.41
x—2~ x—3t

IDONILBN 2 2 Use Figure 2.3(a) to evaluate the limits:

1im1 [, lim1 . f(x), linol_ f(x), linllJr f(x).

Solution From left to right:

lim f(x)=1, lim f(x)=0.5, lim f(x)=1.5 lim f(x)=05. =
x——1t x—0~ x—1t

x——1"

NAYBINBRNONYILBIN 2.3 Alicia took her daily B complex multivitamin this
morning with breakfast. Her body will use up the multivitamin’s micronutrients

over the next 24 hours. When she takes her next dose of the multivitamin exactly
24 hours later, her B vitamin stores will be replenished. Figure 2.3(b) illustrates
this process. In it, V denotes the total amount of B vitamins in Alicia’s body ¢
hours since she took her vitamin this morning. Assuming the multivitamin was
her only source of B vitamins, use the figure to calculate the limits (and interpret

S0 v

2.0 400

\ 350
1,5 300

\
250

VNG AN
\ / 150

100

50
[ :
-1.5 -1.0 -0.5 05 1.0 15 12 24 36

@) (b)
Figure 2.3

N
(o]

o)
[0,]
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the first one):
lim V1), lim V().
t—>24~ t—247+
Solution The answers to the limits are 50 and 350, respectively. The first limit’s
interpretation: before it's been 24 hours since Alicia took her multivitamin, the
amount of vitamins in her body is approaching 50 as she approaches the 24-hour
mark. u

1 and 2(a) (i)(ii) and (iv)~(v). |

Tips, Tricks, and Takeaways

Figure 2.4 condenses the results of this section into a diagram illustrating that the
graphs of functions with left-hand or right-hand limits as x approaches a number ¢
fit one of only a handful of templates.

y y y y y
[ ] [ ]
L \a 1 /o L \/\ o V L /\
I T X I T X I T X I T X I T X I T X
C C [ C C C
~ J u v J
lim f(x)=L lim f(x)=L

Figure 2.4: Examples of what lim f(x) =L and lim+ f(x) =L look like graphically.
X—>C

X—>Cc™
Note again that the y-value at x = ¢ does not affect the value of the limit.

2.2 Existence of One-Sided Limits

When evaluating a limit we are looking for the y-value that a function’s values f (x)
tend to as x approaches a number ¢ from the left, or from the right. (In the next
section we'll discuss “two-sided” limits.) But sometimes no such y-value exists; we
write “DNE” for the answer—short for Does Not Exist—in these instances.

Two common reasons for a limit not to exist are:

(1) The graph races off to infinity as x approaches c. Infinity is a not a number,
so the limit cannot exist.

(2) The graph oscillates wildly as x approaches ¢, with no discernible y-value as
its limiting value.

Figure 2.5(a) illustrates Case (1). We say that

lim f(x) DNE (—o00), linol+f(x) DNE (+00).

x—0"
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y y

= W [
.

(a) (b)
Figure 2.5: Portions of the graphs of: (a) f(x) = 1, and (b) g(x) =sin (3).

y y
Y=/ Y=g

/'\/

/ X X

vk

(@) (b)
Figure 2.6

Notice that I've kept track of the type of infinity (positive or negative) the graph is
racing off to. Some textbooks prefer to use “=00” and “= —00.” In my experience,
this notation confuses people, so I'll stick with the notation above. Figure 2.5(b)
illustrates Case (2). We say that
lim g(x) DNE, lim g(x) DNE.
x—0~ x—0%t

Our discussion of limits thus far has presumed that we can approach a number
x=c on the the graph of a function. But that’s not possible in the following two
instances:

(3) When the function is defined at x=c but not anywhere else near it. (We
cannot then approach x = c on the graph.)

(4) When the function is not defined for x < c (if calculating a left-hand limit) or
for x > c (if calculating a right-hand limit).

Figure 2.6(a) illustrates Case (3): we cannot tell what y-value f(x) tends to as x
approaches c, since we aren’t given information about what happens just to the left
(and right) of x = c. Figure 2.6(b) illustrates Case (4): there is no portion of the graph
for x < 0, so we cannot evaluate the limit of g(x) asx — 0~.
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Many calculus textbooks would say that the limits in Figure 2.6 do not exist. I
favor referring to these limits as “not even possible to begin to evaluate” But I will
follow convention here and say that those limits do not exist also:

lim f(x) DNE, lim f(x) DNE, lim g(x) DNE,
x—ct x—0~

X—>Cc

where I'm referring here to Figure 2.6.

IDONYIINN 2 4 Using the graph of the funct-

ion y =f(x) in Figure 2.7, evaluate the following x
limits (if possible). 2- °
Jim f9.lim fe2. lim £ -
lim f(x), lim f(x).
A SOk BRI vy
-2 -1 1 2 3 4
Solution The first and last limits DNE (there /4.

is no graph to the left of x=—2 or to the right
of x =4 that we can use to evaluate them). The Figure 2.7
remaining limits are

lim f(x)=-1, lirgl_f(x) DNE (+00), 1i1§1+f(x) =1. [ |

x——17F
Related Exercises [RIEYCYEQZIN
Tips, Tricks, and Takeaways

o We cannot evaluate the limit of a function f(x) as x — ¢~ (or x — ¢*) if the
portion of the graph of f directly to the left (respectively, right) is missing (as
was the case in Figure 2.6).

o Assuming such portion(s) are supplied, the limit exists only if the values f (x)
values tend to a y-value L as x — ¢~ or x— ¢ (as opposed to racing off to
infinity, for example).

o Finally, direction matters—the left-hand limit need not equal the right-hand
limit.

That last takeaway sets us up for the next topic: two-sided limits.

2.3 Two-Sided Limits

A two-sided limit is a limit in which we consider both directions x — ¢~ and x — ¢*
in evaluating the limit. If both of these one-sided limits exist and are equal, then the
two-sided limit exists and equals their common value. For example, returning to
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Figure 2.7, we say that

Since lim f(x)= lim f(x)=1, then lim f(x)=1.
x—3~ x—3t x—3

That last limit is the two-sided one; you can tell because the “x — 3” in the limit has
no superscript on the 3. We don’t need superscripts anymore because f (x) — 1 as x
approaches 3 from either side (left or right).

Because two-sided limits require the existence of their one-sided counterparts, a
two-sided limit will not exist if one or both of those one-sided limits do not exist.
And even if both one-sided limits exist, if they’re unequal in value the two-sided
limit will again not exist (since in this case the y-value f(x) tends to depends on the
direction of approach to c). Here’s all that in math speak.

Box 2.1: Criteria for the Existence of a Two-Sided Limit

The limit lim f (x) exists only if its left- and right-hand limit counterparts exist
X—C

and are equal:

lim f(x)= lim f(x)=1L, where L is a number.
xX—>c~ x—ct

If this is the case, then lim f(x) = L.
X—>C

We've finally learned enough about limits for me to present you with the defini-
tion that follows.

Definition 2.1 Intuitive Definition of the Limit.  Let c be a number
and f be a function defined on an interval containing c (except possibly at c).
Suppose the values f(x) tend to a number L as x approaches ¢ indefinitely (but
is never equal to ¢). We then say “the limit of f(x) as x approaches c equals L”

and write
lim f(x) =L.
X—>C

If no number L satisfies this, we say that the limit does not exist (DNE for short).
Note how everything we've talked about thus far in this chapter is contained in this
definition:

o The “defined on an interval containing ¢” avoids the issues raised in Cases (3)
and (4) of the previous section.

o The “except possibly at ¢” and “but is never equal to ¢” reminds us that limits
approach indefinitely (and never arrive).
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o Finally, “the values f (x) tend to” reminds us that f (x) may oscillate on its way
to L (recall Figure 2.2).

There are even more formal definitions of the limit; these make more precise
the idea of “approaches indefinitely (and never arrives).” Section A2.1 in the on-
line appendix to this chapter discusses them, if you're interested. Now on to the
examples.

IDNYILNN 2.5 Referring to Figure 2.7, evaluate the following limits (if possible):

lirglf(x), limlf(x), lirrgf(x).

Solution The answers are: lim f(x) DNE, lim f(x) =1, lim f(x) = 1. The first
x——1 x—1 x—3

limit is DNE because f(x) — 2asx— —1~ but f(x) > —lasx — —17. [ |

IDONYILUHAN 2.6 Determine the x-values at which lim f(x) does not exist in
X—>C
Figure 2.7 and explain why.

Solution The only x-values at which the two-sided limit does not exist are x = —2,
x=—1, x=2, and x=4. At x = —2 the limit DNE because the left-hand limit as
x — —27 DNE (there’s no graph for x < —2). Similarly, at x =4 right-hand limit as
x— 41 DNE (there’s no graph for x > 4). We discussed why the limit as x — —1
DNE in the previous example. Finally, at x =2 the limit DNE because the graph
races off to infinity. ]

2(a) i) and (vi), 3(a) (vii)~(ix), and 13.]

2.4 Continuity at a Point

In Figure 2.4 I presented two sets of graphs that all had the same one-sided limit L.
But the last graphs in each set were special: their L-value was the function’s y-value
at x = c. In other words, in those graphs, L = f(c).

Definition 2.2 Continuity at a Point. ~ We say that a function f is
o Continuous from the left at x = ¢ if xl—i>n2* fx)=f(c)
o Continuous from the right at x = ¢ if xli)r?+ fx)=f(c)
o Continuous at x = ¢ when )lcl_)mc fx)=f(c)

When none of these equations hold, we say f is discontinuous at x = c.
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In this terminology, the function graphed in the third plot in Figure 2.4 is
continuous from the left at x =, and the one graphed in the sixth plot of the fig-
ure is continuous from the right at x =c. Since continuity at x =c is equivalent
to the special case when L =f(c) in a limit, we can use our earlier criteria for the
existence of a limit (from page 14) to derive the criteria for continuity.

Box 2.2: Criteria for a Function to Be Continuous at a Point

Let f be a function and c a number in its domain. Then f is continuous at x = ¢
only when

(1) f(c) exists, (2) )lcl_)mc f(x) exists, (3) )161_)mc fx)=f(c).

When c is the right endpoint of the domain, the limit in criteria (2) and (3)
is replaced by “ lim ” When c is the left endpoint of the domain, the limit in

X—>Cc
criteria (2) and (3) is replaced by “ lim ”

x—ct

NGNGB 2.7 [s the function graphed in Figure 2.3(a) continuous at x = —1?
Atx=0? Atx=1?

Solution The function is:

o Discontinuous at x = —1. Though the left- and right-hand limits exist, they
are are unequal, violating Criterion (2) in Box 2.2.

o Continuous at x = 0. Both the left- and right-hand limits exist and are equal
(to 1.5) and equal f(0) = 1.5.

o Discontinuous at x=1. Though the left- and right-hand limits exist and
are equal (to 0.5), they do not equal f(0) = 1; this violates Criterion (3) in
Box 2.2. [ |

IDCONYIYRN 2.8 At what x-values is the function graphed in Figure 2.7 discon-
tinuous, and why?

Solution The function is discontinuous at x=—1, x=2, x=3, and x=4. At
x=-1,
lim f(x)=2, lim f(x)=-1.
x—>—1" x——11
These aren’t equal, so the two-sided limit as x — —1 DNE. This violates Criterion
(2) in Box 2.2. At x =2, f(2) does not exist. This violates Criterion (1). At x =3,

i 0=l f9 .
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but f(3) =2, violating Criterion (3). Finally, f (4) DNE, violating Criterion (1). ™|

2(b), 3(b), and 35(a)~(c).]

Tips, Tricks, and Takeaways
For a function to be continuous at x = c it:
o Cannot have a hole at x = ¢ (violates Criterion 1)

o Cannot jump as we cross x = ¢, like the graph in Figure 2.3(b) does at t =24
(violating Criterion 2)

o Cannot gap up or down as we cross x = ¢, like the graph in Figure 2.3(a) does
at x =1 (violating Criterion 3)

In sum: the function’s graph at x = ¢ must look like we drew it with one continuous
stroke. (There’s that dynamics mindset again.) This leads to the notion of continuity
on an interval. That’s the topic of the next section.

2.5 Continuity on an Interval

Continuity is a pointwise property—it refers to a specific point: x=c. But many
functions are continuous on an interval of points. We use the following terminology
when that’s the case.

Definition 2.3  If a function f is continuous for all x in an interval I, we
say that f is continuous on I. When f is continuous on (—00, 00), we say that
f is continuous everywhere, or simply, continuous.

Example: the function graphed in Figure 2.7 is continuous on [-2, —1) U (—1,2) U
(2,3)U(3,4).!

Up to now we've worked exclusively with graphs. But what if I gave you a specific
function, say f (x) = x> + 3x, and asked you for its interval(s) of continuity? It would
be an arduous task to check the continuity criteria from Box 2.2 for each real number
x. Luckily, we can avoid that via the following results.>

Theorem 2.1  The following families of functions are continuous at all
points in their domain:

polynomials, power functions, rational functions

IThe U symbol means “and,” so that [1,2] U[3,4] represents the set of real numbers between 1 and 2, and
between 3 and 4, including all four numbers.

2These theorems are proven using a set of rules for limits called the Limit Laws; we'll discuss these in the next
section.
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So, for example, f (x) = x> + 3x is continuous everywhere, since f is a polynomial
and polynomials have domain all real numbers. Notice that successfully using
Theorem 2.1 requires being able to classify a function (e.g., “polynomial”) and
knowing its domain. Both of these skills are reviewed in Appendix B.

The function f(x) = x> + 3x can also be seen as the sum of simpler functions
(x> and 3x). The following theorem tells us when combinations of functions are
continuous.

Theorem 2.2 Suppose f and g are continuous at ¢, and that a is a real
number. Then the following functions are also continuous at c:

fre f-o o fo {;(providedg(c)#m.

The conclusions of this theorem are easier to remember if you say them in
words; for example, the first conclusion is: The sum of continuous functions is
continuous.

One combination of functions not discussed in Theorem 2.2 is composite func-
tions. The following theorem addresses that. (The theorem follows from more
technical theorems relating to changing variables in limits; see Section A2.2 in the
online appendix to this chapter if you're interested.)

Theorem 2.3 Suppose g is continuous at c and f continuous at g(c). Then
f ogis continuous at c.

This theorem says that the composition of a continuous function with a continuous
function is continuous.

One final note: Theorems 2.2 and 2.3 also hold when “continuous” is replaced by
“continuous from the right” or “continuous from the left”

IDONYINBN 2 9 On what interval(s) is f(x) = +/x + 1 continuous?

Solution The domain of the power function 4/x is [0, 00) and the domain of the
constant function 1 is (—00, 00). The domain of f (x) = 4/x + 1, therefore, is [0, 00).
It follows from Theorem 2.1 that f is continuous on [0, 00). [

continuous?

IDONILBAN 2. 10 On what interval(s) is g(x) = _
X2 +5x+6

Solution The domain of the rational function g(x) is all real numbers except those
for which

P 4+5x4+6=0 < (x+2)(x+3)=0 = x=-2, x=-3.
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Thus, Theorem 2.1 tells us that g is continuous on (—o00,—3)U(-3,-2)U
(_2’ OO). [ |

2(c), 18-20, and 37-38.
IDONYIGNN 2. 11 Evaluate lim1 v x% 4+ 1 using Theorem 2.3.
X—>

Solution Note that +/x2 + 1 =f(g(x)), where f(x) = +/x and g(x) =x> + 1. The
function g is continuous everywhere (it's a polynomial), and g(1) =2. Since f is

continuous at x = 2, Theorem 2.3 applies:

lim Va2 +1=v124+1=+2. [
x—1

Einstein’s Relativity Applied Example C.1 in Appendix C employs one-sided
limits to show that moving objects” length shrinks to zero as their speed ap-
proaches the speed of light.

VEIT MR Al 1417, 33-34, and 35(d). ‘

We've now learned a lot about limits and continuity in the context of alge-

braic functions. Let’s expand our horizon to include exponential, logarithmic, and
trigonometric functions (these functions are reviewed in Appendix B).

Transcendental Tales

First up are the results for exponential and logarithmic functions. The “can draw
with one stroke of your pencil” view of continuity leads us to the following starter
theorem.

Theorem 2.4  Every exponential function is continuous. Every logarith-
mic function is continuous on (0, 00).

Section A2.3 in the online appendix to this chapter discusses why this theorem is
true. Mathematically, these results tell us that

. X __1cC . _
)161_>mc b* =1b°, )l}_)mc log, x =log, c,

where b* is an exponential function (which requires b > 0 and b # 1) and log;, x is a
logarithmic function (which requires the same restrictions on b). Theorem 2.4 can
then be combined with the others in this section to help us evaluate limits.

N0l 2.12 Evaluate lim e *.
x—0
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Solution Note that e isa composition of continuous functions: e = f(gx),
where f(x) = ¢* and g(x) = —x?. It follows that f(g(x)) = e=* is also continuous.
Therefore:

2 2
lim e ™* = @ =0 =1, ]
x—0

2

. logt
I ONYINBEN 2 .13 FEvaluate lim .
t—2 t

Solution Here we have a quotient of functions continuous at t = 2. And since the
value of the denominator at + =2 is not zero, the various theorems in this section
apply and

1 2 2
lim ogt :log2 :210g2.
t—2 t 2 2

IDONYINNN 2.14 Evaluate ling Invz2 —1.
z—>

Solution Note thatln+/z2 — 1 =f(g(z)), where f (x) =Inxand g(z) = z%> — 1. The
function g is continuous everywhere and g(3) = 8. The function f is continuous at

x=3§,s0 3
lim ln\/zz—1=1n\/§=ln(23/2)=£ln2. [

z—3

A final note: We could have simplified the functions in Examples 2.13 and 2.14
first before calculating the limits:

log t? _ 2logt
t ot

, ln\/zz—1=%ln(z2—1)=%[1n(z—1)+ln(z+1)].

I leave it to you to verify that we would have arrived at the same answers for the
limits.

Let’s now discuss the continuity of trigonometric functions. The graphs of sinx
and cos x (see Figures B.18(a)-(b) in Appendix B) tells us that these are continuous

functions:

lim sinx=sing, lim cosx=cosc, (2.1)
X—>C X—C

sinx . .
oS x 1S continuous

everywhere except where cosx =0 (i.e, x = +m/2, £37/2, etc.); the graph of tan x
appears in B.18(c) in Appendix B.

for any real number c. It follows from Theorem 2.2 that tan x =

Theorem 2.5  The functions sinx and cos x are continuous; the function
tan x is discontinuous at x = k7 /2, where k is an odd integer.

These results are sufficient to help us evaluate simple limits involving trigono-
metric functions.
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I ONWY MM 2.15 Evaluate lim

x> 3x 4 2sinx’

Solution Here we have a quotient of continuous functions. Since the value of the
limit in the denominator is not zero, this section’s theorems kick in, and the answer is

1 1 1
lim — = =—. [ |
x—m 3x+2sinx 3w +2(0) 37w

INYIIE 2. 16 Evaluate lim —2t
. yvaluate Iim ——.
N

t—m

Solution Here again we have a quotient of continuous functions, and the value of
the limit in the denominator is not zero. Thus, the answer is

. tan? t tan®
lim = =0. [ ]
t—>1 \/1+f2 «/1+7T2

OO BRI 39, 41, 43, 51, and 61

Tips, Tricks, and Takeaways

o Continuity simplifies limit calculations. Once you know f (x) is continuous at
x=c, the answer to lim f(x) is just f(c).
X—>C

o Continuous functions’ graphs are nice and . .. continuous. The graph of any
continuous function with domain [a, b] passes through all of the y-values as-
sociated with each x-value in the domain. (This is called the Intermediate
Value Theorem; see Section A2.4 in the online appendix to this chapter if
youre interested.) Translation: you can draw the graph of such a function
with one stroke of your pencil. The converse is also true: a graph you can
draw without lifting your pencil (and without backtracking) is the graph of a
continuous function. Figure 2.8 illustrates these ideas visually.

One final note. Our work thus far contains a hidden insight: when you’re given
the equation of f (x), the first thing to try when evaluating the limit is to substitute in
x=c. If you get a real number, that’s the answer. Sometimes, however, this doesn’t
work. In the next section we'll discuss a set of rules that we’ll use to develop more
general techniques for evaluating limits.

2.6 The Limit Laws

Many functions we want to calculate limits of are arithmetic combinations of sim-
pler functions. (Example: f(x) = x + x? is the sum of the simpler functions g(x) = x
and h(x) =x?.) In many cases, evaluating the limit of such functions reduces to
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Continuous on [a,b] Not continuous on [a,b]

<
<

Y=/

Figure 2.8

evaluating the limits of the “ingredient functions” (e.g., ¢ and h in the previous
example). The Limit Laws tell us how to do just that. Here they are.

Theorem 2.6 The Limit Laws. Let “lim” be a stand-in for lim, lim , or

X—>C x—>c~
lim+. Suppose that f and g are functions, and that lim f (x) and lim g(x) both
X—>C
exist. Then

L. lim [f(x) £ g(x)] =lim f(x) £1lim g(x)
2. lim [kf (x)] = k[lim f(x)], where k is a real number
3. lim [f (x)g(x)] =[lim f(x)][lim g(x)]

i 100 _ lim 109
gx) lim g(x)

, provided [lim g(x)] #0

5. For n a positive integer, lim \’7 f(x)= \’7 lim f(x), provided [lim f(x)] >0
if nis even

6. For n a positive integer, lim [f (x)]"” = [lim f(x)]"

7. Supposing f is continuous at lim g(x), limf(g(x)) =f (lim g(x)).

These Limit Laws can be stated in English; for example, the first says that the limit
of a sum (or difference) of functions is the sum (or difference) of the limits of each
function (provided the latter limits exist).

1 ONYILNN 2.17 Evaluate 1im1 Qx> +x—1).
X—>
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Solution
lim 2x* +x—1) = lim (2x?) + lim x+ lim (—1) Limit Law 1
x—1 x—1 x—1 x—1
2
=2 (lim x) + lim x+ lim (—1) Limit Laws 2 and 6
x—1 x—1 x—1
=22+ 14 (-1 =2. O
IDCNWYILNIN 2.18 Evaluate lim +/x+ 1.
x—07F
Solution
lim Vx+1= /lim (x4+1)= /lim x+ lim 1 Limit Law 5; Limit Law 1
x—0t x—0t x—0t x—0t
=4/0+1=1. [ |

. x*—9
I ONY YR 2.19 Evaluate lim >

x—=>3 X —
Solution
2

i 2 _ li —lim 9
I (13%") o .
lim == = - Limit Law 4; Limit Laws 1 and 6
x—3 x—2 lim (x — 2) lim x — lim 2

x—3 x—3 x—3

9—-9

3—-2

LI BRI AN 4, 5-7, and 36.

Transcendental Tales

Let’s now apply the Limit Laws to evaluate limits involving exponential, logarithmic,
and trigonometric functions.

h
et —1
I OWY MR 2.20 Evaluate lim .
h—o0 h—1
Solution
1 lim (eh —1) lim e — lim 1
lim — h=0 =20 m=>0  qimit Law 4; Limit Law 1
h—0 h—1 lim (h—1) lim A — lim 1
h—0 h—0 h—0
1—-1 . .. h
=——=0. Using continuity of e ]

0—-1
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IDVVIUNIN 2.21 Evaluate lim xe*.

x—2+
Solution
lim xe*= |: lim x] . [ lim ex] Limit Law 3
x—21 x—21 x—27F
=2¢%. Using continuity of e [ ]

~ Inx
I ONYIYNIN 2 22 Evaluate lim —.

x—1 e
Solution
Inx lim Inx
im —= L Limit Law 4

x—>1e ™  lime™
x—1
In1 . . . —X

=-—=0. Using continuity of Inx and e [ ]

e

1D CNYILNIN .23 Evaluate lim1 In[x(x+ 1)].
X—>

Solution

lim1 In[x(x+1)]= lim1 [Inx+In(x+ 1)] Rules of Logarithms (Theorem B.1)
x— x—>
=lim Inx+ lim In(x+1) LimitLaw 3
x—1 x—1

=0+In2=1n2. [ ]

sinx
D ONWINRN 2 24 FEvaluate lim ———

x—7 sinx + cosx

Solution
. lim sinx
sinx

lim — = 7T Limit Laws 4 and 1

x—7m sinx+cosx  lim sinx+ lim cosx
X—TT X—TT

0 . . .
=——=0. Using continuity of sinx and cos x

0+ (=1

I ONYIYNDN 2 25 FEvaluate lim tan x.
x—0
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Solution
. lim sinx
. . SInXx x50 . nx _. .
lim tan x = lim == Since tan x = ; Limit Law 4
x—0 x—0 cosx lim cosx Cos X
x—0
0 . . .
=1= 0. Using the continuity of sin x and cos x ™

IDCNYINNN 2 26 Evaluate lirrjlr (x*sin? x).
=7

Solution

2 2
lim (x%sin’x) = <lim x) . <lim sin x) Limit Laws 3 and 6

=7 =7 =7
2 (2 2 2
b4 T
= (—) — | == Using the continuity of x and sinx
4 2 32
|

My main goal in this section was to illustrate the Limit Laws. That’s why if you go
back and look, all of the examples we just worked through could have been done us-
ing the “plug in the c-value” approach. (Indeed, all the functions in those examples
were continuous at x=c.) In the next section I'll add a layer of complexity—
illustrating how we can use the Limit Laws to help us evaluate limits of functions
discontinuous at x = c.

2.7 Calculating Limits—Algebraic Techniques

Here’s a tricky limit:

y
lim ~. (2.2) 2
x—0 X
The first thing to try—the “plug in the .
c-value method”—yields 0/0. We can’t divide '
by zero, so that method didn’t work for us.
But you probably already know what to do:
simplify 7 to 1. And since _|2 _|1 1| éx
lim1=1, 4
x—0

. fi_x
we think the answer is 1. Figure 2.9 confirms this. Figure 2.9:f(x) =2
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There’s a lot to learn from this deceptively simple example. But I'll return to that
in the Tips subsection. For now, the takeaway is: Algebra helps us evaluate limits.
Here are other examples of this.

o Consider the limit

x2—x

lim
x—>1 x—1
Substituting in x =1 yields 0/0, which doesn’t help. But because the denom-
inator is contained in the numerator, we can factor and cancel:
X°—x x(x—1)

= lim =limx=1.
x—1 x—1 x—=1 x—1 x—1

o Consider one more example:

. 1—x
lim

x—~1 1—x

Substituting in x =1 again yields 0/0. We could factor the denominator, but
let me illustrate another approach: “un-rationalization” This refers to multi-
plying a fraction whose numerator contains a radical by 1 in a way that gets
rid of the radical in the numerator. For example,

1—Jx 1—x 1+x 1—x 1
l1—x  1—-x 14+x (Q—-2004+%) 1+Jx
This then helps us to evaluate the limit:
S EV. 1
im = lim = =-.
x—1 1—x x—)ll-}-\/} 1+ﬁ 2

We refer to the quantity that gets rid of the radical in the numerator as
the conjugate; often this is the numerator rewritten with the opposite sign.
(For instance, 1 + /x was the conjugate of 1 — 4/x in the previous example.)

. X2 =9
IDGNYILNN 2.27 Evaluate hm3

x>3 x—3°

Solution Substituting in x =3 yields 0/0 again. However, we can factor the
numerator and cancel:

. -9 . (x+3)x-3)
lim = lim
x—=3 x—3 x—3 x—3

= lim (x + 3) =6. [ ]
x—3

I ONWYINREN 228 FEvaluate lim L.
Jx(x+1)

x—07t
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Solution The /x in the denominator is approaching 0 as x — 0T, so we again
need to work around this division by zero issue. Luckily, all that’s needed is to

simplify «/x/x:
x A SN S

= , sothat lim ———— = lim = —=0.
Jx(x+1)  x+1 x>0t /x(x+1) x—0tx+1 0+1

JrFi-1
DNV 2 29 Evaluate lim vx+l-1
x—

X

Solution Substituting in x = 0 yields 0/0. Since there’s a radical in the numerator,
however, let’s try un-rationalization:
Vi+1—1 J/x+1-1 J/x+1+1
x B X JxF14+1

(x+1)—1 x 1

T xSt 1-1) x(Vxrl-1) Jxrl+l

It follows that
oNx+1-1 1 1 1
lim = lim = =_. [
x—0 x =0 /x+14+1 /141 2

Transcendental Tales

Calculating limits of trigonometric functions is tricky. That’s partly because
there are so many relationships between trigonometric functions (e.g., sin Zx 4+
cos? x = 1) and partly because we sometimes need some specialized techniques. Of-
ten limits involving trigonometric functions make use of two special limits. The
first is . sinx
lim —=1. (2.3)
x—>0 X

This limit can be deduced from the graph of sinx/x (see also Section A2.5 in the
online appendix to this chapter for a more intuitive argument). The second special

limit is derived in Example 2.30.

IDCNYIGBN 2.30 Show that

cosx—1
lim ——— =0. (2.4)
x—0 X

Solution Substituting in x =0 yields 0/0 again. So lets try something else: pre-
tending cos x is a radical and using the un-rationalization method:
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cosx—1 cosx—1 cosx+1 cos?x—1 —sinZx

(2.5)

X X 'cosx+1_x(cosx—i—l):x(cosx—i—l)’

where I've used the fact that cos? x — 1 = —sin%x, which comes from the identity
sin2x + cos® x = 1 (this identity is derived in (B.22) in Appendix B). Then,

im — =

cosx—1 . —sin?x . sinx sinx
m — = — ).
x—0 X x—>0 x(cosx—+1) x—0

X cosx—+1

It follows from Limit Law 4 (Theorem 2.6) and (2.3) that

. cosx—1 . sinx . sinx
lim —=— [hm —] . |:hm —}

x—0 X x—=0 X x—0cosx+1
sin0
=—(1-— ) =—(1-0)=0. [ |
cos0+1

tan x
I ONWYINREN 2 .31 FEvaluate lim ——.

x—0 X

. o . . . tan x sinx
Solution Substituting in x=0 yields 0/0 again. But since = =
X X COS X

sinx 1
X cosx
. tanx . sinx 1
lim =lim|—-
x—0 X x—0 X COoS X
. sinx i 1 ..
=|lim — |- | lim Limit Law 3
x—0 X x—>0 COSX
=1-1=1 Using (2.3) and the continuity of
COS X |

. sin(2x)
IDCNYILNN 2.32 Evaluate hm0 .
x—

X

Solution Substituting in x = 0 yields 0/0 again. So, let’s simplify the function first.
Note that
sin (2x) _) sin (2x)

X 2x

Introducing u = 2x, we note that if x — 0 then u — 0 also. So, it should follow that

.~ sin(2x) . sinu
lim =1 =1,
x—>0  2x u—0 u
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via (2.3). Thus, we conclude that

. sin(2x)
lim =

2(1) =2. O
x—0 X

The change of variables we used to convert the limit from one in which x — 0 to
one in which u — 0 works for other limit calculations too; see Section A2.2 in the

online appendix to this chapter for the general result. ,
Related Exercises

Tips, Tricks, and Takeaways

1. If one limit evaluation method fails to yield an answer, try another. Just because
your chosen method didn’t work doesn’t mean the limit doesn’t exist—it may
just mean that your original method was inapplicable. For example, substitut-
ing in x = 0 to evaluate (2.2) doesn’t work because f(x) = f is not continuous
atx=0.

2. If possible, use multiple approaches to evaluate a limit. Evaluating a limit using
a graph, a table, and algebra will help you be confident of the true answer.

3. A result of 0/0 is never the answer to a limit. Getting 0/0 in a limit calculation
is a tell-tale sign that you need to try another method.

4. Most of the time algebra is all you’ll need, but not always. As we found out with
trigonometric functions, sometimes a change of variables or combination of
that, algebra, and the Limit Laws is required.

Finally, let me return again to (2.2). It's important to note that > # 1. “What?!”
you may say. Here’s the explanation: the function on the left, %, is not defined when
x = 0; the function on the right, 1, is (it's equal to 1 when x = 0). So { cannot equal
1. The proper way to simplify 7 is:

X
-=1, x#0.
x

This says: “x/x is equal to 1 for all nonzero x,” which is what’s actually true. This
explains Figure 2.9 and also explains why

since, as I've reiterated, limits approach indefinitely (and thus never arrive). So, it
doesn’t matter what 3 equals at x =0, only what it equals infinitesimally close to
x =0 (which is 1, by our corrected simplification). Keep this subtle point in mind
as you calculate limits.

We've now worked through many ways to calculate limits. The final two sections
in this chapter redo what we've done for a new setting: limits involving infinity.



30

Limits: How to Approach Indefinitely

2.8 Limits Approaching Infinity

Limits approaching infinity are limits
in which x— 00 or x— —o0c. In ei- 2]
ther case, we are looking to see what
happens to the values f(x) as x gets
very large and positive (in the case
of x — 00) or negative (in the case of 1
x — —00).Iff(x) — L in either case we

then write

lim f(x)=L or lim f(x)=L.

T T T T > X
Figure 2.10 shows an example of the 20 40 60 80 100
first limit. We see a function for which Figure 2.10: f(x) =1+ ;‘/in;

f(x) = 0 as x — oco. You may already

know the name for y =0 in the figure: a “horizontal asymptote.” Indeed, we can

define horizontal asymptotes in terms of limits.

Definition 2.4 Horizontal Asymptote. Let “lim” be a stand-in for

lim or lim ,and suppose f is a function. If
X—> 00 X—>—00

lim f(x) =L,

then we call the line y = L a horizontal asymptote of the curve y = f(x).

Takeaway: You can calculate a function’s horizontal asymptotes using limits!
Finally, let me mention that all of the theorems discussed thus far in this chapter
(including those in the online appendix to this chapter) apply to limits approach-

ing infinity. That is, their results remain valid if we substitute “lim” for “ lim ” or
X—> 00

“ lim ” in those theorems. This is particularly useful because unlike in the previ-
X—>—00

ous sections, we cannot “plug in 0o0” to calculate the limits in this section (though I
will give you some tips and tricks later).

1 1
I CNYIENIN 2.33 Evaluate the limit: (a) lim —  (b) lim —.
X—> 00

X X—>00 X

Solution

(a) Asx becomes a larger and larger positive number (say, 10!%°), the reciprocal
3_16 becomes a very tiny positive number (continuing, 1071%%). Therefore, we

suspect that
1
lim -=0.
X—00 X
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@) (b)

1 1

Figure 2.11: Portions of the graphs of (a) f(x) = — and (b) f(x) = = The arrows indicate
x x

that f(x) — 0 as x — oo.

(This tells us that y =0 is a horizontal asymptote of the function.) This is
illustrated by the blue-colored arrow in Figure 2.11(a).

(b) Usingasimilar argument as before, as x becomes large x> becomes even larger
and é becomes a very tiny number. We therefore suspect that

S|
lim — =0.
X—>00 X

(This tells us that y=0 is a horizontal asymptote of the function.) This is
illustrated by the blue-colored arrow in Figure 2.11(b). ]

Exercise 30 generalizes this example’s results to show that

lim l =0 for any rational number r > 0. (2.6)
x—o00 x"
Let’s next discuss how to use this result to calculate the limit as x — 0o of more com-
plicated rational functions. In the process, I'll introduce you to a useful technique
when dealing with limits approaching infinity of rational functions: divide the
numerator and denominator by the highest power of x in the denominator.

IDCNYIGBN 2.34 Evaluate lim

X—> 00 x—l'

Solution The approach we used in the previous example won't work here, be-
cause as x becomes large so does x — 1. Here’s one technique that will help: divide
the numerator and denominator by the highest power of x in the denominator
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(this assumes x # 0, but since x — 0o we're fine), which in this case is x:

X

_ox 1

1=l Y0
X X

Therefore, using this, Limit Laws 1 and 4 (from Theorem 2.6), and the r =1 case
of (2.6), we have

lim 1
. . ]' X— 00 1
lim = lim = = =1
x>0 x—1 xaool_l . . 1 1—0
x lim 1- lim -
x— 00 Xx—>00 X
(This tells us that y =1 is a horizontal asymptote of the function.) [ ]

CLIL BRI 2327, and 28-29 (only horizontal asymptotes).

Transcendental Tales

The first thing to know here is that e, Euler’s number and the base of the natural
exponential function €%, is itself defined in terms of a limit approaching infinity (see
Section A2.6 in the online appendix to this chapter if you're interested in the back

story): N
e= lim <1+—> .
xX—>00 X

Exercise 45 relates this definition of e to the one given earlier in equation (A2.2)
of Section A2.3 of the online appendix to this chapter by employing a change of
variables. Now on to examples of limits approaching infinity of transcendental

functions.
1
IOV INBN 2 .35 Evaluate lim In <1 + —).
X—> 00 X

Solution Employing Limit Laws 7 and 1 (from Theorem 2.6):

1 1
lim In <1+—) =In [lim (1+—)] =In[1+0]=In1=0.
X—> 00 X X—> 00 pe

(This tells us that y =0 is a horizontal asymptote of the function.) [ ]

ID.VNYILNIN 2 36 Evaluate lim e .
X—> 00

1
Solution Sincee ™ = = Limit Law 4 (Theorem 2.6) implies that

lim 1
N — X—> 00
lim e =-"—"—<=0,
x—00 lim e

X— 00
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since e* — 0o as x — 00 (since e > 1, e* is an exponentially growing function).

(This tells us that y =0 is a horizontal asymptote of the function.) ]

G BRI 45-48 and 50.

Tips, Tricks, and Takeaways

2.9 Limits Yielding Infinity

We set the stage for this section back in
Figure 2.5(a). I've reproduced that figure as
Figure 2.12. The graph of the rational func-
tion f(x) =J—IC plotted therein shows that as

Though we cannot plug in co (or —o0) for x while calculating a limit, here

are some useful rules:
1 1

“_ — 0)) <« — 0))‘
00 —00
I put these in quotes because I want you to understand them as results about
limits, not as actual equations. I'd interpret these as dividing 1 by a bigger
and bigger number (positive or negative) yields numbers closer and closer

to zero.

Limits as x — £00 can be converted into the one-sided limits not involving

infinity: X
x1i>n<>10 fx)= tliI(IJl+ f (;) , (2.7)
lim f(x)= lim f (1> , (2.8)

X——00 t—0~ t

provided all limits involved exist. (Exercise 31 guides you through the proot.)
These results are especially useful for limits approaching infinity of exponen-
tial and trigonometric functions; see Exercises 59 and 60.

x— 0" (the blue portion) the values f(x) x

get larger and larger, without bound. We
concluded in Section 2.2 that

1
lim - DNE (400).

x—01T X

As in the previous section, you likely already Figure 2.12: f(x) = ..
know the name for the vertical line x =0 in *

Figure 2.12: a vertical asymptote. That’s right, we can define vertical asymptotes
using limits.
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y y y
P _ R ]
* 4 2 > 4 4 2 2 47
-2 -2
—4 -4 \
v )
(@) (b) ©
. . . 1 X x% +2x
Figure 2.13: Portions of the graphs of (a) f(x) = 2 (b) f(x)= P and (¢) f(x) = 21

Definition 2.5 Vertical Asymptote. Let “lim” be a stand-in for lim,

X—>C

lim , or lim , and suppose f is a function. If
x—>c~ x—ct

lim f(x) DNE (400) or lim f(x) DNE (—o00),
then we call the line x = ¢ a vertical asymptote of f.
One final note: A functions graph can cross a horizontal asymptote (as

Figure 2.10, illustrates), but it cannot cross a vertical asymptote (since the graph
races off to infinity as x approaches the asymptote).

1
DN 2.37 Evaluate the infinite limits: (a) limO — (b) lim
x—

xz x—1 X —
. x4 2x
(¢) lim > .
x—2t x*—4

Solution

(a) Asx— 0, f(x) =1/x*> becomes unbounded and positive; see Figure 2.13(a).
Thus, )
lim — DNE (+00).
x—0 Xx
(b) Asx— 17, f(x) =x/(x— 1) approaches 1 divided by a tiny negative num-
ber, which yields a large negative number. As x— 11, f(x)=x/(x—1)
approaches 1 divided by a tiny positive number, which yields a large positive
number. (See Figure 2.13(b) for an illustration of both limits.) Thus,

lim DNE (—o00), lim

x—=1- X— x—1t X —

DNE (400),

so that, lim DNE.

x—1 x —
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(c) Asx— 2%, the numerator approaches 22 + 2(2) = 8 but the denominator ap-
proaches a tiny positive number. The quotient of these numbers is large (and
positive); see Figure 2.13(c). We conclude that

. x4 2x
lim

x—2t X2 —

DNE (400). [ ]

Note that in the solution to Example 2.37 (b) there is no parenthetical information
next to “DNE. That’s because the associated two-sided limit races off to infinities
with different signs depending on which direction we approach 1 from.

ELT R ETIENA 21-22, 28-29 (only vertical asymptotes), and 32. ‘

Einstein’s Relativity Applied Example C.2 in Appendix C explores the phe-
nomenon that moving objects become more massive the closer to the speed of
light they travel.

Transcendental Tales
B2TSYET 238 Find thelimit: (a) lim Inx  (b) lim e™'/%,
x—0

x—0t

Solution
(a) The graph of f(x) =Inx is similar to that of Figure B.12 in Appendix B. We
conclude from that graph that

lim Inx DNE (—o00).

x—07F

Thus, x =0 is a vertical asymptote of Inx.
(b) First note that

A p— (2.9)
Then, recalling from Figure 2.12 that %—> o0 as x— 0T, we see that

e'/* — 0o as x — 0. Thus, we are dividing by a larger and larger number
in (2.9), producing a number closer and closer to zero. We conclude that

lim e /¥ =0.
x—0t

(This makes y =0 a horizontal asymptote of e~1/*.) ]

O BRI 42 and 44.
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Vertical asymptotes are also present in several of the trigonometric functions you
likely studied in a pre-calculus course. Here are some examples of that.

IDCNIPNIN 2.39 Calculate the limits: (a) lim tanx (b) Ilim tanx

=3 =%
1
(¢) lim —
x—0t sinx
Solution

(a) Recall that tanx= % Now, cosx— 0" as x - %

y = cosx in Figure B.18(b) in Appendix B). Meanwhile, sinx — 1 asx —

~ (recall the graph of
7—

2

(recall the graph of y = sinx in Figure B.18(a) in Appendix B). Thus, the ratio

of these numbers, which is tan x, is approaching 1 divided by a tiny positive
number. We conclude that

lim tanx DNE (+00),

-
x—>2

and that x = 7 is a vertical asymptote for tan x. (This is reflected in the graph
of y =tan x in Figure B.18(c) in Appendix B.)
T

(b) The situation here is similar, except that cosx — 0~ as x — 5+. Thus, tan x

approaches 1 divided by a tiny negative number. We conclude that

lim tan x DNE (—o0),
x—Z

7 is a vertical asymptote for tan x. (This is also reflected

in the graph of y =tan x in Figure B.18(c) in Appendix B.)

and again that x =

(c) Since sinx — 0T as x — 0T, we conclude that
1
lim —— DNE (+00),
x—01 SInx

meaning that x =0 is a vertical asymptote of the graph of 1/sinx. [

The reciprocal function in part (c) is one of the trio of reciprocal trigonometric

functions: 1 1 1
secx = , csCx=——o, cotx = .
Cos X sinx tan x

As part (c) of the preceding example suggests, these functions have plenty of vertical
asymptotes.

Tips, Tricks, and Takeaways

o We can now use limits to definitively identify vertical asymptotes. Some stu-
dents learn that we find vertical asymptotes by setting the denominator of a
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quotient to zero and solving for the resulting x-values. But this doesn’t always
work. For instance, this method of finding vertical asymptotes fails for the
function f(x) = 7. As Figure 2.9 shows, that function does not have a ver-
tical asymptote at x=0. This is confirmed by calculating the limits (since
f(x) — 1, not infinity, as x — 0).

o Dividing 1 by a tiny number yields a huge number. Like I did in the previous
section, here are two “equations” that summarize the action in this section:

1 oo™ 1
— =400, “—=—00.
0t 0~

«

2.10 Parting Thoughts

We've now learned A LOT about limits. We introduced the concept in Chapter 1 to
help us express the notion of “infinitesimal change” Now we have a more thorough
understanding of what a limit is, how to calculate limits, and how they show up in
real-world contexts.

In Chapter 1 we also previewed how limits form the foundation for the solution to
the three Big Problems that drove the development of calculus. In the next chapter
we'll use limits to tackle two of those three problems—instantaneous speed and the
slope of the tangent line problem.

CHAPTER 2 EXERCISES

1. You're told that lim f(x) and lim+ f(x) are  (a) Evaluate the limit, or explain why it does
X—>Cc X—>C

equal to some number. Describe the graph of y = not exist.
f(x). What changes if the limits equal different (i) lim f(x) (i) lim f(x)
numbers? x—=>0" x—>0%
2. Below is the graph of a function y = f (x). (i) ig})f ) () xl_igl,f )
v . -
¢ (v) xlin;l+ fx) (vi) il_gnzf ()
4 / (b) True or False: The function is continuous
atx=2.
2
— / (c) For what x-values in the interval (—1, 3) is
a 2/ ; 2 the function continuous?
/S
/ 3. Below is the graph of a function y = f (x).
/ -4
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LN H-
/a\b/c\/

(a) Evaluate the limit, or explain why it does
not exist.

(i) lim f(x)
(iii) hIiL f(x)
(v) lim f(x)

(ii) lim+ f(x)
(i) lim £

(vi) lim+ f(x)

(vii) ;E}}Z f(x) (viii) lin%) f(x)
(ix) lim £ ()

(b) True or False: The function is continuous
atx=c.

4. Suppose chl_)mc f(x)=1and )161_>mc g(x) =2. Eval-

uate the following limits.

() lim [f(x) +g(x)] (b) lim [2f (x)]
(© lim [(0g(0)] @ tim 2

() lim /f ()

(1) lim [(x— O () — g()]

5-10: Evaluate the limit with the help of alge-
bra, if the limit exists.

5. lim (x** —2x+1) 6. lim (v/x—23)
x—0 x—9
o —x
7. lim v/x2+1 8. lim
x—1- x—0 X
1 -2
9. lim 10. lim Vx
x—1tx—1 x—4 x-—4

. W2h¥1-1
hm _—

h—0 h

) (1 1 )
lim [ - — 5
x=0 \x x*+x

13. For what value of a is lim1 f(x)=1 for the
x—

11.

12.

function below?

ax—+ 2,

f(X)={ )

X, ifx>1.

ifx<1,

14-17: (a) Find the domain of the function,
and then (b) use Theorems 2.1-2.3 to deter-
mine the interval(s) where the function is con-
tinuous.

14. f(x)=

X
x2+2x+1

15. ¢(0) =/x(1 - V%)
16. h(x) =x*+/x
17. h(t) = (Wt +/1—1)°

18-20: Determine the interval(s) on which the
piecewise function is continuous. It may help
to graph the function.

18. () x, ifx<0,
Sx) =
x%, ifx>0.
19. 0() X, ifx<1,
Lo(x) =
g Jx+1 ifx>1.
! ifx<l1
20.h(x)=1 » "=
x+1 ifx>1.

21-26: These limits involve infinity. Evaluate
those that exist, and determine Fo0c0 for those
that do not.

x+7 1—x
21. lim + 22, lim ——
x—3- x—3 x—2 (x—2)2
2 —3x% +4x
23. lim 2. lim ot
x—00 3x42 xX— —00 x2—|—1



x+1 Jx

25. lim ——— 26. lim

X— 00 \/3x27_|_7 x—>—00 x+1
27. Evaluate lim (vVx+1—+/%).
X—> 00

Hint: Multiply the function by %

28-29: Find the function’s vertical and hori-
zontal asymptotes.

x*+1

30. Use the result of Example 2.33(a) and
Theorem 2.6 to show that

1
lim — =0,
x—o00 x'

3x+4

X —

28.f(x) =

where r > 0 is any rational number.

31. This problem uses Theorem A2.1 (in the on-
line appendix to this chapter) to derive (2.7). Let
f be a function and define g(x) = 9_1( We showed
that g(x) — 0o as x — 0, so let’s verify the two
remaining assumptions of the Theorem to derive
2.7).

(a) Explain why g(x) #0 for any x # 0 in an
interval containing 0.

(b) Supposing tl_l)l‘Iolo f(t) exists, show that
(A2.1) in the online appendix to this chap-
ter (with g(x) = 1/x) yields (2.7) (with the
variables x and ¢ swapped).

32. Relativity In 1905 Albert Einstein dis-
covered that measurements of some physical
quantities—such as time and length—depend on
the frame of reference used. For example, sup-
pose you are riding on a train moving at velocity
v. Einstein’s Special Theory of Relativity says that
the passage of t seconds relative to you is equiv-
alent to the passage of T relative to a stationary
observer outside the train, where

t

J1=v2/2

T(v) =
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where c is the speed of light. (This is called time
dilation.)

(a) Evaluate and interpret T'(0) and T'(0.5¢).

(b) Show that T'(v) — oo as v — ¢, and inter-
pret your result.

(c) Why was a left-hand limit necessary?

33. Everyday Continuity Which functions be-
low are continuous?

(a) The height of a person as a function of his
or her age

(b) A student’s high school GPA (supposing it’s
not constant) as a function of time

(c) The balance on one of your credit cards as
a function of time

34. Cab Fare Suppose a taxi in New York City
charges $2.50 to pick you up and $2.50 for each
mile traveled.

(a) Let C denote the total cost of traveling x
miles in the taxi. Sketch a graph of C(x) for
0<x<45.

(b) Is C(x) a continuous function? Briefly ex-
plain.

(c) Are the discontinuities of C(x) gap discon-
tinuities or jump discontinuities? Briefly
explain.

35. Newton’s Law of Gravity Let F be the grav-
itational force exerted by the Earth on an object
of mass m placed a distance r > 0 from the center
of the Earth. Assuming that the Earth is a per-
fect sphere of radius R and that it has mass M,
Newton’s Universal Law of Gravity then tells us
that

GMmr

—,

GMm
5

ifr <R,
F(r)=

ifr>R,
’

where G > 0 is a constant (the gravitational con-
stant).
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(a) Briefly explain how the gravitational force
felt by the mass m changes as r changes.

(b) Calculate lim F(r) and lim F(r).
r—R~ r—Rt+
(c) Is F(r) continuous at r = R? Briefly explain.

(d) On what interval(s) is F continuous?

36. Use the limit laws to prove that if f(x) is a
polynomial, then lim f(x) =f(¢).
X—>C

37. What a-value(s) make the function continu-
ous?

ifx<1,
ifx>1.

x+1,

f(x):{ 2

ax-,

38. What a-value(s) make the function continu-
ous?

x% 43,
4x,

ifx<a,

ﬂm={

if x> a.

EXERCISES INVOLVING EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

39-44: Evaluate the limit, if it exists.

. V1431

39. lim e 40. lim
x—0 h—0 3h
41. lim 22! 42. lim e @D
t—>2 z—1*
43. lim ¢*lnx
x—1
44. lim [x*¢*+In(1-x)]
x—1-
45, This exercise derives the definition of e

given in (A2.2) from the original definition given
in A2.7.

(a) First, show that the substitution x=1/n
converts

1 n
<1+—> to  (1+x)*
n

(b) Next, show that the substitution x=1/n
converts the limit as # — oo into the limit
asx— 0F.

(c) Plot the graph of f(x) = (1 +x)1/% to see
that f(x) approaches the same y-value as
x— 0~ and x — 0. Equation (A2.2) then
follows.

46. Compounding Interest in a Savings Ac-
count This exercise will derive equation (A2.5),
and an associated formula for the continuous
compounding case. To begin, suppose M(t) is
the balance (in dollars) of a savings account
t years after opening it with an initial deposit
of My dollars (and that no subsequent deposits
are made). Let r denote the yearly interest rate
earned—where r is expressed as a decimal—and
suppose that the savings account compounds
interest n times per year.

(a) Show that the balance of the account right
after the first compounding of interest is

’
Mo (1 + ;) .
(b) Show that the balance of the account at the
end of the first year is

r\n
M0<1—|——> .
n

(c) Generalize the result of part (b) to derive
the formula for M(t).
(d) Letting x =r/n, show that

M) =M [(1 427"
(e) Show that

lim M(t) = Mye™,

x—07t

and explain this result in practical terms.

47. Doubling Time and the Rule of 70 Return-
ing to the previous exercise, suppose the savings



account’s interest is compounded yearly, so that

M(t) = My(1+1)".

(a) Let T denote the time required for the bal-
ance to equal double the initial deposit (i.e.,
M(T)=2My). T is called the doubling
time. Show that

In2
T=—.
In(1+47)

(b) Plot the graph of f(r) =In(1+r) —r for

—0.5 <r <0.5, and deduce from it that

}i_r)r(l)f(r) =0.

(c) Real-world interest rates for savings ac-
counts are typically in the range 0 <r <
0.1. Thus, since part (b) tells us that
In (1 4 r) & r for r-values close to zero, re-
turn to part (a) and show that

0.7
T~ —,
.

(d) Let R=100r. (R is then the interest rate ex-

pressed as a number between 0 and 100.)
Use part (c) to show that

70
T~ —.
R

for r close to zero.

This is known as the Rule of 70.

48. Terminal Velocity of a Falling Raindrop
In Exercise 43 of Appendix B we discussed the
following velocity function for a falling raindrop:

v(t) =13.92(1 — e~ 23,

Calculate tlim v(t) to find the raindrop’s termi-
—00

nal velocity.

49. Prove Theorem 2.5. Hint: Rewrite an ar-
bitrary exponential function ab* in the form
ae™ = a(e*)" and then use a couple of theorems
in this chapter.
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50. Suppose f(x) =ab” is an exponential func-
tion. As we've discussed, we can rewrite f
as f(x) =ae™. Show that either xlgglo f(x) or
xgmoo f(x) produces zero, regardless of the signs

ofaandr.

EXERCISES INVOLVING
TRIGONOMETRIC FUNCTIONS

51-56: Evaluate the limit.

2 2
sin“x — cos“ x
51. lim +/1+sinx 52. lim ————

x—0 x—Z sinx—cosx
sin (3x cosx—1
53. lim (3) 54, lim ————
x—0 X x—0 s x
sin (2h sint
55. lim (2h) 56. 1

- im
h—0 sin (6h) t—0 t+tant

57. Let f(x) =sin (}C) Explain why —1 <f(x)
< 1. Then explain how this helps deduce that for
any d > 0, xf(x)‘ < d whenever |x| <d.

58. What a-value(s) make the following function
continuous?
sin (2x)
) i f 0’
fw=1 T U7

as, if x=0.

59. Consider the function f(x)=xsin (}C),
graphed in Figure (A2.1) (in the online ap-
pendix to this chapter) for —0.1 <x <0.1. Use

the substitution t = 1/x and (2.3) to show that
Jim s =1

60. Exercise 60 of Appendix B illustrates how to
approximate the area of a circle of radius r using
inscribed triangles. Show that

lim A(n)=nr?
n—oo

by suitably modifying the result of the preceding
exercise.
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61. The Acceleration due to Gravity as a Func-
tion of Latitude In the chapter we used the
approximation 32 ft/s? for the acceleration due
to gravity, denoted by g. (That approximation is
roughly 9.8 m/s? in SI units.) A more accurate
formula for g is the Geodetic Reference Formula
of 1967:

gx)=a(l+ bsin’x — csin®x) m/s%,

where x is the latitude (in degrees) north or south
of the equator, and

a=9.7803185
b=0.005278895

¢=0.000023462
(a) Plot g(x) for —7 <x<7. At what lati-
tude(s) is g largest? Smallest?

(b) Calculate lirr%) g(x) and interpret your re-
X—

sult.



3 Derivatives: Change, Quantified

Chapter Preview. Cambridge University, August 1665. An outbreak of plague
across England has forced the university to close down. One of its students—Isaac
Newton—returns to his countryside home, Woolsthorpe Manor (Figure 3.1). As he
later described to his friends, one day Newton witnesses an apple falling from a nearby
tree and asks: Does the same force that pulls the apple to the ground (gravity) also
pull on other objects, like the Moon? This question kick-starts Newton’s work on what
would become his Law of Universal Gravitation. But Newton soon encounters a con-
ceptual hurdle: instantaneous speed. You see, gravity continuously accelerates objects
(such as the apple) and therefore changes their speed from instant to instant. To un-
derstand gravity, then, you need a mathematical theory of instantaneous speed. There
was none at the time. So Newton invented one. We'll follow in Newton's footsteps in this
chapter to solve the Instantaneous Speed Problem, and later discover—as he did—that
the results can be generalized. In an epic 2-for-1 deal, we’ll learn that the result—
the derivative—also solves a second Big Problem from Chapter 1: the Tangent Line
Problem.

3.1 Solving the Instantaneous Speed Problem

Let’s go back to Figure 1.4(a), the snapshot of an
apple falling from Newton’s apple tree. Let’s as-
sume that the snapshot is 1 second into the apple’s
fall (let’s denote that by = 1) and that the tree is
30 feet tall. Question: Can we calculate the apple’s
speed at that instant?

A reasonable starting point is to remember
that speed is distance divided by time. More
precisely,

change in distance  Ad

average speed = =—,
8P change in time At

Figure 3.1: Woolsthorpe Manor
(3.1) (background) and the famous ap-
ple tree (foreground).

where Ad denotes the change in distance and At

the change in time. But there is no passage of time

in the instant depicted in Figure 1.4(a). Therefore, At = 0. That’s a problem, because
At is in the denominator of (3.1), and one commandment of mathematics is: Thou
shalt never divide by zero. We've reached an impasse.
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But recall my first characterization of calcu- t=0 t=1
lus: calculus is a dynamics mindset. Nothing @
about Figure 1.4(a) says “dynamics” That's why - 4(0)=0
we switched to the more dynamic picture in the )= 16
top row of Figure 1.5. Let’s quantify those snap-
shots of the apple’s fall and see how the limit as
At — 0 solves the instantaneous speed problem.

Several decades before Newton started think-
ing about gravity, Galileo Galilei (1564-1642) Lyl N
and his contemporaries had figured out how
to describe mathematically the distance trav-
eled by a sufficiently heavy object (e.g., an ap-
ple) dropped from rest:

Figure 3.2: Two snapshots of a
falling apple

d(t) = 16t%, (3.2)

where d is the distance measured in feet, t the seconds elapsed since the object was
dropped, and air resistance is ignored (see Figure 3.2). (Galileo established (3.2)
through experiments with inclined planes.) Now, since

o d(1) yields the distance the apple has traveled 1 second into its fall, and

o d(1+ At) yields the distance the apple has traveled 1 4+ At seconds into its
fall,

then the apple’s change in distance Ad is: Ad =d(1 + At) — d(1). Inserting this into

(3.1) yields

d(1+ At) —d(1)
At '

apple’s average speed = (3.3)

Using (3.2) now to evaluate the numerator:

apple’s average speed

16[1 + At]? — 16(1)>
_ leli + Al W Using d(1 4+ At) = 16[1 + At?]

At
_16[142(At) + (AD?] - 16
B At
32(At) + 16(At)?
= (A1) Zt (&9 Distributing the 16 and simplifying
=32+ 16(At), At#0. Canceling the At

This suggests that the apple’s average speeds approach the limiting value 32 as
At— 0:
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. Ad
im — =32.
At—0 At
This is the most reasonable answer to the question, “What’s the apple’s instantaneous
speed at t = 1?” No finite change in time At works to answer that question—youd
be calculating the average speed then. By examining an infinitesimal change in time,
however, we've uncovered the apple’s true instantaneous speed at t = 1.
We can easily generalize what we've just done. Starting from the notion that

apple’s instantaneous speed = Alimo(apple’s average speed), (3.4)
t—

if we substitute (3.3) into (3.4) we get

. A1+ AP —d(1)
apple’s instantaneous speed = lim .
At—0 At

Denoting the apple’s instantaneous speed 1 second into it’s fall by 4 (1), the equation
above becomes

s(1) = lim d(l—i—At)—d(l).

35
At—0 At (3:5)

This is the equation for the apple’s instantaneous speed at t = 1.1

But there was nothing special about t =1 for the purposes of this analysis; we
could just as easily have calculated the apple’s instantaneous speed at t =0.5, for
example. Therefore, if we replace “1” with g, some other t-value for which the apple
is still in motion, (3.5) yields the following definition.

Definition 3.1  The instantaneous speed at time ¢ = a of an object with
distance function d(t), denoted by 4(a), is defined by

d At)—d
s(@) = lim HTAD—d@ (3.6)
At—0 At
3.1 Find 4(1) (ignoring units) for an object with distance function
d(t) =3t +5.
Solution
d(1+ Ap) —dQ)

4(1) = Aligo A Equation (3.6) witha=1

304+ AH+5—-3()+5)
= lim
At—0 At

Using d(1 4+ At)=3(1+ At)+5

1A note about notation here. I've used the cursive s to denote the instantaneous speed. That’s because by con-
vention s refers to an object’s position function s(f). We will discuss s(f) and its instantaneous change—velocity—in
Chapter 5.
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3At
= lim — Distributi d simplifyi
Aim istributing and simplifying
= lim 3=3. Canceling At and evaluating

At—0
- the limit [

INONYIYUBIN 3.2 Find ¢(2) (ignoring units) for an object with distance function

d(t) =t
Solution
A2+ At) —d(2
4(2) = lim 2+ AD @) Equation (3.6) with a =2
At—0 At
. Q2+AnT—2? , )
= lim —M— Using d(2 + At) = 2+ At)
At—0 At
L AAD 4 (AD? . 2 e
= Al}glo —ar Squaring out (2 + At)“ and simplifying
= Alim0(4 + At) =4. Canceling At and evaluating the limit ®
t—

Finally, let’s apply what we've learned to completely solve the instantaneous speed
problem for Newton’s falling apple.

VNI RIDRDCNYILNAN 3.3 Calculate 4(a) for the falling apple’s distance function
d(t) = 16t.
Solution

. d(a+ At)—d(a)
s= Jm, 40

Equation (3.6)

_16(a+ AH? — 164
= lim

Using d At) =16 At)?
At—0 At Slng (a+ ) (a+ )

[16a2 + 32a(At) + 16(A1)?] — 164>

1 . 2

= Aligo AL Squaring out 16(a + At)

= Alim0[32a + 16(At)] = 32a. Simplifying, canceling At,
t—

and evaluating the limit [

RO BTy 10-11.

Note that because we left the a-value undetermined, we've actually calculated the
instantaneous speed at any time t = a. This is a great, concrete example of the power
of calculus. We solved a problem (instantaneous speed) that stumped scientists for
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millennia in just a few lines. What’s more, the solution is really simple: the apple’s
instantaneous speed a seconds into its fall is 324 ft/s.

3.2 Solving the Tangent Line Problem—The Derivative
at a Point

Recall that the Tangent Line Problem is the problem of finding the slope of the
line tangent to the graph of a function y=f(x) at a point P on the graph (recall
Figure 1.4(b)). By “tangent line” we mean that the line shares point P with the curve,
and also shares the curve’s “inclination” at P. (Trace the curve in Figure 1.4(b) with
your finger and when you get to point P your finger will be moving in the direction
of the tangent line.) What makes the tangent line problem so difficult is this: we need
two points to calculate the slope of a line, but we only have one (point P). Once again,
we're stuck. Yet once again—sounding like a broken record by now—the problem is
the static mindset inherent in Figure 1.4(b). So let’s calculus the figure. (Yep, as we
said in Chapter 1, calculus is also a verb!)

Figure 3.3 shows the dyanmics mindset take. The gray lines passing through
points P and Q are secant lines, so named because of the word’s Latin root: secare,
which means to cut. The slope of each secant line is

Ay

slope of the secant line I(’_>Q = (3.7)
x

If we assume point P has x-coordinate a, then the change Ay in y-values between P

and Q is
Ay= y-valueat Q — y-valueat P=f(a+ Ax) —f(a).

Inserting this into (3.7) yields
:f(a+ Ax) —f(a)

<>
slope of the secant line PQ A (3.8)
x
y y Yy y
Y=/ o y=/x Y=/ Y=/
! 5
iAy Q: S
tAy S
Pl d P/ o P/aAy P =
Ax Ax Ax ez
aQ
T x T X T X T X £
a a a a &

Figure 3.3: The slope of the gray (secant) lines approaches the slope of the blue (tangent) line as
Ax— 0.
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Finally, as Figure 3.3 suggests: the slope of the tangent line is the limiting value of
the slopes of the secant lines as Ax — 0:

lim flat 2% —f(a).

3.9
Ax—0 Ax ( )

slope of the tangent lineat P =

Today we shorten “slope of the tangent line at P” to “derivative at a” and use the
notation f’(a) (read “f prime at a”), so that (3.9) becomes

(3.10)

mof(a—l—Ax) —f(a)'

f(a):Al' Ax

1
xX—>

Et voild! The tangent line problem is solved. And we've discovered something
important:

The derivative of a function f at x = a is just the slope of the line tangent to the
graph of f at x=a.

The derivative is an important concept, so let me give you the formal definition and
then mention a few comments before working through examples.

Definition 3.2 The Derivative at a Point.  Let f be a function. The
derivative of f at x = a, denoted by f’(a), is defined by

fla+ Ax) —f(a)

. (3.11)

U — 1
f@=m,
provided the limit exists.

3.4 Calculate f'(1) for f(x) = x2.

Solution
o fA+ AN —f(D) . L
()= Al)lcr_l’)lo Ax Equation (3.11) witha=1
. 1+ Ax)z —1? . 2
= lim —— Using f(1 + Ax) = (1 + Ax)
Ax—0 Ax
2(A Ax)?
= lim 240 + (Ax)° Squaring out (1 + Ax)* and simplifying
Ax—0 Ax
= Alimo[z + (Ax)]=2. Simplifying, canceling Ax, and evaluating
X—>

the limit [ |
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Ay Ay
4 4
3 3
5 / 5
2 2
A A
1 1
X X
-1.0 -0.5 05 10 15 20 -1.0 ~£0.5 05 10 15 20
=1 =1
@) (b)

Figure 3.4: Portions of the graphs of (a) f(x) = x% (a) and (b) fx)= 13 and their tangent
lines at the point (1, 1).

3.5 Find the equation of the tangent line at point (1, 1) on the graph
of f(x) =x2.

Solution We just calculated the slope of that tangent line: (1) = 2. It follows from
the point-slope equation (reviewed in (B.5) of Appendix B) that the equation of the

tangent line is:
y—1=2(x—1).

Simplifying yields y=2x—1. T've plotted that line and the graph of f(x) in
Figure 3.4(a). [ |

1D ONYIZ0M 3.6 Calculate f/(1) for f(x) = x>.

Solution
14+ Ax)—f(1
f'(1)= lim fa+ 40 = f) Equation (3.11) witha=1
Ax—0 Ax
jim (A0 Using f(1 + Ax) = (1 + Ax)?
= m ————————— =
Av=0 Ax sing f g *
14 3(Ax) +3(Ax)* + (Ax)® — 1
= Alim +3(A0 + (Ax) + (A7) Expanding (14+Ax)* via formula
0 X (A.10) (from Appendix A)
= Alim0[3 +3(Ax) + (Ax)*] =3. Simplifying, canceling Ax, and
X—>

evaluating the limit ]

IDONYIYHAN 3.7 Find the equation of the tangent line at point (1, 1) on the graph
of f(x) =x>.
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Solution We just calculated the slope of that tangent line: f'(1) = 3. It follows from
the point-slope equation that the equation of the tangent line is:

y—1=3(x—-1).

Simplifying yields y = 3x — 2, plotted in Figure 3.4(b). [

Related Exercises [JRR

Tips, Tricks, and Takeaways

The definition of f’(a) (Definition 3.2) looks like the definition of ¢(a) (Definition
3.1) but with different notation and terminology. Indeed, in the next section we'll
exploit these parallels to develop new, useful interpretations of f'(a).

3.3 The Instantaneous Rate of Change Interpretation
of the Derivative

. ) Speed Rate of change
The workflow in Section 3.2
is very similar to that of Sec- Average %{ %
tion 3.1. Figure 3.5 provides
a visual comparison. In both o Ad A
cases, we first calculate the Instantaneous| —o(a)= lim - flay= lim -
average rate of change of

the function we’re interested
in—distance in Section 3.1, a
general function f in Section

Figure 3.5: The definition of the derivative is a gen-
eralization of the definition of instantaneous speed.

3.2—over a certain interval Ax (or At). Then, we find the limit of that average rate
of change as Ax — 0 and get an instantaneous rate of change. This interplay between
instantaneous speed 4(a) and f’(a) yields the following insights:

1. The derivative at x = a, f'(a), measures the instantaneous rate of change of f
at x=a.

2. The instantaneous speed of an object at time t =a, 4(a), is the derivative of
the object’s distance function d at t = a: s(a) =d'(a).

3. The units of the derivative at x = a, f'(a), are the ratio of the units of f (x) to the
units of x.

Insight 3 follows from the right-hand side of (3.8) being a ratio of changes in
f(x) with changes in x. I will call Insight 1 the rate of change interpretation
of the derivative and its “slope of the tangent line” interpretation the geometric
interpretation of the derivative.
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1D ONILBEN 3.8 Use the results of Examples 3.4 and 3.6 to answer the following
question: Which function’s y-values are increasing faster at the point (1, 1), f (x) = x*
or f(x) =x>?

Solution The answer is f(x) =x>, since we calculated in Example 3.6 that
f'(1) =3, whereas we got f'(1) =2 for f(x) = x? in Example 3.4. [

IDONILBN 3.9 Returning to Figure 3.4(a), at what x-value(s) in the graph shown
is the instantaneous rate of change of the function zero?

Solution Only at x =0, because f’(0) = 0 (the tangent line is horizontal there, and
so has zero slope) and f'(a) # 0 for every other a-value (all such tangent lines have
nonzero slope). [

Note how these examples had us switching between the different interpretations
of f'(a). The suggested exercises at the end of the chapter help you further practice

that skill.
Related Exercises

We've profited a lot from comparing Definitions 3.1 and 3.2. Yet there is one
important difference between the two—the qualifier “provided the limit exists” in
the latter definition. That suggests that f'(a) doesn’t always exist. The next section
explores this additional piece of the puzzle that is f'(a).

3.4 Differentiability: When Derivatives Do
(and Don’t) Exist

The geometric interpretation of f’(a) is that it’s the slope of the tangent line to the
graph of f at x = a. But this presumes such a tangent line exists, which is not always
the case. The three graphs in Figure 3.6 illustrate what may happen. The graph in
Figure 3.6(a) has a “corner” or “kink” at point A. The tangent line is supposed to

Figure 3.6
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share the “inclination” of the graph at the point of tangency. But the inclination of
the graph in Figure 3.6(a) just before point A, represented by the dotted blue line, is
not the same as just after point A (represented by the solid blue line). Because the
tangent line at point A does not exist, the slope of that line, f'(a), also does not exist.

The graph in Figure 3.6(b) illustrates another problematic situation. There, if we
draw secant lines through point A and another point on the graph and left of point
A, as x — a~ those secant lines become more and more vertical (illustrated by the
gray lines in the figure) and approach the dashed blue line, the “inclination” of the
graph as we approach point A from the left. That “inclination” is not the same as
that obtained by considering only the portion of the graph right of A, as illustrated
by the solid blue line. Because the tangent line at point A does not exist, f’(a), the
supposed slope of that line, also does not exist.

Figure 3.6(c) illustrates the last possibility. That graph does have a tangent line
at point A, but it’s a vertical line and so has infinite slope. We again conclude that
f'(a) does not exist (infinity is not a number). The following definition introduces
the terminology we use when f’(a) does (or does not) exist.

Definition 3.3  Let f be a function defined on an open interval I including
a. We call f differentiable at x=a if f'(a) exists. If f is differentiable for
all x inside I, we say that f is differentiable on I. When f is differen-
tiable on (—o00,00) we say that f is differentiable everywhere, or simply,
differentiable.

IDONILBN 3.10 Consider the function graphed in Figure 3.7.
(a) At what points in the interval (—2,4) is f not differentiable?

(b) At what points in the interval (—2,4) is f discontinuous?

y
Solution
2+ °
(a) At x=—1 (same problem as in Figure
3.6(b)), x=1 (kink, as in Figure 3.6(a)), o 1
x =2 (function isn’t even defined there),
and x=3 (same problem as in Figure .
3.6(b)). 24/l 1 2 3 a
(b) From Example 2.8: The function is -1
discontinuous at x=—1, x=2, and Figure 3.7
x=3. [ |

RELITT R T AY 1415 and 48-49.
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Tips, Tricks, and Takeaways

The 5-second summary of differentiability is this: f’(a) exists only when the tangent
line to f at x =a exists and has finite slope. As we saw, this means in particular
that the graph cannot have kinks (i.e., is “smooth”) or gaps. If that reminds you of
continuity, it should, because the two notions are related.

| Theorem 3.1  Iff is differentiable at g, then f is continuous at a.

o The “contrapositive” of the theorem—the statement that if f is not continuous
at a then it’s not differentiable at a—is true. Figure 3.6(b) illustrates this; that
graph has a jump discontinuity at x = a and f’(a) does not exist.

o The “converse” of the theorem—the statement that if f is continuous at a then
it's differentiable at a—is not true. Figure 3.6(a) illustrates this; that graph is
continuous at x = a yet f’(a) does not exist.

The takeaway: Continuity is a necessary
condition for differentiability, but not a suf-
ficient one. The results also help quickly
rule out differentiability for a function—if
it’s not continuous at x = g, it isn’t differen-
tiable at x =a.

3.5 The Derivative: A Graphical
Approach

We now have a solid understanding of what
f'(a) measures, when it does and does not
exist, and how to visualize it—as a tan- 15
gent line superimposed on a graph (as in
Figure 3.4). But that visualization method
gets clunky if we want to visualize f’(a) for

various a-values. Figure 3.8 (top) illustrates : ¥
this for f(x) = x*. The tangent line soup in 1

that figure obscures the information those ¢
lines are providing us with. Part of the prob-  Figure 3.8t Plotting the slopes of
lem is that we’re plotting everything on the the tangent lines to f(x) as the points

same graph. Let’s remedy this. o' ().

Back in Example 3.4 we calculated that f/(1) = 2 for f(x) = x2. Let’s plot that on
a new graph as the point (1, 2); I've put that point in Figure 3.8 (bottom plot). I've

—_
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o
t
o
Q
-
i
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=
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y=/x)

(@) (b) (© d
Figure 3.9: Drawing the graph of f/(x) by “surfing” on the graph of f (x)”

also added a few other points. Like the point (1, 2), each of those points” y-value is
f'(a) for the point’s x-value a. Were I to have added even more points, you could
likely predict the type of function that would emerge: a linear function. (We'll verify
this in the next section.) We've discovered a new way to visualize the derivative: as a

function y = f' (x) whose y-values are the slopes of the tangent lines to f at each x-value
in the domain of f.

1OV 3.11 Sketch the derivative of f(x) = x° — 3x.

Solution Figure 3.9 shows a play-by-play of the sketching process. For each x-
value a we draw a tangent line to the graph of f (top) and calculate its slope f'(a).
Then on a new graph (bottom) we plot the point (a,f’(a)). When we do this from
left to right—Figure 3.9(a) to (d)—the graph of y = f’(x) emerges. [

Tips, Tricks, and Takeaways

A technical note before giving you tips on sketching f” given f: since f’(a) is defined
as a limit and limits are unique (if they exist; this can be proven using the Limit
Laws), it follows that y = f’(x) is indeed a function (in the sense of the definition of
a function; see Definition B.1). Okay, on to the tips for sketching f’:

o Look for horizontal tangent lines on the graph of f. These plot as points on
the x-axes on the graph of f'.

o Iftheslopes of the tangent lines to f are positive then the y-values of the graph
of f must be positive. Conclusion: if the graph of f is “sloping up” then the
graph of f” is above the x-axis. Replacing “positive” with “negative” in the first
sentence replaces “up” and “above” with “down” and “below” in the second
sentence.

—
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o
o
=
o
Q
=
<
o
i
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(o)}
[=1
=3
o
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You may have noticed that in Figure 3.8 f is a degree 2 polynomial and f” seems
to be a degree 1 polynomial (a linear function). Similarly, in Figure 3.9 f is a degree
3 polynomial and f” seems to be a degree 2 polynomial. These are manifestations of
a general rule we'll discuss in Section 3.7. In the next section we will confirm our

. . /
observation by calculating f'(x).

3.6 The Derivative: An Algebraic Approach

Algebraically, the definition of the derivative function f'(x) is just (3.11) with a re-
placed by x. I'll also replace Ax with h, yielding the following more common formula
for f'(x) you will see in calculus textbooks.

Definition 3.4 The Derivative Function.  Let f be a function. The
derivative function f’(x) of f, denoted by f(x), is defined by

f&x+h—fk)

p (3.12)

o=

for all x-values for which the limit exists.

3.12 Calculate f'(x) for f(x) = x*.

Solution

W Equation (3.12)

o=

h 2 _ .2
:%in})w Usingf(x+h):(x+h)2
—
2xh+h?
= %in}) ki Squaring out (x + h)? and simplifying

= ;llimo [2x+h]=2x.  Simplifying, canceling h, and evaluating the limit

3.13 Calculate f'(x) for f(x) = x> — 3x.

Solution

fl+h) —f(x)

p Equation (3.12)

£ = lim
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[(x+h)> =3(x+h)]—[x* —3x]

= %im p Using f(x+h) = (x+ h)?
-0 “3(x+h)
3x*h + 3xh* +h® — 3h
= lim xS Using (A.10) to expand (x + h)?

h—0 h
= Pllirr%) [3x* =3 +3xh+h*]=3x* —3.  Simplifying, canceling h,

and evaluating the limit [

These calculations confirm our earlier observations: the derivative of the
quadratic function f(x) = x? graphed in Figure 3.8 is the linear function f’(x) = 2x,
and the derivative of the cubic function f(x) = x> — 3x graphed in Figure 3.9 is the
quadratic function f’(x) = 3x* — 3. Two (simpler) calculations you can work out on
your own are

f=x = f=1, fH=b = f(x=0, (3.13)

where b is any real number.

RO BT 19, 21, and 25.

NI RIDRNCNYILNN 3.14 Loosely speaking, an individual's maximum heart
rate (MHR) is the highest heart rate that can be sustained during prolonged exercise.

An accurate formula for MHR was developed in [2]:
M(t) =192 — 0.007¢>.
(a) Calculate M'(1).

(b) Calculate M'(20) and interpret your results using the derivatives rate of
change interpretation.
Solution
(a) Employing (3.12):

M(t+h) — M(t)
h

M'(t) = lim Equation (3.12)
h—0

[192 — 0.007(t + h)2] — [192 — 0.007£2]
= lim

Jim p Using M(t+h) =

192 — 0.007(t + h)?
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0.007¢% — 0.007t% — 0.014th — 0.007h?

= }llim p Expanding (¢ + h)?
-0 and simplifying

= }llimo[—0.014t —0.007h] = —0.014t. Simplifying, can-
—

celing h, and
evaluating the limit

(Recall from Section 3.3 that the units of the derivative are the units of the
output, in this case bpm, divided by the units of the input, in this case years.)

(b) M’'(20) = —0.014(20) = —0.28 bpm/year. The rate of change interpretation
is: at the instant an individual is 20 years old, his or her MHR is decreasing
by 0.28 bpm per year. (“Decreasing” because the rate is negative.) ]

Related Exercises

Transcendental Tales

Let’s begin by discussing how to differentiate f (x) =¢* able 3.1: The values of

using (3.12): eh—1
approach one as h ap-
£ = lim et ¥ — lim (e — 1) proaches zero from either side.
h—0 h h—0 h JU
o, =1 " h
= (") hhn% | (3.14) 001 | 099502
- —0.001 | 0.99950

—0.0001 | 0.99995
where the last equality follows from the fact that e* : .

remains e* as h — 0 (because ¢* doesn’'t depend on 00001 | 1.00005
h). Table 3.1 suggests the value of the limit in the 0.001 | 1.00050
parentheses in (3.14) is 1. (See Section A2.1 in the 0.01 1.00502

online appendix to this chapter for an alternative
derivation.) Using this in (3.14) yields the following.

| Theorem 3.2 (&%) =¢~

In other words: e* is its own derivative; this reinforces how special the base e is
for an exponential function. I will defer discussion of the derivative of other ex-
ponential functions, as well as logarithmic functions, to the next section; those
calculations are best done with the derivative shortcuts we’ll develop in that
section.

Turning now to trigonometric functions, let’s begin by returning to the graphs of
sinx and cos x (Figure B.20). The smoothness of those graphs suggests that theyre
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Figure 3.10: (a) f (x) = sinx and four of its tangent lines, (b)-(c): plotting the slopes of all tangent
lines to f.

differentiable everywhere. In Figure 3.10 I've applied our graphical approach to
constructing f'(x) for f(x) =sinx (as we did with Figure 3.9). The f’(x) graph
looks like another trigonometric function you might already recognize. A similar
graph would have emerged had we started with f(x) = cos x instead—another fa-
miliar trigonometric function. Let’s verify these hunches and calculate the actual
derivatives.

IDCNYIGHN 3.15 Show that

(sinx) = cos x, (cos x) = —sinx. (3.15)

Solution We have

sin (x + h) — sin (x)

(sinx)' = lim Equation (3.12) for
h—0 h .
f(x)=sinx
~ lim sin (x) cos(h) + sin (h) cos(x) — sin (x) Using (B.23)
h—0 h
i h)—1 in (h
= lim sin () (C(;:( )~ 1) + ;1111}) w Rearranging and using
Limit Law 1
h)—1 in (h
= sin (x) |:lim &} 4+ cos(x) [lim sin ( ):| sinx and cos x don’t
h—0 h h—0 h
depend on h
=sin(x)-04 cos(x)-1=cosx Using (2.3) and (2.4)
The similar calculation of (cos x)’ = —sin x is left as an exercise (see Exercise 75).
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I will defer the calculation of the derivative of tan x to the next section; it is easiest
to carry out that calculation via one of the derivative shortcuts we’ll discuss therein.

Let me finish this tour of the derivative function by briefly discussing an alter-
native notation for it: Leibniz’s notation. (Gottfried Leibniz is the co-inventor of
calculus.)

Leibniz Notation

Leibniz’s notation arises from expressing f'(x) as

Ay
"(x) = lim —, 3.16
So=lm ax (316
where Ay=f(x+h) —f(x). Recall our interpretation of Ax— 0 from Chapter
1—an infinitesimal change in x. Leibniz introduced the symbol dx to represent
that notion.” Accordingly, dy represented the resulting infinitesimal change in the
y-values f(x). Leibniz then wrote (3.16) as
dy Ay dy
—~ = lim —%, so that "(x) = —=. 3.17
dx Ax—0 Ax F dx (3.17)
The new dy/dx notation is meant to remind you of the derivative’s slope-of-the-
tangent-line origin.

Today we also use just the “d/dx” portion of Leibniz notation. We understand
that to be a stand-in for “the derivative with respect to x of . ..” For example, we've
shown in this chapter that

d

dii (x*) = 2x, - (¢)=¢", % (192 — 0.007¢%) = —0.014¢.

One drawback to Leibniz’s notation is the fraction bar. Leibniz indeed thought
of the derivative as the ratio of two infinitesimally small quantities (the differen-
tials dy and dx), and dy/dx certainly encapsulates that. But to the untrained eye,
dy/dx is literally “dy divided by dx” The problem with this is that dx and dy are not
themselves numbers—they are stand-ins for the idea of an “infinitesimally small”
quantity—so we can't calculate dy and dx, and therefore the ratio dy/dx should
not be thought of as the quotient of two numbers.® The takeaway: View dy/dx as
merely notation for the derivative that better embodies its slope-of-the-tangent-line
origin.

Next up on our agenda is the development of shortcuts for calculating f’(x) that
avoid the lengthy limit calculations we've executed thus far in this chapter. All of the
differentiation shortcuts I'm about to teach you can be proven using the Limit Laws

25ee pages 134-144 of [13] to read Leibniz in his own words writing about dx.
3We will make some progress on this notation issue in Chapter 5.
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(Theorem 2.6) and the formula defining f'(x) (equation (3.12)). First up: the basic
rules of derivatives.

3.7 Differentiation Shortcuts: The Basic Rules

Theorem 3.3 The Sum, Difference, and Constant Multiple Rules.
Suppose f and g are differentiable functions and c is a real number. Then,

1. The Sum Rule: (f +¢) =f"+ ¢
2. The Difference Rule: (f —g)' =f" — ¢
3. The Constant Multiple Rule: (¢f)’ = cf’

The first two rules say that the derivative of the sum (or difference) of two functions
is the sum (or difference) of their derivatives; the third says that the derivative of a
number multiplied by a function is the product of that number with the derivative of
the function. Let’s now use Theorem 3.3 to help us differentiate the simplest family
of functions: linear functions.

IDONILB 3.16 Differentiate f(x) =3x+ 5.

Solution
f(x)= i(3x+ 5)
dx
d d )
= 3d_ (x) + Sd_ (1)  Sum and Constant Multiple Rules, Theorem 3.3
x x
=3(1) +5(0) =3. Using (3.13) [ ]

1D ONYIYBN 3.17 Differentiate g(x) = mx + b.

Solution
()= d (mx+b)
Y=
d d .
= md—(x) + bd— (1)  Sum and Constant Multiple Rules, Theorem 3.3
X x
=m(1)+b(0)=m. Using (3.13) ]
These results make perfect sense in the context of the slope-of-the-tangent-line

interpretation of the derivative: the graph of g(x) = mx + b is a line with slope m, so
every line tangent to that graph has slope m, implying that g’(x) = m.
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VNIYRIDRD.CNYIYUNIN 3.18 A persons Resting Metabolic Rate (RMR) is defined

as the amount of calories his or her body burns while awake but at rest. RMR is
usually calculated for 24-hour periods, thereby providing a daily minimum energy
expenditure estimate.* Mathematical models of RMR often estimate the quantity
using the person’s weight, height, and age. The Mifflin-St. Jeor equations, the most
accurate RMR formulas currently available (see [9] for a study comparing different
RMR equations), are an example. The Mifflin-St. Jeor equation for women is

RMRyomen = 4.5x + 15.9% — 5¢ — 161, (3.18)

Here x is weight in pounds, & height in inches, and ¢ age in years.’
(a) Suppose h =66 and t =20. Write down the function of x that results.
(b) Find the derivative of that function at x = 150 and include the units.

(c) Use the rate of change interpretation of the derivative to interpret the deriva-
tive value you found.

Solution
(a) Substituting the values into (3.18) yields W (x) =4.5x 4 788.4. (I replaced
RMRyomen With W)

(b) Since W(x) is a linear function, it follows from Example 3.17(b) that W/ (x) =
4.5, so that W/ (150) = 4.5 calories/pound (W (x) has units of calories and x
units of pounds).

(c) W/(150) =4.5 cal/lb tells us that the RMR of a 20-year-old 56 tall
woman who weighs 150 pounds is increasing at the instantaneous rate of
4.5 cal/lb. |

Related Exercises JENRER

3.8 Differentiation Shortcuts: The Power Rule

Recall from Definition B.4 (Appendix B) that power func- Table 3.2
tions have the form ax?. Lets seta=1and consider btobea [ fx) | /() | /()
positive integer so that were studying the power functionsx, | x' | 1 1x 171
x?, x3, etc. Our prior work in this chapter has established the xi 2x 5 2"?1
x 3x 3x7

derivatives of these power functions; I have put those results
in the second column of Table 3.2. The third column reexpresses those derivatives

4“Minimum” because any activity not included in RMR (e.g., walking) adds to the day’s total energy
expenditure.

5These equations are examples of multilinear functions. See [7] for more information, as well as a discussion
of the limitations of the Mifflin-St. Jeor model.
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in a manner that suggests a general pattern. See the pattern? (I'll bet you can now
predict what the derivative of x* will be.)

The insights from Table 3.2 suggest that the derivative of x”, where # is a pos-
itive integer, follows the rule: “bring down the power and subtract one from the
exponent.” Mathematically, this leads us to conjecture that if f (x) = x" then f'(x) =
nx"~1. This turns out to be true. And that’s not all. As you can verify using (3.12):

f)=x? = f(x)=-2x77, g0 =x"? = Jw= %x‘l/z.
This suggests that the “bring down the power and subtract one from the exponent”
rule may also hold for fractional and negative powers of x. This also turns out to be
true. In fact, this rule for differentiating x” is true when 7 is any real number; it’s
called the Power Rule. (We will later prove the Power Rule with the help of another
derivative rule.)

Theorem 3.4 The Power Rule. Let n be a real number. Then,
d

(5™ = 1
dx (x ) nx .

DNV 3.19 Differentiate f(x) = x> — 3x.

Solution

fl(x)= 4 (x3 — 3x)

dx
d  ; d . .
= (x ) - 3d— (%) Difference and Constant Multiple
* * Rules, Theorem 3.3
=3x> —3. Power Rule and (3.13) [ ]

1OV 3.20 Differentiate g(x) = 10x° — 3./x.

Solution
g )= dix (IOx9 — 3x1/2) Rewriting +/x = x'/2
= 10% (xg) - 3% (xl/ 2) Difterence and Constant Multiple
Rules, Theorem 3.3
=10 (9x8) -3 (%x_l/ 2) =90x® — %c Power Rule; simplifying [

2
NVIIN:R 3.21 Differentiate h(x) = — + 5x12,
X
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Solution
d
W (x) = = (2x_3 + le.z) Rewriting 2 /x3 =2x3
X
d d
= ZZC (x_3 )+ SZC (xl'z) Sum and Constant Multiple

) Rules, Theorem 3.3
=2 (—3x_4) +5 (1.2x0'2) =6 (x0'2 - x_4> . Power Rule; simplifying m®

1D CNYIDNN 3.22 Verify the result of M'(¢) for Applied Example 3.14.

Solution Using (3.13) and the Difference, Constant Multiple, and Power Rules:

d d
M'() =192 (1) = 0.007— (£*) = ~0.007(26) = ~0.014t. N

VNIURIDRCNYIUNN 3.23 Weather stations often report outdoor temperature
together with the “wind chill temperature,” which takes into account how much

colder it feels due to the wind. The National Weather Service (NWS) has come up
with the following model (see [10]) for wind chill temperature:

C=35.7440.6215T + (0.42475T — 35.75)y*1©,

where C is the wind chill temperature and T the air temperature (both measured in
Fahrenheit), v the wind velocity (in miles per hour), and T'<50° F and v > 3 mph.

(a) Calculate the function C(v) that results when T'=30° E.
(b) Using the function from (a), calculate C(10) and interpret your answer.

(c) Using the function from (a), calculate C'(10) and interpret your answer.
Solution

(a) C(v) =54.385— 23.0075v%16,

(b) C(10)~21.13° E This means that, according to the NWS model, when it’s
30° F outside a 10 mph wind gust will make it feel about 21° E

(c) Using the Difference, Constant Multiple, and Power Rules:

3.6812 °F
084

C'(v) = —23.0075 (0.16v"8%) = —3.6812v %4 = — —.
mph

Therefore, C'(10) = —3.6812(10) %84~ —0.53 °F/mph. Using the rate of
change interpretation of the derivative, we can say that, according to the
NWS model, at the instant the wind gusts to 10 mph on a 30° F day the wind
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chill temperature is decreasing at the rate of about half a degree Fahrenheit
per mph. [

2 ENOTL BRI 1924, 30, 34, and 51. [

As promised, Theorem 3.3 and the Power Rule make it easier to differentiate poly-
nomials (as well as other functions consisting of power functions). But these results

don’t address differentiating products, quotients, or compositions of functions. Let’s
talk next about those differentiation shortcuts.

3.9 Differentiation Shortcuts: The Product Rule

As an illustration of the calculus we've learned
thus far, let’s derive the rule for differentiating
a product of two functions using a geometric
argument. Here’s the question: What’s the in-
stantaneous rate of change of the area of the
blue rectangle in Figure 3.11 if the side lengths

Aw

l'and w are changing with time?
We start with the fact that A(t) = [(H)w(t)
is the area of the black rectangle. Were look- Figure 3.11
ing to calculate A’(t). Employing a dynamics
mindset, we envision the rectangle’s sides increasing a bit, leading to the larger rect-

~ H_J
I(1) Al

angle in Figure 3.11. The change in area AA (the area between the two rectangles) is
AA=[I(1) + Alllw(®) + Aw] = I(H)w(t)
=I1t)Aw+w(t)Al+ AlAw.

Recalling now (3.16):

AA
A'(H)= lim — = lim [

AW+ w)Al+ AlAw
At—0 At At—0

At

— tim | 102 £ w2 AR
T A INBEON,

At—0 At
10| im 2% | m 24 im [ar2Y
o A0 At YO S0 Aar | T arso At
=1OwW @) +w)l (1),

since Al — 0 as At — 0. Conclusion: A’ (t) =1I'(t)w(t) + ()W (¢). This is known as
the Product Rule.
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Theorem 3.5 The Product Rule.  Suppose f and g are both differen-
tiable. Then,

[Fx)g)] =1 (x)g(x) +f (x)g (x).

IDONVIZNN 3 24 Differentiate h(x) = (2x — 3)(4x> — 1).

Solution

W(x)=02x—3)4x>— 1)+ (2x—3)4x>—1) Product Rule

=(2)(4x> — 1) + 2x — 3)(12x?) Difference, Constant Multiple,
and Power Rules
=32x° — 36x% — 2. Simplifying o

1D ONYILNN 3 25 Differentiate h(x) = 3x — 1)

Solution First we rewrite h(x) as a product of two functions: h(x) = (3x—1)
(3x—1). Then,

Hx)=0Bx—1)/Bx—1)+ Bx—1)(3x—1)" Product Rule

=3)Bx—1D+Bx—1)(3) Difference and Constant Multiple
Rules, and (3.13)
=6(3x—1). Simplifying ]

3.10 Differentiation Shortcuts: The Chain Rule

Let me follow the previous section’s approach and
give a geometric illustration of the rule for differen- ~ Ax

tiating a composition of two functions. The question
is the same as before, except that now we’ll consider
a square: What's the instantaneous rate of change of ;)
the area of the blue square in Figure 3.12 if the side
length x is changing with time?

We start with the fact that A(x) = x? is the area
of the black rectangle. But since x depends on time, x(1) Ax
so does A, so were interested in differentiating Figure 3.12
A(x(1)) = [x(t)]* with respect to time t. Employing
a dynamics mindset again, we envision the square’ sides increasing a bit, leading to

the larger square in Figure 3.12. The change in area AA (the area between the two

squares) is: AA = [x(t) + Ax]? — [x(D)]

=2x(1) Ax + (Ax)?.
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Recalling again (3.16):

1A= im S )
dt * = A At = A

2x(H) Ax + (Ax)?
]

) Ax Ax . Ax . Ax
= lim |2x(t)— + Ax— [=2x(t) | lim — [+ lim [ Ax—
At—0 At At At—0 At At—0 At

=2x(1)x (1), (3.19)

since Ax — 0as At — 0. Now, the Power Rule applied to A (x) = x? gives A’ (x) = 2x.
So, A’ (x(t)) = 2x(t). This allows us to rewrite (3.19) as

d
2 AC®)] =A'(x()x (1)
This is a particular example of the more general rule known as the Chain Rule.

Theorem 3.6 The Chain Rule.  Suppose f and g are both differentiable.
Then,

d ! /
- [fgx)]=1"(g(x)g ).

In the terminology of compositions of functions, f (x) is the “outer function” and
g(x) the “inner function” The Chain Rule then says: the derivative of the compos-
ite function f(g(x)) is the derivative of the outer function evaluated at the inner
function (thats f'(g(x))) multiplied by the derivative of the inner function (that’s

g x).

IDONYILNN 326 Differentiate h(x) = (3x — 1)2.

Solution Let’s express the function as h(x) = f(g(x)), where f (x) = x? is the outer
function and g(x) = 3x — 1 the inner function. Then,

W (x) =f"(g(x))g (x) Chain Rule
=f'(3x—1g (x) Using g(x) =3x— 1
=f'(3x—1)(3) Using ¢’ (x) =3
=2(3x—1)(3) Since f'(x) =2x, f'(3x — 1) =2(3x — 1)
=6(3x—1). Simplifying ]

I ONYIYURN 3 27 Differentiate h(x) = v/ x2 + 1.
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Solution Let’s express the function as h(x) = f(g(x)), where f(x) = /x=x"/?is
the outer function and g(x) = x> + 1 the inner function. Then,

W (x)=f"(g(x)g (x) Chain Rule
=f'(x*+ 1)g (x) Using g(x) =x*>+1
=f'(x*+1)(2x) Using g’ (x) = 2x
= [%(xz + 1)—1/2] (2x) Using f'(x) = %xil/z
= xf—{— T Simplifying ]

OO BRI 25-26, 29, 32-33, 45-47, and 52. [

The Chain Rule is easier to remember when expressed in Leibniz’s notation. If we
let y=f(g(x)) and u = g(x) (so that y = f(u)), then the Chain Rule is equivalent to
dy dy du

@ _ 4 au 3.20
dx du dx (3.20)

where we substitute u = g(x) in as the last step. Let me illustrate this with an example.

IDCNYILNN 3.28 Differentiate h(x) = v/ x% + 1 using (3.20).

Solution Using the same inner function, u = g(x) = x> + 1:

d d d
— (VR +1) == (Vi) - (@ +1) Chain Rule
[1 d
= Eu_l/z] g (x2 + 1) Power Rule applied to
X
- Ju=ull?
[1
= Eul/z] (2x) Power Rule applied to x* + 1
= -l(xz + 1)_1/2i| (2x) = al . Substituting in u =x*+1
[ 2 N

and simplifying [

Tips, Tricks, and Takeaways

The Chain Rule tends to cause students the most trouble. My recommendation:
practice, practice, and more practice.

Let me also add one more remark regarding (3.20). Notice that in Leibniz nota-
tion the Chain Rule’s proof seems simple: just cancel out the du’s. I've cautioned you
not to take the fraction bar in Leibniz’s dy/dx literally. But recalling (3.17), when
the d’s in (3.20) are replaced by A’s the fraction bar is a real fraction bar (since then
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we're talking about finite, not infinitesimal, changes) and we would then cancel the
Au’s. Takeaway: (3.20) is a useful and intuitive way to remember the Chain Rule but
not a proof of the Chain Rule.

Finally, a note about u’s. Since function compositions are so ubiquitous, deriva-
tive rules are often stated in what many call “u form.” For example, you will often

find the Power Rule stated as

d%c (u") =nu"" "/ (3.21)

in calculus textbooks. This “u form” makes the Power Rule more widely applicable

than the u = x version in Theorem 3.4. For instance, it allows us to solve Example
3.26 in one line:

% [Bx—1)?]=206x—1)'(3x— 1) =23x— 1)(3) =6(3x — 1).

3.11 Differentiation Shortcuts: The Quotient Rule

The rule for differentiating a quotient of two functions (i.e., f(x)/g(x)) can be de-
rived using the Product and Chain Rules (see Exercise 50). Here is the formula that
results.

Theorem 3.7 The Quotient Rule.  Suppose f and g are both differen-
tiable, and g(x) # 0. Then,

d [f (x)] _[08(x) —f(x)g'(x)
dx | g(x) [g(x)]? '

2
x-—1

IDONYILNN 3.29 Differentiate h(x) = 3 .
x> +1

Solution
W=D+ — =D +1)
(3 4+1)2

H(x)= Quotient Rule with f(x) = P |

and g(x) = X +1

2x) (6 + 1) — (x* — 1) (3x?
= @)+ 1 — (x )(3x7) Sum/Difference and Power Rules

(x3 + 1)2
x(x3 —3x—2) R
—-_ B Simplitying u

1
ONYIS0l 5,50 Differentiate h(x) =~
X
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Solution
1) (x) — 1 !
W (x) = xt V') 5 D& Quotient Rule with f(x) =x+ 1 and g(x) =x
x
1 — 19]¢! 1
= () (2x + D) = ——. Sum/Difference and Power Rules; simplifying
x x

Related Exercises | 25,28, 31, and 33.

Tips, Tricks, and Takeaways

This last example could have been solved without the Quotient Rule by simplifying
the function first:
x+1 x 1

1
=S4 =14+ -=14+x14 x#0.
X X X X

Applying the Sum and Power Rules then yields the same derivative (—x~2). Take-
away: It may help to simplify the problem before setting off to solve it.

The derivative shortcuts we've now covered enable us to calculate derivatives
quickly, provided you can determine which derivative rule(s) to apply when. This
is a skill you'll acquire as you practice using the differentiation rules discussed thus
far. To that end, I encourage you to revisit Exercises 19-34 and differentiate those
functions using the simplest approach. As a general rule, your goal should be to use
the derivative rule that yields the simplest calculation.

Now that we've discussed all the derivative rules, let’s apply them to transcenden-
tal functions.

3.12 (Optional) Derivatives of Transcendental Functions

First, let’s calculate the derivative of non-e base exponential functions: f(x) = b*.
Since f(x) = b* = €', where r=Inb, we can view this as the composition f(x) =
g(h(x)), where g(x) = e* and h(x) = rx. Then,

f'(x) =g/ (h(x))H' (x) Chain Rule

=g (rx)(r) Using h(x) =rxand h'(x) =r
=" (r) Using ¢’ (x) = ¢* (Theorem 3.2) and g'(rx) = €™
=b"Inb. Using e =b" and r=Inb |

(Note that when b = e we recover the result in Theorem 3.2.) We've derived a new
derivative rule.
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Theorem 3.8 Derivative of Exponential Function.  If b* is an expo-

nential function, then p
— (b)) =b*Inb. (3.22)
dx

IDONILBN 331 Differentiate f(x) = 2%.

Solution Using (3.22) with b =2 yields f’(x) = 2*In2. [ ]
3.32 Differentiate g(x) = xe*.
Solution
gx)=x'e +x() Product Rule
=" + xe* Power Rule for (x)" and Theorem 3.2
= (x+1)e". Simplifying [ ]
3x
I CNYIRNIN 3.33 Differentiate h(x) = =
X
Solution

(3% (2x) — (3%) (2x)

H(x)= 222 Quotient Rule
3*In3)(2x) — (3% (2
= (3"In )((Zx)) 5 ) Equation (3.22) with b = 3 and the Power Rule
X
3*(xln3 -1
= % Simplifying [

3.34 Differentiate h(t) = et
Solution Writing h(t) = f(g(t)), with f(t) = ¢’ and g(t) = —t2, we have:
W () =f(g(t)g (t) Chain Rule
=f'(—t*)(=2t) Using g(t) = —t* and ¢/(t) = —2t
—e " (—2t) = —2te " Using f'(t) =e' and f'(—t%) = et simplifying m

VNI RINDEDCNYILNAN 3.35 Suppose that the average rate of occurrence of an
event is A times per minute.® In some cases the probability P of waiting at most

OFor example, the event might be a bus arriving at a bus stop, and A might be 1/4, so that on average one bus
arrives every 4 minutes.
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t minutes for the event to occur can be accurately modeled by
P(H=1—e¢"* r>o0.

(a) Suppose that the “event” is a human customer service agent answering your
call and that A = 1/3. Calculate P(¢).

(b) Calculate P(1) (using the information in part (a)) and interpret your result.

(c) Calculate P'(t) for the function from part (a) and interpret P'(1) using the
rate of change interpretation of the derivative.

(d) Calculate tlim P(t) and interpret your result.
— 00
Solution

(@) P(H)=1—e 3.

(b) PAW)=1—e3*=1—¢71, since A=1/3. The result of P(L)=1—¢" '~
0.63 tells us that the probability of waiting at most the average wait time is
about 63%. (Thus, it is likely that your call will be answered before the average
wait time.)

(c) P'(t) = —e 3 (—3) =3¢~ 3. From here we see that P'(1) =3e~>~0.15. In-
terpretation: When you've already been waiting for 1 minute, the probability
that your call will be answered is increasing at the rate of about 15% per
minute.

(d) Since e73' — 0 as t — 00, we conclude that P(t) — 1 as t — oo. Interpreta-
tion: The probability that your call will be answered approaches 100% as the
time you are willing to wait gets very large. ]

Related Exercises

Let’s now discuss how to differentiate logarithmic functions. First up, let’s try to
differentiate In x. We'll start with the following fact (discussed in Appendix B.8):

e =x for all x in the interval (0, 00).

Let’s now differentiate this equation. The right-hand side’s derivative is 1. For the
left-hand side:

d Inx\ __

&)=

é*(lnx)’ =1 Writing e * = f(g(x)), f(x) = €5, g(x) = In x and applying the
Chain Rule

x(Inx)'=1 Using et = x
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Solving this for (Inx)’ yields the following result. (Exercise 62 guides you through
an alternative derivation using the limit definition of the derivative, (3.12).)

Theorem 3.9
d (Inx) 1
—Unx) = —.
dx X

Moreover, since
log,x Inx

1 =
08a log,a Ina

(see (B.15) from Appendix B), the Constant Multiple Rule (Theorem 3.3) yields the
following more general version of Theorem 3.9.

I Theorem 3.10

4 log x) =
dx 8% "~ x(lna)’

IDONILBIN 336 Differentiate f(x) = xlnx.

Solution

(%) = (x)Inx + x(Inx)’ Product Rule

1
=Ilnx+x (—) =Inx+1. Power Rule and Theorem 3.9; simplifying |
x

3.37 Differentiate h(x) = In (x* +2).
Solution Writing h(x) = f(g(x)), where f(x) = Inx and g(x) = x> + 2, we have:
W(x)=f"(g(x)g (x) Chain Rule
=f'(x*+2)(2x) Using g(x) =x*> 42 and ¢’ (x) = 2x

1 2x . , 1 . o
= <x2—+2) (2x) = 212 Since f'(x) = » (Theorem 3.9); simplifying W

1D ONVILBIN 338 Differentiate h(t) =In/t2 + 2.

Solution We can use the rules of logarithms (Theorem B.1) to simplify h to h(t) =
%ln (t? 4+ 2). Then, using the Constant Multiple Rule and the result of the previous

example: y 1 2t ¢
W=\rz)" ez "

G RE N 57-60 and 66.
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Turning now to trigonometric functions, let’s start by going back to tan x
and calculating its derivative. Since tanx = 2=, we can use the Quotient Rule
(Theorem 3.7). The result is (see Exercise 76)

1
cos? x’

—(tanx) = (3.23)

dx
It’s customary to rewrite this result in terms of the reciprocal trigonometric func-
tions defined by
1 1

1
cscx=—, secx=——, cotx=——. (3.24)
sinx cosx tan x

From left to right, these are the cosecant, secant, and cotangent functions. Now,
2

since cos® x = (cos x)?, the result (3.23) becomes
d 2
— (tan x) = sec” x. (3.25)
dx

Now that we've calculated the derivatives of the basic trio of trigonometric func-
tions, let’s get some more practice using them by differentiating functions involving
trigonometric functions.

I ONYI0M 3.39 Differentiate f(x) = x* — tan x.

Solution Using (3.25) and the Power and Product Rules: f'(x) =2x —sec’x. ®

1OV 3.40 Differentiate h(x) = sin?x.
Solution Writing h(x) = f(g(x)), where f(x) = x* and g(x) = sinx:

W(x)=f(g(x)g (x) Chain Rule
= f'(sinx)(cos x) Using g(x) =sinx and g’(x) = cos x
= 2sinx cos x. Using f(x) = x* and f'(x) = 2x ]

I @NYIENSN 3.41 Differentiate h(x) = sec x.

Solution Writing h(x) = (cos x) ! = f(g(x)), where f(x) = x~! and g(x) = cos x:

W (x)=f"(g(x)g (x) Chain Rule

= f'(cos x)(—sin x) Using g(x) = cos x and g’ (x) = —sinx

N (_ CO;2 x> (—sinx) Using f(x) =x ! and f'(x) = —x >

sinx . o
= o2y o Secx tan x. Simplifying ]
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We just calculated that (sec x)’ = sec x tan x. The derivatives of csc x and cot x are

calculated in Exercise 77.
NGB ETIIY 6774 and 77-80.

Tips, Tricks, and Takeaways

The examples in this section reinforce my two running takeaways from using the
derivative rules:

o Know which rule to use when. This requires identifying the type of function
you're asked to differentiate (e.g., a product of two functions), because then
there’s likely a rule for differentiating it (e.g., the Product Rule).

o Simplifying and/or rewriting the function first often helps. This was the case in
Examples 3.38 and 3.41.

We've now studied the derivative rules and can quickly calculate f'(x). In fact:
We could use the rules over and over again to calculate derivatives of derivatives! Such
derivatives are called higher-order derivatives, and they're the topic of this chapter’s
last section.

3.13 Higher-Order Derivatives

Thus far we've focused on differentiating a function f, producing another func-
tion f'. If we now consider f” as “the function,” we can differentiate it; the result:
(f") =f". We've differentiated the original function f twice, so we call f” the second
derivative of f (and by extension f” the first derivative of f). We can keep doing this
to produce higher-order derivatives: f” (third derivative), f”” (fourth derivative),
and in general, f” (the n-th derivative, where 7 is a natural number).

Let’s now discuss the Leibniz notation for higher-order derivatives. Suppose
y=f(x), then f'(x) = % in Leibniz notation. The derivative of that in Leibniz

notation is
d (dy d*y d?y

d—(d—):ﬁ = JW=g2

You can then imagine the general pattern for the n-th derivative function:

d'y

Wy =2

e =52

Now that we've defined higher-order derivatives, let me note a fact: Every differenti-
ation rule we developed for f' works for f™. We need only replace all instances of f
with f” in said rules. Let’s work through a few examples.

IDONYIYBN 3.42 Calculate f ™) (x) for flx) =x>.
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Solution By repeated application of the Power Rule, f'(x)=3x?, f”(x)=6x,
£ (x) =6, and f™ (x) =0 for every natural number n > 4. [

1D ONYIINN 3.43 Calculate ¢” (x) for g(x) = +/x+ 1.
Solution Rewriting g as g(x) = (x+1)/2, the Chain Rule yields g'(x)=
%(x + 1)~ /2. Differentiating this using the Chain Rule again yields

1 1
g ==+ ) = e 0

4./(x+1)3

In addition to the derivative rules extending to higher-order derivatives, our in-
terpretation of the derivative does too. That means f”(a) is the instantaneous rate of
change of f'(x) at x = g; similarly, f”(a) is the slope of the line tangent to the graph
of f’(x) at x = a. The next example explores these results in the context of speed.

INYIBIRD NG 3.44 In Example 3.3 we used a falling apple’s distance
function d(t) =16t to derive its instantaneous speed function, 4(t) = 32t. Find

d"(t) and interpret it physically.

Solution By the Power Rule, d’(¢) = 32t and so d”(t) = 32 ft/s%. Since d'(t) = s(t),
d"(t) = 4'(t). That makes d”(t) the instantaneous rate of change of the object’s
speed. ]

You may have thought of a name for d”(¢) already: acceleration. But acceleration
is the instantaneous rate of change of velocity, which is itself the instantaneous rate
of change of the object’s position (not its distance covered). We'll return to the subtle
distinction between velocity and speed, and their instantaneous rates of change, in
Chapter 5. For these reasons, I'll leave the interpretation of d”(t) as the instanta-
neous rate of change of the object’s speed. Viewed this way, if d”(t) > 0 we expect
the object’s speed to increase, whereas if d”(f) < 0 we expect its speed to decrease.
(Exercise 43 explores this train of thought further.)

Related Exercises LRt

3.14 Parting Thoughts

We can now calculate f’(x) (and its higher-order cousins) and interpret and visualize
it in various ways. At the heart of all these accomplishments was Equation (3.11),
our original definition of f’(a). Viewed from Leibniz’s point of view, f’(a) is the ratio
of infinitesimal changes arising from the limit of the slopes of secant lines. Read
that sentence again and you’ll once more appreciate my description in Chapter 1 of
calculus as the mathematics of infinitesimal change.



76 e« Derivatives: Change, Quantified

The derivative, being one way to quantify infinitesimal change, was an important
advance in mathematics. In the next chapter we’ll apply what we've learned to
real-world contexts to discover that derivatives are just as important outside of

mathematics.

CHAPTER 3 EXERCISES

1-6: Calculate f’(1) using equation (3.11).

2

1. f(0) = (x— 1) zﬂm=%+s
3. fx)=x*+2x+1 4. f(x):i2
X
x+2
5. f(x):x_z

6. f(x)=4+/x. Hint: It will help to multiply
the numerator and denominator by /x4 Ax
+ /%

JVIGF Ax—4
7. The limit lim Yoot 2¥—%

Ax—0 Ax
f'(a) for some f(x) and some a-value; what are

represents

some possibilities for f(x) and a?

8. Find the equations of the tangent lines at the
point (1,f(1)) for the functions in Exercises 1
and 2.

9. Suppose y =2x+ 4 is the line tangent to the
graph of some function f(x) at x = 2. Find f'(2)
and f(2).

10. Average Speed Let d(t) = 16t be a distance
function. Find the average speed over the time
intervals (a) 1 <t<2and(b)2<t<3.

11. Instantaneous Speed Use (3.6) to calculate
the instantaneous speed s(a) for the distance
functions that follow.

(a) d(t)=10. (Explain why your answer is rea-
sonable.)

(b) d(t)y=t>+1.
(c) d(t)=1t>. (Formula (A.10) will help.)

12. Instantaneous Speed Let d(t) =4 — 2t be a
distance function.

(a) Identify s(a) without doing any calcula-
tions.

(b) Confirm your answer using (3.6).

13. Maximum Heart Rate Let’s return to Ap-
plied Example 3.14. A simpler model for MHR
is H(t) =220 —¢.

(a) Calculate the equation of the tangent line at
t =20 for H(t).

(b) Calculate the equation of the tangent line at
t =20 for M(t) (given in Applied Example
3.14).

(c) Discuss briefly why, given your results,

M(t) is a more realistic model of MHR than
H(t).

14-15: Determine where f is not differ-
entiable.

14. f is the function graphed in Figure 2.10,
considering only the subset (0,100) of its
domain.

15. f is the function from Exercise 2 of Chap-
ter 2.

16. Sketch the graph of f” from the graph of f
given below.
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17. Sketch the graph of f" from the graph of f
given below.

18. Sketch the graph of f’ from the graph of f
given below.

)
[V,

X
—1.N.5 0/10

=)
(6]

19-34: Find the derivative.
19. f(x)=m 20. g(x) = x>0
21. f(t) =16t? 22. h(s)=s" —25°

23. f(x) =4/x—10J/x
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24, h(s) =5 (1+5)

1
25. g(x) = 1
26. h(t)=+/1—1t
27. g(x) = (x* +7)(v/x — 14x)
x—1
28. f(X) = T
29. h(x)=+/(1+x%)2+1
30. g(H)=1"
31 by = 5
x+1
3, 2 ’
32. f(x) = (X + ;)
1
33. f(S) = m

34. g(H)=15t"° — (> +1)
35. Let f(x) = /x + x.

(a) Find the instantaneous rate of change at
x=1.

(b) Are the y-values of f increasing at a faster
or slower rate at x = 2 (compared to x =1)?
Explain.

(c) Calculate f(2) —f(1) and compare it to
your answer in part (b).

(d) Interpret your answer to part (a) using the
geometric interpretation of the derivative.

(e) Find the equation of the line tangent to the
graph of f at (1,2).

36-39: Calculate f”(x).
36. f(x) =2x> —3x% — 12x
37. f)=2+3x—x°

38. f(x) =+/x+3
39. f(x) =x/x+3



78 o Derivatives: Change, Quantified

40. Let f(x) =x*3. Is f differentiable at x = 0?
Is f twice differentiable at x = 0? Briefly explain.
(Conclusion: not all higher-order derivatives ex-
ist at every point.)

41. Suppose f'(x) =0 for all x. What can you
conclude about f(x)? Suppose f”(x) =0. What
can you conclude about f (x)? Briefly explain.

42. The derivative of acceleration—the “jerk”
In physics, the derivative of the acceleration
function a(t) of an object with position function
s(t) is called the jerk: j(t) =a'(t). The termi-
nology is appropriate, because j(t) represents an
instantaneous change in acceleration, which the
object would feel as a “jerk” in the motion. Sup-
pose an amusement park ride’s position function
is s(t) = £> + t, where s is measured in miles and
t in hours. Find the jerk at t =1. What are its
units?

43. Unemployment Let U(#) denote the unem-
ployment rate at time ¢ in a country. Suppose a
politician makes the following claim: “The rate
of decrease in the unemployment rate is slow-
ing” Translate this into a statement about U or
its derivatives.

44, Student Loans Suppose a student takes out
a student loan with a yearly interest rate of r%.
Let C=f(r) be the total cost (in $) of repaying
that loan.

(a) What does f(0.05) = $10, 000 mean?

(b) What are the units of f/(0.05)? What would
£7(0.05) = $1, 000 mean?

(c) Doyouexpectf’(r) tobe positive forall r >
0 or negative? Briefly explain your answer.

45. Acceleration due to Gravity Assume that
the Earth is a perfect sphere, and suppose an in-
dividual stands at a height h above the ground.
Gravity pulls the individual toward the center of
the Earth with a force equal to mg (this is the

individual’s weight), where m is the individual’s
mass and g the acceleration due to gravity. In the
notation of Newton’s Universal Law of Gravity
(Exercise 35 in Chapter 2), it follows that mg =
F(R+ h), which yields a formula for the acceler-
ation due to gravity as a function of the height h
(in meters) above the ground (and independent
of the object’s mass m):

GM

= (R+h)2 m/Sz.

g(h)

(a) Using GM~3.98 x 10!* and R~ 6.37 x
10°, calculate £(0). (We use 9.806 m/s® as
the “standard acceleration due to gravity’)

(b) Calculate g’'(h) and g'(0).

46. Measuring the Acceleration due to Grav-
ity Using a Pendulum Consider a pendulum of
length I meters. The period of the pendulum
is the time T (in seconds) it takes for the pen-
dulum to undergo a complete oscillation. For
small oscillations, T is well approximated by the

function
2 «/Z
T(g) =
NG

where g the acceleration due to gravity, g ~ 9.81

m/s>.

>

(a) Calculate T'(9.81) assuming [ =1.

(b) Solve the T(g) function for g to find the
function g(T). This function enables one
to measure the acceleration due to gravity
by measuring the period of a I-meter-long
pendulum! Find g(2.006).

(c) Using the g(h) formula in Exercise 45, cal-
culate T'(g(h)). This formula predicts how
a pendulum’s period changes with altitude.

(d) Let f(h)=T(g(h)) and I=1. Calculate
£'(0) and interpret your result.

47. Speed of Sound The speed of sound s varies
according to the temperature of the surrounding



air. A reasonable approximation is

s(C) =20.05+/C+273.15 m/s,

where C is the air temperature measured in Cel-
sius.

(a) Let h(F) =s(C(F)), where F is the temper-
ature in Fahrenheit. Find h(F). (Hint: Solve
(B.6) of Appendix B for C first.)

(b) Calculate h(68) and compare it to the speed
of light ¢, approximately 300 million me-
ters per second. (Your comparison explains
why, for example, we see fireworks explode
in the air before we hear them exploding.)

(c) Calculate /' (68) using the Chain Rule and
the facts that C(68) =20 and C'(68) =5/9.

48. Calculate f’(x) for f(x) = |x|.
49. Calculate f’(x) for f(x) = ﬁ

x
50. Let h(x) =f(x)(g(x))~!. Use the Product
and Chain rules to derive the Quotient Rule

(Theorem 3.7).

51. Find the equations of the lines passing
through the origin and tangent to the graph of
fx)=x*+1.

52. Let f(x) =xg(x?). Find f'(x) assuming g’
exists (the answer will involve g and g’).

EXERCISES INVOLVING EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

53-60: Calculate the derivative.
53. f(x) =e™ 54. f(x)=2"%

e +e®

55. g() = (> +1)e*  56. h(z) =

57. f(x)=In(x*4+5) 58. f(z) =e “In(32)

t

1
60. g(t)=In—°

59. h(t) =1
()=In o

241
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61. Derive the derivative rule (e™) =re™ di-
rectly from the definition of the derivative (3.12)
and using Theorem A2.1. (Consulting the calcu-
lation in (3.14) may help.)

62. When f(x) =Inx, the limit definition of
f'(x), (3.12), yields

o 1/
f)y=limln ( 1+ - .
h—0 X

Show that by letting t = h/x (we're thinking here
of x as a fixed positive number), using Theo-
rem A2.1 with g(h) = h/x, and using Limit Law
7, we rederive that f'(x) = %

63. The Calculus of Cooling Coffee Suppose a
cup of coffee at a temperature of T °F is taken off
the coffee machine’s warming plate and placed
on a dining table. Assuming that the ambient
temperature of the room is T,, Newton’s Law
of Cooling yields the following equation for the
coffee cup’s temperature T as a function of time ¢
(in minutes since the cup was removed from the
warming plate):

T(t)="Ty+ce ",

where ¢ and b are positive constants.

(a) Two fairly realistic assumptions are that
To=160, T(2)=120, and T,=75. Use
this to show that c=85 and b~ 0.318.

(b) Calculate T'(0) for the function obtained
in part (a) and interpret your result us-
ing the rate of change interpretation of the
derivative.

(c) Calclulate T'(¢) for the function in part (a).

(d) Find the horizontal asymptote of T(t)
(from part (a)) and interpret your results.

64. Ebbinghaus Forgetting Curve In 1885 psy-
chologist Hermann Ebbinghaus conducted an
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interesting experiment on memory: He memo-
rized nonsense three-letter words (like KAF) and
tested himself regularly to see how much of the
information he forgot over time. If R denotes
what percentage of the information learned ini-
tially was retained after ¢ days, Ebbinghaus’ re-
sults suggested that

R()=a+ (1 —a)e ",
where 0 <a < 1 and b > 0 are constants.

(a) Calculate tl_l)ngo R(t) and interpret your re-
sult.

(b) Some research suggests that, on average, we
forget 70% of what we learned a day ago
(assuming no review in the iterim). Use
this, along with a = 0, to find the associated
R(t) function.

(c) Calculate R'(1) for the function you found
in part (b) and interpret your result us-
ing the rate of change interpretation of the
derivative.

65. Wind Power Wind power is a clean, sus-
tainable energy source. But generating power
this way requires wind, and ideally high-velocity
wind gusts. Luckily, the engineers who design
wind turbines have discovered that they can ac-
curately predict the probability of winds of speed
v (in m/s) occurring using the function

Pv)= ave_b"z,

where a >0 and b > 0 are parameters that de-
pend in part on the location being studied.

(a) Show that P'(v) = ae~t [1—2bv].

(b) Interpret the fact that P’(0) = a using the
rate of change interpretation of the deriva-
tive.

66. Let f (x) = x", where n is a real number. Writ-
ing x" = ¥ yse the Chain Rule to help show

that f’(x) = nx"~!. This proves Theorem 3.4 for
x> 0.

EXERCISES INVOLVING
TRIGONOMETRIC FUNCTIONS

67-74: Calculate the derivative.
67. f(x)= 4x> — 3sinx

68. f(x)=+/xcosx
69. f(x)=

70. f(z) =sinz —z

1—tanx

71. g(x) =cosx + (cot x)?

int

72. h(t):%
73. o(t) = cost
& "~ 1+sint

74. h(z) = z%sin’z

75. Use (3.12) and (B.24) to show that (cosx)’ =
—sinx.

76. Use the Quotient Rule (Theorem 3.7) to

show that (tan x)’ = sec? x.

77. Use the Chain Rule (Theorem 3.6) to show
that (csc x)’ = — csc x cot x, and that (cot x)’ =

— CSC2 X.

78. Exercise 59 in Appendix B relates the slope
of a line m to its angle of inclination 6 from the
x-axis by the equation m =tan 6. Applying this
to the tangent line to the graph of a function f at
the point (a, f(a)) yields

f'(a) =tan¥,

where —7 <0 < 7. Calculate 6 for f(x) = %3 at
a=0and a = £1. Interpret your results.
79. Let’s return to Exercise 60 in Appendix B.

(a) Use the Product Rule (Theorem 3.5) to
show that



, [, (2n 2w 2
A'(n)= Bl [sm <7> - cos (7>] .

(b) Calculate lin[olo A’(n) and interpret your re-
n—

sult.

80. Measuring Time Using a Pendulum Con-
sider a pendulum of length /, and denote by 6
the angle of the pendulum with respect to a ver-
tical line ¢ seconds after it is released from rest
at an initial angle of 6y > 0 (see diagram below).
If the pendulum’s oscillations are small and the
motion is ideal (for instance, no air resistance is
experienced), then

6(t) =6 cos (@t) .

(a) Identify the amplitude and period of the
trigonometric function 6(t), and interpret

(b)

(c)

(d)

(e)
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both quantities in terms of the pendulum’s
motion.

A typical grandfather clock has a pendu-
lum of length 1 meter that swings with an
amplitude of 3°. Write down its 6(t) equa-
tion; remember to convert the amplitude to
radians, and use g =9.81 m/sz.

Verify that the period of the function you
calculated in part (b) is roughly 2 seconds.
(30 complete oscillations (two swings)
would therefore span 1 minute, making this
pendulum a useful time-keeping device.)
A slightly more accurate formula for the
period of a pendulum than the one given
in Exercise 46 is

T(6p) =2 E1+i92
AT 16 °)"

Note that this period depends on the am-
plitude 6. Calculate T'(6y) for the informa-
tion given in part (b).

Calculate T'(6p) for the information given
in part (b) and interpret your result us-
ing the rate of change interpretation of the
derivative.



4 Applications of Differentiation

Chapter Preview. Draw a continuous curve on a piece of paper and you’ll notice
that your curve has a largest y-value and a smallest y-value. Not a deep insight, I admit.
But imagine now that your curve models a company’s revenue from selling its prod-
ucts, or the world’s population since 2000, or the number of individuals contracting a
contagious virus since it was first detected. The extreme values of those curves have im-
portant real-world relevance. We'll develop a procedure for calculating those extrema
in this chapter. We'll start first with a simpler application of derivatives—the topic of
related rates—and then discover a few more facts about what information derivatives
give us. We'll then draw on those results to arrive at the grand finale: optimization
theory.

4.1 Related Rates

Relates Rates are calculus problems in which you are asked to relate the instanta-
neous rates of change of two or more quantities. (Often these are time rates of change,
i.e., dy/dt.) Your job is then to determine the value of one rate at a particular instant,
given the other rate(s).

We've actually already discussed a related rates problem: the expanding square
problem in Section 3.10. There we determined that if the side length x of a square
was increasing with time, so that x is really x(¢), then the time rate of change of

the square’s area A is
dA dx

i ZxE. (4.1)
(This is (3.19), in Section 3.10.) Equation (4.1) is the equation that relates the rates
in this related rates problem.

We got to (4.1) in Section 3.10 after quite a few calculations. But now that we've
learned the Chain Rule, here’s the faster way to get to it. (This new derivation will
anchor the rest of our calculations in this section.) First, we note that the square’s
area is A = x%. Then,

dA dAd
= = o d_JtC Leibniz version of Chain Rule, (3.20)
d d
= a (xz) d_): Since A = x*
dx
=2x—. Power Rule



41 Related Rates e« 83

Let’s now use this to solve our first related rates problem.

IDONILBN 4.1 The side length of a square is increasing at the constant rate of
0.1 feet per second. How fast is the square’s area changing when its side length is 1

foot?
Solution Using (4.1): % =2(1)(0.1) = 0.2 ft/sec. -

Related rates is one of those topics that’s best learned by doing lots and lots of
examples. So, let’s continue with the examples.

JNYIBIRDCNYIZNIN 4.2 You are inflating a balloon that remains spherical as
you inflate it. The balloon’s volume V and radius r are related by

V() = 27
r)=-—mr .
3

Suppose you inflate the balloon such that r changes at the constant rate of 0.1 inch
per second. How fast is the volume of the balloon changing when its radius is 6
inches?

Solution Mimicking what we did in the previous example:

av. dvd
i d—: Leibniz version of Chain Rule, (3.20)
d (4 5\dr Since V 4
=—|-nr’)— ince V=—mnr
dr \3 dt 3
L dr .
=4mr e Constant Multiple and Power Rules

Using now the given information:

av 2 .3

I =4m(6)°(0.1) & 45.2 in”/sec. [ ]
Both previous examples provided the equation involving the variables whose

rates we needed to relate. The next example ups the ante and requires us to come up

with that equation ourselves.

VNIYRIDRDCNYIINN 4.3 A traffic camera is tracking a car as it approaches an

intersection (see Figure 4.1). Assuming the camera is 300 feet from point A in the
intersection, how fast is the distance between the car and the camera changing at the
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instant the car is 400 feet from point A in the intersection and traveling at a speed
of 60 feet per second?

Solution Denote by y the car’s dis-
tance from point A; we’ll measure y in A
l

feet and t in seconds. The distance be- .
tween the car and the traffic camera is S

the hypotenuse of the triangle in Figure .
4.1. Denoting that distance by z (again >
measured in feet), the Pythagorean The- . .
orem yields: o '-'

z=\/(300)2+y2=\/9,000+y2. N

] ) ) Figure 4.1
We now differentiate z with respect to t:

dz _dzdy
dt  dydt

1 d
= [5(9, 000 + y*)~1/2 (2y):| d—i Differentiating z = ,/9, 000 + y2

y dy

/9,000 + 2 dt’

When y =400 we know that z=/9,000 + (400)* = /25,000 = 500. And since

the car is traveling at 60 feet per second at the instant when y =400, we know

Leibniz version of Chain Rule, (3.20)

Simplifying (4.2)

that % = —60. (This is negative because the car’s distance to the intersection is
decreasing.) Substituting these values into (4.2) yields

dz _ 400 oy — a8 fiy -
—=—(—60)=— s.
dr 500

What set this example apart from the previous two was the mathematical model-
ing part—the portion of the problem that requires translating the given information
into math by identifying the relevant variables and coming up with an equation re-
lating them. Intermediate- to advanced-level related rates problems will require that
step. In simpler related rates problems—Ilike that of Example 4.2—the main equa-
tion and variables are given. The following procedure will help you tackle those
more difficult related rates problems.
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Box 4.1: How to Set Up a Related Rates Problem

1. Draw a diagram of the situation (if none is given) and label changing
quantities.

2. Write down (in mathematical language) what rate the question asks for and
what rate(s) are given. (Note: If a quantity is increasing, the rate should be
positive; if it’s decreasing the rate should be negative.) Tip: Use any units
provided to determine what rate(s) are given. (Example: “feet per second”
is a rate of the form fi—’t‘, where x measures distance and ¢ time.)

3. Use your content knowledge (e.g., formulas from geometry) along with
your diagram to come up with the main equation that relates the variables
you've identified.

4. Finally, obtain the related rates equation by differentiating your main equa-
tion (often it’s with respect to ) using the Leibniz version of the Chain Rule.

4.4 A fancy coffee maker features a conical water recepta-
cle atop another receptacle containing pre-ground beans. The conical receptacle has
a hole at the bottom through which water drips down at a rate of 2 in®/hour to brew
the coffee (Figure 4.2(a)). If the base radius of the conical receptacle is 2 inches and
its height is 6 inches, at what rate is the depth of the water in the receptacle changing
when the depth of the water remaining is 1 inch?

Solution Following the procedure in Box 4.1, let’s first draw a diagram of the situ-
ation (Figure 4.2(b)). Water is dripping through the bottom of the inverted cone, so
the radius and height of the conical volume of water remaining are changing. Those

Water receptacle

4 inches

.
Water 6 inches

Figure 4.2
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quantities are therefore variables, labeled r and h in Figure 4.2(b). Next, let’s identify
the rates asked for and given in the problem statement.

+ Rate to find: % when h=1.

« Rate given: ‘il—‘t/ = —2 in?/hour (V for volume, and —2 because the volume is

decreasing).

The variables involved in our rates are V and h, so we need an equation relating
the volume of a cone to its height. Cue geometry:

V=—nr’h, (4.3)

where r is the radius of the cone. We aren’t given a rate of change for r, so we need to
eliminate r somehow. Another glance at Figure 4.2(b) suggests the answer: similar
triangles. The water-filled triangle in the figure is similar (in the geometry sense
of the word) to the larger conical receptacle’s triangle (“similar” because the two
triangles’ interior angles are all the same). We know from geometry that when two
triangles are similar to each other their side lengths are in the same proportion.

Applying that here:
2r 4 . ro1 . h (4.4)
_— = = _ = - = —. .
h 6 h 3 3
Substituting this into (4.3) yields
1 (h\° W
V=_n (—) h="" (4.5)
3 3 27
Now we can differentiate:
av 1= dh mh*\ dh
— == | === =
i o) a-(5) %
Finally, substituting in the given rate and solving for % when h =1 yields
12\ dh dn 18
—2= 77 dh = — =——~ —5.7 inches/hour. [
9 dt dt b4

This previous example contained one additional complication you may run into
while working through a related rates problem: a “constraint equation.” This is what
we call (4.4). It forces a specific relationship between variables in the problem (r and
h in our case) that you can use to eliminate one variable from the model.

Related Exercises [PARIAR
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@) (b)
Figure 4.3

Transcendental Tales

4.5 You and your friend are aboard a Ferris wheel rotat-
ing counterclockwise (Figure 4.3(a)). As the Ferris wheel rotates your height oft the
ground changes. If you are 502 feet off the ground at the Ferris wheels highest point,
2 feet off the ground at its lowest point, and the wheel is rotating at the constant rate
of 7 /3 radians per minute, at what rate is your height off the ground changing at the
instant you are 377 feet off the ground and moving upward?

Solution Following the procedure in Box 4.1, let’s first draw a diagram of the sit-
uation and label the relevant variables (Figure 4.3(b)). Next, let’s identify the rates
asked for and given in the problem statement.

« Rate to find: “fi—il when H = 377 feet.

« Rate given: % = 7. (This rate is positive since the wheel is rotating counter-

clockwise.)

Our rates involve H and 6. From the diagram in Figure 4.3(b) we see that H can

be decomposed as
H=24+r+h,

where r is the Ferris wheel’s radius. We calculate that as
1
r=2(502-2) =250,
half the 500-foot diameter of the wheel. And since

. h . .
sinf = —, so that h=rsin0 = 250sin0,
r
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our H equation becomes

H =252+ 250sin6. (4.6)
Differentiating with respect to ¢:
dH dH do (250 cos 6) do 47)
—_— == cos ) —. .
dt  do dt dt
At the instant H = 377, (4.6) tells us that
. 377 —252 1
sin = — = —, so that 6 =30° or 120°.
250 2

However, the prompt wanted us to consider the case in which you are moving

upward, so we select & = 30°. Using this and the given rate in (4.7) then yields

dH ( ) _25074/3
-6

T
— = (250 cos 30°) 3

A 227 ft/min. []
dt

Related Exercises [EJUIR

Tips, Tricks, and Takeaways

Related rates problems illustrate perfectly calculus’ dynamics mindset. Indeed,
my first suggestion for tackling such problems—item 1 in Box 4.1—is to label
the changing quantities. That’s easiest to do if you first imagine the action in the
problem—water draining, a car speeding toward an intersection, etc. The world
around us is constantly changing, so expect to run into related rates problems in
many different disciplines, including the physical, life, and social sciences. Finally,
here are three more takeaways.

o The functionsin related rates problems are implicit functions—we know that
they depend on a variable (often t) but not how. By contrast, functions like
f(x) = x? are explicit functions—we know exactly how they depend on their
input.

« Wedifferentiate an implicit function through the Leibniz version of the Chain
Rule. In general, if z=f (x) and x is an implicit function of ¢, then,

dz dzdx , _dx
—_— == —. 4.
i da ) P (48)

The takeaway: % is the “usual” derivative (that’s z’ = f’(x)) multiplied by %.

o The process of differentiating an implicit function is called implicit differen-
tiation.

Next up on our tour of the applications of differentiation is optimization theory.
The next section lays the foundation for that by connecting the increase and decrease
of a function’s graph to its derivative. (We'll later discuss how that helps us maximize
and minimize functions.)
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4.2 Linearization

The geometric interpretation of the derivative tell us that if the graph of a differen-
tiable function f is increasing then its derivative is positive (being the slope of lines
tangent to the graph of f). But is the converse true? That is, if f'(x) > 0 on an interval
does it follow that the graph of f is increasing on that interval?

Let’s make progress on this question by simplifying it. New question: If ' (a) > 0,
does it follow that the graph of y = f(x) is increasing near x = a? Well, recall that
f'(a) equals the limit as Ax — 0 of Ay/Ax (equation (3.11)). So when Ax is close
to zero we expect that f’(a) should be approximately equal to Ay/Ax:

A
f(a)~ 2Y when Ax~0. (4.9)
Ax
Multiplying both sides by Ax yields:
Ay~f'(a)Ax when Ax~0. (4.10)

This approximation says that a small change in x-values Ax from x = a produces a
change in y-values Ay of approximately f'(a) Ax. Quantifying these changes as

Ax=x—a, Ay=f(x) —f(a),

and substituting these into (4.10) and solving for f (x) yields the following.

Definition 4.1 Linearization. Letf be a differentiable at a. The approx-
imation
f(x)~f(a)+f'(a)(x—a) forxneara (4.11)

is called the linear approximation of f at a. The right-hand side linear function,

L(x)=f(a) +f (a)(x — a), (4.12)

is called the linearization of f at a.

The function L(x) is just the equation of the tangent line at x = a.! Let me explain
why it’s called the “linearization” of f. You see, (4.11) says that for x-values near a,
the graph of f is approximately the graph of its tangent line at x = a. In other words,
the derivative at x = a linearizes the function near x = a, and we think of L(x) then
as the “linearized” version of f (x).

IDONYIIBN 4.6 Calculate the linearization of f(x) = </x at a = 1. Then plot your
result along with f (x) over the intervals [0, 2], [0.5, 1.5], and [0.9, 1.1]. Comment on
what you notice.

"That line passes through (a,f(a)) and has slope f'(a); using these facts in the point-slope equation yields
(4.12).
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Figure 4.4: From left to right: zooming in on the graph of f (x) = /x and its tangent line
L(x)= %(x + 1) at the point (1, 1).

Solution

Lx)=f(1)+f (1)(x—1) Equation (4.12) with a=1
i ~ 1 o= Lz g2 L
_1+2(x 1) Slncef(l)_l,f(x)_zx ,f(l)_2

1
=G+ D). Simplifying (4.13)

Figures 4.4(a)-(c) plot L(x) and f(x). Notice that as we zoom in to x-values closer
to x =1 (moving left to right in the figure) the graph of f looks more like its tangent
line at x=1. [ |

Related Exercises

Our results tell us that the answer to our earlier question—If f’(a) >0,
does it follow that the graph of y=f(x) is increasing near x=a?—is: yes.
In the next section we'll return to how
this revelation starts us on the path to-
ward optimization theory. But before
that, let’s discuss two useful applications
of linearization. (This is the Applications

y

of Differentiation chapter, after all.)

S -
Approximating Values of L)

Nonlinear Functions (a,f(a)

The linear approximation (4.11) is es-

X
pecially useful for approximating val- a x

ues of nonlinear functions. As Fig- Figure 4.5: When x is near g, the values

ure 4.5 illustrates, (4.11) approximates f(x) are well approximated by the values of
the actual value of f at x, f(x), with thetangentlineatx=a, L(x).
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the value ofits tangent line at x=a, L(x). This quantity is easier to calculate with
(being a linear function). And the closer x is to a, the more accurate the approxima-
tion f (x) &~ L(x) will be. Here’s an example.

IDCNYILNN 1.7 Let f(x) =/x.

(a) Calculate the linear approximation at a = 1.
(b) Use your linear approximation from (a) to estimate +/1.05. Compare your
estimate to the actual value for +/1.05.
Solution
(a) Using (4.11) and (4.13): /x~ %(x + 1) for x near 1.

(b) Substituting x = 1.05 into the approximation yields +/1.05~ %(1.05 +1)=
1.025. Since +/1.05=1.0247..., our estimate of 1.025 is accurate to two
decimal places. Not bad! ]

Related Exercises || N

The Linearization Interpretation of f'(a)

Thus far we've considered x to be near g, or equivalently, Ax~ 0. However, let’s be
crude and consider Ax =1 (admittedly not a small change in x) in the approxima-
tion (4.10). What results is: Ay~ f’(a) for Ax=1. This yields the following new
interpretation of f’(a).

Box 4.2: The Linearization Interpretation of f'(a)

A one-unit increase in the x-value a increases the y-value f(x) by approxi-
mately f'(a) (if f'(a) > 0), or decreases the y-value by approximately f’(a) (if
f'(a) <0).

JNIYRIDRDCNYILNN 4.8 Airlines change the cost of their flights regularly to
maximize revenue. Suppose one airline’s research team has found that the rev-

enue R (in $) associated with their Boston to New York flight is modeled by the

function
R(x) =x(x+90) = x% 4 90x,

where x is the number of tickets sold (0 < x < 100).

(a) Calculate R'(x) and include the units.
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(b) If the airline has already sold 50 tickets, calculate R'(50) and interpret your
result using the linearization interpretation of the derivative.

(c) Compare your answer to part (b) with the actual revenue increase:
R(51) — R(50).
Solution

(a) Using the Power Rule: R'(x) = 2x 4 90. Since R(x) has units of dollars and x
units of number of tickets, R’ (x) has units of $/ticket.

(b) R'(50) =$190 per ticket. Following the linearization interpretation of the
derivative, we can say that when the airline has sold 50 tickets, selling one
more ticket increases revenue by approximately $190.

(c) R(51) =$7,191 and R(50) = $7, 000, so R(51) — R(50) = $191. This is just $1

more than the estimate obtained via the interpretation in part (b). [ |
Transcendental Tales y
Linearization is especially useful for approx- 2.0

imating values of transcendental functions.

EXAMPLE EREVI§ICIECT-oN

(a) Calculate the linear approximation
of f at a=0. Plot your result.

1.5

(b) Use your approximation to estimate

%!, Compare your result to the ac- | | > X

tual value of €1,
Figure 4.6: The linear approximation

Solution of f(x) =e* by L(x) = 1 + x near x =0.

(a) Since f(0)=1, f'(x) =¢* (Theorem 3.9), and f'(0) =1, (4.11) yields &~
1 + x for x near 0. Figure 4.6 plots both functions.

(b) The actual valueis: >! = 1.105 . . .; our linear approximation yields *! ~ 1.1
(two decimal place accuracy). [ ]

IDONILBEN 4.10 Show that

sinx~x and cosx~1, forxnearDO. (4.14)
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Solution Let f(x)=sinx and g(x)= y
cos x. Applying (4.11) with a = 0 yields 10-
sinx~ f(0) + f'(0)x, 05-
cosx~ g(0) + g'(0)x.
T T T > X
T T T T
Since f(0) =sin0=0 and g(0) =cos0= 2 1 4 2
1, and since (3.15) implies that f'(0) = =0.57
cos0=1 and ¢'(0) = —sin0 =0, we get oA
that '
sinx~0+1-x=x, Figure 4.7: The linear approximation of
f(x) =sinx by L(x) = x near x=0.
cosx~1+0-x=1.
Figure 4.7 illustrates the sinx A x approximation. [

N0 BTl 49(a) and 62-63.

4.3 The Increasing/Decreasing Test

Linearization marks our first foray into optimization theory. With it, we can de-
tect whether the graph of f is increasing or decreasing near a particular x-value.
The following theorem extends these results to statements about intervals of
x-values.”

Theorem 4.1  Let f be differentiable on (g, b). Then,
(a) Iff'(x) > 0 for all x in (g, b), then f is increasing on that interval.

(b) If f'(x) <0 for all x in (a, b), then f is decreasing on that interval.

As an example, consider f(x) = x2. Since f’(x) = 2x, the theorem tells us that the
graph of f is decreasing for x < 0 (since f’(x) = 2x < 0 for x < 0) and increasing for
x> 0 (see Figure 4.8(a)). You can see how this helps us build our theory of opti-
mization: If a function’s graph switches from decreasing to increasing as we cross
a particular x-value (like x =0 in the figure) then that could be the location of the
minimum value of the function. Note my usage of “could”—the graph could switch
direction again, later on, possibly yielding a lower y-value. Figure 4.8(b) illustrates
the more general twists and turns a function’s graph could take. Notice how the sign
of f” helps us detect—via Theorem 4.1—the increasing and decreasing portions of
the graph. Notice also that the graph switches from increasing to decreasing (or vice
versa) at x-values for which f'(x) =0 (e.g., x=c¢) or f'(x) DNE (e.g., x="1). These

2The proof uses the Mean Value Theorem; see Section A4.1 in the online appendix to this chapter.
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x-values seem critical to determining the maximum and minimum values of the
graph of f. That explains the following definition.

Definition 4.2 Critical Numbers, Values, and Points. Letf be a
function and ¢ be in the domain of f, where ¢ is not an endpoint of the domain
of f. We then say

(a) cis a critical number of f if f'(c) = 0 or f’(c) does not exist.
(b) f(c) is a critical value of f if ¢ is a critical number of f.
(c) (c,f(c)) is a critical point of f if ¢ is a critical number of f.
For example, x=0 is a critical number of f(x)=x? (since f'(0)=0), and
b, ¢, and d are all critical numbers of the function graphed in Figure 4.8(b).
With this new terminology and the insights we've now acquired we can state

the following procedure for determining where a function f is increasing or de-
creasing.

Box 4.3: The Increasing/Decreasing Test |

To determine the interval(s) on which a function f is increasing or decreasing:
1. Find the critical numbers and plot them on a number line.

2. Evaluate f'(x) for x-values in the intervals between those critical numbers
(and in the domain of f).

3. Use Theorem 4.1 to determine the intervals of increase and decrease of f.
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I'll spend the rest of this section helping you get acquainted with this procedure.
We'll return to how it’s another stepping stone to optimization theory in the next
section.

OV 4.11 Find the intervals of increase and decrease for f(x) = x> — 3x.

Solution Let’s follow the procedure in Box 4.3.

1. We start with f’(x) = 3x* — 3. There are no x-values where f’(x) DNE. Setting
f(x) =0 yields 3x% — 3 =0, whose solutions are x==+1. Thus, x=—1 and
x =1 are the only critical numbers.

2. We now plot the critical numbers on a number line:

Next, we select any number in the three intervals this number line divides the
real line into, and substitute those values into f’(x). Choosing x = —2, x=0,
and x =2 yields

f(=2)=9>0, f(0)=-3<0, f(2)=9>0.

Let me update our number line (I'll call the diagram below a “sign chart” for
future reference):

fo: +++ ——— +++
~1 1

3. Theorem 4.1 then implies f (x) is (a) increasing on (—oo, —1) and (1, 00), and
(b) decreasing on (—1, 1). [ |

The function in this previous example is the same one from Example 3.11. Our re-
sults now help us better understand the associated Figure 3.9—whenever the graph
of f'(x) (the bottom graphs) is below the x-axis the graph of f (the top graphs) is
decreasing, with a similar conclusion holding when “below” and “decreasing” are
replaced with “above” and “increasing”

IDCONYIYHN 412 Find the intervals of increase and decrease for f(x) = V2 —x.
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Solution Employing again the procedure in Box 4.3:

1. First we rewrite f as f (x) = x%/3 — x. Then,

2 2—3x1/3
/ _ . -1/3 _ 4 _
fx)= 3x 1_—3x1/3

We see that f'(0) DNE, so x = 0 is one critical number. Setting f’(x) = 0 yields
2 — 3x!/3 =0, whose solution is x =8/27. Thus, x =0 and x = 8/27 are the
only critical numbers.

2. We now plot the critical numbers on a number line and select x-values in the
resulting intervals we'll substitute into f'(x). Selecting x = —1, x=1/27, and
x =1 yields

/ —_E / i _ / __l
f=n= 3<0, f(27)—1>0, ()= 3<0,

which results in the following sign chart:

f@: ——— +4++ —---

0 K3
27

3. Theorem 4.1 then implies f (x) is decreasing on (—00, 0) and (8/27, 00), and
increasing on (0, 8/27). [ ]

9-12 (only (2)-(c)), 31, and 38(a). |

Figure 4.9 illustrates the results of the pre-

y
vious example. 0
Transcendental Tales 0.2
One can show that an exponential function b* '
. . . . 0.5
is increasing for all x if b > 1, and decreasing oo
forall xif 0 < b < 1. (Exercise 43(a) guides you '
through the proof; just skip the “no local ex- -0.4-

trema” part of the question, for now.) Similar
statements are true for logarithmic functions Figure 4.9: f(x) =x*° —x.
log;, x (Exercise 44(a) guides you through the

proof; again, skip the “no local extrema” part). Let’s now explore more complicated
examples.

1HONYIZNN 4.13 Find the intervals of increase and decrease for f(x) = e** + e~
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Figure 4.10: Portions of the graphs of (a) f(x) =e* +e7*, (b) g(x) =+/xInx, and (c) f(x) =
2 cos x + cos? x.

Solution Note that
2e — 1
=

There are no x-values for which f’(x) DNE (the denominator is never zero). Setting
f'(x) =0 yields

f/(x)ZZer_e—x:

1 In2
= = x=——-~—023

This is the only critical number. Choosing the test points x = —1 and x =0 yields
the following sign chart.

ff®: —==== +++++
In2
3
We conclude from Theorem 4.1 that f is decreasing on (—oo, - lnTz) and increasing
on (_lnTz’ oo). Figure 4.10(a) shows a portion of the graph of f. ]

1D ONYIIBN 4.14 Find the intervals of increase and decrease for g(x) = +/x1n x.

Solution Lets first note that the domain of this function is (0,00). Next, we
calculate the derivative using the Product Rule:

1 241
g )= <§x1/2> Inx+ ﬁ _ifx

x  2Jx

Since x > 0 the denominator is again always positive. Setting ¢’ (x) = 0 yieldsx = e~
(obtained by solving 2 + Inx =0). This is our only critical number. Choosing the
test points x = > and x = 1 yields the sign chart below.

2
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We conclude from Theorem 4.1 that f is decreasing on (0,e~>) and increasing on
(e73, 00). Figure 4.10(b) shows a portion of the graph of g. [

39-42 (only (2)-(b)), 45(a), and 48(a)-(¢). |

Let’s now apply what we've learned to trigonometric functions. Returning now
to Figures B.20 (a) and (b) it’s clear that the graphs of sinx and cos x increase and
decrease over many intervals. But due to the periodicity of sine and cosine, these
features end up being copy cats of features of the functions for x-values in the in-
terval [0, 277). (See Exercise 57 for the details.) So let’s work through a slightly more
complicated example.

IDONNLBIN 415 Let f(x)=2cosx+ cos2x, where 0<x<2m. Find the
(sub)intervals of increase and decrease.

Solution Note that
f/(x) = —2sinx — 2(cos x)(sinx) = —2(sinx) (1 + cos x).
The only critical numbers occur when f’(x) = 0, which yields
sinx=20 or cosx=—1.
The former equation yields x =0 and x = 27 (recall that our interval of interest is

[0, 277]); the latter equation yields x = 7. Thus, our critical numbers are: 0, , 27.
Choosing the test points x = /2 and x = 377/2 yields the following sign chart.

fa: ————- +++++
0 ™ 2

We conclude from Theorem 4.1 that f is decreasing on (0,7) and increasing on
(7, 2m). Figure 4.10(c) shows the graph of f. [

53-56 (only part (2)-(b)), 58(a), 59(a)-(b), 60()-(b), and 61(a)~(b). |

4.4 Optimization Theory: Local Extrema

Our work in the previous section allows us to identify the “hills” and “valleys” of a
function’s graph using calculus. Let me introduce the math jargon for that.
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Definition 4.3  Let f be a function and c in the domain of f. We then say:
(a) f has alocal maximum at ¢ if f(c) > f(x) for x near c.
(b) f has alocal minimum at c if f (¢) < f(x) for x near c.

In either case, we refer to f(c) as “the” local extremum.

For example, returning to Figure 4.8(b), that function has local maxima at x ="
and x = d (the graph looks like a “hill” near the y-values f(b) and f(d)). Also, that
function has local minima at x=a, x=c, and x = e (the graph looks like a “val-
ley” near the y-values f(a), f(c), and f (e)). Notice that these x-values consist of the
critical numbers plus the endpoints of the interval. That’s no surprise, because we
can use the Increasing/Decreasing Test to help us locate local extrema. The following
theorem provides the details.

Theorem 4.2 The First Derivative Test.  Let f be a function and c a
critical number of f.

(a) Iff’ changes sign from positive to negative as we cross x = ¢, then f has
a local maximum at c.

(b) Iff’ changes sign from negative to positive as we cross x = ¢, then f has
alocal minimum at c.

(c) If f' does not change sign as we cross x =c, then there is no local
extremum at c.

Figure 4.11 illustrates the theorem. Becausealocal  /'(x) + -
maximum is a good candidate for the maximum of ¢
a function f (and a local minimum a good candi- fhas local maximum atx = ¢
date for the minimum), we’ll spend the rest of this
section hunting for local extrema. (The next section  f/(x) - +

then returns to the quest for the “absolute” extrema.) z

fhas local minimum atx =c¢

IDONYIYHN 4.16 Find the local extrema of f(x) = Figure 4.11
4 3
x* —8x°.

Solution Since f’(x) =4x> — 24x?> =4x?(x — 6), the only critical numbers are
x=0 and x=6. Choosing the test points x=—1, x=1, and x=7, we get the
following sign chart:

fo): —=—— ——— +++4
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Since f” changes sign from negative to positive as we cross x = 6, Theorem 4.2 tells us
that f(6) is a local minimum. Since f” doesn’t change sign as we cross x = 0, however,
Theorem 4.2 tells us that there is no local extremum at x =0. [

Related Exercises | 9-12 (only (d)), and 37(a). ‘

Transcendental Tales

IDONYIYBEN 4,17 Find the local extrema for the functions f and g from Examples
4.13 and 4.14.

Solution

(a) Applying Theorem 4.2 to the f’(x) sign chart we already calculated in
the example tells us that f has a local minimum at x=—In2/3. Since no
endpoints are given, we conclude that this is the only local extremum of f.
(Figure 4.10(a) confirms this.)

(b) By similar reasoning, Theorem 4.2 applied to the ¢’(x) sign chart we already
calculated in the example tells us that ¢ has alocal minimum at x = e~>. Since
the interval of interest (0, c0) does not include the endpoints, we conclude
that x = e is the only local extremum of f on that interval. (Figure 4.10(b)
confirms these results.) [ ]

39-42 (only part (c)), 43(a), and 44(a). ‘

IDONILBIN 4.18 Find the local extrema for the function f and interval given in
Example 4.15.

Solution Applying Theorem 4.2 to the f'(x) sign chart we already calculated in the
example tells us that f has a local minimum at x = 7. Focusing now on x =0 and
x =2m, since they are included in the interval of interest let’s analyze them next.
Our sign chart tells us that the function’s graph decreases on the interval (0, 7).
Thus, x =0 must be a local maximum of f. Similarly, since the sign chart tells us
that the function’s graph increases on (77, 277), we conclude that x =27 must be a
local maximum of f. (Figure 4.10(c) confirms these results.) [ ]

G BRI 53-56 (only part (c)). ‘

Tips, Tricks, and Takeaways

The First Derivative Test (Theorem 4.2) helps us classify critical numbers as local
extrema or not. You may wonder, however, if there are other x-values that would be
good candidates for local extrema. The following theorem addresses that question.
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Theorem 4.3 Fermat’s Theorem.  Suppose f has a local maximum or
minimum at ¢, where c is not an endpoint of the domain of f. Then c is a critical
number of f.

Here are some important takeaways from this theorem.

o The Theorem does not say that if c is a critical number then f has a local ex-
tremum at c. (Note that x = 0 was a critical number in Example 4.16 yet it was
not a local extremum of the function.)

o The “contrapositive” of Fermat’s Theorem—the statement that if ¢ is not a crit-
ical number of f then f does not have alocal extremum at c—is true. Takeaway:
Searching for local extrema at non-critical numbers is futile.

o Note the assumption that c is not an endpoint of the domain. Takeaway: We
need to investigate the endpoints separately.

Fermat’s Theorem basically tells us that the “hills” and “valleys” of a function’s
graph must occur at either the critical numbers or the endpoints of the interval
given. This sets us up nicely for the last stop on this tour of optimization theory:
finding the absolute highest “hill” and absolute lowest “valley”

4.5 Optimization Theory: Absolute Extrema

We're now ready to investigate the largest and smallest y-values of a function (the
extrema). In analogy with Definition 4.3, here’s the formal definition of the concept.

Definition 4.4  Let f be a function defined on an interval I, and let c be a
number in I. We then say:

(a) f hasan absolute maximum at c if f (c) > f(x) for all x in I. We then call
f(c) the absolute maximum on I.

(b) f has an absolute minimum at c if f(c) < f(x) for all x in I. We then call
f(c) the absolute minimum on I.

When the interval I is all real numbers, we simply say f(c) is the absolute
minimum (or absolute maximum).

Note the “for all x in I” here, versus the “for x near ¢” language in Definition 4.3.
This means we're looking at all the x-values in the interval of interest I and picking
out the one(s) with the absolute largest (and smallest) f(x)-values. For example,
referring back to Figure 4.8 again, that function’s absolute minimum in the interval
[a, e] it's graphed on is f (¢), and its absolute maximum on that interval is f (d).
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Let’s now use the theory we've developed for local extrema to help us find absolute
extrema. When f has only one critical number inside the interval of interest, here’s
the first result: local extremum = absolute extremum.

Theorem 4.4  Suppose f is continuous on an interval I and has only
one critical number ¢ inside I. If ¢ is a local maximum, then f(c) is the ab-
solute maximum of f on I. Similarly, if ¢ is a local minimum, then f(c) is the
absolute minimum of f on I.

Great. But what if f has multiple critical numbers inside I? Well, we know from
the previous section that the “hills” and “valleys” of a function’s graph occur at either
the critical numbers or the endpoints of the given interval. So, we need only iden-
tify the highest “hill” and lowest “valley” to determine the absolute extrema. The
procedure in Box 4.4 does exactly that.

Box 4.4: How to Find the Absolute Extrema of a Continuous Function

Defined on a Closed Interval [a, b]

1. Find the critical numbers in the interval (a, b).
2. Calculate the associated critical values, and also calculate f(a) and f(b).

3. The absolute maximum is the largest of the numbers in Step 2; the absolute
minimum is the smallest of the numbers in Step 2.

1NN 4.19 Find the absolute extrema of the function f(x) = (x> — 1)% on
the interval [—+/2, +/2].

Solution First, note that f(x) is a polynomial; we showed in Chapter 2 that such
functions are continuous. And since [—+/2, +/2] is a closed interval, the procedure
from Box 4.4 applies.

1. To find the critical numbers we first differentiate f using the Chain Rule:
() =3(x* — 1)?(2x) = 6x(x* — 1) =6x[(x — 1) (x + 1)]?
=6x(x — 1)2(x + 1)2.
It follows that the only critical numbers are x=—1,x=0,and x=1.

2. The associated critical values, as well as f (—+/2) and f (+v/2) (the y-values at
the endpoints of the interval [—+/2,+/2]) are

f=D=0, fO=-1, f()=0, f(—vV2)=1, fW2)=L
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3. Finally, comparing these we see that the largest values are f(—~/2) =f(~+/2);
these are the absolute maxima of f on [—+/2, v/2]. (As this example shows,
multiple absolute maxima are possible.) Since f(0) is the smallest y-value it
is the absolute minimum of f on [—~/2, +/2]. Figure 4.12(a) shows the graph
of f. ]

VNIYRIDRH.CNYIYNN 4. 20 You may have noticed that the bedrooms in the house

you live in are nearly square in dimensions. Let’s work out why. To begin, suppose
you are adding a new rectangular bedroom to your house and only need to add two
walls. You can afford to build up to 20 feet worth of walls.

(a) Find the living area A of the bedroom as a function of its width x (in feet).
(b) On what intervals is A(x) increasing, decreasing?

(c) Find the critical numbers of A(x) and classify them as local maxima, local
minima, or neither.

(d) What bedroom dimensions maximize the living area?

Solution

(a) Let y be the length (in feet) of the new rectangular bedroom. We're given
that x + y = 20. Note that this implies that 0 <x <20 and 0 < y < 20. (Since
x and y are distances they cannot be negative. Also, if x =0 or x = 20 there is
no bedroom, only a line of length 20 feet in which no one could live.) Since
the area of the bedroom is A = xy, then substituting in y =20 — x yields the

function
A(x) =x(20 — x) =20x — %%, 0<x<20.
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(b) We have A’(x) =20 — 2x. Moreover, A’(x) = 0 yields only x = 10. Therefore,
choosing, say, x =1 and x = 15 yields the following sign chart:

AW: +++++ ———— -
10

We conclude from Theorem 4.1 that A(x) is increasing on the interval (0, 10)
and decreasing on the interval (10, 20).

(c) Thereare no x-values for which A’(x) does not exist. And since A’(x) = 0 only
when x = 10, the only critical number is x = 10. Finally, since A" changes sign
from positive to negative as we cross x = 10, Theorem 4.2 tells us that x =10
is a local maximum for A(x).

(d) Since A(x) is increasing for all x < 10 and decreasing for all x > 10, at x=
10 we don’t just have a local maximum, we have the largest y-value of A(x).
(Figure 4.12(b) on the previous page shows the graph of A(x).) That critical
value is A(10) = 10(20 — 10) = (10)2 = 100 ft>. Thus, the dimensions of the
bedroom with the largest living area are 10’ x 10'. [ ]

Transcendental Tales

IDONILBN 421 Find the absolute extrema of f (x) = xe™ on the interval [0, 3].

Solution f is a continuous function and the given interval is closed, so let’s follow
the procedure in Box 4.4. We first find f'(x):

1—x

fx)y=e*—xe = =

WEe see that the only critical numbers of f occur when f(x) = 0, which yields x = 1.
The associated critical value is f(1) = e~!. The y-values at the endpoints of the in-
terval are f(0) = 0 and f(3) = 3e~>. We conclude that f has an absolute maximum at
x =1 and an absolute minimum at x = 0; Figure 4.13(a) shows the relevant portion
of the graph of f. [ ]

1HONYIZNIN 4.22 Find the absolute extrema of g(x) =x—2In(x*+ 1) on the
interval [0, 10].

Solution Since g is continuous on [0, 10], let’s again follow the procedure in Box
4.4. We first calculate that

()=1-2 2x _1 4x
§= x4+1) K241
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Figure 4.13: Portions of the graphs of: (a) f(x) =xe™ for 0 <x <3, and (b) g(x) =x—

2In (x2 + 1) for 0 < x < 10. The black dots are the locations of the absolute minima, the blue
dots the absolute maxima.

O«

The only critical numbers of g occur when g’(x) = 0, which yields

4x 5
— =1 = x"—4x+1=0.
x2 41

The quadratic formula then yields the two solutions x =2 — /3 and x =2+ /3.
Since

g(0)=0, g2—+3)~0.1, g2++3)~-17, g(10)~0.8,

we conclude that g has an absolute minimum at x =2+ +/323.7 and an abso-
lute maximum at x = 10; Figure 4.13(b) shows the relevant portion of the graph
of g. ]

39-42 (only part (d)), 45(b), 46(a), and 53-56 (only part (d)). ‘

Tips, Tricks, and Takeaways

We've introduced two optimization results in this section: the procedure in Box
4.4 and Theorem 4.4. The procedure in Box 4.4 is based on the intuition that the
graphs of continuous functions can be drawn without lifting your pen (discussed in
Chapter 2), and therefore if the endpoints of the interval are included, such graphs
should have absolute extrema. The following theorem confirms this gut feeling.

Theorem 4.5 The Extreme Value Theorem.  Suppose f is a function
continuous on [a, b]. Then f has both an absolute maximum and an absolute
minimum on [a, b].

Great! But what if f is continuous on a nonclosed interval? Thats where
Theorem 4.4 may help. If there’s only one critical number (inside I) and we're still
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dealing with a continuous function, then local = absolute when it comes to classify-
ing extrema. This is what we used in Applied Example 4.20.° That example was also
special because, like the Related Rates problems earlier in this chapter, we had to do
some mathematical modeling to determine the appropriate function and interval
to maximize. This is a typical step in a real-world optimization problem. The next
section focuses on such applications of optimization theory.

4.6 Applications of Optimization

This section is intended to showcase the real-world applications of the optimiza-
tion theory developed in the previous section. As such, let me do that by working
through several examples with you.

VNIIRIBDEDCNYIYNN 423 When a person catches a cold his or her body’s

immune system reacts to the virus and eventually produces a thick mucus that ac-
cumulates at the back of the throat. Coughing helps expel this mucus by pushing air
through the trachea. If we imagine the tracheal tube as a cylinder (which is roughly
true), the velocity v of the air rushing through the trachea during a cough is well
approximated by

,
v(r) =k(rg — 1)1, 50 <r<ry,

where k> 0 is a constant and rp > 0 the original radius of the tracheal tube. Sup-
posing ro = 1 cm (roughly the radius of a typical adult’s trachea), find the absolute
maximum of v(r). Then, given that experiments show that r ~ %ro during a cough,
interpret this r-value in the context of your answer.

Solution Since v(r) = k(1 — r)r? is a continuous function (it's a polynomial) de-
fined on a closed interval, let’s use our procedure from Box 4.4. We first find the
critical numbers inside the interval. By the Product Rule:

V(1) = k(=1)r* + k(1 — r)(2r) = kr(2 — 37).

Thus, v/(r) =0 yields r=0 or r= % We reject the r =0 critical number since it is
not inside the given interval. Next, we calculate the critical values as well as v(1/2)

and v(1): (1) L (2> ik
vi=)=2  v(2)=2, v =o.
2 8 3 27

Finally, we look for the largest of these y-values (since we're looking for the absolute
maximum). Since % > %, we conclude that on the interval of interest the absolute
maximum of v(r) occursatr = % = %ro. This matches what experiments have found,

3There exist yet other procedures that handle the cases skipped by the two methods we've developed. We'll
discuss some of those in the next section.
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meaning that our trachea seems to contract to the radius that maximizes the velocity
of air rushing through it during a cough. |

Optimization is also useful for designing products and minimizing commuting
times. Here are examples of that.

VNIYRIRDCONYIYNN 424 Consider the cylindrical can of soda pictured in

Figure 4.14. If the can is made of aluminum and is to hold 21.65 cubic inches of vol-
ume (about 12 fluid ounces), what dimensions minimize the amount of aluminum
used to build the can?

Solution This time around we need to come up with the

function to be minimized (and its interval). One key piece of

insight: the amount of aluminum used depends on the sur-

face area of the can. Thus, to minimize the aluminum used, h
we should minimize the surface area of the cylindrical can.

Referring to Figure 4.14, the surface area S of that can is the

sum of the areas of the top, side, and bottom:

r

S=nr*+2nrh+nr* =271+ 2nrh, 4.15
v T ( ) Figure 4.14
where we'll measure r and /4 in inches. Now, since the volume
of the can needs to be 21.65 cubic inches, and the volume of
our cylinderis V=mw r%h, then,
nrth=21.65. (4.16)

Solving this equation for /& and substituting the result into (4.15) yields

B ) 21.65\ , 433
S(r)y=2nr"+4+2nr 5 =2nr"+ —.
Tr r

We now need the interval for r. Anything less than half an inch would be hard to
hold in your hand, so we can safely assume r > 0.5. Similarly, no one is likely to buy
a soda can whose height is less than 1 inch. From equation (4.16), when h> 1 we
have r <2.63. Let’s be generous and assume r < 3. We then have our function and
interval:

433
S(r)=2m'2+—, 05<r<3.
r

Let’s now apply our procedure from Box 4.4. We first find the critical numbers inside
the interval:
43.3

o 433 L -
S(r)=4nr— ——, and S(N)=0=— r’'=—.
r2 4w
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Thus, r=/43.3/(47) ~ 1.5 inches is the only critical number. Moving on to the
second step in our procedure, since

433

S — | ~43, 5(0.5) ~ 88, S(3)~ 71,
4

and the first number is the smallest of the three, we conclude that the absolute mini-

mum of S(r) occurs at the critical number, r & 1.5 inches. The corresponding height

of the can, using (4.16), is:

21.65
h=—1=~3
Tr
Thus, a 12 oz can about 3 inches in diameter and about 3 inches in height minimizes
the aluminum used to construct it. ]

VNSUBINDRNCNYILBIN 425 Suppose you leave home (point A in Figure 4.15) to

drive 5 miles down a straight road to get to work (point C). One day you notice that
there’s another straight road that runs from your house to point B, 3 miles down
the road, and eventually connects to your place of employment (point C), 4 miles
down that road. You, having read this book, get an idea: calculate the route that
minimizes the amount of fuel your car uses. (This will save you money.) Supposing
your car achieves 20 miles/gallon fuel economy on road C (it’s a popular route) and
30 miles/gallon on the side roads from AB to C, how far down the side roads AB
should you drive to minimize the fuel cost of the trip?

Solution The number of gallons g
used up in driving the x miles down
road AB and then the y miles to point C
afterwards is

4 miles
3 miles

XY
§=35 T 35
30 20 c
Now, notice from the geometry of the 4
situation that 5 miles
Figure 4.15: An illustration of the possible
y2 =424+ (3—x)%. routes associated with Example 4.25.

(This follows from the Pythagorean Theorem; see (A.2) in Appendix A.) Thus, we
can express g as a function of x:

x 164+ (3 —x)?

g(x)=%+T. (4.17)
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We now need an interval for x. As Figure 4.15 suggests, 0 < x < 3. We now apply our
procedure from Box 4.4. Using the Chain Rule:

W=+ L 64 G- v 206 - 1))
g 30 20| 2

1 x—3

=—+ .
30 20,/16+ (3 —x)2

Setting ¢’ (x) = 0 and simplifying yields

x—3 1 2
- = 3—x=§\/16+(3—x)2.

20/16+ (G —x)?2 30

(4.18)

Squaring both sides and simplifying yields

64 8
(3—x)2=? — x=34+—.

V5

But both 3 + S/ﬁ X~ 6.6and 3 — S/ﬁ ~ —0.6 are outside our interval of [0, 3], so
we reject those critical numbers. All that’s left to do from our procedure then is to
calculate g(0) and g(3):

g(0)=0.25  g(3)=0.3.

Since g(0) is the smaller number, the fuel-minimizing route is to take road AC all
the way to work; that will use up 0.25 gallon of fuel. ]

The Calculus of Fairness Applied Example C.3 in Appendix C uses optimiza-
tion theory to describe how to optimally split a divisible quantity (like pizza)
between two parties in a fair manner.

We've now done a few optimization problems. And as we've seen, some are
harder than others. The previous two examples, in particular, contain a few common
characteristics of tough optimization problems:

o You have to determine the equation to be optimized. This is called the objective
function.

o There are relationships between the variables in the objective function. We call
these relationships constraints.

o The interval of interest isn’t given. You need to determine it based on the
particular physical situation modeled by the problem.
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Figuring out the objective function, the constraints (if any), and the interval are
the hardest parts of any optimization problem. These are similar to the mathematical
modeling steps we had to go through for some of the Related Rates problems from
Section 4.1. In analogy with Box 4.1, here’s a relatively straightforward procedure to
help you tackle optimization problems.

Box 4.5: How to Solve an Optimization Problem with a Closed Interval |

1. If possible, draw a diagram and identify the variables in the problem. This
can help you visualize the problem.

2. Look for keywords for clues about the objective function. For instance, “min-
imize the area” suggests the objective function is an area, and the next step
should be to identify the areas present in the problem.

3. Identify the constraints (if any). These may come from your diagram, or by
reading closely the description of a variable (e.g., “at most” to indicate the
largest possible value).

4. Use the constraint(s), if any, along with your diagram to help figure out the
interval.

5. If the interval is closed and the objective function continuous, use our
procedure from Box 4.4 to find the absolute maximum or minimum.

6. Make sure you finish by answering the question. Some exercises ask for the
actual minimum value, others for the dimensions of the minimum solu-
tion. Make sure you give the appropriate answer (including the units, if
applicable).

I encourage you to employ this procedure while working through the suggested

exercises below. :
G BN 2930, 32, and 34-36. [

Transcendental Tales

Exercise 19 of Appendix B discusses the height of a football as a function of time
(neglecting air resistance). Let me show you how to find the maximum range of the
football (which is of great interest to the average NFL quarterback).

NI RIDRNCNYILNIN 426 Suppose we throw a sufficiently heavy object (i.e., not
a feather) up in the air with an initial velocity vy (in ft/s) and at an angle 6 with
respect to the ground (where 0 < < 7). Denote by R the horizontal distance (in
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feet) traveled by the object before it returns to its initial height. (R is called the range
of the projectile.) Neglecting air resistance,

v(z) . b4
R(A)=—sin(20), 0<0<-—.
g 2

(Here g ~ 32 ft/s* denotes the acceleration of gravity.)
(a) Find the critical numbers of R.

(b) Use calculus to find the throwing angle 6 that produces maximum range;
what is the maximum range?

Solution

(a) Since
s Vo 275
R'(0) = — cos(20)(2) = — cos(26)
8 g

is a continuous function, the only critical numbers occur where R'(9) =0.
This yields cos(26) = 0. Since cosine is zero only once in the interval [0, 77 /2]
(at /2), the only critical number is 6 = 7 /4.

(b) Following the procedure in Box 4.4 we calculate:

2

R(0) =0, R(%) :%, R(%) —o.

We conclude that R has an absolute maximum at § = /4. Thus, a throw-
ing angle of 45° produces maximum range. (Again, we have neglected
air resistance.) Moreover, the maximum range is v3/g. Note that this is a
quadratic function of the initial throwing velocity v. (So, a quarterback who
increases his throwing velocity by a factor of x will increase the throw’s range
by a factor of x2.) ]

Optimal Holding Time of an Asset Applied Example C.4 in Appendix C uses
optimization theory to determine the optimal holding time of an asset of value
(the math involved uses exponential functions).

Optimal Branching of Blood Vessels Applied Example C.5 in Appendix C
uses optimization theory to determine the angle that minimizes resistance to
blood flow at the branching point of a blood vessel.

N ENT BRI 47, 49, and 58-60.



12

Applications of Differentiation

Tips, Tricks, and Takeaways

First, let me say it out loud: Optimization problems are the hardest calculus prob-
lems. After working through the previous examples, you can see why: They require
knowledge of nearly everything weve done thus far. In addition, many of them in-
clude a mathematical modeling step in which you need to determine the objective
function and interval yourself. Takeaway: Don’t despair. Instead, practice, practice,
and practice.

Optimization theory is a milestone in our study of calculus. Now that we've dis-
cussed it, I'll begin transitioning us into the next chapter. I'll do that by returning
to the setting of the last section in the previous chapter: higher-order derivatives.
It turns out that the second derivative, in particular, can help us out when it comes
to finding local extrema. Moreover, the way in which it helps also leads to a new
insight: f” measures the curvature of a graph.

4.7 What the Second Derivative Tells Us About
the Function

Recall that f'(a) is the slope of the line tangent to the graph of f at the point (a, f (a)).
We've yet to develop an analogous interpretation for f”(a). To do so, let’s return to
its origin—helping us describe how f’(x) changes. Insight is provided by replacing
f with f” everywhere in Theorem 4.1 to get the following theorem.

Theorem 4.6  Let f be twice differentiable on (g, b). Then,
(a) If f”(x) > 0 for all x in (a, b), then f” is increasing on that interval.

(b) If f”(x) <0 for all x in (a, b), then f” is decreasing on that interval.

Figure 4.16 illustrates this theorem. In (a), f”(x) =2, which is always posi-
tive. The theorem then implies f’(x) is increasing (i.e., the slopes of the tangent

y y
154 3
10 24
54 14
T T T X T T T T X
1 2 3 4 2 4 6 8 10

Figure 4.16: (a) f(x) = x> (concave up) and (b) g(x) = +/x (concave down), along with a
few of their tangent lines.
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lines to f are getting steeper) as the x-values increase. In (b), f”(x) = —(1/ 4)x—3/2,
which is negative when x> 0. The theorem then implies f'(x) is decreasing
(i.e., the slopes of its tangent lines to f are getting less steep) as the x-values
increase.

Now, recalling our linearization insight—that the graph of f near x = a is indistin-
guishable from the graph of the tangent line at x = a—we can replace “f” is increasing
on that interval” in Theorem 4.6 with “the graph of f curve upwards on that interval”
(as in Figure 4.16(a)). This yields the following new terminology and rewording of
Theorem 4.6.

Definition 4.5 Concavity. Letf be a function defined on an interval I.
We say:

(a) fis concave up on [ if the graph of f is above the graph of its tangent lines
on I.

(b) f is concave down on [ if the graph of f is below the graph of its tangent
lines on I.

Theorem 4.7 The Concavity Test.  Let f be a function defined on an
interval I. Then,

(a) Iff”(x) > 0 for all x in I, then f is concave up on I.

(b) Iff”(x) <0 for all x in I, then f is concave down on I.

Like Figures 4.16(a) and (b) suggest, concave up portions of a graph look “U”-ish,
while concave down portions of the graph look “N”-ish. So, our first takeaway is that
" measures the curvature of the graph: curving up and “U” shaped when f”(x) > 0,
and curving down and “N” shaped when f”(x) < 0.

In addition to the sign of f” telling us in-
formation about how the graph of f curves, 37
the numerical value of f” is a measure of the
curvature itself. This is illustrated in Figure
4.17. There I've graphed three parabolas. Note
that f”(x) = %, g’ (x)=2, and h’(x) =4, and
that the graphs of the parabolas become more 17
curved as we move from f to g to h. So, our
second takeaway: A larger f"(x) value implies : . .
a curvier graph. (Compare this information to -1.0  -05 0.5 1.0
what we get from f”: the slope (or steepness) of Figure 4.17: f(x)=1x%, ¢(x) =
the graph of f.) %2, h(x) = 4x2.

—
=
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o
=
o
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=
s
2

ag
[=}
=
o




14

Applications of Differentiation

Taking this analogy with f” one final step further, we learned in this chapter that
the x-values at which f"(x) changes sign as we cross them have meaning (they are
local extrema on the graph of f). Similarly, the x-values where f”(x) changes sign
as we cross them also have meaning: they are the locations where the graph of f
changes concavity. This concept is also important and has a special name.

Definition 4.6 Inflection Point.  We say f has an inflection point at
x = c if the graph of f changes concavity as we cross x =c.

We can use the same sign chart technique we used for f” to find inflection points.
First, we find f”(x) and determine where it’s equal to zero or does not exist. Let’s
call these x-values “candidate inflection points.” (These x-values are essentially the
critical numbers of f”.) Then, we use a sign chart to test points to see if f” (x) changes
sign as we cross each candidate inflection point. If so, Theorem 4.7 tells us there’s a
change in concavity, and that candidate inflection point is promoted to an inflection
point.

1D ONYILRM 427 Consider the function f(x) = x> — 3x from Example 3.13.
(a) On what intervals is f concave up/down?

(b) Find the inflection point(s).

Solution

(a) By the Power Rule, f’(x) =3x? — 3, and f”(x) = 6x. Since f”(x) > 0 when
x> 0, Theorem 4.7 tells us that the graph of f is concave up for x > 0. Simi-
larly, since f”(x) < 0 when x < 0, we conclude that the graph of f is concave
down for x < 0.

(c) The only “candidate inflection point” is x =0 (it is the only x-value at which
f"(x) = 6x is zero or does not exist). Since f”(x) < 0 for x <0 and f”(x) > 0
for x>0, f”(x) changes sign as we cross x=0. Thus, x=0 is the only
inflection point. u

Figure 4.18(a) illustrates our results. Note how the graph of f switches from “N”-
shaped to “U”-shaped as we cross x = 0. This switch corresponds to when f” changes
sign (Figure (b)).

Notice too from Figure 4.18(a) that f has a local maximum at x = —1 and a local
minimum at x = 1. At those points, f”(—1) <0 and f”(1) > 0. This hints to a pos-
sible connection between the second derivative and local extrema. The following
theorem gives the details.
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Y y
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@) (b)
Figure 4.18: (a) f(x) = x> — 3x, and (b) f(x) = x> — 3x, and f” (x) = 6x (blue line).

Theorem 4.8 The Second Derivative Test.  Suppose f” is continuous
on an interval including ¢, and that f'(c) = 0. Then,

(a) If f”(c) > 0 then f has a local minimum at x =c.

(b) If f”(c) < 0 then f has a local maximum at x =c.

The utility of this theorem is that it dispenses with the need for a sign chart to in-
vestigate local extrema (as was required by the First Derivative Test, Theorem 4.2);
Theorem 4.8 instead requires you calculate f”(x) and substitute in the critical num-
ber(s) obtained from setting f’(x) =0. The catch, however, is in the theorem’s
assumptions: it requires f” to be continuous near x =c and f’(c) =0. The First
Derivative Test is more broadly applicable than that. Takeaway: If it’s easy to calcu-
late the second derivative (e.g., f is a polynomial) and the hypotheses of the Second
Derivative Test are satisfied, use that; otherwise, the First Derivative Test is your
go-to theorem for investigating local extrema.

The Cube Rule in Political Science Applied Example C.6 in Appendix C
applies our results about the second derivative to describe the “cube rule” in
political science, which relates the proportion of seats in the U.S. House of Rep-
resentatives won by the president’s party to his or her percentage of the popular
vote in the presidential election.

SO N 17-20, 37(b), and 38(b). \

Transcendental Tales

IDONILBEN 428 Find the intervals of concavity and the inflection points for the
functions f and g from Example 4.13: (a) f(x) = e 4e ™ (b) g(x)=/xInx
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Solution

(a) We already calculated f’(x): f'(x) = 2¢?* — e~*. To explore the concavity of f,

(b)

note that

4¢3 + 1

ex

f(x) =4e* 4 e = >0

for all x. It follows from Theorem 4.7 that f is concave up for all x, and thus
it has no inflection points. This agrees with Figure 4.10(a).

We had previously calculated that g’(x) = %‘ To explore the concavity of

g, let’s first calculate g” (x) using the Quotient Rule:

_ ?lc(z“/’_‘) - lnxT;rz Inx

4x T4

/!

g )

Since we're only considering x > 0 (due to the domain of g), the only possible
candidates for inflection points occur when g”(x) =0. This yields Inx =0,
whose solution is x =1. Using the test points x=0.5 and x =2 yields the
following sign chart.

gw: +++++ - =—-——
1

It follows from Theorem 4.7 that g is concave up on the interval (0,1) and
concave down on (1,00). Thus, x=1 is the (only) inflection point. This
agrees with Figure 4.10(b). [

The Spread of Infectious Diseases Applied Example C.7 in Appendix C ex-
plores the logistic equation, a mathematical model of growth that has various

applications, including to the spread of infectious diseases such as the common
cold.

39-42 (part (e) only), 43(b), 44(b), 46(b), 48(d). |

1D ONYILN 420 Let f(x) =2 cosx + cos® x, where 0 < x < 27. (This is the same
function and domain from Example 4.15.) Find the intervals of concavity and the
inflection points.

Solution We had previously calculated that f'(x) = —2(sinx + sinx cos x). From
this we calculate that

F"(x) = —2(cos x + cos® x — sin *x).
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There are no x-values for which f”(x) is undefined, so the only candidate inflection
points occur where f” (x) = 0. Setting f” (x) = 0 yields

cosx+ cos® x — sin?x=0.
Substituting in sin?x = 1 — cos® x (from (B.22) in Appendix B) yields
2cos’x+cosx—1=0.

This is a quadratic equation, in disguise. To see that we can let z=cosx. This
transforms the equation into 2z> 4 z — 1 = 0, which factors into (2z — 1)(z + 1) =0.
The z=—1 and z=1/2 solutions then become cosx=—1 and cosx=1/2. The
solutions to these equations (inside the interval [0, 277]) are

v/ 5w
X=—, X=T, X=—.
3 3
Choosing the test points x=m/4, x=m/2, x=3m/2 yields the following sign
chart.
flfe: —— +4+ ++ —-
0

[SNE]
=]
v
|

2
It follows from Theorem 4.7 that f is concave down on the intervals (O, %) and

(57”, 271), and concave up on the intervals (%, yr) and (71, ST”) Thus, x=7/3 and
x = 5m /3 are the only inflection points. This agrees with Figure 4.10(c). ]

V. ELT W EIENAY 5256 (only part (e)) and 61. ‘

4.8 Parting Thoughts

We have now completed our study of differentiation. While there’s always more that
can be said, what we've already discussed is more than enough to give you a good
understanding of derivatives and their applications. This chapter, in particular, has
illustrated well the dynamics mindset of calculus as well as the previous chapter’s
title (that derivatives measure change).

In the next chapter we'll return to the last of the three Big Problems discussed in
Chapter 1: the “area under the curve” problem. Solving that problem will lead to the
last big character in the calculus story: the integral. And despite arising from a purely
geometric problem—calculating the area under a curve—having nothing to do with
derivatives, we will discover that the integral is intimately related to derivatives. The
result relating the two—the Fundamental Theorem of Calculus—is the crowning
achievement of calculus.
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CHAPTER 4 EXERCISES

1-4: Find the linearization L(x) of the func-
tion at the indicated a-value.

Lif=x—-12% a=1 2.fx)=+x, a=1

3.f(x)=)1—c, a=1 4.f(x)=x3, a=2

5-8: Approximate the number using lineariza-
tion; compare your answer to the actual value.
1
7. —

5.4/10 7 8.v2

9-12: Determine the intervals on which the
function is (a) increasing and (b) decreasing.
Then, find the (c) the critical numbers and (d)
the local extrema of the function.

9. f(x) =2x" + 3x* — 36x

6. (1.01)°

1
10.f(x)=x+)—c

11 f(x) =x* —2x° — x* +2x

X2

x+3
13-16: Find the (a) absolute maximum and (b)

absolute minimum x-values of the function on
the given interval.

12. f(x) =

13.f(x) =x° —3x+1, [0,3]
4. f(x) =x* —2x* +3, [-2,3]
15.f(x) = (x* = 1), [0,1]

16. f(x) = ,  [0,2]

x2+1
17-20: Determine the intervals on which f is

(a) concave up, (b) concave down. Finally, (c)
identify any inflection points of f.

17. f(x) =2x° — 3x* — 12x
18.f(x) =2+ 3x — x°
19. f (x) =24 2x* —x*

20. f(x) =xvx+3

21. An ice cube in your drink begins to melt.
Supposing that the cube’s side length is decreas-
ing at the constant rate of 2 inches/minute, how
fast is the cube’s volume decreasing at the instant
the cube’s side length is 1/3 inch?

22. Imagine a cylindrical tank of radius 20 cm
that is filled with water. A small hole is now
drilled at the bottom of its circular base and the
water begins to drain at 25 cm?/sec. How fast is
the water level in the tank dropping?

23. Repeat problem 22 above, but instead as-
sume that the tank has radius 1 meter and that
the water is drained at the rate of 3 liters per
second.

24. A baseball player is at first base. The batter
hits the ball and the player at first base starts run-
ning toward second base. Supposing the player
runs at the rate of 15 ft/sec, and using the fact
that a baseball diamond is actually a square with
sides 90 ft, find the rate at which the player’s dis-
tance from third base is decreasing when she’s
halfway from first to second base.

25. A granary is preparing to transport its grain.
A conveyor belt at the facility is pouring the grain
into a truck at the rate of 15 cm®/sec. Assuming
the pile of grain is a cone whose base diameter
is always equal to its altitude, how fast is the al-
titude of the pile changing when the pile is 3 cm
high?

26. A child at a park holding a balloon lets it go.
The balloon rises at the constant rate of 5 m/sec.
When it’s 50 m up in the air, a dog runs under-
neath it, traveling in a straight line at a speed of
10 m/sec. How fast is the distance between the
dog and the balloon changing 2 seconds later?



27. You and a sibling have just finished attend-
ing a family reunion. You get in your cars and
leave for your home from the same position and
at the same time. You travel north at 30 mph,
while your sibling travels east at 40 mph. Calcu-
late the rate at which the distance between you
two is changing after 1 hour.

28. Imagine an 18 ft tall street lamp. A 6 ft tall
person walks under and away from the lamp, on
her way to a restaurant. If she’s walking at a speed
of 5 ft/sec, how fast is her shadow lengthening?

29. Aquathlon An aquathlon is a race consist-
ing of swimming followed by running. Suppose
Maria takes part in such an event. She starts
at the north bank of a straight river that is 2
miles wide, and the finish line is 6 miles east on
the south bank of the river. She can swim at a
speed of 1 mile per hour and run at a speed of
3 miles per hour. To what point on the south
bank of the river should Maria swim to in or-
der to minimize the time taken to complete the
aquathlon?

30. Maximizing baseball ticket revenue Fen-
way Park—the oldest baseball stadium in the
country—holds about 38,000 spectators. Sup-
pose that the average ticket costs $100 (there are
different tiers to the ticket prices), and that at
that price, the average attendance throughout
the season is 25,000. Now suppose the Boston
Red Sox conduct a poll and find that for each
drop in average ticket price of $10, average at-
tendance would increase by 1,000.

(a) Find the average price p as alinear function
of average attendance x.

(b) The revenue generated by selling x tick-
ets is R(x) =xp(x). Use your answer to
part (a) to help you determine the aver-
age ticket price that will yield maximum re-
venue.

Chapter 4 Exercises ¢ 119

31. Average revenue generated by Amazon.
com Amazon.com sells many products. Let’s de-
note the revenue it generates by selling x units of
a certain product (e.g., shampoo) by R(x). Com-
panies like Amazon adjust their prices often to
maximize revenue, and one popular metric they
look at is the average revenue, R(x)=R(x)/x,
generated by the products they sell.

(a) Calculate R (x).

(b) Show that the critical numbers of R(x)
are x =0, and x-values that satisfy R'(x) =
R(x); interpret this last condition.

32. Maximizing blood velocity The velocity v
of blood flowing through a nearly cylindrical
section of an artery is well approximated by

v(r) =k(R* — %),

where k is a constant, R the radius of the artery,
and r the distance from the central axis of the
artery. (The v equation is known as Poiseuille’s
Law.) Show that the maximum blood velocity
occurs along the central axis.

33. The acceleration due to gravity Return to
Exercise 45 in Chapter 3 and interpret ¢’(0) us-
ing the linearization interpretation of the deriva-
tive.

34. Let x and y be two numbers whose sum
is 100. Find the absolute maximum of their
product, xy. Does the absolute minimum exist?
Briefly explain.

35. Returning to Example 4.24, suppose the
cylindrical can’s volume is V. Show that the min-
imum aluminum is used when h=2r (i.e., the
can’s height equals its diameter).

36. A wire of length 10 ft is cut into two pieces.
One piece is used to make a square, and the other
a triangle whose side lengths are all equal (i.e., an
equilateral triangle). Letting A denote the sum
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of the resulting shape’s areas, find the absolute
minimum of A.

37. Consider a general quadratic polynomial
f(x) = ax? + bx + c (where a # 0).

(a) Prove that x= —% is a local minimum if

a> 0, and a local maximum if a < 0.

(b) Prove that f is concave down if a <0 and
concave up if a > 0.

38. Consider a general cubic polynomial g(x) =
ax> 4+ bx*> 4+ cx+d (where a #0), and let D=
b* — 3ac.

(a) Prove that: (1) if D > 0 then g has two crit-
ical numbers, (2) if D=0 then g has one
critical number, and (3) if D < 0 then g has
no critical numbers.

(b) Prove that the only possible inflection point

of gisx=—5".

EXERCISES INVOLVING EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

39-42: Find (a) the interval(s) of increase/
decrease, (b) the critical number(s), (c) the lo-
cal extrema (if any), (d) the absolute extrema
on the interval [1, 2], and (e) the intervals of
concavity and inflection points (if any) inside
that same interval.

39. f(x) =xe* 40. g(x)=¢"—x
21
41 h()=~ -8t 42. f(5) ="
z

43. Let f (x) = b* be an exponential function.

(a) Given that f'(x) = (Inb)b*, explain why f is
increasing for all x if b > 1, and decreasing
for all x if 0 < b < 1. Explain why it follows
that f has no local extrema.

(b) Given that f”(x) = (Inb)?b*, explain why
f is concave up for all x. Explain why it
follows that f has no inflections points.

44. Let g(x) =log;, x be a logarithmic function.

(a) Given that ¢'(x) = m, find the intervals
of increase/decrease in the cases 0 <b <
1 and b> 1. Explain why g has no local
extrema.

(b) Given that g’ (x) = —m, find the in-
tervals of concavity in the cases 0 <b <1
and b > 1. Explain why g has no inflection
points.

45. Consider the function f(x) =x"e™*, where
n is a positive integer. Show that: (a) the only
nonzero critical number is x =#, and (b) that
f has an absolute maximum at that critical
number.

46. The Bell Curve Functions of the form

1 2 /0012
(x) = e~ (x—a)7/(2b ),
f by 2m

where b >0 and a are constants, are called
normal distributions. They are widely used in
statistics to describe the distribution of human
heights, students’ exam scores, and even IQ
scores.

(a) Show that f has an absolute maximum
at x=a (called the mean of the distri-
bution).

(b) Show that f has inflection points at x=a —
bandx=a+ b. (The number b is called the
standard deviation.)

(c) Useyour results thus far to sketch a graph of
f for a > 0. You will then see why the graph
of f is often referred to as a “bell curve”

47. The Origin of the Universe The prevail-
ing explanation for the origin of our universe



is the Big Bang Theory, which posits that
our universe was once a tiny high-density and
high-temperature “singularity;” and following a
“big bang,” rapidly inflated and expanded to be-
come the universe we know today. This expan-
sion spread out the initially high-temperature
universe and created a cooler environment that
enabled atoms to form. Today the leftover heat
from the Big Bang is called the Cosmic Mi-
crowave Background Radiation (CMB). The
temperature of the CMB radiation is nearly con-
stant at about 2.7 Kelvin, but there are very tiny
fluctuations. Below is a 2012 all-sky image of the
CMB from NASAs WMAP probe (the shades of
gray correspond to temperature fluctuations).

The distribution of the radiation energy R given
off by the CMB varies with the wavelength A of
the light it emits, and is very accurately modeled
by the function
a 1
R(A) = 5 7N _ 1’
where A > 0, and a and b are known constants.
(a) Let’s make life easier and pretend thata =1
and b = 5.45. Calculate R'(}X).
(b) The only critical number of R is &~ 0.4. Use
this to show that R has an absolute maxi-
mum at x ~ 0.4.

48. Gompertz Curves The graphs of the func-
tions

G(t) = b 1=,

where a and b are positive real numbers and t a
nonnegative real number, are called Gompertz
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survival curves. They are used to model the
probability of surviving to age ¢ (measured in
years) after a successful birth at age 0. Let’s sup-
pose that a = b for simplicity, and that b= 0.085
(this comes from empirical data for certain pop-
ulations).

(a) Write out the G(t) function that results.
Then evaluate G(0) and interpret your re-
sult.

(b) Evaluate lim G(t) and interpret your re-
t—00
sult.
(c) Show that G'(t) < 0forall ¢ (here t > 0) and
interpret this result.
(d) Show that G’ (t) > 0 for all t (here t>0)
and interpret your result.

49. Wind Power Wind power is a clean, sus-
tainable energy source. But generating power
this way requires wind, and ideally high-velocity
wind gusts. Luckily, the engineers that design
wind turbines have discovered that they can ac-
curately predict the probability of winds of speed
v (in m/s) occurring using the function

P() = ave™"”,

where a > 0 and b > 0 are parameters that de-
pend in part on the location being studied. The
derivatives P'(v) and P’(0) were calculated in
Exercise 65 in Chapter 3.

(a) Use linearization to show that P(v) ~ av for
v near 0.

(b) Determine the most probable wind velocity
for a region in which b=1/2.

EXERCISES INVOLVING
TRIGONOMETRIC FUNCTIONS

50. You and a friend go to a park to launch a toy
rocket. After lighting the rocket, you move 20
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ft away. The rocket launches, and at the instant
its angle of elevation is 45°, that angle is increas-
ing at the rate of 3° per second. How fast is the
rocket’s altitude changing at that instant?

51. A lighthouse 1 mile from a straight shore-
line turns on at night. Its beacon shines a spot
of light on the shoreline, and revolves at the
rate of 5 revolutions per minute. How fast is
the spot of light moving when the angle be-
tween the ray of light and the line connecting the
shoreline and lighthouse is 30°?

52. Let f(x) =sin x and g(x) = cos x. We know
that f'(x) = g(x) and g’(x) = —f(x). Show that
f"(x)=—f(x) and g"(x) =—g(x). (Thus, the
sine and cosine functions both satisfy the differ-
ential equation y”" +y=0.)

53-56: Find (a) the interval(s) of increase/
decrease inside the given interval, (b) the crit-
ical number(s), (c) the local extrema (if any)
inside the given interval, (d) the absolute ex-
trema inside the given interval (if any), and
(e) the intervals of concavity and inflection
points (if any).

53. f(x) =2cosx+sin’x, [0,7]
54. g(x) =4x —tanx, [—m/3,7/3]

55. h(t) =2 cost+sin(2t), [0,7/2]

56. g(s) =s+cot(s/2), [m/4,7m/4]

57. Recall that f(x) =sinx and g(x) = cosx are
both 27 -periodic: f(x) =f(x+ 27) and g(x) =
g(x+2m) for all x. Use this to help prove that
f, . ¢, and ¢" are all also 27 -periodic. It
follows that all features of f and g that would
be discerned from calculus (e.g., critical num-
bers, local extrema, etc.) need be determined for
x-values only in the interval [0, 277).

58. Moving Boxes Efficiently via Calculus Pic-
ture a heavy box of mass m kg on the floor with

a rope attached to it. Suppose you pull on the
rope to attempt to drag the box. A simple model
for the force F (in Newtons) required, assuming
the rope makes an angle 6 with respect to the
floor, is

FO) = mmg

_— 0<6<
cosf 4+ usinf -

oS

>

where g~ 9.8 m/s? is the acceleration of gravity
and 0 < u < 1l isthe coeflicient of static friction.

(a) Show that the only critical number of F in
the interval given occurs when tan 6 = p.
(b) Show that when tan 6 = u,

pmg

J1+pu2

F(0) =

(c) Explain why
umg
V14 u?
and use this, along with part (a), to help you
conclude that F is minimized when tan 0 =

1. (If the box is made of cardboard and the
floor is wood, i ~ 0.5 and 6 ~ 27°.)

< pumg <mg,

59. The Shape of Planetary Orbits One of the
triumphs of Newton’s Law of Gravity (Exercise
35 in Chapter 2) was to explain why planets in
our solar system orbit the sun in elliptical orbits.
Using Newton’s result, one can show that if we
put the Sun at the origin of the plane (see accom-
panying diagram), a planet’s distance r to the Sun
is very nearly modeled by the angular version of
the ellipse equation (i.e., the ellipse equation in
“polar coordinates”):

a(l —é?)

)= ———,
r®) 1+ecosb

where 0 <6 <27 is the angle of the planet from
the x-axis, 0 <e <1 is the eccentricity of the
orbit, and a > 0 is the ellipse’s semi-major axis
length.



(a) Calculate r(0) and r(sr), and explain why
r(m) > r(0).

(b) Show thatf = is the only critical number
of r inside the interval [0, 277].

(c) For Earth’s orbit, e~0.017 and a~9.3 x
107 miles. Use your result from part (b) to
calculate the closest and furthest Earth gets
from the Sun (the perihelion and aphe-
lion, respectively).

Here is some context for Problems 60-61.

Fermat—that’s the same Fermat for which The-
orem 4.3 is named after—in 1662 formulated
his Principle of Least Time, which states that
light rays travel along the path that minimizes
the travel time. Using this principle, Fermat was
able to explain the law of reflection—which states
that the image distance inside a flat mirror is
the same as the object’s distance in front of the
mirror—as well as the law of refraction, which
helps explain why a straw inside a glass of water
appears bent at the surface of the water. These
two laws are derived in the next two exercises
using optimization theory.

60. The Law of Reflection A light ray emanates
from point A, reaches point P on the mirror at an
incident angle 6;, then reflects off the mirror at a
reflection angle 6,, and eventually reaches point
B (see diagram below) where A and B are a units
above P.
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0.

i

x P

(a) Let f; and t, denote the time it takes the
light ray to traverse the distances AP and
PB, respectively. If ¢ denotes the speed of
light, show that

Va2 + x?

tl(x)zf;

£0) Va2 + (L —x)?

2 =
c

(b) Let t(x) =t1(x) + t2(x) be the light’s to-
tal travel time. Show that the only critical
number of £(x) in the interval 0 <x <L is
x=1L/2.

(c) Using your result form part (b) and the fact
that

V2a2+ 12 <a++a?+12,

show that £(x) has an absolute minimum at
x=L/2.

(d) Use the diagram above to show that the
equation that produced x=1L/2 is equiv-
alent to sin6; =sin®,. It follows from the
symmetry of the triangles in the diagram
that 0; =6,.

61. The Law of Refraction (Snell’s Law) The di-
agram below shows a light ray emanating from
point A in a medium in which light travels at
velocity vy, reaching the interface with another
medium at a distance x away from A, and ter-
minating at point B in a medium in which light
travels at velocity v;.
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The incident angle 6; is related to the refracted
angle 0, via Snell’s Law:

sin 91 V1

sinf, v,
Let’s derive this law using optimization theory.

(a) If A is a units above the interface and B is
b units below it, show that the total time it
takes the light ray to travel from A to B is

Vx2 +a? L—x)2+b2

) = AR )
V1 V2
0<x<L.

(b) Show that the only critical number x = x,
in the interval of interest occurs when

X¢ L—x,

iyt a: /L —x)2+ b2

(c) The second derivative of t(x) is

a2

vi(x% + a?)3/2
bZ
+ .
val(L— %2 + b2

t”(x) —

Explain why it follows that #(x) is concave
up on [0, L].

(d) Use parts (b) and (c), along with a few the-

orems from the chapter, to help you con-
clude that x = x, is the absolute minimum
of t(x).

(e) Finally, rewrite the equation in part (b) in
terms of sinf; and sin6, to derive Snell’s
Law.

62. Show that tan x ~ x for x near zero.

63. Lets return briefly to Exercise 60 in Ap-
pendix B.

(a) Explain why sin (27”) ~ 27” for large n.

(b) Use part (a) and the A(n) formula from the
exercise to conclude that A(n) ~wr® for
large n.
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Integration: Adding Up Change

Chapter Preview. In 1666, roughly a year after Isaac Newton started working on
what would become calculus, a German gentleman named Gottfried Leibniz had just
acquired his law license. Yet Leibniz quickly grew frustrated with law and developed
an interest in mathematics instead. He focused his work on the third Big Problem from
Chapter 1: the Area under the Curve Problem. Leibniz’s work led to the notion of the
definite integral, the third pillar of calculus. In 1693 he made a breakthrough—Leibniz
formulated and proved what we today call the Fundamental Theorem of Calculus. This
theorem relates integration to differentiation, connecting the Area under the Curve
Problem to the Slope of the Tangent Line Problem and unifying all of calculus. We'll
build up to that theorem in this chapter by returning first to where our calculus story
started: the Instantaneous Speed Problem.

5.1 Distance as Area

We started Chapter 3 by trying to make sense of a falling apple’s instantaneous speed.
A few pages later, we had the answer: 4(t) =d'(t) (i.e., the apple’s instantaneous
speed is the derivative of its distance function). We can now calculate derivatives
quickly, so if we're given d(t) we can easily calculate 4(¢). But how do we go back-
wards? That is: How can we calculate the distance function for an object given its
instantaneous speed function? Let’s employ a tried and true strategy for tackling
tough math problems like this one: Simplify the problem.

Let’s make things simpler by imagining a car driving down a highway at a constant
speed (that’s the simplification) of 4 () = 60 miles per hour. Using “distance = rate
x time,” we know the car travels 60 miles in 1 hour, 120 miles in 2 hours, and in
general, 60t miles in t hours. That’s the car’s distance function: d(t) = 60t. We solved
the problem!

Okay, but what if 4(t) isn’t constant? Well then “distance = rate x time” won’t
help, because the rate (4(#)) is changing with time. A good example of this is our
old friend from Chapter 3—the falling apple. As the apple falls, it picks up speed due
to gravitational acceleration. Galileo’s famous Leaning Tower of Pisa experiment—
where he dropped balls of different masses to see if theyd hit the ground at the same
time—suggested to him that gravity accelerates objects at the constant rate of 32
ft/s* (independent of the object’s mass). In our notation, this means that 4/ (¢) = 32.
Following the same reasoning as in the car example above, we conclude that s(t) =
32t is the instantaneous speed of the apple t seconds into its fall. (’'m assuming
the apple is dropped from rest.) Question: How do we calculate d(t) from this s(t)
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function? Some 200 years before Galileo was even born (i.e., circa 1350s), a Parisian

scholar named Nicole Oresme already had the answer: Calculate the area under the

graph of s(x) and between x =0 and x =t.
Figure 5.1(a) illustrates Oresme’s ap- y

proach. The shaded (triangular) region is

the aforementioned area. Denoting that

area by A(t)—the “area under the graph 3,, |

up to x-coordinate t”—we see that A(t) =

%(t) (32t) = 16t%. That’s the distance func-

tion Galileo deduced using experiments!

(Recall (3.2).)

Oresme’s realization of distance as area

N_
=

(the title of this section, by the way) works, @
but we don't yet understand why. Not know-

ing that, it’s unclear if we could use the same y

approach to calculate d(f) from other 4(¢)
functions. But let’s not give up on Oresme’s
approach just yet. As usual, the problem is
the static mindset inherent in Figure 5.1(a).
Figure 5.1(b) shows a more dynamic mind-
set; there I've imagined the apple falling for
an additional time At beyond the time ¢

> X

it's already been falling for. The change in 1

t t+At
area—the lighter shaded region—is (b)
AA=A(t+ A)—A() Figure 5.1: The graph of ¢(x) =32x,
along with (a) the (shaded) area un-
— 1[321‘ +32(t+ AD](AD) der s and between x=0 and x=1 (de-
2 noted by A(¢) in the text) and (b) the
=32t(At) + 16(A1)?, lighter shaded trapezoidal region (equal

to A(t + At) — A(t)).
where I've used the formula for the area of
a trapezoid: A = %(hl + h)b, where h; and h; are the two heights of the trapezoid
and b its base length. It follows that

AA , . AA
— =32t + 16(At), so that A'(t)= lim — =32t.
At At—0 At
But wait! That’s 4(¢)! Thus

A'(t) = 4(b). (5.1)
And since 4(t) = d'(t), we can also say that A’'(t) = d'(t). The two functions A and

d, therefore, have the same tangent line slopes at every point. These functions must
either be equal or shifted by a constant: A(t) = d(t) + C, where C is a real number.
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(Exercise 14 guides you through the proof.) Using the fact that A(0) =d(0) =0 (no
distance is traversed by the apple zero seconds into its fall), we arrive at the final
result: A(t) =d(t). Since we've already calculated that A(t) = 1612 (using Figure
5.1(a)), we've just derived the apple’s distance function d(t) = 16t by calculating an
area under a curve!

5.1 The gravita-
tional acceleration near the surface of the
Moon is about 5.4 ft/s?. Suppose an astro- 127
naut on the Moon drops an apple from rest.
Calculate the apple’s distance function.

Solution We're given that ¢'(¢) = 5.4; this
implies that ¢ (t) = 5.4t. Emulating the anal-
ysis from when s was equal to 32t yields
d(t) = 3(1)(5.41) =271, nl

T X
t

Figure 5.2: s(x) =1+ 2x.

IDONILBEN 52 An objects instantaneous speed function is 4(x) =1+ 2x
(graphed in black in Figure 5.2).

(a) Calculate A(t), the area under the graph of s(x) over the interval [0, £].
(b) Calculate A’(¢), then verify (5.1) by repeating the calculation that led up to it.
(c) Calculate the object’s distance function.

Solution

(a) A(t) is the area of the trapezoidal shaded region in Figure 5.2. Thus: A(t) =
M4+ A+20]=tA+t)=t+1

(b) Mimicking what we did before, if we imagine a small increase At in t in Figure
5.2, the additional area added is a trapezoid of width At and heights s(¢) =
1+2tand s(t+ At) =1+ 2(t + At). Therefore

AA = %[(1 +20) + (14 2(t+ AD)I(AD = (1 + 20(AD) + (A1),

It follows that

AA 1+ 26)(At) + (A1)?
A= lim =2 = lim (1+2t)(At) + (A1)
At—=0 At At—0 At

= lim [1+2t+ At] =142t = s(t).
At—0

(c) We now know that A’(t) = 4(t). The same argument from before implies that
A(t) = d(t). Using the result of part (a), we conclude that d(t) =t +t2. m
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Runway Lengths Applied Example C.8 in Appendix C uses areas of triangles
to help estimate the runway length needed for a jet airplane to take off safely.

Related Exercises

Tips, Tricks, and Takeaways

The main takeaway from the previous examples—as well as Exercise 3 at the end
of this chapter—is this: The distance function d(t) for an object with piecewise
linear s(x) is the area under that graph bounded by x=0 and x=t (assuming
d(0) =0). This is an improvement over what we could do at the start of this
section—calculate the distance traveled only for a constant s function (remember
the car example?). But it’s still a far cry from being able to calculate d(t) for any
4(x) function. We'll start solving that problem two sections from now. But first,
let’s introduce some new notation for the area under a curve and discuss its new
insights.

5.2 Leibniz’s Notation for the Integral

Mathematicians are lazy creatures in that we prefer not to write too much. So
let’s introduce better notation that is shorthand for “the area under the graph of
4(x) and bounded between x =0 and x =t” We've denoted that by A(t), but this
notation makes no reference to ¢ or x =0 (the left-hand boundary of the region
whose area A(t) refers to). Let’s make progress by returning to (5.1). Employing our
linearization result (4.10), (5.1) implies that

AA~ 5(x) Ax when Ax~0. (5.2)

When Ax — 0 were considering an infinitesimal change in x (like we discussed in
Chapter 1). Recall that Leibniz introduced the notation dx to denote that infinitesi-
mal change (see the discussion that follows (3.16)). Finally, recalling our discussion
of how linear approximations arising from linearization get better as Ax gets closer
to zero, we expect that the infinitesimal change dx in the right boundary of the
region under the graph of 4 should result in an infinitesimal change

dA = s(x) dx (5.3)

in the area of that region.! We visualize (5.3) as the area of a rectangle with infinites-
imal width dx and height s(x) (Figure 5.3(a)). To Leibniz, the area A(f) under the
graph of ¢ was then the sum of these infinitesimally small areas dA as x ranged from

IThis is yet another manifestation of the calculus workflow (Figure 1.3)—the finite changes in (5.2) become the
infinitesimal changes in (5.3) as Ax — 0.
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Area = «(x)dx

Tdx t
(a)

Figure 5.3: (a) One of Leibniz’s infinitesimally wide rectangles. (b) Sweeping out the area under
the curve by adding the areas of Leibniz’s rectangles.

0 to t (Figure 5.3(b)):
A(t) =sum of dA from x =0 tox =t
=sum of 4(x) dx fromx=0to x=t.

The lazy mathematicians soon replaced “sum of” with “S”, and over time that symbol
morphed into [:
A(t) =S s(x)dxfromx=0tox=t

:/ 4(x) dx fromx=0tox=t.

Today we append the bounds x=0 to x =1 to the integral sign | to arrive at our
new notation:

t
A(t) =/ 4(x) dx. (5.4)
0

The right-hand side is called the definite integral of s(x), that function is called
the integrand, and 0 and ¢ are called the lower and upper limits of integration,
respectively.

IDONILBIN 5.3 Express the area of the shaded region in Figure 5.1(a) as a definite
integral.

Solution t
/ 32x dx. [ ]
0

IDGNILBIN 5.4 Express the area of the shaded region in Figure 5.2 as a definite
integral.

Solution

t
f (14 2x) dx. [ |
0

—
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Tips, Tricks, and Takeaways

In addition to being yet another perfect illustration of calculus’ dynamics mindset,
what I've just explained has one key takeaway: Integration is about adding up small
changes (infinitesimal changes, actually), hence this chapter’s title. The progression
from (5.2) to (5.4) was meant to illustrate that at every step of the way. Keep this in
mind when you look at the right-hand side of (5.4).

One last finer takeaway: Definite integrals are sums of tiny areas of rectangles.
Figure 5.3 further illustrates this second takeaway.

5.3 The Fundamental Theorem of Calculus

Alright, let’s now return to generalizing (5.1). Our objective: Calculate the area un-
der the graph of a function f(x) and between x =a and x=t. In the notation of
(5.4), we're looking for

t
A(t) =/ f(x) dx.

Let’s retain two core properties of ¢(x): it's a continuous, nonnegative function.
(We'll generalize our results even further in a later section.) Visually, then, we're
looking for the area of a region like that of the blue-colored region in Figure 5.4. As
we did before, let’s investigate the effect on A(t) of a small change At in ¢:

t+At t t+At
A(t+ At —AQ) = f(x)dx — / f(x)dx= f f(x)dx. (5.5)
a t

a

Remove the blue
» boundary and the

Zoom in on the /" water level settles
lightly shaded region---""" /  tosome y-value
4 y ' fy y

y=/x)

T TT T X UB X US| X T T X
a t b t t+ At t t+ At tzt+ At
¢+ At Now pretend the The region’s area
region is a column = is then f(2)At,
of water where z is between
tand ¢+ At

Figure 5.4
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The integral on the far right of this equation is the area of the lightly shaded region
in Figure 5.4 (leftmost plot). At this point in our earlier analysis we exploited the
trapezoidal nature of that shaded region (recall Figure 5.1(b)). But that is no longer
the case in Figure 5.4. No problem though—dynamics mindset to the rescue!

Let’s pretend that the lightly shaded region is a column of water (Figure 5.4, sec-
ond plot). When we remove the top “lid” (the graph of f), the water settles down
to some y-value. As I've illustrated in the figure that y-value is the output of some
x-value z: y = f(z), where t <z <t + At.? Conclusion: the area of the lightly shaded
region is the area of the rectangle of base length At and height f(z) (Figure 5.4, last
plot). So, (5.5) becomes

A(t+ A — A(t) =f(2) At. (5.6)

Dividing by At and taking the limit of both sides yields

. A+ AN —A®W)
lim =

At—0 At Aligof(z)' (57)

We recognize the left-hand side as A’(¢); to calculate the right-hand side, we recall
that t <z <t+ At. Thus, as At — 0, z approaches t. Conclusion:

A'(H) =f(1). (5.8)

We've generalized (5.1)! (We used an intuitive argument to get from (5.5) to (5.7);
Exercise 36 guides you through a more formal argument.) In a later section I'll indi-
cate how our argument can be modified to account for the possibility that f(x) <0
for some x-values. So let me time travel a bit and give you this extended result now.
It's what we today call the Fundamental Theorem of Calculus. Here is the formal
statement of the Theorem, published by Leibniz in 1693.

Theorem 5.1 The Fundamental Theorem of Calculus.  Suppose
f(x) is continuous on [a, b], and define the function A(t) by

t
A(t) =/ f(x)dx, (5.9)

where a <t < b. Then A(t) is continuous on [a, b], differentiable on (a, b), and

A'(t)=f(t).

You might be thinking: “That’s the Fundamental Theorem of Calculus?! It doesn’t
look very fundamental to me” T'll get back to why it is in the Takeaways subsection
below. But right now, let’s get more comfortable with the theorem itself.

2This follows from the fact that f is continuous and the Intermediate Value Theorem (Section A2.4 in the online
appendix to Chapter 2).
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IDONILBA 5.5 Consider f(x) =1 on the interval [0,5] and let ¢ be inside this
interval.

(a) Show that ;
/ ldx=t. (5.10)
0

(b) Verify Theorem 5.1 in this setting.
Solution
(a) The integral fot 1 dx is the area of a rectangle with width ¢ and height 1, which
is(H(1)=t.

(b) We know that f(x) =1 is a continuous function (in particular, continuous
on [0, 5]). We just calculated that A(¢) =t; this too is a continuous function
(in particular, continuous on [0, 5]). Moreover, since A’(t) = 1 (by the Power
Rule), A is differentiable (in particular, differentiable on (0,5)), and we see
that A’ () =f(¢). [

IDONNLBI 5.6 Consider f(x) =x on the interval [0,5] and let ¢ be inside this

interval.

(a) Show that ; 2
fxdx:;. (5.11)
0

(b) Verify Theorem 5.1 in this setting.
Solution

(a) The integral fOt x dx is the area of a triangle with base length ¢ and height ¢

(similar to the shaded region in Figure 5.1). That area is % @) = %, verifying

(5.11).
(b) We know that f(x) =x is a continuous function (in particular, continuous
2
on [0, t]). We just calculated that A(¢) = %; this too is a continuous function

(in particular, continuous on [0, t]). Moreover, since A’(t) = ¢ (by the Power
Rule), A is differentiable (in particular, differentiable on (0, ¢)), and we see
that A’ () =f(¢). [

Tips, Tricks, and Takeaways

Figure 5.5 helps you begin to appreciate why Theorem 5.1 is so fundamental. As-
suming that f is continuous, the theorem’s workflow is (1) integrate f (x) to get A(t);
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(2) differentiate A(t) to get f(¢). (Note that f(¢) and f (x) are the same function.) The
first big revelation:

/0 ’ F(x)dx

Differentiation and integration
undo each other! Integration

Therefore, Theorem 5.1 ties together, in one
simple equation, two of the pillars of calculus:  f{(x) A()
differentiation and integration.

Beyond the specific revelation that differen-
tiation and integration undo each other, Theo-

rem 5.1 shows us that our third and final Big %A
t

Differentiation

Problem from Chapter 1—the “area under the

curve” problem which has now become the “cal- Figure 5.5: Differentiation and
culate the definite integral” problem—is related ~integration are inverse processes.
to derivatives, a topic we've spent two chapters mastering! This suggests an inter-
esting idea: perhaps we can use derivatives to help us calculate definite integrals.
(What a plot twist!) ET.C., as we call Theorem 5.1, indeed hints that’s the case. We'll
explore that in the next section. Before then, however, one final insight—there is
another route to the definite integral you'll likely encounter in a calculus textbook:
the Riemann sums route. We'll have no need for that concept in this book, but see
Section A5.1 (in the online appendix to this chapter) if youre interested in Riemann
sums. Okay, back to ET.C.

5.4 Antiderivatives and The Evaluation Theorem

To calculate A(t) we've been graphing f and then using geometry formulas to find
the area under that curve. But ET.C. (Theorem 5.1) suggests another way. It says
that if f is continuous, then f(t) = A’(¢). In other words, given f we automatically
know the derivative of A(t). All we have to do to find A(t), then, is to “undo” that
derivative. That process is aptly called antidifferentiation.

I Definition 5.1  Suppose F'(x) =f(x). We then call F the antiderivative
of f.

In general, then, F is the function which differentiates to f(x). Example: if
f(x) =2x then one antiderivative is F(x) = x% (since F'(x) =2x= f(x)). Another
antiderivative is F(x) = x*> + 5. The most general antiderivative is F(x) = x>+ C,
where C is any real number.

Let’s now employ the antiderivatives viewpoint to extract from Theorem 5.1 a
faster way to calculate A(#). To begin, suppose F is an antiderivative of the function
f in the Theorem, so that F'(t) = f (t). We also know that A’(t) = f (¢) (where A is de-
fined by (5.9)). Therefore, F'(t) = A’(t). It follows from Exercise 14 (with d replaced
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by F) that A(t) = F(t) + C. Substituting this in (5.9) yields

t
/ f(x)dx=F(t) + C. (5.12)

When t=a we get [ aa f(t) dt =F(a) + C. But the integral on the left-hand side is
the area under the graph of f and bounded by x = a and x = a, which is zero. Thus,
0=PF(a)+ C, so that C= —F(a). Using this in (5.12) and writing t = b yields the
following corollary of Theorem 5.1.

Theorem 5.2 The Evaluation Theorem.  Suppose f is continuous on
[a, b] and that F is an antiderivative of f (i.e., F'(x) =f(x)). Then,

b
/ f(x) dx=F(b) — F(a). (5.13)

IDONNLBN 5.7 The Power Rule tells us that (x3)/ = 3x2. Use this result to help

you calculate |
/ (3x%) dx.
0

Solution Here f(x) = 3x2, which is continuous on [0, 1]. Moreover, (x3)/ =3x%
tells us that F(x) = x> is an antiderivative of f. It follows from Theorem 5.2 that

1
/ (3x%)dx=F(1)—F(0)=1°-0’=1. [
0

IDCNYILHN 5.8 The Power Rule tells us that (ﬁ)/ = ﬁ Use this result to help

.
[ (zR) =

Solution Here f(x) = —L_ which is continuous on [1,4]. Moreover, (ﬁ)/ = ﬁ;

you calculate

2¢/x
tells us that F(x) = 4/ is an antiderivative of f. It follows from Theorem 5.2 that
Y
—— ) dx=F4)—F1)=+/4—+V1=1. [ |
/I(zﬁ)x ()~ F() =vi— V1

O e 10-12 and 27.

Tips, Tricks, and Takeaways
First, some things you should know:

o Often we use the shorthand F(x) |Z for F(b) — F(a), so that (5.13) becomes
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b
/ f(x)dx= F(x)|".

o Replacing x with t (or any other letter) in (5.13) changes nothing. For that
reason we refer to x as a dummy variable.

e Theorem 5.2 is also called the “Fundamental Theorem of Calculus, Part 2” in
some textbooks.

Now for the main takeaway—The Evaluation Theorem converts the Area under
the Curve Problem to a new problem: the Find the Antiderivative of f Problem. In-
deed, if you know an antiderivative F of f (and f is continuous on [a, b]), then the
Evaluation Theorem says that the area under the graph of f (x) and bounded by x =a
and x = b—the left-hand side in (5.13)—is simply F(b) — F(a). For this reason we
will spend much of the remainder of the chapter discussing antiderivatives. The next
section discusses their properties and begins to build a repository of antiderivative
formulas.

5.5 Indefinite Integrals

The antiderivatives viewpoint is very useful. But writing things like “F(x) = x? is an
antiderivative of f(x) =2x” takes too long (remember the lazy mathematicians?).
Let’s first take care of the pervasive “an” in these sentences.

Theorem 5.3  Suppose F is an antiderivative of f (i.e, F'=f). Then
F(x) 4+ C, where C is any constant, is also an antiderivative of f.

(The proof is very simple: (F(x) + C)’ = F'(x) =f(x).) We can now abuse the En-
glish language a bit and say things like “F(x) =x*+ C is the antiderivative of
f(x)=2x” (I's an abuse of the English language because C could be any real
number, so there are many different formulas for F, clashing with the usage of
“the” in the sentence.) Finally, let’s condense this statement via the following
notation.

Definition 5.2 The Indefinite Integral. Let F be an antiderivative of
£, so that F = f. We then write

ff(x) dx=F(x)+C (5.14)

and call the left-hand side the indefinite integral of f.

Note the use of the symbol | here again. But be careful in reading too much
into this: the definite integral produces a number (the area under the graph of f)
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while the indefinite integral produces a function (the most general antiderivative

of f).
Since indefinite integrals are just new notation for antidifferentiation, the indefi-
nite integral is just the reverse process of differentiation:

Fx)=f(x) /funkzFuy+c (5.15)
For example:
) =2x < /2xdx=x2+C.

This finally condenses the more wordy “F(x)=x*+ C is the antiderivative of
f(x)=2x7

The equivalence (5.15) gives us a wealth of antiderivatives; simply take the dif-
ferentiation results weve already worked out in the past two chapters, read them in
right-to-left order, and add in the indefinite integral sign and the “+C” in the right
places. For example, returning to the first sentences in Examples 5.7 and 5.8:

1
> dx=3x*4C, / —— ) dx= C.
/xx x° + Zﬁ x\/;c—i—

These results come from the Power Rule (Theorem 3.4), so we can follow our
prescription (5.15) to write down the integral version of the Power Rule:

™ =mx"l = / mx" Vdx=x"+C.

A more user-friendly formula is obtained by substituting m — 1 = n in and solving
for the indefinite integral of x”. This yields the following theorem.

B Theorem 5.4 The Integral Version of the Power Rule.

xn—l—l
fx”dx:n+l+C, n#—1. (5.16)

Note the requirement that n 7% —1. (The integral of )—lc turns out to be a logarithm,
as discussed near the end of this section.) One particularly tricky instance of this
theorem is when n = 0. In that case, (5.16) yields

/1ﬂ=x+C (5.17)

I ONYIYNIN 5.9 Calculate / x% dx.
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3
Solution Setting n =2 in (5.16) yields: / xdx= x? + C.

1
IONYIZNN 5.10 Calculate / x% dx.
0

Solution We just calculated a family of antiderivatives for x? (g + C). We can
choose any of these to use in the Evaluation Theorem. Choosing C = 0, we get that

3
F(x) =% is an antiderivative of f(x) = x. Therefore, according to the Evaluation

Theorem.
1 3
f x> dx= i
0 3

1
I ONYIENN 5.11 Calculate / —zdx.
x

Solution Since é =x"2, using (5.16) with n = —2 yields

L'
=-. o
3

0

/—dx_—+C———+C L

1D ONYINRN 512 Calculate / Vx dx.

Solution Writing +/x = x'/2 and using (5.16) with n = 1/2 yields

3/2 25312
/ﬁdx:xTJrC: x3 +C. (]
2

NG BTN 1719, 41, and 50.

Tips, Tricks, and Takeaways

Example 5.10 illustrates the fact that F can be any antiderivative of f when it comes
to using the Evaluation Theorem; it need not be the most general one (F(x) + C).
For this reason we will always select the C= 0 antiderivative of f when using the
Evaluation Theorem.’

We've only one learned how to integrate one function at a time thus far. In the
next section we'll learn how to integrate combinations of functions (e.g., a sum or

difference of two functions).

3 Using any other antiderivative, like F(x) 47, won't change the result in the Evaluation Theorem, since
[F(b) + 7] — [F(a) + 7] = F(b) — F(a), the same result as using F(x) (i.e., with C=0).
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5.6 Properties of Integrals

Like the Limit Laws from Chapter 3, the indefinite and definite integrals satisfy
various properties that help us calculate them. The first few mimic the first few
derivative rules we discussed: the Sum, Difference, and Constant Multiple Rules
(Theorem 3.3).

Theorem 5.5 Properties of the Integral. Suppose f and g are
continuous on [a, b], and let ¢ be a real number. Then,

b b b
1. The Sum Rule: / [f(x) +g(x)]dx= f f(x)dx+ f g(x) dx
b b b
2. The Difference Rule: / [f(x) —g(x)]dx= / f(x)dx — / g(x) dx

b b
3. The Constant Multiple Rule: / [cf (x)]dx=c / f(x)dx
a a

Moreover, these rules also hold if the definite integral is replaced by an
indefinite integral.

These rules can be proven using antiderivatives and Theorem 3.3. Exercise 13 guides
you through one of those proofs.

In addition to the rules above, the following additional rules hold for definite
integrals.

Theorem 5.6 Additional Properties of the Definite Integral.  Sup-
pose f and g are continuous on [a, b], and let ¢ be a real number. Then,

c b c
1. /f(x)dxz/f(x)dx+/f(x)dx
a a b
b a
2./f(x)dx=—/f(x)dx
a b
3. /uf(x)dsz
b b
4. If f(x) < g(x) for every x in [a, b] then / f(x)dx < / g(x) dx

Property 1 tells us that we can split the calculation of the area under a curve into
a sum of two different area calculations. (Importantly, while we think of b as being
between a and c in that property, it need not be.) Property 2 tells us that swapping
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the limits of integration multiplies the original value of the definite integral by —1.
Property 3 merely reflects the fact that the area under the graph of f between x=a
and x = a is zero (a fact we've already used). Finally, Property 4 says that if the graph
off is at or below the graph of g, then the area under the graph of f will be less than or
equal to the area under the graph of g. Let’s now illustrate these properties through
a couple of examples.

I CNYILNEN 5.13 Calculate / (x* — x) dx.

Solution

/ (x* —x) dx = / X% dx — / xdx Indefinite integral version of 2, Theorem 5.5

X x?

= 375 +C. Using (5.16) |

9
IOV 5.14 Calculate / (3v/x+ 9x%) dx.
0

Solution First, let’s find the antiderivative of f(x) = 3./x + 9x*:

f(?u/& +9x%) dx=3 / X2 dx+9 / X% dx Sum and Constant Multiple
Rules, Theorem 5.5

2 5 /2 X .
=3 gx +9 3 4+ C Using (5.16)
=2x°/? 4357 4 C. Simplifying
Selecting C = 0 and using that result in the Evaluation Theorem:
9
/ (3+/x + 9x%) dx:[2x3/2—|—3x3]3:2,241. [ |
0

ORI 20-23 (Hint: Simplify first), 28-29, and 49. ‘

We can now integrate may of the common combinations of functions we’ll

encounter—but not all; we'll return to this point in Section 5.9—but as we'll see
in the next section, the Difference Rule in Theorem 5.5 will force us to reinterpret
what quantity the definite integral yields.

5.7 Net Signed Area

Consider the integral fol (—1) dx. Our understanding of the definite integral as yield-
ing the area under the graph of f (x) does not apply here, because the x-axis—which
has been the bottom boundary of the area defined by all the integrals we've calculated
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thus far—is actually above the function
f(x) =—1. So, we need to reinterpret what the y
definite integral means when the graph of f 5 -
dips below the x-axis. That’s where Theorem 5.5
comes in—the Constant Multiple Rule implies

that
1 1
/ (—1)dx:(—1)/ ldx=-1, f T T —>X
0 0 -2 -1 1 2

since the second definite integral is 1. The first -1
equation here literally tells us that fol (—1)dxis

—1 times the area under the graph of f(x) =1. 2
This is why some interpret fol (—1) dx as “nega-
tive area” But such a thing doesn’t exist, so T'll
interpret fol(—l) dx=—1 as “there’s 1 unit of
area below the x-axis,” as illustrated in Figure 5.6.

Figure 5.6: f(x)=-1 and
fol (—1) dx (the negative of the area
of the shaded region).

What we've just done generalizes rather easily. To wit: If f(x) has both positive
and negative values inside the interval [a, b], then,

b
(/fuﬁk=A+—Aﬂ (5.18)

where A denotes the sum of all areas above the x-axis and A_ the sum of all areas
below the x-axis. Thus, in general the definite integral yields a net signed area. The
“net” part of the phrase describes the subtraction present in (5.18); the “signed area”
describes the possibility that the resulting number—which we previously thought
of as the area under the curve—may be negative.

2
IDONILBEN 5.15 Calculate f (x — 1) dx using the Evaluation Theorem and also
0
(5.18).

Solution Using the Difference Rule (from Theorem 5.5), (5.16), and the Evalua-
tion Theorem:

2 2 2 52
/ (x—l)dx:/ xdx—f ldx= —
0 0 0 2

Figure 5.7 illustrates our answer. The region below the x-axis (the darker shaded
region) has area %, sothat A_ = % The lighter shaded region above the x-axis has
area % too, so that Ay = % Therefore, from (5.18)

2
—xlg=2-2=0.
0

=0. [ ]

1
2

N | —

2
/ x—Ddx=Ay —A_=
0
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We've now covered everything you need to y
know about the basics of integration. The next  ; -
section applies all we've learned to transcen-
dental functions. But if you're skipping those,
skip the next section and head right to Section
5.9; there we'll discuss a very useful integration
technique that follows from the Chain Rule, 1 2
called u-substitution.

-1

5.8 (Optional) Integrating
. -2 -
Transcendental Functions

Figure 5.7: The function f(x) =
Let’s start with the rules for integrating expo- x—1, along with the shaded re-
nential functions. Returning to Theorem 3.8,in  gion between f, the x-axis, and

view of (5.15) we immediately get the following ~bounded by [0, 1] (the darker blue-
colored region), and the similar re-
gion bounded by [1,2] (the lighter
blue-colored region).

integration rules.
Theorem 5.7

/bxdx_n—i—c /exdx=ex+C. (5.19)
n

Let’s now apply the same approach to finally calculate the integral of 1/x (which is
not covered by (5.16)). We'll need the following slight generalization of Theorem
3.9 (see Exercise 48 for the derivation):

L (5.20)
dx X

Using this in (5.15) yields the following integration rule.

Theorem 5.8 )
/—dx=1n|x| + C. (5.21)
X

Let me illustrate the preceding two theorems through a few examples.

I ONYILNNN 5.16 Calculate / 3¢" dx.

Solution
/ 3¢ dx=3 / e dx Constant Multiple Rule, Theorem 5.5

=3¢+ C. Using (5.19) [
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D ONYIDNN 5.17 Calculate / (x* +2%) dx.

Solution
/(x2 +2%) dxz/x2 dx+/2x dx Sum Rule, Theorem 5.5
Loy 2x+c Using (5.16) and (5.19) n
=—x 4+ — . sing (5.16) and (5.
3% T2 &

2

x“+1
I ONWYINBEN 5.18 Calculate

Solution  We first simplify: f(x) = "22—“;1 =%+ % Then,

dx.

241 1 1 (1
/ i dx=— / xdx+ - / —dx  Sum and Constant Multiple Rules,
2x 2 2) x
Theorem 5.5

2
1
— % + Sl +C. Using (5.16) and (5.21) n

V2 ENOTL BRI 4243, and 52.

Let’s now pivot to discussing the integration of trigonometric functions. Applying
(5.15) to (3.15) and (3.23) yields the following theorem.

I Theorem 5.9

/cosxdx:sinx—i—C, /sinxdx:—cosx+C, /seczxdx:tanx—l—c.

Additionally, the results of Example 3.41 and Exercise 77 of Chapter 3, applied to
(5.15), yield the following rules pertaining to the reciprocal trigonometric functions.

Theorem 5.10

/secxtanxdx:secx+C, /csczxdxz—cotx—l—C,

/cscxcotxdx: —cscx+C.

g
1D CNYILNIN 5.19 Calculate / (sinx + cos x) dx.
0
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Solution Let’s first find the antiderivative of f (x) = sinx + cos x:

/ (sinx + cos x) dx = / sinx dx + / cos x dx Sum Rule, Theorem 5.5

=—cosx+sinx+C Using Theorem 5.9

Then, using the Evaluation Theorem:

b
/ (sinx 4 cos x) dx = [— cos x + sinx] = (— cos 7w 4 sinm) — (— cos 0 + sin 0)
0
=1—(-1)=2. o

O BT 5455, and 59-60.

5.9 The Substitution Rule

Thus far we've developed the rules for integrating sums, differences, and constant
multiples of functions (along with a few specialized rules for integrating particular
functions, like (5.16)). This has paralleled the development of the differentiation
rules in Chapter 3. Continuing along this path, wed develop the integration rule
analogue of the Product Rule. That’s called integration by parts, but because it’s
covered in a second semester calculus course, we'll skip instead to the integral rule
analogue of the Chain Rule.
To get there, let’s apply the equivalence (5.15) to the Chain Rule (Theorem 3.6):

d
E[F(g(x))]=F'(g(x))g'(x) - /F/(g(x))g/(X) dx=F(g(x))+C. (5.22)

(T'll explain why I used F and not f soon.) The integrand in the rightmost equation
is messy. Let’s make it look simpler by introducing u = g(x). This yields:

/ F(g(x)g (x) dx= / F(uw)g¢ (x) dx. (5.23)
Recalling now (5.3), the same argument used to get to that equation tells us that
du=g'(x) dx.
Using this in (5.23) then yields
/ F(g(x)g (x) dx= / F'(u) du.

Finally, letting F' = f yields the following theorem.
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Theorem 5.11 The Substitution Rule.  Suppose f is continuous on an
interval I, and g(x) is differentiable and has range I. Then for u = g(x),

/ f(g(x))g' (x) dx = / f(u)du. (5.24)

You'll often hear this technique referred to as “u-substitution” Now on to the
examples.

D OVILNM 520 Calculate / 2x(x? 4+ 1)1 gx.

Solution The integrand contains the composite function (x* + 1
function is x> + 1. So, let’s try setting u = g(x):

)100; it’s “inner”

u=x>+1 = du=2xdx.

Substituting these into the integral yields

/2)6(9624—1)100 dx:/uloo du.

ulOl

Using (5.16) with n =100, this integrates to 757 + C. That’s not the end of the cal-
culation though, since we should end up with a function in the same variable we
started with. So, we substitute u = x2 + 1 back in to get

(x2 + 1)101

22+ D) 0gx=""""__ 4 C. [ |
/x(x+) x = +

2
1 ONYIL0N 5.21 Calculate / x(x? +4) dx.
0

Solution Here u = x? + 4 seems to be the logical choice (it’s the “inside” function
of the composition (x> 4 4)%). Letting u = x*> + 4, du = 2x dx. Dividing both sides
by 2 yields %du =xdx. Then, (5.24) and (5.16) yield

1 1 4 2 g
/x(x2+4)3dx=/u3 (Edu)=5/u3du=%+C=¥+C. (5.25)

We've now found an antiderivative of x(x*> + 4)3. The Evaluation Theorem (Theo-
rem 5.2) then implies
2

=480. |
0

2 2 g)4
/ x(x2 4+ 4)3 dx = u
0

x
I ONYINBEN 5.22 Calculate / — dx.
V14 x?
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Solution For reasons similar to those in the previous example, the logical choice
here is u=x>+ 1. Then du = 2xdx. Dividing both sides by 2 yields §du=x dx.
Then, (5.24) and (5.16) yields

X 1
f de== [ u P du=u'"?+C=V1+22+C. =
V14 x? 2/

I ONWYINBEN 5.23 Calculate / Vx4 1dx.

Solution The only viable choice for u is x4 1. Letting u=x+1, we have
du =1 dx; employing (5.24) then yields

2u3/2 _ 2(x+ 1)3/2

/\/x—l—ldx:f1-«/x+1dx:/\/ﬂdx: +C="—""_4C. m

3 3

IDONYINNIN 5.24 Calculate / V14 x2 dx.

Solution This is the most challenging example yet. But hopefully your gut should
tell you to choose u =1 + x*. Then du = 2x dx and Jdu = x dx. Substituting in what
we know thus far yields

% / x*udu.

(I siphoned off one x from x° to use x dx = %du.) We now need to relate x to u to com-
plete the substitution. But since u=1+ x%, then x> =u—1, and so x* = (u — 1)2.
Thus,

1 1 1
Efx4ﬁdu=§/ﬁ(u—1)2du=5/\/ﬁ(u2—2u+l)du
:%f[u5/2—2u3/2+u1/2] du.

The properties of integrals (from Theorem 5.6) and (5.16) yield

1 /2072 aud?2 2432
C.
( 7 5 T3 )+

1 5/2 32, .1/2
Z -2 du—=—
2/[14 w4u ] u 5

(Each integral generates its own arbitrary constant, but these can be added together

to form another arbitrary constant, which is the C in the equation.) Substituting
back in u = 1+ x? finally yields

L14x2Y/2 214252 (14 x2)3/2
/xS\/1+x2dx=(+;C) —(+5x) +(+;C) +C. |

LI BTN 2326, and 30-31.
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Transcendental Tales
IDONILBIN 525 Calculate the integrals below.

1
(a) f 2 dx (b) f L e / Paxtl
0 x+1

2 + 1
Solution

(a) Let u=x?, so that du = 2x dx. Equations (5.24) and (5.19) then yield
/erxz dx:fe”du:e”+C:ex2 +C.

1 1
2 2
/ 2xe® dx=¢" | =
0

0
(b) Letu=x+ 1, so that du = dx. Equations (5.24) and (5.21) then yield

Therefore,

1 1
f dx:/—du:ln|u|+C:ln|x+1|+C.
x+1 u

(c) Lets first simplify the function:

x4 2x 41 2x
=1+ .
x2+1 x2+1

Then, by part 1 of Theorem 5.6:

X242x+1
dx=| 1d
/ x4 1 f x+/x2

The first integral yields x+ C; (from (5.17)). To calculate the second, let
u=x?+1, so that du = 2x dx. Equations (5.24) and (5.21) then yield

2 1
/ 2x dx:f—du:1n|u|—|—C2:ln|x2+1|—|—C2.
x+1 u

We conclude that

24 2x+1
/xt—x-i_dx:x-i—ln(xz—i-l)-l—C.
x4+ 1

(We don’t need the absolute value around x* + 1 since that quantity is always
positive. Also, I added C; and C; to produce C.) [

5.26 Calculate the integrals: (a) f tan x dx (b) / cotx dx
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Solution

sin x
cos x’

letting u = cos x we have du = —sinxdx, so that (5.24)

i 1
ftanxdx:/ S dx:—f—du.
COS X u

Here we need (5.21); we conclude that

(a) Since tanx=
yields

/tanxdx:—ln| cosx| + C=In|secx|+ C.

Ccos x

(b) Sincecotx= "3

, letting u = sin x we have du = cos x dx, so that (5.24) yields

1
/cotxdxzfc?sxdxzf—du.
sinx u

Here we need (5.21) again; we conclude that

fcotxdx:lnlsinxl—l—C. [ |

ID.ONILBN 527 Calculate the integrals below.

/4
(a) /x2 cos(x>) dx (b)fsecz(Zx) dx (c)/ cos(2x) dx
0

Solution

(a) Let u=x>. Then du = 3x? dx, and (5.24) along with Theorem 5.9 yields
2 3 1 1. 1. 3
X cos(x)dng cosuduzgsmu—i—C:gsm(x)—I—C.

(b) Letting u=2x, we have du=2dx. Then, (5.24) along with Theorem 5.10
yields

1 1 1
/ sec?(2x) dx = 3 / sec® udu= 2 tanu+ C= 3 tan(2x) + C.
(c) Using the substitution u = 2x, du = 2 dx yields
I
f cos(2x) dx = Esm 2x) +C.
Setting C = 0 and applying (5.13) then yields
/4 1 1 1
/ cos(2x) dx= — sin (2x)|g/4 =— (sinz — O) =-. [ ]
0 2 2 2 2

ENT BRI 5658, and 62-63.
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Tips, Tricks, and Takeaways

o The u-substitution technique is useful only when the integrand is of the form
f(g(x))g’ (x). Such integrands contain a composite function, f(g(x)), multi-
plied by the derivative of the “inside” function, g’(x). So, the first takeaway:
u-substitution should be used only when the integrand is a composite function.
(This reflects the technique’s origin in the Chain Rule, which should only
be used to differentiate composite functions.) You should then try setting
u = g(x), where g(x) is the “inner” function in the composition.

o The substitution u=g(x) converts f(g(x)) to f(u); nothing difficult there.
However, the remaining part of the integral, namely g’(x)dx, also gets
transformed—into du. Therefore, the complete substitution is:

u=g(x), du=g'(x)dx.

o Once you've transformed the integral to one involving u’s and (hopefully)
calculated the resulting integral, don’t forget to transform variables back to x

(using u = g(x)).

One last bit about u-substitution. Though we've used the technique thus far only
to help us calculate indefinite integrals, it works just as well for calculating defi-
nite integrals. Let me illustrate what I mean by returning to Example 5.21. Since
u=x? + 4 in that example, the upper limit of integration x = 2 becomes u = 8; the
lower limit of integration x = 0 becomes u = 4. Thus

2 1 8 1Tyt 8
fx(x2+4)3dx:—/ wWdu==|—| =480,
0 2 ), 24,

the same answer we obtained. The suggested exercises below further explore this
usage of u-substitution.

QT BRI 3740, and 61.

We've now learned a lot about integration. Additional integration techniques
and theory are typically covered in a second-semester college calculus course. Be-
cause we started this chapter by exploring the real-world context for integration, let’s
return to that and learn more about the real-world applications of integration.

5.10 Applications of Integration

Let me end the chapter by discussing two brief applications of integration.
(A second-semester calculus course is where the vast majority of the applica-
tions of integration are discussed.) I will introduce these via two examples.
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NDURIADNHNIILNN 5.28 In a simpli- v(1)

fied version of the Andersen Fitness Test,a 40 -
person runs back and forth between point
A and point B a set distance apart for 2 5, _
minutes, pausing momentarily at each end
to touch the floor. (The aim of the test

is to cover the greatest distance.) Suppose 0.5
Emilia’s velocity as she runs is given by the 20 -
function h
v(t) =80(t — 1)* — 80(t — 1),
(t)=80(t —1)> = 80(t — 1) o

measured in ft/s, and where 0 <t <2 (see Figure 5.8: The graph of v(t) = 80(t —
Figure 5.8). 1)® — 80(t — 1) on the interval [0, 2].

(a) At what time(s) is Emilia not moving? When is Emilia moving right, and
when is she moving left?

(b) Assume Emilia starts at point A. Calculate Emilia’s position function s(t)
from point A.

(c) How far away is point B?

(d) Calculate f02 v(t) dt. How does this relate to Emilia’s displacement over the
2 minutes, the quantity s(2) — s(0)? (Here v=5s".)

Solution

(a) We need to solve v(t) = 0. Factoring yields
80(t—D[(t—1)*—1]=0 = =0,1,2.

Thus, Emilia is not moving at the start of the test (f =0), the end of the test
(t =2), and at one time in the middle (t = 1).

When Emilia is moving right, her position function s(¢) is increasing (she
is getting farther away from point A), and so s'(¢) = v(¢) is positive. As Figure
5.8 shows, v(f) > 0 on the interval (0, 1). We conclude that Emilia is moving
right during the first minute of her 2-minute run. Since v(t) < 0 on (1, 2), she
is moving left during the second minute of her 2-minute run.

(b) Since s'(t) = v(t), we have that

s(t):/v(t) dt:/[SO(t—1)3—80(t—1)] dr

:80/(t—1)3dt—80/tdt+80/1dt,
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where I've used a few properties of integrals to break up the calculation. We can
use u-substitution to calculate the first integral; with u =t — 1 and du = dt, we

have 4 F_1)4
/(t—1)3dt=/u3du=%+C=( 1 ) +C.

The second and third integrals in the s(¢) equation are easy to do via (5.16) and
(5.17). Therefore

t—80<(t_1)4) so(ﬁ) 80t + C
s() = L) 805 )80t

=20(t — 1)* — 40> + 80t + C.

Since Emilia starts at Point A, we know that s(0) =0, which tells us that

C==20.Thus, ) _ 20t —1)* — 40¢2 + 80¢ — 20.

(c) According to the rules, Emilia must stop at point B to touch the floor. At that
moment her velocity is zero. We found in part (a) that v(f) =0 when t =0, 1, 2.
She starts the test at t = 0 and moves right. Since she’s movingleft for 1 <t <2,
the momentary pause at f = 1 must be when Emilia reached point B. And since
s(1) =20, we conclude that point B is 20 feet away.

(d) Since v(t) is continuous, from (5.13):

2
/ v(t) dt =s(2) —s(0) =0,
0

since s(2) =s(0) =0 (using the formula for s(t) from part (b)). We conclude
that Emilia’s displacement during the test is zero feet. [ ]

Part (d) of this example is a manifestation of a more general interpretation of the
Evaluation Theorem in the case when the integrand is a rate (like v()): Integrating
a rate yields the net change in the underlying function (s(t) in the case of the ex-
ample). This is the reason why in the instances when the integrand in (5.13) is a
derivative, that equation is sometimes called the net change theorem. This physical
interpretation of the definite integral in these cases complements its geometric in-
terpretation as the “net signed area” under the curve (recall (5.18)). The suggested
exercises below further explore this new interpretation.

4-5,16, 32, and 34-35.
PNUBINBRDCNYIZBAN 529 In many countries income is distributed unevenly

among the country’s wage earners; for example, in 2013 the bottom 99% of wage
earners in the United States received only about 80% of the nation’s pre-tax income.
Economists quantify this income distribution disparity using a Lorenz curve L(x),
defined to be the percentage of the nation’s income earned by the bottom x% of
households (here both x and L(x) are in decimal form).* Given a country’s Lorenz

4For example, the 2013 United States data just mentioned would correspond to L(0.99) = 0.8.
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cure, its Gini coefficient G, defined as

1
G=/ [2x — 2L(x)] dx, (5.26)
0

can be used to measure the degree of in- Y
come inequality in that country; the range 2.0
for G is 0 < G < 1, with higher values indi-
cating greater income inequality. Calculate 1.5
the Gini coefficient of a country with Lorenz
curve L(x) = x%. 10

Solution From (5.26):
1 0.5
G= / [2x — 2x*] dx. (5.27)
0

T T T—>X

This quantity is the area of the shaded re- ofz 014 06 08 10
gion in Figure 5.9. That area is the difference Figure 5.9: The graphs of y=2:’
between the area under the graph of f (x) = (gray) and y = 2x (black) for 0<x <1,
2x (the black line in the figure) and that un-  and the region (blue) between these
der the graph of f (x) = x* (the gray curvein  graphs.

the figure). Using what we've learned in this

chapter:

1 1 1
f [2x —2x*] dx =2 / xdx—2 f x*dx Difference and Constant
0 0 0
Multiple Rules, Theorem 5.5

27! B!
=2 |:—i| -2 [—:| Using (5.16) and Theorem 5.2
2 1o 3 Jo
1 2_1 Simplifyi
=1——-—=-. implifyin
33 plitying
Thus, the country’s Gini coefficient is G= % [ ]

Related Exercises

For my last act, let me take you back to where it all started: the falling apple prob-
lem illustrated in Figure 1.4. Let’s generalize things a bit, and consider the problem
of determining the position function of a sufficiently heavy object (i.e., not a feather)
thrown in the air, neglecting air resistance.

VNIYRIZDRD.CNYIYNIN 5.30 Suppose an object is thrown straight up from a height

of h meters and with initial vertical velocity v, (in ft/s). Assuming the objects
acceleration function is a(t) = —g, where g~ 32 ft/s? is the acceleration due to
gravity, find the vertical position function y(t) of the object.
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Solution
Since a(t) = v/(t), the equivalence (5.15) gives us a formula for the object’s velocity:

v(t)=fa(t)dt=/—gdt=—g/1dt=—gt+C,

where I've used the properties of integrals and also (5.17). Using v(0) = v, yields
C=vy, so that V(1) = v, — gt.

Now, since v(t) = y/(t), using again the equivalence (5.15) yields

y(t):/v(t) dt:/(vy—gt) dt:vy/ ldt—g/ tdtzvyt—‘%t2 + D.
Using y(0) = h yields D = h. Thus,
y() =h+vt— %gtz. (5.28)
(Note: This equation is valid only until the object hits the ground.) [

Equation (5.28) is quite the accomplishment: It lists the general (vertical) position
function of an airborne object assuming that gravity accelerates objects at a constant
rate (which was known to Galileo). In the special case that v, =0 (i.e., the object is
dropped from rest from a height k), (5.28) becomes y(t) =h — d(t), where d(t) is
the distance function (3.2) from Chapter 3 that helped spur Newton and his con-
temporaries to invent calculus. (Exercise 33 uses (5.28) to explain why sufficiently
heavy objects [e.g., a football] thrown in the air follow parabolic trajectories.)

5.11 Parting Thoughts

We have now come to the end of the chapter. In fact, we've come to the end of the
book. The past five chapters have developed the core concepts in calculus: the limit,
the derivative, and the integral. So, if you’ve made it this far, 'm proud of you. There
are more topics in Calculus 1 than what’s in this book, but those follow-ups ulti-
mately rely on either limits, derivatives, or integrals, which you’ve now gotten a good
deal of training on. So as far as 'm concerned, if these five chapters have made sense,
I would say you have learned calculus. I stand by this statement even if you have yet
to work through the optional content on exponential, logarithmic, and trigonomet-
ric functions, because ultimately that content is also just the application of the limit,
derivative, and integral concepts we learned to different families of functions. If you
do have the time, however, I encourage you to work through those optional sections.
Transcendental functions are widely applicable, and if you continue studying math-
ematics (or science) you'll keep running into them (and their calculus).

We have also explored a variety of applications of the calculus concepts we've
learned. Let me encourage you to look over the Index of Applications at the end of
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the book once more; it summarizes all of the applications contained in this book
and can guide you to discovering other applications you may not have read about
while working through these five chapters.

I hope you have enjoyed this calculus adventure. I have more parting thoughts

for you in the Epilogue, but again, congratulations on learning calculus! Best of luck
with your future studies in mathematics.

CHAPTER 5 EXERCISES

1-3: Calculate the area functions A(t) for the
objects whose speed functions 4 (x) are given
below.

1.5(x) =10
2. 4(x) =1 —x, considering only 0 <x <1
3. s(x) given by the graph below.

Z(X)
1.5 7

1.0

0.5

T T T 1 X
0.5 1.0 1.5 2.0

4. Pretend that the above graph is the graph of an
object’s instantaneous speed function 4(x). Use
it to calculate the object’s change in distance over
the following intervals: (a) [0, 0.5], (b) [0, 1], and
(c) [0.5,2].

5. The graph of the velocity of an object is shown

below.
v(x)
2 —

1 —\
T T T T > X
05 10 15 2.6\ 25 3.0

(a) Over what interval(s) is the object moving
left? Right?

1
(b) Calculate / v(x) dx and /
0 0

interpret your results.

3
v(x) dx, and

6. Consider the area function A(f)=

t
/ V14 x2dx, where0<t<1.
0

(a) Graph A(t) as an area.

(b) Calculate A’(t), and determine on what
subinterval(s) of [0, 1] A(?) is increasing.

(c) Calculate A”(t). On what subinterval(s) of
[0,1] is A(t) concave up?

t
7. Let A(t) :/ x dx.
0

(a) Calculate A’(¢).
(b) Let g(t) = A(t?). Calculate g’ ().

8. Evaluate f_ll V1 —x?dx using areas. (Hint:
Graph the integrand first.)

9. Suppose a differentiable function f satisfies

t
/0 f)dx=[f(O1

for all ¢. Find possible formulas for f.
10-12: Verify that F’(x) = f (x), and then use
b
Theorem 5.2 to calculate f f(x) dx for the
a

given a and b values.
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10. F(x) = (x + D%, f(x) =2(x+1),a=0,b=1
1LF(x)=—1,f(0)=5,a=1,b=2

12.F(x)=\/9_c,f(x)=ﬁ,a=l,b=9

N

13. This exercise guides you through the proof
of the Sum Rule from Theorem 5.5.

(a) Define

t
Afyo(t) = / [f (x) +g(x)] dx
t
Af(t)=/f(x) dx

t
Ag(t) :/ g(x) dx. (5.29)

What theorem allows us to conclude that
[Arig(O] =) +g(1), A}(f) =f(t), and
A =g (12

(b) It follows from (a) that

[Ar+g(D] = Ap(t) + Ag (D)
=[Ar(H) + Az (1))

What theorem was used to obtain that last
equality?

(c) Following the reasoning in Section 5.1
allows us to conclude from [Af+g(t)]/ =
[Af(t) + Ag(H)]" that Ay o(t) =Asp(t) +
Aq(t) + C. Why does setting t =a finally
yield the Sum Rule in Theorem 5.5?

14. Let’s return to (5.1), which is equivalent to
A =d@).

(a) Explain what A’(t) =d'(¢) tells you about
the graphs of d(t) and A(t).

(b) Consider now the function g(t) =A(t) —
d(t). What can you say about ¢’(t), and
why?

(c) Finally, explain why ¢’(#) =0 implies that
Alt)=d() +C.

15. Income Inequality Let’s return to Applied
Example 5.29.

(a) Explain why L(0) =0, L(1) =1, and why
both x and L(x) are numbers between 0
and 1.

(b) Explain why the Lorenz curve of a coun-
try in which every household has the same
income is L(x) = x. Show that in this case
G =0 (no income inequality).

(c) In reality, every countrys Lorenz curve
satisfles L(x) <x. Explain what this

means.

(d) Show that L(x) < x implies G > 0 (income
inequality is present).

16. Cardiac Output The cardiac output F of a
person’s heart is the volume (measured in liters)
of blood the heart pumps per second. Cardiol-
ogists measure F by injecting a certain amount
A (measured in milligrams) of dye into the right
atrium of the heart and monitoring the concen-
tration c(t) (measured in mg/L) of dye in the
aorta as the heart pumps. After some time T, all
of the injected dye has flowed through the mon-
itoring probe. Assuming F is constant, one can
then show that

F=

A

—
f c(t) dt
0

Suppose c(t) is given in the figure below. Es-
timate F by estimating the area of the shaded
region.

c(t)
0.6

0.4

02| \




17-26: Evaluate the integral.

1 2
17./ 4dx 18.f (x> — 1 dx
—1 0
2
19./ Jx dx
0
x—2
21. d
/\& *
1
23./ (1+32)%dz
0
t2
25. dt
| 7=

a
26./ xvVx*+a?dx (a>0)
0

27. What’s wrong with this calculation:

1 -1
X
/ x tdx="——
-1 -1

=2
1
28-31: Use the facts that f f(x)dx=1and
0

1
2o.f x(1+x°) dx
0

21/@—D@—m@

2
24./ xvx—1dx
1

-1

1
f g(x) dx =2 to calculate the integrals.
0

1 1
28. / 7f (x) dx 29. / (2f (x) 4+ 3g(x)) dx
0 0

0 1
30. / g(=x)dx 31. / xf(xz) dx
1 0

32. World Oil Consumption Suppose r(t) is
the instantaneous rate of change of the world’s

oil consumption, measured in barrels of oil per
10

year since 2017. Explain what r(t) dt repre-

0
sents. Do you expect that quantity to be positive,
negative, or zero? Briefly explain.

33. Parabolic Trajectories Sufficiently heavy
objects thrown in the air and not straight up
follow parabolic trajectories (neglecting air re-
sistance). Here’s why.
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(a) Denote by x(t) the object’s horizontal posi-
tion (say, distance from you). Ignoring air
resistance, explain why x(t) = v,t, where vy
is the object’s initial horizontal velocity.

(b) Let y(t) denote the object’s vertical posi-
tion (say, from the ground). Using part (a)
and (5.28), show that y(x) = Ax*> 4+ Bx + C,
where A < 0. (The graph of y(x) is therefore
a downward opening parabola.) Identify
the constants A, B, and C, and the physical
meanings of B and C.

34. Water Clocks This problem will show you
how integrals can help you construct a “water
clock,” an ancient timekeeping device that uses
draining water to measure the passage of time.
Consider a cylindrical tank of height H feet and
cross-sectional area A ft*. Suppose the tank is
filled with water to a depth of d feet (d < H), and
then a small circular opening of area A, ft* is
cut out of the bottom. Denoting by h the water
level height (in feet) in the tank, a result known
as Torricelli’s Law can be used to show that

W () = S <ﬂt— JE) ,

A\ A

where t is the seconds since the water started
pouring out of the bottom hole in the tank.

(a) In the case of A=, d =2, and where the
bottom hole has diameter 1/16 of an inch
(make sure to convert this to feet before cal-
culating Ay), integrate the resulting A'(t)
equation to show that

h(t):(ﬁ ‘ )2.

4(96)2

(b) How far up from the tank’s bottom should
a mark be made on the side of the tank
to indicate the passage of 1 hour (3600
seconds)? 2 hours (7200 seconds)?
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35. The Experience Curve Companies gener-
ally get more efficient at producing their prod-
ucts over time, and hence their production costs
decrease. Research has quantified this effect via
the experience curve. Denoting by P(n) the cost
(in $) of producing the n-th unit, a mathematical
model for P'(n) is

P'(n)=—aP()n %1,

where n>1 and a > 0. In this problem we’ll re-
late this to a popular model for the experience
curve. For simplicity, let’s assume that a =0.23
and P(1) =100.

(a) Calculate and interpret P'(100).

(b) Calculate P(n). (The function obtained is a
particular form of Henderson’s Law.)

(c) Show that each doubling in the number of
units produced decreases production costs
by roughly 15% (i.e., as a company gains
more experience producing its products, its
production costs decrease, hence the name
“experience curve” for P(n)).

36. This problem will guide you through a more
formal proof of (5.8).

(a) Recallthatf in (5.8)is assumed continuous,
so that it’s also continuous on the subinter-
val[t,t + At]. What theorem from Chapter
4 guarantees that f has a maximum and
minimum for some x-values in [t, t + Af]?

(b) Denoting the minimum of f on that inter-
val by f(m) and the maximum by f(M),
where m and M are x-values in [¢, t + At],
we now know that f(m) <f(x) <f(M) for
all x in [¢,t + At]. Explain why it follows
that

t+At t+At
/ f(m) dxs/ f(x)dx
t t

t+At
< / f(M) dx.
t

(c) Explain why the result in (b) implies that

1 t+At
fom <+ / F) dx <f(M).
t

(d) Using (5.5), we can rewrite the result in
(c) as

AA
fim) = —— < f(M).

Finally, explain why as At — 0, these in-
equalities imply that
AA
lim — =f(t
A%EO At U
(which reproduces (5.8)).

37. If f is continuous everywhere and ceR,
prove that

cb b
/f(x)dx:c/ f(cx) dx.

38. If f is continuous everywhere and ceR,
prove that

b+c

b
/ flx+c)dx= f(x) dx.

a+

39. Suppose f is continuous on [0, a].

(a) If f(—x)=f(x) (f is then called an even
function), prove that

af(x) dx:Zfaf(x) dx.
—a 0

(b) If f(—x) =—f(x) (f is then called an odd
function), prove that

af(x) dx=0.

40. Suppose f’ is continuous on [a, b]. Prove
that

b
2 / FEOf () dx=[f(b)1* — [f(a)]*.



41. The average value of a continuous function
f with domain [g, b] is defined by

1 b
_fav = E /L; f(x) dx.
Find the average value of f(x) = +/x on [0, 2].

EXERCISES INVOLVING EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

42-47: Evaluate the integral.

42. f 3¢ dx 43, / 5% dx
1 62 1
44, f e/ 1+ et dt 45.[ —dz
0 e zlnz

X 6102
46./ ¢ i 47. / (no)” 4o
T+ e 1 0

48. Suppose x < 0. Use the Chain Rule to estab-
lish that %[ln(—x}] = % Together with Theo-
rem 3.9, this yields (5.20).

49. Use Property 4 from Theorem 5.6, along with
the fact that ¢* > 1 for x > 0, to prove that

e>1+x forx>0.

Then, use this result to prove that

52
ele—i—x—i—? for x > 0.

50. Verity (via the equivalence (5.15)) that for
a#0,

—at 1 t
a

51. The hyperbolic sine and hyperbolic co-
sine functions, denoted by sinh(x) and cosh(x),
respectively, are defined by
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eF—e*
sinh(x) = 5

ef e

cosh(x) = 5

Show that

/ sinh(x) dx = cosh(x) + C,
/ cosh(x) dx =sinh(x) + C.

52. The prime number theorem states that the
number of primes less than or equal to a posi-
tive real number x—a function we’ll denote by
p(x)—can be approximated by

X1
p(x)~f2 Ly

when x is large.

(a) Treating ~ as =, calculate p’(x). You'll find
that p’(x) > 0; interpret your result.

(b) Treating ~ as = again, calculate p”(x).
You'll find that p”(x) < 0; interpret your
result.

53. Population density Let p(r) denote the
number of people (in thousands) per square mile
living a distance r miles from a city center, i.e.,
the population density. The total population
living within x miles of the city’s center is given
by

P(x)= /x 2 rp(r) dr.
0

(a) Assuming p is continuous, use the Fun-
damental Theorem of Calculus and (4.10)
(from Chapter 4) to approximate AP for a
small change Ax in x. Interpret your result
for Ax > 0.

(b) Suppose p(r) — e~ /100,
P(x) and lim P(x); interpret the latter
X—> 00

Calculate

result.
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EXERCISES INVOLVING
TRIGONOMETRIC FUNCTIONS

54-59: Evaluate the integral.
54, f(t3 —cost) dt
55. /(csc2 x — sinx) dx

/4
56. / 2cottesc®tdt  57. / sin (3z) dz
0

sinx

/4
58./ 5 dx 59./(1+tan9)d0
0  COs?Xx

60. Referring to Exercise 41, find the average
value of f(x) = sinx on [0, 7 ].

61. Consider the integral

/2
/ sinf+/1 —4cos?26 do.
T

/3

(a) Show that the substitution u =2 cos 6 con-
verts the integral into

1 1
—f V1—u2du.
2 Jo

(b) Evaluate the integral in part (a) by using an
area formula from geometry. Hint: Graph
the region of interest—the area under the

graphof y=+/1 —x? for0 <x<1.

62. Lung capacity Let v denote the velocity of
air flowing into the lungs of a person at rest
(we'll measure v in liters per second) during a
respiratory cycle. A reasonable model for v is

v(t) = asin (bt),

where a and b are positive constants, and ¢ de-
notes the time (measured in seconds) since the
respiratory cycle began.

(a) What is the maximum air flow velocity?
(Your answer will depend on a.)

(b) How long is one respiratory cycle? (Your
answer will depend on b.)

(c) Let t* equal half the number in part (b).

Calculate -
/ v(t) dt,
0

and explain what it represents.

63. Average temperature Home thermostats
cycle on and off in their attempt to maintain
a prescribed indoor temperature. Suppose that,
on a hot summer day, your home’s thermostat
is regulating the temperature inside your house
according to the function

T(t) =a+ bsin (ct),

where T(¢) is the temperature (in °F) at time ¢
(measured in hours since midnight), and where
a, b, and c are positive real numbers.

(a) Suppose youd like the maximum temper-
ature to be 76° F and the minimum to be
72°F. Find a and b.

(b) Using the a and b values found in part
(a) and Exercise 41, show that the average
temperature over a 24-hour period T,y is

1
Tav=744+ — [1 —cos(240)].
12¢

(c) Find the smallest nonzero c-value that
makes T,y =74° F.



Epilogue

Let me be the first to congratulate you for working through this book. Calculus is
a subject that is viewed by many as difficult, abstract, and inaccessible. I sincerely
hope this book gave you the opposite experience. The many applied examples and
applied exercises included should have given you a broad sense of how calculus can
be applied to real-world phenomena. Some of these applications, as I tried hard to
point out, drove the development of calculus. It is no surprise, then, that you will
find calculus lurking in many of the physical, life, and social sciences.

Regardless of where and how calculus shows up in your future, I hope you'll
also remember the main takeaways from this book. First and foremost, my initial
answer to the question “what is calculus?” from Chapter 1:

Calculus is a mindset—a dynamics mindset. Contentwise, calculus is the
mathematics of infinitesimal change.

You now have a much deeper understanding of what I meant—we used the dynamics
mindset over and over again to develop the three pillars of calculus (limits, deriva-
tives, and integrals). Each of these embodies the “infinitesimal change” nature of
calculus, and I tried to help you remember the particulars via the chapter titles
I chose:

o Limits: how to approach indefinitely (and thus never arrive)
o Derivatives: change, quantified
o Integration: adding up change

We covered a lot in this book. Yet there is always more math to learn. De-
pending on what field of study you ultimately choose to pursue, you might need
more than just first-semester calculus (which was the focus of this book) to under-
stand your discipline of interest. That is why I strongly encourage you to continue
studying mathematics. It is the only subject whose results remain true forever—for
example, Euclid’s proofs of various relationships in geometry are as true today as
they were millennia ago, and will continue to be so millennia from now. No matter
where in the world you live or what language you speak, mathematics provides a
unifying language with which to understand our world, our Universe, and our lives.

I hope you enjoyed the book, and that you continue studying mathematics.
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Appendix A Review of Algebra and Geometry

This appendix is a quick review of much of the algebra and geometry concepts you’ll
need to have mastered to succeed in calculus. We'll begin with a review of numbers and
interval notation, then proceed to basic geometry, and end with a review of algebra.
Ready? Let’s get started.

A.1 A Quick Review of Numbers

The simplest types of numbers are “whole numbers,” also called natural numbers:
1, 2, 3, etc. Adding zero and the negatives of the natural numbers to the list pro-
duces the integers. Next, we can envision dividing one integer by another (nonzero)
integer. This yields a rational number—a ratio of one integer (called the numera-
tor) with another nonzero integer (called the denominator): %.1 Note that integers
are particular types of rational numbers (namely, rational numbers with denomi-
nator 1), and natural numbers are particular types of integers. So thus far, rational
numbers are the largest set of numbers we've discussed.

Let’s now review the four arithmetic operations that combine two rational num-
bers (and by extension, integers and natural numbers) to produce another rational
number: addition, subtraction, multiplication, and division.

Adding and Subtracting Rationals

We can only add (or subtract) rationals with a common denominator. So, the first
step in adding (or subtracting) two rationals, say 3 and %, is to find a common
denominator. One choice that will always work is bd.> We then add (or subtract)
the rationals by making each denominator bd (in this case that means multiplying
the numerator and denominator of % by d, and the numerator and denominator of
5 by b) and then adding (or subtracting) the numerators together while keeping the
denominator the same:

ad bc_ad+bc

¢ a_°_
d bd bd  bd ’ b

c ad — bc
d  bd

I ONYIYREN A.1 Add and subtract the rationals % and %

1Sometimes we also refer to a rational number as a fraction.
2In math, two things written next to each other implies multiplication. For example, bd means b times d.
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Solution The common denominator is 14, so

3 7 6 13
ti="t+—==,

1 1 7 6 1
2 7 14 14 14 2

3_ —_—
7

Multiplying and Dividing Rationals

Multiplying rationals is easy. If § and 7 are two rationals, then’
a ¢ _ac
b d bd

So, you multiply the numerators together, and also the denominators.

14 14 14

Dividing rationals is almost as simple. The first thing to know is that dividing by

a rational 7 is the same as multiplying by its reciprocal %. Here’s the proof:

d

1 ¢4 4y
s _é.%_l c
We can then use this fact to divide two rationals:
5 ~a_ ¢ _ad ad
s b d b ¢ bc

9. ONYI28 A2 Multiply and divide the rationals 1 and %
Solution

_1.3_

==

-7 14

7
5

N | =
N W
[\
\llw‘l\)l»—-
N | =
.|.
N W
N | =
[SSHIRN

(A.1)

Now that you've gotten some practice with rationals, let's move on to the “real

number system.

A.2 The Real Number System and Interval Notation

In simplest terms, the real number system is the set of numbers (“real numbers”)

that can be written as decimals. One of three things can happen:

1. The decimal terminates after a finite number of decimal places. Examples: 2.7,

142 (which is 142.0).

2. The decimal has an infinite number of decimal places, but there’s a pattern that

repeats. Examples: 0.333 .. ., 37.146146146. ..

3Here the “-” denotes multiplication. We'll see why we prefer this to the “x” notation when we discuss algebra

in a few pages.
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3. The decimal has an infinite number of decimal places, but those numbers don’t
follow any pattern. Example: & (“Pi”).

Real numbers fitting into the first two of these cases can always be converted
to rational numbers. Real numbers fitting into the last case are called irrational
numbers (since they cannot be expressed as rational numbers). Perhaps the most
famous irrational number is 7 &~ 3.14159.. . ., the irrational number that relates a
circle’s circumference C to its diameter d: C=md.

Interval Notation
From the decimal expansion for = we know that
3<m <4

The “<” sign here is the “less than” sign. Its sibling is the “>" sign, the “greater
than” sign.* There are two similar symbols that are often encountered: < (“less than
or equal to”) and > (“greater than or equal to”). These symbols show up frequently
when describing the possible values that variables can have. For example, squares
with negative side lengths don’t exist. Thus, in the area formula A = x? for a square
of side length x, the real number x should satisfy x > 0. This can also be expressed
in interval notation:
{x=0} =10, 00).

By convention, a bracket next to a number in an interval indicates we include that
number in the interval, while a parenthesis means we exclude it. Here are the other
intervals that frequrently show up in algebra:’

(a,b)={a<x<b} [a,b)={a<x <D}
[a,b] ={a <x < b} (a,b]={a<x=<b}
Note that in this notation, the set of all real numbers is the interval (—o0, 00), the

entire real line (also denoted by R).
elate Xxercises .

Now that I've mentioned area, let's move on to a brief review of the basic
geometric formulas.

A.3 A Quick Review of Some Formulas from Geometry

Figure A.1 contains a rectangle, a circle, and a triangle. Let’s now review each shape’s
perimeter—the distance all the way around—and area formulas.

4The two are intimately related, since as our example illustrates, we could interpret 3 < 7 as “3 is less than 7’
or, viewing it as 7 > 3, it reads “rr is greater than 3”

5 Unfortunately, the interval notation (a, b) may also refer to a point in the Cartesian plane, but it should be
clear from the context what (a, b) means.
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x b

Figure A.1: A rectangle of width x and length y (left), a circle of radius r (middle), and a
triangle of base length b and height h (right).

a

Figure A.2: A right triangle with side lengths a and b, and hypotenuse c.

o The perimeter P of the rectangle in Figure A.1 is
P=2x+2y.

This is because as we walk along the edges of the rectangle we walk its width
twice (which contributes 2x to the perimeter) and its length twice (which
contributes 2y to the perimeter). The area A of the rectangle is A = xy.

o The perimeter of the circle in Figure A.1 is called the circumference C, and
C =2mr, where m & 3.14 is the irrational number mentioned in the previous

section. The area A of the circle is A = 7 72.

« The area of the triangle in Figure A.1 is A = § bh. The general formula for the
perimeter of a triangle is rather ugly, and we won't encounter it in this book.
However, let’s discuss the perimeter formula for a right triangle, a triangle
with one right angle (a 90 degree angle). This is really a way for me to remind
you of the Pythagorean Theorem: For a right triangle with hypotenuse ¢ and
side lengths a and b (Figure A.2),

a® + b =22 (A.2)
The perimeter P of such a triangle is therefore

P=a+b++Va*+ b2

These formulas have many, many applications. Exercise 10 at the end of this ap-
pendix, for example, uses the Pythagorean Theorem to derive the formula for the
distance between two points in the plane. Let me end this section with a simple
example that illustrates a real-world application of these geometric formulas.
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A.3 Suppose your friend Bob calls you and says “I just got a dog, I
have 20 feet of fence left over from a previous project, and I'd like to build a rectan-
gular play area for my dog that’s 6 feet long. Can you help me figure out how wide
his play pen will be?” Solve Bob’s problem.

Solution The amount of fencing is the perimeter of the rectangle: P =20. Were
also given the length: y = 6. Using the perimeter formula,

20=2x+12 — x=4.

So, the play pen should be 4 feet wide. [
Related Exercises

Notice that this perimeter question led quite naturally to an algebraic equation.
More complicated situations may lead to more complicated algebraic equations (for
example, some area problems lead to quadratic equations). Therefore, let’s now
move on to the algebra review.

A.4 Solving Simple Algebraic Equations

Calculus is full of algebra. There will be many instances where you’ll need to solve
an equation for the unknown variable, usually denoted by x.° For example:

x+2=10. (A.3)

To solve this equation we undo everything thats being done to x. So, to solve for x
we subtract 2 from both sides of the equation:

x+2—-2=10-2.

That leaves us with x = 8. The variable x, which at the start of the problem had an
unknown value, has now taken on the particular value 8.
Let’s now study a slightly harder example. Say we want to solve

2x+4=14. (A4)

To do so, we isolate the term involving x (the 2x term) first by subtracting 4 from
both sides,
2x=10.

We now divide both sides by 2. This yields x = 5. Note that in this example, and the

previous one too, we could have checked our answer by substituting the x-values we

6See Section B.1 for a discussion of what a variable is and the different types of variables you’ll encounter in
single-variable calculus courses.
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found into the original equations and verifying that those equations are satisfied.”
This is a general characteristic of algebra (and math): you can always check your
work.

The highest power of x in equations in (A.3) and (A.4) was 1. Let’s now review
how to solve equations involving at most squared powers of x.

A.5 Quadratic Equations

First things first: x? is defined to mean x multiplied by x:
X =x-X.

Here the “-” denotes multiplication.® Equations involving squared powers of x, but
not higher powers, are called quadratic equations. Here are a few examples:

=4, (x—1>4+1=2, x*+45x+6=0, 3x*+14x+15=0. (A.5)

Let’s review how wed solve each equation.

DOV A 4 Solve the quadratic equation x* = 4.

Solution Here x is being squared and the outcome set equal to 4. Following our
“undo what’s being done to x” approach thus far, we want to undo the square on x.
We do so by taking the square root of both sides. What we get is

Va2 =4/4,

Many students (and even some math teachers) would make the following two claims

at this point:
Va=42, Vx=x.

(The “£” symbol here is “plus or minus”) But neither of these is true.” Here’s what
is true:

Vi=2,  Jxr=xl

Here |x| is the absolute value of x; |x| equals x when x > 0, and —x when x < 0.!°
Using these facts, we have that

V=i = |x|=2.

7For example, for equation (A.3), it is indeed true that 8 +2 = 10, and that 8 is the only such number which,
when added to 2, yields 10.

8Were we to use the more familiar “x” wed get the awkward looking x> = x x x.

9See item 1 of the online supplement to this appendix for a detailed discussion of these incorrect claims, as well
as a discussion of the correct ones.

10For example, |5/ =5and | — 3| =3.
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Using now the absolute value definition, this yields the two equations:
x=2, —x=2.

These equations yield the two solutions x = £2. ]

A.5 Solve the quadratic equation (x — 1)2 +1=2.
Solution Subtracting 1 from both sides, and then taking the square root of both
sides yields
Vix—1)2=v1.
Following our earlier revelations about the square root operation, what we get is
[x—1]=1.
Using again the absolute value definition, this yields the two equations
x—1=1, —(x—-1)=1.
These equations have the solutions x =2 and x = 0, respectively. ]

0T BTl 3 and 4(a).

Let’s now return to the third equation in (A.5), the equation x> 4+ 5x + 6 = 0. This
equation can be solved in the same manner as the previous two examples, but doing
so requires a technique called completing the square. Let me show you how to solve
it another way, using factoring.

Let me illustrate factoring by grouping first, using x> + 5x + 6 as an example. To
start, let’s break 5 into 2 + 3. Then,

56=2 4 3)x=2x+ 3x.
Here I've used the distributive property:
a(b+c)=ab+ ac, (a+b)c=ac+ bc.
Returning to x* + 5x + 6:
X +5x+6=x"+ (2+3)x+6=x"+2x+3x+6.

The blue terms have an x in common, while the black terms have a 3 in common.
We can now factor out the x from the blue terms and the 3 from the black terms:'!

x(x+2) +3(x+2).

We now have groups of terms, each of which has something in common: x + 2. The
next step is to factor out the x 4 2 out of both groups (that’s why this process is called

1n this case, factoring involves using the distributive property in reverse, i.e., x4 2x=x(x+2).
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factoring by grouping):
x(x+2)+3(x+2)=(x+2)(x+ 3).

We conclude that
x>+ 5x+6= (x+2)(x+3).

Returning now to the third equation in (A.5), we can say that'?

x+2)x+3)=0 — x+4+2=0 or x+3=0.

Thus, the two solutions are x = —2 and x = —3.
I started the factoring by grouping process in the above example by breaking 5
into 2 4 3. But 5 is also 1 4+ 4. Had I used this instead we would’ve been left with

4+ Q4+Dx+6=x>+x+4x+6=x(x+1)+2Q2x+ 3).

But this time around there is no common “factor” of the form ax + b. So how did
I know earlier to use 5=2+ 3 and not 5=1+4 to accomplish our factoring by
grouping? The short answer is that for factoring by grouping to work for a quadratic
expression of the form

x4+ bx+c,

b must be written as a sum of two numbers that multiply to c. (The numbers that
multiply to c are called the factors of c.) In practice, it’s easier to use this guiding
principle in reverse: start with the factors of ¢, and see which ones sum to b. Let me
illustrate that with a couple more examples.

IDCNIPBIN A.6 Factor the quadratic expressions:

(a) x*+2x+1 (b) x> +3x—4

Solution

(a) Here b=2 and c=1. The only factors of ¢ are 1 and 1. It so happens that
2=1+1,s0

CH2x+1=x*+1+1Dx+1
=x>+x+x+1
=x(x+1+x+1)
=x+Dx+1)=(x+1>%

12When the product of two real numbers is zero, either one or both must be zero.
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(b) Here b =3 and ¢ = —4. So, were looking for factors of —4 that add to 3. The
only such combination is 4 and —1. So:
P 43x—4=x*+(4—1x—4
=x’+4x—x—4
=x(x+4)—(x+4H)=x—-1)(x—4) [ |

Related Exercises

Thus far we've reviewed how to factor quadratics whose coefficient of x? is 1. For
quadratics that don’t fit that mold, like the last equation in (A.5), factoring them
is tougher. A similar approach to what we just discussed works, but an even faster
approach involves using the quadratic formula.

The Quadratic Formula

Let’s say we're trying to solve the quadratic equation
ax* 4+ bx+c=0. (A.6)

The “completing the square” technique can be used to simplify the left-hand side of
(A.6). A few rearrangments later result in the following quadratic formula.'?

The Quadratic Formula

The two solutions to the quadratic equation ax? + bx + ¢ =0 are

_—b+vb2—4ac —b—b? —4ac

and x=
2a 2a

X

These two solutions can be written in one equation by using the “+” (“plus or

minus”) symbol:
—b+ Vb —4ac
x= .

> (A7)

Let’s now illustrate how to use the quadratic formula by solving the last equation
in (A.5).

1D ONIRNA A7 Solve the quadratic equation 3x? 4 14x + 15 =0.

13The quadratic formula is derived in item 2 of the online supplement to this appendix.
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Solution Comparing 3x% + 14x+ 15 to ax® + bx + ¢, we see that a=3, b= 14,
and ¢ = 15. Therefore, (A.7) gives

o —144 /(142 —4(3)(15)  —14+16 —14+4

2(3) 6 6
So, our two solutions are
—14+4 5 —14—-4
X=— = Xx=———=-3. ]
6 3 6

Let me end by commenting on three aspects of the quadratic formula.

o If b* — 4ac is negative, then you’ll have a negative number under the square
root in (A.7). The square root of a negative number doesn’t exist, so in these
cases we say that the quadratic equation has no solutions.'* Here’s an example:
x? +1=0. The quadratic formula gives x = 4/—1. But v/—1 doesn’t exist.
Thus, there are no solutions to x> +1=0."

« If you cannot find the square root of b* — 4ac without a calculator, then you
may have to use the rules of exponents (see the next section) to simplify your
answer.

« Finally, if you get the two answers x = A and x = B from solving ax? + bx +
¢ =0, then that means ax*> + bx +c=a(x — A)(x — B). This is a very useful
way to factor ax? 4+ bx+ c. (Try it on Exercises 2(b)-(c).) For example, in
Example A.7,

5
3 (x+§> (x +3) = 3x* + 14x + 15.

A.6 The Rules of Exponents

We've defined x? to mean x - x. Similarly, we define x® = x - x - x, and in general for
any natural number n,
AM=x-x-x---x.
—
n factors
So, if we ever have to multiply x” by something like x” (here m is another natural
number), we should expect that

Kt x™ = XM (A.8)

141n a branch of mathemtics called complex analysis, /—1 is defined to be the new “number” i. Accordingly,
any number containing i is called a complex number.
15We could also just realize that since x% >0, then x2 + 1> 1 and can thus never equal zero.
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because x" is the product of » factors of x, x is the product of m factors of x, and
so x" - x™ is the product of m + n factors of x, which is xmtn,

Equation (A.8) is our first rule of exponents. By using similar reasoning we can
derive a few other rules:

| The Rules of Exponents

For m and n any two real numbers, the following rules hold:
XMt = XM
(xm)n — xmn
(xy)n — xnyn
G) =%
z = =
Vo
"= —
x?’l
o
xn

These rules explain why we define x° = 1 for all x # 0.'° Finally, we define
xb = /x°. (Example: 35 = «3/3_2>

These rules and definitions help us simplify expressions involving radicals (,/ sym-
bols) that sometimes show up in the quadratic equation.!”

3
A.8 Simplify the expression: (a) 2°2°  (b) (x? ﬁ)3 (¢) ( 2;%)
x ! +x
(d)
x+y

Solution
(a) 23+5 — 28.

(b) (x2ﬁ)3 — (x2)3(y1/2)3 =x6y3/2 =X6\/)?=X6y\/)_/.

(c)
2 3_ )P A
3y2 - 0,2/3)3 - )7

16Note that x° = x1 71, and since x # 0, the Rules of Exponents yield x = x!x~1 = =1
17For example, J/8=81/2 = (4- 2)1/2, and using the Third Rule, (4 - 2)1/2 =412 212 — Ja\/2=2./2.
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(d)
xl4x  i4x Lo 1+
x+y x+y x+y  x(x+y)’ .

The Rules of Exponents can also be used to simplify expressions of the form
(x+ a)". For example, we can apply the first Rule to conclude that

x+a)(x+a)= (x+a)2.

Now, if we multiply out the left-hand side we see that

(x+ a)®> =x* + 2ax + a°. (A9)
Similarly,
(x+a)’ = (x4 a)*(x+a)
= (x2 + 2ax + az)(x +a)
= x(x* + 2ax + a®) + a(x* + 2ax + a*)
=x° +3x%a+ 3xa’ + a°. (A.10)

If we compare the formulas (A.9) and (A.10), we see a pattern: the expansion of
(x+ a)" starts with x” and ends with 4", and in each term in between the powers
of a and x add to n.'® It turns out that the coefficients in these expansions (the
numbers in front of the terms involving x and a) also follow a pattern:

1
/N
1 1
/NN
1 2 1
/NN SN
1 3 3 1
SN NN SN
1 4 6 4 1
This triangle is called Pascal’s triangle. The second row gives the coefficients in the
“expansion” (x + a)! = x + a. Notice that the 2 in the third row is the sum of the two

1s in the second row, and that the third row gives the coefficients of x, ax, and a2 in
the expansion (A.9). In general, any number in a row between the two 1s of that row

Bpor example, in the terms 3x2a and 3xa? in (A.10), the powers of a and x add to 3, which is the power of
(x+ a)3.
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is the sum of the two numbers directly above it in the preceding row. For example,
using the last row (and our observation about the powers of a and x adding to the

«_ »

n”in (x+a)"), we can say that

(x+a)4= Ixt +4xPa+ 6x%a® + 4xa® + 1a%, (A.11)

where I've put the coeflicients of each term in blue to help you spot the last row of
Pascal’s triangle.

Related Exercises E

That concludes my quick review of the pre-calculus content you should definitely
understand before starting Chapter 1. I encourage you to try out a few exer-
cises before starting Chapter 1, just to ensure what we've discussed in this appendix

sunk in.

APPENDIX A EXERCISES

1. Write the following inequalities in interval
notation (in each case x represents a real num-
ber):

(a)—1<x<2 (b)x>3
(c)x<-—7 (do<x<l1
2. Factor the quadratics below.

(@) x* +4x+3  (b)6x*+5x+1

(c) 3x* + 10x+8

3. Solve the quadratic equations below.
@x*+2=18 (b)3x*—5=22

(c) (x—2)*>+2=6

4. Solve the quadratic equations below.

(a) 2x2 —5=11 (b)x*+4x+4=16
() 6x2+5x+1=0 (d)x*=7x—3

5. Simplify the expressions below.

(@) x+ D7 (b) (x+2)(x—2)72
@Qx '+ x+D™! () **@2x+7)°

3
(e) V16a*b> (f) f/\/g
6. Write down the next row in Pascal’s triangle
(Section A.6). Then use it to help you expand
(x+a)°.

7. A triangle’s height is twice its base length. If
its area is 4 ft%, find the base length.

8. If you double the radius of a circle, by what
factor does the circle’s area increase?

9. This problem proves the Pythagorean Theo-
rem using the figure below.
a b

9Note: The formula sheet at the beginning of the book contains additional useful algebraic and geometric

formulas.
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(a) Show that the area of the outer (larger)
square is A = a® + 2ab + b,

(b) We can also express A as the sum of the
areas of the four white right triangles of base
a and height b, and the area of the inscribed
square of side length c. Show that doing so yields
A=c*+2ab.

(c) Compare the area formulas obtained to de-
duce that ¢2 = a? + b2

10. Consider two points (a,b) and (x,y) in
the plane, and let d be the straight-line dis-
tance between them (see diagram below). Use

the Pythagorean Theorem to show that

d=\/(x—a)* +(y—b)2.
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Nearly everything done in calculus is done to a function—we take limits of func-
tions (Chapter 2), we differentiate functions (Chapter 3), and we integrate functions
(Chapter 5). But why? What makes functions so central to calculus? And what is a
function, anyway? Is it just mathematical jargon or do functions have any interesting
real-world applications? This appendix discusses the answers to these questions.

B.1 Let’s Talk About Variables (and Pancakes)

A big part of calculus is studying change. In math we quantify change by introducing
variables (quantities that vary). For example:

o The temperature T inside your house is a variable.
o The amount of money M in your bank account is a variable.
e The area A of a pancake is a variable.

(In math we denote variables by italicized letters, and we often choose letters that
remind us of the meaning of the quantity.) Often the variables we’re interested in
are related to other variables by an equation. Returning to the pancake example,
suppose A is the area of a circular pancake of radius r. Then we know

A=mr’

Here  is the famous irrational number: 7 & 3.14. (See Appendix A for the defini-
tion of an irrational number.) This equation tells us that A is calculated by squaring
the r-value and multiplying the result by 7. Since the value of A depends on the
value of r, we refer to A as the dependent variable and r as the independent vari-
able. Moreover, we call a particular value of the independent variable an input and
the resulting particular value of the dependent variable an output. (For example, for
the input r = 2—a pancake of radius 2—the output is A = 7 (2%) = 47, a pancake of
area about 12.6 square units.)

There’s something special about the A = 772 formula you may not have noticed:
For each input there is exactly one output. This means you'll never get two (or more)
A-values for the same r-value. For example, the question “What’s the area of a per-
fectly circular pancake of radius 2 inches?” has only one answer: 47 inches squared.
Not all equations involving inputs and outputs have this property, however. For
example, in the equation x> + y> = 1 (the equation of a unit circle with center at the
origin), when x = 0 we get yz =1, whose solutions are y=—1 and y = 1. Thus, the
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input x = 0 yields two different outputs. Two-variable equations that obey the “for
each input there is exactly one output” rule avoid such issues. This is motivation
enough for the concept that underlies most of calculus: function.

B.2 What Is a Function Anyway?

Here’s the general definition we’ll be working with.

Definition B.1  Suppose the value of a variable quantity y depends solely
on the value of another variable quantity x. This relationship is called a (single-
variable) function if for each input x there is exactly one output y. We then
write

y=f(x)

and say that “y is a function of x” We call f the function.

The “f (x)” notation is read “f of x” It serves two purposes. First, it reminds us that
were dealing with a function (so that we don’t have to worry about ambiguities in the
outputs). Second, it helps us keep track of the output that results from a particular
input: if x is the input, then f(x) is the output (recall y = f (x)). Inputting an x-value
into a function is called evaluating a function. For example, “evaluate f(x) = x? at
x = 2" means “substitute 2 in for x,” which yields f(2) = 4.

Related Exercises
B.3 The Domain of a Function

Definition B.1 includes the phrase “for each input” But how do you know which
inputs can be substituted into a function? That depends on the domain of the
function: the collection (set) of allowable inputs.

I ONYIYNN B.1 Find the domain:

@ g=">
(b) f(x)=x+4
Solution
(a) The domain of g is all real numbers except for x =0.!

(b) All real numbers, denoted by the set R, or equivalently the interval (—o0, 00).
(Appendix A reviews interval notation.) [

I Division by zero is undefined; here’s one reason why. Suppose 1/0 = a, some number. Multiplying both sides
by zero yields 1 = 0, which is not true. So, 1/0 cannot equal any real number.
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Sometimes we also need contextual knowledge to help us determine the do-
main. To see what I mean, let’s briefly return to to our “pancake function” A(r) =
nr?. Mathematically we can substitute in any r-value wed like. But in the real
world pancakes with radii r <0 don't exist. So the proper domain in this context
is (0, 00).

B.4 Graphing Functions and Finding Their Range

Analogous to the concept of domain, we call the set of outputs that result from using
the full set of domain values the range of the function. Finding a function’s range is
often done with the aid of its graph: the collection of input-output points (x, f (x))
for all values of x in the domain of f.

Notice that graphing a function requires knowing its domain (that's why we
talked about domain in the previous section). Once we know the domain, we sub-
stitute each allowable input x into the function to get the associated output f(x),
and then create the points (x, f(x)). Plotting all such points in the xy-plane then
generates the function’s graph.

1NV B.2 Graph f(x) = x? and determine its range.

Solution The domain of f is R, so we can substitute in any real number for
x. I've chosen a few such numbers, calculated their f(x)-values, and assembled
the corresponding points in the table in Figure B.1(a); these points are plotted in
Figure B.1(b). Plotting more points would eventually generate the blue parabola in
the figure. The figure suggests that the range is the set of y-values satisfying y > 0.
Since y = x? is never negative and f(0) =0, we conclude that the range is indeed

[0, 00). ]
oy
x  flx) | (x, f(x) o
o | o \ ° /
0.0 ;
3 i (5 4) \ - /
IR 4
11 @
2 4 2,9 2
X
3 2 4 1 2 3

(@) (b)

Figure B.1: (a) A table of values and points for f(x) = x>. (b) The graph of f(x) = x? for
—3<x<3.
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As Figure B.1(b) illustrates, every point on the graph of a function tells us two
things: the x-value and the value of f at that x-value, f(x). Notice too that the
f(x)-value tells us how far away from the x-axis the point is. For example, point
(2,4) in Figure B.1(b) is 4 units above the x-axis.

B.3 Consider the function graphed in Figure B.2.
(a) Whatare f(0), f(2), and f(5)? y
(b) What is the domain of f?

@)}

n

(c) What is the range of f?

N

Solution - L X
(@) f(0)=1,f(2)=5,and f(5) =—4.
(b) The domain of f is [0,5] (0 <x <5).

No

n

(c) Every y-value between —4 and 5 Figure B.2
(including both of those numbers) is
attained for some x-value. Thus, the range of f is [—4, 5]. [

Il MRS Al 2(b)—(c), and 3-6.

The functions graphed in the previous two figures are special cases of a family of
functions known as polynomials. We'll soon study polynomials in general. But first,
let’s study the simplest polynomial: the linear function.

B.5 Linear Functions and Their Applications

Definition B.2 A functionf is called linear if its equation can be written as
f(x)=mx+0b, (B.1)

where m is called the slope and (0, b) the y-intercept.

Every linear function has domain R (we can input any real number in for
x in (B.1)) and range R. To understand that last claim we need to discuss the
interpretations of the slope and y-intercept.

The y-intercept has a simple interpretation: it's the point where the graph of the
linear function crosses (intercepts) the y-axis. The slope, on the other hand, mea-
sures how steep the line’s graph is. (The graphs of linear functions are lines.) To
understand that slope-steepness connection let’s first discuss how to calculate the
slope.
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How to Calculate the Slope of a Line

Given two distinct points on a line, (x,y1) and (x2, y2), the slope m of the
line is

m:}’z—)’l

: (B.2)
X2 — X1

Often (B.2) is expressed in terms of Ay =y, — y; and Ax =x; — x1, the changes
in the y-values and x-values, respectively, between the two points used to calculate
m in (B.2). (The symbol “A” is the uppercase Greek letter delta; in math it typically
signifies a change in a quantity.) Making those substitutions in (B.2) yields

A
m="2. (B.3)

Ax
Due to this “change in y divided by change in x” definition, the slope is sometimes

referred to as the “rise over run.” If we multiply both sides of (B.3) by Ax we get
Ay =mAx. (B.4)

To appreciate how the slope-steepness connection arises from this equation, con-
sider the familiar task of helping a friend load a moving truck (illustrated in
Figure B.3).

The horizontal distance Ax =6 is the same in both scenarios pictured. So, from
(B.4) we have Ay = 6m. And as this equation implies, the steeper ramp (Figure (a))
has the largest slope.

Equation (B.4) also contains many other useful insights about lines and their
slopes. For starters, suppose we're at point P on the graph of a line and move to
the right 1 unit (Ax=1). Equation (B.4) then tells us that the change in y-values,
Ay, is Ay=m. If m > 0, this means we move up to reach the next point Q on the
graph, so that the line tilts up. If m = 0 we travel horizontally (no tilt). And if m <0
we move down, so that the line tilts down. Figure B.4 illustrates the m > 0 case.

Figure B.3: Moving a heavy box up ramps of slope (a) 1 and (b) 0.5.
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Figure B.4 also illustrates how one can y
graph a linear function. First, plot the
y-intercept (0,b). Then, move one unit 0 :
to the right and either straight across Ay=m
(it m=0), up by m (if m > 0), or down by
m (if m < 0). Connect those two points and
you've drawn the graph of the line.

Finally, equation (B.4) is useful for de-
termining a convenient form for the equa-  Figure B.4: The graph of a certain lin-
tion of a line. If we return to Figure B.4 ear function with slope m > 0. Moving
and suppose P has coordinates (x,y;) and  right 1 unit from point P (i.e, Ax=1)

Q coordinates (x,y), then Ay=y—y; and results in a change in y of Ay=m, and
s0 a move up to point Q.

Ax=x— x;. Substituting these into (B.4)
yields the familiar point-slope equation of a
line.

The Point-Slope Equation of a Line

The equation of the line with slope m and passing through (x1, 1) is

y—y1=m(x—x1). (B.5)

IDOWILBN B 4 Find the equation of:

(a) The line passing through the two points (—1, 1) and (1, 3)

(b) The line that has slope —3 and passes through (1, 6)
Solution

(a) We calculate the slope via (B.2):

3—1
m=——=1.
1—(=1)

Then, using this and the point (1, 3), the point-slope equation yields
y=3=01Dx—-1) = y=x+2.
(b) We're given a point and a slope, so let’s use (B.5):

y—6=-3(x—1) = y=-3x+09. [

Related Exercises
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In addition to applications to moving boxes, linear functions have many
applications to the social and physical sciences (and beyond). Let’s briefly explore
these now (the exercises at the end of this appendix explore more applications of
linear functions).

Applications of Linear Functions

Often linear functions are used to describe mathematically the relationship between
two variables in a real-world problem. In general, “mathematizing” a real-world
problem is referred to as mathematical modeling. (Mathematical Modeling is dis-
cussed in greater detail in Chapter 4.) In the contexts linear functions show up in, the
slope and y-intercept often have useful real-world interpretations. The next example
illustrates this.

NYIBIRNCNYILNIN B.5 Suppose youre traveling to Europe from the United
States. Temperature in Europe is measured in Celsius (let’s denote that by C).

Luckily, the conversion back to Fahrenheit (denoted by F) is given by the linear
function

9
F(O)=-C+32 (B.6)

(a) Identify the y-intercept and the slope. Then graph the function.

(b) Interpret the y-intercept and the slope.

Solution

(a) Comparing (B.6) to (B.1) we see that the F
slope is % =1.8 and the y-intercept is
(0,32). To plot (B.6) we first plot the y- /
intercept (0, 32). Then, we move one unit
right and 1.8 units up (the slope) and plot /
the resulting point, (1,33.8). Connecting _go | _40 40 30
these two points yields the graph of the

line (Figure B.5). =40

(b) The y-intercept is easy to interpret: 0°
Celsius converts to 32° Fahrenheit. To in-

terpret the slope, note that (B.4) in this Figure B.5: The graph of the Cel-
sius to Fahrenheit conversion equa-

tion F(C) = 2C+32.

QN
—oVU

case reads
AF=18AC.

When AC=1 this yields AF = 1.8 (the slope). This says that a 1° Celsius
increase in temperature equates to a 1.8° Fahrenheit increase. |
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The last useful thing to know about slopes in real-world contexts is their units.
From (B.3) it follows that the units of the slope () are the units of the output y
divided by the units of the input x. In the case of the previous example, for instance,

the slope of 1.8 has units of degrees Fahrenheit divided by degrees Celsius. Due to

the slope’s units being a ratio of the units of the output and input, the slope is an

example of a rate of change. (This is an important fact that underlies one of the
main concepts in calculus—the derivative; see Chapters 3 and 4.) Here’s another

illustration of that idea.

VNDLIRIDRNONYIGNN B.6 Your friend is running in a 100-meter dash today.

You're at the event, standing 200 meters away cheering her on. At noon the run-
ners take off. The distance d (measured in meters) your friend is away from you

turns out to be the function of time given by

d(t) =200 — 3.9¢,

where ¢ is measured in seconds since noon. (Your friend is running toward you.)

(a) Identify the slope and y-intercept.
(b) Graph d(¢).

(c) Interpret your answers to (a) in the context of this problem.

(d) When does your friend finish the race?

Solution

(a) The slope is —3.9 and the y-intercept
(0,200).

(b) To plot d(t) we first plot the y-intercept
(0,200). If we then move one unit
right, since the slope is —3.9 we must
move 3.9 units down. By connecting
those two points we obtain the graph in
Figure B.6.

(c) The y-intercept tells us that at noon

200

160

120

80

40

t
10 20 30 40 50 60

Figure B.6: The graph of d(t) =
200 — 3.9¢.

your friend was 200 meters away from you. To interpret the slope, let’s
use (B.4), which now reads Ad = —3.9At. Therefore, for every second that
passes (At =1) the distance between you and your friend decreases 3.9 me-

ters (since the slope is negative). Moreover, since the output (d) has units of
meters and the input (#) units of seconds, the slope of —3.9 has units of me-
ters/second, the units of velocity. These two conclusions tell us that the slope
is the velocity with which your friend is running toward you.



B.6 Other Algebraic Functions ¢ 185

(d) Your friend finishes the race when she reaches the 100-meter mark. At that
time, she is 100 meters away from you, so d(t) = 100. Thus

100
100=200—3.9t =— t= 39 A 25.6 seconds.

(The symbol ~ used above means “is approximately.”’) ]

RGO RETG Y 18 and 24.

B.6 Other Algebraic Functions

Linear functions are examples of algebraic functions: functions that consist of
a finite number of sums, differences, multiples, quotients, and radicals involving
x"* (powers of x). Algebraic and nonalgebraic functions make up the usual cast of
characters in the calculus story. Let’s discuss algebraic functions now (nonalgebraic
functions are discussed in the last two (optional) sections of this appendix).

Polynomials

The simplest algebraic functions are polynomials. These functions are finite sums of
terms of the form ax”, where a is a real number and # a nonnegative integer. Here’s
the general definition.

Definition B.3 A function f is called a polynomial if
fxX) =apx" +a,_ 12" Vo a4 ayx + ag,
where n > 0 is an integer and ay, 41, ..., a,, are real numbers called the coeffi-

cients. The highest power of x present is called the degree of the polynomial.

The graphs of the constant polynomial (n =0, f(x) = ap) and the linear polyno-
mial (n=1, f(x) =aix+ ag) are lines. All other polynomials’ graphs are curves.
Figure B.7(a) shows a few representative examples. As those graphs hint to, all
polynomials have domain R.

Power Functions

Polynomials are sums of terms of the form x”. If we now allow #n to be any real
number we get the following new family of functions.

Definition B.4 A function f is called a power function if

fx)=ax’,

where a and b are real numbers.
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(b)

@)
Figure B.7: (a) Portions of the graphs of f(x)=x?>—4x+5, g(x)=x>+1 (gray), and
2x% — 1. (b) Portions of the graphs of f(x) =1, f(x) = x (gray), f (x) =x2, and f(x) =x°

h(x) = xt—
(dashed).
Power functions’ graphs are heavily influenced by the type of number b is. Let’s

briefly discuss the three most interesting cases (we’ll set a = 1 to make things easier).

Case 1: b is a nonnegative integer
In this case the power functions become 1, x, x2, X3, etc. Figure B.7(b) shows
graphs of these first four; all power functions in this case have domain R.

Case 2: b is a positive rational number

Here b = 7', where m and n are integers (n # 0), and m > 0. The power function

_’”xn

m
n

then takes the form
fx)=x

(One special case of this is xz=/xl = /x; Appendix A reviews the Rules of Ex-
ponents used in these simplifications.) Figure B.8(a) shows the graphs of a few
members of this family of functions. As those graphs suggest, the domain of this

subfamily depends on m and n.

Case 3: b is a negative integer
In this case we can express b as b= —n, where n is a positive integer. The power

function then takes the form
_.—n
flx)=x""= ot

The graphs of these functions are variants of the n=1 (i.e.,, b= —1) case, the
power function f(x) = }6; Figure B.8(b) shows a portion of its graph. Since we
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I

@) (b)

Figure B.8: (a) Portions of the graphs of f(x) = /x, f(x) = NS (gray), and f(x) = J/x.
(b) A portion of the graph of f(x) = %

can’t divide by zero there is no y-value associated with x =0 for this subfamily of
functions (we say that f(0) is undefined). And because of this, the graph of the
functions in this subfamily never cross the vertical line x = 0 (the y-axis). (The func-
tions are defined at every other x-value though, so their domain is all nonzero real
numbers.) The vertical line x =0 is actually a vertical asymptote of all the func-
tions in this subfamily.? These “do not cross” lines are common in the next family of
functions we'll discuss (rational functions). But before leaving the power functions
family, let’s discuss one interesting application of them.

NYIBIRDCNYIZNIN B.7 Many biological charateristics of organisms roughly
follow power law functions of the organism’s mass x, measured in grams (these are

called allometric scaling laws). For example, mammals’ lifespans L (in years) and
heart rate H (in beats per minute) roughly follow the power laws

L(x)=2.33x"2", H(x)=1,180.32x%2°,

with humans seeming to be the only exception.” Use these functions to show that
a mammal’s heart beats about 1.5 billion times in their lifetime. (Humans achieve
closer to 2.5 billion heartbeats in a lifetime.)

Solution Since 1 year contains 525,600 minutes, 525, 600H (x) has units of heart
beats per year. The total number of heart beats in a mammal’s lifetime is then

525, 600H (x)L(x) = (1.45 x 10%)x~ %%,

2We will discuss vertical asymptotes in detail in Chapter 2.
3These equations were derived in [4, 5], respectively. See also [3] for discussions of other allometric scaling
laws.
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This is another power law function. But since the exponent b= —0.04 is close to
zero and since we define x* =1,
525, 600H (x)L(x) ~ (1.45 x 10%)x° & 1.5 billion heart beats. (]

GO BRI 1215, 19-22, and 28. [

Rational Functions

Definition B.5 A function f is called a rational function if
e

q(x)’
where p and g are polynomials, and g(x) # 0.

fx)

The domain of a rational function must exclude all x-values for which g(x) =0.
Sometimes there are no such values (as in Figure B.9(a)), while other times there
may be multiple such values (as in Figure B.9(b)). The graph in Figure B.9(b) has
vertical asymptotes at x = %1, the same x-values that make the denominator of the
function, x? — 1, zero. The same phenomenon happened with f(x) = 91? You may
be tempted to conclude from these examples that rational functions have vertical
asymptotes at the x-values that make their denominators zero. But that’s not always
true. For example, the rational function f(x) = 7 doesn't have a vertical asymptote
at x = 0. In fact, the definition of a vertical asymptote requires the calculus concept
of limits; in Chapter 2 we'll discuss that definition of a vertical asymptote.

I ONWYINBSN B.8 Find the domain:
x
@) f()=——=

x—1

e

<

@ (b)

Figure B.9: Portions of the graphs of (a) f (x) = xZL—H and (b) g(x) = xz—x_l; the dashed lines
in graph (b) are the vertical asymptotes at x = £1.
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X+2

b =
(®) ¢t x4+ x3 —4x2 —4x

Solution
(a) The domain is all real numbers except for x = 1.
(b) Let’s first factor the denominator:
x4 2% — 4x? —4x=x(x3 +x* —4x —4)
=x[x*(x+1) —4(x+1)]
=x(x+ 1)(x* — 4).

The domain must exclude all x-values that make that last expression zero.
Thus, the domain is all real numbers except x =—2, —1,0, 2. [ ]

G BT 1617, 26, and 29.

B.7 Combinations of Algebraic Functions

We can combine members of the families of functions we've discussed to produce
other functions. Some examples:

fx) =5+ /x, gx) = VX h(x) =vx*>+1.

X2 +1
These functions are sums, quotients, roots, and compositions of polynomials and

power functions. We've yet to discuss compositions of functions—what’s happening
in h(x)—so let’s do that now.

Definition B.6  Suppose f and g are functions. The function f og de-

fined b
’ (f o)) =f(g()
is called the composite of f with g.

This definition says that the composite of f with g is obtained by replacing x in
f(x) with g(x).* For example, if we replace x by g(x) = x> + 1 in the function f (x) =
/x we obtain the composite function

f@) =gl =var+1,

the h(x) function at the start of this section. (I've colored g(x) to help you see what’s
going on.) Because finding composite functions is so important (as we'll see in
Chapter 2), let’s work through a few examples.

4Sometimes we call g the “inner function” and f the “outer function.”
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B.9 Let f(x) =x—1 and g(x) = H% Find: (a) fog, (b) gof,
©fof

Solution

(a) We replace x in f(x) with g(x):

1 1—(1+
f(g(x)):g(x)_lz(1+X> —is 1(+xX) :_I-T-x'
(b) We replace x in g(x) with f(x):

1 1 1
800 = I+/® 1+&x-1D x

(c) We replace x in f(x) with f (x):

fE))=fx)—1=(x—1)—1=x—2. n

The previous example illustrates two facts about composite functions: (1) fog
and g o f are generally not the same, and (2) the domain of f o g may differ from the
domains of f and g.

Related Exercises PREWGPYN
The final way we will discuss to combine functions is to “combine them in pieces.”

Here’s what I mean.

Definition B.7 A function f defined by two or more other functions, each
with their own domain, is called a piecewise function.

As this definition suggests, a piecewise function is
made up of other pieces of functions. Here’s an example:

2x, 0<x<l1 Y

f(x):{ 3x—1, 1<x<3 6 /

(See Figure B.10 for its graph.) The only slight compli-
cation that arises in working with piecewise functionsis 4

keeping track of which function to use when. For exam-

ple, to evaluate f(1) for the piecewise (linear) function 2
above we’d use the 2x “piece” of f, since 1 is in the
first domain, 0 <x < 1. (We’d get f(1) = 2.) But to find 1 S o
f(2) we’d use the 3x — 1 piece, since 2 is in the second

domain, 1 <x <3. (We'd get f(2) =5.) Figure B.10
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B.8 Exponential and Logarithmic Functions

Historically speaking, logarithms appeared in the mathematical literature before ex-
ponential functions did.” But let’s follow the modern approach to these topics and
discuss exponential functions first.

Exponential Functions
Here’s an intriguing question. Suppose a genie appears and gives you two choices:
(A) Receive $10 million right now.

(B) After 30 days, receive the result of doubling each previous day’s balance of an
account starting with 1 dollar today.

Which option would you choose? If you've heard the saying “good things come
to those who wait,” you can predict the better choice. To explain it mathematically,
let’s denote by M the dollar amount resulting from option (B), and by x the number
of days from today. Then,

M©O)=1, M@1)=2, MQ2)=4 M@3)=3,
You may have already spotted the pattern in these numbers:
M(x) =2*. (B.7)
And as it turns out,
M(30) =2 =$1,000,737,418.23,

one billion dollars! So, tell that genie to come back in 30 days!
The rapid growth of M(x) stems from it being an exponential function.

Definition B.8 Exponential Functions.  Suppose a and b are real
numbers, with a 40, b > 0, and b # 1. The function

fx)=ab" (B.8)

is called the exponential function with base b and initial value a. Moreover,
x is called the exponent.

>The mathematician John Napier (also known as Jhone Neper) introduced logarithms in 1614; exponential
functions seem to have first been discussed between 1661 and 1691 by the mathematicians Huygens and Leibniz
(the co-inventor of calculus).
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| <

O\ - -G0-~--O
|

Figure B.11: (a) Portions of the graphs of f(x) = 2%, f(x) = 0.5(2.5)* (dashed), f (x) =4%,
and f(x) =3(5)" (dashed). (b) Portions of the graphs of f(x)= (%)x, f(x)=0.5 (%)x
(dashed), f (x) = (i)x, and f(x) =3 (é)x (dashed).

A few quick comments on this definition.

Since f(0) =ab° and b° =1 (see Appendix A.6), we get f(0) = a. Thus, the
“first” y-value of f(x) =ab* is a, which explains why that’s called the initial
value of the exponential function.

Notice that f(x + 1) = ab*™! = ab*b! = bf (x), where we've used the Rules of
Exponents (see Appendix A.6). Thus, with each one-unit increase in x the
y-value gets multiplied by b. If b > 1 we get larger y-values, whereas if 0 <
b <1 we get smaller ones. We conclude that exponential functions’ graphs
increase if b> 1 and decrease if b < 1.% Accordingly, we call the b> 1 and
a> 0 cases of (B.10) exponential growth and the 0 <b < 1 and a > 0 cases
exponential decay; Figures B.11(a) and (b) show a few examples of each case.

Exponential functions are indeed functions (in that they satisfy Definition
B.1). Moreover, the domain of every exponential function is all real numbers;
the range is (0, 00) if a> 0 and (—00,0) if a < 0. Importantly, f(x) =ab* is
never equal to zero. (In fact, y = 0 is a horizontal asymptote of all exponential
functions; in Chapter 2 we will discuss horizontal asymptotes via the limit
concept in calculus.)

Exponential functions show up naturally in money matters, as the M (x) function
from (B.7) suggests. Here’s another example.

VNI RIDRNCNYILNAN B.10 Suppose you open a savings account that pays r%
interest each year and deposit $100 into it. Denote by M(t) the amount of money

you have ¢ years later.

OThis agrees with what we found in (B.7), an exponential function with b= 2.
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(a) Show that M(t) =100 (1 + r)’. (Here r is expressed as a decimal.)
(b) What is the account balance after 10 years, assuming r = 5%?2
Solution
(a) Atthe end of the first year you’ll have
M(1) = 100 + 1007 = 100 (1 +7)

dollars in the account. (Note that M(1) is your starting deposit of $100 plus
the interest earned on that $100.) At the end of the second year you’ll have

M(2)=M(1) +rM(1) =100 (1 + 7).
Therefore, at the end of year ¢,
M(t) =100 (1 +7)".

(b) We have
M(10) =100 (1 + 0.05)'° ~ $162.89.

That’s about a 63% gain over 10 years. This is larger than the 50% gain one
would naively assume (5% gains every year for 10 years). The compounding
effect is responsible for the larger gain (interest earned on the $100 deposit
itself earns interest, i.e., compounds). [ ]

NG BRI 3032, 41-44.

Exponential functions also show up in economics. In particular, they help us
understand inflation, the “general increase in the overall price level of the goods
and services in the economy” [6]; see Section 3.2.1 of [7] for more information.

It turns out that one particular base of the exponential function shows up all
throughout mathematics and science: e, Euler’s number. This irrational number is
approximately equal to 2.718, and is defined in terms of the calculus concept of limit
(this is discussed in Sections A2.3 and A2.6 of the online appendix to Chapter 2).
Using e, we can express any exponential function with base b as an exponential
function with base e:

ab®* < ae™. (B.9)
The number r needed to make this equivalence work is r =In b, the natural loga-
rithm of b. This is a special case of the more general notion of a logarithmic function,
so let’s discuss this next.

Logarithmic Functions

Let me introduce logarithms by returning to (B.7) and the genie’s two choices. Here’s
a question: How many days would it take for the “doubling the past day’s account bal-
ance” choice to match the $10 million choice? To find the answer wed need to solve
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2% =10, 000, 000. (B.10)

To do so, we have to “unexponentiate” to get an equation of the form x = answer.
This is precisely what logarithms do:

2¥=10,000,000 <= x=Ilog,(10,000,000)~ 23.3. (B.11)

So, by the 24th day the genie’s second option already yields a sum of money greater
than $10 million.

Thus far, the notation “log,” is just that—notation for the number x for which
2*¥ =10, 000, 000. We could run through a similar analysis and calculate, for exam-
ple, the number x for which 2* = 15. (That would yield log, (15) & 3.9.) If we now
considered the outputs of these calculations as y-values and the inputs as x-values,
we could generate the plot of log, x. This plot would pass the Vertical Line Test
(see Exercise 25), making log, x into a function. And since there was nothing spe-
cial about the base b =2, we could similarly generate the functions log, x for any
base b (recall that b > 0 and b # 1). This leads to the following definition.

Definition B.9 Logarithmic Functions.  Suppose b is a real number,
with b > 0 and b # 1. The function

f(x)=log, x (B.12)

is called the logarithm base b of x. If b = 10 we write log;, x as log x and call
this the common logarithm. If b = e (Euler’s number) we write log, x as Inx
and call this the natural logarithm.

Just to make sure, we say the right-hand side of (B.12) out loud as “log base b of
x” Armed with logarithms, we can now “unexponentiate” the exponential equation
=c:

b*'=c <<= x=log,c. (B.13)

Thus: Logarithms are the exponents in an equation involving exponential functions.
That is literally what (B.13) says, since log;, c = x and x is the exponent in b* =c. In
particular, (B.13) yields b" = e <= r =Inb, explaining the equivalence (B.9).

The equivalence (B.13) contains even more insights. First, lets insert the two
equations in (B.13) into each other:

o€ =, log, (b™) =x. (B.14)

The first equation says that if we start with b and raise it to the log base b of
¢, we get back c. The second says that if we take the base b logarithm of b-
raised-to-the-x-power, we get back x. So, b* and log, x undo each other’s oper-
ations (exponentiation and unexponentiation, respectively); we call pairs of such
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functions inverse functions. This relationship gives us information about the
domain and range of logarithmic functions. Here are the important takeaways.

o Aswe previously discussed, the range of y
b* is (0,00). Therefore, in the leftmost 107 ,/'
equation in (B.14), the inputs ¢ of log), ¢ v
are positive numbers. We conclude that 51 /.7
the domain of log;, x is (0, 00). [
o As we previously discussed, the domain 00 s e ( 5 1|0x
of b* is all real numbers. Therefore, in e
the rightmost equation in (B.14), the e =7
outputs of log, x are real numbers. We s
conclude that the range of log, x is all -10-
real numbers. Figure B.12: Portions of the

) graphs of f(x)=2% (in gray) and
o We now see that the domain and range F(x)=log, x; the dashed line is the

swap between the functions b* and graph of y=1x.
log, x. Therefore, the points (x,y) on
their graphs swap their coordinates. Indeed, since (B.13) tells us that

y=b" < log,y=x,

the point (x, y) on the graph of b* becomes the point (y,x) on the graph of
log,, x. And since (y,x) is the point (x, y) reflected about the line y = x, we
conclude that the graphs of b* and log,, x are reflections of each other about the
line y = x. (This also teaches us that x =0 is a vertical asymptote of all loga-
rithmic functions; vertical asymptotes are discussed in detail in Chapter 2.)
Figure B.12 illustrates this for the b =2 case.

Let’s now work through a few examples of how logs are used in practice.

B.11 Solve each equation for x.
(a) 3logx=1 (b) 51+3 =7
(c) log;2x+1)=1 (d)logx+log(x+3)=1

Solution

(a) Lets use (B.13). Using that log x =log,, x,
1
logyyx=3 = x= 105 = /10~ 2.15,

(b) Using (B.13):
52 =7 —  2x+3=log,7.
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Solving for x yields

1
x:z[(log57)—3]~—0.89.
(c) Using (B.13):
log;2x+1)=1 = x+1=3" — «x=1

(d) Since the equation involves log =log,,, let’s exponentiate each side of the
equation:
1010gx+10g(x+3) — 101 — 1010gx1010g(x+3) — 101’

where T've used the exponent property 10°t? =10%10° (see the Rules of
Exponents in Appendix A.) The leftmost equation in (B.14) tells us that
10'°8* = x and 10'°8*+3) = x 4 3. Thus, our equation becomes x(x 4 3) = 10,
or x* + 3x — 10 = 0. This equation factors into (x + 5)(x — 2) =0, and thus
x = —5and x = 2. However, we must reject the x = —5 answer, since log(—5)
(what would be the first term in the original equation we were asked to solve)
is not defined (recall that the domain of log, x is (0, 00)). Our final answer,
then, is x =2. [

Part (d) of this example illustrates the need to keep the domain of the functions
involved in mind. The example also illustrates how the Rules of Exponents can help
simplify log calculations. In fact, the following Rules of Logarithms can be derived
from the Rules of Exponents.

Theorem B.1 Rules of Logarithms. Let x and y be positive real
numbers, and r be any real number. Then,

1. log, (xy) =log, x+log, y  2.log, <’;‘) =log, x —log, y
3.log, (x") =rlog, x

Rule 3 can be used to derive the change of base formula (see Exercise 47):

log, ¢
1 =4 B.15
98 ¢ log, b ( )

a

(This formula converts a base b logarithm into a base a logarithm.) Here’s an applied
example illustrating these new log properties.

VNI RIDRDCNYIYNIN B.12 Any vibrating object (say, a radio speaker) results in

compressions and rarefactions of air molecules, creating a “pressure wave” that our
ears detect as sound. The loudness L of a sound wave of pressure p can be measured
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by the function
L(p) =1In (50, 000p),

where the units of p are Pascals (Pa) and the units of L Nepers (Np).”

(a) Solve L(p) =0. Then, using the fact that 2 x 10~ Pa is about the threshold
of human hearing,® interpret your answer.

(b) Were much more familiar with the decibel scale (dB). Given that 1 dB =
0.05In 10 Np, show that

L(p) =201log(50,000p) dB.
(Note the change from In to log.)

(c) If the answer to part (b) is rewritten in the form L(p) = A log p + B, what are
A and B, and what does B represent physically?

Solution

(a) First, recall from Definition B.9 that Inx =log, x. So, L(p) =1log,(50,000p).
To solve L(p) = 0 we employ (B.13):

log,(50,000p) =0 <= 50,000p = ¢".

Therefore, p = 50,1W =2 x 107 Pa (since ¢” = 1). We conclude that L(2 x
107>) =0, which tells us that L(p) has been calibrated so that the threshold
of human hearing corresponds to a loudness of 0 Np.

(b) To convert to dB we multiply L(p) by 1/(0.05In 10):

1 dB log, (50,000p)
log, (50,000p) Np - = 2
0850 000P) NP - 5 Tog 10 Np — (0.05) log, 10
_ 0loge(50,000p)
log, 10

Using now (B.15):

log,(50,000p)

=1 50, 000p) =1log (50, 000p).
log, 10 0g1( p) =log( P)

Thus,
L(p) =201log(50,000p) dB.

(c) Using Theorem B.1:

201og(50,000p) = 20[log(50, 000) + log p] = 201og p + 20 log(50, 000).

7The unit is named after Napier, the mathematician who introduced logarithms.
8This roughly corresponds to the sound of a mosquito flapping its wings about 10 feet away from you.
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Therefore, L(p) = Alogp + B, where A =20 and B=201log(50,000). Note
that L(1) = B. Thus, B is the loudness (in dB) corresponding to a sound wave
of pressure p =1 Pa. [

2EIT WEE N 3340, and 45-46.

Logarithms have many other applications. One very real—and useful—such
application is to estimating how much longer you’ll need to work before you can
live off your accumulated savings. This financial independence number turns out
to depend on the logarithm of the ratio of your yearly expenses to your yearly sav-
ings; spend less each year (and save more) and you'll decrease your number (see
Section 3.3 in [7] for more details).

B.9 Trigonometric Functions

“Trigonometry” has its origins in the Greek words trias (“three”), gonia (“angle”),
and metron (“measure”). To the ancient Greeks, therefore, trigonometry was the
study of the relationships between sides and angles of triangles. And since the ba-
sic trigonometric functions—sine, cosine, and tangent—are defined using triangles,
let’s talk about angles and triangles.

Angles and Triangles

Figure B.13 shows a circle of radius r. Imagine B
now rotating the radius OA through an angle 6

(called a central angle), measured counterclock-

wise from OA. (By convention, angles measured N
counterclockwise are positive, and those measured

clockwise are negative.) The tip of the radius OA

would trace out an arc on the circle of some length s

(called arclength) between OA and the new radius

OB. 1f 0 is large enough, eventually we'll have s=r.
Figure B.13: The arc length s

generated by a central angle 6 on
a circle of radius r.

The special central angle for which that is true is
what defines a “radian,” the preferred unit of angle
measure in calculus.

Definition B.10 Radian Angle Measure. = We define an angle of 1 ra-
dian (“1 rad”) to be the central angle of the arc whose length is equal to the
radius of the circle.

Put another way, 1 rad is the central angle of the arc of length r on the circle of
radius 7.
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Let’s now return to Figure B.13. Imagine continuing to rotate OB counterclock-
wise until we go all the way around the circle and reach OA. We then say that
we've traversed the circumference C of the circle. Ancient civilizations had long
noticed that the ratio of C to d—the diameter of the circle, defined by d =2r—is
constant, regardless of the size of the circle. Today we denote this constant by the
Greek letter “7™:

C
E:n «—— C=nd <+ C=2ur. (B.16)

Returning to the terminology of Definition B.10, if 1 rad is the central angle of the
arc of length r on the circle of radius r, then 27 rad is the central angle of the arc of
length 2777 on the circle of radius r. But since 27 is the circumference of that circle,
we conclude that the central angle subtended by a circle of radius r is 27 radians.
You are no doubt familiar with the alternative unit for measuring angles: degrees.
In those units, one full revolution around the circle measures 360°. (This dates back
to at least ancient Babylonian astronomers (circa 1900-1500 BC), who observed
that the Sun takes about 30 days to move through each of the 12 constellations that
make up the Zodiac. Since 30(12) = 360, each degree therefore roughly corresponds
to one day’s motion of the sun through the Zodiac.) Since we now know that one
tull revolution corresponds to an angle of 2 radians, we get the nifty conversion

180°
7 rad=180° = 1lrad= < ) ~ 57.3°. (B.17)
i
Returning now to Figure B.13, we can set up the following proportion:
s 0
— = <= s=rf. (B.18)
2nr 2w

This equation gives us the arc length s swept out by a central angle 6 on a circle of
radius r. Note: This equation (s =r6) should be used only when 6 is measured in
radians.

INONYIINN B.13 Consider a circle of radius 4. Find the arc length subtended by
the central angle & = 45°. What fraction of the circle’s circumference is your answer?

Solution To use (B.18) we first need to convert 45° into radians. Using (B.17):

7 rad T
45° .| —— ) = — rad.
180° 4

s=4(%)=m.

The circle’s circumference is C = 277 (4) = 87 (using (B.16)), so the arcis g = 0.125
(12.5%) of the circl€e’s circumference. [ |

Then (B.18) yields
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Equation (B.18) also has many real-world
applications, as the following example illus-
trates.

NDYRIIBRY NI B.14 Erastosthenes—

a Greek mathematician who lived circa 250
BC—was perhaps the first person to accurately
estimate the Earth’s radius and circumference.
(He assumed the Earth was a sphere.) Here’s

how he did it. Erastosthenes knew that on the Figure B.14
summer solstice, the Sun shone directly over-

head at noon in Syene (what is today Aswan, Egypt); this is location A in Figure B.14.

On the same day, Erastosthenes was in Alexandria (location B in the figure) at noon

and measured the angle 6 that the Sun’s rays made with the tip of the shadow of a

pole. He measured 6 &~ 7.12°.

(a)

(b)
(c)

(d)

Assuming the Sun’s rays are parallel, explain why the two angles in Figure
B.14 are equal.

Convert 7.12° to radians.

Erastosthenes knew that the distance from Alexandria to Syene was 5,000
stadia. A “stadion” was the length of an athletic stadium. A Greek stadion
converted to about 607 feet, but an Egyptian stadium converted to about 517
feet. Given that 1 mile converts to 5,280 feet, convert 5,000 stadia to miles in
each case.

Interpreting the 5,000 stadia distance as arc length, estimate the radius of the
Earth using (B.18) and your results from parts (b) and (c). (A modern-day
estimate is 3, 959 miles.)

Solution

()

(b)

(c)

Euclid proved that when two parallel lines are cut by a transversal, alternate
angles are equal. Assuming the Sun’s rays are parallel, the line in Figure B.14
connecting the center of the Earth and location B is a transversal; thus the
two angles in the Figure are equal.

The radian measure is
712w

180
Using the Greek units, 5,000 stadia converts to:

~0.124.

607 ft 1 mile

. A 574.81 miles.
1 stadion 5,280 ft

5,000 stadia -
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Using the Egyptian units, 5,000 stadia converts to:

517 ft 1 mile

. A 489.58 miiles.
1 stadion 5,280 ft

5,000 stadia -

(d) From (B.18) we have r = 7. Using the Greek units:

574.81
res
0.124

~ 4,635 miles.

Using the Egyptian units:

_489.58

r A 3,948 miles.
0.124

The Greek units overestimate Earth’s radius by about 17%. But the Egyp-
tian units underestimate by about 0.28%! Either way, these are impressive
estimates given the times (circa 200 BC!). [ |

Related Exercises ERE¥N

Okay, let's now move on to discussing triangles—shapes containing three (“tri”)
angles.

The ancient Greek mathematician Euclid—con-
sidered by many to be the “father of geometry”—
studied and proved many results about triangles in b
his important treatise on geometry titled Elements
(circa 300 BC). Among these are properties of right 0
triangles—triangles including an angle measuring a

.

90° (a “right angle”); Figure B.15 shows one such tri- g4 gure B.15: A right triangle
angle. As Euclid proved, the sum of the angles ina  yith side lengths a and b, hy-
triangle is 180°, so we know that the angle & <90° potenuse ¢, and acute angle 6.
in the Figure. (Such angles are called acute angles.)
The three sides of the triangle in the Figure have special names depending on their
location relative to the right angle and the angle 0: the side of length c is called the
hypotenuse (since it’s the side opposite the right angle), the side of length a is the
angle’s adjacent side, and the side of length b is the angle’s opposite side. Euclid
proved in Elements that
a® + =7 (B.19)
This is now known as the Pythagorean Theorem. (Greek writings attribute this
theorem to Pythagoras (circa 500 BC).) The Pythagorean Theorem only relates the
squares of the side lengths of a right triangle. Later on, the Greeks also studied the
relationships between a, b, and ¢ themselves, eventually leading to what we today
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recognize as the three basic trigonometric ratios:

opp. b
—— =—, cosb
hyp. ¢

A few quick comments:

_adj. a

- tane—%—b
hyp. ¢

= =-. B.20
adj. a (8.20)

sinf =

» « »

o The abbreviations “adj;,” “opp,” and “hyp” refer to the adjacent, opposite, and
hypotenuse side lengths in Figure B.15 relative to the angle 6 in the figure.

o Be careful with the notation: “sin0” is read “sine of theta.” It is not “sin times
theta” Indeed, “sin” by itself is meaningless in math.

« Note that tan § = $2¢

cosf*

IDONILBIN B.15 Refer to Figure B.15 to answer the following questions.

(a) Calculate sin€ and cos 6 if a=b= 1. What is 6 (give both radian and degree
measures)?

(b) Given that sin30° = %, calculate cos 30° and tan 30°.

Solution

(a) From (B.19) we get that 2 =12+ 12, so thatc = +/2. (We ignore the c= -2
solution to ¢2 = 2 because c is a distance.) It follows from (B.20) that

1 V2

2

sinf = — = —, cosf = —, tan0 =1.
1 V22 2

Since a = b (when this happens the triangle is said to be isosceles), then the

non-right interior angles of the triangle are equal. (Euclid proved that the

base angles of isosceles triangles are equal.) Since these two angles must add

to 90°, we conclude that 6 =45° = 7.

(b) We can use the given sine value to construct a right triangle in which b=1
and ¢ = 2. This won't be the only triangle for which sinf = %, but every other
triangle will be “similar” to that one. (We say that two triangles are similar if
their angles are pairwise equal and their corresponding sides are in constant
proportion.) We can then find a from (B.19):

= —b =3,
which yields a = /3. It then follows from (B.20) that
V3 V3

c0s30° = —, tan 30° = —. ]
2 3

QT BRI 53, and 58-60.
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Figure B.16: (a) A circle of radius 1 (in blue) with an inscribed right triangle. (b) Points
(x, y) on the unit circle and their associated x = sin# and y = cos § values for 0 <6 < 7; note
that tan 90° is undefined (since cos 90° = 0).

As the previous example shows, we can use Euclidean geometry to extract lots
of values of sine, cosine, and tangent. Moreover, if we embed the triangle in Figure
B.15 in a circle we can extract all their values. Here’s how.

First, let’s insert the right triangle in Figure B.15 into the Cartesian plane and set
a=x,b=y,and c=1 (see Figure B.16(a)). Then (B.20) becomes

tanf = Z.
X

sinf =y, cosf =x, (B.21)
If we now imagine 6 varying, the hypotenuse in Figure B.16(a) would produce a
circle of radius 1 (the blue dashed curve in Figure B.16(a)). Any point (x, y) on this
circle, therefore, would generate particular sin6, cos @, and tan 6 values via (B.21).
Importantly, this teaches us that cos 6 is the x-coordinate of a point on the unit circle,
while sin6 is that same point’s y-coordinate. Therefore, we can associate points on
the unit circle with values of sin and cos 8! The table in Figure B.16(b) illustrates
this fact.

Let’s now discuss how to derive the values of the trio of trigonometric ratios for
0-values in Quadrants II-IV (see Figure B.17(a) for a reminder of the angle ranges
corresponding to each quadrant of the plane). To start, note that each point (x, y)
on the unit circle is naturally associated with three other points:

(a) (—x,y), the point horizontally opposite from (x, y)
(b) (—x,—y), the point (x, y) reflected about the origin
(c) (x,—y), the point vertically opposite from (x, y).

Figure B.17(b) illustrates these sister points. As the figure’s caption indicates, the
angle measures associated with each of the three latter points are the angle measures
associated with (x, y) plus an integer multiple of 7 /2. Therefore, as 6 varies from 0°
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Quadrant I Quadrant |
7<0<nm 0<6<3
90° <6< 180° 0° <6 <90°

Quadrant Il Quadrant IV
<< T<g<2n
180° < 6 <270° 270° <0< 360°

(@) (b)
Figure B.17: (a) Angle ranges for each quadrant. (b) A point (x, y) on the unit circle at
an angle 6, and the points: (—x,y) at 6, =0 + %, (—x,—y) at =0 +m, and (x,—y) at
03=0+2.

to 90° in Quadrant I, the values of sin6, cos, and tan 6 generated also generate
values in Quadrants II-IV. Moreover, the symmetry of Figure B.17(b) hints at rela-
tionships between the trigonometric ratios corresponding to the four points in the
figure. For example,
sinf =sin6y,

since (x, y) and (—x, y) have the same y-value, and since sin6 is the y-coordinate of
a point on the unit circle. Similarly, cos @ = cos 83. We'll soon use these insights to
help us understand the functional nature of sin6, cos 6, and tan 6, and also to help
us graph them.

Before getting there, let me briefly discuss one more insight our unit circle em-
bedding of a right triangle yields. Applying the Pythagorean Theorem to the triangle
in Figure B.16 yields x? + y* = 1. Using (B.21), this becomes

(cos0)? + (sinh)? =1.

By convention, we write (sinf)? =sin and (cos0)? = cos® #, which yields the
trigonometric identity

sin%0 + cos? 6 = 1. (B.22)

Many other trigonometric identities can be derived from the unit circle, including
the following two (which we’ll use in Chapter 3):

sin (a + b) = sin (a) cos(b) + sin (b) cos(a) (B.23)
cos(a + b) = cos(a) cos(b) — sin (a)sin (b). (B.24)
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Figure B.18: The graphs of (a) f(8) =sin#, (b) f(0) =cos 6, and (c) f(#) =tan6 for 0 <6 < 2.

Trigonometric Functions

Returning to Figures B.16 and B.17, it’s clear that to each angle 6 there corresponds
a unique point (x, y) on the unit circle. We conclude that for each 6 there is a unique
cos 0 value and a unique siné value. Thus, cos 6 and sin 0 satisfy Definition B.1 and
define functions. And since tan0 = zgéz (recall (B.21)), we conclude that tan@ is
also a function. Figures B.18(a)-(c) show the resulting graphs of sin6, cos6, and

tan @ for 0 <6 < 2m. A few of their features deserve comment.

o The graphs consider only 0 <6 <2m. That’s because once 6 > 2w we've al-
ready gone around the circle once. That means wed start repeating values of
sine, cosine, and tangent (recall the correspondence between points on the
unit circle and values of those trigonometric functions). We conclude that

sinf =sin (0 +2m), cosO =cos(f +2m), tanf =tan(0+ 2m).
(B.25)

Any function f for which f(x) =f(x+c¢) for all x and some constant c is
called periodic, and the smallest value of c is called the period. In this ter-
minology, the first two equations in (B.25) tell us that sine and cosine are
periodic functions with period 2. The last equation also tells us that tangent
is a periodic function, though with period 7. (This follows from the fact that
tan @ = tan(0 + m) for every 0; recall that the period is the smallest ¢ such that
f(x) =f(x+ c) for all x.) Therefore, the graphs of sine, cosine, and tangent go
on forever, and look the same on any interval of length 27 (in the case of sine
and cosine) or 7 (in the case of tangent).

o The graphs of sine and cosine indicate that —1 <sinf <1 and —1 <cosf <
1. These inequalities follow from the functions’ interpretations as x- and y-
coordinates of points on the unit circle (and also from the identity (B.22)).

e The function tan @ is undefined when 6 = % =90° and 8 = 37" =270°, since

its denominator, cos 8, is zero at those 9-values. Moreover, unlike sine and
cosine, the outputs of tan # are unbounded.



206

B. Review of Functions

Thus far we've only discussed measuring
angles counterclockwise from the x-axis. Let’s e TN
now discuss what happens when we measure o N
angles clockwise. S 1 N\

According to our sign convention, this cor- / ) g \
responds to negative angle values. Figure B.19 : » a E
shows a representative triangle on the unit cir- \ i
cle along with its positive-angle counterpart N\ 1 /!
(in blue). The symmetry of the unit circle \\\ P v'(x, )
implies that the endpoints of the hypotenuse RN ISP ag

of both triangles have the same x-coordinate,
and that their y-coordinates are negatives of
each other. Recalling again that cos6 is the
x-coordinate on the unit circle and sinf the
y-coordinate, we conclude that

Figure B.19: Two mirror image
right triangles on the unit circle with
interior angle 6.

cos(—0) =cosf, sin(—0) = —sin6. (B.26)

Thus, the graphs of sinf, cos6, and tan6 go on forever in both directions! See
Figure B.20.

As the first two graphs illustrate, sine and cosine functions have maximum and
minimum values. Let’s end this section with a discussion of how to spot those values
from the equations of the trigonometric functions. To wit, consider the functions

f(6) =Asin(BO) +C, g(6) = A cos(BO) + C. (B.27)

The constants A, B, and C here have the following interpretations.

o C is called the midline; it'’s found by taking the average of the maximum
and minimum y-values. The line y = C is the horizontal line exactly half the
distance to the maximum and minimum values of the function.

y y
1.0 4 1.0
.5 0.5
I T |9 [ 1 9
b1s 2n 4t —4m 21 2n 47
-0\5 0.5

-1.00 4

(@) (b) (©

Figure B.20: The graphs of (a) f(8) =sin®, (b) f(0) =cos 6, and (c) f(0) =tan 6 for —4nw <0 <4m.
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o |A] is called the amplitude; it equals the difference between the maximum
y-value and the midline (or equivalently, the difference between the midline
and the minimum y-value). Therefore, C+ |A| and C — |A| are the maximum
and minimum y-values attained, respectively.

o Bis called the angular frequency; it gives the number of complete oscilla-
tions in an interval of length 27r. Two related concepts are the period T'= %”,
the distance (on the 0-axis) it takes to complete one full oscillation, and the
frequency f =1/T.From T = %’T it follows that f = %. Therefore, f gives the
number of complete oscillations in a unit interval (an interval of length 1).

For example, referring back to Figure B.18(a), we see that since the line y =0 is
half the distance to extrema of the function, the midline is C = 0. Moreover, since
the maximum y-value is 1, and 1 — 0 =0, then the amplitude is A = 1. In addition,
since one complete oscillation takes 27t units of 6, the period is T = 2. Therefore,
the angular frequency is B= %—Z = 1. Inserting these data into (B.27), we conclude
that the function graphed in Figure B.18(a) is either f(6) =sin6 or g(0) = cosé.
Since (0,0) is a point on the graph in Figure B.18(a), we conclude that that is the
graph of f(0) =siné.

The terminology surrounding the constants in (B.27) is especially useful for
developing mathematical models of physical phenomena. The following example
illustrates this.

B.16 The average low temperatures over the past few
decades for New York City closely follow the curve in Figure B.21(a) (data source:
weather.com), oscillating between a minimum of 23° F and a maximum of 68° F.
Let t denote the number of months since January 1 and L denote the corresponding
average low temperature in New York City. The data considered thus far suggest that

L
80
—~

60 7
40

| o N

—"1 N~
20

t
2 4 6 8 10 12

Figure B.21: (a) Average low temperatures L (in Fahrenheit) over the past few decades for
New York City as a function of months ¢ since January 1. (b) Two angles on the unit circle
with the same x-coordinate.



208

B. Review of Functions

a reasonable model for L is

(a)

L(t) = A cos(Bt) + C.

Find A, B, and C.

(b) Estimate the times of year for which the average low in New York City is above
freezing (32° F).
Solution
(a) We find C by averaging 23 and 68, which yields C=45.5. Then, since

(b)

the maximum value is 68 we know that |A| =68 — 45.5=22.5. (We'll dis-
cuss whether A =22.5 or A = —22.5 shortly.) Finally, since we presume the
weather pattern repeats every 12 months and ¢ is measured in months, the pe-
riod T = 12. Therefore, the angular frequency is B= 2Z = % and we have the
following options for L(t):

Tt Tt
22.5 cos (?) +45.5, —22.5cos <?> +45.5.

We must reject the first option, since at =0 it yields 68°, which is certainly
not the average low on January 1st in New York City. We conclude that L(t) =
—22.5cos(rt/6) +45.5.

Setting L(t) = 32 yields
Tt Tt
—22.5cos (?) +45.5=32, sothat cos <?) =0.6.

As Figure B.21(b) shows, cos6 = 0.6 for two angles between 0° and 360°:
61 ~53.1° ~ 0.92 radian in Quadrant I, and also 8, ~ 306.9° &~ 5.36 radian in
Quadrant IV. Thus, we need to solve

Tt Tt
— =0.92 and — =5.36.
6 6

We get t ~1.75 and t~ 10.25 (the left- and right-most blue dots in Figure
B.21(a)). The first solution is about two-thirds into the month of February;
the second is about one-quarter into November. We conclude that from about
late February to early November, the average low in New York City is above
freezing. [ ]

Related Exercises [REaeYA

Virtually any real-world phenomenon that repeats (or oscillates) is amenable to

modeling with trigonometric functions; this includes sound, light (an electromag-

netic wave), radio waves, and even human sleep cycles (see Chapter 1 of [1]). The
applied exercises in the next few pages explore some of these applications.
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1. True or False: y=+4+/1—x? defines a

function.
2. Two functions f and g are graphed below.

in

0
LAY)

u
T~

10
=1VU

(a) Evaluate f(0), f(2), and g(2).
(b) What is the domain of g?
(c) What is the range of f?

3-6: Find the domain of the function.
3. fx)=v1—x2 4. g) =1+
5. h(t) =t* -5 6. m(s)=+/s+/2—s

7-10: Identify the slope and y-intercept of
each line, and graph each line.

7. y=2x-3
9. 3y=6x+9

8. y=-5x+4
10. 2x+4y=0

11. Two lines are perpendicular if their slopes

are negative reciprocals of each other. (For

example, the lines y=2x and y= —%x are

perpendicular.) Use this fact to find the equa-

tion(s):

(a) Ofall lines perpendicular to y = 5x + 4.

(b) Of a line perpendicular to y=5x+4 and
passing through (1, 1).

(c) Of a line perpendicular to y=x+2 and
with y-intercept 3.

12-15: Classify each function as a polynomial
function (and, if applicable, a linear one) or
power function.

12. f(x)=4
14. f(x) =5Vx2

16-17: Find the domain.

13. gx)=1+x(1 —x)
15. h(H) = +22+1

2

16. f(x) = 17. f(x) =

x?—x x—1

18. Monthly Cell Phone Bill Zoraida got a
new cell phone for the holidays. It costs $20
to activate the phone and $50 per month for

service.

(a) Find the total cost of service C as a function
of the number of months m.

(b) After how many months will Zoraida have
spent $500 paying her cell phone bill?

19. Football Suppose a six foot tall quarterback
throws a football with an initial vertical veloc-
ity of 50 ft/s. Neglecting air resistance, the balls
height y above the ground (measured in feet) is
then
y(t) =6+ 50t — 162,

where t is the time (in seconds) since the ball
was thrown. When does the ball hit the ground?

20. Maximum Heart Rate Loosely speaking,
an individual's maximum heart rate M is the
highest heart rate that can be sustained dur-
ing prolonged exercise. One popular formula is
M (a) =220 — a, where a is your age (in years).
Another, more accurate formula was developed
in [2]:
M;(a) =192 — 0.0074°.

(a) Calculate M;(20) and M,(20) and interpret
your results.
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(b) Find the age(s) where M;(a) = M(a). For
what ages is the linear formula an over-
estimate of the (more accurate) quadratic
formula? For what ages is it an underesti-
mate?

21. Linguistics The American linguist George
Zipf discovered that if you make a list of the
most common words in a book, the r-th word
on the list appears in the book with the fre-
quency f roughly given by

f(r)= 0.1~ L.

For example, if the word “the” is the most com-
mon word in the book you choose, it will have
r-value 1, and since f(1) = 0.1, Zipf’s law pre-
dicts that roughly 10% of the book consists of
the word “the”

(a) Evaluate f(2)/f(1) and interpret your re-
sult.

(b) Find a formula for f(r+1)/f(r) and
use your prior work to interpret the
result.

22. Heart Health The volume of blood flow-
ing per unit time inside an artery is called the
volumetric flow rate (let’s denote this by Q). If
the artery is straight enough to resemble a cylin-
drical pipe, then we can approximate Q using
Poiseuille’s Law:

Q(r) = aPr®,

where a is a constant that depends, among other

things, on the length of the pipe, P is the change

in pressure between the ends of the pipe, and r

is the pipe’s radius.

(a) Suppose the artery narrows to a new ra-
dius r,. The heart must now must pump
harder to maintain the same volumetric
flow rate. Show that the new pressure P,
that results is

4
r

pP,=P <—) .
n

(b) This equation predicts that even small re-
ductions in artery radius lead to large
changes in pressure. For example, show
that a 16% reduction in artery radius dou-
bles the pressure.

23. Distance to Horizon Suppose you’re look-
ing at the horizon on a clear day. The distance
d to the horizon (measured in miles) is a func-
tion of your height / above sea level (let’s mea-
sure that in feet). A good approximation for the

function is d(h) = +/1.5h.

d(h) =
Identify the two functions f

(a) This is a composite function:

fgh).
and g.

(b) Find d for a 5-foot tall person: (1) standing
on a beach at sea level, and (2) 1,000 feet up
inside a skyscraper.

24. Estimating the Age of the Universe To-
day physicists have reason to believe that
the universe began with an explosion of
epic proportions—the Big Bang Theory—
out of which all matter and energy sprang
into existence. One piece of supporting ev-
idence is Edwin Hubble’s discovery in 1929
that distant galaxies are moving away from
us at velocities v (in km/s) related lin-
early to their distance d (in “megaparsecs”)
from us:

v(d) =Hd,

where H = 67.8 km/s per megaparsec is Hub-
ble’s constant; the equation above is now known
as Hubble’s Law. Below is Hubble’s original
plot of the relationship for his particular dataset
[12].
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(a) Identify the slope and y-intercept of Hub-
ble’s Law.

(b) Let’s assume that galaxies move with a con-
stant velocity. Then their distance away
from usis d = vt, where t is the time (in sec-
onds) they’ve been in motion—the age of
the Universe. Using this and Hubble’s Law,
show that t = FLI A 0.0147 megaparsecs per
km/s. Since 1 megaparsec is about 3.08 x
10", £~ 4.55 x 10'” seconds = 14.4 billion
years. (The current estimate of the age of
Universe is about 13.8 billion years.)

25. Suppose you're given a curve in the xy-plane.
Prove that if no vertical line intersects the curve
at two or more points, the curve is the graph
of a function. (This is called the Vertical Line
Test.)

26. Let f(x) =
g(x)?

’;2;11 and g(x) =x—1.Is f(x) =

27. Suppose f(x) =ax+c and g(x) =dx+e.
Show that f(g(x)) is a linear function, and find
its slope.

28. Let r; and r, denote the two solutions to the
quadratic equation ax? + bx + c =0, where a #

c
0. Prove that r; +7, = ——, and that r;r, = —.
a a

29. Prove that the only rational functions satis-

tying f (x) = L aref(x)=1land f(x) =—1.
f)
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EXERCISES INVOLVING EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

30-32: Determine if the exponential function
represents exponential growth or decay, and
identify the initial value and base.

30.f(x) =10 31.h(t)=4e' 32.g(z)=27%

33-36: Find the exact value.
33.27n% 34.In (2) 35.log; (3)
36.log; 25

37-38: Combine the expression into one loga-
rithm.

37.In2+ 3ln4 38.In(x—y) —In(x+y)

39-40: Sove for x.

39. 8% =4 40.log x +log(x — 1) =log2

41. Find the equation of the exponential func-
tion passing through the points (1,6) and
(3,24).

42. Population Growth Since 2010, the United
States population has been growing by about
0.75% each year. Given that the country’s 2010
population was 309.3 million, find the expo-
nential function describing its population P (in
millions) as a function of years ¢ since 2010. As-
suming the growth rate stays the same, estimate
the population in 2025.

43. Terminal Velocity of Raindrop A typi-
cal raindrop falls from about 13,000 feet and
takes about 3 minutes to reach the ground. As
it falls, it fuses with other raindrops and gains
both mass and velocity. Its increasing surface
area, however, leads to a larger force of air resis-
tance. This air drag force is eventually balanced
out by the accelerating force of gravity and the
raindrop reaches a terminal velocity. A realistic
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model (see Chapter 3 of [1]) of an average rain-
drop’s velocity v (in ft/s) as a function of time ¢
(in seconds) since it began falling is

v(t) =13.92(1 — e~ 23,
(a) Calculate and interpret v(0).

(b) Rewrite v(t) in the form ¢ — ab’.

(c) Use part (b) to explain why v(¢) is increas-
ing.

(d) Plot v(¢) and guess the terminal velocity
from your graph. (See Exercise 48 at the
end of Chapter 2 for how to calculate the
terminal velocity.)

44. Saving for Retirement via the Compound-
ing Effect Suppose that you currently have B(0)
dollars in a savings account earning an r% re-
turn each year, and that you add an additional s
dollars each year to that savings account. It can
be shown (see Chapter 4 of [1]) that your ac-
count’s balance B some number of years t from
now is

B(t) = (B(O) + ;) ot - ;

Suppose B(0) =0, r=0.07 (7% is about the av-
erage stock market return over 20-year invest-
ment horizons), and s = $1, 000.

(a) Calculate B(t) and B(40).

(b) The total deposits after t years is D(t) =
1,000¢t. The fraction of the balance those
deposits constitutes is D(¢) /B(t). Calculate
that new function, plotitfor 1 <t <40, and
interpret the graph.

(c) Show that after 20 years, the yearly de-
posits constitute about 46% of the account’s
balance, but that after 40 years, the yearly
deposits constitute just 18% of the account’s
balance. Conclusion: Start saving for re-
tirement early; that allows more time for
investment gains to compound.

45. Radiocarbon Dating All animals contain
radiocarbon, a radioactive isotope of carbon
that undergoes radioactive decay over time. If
Np is the initial number of radiocarbon in a sam-
ple, then the amount N in the sample ¢ years
later is given by

N(t) = Nge ™,

where A > 0 is the decay constant and is related
to the isotope’s half-life T, the years it takes for
half of the initial sample to decay.

(a) Show that T = lnTz

(b) The accepted value for the half-life of ra-
diocarbon is T =5, 730 years. Use this and
part (a) to calculate the decay constant.

(c) Suppose the radiocarbon in the remains of
an animal has decayed to 70% its initial
value. Estimate the age of the animal. (This
technique is called radiocarbon dating.)

46. Calculating a Loan’s Payoff Time Suppose
you obtain a loan (e.g., a student loan) of $L
at an annual interest rate of r%. If you pay $M
each month, it can be shown (see Chapter 3 in
[7]) that it'll take n months to pay off the loan,

where
M
_ log (Mch>
"= log(1+c¢) ’
where c= é, and r is expressed as a decimal.

Suppose the loan is a credit card balance of
$1,000 with a minimum monthly payment of
$20 and an annual interest rate of r = 12%.

(a) How many months will it take to pay off the
loan?

(b) If we now leave M as a variable, show that

M
M—-10/"

n~231.4log (



(c) Plot n for 20 < M < 50 and calculate 71(40).
How much sooner would $40 monthly pay-
ments pay off the loan compared to $20
monthly payments?

47. Solve b* =c using a logarithm with base
b. Then resolve the equation using a logarithm
with base a. Use your results to prove the change
of base formula (B.15).

EXERCISES INVOLVING
TRIGONOMETRIC FUNCTIONS

48-51: Convert the angle from degrees to ra-
dians, or radians to degrees.

48.120° 49.36° 50.7ZF 51.%Z

52. What is the length of the arc on a circle of
radius 2 inches subtended by the central angle
20°?

53. Find sin®, cos8, and tané from the fol-
lowing triangles. (You'll need the Pythagorean
Theorem to find the missing side lengths.)

54. The Trigonometry of Colors Light is an
electromagnetic wave, a wave in which elec-
tric and magnetic fields oscillate perpendicu-
lar to the direction of propagation (such waves
are called transverse waves). Therefore, light
can be modeled using trigonometric functions.
The wavelengths (period) A of visible light—
which range from 400 nanometers (nm) to 700
nanometers—determine the light’s color:
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Color Violet Blue Green Yellow Orange Red

"‘“‘(gﬁ‘;ﬂ“‘ 380-450 | 450-495 | 495-570 | 570-590 | 590-620 | 620-750

Each color can be represented by the function

. 2w
C(t) =sin (Bt), )\=?.
(a) Find a C(t) function for red using 700 nm

for red.

(b) Which color is modeled by the equation
C(t) =sin (;rt/200)?

55. The Trigonometry of Music Recall from
Applied Example B.12 that sound is a pressure
wave. The simplest sound waves can be modeled
via the function

S(t) =sin 2n ft),

where f is the frequency, measured in Hertz
(Hz). (Such sounds are called pure tones.)
For example, the musical note A above mid-
dle C has a frequency of 440 Hz. The chro-
matic scale, which forms the foundation for
Western music, then determines the frequen-
cies of the subsequent notes on a musical scale
according the following twelfth root of 2 progres-
sion:

44020, 440.212, 440272, ..,
440 - 217 = 880.

In order from left to right, the musical notes
produced are A, A# (“A sharp”), and so on up
to A2 (the note with frequency 880 Hz), the
note one octave above A. (Visually, each of these
notes corresponds to one key on a piano be-
tween A and A2.)

(a) Write down the trigonometric function as-
sociated with a pure tone C note whose
frequency is 440+/2.

(b) Let f(x) =440-21 for 0 <x <12. What
does f(0) represent? And what can
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you conclude from the fact that f(12) =
2f(0)?

56. The Trigonometry of Electric Current To-
day electric current is delivered as alternating
current (AC). (This wasn’t always the case, and
the story involves Thomas Edison’s reluctance
to embrace new technology; see Chapter 1 of
[1] if you're interested.) AC current is delivered
via a voltage V (measured in volts (V)) which
oscillates according to the function

V(t) = +/2Asin (Bf).

(a) A typical wall outlet delivers a peak voltage
of 120+/2 V. Use this information to find A.

(b) Standard household AC currents oscillate
at a frequency of 60 Hz. Use this to find B.

57. Use (B.23) to prove thatsin (6 4 %) =cos6.

58. Use the figure below to help show that the

area of the outer triangle shown is A= %ab

sind.

=

1

S

59. Trigonometry provides us with an

alternative—somewhat more natural—
approach to understanding the slope of a line.

To see how, let’s return to Figure B.4. Let 0

be the angle between the line and the x-axis
(=% <6 < 7). Show that

m=tan9.

Thus, the slope of the line (m) is directly related
to the angle of inclination of the line (9).

60. Suppose we inscribe 7 isosceles triangles of
equal base r in a circle of radius r. (The figure
below illustrates one such triangle.)

(a) Explain why 6 = 2Z.

n
(b) Let A(n) be the sum of the areas of the n
inscribed triangles. Show that

I 5. 2w
An)y=—-nr-sin | — |.
2 n

(c) Calculate A(4), A(10), and A(100). You'll
find that A(n) better approximates the area
of the circle as n gets larger. (This will
be proven using calculus in Exercise 60 in
Chapter 2.)
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INYIBIRD NG C.1 Einstein's Special Theory of Relativity teaches us that

certain physical quantities we thought were independent of velocity are in fact not.
One example is the length of an object. For instance, imagine a train moving along
a straight track. If Ly denotes the length of the train when it’s at rest, Einstein
discovered that its length L when it's moving with velocity v is

V2
L) =Loy/1— =,
C

where ¢ > 0 is the speed of light. The takeaway: Length is relative.

(a) Describe what happens to L as v increases from zero to a nonzero value. (The
phenomenon you will discover is called Lorentz contraction.)

(b) What is the largest value v can attain, and why?

(c) Calculate lim L(v) and interpret your result; why was a left-hand limit
V—>Cc

necessary?

Solution

(a) First note that L(0) = Lo (i.e., the train’s length at rest is Ly). As v increases
from zero, v /c? increases too, 1 — v*/c? becomes smaller than 1, and so does
v 1—v2/c%. Conclusion: L(v) < Lo for v > 0 (i.e., the train’s length in motion
is less than its length at rest).

(b) The square root of a negative number is not defined, so we must have 1 —
v2/c® > 0. This implies that v2/c® <1, so that v* < 2. The largest velocity
value satisfying this inequality is v = ¢ (i.e., the speed of light).

(c) Note that L(v) = f(g(v)), where f(x) = Lo+/x and g(v) = 1 — v*/c%. The func-
tion g is continuous from the leftat v = ¢,and g(c) =0. Asv — ¢, g(c) - 0™,
and since f is continuous from the right at x = 0, we conclude that

lim L(v) =Lgy/1—c2/c2=0.

vV—>Cc
This implies that as the train’s velocity approaches the speed of light, the train’s
length shrinks to zero! Finally, the left-hand limit was necessary because, as
discussed in Part (b), L(v) is undefined for v > c. [ |
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VNI RIDRDCNYILNAN C.2 Another result from Einstein’s Special Theory of Rela-

tivity (introduced in Example C.1) is that if 1y > 0 is the mass of a particle when it’s
at rest, then its mass m when it’s moving with velocity v is

mo
J1=v2/&2

where c is the speed of light. The takeaway: mass is relative.

m(v) =

(a) Calculate m(v) for v=0, 0.25¢, and 0.5¢c.
(b) What happens when v =c?

(c) Find the limit as v — ¢~ and interpret your answer, both mathematically and
physically.

Solution

(a) We have

mo mo
m(0) = my, m(0.25¢) = —— ~ 1.03my, m(0.5¢) = —= ~ 1.15my,.

15 3
2 Vi
(b) If v=c then m(c) is undefined (since the denominator is zero when v = ¢).

(c¢) In the course of solving part (c) of Applied Example C.1 we showed that

lim /1—v2/c2=0.

vV—>Cc
This tells us that the denominator of m(v) is approaching a tiny positive num-
ber as v — ¢~. And since the numerator of m(v) is the constant mg, m(v)
is thus becoming large and positive as v— ¢~. Conclusion: m(v) — oo as
v— ¢~. Mathematically, this means that the graph of m(v) has a vertical
asymptote at v = c (recall Definition 2.5). Physically, this result implies that
as the particle’s velocity approaches the speed of light it gains mass without
bound! [

VNI RIBDEN OGN C.3 Suppose you and your partner need to decide on how
to divide up a total T of something, say money. How can the $T be divided in a fair

and unbiased way? Mathematician John Nash—known for virtually inventing game
theory and profiled in the movie A Beautiful Mind—considered this “bargaining
problem” and devised a procedure to solve it. Nash’s solution requires quantifying
one’s utility functions, measures of the preferences each party has as his or her share
of the money changes. In [7], Section 6.2, Nash’s approach was adapted to the case
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when “utility” is replaced by “happiness level” and each party’s happiness levels in-
crease linearly as the amount of the money he or she receives increases. Let’s work
through the solution that results.

Suppose that happiness is measured on a scale from 0 to 10 (with 10 representing
“happy” and 0 “unhappy”). Let M denote your happiness level were you to receive
all of the money to be divided, and N your partner’s. Finally, let Y; and P; be the
happiness levels you and your partner, respectively, would experience in the event
no agreement can be reached.’

(a) Let x be the share of the money you get, and z the share your partner gets.
Assuming we want to split all of T, explain why

x+z=T, x>0, z>0.
(b) Let Y(x) denote your happiness level when receiving x of the money and P(z)

your partner’s when receiving z of the money. Assume that

Y _M p _N
(x)= ?x, (2) = ?z.

Interpret what these functions mean.
(c) The Nash product H is defined by
H=(Y—-Yy)(P—-Py). (C.1)

Show that when H is expressed as a function of x we get

M N
Hx)=— <?x - Yd> <?x— (N — Pd)) . (C.2)

(d) Nash’s algorithm is to find maximize H over all possible combinations of Y
and P satisfying Y > Yz and P > P,;. Show that these two constraints yield the

constraint
TY, TP,
— <x<T——. (C.3)
M N
Explain why it follows that Nash’s algorithm applies only when
Y, Py
—+ —<1. C4
TN S (C4)
(e) Assuming (C.4) holds, show that the absolute maximum of H(x) on the
interval (C.3) occurs at
T Y, Py
= (1+2_Z4). C.5
=2 ( 2 N) (C5)

INote that M, N, Y3, and Py are all numbers between 0 and 10 (due to the happiness scale adopted).
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Then, show that the corresponding share for your partner is

T/ P Y
z==(1+2-24).
2 N M

Solution

(a) We have x4 z=T because x + z is the total amount of the money there is,
which we've labeled T. Moreover, because no party can receive more than $T
(we are dividing up $7T), we have x < T and z < T. Substituting inx=T —z
and z=T — x yields z > 0 and x > 0, respectively.

(b) Y is a linear function with slope % This means that for each unit increase
in your share x of $T your happiness level increases by A—ff Also, since the
y-intercept of Y(x) is (0,0), this means that were you to receive none of
the money, your happiness level would be zero. Similar interpretations hold
for P(2).

(¢) Since z=T — x, we have
PO =S (T—x)= ——x+N
X)=—(T—x)=——x .
T T

Substituting this, along with Y = A—ﬁx, into (C.1) yields

H(x) = M Y N N-P
(x)_<?x— d) (—?x—i—( - d))-

Factoring out a negative one from the second parenthetical term yields (C.2).
(d) Since Y = A—{{x, then Y > Y,; becomes

X X .

Since P = #z: %(T — x), then P > P; becomes
N T
?(T—x)zpd — x< N(N—Pd).

Putting the two bounds for x together yields (C.3). Since we've converted
Nashs Y > Y; and P > P; requirements to (C.3), only x-values between the
bounds in (C.3) are considered by Nash’s algorithm. Such x-values exist only
if the left-hand number is less than or equal to the right-hand number:

TYd<T(N Py
M —N -

This simplifies to (C.4).
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(e) We now have a continuous function (a quadratic polynomial) on a closed
interval, so let’s apply the procedure from Box 4.4.We start with H’(x). After
some simplification,

Hw=MN_py+ Ny, 2MN
-T & tdT T

The only critical number occurs when H’(x) = 0, which yields

T> [M N TIN—-P; Yy,
7(N—P,1)+—Yd =— +—1

X.

Y= 2MN T 2| TN M

which simplifies to (C.5). The corresponding z value is obtained from
z=T—x. [

Reference [7] (Section 6.2) discusses how the Nash algorithm preserves fairness and
unbiasedness. I also worked with TIME magazine to convert these equations into
a fun interactive demonstration you can use to try out the Nash solution (C.5) for
yourself; see [8] if you're interested.

ANARIDRH VN INNEN C.4 Consider an asset whose value V (in $) increases with
time ¢ (in years). A popular model for V (¢) is
Vi) =VeeV,  Vp>o.

The present value P of this asset is the future sum of money V'(¢) expressed in today’s
dollars, and can be modeled by

P(t)=V()e " = VeV,
where r > 0 is the prevailing yearly interest rate, expressed as a decimal.
(a) What is the initial value of the asset?
(b) Show that
lim P(t)=0
t— 00
and interpret your result.

(c) When is the optimal time to sell the asset? (Economists refer to this as the
optimal holding time.)

(d) Suppose the asset is a house. Assuming r = 3%, when is the optimal time to
sell it?

Solution

(a) P(O) = V().
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(b)

(c)

(d)

We can rewrite P(t) as

P(t) = VeV 1a-vD,

For large enough t-values the exponent of P(¢) is negative.” As t — oo then,
P(t) decays to zero. This tells that eventually the present value of the asset
approaches zero. (This is an illustration of the time value of money. Briefly
stated, this concept encapsulates the notion that $100 today is worth more
than $100 a decade from now.)

We are seeking the absolute maximum of P(t) on the interval [0, c0).
But we just showed that for t>1/r* the exponent of P(t) is negative:
V(1 —r/t) < 0. It follows that for large enough t,

P(t) = VoeV1A=VD ~ v 0 = v

In other words, after time t* = 1/r? the present value is less than the initial
present value Vj. So, let’s focus our search for the absolute maximum to the
interval [0, £*]. We'll need P'(¢):

o t—rt L _ _ 1— 27’\/;) N
P(t)=Vye (2\/; r) = <—2ﬁ Voe .

This yields two critical numbers: (1) t =0 (since P’(0) is undefined), and
2)t= ﬁ (found by solving P'(t) =0). Following the procedure in Box 4.4
once again:

1 -
P(O) = Vo, P (4—2) — Voel/(4l’)) P(t*) — VOe«/r—rt =V,
r

Since e/ > 1 for any r-value,’ we conclude that P(t) has an absolute max-
imum at t = 1/(4r%). Note: this answer is independent of Vj, the initial value
of the asset.

According to our calculations in part (c), the optimal selling time is

t=———— ~278 years from now. [
4(0.03)2

NI RIDRNCNYIYNN C.5 Figure C.1 shows a larger blood vessel of radius r

splitting off at an angle 6 into a smaller blood vessel of radius r,. This splitting
will impede the flow of blood up the smaller blood vessel. A reasonable model
for the resistance R blood flowing from the larger vessel up into the smaller would

2Speciﬁcally, if t > 1/72 then 1 — r4/t < 0 and the exponent of P(t) is negative.
3This follows from the fact that ¢ > 1 when x > 0, and the fact here x=1/(4r) > 0.
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Figure C.1: Schematic of a larger blood vessel branching off into a smaller blood vessel.

experience is

L—Mcot0 Mcsch T
R(O)=c - +— , 0<0=<—, (C.6)
8] 5] 2

where ¢ > 0 is a positive constant. (This equation is derived in [1], equation (44).)

(a) Show that the critical number(s) of R occurs when

4
cosf = (r_z) . (C.7)
r

(b) Explain why (C.7) yields a unique 6-value, and why R has an absolute
minimum at this 6-value.

Solution

(a) The derivative R'(9) is

, M M cscb cot6
RO)=c|—gesc”) ——————
" )
cM
— —r4r4sin29 [1"2L — r‘f cos 9] . (C.8)
12

Since R'(#) is continuous on the interval of interest, (0, 77/2), then the only
critical number occurs when the expression in the brackets in (C.8) is zero:

4
rg—r‘fcosO:O = cos@z(—).
r

(b) Since were assuming r, < ry, then0 < :—f < 1. Thus, to solve (C.7) we look for
where the graph of cos 6 intersects the horizontal line y = (r,/r1)*. A quick
glance at Figure B.18(b) shows that this happens only once in the interval
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0 <6 < /2 (the interval of interest). We conclude that (C.7) yields a unique
solution in the interval (0, 7 /2). Thus, there is only one critical number of R
on (0,77/2). Lets denote by 6* that unique 6-value solving (C.7).

Now, returning to (C.8), we see that R'(9) >0 when the expression in
the brackets in (C.8) is positive, i.e., 72 —r? cos® > 0. This simplifies to
cosf < (ry/r1)*, which in turn happens when 6 > #*. This follows be-
cause cosf is a decreasing function on (0,7/2) (recall Figure B.18(b)),
and so when 6 > 0*, then cos@ < cos 8% = (r/r1)*. Similarly, R'(9) <0 if
cos@ > (ry/r1)*, which happens when 6 < 6*. Part (b) of Theorem 4.2 then
tells us that R has a local minimum at 6*. And since R is continuous on
(0,7/2), it follows from Theorem 4.4 that R has an absolute minimum
at 6™, [ |

VNSUBINRDCNYILB C.6 Suppose a U.S. presidential candidate wins p per-

centage of the popular vote in the presidential election. Political scientists have
discovered that the proportion of seats H(p) in the U.S. House of Representatives
won by the president’s party is well approximated by the “cube rule™:

3

_r
P+a-p*

Figure C.2 shows the graph of H(p).

H(p) = <p<l.

(a) Calculate H'(p) and H” (p).

(b) Determine the interval(s) on which is H concave up/down using (1) Defini-
tion 4.5 and Figure C.2, and (2) Theorem 4.7.

(c) Are there any inflection points of H?

p
1.00

/

0.75

0.50

0.25 /

H
025 050 075 100

Figure C.2: The graph of H(p).
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Solution

(a)

(b)

(c)

Let’s first use formula (A.10) to rewrite the function as

3

_ p
H(p)_3p2—3p+1'

Using now the Quotient Rule:

3p*B3p* —3p+11—p’lep—31  3p*(p—1)°

= (3p —3p+1)2 T (Gpr-3p+ 1D

Using the Quotient Rule again and simplifying yields

_6p(2p* —3p+1)
OGP -3p 1)

H"(p) (C.9)

(1) Using Definition 4.5 and referring to Figure C.2, we see that the tan-
gent lines to the graph of H are below the graph when 0 < p < 0.5 and above
the graph when 0.5 < p < 1. So, H is concave up on the interval (0, 0.5) and
concave down on the interval (0.5, 1).

(2) First, we look for p-values for which H” (p) is undefined. This will hap-
pen if the denominator in (C.9) is zero. However, since 3p? —3p+1 is
never zero (setting 3p? — 3p + 1 =0 yields no real solutions), there are no
p-values for which H” (p) does not exist. Next, we look for p-values for which
H"(p)=0:

H'(p)=0 = 6p2p*—3p+1)=0.

This yields p=0, p=0.5, and p= 1. But since p =0 and p =1 are the end-
points of the interval on which H(p) is defined, we cannot assess if theyre
points of inflection. (To do so would require information about H” (p) for
p <0 and p>1 to determine whether H”(p) changes sign.) That leaves
p=0.5. Let’s create a sign chart to see if H” changes sign as we cross p =0.5.
Choosing the test points p = 0.25 and p = 0.75 confirms the sign chart below
(i.e., H"(0.25) > 0 and H"(0.75) < 0):

H'(P): +++++ —————
0.5

We conclude from Theorem 4.7 that H is concave up on the interval (0, 0.5)
and concave down on the interval (0.5, 1).

Since H changes concavity at p =0.5, it follows from Definition 4.6 that H
has an inflection point at p =0.5. ]
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PNSYBINRDONYIBAN C.7 Many real-world phenomena grow nearly exponen-
tially at first, and then experience slower growth due to a variety of reasons.

(Two examples are population growth and the spread of infectious diseases.) Such
phenomena can be modeled with the the logistic function:

= aqo
bqo + (a — bgp)e=’

q(t)

where a and b are positive constants, q(t) denotes the quantity at time ¢ > 0 of the
phenomenon being modeled (e.g., population), and go > 0 denotes the initial quan-
tity present; we'll assume go < , since this is typically the case in the real-world
phenemona mentioned earlier. This exercise will explore the shape of these logistic
curves.

(a) Show that g(t) is increasing for all ¢ > 0.

(b) The second derivative of g is

a’qo(a — bgo)e™ [(a — bqo) — bgoe™ ]
(bqoe™ + a — bqo)? '

q”(t) —

Show that g(#) has an inflection point only if
a
% >
that the inflection point is unique in this case, and that at this inflection point
q(t) changes from concave up to concave down.

qo <

(c) Calculate
tl_l)rgo q().
The result is called the carrying capacity of the phenomenon being modeled.

(d) Suppose g(t) denotes the number of individuals that catch a cold during a
1-hour calculus lecture (where ¢ is measured in hours). Assuming that: (1)
go =5 people in the room already have a cold, (2) a=0.4, and (3) that if
everyone stayed in the room forever all 20 people would catch the cold, find
an equation for g(t) and plot your result.

(e) Continuing part (d), estimate the number of people at the end of the lecture
who have a cold.

Solution
(a) We first find ¢/ (¢). Rewriting g(t) as

q(t) = aqo (bqo + (a— bgo)e ™) ™",
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(c)

(d)

(e)
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the Chain Rule then yields

g (t)=—aqo (bqo + (a— bqo)e_“t) — [—a(a — bqo)e_“t] .

This simplifies to
a*qo(a — bqo)e
(bqo + (a — bgo)e=2)?"
The denominator is always positive, since we've assumed qo < . Moreover,
that assumption implies a — bgo > 0. Thus, the numerator is always positive
too. We conclude that g/ (¢) > 0 for all ¢ > 0. It follows from Theorem 4.1 that
q(t) is increasing for all £ > 0.

The only possibly zero expression in q”(t) is the expression in brackets.
Setting that expression equal to zero and solving yields the unique solution

1 -b
((1 — bq0) - bqoem =0 = t=—-In (a qO) . (CIO)
a bqo

Since t >0, we need the parenthetical term to be greater than 1. (Recall
Inx > 0 only when x > 1.) Thus, we need

a—bqo
bqo

>1 = a—bqy>bqo,

which yields go < 5. Working backwards, when this is true the right-most
equation in (C.10) produces the unique solution to g”(¢) = 0; let’s call that
t-value t*. Moreover, since (a — bqo) — bqoe™ is positive for ¢ < t* and neg-
ative for t > t*, we conclude that g(t) is concave up on (0, t*) and concave
down on (t*, 00).

Sincea> 0, e~ — 0 as t — 00. Thus,
lim q(t) = 2
Jim a0 =,

The information from (3) is equivalent to the carrying capacity, so that
% =20. Since we're given thata = 0.4 = %, we conclude that b = % = %. And
since go = 5, we get that

2 20

T D)o T T

q(t) = 1
10

Figure C.3 shows the graph of g(t).

After 1 hour,
20

T43e 04 06

q(1) =

meaning that almost seven people have a cold at the end of the lecture. W



226 e« C. Additional Applied Examples

t

2 4 6 8 10

Figure C.3: Graph of the logistic function in Applied Example C.7.

VNLUBINBEDCNYILBIN C.8 A jet airplane sits on a runway waiting to take off.
Suppose the airplane starts from rest and accelerates at the constant rate of 16,876

mi/hr?.
(a) Calculate the plane’s distance function d(t).

(b) If the plane must reach a speed of about 150 mi/hr before it can safely take
off, what is the minimum runway length needed?

Solution

(a) We're given that 4/(f) = 16, 876, so that 4(t) = 16, 876t. Mimicking Applied
Example 5.1, it follows that

1
dt) = E(t)(16, 876t) = 8,438¢>.

150

(b) Since it takes the airplane t = 16876

hours to reach its takeoff velocity, by that
time it has traveled

150 150 \? _
d =8,438 A (.67 miles.
16, 876 16, 876

Therefore, the runway should be at least two-thirds of a mile long. (Typical
runway lengths range from about 1.1 miles to 1.5 miles.) [ ]
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APPENDIX A EXERCISES

1. (a) (_112) (b) (3’ OO) (C) (—OO, _7]
(d) [0, 1]

2.(a) (x+3)(x+1)
(c) (x+2)(Bx+4)
3.@)x=4+4 (b)x==+3 (¢)x=0,x=4
4. (a)x=42/2 (b)x=—6,x=2
(©x=—1/2,x=—1/3 (d)x=157
5@ 77 () (;‘_*22)2 ©) x + 77 = gy
(d) x°Qx+7)  (e) 4a®b*Vb () x¥/1°

6. The next row in Pascals triangle is
1,5,10,10,5, 1. So: (x4 a)® =x° + 5ax* + 10a?
13 +10a3x% + 5a*x + a®

b) 2x+1DBx+1)

7.2 feet 8.Byafactor of 4

APPENDIX B EXERCISES

1. False. There are two y-values for many
x-values. (For example, for x=0, y==+1.) An-
other way to see this is to plot y=++1—x2.
What you get is the unit circle (see Figure A,
from which it is visually clear that there are many
x-values that are associated with two y-values.

any
N,

Figure A

2. (a) f(0)=f(2)=0, g2)=5 (b) [-2,2]
(c) [~7.5,7.5]
3.[-1,1] 4R 5R 6.[0,2]

Figure B shows the graphs for exercises 7-10.

y
10. \

g

\ :

-4 - 4
VAR \

ARRY

Figure B

7.m=2,(0,-3) 8.m=-5,(0,4)

9.m=2,(0,3) 10.m=-—1/2,(0,0)

1. (a) y=—%+b (b)y=_’_5‘+g
Qy=-x+3

12. (a) Constant polynomial (also a linear func-
tion with m =0)

13. Polynomial (quadratic)  14. Power (Sx%)
15. Polynomial (cubic)

16. All real numbers except forx=0and x=1
17. All real numbers except x =1

18. (a) C(m) =20+50m (b) 9.6 months

19. About 3.24 seconds later
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20. (a) M;(20) =200, M,(20)=189.2. These
give the maximum heart rate at age 20,
calculated using the linear and quadratic models,
respectively, given in the exercise.

(b) The a~382 and
a~104.6. M; is an overestimate for a < 38.2
(approximately) and a > 104.6 (approximately);
it is an underestimate for 38.2 <a <104.6
(approximately).

two answers are

21. (a) %; the second most common word ap-
pears half as often as the first most common
word.

(b) ;175 the frequency of appearance of the r +
1-th most common word is -5 times the fre-
quency of appearance of the r-th most common
word.

22. (a) Solving aPnrﬁ =aPr* for r, yields the
formula

(b) Substituting r,=0.84r into P, yields
P, =~ 2P.

23.(a) f(x) = 4/x, g(h) = 1.5h
(b) (1) About 2.74 miles  (2) About 38.83 miles

24. (a) Slope: H, y-intercept: (0, 0)

(b) This follows from solving v = Hvt for t.
26. No; f(—1) does not exist, yet g(—1) = —2
27. The slope is m = ad.

30. Growth with base 10 and initial value 1
31. Growth with base e and initial value 4

32. Decay with base 27! and initial value 1

2
33.

% 34.In3—-1 35.—-2 36.2
xX—y 1
37.1n128 38. lnm 39.2 — §1n2
40.2 41.y=3-2"

42. P(t) = 309.3(1.0075)%; P(15) A~ 346 million

43. (a) v(0) =13.92 is the initial velocity of the
raindrop  (b) v(t) =13.92 — 13.92(e~23)!

(c) e723 <1, 50 13.92(¢e~23)" decays exponen-
tially to zero, making v(¢) larger as t gets larger

(d) The plot below suggests the terminal velocity
is 13.92 ft/s.

w(t)
16

-

Il

t

2 4 6 8 10

44. (a) B()= 100%000 (207t _ 1);
$220,638

D(t) __ 7t .
(b) W - 100(60'07t—1)’

B(40) ~

here’s the plot:

D/B
1.0

0.8

0.6

0.4

0.2

t

1 10 20 30 40

The graph shows that as time increases the de-
posits make up a smaller fraction of the balance
(i.e., most of the increase in balance comes from
the return on the invested sum of money).

(c) D55 ~ 45.8%; SUS ~18.1%

45. (b) A ~0.00012

(c) 2,949 years old



46. (a) About 69.7 months  (c) Here’s the plot:

n

60
40 \
\\
20
M
25 30 35 40 45 50

We have 1n(40) ~28.9, so the debt is paid off
about 69.7 — 28.9 = 40.8 months earlier.

48.~2.09rad 49.~0.63rad 50.630°

51.67.5° 52.~0.7 inches

s 4 _3 _ 4
53. (a) sinf =z, cosf =z, tan6 = 3

(b) sin@ =cos 6 = 4, tanf =1

54. (a) Using 1 =700, C(t) =sin (%)

(b) violet (A =400)

55. (a) S(f) = sin (880~/27¢)

(b) f(0) is the frequency (in Hz) of the A note

above middle C; f(12) =2f(0) says that the fre-

quency of A2 is double the frequency of A.
56. (a) A=120 (b) 120x

60. (a) The n central angles of the n inscribed
triangles must add to 27, so nf = 2.
(c) A(4) =272, A(10) = 2.97%, A(100) ~ 3.14r>

CHAPTER 2 EXERCISES

1. When the limits are equal, the left- and right-
hand portions of the graph of y = f (x) near x =¢
are joined at x = c by either an open circle (as
happens at x=1 in Figure 2.3) or a closed cir-
cle. When the limits are unequal, there is a jump
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in y-values as one crosses x = ¢ (as happens at
x = —1in Figure 2.3).

2.(a) ()1

hand limits are not equal) (iv) 2
(b) False, because f(2) DNE

(c) The function is continuous for all x-values
inside the following subintervals: (—1,0), (0, 2),
and (2, 3).

3. (a) (i) K (ii) K (iii) DNE (no portion of
graph directly to the left of x =c) (iv) DNE (no
portion of graph directly to the right of x=¢)
(v) N (vijM (vii) K (viii) DNE (one-sided
limits DNE) (ix) DNE (one-sided limits exist but
are not equal)

(ii) —1 (iii) DNE (left- and right-
)2 (vi)2

(b) False, because the one-sided limits are un-
equal

4.3 ®2 ©2 D @1 H-2
51 6.0 7.4/2 8.—1 9.DNE 10.0
11.1  12.1 13.a=-1

14. (@) x#—1 (b) (—o0,—1) and (—1,00)
15. (a) [0,00) (b) [0, c0)

16. (a) [0,00) (b) [0, 0c0)

17.(a) [0,1] (b)[0,1] 18.R

19. (—00, 1) and (1, 00)
20. (—00,0), (0,1), (1,00)

21. —oco0 22.—00 23.0 24.-3

25. 43 26.0 27.0

28. Vertical: x = 3; horizontal: y =3

29. Vertical: x = £1; horizontal: y = %

31. (a) % is never equal to zero, so in particular
it’s never equal to zero for any x # 0 in an interval
containing 0.
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32. (a) T(0) =t (when the train is at rest, the
passage of time is measured the same by you
and by the stationary observer outside the train),
T(0.5¢c) = \/g t (when the train is moving at ve-
locity 0.5¢, t seconds measured relative to your
watch is measured as roughly 1.15¢ seconds by
the stationary observer outside the train (i.e., a
15% longer passage of time).

(b) As the train’s velocity approaches the speed of
light, ¢ seconds measured relative to your watch
is measured as larger and larger multiples of t by
the stationary observer outside the train.

(c) T(v) is not defined for v > ¢
33. (a) Continuous (b) and (c) not continuous
34. (a) Here’s the graph:

C

15.0
12.5
10.0 >—|
7.5
5.0

2.5 T

(b) No; the cost of the trip goes up by $2.50 the
instant an additional mile is traveled.

(c) Jump; the graph of C(x) jumps from one y-
value to another as we pass through the four
discontinuities x =1, 2, 3, 4.

35. (a) As r increases from zero, the gravita-
tional force increases (linearly). When r = R (the
radius of the Earth), it reaches its maximum
value. As r increases past R, the gravitational
force decreases.

GMm
R2 -

(b) Both limits are equal to

(c) Yes, because the left- and right-hand limits
exist, are equal, and they are equal to F(R) (and
all of these quantities are real numbers).

(d) [0, 00).

40, —1_

38.1and 3 v

37.2 39.1
41.16 42.0 43.0 44.DNE
45. (c) Here’s the graph:

C

20
{v)

N
N
N

S

-04 -0.2 02 04

46. (e) Since n=r/x, x— 0T implies n — oo.
The result in (e) then says that as the number of
times in a year the account is compounded ap-
proaches infinity (i.e., continuous componding),
the balance of the account at the end of year y
approaches Mye".

47. (b) Here’s the graph:

Yy
-0.4-=02 0T o4
/ -0.2
48.13.92 51.1 52.4/2 53.3 54.0

55.1 56,

1
3 2



57. —1<f(x) <1 because the amplitude of
sin (1) is 1. So, |f (x)| < 1. Then |xf(x)| < |x]. So
if |x| < d it follows that |xf (x)| <d.

58.a=4+2

61. (a) Here’s the graph:

v
9.84
9.82 /
9.80
978
976
X
-06 -04 -02 02 04 06

The graph indicates that g is smallest at 0° lat-
itude (the equator) and largest at j:%O latitude
(the North and South Poles).

(b) a (the numeric value given in the exercise);
interpretation: as one approaches the equator,
the acceleration of gravity approaches a.

CHAPTER 3 EXERCISES

1.0 2.1 3.4 4.-2

7.f(x) =+/x,a=16

8. For Exercise 1: y = 0; for Exercise 2: y=x+ %

9.1/ (2)=2,f(2)=8

5.—4

6.

(S1

10. (a) 16 (b) 16

11. (a) 4(a) =0 (the distance function is con-
stant, so the object is not in motion) (b) 4(a) =
2a (c) 4(a) =3a®
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12. (a) 4(a) = —2 (the slope of the linear func-
tion d(t))

13.(a) y=220—t (b)y=194.8 —0.28¢

(c) H(t) predicts a constant decline of 1 bpm ev-
ery year regardless of age. But a more realistic
model would feature a progressively larger de-
cline in MHR as the individual ages. This is what
the M(¢) model predicts (its graph is a down-
ward opening quadratic function whose tangent
line slopes get more negative as ¢ increases).

14. f is differentiable on that domain.
15.x=0,x=2
16.

I
w
—

|t
= N
—

17.

N

(e}

(o]
\

N

[«

(@)
~——

-4 =2
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18.
y
~1.0 05 10 *
19.f/(x) =0 20. ¢(x) =50x*
21.f(t) = %
’ . / 2 10
22. K (s) =7s% — 65>  23. f(x)= Ny

24. 1 (s) = L (3+59)

! 1
B.gW=—a 6HO=—37=
27. 8/ (x) = 2x(v/xX — 14%) + (* +7)
(35— 14)

S ) — —2x0dxD)
Bf@W=z BH@=7T50
30.¢/(H) =t 3l. h/(x)=%
32.f/ () =3 (* + 2)° (3x2 - "2_2)
33.f'(s) =— (Gs— 7)3
34.¢/(0) = 12675~ (32 + 1)

35.(@)f(H)=3=

(b) Since f/(2) =1+ m ~ 1.35, the instanta-
neous rate of change of f is greater at x =1 than
atx=2.

(©)f(2) —f(1)=1.414..., whichisless than 0.1
away from the estimate of 1.35 from part (b)

(d) The slope of the line tangent to the graph of
f(xX)=+4/x+xat(1,2)is 1.5

() y=1.5x+0.5

36./"(x)=12x—6 37.f"(x)=—

38. f"(x) = —(1/4)(x + 3)73/2
39000 = 12550

40. Yes: f'(x)=(4/3)x'3, so f'(0)=0. No:
f"(x) = (4/9)x~2/3 and so f”(0) DNE.

41.If f'(x) = 0 then all tangent lines to the graph
of f are horizontal. Moreover, f'(x) =0 for all x
implies f is differentiable for all x, and therefore
continuous for all x. Conclusion: f is a constant
function, f(x) =, c a real number. If f”(x) =
the previous argument implies f'(x) =, ¢ a real
number. This says that all tangent lines to the
graph of f have slope c. If c=0 then we’re back
to f a constant function. If ¢#0 then f(x) =
cx +d, d a real number. Conclusion: f is a linear
function.

42.j(t) =6 mi/hr?

43, The (instantaneous) rate of decrease is mea-
sured by U’(t). If U'(t) is increasing, then tan-
gent lines to its graph slope upward, meaning
U’(t) > 0.

44. (a) The total cost of repaying a 5% interest
rate student loan is $10,000.

(b) Units: $ per percent interest; interpretation:
When the interest rate of the student loan is
5%, the total cost of repayment is increasing
at the instantaneous rate of $1,000 per percent
interest.

(c) Positive, because as r increases so does the
repayment cost

g(0)=—21~ 308 x 107° (m/s*)/m

45. (a) g(0) ~ 9.8 m/s?



46. (a) T(9.81) ~2.006 seconds
4n I

(b) g(T) = m/s%; g(2.006) ~9.81 m/s?
(©) T@() = 2L R+ h)
(d) f(0)= 2” A 3.15 x 1077 seconds per me-

ter. Since f’ (0) is the slope of the linear function
f(h)=T(g(h)), we can interpret it as follows:
For every 1-meter increase in altitude the period
of small oscillations of a 1-meter long pendulum
increases by about 3.15 x 107 seconds.

47. (a) h(F)=s(C(F))=20.05,/3F 4255372

(the bar above the 2 indicates a repeating
decimal)

(b) h(68)~343.29 m/s; ﬁs) ~ 873,900, indi-
cating that light is almost 874,000 times faster

than sound

(c) H'(68) =5'(C(68))C'(68) = 25'(20) =
2 [2«/%%] ~0.32 meters per second per

degree Fahrenheit

48.
-1 ifx<0

fmz{l

and f'(0) does not exist.

49. f'(x)

exist.

if x>0,

=0 for all x#0, and f'(0) does not

51.y=—2x, y=2x
52. f'(x) =g(x%) + 2x2¢' (x?)
53.f (x) =4e™  54.f(x) = —(2x0)2"F

55.8'(t) =2(t> +t+ 1)e*

e—Z

56. ' (z) = &=

(1— zln(3z))e z

57.f'(x) = 58.f'(z) =

x2+5

59. W (t) = 60.¢'(t) = —ezzf_tl

63. (b) T'(0) = —27.03; interpretation: when the
coffee mug is taken off the warming plate, its

2
t3+t
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temperature is decreasing at the instantaneous
rate of 27.03° F per minute.

(c) T'(t) =—27.03¢7 %3188 (d) T(¢t) has the
horizontal asymptote y =75° F; interpretation:
eventually the coffee will cool down to y =75°F
(the ambient temperature).

64. (a) a; interpretation: in the long run, only
100a% of the information learned initially is re-
tained.

(b) R(t) = MO0 = (0.7)!

(¢) R(1)=0.7In0.7 ~ —0.25;
one day after learning something new (and

interpretation:

assuming no review in the interim), your re-
tention of the information is decreasing at the
instantaneous rate of 25% per day.

65. (b) The instantaneous rate of change of the
probability of wind gusts of speed 0 mph occur-
ring near the turbine is a.

67. f'(x) =12x* — 3 cosx
/ __ cosx—2xsinx
68. f'(x) = SV

1—tan x+xsec® x

69'f/(x) = 7 (I—tanx)?
70. f'(z) =cosz — 1

71. g'(x) = —sinx — 2 cot x csc? x
72. h/(t) _ tcos :2—sint 73. g/(t) — 1+;int
74. W (z) = 22°sinz(2sinz + z cos 2)

78. a=0: 6 =0; a==+1: 0 ~71.6° interpre-
tation: the tangent line is horizontal at x=0
and is inclined about 71.6° from the x-axis at
x==l1.

79. (b) 0; as the number of triangles in Exercise
60 of Appendix B inscribed in a circle of radius r
grows arbitrarily large, the instantaneous rate of
change of the sum of areas of those triangles ap-
proaches zero (in a nutshell: “at n = 0c0” we stop
adding area to A(n)).
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80. (a) Amplitude: 6y; period: Zn\/g

(b) 6(t) = g5 cos(+/9.81¢)
(c) T= \/%%2.00607

(d)T(l)—jgﬂT[ + % (Z) ]~2.00641
© T'(5%) = 175 () ~

when the initial amplitude of a 1-meter-long
pendulum is 3°, the period is increasing at the
instantaneous rate of about 0.01 seconds per
degree.

0.01; interpretation:

CHAPTER 4 EXERCISES

LLx)=0 2.Lx)=1+ix-1
3.L(x)=1—-(x—1) 4.L(x)=8+4+12(x—2)

5. The actual value is +/10=3.162...; using

fx)=+/x with a=9: VI0~3+3(10—-9~
3.167.

6. The actual value is (1.01)° =1.0615. . .; us-
ing f(x) =x% with a=1: (1.01)° ~ 1 4+ 6(1.01 —
1) = 1.06.

7. The actual value is \% =0.57...;using f(x) =
x 2 witha=4 Jz~ 5 — %( — 4) =0.4375.
8. The actual valueis ~/2 =1.25. . .; using f (x) =

X witha=1:32~1+12-1)~133.
9.(a) (—00,—3) and (2,00)  (b) (=3,2)

(c) x=—3 and x=2 (d) local max. at
(—3,81), local min at (2, —44)

10. (a) (—o0, —1) and (1, 00)

(b) (—1,0) and (0, 1) (f is not defined at x =0)
(c)x=—1,x=0,and x=1

(d) Local max. at (—1, —2), local min. at (1,2)

1@ (551 and (444, o0)
0 (001~ ) and (114 5)

oI5

(c)x=0.5,x= % +
(d) Local max. at (% %) local mins. at
(3= -1)and (3+4.-1)

12. (a) (—o0, —6) and (0, 00)

(b) (=6, —3) and (—3,0) (f is not defined at x =
—3)

(c)x=—6,x=—3,andx=0

(d) Local max. at (—6, —12), local min. at (0, 0)

(b)x=1
(b) x=+1

(b)x=0

(b)x=0

17. (a) (0.5,00) (b) (—00,0.5); infl. pt. at x = 0.5

13.(a) x=3
14. (a) x=3
15. (a) x=1

16. (a) x=1

18. (a) (—00,0) (b) (0,00); infl. pt.atx=0

19. (a) (—+/3/3,4/3/3)
(b) (—00, —+/3/3) and (v/3/3,00); infl. pts. at
x==+3/3

20. (a) (—oo,00)  (b) none; no infl. pts.

21.2/3 in./min.

1
22. - cm/s 23, 1000” liters/s
24.3./5ft/s 25. 2 cm/s 26. 5*/7 m/s

27.50 mph  28. 2.5 ft/sec

29. The point +/2/2~ 0.7 miles directly east of
her starting point

30. (a) p(x) =350 — 155 (b) p(17,500) = $175

31.(a) ﬁl(x) =
(b) R (x) is undefined when x=0; R (x)=

when R'(x) = @ =R(x); x-values satisfying
this last equation are such that the average rev-
enue generated by selling x units is equal to the

xR (x)—R(x)
x2

revenue generated by selling x units.



33. When standing at ground level, an increase
in elevation of 1 meter decreases the acceleration
of gravity by approximately 3.08 x 10~° m/s2.

34. The absolute max is 2,500; the absolute
minimum doesn’t exist because the product is
x(100 — x) = —x? + 100x, which has no mini-
mum value.

36. 2(3/3—4)

39. (a) Increasing on (—o00,1); decreasing on
(1,00) (b)) 1 (c) local maximum at x=1
(d) absolute minimum at x = 2; absolute maxi-
mum atx=1 (e) concave down on (1,2); no
inflection point inside the interval

40. (a) Increasing on (0,00); decreasing on
(—00,0) (b)) 0 (c) local minimum at x=0
(d) absolute minimum at x = 1; absolute max-
(e) concave up on (1,2); no
inflection points inside the interval

imum at x=2

41. (a) Increasing on (2, 00); decreasing on (0, 2)
(b) 2 (d) abso-
lute minimum at x =2; absolute maximum at
(e) concave up on (1,2); no inflection
points inside the interval

(¢) local minimum at x =2

x=1

42. (a) Increasing on (0, /e); decreasing on
(Ve,0) (b) /e (c)local maximum at x =
Je (d) absolute minimum at x=1; abso-
lute maximum at x = /e (&) concave down on
(1, 2); no inflection points inside the interval

43. (a) When b>1, Inb> 0, and so f'(x) >0
for all x. This implies that f is increasing (Theo-
rem 4.1) for all x, and thus has no local extrema.
When 0 <b<1,Inb <0, and so f'(x) <0 for all
x. This implies that f is decreasing (Theorem 4.1)
for all x, and thus has no local extrema.

(b) Since f”(x) > 0 for all x, Theorem 4.7 im-
plies f is concave up for all x. Therefore, there
are no changes in concavity (i.e., no inflection
points).
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44. (a) For 0 <b<1: decreasing on (0,00).
For b > 1: increasing on (0, 00). Since g’ never
changes sign, g has no local extrema.

(b) (a) For 0 < b < 1: concave up on (0, 00). For
b > 1: concave down on (0, 00). Since g” never
changes sign, g has no inflection points.

46. (c) Here’s the graph:

a—b a a+b

47. @ R () = SR (b) Since R' (1) >
0 for 0 <X < 0.4 (approximately), R'(A) <0 for
A > 0.4 (approximately), and R is continuous, it
follows from Theorem 4.4 that R has an absolute
maximum at x~ 0.4

_e0.085t

48. (a) G(t) = ¢! ; G(0) = 1, which tells us
that the probability of surviving to age 0 after a
successful birth is 100%.

(b) 05 this tells us that Gompertz survival curves
predict that the probability of surviving ap-
proaches zero as the survival age gets arbitrarily
large.

(c) Interpretation: The probability of surviving
to age t after a successful birth decreases as age
increases.

(d) Interpretation: The probability of surviving
to age t after a successful birth is decreasing at
an increasing rate as age increases.

49. (c) v= -+ ~0.6 m/s

2
NG 50. T’T ft/s.

51. 407” miles/min.
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53. (a) None (b) decreasing on (0,7) (c) local
maximum at f(0); local minimum at f (77) (d) ab-
solute maximum at x =0; absolute minimum
(e) concave down on (0,27/3);
concave up on (27/3,7); inflection point at
x=2m/3

at x=m

54. (a) Increasing on (—n/3,7/3) (b) none
(¢) local minimum at g(—/3); local maximum
at g(/3) (d) absolute maximum at x =/3;
absolute minimum at x=—m/3 (e) concave
up on (—m/3,0); concave down on (0,7/3);
inflection point at x =0

55. (a) Increasing on (0,7/6); decreasing on
(w/6,m/2) (b)mw/6 (c)local minima at 4(0)
and h(r/2); local maximum at h(r/6) (d) ab-
solute maximum at ¢t = 71 /6; absolute minimum
att=m/2 (e) concave down on (0,7 /2); no
inflection points in the interval of interest

56. (a) Increasing on (/2,37 /2); decreasing
on (w/4,7/2) and (37 /2,77/4) (b) w/2 and
3w/2  (c)local maximaatg(r/4) and g(37/2);
local minima at g(/2) and g(7w/4) (d) ab-
solute maximum at x =7m /4; absolute mini-
(e) concave up on (1/4,7);
concave down on (7, 77 /4); inflection point at
s=m

mum at x = /4

58.(c) Since0<pu <1,then0<pu’<land1l<

14+ u? <2. It follows that 1 <,/1+ u2<4+/2,

and so «/11+7 < 1. Multiplying by the nonnega-

tive number umg yields \;‘% < wmg. Finally,
umg < mg follows from p <1.

59. (a) r(0)=a(l —e), r(w)=a(l +e). Note
that r(sw) =r(0) + 2ae, so that r(w) —r(0) =
2ae >0

(c) closest: r(0)~9.14 x 10’ miles; farthest:
r() ~ 9.46 x 107 miles

61.(c)t"(x)>0o0n[0,L]

63. (a) When # is large, 27” is near zero. Letting
x= 27”, the result then follows from sin x ~ x

(recall (4.14)).

CHAPTER 5 EXERCISES

1LA(H) =10t 2. A(t)=t—1t?/2

3.
£ o<t<l
2 =t=3
A= 1+(t-13) l<t<3
i fees2
4.(2) 025 (b)0.75 (c)1.25
5. (a) Left: (2,3); right: (0,2)  (b) fol v(x)dx =

43'1 is the distance traveled in the first unit of time;
f03 v(x) dx = % is the displacement during the
first three units of time.

6. (a) Here’s the graph for a random x-value in

[0,1]:
A1)
1.57

1.0 /

0.5

T T T T 1 1
02 04 06 08 10

(b) A'(t) =+/1+t2; since A'(t) > 0, it follows
that A(¢) is increasing everywhere, including on
[0, 1].

(c) A”(t) = ﬁ; since A”(t) >0 for t> 0, it
follows that A(¢) is concave up on the subinterval
(0,1] of [0, 1].

7. A=t (b)g® =2

9.f(x)=0,f(x)= %x—I—C

8.1/2
10.3



11.1/2 12.2

13. (a) ET.C., Theorem 5.1
Theorem 3.3

(b) the Sum Rule,

(c) Setting t=a vyields Afio(a)=As(a)=
Ag(a) =0 (since the area bounded by x = a and
x=aoff, g andf + giszero). This forces C=0,
which then yields the (integral) Sum Rule.

14. (a) The slopes of the tangent lines to the
graphs of A(t) and d(t) are the same at every
t-value. (b) ¢'(t) =0, because g'(¢) is the dif-
ference of the slopes of the tangent lines to the
graphs of A(t) and d(t) at the same t-value, and
by (a) this difference is zero. (c) g'(t) =0 says
that every tangent line to the graph of g(t) has
slope zero. This implies that g(t) must be a con-
stant function. And since g(t) =d(t) — A(1), it
follows that d(t) — A(t) is constant.

15. (a) L(0) is the percentage of the nation’s in-
come earned by the bottom 0% of households,
which is zero. L(1) is percentage of the nations
income earned by the bottom 100% of house-
holds, which is 100%. Thus, L(1) =1 (recall that
the percentages x and L(x) are converted to dec-
imal form by dividing them by 100). Since x
and L(x) are percentages, they range from 0%
to 100%, or 0 to 1 in decimal form. Thus, x and
(b) If
every household has the same income, then the

L(x) are both numbers between 0 and 1.

bottom x% of households will earn x% of the na-
tion’s income. This implies that L(x) = x. Using
this in (5.26) yields an area of zero, and there-
fore G=0. (c) The percentage of the nation’s
income earned by the bottom x% of households
is less than x%. (d) When L(x) < x, we have
2x — 2L(x) > 0. And since Gis the area under the
graph of this function between x =0 and x =1
(recall (5.26)), G > 0.

16. There are roughly 24.5 blue-colored boxes
under the curve. Each such box has area 0.05,
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so an estimate for fOT c(t) dt is (24.5)(0.05) =

o A ~o
1.225. Therefore, F ~ o~ 0.82A.

17.8 18.2/3 19.3- 20.3

S

3
21302 —4/x+C 22.% —3y*+2y+C
23.7
25. -2 /T—t3> +4t+8)+ C
@v2-1d?
26, 2200

16
24. 1

27. Theorem 5.2 is being used, but f(x) =x72 is
not continuous on the interval [—1, 1].

31. 1

28.7 :

29.8 30.2

32. Assuming r(t) is continuous, Theorem 5.2
tells us that the integral represents the net change
in oil consumption between 2017 and 2027
(measured in barrels of oil). Since we expect
the world’s oil consumption to continue increas-
ing over the decade starting in 2017, we expect
that net change to be positive (meaning that we
expect greater world oil consumption in 2027
compared to 2017).

33. (a) v, is constant and there are no forces
being considered in the horizontal direction, so
x(t) = vit.
(b) A:—Ziv%, B:%, C=d; B is the ratio
of the vertical and horizontal velocities of the
object, and C is the initial height of the object.

34. (b) For 1 hour, ~ 1.73 feet; for 2 hours, ~ 1.49
feet

35. (a) P'(100) = —23(100)~!?%; interpretation:
when 100 units have been produced, the produc-
tion cost is decreasing at the instantaneous rate
of change of 23(100)~ 123 $/unit (about 8 cents
per unit).

(b) P(n) =100n"%23 (P(1) =100 was used to
show that the arbitrary constant C =0)
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36. (a) Theorem 4.5

(b) By (a), at every x-value in [, t 4+ At] f(x) >
f(m). Therefore, the area under the graph of
f(x) and between x=1t and x=1t+ At will be
greater than or equal to the area under the graph
of the constant function f(m) and between x =t
and x =t + At. Similar reasoning, starting from
f(x) <f(M) atevery x-valuein [, t + At], estab-
lishes the other inequality.

(c) The leftmost integral in (b) is the area of the
rectangle of height f (m) and width At; similarly,
the rightmost integral is the area of the rectangle
of height f (M) and width At. Using these results
and dividing the inequality in (b) by At yields
the inequality in (c).

(d) As At — 0, m and M approach ¢ (since both
mand M are in the ever-shrinking interval [¢, t +
At]). Thus, f(m) and f(M) approach f(t) as
At — 0. It follows from the inequality in (c) that
the middle term approaches f(¢) as At — 0 too,
which is the claim in (d).

2V2 3 5
41.T 42.€X+C 43.m

4.2 [(14¢)%?—2%%]~29 45.In2%0.7
46.In(r +¢")+C 47.1

52. (a) p/(x) = ﬁ; interpretation: For large x,
the number of primes less than or equal to x is
increasing.

1 . .
(b) p'(x) = — @7 interpretation: For large x,
the instantaneous rate at which the number of

primes less than or equal to x is increasing is
decreasing. Said differently, our result indicates
that although the number of primes less than
or equal to x gets larger as x gets larger, the
rate of increase (p'(x)) slows down (p”(x) <0)
the larger x gets. Even more succinctly: primes
spread out as x gets larger.

53. (a) AP~ 2mxp(x)Ax; interpretation: Com-
pared to a radius x from a city center, the popu-
lation living within a radius x 4+ Ax is larger by
about 2w xp(x). Note that p(x) > 0 since it counts
people.

(b) P(x) = 600(1 — e~™*'/190). the limit is 600,
and tells us that as we consider radii arbitrar-
ily far away from the city, the population liv-
ing within those distances of the city center
approaches 600, 000 people.

54.%—sint+C 55. —cotx+cosx+C
56. —4(cot)¥2 4+ C  57. 22057

58.4/2—1~0.41 59.6 —In|cos@|+C

60.2 64.(b) %

62. (a) a liters per second  (b) this question is
about the period of v(¢); the answer is ZT”

(c %“; interpretation: the volume (in liters) of air
inhaled during one respiratory cycle

63.(a)a=74,b=2 (c)c:%
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Index of Applications

Physical Sciences

Acceleration of falling object, 75

Acceleration due to gravity as a function of altitude,
78

Acceleration due to gravity as a function of latitude,
42

Acceleration of gravity on the Moon, 127

Average low temperature of New York City, 207

Average speed, 43

Cosmic Microwave Background radiation (related to
the Big Bang Theory), 121

Converting Celsius to Fahrenheit, 183

Einstein’s Theory of Relativity (increasing mass),
216

Einstein’s Theory of Relativity (length contraction),
215

Einstein’s Theory of Relativity (time dilation), 39

Estimating distance to the horizon based on altitude,
210

Estimating Earth’s radius using trigonometry, 200

Estimating the age of the universe, 210

Estimating the minimum runway length needed for
a jetliner to safely take off, 226

Fermat’s Principle of Least Time, 123

Fermat’s proof of the Laws of Reflection and
Refraction, 123

How temperature variations change the speed of
sound, 78

Instantaneous speed, 43-46

Jerk (derivative of acceleration), 78

Loudness of a sound (decibel scale), 196

Newton’s Universal Law of Gravity, 39

Planetary orbits around the Sun, 122

Projectile motion and the parabolic trajectories of
sufficiently heavy airborne objects, 155

Radioactive decay and radioactive dating, 212

Range of a projectile, 110

Snell’s/Tbn Sahl’s Law of Refraction, 123

Terminal velocity (of a falling
raindrop), 211

The trigonometry of electric current, 214
Thermostat (average temperature), 158
Velocity of a runner, 184

Wind chill temperature, 63

Wind power, 80, 121

Life Sciences

Cardiac output, 154

Estimating the change in blood pressure due to
artery constriction, 210

Lung capacity, 158

Mammals’ lifespan and heart rate, 187

Maximizing airstream velocity during a cough,
106

Maximizing blood velocity, 119

Optimal branching angle of a blood vessel, 220

Population growth: exponential growth, 211;
Gompertz curves, 121; logistic equation, 224

Resting Metabolic Rate (RMR), 61

Spread of the common cold, 224

Vitamin intake, 10

Business and Economics

Airfare revenue for an airline
company, 91

Balance of savings account that pays interest # times
ayear, 40, 212

Calculating a loan’s payoft time, 212

Compound interest, 193

Continuous compounding of
interest, A2

Cost of monthly cell phone service, 209

Income inequality (via the Gini coefficient), 150

Maximizing average revenue on Amazon.com,
119

Minimizing the amount of material used to
construct a soda can, 107

Optimal holding time for an asset, 219

Rule of 70 (approximates the doubling time of a
savings account balance), 40
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Saving for retirement via the compounding effect,
212

Student loan payments, 78

Taxi fare, 39

Unemployment rate, 78

Sports

Andersen Fitness Test, 149

Football and the quadratic equation, 209

Maximum heart rate, 56, 209

Minimizing time spent doing an aquathlon
(a swim-run event), 119

Velocity of a runner, 184

Social and Behavioral Sciences

Ebbinghaus forgetting curve, 79

Frequency of common words in a book, 210
Optimal decision-making between two parties, 216
Population density, 157

The cube rule in political science (relates U.S.
presidential election outcome to the distribution
of seats in the U.S. House of Representatives),
222

The experience curve, 156

Other

Designing a rectangular bedroom with maximum
living space, 103

Measuring time using a water clock, 155

Measuring time using a pendulum, 81

Minimizing commuting time to work, 108

Minimizing the force required to pull a heavy box,
122

The calculus of cooling coffee, 79

The normal distribution (“bell curve”) in statistics,
120

The trigonometry of colors, 213

The trigonometry of music, 213



Subject Index

absolute maximum and minimum values: definition
of, 101; procedure for calculating, 102; theorem
on the existence of, 105

absolute value function, definition of, 168

acceleration: 75; derivative of (jerk), 78; measured
using a pendulum, 78

acceleration due to gravity on Earth: of a falling
object, 125; as a function of altitude, 78; as a
function of latitude, 42

acceleration due to gravity on the Moon, 127

age of the Universe, 210

addition formulas for sine and cosine, 204

allometric scaling laws, 187, 187n3

Andersen Fitness Test, 149

antiderivative(s): definition of, 133; general form of,
135; relation to indefinite integral (see indefinite
integral), 135; usage in the Fundamental Theorem
of Calculus, 134-135 (see also Fundamental
Theorem of Calculus)

aquathlon, 119

arc length, 198-200

area: of a circle, approximated by using inscribed
triangles, 214; of a circle, expressed as a limit, 41;
formulas for various shapes, 166; under the graph
of f from a to b, 5-7, 128-131; relation to distance
traveled by an object in motion, 125-128

Area under the Curve Problem, 5, 117, 125, 133, 135

asymptote(s): horizontal, 30-34, 192; vertical,
33-37,187,187n2, 188, 195

average revenue, 119

average rate of change: 50

average speed, 7, 43-45, 76

average temperature, 158, 207

average value of a function, 157

base: change of, 196; of an exponential function, 191;
of a logarithm, 194
bell curve (normal distribution in statistics), 120

Big Bang Theory, 121, 210
blood pressure, 210

calculus: as the mathematics of infinitesimal change,
2, 159; as a way of thinking, 1, 159

cardiac output, 154

carrying capacity (of logistic function), 224. See also
logistic function

Chain Rule, 65-66; as the differentiation counterpart
of the Substitution Rule for integration, 143; in
Leibniz notation, 67; used to differentiate an
implicit function, 88

change of base in a logarithm, 196

composite function: definition of, 189; continuity of,
18; derivative of, 65-66 (see also Chain Rule)

compound interest, 40, 193, 212

concavity: change in, 114 (see also inflection point);
definition of, 113; test for, 113

Concavity Test, 113

continuity: criteria for (at a point), 16; definition of
(at a point), 15; definition of (on an interval), 17

continuous compounding of interest, 230

cosine function: continuity of, 20; derivative of, 58;
graph of, 205-206; hyperbolic, 157; integral of,
142; limits involving, 27

Cosmic Microwave Background radiation, 121

critical number(s), definition of, 94

critical point(s), definition of, 94

critical value(s), definition of, 94

Cube Rule (in political science), 222

decibel scale, 196

definite integral: 7, 129; evaluation of, 134 (see also
Evaluation Theorem); interpretation as a net
change, 150; interpretation as a net signed area,
140; interpretation of, 150; notation for, 129;
properties of, 138

dependent variable, 177



244 o Subject Index

derivative(s): 7, 43, 48; of a composite function, 66
(see also Chain Rule); of a constant function, 56;
existence of, 51-52; of exponential functions, 57,
69-70; as a function, 53-55; of a function f at a
number g, 48; higher-order, 74; of an integral, 131
(see also Fundamental Theorem of Calculus);
interpretation as an instantaneous rate of change,
50; interpretation as the slope of a tangent line, 48;
of logarithmic functions, 72; notation for, 48, 59;
of a power function, 62 (see also Power Rule); of a
product, 65 (see also Product Rule); of a quotient,
68 (see also Quotient Rule); second, 74; of
trigonometric functions, 58

Difference Rule for limits, 60

differentiable function: 52; relation to continuity, 53

differentiation: implicit, 88; as inverse process of
integration, 133

differentiation operator, 59

displacement, 149

distance formula, 176

domain of a function, 178

e (the number): 193; as a limit involving infinity, 32

Ebbinghaus forgetting curve, 79

eccentricity, 122

Einstein, Albert: Theory of Relativity (increasing
mass), 35, 216; Theory of Relativity (length
contraction), 19, 215; Theory of Relativity (time
dilation), 39

electromagnetic wave, 213

electric current, 214

Erastosthenes, 200

Euclid, 159, 200-203

Euler’s number, 32, 193-194. See also e (the number)

Evaluation Theorem, 134

even function, 156

experience curve, 156

exponential decay, 192

exponential function(s): definition of, 191;
derivative of, 57, 69-70; integration of, 141-142,
146; limits involving, 19-20, 32-33, 35

exponential growth, 192

Extreme Value Theorem, 105

Fermat, Pierre de: Law of Reflection, 123; Principle
of Least Time, 123; theorem relating local extrema
of a function f to its critical numbers, 101

financial independence number, 198

First Derivative Test, 99-100, 115

function(s): absolute value, 168; algebraic, 185;
average value of, 157; combinations of, 185-190;
composite, 189; composition of, 189; concavity of,
113; continuous, 15, 17; definition of, 178;
derivative of, 55; differentiable, 52; domain of,
178; even, 156; exponential, 191; extreme values
of, 101; graph of, 179; implicit, 88; limit of, 14;
linear, 180; logarithmic, 193-194; natural
exponential, 191; natural logarithm, 193-194;
odd, 156; periodic, 205; piecewise defined, 190;
polynomial, 185; position, 45n1, 149; power, 185;
quadratic, 185; range of, 179; rational, 188;
trigonometric, 198; value of, 178

Fundamental Theorem of Calculus, 131. See also
Evaluation Theorem

Galileo Galilei, 44, 125-126, 152

Gini coeflicient, 150

Gompertz survival curves, 121

graph(s): of exponential functions, 192; of a
function, 179; of logarithmic functions, 195; of
power functions, 186; of trigonometric functions,
205-206

half-life, 212

heart rate: of mammals and humans, 187; maximum
(in humans), 56, 76, 209

higher-order derivatives, 74

horizontal asymptote, 30

Hubble, Edwin, 210; Hubble’s Law 210

Increasing/Decreasing Test, 93

implicit differentiation, 88

implicit function, 88

indefinite integral(s), 135

income inequality, 151. See also Gini coeflicient

infinitesimal change, 1-4, 8, 37, 45, 59, 68, 75-76,
128, 128n1, 130, 159

inflation, 193

inflection point(s): definition of, 114; procedure for
calculating, 114

instantaneous rate of change, 50

integral(s): 7, 125, 129; definite, 129; derivative of,
131 (see also Fundamental Theorem of Calculus);
evaluation of, 134 (see also Evaluation Theorem);
indefinite, 135; properties of, 138

integral sign, 129



integrand, 129

integration: 128-131; of exponential functions,
141-142; limits of, 129; by parts, 143; of power
functions, 136; by substitution, 143-148

Intermediate Value Theorem, 21

Instantaneous Speed Problem, 5-7, 43-44, 125

jerk (derivative of acceleration), 78
jump discontinuity, 53

Law of Cooling (Newton’), 79

Law of Reflection, 123. See also Fermat, Pierre de

Law of Refraction, 123. See also Fermat, Pierre de

Leibniz, Gottfried, 59, 59n2, 67, 74-75, 82-85, 88,
125, 128-129, 131, 191n5

life span (of mammals and humans), 187

Limit Laws, 21-22

limit(s): 4, 6-7; approaching infinity, 30-33;
calculating, 8-10, 25-29; of a composite function,
22; e (the number) as, 32; existence of, 11-13; of
exponential functions, 19-20; of a function, 14;
infinite, 33-37; intuitive definition of, 14; laws, 22;
left-hand, 9; of logarithmic functions, ; one-sided,
9-11; properties of, ; right-hand, 9; two-sided,
13-15; of trigonometric functions, 20-21

limits of integration, 129

line: slope of, 181; tangent, 5-7, 47-48. See also
derivative(s)

linear approximation, 89

linear function, 180

linear model, 183.

linearization, 89

local maximum and minimum values, 99

logarithmic function: definition of, 194; derivative
of, 72; graphs of, 195; limits involving, 19-20, 32,
35; natural, 194; properties of, 196

logistic function, 116, 224, 226

Lorentz contraction, 215

Lorenz curve, 150-151

lung capacity, 158

mathematical modeling, 183
Mean Value Theorem, 93n2, A4

Napier, John, 191n5, 197n7. See also Neper, Jhone

Nash, John, 216-219

natural exponential function: definition of, 191-192;
derivative of, 57; limit of, 19-20
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Neper, Jhone, 191n5, 197. See also Napier, John

net signed area (under a curve), 140

Newton, Isaac: 43-44, 122, 125, 152; Law of Cooling,
79; Universal Law of Gravity, 39, 78;

odd function, 156

one-sided limits, 8-13

optimization problems: examples of, 106-111,
216-222; strategy for solving, 110

Oresme, Nicole, 126

Pascal: triangle, 174-175, 227; units of
pressure, 197

payoff time for a loan, 212

period of a function, 205

piecewise defined function, 190

point-slope equation of a line, 182

polynomial function, 185

population density, 157

population growth: exponential model of, 211;
Gompertz model of, 121; logistic model of, 224

position function, 45n1, 149

power function(s): definition of, 185; derivative of,
62 (see also Power Rule); integration of, 136

Power Rule, 62

Prime Number Theorem, 157

Principle of Least Time, 123. See also Fermat,
Pierre de

Product Rule, 65

Pythagoras, 201. See also Pythagorean Theorem

Pythagorean Theorem, xvii, 84, 108, 166, 175-176,
201, 204, 213

quadratic formula, 171
Quotient Rule, 68

radian measure, 198

radioactive decay, 212

radiocarbon dating, 212

range: of a function, 179; of a projectile, 110

rate(s) of change: average, 50; derivative as, 50, ;
instantaneous, 50

rational function: continuity, 18; definition of, 188

related rates: 82-87, strategy for solving problems in,
85

Resting Metabolic Rate, 61, 61n4, 239

Riemann sum, 133

right-hand limit, 9
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Rule of 70, 40
rules of exponents, 173

savings account balance, 40, 212

secant line, 7, 47

second derivative, 74-75, 112-115

Second Derivative Test, 115

sine function: continuity of, 20; derivative of, 58;
graph of, 205-206; hyperbolic, 157; limits
involving, 27; integration of, 142

slope-intercept equation of a line, 180

Snell’s Law, 123-124

speed: instantaneous, 6-7, 43-47, 50, 75-76, 125,
127, 153; of sound, 78;

strategy for solving: optimization problems, 110;
related rates problems, 85

Substitution Rule, 144

tangent, vertical, 51-52

tangent function: derivative of, 73; graph of,
205-206; integration of, 146-147

tangent line: 5-7, 47-48. See also
derivative(s)

Tangent Line Problem, 5, 43, 47-48

third derivative, 74

trigonometric function(s): 205-208. See also sine
function; cosine function; tangent function

unemployment rate, 78
Universal Law of Gravity (Newton’s), 39, 78, 122

variables, dependent and independent, 177

velocity: of blood flowing through an artery, 119; as
the instantaneous rate of change of position, 45n1;
of a runner, 184; terminal, 41, 211-212

vertical asymptote, 33-34, 36-37, 187, 187n2, 188,
195, 216

Vertical Line Test, 194, 211

vertical tangent line, 51-52

water clock, 155
wind chill temperature, 63
wind power, 80, 121

Zeno of Elea, 2-4, 8
Zipf’s law, 210
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