
A Tutorial on White-box AES

James A. Muir?

Irdeto Canada
http://www.irdeto.com

Abstract. White-box cryptography concerns the design and analysis
of implementations of cryptographic algorithms engineered to execute
on untrusted platforms. Such implementations are said to operate in a
white-box attack context. This is an attack model where all details of the
implementation are completely visible to an attacker: not only do they
see input and output, they see every intermediate computation that hap-
pens along the way. The goal of a white-box attacker when targeting an
implementation of a cipher is typically to extract the cryptographic key;
thus, white-box implementations have been designed to thwart this goal
(i.e., to make key extraction difficult/infeasible). The academic study
of white-box cryptography was initiated in 2002 in the seminal work of
Chow, Eisen, Johnson and van Oorschot (SAC 2002). Here, we review
the first white-box AES implementation proposed by Chow et al. and
give detailed information on how to construct it. We provide a number
of diagrams that summarize the flow of data through the various look-up
tables in the implementation, which helps clarify the overall design. We
then briefly review the impressive 2004 cryptanalysis by Billet, Gilbert
and Ech-Chatbi (SAC 2004). The BGE attack can be used to extract
an AES key from Chow et al.’s original white-box AES implementation
with a work factor of about 230, and this fact has motivated subsequent
work on improved AES implementations.

Keywords: software, cryptography, AES, white-box.

1 Introduction

Suppose cryptographic software is deployed on a host that is not fully trusted.
Examples of this include software distributed to end-users as part of some digital
rights management (DRM) system, or client software running in the cloud, or
even a cryptographic operation being executed on a smart-card [3,11,12]. Con-
tinuing with the DRM example, suppose that after installing the software on a
PC, laptop, tablet or mobile phone, the end-user is then able to purchase some
type of premium content (e.g., a television show, sports feed, video game or e-
book). The content arrives at the user’s device encrypted, and is decrypted by
the software as it is viewed.

? Version: 22 February 2013 23:19:23 EST. This is an extended and corrected version of
a paper that initially appeared in Advances in Network Analysis and its Applications,
Mathematics in Industry 18 (2013), 209-229.

http://www.irdeto.com


2 J.A. Muir

A malicious end-user may attempt to extract cryptographic keys from the
software and then use them to redistribute content outside the DRM system.
An attacker such as this is much more powerful than a traditional cryptographic
attacker who sees only the inputs and outputs of a cryptographic operation (i.e.,
an attacker who treats the implementation as a black-box). This attacker is
targeting software running on their own device. They are able to examine its
inputs, outputs, and, with the help of a disassembler/debugger (e.g., IDA Pro,
OllyDbg), the result of every intermediate computation it carries out. Essentially,
this attacker has total visibility into the cryptographic operation.

The study of cryptographic implementations in this type of attack context
was introduced in the academic literature in 2002 by Chow, Eisen, Johnson and
van Oorschot [4]. In their seminal work, they motivated and defined the white-
box attack context and presented some generic techniques that can be used to
help create cryptographic implementations that resist key-extraction. They also
applied those techniques to produce example implementations of AES [4] and
(in another work) DES [5].

The terms white-box AES and white-box DES have become synonymous with
the first implementations disclosed by Chow et al., but these terms are actually
more general. Any AES implementation engineered to resist key extraction in
the white-box attack context could be called white-box AES. And note that
there are a number of ways that the techniques proposed by Chow et al. could
be applied to AES and DES to create protected implementations.

With the 10 year anniversary of the papers by Chow et al. upcoming, it
seems an appropriate time to give them another look. Here, we review their
original AES implementation and give detailed information on how to construct
it. A fair criticism of Chow et al.’s AES paper is that it is quite dense, and
extracting the complete details of their protected AES implementation from it
can be challenging. Our goal here is to make that information more accessible;
this may be of particular benefit to new researchers and software engineers who
are beginning to learn about white-box cryptography.

We also give a brief review of the 2004 algebraic cryptanalysis by Billet,
Gilbert and Ech-Chatbi [2] that shows how a white-box attacker can extract
the key from Chow et al.’s original AES implementation using 230 work-steps in
the worst case. This impressive cryptanalysis has motivated the design of new
white-box AES implementations more resistant to key extraction and a number
of subsequent works in the open literature have appeared on this topic (e.g., [13],
[14], [19], [10]).

Outline. We begin by discussing the definitional results on program obfuscation
by Barak et al. in §2. We then start our review of Chow et al.’s public AES
implementation in §3 by describing a table-based implementation that does not
include any protections against white-box attacks. In §4, we explain how encod-
ings and mixing bijections are applied to the implementation with the goal of
making it more resistant to key extraction attacks. Then we review the crypt-
analysis by Billet et al. in §5, and end with some remarks in §6.



A Tutorial on White-box AES 3

Preliminary Facts and Notation. Let x and y be bit-strings of equal length.
We denote the bit-wise exclusive-or of x and y by x ⊕ y. When we say that
a transformation, L, from bit-strings to bit-strings is linear, we mean that the
identity L(x ⊕ y) = L(x) ⊕ L(y) holds for all inputs x, y. In particular, any
transformation that permutes the bits of x is linear. If L is linear, then it can be
represented using matrix-vector multiplication over GF(2); that is, there exists a
matrix representation of L. The composition of two functions f and g is denoted
by f ◦ g, where f ◦ g(x) = f(g(x)). If v is a column vector, then we use vT to
denote its transpose. We sometimes abuse functional notation and apply it to
matrices; for example, if M and N are matrices that can be multiplied together,
then M ◦N denotes the transformation v 7→MNv. If c is a constant bit-string,
then ⊕c denotes the function x 7→ x⊕ c.

2 Barak et al.’s Impossibility Theorem

In 2001, Barak et al. [1] published foundational results on program obfuscation.
They defined a program obfuscator as an algorithm that takes a program de-
scription as input (e.g., C code) and transforms it into a functionally equivalent
obfuscated program description that satisfies the virtual black-box property ; that
is, any information that can be efficiently learned from the obfuscated program
description can also be efficiently learned by studying only inputs and outputs
of the original program. Their main result is that generic program obfuscators
cannot exist – they show that there must always be some class of programs that
when run through the obfuscator leak information that is not available through
black-box interaction with the original programs.

The results of Barak et al. are sometimes incorrectly cited to refute the possi-
bility of designing cryptographic implementations that resist white-box attacks.1

However, there is no evidence that common block ciphers and their component
operations belong to the special family of programs that cannot be securely ob-
fuscated; see the statements to this effect by Billet et al. [2, page 239] and by
Wyseur [16, page 91]. The successful white-box cryptanalysis of Chow et al.’s
published AES [2] and DES [8,17] implementations do not point to any fun-
damental flaw that must be present in all white-box implementations of block
ciphers; parts of those attacks exploit details particular to the AES and DES
algorithms. It is possible that some block ciphers can be securely obfuscated (in
a strict definitional sense); and it is also possible that, with the introduction of
new techniques, strong white-box implementations of AES and DES could be
created.

Barak et al. suggest that the virtual black-box property used in their defini-
tion of secure obfuscation may be too strong (i.e., perhaps obfuscated programs
necessarily leak some non-black-box information, which may or may not be useful

1 More generally, the results are also cited incorrectly in anti-DRM commentaries.
Barak has published a non-technical summary of their results in an attempt to
dispel some of the confusion (see http://www.cs.princeton.edu/~boaz/Papers/

obf_informal.html).

http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html
http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html


4 J.A. Muir

to an attacker). Other definitions of secure obfuscation have been proposed, and
using those definitions a number of positive results have been derived (cf. [9]).

3 Table-based Implementation

One completely impractical way to create a white-box implementation of a block
cipher that does not leak any more information than a black-box implementation
is to create a massive look-up table that maps, say, plaintext to ciphertext under
some fixed key. If the block length of the cipher is ` bits, then the look-up table
consists of 2` entries with each entry being an `-bit string. Since ` is typically
64 or 128, the amount of memory required to store this table is beyond the
capabilities of any real-world device. However, using a number of smaller look-
up tables can lead to a practical solution.

We begin our description of Chow et al.’s white-box AES implementation by
first presenting an implementation that does not offer any resistance to white-
box attacks. This implementation makes extensive use of look-up tables, and the
cipher key can be easily recovered from some of them. Techniques for resisting
key extraction are covered in §4.

3.1 AES-128

AES-128 is specified in FIPS 197 [7]. It is an iterated block cipher that maps a
16-byte input to a 16-byte output using a 16-byte key. It has 10 rounds. Each
round updates a 16-byte state variable, which we treat as a one-dimensional
array2, by applying a combination of four basic transformations:

– AddRoundKey takes a 16-byte round key, kr, and uses exclusive-or to add it
to the 16-byte state (i.e., state[i]← state[i]⊕ kr[i] for i = 0 . . . 15).

– SubBytes utilizes a substitution table, S, that maps bytes to bytes. Each
byte of the state is updated by applying S to it (i.e., state[i]← S(state[i])
for i = 0 . . . 15).

– ShiftRows rearranges the bytes of the state using the following permutation:

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

that is, state[0], state[5], state[10], state[15] form the first four bytes of
the updated state, and so on.

– MixColumns updates the state four bytes at a time. An invertible 4×4 matrix,
MC, with entries from GF(28), is multiplied by a 4×1 column vector formed

2 The state variable is usually described as a two-dimensional array of bytes (i.e., a
4 × 4 array). However, the four columns can be concatenated end-to-end to form a
one-dimensional array. Using a one-dimensional array simplifies some of our notation
and diagrams.



A Tutorial on White-box AES 5

from four state bytes. The state bytes are interpreted as elements of GF(28).
More precisely, the transformation is


state[i]

state[i+ 1]
state[i+ 2]
state[i+ 3]

← MC ·


state[i]

state[i+ 1]
state[i+ 2]
state[i+ 3]


for i = 0, 4, 8, 12. The matrix MC is defined to be


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 .

Let k denote an AES-128 key. The AES specification explains how to expand
k into eleven round keys k0, k1, . . . , k10 (one additional round key, k0, is required
for an initial AddRoundKey operation that takes place before round one). We do
not require the exact details of key expansion here; note, however, that k0 is
equal to k.

The conventional way to describe AES-128 encryption is as follows:

state← plaintext
AddRoundKey(state, k0)
for r = 1 . . . 9

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, kr)

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, k10)
ciphertext← state

However, there are many other valid descriptions. Consider the following two
observations:

1. The for-loop can be redefined to bring the transformation AddRoundKey(state, k0)
inside it while pushing AddRoundKey(state, k9) out.

2. Since SubBytes applies the same S-box to each byte of the state, SubBytes
followed by ShiftRows gives the same result as ShiftRows followed by
SubBytes.



6 J.A. Muir

From these observations, we can generate the following description:

state← plaintext
for r = 1 . . . 9

AddRoundKey(state, kr−1)
ShiftRows(state)
SubBytes(state)
MixColumns(state)

AddRoundKey(state, k9)
ShiftRows(state)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext← state

Here is another observation:

3. Since ShiftRows is a linear transformation (recall that it is a permutation),
AddRoundKey(state, kr−1) followed by ShiftRows(state) gives the same re-

sult as ShiftRows(state) followed by AddRoundKey(state, k̂r−1); here, k̂r−1
is the result of applying ShiftRows to the round key kr−1.

This gives us
state← plaintext
for r = 1 . . . 9

ShiftRows(state)

AddRoundKey(state, k̂r−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)

AddRoundKey(state, k̂9)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext← state

With AES written in this way, we are able to combine AddRoundKey, SubBytes,
and part of MixColumns into a series of table look-ups. This technique is similar
to one used by Daemen and Rijmen in their AES proposal document [6, see
§5.2.1]. However, in the implementation we are about to review below, we will
see that bytes of round keys are embedded into some of the tables, and a num-
ber of redundant tables are included; this differs from the implementation by
Daeman and Rijmen. Essentially, the for-loop above is unrolled and a collection
of tables is created for each of the ten rounds with no regard as to whether or
not an identical table might exist elsewhere in the implementation.

3.2 T-boxes

In each round, the AddRoundKey and SubBytes transformations can be combined
into a series of sixteen look-up tables that map bytes to bytes (i.e., 8-bits to 8-



A Tutorial on White-box AES 7

bits). These so-called T-boxes are defined as follows:

T ri (x) = S(x⊕ k̂r−1[i]), for i = 0 . . . 15 and r = 1 . . . 9,

T 10
i (x) = S(x⊕ k̂9[i])⊕ k10[i], for i = 0 . . . 15.

Note that the T-boxes for round 10 incorporate the bytes of two round keys (k̂9
and k10). There are 160 T-boxes in total.

3.3 Tyi tables

In rounds 1 to 9, after a byte is mapped through a T-box, it is then input
into a MixColumns transformation. In particular, in round 1, the outputs of
T 1
0 , T

1
1 , T

1
2 , T

1
3 are interpreted as a column vector and then multiplied with the

matrix MC. This computation can also be implemented using tables.
Let x0, x1, x2, x3 be four bytes that are to be multiplied with MC. The mul-

tiplication can be decomposed into an exclusive-or of four 32-bit values like so:
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02



x0
x1
x2
x3

 = x0


02

01

01

03

⊕ x1

03

02

01

01

⊕ x2

01

03

02

01

⊕ x3

01

01

03

02

 .
The terms of the sum on the right (denote them by y0, y1, y2, y3) are each a
function of one byte of input. Thus, each yi can take on only 256 possible values.

The so-called Tyi tables map 8-bits to 32-bits and are defined as follows:

Ty0(x) = x · [02 01 01 03]T

Ty1(x) = x · [03 02 01 01]T

Ty2(x) = x · [01 03 02 01]T

Ty3(x) = x · [01 01 03 02]T.

Using these tables, we see that the 32-bits that result from applying MixColumns

to the four bytes x0, x1, x2, x3 can be computed via four table look-ups and three
exclusive-ors:

Ty0(x0)⊕ Ty1(x1)⊕ Ty2(x2)⊕ Ty3(x3).

We create 144 Tyi tables (36 copies of each of Ty0, Ty1, T y2, T y3) to accept
the outputs of the T-boxes in rounds 1 to 9 (recall that MixColumns is not applied
in round 10).

3.4 XOR tables

The exclusive-or operations, which combine 32-bit values from the Tyi tables,
can also be implemented using tables. Define a look-up table, XOR, that takes
two nibbles (i.e., two 4-bit values) as input and maps them to their exclusive-or:

XOR(x, y) = x⊕ y.



8 J.A. Muir

Note that XOR maps 8-bits to 4-bits. The exclusive-or of two 32-bit values can
be computed using 8 copies of the XOR look-up table.

In each of rounds 1 to 9, twelve 32-bit exclusive-ors are required to determine
the result of MixColumns. To carry out this computation, we create 96 copies
of the XOR table in each of these rounds (i.e., 864 copies of the XOR table in
total). Although it seems that we could make do with only one XOR table, the
protections introduced in §4 do not permit this.

3.5 Table Composition

Wherever a T-box feeds directly into a Tyi table (i.e., in rounds 1 to 9), we can
replace the two separate tables with their composition. For example, in round
one, T 1

0 and Ty0 could be replaced with the new look-up table Ty0 ◦ T 1
0 where

Ty0 ◦ T 1
0 (x) = Ty0(T 1

0 (x)).

Composing look-up tables reduces the number of individual table accesses re-
quired to carry out an encryption. Throughout rounds 1 to 9, the T-boxes and
Tyi tables are composed.

3.6 Summary

We now have all the tables (144 composed T-boxes/Tyi tables, 864 XOR ta-
bles, 16 T-boxes) we need for our implementation, which can be summarized as
follows:

state← plaintext
for r = 1 . . . 9

ShiftRows

TBoxesTyiTables

XORTables

ShiftRows

TBoxes

ciphertext← state

The flow of four bytes of state through round 1 is illustrated in Figure 1. Note
that there are a number of different ways that the XOR tables could be utilized
to determine the value of the state variable at the end of rounds 1 to 9; the flow
in Figure 1 is only an example. A zoomed in look at the XOR computation is
given in Figure 2.

4 Protected Implementation

We consider now how to protect the table-based implementation of the previous
section in the white-box attack context. Recall that this means that the software
implementing AES-128 encryption for a particular key executes in an environ-
ment that is under the control of an attacker. By using a disassembler/debugger,
it is easy for the attacker to learn the contents of the various look-up tables, in-
cluding the composed T-boxes/Tyi tables that incorporate bytes of round keys.



A Tutorial on White-box AES 9

Fig. 1. The data flow for round one of AES with respect to bytes 0,5,10,15 of the input
state (i.e., the plaintext). The data flow for the other bytes is similar. Note that the
input state is at the top of the diagram and the output state is at the bottom.

Fig. 2. Computing an exclusive-or of two 32-bit values utilizes eight XOR tables. The
inputs enter at the top of the diagram and the outputs appear at the bottom.



10 J.A. Muir

4.1 Encodings

If the composed T-box/Tyi tables from round 1 are known to an attacker, then
they can easily recover the AES key. Consider table Ty0◦T 1

0 , and let a denote the
byte of round key k0 used to build T 1

0 . There are only 256 different constructions
of Ty0 ◦ T 1

0 , and thus the attacker can enumerate them and simply look-up the
value of a from that list.3

Something must be done to protect the contents of the composed T-box/Tyi
tables and the T-boxes in round 10 if the implementation is going to resist key
extraction. The technique proposed by Chow et al. [4] is to use input and output
encodings.

An encoding is simply a bijection. To protect a table, T , we choose bijections
f and g and form the new table T ′ where

T ′ = g ◦ T ◦ f−1.

f is called the input encoding and g is called the output encoding. This new table
maps encoded inputs to encoded outputs and can still be used to compute T (x).
To retrieve the value of T (x), we map f(x) through T ′ and then apply g−1 to
the result.

If the output of table T feeds into another table R, then encodings are applied
to those two tables in a so-called networked fashion; that is, the output encoding
of T and the input encoding of R are chosen so that they cancel each other out.
For example, T and R would be protected as follows,

T ′ = g ◦ T ◦ f−1 and R′ = h ◦R ◦ g−1,

from which we see that

R′ ◦ T ′ = (h ◦R ◦ g−1) ◦ (g ◦ T ◦ f−1) = h ◦ (R ◦ T ) ◦ f−1.

Encodings are used to obfuscate the contents of all look-up tables in Chow
et al.’s AES implementation. They are selected uniformly at random and inde-
pendently wherever possible. Because of the design of the XOR tables, which
consume four bits from one look-up table and four bits from another, almost all
the encodings used in the protected implementation are concatenated encodings.
These are bijections formed from smaller bijections. For example, we can build
an 8-bit encoding, f , from two 4-bit encodings, f0 and f1, like so:

f(x0‖x1) = f0(x0)‖f1(x1).

Here, the symbol ‖ denotes the concatenation of bit-strings, and x0, x1 are 4-bit
strings. Similarly, we can build a 32-bit encoding, g, using eight 4-bit encodings:

g(x0‖x1‖ · · · ‖x7) = g0(x0)‖g1(x1)‖ · · · ‖g7(x7).

Concatenated 4-bit input and output encodings are individually selected and
applied to all look-up tables, with the following exceptions:

3 The attacker can also compute the key byte directly: a = S−1 ◦Ty−1
0 ◦ (Ty0 ◦T 1

0 )(0).



A Tutorial on White-box AES 11

– the output encodings applied to the XOR tables (these are just 4-bit encod-
ings, not concatenated encodings),

– the input encodings applied to the composed T-box/Tyi tables in round 1,

– the output encodings applied to the T-boxes in round 10.

The encodings mentioned in the latter two items do not have to be networked
with XOR tables, so we have more freedom in their selection. We will discuss
this further when we consider external encodings in §4.3.

Local security. When the composed T-box/Tyi tables are protected with encod-
ings, there are now too many table constructions for an attacker to enumerate.
Consider a composed T-box/Tyi table from round 2. There are (16!)2 · (16!)8

ways of choosing input and output encodings for this table. If the input encoding
is fixed, then it can be shown that all of the (16!)8 possible output encodings
produce distinct look-up tables. Thus, the number of table constructions is at
least (16!)8 ≈ 2354 (and is at most (16!)10 ≈ 2442).

An attacker might hope to deduce the key byte from an encoded T-box/Tyi
table by studying the lists of table constructions (i.e., the table constructions
for each possible value of the key byte). However, this approach will not yield
any information about the key byte. It can be shown, by manipulating input
encodings, that all 256 lists of table constructions are the same.

From the previous fact, we can conclude that the protected tables are infor-
mation theoretically secure. It is not possible for the attacker to extract the key
byte from the encoded version of, say, Ty0 ◦T 2

0 , if he or she studies only that ta-
ble; Chow et al. [5] refer to this property as local security. However, even though
no information about the key leaks from this protected table, other information
may. For example, the definition of the output encodings may leak, which could
be useful for extracting key bytes from T-box/Tyi tables in the next round.

Although the use of encodings is actually what motivates the table-based
implementation of AES in the first place, encodings are the very last form of
protection applied. Note that encodings are selected uniformly at random and
will be non-linear with very high probability.

4.2 Mixing Bijections

The look-up tables that incorporate bytes of round keys can be considered minia-
ture block ciphers. The application of concatenated input and output encodings
help these components achieve confusion, as defined by Shannon [15]. To help
them achieve diffusion, linear transformations are also composed at their in-
put and output (these compositions are done before the application of the con-
catenated input and output encodings). An invertible linear transformation is
referred to as a mixing bijection.

Mixing bijections are applied to all the key-dependent look-up tables in the
implementation. In general, each mixing bijection is selected uniformly at ran-
dom. Their usage in each of the interior rounds (i.e., rounds 2 to 9) is the same;



12 J.A. Muir

for the exterior rounds (i.e., round 1 and 10), there are a few differences, which
we will explain.

We begin by selecting all the required mixing bijections:

– for each of rounds 2 to 10, select 16 8-bit to 8-bit mixing bijections (i.e.,
144 mixing bijections in total). These will be composed at the input of each
T-box in rounds 2 to 10.

– for each of rounds 1 to 9, select 4 32-bit to 32-bit mixing bijections (i.e., one
mixing bijection for each of the four matrix multiplication steps in each of
those rounds). These will be composed at the output of each Tyi table in
rounds 1 to 9.

Note that mixing bijections can be selected uniformly at random by construct-
ing invertible matrices over GF(2) (i.e., build a random matrix, test it for in-
vertibility, and repeat if necessary). Now consider, for example, the first four
key-dependent look-up tables in round 2:

Ty0 ◦ T 2
0 ,

T y1 ◦ T 2
1 ,

T y2 ◦ T 2
2 ,

T y3 ◦ T 2
3 .

Let L2
0, L

2
1, L

2
2, L

2
3 be the four 8-bit to 8-bit mixing bijections selected for these

tables. The inverses of these transformations are composed at their input. Let
MB be the 32-bit to 32-bit mixing bijection chosen for these four tables.4 MB
is composed at the output of each table. This produces the following tables:

MB ◦ Ty0 ◦ T 2
0 ◦ L2

0
−1
,

MB ◦ Ty1 ◦ T 2
1 ◦ L2

1
−1
,

MB ◦ Ty2 ◦ T 2
2 ◦ L2

2
−1
,

MB ◦ Ty3 ◦ T 2
3 ◦ L2

3
−1
.

The four bytes entering these tables are computed in round 1 and will have the
appropriate mixing bijections applied to them there (i.e., the four inputs are
respectively encoded using L2

0, L
2
1, L

2
2, L

2
3 in round 1).

The outputs of these tables feed into the XOR tables, as in Figure 1. However,
at the end of the third stage of XOR tables, the resulting 32-bit value is now

MB ◦MC [z0 z1 z2 z3]T.

We need to remove the transformation MB, and also apply the 8-bit mixing
bijections required for the next round.

4 Chow et al. recommend that the MB matrices be selected with some additional
properties; see Appendix B for a commentary on this.



A Tutorial on White-box AES 13

Four new 8-bit to 32-bit tables are introduced to remove the effect of MB.
These tables are generated using the familiar technique of decomposing a matrix
multiplication into an exclusive-or of four 32-bit vectors:

MB−1


z0
z1
z2
z3

 = MB−1


z0
0
0
0

⊕MB−1


0
z1
0
0

⊕MB−1


0
0
z2
0

⊕MB−1


0
0
0
z3

 .
Let MB−10 ,MB−11 ,MB−12 ,MB−13 denote the four 8-bit to 32-bit tables correspond-
ing to the terms of the sum on the right. Let L3 denote a 32-bit to 32-bit mixing
bijection constructed by concatenating four 8-bit to 8-bit mixing bijections from
round 3. L3 is used to put the proper encodings on bytes 0,1,2,3 of the state
array that enters round 3. Accounting for the ShiftRows transformation at the
beginning of round 3, L3 is defined as follows:

L3 = L3
0‖L3

13‖L3
10‖L3

7.

L3 is composed at the output of each of MB−10 ,MB−11 ,MB−12 ,MB−13 resulting in
the tables

L3 ◦MB−10 ,

L3 ◦MB−11 ,

L3 ◦MB−12 ,

L3 ◦MB−13 .

The outputs of these tables are combined using three new stages of XOR tables.
A summary of this process is presented in Figure 3. In comparison with Figure 1,
we see that the number of tables has doubled.

The application of mixing bijections in round 1 is very similar to Figure 3.
The only difference is that there are no input mixing bijections applied to the
T-boxes. In round 10, there are input mixing bijections applied to the T-boxes,
but output mixing bijections are not applied. The reason for these differences is
related to the external encodings, which we discuss next.

4.3 External encodings

One question that often arises when considering the white-box attack context is
this: why would an attacker want to extract the cipher key when they already
have software that will decrypt ciphertext for them? The answer, given by Chow
et al., is to design the implementation so that it does not map raw ciphertext to
raw plaintext, but rather encoded ciphertext to encoded plaintext. Encodings that
affect the input and output of the cipher are referred to as external encodings.

Denote an AES-128 decryption by Dk. Select 128-bit to 128-bit bijections F
and G. Chow et al. recommend that the implementation computes

D′k = G ◦Dk ◦ F−1.



14 J.A. Muir

Fig. 3. The application of mixing bijections in round 2. The picture for rounds 3 to 9 is
the same. For round 1, the only difference is the absence of the input mixing bijections
on the T-boxes. For round 10, mixing bijections are applied at the input of the T-boxes,
but not the output. At the bottom of the diagram, note that bytes 0,1,2,3 of the state
array that enters round 3 feed T-boxes T 3

0 , T
3
13, T

3
10, T

3
7 , respectively.



A Tutorial on White-box AES 15

As with the encodings discussed in §4.1, a ciphertext, x, must be encoded with
F , which gives F (x), before it is passed as input to the implementation. In
our DRM example, this external encoding could be applied on the server that
supplies premium content for downloading (i.e., on a host separate from the
one where the client software runs). The DRM client software, running on the
user’s device, receives F (x) and applies D′k to give the result G(Dk(x)). The
remaining encoding could be removed by the content viewer, perhaps as the
content is played.

Use of external encodings is mainly to ensure that there is no point during the
execution of the client software where raw ciphertext and raw plaintext appear.
Chow et al. suggest that the external encodings be 128-bit to 128-bit mixing
bijections. Using external encodings such as these requires that a number of new
tables be added to the protected implementation: 16 8-bit to 128-bit tables along
with supporting XOR tables (480) to compute the matrix multiplication for F−1

prior to round 1, and similarly for the matrix multiplication for G after round 10
(note that the 8-bit to 128-bit tables for G can be composed with the round 10
T-boxes).

Here, to simplify our exposition, we will not use mixing bijections for the
external encodings. Instead, we will use concatenated 8-bit encodings; that is,

F = F0‖F1‖ · · · ‖F15 and G = G0‖G1‖ · · · ‖G15,

where each Fi andGi is an 8-bit to 8-bit bijection (selected uniformly at random).
For each T-box in round 1, the corresponding Fi

−1 is composed at its input. And
for each T-box in round 10, the corresponding Gi is composed at its output.
External encodings of this type do not require the addition of any new tables to
the implementation.

4.4 Summary

To protect the tabled-based AES implementation from §3, we apply mixing
bijections, then (internal) encodings, and then external encodings. After the
application of mixing bijections, the number of look-up tables in rounds 1 to 9
doubles. The table counts are as follows:

288 8-bit to 32-bit tables (1024 bytes each),
1728 8-bit to 4-bit tables (128 bytes each),

16 8-bit to 8-bit tables (256 bytes each).

The total storage requirement for the tables is 508 KB. A summary of the various
tables, with all protections applied to them, is given in Figure 4.

5 Cryptanalysis

Chow et al. [4] present some interesting attacks on weakened variants of their
protected implementation, which justify some of their design choices. In partic-
ular, they show that if external encodings are not used, then a linear relation



16 J.A. Muir

Fig. 4. Representatives from the five classes of protected look-up tables. Grey boxes
are used to denote input and output encodings (big grey boxes are external encodings).
For each representative (going from left to right), we list the rounds where tables like
it can be found: round 1 only, rounds 1 to 9, rounds 1 to 9, rounds 2 to 9, round 10
only.

amongst round key bytes can be found that makes a key search feasible (the
search space is reduced from 2128 to 232). They also show that if mixing bi-
jections are not applied (recall that the inclusion of mixing bijections roughly
doubles the number of look-up tables), then it is possible to deduce the output
encodings for any key-dependent look-up table in rounds 2-9 (see Appendix A
for details on this). Knowledge of those output encodings in, say, round 2 leads
to discovery of the input encodings in round 3 because the encodings on the
XOR tables at the end of round 2 can be deduced. Now, with knowledge of the
input and output encodings in round 3, round key bytes can be easily extracted.

In 2004, Billet, Gilbert and Ech-Chatbi [2] published an algebraic attack
against Chow et al.’s first AES implementation. They showed that the cipher
key can be extracted using at most 230 work-steps and negligible memory. We
give a brief review of their method here.

5.1 The BGE attack

As is illustrated in Figure 3 in the previous section, an AES round can be
interpreted as the parallel application of four 32-bit to 32-bit transformations to
the state array. Although the mixing bijection MB is present in the protected
implementation, it has no influence on the four bytes output at the bottom of
Figure 3. The effect of MB and any other internal encodings are canceled out



A Tutorial on White-box AES 17

(this is by design), and the 32-bit to 32-bit transformation has the form displayed
in the lefthand diagram of Figure 5.

Fig. 5. The left diagram displays one of the 32-bit to 32-bit transforms applied in
round 2. MC is the MixColumns matrix. The notation used matches that of the previous
figures. The right diagram introduces a more general notation used by Billet et al. [2]
where the mixing bijections and concatenated encodings are combined. Note that the
inverses of the output encodings become input encodings in the subsequent round.

The righthand diagram of Figure 5 introduces the notation used by Billet et
al. when they examine one of four 32-bit to 32-bit transforms in round 2. The
Pi’s are the combination of input encodings and mixing bijections; the Qi’s are
the combination of mixing bijections and output encodings. Let x0, x1, x2, x3
denote four input bytes and let y0, y1, y2, y3 denote the resulting output. From
the definition of the matrix MC, the relation between the inputs and outputs
can be summarized like so:

y0 = Q0

(
02 · T ′0(x0)⊕ 03 · T ′1(x1)⊕ 01 · T ′2(x2)⊕ 01 · T ′3(x3)

)
, (1)

y1 = Q1 (01 · T ′0(x0)⊕ 02 · T ′1(x1)⊕ 03 · T ′2(x2)⊕ 01 · T ′3(x3)) , (2)

y2 = Q2 (01 · T ′0(x0)⊕ 01 · T ′1(x1)⊕ 02 · T ′2(x2)⊕ 03 · T ′3(x3)) , (3)

y3 = Q3 (03 · T ′0(x0)⊕ 01 · T ′1(x1)⊕ 01 · T ′2(x2)⊕ 02 · T ′3(x3)) ; (4)

here, T ′i is short for Ti ◦ Pi. Note that each yi is a function of x0, x1, x2, x3.



18 J.A. Muir

Billet et al. found that information about the output encodings (i.e., the
Qi’s) leak from the four identities above. For each Qi, they showed that it is

possible to build an approximation, Q̃i, that differs from it by an unknown
affine transformation; that is,

Q̃i = Qi ◦Ai,

where Ai consists of an invertible linear transformation followed by an exclusive-
or with a constant.

The approximations are built by analyzing a new set of look-up tables derived
from Figure 5. As noted previously, y0 is a function of x0, x1, x2, x3; that is, y0 =
f(x0, x1, x2, x3). However, if x2, x3 are kept constant, then y0 can be considered a
function of only x0 and x1. Fix x2, x3 to 00, 00 and let fx1(x0) denote the function
f(x0, x1, 00, 00). Build the look-up table for y0 = f00(x0) and for y0 = f01(x0).
From equation (1), we see that

f00(x0) = Q0(02 · T ′0(x0)⊕ β00),
f01(x0) = Q0(02 · T ′0(x0)⊕ β01),

where β00 and β01 are unknown 8-bit strings.
From the look-up tables for f00 and f01, we can construct the look-up table

for f01 ◦ f00−1, which has a very simple description. Using functional notation,
we can write

f00 = Q0 ◦ ⊕β00 ◦ 02 · T ′0,
f01 = Q0 ◦ ⊕β01 ◦ 02 · T ′0.

Thus, we see that

f01 ◦ f00−1 = (Q0 ◦ ⊕β01 ◦ 02 · T ′0) ◦ ((02 · T ′0)−1 ◦ ⊕β00 ◦Q0
−1)

= Q0 ◦ ⊕β ◦Q0
−1,

where β = β01 ⊕ β00.
There are exactly 256 bijections of the form Q0 ◦ ⊕δ ◦Q0

−1 where δ is an 8-
bit string. This set of bijections forms a commutative group under composition,
denoted by (G, ◦). All the group elements (i.e., look-up tables) are generated by
computing the following compositions

f00 ◦ f00−1, f01 ◦ f00−1, . . . , fff ◦ f00−1.

It is not difficult to find 8 group elements, g1, g2, . . . , g8, such that a subset
of them can be composed to generate any group element. These elements act
like a vector-space basis for (G, ◦) and can be used to build an isomorphism
ψ : (G, ◦)→ (GF(2)8,⊕). Without going into further detail (see [2, Theorem 1]),
it is this isomorphism that is used to construct the approximation to Q0: for any
g ∈ G, we set

Q̃0(ψ(g)) = g(00).



A Tutorial on White-box AES 19

Thus, Q̃0 is constructed as a look-up table. An analogous process builds approx-
imation for Q1, Q2, Q3.

Returning to Figure 5, with the approximations at hand, the output encod-
ings in the diagram can be simplified. The simplification is done by composing

new output encodings with the existing ones. After each Qi, the bijection Q̃i
−1

is applied. These two bijections compose to give

Q̃i
−1
◦Qi = Ai

−1 ◦Qi−1 ◦Qi = Ai
−1.

The inverse of an affine bijection is an affine bijection, and so the new output
encodings are much simpler than the original (very likely non-linear) ones. And
since the output encodings in a given round correspond to input encodings in
the subsequent round, the output encoding approximations also lead to input
encoding approximations. Thus, the input encodings in Figure 5 can also be
simplified.

From Billet et al.’s approximations, we can continue under the assumption
that the Pi’s and Qi’s in Figure 5 are affine bijections. Each Qi has the form
Mi(x) ⊕ qi, where Mi is a linear bijection and qi is an 8-bit string. By setting
x1, x2, x3 all to 00 in equations (1)-(4), an explicit linear relation between M0

and each of M1,M2,M3 can be derived. Thus, if M0 is recovered, then so too
will M1,M2,M3.

The next step in the attack recovers M0 and q0 (see the original paper for
details). Thus, the value of the output encodings can be determined completely.
With complete knowledge of Q0, Q1, Q2, Q3, then from Figure 5 we see that it
is possible to compute the outputs of the T-boxes. From the complete knowl-
edge of the output encodings in the previous round, we also learn P0, P1, P2, P3

completely. Now, it is easy to extract the key bytes, as discussed in §4.1.
The time complexity of Billet et al.’s key extraction attack is dominated by

the work required to build the approximation to each output encoding. They es-
timate this to be 224 work-steps. Thus, computing approximations for an entire
AES round is 16 ·224 = 228 work-steps. They recommend computing approxima-
tions for three consecutive AES rounds (3 · 228 < 230 work-steps), which leads
to the recovery of two complete round keys, so that any ambiguity in the order
of the key bytes recovered from the tables can be eliminated.

6 Remarks

White-box cryptography was introduced in the academic literature by Chow,
Eisen, Johnson and van Oorschot 10 years ago and is still a relatively new area
of research, with plenty of real-world applications and room for new contribu-
tions. For those interested in working in this area, a good understanding of the
original white-box AES implementation [4] and the BGE attack [2] are essen-
tial, and hopefully this tutorial can help provide that. Although the BGE attack
permits the key to be extracted from Chow et al.’s original white-box AES im-
plementation, the attack has served mainly as motivation for work on stronger



20 J.A. Muir

white-box implementations, and this line of research has been particularly active
in the last few years (e.g., [13], [19]).

7 Acknowledgements

The author thanks Phil Eisen who, over a number of conversations and presenta-
tions at Irdeto, motivated the style of exposition on AES in §3. Thanks are also
extended to Michael Wiener who provided valuable comments on a preliminary
draft of this work (especially with regards to the local security of the composed
T-box/Tyi tables). Also, conversations on white-box cryptography with Jeremy
Clark, Alfred Menezes and Anil Somayaji were helpful in directing some of our
commentary. Thanks also go to Elif Bilge Kavun who pointed out a notational
error in a previous version of §4.2.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (Im)possibility of Obfuscating Programs (Extended Ab-
stract). In “Advances in Cryptology – CRYPTO 2001: 21st Annual International
Cryptology Conference”, Lecture Notes in Computer Science 2139 (2001), 1–18.
Full version available from http://eccc.hpi-web.de/report/2001/057/.

2. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box AES
Implementation. In “Selected Areas in Cryptography: 11th International Workshop,
SAC 2004”, Lecture Notes in Computer Science 3357 (2005), 227–240.

3. D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking crypto-
graphic protocols for faults. Journal of Cryptology 14 (2001), 101–119.

4. S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. White-Box Cryp-
tography and an AES Implementation. In “Selected Areas in Cryptography: 9th
Annual International Workshop, SAC 2002”, Lecture Notes in Computer Science
2595 (2003), 250–270.

5. S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. A White-box DES Im-
plementation for DRM Applications. In “Digital Rights Management: ACM CCS-9
Workshop, DRM 2002”, Lecture Notes in Computer Science 2696 (2003), 1–15.

6. J. Daemen and V. Rijmen. AES submission document on Rijndael, Version 2,
September 1999. Available from http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf

7. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department Of Commerce / National Institute of
Standards and Technology, 2001. Available from http://www.csrc.nist.gov/

publications/fips/

8. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of White-
Box DES Implementations. In “Selected Areas in Cryptography: 14th International
Workshop, SAC 2007”, Lecture Notes in Computer Science 4876 (2007), 278–295.

9. S. Hohenberger, G. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely
Obfuscating Re-Encryption. In “Theory of Cryptography: 4th Theory of Cryptog-
raphy Conference, TCC 2007”, Lecture Notes in Computer Science 4392 (2007),
233–252.

http://eccc.hpi-web.de/report/2001/057/
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.csrc.nist.gov/publications/fips/
http://www.csrc.nist.gov/publications/fips/


A Tutorial on White-box AES 21

10. M. Karroumi. Protecting White-Box AES with Dual Ciphers. In “Information
Security and Cryptology – ICISC 2010”, Lecture Notes in Computer Science 6829
(2010), 278–291.

11. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In “Advances in Cryptology – CRYPTO ’96”, Lecture Notes in
Computer Science 1109 (1996), 104–113.

12. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In “Advances
in Cryptology – CRYPTO ’99”, Lecture Notes in Computer Science 1666 (1999),
388–397.

13. W. Michiels and P. Gorissen. “Cryptographic Method for a White-Box Imple-
mentation”. U.S. Patent Application 2010/0080395 A1, filed November 9, 2007.

14. W. Michiels and P. Gorissen. “Cryptographic System”. U.S. Patent Applica-
tion 2011/0116625 A1, filed March 2, 2009.

15. C. E. Shannon. Communication Theory of Secrecy Systems. Bell System Techni-
cal Journal 28 (1949), 656–715.

16. B. Wyseur. “White-Box Cryptography”, PhD thesis, Katholieke Universiteit Leu-
ven, 2009.

17. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of
White-Box DES Implementations with Arbitrary External Encodings. In “Selected
Areas in Cryptography: 14th International Workshop, SAC 2007”, Lecture Notes in
Computer Science 4876 (2007), 264–277.

18. J. Xiao and Y. Zhou. Generating Large Non-Singular Matrices over an Arbitrary
Field with Blocks of Full Rank. Cryptology ePrint Archive: Report 2002/096, 2002.
Available from http://eprint.iacr.org/2002/096.

19. Y. Xiao and X. Lai. A Secure Implementation of White-Box AES. In “2009 2nd
International Conference on Computer Science and its Applications: CSA 2009”,
IEEE (2009), 6 pages.

A Mixing Bijections are Necessary

Suppose that mixing bijections are not used to protect key-dependent look-up
tables and they are instead protected using only concatenated 4-bit input and
output encodings. In this case, the white-box implementation would look similar
to what is depicted in Figure 1 (see §3.6), with the exception that the input and
output encodings are not shown there. A protected T-box/Tyi table from round
2 is illustrated in Figure 6. Chow et al. show that the output encodings can be
easily extracted from this table using frequency analysis.

Consider the three functions from bytes to bytes that consist of an S-box
evaluation followed by multiplication (in the AES field GF(28)) with one of the
MixColumns coefficients:

01 · S, 02 · S, 03 · S.

Each of these functions can be represented as a 16-by-16 array where rows and
columns are indexed using 4-bit values x, y; for each x and y, the value of the
function at x‖y is stored at cell (x, y). The distribution of left and right nibbles
in each row and each column of an array can be used to form what Chow et al.
call frequency signatures.

http://eprint.iacr.org/2002/096


22 J.A. Muir

Fig. 6. A composed T-box/Tyi table from round 2 protected using only input and
output encodings.

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

Fig. 7. The first four rows of the AES S-box.

To compute the frequency signature for the first row of 01 · S consider Fig-
ure 7. The sequence of left nibbles from the first row is

6, 7, 7, 7, F, 6, 6, C, 3, 0, 6, 2, F, D, A, 7.

The number of times each possible nibble value (0-F) occurs in this sequence is
summarized in the following table:

0 1 2 3 4 5 6 7 8 9 A B C D E F
1 0 1 1 0 0 4 4 0 0 1 0 1 1 0 2

The first half of the frequency signature is formed by sorting the (left) nibble-
count sequence in descending order: 4421111110000000. The second half of the
signature is formed similarly from the sequence of right nibbles. The complete
frequency signature for the first row of 01 · S is

44211111100000004311111111100000.

Column signatures are similarly defined. Because of the sorting step, it is easily
seen that even if 01 · S was obfuscated using 4-bit output encodings each of its
row and column signatures would remain the same.

To learn the output encodings in Figure 6, we first build two lists R and
C. For 0 ≤ i ≤ 15, entry i in list R consists of the row-i frequency signatures
from each of 01 · S, 02 · S, 03 · S (i.e., each entry consists of an ordered-triple of
frequency signatures). And similarly, for 0 ≤ i ≤ 15, entry i in list C consists of



A Tutorial on White-box AES 23

the column-i frequency signatures from each of 01 ·S, 02 ·S, 03 ·S. In practice, R
and C might simply be 16-line text files with three frequency signatures on each
line. Once R and C have been constructed, it can be easily verified that their
entries are all distinct5; moreover, if each list entry is split into 6 half-signatures
and considered as a set (rather than an ordered 6-tuple), they are also distinct
(i.e., they form 32 distinct sets).

Let U denote a look-up table that enumerates the outputs of Figure 6 that
has been extracted from a white-box implementation. For input nibbles x, y,
let U [x][y] denote the resulting output, which is a sequence of 8 nibbles. There
may be some ambiguity as to how the nibbles are ordered (i.e., which nibbles
are affected by a particular MixColumns coefficient, and which are left-nibble
outputs and which are right-nibble outputs), but this can be eliminated using
the procedure presented below. Consider an input nibble x. In Figure 6, x passes
through an input encoding, call it f1

−1, and is then xor-ed with a nibble of round-
key, say k1, before it reaches the S-box. Let h1 denote the composition of those
two bijections (i.e., h1 = ⊕k1 ◦ f1

−1). The map h1 is unknown; however, for
any x0 in the interval 0 . . . 15 we can deduce the value of h1(x0) through the
following steps:

1. collect all outputs of the form U [x0][y] where 0 ≤ y ≤ 15.
2. from those 16 outputs, compute 8 half-signatures. At most 6 of those half-

signatures will be distinct (recall that the MixColumns coefficient 01 is used
twice).

3. search lists R and C for the entry i that contains all the computed half-
signatures (there will be exactly one matching entry).

4. conclude that h1(x0) = i.

By repeating these steps, we learn h1 completely. Note that the matches found
in step 3 will resolve any ambiguity about the nibble-sequence of U . Note further
that the matches will either all come from R or all from C — by fixing x and
letting y vary, we collect outputs from either rows or columns exclusively.

For an input nibble y, let h2 be defined analogously to h1; i.e., h2 = ⊕k2◦f2
−1

where f2
−1 is the input encoding that affects y and k2 is a round-key nibble. The

map h2 can be deduced similarly; for any y0 in the interval 0 . . . 15 we collect
the 16 outputs of the form U [x][y0], compute 8 half-signatures and then search
R or C for a match. If all the matches occurred in R previously, then they will
now occur in C (and vice versa).

With h1 and h2 known, the output encodings can be easily derived. For
example, four nibbles of the output U [h1

−1(0)][h2
−1(0)] encode the left and

right nibbles of 01 · S(0‖0) = 63. Let g1, g2, g3, g4 denote the output encodings
for those four nibbles; thus we learn the values g1(6), g2(3), g3(6), g4(3).

We can now derive all the output encodings on the T-box/Tyi tables in round
2. As mentioned at the beginning of §5, these output encodings correspond to
input encodings on XOR tables (see Figure 1). The output encodings on those
XOR tables can therefore be derived, which also reveals the input encodings on

5 For example, the two lists can be sorted and merged.



24 J.A. Muir

subsequent XOR tables. Continuing in this manner, we see that all the input
and output encodings on the XOR tables in round 2 can be extracted. The
final set of output encodings in round 2 reveals the input encodings on the T-
box/Tyi tables in round 3. The output encodings on those T-box/Tyi tables can
be derived using the procedure above. With knowledge of the input and output
encodings on each round 3 T-box/Tyi table, their round-key bytes can be easily
extracted.

B Mixing Bijection Selection

The probability that a randomly constructed 32 × 32 matrix over GF(2) is in-
vertible is

(232 − 1)(232 − 2) · · · (232 − 231)

232·32
=

31∏
i=0

(
1− 2i−32

)
≈ 0.288.

Thus, if we repeatedly create a random binary matrix and use row-reduction
to determine if it is invertible, then we expect to get an invertible matrix after
about 1/0.288 = 3.47 iterations on average. However, for the mixing bijections,
MB, that are composed at the output of each T-box/Tyi table in rounds 1
to 9, Chow et al. recommend that those matrices satisfy an additional prop-
erty aside from invertibility: each MB should be built out of invertible 4 × 4
blocks [4, p. 260]. We explain how to create such matrices and consider the type
of information leakage they are intended to protect against.

There are (24 − 1)(24 − 2)(24 − 4)(24 − 8) = 20160 invertible 4× 4 matrices
over GF(2), and so there are 2016064 different block matrices of the form

B11 B12 . . . B18

B21 B22 . . . B28

...
...

...
B81 B82 . . . B88


where each Bij is an invertible 4×4 block. A matrix constructed this way may fail
to be invertible (consider the case where all Bij are equal). However, empirical
results suggest that the density of invertible block matrices is approximately the
same as the density of invertible binary matrices.6 Thus, we can simply create
random 32 × 32 block matrices until we find one that is invertible. As before,
we expect to be successful after about 3.47 iterations on average. An alternative
method for generating invertible block matrices using induction is presented by
Xiao and Zhou [18].

Consider now the 8-bit to 32-bit tables from Figure 4 used to apply MB−1

and the mixing bijections required in the next round. If we ignore the 4-bit input

6 Out of a sample of 106 randomly generated block matrices, we found that 288379
(≈ 28.8%) were invertible.



A Tutorial on White-box AES 25

and output encodings, then each table reduces to a linear transformation of the
form 

L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4



A1

A2

A3

A4

 y =


L1A1y
L2A2y
L3A3y
L4A4y

 ;

here, y is the 8-bit input, L1, L2, L3, L4 are the 8 × 8 mixing bijections and
A1, A2, A3, A4 are 8× 8 blocks taken from MB−1. Each product LiAi is an 8× 8
matrix. Consider the matrix L1A1 and partition it into four 4× 4 blocks. Let y0
and y1 be the two nibbles of y; we have

L1A1y =

[
B11 B12

B21 B22

] [
y0
y1

]
=

[
B11

B21

]
y0 +

[
B21

B22

]
y1 =

[
z0
z1

]
.

An attacker can examine the outputs that result when y1 is held constant and y0
varies (the 4-bit input encodings permit this). Let z0 and z1 denote the nibbles
of the output. The base-2 logarithm of the number of different z0 and z1 values
gives, respectively, the rank of B11 and the rank of B21. The rank of the other
two blocks can be similarly deduced.

Chow et al. note that low rank blocks can leak information about output
encodings [4, p. 263]. They consider the extreme case where blocks have rank 0.
Suppose this is true for B11 and B12; then the output nibble z0 would always
be zero, and so the attacker would learn the 4-bit encoding of 0. Extracting
encoding information when the ranks are nonzero seems more difficult. However,
the number of blocks of rank 1 is 225, and the number of rank 2 is 7350; these
small sets make attractive targets for some type of exhaustive search.

Note that the combination of Li and Ai together determines whether the
product LiAi can be partitioned into invertible blocks. Even if Li and Ai are each
built out of invertible blocks, this is not necessarily true of their product. Similar
reasoning applies to the 8-bit to 32-bit tables that incorporate MB. Even if MB is
constructed out of invertible blocks (as is recommended), this is not necessarily
true for the product of MB and a column of the MixColumns matrix, MC. Thus,
it is not immediately clear what the benefit of imposing this restriction on MB
is. It may be more appropriate to construct MB−1 of out invertible blocks (and
note that if an invertible matrix A is constructed out of invertible blocks, then
this is not necessarily true of A−1). However, whatever structure or properties
the matrices MB and MB−1 might have make no difference in the BGE attack.


	A Tutorial on White-box AES
	1 Introduction
	Outline.
	Preliminary Facts and Notation.


	2 Barak et al.'s Impossibility Theorem
	3 Table-based Implementation
	3.1 AES-128
	3.2 T-boxes
	3.3 T yi tables
	3.4 XOR tables
	3.5 Table Composition
	3.6 Summary

	4 Protected Implementation
	4.1 Encodings
	Local security.

	4.2 Mixing Bijections
	4.3 External encodings
	4.4 Summary

	5 Cryptanalysis
	5.1 The BGE attack

	6 Remarks
	7 Acknowledgements
	A Mixing Bijections are Necessary
	B Mixing Bijection Selection


