


No one likes a know-it-all. Most of us realize there’s no such thing—
how could there be? The world is far too complicated for someone 
to understand everything there is to know. So when you come across 
a know-it-all, you smile to yourself as they ramble on because you 
know better.

You understand that the quest for knowledge is a never-ending one, 
and you’re okay with that. You have no desire to know everything, just 
the next thing. You know what you don’t know, you’re confident enough 
to admit it, and you’re motivated to do something about it.

At Idiot’s Guides, we, too, know what we don’t know, and we make 
it our business to find out. We find really smart people who are 
experts in their fields and then we roll up our sleeves and get to work, 
asking lots of questions and thinking long and hard about how best 
to pass along their knowledge to you in the easiest, most-accessible 
way possible.

After all, that’s our promise—to make whatever you want to learn “As 
Easy as It Gets.” That means giving you a well-organized design that 
seamlessly and effortlessly guides you from page to page, topic to topic. 
It means controlling the pace you’re asked to absorb new information—
not too much at once but just what you need to know right now. It 
means giving you a clear progression from easy to more difficult. It 
means giving you more instructional steps wherever necessary to really 
explain the details. And it means giving you fewer words and more 
illustrations wherever it’s better to show rather than tell.

So here you are, at the start of something new. The next chapter in 
your quest. It can be an intimidating place to be, but you’ve been here 
before and so have we. Clear your mind and turn the page. By the end 
of this book, you won’t be a know-it-all, but your world will be a little 
less complicated than it was before. And we’ll be sure your journey is 
as easy as it gets.

Mike Sanders 
Publisher, Idiot’s Guides
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Introduction
If you look up the word calculus in the dictionary, one of the first definitions given is that it is  
a hard object, like a kidney stone. People used to joke that it was no wonder that the subject  
was so difficult to pass. This book is intended to “soften the calculus” so you are able to better 
understand Calculus II.

I have tried to avoid using the technical language of mathematics whenever I could. When I abso-
lutely had to use more technical language, I have translated those terms into everyday language 
you can comprehend. Also, you’ll find plenty of examples in each chapter to help you understand 
the solutions to each problem. These examples include easy-to-understand explanations as well 
as the requisite mathematical notations.

However, I warn you not to be a “mathematical voyeur,” one who likes to watch the math being 
done but who does not do it himself. As you are working through this book, be sure to have 
paper, pencil, and your graphing calculator by your side—and use them. Read the example, do 
the problem yourself, then look at my solution. You might want to hide the example solutions 
before you do the problem so you cannot cheat. People who have taken calculus will tell you that 
the first step in the problem is calculus, but the rest of the steps needed to solve the problem are 
algebra. Be careful as you work.

Not every example problem included is easy. If I took that approach to teaching Calculus II,  
I would be giving you a false sense of what to expect. Making things too easy also would deny 
you the satisfaction of taking on a challenge and succeeding.

Finally, I used to tell my students to have fun when I handed them their exams. Your first reac-
tion to that might be similar to their reactions—“Wise a**!” However, I hope that after reading 
this book, you will come to understand—as my students did—learning Calculus II is a chance 
to show yourself what you can do when you set your mind to it and have fun with this book. You 
never know what you can do until you try.

How This Book Is Organized
This book is presented in four parts:

In Part 1, Review of Pre-Calculus and Calculus I, you review a few key topics that you 
covered in Pre-Calculus and come into play in Calculus II. You’ll also do a quick review of  
limits and derivatives from Calculus I.

In Part 2, Length, Area, and Volumes, you learn about the applications of integration to  
compute one-, two-, and three-dimensional measurements.

In Part 3, More Definite and Indefinite Integrals, you study integration techniques 
beyond the notion of the simple antiderivative.
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In Part 4, The Infinite Series and More, you look at topics that extend the notions of the 
Rectangular Coordinate System as well as topics to extend what you have learned about integra-
tion. Finally, you end with a study of topics that are very applicable to how your calculator does 
math. I’ve also included a final exam as the last chapter so you can assess your understanding of 
what you’ve learned.

At the very end of the book, I’ve included solutions to the You’ve Got Problems sidebars through-
out the book. Also, you’ll find an appendix that provides you more integration practice as well as 
a glossary of helpful terms.

Extras
Throughout the book, you’ll see helpful sidebars that reinforce what you’re learning. Here’s what 
to look for:

CRITICAL POINT

These sidebars are meant to draw your attention to key issues in calculus 
and key people who have been very influential in the development of the 
topic.

DEFINITION

These sidebars help you break down the terms used in calculus so you can 
better understand what is presented to you.

BE AWARE

Although I warn you about common pitfalls and dangers throughout the 
book, these sidebars deserve special attention. They are also meant to 
draw a special light on critical errors students often make.

YOU’VE GOT PROBLEMS

After I discuss a topic, I  explain how to work out a certain type of 
problem and then you get to try it on your own. These problems are 
very similar to those I  walk you through in the chapters, but now it’s your 
turn to shine. Even though all the answers appear in Appendix A, you 
should only look there to check your work.
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PART

1
Review of Pre-Calculus  

and Calculus I

The first part of this book is intended to refresh the work you did in Calculus I and review some 
topics you might have studied in your Pre-Calculus class that are applied in Calculus II.

In addition, we review trigonometry and logarithms—topics you covered in Calculus I.

I also include material on parametric equations, the polar coordinate system, and partial 
fractions.





CHAPTER

1
Pre-Calculus Topics 
Used in Calculus II

In This Chapter
•	Reviewing key 

trigonometric relationships 
used in calculus

•	Euler’s number and his 
logarithms

•	The other coordinate 
system for the plane

•	Understanding x does 
not always have to be the 
independent variable

•	Learning still more about 
fractions

Pre-Calculus is usually the last class a student takes before 
entering Calculus I. The topics taught in Pre-Calculus vary 
from state to state, school to school, and sometimes, from 
teacher to teacher. There are a few topics which often form 
the mainstay of the course simply because they are key build-
ing blocks to one’s ability to answer topics in Calculus (as 
opposed to “understanding” calculus). The topics included in 
this chapter are the ones my students needed to review as we 
were doing the calculus.
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Trigonometry
The unit of angle measurement in higher mathematics is the radian. Most students in the United 
States and Canada do not encounter radian value until they study trigonometric functions. The 
right triangle trigonometry uses in geometry can be done with degrees, but the applications to 
periodic phenomena, such as tides and alternating current, require the use of radians because the 
radian is a unitless entity.

For example, if you drive 300 miles in 5 hours, your average speed is 60 miles per hour. Average 
speed has units. The radian measure for an angle is computed by measuring the length of an 
arc of a circle and dividing it by the length of the radius of that circle. An arc of a circle with 
radius 4 inches that contains one sixth of the entire circumference of the circle has a length 

of 1
6 2π × 4( ) = 4π

3  inches. The measure of the angle that forms this arc has measure of 
4π
3
4 = π

3  

radians. It is beneficial for you to know that 180 degrees corresponds to π radians. You can use 
proportions to find the corresponding radian values for familiar degree measurements.

YOU’VE GOT PROBLEMS

Problem 1: How many radians correspond to 30 degrees?

Angle measurements may be positive or negative. A positive angle measurement corresponds to 
a counterclockwise rotation from what we can call the positive side of the x-axis and a negative 

angle measurement corresponds to a clockwise rotation. Therefore, an angle with measure 5π
4  

radians terminates at the same place as an angle with measure −3π
4  radians.

CRITICAL POINT

Why are there 360 degrees in a circle? Why not 100 degrees, as in 100 
percent of the circle? Blame it on the Babylonians. Unlike our decimal 
system, the Babylonian number system was based on 60. Sixty has a lot 
of factors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60) so subdividing quantities 
into fractions was easier to do. Their year was divided into 6 periods of 60 
days, or 360 days to come “full circle.” They compensated for the missing 
5 days with a religious festival after the harvest so their calendar was fairly 
consistent. The issue of leap years never became a problem because the 
civilization didn’t last long enough for their calendar to be noticeably out of 
sync with Earth’s orbit.
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The three basic trigonometric functions are the sine, tangent, and secant, which are traditionally  
abbreviated to sin, tan, and sec. (Are you surprised not to see cosine?) The remaining three 
trigonometric functions, the co-functions, are cosine, cotangent, and cosecant (cos, cot, and csc, 
respectively). The relationship between the three basic functions and the co-functions is a phase 
shift. That is:

sin x( ) = cos π
2 − x( ) 	 tan x( ) = cot π

2 − x( ) 	 sec x( ) = csc π
2 − x( )

Figure 1.1 
The graphs of y = sin(x) and y = cos(x) are horizontal translations of one another. The amount of 

the translation is called the phase shift. 
These functions are also related as:

tan x( ) = sin(x)
cos(x) 	 sec x( ) = 1

cos x( ) 	 csc x( ) = 1
sin x( )

There are three Pythagorean identities involving these functions (based on the Pythagorean 
theorem for right triangles):

sin2(x) + cos2(x) = 1	 1 + tan2(x) = sec2(x)	 1 + cot2(x) = csc2(x)
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The double angle identities for sine and cosine are:

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x) – sin2(x)

	 = 1 – 2 sin2(x)

	 = 2 cos2(x) – 1

Example 1: If cos(x) = A and sin(x) > 0, write expressions for sin(2x) and cos(2x).

Solution: Use the Pythagorean identity sin2(x) + cos2(x) = 1 to find the value of sin(x):

A2 + sin2(x) = 1 becomes sin2(x) = 1 – A2 and sin x( ) = 1− A2

sin(2x) = 2sin(x) cos(x) = 2A 1− A2

cos(2x) = 2cos2(x) – 1 = 2A2 – 1

Each of the trigonometric functions has inverses, but the two most important (and frequently 
used) are the inverse sine (arcsin or sin–1) and the inverse tangent (arctan or tan–1).

The domain and range of these functions are as follows:

Domain	 Range

y = sin–1(x)	 [–1, 1]	 −π
2 , π2⎡⎣ ⎤⎦

y = tan–1(x)	 −∞,∞( ) 	 −π
2 , π

2( )

YOU’VE GOT PROBLEMS

Problem 2: If sin(A) = 
1
10  and cos(A) < 0, determine the value for sin(2A).

Exponents and Logarithms
Almost every junior high school student and high school student will tell you that the value of 
π is approximately 3.14 (though they rarely say approximately). You should develop a comfort 
level with the number e, Euler’s number, being approximately 2.718. Euler’s number is the most 
frequently used base for exponential functions and is used as the base of the natural logarithms, 
written ln. The value of e is determined by evaluating the limit:

lim
n→∞

1
k!

k = 0

n

∑ = lim
n→∞

1+ 1+ 1
2! + 1

3! + ... + 1
n!( )
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CRITICAL POINT

Late in the 1990s when everyone seemed to be driven by Y2K mania, a 
group of professional mathematicians were asked who were the most 
influential mathematicians of the millennium. Isaac Newton edged out Carl 
Gauss by a very narrow margin. Euler was third on that list, not too far 
behind them.

The domain of f(x) = ex is the set of real numbers while the range is y > 0. If ea = b then it is the 
case that ln(b) = a because f(x) = ex and g(x) =ln(x) are inverse functions. An important property 
of the inverse functions f(x) and g(x) is that f(g(x)) = g(f(x)) = x. In this case, we get eln(x) = x and 
ln(ex) = x.

Three other properties of exponential functions, and their corresponding impact on the logarith-
mic functions, are as follows:

ex+y = ex × ey	 ln(xy) = ln(x) + ln(y)

ex − y= ex

ey 	 ln x
y( ) = ln x( ) − ln y( )

(ex)y = exy	 ln(xy) = yln(x)

If you recall that a logarithm is an exponent, then the rules make a bit more sense. The rule …

ln(xy) = ln(x) + ln(y)

… says to find the exponent for the product, you add the exponents for the terms involved.

Let’s try a problem that is a little more complicated.

Example 2: Simplify ln x + 3( )2

x − 4( ) x + 1( )
⎛
⎝⎜

⎞
⎠⎟ .

Solution: Use the second rule for quotients to get ln x + 3( )2

x − 4( ) x + 1( )
⎛
⎝⎜

⎞
⎠⎟  = ln((x + 3)2) – ln((x – 4)(x + 3)).

Use the third rule for powers:

2 ln(x + 3) – ln((x – 4)(x + 1))

Use the first rule for products (but be careful with the subtraction sign in front of this term):

2 ln(x + 3) – (ln(x – 4) + ln(x + 1))

Distribute the subtraction sign:

2 ln(x + 3) – ln(x – 4) – ln(x + 1)
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Parametric Equations
You can write the vast majority of functions in the form y is a function of x. You can write equa-
tions in x and y for relations that are not functions such as circles, ellipses, some hyperbolas, and 
parabolas. A parametric equation uses a third variable, or parameter, as the independent variable 
and has x and y depend on this parameter.

DEFINITION

A parametric equation is one in which both x and y are functions of a third 
variable.

Example 3: What is the difference among the three parametric equations?

x = cos(t)	 x = cos(5t)	 x = sin(3t)

y = sin(t)	 y = sin(5t)	 y = cos(3t)

Solution: The first two equations create a circle drawn in a counterclockwise direction with the 
second graph being drawn faster than the first. The third equation draws the circle in a clockwise 
motion. Put your graphing calculator in parametric mode and verify the results.

Notice that all three equations take advantage of the Pythagorean identity sin2(x) + cos2(x) = 1.

Example 4: What is the difference between the graphs of the parametric equations?

x = t and x = t

y = t2 and y = t

Solution: Put your graphing calculator in parametric mode and sketch the first set of equations 
to see the parabola. However, the second set of equations only draws the right-hand side of the 
parabola.

YOU’VE GOT PROBLEMS

Problem 3: Simplify ln x + 1

x − 2( )3

⎛

⎝⎜
⎞

⎠⎟
.
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Figure 1.2 
A parabola defined parametrically.

Figure 1.3 
The right half of a parabola defined parametrically.
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You can also make some very interesting pictures in parametric mode:

Figure 1.4 
The parametric equation x = cos(3t), y = sin(5t).

Polar Coordinates
The branch of mathematics called coordinate geometry began when Rene Descartes was lying 
in his bed and realized he could divide the ceiling with a series of vertical and horizontal lines. 
Location on the ceiling could be determined by counting the number of vertical and horizontal 
lines from some fixed point. You and I have been using the Cartesian (rectangular) Coordinate plane 
our entire lives. An immediate impact of this system is that each point has a unique set of coordi-
nates and each set of coordinates corresponds to a unique point.

DEFINITION

A polar coordinate plane is a plane in which location from a central point is 
defined by the length of the radius of a circle drawn from that point and the 
measure of an angle drawn from a fixed ray using the central point as its 
endpoint. The Cartesian Coordinate plane is formed from a central point 
with two perpendicular lines passing through this point. Coordinates are 
determined by the distance you move to the right (positive designation) or 
to the left (negative) and then up (positive) or down (negative).
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However, what if Descartes had done it differently? What if he marked a central point on the 
ceiling as his fixed point, drew a series of concentric circles from this point, and drew a ray 
(called a pole) from this central point for which he could draw angles? He could then describe the 
location of a point on the ceiling by indicating the radius of a particular circle and also the angle 
of the ray from the central point to the point in question made with the pole. Every point on the 
plane of the ceiling can be identified. This type of a coordinate system is called a polar coordinate 
plane.

CRITICAL POINT

A major difference between this scheme and the Cartesian Coordinate 
system is while each set of coordinates describes a unique point, each point 
does not have a unique set of coordinates. For example, the point with 

coordinates 4, 5π
4( )  is also the point with coordinates 4, −3π

4( ) , 4, −11π
4( ) , and 

4, 13π
4( ) , to name a few.

In the accompanying diagram, point P has Cartesian coordinates (x,y) and polar coordinates (r,θ). 
To convert between the two coordinate systems, you can use right triangle trigonometry.

x = r cos(θ)	 x2 + y2 = r2

y = r sin(θ)	 θ = tan−1 y
x( )

Figure 1.5 
A point P in a plane with its rectangular coordinates (x, y) and its polar coordinates (r, θ).
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Here is a problem similar to the problem you just did but with a twist to it.

Example 5: Convert the rectangular coordinates −4, 4 3( )  to polar coordinates.

Solution: Find the value of r: −4( )2
+ 4 3( )2

= r2  becomes 16 + 48 = 64 = r2 so r = 8.

We need to be careful about the value of θ because the point −4, 4 3( )  is in the second quadrant 

implying that the primary value for θ should be between π
2  and π. The value for tan−1 4 3

−4( )  is 

–1.0472 if you are using a non-CAS calculator or −π
3  (if you remember all the values from the 

unit circle from your days in trigonometry or you have a CAS operating system on your graphing 
calculator). (A CAS system has the ability to give symbolic answers as well as numerical.) You 
must add π to this reference angle to get the correct angle. The correct polar coordinates are 

8, 2π
3( )  in terms of π or (8, 2.094395) numerically.

Graphs of functions look much different in polar coordinates than they do in rectangular coordi-
nates. For example:

•	 The graph of r = sin(θ) is a circle that is tangent to the pole at the origin.

•	 The graph of r = 4 is also a circle centered at the origin.

•	 The graph of θ = 2 is a line.

•	 The graph of r = θ is a spiral.

Try graphing these on your graphing utility to verify this.

Three of the more important polar graphs that come into play in Calculus II are as follows:

•	 The rose (r = a sin(nθ) or r = a cos(nθ))

•	 The cardioid (r = a + a sin(θ) or r = a + a cos(θ))

•	 The limacon (r = a + b sin(θ) or r = a + b cos(θ))

You might be asked to compute the slope of a tangent line to a curve at a particular point or to 
find the area under one of the curves. It would be worth your while to use your graphing calcula-
tor (or to use your web browser to find an interactive graphing calculator site) to play with some 
of these graphs. The traditional rules have the parameters n, a, and b be integers and have the 
domain for θ be [0,2π].
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Example 6: For what values of θ does the graph of r = 3cos(2θ) pass through the center of the 
coordinate system?

Solution: The graph of r = 3cos(2θ) is the 4 petal rose as shown. Point F has coordinates (3, 0) 
so the first plotted point sits on the pole. As the value of θ increases, point F will move along the 
top of the first petal.

Figure 1.6 
The graph of the polar rose with equation r = 3cos(2θ) with the point (3, 0) indicated.

Figure 1.7 
As θ increases from 0 to 0.33 radians, the point travels along one of the petals of the rose.
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Geometric Sequences and Series
A geometric sequence is a list of numbers in which consecutive terms have a common ratio. For 
example, each term in the sequence 1, 2, 4, 8, 16, 32, … is found by multiplying the previous term 
by 2. In the sequence 2187, 1458, 972, 648, 432, … each term is 2

3  of the previous term. In these 
cases, 2 and 2

3  are the common ratios.

Example 7: What is the common ratio for each of the following sequences?

	 1.	 1, 2, 4, 8, 16, 32, …

	 2.	 128000, 64000, 32000, 16000, …

	 3.	 3, 3 2, 6, 6 2,12,...

Solution: Each term in sequence 1 is twice as large as the preceding term. The common ratio  
is 2.

In sequence 2, each term is half as large as the preceding term. The common ratio is 1
2 .

In sequence 3, the ratios , , ,3 2
3

6
3 2

6 2
6  and 

12
6 2  are all 2 , making 2  the common ratio.

A geometric series is the sum of the terms of a geometric sequence. The formula for computing 
the sum S of the first n terms of a geometric series with first term a and common ratio r is 

S =
a 1− rn( )

1− r . This formula has a lot of nice applications, particularly in the world of finance. 

However, it does not have much application in Calculus II, with one exception. What if the num-
ber of terms is infinitely large?

YOU’VE GOT PROBLEMS

Problem 4: Convert the rectangular coordinates 5, 5 3( )  to polar 
coordinates.

The question becomes “For what value of θ does cos(2θ) first equal 0?” We know that cos π
2( )  = 0 

so we set 2θ = π
2  to get θ = π

4 , or θ = 0.7854.
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YOU’VE GOT PROBLEMS

Problem 5: Determine the sum of the series 12 + 8 + 16
3 + 32

9 + ... .

The series corresponding to sequence 1 in Example 7 is 1 + 2 + 4 + 8 + 16 + 32 + … The sum 

of an infinite number of terms for this series would be S =
1 1− 2∞( )

1− 2 . What is the value of 2 raised 

to an infinitely large power? It is an infinitely large number. Therefore, the sum of the terms in 
series 1 would grow infinitely large (that is, it diverges).

The series corresponding to sequence 2 will have a sum S =
128000 1− 1

2( )∞⎛
⎝⎜

⎞
⎠⎟

1− 1
2

. The value of 1
2( )∞  

will go to 0 because the denominator of the fraction grows infinitely large. Therefore, series 2 

converges to the sum S = 128000 1− 0( )
1
2

 = 256000.

Can you see that the series corresponding to sequence 3 will diverge? Because 2  > 1, 2( )∞  
will grow infinitely large.

Partial Fractions
You learned how to add fractions in elementary school and how to add algebraic fractions in 
Algebra I. Have you ever had to reverse the process? That is, have you tried to determine what 
two fractions when added yield 7

12 .

Two quick answers might be 1
12 , 6

12 = 1
2  and 1

3 , 1
4 .

The procedure for separating algebraic fractions—something that you will need to do in order to 
perform certain integration problems—is called partial fractions.

DEFINITION

A partial fraction is each of the two or more fractions that can be added to 
form a more complex fraction.
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Example 8: Separate the algebraic fraction 8x + 1
x2 − x − 6

 into the two fractions that are its addends 
(the values that are added together).

Solution: First factor the denominator into its prime factors, (x – 3)(x + 2). Each of these fac-
tors are linear expressions, so we can rewrite the original fraction with each of these factors as 

denominators and constants as numerators. That is, 8x + 1
x2 − x − 6

= A
x − 3 + B

x + 2 .

The problem is to now determine the values of A and B. The process is fairly straightforward. 
Multiply both sides of the equation by the common denominator, (x – 3)(x + 2):

8x + 1 = A(x + 2) + B(x – 3)

Let x = 3, causing the term B(x – 3) to become 0:

8(3) + 1 = A(3 + 2)

25 = 5A, so A = 5

Now let x = –2 so A(x + 2) becomes 0:

8(–2) + 1 = B(–2 – 3)

–15 = –5B, so B = 3

Therefore, 8x + 1
x2 − x − 6

= 5
x − 3 + 3

x + 2 .

When decomposing the algebraic fraction into its component parts, the degree of the numerator 
will always be one less than the degree of the denominator. So when one of the denominators is a 
quadratic factor that cannot be factored, the numerator will be in the form Ax + B.

Example 9: Decompose 3x2 + 4x + 15
x2 + 1( ) x + 3( ) .

Solution: The factors of the denominator are given to you. The term x2 + 1 is quadratic 

so the corresponding numerator will be linear. Therefore, 3x2 + 4x + 15
x2 + 1( ) x + 3( )  will be rewritten as 

3x2 + 4x + 15
x2 + 1( ) x + 3( ) = Ax + B

x2 + 1
+ C

x + 3 .

As we did before, multiply through by the common denominator:

3x2 + 4x + 15 = (Ax + B)(x + 3) + C(x2 + 1)
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YOU’VE GOT PROBLEMS

Problem 6: Separate the algebraic fraction 
x − 19

x2 + 4x − 5  into the two fractions 
that are its addends.

Let x = –3 to eliminate the term (Ax + B)(x + 3):

3(–3)2 + 4(–3) + 15 = C((–3)2 + 1)

30 = 10C, so C = 3

Unlike the earlier problem, we will not be able to eliminate terms by picking convenient values 
for x to quickly get the values of A and B. However, by choosing x = 0, the term Ax can be 
eliminated.

Let x = 0:

15 = B(0 + 3) + 3((0)2 + 1)

15 = 3B + 3, so B = 4

To find the value of A, pick any number that you would like to use. My thought is to keep things 
simple, so I will choose x = 1:

3(1)2 + 4(1) + 15 = (A(1) +4)(1 + 3) + 3((1)2 + 1)

22 = (A + 4)(4) + 3(2)

22 = 4A + 16 + 6

0 = 4A, so A = 0

Therefore, 3x2 + 4x + 15
x2 + 1( ) x + 3( ) = 4

x2 + 1
+ 3

x + 3 .
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The Least You Need to Know
•	The Pythagorean identities and double angle identities will have a lot of  

applications in Calculus II.

•	The independent variable of a function isn’t always x; sometimes it is t.
•	When a number larger than 1 is raised to infinity, the result is infinitely large. 

When a number between 0 and 1 is raised to infinity, the result is 0.

•	You will still be using some of your basic algebra skills (for example, factoring, 
solving systems of equations, and simplifying fractions) in Calculus II.



CHAPTER

2
Limits, Derivatives, and  

Basic Integration

In This Chapter
•	Understanding the notion 

of a limit and continuity

•	Working with the 
derivative and 
differentiation formulas

•	Implicit differentiation

•	Solving max-min problems

•	Computing related rates 
problems

Calculus is essentially the study of two processes, instanta-
neous rates of change and accumulation. To study the notion 
of instantaneous rates of change, you first need to develop 
the concept of a “mathematical microscope,” the limit. Do 
you remember when you were first learning to graph a line? 
You were directed to make a table of values (at least three 
points to verify that you did not make an arithmetic mistake), 
plot those points on a grid and then use a straight edge to 
draw the line through the plotted points. Did it ever occur 
to you that maybe the “line” you were drawing was actually 
perforated like a sheet of paper that you can rip out of your 
notebook? I didn’t either when I was that age. Now that you 
are studying calculus, you must prepare to deal with a large 
variety of functions, not just the “nice” functions that you saw 
in algebra.
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Consider the function f x( ) =
1 , if x is rational
-1 , if x is irrational

⎧
⎨
⎪

⎩⎪
. The graph of this function appears to be two 

horizontal lines, one at y = 1 and the other at y = –1. However, closer inspection shows that these 
lines are indeed perforated because between two rational numbers, say 0.98 and 0.99, there are an 
infinite number of irrational numbers. The purpose of the example is to remind you that when 
a mathematician writes a theorem about a function, the theorem applies to all functions, not just 
the “nice” ones, those that you have studied up to this point in your mathematical career.

Limits
For a limit to exist, it is necessary that whenever an interval is established around an input value, 
no matter how small, there exists a corresponding interval around a unique value of the output. 
(These intervals do not have to be the same size.)

Figure 2.1 
Parabola with limit.
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In Figure 2.1, points A and B are symmetric about x = 2. The thick dashed horizontal lines rep-
resent their functional values. Regardless of the intervals size from which x = 2 is formed, there 
will always be a corresponding interval of y = –2. Therefore, we conclude that as x approaches 2, 

f(x) approaches –2. Written symbolically, lim
x → 2

x2 − 3x = − 2 .

If g(x) is the piecewise function defined by g x( ) =
−3x + 4 x <1

2 x = 1

x2 x >1

⎧

⎨
⎪⎪

⎩
⎪
⎪

. What is lim
x →1

g x( ) ?

DEFINITION

A piecewise function is a function that’s defined by a set of expressions, 
each with its own domain.

As the graph shows, as the values of x get very near to 1, the values of g(x) get very near to 1.

Figure 2.2 
The limit of the function as x approaches 1 is not the same as the value of the function at x = 1.

y = g(x)

-1 1 3

x

-1

1

3 y
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It is true that when x = 1, g(x) = 2. What happens at a value of the input is the value of the func-
tion. What happens in the neighborhood of the input value is the limit of the function. This is a 
very fine point, but one that is critical to your understanding of limits. You have the functional 

value g(1) = 2 and the limiting value lim
x →1

g x( )  = 1.

A function f(x) is said to be continuous at a point x = c if and only if (abbreviated iff) lim
x → c

f x( )  = 

f(c) and f(c) exists. A function is said to be continuous if it is continuous at all points in the 
domain of the function. In essence, a continuous function is one that you can draw by putting 
your pencil point on the paper and never having to lift the point off the paper to complete the 

graph. The function f(x) = x2 – 3x is continuous while the function g x( ) =
−3x + 4 x <1

2 x = 1

x2 x >1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 is 

not continuous at x = 1.

DEFINITION

A function is continuous at a point x = c iff lim
x → c

f x( )  = f(c). A function is 
continuous if it is continuous at all points.

Example 1: Determine lim
x → 3

k(x)  if k x( ) =
2x − 1 x < 3

x2 − 3 x ≥ 3

⎧
⎨
⎪

⎩⎪
.

Solution: Because the function is defined with split domains, use a left-hand limit for x < 3 and a 
right-hand limit for x ≥ 3.

You get lim
x → 3-

2x − 1 = 5  and lim
x → 3+

x2 − 3 = 6 . These two values are not the same, indicating 

that a single value of the output cannot be isolated, so we say lim
x → 3

k(x)  does not exist (abbrevi-

ated DNE).

Example 2: Evaluate lim
x→2

x2 − x − 2
x2 − 4 .

Solution: Substitute 2 for x and evaluate the expression to get 0
0 . When you get this kind of 

answer, we call the result indeterminate, because we cannot decide the value of the limit. However, 
by substituting 2 for x and getting a result of 0, you know x – 2 is a factor of the expression. 

Rewrite x2 − x − 2
x2 − 4

 as x − 2( ) x + 1( )
x − 2( ) x + 2( )  and then reduce the fraction to x + 1

x + 2 . Now evaluate the limit 

lim
x → 2

x + 1
x + 2  to get the answer 3

4 .

To evaluate limits as the input goes to positive or negative infinity, take advantage of the fact that 

the largest term in any polynomial determines end behavior and that lim
x →∞

1
x = 0 .
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Example 3: Evaluate lim
x →∞

4x3 − 5x − 3
3x3 + 5x2 − 100x

.

Solution: You can physically (or mentally) divide the numerator and denominator by x3 to get 

lim
x →∞

4 − 5
x2 − 3

x3

3 + 5
x −

100
x2

. As x approaches infinity, all terms in x go to 0 so the value of the limit is 4
3 .

CRITICAL POINT

Two important limits that appear at different points in the curriculum are 

lim
x → 0

sin(x)
x = 1  and lim

x → ∞
1 + 1

x( )x
= e .

The last issue on limits we need to discuss in this review involves limits that go to infinity—not 

the case in which x →∞  but the cases in which y →∞  What is the difference between lim
x → 0

1
x  

and lim
x → 0

1
x2 ? In the case of f x( ) = 1

x , as x approaches 0 from the negative side of the x-axis, the 

graph goes toward negative infinity. However, as x approaches 0 from the positive side of the 

x-axis, the graph goes toward positive infinity. These two different results make it fairly easy to 

understand that lim
x → 0

1
x  = DNE. In the case of ( ) =x

x
g 1

2
, whether x approaches 0 from the left or 

the right, the graph will approach positive infinity. In this case, we say lim
x → 0

1
x2 = ∞ . Even though 

we cannot isolate a single value, we describe the behavior of the function by indicating that both 

branches of the graph are going in the same direction.

YOU’VE GOT PROBLEMS

Problem 1: Evaluate lim
x →−2

2x2 − x − 10
6 + x − x2 .

Derivatives
Contrary to what many believe, Isaac Newton was never hit on the head with an apple. However, 
after he did see an apple fall in the orchard, he realized he had the means to discuss instanta-
neous rates of change. (Remember, Newton was trying to determine what gravity was and much 
of his work involved describing the effects of gravity.)
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Newton knew he could measure the distance that the apple fell and the time it took for the apple 
to fall. His reasoning went something like this:

	 1.	 Suppose I want to know the velocity the apple is traveling when it is 6 feet off the 
ground.

	 2.	 I can measure the time the apple takes to move from 8 feet to 4 feet off the ground and 
compute the average velocity during that time span.

	 3.	 Then I can repeat the process as the apple falls from 7 feet to 5 feet, 6.5 feet to 5.5 feet, 
6.1 feet to 5.9 feet, and so on.

	 4.	 I will have a sequence of average velocities over smaller and smaller intervals, and the 
limit of this sequence will be the instantaneous velocity.

If f(t) represents the number of feet above ground that the apple is located then lim
t → a

f t( ) − f a( )
t − a

 

represents the limit of the average velocities, or the instantaneous velocity. This limit is known as 
the derivative and the symbol for it is f'(x).

CRITICAL POINT

Newton actually called the change a fluxion and used a dot above the f 
rather than a prime next to the f to symbolize this. Changes in name and 
notation were made by others later.

Other representations for the definition of the derivative are lim
Δx → 0

f x + Δx( ) − f x( )
Δx  and lim

h→ 0

f x + h( ) − f x( )
h .  

(It is suspected that the use of h rather than delta x was caused by publishers so they could save 
on the cost of ink.)

The formulas for differentiation can all be derived from the definition. The rules for differentia-
tion are as follows:

•	 Constant Rule: If f(x) = cg(x) where c is a constant, then f'(x) = cg'(x).

•	 Sum Rule: If f(x) = g(x) + k(x), then f'(x) = g'(x) + k'(x).

•	 Product Rule: If f(x) = g(x) × k(x), then f'(x) = g'(x) × k(x) + g(x) × k'(x).

•	 Quotient Rule: If f x( ) = g x( )
k x( )  then f ' x( ) = g' x( ) k x( ) − g x( ) k' x( )

k x( )( )2 .

•	 Chain Rule: If f(x) = g(k(x)) then f'(x) = g'(k(x)) × k'(x).
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The following table shows the most-used functions and their derivatives.

Function Derivative Function Derivative

f(x) = xn f'(x) = n xn – 1 f(x) = cos(x) f'(x) = –sin(x)

f(x) = ex f'(x) = ex f(x) = tan(x) f'(x) = sec2(x)

f(x) = bx f'(x) = ln(b) bx f(x) = sec(x) f'(x) = sec(x) tan(x)

f(x) = ln(x) f ' x( ) = 1
x

f(x) = csc(x) f'(x) = –csc(x)cot(x)

f(x) = logb(x) f ' x( ) = 1
x ln b( )

f(x) = cot(x) f'(x) = –csc2(x)

f(x) = sin(x) f'(x) = cos(x) f(x) = sin–1(x) f ' x( ) = 1
1− x2

f(x) = tan–1(x) f ' x( ) = 1
1+ x2

Example 4: Find the derivative of f(x) = ln(sec(x)).

Solution: Because this is a composite function, apply the Chain Rule to get f'(x) = 

1
sec x( )( ) sec x( ) tan x( )( )  = tan(x).

Example 5: Find the derivative of g(x) = tan−1 x − 1( ) .

Solution: Apply the Chain Rule to get g'(x) = 1

1+ x − 1( )2

⎛

⎝⎜
⎞

⎠⎟
1
2 x − 1( )− 1

2( )  = 1
1+ x − 1( ) 1

2 x − 1( ) = 1
2x x − 1

.

CRITICAL POINT

England was often at odds with, if not at war with, many of the countries 
on mainland Europe during the sixteenth through eighteenth centuries. 
That animosity carried over to the development of calculus. Isaac 
Newton founded the basis of calculus in England, but it was a German 
mathematician, Gottfried Leibniz, who first published materials about 
calculus. Newton used a variation on the prime notation, f'(x), to represent 
the derivative, but Leibniz preferred the notion that the derivative was a 
measure of slope, so he extended the notion of Δy

Δx  for the slope of a line 
to dy

dx  for the slope of the tangent line. Both notations have made their way 
through history and are used interchangeably.
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YOU’VE GOT PROBLEMS

Problem 3: Given k(x) = sin2(3x), find k''(x).

YOU’VE GOT PROBLEMS

Problem 2: Find the derivative of the function p(x) = x ln(x) – x.

Example 7: Given y = x sin(x), find 
d 2 y
dx2 .

Solution: Use the Product Rule to find the first derivative:
dy
dx  = (1) sin(x) + x cos(x) = sin(x) + x cos(x)

Take the derivative of this function to get the second derivative:
d 2 y
dx2  = cos(x) + (1) cos(x) + x (–sin(x)) = 2 cos(x) – x sin(x)

Example 6: Find the value of dy
dx  when x = 4 if y = x2 5x − 123

ex − 4
.

Solution: Although this problem can be solved using a combination of the Quotient, Product, and 
Chain Rules, use the technique of logarithmic differentiation to simplify the problem:

ln(y) = ln x2 5x − 123

ex − 4( )  = ln x2( ) + ln 5x − 123( ) − ln ex − 4( )  = 

2ln x( ) + 1
3 ln 5x − 12( )− x − 4( )

Now you can take the derivative of both sides (remember, y is a function of x so the Chain Rule 
applies) …

1
y

dy
dx = 2 1

x( ) + 1
3

1
5x − 12( ) 5( ) − 1

… which becomes dy
dx = y 2 1

x( ) + 1
3

5
5x − 12( ) − 1( )  = x2 5x − 123

ex − 4
2
x + 1

3
5

5x − 12( ) − 1( ) .

At x = 4, the value of the derivative is 16 83

e0
1
2 + 5

24 − 1( ) = −28
3

.
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YOU’VE GOT PROBLEMS

Problem 4: Write the equation for the line tangent to w z( ) = z2 + 1
3z − 5  at z = 2.

Example 8: Given p(x) = ecos(x), find p'''(x), the third derivative of p(x).

Solution: The first derivative is an application of the Chain Rule:

p'(x) = –ecos(x)sin(x)

The second derivative requires the Product Rule (I use brackets [ ] to indicate the derivative so it 
is easier to follow):

p"(x) = [ecos(x)sin(x) + (–ecos(x))[cos(x) = ecos(x)(sin2(x) – cos(x))

The third derivative also involves the Product Rule:

( )( ) ( ) ( ) ( ) ( )= + +( )x x x x xp''' e –sin 3sin cos sinxcos 3

Example 9: Find the equation of the line tangent to q(t) = sin2(2t) at t = π
12 .

Solution: We need two pieces of information to write the equation of the tangent line:

•	 The point through which the line passes

•	 The slope of the line

We find the point through which the line passes by evaluation of q(t) at t = π
12 , 

q π
12( ) = sin2 2 π

12( )( ) = sin2 π
6( ) = 1

4 . The derivative of q(t) is q'(t) = 4 sin(2t) cos(2t) = 2 sin(4t) so the 

slope of the tangent line is q ' π
12( ) = 4sin 4 π

12( )( ) = 4sin π
3( ) = 3 . Using the point-slope form for 

the line, the equation of the tangent line is y − 1
4 = 3 x − π

12( ) .
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Implicit Differentiation
Although the equation for a circle is not a function, we should be able to write the equation for 
a line tangent to the circle at the point of our choosing. To accomplish this, we could simply 
identify which quadrant of the circle is sought and then limit the domain and range of the 

equation y = r 2 − x2  to manufacture the function needed. However, there are any number 

of nonfunctional relations that we should also be able to examine without having to perform 
(sometimes difficult) algebraic manipulations in order to achieve this goal. To that end, we apply 
implicit differentiation.

CRITICAL POINT

The notation y = f'(x) and dy
dx  indicates that y is dependent on x.

Example 10: Given the equation x2 – 4xy – 3y2 = 21, find the equation of the line tangent to the 
curve at the point (3, –2).

Solution: We know the point through which the line passes; now we need to find the slope of the 

line by first finding the derivative, dy
dx .

This is where we can talk about the beauty of the notation dy
dx  where we are told to find the 

derivative of y with respect to x. That is, we are told that y depends on x.

Thus, when we take the derivative of x2 – 4y – 3xy2 = 21 we are told that x is the independent 
variable and that y depends on x. Whenever we differentiate a term in y, we need to apply the 

Chain Rule. The derivative of the equation is 2x − 4y + 4x dy
dx( ) − 6y dy

dx = 0 . Solve for dy
dx  to get 

dy
dx = 2x − 4 y

6 y + 4x
. At the point (3,–2), the slope of the tangent line is dy

dx = 2 3( ) − 4 −2( )
6 −2( ) + 4 3( ) = 14

0 , which is unde-

fined, indicating that the tangent line is vertical. The equation of the tangent line is x = 3.

Example 11: Find dy
dx  given sin(xy) + cos(y) = x.

Solution: Use the Chain Rule and Product Rule on the first term 

to get cos xy( ) y + x dy
dx

⎡⎣ ⎤⎦ − sin y( ) dy
dx = 1 . Gather all the terms in dy

dx : 

ycos xy( ) + xcos xy( ) dy
dx − sin y( ) dy

dx = 1  becomes xcos xy( ) − sin y( )( ) dy
dx = 1− ycos xy( ) . Divide 

to find dy
dx = 1− ycos xy( )

xcos xy( ) − sin y( ) .
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YOU’VE GOT PROBLEMS

Problem 5: Find 
d 2 y
dx2  if 3x2 – xy – 4y2 = 8.

Example 12: Find 
d 2 y
dx2  if ey + sin(y) = x2.

Solution:

	 1.	 First find the value of dy
dx , e y dy

dx + cos y( ) dy
dx = 2x . Therefore, e y + cos y( )( ) dy

dx = 2x  and 
dy
dx = 2x

e y + cos y( ) .

	 2.	 Take the derivative of this expression to find 
d 2 y
dx2 .

	 3.	 Use the Quotient Rule to find 
d 2 y
dx2 =

2 e y + cos y( )( ) − 2x e y dy
dx − sin y( )dy

dx
⎡
⎣

⎤
⎦

e y + cos y( )( )2 .

	 4.	 Factor the dy
dx  from the right-hand term in the numerator to get 

d 2 y
dx2 =

2 e y + cos y( )( ) − 2x e y − sin y( )⎡
⎣

⎤
⎦
dy
dx

e y + cos y( )( )2

.

	 5.	 Use the result of the first derivative to get d 2 y
dx2 =

2 e y + cos y( )( ) − 2x e y − sin y( )⎡
⎣

⎤
⎦

2 x
ey + cos y( )⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

e y + cos y( )( )2 .

	 6.	 Multiply numerator and denominator by the term ey + cos(y) to get 

d 2 y
dx2 =

2 e y + cos y( )( )2
− 4x2 e y − sin y( )⎡

⎣
⎤
⎦

e y + cos y( )( )3

.

Mean Value Theorem
Because the derivative is based on a limit definition, at times the limit might not exist. This is 
certainly true when the function has a point of discontinuity. It is also true whenever the graph 

of the function contains a cusp, as does the graph of f x( ) = x 2
3  at x = 0. The crux of the issue 

is that a continuous function need not be differentiable at all points. However, a function that is 
differentiable at all points in an interval is continuous with the interval.

The most important theorem in calculus is the Fundamental Theorem of Calculus (which we 
will review in Chapter 3). The second most important theorem is the Mean Value Theorem.
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YOU’VE GOT PROBLEMS

Problem 6: Find a value of c on the interval [1,5] that satisfies the Mean 
Value Theorem for the function f(x) = x3 + 3.

DEFINITION

The Mean Value Theorem states that if a function f(x) is defined and 
continuous on [a,b] and differentiable of (a, b) there is a value of c in the 
interval (a,b) so that the instantaneous rate of change at c is equal to the 
average rate of change over [a,b]. That is, there exists a value of c in (a,b) so 

that f ' c( ) = f b( ) − f a( )
b − a .

You can see that the Mean Value Theorem does not apply to the function f x( ) = x 2
3  on [–1, 1]. 

f(–1) = f(1) = 1 so the average rate of change for f(x) on this interval is 0. However, the derivative 

of f(x) is 2
3 x

−1
3  and this expression can never equal 0. Remember that the graph of f(x) has a cusp 

at x = 0 and, therefore, the function does not satisfy the condition that the function be differen-
tiable in the interval (–1, 1).

Relative Extremes and Concavity
As a measure of the instantaneous rate of change, the derivative indicates whether a function is:

•	 Increasing (The derivative is positive.)

•	 Decreasing (The derivative is negative.)

•	 Stationary (The derivative is 0.)

Example 13: Suppose f(x) is differentiable over its domain with f'(a) = f'(b) = f'(c) = 0, f'(x) > 0 
when x < a, b < x < c, and x > c, as shown in the following figure.

Figure 2.3 
The signs analysis for the first derivative is to determine when a function is increasing (the deriva-

tive is positive) and when it is decreasing (the derivative is negative).
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Solution: The sign analysis shows that the graph of f(x) has a relative maximum at x = a  
because …

	 1.	 The graph increases until it reaches the point (a, f(a)) and then decreases.

	 2.	 The graph continues to decrease until it reaches the point (b, f(b)) and then it rises,  
making the f(b) a relative minimum.

	 3.	 The graph continues to rise until x = c when it momentarily levels off then continues to 
rise.

	 4.	 In this case, there is neither a relative minimum nor maximum at x = c.

	 5.	 This analysis is referred to as the First Derivative Test.

DEFINITION

A signs analysis uses a number line to show the intervals in which the 
derivative of the function is positive or negative as well as the points at 
which the derivative is equal to 0 or fails to exist. The First Derivative Test 
is used to test critical points, points at which the value of the derivative 
is equal to 0, or when the derivative fails to exist at a specific point even 
though the function is defined at that point. Relative extremes occur when 
the sign of the derivative changes from one side of the critical point to the 
other.

The curvature of a graph is based on how fast the rate of change is changing. That is, the curva-
ture is based on the derivative of the first derivative, called the second derivative. (The second 
derivative is designated with a double prime in Newton’s notation, f''(x), and with a squared 

notation in Leibniz’s notation, d dy
dx( )

dx = d 2 y
dx2

. Don’t get hung up on the algebraic equivalence of that 

fraction, this is not an algebraic manipulation but notation.)

The graph is said to be concave up (is capable of “holding water”) when f''(x) > 0 (like a section of 
a parabola opening up) and is concave down (“spilling water”) when f''(x) < 0 (like a section of a 
downward opening parabola). The point at which the graph changes concavity is called the point 
of inflection.

BE AWARE

The graph of f(x) has a relative maximum as x = a but the maximum value is 
f(a). One phrase identifies when the extreme occurs while the other gives 
the extreme value.
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Example 14: Given f(x) = x5 – 10x4 – 15x3 + 2, find all points for which f'(x) = 0 and for which 
f''(x) = 0.

Solution: The first derivative, f'(x) = 5x4 – 40x3 – 45x2 = 5x2 (x2 – 8x – 9). Consequently, f'(x) = 0 
when x = –1, 0, or 9. The second derivative, f''(x) = 20x3 – 120x2 – 90x = 10x (2x2 – 12x – 9). The 
second derivative equals 0 when x = –0.67, 0, or 6.67. The graph of f(x) has a point of inflection at 
x = 0 (and a horizontal tangent line as well at x = 0).

A sign analysis for f'(x) shows that f(x) has a relative maximum at x = –1 and a relative minimum 
at x = 9.

Figure 2.4 
The signs analysis for the first derivative of f(x) = x5 – 10x4 – 15x3 + 2.

A sign analysis for f''(x) shows that f(x) is concave down when x < –0.67 and 0 < x < 6.67 and that 
f(x) is concave up when –0.67 < x < 0 and x > 6.67.

Figure 2.5 
The signs analysis for the second derivative of f(x) = x5 – 10 x4 – 15 x3 + 2. The graph of y = 

f(x) is concave up when f''(x) > 0 and concave down when f''(x) < 0.

Notice that the graph is concave down when f(x) has a maximum and concave up when the graph 
has a minimum. This is the essence of the Second Derivative Test. If f'(c) = 0 and f''(c) < 0, then f(x) 
has a relative maximum at x = c. If f'(c) = 0 and f''(x) > 0, then f(x) has a relative minimum at x = 
c. If both f'(c) = 0 and f''(c) = 0, the test fails.



Chapter 2: Limits, Derivatives, and Basic Integration 33

YOU’VE GOT PROBLEMS

Problem 7: The graph of the derivative of f(x) is shown. Determine when the 
function has its relative extreme values and the nature of those extremes.

Figure 2.6 
This is the sketch of f'(x), not f(x).

y = f′(x)
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Applications of the Derivative
There are times when evaluating a limit leads to an indeterminate result such as 0

0  or ± ∞
∞ .  

In the case of 0
0 , the factorization is either tedious or not possible. In many cases, you can use 

derivatives to evaluate the limits.

DEFINITION

Given lim
x → c

f x( )
g x( ) , with both f(x) and g(x) differentiable at x = c. If lim

x → c

f x( )
g x( )  = 0

0  or 

± ∞
∞ , then lim

x → c

f x( )
g x( )  = lim

x → c

f' x( )
g' x( ) . This is called L’Hopital’s Rule.
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Example 15: Evaluate lim
x → 0

sin x( )
tan x( ) .

Solution: Because lim
x → 0

sin x( )
tan x( )  = 0

0 , L’Hopital’s Rule applies. The derivative of sin(x) is cos(x) and 

the derivative of tan(x) is sec2(x) so lim
x → 0

sin x( )
tan x( )  = lim

x → 0

cos x( )
sec2 x( )  = 1

1  = 1.

You could have used trig identities to solve Example 15. Using tan(x) as the quotient of sin(x) and 
cos(x), the original fraction reduces to cos(x) and is easily solved. The next problem does not have 
an “easier” approach.

Example 16: Evaluate lim
x → 0

ex − 1
x2 .

Solution: Because lim
x → 0

ex − 1
x2  = 0

0 , L’Hopital’s Rule applies. The derivative of ex – 1 is ex and the 

derivative of x2 is 2x so lim
x → 0

ex − 1
x2  = lim

x → 0
ex

2x  = 1
0 , and the limit fails to exist.

YOU’VE GOT PROBLEMS

Problem 8: Evaluate lim
x → 0

1− cos x( )
sin x( ) .

Derivatives are used to determine optimal solutions to applied problems (greatest profit, mini-
mum cost, least area, largest volume to name a few). The issue to solving many of these problems 
is in establishing the correct equation.

Example 17: A company has determined that the daily revenue it can earn from selling n units of 
its product is –0.05n2 + 200n while the daily cost of producing these n units is 125n + 1100. How 
many units must be produced and sold to maximize profit?

Solution: The daily profit function is the difference between revenue and cost so P(n) = –0.05n2 
+ 200n – (125n + 1100) = –0.05n2 + 75n – 1100. P'(n) = –0.1n + 75. Set P'(n) = 0 and solve to get  
n = 750. The company should produce and sell 750 units daily.

Example 18: A manufacturer has its factory at point A and its distribution center at point B, on 
opposite banks of a river that is 1 mile wide. Point B is also 20 miles downstream from point A. 
The company is planning to build a dock for a ferry that will allow trucks to transport goods 
from the factory to the distribution center. If the ferry can travel at 5 mph across the river and 
the trucks can travel on the road along side the river at 30 mph, where should the dock be built to 
minimize the time to transport the goods from point A to point B?
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Solution: A diagram of the situation is helpful:

Figure 2.7 
A diagram representing the route that the truck will take to get from the factory to the distribution 

point.

	 1.	 The ferry can land anywhere between the point directly across the shore from point A 
to point B.

	 2.	 Label the distance from the point across from A to the ferry dock as x.

	 3.	 The distance the ferry will travel is given by the Pythagorean Theorem and the distance 
the truck will travel is 20 – x.

	 4.	 Ignoring the time it takes the truck to get off the ferry (because that will be the same no 

matter where the dock is built), the total travel time is t x( ) = 1+ x2

5 + 20 − x
30 .

	 5.	 Take the derivative of this function to get t ' x( ) = x
5 1+ x2

− 1
30 .

	 6.	 Set t'(x) equal to 0 to get 30x = 5 1+ x2
.

	 7.	 Divide by 5, 6x = 1+ x2
.

	 8.	 Square both sides of the equation, and combine terms to get 35x2 = 1 and x = 1
35  = 

0.169.

	 9.	 Construct the dock 0.169 miles downstream from point A to minimize transportation 
time.
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Related Rates
As discussed in the “Parametric Equations” section of Chapter 1, we sometimes need to think of 
the terms in our problems as functions of time. For instance, think about a 25-foot-long ladder 
leaning against the wall. If you measure how far the bottom of the ladder is from the base of 
the wall, you can use the Pythagorean Theorem to determine how high the ladder is above the 
ground. What happens to the top of the ladder as the bottom of the ladder slides away from the 
wall? Does it slide at the same rate? In this case, the positions of the bottom and top of the ladder 
are dependent upon the amount of time that has passed.

YOU’VE GOT PROBLEMS

Problem 9: A rectangle ABCD with sides parallel to the coordinate axes 
is inscribed in the region enclosed by the graph of y = 4 – x2 and the 
coordinate axes, as shown in the figure. Find the coordinates of point A so 
the area of the rectangle is a maximum.

Figure 2.8 
A rectangle is inscribed inside the graph of y = 4 – x2 and uses the x-axis as a 

side of the rectangle.
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Example 19: Suppose the base of the ladder is sliding away from the wall at 1 foot per second.  
At what rate is the top of the ladder falling when the base of the ladder is 7 feet from the wall?  
15 feet from the wall?

Solution:

	 1.	 If you call x the distance from the base of the wall and y the height of the ladder above 
the ground, the Pythagorean relationship gives x2 + y2 = 625.

	 2.	 The base of the ladder is sliding away from the wall at 1 foot per second, that is, dy
dx  = 1.

	 3.	 Differentiate the equation to get 2x dx
dt + 2y dy

dt = 0  or dy
dt = − x

y
dx
dt .

	 4.	 When the base of the ladder is 7 feet from the wall, the top of the ladder is 24 feet above 
the ground so the top of the ladder is falling at a rate of −7

24  feet per second but when the 
base of the ladder is 15 feet from the wall, the rate of descent of the top of the ladder is 
−15
20 = −3

4  feet per second.

Example 20: A right circular cone and a hemisphere have the same base, and the cone is 
inscribed in the hemisphere. The figure is expanding in such a way that the combined surface 
area of the hemisphere and its base is increasing at a constant rate of 18 square inches per second. 
At what rate is the volume of the cone changing at the instant when the radius of the common 
base is 4 inches? (Area of a Sphere: 4πr2 and the volume of a cone is 1

3 πr2h.)

Solution:

	 1.	 If the cone is inscribed within the hemisphere, then the height of the cone must be equal 
to the radius of the sphere, meaning the volume of the cone is V = 1

3 πr3.

Figure 2.9 
A cone is inscribed within a hemisphere. The bases of the two figures are the same.
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	 2.	 The combined area of the hemisphere and its base is 3πr2 (half the area of the sphere 
plus the area of the circle with radius r).

	 3.	 This area is increasing at the rate of 18 square inches per second. That is, dA
dt  = 18.

	 4.	 We are asked to find the rate of change of the volume, dV
dt .

	 5.	 A = 3πr2 yields dA
dt = 6πr dr

dt .

	 6.	 When r = 4, 18 = 24π dr
dt , so sin cos t3( )( )dt

0

x

∫ .

	 7.	 dV
dt = πr 2 dr

dt , so dV
dt = 16π( ) 3

4π( )  = 12 cubic inches per second.

YOU’VE GOT PROBLEMS

Problem 10: A ladder 15 feet long is leaning against a building so end x is 
on level ground and end y is on the wall as shown in Figure 2.10. x is moved 
away from the building at the constant rate of 1

2  foot per second.

	 (a)	 Find the rate at which the length OY is changing when x is 9 feet from 
the building.

	 (b)	 Find the rate of change of the area of ΔXOY when x is 9 feet from the 
building.

Figure 2.10 
A diagram showing a ladder leaning against a building. How fast does point y 

slide down the wall as point x moves away from the base?
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The Least You Need to Know
•	The differentiation rules enable you to calculate the derivative of a function.

•	The Product, Quotient, and Chain Rules help you differentiate functions.

•	The notation dy
dx  indicates that x is the independent variable and y is the depen-

dent variable.

•	The first derivative test is used to determine the location of maxima and minima 
by determining when the function is increasing and decreasing.

•	When the variables are functions of time, use related rates to determine the 
derivatives.





CHAPTER

3
Definite and Indefinite Integrals

In This Chapter
•	Working with indefinite 

integrals—don’t forget  
the + C

•	Making integrals easier to 
see with u-substitutions

•	Understanding the 
Fundamental Theorem of 
Calculus

•	Applying plane 
geometry with numerical 
approximations

In elementary school, you learned that the opposite of  
addition is subtraction. You also learned that the opposite  
of multiplication is division.

In high school algebra, you learned that the opposite of  
squaring a number was the square root of the number.  
You then learned that the opposite process of a logarithm is 
exponentiation (sometimes referred to as an antilog).

In Calculus I, you learned how to take the derivatives of a 
variety of functions. The question then becomes how do 
you find the function that you started with if you know the 
derivative of that function?
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Indefinite Integrals
Suppose you know that the derivative of the function y = f(x) is f'(x) = 2x. What is the original 
function? The correct answer is that without more information, you don’t know. Yes, it is true 
that the derivative of y = x2 is y = 2x, but so is the derivative of y = x2 + 3, y = x2 + 300, and 

y = x2 − 5 . There are an infinite number of functions of the variety y = x2 + C for which the 

derivative will be 2x. The process of finding the antiderivative is also known as integration.

BE AWARE

It is extremely important for you to remember that the antiderivative of a 
function can be any of a host of functions. You also should remember to 
add the constant of integration to your answers.

Example 1: Given f'(x) = 4x + 5, find an expression for f(x).

Solution: The derivative for x2 is 2x, so it stands to reason that the antiderivative of 4x is 2x2. The 
antiderivative of the constant 5 is 5x. Therefore, f(x) = 2x2 + 5x + C.

Example 2: Given g'(x) = 5x3 + 6x2 + e, determine an expression for g(x).

Solution: The process for dealing with this problem is the same as in the previous example. The 
part that gets a little sloppy is the coefficients.

The derivative of x4 is 4x3 so the antiderivative for 5x3 must be 5
4 x4. The antiderivative for 6x2 

is 2x3. (Take the derivative of 2x3 to verify this.) The last term in g'(x) is the constant e and the 

antiderivative is the linear expression ex. Therefore, g x( ) = 5
4 x4 + 2x3 + ex + C .

YOU’VE GOT PROBLEMS

Problem 1: What is the antiderivative of k ' x( ) = 8x3 + 5x − 1
x + 2

?
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You should be familiar with a number of differentiation formulas from Calculus I. These are 
listed in the left column of the following table with the corresponding antiderivatives in the right 
column.

Derivative Antiderivative

y = xn → dy
dx  = nxn–1 dy

dx  = xn → y = 
1

n + 1  xn + 1 + C (n ≠ –1) 

y = ex → dy
dx  = ex dy

dx  = ex → y = ex + C

y = ln(x) → dy
dx  = 1

x
dy
dx  = 1

x  → y = ln|x| + C

y = bx → dy
dx = ln(b)× bx dy

dx = bx  → y = 1
ln(b) bx + C

y = logb(x) → 
dy
dx = 1

x ln(b)
dy
dx = 1

x ln(b)  → y = 
ln|x|
ln(b) + C = logb | x | + C

y = sin(x) → dy
dx  = cos(x) dy

dx  = cos(x) → y = sin(x) + C

y = cos(x) → dy
dx  = –sin(x) dy

dx  = sin(x) → y = –cos(x) + C

y = tan(x) → dy
dx  = sec2(x) dy

dx  = sec2(x) → y = tan(x) + C

y = sec(x) → dy
dx  = sec(x) tan(x) dy

dx  = sec(x) tan(x) → y = sec(x) + C

y = csc(x) → dy
dx  = –csc(x) cot(x) dy

dx  = csc(x) cot(x) → y = –csc(x) + C

y = cot(x) → dy
dx  = –csc2(x) dy

dx  = csc2(x) → y = –cot(x) + C

y = sin–1(x) → dy
dx  = 

1
1− x2 dy

dx  = 
1

1− x2  → y = sin–1(x) + C

y = cos–1(x) → dy
dx  = –

1
1− x2 dy

dx  = –
1

1− x2  → y = cos–1(x) + C

y = tan–1(x) → dy
dx  = 

1
1+ x2

dy
dx  = 

1
1+ x2  → y = tan–1(x) + C
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Example 3: Find the antiderivative for f ' x( ) = 4x + 3 .

Solution:

	 1.	 Rewrite the radical as an exponential expression, f ' x( ) = 4x + 3( )1/2
.

	 2.	 Using rule 1, the antiderivative should be of the form y = 1
1+ 1

2
x 1

2 +1 = 2
3 x

3
2 .

	 3.	 The derivative of y = 2
3 4x + 3( ) 3

2  is 2
3( ) 3

2 4x + 3( )1
2 × 4⎛

⎝⎜
⎞
⎠⎟ = 6 4x + 3( )1

2 .

	 4.	 Since this is 6 times the value of the initial expression, it stands to reason that 

f x( ) = 1
6 4x + 3( ) 3

2 + C .

Example 4: If dy
dx  = 5 sin(x) + 4 sec2(x) + e2x, find an expression for y.

Solution:

	 1.	 The antiderivative for sin(x) is –cos(x), the antiderivative for sec2(x) is tan(x), and the 
antiderivative for ex is ex.

	 2.	 The derivative for e2x is 2e2x so the antiderivative for e2x is 1
2 e2x.

	 3.	 Therefore, y = –5 cos(x) + 4 tan(x) + 1
2 e2x + C.

Example 5: If f ' x( ) = 1
x − 4 + x + 4  and f(5) = 2, find the expression for f(x).

Solution:

	 1.	 The antiderivative of 
1

x − 4  is ln|x–4|.

	 2.	 The antiderivative for x + 4  is 2
3 x + 4( ) 3

2 .

	 3.	 Therefore, f(x) = ln|x – 4|+ 2
3 x + 4( ) 3

2  + C.

	 4.	 You can now use the information that f(5) = 2 to get 2 = ln|5 – 4| + 2
3 5 + 4( ) 3

2  + C.

	 5.	 Solve for C: 2 = ln|1| + 2
3 9( ) 3

2  + C, which becomes 2 = 18 + C and C = –16.

	 6.	 Therefore, f(x) = ln|x| + 2
3 x + 4( ) 3

2
 – 16.
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CRITICAL POINT

Mathematics is famous (or infamous, depending upon your opinion)  
for using notation to represent a number of words. Another example  
of the simplification of language is the use of the symbol, ∫ ,  
a Gothic S, to represent the antiderivative. Rather than write, “If 

2cos x( ) + 3sec x( )tan x( )− 6
6x + 1− π∫ dx find an expression for y,” it 

is briefer to write 2cos x( ) + 3sec x( )tan x( )− 6
6x + 1− π∫ dx  to say the 

same thing. The differential dx at the end of the phrase indicates which 
symbol is the independent variable of the problem. While the command 

is to find an antiderivative, the notation is read “Find the integral of 

+ − π+ −
x x x2cos( ) 3 sec( ) tan( ) x

6

6 1
 with respect to x.”

Let’s try another example to find a specific function given its derivative and a point on the 
function.

Example 6: Given f(x) = 2cos x( ) + 3sec x( )tan x( )− 6
6x + 1− π∫ dx  and f π

6( ) = 9  find f(x).

Solution:

	 1.	 The antiderivative of 2cos(x) is 2sin(x), of 3 sec(x) tan(x) is 3 sec(x), and of  
6

6x +1− π  is ln|6x + 1 – π|.

	 2.	 Consequently, 2cos x( ) + 3sec x( )tan x( )− 6
6x + 1− π∫ dx  = 2sin(x) + 3 sec(x) –  

ln|6x + 1 – π| + C.

	 3.	 Given f π
6( ) = 9 , we get:

9 = π( ) ( ) ( )+ − + −π π π2sin 3sec ln 6 16 6 6
 + C

9 = 2 1
2( ) + 3 2

3( ) − ln |π + 1− π |  + C

9 = 1 + 2 – 0 + C

C = 6

	 4.	 Therefore, f(x) = 2sin(x) + 3 sec(x) – ln|6x + 1 – π| + 6.
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Example 7: Evaluate sin2(x)dx∫ .

Solution:

	 1.	 The integrand sin2(x) is not in our list of derivatives/antiderivatives that we need to 
know.

	 2.	 What we do know about sin2(x) is that it is part of one of the formulas for cos(2x),  
cos(2x) = 1 – 2sin2(x).

	 3.	 Solve this equation for sin2(x) to get sin2(x) = 1
2 −

1
2 cos(2x) .

	 4.	 Change the integrand to this equivalent value – sin2(x)dx∫  = 1
2 −

1
2 cos(2x)∫ dx  = 

1
2 x − 1

2
1
2 sin(2x)( ) + C  = 1

2 x − 1
4 sin(2x) + C .

u-Substitutions
There are times when the expression within the integral, called the integrand, is “involved.” That 
is, the integral fits one of the basic patterns. However, due to the effect of the Chain Rule, there 
are seemingly more terms to handle. The process of u-substitution restores the integrand to a 
form in which the antiderivative is a known formula.

DEFINITION

The integrand is an expression in which the antiderivative is being found in 
an integral. That is, f(x) is the integrand in the integral f (x)dx∫ .

Example 8: Evaluate 8x + 12( ) x2 + 3x + 1( )4
dx∫ .

Solution:

	 1.	 The integrand has the pattern of a power rule (y = xn) problem.

	 2.	 Transform the problem by letting u = x2 + 3x + 1.

	 3.	 Differentiate this to get dy
dx  = 2x +3, which becomes du = (2x + 3)dx.

	 4.	 Notice that 8x + 12 is 4 times the value of 2x + 3 so 4du = (8x + 12)dx and the original 

problem 8x + 12( ) x2 + 3x + 1( )4
dx∫  now becomes 4u4 du∫  or 4 u4 du∫ .

	 5.	 The antiderivative of u4 is 1
5 u5.

	 6.	 Transform back to the original problem to get 8x + 12( ) x2 + 3x + 1( )4
dx∫  =  

4
5 (x2 + 3x + 15)5 + C.
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Example 9: Evaluate 2x + 4
x2 + 4x + 3

dx∫ .

Solution:

	 1.	 The denominator contains a polynomial that is not being raised to a power, so it does not 
fit the xn rule.

	 2.	 The numerator is the derivative of the denominator. Just as you did in Algebra I, you 
define your variable.

	 3.	 Let u = x2 + 4x + 3. Take the derivative of u with respect to x to get dy
dx  = 2x + 4 or du = 

(2x + 4)dx.

	 4.	 Make the changes in the integral. 2x + 4
x2 + 4x + 3

dx∫  becomes 
1
u

du∫ , which equals ln|u|.

	 5.	 We then get the answer to the problem, 2x + 4
x2 + 4x + 3

dx∫  = ln|x2 + 4x + 3| + C.

Example 10: Evaluate x3 cos5 x4( )∫ sin x4( )dx .

Solution:

	 1.	 The derivative of x4 is 4x3, and we see x3 in the problem.

	 2.	 We also know that the derivative of the cosine function is the negative of the sine func-
tion and that they are both in the problem.

	 3.	 Lastly, the cosine function is being raised to a power. It is almost always the case that the 
most “complicated” term (the term composed with the most functions) will be the place 
in which the transformation will occur.

	 4.	 The term cos5(x4) consists of three functions:

•	 Raising a term to the 4th power

•	 Taking the cosine of that result

•	 Raising this last result to the 5th power

	 5.	 The transformation for u uses all but the last of these functions. That is, let u = cos(x4). 

Rather than writing the fraction du
dx  each time and then multiplying by dx, let’s just jump 

to the du = step in the process. du = –4x3sin(x4)dx so −1
4 du = x3sin(x4)dx. The original 

problem becomes −1
4 u5 du∫  = −1

24 u6.

	 6.	 Therefore, x3 cos5 x4( )∫ sin x4( )dx  = −1
24 cos6(x4) + C.
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YOU’VE GOT PROBLEMS

Problem 2: Evaluate x2 cos x3( )esin x3( )∫ dx .

Problems get to be a little more interesting when not all of the integrand can be easily converted 

using u-substitution. For example, evaluate x sec5 x2( ) tan x2( )dx∫ .

	 1.	 We can account for the leading x because it is the derivative of x2.

	 2.	 If we let u = sec(x2), we run into the problem that du = 2xsec(x2)tan(x2) dx. Fortunately, 
this is an easy problem to overcome because the expression for du tells us that we need 

to think of the problem as x sec5 x2( ) tan x2( )dx∫  and transform this to 1
2 u4 du∫ .

	 3.	 We can then determine that x sec5 x2( ) tan x2( )dx∫  = 1
10 sec5(x2) + C.

Consider the problem 
1 − x

1− x2
dx∫ . It would seem reasonable to let u = 1 – x2 so that du = –2x dx. 

Unfortunately, that does not account for the 1 in the numerator. This is where you must recall all 

the basic anti-differentiation formulas.

	 1.	 Because 1
1− x2

dx∫  = sin–1(x), you can rewrite the original problem as 1
1 − x2

− x
1− x2

dx∫  

and then as 1
1− x2

dx − x
1− x2∫ dx∫ .

	 2.	 The first integral is the inverse sine and the second is 1− x2
 so 1

1− x2
dx∫  = sin–1(x) + 

1− x2
 + C.

Here’s a problem that looks unlike the other “complicated” problems that you just did but is 
interesting nonetheless.

Example 11: Evaluate tan(x)dx∫ .

Solution: There are two ways to approach this problem:

	 1.	 First, because tan(x) = sin(x)
cos(x) , rewrite the integral as sin(x)

cos(x) dx∫ .

	 2.	 Let u = cos(x) so that du = –sin(x) dx.

	 3.	 The problem now becomes −1
u du∫ , which equals –ln|u| + C so tan(x)dx∫  =  

–ln|cos(x)| + C.
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The second solution is to rewrite tan(x)dx∫  as sec(x) tan(x)
sec(x) dx∫  by multiplying numerator and 

denominator by sec(x).

	 1.	 Let u = sec(x) so that du = sec(x)tan(x)dx.

	 2.	 The problem now becomes 1
u du∫ , which equals ln|u| + C so that tan(x)dx∫  =  

ln|sec(x)| + C.

CRITICAL POINT

Add tan(x)dx∫  = ln|sec(x)| + C to your list of important antiderivatives you 

should know.

These two answers are not different. Use the property of logarithms to rewrite –ln|cos(x)| as 

ln|(cos(x))–1|. This is equal to ln 1
cos(x) , which in turn is equal to ln|sec(x)|.

BE AWARE

The expression (cos(x))–1 means the reciprocal of cos(x) while the expression 
cos–1(x) is the inverse function for cos(x). They are not the same.

Example 12: Evaluate sec(x)dx∫ .

Solution: This one is downright tricky. The trick to this problem is to recognize that the deriva-
tives of tan(x) and sec(x) both involve sec(x).

	 1.	 So the not so obvious process is to multiply sec(x) by the expression sec(x) + tan(x)
sec(x) + tan(x)

, and the 

problem now becomes sec2 (x) + sec(x) tan(x)
sec(x) + tan(x) dx∫ .

	 2.	 Let u = sec(x) + tan(x) and du = (sec(x) tan(x) + sec2(x)) dx, and transform the problem to 
1
u du∫  = ln |u| + C.

	 3.	 Therefore, sec(x)dx∫  = ln|sec(x) + tan(x)| + C.

CRITICAL POINT

Add sec(x)dx∫  = ln|sec(x) + tan(x)| + C to the list of important antiderivatives 

you should know.
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Example 13: Evaluate tan3(x)dx∫ .

Solution:

	 1.	 Rewrite tan3(x) as tan(x)tan2(x) and use the trigonometric identity tan2(x) = sec2(x) – 1.

	 2.	 The integral is now tan(x) sec2(x)−1( )dx∫  = 

tan(x)sec2(x) − tan(x)dx∫ = 1
2 tan2(x) − ln | sec(x) | + C .

Fundamental Theorem of Calculus
The genius, which led from being able to find instantaneous rates of change to the area under 
a curve, is something that has rarely been matched in mathematics. How this was done is 
something we’ll explore when we discuss numerical approximations for the integral later in this 
chapter.

There are actually two versions of the Fundamental Theorem of Calculus. The first is one that those 
who have studied calculus can easily remember.

DEFINITION

Fundamental Theorem of Calculus states if f(x) is a differentiable function 
on the interval (a,b), exists at x = a and x = b, and has the property f(x) = F'(x), 

then f x( )dx
a

b

∫  = F(b) – F(a).

For example, x2 dx
1

3

∫  = 1
3 x3

1

3
 = 1

3 3( )3
− 1

3 1( )3
= 26

3 .

Example 14: Evaluate x + 1dx
0

8

∫ .

Solution: The antiderivative for x + 1  is 2
3 x + 1( ) 3

2 , so x + 1dx
0

8

∫  = 2
3 x + 1( ) 3

2

0

8

 = 
2
3 9( ) 3

2 − 2
3 1( ) 3

2 = 52
3

.

Let’s look at a couple problems that appear to be more challenging. Remember, you are trying 
to match these problems against the list of basic integrals in the table at the beginning of this 
chapter.
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Example 15: Determine the value of 
4x − 3

4x2 − 6x + 40

2

∫ dx .

Solution: The integrand can be rewritten as (4x – 3)(4x2 – 6x + 4)–1/2. The “complicated” piece of 
the integrand is (4x2 – 6x + 4)–1/2.

	 1.	 Notice that the derivative of the base of this exponential statement is 8x – 6 and that this 
is twice the value of the numerator.

	 2.	 Let u = 4x2 – 6x + 4 so du = (8x – 6)dx and 1
2 du = (4x – 3)dx.

	 3.	 Change the bounds of the integral—when x = 0, u = 4(0)2 – 6(0) + 4 = 4, and when x = 2, 
u = 4(2)2 – 6(2) + 4 = 8.

	 4.	 The problem 4x − 3

4x2 − 6x + 40

2

∫ dx  now becomes 1
2

1
u

du
4

8

∫ .

	 5.	 The antiderivative of 1
2

1
u( )  is u .

	 6.	 Therefore, 4x − 3

4x2 − 6x + 40

2

∫ dx  = 1
2

1
u

du
4

8

∫  = 8 − 4 = 2 2 − 2 .

Example 16: Find the value of 1
sec(x) + tan(x) dx

0

π
6∫ .

Solution: This is just plain ugly! The numerator is not the derivative of the denominator. What 
to do? Some say “When in doubt, punt!” However, I say, when in doubt, going back to basics is a 
better approach.

	 1.	 Let’s take the denominator and rewrite it in terms of sine and cosine, sec(x) + tan(x) = 
1

cos(x) + sin(x)
cos(x)  and that equals 1 + sin(x)

cos(x)
. That’s better.

	 2.	 We can now rewrite the integrand 1
sec(x) + tan(x)  as cos(x)

1+ sin(x) . Now we have something with 
which we can work!

	 3.	 The numerator is the derivative of the denominator, so let u = 1 + sin(x) and du =  
cos(x) dx.

	 4.	 The bounds of integration become 1 and 1.5 (when x = 0, u = 1 and when x = π
6 , u = 1.5).

	 5.	 Evaluate the transformed integral:

1
u du

1

1.5

∫  = ln |u |
1

1.5
 = ln(1.5) – ln(1) = ln(1.5)
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A graphing calculator can easily do these problems. For example, Example 15 becomes this:

Figure 3.1 
A screen shot from the TI-Nspire calculator evaluating the integral 

4x − 3

4x2 − 6x + 40

2

∫ dx .

Example 16 becomes this:

Figure 3.2 
A screen shot from the TI-Nspire calculator evaluating the integral 1

sec(x) + tan(x) dx
0

π
6∫ .

The question that always arises (and it’s a legitimate question) is: “If the calculator can determine 
the answer, why do I need to learn this material?” The best answer I can give you is that there is 
a process to learning math. I cannot tell you every problem will lead to some deeper theory down 
the line, but the expectations at this point are that you will be able to recognize the pattern that 
the problem takes and can solve this problem. When I was in graduate school (oh, so long ago) 
taking a course in differential equations, we were allowed to bring a reference book to exams 
with us that contained about 1,000 integral patterns. You can be sure it was to our advantage to 
recognize the pattern of the problem we were solving so that we could find the correct integral.

4
2

0

x 3

4 x2 6 x +4
dx

2 2 2

0

6
1

sec(x) + tan x( ) dx

ln 3
2

YOU’VE GOT PROBLEMS

Problem 3: Evaluate 
cos(2x)esin( 2 x )

esin( 2 x ) + 10

π
4∫ dx .
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The Second Fundamental Theorem of Calculus states the nature of the inverse operations between the 

derivative and the integral, 
d f t( )dt

a

x

∫⎛⎝
⎞
⎠

dx
= f x( ) . The derivative of the integral of a function 

is a function. Notice that the upper bound on the integral is the variable x, not a constant. The 

proof of this is fairly straightforward.

DEFINITION

The Second Fundamental Theorem of Calculus states that the derivative 
of an integral is the integrand.

The First Fundamental Theorem of Calculus tells us f t( )dt
a

x

∫  = F(x) – F(a). The derivative of 

F(x) is F'(x) or f(x) while the derivative of the constant F(a) is 0.

Example 17: If g(x) = sin cos t3( )( )dt
0

x

∫ , find g'(x).

Solution: According to the Second Fundamental Theorem of Calculus, the answer is sin(cos(x3)).

Looks easy, doesn’t it? What happens when things look too easy? Someone has to come along and 
make it harder. Let’s look at Example 11 again but with one change made to the problem.

	 1.	 If g(x) = sin cos t3( )( )dt
0

x

∫ , find g'(x).

	 2.	 The upper bound is now a function rather than just the variable x.

	 3.	 If f(t) is sin(cos(t3)), then g(x) = sin cos t3( )( )dt
0

x

∫  = F x( )− F 0( ) .

	 4.	 Therefore, g'(x) = F ' x( ) 1
2 x

 = sin cos x 3
2( )( ) 1

2 x
.

Example 18: Find f'(x) if f(x) = tan et( )dt
ln x( )
9

∫ .

Solution: The Fundamental Theorem of Calculus says that tan et( )dt
ln x( )
9

∫  = G(9) – G(ln(x)) 

where G(x) is the antiderivative of tan(et). Therefore, f'(x) = G'(9) – G'(ln(x)) 1
x , so f'(x) = tan(eln(x)) 

1
x  = 

tan x( )
x .

YOU’VE GOT PROBLEMS

Problem 4: Find f'(x) if f(x) = sin3 t( )dt
sin−1 x( )
ex2

∫ .
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Numerical Approximation
The process of putting bounds on the integration and getting a specific value as the result is 
called a definite integral. The process of finding the antiderivative is called an indefinite integral. 
Before we get into using the definite integral, let’s take a look at a few simple questions that one 
might see in Algebra I.

Example 19: In physics, work is defined as applying a force over a distance, and the work done is 
calculated by the product of the force applied and the distance involved. The accompanying dia-
gram illustrates the amount of force applied and the distance involved. How much work is done?

Figure 3.3 
The diagram shows the amount of force applied over a given distance. At distance d = 0, there is no 

force being applied.

Solution: The amount of force increases at a steady rate. The amount of work done is repre-
sented by the triangle formed by this graph. Therefore, the amount of work done is 0.5 × 8 × 5 = 
20 foot-pounds of work.
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Example 20: Compute the amount of work done in the experiment, which has its results graphed 
in the following figure.

Figure 3.4 
The diagram shows the amount of force applied over a given distance. At distance d = 0, there are 2 

pounds of force being applied.

Solution: The region depicted under the line is a trapezoid. Therefore, the amount of work done 
is calculated as 0.5 × 8 × (2 + 6) = 32 foot-pounds.

Example 21: The accompanying graph represents the velocity of a car for a portion of a trip. 
How far did the car travel during this time?

Figure 3.5 
The diagram shows the speed a car is traveling during the time interval 0 to 6 hours.

Velocity
(mph)

Time
(hrs)

60

50

40

30

20

10

1 2 3 4 5 6
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Solution:

	 1.	 We’ll start this problem by drawing some lines from the corners of the graph down to 
the horizontal axis.

Figure 3.6 
Partitioning the diagram at convenient intervals allows us to calculate the distance traveled during 

this 6-hour period.

	 2.	 The car travelled at 40 mph for the first hour for a total of 40 miles.

	 3.	 For the next hour, the driver gradually increased speed from 40 to 50 mph.

	 4.	 Compute the area of the trapezoid to determine the distance travelled during this time 
frame: 1

2 (1)(40 + 50) = 45 miles.

	 5.	 The car travels for 3 hours at 50 mph for a total of 150 miles.

	 6.	 We use the trapezoid to find the distance travelled during the last hour: 1
2 (1)(30 + 50) = 

40 miles.

	 7.	 The car traveled a total of 275 miles during this time.

CRITICAL POINT

The area for each region is the product of miles per hour and hours giving a 
result of miles. This is a big piece of how the definite integral is applied.

Velocity
(mph)

Time
(hrs)

60

50

40

30

20

10

1 2 3 4 5 6
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Example 22: The graph of y = f(x) is drawn here on the interval [–10,10] and G(x) = f (x)dx
−4

x

∫ .

Figure 3.7 
The graph consists of line segments and semicircles.

The graph of f(x) consists of line segments and semicircles.

	 1.	 Evaluate: (a) G(0) (b) G(4) (c) G(6) (d) G(10) (e) G(–10)

	 2.	 Determine the intervals when G(x) is increasing/decreasing.

	 3.	 Determine the relative maxima and relative minima of G(x).

	 4.	 Determine the concavity and the points of inflection for G(x).

Solution:

	 1.	 (a) G(0) = f (x)dx
−4

0

∫ . This is a quarter of a circle with a radius of 4, so G(0) = 4π.

		  (b) G(4) = f (x)dx
−4

4

∫ . This is the area of the large semicircle with a radius of 4,  

so g(4) = 8π.

		  (c) G(6) = f (x)dx
−4

6

∫  = f (x)dx
−4

4

∫  + f (x)dx
4

6

∫ . The area denoted by f (x)dx
4

6

∫  

is a semicircle with a radius of 1, which lies below the x-axis and has negative area. 

Therefore, G(6) = 15π
2 .
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		  (d) �G(10) = f (x)dx
−4

10

∫  = f (x)dx
−4

6

∫  + f (x)dx
6

9

∫  + f (x)dx
9

10

∫ . f (x)dx
6

9

∫   

represents the area of the triangle that lies above the x-axis. The area of this triangle is 6. 

f (x)dx
9

10

∫  represents the area of the right triangle that would be formed by dropping a 

perpendicular line from (10, –4) to (10, 0). Because this triangle lies below the x-axis, the 

area is considered negative and f (x)dx
9

10

∫  = –2. Therefore, G(10) = 15π
2  + 4.

		  (e) �G(–10) = f (x)dx
−4

−10

∫  = − f (x)dx
−10

−4

∫ . There are two triangles that make up this interval. 

The triangle above the x-axis has an area of 8, and the area of the triangle below the 

x-axis is –4. Therefore, f (x)dx
−4

−10

∫  = –(–4 + 8) = –4.

	 2.	 To determine when G(x) is increasing or decreasing, we need to examine the signs of G'(x). 

Because G(x) = f (x)dx
−4

x

∫ , then by the Second Fundamental Theorem of Calculus G'(x) 

= f(x). G'(x) = 0 when f(x) = 0 and that occurs when x = –8, –4, 4, 6, and 9. G'(x) < 0 on the 

intervals [–10, –8), (4,6), and (9, 10] because f(x) < 0 on those intervals. These are the inter-

vals when g(x) is decreasing. G'(x) > 0 on (–8,–4), (–4,4), and (6,9). These are the intervals 

when G(x) is increasing.

	 3.	 G(x) has relative minima whenever G goes from a decreasing function to an increasing func-

tion. This happens when x = –8 and 6. G(–8) = –8 (see the argument from (1e) earlier) and 

G(6) = 15π
2 . G(x) has relative maxima when G goes from an increasing function to a decreas-

ing function. This happens when x = 4 and x = 9. So G(4) = 8π and G(9) = 15π
2  + 6.

	 4.	 To determine the points of inflection for G(x) we need to examine G"(x) = f '(x). G''(x) = 0 
at x = 0 and x = 5. G''(x) fails to exist at x = –6, x = –4, 4, 6, and 8. G"(x) > 0 on [–10, –6), 
(–4, 0), (5,6), and (6,8). Therefore, G(x) is concave up for these intervals. G''(x) < 0 on (–6, 
–4), (0, 4), (4,5), and (8, 10]. G(x) is concave down on these intervals. Therefore, the points of 
inflection occur when x = –6, x = –4, x = 0, x = 5, and x = 8. The points of inflection occur 
at G(–6) = –4, G(–4) = 0, G(0) = 4π, G(5) = 15π

2 , and G(8) = 15π
2  + 4.
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The Least You Need to Know
•	Basic integration formulas let you determine the function whose derivative is 

given to you in the integrand.

•	The First Fundamental Theorem of Calculus enables you to compute the area 
under a curve. Very often this value has an application beyond just finding the 
area.

•	The Second Fundamental Theorem of Calculus reinforces the notion that deriva-
tives and integrals are inverse operations and also allows for the analysis of 
functions that are defined by an integral.

•	Use u-substitution when dealing with complicated integrands that are the form of 
the basic integration formulas.

•	The area under a graph can represent physical properties.





PART

2
Length, Area, and Volumes

Calculus is really the study of two items—measuring how fast something is changing and  
accumulating material a little bit at a time. You’ve had a fair amount of experience with the  
measuring rates of change. In Part 2, we take some time to work on the accumulation. Keep in 
mind, we are still looking at mathematics through the microscope. That means what might not 
look like much of a region to the naked eye can be rather formidable when we zoom in on it.

You’re asked to use your imagination when we look at volumes. First, we begin working in a  
two-dimensional plane but then we rotate figures around vertical and horizontal lines. You then 
are asked to stand “at the end of the line” and look at a cross section. (Think of cutting a piece of 
fruit with a sharp knife and turning what was an interior part of the fruit toward you.) Getting 
the vision of the cross section in your mind goes a long way to helping you work with volumes.

The Pythagorean Theorem also comes into play again as you use it in very small increments to 
measure the length along a curve. You also learn about the area formulas for rectangles and  
trapezoids used to help find areas of regions with curved boundaries.





CHAPTER

4
Areas and Approximations

In This Chapter
•	Using plane geometry 

to approximate the area 
under a curve

•	Computing the true area 
under a curve

•	Average value of a 
function

•	Computing the true area 
between curves

•	Approximate the area 
under a curve with 
parabolic arcs

As you read in Chapter 3, the area under a curve can have 
meaningful applications. While the problems in Chapter 
3 consisted of functions that were linear in nature—or 
composed of line segments—it is also important to be able to 
compute the area under curved boundaries.
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Riemann Sums
We know that the area of a rectangle is equal to the product of length and width, and in this 
context, the length would be a functional value. That means we can estimate the area of a region 
by finding a reasonable point to measure the height and use the width of the interval as the width 
of the rectangle. Furthermore, if we remember that one of the ideas of calculus is that we are 
putting algebra under a microscope, we can subdivide the interval into as many sections as we 
want. We can also make those sections as small as we like. The idea is that the total area under 
the curve is the sum of the areas of all these subsections, regardless of how many sections or the 
size of those sections. The key is to find a “reasonable” point to measure height.

CRITICAL POINT

Bernhard Riemann, a nineteenth-century German mathematician, is 
credited with examining this process. Consequently, the estimation of the 
bounded integral is called a Riemann Sum.

Let’s start off with the basics. We’ll take the function y = f(x) on the interval [a,b] and require 
that f(x) be continuous and that f(x) > 0 throughout this interval. We’ll call the region bounded by 
y = f(x), x = a, x = b, and the x-axis R. We could call it anything we want but R is the first letter in 
region so that seems simple enough.

Figure 4.1 
R is the region bounded by the graph of y = f(x), the x-axis, x = a, and x = b.
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BE AWARE

The notion that the function be non-negative allows for an easy 
generalization of the theory. If there is a section or two that falls below 
the x-axis, they could be handled by choosing appropriate partition points 
where the graph intersects the x-axis. Then we would subtract the area for 
these regions from the sum of the regions that lie above the axis.

We’ll divide the region into n partitions at the points x1, x2, x3, …, xn – 1, and xn. The width of  
the partitions does not need to be the same size. Each width will be designated as Δxi. The width 
Δx1 = x1 – a, Δx2 = x2 – x1, Δx3 = x3 – x2, and Δxn = b – xn–1.

Figure 4.2 
R is partitioned at the points x0 = a, x1, x2, x3, … xn – 2, xn – 1, xn = b.
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For each partition, choose a point ci and draw a segment from (ci, 0) to (ci, f(ci)). For each parti-
tion, construct a rectangle with width Δxi and height f(ci).

Figure 4.3 
Rectangles are drawn using the midpoint of each partition to determine the height of the rectangle.

The estimate for the area under the curve is found by finding the sum of the areas in all the rect-
angles. Clearly, the more rectangles formed, the better the estimate for the true area becomes. 

The true area of the region under the curve can be defined as A = lim
maxΔxi → 0

f (ci )Δxi
i = 1

n

∑ .

The points ci can be anywhere within the interval [xi – 1, xi]. Three “easy” points come immedi-
ately to mind:

•	 The left endpoint

•	 The right endpoint

•	 The midpoint of each interval

A fourth method for estimating the area under the curve is to use trapezoids rather than 
rectangles.
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Example 1: Consider the function f(x) = x3 – 3x2 + 6. We’ll look at the interval [0, 2] and subdi-
vide into 10 intervals and use each of these methods to estimate the area under the curve in this 
interval.

Solution: The width of each interval is 2 − 0
10  = 0.2.

Left endpoint: From each of the values 0, 0.2, 0.4, 0.6, …, 1.8, draw perpendicular segments to 
the graph of y = f(x). Using the left endpoint as the height of a rectangle, draw the rectangle with 
width 0.2 units.

Figure 4.4 
Rectangles are drawn using the left endpoint of each partition to determine the height of the rectangle.

The approximate area under the curve is the sum of these rectangles. You can use the List fea-
ture on your calculator to compute this sum. In one list, enter each of the values of x. They can 
be entered manually or you can use the SEQ command on your calculator to generate them. In 
this case, the command would be seq(x,x,0,1.8,0.2). Compute the corresponding functional values 
in the second list. Finally, find the sum of the second list and multiply this sum by the width of 
the interval to get the result.
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CRITICAL POINT

The SEQ command uses the inputs seq(expression, independent variable, 
starting value, ending value, increment). In this example, the expression is 
simply y = x and the increment is 0.2. This is true because the width of the 
interval divided by the 10 intervals is 0.2.

Figure 4.5 
The spreadsheet display from the TI-Nspire shows the coordinate of the left endpoint of the partition 

and the functional value of that point (which is the height of the rectangle for the partition).

I try not to get too caught up with labeling the columns on the TI-Nspire when I am using the 
spreadsheet feature. I tend to call my input values in and my output values out. They are not 
very original but they also do not require a lot of typing. And to be very creative, if I need to use 
another set of input and output values in the same spreadsheet, I tend to call them in1 and out1.

The result is 0.2 times the sum of the column Out, 8.4. Clearly, each rectangle in this example has 
more area within it than does the corresponding interval bounded on top by the graph.

Right endpoint: The process is essentially the same except the rectangles are drawn from the 
right endpoint of each interval.
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Figure 4.6 
Rectangles are drawn using the right endpoint of each partition to determine the height of the 

rectangle.

The table of x values will run from 0.2 to 2.0.

Figure 4.7 
The spreadsheet display from the TI-Nspire shows the coordinate of the right endpoint of the parti-

tion and the functional value of that point (which is the height of the rectangle for the partition).

The sum of the areas for this region is 7.6. Clearly, this estimate is less than the true area because 
there is a gap between the rectangle and the graph above it.
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Midpoint: Use the midpoint of each interval to determine the height of each rectangle.

Figure 4.8 
Rectangles are drawn using the midpoint of each partition to determine the height of the rectangle.

The values of x now run 0.1, 0.3, 0.5, …, 1.9.

Figure 4.9 
The spreadsheet display from the TI-Nspire shows the coordinate of the midpoint of the partition, and 

the functional value of that point (which is the rectangle’s height for the partition).

The sum of the areas of these rectangles is 8. Each rectangle appears to have some area above the 
graph. Also missing is some area under the graph of y = f(x).
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Trapezoid: The height of each trapezoid is the width of the interval, while the bases of the trap-
ezoid are the functional values at each endpoint.

Figure 4.10 
Trapezoids are drawn using the endpoints of the partitions. Notice that with the exception of x = a 

and x = b, all partition points are used twice.

The values of x now run from 0 to 2 in increments of 0.2 and include both endpoints.

Figure 4.11 
The spreadsheet display from the TI-Nspire shows the coordinate of each partition point and the 

functional value of that point. (These values are the lengths of the bases for the partition.)
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Recall that the formula for the area of a trapezoid is 1
2 h b1 + b2( ) . The trapezoidal estimate is 

1
2 (0.2)(6 + 5.888) + 1

2 (0.2)(5.888 + 5.584) + 1
2 (0.2)(5.884 + 5.136) + ... + 1

2 (0.2)(2.416 + 2.112) + 1
2 (0.2)(2.112 + 2)  

= 8.

Notice how this equation becomes 1
2 (0.2)(f (0) + 2f (0.2) + 2f (0.4) + ... + 2f (1.8) + f (2)) .

We’ll find the true area under this curve in a few moments.

An estimate found using the trapezoidal method will always be the average of the left endpoint 
and right endpoint methods.

YOU’VE GOT PROBLEMS

Problem 1: Use the midpoint method with 20 subdivisions to estimate 

x4 − 5x2 + 9dx
1

5

∫ .

Example 2: Approximate the area under the curve g(x) = x2 25− x2
 on the interval [1, 4] with 

20 partitions using each of the four methods discussed.

Solution: The width of each interval is 4 − 1
20  = 0.15.

A look at the graph shows that it is continuous and non-negative on the interval [1, 4].

Figure 4.12 

The graph of g(x) = x2 25− x2
 on the interval [–5, 5].
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Left endpoints: The left endpoints for the partitions will be 1, 1.15, 1.30, 1.45, …, 3.70, 3.85 and 
can be generated with the Sequence command seq(x, x, 1, 3.85, 0.15). The heights for the rect-
angles will be calculated at these points.

Figure 4.13 
A partial spreadsheet display from the TI-Nspire shows the coordinate of the left endpoint of the  

partition and the functional value of that point.

The estimate for the area of the specified region is 0.15 times the sum of these values. Use this 
command on a calculator: The 0.15*sum(out) = 78.0529.

Right endpoints: The heights for the rectangles will be calculated when x = 1.15, 1.30, 1.45, …, 
3.85, and 4.

Figure 4.14 
A partial spreadsheet display from the TI-Nspire shows the coordinate of the partition’s right  

endpoint and the functional value of that point.
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The estimate for the area using right endpoint partitions is 85.518.

Trapezoid: The trapezoidal approximation is the average of the left and right endpoint methods. 

This means the approximation is 78.0529 + 85.518
2  = 81.2855.

Midpoints: The heights of the rectangles will be calculated when x = 1.075, 1.225, 1.375, …, and 
3.925.

Figure 4.15 
A partial spreadsheet display from the TI-Nspire shows the coordinate of the partition’s midpoint and 

the functional value of that point.

The estimate for the area using midpoint approximations is 81.3049.
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Example 3: A plane flies in a straight line with positive velocity v(t) kilometers per minute with 
v being a differentiable function of t. The following table shows the velocity of the plane during 
the interval [0, 60] in 5-minute increments.

t v(t)

0 7.9
5 8.1
10 8.4
15 8.8
20 8.5
25 8.3
30 8.7
35 9.0
40 8.8
45 8.6
50 8.4
55 8.2
60 8.1

Use the trapezoidal method with 6 intervals to compute the Riemann Sum approximation for 

v(t)dt
0

60

∫ . Then explain the meaning of this result in terms of the plane’s flight.

Solution: The width of each interval is 10 minutes so the Riemann Sum approximation 

for v(t)dt
0

60

∫  is 1
2 10( ) v(0) + 2v(10) + 2v(20) + 2v(30) + 2v(40) + 2v(50) + v(60)( )  = 

1
2 10( ) 7.9 + 2(8.4 + 8.5 + 8.7 + 8.8 + 8.4) + 8.1( )  = 508 kilometers traveled in 60 minutes.
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From Numerical Approximations to the  
True Area

The Mean Value Theorem states that under the conditions that f(x) is differentiable on 
the interval (a,b) and continuous on [a,b], there will be a value of c in the interval so that 

f '(c) = f (b) − f (a)
b − a . If we multiply both sides of the equation by the denominator, then f'(c) (b – a) 

= f(b) – f(a). Let’s change the notation from f'(c) and f(c) to represent the derivative and antide-
rivative to f(c) and F'(c). The equation from the Mean Value Theorem is now f(c)(b – a) = F(b) 
– F(a). This is where the true genius of calculus is found. If we look at the approximations of the 
area using the various values for ci, the area for each partition is:

f(c1)*Δx1 = F(x1) – F(a)

f(c2)*Δx2 = F(x2) – F(x1)

f(c3)*Δx3 = F(x3) – F(x2)

f(c4)*Δx4 = F(x4) – F(x4)

And so on until:

f(cn)*Δxn = F(b) – F(xn–1)

The area is the sum of the f(ci)*Δxi, which in turn equals:

F(x1) – F(a) + F(x2) – F(x1) + F(x3) – F(x2) + … + F(b) – F(xn–1)

This collapses to F(b) – F(a) = f (x)dx
a

b

∫ .

How cool is that!

The true area under the curve y = x3 – 3x2 + 6 on the interval [0, 2] is x3 − 3x2 + 6dx
0

2

∫  = 8. 

(We were fortunate to find the exact area with 10 subdivisions. That will rarely happen. But the 
estimate that you will get should be pretty close to 10 subdivisions.)
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At this point in our study of integrals, we do not yet know the antiderivative for 

g(x) = x2 25− x2 , so we will have to be satisfied with our approximations for the time being—

unless you want to let the calculator do the work for you. We all know that you do, so here it is:

Figure 4.16 
A screen shot from the TI-Nspire CAS calculator shows the exact value of the area of the region 

bounded by y = g(x) and the x-axis from x = 1 to x = 4.

I’ll bet you weren’t expecting that answer! This is just a preview for how interesting determining 
integrals will get. Numerically, this is equal to 81.2984. The trapezoid and midpoint approxima-
tions were pretty close.

Example 4: Find the area under the first arch of the sine curve in the first quadrant.

Solution: The graph of the function y = sin(x) crosses the x-axis at x = 0 and x = π. The area 

under the curve is found using the definite integral sin(x)dx
0

π

∫  = −cos(x)
0

π  = –cos(π) – –cos(0) 

= –(–1) + 1 = 2.

Unlike all the work you did in geometry, you now have to deal with the fact that area is a vector 
rather than a scalar. That is, area can be negative.

Example 5: Evaluate sin(x)dx
π

2π

∫ .

Solution: sin(x)dx
π

2π

∫  = −cos(x)
π

2π  = –cos(2π) – –cos(π) = –(1) – 1 = –2.

Aside from the fact that this is the way the numbers work, why would we want to assign a direc-
tion to area? Rather than think of the problem in the sterile format of evaluating the integral, put 
the problem in context. For example, suppose the integrand is the velocity of an object and the 
goal is to find the displacement (not distance) of the object. In Example 4, the object will have 
moved 2 units in the positive direction (however positive is defined) while the object will have 
moved 2 units in the reverse direction putting it back in its original position. How far did the 
object travel? 4 units. What is its displacement? 0 units.

g x( )dx
4

1
625 cos 1 3

5
8

+
625 sin 1 1

5
8

+23 6
4

21
2
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Example 6: Find the total displacement and total distance traveled by an object that moves along 

a horizontal line with velocity v(t) = sin πt
3( ) + cos πt

6( )  for 0 ≤ t ≤ 9.

Solution: The displacement is found using the definite integral sin πt
3( ) + cos πt

6( )dt
0

9

∫  =  

−3
π cos πt

3( ) + 6
π sin πt

6( )
0

9
 = −3

π cos 3π( ) + 6
π sin 3π

2( )( ) − −3
π cos 0( ) + 6

π sin 0( )( )  = 

−3
π (−1) + 6

π (−1)( ) − −3
π + 0( )  = 0.

We need to take a look at the velocity function to see if it ever reverses itself. This will cause the 
distance traveled to be different from the displacement.

Figure 4.17 
The graph of the velocity function v(t) = sin πt

3( ) + cos πt
6( )  for 0 ≤ t ≤ 9.

	 1.	 Let the calculator determine the points where the graph crosses the t-axis (also, where 
the object changes directions).
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YOU’VE GOT PROBLEMS

Problem 2: A particle moves along a straight line with velocity v(t) = 

4cos πt
4( ) + 2sin πt

3( )  during the interval [0,12]. Find the total displacement 

and total distance traveled by the object.

	 2.	 Use the zero function on the calculator to bind the first point where the graph crosses 
the x-axis ((3,0)) and then do the same for the second point of intersection ((7,0)).

Figure 4.18 
The velocity of the particle is 0 when t = 3, 7, and 9.

	 3.	 To find the total distance traveled, we need to calculate the definite integral from t = 0 
to t = 3 and from t = 7 to t = 9, add these together, calculate the definite from t = 3 to  
t = 7, and subtract this value from the sum.

	 4.	 Let’s be practical and let the calculator do the work for us. The total distance traveled is 

v(t)dt
0

3

∫ + v(t)dt
7

9

∫ − v(t)dt
3

7

∫ = 27
π

.
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Average Value of a Function
You saw in Example 4 that the area under the first arch of the sine function is 2. What is the aver-
age value of the sine function on the interval [0, π]? Unlike days of old when one found an average 
by adding a set of numbers and then dividing by the number of values in the data set, we need to 
work with a continuous set of data. Fortunately, this turns out to be a fairly simple problem.

Figure 4.19 
The graph of y = sin (x) on [0, 2π] and a rectangle illustrating the area under the sine curve from 

0 to π.

The rectangle is drawn on the same interval as is the arch of the sine wave. The task is to now 
find the height of the rectangle that will give the same area as the area under the arch. We know 
the area and we know the width of the rectangle so all we need to do is divide these values.

DEFINITION

The average value of a continuous function f(x) on the interval [a, b] is 

1
b − a f (x)dx

a

b

∫ .

The average value of the sine function on [0, π] is 1
π − 0 sin(x)dx

0

π

∫ = 2
π .

Example 7: Find the average value of the function f(x) = x  on the interval [1, 9].

Solution: The average value is 1
9 − 1 x dx

1

9

∫  = 13
6 .
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Example 8: When studying the depth of a bay due to the changes in tide, the model d(t) = 

10 + 3cos t
12( ) + 2sin t

12( )  is used, where d is measured in feet and t in hours. Determine the  

average value of d(t) over the interval [0, 12].

Solution: The average depth of the water is 1
12 10 + 3cos t

12( ) + 2sin t
12( )dt

0

12

∫  = 

1
12( ) 10t + 36cos t

12( ) + 24sin( t
12( )( )

0

12
 1

12( ) 10t + 36sin t
12( ) + 24cos( t

12( )( )
0

12
 = 13.44 feet.

Area Between Two Curves
The definite integral can also be used to find the area between two curves. As you did in 
geometry, you take the area of the larger figure and subtract the area of the smaller figure. In the 
application of the definite integral, you need to determine which graph is above the other in the 
interval involved.

Example 9: Find the area of the region bounded by the line y = x + 2 and the parabola y = x2.

Solution: Use your graphing utility to look at a picture of the graphs.

Figure 4.20 
The graphs of y = x + 2 and y = x2 intersect at (–1, 1), and (2, 4).
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The graphs intersect at x = –1 and x = 2. During this interval, the line forms the upper boundary 

for the region so the area is found using the integral (x + 2) − x2( )dx
−1

2

∫  = 1
2 x2 + 2x − 1

3 x3

−1

2
 = 

1
2 (2)2 + 2(2) − 1

3 (2)3( ) − 1
2 (−1)2 + 2(−1) − 1

3 (−1)3( )  = 2 + 4 − 8
3( ) − 1

2 − 2 − 1
3( ) = 9

2
.

BE AWARE

When computing the area between two curves, the difference in the 
functions is always the function with greater values on the interval minus 
the function with lesser values. If reversed, the area will be a negative value.

Example 10: Find the total area of the regions bounded by the graphs of y = x2 and y = 2x.

Solution: This is an interesting problem for a few reasons.

First, you have a parabola and an exponential intersecting and there is no clean algebraic method 
for determining the points of intersection. Ah yes, you say to yourself, go get the graphing calculator. 
When you stop to think about it, there are two obvious points of intersection, (2,4) and (4, 16). 
This is usually where most people stop thinking about the points of intersection and set up an 
integral to get the answer.

But recall that as x goes to negative infinity, the parabola grows to infinity while the exponential 
goes to zero. There must be a point somewhere to the left of x = 0 where the graphs intersect. 
This is where the calculator becomes very important.

(The other piece of this is that people often forget to think about the viewing window when 
graphing functions. Although they see the intersection to the left of zero, they ignore what  
happens beyond y = 10 when the graphs intersect a third time. The moral of this story is that  
you should not rely on the calculator to pick the appropriate viewing window for you. Instead, 
you must consider the behavior of the function. In this case, the exponential function grows  
faster than the parabola so the graphs must cross a third time.)
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YOU’VE GOT PROBLEMS

Problem 3: Find the total area of the regions bounded by f(x) = x3 – 3x2 – 5x 
and g(x) = 2x – 10.

Figure 4.21 
The graphs of y = x2 and y = 2x intersect at three points.

	 1.	 Use the intersect feature from the calculator to determine the points of intersection, 
particularly the leftmost.

	 2.	 You can have the calculator store this in a variable so that you do not need to type all 
the decimal values when you are integrating. In this example, I stored the smallest value 
of x in the variable a.

	 3.	 The exponential function forms the upper boundary for the first region while the 
parabola does so for the second region.

	 4.	 Therefore, the total area bounded by these two functions will be the sum of two definite 
integrals.

Area = 2x − x2 dx
a

2

∫ + x2 − 2x dx
2

4

∫  = 3.46025
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Example 11: Find the area of the region bounded in the first quadrant by the graphs of  
y = cos(x), y = sin(x), and x = 0.

Solution: The graph of this region is:

Figure 4.22 
The region R is bounded in the first quadrant by the y-axis and the graphs of y = cos(x) and y = 

sin(x).

The two graphs intersect when x = π
4 . The area between the curves is found with the integral 

cos(x) − sin(x)dx
0

π
4∫  = 2 − 1 .
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Example 12: Find the area of the region bounded by the graphs of y = cos(2x) and y = 0.5x.

Use your graphing calculator to determine where these functions intersect.

Figure 4.23 
The graphs of y = cos(2x) and y = 0.5x intersect at three points.

We’ll need to use the technology to find the points of intersection because we have no way to 
do so algebraically. I stored the x-coordinate for the first point on intersection in variable a, the 
second in b, and the third in c.

Between a and b, the line forms the upper boundary while the graph of y = cos(2x) 
forms the upper boundary from b to c. The total area of these two regions is 

0.5x − cos(2x)dx
a

b

∫ + cos(2x) − 0.5x dx
b

c

∫  = 1.2029.
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YOU’VE GOT PROBLEMS

Problem 4: Find the area bounded by the graphs of y = sec(x) and y = 4 – x2, 
as shown in the accompanying diagram.

Figure 4.24 
The graph shows the region formed by the intersection of y = x2 and  

y = sec(x).

Simpson’s Rule
The techniques we studied earlier in this chapter for approximating the area under a curve all 
relied on plane geometry—that is, on boundaries that involved line segments. Simpson’s Rule 
uses the Fundamental Theorem of Calculus to form an estimate for the area. “What’s that?” you 
say. “You’re going to use the Fundamental Theorem of Calculus to approximate the area under a 
curve when the Fundamental Theorem of Calculus can find the area under a curve. Explain that 
to me.” Thank you, I will.
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As we saw earlier, there are some functions that we do not yet know how to integrate, such as 

g(x) = x2 25− x2 . There are some functions, such as y = e− x2

 that we will never be able to 

integrate and yet the values generated are important. Simpson’s Rule divides the interval of integra-
tion into an even number of partitions. Three successive points generated by the endpoints over 
two partitions are used to generate a parabolic arc (if you are unfamiliar with this at this time, it 
is a technique called quadratic regression that can be used to generate a quadratic function that 
will pass through these three points and can be done with the regression feature on your graph-
ing calculator). The Fundamental Theorem of Calculus is used to compute the area under this 
arc. The process is repeated until the entire interval is used.

DEFINITION

Simpson’s Rule states you use the area under a parabolic arc determined 
by three data points to approximate the area under a curve.

The consequence of finding the quadratic equation and the Fundamental Theorem of Calculus  

is that the area under a particular arc from xi to xi+2 is equal to Δx
3 f xi( ) + 4f xi+1( ) + f xi+2( )( ) .  

The results of this process will result, with the exception of the endpoints for the interval, that 
the functional value at each odd subscripted partition point will be multiplied by 4 and the func-
tional value for each even subscripted partition point will be multiplied by 2. That is:

f (x)dx
a

b

∫ = Δx
3 f x0( ) + 4f x1( ) + 2f x2( ) + 4f x3( ) + ... + 4f xn−1( ) + f xn( )( )

Example 13: Find the area under the curve y = e− x2

 on the interval [–1, 2] using 6 partitions.

Solution: The graph of the function is:

Figure 4.25 
The graph of y = e− x2

.
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The width of each interval is 0.5 and the partition endpoints are [–1, –0.5], [–0.5, 0], [0, 0.5],  
[0.5, 1], [1, 1.5], and [1.5, 2]. Drawing arcs over the partitions shows:

Figure 4.26 
Simpson’s Rule is applied to y = e− x2

 on the interval [–1, 2].

The estimate for the integral e− x2

dx
−1

2

∫  is:

( ) ( ) ( )+ +f(–1) + 4f(–0.5)+ f(0) f(0) + 4f(0.5) + f(1) f(1) + 4f(1.5) + f(2)0.5
3  = 1.62899

Figure 4.27 
The spreadsheet display from the TI-Nspire shows the coordinate of the partition and the functional 

value at that point.

YOU’VE GOT PROBLEMS

Problem 5: Use Simpson’s Rule with 6 partitions to evaluate x3 + 4 dx
0

3

∫ .
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The Least You Need to Know
•	Areas under a curve can be approximated with rectangles, trapezoids, and  

parabolic arcs.

•	The definite integral represents the area under the curve within the stated bounds 
of integration.

•	The area between two curves is computed with the difference of the functions on 
the stated interval.

•	Technology is very useful in three of the preceding statements.





CHAPTER

5
Volumes and Areas of  
Solids of Revolutions

In This Chapter
•	Calculating volumes of 

solids using disks, washers, 
and shells

•	Determining the distance 
from point A to point B

•	Understanding areas of 
solids

We’ve dealt with a review of Calculus I and what happens in 
the xy-plane—limits, rates of change, and accumulation. Now 
we get to look at a few three-dimensional issues (the operative 
word being few). What happens when the region formed in a 
two-dimensional plane is rotated around a line in that plane? 
The result is a three-dimensional solid. In this chapter, we 
will explore the process of computing the volume and surface 
area for these solids.
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The basic concept about how volume is computed is similar to a winter ice storm. It begins with 
the slimmest sheen of ice laying on the surface. As the precipitation continues to fall, the layer of 
ice grows thicker and thicker until it is easily seen (and the wise drivers do so from the safety of 
their homes rather than their cars). The technique translates into calculus as …

	 1.	 Identifying an area: A.

	 2.	 Multiplying that area by the slimmest of thickness: Δx.

	 3.	 Doing so allows accumulation to occur: AΔx∑ .

	 4.	 Applying the notion of the limit means AΔx∑  becomes Adx∫ , and a formula is born!

Volumes of Solids with Defined Cross Sections
Let’s look at a couple sketches.

Example 1:

Sketch the graph of the parabola f(x) = 4 – x2 on a piece of graph paper for the interval [–2, 2].

	 1.	 Connect the points (–1,0) and (–1, 3) with a line segment.

	 2.	 Connect (0,0) to (0,4) and (1,0) to (1,3)—also with line segments.

	 3.	 Use each line segment to construct an equilateral triangle perpendicular to the plane 
containing the graph paper. That is, imagine the graph paper is flat on a table and the 
triangles are growing out of the table.

	 4.	 Now imagine these triangles being drawn for every pair of points (b,0) and (b, f(b)) on 
the interval [–2, 2]. You would have an interesting looking solid.

	 5.	 What is the volume of this solid?
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Figure 5.1 
A solid with a parabolic base with cross sections perpendicular to the x-axis are equilateral triangles.

Example 2:

Now, sketch the graph of the parabola f(x) = 4 – x2 on the interval [–2, 2] on another piece of 
graph paper.

	 1.	 Connect the pair of points (–2, 0) and (2, 0) with a line segment.

	 2.	 Repeat this for the points (–1, 3), and (1,3).

	 3.	 Again, construct equilateral triangles along each segment perpendicular to the plane 
containing the parabola. You have another interesting looking solid but not the same as 
the solid constructed in the previous diagram.

	 4.	 What is the volume of this solid?
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Figure 5.2 
A solid with a parabolic base whose cross sections perpendicular to the y-axis are equilateral triangles.

CRITICAL POINT

Four area formulas from geometry are frequently used with this topic. The 
area of a square with side of length s is s2, the area of an equilateral triangle 

with sides of length s is 
s2 3

4 , the area of an isosceles right triangle with a 

hypotenuse length of s is s2

4 , and the area of the semicircle with a diameter 

s is s2π
8 .

In the case of the solid shown in earlier Example 1, the volume of the solid formed is Adx∫  

becomes 
4 − x2( )2

3

4−2

2

∫ dx . Simplify the integral to 3
4 4 − x2( )2

dx
−2

2

∫  = 3
4 16 − 8x2 + x4 dx

−2

2

∫ . 

This becomes 3
4 16x − 8

3 x3 + 1
5 x5( )

−2

2
 = 

128 3
15 .
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The case for the solid in Example 2 is more complicated:

	 1.	 The lengths of the sides of the triangles are measured by the difference of their  
x-coordinates. Consequently, the problem needs to be rewritten with y as the indepen-
dent variable rather than x.

	 2.	 If y = 4 – x2, then y – 4 = –x2 so that x = ± 4 − y  with the bounds of integration being  
y = 0 to y = 4.

	 3.	 The graph of x = ± 4 − y  will generate the right hand side of the parabola.

	 4.	 Because of the symmetry of the parabola, the length of each side of the equilateral 
triangle will be twice this value.

	 5.	 The volume of the solid is 3
4 2 4 − y( )2

dy
0

4

∫  = 3 4 − y dy
0

4

∫  = 3 4y − 1
2 y2( )

0

4
 = 

8 3 .

Rather than have the cross sections be equilateral triangles, what if they were semicircles? Each 
segment from (b,0) to (b,f(b)) would be the diameter of the semicircle.

Figure 5.3 
A solid with a parabolic base with cross sections perpendicular to the x-axis that are semicircles.
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YOU’VE GOT PROBLEMS

Problem 1: Let R be the region bounded by the graph of f (x) = x + 1 , the 

x-axis, x = 0, and x = 4. Find the volume of the region formed with R as the 
base if the cross sections perpendicular to the plane of R and to the x-axis 
are:

	 (a)	 Squares

	 (b)	 Semicircles

	 (c)	 Equilateral triangles

	 (d)	 Isosceles right triangles with the hypotenuse in the plane of R

The volume for this solid is π
8 4 − x2( )2

dx
−2

2

∫  = 64π
15 .

If the cross sections are isosceles right triangles with the hypotenuse in the plane of the parabola, 

the volume of the solid is 1
4 4 − x2( )2

dx
−2

2

∫  = 128
15 .

Figure 5.4 
A solid with a parabolic base with cross sections perpendicular to the x-axis that are isosceles right 

triangles.
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Disks and Washers
Think of a sketch showing a horizontal line and a segment drawn perpendicular to that line. 
Rotate the perpendicular line segment around the horizontal line. “Turn” the sketch so that you 
are looking down the line at the sketch. If one endpoint of the line segment was on the line, you 
will see a disk (a circle and its interior). If both endpoints of the segment are off the line and on 
the same side of the line, the figure created will be a washer (concentric circles with the region 
between them shaded but the interior of the smaller circle not shaded). This is the basis for com-
puting the area, A, needed to compute volume.

BE AWARE

The line around which a region is rotated should not pass through the 
interior of the region. This creates a problem that we do not want to deal 
with at this point in our study.

Example 3: The triangular region determined by the x-axis, the y-axis, and the line 2x + y = 4 is 
rotated about the x-axis. What is the volume of the solid formed?

Figure 5.5 
The cone formed when the line 2x + y = 4 is rotated about the x-axis.
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Solution:

	 1.	 If you look at a cross section from the perspective of the “end” of the x-axis, you would 
see this:

Figure 5.6 
A cross section of the cone formed when the line 2x + y = 4 is rotated about the x-axis is a disk.

	 2.	 Each cross section is a circle with radius y = 4 – 2x.

	 3.	 Therefore, Adx∫  becomes π (4 − 2x)2 dx
0

2

∫  = 32π
3 . (This agrees with the formula for 

the volume of a cone with base radius = 4 and height 2.)

Example 4: The triangular region determined by the x-axis, the y-axis, and the line 2x + y = 4 is 
rotated about the y-axis. What is the volume of the solid formed?

Figure 5.7 
The cone formed when the line 2x + y = 4 is rotated about the y-axis.

Solution: Each cross section is a circle (as seen from the “end” of the y-axis) with radius x = 4 − y
2  

so the volume of the solid is π ( 4 − y
2 )2 dy

0

4

∫  = 16π
3 .
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Example 5: The triangular region determined by the x-axis, the y-axis, and the line 2x + y = 4 is 
rotated about the line y = –2. What is the volume of the solid formed?

Figure 5.8 
The solid formed when the line 2x + y = 4 is rotated about the line y = –2.

Solution:

	 1.	 If you look at a cross section from the perspective of the “end” of the x-axis, you would 
see this:

Figure 5.9 
A cross section of the solid formed when the line 2x + y = 4 is rotated about the line y = –2  

is a washer.
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	 2.	 The radius of the smaller circle is 2 (the distance from y = –2 to the x-axis).

	 3.	 The distance of the larger radius is 4 – 2x + 2 (the distance from y = –2 to the line  
y = 4 – 2x), or y = 6 – 2x.

	 4.	 The area of a cross section is computed as π((6 – 2x)2 – 22) so the volume of the solid is 

π (6 − 2x)2 − 4dx
0

2

∫  = 80π
3 .

Example 6: The triangular region determined by the x-axis, the y-axis, and the line 2x + y = 4 is 
rotated about the line x = 4. What is the volume of the solid formed?

Figure 5.10 
The solid formed when the line 2x + y = 4 is rotated about the line x = 4.

Solution:

	 1.	 The figure is that of a cylinder with a truncated cone removed from its middle.

	 2.	 If you look at a cross section from the perspective of the “end” of the line x = 4, you 
would see a washer.

	 3.	 The radius of the smaller circle is 4 − 4 − y
2 = 4 + y

2  (the distance from x = 4 to the line 

x = 4 − y
2 ).

	 4.	 The distance of the larger radius is 4 (the distance from the y-axis to the line x = 4).

	 5.	 The area of a cross section is π 42 − 4 + y
2( )2⎛

⎝⎜
⎞
⎠⎟  so the volume of the solid is 

π 16 − 4 + y
2( )2⎛

⎝⎜
⎞
⎠⎟0

4

∫ dy  = 80π
3 .
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YOU’VE GOT PROBLEMS

Problem 2: Let R be the region bounded by the axes and the line 4x + 3y = 
12. Find the volume of the solid formed when R is rotated around the line  
y = –2.

Example 7: The region bounded by the graphs of y = x2 and y = x + 2 is rotated around the 
x-axis. Find the volume of the solid formed.

Solution:

	 1.	 A graph of the two functions shows that they intersect at the points (–1,1) and (2,4).

Figure 5.11 
A segment is drawn perpendicular to the x-axis in the region bounded by the graphs of y = x + 2 and 

y = x2.

BE AWARE

I drew a segment at an arbitrary value of x in the interval [–1, 2]. I use this 
figure to determine if the cross section of the solid is a disk or a washer.
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	 2.	 As you can see, there is a gap between the lower endpoint of the segment and the x-axis 
so the cross section will be a washer.

	 3.	 The larger radius of the washer is the distance from the x-axis to the line, x + 2.

	 4.	 The smaller radius is the distance from the x-axis to the parabola, x2.

	 5.	 Therefore, the area of the cross section is π (x + 2)2 − x2( )2⎛
⎝

⎞
⎠ .

	 6.	 This means that the volume of the solid is π (x + 2)2 − x2( )2⎛
⎝

⎞
⎠ dx

−1

2

∫  =   72
5
≠ .

Example 8: The region bounded by the x-axis and f(x) = sin(x) from x = 0 to x = π is rotated 
around the x-axis. Find the volume of the solid formed.

Solution: A cross section of the region will be a disk so the volume is π sin2(x)
0

π

∫ dx  = 

π 1
2 x − 1

4 sin(2x)( )
0

π
 = π π π( )− − − = πsin(2 ( (0) sin(0)1

2
1
4

1
2

1
4 2

2) ) . (The antiderivative was 

found in Chapter 3’s Example 7.)

Example 9: The region bounded by the x-axis and f(x) = cos(x) from x = 0 to x = π
2  is rotated 

around the line y = –1. Find the volume of the solid formed.

Solution:

	 1.	 A cross section for this solid will be a washer with larger radius cos(x) + 1 and smaller 
radius 1.

	 2.	 The volume of the solid formed is π cos(x) + 1( )2
− 1dx

0

π
2∫  = π cos2(x) + 2cos(x)dx

0

π
2∫ .

	 3.	 Use the trigonometric identity cos(2x) = 2 cos2(x) – 1, or cos2(x) = 1
2 cos(2x) + 1

2  to 

change the integral to π 1
2 cos(2x) + 1

2 + 2cos(x)dx
0

π
2∫  = π 1

4 sin(2x) + x
2 + 2sin(x)( )

0

π
2  = 

π 1
4 sin(π ) + π

4 + 2sin π
2( )( ) − 1

4 sin(0) + 0 + 2sin(0)( )⎡
⎣

⎤
⎦  = π π

4 + 2( ) = π 2 + 8π
4

.
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Example 10: The graph of y = 4 cos(2x) intersects the x-axis at point K, as shown in the follow-
ing figure.

C is the region bounded by the graph of y = 4 cos(2x) and the line segment joining the y-intercept 
of this graph to point K. Find the volume of the solid formed when C is rotated around the x-axis.

Solution:

	 1.	 Point K is the first positive value of x when cos(2x) = 0.

	 2.	 You know that cos(A) = 0 when A = π
2 , so 2x = π

2  implies that x = π
4 .

	 3.	 The line joining (0,4) (the y-intercept) to π
4 ,0( )  has slope 0 − 4

π
4 − 0 = −16

π , so the equation of 

the line is y = −16
π x + 4 .

Figure 5.12 
A line segment is drawn between the intercepts of the graph of y = 4cos(2x).

	 4.	 Using the arbitrarily drawn segment within the bounds of C, you can see that a cross 
section of the solid will be a washer.

	 5.	 The area of this cross section is π 4cos 2x( )( )2
− −16

π x + 4( )2⎛
⎝

⎞
⎠ .

	 6.	 This is a particularly ugly Area function so I chose to use the integration feature on my 

graphing calculator to determine that π 4cos(2x)( )2
− −16

π x + 4( )2( )0

π
4∫ dx  = 2π 2

3 .
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Example 11: Let Q be the region bounded by the f(x) = x3, y = 8, and the y-axis. Find the volume 
of the solid formed when Q is revolved around the line y = 8 and the line x = 2.

Solution: The graph of the Q is:

Figure 5.13 
Q is the region formed by the y-axis, y = 8, and y = x3.

	 1.	 The cross section of the solid when Q is rotated around the line y = 8 will be a disk with 
radius 8 – x3. (Draw a segment at an arbitrary point on the graph of y = x3 to the line  
y = 8. The length of this segment is 8 – x3.) The bounds of integration are from x = 0 to 

x = 2. Therefore, the volume of the solid is π (8 − x3)2 dx
0

2

∫  = π 64 − 16x3 + x6 dx
0

2

∫  = 

π 64x − 4x4 + 1
7 x7

0

2⎛
⎝

⎞
⎠  = 576π

7 .

	 2.	 The cross section of the solid when Q is rotated around the line x = 2 will be a washer.

Figure 5.14 
Region Q with an arbitrarily selected segment drawn perpendicular to the axis of rotation.
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This solid will be similar to that of Example 6. There is a cylinder of radius 2 with a shape 

removed from its center. The radii of the washer will be 2 and 2 – y3 . The bounds of integra-

tion will be from y = 0 to y = 8.

BE AWARE

Because the line of rotation is vertical, the equation needs to be rewritten 

as x = f(y) rather than y = f(x). In this case, y = x3 becomes x = y3 .

The volume of the solid formed when Q is rotated around the line x = 2 is π 22 − 2 − y3( )2
dy

0

8

∫  
= 144π

5 .

Example 12: Let P be the region bounded by the graphs of y = e–x and y = 2 – x. What is the 
volume of the solid formed when P is rotated about the x-axis?

Solution: Using the calculator to sketch the graphs of the two functions shows that they intersect 
at two points. Using a calculator makes finding the points of intersection much easier than it is to 
do so algebraically.

Figure 5.15 
The graph shows the region formed by the intersection of y = e – x and y = 2 – x.

	 1.	 Store each of the x-coordinates of the points of intersection into variables on your 
calculator, letting a = –1.15 and b = 1.84. Hopefully you do not need to physically draw a 
segment in the region P to determine that the cross section of the solid will be a washer.

	 2.	 The larger radius of the washer will be 2 – x, while the smaller radius will be e–x.

	 3.	 The volume of the solid is π (2 − x)2 − e−2x dx
a

b

∫  = 17.0993.



Part 2: Length, Area, and Volumes106

Cylindrical Shell Method
When a vertical line segment is rotated about a vertical line, the solid formed is a shell (empty 
cylinder) rather than a disk. The same thing happens when a horizontal segment is rotated 
around a horizontal line. As discussed earlier in this chapter (see “Disks and Washers”), if infi-
nitely thin layers of the cylinder are laid one upon the other, a thickness develops and a solid is 
created. The area for the lateral side of a cylinder is 2πrh.

CRITICAL POINT

Using a rectangular sheet of paper with the area l × w, roll the paper along 
the longer side into a cylinder. The width of the paper becomes the height 
of the cylinder. The length of the paper becomes the circumference of the 
circle. So l × w become h × 2 × π × r.

The term AΔx∑  becomes 2πrhΔx∑  and Adx∫  becomes 2πrhdx = 2π rhdx∫∫ . The task 
before us as we try to use this material is to determine expressions for the radius and circumfer-
ence of a cross-sectional cylinder.

Example 13: Use the shell method to determine the volume of the solid formed when the region 
bounded by y = 4 – 2x, x = 0, and y = 0 is rotated around the line x = 0.

Solution:

	 1.	 If this problem looks familiar, it’s because it’s the same problem as Example 4.

Figure 5.16 
The cone formed when the line 2x + y = 4 is rotated about the y-axis. An arbitrarily selected  

segment in the region is drawn perpendicular to the x-axis.

YOU’VE GOT PROBLEMS

Problem 3: Find the volume of the region bounded by the x-axis, y = 1
1+ x2 , 

x = 0, and x = 1 is revolved around the x-axis.
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	 2.	 The radius of the cylinder will be x.

	 3.	 The height of the cylinder is 4 – 2x.

	 4.	 The volume of the solid formed is 2π x(4 − 2x)dx
0

2

∫  = 2π 4x − 2x2 dx
0

2

∫  = 

2π 2x2 − 2
3 x3

0

2⎛
⎝

⎞
⎠  = 16π

3 .

Example 14: The region bounded by the graphs of y = x3, y = 8, and x = 0 are rotated around the 
line x = 2. Find the volume of the solid formed.

Solution: This problem is part 2 of Example 11.

Figure 5.17 
Q is the region formed by the y-axis, x = 8, and y = x3. An arbitrarily selected segment in the region 

is drawn perpendicular to the x-axis.

	 1.	 The radius of the cylinder is 2 – x.

	 2.	 The height of the cylinder is 8 – x3.

	 3.	 The volume of the solid is 2π (2 − x)(8 − x3)dx
0

2

∫  = 144π
5 .

CRITICAL POINT

In general, it is usually easier to use the cylindrical shell method when the 
axis of rotation is a vertical line and to use the disk or washer methods 
when the axis of revolution is a horizontal line.
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Example 15: The region bounded by the graphs of y = x2 and y = 2x is rotated around the y-axis. 
Find the volume of the solid formed.

Solution:

	 1.	 The two graphs intersect at (0,0) and (2,4).

Figure 5.18 
The region formed by the intersection of y = x2 and y = 2x.

	 2.	 Picking any arbitrary point in the interval [0, 2], the radius of the cylinder is x.

	 3.	 The height of the cylinder is 2x – x2.

	 4.	 Therefore, the volume of the solid formed is 2π x(2x − x2 )dx
0

2

∫  = 8π
3 .

YOU’VE GOT PROBLEMS

Problem 4: The region bounded by the graphs of y = 4x – x2 and y = 2x is 
rotated about the y-axis. Find the volume of the solid formed.

Example 16: The region bounded by the graphs of y = x2 and y = 2x is rotated around the line  
x = 2. Find the volume of the solid formed.

Solution: Picking any arbitrary point in the interval [0, 2], the radius of the cylinder is 
2 – x and the height of the cylinder is 2x – x2. Therefore, the volume of the solid formed is 

2π (2 − x)(2x − x2 )dx
0

2

∫  = 8π
3 .
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Example 17: The region bounded by the graphs of y = x2 and y = 2x is rotated around the line  
x = 3. Find the volume of the solid formed.

Solution: Picking any arbitrary point in the interval [0, 2], the radius of the cylinder is 
3 – x and the height of the cylinder is 2x – x2. Therefore, the volume of the solid formed is 

2π (3− x)(2x − x2 )dx
0

2

∫  = 16π
3 .

Example 18: The line drawn tangent to the graph of f(x) = 9x – x3 has a tangent line drawn to it 
at x = 2. The equation of the tangent line is y = –3x + 16. Two regions are indicated on the graph. 
R is bounded by the graph of f(x) and the x-axis. S is bounded by the graph of f(x), the tangent 
line, and the y-axis.

Figure 5.19 
Regions formed by the graphs of f(x) =9x – x3 and y = –3x + 16.

	 1.	 Find the volume of the solid formed when R is rotated around the y-axis.

	 2.	 Find the volume formed when S is rotated around the x-axis.

	 3.	 Find the volume formed when S is rotated around the line x = 3.
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Solution:

	 1.	 Use cylindrical shells with radius = x and height = 9x – x3. The volume equals  

2π x(9x − x3)dx
0

3

∫  = 2π 9x2 − x4 dx
0

3

∫  = 2π 3x3 − 1
5 x5( )

0

3
 = 

2π 0( ) − 2π −243
5 + 81( ) = 324π

5
.

	 2.	 Use disks to compute this volume with the larger circle having radius –3x + 16 and the 
smaller circle having radius 9x – x3. The volume is π (−3x + 16)2 − 9x − x3( )2

dx
0

2

∫  =  

π 9x2 − 96x + 256 − 81x2 − 18x4 + x6( )dx
0

2

∫ . Combine like terms to get 

π −x6 + 18x4 − 72x2 − 96x + 256dx
0

2

∫  = π −1
7 x7 + 18

5 x5 − 24x3 − 48x2 + 256x( )
0

2
 = 7872π

35  

(or 706.589).

	 3.	 Use cylindrical shells with radius = 3 – x and height = (–3x + 16) – (9x – x3) 
= x3 – 12x + 16. The volume of the solid is 2π 3− x( ) x3 − 12x + 16( )dx

0

2

∫  = 

2π 3x3 − 36x + 48 − x4 + 12x2 − 16x dx
0

2

∫  = 2π −x4 + 3x3 + 12x2 − 52x + 48dx
0

2

∫  = 

2π −1
5 x5 + 3

4 x4 + 4x3 − 26x2 + 48x( )
0

2
 = 2π −1

5 32( ) + 3
4 16( ) + 4 8( ) − 26 4( ) + 48 2( )( )  = 

296π
5  (or 185.982).

Arc Length
You learned in geometry that the distance from point A(x1,y1) to B(x2,y2) is 

x2 − x1( )2
+ y2 − y1( )2

. How do we measure the distance from point A to point B if the path 

taken follows the graph of a function?
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Earlier in the book, I suggested that the essence of calculus is putting algebra under a 
microscope.

	 1.	 If we look at a graph of y = f(x) and at two points on the curve (x,y) and (x + Δx,y + Δy):

Figure 5.20 
Use the distance formula between the points (x, y) and (x + Δx,y + Δy) to estimate the length of the 

arc between two points on a curve.

	 2.	 The distance between these two points is (x + Δx − x)2 + ( y + Δy − y)2  = 

(Δx)2 + (Δy)2  = Δx 1+ Δy
Δx( )2 .

	 3.	 If we add up the various pieces of segments that approximate the curve, the distance 

from A to B is approximately 1+ Δyi
Δxi

( )2
Δx∑ .

	 4.	 As we saw with the argument for area under a curve and the volume of solids of  

revolution, if we let Δx get very small (in math language, lim
Δx → 0

), 1+ Δyi
Δxi

( )2
Δx∑  

becomes 1+ dy
dx( )2

dx∫ .

	 5.	 Clearly, this is the same as 1+ (f '(x))2 dx∫ .

	 6.	 If x is a function of y, the formula becomes 1+ dx
dy( )2

dy∫ .
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Example 19: Determine the length of the arc along the graph of f(x) = 1− x2
 on the interval 

[0, 1].

Solution:

	 1.	 f'(x) = 
− x

1− x2 , so (f'(x))2 = 
x2

1− x2 . The length of the arc is 1+ x2

1− x2 dx
0

1

∫  = 

1− x2 + x2

1− x2 dx
0

1

∫ = 1
1− x2 dx

0

1

∫  = 1
1− x2

dx
0

1

∫  = sin−1(x)
0

1
 = sin−1(1) − sin−1(0)  = π

2 .

	 2.	 We have just shown that the distance along one quarter of the circumference of the unit 
circle is π

2 .

	 3.	 Therefore, the circumference of the entire unit circle is four times this amount or 2π.

Surprised? Probably not. But I hope you do appreciate this is likely the first time anyone has 
proven to you that the circumference formula is accurate.

Example 20: Find the length of the curve of the function f(x) = ln |sec(x)| on the interval 0, π3⎡⎣ ⎤⎦ .

Solution:

	 1.	 The derivative for f(x) is f'(x) = sec(x) tan(x)
sec(x)  = tan(x).

	 2.	 Therefore, the length of the curve is 1+ tan2(x) dx
0

π
3∫ .

	 3.	 Use the Pythagorean identity 1 + tan2(x) = sec2(x) to rewrite the integral as 

sec2(x) dx
0

π
3∫  = | sec(x) | dx

0

π
3∫ .

	 4.	 On the interval 0, π3⎡⎣ ⎤⎦ , sec(x) > 0, so the integral can be written as sec(x)dx
0

π
3∫ .

	 5.	 Recall from Example 12 of Chapter 3 that sec(x)dx∫  = ln |sec(x) + tan(x)| so 

sec(x)dx
0

π
3∫  = ln | sec(x) + tan(x)

0

π
3  = ln|2 + 3 |–ln|1 + 0| = ln|2 + 3 |.

Example 21: Find the length of the arc along the parabola y2 = 8x on the interval [1,4].

Solution:

	 1.	 Use implicit differentiation to determine that 2y dy
dx = 8  so that dy

dx = 4
y  and 

dy
dx( )2

= 16
y2 = 16

8x = 2
x

.

	 2.	 Therefore, the length of the arc along the parabola is 1+ 2
x dx

1

4

∫  = x + 2
x dx

1

4

∫ .
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YOU’VE GOT PROBLEMS

Problem 5: The graph of x2

25 + y2

16 = 1  is an ellipse. Find the length of the arc 

in the first quadrant on the interval [0,5].

Surface Area
The process for computing the surface area of a solid of revolution is similar to how we computed 
volumes using the shell method. We said that the area of a cylinder is 2πrh. (See “Cylindrical 
Shell Method,” earlier in this chapter.) As we looked to compute volume, the values for r and h 
were dependent upon the function in question and the line around which the region was being 
rotated. The formula for the surface area of a solid of revolution when a curve is rotated about 

the x-axis is 2π f (x) 1+ (f '(x))2∫ dx .

Example 22: Find the surface area of the solid formed when the section of the graph of f(x) = x3 
from x = 0 to x = 4 is rotated about the x-axis.

Solution:

	 1.	 The surface area is 2π x3 1+ (3x2 )2 dx
0

4

∫  = 2π x3 1+ 9x4 dx
0

4

∫ .

	 2.	 Let u = 1 + 9x4, then du = 36x3dx so that 1
36 du = x3dx .

	 3.	 Transforming the bounds of integration, when x = 0, u = 1, and when x = 4, u = 2305.

	 4.	 The transformed integral is 
2π
36

u du
1

2305

∫  = π
18 ⋅

2
3 u 3

2

1

2305
 = π 2305 2305 − 1( )

27
, or approxi-

mately 12876.226.

	 3.	 This does not fit any of the integration formulas that we know at this time, so let’s use 

the graphing calculator to get the answer. x + 2
x dx

1

4

∫  = 4.1424. (My calculator gave the 

answer 2ln
6 + 2( ) 3 − 1( )

2
⎛
⎝⎜

⎞
⎠⎟

+ 2 2 − 1( )( 3) . We’ll have to look at this problem again after 

we learn some new integration techniques in Chapter 7.)
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Example 23: Find the surface area of the solid formed when a section of the graph x2 – y2 = 25 
from y = 0 to x = 10 is rotated around the x-axis.

Figure 5.21 
A graph of the hyperbola x2 – y2 = 25.

Solution:

	 1.	 When y = 0, x = 5 (this is where the hyperbola crosses the x-axis). We’ll work with the 
portion of the hyperbola in the first quadrant (because we can—we could just as easily 
work with the portion of the hyperbola in the fourth quadrant but that would require us 
to be careful with a bunch of negative signs).

	 2.	 Rewrite the equation to be y2 = x2 – 25 so that y = x2 − 25 , 
dy
dx = x

x2 − 25 , and 

dy
dx( )2

= x2

x2 − 25
.

	 3.	 The surface area of the solid formed is 2π x2 − 25( ) 1+ x2

x2 − 25( )dx
5

10

∫  = 

2π x2 − 25( ) x2 − 25 + x2

x2 − 25
⎛
⎝

⎞
⎠ dx

5

10

∫  = 2π 2x2 − 25
5

10

∫ dx .

	 4.	 Use the graphing calculator to determine the surface area is 291.588.

Example 24: Find the surface area of the solid formed when a section of the graph x2 – y2 = 25 
from y = 0 to x = 10 is rotated around the y-axis.

Solution:

	 1.	 When x = 10, y = 5 3 .

	 2.	 This time we’ll rewrite the equation to be x2 = y2 + 25 so that x = y2 + 25 , 
dx
dy = y

y2 + 25 , 

and dx
dy( )2

= y2

y2 + 25
.
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YOU’VE GOT PROBLEMS

Problem 6: The section of the parabola y = 4x – x2 from x = 0 to x = 4 is 
rotated around the x-axis. Find the surface area of the solid formed.

	 3.	 The surface area of the solid formed is 2π y2 + 25( )0

5 3

∫ 1+ y2

y2 + 25
⎛
⎝

⎞
⎠ dy  = 

2π y2 + 25( )0

5 3

∫ y2+25+ y2

y2 + 25
⎛
⎝

⎞
⎠ dy  = 2π 2y2 + 25( )0

5 3

∫ dy .

	 4.	 Use the graphing calculator to determine that the surface area is 450.344.

The Least You Need to Know
•	Compute volumes of solids formed when cross sections to a region are squares, 

semicircles, equilateral triangles, or isosceles right triangles with the hypotenuse 
in the plane of the region by applying area formulas from plane geometry.

•	Compute volumes for solids of revolution, when the cross section is a disk or a 
washer, using the formula for the area of a circle.

•	Compute volumes for solids of revolution with the cylindrical shell method using 
the formula for the surface area of a cylinder.

•	Compute the length of an arc formed along the graph of a function by applying 
the Pythagorean Theorem.

•	Compute the surface area for a solid of revolution by applying the formula for 
computing arc length.





PART

3
More Definite and  
Indefinite Integrals

You saw in Chapter 5 that there are a few integrals we do not yet know how to evaluate. We  
continue to explore integration in this part of the book.

You learn that certain combinations of polynomial and transcendental functions (those functions 
that cannot be written as polynomials—trigonometric functions, exponential functions, and  
logarithmic functions in particular) can be worked with using integration by parts.

We also extend our study of trigonometric functions, rational functions, and irrational functions.

When you are done with this part, go to Appendix B, where there is a variety of integration 
problems for you to try. The goal is for you to be able to distinguish one type of problem from 
another.





CHAPTER

6
More Integration Techniques

In This Chapter
•	Applying integration  

by parts

•	Understanding 
polynomials and 
transcendentals

•	Working with two 
transcendentals

If you read Chapters 2 and 3, you know how to integrate 
xn dx∫  for all real values of x. You know that the problem 

x x dx∫  is the same as x 3
2 dx∫ , but what do you do for 

the problem x x + 1dx∫ ? You know how to deal with 

x 1+ x2 dx∫  but not 1+ x2 dx∫ .

Yes, it is true that we could let the graphing calculator get the 
answer for us, but where is the fun in that? Our goal for the 
next three chapters is to extend the integration patterns we 
recognize and can use. First up is integration by parts.
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Integration by Parts
You know the product rule for differentiation of y = f(x)g(x) is y' = f'(x)g(x) + f(x)g'(x). If we use 
differentials to write this property, we get d(uv) = vdu + udv. If we integrate both sides of this 

equation, we get d uv( ) = v du + udv∫∫∫ . The expression d uv( )∫  = uv so the equation is now 

uv = v du + udv∫∫ . Alter this equation to get udv = uv − v du∫∫ . This is the formula for integra-

tion by parts.

DEFINITION

The formula for integration by parts is udv = uv − v du∫∫ .

Example 1: Evaluate x x + 1∫ dx .

Solution:

	 1.	 The key issue in this problem is to determine which part of the integrand is u and which 
part is dv.

	 2.	 In problems involving polynomials, let the polynomial be u.

	 3.	 What you will see happen is that the polynomial can be eliminated from the integrand, 
allowing for a problem that you can integrate.

	 4.	 I find that it is usually easier to write the pieces of the integration by parts formula in 
columns rather than all on one line:

u = x	 dv = x + 1 dx

du = dx	 v = 2
3 x + 1( ) 3

2

	 5.	 Notice that u dv is the first row.

	 6.	 The rest of the problem is now to take the main diagonal (upper left to lower right) to 
get uv and subtract from it the second row to get v du:

x x + 1∫ dx  = 2
3 x x + 1( ) 3

2 − 2
3 x + 1( ) 3

2 dx∫
x x + 1∫ dx  = 2

3 x x + 1( ) 3
2 − 2

3
2
5( ) x + 1( ) 5

2 + C  = 2
3 x x + 1( ) 3

2 − 4
15 x + 1( ) 5

2 + C

	 7.	 Take the derivative of this final answer to verify that it is correct.

There are times when one application of integration by parts will not be enough to get the final 
answer.
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Example 2: Evaluate x2 x + 1dx∫ .

Solution:

	 1.	 Break down the original integrand and examine the four pieces of the formula:

u = x2	 dv = x + 1 dx

du = 2x dx 	 v = 2
3 x2 x + 1( ) 3

2

	 2.	 Apply the formula: x2 x + 1dx∫  = 2
3 x2 x + 1( ) 3

2 − 2
3 x + 1( ) 3

2 2x( )dx∫  = 

2
3 x2 x + 1( ) 3

2 − 4
3 x x + 1( ) 3

2 dx∫ .

	 3.	 As you can see, we are left with another integral that we do not recognize.

	 4.	 However, notice that another application of integration by parts will remove the lone 
factor x and will get us to the answer.

	 5.	 Repeat the process:

u = x	 dv = x + 1( ) 3
2 dx

du = dx	 v = 2
5 x x + 1( ) 5

2

BE AWARE

When applying the technique of integration by parts more than once, 
keep in mind that the integral being replaced is being subtracted from 
the previous term. This means a negative will be distributed through the 
replacement values.

	 x2 x + 1dx∫  = 2
3 x2 x + 1( ) 3

2 − 4
3 x x + 1( ) 3

2 dx∫  =  

	
2
3 x2 x + 1( ) 3

2 − 4
3

2
5 x x + 1( ) 5

2 + 2
5 x + 1( ) 5

2 dx∫( )
	 x2 x + 1dx∫  = 2

3 x2 x + 1( ) 3
2 − 8

15 x x + 1( ) 5
2 + 8

15 x + 1( ) 5
2 dx∫  = 

	
2
3 x2 x + 1( ) 3

2 − 8
15 x x + 1( ) 5

2 + 8
15

2
7 x + 1( )7

2( ) + C

	 x2 x + 1dx∫  = 2
3 x2 x + 1( ) 3

2 − 8
15 x x + 1( ) 5

2 + 16
105 x + 1( )7

2 + C

YOU’VE GOT PROBLEMS

Problem 1: Evaluate 36x3 9x + 1dx∫ .
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There is a graphical approach to doing integration by parts that is called the Tabular Method. 
There are three columns:

•	 The first column starts with u and will be used to compute the derivatives of u as we 
work down the column.

•	 The second column starts with dv and will be used to compute the antiderivatives of dv 
as we work down the column.

•	 The third column starts with +1 and alternates between +1 and –1 as we work down the 
column.

DEFINITION

To complete the Tabular Method, work from the first row, first column, 
moving diagonally down the table. Then start with the second row, first 
column, moving diagonally down the table. Continue in this manner until 
you reach a 0 in the first column. If the original problem is an indefinite 
integral, add the constant of integration, + C, at the end of the problem.

Figure 6.1 
The Tabular Method for performing integration by parts on x2 x + 1dx∫ .

	 1.	 The first step results in x2( ) 2
3 x + 1( ) 3

2 1( )( ) .

	 2.	 The second step results in 2x( ) 4
15 x + 1( ) 5

2 −1( )( ) .

	 3.	 The third step results in 2( ) 8
105 x + 1( )7

2 1( )( ) .

	 4.	 All terms after that will contain a factor of 0.
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	 5.	 The Tabular Method for integration by parts for the problem x2 x + 1dx∫  is 

x2( ) 2
3 x + 1( ) 3

2 1( )( )  + 2x( ) 4
15 x + 1( ) 5

2 −1( )( )  + 2( ) 8
105 x + 1( )7

2 1( )( )  + C.

	 6.	 Simplify the terms to get the solution 2
3 x2 x + 1( ) 3

2 − 8
15 x x + 1( ) 5

2 + 16
105 x + 1( )7

2 + C .

BE AWARE

Once you have decided which functions to designate as u and dv, you must 
be consistent in this manner if the technique of integration by parts is 
needed more than once. If you switched which functions were designated 
u and dv in the second application of the technique, you would return right 
back to the problem with which you began.

YOU’VE GOT PROBLEMS

Problem 2: Use either method of integration by parts to evaluate 

x2 8x + 3dx∫ .

Polynomials and Transcendentals
Integration by parts is utilized when the integrand is the product of a polynomial and a transcen-
dental function. Let’s begin with a few easy problems and then increase the complexity of the 
functions.

Example 3: Evaluate xsin(x)dx∫ .

Solution: Let:

u = x	 dv = sin(x)dx

du = dx	 v = –cos(x)

xsin(x)dx∫  = –x cos(x) – −cos(x)dx∫  = –x cos(x) + cos(x)dx∫  = –x cos(x) + sin(x) + C
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Example 4: Find the volume of the solid formed when the region bounded by y = cos(x), x = 0, and 
x = x3− x dx∫  is rotated about the y-axis.

Solution:

	 1.	 It is easier to use the cylindrical shell method since we are rotating around a vertical line.

	 2.	 The radius of each shell will be x and the height of each shell will be cos(x).

	 3.	 The volume of the solid is given by 2π xcos(x)dx
0

π
2∫ .

	 4.	 Use integration by parts to find the antiderivative for x cos(x). Let u = x and dv = cos(x)dx.

	 5.	 This results in du = dx and v = sin(x).

	 6.	 Consequently, xcos(x)dx =xsin(x) − sin(x)dx∫∫  = x sin(x) + cos(x).

2π xcos(x)dx
0

π
2∫  = 2π xsin(x) + cos(x)( )

0

π
2

 = 2π π
2( )sin π

2( ) + cos π
2( )( ) − 0 + cos 0( )( )⎡

⎣
⎤
⎦  

= 2π π
2 − 1( )

Example 5: Evaluate xex dx∫ .

Solution: Let:

u = x	 dv = exdx

du = dx	 v = ex

xex dx∫  = xex – ex dx∫  = xex – ex + C

Example 6: Evaluate ln(x)dx∫ .

Solution: There is only one function here—or is there? If we treat u as ln(x), then dv is dx and we 
get something interesting:

u = ln(x)	 dv = dx

du = 1
x dx	 v = x

ln(x)dx∫  = x ln(x) – 1
x dx∫  = x ln(x) – x + C

You now know the antiderivative of ln(x)!
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Example 7: Evaluate x3e−2x∫ dx .

Solution: Let’s use the Tabular Method for this one. Let u = x3 and dv = e–2x.

Figure 6.2 
The Tabular Method for performing integration by parts on x3e−2x∫ dx .

x3e−2x∫ dx  = x3( ) −1
2 e−2x( )(1) + 3x2( ) 1

4 e−2x( )(−1) + (6x) −1
8 e−2x( )(1) + (6) 1

16 e−2x( )(−1) + C .

Therefore, x3e−2x∫ dx  = −1
2 x3e−2x − 3

4 x2e−2x − 3
4 xe−2x − 3

8 e−2x + C .

Example 8: Evaluate x ln(x)dx∫ .

Solution:

Let u = x and dv = ln(x). This gives du = dx, which is fine, but v = x ln(x) – x is interesting. Let’s 
see where this goes:

x ln(x)dx∫  = x(x ln(x) – x) – x ln(x) − x dx∫
x ln(x)dx∫  = x(x ln(x) – x) – x ln(x)dx∫  + x dx∫

This is interesting—we have x ln(x)dx∫  on both sides of the equation. Move the term from the 
right side of the equation to the left side and evaluate x dx∫ :

2 x ln(x)dx∫  = x2 ln(x) – x2 + ½x2

Divide by 2 to get the result x ln(x)dx∫  = 1
2 x2 ln(x) − 1

4 x2 + C .
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What would have happened if we did the last problem differently? Let u = ln(x) and dv = x. 

Then du = 1
x dx  and v = 1

2 x2 . Make the substitution for integration by parts: x ln(x)dx∫  = 
1
2 x2 ln(x) − 1

2 x dx∫  = < 1
2 x2 ln(x) − 1

4 x2 + C . It is not all that often that one can interchange func-

tions when doing integration by parts and be able to reach an answer (and the same answer at that!).

YOU’VE GOT PROBLEMS

Problem 3: Evaluate x ln(x)dx∫ .

Thus far, we’ve only concentrated on indefinite integrals in this section. The reason for doing so 
is that once the antiderivative is found, it is simply a matter of computing F(b) – F(a) to get the 

definite integral. That is, x ln(x)
1

2

∫ dx  = 1
2 x2 ln(x) − 1

4 x2

1

2
 = 2ln(2) − 1( ) − 0 − 1

4( ) = 2ln(2) − 3
4 .

Example 9: Let R be the region bounded by the functions f(x) = cos π x
2( ) , g(x) = x3 – 5x2, and the 

y-axis, as shown in the following diagram.

Figure 6.3 
The region formed by the intersection of f(x) = cos π x

2( )  and g(x) = x3 – 5x2.

	 1.	 Compute the area of R.

	 2.	 Determine the volume of the solid formed if R is rotated about the y-axis.

	 3.	 Determine the volume of the solid formed if R is rotated about the line y = 1.
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Solution:

	 1.	 The area of the figure is cos π x
2( )

0

5

∫ − x3 − 5x2( )dx  = 2
π sin π x

2( ) − 1
4 x4 + 5

3 x3

0

5
 = 

2
π sin 5π

2( ) − 1
4 5( )4

+ 5
3 5( )3( ) − 0  = 2

π −
625
4 + 625

3  = 625
12 + 2

π  (or 52.720).

	 2.	 Using cylindrical shells with radius = x and height = cos π x
2( ) − x3 − 5x2( ) , the volume is 

2π x cos π x
2( ) − x3 + 5x2( )dx

0

5

∫ .

	 3.	 The antiderivative for xcos π x
2( )  will have to be done by parts. Let u = x and dv = 

cos π x
2( )dx , so that du = dx and v = 2

π sin π x
2( ) .

	 4.	 xcos π x
2( )∫ dx  = 2

π xsin π x
2( ) − 2

π sin π x
2( )dx∫  = 2

π xsin π x
2( ) + 4

π 2 cos π x
2( ) . Therefore, 

2π x cos π x
2( ) − x3 + 5x2( )dx

0

5

∫  = 2π 2
π xsin π x

2( ) + 4
π 2 cos π x

2( ) − 1
5 x5 + 5

4 x4( )
0

5
 = 

2π 2
π (5)sin 5π

2( ) + 4
π 2 cos 5π

2( ) − 1
5 5( )5

+ 5
4 5( )4( ) − 2

π (0)sin 0( ) + 4
π 2 cos 0( )( )⎡

⎣⎢
⎤
⎦⎥  = 

2π 10
π + 0 − 625 + 3125

4 − 4
π 2

⎡⎣ ⎤⎦  = 2π 10
π + 3125

20 − 4
π 2

⎡⎣ ⎤⎦  = 20 + 3125π
10 − 8

π  (or 999.201).

	 5.	 A cross section of R will be a washer.

	 6.	 The radius of the larger circle will be 1 – (x3 – 5x2) while the radius of the smaller circle 

will be 1 – cos π x
2( )dx .

	 7.	 The volume of the solid is π 1− x3 − 5x2( )2
− 1− cos π x

2( )2( )dx
0

5

∫ . As much fun as it 

would be to work out this integral, let’s use the graphing calculator to get the answer.

Figure 6.4 
A screen shot from a TI-Nspire computing the exact and approximate volumes of the solid formed 

when the region formed by the intersection of f(x) = cos π x
2( )dx  and g(x) = x3 – 5x2 is revolved 

about the line y = 1.

0

5

1 x3 + 5 x2( )2
1 cos x

2

2

dx

4 1480 + 7( )
7

1.
4 1480 + 7( )

7
2660.8898
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Example 10: The function f(x) = 2sin(πx) is graphed over the interval [0,1]. Determine the vol-
ume of the solid formed when this region is rotated about:

	 1.	 The y-axis

	 2.	 The line x = 1

Solution:

	 1.	 Use cylindrical shells with radius = x and height = 2sin(πx).

	 2.	 The volume of the solid formed is 2π 2xsin(π x)dx
0

1

∫ .

	 3.	 Use integration by parts with u = 2x and dv = sin(πx) dx.

	 4.	 This makes du = 2dx and v = −1
π cos(π x) .

	 5.	 2π 2xsin(π x)dx
0

1

∫  = −2
π xcos(π x) − −2

π cos(∫ π x)dx  = 

−2
π xcos(π x) + 2

π 2 sin(π x) . Therefore, 2π 2xsin(π x)dx
0

1

∫  = 

2π −2
π (1)cos(π ) + 2

π 2 sin(π )( ) − −2
π (0)cos(0) + 2

π 2 sin(0)( )⎡
⎣

⎤
⎦  = 2π 2

π( )  = 4.

	 6.	 Use cylindrical shells with radius = 1 – x and height = 2sin(πx).

	 7.	 The volume of the solid formed is 2π 1− x( )2sin(π x)dx
0

1

∫  = 

2π 2sin(π x) − 2xsin(π x)dx
0

1

∫  = 2π 2sin(π x)dx
0

1

∫ − 2π 2xsin(π x)dx
0

1

∫ .

2π 2sin(π x)dx
0

1

∫  = −4cos(π x)
0

1  = –4(cos(π) – cos(0)) = –4 (–1 – 1) = 8

	 8.	 Therefore, 2π 2sin(π x)dx
0

1

∫ − 2π 2xsin(π x)dx
0

1

∫  = 8 – 4 = 4.

Example 11: The graph of g(x) = 3–x is graphed over the interval [0,1]. Find the volume of the 
solid formed when this region is rotated about:

	 1.	 The y-axis

	 2.	 The line x = –1

Solution:

	 1.	 Use cylindrical shells with radius = x and height = 3–x. The volume of the solid formed is 

2π x3− x dx
0

1

∫ .

	 2.	 Use integration by parts with u = x and dv = 3–x. This gives du = dx and v = −1
ln(3) 3

− x .

2π x3− x dx
0

1

∫  = − x
ln(3) 3

− x − −1
ln(3) 3− x dx∫  = − x

ln(3) 3
− x − 1

ln(3)( )2 3− x
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	 3.	 Therefore, 2π x3− x dx
0

1

∫  = 2π − x
ln(3) 3

− x − 1
ln(3)( )2 3− x⎛

⎝⎜
⎞
⎠⎟

0

1

 = 

2π −1
ln(3) 3

−1 − 1
ln(3)( )2 3−1⎛

⎝⎜
⎞
⎠⎟ − 0 − 1

ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 = 2π −1
3ln(3) −

1
3 (ln(3)( )2 + 1

(ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟  = 2π 2 − ln(3)

3 (ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟ .

	 4.	 Use cylindrical shells with radius r = x + 1 and height = 3–x. The volume of the 

solid formed is 2π x + 1( )3− x dx
0

1

∫  = 2π x3− x dx
0

1

∫ + 2π 3− x dx
0

1

∫  = 2π 2 − ln(3)

3 (ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟  + 

2π −1
ln(3) 3

− x( )
0

1
 = 2π 2 − ln(3)

3 (ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟  + 2π −1

3ln(3) −
−1

ln(3)( )  = 2π 2 − ln(3)

3 (ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟  + 2π 2

3ln(3)( )  = 

2π 2 − ln(3)

3 (ln(3)( )2 + 2ln(3)

3 ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟  = 2π 2 + ln(3)

3 (ln(3)( )2

⎛
⎝⎜

⎞
⎠⎟ .

Two Transcendentals
The case of using integration by parts leads to some useful formulas for powers of the secant and 
tangent functions (and by extension, powers of cosecant and cotangent). We’ll work our way into 
this.

Example 12: Evaluate ex sin(x)∫ dx .

Solution:

	 1.	 Let u = sin(x) and dv = exdx. (I chose this order arbitrarily.) This gives du = cos(x) dx and 
v = ex:

ex sin(x)∫ dx  = ex sin(x) – ex cos(x)∫ dx

	 2.	 Let u = cos(x) and dv = exdx. This gives du = –sin(x)dx and v = ex:

ex sin(x)∫ dx  = ex sin(x) – ex cos(x)∫ dx  = ex sin(x) – ex cos(x) − −ex sin(x)dx∫( )  = 

exsin(x) – ex cos(x) – ex sin(x)∫ dx

	 3.	 Add ex sin(x)∫ dx  to both sides of the equation:

2< ex sin(x)∫ dx  = ex sin(x) – ex cos(x)

	 4.	 This gives the final answer to the problem:

ex sin(x)∫ dx  = ex sin(x) + ex cos(x)
2 + C
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Example 13: Evaluate sec3(x)dx∫ .

Solution:

	 1.	 Rewrite the integrand as sec(x) and sec2(x).

	 2.	 Let u = sec(x) and du = sec2(x) dx. This gives du = sec(x)tan(x) dx and v = tan(x):
sec3(x)dx∫  = sec(x)tan(x) – sec(x) tan2(x)dx∫

	 3.	 Since 1 + tan2(x) = sec2(x), replace tan2(x) with sec2(x) – 1:

sec3(x)dx∫  = sec(x)tan(x) – sec(x) sec2(x) − 1( )dx∫  = sec(x)tan(x) 

– sec3(x)dx + sec(x)dx∫∫
	 4.	 Add sec3(x)dx∫  to both sides of the equation and recall that 

sec(x)dx∫ = ln | sec(x) + tan(x) | :

2 sec3(x)dx∫  = sec(x)tan(x) + ln|sec(x) + tan(x)|

	 5.	 Divide by 2:

sec3(x)dx∫  = 1
2 sec(x) tan(x) + 1

2 ln | sec(x) + tan(x) | + C

Example 14: Evaluate sec5(x)dx∫ .

Solution:

	 1.	 Let u = sec3(x) and dv = sec2(x)dx:

du = 3sec2(x) sec(x)tan(x) dx = 3sec3(x)tan(x) dx and v = tan(x)

sec5(x)dx∫  = sec3(x)tan(x) – 3sec3(x) tan2(x)dx∫  = sec3(x)tan(x) 
– 3sec3(x) sec2(x) − 1( )dx∫

	 2.	 Simplify the last integral:

sec5(x)dx∫  = sec3(x)tan(x) – 3 sec5(x)dx + 3∫ sec3(x)dx∫
	 3.	 Add 3 sec5(x)dx∫  to both sides of the equation:

4 sec5(x)dx∫  = sec3(x)tan(x) + 3 sec3(x)dx∫
	 4.	 We just evaluated sec3(x)dx∫  in Example 13 so we have:

4 sec5(x)dx∫  = sec3(x)tan(x) + 3 1
2 sec(x) tan(x) + 1

2 ln | sec(x) + tan(x) |( )
	 5.	 Divide by 4:

sec5(x)dx∫ > = 1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) + 3
8 ln | sec(x) + tan(x) | + C
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	 6.	 We could continue with other odd powers for sec(x). The result is:

secn(x)dx∫ = 1
n − 1 secn−2(x) tan(x) + n − 2

n − 1 secn−2(x)dx∫
	 7.	 In other words, the process continues to create another integral with a reduced  

exponent. In the case of even powers, the last integral sec2(x)dx∫  = tan(x).

CRITICAL POINT

If n is a positive odd integer, then 
secn(x)dx∫ = 1

n − 1 secn−2(x) tan(x) + n − 2
n − 1 secn−2(x)dx∫ .

What happens if n is a positive even integer?

Example 15: Evaluate sec6(x)dx∫ .

Solution:

	 1.	 Rewrite the integrand as sec2(x) sec4(x). Rewrite sec4(x) as (tan2(x) + 1)2:

sec6(x)dx∫  = sec2(x) tan2(x) + 1( )2
dx∫

	 2.	 Expand the quadratic (tan2(x) + 1)2:

sec6(x)dx∫  = sec2(x) tan4(x) + 2tan2(x) + 1( )dx∫
	 3.	 Distribute the sec2(x) through this expansion:

tan4(x)sec2(x) + 2tan2(x)sec2(x) + sec2(x)dx∫  = 1
5 tan5(x) + 2

3 tan3(x) + tan(x) + C

YOU’VE GOT PROBLEMS

Problem 4: Evaluate e2x cos(3x)dx∫ .
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The Least You Need to Know
•	Integration by parts is a process for integrating functions that are the result of the 

product rule from differentiation.

•	Integrate functions are the product of a polynomial function and a transcendental 
function.

•	Integrate functions are the product of a two transcendental functions.

•	The integration of secn(x)dx∫  is done with integrations by parts.



CHAPTER

7
Integration with 

Trigonometric Functions

In This Chapter
•	Using trigonometric 

substitutions to deal with 
integrands of the forms 

a2 + x2 , a2 − x2 , x2 − a2

•	Investigating integrands  
of the form sinn(x) cosm(x)

•	Investigating integrands  
of the form tann(x) secm(x) 
(m is even)

•	Investigating integrands  
of the form tann(x) secm(x) 
(m is odd, n is even)

We continue to study patterns in integrands. In this chapter, 
the concentration will be on integrands with trigonometric 
functions and integrands that can be transformed to contain 
trigonometric functions. This might be a good time for you to 
refer to Chapter 1 and look over the trigonometric identities.

We’ll begin with problems that lend themselves to right 
triangle trigonometry and then we’ll look at products of 
trigonometric functions that are related to one another by the 
derivative.
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Trigonometric Substitutions
Most students who were successful at geometry can answer the question, “What is the 
Pythagorean Theorem?” Almost without fail, the answer will be, “a2 + b2 = c2.” This is a  
(practically) correct answer provided that both the person asking the question and the person 
answering the question understand that if the length of the hypotenuse is labeled as c, then  
this equation fits the Pythagorean Theorem. However, you need to be sure you identify which 
variable represents the hypotenuse of the right triangle. (Can you tell that I taught geometry  
for a number of years and would get a tad frustrated when a student tried to apply the formula 
to a triangle that wasn’t a right triangle? But I digress.) We can take advantage of this special 

relationship and of right triangle trigonometry whenever the integrand of our problem is in the 

form a2 + x2 , x2 − a2 , or a2 − x2 .

Case I: a2 + x2

If a2 + b2 = c2, then c = a2 + b2 . We’ll draw a right triangle with legs designated by a and x and 

mark the angle between the leg designated by a and the hypotenuse as θ.

Figure 7.1 
Right triangle with legs of length a and x.

Using right trigonometry, tan(θ ) = x
a  so that x = atan(θ) and sec(θ ) = a2 + x2

a  so that a2 + x2
 = 

a sec(θ). With x = atan(θ), dx = asec2(θ)dθ.

Example 1: Evaluate 25 + x2 dx∫ .

Solution: Let x = 5tan(θ), dx = 5sec2(θ)dθ, and 25 + x2  = 5sec(θ). When the integral is trans-

formed, the problem is now 5sec(θ )( ) 5sec2(θ )dθ( )∫ = 25 sec3(θ )dθ∫ . As we saw at the end of 

Chapter 6, sec3(θ )dx∫  = 1
2 sec(θ ) tan(θ ) + 1

2 ln | sec(θ ) + tan(θ ) | + C .

Therefore, 25 + x2 dx∫  = 25 1
2

x
5( ) 25 + x2

5
⎛
⎝

⎞
⎠+ 1

2 ln 25 + x2

5 + x
5

⎛
⎝⎜

⎞
⎠⎟  + C = 

25 x 25 + x2

50 + 1
2 ln 25 + x2 + x

5
⎡
⎣⎢

⎤
⎦⎥

+ C  = 
x 25 + x2

2 + 25
2 ln 25 + x2 + x

5 + C .
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If you worked that problem through on paper and looked at this result, I’ll bet yours is different. 
Here’s the reason why:

	 1.	 The term ln 25 + x2

5 + x
5  = ln 25 + x2 + x

5  = ln 25 + x2 + x − ln(5) .

	 2.	 When you multiply the constant ln(5) by the constant 25
2 , the answer is still a constant.

	 3.	 When this constant is added to the constant of integration, C, the answer is still a 
constant.

	 4.	 So the extra term that you had is absorbed into the constant of integration.

BE AWARE

Don’t confuse the result for 25 + x2 dx∫  for a problem such as 

x 25 + x2 dx∫ . The u-substitution method applies to this problem because 

the derivative of 25 + x2 is 2x and the introduction of the factors 2 and 1
2

 

results in the problem becoming 1
2 u du∫ .

Example 2: Evaluate 5 + 4z2 dz∫ .

Solution: Let 2z = 5 tan(θ), dz = 
5

2 sec2(θ) dθ, and 5 + 4z2  = 5 sec(θ). When the integral  

is transformed, the problem becomes 5sec(θ )( ) 5
2 sec2(θ )dθ( )∫ = 5

2 sec3(θ )dθ∫ :

5 + 4z2 dz∫  = 5
2 sec3(θ )dθ∫  = 5

2
1
2 sec(θ ) tan(θ( ) + 1

2 ln sec(θ ) + tan(θ ) + C  = 

5
4

5 + 4z2

5
⎛
⎝

⎞
⎠

2z
5( ) + 5

4 ln 5 + 4z2

5
+ 2z

5
+ C

5 + 4z2 dz∫  = 
z 5 + 4z2

2 + 5
4 ln 5 + 4z2 + 2z + C

YOU’VE GOT PROBLEMS

Problem 1: Evaluate 49 + 25x2 dx
0

10

∫ .
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Case II: x2 − a2

The hypotenuse of the right triangle is designated as x, and one leg is labeled a. Let the acute 
angle θ be between the leg a and the hypotenuse. The only reason for putting θ in this location is 
that we get to avoid dragging negative signs through the problem. Otherwise, there is no difference 
in the process.

Figure 7.2 
Right triangle with hypotenuse with length x and leg with length a.

	 1.	 Looking at the diagram for this problem, we get cos(θ ) = a
x  so sec(θ ) = x

a  and x = asec(θ) 

while tan(θ ) = x2 − a2

a , which gives x2 − a2  = atan(θ).

	 2.	 The differential dx = asec(θ)tan(θ)dθ.

	 3.	 Transform the integral x2 − a2 dx∫  to a tan(θ )( ) asec(θ ) tan(θ )dθ( )∫  = 

a2 sec(θ ) tan2(θ )dθ∫ .

	 4.	 Use the trigonometric identity tan2(θ) = sec2(θ) – 1.

	 5.	 The integral becomes a2 sec(θ ) sec2(θ ) − 1( )dθ∫  = a2 sec3(θ ) − sec(θ )dθ∫ .  

Since sec3(θ )dθ∫  = 1
2 sec(θ ) tan(θ ) + 1

2 ln | sec(θ ) + tan(θ ) | + C  and 

sec(θ )dθ∫ = ln | sec(θ ) + tan(θ ) | + C :

a2 sec3(θ ) − sec(θ )dθ∫  = a2 1
2 sec(θ ) tan(θ ) + 1

2 ln | sec(θ ) + tan(θ ) |− ln | sec(θ ) + tan(θ ) |( ) + C

	 = a2 1
2 sec(θ ) tan(θ ) − 1

2 ln | sec(θ ) + tan(θ ) |( ) + C

	 6.	 Transform the integral back to the original variables:

x2 − a2 dx∫  = a2 1
2

x
a( ) x2 − a2

a
⎛
⎝

⎞
⎠−

1
2 ln x

a + x2 − a2

a
⎛
⎝⎜

⎞
⎠⎟ + C  = 

x x2 − a2

2 −
a2 ln x + x2 − a2

2 + C
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Example 3: Evaluate x2 − 25 dx∫ .

Solution: x2 − 25 dx∫  = 
x x2 − 25

2 −
25ln x + x2 − 25

2 + C .

BE AWARE

If you feel like you need to memorize these results, I would suggest that 

you memorize sec3(θ )dθ∫  and sec(θ )dθ∫ . In this way, you do not have 

to concern yourself between the slight variations of the a2 + x2  and 

x2 − a2  formulas.

Example 4: Evaluate 25x2 − 9 dx∫ .

Solution:

	 1.	 Factor 25 from the radicand to get 25x2 − 9  = 25 x2 − 9
25( )  = 5 x2 − 9

25( ) :

5 x2 − 9
25( )∫ dx  = 5 x x2 − 9

25

2 −
9
25 ln x + x2 − 9

25

2

⎛

⎝⎜
⎞

⎠⎟
+ C  = 

x 25x2 − 9
2 −

9ln x + x2 − 9
25

10 + C

	 2.	 Let’s do a little work with the expression x + x2 − 9
25 . First, get a common  

denominator within the radical, x + 25x2 − 9
25 .

	 3.	 Simplify the radical, x + 25x2 − 9
5 .

	 4.	 Get a common denominator for the entire term, 
5x + 25x2 − 9

5 .

	 5.	 Back to the antiderivative, 
x 25x2 − 9

2 −
9ln x + x2 − 9

25

10 + C  = 
x 25x2 − 9

2 −
9ln5x + 25x2 − 9

10 + C  

(with the –ln(5) included in the constant of integration).

YOU’VE GOT PROBLEMS

Problem 2: Evaluate 9x2 − 25 dx∫ .
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Case III: a2 − x2

The length of the hypotenuse is a and the length of one of the legs is x. The acute angle opposite 
x is θ. The only reason for putting θ in this location is that we get to avoid dragging negative 
signs through the problem. Otherwise, there is no difference in the process.

Figure 7.3 
Right triangle with hypotenuse with length a and leg with length x.

Looking at the diagram for this problem, we get sin(θ ) = x
a  so x = asin(θ) and dx = a cos(θ)

dθ. cos(θ ) = a2 − x2

a  so that a2 − x2 = acos(θ ) . Transform the integral a2 − x2∫ dx  to 

acos(θ )( ) acos(θ )dθ( )∫  = a2 cos2(θ )dθ∫ . Manipulate the trigonometric identity cos(2x) = 

2cos2(x) – 1 to cos2(x) = cos(2x) + 1
2 .

a2 cos2(θ )dθ∫  = a2

2 cos(2θ ) + 1dθ∫  = a2

2
1
2 sin(2θ ) +θ( ) + C  = a2

2 sin(θ )cos(θ ) +θ( ) + C . 

(Recall that sin(2x) = 2sin(x)cos(x).)

Transform the result back to the original variable:

a2

2 sin(θ )cos(θ ) +θ( ) + C  = a2

2
x
a( ) a2 − x2

a
⎛
⎝

⎞
⎠+ sin−1 x

a( )⎛
⎝⎜

⎞
⎠⎟ + C  = 

1
2 x a2 − x2 + a2

2 sin−1 x
a( ) + C

Example 5: Evaluate 100 − x2 dx∫ .

Solution: 100 − x2 dx∫  = 1
2 x 100 − x2 + 50sin−1 x

10( ) + C .

Example 6: Evaluate 100 − 49x2 dx∫ :

100 − 49x2 dx∫  = 7 100
49 − x2 dx∫  = 7 1

2 x 100
49 − x2 + 50

49 sin−1 7x
10( )( ) + C  = 

1
2 x 100 − 49x2 + 50

7 sin−1 7x
10( ) + C
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Integrals of the Form sinn(x) cosm(x) (When Either 
m or n Is Odd)

Integrands of the form sinn(x) cos(x) or cosn(x) sin(x) are easily solved using u-substitution. What 
happens if both the sine function and cosine function are raised to a power? There are three cases 
to consider—both exponents are even, both are odd, or one of them is even and the other is odd.

Case I: Both m and n Are Odd
This turns out to be a pretty simple case. We’ll factor a cos(x) from the cosine term and rewrite 

the remaining term as a binomial in the form 1− sin2(x)( )n/2
 and then use binomial expansion.

Example 7: Evaluate sin3(x)cos5(x)dx∫ .

Solution: Rewrite sin3(x)cos5(x)dx∫  as sin3(x)cos4(x)cos(x)dx∫  = 

sin3(x) cos2(x)( )2
cos(x)dx∫  = sin3(x) 1− sin2(x)( )2

cos(x)dx∫ .

Expand the binomial: (1 – sin2(x))2 = 1 – 2sin2(x) + sin4(x). Substitute this into the integrand and 
distribute:

sin3(x) 1− 2sin2(x) + sin4(x)( )cos(x)dx∫  = 

sin3(x)cos(x) − 2sin5(x)cos(x) + sin7(x)cos(x)dx∫  = 

1
4 sin4(x) − 1

3 sin6(x) + 1
8 sin8(x) + C

CRITICAL POINT

The expansion of (a + b)n = 
n
r

⎛

⎝⎜
⎞

⎠⎟r = 0

n

∑ an − rbr
. 

n
r

⎛

⎝⎜
⎞

⎠⎟  is the number of 

combinations of n items taken r at a time. It is computed by multiplying 

the first r integers, counting down from n, and dividing this by the first r 

integers, counting from 1. For example, 
7
3

⎛

⎝⎜
⎞

⎠⎟
 = 7 × 6 × 5

1× 2 × 3 = 35  while 
6
4

⎛

⎝⎜
⎞

⎠⎟
 = 

6 × 5× 4 × 3
1× 2 × 3× 4  = 15. By definition, 

n
0

⎛

⎝⎜
⎞

⎠⎟  = 1.

YOU’VE GOT PROBLEMS

Problem 3: Evaluate 49 − 100x2 dx∫ .
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YOU’VE GOT PROBLEMS

Problem 4: Evaluate sin9(x)∫ cos9(x)dx .

Example 8: Evaluate sin7(x)cos11(x)dx∫ .

Solution:

sin7(x)cos11(x)dx∫  = sin6(x)sin(x)cos11(x)dx∫  = sin2(x)( )3
sin(x)cos11(x)dx∫  = 

1− cos2(x)( )3
sin(x)cos11(x)dx∫

1− cos2(x)( )3
 = 1− 3cos2(x) + 3cos4(x) − cos6(x)

1− cos2(x)( )3
sin(x)cos11(x)dx∫  = 

1− 3cos2(x) + 3cos4(x) − cos6(x)( )sin(x)cos11(x)dx∫
1− cos2(x)( )3

sin(x)cos11(x)dx∫  = 

sin(x)cos11(x) − 3sin(x)cos13(x) + 3sin(x)cos15(x) − sin(x)cos17(x)dx∫
1− cos2(x)( )3

sin(x)cos11(x)dx∫  = 

−1
12 cos12(x) + 3

14 cos14(x) − 3
16 cos16(x) − 1

18 cos18(x) + C

Case II: Both m and n Are Even
This is going to get sloppy—there are no two ways about it. We’ll use sin2(x) = 1− cos(2x)

2  and 

cos2(x) = 1+ cos(2x)
2 .

Example 9: Evaluate sin2(x)cos2(x)dx∫ .

Solution: Replace each of the trigonometric functions with the preceding identities to get 

sin2(x)cos2(x)dx∫  = 1− cos(2x)
2( ) 1+ cos(2x)

2( )dx∫  = 1
4 1− cos2(2x)dx∫ .
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Use the identity again:

1
4 1− cos2(2x)dx∫  = 1

4 1− 1+ cos(4x)
2 dx∫  = 1

4
2 − (1+ cos(4x)

2 dx∫  = 1
8 1− cos(4x)dx∫  = 

1
8 x − 1

32 sin(4x) + C

Now we have the chance to really get involved (algebraically speaking, of course).

Example 10: Evaluate sin4(x)cos6(x)dx∫ .

Solution: Use the identities for sin2(x) and cos2(x) to get:

sin4(x)cos6(x)dx∫  = sin2(x)( )2
cos2(x)( )3

dx∫  = 1− cos(2x)
2( )2 1+ cos(2x)

2( )3
dx∫

At this point, we are not going to subject ourselves to unnecessary pain by trying to slog through 
all that algebra. Now that you understand the principle behind how the problem is done, let’s use 
that old-fashioned phrase “Details are left to the reader” and use our calculator to learn that:

sin4(x)cos6(x)dx∫  = 

−1
10 sin3(x)cos7(x) − 3

80 sin(x)cos7(x) + 1
160 sin(x)cos5(x) + 1

128 sin(x)cos3(x) + 3
256 sin(x)cos(x) + 3

256 x + C

−1
10 sin3(x)cos7(x) − 3

80 sin(x)cos7(x) + 1
160 sin(x)cos5(x) + 1

128 sin(x)cos3(x) + 3
256 sin(x)cos(x) + 3

256 x + C

And kudos to any of you who do all that work!

Case III: Either m or n Is Odd
This case is handled in the same way as in Case I.

Example 11: Evaluate sin3(x)cos4(x)dx∫ .

Solution: Rewrite sin3(x) as sin2(x) sin(x) and then use the Pythagorean identity:

sin3(x)cos4(x)dx∫  = sin2(x)sin(x)cos4(x)dx∫  = 1− cos2(x)( )sin(x)cos4(x)dx∫  = 

cos4(x)sin(x) − cos6(x)sin(x)dx∫
sin3(x)cos4(x)dx∫  = 1

7 cos7(x) − 1
5 cos(x) + C
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Integrals with Integrands of the Form tann(x) 
secm(x) (m Is Even)

This case is also pretty straightforward. Because sec(x) is being raised to an even power, we’ll 
rewrite secn(x) as secn – 2(x)sec2(x). We will then apply the Pythagorean identity to secn – 2(x) and 
rewrite it as (1 + tan2(x))n – 2, apply the binomial expansion, distribute tann(x)sec2(x), and integrate.

Example 12: Evaluate tan5(x)sec6(x)dx∫ .

Solution:

	 1.	 Rewrite tan5(x)sec6(x)dx∫  as tan5(x)sec4(x)sec2(x)dx∫ .

	 2.	 Apply the identity: tan5(x) 1+ tan2(x)( )2
sec2(x)dx∫ .

	 3.	 Expand the binomial: tan5(x) 1+ 2tan2(x) + tan4(x)( )sec2(x)dx∫ .

	 4.	 Distribute: tan5(x)sec2(x) + 2tan7(x)sec2(x) + tan9(x)sec2(x)dx∫ .

	 5.	 Integrate: tan5(x)sec6(x)dx∫  = 1
6 tan6(x) + 1

4 tan8(x) + 1
10 tan10(x) + C .

Example 13: Evaluate tan4(3x)sec8(3x)dx∫ .

Solution:

	 1.	 Rewrite: tan4(3x)sec8(3x)dx∫  = tan4(3x)sec6(3x)sec2(3x)dx∫  = 

tan4(3x) sec2(3x)( )3
sec2(3x)dx∫ .

	 2.	 Apply the identity: tan4(3x) 1+ tan2(3x)( )3
sec2(3x)dx∫ .

	 3.	 Expand the binomial: tan4(3x) 1+ 3tan2(3x) + 3tan4(3x) + tan6(3x)( )sec2(3x)dx∫ .

	 4.	 Distribute: 

tan4(3x)sec2(3x) + 3tan6(3x)sec2(3x) + 3tan8(3x)sec2(3x) + tan10(3x)sec2(3x)dx∫ .

	 5.	 Integrate: tan4(3x)sec8(3x)dx∫  = 1
15 tan5(3x) + 1

7 tan7(3x) + 1
9 tan9(x) + 1

33 tan11(x) + C .

YOU’VE GOT PROBLEMS

Problem 5: Evaluate tan2(5x)sec10(5x)dx∫ .
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Integrals with Integrands of the Form tann(x) 
secm(x) (m Is Odd, n Is Even)

These problems are fairly straightforward, but they get intense in their use of algebra. We’ll take 
advantage, once again, of the Pythagorean identity tan2(x) = sec2(x) – 1 to get an integrand that 
is entirely in sec(x). The problem with this is that it requires we use the reduction formula for 

secn(x)dx∫ .

Example 14: Evaluate tan4(x)sec3(x)dx∫ .

Solution:

	 1.	 Apply the identity: tan4(x)sec3(x)dx∫  = tan2(x)( )2
sec3(x)dx∫  = 

sec2(x) − 1( )2
sec3(x)dx∫

	 2.	 Expand the binomial: sec4(x) − 2sec2(x) + 1( )sec3(x)dx∫ .

	 3.	 Distribute: sec7(x) − 2sec5(x) + sec3(x)dx∫ .

	 4.	 Use the result from Chapter 6 for sec3(x)dx∫ :

sec3(x)dx = 1
2 sec(x) tan(x) + 1

2 ln sec(x) + tan(x)∫
	 5.	 Use the reduction formula for the higher powers of sec(x): 

secn(x)dx∫ = 1
n − 1 secn − 2(x) tan(x) + n − 2

n − 1 secn − 2(x)dx∫ :

sec5(x)dx =∫ 	 = 1
4 sec3(x) tan(x) + 3

4 sec3(x)dx∫
	 = 1

4 sec3(x) tan(x) + 3
4

1
2 sec(x) tan(x) + 1

2 ln sec(x) + tan(x)( )
	 = 1

4 sec3(x) tan(x) + 3
8 sec(x) tan(x) + 3

8 ln sec(x) + tan(x)

sec7(x)dx∫  	 = 1
6 sec5(x) tan(x) + 5

6 sec5(x)dx∫
	 = 1

6 sec5(x) tan(x) + 5
6

1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) + 3
8 ln sec(x) + tan(x)( ) 

	    1
6 sec5(x) tan(x) + 5

6
1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) + 3
8 ln sec(x) + tan(x)( )

	 = 1
6 sec5(x) tan(x) + 5

24 sec3(x) tan(x) + 5
16 sec(x) tan(x) + 5

16 ln sec(x) + tan(x) 

	    1
6 sec5(x) tan(x) + 5

24 sec3(x) tan(x) + 5
16 sec(x) tan(x) + 5

16 ln sec(x) + tan(x)
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	 6.	 Therefore, 2 1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) + 3
8 ln sec(x) + tan(x)( )  = 

tan4(x)sec3(x)dx∫  = sec7(x) − 2sec5(x) + sec3(x)dx∫  = 

1
6 sec5(x) tan(x) + 5

24 sec3(x) tan(x) + 5
16 sec(x) tan(x) + 5

16 ln sec(x) + tan(x)  –  

2 1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) + 3
8 ln sec(x) + tan(x)( )

+ sec3(x)dx = 1
2 sec(x) tan(x) + 1

2 ln sec(x) + tan(x)∫  + C

tan4(x)sec3(x)dx∫  = 

1
6 sec5(x) tan(x) − 7

24 sec3(x) tan(x) + 5
8 sec(x) tan(x) + 5

8 ln sec(x) + tan(x) + C

Example 15: Evaluate tan6(2x)sec5(2x)dx∫ .

Solution: Beware! There will be a lot of algebra in this problem.

	 1.	 Rewrite: tan6(2x)sec5(2x)dx∫  = tan2(2x)( )3
sec5(2x)dx∫  = 

sec2(2x) − 1( )3
sec5(2x)dx∫ .

	 2.	 Binomial Expansion: sec2(2x) − 1( )3
= sec6(2x) − 3sec4(2x) + 3sec2(2x) − 1 .

	 3.	 So sec2(2x) − 1( )3
sec5(2x)dx∫  = sec11(2x) − 3sec9(2x) + 3sec7(2x) − sec5(2x)∫ dx :

sec5(2x)dx =∫  	 = 1
2

1
4 sec3(2x) tan(2x) + 3

8 sec(2x) tan(2x) + 3
8 ln sec(2x) + tan(2x)( )

	 = 1
8 sec3(2x) tan(2x) + 3

16 sec(2x) tan(2x) + 3
16 ln sec(2x) + tan(2x)

sec7(2x)dx∫  	 = 1
2

1
6 sec5(2x) tan(2x) + 5

6 sec5(2x)dx∫( )
	 = 1

12 sec5(2x) tan(2x) + 5
6( ) 1

2( ) 1
4 sec3(2x) tan(2x) + 3

8 sec(2x) tan(2x) + 3
8 ln sec(2x) + tan(2x)( ) 

	    1
12 sec5(2x) tan(2x) + 5

6( ) 1
2( ) 1

4 sec3(2x) tan(2x) + 3
8 sec(2x) tan(2x) + 3

8 ln sec(2x) + tan(2x)( )
	 = 1

12 sec5(2x) tan(2x) + 5
48 sec3(2x) tan(2x) + 5

32 sec(2x) tan(2x) + 5
32 ln sec(2x) + tan(2x) 

	    1
12 sec5(2x) tan(2x) + 5

48 sec3(2x) tan(2x) + 5
32 sec(2x) tan(2x) + 5

32 ln sec(2x) + tan(2x)
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sec9(2x)dx∫  	 = 1
2

1
8 sec7(2x) tan(2x) + 7

8 sec7(2x)dx∫( )
	 = 1

16 sec7(2x) tan(2x) + 7
8

1
2( ) 1

12 sec5(2x) tan(2x) + 5
48 sec3(2x) tan(2x) + 5

32 sec(2x) tan(2x) + 5
32 ln sec(2x) + tan(2x)( ) 

	    1
16 sec7(2x) tan(2x) + 7

8
1
2( ) 1

12 sec5(2x) tan(2x) + 5
48 sec3(2x) tan(2x) + 5

32 sec(2x) tan(2x) + 5
32 ln sec(2x) + tan(2x)( )

	 = 1
16 sec7(2x) tan(2x) + 7

192 sec5(2x) tan(2x) + 35
768 sec3(2x) tan(2x) + 35

512 sec(2x) tan(2x) + 35
512 ln sec(2x) + tan(2x) 

	    1
16 sec7(2x) tan(2x) + 7

192 sec5(2x) tan(2x) + 35
768 sec3(2x) tan(2x) + 35

512 sec(2x) tan(2x) + 35
512 ln sec(2x) + tan(2x)

sec11(2x)dx =∫  	 = 1
20 sec9(2x) tan(2x) + 9

20 sec9(2x)dx∫
	 = 1

20 sec9(2x) tan(2x) + 9
10( ) 1

2( ) 1
16 sec7(2x) tan(2x) + 7

192 sec5(2x) tan(2x) + 35
768 sec3(2x) tan(2x) + 35

512 sec(2x) tan(2x) + 35
512 ln sec(2x) + tan(2x)( ) 

	    1
20 sec9(2x) tan(2x) + 9

10( ) 1
2( ) 1

16 sec7(2x) tan(2x) + 7
192 sec5(2x) tan(2x) + 35

768 sec3(2x) tan(2x) + 35
512 sec(2x) tan(2x) + 35

512 ln sec(2x) + tan(2x)( )
	 = 1

20 sec9(2x) tan(2x) + 9
320 sec7(2x) tan(2x) + 21

1280 sec5(2x) tan(2x) + 3
32 sec3(2x) tan(2x) + 63

2048 sec(2x) tan(2x) + 63
2048 ln sec(2x) + tan(2x) 

	    1
20 sec9(2x) tan(2x) + 9

320 sec7(2x) tan(2x) + 21
1280 sec5(2x) tan(2x) + 3

32 sec3(2x) tan(2x) + 63
2048 sec(2x) tan(2x) + 63

2048 ln sec(2x) + tan(2x)

	 4.	 Therefore, tan6(2x)sec5(2x)dx∫  = 

1
8 sec3(2x) tan(2x) + 3

16 sec(2x) tan(2x) + 3
16 ln sec(2x) + tan(2x) :

+ 1
12 sec5(2x) tan(2x) + 5

48 sec3(2x) tan(2x) + 5
32 sec(2x) tan(2x) + 5

32 ln sec(2x) + tan(2x)

+ 1
16 sec7(2x) tan(2x) + 7

192 sec5(2x) tan(2x) + 35
768 sec3(2x) tan(2x) + 35

512 sec(2x) tan(2x) + 35
512 ln sec(2x) + tan(2x) 

   1
16 sec7(2x) tan(2x) + 7

192 sec5(2x) tan(2x) + 35
768 sec3(2x) tan(2x) + 35

512 sec(2x) tan(2x) + 35
512 ln sec(2x) + tan(2x)

+ 1
20 sec9(2x) tan(2x) + 9

320 sec7(2x) tan(2x) + 21
1280 sec5(2x) tan(2x) + 3

32 sec3(2x) tan(2x) + 63
2048 sec(2x) tan(2x) + 63

2048 ln sec(2x) + tan(2x) 

  1
20 sec9(2x) tan(2x) + 9

320 sec7(2x) tan(2x) + 21
1280 sec5(2x) tan(2x) + 3

32 sec3(2x) tan(2x) + 63
2048 sec(2x) tan(2x) + 63

2048 ln sec(2x) + tan(2x)

tan6(2x)sec5(2x)dx∫  = 1
20 sec9(2x) tan(2x) + 29

320 sec7(2x) tan(2x) + 523
3840 sec5(2x) tan(2x)  

+ 283
768 sec3(2x) tan(2x) + 907

2048 sec(2x) tan(2x) + 907
2048 ln sec(2x) + tan(2x) + C
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Understand that there is no way anybody will ever ask you to repeat this without some type of 
electronic integration tool available to you.

YOU’VE GOT PROBLEMS

Problem 6: Evaluate tan2(x)sec3(x)dx∫ .

The Least You Need to Know
•	Use right triangle trigonometry when evaluating 

x2 − a2 dx,∫ x2 + a2 dx, a2 − x2 dx∫∫ .

•	Use the double angle identity for cosine when the integrand is sin2(x) or cos2(x).

•	Use the Pythagorean identity 1 + tan2(x) = sec2(x) when working with the product of 
powers of the tangent and secant functions.



CHAPTER

8
Integration with Fractions

In This Chapter
•	Completing the square

•	Integration by partial 
fractions

•	Working with nonrepeated 
linear factors

•	Repeated linear factors

•	Understanding irreducible 
quadratic factors

This is the last of the chapters on integration techniques. 
(Although Chapter 9 does deal with integration and issues 
with infinity.) In this chapter, we’ll study how to work with 
integrands that take particular fractional forms and transform 
them into manageable integrands. This would be a good  
time for you to look back at Chapter 1 and the process of 
dismantling fractional expressions.

We’ll finish the chapter with a number of integration  
problems that incorporate all we’ve studied in this book  
up to this point.
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Completing the Square
Before we do some calculus, let’s take a minute to review a little bit of algebra. The expression 

a + b( )2
 is clearly a square. The exponential 2 gives it away. When you expand a + b( )2

 you 

get a2 + 2ab + b2 . This is called a square trinomial. Get it? It’s a square and it has three terms. 
Observe that the first and third terms are squared, and the middle term is twice the product of 
the individual terms of the original binomial. The expression (2x + 3)2 = (2x)2 + 2(2x)(3) + (3)2 = 
4x2 + 12x + 9. The expression (a – b)2 = a2 – 2ab + b2 is also a square trinomial.

The trinomial x2 + 8x + 9 is not a square trinomial. Although the first and third terms are 
squares, the middle term is not twice the product of x and 3. There is a technique called complet-
ing the square that is useful in algebra for creating equations in standard forms and in calculus 
for transforming an integrand into a recognizable integration form. See the upcoming examples 
to learn how to complete the square.

CRITICAL POINT

To complete the square on a quadratic ax2 + bx + c: Factor the leading 
coefficient from the first two terms of the quadratic to create the 

expression a x2 + b
a x( ) + c . Halve the linear term, b

2a , square it, add 

it within the parentheses, and subtract a times this value from c: 

a x2 + b
a x + b

2a( )2( ) + c − a b
2a( )2

. The expression is now a x + b
a( )2

+ c − b2

4a  = 

a x + b
a( )2

+ 4ac−b2

4a
.

Example 1: Complete the square with 4x2 + 12x + 10.

Solution:

	 1.	 Factor out the 4, 4(x2 + 3x) + 10.

	 2.	 Take half of 3, square it, and add the value inside the parentheses, while subtracting 4 
times this amount from the 9:

4 x2 + 3x + 3
2( )2( ) + 10 − 4 3

2( )2

	 3.	 Simplify this expression by writing the trinomial as a squared binomial and performing 
the arithmetic at the end of the expression:

4 x + 3
2( )2

+ 10 − 9  = 4 x + 3
2( )2

+ 1
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Example 2: Evaluate 1
4x2 + 12x + 10∫ dx .

Solution:

	 1.	 The denominator is the same as the trinomial from Example 1.

	 2.	 Completing the square on the denominator gives 1
4 x + 3

2( )2
+ 1∫ dx .

	 3.	 The denominator is the sum of two squares and can fit the form for the integral problem 
1

1+ u2 du∫  = tan–1(u) + C.

	 4.	 The question is what do we do about that 4?

	 5.	 Rewrite 4 x + 3
2( )2

 as 2 x + 3
2( )( )2

 = 2x + 3( )2
.

	 6.	 Let u = 2x + 3, which makes du = 2dx or dx = 1
2du.

	 7.	 Transform the integral to 1
2

1
1+ u2 du∫  = 1

2
tan–1(u) + C. Transforming back to the original 

variable, 1
4x2 + 12x + 10∫ dx  = 1

2
tan–1(2x+3) + C.

Example 3: Evaluate 1
3x2 + 6x + 4

dx∫ .

Solution:

	 1.	 Complete the square in the denominator: 3x2 + 6x + 4 = 3(x2 + 2x) + 4 = 3(x2 + 2x + 1) + 
4 – 3.

	 2.	 Simplify this expression to be 3(x + 1)2 + 1. The integrand is now 1
3(x+1)2 + 1

dx∫ .

	 3.	 In order to perform the u-substitution, we need to move the 3 inside the parentheses. 
This is not going to be as “clean” as moving the 4 inside the parentheses in Example 2:

3(x + 1)2 + 1 = 3 x + 1( )( )2
+ 1

	 4.	 Let u = 3 x + 1( ) , so du = 3 dx  and dx = 1
3

du .

	 5.	 Transform the integral to 1
3

1
u2 + 1

du∫  = 1
3
tan−1(u) + C .

	 6.	 Working back to the original variable, 1
3x2 + 6x + 4

dx∫  = 1
3
tan−1 3 x +1( )( ) + C .
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Example 4: Evaluate 1
x2 + 8x + 20

dx∫ .

Solution:

	 1.	 Complete the square in the denominator: x2 + 8x + 20 = (x2 + 8x + 16) + 4 = (x + 4)2 + 4.

	 2.	 Rewrite the integrand: 1
(x+4)2 + 4

dx∫ . The form of the integrand for tan–1(u) is of the form 
1

1+ u2 , not 
1

4 + u2 . We need to factor out the 4 as follows:

1
(x+4)2 + 4

dx∫  = 
1
4

1
( x+4)2

4 + 1
dx∫  = 

1
4

1
x+4
2( )2

+ 1
dx∫

	 3.	 Let u = x + 4
2  so that du = 1

2 dx or that dx = 2du:

1
x+4
2( )2

+ 1
dx∫  = 

1
2

1
1+ u2 du∫  = 1

2
tan–1(u) + C

	 4.	 Transform the result back to the original variable, 1
x2 + 8x + 20

dx∫  = 
1

2
tan−1 x + 4

2( ) + C .

YOU’VE GOT PROBLEMS

Problem 1: Evaluate 1
9x2 + 12x + 20∫ dx .

The integration formula for inverse tangent is not the only situation in which completing the 
square will be useful. The formula for inverse sine will also be helpful. You’ll need to be careful 
with the arithmetic because the radicand in the denominator is 1 – u2 and that nasty subtraction 
symbol, like a spoiled child, causes a lot of trouble when it isn’t given enough attention.

Example 5: Evaluate 1
13− 12x − x2

dx∫ .

Solution:

	 1.	 Complete the square within the radicand while paying attention to how we deal with the 
subtraction:

13− 12x − x2  = 13− x2 + 12x( )  = 13− x2 + 12x + 36( ) + 36

	 2.	 Do you see why the 36 was added at the end rather than subtracted? The 36 inside the 
parentheses is affected by the subtraction sign appearing before the parentheses. That 
means we need to add 36 to keep the balance:

13− x2 + 12x + 36( ) + 36  = 49 − x + 6( )2
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	 3.	 Factor 49 from the radicand so that it takes the form 1 – u2:

49 − x + 6( )2  = 49 1− x + 6( )2

49
 = 7 1− x + 6

7( )2

	 4.	 Therefore, 1
13− 12x − x2

dx∫  = 1

7 1− x + 6
7( )2

dx∫  = 1
7

1

1− x + 6
7( )2

dx∫ . Let u = x + 6
7  do that 

du = 1
7 dx :

1
7

1

1− x + 6
7( )2

dx∫  = 1
1− u2

du∫  = sin–1(u) + C

	 5.	 Return to the original variable:

1
13− 12x − x2

dx∫  = sin−1 x + 6
7( ) + C

Example 6: Evaluate 1
1− 2x − 2x2

dx∫ .

Solution:

	 1.	 Complete the square for 1 – 2x – 2x2: 1 – 2(x2 + x) becomes 1− 2 x2 + x + 1
2( )2( ) + 1

2  = 

3
2 − 2 x + 1

2( )2 .

	 2.	 The radicand is supposed to be of the form 1 – u2, so we’ll need to factor out 3
2 : 

3
2 − 2 x + 1

2( )2
 = 3

2 1− 4
3 x + 1

2( )2( ) .

	 3.	 Now we’ll have to move the 4
3  inside the parentheses:

3
2 1− 4

3 x + 1
2( )2( )  = 3

2 1− 2
3
x + 1

3( )2⎛
⎝⎜

⎞
⎠⎟

	 4.	 Let’s see what we can do with this. 1
1− 2x − 2x2

dx∫  becomes 1

3
2 1− 2

3
x + 1

3( )2⎛
⎝⎜

⎞
⎠⎟

dx∫  and this 

equals 2
3

1

1− 2
3
x + 1

3( )2
dx∫ .

	 5.	 Let u = 2
3
x + 1

3
 so that du = 2

3
dx  and 3

2 du = dx .

	 6.	 The integral transforms to 3
2( ) 2

3( ) 1
1− u2

du∫  = 2
2 sin−1(u) + C , bringing this back to 

the original variable, 1
1− 2x − 2x2

dx∫  = 2
2 sin−1( 2

3
x + 1

3
) + C .

YOU’VE GOT PROBLEMS

Problem 2: Evaluate 1
−4x2 − 6x − 2

dx∫ .
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Integration by Partial Fractions
Any number of fractional factors could make up the partial fractions. We’ll only consider three 
cases:

•	 Nonrepeating linear factors

•	 Repeating linear factors

•	 Irreducible quadratic factors

Nonrepeating Linear Factors
Example 7: Evaluate 1

x2 − 9
dx∫ .

Solution:

	 1.	 As you know, x2 – 9 = (x + 3)(x – 3), so we will write the equation 1
x2 − 9  = A

x + 3 + B
x − 3 .

	 2.	 Multiply both sides of the equation by (x + 3)(x – 3) to get 1 = A(x – 3) + B(x + 3).

	 3.	 Set x = 3, thus eliminating the first part of the right-hand side of the equation, to get  

1 = 6B so B = 1
6 .

	 4.	 Now set x = –3, eliminating the second part of the right side of the equation, to get  

1 = –6A or A = −1
6 .

	 5.	 Rewrite 1
x2 − 9

dx∫  as 1
6

1
x −3 −

1
x + 3( )dx∫  = 1

6
1

x −3 −
1

x + 3( )dx∫  = 1
6 ln x − 3 − ln x + 3( ) + C  

or 1
6 ln x − 3

x + 3 + C .

CRITICAL POINT

We are looking at cases where the derivative of the denominator is not 
present in the problem. Given that, when do you use partial fractions versus 
when do you complete the square? If you can factor the denominator, use 
partial fractions. If not, go to the process of completing of the square.
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Example 8: Evaluate 1
4x2 + 13x + 3∫ dx .

Solution:

	 1.	 Rewrite the denominator as (4x + 1)(x + 3).

	 2.	 Solve for the coefficients using partial fractions.
1

4x2 + 13x + 3
= A

4x + 1 + B
x + 3

 becomes 1 = A(x + 3) + B(4x + 1)

	 3.	 Set x = –3 to get 1 = –11B or B = −1
11 .

	 4.	 Set x = −1
4  to get 1 = 11

4 A  so that A = 4
11 .

	 5.	 We now have 1
4x2 + 13x + 3∫ dx  = 4

11
1

4x + 1( ) − 1
11

1
x + 3( )dx∫  = 1

11
4

4x + 1 −
1

x + 3 dx∫  = 

1
11 ln 4x + 1 − ln x + 3( ) + C  = 1

11 ln 4x + 1
x + 3 + C .

Example 9: Evaluate 1
4x3 − 9x

dx∫ .

Solution:

	 1.	 The denominator factors to x(2x + 3)(2x – 3).

	 2.	 Create the equation for decomposition:
1

4x3 − 9x
= A

x + B
2x + 3 + C

2x − 3

	 3.	 Multiply both sides of the equation by x(2x + 3)(2x – 3):

1 = A(2x + 3)(2x – 3) + Bx(2x – 3) + Cx(2x + 3)

	 4.	 Set x = 0: 1 = –9A so A = −1
9 .

	 5.	 Set x = −3
2 : 1 = B −3

2( ) −6( ) = 9B  so B = 1
9 .

	 6.	 Set x = 3
2 : 1 = C 3

2( ) 6( ) = 9C  so C = 1
9 .

	 7.	 1
4x3 − 9x

dx∫  becomes 1
9

1
2x + 3 + 1

2x − 3 −
1
x dx∫  = 1

9
1
2 ln 2x + 3 + 1

2 ln 2x − 3 − ln x( ) + C  = 

1
9 ln 2x+3( ) 2x−3( )

x + C .

YOU’VE GOT PROBLEMS

Problem 3: Evaluate 1
3x2 + 10x + 8

dx∫ .
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Repeated Linear Factors
Integrating 1

(x + 2)2 dx∫  is straightforward because you can use u-substitution with u = x + 2 and 

arrive at the answer −1
x + 2 + C . In this section, we’ll examine rational integrands with three or 

more factors, with one factor being repeated.

CRITICAL POINT

When one or more linear factors are repeated in the denominator of an 
integrand, it is necessary to include one more fraction on the right side of 
the equation when decomposing the integrand into partial fractions.

Example 10: Evaluate x2

x + 1( )3 dx∫ .

Solution:

	 1.	 First, take note the x2 is not the derivative, or a multiple of the derivative, of (x + 1)3.

	 2.	 When we write the equation to decompose the integrand into partial fractions, we need 

to realize that x + 1 is a factor three times.

	 3.	 Therefore, we’ll need a fraction for x + 1, a fraction for (x + 1)2, and a fraction for  

(x + 1)3. Each is a linear factor, so the numerators in each case will be a constant.

	 4.	 Create the equation for decomposition:
x2

x + 1( )3 = A
x + 1 + B

(x + 1)2 + C
(x + 1)3

	 5.	 Multiply both sides of the equation by the common denominator (x + 1)3:

x2 = A(x + 1)2 + B(x + 1) + C

	 6.	 The value of C is easy to determine. Set x = –1: (–1)2 = A(0) + B(0) + C so C = 1.

	 7.	 We will not be able to eliminate other coefficients as we try to determine the values of A 

and B. We will need to create a system of equations.

	 8.	 Set x = 1 (because 1 is an easy number): 1 = 4A + 2B + 1 so 4A + 2B = 0.

	 9.	 Set x = 2 (another easy number): 22 = 9A + 3B + 1 so 9A + 3B = 3.

	 10.	 Solve the system of equations to determine that A = 1 and B = –2.

	 11.	 Rewrite the integral into the decomposed fractions (no, they are not zombies):
x2

x + 1( )3 dx∫  = 1
x + 1 dx − 2 1

(x + 1)2 dx + 1
(x + 1)3 dx∫∫∫  = ln | x + 1| + 2

(x + 1) −
1

2(x + 1)2 + C
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Example 11: 2x + 5
4x3 + 4x2 + x

dx∫ .

Solution:

	 1.	 The denominator factors to be x(2x + 1)2. The equation to decompose the fraction is:
2x + 5

4x3 + 4x2 + x
= A

x + B
2x + 1 + C

2x + 1( )2

	 2.	 Multiply both sides of the equation by the common denominator to get:

2x + 5 = A(2x + 1)2 + Bx(2x + 1) + Cx

	 3.	 Set x = 0: 5 = A.

	 4.	 Set x = −1
2( ) : 2 −1

2( )+ 5  = C −1
2( )  so that C = –8.

	 5.	 Let x = 1 (remember, an easy number): 2(1) + 3 = 5(2(1)+1)2 +B(1)(3) – 8.

7 = 45 + 3B – 8 so that 3B = –30 or B = –10

	 6.	 Rewrite the integral into the decomposed fractions:
2x + 5

4x3 + 4x2 + x
dx∫  = 5

x − 10 1
2x + 1( ) − 8

2x + 1( )2 dx∫  = 5ln | x |−5ln | 2x + 1| + 4
2x + 1 + C

YOU’VE GOT PROBLEMS

Problem 4: Evaluate 2x + 3
(x + 1)(3x − 2)2 dx∫ .

Irreducible Quadratic Factors
The third fractional factor that could make up a partial fraction is quadratics that cannot be 
factored with the real numbers. Since the numerator of the factors has a degree 1 less than the 
denominator, the numerators for the quadratic factors will be linear rather than constants.

Example 12: Evaluate 1
x3 + x

dx∫ .

Solution:

	 1.	 The denominator factors to x(x2 + 1). The equation to decompose the fraction is:
1

x3 + x
= A

x + Bx + C
x2 + 1

	 2.	 Multiply through by the common denominator to get:

1 = A(x2 + 1) + (Bx + C)(x)

	 3.	 Set x = 0: 1 = A + 0 so A = 1.



Part 3: More Definite and Indefinite Integrals156

	 4.	 Set x = –1: 1 = 2 + B – C.

	 5.	 Set x = 1 (easy number): 1 = 2 + B + C. Solving the system, givens B = –1 and C = 0.

	 6.	 Rewrite the integral into the decomposed fractions:

1
x3 + x

dx∫  = 1
x −

x
x2 + 1

dx∫  = ln|x| – 1
2

ln|x2 + 1| + C

Example 13: Evaluate 
x

x3 − 1
dx∫ .

Solution:

	 1.	 Recall that x3 – 1 = (x – 1)(x2 + x + 1). The equation to decompose the fraction is:
x

x3 − 1  = 
A

x − 1 + Bx + C
x2 + x + 1

	 2.	 Multiply through by the common denominator:

x = A(x2 + x + 1) + (Bx + C)(x – 1)

	 3.	 Set x = 1: 1 = A(1 + 1 + 1) + 0 so A = 1
3 .

	 4.	 Set x = 0: 0 = ( 1
3 )(1) + C(–1) so C = 1

3 .

	 5.	 Set x = –1 (easy number): –1 = ( 1
3 )(1) + (–B + 1

3 )(–2) so –2(–B + 1
3 ) = −4

3 , and B = −1
3 .

	 6.	 Rewrite the integral into the decomposed fractions:

x
x3 − 1

dx∫  = 1
3

1
x − 1 + − x + 1

x2 + x + 1
dx∫

	 7.	 The antiderivative of 
1

x − 1  is ln|x–1|. That is not a problem. It’s the second part of the 

integrand that requires us to be careful.

	 8.	 The derivative of x2 + x + 1 is 2x + 1.

	 9.	 We don’t have 2x, we have x. Half of 2x + 1 is x + 1
2 , so we can rewrite − x + 1

x2 + x + 1
 as 

−(x + 1
2 )

x2 + x + 1
+

3
2

x2 + x + 1
.

	 10.	 The antiderivative of −(x + 1
2 )

x2 + x + 1
 is – 1

2 ln|x2 + x + 1|.

	 11.	 This leaves us with 
3
2

x2 + x + 1
.
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YOU’VE GOT PROBLEMS

Problem 5: Evaluate 5
x3 + 4x

dx∫ .

	 12.	 We have a quadratic denominator that cannot be factored with a constant numerator. 
Time to complete the square in the denominator.

x2 + x + 1 = x2 + x + 1
2( )2( ) + 1− 1

2( )2
 = x + 1

2( )2
+ 3

4

	 13.	 Remember, we’re trying to match this denominator to the inverse tangent form 1 + u2. 

We need to rewrite x + 1
2( )2

+ 3
4

 as 3
4

4
3 x + 1

2( )2
+ 1( ) , which equals 3

4
2x + 1

3( )2
+ 1⎛

⎝⎜
⎞
⎠⎟

.

	 14.	 The antiderivative of 

3
2

3
4

2 x + 1
3( )2

+ 1
⎛
⎝⎜

⎞
⎠⎟

 = 
2

2 x + 1
3( )2

+ 1
⎛
⎝⎜

⎞
⎠⎟

 is 3 tan−1 2x + 1
3( ) .

	 15.	 Therefore, x
x3 − 1

dx∫  = 1
3

1
x − 1 −

1
2

x + 1
2

x2 + x + 1( ) + 2
2 x + 1

3( )2
+ 1

dx∫  = 

1
3 ln x − 1 − 1

2 ln x2 + x + 1 + 3 tan−1 2x + 1
3( )( ) + C . Wow! That was a mouthful!

The Least You Need to Know
•	When the denominator of an integrand is of the form ax2 + bx + c, look to see if 

completing the square is an option you can use to compute the integral.

•	Identify quadratic factors in the denominator of the integrand that allow you to 
rewrite the fraction as the sum and difference of the component fractions.

•	You can find the appropriate numerators for the component fractions based on 
the pattern of the denominator’s factors.





PART

4
The Infinite Series and More

We begin this part of the book by computing limits with infinite bounds. Then we compute  
limits with finite bounds, but with functions that have infinite discontinuities so we can cover 
our bases on all types of integration issues. We then change our focus from the traditional y = f(x) 
to examine functions defined parametrically and functions defined in the polar coordinate plane.

An introduction to Vector Calculus and Differential Equations finishes the preparatory work 
needed before we look at the ever-important topics of sequences and series. Power series, includ-
ing the special cases of MacLaurin and Taylor Series, give us an eye-opener as to how our 
calculators work.

Finally, the last chapter in the book is a final exam covering all you’ve learned throughout the 
book. Good luck!





CHAPTER

9
To Infinity and Beyond

In This Chapter
•	Exploring improper 

integrals

•	Working with infinite 
limits of integration

•	Examining discontinuities 
in the integrand

•	Using the Comparison 
Test for improper integrals

We looked at the Fundamental Theorem of Calculus, and we 
have concentrated on studying techniques of integration. In 
this chapter, we will go back to definite integrals and look at 
problems that either have an infinite bound of integration or 
an infinite discontinuity in a finite region.
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Improper Integrals
In all cases involving improper integrals, we will treat the problem as a limit. If the limit exists, we 
say that the integral converges and if the limit does not exist, we say that the integral diverges.

DEFINITION

An improper integral is a definite integral that has either or both bounds of 
integration going to an infinity, or integrands that approach infinity at one 
or more points in the range of integration.

Infinite Limits of Integration
Consider the area under the graph of f(x) = 1

x2  and above the x-axis on the interval [1, n]. The 

integral 1
x2 dx

1

n

∫  computes the amount of area.

Figure 9.1 
The area under the curve y = 1

x2  from x = 1 to infinity.
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1
x2 dx

1

n

∫  = −1
x 1

n
 = −1

n − −1
1 = 1− 1

n

What happens to this area as n gets very large? The larger the value of n, the closer 1
n  gets to 0 

and the closer 1− 1
n  gets to 1. That is, lim

n→∞
1
x2 dx

1

n

∫  = 1.

In this case, we can state that 1
x2 dx

1

∞

∫  = 1.

Do we get the same result for f(x) = 1
x : 1

x dx
1

∞

∫ = lim
n→∞

1
x dx

1

n

∫  = lim
n→∞

ln (x)
1

n( )  = 

lim
n→∞

ln (n) − ln (1)( )  = lim
n→∞

ln (n)( ) .

As n gets extremely large, ln(n) also get extremely large so lim
n→∞

ln (n)( )  fails to exist, and the 
integral is said to be divergent.

CRITICAL POINT

If the integral of f(x) on [a, n] exists for all values of n > a, then f (x)dx
a

∞

∫  = 

lim
n→∞

f (x)dx
a

n

∫  provided the limit exists and is finite.

We say the integrals are convergent if the limits exist. We say that the integrals are divergent if 
the limits fail to exist.

Example 1: For what values of p is the integral 1
x p dx

a

∞

∫  convergent?

Solution:

	 1.	 1
x p dx

a

∞

∫  = lim
n→∞

1
x p dx

a

n

∫  = lim
n→∞

1
− p + 1( ) 1

x p−1
a

n⎛
⎝⎜

⎞
⎠⎟  = 1

1− p lim
n→∞

1
np − 1 − 1

a p − 1( )⎛
⎝

⎞
⎠ .

	 2.	 If p > 1, 1
1− p lim

n→∞
1

np − 1( )⎛
⎝

⎞
⎠  = 0 while if p ≤ 1 and not equal to 0, 1

1− p lim
n→∞

1
np − 1( )⎛

⎝
⎞
⎠  diverges.

	 3.	 Therefore, 1
x p dx

a

∞

∫  is convergent for p > 1.

CRITICAL POINT

The integral 1
x p dx

a

∞

∫  will converge whenever p > 1 and will diverge when  

p ≤ 1. This is called the p-Test for improper integrals.
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Example 2: Evaluate ex dx
−∞

0

∫ , if it exists.

Solution: lim
n→−∞

ex
n

0

∫ dx⎛
⎝

⎞
⎠

 = lim
n→−∞

(e0 − en )  = 1 – 0 = 1.

Example 3: Evaluate 1
x2 + 1

dx
−∞

∞

∫ , if it exists.

Solution:

	 1.	 Let’s treat this as two problems: 1
x2 + 1

dx
−∞

0

∫  and 1
x2 + 1

dx
0

∞

∫ .

1
x2 + 1

dx
−∞

0

∫  = lim
n→−∞

1
x2 + 1

dx
n

0

∫⎛⎝
⎞
⎠  = lim

n→−∞
tan−1(x)

n

0⎛
⎝

⎞
⎠  = lim

n→−∞
tan−1(0) − tan−1(n)( )  = 

0 − −π
2 = π

2

		  In a similar manner:

1
x2 + 1

dx
0

∞

∫  = lim
n→∞

1
x2 + 1

dx
0

n

∫⎛⎝
⎞
⎠  = lim

n→∞
tan−1(x)

0

n⎛
⎝

⎞
⎠  = lim

n→∞
tan−1(n) − tan−1(0)( )  = 

π
2 − 0 = π

2

	 2.	 Therefore: 1
x2 + 1

dx
−∞

∞

∫  = 1
x2 + 1

dx
−∞

0

∫  + 1
x2 + 1

dx
0

∞

∫  = π
2  + π

2  = π.

Example 4: Evaluate (x − 4)e− x dx
1

∞

∫  if it exists.

Solution:

	 1.	 We’ll need use integration by parts to evaluate (x − 4)e− x dx∫ . Once we’ve done that, we 
can work to the bounds of integration.

	 	 (x − 4)e− x dx∫ : Let u = x – 4 and dv = e–x dx. The du = dx and v = –e–x.

		  (x − 4)e− x dx∫  = – (x – 4)e–x – −e− x dx∫  = –(x – 4)e–x – e–x.

	 2.	 Applying the bounds of integration, you get (x − 4)e− x dx
1

∞

∫  = lim
n→∞

(x − 4)e− x dx
1

n

∫⎛⎝
⎞
⎠  = 

lim
n→∞

− x –  4( )e− x –  e− x

1

n⎛
⎝

⎞
⎠  = lim

n→∞
−(n − 4)e−n − e−n( ) − 3e−1 − e−1( )( )  =  

lim
n→∞

4 − n
en − 1

en − 2
e( ) .

	 3.	 Use L’Hopital’s Rule to evaluate lim
n→∞

4 − n
en( ) . lim

n→∞

4 − n
en( )  = lim

n→∞
−1
en( )  = 0.

	 4.	 Therefore, lim
n→∞

4 − n
en − 1

en − 2
e( )  = −2

e  and (x − 4)e− x dx
1

∞

∫  = −2
e .
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Example 5: Consider the graph of the function h given by h(x) = e− x2

 for 0 ≤ x < ∞. Let R be the 
unbounded region in the first quadrant below the graph of h. Find the volume of the solid gener-
ated when R is revolved about the y-axis.

Solution:

	 1.	 Use the cylindrical shell method to find the volume (since the region is being rotated 
about a vertical line).

	 2.	 The volume of the solid is 2π xe− x2

dx
0

∞

∫ , which becomes 2π lim
n→∞

xe− x2

dx
0

n

∫ .  

Let u = –x2 so that du = –2x dx or −1
2 du  = x dx. −1

2 eu du∫  = −1
2 eu .

	 3.	 Therefore, 2π xe− x2

dx
0

∞

∫  = −π lim
n→∞

e− x2

0

n⎛
⎝⎜

⎞
⎠⎟  = −π lim

n→∞
e−n2

− e0( )  = −π 0 − 1( ) = π .

Discontinuities in the Integrand
We’ve examined what happens when one or both bounds of integration go to infinity. We now 
consider how to handle discontinuities within the integrand. There are two cases that we should 
consider:

•	 The discontinuity is finite.

•	 The discontinuity is infinite.

CRITICAL POINT

If f(x) is continuous on [a, b) and discontinuous at x = b, f (x)dx
a

b

∫  = 

lim
n→ b−

f (x)dx
a

n

∫⎛⎝
⎞
⎠  if the limit exists and is finite. Similarly, If f(x) is continuous 

on (a, b] and discontinuous at x = a, f (x)dx
a

b

∫  = lim
n→ a+

f (x)dx
n

b

∫⎛⎝
⎞
⎠  if the 

limit exists and is finite.

YOU’VE GOT PROBLEMS

Problem 1: Evaluate 1
e− x + ex dx

−∞

∞

∫  if it exists.
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Example 6: Let f (x) =
x2 x < 3

2x + 5 x ≥ 3

⎧
⎨
⎪

⎩⎪
. Evaluate f (x)dx

0

5

∫  if it exists.

Figure 9.2 

The graph of f (x) =
x2 x < 3

2x + 5 x ≥ 3

⎧
⎨
⎪

⎩⎪
. 

Solution: f (x)dx
0

5

∫  = f (x)dx
0

3

∫  + f (x)dx
3

5

∫ .

	 1.	 f(x) = x2 on the interval [0, 3) and f(x) = 2x + 5 on the interval [3, 5]. Therefore, 

f (x)dx
0

3

∫  + f (x)dx
3

5

∫  = x2 dx
0

3

∫  + 2x + 5dx
3

5

∫ .

	 2.	 Apply the Fundamental Theorem of Calculus in each case: f (x)dx
0

5

∫  = 

1
3 x3

0

3⎛
⎝

⎞
⎠ + x2 + 5x

3

5⎛
⎝

⎞
⎠ .

	 3.	 Therefore, f (x)dx
0

5

∫  = (9 – 0) + (50 – 24) = 35.

CRITICAL POINT

If f(x) has a discontinuity at x = b with a < b < c, then f (x)dx
a

c

∫  = f (x)dx
a

b

∫  

+ f (x)dx
b

c

∫  is convergent if both f (x)dx
a

c

∫  and f (x)dx
a

b

∫  are convergent 

and is divergent if either f (x)dx
a

c

∫  or f (x)dx
a

b

∫  are divergent.
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Example 7: Evaluate 1
(x − 3)2 dx

0

3

∫  if it exists.

Solution:

	 1.	 Because the integrand does not exist at x = 3, we treat 1
(x − 3)2 dx

0

3

∫  as lim
n→ 3−

1
(x − 3)2 dx

0

n

∫ .

	 2.	 lim
n→ 3−

1
(x − 3)2 dx

0

n

∫  = lim
n→ 3−

−1
x − 3 0

n⎛
⎝⎜

⎞
⎠⎟  = lim

n→ 3−
−1

n − 3 + 1
3( ) .

	 3.	 As n approaches 3 from the left, −1
n − 3  gets infinitely large, meaning the limit, and there-

fore the integral, is divergent.

Example 8: Evaluate 1
16 − x2

dx
0

4

∫  if it exists.

Solution: Since the integrand does not exist at x = 4, we treat 1
16 − x2

dx
0

4

∫  as lim
n→ 4−

1
16 − x2

dx
0

n

∫ .

lim
n→ 4−

1
16 − x2

dx
0

n

∫  = lim
n→ 4−

1

4 1− x
4( )2

dx
0

n

∫
⎛

⎝⎜
⎞

⎠⎟
 = lim

n→ 4−
sin−1 x

4( )
0

n⎛
⎝

⎞
⎠  = 

lim
n→ 4−

sin−1 n
4( ) − sin−1(0)( )  = π

2

Example 9: Evaluate tan2(x)dx
0

π

∫  if it exists.

Solution:

	 1.	 As we have done before, substitute sec2(x) – 1 for tan2(x).

	 2.	 Both the tangent function and the secant function are discontinuous at x = π
2 .

	 3.	 Therefore, sec2(x) − 1dx
0

π

∫  should be written as sec2(x)dx
0

π

∫ − 1
0

π

∫ dx .

	 4.	 We know that 1
0

π

∫ dx  = π and does not present a problem.

	 5.	 The question of concern is if sec2(x)dx
0

π

∫  = sec2(x)dx
0

π
2∫  + sec2(x)dx

π
2

π

∫  is 

convergent.

	 6.	 sec2(x)dx
0

π
2∫  = lim

n→ π
2
−

sec2(x)dx
0

n

∫  = lim
n→ π

2
−

tan(x)
0

n( )  = lim
n→ π

2
−

tan(n)− tan(0)( )  = ∞. 

Therefore, tan(x)
0

π
 is divergent.

BE AWARE

If we had not checked for the point of discontinuity on the interval [0, π], 
then sec2(x)dx

0

π

∫  = tan(x)
0

π
 = tan(π) – tan(0) = 0, and this is incorrect.
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Comparison Test for Improper Integrals
There will be times—particularly when we study infinite series—that all we want to know is if 
an expression in convergent or divergent. The Comparison Test for Improper Integrals helps us with 
this problem.

DEFINITION

Given f(x) and g(x) are continuous functions for x > a with f(x) ≥ g(x) ≥ 0. If 

f (x)dx
a

∞

∫  converges, then so does g(x)dx
a

∞

∫ . If g(x)dx
a

∞

∫  diverges, 

then so does f (x)dx
a

∞

∫ . This is called the Comparison Test for Improper 
Integrals.

Example 10: Is 1
x2 + 3x + 2

dx
2

∞

∫  convergent?

Solution: Because 1
x2 ≥ 1

x2 + 3x + 2
≥ 0  and 1

x2 + 3x + 2
dx

2

∞

∫  is convergent. (This is one of the integrals 

of the type 1
x p dx∫  with p > 1.)

CRITICAL POINT

As a practical matter, the p-Test is always a good tool to use when using 
the Comparison Test for Improper Integrals and part of the integrand to be 
tested contains a polynomial.

Example 11: Is 3+cos(x)
x − 2 dx

3

∞

∫  convergent?

Solution: Because 3+cos(x)
x−2 ≥ 1

x ≥ 0  and 1
x dx

3

∞

∫  is divergent, therefore, 3+cos(x)
x − 2 dx

3

∞

∫  is divergent.

YOU’VE GOT PROBLEMS

Problem 3: Determine if 2
x4 + 3x2 + 13

dx
2

∞

∫  converges.

YOU’VE GOT PROBLEMS

Problem 2: Evaluate 1
25− x2

dx
−5

0

∫  if it exists.
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The Least You Need to Know
•	When evaluating integrals with infinite bounds of integration, use a limit to  

determine the value of the integral, if it exists.

•	Look for points of discontinuity on a finite interval, either at an endpoint of the 
interval or in the interior of the interval. If a discontinuity exists, use a limit to 
evaluate the integral.

•	The p-Test is a good tool for comparing an unknown improper integral to a known 
improper integral.





CHAPTER

10
Parametric Equations

In This Chapter
•	Working with first and 

second derivatives of 
parametric curves

•	Computing the arc length 
of a parametric curve

We can treat some applications as one value that is a function 
of a second value (e.g., cost is a function of the number of 
items produced); we sketch and analyze the relationship as 
such. There are other applications that are more involved, 
even though they seem to be as straightforward as quantity 
versus cost relationship.

Some relationships cannot be written as simple statements 
such as y is a function of x. We like those because they are 
more straightforward to deal with than are other relationships. 
However, we’ll be tackling these more complicated situations 
in this chapter. We begin with parametric equations.

If you need to, this would be a good time to go back to 
Chapter 1 and look over the material on parametric functions.
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First and Second Derivatives of Parametric 
Curves

Remember the Chain Rule for derivatives from Calculus I?

If …

•	 y is a function of u.

•	 u is a function of v.

•	 v is a function of x.

… then the derivative of y with respect to x is dy
dx = dy

du ×
du
dv ×

dv
dx . If nothing else makes sense 

about this statement, you should appreciate how the multiplication of fractions yields the desired 

derivative, dy
dx . (Think of how you cancel common factors when you multiply fractions.)

With parametric equations, the definitions of the functions are slightly different. Both the inde-
pendent variable (usually x) and the dependent variable (usually y) are now both dependent on a 
third variable (for the moment, we’ll call t). This is written out as: x = f(t) and y = g(t). What if we 

want to determine the value of dy
dx ? We know that f'(t) = dx

dt  and that g'(t) = dy
dt . If we look at the 

fractional statement written, it makes sense that 
dy
dx =

dy
dt
dx
dt

.

CRITICAL POINT

If x and y are both functions of an independent variable t, then 
dy
dx =

dy
dt
dx
dt .

Example 1: Find the value of dy
dx  if x = t2 + 3t + 1, and y = 4t – 7.

Solution: dx
dt = 2t + 3  and dy

dt = 4 . Therefore, dy
dx = 4

2t + 3 .

Example 2: Find the equation of the line tangent to the graph that has an equation: x = 4cos(t) 
and y = 5sin(t) when t = π

6 .
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Solution:

	 1.	 To write the equation of the line tangent to this ellipse, we’ll need to know the point of 
tangency as well as the slope of the tangent line.

	 2.	 The point of tangency is x = 4cos π
6( ) = 2 3  and y = 5sin π

6( ) = 5
2 .

	 3.	 The slope of the tangent line at t = π
6  can be found using the derivative for parametric  

equations. dx
dt = − 4sin(t)  and dy

dt = 5cos(t) . At t = π
6 , dx

dt = − 2  and dy
dt = 5 3

2  so 

dy
dx =

5 3
2
−2 = −5 3

4 .

	 4.	 To make life easy for ourselves, use the point-slope form for the line of an equation to 

get y − 5
2 = −5 3

4 x − 2 3( )  as the tangent line.

Figure 10.1 
The graph of the ellipse x = 4 cos(t) and y = 5 sin(t) with tangent line drawn at the point 

2 3, 5
2( ) .
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Example 3: The Lissajous curve x = sin(t) and y = sin(2t) (0 ≤ t ≤ 2π) crosses itself at the origin. 
Find the equations of the lines tangent to this curve at the origin.

Figure 10.2 
The graph of the Lissajous curve with equation x = sin(t) and y = sin(2t).

Solution:

	 1.	 We know the point of tangency is (0,0). All we need to do is find the derivative and the 

slopes of the tangent lines. dx
dt = cos(t)  and dy

dt = 2cos(2t)  so dy
dx = 2cos(2t )

cos(t ) .

	 2.	 To determine the slopes of the tangent lines, we need to determine when the graph 
crosses through the origin. We’ll do this by working with the equation for x.

	 3.	 We know that sin(t) = 0 when t = 0, π, and 2π.

	 4.	 At t = 0, y = 0; at t = π, y = 0; and at t = 2π, y = 0.

	 5.	 The slope of the tangent line at t = 0 is dy
dx = 2cos(0)

cos(0) = 2 .

	 6.	 The equation of one tangent line is y = 2x.

	 7.	 The slope of the tangent line at t = π is dy
dx = 2cos(2π )

cos(π ) = − 2 .

	 8.	 The equation of a second tangent line is y = –2x.

	 9.	 The slope of the tangent line at t = 2π is dy
dx = 2cos(4π )

cos(2π ) = 2 .

	 10.	 The tangent line is again y = 2x.
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Figure 10.3 
The graph of the Lissajous curve with equation x = sin(t) and y = sin(2t) with tangent lines y = 

2x and y = –2x drawn.

Example 4: Find the slope of the curve denoted by x = e–2t cos(t) and y = e–tsin(2t) at t = 0.

Figure 10.4 
The graph of the curve denoted by x = e–2tcos(t) and y = e–tsin(2t).
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Solution:

	 1.	 We need to compute dx
dt  and dy

dt . dx
dt = − 2e−2t cos(t) − e−2t sin(t)  and 

dy
dt = − e−t sin(2t) + 2e−t cos(2t) .

	 2.	 This results in 
dy
dx = −e− t sin(2t ) + 2e− t cos(2t )

−2e−2 t cos(t ) − e−2 t sin(t ) .

	 3.	 When t = 0, dy
dx = −(1)(0) + 2 1( )(1)

−2 1( ) 1( ) − 1( ) 0( ) = 2
−2 = −1 .

Example 5: Determine when the tangent lines for the curve denoted by the functions x = 2t2 – 1 
and y = t3 – 2t are horizontal and vertical.

Solution:

	 1.	 The slope of a horizontal line is 0. This will happen when dy
dt  = 0 and dx

dt  is not 0.

	 2.	 dy
dt  = 3t2 – 2 and dx

dt  = 4t. 3t2 – 2 = 0 when t = ± 6
3 .

	 3.	 When t = ± 6
3 , dx

dt  = ± 4 6
3 .

	 4.	 The slope of a vertical is undefined and this will occur when dx
dt  = 0.

	 5.	 This happens when t = 0.

Example 6: Determine the coordinates of the point when the function x = 50t and y = 40t – 10t2 
reaches its maximum value.

Solution:

	 1.	 The maximum value for the function occurs when dy
dx  = 0.

	 2.	 dx
dt  = 50 and dy

dt  = 40 – 20t.

	 3.	 dy
dx = 40 − 20t

50
, and this equals 0 when t = 2.

	 4.	 x(2) = 100 and y(2) = 80 – 40 = 40.

	 5.	 The maximum value of the function is 40.

YOU’VE GOT PROBLEMS

Problem 1: Determine the equation of the line tangent to x = ettan(2t) and y = 
e2isec(t) at t = 0.
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Now that we’ve practiced getting the first derivative of a parametrically defined function, let’s 

take a look at the second derivative. f″(x) = d dy
dx( )

dx
 in the traditional derivative notation. In para-

metric notation, dy
dx =

dy
dt
dx
dt

, so d dy
dx( )

dx =
d dy

dx
⎛
⎝⎜

⎞
⎠⎟

dt
dx
dt

.

BE AWARE

The second derivative in parametric form is not 
d2y

dt2

d2x
dt2

.

Example 7: Determine the concavity of the Lissajous curve (Example 3) at t = π
6 .

Solution:

	 1.	 We found dy
dx = 2cos(2t )

cos(t )  in Example 3.

	 2.	 The second derivative is 
d dy

dx
⎛
⎝⎜

⎞
⎠⎟

dt
dx
dt

=
cot( t )(−4sin( 2 t ) − ( 2cos ( 2 t )(−sin( t ))

cos2 ( t )

cos(t )  = −4cos(t )sin(2t ) + 2cos(2t )sin(t )
cos3(t )

.

	 3.	 At t = π
6 , d 2 y

dx2 = −4cos π
6( )sin π

3( ) + 2cos π
3( )sin π

6( )
cos3 π

6( )  = 
−4 3

2( ) 3
2( ) + 2 1

2( ) 1
2( )

3
2( )3  = 

−3 + 1
2

3 3
8

= −20
3 3 .

	 4.	 Because the second derivative is negative, the curve is concave down.

Example 8: Determine the concavity of the curve denoted by x = 2t2 – 1 and y = t3 – 2t at t = 3.

Solution:

	 1.	 dy
dx = 3t2 − 2

4t

	 2.	 The second derivative is 
d dy

dx
⎛
⎝⎜

⎞
⎠⎟

dt
dx
dt

=
4 t ( 6 t ) − 4(3t2 − 2)

16 t2

4t  = 24t2 − 12t2 + 8
64t3  = 12t2 + 8

64t3 = 3t2 + 2
16t3 .

	 3.	 At t = 3, d 2 y
dx2 = 3(3)2 + 2

16(3)3 = 29
432 .

	 4.	 Because the second derivative is positive, the curve is concave up.

YOU’VE GOT PROBLEMS

Problem 2: Determine the value of the second derivative of x = 4cos(3t) and 
y = 3sin(4t) at t = π

2 .
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Arc Length of a Parametric Curve
We saw in Chapter 5 that the length of an arc is dx( )2

+ dy( )2

a

b

∫ . Also in Chapter 5, we  

simplified the radicand by factoring out the term (dx)2. For parametric curves, we’ll multiply and 

divide the radicand by (dx)2 making the arc length formula dx
dt( )2

+ dy
dt( )2

a

b

∫ dt .

Example 9: Find the circumference of the circle defined by x = acos(t) and y = asin(t).

Solution: The bounds of integration are 0 and 2π. dx
dt = − asin(t)  and dy

dt = acos(t) . The 

length of the arc is −asin(t)( )2
+ acos(t)( )2

dt
0

2π

∫  = a2 sin2(t) + a2 cos2(t) dt
0

2π

∫  = 

a2 sin2(t) + cos2(t)( ) dt
0

2π

∫  = a2 dt
0

2π

∫  = adt
0

2π

∫  = at
0

2π  = 2πa – 0 = 2πa.

Example 10: Find the length of the arc for the curve defined by x = etcos(t) and y = etsin(t) on 

[0,5].

Solution: dx
dt = et cos(t) − et sin(t) = et cos(t) − sin(t)( )  and 

dy
dt = et sin(t) + et cos(t) = et sin(t) + cos(t)( ) . dx

dt( )2
= e2t cos(t) − sin(t)( )2  = 

e2t cos2(t) − 2sin(t)cos(t) + sin2(t)( )  = e2t (1 – sin(2t)).

dy
dt( )2

= e2t sin(t) + cos(t)( )2  = e2t sin2(t) + 2sin(t)cos(t) + cos2(t)( )  = e2t (1 + sin(2t))

Therefore, the length of the arc is e2t (1− sin2(t)) + e2t (1+ sin(2t))
0

5

∫ dt  = 

e2t 1− sin2(t) + 1+ sin(2t)( )
0

5

∫ dt  = 2e2t
0

5

∫ dt  = 2 et
0

5

∫ dt  = 2et

0

5
 = 2 e5 − 1( ) .

Example 11: Determine the distance around the circumference of the ellipse with equation x = 
4cos(t) and y = 5sin(t).

Solution: The bounds of integration will be 0 to 2π and the length of the arc is 

16sin2(t) + 25cos2(t)
0

2π

∫ dt . This is an example of an integral that we do not know how to 

evaluate, so we’ll use the calculator to get the answer 28.3617.
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YOU’VE GOT PROBLEMS

Problem 3: Find the length of the arc formed by x = tan–1(t) and  

y = ln 1+ t2( )  on [0, 1].

The Least You Need to Know
•	If x = f(t) and y = g(t), then dy

dx = g'(t )
f '(t )

.

•	The second derivative d dy
dx( )

dx =
d dy

dx
⎛
⎝⎜

⎞
⎠⎟

dt
dx
dt

.

•	The length of an arc of a curve defined parametrically is dx
dt( )2

+ dy
dt( )2

a

b

∫ dt .





CHAPTER

11
Polar Coordinates

In This Chapter
•	Computing the slope of 

the line tangent to a polar 
curve

•	Determining the length  
of an arc of a polar curve

•	Calculating area under a 
polar curve

As we talked about in Chapter 1, the study of mathematics 
would be quite different if Descartes had used a series of 
concentric circles when he tried to determine the location of 
the bug on the ceiling rather than the series of parallel and 
perpendicular lines that became the Rectangular Coordinate 
System (or better still, the Cartesian Coordinate System). We 
will take a little time in this chapter to examine some of the 
basics of calculus—slopes of tangent lines, concavity, length 
of an arc of a polar curve, and the area under a curve.

Before reading on, you might want to go back and review the 
material on polar coordinates in Chapter 1.
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Slope of the Tangent Line
As we just saw in Chapter 10 and the study of parametrically defined functions, we still think  
of the slope of the tangent in terms of the first derivative, dy

dx . We need to recall how the polar 

and Rectangular Coordinate systems are related to one another. The conversion from polar to 

rectangular is x = rcos(θ) and y = rsin(θ). Consequently, dy
dx =

d r sin(θ )( )
dθ

d r cos(θ )( )
dθ

.

Example 1: Find the slope of the line tangent to r = 3cos(2θ) at θ = π
6 .

Solution:

	 1.	 The slope of the tangent line is dy
dx =

d r sin(θ )( )
dθ

d r cos(θ )( )
dθ

.

	 2.	 Use the product rule to compute both the numerator and denominator for dy
dx .

	 3.	 The numerator of the derivative, d r sin(θ )( )
dθ =

d 3cos( 2θ )( )sin θ( )( )
dθ

 = –6sin(2θ)sin(θ) + 3cos(2θ)cos(θ) 

while the denominator of the derivative is d (r cos(θ ))
dθ = d ( 3cos(2θ )( )cos(θ ))

dθ  = –6sin(2θ)cos(θ) – 

3cos(2θ)sin(θ).

	 4.	 We now have dy
dx = −6sin(2θ )sin(θ ) + 3cos(2θ )cos(θ )

−6sin(2θ )cos(θ ) − 3cos(2θ )sin(θ )
.

	 5.	 Evaluate this expression at θ = π
6 , dy

dx = −6sin π
3( )sin π

6( ) + 3cos π
3( )cos π

6( )
−6sin π

3( )cos π
6( ) − 3cos π

3( )sin π
6( )  = 

−3 3( ) 1
2( ) + 3

2( ) 3
2( )

−3 3( ) 3
2( ) − 3

2( ) 1
2( )  = 

−6 3 + 3 3
−18 − 3 = −3 3

−21  = 3
7 .

Example 2: Write the equation of the line tangent to r = 3cos(2θ) at θ = π
6 .

Solution:

	 1.	 We know the slope of the line is = 3
7 .

	 2.	 We need to determine the coordinates of the point through which the point passes. 

When θ = π
6 , r = 3cos π

3( ) = 3
2 .

	 3.	 Convert polar to rectangular coordinates: x = 3
2 cos π

6( ) = 3
2( ) 3

2( ) = 3 3
4

 and 

y = 3
2 sin π

6( ) = 3
2( ) 1

2( ) = 3
4

.

	 4.	 Consequently, the equation of the line tangent to r = 3cos(2θ) at θ = π
6  is 

y − 3
4 = 3

7 x − 3 3
4( ) .
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Example 3: Write the equation of the lines tangent to r = 3cos(2θ) when the graph passes 
through the pole (the point when the radius is equal to zero).

Solution:

	 1.	 There is a little bit of algebra to do here. When solving the equation 3cos(2θ) = 0, we are 

working with the domain 0 ≤ θ ≤ 2π. However, our equation contains cos(2θ), so we need 

to consider the values for 2θ.

	 2.	 Double the values for the interval 0 ≤ θ ≤ 2π to get 0 ≤ 2θ ≤ 4π.

	 3.	 On this interval, cos(2θ) when 2θ = π
2 , 3π

2 , 5π
2 , 7π

2 , so θ = π
4 , 3π

4 , 5π
4 , 7π

4 .

	 4.	 The point of tangency in each case will be the origin (0,0).

	 5.	 The slope of the tangent lines at each of these values is:

		  •	 �At θ = π
4 , dy

dx = −6sin π
2( )sin π

4( ) + 3cos π
2( )cos π

4( )
−6sin π

2( )cos π
4( ) − 3cos π

2( )sin π
4( ) =

−6(1) 2
2( ) + 3(0) 2

2( )
−6(1) 2

2( ) − 3(0) 2
2( ) = −3 2

−3 2
= 1 . The tangent line has 

equation y = x.

		  •	� At θ = 3π
4 , dy

dx = −6sin 3π
2( )sin 3π

4( ) + 3cos 3π
2( )cos 3π

4( )
−6sin 3π

2( )cos 3π
4( ) − 3cos 3π

2( )sin 3π
4( ) =

−6(−1) 2
2( ) + 3(0) − 2

2( )
−6(−1) − 2

2( ) − 3(0) 2
2( ) = 3 2

−3 2
= −1 . The tangent 

line has equation y = –x.

		  •	� At θ = 5π
4 , dy

dx = −6sin 5π
2( )sin 5π

4( ) + 3cos 5π
2( )cos 5π

4( )
−6sin 5π

2( )cos 5π
4( ) − 3cos 5π

2( )sin 5π
4( ) =

−6(1) − 2
2( ) + 3(0) − 2

2( )
−6(1) − 2

2( ) − 3(0) − 2
2( ) = 3 2

3 2
= 1 . The tangent line 

has equation y = x.

		  •	� At θ = 7π
4 , dy

dx = −6sin 7π
2( )sin 7π

4( ) + 3cos 7π
2( )cos 7π

4( )
−6sin 7π

2( )cos 7π
4( ) − 3cos 7π

2( )sin 7π
4( ) =

−6(−1) − 2
2( ) + 3(0) 2

2( )
−6(−1) 2

2( ) − 3(0) − 2
2( ) = −3 2

3 2
= −1 . The tangent 

line has equation y = –x.

Example 4: When is the tangent line to the graph r = 3cos(2θ) vertical?

Solution:

	 1.	 The slope of a vertical line is undefined, so we need to find those values of θ for which 
dx
dθ = 0 .

	 2.	 Solve –6sin(2θ)cos(θ) – 3cos(2θ)sin(θ) = 0 by first using the double angle identities for 

sine and cosine and then removing the common factor, –3sin(θ)(6cos2(θ) – 1) = 0.

	 3.	 Set each of the factors equal to 0 and solve. –3sin(θ) = 0 when θ = 0,π,2π and cos(θ) + 
sin(θ) = 0 when θ = 1.1503,1.9913,4.2919,5.1329.
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CRITICAL POINT

When solving trigonometric equations with the input values of the form 
nθ and the domain for θ is 0 ≤ θ ≤ 2π, you must solve the equation over the 
interval 0 ≤ nθ ≤ 2nπ.

Equations of the form r = acos(nθ) and r = asin(nθ) are called roses. The number of petals on the 
rose is …

•	 n if n is an odd integer.

•	 2n if n is an even integer.

Two other popular polar curves are as follows:

•	 Cardioid (r = a ± acos(θ) and r = a ± asin(θ))

•	 Limaçon (r = a ± bcos(θ) and r = a ± bsin(θ))

Example 5: Find the slope of the line tangent to r = 4 + 2sin(θ) at θ = π
3 .

Solution:

	 1.	 As we saw in Example 1, we’ll need to use the product rule to compute dy
dθ  and dx

dθ .

	 2.	 Convert to rectangular form, y = (4 + 2sin(θ))sin(θ) = 4sin(θ) + 2sin2(θ), so that 
dy
dθ = 4cos θ( ) + 4sin θ( )cos θ( ) = 4cos θ( ) + 2sin 2θ( ) .

	 3.	 In rectangular form, x = (4 + 2sin(θ))cos(θ) = 4cos(θ) + 2sin(θ)cos(θ) = 4cos(θ) + sin(2θ), 

so that dx
dθ = − 4sin θ( ) + 2cos 2θ( ) .

	 4.	 The slope of the tangent line is dy
dx = 4cos θ( ) + 2sin 2θ( )

−4sin θ( ) +2cos 2θ( ) .

	 5.	 At θ = π
3 , the slope of the tangent line is dy

dx = 4cos π
3( ) + 2sin 2π

3( )
−4sin π

3( ) + 2cos 2π
3( ) = 2 + 3

−2 3 − 1
.
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Example 6: Determine the equations of the lines tangent to r = 2 + 4sin(θ) when the graph 
passes through the pole.

Solution:

	 1.	 The graph passes through the pole (rectangular coordinates (0,0)) when 2 + 4sin(θ) = 0.

	 2.	 Solve this equation, sin θ( ) = −1
2

 so that θ = 7π
6 , 11π

6 .

	 3.	 The derivative 
dy
dx =

d 2 + 4sin θ( )( )sin θ( )( )
dθ

d 2 + 4sin θ( )( )cos θ( )( )
dθ

 = 
d 2sin θ( ) + 4sin2 θ( )⎛
⎝⎜

⎞
⎠⎟

dθ
d 2cos θ( ) + 4sin θ( )cos θ( )( )

dθ

=
d 2sin θ( ) + 4sin2 θ( )⎛
⎝⎜

⎞
⎠⎟

dθ
d 2cos θ( ) + 2sin 2θ( )( )

dθ
 = 

2cos θ( ) + 8sin θ( )cos θ( )
−2sin θ( ) + 4cos 2θ( ) =

2cos θ( ) 1+ 4sin θ( )( )
2 −sin θ( ) + 2cos 2θ( )( ) =

cos θ( ) 1+ 4sin θ( )( )
−sin θ( ) + 2cos 2θ( ) .

	 4.	 When θ = 7π
6

, dy
dx  = 

cos 7π
6( ) 1+ 4sin 7π

6( )( )
−sin 7π

6( ) + 2cos 7π
3( )  = 

− 3
2( ) 1+ 4 −1

2( )( )
− −1

2( ) + 2 1
2( ) =

− 3
2( ) 1−2( )

1
2 + 1 =

3
2
3
2

= 3
3 .

	 5.	 The equation of the tangent line is y = 3
3 x .

	 6.	 When θ = 11π
6 , dy

dx  = 
cos 11π

6( ) 1+ 4sin 11π
6( )( )

−sin 11π
6( ) + 2cos 11π

3( )  = 
3

2( ) 1+ 4 −1
2( )( )

− −1
2( ) + 2 1

2( ) =
3

2( ) 1+ −2( )
1
2 + 1 =

− 3
2
3
2

= − 3
3 .

	 7.	 The equation of the tangent line is y = − 3
3 x .

Figure 11.1 
The graph of the limaçon r = 2 + 4sin(θ) with the tangent lines drawn at the pole.
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Computing the second derivative in polar coordinates is as challenging as it was with parametri-

cally defined functions: d 2 y
dx2 =

d dy
dx( )

dx =
d dy

dx
⎛
⎝⎜

⎞
⎠⎟

dθ
dx
dθ

. Just know up front that this is going to get sloppy and 

that you won’t need to do this often.

Example 7: Find the second derivative of the polar curve r = 2 + 4sin(θ).

Solution:

	 1.	 We know from Example 6 that dy
dx =

cos θ( ) 1+ 4sin θ( )( )
−sin θ( ) + 2cos 2θ( ) .

d 2 y
dx2 =

d dy
dx

⎛
⎝⎜

⎞
⎠⎟

dt
dx
dt

=
d

cos θ( ) 1+ 4sin θ( )( )
−sin θ( ) + 2cos 2θ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dt
dx
dt

 = 
−sin θ( ) + 2cos 2θ( )( ) −sin θ( )(1+ 4sin θ( ) + cos θ( ) 4cos θ( )( )⎡⎣ ⎤⎦ − −cos θ( ) − 4sin 2θ( )( ) cos θ( ) 1+ 4sin θ( )( )⎡⎣ ⎤⎦

−sin θ( )+2cos 2θ( )( )2

−2sin θ( ) + 4cos 2θ( )  = 

−sin θ( ) + 2cos 2θ( )( ) −sin θ( )(1+ 4sin θ( ) + cos θ( ) 4cos θ( )( )⎡
⎣

⎤
⎦ − −cos θ( ) − 4sin 2θ( )( ) cos θ( ) 1+ 4sin θ( )( )⎡

⎣
⎤
⎦

2 −sin θ( )+2cos 2θ( )( )3

	 2.	 It might be possible to simplify this, but I don’t really care to mess with it. Now, let’s take 
a look at the graphing calculator. I define the original function as r(t) because I am too 
lazy to write r(theta).

	 3.	 I’ll use the derivative command to get the first derivative and then find the second 

derivative using the formula d 2 y
dx2 =

d
cos θ( ) 1+ 4sin θ( )( )
−sin θ( ) + 2cos 2θ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dt
dx
dt

. One of the “joys” of using the graphing 

calculator to get the symbolic answer for the derivative is that you are never quite sure 
which trigonometric identity it will choose to use.

	 4.	 Notice that the denominator for the first derivative is 2cos2(t) – sin(t)(2sin(t) + 1) and the 
denominator we got when doing the problem by hand was –sin(θ) + 2cos(2θ).

	 5.	 Let’s take the calculator’s response, manipulate it, and show that it is the same as ours.

2cos2(t) – sin(t)(2sin(t) + 1) = 2cos2(t) – 2sin2(t) – sin(t) = 2(cos2(t) –sin2(t)) – sin(t)

YOU’VE GOT PROBLEMS

Problem 1: Find the equation of the line tangent to r = 3 – 5cos(θ) at the 
point when θ = 2π

3 .
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	 6.	 One of the forms for the identity cos(2t) is cos2(t) – sin2(t), so 2(cos2(t) – sin2 (t)) – sin(t) = 
2cos(2t) – sin(t), which is what we got. If you would like to monkey with the numerator 
to show that they are the same, please do so.

Figure 11.2 
Define the original function and then compute the first and second derivatives on the TI-Nspire.

Length of an Arc of a Polar Curve
We saw in an earlier chapter that the length of an arc along the graph of a function f(x) is 

L= 1+ dy
dx( )2

dx
a

b

∫ = dx( )2
+ dy( )2

a

b

∫ . When the function was written in parametric form, the 

length of the arc was computed as L = dx
dt( )2

+ dy
dt( )2

dt
a

b

∫ . Now we’ll take a look at the process 

for finding the length of an arc in polar form.

	 1.	 We take the integral L = dx( )2
+ dy( )2

a

b

∫  and multiply and divide the integrand by the 

differential dθ to get L = dx
dθ( )2

+ dy
dθ( )2

a

b

∫ dθ .

x = rcos(θ), dx
dθ = dr

dθ cos θ( )− r sin θ( )
	 2.	 This causes dx

dθ( )2
 to equal dr

dθ cos θ( )− r sin θ( )( )2
 = 

dr
dθ( )2

cos2 θ( )− 2r dr
dθ cos θ( )sin θ( )+ r 2 sin2 θ( ) .

Doner t( ) := 2 + 4 sin t( )
d
dt

r t( ) sin t( )( )

)

d
dt

r t( ) cos t( )( )

d
dt

4 sin t( ) +1( ) cos t( )
2 cos t( )( )2

sin t( ) 2 sin t( ) +1( )
d
dt

r t( ) cos t( )( )

4 sin t( ) +1( ) cos t( )
2 cos t( )( )2

sin t( ) 2 sin t( ) +1( )

8 cos t( )( )2
+ 2 sin t( ) +1( ) 4 sin t( ) +1( )

2 2 cos t(( )( )2
sin t( ) 2 sin t( ) +1( ) 3
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	 3.	 In a similar fashion, dy
dθ( )2

= dr
dθ( )2

sin2 θ( ) + 2r dr
dθ( )sin θ( )cos θ( ) + r2 cos2 θ( ) .

	 4.	 That doesn’t look like a lot of fun but as they say in the infomercials, “But wait, there’s 

more!”

dx
dθ( )2

+ dy
dθ( )2

 = 

dr
dθ( )2

cos2 θ( )− 2r dr
dθ cos θ( )sin θ( )+ r 2 sin2 θ( ) + dr

dθ( )2
sin2 θ( )+ 2r dr

dθ cos θ( )sin θ( )+ r 2 cos2 θ( )

	 5.	 The terms −2r dr
dθ( )sin θ( )cos θ( )  and 2r dr

dθ( )sin θ( )cos θ( )  add to equal zero.

	 6.	 Simplify the rest of the radicand, dr
dθ( )2

cos2 θ( ) + sin2 θ( )( )+ r 2 sin2 θ( )+ cos2 θ( )( )  = 

dr
dθ( )2

+ r 2 .

	 7.	 Therefore, L = dr
dθ( )2

+ r 2
a

b

∫ dθ .

CRITICAL POINT

The length of an arc formed by a polar graph r(θ) on the interval a ≤ θ ≤ b is 
0 ≤θ ≤ π

4 .

Example 8: Find the length of the arc of the rose r = 3cos(2θ) on the interval 0 ≤θ ≤ π
4 .

Solution: dr
dθ = − 6sin 2θ( )  so L = 36sin2 2θ( ) + 9cos2 2θ( )

0

π
4∫ dθ . Use the graphing calculator 

to determine that the length is 3.633.

Example 9: Find the length around the entire graph of the rose r = 3cos(2θ).

Solution: The section of the rose covered in the interval 0 ≤θ ≤ π
4  is the upper portion of the 

first petal.

Figure 11.3 
The upper section of the first petal of the rose r = 3cos(2θ).
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YOU’VE GOT PROBLEMS

Problem 2: Determine the total distance around the graph of the rose  
r = 4sin(3θ). (It will be worth your while to look at a picture of this graph on 
your calculator.)

Therefore, the length of the distance around the entire rose is 

L = 8 36sin2 2θ( ) + 9cos2 2θ( )
0

π
4∫ dθ  = 29.065.

Example 10: Find the length of the arc of the limaçon r = 2 + 4sin(θ) on the interval − π
2 ≤θ ≤ π

2 .

Solution: dr
dθ = 4cos θ( ) , so L = 16cos2 θ( ) + 2 + 4sin θ( )( )2

dθ
−π

2

π
2∫  = 

16cos2 θ( ) + 4 + 16sin θ( ) + 16sin2 θ( ) dθ
−π

2

π
2∫  = 20 + 16sin θ( ) dθ

−π
2

π
2∫ . Again, use the  

calculator to compute this value. L = 20 + 16sin θ( ) dθ
−π

2

π
2∫  = 13.365.

(As you can see from the sketch of the graph, this value represents half the way around the graph. 
The full perimeter is twice this number.)

CRITICAL POINT

There are times when you’ll need to work with values of  θ that are less than 
0 in order to have a continuous interval on which to compute an integral.

Area Under a Curve
Recall that when we were first looking at area under a curve in the rectangular coordinate 
system, we partitioned the region and created rectangles whose area were easily computed. (We 
also looked at trapezoids and arcs of parabolas.) As we increased the number of rectangles in the 
interval, the width of each rectangle got smaller and smaller, leading us to conclude the product 
f(xi)dxi represented the area of one for the ith rectangle.

We’ll use a similar way to compute area in the polar coordinate system. Rather than having 
rectangles, though, we’ll have sectors that will make up the partition. You might recall from your 
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study of trigonometry that the area of a sector of a circle with radius r that contains θ radians is 
1
2 r 2θ . (Solve the proportion A

πr2 = θ
2π  for A.) The argument we would use to go from the area of 

a rectangle to the Fundamental Theorem of Calculus also takes us from the area of a sector to 
the area under a curve in the polar coordinate system.

DEFINITION

The area under the polar graph r(θ) on the interval a ≤ θ ≤ b is 1
2 r 2 dθ

a

b

∫ .

Example 11: Find the area of the arc of the rose r = 3cos(2θ) on the interval 0 ≤θ ≤ π
4 .

Solution: A = 1
2 9cos2 2θ( )

0

π
4∫ dθ  = 9

2 cos2 2θ( )
0

π
4∫ dθ .

Use the trigonometric identity cos(2θ) = 2cos2(θ) – 1 to rewrite cos2 θ( ) = 1
2 cos 2θ( ) + 1

2 .

9
2 cos2 2θ( )

0

π
4∫ dθ  = 9

2
1
2 cos 4θ( ) + 1

20

π
4∫ dθ  = 9

2
1
4 sin(4θ )−θ( )

0

π
4  = 

9
4

1
4 sin π( )+ π

4( ) − 1
4 sin 0( ) + 0( )⎡

⎣
⎤
⎦

 = 9π
16 . (Multiply this number 8 to get the complete area within 

the rose.)

Example 12: Find the area of the arc of the limaçon r = 2 + 4sin(θ) on the interval − π
2 ≤θ ≤ π

2 .

Solution: A = 1
2 2 + 4sin θ( )( )2

dθ
−π

2

π
2∫  = 1

2 4 + 16sin θ( ) + 16sin2 θ( ) dθ
−π

2

π
2∫ .

Use the trigonometric identity cos(2θ) = 1 – 2sin2(θ) to rewrite sin2 θ( ) = 1
2 −

1
2 cos 2θ( ) .

1
2 4 + 16sin θ( ) + 16sin2 θ( ) dθ

−π
2

π
2∫  = 1

2 4 + 16sin θ( ) + 16 1
2 −

1
2 cos 2θ( )( ) dθ

−π
2

π
2∫  =  

1
2 12 + 16sin θ( ) − 8cos 2θ( ) dθ

−π
2

π
2∫  = 1

2 12θ − 16cos θ( ) − 4sin 2θ( )( )
−π

2

π
2

 =  

1
2 12 π

2( ) − 16cos π
2( ) − 4sin π( )( ) − 12 −π

2( ) − 16cos −π
2( ) − 4sin −π( )( )⎡

⎣
⎤
⎦  = 

1
2 6π − 0 − 0( ) − −6π − 0 − 0( )⎡⎣ ⎤⎦  = 6π
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YOU’VE GOT PROBLEMS

Problem 3: Determine the total area within the graph of the rose r = 4sin(3θ).

Example 13: Find the area of the inner loop of the limaçon r = 2 + 4sin(θ).

Solution:

	 1.	 We need to determine a continuous interval that will form the inner loop (or half the 

inner loop—we can always double the answer). Solve 2 + 4sin(θ) = 0 to get sin θ( ) = −1
2  

so that θ = 7π
6 , 11π

6 .

Figure 11.4 
Inner loop of r = 2 + 4sin(θ).

	 2.	 The area is 1
2 2 + 4sin θ( )( )2

dθ
7π

6

11π
6∫ . The antiderivative will be the same as in 

Example 12, so 1
2 2 + 4sin θ( )( )2

dθ
7π

6

11π
6∫  = 1

2 12θ − 16cos θ( ) − 4sin 2θ( )( )
7π

6

11π
6

 = 

1
2 12 11π

6( ) − 16cos 11π
6( ) − 4sin 11π

3( )( ) − 12 7π
6( ) − 16cos 7π

6( ) − 4sin 7π
3( )( )⎡

⎣
⎤
⎦ .

	 3.	 This equals 1
2 22π − 8 3 + 2 3( ) − 14π + 8 3 − 2 3( )⎡
⎣⎢

⎤
⎦⎥  = 4π − 6 3 .
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Example 14: The graphs of the polar curves r = 4 and r = 5 + 2cos(θ) intersect when θ = 2π
3 , 4π

3 . 
Find the area of the region that is contained within both of these graphs.

Figure 11.5 
The area contained within both r = 4 and r = 5 + 2cos(θ).

Solution: A complete semicircle makes up part of this region and the area of this semicircle is 8π.

Figure 11.6 
A semicircle.
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The remaining portion of the region is contained within r = 5 + 2cos(θ) and has area 

1
2 5 + 2cos θ( )( )2π

3

4π
3∫

2

dθ . The total area of the shaded region is 8π + 1
2 5 + 2cos θ( )( )2π

3

4π
3∫

2

dθ  = 

36.953.

The Least You Need to Know
•	To find the first derivative of a polar function, you use the equation dy

dx =
d r sin(θ )( )

dθ
d r cos(θ )( )

dθ

.

•	You can write the equation of a line tangent to a polar curve by converting the 
polar coordinates to rectangular coordinates and also using the slope of the 
tangent line.

•	Find the length of an arc of a polar curve by using the equation 

L = dr
dθ( )2

+ r 2
a

b

∫ dθ .

•	To find the area bounded by a polar curve, you use the equation 1
2 r 2 dθ

a

b

∫ .





CHAPTER

12
Introduction to Vectors

In This Chapter
•	Understanding the 

difference between scalars 
and vectors

•	Computing displacement 
for vector functions

•	Calculating velocity for 
vector functions

•	Determining acceleration 
for vector functions

In this chapter, we take the time to study vectors. We’ll begin 
with some basic material on vector arithmetic and then work 
into the calculus of vector functions to examine motion 
problems.

There is a great deal more to the calculus of vector functions, 
but that is left to a future course.
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Scalars and Vectors
Most people use the words speed and velocity interchangeably, believing that they are describing 
how fast an object is moving. To mathematicians and physicists, the two terms are related but  
not the same. Speed does describe the rate at which something is moving, while velocity also 
gives an indication as to the direction in which the object is moving. Speed is a scalar value; it has 
magnitude but no direction. Velocity is a vector; it has both magnitude and direction.

DEFINITION

A vector is a quantity that has both magnitude and direction while scalar 
quantities only have magnitude.

Aside from speed versus velocity, we will also discuss distance versus displacement in this  
chapter. If someone rides 4 miles north and then 3 miles east, how far have they traveled? The 
answer is 7 miles. This is distance. How far from their starting point are they? The answer is  
5 miles (use the Pythagorean Theorem). This is displacement.

Because vectors are directed quantities, they are usually presented graphically with an arrow 
at one end to indicate direction. If more than one vector is being shown at the same time, the 
lengths of the segments representing the vectors are drawn proportionally.

As part of a demonstration of vectors to my class, I would take one of the student desks and move 
it to the front of the room. I would ask a student to come to the front of the room with me and 
have the student apply a force by pushing the desk from the window side of the room towards 
the door (see, direction and magnitude). We’d then go to the other side of the room and I’d ask 
the student to push the desk back toward the position where the desk was before it was pushed. 
However, just as the student pushed the desk toward the window, I would push the desk at the 
corner with slightly less force in the direction of the corner of the front wall and the wall con-
taining the windows.

Example 1: Suppose the student pushed the desk with a force of 50 pounds toward the window 
while I pushed the desk with a force of 40 pounds at angle of 60° to the student’s force. What is 
the net force on the desk?
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Solution: A diagram of the action is shown in Figure 12.1.

Figure 12.1 
A diagram of the two forces acting on the desk (which is represented by a point).

The two forces that are drawn are proportional size to each other and, as you can see, the arrows 
show the direction in which the force is applied. Notice how each of the forces is labeled. The use 
of the arrow above the variable name was one of the original methods used to indicate vectors 
(and is easily used when writing notes on a blackboard).

In print, it is more common to see vectors identified with a bold font or with angled braces such 
as <a> to represent vectors. The graphical approach for finding the resultant force is called the 
head-to-tail, or parallelogram, method. Technically, one should draw the first vector, then draw 
the second vector at the “head” (where the arrow is). The point of the second vector is the “tail.” 
You then connect the tail of the first vector to the head of the second vector (making sure to keep 
scale and direction accurate). This connection shows the resultant force—with the head of the 
resultant force being the same point as the head of the second vector. In reality, you are drawing 
a parallelogram and the resultant force is the diagonal of the parallelogram. This is the addition 
of vectors.

Figure 12.2 
The parallelogram method for adding vectors.
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You need to go back to your study of trigonometry to determine the length and magnitude of 
the resultant. Because the angle between the two forces is 60°, the angle opposite the resultant is 
120°. Use r to represent the resultant, r2 = 402 + 502 – 2(40)(50)cos(120), so that r2 = 6100 and r = 
78.102 pounds of force. Use the Law of Sines to determine the angle between the student force 
and the resultant force is 26.33°.

There is an algebraic way to do this problem as well. The vector student has a horizontal 
component that is 50 units long and a vertical component of 0. To get the horizontal and vertical 
components for teacher we need to use some right triangle trigonometry.

Figure 12.3 
Breaking the vector teacher into its horizontal and vertical components.

The horizontal component is 40cos(60°) while the vertical component is 40sin(60°). This makes 

student = (50,0) and teacher = 20,20 3( ) . The sum of these two forces is 50 + 20, 0 + 20 3( )  = 

70, 20 3( ) . Pretty easy, wouldn’t you say? How long is the resultant? Use the distance formula. 

(Absolute value is the notation used to determine the length of the resultant.) |resultant| = 

702 + 34.641( )2
=  78.102. (You’ll need to be careful when working with approximated values 

of the components. Let your calculator do all the work.) The angle of the resultant from the 

student is tan−1 34.641
70( ) = 26.33! .
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Example 2: Given the two vectors a = (4,6) and b = (–2,5). Find the length of the resultant for 
the sum of the two vectors.

Solution: a + b = (2,11). Therefore, |a + b| = 22 + 112 = 125 = 11.18 .

Subtraction of vectors is done exactly as you would think it would be. If a = (a1,a2) and b = (b1,b2), 
then a – b = (a1 – b1, a2 – b2).

There are two forms of multiplication with vectors:

•	 Cross product gives an answer that is a vector.

•	 Dot product (or inner product) gives an answer that is a scalar.

The cross product gives a result that is always perpendicular to the vectors being multiplied. 
That is, if two vectors a and b are in the coordinate plane, then the cross product a × b will be a 
vector that is perpendicular to the coordinate plane.

Figure 12.4 
The cross product is always perpendicular to the two vectors being multiplied. 

The study of the cross product will be covered further in a vector calculus course.

DEFINITION

If a = (a1,a2) and b = (b1,b2), then a • b = a1b1 + a2b2 v.

Example 3: Given the two vectors a = (4,6) and b = (–2,5). Find the value of a • b .

Solution: a • b = (4)(−2) + (6)(5) = 22 .

An important formula using the dot product is used to determine the measure of the angle 
between the two vectors. The formula is a • b = |a | |b | cos(θ ) .
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YOU’VE GOT PROBLEMS

Problem 1: Given two vectors a = (5,9) and b = (–3,10), find the value of a + b 
and the measure of the angle between this sum and a.

Example 4: Given the two vectors a = (4,6) and b = (–2,5), find the measure of the angle between 
the two vectors.

Solution: |a | = 42 + 62 = 52  and |b | = (−2)2 + 52 = 29 . Therefore, cos(θ ) = 22
52( ) 29( ) , so 

θ = cos−1 22
52( ) 29( )

⎛
⎝⎜

⎞
⎠⎟

= 55.49! .

Displacement, Velocity, and Acceleration
Because we are able to write vectors in terms of its horizontal and vertical components, we will 
see a fair amount of the work we did with parametric equations used in the discussion of vector 
functions. As was the case before, if a function defines the location of an object, then its deriva-
tive gives the velocity of the object; the second derivative gives the acceleration of the object.

If the function defines the velocity of an object, then the antiderivative gives the position of the 
object; the derivative gives the acceleration of the object.

Example 5: A particle moves in the XY plane so that at any time t ≥ 0 its position (x,y) is given by 
x(t) = et – e–t and y(t) = et + e–t. Find the velocity vector for any t ≥ 0.

Solution: The position function is P = (x(t),y(t)), then the velocity function is (x’(t),y’(t)) = (et + 
e–t, et – e–t).

Example 6: A particle is moving in the coordinate plane. Its position at any time t is given by the 

vector (x(t),y(t)) with dx
dt = 8t − 6t2  and dy

dt = ln 1+ t2( ) . At time t = 0, the particle is a t position 

(4,–3).

	 1.	 Determine the rule for the position vector.

	 2.	 Determine the velocity and speed of the particle at t = 1.

	 3.	 Determine the acceleration of the particle at t = 1.
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YOU’VE GOT PROBLEMS

Problem 2: An object moves in the plane with velocity vector (3 + cos(t),4 

– 2sin(t)). Determine the velocity, speed, and acceleration of the particle at 

t = 5π
6 .

Solution:

	 1.	 Given dx
dt = 8t − 6t2 , x(t) = 8t − 6t2 dt∫  = 4t2 –2t3 + C. With x(0) = 4, we find that 

C = 4 so x(t) = 4t2 –2t3 + 4. dy
dt = ln 1+ t2( ) , so y(t) = ln 1+ t2( )∫ dt . We’ll need to 

use integration by parts to evaluate ln 1+ t2( )∫ dt . Let u = ln 1+ t2( )  and dv = dt, 

which gives du = 2t
1+ t2  and v = t. Therefore, ln 1+ t2( )∫ dt  = t ln 1+ t2( ) − 2t2

1+ t2 dt∫  = 

t ln 1+ t2( ) − 2− 2
1+ t2 dt∫  (divide 2t2 by 1 + t2). Consequently, y(t) = ln 1+ t2( )∫ dt  = 

t ln 1+ t2( ) − 2t + 2tan−1(t) + C . With y(0) = –3, –3 = (0)ln(1 + 0) –2(0) + 2tan–1(0) + C, 

so C = –3 and y(t) = tln(1 + t2) – 2t + 2tan–1(t) – 3. The position vector for the particle is 

(4t2 – 2t3 + 4, tln(1 + t2) – 2t + 2tan–1(t) – 3.

	 2.	 The velocity vector is (8t – 6t2,ln(1 + t2)), so the velocity at t = 1 is (2,ln(2)). Speed is the 

absolute value of velocity, so the speed of the particle at t = 1 is 4 + ln (2)( )2
, which is 

approximately 2.117.

	 3.	 The acceleration of the particle is defined by d 2x
dt2 , d 2 y

dt2( )  = 8 − 12t, 2t
1+ t2( ) . At t = 1, the 

acceleration is (–4,1).

Example 7: A particle is moving in the coordinate plane. Its position at any time t is given by the 

vector (x(t),y(t)) with dx
dt = 8t − 6t2  and dy

dt = ln 1+ t2( ) . When is the particle at rest?

Solution: The particle will be at rest when both the horizontal and vertical components of the 

velocity vector are 0. 8t – 6t2 = 0 when t = 0, 4
3  and ln(1 + t2) = 0 when 1 + t2 = e0 or when t = 0. 

Therefore, the particle is at rest when t = 0.
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Example 8: The position of an object as it moves within the coordinate plane is given as (x(t),y(t)) 

with dx
dt = 8t − 3  and dy

dt = 4 − 3t2 . At t = 1, the object is at position (4,1).

	 1.	 Determine the speed and acceleration of the object at t = 1.

	 2.	 Determine the displacement and distance traveled on the interval 1 ≤ t ≤ 2.

Solution:

	 1.	 The speed of the object is 25 + 1 = 26 . The acceleration vector is (8,–6t). At t = 1, 
this equals (8,–6).

	 2.	 The change in the horizontal position of the particle on the interval 1 ≤ t ≤ 2 is 

8t − 3 dt
1

2

∫  = 9, while the change in the vertical position of the particle on the interval 

1 ≤ t ≤ 2 is 4 − 3t2 dt
1

2

∫  = –3. The displacement of the object is 9 units to the right and 

3 units below the original position. The distance traveled is the length of the arc of the 

path followed. The distance is 8t − 3( )2
+ 4 − 3t2( )2

dt
1

2

∫  = 9.664 units.

YOU’VE GOT PROBLEMS

Problem 3: The position of a particle moving in the coordinate plane for any 
time on the interval 0 ≤ t ≤ 2π is given by x(t) = 2sin(t) and y = cos(2t).
	 (a)	 Find the velocity and speed of the particle at t = 2π

3 .

	 (b)	 Determine the time(s) when the particle is at rest.

	 (c)	� Determine the displacement of the particle on the interval 0 ≤ t ≤ 2π. 
What is the distance traveled by the particle over the same interval?
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The Least You Need to Know
•	To add and subtract two vectors when the vectors are written in component  

form, you add/subtract the vectors’ corresponding components: (a1, b1) + (a2, b2) = 
(a1 + b1, a2 + b2).

•	Compute the dot product of two vectors by a • b = a1b1 + a2b2 .

•	Using the dot product, you can find the angle between two vectors.

•	To determine the velocity and acceleration vectors from a position vector, you 
take the first and second derivative of the position vector.

•	You can compute the velocity at a defined point of time by evaluating the first 
derivative of the vector function at that moment in time and the speed of an 
object by determining the magnitude of the velocity vector.

•	To determine the displacement traveled over an interval, subtract the starting 
vector components from the terminal vector components. 

•	To determine the distance traveled over an interval, apply the distance formula 
for the starting and terminal vector values for each interval when the direction 
motion is the same.





CHAPTER

13
Differential Equations

In This Chapter
•	Solving separable 

differential equations

•	Exploring exponential 
and logistical growth and 
decay

•	Approximating the value 
of a function using linear 
approximations and 
Euler’s method

•	Using slope fields to sketch 
functions

•	Solving first order linear 
differential equations

Many applications in mathematics come from the analysis of 
the rate at which quantities change. Translated, this means 
that we have data about the derivative (the rate of change). 
This is useful information, but it also is often the case that we 
would like to be able to determine the value of the function 
whose derivative is known. This is the field of differential 
equations. We are going to examine a few types of differential 
equations. If you continue your study of mathematics, you 
will most likely take a course devoted to just this topic.
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Separable Differential Equations
The term “separable differential equations” simply means that we are able to manipulate the dif-
ferential equation so that all terms of one variable are on one side of the equation while all terms 
of the second variable (and maybe some constants) are on the other side. We can then take the 
antiderivative of both sides of the equation to determine the function.

Example 1: Solve dy
dx = xy2 .

Solution:

	 1.	 Gather the terms in y on the left and those in x on the right: 1
y2 dy = x dx .

	 2.	 Integrate both sides of the equation. 1
y2 dy∫ = x dx∫  gives −1

y = 1
2 x2 + C . You can solve 

for y if you so choose. I will not.

Because this solution contains the constant of integration, C, the solution is called a general solu-
tion. If an initial condition (if a functional value) is known, it is possible to get a particular solution.

Example 2: Given dy
dx = ycos(x)  and that y π

6( ) = 2 , express y as a function of x.

Solution:

	 1.	 Gather the terms in y on the left and those in x on the right: 1
y dy = cos(x) dx  and 

integrate.

	 2.	 1
y dy∫ = cos(x) dx∫  gives ln | y | = sin(x) + C .

	 3.	 Solve this equation for y, y = esin(x) + C = ecesin(x).

	 4.	 It is traditional to rewrite ec as a single constant because a constant raised to a constant 
power is another constant.

	 5.	 As a rule, I tend to choose A as this constant, y = Aesin(x).

	 6.	 Using y π
6( ) = 2 , y = Aesin(x) becomes 2 = Aesin π

6( )  = Ae½ so that A = 2

e
1
2

.

	 7.	 The particular solution to this differential equation is y = 2

e
1
2
esin(x)  = 2esin(x) − 1

2 .

CRITICAL POINT

General solutions to differential equations are left in terms of a constant of 
integration. Particular solutions use an initial condition to determine a value 
for the constant of integration.
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The differential equation can be given as a verbal description that needs to be translated into an 
equation.

Example 3: The rate of change of an object traveling in a linear path is directly proportional to 
the position of the object. At time t = 0, the object is at x = 1. At time t = 2, the object is at x = 5. 
Find the position of the object at t = 5.

Solution:

	 1.	 The variables are position, x, and time, t.

	 2.	 Therefore, the rate of change is given by dx
dt .

	 3.	 “The position is directly proportional to” tells us that we need a constant of proportion.

	 4.	 We’ll use k as the constant (because C is the constant of integration and we don’t want to 
get confused).

	 5.	 We finally have an equation, dx
dt = kx .

	 6.	 Gather terms on the appropriate side of the equation. 1
x dx = k dtw  and integrate. 

1
x dx∫ = k dt∫  becomes ln | x | = kt + C .

	 7.	 Rewrite the equation with x as a function of t, x = ekt + C = Aekt, with A = ec.

	 8.	 Use that x = 1 when t = 0 to get 1 = Aek(0) to determine that A = 1.

	 9.	 To find the value of k, use that x = 5 when t = 2. 5 = ek(2) leads to ln(5) = 2k so that 

k = 1
2 ln (5) = ln 5( ) .

	 10.	 Therefore, x = e
ln 5( )t  and when t = 5, x = e

5ln 5( )  (or 55.902). How’s that for moving 
quickly!

YOU’VE GOT PROBLEMS

Problem 1: Find the particular solution to dy
dx = − xy

ln ( y) (y > 0) and the point (0,e4) 
is a point on the graph of the function.
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Hopefully, by this point in your studies of mathematics, you’ve either been told or have observed 
that the rate of change of the function f(x) = ex at any point of the function is equal to the value 
of the function at that point. That is, f '(x) = f(x) for all x. Exponential growth and decay problems 
are a special application of differential equations. They will always fit the description, “the rate 
of change of the function is proportional to the value of the function.” This is exactly what we 
saw in Example 3.

Example 4: The rate of change of North Americans who drink carb-free energy drinks is pro-
portional to the number of people who drink them. In the year 2000, consumers drank 180,000 
gallons of carb-free energy drinks, and in 2010, that number rose to 1.1 million gallons. If growth 
continues in the same manner, predict the volume of sales for 2020.

Solution:

	 1.	 Use the year 2000 as time t = 0. The differential equation dV
dt = kV  leads to the equation 

V = Aekt.

	 2.	 The initial data gives 180000 = Aek(0) so that A = 180000.

	 3.	 The data from 2010 gives the equation 1100000 = 180000e10k.

	 4.	 Solve for k: 110
18 = e10k  so that k = 1

10 ln 110
18( )  (or 0.181011). (There are more computations 

to be done, so it is best to store the exact answers into a variable on your calculator.)

	 5.	 The predicted value for 2020 is V = 180000e
1

10 ln 110
18( )( ) 20( ) , which is approximately 6.7 mil-

lion gallons.

Exponential decay problems will look exactly the same with the exception that the values will 
decrease as time goes forward and the constant of proportionality will be negative.

Newton’s Law of Heating and Cooling says that the rate of change of the temperature of an 
object is proportional to the difference of the environment and the temperature of the object. For 
most of us, the “environment” is usually the oven or the freezer.

Example 5: When cooking a turkey for Thanksgiving, Diane will take the turkey out of the 
refrigerator, quickly dress and prep it, and put it into an oven that has been preheated to 325°F. 
She will cook the turkey until it reaches a temperature of 165°F. She uses a meat thermometer to 
determine the temperature of the turkey one hour after she put it in the oven and finds that the 
temperature is 80°F. How much time is needed for the turkey to cook?

Solution: The most important problem here is what do we name the variable. Do we use T for 
turkey or will that confuse us with t for time? We can use U, the second letter in turkey, or y, the 
last letter in turkey, but I think I’ll use B because everyone always asks when the bird will be 
done. Okay, now that we have that issue settled, we can get down to business.
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	 1.	 The temperature of the environment is 325°F and the initial temperature of the bird is 
about 45°F. (The turkey was in the refrigerator at a temperature of 40°F and has been 
out of the refrigerator for less than 30 minutes, so it didn’t warm up too much. An esti-
mate of 45°F is probably a bit high, but it will work for now.)

	 2.	 The differential equation is dB
dt = k 325− B( ) . This becomes 1

325− B dB = k dt .

	 3.	 Integrate and solve: 1
325− B dB∫ = k dt∫  becomes –ln(325 – B) = kt + C. Multiply through 

by –1 to get n(325 – B) = kt + C, letting both constants k and C absorb the negative sign. 
We then get B = 325 – Aekt, with A = ec. The initial temperature of the bird is 45°, so 45 
= 325 – Aek(0) and A = 280.

	 4.	 Use the temperature taken at the 1-hour mark to determine the value of k. 80 = 325 – 

280k(1) gives k = ln 7
8( ) .

	 5.	 Finally, find the amount of time it will take for the turkey to reach the desired tempera-

ture. 165 = 325− 280eln 7
8( )t  gives t = 4.2. The bird will be ready approximately 4 hours 

and 10 minutes after it was placed in the oven.

Another type of special application is the logistical equation. Although they initially look like 
exponential functions, the logistical equation eventually levels off.

Figure 13.1 
Example of exponential growth.
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Figure 13.2 
Example of logistical growth.

In logistical growth problems, there is always a capacity that caps the amount of change. For 
example, if one is measuring the rate with which a disease is spreading through a population, 
the size of the population is the largest number of people who can have the disease. In popula-
tion growth, bacteria are limited by the size of the petri dish in which they are being cultivated. 
Human population is limited by the ability to feed itself.

Example 6: A 2,500-gallon aquarium can support no more than 125 guppies. Ten guppies are 
introduced into the aquarium. Assume that the rate of guppy population growth is directly 
proportional to the population y and the limiting factor 125 – y at any time t (weeks) with pro-
portionality factor k = 0.0025.

	 (a)	 Determine the guppy population y(t) as an explicit function of time t.

	 (b)	 What values of y and t make sense in the population problem?

	 (c)	 When should the guppy population reach the aquarium’s capacity?

Solution: 

(a)

	 1.	 The differential equation for this problem is dy
dt = 0.0025y 125− y( ) , so that the integra-

tion problem becomes 1
y 125− y( ) dy = 0.0025∫∫ dt .
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	 2.	 The integral on the right-hand side of the equation is simple enough, 

0.0025dt = 0.0025t + C∫ . However, the integral on the left-hand side is going to require 

that we apply the partial fraction technique.

1
y 125− y( ) = A

y + B
125− y  and 1 = A(125 – y) + By

	 3.	 Set y = 0 to get A = 1
125 ; set y = 125 to get B = 1

125 . This changes 1
y 125− y( ) dy∫  to 

1
125

1
y + 1

125− y dy∫  = 1
125 ln y − ln 125− y( ) = 1

125 ln y
125− y

.

	 4.	 Now we know 1
y 125− y( ) dy = 0.0025∫∫ dt  leads to 1

125 ln y
125− y  = 0.0025t + C. Multiply 

by 125, ln y
125− y

 = 0.3125t + C. (125 times C is still a constant and I am just going to let 

C absorb the 125.)

	 5.	 Rewrite this as an exponential equation, y
125− y = Ae0.3125t  (once again, A = ec).

	 6.	 Multiply through by the common denominator.

y = (125 – y)Ae0.3125t = 125Ae0.3125t –yAe0.3125t

	 7.	 Gather the terms in y:

y + yAe0.3125t = 125Ae0.3125t

	 8.	 Factor and solve for y:

y = 125Ae0.3125t

1+ Ae0.3125t

	 9.	 We can now use the fact that the initial population was 10 guppies. 10 = 125Ae0.3125(0 )

1+ Ae0.3125(0 )  so 

that 10 = 125A
1+ A  and 10 + 10A = 125A, or that A = 10

115 = 2
23 .

	 10.	 Finally we have y = 125 2
23( )e0.3125t

1+ 2
23( )e0.3125t = 250e0.3125t

23 + 2e0.3125t .

(b)

	 1.	 Time begins when the guppies are put into the tank, so the values of t that make sense 
are t ≥ 0.

	 2.	 The number of guppies starts with 10.

	 3.	 If they survive, the total will never exceed 125, which is the capacity of the tank.

	 4.	 Time is a continuous variable while the number of guppies is discrete.
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YOU’VE GOT PROBLEMS

Problem 2: When a water-cooled nuclear power plant is operating, oxygen 
in the water is transmuted to an isotope of nitrogen. After the reactor is 
shut down, the radiation from this nitrogen decreases in such a way that 
the rate of change of the radiation level is proportional to the radiation 
level.

	 (a)	� Write a differential equation that expresses the rate of change of the 
radiation level in terms of the radiation level. Solve the equation and 
express the radiation level as a function of time.

	 (b)	� Suppose that when the reactor is first shut down, the radiation level 
is 4 × 1018 units. After 90 seconds, the level has dropped to 5 × 1014 
units. Write the particular equation.

	 (c)	� It is safe to enter the reactor compartment when the radiation 
level has dropped to 8 × 10–4 units. When will it be safe to enter the 
reactor compartment?

(c)

Never. If we solve the equation 125 = 250e0.3125t

23 + 2e0.3125t  we get 125(23 + 2e0.3125t) = 250e0.3125t, so that 

125(23) = 0. The limiting value for this function is 125.

BE AWARE

With exponential growth, the rate of change is proportional to the amount 
present. With logistical growth, the rate of change is proportional to the 
product of the amounts present and not present.

Linear Approximations
In the days before calculators, linear approximation was a worthwhile (if not important) topic for 
its practical applications. The basic idea of linear approximations is that if you “zoom in” on any 
graph with sufficient magnitude, the graph will look linear. Here is a picture of the graph of y = 
sin(x) on the interval [–0.01,0.01].
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Figure 13.3 
The graph of y = sin(x) on the interval [–0.01,0.01].

	 1.	 Why was the topic worthwhile? Suppose we need an estimate for 673 .

	 2.	 We know that 643 = 4 . We’d use the line tangent to the graph of y = x3  to get the 
estimate.

	 3.	 The slope of the tangent line to y = x3  at x = 64 is 1
3 64( )−2

3 = 1
48 .

	 4.	 The equation of the tangent line at the point when x = 64 is y − 4 = 1
48 x − 64( ) .

	 5.	 We want 673
, so we substitute x = 67 to get y − 4 = 1

48 67 − 64( ) , so that 
y = 4 1

16 = 4.0625 .

Compare that to the value on your calculator, 673 = 4.06155 . (The result found by linear 
approximation is less than 0.03 percent in error.)

Of course, we would often get fractional results that were more challenging to convert to a deci-

mal than 1
16 , but that was not as significant as it might seem. If calculators can do the work more 

quickly and efficiently than linear approximation, why raise the issue? There are two reasons:

•	 Linear approximation is the preliminary step to doing more involved approximations. 
Later in this book, we will look at power series as a means of approximating more 
complicated functions.



Part 4: The Infinite Series and More214

•	 There is no cubed-root function on your calculator. That button activates a power series 
to compute the value in question. The same can be said for all the trigonometric, loga-
rithmic, and exponential functions on your calculator. As my Linear Algebra professor at 
Manhattan College, Sylvester Tuohy, used to say, “This is good stuff !”

Example 7: Estimate sin−1 3
5( )  to 4 decimal places.

Solution:

	 1.	 We know sin−1 1
2( ) = π

6 , so we can work from this point as it is close to our desired point.

	 2.	 The derivative of y = sin–1(x) is 1
1− x2  and the value of this derivative at x = 1

2  is 

1

1− 1
2( )2

= 1
1− 1

4
 = 1

3
4

= 2
3

= 2 3
3 .

	 3.	 The equation of the tangent line at 1
2 , π6( )  is y − π

6 = 2 3
3 x − 1

2( ) .

	 4.	 At x = 3
5 , y − π

6 = 2 3
3

3
5 −

1
2( ) . (Okay, at this stage, you have to be asking yourself, Why are 

you doing this to me? Because it’s fun. That sounds a bit snobbish, but this material is still in 
some books. So let’s say we just slog through this problem and I promise not to raise the 
issue again.)

	 5.	 We know π = 3.14156 (approximately), so π
6 = 0.5236  and 3 = 1.732 . (Did you know 

that George Washington was born in 1732? I saw this when I was a kid and have never 
forgotten it and, you know, whenever I mention it I turn around to see if someone is 
coming to drag me off the street.) Where was I? Oh, yes.

	 6.	 2 3
3 = 2(0.5774) = 1.1548 , so y − π

6 = 2 3
3

3
5 −

1
2( )  becomes y – 0.5326 = 1.1548(.1) and  

y = 0.64808. (Not too bad; off by less than 1 percent.)

Euler’s Method
One of the problems raised by the process for linear approximations is that you are not always 
guaranteed that the value whose functional value you seek is near a value whose functional value 
you know. Euler’s Method attempts to get a more accurate approximation by moving from a 
known point to the unknown point in small steps and, in essence, perform linear approximations 
on a repeated basis. It is anticipated that you will use technology in this process.
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CRITICAL POINT

Leonhard Euler, who was voted the third most influential mathematician 
from the second millennium as part of the craze that was Y2K, was a prolific 
writer of mathematics. His work involved most of the fields in mathematics 
and the number e is named after him.

Example 8: Let f(x) be a function with the properties f '(x) = 4f(x) and f(5) = 3. Approximate f(5.4) 
using increments of 0.1.

Solution: I will tell you that the linear approximation method gives the result 7.8. (Check it out 
if you want.) I will write out the solution in all its glorious details at first and then show you the 
tabular method that you will use for all the other problems:

	 1.	 An increment of 0.1 takes us from 5 to 5.1. The first step takes us from 3 to  
y = 3 + 12(5.1 – 5) = 4.2.

	 2.	 We’re now at the point (5.1,4.2). f '(5.1) = 4(4.2) = 16.8. Our next estimate is  
y = 4.2 + 16.8(5.2 – 5.1) = 5.88.

	 3.	 We are now at the point (5.2, 5.88). f '(5.2) = 4(5.88) = 23.52. Our next estimate is  
y = 5.88 + 23.52(5.3 – 5.2) = 8.232.

	 4.	 From (5.3, 8.232) we have f '(5.3) = 4(8.232) = 32.928. Our estimate for f(5.4) is  
y = 8.232 + 32.928(5.4 – 5.3) = 11.5248.

Working from a table, we need:

•	 The starting value of x and y

•	 The amount of the increment, dx

•	 To compute dy
dx

•	 To compute dy as the product of dx and dy
dx
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Here is the table for the same problem.

x y dx
dy
dx dy

5 3 0.1 12 1.2

5.1 4.2 0.1 16.8 1.68

5.2 5.88 0.1 23.52 2.352

5.3 8.232 0.1 32.928 3.2928

5.4 11.5248

Example 9: Given the differential equation dy
dx = − x2 y

2  with the initial condition that f(2) = 5, use 

Euler’s Method to approximate f(2.1) using increments of 0.05.

Solution: Let’s go directly to the table method for this problem.

x y dx
dy
dx dy

2 5 0.05 –10 –0.5

2.05 4.5 0.05 –9.45563 –0.472781

2.1 4.02722

YOU’VE GOT PROBLEMS

Problem 3: Given the differential equation dy
dx = 2y(10 − y)  with the 

condition f(3) = 2 is a point on the original graph. Use Euler’s Method to 

approximate f(3.2) using increments of 0.1.
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Slope Fields
Slope fields are a visual representation of a differential equation. It is traditional to use lattice 
points (points whose coordinates are integers) to compute the slope of the tangent line to the 
function using the differential equation. Draw a small line segment with that slope at that point. 
Once an initial condition for the function is known, it is possible to sketch a graph of the function 
by following the tangents.

DEFINITION

A slope field shows the slopes of tangent lines for a family of solutions to a 
given differential equation.

The slope field for the differential equation dy
dx = 1

2 x2  is shown.

Figure 13.4 
Slope field for dy

dx = 1
2 x2 .
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We know that the solution to this differential equation is y = 1
6 x3 + C . If we set the initial condi-

tion to be at the point (0,0), the graph would be:

Figure 13.5 

The graph of y = 1
6 x3  on the slope field for dy

dx .

If the initial condition was the point (1,2), the graph would be:

Figure 13.6 

The graph of y = 1
6 x3 + 11

6  on the slope field for dy
dx .
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Example 10: Given the slope field for the differential equation dy
dx = − y

x , sketch a solution to this 
differential equation using the initial value (1,1).

Figure 13.7 
Slope field for dy

dx = − y
x .

Solution: Work from the point (1,1) to sketch a branch of the function. Use symmetry to sketch 
the other branch of the hyperbola.

Figure 13.8 
Graph of y = 1

x  on the slope field for dy
dx = − y

x .
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Example 11: Draw the slope field for the differential equation dy
dx = xy  on the graph with the 

lattice points.

Figure 13.9 
Lattice points on a coordinate grid.

Solution: The grid contains the points –3 ≤ x ≤ 3 and –3 ≤ y ≤ 3. Let’s make a table to compute 
the slope for each of these lattice points.

–3 –2 –1 0 1 2 3

–3 9 6 3 0 –3 –6 –9

–2 6 4 2 0 –2 –4 –6

–1 3 2 1 0 –1 –2 –3

0 0 0 0 0 0 0 0

1 –3 –2 –1 0 1 2 3

2 –6 –4 –2 0 2 4 6

3 –9 –6 –3 0 3 6 9
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YOU’VE GOT PROBLEMS

Problem 4: The slope field for the differential equation dy
dx = 2y  is shown. 

Sketch the graph of the particular solution containing the point (1,1).
differential equation

Draw a segment with the given slope at the appropriate lattice points.

Figure 13.10 

Slope field for dy
dx = xy .

Figure 13.11 

Slope field for dy
dx = 2y .
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First Order Linear Differential Equations
First order linear differential equations are always of the form dy

dt + P(t)y = Q(t) . (Differential 

equations can take other forms, but they would not be classified as first order linear differential 
equations. Remember, there is an entire course dedicated to differential equations.) The process 
for solving these equations seems a bit strange (well, that’s because it is strange). The process uses 

an expression that is called an integration factor, u(x) = e P(t )dt∫ . Multiply through both sides of the 
equation by this integration factor to get:

e P(t )dt∫ dy
dt + P(t)y( ) = e P(t )dt∫ Q(t)

This becomes:

e P(t )dt∫ dy
dt + P(t)e P(t )dt∫ y = e P(t )dt∫ Q(t)

The genius of this method is that the left-hand side of this equation is the 

derivative of the product e P(t )dt∫ y . Be sure you understand what this means, 

e P(t )dt∫ dy
dt + P(t)e P(t )dt∫ y⎛

⎝
⎞
⎠∫ dt = e P(t )dt∫ y  (with the constant of integration to be 

named later). The notation e P(t )dt∫ y  might look too intimidating. Rather than write 

e P(t )dt∫ dy
dt + P(t)e P(t )dt∫ y⎛

⎝
⎞
⎠∫ dt = e P(t )dt∫ y , I should write u(t) dy

dt + P(t)u(t)y( )∫ dt = u(t)y  

because that looks better. What do you think about that?

Back to work. Integrating both sides of the equation u(t) dy
dt + P(t)u(t)y = u(t) Q(t)  gives 

u(t)y = u(t) Q(t)∫ dt + C  so that y =
u(t ) Q(t )∫ dt + C

u(t )
.

Let’s see if this actually works. (Well, of course it works, but we need to get the hang of it.)

Example 12: Solve dy
dx + 4xy = x .

Solution:

	 1.	 The problem fits the form of a first order linear differential equation. The integration  

factor is e 4x dx∫ = e2x2
.

	 2.	 Multiplying through both sides of the equation gives e2x2 dy
dx + 4xe2x2

y = xe2x2

.
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	 3.	 Integrate both sides of the equation:

e2x2 dy
dx + 4xe2x2

y( )∫ dx = xe2x2

∫ dx

	 4.	 Simplify both sides of the equation:

e2x2

y = xe2x2

∫ dx = 1
4 e2x2

+ C
	 5.	 Solve for y:

y =
1
4e2 x2

+ C

e2 x2 = 1
4 + Ce−2x2

That wasn’t too bad was it? Ready for another one?

Example 13: Solve x dy
dx + y = x3 + 4  for x > 0.

Solution:

	 1.	 Don’t get fooled—this doesn’t quite fit the pattern for the first order linear differential 
equation.

	 2.	 We must first divide by the expression in front of the derivative.

	 3.	 x dy
dx + y = x3 + 4  must be rewritten as dy

dx + y
x = x2 + 4

x .

	 4.	 The integration factor is u(x) = e
1
x dx∫ = eln|x| = x .

	 5.	 Multiply by the integration factor:

x dy
dx + y = x3 + 4

		  (Look at that—we’re back where we started with this one.)

	 6.	 Integrate both sides of the equation:

x dy
dx + y( )∫ dx = x3 + 4 dx∫

	 7.	 Simplify both sides of the equation:

xy = x3 + 4 dx∫ = 1
4 x4 + 4x + C

	 8.	 Solve for y:

y = 1
4 x3 + 4 + C

x
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Example 14: Solve cos2(x) dy
dx + sin(2x)y = 2cos3(x) sin(x) − 1 with 0 < x < π

2 .

Solution:

	 1.	 We’re old pros at this now. Get the equation into the format of a first order 
linear differential equation by dividing both sides of the equation by cos2(x), 

cos2(x) dy
dx + sin(2x)y = 2cos3(x) sin(x) − 1  becomes dy

dx + sin(2x)
cos2 (x)

y = 2cos3(x) sin(x) − 1
cos2 (x)

.

	 2.	 Simplify the term sin(2x)
cos2 (x)

= 2sin(x)cos(x)
cos2 (x)

= 2tan(x) .

	 3.	 The problem is now dy
dx + 2tan(x)y = 2cos(x)sin(x) − sec2(x) .

	 4.	 The integration factor for this problem then is u(x) = e 2tan(x) dx∫ = e2ln|sec(x)| = sec2(x) .

	 5.	 Multiply by the integration factor:

sec2(x) dy
dx + 2tan(x)sec2(x)y = 2cos(x)sin(x)sec2(x) − sec4(x)

	 6.	 Integrate both sides of the equation:

sec2(x) dy
dx + 2tan(x)sec2(x)y( )∫ dx = 2cos(x)sin(x)sec2(x) − sec4(x)∫ dx

	 7.	 Simplify both sides of the equation:

sec2(x)y = 2tan(x) − sec4(x)∫ dx  (Remember: cos(x)sec(x) = 1.)

	 8.	 Unlike the other problems we’ve done where we just wrote the integral out, 

we need to take time to look at the integral sec4(x)dx∫ . We’ll rewrite it as 

sec2(x) 1+ tan2(x)( )dx∫ = sec2(x) + sec2(x) tan2(x)dx∫ .

	 9.	 Continuing:

sec2(x)y = 2ln sec x( ) − tan(x) + 1
3 tan3(x) + C

	 10.	 Solve for y:

y = 2ln sec x( )−tan(x) − 1
3 tan3(x) + C

sec2 (x)
= 2cos2 x( )ln sec x( ) − tan(x)cos2(x) − 1

3 tan3(x)cos2(x) + C cos2(x)  

= 2cos2 x( )ln sec x( ) − sin(x)cos(x) − 1
3 tan(x)sin2(x) + C cos2(x)

YOU’VE GOT PROBLEMS

Problem 5: Solve dy
dx + 2y = x + 3 .
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The Least You Need to Know
•	To solve a separable differential equation, you must gather terms of the same  

variable on one side of the equation.

•	Solve a first order linear differentiable equation by multiplying both sides of the 
equation by the integration factor.

•	To distinguish between exponential growth and logistical growth, examine the 
quantity to which the rate of change is proportional.

•	Apply Euler’s Method to a differentiable equation to get an approximation of a 
function value.

•	Sketch a graph given a slope field and an initial point by evaluating the derivative 
at each of the lattice points on the grid.





CHAPTER

14
Infinite Sequences

In This Chapter
•	Examining the 

convergence and 
divergence of sequences

•	Applying the Squeeze 
Theorem to determine 
convergence

•	Examining increasing, 
decreasing, and monotonic 
sequences

The study of sequences at this level of mathematics serves 
primarily as a precursor for the study of series. In this chap-
ter, we study sequences that are defined by formulas as well 
as those defined by a pattern.
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Convergence and Divergence of Sequences
A sequence is a listing of numbers. In our discussion, that list will be infinitely long. Although 
there are cases where the entries in the list have no rhyme or reason, we will limit our discussion 
to sequences that have a defined pattern. Defined patterns can come as implicit definition or a 
recursive definition. The terms of the sequence are usually represented in terms of the letter a 
with subscripts used to represent the position in the sequence. That is, a sequence is represented 
as a1, a2, a3, … , an.

The sequence can be symbolized as {an}. This means the sequence {2n – 1} would be the 
sequence of odd counting numbers, 1, 3, 5, 7, … .

A sequence can be defined recursively, also known as a recursively defined sequence.

DEFINITION

A sequence defined implicitly is the output of a function f(x) in which the 
domain is the set of positive integers. A recursively defined sequence has 
a defined initial value, or values, and for some value c where n > c, the term 
an is written in terms of previous values of a.

Example 1: Write the first five terms of the sequence defined by a1 = 4 and an = an – 1 + 3.

Solution: We have a1 = 4, so a2 = a1 + 3 = 4 + 3 = 7, a3 = a2 + 3 = 7 + 3 = 10, a4 = a3 + 3 = 10 + 3 = 
13, and a5 = a4 + 3 = 13 + 3 = 16. The first five terms are 4, 7, 10, 13, 16. You might recognize this 
as an arithmetic sequence, which is a sequence in which the difference between successive terms 
is a constant. This sequence can also be defined as {3n + 1}.

Example 2: Write the first five terms of the sequence defined by a1 = 4 and an = 3an – 1.

Solution: We have a1 = 4, so a2 = 3a1 =12, a3 = 3a2 = 36, a4 = 3a3 = 108, and a5 = 3a4 = 324. The 
first five terms are 4, 12, 36, 108, 324. You might recognize this as a geometric sequence, which is 
a sequence in which the ratio of successive terms is a constant. This sequence can also be defined 
as {3(4)n – 1}.

Example 3: Write the first seven terms of the sequence defined by a1 = 1, a2 = 1, and an = an – 1 + 
an – 2 for n ≥ 3.

Solution:

	 1.	 The first two terms are already defined, so let’s look at the third term: a3 = a3 – 1 + a3 – 2 
= a2 + a1 = 1 + 1 = 2.
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	 2.	 The fourth term is a4 = a4 – 1 + a4 – 2 = a3 + a2 = 2 + 1 = 3, while the fifth term is a5 = a4 
+ a3 = 3 + 2 = 5.

	 3.	 The sixth and seventh terms are a6 = a5 + a4 = 5 + 3 = 8 and a7 = a6 + a5 = 8 + 5 = 13.

	 4.	 The first seven terms are 1, 1, 2, 3, 5, 8, and 13. This is the famous Fibonacci Sequence.

CRITICAL POINT

Fibonacci was a thirteenth century mathematician who is famous for using 
the Hindu Arabic numerals (0, 1, 2, 3, …) in his book Liber Abaci. His famous 
sequence was an attempt to predict the size of rabbit populations (which 
he raised) under ideal conditions.

The limit of a sequence, L, is the value that the terms an grow to as n gets very large, if that value 
exists. That is, lim

n→ ∞
an = L .

Example 4: Determine the limiting value for n
n + 1{ } .

Solution:

	 1.	 To determine the value of lim
n→ ∞

n
n + 1 , we can use the definition for the implicitly defined 

sequences.

	 2.	 n
n + 1{ }  is generated by the function f (x) = x

x + 1  and lim
x →∞

f (x) = 1  when we apply 

L’Hopital’s Rule.

	 3.	 Therefore, L = 1.

Because the limit is a finite number, we say the sequence converges.

DEFINITION

If the lim
n→ ∞

an  exists and is finite, we say the sequence an{ }  is convergent. 

If the limit fails to exist or is infinity, we say that the sequence diverges.
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Example 5: Determine if the sequence ln (n)
n{ }  converges or diverges.

Solution:

	 1.	 We need to evaluate lim
n→ ∞

ln (n)
n .

	 2.	 To do so, apply L’Hopital’s Rule to the function f (x) = ln (x)
x , lim

x →∞

ln (x)
x = lim

x →∞

1
x
1 = 0 .

	 3.	 Therefore, lim
n→∞

ln (n)
n = 0 .

	 4.	 This means ln (n)
n{ }  converges.

Example 6: Determine if the sequence en

n{ }  converges or diverges.

Solution:

	 1.	 We need to evaluate lim
n→∞

en

n .

	 2.	 Apply L’Hopital’s Rule to the function f (x) = ex

x , lim
x →∞

ex

x = lim
x →∞

ex

1 = ∞ .

	 3.	 Therefore, en

n{ }  diverges.

Example 7: Given the sequence defined recursively as a1 = 1 and an + 1 = 12 + an , determine 
the limit for this sequence as n goes to infinity.

Solution:

	 1.	 The key to solving this problem is to realize that lim
n→∞

an + 1 = L  and lim
n→∞

an = L .

	 2.	 Therefore, L = 12 + L , so that L2 = 12 + L or that L2 – L – 12 = 0, (L – 4)(L + 3) = 0, so 

L = 4, –3.

	 3.	 Because the limit cannot be negative in this case, the range of the square root function is 

non-negative, L = 4.
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YOU’VE GOT PROBLEMS

Problem 1: Determine if n2 + n + 10000
2n2 − 1{ }  converges or diverges.

CRITICAL POINT

If {an} and {bn} both converge, then so does {an + bn}, {an – bn}, {an × bn}. If 

lim
n→ ∞

bn  does not equal 0, an
bn

{ }  also converges. If k is a constant, then {kan} 

also converges. If {an} and {bn} both diverge, then so does {an + bn},  
{an – bn}, {an × bn}. If k is a constant, then {kan} also diverges. If either {an} or 
{bn} diverges, then so does, {an + bn}, {an – bn}, {an × bn}.

Example 8: Given the sequences {3–n} and {n24–n}, determine if the sequence {3–n + n24–n} con-
verges or diverges.

Solution:

	 1.	 The lim
n→∞

3−n = 0 , but we need to determine if the lim
n→∞

n24−n  exists and is finite.

	 2.	 Use the function f (x) = x2

4x  and L’Hopital’s Rule. lim
x →∞

x2

4x = lim
x →∞

2x
4x ln (4)

= lim
x →∞

2
4x ln (4)( )2 = 0 . 

(Recall that the derivative of bx is bx ln(b).)

	 3.	 Each of the sequences converges, so the sum of the sequences does, too.

Squeeze Theorem
We will run into examples whose limit is a bit more challenging to evaluate then simply using 
L’Hopital’s Rule. The Squeeze Theorem provides us with another tool to attack problems.

CRITICAL POINT

If an ≤ bn ≤ cn for n ≥ k, in which k is a constant, lim
n→∞

an = L , and lim
n→∞

cn = L  

then lim
n→∞

bn = L .
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The Squeeze Theorem requires that we are able to find two known sequences that have the same 
limit and are bound to the unknown function. We won’t be able to do this with all sequences, but 
there are a few patterns to which we can apply the theorem.

Example 9: Determine if the sequence cos(n)
n{ }  is convergent.

Solution:

	 1.	 You might be tempted to think that you can use L’Hopital’s Rule here, but that is not so. 

The lim
x →∞

cos(x)  cannot be determined because it oscillates between –1 and 1. Wait a 

minute! That’s the answer.

	 2.	 We know that −1
n ≤ cos(n)

n ≤ 1
n , and we know that lim

n→ ∞
−1
n = lim

n→∞
1
n = 0 .

	 3.	 The Squeeze Theorem tells us that lim
n→ ∞

cos(n)
n = 0 .

	 4.	 Therefore, cos(n)
n{ }  is convergent.

Example 10: Determine if the sequence n!
nn{ }  converges. (n!, read as n factorial, is the product of 

the first n positive integers.)

Solution:

	 1.	 We cannot use L’Hopital’s Rule on this problem because n! is defined for integer values 
only.

n!
nn{ } = 1× 2 × 3× 4 × ...× n

n × n × n × n × ...× n

	 2.	 This expression is less than 1
n  but is also greater than −1

n .

	 3.	 Because the two sequences 1
n{ }  and −1

n{ }  each converge to 0, we can apply the Squeeze 

Theorem to conclude that n!
nn{ }  converges to 0 also.

CRITICAL POINT

There is a theorem that states lim
n→∞

| an | = 0  then lim
n→∞

an = 0 . This theorem 

is especially useful when dealing with sequences in the form {(–1)nan}.
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YOU’VE GOT PROBLEMS

Problem 2: Show that the sequence 
−1( )n

n
n + 1{ }  converges.

Example 11: Determine if the sequence −1
2( )n{ }  converges.

Solution: Because 1
2( )n{ }  converges, so does −1

2( )n{ } .

Increasing, Decreasing, and Monotonic 
Sequences

As much as the language is annoying, strictly or not, we must know how to handle consecutive 
terms being equal. A sequence that is strictly increasing or strictly decreasing is called monotonic 
(not monotonous):

•	 A sequence is said to be strictly increasing if an + 1 > an for all positive values of n.

•	 A sequence is said to be increasing if an + 1 ≥ an for all positive values of n.

•	 A sequence is said to be strictly decreasing if an + 1 < an for all positive values of n.

•	 A sequence is said to be decreasing if an + 1 ≤ an for all positive values of n.

DEFINITION

A sequence that is strictly increasing or strictly decreasing is said to be 
monotonic.

There are two ways to prove sequences are strictly (or not) increasing or decreasing:

•	 If the sequence is a subset of a function with a domain defined as a subset of real  
numbers, we can use the derivative to determine whether the function increases or 
decreases.

•	 If the sequence is not defined as a subset of real numbers, we will look at the ratio of 
an + 1

an
 to determine if the values for which the ratio is greater than or less than 1.
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Example 12: Show that the sequence 2n
n + 3{ }  is strictly increasing.

Solution: Use the derivative of the function f (x) = 2x
x + 3 , f'(x) = 2(x + 3) − 2x(1)

x + 3( )2 = 6
x + 3( )2 . This deriva-

tive is positive all values of x (except –3, which is not part of the sequence’s domain), so the 
sequence is strictly increasing.

Example 13: Show that the sequence 10n

(2n)!{ }  is decreasing.

Solution:

	 1.	 The term an + 1 = 10n + 1

2(n + 1)( )! , so the ratio 
an + 1

an
=

10n + 1
2n+2( )!
10n

( 2n )!
 = 10n + 1

2n+2( )! ÷ 10n

(2n)!  = 10n + 1

2n+2( )(2n + 1)(2n)! ×
(2n)!
10n  

= 10
(2n+2)(2n+1) .

	 2.	 The problem is to determine when 10
(2n+2)(2n+1) <1 .

	 3.	 The denominator is a positive term, so we can multiply both sides of the inequality 
without changing the orientation of the inequality.

	 4.	 The inequality becomes 10 < 4n2 + 6n + 2 and then 0 < 4n2 + 6n – 8. When you solve 

this quadratic, you get n = −6 ± 36 − 4(4)(−8)
8 = −6± 164

8 .

	 5.	 The decimal solutions are –2.35 and 0.85.

	 6.	 The negative solution is not part of the sequence’s domain.

	 7.	 The solution to the inequality is n > 0.85 so the sequence is decreasing for n > 1.

YOU’VE GOT PROBLEMS

Problem 3: Determine if the sequence {ne–2n} is increasing, strictly 
increasing, decreasing, or strictly decreasing.
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The Least You Need to Know
•	A convergent sequence is one for which lim

n→∞
an  is finite.

•	A divergent sequence is one for which lim
n→∞

an
 is either infinite or cannot be 

determined.

•	The Squeeze Theorem can be used to prove the convergence of a sequence whose 
limit to infinity you might not be able to determine.

•	You can determine if a sequence is strictly increasing or strictly decreasing or pos-
sibly just increasing or decreasing by comparing the term an to an + 1 or by applying 
the First Derivative Test to the function that defines the sequence.





CHAPTER

15
Infinite Series

In This Chapter
•	Investigating infinite 

geometric series

•	Studying tests of 
convergence: ratio, 
comparison, and integral

•	Examining alternating 
series and absolute and 
conditional convergence

•	Estimating sums of 
alternating series with a 
maximum error estimate

Whereas a sequence is a listing of numbers that come from 
a defined pattern, a series is the sum of the terms of the 
sequence. In the next two chapters, we will examine infinite 
series. We’ll lay down the basics for infinite series in this 
chapter and work further with some important series in 
Chapter 16.
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Infinite Geometric Series
A geometric sequence is defined by the rule an = a1rn – 1. For example, the sequence an = 2(3)n – 1 
is 2, 6, 18, … . Do you see why 2 must be the first term? a1 = 2(3)1 – 1 = 2(3)0 = 2. The sum of the 
first six terms of this series is S6 = 2 + 6 + 18 + 54 + 162 + 486. There are only a few terms in this 
series so we could add them up by hand. Imagine if we had to find the sum of the first 60 terms, 
you would want to use a formula. The process is called “eliminating the middle.”

	 1.	 We’ll multiply the equation for S6 by the common ratio, 3, to get 3S6 = 6 + 18 + 54 + 162 
+ 486 + 1458.

	 2.	 We subtract this from the equation for S6. S6 – 3S6 = (2 + 6 + 18 + 54 + 162 + 486) – (6 
+ 18 + 54 + 162 + 486 + 1458) so that –2S6 = 2 – 1458. (Do you see how all the middle 
terms are eliminated?)

	 3.	 Just so that we can get to a more general formula, we’ll rewrite 1458 as 2(3)6. (Grab your 
calculator to verify that is correct.)

	 4.	 So –2S6 = 2 – 2(3)6 so that S6 = 2 − 2(3)6

−2 =
2 1− 3( )6( )

−2 = 728 .

In general, if the first term of the geometric sequence is a1 and the common ratio is r, the sum of 

the first n terms of the series is Sn =
a1 1− rn( )

1− r
. (We’ll not compute the sum of the first 60 terms as 

it is in the neighborhood of 4 × 1027.)

Example 1: Find the sum of the first 40 terms of the series 2400 + 1800 + 1350 + 1012.5 + ….

Solution: The first is 2400 and the common ratio is 1800
2400 = 3

4 . Therefore, S40 =
2400 1− 3

4( )40⎛
⎝⎜

⎞
⎠⎟

1− 3
4

 = 
9599.903.

You can see that as n gets larger, the value of an gets smaller. The question is “What happens to 

Sn?” The lim
n→∞

Sn = lim
n→∞

a1 1− rn( )
1− r . As n gets larger, r n → 0  because r < 1.

CRITICAL POINT

The sum of an infinite geometric series will converge to S = a1
1− r , provided 

r <1.
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Example 2: Compute 16 + 8 + 4 + 2 + 1 + ….

Solution: The first term is 16 and the common ratio is 1
2 , so the sum is S = 16

1− 1
2

= 32 .

Example 3: Compute 16 – 8 + 4 – 2 + 1 ….

Solution: The first term is 16 and the common ratio is −1
2 , so the sum is S = 16

1− −1
2( ) = 32

3 .

YOU’VE GOT PROBLEMS

Problem 1: Compute 36 − 24 + 16 − 32
3 + ... .

Tests of Convergence
If all the terms in a series Σan are positive, the series is called a positive series. (As opposed to an 
alternating series that we will discuss later in this chapter.) There are a number of tests available 
to us to determine if a positive series is convergent.

We begin with a very simple, but important statement, called the Divergence Test.

CRITICAL POINT

If lim
n→∞

an  does not equal 0, the series an
n = 1

∞

∑  diverges.

Simply said, if the numbers being added to the series do not get infinitely small, the sum of the 
terms will continue to grow.

Example 4: Show that the series nsin 1
n( )

n = 1

∞

∑  diverges.

Solution:

	 1.	 We’ll go back to the familiar limit theorem, lim
x → 0

sin(x)
x = 1 .

	 2.	 If we replace x with 1
n , x → 0  becomes 1

n → 0  so that n→∞  making 

lim
n→∞

sin 1
n( )

1
n

= lim
n→∞

nsin 1
n( ) = 1 .

	 3.	 Therefore, series nsin 1
n( )

n = 1

∞

∑  diverges.
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When the rule defining the series is a continuous function that can be integrated, you can apply 
improper integrals to test for the convergence or divergence of a series. This is called the Integral 
Test. 

DEFINITION

If f(x) is a continuous, positive, decreasing function on [1,∞] with f(n) = an for 

all positive integers n, then the series Σan converges if and only if f (x) dx
1

∞

∫  

converges. This is called the Integral Test.

Example 5: Show that 1
n

n = 1

∞

∑  diverges.

Solution: 1
x dx = lim

p→∞1

∞

∫ 1
x dx

1

p

∫  = lim
p →∞

ln x
1

p
= lim

p →∞
ln p − ln 1( ) = ∞ . Because the integral 

diverges, the series also diverges.

CRITICAL POINT

The series 1
n

n = 1

∞

∑  is called the harmonic series and is related to musical 

harmonies. To give you a sense of the size of “large” in mathematics, it 
takes 12,368 terms before the sum of the terms in the harmonic series 
reaches 10 and it takes more than 1.509 × 1043 terms to reach 100. That is 
pretty incredible!

Example 6: Show that 1
n2

n = 1

∞

∑  converges.

Solution: 1
x2 dx = lim

p →∞1

∞

∫ 1
x2 dx

1

p

∫  = lim
p →∞

−1
x 1

p
= lim

p →∞
−1
p − −1( )( ) = 1 . Because the integral  

converges, the series also converges.

CRITICAL POINT

An important consequence of the Integral Test is referred to as the p-series. 
(We’ve seen this before when we discussed improper integrals.) Series of 

the form 1
np

n = 1

∞

∑  will converge when p > 1 and will diverge when p ≤ 1.
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The next test for us to look at is the Comparison Test. This is a good test to use when the unknown 
series looks like a known convergent or divergent series.

DEFINITION

If two positive series, an
n = 1

∞

∑  and bn
n = 1

∞

∑ , with the property that ak > bk for  

k ≥ m then we can conclude two things: If the series an
n = 1

∞

∑  converges, then 

so does the series bn
n = 1

∞

∑ . And if the series bn
n = 1

∞

∑  diverges, then so does the 

series an
n = 1

∞

∑ . This is called the Comparison Test. In English, there comes a 

point where the terms in series an
n = 1

∞

∑  are always greater than the terms in 

series bn
n = 1

∞

∑ .

Example 7: Show that the series 1
n2 + 5

n = 1

∞

∑  converges.

Solution:

	 1.	 This series looks strikingly similar to the series 1
n2

n = 1

∞

∑ , which is a known convergent 
series.

	 2.	 We now have to show that there comes a point in which 1
n2  > 1

n2 + 5 .

	 3.	 Both denominators are positive, so we can multiply the inequality by the common 
denominator without affecting the orientation of the inequality: n2 + 5 > n2.

	 4.	 This becomes 5 > 0, which is always true.

	 5.	 Because the unknown series is less than the known series for all values of n, the 

unknown series, 1
n2 + 5

n = 1

∞

∑  converges.

YOU’VE GOT PROBLEMS

Problem 2: Show that the series n
en

n = 1

∞

∑  converges.
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Example 8: Show that the series 1
n + 1

n = 1

∞

∑  diverges.

Solution:

	 1.	 It seems reasonable to compare this series to the divergent harmonic series. When is 
1

n + 1 > 1
n ? The answer is never.

	 2.	 For positive values of n, n is never greater than n + 1.

	 3.	 So what do we do? We come up with a different divergent series. Rather than use 1
n

n = 1

∞

∑ , 

use the series 1
2n

n = 1

∞

∑ . When is 1
n + 1 > 1

2n ? Always!

	 4.	 Multiply by the common denominator to get 2n > n + 1 or that n > 1.

	 5.	 The unknown series is greater than the known divergent series so the series 1
n + 1

n = 1

∞

∑  
diverges.

(Did you notice that applying the Integral Test shows that the series 1
n + 1

n = 1

∞

∑  diverges?)

Example 9: Determine whether the series 1
n2 + 5n − 1250

n = 1

∞

∑  converges or diverges.

Solution:

	 1.	 Once again, the series 1
n2

n = 1

∞

∑ will make for a good comparison.

	 2.	 When is 1
n2 > 1

n2 + 5n − 1250
?

	 3.	 Solve: n2 + 5n – 1250 > n2 becomes 5n – 1250 > 0 or n > 250.

	 4.	 The inequality takes 250 terms before it holds true, but eventually it is true that 
1
n2 > 1

n2 + 5n − 1250
.

	 5.	 The series 1
n2 + 5n − 1250

n = 1

∞

∑  converges.

YOU’VE GOT PROBLEMS

Problem 3: Use the Comparison Test to determine if the series 
n + 3

n n + 1( ) n + 2( )∑  
converges or diverges.
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The Limit Comparison Test also takes advantage of known convergent and divergent series in  
determining the nature of the convergence of an unknown series.

DEFINITION

Given two positive series an
n = 1

∞

∑  and bn
n = 1

∞

∑  let lim
n→∞

an
bn

= L . If L is positive 

and finite, then both 1
n + n

n = 1

∞

∑  and bn
n = 1

∞

∑  converge or diverge. This is the 

Limit Comparison Test.

This test has the advantage that is saves us from doing some ugly algebra.

Example 10: Show that 1
n + n

n = 1

∞

∑  diverges.

Solution: Use the Limit Comparison Test with the divergent series 1
n

n = 1

∞

∑ . 

lim
n→∞

i
n
1

n + n

= lim
n→∞

n + n
n = lim

n→∞
1+ 1

n
= 1 . Therefore, both series diverge.

Example 11: Show that the series 1
k5 + 10k

k = 1

∞

∑  converges. (Sorry, I got tired of using n as the 
variable.)

Solution: Compare this series to 1
k5

k = 1

∞

∑ . lim
k →∞

i
k5

1
k5 + 10 k

= lim
k →∞

k5 + 10k
k5 = lim

k →∞
1+ 10

k4 = 1 . Therefore, both 

series converge.

YOU’VE GOT PROBLEMS

Problem 4: Determine whether the series 8k2

4k7 + 9k33
k = 1

∞

∑  is convergent or 
divergent.
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Alternating Series
Now that we’ve developed ground rules for how to deal with series containing only positive 
terms, we take on the issue of series with alternating signs. This will be the basis for the work we 
do with power series in the next chapter.

CRITICAL POINT

Let an = −1( )n
bn  with bn > 0 for all n. If (1) bn is decreasing for all n, and (2) 

lim bn = 0
n→∞

, then an
n = 1

∞

∑  is convergent.

This statement is called the Alternating Series Test.

Example 12: Show that the alternating harmonic series 
−1( )n

n
n = 1

∞

∑  converges.

Solution: The series meets the condition that 1
n  decreases (use the derivative if you want; it’s 

always negative) and lim
n→∞

1
n = 0 . Therefore, −1( )n

n
n = 1

∞

∑  converges.

Example 13: Determine if the series 
−1( )n

n3

n3 + 9
n = 1

∞

∑  is convergent or divergent.

Solution:

	 1.	 We know lim n3

n3 + 9
n→∞

= 1 , so the conditions of the Alternating Series Test are not met.

	 2.	 This does not tell us that the series is divergent, but it does tell us we need to try 
something else. At this point, the only something else we have is the Divergence Test. If 

lim
n→∞

−1( )n
n3

n3 + 9
 does not equal 0, then the series diverges.

	 3.	 As you can see, lim
n→∞

−1( )n
n3

n3 + 9
 will oscillate between –1 and 1 for very large values of n.

	 4.	 The limit fails to exist, so the limit does not equal 0.

	 5.	 We can use the Divergence Test to conclude that −1( )n
n3

n3 + 9
n = 1

∞

∑  is divergent.

YOU’VE GOT PROBLEMS

Problem 5: Determine if the series 
sin ( 2n − 1)π

2( )
n∑  is convergent?
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So we now know that the harmonic series is divergent but the alternating harmonic series is 
convergent. This leads us to consider the other series that are related by their absolute values.

CRITICAL POINT

Given the series an
n = 1

∞

∑ , the series is said to be absolutely convergent if the 

series an
n = 1

∞

∑  converges. The series is said to be conditionally convergent if 

an
n = 1

∞

∑  converges but an
n = 1

∞

∑  diverges. If a series is absolutely convergent, it 

is convergent.

Therefore, the alternating harmonic series is conditionally convergent.

Example 14: Is the series 
−1( )n

n4

n = 1

∞

∑  absolutely convergent, conditionally convergent, or neither?

Solution: The series −1( )n

n4

n = 1

∞

∑ = 1
n4

n = 1

∞

∑  is convergent based on the p-series. Therefore, 
−1( )n

n4

n = 1

∞

∑  is 

absolutely convergent.

Example 15: Is the series cos(n)
n

n = 1

∞

∑  absolutely convergent, conditionally convergent, or neither?

Solution:

	 1.	 The series itself does not represent an alternating series.

	 2.	 However, if we consider that –1 ≤ cos(n) ≤ 1, then cos(n)
n ≤ 1

n .

	 3.	 Use the Comparison Test to note that 
−1( )n

n
n = 1

∞

∑  converges conditionally then so does 

cos(n)
n

n = 1

∞

∑ .

CRITICAL POINT

Given a series an
n = 1

∞

∑ , let lim
n→∞

an + 1

an
= r . If r < 1, then an

n = 1

∞

∑  converges. If r > 1, 

then an
n = 1

∞

∑  diverges. If r = 1, then no conclusion about an
n = 1

∞

∑  can be drawn 

from this test. This is called the Ratio Test.
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The Ratio Test is a major player in the study of alternating series. It is especially useful for series 
involving nth powers and factorials.

Example 16: Determine if the series 
−1( )n

22n

2n( )!
n = 1

∞

∑  is absolutely convergent, conditionally conver-

gent, or neither.

Solution: Using the Ratio Test, lim
n→∞

22( n + 1)
2( n + 1)( )!

22n
( 2n )!

= lim
n→∞

22n+2

2n+2( )! ×
2n( )!
22n = lim

n→∞
4

2n + 2( ) 2n + 1( )  = 0. By the 

terms of the Ratio Test, 
−1( )n

22n

2n( )!
n = 1

∞

∑  is absolutely convergent.

Example 17: Determine if the series nn

n!
n = 1

∞

∑  is absolutely convergent, conditionally convergent, or 

neither.

Solution: lim
n→∞

an + 1

an
 = lim

n→∞

n + 1( )n + 1

n + 1( )! × n!
nn  = lim

n→∞

n + 1( ) n + 1( )n

n + 1( )n! × n!
nn  = lim

n→∞

n + 1( )n

nn  = lim
n→∞

n + 1
n( )n

 = 

lim
n→∞

1+ 1
n( )n

= e . With e > 0, the series diverges.

YOU’VE GOT PROBLEMS

Problem 6: Determine if the series 
n4n

n!
n = 1

∞

∑  is absolutely convergent, 

conditionally convergent, or neither.

The Root Test is the last of the tests for convergence/divergence that we need to consider.

CRITICAL POINT

Given a series an
n = 1

∞

∑ , let lim
n→∞

an
n = r . If r < 1, then an

n = 1

∞

∑  is absolutely 

convergent. If r > 1, then an
n = 1

∞

∑  divergent. If r = 1, then no conclusion about 

an
n = 1

∞

∑  can be drawn from this test. This is called the Root Test.

A useful fact to have when using the Root Test is lim
n→∞

nn = 1 .
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Example 18: Determine if the series 4 − n5

9n5 + 7( )n

n = 1

∞

∑  is absolutely convergent, conditionally conver-
gent, or neither.

Solution: Applying the Root Test, lim
n→∞

4 − n5

9n5 + 7( )n
n  = lim

n→∞

4 − n5

9n5 + 7  = lim
n→∞

4
n5 −1

9 + 7
n5

= −1
9 = 1

9 . The 
series is absolutely convergent.

Estimating the Sum of Alternating Series
Let’s reinforce two items about alternating series that will help with the work we are going to do 
on estimating sums.

•	 If we define the alternating series as −1( )n
an

n = 1

∞

∑ , the terms an are positive and they are 
decreasing.

•	 It is the factor (–1)n that causes the signs to alternate.

The sum of the first n terms of the series, called the partial sum sn, estimates the true sum. 
However, there is a difference between partial sum and the true sum. The maximum value of 
this difference is the next term in the series, an + 1.

CRITICAL POINT

The difference between the sum of an alternating series, S, and a partial 

sum, sn, is at most an + 1. That is, S − sn < an + 1 .

Example 19: Estimate the maximum error when −1( )n

n2

n = 1

∞

∑  is estimated by s15.

Solution: S − s15 < a16  so the maximum error is 1
162 = 1

256 .

Example 20: How many terms are needed to estimate the sum 
−1( )k

k!
k = 1

∞

∑  so that the maximum 
error is less than 0.0001?

Solution:

	 1.	 The maximum error is S − sk < ak + 1 < 0.0001 .

	 2.	 1
(k + 1)! < 1

10000  becomes 10000 < (k + 1)!.

	 3.	 Use your calculator to determine that k + 1 = 8 so k = 7.
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	 4.	 Use seven terms to insure that the maximum error is less than 0.0001.

	 5.	 The sum 
−1( )k

k!
k = 1

∞

∑  = 1
e − 1 , which is approximately –0.632121. 

−1( )k

k!
k = 1

7

∑  is –0.632143.

	 6.	 The first four decimal places are exactly the same.

YOU’VE GOT PROBLEMS

Problem 7: Determine the number of terms needed to estimate the sum 

n2

2n

n = 1

∞

∑  so that the maximum error is less than 0.00001.

The Least You Need to Know
•	Look to see if lim

n→∞
an  is equal to 0. If it’s not, the series diverges by the Divergence 

Test.

•	A geometric series converges if |r| < 1; the series diverges if |r| > 1.

•	Use the Integral Test when the series has the form of a function that can be 
integrated.

•	Use the Comparison Test when the series looks like a p-series.

•	When the series involves the ratio of polynomials, use the Comparison Test or 
Limit Comparison Test after checking that all the terms of the series are positive.

•	Use the Ratio Test when the series involve factorials or constants raised to powers.

•	Use the Alternating Series Test when the series have the form −1( )n
an .



CHAPTER

16
Power Series

In This Chapter
•	Working with the power 

series

•	Interval and radius of 
convergence

•	Computing the MacLaurin 
Series

•	Working with the Taylor 
Series

•	Estimating errors for the 
Taylor and MacLaurin 
Series

We use power series to create polynomial approximations 
for nonpolynomial functions. In today’s world, in which we 
can compute almost anything on our calculators, this might 
seem like another out-of-date topic. You will see the complete 
opposite is actually true–it’s because of the application of 
power series that programmers can use these polynomials 
to compute values of functions such as sine, cosine, and the 
natural logarithm.
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Power Series
Power series take on the form an x − c( )n

n = 0

∞

∑  where c is some constant. This series will always 

converge when x = c and the result would be a0. What about the other values of x? It could be  
the case that the series converges for all values of x. It might be the case that the series converges 
for some values of x with c in the middle of the interval. (We just covered the case that it con-
verges for no other value of x in Chapter 15.) There are two concepts we need to clarify in this 
chapter—the radius of convergence and the interval of convergence.

DEFINITION

The radius of convergence identifies how far from x = c one can go to find 
a value of x for which the series converges. The interval of convergence 
names the values of x for which the series converges.

Example 1: Determine the radius of convergence and interval of convergence for the power 

series xn

n4n

n = 1

∞

∑ .

Solution:

	 1.	 The value of c for this problem is 0 (when you set x – c = x you get c = 0).

	 2.	 We’ll use the Ratio Test to determine when the series converges. Remember, we need 

lim
n→∞

an + 1

an
<1 .

	 3.	 lim
n→∞

xn+1

n + 1( )4n + 1 × n4n

xn  = lim
n→∞

nx
n + 1( )4 = x

4  < 1, which implies that |x| < 4 or that –4 < x < 4.

	 4.	 The radius of convergence is 4. To determine the interval of convergence, we need to 
take a look at what happens when the limiting value from the Ratio Test is 1.

	 5.	 We need to test the series for x = –4 and x = 4.

	 6.	 When x = 4, the series becomes 4n

n4n = 1
n

n = 1

∞

∑
n = 1

∞

∑ . This is the harmonic series and we know 
that it is divergent.

	 7.	 When x = –4, the series becomes 
−4( )n

n4n = −1( )n

n
n = 1

∞

∑
n = 1

∞

∑ . This is the alternating harmonic 

series and we know that it is convergent.

	 8.	 Therefore, the interval of convergence is [–4,4).
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BE AWARE

When testing for the interval of convergence of a power series, you must 
always test the endpoints separately to see if the series converges at these 
points.

Example 2: Determine the radius of convergence and interval of convergence for the power 

series xn

n!
n = 0

∞

∑ .

Solution: The Ratio Test gives lim
n→∞

xn + 1

n + 1( )! ×
n!
xn = lim

n→∞
x

n+1 = 0 . The radius of convergence is ∞. 

Therefore, the interval of convergence is (–∞,∞).

Example 3: A function f(x) is defined as f (x) = 1
4 + 2

42 x + 3
43 x2 + 4

44 x3 + ... + n + 1
4n + 1 xn .

	 1.	 Find the interval of convergence for f(x).

	 2.	 Write the first three terms and the general term for f (x) dx
0

1

∫ .

	 3.	 Find the sum of the series found in 2.

Solution:

	 1.	 Use the Ratio Test to get lim
n→∞

n + 2( )xn + 1

4n + 2 × 4n + 1

n + 1( )xn = lim
n→∞

n + 2( )x
4 n + 1( ) = x

4 . If x
4 <1 , then 

 –4 < x < 4. Test the endpoints. When x = 4, the series becomes 
n + 1( )4n

4n + 1 = n + 1( )
4∑∑ ,  

which diverges by the Divergence Test. When x = –4, the series becomes 
n + 1( ) −4( )n

4n + 1 = −1( )n
n + 1( )

4∑∑ , which diverges by the Divergence Test. Therefore, the  

interval of convergence is (–4,4).

	 2.	 You integrate the power series term by term as you would any polynomial:

f (x) dx
0

1

∫  = 1
4 + 2

42 x + 3
43 x2 + 4

44 x3 + ... + n + 1
4n + 1 xn dx

0

1

∫  = 

1
4 x + 1

42 x2 + 1
43 x3 + 1

44 x4 + ... + 1
4n + 1 xn + 1

0

1

 = 1
4 + 1

42 + 1
43 + ... + 1

4n + 1

	 3.	 This is an infinite geometric series, and the sum is 
1
4

1− 1
4

= 1
3 .
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MacLaurin Series
Let’s assume that the function f(x) has a power series associated with it and that power series is 

f (x) = a0 + a1x + a2x
2 + a3x

3 + ... + anx
n + ... = anx

n

n = 0

∞

∑ . The question then becomes “How do we 

determine the coefficients of the terms in the power series?”

	 1.	 We know that f(0) = a0 because all the other terms in the series will have a factor of 0.

	 2.	 If we take the derivative of the power series (which is done term by term), we get 

f'(x) = a1 + 2a2x + 3a3x
2 + ... + nanx

n − 1 + ... = nanx
n − 1

n = 0

∞

∑  and we now know that  

f'(0) = a1.

	 3.	 Take the second derivative: 

f"(x) = 2a2 + 6a3x + ... + n n − 1( )anx
n − 2 + ... = n n − 1( )anx

n − 2

n = 0

∞

∑  and find that f''(0) = 

2a2 so that a2 = f "(0)
2 .

	 4.	 If we continue in this manner, we find that the nth derivative evaluated at 0 gives the 
value of the nth coefficient.

	 5.	 That is, an = f n( ) 0( )
n! .

	 6.	 Technically speaking, there is no zero derivative. The term f(0)(0) is the value of the 
function at x = 0.

DEFINITION

The MacLaurin Series for f(x) is a power series about x = 0 so that 

f (x) = f (0) + f '(0)x + f "(0)
2! x2 + f ''' (0)

3! x3 + ... + f n( ) 0( )
n! xn + ... = f n( ) (0)

n!
n = 0

∞

∑ xn
.

YOU’VE GOT PROBLEMS

Problem 1: Find the interval of convergence for the power series 
4x( )n + 1

n + 1
n = 0

∞

∑ .
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Example 4: Determine the MacLaurin Series for f(x) = sin(x).

Solution:

	 1.	 We have f(0) = 0. f'(x) = cos(x), so f'(0) = 1. f''(x) = –sin(x) and f''(0) = 0.

	 2.	 The third derivative of sin(x) is –cos(x) and f'''(0) = –1.

	 3.	 This pattern is going to repeat itself.

	 4.	 The values of the odd derivatives will alternate between –1 and 1, while the values of the 

function and even derivatives will all be 0.

	 5.	 Therefore, the MacLaurin Series for f (x) = sin(x) = x − x3

3! + x5

5! −
x7

7! + ... + −1( )n
x2n + 1

2n + 1( )! .

How good is this fit? The graph of f(x) = sin(x) is sketched on the interval [–2π,2π] along with the 
MacLaurin Series for various number of terms, as shown in the following figures.

Figure 16.1 
f(x) = sin(x) and f (x) = x − x3

3! .
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Figure 16.2 
f(x) = sin(x) and f (x) = x − x3

3! + x5

5! .

Figure 16.3 
f(x) = sin(x) and f (x) = x − x3

3! + x5

5! −
x7

7! .
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Figure 16.4 
f(x) = sin(x) and f (x) = x − x3

3! + x5

5! −
x7

7! + x9

9! −
x11

11! + x13

13! −
x15

15! .

Figure 16.5 
f(x) = sin(x) and f (x) = x − x3

3! + x5

5! −
x7

7! + ... + x29

29! −
x31

31! .

That is pretty incredible accuracy for just 15 terms in the polynomial!
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Example 5: Determine the interval of convergence for the MacLaurin Series for f(x) = sin(x).

Solution:

	 1.	 Use the Ratio Test to get lim
n→∞

(−1)n +1 x2( n + 1) + 1

2(n + 1) + 1( )! × 2n + 1( )!
−1( )n

x2n + 1
. (Actually, the terms with the –1 

are not necessary because of the absolute value, but I didn’t want to confuse you with 
that on the first example.)

	 2.	 The limit becomes lim
n→∞

x2n + 3

2n + 3( )! ×
2n + 1( )!
x2n + 1 = lim

n→∞
x2

2n+ 3( ) 2n + 2( ) = 0 .

	 3.	 The series converges for all values of x so the interval of convergence is (–∞,∞).

YOU’VE GOT PROBLEMS

Problem 2: Show that the MacLaurin Series for f(x) = cos(x) is 

1− x2

2 + x4

4! −
x6

6! + ... + −1( )n
x2n

2n( )! .

Example 6: Determine the MacLaurin Series for f(x) = ex and find the interval of convergence.

Solution:

	 1.	 All the derivatives of ex are ex, so the values of all the derivatives at x = 0 are 1.

	 2.	 Therefore, ex = 1+ x + x2

2 + x3

3! + ... + xn

n! .

	 3.	 Using the Ratio Test, lim
n→∞

xn + 1

n + 1( )! ×
n!
xn = lim

n→∞
x

n + 1 = 0  so the interval of convergence is 

(–∞,∞).

CRITICAL POINT

Your calculator is programmed to use power series to evaluate the 
trigonometric and logarithmic functions. In terms of computing, many 
algorithms help you evaluate polynomials in very little time.
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There is a relationship among the MacLaurin Series for sin(x), cos(x), and ex that is extremely 

powerful. The sum of cos(x) and isin(x) (where i is −1 ) is eix.

cos(x) + isin(x) = 1+ ix − x2

2 − x3

3! i + x4

4! + x5

5! i − x6

6! −
x7

7! i + x8

8! + x9

9! i + ...

eix = 1+ ix + ix( )2

2 + ix( )3

3! + ix( )4

4! + ix( )5

5! + ix( )6

6! + ix( )7

7! + ix( )8

8! + ix( )9

9! + ...  = 

1+ ix − x2

2 − x3

3! i + x4

4! + x5

5! i − x6

6! −
x7

7! i + x8

8! + x9

9! i + ...

Evaluating this relationship with x = π, eiπ = cos(π) + isin(π) = –1 or eiπ + 1 = 0. The equation 
contains the five numbers upon which all of mathematics is based.

One other relationship that is important is eiπ2 = cos π
2( ) + isin π

2( ) = i . Raise both sides of the 

equation to the i power to get ei2 π
2( ) = ii  or e

−π
2 = ii . You can use your calculator to get the  

decimal approximation for this number. Why is it important? The development of mathematics 

is the development of mankind. Look at the names we have given the sets of numbers over the 
years.

•	 Natural (counting) numbers  We started with the natural (counting) numbers (1, 2, 3, 
…) as we counted our fingers, cattle, and so on.

•	 Whole numbers  Reality set in and we realize that we could have nothing, so we have 
the whole numbers (0, 1, 2, 3, …).

•	 Rationals and irrationals  We get the rationals (ratios, not statements about one’s  
sanity) and then, of course, the irrationals.

•	 Real numbers  Together, the rationals and irrationals form the real numbers—all the 
numbers we can see in our real world.

•	 Imaginary numbers  And then along comes −1 , not something you find in the real 
world. Of course, we called these number imaginary numbers.

•	 Complex numbers  The combination of real and imaginary numbers.

Given that none of the numbers are real, can you show someone a 1? Not a finger or a pencil 
but a 1. In the same way that all of language is an abstract, so are the numbers that we used. The 
moral of this dialogue, all of the numbers are related to each other.



Part 4: The Infinite Series and More258

CRITICAL POINT

These are important MacLaurin Series that you should know and the 
interval of convergence for each.

	 sin(x) = x − x3

3! + x5

5! −
x7

7! + ... + −1( )n
x2n + 1

2n + 1( )!  on (–∞,∞)

	 cos(x) = 1− x2

2 + x4

4! −
x6

6! + ... + −1( )n
x2n

2n( )!  on (–∞,∞)

	 ex = 1+ x + x2

2 + x3

3! + ... + xn

n!  on (–∞,∞)

	 tan−1(x) = x − x3

3 + x5

5 − x7

7 + ... + −1( )n
x2n + 1

2n + 1  on [–1,1]

	
1

1− x = 1+ x + x2 + x3 + x4 + ... + xn
 on (–1,1)

	 ln(x + 1) = x − x2

2 + x3

3 − x4

4 + ... + −1( )n+1
xn

n on (–1,1]

Example 7: Determine the MacLaurin Series for f(x) = x3ex.

Solution: The MacLaurin Series for ex is xn

n!
n = 0

∞

∑  so the series for f (x) = x3ex  is 

xn

n! x3 = xn + 3

n!
n = 0

∞

∑
n = 0

∞

∑  = x3 + x4 + x5

2 + x6

3! + x7

4! + ... + xn + 3

n! .

YOU’VE GOT PROBLEMS

Problem 3: Use the MacLaurin Series for cos(x) to find cos(x) dx∫ .

Taylor Series
The MacLaurin Series requires that the series be built about x = 0. The Taylor Series is more 
general than that in that it allows the series to be built around any value x = c.

DEFINITION

The Taylor Series for f(x) about x = c is 
f n( ) (c) x − c( )n

n!
n = 0

∞

∑ .



Chapter 16: Power Series 259

YOU’VE GOT PROBLEMS

Problem 4: Find the first three terms and the general term of the Taylor 
Series for f(x) = ln(x) about x = 1.

Example 8: Find the first three terms and the general term of the Taylor Series for f(x) = ln(x) 
about x = 2.

Solution:

	 1.	 The series is 
f n( ) (2) x − 2( )n

n!
n = 0

∞

∑ .

	 2.	 The first term is f(2) = ln(2).

	 3.	 Let’s look at the derivatives for ln(x) evaluated at x = 2:

f '(x) = 1
x  gives f '(2) = 1

2

f ''(x) = −1
x2  gives f ''(2) = −1

22

f '''(x) = 2
x3  gives f '''(2) = 2

23

f 4( )(x) = −3!
x4  gives f 4( )(2) = −3!

24

f 5( )(x) = 4!
x5  gives f 5( )(2) = 4!

25

	 4.	 It looks like the signs alternate with the even derivatives being negative and the odd 
derivatives being positive.

	 5.	 The denominators are 2 raised to the same power as the order of the derivative and the 
numerator is the factorial for one less than the order of the derivative.

	 6.	 This all works except for the case in which n = 0. So we “cheat” and separate the first 

term from the rest of the batch. ln(x) = ln(2) + −1( )n + 1
n−1( )!

2n n!
x − 2( )n

n = 1

∞

∑ = −1( )n + 1

2n n
x − 2( )n

n = 1

∞

∑  

= ln(2) + 1
2 x − 2( ) − 1

22⋅2
x − 2( )2

+ ... + −1( )n + 1

2n⋅n
x − 2( )n .
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Example 9: The Taylor Series for a certain function f converges to f(x) for all x in the interval of 
convergence. The nth derivative at x = 0 is given by:

f n( ) 0( ) = −1( )n
n + 1( )!

4n n + 2( )2  for all n

Write a fourth degree Taylor polynomial, T(x), for f about x = 0 given that f(0) = 8 and determine 
the radius of convergence for f about x = 0.

Solution:

	 1.	 We have f(0) = 8, f '(0) = −1 2( )!
4 9( ) = −1

9 , f ''(0) = 1 3( )!
16 16( ) = 3

128 , f '''(0) = −1 4( )!
64 25( ) = −3

200 , and 

f 4( )(0) = 1 5( )!
256 36( ) = 5

384 .

	 2.	 The coefficients for the terms in the polynomial are f n( ) 0( )
n!

, so the fourth degree Taylor 

polynomial is T x( ) = 8 − 1
18 x + 3

256 x2 − 1
400 x3 + 5

9216 x4 .

	 3.	 Use the Ratio Test to determine the radius of convergence. Remember to include the 
terms for x as part of this test.

	 4.	 lim
n→∞

n + 2( )xn + 1

4n + 1 n + 3( )2 ×
4n n + 2( )2

n + 1( )xn  = lim
n→∞

n + 2
n + 1

n + 2
n + 3( )2

x
4  = x

4 <1 , which becomes |x| < 4. The 

radius of convergence is 4.

BE AWARE

You do not need to check the endpoints of the interval because you were 
not asked to determine the interval of convergence.

Error Estimates for the MacLaurin and  
Taylor Series

We saw in Chapter 15 that the error estimate for the sum of an alternating series is S − sn < an + 1  
where:

•	 S is the true sum.

•	 sn is the sum of the first n terms.

•	 an + 1 is the next term in the series.
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In the same way, the difference between the true value of f(x0) and T(x0), the Taylor approxima-

tion for f(x0), is given by f x0( ) − Tn x0( ) < Tn + 1 x0( ) , where Tn + 1 x0( ) = f n + 1( ) x0 − c( )n + 1

n + 1( )! . This is 

called the Lagrange Error Estimate for the Taylor and MacLaurin Series.

DEFINITION

The Lagrange Error Estimate for the Taylor and MacLaurin Series is 

f x0( ) − Tn x0( ) < Tn + 1 x0( ) , where Tn + 1 x0( ) = f n + 1( ) x0 − c( )n + 1

n + 1( )! .

Example 10: How many terms are needed to approximate sin π
3( )  so that the error is less than 

0.000001?

Solution:

	 1.	 We know that for all derivatives of sin(x), f (n) (x) ≤1 .

	 2.	 Therefore, Tn + 1 x0( ) ≤ x0 − c( )n + 1

n + 1( )! .

	 3.	 The sine function is built about x = 0, so we know that c = 0. This gives 

Tn + 1
π
3( ) ≤ π

3( )n + 1

n + 1( )! .

	 4.	 Use the list and spreadsheet feature on your calculator to determine the number of terms 

needed before 
π
3( )n + 1

n + 1( )!  is less than 0.000001.

	 5.	 The value of this expression after 9 terms is approximately 4 × 10–7.

Example 11: The Taylor Series for f (x) = e− x2

 is T(x) = 1− x2 + x4

2 − x6

6 + ... + −1( )n
x2n

n! .  

Use the first two terms of this series to compute e− x2

dx
0

1
2∫ and explain why it differs from 

f (x)dx
0

1
2∫  by less than 1

200 .

Solution: The approximation is 1− x2 dx
0

1
2∫ = x − x3

3 0

1
2 = 1

2 −
1
24 = 11

24 . The maximum error is less 

than the next term of the series when evaluated at 1
2 , 

1
2( )5

10 = 1
320 < 1

200 .
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The Least You Need to Know
•	Functions are approximated by power series on your calculator.

•	To determine the radius of convergence and interval of convergence for power 
series, use the Ratio Test.

•	To estimate the number of terms needed to approximate a functional value within 
a given tolerance, use the Lagrange Error Estimate.

YOU’VE GOT PROBLEMS

Problem 5: The MacLaurin Series for f (x) = 1
1+ x4  is 

T(x) = 1− x4 + x8 − x12 + ... + −1( )n
x4n  Use the first three terms of this series 

to approximate f (x)dx
0

1
2∫  and explain why this estimate is within 1

10000  of 

the exact value.



CHAPTER

17
Calculus II Final Exam

In This Chapter
•	Practicing what you’ve 

learned

•	Testing your knowledge 
of the formulas and their 
applications

•	Checking your work 
with the end-of-chapter 
answers

Here is your opportunity to test yourself on the material we 
have covered in this book. If you find yourself struggling 
with a problem, skip it and finish the rest of the problems that 
go with your chapter. When you’ve finished those problems 
you can answer, do not look at the solutions yet. Go back to 
the chapter material and look at the material relating to the 
problem(s) that gave you trouble, and maybe you’ll be better 
able to answer the problem(s). After you’ve done this, even if 
you could not complete all the problems, look at the solutions 
to see how you have done. Above all, have fun!
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Some thoughts for how you can work through the problems:

•	 When appropriate, draw a picture on paper or use your graphing calculator to get a 
visualization of the problem.

•	 Write appropriate formulas on your paper as you work through the problems.

•	 Try to work out the problems by hand first. Use technology to evaluate the derivative or 
integral only when you can’t do the problem with pen and paper.

Chapter 1
	 1.	 Convert 120° to radians.

	 2.	 Given cos(B) = −3
8  and sin(B) > 0, find cos(2B).

	 3.	 Simplify ln e5x sin2 x( )
x + 3( )2

x − 1

⎛
⎝⎜

⎞
⎠⎟

.

	 4.	 Rewrite the parametric equations x = 5tan(t) and y = 3sec(t) in terms of x and y only.

	 5.	 Find the rectangular coordinates for the point with polar coordinates 12, −3π
4( ) .

	 6.	 For what values of θ in the interval [0, 2π], does the graph of r = 2 – 4cos(θ) pass through 

the origin of the polar coordinate system?

	 7.	 Find the sum of the infinite series 24 – 12 + 6 – 3 + 1. 5 ….

	 8.	 Rewrite 11x + 50
x2 + 9x + 20

 in terms of its component fractions.

Chapter 2
For Problems 9 through 12, evaluate the given limits.

	 9.	 lim
x → 3

x2 + 4x − 21
x2 − 9

	 10.	 lim
x → 2

g x( )  where g x( ) =
2x − 1 x < 2
1
2

x2 + 1 x > 2

⎧

⎨
⎪

⎩
⎪

	 11.	 lim
h → 0

cos x + h( ) − cos x( )
h

	 12.	 lim
x →∞

4x3 − 5x2 + 12x − 1000
8100 + 9x −15x2 − 12x3
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For Problems 13 through 16, find the derivative for each of the functions.

	 13.	 f(x) = x2ln(cos(x))

	 14.	 g x( ) =
tan x2( )
sin 2x( )

	 15.	 k x( ) = sin−1 ecos x( )( )
	 16.	 p x( ) = x3 + 53 + 1

6x − 2

	 17.	 Find dy
dx  if tan(x2y) + xy2 = 0.

	 18.	 A rectangle is inscribed within the graph of y = e− x2

. One side of the rectangle lies on 

the x-axis and two of the vertices lie on the graph. Determine the maximum possible 
area of the rectangle.

	 19.	 A rectangle with fixed area of 80 square units has a width that increases at the rate of  
4 units per minute.

		  (a)	Determine the rate of change of the length at the instant the width is 8 units.

		  (b)	�Determine the rate of change of the length of the diagonal at the instant the width is 
8 units.

Chapter 3
	 20.	 Given f '(x) = 9x4 + 2x − 3 , find f(x).

	 21.	 Given dy
dx = 6x + 53 + e4x − 3 , find an expression for y.

	 22.	 Evaluate 5cos(x) + 1
1+ x2 − 1dx∫ .

	 23.	 Evaluate 1
1− x2

+ 1
1− x

dx∫ .

	 24.	 Given g '(x) = 4
x + 9 − x + 3  and g(–8) = 4, find the function g(x).

	 25.	 Evaluate 3 + x
1+ x2 dx∫ .

	 26.	 Evaluate x + cos(x)dx
0

π

∫ .

	 27.	 If g(x) = sin3(t)cos2(t)dt
0

x

∫ , find g'(x).
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	 28.	 A particle moves along a horizontal line with velocity v(t) = 4 t + 3 + t . What is the 

displacement of the object over the time interval 0 ≤ t ≤ 6 ?

	 29.	 Evaluate sin(ln(x − 3))
x − 3 dx

4

6

∫ .

Chapter 4
	 30.	 Evaluate tan(x) − 3x dx

−π
3

0

∫ .

	 31.	 Use the midpoint method to estimate 2x + 1dx
0

4

∫  with 10 subdivisions.

	 32.	 Use Simpson’s Rule to estimate 2x + 1dx
0

4

∫  with 10 subdivisions.

	 33.	 Find the area bounded between the graphs of y = 4 – x2 and y = 2x + 3.

	 34.	 Find the area bounded by the graphs of y = x3 and y = 2x + 1.

Chapter 5
For Problems 35 through 40, let R be the region bounded by y = x + 1 , x = 3, and x = 8.

	 35.	 A solid is formed whose cross sections perpendicular to the x-axis are squares. Find the 
volume of the solid.

	 36.	 A solid is formed whose cross sections perpendicular to the x-axis are equilateral  
triangles. Find the volume of the solid.

	 37.	 A solid is formed whose cross sections perpendicular to the x-axis are semicircles. Find 
the volume of the solid.

	 38.	 A solid is formed whose cross sections perpendicular to the x-axis are isosceles right 
triangles with the hypotenuse in the plane of R. Find the volume of the solid.

	 39.	 R is rotated about the x-axis. Find the volume of the solid formed.

	 40.	 R is rotated about the y-axis. Find the volume of the solid formed.
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For Problems 41 through 44, let Q be the region bounded by the graphs of f(x) = x3 and g(x) = 9x.

	 41.	 Find the volume of the solid formed when Q is rotated about the x-axis.

	 42.	 Find the volume of the solid formed when Q is rotated about the y-axis.

	 43.	 Find the length of the arc along f(x) from x = –3 to x = 3.

	 44.	 Find the surface area of the solid formed when Q is rotated about the x-axis.

Chapter 6
	 45.	 Evaluate ex (2x + 1)2 dx∫ .

	 46.	 The region bounded by the graph of f(x) = 2 x3
, the x-axis, x = 1, and x = 9 is rotated 

about the x-axis. Find the surface area of the solid formed.

	 47.	 Evaluate x2 sin(2x)∫ dx .

	 48.	 Evaluate e4x cos(5x)dx∫ .

	 49.	 Evaluate sec7(x)dx∫ .

Chapter 7
For Problems 50 through 55, evaluate each of the integrals.

	 50.	 81x2 + 100 dx∫
	 51.	 81x2 − 100 dx∫
	 52.	 100 − 81x2 dx∫
	 53.	 sin3(2x)cos4(2x)dx∫
	 54.	 tan3(x)sec4(x)dx∫
	 55.	 tan4(x)sec(x)dx∫
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Chapter 8
Evaluate each of the following integrals.

	 56.	
4

x2 − 4
dx∫

	 57.	
x + 2

(x − 1)(x − 2)2 dx∫

	 58.	
2x + 1

(x − 4) 4x2 + 9( ) dx∫

Chapter 9
	 59.	 Evaluate xe−4x2

dx
0

∞

∫  if it exists.

	 60.	 Evaluate 3
2x2 − 3x

dx
1

4

∫  if it exists.

	 61.	 Determine if 4
3x2 + 5x + 123

dx
1

∞

∫  is convergent or divergent.

	 62.	 R is the region bounded by y = 1
x  and the x-axis on the interval [1,∞). What is the  

volume of the solid formed when rotated about the x-axis?

Chapter 10
	 63.	 Find the equation of the line tangent to the curve defined by x = cos(3t) and y = sin(5t) at 

t = π
4 .

	 64.	 Determine the concavity of the curve defined by x = cos(3t) and y = sin(5t) at t = π
4 .

	 65.	 Point P is located on the graph of x = 1
2 t2  and y = 1

12 (8t + 17)3/2 . Point P moves along 

the curve at a rate of 1 unit per second. How far does P move from t = 0 to t = 4?
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Chapter 11
	 66.	 Find the equation of the line tangent to r = 4cos(3θ) at θ = π

3 .

For Problems 67 through 69, use the information in the following graph of r =θ + cos 2θ( )  on the 
interval 0 ≤θ ≤ π .

	 67.	 Write an equation for the line tangent to this curve at θ = π
4 .

	 68.	 Determine the length of this curve.

	 69.	 Determine the area bounded by this curve and the horizontal axis.

Chapter 12
	 70.	 Given two vectors a = (3,6) and b = (1,–5), find the value of a + b and the measure of the 

angle between this sum and a.

	 71.	 An object moves in the plane with velocity vector (4 – 3sin(2t),3 – cos(t)). Determine the 
velocity, speed, and acceleration of the particle at t = 5π

6 .

	 72.	 The position of a particle moving in the coordinate plane for any time on the interval 
[0, 2π] is given by x(t) = 2cos(t) + 1 and y = sin(2t). Determine the displacement of the 
particle on the interval [0, 2π]. What is the distance traveled by the particle over the 
same interval?
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Chapter 13
	 73.	 Find the particular solution to the differential equation 

dy
dx = 1− y2

ex  if y(0) = 0.

	 74.	 Solve the general solution to the differential equation dy
dt = 4y(80 − y) . Consider the  

differential equation given by dy
dx = xy

2 . Use this to answer questions 75 and 76.

	 75.	 On the axes provided, sketch a slope field for the given differential equation through the 
nine points indicated.

	 76.	 Let y = f(x) be the particular solution to the differential equation with the initial condi-
tion f(3) = 5. Use Euler’s Method starting at x = 3 with a step size of 0.1 to approximate 
f(3.2).

	 77.	 Find the general solution dy
dx + sec(x)y = cos(x) + 3  for 0 < x < π

2 .

Chapter 14
	 78.	 Does the sequence an = 8 − 12n + 10n3

190 + 80n2 − n3  converge or diverge?

	 79.	 Does the sequence an = ln(n)
n  converge or diverge?

	 80.	 Does the sequence an = (−1)n

n 2 + 4  converge or diverge?

	 81.	 Is the sequence n
10 + n{ }  strictly increasing, increasing, strictly decreasing, or 

decreasing?

x

y

-1

1

2

3

1
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Chapter 15
	 82.	 Determine whether 

n + 10
n

n = 1

∞

∑  converges.

	 83.	 Determine whether 8 − 12n + 10n2

190 + 80n2 − n4

n = 1

∞

∑  converges.

	 84.	 Determine whether 9 n−23

n = 1

∞

∑  converges.

	 85.	 Determine whether 4n

n!
n = 1

∞

∑  converges.

	 86.	 Determine whether 
−1( )n

n

en2

n = 1

∞

∑  is absolutely convergent, conditionally convergent, or 

divergent.

	 87.	 Determine the number of terms needed so that the maximum error for the sum 

−1( )n
4n

n!
n = 1

∞

∑  is less than 0.001.

Chapter 16
	 88.	 Find the interval of convergence for the series xn

n4n

n = 0

∞

∑ .

	 89.	 Find the interval of convergence for the series 
x − 5( )n

n2

n = 0

∞

∑ .

	 90.	 Express e–3x as a series about x = 0.

	 91.	 Find the MacLaurin Series for sin(x2).

	 92.	 Determine the first three terms for the MacLaurin Series for tan(x).

	 93.	 Determine the degree three Taylor polynomial for sin(x) about x = π
4 .

	 94.	 What is the maximum error for computing the value of e using the first four terms of the 
MacLaurin Series for ex?
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Solutions

Chapter 1

	 1.	 2π
3

	 2.	 − 23
32

	 3.	 5x + 2ln(sin(x)) – 2ln(x + 3) – ½ln(x – 1)

	 4.	 y2

9 − x2

25 = 1

	 5.	 −6 2,−6 2( )
	 6.	 π

3 , 5π
3

	 7.	 16

	 8.	 6
x + 4 + 5

x + 5

Chapter 2

	 9.	 5
3

	 10.	 3

	 11.	 –sin(x)

	 12.	 −1
3

	 13.	 2xln(cos(x)) – x2tan(x)

	 14.	 2xsec2 (x2 )sin(2x) − 2tan(x2 )cos(2x)
sin2 (2x)

	 15.	
−sin(x)ecos( x )

1− e2cos( x )

	 16.	 x2 x3 + 5( )−2
3 − 3 6x − 2( )−3

2

	 17.	
dy
dx = −

2xysec2 x2 y( ) + y2

x2 sec2 x2 y( ) + 2xy
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	 18.	 2e−1
2

	 19.	 (a)	–5

		  (b)	 −9
41

Chapter 3

	 20.	 f (x) = 9
5 x5 + 1

3 2x − 3( ) 3
2 + C

	 21.	 y = 1
8 6x + 5( )4

3 + 1
4 e4x − 3x + C

	 22.	 5sin(x) + tan–1(x) – x + C

	 23.	 sin−1(x) − 2 1− x + C

	 24.	 g(x) = 4ln x + 9 − 1
2 x2 + 3x + 60

	 25.	 3tan−1(x) + 1
2 ln 1+ x2( ) + C

	 26.	 π 2

2

	 27.	 sin3(x)cos2(x)

	 28.	 76.14

	 29.	 1 – cos(ln(3))

Chapter 4

	 30.	 0.257

	 31.	 8.671

	 32.	 8.666

	 33.	 3.771

	 34.	 2.818
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Chapter 5

	 35.	 65
2

	 36.	
65 3

8

	 37.	 65π
16

	 38.	 65
8

	 39.	 65π
2

	 40.	 450.714 (or 2152π
15 )

	 41.	 5832π
7

	 42.	 648π
5

	 43.	 55.316

	 44.	 4589.637

Chapter 6

	 45.	 4x2ex – 4xex + 5ex+ C

	 46.	 9231.635

	 47.	 −1
2 x2 cos(2x) + 1

2 xsin(2x) + 1
4 cos 2x( ) + C

	 48.	 4
41 e4x cos(5x) + 5

41 e4x sin(5x) + C

	 49.	 1
6 sec5(x) tan(x) + 5

24 sec3(x) tan(x) + 5
16 sec(x) tan(x) + 5

16 ln | sec(x) + tan(x) | + C

Chapter 7

	 50.	
1
2 x 81x2 + 100 + 50

9 ln 81x2 + 100 + 9x( ) + C

	 51.	
1
2 x 81x2 − 100 − 50

9 ln 81x2 − 100 + 9x( ) + C

	 52.	 1
2 x 100 − 81x2 + 50

9 sin−1 9x
10( ) + C
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	 53.	 1
14 cos7(2x) − 1

10 cos5(2x) + C

	 54.	 1
6 tan6(x) + 1

4 tan4(x) + C

	 55.	 1
4 sec3(x) tan(x) − 5

8 sec(x) tan(x) + 3
8 ln sec(x) + tan(x) + C

Chapter 8

	 56.	 ln x − 2
x + 2 + C

	 57.	 3ln x − 1
x − 2 − 4

x − 2 + C

	 58.	
9

146 ln (x − 4)2

4x2 + 9
+ 1

219 tan−1 2x
3( ) + C

Chapter 9

	 59.	 1
8

	 60.	 Limit does not exist, integral is divergent.

	 61.	 Divergent (p-test with p = 2
3 )

	 62.	 π

Chapter 10

	 63.	 y + 2
2 = 5

3 x + 2
2( )

	 64.	
20

9 2

	 65.	
ln 65 + 8( ) 17 − 4( )( )

2 + 4 65 − 2 17  (or 24.3437 for those of you who use your calculator)

Chapter 11

	 66.	 y = − 3
3 x − 4( )

	 67.	 y − π 2
8 = 4 − π

π + 4 x − π 2
8( )
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	 68.	 6.954

	 69.	 2π 3 + 3π
12  (or 5.953)

Chapter 12

	 70.	 a + b = (4,–1); 49.4°

	 71.	 Velocity = 4 + 3 3
2 ,3+ 3

2( ) ; speed = 7.647; acceleration = −3, 1
2( )

	 72.	 Displacement = 0; distance = 12.194

Chapter 13

	 73.	 y = sin −e− x + 1( )
	 74.	 y = 80 Ae320 t

1 + Ae320 t

	 75.	

	 76.	 6.64125

	 77.	 y = x − cos(x) + 3ln |sec2 (x) + sec(x) tan(x)| + C
sec(x) + tan(x)
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Chapter 14
	 78.	 Converges

	 79.	 Converges

	 80.	 Converges

	 81.	 The sequence is strictly increasing because the corresponding derivative is always 
positive.

Chapter 15

	 82.	 Compare with 1
n

n = 1

∞

∑ , divergent

	 83.	 Compare with 1
n2

n = 1

∞

∑ , convergent

	 84.	 p-series with p < 1, diverges

	 85.	 Use Ratio Test, converges

	 86.	 Absolutely convergent, use Integral Test

	 87.	 14 terms

Chapter 16

	 88.	 –4 ≤ x < 4

	 89.	 4 ≤ x ≤ 6

	 90.	
−1( )n

3n

n! xn

n = 0

∞

∑

	 91.	
−1( )n

x4n + 2

2n + 1( )!
n = 0

∞

∑
	 92.	 x + x3

3 + 2x5

15

	 93.	 2
2 + 2

2 x − π
4( ) − 2

4 x − π
4( )2

− 2
12 x − π

4( )3

	 94.	 0.0083 (Use e < 3.)





APPENDIX

A
Solutions to  

“You’ve Got Problems”

All the answers to the problems that you found in the “You’ve Got Problems” sidebars throughout 
the book are listed here, organized by chapter.

Chapter 1
	 1.	 Using the relationship that 180° corresponds to π radians, set up the proportion 30

180 = r
π  

to arrive at r = π6 .

	 2.	 You know that sin(2A) = 2sin(A)cos(A). Use the Pythagorean identity sin2(A) + cos2(A) =  

1 to solve for the value of cos(A). 1
10( )2

 + cos2(A) = 1 becomes 1
10  + cos2(A) = 1 so 

cos2(A) = 9
10  and cos(A) = −3

10 . Therefore, sin(2A) = 2 1
10( ) −3

10( ) = −3
5 .

	 3.	 Separate the logarithm of a quotient into the difference of logarithms (change the square 

root to exponential form, too) ln x+1
x−2( )3

⎛

⎝
⎜

⎞

⎠
⎟= ln x +1( ) 1

2( )− ln x −2( )3( ) . Use the rule for 

logarithms of powers to get ln x+1
x−2( )3

⎛

⎝
⎜

⎞

⎠
⎟= 1

2 ln x +1( )−3ln x −2( ) .

	 4.	 52 + 5 3( )2
=10  and θ = tan−1 5 3

5( ) = π
3  (or 1.05), so the coordinates are 10, π3( ) .

	 5.	 The common ratio for the series is 8
12 =

16
3
6 =

32
9

16
3

= 2
3 . The first term of the series is 12, so 

the sum of the infinite geometric series is S = 12
1−2

3
= 12

1
3

= 36 .
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	 6.	 Factor the denominator to (x + 5)(x – 1), and rewrite the fraction as 
x −19

x2 + 4x − 5  = A
x + 5 + B

x −1 . 
Multiply by the common denominator: x – 19 = A(x – 1) + B(x + 5).

		  Set x = 1: –18 = 6B so B = –3.

		  Set x = –5: –24 = –6A so A = 4.

		  Therefore, x −19
x2 + 4x − 5

 = 4
x + 5 −

3
x −1 .

Chapter 2
	 1.	 You’ll get the indeterminate form 0

0  when you substitute x = –2. Factor and reduce the 
fractional expression and evaluate the limit lim

x →−2

−(2x − 5)
x − 3  to get −9

5 .

	 2.	 Use the product rule for the first term in the function, p'(x) = (1)(ln(x)) + (x) 1
x( )  – 1 = 

ln(x) + 1 – 1 = ln(x).

	 3.	 Find the first derivative by using the chain rule and the trigonometric identity for the 
sine of the double angle, k'(x) = 2sin(3x)cos(3x)(3) = 3sin(6x). The second derivative is also 
found using the chain rule, k''(x) = 3cos(6x)(6) = 18cos(6x).

	 4.	 Evaluate the function to get the point through which the line passes, w(2) = 5. Find the 

derivative of w(z) using the quotient rule, w'(z) = (2z )(3z − 5) − ( z2 +1)(3)
(3z − 5)2 , and evaluate it at  

z = 2, w'(2) = –11. The equation of the line is w – 5 = –11(z – 2).

	 5.	 Find the value of the first derivative. 6x − x dy
dx + y( )−8y dy

dx = 0  becomes 

6x − y − x +8y( ) dy
dx

= 0 , so 
dy
dx = 6x − y

x + 8 y . The derivative of this statement 

is 
d 2 y
dx2 =

6 − dy
dx

⎡
⎣

⎤
⎦ x + 8 y( ) − 6x − y( ) 1+ 8dy

dx
⎡
⎣

⎤
⎦

x + 8 y( )2 . Substitute what was found for dy
dx  to get 

d 2 y
dx2 =

6 − 6 x−y
x+8 y

⎡
⎣

⎤
⎦ x + 8 y( ) − 6x − y( ) 1+ 8 6 x − y

x + 8 y( )⎡
⎣⎢

⎤
⎦⎥

x + 8 y( )2 . Simplification beyond this is not necessary (and just 

plain tedious).

	 6.	 f'(c) = 3c2 and f (5) − f (1)
5−1 = 128 − 4

4 = 31 , so 3c2 = 31 implies that c = 31
3 w  (but not – 31

3 w  
because that is not in the interval [1,5]).
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	 7.	 f'(x) is equal to 0 when x is approximately –6.7, 0, and approximately 3.7. f'(x) < 0 when x 
< –6.7 and when 0 < x < 3.7. Also, f'(x) > 0 when –6.7 < x < 0 and x > 3.7. Therefore, the 
graph of f(x) has relative minima at x = –6.7 and x = 3.7 and a relative maximum at x = 0.

	 8.	 Plug in 0 to both the numerator and denominator to get the indeterminate form 0
0 .  

Differentiate both the numerator and denominator to get the new limit problem 
lim
x → 0

sin(x)
cos(x) . Substitute 0 for x to get the answer 0.

	 9.	 The width of the rectangle is 2x, and the height of the rectangle is 4 – x2, so the area 
function is A(x) = 8x – 2x3. Differentiate this function to get A'(x) = 8 – 6x2. Set A'(x) = 0 

to get x = 
2
3 . Therefore, point A has coordinates 2

3
, 8

3( ) .

y = f′(x)

-8 -6 -4 -2
-5

5

10

15

20

25

30

-10

2 4
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	 10.	 This is a two-part answer:

		  (a)	�When X is 9 feet from the building, Y is 12 feet above 0. x2 + y2 = 225 yields 

2x dx
dt + 2y dy

dt = 0  or 
dy
dt = −x

y
dx
dt . Also, dx

dt = 1
2 . dy

dt = −9
12( ) 1

2( ) = −3
8  feet per second.

		  (b)	�The area of the triangle is A = ½xy, so use the product rule to get dA
dt = 1

2 x dy
dt + 1

2 y dx
dt . 

Substitute values to find that dA
dt = 1

2 9( ) −3
8( ) + 1

2 12( ) 1
2( ) = 21

16  feet squared per second.

Chapter 3
	 1.	 The antiderivative for 8x3 is 8 1

4 x4( )  = 2x4. The antiderivative for 5x is 5 1
2 x2( )  = 5

2 x2 .  

Rewrite 1
x + 2  as x + 2( )

−1
2 . The antiderivative is 1

1
2

x + 2( ) 1
2 = 2 x + 2 . Adding the 

constant of integration gives k(x) = 2x4 + 5
2 x2 − 2 x + 2 + C .

	 2.	 Let u = sin(x3) because it represents the innermost of the composed functions. du = 

3x2cos(x3)dx, so 1
3 du = x2 cos x3( )dx . The original problem x2 cos x3( )e

sin x3( ) dx∫  

becomes 1
3 eu du∫  and this equals 1

3 eu . Therefore, x2 cos x3( )e
sin x3( ) dx∫  = 1

3 e
sin x3( ) +C .

	 3.	 Let u = esin(2x) + 1 and du = 2 cos(2x)esin(2x), so ½du = cos(2x)esin(2x). The bounds of  

integration become 2 and e + 1. The original problem 
cos(2x)esin( 2 x )

esin( 2 x ) +10

π
4∫ dx  becomes 

1
2

1
u2

e +1
∫ du  = 1

2 ln |u |
2

e +1  = ½ln(e + 1) – ½ln(2) or ln e +1
2 .

	 4.	 If G(x) is the antiderivative for sin3(t) then f(x) = G ex2( ) −G sin−1 x( )( ) . This makes  

f'(x) = G ' ex2( ) ex2( )(2x) −G ' sin−1(x)( ) 1
1− x2( )  = 

2xex2

sin3 ex2( ) − sin3 sin−1(x)( ) 1
1− x2( )  = 2xex2

sin3 ex2( ) − x3

1− x2 .
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Chapter 4
	 1.	 The width of each interval is 5−1

20  = 0.2. Use the sequence command seq(x,x,1.1,4.9,0.2) to 
fill the input list.

		  The estimate for the area under the curve is 453.374. (The true area is  
x4 − 5x2 + 9dx

1

5
∫  = 454.133.)
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	 2.	 A sketch of the velocity functions shows that the object changes directions four times 
during this interval. It moves forward on [0,2.387] and [6,9.613], and it moves in the 
reverse direction on [2.387,6] and [9.613,12].

		  The total displacement is 4cos π t
4( ) + 2sin π t

3( )dt
0

12
∫  = 0. The object returns to its  

starting point. The total distance traveled is 4cos π t
4( ) + 2sin π t

3( )dt
0

2.387
∫ + 4cos π t

4( ) + 2sin π t
3( )dt

6

9.613
∫ − 4cos π t

4( ) + 2sin π t
3( )dt − 4cos π t

4( ) + 2sin π t
3( )dt

9.613

12
∫2.387

6
∫

4cos π t
4( ) + 2sin π t

3( )dt
0

2.387
∫ + 4cos π t

4( ) + 2sin π t
3( )dt

6

9.613
∫ − 4cos π t

4( ) + 2sin π t
3( )dt − 4cos π t

4( ) + 2sin π t
3( )dt

9.613

12
∫2.387

6
∫  = 

43.382 units.

	 3.	 The graphs of the functions show that they intersect at three points, –2.21, 1.1, and 4.11. 
The area bounded by these two functions is f (x) − g(x)dx

−2.21

1.1
∫ + g(x) − f (x)dx

1.1

4.11
∫  = 

50.1501.

	 4.	 The graph of the two functions show that they intersect at +1.18. The area bounded by 

these two graphs is 4 − x2 − sec(x)dx
−1.18

1.18
∫  = 5.105.
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	 5.	 The width of each partition will be 0.5, and the partitions will be [0, 0.5], [0.5, 1], [1, 1.5], 

[1.5, 2], [2, 2.5], and [2.5, 3]. The approximation for x3 + 4 dx
0

3
∫  using Simpson’s Rule 

is 0.5
3 f (0) + 4f (0.5) + f (1)( ) + f (1) + 4f (1.5) + f (2)( ) + f (2) + 4f (2.5) + f (3)( )⎡
⎣

⎤
⎦  = 9.279.

Chapter 5
	 1.	 This is a four-part answer:

		  (a)	�Each side of the square has length x +1 , so the volume of the solid is x +1dx
0

4
∫  = 

12.

		  (b)	�The diameter of each semicircle is x +1 , so the volume of the solid is 
π
8 x +1dx

0

4
∫ = 3π

2 .

		  (c)	�Each side of the triangle has length x +1 , so the volume of the solid  

is 
3

4 x +1dx
0

4
∫ = 3 3 .

		  (d)	�Each leg of the right triangle has length 
x +1

2
, so the volume of the solid 

is 
1
4 x +1dx

0

4
∫ = 3 .

	 2.	 The cross section of this solid of revolution will be a washer. The radius of the larger 

circle is 4 − 4
3 x( ) + 2  or 6 − 4

3 x , and the radius of the smaller circle is 2. The volume of 

the solid formed is π 6 − 4
3 x( )2

− 4dx
0

3
∫  = 40π.
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	 3.	 When the region R is rotated around the x-axis, any cross section of the solid formed 
will be a disk with radius 1

1+ x2 . Therefore, the volume of the solid formed will be 

π 1
1+ x2 dx

0

1
∫ = π tan−1(x)

0

1
= π 2

4
.

	 4.	 Use the cylindrical shell method with radius = x and height = (4x – x2) – 2x = 2x – x2. 

The volume of the solid formed is 2π x(2x − x2 )dx
0

2
∫  = y2 =16 − 16x2

25 .

	 5.	 Rewrite the equation as y2 =16 − 16x2

25  so that 2y dy
dx = −32x

25
 making dy

dx = −16x
25 16 − 16 x2

25

. 

Simplify this fraction to be dy
dx = −16x

5 400 −16x2 . This makes 
dy
dx( )2

= 256x2

25 400 −16x2( ) . The length 

of the arc in the first quadrant from x = 0 to x = 5 is 1+ 256x2

25 400 −16x2( )0

5
∫ dx  = 7.0904.
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	 6.	 dy
dx = 4 − 2x  giving the surface area 2π 4x − x2( )0

4
∫ 1+ (4 − 2x)2 dx  = 127.121 (which is 

an approximation for the exact answer 
65 ln 17 + 4( )( ) − 65 ln 17 − 4( )( ) + 248 17( ) π

32
).

Chapter 6
	 1.	 Let u = x and dv = 36(9x +1)

1
3 dx . Then du = dx and v = 3(9x +1)

4
3 . 36x 9x +13 dx∫  

= 3x(9x +1)
4

3 − 3 (9x +1)
4

3 dx∫  = 3x(9x +1)
4

3 − 1
7 9x +1( ) 7

3 + C .

	 2.	 Solution 1 (by formula):

		  Let u = x2 and dv = 8x + 3dx  This makes du = 2xdx and v = 1
12 8x + 3( ) 3

2
.

		  x2 8x + 3∫ dx  = 1
12 x2 8x + 3( ) 3

2 − 1
6 x∫ 8x + 3( ) 3

2 dx

		  Let u = x and dv = 8x + 3( ) 3
2 dx . This makes du = dx and v = 1

20 8x + 3( ) 5
2
.

		  x2 8x + 3∫ dx  = 1
12 x2 8x + 3( ) 3

2 − 1
6

1
20 x(8x + 3)

5
2 − 1

20 (8x + 3)
5

2 dx∫( )
		  x2 8x + 3∫ dx  = 1

12 x2 8x + 3( ) 3
2 − 1

120 x(8x + 3)
5

2 + 1
120 (8x + 3)

5
2 dx∫

		  x2 8x + 3∫ dx  = 1
12 x2 8x + 3( ) 3

2 − 1
120 x(8x + 3)

5
2 + 1

3360 (8x + 3)
7

2 + C
		  Solution 2 (tabular):

		  Let u = x2 and dv = 8x + 3dx .

u dv +1

x2 8x + 3dx 1

2x 1
12 8x + 3( ) 3

2 –1

2 1
240 8x + 3( ) 5

2 1

0 1
6720 8x + 3( ) 7

2 –1

1

		  x2 8x + 3∫ dx  = 1
12 x2 8x + 3( ) 3

2 (1) + 1
240 (2x) 8x + 3( ) 5

2 (−1) + 2
6720 8x + 3( ) 7

2 (1) + C

		  x2 8x + 3∫ dx  = 1
12 x2 8x + 3( ) 3

2 − 1
120 x(8x + 3)

5
2 + 1

3360 (8x + 3)
7

2 + C
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	 3.	 Let u = ln(x) and dv = xdx . This gives du = 1
x dx  and v = 2

3 x 3
2 .

	 	 x ln(x)dx∫  = 2
3 x 3

2( ) ln(x) − 2
3

1
x( ) x 3

2( )dx∫  = 2
3 x 3

2 ln(x) − 2
3 x 1

2 dx∫  = 

2
3 x 3

2 ln(x) − 2
3

2
3 x 3

2( ) + C

		  x ln(x)dx∫  = 2
3 x 3

2 ln(x) − 4
9 x 3

2 + C

	 4.	 If u = e2x and dv = cos(3x)dx, then du = 2e2xdx and v = 1
3 sin(3x) .

		  e2x cos(3x)dx∫  = 1
3 e2x sin(3x) − 2

3 e2x sin(3x)dx∫
		  A second application of integration by parts with u = e2x and dv = sin(3x)dx gives du = 

2e2xdx and v = −1
3 cos(x) .

		  e2x cos(3x)dx∫  = 1
3 e2x sin(3x) − 2

3
−1
3 e2x cos(3x) − −2

3 e2x cos(3x)dx∫( )  = 
1
3 e2x sin(3x) + 2

9 e2x cos(3x) − 4
9 e2x cos(3x)dx∫

		  Add 4
9 e2x cos(3x)dx∫ to both sides of the equation to get 13

9 e2x cos(3x)dx∫  = 
1
3 e2x sin(3x) + 2

9 e2x cos(3x) . Multiply both sides of the equation by 9
13 .

		  e2x cos(3x)dx∫  = 9
13

1
3 e2x sin(3x) + 2

9 e2x cos(3x)( )  = 3
13 e2x sin(3x) + 2

13 e2x cos(3x)+C

Chapter 7
	 1.	 Let 5x = 7tan(θ) so that dx = 7

5 sec2(θ )dθ  and 49 + 25x2 = 7sec(θ ) .

		  49 + 25x2 dx∫  becomes 7sec(θ )( ) 7
5 sec2(θ )dθ( ) = 49

5 sec3(θ )dθ∫∫  = 
49
5

1
2 sec(θ ) tan(θ ) + 1

2 ln | sec(θ ) + tan(θ ) |( ) .

		  Return to the original variable and include the bounds of integration.

		  49 + 25x2 dx∫  = 49
10

49 + 25x2

7( ) 5x
7( ) + ln | 49 + 25x2

7( ) + 5x
7( ) |⎛

⎝
⎜

⎞
⎠
⎟

0

10

 = 

49
10

2549
7( ) 50

7( ) + ln | 2549
7 + 50

7 |( )− 1( )(0) + ln |1+ 0 |( )⎡
⎣⎢

⎤
⎦⎥

		  = 5 2549 + 49
10 ln | 50 + 2549

7 |
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	 2.	 Let 3x = 5sec(θ) so that dx = 5
3 sec(θ ) tan(θ )dθ  and 9x2 − 25 = 5tan(θ ) .

		  9x2 − 25 dx∫  becomes 25
3 sec(θ ) tan2(θ )dθ∫  = 25

3 sec3(θ ) − sec(θ )dθ∫  = 
25
3

1
2 sec(θ ) tan(θ ) − 1

2 ln | sec(θ ) + tan(θ ) |( ) + C

		  Return to the original variable.

		  9x2 − 25 dx∫  = 1
2 x 9x2 − 25 − 25

6 ln | 3x + 9x2 − 25 |+ C

	 3.	 Let sin(θ) = 10x
7  so that dx = 7

10 cos(θ )dθ  and 49 −100x2 = 7cos(θ ) .

		  49 −100x2 dx∫  becomes 49
10 cos2(θ )dθ∫  = 49

10
cos(2θ ) +1

2 dθ∫ = 49
20 cos(2θ ) +1dθ∫  = 

49
20

1
2 sin(2θ ) +θ( )  = 49

20
1
2( )2sin(θ )cos(θ ) +θ( ) .

		  Transform this result back to the original variable to get 49 −100x2 dx∫  = 

49
20

10x
7( ) 49 −100x2

7( ) + sin−1 10x
7( )⎛

⎝
⎜

⎞
⎠
⎟+ C  = 1

2 x 49 −100x2 + 49
20 sin−1 10x

7( ) + C .

	 4.	 Rewrite cos9(x) as cos8(x)cos(x) and then as (1 – sin2(x))4cos(x). The integral now becomes 

sin9(x)∫ 1− sin2(x)( )4
cos(x)dx . Expand the binomial and then distribute the factor 

sin9(x) = cos(x) through the result.

		  sin9(x)∫ 1− 4sin2(x) + 6sin4(x) − 4sin6(x) + sin8(x)( )cos(x)dx

		  sin9(x)cos(x) − 4sin11(x)cos(x) + 6sin13(x)cos(x) − 4sin15(x)cos(x) + sin17(x)cos(x)∫ dx

		  sin9(x)∫ cos9(x)dx  = 1
10 sin10(x) − 1

3 sin12(x) + 3
7 sin14(x) − 1

4 sin16(x) + 1
18 sin18(x) + C

	 5.	 Rewrite sec10(5x) as sec8(5x) sec2(5x) and then (sec2(5x))4. Use the Pythagorean identity on 
this 4th powered term to get (1 + tan2(5x))4.

		  tan2(5x)sec10(5x)dx∫  = tan2(5x)sec2(5x) 1+ tan2(5x)( )4
dx∫

		  = tan2(5x)sec2(5x) 1+ 4tan2(5x) + 6tan4(5x) + 4tan6(5x) + tan8(5x)( )dx∫
		  = tan2(5x)sec2(5x) + 4tan4(5x)sec2(5x) + 6tan6(5x)sec2(5x) + 4tan8(5x)sec2(5x) + tan10(5x)sec2(5x)dx∫  

   tan2(5x)sec2(5x) + 4tan4(5x)sec2(5x) + 6tan6(5x)sec2(5x) + 4tan8(5x)sec2(5x) + tan10(5x)sec2(5x)dx∫
		  = 1

15 tan3(5x) + 4
25 tan5(5x) + 6

35 tan7(5x) + 4
45 tan9(5x) + 1

55 tan11(5x) + C

	 6.	 Rewrite tan2(x) as sec2(x) – 1. This makes tan2(x)sec3(x)dx∫  = sec5(x) − sec3(x)dx∫ .

		  = 1
4 sec3(x) tan(x) + 3

8 sec(x) tan(x) +3
8 ln sec(x) + tan(x)  +  

   1
2 sec(x) tan(x) + 1

2 ln sec(x) + tan(x) + C

		  = 1
4 sec3(x) tan(x) + 7

8 sec(x) tan(x) + 7
8 ln sec(x) + tan(x) + C
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Chapter 8
	 1.	 Complete the square: 9x2 + 12x + 20 = 9 x2 + 4

3 x + 2
3( )2( ) + 20 − 9 2

3( )2
 = 9 x + 2

3( )2
+16  

= (3x + 2)2 + 16 = 16 1+ 3x + 2
4( )2⎛

⎝
⎜

⎞
⎠
⎟ . 1

9x2+12x + 20∫ dx  = 1
16

1

1+ 3x + 2
4( )2 dx∫ . Let u = 3x + 2

4
 so 

that du = 3
4 dx  or dx = 4

3 du . 1
12

1
1+ u2 du =∫ 1

12 tan−1(u) . Return to the original variable, 

1
9x2+12x + 20∫ dx  = 1

12 tan−1 3x + 2
4( ) + C

	 2.	 Complete the square: –4x2 – 6x – 2 = −4 x2 + 3
2 x + 3

4( )2( ) − 2 + 4 3
4( )2

 = 

1
4 − 4 x + 3

4( )2
= 1

4 1−16 x + 3
4( )2( )  = 1

4 1− 4x + 3( )2( ) . Then 1
−4x2 − 6x − 2

dx∫  = 

1
1
4 1− (4x + 3)2( )

dx∫  = 1
1
2 1− (4x + 3)2( )

dx = 2 1
1− (4x + 3)2

dx∫∫ . Let u = 4x + 3 so du = 4dx or dx 

= 1
4 du . 2 1

1− (4x + 3)2
dx∫  = 2

4
1

1− u2
du = 1

2 sin−1(u)∫ . Returning to the original variable, 

1
−4x2 − 6x − 2

dx∫  = 1
2 sin−1(4x + 3) + C .

	 3.	 The factors of 3x2 + 10x + 8 are (3x + 4) and (x + 2). The equation for decomposing the 
fraction is 1

3x2 +10x + 8
= A

3x + 4 + B
x + 2 .

		  Multiply through by the common denominator: 1 = A(x + 2) + B(3x + 4).

		  Set x = –2: 1 = B(–2) so B = −1
2 .

		  Set x = −4
3 : 1 = A 2

3( )  so A = 3
2 .

		
1

3x2 +10x + 8
dx∫  = 3

2
1

3x + 4 dx + 1
2

1
x + 2 dx∫∫  = ½ln|3x + 4| – ½ln|x + 2| + C = 1

2 ln 3x + 4
x + 2 + C

	 4.	 The denominator is already factored, so write the equation 
2x + 3

(x +1)(3x − 2)2 = A
x +1 + B

3x − 2 + C
(3x − 2)2

.

		  Multiply through by the common denominator.

		  2x + 3 = A(3x – 2)2 + B(x + 1)(3x – 2) + C(x + 1)

		  Set x = 2
3 : 2 2

3( ) + 3  = C 5
3( ) , which becomes 13

3 = 5
3 C  so C = 13

5 .

		  Set x = –1: 2(–1) + 3 = A(3(–1) – 2)2, which becomes 1
25  = A.

		  Set x = 0: 3 = 1
25 (–2)2 + B(1)(–2) + 13

5  (1) or 3 = 69
25  – 2B and B = −3

25 .

		  2x + 3
(x +1)(3x − 2)2 dx∫  = 1

25
1

x +1 dx − 3
25

1
3x − 2 dx + 13

5
1

(3x − 2)2 dx∫∫∫  = 1
25 ln|x + 1|– 1

25 ln|3x – 2| – 

13
15

1
3x − 2( )  + C

		  2x + 3
(x +1)(3x − 2)2 dx∫  = 1

25 ln|x + 1| – 1
25 ln|3x – 2| – 13

15
1

3x − 2( )  + C
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	 5.	 The factors of x3 + 4x are x and (x2 + 4). The equation for decomposing the fraction is 
5

x3 + 4x
= A

x + Bx + C
x2 + 4

.

		  Multiply through by the common denominator:

		  5 = A(x2 + 4) + (Bx + C)(x)

		  Set x = 0: 5 = 4A so A = 5
4 .

		  We cannot eliminate any other terms with a convenient selection of x, so we will have to 
solve a system of equations.

		  Set x = 1 (yes, an easy number again): 5 = 5
4 5( )  + (B + C) so B + C = −5

4 .

		  Set x = –1 (or whatever number you like): 5 = 5
4 5( )  + (–B – C) so –B – C = −5

4 .

		  Add the two equations to get 2B = −5
2  so B = −5

4 .

		  If B + C = −5
4  and B = −5

4 , then C = 0.

		  5
x3 + 4x

dx∫  = 5
4

1
x dx∫ − 5

4
x

x2 + 4
dx∫  = 5

4 ln x − 5
8 ln x2 + 4 + C

Chapter 9
	 1.	 1

e− x + ex dx
−∞

∞

∫ = 1
e− x + ex( ) ex

ex dx
−∞

∞

∫  = ex

1+ e2 x dx
−∞

∞

∫ . Rewrite ex

1+ e2 x dx
−∞

∞

∫  as ex

1+ e2 x dx
−∞

0
∫  + 

ex

1+ e2 x dx
0

∞

∫ . The antiderivative of ex

1+ e2 x  is tan–1(ex). Letting u = ex and du = ex dx gives 

1
1+ u2 .

		  ex

1+ e2 x dx
−∞

0
∫  = lim

n→−∞

ex

1+ e2 x dx
n

0
∫  = lim

n→−∞
tan−1(ex )

n

0⎛

⎝
⎜

⎞

⎠
⎟  = lim

n→−∞
tan−1(1) − tan−1(en )( )  = 

π
4 − 0 = π

4

		  ex

1+ e2 x dx
0

∞

∫  = lim
n→∞

ex

1+ e2 x dx
0

n
∫  = lim

n→∞
tan−1(ex )

0

n⎛

⎝
⎜

⎞

⎠
⎟  = lim

n→∞
tan−1(en ) − tan−1(1)( )  = 

π
2 −

π
4 = π

4

		  Therefore, 1
e− x + ex dx

−∞

∞

∫  = π4 + π
4 = π

2 .

	 2.	 1
25− x2

dx
−5

0
∫  becomes lim

n→−5+

1
25− x2

dx
n

0
∫  = lim

n→−5+

1

5 1− x
5( )2

dx
n

0
∫  = lim

n→−5+
sin−1 x

5( )
n

0⎛

⎝
⎜

⎞

⎠
⎟  = 

lim
n→−5+

sin−1 0( ) − sin−1 n
5( )( ) = π

2 .

	 3.	 Because 2
x43
≥ 2

x4 + 3x2 +13
≥ 0  and x43 = x 4

3  making 
2
x43  by the p-test, 

2
x4 + 3x2 +13

dx
2

∞

∫  
converges.
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Chapter 10
	 1.	 We’ll need to find the point of tangency as well as the slope of the tangent line. 

At t = 0, x = e0tan(0) = 0 while y = e0sec(0) = 1. To find the slope, we need to find 

the value of 31
3 w . We compute dx

dt  and dy
dt , dx

dt = et tan(2t) + 2et sec2(2t)  and 
dy
dt = 2e2t sec(t) + e2t sec(t) tan(t) . At t = 0, dy

dx = 2e0 sec(0) + e0 sec(0) tan(0)
e0 tan(0) + 2e0 sec2 (0)

= 2
2 =1 . The equation 

of the tangent line is y = x + 1.

	 2.	 The first derivative is dy
dx =

dy
dt
dx
dt

 = 12cos(4t )
−12sin(3t ) = −cos(4t )

sin(3t )
. The second derivative is 

d
dy
dx
⎛

⎝
⎜

⎞

⎠
⎟

dt

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

dx
dt

 = 
sin(3t )( 4sin( 4 t )) − (−cos( 4 t ))( 3cos(3t ))

sin2 (3t )

−12sin(3t ) . Rather than trying to simplify the fraction, we’ll evaluate it at  

t = π2 . 
d 2 y
dx2  = 

sin 3π
2( ) 4sin( 2π )( ) − (−cos( 2π ) 3cos 3π

2( )( )
sin2 3π

2( )
−12sin 3π

2( )  = 
(−1)(0 ) − (−1)(−3)(0 )

1
12 = 0

	 3.	 dx
dt = 1

1+ t2  and since y can be rewritten as y = 1
2 ln 1+ t2( )  

dy
dt = t

1+ t2 . The length 

of the arc is 1
1+ t2( )2

+ t
1+ t2( )2

0

1
∫ dt  = 1

1+ t2( )2 + t2

1+ t2( )2 dt
0

1
∫  = 1+ t2

1+ t2( )2 dt
0

1
∫  = 

1
1+ t2 dt

0

1
∫ = 1

1+ t2
dt

0

1
∫ . The sum of squares in the denominator leads us to consider 

trigonometric substitution.

		  1
1+ t2

= cos(θ ) , t = tan(θ) so dt = sec2(θ)d θ.

		  1
1+ t2

dt∫  becomes cos(θ )sec2(θ )dθ∫  = sec(θ )dθ = ln sec(θ ) + tan(θ )∫ . Returning to 

the original variable, 1
1+ t2

dt
0

1
∫  = ln 1+ t2 + t

0

1

 = ln 2 +1 .

Chapter 11
	 1.	 The point is at x = rcos(θ) = −11

4  and y = rsin(θ) = 
−11 3

4 . The slope of the tangent line 

is dy
dx =

d ( r sin(θ ))
dθ

d ( r cos(θ ))
dθ

= 5sin2 θ( ) + 3− 5cos(θ )( )cos(θ )
5sin(θ )cos(θ ) − 3− 5cos(θ )( )sin(θ ) . At θ = 2π

3 , 
dy
dx = −1

4 3 , so the equation of the 

tangent lines is y − 11 3
4 = −1

4 3
x + 11

4( ) .
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	 2.	 There are three petals to the rose r = 4sin 3θ( ) . The first petal begins at θ = 
0 and reaches its tip at θ = π

6 . The full distance around the rose is equal to six 
times the distance along the petal from θ = 0 to θ = π

6 . The total distance is 

6 4sin(3θ )( )2
+ 12cos(3θ( )2

dθ
0

π
6∫  = 26.730.

	 3.	 As you did with the distance around the rose, find the area of the figure from θ = 0 to 
θ = π

6  and multiply by 6. 1
2 16sin2 3θ( )0

π
6∫ dθ  = 4π.

Chapter 12
	 1.	 The sum is a + b = (2,19). The angle between a and a + b is given by cos(θ ) = 181

106( ) 365( )  
so θ = 23.05°.

	 2.	 The acceleration vector is (–cos(t), 2sin(t)). Velocity = 3− 3
2 ,3( ) ; speed = 3.682;  

acceleration = −1
2 , 3( ) .

	 3.	 The velocity vector is (2cos(t), –2sin(2t)).

		  (a)	Velocity = −1, 3( ) ; speed = 2.

		  (b)	The velocity is equal to 0 when t = π
2 , 3π

2 .

		  (c)	Displacement (0,0); distance = 11.832.

Chapter 13
	 1.	 ln( y)

y dy = x dx∫∫  becomes 1
2 ln( y)( )2

= 1
2 x2 + C  so that (ln(y)2= x2 + C. Use the given 

point to get (ln(y))2 = 16 – x2.

	 2.	 (a)	 dr
dt = kr ; r = Aekt.

		  (b)	�At t = 0, 4 × 1018 = Aek(0) so A = 4 × 1018. Solve 5 × 1014 = 4 × 1018 ek(90) to get  
r = (4 × 1018)e–0.0998577t.

		  (c)	Solve 4 × 1018 ekt = 8 × 10–4; t = 500.3 seconds.

	 3.	 f(3.2) = 10.192
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	 4.	

	 5.	 The integration factor is e 2dx∫ = e2x , so the solution is y = 1
2 x + 5

4 + Ce−2x .

Chapter 14
	 1.	 lim

n→ ∞

n2 + n +100000
2n2 −1

= lim
n→∞

1+ 1
n + 100000

n2

2 − 1
n

= 1
2 . The sequence converges.

	 2.	 We showed in Example 4 that n
n +1{ }  converges, and this is 

−1( )n
n

n +1 . Because 
−1( )n

n
n +1   

converges, so does −1( )n
n

n +1

⎧
⎨
⎩

⎫
⎬
⎭

.

	 3.	 Use the function f(x) = xe–2x and its derivative f'(x) = e–2x – 2xe–2x = e–2x(1 – 2x). Because 
f'(x) < 0 whenever x > 1

2 , the sequence is strictly decreasing.

Chapter 15
	 1.	 S = 36

1− −2
3( ) = 108

5

	 2.	 lim
p→∞

x
ex dx

1

p
∫ = lim

p→∞
xe−x dx

1

p
∫ . Use integration by parts to get lim

p→∞
− e−x x +1( )

1

p
 = 

lim
p→∞

− e− p p +1( )+ e−1 2( ) = 2

e
. Therefore, n

en

n =1

∞

∑  converges.

	 3.	 Compare 
n + 3

n n +1( ) n + 2( )∑  with 
1
n2∑ . 1

n2 > n + 3
n3 + 3n2 + 2n , which becomes n3 +3n2 + 2n2 > n3  

+3n. Solve 2n > 0 to determine the inequality is true when n > 0. The series 
n + 3

n n +1( ) n + 2( )∑  converges.
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	 4.	 Compare this series with 1

k
1
3

k =1

∞

∑ . lim
k →∞

8k2

4 k7 + 9 k33

1

k
1
3

= lim
k →∞

8k2

4k7 + 9k33
× k 1

3  = lim
k →∞

8k
7

3

4k7 + 9k33  = 2. 

Since 
1

k
1
3

k =1

∞

∑  diverges, so does 
8k2

4k7 + 9k33

k =1

∞

∑ .

	 5.	 The term sin (2n −1)π
2( )  is the same as (–1)n, so the series 

sin ( 2n −1)π
2( )

n∑  is the same as 
(−1)n

n∑ . The series meets both conditions for the Alternating Series Test, so 
sin ( 2n −1)π

2( )
n∑  

converges.

	 6.	 Use the Ratio test: lim
n→∞

n +1( )4n +1

n +1( )! × n!
n4n = lim

n→∞

4
n = 0 . Therefore, the series n4n

n!
n =1

∞

∑  is 

absolutely convergent.

	 7.	 We need S − sn < an +1 < 0.00001 . This becomes 
n +1( )2

2n +1 < 0.00001 . Use the List feature 

on your calculator to determine that n + 1 = 27 so n = 26.

Chapter 16
	 1.	 lim

n→∞

4x( )n + 2

n + 2 × n +1

4x( )n +1 = 4x . If 4x <1 , then −1
4 < x < 1

4 . The series diverges when x = 1
4  

and converges for x = −1
4 . The interval of convergence is −1

4 ≤ x < 1
4 .

	 2.	 f(0) = 1, f'(0) = 0, f''(0) = –1, f'''(0) = 0. These numbers repeat for every fourth term. Each 

term in the expansion is of the form f n( ) 0( )xn

n!
 so the series is 1− x2

2 + x4

4! −
x6

6! + ...+ −1( )n
x2n

2n( )! .

	 3.	 1− x2

2 + x4

4! −
x6

6! + ...+ −1( )n
x2n

2n( )! dx = x − x3

3! + x5

5! −
x7

7! + ...+ −1( )n
x2n +1

2n +1( )!∫ , which is the MacLaurin 

Series for sin(x), as expected.

	 4.	 f(1) = 0, f'(1) = 1, and f''(1) = –1, f'''(1) = –2. The Taylor Series for f(x) = ln(x) about x = 1 

is f n( ) (1) x −1( )n

n!
n =1

∞

∑  = 1 x −1( ) − x −1( )2

2 + x −1( )3

3 −
x −1( )4

4 + ...+ −1( )n +1
x −1( )n

n .

	 5.	 1− x4 + x8 dx
0

1
2∫ = x − x5

5 + x9

9 0

1
2 = 0.493967 . The difference f (x)dx − 0.493967

0

1/2
∫  is 

less than 
1
2( )13

13 = 0.000009  < 1
10000 .





APPENDIX

B
Integration Practice Problems 

and Solutions

Here’s your chance to go through a series of integration problems without knowing the chapter 
topic (which can hint at how to solve the problem). In this appendix, I provide a set of problems. 
Once you’ve worked through them, you can check your work against the solutions provided later 
in this appendix.

Good luck, and have fun with what you’ve learned!

Problems
	 1.	

tan−1(x)( )5

1 + x2 dx∫

	 2.	 sec(x) tan(x)
2sec(x) −1 dx∫

	 3.	 x +1
x2 +1

dx∫
	 4.	

1

x 1− ln (2x)( )2
dx∫

	 5.	 x3e−2x∫ dx

	 6.	 tan3(x)dx∫
	 7.	 cos(x) + sin(x)( )2

cos(2x)dx∫
	 8.	 sin6(x)cos3(x)dx∫

	 9.	 x
4 + x4 dx

0

2
∫
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	 10.	 1
x + x3

dx∫

	 11.	 tan−1(x)dx∫
	 12.	 1

x + x
dx∫

	 13.	 xsin2(4x)dx∫
	 14.	 2x −1

x3 − 2x2 + x − 2
dx∫

Consider the graph of f(x) = 2x2 and the y-axis on the closed interval [1,4]. Use this information 
to answer Problems 15 through 17.

	 15.	 Determine the length of the arc of the curve in this interval. Let R be the region 
bounded by f(x) and the x-axis on the same interval. A solid is formed by rotating R 
around the x-axis.

	 16.	 Find the volume, V, of the solid.

	 17.	 Find the surface area, S, of the solid. Let R be the first quadrant region bounded by the 
graphs of f(x) = sin(x), g(x) = cos(x), and the y-axis. Use this information for Problems 18 
through 20.

	 18.	 A solid with base R has cross sections perpendicular to the x-axis in the shape of squares. 
Find the volume of the solid.

	 19.	 Let S be the solid formed when R is rotated around the y-axis. Find the volume of S.

	 20.	 Let T be the solid when R is rotated around the x-axis. Find the volume of T.

Solutions
Let’s see how you did.

	 1.	
tan−1(x)( )5

1+ x2 dx∫ = 1
6 tan−1(x)( )6

+ C

		  The derivative of tan–1(x) is 
1

1+ x2 , so let u = tan–1(x) and du = 
1

1+ x2 dx. Substitution gives 
u5 du∫ = 1

6 u6 +C .

	 2.	 sec(x) tan(x)
2sec(x) −1 dx∫ = 1

2 ln 2sec(x) −1 + C

		  The derivative of 2sec(x) – 1 is sec(x) tan(x), so let u = 2sec(x) – 1 and du = sec(x) tan(x)

dx. Substitution gives 1
2

1
u du = 1

2 ln u + C∫ .
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	 3.	 x +1
x2+1

dx∫ = 1
2 ln x2 +1 + tan−1(x) + C

		  Rewrite x +1
x2 +1

dx∫  as x
x2 +1

+ 1
x2 +1

dx∫ . The derivative of x2 + 1 is 2x, so the 

numerator of the first fraction is half the derivative of the denominator. This means 
x

x2 +1
dx∫ = 1

2 ln x2 +1  and that the second part of the integrand is the formula for the 

antiderivative of tan–1(x).

	 4.	
1

x 1− ln (2x)( )2
dx∫ = sin−1 ln (2x)( ) + C

		  The key to this problem is the radical in the denominator contains the difference 
of two squares. If you let u = ln(2x), then du = 2

2x dx = 1
x dx . Substitution gives 

1
1− u2

du = sin−1(u) + C∫ .

	 5.	 x3e−2x∫ dx = −1
2 x3e−2x − 3

4 x2e−2x − 3
4 xe−2x − 3

8 e−2x + C

		  The polynomial is not the derivative of the exponent in the exponential function. Let’s 
use the Tabular Method to solve this problem.

Figure B.1 

x3e−2x∫ dx  = x3( ) −1
2 e−2x( ) 1( ) + 3x2( ) 1

4 e−2x( )(−1) + 6x( ) −1
8 e−2x( )(1) + 6( ) 1

16 e−2x( )(−1)

x3e−2x∫ dx  = −1
2 x3e−2x − 3

4 x2e−2x − 3
4 xe−2x − 3

8 e−2x + C
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	 6.	 tan3(x)dx = 1
2 tan2(x) − ln sec(x) + C∫

		  Rewrite tan3(x) as tan(x)tan2(x) and then use the Pythagorean identity tan2(x) = 

sec2(x) – 1. tan3(x)dx∫  becomes tan(x)sec2(x) − tan(x)dx∫ . With sec2(x) being the 
derivative of tan(x), the antiderivative of tan(x)sec2(x) is ½tan2(x). Earlier, we saw that the 
antiderivative of tan(x) is ln|sec(x)|.

	 7.	 cos(x) + sin(x)( )2
cos(2x)dx∫  = 1

2 sin 2x( ) + 1
4 sin2(2x)+C

		  (cos(x) + sin(x))2 = cos2(x) + 2cos(x) sin(x) + sin2(x). Since cos2(x) + sin2(x) = 1 and 2cos(x)
sin(x) = sin(2x), the integrand is now cos(2x)(1 + sin(2x)), which expands to cos(2x) 
+ cos(2x)sin(2x). The antiderivative for cos(2x) is ½sin(2x). The second piece of the 
integrand, cos(2x)sin(2x), offers you two options, each is correct:

•	 If u = cos(2x), then du = –2sin(2x)dx and the problem becomes −1
2 udu = −1

4 u2∫ , 
which translates back to −1

4 cos2(2x) .

•	 If u = sin(2x), then du = 2cos(2x)dx. The resulting integral would be 1
4 sin2(2x) .

		  (This is another example of how the constant of integration absorbs any extra constants 

that are floating around. −1
4 cos2(2x)  = −1

4 1− sin2(2x)( ) = −1
4 + 1

4 sin2(2x) . The extra −1
4  is 

absorbed by C.)

	 8.	 sin6(x)cos3(x)dx∫ = 1
7 sin7(x) − 1

9 sin9(x) + C

		  Use cos3(x) = cos2(x)cos(x) = cos(x)(1 – sin2(x)). The integrand is now sin6(x) cos(x) – 
sin8(x)cos(x).

	 9.	 x
4 + x4 dx

0

2
∫ = π

16

		  Rewrite x4 as (x2)2. The integrand is the sum of two squares leading us to believe this is 

some type of tan–1(x) problem. Factor 4 from the denominator, 1
4

x

1+ x2
2( )2 dx∫ .  

Let u = x2

2 , so that du = xdx. Substitution gives 1
4

1
1+ u2 du =∫ 1

4 tan−1(u) . Rewrite 

the result in terms of the original variable to get x
4 + x4 dx

0

2
∫  = 1

4 tan−1 x2

2( )
0

2

 = 
1
4 tan−1(1) − tan−1(0)( ) = 1

4
π
4 − 0( ) = π

16
.
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	 10.	 1
x + x3

dx∫  = 2tan−1 x( )+C

		  The denominator has a common factor of x . x + x3 = x 1+ x2( ) = x 1+ x( )2⎛

⎝
⎜

⎞

⎠
⎟.  

What you need to see here is that the denominator contains the sum of squares. Let  

u = x  = x1/2 then du = ½x–1/2dx, so 2du = x–1/2dx. Substitution gives 

2 1
1+ u2 dx = 2tan−1(u) + C∫ . Working back to the original variable, 1

x + x3
dx∫  = 

2tan−1 x( )+C .

	 11.	 tan−1(x)dx∫  = xtan–1(x) – 1
2 ln x2 +1  + C

		  This one is a little tricky. The answer is not 
1

1+ x2 . (
1

1+ x2  is the derivative of tan–1(x) not 

the antiderivative.) Use integration by parts with u = tan–1(x) and dv = dx. You get du = 
1

1+ x2 dx and v = x.

		  tan−1(x)dx∫  = xtan–1(x) – 
x

1+ x2 dx∫ . As we saw in Problem 3, x
x2 +1

dx∫ = 1
2 ln x2 +1  

Consequently, tan−1(x)dx∫  = xtan–1(x) – 1
2 ln x2 +1  + C.

	 12.	 1
x + x

dx∫  = 2ln 1+ x + C

		  This looks like Problem 10, which might get you to thinking about factoring x  from 

the denominator. x + x = x 1+ x( ) . Let u = 1+ x  so that du = ½x–1/2 dx and  

2 du = x–1/2 dx. Substitution gives 2 1
u du = 2ln u∫ . Going back to the original variable, 

1
x + x

dx∫  = 2ln 1+ x + C .

	 13.	 xsin2(4x)dx∫  = 1
4 x2 − 1

16 xsin(8x) + 1
128 cos(8x)+C

		  The product of the polynomial and trigonometric function should lead us to use 

integration by parts. Let u = x and dv = sin2(4x)dx = 1− cos(8x)
2 dx, so that du = dx and v = 

1
2 x − 1

16 sin(8x) .

		  xsin2(4x)dx∫  = x 1
2 x − 1

16 sin(8x)( ) − 1
2 x − 1

16 sin(8x)dx∫  = 

1
2 x2 − 1

16 xsin(8x) − 1
4 x2 + 1

128 cos(8x) + C  = 1
4 x2 − 1

16 xsin(8x) + 1
128 cos(8x)+C
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	 14.	 2x −1
x3 − 2x2 + x − 2

dx∫  = 3
5 ln x − 2 − 3

10 ln x2 +1 + 4
5 tan−1(x) + C

		  The denominator of the integrand factors to (x – 2)(x2 + 1) leads us to use partial frac-
tions as the technique to solve this problem.

2x −1
x3 − 2x2 + x − 2

= A
x − 2 + Bx + C

x2 +1

		  Multiply through by the common denominator to get:

2x – 1 = A(x2 + 1) + (Bx + C)(x – 2)

		  Set x = 2: 3 = A(5) so A = 3
5 .

		  Set x = 0: –1 = 3
5  + C(–2) so that −8

5  = –2C and C = 4
5 .

		  Let x = 1: 1 = 3
5  (2) + (B + 4

5 )(–1), which gives 1 = 6
5 − B− 4

5 = 2
5 − B , so B = −3

5 .

2x −1
x3 − 2x2 + x − 2

dx∫  = 3
5

1
x − 2 dx∫ + 1

5
−3x + 4
x2 +1

dx∫  = 3
5

1
x − 2 dx∫ − 3

5
x

x2 +1
dx +∫ 4

5
1

x2 +1
dx∫  = 

3
5 ln x − 2 − 3

10 ln x2 +1 + 4
5 tan−1(x) + C

Consider the graph of f(x) = 2x2 and the y-axis on the closed interval [1,4]. Use this information 
to answer Problems 15 through 17.

	 15.	 Determine the length of the arc of the curve in this interval.

		  The derivative of f(x) = 4x, so the length of the arc is L = 1+16x2 dx
1

4
∫ . The sum of 

the squares within the radical is an indication that trigonometric substitution is a viable 
option.

Figure B.2

		  Let sec(θ) = 1+16x2  and tan(θ) = 4x so that dx = 1
4 sec2 θ( )dθ .

		  1+16x2 dx∫  becomes 1
4 sec3 θ( )∫ dθ  = 1

4
1
2 sec θ( ) tan θ( ) + 1

2 ln sec θ( ) + tan θ( )( ) .
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		  Returning to the original variable, 1+16x2 dx
1

4
∫  =  

1
8 4x 1+16x2 + ln 4x + 1+16x2( )( )

1

4

 = 

1
8 16 257 + ln 16 + 257( )( ) − 4 17 + ln 4 + 17( )( )⎡
⎣⎢

⎤
⎦⎥ . In more manageable  

(meaningful?) numbers, the arc length is 30.1724.

		  Let R be the region bounded by f(x) and the x-axis on the same interval. A solid is 
formed by rotating R about the x-axis.

	 16.	 Find the volume, V, of the solid.

		  A cross section of the solid formed is a disk and the radius of this 
disk will be f(x). Therefore, the volume of the solid formed is 

π 2x2( )2
dx

1

4
∫ = π 4x4 dx

1

4
∫ = π 4

5 x5( )
1

4
= π 4096

5 − 4
5( ) = 4092π

5 .

	 17.	 Find the surface area, S, of the solid.

		  The surface area of the solid is 2π 2x2 1+16x2 dx
1

4
∫ . Using Figure B.2, let sec(θ) = 

1+16x2  and 1
4 tan(θ) = x so that dx = 1

4 sec2 θ( )dθ .  

Converting the integral to trigonometric functions, 2π 2x2 1+16x2 dx
1

4
∫  = 

π
16 tan2 θ( )sec3 θ( )dθ∫  = π

16 sec2 θ( )−1( )sec3 θ( )dθ∫  = π
16 sec5 θ( )− sec3 θ( )( )dθ∫  = 

π
64 sec3 θ( ) tan θ( )− 1

2 sec θ( ) tan θ( )− 1
2 ln sec θ( )+ tan θ( )⎡

⎣
⎤
⎦ . Return to the original  

variable, 2π 2x2 1+16x2 dx
1

4
∫  = 

π
64 4x 1+16x2( )3

−2x 1+16x2 − 1
2 ln 1+16x2 + 4x

⎡

⎣
⎢

⎤

⎦
⎥

1

4

 = 3216.2.

Let R be the first quadrant region bounded by the graphs of f(x) = sin(x), g(x) = cos(x), and the 
y-axis. Use this information for Problems 18 through 20.
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The region R is:

Figure B.3

	 18.	 A solid with base R has cross sections perpendicular to the x-axis in the shape of squares. 
Find the volume of the solid.

		  The length of a side of the square is cos(x) – sin(x). Therefore, the volume of the 

solid formed is cos(x) − sin(x)( )2
dx

0

π
4∫  = cos2(x) − 2sin(x)cos(x) + sin2(x)dx

0

π
4∫  = 

2π π
4( ) 2

2( ) + π
4( ) 2

2( ) + 2
2 − 2

2( ) − 1( )⎡
⎣⎢

⎤
⎦⎥  = x + 1

2 cos(2x)
0

π
4  = π

4 + 1
2 cos π

2( )( ) − 0 + 1
2 cos 0( )( )  = π4 −

1
2 .

	 19.	 Let S be the solid formed when R is rotated about the y-axis. Find the volume of S.

		  Because we are revolving R around a vertical line, let’s use cylindrical shells. The radius 
of each cylinder is x, and the height of the cylinder is cos(x) – sin(x). Therefore, the 

volume of S is 2π x(cos(x) − sin(x))dx
0

π
4∫  = 2π xcos(x) − xsin(x)dx

0

π
4∫ .

		  Each of these terms can be integrated using integration by parts.

		  For x cos(x), let u = x and dv = cos(x) dx, so that du = dx and v = sin(x).

xcos(x)dx = xsin(x) − sin(x)dx = xsin(x) + cos(x)∫∫
		  For xsin(x), let u = x and dv = sin(x) dx, so that du = dx and v = –cos(x).

xsin(x)dx = − xcos(x) + cos(x)dx = − xcos(x) + sin(x)∫∫
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		  Therefore, 2π xcos(x) − xsin(x)dx
0

π
4∫  = 2π xsin(x) + xcos(x) + cos(x) − sin(x)( )

0

π
4

 = 

2π π
4 sin π

4( ) + π
4 cos π

4( ) − sin π
4( ) + cos π

4( )( ) − 0sin(0) + 0cos(0) + cos(0) − sin(0)( )⎡
⎣

⎤
⎦  = 

2π π
4( ) 2

2( ) + π
4( ) 2

2( ) + 2
2 − 2

2( ) − 1( )⎡
⎣⎢

⎤
⎦⎥  = 2π π 2

4 −1( ) .

	 20.	 Let T be the solid when R is rotated around the x-axis. Find the surface area of T.

		  A cross section of T shows a disk with larger radius cos(x) and smaller radius sin(x). 

The volume of T is π cos2(x) − sin2(x)dx
0

π
4∫ . Use the original trigonometric identity 

for cos(2x) = cos2(x) – sin2(x) to get π cos2(x) − sin2(x)dx
0

π
4∫  = π cos(2x)dx

0

π
4∫  = 

π
2 sin(2x)

0

π
4 = π

2 sin π
2( ) − sin(0)( ) = π

2
.





APPENDIX

C
Glossary

absolute convergence  Describes when the series ak
k =1

∞

∑  converges. If ak
k =1

∞

∑  converges, then 

so does ak
k =1

∞

∑ .

acceleration  The rate of change of the velocity.

alternating series  A series whose consecutive terms alternate between positive and negative 
values.

Alternating Series Test  Let an = −1( )n
bn  with bn > 0 for all n. If bn is decreasing for all n, and 

lim
n→∞

bn = 0  then ak
k =1

∞

∑  is convergent.

antiderivative  The expression from which the derivative was found.

average value of a function  The average value of a function f(x) on the interval [a,b] is 
1

b − a f (x)dx
a

b
∫ .

Chain Rule  The rule used for differentiating functions that are composed of other functions. If 
f(x) = g(k(x)), then f'(x) = g'(k(x))k'(x).

Comparison Test  If two positive series, ak
k =1

∞

∑  and bn
n =1

∞

∑ , with the property  

that ak > bk for k ≥ m, then we can conclude that if the series ak
k =1

∞

∑  converges,  

then so does the series bn
n =1

∞

∑ . Also, if the series bn
n =1

∞

∑  diverges, then so does the series ak
k =1

∞

∑ .

Comparison Test for Improper Integrals  If f(x) and g(x) are continuous functions for x > a 

with f(x) > g(x) > 0, then (1) If f (x)dx
a

∞

∫  converges, then so does g(x)dx
a

∞

∫ . (2) If g(x)dx
a

∞

∫  

diverges, then so does f (x)dx
a

∞

∫ .
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conditionally convergent  A series that is convergent but not absolutely convergent.

constant of integration  The constant added to the end of an indefinite integral to indicate 
there is a family of functions that satisfy the given integral.

continuous at a point  A function is continuous at a point x = c if and only if lim
x → c

f (x) = f (c) .

continuous function  A function that is continuous at all points in its domain.

converge  A sequence or series that is bounded by some finite value.

decreasing sequence  A sequence in which an +1 ≤ an for all n.

definite integral  An integral that contains a lower and upper bound and whose answer is a real 
number.

differential equation  An equation that contains a derivative.

disk method  The method used to calculate the volume of a solid of rotation when the interior 
of the solid contains no holes.

displacement  The change in position of an object from the start to an end of its travel. This is 
not necessarily the same as the distance traveled.

Divergence Test  The infinite series ak
k =1

∞

∑  is divergent if lim
n→∞

an ≠ 0 .

divergent  A sequence or series that does not have a limiting value.

dot product  Given two vectors a = (a1,a2) and b = (b1,b2), the dot product is a • b = a1b1 + a2b2 .

Euler’s Method  A technique used to approximate a value of a function using a known value of 
the function and the derivative of the function.

exponential growth  A process in which the rate of growth of a function is proportional to the 
current value of the function.

First Order Linear Differential Equation  A differential equation of the form 
dy
dt + P(t)y = Q(t) .

Fundamental Theorem of Calculus  Given the function F(x) whose derivative is f(x), the 
Fundamental Theorem of Calculus says that f (x) dx

a

b
∫ = F(b) − F(a) .

geometric sequence  A sequence in which the ratio of consecutive terms is a constant.

geometric series  The sum of the terms of a geometric sequence.

implicit differentiation  When equations cannot be written in the form y = f(x), the notation 
dy
dx  indicates that it is implied that y is a function of x so that whenever a term in y is differenti-

ated, the Chain Rule needs to be applied by attaching the term dy
dx  to it.
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improper integral  An integral that has at least one of its bounds going to infinity or an inte-
gral that contains an infinite discontinuity within the bounds of integration.

increasing sequence  A sequence in which an +1 ≥ an for all n.

indefinite integral  An integral that yields a family of functions each of whose derivative is the 
integrand of the integral.

infinite discontinuity  Discontinuity caused by a vertical asymptote.

integrand  The expression contained within the integral whose antiderivative is being sought. 
f(x) is the integrand in the f (x) dx∫ .

integration by parts  A consequence of the product rule for differentiation: d(uv) = udv + vdu 
becomes udv = d(uv) – vdu so that udv∫ = uv − v du∫ .

Integration Test  If f(x) is a continuous, positive, decreasing function on [1,∞] with f(n) = an for 
all positive integers n, then the series an∑  converges if and only if f (x) dx

1

∞

∫  converges.

interval of convergence  The interval on which a power series converges and goes from c – r 
to c + r where c is the point about which the power series was constructed and r is the radius of 
convergence.

Lagrange Error Estimate (or Lagrange Remainder)  Given a Taylor Series T(x) for f(x), the 

Lagrange Remainder, R(x), for the difference f(x) – T(x) is R(x) = f ( n +1) (x*)
(n +1)! x − x0( )n +1

 where f(n + 1)

(x*) is the nth derivative evaluated at the point x*.

L’Hopital’s Rule  Given lim
x → c

f x( )
g x( ) , with both f(x) and g(x) differentiable at x = c. If lim

x → c

f x( )
g x( )  = 0

0  

or ± ∞
∞

, then lim
x → c

f x( )
g x( )  = lim

x → c

f' x( )
g' x( ) .

Limit Comparison Test  Given two positive series ak
k =1

∞

∑  and bn
n =1

∞

∑ , let lim
n→∞

an
bn

= L . If L is 

positive and finite, then both ak
k =1

∞

∑  and bn
n =1

∞

∑  converge or both diverge.

logistic growth  A phenomenon which looks like exponential growth but eventually slows and 
reaches a plateau.

MacLaurin Series  A series of the form f n( ) (0)xn

n!
n = 0

∞

∑  that approximates a function f(x) about the 
point x = 0.

Mean Value Theorem  If a function f(x) is defined and continuous on [a,b] and differentiable 
of (a,b), there is a value of c in the interval (a,b) so that the instantaneous rate of change at c is 
equal to the average rate of change over [a,b]. That is, there exists a value of c in (a,b) so that 

f ' c( ) = f b( ) − f a( )
b − a .

p-series  A series of the form 1
np

n =1

∞

∑ . The series converges when p > 1 and diverges when p ≤ 1.
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parametric equations  The coordinates x and y are each written in terms of a third parameter, 
usually t.

partial fraction decomposition  A technique used to separate a fraction into the sum and dif-
ference of smaller fractions.

partition  A partition is a subset of the interval [a,b] on which an integral is being computed.

piece-wise (split domain) function  A function that is defined by different rules for specific 
subsets of the domain is called a piece-wise function.

polar coordinates  A coordinate system in which the location of a point is determined by the 
radius of a circle drawn from a fixed point and the measure of an angle drawn from a fixed ray.

positive series  A series that only contains positive terms.

power series  A series centered at x = c that has the form an x − c( )n

n = 0

∞

∑ .

Product Rule  If f(x) = g(x) × k(x), then f(x) = g(x)k'(x) + g'(x)k(x).

Quotient Rule  If f(x) = g(x)
k(x) , then f(x) = g'(x)k(x) - g(x)k'(x)

k(x)( )2 .

radius of convergence  The distance from a central value about which a power series will 
converge. See also interval of convergence.

Ratio Test  Given a series ak
k =1

∞

∑ , let lim
n→∞

an +1

an
= r . If r < 1, then ak

k =1

∞

∑  converges. If r > 1, then 

ak
k =1

∞

∑  diverges. If r = 1, then no conclusion about ak
k =1

∞

∑  can be drawn from this test.

Riemann Sum  A Riemann Sum takes the interval [a,b], divides it into a number of partitions, 
and computes the area under the curve for each partition for the purpose of estimating the  
integral f (x) dx

a

b
∫ .

Root Test  Given a series ak
k =1

∞

∑ , let lim
n→∞

an
n = r . If r < 1, then ak

k =1

∞

∑  is absolutely  

convergent. If r > 1, then ak
k =1

∞

∑  divergent. If r = 1, then no conclusion about ak
k =1

∞

∑  can be drawn 
from this test.

scalar  A quantity that has magnitude only.

Second Fundamental Theorem of Calculus  If Q(x) = f (t) dt
g(x)

k(x)
∫ , then Q'(x) = f(k(x))k'(x) – 

f(g(x))g'(x).

separation of variables  A technique used to solve simple differentiable equations. All terms of 
a given variable are moved to one side of the equation.

sequence  A listing of numbers generated by a mathematical rule.
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series  The sum of the terms in a sequence.

shell method  A procedure used to compute the volume of a solid of rotation by accumulating 
the surface area of a shell and multiplying it by the thickness.

Simpson’s Rule  Simpson’s Rule uses the area under a parabolic arc determined by three data 
points to approximate the area under a curve.

slope field  A visual representation of a differential equation. It is traditional to use lattice 
points (points whose coordinates are integers), compute the slope of the tangent line to the func-
tion using the differential equation, and draw a small line segment with that slope at that point.

Squeeze Theorem  If an ≤ bn ≤ cn for n ≥ k, where k is some constant, with lim
n→∞

an = L  and 
lim
n→∞

cn = L , then lim
n→∞

bn = L .

strictly decreasing sequence  A sequence in which an + 1 < an for all n.

strictly increasing sequence  A sequence in which an + 1 > an for all n.

Taylor Series  A series of the form 
f n( ) (c) x − c( )n

n!
n = 0

∞

∑  that approximates a function f(x) about a 
point x = c.

transcendental function  A function that cannot be written as a polynomial or ratio of 
polynomials.

trapezoidal rule  The trapezoidal approximation of a Riemann Sum has the height of each 
trapezoid as the width of the interval, while the bases of the trapezoid are the functional values at 
each endpoint.

u-substitution  A technique used when both a function and its derivative appear in the 
integrand.

vector  A quantity that has both magnitude and direction.

washer method  The method used to calculate the volume of a solid of rotation when the inte-
rior of the solid contains holes.
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absolutely convergent series, 245
acceleration, vector calculations, 200-202
addition, vectors, 196-197
alternating series

alternating harmonic series, 245
Alternating Series Test, 244
estimating sums, 247-248
Ratio Test, 246-247

Alternating Series Test, 244
ant derivatives

definite integrals
overview, 54
sample problems, 54-58

Fundamental Theorem of Calculus, 50-52
indefinite integrals

differentiation formulas, 43-44
sample problems, 42-46

integrands, 46
integration by parts

formula, 120
polynomials and transcendentals, 123-129
sample problems, 120-123
Tabular Method, 122-123
two transcendentals, 129-131

Second Fundamental Theorem of Calculus, 53

u-substitutions
overview, 46-50
sample problems, 48-50

approximations
area of curves

area between two curves, 81-86
average value of functions, 81
Riemann Sums, 64-75
Simpson’s Rule, 86-88

Euler’s Method
overview, 214-215
sample problems, 215-216

linear approximations, 212-214
arc lengths, 110

distance formula, 111
parametric curves, 178-179
polar curves, 187-189
sample problems, 112-113

area calculations
curves

area between two curves, 81-86
average value of functions, 80-81
Riemann Sums, 64-75
Simpson’s Rule, 86-88
true area, 76-79

formulas, 94
polar curves, 189-193
surface area, solids of revolutions, 113-115



314 Calculus II

convergence
alternating series

Alternating Series Test, 244
Ratio Test, 246-247

infinite sequences, 228-231
interval of convergence

MacLaurin Series, 256-258
Taylor Series, 260

radius of convergence, Taylor Series, 260
Squeeze Theorem, 232-233
tests of convergence

Comparison Test, 241-242
Divergence Test, 239
Integral Test, 240
Limit Comparison Test, 243

convergent integrals, 163
coordinates

Cartesian Coordinate plane, 10
polar coordinates

cardioid graph, 12
graphing, 12-14
limacon graph, 12
overview, 10-14
rose graph, 12

cosecant, 5
cosine

integral forms
even powers, 140-141
odd and even powers, 141
odd powers, 139-140

trigonometric functions, 5
cotangent, 5
cross products, multiplication of vectors, 199
curves

area calculations
area between two curves, 81-86
average value of functions, 80-81

average value of functions
area calculations, 80-81
sine function, 80-81

B
Babylonian number system, 4
binomial expansion, 142
by parts integration

formula, 120
polynomials and transcendentals, 123-129
sample problems, 120-123
Tabular Method, 122-123
two transcendentals, 129-131

C
cardioid polar curves, 184
cardioid polar graphs, 12
Cartesian Coordinate plane, 10
Chain Rule, 24, 28, 172
circles, degrees, 4
co-functions, trigonometric, 5
common ratios, geometric sequences, 14
Comparison Test, 241-242
Comparison Test for Improper Integrals, 168
completing the square, integration with fractions, 

148-151
complex numbers, 257
concavity

derivatives and relative extremes, 31-33
point of inflection, 31

conditionally convergent series, 245
Constant Rule, 24
continuous at a point functions, 22



315Index

Second Fundamental Theorem of Calculus, 
53

u-substitutions, 46-50
Chain Rule, 172
concavity, 31-33
differentiation rules

Chain Rule, 24
Constant Rule, 24
Product Rule, 24
Quotient Rule, 24
Sum Rule, 24

functions, 25
Isaac Newton’s reasoning, 24
logarithmic differentiation, 26
parametric curves

first derivatives, 172-176
second derivatives, 177

relative extremes, 30
First Derivative Test, 31
Second Derivative Test, 32-33
signs analysis, 31

sample problems, 25-27, 33-36
Descartes, Rene, 10
differential equations

Euler’s Method
overview, 214-215
sample problems, 215-216

exponential decay problems, 208
exponential growth problems, 208-209
first order linear

integration factors, 222
overview, 222
sample problems, 222-224

linear approximations
overview, 212-214
sample problems, 214

Riemann Sums, 64-75
Simpson’s Rule, 86-88
true area, 76-79

Lissajous curve, 174-175
parametric curves

arc lengths, 178-179
first derivatives, 172-176
second derivatives, 177

polar curves
arc lengths, 187, 189
area calculations, 189-193
cardioid, 184
finding slope of tangent lines, 182-187
limaçon, 184
roses form, 184

cylindrical shell method, volume calculations, 
106-110

D
decreasing sequences, 233
defined cross sections (solids of revolutions), 

volume calculations, 92-96
definite integrals

area calculations, 81-86
overview, 54
sample problems, 54-58

degrees, circles, 4
derivatives, 23

ant derivatives
definite integrals, 54-58
Fundamental Theorem of Calculus, 50-52
indefinite integrals, 42-44
integrands, 46
sample problems, 42-46
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Divergence Test, 239
divergent integrals, 163
domain, 6
dot products

formula, 199
multiplication of vectors, 199-200

double angle identities, 6

E
e (Euler’s number), 6-7
“eliminating the middle” process, 238
equations

differential
Euler’s Method, 214-216
exponential decay problems, 208
exponential growth problems, 208-209
first order linear, 222-224
linear approximations, 212-214
logistical growth problems, 209-210
overview, 205
separable, 206-212
slope fields, 217-221

parametric equations, 8-10, 171-172
polar curves, 184
roses form, 184

error estimates, Lagrange Error Estimate
MacLaurin Series, 260-262
Taylor Series, 260-262

estimating sums, alternating series, 247-248
Euler’s Method, differential equations

overview, 214-215
sample problems, 215-216

Euler’s number (e), 6-7
even powers

sine and cosine integral form, 140-141
tangent and secant integral form, 142

logistical growth problems, 209-210
overview, 205
separable

general solutions, 206
sample problems, 206-212
verbal descriptions, 207

slope fields
overview, 217
sample problems, 217-221

differentiation
chain rule, 28
formulas, 43-44
implicit differentiation

overview, 28-29
sample problems, 28-29

logarithmic differentiation, 26
rules

Chain Rule, 24
Product Rule, 24
Quotient Rule, 24
Sum Rule, 24

discontinuous integrands
finite, 165
infinite, 165
sample problems, 166-168

disks, volume calculations, 97-106
displacement calculations, vectors, 200-202
distance formula, arc lengths, 111
divergence

alternating series
Alternating Series Test, 244
Ratio Test, 246-247

infinite sequences, 228-231
testing

Comparison Test, 241-242
Divergence Test, 239
Integral Test, 240
Limit Comparison Test, 243
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functions
ant derivatives

definite integrals, 54-58
Fundamental Theorem of Calculus, 50-52
indefinite integrals, 43-44
integrands, 46
sample problems, 42-46
Second Fundamental Theorem of Calculus, 

53
u-substitutions, 46-50

average values, area calculations, 80-81
derivatives

concavity, 31-33
First Derivative Test, 31
relative extremes, 30-33
sample problems, 25-27, 33-36
Second Derivative Test, 32-33

domain and range, 6
exponential functions, 6-8
integration by parts

formula, 120
polynomials and transcendentals, 123-129
sample problems, 120-123
Tabular Method, 122-123
two transcendentals, 129-131

limits
continuous at a point, 22
indeterminate, 22
infinity, 23
parabolas, 20

logarithmic, 7-8
Mean Value Theorem, 29-30
piecewise function, 21
power series. See power series
trigonometric functions, 5-6
vectors

acceleration calculations, 200-202
addition, 196-197

expansions, binomials, 142
exponential decay problems, 208
exponential growth problems, 208-209
exponents

exponential functions, 6-8
sine and cosine integral form

even powers, 140-141
odd and even powers, 141
odd powers, 139-140

tangent and secant integral form
even powers, 142
odd powers, 143-146

F
factors, fractional factors

nonrepeating linear factors, 152-153
quadratic factors, 155-157
repeated linear factors, 154-155

Fibonacci Sequence, 229
first derivatives, parametric curves, 172-176
First Derivative Test, 31
first order linear differential equations

integration factors, 222-224
overview, 222
sample problems, 222-224

formulas
area, 94
differentiation, 24, 43-44
distance, 111
dot products, 199
integration by parts, 120
reduction formula, 143

fractions
integration

completing the square, 148-151
partial fractions, 152-157

partial fractions, 15-17
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imaginary numbers, 257
implicit differentiation

overview, 28-29
sample problems, 28-29

improper integrals, 162, 168
increasing sequences

overview, 233
sample problems, 234

indefinite integrals
differentiation formulas, 43-44
sample problems, 42-46

indeterminate limits, 22
infinite geometric series

absolutely convergent, 245
alternating series

alternating harmonic series, 245
Alternating Series Test, 244
estimating sums, 247-248
Ratio Test, 246-247

conditionally convergent, 245
“eliminating the middle” process, 238
harmonic series, 240-241
overview, 238-239
positive series, 239
p-series, 240
tests of convergence

Comparison Test, 241-242
Divergence Test, 239
Integral Test, 240
Limit Comparison Test, 243

infinite limits of integration, 162
convergent integrals, 163
divergent integrals, 163
sample problems, 165

infinite sequences
convergence and divergence, 228-231
decreasing, 233
Fibonacci Sequence, 229

displacement calculations, 200-202
horizontal and vertical components, 198
multiplication, 199-200
overview, 196
subtraction, 199
velocity, 196, 200-202
vs. scalars, 196

Fundamental Theorem of Calculus
integrals, 50-52
Simpson’s Rule, 86-88

f '(x) notation, 25

G–H
general solutions, differential equations, 206
geometric sequences, 14
geometric series, 14-15
graphs

concavity, 31
Lissajous curve, 174-175
parametric equations, 8
polar coordinates, 12-14
slope fields (differential equations), 218

growth
exponential growth problems (differential 

equations), 208-209
logistical growth problems (differential 

equations), 209-210

harmonic series, 240-241
horizontal components, vectors, 198

I–J-K
identities

double angle, 6
Pythagorean, 5, 143
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indefinite integrals
differentiation formulas, 43-44
sample problems, 42-46

integrands, 46
Second Fundamental Theorem of Calculus, 53
sine and cosine integral form

even powers, 140-141
odd and even powers, 141
odd powers, 139-140

tangent and secant integral form
even powers, 142
odd powers, 143-146

u-substitutions
overview, 46-50
sample problems, 48-50

Integral Test, 240
integrands. See also integrals

discontinuous
finite, 165
infinite, 165
sample problems, 166-168

overview, 46
integration

by parts
formula, 120
polynomials and transcendentals, 123-129
sample problems, 120-123
Tabular Method, 122-123
two transcendentals, 129-131

definite integrals
overview, 54
sample problems, 54-58

discontinuous integrands
finite, 165
infinite, 165
sample problems, 166-168

increasing
overview, 233
sample problems, 234

limits, 229-231
monotonic

overview, 233
sample problems, 234

recursively defined sequence, 228
sample problems, 228-231
Squeeze Theorem

overview, 231-232
sample problems, 232-233

infinity limits, 23
instantaneous rates of change

derivatives
concavity, 31-33
differentiation rules, 24
First Derivative Test, 31
functions, 25
Isaac Newton’s reasoning, 23-24
logarithmic differentiation, 26
relative extremes, 30-33
sample problems, 25-27, 33-36
Second Derivative Test, 32-33

limits, 20-23
Mean Value Theorem, 29-30

integrals. See also integrands
convergent, 163
definite integrals

area calculations, 81-86
overview, 54
sample problems, 54-58

divergent, 163
Fundamental Theorem of Calculus, 50-52
improper, 162, 168
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L
Lagrange Error Estimate

MacLaurin Series, 260-262
Taylor Series, 260-262

left endpoint method (Riemann Sums), 67-68
lengths, arc lengths, 110

distance formula, 111
parametric curves, 178-179
polar curves, 187-189
sample problems, 112-113

L’Hopital’s Rule, 33, 230
Liber Abaci, 229
limaçon polar curves, 184
limacon polar graph, 12
Limit Comparison Test, 243-244
limits

continuous at a point, 22
indeterminate, 22
infinite limits of integration, 162

convergent integrals, 163
divergent integrals, 163
sample problems, 163-165

infinite sequences, 229-231
infinity, 23
parabolas, 20

linear approximations, differential equations
overview, 212-214
sample problems, 214

linear factors
nonrepeating linear factors, 152-153
repeated linear factors, 154-155

Lissajous curve, 174-175
logarithmic differentiation, 26
logarithmic functions, 7-8
logistical growth problems, 209-210

first order linear differential equations
overview, 222
sample problems, 222-224

fractions
completing the square, 148-151
partial fractions, 152-157

Fundamental Theorem of Calculus, 50-52
improper integrals, 162, 168
indefinite integrals

differentiation formulas, 43-44
sample problems, 42-46

infinite limits, 162
convergent integrals, 163
divergent integrals, 163
sample problems, 163-165

integrands, 46
partial fractions, 15-17
Second Fundamental Theorem of Calculus, 53
trigonometric substitutions

overview, 134
right triangle trigonometry, 134-139
sample problems, 134-139
sine and cosine integral form, 139-141
tangent and secant integral form, 142-146

u-substitutions
overview, 46-50
sample problems, 48-50

interval of convergence
MacLaurin Series, 256-258
power series, 250-252
Taylor Series, 260

inverses, trigonometric functions, 6
irrational numbers, 257
irreducible quadratic factors, 155-157
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P
parabolas

defined parametrically, 9
limits, 20

parabolic arcs, Simpson’s Rule, 87
parallelogram method, adding vectors, 197
parametric equations, 171

overview, 8-10, 172
parametric curves

arc lengths, 178-179
first derivatives, 172-176
second derivatives, 177

partial fractions
integration

nonrepeating linear factors, 152-153
quadratic factors, 155-157
repeated linear factors, 154-155

overview, 15-17
particular solution, differential equations, 206
phase shift, 5
piecewise function, 21
planes

Cartesian Coordinate plane, 10
polar coordinates

cardioid graph, 12
graphing, 12-14
limacon graph, 12
overview, 10-14
rose graph, 12

point of inflection, 31
polar coordinates

graphs, 12-14
cardioid, 12
limacon, 12
rose, 12

M
MacLaurin Series

interval of convergence, 256-258
Lagrange Error Estimate, 260-262
sample problems, 252-258

Mean Value Theorem
overview, 29-30
true area calculations, 76

midpoint method (Riemann Sums), 70
monotonic sequences

overview, 233
sample problems, 234

multiplication, vectors
cross products, 199
dot products, 199-200

N–O
natural numbers, 257
Newton, Isaac, 24
nonrepeating linear factors, partial fractions,  

152-155
numbers

complex, 257
imaginary, 257
irrational, 257
natural, 257
rational, 257
real, 257
whole, 257

odd powers
sine and tangent integral form, 139-141
tangent and secant integral form, 143-146
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practice test
questions, 264-271
solutions, 272-277

pre-calculus topics
exponents and logarithms, 6-8
geometric sequences, 14
geometric series, 14-15
parametric equations, 8-10
partial fractions, 15-17
polar coordinates, 10-14
trigonometry

radian values, 4
trigonometric functions, 5-6

Product Rule, 24
p-series, 240
Pythagorean identity, 5, 143
Pythagorean Theorem, 134

Q–R
quadratic factors, 155-157
quadratic regression, 87
Quotient Rule, 24

radian values, 4
radius of convergence

power series, 250-252
Taylor Series, 260

ranges, 6
rate of change, differential equations

exponential decay problems, 208
exponential growth problems, 208-209
logistical growth problems, 209-210
separable, 206-212
verbal descriptions, 207

rational numbers, 257

overview, 10-14
polar curves

arc lengths, 187-189
area calculations, 189-193
cardioid, 184
finding slope of tangent lines, 182-187
limaçon, 184
roses form, 184

polynomials
integration by parts, 123-129
power series

interval of convergence, 250-252
MacLaurin Series, 252-262
radius of convergence, 250-252
Taylor Series, 258-262

positive series, 239
powers

sine and cosine integral form
even powers, 140-141
odd and even powers, 141
odd powers, 139-140

tangent and secant integral form
even powers, 142
odd powers, 143-146

power series
interval of convergence, 250-252
MacLaurin Series

interval of convergence, 256-258
Lagrange Error Estimate, 260-262
sample problems, 252-258

radius of convergence, 250-252
Taylor Series

interval of convergence, 260
Lagrange Error Estimate, 260-262
radius of convergence, 260
sample problems, 258-260
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S
sample problems

arc lengths, 112-113
area calculations

area between two curves, 81-86
average value of functions, 80-81
Simpson’s Rule, 86-88
true area, 76-79

definite integrals, 54-58
derivatives, 25-27, 33-36
differential equations

Euler’s Method, 214-216
first order linear, 222-224
linear approximations, 212-214
separable, 206-212
slope fields, 217-221

discontinuous integrands, 166-168
implicit differentiation, 28-29
indefinite integrals, 42-46
infinite limits of integration, 163-165
infinite sequences, 228

convergence and divergence, 229-231
monotonic, 234
Squeeze Theorem, 232-233

integration
by parts, 120-129
partial fractions, 152-157
trigonometric substitutions, 134-139
with fractions, 148-151

MacLaurin Series, 252-258
parametric curves

arc lengths, 178-179
first derivatives, 172-176
second derivatives, 177

ratios
common ratio, 14
Ratio Test, 246-247

real numbers, 257
recursively defined sequence, 228
reduction formula, 143
regression, quadratic regression, 87
related rate problems, 36-38
relative extremes, derivatives, 30

concavity, 31-33
First Derivative Test, 31
Second Derivative Test, 32-33
signs analysis, 31

Riemann, Bernhard, 64
Riemann Sums, 64

left endpoint method, 67-68
midpoint method, 70
right endpoint method, 68-69
sample problems, 72-75
trapezoid method, 71-72

right endpoint method (Riemann Sums), 68-69
right triangle trigonometry, 134-139
rose polar graph, 12
roses equation form, 184
rules

Chain Rule, 28, 172
differentiation

Chain Rule, 24
Constant Rule, 24
Product Rule, 24
Quotient Rule, 24
Sum Rule, 24

L’Hopital’s Rule, 33, 230
Simpson’s Rule

area calculations, 86-88
defined, 87
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second derivatives
parametric curves, 177
Second Derivative Test, 32-33

Second Fundamental Theorem of Calculus, 53
separable differential equations

exponential decay problems, 208
exponential growth problems, 208-209
general solutions, 206
logistical growth problems, 209-210
particular solutions, 206
sample problems, 206-212
verbal descriptions, 207

SEQ command (calculator), 67
sequences

geometric, 14
infinite sequences

convergence and divergence, 228-231
decreasing, 233
Fibonacci Sequence, 229
increasing, 233-234
limits, 229-231
monotonic, 233-234
recursively defined sequence, 228
sample problems, 228-229
Squeeze Theorem, 231-233

series
geometric, 14-15
infinite geometric series

absolutely convergent, 245
alternating series, 244-248
conditionally convergent, 245
“eliminating the middle” process, 238
harmonic series, 240-241
overview, 238-239
positive series, 239
p-series, 240
tests of convergence, 239-243

polar curves
arc lengths, 187-189
area calculations, 189-193
slope of tangent lines, 182-187

power series, 250-252
related rates, 36-38
Riemann Sums, 72-75
sine and cosine integral form

even powers, 140-141
odd and even powers, 141
odd powers, 139-140

surface area calculations, 113-115
tangent and secant integral form

even powers, 142
odd powers, 143-146

Taylor Series, 258-260
u-substitutions, 48-50
vectors

acceleration calculations, 200-202
addition, 196-197
displacement calculations, 200-202
multiplication, 199-200
subtraction, 199
velocity calculations, 200-202

volume calculations
disks and washers, 97-99, 103-106
shell method, 106-110
with defined cross sections, 92-96

scalars
speed, 196
vs. vectors, 196

secant
tangent and secant integral form

even powers, 142
odd powers, 143-146

trigonometric functions, 5
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Squeeze Theorem
overview, 231-232
sample problems, 232-233

substitutions, trigonometric substitutions and 
integration

overview, 134
right triangle trigonometry, 134-139
sample problems, 134-139
sine and cosine integral form, 139-141
tangent and secant integral form, 142-146

subtraction, vectors, 199
sum estimations, alternating series, 247-248
Sum Rule, 24
surface area calculations, solids of revolutions, 

113-115

T
Tabular Method, 122-123
tangent

calculating slope to polar curves, 182-187
tangent and secant integral form

even powers, 142
odd powers, 143-146

trigonometric functions, 5
Taylor Series

interval of convergence, 260
Lagrange Error Estimate, 260-262
radius of convergence, 260
sample problems, 258-260

tests
convergence

alternating series, 244-247
Comparison Test, 241-242
Divergence Test, 239
Integral Test, 240
Limit Comparison Test, 243

power series
interval of convergence, 250-252
MacLaurin Series, 252-262
radius of convergence, 250-252
Taylor Series, 258-262

shell method, volume calculations, 106-110
signs analysis, derivatives and relative extremes, 

31-33
Simpson’s Rule

area calculations, 86-88
defined, 87

sine
average values, 80-81
sine and cosine integral form

even powers, 140-141
odd and even powers, 141
odd powers, 139-140

trigonometric functions, 5
slope

differential equations
overview, 217
sample problems, 217-221

tangent line to polar curves, 182-187
solids of revolutions

surface area calculations, 113-115
volume calculations, 91

disks and washers, 97-106
shell method, 106-110
with defined cross sections, 92-96

solutions
differential equations

general, 206
particular, 206

practice tests, 272-277
speed, scalar values, 196
square trinomials, 148
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V
values, average values

area calculations, 80-81
sine function, 80-81

vectors
addition, 196-197
displacement calculations, 200-202
horizontal and vertical components, 198
multiplication

cross products, 199
dot products, 199-200

overview, 196
subtraction, 199
velocity

acceleration calculations, 200-202
calculations, 200-202
overview, 196

vs. scalars, 196
velocity, vector values

calculations, 200-202
overview, 196

verbal descriptions, differential equations, 207
vertical components, vectors, 198
volume calculations, solids of revolutions, 91

disks and washers, 97-106
shell method, 106-110
with defined cross sections, 92-96

W–X–Y–Z
washers, volume calculations, 97-106
whole numbers, 257

y = f '(x) notation, 28

practice test, 264-271
solutions, 272-277

theorems
Fundamental Theorem of Calculus

integrals, 50-52
Simpson’s Rule, 86-88

Mean Value Theorem
overview, 29-30
true area calculations, 76

Pythagorean Theorem, 134
Second Fundamental Theorem of Calculus, 53
Squeeze Theorem

overview, 231-232
sample problems, 232-233

transcendentals, integration by parts
sample problems, 121-129
two transcendentals, 129-131

trapezoid method (Riemann Sums), 71-72
trigonometric substitutions, integration

overview, 134
right triangle trigonometry, 134-139
sample problems, 134-139
sine and cosine integral form, 139-141
tangent and secant integral form, 142-146

trigonometry topics
radian values, 4
trigonometric functions, 5-6

trinomials, square trinomials, 148
true area calculations, curves, 76-79

U
u-substitutions

overview, 46-50
sample problems, 48-50
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